

QuickStart Manual

PTX Tunneling Library v1.4.1 for STM32CubeIDE

R35US0010EE0101 Rev.1.01
Jun 18, 2024

 Page 1
© 2024 Renesas Electronics

The PTX Tunneling library can be used to evaluate and optimize the performance (antenna matching,
system/RF configuration, etc.) of any custom-made device using a PTX100x device via SPI serial interface.

Embedding this library into the device firmware enables the translation of communication from UART to SPI, so
that the full functionality of the PTX100x * Config Tool can be used in a custom environment. This document
also provides instructions on how to create a sample application using an ST32L562E-DK development board.

Contents
1. Requirements .. 2

2. Sample Firmware .. 2
2.1 Creating the Project .. 2

2.1.1. Configuration File ... 2
2.1.2. Creating the Project .. 7

2.2 Importing the Library ... 8
2.2.1. Adding the Include Path ... 10
2.2.2. Adding the Library File ... 11

2.3 Implementing the HAL .. 11
2.4 Calling the Library Functions .. 17
2.5 Building the Firmware ... 17

3. Preparing the Hardware ... 18
3.1 Debug Configuration ... 19

4. Using the Tunneling Feature ... 19

5. Revision History ... 20

https://www.st.com/en/evaluation-tools/stm32l562e-dk.html

PTX Tunneling Library v1.4.1 for STM32CubeIDE QuickStart Manual

R35US0010EE0101 Rev.1.01
Jun 18, 2024

 Page 2

1. Requirements
The footprint of the library is ~13kB Flash and 10kB RAM. Moreover, a hardware abstraction layer must be
implemented by the user for the particular uC/Board, which executes the low-level commands requested by the
library. From the resource point of view, only the SysTick timer, UART, SPI, and the IRQ pin will be used.

The library can be seamlessly integrated into a CMAKE project as well, but the STM32CubeIde is used in this
document (for more information, see STM32CubeIde is used in this document).

2. Sample Firmware
The sample application is used for creating and serving the tunnel between the host PC UART interface and the
PTX100x chip connected by SPI. The library can be used either as a precompiled static library or as a source-
library – most steps are the same for both cases.

2.1 Creating the Project
The used HAL source code will be picked from the SDK and copied to the project folder by the STM32CubeIde
based on the configuration file (.ioc). This is the most convenient way to start a new project.

2.1.1. Configuration File
The configuration file ptxTunneling.ioc must be created in an arbitrary place with the following content:

