RENESAS Software Manual

RAA489204 Battery Front End Sample Code

This software manual provides a detailed description and application guidelines for using the RAA489204 sample
code. It includes Application Programming Interface (API) functions and application examples to speed up the
design of high voltage battery management systems, consisting of multiple (stacked) battery manager ICs.

Contents
I 111 oY 11T 4T o R 3
1.1 Assumptions and Advisory NOtes 3
2. RAA489204 Battery Front ENd OVerviewiiiirinniinatennarnaneennnennn 3
2.0 FeatUIeS ... 3
2.2 Applications 4
2.3 RAA489204 Sample Code Structure e 4
3. RAA489204 Application Programming Interface Implementation 6
3.1 Control and Configuration Structures 6
3.2 Registers Bank 10
3.3 Private (Static) FUNCHiONS e e 12
3.4 APlImplementation 13
3.4.1 R RAA489204 INnit 13
3.4.2 R_RAA489204 Deinito 14
3.4.3 R RAA489204 SetUpo i it e 14
344 R RAA489204 Reset e 15
3.45 R_RAA489204 ModeSetot e 15
346 R _RAA489204 ModeRead 16
3.4.7 R_RAA489204 CommTestot e 16
3.4.8 R_RAA489204 _SelfDiagottt e 17
3.4.9 R _RAA489204 MemCheCKo e e e e e e 18
3.4.10 R _RAA489204 VPackGet e 18
3.4.11 R_RAA489204 IPackGeto e 19
3.4.12 R_RAA489204 VoltagesGet e 19
3.4.13 R _RAA4BO204 TemMPS . .ottt et e 20
3.4.14 R_RAA489204 AllGEt 21
3.4.15 R _RAA489204 VMIXGet 22
3.4.16 R_RAA489204_ FaultsAllRead e 24
3.4.17 R_RAA489204 FaultsCheck e e 25
3.4.18 R _RAA489204 FaultsAllClear e 25
3.4.19 R_RAA489204_CellBalanceCtrl e 25
3.4.20 R_RAA489204 IsCellBalanCingttt et e e 28
3.4.21 R_RAA489204_ContScanCirl 28
3.4.22 R_RAA489204 WatchdogCtrl e 29
3.4.23 R_RAA489204 FETSCHrl e e e 30
3.4.24 R _RAA489204 GPIOSCtrl 31
3.4.25 R_RAA489204 RegisterRead i e 32
3.4.26 R _RAA489204 RegisterWrite i e e 33
3.5 Configuration 33
3.5.1 MCU Hardware Abstraction Layer 33
R16US0008EU0200 Rev.2.00 RENESAS Page 1

Sep 28, 2022 © 2021 Renesas Electronics

RAAA489204 Battery Front End Sample Code Software Manual

3.5.2 Battery Front End e 33

3.5.3 Battery Abstraction Layer 34

3.54 Demo Application 35

3.6 EXamples . ..o 36

4. Demo Application e e e e 40
5. ReVvision History i i i ettt e e e aaaaaaaaaaaa s 45
R16US0008EU0200 Rev.2.00 RENESAS Page 2

Sep 28, 2022

RAAA489204 Battery Front End Sample Code Software Manual

1. Introduction

The RAA489204 sample code provides robust and easy access to the resources and functionality of the Battery

Front End (BFE) device. The code includes a specialized-to-the-device control code (Battery Abstraction Layer —
BAL), a demo battery management application, and a user interface. These components are portable and suitable
for integration into multitasking software projects.

The sample software package has the following features:

= Stand-alone or daisy chain operation support

= Full system scalability

= Custom configurations

= Easy access to RAA489204 resources and advanced features

= Simplified status and error monitoring

= Integrated fault diagnostics and processing

= Functional safety mechanisms

= Application Programming Interface (API) for easy integration

= Full compatibility with Renesas Advanced (RA) Family 32-bit MCUs

1.1 Assumptions and Advisory Notes

= Itis assumed that you possess basic understanding of microcontrollers, embedded systems hardware, battery
management systems and Li-based battery cells.

= Itis assumed that you have prior experience working with Integrated Development Environments (IDEs) such
as e2studio, Flexible Software Package (FSP), and terminal emulation programs such as Tera Term.

= Renesas recommends reviewing the Industrial Battery Front End API Software Manual to get familiar with the
Battery Abstraction Layer and the interface concepts.

= Renesas recommends reviewing the EK-RA2A1 Quick Start Guide and EK-RA2A1 Manual, in addition to the
RAA489204 Datasheet and Evaluation Kit Manual, to get acquainted with MCU and BFE features before
proceeding further.

2. RAA489204 Battery Front End Overview

21 Features

RAA489204 is a 14 cell Li-ion battery manager IC that have the following features:

= High hot plug rating: 65V

= Qualified for industrial temperature range: -40°C to +85°C

= Monitors and manages up to 14 Li-lon cells

= Monitors up to six external temperature inputs

= Cell voltage measurement accuracy: +10mV

= 14-bit voltage and temperature measurements with user-selectable averaging function
= Two GPIO pins

= Daisy chain hardware providing robust and redundant board-to-board communications, using differential,
AC-coupled signaling or transformer coupling at speed up to 1Mbps.

= High security communication protocol

= Can operate in standalone mode or with up to 30 devices in a stack, monitoring up to 420 Li-ion cells in total
= Fully tolerant to EMC and transients

= Integrated system diagnostics for all key functions

R16USO008EU0200 Rev.2.00 KEN ESNS Page 3
Sep 28, 2022

RAAA489204 Battery Front End Sample Code Software Manual

= Watchdog timer to put the device into sleep mode if communication is lost

The external MCU communicates with the stack master device using a high-speed SPI communication interface.
Figure 1 shows a typical application of the RAA489204. The MCU contains and runs the sample software

package.

Monitor Board
(Master or Stand-Alone)

To Other Devices
(Optional)
Up to 30 total

Monitor Board
(Daisy Chain - Optional)

VBAT
RAA489204
PACK

bbb b

2.2

VG1

VC10 DHi2 I:: O+
VC9 DLo2 =

Host
Micro

VG1

VBAT
RAA489204

PACK
VC14

DHi2 vc13
DLo2 vyc12

VC11

DHi1 vc10

DLo1 VC9

VC8
VC7

VC6

VC5

VC4
VC3

VC2

VC1

VCO

Lalnln o alaly o plala ol

VSS

VG2

Figure 1. Typical Application of RAA489204

Applications

= Electric mobility battery packs

= Backup batteries

= Energy storage equipment

= Portable and semi-portable equipment

2.3

RAA489204 Sample Code Structure

The RAA48204 sample code contains the following software components:

= Battery Front End Application Programming Interface (BFE API)
= RAA4489204 implementation of the BFE API
= Demo application with finite-sate machine, cell balancing algorithm and command line user’s interface

14 Cells

= Configuration file for Renesas Flexible Software Package, which is used to generate the peripheral (Hardware
Abstraction Layer - HAL) drivers for the MCU used for running the sample code

R16US0008EU0200 Rev.2.00

Sep 28, 2022

RENESAS

Page 4

RAAA489204 Battery Front End Sample Code Software Manual

Table 1 shows the sample code directory structure. Besides the main interface, implementation and application
files there are additional ones containing macros and specialized functions.

Table 1. Directory Structure of the Sample Code

Directory Filename Description Module
ra fsp inc api Modules APls HAL (Generated by FSP)
instances Definition of module instances
src r*.c APIls’ implementation
ra_gen Instantiation of HAL modules and
main.c that calls the entry point
ra_cfg fsp_cfg r_* cfg.h Configuration options files
src - hal_entry.c Entry point that calls the application
main
bal_data.h Exported global variables of the Applications Layer
interface
bal_data.c BFE instance and definitions of the
major structures
common_utils.h Common macros for the Battery
Abstraction Layer (BAL)
r_bms_cfg.h Battery Management System (BMS)
configuration macros
r_bms.h Definitions, structures, enumerations
and declarations of functions for the
BMS
r_bms.c BMS application code
r_usb_pcdc_descriptor.c | USB driver descriptors
bfe r_bfe_api.h Battery Abstraction Layer (BAL) API Battery Abstraction Layer
r_bfe_cfg.h BAL configuration macros
r_bfe_common.h Common macros for the BAL
r_raa489204.c Actual code for the interface
implementation
r_raa489204.h Definitions, structures, enumerations
and declarations of the API functions
r_raa489204_crc.c CRC related functions
r_raa489204_crc.h Declarations of the CRC exported global
functions

The BFE instance and its structures define the contract and features common to most of the BFEs. The BFE

instance for RAA489204 contains the actual code implementation of BFE functionalities. Figure 2 shows the main
software components, structures, and files of the BFE interface and instance implementation. Both configuration
and control structures are extended to fit the device specifics.

R16USO008EU0200 Rev.2.00
Sep 28, 2022

RENESAS

Page 5

RAAA489204 Battery Front End Sample Code Software Manual

())
r_bfe_api.h

Void Definitions

Interface Enumerations

AT YN Y

|

|
BFE Instance W

J J

st_bfe_api st_bfe_cfg st_bfe_ctrl
_ 4
implement *p_extend
s ~ *p_extend ~
[g_bfe_raad89204_api] R_RAA489204 _Init [st_raa489204_ext_ctr u_raa489204_voltages_meas
R_RAA489204 Setup u_raa489204 temps_meas
R_RAA489204_Reset u_raa489204_all_meas

R_RAA489204_
R_RAA489204_VPackGet
R_RAA489204_CellBalanceCtrl
R_RAA489204_*** —declares—{ Public API declaration

st_raa489204_watchdog_ctrl
st_raa489204_cb cfg
st_raa489204_faults

points to

ModeSet =[st_raa489204_ext_cfg] st_raa489204_scan_cont_cfg

BFE Registers Image

g_raa489204_registers isa >(st_raad89204_registers Registers typedefs dgclaratl ons:
L structs and unions
_ r_bfe_raa489204.c) _ r_bfe_raa489204.h)

RAA489204 BFE Instance Implementation

Figure 2. Main Software Components of BFE Instance Implementation

3. RAA489204 Application Programming Interface Implementation

3.1 Control and Configuration Structures

The control and configuration functions used as parameters for the API functions and holding the BFE settings,
state flags, registers and more are extended to cover the device specifics. The extended structures and the
relevant enumerations can be found in file bfe/r_raad489204.h. Table 2 shows the content of the extended control
structure. It contains information about the stack identification attempts tracking during BFE initialization. It also
points to the timings structure (Table 3). Timings are crucial for providing reliability and fault-safe operation in a
stack with up to 30 BFEs. Operations are synchronized together with the high-speed SPI communication with the
MCU and the vertical daisy-chain communication between the devices within the stack. For example, after
sending a Scan command the MCU must wait for the input sampling and ADC conversion to complete before
reading the measured data. Or after sending a data packet the MCU is waiting for a response for a certain period
of time that is determined by many factors such as packet size, stack size, and communication speed. Most of the
timings are based on the particular BFE and MCU settings and are automatically calculated in the initialization API
function.

Table 2. Members of the RAA489204 Extended Control Structure

typedef struct st_raa489204_ext_ctrl
Member Type Description
identify_attempts uint16_t Number of identify attempts
timings st_raa489204_timings_t Structure holding the BFE timings
R16USO008EU0200 Rev.2.00 RENESAS Page 6

Sep 28, 2022

RAAA489204 Battery Front End Sample Code Software Manual

Table 3. Members of the RAA489204 Timings Structure

typedef struct st_raa489204_ext_ctrl

Member Type Description
daisy_chain_period_us uint32_t Daisy chain communication period [us]
max_bytes_delay_us uint32_t Maximum delay between two adjacent response Bytes [us]
min_wait_time_us uint32_t | Maximum time for daisy chain ports to clear [us]
sleep_time_us uint32_t | Maximum wait time for devices entering sleep mode [us]
wakeup_time_us uint32_t | Maximum wait time for devices to exit sleep mode [us]
scan_volts_time_us uint32_t | Scan Voltages Command processing time [us]
scan_mixed_time_us uint32_t | Scan Mixed Command processing time with voltage averaging [us]
scan_mixed_ext_time_us uint32_t | Scan Mixed Command processing time extension when temperature averaging
is used [us]
scan_temps_time_us uint32_t | Scan Temperatures Command processing time with temp averaging [us]
scan_wires_time_us uint32_t | Scan Wires Command processing time [us]
scan_all_time_us uint32_t | Scan All Command processing time [us]
scan_all_ext_time_us uint32_t Scan All Command processing time extension when temperature averaging is
used [us]
scan_mux_time_us uint32_t | Scan Voltage Cell MUX Command processing time [us]
reset_wait_time_us uint32_t Reset processing time [us]
start_up_wait_time_ms uint32_t | Start-up delay (power on or enable) [ms]
timer_freq_hz uint32_t | MCU Clock frequency [Hz]

Table 4 shows the content of the extended configuration structure. Its members correspond to all fixed settings of
the BFE. An exception are those related to functionalities like scan continuous or cell balancing which can be
reconfigured later in the code. The extended configuration structure stores constant variables directly related to
the hardware such as stack size (total cell count), vertical communication speed (COMMRATE pins connection),
overvoltage limit (Li-lon chemistry), open-wire scan time (VC inputs RC filter time constant), and data ready signal
MCU input pin (routing between the master BFE and the MCU). The limits are entered as real values (Voltages,
Temperatures). Some of the variables have types which are defined as enumerations. Therefore, you can select
from a list of options facilitating the device configuration. Keep in mind that the initialization function is checking
some of the members of the extended configuration structure for correct values and if a mismatch is detected, an
error code is returned. Some members of the described structures are defined as arrays. Each element of those
arrays refers to a level in the stack (BFE device number). For example, the elements of cell_num array denote
how many battery cells are monitored by each BFE from the stack. For more information about the available
options and their effect over the BFE performance, refer to the RAA489204 Datasheet.

