LENESAS Manual

PTX1xxW NFC Forum Wireless Charging Poller APl Non-OS Stack Integration

(v2.3.0)

This document describes the NFC Forum Wireless Charging (WLC) Poller SDK for the PTX1xxW chip, further
referred to as “WLCN”. The WLCN SDK provides a reference application of the NFC Forum Wireless Charging
Protocol (see References item [1]) for the WLC Poller device running on a RA4M2 Arm Cortex® M33
(R7FA4M2AB) as an example host target platform.

Contents
IR 1111 o T [T 1 e o 3
0 O E o 1Y o o SRR 3
22N o] o £ XY/ =Y i o] a TS F=Ta Lo I =Y o 411 o] o o | UUSRPPRN 3
2.  Architecture of the WLCN SyStem ........cccoiiiiiiiiiiieseccccrrrrr e r s s s s s smmsmm s s e e e e e e e e e e e e e e sennnan 4
2% B ©70 ] o1 o Yo g 1= 01 G 0 L=< Yo7 4 ) (o] o [ 4
211, PTXWLCN APPICALION ...ttt e e e e nbee e e e e e 4
20,20 WLECN AP ettt e e e ettt e e e ettt e e e e e e n ettt e e e e e e nnbteeeeeeaannbreeeeeeeannaes 5
2.1.3. loT-Reader and Wireless Charging COmMPONENt...........ccccuuuiiieeiiiiiiiiee e 5
214, NSC COMPONENT ..ottt e e e e e e e s e b b e e e e e e e bbb e e e e e e aannbeeeeeeeeanrees 6
2t O T o =10 0 Y P RPRT 6
2.1.6.  Platform COMPONENT ........ccooiiie e e e e e e e e e aaaaeaaeaaas 6
2.1.7.  Peripherals ComponentS/API ......... o 6
2.1.8.  Poller system CONfIQUIatioN ..........ccccuuiiiiiiiiiiiiieice e e e e e e e e e e e e e e 7
B T4 L0 (VY o I 0T o Y o ] 7
R Tt N o oA @ o PP 7
G T2 o 4T I AN 0= oV 7
3.3 PIXWLCN_State WaitFOrLiSTENET .......cooiiieeeie e e e 8
3.4 PIXWLCN_State POIILISIENET .......uuuiiiiiiiiiiieeeeeeeee e e e e e e e e e e e e e e e e e e e e e e aaananes 8
3.5 PIXWLCN_State AcCHVAtELISIENET ........e e e e e e e e e e e e e e e e e e e 8
3.6 PIXWLCN_State_GetCapRECOIT ........ooiiiiiiiiiie e e e e s e e e e e e snneeas 8
3.7 ptxWLCN_State WaitForLiSteNerREaAAY ...........oooviiiiiiiiiii e 9
3.8 pXWLCN_State StatiCCharging -.........e e ettt e e e e e e e e e e e e e e e e e e e e e e nnnnnnes 9
3.9 PIXWLCN_State_SetINfORECOIT ........oooi i e 9
3.10 ptXWLCN_State GetCoNtrolRECON ........ueiiiiiiiiiiiiie e e e e e e e e e e e e e e e e e s s e e e eaaananes 9
3.11 PIXWLCN_State FIeldOff .........eeiiiiiiiiiiiieeeeeeee et e e e e e e e e e e e e e e e e e e e e asraaraees 10
3.12 ptXWLCN_State_NegOCNaIrgiNgG ......coue ittt e et e e e e e aneeeeas 10
3.13 PIXWLCN_State POICHAIGING .....uvuiiiiiiiiiiiiieiiiee et e e e e e e e aaaaa e e e e e e e s esassseanasrnnrenes 10
3.14 PIXWLCN_State POIREAAY........c.eviiiee ettt e e e e et e e e e e st e e e e e e snsteeeaeeeensreeas 10
3.15 PtXWLCN_State POIIFIEIdORT .........ooiii i e e e e e e e e e e et e e e e e e ennneeas 11
3.16 ptXWLCN_State DeactivateLiStENEr ...........oovviiiiiii e 11
3.17 PIXWLCN_State PreSenCECRNECK. .......uuiieiiiiiiiiieeee et 11
3.18 PIXWLCN_SetWPtWDLUTADIE ...ttt e e e e e e e e e e e e e e e e e e e nnnnennenees 11
3.19 PIXWLCN_SetNFCWDLUTADIE .......oviiiie e e e e e e e e et e e e e e e earreeas 12
3.20 PIXWLCN_GetWPIWDLUTADIE.........uuiiiiieiiiieeeee e e e e e e e e e e e e e e e aaraees 12
R35US0014EU0102 Rev.1.02 RENESAS Page 1

Mar 17, 2025

© 2024-2025 Renesas Electronics



PTX1xxW NFC Forum Wireless Charging Poller APl Non-OS Stack Integration (v2.3.0) Manual

3.21 PIXWLCN_GEINTCWPIWD ...ttt et e e e e e e et e e e e enee e e e ameneeaeneeeeenns 12
3.22  PIXWLCN _GEIWPIWD ...ttt et a bt e et e e e s e e e snreeenae 12
3.23  PIXWWLCN_GEINTCWVD ...ttt st e e e hb e e s bt e e e ebb e e e s anbeeesnbeeeean 13
3.24  PIXWLCN G LiStenerTYPe ..ottt e e e e e e e e et e e e e e e snbeeeas 13
3.25 PIXWLCN _SetLiStENEIGPIOS . ... uuuuuiiiiiiiiiiieiiie et e e e e e e e e e e e e e e e e eaaaaaaaeaaeaaesasaaasssnnsrnnrnne 13
3.26 PIXWLCN_SetShippingMOGE ........uuuiiiiiiiiiiiiiiiei e ettt e e e e e e e e e e e e e e e e e e e eaesseeaasrnareees 13
4. WLCN API State MaCRINe.........coiiiiieirr e e e e e e s sme e e s s mme e e e e s e mmn e e e e s e sammn e e e e e snmnnees 14
LT I 0 V= T 1= LT 15
Lo 0t B 4 (=] 1] o o TSRS 17
5.1.1.  Transparent Data Channel ... 17
5.1.2.  Data EXChange APl ...ttt e e e e e e e e e e e e e e e e e e 17
5.1.3.  EXamMPIE USE CaSe. ... ittt e e e e e e e e e e e e e e e e e aaaaaan 19
6.  Platform SPECITiC ... e e 20
L 20t B I I @] 4T o o] =T o | PP UPPR 20
6.2 PERIPHERALS COMPONENT......uuuiiiiiiiiiiiiiiieeiit e e e e e e e e et e e e e e e eaaaaaaaeaaeaaesaaaaaaasnnssnnrnnes 21
Lo I | (@ o =T To 10 To PP RPPRPRN 21
6.4  Project QUICK SEart GUIE ........oooiiiiiiie e e et e e e e e sneeeeas 22
7 & =1 =T =1 o T = 26
8. ReVISION HiStOrY ..o e 27
Figures
Figure 1. PTX Chip Software Stack ArChit@CUre ............ocuuiiiiiiiiii e 4
Figure 2. WLCN API FIOW EXAMPIE..........uuuiiiiiiiiiiiiieieeeeeeee ettt e e e e e e e e e e e e e e e e e e e e e s e enaanaaranees 14
Figure 3. WLCN SDK FOlder STUCIUIE........coiiiiiiiiiei ettt e et e e s eeeeeean 16
Figure 4. SRC FOIAEr STrUCIUIE .......eiiiii et e e ettt e e e s et e e e s e anne bt e e e s annnreeeaeean 16
Figure 5. TOOIS FOIEr SIIUCIUE ... e e e e e e e e e e e e e e e e e e e e seeassenansensenees 16
FIQUIE 6. PrOJECT FilES. ... . ettt e e ettt e e e et e e e e e ab bt e e e e e e s annneeeee s 16
Figure 7. PLAT FOIAEr STUCIUIE........ooiiieeee ettt e e s et e e e e et e e e e e s nnneeeeaeean 20
Figure 8. PERIPHERALS FOIAEr STIUCIUIE........uuiiiiiiiiiiiiiii et e e e e aaaaaaaeeeeeeeseaeasenansennnnnes 21
Figure 9. Importing the Project into the WOIrKSPACE.........couii i 22
Figure 10. Project Explorer Contents: (a) After Importing, Before Build; (b) After the Build...............ccccooiei. 22
Figure 11. BUild OUIPUL FOIAET ... ...t e e e et e e e e eeaaaaaaeeeeesaesaaeassananssnsennes 23
Figure 12. PTX NFC-WLC_POIIEI BOAI .......cceiiiiiiiiiii ettt e ettt e e sttt e e e s et e e e e s snnseaeeeaessnnnssaeeaesannnssaeeaeean 24
Figure 13. Tag-ConNECt CabIE .........ooiiiiiiiiiiie et e ettt e e e et e e e e s e e e e e e s nnnreeeeeean 24
Figure 14, Tag-ConNECE ClIP ....ccooii it e e et e e et e et e e ettt e e e e et e eeeeaaaaaaaaeeeesaesaasaasassnssnsrnnes 24
Figure 15. J-LiNK DEDUGQET ..ottt et et e e e e ettt e e e e e e e aeeeeeaestasa e eaeeaaeaeeeneennrnnan 25
Figure 16. Tag-ConNECt AQAPIET .......ooi it e e s et e e e e s e bbb e et e e e annnreeeeeean 25
Figure 17. Selecting DEbUQG Target.. . ...t e e s st e e e s et e e e e e annnreeeaeean 26
R35US0014EU0102 Rev.1.02 RENESAS Page 2