https://www.st.com/en/development-tools/stm32cubeide.html

PTX Tunneling Library v1.4.1 for STM32CubeIDE QuickStart Manual

R35US0010EE0101 Rev.1.01
Jun 18, 2024

 Page 3

#MicroXplorer Configuration settings - do not modify
File.Version=6
GPIO.groupedBy=Group By Peripherals
KeepUserPlacement=false
LPTIM1.ClockPrescaler=LPTIM_PRESCALER_DIV16
LPTIM1.IPParameters=ClockPrescaler
LPTIM2.ClockPrescaler=LPTIM_PRESCALER_DIV16
LPTIM2.IPParameters=ClockPrescaler
Mcu.ContextProject=TrustZoneDisabled
Mcu.Family=STM32L5
Mcu.IP0=LPTIM1
Mcu.IP1=LPTIM2
Mcu.IP2=NVIC
Mcu.IP3=PWR
Mcu.IP4=RCC
Mcu.IP5=SPI3
Mcu.IP6=SYS
Mcu.IP7=USART1
Mcu.IPNb=8
Mcu.Name=STM32L562QEIxQ
Mcu.Package=UFBGA132
Mcu.Pin0=PB4 (NJTRST)
Mcu.Pin1=PG9
Mcu.Pin10=VP_LPTIM2_VS_LPTIM_counterModeInternalClock
Mcu.Pin11=VP_PWR_VS_DBSignals
Mcu.Pin12=VP_SYS_VS_Systick
Mcu.Pin2=PB5
Mcu.Pin3=PA9
Mcu.Pin4=PA10
Mcu.Pin5=PF5
Mcu.Pin6=PF11
Mcu.Pin7=PB13
Mcu.Pin8=PF12
Mcu.Pin9=VP_LPTIM1_VS_LPTIM_counterModeInternalClock
Mcu.PinsNb=13
Mcu.ThirdPartyNb=0
Mcu.UserConstants=
Mcu.UserName=STM32L562QEIxQ
MxCube.Version=6.0.0
MxDb.Version=DB.6.0.0
NVIC.BusFault_IRQn=true\:0\:0\:false\:false\:true\:false\:false
NVIC.DebugMonitor_IRQn=true\:0\:0\:false\:false\:true\:false\:false
NVIC.ForceEnableDMAVector=true
NVIC.HardFault_IRQn=true\:0\:0\:false\:false\:true\:false\:false
NVIC.LPTIM1_IRQn=true\:0\:0\:false\:false\:true\:true\:true
NVIC.LPTIM2_IRQn=true\:0\:0\:false\:false\:true\:true\:true
NVIC.MemoryManagement_IRQn=true\:0\:0\:false\:false\:true\:false\:false
NVIC.NonMaskableInt_IRQn=true\:0\:0\:false\:false\:true\:false\:false
NVIC.PendSV_IRQn=true\:0\:0\:false\:false\:true\:false\:false
NVIC.PriorityGroup=NVIC_PRIORITYGROUP_3
NVIC.SPI3_IRQn=true\:3\:0\:true\:false\:true\:true\:true
NVIC.SVCall_IRQn=true\:0\:0\:false\:false\:true\:false\:false
NVIC.SysTick_IRQn=true\:0\:0\:false\:false\:true\:false\:true
NVIC.USART1_IRQn=true\:0\:0\:false\:false\:true\:true\:true
NVIC.UsageFault_IRQn=true\:0\:0\:false\:false\:true\:false\:false
PA10.Locked=true
PA10.Mode=Asynchronous
PA10.Signal=USART1_RX
PA9.Locked=true
PA9.Mode=Asynchronous
PA9.Signal=USART1_TX

PTX Tunneling Library v1.4.1 for STM32CubeIDE QuickStart Manual

R35US0010EE0101 Rev.1.01
Jun 18, 2024

 Page 4

PB13.GPIOParameters=PinState,GPIO_Label
PB13.GPIO_Label=SPI3_NSS
PB13.Locked=true
PB13.PinState=GPIO_PIN_SET
PB13.Signal=GPIO_Output
PB4\ (NJTRST).GPIOParameters=GPIO_Speed,GPIO_PuPd,GPIO_Label,GPIO_Mode
PB4\ (NJTRST).GPIO_Label=SPI3_MISO
PB4\ (NJTRST).GPIO_Mode=GPIO_MODE_AF_PP
PB4\ (NJTRST).GPIO_PuPd=GPIO_NOPULL
PB4\ (NJTRST).GPIO_Speed=GPIO_SPEED_FREQ_MEDIUM
PB4\ (NJTRST).Locked=true
PB4\ (NJTRST).Mode=Full_Duplex_Master
PB4\ (NJTRST).Signal=SPI3_MISO
PB5.GPIOParameters=GPIO_Speed,GPIO_Label
PB5.GPIO_Label=SPI3_MOSI
PB5.GPIO_Speed=GPIO_SPEED_FREQ_MEDIUM
PB5.Locked=true
PB5.Mode=Full_Duplex_Master
PB5.Signal=SPI3_MOSI
PF11.Locked=true
PF11.Signal=GPIO_Output
PF12.Locked=true
PF12.Signal=GPIO_Output
PF5.GPIOParameters=GPIO_Label
PF5.GPIO_Label=PTX_IRQ
PF5.Locked=true
PF5.Signal=GPIO_Input
PG9.GPIOParameters=GPIO_Speed,GPIO_Label
PG9.GPIO_Label=SPI3_SCK
PG9.GPIO_Speed=GPIO_SPEED_FREQ_MEDIUM
PG9.Locked=true
PG9.Mode=Full_Duplex_Master
PG9.Signal=SPI3_SCK
PinOutPanel.CurrentBGAView=Top
PinOutPanel.RotationAngle=0
ProjectManager.AskForMigrate=true
ProjectManager.BackupPrevious=false
ProjectManager.CompilerOptimize=6
ProjectManager.ComputerToolchain=false
ProjectManager.CoupleFile=false
ProjectManager.CustomerFirmwarePackage=
ProjectManager.DefaultFWLocation=true
ProjectManager.DeletePrevious=true
ProjectManager.DeviceId=STM32L562QEIxQ
ProjectManager.FirmwarePackage=STM32Cube FW_L5 V1.3.0
ProjectManager.FreePins=false
ProjectManager.HalAssertFull=false
ProjectManager.HeapSize=0x200
ProjectManager.KeepUserCode=true
ProjectManager.LastFirmware=false
ProjectManager.LibraryCopy=1
ProjectManager.MainLocation=Core/Src
ProjectManager.NoMain=false
ProjectManager.PreviousToolchain=STM32CubeIDE
ProjectManager.ProjectBuild=false
ProjectManager.ProjectFileName=demo2.ioc
ProjectManager.ProjectName=demo2
ProjectManager.RegisterCallBack=
ProjectManager.StackSize=0x400
ProjectManager.TargetToolchain=STM32CubeIDE
ProjectManager.ToolChainLocation=

