LENESAS Quick Start Guide

Linux PTP Using PHC Adjust Phase

This document provides instructions for getting Linux PTP to use the PTP hardware clock adjust phase mode.

Contents
I [Y 4 o To LU o] £ o] o DO PP T PTPPUTRU PRI 3
2. SYSTEM REQUITEMIENES ...ttt ettt e et e e e e e e e e e e e e e e s s e s aa e aaa bbb bbb e bbe e e e et et eeeaaaaaaaeaaaaaeaaans 4
2.1 LINUX PTP SOUICE. ...ttt ettt e e e e ookttt ettt ettt et e e aaaaaeeeaeeesaasaaa e nnbanbbabbssbeeeeeeeaaens 4
FZ N TR | 11 5T (= 1 2 U= P 4
2.2 1. Adjust Phase PatCh FlESuuuiiiiiiiiiiiiiiiie e e e e e e e e e e e e e e e e s e e s e e s senaanranes 4
2.2.2. Backporting t0 LINUX V3. Xt ...uuuiiiiieiiiieiiiiii ettt et e e e e e e e e e e e e e e e s e e s s e e annnnnnenes 8
2.3 Network Interface REQUITEIMENTSoiiuiiiiiie ittt e et e e e aibb e e e s aannneeeas 11
P2 B S = 1 1 (o o PO RPPTPP 11
2.3.2. SIOCETHTOOL...ciiiiiiiiiiiite ettt ettt et e e e s et e e e e e s e tbba e e e e e s s ssbaeeeeesasstaaaeeesannsnneeeas 12
2.3.3. SO_TIMESTAMPINGcoeititieitiie ittt ettt e e et e et e e e sbbe e e anteeaeabeeeesnbbeeeanneeaeaaneeaeas 12
2.3.4. PTP_CLK _REQ _EXTTS .ottt ittt ettt ettt e e e sttt e e e e sttt e e e s s nbbe e e e e e s snnnneeeas 14
2.4 LiNUX PTP HArAWAare ClOCK.uu ettt et e et e e e e e e e e e e e s e e s e e s e bbb ebbeeeee s 15
2.4.1. CIOCKMALIX PHEC DIIVEL ...ttt e e e e e e e e e e e ettt e e et e e e e aeaaaaaaeeaaeesaasaaaanns 15
T € 1= d] oo TS €= o £=To F PO PP OUP PP PRI 20
0 A S = Vo112 =TS (] T PP PTT PP PPPPT 20
3.1.1. Verify PHC CapabiliieSuuiiiiiiiiiiiiiiiiicieese et e s ennannns 20
3.1.2. Verify ClOCKS INCIEMENTuuiiiiiiiiiie ittt ettt e et e e e e e e e e e aaeaaaaeeeaeeaaaannns 21
3.1.3. VErify CIOCK SEE TIME ...eeiiiiiiiiiiiiiie ettt e e e e s bbb e e e e s senbneeeas 22
3.1.4. Verify Time Stamper Incoming 1-PPS from PTP CIOCK..........ccccuiiiiiiiiiiiiiiiecieeceeeeeecce 22
3.1.5. Verify ts2phc Aligns Time Stamper and 1-PPS from PTP ClOCKcccoviiiiiiiiiii. 23
3.1.6. Verify PTP Clock Time Adjustment Affects PTP Timestampccccoovviiviiiiiiiiieneeniiiieen. 25
3.1.7. Verify PTP Clock Frequency Adjustment Affects Time Stamper Frequency 26
I 1724 o £ [OO U PP P TP T TTTTPPPTPI 28
R B o1 o | PP PP TP PPTPPPPPN 28
3.3.1. Example Write Phase Mode Configuration................oooiiiiiiiiiiiiiiiiiieiecere e e ee e e e e e e e e e s 30
34 SAMPIE SESSION. ... iiiiiiii ittt ettt e e e e e e e e e e oo o e oo e aaab e a b e ettt et e ettt et e e e e e eeeeaeaaeaaa e anaabbabbnereees 30
N N o] o 1= [1 L TP 38
4.1 PerfOrMAanCe MEIIICS.cooi ittt e et e e e e e e et e e e e e s e e e et et te et et e e e e eeaeaaaaaaaaeeeesaesaaaannns 38
4.1.1. WritePhase Reference Tracker, Multicast Masterccuvviieiiiiiiiiie e 38
4.1.2. DMIPS CalCUIALION ...ttt e e e bbbt e e e e e e e e aaaaaeaeeas 38
4.2 ldentifying PHC DeVICe NUMDE ...ttt e e e e e e e e e e e e e e e e e 43
o R @1 o od 1Y/ = L1 PRSP 43
4,22, NEIWOIK INTEITACE ...eiii it e e e e e st e e e e e e snnbre e e e e e e nnnees 43
4.3 VIeW PP DEVICE NAITIE ...ttt ettt e e e e e e e e e e e e e e o e e e e ab b et bbbt e et ettt e e eeaaaaaaaaaaaaaasaesaaaannns 44
4.4 SO_SELECT_ERR_QUEUE: Protocol not available..............cooiiiiiiiiiiiiiee e 44
I (<1110 1 R PP RPPPTTUPPPN 44
R31US0007EU0101 Rev.1.01 RENESAS Page 1

Aug 20, 2021 © 2021 Renesas Electronics

Linux PTP Using PHC Adjust Phase Quick Start Guide

4.5.1. Sample Build for ZCULO2 DOAIM........cciiiuiriiieeiiiiiiee ettt 45

T o oo | PSP UPUPUUPPRRR 46

4.7 1588 Profile Configuration Validation TOOl for PtP4l..........cooo e 46

5. REVISION HIiSTOTY ittt ettt e e ookttt oo ookttt e e s e kbbbt et e e s e sbbb et e e e s e nnnneeeas 50
R31US0007EU0101 Rev.1.01 RENESAS Page 2

Aug 20, 2021

Linux PTP Using PHC Adjust Phase Quick Start Guide

1. Introduction

The Linux PTP project is an implementation of the Precision Time Protocol (PTP) according to IEEE standard

1588 for Linux licensed under the GNU General Public License.

SW

Renesas

SW

Linux

Renesas

HW

Non-Renesas
HW

GPL-2

| ——

Kemel

Linux PTP

|IEEE 1588
Protocol Stack

|

IEEE 1588 Default Profile Compliant
Enterprise / Industrial

K

N

W

SO_ TIMESTAMPING I

POSIX API

PTP Hardware Clock (PHC) Subsystem

PHY/TSU
Kernel Driver

]

|
|
[
[

PHY/MAC with
Time Stamp Unit

- S o
Packet
Network

Timing Device
Kernel Driver

ﬂrﬁing Device

PTP Based Clocks

Linux
Kernel

Linux PTP supports both hardware and software time stamping via the Linux SO_TIMESTAMPING socket

option.

Hardware time stamping is used because it provides better accuracy by time stamping packets at the exact
moment they are sent and received. Hardware time stamping requires hardware PTP support from the

PHY/MAC.

Some PTP hardware clocks have a adjust phase mode that has a built-in hardware filtering capability. The adjust

phase mode uses a phase offset control word instead of a frequency offset control word.

Adjust phase support was introduced into the Linux PHC subsystem in Linux kernel v5.8.

Linux PTP v3.0 added ts2phc that is used to align the PHC and time stamper when the PHC and time stamper

are not the same device.

R31US0007EU0101 Rev.1.01

Aug 20, 2021

RENESAS

Page 3

Linux PTP Using PHC Adjust Phase Quick Start Guide

2. System Requirements

= Linux PTP v3.0+
= Linux kernel v5.8+
= Network interface
* Implements SIOCETHTOOL
* Supports PTP hardware clock (PHC)
* Pass PTP Ethernet packet time stamps using the SO_TIMESTAMPING API
= Linux PTP Hardware Clock driver
* Renesas timing device that supports adjust phase
e ClockMatrix PHC driver with adjust phase was introduced in Linux kernel v5.8
» Driver code can be backported to Linux kernel v3.0+ that is patched to support adjust phase

2.1 Linux PTP Source

Instructions on cloning and compiling Linux PTP from source can be found below. Linux PTP added support for
adjust phase in 2020-05-04 commit 7df88a.

Host sites:

= http://linuxptp.sourceforge.net
= https://sourceforge.net/p/linuxptp/code/ci/master/tree

= https://sourceforge.net/p/linuxptp/code/ci/v3.1/tree

Mirror site:

= https://github.com/richardcochran/linuxptp

2.2 Linux Kernel
Host sites:

= https://github.com/torvalds/linux

= https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.qgit

Some PTP hardware clocks have an adjust phase mode that has a built-in hardware filtering capability. The
adjust phase mode uses a phase offset control word instead of a frequency offset control word.

The Linux PHC subsystem added the capability to accept phase offset control word in Linux kernel v5.8.
Linux PTP v3.0 has also added support for adjust phase (i.e., write_phase_mode configuration parameter).

If you are using Linux kernel v3.x to v5.7, you will need to backport the adjust phase support into the kernel.

2.2.1. Adjust Phase Patch Files

The following patch files are the differences between Linux kernel v5.8-rc5 and v5.6.
Files affected:

= drivers/ptp/ptp_chardev.c

= drivers/ptp/ptp_clock.c

= include/linux/ptp_clock_kernel.h

= include/uapi/linux/ptp_clock.h

= tools/testing/selftests/ptp/testptp.c

R31US0007EU0101 Rev.1.01 RENESAS Page 4
Aug 20, 2021

http://linuxptp.sourceforge.net/
https://sourceforge.net/p/linuxptp/code/ci/master/tree
https://sourceforge.net/p/linuxptp/code/ci/v3.1/tree
https://github.com/richardcochran/linuxptp
https://github.com/torvalds/linux
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git

Linux PTP Using PHC Adjust Phase Quick Start Guide

2.2.1.1. Patch file for Linux v5.6

Copy and paste the following and save as a text file on the root directory of your linux kernel v5.6.

From 2ae6eb4fa4a7d7499322e68fcl7faeldf35bfclb Mon Sep 17 00:00:00 2001
From: Vincent Cheng <vincent.cheng.xh@renesas.com>

Date: Fri, 17 Jul 2020 16:50:20 -0400

Subject: [PATCH] adjust phase patch for linux v5.6

drivers/ptp/ptp_chardev.c | 1+
drivers/ptp/ptp_clock.c | 9 +++++++++
include/linux/ptp_clock_kernel_h | 14 +++++++++—————
include/uapi/linux/ptp_clock.h | 4 +++-
tools/testing/selftests/ptp/testptp.c | 6 ++++—-

5 files changed, 26 insertions(+), 8 deletions(-)

diff --git a/drivers/ptp/ptp_chardev.c b/drivers/ptp/ptp_chardev.c
index 9d72ab5. .4c9fc5c 100644

--— a/drivers/ptp/ptp_chardev.c

+++ b/drivers/ptp/ptp_chardev.c

@@ -133,12 +133,13 @@ long ptp_ioctl(struct posix_clock *pc, unsigned int cmd, unsigned long

arg)

caps.-n_alarm = ptp->info->n_alarm;

caps.n_ext_ts = ptp->info->n_ext_ts;

caps.n_per_out = ptp->info->n_per_out;

caps.pps = ptp->info->pps;

caps.-n_pins = ptp->info->n_pins;

caps.cross_timestamping = ptp->info->getcrosststamp != NULL;
+ caps.adjust_phase = ptp->info->adjphase 1= NULL;

if (copy_to_user((void __user *)arg, &caps, sizeof(caps)))

err = -EFAULT;
break;

case PTP_EXTTS_REQUEST:
case PTP_EXTTS_REQUEST2:
diff --git a/drivers/ptp/ptp_clock.c b/drivers/ptp/ptp_clock.c
index aclf2bf._4fc6e4b 100644
--— a/drivers/ptp/ptp_clock.c
+++ b/drivers/ptp/ptp_clock.c

@@ -143,12 +143,21 @@ static int ptp_clock adjtime(struct posix_clock *pc, struct

__kernel_timex *tx)
return -ERANGE;
if (ops->adjfine)
err = ops->adjfine(ops, tx->freq);
else
err = ops->adjfreq(ops, ppb);
ptp->dialed_frequency = tx->freq;
} else if (tx->modes & ADJ_OFFSET) {
if (ops->adjphase) {
s32 offset = tx->offset;

if (1(tx->modes & ADJ_NANO))
offset *= NSEC_PER_USEC;

err = ops->adjphase(ops, offset);

o+ o+ o+ o+

}
3} else if (tx->modes == 0) {
tx->freq = ptp->dialed_frequency;

R31US0007EU0101 Rev.1.01 RENESAS
Aug 20, 2021

Page 5

Linux PTP Using PHC Adjust Phase Quick Start Guide

err = 0;

}

return err;
diff --git a/include/linux/ptp_clock _kernel_h b/include/linux/ptp_clock_kernel_h
index c64alef..aa805f6 100644
--— a/include/linux/ptp_clock_kernel_h
+++ b/include/linux/ptp_clock_kernel.h
@@ -33,13 +33,13 @@ struct system_device_crosststamp;
struct ptp_system_timestamp {
struct timespec64 pre_ts;
struct timespec64 post_ts;

¥

/**
- * struct ptp_clock_info - decribes a PTP hardware clock

+ * struct ptp_clock_info - describes a PTP hardware clock
*

* @owner: The clock driver should set to THIS MODULE.

* @name: A short "friendly name' to identify the clock and to

* help distinguish PHY based devices from MAC based ones.

* The string is not meant to be a unique id.

* @max_adj: The maximum possible frequency adjustment, in parts per billon.

@@ -62,12 +62,15 @@ struct ptp_system_ timestamp {
* @adjfreq: Adjusts the frequency of the hardware clock.
This method is deprecated. New drivers should implement
the @adjfine method instead.
parameter delta: Desired frequency offset from nominal frequency
in parts per billion

+

@adjphase: Adjusts the phase offset of the hardware clock.
parameter delta: Desired change in nanoseconds.

+

+
L B B N N S R B B B R

(>}

adjtime: Shifts the time of the hardware clock.
parameter delta: Desired change in nanoseconds.

@gettime64: Reads the current time from the hardware clock.
This method is deprecated. New drivers should implement
the @gettimex64 method instead.

@@ -102,16 +105,16 @@ struct ptp_system_timestamp {

zero if the function can be assigned to this pin, and

nonzero otherwise.

parameter pin: index of the pin in question.

parameter func: the desired function to use.

parameter chan: the function channel index to use.

@do_work: Request driver to perform auxiliary (periodic) operations
Driver should return delay of the next auxiliary work scheduling
time (>=0) or negative value in case further scheduling
is not required.

@do_aux_work: Request driver to perform auxiliary (periodic) operations
Driver should return delay of the next auxiliary work
scheduling time (>=0) or negative value in case further
scheduling is not required.

L B N N N DR R B R T S N

*

* Drivers should embed their ptp_clock_info within a private

* structure, obtaining a reference to it using container_of().
*

R31US0007EU0101 Rev.1.01 RENESAS
Aug 20, 2021

Page 6

Linux PTP Using PHC Adjust Phase Quick Start Guide

* The callbacks must all return zero on success, non-zero otherwise.

