
CANopen Library

User Manual

V4.5

© port GmbH 2014

Disclaimer

All rights reserved

The programs, boards and documentations supplied by port GmbH are created with due

diligence, checked carefully and tested on several applications.

Nevertheless, port GmbH can not take over no guarantee and no assume del credere lia-

bility that the program, the hardware board and the documentation are error-free respec-

tive are suitable to serve the special purpose.

In particular performance characteristics and technical data given in this document may

not be constituted to be guaranteed product features in any leg al sense.

For consequential damages, which are emerged on the strength of use the program and

the hardware boards therefore, every legal responsibility or liability is excluded.

port has the right to modify the products described or their documentation at any time

without prior warning, as long as these changes are made for reasons of reliability or

technical improvement.

All rights of this documentation lie with port. The transfer of rights to third parties or

duplication of this document in any form, whole or in part, is subject to written approval

by port. Copies of this document may however be made exclusively for the use of the

user and his engineers. The user is thereby responsible that third parties do not obtain

access to these copies.

The soft- and hardware designations used are mostly registered and are subject to copy-

right.

CANopen®

is registered trademark, licensed by CiA - CAN in Automation e.V., Germany.

EtherCAT®

is registered trademark and patented technology, licensed by Beckhoff Automation

GmbH, Germany.

We are thankful for hints of possible errors and may ask around for an information.

We will go all the way to verify such hints fastest

Copyright

© 2014 port GmbH

Regensburger Straße 7

D-06132 Halle

Tel. +49 345 - 777 55 0

Fax. +49 345 - 777 55 20

E-Mail service@port.de

Internet http://www.port.de

Table of Contents

1. Introduction . 9

1.1. Applicability of the Documentation 9

1.2. Product Overview 9

1.3. System Requirements 9

1.4. Additional Tools . 10

1.5. Installation . 10

1.6. Support by port . 11

2. CANopen Communication Model 13

2.1. Object Dictionary . 13

2.2. Service Data Objects 14

2.3. Process Data Objects 16

2.4. Emergency Objects 21

2.5. SYNC Objects . 21

2.6. Time Stamp Objects 21

2.7. Error Control Mechanisms 21

2.7.1. Node Guarding . 21

2.7.2. Heartbeat . 22

2.8. Boot-up Message . 22

2.9. Network Behavior 22

2.10. CANopen Device Profiles 25

3. CANopen Library . 27

3.1. CANopen Library Concept 27

3.2. Design Flow . 31

3.3. CANopen Library Structure 33

3.3.1. Object Dictionary 36

3.3.2. CANopen Library Configuration 40

3.3.2.1. Configuration Header 40

3.3.2.2. Coding of 64-bit Values 41

4. Using the CANopen Library 43

4.1. Service Definition Interface 43

4.2. Service Request Interface 43

4.3. Service Indication/Confirmation Interface 44

4.4. Configuration Interface 45

4.5. Timer Usage . 46

Version: 4.5 CANopen Library Page 3 of 180

4.6. SDO Usage . 47

4.6.1. SDO-Server . 48

4.6.2. SDO-Client . 50

4.6.3. Domain Up/Download 52

4.6.4. SDO Block Transfer 57

4.6.5. Dynamic SDO Connections 58

4.6.5.1. SDO Requester 59

4.7. PDO Usage . 62

4.7.1. Multiplexed PDO Usage 66

4.7.1.1. Destination Address Mode 66

4.7.1.1.1. 67

4.7.1.1.2. 67

4.7.1.2. Source Address Mode 67

4.7.1.2.1. 68

4.7.1.2.2. 68

4.7.1.2.3. Application Notes for 69

4.8. Emergency . 69

4.9. SYNC Usage . 72

4.10. Error-Control-Mechanisms 73

4.10.1. Node Guarding 74

4.10.2. Heartbeat . 76

4.11. NMT Service Usage 77

4.12. Flying Master Usage 78

4.12.1. Common Hints 78

4.12.2. Flying CANopen Master Functionality 79

4.12.2.1. CANopen Master Boot-up Process 79

4.12.2.2. Detection of an active CANopen Master 80

4.12.2.3. Master Negotiation 80

4.12.2.4. Force Master Negotiation 82

4.12.2.5. Detecting CANopen Master Capable Devices 82

4.12.3. Application Programming Interface 83

4.13. Redundant Communication 84

4.13.1. Line Switching 84

4.13.1.1. Line Negotiation at Boot-up 84

4.13.1.2. Line Monitoring 85

4.13.2. Message Transmission 86

Page 4 of 180 CANopen Library Version: 4.5

4.13.3. Transmission of PDO 87

4.13.4. Indication Function 87

4.14. Nonvolatile Memory Usage 88

4.15. Layer Setting Services 89

4.15.1. LSS Communication 90

4.15.1.1. Switching Between Sub-States 91

4.15.2. Configuration Services 91

4.15.3. Inquiry Services 93

4.15.4. FastScan Service 94

4.16. Safety with CANopen 94

4.16.1. Operation of Safety Critical Communication 95

4.16.2. Implementation 95

4.16.2.1. Object Dictionary 96

4.16.2.2. Initializing of SRDO 96

4.16.2.3. Communication with SRDOs 96

4.16.2.4. Transmitting SRDOs 96

4.16.2.5. Reception of SRDO 96

4.16.2.6. Solution for SRDO Reception 97

4.17. LED Usage Conforming to CANopen 98

4.17.1. Implementation 100

4.18. Virtual Objects . 101

4.18.1. Flow Chart for SDO Write Access 102

4.18.2. Flow Chart for SDO Read Access 103

4.18.3. User-Functions 104

4.18.3.1. getVirtualObjAddr 104

4.19. Object Callbacks 104

4.19.1. Object Callbacks Function Pointer 105

4.19.2. Object Callbacks Configuration 105

4.19.3. Object Callbacks Usage 105

5. Driver Interface . 105

5.1. CAN Driver . 105

5.1.1. Prepared CAN Driver 105

5.1.2. CANopen Driver API 105

5.1.3. CAN Driver Basics 105

5.1.3.1. Adaptation of the flag handling 105

5.1.3.2. Adaptation of the FlushMbox() function 105

Version: 4.5 CANopen Library Page 5 of 180

5.1.4. Buffer Handling in Embedded Drivers 105

5.1.5. Interrupt Handling 105

5.1.6. Driver Example XC164 105

5.1.6.1. Basics . 105

5.1.6.2. Bit-timing Table 105

5.1.7. Specials about using Remote Frames (RTR) 124

5.2. CPU/RTOS Driver 124

5.2.1. Timer XC164 . 125

5.2.2. Customer Timer Implementation 126

5.2.3. ISR Management 127

5.3. Compiler Adaptations 127

5.4. Application Dependent Adaptations 127

5.5. Initial Operation . 128

6. CANopen Library on Multi-Tasking Systems 129

7. Multi-Line Version . 135

8. How to Make an Application 139

8.1. Preparations . 139

8.2. Configuration of the Hardware 140

8.2.1. Usage of the CANopen Design Tool 140

8.2.1.1. General Settings 141

8.2.1.2. Hardware Settings 141

8.2.1.3. Object Dictionary Configuration 141

8.3. Building the Object Dictionary 144

8.4. Coding of the Main Routine 148

8.5. Coding of the Reset Behavior 152

8.6. Coding of the Indication Behavior 152

8.7. Optimization . 155

9. Trouble Shooting . 157

10. Appendices . 159

10.1. Appendix — Header Files 159

10.2. Appendix — Data Types 161

10.3. Appendix — SDO Abort Codes 162

10.4. Appendix — Tools 163

10.4.1. CANopen Design Tool 163

10.4.2. CANopen Server 164

10.4.3. CANopen Device Monitor 165

Page 6 of 180 CANopen Library Version: 4.5

10.4.4. CAN-REport . 166

10.5. Appendix — Abbreviations 167

10.6. Appendix — Modification for Version V4.x 169

10.6.1. Modification Summary V4.5 169

10.6.2. Modification Summary V4.4 169

10.6.2.1. Modification of the User Interface 170

10.6.3. Modification Summary V4.3 170

10.6.3.1. Modification of the User Interface 171

10.6.3.2. Changes in the Naming of Configuration Constants 171

10.6.4. Modification Summary V4.2 172

10.6.4.1. Modification of the User Interface 173

10.6.5. Modification Summary V4.1 173

10.6.5.1. Modification of the User Interface 173

10.6.5.2. Driver Interface 173

10.6.5.3. Structures . 174

10.6.5.4. Tools . 174

10.6.6. Modification Summary V4.0 174

10.6.6.1. Modification of the User Interface 174

10.6.6.2. Modification of the Object Dictionary 175

10.6.6.3. Structures . 176

11. Index . 177

Version: 4.5 CANopen Library Page 7 of 180

Page 8 of 180 CANopen Library Version: 4.5

1. Introduction

1.1. Applicability of the Documentation

The documentation of the CANopen Library by port consists of a user and a reference

manual. The user manual serves as an introduction for using the CANopen Library. The

procedure to use this CANopen Library and the process of integration into the customer’s

application are described here. This document and the reference manual describe the

properties of all distributions of the CANopen Library. The CANopen Library source

code is delivered in different configurations for multi or single CAN lines, master/slave or

slave. Both user and reference manual are available as HTML documents.

The version/revision number of the user manual and the reference manual correlates to

the version/revision of the CANopen Library software.

1.2. Product Overview

port is a member of the CAN in Automation (CiA). Our engineers are involved in the

standardization activities in many of the Special Interest Groups of the CiA.

With this knowledge, port ensures that all CANopen products are conform to CiA stan-

dards. Because CiA does not certify software but rather CANopen devices, ask our sup-

port team for a reference of certified custom CANopen devices.

The CANopen Library by port has been developed with respect to the following points:

• CANopen functionality for both master and slave

• scalability to use only the kind and numbers of services the application needs

• independence of hardware and operating systems

• support of more than one CANopen network (up to 255 CANopen network lines)

• easy application interfaces

• very high portability and full ANSI-C conformity

All provided CANopen functionality fulfills the standards of CiA e.V., but not all optional

functions are supported. Please contact our sales team for detailed information, see chap-

ter 1.6.

The CANopen Library is an extremely flexible application. In control systems in which

devices are used, implementing the CANopen technology can possibly infringe existing

application patents. port GmbH should not held responsible for that.

Version: 4.5 CANopen Library Page 9 of 180

1.3. System Requirements

The CANopen Library has been written in ANSI-C with a high degree of portability in

mind. Therefore it is possible to compile the sources with any ANSI-C compliant com-

piler. The CANopen Library was tested with a lot of various compilers. The functions of

the CANopen Library run on any system which guarantees:

• an interrupt handling for CAN, or available CAN device drivers

• hard- or software timer

For applications using an active CAN interface or providing CAN operating system driv-

ers, a CAN interrupt handling is not necessary.

1.4. Additional Tools

The usage of the CANopen Library is support by the following tolls from port:

• CANopen Design Tool for the configuration and optimization of the CANopen

Library, the configuration of desired hardware and the design of the object dictio-

nary,

• CANopen Device Monitor for starting of CANopen communication in a CANopen

network and

• CAN-REport for the analyzation of the CAN bus.

Demo versions of these tools are available on port’s web-page. The user manuals of

these tools provides more details. The usage of the CANopen Design Tool is very recom-

mended.

1.5. Installation

The CANopen Library inclusive the driver package are delivered:

for Windows™:

with the installation program setup.exe or

for Linux:

the source files.

All examples expect the recommended structure for successful compilation. Figure 1

shows the structure of the CANopen Library.

Page 10 of 180 CANopen Library Version: 4.5

<install_dir> canopen include

source

examples s1

s2

drivers shar_inc

shar_src

<layer2_xy>

atcandos

cpcwin

user_man

ref_man

....

....

user templates

hardware stuff

Figure 1, CANopen Library Directory Structure

Set the shift-width to 4 and tab-stop to 8 in your editor to get best performance while

viewing the CANopen Library C files.

1.6. Support by port

port GmbH is one of the leading suppliers of CANopen communication technologies.

The senior engineers at port support its customers by e-mail, by phone and by

CAN/CANopen training courses. Additionally consultations in the entire field of CAN

i.e. network planning, network configuration, message distribution, selection of devices

and CANopen Device Profile implementations are available. Specific adaptations of our

products according to customer requirements can be carried out on request.

Please contact us for sales via

e-mail: service@port.de

phone: +49 345 777 55 - 0

fax: +49 345 777 55 - 20

Please contact us for technical support via

e-mail: support@port.de

The engineers at port will give you some assistance as soon as possible.

Version: 4.5 CANopen Library Page 11 of 180

Page 12 of 180 CANopen Library Version: 4.5

2. CANopen Communication Model

CANopen is a set of existing and emerging profiles and was originally based on CAN

Application Layer (CAL). CAL was the first available open application layer specifica-

tion for CAN. Because CAL specifies a variety of data objects and services, the usage of

these services was not easy. The CANopen Communication Profile comprises a concept

to configure and communicate real-time-data as well as the mechanisms for synchroniza-

tion between devices. Basically the CANopen Communication Profile describes how a

subset of CAL services is used by devices. The restriction to a subset hereby reduces the

amount of needed program memory to implement an open application layer.

Now all CANopen mechanisms and services are completely defined in the CANopen

Application and Communication Profile.

The CANopen Device Profile describes the functionality of a particular device type and

the communication with this device.

Tw o data types with different characteristics are dominating most automation networks

and also CANopen. There are separate messages for process and service data. Further-

more CANopen defines an interface for data access. All data and parameter of a device,

which should be visible from CAN, can be reached via the object dictionary.

2.1. Object Dictionary

All device parameters are stored in an object dictionary. This object dictionary contains

the description, data type and structure of the parameters as well as the address from

others point of view. The address is being composed of a 16 bit index and an 8 bit sub-

index and guarantees therefore compatibility with existing device profiles (e.g. DRIVE-

COM). Only the CANopen specific entries have no correlation with other profile defini-

tions. The sub-index refers to the elements of complex data types e.g. arrays and records

(table 1).

Index Sub-Index Variable Accessed Data Type

6092h 0 Number of Entries Unsigned8

6092h 1 Baud Rate Unsigned16

6092h 2 Number of Data Bits Unsigned8

6092h 3 Number of Stop Bits Unsigned8

6092h 4 Parity Unsigned8

Table 1, Org anization of Complex Data Types

The following C-structure is the equivalent of the contents in table 1.

typedef struct {

UNSIGNED8 NumberOfEntries;

UNSIGNED16 BaudRate;

UNSIGNED8 NumberOfDataBits;

Version: 4.5 CANopen Library Page 13 of 180

UNSIGNED8 NumberOfStopBits;

UNSIGNED8 Parity;

} RS232_T;

The object dictionary is organized in different sections (table 2).

Index Object

0000h not used

0001h − 009Fh Data Type Definitions

00A0h − 0FFFh reserved

1000h − 1FFFh Communication Profile Area (CiA-301)

2000h − 5FFFh Manufacturer Specific Profile Area

6000h − 9FFFh Standardized Device Profile Area

(CiA-4xx), can be divided in in eight

sections 800h each, each containing

objects of a different device profile

A000h − FFFFh reserved

Table 2, Object Dictionary Structure

There is a range of mandatory entries in the dictionary which ensures that all CANopen

devices of a particular type show the same behavior. The object dictionary concept serves

for optional device features which means a manufacturer does not have to provide certain

extended functionality on his device, but if he wishes to do so he has to do it in a pre-

defined manner. Additionally, there is sufficient address space for truly manufacturer

specific functionality. This approach ensures that the CANopen device profiles are future

proof.

2.2. Service Data Objects

Service Data Messages, in CANopen called Service Data Objects SDO, are used for read

and write access to all entries of the object dictionary of a device. Main usage of this

type of messages is the device configuration. Besides reading and writing of the parame-

ters and data, it is possible to download whole programs to the devices. SDOs are typi-

cally transmitted asynchronously. The requirements towards transmission speed are not

as high as for PDOs. The SDO message contains information to address data in the

device object dictionary and the data itself. Most existing profiles use 3 bytes to address

objects, divided in two bytes for an index address and one byte for the sub-index address.

Using the same scheme and considering one byte for the protocol four bytes remain for

parameter data. Therefore a SDO transfer consists of a CAN message to initiate and per-

form data transfer and a CAN message for handshake.

Page 14 of 180 CANopen Library Version: 4.5

SDO

Request

SDO

Confirmation

SDO Client

SDO Request

Telegram

SDO Response

Telegram

Object

Dictionary

SDO

Indication

SDO

Response

SDO Server

Object

Dictionary

Figure 2, SDO Communication Principle

Figure 2 shows the communication between two devices. There are two variants for SDO

usage. The first one is a write access and the second one a read access to the SDO server

object dictionary. The SDO client initiates a write service with a SDO write request. The

SDO server indicates the message, writes the value to the object dictionary and gives a

response to the CAN network. The client gets a confirmation of that service. At a read

request the confirmation message contains the data read. If it is necessary to transfer

more than 4 byte, e.g. arrays or files, a sequence of segmented messages will follow the

initiate transfer message, each one acknowledged by the data server. See figure 3 for the

SDO protocol.