Mar 17, 2025



PTX1xxW NFC Forum Wireless Charging Poller APl Non-OS Stack Integration (v2.3.0) Manual

1. Introduction

This solution is intended for platforms without an Operating System (Non-OS) and without a file system. For
details of the “Wireless Charging NFC Forum Protocol”, refer to References section item [1].

1.1 Audience

This document is intended to be used by:

= SW architects
= SW engineers
= SW integrators

1.2 Abbreviations and Terminology

HW Hardware
Integrator Developer who builds/integrates the loT-Reader API into a target application
loTRd loT-Reader profile
loT-Reader loT-Reader stack controller

NFC Near Field Communication
NSC NFC Soft Controller
RF Radio Frequency
SDK Software Development Kit
SW Software

WLC Wireless Charging

WLC Listener Device Device being charged
WLC Poller Device Charging device
WLCN Wireless Charging NFC Forum
R35US0014EU0102 Rev.1.02 RENESAS Page 3

Mar 17, 2025




PTX1xxW NFC Forum Wireless Charging Poller APl Non-OS Stack Integration (v2.3.0) Manual

2. Architecture of the WLCN System

The WLCN System follows component-based approach which increases modularity and usability. The
components are divided into two main groups:

1. Hardware/Platform Independent:

It is suitable to run on Application processors where there is neither an Operating System nor a File System
available. This includes all components starting from the NSC Core upwards to the actual WLCN API.

2. Hardware/Platform Dependent:

This part needs to be adapted to a specific MCU/platform used as Application processor (for more details,
refer to section 6). This includes the PLAT component and PERIPHERALS with all its sub-components.

The WLCN Stack is implemented in ANSI C to maximize its portability. Figure 1 shows the main components of

the stack.

Hardware / Platform
Independent

Hardware / Platform )

Dependent

2.1
2.1.1.

Application and
WLCN API

<

loT Reader and
Wireless Charging 1
Component

NSC Core
(Non-0S) <
Stack

Platform 1

PTX WLCN Application

PTX130WN / WLCN API

WLCN Core

loT-Reader
Stack
(loT)

NDEF API

WLC Power Transfer
(WPT)

Native-Tag API

NSC - WLC Extensions

WLCN Peripherals

(NSC WLC)
NFC Soft Controller - Core Stack
(NSC Core)
A 4
Platform API (ptxPLAT.h) | | Ext. Device / Peripheral Components API
SPI GPIO (IRQ) Timer DAC 12C Power
Impl. Impl. Impl. Impl. Impl. Sensor

Figure 1. PTX Chip Software Stack Architecture

Component Description

PTX WLCN Application

It implements the actual charging application for the WLC Poller device according to the NFC Forum Wireless
Charging Protocol (see References item [1]).

R35US0014EU0102 Rev.1.02

Mar 17, 2025

RENESAS

Page 4



PTX1xxW NFC Forum Wireless Charging Poller APl Non-OS Stack Integration (v2.3.0) Manual

2.1.2. WLCN API

This API exposes all the wireless charging related functionalities of the NFC Forum Wireless Charging Protocol
for the WLC Poller device to the application on top (see References item [1]).

The WLCN API provides the following features:

= System initialization of all hardware and software components

= Enabling NFC communication

= Perform wireless charging via NFC

Depending on the application, the WLCN API allows the actual wireless charging procedures to be managed
directly:

= via the internal WLCN component through a single API call.

= by the application on a more granular level through multiple API calls.

By using the initial parameter, the application can provide a call-back function where the following event will be
reported to main application:

= Listener detected on NFC link
= Charging Cycle Started

= Charging Cycle Finished

= Listener removed on NFC link

The WLCN API is described in detail in section 3 and an overview of the API states are described in section 4.

2.1.3. loT-Reader and Wireless Charging Component

This component is split into multiple sub-components which provide access to the actual NFC communication
functionalities as well as the wireless charging control blocks.

21.31. WLCN Core

This component implements all the functions required for the NFC Forum Wireless Charging Protocol and
exposes a sub-set of it as the WLCN API.

21.3.2. loT-Reader

This component implements the standard PTX loT-Reader API which exposes the complete set of NFC Reader
functionalities, except for Host Card Emulation (HCE), to higher software layers. A detailed description of the
loT-Reader can be found in References item [2].

2.1.3.3. Generic NDEF Operation API

This module implements the protocol to perform data exchange based on NFC Data Exchange Format (NDEF)
messages between WLC poller and listener. It supports NFC Forum Tag Types 2-5.

2.1.3.4. NDEF Parser/Builder API

This module contains the functionalities for parsing and creating NDEF messages required for WLC
communication.

21.3.5. WLC Power Transfer

This component implements functionality to enable wireless power transfers from the WLC Poller to the WLC
Listener device with a given output power and duration.

2.1.3.6. NSC WLC Extensions

This component represents an extension of the NSC Core component and implements add-on functions for the
WLC Power Transfer component and handling of wireless charging related call-back routines, such as
notifications about charging states.

R35US0014EU0102 Rev.1.02 RENESAS Page 5
Mar 17, 2025



PTX1xxW NFC Forum Wireless Charging Poller APl Non-OS Stack Integration (v2.3.0) Manual

2.1.3.7. WLCN Peripherals

The WCLN peripherals are software components for initializing optional hardware components on the EVK PCB.
These optional components include a DC/DC converter to supply the PTX1xxW with a variable voltage, an
additional temperature sensor, and a power sensor for efficiency measurements.

Note: Customers with independent designs not based on the EVK circuit diagram do not need this software
component.

