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PTX Tunneling Library v1.4.1 for Eclipse Maxim IDE

The PTX Tunneling library can be used to evaluate and optimize the performance (antenna matching,
system/RF configuration, etc.) of any custom-made device using a PTX100x device via SPI serial interface.

Embedding this library into the device firmware enables the translation of communication from UART to SPI, so
that the full functionality of the PTX100x * Config Tool can be used in a custom environment. This document
provides also instructions on how to create a sample application using an MAX32558-KIT development board.
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1. Requirements

The footprint of the library is ~13kB Flash and 10kB RAM. Moreover, a hardware abstraction layer must be
implemented by the user for the particular uC/Board, which executes the low-level commands requested by the
library. From the resource point of view, only the SysTick timer, UART, SPI, and the IRQ pin will be used.

The library can be seamlessly integrated into a CMAKE project as well, but the MAX325xx is used in this
document (for more information, see MAX325xx SDK 3.6.2 - Eclipse Maxim Integrated).

2. Sample Firmware

The sample application is used for creating and serving the tunnel between the host PC UART interface and the
PTX100x chip connected by SPI. The library can be used either as a precompiled static library or as a source-
library — most steps are the same for both cases.

2.1 Creating the Project

After selecting the File menu > New > Project, a wizard window will open to guide the user through the project
creation process. Choosing the C Project from the list of templates and clicking the Next button will prepare the
proper build environment.

e

Select a wizard

Create a new C project

Wizards:
type filter text

= General
v = C/C++
[t} C Project
[ C/C++ Project
&4 C++ Project

&4 Makefile Project with Existing Code

@ < Next > Finish Cancel

(=]
I+
=
=

%]
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For convenience, the project will be called "Demo" and selecting the MAX32558 C Project tells the compiler

which MCU will be the target platform.

S C Project

C Project
Create C project of selected type

Project name: | Demo

Use default location
C\Work\wsE_edlipse\maxim1\Demo

default

Project type:

Toolchains:

Browse...

v = Executable

® Empty Project

@ Hello World ARM C Project
Hello World ARM Cortex-M C/C++ Project
MAX32560 C Project
MAX32565 C Project
MAX32552 C Project
MAX32555 C Project
MAX32558 C Project
MAX32510 C Project
MAX32550 C Project
MAX32590 C Project
MAX32591 C Project

& Hello World ANSI C Project

= Shared Library
= Static Library
= Makefile project

®* ® & ® ¢ ® @ © O @

Cross ARM GCC

Show project types and toolchains only if they are supported on the platform

Finish

Cancel
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Next, the chip variant must be selected, which in this case is MAX32558 rev B1. This step will also configure the
correct settings for the selected processor.

Note: The project will also work on other microcontrollers if the pre-built library architecture is compatible.

As a template content, Empty skeleton should be selected, which has no other content added to the project.

S

Target processor settings

Select the target processor family and define flash and RAM sizes.

Chip family: MAX32558 rev B1 ™
Content: Empty Skeleton v
Check some warnings
Check most warnings [
Enable -Werror L]
Use -Og on debug
Use link optimizations [ ]
@ < Back Next >n ‘ Einish Cancel
Lo
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In the next step, the IDE offers to set up the folder structure. Because the library will be imported, it makes sense

to prepare the folder names as they appear in the archive.

& C Project

Folders settings

Define the project folders and other options.

Include folder: inc
Library folder: ‘ lib
Source folder: ‘ src
System folder: ‘ system

CMSIS library folder: ‘ cmsis

C library folder: ‘ newlib

Linker scripts folder: ‘ Idscripts

@ < Back Next > Finish

After pressing the Next button a few times and accepting the default target and compiler selection, the initial

project gets created
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2.2 Importing the Library

There is no difference whether the source or the precompiled package is being used: the library archive must be
imported to the project using File > Import > Archive File.

To keep the folder structure clean, the library will be imported to the Pt xTunneling subfolder by appending it
to the default location shown in following figure.

& Import

Archive file

L

- A

Import the contents of an archive file in zip or tar format from the local file system.