*/

@@ -125,12 +128,13 @@ struct ptp_clock_info {

int n_per_out;
int n_pins;
int pps;

struct ptp_pin_desc *pin_config;
int (*adjfine)(struct ptp_clock_info *ptp, long scaled_ppm);
int (*adjfreq)(struct ptp_clock_info *ptp, s32 delta);
+ int (*adjphase)(struct ptp_clock_info *ptp, s32 phase);
int (*adjtime)(struct ptp_clock_info *ptp, s64 delta);

int (*gettime64)(struct ptp_clock_info *ptp, struct timespec64 *ts);
int (*gettimex64)(struct ptp_clock_info *ptp, struct timespec64 *ts,

struct ptp_system_timestamp *sts);

int (*getcrosststamp)(struct ptp_clock_info *ptp,

struct system_device_crosststamp *cts);

diff --git aZinclude/uapi/linux/ptp_clock.h b/include/uapi/linux/ptp_clock.h

index 9dc9d00. .ff070aa 100644

--— a/Zinclude/uapi/linux/ptp_clock.h

+++ b/include/uapi/linux/ptp_clock.h

@@ -86,13 +86,15 @@ struct ptp_clock caps {

int n_ext_ts; /* Number of external time stamp channels. */
int n_per_out; /* Number of programmable periodic signals. */
int pps; /* Whether the clock supports a PPS callback. */

int n_pins; />

/* Whether the clock supports precise system-device cross timestamps */

Number of input/output pins. */

int cross_timestamping;

- int rsv[13]; /*

int adjust_phase;
int rsv[12]; /*
};

+ + +

Reserved for future use. */

/* Whether the clock supports adjust phase */

Reserved for future use. */

struct ptp_extts_request {
unsigned int index; /* Which channel to configure. */
unsigned int flags; /* Bit field for PTP_xxx flags. */
unsigned int rsv[2]; /* Reserved for future use. */

diff --git a/tools/testing/selftests/ptp/testptp.c b/tools/testing/selftests/ptp/testptp.c

index c0dd102..da7a9dd 100644

--— a/tools/testing/selftests/ptp/testptp.c

+++ b/tools/testing/selftests/ptp/testptp.c

@@ -266,20 +266,22 @@ int main(int argc, char *argv[])

%d

%d

%d

%d

%d

%d

- " %d
+ " %d
+ " %d
caps.

caps.

caps.

caps.

caps.

caps.

- caps.

maximum frequency adjustment (ppb)\n"
programmable alarms\n"

external time stamp channels\n"
programmable periodic signals\n"
pulse per second\n"

programmable pins\n"

cross timestamping\n",

cross timestamping\n"
adjust_phase\n",
max_adj,

n_alarm,

n_ext_ts,

n_per_out,

pps,

n_pins,
cross_timestamping);

R31US0007EU0101 Rev.1.01 RENESAS

Aug 20, 2021

Page 7

Linux PTP Using PHC Adjust Phase Quick Start Guide

+ caps.cross_timestamping,
+ caps.adjust_phase);
}
}

it (OX7FFFFFFF 1= adjfreq) {
memset(&tx, 0, sizeof(tx));
tx.modes = ADJ FREQUENCY;

2.7.4

To apply the patch file,

$ git am --signoff < 0001-adjust-phase-patch-for-linux-v5.6_patch

Applying: Adjust phase patch for linux v5.6

$ git log

commit d6e62c17b920a4425395fFdacc7cl74be955e7568

Author: Vincent Cheng <vincent.cheng.xh@renesas.com>

Date: Fri Jul 17 16:50:20 2020 -0400

adjust phase patch for linux v5.6

Signed-off-by: Vincent Cheng <vincent.cheng.xh@renesas.com>

commit 7111951b8d4973bda27ff663F2cT18b663d15b48

Author: Linus Torvalds <torvalds@linux-foundation.org>
Date: Sun Mar 29 15:25:41 2020 -0700

Linux 5.6

Or patch the files and manually commit the changes afterwards.
$ patch -pl < 0001-adjust-phase-patch-for-linux-v5.6_patch
patching file drivers/ptp/ptp_chardev.c

patching file drivers/ptp/ptp_clock.c

patching file include/linux/ptp_clock _kernel.h

patching File include/uapi/linux/ptp_clock.h

patching file tools/testing/selftests/ptp/testptp.c

$ git status

On branch tmp

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)
modified: drivers/ptp/ptp_chardev.c

modified: drivers/ptp/ptp_clock.c

modified: include/linux/ptp_clock kernel.h

modified: include/uapi/linux/ptp_clock.h

modified: tools/testing/selftests/ptp/testptp.c

no changes added to commit (use "git add" and/or "'git commit -a'")

2.2.2. Backporting to Linux v3.x+

For backporting adjust phase changes into other linux kernel versions, examine the following individual patch
files and manually make the corresponding appropriate changes for your linux kernel version.

2.2.2.1. drivers/ptp/ptp_chardev.c

--— a/drivers/ptp/ptp_chardev.c
+++ b/drivers/ptp/ptp_chardev.c
@@ -133,12 +133,13 @@ long ptp_ioctl(struct posix_clock *pc, unsigned int cmd, unsigned long

arg)
caps.n_alarm = ptp->info->n_alarm;

R31US0007EU0101 Rev.1.01 RENESAS Page 8
Aug 20, 2021

Linux PTP Using PHC Adjust Phase Quick Start Guide

caps.n_ext_ts = ptp->info->n_ext_ts;

caps.n_per_out = ptp->info->n_per_out;

caps.pps = ptp->info->pps;

caps.-n_pins = ptp->info->n_pins;

caps.cross_timestamping = ptp->info->getcrosststamp != NULL;
+ caps.adjust_phase = ptp->info->adjphase = NULL;

if (copy_to_user((void __user *)arg, &caps, sizeof(caps)))

err = -EFAULT;
break;

case PTP_EXTTS_REQUEST:
case PTP_EXTTS_REQUEST2:

2.2.2.2. drivers/ptp/ptp_clock.c

--— a/drivers/ptp/ptp_clock.c
+++ b/drivers/ptp/ptp_clock.c
@@ -143,12 +143,21 @@ static int ptp_clock_adjtime(struct posix_clock *pc, struct
__kernel_timex *tx)
return -ERANGE;
it (ops->adjfine)
err = ops->adjfine(ops, tx->freq);
else
err = ops->adjfreq(ops, ppb);
ptp->dialed_frequency = tx->freq;
} else if (tx->modes & ADJ_OFFSET) {
if (ops->adjphase) {
s32 offset = tx->offset;

if (1(tx->modes & ADJ_NANO))
offset *= NSEC_PER_USEC;

err = ops->adjphase(ops, offset);

+ 4+ 4+ + + o+ + o+

}

} else if (tx->modes == 0) {
tx->freq = ptp->dialed_frequency;
err = 0;

}

return err;

2.2.2.3. include/linux/ptp_clock_kernel.h

--— a/include/linux/ptp_clock_kernel_h
+++ b/include/linux/ptp_clock_kernel.h
@@ -125,12 +128,13 @@ struct ptp_clock_info {
int n_per_out;
int n_pins;
int pps;
struct ptp_pin_desc *pin_config;
int (*adjfine)(struct ptp_clock_info *ptp, long scaled_ppm);
int (*adjfreq)(struct ptp_clock_info *ptp, s32 delta);
+ int (*adjphase)(struct ptp_clock_info *ptp, s32 phase);
int (*adjtime)(struct ptp_clock_info *ptp, s64 delta);
int (*gettime64)(struct ptp_clock_info *ptp, struct timespec64 *ts);
int (*gettimex64)(struct ptp_clock_info *ptp, struct timespec64 *ts,
struct ptp_system_ timestamp *sts);
int (*getcrosststamp)(struct ptp_clock_info *ptp,

R31US0007EU0101 Rev.1.01 RENESAS Page 9
Aug 20, 2021

Linux PTP Using PHC Adjust Phase Quick Start Guide

struct system_device_crosststamp *cts);

2.2.2.4. include/uapi/linux/ptp_clock.h

--— a/include/uapi/linux/ptp_clock.h
+++ b/include/uapi/linux/ptp_clock.h
@@ -86,13 +86,15 @@ struct ptp_clock caps {
int n_ext_ts; /* Number of external time stamp channels. */
int n_per_out; /* Number of programmable periodic signals. */
int pps; /* Whether the clock supports a PPS callback. */
int n_pins; /* Number of input/output pins. */
/* Whether the clock supports precise system-device cross timestamps */
int cross_timestamping;
- int rsv[13]; /* Reserved for future use. */

+ /* Whether the clock supports adjust phase */
+ int adjust_phase;

+ int rsv[12]; /* Reserved for future use. */
};

struct ptp_extts_request {
unsigned int index; /* Which channel to configure. */
unsigned int flags; /* Bit field for PTP_xxx flags. */
unsigned iInt rsv[2]; /* Reserved for future use. */

2.2.2.5. tools/testing/selftests/ptp/testptp.c

--- a/tools/testing/selftests/ptp/testptp.c
+++ b/tools/testing/selftests/ptp/testptp.c
@@ -266,20 +266,22 @@ int main(int argc, char *argv[])
" %d maximum frequency adjustment (ppb)\n"
%d programmable alarms\n"
%d external time stamp channels\n"
%d programmable periodic signals\n"
%d pulse per second\n"
%d programmable pins\n"
- " %d cross timestamping\n',
+ " %d cross timestamping\n"
+ " %d adjust_phase\n",
caps.max_adj,
caps.n_alarm,
caps.n_ext_ts,
caps.n_per_out,
caps.pps,
caps.n_pins,
- caps.cross_timestamping);
+ caps.cross_timestamping,
+ caps.adjust_phase);
¥
}

it (OX7FFFFFFF 1= adjfreq) {
memset(&tx, 0, sizeof(tx));
tx.modes = ADJ_FREQUENCY;

R31US0007EU0101 Rev.1.01 RENESAS Page 10
Aug 20, 2021

Linux PTP Using PHC Adjust Phase Quick Start Guide

2.3 Network Interface Requirements

The network interface driver would need to:

= Support ioctl command SIOCETHTOOL
= Support PTP hardware clock (PHC)
* Pass PTP Ethernet packet time stamps using the SO_TIMESTAMPING API
* Support POSIX clock API clock_adjtime() with struct timex modes
o ADJ_FREQUENCY
°© ADJ_OFFSET
°c ADJ_NANO
o ADJ_SETOFFSET
= Support PTP request type
* PTP_CLK_REQ_PPS
* PTP_CLK_REQ_EXTTS (PTP_ENABLE_FEATURE)

2.3.1. ethtool

ethtool can show whether a MAC supports hardware or software time stamping and whether it supports PHC.
The following example output indicates support for hardware time stamping listed under Capabilities and is
registered as PHC device 0, PTP Hardware Clock: O.

$ ethtool -T ethO

Time stamping parameters for ethO:

Capabilities:
hardware-transmit (SOF_TIMESTAMPING_TX_HARDWARE)
hardware-receive (SOF_TIMESTAMPING_RX_HARDWARE)
hardware-raw-clock (SOF_TIMESTAMPING_RAW_HARDWARE)

PTP Hardware Clock: O

Hardware Transmit Timestamp Modes:

off (HWTSTAMP_TX_OFF)

on (HWTSTAMP_TX_ON)
Hardware Receive Filter Modes:

none (HWTSTAMP_FILTER_NONE)

all (HWTSTAMP_FILTER_ALL)

If the ethtool utility is not on your system, you can compile the utility from the source.

https://qgit.kernel.org/pub/scm/network/ethtool/ethtool.qgit

Build ethtool from source example:

Build ethtool from source
$ git clone git://git.kernel.org/pub/scm/network/ethtool/ethtool .git

$ cd ethtool

$./autogen.sh
$ _/configure

CROSS compile for target board, ie. sudo apt-get install gcc-aarch64-1inux-gnu
$ make clean all CC=/usr/bin/aarch64-1inux-gnu-gcc

Copy ethtool binary to target board

R31US0007EU0101 Rev.1.01 RENESAS Page 11
Aug 20, 2021

https://git.kernel.org/pub/scm/network/ethtool/ethtool.git

Linux PTP Using PHC Adjust Phase Quick Start Guide

2.3.2. SIOCETHTOOL
Used in Iinuxptp/sk.c to interrogate network interface timestamping capabilities.

linuxptp/sk.c:
int sk_get_ts_info(const char *name, struct sk_ts_info *sk_info)
{
#ifdef ETHTOOL_GET_TS_INFO
struct ethtool_ts_info info;

info.cmd = ETHTOOL_GET_TS_INFO;

err = ioctl(fd, SIOCETHTOOL, &ifr);

if (err <0) {
pr_err(ioctl SIOCETHTOOL failed: %m');
close(fd);

goto failed;

include/uapi/linux/ethtool _h:
#define ETHTOOL_GET_TS_INFO 0x00000041 /* Get time stamping and PHC info */

2.3.3. SO _TIMESTAMPING
https://www.kernel.org/doc/Documentation/networking/timestamping.txt

1. Control Interfaces

The interfaces for receiving network packages timestamps are:

* SO_TIMESTAMPING
Generates timestamps on reception, transmission or both. Supports
multiple timestamp sources, including hardware. Supports generating
timestamps for stream sockets.

1.3 SO_TIMESTAMPING (also SO_TIMESTAMPING_OLD and SO_TIMESTAMPING_NEW) :

Supports multiple types of timestamp requests. As a result, this
socket option takes a bitmap of flags, not a boolean. In

err = setsockopt(fd, SOL_SOCKET, SO_TIMESTAMPING, &val, sizeof(val));

val is an integer with any of the following bits set. Setting other
bit returns EINVAL and does not change the current state.

The socket option configures timestamp generation for individual
sk_buffs (1.3.1), timestamp reporting to the socket"s error
queue (1.3.2) and options (1.3.3). Timestamp generation can also
be enabled for individual sendmsg calls using cmsg (1.3.4).

1.3.1 Timestamp Generation
Some bits are requests to the stack to try to generate timestamps. Any

combination of them is valid. Changes to these bits apply to newly
created packets, not to packets already in the stack. As a result, it

R31US0007EU0101 Rev.1.01 RENESAS Page 12
Aug 20, 2021

https://www.kernel.org/doc/Documentation/networking/timestamping.txt

Linux PTP Using PHC Adjust Phase Quick Start Guide

is possible to selectively request timestamps for a subset of packets
(e.g., for sampling) by embedding an send() call within two setsockopt
calls, one to enable timestamp generation and one to disable it.
Timestamps may also be generated for reasons other than being
requested by a particular socket, such as when receive timestamping is
enabled system wide, as explained earlier.

SOF_TIMESTAMPING_RX_HARDWARE:
Request rx timestamps generated by the network adapter.