21.4. NSC Component

This component exposes to the upper layer the set of functions that abstract the PTX chip NFC functionality.
This layer represents the actual core of the NSC Stack and provides mainly the following functionalities:

= Configuration and initialization

= RF discovery loop

= RF card activation detection

= RF data exchange

2.1.5. Platform API
This API defines the platform/MCU dependent functionalities required by the NSC Stack.

The Platform API enables:

= Byte transfer to/from PTX chip

= The ‘waiting on’ synchronous (blocking) events, interrupts driven, triggered by the PTX chip

= The capture of asynchronous (non-blocking) events, interrupts driven, triggered by the PTX chip
= Sleep functionality placing the software execution to sleep for a certain time period

2.1.6. Platform Component

This component is dependent on the platform/MCU which is used as application processor. It depends as well
on the used physical hardware interface (SPI, 1°C or UART) between the application processor platform and the
PTX chip.

The Platform component includes the following sub-modules:

= Interface. Implements the driver for the physical interface used for communication with the PTX chip (for
example, SPI in this SDK).

= GPIO. Implements the driver for the GPIO used for IRQ. This submodule is needed when SPI or I1°C are used
as physical interface; if UART is used, IRQ is not required.

= Timer. Implements a wrapper for a hardware timer to provide time-out functionality for the loT-Reader Stack.
= Note: The delivered SDK contains a reference implementation for Platform component used on R7TFA4M2AB

application processor. This layer needs to be adapted/ported for different targets.

2.1.7. Peripherals Components/API

The WLCN SDK requires additional external peripherals such as:

= Digital-analog converter (DAC) for controlling the input power of the PTX chip.
= Power sensor used for current measurement.

= |2C driver to interface the power sensor.

R35US0014EU0102 Rev.1.02 RENESAS Page 6
Mar 17, 2025



PTX1xxW NFC Forum Wireless Charging Poller APl Non-OS Stack Integration (v2.3.0) Manual

2.1.8. Poller system configuration
The WLCN SDK provides a header file for system configuration. The file can be found in:
\SRC\COMPS\WLC_POLLER\WLCN \ptxWLCN_PollerDefines.h

This file exposes a variety of customer-specific settings of the NFC WLC Poller. The following parameters can
be adjusted:

= Enable/Disable support of BFOD

= Enable/Disable support of WPT Stop request
= Used power class

= Number of power levels

= Poll interval

A more detailed description can be found in the file itself.

3. WLCN API Description

This section contains an overview of the functions provided by the WLCN API.

3.1  ptxWLCN_Init

ptxStatus_t ptxWLCN Init(
Declaration PtXWLCN_t *wlcn,
PtxWLCN InitParams_t *initParam);

Initializes the software and hardware components for WLCN operation. This function must be called

Description
Y before any other API function. It performs software initialization and configuration for the PTX chip.
wlcn Pointer to WLCN component not initialized.
Input Parameters
initParam Init parameters to configure software and hardware for proper operation.
Return Value Status Success or failure, refer to ptxStatus_t for details.

3.2 ptxWLCN_Delnit

Declaration ptxStatus_t ptxWLCN Delnit (
PtxWLCN_t *wlcn);
Description Deinitializes the WLCN component and all its sub-components.
Input Parameters wlcn Pointer to initialized WLCN component.
Return Value Status Return Value.
R35US0014EU0102 Rev.1.02 RENESAS Page 7

Mar 17, 2025



PTX1xxW NFC Forum Wireless Charging Poller APl Non-OS Stack Integration (v2.3.0) Manual

3.3 ptxWLCN_State_WaitForListener

ptxStatus_t ptxWLCN_State_ WaitForListener (

Declaration PtxWLCN_t *wlcn,
PtxWLCN_ChargeStates_t *chargingState);
Description This function sets up the Listener discovery.

Input Parameters

wlcn Pointer to initialized WLCN component.

chargingState In/Out parameter: Current/Next charging state.

Return Value

Status Return Value.

3.4 ptxWLCN_State_PoliListener

ptxStatus_t ptxWLCN_State_PollListener (

Declaration PtxWLCN_t *wlcn ,
PtxWLCN_ChargeStates_t *chargingState);
Description This function polls for any device to be in the field.

Input Parameters

wlcn Pointer to initialized WLCN component.

chargingState In/Out parameter: Current/Next charging state.

Return Value

Status Return Value.

3.5 ptxWLCN_State_ActivateListener

ptxStatus_t ptxWLCN_State_Activatelistener (

Declaration PtxWLCN_t *wlcn,
PtxWLCN_ChargeStates_t *chargingState);
e In case multiple Listener devices were discovered in ‘PollListener’-State this function activates one after
Description

the other until a WLC-CAP record was found.

Input Parameters

wlcn Pointer to initialized WLCN component.

chargingState In/Out parameter: Current/Next charging state.

Return Value

Status Return Value.

3.6 ptxWLCN_State_GetCapRecord

ptxStatus_t ptxWLCN_State_GetCapRecord (

Declaration PtxWLCN_t *wlcn,
PtxWLCN_ChargeStates_t *chargingState);
_—n This function retrieves the WLC Capability record (and any optional WLC records) from the Listener-
Description

device and parses its parameters.

Input Parameters

wlcn Pointer to initialized WLCN component.

chargingState In/Out parameter: Current/Next charging state.

Return Value

Status Return Value.

R35US0014EU0102 Rev.1.02

Mar 17, 2025

RENESAS

Page 8



PTX1xxW NFC Forum Wireless Charging Poller APl Non-OS Stack Integration (v2.3.0) Manual

3.7 ptxWLCN_State_WaitForListenerReady

ptxStatus_t ptxWLCN_State WaitForListenerReady (

Declaration PtxWLCN_t *wlcn,
PtxWLCN_ChargeStates_t *chargingState);
_ This function waits for a certain amount of time, specified by the Listener until the WLC Capability record

Description .

can be read again by the poller.

wlcn Pointer to initialized WLCN component.
Input Parameters

chargingState In/Out parameter: Current/Next charging state.

Return Value Status Return Value.

3.8 ptxWLCN_State_StaticCharging

ptxStatus_t ptxWLCN_State_StaticCharging(

Declaration PtxWLCN t *wlcn,
PtxWLCN_ChargeStates_t *chargingState);
Description This function performs a power transfer in static charging mode (see References item [1]).
wlcn Pointer to initialized WLCN component.
Input Parameters
chargingState In/Out parameter: Current/Next charging state.
Return Value Status Return Value.

3.9 ptxWLCN_State_SetinfoRecord

ptxStatus_t ptxWLCN_State_SetInfoRecord (

Declaration PtXWLCN_t *wlcn,
PtxWLCN_ ChargeStates_t *chargingState);
Description This function writes the WLC Information record to the listener.
wlcn Pointer to initialized WLCN component.
Input Parameters
chargingState In/Out parameter: Current/Next charging state.
Return Value Status Return Value.

3.10 ptxWLCN_State_GetControlRecord

ptxStatus_t ptxWLCN_State_GetControlRecord (

Declaration PtxWLCN_t *wlcn,
PtxWLCN_ChargeStates_t *chargingState);
Description This function retrieves the WLC Control record from the listener device during the WCC phase.

Input Parameters

wlcn Pointer to initialized WLCN component.

chargingState In/Out parameter: Current/Next charging state.

Return Value

Status

Return Value.