Table 4. Members of the RAA489204 Extended Configuration Structure

typedef struct st_raa489204_ext_cfg

Member Type Description
stack_size const uint8_t Number of BFE devices in the stack
d_ch_data_speed const e_raa489204_dch_rate_t | Daisy chain data rate
cell_num[BFE_STACK_SIZE] const uint8_t Number of cells per device

gpio_conf[BFE_STACK_SIZE] const e_raa489204_gpio_conf_t | GPIO inputs configuration

temp_flt_ mon[BFE_STACK_SIZE] const uint16_t Temperature fault monitoring selection
R16US0008EU0200 Rev.2.00 RENESAS Page 7

Sep 28, 2022

RAAA489204 Battery Front End Sample Code Software Manual

Table 4. Members of the RAA489204 Extended Configuration Structure (Cont.)

typedef struct st_raa489204_ext_cfg

Member Type Description
gpio_flt_mon[BFE_STACK_SIZE] const uint16_t GPIO inputs fault monitoring selection
limit_overvolt_v const float Overvoltage limit
limit_undervolt_v const float Undervoltage limit
limit_int_temp_warning_degc const float Internal temperature warning
limit_ext_temp_v const float External temperature limit
wire_scan const e_raa489204 i _scan_t Wire scan current on time
mux_scan const e_raa489204_mux_scan_t | Scan Cell MUX Command timing
flt_tot_samples const e_raa489204 tot smpl_t Number of consecutive samples before a fault is
registered
avging_volt const e_raa489204_avg_t Cell voltage averaging
avging_ext_temp const e_raa489204 avg_t External temperature inputs averaging
cb_test_drop_th_v const float The minimal voltage drop on the VCn pin when a
balancing FET is on. [V]
cb_drop_time_ms const uint32_t The timeout [ms] needed for the voltage on the VCn pin
to drop after cell balancing is enabled.
pin_data_rdy const bsp_io_port_pin_t Data ready pin
pin_data_rdy_mode const bsp_io_port_pin_t Data ready mode pin
pin_enable const bsp_io_port_pin_t BFE IC enable pin
pin_chip_select const bsp_io_port_pin_t Chips select pin

The daisy-chain data rate options for the d_ch_data_speed constant variable are listed in the RAA489204
Daisy-Chain Data Rate Options Enumeration (Table 5). The selected constant is used for communication timings
calculation. It must match the selection by the COMMRATE pins voltage levels as they are available in the BFE
registers and are compared in the code.

Table 5. RAA489204 Daisy-Chain Data Rate Options Enumeration

typedef enum e_raa489204_dch_rate
Constant Value Description
BFE_D_RT_333_KHzZ 0 Daisy-chain data rate is configured physically on COMMRATEO0/1 pins as 333kHz.
BFE_D_RT_500_KHZ 1 Daisy-chain data rate is configured physically on COMMRATEO0/1 pins as 500kHz.
BFE_D_RT_1000_KHZ 3 Daisy-chain data rate is configured physically on COMMRATEO0/1 pins as 1000kHz.

Table 6 shows the options for the GPIO configuration array gpio_conf listed in RAA489204 GPIO Configuration
Options Enumeration. The GPIO pins of RAA489204 can be configured as input, output, or special function
output. The selection for both pins is assigned to the same element of the array using the logical operator OR
such as:

.gpio_conf = {(BFE GPIOl INPUT | BFE GPIO2 OUTPUT SH PLS), // BFEL
(BFE_GPIOl OUTPUT | BFE_GPIO2 OUTPUT)},// BFE2

In the example, GPIO1 of BFE #1 is used as additional external temperature input, and GPIO2 as an output
indication voltage measurement. GPIO1 and GPIO2 of BFE#2 are used as general-purpose outputs.

R16USO008EU0200 Rev.2.00 KEN ESNS Page 8
Sep 28, 2022

RAAA489204 Battery Front End Sample Code Software Manual

Table 6. RAA489204 GPIO Configuration Options Enumeration

typedef enum e_raa489204_gpio_conf

Constant Value Description

BFE_GPIO1_INPUT 0x0000 Configure GPIO1 pin as a general-purpose input.

BFE_GPIO1_OUTPUT_NORMAL 0x0001 Configure GPIO1 pin as a general-purpose output, controlled by G1VAL bit in
Device Setup 2 Register.

BFE_GPIO1_OUTPUT_SPECIAL 0x0005 Configure GPIO1 pin as a secondary fault output and select custom fault
indication using GPIO1 Fault Mask Register.

BFE_GPIO2_INPUT 0x0000 Configure GPIO2 pin as a general-purpose input.

BFE_GPIO2_OUTPUT_NORMAL 0x0002 Configure GPIO2 pin as a general-purpose output, controlled by G2VAL bit in
Device Setup 2 Register.

BFE_GPIO2_OUTPUT_SH_PLS 0x001A | Configure GPIO2 pin to have a short pulse with the start of the voltage
measurement.

BFE_GPIO2_OUTPUT_LNG_PLS 0xFO02A | Configure GPIO2 pin to have a long synchronized pulse during the voltage
measurement.

Table 7 shows the options for open-wire scan timing constant variable wire_scan listed in the RAA489204
Open-Wire Scan Current ON-Time Options Enumeration. The value is selected so that the RC filter time constant
is not affecting the open-wire scan result.

Table 7. RAA489204 Open-Wire Scan Current ON-Time Options Enumeration

typedef enum e_raa489204_i_scan

Constant Value Description
BFE_WIRE_I_SCAN_1_5MS 0x00 Configure open-wire scan current ON-time to 1.5ms.
BFE_WIRE_I_SCAN_5MS 0x01 Configure open-wire scan current ON-time to 5ms.

Table 8 shows the options for multiplexer scan timing constant variable mux_scan listed in the RAA489204 MUX
Scan Bias Current ON-Time Options Enumeration. This setting is related to one of the self-diagnostic procedures.

Table 8. RAA489204 MUX Scan Bias Current ON-Time Options Enumeration

typedef enum e_raa489204_mux_scan

Constant Value Description
BFE_CELL_MUX_SCAN_0_5MS 0 Configure MUX scan bias current ON-time to 0.5ms.
BFE_CELL_MUX_SCAN_1_25MS 1 Configure MUX scan bias current ON-time to 1.25ms.

Table 9 shows the options for fit_tot samples constant variable for how many consecutive fault samples are
required to set in a fault condition. They are listed in the RAA489204 Number of Samples for Registering a Fault
Enumeration. This setting is valid for both voltage and temperature measurements.

Table 9. RAA489204 Number of Samples for Registering a Fault Enumeration

typedef enum e_raa489204_tot_smpl

Constant Value Description
BFE_TOT_1_SMPL 0x00 Configure for 1 totalizer sample.
BFE_TOT_2_SMPL 0x01 Configure for 2 totalizer samples.
BFE_TOT_4_SMPL 0x02 Configure for 4 totalizer samples.
R16USO008EU0200 Rev.2.00 RENESAS Page 9

Sep 28, 2022

RAAA489204 Battery Front End Sample Code Software Manual

Table 9. RAA489204 Number of Samples for Registering a Fault Enumeration (Cont.)

typedef enum e_raa489204_tot_smpl
Constant Value Description
BFE_TOT_8 SMPL 0x03 Configure for 8 totalizer samples.
BFE_TOT_16_SMPL 0x04 Configure for 16 totalizer samples.
BFE_TOT_32_SMPL 0x05 Configure for 32 totalizer samples.
BFE_TOT_64_SMPL 0x06 Configure for 64 totalizer samples.
BFE_TOT_128_SMPL 0x07 Configure for 128 totalizer samples.

Table 10 shows the options for the voltage and external temperature averaging constant variables avging volt and
avging_ext_temp listed in the RAA489204 Number of Samples Averaged Enumeration. The averaging function
results in triggering additional consecutive samples and prolonging the total scan time.

Table 10. RAA489204 Number of Samples Averaged Enumeration

typedef enum e_raa489204_avg
Constant Value Description

BFE_AVG_1_SMPL 0x00 Configure for no averaging.
BFE_AVG_2_SMPL 0x01 Configure for 2 samples averaging.
BFE_AVG_4_SMPL 0x02 Configure for 4 samples averaging.
BFE_AVG_8 SMPL 0x03 Configure for 8 samples averaging.
BFE_AVG_16_SMPL 0x04 Configure for 16 samples averaging.
BFE_AVG_32_SMPL 0x05 Configure for 32 samples averaging.

3.2 Registers Bank

The registers’ bank holds all BFE registers in its fields. Each member is a nested structure with a predefined data
type (Table 11). It contains the register address itself, the register type which has fixed values and information if
the data packet can be sent to all BFEs simultaneously (broadcasted) and if an acknowledge or no response is
waited by the MCU. Table 12 shows the register type options. All this information is used by the Middleware
communication driver to determine how to assemble the data packet and manage the SPI communication.

Table 11. Members of the RAA489204 Register Container Structure

typedef struct st_raa489204_register

Member Type Description
address const e_raa489204 reg_addr_t Register address
type const e_raa489204 reg_type t Register type
broadcast const bool Register can be broadcasted
ack const bool BFE returns ACK after receiving the command
no_resp const bool BFE returns no response after receiving the command

R16US0008EU0200 Rev.2.00

Sep 28, 2022

RENESAS Page 10

RAAA489204 Battery Front End Sample Code Software Manual

Table 12. RAA489204 Register Type Enumeration

typedef enum e_raa489204_reg_type

Constant Description
READ_ONLY Read only register
READ_WRITE Read/Write register
COMMAND Command
RESPONSE Response
CMND_RESP Command or Response

To set a target register to the communication driver, you need only to assign the register bank member such as:

st raa489204 register t target register =

g raa489204 registers.cmnd scan voltage;

You can find the full register bank declaration in bfe/r_raa489204.h and definition in bfe/r_raad489204.c. The
following code demonstrates a part of it:

/* RAA489204 registers' bank */
st raad489204 registers t g raad489204 registers =

{

.cell setup = {.address = BFE REG CELL SETUP, .type = READ WRITE,
.broadcast = false, .ack = false, .no_resp = false},
.cell 1 voltage = {.address = BFE REG CELL 1 VOLT, .type = READ ONLY,
.broadcast = false, .ack = false, .no resp = false},
.cell 2 voltage = {.address = BFE REG CELL 2 VOLT, .type = READ ONLY,
.broadcast = false, .ack = false, .no_resp = false},
.cell 3 voltage = {.address = BFE REG CELL 3 VOLT, .type = READ ONLY,
.broadcast = false, .ack = false, .no resp = false},
.cmnd_scan_voltage = {.address = BFE_CMND SCAN VOLTS, .type = COMMAND,
.broadcast = true, .ack = false, .no _resp = true},
.cmnd_scan_temps = {.address = BFE CMND SCAN TEMPS, .type = COMMAND,
.broadcast = true, .ack = false, .no resp = true},
.cmnd_nak = {.address = BFE CMND NAK, .type = RESPONSE,
.broadcast = false, .ack = false, .no resp = false},
.cmnd_ack = {.address = BFE CMND ACK, .type = CMND RESP,
.broadcast = false, .ack = true, .no _resp = false},
.resp_comms_failure = {.address = BFE CMND COMMS FAILURE, .type = RESPONSE,
.broadcast = false, .ack = false, .no _resp = false},
.cmnd_hreset = {.address = BFE CMND HRESET, .type = COMMAND,
R16USO008EU0200 Rev.2.00 RENESAS Page 11

Sep 28, 2022

RAAA489204 Battery Front End Sample Code Software Manual

.broadcast = true,

3.3 Private (Static) Functions

.ack

false, .no_resp = true},

Table 13 shows the declaration and description of the private functions used in API functions in the source code.
They operate on different levels in the BAL from data conversion to handling the communication with the stack
and running procedures for stack identification, change of state, or certain diagnostic. The most used private
function is bfe_spi_msg_send_resp_get(). It implements the communication protocol and actually manages the
data transfer between the MCU and all BFEs in the stack. For more details, see the examples in the next sections

and the comments in the source code in bfe/r_raa489204.c.