4 bytes data

7 bytes data

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7

8 bit
sub-index

16 bit index
domain
protocol

domain
protocol

Multiplexor

Initiate/Expedited

Transfer

Segmented

Transfer

(parameter <= 4 bytes)

(parameter > 4 bytes)

Figure 3, Multiplexed Domain Protocol for SDOs

Contrary to the PDOs the SDOs get low priority CAN identifiers. There are two device

types for SDO handling. The first is the SDO server. These devices can not initiate a

SDO service request. They can only react to a SDO indication. Such reactions are wri-

ting or reading values to/from the local object dictionary. The COB-IDs for the first

server SDO are predefined and can not be changed in order to ensure the connection to

the device. The COB-IDs are built like follow:

COB − IDTX = 1408 + <node-ID> (1)

COB − IDTX = 580h + <node-ID>

Version: 4.5 CANopen Library Page 15 of 180

COB − IDRX = 1536 + <node-ID> (2)

COB − IDRX = 600h + <node-ID>

The equations are valid of the SDO server point of view. Every CANopen device must be

an SDO server. The equivalent are the SDO clients. They initiate SDO services. Typical

SDO client applications are configuration tools and control units. Each device can sup-

port up to 128 server SDOs and 128 s. The corresponding entries in the object dictionary

are:

indexserver SDO = 1200h + (<server SDO number> − 1) (3)

index = 1280h + (< number> − 1) (4)

The SDO parameter are organized in a structure (table 3). All entries can be changed

besides the value for the first server SDO. The index 0022h is only a reference to the

structures type. It has to be replaced with the computed index mentioned above.

Index Field in SDO Parameter Record Data TypeSub-

Index

0022h 0 Unsigned8number of supported entries

0022h 1 COB-ID client->server Unsigned32

0022h 2 COB-ID server->client Unsigned32

0022h 3 Node-ID of communication partner Unsigned8

Table 3, SDO Parameter Structure

2.3. Process Data Objects

Process Data Messages in CANopen called Process Data Objects PDO are used to per-

form the real-time data transfer between different automation units. PDOs have to be

transmitted quickly, without any protocol overhead and within a predefined structure.

Page 16 of 180 CANopen Library Version: 4.5

For PDOs different transmission modes are distinguished (figure 4):

Remote Frame

source

source

source

target(s)

target(s)

target(s)
SYNC

1. event driven

2. polling by using
 Remote Frames

3. synchronised

source target(s)

4. timer driven

Figure 4, PDO Transmission Types

Asynchronous PDOs are sent on event (application/profile specific or timer) or on a

remote request. Synchronous PDOs can be triggered cyclic or acyclic with the SYNC

message.

An explicit confirmation for PDOs is not required. It is a CAN layer 2 message and car-

ries no overhead. CANopen suggests a high priority in order to ensure their real-time

behavior. CANopen defines PDO producer and PDO consumer. The producer sends

PDOs and the consumer receives PDOs. Commonly a CANopen device can fulfill both

properties.

Version: 4.5 CANopen Library Page 17 of 180

PDO Producer

Object

Dictionary

PDO

Request

TPDO

TPDO - Transmit PDO RPDO - Receive PDO

PDO Telegram

PDO

Indication

COD

AOD

PDO Consumer

RPDO

Object

Dictionary
PDO

Indication

COD

AOD

PDO Consumer

RPDO

Object

Dictionary
PDO

Indication

COD

AOD

PDO Consumer

RPDO

Object

Dictionary

Figure 5, PDO Communication

The communication parameter of a PDO resides in the object dictionary. The indexes for

PDOs are calculated as follows:

indexRPDO−comm− par = 1400h + (<RPDO number> − 1) (5)

indexTPDO−comm− par = 1800h + (<TPDO number> − 1) (6)

The range of the PDO numbers is 1..512. That means up to 512 Receive PDOs (RPDO)

and up to 512 Transmit PDOs (TPDO) are possible for a device.

The communication parameters of PDOs are described with a structure (table 4). The

index 0020h is only a reference to the structures type. It has to be replaced with the com-

puted index mentioned above. The sub-index 0 contains the number of implemented

PDO parameters. Only sub-index 1 and 2 are mandatory. Subindex 1 describes the used

COB-ID of the PDO. A detailed description is shown in table 6. A PDO communication

channel between two devices is created by setting the TPDO COB-ID of the first device

to the RPDO COB-ID of the second device. For PDOs a 1:1 and a 1:n communication is

possible. This means that there is always only one transmitter, but an unlimited number

of receivers. The transmission type (sub-index 2) describes the kind of transmission see

table 5. For synchronous PDO it is possible to define a scaling factor. Transmission type

1 means PDO will be triggered with each SYNC object. If this entry has the value 240,

the PDO will be sent/received with each 240th SYNC. The optional entry inhibit time

defines a minimum time period between two PDO transmissions. This feature ensures

that messages with lower priorities than the current PDO can be transmitted in the case of

continuous transmission of the current PDO. The second optional parameter is only rele-

vant for asynchronous Transmit PDOs. It defines an event timer. If the event time

elapsed, the transmission of this PDO is started.

Page 18 of 180 CANopen Library Version: 4.5

Index Field in PDO Parameter Record Data TypeSub-

Index

0020h 0 Unsigned8number of supported entries

0020h 1 COB-ID Unsigned32

0020h 2 transmission type Unsigned8

0020h 3 inhibit time Unsigned16

0020h 4 reserved Unsigned8

0020h 5 event timer Unsigned16

Table 4, PDO Communication Parameter Structure

Transmission Type PDO Transmission

0 synchronous acyclic

1-240 synchronous cyclic

241-251 reserved

252 synchronous RTR only

253 asynchronous RTR only

254 asynchronous

255 asynchronous (standard device profile)

Table 5, Transmission Types

Bit Number Value Meaning

31(MSB) 0 PDO valid

1 PDO not valid

30 0 RTR allowed

1 RTR not allowed

29 0 11-bit ID

1 29-bit ID

28-11 0 if bit 29 = 0

X if bit 29 = 1,COB-ID

10-0(LSB) X COB-ID

Table 6, COB-ID Code

The content of the PDO is encoded in the PDO mapping entries. A PDO can contain up

to 64 single data elements from the object dictionary (in the case of 64 of the data are

bits). The data are described via its index, sub-index and length. The mapping parameter

of a PDO resides also in the object dictionary. The mapping indexes are built like follow:

indexRPDO−map− par = 1600h + (<RPDO number> − 1) (7)

indexTPDO−map− par = 1A00h + (<TPDO number> − 1) (8)

Version: 4.5 CANopen Library Page 19 of 180

The index 0021h is only a reference to the structures type. It has to be replaced with the

computed index mentioned above. The sub-index 0 contains the number of mapped vari-

ables. The maximum of entries is either 64 or 8. This fact depends on the mapping gra-

nularity. (This is an feature of the CANopen Library implementation, not of the stan-

dard). Some devices support only byte-wise PDO mapping. The sub-index defines the

order of the variables on the CAN telegram (PDO).

Index Field in PDO Mapping Record Data TypeSub-

Index

0021h 0 Unsigned8number of mapped objects

0021h 1 1st object to be mapped Unsigned32

0021h 2 2nd object to be mapped Unsigned32

0021h 64(40h) 64th object to be mapped Unsigned32

Table 7, PDO Mapping Parameter

The entries from sub-index 1 contain a logical reference to the variables, which are to be

transmitted/received (table 8). The date is described by its index and sub-index and its

length. The length value represents the data’s length in bits. Therefore it is possible to

transmit only the relevant range of the data i.e. 3 bits of a C char value.

Index (16 bit) Sub-Index (8 bit) Object Length (8 bit)

Table 8, Structure of Mapping Entry

A special case of mapping is the so called dummy mapping. With this kind of mapping,

it is possible to blind out irrelevant data. This feature is used for a 1:n communication,

where each receiver utilizing only a part of the PDO. For dummy mapping the indexes

1-7 are used. These indexes are only references to data types. These entries are only

space holders with the type corresponding size (table 9).

Index Type Length (bit)

0001h Boolean 1

0002h Signed8 8

0003h Signed16 16

0004h Signed32 32

0005h Unsigned8 8

0006h Unsigned16 16

0007h Unsigned32 32

Table 9, Indices of PDO Dummy Mapping Types

The mapping for the PDO can be static or changeable. If the mapping can be changed, it

is called dynamic PDO mapping. Changing of mapping can be done in the state PRE-

Page 20 of 180 CANopen Library Version: 4.5

OPERATIONAL (default) or OPERATIONAL. During OPERATIONAL state the con-

figuration application is responsible for the data consistency.

2.4. Emergency Objects

The Emergency Message (EMCY) is a service, which signals internal fatal device errors.

The error types are defined in the communication profile and the device profiles. The

EMCY is transmitted with highest priority. CANopen defines EMCY producer and

EMCY consumer. The producer transmits EMCYs and the consumers receive them. The

EMCY telegram consists of 8 bytes. It contains an emergency error code, the contents of

object 1001h and 5 byte of manufacturer specific error code. Additionally an error han-

dling exists. Each transmitted error code and the first two bytes of the manufacturer spe-

cific code will be pushed in the predefined error field on index 1003h. This field can con-

tain up to 255 error entries. The value of sub-index 0 shows the current number of

entries. The most recently occurred error will be always inserted on the top of this field

(sub-index 1). All older entries will be moved down. Are there no more errors on the

device, an EMCY with error code 0 will be sent.

2.5. SYNC Objects

The SYNC object is a network wide system clock. It is the trigger for synchronous mes-

sage transmission. The SYNC has a very high priority and contains no data in order to

guarantee a minimum of jitter.

2.6. Time Stamp Objects

The Time Stamp object provides a common time reference. It is transmitted with high

priority. The time is encoded in the type Time of Day. This data type contains the mil-

liseconds since midnight and the number of days since January 1, 1984.

2.7. Error Control Mechanisms

For node monitoring two different mechanisms are defined. They are called Node

Guarding and Heartbeat. Each device has to provide one of the error control mecha-

nisms.

2.7.1. Node Guarding

The Node Guarding (Life Guarding) is the periodical monitoring of certain network

nodes. Each node can be checked from the NMT master with a certain period (guard

time, 100Ch). A second parameter (life time factor, 100Dh) defines a factor when the

connection should be applied as lost.

The resolution of the guarding time is 1 ms. The condition for Node Guarding on a slave

device is that guard time and life time factor are not zero. Guarding is started with the

Version: 4.5 CANopen Library Page 21 of 180

first guarding telegram of the master.

During Node Guarding the master sends a RTR frame to each guarded slave. The slave

answers with its current state and a toggle bit. This toggle bit alternates for each cycle.

å Node Guarding has a big influence on network load!

2.7.2. Heartbeat

Heartbeat is an error control service without need for remote frames. The Heartbeat pro-

ducer transmits cyclic a Heartbeat message. One or more Heartbeat consumers receive

this message and monitoring this indication. Each Heartbeat producer can use a certain

period (Heartbeat producer Time, 1017h). Heartbeat starts immediately if the Heartbeat

producer Time is greater zero.

The Heartbeat consumer has to monitor the Heartbeat producer. For monitoring the

Heartbeat consumer has an entry for each Heartbeat producer at its own object dictionary.

The Heartbeat consumer Time (1016h) can be different for each Heartbeat producer but

should be greater than the Heartbeat producer Time. Usually the Heartbeat will be con-

figured by the network configuration manager.

The resolution of the Heartbeat times is 1 ms.

å Heartbeat has a big influence on network load - but in effect, the half of the load of

the Node Guarding monitoring!

2.8. Boot-up Message

After a CANopen node has finished its own initialization and entered in the node state

PRE-OPERATIONAL it has to send the Boot-up Protocol -Message. This message indi-

cated that the slave is ready for work (e.g. configuration). This protocol uses the same

identifier as the error control protocol (Node Guarding or Heartbeat).

Page 22 of 180 CANopen Library Version: 4.5

2.9. Network Behavior

Another simplification for CANopen is the definition of a minimal boot-up procedure for

devices, shown in the state diagram in figure 6.

Power-On

912 2

3 4

7

8

6

5

2 INITIALISATION finished - enter PRE-OPERATIONAL

 automatically

3 Start Remote Node Indication

4 Enter Pre-Operational State Indication

8 Stop Remote Node Indication

9 Reset Node Indication

12 Reset Communication Indication

Initialisation

STOPPED

OPERATIONAL

PRE-

OPERATIONAL

INITIALISATION

Figure 6, Minimal Boot-Up Procedure

Devices with the minimal boot-up procedure contain only three states PRE-OPERA-

TIONAL, STOPPED and OPERATIONAL. The difference between master and slave

devices is the initiation of the state transitions. The master controls the state transitions

of each device in the network. After power-on a device is going to be initialized and set

in the state PRE-OPERATIONAL automatically. In this state reading and writing to its

object dictionary via the service data object (SDO) is possible. The device can now be

configured. That means setting of objects or changing of default values in the object dic-

tionary like preparing PDO transmission. Afterwards the device can be switched into the

OPERATIONAL state via the command Start Remote Node in order to start PDO com-

munication. PDO communication can be stopped by the network master by simply

switching the remote node back to PRE-OPERATIONAL by using the Enter Pre-Opera-

tional State command. Via the Stop Remote Node command the master can force the

slave(s) to the state STOPPED. In this state no services besides network and error control

mechanisms are available. The command Reset Communication resets the communica-

tion on the node. All communication parameters will be set to their defaults. The

Version: 4.5 CANopen Library Page 23 of 180

application will be reset by Reset Node. This command resets all application parameters

and calls Reset Communication command. All needed NMT commands except the mini-

mum boot-up use only CAN identifier 0. The commands are distinguished with a com-

mand specifier in the first data byte of the NMT message (table 10).

The second byte specifies the addressed node-ID. If the node-ID is zero the command is

valid for all nodes in the network (broadcast).

NMT master Telegram: COB-ID 0

Byte Number Byte 0 Byte 1

Meaning Command Specifier Node-ID

Data Type Unsigned8 Unsigned8

Table 10, NMT master Telegram

State/Service SDO PDO EMCY TIME SYNC NMT ErrCtrl Boot-Up

INIT - - - - - - - x

STOPPED - - - - - x x -

PRE-OPERATIONAL x - x x x x x -

OPERATIONAL x x x x x x x -

Table 11, Validity of CANopen Services

In order to reduce configuration effort for simple networks a mandatory default identifier

allocation scheme is defined not only for NMT messages, also for the other services.

These identifiers are available in the PRE-OPERATIONAL state directly after initializa-

tion (if no modifications have been stored) and may be modified by means of dynamic

identifier distribution or SDO access (default way). A device has to provide the corre-

sponding identifiers only for the supported communication objects.

The pre-defined master/slave connection set supports one emergency object, one server

SDO, at maximum 4 Receive PDOs and 4 Transmit PDOs and the error control objects.

The COB-ID is built from a function code, representing the object type, and the 7 bit

module or node-ID. Table 12 shows a simplified version of what you can find in

CiA-301.

Page 24 of 180 CANopen Library Version: 4.5

Object Function Code COB-IDs Index

broadcast objects

NMT 0000b 0 -

SYNC 0001b 128 1005h

TIME 0010b 256 1012h

peer-to-peer objects (node-ID related)

EMCY 0001b 129-255 1014h, 1015h

PDO1 (tx) 0011b 385-511 1800h

PDO1 (rx) 0100b 513-639 1400h

PDO2 (tx) 0101b 641-767 1801h

PDO2 (rx) 0110b 769-895 1401h

PDO3 (tx) 0111b 897-1023 1802h

PDO3 (rx) 1000b 1025-1151 1402h

PDO4 (tx) 1001b 1153-1279 1803h

PDO4 (rx) 1010b 1281-1407 1403h

SDO (tx) 1011b 1409-1535 (1200h)

SDO (rx) 1100b 1537-1663 (1200h)

NMT Error Control 1110b 1793-1919 1016h, 1017h

Table 12, Function Codes for Default COB-IDs1

The resulting COB-ID for a object is built:

COB-ID = ((function code) * 128) + <node-ID> (9)

The default COB-ID allocation is only useful for peer to peer communication between a

control application and the nodes. In order to use the advantages of CAN a COB-ID dis-

tribution after boot-up is necessary. The COB-IDs for the services SYNC, TIME, EMCY,

PDO and SDO can be parameterized in the range of 1-1760. In this range only the COB-

IDs of the used 1st SDO server is reserved. The order of priority should be SYNC,

TIME, EMCY, synchronous PDOs, asynchronous PDOs and SDOs. The distribution can

be done via SDOs.

2.10. CANopen Device Profiles

A device profile defines a standard device. For these standard devices a basic functionali-

ty has been specified, which has to exhibit every device within a class. The CANopen

Device Profiles ensure a minimum of identical behavior for a kind of devices.

The layers of a device profile is shown in figure 7.

1 The table has to be seen from the devices point of view.

Version: 4.5 CANopen Library Page 25 of 180

CANopen Device Profile CiA-402

Modes of Operation

Homing

Mode

Profile

Position

Mode

Inter-

polated

Position

Mode

Profile

Velocity

Mode

Profile

Torque

Mode

Velocity

Mode

Device Control Statemachine

CANopen Communication Profile CiA-301

CAN

Figure 7, Communication Architecture for CiA-402

Each device has to fulfill the requirements on the behavior i.e. the implemented applica-

tion state machine. Further it has to support all mandatory objects. These objects are

parameter and data for the device. Additionally the manufacturer can decide about sup-

ported optional objects. All parameters and data, which are not covered by the standard-

ized device profiles can be realized as manufacturer specific objects (2000h - 5FFFh).

The constantly growing list of actual available profiles can always be found at port’s web-

page.

Implementation of these device profiles can be done very easy by using the CANopen

Design Tool. That tool provides databases with all objects for many of the standardized

device profiles. Furthermore source code for realizing the CiA-401 and other functions

are available.

Implementation of missing device profiles can be done very easy by using the CANopen

Design Tool as data entry tool.

Page 26 of 180 CANopen Library Version: 4.5

3. CANopen Library

3.1. CANopen Library Concept

The CANopen Library is offered at different configuration levels. All configuration lev-

els are built upon one another. The functionality of the lower level is contained in the

higher one.

