

Quick Start Guide

Linux PTP Using PHC Adjust Phase

R31US0007EU0101 Rev.1.01
Aug 20, 2021

 Page 1
© 2021 Renesas Electronics

This document provides instructions for getting Linux PTP to use the PTP hardware clock adjust phase mode.

Contents
1. Introduction ... 3

2. System Requirements .. 4
2.1 Linux PTP Source ... 4
2.2 Linux Kernel .. 4

2.2.1. Adjust Phase Patch Files ... 4
2.2.2. Backporting to Linux v3.x+ ... 8

2.3 Network Interface Requirements .. 11
2.3.1. ethtool .. 11
2.3.2. SIOCETHTOOL .. 12
2.3.3. SO_TIMESTAMPING ... 12
2.3.4. PTP_CLK_REQ_EXTTS .. 14

2.4 Linux PTP Hardware Clock ... 15
2.4.1. ClockMatrix PHC Driver ... 15

3. Getting Started .. 20
3.1 Sanity Testing ... 20

3.1.1. Verify PHC Capabilities .. 20
3.1.2. Verify Clocks Increment ... 21
3.1.3. Verify Clock Set Time ... 22
3.1.4. Verify Time Stamper Incoming 1-PPS from PTP Clock .. 22
3.1.5. Verify ts2phc Aligns Time Stamper and 1-PPS from PTP Clock .. 23
3.1.6. Verify PTP Clock Time Adjustment Affects PTP Timestamp .. 25
3.1.7. Verify PTP Clock Frequency Adjustment Affects Time Stamper Frequency 26

3.2 ts2phc ... 28
3.3 ptp4l .. 28

3.3.1. Example Write Phase Mode Configuration ... 30
3.4 Sample Session .. 30

4. Appendix ... 38
4.1 Performance Metrics... 38

4.1.1. WritePhase Reference Tracker, Multicast master .. 38
4.1.2. DMIPS Calculation ... 38

4.2 Identifying PHC Device Number ... 43
4.2.1. ClockMatrix... 43
4.2.2. Network Interface ... 43

4.3 View ptp Device Name ... 44
4.4 SO_SELECT_ERR_QUEUE: Protocol not available .. 44
4.5 testptp ... 44

Linux PTP Using PHC Adjust Phase Quick Start Guide

R31US0007EU0101 Rev.1.01
Aug 20, 2021

 Page 2

4.5.1. Sample Build for ZCU102 board... 45
4.6 phc_ctl .. 46
4.7 1588 Profile Configuration Validation Tool for ptp4l .. 46

5. Revision History ... 50

Linux PTP Using PHC Adjust Phase Quick Start Guide

R31US0007EU0101 Rev.1.01
Aug 20, 2021

 Page 3

1. Introduction
The Linux PTP project is an implementation of the Precision Time Protocol (PTP) according to IEEE standard
1588 for Linux licensed under the GNU General Public License.

Linux PTP supports both hardware and software time stamping via the Linux SO_TIMESTAMPING socket
option.

Hardware time stamping is used because it provides better accuracy by time stamping packets at the exact
moment they are sent and received. Hardware time stamping requires hardware PTP support from the
PHY/MAC.

Some PTP hardware clocks have a adjust phase mode that has a built-in hardware filtering capability. The adjust
phase mode uses a phase offset control word instead of a frequency offset control word.

Adjust phase support was introduced into the Linux PHC subsystem in Linux kernel v5.8.

Linux PTP v3.0 added ts2phc that is used to align the PHC and time stamper when the PHC and time stamper
are not the same device.

Linux PTP Using PHC Adjust Phase Quick Start Guide

R31US0007EU0101 Rev.1.01
Aug 20, 2021

 Page 4

2. System Requirements
■ Linux PTP v3.0+
■ Linux kernel v5.8+
■ Network interface

● Implements SIOCETHTOOL
● Supports PTP hardware clock (PHC)
● Pass PTP Ethernet packet time stamps using the SO_TIMESTAMPING API

■ Linux PTP Hardware Clock driver
● Renesas timing device that supports adjust phase
● ClockMatrix PHC driver with adjust phase was introduced in Linux kernel v5.8
● Driver code can be backported to Linux kernel v3.0+ that is patched to support adjust phase

2.1 Linux PTP Source
Instructions on cloning and compiling Linux PTP from source can be found below. Linux PTP added support for
adjust phase in 2020-05-04 commit 7df88a.

Host sites:
■ http://linuxptp.sourceforge.net
■ https://sourceforge.net/p/linuxptp/code/ci/master/tree
■ https://sourceforge.net/p/linuxptp/code/ci/v3.1/tree

Mirror site:
■ https://github.com/richardcochran/linuxptp

2.2 Linux Kernel
Host sites:
■ https://github.com/torvalds/linux
■ https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git

Some PTP hardware clocks have an adjust phase mode that has a built-in hardware filtering capability. The
adjust phase mode uses a phase offset control word instead of a frequency offset control word.

The Linux PHC subsystem added the capability to accept phase offset control word in Linux kernel v5.8.

Linux PTP v3.0 has also added support for adjust phase (i.e., write_phase_mode configuration parameter).

If you are using Linux kernel v3.x to v5.7, you will need to backport the adjust phase support into the kernel.

2.2.1. Adjust Phase Patch Files
The following patch files are the differences between Linux kernel v5.8-rc5 and v5.6.

Files affected:
■ drivers/ptp/ptp_chardev.c
■ drivers/ptp/ptp_clock.c
■ include/linux/ptp_clock_kernel.h
■ include/uapi/linux/ptp_clock.h
■ tools/testing/selftests/ptp/testptp.c

http://linuxptp.sourceforge.net/
https://sourceforge.net/p/linuxptp/code/ci/master/tree
https://sourceforge.net/p/linuxptp/code/ci/v3.1/tree
https://github.com/richardcochran/linuxptp
https://github.com/torvalds/linux
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git

Linux PTP Using PHC Adjust Phase Quick Start Guide

R31US0007EU0101 Rev.1.01
Aug 20, 2021

 Page 5

2.2.1.1. Patch file for Linux v5.6

Copy and paste the following and save as a text file on the root directory of your linux kernel v5.6.

From 2ae6eb4fa4a7d7499322e68fc17fae14f35bfc1b Mon Sep 17 00:00:00 2001
From: Vincent Cheng <vincent.cheng.xh@renesas.com>
Date: Fri, 17 Jul 2020 16:50:20 -0400
Subject: [PATCH] adjust phase patch for linux v5.6

 drivers/ptp/ptp_chardev.c | 1 +
 drivers/ptp/ptp_clock.c | 9 +++++++++
 include/linux/ptp_clock_kernel.h | 14 +++++++++-----
 include/uapi/linux/ptp_clock.h | 4 +++-
 tools/testing/selftests/ptp/testptp.c | 6 ++++--
 5 files changed, 26 insertions(+), 8 deletions(-)

diff --git a/drivers/ptp/ptp_chardev.c b/drivers/ptp/ptp_chardev.c
index 9d72ab5..4c9fc5c 100644
--- a/drivers/ptp/ptp_chardev.c
+++ b/drivers/ptp/ptp_chardev.c
@@ -133,12 +133,13 @@ long ptp_ioctl(struct posix_clock *pc, unsigned int cmd, unsigned long
arg)
 caps.n_alarm = ptp->info->n_alarm;
 caps.n_ext_ts = ptp->info->n_ext_ts;
 caps.n_per_out = ptp->info->n_per_out;
 caps.pps = ptp->info->pps;
 caps.n_pins = ptp->info->n_pins;
 caps.cross_timestamping = ptp->info->getcrosststamp != NULL;
+ caps.adjust_phase = ptp->info->adjphase != NULL;
 if (copy_to_user((void __user *)arg, &caps, sizeof(caps)))
 err = -EFAULT;
 break;

 case PTP_EXTTS_REQUEST:
 case PTP_EXTTS_REQUEST2:
diff --git a/drivers/ptp/ptp_clock.c b/drivers/ptp/ptp_clock.c
index ac1f2bf..4fc6e4b 100644
--- a/drivers/ptp/ptp_clock.c
+++ b/drivers/ptp/ptp_clock.c
@@ -143,12 +143,21 @@ static int ptp_clock_adjtime(struct posix_clock *pc, struct
__kernel_timex *tx)
 return -ERANGE;
 if (ops->adjfine)
 err = ops->adjfine(ops, tx->freq);
 else
 err = ops->adjfreq(ops, ppb);
 ptp->dialed_frequency = tx->freq;
+ } else if (tx->modes & ADJ_OFFSET) {
+ if (ops->adjphase) {
+ s32 offset = tx->offset;
+
+ if (!(tx->modes & ADJ_NANO))
+ offset *= NSEC_PER_USEC;
+
+ err = ops->adjphase(ops, offset);
+ }
 } else if (tx->modes == 0) {
 tx->freq = ptp->dialed_frequency;

Linux PTP Using PHC Adjust Phase Quick Start Guide

R31US0007EU0101 Rev.1.01
Aug 20, 2021

 Page 6

 err = 0;
 }

 return err;
diff --git a/include/linux/ptp_clock_kernel.h b/include/linux/ptp_clock_kernel.h
index c64a1ef..aa805f6 100644
--- a/include/linux/ptp_clock_kernel.h
+++ b/include/linux/ptp_clock_kernel.h
@@ -33,13 +33,13 @@ struct system_device_crosststamp;
 struct ptp_system_timestamp {
 struct timespec64 pre_ts;
 struct timespec64 post_ts;
 };

 /**
- * struct ptp_clock_info - decribes a PTP hardware clock
+ * struct ptp_clock_info - describes a PTP hardware clock
 *
 * @owner: The clock driver should set to THIS_MODULE.
 * @name: A short "friendly name" to identify the clock and to
 * help distinguish PHY based devices from MAC based ones.
 * The string is not meant to be a unique id.
 * @max_adj: The maximum possible frequency adjustment, in parts per billon.
@@ -62,12 +62,15 @@ struct ptp_system_timestamp {
 * @adjfreq: Adjusts the frequency of the hardware clock.
 * This method is deprecated. New drivers should implement
 * the @adjfine method instead.
 * parameter delta: Desired frequency offset from nominal frequency
 * in parts per billion
 *
+ * @adjphase: Adjusts the phase offset of the hardware clock.
+ * parameter delta: Desired change in nanoseconds.
+ *
 * @adjtime: Shifts the time of the hardware clock.
 * parameter delta: Desired change in nanoseconds.
 *
 * @gettime64: Reads the current time from the hardware clock.
 * This method is deprecated. New drivers should implement
 * the @gettimex64 method instead.
@@ -102,16 +105,16 @@ struct ptp_system_timestamp {
 * zero if the function can be assigned to this pin, and
 * nonzero otherwise.
 * parameter pin: index of the pin in question.
 * parameter func: the desired function to use.
 * parameter chan: the function channel index to use.
 *
- * @do_work: Request driver to perform auxiliary (periodic) operations
- * Driver should return delay of the next auxiliary work scheduling
- * time (>=0) or negative value in case further scheduling
- * is not required.
+ * @do_aux_work: Request driver to perform auxiliary (periodic) operations
+ * Driver should return delay of the next auxiliary work
+ * scheduling time (>=0) or negative value in case further
+ * scheduling is not required.
 *
 * Drivers should embed their ptp_clock_info within a private
 * structure, obtaining a reference to it using container_of().
 *

Linux PTP Using PHC Adjust Phase Quick Start Guide

R31US0007EU0101 Rev.1.01
Aug 20, 2021

 Page 7

 * The callbacks must all return zero on success, non-zero otherwise.
 */
@@ -125,12 +128,13 @@ struct ptp_clock_info {
 int n_per_out;
 int n_pins;
 int pps;
 struct ptp_pin_desc *pin_config;
 int (*adjfine)(struct ptp_clock_info *ptp, long scaled_ppm);
 int (*adjfreq)(struct ptp_clock_info *ptp, s32 delta);
+ int (*adjphase)(struct ptp_clock_info *ptp, s32 phase);
 int (*adjtime)(struct ptp_clock_info *ptp, s64 delta);
 int (*gettime64)(struct ptp_clock_info *ptp, struct timespec64 *ts);
 int (*gettimex64)(struct ptp_clock_info *ptp, struct timespec64 *ts,
 struct ptp_system_timestamp *sts);
 int (*getcrosststamp)(struct ptp_clock_info *ptp,
 struct system_device_crosststamp *cts);
diff --git a/include/uapi/linux/ptp_clock.h b/include/uapi/linux/ptp_clock.h
index 9dc9d00..ff070aa 100644
--- a/include/uapi/linux/ptp_clock.h
+++ b/include/uapi/linux/ptp_clock.h
@@ -86,13 +86,15 @@ struct ptp_clock_caps {
 int n_ext_ts; /* Number of external time stamp channels. */
 int n_per_out; /* Number of programmable periodic signals. */
 int pps; /* Whether the clock supports a PPS callback. */
 int n_pins; /* Number of input/output pins. */
 /* Whether the clock supports precise system-device cross timestamps */
 int cross_timestamping;
- int rsv[13]; /* Reserved for future use. */
+ /* Whether the clock supports adjust phase */
+ int adjust_phase;
+ int rsv[12]; /* Reserved for future use. */
 };

 struct ptp_extts_request {
 unsigned int index; /* Which channel to configure. */
 unsigned int flags; /* Bit field for PTP_xxx flags. */
 unsigned int rsv[2]; /* Reserved for future use. */
diff --git a/tools/testing/selftests/ptp/testptp.c b/tools/testing/selftests/ptp/testptp.c
index c0dd102..da7a9dd 100644
--- a/tools/testing/selftests/ptp/testptp.c
+++ b/tools/testing/selftests/ptp/testptp.c
@@ -266,20 +266,22 @@ int main(int argc, char *argv[])
 " %d maximum frequency adjustment (ppb)\n"
 " %d programmable alarms\n"
 " %d external time stamp channels\n"
 " %d programmable periodic signals\n"
 " %d pulse per second\n"
 " %d programmable pins\n"
- " %d cross timestamping\n",
+ " %d cross timestamping\n"
+ " %d adjust_phase\n",
 caps.max_adj,
 caps.n_alarm,
 caps.n_ext_ts,
 caps.n_per_out,
 caps.pps,
 caps.n_pins,
- caps.cross_timestamping);