SOF_TIMESTAMPING_RX_SOFTWARE:
Request rx timestamps when data enters the kernel. These timestamps
are generated just after a device driver hands a packet to the
kernel receive stack.

SOF_TIMESTAMPING_TX_HARDWARE:
Request tx timestamps generated by the network adapter. This flag
can be enabled via both socket options and control messages.

SOF_TIMESTAMPING_TX_SOFTWARE:
Request tx timestamps when data leaves the kernel. These timestamps
are generated in the device driver as close as possible, but always
prior to, passing the packet to the network interface. Hence, they
require driver support and may not be available for all devices.
This flag can be enabled via both socket options and control messages.

1.3.4. Enabling timestamps via control messages

In addition to socket options, timestamp generation can be requested
per write via cmsg, only for SOF_TIMESTAMPING _TX_ * (see Section 1.3.1).
Using this feature, applications can sample timestamps per sendmsg()
without paying the overhead of enabling and disabling timestamps via
setsockopt:

struct msghdr *msg;

cmsg

cmsg->cmsg_level

cmsg->cmsg_type SO_TIMESTAMPING;

cmsg->cmsg_len CMSG_LEN(sizeof(__u32));

*((_u32 *) CMSG_DATA(cmsg)) = SOF_TIMESTAMPING_TX_SCHED |
SOF_TIMESTAMPING_TX_SOFTWARE |
SOF_TIMESTAMPING_TX_ACK;

err = sendmsg(fd, msg, 0);

CMSG_FIRSTHDR(MsQ) ;
SOL_SOCKET;

The SOF_TIMESTAMPING_TX_* flags set via cmsg will override
the SOF_TIMESTAMPING_TX_* flags set via setsockopt.

Moreover, applications must still enable timestamp reporting via
setsockopt to receive timestamps:

__u32 val = SOF_TIMESTAMPING_SOFTWARE |
SOF_TIMESTAMPING_OPT_ID /* or any other flag */;
err = setsockopt(fd, SOL_SOCKET, SO_TIMESTAMPING, &val, sizeof(val));

R31US0007EU0101 Rev.1.01 RENESAS
Aug 20, 2021

Page 13

Linux PTP Using PHC Adjust Phase Quick Start Guide

3.1 Hardware Timestamping Implementation: Device Drivers

A driver which supports hardware time stamping must support the
SIOCSHWTSTAMP ioctl and update the supplied struct hwtstamp_config with
the actual values as described in the section on SIOCSHWTSTAMP. It
should also support SIOCGHWTSTAMP.

Time stamps for received packets must be stored in the skb. To get a pointer
to the shared time stamp structure of the skb call skb_hwtstamps(). Then
set the time stamps in the structure:

struct skb_shared_hwtstamps {
/* hardware time stamp transformed into duration
* since arbitrary point in time
*/
ktime_t hwtstamp;
}:

Time stamps for outgoing packets are to be generated as follows:

- In hard_start_xmit(), check if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)
is set no-zero. If yes, then the driver is expected to do hardware time
stamping.

- If this is possible for the skb and requested, then declare
that the driver is doing the time stamping by setting the flag
SKBTX_IN_PROGRESS in skb_shinfo(skb)->tx_flags , e.g. with

skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;

You might want to keep a pointer to the associated skb for the next step

and not free the skb. A driver not supporting hardware time stamping doesn"t
do that. A driver must never touch sk _buff::tstamp! It is used to store
software generated time stamps by the network subsystem.

- Driver should call skb_tx_timestamp() as close to passing sk _buff to hardware
as possible. skb_tx_timestamp() provides a software time stamp if requested
and hardware timestamping is not possible (SKBTX_IN_PROGRESS not set).

- As soon as the driver has sent the packet and/or obtained a
hardware time stamp for it, it passes the time stamp back by
calling skb_hwtstamp_tx() with the original skb, the raw
hardware time stamp. skb_hwtstamp_tx() clones the original skb and
adds the timestamps, therefore the original skb has to be freed now.

IT obtaining the hardware time stamp somehow fails, then the driver
should not fall back to software time stamping. The rationale is that
this would occur at a later time in the processing pipeline than other
software time stamping and therefore could lead to unexpected deltas
between time stamps.

2.3.4. PTP_CLK_REQ EXTTS

Can check if device supports PTP_CLK_REQ_EXTTS by using the testptp utility. For details on testptp, see
testptp.

For example, the device /dev/ptp0 supports PTP_CLK _REQ_EXTTS because it says 1 external time
stamp channels.

testptp -d /dev/ptp0 -c

capabilities:
999999999 maximum frequency adjustment (ppb)
0 programmable alarms

R31US0007EU0101 Rev.1.01 RENESAS Page 14
Aug 20, 2021

Linux PTP Using PHC Adjust Phase Quick Start Guide

1 external time stamp channels
0 programmable periodic signals
0 pulse per second

0 programmable pins

0 cross timestamping

2.4 Linux PTP Hardware Clock

Linux PTP works with devices with drivers that support the PTP hardware clock (PHC) infrastructure for Linux.
Details on Linux PHC subsystem can be found at https://www.kernel.org/doc/Documentation/ptp/ptp.txt.

Clock drivers include include/linux/ptp_clock _kernel.h and register
themselves by presenting a "struct ptp_clock_info" to the
registration method. Clock drivers must implement all of the
functions in the interface. If a clock does not offer a particular
ancillary feature, then the driver should just return -EOPNOTSUPP
from those functions.

Drivers must ensure that all of the methods in interface are
reentrant. Since most hardware implementations treat the time value
as a 64 bit integer accessed as two 32 bit registers, drivers
should use spin_lock_irgsave/spin_unlock_irgrestore to protect
against concurrent access. This locking cannot be accomplished in
class driver, since the lock may also be needed by the clock
driver®s interrupt service routine.

For examples of drivers that support PHC, search for ptp_clock register in the linux kernel source.

Sample of devices that support PHC API (Linux Kernel v5.7):

= drivers/net/ethernet/broadcom/bnx2x/bnx2x_main.c
= drivers/net/ethernet/broadcom/tg3.c

= drivers/net/ethernet/cadence/macb_ptp.c

= drivers/net/ethernet/cavium/common/cavium_ptp.c
= drivers/net/ethernet/freescale/fec_ptp.c

= drivers/net/ethernet/intel/e1000e/ptp.c

= drivers/net/ethernet/renesas/ravb_ptp.c

= drivers/net/phy/dp83640.c

Renesas Timing Devices with PHC driver support:
= drivers/ptp/ptp_clockmatrix.c

= drivers/ptp/ptp_idt82p33.c
2.4.1. ClockMatrix PHC Driver

The ClockMatrix™ family includes integrated devices that provide eight PLL channels. Each PLL channel can be
independently configured as a frequency synthesizer, jitter attenuator, digitally controlled oscillator (DCO), or a
digital phase lock loop (DPLL).

Typically these devices are used as timing references and clock sources for PTP applications.

2.4.1.1. Source Code

The ClockMatrix PHC driver with adjust phase support was introduced in Linux v5.8 kernel. The ClockMatrix
PHC driver files are located in the Linux kernel ““drivers/ptp™ directory.

Latest driver code can be retrieved from the master branch of the linux kernel.

R31US0007EU0101 Rev.1.01 RENESAS Page 15

Aug 20, 2021

https://www.kernel.org/doc/Documentation/ptp/ptp.txt

Linux PTP Using PHC Adjust Phase Quick Start Guide

https://qgit.kernel.org/pub/scm/linux/kernel/git/stable/linux.qit/tree/drivers/ptp?h=master

Files of interest:

= Kconfig

= Makefile

= idt8a340 _reg.h
= ptp_clockmatrix.h
= ptp_clockmatrix.c

Kconfig:

config PTP_1588_CLOCK_IDTCM

tristate "IDT CLOCKMATRIX as PTP clock™

depends on PTP_1588 CLOCK && 12C

default n
help

This driver adds support for using IDT CLOCKMATRIX(TM) as a PTP

clock. This clock is only useful
is connected to the IDT chip.

if your time stamping MAC

To compile this driver as a module, choose M here: the module

will be called ptp_clockmatrix.

Makefile:

obj-$(CONFIG_PTP_1588 CLOCK_IDTCM) += ptp_clockmatrix.o

2.4.1.2. CM PHC Driver Release Notes

Kernel

Date

Description

5.12 2021-02-17

Fixes: Output to internal 1-PPS Alignment not complete when SYS_DPLL not
locked.

= clean-up - parenthesis around a == b are unnecessary
= simplify code - remove unnecessary “err” variable

= coding style - tighten vertical spacing

= clean-up dev_*() messages

= add alignment of 1-PPS to idtcm_perout_enable

= add wait_for_sys_apll_dpll_lock.

5.11 2020-12-09

Fixes: 4.8.7 non-zero phase_adj is lost when driver starts

= deprecate firmware older than 4.8.7

= fix non-zero phase_adj is lost after snap

= remove 5 second delay before entering write phase mode
= reset device and check BOOT_STATUS

5.9.12 2020-11-25
2020-08-19

bug fix for idtcm_strverscmp
Fixes: 12C write bug for certain platforms
= use i2c_master_send for i2c write

5.9 2020-07-30

Fixes: Intermittent snap bug for 4.8.0
= update to support 4.8.7 firmware

R31US0007EU0101 Rev.1.01
Aug 20, 2021

RENESAS Page 16

https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/drivers/ptp?h=master

Linux PTP Using PHC Adjust Phase Quick Start Guide

Kernel Date Description

5.8 2020-05-02 Add adjphase() to support PHC write phase mode.
2020-04-25 Remove unnecessary comparison

5.6 2020-01-07 Rework clockmatrix version information.
2020-01-02 Constify copied structure

5.5 2019-11-06 Fix missing unlock on error in idtcm_probe()
2019-11-03 Add a ptp clock driver for IDT ClockMatrix

2.4.1.3. Device Connection
The ClockMatrix device is expected to output two signals to the PTP time stamping device.
= X MHz as 1588 PTP clock

= 1-PPS to align the rising clock edge of the PTP Timer with ClockMatrix
PTP 0O PTP 1

PTP Timer | | ClockMatrix

PTP time stamper driver supports: PTP_CLK_REQ_EXTTS

2.4.1.4. Kernel Device Tree

Insert ClockMatrix in the appropriate section of the device tree.

Sample entry on the Xilinx ZCU102 board:

12c-mux@75 {
i2c@1 {
phc@5b { /* Clock Matrix */
compatible = "idt,8a34000";
reg = <0x5b>;
};
};

2.4.1.5. Kernel .config

#

PTP clock support

#

CONFIG_PTP_1588 CLOCK=y

#

Enable PHYLIB and NETWORK_PHY_TIMESTAMPING to see the additional clocks.
#

CONFI1G_PTP_1588_CLOCK_IDTCM=m

R31US0007EU0101 Rev.1.01 RENESAS Page 17
Aug 20, 2021

Linux PTP Using PHC Adjust Phase Quick Start Guide

2.4.1.6. Device Configuration

When the ClockMatrix driver is loaded, it looks in /1 ib/firmware a configuration file to load into the
ClockMatrix device.

The filename is determined during compile time by FW_FILENAME:

static int idtcm_load_firmware(struct idtcm *idtcm,
struct device *dev)

{
const struct firmware *fw;
err = request_firmware(&fw, FW_FILENAME, dev);

FW_FILENAME macro is defined in drivers/ptp/ptp_clockmatrix.h.

Renesas Timing Commander Software using Clockmatrix Timing Commander Personality v8.4. can be used to
generate ClockMatrix device configuration .bin file.

#define FW_FILENAME "idtcm.bin"

| PowerEstimate | | Gonfigure Input TG

TN 45746805~ I3

Ml ===
Display input and output labels || (W] LFJ \m@mm [serteh Regeters

—_ gE —> ToDoos [Fomis Urmec Gharieis
System DPLL o=

00MHz

—_—

Enable _Frequency Channel 0 ﬁ]

- @ cua ;
= [ynthesizer |

™ -H‘ 7 Comba: ‘_SysmmDF'LL Channel 1

Channel 1
< [|] oua CLKy | 1000MHz ===
= |
_— :

DPLL Mode

ht Combo: | System DPLL
& o B s =
_— | PCW = Channel 2

500MHz

I = DGO Operation via External Control
Virite Phase Mode
f CLK3 Gombo: | System DPLL Channed 1 y— 2,

{ Gonfiqure l1o0oMz g 125z,

en
2 o4 L s 250M=z §T7Y
— nQ4 =
Channel 3 &3
|DPLL Mode an
: | enable /| (M| Desired:

s s |

—-1PPS z
[nes L

Channel 4
e | || Desired:

BPLL e : —_——
nE |£

R31US0007EU0101 Rev.1.01 RENESAS Page 18
Aug 20, 2021

Linux PTP Using PHC Adjust Phase Quick Start Guide

Channel 2 Global Sync Enable TOD2 Configuration

[N TSRO CC Operation via External Cont -] — il] Vel o Chs

Profile: G.8273.2 T-BL/T-TSC M [Pulse per even second
DO Extermal Controt [T 27 i8] Preciefined Config for Write Phase:

Write

Type absolute TOD ~)

Seconds Nanosecon

) —

Sub NS

Ll

TOD Read (Primary)
Tive -
Seconds Nanosecon: 5 Read Counter
Combo Mode - Master (for Filtered source) Combo Mod [I [} 1L 0 o
Filterinput: M| | (/) [enabie primary combo source ZalL I ———
b, [) || soe _— 100 B contar
- & s ® e
* Note that the unfiltered source is always from the sum of Type -

proportional and integrator of the Master.

Seconds Nanosecorn
op Filter Config for DPLL2 i L g
—
o EE—
6

1.012, 0.10 dB, < 0.1 dB; TOD Synchronization

Master Divider

Phasa siope imiting: | Enabled 7
DecimatorFactor. |G (&) oypassea syncsource: [N

Actual DCO Frequency: SODMHz

[PREDEFINED CONFIGURATIONS
Enable predefined configurations.
Configuration for PTP HW Clock (PHC) Driver Defining PTP HW Qlocks
Predefined Config 0 Predefined Config 1 1. Designate the PLL controlling the alignment by selecting a PTP
_ _ PIP Channel TOD Outputs profile (e.g. 82732, 8273 A or 8263).
Loop Bandwidth: =N . Loop Bandwicth: I -
oz~ o

Damping Factor: 1,002, 0.02 dB, overdamp: Damping Factor: 1,002, 0.02 dB, overdamp; - I3 2 Conniglire sAte(Rce FL s 15 the contenli I £ optcoct)

e slope Emiting: Bns/s - Select the controlling PLL 25 the primary or secondary combo source OR
pesees o | IERE] W = v e e Lot

Phase slope fimiting:

.
Decimator Factor: | f— Decimator Factor: [eypassed

All outputs driven by the controlling PLL or any satellite PLLs will be aligned.

Generate BIN File.

For device configuration support, email IDT-support-1588@1Im. renesas.com.