PTX Tunneling Library v1.4.1 for STM32CubeIDE QuickStart Manual

R35US0010EE0101 Rev.1.01
Jun 18, 2024

 Page 5

ProjectManager.UnderRoot=true
ProjectManager.functionlistsort=1-MX_GPIO_Init-GPIO-false-HAL-true,2-SystemClock_Config-
RCC-false-HAL-false,3-MX_LPTIM1_Init-LPTIM1-false-HAL-true,4-MX_LPTIM2_Init-LPTIM2-
false-HAL-true,5-MX_SPI3_Init-SPI3-false-HAL-true,6-MX_USART1_UART_Init-USART1-false-
HAL-true,0-MX_PWR_Init-PWR-false-HAL-true
RCC.ADCFreq_Value=96000000
RCC.AHBFreq_Value=110000000
RCC.APB1Freq_Value=110000000
RCC.APB1TimFreq_Value=110000000
RCC.APB2Freq_Value=110000000
RCC.APB2TimFreq_Value=110000000
RCC.CK48CLockSelection=RCC_USBCLKSOURCE_MSI
RCC.CRSFreq_Value=48000000
RCC.CortexFreq_Value=110000000
RCC.DFSDMAudioFreq_Value=48000000
RCC.DFSDMFreq_Value=110000000
RCC.FCLKCortexFreq_Value=110000000
RCC.FDCANFreq_Value=110000000
RCC.FamilyName=M
RCC.HCLKFreq_Value=110000000
RCC.HSE_VALUE=8000000
RCC.HSI48_VALUE=48000000
RCC.HSI_VALUE=16000000
RCC.I2C1Freq_Value=110000000
RCC.I2C2Freq_Value=110000000
RCC.I2C3Freq_Value=110000000
RCC.I2C4Freq_Value=110000000
RCC.IPParameters=ADCFreq_Value,AHBFreq_Value,APB1Freq_Value,APB1TimFreq_Value,APB2Freq_V
alue,APB2TimFreq_Value,CK48CLockSelection,CRSFreq_Value,CortexFreq_Value,DFSDMAudioFreq_
Value,DFSDMFreq_Value,FCLKCortexFreq_Value,FDCANFreq_Value,FamilyName,HCLKFreq_Value,HSE
_VALUE,HSI48_VALUE,HSI_VALUE,I2C1Freq_Value,I2C2Freq_Value,I2C3Freq_Value,I2C4Freq_Value
,LPTIM1CLockSelectionVirtual,LPTIM1Freq_Value,LPTIM2CLockSelectionVirtual,LPTIM2Freq_Val
ue,LPTIM3Freq_Value,LPUART1Freq_Value,LSCOPinFreq_Value,LSE_VALUE,LSI_VALUE,MCO1PinFreq_
Value,MSIClockRange,MSI_VALUE,OCTOSPIMFreq_Value,PLLM,PLLN,PLLPoutputFreq_Value,PLLQoutp
utFreq_Value,PLLRCLKFreq_Value,PLLSAI1M,PLLSAI1N,PLLSAI1P,PLLSAI1PoutputFreq_Value,PLLSA
I1QoutputFreq_Value,PLLSAI1RoutputFreq_Value,PLLSAI1Source,PLLSAI2PoutputFreq_Value,PWRF
req_Value,RNGFreq_Value,SAI1Freq_Value,SAI2Freq_Value,SDMMCClockSelection,SDMMCFreq_Valu
e,SYSCLKFreq_VALUE,SYSCLKSource,UART4Freq_Value,UART5Freq_Value,USART1Freq_Value,USART2F
req_Value,USART3Freq_Value,USBFreq_Value,VCOInput2Freq_Value,VCOInput3Freq_Value,VCOInpu
tFreq_Value,VCOOutputFreq_Value,VCOSAI1OutputFreq_Value,VCOSAI2OutputFreq_Value
RCC.LPTIM1CLockSelectionVirtual=RCC_LPTIM1CLKSOURCE_HSI
RCC.LPTIM1Freq_Value=16000000
RCC.LPTIM2CLockSelectionVirtual=RCC_LPTIM2CLKSOURCE_HSI
RCC.LPTIM2Freq_Value=16000000
RCC.LPTIM3Freq_Value=110000000
RCC.LPUART1Freq_Value=110000000
RCC.LSCOPinFreq_Value=32000
RCC.LSE_VALUE=32768
RCC.LSI_VALUE=32000
RCC.MCO1PinFreq_Value=110000000
RCC.MSIClockRange=RCC_MSIRANGE_11
RCC.MSI_VALUE=48000000
RCC.OCTOSPIMFreq_Value=110000000
RCC.PLLM=12
RCC.PLLN=55
RCC.PLLPoutputFreq_Value=31428571.42857143
RCC.PLLQoutputFreq_Value=110000000
RCC.PLLRCLKFreq_Value=110000000
RCC.PLLSAI1M=4
RCC.PLLSAI1N=48
RCC.PLLSAI1P=RCC_PLLP_DIV17