Linux PTP Using PHC Adjust Phase Quick Start Guide

R31US0007EU0101 Rev.1.01
Aug 20, 2021

 Page 8

+ caps.cross_timestamping,
+ caps.adjust_phase);
 }
 }

 if (0x7fffffff != adjfreq) {
 memset(&tx, 0, sizeof(tx));
 tx.modes = ADJ_FREQUENCY;
--
2.7.4

To apply the patch file,

$ git am --signoff < 0001-adjust-phase-patch-for-linux-v5.6.patch

Applying: Adjust phase patch for linux v5.6
$ git log
commit d6e62c17b920a4425395fdacc7c174be955e7568
Author: Vincent Cheng <vincent.cheng.xh@renesas.com>
Date: Fri Jul 17 16:50:20 2020 -0400
adjust phase patch for linux v5.6
Signed-off-by: Vincent Cheng <vincent.cheng.xh@renesas.com>

commit 7111951b8d4973bda27ff663f2cf18b663d15b48
Author: Linus Torvalds <torvalds@linux-foundation.org>
Date: Sun Mar 29 15:25:41 2020 -0700
Linux 5.6
Or patch the files and manually commit the changes afterwards.
$ patch -p1 < 0001-adjust-phase-patch-for-linux-v5.6.patch
patching file drivers/ptp/ptp_chardev.c
patching file drivers/ptp/ptp_clock.c
patching file include/linux/ptp_clock_kernel.h
patching file include/uapi/linux/ptp_clock.h
patching file tools/testing/selftests/ptp/testptp.c

$ git status
On branch tmp
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)
modified: drivers/ptp/ptp_chardev.c
modified: drivers/ptp/ptp_clock.c
modified: include/linux/ptp_clock_kernel.h
modified: include/uapi/linux/ptp_clock.h
modified: tools/testing/selftests/ptp/testptp.c
no changes added to commit (use "git add" and/or "git commit -a")

2.2.2. Backporting to Linux v3.x+
For backporting adjust phase changes into other linux kernel versions, examine the following individual patch
files and manually make the corresponding appropriate changes for your linux kernel version.

2.2.2.1. drivers/ptp/ptp_chardev.c
--- a/drivers/ptp/ptp_chardev.c
+++ b/drivers/ptp/ptp_chardev.c
@@ -133,12 +133,13 @@ long ptp_ioctl(struct posix_clock *pc, unsigned int cmd, unsigned long
arg)
 caps.n_alarm = ptp->info->n_alarm;

Linux PTP Using PHC Adjust Phase Quick Start Guide

R31US0007EU0101 Rev.1.01
Aug 20, 2021

 Page 9

 caps.n_ext_ts = ptp->info->n_ext_ts;
 caps.n_per_out = ptp->info->n_per_out;
 caps.pps = ptp->info->pps;
 caps.n_pins = ptp->info->n_pins;
 caps.cross_timestamping = ptp->info->getcrosststamp != NULL;
+ caps.adjust_phase = ptp->info->adjphase != NULL;
 if (copy_to_user((void __user *)arg, &caps, sizeof(caps)))
 err = -EFAULT;
 break;

 case PTP_EXTTS_REQUEST:
 case PTP_EXTTS_REQUEST2:

2.2.2.2. drivers/ptp/ptp_clock.c
--- a/drivers/ptp/ptp_clock.c
+++ b/drivers/ptp/ptp_clock.c
@@ -143,12 +143,21 @@ static int ptp_clock_adjtime(struct posix_clock *pc, struct
__kernel_timex *tx)
 return -ERANGE;
 if (ops->adjfine)
 err = ops->adjfine(ops, tx->freq);
 else
 err = ops->adjfreq(ops, ppb);
 ptp->dialed_frequency = tx->freq;
+ } else if (tx->modes & ADJ_OFFSET) {
+ if (ops->adjphase) {
+ s32 offset = tx->offset;
+
+ if (!(tx->modes & ADJ_NANO))
+ offset *= NSEC_PER_USEC;
+
+ err = ops->adjphase(ops, offset);
+ }
 } else if (tx->modes == 0) {
 tx->freq = ptp->dialed_frequency;
 err = 0;
 }

 return err;

2.2.2.3. include/linux/ptp_clock_kernel.h
--- a/include/linux/ptp_clock_kernel.h
+++ b/include/linux/ptp_clock_kernel.h
@@ -125,12 +128,13 @@ struct ptp_clock_info {
 int n_per_out;
 int n_pins;
 int pps;
 struct ptp_pin_desc *pin_config;
 int (*adjfine)(struct ptp_clock_info *ptp, long scaled_ppm);
 int (*adjfreq)(struct ptp_clock_info *ptp, s32 delta);
+ int (*adjphase)(struct ptp_clock_info *ptp, s32 phase);
 int (*adjtime)(struct ptp_clock_info *ptp, s64 delta);
 int (*gettime64)(struct ptp_clock_info *ptp, struct timespec64 *ts);
 int (*gettimex64)(struct ptp_clock_info *ptp, struct timespec64 *ts,
 struct ptp_system_timestamp *sts);
 int (*getcrosststamp)(struct ptp_clock_info *ptp,

Linux PTP Using PHC Adjust Phase Quick Start Guide

R31US0007EU0101 Rev.1.01
Aug 20, 2021

 Page 10

 struct system_device_crosststamp *cts);

2.2.2.4. include/uapi/linux/ptp_clock.h
--- a/include/uapi/linux/ptp_clock.h
+++ b/include/uapi/linux/ptp_clock.h
@@ -86,13 +86,15 @@ struct ptp_clock_caps {
 int n_ext_ts; /* Number of external time stamp channels. */
 int n_per_out; /* Number of programmable periodic signals. */
 int pps; /* Whether the clock supports a PPS callback. */
 int n_pins; /* Number of input/output pins. */
 /* Whether the clock supports precise system-device cross timestamps */
 int cross_timestamping;
- int rsv[13]; /* Reserved for future use. */
+ /* Whether the clock supports adjust phase */
+ int adjust_phase;
+ int rsv[12]; /* Reserved for future use. */
 };

 struct ptp_extts_request {
 unsigned int index; /* Which channel to configure. */
 unsigned int flags; /* Bit field for PTP_xxx flags. */
 unsigned int rsv[2]; /* Reserved for future use. */

2.2.2.5. tools/testing/selftests/ptp/testptp.c
--- a/tools/testing/selftests/ptp/testptp.c
+++ b/tools/testing/selftests/ptp/testptp.c
@@ -266,20 +266,22 @@ int main(int argc, char *argv[])
 " %d maximum frequency adjustment (ppb)\n"
 " %d programmable alarms\n"
 " %d external time stamp channels\n"
 " %d programmable periodic signals\n"
 " %d pulse per second\n"
 " %d programmable pins\n"
- " %d cross timestamping\n",
+ " %d cross timestamping\n"
+ " %d adjust_phase\n",
 caps.max_adj,
 caps.n_alarm,
 caps.n_ext_ts,
 caps.n_per_out,
 caps.pps,
 caps.n_pins,
- caps.cross_timestamping);
+ caps.cross_timestamping,
+ caps.adjust_phase);
 }
 }

 if (0x7fffffff != adjfreq) {
 memset(&tx, 0, sizeof(tx));
 tx.modes = ADJ_FREQUENCY;

Linux PTP Using PHC Adjust Phase Quick Start Guide

R31US0007EU0101 Rev.1.01
Aug 20, 2021

 Page 11

2.3 Network Interface Requirements
The network interface driver would need to:
■ Support ioctl command SIOCETHTOOL
■ Support PTP hardware clock (PHC)

● Pass PTP Ethernet packet time stamps using the SO_TIMESTAMPING API
● Support POSIX clock API clock_adjtime() with struct timex modes

○ ADJ_FREQUENCY
○ ADJ_OFFSET
○ ADJ_NANO
○ ADJ_SETOFFSET

■ Support PTP request type
● PTP_CLK_REQ_PPS
● PTP_CLK_REQ_EXTTS (PTP_ENABLE_FEATURE)

2.3.1. ethtool
ethtool can show whether a MAC supports hardware or software time stamping and whether it supports PHC.
The following example output indicates support for hardware time stamping listed under Capabilities and is
registered as PHC device 0, PTP Hardware Clock: 0.

$ ethtool -T eth0
Time stamping parameters for eth0:
Capabilities:
 hardware-transmit (SOF_TIMESTAMPING_TX_HARDWARE)
 hardware-receive (SOF_TIMESTAMPING_RX_HARDWARE)
 hardware-raw-clock (SOF_TIMESTAMPING_RAW_HARDWARE)
PTP Hardware Clock: 0
Hardware Transmit Timestamp Modes:
 off (HWTSTAMP_TX_OFF)
 on (HWTSTAMP_TX_ON)
Hardware Receive Filter Modes:
 none (HWTSTAMP_FILTER_NONE)
 all (HWTSTAMP_FILTER_ALL)

If the ethtool utility is not on your system, you can compile the utility from the source.

https://git.kernel.org/pub/scm/network/ethtool/ethtool.git

Build ethtool from source example:

Build ethtool from source
$ git clone git://git.kernel.org/pub/scm/network/ethtool/ethtool.git

$ cd ethtool

$./autogen.sh
$./configure

CROSS compile for target board, ie. sudo apt-get install gcc-aarch64-linux-gnu
$ make clean all CC=/usr/bin/aarch64-linux-gnu-gcc

Copy ethtool binary to target board

https://git.kernel.org/pub/scm/network/ethtool/ethtool.git

Linux PTP Using PHC Adjust Phase Quick Start Guide

R31US0007EU0101 Rev.1.01
Aug 20, 2021

 Page 12

2.3.2. SIOCETHTOOL
Used in linuxptp/sk.c to interrogate network interface timestamping capabilities.

linuxptp/sk.c:
int sk_get_ts_info(const char *name, struct sk_ts_info *sk_info)
{
#ifdef ETHTOOL_GET_TS_INFO
 struct ethtool_ts_info info;
 ...

 info.cmd = ETHTOOL_GET_TS_INFO;

 ...

 err = ioctl(fd, SIOCETHTOOL, &ifr);
 if (err < 0) {
 pr_err("ioctl SIOCETHTOOL failed: %m");
 close(fd);
 goto failed;
…
include/uapi/linux/ethtool.h:
 #define ETHTOOL_GET_TS_INFO 0x00000041 /* Get time stamping and PHC info */

2.3.3. SO_TIMESTAMPING
https://www.kernel.org/doc/Documentation/networking/timestamping.txt

1. Control Interfaces

 The interfaces for receiving network packages timestamps are:
 ...
 * SO_TIMESTAMPING
 Generates timestamps on reception, transmission or both. Supports
 multiple timestamp sources, including hardware. Supports generating
 timestamps for stream sockets.

 ...

 1.3 SO_TIMESTAMPING (also SO_TIMESTAMPING_OLD and SO_TIMESTAMPING_NEW):

 Supports multiple types of timestamp requests. As a result, this
 socket option takes a bitmap of flags, not a boolean. In

 err = setsockopt(fd, SOL_SOCKET, SO_TIMESTAMPING, &val, sizeof(val));

 val is an integer with any of the following bits set. Setting other
 bit returns EINVAL and does not change the current state.

 The socket option configures timestamp generation for individual
 sk_buffs (1.3.1), timestamp reporting to the socket's error
 queue (1.3.2) and options (1.3.3). Timestamp generation can also
 be enabled for individual sendmsg calls using cmsg (1.3.4).

 1.3.1 Timestamp Generation

 Some bits are requests to the stack to try to generate timestamps. Any
 combination of them is valid. Changes to these bits apply to newly
 created packets, not to packets already in the stack. As a result, it

https://www.kernel.org/doc/Documentation/networking/timestamping.txt

Linux PTP Using PHC Adjust Phase Quick Start Guide

R31US0007EU0101 Rev.1.01
Aug 20, 2021

 Page 13

 is possible to selectively request timestamps for a subset of packets
 (e.g., for sampling) by embedding an send() call within two setsockopt
 calls, one to enable timestamp generation and one to disable it.
 Timestamps may also be generated for reasons other than being
 requested by a particular socket, such as when receive timestamping is
 enabled system wide, as explained earlier.

 SOF_TIMESTAMPING_RX_HARDWARE:
 Request rx timestamps generated by the network adapter.

 SOF_TIMESTAMPING_RX_SOFTWARE:
 Request rx timestamps when data enters the kernel. These timestamps
 are generated just after a device driver hands a packet to the
 kernel receive stack.

 SOF_TIMESTAMPING_TX_HARDWARE:
 Request tx timestamps generated by the network adapter. This flag
 can be enabled via both socket options and control messages.

 SOF_TIMESTAMPING_TX_SOFTWARE:
 Request tx timestamps when data leaves the kernel. These timestamps
 are generated in the device driver as close as possible, but always
 prior to, passing the packet to the network interface. Hence, they
 require driver support and may not be available for all devices.
 This flag can be enabled via both socket options and control messages.

 ...

 1.3.4. Enabling timestamps via control messages

 In addition to socket options, timestamp generation can be requested
 per write via cmsg, only for SOF_TIMESTAMPING_TX_* (see Section 1.3.1).
 Using this feature, applications can sample timestamps per sendmsg()
 without paying the overhead of enabling and disabling timestamps via
 setsockopt:

 struct msghdr *msg;
 ...
 cmsg = CMSG_FIRSTHDR(msg);
 cmsg->cmsg_level = SOL_SOCKET;
 cmsg->cmsg_type = SO_TIMESTAMPING;
 cmsg->cmsg_len = CMSG_LEN(sizeof(__u32));
 *((__u32 *) CMSG_DATA(cmsg)) = SOF_TIMESTAMPING_TX_SCHED |
 SOF_TIMESTAMPING_TX_SOFTWARE |
 SOF_TIMESTAMPING_TX_ACK;
 err = sendmsg(fd, msg, 0);

 The SOF_TIMESTAMPING_TX_* flags set via cmsg will override
 the SOF_TIMESTAMPING_TX_* flags set via setsockopt.