R31US0007EU0101 Rev.1.01 RENESAS Page 19
Aug 20, 2021

mailto:IDT-support-1588@lm.renesas.com

Linux PTP Using PHC Adjust Phase Quick Start Guide

3. Getting Started

3.1 Sanity Testing

Use testptp and phc_ctl to check that the 1588 timestamp device and PTP clock device is connected and
configured to behave as expected.

= Verify PHC capabilities

= Verify clock’s time of day increments

= Verify clock set time

= Verify time stamper incoming 1-PPS from PTP clock

= Verify ts2phc aligns time stamper and 1-PPS from PTP clock

= Verify PTP clock time adjustment affects PTP timestamp

= Verify PTP clock frequency adjustment affects time stamper frequency

Some of the checks can be performed with testptp or phc_ctl. If the check passes using one of the
programs, there is no need to repeat the same check using the other program.

The following example logs were captured using the Xilinx ZCU102 board with a ClockMatrix device as the PTP
clock.

PTP Timer | | ClockMatrix

PTP time stamper driver supports: PTP_CLK_REQ EXTTS

/dev/ptp0, Xilinx Timer, is the time stamper for 1588 packets.
/dev/ptpl, ClockMatrix, is the PTP clock source to the time stamper.

There is an expectation that the PTP timestamp with 0 nanoseconds aligns with the rising edge of outgoing
1-PPS clock signal.

3.1.1. Verify PHC Capabilities

For the Xilinx time stamper, the PHC driver must support at least one "external time stamp channels"..

For the ClockMatrix device, the PHC driver must support at least one "programmable periodic signals" to
generate the 1-PPS to the Xilinx time stamper.

testptp
For Xilinx timer stamper:

$ _/testptp -d /dev/ptp0 -c
capabilities:
999999999 maximum frequency adjustment (ppb)
0 programmable alarms
1 external time stamp channels
0 programmable periodic signals
0 pulse per second
0 programmable pins
0 cross timestamping

R31US0007EU0101 Rev.1.01 RENESAS Page 20
Aug 20, 2021

Linux PTP Using PHC Adjust Phase Quick Start Guide

For ClockMatrix device:

$./testptp -d /dev/ptpl -c
capabilities:
244000 maximum frequency adjustment (ppb)
0 programmable alarms
0 external time stamp channels
12 programmable periodic signals
0 pulse per second
0 programmable pins
0 cross timestamping

phc ctl
For Xilinx timer stamper:

$./phc_ctl /dev/ptp0 -- caps
phc_ctl[60.986]:
capabilities:
999999999 maximum frequency adjustment (ppb)
0 programable alarms
1 external time stamp channels
0 programmable periodic signals
0 configurable input/output pins
doesn®"t have pulse per second support
doesn®"t have cross timestamping support

For ClockMatrix device:

$./phc_ctl /dev/ptp0 -- caps
phc_ctl[94.634]:
capabilities:
244000 maximum frequency adjustment (ppb)
0 programable alarms
0 external time stamp channels
12 programmable periodic signals
0 configurable input/output pins
doesn®"t have pulse per second support
doesn®"t have cross timestamping support

3.1.2. Verify Clocks Increment

If the PTP device is working (i.e., the input clock is present), repeated command to get the clock time should

show incremental readings.
testptp
For Xilinx timer stamper.

$./testptp -d /dev/ptp0 -g

clock time: 1595449857.649425272 or Wed Jul 22 20:30:57 2020

$ _/testptp -d /dev/ptp0 -g

clock time: 1595449859.400688308 or Wed Jul 22 20:30:59 2020

For ClockMatrix device:

$ _/testptp -d /dev/ptpl -g

clock time: 1595449899.113274703 or Wed Jul 22 20:31:39 2020

$ _/testptp -d /dev/ptpl -g

clock time: 1595449900.072974835 or Wed Jul 22 20:31:40 2020

R31US0007EU0101 Rev.1.01 RENESAS

Aug 20, 2021

Page 21

Linux PTP Using PHC Adjust Phase Quick Start Guide

phc ctl

For Xilinx timer stamper.

$./phc_ctl /dev/ptp0 -- get

phc_ctl[1515.896]: clock time is 1524.402616468 or Thu Jan 1 00:25:24 1970

$./phc_ctl /dev/ptp0 -- get

phc_ctl[1533.458]: clock time is 1541.966759556 or Thu Jan 1 00:25:41 1970
For ClockMatrix device:

$./phc_ctl /dev/ptpl -- get

phc_ctl[1643.300]: clock time is 1637.701499548 or Thu Jan 1 00:27:17 1970

$./phc_ctl /dev/ptpl -- get
phc_ctl[1647.248]: clock time is 1641.649999488 or Thu Jan 1 00:27:21 1970

3.1.3. Verify Clock Set Time
Check clock set time was able set to 1000 seconds and then 0 seconds.

For Xilinx timer stamper.

$./phc_ctl /dev/ptp0 -- set 1000
phc_ctl[12839.455]: set clock time to 1000.000000000 or Thu Jan 1 00:16:40 1970

$./phc_ctl /dev/ptp0 -- get
phc_ctl[12842.198]: clock time is 1002.743910000 or Thu Jan 1 00:16:42 1970

$./phc_ctl /dev/ptp0 -- set O
phc_ctl[12852.670]: set clock time to 0.000000000 or Thu Jan 1 00:00:00 1970

$./phc_ctl /dev/ptp0 -- get
phc_ctl[12854.174]: clock time is 1.504634712 or Thu Jan 1 00:00:01 1970

For ClockMatrix device:

$./phc_ctl /dev/ptpl -- set 1000
phc_ctl[13015.464]: set clock time to 1000.000000000 or Thu Jan 1 00:16:40 1970

$./phc_ctl /dev/ptpl -- get
phc_ctl[13022.248]: clock time is 1006.783599918 or Thu Jan 1 00:16:46 1970

$./phc_ctl /dev/ptpl -- set O
phc_ctl[13025.308]: set clock time to 0.000000000 or Thu Jan 1 00:00:00 1970

$./phc_ctl /dev/ptpl -- get
phc_ctl[13026.747]: clock time is 1.439099534 or Thu Jan 1 00:00:01 1970

3.1.4. Verify Time Stamper Incoming 1-PPS from PTP Clock
Since the Xilinx timer should be receiving a 1-PPS input, it should show periodic 1 second events.

$./testptp -e 5000 -d /dev/ptp0
external time stamp request okay
event index at 1797.085533392
event index at 1798.085533392
event index at 1799.085533392
event index at 1800.085533392
event index at 1801.085533392
event index at 1802.085533392

O O O0OO0oOO0oOo

R31US0007EU0101 Rev.1.01 RENESAS
Aug 20, 2021

Page 22

Linux PTP Using PHC Adjust Phase Quick Start Guide

event index 0 at 1803.085533392

There may be an accumulation of 1-PPS events, and you may see the display scroll rapidly. However, the
1-PPS event queue should flush relatively quickly and you should see the display incrementing every second.
To quit testptp loop, press Ctrl+C.

If the 1-PPS clock going into the Xilinx timer is missing, there will be no event i1ndex output after external
time stamp request okay is displayed.

$./testptp -e 5000 -d /dev/ptp0O
external time stamp request okay

To quit testptp loop, press Ctrl+C.

3.1.5. Verify ts2phc Aligns Time Stamper and 1-PPS from PTP Clock
1. Settime stamper time to 1000.5 seconds.

2. Set PHC time to 80000 seconds.

3. Run ts2phc with debug log enabled to align time stamper to PHC clock.

When using ts2phc with a ClockMatrix device, the message: PTP_PIN_SETFUNC failed: Invalid
argument may pop up. The ClockMatrix PHC driver does not support dynamic PTP_PIN_SETFUNC yet. This
message can be ignored because the ClockMatrix device is expected to be configured to output the expected
1-PPS during start-up.

$ cat ts2phc.cfg
ts2phc config file to get it to behave like syncd to align
time stamper to PHC device®s 1-PPS signal.

Example:
./ts2phc -m -q -f ts2phc.cfg

H O HHH R H

[global]

clock_servo nullf
first_step_threshold 0.000000001
step_threshold 0.000000001

time stamper, slave device
[/dev/ptp0]
ts2phc.channel 0

PHC device (ex. CM), master device
Set ts2phc.channel to 2 for Sabre
[/dev/ptpl]

ts2phc.master 1

ts2phc.channel 5

#

Set time stamper time to 1000.5 seconds.

#

$./phc_ctl /dev/ptp0 -- set 1000.5

phc_ctl[15170.818]: set clock time to 1000.500000000 or Thu Jan 1 00:16:40 1970

#
Set PHC time to 80000 seconds.

R31US0007EU0101 Rev.1.01 RENESAS Page 23
Aug 20, 2021

Linux PTP Using PHC Adjust Phase Quick Start Guide

#
$./phc_ctl /dev/ptpl -- set 80000
phc_ctl[15188.347]: set clock time to 80000.000000000 or Thu Jan 1 22:13:20 1970

#

Run ~~ts2phc
#

$./ts2phc -mgf ts2phc.cfg -1 7

ts2phc[15208.103]: config item (null).message_tag is "(null)”

ts2phc[15208.104]: config item (null).verbose is 1

ts2phc[15208.104]: config item (null).use_syslog is 0

ts2phc[15208.104]: config item (null).logging_level is 7

ts2phc[15208.104]: config item /dev/ptp0.ts2phc.master is O

ts2phc[15208.104]: config item (null).clock_servo is 3

ts2phc[15208.104]: config item /dev/ptpO0.ts2phc.pin_index is O

ts2phc[15208.104]: config item /dev/ptp0.ts2phc.channel is 0

ts2phc[15208.104]: config item /dev/ptp0.ts2phc.extts_polarity is 2

ts2phc[15208.104]: config item /dev/ptp0.ts2phc.extts_correction is 0

ts2phc[15208.104]: config item /dev/ptp0.ts2phc.pulsewidth is 500000000

ts2phc[15208.104]: config item (null).free_running is O

ts2phc[15208.104]: PHC slave /dev/ptp0 has ptp index O

ts2phc[15208.104]: config item (null).step_threshold is 0.000000

ts2phc[15208.104]: config item (null).first_step_threshold is 0.000000

ts2phc[15208.104]: config item (null).max_frequency is 900000000

ts2phc[15208.104]: config item (null).servo_offset_threshold is 0O

ts2phc[15208.104]: config item (null).servo_num_offset_values is 10

ts2phc[15208.104]: config item /dev/ptpl.ts2phc.master is 1

ts2phc[15208.105]: PHC master /dev/ptpl has ptp index O

ts2phc[15208.105]: config item /dev/ptpl.ts2phc.channel is 5

ts2phc[15208.105]: config item /dev/ptpl.ts2phc.pin_index is 0

PTP_PIN_SETFUNC failed: Invalid argument

ts2phc[15208.105]: Failed to set the pin. Continuing bravely on...

ts2phc[15209.346]: /dev/ptp0 extts index O at 1039.030816420 corr O src 80021.400568 diff -78981969183580
ts2phc[15209.346]: /dev/ptp0 master offset -78981969183580 s1 freq+0

ts2phc[15210.346]: /dev/ptp0 extts index O at 80022.000000000 corr O src 80022.400672 diff O
ts2phc[15210.346]: /dev/ptp0 master offset 0 s2 freq+0

ts2phc[15211.346]: /dev/ptp0 extts index O at 80023.000000000 corr O src 80023.400674 diff O
ts2phc[15211.346]: /dev/ptp0 master offset 0 s2 freq+0

ts2phc[15212.346]: /dev/ptp0 extts index O at 80024.000000000 corr O src 80024.400728 diff O
ts2phc[15212.346]: /dev/ptp0 master offset 0 s2 freq+0

ts2phc[15213.346]: /dev/ptp0 extts index O at 80025.000000000 corr O src 80025.300776 diff O
ts2phc[15213.346]: /dev/ptp0 master offset 0 s2 freq+0

with debug log enabled to align time stamper to PHC clock.

s1 means unlock state and s2 is the locked state (i.e., master and are aligned). The states in ts2phc are
independent of the states in ptp4l.

Looking closer at the following lines:

PHC slave /dev/ptp0 has ptp index O
PHC master /dev/ptpl has ptp index O

/dev/ptp0 extts index 0 at 1039.030816420 corr O src 80021.400568 diff -78981969183580
/dev/ptp0 master offset -78981969183580 s1 freq+0
/dev/ptp0 extts index O at 80022.000000000 corr O src 80022.400672 diff O

1039.030816420 is the time from /dev/ptp0, the PHC slave.
80021.400568 is the time from /dev/ptpl, the PHC master.
diff -78981969183580 or master offset -78981969183580 is in nanoseconds, ie. -78981.969183580 s.

To align the PHC slave, ts2phc will take the difference between the PHC masters and adjust the PHC slave
accordingly.

R31US0007EU0101 Rev.1.01 RENESAS Page 24
Aug 20, 2021

Linux PTP Using PHC Adjust Phase Quick Start Guide

Note after the adjustment, the master offset becomes 0.

/dev/ptp0 master offset -78981969183580 s1 freq+0
/dev/ptp0 master offset 0 s2 freq+0
/dev/ptp0 master offset 0 s2 freq+0

When you stop ts2phc, it will disable the PTP clock's 1-PPS output. Running ts2phc will enable it again.

3.1.6. Verify PTP Clock Time Adjustment Affects PTP Timestamp
Prerequisites:

= PTP master configured for 1 packet per second internal
= Run “ts2phc’ in the background
= Run “ptpdl™ as a slave in free run mode in the background using the time stamper PHC (i.e. no -p option)

ptp4l can be configured into "free run" mode by adding "free_running 1"to the ptp4l configuration file.
Or by adding "--free_running=1" at the command line when starting ptp4l .

The plan is to monitor the master offset from ptp41 as we manually change the ToD counter on the PTP clock.
The master offset value in ptp4l output represents the measured offset from the master in nanoseconds.

$ cat debug2.cfg
[global]
domainNumber 4

Announce messages
announceReceiptTimeout 2
logAnnouncelnterval 1

Sync/Delay_Reqg/Delay_Resp messages

ex. 0 = 1-PPS, -3 = 8 PPS, -4 = 16 PPS
logSyncinterval O
logMinDelayReglnterval O

slaveOnly 1
masterOnly O

clockClass 255

hybrid_e2e 1
inhibit_multicast_service 1
unicast_listen 1
unicast_req_duration 300

network_transport UDPv4
[unicast_master_table]
table_id 1
logQuerylnterval 2
UDPV4 10.64.10.1

[eth0O]
unicast _master_table 1

#

R31US0007EU0101 Rev.1.01 RENESAS Page 25
Aug 20, 2021

Linux PTP Using PHC Adjust Phase Quick Start Guide

Run ts2phc in background to align PHC clock to time stamper

#
$./ts2phc -mg -f ts2phc.cfg&
[1] 4611

PTP_PIN_SETFUNC failed: Invalid argument
ts2phc[31300.670]: Failed to set the pin. Continuing bravely on...

#

Run ptp4l in free run mode against a 1-PPS master to monitor
the effect of stepping the PTP clock.