From archive file:‘ C\Worlk\ptxTunnelingLib-v1.0.0.src.tar.gz v Browse...
=Y A = .clang-format ~
[V]e. =l CMakelists.txt
[V]& cmake = DISCLAIMER
& contrib @index.html
[V inc ¥ A B REANME md v
Filter Types... Select All Deselect All
Into folder:‘ Demo/PtxTunneling Browse...
[ ] Overwrite existing resources without warning
@ Cancel

< Back Next > Finish :

2.21. Including Tunneling Source Code

Should the library be used as source code, the subfolder Pt xTunneling and PtxTunneling/src folders
need to be included in the build. This can be done by opening the context menu with right mouse click on the
folder name in the Project Explorer and selecting Resource Configurations > Exclude from Build. In the
dialog window, for each (default) target the check can be removed, thus selecting the folder content for build.

& Exclude from build O X

Exclude object(s) from build in the following configurations

[ ]sLA
|| scP Applet

[ ]rAM

Select All Deselect All
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2.2.2. Adding the Include Path

In order that the compiler can find the header (.h) files containing the API functions, the library folder inc needs
to be added to the list of user-defined include directories. This can be done by navigating to Project >
Properties > C/C++ Build > Settings > Tool Settings > Cross ARM GNU C Compiler > Includes. Click on
the Add button on the right side of the small toolbar and use the Workspace button in the popup window to
locate the folder.

| S
type filter text Settings VRS
Resource .
Builders Configuration: |SLA [ Active ] ~ || Manage Configurations...| ™
~ C/C++ Build

Build Variables
Environment

# Tool Settings % Toolchains B Devices # Build Steps Build Artifact lut Binary Parsers @ Error Parsers

Logging ( Target Processor Include paths (-I) a8 g ad
Settings & Optimization ".finc"
Tool Chain Editc & Warnings "${workspace_loc:/${ProjName}/inc}"
Tools Paths & Debugging "../system/inc”
C/C++ General ~ % Maxim Other Tools "./system/inc/cmsis”
Project References # General =
Run/Debug Settin ~ & Cross ARM GNU Assembler
Task Repository (# Preprocessor Directory:
WikiText @ Includes | ${workspace_loc/${ProjNamel/inc}

# Warnings
# Miscellaneous

~ i Cross ARM GNU C Compiler
2 Preprocessor

& Includes oK Cancel Workspace... File system...

& Folder selection O Xk

Select one or more Workspace Folders

v = Demo ~ es (-include) &
= settings
& .vscode
=inc
=]
AL v

3
@ Apply and Close Cancel
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2.2.3. Adding the Library File

This step is required only if you are working with the precompiled binary package. Since there is no source code
to be compiled, the linker must be able to find the functions in the library. In the same dialog window, changing to
Cross ARM GNU C++ Linker > Libraries section, the PtxTunneling/1ib folder can be added to the list of
folders (lower pane) where the compiler is looking for external libraries. Additionally, the exact library needs also
to be specified (upper pane) by its name PtxTunneling. From this the compiler will automatically find the
static library file 1LibPtxTunneling.a.

| ©
type filter text Settings T
Resource
Builders Configuration: |[ All configurations ] ™ ||Manage Configurations...
~ C/C++ Build
Build Variables .
. ® Tool Settings ¥ Toolchains M Devices # Build Steps Build Artifact [=¢ Binary Parsers @ Error Parsers
Environment
Logging (& Target Processor Libraries (-) a8
Settings (& Optimization PtxTunneling
Tool Chain Editc & Warnings
Tools Paths % Debugging
C/C++ General ¥ & Maxim Other Tools
Project References % General
Run/Debug Settin | | & Folder selection O X
Task Repository
WikiText

Select one or more Workspace Folders

Tunneling/lib}

= .settings 2
= .vscode
= inc
= keys
& Idscripts Cancel Workspace... File system...
v & PtxTunneling

= inc

& lib A

rch path (-1) 88y

-e_loc:/${ProjName}/PtxTunneling/lib}"

S IVISTETanEoU
v ® Cross ARM GNU C++ Linker
2 General
(# Libraries
2 Miscellaneous
< > ~ & Cross ARM GNU Create Flash Image v

@ Apply and Close Cancel

2.3 Implementing the HAL

If the library functions cannot access the underlying hardware or software resources, they require access to the
Hardware Abstraction Layer (HAL), which then performs the requested action. Since this layer depends on the
specific hardware configuration, it must be implemented for the exact setup.

The PtxTunneling library includes the header file ptx_tunneling hal.h, which contains all the functions that must
be provided by the host platform.

For the current case, there should be the file ptx tunneling hal.c created in the source code folder
Core/Src with the following content.
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#include <MAX325xx.h>
#include <assert.h>
#include <cmsis gcc.h>
#include <cmsis nvic.h>
#include <mml gpio.h>
#include <mml spi.h>
#include <mml tmr.h>
#include <mml uart.h>
#include <stdbool.h>
#include <stdio.h>
#include <string.h>

#include "ptx tunneling hal.