SLAVE
Extra

Package

Driver Package

minimum CANopen services

standard CANopen services

additional CANopen services

Package

Extra MASTER/

SLAVE

L
in

e
1

L
in

e
n

L
in

e
1

L
in

e
n

Figure 8, CANopen Library Grades

Not all services can be divided into master and slave services. Therefore some services

are contained in the master and in the slave version.

The handling of services is the same for master and slave, so that a master can contain

also slave functionalities. This means that a device, which is conceived as an I/O device

can provide NMT master services in the network at the same time.

Table 13 shows the service attributes supported in the various configuration levels of the

CANopen Library.

Version: 4.5 CANopen Library Page 27 of 180

Slave Master/Slave Extra

Service Standard Standard Package

SDO server 128 128

SDO client 128 128

SDO Segmented Transfer 3 3

SDO Block Transfer 3

Dyn. SDO Slave 3

SDO Manager 3

Program Download 3 3

PDO consumer 512 512

PDO producer 512 512

Dynamic Mapping 3 3

Bit-wise Mapping 3 3

MPDO Source Mode 3

MPDO Dest. Mode 3

Node Guarding master 3

Node Guarding slave 3 3

Life Guarding 3 3

Heartbeat consumer 128 128

Heartbeat producer 3 3

EMCY consumer 128 128

EMCY producer 3 3

TIME consumer 3 3

TIME producer 3

SYNC consumer 3 3

SYNC producer 3

NMT slave 3 3

NMT master 3

NMT Flying Master 3

NMT Boot-up Procedure 3

Configuration Manager 3

Safety Communication 3

Redundancy Support 3

LSS Services (CiA-305) 3 3

LED Indicator (CiA-303-3) 3 3

Nonvolatile Storage 3 3

CiA-401 Framework 3

Table 13, CANopen Library Service Attributes

Page 28 of 180 CANopen Library Version: 4.5

All multi-line versions can serve one or more physical CAN lines. Each CAN line oper-

ates completely independently of the other lines. The network behavior (master/slave)

can be different on every CAN line, i.e. each line can be initialized as network master or

slave. Interaction between all the individual lines is possible.

Typical applications for multi-line versions are process data logger, human machine inter-

faces gateways, and devices which work with internal CANopen networks.

If it is necessary to implement additional properties (programmable device services, addi-

tional profiles, etc.), the user can enhance the CANopen Library with Extension Packages

offered by port GmbH.

With all versions of the CANopen Library it is possible to use environments without an

operating system, with single-tasking or multi-tasking systems with only rudimentary

resource control mechanisms.

The CANopen Library consists of two main parts:

- CANopen protocol services

CANopen protocol services according to the standards CiA-301, CiA-302

- Hardware driver

access to the users target hardware (especially CAN controller).

The segmentation offers the following advantages:

1. Hardware-independence (CAN controller, micro controller or both) of the main part

of the protocol stack.

Exchange target hardware while retaining the CANopen functionality by only

replacing the hardware driver layer for the new target hardware.

2. Comfortable development

Development of the CANopen functionality can take place on easy to treat hardware

(i.e. PC with CAN interface) and development environment, afterwards only the

device driver for the hardware has to be exchanged.

3. Simple extensibility

Extension of the devices functionality without necessary modifications of the driver

interface.

4. Application with multi-tasking operating system

The segmentation into several processes is already done by the separation into func-

tional modules. Interprocess communication between driver and CANopen layer is

already prepared.

The CANopen Library was developed in ANSI-C in order to obtain an easy portability.

All hardware and operating system specific functions were separated in extra modules.

These modules are the contents of the CANopen Driver Packages.

A further important point is the high scalability of the code size. The user can decide to

compile a network master or slave device. Furthermore ev ery kind of CANopen service

is located in its own module e.g. pdo.c, sdo.c. Therefore the user is able to select only

the required modules. Additionally it is possible to use compiler defines in order to select

several CANopen Library properties. The advantage of that is that code size grows only

with the used CANopen functionalities.

For an easy configuration of the CANopen Library the user is supported by the interactive

Version: 4.5 CANopen Library Page 29 of 180

CANopen Design Tool.

The CANopen Library contains all CANopen services in respect to CiA-301 and the

important services in respect to CiA-302 (table 13). For all of these many of the features

have been implemented. From this wide range of possibilities a selection can be made in

order to fit the developers needs. Nevertheless, only a small subset is necessary to imple-

ment fully functional CANopen devices.

The SDO service can be used as both server SDO (SSDO) and (CSDO). It is possible to

define up to 128 of each kind. The SDOs use the expedited transfer for data up to 4

bytes. For data larger than four bytes segmented transfer is used. With this service, data

up to 127 bytes, and, if they are marked as domain, up to 232−1 bytes, can be exchanged.

Furthermore a program upload and download to a device is possible.

For large data transfer the faster Block Mode2 was implemented. It can be used with or

without CRC checksum polynomial, calculated on the run or per table and with variable

block size. Additionally a fallback to the segmented transfer is implemented.

The user can define up to 512 Transmit PDOs (TPDO) and 512 Receive PDOs (RPDO) in

each device. Dynamic PDO mapping is possible and can be done bit-wise. Furthermore

the dummy mapping can be used. The PDOs are usable with all transmission types.

Cyclic and acyclic synchronous and asynchronous PDO are implemented. It is possible

to change the transmission type during run time. Additionally transmit PDOs can be sent

timer driven. To sav e PDO identifier resources Multiplexed PDOs can be used in all

defined modes (Source Address Mode (SAM) and Destination Address Mode (DAM)).

As a further feature it supports remote requests (RTR) also for Basic-CAN controllers.3

The EMCY services are available for both producer and consumer. One producer EMCY

and an "unlimited" number of consumer EMCYs can be defined. Additionally the

CANopen Library handles the error stack management (1003h).

For SYNC and TIME services one producer and one consumer communication object per

device is possible. An exception are devices with multiple CAN lines. They support one

server and one client per line.

The Node Guarding protocol is implemented for both master and slave. Each of them

checks the guarding time. If the guard time is elapsed, the application receives this infor-

mation. The guarded slave can monitor if it is guarded within the expected time interval

by a Node Guarding master.

Heartbeat for producer and consumer is available. If the Heartbeat producer Time is set

(1017h), Heartbeat starts immediately. If the Heartbeat consumers are active the applica-

tion receives information when the boot-up message is received, an error occurs, or

Heartbeat is restarted.

Another aspect during the development of the CANopen Library was the convenience for

the users. An easy interface for the usage of all services has been implemented. Further-

more checking functions for parameter limits, data sizes and access attributes are avail-

able. The communication behavior in respect to CiA-301 is done fully by the CANopen

Library i.e. default COB-ID distribution. The user has only to define his specific

2 CiA-301, V4.02 chapter 9.2.2.1.8 and 9.2.2.1.12

3 Please refer to the document CiA-AN802: "CANopen statement on the use of RTR-messages" for use of

RTR messages.

Page 30 of 180 CANopen Library Version: 4.5

application behavior on certain communication events.

For devices which own a nonvolatile memory the save and restore parameter handling can

be used.

The further criterion is the security. Many features have been included in the CANopen

Library in order to build robust applications.

The application is informed about any CAN errors. Values can be checked before they

are written to the object dictionary. Additionally a resource security mechanism for

multi-tasking systems and an interface for enabling/disabling of interrupts has been pre-

pared.

The last criterion is the independence of the CANopen Library of the underlying hard-

ware and operating system. It is easy to adapt the prepared driver modules to any target

system. A further aim is to support a wide range of standard hardware products like

CAN cards for PCs or micro controller modules.

3.2. Design Flow

The CANopen Library is only one component in the design flow of the CANopen system

development. The development of CANopen systems consists of the two tasks, imple-

mentation and integration. In the context of the CANopen Library the implementation

task must always be done.

Implementation Tasks Integration Tasks

• Implementation of CANopen application • Integration of devices into a network

• Test of CANopen application • Configuration of devices

• Integration into the target system

(hardware / operating system)

• Test of communication behavior

for distributed application

• Test of the whole device • Downloading of configuration data

to control application

port provides a tool-based design flow for implementation and integration. The CANopen

Design Tool by port supports the implementation part (figure 9).

It is a tool for creating and editing of CANopen device databases. These databases con-

tain information about the device, which describes the interface to the CANopen network.

These are in general the parameter, data, control and status information of the device

accessible via CAN. These values are organized in the object dictionary. The device

databases can be created from ready to use databases, which contain data of the standard-

ized CANopen device profiles. The tasks of the CANopen Design Tool are configuration

of the CANopen Library, managing the device data in a database and generating an object

dictionary implementation (C-code), an Electronic Data Sheet (EDS) and a documenta-

tion of the implemented objects. This tool takes over error-prone tasks and prevents repe-

titious jobs. It consequently relieves the job of the developer.

The generated C-source code of the object dictionary is included by the application mo-

dules. This ensures the direct access to the variables (via variable names) and the access

Version: 4.5 CANopen Library Page 31 of 180

via index and sub-index. The object dictionary is the data interface between the

CANopen Library and the application.

A further result of the tool is an Electronic Data Sheet (EDS) according to CiA-306. The

EDS should be delivered with every CANopen device. The EDS contains all relevant

information about the device. This information is used by configuration tools and control

applications in order to integrate the device in a network.

The CANopen Design Tool also generates a documentation of the implemented objects.

Every parameter of the device is described in a table. Additionally a short descriptive

text provides information about the object content and usage. At the start of each

CANopen device development this documentation can be used as a part of the device

specification. Later it can be included in the user and sales documents4.

An enhancement to this are templates. These are source code skeletons containing

behavior descriptions.

Communication

Profile Objects

CiA-301

Device Profile

I/O Objects

CiA-401

Device Profile

Objects

CiA-4xx

Manufacturer

Specific

Objects

Communication

Profile Objects

CiA-302

Design Tool

EDS

Generator

Headerfile

for Library Code

Optimization

Headerfile for

Profile Template

Optimization

Headerfile for

 Object Dictionary

Implementation

Documentation

Generator
CANopen Profile

Configurator
Object Dictionary

Generator

Device Profile

Templates
CANopen

Library

EDSDocumentation CANopen Device

User Application

Code

CANopen Service

Generator

Figure 9, Implementation Design Flow

If the target system is not yet available i.e. hardware is still under development, a cross

development can be done. For that purpose a host development environment, using Win-

dows™ or Linux has been developed. Under this system the whole application can be

written without any hardware dependence. If no Linux system is available a common

4 For detailed information see User Manual CANopen Design Tool.

Page 32 of 180 CANopen Library Version: 4.5

standard Windows ™ PC with a PC-CAN card can be used5.

After the cross development, the application must be integrated into the target system.

This is done by changing the CANopen Library driver modules. In the application code

modules no changes are necessary provided the hardware parts are coded using a hard-

ware abstraction layer (HAL).

Commercial configuration tools and CAN analyzers can be used for the device tests.

The next step is the device integration into a network. A distributed application is created

using this network. It is very convenient to use a configuration tool. This tool loads the

EDS-files of the participants (devices). Then the communication channels can be built by

distribution of COB-IDs and PDO mapping. Further the application parameters can be

changed. Afterwards a so-called Device Configuration File (DCF) is stored. The config-

uration data can be downloaded onto a control application, which configures the network

after each boot-up. Therefore the configuration tool is not longer necessary within the

network. It fulfills only maintenance requirements.

A summary of the complete tool-set is shown in figure 10.

CANopen Device

CANopen Device

Monitor

CANopen
Library

Device
application EDS

Documen-
tation

Testenvironment Maintenance Sales

CAN Analyser

CAN-REport

CANopen Design Tool

co_init.ccal_conf.h objects.h

EDS

XML

HTML

Figure 10, CANopen Tool Set

5 The CANopen LINUX Starter Kit can be offered for that purpose.

Version: 4.5 CANopen Library Page 33 of 180

3.3. CANopen Library Structure

The structure of the CANopen Library is shown in figure 11. The CANopen Library con-

sists of a hardware-dependent and an hardware-independent section. The two sections

are coupled together by message buffers (CAN receive and CAN transmit buffer).

hardware dependent

hardware independent

Library

with

FlushMBox

3

Application

5

Callback

Functions

4

CAN Driver

1

Timer

Interrupt-

handling

2

CAN Message buffer

Object Dictionary
Global Flags

CANopen Driver Package

Figure 11, CANopen Library Data Flow

The hardware dependent section consists of the components:

CAN Driver

- operation of the CAN controller (interrupt-controlled)

- receipt of CAN Messages and entry in CAN receive buffer

- reading the transmit buffer and transmitting the CAN telegrams (interrupt-con-

trolled)

- monitoring the CAN controller (set error flags on errors)

Page 34 of 180 CANopen Library Version: 4.5

Timer Interrupt

For all timing related tasks like Heartbeat producing and consuming, PDO inhibit

time monitoring and others.

- supply of a defined timer interval

- setting appropriate timer flags

The hardware-independent section consists of the:

- CANopen Library with FlushMbox

- evaluation of the error flags of the CAN controller

- evaluation of the timer flag and call of the timer-dependent services (SYNC,

Node Guarding, Heartbeat)

- calling of appropriate CANopen service routines depending on contents of

messages received by CAN receive buffer

possibly calling callback functions of the CANopen Library containing appli-

cation code

- updating of object directory entries with new data

Callback Functions

- called from the CANopen Library - application-specific reaction for CANopen

services

- are to be filled out by the user

User Application

- application behavior

- initializing CANopen services

- call CANopen service requests

- update object directory entries with user data

The structure of the CANopen Library is reflected in the file structure of the program

components too.

canopen/source/*.c

(CANopen Library Files)

canopen/include/*.h

(CANopen Library

Public Header Files)

Library User’s Application

User’s Application

Data

User’s Application

Behavior

hardware dependent

cal_conf.h

(Configuration Header)

driver Package

(CAN,CPU/RTOS Driver)

Interface

usr_301.c

(Communication Behavior)

objects.h

(Object Dictionary)

nmtslave.c

(Reset Behavior)

CANopen

Service Requests

CANopen Service

Definitions

Figure 12, The File Structure of the CANopen Library

Version: 4.5 CANopen Library Page 35 of 180

The configuration of the CANopen Library (device type, services, communication mech-

anism, etc.) and the hardware characteristics such as CAN controller type, interrupt,

operating system, is written to the header file cal_conf.h. It is stored in the application

directory because it contains configuration data for all CANopen components of an appli-

cation.

All hardware drivers (cpu.c, can.c) for the access to the CAN controller and the timer

handling are stored in the subdirectory drivers.

The interface between the CANopen Library and the application consists of the callback

functions and the object dictionary. The callback functions are supplied in the files

usr_301.c, usr_302.c, usr_303.c, usr_30x.c..., and nmtslave.c and have to be filled out

application-specific by the application programmer. The object dictionary contains data

which are either application-specific or CANopen-specific. These interface functions

belong to the application and are stored in the application directory. All CANopen

Library files are stored in the directory path canopen/source.

Thus also an update of the entire CANopen Library without modification of the applica-

tion-specific files is possible.

3.3.1. Object Dictionary

The object dictionary is the data interface between the user’s application and the

CANopen Library. It contains all variables that are necessary for the CANopen services

and the application-specific variables that should be accessible over the network.

The implementation of the object dictionary by port consists of an array of element head-

ers for each used index (figure 13).

Element header for

Index a

Element header for

Index b

Element header for

Index c

...

Element header for

Index z

Figure 13, Structure of the Object Dictionary Array

Each element header contains five entries:

- object dictionary index number

Page 36 of 180 CANopen Library Version: 4.5

- number of elements for this object dictionary entry (number of sub-indexes)

- pointer to the real variable data

- pointer to the description structure for the object

- pointer to callback function for the object

The real object can be a simple variable, an array, record or domain entry and can be cre-

ated with the object dictionary or by the user application (figure 14).

Index at the

object dictionary

Number of

variable entries

Pointer to

Variable

Pointer to

description of variables

Variable Element 1

description of

Variable Element 1

Index at the

object dictionary

Number of

variable entries

Pointer to

Variable

Pointer to

description of variables

Variable Element 1

Variable Element 2

Variable Element n

Description of

Variable Element 1

Description of

Variable Element 2

Description of

Variable Element n

...

...

Element header n Element header n

Figure 14, Object Dictionary Implementation

The description for each variable is an C-language record. It contains entries for the

value ranges, the default value, the size, read/write permission flags, numeric and domain

identification and PDO mapping permission.

With the multi CAN line version an object dictionary is available at each line. In this

case all object dictionaries will be managed by an object dictionary manager. This man-

ager is an array of pointers to the implemented object dictionaries (figure 15).

Version: 4.5 CANopen Library Page 37 of 180

Element header for

Index a

Element header for

Index b

Element header for

Index c

Element header for

Index z

...

line n

Element header for

Index a

Element header for

Index b

Element header for

Index c

Element header for

Index z

...

line 2

Element header for

Index a

Element header for

Index b

Element header for

Index c

Element header for

Index z

...

line 1
pointer to

Object dictionary

line 1

pointer to

Object dictionary

line 2

pointer to

Object dictionary

line n

Figure 15, Structure of Multi-Line Object Dictionary

It is possible to define an interface for one’s own variables, structures and arrays. The

index is the logical reference to one of these data containers. The elements of structures

and arrays are reached via the sub-index. For simple variables the sub-index is always 0.