#

$./ptp4l -mqf debug2.cfg --free_running=1&

ptp4l[31666.715]: master offset -1614041727993934660 sO freq -68 path delay 7723

#

Master offset is -1614041727993934660 ns, so need to adj +

phc_ctl adj value is in seconds.

#

$./phc_ctl /dev/ptpl -- adj 1614041727 .993934660
phc_ctl[31763.871]: adjusted clock by 1614041727.993935 seconds

ptp4l[31766.706]: master offset-5636 sO freq -304195 path delay 7719
ptp4l[31768.706]: master offset-5785 sO freq -72 path delay 7724
ptp4l[31770.706]: master offset-5900 sO freq -56 path delay 7727

If the initial offset master offset was positive, use a negative adj value.

ptp41[32019.682]: master offset 199999266496145525 sO freq -48 path delay 7722

#
Master offset is 199999266496145525 ns, so need to adj -
phc_ctl adj value is in seconds.

$./phc_ctl /dev/ptpl -- adj -199999266.496145525
phc_ctl[32075.860]: adjusted clock by -199999266.496146 seconds

ptp4l[32077.677]: master offset -3266 sO freq +100010 path delay 7725
ptp4l[32079.677]: master offset -3359 s0 freq -48 path delay 7722
ptp4l1[32081.676]: master offset -3487 sO freq -64 path delay 7722

3.1.7. Verify PTP Clock Frequency Adjustment Affects Time Stamper Frequency
Prerequisites:

= PTP master configured for 1 packet per second internal
= Run ts2phc in the background
= Run ptp4l as a slave in free run mode in the background using the time stamper PHC (i.e. no -p option)

ptp4l can be configured into "free run" mode by adding "free_running 1"to the ptp4l configuration file.
Or by adding "--free_running=1" at the command line when starting ptp4l.

The plan is to monitor the increase/decrease in the master offset from ptp4l as we manually change the
frequency.

R31US0007EU0101 Rev.1.01 RENESAS Page 26
Aug 20, 2021

Linux PTP Using PHC Adjust Phase Quick Start Guide

The freq value in ptp4l output represents the frequency adjustment of the clock in parts per billion, ppb, to
converge to zero using pi_servo. However, we are running in free run so no adjustments are made

#

Run ts2phc in background to align PHC clock to time stamper
#

$./ts2phc -mq - ts2phc.cfg&

#

Run ptp4l in free run mode against a 1-PPS master to monitor
the effect of stepping the PTP clock.

#

$./ptp4l -mgf debug2.cfg --free_running=1&

ptp4l[43236.627]: master offset -1614053583657415603 sO freq -60 path delay 7730

#

Adjust master offset close to 0 so it is easier to see freq changes.
#

$./phc_ctl /dev/ptpl -- adj 1614053583.657414804

phc_ctl[43237.739]: adjusted clock by 1614053583.657415 seconds

ptp41[43238.626]: master offset -1614053583657415723 sO freq -60 path delay 7730

ptp4l1[43240.626]: master offset -923 sO0 freq +999999999 path delay 7726
ptp4l[43252.625]: master offset -1587 sO freq -52 path delay 7726
ptp4l[43254.625]: master offset -1725 s0 freq -68 path delay 7728
#

Master offset is -, adj +freq to make offset more positive

Note the sudden increase in the master offset above 0O

#

$./phc_ctl /dev/ptpl -- freq 100000
phc_ctl[43256.419]: adjusted clock frequency offset to 100000.000000ppb

ptp4l[43256.625]: master offset 18739 sO freq +10232 path delay 7728
ptp4l[43258.625]: master offset 218724 sO freq +99978 path delay 7719
ptp4l[43260.624]: master offset 418657 sO freq +99954 path delay 7714
ptp4l[43262.624]: master offset 619941 sO freq +99962 path delay 6374
ptp4l[43264.624]: master offset 836138 sO freq +99972 path delay -9859
ptp4l[43266.624]: master offset 1036107 sO freq +99936 path delay -9936
#

Master offset is +, adj -freq to make offset more negative

Note the sudden decrease in the master offset to below O

#

$./phc_ctl /dev/ptpl -- freq -100000
phc_ctl[43267.670]: adjusted clock frequency offset to -100000.000000ppb
ptp4l[43268.624]: master offset 1045403 sO freq +4648 path delay -9936

ptp4l[43270.623]: master offset 845291 sO freq -100066 path delay -9936
ptp4l[43272.623]: master offset 637303 sO freq -100070 path delay -2068
ptp4l[43274.623]: master offset 428607 sO freq -100082 path delay 6484
ptp4l[43276.623]: master offset 209219 sO freq -100090 path delay 25712
ptp4l[43278.623]: master offset 2421 sO freq -100058 path delay 32414
ptp4l1[43280.622]: master offset -197723 sO freq -100082 path delay 32414

#

R31US0007EU0101 Rev.1.01 RENESAS Page 27

Aug 20, 2021

Linux PTP Using PHC Adjust Phase Quick Start Guide

Set freq to 0 to return to neutral position, will drift naturally.
Note the return to a more stable master offset

#

$./phc_ctl /dev/ptpl -- freq O

phc_ctl[43281.814]: adjusted clock frequency offset to 0.000000ppb

ptp4l[43282.622]: master offset -311498 sO freq -59672 path delay 26853
ptp4l[43284.622]: master offset -308916 sO freq -56 path delay 24159
ptp4l[43286.622]: master offset -305015 sO freq -32 path delay 20194
ptp4l[43288.622]: master offset -302327 sO freq -80 path delay 17346
ptp4l[43290.622]: master offset -297620 sO freq -52 path delay 12535
3.2 ts2phc

ts2phc one of the utilities under Linux PTP, is used to align the timestamping device with the Renesas timing
device.

_/ts2phc -h
usage: ts2phc [options]

-c [dev]name] phc slave clock (like /dev/ptpO or eth0)
(may be specified multiple times)

-f [File] read configuration from "file*

-h prints this message and exits

-1 [num] set the logging level to "num*®

-m print messages to stdout

-q do not print messages to the syslog

-s [dev]name] source of the PPS signal
may take any of the following forms:

generic - an external 1-PPS without ToD information

/dev/ptp0 - a local PTP Hardware Clock (PHC)

ethO - a local PTP Hardware Clock (PHC)

nmea - a gps device connected by serial port or network
-V prints the software version and exits

When using ts2phc with a ClockMatrix device, the message: PTP_PIN_SETFUNC failed: Invalid
argument may pop up. The ClockMatrix PHC driver does not support dynamic PTP_PIN_SETFUNC yet. This
message can be ignored because the ClockMatrix device is expected to be configured to output the expected
1-PPS during start-up.

3.3 ptp4l

ptp4l is an implementation of the Precision Time Protocol (PTP) according to IEEE standard 1588 for Linux. It
implements Boundary Clock (BC), Ordinary Clock (OC), and Transparent Clock (TC).

usage: ptp4l [options]

Delay Mechanism

-A Auto, starting with E2E
-E E2E, delay request-response (default)
-P P2P, peer delay mechanism

Network Transport

-2 IEEE 802.3

-4 UDP 1PV4 (default)

-6 UDP IPV6

R31US0007EU0101 Rev.1.01 RENESAS Page 28

Aug 20, 2021

Linux PTP Using PHC Adjust Phase Quick Start Guide

Time Stamping

-H HARDWARE (default)
-s SOFTWARE
-L LEGACY HW

Other Options

-f [file] read configuration from “file*

-1 [dev] interface device to use, for example "ethO-
(may be specified multiple times)

-p [dev] Clock device to use, default auto
(ignored for SOFTWARE/LEGACY HW time stamping)

-s slave only mode (overrides configuration File)
-1 [num] set the logging level to "num*

-m print messages to stdout

-q do not print messages to the syslog

-V prints the software version and exits

-h prints this message and exits

Various ptp41 sample configuration files are in the <linuxptp>/configs directory. For more info about ptp4l

configuration parameters see man page for ptp4l.
man -1 ptp4l.8
To use the adjust phase feature, the following configuration parameters are important:

servo_num_offset_values

The number of offset values considered in order to transition from the
SERVO_LOCKED to the SERVO_LOCKED STABLE state.

The transition occurs once the last "servo_num_offset values® offsets
are all below the "servo_offset_threshold® value.

servo_offset_threshold

The offset threshold used in order to transition from the SERVO_LOCKED
to the SERVO_LOCKED_STABLE state. The transition occurs once the last
"servo_num_offset_values® offsets are all below the threshold value.
The default value of offset_threshold is 0 (disabled).

tsproc_mode

Select the time stamp processing mode used to calculate offset and delay.
Possible values are filter, raw, filter_weight, raw_weight. Raw modes perform
well when the rate of sync messages (logSynclnterval) is similar to the rate of
delay messages (logMinDelayReqglnterval or logMinPdelayReqglnterval). Weighting
is useful with larger network jitters (e.g. software time stamping).

The default is filter.

write_phase_mode

This option enables using the "write phase'" feature of a PTP Hardware
Clock. |If supported by the device, this mode uses the hardware®s
built in phase offset control instead of frequency offset control.
The default value is 0 (disabled).

R31US0007EU0101 Rev.1.01 RENESAS
Aug 20, 2021

Page 29

Linux PTP Using PHC Adjust Phase Quick Start Guide

3.3.1. Example Write Phase Mode Configuration

first_step_threshold 0.000020000
step_threshold 0.000020000
tx_timestamp_timeout 100
write_phase_mode 1
servo_offset_threshold 100
servo_num_offset values 64
tsproc_mode raw

tsproc_mode in raw mode to let the hardware filter do the time stamp filtering.
Write phase adjustments only happen in SERVO_LOCK_STABLE state.

Configure the servo_offset_threshold and servo_num_offset _values so thatitis close enough to
0 offset so that the hardware filtering, which has limited bandwidth, can converge to zero in a relatively short

period of time.

3.4 Sample Session

The following sample session is on a Xilinx ZCU102 board with a ClockMatrix device.
CM DPLL2 is the 1588 PTP clock to the Xilinx Timer.

The Xilinx Timer is registered as ptp0 and ClockMatrix is registered as ptp1l.

PTP Timer | | ClockMatrix

PTP time stamper driver supports: PTP_CLK_REQ EXTTS

Start ts2phc

We want time adjustments and no frequency adjustments, so we configure ts2phc to use the nul I f servo.

Sample configuration ts2phc.cfg:

$ cat ts2phc.cfg
ts2phc config file to get it to behave like syncd to align
time stamper to PHC device"s 1-PPS signal.

Example:
./ts2phc -m -q -f ts2phc.cfg

H O H O HH

[global]

clock _servo nullf
first_step_threshold 0.000000001
step_threshold 0.000000001

time stamper, slave device
[/dev/ptp0]
ts2phc.channel 0

R31US0007EU0101 Rev.1.01 RENESAS
Aug 20, 2021

Page 30

Linux PTP Using PHC Adjust Phase Quick Start Guide

PHC device (ex. CM), master device
[/dev/ptpl]

ts2phc.master 1

ts2phc.channel 5

Continuing with the example on the Xilinx ZCU102 board:

= Xilinx time stamping device is ethO or ptp0
» ClockMatrix is ptpl
ptpO is the slave clock (i.e., it needs to align itself with the incoming 1-PPS from the source clock (ClockMatrix)).

When first starting ts2phc, it may be beneficial to see the log messages.

$./ts2phc -m -q -f ts2phc.cfg -1 7

ts2phc[84.381]: config item /dev/ptp0.ts2phc.master is 0O

ts2phc[84.382]: config item (null).clock_servo is 3

ts2phc[84.382]: config item /dev/ptp0.ts2phc.pin_index is O

ts2phc[84.382]: config item /dev/ptp0.ts2phc.channel is 0

ts2phc[84.382]: config item /dev/ptp0.ts2phc.extts_polarity is 2

ts2phc[84.382]: config item /dev/ptp0.ts2phc.extts_correction is 0

ts2phc[84.382]: config item /dev/ptp0.ts2phc.pulsewidth is 500000000
ts2phc[84.382]: config item (null)._free_running is O

ts2phc[84.382]: PHC slave /dev/ptp0 has ptp index O

ts2phc[84.382]: config item (null)._step_threshold is 0.000000

ts2phc[84.382]: config item (null)_first_step_threshold is 0.000000

ts2phc[84.382]: config item (null)._max_frequency is 900000000

ts2phc[84.382]: config item (null).servo_offset_threshold is 0O

ts2phc[84.382]: config item (null).servo_num_offset values is 10

ts2phc[84.382]: config item /dev/ptpl.ts2phc.master is 1

ts2phc[84.383]: PHC master /dev/ptpl has ptp index -1

ts2phc[84.383]: config item /dev/ptpl.ts2phc.channel is 5

ts2phc[84.383]: config item /dev/ptpl.ts2phc.pin_index is O

PTP_PIN_SETFUNC failed: Invalid argument

ts2phc[84.383]: Failed to set the pin. Continuing bravely on...

ts2phc[85.113]: /dev/ptp0 extts index 0 at 169492.956561892 corr O src 10.465738 diff 169482956561892
ts2phc[85.113]: /dev/ptp0 master offset 169482956561892 sl freq+0

ts2phc[86.112]: /dev/ptp0 extts index O at 11.000000000 corr O src 11.265748 diff O
ts2phc[86.112]: /dev/ptp0 master offset 0 s2 freg+0

ts2phc[87.112]: /dev/ptp0 extts index O at 12.000000000 corr O src 12.265798 diff O
ts2phc[87.112]: /dev/ptp0 master offset 0 s2 freg+0

ts2phc[88.112]: /dev/ptp0 extts index O at 13.000000000 corr O src 13.265798 diff O
ts2phc[88.112]: /dev/ptp0 master offset 0 s2 freg+0

Failed to set the pin. Continuing bravely on... is expected, this will be addressed in a future
version of the ClockMatrix PHC driver.

ptp0 extts index 0 at 169492 .956561892 tells us the counter value on the rising edge of the incoming
1-PPS signal on ptpO.

Alignment is achieved when the sub-second portion of the counter is 0.
ts2phc shows that ptp0 had a 956561892 ns offset at the rising edge of the incoming 1-PPS signal.

ts2phc[85.113]: /dev/ptp0 extts index O at 169492.956561892 corr O src 10.465738 diff 169482956561892

ts2phc adjusted Xilinx's timer to reduce the sub-second offset to 0.

ts2phc[85.113]: /dev/ptp0 master offset 169482956561892 sl1 freq +0
R31US0007EU0101 Rev.1.01 RENESAS Page 31

Aug 20, 2021

Linux PTP Using PHC Adjust Phase Quick Start Guide

ts2phc subsequently reports that ptpO is aligned with ptpl's PPS, ie. diff O
The Xilinx timer time stamp jumped from xxxx . 956561892 to xxxx.000000000.

ts2phc[86.112]: /dev/ptp0 extts index 0 at 11.000000000 corr O src 11.265748 diff O

The subsequent 1-PPS events show 0 sub-second values “12.000000000™" and 13.000000000"" which
indicates “ptp0 is aligned with the incoming 1-PPS signal from ClockMatrix.

ts2phc[87.112]: /dev/ptp0 extts index 0 at 12.000000000 corr 0 src 12.265798 diff O
ts2phc[88.112]: /dev/ptp0 extts index 0 at 13.000000000 corr 0 src 13.265798 diff O

Once the system is behaving as expected, ts2phc can be started as a background process without the verbose
messaging.