Table 13. Static Functions Defined in the Source Code

Function

Description

static e_bfe_err_t bfe_identify (st_bfe_ctrl_t * const p_ctrl);

Runs identification procedure of the stack and reads
the serial numbers of the BFEs.

static e_bfe_err_t bfe_reset_hard (st_bfe_ctrl_t * const p_ctrl);

Sends a hard reset command to the Battery Front
End to toggle the EN pin internally or externally,
depending on the selection in bfe/r_bfe_cfg.h.

static e_bfe_err_t bfe_reset_soft (st_bfe_ctrl_t * const p_ctrl);

Sends a soft reset command to all BFEs in the stack
to reset only the digital part.

static e_bfe_err_t bfe_watchdog (st_bfe_ctrl_t * const p_ctrl,
e_raa489204_wd_timeout_t time);

Enables or disables the watchdog timer and selects
time.

static e_bfe_err_t bfe_sleep (st_bfe_ctrl_t * const p_ctrl);

Sends a sleep command to all BFEs in the stack.

static e_bfe_err_t bfe_wake_up (st_bfe_ctrl_t * const p_ctrl);

Sends a wake-up command to all BFEs in the stack.

static e_bfe_err_t bfe_random_wake_up (st_bfe_ctrl_t * const p_ctrl);

Wakes up a sleeping BFE on random position in the
stack.

static e_bfe_err_t bfe_adc_check (st_bfe_ctrl_t * const p_ctrl);

Tests the ADC of all BFEs in the stack.

static e_bfe_err_t bfe_mux_check (st_bfe_ctrl_t * const p_ctrl);

Tests cell and temperature multiplexers of all BFEs in
the stack.

static e_bfe_err_t bfe_eeprom_check (st_bfe_ctrl_t * const p_ctrl);

Compares shadow registers and factory written
checksum to detect EEPROM data corruption of all
BFEs in the stack.

static e_bfe_err_t bfe_conf_reg_check (st_bfe_ctrl_t * const p_ctrl);

Checks configuration registers of all BFEs in the
stack for data corruption.

static e_bfe_err_t bfe_cell_balancing_check (st_bfe_ctrl_t * const p_ctrl);

Tests the cell balancing circuits.

static e_bfe_err_t bfe_wires_check (st_bfe_ctrl_t * const p_ctrl);

Checks all measurement inputs for open wire
condition.

static e_bfe_err_t bfe_spi_msg_send_resp_get (st_bfe_ctrl_t * const
p_ctrl, st_raa489204_spi_msg_t * const p_spi_msg);

Manages SPI data transmission between the MCU
and all BFEs in the stack.

static e_bfe_err_t bfe_spi_resp_get (st_bfe_ctrl_t * const p_ctrl,
st_raa489204_spi_msg_t * const p_spi_msg);

Checks for available response data packet and
receives it.

static e_bfe_err_t bfe_spi_pending_resp_get (st_bfe_ctrl_t * const p_ctrl,
st _raa489204_spi_msg_t * const p_spi_msg);

Receives all pending response data bytes.

static e_bfe_err_t bfe_command_encode (st_bfe_ctrl_t * const p_ctrl,
st_raa489204_spi_msg_t * const p_spi_msg);

Encodes the data packet from the message structure
address and data fields to the encoded command
buffer to send using SPI.

R16USO008EU0200 Rev.2.00
Sep 28, 2022

RENESAS

Page 12

RAAA489204 Battery Front End Sample Code Software Manual

Table 13. Static Functions Defined in the Source Code (Cont.)

Function

Description

static e_bfe_err_t bfe_response_decode (st_bfe_ctrl_t * const p_ctrl,
st_raa489204_spi_msg_t * const p_spi_msg);

Decodes the data received via SPI from the message
structure encoded response buffer and copies it the
response data fields.

static e_bfe_err_t bfe_response_examine (st_bfe_ctrl_t *
const p_ctrl, st_raa489204_spi_msg_t * const p_spi_msg);

Examines the response and check for expected
registers and message length to verify a valid
response.

static float bfe_adc_to_vbat (uint16_t value); Converts ADC value to battery voltage.

static float bfe_adc_to_vcell (uint16_t value); Converts ADC value to cell voltage.

static float bfe_adc_to_vext (uint16_t value); Converts ADC value to external temperature input
voltage.

static float bfe_adc_to_tempc (uint16_t value); Converts ADC value to temperature.

static float bfe_adc_to_sref (uint16_t value); Converts ADC value to secondary reference voltage.

static uint16_t bfe_vcell_to_adc (float value);

Converts cell voltage to ADC value.

static uint16_t bfe_vext_to_adc (float value);

Converts external temperature voltage to ADC value.

static uint16_t bfe_tempc_to_adc (float value);

Converts temperature to ADC value.

3.4 APl Implementation

The group of functions named in accordance with the convention R_<BFE>_<API_function> implement the
functionalities that can be accessed by applications over the API structure. This section describes their

implementations and interactions with the BFE device.

3.41 R_RAA489204_Init

e_bfe_err_t R_RAA489204_Init (st_bfe_ctrl_t * const p_bfe_ctrl, st_bfe_cfg_t const * const p_bfe_cfg)

Description

This function initializes the BFE by enabling and configuring the necessary peripheral modules of the MCU,
identifying the BFE and other device-specific actions. It modifies the Boolean variable p_ctrl->is_initialized.

Operation = Checks function parameters.

= Calculates BFE timings.

= Initializes a CRC peripheral module.

= Initializes the ISR peripheral modules

= Sets SPI transfer mode.

= Calls stack identification procedure.

* Resets the stack.

= Calls stack identification procedure.

= Checks the EEPROM data for corruption.

= Initializes a communication timeout timer peripheral module.

= Initializes a SPI interface peripheral module to connect to the master BFE device.

Precondition

Please, perform a MCU peripheral communication module setup according to the requirements stated in the BFE

datasheet.

Warnings This function does not check the communication module settings.

Parameters p_bfe_ctrl Pointer to the BFE control structure
p_bfe_cfg Pointer to the BFE configuration structure

R16US0008EU0200 Rev.2.00

Sep 28, 2022 KEN €S

Page 13

RAAA489204 Battery Front End Sample Code Software Manual

Return values | BFE_SUCCESS No error was returned.

BFE_ERR_INVALID_POINTER Input argument has invalid pointer.

BFE_ERR_COMM_UNSUP_INTERFACE | The selected communication interface is unsupported.

BFE_ERR_UNSUPPORTED_MODE The selected configuration setting is unsupported.
BFE_ERR_FSP Error in the FSP layer.

BMS_ERR ... Inherit from bfe_identify().

BMS_ERR ... Inherit from bfe_reset_hard().

3.42 R_RAA489204_Deinit

e_bfe_err_t R_RAA489204_Deinit (st_bfe_ctrl_t * const p_bfe_ctrl);

Description This function deinitializes the BFE. It disables the used peripheral modules of the MCU. It modifies the Boolean
variable p_ctrl->is_initialized.

Operation = Checks function parameters.

= Deinitializes the SPI peripheral module.

= Deinitializes the CRC peripheral module.

= Deinitializes the Timer peripheral modules.
= Deinitializes the IRQ peripheral module.

Precondition | The BFE interface should have already been initialized.

Warnings -
Parameters p_bfe_ctrl Pointer to the BFE control structure.
Return values | BFE_SUCCESS No error was returned.

BFE_ERR_INVALID_POINTER Input argument has invalid pointer.

BFE_ERR_DEVICE_NOT_INITIALIZED The BFE interface is not initialized.

BFE_ERR_FSP Error in the FSP layer.

3.43 R_RAA489204_Setup

e_bfe_err_t R_RAA489204_Setup (st_bfe_ctrl_t * const p_bfe_ctrl, st_bfe_cfg_t const * const p_bfe_cfg);

Description This function configures the BFE device (stack) by writing into all configuration registers. It extracts the necessary
data from the control p_ctrl and configuration p_cfg structures.

Operation = Checks function parameters.
= Sends a multiple register write command to set Fault Setup Register, Overvoltage, Undervoltage and External

= Temperature Limit Registers, FAULT Pin Mask Register, GPIO1 Pin Mask Register, Internal Temperature
Warning and Limit Registers, Cell Balance Setup Register, Watchdog/Balance Time Register, Device Setup 1
and 2 Registers, Cell Setup Register.

= Verifies if values are correctly written.

= Check Communication Setup

= Register to verify daisy chain data speed.
= Send a command to recalculate Page 2
= Registers checksum.

Precondition | The BFE interface should have already been initialized.

Warnings Always check the p_ctrl->is_fault_detected flag after calling this function!
Parameters p_bfe ctrl Pointer to the BFE control structure.
p_bfe_cfg Pointer to the BFE configuration structure.
R16US0008EU0200 Rev.2.00 RENESAS Page 14

Sep 28, 2022

RAAA489204 Battery Front End Sample Code Software Manual

Return values | BFE_SUCCESS No error was returned.

BFE_ERR_INVALID_POINTER Input argument has invalid pointer.

BFE_ERR_DEVICE_NOT_INITIALIZED The BFE interface is not initialized.

BFE_ERR_WRITE_VERIFY Register write verification error.

BMS_ERR ... Inherit from bfe_spi_msg_send_resp_get().

3.44 R_RAA489204 Reset

e_bfe_err_t R_RAA489204_Reset (st_bfe_ctrl_t * const p_bfe_ctrl, e_bfe_reset_type_t type);

Description This function resets the BFE. Several predefined reset options can be set with the type input parameter.

Operation = Checks function parameters.

= Resets the digital part of the device (soft reset) or both digital and analog parts (hard) according to the selected
reset type.

= Runs stack identification procedure.
= Reads serial numbers of all BFE devices.

Precondition | The BFE interface should have already been initialized.

Warnings = Always check the p_ctrl->is_fault_detected flag after calling this function!
= You should reconfigure the BFE after reset by calling R_RAA489204_Setup()!

Parameters p_bfe_ctrl Pointer to the BFE control structure.
type Hard or soft reset type selector.

Return values | BFE_SUCCESS No error was returned.
BFE_ERR_INVALID_POINTER Input argument has invalid pointer.

BFE_ERR_DEVICE_NOT_INITIALIZED The BFE interface is not initialized.

BFE_ERR_INVALID_ARGUMENT Invalid reset type was selected.
BMS_ERR_... Inherit from bfe_reset_soft().
BMS_ERR_... Inherit from bfe_reset_hard().
BMS_ERR ... Inherit from bfe_identify().

The values for the function parameter type are defined as constants in the BFE Reset Types Enumeration in file
bfe/r_bfe_api.h. Table 14 lists the supported reset options by the BFE.

Table 14. BFE Reset Types Enumeration

typedef enum e_bfe_reset_type
Constant Description
BFE_RESET _TYPE_SOFT Reset only the digital part.
BFE_RESET_TYPE_HARD Reset both the digital and analog parts.

3.45 R_RAA489204_ModeSet

e_bfe_err_t R_RAA489204_ModeSet (st_bfe_ctrl_t * const p_bfe_ctrl, e_bfe_mode_t mode);

Description This function forces the BFE to enter sleep mode or wakes it up. Mode or state is selected with the mode input
parameter from a predefined list of modes. It modifies the Boolean variable p_ctrl->is_low_power. When more
than two unsuccessful wake-up attempts are made, a procedure is followed to wake up a random sleeping device
from the stack.

R16USO008EU0200 Rev.2.00 KENESAS Page 15
Sep 28, 2022

RAAA489204 Battery Front End Sample Code Software Manual

Operation

= Checks function parameters.

= Calls a local function for entering sleep mode or waking up the BFE depending on the selected mode.

Precondition

The BFE interface should have already been initialized.

Warnings Always check the p_ctrl->is_fault_detected flag after calling this function!
Parameters p_bfe_ctrl Pointer to the BFE control structure.
mode Mode selection.

Return values

BFE_SUCCESS

No error was returned.

BFE_ERR_INVALID_POINTER

Input argument has invalid pointer.

BFE_ERR_DEVICE_NOT_INITIALIZED

The BFE interface is not initialized.

BFE_ERR_INVALID_ARGUMENT

Invalid mode was selected.

BMS_ERR ... Inherit from bfe_wake_up().
BMS_ERR_... Inherit from bfe_random_wake_up().
BMS_ERR_... Inherit from bfe_sleep().

The values for the function parameter mode are defined as constants in the BFE States and Modes Enumeration
in file bfe/r_bfe_api.h. Table 15 shows the supported modes by the sample code.

Table 15. BFE States and Modes Enumeration

typedef enum e_bfe_mode

Constant

Description

BFE_MODE_IDLE

The device is ready waiting for a task to be executed.

BFE_MODE_LOW_POWER_MODE

The BFE is currently in low power mode.

3.4.6 R_RAA489204 ModeRead
e_bfe_err_t R_RAA489204_ModeRead (st_bfe_ctrl_t * const p_bfe_ctrl, e_bfe_mode_t * const p_mode);
Description This function reads the current BFE mode. The pointer p_mode points to a variable where the result can be
found.
Operation = Checks function parameters.

= Compare control structure parameters to obtain the current mode.

Precondition

The BFE interface should have already been initialized.

Warnings Always check the p_ctrl->is_fault_detected flag after calling this function!
Parameters p_bfe_ctrl Pointer to the BFE control structure.
p_mode Pointer to the obtained mode.

Return values

BFE_SUCCESS

No error was returned.

BFE_ERR_INVALID_POINTER

Input argument has invalid pointer.

Table 15 shows the expected modes returned as a result.

3.4.7 R_RAA489204_CommTest
e_bfe_err_t R_RAA489204_CommTest (st_bfe_ctrl_t * const p_bfe_ctrl);
Description This function tests communication between the MCU and single or multiple BFE devices. If communication

cannot be established, an error is returned accordingly.

R16US0008EU0200 Rev.2.00

Sep 28, 2022

RENESAS

Page 16

RAAA489204 Battery Front End Sample Code Software Manual

Operation

= Checks function parameters.

= Sends ACK command and waits for response form the top stack device.

Precondition

The BFE interface should have already been initialized.

Warnings

Always check the p_ctrl->is_fault_detected flag after calling this function!

Parameters

p_bfe_ctrl

Pointer to the BFE control structure

Return values

BFE_SUCCESS

No error was returned.

BFE_ERR_INVALID_POINTER

Input argument has invalid pointer.

BFE_ERR_DEVICE_NOT_INITIALIZED

The BFE interface is not initialized.

BFE_ERR_... Inherit from bfe_spi_msg_send_resp_get().
3.4.8 R_RAA489204_SelfDiag
e_bfe_err_t R_RAA489204_SelfDiag (st_bfe_ctrl_t * const p_bfe_ctrl, e_bfe_diag_option_t option);
Description This function runs a self-diagnostic test for the BFE. Several predefined diagnostic options can be set with the
option input parameter.
Operation = Checks function parameters.