If the size of the structures or arrays is bigger than 255 bytes (limit of sub-index), the user

must split them. This means more than one index is needed to describe the struc-

ture/array within the object dictionary. The type LIST_ELEMENT_T is the element

header. An array of this type, sorted by the index, is the object dictionary. The descrip-

tion of the variables is an array of the type VALUE_DESC_T. Each array entry describes

the properties of the corresponding sub-index.

typedef struct

{

UNSIGNED8 *pObj;

VALUE_DESC_T *pValDesc;

UNSIGNED16 index;

UNSIGNED8 numOfElem;

#ifdef CO_CONFIG_ENABLE_OBJ_CALLBACK

CO_OBJ_CB_T pObjCallback; /* obj function pointer */

#endif /* CO_CONFIG_ENABLE_OBJ_CALLBACK */

} LIST_ELEMENT_T;

Page 38 of 180 CANopen Library Version: 4.5

Name Description

index index of the user’s variable in the object dictionary

numOfElem number of elements of user’s variable

pObj pointer to user’s variable (array, structure, variable)

pValDesc pointer to an array of corresponding value descriptions

pObjCallback pointer to an callback function corresponding to the object

Table 14, Element Header Description

typedef struct

{

UNSIGNED8 *pDefaultVal;

#ifdef CONFIG_LIMITS_CHECK

LIMIT_U8_T *pLimits;

#endif

UNSIGNED8 varType;

UNSIGNED16 attribute;

} VALUE_DESC_T;

Name Description

pDefaultVal pointer to the default value of the variable, it will be used to ini-

tialize the variable after a reset (hard reset or communication

reset)

it depends on the variable type (see varType)

pLimits pointer to the lower and upper limits of the variable value

it depends on the variable type (see varType)

varType type of variable (table below)

attribute attributes of value (table below)

Table 15, Variable’s Properties Description

Version: 4.5 CANopen Library Page 39 of 180

Bit Property Description (bit = 1)

CO_MAP_PERM PDO Mapping Per-

mission

PDO mapping for this entry is allowed

CO_WRITE_PERM Write Permission the variable is writable

CO_READ_PERM Read Permission the variable is readable

CO_CONST_PERM Const value this entry is constant and stored at

ROM

CO_SHORT_ARRAY_DESC Short description the description for all sub-indices are in

the sub-index 1, all following descrip-

tions can be canceled

CO_OBJ_ATTR_SAVE Non volatile storage

marker

If this attribute is set, the object shall be

stored in non volatile memory.

Table 16, Sub-Index Attributes Description

Bit Variable Type

CO_TYPEDESC_BOOL BOOL

CO_TYPEDESC_UNSIGNED8 unsigned char (8 bit)

CO_TYPEDESC_UNSIGNED16 unsigned int (16 bit)

CO_TYPEDESC_UNSIGNED32 unsigned long (32 bit)

CO_TYPEDESC_UNSIGNED64 unsigned long long (64 bit)

CO_TYPEDESC_INTEGER8 signed char (8 bit)

CO_TYPEDESC_INTEGER16 signed int (16 bit)

CO_TYPEDESC_INTEGER32 signed long (32 bit)

CO_TYPEDESC_INTEGER64 signed long long (64 bit)

CO_TYPEDESC_VISSTRING visible string

CO_TYPEDESC_OCTETSTRING octet string

CO_TYPEDESC_DOMAIN domain

CO_TYPEDESC_REAL32 real (32 bit)

Table 17, Variable Type Description

The pointers to the default value and to the limit structure are always pointers to the real

data type of the variable and must be casted at VALUE_DESC_T type.

The CANopen Library does not interpret float values except if limit check is enabled.

Please ensure that the initialization values are in the right order.

Page 40 of 180 CANopen Library Version: 4.5

3.3.2. CANopen Library Configuration

3.3.2.1. Configuration Header

The CANopen Library can be used for many different hardware and compiler platforms.

Furthermore the CANopen Library can be configured to reduce code size and run faster.

Due to the complexity of this process, the interactive is available for both Microsoft Win-

dows and UNIX-machines® to support the creation of the configuration file cal_conf.h.

The entries of the file cal_conf.h determine the kind of compilation. All configuration

compiler-define-directives used in that file have the prefix CONFIG_.

The user can compile the CANopen Library code for a CANopen network master or for a

slave application.

For the multi-line version the number of CAN lines can be configured. Additionally the

multi-line functionality can be switched off. This means all functions do not use the line

select function parameter canLine. In this way the CANopen Library can be used for sin-

gle line systems additionally without the multi line overhead.

Furthermore it is possible to reduce the code size by selecting parts of the code by com-

piler #define directives. Every CANopen service can additionally be separated into

client/consumer or into server/producer functionality. If the user needs only one func-

tionality, he only has to define one of these e.g. CONFIG_SDO_SERVER.

Furthermore the size of the CAN message buffer can be adjusted and the usage of Full-

CAN properties in hardware can be enabled, if the CAN controller is a Full-CAN type.

For compilers (processors) which do not support a byte alignment of data in the memory,

an alignment definition CONFIG_ALIGNMENT has to be set in order to ensure a correct

access to structures and arrays of the object dictionary.

å For a detailed description of the compiler #defines see Appendix 4.

Please never edit the cal_conf.h by hand !

3.3.2.2. Coding of 64-bit Values

Some entries at the object dictionary are of type UNSIGNED64. At the moment, not all

compilers provide this data type. In this case a special type can be used.

typedef struct {

char val[8];

} UNSIGNED64;

The initialization in this case is done by the following macro:

#define SET_U64(b1, b2, b3, b4, b5, b6, b7, b8) \

{ b8, b7, b6, b5, b4, b3, b2, b1 };

For all compilers providing this data type the initialization is done by:

#define SET_U64(b1, b2, b3, b4, b5, b6, b7, b8) \

{ b1<<56|b2<<48|b3<<40|b4<<32|b5<<24|b6<<16|b7<<8|b8 };

Version: 4.5 CANopen Library Page 41 of 180

Page 42 of 180 CANopen Library Version: 4.5

4. Using the CANopen Library

4.1. Service Definition Interface

All CANopen services the application needs must be defined before they can be used.

Therefore definition functions are available for each service. These definition functions

setup the service parameters to their default values.

The name of the functions for the definition interface always starts with the prefix

"define" followed by an abbreviation of the service object e.g. definePdo().

If the function returns the value "success" (return value: CO_OK), then the created service

can be used by the application.

The picture below illustrates the naming scheme for functions that use CANopen ser-

vices.

Client/Producer Ser ver/Consumer

Request Indication

Confirmation Response

Figure 16, Naming Scheme for Functions

4.2. Service Request Interface

In order to be able to use CANopen service functions, request functions are available.

The function name consists of three sections. The first word of the service request name

is the abbreviation of the CANopen service object (read, write, start ..). The second word

is the kind of service (PDO, SDO, SYNC..) and finally the abbreviation of the word

request "Req", e.g. writePdoReq().

There are two kinds of request functions. The first kind of requests directly execute the

request in the user application. These are all the requests, which can be completely

executed immediately by the CANopen layer, e.g. startSyncReq(), writePdoReq(),...).

The second kind of requests result in a response or confirmation from another node in the

network. Here the request can only be instructed e.g. readSdoReq(), readPdoReq(),...

because an interaction with another node in the network is necessary. The application can

determine the completion of the request, e.g. the reception of a response, using the confir-

mation functions.

Error free return from the request functions (CO_OK) means that the statement was

executed error free up to putting created CAN messages into the CAN transmit buffer.

The successful transmission of a CAN message is the job of the CAN driver (not of the

request function) and depends, among other things, also on the current bus load.

Version: 4.5 CANopen Library Page 43 of 180

4.3. Service Indication/Confirmation Interface

With the reception of certain CAN messages, error conditions (e.g. Heartbeat message is

missing, Timeout occurred) and other events (e.g. completed request) the user is informed

by the CANopen Library by indication or confirmation functions also referred to as call-

back -functions.

The confirmation is an answer to a confirmed service request (e.g. SDO). All other

ev ents are so-called indications. Function names that are CANopen service indications

and confirmations are appended with "Ind" e.g. pdoInd() as the abbreviation for indica-

tion and "Con" e.g. sdoRdCon() as abbreviation for confirmation. The function prefixes

of the indication and confirmation have the same meaning as in the request interface

description.

The receive principle for the service indication/confirmation is shown in figure 17.

Network Service Indication

Nonvolatile Memory Indication

Guarding Indication

Service Confirmation

Service Indication

CAN Message

SYNC Indication

CAN Error Indication

Event

CANopen Library

Figure 17, The Indication/Confirmation Interface

It is possible to define an error handling for interrupted SDO transfer (Abort-Domain-

Transfer-Service), for guarding indications (lost guarding, start/failed Heartbeat, boot-up

message), for an emergency message reception or for errors received from the CAN con-

troller (driver).

All user interface functions have been defined in the modules usr_301.c, usr_302.c,

usr_303.c, usr_304.c, usr_305.c and nmtslave.c. The file names are derived from the

corresponding CANopen standards, e.g. usr_301.c relates to CiA-301. However, only

Page 44 of 180 CANopen Library Version: 4.5

the function calls are defined in the provided template modules. The behavior of the indi-

cation or confirmation functions must be determined (means "coded") by the application

programmer.

Function Kind of Service Contents (user reaction)

getNodeId() Local Initialization node-ID read function

pdoInd() Service Indication PDO indication

mpdoInd() Service Indication MPDO indication

emcyInd() Service Indication emergency indication

timeInd() Service Indication time stamp indication

testSdoValue() Service Indication value test before writing

sdoRdInd() Service Indication SDO read indication

sdoWrInd() Service Indication SDO write indication

sdoRdCon() Service Confirmation SDO read confirmation

sdoWrCon() Service Confirmation SDO write confirmation

mGuardErrorInd() Guarding Indication guarding handling on master

sGuardErrorInd() Guarding Indication guarding handling on slave

clearParameterInd() Nonvolatile Memory clear memory command

loadParameterInd() Nonvolatile Memory load memory command

saveParameterInd() Nonvolatile Memory save memory command

canErrorInd() CAN Error Indication CAN error handling

syncPreCommand SYNC Indication before SYNC process

syncCommand SYNC Indication after SYNC process

lssMasterCon() LSS Confirmation confirmation

lssSlaveInd() LSS Indication indication

ledInd() LED Indication Set/Reset LED request

Table 18, Some User Receive Interface Routines of the module usr_30x.c

If a function listed above is called a message was received or an event had occurred. The

corresponding values in the object dictionary had been updated before the call. Some of

the functions require certain conditions to be met. These conditions are described in the

following chapters.

4.4. Configuration Interface

Most of the CANopen service functions use predefined COB-identifiers for communica-

tion. These predefined COB-identifiers are determined on the basis of the own node-ID.

For high flexibility the CANopen Library uses a function to determine the node-ID.

Within the function getNodeId() the user determines the node-ID, e.g. by reading out

some DIP switches. The CANopen Library calls this function once from initCANopen()

and once from the resetCommInd() function.

Version: 4.5 CANopen Library Page 45 of 180

4.5. Timer Usage

The CANopen Library uses an internal timer concept that can be used for application spe-

cific purposes, too. As a basis a hardware timer is used. It is included by the driver and

increments a variable in an predefined interval. This interval is called timer tick and is the

smallest resolution of timer dependent processes. All timer dependent processes of the

CANopen Library can only be executed in multiples of timer ticks. Timer ticks are

counted normally in an UNSIGNED16 variable. If the define CONFIG_LARGE_TIMER

is set, timer ticks are counted in an UNSIGNED32 variable. Therefore the maximum

value of a timer event is 0xffff * length or 0xffffffff * length of a timer interval.

The timer itself does not need any additional memory. Therefore any desired number of

timer processes can be started. For every function that needs a timer a static timer struc-

ture has to be provided of the calling function. All timer structures are administered in a

linked and sorted list. This makes it possible that even with many timers there is no loss

in execution time. After the time has run out the indication function userTimerEvent() is

called, in which the user can specify further actions. Furthermore it is possible to use the

timer as a cyclic timer. The following functions provide the programming interface to the

timer.

Name Function

addTimerEvent() add a timer event to the timer list

removeTimerEvent() delete a timer event from the timer list

changeTimerEvent() modify an active timer event

checkActiveTimer() check for an active timer

userTimerEvent() user indication - timer has been finished

Table 19, Timer Functions

By using the function addTimerEvent() the new timer is added. When the timer is

elapsed the indication function userTimerEvent() is called. In this function the user can

specify further actions. When the timer has to be switched off before time is up remove-

TimerEvent() can be called. All timer functions expect as first parameter a pointer to the

data structure of the timer. This structure has to be provided as static data from the call-

ing function. The structures are modified by the timer functions. Therefore the user pro-

gram must not alter the data of the static timer structures.

The second parameter specified the timer interval in 1/10 of msec. And the third parame-

ter is the timer type. For application specific timers it should be set to

CO_TIMER_TYPE_USERSPEC. For cyclic timers additional the attribute

CO_TIMER_TYPE_CYCLIC has to be set.

Page 46 of 180 CANopen Library Version: 4.5

Example of the usage of a timer:

TIMER_EVENT_T myTimer; /* define timer struct */

/* add a cyclic timer for 1 sec */

addTimerEvent(&myTimer, 10000, CO_TIMER_TYPE_USERSPEC | CO_TIMER_TYPE_CYCLIC);

...

void userTimerEvent(TIMER_EVENT_T *pTimer) {

if (pTimer == &myTimer) {

/* start my reaction */

}

}

Listing 1, Example for Timer Usage

4.6. SDO Usage

SDO transfers are always peer-to-peer connections between two nodes - a server node

and a client node. The client is using SDO read or write requests to access the servers

object dictionary. SDO transfers are confirmed services and therefore 2 COB-IDs are

necessary for each connection, one for the request, one for the response. Each node can

have many SDO connections and it can be a server, client or both.

There are three different transfer modes possible: Expedited Transfer, Segmented Trans-

fer and Block Transfer. The CANopen Library selects automatically the best mode for

each transfer.

If the node permits the access to its own object dictionary, it must provide at least one

server SDO connection, i.e. by creating an SDO communication object using the

defineSdo() function call, or more than one if more clients should have access to its object

dictionary. If the node wants to access the object dictionary of other nodes it has to ini-

tialize a

for each node it wants to connect to, also using the defineSdo() function call.

All SDO communication services have to be initialized by the function defineSdo() (List-

ing 2).

Except the first server SDO, all SDOs are marked as invalid after the initialization. Only

the COB-IDs for the first server SDO are initialized with the default COB-ID on the basis

of the node-ID (see pre-defined connection set). The COB-IDs for the other SDOs

should be set and validated using the function setCobId() (Listing 2).

Version: 4.5 CANopen Library Page 47 of 180

defineSdo(1, SERVER); // set the COB-ID not necessary

defineSdo(1, CLIENT); // define SDO as client SDO

cobId = 1200; // define COB-ID

setCobId(0x1280, 1, cobId); // validate cob-id client-server

cobId = 1201; // new COB-ID

setCobId(0x1280, 2, cobId); // validate cob-id server-client

Listing 2, Example for Defining SDOs and Setup COB-IDs

4.6.1. SDO-Server

The SDO server permits access to the own object dictionary to other nodes via the

CANopen network. For the access to the three mandatory objects in the object dictionary

ev ery CANopen node must have at least one server SDO object. Only the first server

SDO is available immediately after the initialization. If more server SDOs should be

used the COB-IDs for those SDOs have to be configured (Listing 2).

All attempts of a read or write access from a remote node to the own object dictionary are

indicated by the sdoRdInd() and sdoWrInd() functions.

A read access from any other node in the network to the own object dictionary is indi-

cated by the function sdoRdInd(). In this function the application can update the

requested value (the object dictionary entry addressed by index and sub-index) before

the CANopen Library sends back the response message to the client. If the indication

function sdoRdInd() returns an error, an SDO abort transfer will be generated and is sent

back to the originator (the read service requester).

Error codes are generated automatically by the CANopen Library, see appendix 5.

Page 48 of 180 CANopen Library Version: 4.5

/***

*

* sdoRdInd - indicates the occurrence of an SDO read access

*

* \retval CO_OK success

* \retval CO_E_xxx error

*

*/

RET_T sdoRdInd(

UNSIGNED16 index, /* index to object */

UNSIGNED8 subIndex /* index to object */

#ifdef CONFIG_MULT_LINES

,UNSIGNED8 canLine /* number of CAN line 0..CONFIG_MULT_LINES-1 */

#endif

)

{

/* increment the counter before send back the value */

actual_u32++;

return(CO_OK);

}

Listing 3, Example s1, SDO Read Indication

A write access to the own object dictionary is indicated by the function sdoWrInd() (fig-

ure 18).

testSdoValue()

restore

old value to OD

OK ?

n

n

save old value

copy new value to OD

SDO Write

Indication

SDO Response

Error

SDO Response

Success

limits and attribut

OK?

n

sdoWrInd()

RetValue =

Split Indication ?

n

finish

sdoInd

RetValue =

OK?

y

y

y

y

Figure 18, The SDO Write Indication Flow

First the write permission flag and the value limits are tested by the CANopen Library. If

the value is within the limit range the user can test the value by the function

Version: 4.5 CANopen Library Page 49 of 180

testSdoValue() before it is written into the object dictionary. This test can be necessary if

the application uses the corresponding variable via a second task or interrupt service rou-

tine or for data with size greater than 4 bytes. For variables with size less than 4 bytes

(e.g. UNSIGNED8-UNSIGNED32, INTEGER8-INTEGER32, REAL32 values) the old

value is stored before the new value is written into the object dictionary and the function

sdoWriteInd() is called. In the case of an error return value from sdoWriteInd() the old

value is restored.