 Moreover, applications must still enable timestamp reporting via
 setsockopt to receive timestamps:

 __u32 val = SOF_TIMESTAMPING_SOFTWARE |
 SOF_TIMESTAMPING_OPT_ID /* or any other flag */;
 err = setsockopt(fd, SOL_SOCKET, SO_TIMESTAMPING, &val, sizeof(val));

 ...

Linux PTP Using PHC Adjust Phase Quick Start Guide

R31US0007EU0101 Rev.1.01
Aug 20, 2021

 Page 14

 3.1 Hardware Timestamping Implementation: Device Drivers

 A driver which supports hardware time stamping must support the
 SIOCSHWTSTAMP ioctl and update the supplied struct hwtstamp_config with
 the actual values as described in the section on SIOCSHWTSTAMP. It
 should also support SIOCGHWTSTAMP.

 Time stamps for received packets must be stored in the skb. To get a pointer
 to the shared time stamp structure of the skb call skb_hwtstamps(). Then
 set the time stamps in the structure:

 struct skb_shared_hwtstamps {
 /* hardware time stamp transformed into duration
 * since arbitrary point in time
 */
 ktime_t hwtstamp;
 };

 Time stamps for outgoing packets are to be generated as follows:
 - In hard_start_xmit(), check if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)
 is set no-zero. If yes, then the driver is expected to do hardware time
 stamping.
 - If this is possible for the skb and requested, then declare
 that the driver is doing the time stamping by setting the flag
 SKBTX_IN_PROGRESS in skb_shinfo(skb)->tx_flags , e.g. with

 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;

 You might want to keep a pointer to the associated skb for the next step
 and not free the skb. A driver not supporting hardware time stamping doesn't
 do that. A driver must never touch sk_buff::tstamp! It is used to store
 software generated time stamps by the network subsystem.
 - Driver should call skb_tx_timestamp() as close to passing sk_buff to hardware
 as possible. skb_tx_timestamp() provides a software time stamp if requested
 and hardware timestamping is not possible (SKBTX_IN_PROGRESS not set).
 - As soon as the driver has sent the packet and/or obtained a
 hardware time stamp for it, it passes the time stamp back by
 calling skb_hwtstamp_tx() with the original skb, the raw
 hardware time stamp. skb_hwtstamp_tx() clones the original skb and
 adds the timestamps, therefore the original skb has to be freed now.
 If obtaining the hardware time stamp somehow fails, then the driver
 should not fall back to software time stamping. The rationale is that
 this would occur at a later time in the processing pipeline than other
 software time stamping and therefore could lead to unexpected deltas
 between time stamps.

2.3.4. PTP_CLK_REQ_EXTTS
Can check if device supports PTP_CLK_REQ_EXTTS by using the testptp utility. For details on testptp, see
testptp.

For example, the device /dev/ptp0 supports PTP_CLK_REQ_EXTTS because it says 1 external time
stamp channels.

testptp -d /dev/ptp0 -c
capabilities:
 999999999 maximum frequency adjustment (ppb)
 0 programmable alarms

Linux PTP Using PHC Adjust Phase Quick Start Guide

R31US0007EU0101 Rev.1.01
Aug 20, 2021

 Page 15

 1 external time stamp channels
 0 programmable periodic signals
 0 pulse per second
 0 programmable pins
 0 cross timestamping

2.4 Linux PTP Hardware Clock
Linux PTP works with devices with drivers that support the PTP hardware clock (PHC) infrastructure for Linux.
Details on Linux PHC subsystem can be found at https://www.kernel.org/doc/Documentation/ptp/ptp.txt.

Clock drivers include include/linux/ptp_clock_kernel.h and register
themselves by presenting a 'struct ptp_clock_info' to the
registration method. Clock drivers must implement all of the
functions in the interface. If a clock does not offer a particular
ancillary feature, then the driver should just return -EOPNOTSUPP
from those functions.

Drivers must ensure that all of the methods in interface are
reentrant. Since most hardware implementations treat the time value
as a 64 bit integer accessed as two 32 bit registers, drivers
should use spin_lock_irqsave/spin_unlock_irqrestore to protect
against concurrent access. This locking cannot be accomplished in
class driver, since the lock may also be needed by the clock
driver's interrupt service routine.

For examples of drivers that support PHC, search for ptp_clock_register in the linux kernel source.

Sample of devices that support PHC API (Linux Kernel v5.7):
■ drivers/net/ethernet/broadcom/bnx2x/bnx2x_main.c
■ drivers/net/ethernet/broadcom/tg3.c
■ drivers/net/ethernet/cadence/macb_ptp.c
■ drivers/net/ethernet/cavium/common/cavium_ptp.c
■ drivers/net/ethernet/freescale/fec_ptp.c
■ drivers/net/ethernet/intel/e1000e/ptp.c
■ drivers/net/ethernet/renesas/ravb_ptp.c
■ drivers/net/phy/dp83640.c

Renesas Timing Devices with PHC driver support:
■ drivers/ptp/ptp_clockmatrix.c
■ drivers/ptp/ptp_idt82p33.c

2.4.1. ClockMatrix PHC Driver
The ClockMatrixTM family includes integrated devices that provide eight PLL channels. Each PLL channel can be
independently configured as a frequency synthesizer, jitter attenuator, digitally controlled oscillator (DCO), or a
digital phase lock loop (DPLL).

Typically these devices are used as timing references and clock sources for PTP applications.

2.4.1.1. Source Code
The ClockMatrix PHC driver with adjust phase support was introduced in Linux v5.8 kernel. The ClockMatrix
PHC driver files are located in the Linux kernel ``drivers/ptp`` directory.

Latest driver code can be retrieved from the master branch of the linux kernel.

https://www.kernel.org/doc/Documentation/ptp/ptp.txt

Linux PTP Using PHC Adjust Phase Quick Start Guide

R31US0007EU0101 Rev.1.01
Aug 20, 2021

 Page 16

https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/drivers/ptp?h=master

Files of interest:
■ Kconfig
■ Makefile
■ idt8a340_reg.h
■ ptp_clockmatrix.h
■ ptp_clockmatrix.c

Kconfig:
…
config PTP_1588_CLOCK_IDTCM
 tristate "IDT CLOCKMATRIX as PTP clock"
 depends on PTP_1588_CLOCK && I2C
 default n
 help
 This driver adds support for using IDT CLOCKMATRIX(TM) as a PTP
 clock. This clock is only useful if your time stamping MAC
 is connected to the IDT chip.

 To compile this driver as a module, choose M here: the module
 will be called ptp_clockmatrix.
…

Makefile:
…
obj-$(CONFIG_PTP_1588_CLOCK_IDTCM) += ptp_clockmatrix.o
…

2.4.1.2. CM PHC Driver Release Notes

Kernel Date Description

5.12 2021-02-17 Fixes: Output to internal 1-PPS Alignment not complete when SYS_DPLL not
locked.
 clean-up - parenthesis around a == b are unnecessary
 simplify code - remove unnecessary `err` variable
 coding style - tighten vertical spacing
 clean-up dev_*() messages
 add alignment of 1-PPS to idtcm_perout_enable
 add wait_for_sys_apll_dpll_lock.

5.11 2020-12-09 Fixes: 4.8.7 non-zero phase_adj is lost when driver starts
 deprecate firmware older than 4.8.7
 fix non-zero phase_adj is lost after snap
 remove 5 second delay before entering write phase mode
 reset device and check BOOT_STATUS

5.9.12 2020-11-25
2020-08-19

bug fix for idtcm_strverscmp
Fixes: I2C write bug for certain platforms
 use i2c_master_send for i2c write

5.9 2020-07-30 Fixes: Intermittent snap bug for 4.8.0
 update to support 4.8.7 firmware

https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/drivers/ptp?h=master

Linux PTP Using PHC Adjust Phase Quick Start Guide

R31US0007EU0101 Rev.1.01
Aug 20, 2021

 Page 17

Kernel Date Description

5.8 2020-05-02
2020-04-25

Add adjphase() to support PHC write phase mode.
Remove unnecessary comparison

5.6 2020-01-07
2020-01-02

Rework clockmatrix version information.
Constify copied structure

5.5 2019-11-06
2019-11-03

Fix missing unlock on error in idtcm_probe()
Add a ptp clock driver for IDT ClockMatrix

2.4.1.3. Device Connection
The ClockMatrix device is expected to output two signals to the PTP time stamping device.
■ x MHz as 1588 PTP clock
■ 1-PPS to align the rising clock edge of the PTP Timer with ClockMatrix
 PTP 0 PTP 1
 +-----------------+ +-------------------+
 | IN |<------------------------------|OUT |
 | | 1588 PTP clock x MHz | |
 | PTP Timer | | ClockMatrix |
 | | | |
 | IN |<------------------------------|OUT |
 +-----------------+ 1588 Timestamp event 1-PPS +-------------------+

 PTP time stamper driver supports: PTP_CLK_REQ_EXTTS

2.4.1.4. Kernel Device Tree
Insert ClockMatrix in the appropriate section of the device tree.

Sample entry on the Xilinx ZCU102 board:

…
i2c-mux@75 {
 i2c@1 {
 phc@5b { /* Clock Matrix */
 compatible = "idt,8a34000";
 reg = <0x5b>;
 };
 };
…

2.4.1.5. Kernel .config

PTP clock support

CONFIG_PTP_1588_CLOCK=y

Enable PHYLIB and NETWORK_PHY_TIMESTAMPING to see the additional clocks.

CONFIG_PTP_1588_CLOCK_IDTCM=m

Linux PTP Using PHC Adjust Phase Quick Start Guide

R31US0007EU0101 Rev.1.01
Aug 20, 2021

 Page 18

2.4.1.6. Device Configuration
When the ClockMatrix driver is loaded, it looks in /lib/firmware a configuration file to load into the
ClockMatrix device.

The filename is determined during compile time by FW_FILENAME:

static int idtcm_load_firmware(struct idtcm *idtcm,
 struct device *dev)
{
 const struct firmware *fw;
 …
 err = request_firmware(&fw, FW_FILENAME, dev);

FW_FILENAME macro is defined in drivers/ptp/ptp_clockmatrix.h.

Renesas Timing Commander Software using Clockmatrix Timing Commander Personality v8.4. can be used to
generate ClockMatrix device configuration .bin file.

#define FW_FILENAME "idtcm.bin"

Linux PTP Using PHC Adjust Phase Quick Start Guide

R31US0007EU0101 Rev.1.01
Aug 20, 2021

 Page 19

For device configuration support, email IDT-support-1588@lm.renesas.com.

mailto:IDT-support-1588@lm.renesas.com

Linux PTP Using PHC Adjust Phase Quick Start Guide

R31US0007EU0101 Rev.1.01
Aug 20, 2021

 Page 20

3. Getting Started

3.1 Sanity Testing
Use testptp and phc_ctl to check that the 1588 timestamp device and PTP clock device is connected and
configured to behave as expected.
■ Verify PHC capabilities
■ Verify clock’s time of day increments
■ Verify clock set time
■ Verify time stamper incoming 1-PPS from PTP clock
■ Verify ts2phc aligns time stamper and 1-PPS from PTP clock
■ Verify PTP clock time adjustment affects PTP timestamp
■ Verify PTP clock frequency adjustment affects time stamper frequency

Some of the checks can be performed with testptp or phc_ctl. If the check passes using one of the
programs, there is no need to repeat the same check using the other program.

The following example logs were captured using the Xilinx ZCU102 board with a ClockMatrix device as the PTP
clock.

 PTP 0 PTP 1
 +-----------------+ +-------------------+
 | IN |<------------------------------|OUT |
 | | 1588 PTP clock x MHz | |
 | PTP Timer | | ClockMatrix |
 | | | |
 | IN |<------------------------------|OUT |
 +-----------------+ 1588 Timestamp event 1-PPS +-------------------+

 PTP time stamper driver supports: PTP_CLK_REQ_EXTTS

/dev/ptp0, Xilinx Timer, is the time stamper for 1588 packets.

/dev/ptp1, ClockMatrix, is the PTP clock source to the time stamper.

There is an expectation that the PTP timestamp with 0 nanoseconds aligns with the rising edge of outgoing
1-PPS clock signal.

3.1.1. Verify PHC Capabilities
For the Xilinx time stamper, the PHC driver must support at least one "external time stamp channels"..

For the ClockMatrix device, the PHC driver must support at least one "programmable periodic signals" to
generate the 1-PPS to the Xilinx time stamper.

testptp

For Xilinx timer stamper:

$./testptp -d /dev/ptp0 -c
capabilities:
 999999999 maximum frequency adjustment (ppb)
 0 programmable alarms
 1 external time stamp channels
 0 programmable periodic signals
 0 pulse per second
 0 programmable pins
 0 cross timestamping

Linux PTP Using PHC Adjust Phase Quick Start Guide

R31US0007EU0101 Rev.1.01
Aug 20, 2021

 Page 21

For ClockMatrix device:

$./testptp -d /dev/ptp1 -c
capabilities:
 244000 maximum frequency adjustment (ppb)
 0 programmable alarms
 0 external time stamp channels
 12 programmable periodic signals
 0 pulse per second
 0 programmable pins
 0 cross timestamping

phc_ctl

For Xilinx timer stamper:

$./phc_ctl /dev/ptp0 -- caps
phc_ctl[60.986]:
capabilities:
 999999999 maximum frequency adjustment (ppb)
 0 programable alarms
 1 external time stamp channels
 0 programmable periodic signals
 0 configurable input/output pins
 doesn't have pulse per second support
 doesn't have cross timestamping support

For ClockMatrix device:

$./phc_ctl /dev/ptp0 -- caps
phc_ctl[94.634]:
capabilities:
 244000 maximum frequency adjustment (ppb)
 0 programable alarms
 0 external time stamp channels
 12 programmable periodic signals
 0 configurable input/output pins
 doesn't have pulse per second support
 doesn't have cross timestamping support

3.1.2. Verify Clocks Increment
If the PTP device is working (i.e., the input clock is present), repeated command to get the clock time should
show incremental readings.

testptp

For Xilinx timer stamper.