PTX Tunneling Library v1.4.1 for STM32CubeIDE QuickStart Manual

R35US0010EE0101 Rev.1.01
Jun 18, 2024

 Page 6

RCC.PLLSAI1PoutputFreq_Value=11294117.647058824
RCC.PLLSAI1QoutputFreq_Value=96000000
RCC.PLLSAI1RoutputFreq_Value=96000000
RCC.PLLSAI1Source=RCC_PLLSAI1SOURCE_HSI
RCC.PLLSAI2PoutputFreq_Value=54857142.85714286
RCC.PWRFreq_Value=110000000
RCC.RNGFreq_Value=48000000
RCC.SAI1Freq_Value=11294117.647058824
RCC.SAI2Freq_Value=11294117.647058824
RCC.SDMMCClockSelection=RCC_SDIOCLKSOURCE_CLK48
RCC.SDMMCFreq_Value=48000000
RCC.SYSCLKFreq_VALUE=110000000
RCC.SYSCLKSource=RCC_SYSCLKSOURCE_PLLCLK
RCC.UART4Freq_Value=110000000
RCC.UART5Freq_Value=110000000
RCC.USART1Freq_Value=110000000
RCC.USART2Freq_Value=110000000
RCC.USART3Freq_Value=110000000
RCC.USBFreq_Value=48000000
RCC.VCOInput2Freq_Value=4000000
RCC.VCOInput3Freq_Value=48000000
RCC.VCOInputFreq_Value=4000000
RCC.VCOOutputFreq_Value=220000000
RCC.VCOSAI1OutputFreq_Value=192000000
RCC.VCOSAI2OutputFreq_Value=384000000
SPI3.BaudRatePrescaler=SPI_BAUDRATEPRESCALER_16
SPI3.CalculateBaudRate=6.875 MBits/s
SPI3.DataSize=SPI_DATASIZE_8BIT
SPI3.Direction=SPI_DIRECTION_2LINES
SPI3.IPParameters=VirtualType,Mode,Direction,BaudRatePrescaler,CalculateBaudRate,DataSiz
e
SPI3.Mode=SPI_MODE_MASTER
SPI3.VirtualType=VM_MASTER
USART1.FIFOMode=FIFOMODE_DISABLE
USART1.IPParameters=VirtualMode-Asynchronous,FIFOMode,RXFIFOThreshold
USART1.RXFIFOThreshold=RXFIFO_THRESHOLD_HALFFULL
USART1.VirtualMode-Asynchronous=VM_ASYNC
VP_LPTIM1_VS_LPTIM_counterModeInternalClock.Mode=Counts__internal_clock_event_00
VP_LPTIM1_VS_LPTIM_counterModeInternalClock.Signal=LPTIM1_VS_LPTIM_counterModeInternalCl
ock
VP_LPTIM2_VS_LPTIM_counterModeInternalClock.Mode=Counts__internal_clock_event_00
VP_LPTIM2_VS_LPTIM_counterModeInternalClock.Signal=LPTIM2_VS_LPTIM_counterModeInternalCl
ock
VP_PWR_VS_DBSignals.Mode=DisableDeadBatterySignals
VP_PWR_VS_DBSignals.Signal=PWR_VS_DBSignals
VP_SYS_VS_Systick.Mode=SysTick
VP_SYS_VS_Systick.Signal=SYS_VS_Systick
board=STM32L562E-DK
boardIOC=true
isbadioc=false