/***

*

* sdoWrInd - indicates the occurrence of an SDO write access

*

* \retval CO_OK success

* \retval CO_E_xxx error

*

*/

RET_T sdoWrInd(

UNSIGNED16 index, /* index to object */

UNSIGNED8 subIndex /* sub-index to object */

#ifdef CONFIG_MULT_LINES

,UNSIGNED8 canLine /* number of CAN line 0..CONFIG_MULT_LINES-1 */

#endif

)

{

actual_u32++;

/* Look if index 0x2000 = setpoint */

if ((index == 0x2000) && (subIndex == 0)) {

actual_u32 = setpoint_u32;

}

return(CO_OK);

}

Listing 4, Example s1, SDO Write Indication

4.6.2. SDO-Client

The SDO client initiates all SDO transfers. For each SDO client connection an SDO

communication object has to be initialized. After the initialization all s are disabled by

default. To enable these SDOs the COB-IDs must be set according to the server COB-

IDs - which should be contacted - with setCobId() (Listing 2).

Read and write access to the object dictionary of another node is started with readSdo-

Req() and writeSdoReq(). Parameters for the function calls are the SDO number, index

and sub-index in the object dictionary of the SDO server and a data buffer for transmis-

sion data.

The application has to ensure that the data buffer is large enough for all data which are to

be transferred.

An error free return value from the request functions does not necessarily mean a suc-

cessful transmission. It means only that the transfer is initiated by saving the first data

Page 50 of 180 CANopen Library Version: 4.5

into the transmit message buffer.

The application is informed about the termination of the transfer through the functions

sdoWriteCon() and sdoReadCon(). If an error occurs these functions can evaluate the

error reason.

void sdoWrCon(

UNSIGNED8 sdoNr, /* number of SDO */

UNSIGNED32 errorFlag /* errorflag, if zero success */

#ifdef CONFIG_MULT_LINES

,UNSIGNED8 canLine /* number of CAN line 0..CONFIG_MULT_LINES-1 */

#endif

)

{

if (errorFlag == E_SDO_TIMEOUT) {

printf("Timeout");

return;

}

switch (errorFlag & 0xFF000000UL) {

/* successful confirmation */

case E_SDO_NO_ERROR:

break;

/* service error */

case E_SDO_SERVICE:

printf("Error: Service Error");

switch(errorFlag & 0x00FF0000UL)

{

case E_SDO_INCONS_PARA:

printf(" - Inconsistent parameter");

break;

/* wrong communication parameter */

case E_SDO_ILLEG_PARA:

printf(" - Illegal parameter");

break;

}

break;

...

default:

printf("Error: abort dom transfer reason %lX", errorFlag);

break;

}

}

Listing 5, SDO Write Confirmation

If an SDO server does not respond to the request from the SDO client within a deter-

mined period of time the SDO client can abort the transfer with an Abort Domain

Transfer Protocol. This is done automatically by the CANopen Library when the time,

given by writeSdoReq() or readSdoReq() is up. The application is informed by the indi-

cation function sdoRdCon() or sdoWrCon() about this event.

Version: 4.5 CANopen Library Page 51 of 180

SDO communication up to four bytes can be transmitted by so-called Expedited Transfer.

This means, all data can be passed in one CAN telegram. For larger data the segmented

transfer has to be used. The CANopen Library forces automatically the transfer type by

the requested byte count.

4.6.3. Domain Up/Download

A domain in CANopen is unstructured data, which can have a size up to 232 bytes.

Domains can be whole application programs or large data structures, e.g. pictures. The

application is always responsible for the interpretation of the domain content.

Domains can only be transferred by SDO. In order to handle such large data some excep-

tions to the common CANopen objects are necessary. All objects with domain entries

have the type DOMAIN_T. This type is a pointer to void and is initialized with NULL

in objects.h generated by the CANopen Design Tool. The data type DOMAIN_T is a

basic data type and can be used as variable, in arrays and in records.

DOMAIN_T man_domain_var = { NULL };

DOMAIN_FIELD2_T man_domain_array = { 0x2, { NULL, NULL }};

DOMAIN_DATA_T domain_data[] = { 0, 0, 0 };

UNSIGNED8 defaultVal_U8 = { 2 };

VALUE_DESC_T man_updown_domain_desc[1] = {

{ (UNSIGNED8 *)&domain_data[0],

CO_TYPEDESC_DOMAIN,

CO_READ_PERM | CO_WRITE_PERM }

};

VALUE_DESC_T test_desc[3] = {

{ &defaultVal_U8[0],

CO_TYPEDESC_UNSIGNED8

CO_READ_PERM | CO_WRITE_PERM | CO_NUM_VAL },

{ (UNSIGNED8 *)&domain_data[1],

CO_TYPEDESC_DOMAIN,

CO_READ_PERM | CO_WRITE_PERM },

{ (UNSIGNED8 *)&domain_data[2],

CO_TYPEDESC_DOMAIN,

CO_READ_PERM | CO_WRITE_PERM }

};

Listing 6, Domain Declaration in objects.h

The application programmer is responsible for setting the pointer the correct data area

and the size of the domain objects.

Page 52 of 180 CANopen Library Version: 4.5

/* users module */

/* area for domain storage */

UNSIGNED8 programDownloadArea[MAX_DOMAIN_BUF_SIZE];

main()

{

/* assign address space to domain from objects.h with

* index DOMAIN_INDEX and sub-index DOMAIN_SUB */

setDomainAddr(DOMAIN_INDEX, DOMAIN_SUB, &programDownloadArea[0]);

}

Listing 7, Initialization of a Domain

In order to manage remote data area from a node, some functions have been introduced

for manipulating the start address and the domain size. This is useful for building ring

buffers and other segmented buffer structures e.g. for drive interpolation data. Further-

more certain segments of a domain can be uploaded e.g. for program debugging.

The manipulation functions are listed below:

• setDomainAddr()

• getDomainAddr()

• setDomainSize()

• getDomainSize()

Listing 8, Functions for Manipulating Domain Variables

Domain transfers can be started by normal SDO functions writeSdoReq() or

readSdoReq(). After the transfer is finished, the normal indication functions sdoRdInd()

and sdoWrInd() will be called, respectively. In some applications an indication function

after a defined block of transferred data is necessary, because the receive buffer is not

large enough or the data should be flashed into a ROM area. The CANopen Library can

handle this for the SDO client and the SDO server for upload and download transfers.

All SDO transfers are initialized by the SDO client, so the SDO server is always the pas-

sive part. Therefore the indication size for the SDO server must be setup at compile time.

It can be done by the CANopen Design Tool. If the configured data size is elapsed, the

indication function sdoDomainInd() is called. Here the application can save or flash the

received data. After that, the receive buffer will be cleared and the next data will be

received until the next border of the configured data size is reached. Then the indication

function is called again.

RET_T sdoDomainInd(

UNSIGNED8 *pData, /**< pointer the domain buffer */

UNSIGNED32 actSize, /**< number of Bytes to flash */

UNSIGNED8 overSize /**< number of Bytes to buffer */

)

{

/* temporary flash buffer */

UNSIGNED8 flashBuffer[CONFIG_DOMAIN_INDICATION_SIZE];

Version: 4.5 CANopen Library Page 53 of 180

static UNSIGNED8 savedBuffer[7]; /* static save buffer */

static UNSIGNED8 savedBufferSize = 0; /* count of saved data */

/* first copy saved bytes to flash buffer */

memcpy(&flashBuffer[0], &savedBuffer[0], savedBufferSize);

/* now copy new received bytes to flash buffer */

memcpy(&flashBuffer[savedBufferSize], pData, actSize);

/* save oversize data for next flash cycle */

memcpy(&savedBuffer[0], pData + actSize, overSize);

savedBufferSize = overSize;

/* flash data */

return(CO_OK);

}

Listing 9, Example Code from sdoDomainInd() Function of an SDO server

The SDO client can define the size for the confirmation individually for each transfer by

start a domain transfer using the function writeSdoDomainReq() or readSdoDomain-

Req(). If the given confirmation size is reached, the corresponding indication function

sdoDomainRdCon() or sdoDomainWrCon() is called, before the next CAN message is

transferred. At the end of the transfer, the normal indication functions sdoRdCon() or

sdoWrCon() is called.

RET_T sdoDomainRdCon(

UNSIGNED32 actSize, /**< number of Bytes to flash */

UNSIGNED8 overSize /**< number of Bytes to buffer */

)

{

/* temporary flash buffer */

UNSIGNED8 flashBuffer[CONFIG_DOMAIN_INDICATION_SIZE];

static UNSIGNED8 savedBuffer[7]; /* static save buffer */

static UNSIGNED8 savedBufferSize = 0; /* count of saved data */

/* first copy saved bytes to flash buffer */

memcpy(&flashBuffer[0], &savedBuffer[0], savedBufferSize);

/* now copy new received bytes to flash buffer */

memcpy(&flashBuffer[savedBufferSize], pData, actSize);

/* save oversize data for next flash cycle */

memcpy(&savedBuffer[0], pData + actSize, overSize);

savedBufferSize = overSize;

/* flash data */

return(CO_OK);

}

Listing 10, Example Code from sdoDomainRdCon() Function of an SDO client

For program and firmware download CANopen defines the objects 1F50h for the pro-

gram download and the object 1F51h for program control. For this the following code

Page 54 of 180 CANopen Library Version: 4.5

snippets can be used.

Example code from sdoWrInd() function of an SDO-Server:

RET_T sdoWrInd(

UNSIGNED16 index, /**< index to object */

UNSIGNED8 subIndex /**< sub-index to object */

)

{

unsigned char bank;

switch(index) {

case 0x1f50:

/* program or configuration data download

* subIndex does specify the Flash bank

* that has to be programmed

* !! subIndex differentiates between firmware

* and config area

*/

if ((subIndex > 0) && (subIndex < 5)) {

/* Firmware */

bank = subIndex + 7;

} else if ((subIndex > 4) && (subIndex < 9)) {

/* config data */

bank = subIndex - 1;

} else {

return CO_E_NOT_EXIST; /* failure, wrong sub-index */

}

/* bank, source address */

BDEBUG("Download to SubIndex %d, bank %d\n",

(int)subIndex, (int)bank);

/* optional fill until buffer end with 0xff

* in case there are not enough data in the domain

*/

ret = program_flash(bank, GS_download_area);

BDEBUG("Download ret with %d\n", (int)ret);

man_last_flash_error = ret;

memset(GS_download_area, 0xFF, MAX_UPLOADAREA);

return ret;

break;

case 0x1f51:

if ((subIndex == 1) && (p301_prog_control[1] == 1)) {

firmware_prog();

}

if ((subIndex == 2) && (p301_prog_control[2] == 1)) {

load_config();

}

break;

}

return CO_OK;

Version: 4.5 CANopen Library Page 55 of 180

}

Listing 11, Example Code from sdoWrInd() Function of an SDO server

Example Code of an SDO client:

void *pBuffer;

RET_T commonRet;

fd_infile = open(cmdToken[3], O_RDONLY);

if (fd_infile < 0) {

fprintf(stderr, "can not open download file %s\n", cmdToken[3]);

} else {

size = lseek(fd_infile, 0, SEEK_END);

lseek(fd_infile, 0, SEEK_SET);

pBuffer = malloc(domainbuffer_size);

if (pBuffer == NULL) {

fprintf(stderr,"got no memory for download file\n");

return(CO_E_MEM);

}

/* looping through the file */

commonRet = CO_OK;

do {

size = read(fd_infile, pBuffer, domainbuffer_size);

if (size == 0) {

break;

}

if (size == -1) {

fprintf(stderr,"error reading download file\n");

commonRet = CO_SDO_OTHER;

break;

}

/* Download file using default sdo channel */

fprintf(stderr,"Download %s(%ld bytes) to %x/%d using sdo %d\n",

cmdToken[3], size,

index, subIndex, sdo);

if (executeSendCmd(CMD_SDO_WRITE, index,subIndex,pBuffer,size) != 0)

{

commonRet = CO_E_HARDWARE_FAULT;

break;

}

} while(size > 0);

free(pBuffer);

}

close(fd_infile);

return(commonRet);

Page 56 of 180 CANopen Library Version: 4.5

UNSIGNED8 executeSendCmd(

UNSIGNED16 cmd, /* command number */

UNSIGNED16 index, /* index */

UNSIGNED8 subIndex, /* sub-index */

UNSIGNED8 *pBuf, /* pointer to data */

UNSIGNED32 size /* size of data in bytes */

)

{

switch(cmd) {

//

case CMD_SDO_WRITE:

sdoConError = 0xff;

if (writeSdoReq(sdo,index,subIndex,pBuf,size) != CO_OK) {

printout("-- error writeSdoReq(sdo %d, index 0x%x..)\n",

sdo, index);

return 1;

}

/* wait for finished sdo transfer

* the variable sdoConErr can be set in sdoWrCon()

*/

while (sdoConError == 0xff);

if (sdoConError == 0) {

printout("OK\n");

return(0);

} else {

return 1;

}

break;

//

}

}

Listing 12, Domain Example code of an SDO client

4.6.4. SDO Block Transfer

SDO transfers are based on the client-server model with a handshake after each transfer.

For a larger block of data this will take a large amount of time. Therefore a new SDO

mode has been defined. It is called SDO block transfer.

Using the block transfer a sequence of blocks can be transmitted without a large overhead

of handshake each 8 bytes. Each block is a sequence of up to 127 segments (e.g. CAN

telegrams) containing only a sequence number and the data.

Each block transfer starts with an initialization phase, where the server and the client can

prepare themselves for transferring the blocks and negotiating the number of segments in

one block.

There is a finalization phase after transferring the blocks, where the client and server can

Version: 4.5 CANopen Library Page 57 of 180

optionally verify the correctness of the previous data transfer by comparing checksums

derived from the data set.

For the SDO block transfer a Go-Back-n ARQ (Automatic Repeat Request) scheme is

used to confirm each block.

If the SDO server does not support SDO block download or upload the client automati-

cally falls back to the traditional segmented transfer.

There are no other programming interface or indication functions to use the CANopen

Library with SDO block transfer. Instead block transfers are automatically used for the

SDO server and for SDO client if the data to be transferred is greater than or equal to the

#define CONFIG_BLOCK_MIN_DATASIZE in cal_conf.h. It can be set by the

CANopen Design Tool.

For all transfers the client has to initiate the connection to the server. If the server does

not support SDO block transfer the transfer is repeated automatically with segmented

transfer. In this case the user is not informed.

During the initialization phase the block size and the usage of CRC checksum are negoti-

ated. Therefore the defines CONFIG_BLOCK_CRC and CONFIG_BLOCK_MAX_CNT

are provided if the CANopen device should support this feature. If CONFIG_BLOCK_-

CRC is set, the client will try to use the CRC generation for transfers. The maximum seg-

ment for one block can be set with the define CONFIG_BLOCK_MAX_CNT.

If the SDO partner does not support CRC generation or only supports smaller block sizes

the values from the SDO partner are used.

All values for SDO block transfer can be set with the CANopen Design Tool (Light).6

4.6.5. Dynamic SDO Connections

For configuration tools, analysis tools or HMIs with very intelligent configuration set-up

it can be necessary to have sev eral SDO connections to different nodes from time to time

in the network. Therefore dynamic SDO connections can be used.

The SDO Manager manages all SDO connections in the network. It can dynamically

establish new connections between SRDs (SDO Requesting Device) and a slave (SDO

server). Therefore it has an SDO connection table where all established connections are

stored.

For each dynamic SDO connection an unused COB-ID from the system is necessary. The

SDO Manager also requires information about the COB-IDs that are free in the system.

This is configured in the SDO Manager’s COB-ID table.

Before an SRD can request dynamic SDO connections it has to be registered at the SDO

Manager. This is done with the service "Dynamic SDO Request". If the SDO Manager

has received such a request, it scans all nodes for the requested device by reading the

object dictionary for all non registered devices. If it has found the requested node a con-

nection between the SDO Manager as server and the SRD as client is established. After

that an error control mechanism (Node Guarding or Heartbeat) between the SDO Man-

ager and the SRD is started. If the error control mechanism fails at any time all

6 CANopen Design Tool Light is delivered with the CANopen Library.

Page 58 of 180 CANopen Library Version: 4.5

established connections from this node are released.

With the established connection, the SRD can request new dynamic SDO connections for

other or for all nodes by writing to the object dictionary of the SDO Manager. The SDO

Manager establishes the connection by writing the communication parameter in the dic-

tionary of the SRD and the requested slave.

SDO Manager

SDO Requester SDO Server

1. Initialize

(Register)

2. Request COB-ID

4. SDO Transfer

5. Release COB-ID

3. Configure SDO Server

Figure 19, Dynamic SDO Principle

If an SRD no longer needs SDO connections it has to release them. The SRD does this

by writing to the SDO Manager’s object dictionary. The SDO Manager releases the con-

nection by writing to the object dictionary of SRD and the slave.

The SDO Manager needs the following additional entries in its own object dictionary:

Index Object Name Type Attr. Mandatory

1F00h VAR Request SDO Connection UNSIGNED32 wo yes

1F01h VAR Release SDO Connection UNSIGNED32 wo yes

1F02h ARRAY SDO Manager COB-IDs UNSIGNED32 rw yes

1F03h ARRAY SDO Connections part 1 UNSIGNED32 ro yes

1F04h ARRAY SDO Connections part 2 UNSIGNED32 ro no

1F05h ARRAY SDO Connections part 3 UNSIGNED32 ro no

1F06h ARRAY SDO Connections part 4 UNSIGNED32 ro no

Table 20, Objects for an SDO Manager

The following steps are necessary for using the SDO Manager functionality:

- Add the necessary entries for the SDO Manager to your object dictionary.

- Replace and fill out your user reaction for the SDO Manager functionality in the

dynSdoManInd() in the file usr_302.c.

- Fill in all unused COB-IDs from your system into the SDO Manager COB-ID table.

- Initialize the SDO Manager by calling the function initSdoManager().

There are two examples in the example directory for the usage of an SDO Manager: m8,

m9 for multi-line.