$./testptp -d /dev/ptp0 -g
clock time: 1595449857.649425272 or Wed Jul 22 20:30:57 2020

$./testptp -d /dev/ptp0 -g
clock time: 1595449859.400688308 or Wed Jul 22 20:30:59 2020

For ClockMatrix device:

$./testptp -d /dev/ptp1 -g
clock time: 1595449899.113274703 or Wed Jul 22 20:31:39 2020

$./testptp -d /dev/ptp1 -g
clock time: 1595449900.072974835 or Wed Jul 22 20:31:40 2020

Linux PTP Using PHC Adjust Phase Quick Start Guide

R31US0007EU0101 Rev.1.01
Aug 20, 2021

 Page 22

phc_ctl

For Xilinx timer stamper.

$./phc_ctl /dev/ptp0 -- get
phc_ctl[1515.896]: clock time is 1524.402616468 or Thu Jan 1 00:25:24 1970

$./phc_ctl /dev/ptp0 -- get
phc_ctl[1533.458]: clock time is 1541.966759556 or Thu Jan 1 00:25:41 1970

For ClockMatrix device:

$./phc_ctl /dev/ptp1 -- get
phc_ctl[1643.300]: clock time is 1637.701499548 or Thu Jan 1 00:27:17 1970

$./phc_ctl /dev/ptp1 -- get
phc_ctl[1647.248]: clock time is 1641.649999488 or Thu Jan 1 00:27:21 1970

3.1.3. Verify Clock Set Time
Check clock set time was able set to 1000 seconds and then 0 seconds.

For Xilinx timer stamper.

$./phc_ctl /dev/ptp0 -- set 1000
phc_ctl[12839.455]: set clock time to 1000.000000000 or Thu Jan 1 00:16:40 1970

$./phc_ctl /dev/ptp0 -- get
phc_ctl[12842.198]: clock time is 1002.743910000 or Thu Jan 1 00:16:42 1970

$./phc_ctl /dev/ptp0 -- set 0
phc_ctl[12852.670]: set clock time to 0.000000000 or Thu Jan 1 00:00:00 1970

$./phc_ctl /dev/ptp0 -- get
phc_ctl[12854.174]: clock time is 1.504634712 or Thu Jan 1 00:00:01 1970

For ClockMatrix device:

$./phc_ctl /dev/ptp1 -- set 1000
phc_ctl[13015.464]: set clock time to 1000.000000000 or Thu Jan 1 00:16:40 1970

$./phc_ctl /dev/ptp1 -- get
phc_ctl[13022.248]: clock time is 1006.783599918 or Thu Jan 1 00:16:46 1970

$./phc_ctl /dev/ptp1 -- set 0
phc_ctl[13025.308]: set clock time to 0.000000000 or Thu Jan 1 00:00:00 1970

$./phc_ctl /dev/ptp1 -- get
phc_ctl[13026.747]: clock time is 1.439099534 or Thu Jan 1 00:00:01 1970

3.1.4. Verify Time Stamper Incoming 1-PPS from PTP Clock
Since the Xilinx timer should be receiving a 1-PPS input, it should show periodic 1 second events.

$./testptp -e 5000 -d /dev/ptp0
external time stamp request okay
event index 0 at 1797.085533392
event index 0 at 1798.085533392
event index 0 at 1799.085533392
event index 0 at 1800.085533392
event index 0 at 1801.085533392
event index 0 at 1802.085533392

Linux PTP Using PHC Adjust Phase Quick Start Guide

R31US0007EU0101 Rev.1.01
Aug 20, 2021

 Page 23

event index 0 at 1803.085533392

There may be an accumulation of 1-PPS events, and you may see the display scroll rapidly. However, the
1-PPS event queue should flush relatively quickly and you should see the display incrementing every second.

To quit testptp loop, press Ctrl+C.

If the 1-PPS clock going into the Xilinx timer is missing, there will be no event index output after external
time stamp request okay is displayed.

$./testptp -e 5000 -d /dev/ptp0
external time stamp request okay

To quit testptp loop, press Ctrl+C.

3.1.5. Verify ts2phc Aligns Time Stamper and 1-PPS from PTP Clock
1. Set time stamper time to 1000.5 seconds.
2. Set PHC time to 80000 seconds.
3. Run ts2phc with debug log enabled to align time stamper to PHC clock.

When using ts2phc with a ClockMatrix device, the message: PTP_PIN_SETFUNC failed: Invalid
argument may pop up. The ClockMatrix PHC driver does not support dynamic PTP_PIN_SETFUNC yet. This
message can be ignored because the ClockMatrix device is expected to be configured to output the expected
1-PPS during start-up.

$ cat ts2phc.cfg

ts2phc config file to get it to behave like syncd to align
time stamper to PHC device's 1-PPS signal.

Example:
./ts2phc -m -q -f ts2phc.cfg

[global]
clock_servo nullf
first_step_threshold 0.000000001
step_threshold 0.000000001

time stamper, slave device
[/dev/ptp0]
ts2phc.channel 0

PHC device (ex. CM), master device
Set ts2phc.channel to 2 for Sabre
[/dev/ptp1]
ts2phc.master 1
ts2phc.channel 5

Set time stamper time to 1000.5 seconds.

$./phc_ctl /dev/ptp0 -- set 1000.5
phc_ctl[15170.818]: set clock time to 1000.500000000 or Thu Jan 1 00:16:40 1970

Set PHC time to 80000 seconds.

Linux PTP Using PHC Adjust Phase Quick Start Guide

R31US0007EU0101 Rev.1.01
Aug 20, 2021

 Page 24

$./phc_ctl /dev/ptp1 -- set 80000
phc_ctl[15188.347]: set clock time to 80000.000000000 or Thu Jan 1 22:13:20 1970

Run ``ts2phc`` with debug log enabled to align time stamper to PHC clock.

$./ts2phc -mqf ts2phc.cfg -l 7
ts2phc[15208.103]: config item (null).message_tag is '(null)'

ts2phc[15208.104]: config item (null).verbose is 1

ts2phc[15208.104]: config item (null).use_syslog is 0

ts2phc[15208.104]: config item (null).logging_level is 7

ts2phc[15208.104]: config item /dev/ptp0.ts2phc.master is 0

ts2phc[15208.104]: config item (null).clock_servo is 3

ts2phc[15208.104]: config item /dev/ptp0.ts2phc.pin_index is 0

ts2phc[15208.104]: config item /dev/ptp0.ts2phc.channel is 0

ts2phc[15208.104]: config item /dev/ptp0.ts2phc.extts_polarity is 2

ts2phc[15208.104]: config item /dev/ptp0.ts2phc.extts_correction is 0

ts2phc[15208.104]: config item /dev/ptp0.ts2phc.pulsewidth is 500000000

ts2phc[15208.104]: config item (null).free_running is 0

ts2phc[15208.104]: PHC slave /dev/ptp0 has ptp index 0

ts2phc[15208.104]: config item (null).step_threshold is 0.000000

ts2phc[15208.104]: config item (null).first_step_threshold is 0.000000

ts2phc[15208.104]: config item (null).max_frequency is 900000000

ts2phc[15208.104]: config item (null).servo_offset_threshold is 0

ts2phc[15208.104]: config item (null).servo_num_offset_values is 10

ts2phc[15208.104]: config item /dev/ptp1.ts2phc.master is 1

ts2phc[15208.105]: PHC master /dev/ptp1 has ptp index 0

ts2phc[15208.105]: config item /dev/ptp1.ts2phc.channel is 5

ts2phc[15208.105]: config item /dev/ptp1.ts2phc.pin_index is 0

PTP_PIN_SETFUNC failed: Invalid argument

ts2phc[15208.105]: Failed to set the pin. Continuing bravely on...

ts2phc[15209.346]: /dev/ptp0 extts index 0 at 1039.030816420 corr 0 src 80021.400568 diff -78981969183580

ts2phc[15209.346]: /dev/ptp0 master offset -78981969183580 s1 freq+0

ts2phc[15210.346]: /dev/ptp0 extts index 0 at 80022.000000000 corr 0 src 80022.400672 diff 0

ts2phc[15210.346]: /dev/ptp0 master offset 0 s2 freq+0

ts2phc[15211.346]: /dev/ptp0 extts index 0 at 80023.000000000 corr 0 src 80023.400674 diff 0

ts2phc[15211.346]: /dev/ptp0 master offset 0 s2 freq+0

ts2phc[15212.346]: /dev/ptp0 extts index 0 at 80024.000000000 corr 0 src 80024.400728 diff 0

ts2phc[15212.346]: /dev/ptp0 master offset 0 s2 freq+0

ts2phc[15213.346]: /dev/ptp0 extts index 0 at 80025.000000000 corr 0 src 80025.300776 diff 0

ts2phc[15213.346]: /dev/ptp0 master offset 0 s2 freq+0

s1 means unlock state and s2 is the locked state (i.e., master and are aligned). The states in ts2phc are
independent of the states in ptp4l.

Looking closer at the following lines:

PHC slave /dev/ptp0 has ptp index 0
...
PHC master /dev/ptp1 has ptp index 0
...
/dev/ptp0 extts index 0 at 1039.030816420 corr 0 src 80021.400568 diff -78981969183580
/dev/ptp0 master offset -78981969183580 s1 freq+0
/dev/ptp0 extts index 0 at 80022.000000000 corr 0 src 80022.400672 diff 0

1039.030816420 is the time from /dev/ptp0, the PHC slave.

80021.400568 is the time from /dev/ptp1, the PHC master.

diff -78981969183580 or master offset -78981969183580 is in nanoseconds, ie. -78981.969183580 s.

To align the PHC slave, ts2phc will take the difference between the PHC masters and adjust the PHC slave
accordingly.

Linux PTP Using PHC Adjust Phase Quick Start Guide

R31US0007EU0101 Rev.1.01
Aug 20, 2021

 Page 25

Note after the adjustment, the master offset becomes 0.

/dev/ptp0 master offset -78981969183580 s1 freq+0
...
/dev/ptp0 master offset 0 s2 freq+0
...
/dev/ptp0 master offset 0 s2 freq+0

When you stop ts2phc, it will disable the PTP clock's 1-PPS output. Running ts2phc will enable it again.

3.1.6. Verify PTP Clock Time Adjustment Affects PTP Timestamp
Prerequisites:
■ PTP master configured for 1 packet per second internal
■ Run ``ts2phc`` in the background
■ Run ``ptp4l`` as a slave in free run mode in the background using the time stamper PHC (i.e. no -p option)

ptp4l can be configured into "free run" mode by adding "free_running 1" to the ptp4l configuration file.

Or by adding "--free_running=1" at the command line when starting ptp4l .

The plan is to monitor the master offset from ptp4l as we manually change the ToD counter on the PTP clock.

The master offset value in ptp4l output represents the measured offset from the master in nanoseconds.

$ cat debug2.cfg
[global]
domainNumber 4

Announce messages
announceReceiptTimeout 2
logAnnounceInterval 1

Sync/Delay_Req/Delay_Resp messages
ex. 0 = 1-PPS, -3 = 8 PPS, -4 = 16 PPS
logSyncInterval 0
logMinDelayReqInterval 0

slaveOnly 1
masterOnly 0

clockClass 255

hybrid_e2e 1
inhibit_multicast_service 1
unicast_listen 1
unicast_req_duration 300

network_transport UDPv4

[unicast_master_table]
table_id 1
logQueryInterval 2
UDPv4 10.64.10.1

[eth0]
unicast_master_table 1

Linux PTP Using PHC Adjust Phase Quick Start Guide

R31US0007EU0101 Rev.1.01
Aug 20, 2021

 Page 26

Run ts2phc in background to align PHC clock to time stamper

$./ts2phc -mq -f ts2phc.cfg&
[1] 4611
PTP_PIN_SETFUNC failed: Invalid argument
ts2phc[31300.670]: Failed to set the pin. Continuing bravely on...

Run ptp4l in free run mode against a 1-PPS master to monitor
the effect of stepping the PTP clock.

$./ptp4l -mqf debug2.cfg --free_running=1&

...
ptp4l[31666.715]: master offset -1614041727993934660 s0 freq -68 path delay 7723
...

Master offset is -1614041727993934660 ns, so need to adj +
phc_ctl adj value is in seconds.

$./phc_ctl /dev/ptp1 -- adj 1614041727.993934660
phc_ctl[31763.871]: adjusted clock by 1614041727.993935 seconds

ptp4l[31766.706]: master offset-5636 s0 freq -304195 path delay 7719
ptp4l[31768.706]: master offset-5785 s0 freq -72 path delay 7724
ptp4l[31770.706]: master offset-5900 s0 freq -56 path delay 7727

If the initial offset master offset was positive, use a negative adj value.

...
ptp4l[32019.682]: master offset 199999266496145525 s0 freq -48 path delay 7722

Master offset is 199999266496145525 ns, so need to adj -
phc_ctl adj value is in seconds.

$./phc_ctl /dev/ptp1 -- adj -199999266.496145525
phc_ctl[32075.860]: adjusted clock by -199999266.496146 seconds

ptp4l[32077.677]: master offset -3266 s0 freq +100010 path delay 7725
ptp4l[32079.677]: master offset -3359 s0 freq -48 path delay 7722
ptp4l[32081.676]: master offset -3487 s0 freq -64 path delay 7722

3.1.7. Verify PTP Clock Frequency Adjustment Affects Time Stamper Frequency
Prerequisites:
■ PTP master configured for 1 packet per second internal
■ Run ts2phc in the background
■ Run ptp4l as a slave in free run mode in the background using the time stamper PHC (i.e. no -p option)

ptp4l can be configured into "free run" mode by adding "free_running 1" to the ptp4l configuration file.

Or by adding "--free_running=1" at the command line when starting ptp4l.

The plan is to monitor the increase/decrease in the master offset from ptp4l as we manually change the
frequency.

Linux PTP Using PHC Adjust Phase Quick Start Guide

R31US0007EU0101 Rev.1.01
Aug 20, 2021

 Page 27

The freq value in ptp4l output represents the frequency adjustment of the clock in parts per billion, ppb, to
converge to zero using pi_servo. However, we are running in free run so no adjustments are made

Run ts2phc in background to align PHC clock to time stamper

$./ts2phc -mq -f ts2phc.cfg&

Run ptp4l in free run mode against a 1-PPS master to monitor
the effect of stepping the PTP clock.

$./ptp4l -mqf debug2.cfg --free_running=1&

...
ptp4l[43236.627]: master offset -1614053583657415603 s0 freq -60 path delay 7730
...