R35US0014EU0102 Rev.1.02

Mar 17, 2025

RENESAS

Page 9



PTX1xxW NFC Forum Wireless Charging Poller APl Non-OS Stack Integration (v2.3.0) Manual

3.11 ptxWLCN_State_FieldOff

ptxStatus_t ptxWLCN_State FieldOff (

Declaration PtxWLCN_t *wlcn,
PtxXWLCN ChargeStates_t *chargingState) ;
The poller turns off its RF-field, in case the listener reports ‘BattFull’ in its WLC Capability record or
Description refuses another WPT via the WLC Control record. Hence. this function deactivates the field and waits for

the required amount of time specified by the listener.

wlcn Pointer to initialized WLCN component.
Input Parameters

chargingState In/Out parameter: Current/Next charging state.
Return Value Status Return Value.

3.12 ptxWLCN_State_NegoCharging

ptxStatus_t ptxWLCN_State_NegoCharging (

Declaration PtxXWLCN_t *wlcn,
PtxWLCN_ChargeStates_t *chargingState);
Description This function performs a power transfer in negotiated charging mode (see References item [1]).
wlcn Pointer to initialized WLCN component.
Input Parameters
chargingState In/Out parameter: Current/Next charging state.
Return Value Status Return Value.

3.13 ptxWLCN_State_PoliCharging

ptxStatus_t ptxWLCN_State_PollCharging(

Declaration PtxWLCN t *wlcn,
PtxWLCN_ChargeStates_t *chargingState);
D _ This function polls for the end of the charging state (static or negotiated). If not finished it keeps the state
escription

otherwise it updates the state accordingly.

wlcn Pointer to initialized WLCN component.
Input Parameters

chargingState In/Out parameter: Current/Next charging state.
Return Value Status Return Value.

3.14 ptxWLCN_State_PollReady

ptxStatus_t ptxWLCN_State_PollReady (

Declaration PtxXWLCN t *wlcn,
PtxWLCN_ChargeStates_t *chargingState);
e This function polls for the end of the wait state. If not finished it keeps the state otherwise it updates the

Description .

state accordingly.

wlcn Pointer to initialized WLCN component.
Input Parameters

chargingState In/Out parameter: Current/Next charging state.
Return Value Status Return Value.

R35US0014EU0102 Rev.1.02

Mar 17, 2025

RENESAS Page 10




PTX1xxW NFC Forum Wireless Charging Poller APl Non-OS Stack Integration (v2.3.0) Manual

3.15 ptxWLCN_State_PolIFieldOff

ptxStatus_t ptxWLCN_State_ PollFieldOff (

the state accordingly.

Declaration PtxWLCN_t *wlcn,
PtxWLCN_ChargeStates_t *chargingState);
_ This function polls for the end of the field-off state. If not finished, it keeps the state otherwise it updates
Description

wlcn Pointer to initialized WLCN component.
Input Parameters

chargingState In/Out parameter: Current/Next charging state.
Return Value Status Return Value.

3.16 ptxWLCN_State DeactivateListener

ptxStatus_t ptxWLCN_State_DeactivateListener (

Declaration PtxWLCN t *wlcn,
PtxWLCN_ChargeStates_t *chargingState);
Description This function deactivates the Listener device.
wlcn Pointer to initialized WLCN component.
Input Parameters
chargingState In/Out parameter: Current/Next charging state.
Return Value Status Return Value.

3.17 ptxWLCN_State PresenceCheck

ptxStatus_t ptxWLCN_State_PresenceCheck (

and turns the field off again.

Declaration PtXWLCN_t *wlcn,
PtxWLCN_ ChargeStates_t *chargingState);
D i Validates if the Listener is still in the vicinity of the Poller. Turns the RF-Field on, runs the RF-discovery
escription

wlcn Pointer to initialized WLCN component.
Input Parameters
P . ) Out parameter: Pointer to uint8_t indicating if listener is still within proximity of
isAvailable
the poller.
Return Value Status Return Value.

3.18 ptxWLCN_SetWptWbLuTable

ptxStatus_t ptxWLCN_SetWptWbLuTable (

used for the WPT cycles.

Declaration PtxWLCN_t *wlcn,
const uint8_ t *table);
_ The user can pass a table/array with 32 entries (in range 0—255) to this function, to define a waveshape
Description

wlcn Pointer to initialized WLCN component.
Input Parameters
table Pointer to the lookup table with 32 entries in range 0—255
Return Value Status Return Value
R35US0014EU0102 Rev.1.02 RENESAS Page 11

Mar 17, 2025




PTX1xxW NFC Forum Wireless Charging Poller APl Non-OS Stack Integration (v2.3.0) Manual

3.19 ptxWLCN_SetNfcWbLuTable

ptxStatus_t ptxWLCN_SetNfcWbLuTable (
Declaration PtxWLCN_t *wlcn,
const uint8_ t *table);

The user can pass a table/array with 32 entries (in range 0—255) to this function, to define a waveshape

D I
escription used for the NFC communication between the individual WPT cycles.
wlcn Pointer to initialized WLCN component.
Input Parameters
table Pointer to the lookup table with 32 entries in range 0—255.
Return Value Status Return Value.

3.20 ptxWLCN_GetWptWbLuTable

ptxStatus_t ptxWLCN_GetWptWbLuTable (
Declaration PtxXWLCN_t *wlcn,
uint8_t *table);

Description Retrieves the WPT lookup table (LUT) currently in use.

wlcn Pointer to initialized WLCN component.
Input Parameters

table Pointer to store the lookup table. (32 entries in range 0-255).
Return Value Status Return Value.

3.21 ptxWLCN_GetNfcWptWb

ptxStatus_t ptxWLCN_GetNfcWptWb (
Declaration PtxWLCN_t *wlcn,
uint8_t *wb);

Description Retrieves the automatically scaled NFC wavebank currently in use.

wlcn Pointer to initialized WLCN component.
Input Parameters

wb Pointer to store the wavebank. (32 entries in range 0-31).
Return Value Status Return Value.

3.22 ptxWLCN_GetWptWb

ptxStatus_t ptxWLCN_GetWptWb (
Declaration PtxWLCN_t *wlcn,
uint8_t *wb);

Description Retrieves the wavebank used for the WPT phase.
wlcn Pointer to initialized WLCN component.
Input Parameters
wb Pointer to store the wavebank. (32 entries in range 0-31).
Return Value Status Return Value.
R35US0014EU0102 Rev.1.02 RENESAS Page 12

Mar 17, 2025



PTX1xxW NFC Forum Wireless Charging Poller APl Non-OS Stack Integration (v2.3.0) Manual

3.23 ptxWLCN_GetNfcWb

ptxStatus_t ptxWLCN_GetNfcWb (

Declaration PtxWLCN_t *wlcn,
uint8_t *wb);
Description Retrieves the wavebank used for the communication phase (between the WPT cycles).
wlcn Pointer to initialized WLCN component.
Input Parameters
wb Pointer to store the wavebank. (32 entries in range 0-31).
Return Value Status Return Value.

3.24 ptxWLCN_GetListenerType

ptxStatus_t ptxWLCN_ GetListenerType (

Declaration PtxWLCN_t *wlcn,
PtxWLCN_ListenerType t *type);
Description Retrieves the type of the Listener (Generic, PTX30W, RRQ36031).
wlcn Pointer to initialized WLCN component.
Input Parameters
type The listener type.
Return Value Status Return Value.

3.25 ptxWLCN_SetListenerGpios

ptxStatus_t ptxWLCN_SetListenerGpios (
PtxWLCN_t *wlcn,

Declaration bool setGpiocOHigh,
bool setGpiolHigh);
Description Sets the GPIO levels of the PTX30W (PTX30W must be correctly configured).
wlcn Pointer to initialized WLCN component.
Input Parameters setGpioOHigh Sets PTX30W’s GPIO_0 to HIGH when true.
setGpiolHigh Sets PTX30W’s GPIO_1 to HIGH when true.
Return Value Status Return Value.