4.6.5.1. SDO Requester

SDO connections are always connections between one server and one client. If more

than one node should be connected to another node the connection can not be static.

When using dynamic SDOs a node has to be an SDO Requester. Each SRD (SDO

Version: 4.5 CANopen Library Page 59 of 180

Requesting Device) can request dynamically SDO connections from the SDO Manager.

Before the SRD can request new connections it has to send a registration request (COB-

ID 1760) to the SDO Manager. If the request was successful, new connections can be

established by writing the communication parameter to the object dictionary of the SDO

Manager. Afterwards the SDO Manager sets up the slave and the SRD for the requested

connection.

All registered SRDs have to participate in an error control mechanism. If Heartbeat is

supported the SDO Manager starts the Heartbeat producer function at the SRD and the

Heartbeat consumer function at the SDO Manager. Otherwise from the SDO Manager is

used. If the error control mechanism fails at any time, all established connections from

the SRD are released by the SDO Manager.

If an SRD not longer needs SDO connections it has to release them. The SRD has to do

this by writing to the SDO Manager’s object dictionary. The SDO Manager releases

those connections by writing to the object dictionary of SRD and the slave.

The SRD needs the following additional entries in its own object dictionary:

Index Object Name Type Attr. Mandatory

1F10h VAR Dynamic SDO Connection State UNSIGNED32 rw yes

1F11h VAR Slave Failed UNSIGNED16 rw no

Table 21, Objects for an SDO Requesting Device

Page 60 of 180 CANopen Library Version: 4.5

The bits at the Dynamic SDO Connection State have the following meaning:

Bit Name Description

0 Request Indication 1 dynamic SDO request open

0 no dynamic SDO request or

request OK (written by SDO Manager)

1-2 Requested State 1 request connection

1 request successful (written by SDO Manager)

2 request all default SDOs

2 request successful (written by SDO Manager)

3 SDO connection to slave established

3 Rec EC Request Error Control

not supported by the CANopen Library

4-7 Reserved

8-15 Error Code 0 No precise details for the reason of the error

1 No SDO channel free for connection from

SRD to SDO Manager

2 No more free SDO channels available in the

network

3 No more free server SDO entries on slave

4 Slave not available

16-31 OD index object dictionary index to store the connec-

tion

Table 22, Protocol for a Dynamic SDO Connection

The bits of the Slave Failed have the following meaning:

Bit Name Description

0-7 S Node-ID Supervised Slave Node-ID

8-15 Reason The SDO Consumers (SDO Manager) Error Control event

Table 23, Fields of the Slave Failed object

The following steps are necessary in order to use the functionality:

- Add the necessary entries for SDO Requester to your object dictionary.

- Initialize the SDO request variables by calling the function initDynSdoAccess().

- Start the registration by calling the function writeDynSdoRegister().

- Test the state of the registration (see object 1F10h).

- Request dynamic connections by calling the function writeDynSdoRequest().

- Release dynamic connections by calling the function writeDynSdoRelease().

There are two examples in the example directory:

s8 simple program to register and request a dynamic SDO to node 32

s9 interactive program to request and release dynamic SDO connections and read and

write values at the connected slave

Version: 4.5 CANopen Library Page 61 of 180

4.7. PDO Usage

PDOs serve for transferring real time data without overhead. Contents of the data which

should be transmitted must be determined before - this is called mapping. The mapping

can be set at compile time (static mapping) or at run time (dynamic mapping).

With dynamic mapping, memory is reserved for the maximum mapping by the initializa-

tion.

The mapping can take place bit-wise or byte-wise. The bit-wise mapping is necessary for

variables unequal to 8, 16 or 32 bit (i.e. bit variables) and without holes at the CAN trans-

mission. If variables are to be mapped bit-wise, the define CONFIG_BIT_ENCODING

must be set. This requires, however, larger code blocks and a longer processing time for

PDO than the byte-wise mapping.

Before usage all PDOs must be defined. A maximum of 512 Receive PDOs and 512

Transmit PDOs with a maximum mapping of 64 entries for each direction are possible.

Initialization is done with the function definePdo() (Listing 13).

definePdo(5, CONSUMER, CO_FALSE); // define PDO 5 as consumer

/* setup COB-ID is necessary for PDOs 5..512 */

setCobId(0x1404, 1, 0x67f); // set COB-ID

Listing 13, Example for definePdo()

During the initialization of the CANopen Library a Reset Communication will be

executed and all entries of the object dictionary are set to their default values. For the

first 4 Receive PDOs and the first 4 Transmit PDOs the default values for the COB-IDs

are calculated according to the Predefined Connection Set and the actual node-ID. The

new COB-IDs are entered into the object dictionary, independently of the default values

of the object dictionary generated by the CANopen Design Tool.

For fast access at run time all PDO data and the addresses of the mapping variables are

stored in internal administrative structures. For all modifications of the communication

parameters in the object dictionary the function setCommPar() has to be called in order to

update the internal structures. Changes from a remote node via SDO automatically

update the internal structures.

To change the PDO mapping data first the PDO has to be disabled by setting bit 31 of the

COB-ID. Then the mapping has to be deactivate by writing 0 to the sub-index 0 of the

mapping data. This sub-index 0 always determines the valid numbers of objects that have

been mapped or not, as with all other indexes the number of sub-indexes. After entering

the new mapping data, the number of valid mapping entries has to be updated, and the

function setCommPar() has to be called in order to update the internal structures. Finally

the PDO has to be enabled again by clearing bit 31 of the COB-ID.

Page 62 of 180 CANopen Library Version: 4.5

/* disable pdo */

setCobId(0x1400, 1, PDO_NO_VALID_BIT); // set cob-id to no valid

/* deactivate mapping */

mapCnt = 0;

putObj(0x1600, 0, &mapCnt, 1, CO_TRUE); // set value to object dict.

setCommPar(0x1600, 0); // set internal values

/* set new mapping */

mapEntry = 0x20000120; // map 2000:1 U32

putObj(0x1600, 1, &mapEntry, 4, CO_TRUE); // set value to object dict.

mapEntry = 0x21000108; // map 2100:1 U8

putObj(0x1600, 2, &mapEntry, 4, CO_TRUE); // set value to object dict.

/* validate mapping */

mapCnt = 2; // two mapping entries

putObj(0x1600, 0, &mapCnt, 1, CO_TRUE); // set value to object dict.

setCommPar(0x1600, 0); // set internal values

/* enable pdo */

setCobId(0x1400, 1, 0x220); // set cob-id

Listing 14, Example for Changing Mapping Parameter

Transmitting PDOs is done using the function writePdoReq(). Only the PDO number is

given as function argument. The CANopen Library composes automatically the transmit

buffer by saving the mapped data at the transmit buffer. Asynchronous PDOs are trans-

mitted immediately, synchronous PDOs are stored and transmitted after the next received

SYNC message.

writePdoReq(1); // write PDO 1

writePdoReq(3); // write PDO 3

Listing 15, PDO Transmission

PDOs are transmitted with high priority. To avoid blocking of the CAN communication

by high priority PDOs an inhibit time parameter can be defined. The inhibit time is a

minimum time between the 2 consecutive transmissions of a PDO. If the inhibit time has

not elapsed yet, the function writePdoReq() returns an error code. The application can try

to send it later or is waiting until the inhibit time is elapsed (Listing 16).

do

{

ret = writePdoReq(1);

FlushMBox(); // do other CANopen tasks

} while (ret == CO_E_INHIBITED)

Listing 16, PDO Inhibit Time Waiting

Of course, this loop should not block the whole application. Please consider that the

inhibit time can be set via network from a configuration tool and is therefore not deter-

mined by the application. It can last more than 6 sec as maximum.

Version: 4.5 CANopen Library Page 63 of 180

If the SYNC period is too small or there is no SYNC in the network, PDO can also be

sent time driven by specifying an event timer. The event timer can be used for asynchro-

nous PDO only. If the entry for the event timer is greater than zero the PDO is transmit-

ted cyclically with this rate. Before the PDO is transmitted, the indication function pdo-

EventTimerInd() is called. The application can update the value in the object dictionary

before the data are filled into the transmit buffer.

For Receive PDOs the event timer can also be used. If the event timer is unequal zero it

is restarted every time a PDO was received. If the timer is up the indication pdo-

TimerInd() is called. The application can now request the PDO.

PDOs can be requested by other nodes via RTR7. This request is handled by the

CANopen Library. Before the transmit data are generated, the indication function rtrP-

doInd() can be used to update the data at the object dictionary.

A positive acknowledgment of the function writePdoReq() does not mean that the tele-

grams are sent successfully. It means only that a successful entry into the transmit buffer

was done. In the case of errors (node not in state OPERATIONAL, inhibit time has not

expired) the function returns with the appropriate error code and does not transmit the

data.

The reception of PDOs is indicated with the function pdoInd(). All mapped data for this

PDO are written to the object dictionary before this function is called. If the number of

received data for the defined mapping is not sufficient, the entire PDO is rejected and an

Emergency Message is generated. In this case no data are stored at the object dictionary.

7 Please refer to the document CiA-AN802 - "CANopen statement on the use of RTR-messages" for use of

RTR messages.

Page 64 of 180 CANopen Library Version: 4.5

/**

*

* pdoInd - PDO indication function

*

* sends PDO 2 on line 1 if PDO 1 has been received on CAN line 0

*

* \returns

* nothing

*/

void pdoInd(

UNSIGNED16 pdoNr /* number of PDO */

#ifdef CONFIG_MULT_LINES

,UNSIGNED8 canLine /* number of CAN line

0..CONFIG_MULT_LINES-1 */

#endif

)

{

/* static mapped PDO */

if (pdoNr == 1) {

/* data already stored at OD */

user_action();

}

/* dynamic mapped PDO */

if (pdoNr == 2) {

/* check, if variable setpoint is mapped */

if (getMapObjAddr(pdoNr, 1) == &setpoint) {

/* yes, is mapped */

user_action2();

}

}

}

Listing 17, PDO Indication

If dynamic PDO mapping is enabled, a detection of the contents of the PDO can be made

in the function pdoInd(). One variant is shown in figure 20.

Version: 4.5 CANopen Library Page 65 of 180

PDO with

dynamic Mapping ?

PDO Indication

End

User Reaction

n

y
getMapObjAdr()

==

address of trigger

variable ?

y

n

Figure 20, The PDO Indication Flow

4.7.1. Multiplexed PDO Usage

If the application has a lot of data with the same properties a special PDO type can be

used. It is called a Multiplexed PDO (MPDO). MPDOs transmit with every CAN mes-

sage the index and the sub-index of the given data. Therefore the maximum data length

can be only 4 bytes. The transmitted index and sub-index can be the index and the sub-

index of the producers object dictionary (MPDO Source Addressing Mode) or the index

and the sub-index of the consumers object dictionary (MPDO Destination Addressing

Mode).

The CANopen Library uses the same functions for both modes. The initialization is done

with the default PDO initialization function definePdo(). For writing MPDOs the func-

tion writeMPdoReq() has to be used. For the MPDO destination addressing mode the

parameter node is not necessary and should be 0.

If an MPDO is received the indication function mpdoInd() is called. It works just as the

pdoInd() function.

The usage of MPDOs allows the transmission of several homogeneous PDOs with a min-

imum of mapping and communication parameter entries in the object dictionary. Since

the mapping is not constant, a longer processing time is necessary for creating or analy-

zing the CAN messages.

Page 66 of 180 CANopen Library Version: 4.5

4.7.1.1. Destination Address Mode

Data Object

MPDO

Producer

MPDO

Consumer(s)

request indication(s)

8 Byte

Index
Sub

Index
Node

0 1 3 4 8

Figure 21, Structure of an MPDO in Destination Address Mode

In destination address mode index and sub-index refer to the consumer. This allows

access to the consumers’ object dictionary in an SDO-like manner. When the destination

node is 0 it allows a broadcasting to write into the object dictionary of more than one

node simultaneously without sending a PDO for each single node.

4.7.1.1.1.

Entries in the object dictionary:

Index Sub-Index Description Value

18xxh communication parameter

1Axxh 0 number of mapping entries 255

1Axxh 1 mapping entry application specific

Table 24, Objects for an in Destination Address Mode

Function:

writeMPdoReq(pdoNumber, dest.-node, dest.-index, dest.-subIndex)

4.7.1.1.2.

Entries in the object dictionary:

Index Sub-Index Description Value

14xxh communication parameter

16xxh 0 number of mapping entries 255

Table 25, Objects for an in Destination Address Mode

If an MPDO was received, the data will have been written into the received index and

sub-index.

Version: 4.5 CANopen Library Page 67 of 180

4.7.1.2. Source Address Mode

Data Object

MPDO

Producer

MPDO

Consumer(s)

request indication(s)

8 Byte

Src-Index
Sub

Index

Src

Node

0 1 3 4 8

Figure 22, Structure of an MPDO in Source Address Mode

In source address mode index and sub-index refer to the producer. The transmission type

has to be either 254 or 255.

4.7.1.2.1.

Entries in the object dictionary:

Index Sub-Index Description Value

18xxh communication parameter

18xxh 2 transmission type 254 or 255

1Axxh 0 number of mapping entries 254

1FA0h − 1FCFh 0-254 object scanner list

Table 26, Objects for an in Source Address Mode

The producer uses an object scanner list to configure which objects have to be sent.

Each scanner list entry has the following format:

MSB LSB

31-24 23-8 7-0

Block Size Index Sub-Index

Table 27, Entry in Scanner List

Each table entry describes an object that can be sent via MPDO. It is possible to describe

consecutive sub-indexes by setting the parameter block size to the number of sub-indexes.

Function:

writeMPdoReq(pdoNumber, 0, src-index, src-subIndex)

Only one producer MPDO of this type is allowed for each node.

4.7.1.2.2.

Entries in the object dictionary:

Page 68 of 180 CANopen Library Version: 4.5

Index Sub-Index Description Value

16xxh 0 number of mapping entries 254

1FD0h−1FFFh 0-254 dispatch entry

Table 28, Objects for an in Source Address Mode

The consumer uses an object dispatcher list as a ’cross reference’ between the remote

object of the producer and the local object dictionary.

Each dispatch entry has the following format:

MSB LSB

63-56 55-40 39-32 31-16 15-8 7-0

Block Size Local Index Local Sub-Index Prod Index Prod Sub-Index Prod Node

Table 29, Entry Dispatcher List

If a PDO was received, and the node-ID of the producer, index and sub-index match an

entry in the dispatcher list, then the data is written into the local object dictionary in the

index and sub-index giv en in this entry.

The parameter "block size" allows the description of consecutive sub-indexes to be used.

For example: if sub-index 1-9 of the PDO producer should be mapped to sub-index 11-19

of the local node, this range is defined by:

Producer sub-index = 1

Local sub-index = 11

Block Size = 9

Non configured entries shall have the value 0.

4.7.1.2.3. Application Notes for

If this object is written with invalid data by an SDO transfer then an abort domain transfer

is generated. Because the data size is greater than 4 bytes it can not be saved and the

invalid data will remain in the object dictionary.

The generation of the object dictionary can be created by the CANopen Design Tool.

If dynamic mapping is used and a PDO is defined as a multiplexed PDO by the function

definePdo() it can not be configured as a normal PDO.

4.8. Emergency

Emergency messages serve for transmitting and receiving error messages. The initializa-

tion can take place for one producer and up to 127 consumer. The function defineEmcy()

with the appropriate parameter initializes the emergency service for producer or con-

sumer. If the emergency consumer list in the object dictionary at index 1028h exists, then

all entries with a valid COB-ID are initialized automatically. If it does not exist the emer-

gency consumers can be added by the function setEmcyConsumerCobId().

Version: 4.5 CANopen Library Page 69 of 180

// producer

retVal = defineEmcy(PRODUCER);

// consumer

retVal = defineEmcy(CONSUMER);

// if emcy consumer list does not exist

// add node 5

retVal = setEmcyConsumerCobId(5, 0x185);

// add node 35

retVal = setEmcyConsumerCobId(35, 0x1a3);

Listing 18, Example for defineEmcy()

Emergency messages on the bus are generated by the function writeEmcyReq() (Listing

19). The CANopen Library generates automatically an entry in the predefined error field

(Index 1003h), sets the general error bit at the object 1001h, creates the emergency tele-

gram and forces the transmission. Object 1003h, the pre-defined error field is an array of

UNSIGNED32. writeEmcyReq() stores the error code in the two lowest bytes and two

bytes of the manufacturer specific error code in the two upper bytes. If more of the error

bits are to be set in the index 1001h then the application has to do this before writeEm-

cyReq() is called.

UNSIGNED8 manuErr[5];

RET_T ret;

manuErr[0] = 0x1;

manuErr[1] = 0x2;

manuErr[2] = 0x3;

manuErr[3] = 0x4;

manuErr[4] = 0x5;

ret = writeEmcyReq(0xffff, &manuErr[0]);

if (ret != CO_OK) {

printf("error EMCY 0xFF00 %d",(int)ret);

}

Listing 19, Example for writeEmcyReq()

Each error is saved in the error list at index 1003h sub-index 1. All other already avail-

able errors are shifted automatically from one sub-index to the next sub-index. The sub-

index 0 of the error list (index 1003h) always indicates the number of errors. If the error

list is full and a new error occurs then the oldest error in the error list is cleared automati-

cally.

Writing in the sub-index 0 in the error list is permitted only with the value 0. Thus all

entries in the error list are deleted with the help of the function eraseErr(). Resetting the

general error bit and the other error-specific bits in the error register index 1001h must

take place in the application.

For transmitting Emergency messages an inhibit time can be specified. After each modi-

fication of this time the function setCommPar() has to be called in order to update the

Page 70 of 180 CANopen Library Version: 4.5

internal structures.