Adjust master offset close to 0 so it is easier to see freq changes.

$./phc_ctl /dev/ptp1 -- adj 1614053583.657414804
phc_ctl[43237.739]: adjusted clock by 1614053583.657415 seconds
...
ptp4l[43238.626]: master offset -1614053583657415723 s0 freq -60 path delay 7730
ptp4l[43240.626]: master offset -923 s0 freq +999999999 path delay 7726
...
ptp4l[43252.625]: master offset -1587 s0 freq -52 path delay 7726
ptp4l[43254.625]: master offset -1725 s0 freq -68 path delay 7728

Master offset is -, adj +freq to make offset more positive
Note the sudden increase in the master offset above 0

$./phc_ctl /dev/ptp1 -- freq 100000
phc_ctl[43256.419]: adjusted clock frequency offset to 100000.000000ppb
ptp4l[43256.625]: master offset 18739 s0 freq +10232 path delay 7728
ptp4l[43258.625]: master offset 218724 s0 freq +99978 path delay 7719
ptp4l[43260.624]: master offset 418657 s0 freq +99954 path delay 7714
ptp4l[43262.624]: master offset 619941 s0 freq +99962 path delay 6374
ptp4l[43264.624]: master offset 836138 s0 freq +99972 path delay -9859
ptp4l[43266.624]: master offset 1036107 s0 freq +99936 path delay -9936

Master offset is +, adj -freq to make offset more negative
Note the sudden decrease in the master offset to below 0

$./phc_ctl /dev/ptp1 -- freq -100000
phc_ctl[43267.670]: adjusted clock frequency offset to -100000.000000ppb
ptp4l[43268.624]: master offset 1045403 s0 freq +4648 path delay -9936
ptp4l[43270.623]: master offset 845291 s0 freq -100066 path delay -9936
ptp4l[43272.623]: master offset 637303 s0 freq -100070 path delay -2068
ptp4l[43274.623]: master offset 428607 s0 freq -100082 path delay 6484
ptp4l[43276.623]: master offset 209219 s0 freq -100090 path delay 25712
ptp4l[43278.623]: master offset 2421 s0 freq -100058 path delay 32414
ptp4l[43280.622]: master offset -197723 s0 freq -100082 path delay 32414

Linux PTP Using PHC Adjust Phase Quick Start Guide

R31US0007EU0101 Rev.1.01
Aug 20, 2021

 Page 28

Set freq to 0 to return to neutral position, will drift naturally.
Note the return to a more stable master offset

$./phc_ctl /dev/ptp1 -- freq 0
phc_ctl[43281.814]: adjusted clock frequency offset to 0.000000ppb
ptp4l[43282.622]: master offset -311498 s0 freq -59672 path delay 26853
ptp4l[43284.622]: master offset -308916 s0 freq -56 path delay 24159
ptp4l[43286.622]: master offset -305015 s0 freq -32 path delay 20194
ptp4l[43288.622]: master offset -302327 s0 freq -80 path delay 17346
ptp4l[43290.622]: master offset -297620 s0 freq -52 path delay 12535

3.2 ts2phc
ts2phc one of the utilities under Linux PTP, is used to align the timestamping device with the Renesas timing
device.

./ts2phc -h

usage: ts2phc [options]

 -c [dev|name] phc slave clock (like /dev/ptp0 or eth0)
 (may be specified multiple times)
 -f [file] read configuration from 'file'
 -h prints this message and exits
 -l [num] set the logging level to 'num'
 -m print messages to stdout
 -q do not print messages to the syslog
 -s [dev|name] source of the PPS signal
 may take any of the following forms:
 generic - an external 1-PPS without ToD information
 /dev/ptp0 - a local PTP Hardware Clock (PHC)
 eth0 - a local PTP Hardware Clock (PHC)
 nmea - a gps device connected by serial port or network
 -v prints the software version and exits

When using ts2phc with a ClockMatrix device, the message: PTP_PIN_SETFUNC failed: Invalid
argument may pop up. The ClockMatrix PHC driver does not support dynamic PTP_PIN_SETFUNC yet. This
message can be ignored because the ClockMatrix device is expected to be configured to output the expected
1-PPS during start-up.

3.3 ptp4l
ptp4l is an implementation of the Precision Time Protocol (PTP) according to IEEE standard 1588 for Linux. It
implements Boundary Clock (BC), Ordinary Clock (OC), and Transparent Clock (TC).

usage: ptp4l [options]

Delay Mechanism

 -A Auto, starting with E2E
 -E E2E, delay request-response (default)
 -P P2P, peer delay mechanism

 Network Transport

 -2 IEEE 802.3
 -4 UDP IPV4 (default)
 -6 UDP IPV6

Linux PTP Using PHC Adjust Phase Quick Start Guide

R31US0007EU0101 Rev.1.01
Aug 20, 2021

 Page 29

 Time Stamping

 -H HARDWARE (default)
 -S SOFTWARE
 -L LEGACY HW

 Other Options

 -f [file] read configuration from 'file'
 -i [dev] interface device to use, for example 'eth0'
 (may be specified multiple times)
 -p [dev] Clock device to use, default auto
 (ignored for SOFTWARE/LEGACY HW time stamping)
 -s slave only mode (overrides configuration file)
 -l [num] set the logging level to 'num'
 -m print messages to stdout
 -q do not print messages to the syslog
 -v prints the software version and exits
 -h prints this message and exits

Various ptp4l sample configuration files are in the <linuxptp>/configs directory. For more info about ptp4l
configuration parameters see man page for ptp4l.

man -l ptp4l.8

To use the adjust phase feature, the following configuration parameters are important:

servo_num_offset_values
The number of offset values considered in order to transition from the
SERVO_LOCKED to the SERVO_LOCKED_STABLE state.
The transition occurs once the last 'servo_num_offset_values' offsets
are all below the 'servo_offset_threshold' value.

servo_offset_threshold
The offset threshold used in order to transition from the SERVO_LOCKED
to the SERVO_LOCKED_STABLE state. The transition occurs once the last
'servo_num_offset_values' offsets are all below the threshold value.
The default value of offset_threshold is 0 (disabled).

tsproc_mode
Select the time stamp processing mode used to calculate offset and delay.
Possible values are filter, raw, filter_weight, raw_weight. Raw modes perform
well when the rate of sync messages (logSyncInterval) is similar to the rate of
delay messages (logMinDelayReqInterval or logMinPdelayReqInterval). Weighting
is useful with larger network jitters (e.g. software time stamping).
The default is filter.

write_phase_mode
This option enables using the "write phase" feature of a PTP Hardware
Clock. If supported by the device, this mode uses the hardware's
built in phase offset control instead of frequency offset control.
The default value is 0 (disabled).

Linux PTP Using PHC Adjust Phase Quick Start Guide

R31US0007EU0101 Rev.1.01
Aug 20, 2021

 Page 30

3.3.1. Example Write Phase Mode Configuration
first_step_threshold 0.000020000

step_threshold 0.000020000

tx_timestamp_timeout 100

write_phase_mode 1

servo_offset_threshold 100

servo_num_offset_values 64

tsproc_mode raw

tsproc_mode in raw mode to let the hardware filter do the time stamp filtering.
Write phase adjustments only happen in SERVO_LOCK_STABLE state.
Configure the servo_offset_threshold and servo_num_offset_values so that it is close enough to
0 offset so that the hardware filtering, which has limited bandwidth, can converge to zero in a relatively short
period of time.

3.4 Sample Session
The following sample session is on a Xilinx ZCU102 board with a ClockMatrix device.

CM DPLL2 is the 1588 PTP clock to the Xilinx Timer.

The Xilinx Timer is registered as ptp0 and ClockMatrix is registered as ptp1.

 PTP 0 PTP 1
 +-----------------+ +-------------------+
 | IN |<------------------------------|OUT |
 | | 1588 PTP clock x MHz | |
 | PTP Timer | | ClockMatrix |
 | | | |
 | IN |<------------------------------|OUT |
 +-----------------+ 1588 Timestamp event 1-PPS +-------------------+

 PTP time stamper driver supports: PTP_CLK_REQ_EXTTS

Start ts2phc

We want time adjustments and no frequency adjustments, so we configure ts2phc to use the nullf servo.

Sample configuration ts2phc.cfg:

$ cat ts2phc.cfg

ts2phc config file to get it to behave like syncd to align
time stamper to PHC device's 1-PPS signal.

Example:
./ts2phc -m -q -f ts2phc.cfg

[global]
clock_servo nullf
first_step_threshold 0.000000001
step_threshold 0.000000001

time stamper, slave device
[/dev/ptp0]
ts2phc.channel 0

Linux PTP Using PHC Adjust Phase Quick Start Guide

R31US0007EU0101 Rev.1.01
Aug 20, 2021

 Page 31

PHC device (ex. CM), master device
[/dev/ptp1]
ts2phc.master 1
ts2phc.channel 5

Continuing with the example on the Xilinx ZCU102 board:
■ Xilinx time stamping device is eth0 or ptp0
■ ClockMatrix is ptp1
ptp0 is the slave clock (i.e., it needs to align itself with the incoming 1-PPS from the source clock (ClockMatrix)).

When first starting ts2phc, it may be beneficial to see the log messages.

$./ts2phc -m -q -f ts2phc.cfg -l 7

ts2phc[84.381]: config item /dev/ptp0.ts2phc.master is 0

ts2phc[84.382]: config item (null).clock_servo is 3

ts2phc[84.382]: config item /dev/ptp0.ts2phc.pin_index is 0

ts2phc[84.382]: config item /dev/ptp0.ts2phc.channel is 0

ts2phc[84.382]: config item /dev/ptp0.ts2phc.extts_polarity is 2

ts2phc[84.382]: config item /dev/ptp0.ts2phc.extts_correction is 0

ts2phc[84.382]: config item /dev/ptp0.ts2phc.pulsewidth is 500000000

ts2phc[84.382]: config item (null).free_running is 0

ts2phc[84.382]: PHC slave /dev/ptp0 has ptp index 0

ts2phc[84.382]: config item (null).step_threshold is 0.000000

ts2phc[84.382]: config item (null).first_step_threshold is 0.000000

ts2phc[84.382]: config item (null).max_frequency is 900000000

ts2phc[84.382]: config item (null).servo_offset_threshold is 0

ts2phc[84.382]: config item (null).servo_num_offset_values is 10

ts2phc[84.382]: config item /dev/ptp1.ts2phc.master is 1

ts2phc[84.383]: PHC master /dev/ptp1 has ptp index -1

ts2phc[84.383]: config item /dev/ptp1.ts2phc.channel is 5

ts2phc[84.383]: config item /dev/ptp1.ts2phc.pin_index is 0

PTP_PIN_SETFUNC failed: Invalid argument

ts2phc[84.383]: Failed to set the pin. Continuing bravely on...

ts2phc[85.113]: /dev/ptp0 extts index 0 at 169492.956561892 corr 0 src 10.465738 diff 169482956561892

ts2phc[85.113]: /dev/ptp0 master offset 169482956561892 s1 freq+0

ts2phc[86.112]: /dev/ptp0 extts index 0 at 11.000000000 corr 0 src 11.265748 diff 0

ts2phc[86.112]: /dev/ptp0 master offset 0 s2 freq+0

ts2phc[87.112]: /dev/ptp0 extts index 0 at 12.000000000 corr 0 src 12.265798 diff 0

ts2phc[87.112]: /dev/ptp0 master offset 0 s2 freq+0

ts2phc[88.112]: /dev/ptp0 extts index 0 at 13.000000000 corr 0 src 13.265798 diff 0

ts2phc[88.112]: /dev/ptp0 master offset 0 s2 freq+0

Failed to set the pin. Continuing bravely on... is expected, this will be addressed in a future
version of the ClockMatrix PHC driver.

ptp0 extts index 0 at 169492.956561892 tells us the counter value on the rising edge of the incoming
1-PPS signal on ptp0.

Alignment is achieved when the sub-second portion of the counter is 0.

ts2phc shows that ptp0 had a 956561892 ns offset at the rising edge of the incoming 1-PPS signal.

ts2phc[85.113]: /dev/ptp0 extts index 0 at 169492.956561892 corr 0 src 10.465738 diff 169482956561892

ts2phc adjusted Xilinx's timer to reduce the sub-second offset to 0.

ts2phc[85.113]: /dev/ptp0 master offset 169482956561892 s1 freq +0

Linux PTP Using PHC Adjust Phase Quick Start Guide

R31US0007EU0101 Rev.1.01
Aug 20, 2021

 Page 32

ts2phc subsequently reports that ptp0 is aligned with ptp1's PPS, ie. diff 0

The Xilinx timer time stamp jumped from xxxx.956561892 to xxxx.000000000.

ts2phc[86.112]: /dev/ptp0 extts index 0 at 11.000000000 corr 0 src 11.265748 diff 0

The subsequent 1-PPS events show 0 sub-second values ``12.000000000`` and ``13.000000000`` which
indicates ``ptp0`` is aligned with the incoming 1-PPS signal from ClockMatrix.

ts2phc[87.112]: /dev/ptp0 extts index 0 at 12.000000000 corr 0 src 12.265798 diff 0
ts2phc[88.112]: /dev/ptp0 extts index 0 at 13.000000000 corr 0 src 13.265798 diff 0

Once the system is behaving as expected, ts2phc can be started as a background process without the verbose
messaging.

$./ts2phc -m -q -f ts2phc.cfg &
PTP_PIN_SETFUNC failed: Invalid argument
ts2phc[31.038]: Failed to set the pin. Continuing bravely on...

Start ptp4l

The following examples use ptp4l compiled from the linuxptp master branch, Fri Feb 26, 2021, commit
f774703cb1.

3.4.1.1. Unicast
The following is a sample ptp4l configuration file for a unicast master.

Please ensure the domainNumber matches the unicast master's domainNumber; otherwise, the unicast requests
will be ignored by the unicast master.

$ cat standalone_G.8275.2.cfg

Telecom G.8275.2 T-TSC example configuration containing those attributes
which either differ from the defaults or are relevant to the profile.