= Calls a local function to run the selected diagnostic.

Precondition

The BFE interface should have already been initialized.

Warnings Always check the p_ctrl->is_fault_detected flag after calling this function!
Parameters p_bfe ctrl Pointer to the BFE control structure.
option Selected option for the self-diagnostic.

Return values

BFE_SUCCESS

No error was returned.

BFE_ERR_INVALID_POINTER

Input argument has invalid pointer.

BFE_ERR_DEVICE_NOT_INITIALIZED

The BFE interface is not initialized.

BFE_ERR_INVALID_ARGUMENT

Invalid option was selected.

BFE_ERR_... Inherit from bfe_adc_check().
BFE_ERR_... Inherit from bfe_mux_check().
BFE_ERR_... Inherit from bfe_eeprom_check().
BFE_ERR_... Inherit from bfe_conf_reg_check().
BFE_ERR_... Inherit from bfe_cell_balancing_check().
BFE_ERR ... Inherit from bfe_wires_check().

The values for the function parameter option are defined as constants in the BFE Diagnostic Options Enumeration
in file bfe/r_bfe_api.h. Table 16 shows the supported diagnostic options by the sample code.

Table 16. BFE Diagnostic Options Enumeration

typedef enum e_bfe_diag_option

Constant

Description

BFE_FULL_TEST

Run a complete self-test.

BFE_TEST_ADC

Test the ADC.

BFE_TEST_MUX

Test the multiplexer.

R16USO008EU0200 Rev.2.00
Sep 28, 2022

RENESAS

Page 17

RAAA489204 Battery Front End Sample Code Software Manual

Table 16. BFE Diagnostic Options Enumeration

typedef enum e_bfe_diag_option

Constant Description

BFE_TEST_CB Test cell balancing circuit.

BFE_TEST_OW Check for open wires.

3.49 R_RAA489204_MemCheck

e_bfe_err_t R_RAA489204_MemCheck (st_bfe_ctrl_t * const p_bfe_ctrl, e_bfe_mem_check_option_t option);

Description This function runs memory tests inside a BFE for corrupted registers and data. Several predefined memory test
options can be set with the option input parameter.

Operation = Checks function parameters.
= Calls a local function to run the selected memory test.

Precondition | The BFE interface should have already been initialized.

Warnings Always check the p_ctrl->is_fault_detected flag after calling this function!

Parameters p_bfe_ctrl Pointer to the BFE control structure.
option Selected option for the memory test.

Return values | BFE_SUCCESS No error was returned.
BFE_ERR_INVALID_POINTER Input argument has invalid pointer.

BFE_ERR_DEVICE_NOT_INITIALIZED The BFE interface is not initialized.

BFE_ERR_INVALID_ARGUMENT Invalid option was selected.
BFE_ERR_... Inherit from bfe_conf_reg_check().
BFE_ERR_... Inherit from bfe_eeprom_check().

The values for the function parameter option are defined as constants in the BFE Memory Check Options
Enumeration in file bfe/r_bfe_api.h. Table 17 shows the supported memory check options by the sample code.

Table 17. BFE Memory Check Options Enumeration

typedef enum e_bfe_mem_check_option

Constant Description
BFE_CHECK_EEPROM Verify content of EEPROM memory.
BFE_CHECK_DEF_VALS Check registers for default values.

3.410 R_RAA489204_VPackGet

e_bfe_err_t R_RAA489204_VPackGet (st_bfe_ctrl_t * const p_bfe_ctrl, float * const p_value, bool trigger);

Description This function acquires the battery pack voltage with the BFE. The returned data is converted into voltage. The
pointer p_value points to a variable where the measured voltage can be found. The Boolean input parameter
trigger indicates whether a measurement is executed before reading the value.

Operation = Checks function parameters.

= Sends a measure pack voltage command to the stand-alone device or all devices in the stack.
= Confirms the reception of the measure command (optional).

= Sends commands to read battery pack voltage.

Precondition | The BFE interface should have already been initialized.

R16USO008EU0200 Rev.2.00 KENESAS Page 18
Sep 28, 2022

RAAA489204 Battery Front End Sample Code Software Manual

Warnings Always check the p_ctrl->is_fault_detected flag after calling this function!
Parameters p_bfe_ctrl Pointer to the BFE control structure.
p_value Pointer to the acquired data.
trigger Triggered a measurement or only read data for the last one.

Return values

BFE_SUCCESS

No error was returned.

BFE_ERR_INVALID_POINTER

Input argument has invalid pointer.

BFE_ERR_DEVICE_NOT_INITIALIZED

The BFE interface is not initialized.

BFE_ERR_SCAN_CNTR

Scan command was not received.

BFE_ERR ...

Inherit from bfe_spi_msg_send_resp_get().

3.411 R_RAA489204_IPackGet

e_bfe_err_t R_RAA489204_IPackGet (st_bfe_ctrl_t * const p_bfe_ctrl, st_bfe_i_pack_meas_t * const p_values, bool

trigger);

Description

This function is unsupported!

Operation

Precondition

Warnings This function is unsupported!
Parameters p_bfe_ctrl Pointer to the BFE control structure
p_values Pointer to the acquired data structure.
trigger Triggered a measurement or only read data for the last one.

Return values

BFE_ERR_UNSUPPORTED_FEATURE

This function is not supported by the current APl implementation.

3.412 R_RAA489204_ VoltagesGet

e_bfe_err_t R_RAA489204_VoltagesGet (st_bfe_ctrl_t * const p_bfe_ctrl, bfe_vcell_meas_t * const p_values, bool trigger);

Description This function acquires the voltages of all cells and the battery pack voltage. The returned data is converted into
voltage. The pointer p_values points to an array of unions where the measured voltages for the whole stack can
be found. The Boolean input parameter trigger indicates whether a measurement is executed before reading the
values.

Operation = Checks function parameters.

= Sends a scan voltage commands to the stand-alone device or all devices in the stack.
= Confirms the reception of the scan command (optional).
= Sends commands to block-read the cell and battery pack voltages.

Precondition

The BFE interface should have already been initialized.

Warnings Always check the p_ctrl->is_fault_detected flag after calling this function!
Parameters p_bfe_ctrl Pointer to the BFE control structure.
p_values Pointer to the acquired data.
trigger Triggered a measurement or only read data for the last one.

R16US0008EU0200 Rev.2.00

Sep 28, 2022

RENESAS Page 19

RAAA489204 Battery Front End Sample Code Software Manual

Return values

BFE_SUCCESS

No error was returned.

BFE_ERR_INVALID_POINTER

Input argument has invalid pointer.

BFE_ERR_DEVICE_NOT_INITIALIZED

The BFE interface is not initialized.

BFE_ERR_SCAN_CNTR

Scan command was not received.

BFE_ERR ...

Inherit from bfe_spi_msg_send_resp_get().

The void pointer p_values points to the array of unions where this API function returns the measured values. The
unions’ type is redefined in the file bfe/r_ raad89204.h and has the following content:

/** RAA489204 Measured Voltages Data Union */
typedef union u raa489204 voltages meas

{

float vector[15];

struct

{
float
float
float
float
float
float
float
float
float
float
float
float
float
float
float

v_cell 1;///<
v_cell 2;///<
v _cell 3;///<
v cell 4;///<
v cell 5;///<
v _cell 6;///<
v_cell 7;///<
v_cell 8;///<
v _cell 9;///<
v_cell 10;///<
v _cell 11;///<
v_cell 12;///<
v_cell 13;///<
v_cell 14;///<

Cell
Cell
Cell
Cell
Cell
Cell
Cell
Cell
Cell
Cell
Cell
Cell
Cell
Cell

O 0 J o O b w DN

voltage [V]
voltage [V]
voltage [V]
voltage [V]
voltage [V]
voltage [V]
voltage [V]
voltage [V]
voltage [V]
10 voltage [V]
11 voltage [V]
12 voltage [V]
13 voltage [V]
14 voltage [V]

v_pack;///< Pack voltage [V]
} measurements;

} u raa489204 voltages meas_t;

3.413 R_RAA489204 Temps

e_bfe_err_t R_RAA489204_Temps (st_bfe_ctrl_t * const p_bfe_ctrl, bfe_temp_meas_t * const p_values, bool trigger);

Description This function acquires the internal temperature, ExTn and GPIO input voltages. The returned data is converted
into temperature and voltage. The pointer p_values points to an array of unions where the measured values for
the whole stack can be found. The Boolean input parameter trigger indicates whether a measurement is
executed before reading the values.

Operation = Checks function parameters.

Sends a scan temperatures commands to the stand-alone device or all devices in the stack.
Confirms the reception of the scan command (optional).
Sends commands to block-read the internal temperature and all EXT input voltages.

Precondition

The BFE interface should have already been initialized.

Warnings

Always check the p_ctrl->is_fault_detected flag after calling this function!

R16US0008EU0200 Rev.2.00

Sep 28, 2022

RENESAS

Page 20

RAAA489204 Battery Front End Sample Code Software Manual

Parameters

p_bfe_ctrl Pointer to the BFE control structure.
p_values Pointer to the acquired data.
trigger Triggered a measurement or only read data for the last one.

Return values

BFE_SUCCESS

No error was returned.

BFE_ERR_INVALID_POINTER

Input argument has invalid pointer.

BFE_ERR_DEVICE_NOT_INITIALIZED

The BFE interface is not initialized.

BFE_ERR_SCAN_CNTR

Scan command was not received.

BFE_ERR ...

Inherit from bfe_spi_msg_send_resp_get().

The void pointer p_values points to the array of unions where this API function returns the measured values. The
unions’ type is redefined in the file bfe/r_ raa489204.h and has the following content:

/** RAA489204 Measured Temperatures Data Union */
typedef union u raad489204 temps meas

{

float vector[7];

struct

{
float temp int c;///< Internal temperature [deg. C]
float v _ext 1; ///< External temperature input 1 voltage [V]
float v_ext 2; ///< External temperature input 2 voltage [V]
float v_ext 3; ///< External temperature input 3 voltage [V]
float v_ext 4; ///< External temperature input 4 voltage [V]
float v _gpio 1; ///< General purpose input 1 voltage [V]
float v _gpio 2; ///< General purpose input 2 voltage [V]

} measurements;

} u raa489204 temps meas t;

3.414 R_RAA489204_AllGet

e_bfe_err_t R_RAA489204_AlIGet (st_bfe_ctrl_t * const p_bfe_ctrl, bfe_all_meas_t * const p_values, bool trigger);

Description This function acquires the cell voltages, the battery pack voltage, the secondary reference voltage, internal
temperature, ExTn and GPIO input voltages. The returned data is converted into relevant units. The pointer
p_values points to an array of unions where the measured values for the whole stack can be found. The Boolean
input parameter trigger indicates whether a measurement is executed before reading the values.

Operation = Checks function parameters.

= Sends a scan all commands to the stand-alone device or all devices in the stack.
= Confirms the reception of the scan command (optional).
= Sends commands to block-read all page 1 measurement data registers.

Precondition

The BFE interface should have already been initialized.

Warnings Always check the p_ctrl->is_fault_detected flag after calling this function!
Parameters p_bfe_ctrl Pointer to the BFE control structure.
p_values Pointer to the acquired data.
trigger Triggered a measurement or only read data for the last one.

R16US0008EU0200 Rev.2.00

Sep 28, 2022

RENESAS Page 21

RAAA489204 Battery Front End Sample Code Software Manual

Return values | BFE_SUCCESS No error was returned

BFE_ERR_INVALID_POINTER Input argument has invalid pointer.

BFE_ERR_DEVICE_NOT_INITIALIZED The BFE interface is not initialized.

BFE_ERR_SCAN_CNTR Scan command was not received.

BFE_ERR_... Inherit from bfe_spi_msg_send_resp_get().

The void pointer p_values points to the array of unions where this API function returns the measured values. The
unions’ type is redefined in the file bfe/r_ raad89204.h and has the following content:

/** RAA489204 Measure All Data Union */
typedef union u raa489204 all meas

{
float vector[23];

struct

{
float v _cell 1;///< Cell 1 voltage [V]

float v _cell 2; ///< Cell 2 voltage [V]

float v_cell 3; ///< Cell 3 voltage [V]

float v_cell 4; ///< Cell 4 voltage [V]

float v _cell 5; ///< Cell 5 voltage [V]

float v _cell 6; ///< Cell 6 voltage [V]

float v_cell 7; ///< Cell 7 voltage [V]

float v_cell 8; ///< Cell 8 voltage [V]

float v_cell 9; ///< Cell 9 voltage [V]

float v _cell 10; ///< Cell 10 voltage [V]

float v _cell 11; ///< Cell 11 voltage [V]

float v _cell 12; ///< Cell 12 voltage [V]

float v_cell 13; ///< Cell 13 voltage [V]

float v_cell 14; ///< Cell 14 voltage [V]

float v_pack; ///< Pack voltage [V]

float temp int c; ///< Internal temperature [deg. C]

float v_ext 1; ///< External temperature input 1 voltage [V]
float v _ext 2; ///< External temperature input 2 voltage [V]
float v_ext 3; ///< External temperature input 3 voltage [V]
float v_ext 4; ///< External temperature input 4 voltage [V]
float v_gpio 1; ///< General purpose input 1 voltage [V]
float v_gpio 2; ///< General purpose input 2 voltage [V]
float v_ref sec; ///< Secondary reference voltage [V]

} measurements;
} u raa489204 all meas t;

3.415 R_RAA489204_VMixGet

e_bfe_err_t R_RAA489204_VMixGet (st_bfe_ctrl_t * const p_bfe_ctrl, bfe_other_meas_t * const p_values, bool trigger);

Description This function acquires all voltages, internal temperature and ExT1 input voltage. The returned data is converted
into voltages and temperature. The pointer p_values points to an array of unions where the measured values for
the whole stack can be found. The Boolean input parameter trigger indicates whether a measurement is
executed before reading the values.