$./ts2phc -m -q -f ts2phc.cfg &

PTP_PIN_SETFUNC failed: Invalid argument
ts2phc[31.038]: Failed to set the pin. Continuing bravely on...

Start ptp4l

The following examples use ptp4l compiled from the linuxptp master branch, Fri Feb 26, 2021, commit
F774703cbhl.

3.4.1.1. Unicast
The following is a sample ptp4l configuration file for a unicast master.

Please ensure the domainNumber matches the unicast master's domainNumber; otherwise, the unicast requests
will be ignored by the unicast master.

$ cat standalone_G.8275.2.cfg

#

Telecom G.8275.2 T-TSC example configuration containing those attributes
which either differ from the defaults or are relevant to the profile.

#

[global]

domainNumber 44
slaveOnly 1
masterOnly 0
Announce messages
announceReceiptTimeout 2
logAnnouncelnterval 1

Sync/Delay_Reg/Delay_Resp messages
ex. 0 = 1-PPS, -3 = 8 PPS, -4 = 16 PPS

logSynclinterval -4
logMinDelayReqlnterval -4

#

step_window is in units of sync packets
#

3 seconds:
#@ 16 PPS, set to 48
#@ 1 PPS, set to 3

step_window 48
clockClass 255
R31US0007EU0101 Rev.1.01 RENESAS Page 32

Aug 20, 2021

Linux PTP Using PHC Adjust Phase Quick Start Guide

clockAccuracy
timeSource
maxStepsRemoved

offsetScaledLogVariance

G.8275.defaultDS.localPriority
G.8275._portDS.localPriority

priorityl
priority2

dataset_comparison
transportSpecific

clock_type
delay_mechanism

Ffirst_step_threshold
step_threshold
tx_timestamp_timeout

write_phase_mode
servo_offset_threshold
servo_num_offset_values
tsproc_mode raw

network_transport

hybrid_e2e
inhibit_multicast_service
unicast_listen
unicast_reqg_duration

[unicast_master_table]
table_id
logQuerylnterval

UDPVv4

[eth0]
unicast_master_table

The sample configuration file is for G.8275.2, but we can use it as an example for a unicast master.

With ts2phc running in the background, ptp41 is used to synchronize with a PTP master.

OxFE
0xa0
255

OXFfff

128
128

128
255

G.8275.x
0

oC
E2E

0.000020000
0.000020000
1000

0

100
64

UbDPv4

R R R

300

1
2
10.64.10.1

1

R31US0007EU0101 Rev.1.01
Aug 20, 2021

RENESAS

Page 33

Linux PTP Using PHC Adjust Phase Quick Start Guide

Unicast slave using standalone.G.8275.2.cfg with 16 PPS for Sync/Delay Request

Option Description

-m Print messages to stdout

-q Do not print messages to the syslog

-p /dev/ptpl Use PHC clock device /dev/ptpl

-f standalone.G.8275.2.cfg Read configuration from standalone.G.8275.2.cfg
--domainNumber 4 Override the domainNumber at the command line to match GM

$./ptp4l -m -q -p /dev/ptpl -f standalone_G.8275.2.cfg --domainNumber 4

option slaveOnly is deprecated, please use clientOnly instead

ptp41[28.339]: selected /dev/ptpl as PTP clock

ptp41[28.341]: port O (/var/run/ptp4l): hybrid_e2e only works with E2E

ptp41[28.341]: port 0 (/var/run/ptp4lro): hybrid_e2e only works with E2E

ptp41[28.341]: port 1 (eth0): taking /dev/ptpl from the command line, not the attached ptp0O
ptp4l1[28.362]: port 1 (ethO): INITIALIZING to LISTENING on INIT_COMPLETE

ptp41[28.362]: port O (/var/run/ptp4l): INITIALIZING to LISTENING on INIT_COMPLETE
ptp41[28.362]: port O (/var/run/ptp4lro): INITIALIZING to LISTENING on INIT_COMPLETE
ptp41[32.782]: port 1 (eth0): new foreign master 00bOae.fffe.02e810-1

ptp41[32.988]: selected local clock 000a35.fffe.00bf01 as best master

ptp41[36.782]: selected best master clock 00bOae.fffe.02e810

ptp41[36.782]: updating UTC offset to 37

ptp4l[36.782]: port 1 (ethO): LISTENING to UNCALIBRATED on RS_SLAVE

ptp41[41.973]: clockcheck: clock jumped forward or running faster than expected!
ptp4l1[43.911]: port 1 (ethO): UNCALIBRATED to SLAVE on MASTER_CLOCK_SELECTED

ptp41[44.410]: rms 807315252816901888 max 1614630505633803776 freq -34 +/- 174 delay 7705 +/-
ptp41[45.410]: rms 120 max 172 freq -203 +/- 17 delay 7709 +/- 10

ptp41[46.410]: rms 14 max 28 freq -107 +/- 19 delay 7706 +/- 13

ptp41[47.410]: rms 20 max 40 freq -53 +/- 13 delay 7709 +/- 9
ptp41[48.410]: rms 15 max 34 freq -43 +/- 18 delay 7702 +/- 7
ptp41[49.410]: rms 7 max 16 freq -56 +/- 12 delay 7705 +/- 7
ptp41[50.410]: rms 12 max 20 freq -62 +/- 20 delay 7703 +/- 9
ptp41[51.410]: rms 7 max 18 freq -56 +/- 12 delay 7710 +/- 6
ptp41[52.410]: rms 8 max 22 freq -57 +/- 14 delay 7708 +/- 11
ptp41[53.410]: rms 7 max 14 freq -61 +/- 11 delay 7710 +/- 9
ptp41[54.410]: rms 12 max 26 freq -56 +/- 20 delay 7708 +/- 9
ptp41[55.409]: rms 7 max 12 freq -52 +/- 11 delay 7708 +/- 7
ptp41[56.409]: rms 9 max 14 freq -60 +/- 14 delay 7705 +/- 10
ptp41[57.409]: rms 11 max 24 freq -62 +/- 19 delay 7705 +/- 11
ptp41[58.409]: rms 9 max 24 freq -56 +/- 15 delay 7708 +/- 10
ptp41[59.409]: rms 13 max 28 freq -61 +/- 21 delay 7706 +/- 9
ptp41[60.409]: rms 6 max 12 freq -51 +/- 8 delay 7708 +/- 6

Unicast slave using standalone.G.8275.2.cfg at 1-PPS Sync/Delay Request

Option Description

-m Print messages to stdout

-q Do not print messages to the syslog

-p /dev/ptpl Use PHC clock device /dev/ptpl

-f standalone.G.8275.2.cfg Read configuration from standalone.G.8275.2.cfg

--domainNumber 4 Override the domainNumber at the command line to match GM

-step_window 3 Delay 3 sync packets after adjtime() to allow timestamps to settle
--logSynclinterval 0 Sync packet rate at 1-PPS

--logMinDelayReqglnterval 0O Delay request packet rate at 1-PPS

R31USO007EU0101 Rev.1.01 RENESAS Page 34

Aug 20, 2021

Linux PTP Using PHC Adjust Phase Quick Start Guide

$./ptp4l -mq -p /dev/ptpl -f standalone_G.8275.2.cfg --domainNumber 4 --step_window 3 --
logSyncinterval 0 --logMinDelayReglnterval O

option slaveOnly is deprecated, please use clientOnly instead

ptp4l[54.219]: selected /dev/ptpl as PTP clock

ptp4l[54.221]: port O (/var/run/ptp4l): hybrid_e2e only works with E2E
ptp4l[54.221]: port O (/var/run/ptp4lro): hybrid_e2e only works with E2E
ptp4l[54.221]: port 1 (eth0): taking /dev/ptpl from the command line, not the attached ptpO
ptp41[54.242]: port 1 (ethO): INITIALIZING to LISTENING on INIT_COMPLETE
ptp4l[54.242]: port O (/var/run/ptp4l): INITIALIZING to LISTENING on INIT_COMPLETE
ptp4l[54.242]: port O (/var/run/ptp4lro): INITIALIZING to LISTENING on INIT_COMPLETE
ptp4l[54.714]: port 1 (eth0): new foreign master 00bOae.fffe.02e810-1

ptp4l[58.714]: selected best master clock 00bOae.fffe.02e810

ptp4l[58.714]: updating UTC offset to 37

ptp41[58.714]: port 1 (ethO): LISTENING to UNCALIBRATED on RS_SLAVE

ptp4l[59.651]: master offset -1614631351385584072 sO freq +0 path delay 0
ptp4l[60.652]: master offset -1614631351385584108 sl1 freq -36 path delay 0
ptp4l[62.651]: clockcheck: clock jumped forward or running faster than expected!
ptp4l[64.651]: master offset -252 s0 freq -36 path delay 0
ptp4l[65.651]: master offset -314 s2 freq -98 path delay 7712
ptp41[65.651]: port 1 (ethO): UNCALIBRATED to SLAVE on MASTER_CLOCK_SELECTED
ptp4l[66.651]: master offset -298 s2 freq -396 path delay 7712
ptp4l[67.651]: master offset -116 s2 freq -303 path delay 7702
ptp4l[68.651]: master offset 192 s2 freq -30 path delay 7702
ptp4l[69.651]: master offset 258 s2 freq +93 path delay 7732
ptp4l[70.651]: master offset 162 s2 freq +75 path delay 7712
ptp4l[71.651]: master offset -36 s2 freq -75 path delay 7766
ptp4l[72.651]: master offset -12 s2 freq -61 path delay 7766
ptp4l[73.651]: master offset 8 s2 freq -45 path delay 7710
ptp4l[74.650]: master offset -8 s2 freq -59 path delay 7710
ptp4l[75.650]: master offset -18 s2 freq -71 path delay 7708
ptp4l[76.650]: master offset -4 s2 freq -62 path delay 7706
ptp4l[77.650]: master offset -4 s2 freq -64 path delay 7718
ptp4l[78.650]: master offset 0 s2 freq -61 path delay 7718
ptp4l[79.650]: master offset -4 s2 freq -65 path delay 7718
ptp41[80.650]: master offset 4 s2 freq -58 path delay 7718
ptp4l[81.650]: master offset 10 s2 freq -51 path delay 7720
ptp4l[82.650]: master offset 8 s2 freq -50 path delay 7710
Multicast

The sample configuration file is for G.8275.1, but we can use it as an example for a multicast master to show
write_phase_mode enabled.

cat standalone_G.8275.1.cfg

#

Telecom G.8275.1 T-TSC example configuration containing those attributes
which either differ from the defaults or are relevant to the profile.

#

[global]
domainNumber 24
slaveOnly 1
masterOnly 0

Announce messages
announceReceiptTimeout 3
logAnnouncelnterval -3

R31US0007EU0101 Rev.1.01 RENESAS Page 35
Aug 20, 2021

Linux PTP Using PHC Adjust Phase Quick Start Guide

Sync/Delay_Reg/Delay_Resp messages & 16 packets-per-second, -4 = 16 PPS
logSynclinterval -4
logMinDelayReqlnterval -4

#

step_window is In units of sync packets
#

3 seconds:

@ 16 PPS, set to 48

@ 1 PPS, set to 3

step_window 48

clockClass 255
clockAccuracy OxFE
timeSource Oxa0

maxStepsRemoved 255
offsetScaledLogVariance OxFfff

G.8275.defaultDS.localPriority 128

G.8275.portDS.localPriority 128
priorityl 128

priority2 255
dataset_comparison G.8275.x
transportSpecific 0
clock_type ocC

delay_mechanism E2E

first_step_threshold 0.000020000
step_threshold 0.000020000
tx_timestamp_timeout 1000

write_phase_mode 1
servo_offset_threshold 100
servo_num_offset_values 64

tsproc_mode raw

network_transport L2

01:1B:19:00:00:00 Forwardable multi-cast address

01:80:C2:00:00:0E Non-forwardable multi-cast address
ptp_dst_mac 01:1B:19:00:00:00

[ethO]

With ts2phc running in the background, ptp4l is used to synchronize with a PTP multicast master.

Multicast slave using standalone.G.8275.1.cfg

Option Description

-m Print messages to stdout

-q Do not print messages to the syslog

R31US0007EU0101 Rev.1.01 RENESAS Page 36

Aug 20, 2021

Linux PTP Using PHC Adjust Phase Quick Start Guide

-p /dev/ptpl
-f standalone.G.8275.1.cfg Read configuration from standalone.G.8275.1.cfg

Use PHC clock device /dev/ptpl

freq +0 indicates that ptp4l writes the phase offset directly into the PHC clock device, so no frequency
adjustments are made.

$./ptp4l -m -q -p /dev/ptpl - standalone.G.8275.1.cfg

ptp4l1[23.183]: selected /dev/ptpl as PTP clock

ptp4l1[23.185]: port 1 (ethO): taking /dev/ptpl from the command line, not the attached ptp0
ptp4l[23.245]: port 1 (eth0): INITIALIZING to LISTENING on INIT_COMPLETE

ptp4l[23.245]: port 0 (/var/run/ptp4l): INITIALIZING to LISTENING on INIT_COMPLETE
ptp4l[23.245]: port O (/var/run/ptp4lro): INITIALIZING to LISTENING on INIT_COMPLETE
ptp4l1[23.356]: port 1 (ethO): new foreign master 0080ea.fffe.4dc760-1

ptp4l1[23.606]: selected best master clock 0080ea.fffe.4dc760

ptp4l1[23.606]: updating UTC offset to 37

ptp41[23.606]: port 1 (ethO): LISTENING to UNCALIBRATED on RS_SLAVE

ptp41[25.801]: clockcheck: clock jumped forward or running faster than expected!
ptp4l[27.114]: port 1 (ethO): UNCALIBRATED to SLAVE on MASTER_CLOCK_SELECTED

ptp4l[27.614]: rms 807316614105398016 max 1614633228210796032 freq -220 +/- 171 delay 7235 +/- 8
ptp41[28.614]: rms 56 max 83 freq -147 +/- 77 delay 7229 +/- 6

ptp41[29.614]: rms 60 max 91 freq -23 +/- 16 delay 7230 +/- 12

ptp41[30.614]: rms 24 max 41 freq -23 +/- 13 delay 7230 +/- 7

ptp41[31.613]: rms 10 max 21 freq -30 +/- 27 delay 7226 +/- 8

ptp41[32.613]: rms 29 max 47 freq +0 +/- 0 delay 7234 +/- 8

ptp41[33.613]: rms 42 max 55 freq +0 +/- 0 delay 7231 +/- 14

ptp41[34.613]: rms 55 max 71 freq +0 +/- 0 delay 7229 +/- 9

ptp4l1[35.613]: rms 58 max 75 freq +0 +/- 0 delay 7231 +/- 8

ptp4l[36.613]: rms 62 max 73 freq +0 +/- 0 delay 7231 +/- 6

ptp41[37.613]: rms 62 max 75 freq +0 +/- 0 delay 7228 +/- 10
R31USO007EU0101 Rev.1.01 RENESAS Page 37

Aug 20, 2021

Linux PTP Using PHC Adjust Phase Quick Start Guide

4. Appendix

4.1 Performance Metrics

The performance metric in the next section has the following definitions.