[global]
domainNumber 44

slaveOnly 1
masterOnly 0

Announce messages
announceReceiptTimeout 2
logAnnounceInterval 1

Sync/Delay_Req/Delay_Resp messages
ex. 0 = 1-PPS, -3 = 8 PPS, -4 = 16 PPS
logSyncInterval -4
logMinDelayReqInterval -4

step_window is in units of sync packets

3 seconds:
#@ 16 PPS, set to 48
#@ 1 PPS, set to 3
step_window 48

clockClass 255

Linux PTP Using PHC Adjust Phase Quick Start Guide

R31US0007EU0101 Rev.1.01
Aug 20, 2021

 Page 33

clockAccuracy 0xFE
timeSource 0xa0
maxStepsRemoved 255

offsetScaledLogVariance 0xffff

G.8275.defaultDS.localPriority 128
G.8275.portDS.localPriority 128

priority1 128
priority2 255

dataset_comparison G.8275.x
transportSpecific 0

clock_type OC
delay_mechanism E2E

first_step_threshold 0.000020000
step_threshold 0.000020000
tx_timestamp_timeout 1000

write_phase_mode 0
servo_offset_threshold 100
servo_num_offset_values 64
tsproc_mode raw

network_transport UDPv4

hybrid_e2e 1
inhibit_multicast_service 1
unicast_listen 1
unicast_req_duration 300

[unicast_master_table]
table_id 1
logQueryInterval 2
UDPv4 10.64.10.1

[eth0]
unicast_master_table 1

The sample configuration file is for G.8275.2, but we can use it as an example for a unicast master.

With ts2phc running in the background, ptp4l is used to synchronize with a PTP master.

Linux PTP Using PHC Adjust Phase Quick Start Guide

R31US0007EU0101 Rev.1.01
Aug 20, 2021

 Page 34

Unicast slave using standalone.G.8275.2.cfg with 16 PPS for Sync/Delay Request
============================== ==
Option Description
============================== ==
-m Print messages to stdout
-q Do not print messages to the syslog
-p /dev/ptp1 Use PHC clock device /dev/ptp1
-f standalone.G.8275.2.cfg Read configuration from standalone.G.8275.2.cfg
--domainNumber 4 Override the domainNumber at the command line to match GM
============================== ==

$./ptp4l -m -q -p /dev/ptp1 -f standalone_G.8275.2.cfg --domainNumber 4

option slaveOnly is deprecated, please use clientOnly instead

ptp4l[28.339]: selected /dev/ptp1 as PTP clock

ptp4l[28.341]: port 0 (/var/run/ptp4l): hybrid_e2e only works with E2E

ptp4l[28.341]: port 0 (/var/run/ptp4lro): hybrid_e2e only works with E2E

ptp4l[28.341]: port 1 (eth0): taking /dev/ptp1 from the command line, not the attached ptp0

ptp4l[28.362]: port 1 (eth0): INITIALIZING to LISTENING on INIT_COMPLETE

ptp4l[28.362]: port 0 (/var/run/ptp4l): INITIALIZING to LISTENING on INIT_COMPLETE

ptp4l[28.362]: port 0 (/var/run/ptp4lro): INITIALIZING to LISTENING on INIT_COMPLETE

ptp4l[32.782]: port 1 (eth0): new foreign master 00b0ae.fffe.02e810-1

ptp4l[32.988]: selected local clock 000a35.fffe.00bf01 as best master

ptp4l[36.782]: selected best master clock 00b0ae.fffe.02e810

ptp4l[36.782]: updating UTC offset to 37

ptp4l[36.782]: port 1 (eth0): LISTENING to UNCALIBRATED on RS_SLAVE

ptp4l[41.973]: clockcheck: clock jumped forward or running faster than expected!

ptp4l[43.911]: port 1 (eth0): UNCALIBRATED to SLAVE on MASTER_CLOCK_SELECTED

ptp4l[44.410]: rms 807315252816901888 max 1614630505633803776 freq -34 +/- 174 delay 7705 +/-

ptp4l[45.410]: rms 120 max 172 freq -203 +/- 17 delay 7709 +/- 10

ptp4l[46.410]: rms 14 max 28 freq -107 +/- 19 delay 7706 +/- 13

ptp4l[47.410]: rms 20 max 40 freq -53 +/- 13 delay 7709 +/- 9

ptp4l[48.410]: rms 15 max 34 freq -43 +/- 18 delay 7702 +/- 7

ptp4l[49.410]: rms 7 max 16 freq -56 +/- 12 delay 7705 +/- 7

ptp4l[50.410]: rms 12 max 20 freq -62 +/- 20 delay 7703 +/- 9

ptp4l[51.410]: rms 7 max 18 freq -56 +/- 12 delay 7710 +/- 6

ptp4l[52.410]: rms 8 max 22 freq -57 +/- 14 delay 7708 +/- 11

ptp4l[53.410]: rms 7 max 14 freq -61 +/- 11 delay 7710 +/- 9

ptp4l[54.410]: rms 12 max 26 freq -56 +/- 20 delay 7708 +/- 9

ptp4l[55.409]: rms 7 max 12 freq -52 +/- 11 delay 7708 +/- 7

ptp4l[56.409]: rms 9 max 14 freq -60 +/- 14 delay 7705 +/- 10

ptp4l[57.409]: rms 11 max 24 freq -62 +/- 19 delay 7705 +/- 11

ptp4l[58.409]: rms 9 max 24 freq -56 +/- 15 delay 7708 +/- 10

ptp4l[59.409]: rms 13 max 28 freq -61 +/- 21 delay 7706 +/- 9

ptp4l[60.409]: rms 6 max 12 freq -51 +/- 8 delay 7708 +/- 6

Unicast slave using standalone.G.8275.2.cfg at 1-PPS Sync/Delay Request
============================== ==
Option Description
============================== ==
-m Print messages to stdout
-q Do not print messages to the syslog
-p /dev/ptp1 Use PHC clock device /dev/ptp1
-f standalone.G.8275.2.cfg Read configuration from standalone.G.8275.2.cfg
--domainNumber 4 Override the domainNumber at the command line to match GM
-step_window 3 Delay 3 sync packets after adjtime() to allow timestamps to settle
--logSyncInterval 0 Sync packet rate at 1-PPS
--logMinDelayReqInterval 0 Delay request packet rate at 1-PPS
============================== ==

Linux PTP Using PHC Adjust Phase Quick Start Guide

R31US0007EU0101 Rev.1.01
Aug 20, 2021

 Page 35

$./ptp4l -mq -p /dev/ptp1 -f standalone_G.8275.2.cfg --domainNumber 4 --step_window 3 --
logSyncInterval 0 --logMinDelayReqInterval 0

option slaveOnly is deprecated, please use clientOnly instead
ptp4l[54.219]: selected /dev/ptp1 as PTP clock
ptp4l[54.221]: port 0 (/var/run/ptp4l): hybrid_e2e only works with E2E
ptp4l[54.221]: port 0 (/var/run/ptp4lro): hybrid_e2e only works with E2E
ptp4l[54.221]: port 1 (eth0): taking /dev/ptp1 from the command line, not the attached ptp0
ptp4l[54.242]: port 1 (eth0): INITIALIZING to LISTENING on INIT_COMPLETE
ptp4l[54.242]: port 0 (/var/run/ptp4l): INITIALIZING to LISTENING on INIT_COMPLETE
ptp4l[54.242]: port 0 (/var/run/ptp4lro): INITIALIZING to LISTENING on INIT_COMPLETE
ptp4l[54.714]: port 1 (eth0): new foreign master 00b0ae.fffe.02e810-1
ptp4l[58.714]: selected best master clock 00b0ae.fffe.02e810
ptp4l[58.714]: updating UTC offset to 37
ptp4l[58.714]: port 1 (eth0): LISTENING to UNCALIBRATED on RS_SLAVE
ptp4l[59.651]: master offset -1614631351385584072 s0 freq +0 path delay 0
ptp4l[60.652]: master offset -1614631351385584108 s1 freq -36 path delay 0
ptp4l[62.651]: clockcheck: clock jumped forward or running faster than expected!
ptp4l[64.651]: master offset -252 s0 freq -36 path delay 0
ptp4l[65.651]: master offset -314 s2 freq -98 path delay 7712
ptp4l[65.651]: port 1 (eth0): UNCALIBRATED to SLAVE on MASTER_CLOCK_SELECTED
ptp4l[66.651]: master offset -298 s2 freq -396 path delay 7712
ptp4l[67.651]: master offset -116 s2 freq -303 path delay 7702
ptp4l[68.651]: master offset 192 s2 freq -30 path delay 7702
ptp4l[69.651]: master offset 258 s2 freq +93 path delay 7732
ptp4l[70.651]: master offset 162 s2 freq +75 path delay 7712
ptp4l[71.651]: master offset -36 s2 freq -75 path delay 7766
ptp4l[72.651]: master offset -12 s2 freq -61 path delay 7766
ptp4l[73.651]: master offset 8 s2 freq -45 path delay 7710
ptp4l[74.650]: master offset -8 s2 freq -59 path delay 7710
ptp4l[75.650]: master offset -18 s2 freq -71 path delay 7708
ptp4l[76.650]: master offset -4 s2 freq -62 path delay 7706
ptp4l[77.650]: master offset -4 s2 freq -64 path delay 7718
ptp4l[78.650]: master offset 0 s2 freq -61 path delay 7718
ptp4l[79.650]: master offset -4 s2 freq -65 path delay 7718
ptp4l[80.650]: master offset 4 s2 freq -58 path delay 7718
ptp4l[81.650]: master offset 10 s2 freq -51 path delay 7720
ptp4l[82.650]: master offset 8 s2 freq -50 path delay 7710

Multicast
The sample configuration file is for G.8275.1, but we can use it as an example for a multicast master to show
write_phase_mode enabled.

cat standalone_G.8275.1.cfg

Telecom G.8275.1 T-TSC example configuration containing those attributes
which either differ from the defaults or are relevant to the profile.

[global]
domainNumber 24

slaveOnly 1
masterOnly 0

Announce messages
announceReceiptTimeout 3
logAnnounceInterval -3

Linux PTP Using PHC Adjust Phase Quick Start Guide

R31US0007EU0101 Rev.1.01
Aug 20, 2021

 Page 36

Sync/Delay_Req/Delay_Resp messages â 16 packets-per-second, -4 = 16 PPS
logSyncInterval -4
logMinDelayReqInterval -4

step_window is in units of sync packets

3 seconds:
@ 16 PPS, set to 48
@ 1 PPS, set to 3
step_window 48

clockClass 255
clockAccuracy 0xFE
timeSource 0xa0
maxStepsRemoved 255

offsetScaledLogVariance 0xffff

G.8275.defaultDS.localPriority 128
G.8275.portDS.localPriority 128

priority1 128
priority2 255

dataset_comparison G.8275.x
transportSpecific 0

clock_type OC
delay_mechanism E2E

first_step_threshold 0.000020000
step_threshold 0.000020000
tx_timestamp_timeout 1000

write_phase_mode 1
servo_offset_threshold 100
servo_num_offset_values 64
tsproc_mode raw

network_transport L2

01:1B:19:00:00:00 Forwardable multi-cast address
01:80:C2:00:00:0E Non-forwardable multi-cast address
ptp_dst_mac 01:1B:19:00:00:00

[eth0]

With ts2phc running in the background, ptp4l is used to synchronize with a PTP multicast master.

Multicast slave using standalone.G.8275.1.cfg

============================== ==

Option Description

============================== ==

-m Print messages to stdout

-q Do not print messages to the syslog

Linux PTP Using PHC Adjust Phase Quick Start Guide

R31US0007EU0101 Rev.1.01
Aug 20, 2021

 Page 37

-p /dev/ptp1 Use PHC clock device /dev/ptp1

-f standalone.G.8275.1.cfg Read configuration from standalone.G.8275.1.cfg

============================== ==

freq +0 indicates that ptp4l writes the phase offset directly into the PHC clock device, so no frequency
adjustments are made.

$./ptp4l -m -q -p /dev/ptp1 -f standalone.G.8275.1.cfg

ptp4l[23.183]: selected /dev/ptp1 as PTP clock

ptp4l[23.185]: port 1 (eth0): taking /dev/ptp1 from the command line, not the attached ptp0

ptp4l[23.245]: port 1 (eth0): INITIALIZING to LISTENING on INIT_COMPLETE

ptp4l[23.245]: port 0 (/var/run/ptp4l): INITIALIZING to LISTENING on INIT_COMPLETE

ptp4l[23.245]: port 0 (/var/run/ptp4lro): INITIALIZING to LISTENING on INIT_COMPLETE

ptp4l[23.356]: port 1 (eth0): new foreign master 0080ea.fffe.4dc760-1

ptp4l[23.606]: selected best master clock 0080ea.fffe.4dc760

ptp4l[23.606]: updating UTC offset to 37

ptp4l[23.606]: port 1 (eth0): LISTENING to UNCALIBRATED on RS_SLAVE

ptp4l[25.801]: clockcheck: clock jumped forward or running faster than expected!

ptp4l[27.114]: port 1 (eth0): UNCALIBRATED to SLAVE on MASTER_CLOCK_SELECTED

ptp4l[27.614]: rms 807316614105398016 max 1614633228210796032 freq -220 +/- 171 delay 7235 +/- 8

ptp4l[28.614]: rms 56 max 83 freq -147 +/- 77 delay 7229 +/- 6

ptp4l[29.614]: rms 60 max 91 freq -23 +/- 16 delay 7230 +/- 12

ptp4l[30.614]: rms 24 max 41 freq -23 +/- 13 delay 7230 +/- 7

ptp4l[31.613]: rms 10 max 21 freq -30 +/- 27 delay 7226 +/- 8

ptp4l[32.613]: rms 29 max 47 freq +0 +/- 0 delay 7234 +/- 8

ptp4l[33.613]: rms 42 max 55 freq +0 +/- 0 delay 7231 +/- 14

ptp4l[34.613]: rms 55 max 71 freq +0 +/- 0 delay 7229 +/- 9

ptp4l[35.613]: rms 58 max 75 freq +0 +/- 0 delay 7231 +/- 8

ptp4l[36.613]: rms 62 max 73 freq +0 +/- 0 delay 7231 +/- 6

ptp4l[37.613]: rms 62 max 75 freq +0 +/- 0 delay 7228 +/- 10

Linux PTP Using PHC Adjust Phase Quick Start Guide

R31US0007EU0101 Rev.1.01
Aug 20, 2021

 Page 38

4. Appendix

4.1 Performance Metrics
The performance metric in the next section has the following definitions.
■ CPU% - The percentage of the CPU that is being used by the process.
■ DMIPS - Number is the CPU % multiplied by the board’s measured DMIPS number.
■ RSS - Resident Set Size is the memory occupied by a process that is held in main memory. It does not

include memory that is swapped out. It does include memory from shared libraries as long as the pages from
those libraries are actually in memory. It does include all stack and heap memory.