The reception of error messages from other nodes in the network is indicated by the func-

tion emcyInd(). This function makes all data contained in the emergency message avail-

able to the application. Storage of the data does not take place.

/***

*

* emcyInd - indicates the occurrence of an emergency object

*

* In this function the user has to define his application specific

* error handling. The function must send a message to the server in

* order to repair the error.

*

* \returns

* nothing

*

*/

void emcyInd(

UNSIGNED8 emcyNode, /* emergency node */

EMERGENCY_T *pEmcy /* emergency message */

#ifdef CONFIG_MULT_LINES

,UNSIGNED8 canLine /* number of CAN line

0..CONFIG_MULT_LINES-1 */

#endif

)

{

switch (pEmcy->errCode & 0xFF00) {

case 0x4000:

printf("Temperature\n");

break;

case 0x5000:

printf("Device Hardware\n");

break;

case 0x6000:

printf("Device Software\n");

break;

case 0xFF00:

printf("User specific\n");

break;

default:

printf("emergency ind %x\n",pEmcy->errCode);

break;

}

printf("errReg: %x, Manu: %x %x %x %x %x\n",

pEmcy->errReg, pEmcy->manu[0], pEmcy->manu[1], pEmcy->manu[2],

pEmcy->manu[3], pEmcy->manu[4]);

}

Listing 20, Emergency Indication

The indication function is called only for the error messages, which have a valid COB-ID

entry at the object dictionary list or was added by setEmcyConsumerCobId() before.

Version: 4.5 CANopen Library Page 71 of 180

4.9. SYNC Usage

The SYNC telegram serves for synchronous transfer of PDOs and synchronous execution

of internal procedures in different nodes of the network. A node can either be the SYNC

producer or the SYNC consumer. The type of service must be determined by the initial-

ization of the function defineSync() or by setting the appropriate bit at index 1005h.

Additionally, the SYNC cycle time has to be set for the SYNC producer in the object dic-

tionary and the internal structures have to be updated with the function setCommPar().

// define sync producer

retVal = defineSync(PRODUCER);

// set new cycle time

cycleTime = 1000; // set new cycle period

putObj(0x1006, 0, &cycleTime, 4, CO_TRUE); // set value to object dict.

setCommPar(0x1006, 0); // update internal values

// start sync

startSyncReq();

Listing 21, Define SYNC producer

The SYNC telegram is transmitted automatically according to the given time, if the pro-

ducer bit is set. With the arrival or the transmission of the SYNC telegram the synchro-

nous PDOs are assembled and transmitted. Data that were received with the last SYNC

are copied to the object dictionary. For each received PDO also the PDO indication func-

tion pdoInd() is called similar to the PDOs received asynchronously.

For the synchronization of the different nodes in the network two user functions are avail-

able: syncPreCommand() and syncCommand(). The first function is called immediately

after the SYNC message was received or transmitted, and the second is called after all

functionality for the SYNC process was done.

Page 72 of 180 CANopen Library Version: 4.5

SYNC message

received/transmitted

syncPreCommand()

actualise SYNC TPDOs

and transmit it

save RPDO data

at OD

syncCommand()

Figure 23, SYNC Process

Sending of SYNC messages can be started by setting the appropriate bit for the SYNC

producer COB-ID at the object dictionary or by the function startSyncReq() or stopSyn-

cReq().

4.10. Error-Control-Mechanisms

CANopen defines two error control mechanisms. These mechanisms are called Node

Guarding and Heartbeat. Each node has to provide at least one service. Even if both ser-

vices are implemented guarding has to be done with only one service. Sending of guard-

ing messages and guarding of other nodes with the Heartbeat service is possible for mas-

ter and slave devices. Guarding with the Node Guarding service is possible as NMT mas-

ter device. Only services that have been initialized can be used.

// init node only for heartbeat usage

createNodeReq(CO_FALSE, CO_TRUE);

// init node only for guarding usage

createNodeReq(CO_TRUE, CO_FALSE);

// init node for guarding and heartbeat usage

createNodeReq(CO_TRUE, CO_TRUE);

Listing 22, Create Node Request

Boot-up messages of all devices can be received from a Heartbeat consumer and from a

Node Guarding master. It is not necessary to setup guarding service for any special

device.

All events for Heartbeat and Node Guarding master monitoring are signaled by the indi-

cation functions mGuardErrInd() (Listing 23) and the Node Guarding slave are signaled

by sGuardErrInd() (Listing 24).

Version: 4.5 CANopen Library Page 73 of 180

4.10.1. Node Guarding

The Node Guarding protocol is based on a master slave relationship. The master requests

the current state of the slave cyclically with an RTR telegram. The slave answers this

telegram with its state and an additional toggle bit. The Node Guarding is started on the

master with the function startNodeGuardReq() and operates independently in the back-

ground. If the RTR telegram is not answered by the slave within the inquiry cycle, the

function mGuardErrInd() (Listing 23) with the parameter CO_LOST_GUARD-

ING_MSG is called. If the slave does not transmit responses according to adjusted life-

time factor, the guarding becomes inactive and the user is informed by the function

mGuardErrInd() (Listing 23) and the parameter CO_LOST_CONNECTION (Listing

24).

Page 74 of 180 CANopen Library Version: 4.5

/**

*

* mGuardErrorInd - indicates the occurrence of a node-guarding error

*

* This function defines the reaction for node-guarding error

* which is indicated at the master.

* This function must be short, because it will be called from a

* interrupt service routine in plain systems.

*

* \returns

* nothing

*

*/

void mGuardErrorInd(

UNSIGNED8 nodeId, /* Node-Id of error source */

ERROR_SPEC_T kind /* kind of error */

#ifdef CONFIG_MULT_LINES

,UNSIGNED8 canLine /* number of CAN line

0..CONFIG_MULT_LINES-1 */

#endif

)

{

switch(kind) {

case CO_LOST_GUARDING_MSG:

printf("LOST_GUARDING_MSG node %u\n",(unsigned int)nodeId);

break;

case CO_LOST_CONNECTION:

printf("LOST_CONNECTION node %u\n",(unsigned int)nodeId);

break;

case CO_LOST_HEARTBEAT:

printf("LOST_HEARTBEAT node %u\n",(unsigned int)nodeId);

break;

case CO_HB_STARTED:

printf("HB_STARTED node %u\n",(unsigned int)nodeId);

break;

case CO_BOOT_UP:

printf("BOOT_UP node %u\n",(unsigned int)nodeId);

break;

}

}

Listing 23, Master Guarding Indication

The Node Guarding on the master can be started only if the guarding time and lifetime

are larger than 0.

The guarding services are independent from NMT master services. Normally, the NMT

master takes over the task of Node Guarding the remote nodes. That way the NMT mas-

ter and the Node Guarding master are setup at the same time. For this purpose the func-

tion addRemoteNodeReq() is available. It can also be used to initialize the nodes that

should be guarded. Otherwise nodes can be added to the guarding service with the func-

tion addGuardingSlave(). In order to change guarding parameters the function setGuard-

TimePara() is available.

Version: 4.5 CANopen Library Page 75 of 180

Likewise the slave can monitor the queries of the masters (life guarding). The life guard-

ing starts with the reception of the first RTR request by the master. If the RTR queries are

missing, the function sGuardErrInd() is called.

/**

*

* sGuardErrorInd - indicates the occurrence of a node-guarding error

*

* This function defines the reaction for node-guarding error

* which will be indicated at the local slave.

* This function must be short, because it is called from an

* interrupt service routine in plain systems.

*

* \retval 0 node should remain in the current state

* \retval 1 node should be forced to the state PRE_OPERATIONAL

*

*/

UNSIGNED8 sGuardErrorInd(

ERROR_SPEC_T kind /* kind of error */

#ifdef CONFIG_MULT_LINES

,UNSIGNED8 canLine /* number of CAN line

0..CONFIG_MULT_LINES-1 */

#endif

)

{

switch(kind) {

case CO_LOST_GUARDING_MSG:

return 0;

case CO_LOST_CONNECTION:

return 1;

default:

return 0;

}

}

Listing 24, Slave Guarding Indication

The application can determine which communication state the node should have after

calling this function. If the return value equals one, the communication state is changed

to PRE-OPERATIONAL. Otherwise it is left in its current state.

4.10.2. Heartbeat

The Heartbeat service allows each node to monitor every other node in the network.

Each Heartbeat producer transmits cyclically its own Heartbeat (Heartbeat producer).

The monitoring can now take place from one or more nodes (Heartbeat consumer). Each

node can be simultaneously producer and consumer.

The Heartbeat producer starts the cyclic transmission of its own Heartbeat message

immediately if the entry in the object directory 1017h is greater than 0. The Heartbeat

consumer starts the monitoring automatically after the reception of the first Heartbeat

Page 76 of 180 CANopen Library Version: 4.5

message. Through the function mGuardErrInd() (Listing 23) the application is informed

about each new state. This indication function is called with the arrival of the boot-up

message, the start of Heartbeat messages, and if Heartbeat messages are missing.

The initialization of the Heartbeat consumer is carried out with the function defineHeart-

beatConsumer(). All nodes of the Heartbeat consumer list (Index 1016h) are initialized

for Heartbeat guarding. Changes to Heartbeat parameters can be performed directly in

the object dictionary. After each change the internal variables have to be updated with

the function setCommPar().

UNSIGNED32 monPara;

// set new monitoring time 0x123 for node 0x44

monPara = (UNSIGNED32) (0x44 << 16) | 0x0123;

putObj(0x1016, 3, &cycleTime, 4, CO_TRUE); // set value at sub-index 3

setCommPar(0x1016, 3); // update internal values

// change monitoring time to 0x222

monPara = (UNSIGNED32) (0x44 << 16) | 0x0222;

putObj(0x1016, 3, &cycleTime, 4, CO_TRUE); // set value at sub-index 3

setCommPar(0x1016, 3); // update internal values

Listing 25, Set Heartbeat Parameter

4.11. NMT Service Usage

Network Management Services (NMT) serve for switching communication states of

CANopen nodes. Only the CANopen master is allowed to send NMT commands in the

network.

The NMT master administers the communication states of all nodes in the network.

Therefore the master must create appropriate administrative structures with the function

createNetworkReq() (Listing 26). Each node in the network where the NMT master will

send NMT commands to has to be registered using the function addRemoteNodeReq().

Version: 4.5 CANopen Library Page 77 of 180

// create a network structure for using Heartbeat

createNetworkReq();

// add remote node 12, Heartbeat Time of 500 msec

addRemoteNodeReq(12, 500, 0, CO_TRUE, CO_FALSE);

// add remote node 42, Heartbeat Time of 800 msec

addRemoteNodeReq(42, 800, 0, CO_TRUE, CO_FALSE);

Listing 26, Create Network Request

The guarding functions Node Guarding and Heartbeat can be used independently from

NMT services with the NMT functions.

NMT commands can be transmitted either for individual nodes or for the entire network.

The functions startRemoteNodeReq(), enterPreopState() and stopRemoteNodeReq() are

available for this task. Node-ID ’0’ is used to address all CANopen nodes.

// start all nodes in the network

startRemoteNodeReq(0);

// stop the node 7

stopRemoteNodeReq(7);

// enter PER-OP node 8

enterPreOpStateReq(8);

Listing 27, Usage of NMT Services

Furthermore there is the function newStateInd(). This function informs the user applica-

tion about each transition of the communication state machine. This information can be

important, because a few communication services are not available in certain states. For

example, the application transmits error codes via PDO and the master forces the node to

PRE-OPERATIONAL. Then PDOs are not allowed.

If the device can not change to the state OPERATIONAL it can signal this by the return

value. In this case the node stays in the current state.

The reset behavior is a property only for slaves. Each slave can receive a Reset Applica-

tion or a Reset Communication command from the master. The module nmtslave.c con-

tains function templates for resetApplInd() and resetCommInd(). Within these functions

an individual reset of the application data and states can be carried out. In the function

for the communication reset the device can change the CAN bit rate (only for single

device networks) or the node-ID.

Page 78 of 180 CANopen Library Version: 4.5

4.12. Flying Master Usage

4.12.1. Common Hints

The flying master principle was original specified for maritime applications in the stan-

dard CiA-307. Now some more services are defined, they can be performed only from

one node in the network. In most cases the CANopen master has to realize this function-

ality. A loss of the CANopen master can be fatal for the whole network.

For this reason the flying master principle was moved to the CiA-302 as a common ser-

vice.

The flying master principle is based on Heartbeat monitoring of all master capable

devices in the network. If the active master fails a new negotiation is started automati-

cally, depending on a priority of nodes and the node number of the master capable

devices. The master negotiation is won by the node with the highest priority (prior = 0)

and the lowest node-ID.) The active master monitors the network cyclically for other

active masters and starts a new master negotiation if necessary.

4.12.2. Flying CANopen Master Functionality

All Flying Master devices have to implement index 1F80h where bit 0 and 5 is set. Oth-

erwise they can not participate in the master negotiation process.

4.12.2.1. CANopen Master Boot-up Process

- After boot-up the detection of an active master starts.

- If no master is available

- at power on reset a Reset Communication for all devices is transmitted

- start new master negotiation process

If the priority of the active master is less than its own priority a Force Reset Commu-

nication will be sent to the active master. The active master will then send the Reset

Communication command to all devices.

- If the calculated waiting time is done and no other master id was received the master

sends its own master-ID and works as network master otherwise it works as network

slave.

Version: 4.5 CANopen Library Page 79 of 180

Device initialization

Detection of active

CANopen master

Master already

active ?

Priority of active

master > own priority

work as slave

n

y

y

work as master

Coming from

Power Up ?

Send ResetComm

n

y

Start Trigger Timeslot

master Id

received ?

y

n

send own master idForce Flying Master Negotiation
n

Figure 24, Flying Master Boot Process

4.12.2.2. Detection of an active CANopen Master

Any

module

Active Master

module

request indicationCOB-ID = 73h

response
COB-ID = 71h

indication(s)

L = 0

Priority Node-Id

0 1 2 Only the

active master

Figure 25 Detection of an Active Master

- The protocol is initiated by any master capable node in the network.

- Only the active master responds with its node-ID and priority.

- If the master does not answer within the timeout period (index 1F90h, sub-index 1),

a new master negotiation process is started. The default timeout value is 100 ms.

4.12.2.3. Master Negotiation

Page 80 of 180 CANopen Library Version: 4.5

COB-ID = 72h

COB-ID = 71h

L = 0

Priority Node-Id

0 1 2 indication

Master capable

module(s)

Master capable

module(s)

Master capable

module(s)

Any

module(s)

Wait the configured time

(depends on priority and Node Id)

COB-ID = 2041

COB-ID = 2041

only the first node

should send

the

trigger timeslot

Priority Node-Id

0 1 2

Priority Node-Id

0 1 2

Figure 26 , Master Negotiation

- The master negotiation starts by sending a Reset Communication, triggered by the

active master.

- After the "Detection of an active master" time a master capable device sends an ID

Trigger Timeslot.

- This trigger will start a local timer at all master capable modules.

- After the timer is done the master-ID is sent if no other master-ID was received

before.

- The time is calculated by priority and the node number.

Version: 4.5 CANopen Library Page 81 of 180

Reset

Comm.

Start

Trigger

Timeslot

MID

Node

1

MID

Node

2

MID

Node

127

Priority 0 Priority 1 Priority 2

MID

Node

1

MID

Node

2

MID

Node

127

MID

Node

1

MID

Node

2

MID

Node

127

time

Figure 27 , Master Negotiation

- The active CANopen master cyclically asks for other active masters. When the mas-

ter receives a reply a new master negotiation is forced.

4.12.2.4. Force Master Negotiation

Master and

Startup- capable

devices

active Master

request indication(s)COB-ID = 76h

L = 0

Force NMT Reset

Communication Command

Figure 28 , Force Master Negotiation

- The protocol is started by a master capable device.

- Master negotiation starts again.

4.12.2.5. Detecting CANopen Master Capable Devices

Page 82 of 180 CANopen Library Version: 4.5

Master and

Startup- capable

devices

Master capable

module(s)

request indication(s)COB-ID = 75h

response

COB-ID = 74h

indication(s)

L = 0

Priority

Level
Node ID

0 1 2

Figure 29 , Detecting CANopen Master Capable Devices

- The protocol is initiated by any node in the network by sending the MCREQ (Mas-

ter Capable Request) protocol.

- Each Master Capable Device answers with a MRESP (Master Response) protocol.

Because the protocol message does not contain any data all nodes can send it simul-

taneously.

4.12.3. Application Programming Interface

Function Description

defineFlyingMaster() Flying Master initialization

startFlyingMaster() start Flying Master usage

detectMasterReq() Detecting Master Capable Devices

activeMasterReq() Detection of a active system master

forceCommResetReq() force Communication Reset from active master

flyingMasterInd() indication function for Flying Master events

Table 30 , API for the Flying Master Functionality

A new master negotiation is started by the CANopen Library when:

- Heartbeat is failing for the active master

- an unknown or a second master is detected

- for master with lower priority

Version: 4.5 CANopen Library Page 83 of 180

4.13. Redundant Communication

The redundant communication is designed to fulfill the requirements of high reliable sys-

tems (e.g. maritime or medical applications). It is based on a communication using two

separate physical CAN wires. The first line is called the Default-CANline and the second

one Redundant-CANline. The communication starts on the Default-CANline. If the line

is disturbed or fails the communication switches to the Redundant-CANline. If the

Default-CANline has recovered from failure the communication will switch back to this

line. A prerequisite of it is the active Heartbeat monitoring of all nodes on both lines in

the network.

The usage of non-redundant nodes is possible too. This kind of nodes have to be con-

nected only to one line.

The redundant communication is described in CiA-302.

4.13.1. Line Switching

Line switching can be done automatically by the CANopen Library or by the application.