R16USO008EU0200 Rev.2.00 REN ESNS Page 22
Sep 28, 2022

RAAA489204 Battery Front End Sample Code Software Manual

Operation = Checks function parameters.

= Sends a scan mixed commands to the stand-alone device or all devices in the stack.
= Confirms the reception of the scan command (optional).
= Sends commands to block-read all cell, pack, ExT1 input voltages and the internal temperature

Precondition | The BFE interface should have already been initialized.

Warnings Always check the p_ctrl->is_fault_detected flag after calling this function!
Parameters p_bfe_ctrl Pointer to the BFE control structure.
p_values Pointer to the acquired data.
trigger Triggered a measurement or only read data for the last one.

Return values | BFE_SUCCESS

No error was returned.

BFE_ERR_INVALID_POINTER

Input argument has invalid pointer.

BFE_ERR_DEVICE_NOT_INITIALIZED

The BFE interface is not initialized.

BFE_ERR_SCAN_CNTR

Scan command was not received.

BFE_ERR ...

Inherit from bfe_spi_msg_send_resp_get().

The void pointer p_values points to the array of unions where this API function returns the measured values. The
unions’ type is redefined in the file bfe/r_ raad89204.h and has the following content:

/** RAA489204 Measure All Data Union */
typedef union u raa489204 mixed voltages meas

{
float vector[1l6];

struct
{

float v _cell 1;///< Cell

float v_cell 2;
float v_cell 3;
float v _cell 4;
float v _cell 5;
float v _cell 6;
float v_cell 7;
float v_cell 8;
float v_cell 9;

float v _cell 10;
float v _cell 11;
float v _cell 12;
float v _cell 13;
float v _cell 14;

float v_pack;
float v_ext 1;
} measurements;

VA
//7<
//7/<
//7/<
///<

1 voltage [V]

Cell
Cell
Cell
Cell
Cell

2

3
4
5
6

voltage [V]
voltage [V]
voltage [V]
voltage [V]
voltage [V]

///< Cell 7 voltage [V]
///< Cell 8 voltage [V
///< Cell 9 voltage [

///< Cell 10 voltage [V]

//7/<
//7/<
///<
VA
//7<
///<

Cell
Cell
Cell
Cell
Pack

External temperature input 1 voltage

} u raa489204 mixed voltages meas t;

11 voltage [V]
12 voltage [V]
13 voltage [V]
14 voltage [V]

\Y%
\Y%

\Y

voltage [V]

R16USO008EU0200 Rev.2.00
Sep 28, 2022

RENESAS

Page 23

RAAA489204 Battery Front End Sample Code Software Manual

3.416 R_RAAA489204_FaultsAllRead

e_bfe_err_t R_RAA489204_ FaultsAllRead (st_bfe_ctrl_t * const p_bfe_ctrl, bfe_faults_t * const p_faults);

Description This function reads all fault registers of the BFE. The pointer p_faults points to an array of structures where the
fault data for the whole stack can be found.
Operation = Checks function parameters.

= Read all fault related (non-setup) registers.

Precondition

The BFE interface should have already been initialized.

Warnings Always check the p_ctrl->is_fault_detected flag after calling this function!
Parameters p_bfe_ctrl Pointer to the BFE control structure.
p_faults Pointer to faults data structure.

Return values

BFE_SUCCESS

No error was returned.

BFE_ERR_INVALID_POINTER

Input argument has invalid pointer.

BFE_ERR_DEVICE_NOT_INITIALIZED The BFE interface is not initialized.

BFE_ERR ...

Inherit from bfe_spi_msg_send_resp_get().

The void pointer p_ faults points to the array of structures where this API function returns the fault data. The
structures’ type is redefined in the file bfe/r_raa489220.h. A non-zero member of any fault structure (true for
Boolean types) indicates that an error is detected. It has the following content:

/** RAA489204 fault data structure */

typedef struct st raa489204 faults

{
bool
bool
bool
bool
bool
bool
bool
bool
bool
bool
bool
bool
bool
bool
uintl6e t
uintle t
uintl6 t
uintlé6 t
uintlé t

} st _raa4892

flt under run buffer;///< Memory buffer under run

flt over run buffer;
flt oscillator;

flt wdt timout;
flt ow vbat;
flt ow vss;

flt reg parity;

flt ee parity;
flt v ref;
flt v reg;

flt temp mux;

flt cell mux;

flt ic temp warning;
flt ic temp fault;
flt over temp;

flt overvolt;

flt undervolt;

flt open wire;

flt open temp input;
04 faults t;

///< Memory buffer over run
///< Oscillator fault
///< Watchdog timeout fault
///< Open wire fault on VBAT connection
///< Open wire fault on VSS connection
///< Register checksum parity error
///< EEPROM parity error
///< Voltage reference fault
///< Voltage regulator fault
///< Temperature multiplexer error
///< Cells multiplexer error
///< IC temperature warning
///< IC temperature fault
///< Over-temperature fault
///< Overvoltage fault
///< Undervoltage fault
///< Open wire fault
///< Open temperature input

R16US0008EU0200 Rev.2.00

Sep 28, 2022

RENESAS Page 24

RAAA489204 Battery Front End Sample Code Software Manual

3.417 R_RAAA489204_FaultsCheck

e_bfe_err_t R_RAA489204 FaultsCheck (st_bfe_ctrl_t * const p_bfe_ctrl);

= Checks the fault pin for assertion.

Description This function checks the BFE for faults. It monitors the relevant fault pin or checks a fault status register. The
result is returned into the Boolean variable p_ctrl->is_fault_detected.
Operation = Checks function parameters.

= Check fault status register of all devices in stack and returns fault if non zero.

Precondition

The BFE interface should have already been initialized.

Warnings

Always check the p_ctrl->is_fault_detected flag after calling this function!

Parameters

p_bfe_ctrl

Pointer to the BFE control structure.

Return values

BFE_SUCCESS

No error was returned.

BFE_ERR_INVALID_POINTER

Input argument has invalid pointer.

BFE_ERR_DEVICE_NOT_INITIALIZED

The BFE interface is not initialized.

BFE_ERR ...

Inherit from bfe_spi_msg_send_resp_get().

3.418 R_RAAA489204_FaultsAllClear

e_bfe_err_t R_RAA489204_FaultsAllClear (st_bfe_ctrl_t * const p_bfe_ctrl, bool * const p_success);

Description This function attempts to clear all faults in the BFE. The pointer p_success points to a variable where the result of
clearing faults can be found.
Operation = Checks function parameters.

= Sends a command to clear fault status, over-temperature, overvoltage, undervoltage, open wire registers and

general fault status register.
= Resets the fault filter.
= Cleans the faults data structure.
* Reset totalizer counters.

Precondition

The BFE interface should have already been initialized.

Warnings Always check the p_ctrl->is_fault_detected flag after calling this function!
Parameters p_bfe_ctrl Pointer to the BFE control structure.
p_success Pointer to boolean faults clear status variable.

Return values

BFE_SUCCESS

No error was returned.

BFE_ERR_INVALID_POINTER

Input argument has invalid pointer.

BFE_ERR_DEVICE_NOT_INITIALIZED

The BFE interface is not initialized.

BFE_ERR_WRITE_VERIFY

Register write verification error.

BMS_ERR_...

Inherit from bfe_spi_msg_send_resp_get().

3.419 R_RAA489204 CellBalanceCirl

e_bfe_err_t R_RAA489204_CellBalanceCtrl (st_bfe_ctrl_t * const p_bfe_ctrl, bfe_cb_cfg_t * const p_bal_cfg,
e_bfe_process_ctrl_t ctrl_option);

Description

This function configures and controls cell balancing process in the BFE. The void pointer p_bal_cfg points to the
cell balancing configuration parameters. The process is controlled by the input parameter ctrl_option.

R16US0008EU0200 Rev.2.00

Sep 28, 2022

RENESAS

Page 25

RAAA489204 Battery Front End Sample Code Software Manual

mode.

Operation = Checks function parameters.
= Inhibits cell balancing.
= Reconfigure configure Cell Balance Status, Value, Time and Setup registers according to the selected balance

» Recalculates Page 2 registers checksum.

Precondition | The BFE interface should have already been initialized.

Warnings Always check the p_ctrl->is_fault_detected flag after calling this function!

Parameters p_bfe_ctrl Pointer to the BFE control structure.
p_bal_cfg Pointer to the balancing configuration structure.
ctrl_option Specify action to enable or inhibit cell balancing.

Return values | BFE_SUCCESS

No error was returned.

BFE_ERR_INVALID_POINTER

Input argument has invalid pointer.

BFE_ERR_DEVICE_NOT_INITIALIZED

The BFE interface is not initialized.

BFE_ERR_INVALID_ARGUMENT

Invalid balancing option was selected.

BFE_ERR_WRITE_VERIFY

Register write verification error.

BMS_ERR ...

Inherit from bfe_spi_msg_send_resp_get().

The cell balancing is controlled with the function parameter ctrl_option. Its values are fixed and defined as
constants in the BFE Process Control Enumeration in file bfe/r_bfe_api.h. Table 18 shows the supported control

options.

Table 18. BFE Process Control Enumeration

typedef enum e_bfe_process_ctrl

Constant

Description

BFE_PROCESS_ENABLE

Start the process.

BFE_PROCESS_INHIBIT

Stop the process.

The pointer p_bal_cfg points to the structure with cell balancing configuration redefined in file bfe/r_raad489204.h.
Table 19 shows the content of that structure. Keep in mind that the members that indicate the cell balancing mode
and use of external FETs are constants and must be set during definition of the structure. The other members can
be modified every time before calling the function. Depending on the selected mode, not all configuration
parameters are used. Table 20 shows the supported balancing modes. Table 21 and Table 22 show the timing
enumerations used in Timed and Auto Mode. For more information refer to the RAA489204 Datasheet.

Table 19. Members of the RAA489204 Cell Balancing Configuration Structure

typedef struct st_raa489204_cb_cfg_t

Member Type Description
mode const e_raa489204_cb_mode_t BFE cell balancing mode
external_cb const bool Enable external cell balancing.
timeout e _raa489204_cb_timeout_t Cell balancing timeout to keep balancing FETs on in
Timed or Auto Balance Mode.
wait_time e _raa489204_cb_wait_time_t Cell balancing wait time before measurement in Auto

Balance Mode.

cell_sel[BFE_STACK_SIZE]

uint16_t

Select cells to be balanced.

R16USO008EU0200 Rev.2.00
Sep 28, 2022

RENESAS Page 26

RAAA489204 Battery Front End Sample Code Software Manual

Table 19. Members of the RAA489204 Cell Balancing Configuration Structure (Cont.)

typedef struct st_raad89204_cb_cfg_t

Member Type Description
pattern[BFE_CB_STAT_REG] uint16_t Cell balancing pattern (Bitmask)
charge[BFE_STACK_SIZE][uint16_t The charge to be removed from each cell in Auto

BFE_CB_VAL_REG]

Balance Mode.

Table 20. RAA489204 Cell Balancing Modes Enumeration

typedef enum e_raa489204_cb_mode

Constant

Value

Description

BFE_BALANCE_MODE_OFF

0x00 Cell balancing is OFF

BFE_BALANCE_MODE_MANUAL 0x01 Manual cell balancing mode
BFE_BALANCE_MODE_TIMED 0x02 Timed cell balancing mode
BFE_BALANCE_MODE_AUTO 0x03 Auto cell balancing mode

Table 21

. RAA489204 Cell Balancing Timeout Options Enumeration

typedef enum e_raa489204_cb_timeout

Constant

Value Description

BFE_BAL_A T _DSBL

0x00 Timed or Auto cell balancing is disabled.

BFE_BAL_00M_20S

0x01 Keep cell balancing FETs ON for 20 s.

BFE_BAL_00M_40S

0x02 Keep cell balancing FETs ON for 40 s.

BFE_BAL_42M_00S

OxFE Keep cell balancing FETs ON for 42 min 00 s.

BFE_BAL_42M_20S

OxFF Keep cell balancing FETs ON for 42 min 20 s.

Table 22. RAA489204 Cell Balancing Wait Time Options Enumeration

typedef enum e_raa489204_cb_wait_time

Constant Value Description
BFE_BAL_WAIT_0S 0x00 Cell balancing wait time is Os.
BFE_BAL_WAIT_1S 0x01 Cell balancing wait time is 1s.
BFE_BAL_WAIT_2S 0x02 Cell balancing wait time is 2s.
BFE_BAL_WAIT_4S 0x03 Cell balancing wait time is 4s.
BFE_BAL_WAIT_8S 0x04 Cell balancing wait time is 8s.
BFE_BAL_WAIT_16S 0x05 Cell balancing wait time is 16s.
BFE_BAL_WAIT_32S 0x06 Cell balancing wait time is 32s.
BFE_BAL_WAIT_64S 0x07 Cell balancing wait time is 64s.

R16USO008EU0200 Rev.2.00
Sep 28, 2022

RENESAS

Page 27

RAAA489204 Battery Front End Sample Code Software Manual

3.4.20 R_RAA489204_IsCellBalancing

e_bfe_err_t R_RAA489204_IsCellBalancing (st_bfe_ctrl_t * const p_bfe_ctrl);

Description This function checks if cell balancing is in progress in the BFE. The data is returned into the Boolean variable
p_ctrl->is_balancing.
Operation = Checks function parameters.