3.26 ptxWLCN_SetShippingMode

ptxStatus_t ptxWLCN_SetShippingMode (

Declaration PtxWLCN_t *wlcn,
bool enableSm);
Description Controls the shipping mode of the PTX30W or RRQ36031.

Input Parameters

wlcn Pointer to initialized WLCN component.

enableSm Enable/Disable the shipping mode.

Return Value

Status Return Value.

R35US0014EU0102 Rev.1.02

Mar 17, 2025

RENESAS

Page 13




PTX1xxW NFC Forum Wireless Charging Poller APl Non-OS Stack Integration (v2.3.0) Manual

4. WLCN API State Machine

Figure 2 shows an example flow of how to use the WLCN.

PtxWLCN_Init ()

PtxWLCN_Charge()

PtxXWLCN Deinit()

Figure 2. WLCN API Flow Example

Note: All WLCN API functions return a 16-bit status word indicating the status of the requested operation. If an
operation succeeded, the status word is set to 0x0000 (= SUCCESS). In any other case, the upper 8 bit of the
status word indicates the (sub-)component identifier of where the error occurred, and the lower 8 bit indicates the
exact error code. Details of the status word definition can be found in the header file “ptxStatus.h”.

Figure 2 shows a typical example flow of how to use the WLCN API assuming all functions return successfully. If
an error occurs, it is handled internally within each state API to either trigger appropriate state transition or keep
the system safe in the current state.

States Descriptions:

= State: START
The system needs to be initialized first via a call to "ptxWLCN_Init". This initializes the software Stack and
readies the PTX chip for NFC and wireless charging operations.

= State: INIT
After Stack and hardware initialization, the WLCN API is ready to start the WLC application state machine
implemented in the given code example.

= State: CHARGING
This state is reached through the implementation of a state machine calling “ptxWLCN_State_*” functions.
The state machine implements the complete WLC logic, including:
* Handling of listener RF activation process

Start of WLC static or negotiated charging according to the capabilities of listener
* Charge listener device until battery is full
* Re-start the previous steps

R35US0014EU0102 Rev.1.02 RENESAS Page 14
Mar 17, 2025



PTX1xxW NFC Forum Wireless Charging Poller APl Non-OS Stack Integration (v2.3.0) Manual

Here is an overview of all existing state functions:
* ptxWLCN_State_WaitForListener

* ptxWLCN_State_ActivateListener

* ptxWLCN_State_GetCapRecord

* ptxWLCN_State_WaitForListenerReady
* ptxWLCN_State_StaticCharging

* ptxWLCN_State_SetinfoRecord

* ptxWLCN_State_GetControlRecord

* ptxWLCN_State_NegoCharging

* ptxWLCN_State_FieldOff

* ptxWLCN_State_DeactivateListener

* ptxWLCN_State_PollListener

* ptxWLCN_State_PollReady

* ptxWLCN_State_PollFieldOff

* ptxWLCN_State_DeactivateListener

Important: It is highly recommended to check regularly (for example, with every change of the charging
state) for critical system errors like thermal (over-temperature) errors. This can be achieved by using the
function “ptxloTRd_Get_Status_Info”. If the application is using the “ptxWLCN_State” functions, then
regular checks are highly recommended.

System error handling (and potential) recovery is shown in the provided SDK demo application.

State: FINISHED

Once the complete WLCN application is stopped or shutdown, it is required to call function
"ptxWLCN_Delnit" to stop all RF activities and to free previously allocated system resources like memory,
drivers, etc.

5. WLCN SDK Delivery

The WLCN SDK delivery contains the source code for the following:

R7FA4M2AB (Cortex-M33 based MCU) has been the platform used for the reference implementation provided in

WLCN wireless charging application

WLCN API

loT-Reader

NSC Core Stack

PLAT component with SPI as reference host interface to the PTX chip
Reference implementation of the used Tl INA219 power sensor

the SDK. More detailed overview of platform specific files is given in section 6.

Important. The provided WLCN application project is based on the Renesas Flexible Software Package (FSP).
To build the project and execute the application, install the required the Renesas FSP and Renesas e? studio
development tools. Installation of those tools is out of scope of this document — refer to the vendor’'s website.

Although platform specific code for the R7FA4M2AB microcontroller is not included in the delivery, it can be easily

generated after importing and building the project in the Renesas e? studio IDE.

R35US0014EU0102 Rev.1.02 RENESAS Page 15

Mar 17, 2025



PTX1xxW NFC Forum Wireless Charging Poller APl Non-OS Stack Integration (v2.3.0) Manual

The SDK structure at root folder is as following.

= Root-Folder

Docs
SRC
TOOLS

Figure 3. WLCN SDK Folder Structure

* \DOCS
Doxygen-based API-description
* \SRC

This folder contains the source code for WLCN application (“EXAMPLE”) and the WLCN stack (“COMPS”)
plus all (sub-)components.

COMPS
EXAMPLE

Figure 4. SRC Folder Structure

* \TOOLS
PLAT contains the project to be imported in Renesas e? studio.

PLAT

Figure 5. Tools Folder Structure

* \TOOLS\PLAT\RENESAS\RA4M2\E2STUDIO_WORKSPACE\PTX130WN_SDK

This is the location where project files are located. When importing a project into the Renesas e? studio, just
point to this location. All the files required to build the project are included.

settings

script

src

Ccproject

Jproject
0_PreBuild_PTX130WN.bat
configuration.xml
R7FA4MZAB3ICME. pincfy
ra_cfg.tet

Figure 6. Project Files

R35US0014EU0102 Rev.1.02 RENESAS Page 16
Mar 17, 2025



PTX1xxW NFC Forum Wireless Charging Poller APl Non-OS Stack Integration (v2.3.0) Manual

5.1 Extensions

In order to provide the user with the capability to customize the final application or extend the bare wireless
charging functionality of the Listener device, there are specific extension modules available through dedicated
APIs. The following sections describe all the currently implemented extension features.

5.1.1. Transparent Data Channel

The Transparent Data Channel (TDC) enables arbitrary data transfers between the Poller and Listener. The
transport protocol is built upon 1ISO14443/3—-Type A 106kbps frames. The default SDK poller application displays
an example usage of the data exchange APls, as shown below.

Writes messages to the listener's buffer.
ptxStatus_t ptxWLCN_TDC_MWrite(ptxWLCN_t *wlcn, uintd_t *txData, uintd_t txlen, uint32_t ackTimeoutMs);

Reads messages from the listener's buffer.
ptxStatus_t ptxWLCN_TDC_Read(ptxWLCHN_t *wlcn, uintd_t *rxData, uintd_t *rxDatalen, uint32_t rxTimeoutMs);

Checks if the Listener's host MCU has read the previcusly sent message.

ptxStatus_t ptxWLCN_TDC_IsReceived(ptxWLCN_t *wlcn, uintd_t *received);

Data transfer is done in packets of max 63 bytes. Each and every data transfer (no matter whether it's a Tx or Rx
operation) must always be initiated by the Poller — it is the master of the communication channel. If data shall be
sent to the Listener, the Poller can write this data directly to the T2T memory of the listener. If data shall be
received from the Listener, the Listener cannot start a data transfer directly to the Poller, instead it must wait until
it is read by the Poller.

5.1.2. Data Exchange API
Three dedicated APIs provide all the required features for sending and receiving data on the Poller side.