This file will be used as a template when creating the project.

PTX Tunneling Library v1.4.1 for STM32CubeIDE QuickStart Manual

R35US0010EE0101 Rev.1.01
Jun 18, 2024

 Page 7

2.1.2. Creating the Project
Create a new project in stm32cubeide from Menu File > New > STM32Project from an Existing
STM32CubeMX Configuration file (*.ioc) with selecting the ptxTunneling.ioc file in the dialog window.
After specifying a name to the project, it can be generated by clicking on the Finish button. If the requested SDK
version has not been downloaded yet, this process may take a few minutes to complete.

PTX Tunneling Library v1.4.1 for STM32CubeIDE QuickStart Manual

R35US0010EE0101 Rev.1.01
Jun 18, 2024

 Page 8

2.2 Importing the Library
There is no difference whether the source or the precompiled package is being used: the library archive must be
imported to the project using File > Import > Archive File.

To keep the folder structure clean, the library will be imported to the PtxTunneling subfolder by appending it
to the default location displayed in following figure.

PTX Tunneling Library v1.4.1 for STM32CubeIDE QuickStart Manual

R35US0010EE0101 Rev.1.01
Jun 18, 2024

 Page 9

In the case where the library will be used in source form, the subfolder PtxTunneling and
PtxTunneling/src folders must be included in the build. This can be done by opening the context menu with
a right-mouse click on the folder name in the Project Explorer and selecting Properties. The checkbox
Exclude resource from build found in C/C++ Build > Settings must be unchecked as displayed in the
following figure.

PTX Tunneling Library v1.4.1 for STM32CubeIDE QuickStart Manual

R35US0010EE0101 Rev.1.01
Jun 18, 2024

 Page 10

2.2.1. Adding the Include Path
In order for the compiler to find the header (.h) files containing the API functions, the library folder inc must be
added to the list of user-defined include directories. This can be done by navigating to Project > Properties >
C/C++ Build > Settings > Tool Settings > MCU GCC Compiler > Include paths. Next, click on the Add button
on the right side of the small toolbar and use the Workspace button in the popup window to locate the folder.

PTX Tunneling Library v1.4.1 for STM32CubeIDE QuickStart Manual

R35US0010EE0101 Rev.1.01
Jun 18, 2024

 Page 11

2.2.2. Adding the Library File
This step is required only if you are working with the precompiled binary package. Since there is no source code
to be compiled, the linker must be able to find the functions in the library. In the same dialog window, changing to
MCU GCC Linker > Libraries section, the PtxTunneling/lib folder can be added to the list of folders
(lower pane) where the compiler is looking for external libraries. Additionally, the exact library needs also to be
specified (upper pane) by its name PtxTunneling. From this the compiler will automatically find the static
library file libPtxTunneling.a.

2.3 Implementing the HAL
The library functions cannot access the underlying hardware or software resources; they require to access the
Hardware Abstraction Layer (HAL) which then performs the requested action. Since this layer depends on the
specific hardware configuration, it must be implemented for the exact setup.

The PtxTunneling library includes the header file ptx_tunneling_hal.h. It contains all the functions that must be
provided by the host platform.