= Reads Balance Setup Register of each device and checks EOB bit.

Precondition

The BFE interface should have already been initialized.

Warnings

Always check the p_ctrl->is_fault_detected flag after calling this function!

Parameters

p_bfe_ctrl Pointer to the BFE control structure.

Return values

BFE_SUCCESS No error was returned.

BFE_ERR_INVALID_POINTER Input argument has invalid pointer.

BFE_ERR_DEVICE_NOT_INITIALIZED The BFE interface is not initialized.

BMS_ERR ... Inherit from bfe_spi_msg_send_resp_get().

3.4.21

R_RAA489204_ContScanCtrl

e_bfe_err_t R_RAA489204_ContScanCtrl (st_bfe_ctrl_t * const p_bfe_ctrl, bfe_scan_cont_cfg_t * const p_scan_cfg,

e_bfe_process_ctrl_t ctrl_option);

Description This function controls scan continuous function of the BFE. The void pointer p_scan_cfg points to the scan
continuous configuration parameters. The process is controlled by the input parameter ctrl_option. The function
modifies the Boolean variable p_ctrl->is_scan_continuous.

Operation = Checks function parameters.

= Updates Scan Continuous interval.
= Sends scan continuous enable or inhibit command.
= Recalculates register checksum.

Precondition

The BFE interface should have already been initialized.

Warnings Always check the p_ctrl->is_fault_detected flag after calling this function!

Parameters p_bfe_ctrl Pointer to the BFE control structure.
p_scan_cfg Pointer to the continuous scan configuration structure.
ctrl_option Specify action to enable or inhibit continuous scan.

Return values

BFE_SUCCESS No error was returned.

BFE_ERR_INVALID_POINTER Input argument has invalid pointer.

BFE_ERR_DEVICE_NOT_INITIALIZED The BFE interface is not initialized.

BFE_ERR_INVALID_ARGUMENT The selected control option is invalid.

BFE_ERR_WRITE_VERIFY Register write verification error.

BMS_ERR_...

Inherit from bfe_spi_msg_send_resp_get().

The continuous scanning is controlled with the function parameter cfrl_option. Its values are fixed and defined as
constants in the BFE Process Control Enumeration in file bfe/r_bfe_api.h. Table 18 shows the supported control
options. The pointer p_scan_cfg points to the structure with continuous scan configuration redefined in file
bfe/r_raad489204.h. Table 23 shows its content. It has a single member used for setting the interval between
scans. Table 24 shows the options for the interval listed in RAA489204 Scan Continuous Interval Options

Enumeration.

R16US0008EU0200 Rev.2.00

Sep 28, 2022

RENESAS Page 28

RAAA489204 Battery Front End Sample Code Software Manual

Table 23. Members of the RAA489204 Scan Continuous Configuration Structure

typedef struct st_raa489204_scan_cont_cfg

Member Type Description

interval e _raa489204_scan_cont_int_t Scan continuous interval time

Table 24. RAA489204 Scan Continuous Interval Options Enumeration

typedef enum e_raa489204_cb_wait_time

Constant Value Description
BFE_SCN_CNT_16MS 0x00 The scan continuous interval is 16ms.
BFE_SCN_CNT_32MS 0x01 The scan continuous interval is 32ms.
BFE_SCN_CNT_64MS 0x02 The scan continuous interval is 64ms.
BFE_SCN_CNT_128MS 0x03 The scan continuous interval is 128ms.
BFE_SCN_CNT_256MS 0x04 The scan continuous interval is 256ms.
BFE_SCN_CNT_512MS 0x05 The scan continuous interval is 512ms.
BFE_SCN_CNT_1024MS 0x06 The scan continuous interval is 1024ms.
BFE_SCN_CNT_2048MS 0x07 The scan continuous interval is 2048ms.
BFE_SCN_CNT_4096MS 0x08 The scan continuous interval is 4096ms.
BFE_SCN_CNT_8192MS 0x09 The scan continuous interval is 8192ms.
BFE_SCN_CNT_16384MS 0x0A The scan continuous interval is 16384 ms.
BFE_SCN_CNT_32768MS 0x0B The scan continuous interval is 32768ms.
BFE_SCN_CNT_65536MS 0x0C The scan continuous interval is 65536ms.

3.4.22 R_RAA489204_WatchdogCtrl

e_bfe_err_t R_RAA489204_WatchdogCtrl (st_bfe_ctrl_t * const p_bfe_ctrl, bfe_watchdog_ctrl_t * const
p_control_options);

Description This function controls watchdog timer function in the BFE. The void pointer p_ options points to the watchdog
timer parameters.

Operation = Checks function parameters.
= Calls a local function to change watchdog timeout.

Precondition | The BFE interface should have already been initialized.

Warnings Always check the p_ctrl->is_fault_detected flag after calling this function!

Parameters p_bfe_ctrl Pointer to the BFE control structure.
p_control_options Pointer to control options structure.

Return values | BFE_SUCCESS No error was returned.
BFE_ERR_INVALID_POINTER Input argument has invalid pointer.

BFE_ERR_DEVICE_NOT_INITIALIZED The BFE interface is not initialized.

BFE_ERR_INVALID_ARGUMENT The selected control option is invalid.
BFE_ERR_... Inherit from bfe_watchdog().
R16US0008EU0200 Rev.2.00 RENESAS Page 29

Sep 28, 2022

RAAA489204 Battery Front End Sample Code Software Manual

The pointer p_control_options points to the structure with watchdog timer control parameters redefined in file
bfe/r_raa489204.h. Table 25 shows its content. The structure has two members. The first one determines the
time after which the BFEs goes to sleep mode. Table 26 shows the timeout options listed in RAA489204
Watchdog Timer Interval Options Enumeration. The second member is used for turning on or off the timer. Its has
fixed options shown in Table 18.

Table 25. Members of the RAA489204 Watchdog Timer Control Structure

typedef struct st_raa489204_watchdog_ctrl

Member Type Description
time e _raa489204_wd_timeout_t Watchdog time interval.
ctrl_option e_bfe_process_ctrl_t Start/stop watchdog timer.

Table 26. RAA489204 Watchdog Timer Interval Options Enumeration

typedef enum e_raa489204_wd_timeout

Constant Value Description
BFE_WDT_OFF 0x00 Watchdog Timer is disabled.
BFE_WDT_1S 0x01 Watchdog timeout is 1s.
BFE_WDT_2S 0x02 Watchdog timeout is 2s.
BFE_WDT_63S 0x3F Watchdog timeout is 63s.
BFE_WDT_2MIN OxFF Watchdog timeout is 2min.
BFE_WDT_4MIN Watchdog timeout is 4min.
BFE_WDT_1520MIN OxFF Watchdog timeout is 1520min.

3.4.23 R_RAAA489204_FETsCtrl

e_bfe_err_t R_RAA489204_FETsCtrl (st_bfe_ctrl_t * const p_bfe_ctrl, uint8_t group_num, e_bfe_fet_state_t c_fet_state,
e_bfe_fet_state_t d_fet_state);

Description This function is unsupported!

Operation -

Precondition -

Warnings This function is unsupported!
Parameters p_bfe_ctrl Pointer to the BFE control structure.
group_num Select FET group to control.
c_fet state Specify state of the charge FET control pin.
d_fet_state Specify state of the discharge FET control pin.
Return values | BFE_ERR_UNSUPPORTED_FEATURE This function is not supported by the current APl implementation.

R16USO008EU0200 Rev.2.00 KEN ESNS Page 30
Sep 28, 2022

RAAA489204 Battery Front End Sample Code Software Manual

3.4.24 R_RAAA489204_GPIOsCtrl

e_bfe_err_t R_RAA489204_GPIOsCtrl (st_bfe_ctrl_t * const p_bfe_ctrl, bfe_gpio_ctrl_t * const p_control_options);

Description This function controls the GPIO pins of the BFE. The variable p_options points to structure that contains the pin
parameters.
Operation = Checks function parameters.

= Modifies G1VAL and G2VAL bits in all Device Setup 2 Registers.
= Writes to all Device Setup 2 Registers in the stack.
= Verifies the register write.

Precondition | The BFE interface should have already been initialized.

Warnings Always check the p_ctrl->is_fault_detected flag after calling this function!

Parameters p_bfe_ctrl Pointer to the BFE control structure.
ctrl_option Pointer to GPIO pins control structure.

Return values | BFE_SUCCESS No error was returned.
BFE_ERR_INVALID_POINTER Input argument has invalid pointer.

BFE_ERR_DEVICE_NOT_INITIALIZED The BFE interface is not initialized.

BFE_ERR_WRITE_VERIFY Register write verification error.

BMS_ERR_... Inherit from bfe_spi_msg_send_resp_get().

When the GPIOs of the BFEs are configured as regular digital outputs, their output levels are controlled by the
generic type function parameter p_control_options. It points to a control structure which is redefined in file
bfe/r_raa489204.h. Table 27 shows the content of that structure and Table 28 shows the fixed options listed in
BFE GPIOs Output State Options Enumeration. Note: The members of the GPIO control structure are arrays
which elements correspond to a position of a BFE in the stack.

Table 27. Members of the RAA489204 GPIO Control Structure

typedef struct st_raa489204_gpio_ctrl

Member Type Description

gpio1_level[BFE_STACK_SIZE] e_raa489204_gpio_states_t Set as output level of GPIO1 when it is configured as
general-purpose output.

gpio2_level[BFE_STACK_SIZE] e _raa489204 gpio_states_t Set as output level of GPIO2 when it is configured as
general-purpose output.

Table 28. BFE GPIOs Output State Options Enumeration

typedef enum e_raa489204_gpio_states

Constant Value Description
BFE_GPIO_LOW 0x00 Set general-purpose output to LOW.
BFE_GPIO_HIGH 0x01 Set general-purpose output to HIGH.
R16USO008EU0200 Rev.2.00 RENESAS Page 31

Sep 28, 2022

RAAA489204 Battery Front End Sample Code Software Manual

3.4.25 R_RAA489204_ RegisterRead

e_bfe_err_t R_RAA489204 RegisterRead (st_bfe_ctrl_t * const p_ctrl, bfe_register_t * const p_register);

Description This function reads a register in the BFE. The pointer p_register points to a structure that contains the register
address, value and other device specific parameters.

Operation = Checks function parameters.
= Sends a read command.

Precondition | The BFE interface should have already been initialized.

Warnings Always check the p_ctrl->is_fault_detected flag after calling this function!

Parameters p_bfe_ctrl

Pointer to the BFE control structure

p_register

Pointer to register address and data container.

Return values | BFE_SUCCESS

No error was returned.

BFE_ERR_INVALID_POINTER

Input argument has invalid pointer.

BFE_ERR_DEVICE_NOT_INITIALIZED The BFE interface is not initialized.

BMS_ERR_...

Inherit from bfe_spi_msg_send_resp_get().

The void type API function parameter p_register provides path to the target register and data. It is redefined as a
RAA489204 Quick Register Access Structure in file bfe/r_raa489204.h. Table 29 shows the content the structure.
Table 30 shows the options about the device address member listed in RAA489204 Device Addresses
Enumeration. The register address is assigned with a member of the register bank as described in the Registers
Bank section. The read data are available after calling the function in the third member of the structure data.

Table 29. Members of the RAA489204 Quick Register Access Structure

typedef struct st_raad89204_quick_reg

Member Type Description
device_address e _raa489204_dev_addr_t Device number in the stack.
p_reg st_raa489204_register_t Pointer to register address data container.
data uint16_t Command or response data field.

Table 30. RAA489204 Device Addresses Enumeration

typedef enum e_raa489204_dev_addr

Constant Value Description
BFE_DAISY_CHAIN_IDENTIFY 0x00 | Identify devices in stack address.
BFE_DAISY_CHAIN_DEVICE1 0x01 | The master device address.
BFE_DAISY_CHAIN_DEVICE2 0x02 | Device # 2 address.
BFE_DAISY_CHAIN_DEVICE30 Ox1E | Device # 30 address.
BFE_DAISY_CHAIN_ADDRESS_ALL Ox1F | Address all devices (broadcast).

R16US0008EU0200 Rev.2.00

Sep 28, 2022

RENESAS Page 32

RAAA489204 Battery Front End Sample Code Software Manual

3.4.26 R_RAA489204_ RegisterWrite

e_bfe_err_t R_RAA489204_RegisterWrite (st_bfe_ctrl_t * const p_ctrl, bfe_register_t * const p_register);

Description This function writes in a register of the BFE. The pointer p_register points to a structure that contains the register
address, value and other device specific parameters.

Operation = Checks function parameters.
= Sends a write command.

Precondition | The BFE interface should have already been initialized.

Warnings Always check the p_ctrl->is_fault_detected flag after calling this function!
Parameters p_bfe_ctrl Pointer to the BFE control structure
p_register Pointer to register address and data container.
Return values | BFE_SUCCESS No error was returned.
BFE_ERR_INVALID_POINTER Input argument has invalid pointer.
BFE_ERR_DEVICE_NOT_INITIALIZED The BFE interface is not initialized.
BMS_ERR ... Inherit from bfe_spi_msg_send_resp_get().

3.5 Configuration
3.5.1 MCU Hardware Abstraction Layer

The Hardware Abstraction Layer drivers used for the peripherals of the selected MCU from Renesas RA Family
are generated in e2studio using Flexible Software Package (FSP). They can be modified in file
configuration.xml. It is not necessary to change anything in the FSP configuration as long as you are using the
same MCU and evaluation board as described in the RAA489204 Sample Code Quick Start Guide.