5.1.21. ptxWLCN_TDC_Write

ptxStatus_t ptxWLCN_TDC Write (
PtxWLCN_t *wlcn,
Declaration uint8_t *txData,
uint8_t *txLen,
uint32_t *ackTimeoutMs) ;
Writes messages with a maximum of 63 payload bytes to the PTX30W'’s buffer. The API requires a pointer
to an initialized WLCN component, the pointer to the actual payload and the length information.
Description
Customers can choose between NFC Forum compliant write access and proprietary write access
(= faster) via the compile switch.
wlcn Pointer to initialized WLCN component.
txData Pointer to the data that shall be sent to the PTX listener.
Input Parameters txLen Length of the data to be sent (maximum of 63 bytes allowed).
Timeout (in milliseconds) for the listener to read the transmitted message.
ackTimeoutMs If the Listener has not read the message withing ackTimeoutMs (for
example, 50ms), the API will return a ptxStatus_TimeOut error.
Return Value Status Return Value.
R35US0014EU0102 Rev.1.02 RENESAS Page 17

Mar 17, 2025




PTX1xxW NFC Forum Wireless Charging Poller APl Non-OS Stack Integration (v2.3.0) Manual

5.1.2.2. ptxWLCN_TDC_Read

ptxStatus_t ptxWLCN_TDC Read (
PtxWLCN_t *wlcn,
Declaration uint8_t *rxData,
uint8_t *rxLen,
uint32_t *rxTimeoutMs) ;

Reads messages with a maximum of 63 payload bytes from the PTX30W's buffer. The API requires a
pointer to an initialized WLCN component, the pointer to a buffer for storing the received payload and a
Description pointer to store the length information.

Customers can choose between NFC Forum compliant read access and proprietary read access (= faster)
via the compile switch.

wlcn Pointer to initialized WLCN component.
rxData Pointer to store the received data.
Input Parameters rxLen Available buffer length of the rxData-buffer.

Timeout for the Poller to wait for a message (in milliseconds). The AP will
rxTimeoutMs block for the specified amount of time and repeatedly try to read a
message from the Listener until it has found one.

Return Value Status Return Value.

5.1.2.3. ptxWLCN_TDC_IsReceived

ptxStatus_t ptxWLCN_TDC_IsReceived (
Declaration PtxXWLCN_t *wlcn,
uint8_t *received);

Checks if the previously sent message using “ptxWLCN_TDC Write () ” has been received/read by the

Description PTX30W's host MCU.

wlcn Pointer to initialized WLCN component.
Input Parameters

Received True if the listener’'s host MCU read the message.
Return Value Status Return Value.

Customers can choose between two different modes of operation:

* NFC FORUM COMPLIANT Mode:

The NFC Forum Compliant transfer mode uses the T2T command set (see References item [3]) to read and
write data from/to the listener.

With the T2T_WRITE command, the poller can transfer 4 bytes of payload to the listener, whereas with the
T2T_READ command, the Poller can read 16 bytes from the listener device with a single RF transaction.
= PTX PROPRIETARY Mode:

Using the PTX proprietary transfer mode, 64 bytes can be transferred at once, either from or to the listener,
allowing an increased data throughput.

The APIs are located within:
¢ src/STACK/COMPS/WLC_POLLER/WLCN/ptxWLCN_Extension.c
* src/STACK/COMPS/WLC_POLLER/WLCN/ptxWLCN_Extension.h

R35US0014EU0102 Rev.1.02 RENESAS Page 18
Mar 17, 2025



PTX1xxW NFC Forum Wireless Charging Poller APl Non-OS Stack Integration (v2.3.0) Manual

By default the PTX PROPRIATARY mode is active. NFC FORUM COMPLIANT mode can be enabled by setting
the define, shown below.

#define TDC_NFC_FORUM_COMPLIANT

5.1.3. Example Use Case

In the wireless charging protocol, data transfers are possible only during the communication phase before the
readout of the WLC_CTL record, as shown in the screenshot below.

215 S case GetControlRecord:

216 - #ifdef ENABLE_TDC

217 {

218 = J*

219 *fEEEEREREEERE TDC Example ####HHERRHEH

220 *

221 *f

222 uint8_t is_ptx_device;

223 (void) ptxWLCN_IsPtxlListener(&wlcn, &is_ptx_device);
224

225 = if(is_ptx_device)

226 {

227 /** Reserve some memory. */

228 uint8_t data[256];

229 uint32_t datalen = sizeof(data);

230

231 /** Generate dummy data */

232 = for(uintlé t i = ©; i < 256; ++1i)

233

234 data[i] = (uint8_t) i;

235 3

236

237 J** Transmit the data using simple high level protocol. */
238 status = ptxWLCN_TDC HlpTx(&wlcn, data, datalen);
239 J*% Check if transmission was successful. */

240 = if (ptxStatus_Success == status)

241 {

242 /*%* Clear the TX buffer.*/

243 memset(data, Ox00, 256);

244 /** Reuse the TX buffer for RX payload. */
245 status = ptxWLCN_TDC_HlpRx(&wlcn, data, &datalen);
246 /*%* Check if RX operation was successful. */
247 = if (ptxStatus_Success == status)

248 {

249 /** Do something with the data*/

250 1

251 3

252 }

253 1

254 #endif

255 status = ptxWLCN_State GetControlRecord(8wlcn, &charging state);

The WLCN main program example shows the (optional) transparent data exchange usage. An additional
protocol was added on top of the TDC in the main example. It enables the data transfers of up to 16MB into
either of the two directions by chunking the payload into 63 byte frames. The implementation of the protocol is
available in the files:

= src/STACK/COMPS/WLC_POLLER/WLCN/ptxWLCN_TDC_HLP.c

= src/STACK/COMPS/WLC_POLLER/WLCN/ptxWLCN_TDC_HLP.h

Note: Provided example uses dummy data and does not store the transferred data.

R35US0014EU0102 Rev.1.02 RENESAS Page 19
Mar 17, 2025



PTX1xxW NFC Forum Wireless Charging Poller APl Non-OS Stack Integration (v2.3.0) Manual

6. Platform Specific

This section describes the platform specific code and project settings used for R7TFA4M2AB as the reference
implementation. The platform/MCU dependent code has been encapsulated in two components in this project.
On one hand, PLAT Component implements the platform/MCU dependent code for interfacing the PTX chip; on
the other hand, PERIPHERALS component implements the drivers for the external hardware devices needed for
WLCN application — basically a Power Sensor and a DCDC power convertor. This reference code can be used
as guidance for porting the platform specific code to any other platform/MCU used as the application processor,
in which case, a general rule should be followed:

Keep API declarations the same while changing implementation of functions (or data structure) for the
specific platform/MCU requirements.

RA4M2 MCU specific 3" party code is not included in this delivery since the source code is automatically generated
during every build process.

6.1 PLAT Component

Figure 7 shows the PLAT Component folder structure:

RENESAS
ptxPLAT.h

Figure 7. PLAT Folder Structure
The following items can be found in the PLAT folder:

= \RENESAS\RA4M2
Folder containing source code specific for R7TFA4M2AB MCU.

The following items are in the RA4M2 folder:
* ptxPLAT.h
Platform API definition.

* ptxPLAT.c
Platform specific wrapper that adapts the PLAT API functions for submodules TIMER, GPIO and SPI.

* ptxPLAT_GPIO.h
Platform header where the GPIO-IRQ set of functions are defined.

* ptxPLAT_GPIO.c
Platform specific implementation of the GPIO-IRQ for R7TFA4M2AB.

* ptxPLAT_INT.h
Platform specific header where the PLAT component for R7TFA4M2AB implementation is defined.

* ptxPLAT_SPl.h
Platform header where the SPI features are defined.

* ptxPLAT_SPl.c
Platform specific implementation for SPI features for R7TFA4M2AB.

* ptxPLAT_TIMER.h
Platform header where the Timer features are defined.