The REA measured DMIPS for the ZCU102 Evaluation Board is 2948.967211 DMIPS

For information about the DMIPS calculation, see DMIPS Calculation.

4.1.1. WritePhase Reference Tracker, Multicast master
 16 PPS

 1 Master

 CPU % DMIPS RSS (MB)

ptp4l 0.22% 6.52 0.604

4.1.2. DMIPS Calculation

4.1.2.1. Hardware Specifications
Board: Xilinx ZCU102 Eval Board, CPU @ 1.333 GHz

cat /sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_cur_freq
[25310.282758] cpu cpu0: dev_pm_opp_set_rate: failed to find current OPP for freq
1333333320 (-34)
1333333

https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html

https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html

Linux PTP Using PHC Adjust Phase Quick Start Guide

R31US0007EU0101 Rev.1.01
Aug 20, 2021

 Page 39

Figure 1. ZCU102 Evaluation Board Features

4.1.2.2. Software Environment

4.1.2.2.1. Compiler
aarch64-linux-gnu-gcc (Ubuntu/Linaro 5.4.0-6ubuntu1~16.04.9) 5.4.0 20160609

4.1.2.2.2. Compile Flags
-O3 -fno-inline -DTIME -DHZ=60 -DNDEBUG -w –DRENESAS

4.1.2.2.3. Linux Version
Linux pl_eth_1g_ptp_zcu102_cm 4.14.0-xilinx-v2018.3 #1 SMP Mon Mar 22 19:09:09 UTC 2021
aarch64 GNU/Linux

4.1.2.2.4. Dhrystone Version
https://fossies.org/linux/privat/old/dhrystone-2.1.tar.gz

Modified for ZCU102 environment – modified TIME macro time measurement mechanism to use clock_gettime()
for nanosecond granularity versus second granularity.

4.1.2.2.5. ZCU102 Patch File
Type 'make' should work (sudo apt-get install gcc-aarch64-linux-gnu).

Copy gcc_dry2 to board and run for 150,000,000 which is about 20+ seconds.

$./gcc_dry2

Dhrystone Benchmark, Version 2.1 (Language: C)

https://fossies.org/linux/privat/old/dhrystone-2.1.tar.gz

Linux PTP Using PHC Adjust Phase Quick Start Guide

R31US0007EU0101 Rev.1.01
Aug 20, 2021

 Page 40

Program compiled without 'register' attribute

Please give the number of runs through the benchmark: 150000000

Execution starts, 150000000 runs through Dhrystone

...

User_Time = 28.957748413
Microseconds for one run through Dhrystone: 0.2
Dhrystones per Second: 5179960.5

 Makefile | 12 +++++++-----
 dhry_1.c | 34 ++++++++++++++++++++++++++++++++++
 2 files changed, 41 insertions(+), 5 deletions(-)

diff --git a/Makefile b/Makefile
index dfaa795..8b6ad76 100644
--- a/Makefile
+++ b/Makefile
@@ -17,13 +17,14 @@
 CC= cl # C compiler name goes here (MSC)
 CC= cc # C compiler name goes here (UNIX)
 GCC= gcc
+GCC= /usr/bin/aarch64-linux-gnu-gcc

 PROGS= msc # Programs to build (MSC)
 PROGS= unix # Programs to build (UNIX)

 #TIME_FUNC= -DMSC_CLOCK # Use Microsoft clock() for measurement
-#TIME_FUNC= -DTIME # Use time(2) for measurement
-TIME_FUNC= -DTIMES # Use times(2) for measurement
+TIME_FUNC= -DTIME # Use time(2) for measurement
+#TIME_FUNC= -DTIMES # Use times(2) for measurement
 #HZ= 50 # Frequency of times(2) clock ticks
 HZ= 60 # Frequency of times(2) clock ticks
 #HZ= 100 # Frequency of times(2) clock ticks
@@ -37,12 +38,12 @@ ENUMS= # Compiler does have enum type

 OPTIMIZE= -Ox -G2 # Optimization Level (MSC, 80286)
 OPTIMIZE= -O4 # Optimization Level (generic UNIX)
-GCCOPTIM= -O
+GCCOPTIM= -O3 -fno-inline

 LFLAGS= #Loader Flags

 CFLAGS= $(OPTIMIZE) $(TIME_FUNC) -DHZ=$(HZ) $(ENUMS) $(STRUCTASSIGN) $(CFL)
-GCCFLAGS= $(GCCOPTIM) $(TIME_FUNC) -DHZ=$(HZ) $(ENUMS) $(STRUCTASSIGN) $(CFL)
+GCCFLAGS= $(GCCOPTIM) $(TIME_FUNC) -DHZ=$(HZ) $(ENUMS) $(STRUCTASSIGN) $(CFL) -DNDEBUG -w -
DRENESAS

 #
 # You shouldn't need to touch the rest
@@ -50,7 +51,8 @@ GCCFLAGS= $(GCCOPTIM) $(TIME_FUNC) -DHZ=$(HZ) $(ENUMS) $(STRUCTASSIGN)
$(CFL)
 SRC= dhry_1.c dhry_2.c
 HDR= dhry.h

Linux PTP Using PHC Adjust Phase Quick Start Guide

R31US0007EU0101 Rev.1.01
Aug 20, 2021

 Page 41

-UNIX_PROGS= cc_dry2 cc_dry2reg gcc_dry2 gcc_dry2reg
+#UNIX_PROGS= cc_dry2 cc_dry2reg gcc_dry2 gcc_dry2reg
+UNIX_PROGS= gcc_dry2
 MSC_PROGS= sdry2.exe sdry2reg.exe mdry2.exe mdry2reg.exe \
 ldry2.exe ldry2reg.exe cdry2.exe cdry2reg.exe \
 hdry2.exe hdry2reg.exe
diff --git a/dhry_1.c b/dhry_1.c
index 164c6f9..fba717d 100644
--- a/dhry_1.c
+++ b/dhry_1.c
@@ -17,6 +17,12 @@

 #include "dhry.h"

+#ifdef RENESAS
+#include <stdint.h>
+#include <time.h>
+#define NSEC2SEC 1000000000LL
+#endif
+
 /* Global Variables: */

 Rec_Pointer Ptr_Glob,
@@ -51,8 +57,12 @@ extern int times ();
 /* Measurements should last at least about 2 seconds */
 #endif
 #ifdef TIME
+#ifdef RENESAS
+struct timespec now;
+#else
 extern long time();
 /* see library function "time" */
+#endif
 #define Too_Small_Time 2
 /* Measurements should last at least 2 seconds */
 #endif
@@ -61,9 +71,15 @@ extern clock_t clock();
 #define Too_Small_Time (2*HZ)
 #endif

+#ifdef RENESAS
+int64_t Begin_Time,
+ End_Time;
+float User_Time;
+#else
 long Begin_Time,
 End_Time,
 User_Time;
+#endif
 float Microseconds,
 Dhrystones_Per_Second;

@@ -137,8 +153,13 @@ main ()
 Begin_Time = (long) time_info.tms_utime;
 #endif
 #ifdef TIME
+#ifdef RENESAS

Linux PTP Using PHC Adjust Phase Quick Start Guide

R31US0007EU0101 Rev.1.01
Aug 20, 2021

 Page 42

+ clock_gettime(CLOCK_MONOTONIC, &now);
+ Begin_Time = now.tv_sec * NSEC2SEC + now.tv_nsec;
+#else
 Begin_Time = time ((long *) 0);
 #endif
+#endif
 #ifdef MSC_CLOCK
 Begin_Time = clock();
 #endif
@@ -198,8 +219,13 @@ main ()
 End_Time = (long) time_info.tms_utime;
 #endif
 #ifdef TIME
+#ifdef RENESAS
+ clock_gettime(CLOCK_MONOTONIC, &now);
+ End_Time = now.tv_sec * NSEC2SEC + now.tv_nsec;
+#else
 End_Time = time ((long *) 0);
 #endif
+#endif
 #ifdef MSC_CLOCK
 End_Time = clock();
 #endif
@@ -257,9 +283,17 @@ main ()
 printf (" should be: DHRYSTONE PROGRAM, 2'ND STRING\n");
 printf ("\n");

+#ifdef RENESAS
+ User_Time = (float)(End_Time - Begin_Time) / NSEC2SEC;
+ printf("User_Time = %0.9f\n", User_Time);
+
+ if (User_Time < (float)Too_Small_Time)
+#else
 User_Time = End_Time - Begin_Time;
+ printf("User_Time = %ld\n", User_Time);

 if (User_Time < Too_Small_Time)
+#endif
 {
 printf ("Measured time too small to obtain meaningful results\n");
 printf ("Please increase number of runs\n");
--
2.7.4

4.1.2.3. Results
From power-up, start at 140,000,000 loop iterations and increment 10,000,000 each time.

Iterations Dhrystones per Second

140000000 5181170.5

150000000 5181197.0

160000000 5181290.5

170000000 5181255.5

180000000 5181080.5

Linux PTP Using PHC Adjust Phase Quick Start Guide

R31US0007EU0101 Rev.1.01
Aug 20, 2021

 Page 43

Iterations Dhrystones per Second

190000000 5181232.0

200000000 5182418.0

210000000 5181273.5

220000000 5181138.0

230000000 5181133.5

Discarding the first run, The average of the next 9 runs is 5181335.389.

DMIPS (Dhrystone MIPS) numbers are calculated using the formula:

DMIPS = Dhrystones per second / 1757

Using formula above:

DMIPS = 5181335.389 / 1757

DMIPS = 2948.967211

A more commonly reported figure is DMIPS / MHz.

DMIPS / MHz = 2948.967211 / 1333.333

DMIPS / MHZ = 2.21

4.2 Identifying PHC Device Number
4.2.1. ClockMatrix
On a successful CM PHC driver load, the registered ptp device number can be see in the system log.

View the kernel start-up log with 'dmesg' command.

$ dmesg | grep idt
…
[3.419848] idtcm 15-005b: 4.8.0, Id: 0x4001 HW Rev: 5 OTP Config Select: 15
[7.128855] idtcm 15-005b: PLL2 registered as ptp1

4.2.2. Network Interface
The Ethernet interface in this example is eth0. It uses the Xilinx Timer as its PTP time stamping device.

$ ifconfig
eth0 Link encap:Ethernet HWaddr 00:0A:35:00:BF:01
 inet addr:10.64.10.191 Bcast:10.64.11.255 Mask:255.255.254.0
 inet6 addr: fe80::20a:35ff:fe00:bf01%4886680/64 Scope:Link

ethtool can be used to find the corresponding PHC clock device number.

$ ethtool -T eth0
Time stamping parameters for eth0:
Capabilities:
 hardware-transmit (SOF_TIMESTAMPING_TX_HARDWARE)
 hardware-receive (SOF_TIMESTAMPING_RX_HARDWARE)
 hardware-raw-clock (SOF_TIMESTAMPING_RAW_HARDWARE)
PTP Hardware Clock: 0
Hardware Transmit Timestamp Modes:
 off (HWTSTAMP_TX_OFF)

Linux PTP Using PHC Adjust Phase Quick Start Guide

R31US0007EU0101 Rev.1.01
Aug 20, 2021

 Page 44

 on (HWTSTAMP_TX_ON)
Hardware Receive Filter Modes:
 none (HWTSTAMP_FILTER_NONE)

PTP Hardware Clock: 0 indicates that eth0 is registered as ptp0.

If the Ethernet interface is not supported as a PTP hardware clock, it will say PTP Hardware Clock: none.

For support in getting the Ethernet interface to register as a PTP Hardware Clock, contact the PHY/MAC vendor
for support.

4.3 View ptp Device Name
View registered ptp devices:

$ ls /sys/class/ptp
ptp0 ptp1

View name of a ptp device:

$ cat /sys/class/ptp/ptp1/clock_name
IDT CM PLL2

$ cat /sys/class/ptp/ptp0/clock_name
Xilinx Timer

4.4 SO_SELECT_ERR_QUEUE: Protocol not available
SO_SELECT_ERR_QUEUE was introduced into the kernel in 3.10.

When using Linux kernels prior to 3.10, customers may encounter this message in ptp4l.

ptp4l[33.123]: eth1: SO_SELECT_ERR_QUEUE: Protocol not available

This message can be ignored; it is a warning message and does not prevent ptp4l from working

4.5 testptp
testptp is a Linux PHC test tool that is part of the kernel.

It is located in tools/testing/selftests/ptp/testptp.c.

usage: testptp [options]
 -a val request a one-shot alarm after 'val' seconds
 -A val request a periodic alarm every 'val' seconds
 -c query the ptp clock's capabilities
 -d name device to open
 -e val read 'val' external time stamp events
 -f val adjust the ptp clock frequency by 'val' ppb
 -g get the ptp clock time
 -h prints this message
 -i val index for event/trigger
 -k val measure the time offset between system and phc clock
 for 'val' times (Maximum 25)
 -l list the current pin configuration
 -L pin,val configure pin index 'pin' with function 'val'
 the channel index is taken from the '-i' option
 'val' specifies the auxiliary function:
 0 - none
 1 - external time stamp
 2 - periodic output

Linux PTP Using PHC Adjust Phase Quick Start Guide

R31US0007EU0101 Rev.1.01
Aug 20, 2021

 Page 45

 -p val enable output with a period of 'val' nanoseconds
 -P val enable or disable (val=1|0) the system clock PPS
 -s set the ptp clock time from the system time
 -S set the system time from the ptp clock time
 -t val shift the ptp clock time by 'val' seconds
 -T val set the ptp clock time to 'val' seconds

The following example is cross compiling the ``testptp`` tool in a linux v5.8-rc5 repository on an Ubuntu 16.04
build machine.