3.5.2 Battery Front End

The BFE settings are entered in the configuration structures, defined in bal_data.c. The members of g_bfe0_cfg
and its extension g _bfe0 _ext cfg are constant variables that are initialized with the required settings during
definition and cannot be further modified in the code. In the comment sections of the type definitions of those
structures in src/bfe/r_bfe_api.h and src/bfe/r_bfe_raa489204.h, you can find instructions about what values
can be assigned to the members. Keep in mind that some of the variable types are enumerations with fixed
constants. The following code demonstrates only part of the definition and initialization of the structures:

/* Extended configuration structure */
const st raad489204 ext cfg t g bfel ext cfg =
{
.stack size = BFE STACK SIZE, // Do not modify!!!
.d ch data speed = BFE D RT 1000 KHZ, // Set daisy chain data speed according to
// hardware settings!

.limit overvolt v = 4.50F, // Set cell overvoltage limit in Volts!
.limit undervolt v = 2.00F, // Set cell undervoltage limit in Volts!
.limit ext temp v = 2.49F, // Set external temperature input

// overvoltage limit in Volts!

.wire scan = BFE WIRE I SCAN 1 5MS, // Set open-wire scan current on time!
.mux_scan = BFE CELL MUX SCAN 0 5MS, // Set cell multiplexer test scan timing!
.flt tot samples = BFE TOT 4 SMPL, // Set number of consecutive fault

// conditions!

R16USO008EU0200 Rev.2.00 REN ESNS Page 33
Sep 28, 2022

RAAA489204 Battery Front End Sample Code Software Manual

.avging volt = BFE AVG 1 SMPL,

// Set number of voltage averaging samples!

.avging ext temp = BFE AVG 1 SMPL, // Set number of temperatures averaging

// samples!

}i

/* Set which cells exist in the battery stack! */
const uintl6é t g bfel0 cells cfg[BFE STACK SIZE] =
{

/* Device 1 */

(BFE_REG_MASK CELL 1

| BFE REG MASK CELL 2

| BFE_REG MASK CELL 3

| BFE_REG MASK CELL 4

| BFE REG MASK CELL 11

| BFE REG MASK CELL 12

| BFE REG MASK CELL 13

| BFE REG MASK CELL 14),

}s

/* Configuration structure */

const st bfe cfg t g bfel0 cfg =

{
.p_cells select = &g bfel0 cells cfg[0],
.p_temps select = &g bfel ext temps cfg[0],
.peripheral type = BFE COMMUNICATION INTERFACE SPI,
.driver cfg = BFE DRIVER NONE,
.fet cfg = BFE FET NONE,
.p_extend = &g _bfel0 ext cfg,

}i

3.5.3 Battery Abstraction Layer

//
//
//
//
//
/7

Do
Do
Do
Do
Do
Do

not
not
not
not
not
not

modify!
modify!
modify!
modify!
modify!
modify!

The battery abstraction layer is configured in bfe/r_bfe_cfg.h. The file contains pre-processor macros (Table 31).

They are used for:

= Inserting constants inside the source code (such as stack size and number of attempts)

= Enabling/disabling parts of the code (such as verify write into register, check input parameters of functions or

work with battery emulator)

= Controlling certain features (such as byte or block SPI transfer mode or use watchdog timeout for entering

sleep mode).

You can find the available options for the values in the description section inside the table but also in the comment
sections of the source code. Keep in mind that some of the macro values can be only Boolean (0 or 1) and the

others are whole numbers (unsigned).

R16US0008EU0200 Rev.2.00

Sep 28, 2022 REN €S

Page 34

RAAA489204 Battery Front End Sample Code Software Manual

Table 31. BFE Software Library Configuration Settings

Default

Option (Macro name) Value Description

BFE_STACK_SIZE 3U Number of devices in a stack (30 max).

BFE_CFG_SPI_MODE 1 BFE SPI transfer mode:
0 - Byte

1 - Block.

BFE_CFG_WDT_SLEEP_EN 0 BFE goes to sleep using watchdog timeout
0 - Disabled (Recommended)

1 - Enabled.

BFE_CFG_EN_PIN_RESET 0 For hard reset use:
0 - Daisy Chain communication (Recommended)

1 - ENABLE pin.

BFE_CFG_PARAM_CHECKING_EN 1 Functions check input parameters:
0 - Disable

1 - Enable (Recommended).

BFE_CFG_REG_WRITE_VERIFY_EN 1 Register verification after write command:
0 - Disable

1 - Enable (Recommended).

BFE_CFG_SCAN_DIAG_CMND_VERIFY_EN 1 Scan/ Diagnostic command verification:
0 - Disable

1 - Enable (Recommended).

BFE_CFG_USE_RESISTOR_LADDER 1 Work with MCB_PS4_Z resistor ladder board:
0 - Disable

1 - Enable.

BFE_CFG_STACK_IDENT_MAX 3U

Maximum attempts for stack identification.

3.54 Demo Application

The demo application is configured in r_bms_cfg.h. The file contains pre-processor macros (Table 32). They are
used for inserting constants inside the source code like main loop time interval, number of loops before running
device tests, and cell balancing algorithm settings. You can find the available options for the values in the
description section inside the table but also in the comment sections of the source code. The macro values can be
whole numbers (unsigned), fractional numbers (signed) or Boolean (0 or 1).

Table 32. BFE Demo Project Configuration Settings

Option

Default

Description

BMS_MEMORY_CHECK

10U (loops)

Memory check interval: After how many loops the BFE memory is tested?

BMS_SELF_DIAG

1000U (loops)

Self-diagnostic interval: After how many loops a complete BFE
self-diagnostic test is accomplished?

BFE_BAL_MODE

0 (Timed)

BFE balancing mode: Is the balancing algorithm using Manual 1 or Timed
0 Balance Mode?

BMS_DELTA_V_MAX

0.02f (20mV)

Max cell delta voltage threshold. Cells having higher voltage difference
compared to the one with lowest voltage are balanced.

BMS_DELTA_V_MAX_F_TH

0.5f (500mV)

Max cell delta voltage fault threshold. If any cell has higher voltage
difference compared to the one with lowest voltage, cell balancing is
inhibited.

BMS_CB_VCELL_MIN

3.4f (3.4V)

Minimum cell voltage to allow balancing.

BMS_CB_VCELL_MAX

4.2 (4.2V)

Maximum cell voltage to allow balancing.

R16USO008EU0200 Rev.2.00
Sep 28, 2022

RENESAS

Page 35

RAAA489204 Battery Front End Sample Code Software Manual

Table 32. BFE Demo Project Configuration Settings

Option Default Description
BMS_CB_LOOPS_MAX 86U (60min) Maximum number of cell balancing cycles.
BMS_CB_ON_TIMER 400U (40s) The balancing time interval for odd and even patterns in manual

balancing mode.

BMS_CB_OFF_TIMER 10U (1s) Cell balancing off time interval per cycle. Needed for voltage relaxation
before measurement.

TIME_PERIOD_MS_PERIODIC 100U (100 ms) The main loop time interval.

3.6 Examples

This section demonstrates the API functions but also the communication drivers. You can use either the API
functions from file bfe/r_bfe_api.h or their implementations from file bfe/r_raa489204.h. In the second case when
keeping the application but changing the BFE, you have to replace all the functions rather than just reconnect the
interface. For more examples refer to the sample code (files r_bms.c and bfe/r_raa489204.c).

= Initialization, setup and testing the BFE

/* Initialize the Battery Front End. */
bfe err = R RAA489204 Init (&g bfel ctrl, &g bfel cfqg);

/* Check for error return */
if ((bfe err != BFE SUCCESS) || (g bfelO ctrl.is fault detected == true)

{
bfe faults handler();

/* Configure the Battery Front End. */
bfe err = R RAA489204 Setup (&g bfelO ctrl, &g bfel cfg);

/* Check for error return */
if ((bfe err != BFE SUCCESS) || (g bfe0 ctrl.is fault detected == true)

{
bfe faults handler();

/* Run self diagnostic. */
bfe err = R RAA489204 SelfDiag(&g bfelO ctrl, BFE FULL TEST);

/* Check for error return */
if ((bfe err != BFE SUCCESS) || (g bfe0 ctrl.is fault detected == true)

{
bfe faults handler();

= Measuring cell voltages, battery voltages and temperatures (It is assumed that the BFE is already initialised
and configured)

e bfe err t bfe err = BFE SUCCESS; // Error code
static u raa489204 all meas t s meas data all[BFE STACK SIZE] = {0};

/* Clean the data structure. */
memset (&s _meas data all[0], 0, sizeof(s meas data all));

R16USO008EU0200 Rev.2.00 REN ESNS Page 36
Sep 28, 2022

RAAA489204 Battery Front End Sample Code Software Manual

/* Measure all voltages. */
bfe err = R RAA489204 AllGet (&g bfel0 ctrl, & s meas data all[0], true);

/* Check for error return */
if ((bfe err != BFE SUCCESS) || (g bfe0O ctrl.is fault detected == true)

{
bfe faults handler();

= Running cell balancing
e bfe err t bfe err = BFE SUCCESS; // Error code

static st raa489204 cb cfg t s cell balance cfg =
{

.mode = BFE BALANCE MODE TIMED,
.timeout = BFE _BAL 01M 008,

.wait time = BFE BAL WAIT 0S,
.external cb = true,

.pattern = BFE_REG BAL MASK NO CELL,
.cell sel = {0, 0, 0O}

}i

/* Select cells to be balanced. */

s cell balance cfg.cell sel[0] = Ox3FFF; // Select all cells
s cell balance cfg.cell sel[l] = 0x2227; // Select cells 1,2,3,6,10,14
s _cell balance cfg.cell sel[2] = 0x0010; // Select cell 5

/* Enable cell balancing for odd cells. */
s _cell balance cfg.pattern[0] = BFE REG BAL MASK ODD CELL;

bfe err = R RAA489204 CellBalanceCtrl (&g bfel ctrl,
&s_cell balance cfg,
BFE PROCESS ENABLE) ;

/* Check for error return */
if ((bfe err != BFE SUCCESS) || (g bfe0 ctrl.is fault detected == true)
{

bfe faults handler();

while (g bfelO ctrl.is balancing == true)
{
/* Check if cell balancing has completed. */
bfe err = R RAAR489204 IsCellBalancing (&g bfelO ctrl);

/* Check for error return */
if ((bfe err != BFE SUCCESS) || (g bfeO ctrl.is fault detected == true)

{
bfe faults handler();

R16USO008EU0200 Rev.2.00 :{ENESAS
Sep 28, 2022

Page 37

RAAA489204 Battery Front End Sample Code Software Manual

/* Enable cell balancing for even cells. */
s _cell balance cfg.pattern[0] = BFE REG BAL MASK EVEN CELL;

bfe err = R RAA489204 CellBalanceCtrl (&g bfel0 ctrl,
&s_cell balance cfg,
BFE PROCESS ENABLE) ;

/* Check for error return */
if ((bfe err != BFE SUCCESS) || (g bfe0 ctrl.is fault detected == true)

{
bfe faults handler () ;

while (g bfelO ctrl.is balancing == true)

{
/* Check if cell balancing has completed. */
bfe err = R RAA489204 IsCellBalancing (&g bfeO ctrl);

/* Check for error return */
if ((bfe err != BFE SUCCESS) || (g bfeO ctrl.is fault detected == true)

{
bfe faults handler();

= Accessing Single Register
e bfe err t bfe err = BFE SUCCESS; // Error code

st raa489204 quick reg t s reg container =

{
.device address
.p_reg = &g raa489204 registers.user register 1;
.data = 0x0001;

}i

bfe err = R RAA489204 RegisterWrite (&g bfe0 ctrl, &s_ reg container);
/* Check for error return */

if ((bfe err != BFE SUCCESS) || (g bfeO ctrl.is fault detected == true)

{
bfe faults handler();

= Using the communication driver to broadcast a command
e bfe err t bfe err = BFE SUCCESS; // Error status

static st raa489204 spi msg t s spi msg = {0}; // SPI message container

/* Clean message structure. */
memset (&s spi msg, 0, sizeof (st raad489204 spi msg t));

/* Send scan continuous command. */

R16USO008EU0200 Rev.2.00 :{EN ESNS Page 38
Sep 28, 2022

RAAA489204 Battery Front End Sample Code Software Manual

s_spi msg.command.device address = BFE DAISY CHAIN ADDRESS ALL;

s _spi msg.r w _data = BFE READ REG;

s _spl msg.command.frame = 0;

s _spl msg.command.reg number = 0;

S _spi msg.command.tar reg = & g raa489204 registers.cmnd scan continuous;
s _spi msg.command.datal[0] = 0;

/* Send the command to all BFEs. */
bfe err = bfe spi msg send resp get(p ctrl, &s spi msqg);
BFE ERROR RETURN (BFE SUCCESS == bfe err, bfe err); // Check for errors.

= Using the communication driver to write into multiple registers
e bfe err t bfe err = BFE SUCCESS; // Error status

static st raa489204 spi msg t s spi msg = {0}; // SPI message container

/* Clean message structure. */
memset (&s spi msg, 0, sizeof (st raad489204 spi msg t));

/* Write setup registers of each device from the stack. */
for (uintl6 t i = 0; i < p ext cfg->stack size; i++)
{

s_spi msg.command.device address = (e raa489204 dev addr t) (i + 1U);

s spi msg.r w data = BFE WRITE REG;
s spi msg.command.frame = 0;
S _spi msg.command.reg number = 3;

s_spi msg.command.tar reg = & g raad489204 registers.undervoltage fault;

/* Over Voltage Limit Value. */
s_spi msg.command.data[0] = bfe vcell to adc(4.25F);

/* Under Voltage Limit Value. */
s _spi msg.command.data[l] = bfe vcell to adc(2.50F);

/* External Temperature Limit Value. */
s_spi msg.command.data[2] = bfe vext to adc(3.00F);

/* Write threshold registers of all BFEs. */
bfe err = bfe spi msg send resp get(p ctrl, &s spi msg);

BFE _ERROR_RETURN (BFE SUCCESS == bfe err, bfe err); // Check for errors.