= CPU% - The percentage of the CPU that is being used by the process.

= DMIPS - Number is the CPU % multiplied by the board’s measured DMIPS number.

= RSS - Resident Set Size is the memory occupied by a process that is held in main memory. It does not
include memory that is swapped out. It does include memory from shared libraries as long as the pages from
those libraries are actually in memory. It does include all stack and heap memory.

The REA measured DMIPS for the ZCU102 Evaluation Board is 2948.967211 DMIPS

For information about the DMIPS calculation, see DMIPS Calculation.

4.1.1. WritePhase Reference Tracker, Multicast master

16 PPS
1 Master
CPU % DMIPS RSS (MB)
ptp4l 0.22% 6.52 0.604

4.1.2. DMIPS Calculation

4.1.2.1. Hardware Specifications
Board: Xilinx ZCU102 Eval Board, CPU @ 1.333 GHz

cat /sys/devices/system/cpu/cpuO/cpufreq/cpuinfo_cur_freq

[25310.282758] cpu cpuO: dev_pm_opp_set rate: failed to find current OPP for freq
1333333320 (-34)

1333333

https://www.xilinx.com/products/boards-and-kits/ek-ul-zcul102-g.html

R31US0007EU0101 Rev.1.01 RENESAS Page 38
Aug 20, 2021

https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html

Linux PTP Using PHC Adjust Phase Quick Start Guide

PB Switches SD Card Slot 2x Pmod /O + 12C PCle® Gen 2x4 slot (4 x GTR)

CAN Header

SysMon
GTH SMA Rx/Tx + Ref Clock

PL /O Access ARM® Trace

FMC 1 (LA Bus + 8GTH)

ZUSEG (XCZU9EG-2FFVB1156E) - 4 :S::cksi:; Cages (4 x GTH)
-1 e
i

FMC 2 (LA Bus + 8GTH)
DDR4 Component (PL 16-bit) SATA (1 x GTR)

HOMI In/Qut (Stacked)

DDR4 DIMM (PS 64-bit) {3 x GTH)

= Ethernet
L=]

Power-On Switch
DisplayPort (2 x GTR)

12 Volt POWer s 3l e USE UART

LU e USB JTAG

PM Bus JTAG

Figure 1. ZCU102 Evaluation Board Features

4.1.2.2. Software Environment

4.1.2.2.1. Compiler
aarch64-l1inux-gnu-gcc (Ubuntu/Linaro 5.4.0-6ubuntul~16.04.9) 5.4.0 20160609

41.2.2.2. Compile Flags
-03 -fno-inline -DTIME -DHZ=60 -DNDEBUG -w —DRENESAS

4.1.2.2.3. Linux Version

Linux pl_eth_1g_ptp_zcul02_cm 4.14.0-xilinx-v2018.3 #1 SMP Mon Mar 22 19:09:09 UTC 2021
aarch64 GNU/Linux

4.1.2.2.4. Dhrystone Version

https://fossies.org/linux/privat/old/dhrystone-2.1.tar.gz

Modified for ZCU102 environment — modified TIME macro time measurement mechanism to use clock_gettime()
for nanosecond granularity versus second granularity.

4.1.2.2.5. ZCU102 Patch File

Type "make® should work (sudo apt-get install gcc-aarch64-linux-gnu).
Copy gcc_dry2 to board and run for 150,000,000 which is about 20+ seconds.
$./gcc_dry2

Dhrystone Benchmark, Version 2.1 (Language: C)

R31US0007EU0101 Rev.1.01 RENESAS Page 39
Aug 20, 2021

https://fossies.org/linux/privat/old/dhrystone-2.1.tar.gz

Linux PTP Using PHC Adjust Phase Quick Start Guide

Program compiled without "register” attribute
Please give the number of runs through the benchmark: 150000000

Execution starts, 150000000 runs through Dhrystone

User_Time = 28.957748413

Microseconds for one run through Dhrystone: 0.2
Dhrystones per Second: 5179960.5
Makefile | 12 +++++++t-————-

dhry_1.c | 34 ++++++++++++++++t++++++HH++H+++HH+++

2 fTiles changed, 41 insertions(+), 5 deletions(-)

diff --git a/Makefile b/Makefile
index dfaa795..8b6ad76 100644
-—- a/Makefile

+++ b/Makefile

@@ -17,13 +17,14 @@

CC= cl # C compiler name goes here (MSC)

CC= cc # C compiler name goes here (UNIX)

GCC= gcc
+GCC= /usr/bin/aarch64-1inux-gnu-gcc

PROGS= msc # Programs to build (MSC)

PROGS= unix # Programs to build (UNIX)

#TIME_FUNC= -DMSC_CLOCK # Use Microsoft clock() for measurement
-#TIME_FUNC= -DTIME # Use time(2) for measurement
-TIME_FUNC= -DTIMES # Use times(2) for measurement
+TIME_FUNC= -DTIME # Use time(2) for measurement
+#T IME_FUNC= -DTIMES # Use times(2) for measurement

H#HZ= 50 # Frequency of times(2) clock ticks

HZ= 60 # Frequency of times(2) clock ticks

#HZ= 100 # Frequency of times(2) clock ticks
@@ -37,12 +38,12 @@ ENUMS= # Compiler does have enum type

OPTIMIZE= -0Ox -G2 # Optimization Level (MSC, 80286)

OPTIMIZE= -04 # Optimization Level (generic UNIX)

-GCCOPTIM= -0

+GCCOPTIM= -03 -fno-inline

LFLAGS= #Loader Flags

CFLAGS= $(OPTIMIZE) $(TIME_FUNC) -DHZ=$(HZ) $(ENUMS) $(STRUCTASSIGN) $(CFL)
~GCCFLAGS= $(GCCOPTIM) $(TIME_FUNC) -DHZ=$(HZ) $(ENUMS) $(STRUCTASSIGN) $(CFL)

+GCCFLAGS= $(GCCOPTIM) $(TIME_FUNC) -DHZ=$(HZ) $(ENUMS) $(STRUCTASSIGN) $(CFL) -DNDEBUG -w -

DRENESAS

#

You shouldn®"t need to touch the rest
@@ -50,7 +51,8 @@ GCCFLAGS= $(GCCOPTIM) $(TIME_FUNC) -DHZ=$(HZ) $(ENUMS) $(STRUCTASSIGN)
$(CFL)

SRC= dhry_1.c dhry_2.c

HDR= dhry.h
R31US0007EU0101 Rev.1.01 RENESAS Page 40

Aug 20, 2021

Linux PTP Using PHC Adjust Phase Quick Start Guide

-UNIX_PROGS= cc_dry2 cc_dry2reg gcc_dry2 gcc_dry2reg
+#UNIX_PROGS= cc_dry2 cc_dry2reg gcc_dry2 gcc_dry2reg
+UNIX_PROGS= gcc_dry2

MSC_PROGS= sdry2.exe sdry2reg.exe mdry2.exe mdry2reg.exe \

Idry2_exe ldry2reg.exe cdry2._exe cdry2reg.exe \
hdry2._.exe hdry2reg.exe

diff --git a/dhry_1.c b/dhry_1.c

index 164c6f9..fba717d 100644

--—- a/dhry_1.c

+++ b/dhry_1.c

@@ -17,6 +17,12 @@

#include *"dhry._h"

+#ifdef RENESAS

+#include <stdint.h>

+#include <time.h>

+#define NSEC2SEC 1000000000LL
+#endi

+

/* Global Variables: */

Rec_Pointer Ptr_Glob,
@@ -51,8 +57,12 @@ extern int times ;
/* Measurements should last at least about 2 seconds */
#endif
#ifdef TIME

+#ifdef RENESAS
+struct timespec now;

+#else
extern long time(Q);

/* see library function "time" */
+#endif

#define Too_Small_Time 2

/* Measurements should last at least 2 seconds */

#endif

@@ -61,9 +71,15 @@ extern clock_t clock(Q);
#define Too_Small_Time (2*HZ)

#endif

+#ifdef RENESAS

+int64_t Begin_Time,

+ End_Time;

+float User_Time;

+#else

long Begin_Time,

End_Time,
User_Time;

+#endif

float Microseconds,

Dhrystones_Per_Second;

@@ -137,8 +153,13 @@ main
Begin_Time = (long) time_info.tms_utime;
#endi F
#ifdef TIME
+#ifdef RENESAS

R31US0007EU0101 Rev.1.01 RENESAS
Aug 20, 2021

Page 41

Linux PTP Using PHC Adjust Phase Quick Start Guide

+ clock_gettime(CLOCK_MONOTONIC, &now);
+ Begin_Time = now.tv_sec * NSEC2SEC + now.tv_nsec;
+#else

Begin_Time = time ((long *) 0);
#endi T
+#endif
#ifdef MSC_CLOCK

Begin_Time = clock();
#endi f
@@ -198,8 +219,13 @@ main

End_Time = (long) time_info.tms_utime;
#endi T
#ifdef TIME
+#ifdef RENESAS
+ clock_gettime(CLOCK_MONOTONIC, &now);
+ End_Time = now.tv_sec * NSEC2SEC + now.tv_nsec;
+#else

End_Time = time ((long *) 0);
#endif
+#endi T
#ifdef MSC_CLOCK

End_Time = clock();

#endif
@@ -257,9 +283,17 @@ main
printf (" should be: DHRYSTONE PROGRAM, 2"ND STRING\n™);

printf ('\n");

+#ifdef RENESAS
+ User_Time = (Float)(End_Time - Begin_Time) / NSEC2SEC;
+ printf("User_Time = %0.9F\n", User_Time);
+
+ if (User_Time < (float)Too_Small_Time)
+#else
User_Time = End_Time - Begin_Time;
+ printf("User_Time = %ld\n", User_Time);

if (User_Time < Too_Small_Time)
+#endif
{

printf (“"Measured time too small to obtain meaningful results\n');
printf (""Please increase number of runs\n');

2.7.4

4.1.2.3. Results
From power-up, start at 140,000,000 loop iterations and increment 10,000,000 each time.

Iterations Dhrystones per Second
140000000 5181170.5
150000000 5181197.0
160000000 5181290.5
170000000 5181255.5
180000000 5181080.5
R31USO007EU0101 Rev.1.01 RENESAS Page 42

Aug 20, 2021

Linux PTP Using PHC Adjust Phase Quick Start Guide

Iterations Dhrystones per Second
190000000 5181232.0
200000000 5182418.0
210000000 5181273.5
220000000 5181138.0
230000000 5181133.5

Discarding the first run, The average of the next 9 runs is 5181335.389.
DMIPS (Dhrystone MIPS) numbers are calculated using the formula:
DMIPS = Dhrystones per second / 1757
Using formula above:
DMIPS =5181335.389 / 1757
DMIPS =2948.967211
A more commonly reported figure is DMIPS / MHz.
DMIPS / MHz = 2948.967211 / 1333.333
DMIPS / MHZ =2.21

4.2 Identifying PHC Device Number

4.2.1. ClockMatrix
On a successful CM PHC driver load, the registered ptp device number can be see in the system log.

View the kernel start-up log with 'dmesg' command.

$ dmesg | grep idt

L 3.419848] idtcm 15-005b: 4.8.0, Id: 0x4001 HW Rev: 5 OTP Config Select: 15
L 7.128855] idtcm 15-005b: PLL2 registered as ptpl

4.2.2. Network Interface
The Ethernet interface in this example is ethO. It uses the Xilinx Timer as its PTP time stamping device.

$ ifconfig

ethO Link encap:Ethernet HWaddr 00:0A:35:00:BF:01
inet addr:10.64.10.191 Bcast:10.64.11.255 Mask:255.255.254.0
inet6 addr: fe80::20a:35FF:fe00:bT01%4886680/64 Scope:Link

ethtool can be used to find the corresponding PHC clock device number.

$ ethtool -T ethO

Time stamping parameters for ethO:

Capabilities:
hardware-transmit (SOF_TIMESTAMP ING_TX_HARDWARE)
hardware-receive (SOF_TIMESTAMP ING_RX_HARDWARE)
hardware-raw-clock (SOF_TIMESTAMP ING_RAW_HARDWARE)

PTP Hardware Clock: O

Hardware Transmit Timestamp Modes:

off (HWTSTAMP_TX_OFF)
R31US0007EU0101 Rev.1.01 RENESAS Page 43

Aug 20, 2021

Linux PTP Using PHC Adjust Phase Quick Start Guide

on (HWTSTAMP_TX_ON)
Hardware Receive Filter Modes:
none (HWTSTAMP_FILTER_NONE)

PTP Hardware Clock: O indicates that ethO is registered as ptpO.

If the Ethernet interface is not supported as a PTP hardware clock, it will say PTP Hardware Clock: none.

For support in getting the Ethernet interface to register as a PTP Hardware Clock, contact the PHY/MAC vendor
for support.

4.3 View ptp Device Name
View registered ptp devices:

$ Is /sys/class/ptp

ptp0 ptpl

View name of a ptp device:

$ cat /sys/class/ptp/ptpl/clock_name
IDT CM PLL2

$ cat /sys/class/ptp/ptp0/clock_name
Xilinx Timer

4.4 SO _SELECT _ERR_QUEUE: Protocol not available
SO_SELECT ERR_QUEUE was introduced into the kernel in 3.10.

When using Linux kernels prior to 3.10, customers may encounter this message in ptp4l.

ptp4l[33.123]: ethl: SO_SELECT_ERR_QUEUE: Protocol not available

This message can be ignored; it is a warning message and does not prevent ptp4l from working

4.5 testptp
testptp is a Linux PHC test tool that is part of the kernel.

Itis located in tools/testing/selftests/ptp/testptp.c.

usage: testptp [options]

-a val request a one-shot alarm after “val® seconds

-A val request a periodic alarm every “val®™ seconds

-C query the ptp clock®™s capabilities

-d name device to open

-e val read "val® external time stamp events

-f val adjust the ptp clock frequency by “val® ppb

-g get the ptp clock time

-h prints this message

-1 val index for event/trigger

-k val measure the time offset between system and phc clock
for "val®™ times (Maximum 25)

-1 list the current pin configuration

-L pin,val configure pin index "pin® with function "val~
the channel index is taken from the "-i" option
"val® specifies the auxiliary function:
0 - none
1 - external time stamp
2 - periodic output

R31US0007EU0101 Rev.1.01 RENESAS Page 44
Aug 20, 2021

Linux PTP Using PHC Adjust Phase Quick Start Guide

-p val enable output with a period of "val® nanoseconds
-P val enable or disable (val=1]0) the system clock PPS
-s set the ptp clock time from the system time

-S set the system time from the ptp clock time

-t val shift the ptp clock time by "val® seconds

-T val set the ptp clock time to "val® seconds

The following example is cross compiling the ““testptp™ tool in a linux v5.8-rc5 repository on an Ubuntu 16.04
build machine.