R35US0011EE0101 Rev.1.01
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#define EX SPI BAUD RATE 5000000
#define PTX100 SPI DEV MML SPI DEVO

PTX100 UART DEV MML UART DEVO
PTX100 UART UARTO

PTX IRQ GPIO (0, 21)

PTX CS GPIO(0, 19)

TIMER INVALID -1
TMPBUFLEN 300

UNUSED
#define UNUSED (var) (void)var

#endif

ptxHal

uint32 t g timeFromStart = 0;
uint8 t g tmpBuf [TMPBUFLEN] ;

isrSysTick() ;
int init spi master ( )i

#define OFFSET RSP _LENGTH BYTE
#define OFFSET CMD LENGTH BYTE
#define OFFSET CMD CODE BYTE 0

#define COMMS MAX MESSAGE LENGTH 280
#define COMMS HEADER SIZE 2

#define CMD CODE TUNNELING MSG 0x55

uint8 t uartRxBuf[2048];
uintl6 t readPos = 0;
uintl6 t writePos = 0;

uint8 t rx[COMMS MAX MESSAGE LENGTH];

uintl6é t rxi = 0;

uartCallback()
mml uart interrupt clear (PTX100 UART DEV, UINT32 MAX) ;

(PTX100 UART->STAT & UARTn_ STAT RXELT Msk)

uint8 t tmp;
tmp = PTX100 UART->DATA;

(rxi == 0 && tmp != CMD CODE_TUNNELING MSG)

R35US0011EE0101 Rev.1.01
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}

rx[rxi++] = tmp;

(rxi >= COMMS HEADER SIZE)

uintl6 t packLen = COMMS HEADER SIZE +
(rx[OFFSET_CMD_LENGTH_BYTE] ==
rx [OFFSET CMD LENGTH BYTE]) ;
(rxi >= packLen)

memcpy (uartRxBuf + writePos, rx, rxi);
writePos += rxi;
rxi = 0;

bool ptxTunneling GPIO IsIrgPinAsserted(ptxHal t *context)
{
UNUSED (context) ;
unsigned int data;
mml_gpio_read_bit_pattern(GPIO_DEV(PTX_IRQ), GPIO NUM (PTX IRQ), 1, &data);
data > 0;

ptxTunneling UART rxLength (ptxHal t *context)

UNUSED (context) ;
__disable irqg():

count = writePos - readPos;
__enable irqg();

count;

ptxTunneling UART read(ptxHal t *context, uint8 t *buf, unsigned int len)

UNUSED (context) ;
assert (len < (uartRxBuf)) ;
__disable irqg();
int readCount = writePos - readPos;
(readCount > len)
readCount = len;

memcpy (buf, uartRxBuf + readPos, readCount);

readPos += readCount;
(readPos == writePos)

readPos = 0;
writePos = 0;
}
__enable irqg();
readCount;

ptxTunneling UART write (ptxHal t *context, uint8 t *buf, unsigned int len)

UNUSED (context) ;
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= 0;
(len—--)

res = mml uart write char (PTX100 UART DEV, *buf++);
assert (!res);

ptxTunneling Timer stopwatchStart (ptxHal t *context, ptxTimeDiff t *startVal)

UNUSED (context) ;
*startVal = g timeFromStart * 1000;

ptxTunneling Timer stopwatchStop (ptxHal t *context, ptxTimeDiff t *startStopVal)

UNUSED (context) ;
*startStopVal = g timeFromStart * 1000 - *startStopVal;

ptxTunneling Timer ThreadSleep (ptxHal t *context, uint32 t msSleep)

UNUSED (context) ;
uint32 t t0 = g timeFromStart;
(g_timeFromStart - t0 < msSleep)

int ptxTunneling SPI trx(ptxHal t *context, uint8 t *
txLen[],

size t numBuffers, uint8 t *rxBuf, size t *rxLen)

UNUSED (context) ;
size t index;
int st = COMMON ERR_UNKNOWN;

mml gpio write bit pattern (GPIO DEV(PTX CS), GPIO NUM(PTX CS), 1, 0);