For the current case there should be the file ptx_tunneling_hal.c created in the source code folder
Core/Src with the following content.

PTX Tunneling Library v1.4.1 for STM32CubeIDE QuickStart Manual

R35US0010EE0101 Rev.1.01
Jun 18, 2024

 Page 12

/*

 SPDX-License-Identifier: BSD-3-Clause

 Copyright (c) 2024, Renesas Electronics Corporation and/or its affiliates

 Redistribution and use in source and binary forms, with or without modification,
 are permitted provided that the following conditions are met:

 1. Redistributions of source code must retain the above copyright notice, this
 list of conditions and the following disclaimer.

 2. Redistributions in binary form must reproduce the above copyright notice, this
list of
 conditions and the following disclaimer in the documentation and/or other
 materials provided with the distribution.

 3. Neither the name of Renesas nor the names of its
 contributors may be used to endorse or promote products derived from this
 software without specific prior written permission.

 THIS SOFTWARE IS PROVIDED BY Renesas "AS IS" AND ANY EXPRESS
 OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
 DISCLAIMED. IN NO EVENT SHALL RENESAS OR CONTRIBUTORS BE
 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
 GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 Project : PtxTunneling
 Module : HAL
 File : ptx_tunneling_hal.c

 Description : Implementation of HAL for tunneling
*/
/*
 *
##
############################
 * INCLUDES
 *
##
############################
 */
#include <assert.h>
#include <cmsis_compiler.h>
#include <string.h>

#include "main.h" // for GPIO/SPI/Timer names
#include "stm32l5xx.h"

#include "ptx_tunneling_hal.h"

/*

PTX Tunneling Library v1.4.1 for STM32CubeIDE QuickStart Manual

R35US0010EE0101 Rev.1.01
Jun 18, 2024

 Page 13

 *
##
############################
 * INTERNAL FUNCTIONS
 *
##
############################
 */

// user definable context not used
struct ptxHal
{
};

// to access the peripherals directly
UART_HandleTypeDef *hUart.
extern SPI_HandleTypeDef hspi3;

/*
 *
##
############################
 * private FUNCTIONS
 *
##
############################
 */
#define OFFSET_RSP_LENGTH_BYTE 0
#define OFFSET_CMD_LENGTH_BYTE 1
#define OFFSET_CMD_CODE_BYTE 0

#define COMMS_MAX_MESSAGE_LENGTH 280
#define COMMS_HEADER_SIZE 2

#define CMD_CODE_TUNNELING_MSG 0x55

static uint8_t uartRxBuf[2048];
static uint16_t readPos = 0;
static uint16_t writePos = 0;
static uint8_t rx[COMMS_MAX_MESSAGE_LENGTH];
static uint16_t rxi = 0;

void startUartReceiving(UART_HandleTypeDef *huart)
{
 // save handle for future use
 hUart = huart;

 // start receiving the header
 HAL_StatusTypeDef st = HAL_UART_Receive_IT(huart, rx, 1);
 assert(!st);
}

void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
{
 // receive the header and the length byte
 if (rxi != 0 || rx[rxi] == CMD_CODE_TUNNELING_MSG)
 { // if there are some invalid data received while waiting for sync byte, just
discard them
 rxi++;
 }

PTX Tunneling Library v1.4.1 for STM32CubeIDE QuickStart Manual

R35US0010EE0101 Rev.1.01
Jun 18, 2024

 Page 14

 if (rxi >= COMMS_HEADER_SIZE)
 {
 uint16_t packLen = COMMS_HEADER_SIZE +
 (rx[OFFSET_CMD_LENGTH_BYTE] == 0 ? 256 :
rx[OFFSET_CMD_LENGTH_BYTE]);
 if (rxi >= packLen)
 {
 // whole packet has been received
 memcpy(uartRxBuf + writePos, rx, rxi);
 writePos += rxi;
 rxi = 0;
 }
 }