* ptxPLAT_TIMER.c
Platform specific implementation for Timer features for R7FA4M2AB.

R35US0014EU0102 Rev.1.02 RENESAS Page 20
Mar 17, 2025



PTX1xxW NFC Forum Wireless Charging Poller APl Non-OS Stack Integration (v2.3.0) Manual

In order to port PLAT Component to a new MCU/platform, the API functions in previous header files should keep
the same definition as they are used from the upper layer. Implementations in ‘C’ files and data structure should
be adapted for the specific MCU/platform.

6.2 PERIPHERALS Component
Figure 8 shows the PERIPHERALS folder files:

[& ptxPERIPH_APPTIMER.c
[A ptxPERIPH_APPTIMER.h
[& ptePERIPH_DCDC.c

[A ptePERIPH_DCDC.h

[d phePERIPH_I2C.c

[A ptePERIPH_I2C.h

Figure 8. PERIPHERALS Folder Structure
The following items are in the PHERIPERALS folder:

= ptxPERIPH_APPTIMER.h
Header where the Timer functions are defined.

= ptxPERIPH_APPTIMER.c
Platform specific implementation of Timer functions for R7TFA4M2AB.

= ptxPERIPH_DCDC.h
Header where the functions needed to operate the DCDC Power Converter are defined.

» ptxPERIPH_DCDC.c
Platform specific implementation of the DCDC functions for R7FA4M2AB.

« ptxPERIPH_I2C.h
Header where the 12C functions are defined.

= ptxPERIPH_I2C.c
Platform specific implementation of the I°C functions for R7FA4M2AB.

To port the PERIPHERALS component to a new MCU/platform, the API functions in previous header files should
keep the same definition as they are used from upper layer. Implementations in ‘C’ files and data structure
should be adapted for the specific MCU/platform.

6.3 IRQ Handling

The PTX chip has one GPIO configured as an output (called IRQ) used to notify the host that there is some
pending data to be read-out on its buffers; typically, a response or a notification in the NSC communication. This
GPIO is set high by the PTX chip when there is some data pending, and the line is set low by PTX chip when the
data has been read-out.

On the MCU there is one ISR configured for that GPIO in the rising edge, which means that the ISR is executed

when IRQ line is set high. This ISR execution is used to unlock “_WFI_" events (for example, “Wait For Interrupt”
events) where the MCU is entered to save some power. Once that MCU is out of WFI, it checks that the state of
the IRQ line is high and performs the read operation of the buffer on PTX chip.

The read operation is executed from the main application software context and not from the ISR context that is
just used to signal the IRQ raising change.

When this SDK is ported to a new MCU-based system, the user needs to set an ISR routine that is executed on
the rising edge of the GPIO.

R35US0014EU0102 Rev.1.02 RENESAS Page 21
Mar 17, 2025



PTX1xxW NFC Forum Wireless Charging Poller APl Non-OS Stack Integration (v2.3.0) Manual

6.4 Project Quick Start Guide

To build the delivered project and execute the demo application on EK-RA4M2 (RA4M2 MCU development
board), the Renesas FSP and e? studio development IDE are required to be installed (see section 5).

Step 1: Import project into workspace with File > Import.
The project is in: \TOOLS\PLAT\RENESAS\RA4M2\E2STUDIO_WORKSPACE\PTX130WN_SDK

& Import [m] ® ‘ {8} Import Projects from File System or Archive [m] X
Import Projects from File System or Archive
Select b 5 g ‘. I
=1} This wizard analyzes the content of your folder or archive file to find projects and import them in the IDE

Create new projects from an archive file or directory.

[LGELEEIIEENON OS_SDK_PTX130WN_V0.0.1\TOOLS\PLAT\RENESAS\RA4M\E2STUDIO_WORKSPACE\PTX130WN_SDKIE Directory... Archive..

Select an import wizard:
ilter text Folder Import as

[+ & General ~ [ PTX130WN_SDK lipse projec
B Archive File
4 CMSIS Pack

 Fxisting Projects into Workspace

2 File System ‘
I Preferences

1 Projects from Folder or Archive
& Rename & Import Existing C/C++ Project into Waorkspace 10f 1 selected
= Renesas CS+ Project for CATBKOR/CATBKO [ Hide already open projects
w Renesas CS+ Project for CC-RX and CC-RL pon completion

@ Sample Projects on Renesas Website

& C/Cr+
& Install
S Working sets

& Oompl

& Run/Debug [ 1Add project to working sets New...
& Team

v
o Show other specialized import wizard

Figure 9. Importing the Project into the Workspace

After successfully importing the project, the contents of the Project Explorer in the e? studio appears like that in
Figure 10 (a).

= PTX130WN_SDK
¥ = PTA130WN_SDK & Binaries
Includes ' Includes
& src & ra
= script 5 ra_gen
0 PreBuild PTX130WN.bat ) & src
& configurationxmi PTX130WN_Debug
R7FAIMZAB3ICNE.pincfg & PTX130WN_Release
ra_cfg.txt & ra_cfg
(a) &= script
0 PreBuild PTX130WHN bat
& configurationxml
R7FAAMZABICNE. pincfg
ra_cfg.but
(b)

Figure 10. Project Explorer Contents: (a) After Importing, Before Build; (b) After the Build

R35US0014EU0102 Rev.1.02 RENESAS Page 22
Mar 17, 2025



PTX1xxW NFC Forum Wireless Charging Poller APl Non-OS Stack Integration (v2.3.0) Manual

The Project Explorer contains the following items:

src/STACK

Contains SDK source files. However, the project is organized so that source files are used as linked
resources. This means that source files are not physically located in workspace folder but are located in
SDK'’s SRC folder as described in section 5.

hal_entry.c

This file contains the call to demo application.

script/fsp.ld
Linker script for R7FA4M2AB MCU.

0_PreBuild_PTX130WN.bat
Batch file used in pre-build process.

configuration.xml

Configuration file used/modified in FSP Configuration tool to set up various platform-related features. Based
on these settings, project content will be generated (board configuration and drivers source files).

Hint: double-click on this file to load the FSP Configuration tool.

R7FA4M2AB3CNE.pincfg

Pin configuration file containing current MCU pins configuration. This is also updated in the FSP Configuration
tool.

ra_cfg.txt

File containing current MCU and board configuration.

Step 2: Build the Project

Select build configuration and click Project > Build Project.

There are 2 build configurations available: PTX130WN_Debug and PTX130WN_Release. Both will generate .elf
binary file which is then used to download into MCU.

In Figure 10 (b), folders marked in red are automatically generated with every build process:

ra_gen, ra and ra_cfg folders contain 3" party source code which includes support for all used (configured)
MCU and board features, for example, clock settings, connectivity drivers, timers, 10 drivers, etc.

PTX130WN_Debug folder contains build output files for PTX130WN_Debug build configuration. If another
build configuration is chosen (in other words, PTX130WN_Release), then a corresponding output folder is
created.