((NULL != txBuf) && (NULL != txLen))

index = 0;
(index < numBuffers)

assert ((txBuf[index] != NULL) && (txLen[index] > 0));
size t len = txLen[index];
assert (len <= TMPBUFLEN) ;

memcpy (g tmpBuf, txBuf[index], len);
st = mml spi transmit (PTX100 SPI DEV, g tmpBuf, len);
assert (!st);

(rxBuf)

R35US0011EE0101 Rev.1.01
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memcpy (rxBuf, g tmpBuf, len);
index++;

((NULL != rxBuf) && (NULL != rxLen) && (*rxLen > 0))

memset (rxBuf, 0, *rxLen):;
st = mml spi transmit (PTX100 SPI DEV, rxBuf, *rxLen);
assert(!st);

mml gpio write bit pattern (GPIO DEV(PTX CS), GPIO NUM(PTX CS), 1,

st;

ptxTunneling NVIC disableInterrupts ()

__disable irqg();

ptxTunneling NVIC enableInterrupts ()

__enable irqg();

initPeripherals ()

int st;
mml gpio pre init();
mml tmr pre init();

__NVIC_SetVector(SysTick_IRQn, (uint32_t)&ierysTick);
SysTick Config(60000) ;

init spi master();

mml gpio config t gpioConfIrqg = {.gpio direction = MML GPIO DIR IN,
.gpio_ function = MML GPIO NORMAL FUNCTION,
.gpio_intr mode = MML GPIO_ INT MODE LEVEL TRIGGERED,
.gpio_intr polarity = MML GPIO INT POL HIGH,
.gpio pad config = MML GPIO PAD PULLDOWN};

mml gpio init (GPIO DEV (PTX IRQ), GPIO NUM(PTX IRQ), 1, gpioConfIrq):;
mml gpio config t gpioConfCs = {.gpio direction = MML GPIO DIR OUT,
.gpio_ function = MML GPIO NORMAL FUNCTION,

.gpio _pad config = MML GPIO PAD NORMAL};

mml gpio init (GPIO DEV (PTX CS), GPIO NUM(PTX CS), 1, gpioConfCs);
mml gpio write bit pattern (GPIO DEV(PTX CS), GPIO NUM(PTX CS), 1, 1);

rxi = 0;
mml uart config t uartConfig = {.baudrate = 115200,
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.data bits = UARTn CTRL SIZE bits8,
.flwctrl = UARTn CTRL RTSCTSF disable,
.parity = MML UART PARITY NONE,

.stop bits = UARTn CTRL STOP stopl,
.handler = &uartCallback,

.rts _ctl = UARTn PIN RTS hi,

.parity mode = MML UART PARITY MODE ONES};

mml uart pre init();
= mml uart init (PTX100 UART DEV, uartConfig);
assert (!st);
mml uart interrupt set (PTX100 UART DEV, UARTn INT EN FFRXIE Msk) ;
pthunnelingiNVIcienableInterrupts(NULL);

int init spi master (

int result = NO _ERROR;
mml spi params_t spiparams;

spiparams.baudrate = EX SPI BAUD RATE;

spiparams.ssel = 0;

spiparams.word size = SPIn MOD NUMBITS bits8;
spiparams.mode = SPIn CNTL MMEN master;

spiparams.wor = SPIn CNTL WOR disable;
spiparams.clk pol = SPIn CNTL CLKPOL idlelLo;
spiparams.phase = SPIn CNTL PHASE activeEdge;
spiparams.brg irq = SPIn CNTL BIRQ disable;
spiparams.ssv = SPIn MOD SSV hi;

spiparams.ssio = SPIn MOD SSIO output;

spiparams.tlj = SPIn MOD TX LJ disable;

spiparams.dma rx.active = SPIn DMA REG DMA EN disable;
spiparams.dma tx.active = SPIn DMA REG DMA EN disable;

result = mml spi reset interface();
(result)
result;
result = mml spi init (PTX100 SPI DEV, &spiparams);
(result)

result;

M MML SPI ENABLE (PTX100 SPI DEV);
result;

isrSysTick ()

g _timeFromStart++;

Note: This implementation is specific to the MAX32558-KIT board. It is not guaranteed to work on any other
hardware.
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2.4 Calling the Library Functions

After the initialization by ptxTunneling init (), the main loop will provide the tunneling functionality by
calling the library's superloop function, the ptxTunneling poll (). This function performs the data
processing and translation, and also the SPI communication. The main() function can be found in src/main.c
file. Update this file with the following code:

initPeripherals () ;

int main(int argc, char *argv[])
{
initPeripherals () ;
ptxTunneling init ();

(1)

ptxTunneling poll (NULL) ;

0;

2.5 Building the Firmware

After the source files have been created, the project can be built with the Project > Build Project. When the
build process has finished successfully, a table similar to the following will show with the footprint sizes.

arm-none-eabi-size --format=berkeley
text data bss dec hex filename

14357 168 16656 31181 79cd demo.elf
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3. Preparing the Hardware

Configure the PTX evaluation board’s serial interface to SPI by setting both interface configuration switches
(SIF1 and SIF2) to 0 and remove the jumper labeled pmod 3v3 (located next to PMOD connector) to prevent
supply conflicts between the two boards, since each will be powered separately.