45.1. Sample Build for ZCU102 board

Compile for zCU102
$ sudo apt-get install gcc-aarch64-linux-gnu
$ export CROSS_COMPILE=/usr/bin/aarch64-1inux-gnu-

Linux kernel root (v5.8-rc5)
$ cd tools/testing/selftests/ptp
$ make

45.1.1. Compilation Error
When cross-compiling, the build machine's Linux kernel's “ptp_clock.h™ may be outdated.

For example, the Ubuntu 16.04 build machine is using Linux v4.15.0.

$ uname -srm
Linux 4.15.0-107-generic x86_64

And produces the following compilation error:

Linux kernel root (v5.8-rc5)
$ make
Makefile:10: warning: overriding recipe for target “clean”
-./lib.mk:126: warning: ignoring old recipe for target “clean”
/usr/bin/aarch64-1inux-gnu-gcc -1../../../._/usr/include/ testptp.c -Irt -0 testptp
testptp.c: In function “do_flag_test”:
testptp.c:61:3: error: “PTP_EXTTS_REQUEST2” undeclared (first use in this function)
PTP_EXTTS_REQUEST2,
N
testptp.c:61:3: note: each undeclared identifier is reported only once for each function it
appears in
testptp.c:68:25: error: “PTP_EXTTS_VALID_FLAGS” undeclared (Ffirst use in this function)
PTP_ENABLE_FEATURE | (PTP_EXTTS_VALID_FLAGS + 1),
N
testptp.c: In function “main’:
testptp.c:281:15: error: “struct ptp_clock caps’ has no member named “adjust_phase”
caps.adjust_phase);
N
<builtin>: recipe for target "testptp" failed
make: *** [testptp] Error 1

45.1.2. Workaround

In testptp.c, replace #include <linux/ptp_clock.h> with a relative include to the local repo's
ptp_clock.h.

testptp.c:
#include <sys/time.h>
#include <sys/timex.h>
#include <sys/types.h>

R31US0007EU0101 Rev.1.01 RENESAS Page 45
Aug 20, 2021

Linux PTP Using PHC Adjust Phase Quick Start Guide

#include <time.h>
#include <unistd.h>

- #include <linux/ptp_clock.h>
+ #include "../._./../._/include/uapi/linux/ptp_clock_h"
With above workaround, testptp compiles.

$ make

MakeFfile:10: warning: overriding recipe for target “"clean”

--/lib.mk:126: warning: ignoring old recipe for target “"clean”
/usr/bin/aarch64-1inux-gnu-gcc -1../../../../usr/include/ testptp.c -Irt -0 testptp

4.6 phc_ctl

phc_ctl is part of the Finuxptp collection of programs.
For details on Iinuxptp, see linuxptp

$./phc_ctl -h

usage: phc_ctl [options] <device> -- [command]

device ethernet or ptp clock device

options

-1 [num] set the logging level to "num”

-q do not print messages to the syslog
-Q do not print messages to stdout

-V prints the software version and exits
-h prints this message and exits
commands

specify commands with arguments. Can specify multiple

commands to be executed in order. Seconds are read as

double precision floating point values.

set [seconds] set PHC time (defaults to time on CLOCK_REALTIME)

get get PHC time

adj <seconds> adjust PHC time by offset

freq [ppb] adjust PHC frequency (default returns current offset)

cmp compare PHC offset to CLOCK_REALTIME

caps display device capabilities (default if no command given)

wait <seconds> pause between commands.

4.7 1588 Profile Configuration Validation Tool for ptp4l

When creating a ptp4l configuration file for the G.8265.1, G.8275.1, or G.8275.2 profiles the val idate tool can
be used to check if the 1588 parameters conform to the ranges specified by the profile selected by option "-p'.

Valid -p options:

= G.8265.1

= G.8275.1

= G.8275.2

If a value does not conform to the profile, the value is highlighted and val idate exits.

$./validate -h

usage: validate [options]

R31US0007EU0101 Rev.1.01 RENESAS Page 46
Aug 20, 2021

Linux PTP Using PHC Adjust Phase Quick Start Guide

-f [file] read configuration from "file*
-p [profile name] Profile to be validated
Options:

G.8265.1/9g.8265.1
G.8275.1/9.8275.1
G.8275.2/9.8275.2

-1 [num] set the logging level to "num”
-m print messages to stdout
-h prints this message and exits

Apply Patch File

3.1-Introduce-validate-profile-program.patch adds validate program to linuxptp v3.1 source.

For the patch file, email IDT-support-1588@1Im.renesas.com.

$ git clone git://git.code.sf.net/p/linuxptp/code linuxptp
Cloning into "linuxptp”...

Checking connectivity... done.
$ cp v3.1l-Introduce-validate-profile-program.patch linuxptp
$ cd linuxptp

$ git checkout v3.1
Note: checking out "v3.1".

HEAD is now at 38ad326... Version 3.1

$ patch -pl < v3.1l-Introduce-validate-profile-program.patch
patching file .gitignore

patching file configs/G.8265.1 sample_master.cfg
patching file configs/G.8265.1 sample_slave.cfg
patching file configs/G.8275.1 sample.cfg
patching file configs/G.8275.1_sample_BC.cfg
patching file configs/G.8275.1_sample_GM.cfg
patching file configs/G.8275.2_sample.cfg
patching file configs/G.8275.2_sample_BC.cfg
patching file configs/G.8275.2_sample_GM.cfg
patching file configs/externServo_G.8275.1.cfg
patching file configs/externServo_G.8275.2.cfg
patching file configs/standalone_G.8275.1.cfg
patching file configs/standalone_G.8275.2.cfg
patching file makefile

patching file validate.c

patching file validate.h

Sample Compile Log

$ make validate

DEPEND validate.c

DEPEND ts2phc_slave.c
DEPEND ts2phc_nmea_master.c

DEPEND e2e_tc.c

DEPEND designated_fsm.c
DEPEND config.c

DEPEND clockcheck.c

R31US0007EU0101 Rev.1.01 RENESAS Page 47
Aug 20, 2021

mailto:IDT-support-1588@lm.renesas.com

Linux PTP Using PHC Adjust Phase Quick Start Guide

DEPEND clockadj.c

DEPEND clock.c

DEPEND bmc.c

gcc -Wall -DVER=3.1 -D_GNU_SOURCE -DHAVE_CLOCK_ADJTIME -DHAVE_POSIX_SPAWN -

DHAVE_ONESTEP_SYNC -c -0 validate.o validate.c

gcc -Wall -DVER=3.1 -D_GNU_SOURCE -DHAVE_CLOCK_ADJTIME -DHAVE_POSIX_SPAWN -
DHAVE_ONESTEP_SYNC -c -0 hash.o hash.c

gcc -Wall -DVER=3.1 -D_GNU_SOURCE -DHAVE_CLOCK_ADJTIME -DHAVE_POSIX_SPAWN -
DHAVE_ONESTEP_SYNC -c -0 interface.o interface.c

gcc -Wall -DVER=3.1 -D_GNU_SOURCE -DHAVE_CLOCK_ADJTIME -DHAVE_POSIX_SPAWN -
DHAVE_ONESTEP_SYNC -c -0 phc.o phc.c

gcc -Wall -DVER=3.1 -D_GNU_SOURCE -DHAVE_CLOCK_ADJTIME -DHAVE_POSIX_SPAWN -
DHAVE_ONESTEP_SYNC -C -0 print.o print.c

gcc -Wall -DVER=3.1 -D_GNU_SOURCE -DHAVE_CLOCK_ADJTIME -DHAVE_POSIX_SPAWN -
DHAVE_ONESTEP_SYNC -c -0 sk.o sk.c

gcc -Wall -DVER=3.1 -D_GNU_SOURCE -DHAVE_CLOCK_ADJTIME -DHAVE_POSIX_SPAWN -
DHAVE_ONESTEP_SYNC -c -o util.o util.c

gcc validate.o hash.o interface.o phc.o print.o sk.o util.o -Im -Irt -pthread -o
validate

Sample Usage
The following is an example of a G.8275.1 T-TSC profile configuration with some invalid values.

$ cat g.8275.1_slave.cfg

[global]

announceReceiptTimeout 3
clockAccuracy Oxfe
clockClass 255
clock_type oC
delay_mechanism E2E
domainNumber 4
dataset_comparison G.8275.x
G.8275.defaultDS.localPriority 128
G.8275.portDS.localPriority 128
logAnnouncelnterval -3
logMinDelayReqlnterval 0
logSynclinterval 0
masterOnly 0
maxStepsRemoved 255
network_transport UDPv4
offsetScaledLogVariance (enuii
priorityl 128
priority2 128
ptp_dst_mac 01:1B:19:00:00:00
slaveOnly 1
timeSource Oxa0

$ _/validate -p G.8275.1 -f g.8275.1.slave.cfg
4 is an out of range value for option domainNumber at line 7
failed to parse configuration file g.8275.1.slave.cfg

Default values for G.8275.1 SLAVEONLY profile are:

announceReceiptTimeout 3 The only allowed value is [3]

clockAccuracy Oxfe The only allowed value is [0xfe]

clockClass 255 The only allowed value is [255]
R31US0007EU0101 Rev.1.01 RENESAS Page 48

Aug 20, 2021

Linux PTP Using PHC Adjust Phase Quick Start Guide

clock_type

delay_mechanism

domainNumber

G.8275.defaultDS_localPriority
G.8275._portDS.localPriority
logAnnouncelnterval
logMinDelayReqlInterval
logSynclinterval

masterOnly

maxStepsRemoved
network_transport
offsetScaledLogVariance

priorityl
priority2
ptp_dst_mac

[01:1B:-19:00:00:00, 01:80:C2:00:

slaveOnly
timeSource

L2
OXFFff

128

255
01:1B:19:00:00:00
00:0E]

1

0xa0

// Changed domainNumber from 4 to 24

$./validate -p G.8275.1 -f g.8275.1.slave.cfg
0 is an out of range value for option logMinDelayReqlnterval at line 12
failed to parse configuration file g.8275.1._slave.cfg

The
The
The
The
The
The
The
The
The
The
The
The

The
The
The

The
The

only allowed

only allowed value is [E2E]
range is [24,

range is [1,
range is [1,
only allowed
only allowed
only allowed
only allowed
range is [1,
only allowed
only allowed

only allowed
only allowed
only allowed

only allowed
range is [0,

// Changed logMinDelayReglnterval and logSynclinterval from O to -4

$./validate -p G.8275.1 -f g.8275.1.slave.cfg
128 is an out of range value for option priority2 at line 19
failed to parse configuration file g.8275.1.slave.cfg

// Changed priority2 to 255

$./validate -p G.8275.1 -f g.8275.1.slave.cfg
Port item network_transport out of range in the global section!

// Changed network_transport to L2

$ $./validate -p G.8275.1 -f g.8275.1.slave.cfg
g-8275.1._slave.cfg Checked successfully for G.8275.1 3 profile

value is [0C]

43]
UINT8_MAX]
UINT8_MAX]
value is [-3]
value is [-4]
value is [-4]
value is [0]
UINT8_MAX]
value is [L2]

value is [Oxffff]

value
value
value

nw n on

value is [1]
UINT8_MAX]

[128]
[255]

R31US0007EU0101 Rev.1.01

Aug 20, 2021

RENESAS

Page 49

Linux PTP Using PHC Adjust Phase Quick Start Guide

5. Revision History

Revision Date Description
1.01 August 18, 2021 | = Clarify 3.1.6/3.1.7 is using time stamper PHC.
1.0 Jun 9, 2021 » Add Sanity Testing section to Getting Started

= Add note about SO_SELECT_ERR_QUEUE message to Appendix

» Update Getting Started Sample Session to use standalone_*.cfg files that include
step_window parameter

* Rename to “LinuxPtpUsingPhcAdjustPhaseQuickStart” from
“LinuxPTPUsingPHCAdjustPhaseReferenceManual”

= Add Performance Metrics section

0.2 Dec 17, 2020 = Add Revision History section

= Add section numbers to bookmarks on PDF

= Remove IDT from "The IDT ClockMatrix (TM) family ..."
= Update with ts2phc.cfg change

= Revise cover page, add logo, page numbering

0.1 Aug 7, 2020 = First release of this document
R31US0007EU0101 Rev.1.01 RENESAS Page 50

Aug 20, 2021

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (‘RENESAS”) PROVIDES TECHNICAL
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1)
selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These
resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an
application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is
granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims
responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses,
or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and
Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise
alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters Contact Information

TOYOSU FORESIA, 3-2-24 Toyosu, For further information on a product, technology, the most
Koto-ku, Tokyo 135-0061, Japan up-to-date version of a document, or your nearest sales
www.renesas.com office, please visit www.renesas.com/contact-us/.
Trademarks

Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered
trademarks are the property of their respective owners.

© 2026 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/contact-us
https://www.renesas.com

	1. Introduction
	2. System Requirements
	2.1 Linux PTP Source
	2.2 Linux Kernel
	2.2.1. Adjust Phase Patch Files
	2.2.2. Backporting to Linux v3.x+

	2.3 Network Interface Requirements
	2.3.1. ethtool
	2.3.2. SIOCETHTOOL
	2.3.3. SO_TIMESTAMPING
	2.3.4. PTP_CLK_REQ_EXTTS

	2.4 Linux PTP Hardware Clock
	2.4.1. ClockMatrix PHC Driver

	3. Getting Started
	3.1 Sanity Testing
	3.1.1. Verify PHC Capabilities
	3.1.2. Verify Clocks Increment
	3.1.3. Verify Clock Set Time
	3.1.4. Verify Time Stamper Incoming 1-PPS from PTP Clock
	3.1.5. Verify ts2phc Aligns Time Stamper and 1-PPS from PTP Clock
	3.1.6. Verify PTP Clock Time Adjustment Affects PTP Timestamp
	3.1.7. Verify PTP Clock Frequency Adjustment Affects Time Stamper Frequency

	3.2 ts2phc
	3.3 ptp4l
	3.3.1. Example Write Phase Mode Configuration

	3.4 Sample Session

	4. Appendix
	4.1 Performance Metrics
	4.1.1. WritePhase Reference Tracker, Multicast master
	4.1.2. DMIPS Calculation

	4.2 Identifying PHC Device Number
	4.2.1. ClockMatrix
	4.2.2. Network Interface

	4.3 View ptp Device Name
	4.4 SO_SELECT_ERR_QUEUE: Protocol not available
	4.5 testptp
	4.5.1. Sample Build for ZCU102 board

	4.6 phc_ctl
	4.7 1588 Profile Configuration Validation Tool for ptp4l

	5. Revision History