¥ PTX130WN_Debug
ra

ra_gen

STC

PTX130WN Debug.elf - [arm/lel| | €=mmm | Use this file to download into R7FA4M2AB.
miakefile

makefile.init

objects.mk
PTX130WN_Debug.elf.in
PTX130WN_Debug.map
PTX130WN_Debug.rpd
PTX130WN_Debug.sbd
PTX130WN_Debug.srec

X

B

sources.mk
Figure 11. Build Output Folder
R35US0014EU0102 Rev.1.02 RENESAS Page 23

Mar 17, 2025



PTX1xxW NFC Forum Wireless Charging Poller APl Non-OS Stack Integration (v2.3.0) Manual

Step 3: Debugging

As previously mentioned, the project has been developed based on the R7TFA4M2AB MCU and deployed on the
PTX NFC-WLC_Poller board. The hardware required for setting up the system is shown in Figure 12 through
Figure 16.

|-.-|--

’ [
... - PTXi J0U-EB-ST-QFNSE-POLLER vi.1
.l’a.- o 1 =2 88 CE

N e g STace fLt Upt::
R11543 o

R231 3 TR Eleo

PTX130W-EB-ST-OFNSE-POLLER 1.1 -
G , —RENESAS

Figure 12. PTX NFC-WLC_Poller Board

Figure 13. Tag-Connect Cable

Figure 14. Tag-Connect Clip

R35US0014EU0102 Rev.1.02 RENESAS Page 24
Mar 17, 2025



PTX1xxW NFC Forum Wireless Charging Poller APl Non-OS Stack Integration (v2.3.0) Manual

Figure 15. J-Link Debugger

B2 SWOITAG Teg-Conmect Adapier
t 23963434V

Figure 16. Tag-Connect Adapter

To program the MCU and set up the system, connect the J-link debugger through a USB port to the computer;
and on the other side to the Tag-Connect adapter. The Tag-Connect cable is connected from the Tag-Connect
adapter to the Debug Header on the PTX Poller board (the Tag-Connect clip is used to attach it properly to the
board).
= Select .elf binary to download to MCU.
= Click Run > Debug As > Renesas GDB Hardware Debugging

* Select J-Link ARM

» Select target R7TFA4M2AB from the list

After a successful start of the debugger, the WLC Poller starts to emit an NFC RF field to detect a WLC Listener
device.

R35US0014EU0102 Rev.1.02 RENESAS Page 25
Mar 17, 2025



PTX1xxW NFC Forum Wireless Charging Poller APl Non-OS Stack Integration (v2.3.0) Manual

{8} Renesas Hardware Debugging O X {&) Renesas Hardware Debugging O X
Select Debug Hardware No configuration exists. Please select target device:
E2 [ARM) RVFAAMZAB 4l
E2 Lite (ARM) RYFAAMZAC
J-Link ARM RTFAAMZAD
RYFAAM3AD
R7FAAM3IAE
R7FA4M3AF
) | | R7FAAWIAD
RVFAGETOD
RVFAGE10F
RYFAGM1AD
R7VFABMZAD
R7FAGM2AF
R7FAEM3AF
R7FAGM3AH
R7FABMAAD ”

Figure 17. Selecting Debug Target

Important. The provided SDK contains all the required files and project settings to build and execute an
application on the PTX Poller board by following the steps described in this section. If a different board or
R7FA4M2AB MCU configuration will be used to evaluate the provided demo application, pins and peripherals of
the MCU might need to be reconfigured. This means a different “.pincfg” file must be provided, or pins and
peripheral usage need to be set appropriately in the FSP Configuration tool by opening and modifying the
“configuration.xml” file. A detailed procedure of how this is done is provided in the vendor’s documentation and
is out of scope of this document.

7. References

[11 NFC Forum, Wireless Charging Technical Specification 2.0, 2021.

[2] PTX1xxR NFC IoT-Reader API for Non-OS Stack Integration (SDK v7.1.0) User Manual
[3] NFC Forum, Tag Type 2 Specifications 1.2, 2021.

R35US0014EU0102 Rev.1.02 RENESAS Page 26
Mar 17, 2025


https://www.renesas.com/us/en/document/mas/ptx1xxr-nfc-iot-reader-api-non-os-stack-integration-sdk-v710-user-manual?r=25426186

PTX1xxW NFC Forum Wireless Charging Poller APl Non-OS Stack Integration (v2.3.0) Manual

8. Revision History

Revision Date Description
1.02 Mar 17, 2025 Added description of ptxXWLCN_SetShippingMode() API function in section 3.26 .
= Impl i i f PTX30W.
101 Nov 7, 2024 mpl ementc.et'j auto'njétlc': de'tectlon o) 30 ' .
» Added additional initialization parameter to enable standby during “PollFieldOff” state.
1.00 Jul 31, 2024 Initial release.
R35US0014EU0102 Rev.1.02 RENESAS

Page 27
Mar 17, 2025



IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (‘RENESAS”) PROVIDES TECHNICAL
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1)
selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These
resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an
application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is
granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims
responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses,
or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and
Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise
alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters Contact Information

TOYOSU FORESIA, 3-2-24 Toyosu, For further information on a product, technology, the most
Koto-ku, Tokyo 135-0061, Japan up-to-date version of a document, or your nearest sales
www.renesas.com office, please visit www.renesas.com/contact-us/.
Trademarks

Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered
trademarks are the property of their respective owners.

© 2025 Renesas Electronics Corporation. All rights reserved.


https://www.renesas.com/contact-us
https://www.renesas.com

	1. Introduction
	1.1 Audience
	1.2 Abbreviations and Terminology

	2. Architecture of the WLCN System
	2.1 Component Description
	2.1.1. PTX WLCN Application
	2.1.2. WLCN API
	2.1.3. IoT-Reader and Wireless Charging Component
	2.1.3.1. WLCN Core
	2.1.3.2. IoT-Reader
	2.1.3.3. Generic NDEF Operation API
	2.1.3.4. NDEF Parser/Builder API
	2.1.3.5. WLC Power Transfer
	2.1.3.6. NSC WLC Extensions
	2.1.3.7. WLCN Peripherals

	2.1.4. NSC Component
	2.1.5. Platform API
	2.1.6. Platform Component
	2.1.7. Peripherals Components/API
	2.1.8. Poller system configuration


	3. WLCN API Description
	3.1 ptxWLCN_Init
	3.2 ptxWLCN_DeInit
	3.3 ptxWLCN_State_WaitForListener
	3.4 ptxWLCN_State_PollListener
	3.5 ptxWLCN_State_ActivateListener
	3.6 ptxWLCN_State_GetCapRecord
	3.7 ptxWLCN_State_WaitForListenerReady
	3.8 ptxWLCN_State_StaticCharging
	3.9 ptxWLCN_State_SetInfoRecord
	3.10 ptxWLCN_State_GetControlRecord
	3.11 ptxWLCN_State_FieldOff
	3.12 ptxWLCN_State_NegoCharging
	3.13 ptxWLCN_State_PollCharging
	3.14 ptxWLCN_State_PollReady
	3.15 ptxWLCN_State_PollFieldOff
	3.16 ptxWLCN_State_DeactivateListener
	3.17 ptxWLCN_State_PresenceCheck
	3.18 ptxWLCN_SetWptWbLuTable
	3.19 ptxWLCN_SetNfcWbLuTable
	3.20 ptxWLCN_GetWptWbLuTable
	3.21 ptxWLCN_GetNfcWptWb
	3.22 ptxWLCN_GetWptWb
	3.23 ptxWLCN_GetNfcWb
	3.24 ptxWLCN_GetListenerType
	3.25 ptxWLCN_SetListenerGpios
	3.26 ptxWLCN_SetShippingMode

	4. WLCN API State Machine
	5. WLCN SDK Delivery
	5.1 Extensions
	5.1.1. Transparent Data Channel
	5.1.2. Data Exchange API
	5.1.2.1. ptxWLCN_TDC_Write
	5.1.2.2. ptxWLCN_TDC_Read
	5.1.2.3. ptxWLCN_TDC_IsReceived

	5.1.3. Example Use Case


	6. Platform Specific
	6.1 PLAT Component
	6.2 PERIPHERALS Component
	6.3 IRQ Handling
	6.4 Project Quick Start Guide

	7. References
	8. Revision History