Connect the PTX evaluation board to the MAX32558-KIT board with jumper cables. Using the vertical pin header
on the PTX evaluation board is convenient because it shows the pin names on the silkscreen, therefore they are
easy to identify. On the Maxim board, the pin header JH4 with the GPIO PORT 0 label will be used with the
following interconnection.

Signal Name on PTX Evaluation Board Maxim Board JH4 Pin Name
MISO 16
MOSI 17
SCK 18
SSN 19
IRQ 21
GND GND

In addition, the CTS pin of the JH3 connector must be pulled to GND. The boards can now be powered up.

Note: For optimal RF performance, the USB 3.0 port should be used to enable the PTX board to draw a current
up to 900mA.

=
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3.1  Running the Application

The last task is to flash and start the firmware on the Maxim evaluation board. This can be performed directly in
the development environment of the Maxim SDK.

There is a J-Link debug probe in the MAX32558 evaluation kit for which a debug configuration is already
generated automatically during project setup. It is possible that the internal variable j1ink path is set
incorrectly during installation; therefore, debugging will not work out of the box. If this occurs, you must change
the debug configuration in the Run > Debug Configurations menu. Selecting the Demo SLA and the
Debugger tab, the GDB server Executable in the J-Link GDB Server Setup area can be set manually as
shown below.

& Debug Configurations X

Create, manage, and run configurations

EI=E R

Name:| Demo SLA |

type filter text
[e] C/C++ Application

El Main| % Debugger ™ Startup % Source & Common

1 C/Cas Attach to Applicati J-Link GDB Server Setup 2
++ Attach to ication
P Start the J-Link GDB server locally [] Connect to running target
[E] C/C++ Postmortem Debugg
Executable: ‘ C:\Program Files (x86)\5EGGER\JLink\JLinkGDBServerCL.exe| | Browse... Variables...

[E] C/C++ Remote Application
[€1 GDB Hardware Debugging Device name: ‘ MAX32558 ‘ Supported device names

(21 GDB OpenOCD Debugging Endianness: @ Little (O Big

[£]1 GDB QEMU Deb i
Q € .ugglng || Connection: ®@use O1Ip l:l (USB serial or IP name/address)
v [&1 GDB SEGGER J-Link Debuggi

= Demo SLA Interface: O SWD @JTAG

& Launch Group Initial speed:  ®) Auto (O Adap O Fixed kHz

# Launch Group (Deprecated) GDB port: 2331
SWO port: 2332 Verify downloads Initialize registers on start
Telnet port: 2333 Local host only [ ]silent
Log file: ‘ | Browse...
Other options: ‘ ‘
Allocate console for the GDB server [] Allocate console for semihosting and SWO
GDB Client Setup
Executable: ‘ ${cross_prefixjgdb${cross_suffix} Browse...| Variables...
Nithar antione: ‘ ‘ v

< >
Revert Apply

Filter matched 11 of 11 items

Finally, after clicking on the Debug button, the firmware will be uploaded to the Maxim board and the debug
session will be started. After pressing F8 to let the demo application run, the firmware will be ready for accepting
communication frames from the PC.
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4. Using the Tunneling Feature

To use of the tunneling functionality, the PTX100x * Config Tool must be started and configured to use the USB
serial communication port (identified in Device manager previously) by selecting the correct entry in the
dropdown list in toolbar.

)= PTX100x POS Config Tool
File  Edit  Help

" Generate  Generate
s | AT re oo fB W o Evalboard | COMO v

Modules =

<none>

VDPA Calibrati COM10

= - i 1

The configuration is now ready. Any test started will communicate with the PTX100x via the tunneling firmware.

5. Revision History

Revision Date Description
1.01 Jun 18, 2024 | Updated license text in ptx_tunneling_hal.c file.
1.00 Jan 16, 2024 | Initial release.
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