 // continue receiving data
 HAL_UART_Receive_IT(huart, &rx[rxi], 1);
}
/*
 *
##
############################
 * API FUNCTIONS
 *
##
############################
 */

bool ptxTunneling_GPIO_IsIrqPinAsserted(ptxHal_t *context)
{
 return HAL_GPIO_ReadPin(PTX_IRQ_GPIO_Port, PTX_IRQ_Pin) == GPIO_PIN_SET;
}

int ptxTunneling_UART_rxLength(ptxHal_t *context)
{
 UNUSED(context);
 __disable_irq();
 const count = writePos - readPos;
 __enable_irq();
 return count;
}

int ptxTunneling_UART_read(ptxHal_t *context, uint8_t *buf, unsigned int len)
{
 UNUSED(context);
 assert(len < sizeof(uartRxBuf));
 __disable_irq();
 int readCount = writePos - readPos;
 if (readCount > len)
 readCount = len;

 memcpy(buf, uartRxBuf + readPos, readCount);

 readPos += readCount;
 if (readPos == writePos)
 {
 readPos = 0;
 writePos = 0;
 }
 __enable_irq();
 return readCount;
}

PTX Tunneling Library v1.4.1 for STM32CubeIDE QuickStart Manual

R35US0010EE0101 Rev.1.01
Jun 18, 2024

 Page 15

int ptxTunneling_UART_write(ptxHal_t *context, const uint8_t *buf, unsigned int len)
{
 UNUSED(context);
 HAL_StatusTypeDef res = HAL_OK;
 if (len)
 {
 do
 {
 res = HAL_UART_Transmit(hUart, buf, len, 1000);
 } while (res == HAL_TIMEOUT);
 assert(!res);
 }

 return res;
}

void ptxTunneling_Timer_stopwatchStart(ptxHal_t *context, ptxTimeDiff_t *startVal)
{
 *startVal = HAL_GetTick() * 1000;
}

void ptxTunneling_Timer_stopwatchStop(ptxHal_t *context, ptxTimeDiff_t *startStopVal)
{
 *startStopVal = HAL_GetTick() * 1000 - *startStopVal;
}

void ptxTunneling_Timer_ThreadSleep(ptxHal_t *context, uint32_t msSleep)
{
 HAL_Delay(msSleep);
}

void ptxTunneling_NVIC_disableInterrupts()
{
 __disable_irq();
}

void ptxTunneling_NVIC_enableInterrupts()
{
 __enable_irq();
}

int ptxTunneling_SPI_trx(ptxHal_t *context, uint8_t *const txBuf[], const size_t
txLen[],
 size_t numBuffers, uint8_t *rxBuf, size_t *rxLen)
{
 const uint32_t spiTimeout = 100000;
 HAL_StatusTypeDef st = HAL_ERROR;

 /* At this point the SPI transfer operation is triggered */
 HAL_GPIO_WritePin(SPI3_NSS_GPIO_Port, SPI3_NSS_Pin, GPIO_PIN_RESET);

 // Tx operation is required always: to send and to receive anything on SPI. So, tx
buffers have
 // to be provided always.
 if ((NULL != txBuf) && (NULL != txLen))
 {
 /* Tx part of the overall transaction. */
 size_t index = 0;
 while (index < numBuffers)
 {

PTX Tunneling Library v1.4.1 for STM32CubeIDE QuickStart Manual

R35US0010EE0101 Rev.1.01
Jun 18, 2024

 Page 16

 assert((txBuf[index] != NULL) && (txLen[index] > 0));

 st = HAL_SPI_TransmitReceive(&hspi3, txBuf[index], rxBuf, txLen[index],
spiTimeout);
 assert(!st);
 if (st != HAL_OK)
 {
 break;
 }
 index++;
 }
 }
 else if ((NULL != rxBuf) && (NULL != rxLen) && (*rxLen > 0))
 /* Let's see if there is something to read. */
 {
 st = HAL_SPI_Receive(&hspi3, rxBuf, (uint16_t)(*rxLen), spiTimeout);
 assert(!st);
 }

 /* In any case, at this point the SPI transfer operation is finished */
 HAL_GPIO_WritePin(SPI3_NSS_GPIO_Port, SPI3_NSS_Pin, GPIO_PIN_SET);

 return st;
}

Note: This implementation is specific to the ST32L562E-DK board and is not guaranteed to work on any other
hardware.