Keep in mind that bfe_spi_msg_send_resp_get() is not a global function! You can use it for custom code

development. If you are using the interface and want to work directly with registers or commands, consider the

R_RAA489204_ RegisterRead() or R_RAA489204_RegisterWrite() API functions.

R16USO008EU0200 Rev.2.00 :{ENESAS
Sep 28, 2022

Page 39

RAAA489204 Battery Front End Sample Code Software Manual

4. Demo Application

The sample code contains a demo application that demonstrates the use and operation of the battery abstraction
layer with API. Its source code can be found in file r_bms.c. There is a finite state machine and a cell balancing
algorithm, controlled by a simple user interface. Figure 3 shows the state machine flow diagram. It generalizes the
relations between states and modes as well as the conditions for transition between them. A state executes its
function and moves to the next state or mode, while mode can remain static or loop inside until a transition flag is
set. Fault State can be entered from any other if a BFE fault is detected or any error code different than
BFE_SUCCESS is returned. The transitions are managed by a command line user interface. You can send simple
commands by inputting numbers from 1 to 4 to select options from a list. Data are returned and visualized back.
When a transition command is received, a respective transition flag is set. It can be set in any place of the code.
However, the transition flags are processed on a single place in the code where the transition logic actually
changes the state or mode of the state machine. The idea behind is to provide prioritization of transitions (for
example, Fault State has highest priority and overrides other states when multiple transition flags are set). For
more information about the user interface and running the demo, refer to the RAA489204 Sample Code Quick
Start Guide.

Keep in mind that the demo application has limited capabilities and the sample code is not a system solution that
can directly manage a battery rather than demonstrate the interface and provide easy access to BFE resources.

Initialization State

Faults are Cleared

Press 2 Press 1

Y ¢
>
«

Balance Mode Idle Mode Scan State

Enter/ A

Ready Enter Fault is

Press 3 Detected
\ 4 \ 4 \ 4

Sleep Mode Fault State

L

Fault is Detected Faultis Detected

Figure 3. Sample Code State Machine Flow Diagram

After a power-on reset, the first entered state is Initialization State. Figure 4 shows the flow. The MCU initializes
the BFE interface (initialize SPI, IRQs, timers and CRC calculator, reset, identify stack and read serial numbers of
all devices in the stack). The reset command ensures that the current condition of every RAA489204 IC is known
in case only the MCU has been reset. Then, full BFE setup is run followed by communication test and full
self-diagnostic that includes ADC, multiplexer, EEPROM, open wires and balancing circuits test. The containing
code is executed once, followed by a transition to Idle Mode.

R16USO008EU0200 Rev.2.00 REN ESNS Page 40
Sep 28, 2022

RAAA489204 Battery Front End Sample Code Software Manual

(Initialization State >

A

Initialize BFE Interface
R_RAA489204_Init();

A

Setup BFE Interface
R_RAA489204_Setup();

A

Test Communication
R_RAA489204 CommTest();

A

Run Self-Diganostic
R_RAA489204_SelfDiag();

A

Go to Idle Mode

Figure 4. Initialization State Flowchart

In Idle Mode, the demo application loops waiting for user’s input from the command line interface (Figure 5).
There are software counters that track the number of loops and approximately the duration of this mode. Every 10
loops the MCU runs a memory test to check all configuration registers of the BFE for any corruption or
unintentional change of any bit. On other hand, every 1000 loops a full self-test is made to check internal and
external circuitry besides the memory.

(Idle Mode)

Test BFE Memory
R_RAA489204 MemCheck();

Memmory Check

Timer has Expired? Yes

A

Check BFE for Faults
R_RAA489204_FaultsCheck();

Run BFE Self-Diagnostic Test
R_RAA489204_SelDiag();

Self-Diagnostic
Timer has Expired?

No

>
<«

Figure 5. Idle Mode Flowchart

R16USO008EU0200 Rev.2.00 RENESAS Page 41
Sep 28, 2022

RAAA489204 Battery Front End Sample Code Software Manual

Figure 6 shows the Scan State flow. All voltages and temperatures are measured by calling the
RAA489204_AlIGet() API function, which sends a sequence of scan and read commands followed by a transition

back to Idle Mode.
(Scan State >

A

Measure All Input Values
R_RAA489204_AlIGet();

A

Go to Idle Mode

Figure 6. Scan State Flowchart

The RAA489204 sample code includes an algorithm for cell balancing. Figure 7 shows the algorithm flowchart.
Cell balancing is a continuous process therefore the algorithm uses own state machine and loops the states. MCU
runs periodically through the code and is not halting or sticking there (for example, during the time the charge is
removed from cells) so that less resources are engaged. In the beginning of every loop, all cell voltages are
measured and the cell with lowest voltage is found. All cell voltages are checked to be within the range where cell
balancing is allowed or the process is stopped. Renesas recommends cell balancing only during charging.
Nevertheless, it is not taken into account in this algorithm as the given system does not determine the current
direction. In the next step, the voltage difference between each cell and the one with lowest voltage is calculated
and compared with predeclared thresholds. By default, if the voltage difference is more than 20mV (Table 32), the
cell is identified as balanced. On other hand, if the voltage difference exceeds a predefined threshold of 500mV,
indicating a severely unbalanced battery pack, a problem with the battery is considered and an error is returned. If
any cell is found to need balancing, the algorithm continues. First, the odd cells are unmasked and the respective
balancing FETs are enabled for a predefined period of time. The time intervals are measured as number of cycles
of the loop. Next, the same action is accomplished for the even cells. Afterwards, all CB FETs are turned OFF and
a timer is activated to provide a recovery time for the cell voltages to obtain more accurate measurements before
the next balancing cycle (avoiding the RC time constant of the filters and Li- chemistries). If the differences in cells
voltages are within limits, the balancing activity is inhibited after the voltage measurement in the next cycle and a
transition to Normal state is made. IMPORTANT: Avoid setting the CB delta voltage thresholds too low and the
balancing intervals too long. This can result in nonconvergence and excess battery drain. To help avoid this
situation, there is a balancing cycles counter that limits the number of loops.

R16USO008EU0200 Rev.2.00 REN ESNS Page 42
Sep 28, 2022

RAAA489204 Battery Front End Sample Code Software Manual

C

Balance Mode

)

A

\ 4

Measure All Cell Voltages
R_RAA489204_VoltagesGet();

A

Configure Cell Balncing for the Odd
Cells from Selection

A

Check BFE for Faults
R_RAA489204

A

FaultsCheck();

Turn ON Cell Balancing
R_RAA489204_CellBalanceCtrl();

A

Determine Cells to be Balanced
(Calculate delta V)

Is Cell Balncing

Max Loops Counter

Cell Balancing

ON Timer

A

Needed?

Turn OFF Cell Balancing
R_RAA489204_CellBalanceCtrl();

A

Configure Cell Balncing for the Even
Cells from Selection

A

has Expired?

Turn ON Cell Balancing
R_RAA489204_CellBalanceCtrl();

\ 4

Go to Idle Mode

Cell Balancing
ON Timer

A

Turn OFF Cell Balancing
R_RAA489204 _CellBalanceCtrl();

Cell Balancing
OFF Timer

Figure 7. Cell Balancing Mode

Flowchart

The demo application provides an option for entering Sleep Mode and waking up all devices in the stack. When
Sleep Mode is active, the BFE enters Sleep Mode immediately and waits for user input to wake up and make a
transition to Idle Mode (Figure 8). This part of the code demonstrates the use of the API function

R_RAA489204_ModeSet();

R16USO008EU0200 Rev.2.00
Sep 28, 2022

RENESAS

Page 43

RAAA489204 Battery Front End Sample Code Software Manual

< Sleep Mode)

il
Lt
Y

Send BFE to Low Power Mode

is i ?
BFE is in Sleep Mode? No R_RAA489204 ModeSet():

Wake-up BFE Command?
No

Send BFE to Idle Mode
R_RAA489204_ModeSet();

4

Go to Idle Mode

Figure 8. Sleep Mode Flowchart

The following conditions can force the state machine to enter Fault State in the next loop:

= An error code different than BFE_SUCCESS was returned by any API function, indicating incorrect behavior of
the Battery Abstraction Layer, the Battery Front End, or a communication problem.

= The g_bfe0_citrl.is_fault_detected flag was set after calling an API function that affects it, indicating that a fault
condition is detected by the BFEs in the stack and at least one Fault Status Register is non-zero.

= An error code different than FSP_SUCCESS was returned by any API function from the Hardware Abstraction
Layer of the MCU, indicating an error in the flexible software package.

= The BMS algorithm has encountered an error.

Figure 9 shows the state flow. If there is a fault in any BFE all Fault Status Registers are read. The information is
returned by the API function R_RAA489204 FaultsAllRead() into a data structure and visualized in the user’s
interface. Some faults can be cleared and some errors can be resolved. Several fault and error management
procedures are integrated into the demo application. They can be found in the source code in file r_bms.c and are
described in the Advanced Safety of RAA489204 Battery Front End Application Note. If the fault is not clearable or
the errors — not resolved the state machine halts and waits for user’s interaction.

R16USO008EU0200 Rev.2.00 REN ESNS Page 44
Sep 28, 2022

RAAA489204 Battery Front End Sample Code Software Manual

C Fault State)

|-
»
Y

Is the Fault Clearable? Halt Operation

Clear the Fault?

Run Fault Management

4

Go to Idle Mode

Figure 9. Fault State Flowchart

5. Revision History

Revision Date Description
2.00 Sept 28, 2022 | Total rewrite to fix the structure and add more details.
1.03 Feb 17,2022 | Updated Target Device and Cell Balancing sections.

Updated Table 2.

1.02 Dec 21, 2021 | Updated the following sections:

= Configuration of the Battery Front-End Library
= Configuration and Control Structures

= Description of Functions

= Using the Software Library

= Updated Table 4.

1.01 Nov 1, 2021 Updated Battery Front-End Library section.

Updated Tables 1 and 3.

Updated Configuration and Control Structures section.

Updated Battery Management System Demo section.

Updated Initialization section.

Updated Obtaining Measurement section.

Updated Hardware Assembly section.

Updated Figures 3, 4, 6, 7, 8, 13, 14, 17, 18, 20, 21, 22, 23, and 24.

1.00 Sep 28, 2021 | Initial release.

R16USO008EU0200 Rev.2.00 REN ESNS Page 45
Sep 28, 2022

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (‘RENESAS”) PROVIDES TECHNICAL
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible
for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These
resources are subject to change without notice. Renesas grants you permission to use these resources only for
development of an application that uses Renesas products. Other reproduction or use of these resources is strictly
prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property.
Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims,
damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject
to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources
expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
Www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered
trademarks are the property of their respective owners.

(Rev.1.0 Mar 2020)

Contact Information

For further information on a product, technology, the most
up-to-date version of a document, or your nearest sales
office, please visit:

www.renesas.com/contact/

https://www.renesas.com
https://www.renesas.com/contact/
https://www.renesas.com/contact/

	Contents
	1. Introduction
	1.1 Assumptions and Advisory Notes

	2. RAA489204 Battery Front End Overview
	2.1 Features
	2.2 Applications
	2.3 RAA489204 Sample Code Structure

	3. RAA489204 Application Programming Interface Implementation
	3.1 Control and Configuration Structures
	3.2 Registers Bank
	3.3 Private (Static) Functions
	3.4 API Implementation
	3.4.1 R_RAA489204_Init
	3.4.2 R_RAA489204_Deinit
	3.4.3 R_RAA489204_Setup
	3.4.4 R_RAA489204_Reset
	3.4.5 R_RAA489204_ModeSet
	3.4.6 R_RAA489204_ModeRead
	3.4.7 R_RAA489204_CommTest
	3.4.8 R_RAA489204_SelfDiag
	3.4.9 R_RAA489204_MemCheck
	3.4.10 R_RAA489204_VPackGet
	3.4.11 R_RAA489204_IPackGet
	3.4.12 R_RAA489204_VoltagesGet
	3.4.13 R_RAA489204_Temps
	3.4.14 R_RAA489204_AllGet
	3.4.15 R_RAA489204_VMixGet
	3.4.16 R_RAA489204_FaultsAllRead
	3.4.17 R_RAA489204_FaultsCheck
	3.4.18 R_RAA489204_FaultsAllClear
	3.4.19 R_RAA489204_CellBalanceCtrl
	3.4.20 R_RAA489204_IsCellBalancing
	3.4.21 R_RAA489204_ContScanCtrl
	3.4.22 R_RAA489204_WatchdogCtrl
	3.4.23 R_RAA489204_FETsCtrl
	3.4.24 R_RAA489204_GPIOsCtrl
	3.4.25 R_RAA489204_RegisterRead
	3.4.26 R_RAA489204_RegisterWrite

	3.5 Configuration
	3.5.1 MCU Hardware Abstraction Layer
	3.5.2 Battery Front End
	3.5.3 Battery Abstraction Layer
	3.5.4 Demo Application

	3.6 Examples

	4. Demo Application
	5. Revision History