4.5.1. Sample Build for ZCU102 board
Compile for ZCU102
$ sudo apt-get install gcc-aarch64-linux-gnu
$ export CROSS_COMPILE=/usr/bin/aarch64-linux-gnu-

Linux kernel root (v5.8-rc5)
$ cd tools/testing/selftests/ptp
$ make

4.5.1.1. Compilation Error
When cross-compiling, the build machine's Linux kernel's ``ptp_clock.h`` may be outdated.

For example, the Ubuntu 16.04 build machine is using Linux v4.15.0.

$ uname -srm
Linux 4.15.0-107-generic x86_64

And produces the following compilation error:

Linux kernel root (v5.8-rc5)
$ make
Makefile:10: warning: overriding recipe for target 'clean'
../lib.mk:126: warning: ignoring old recipe for target 'clean'
/usr/bin/aarch64-linux-gnu-gcc -I../../../../usr/include/ testptp.c -lrt -o testptp
testptp.c: In function ‘do_flag_test’:
testptp.c:61:3: error: ‘PTP_EXTTS_REQUEST2’ undeclared (first use in this function)
 PTP_EXTTS_REQUEST2,
 ^
testptp.c:61:3: note: each undeclared identifier is reported only once for each function it
appears in
testptp.c:68:25: error: ‘PTP_EXTTS_VALID_FLAGS’ undeclared (first use in this function)
 PTP_ENABLE_FEATURE | (PTP_EXTTS_VALID_FLAGS + 1),
 ^
testptp.c: In function ‘main’:
testptp.c:281:15: error: ‘struct ptp_clock_caps’ has no member named ‘adjust_phase’
 caps.adjust_phase);
 ^
<builtin>: recipe for target 'testptp' failed
make: *** [testptp] Error 1

4.5.1.2. Workaround
In testptp.c, replace #include <linux/ptp_clock.h> with a relative include to the local repo's
ptp_clock.h.

testptp.c:
 #include <sys/time.h>
 #include <sys/timex.h>
 #include <sys/types.h>

Linux PTP Using PHC Adjust Phase Quick Start Guide

R31US0007EU0101 Rev.1.01
Aug 20, 2021

 Page 46

 #include <time.h>
 #include <unistd.h>

- #include <linux/ptp_clock.h>
+ #include "../../../../include/uapi/linux/ptp_clock.h"

With above workaround, testptp compiles.

$ make
Makefile:10: warning: overriding recipe for target 'clean'
../lib.mk:126: warning: ignoring old recipe for target 'clean'
/usr/bin/aarch64-linux-gnu-gcc -I../../../../usr/include/ testptp.c -lrt -o testptp

4.6 phc_ctl
phc_ctl is part of the linuxptp collection of programs.

For details on linuxptp, see linuxptp

$./phc_ctl -h

usage: phc_ctl [options] <device> -- [command]

 device ethernet or ptp clock device
 options
 -l [num] set the logging level to 'num'
 -q do not print messages to the syslog
 -Q do not print messages to stdout
 -v prints the software version and exits
 -h prints this message and exits

 commands
 specify commands with arguments. Can specify multiple
 commands to be executed in order. Seconds are read as
 double precision floating point values.
 set [seconds] set PHC time (defaults to time on CLOCK_REALTIME)
 get get PHC time
 adj <seconds> adjust PHC time by offset
 freq [ppb] adjust PHC frequency (default returns current offset)
 cmp compare PHC offset to CLOCK_REALTIME
 caps display device capabilities (default if no command given)
 wait <seconds> pause between commands.

4.7 1588 Profile Configuration Validation Tool for ptp4l
When creating a ptp4l configuration file for the G.8265.1, G.8275.1, or G.8275.2 profiles the validate tool can
be used to check if the 1588 parameters conform to the ranges specified by the profile selected by option '-p'.

Valid -p options:
■ G.8265.1
■ G.8275.1
■ G.8275.2

If a value does not conform to the profile, the value is highlighted and validate exits.

$./validate -h

usage: validate [options]

Linux PTP Using PHC Adjust Phase Quick Start Guide

R31US0007EU0101 Rev.1.01
Aug 20, 2021

 Page 47

 -f [file] read configuration from 'file'
 -p [profile name] Profile to be validated
 Options:
 G.8265.1/g.8265.1
 G.8275.1/g.8275.1
 G.8275.2/g.8275.2
 -l [num] set the logging level to 'num'
 -m print messages to stdout
 -h prints this message and exits

Apply Patch File

3.1-Introduce-validate-profile-program.patch adds validate program to linuxptp v3.1 source.

For the patch file, email IDT-support-1588@lm.renesas.com.

$ git clone git://git.code.sf.net/p/linuxptp/code linuxptp
Cloning into 'linuxptp'...
...
Checking connectivity... done.

$ cp v3.1-Introduce-validate-profile-program.patch linuxptp

$ cd linuxptp

$ git checkout v3.1
Note: checking out 'v3.1'.
...
HEAD is now at 38ad326... Version 3.1

$ patch -p1 < v3.1-Introduce-validate-profile-program.patch
patching file .gitignore
patching file configs/G.8265.1_sample_master.cfg
patching file configs/G.8265.1_sample_slave.cfg
patching file configs/G.8275.1_sample.cfg
patching file configs/G.8275.1_sample_BC.cfg
patching file configs/G.8275.1_sample_GM.cfg
patching file configs/G.8275.2_sample.cfg
patching file configs/G.8275.2_sample_BC.cfg
patching file configs/G.8275.2_sample_GM.cfg
patching file configs/externServo_G.8275.1.cfg
patching file configs/externServo_G.8275.2.cfg
patching file configs/standalone_G.8275.1.cfg
patching file configs/standalone_G.8275.2.cfg
patching file makefile
patching file validate.c
patching file validate.h

Sample Compile Log

$ make validate
DEPEND validate.c
DEPEND ts2phc_slave.c
DEPEND ts2phc_nmea_master.c
...
DEPEND e2e_tc.c
DEPEND designated_fsm.c
DEPEND config.c
DEPEND clockcheck.c

mailto:IDT-support-1588@lm.renesas.com

Linux PTP Using PHC Adjust Phase Quick Start Guide

R31US0007EU0101 Rev.1.01
Aug 20, 2021

 Page 48

DEPEND clockadj.c
DEPEND clock.c
DEPEND bmc.c
gcc -Wall -DVER=3.1 -D_GNU_SOURCE -DHAVE_CLOCK_ADJTIME -DHAVE_POSIX_SPAWN -
DHAVE_ONESTEP_SYNC -c -o validate.o validate.c
gcc -Wall -DVER=3.1 -D_GNU_SOURCE -DHAVE_CLOCK_ADJTIME -DHAVE_POSIX_SPAWN -
DHAVE_ONESTEP_SYNC -c -o hash.o hash.c
gcc -Wall -DVER=3.1 -D_GNU_SOURCE -DHAVE_CLOCK_ADJTIME -DHAVE_POSIX_SPAWN -
DHAVE_ONESTEP_SYNC -c -o interface.o interface.c
gcc -Wall -DVER=3.1 -D_GNU_SOURCE -DHAVE_CLOCK_ADJTIME -DHAVE_POSIX_SPAWN -
DHAVE_ONESTEP_SYNC -c -o phc.o phc.c
gcc -Wall -DVER=3.1 -D_GNU_SOURCE -DHAVE_CLOCK_ADJTIME -DHAVE_POSIX_SPAWN -
DHAVE_ONESTEP_SYNC -c -o print.o print.c
gcc -Wall -DVER=3.1 -D_GNU_SOURCE -DHAVE_CLOCK_ADJTIME -DHAVE_POSIX_SPAWN -
DHAVE_ONESTEP_SYNC -c -o sk.o sk.c
gcc -Wall -DVER=3.1 -D_GNU_SOURCE -DHAVE_CLOCK_ADJTIME -DHAVE_POSIX_SPAWN -
DHAVE_ONESTEP_SYNC -c -o util.o util.c
gcc validate.o hash.o interface.o phc.o print.o sk.o util.o -lm -lrt -pthread -o
validate

Sample Usage
The following is an example of a G.8275.1 T-TSC profile configuration with some invalid values.

$ cat g.8275.1.slave.cfg

[global]
announceReceiptTimeout 3
clockAccuracy 0xfe
clockClass 255
clock_type OC
delay_mechanism E2E
domainNumber 4
dataset_comparison G.8275.x
G.8275.defaultDS.localPriority 128
G.8275.portDS.localPriority 128
logAnnounceInterval -3
logMinDelayReqInterval 0
logSyncInterval 0
masterOnly 0
maxStepsRemoved 255
network_transport UDPv4
offsetScaledLogVariance 0xffff
priority1 128
priority2 128
ptp_dst_mac 01:1B:19:00:00:00
slaveOnly 1
timeSource 0xa0

$./validate -p G.8275.1 -f g.8275.1.slave.cfg
4 is an out of range value for option domainNumber at line 7
failed to parse configuration file g.8275.1.slave.cfg

Default values for G.8275.1 SLAVEONLY profile are:

 announceReceiptTimeout 3 The only allowed value is [3]
 clockAccuracy 0xfe The only allowed value is [0xfe]
 clockClass 255 The only allowed value is [255]

Linux PTP Using PHC Adjust Phase Quick Start Guide

R31US0007EU0101 Rev.1.01
Aug 20, 2021

 Page 49

 clock_type OC The only allowed value is [OC]
 delay_mechanism E2E The only allowed value is [E2E]
 domainNumber 24 The range is [24, 43]
 G.8275.defaultDS.localPriority 128 The range is [1, UINT8_MAX]
 G.8275.portDS.localPriority 128 The range is [1, UINT8_MAX]
 logAnnounceInterval -3 The only allowed value is [-3]
 logMinDelayReqInterval -4 The only allowed value is [-4]
 logSyncInterval -4 The only allowed value is [-4]
 masterOnly 0 The only allowed value is [0]
 maxStepsRemoved 255 The range is [1, UINT8_MAX]
 network_transport L2 The only allowed value is [L2]
 offsetScaledLogVariance 0xffff The only allowed value is [0xffff]

 priority1 128 The only allowed value is [128]
 priority2 255 The only allowed value is [255]
 ptp_dst_mac 01:1B:19:00:00:00 The only allowed value is
[01:1B:19:00:00:00, 01:80:C2:00:00:0E]
 slaveOnly 1 The only allowed value is [1]
 timeSource 0xa0 The range is [0, UINT8_MAX]

// Changed domainNumber from 4 to 24

$./validate -p G.8275.1 -f g.8275.1.slave.cfg
0 is an out of range value for option logMinDelayReqInterval at line 12
failed to parse configuration file g.8275.1.slave.cfg
...

// Changed logMinDelayReqInterval and logSyncInterval from 0 to -4

$./validate -p G.8275.1 -f g.8275.1.slave.cfg
128 is an out of range value for option priority2 at line 19
failed to parse configuration file g.8275.1.slave.cfg
...

// Changed priority2 to 255

$./validate -p G.8275.1 -f g.8275.1.slave.cfg
Port item network_transport out of range in the global section!
...

// Changed network_transport to L2

$ $./validate -p G.8275.1 -f g.8275.1.slave.cfg
g.8275.1.slave.cfg Checked successfully for G.8275.1 3 profile

Linux PTP Using PHC Adjust Phase Quick Start Guide

R31US0007EU0101 Rev.1.01
Aug 20, 2021

 Page 50

5. Revision History

Revision Date Description

1.01 August 18, 2021  Clarify 3.1.6/3.1.7 is using time stamper PHC.

1.0 Jun 9, 2021  Add Sanity Testing section to Getting Started
 Add note about SO_SELECT_ERR_QUEUE message to Appendix
 Update Getting Started Sample Session to use standalone_*.cfg files that include

step_window parameter
 Rename to “LinuxPtpUsingPhcAdjustPhaseQuickStart” from

“LinuxPTPUsingPHCAdjustPhaseReferenceManual”
 Add Performance Metrics section

0.2 Dec 17, 2020  Add Revision History section
 Add section numbers to bookmarks on PDF
 Remove IDT from "The IDT ClockMatrix (TM) family ..."
 Update with ts2phc.cfg change
 Revise cover page, add logo, page numbering

0.1 Aug 7, 2020  First release of this document

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most
up-to-date version of a document, or your nearest sales
office, please visit www.renesas.com/contact-us/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered
trademarks are the property of their respective owners.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1)
selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These
resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an
application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is
granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims
responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses,
or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and
Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise
alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

© 2026 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/contact-us
https://www.renesas.com

	1. Introduction
	2. System Requirements
	2.1 Linux PTP Source
	2.2 Linux Kernel
	2.2.1. Adjust Phase Patch Files
	2.2.2. Backporting to Linux v3.x+

	2.3 Network Interface Requirements
	2.3.1. ethtool
	2.3.2. SIOCETHTOOL
	2.3.3. SO_TIMESTAMPING
	2.3.4. PTP_CLK_REQ_EXTTS

	2.4 Linux PTP Hardware Clock
	2.4.1. ClockMatrix PHC Driver

	3. Getting Started
	3.1 Sanity Testing
	3.1.1. Verify PHC Capabilities
	3.1.2. Verify Clocks Increment
	3.1.3. Verify Clock Set Time
	3.1.4. Verify Time Stamper Incoming 1-PPS from PTP Clock
	3.1.5. Verify ts2phc Aligns Time Stamper and 1-PPS from PTP Clock
	3.1.6. Verify PTP Clock Time Adjustment Affects PTP Timestamp
	3.1.7. Verify PTP Clock Frequency Adjustment Affects Time Stamper Frequency

	3.2 ts2phc
	3.3 ptp4l
	3.3.1. Example Write Phase Mode Configuration

	3.4 Sample Session

	4. Appendix
	4.1 Performance Metrics
	4.1.1. WritePhase Reference Tracker, Multicast master
	4.1.2. DMIPS Calculation

	4.2 Identifying PHC Device Number
	4.2.1. ClockMatrix
	4.2.2. Network Interface

	4.3 View ptp Device Name
	4.4 SO_SELECT_ERR_QUEUE: Protocol not available
	4.5 testptp
	4.5.1. Sample Build for ZCU102 board

	4.6 phc_ctl
	4.7 1588 Profile Configuration Validation Tool for ptp4l

	5. Revision History