PTX Tunneling Library v1.4.1 for STM32CubeIDE QuickStart Manual

R35US0010EE0101 Rev.1.01
Jun 18, 2024

 Page 17

2.4 Calling the Library Functions
The main loop will provide the tunneling functionality by calling the library's superloop function, the
ptxTunneling_poll(). This function performs the data processing and translation, and also the SPI
communication. The main() function can be found in the Core/Src/main.c file. Update this file with the
following code:

/* USER CODE BEGIN PV */
#include "ptx_tunneling.h" // including the library functions
void startUartReceiving(UART_HandleTypeDef *huart); // implemented in HAL
/* USER CODE END PV */

[...] // existing code not shown

int main(void)
{
 [...] // lines of initialization code not shown

 /* Infinite loop */
 /* USER CODE BEGIN WHILE */
 startUartReceiving(&huart1);
 ptxTunneling_init();
 while (1)
 {
 ptxTunneling_poll(NULL);
 /* USER CODE END WHILE */

 /* USER CODE BEGIN 3 */
 }
 /* USER CODE END 3 */
}

2.5 Building the Firmware
After the source files have been created, the project can be built with the Project > Build Project. When the
build process has finished successfully, a table similar to the following will show with the footprint sizes.

arm-none-eabi-size --format=berkeley "demo.elf"
 text data bss dec hex filename
 23460 124 7620 31204 79e4 demo.elf

PTX Tunneling Library v1.4.1 for STM32CubeIDE QuickStart Manual

R35US0010EE0101 Rev.1.01
Jun 18, 2024

 Page 18

3. Preparing the Hardware
To demonstrate the usage of the tunneling functionality, a PTX evaluation board must be connected to the
ST32L562E Evaluation Kit through the PMOD connector.

Before powering up the PTX evaluation board from the USB-C port, it is important to remove the jumper named
pmod 3v3 and set the Serial Interface switches to "0" state to select the SPI communication protocol.

The ST32L562E-DK board must be connected to the host PC via the CN17 STLNK USB connector. This
connection provides both a UART interface named STMicroelectronics STLink Virtual COM Port (used in
PTX100x * Config Tool) and access to the on-board ST-Link debugger.

PTX Tunneling Library v1.4.1 for STM32CubeIDE QuickStart Manual

R35US0010EE0101 Rev.1.01
Jun 18, 2024

 Page 19

3.1 Debug Configuration
In order to upload the firmware onto the device, the Debug configuration must be created from the Run > Debug
Configurations. Please create a new configuration (if not yet present) for the STM32 Cortex-m C/C++
Application. The most important settings are:
■ Select the Debug/demo.elf application from the project
■ Select ST-LINK (ST_LINK GDB server) among the debug probes

When the settings are updated, pressing the Debug button initiates the debug session with flashing the firmware
onto the chip.

The firmware execution will halt at the main function by default; F8 must then be pressed to continue the
execution.

4. Using the Tunneling Feature
To use of the tunneling functionality, the PTX100x * Config Tool must be started and configured to use the USB
serial communication port (identified in Device manager previously) by selecting the correct entry in the
dropdown list in toolbar.

The configuration is now ready. Any test started will communicate with the PTX100x via the tunneling firmware.

PTX Tunneling Library v1.4.1 for STM32CubeIDE QuickStart Manual

R35US0010EE0101 Rev.1.01
Jun 18, 2024

 Page 20

5. Revision History

Revision Date Description

1.01 Jun 18, 2024 Updated license text in ptx_tunneling_hal.c file.

1.00 Jan 15, 2024 Initial release.

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most
up-to-date version of a document, or your nearest sales
office, please visit www.renesas.com/contact-us/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered
trademarks are the property of their respective owners.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1)
selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These
resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an
application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is
granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims
responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses,
or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and
Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise
alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

© 2026 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/contact-us
https://www.renesas.com

	1. Requirements
	2. Sample Firmware
	2.1 Creating the Project
	2.1.1. Configuration File
	2.1.2. Creating the Project

	2.2 Importing the Library
	2.2.1. Adding the Include Path
	2.2.2. Adding the Library File

	2.3 Implementing the HAL
	2.4 Calling the Library Functions
	2.5 Building the Firmware

	3. Preparing the Hardware
	3.1 Debug Configuration

	4. Using the Tunneling Feature
	5. Revision History