Before the CANopen Library performs a line switching it calls the user indication func-

tion redundancyInd(). Within this function the user application can avert the automatic

line switch by returning with a special return code.

4.13.1.1. Line Negotiation at Boot-up

After a power on reset and after a Reset Communication a line negotiation is performed

by the following steps:

- A timer will be started.

- If 3 Heartbeat messages are received from all redundant nodes on the default line

then the Default-CANline will become the active line.

- The timer is stopped, if an active line message was received.

- If the timer expires then the Redundant-CANline will become the active line.

Page 84 of 180 CANopen Library Version: 4.5

Boot-up or Reset Communication

Start Timer

3 HB of all

redundant devices

received ?

set default line

as active

received ?

set redundant line

as active

received ?

set default line as active

y

n

y

n

set redundancy line as active

Timer ellapsed ?

y

n

n

y

Figure 30, Program Flow after Boot-up

4.13.1.2. Line Monitoring

If the Default-CANline is active all other nodes will be monitored by Heartbeat. If the

Heartbeat from one of the other nodes fails the user indication function redundancyInd()

is called. If it returns with CO_TRUE then a switch to the Redundant-CANline will be

performed. If the command active line is received on the Redundant-CANline a switch to

this line is performed without calling the user indication.

Version: 4.5 CANopen Library Page 85 of 180

set redundant line

as active

received ?

set redundant line as active
y

default line is active line

missing heartbeat

from redundant

 nodes ?

redcyInd
switching ok ?

y

n

n

y

n

Figure 31, Program Flow when Default CAN Line has Errors

If the Redundant-CANline is active the CANopen Library checks for 3 error-free received

Heartbeat from all redundant nodes on the Default-CANline. If this is the case, the user

indication redundancyInd() is called and a switch back to the Default-CANline will be

performed if the return value is CO_TRUE.

3 HB of all
redundant devices

received ?

set default line
as active

received ?

set default line as active
y

redundant line is active line

redcyInd
switching ok ?

y

y

n

n

n

Figure 32, Program Flow when Default CAN Line is Error-Free

4.13.2. Message Transmission

Message transmission depends on the used service, the active CAN line and the actual

communication state of this line:

Page 86 of 180 CANopen Library Version: 4.5

Service Transmit On Condition Treatment

NMT any nothing line depending

NMTErr any depends on line state line depending

PDO both OPERATIONAL both lines

EMCY both OPERATIONAL or PREOP both lines

TIME both OPERATIONAL or PREOP active line

SYNC both OPERATIONAL or PREOP active line

Server SDO received line OPERATIONAL or PREOP received line

Client SDO one line OPERATIONAL or PREOP

Flying Master active line except force ResetComm, id master

received line only id master response

both only force ResetComm

Redundancy active

Table 31, Line Dependent Message Transmission

4.13.3. Transmission of PDO

Transmission of PDOs is monitored by the producer to avoid transmission of too old mes-

sages (waiting too long for transmission.) This is done by the driver. Furthermore an

error counter for the first Transmit PDO is managed. It will be incremented by 4 for each

erroneous transmission and decremented by 1 for each error-free transmission. If the

configured error limit (index 1F60h, sub-index 5) is reached the transmission of Heart-

beat is stopped until the error counter is decremented to 0.

4.13.4. Indication Function

For each event detected by the redundant communication layer the user indication func-

tion redundancyInd() is called.

Values for Parameter event Description

REDUNCY_EVAL_TIMEOUT evaluation time is up

REDUNCY_SWITCH_REDUNDANCY_LINE switch to redundant line

REDUNCY_SWITCH_DEFAULT_LINE switch to default line

REDUNCY_DEFAULT_LINE_OK default line ok

REDUNCY_HB_ERROR default line Heartbeat failure

REDUNCY_TPDO_FAILED TPDO error counter max value reached

REDUNCY_TPDO_OK error counter decremented to 0

Table 32, Parameter Values for redundancyInd()

The default reaction of the CANopen Library can be averted by returning the value

CO_FALSE when leaving the indication function. The following CANopen Library reac-

tions are supposed:

Version: 4.5 CANopen Library Page 87 of 180

Event Return Value Default Reaction of CANopen Library

Eval-time is up REDUNCY_EVAL_TIMEOUT switch to redundant line

Switch to default line REDUNCY_DEFAULT_LINE_OK switch to default line

HB failure on default line REDUNCY_HB_ERROR switch to redundant line

PDO error counter reached REDUNCY_TPDO_FAILED switch off Heartbeat transmission

Table 33, Return Values for redundancyInd()

The redundancy communication can be tested using the examples s11 (redundancy slave)

and m11 (redundancy master with Flying Master capabilities).

4.14. Nonvolatile Memory Usage

Every device needs some configuration data either for communication or application spe-

cific settings. This data has to be set at compilation time or after boot-up by a network

configuration tool. It is substantially much more flexible to store configuration data in

nonvolatile memory of the device. In order to do this the objects 1010h and 1011h are

provided in the object dictionary. By writing a signature to these objects parts or the

complete configuration data, as part of the object dictionary, can be stored in nonvolatile

memory or restored from nonvolatile memory. Furthermore it is possible to load system

values from ROM.

Boot-up ResetComm

Save Parameter

(write to object 0x1010)

reset object dictionary

(set default values)

resetCommInd()

saveParameterInd()

getNodeId()

loadParameterInd(BOOTUP)

getNodeId()

reset object dictionary

(set default values)

loadParameterInd(RESET)

define<Service> update internal values

Restore Default Parameter

(write to object 0x1011)

clearParameterInd()

Figure 33, Restoring of Configuration Data after Reset

At power-on or after the NMT command Reset Communication all variable values in the

object dictionary are reset to there default-value. This happens by restoring the variable

entries of the object dictionary with values defined at compile time. Communication data

Page 88 of 180 CANopen Library Version: 4.5

depending on the node-ID, like COB-IDs of PDOs, are calculated by the protocol

CANopen Library according to there node-ID. In the next step the CANopen Library is

calling the user function loadParameterInd(). The application has to read the stored data

from non volatile memory and to restore corresponding object dictionary entries. The

updated object dictionary data are then used to call the CANopen Library define-func-

tions for the communication services (defineSdo(), ...) and the update-functions.

Data of the object dictionary can be written to non volatile memory via the object 1010h.

Writing the 4 byte signature “save” to this object causes the indication function savePa-

rameterInd() to be called. With the provided parameter sub-index the user can select

which data, which part of the object dictionary should be stored. It is up to the applica-

tion programmer to choose which data to store.

Restoring configuration data happens with a write access to object 1011h with the 4 byte

signature “load”. The re-loaded data becoming valid and visible in the object dictionary

after one of the following NMT commands Reset Communication or Reset Application or

a new boot-up. The CANopen Library is calling the user function clearParameterInd()

after the object 1011h was written. The application programmer is responsible to provide

such code in this function that a following loadParameterInd() called after the NMT

commands Reset Communication or Reset Application or after boot-up will not again

overwrite the default values in the object dictionary with stored configuration data.

The simplest way doing that is erasing data previously stored in the non volatile memory

area.

4.15. Layer Setting Services

CANopen addressing depends on a node-ID (1-127). Normally the node-ID is setup via

DIP switches or rotary switches. Some devices can not provide DIP switches because

they are completely sealed to be used in chemical applications or underwater. With the

means of the Layer Setting Services CANopen devices can be identified and configured

without external DIP switches. LSS services differentiate between and devices. In

order to use LSS services it has to be initialized with a call to the function

defineLss(kind).

The function takes the mode (master/slave) as a parameter.

Within a CANopen network only one is allowed to exist. All other devices can be con-

figured as s. All data for identifying a are taken of the identity object 1018h. Every sub-

index of object 1018h has to be filled. The serial number has to be unique.

LSS distinguishes two sub-states:

• LSS WAITING mode

• LSS CONFIGURATION mode.

Switching between these states can be done globally for all nodes or selectively for just a

single node. In the WAITING mode s only react upon the switch command and the Iden-

tity Non Configured Mode command. Within the CONFIGURATION mode all LSS com-

mands can be used.

Version: 4.5 CANopen Library Page 89 of 180

If the node does not have a valid node-ID (id = 255), then it transits automatically into the

LSS WAITING state.

LSS

CONFIGURATION

LSS

WAITING

Figure 34, LSS Modes

Switching into the CONFIGURATION mode can be carried out independently of the cur-

rent NMT state. If the node-ID was set and the device is set to WAITING mode again the

CANopen Library will automatically call Reset Communication to verify the new COB-

IDs for the Predefined Connection Set.

4.15.1. LSS Communication

Communication is always started by the , except for the Identify Non Configured Mode

command, that can be issued by a , too, without order of the . This can happen when no

valid node-ID was found. The sends its commands always with COB-ID 2021. After

completion of a command the function

lssMasterCon(mode, parameter_1, parameter_2)

is called.

s always respond with COB-ID 2020. After reception of new parameters, like node-ID or

bit rate, the function

lssSlaveInd(mode, parameter_1, parameter_2);

is called.

Page 90 of 180 CANopen Library Version: 4.5

cmd data

0 1 8

LSS

Master

LSS

Slave

COB-Id 2021

cmd data

0 1 8

COB-Id 2020

Figure 35, LSS Communication

LSS commands can be divided into three categories:

a) Switching between the sub-states

b) Configuration

c) Inquiry

4.15.1.1. Switching Between Sub-States

Globally switching from WAITING mode into CONFIGURATION mode is done uncon-

firmed with a single command. Switching a single node into the opposite mode requires

sending the vendor-ID, product code, revision number and serial number of the desired

device by the . If the slave exists in the CANopen network it responds to this request.

The programming interface for globally switching or selectively switching is the same.

lssSwitchMode(mode, vendor, product, revision, snr);

Parameter Description

mode LSS_CONFIG_MODE, LSS_WAITING_MODE

vendor 0 - global, != 0 vendor-ID; 1018h sub 1

product product number; 1018h sub 2

revision revision number; 1018h sub 3

snr serial number; 1018h sub 4

Table 34, Parameter lssSwitchMode

4.15.2. Configuration Services

LSS provides the configuration of the devices’ node-ID and bit-timing without use of DIP

switches or SDO transfer. The has to confirm the reception of the new parameter. On

the the function

lssSlaveInd(mode, parameter_1, parameter_2);

is called on reception of a new parameter. Within this function the user can influence the

return value within the LSS response.

Version: 4.5 CANopen Library Page 91 of 180

The receives the response of the within the function

lssMasterCon(mode, parameter_1, parameter_2).

The new parameter have to be activated with another command by the .

Writing a new node-ID to a device is done with the function

writeLssConfigNodeIdReq(nodeId);

Prior to this the node has to be set into configuration mode with the function writeLssS-

witchModeReq(). Activation of the new node-ID takes place during the transition from

CONFIGURATION to WAITING mode. This is done with a call to the function "Reset

Communication".

Setting the bit-timings is done with a bit-timing table. This mechanism provides the pos-

sibility to use manufacturer specific timings. This bit-timing table has to be created by

the programmer. The default bit-timing table of CANopen is supported.

writeLssConfigBitrateReq(table, tableIndex);

Parameter Description

0 standard bit-timing table

1..127 reserved

128..255 manufacturer specific bit-timing table

Table 35, Parameter writeLssConfigBitrateReq

After changing the bit-timing it is only allowed to use LSS for configuring the bit-timing,

activate bit-timing and switch to another mode.

Index Bit Rate

0 1000 kbit/s

1 800 kbit/s

2 500 kbit/s

3 250 kbit/s

4 125 kbit/s

5 100 kbit/s

6 50 kbit/s

7 20 kbit/s

8 10 kbit/s

Table 36, Default Bit-Timings

After configuring a new bit-timing it can be activated with the function

activateNewBitrate(switchTime);

Activation of the new bit-timings is done in four steps:

Page 92 of 180 CANopen Library Version: 4.5

1) empty send queue

2) wait switchDelay ms (sending not allowed)

3) switch to the new bit-timing

4) wait again switchDelay ms, before sending new messages

Saving of data in nonvolatile memory can be instructed via LSS.

writeLssStoreParameterReq()

On LSS slaves the steps for bit rate changing are indicated by the function

lssSlaveInd(mode, parameter_1, parameter_2);

mode descriptionpara-

meter 1

para-

meter 2

LSS_IND_BITRATE table index new bit rate received

LSS_IND_BITRATE_SWITCH switch bit rate command received

LSS_IND_BITRATE_SET Timer 1 up - setup new bit rate

LSS_IND_BITRATE_ACTIVE Timer 2 up - new bit rate can be used

4.15.3. Inquiry Services

Inquiry services are used to find nodes in a CANopen network or to select nodes. For this

all data of the object 1018h of the are requested. Every , that matches the requested data

responds to the . With this method the can determine which slaves are connected to the

network. If there is at least one node with the requested data, then the master is informed

with the function lssMasterCon(). All data is requested with the same function.

writeLssInquiryReq(mode);

Mode Description

LSS_VENDOR search for vendor-ID

LSS_PRODUCT search for product code

LSS_REVISION search for revision number

LSS_SNR search for serial number

LSS_NODEID search for node-ID

Table 37, Parameter writeLssInquiryReq ()

The master can request all data of object 1018h to identify a single node. By requesting

particular ranges the exact data of nodes can be determined. With the function

lssIdentify(vendor, product, rev_low, rev_high, snr_low, snr_high);

a is able to scan the network and retrieve all connected s.

Version: 4.5 CANopen Library Page 93 of 180

Paramter Description

vendor vendor-ID (from CiA)

product product code

rev_low revision number low

rev_high revision number high

snr_low serial number low

snr_high serial number high

Table 38, Parameter lssIndentify ()

4.15.4. FastScan Service

FastScan service can reduce the time of a network scan for the following reasons:

- master sends only one instead of six remote identification messages

- it is possible to identify devices although skipping LSS numbers, e.g. the serial

number may be ignored

- it is possible to identify vendor-id and product code

The fastScan service can be started by the LSS master by calling the function

writeLssFastScanReq(vendor, product, revision, snr);

The parameters vendor, product, revision and snr are 32 bit coded values, indicating the

relevant bits for the fastScan compare with LSS slaves. All not used bits (reset bits) for

vendor, product, revision and snr have to be zero at the LSS slaves identification object.

The fastScan service detects only one LSS slave for each cycle. It is always finished by

the

lssMasterCon(mode, par1, par2)

function. If an unconfigured LSS slave was found, the

lssMasterCon(mode, par1, par)

is called with the parameter LSS_CON_FAST_SCAN_DATA. The parameter par1 points

to an array of 4 UNSIGNED32 values containing the identification of the found LSS

slave. At this point the LSS slave is already in the LSS CONFIGURATION mode and

can be setup with a new node id.

4.16. Safety with CANopen

Implementation of safety critical applications has to be carried out thoughtfully, because

live of men and the protection of expensive goods and property depends on correctly-

functioning software.

Therefore, these applications are subject to intense scrutiny by official inspection authori-

ties.

Page 94 of 180 CANopen Library Version: 4.5

This was the reason why the safety module was not fully embedded in the source code of

the CANopen Library. It allows the user to program the main parts of the safety relevant

parts of the implementation within the application.

4.16.1. Operation of Safety Critical Communication

For safety critical communication Safety Relevant Data Objects (SRDO) are used, that

are mapped similar as PDOs. SRDOs are sent periodically. To increase safety, the data

of an SRDO is transmitted twice. The second time the data is sent inverted. All SRDOs

have their own COB-ID.

Figure 36, The Indication/Confirmation Interface

SCT Safeguard cycle time

SRVT - Safety relevant object validation time

The receiver of SRDO has to check the incoming SRDO for correctness of the order, cor-

rectness of data and the time period.

All information (timings, COB-ID, mapping) for SRDO are stored in the object dictio-

nary.

4.16.2. Implementation

Version: 4.5 CANopen Library Page 95 of 180

4.16.2.1. Object Dictionary

All SRDO communication parameters are stored in the object dictionary. The CANopen

Library ensures that no safety relevant data is changed during OPERATIONAL state.

Therefore access to this data is allowed only in state PRE-OPERATIONAL. Every

access to SRDO communication data resets the configuration of SRDO. Then no SRDO

communication is possible until the SRDO configuration is validated again.

Before SRDO parameters are valid, a checksum is calculated over the desired parameters

of the object dictionary. This checksum is compared to the checksum stored in the object

dictionary. If the two checksums are not equal, then SRDO communication is not

allowed.

When changing mapping data of an SRDO the number of entries, i.e. sub-index 0, has to

be set to 0. Consistency is checked when writing mapping data.

4.16.2.2. Initializing of SRDO

In order to use SRDOs they hav e to be initialized. With the function defineSrdo() the

necessary internal structures and settings for the CAN-Controller are made.

4.16.2.3. Communication with SRDOs

Transmitting and receiving of SRDO is only possible in state OPERATIONAL. On tran-

sition to this state consistency is checked of the SRDO data of the object dictionary. If

the configuration valid bit is not set SRDO are not enabled for sending or receiving. But

the transition is still executed. If the configuration valid bit is set but there are inconsis-

tencies transition to OPERATIONAL is aborted.

4.16.2.4. Transmitting SRDOs

Before sending SRDOs the CAN message has to be assembled according to the mapping.

The user can use the function mapSrdo() to realize this.

When a SRDO should be sent the CANopen Library calls mapSrdo() and transmits the

user assembled CAN message afterwards.

The function writeSrdoReq() sends an additional SRDO if it is necessary to do so.

4.16.2.5. Reception of SRDO

After reception of an SRDO the CANopen Library calls srdoInd() where the data can be

processed. The user has to check for integrity of the data, i.e. comparison of not inverted

and inverted data, and for the adherence of timing restrictions. The following has to be

checked:

- CAN message in correct order

Page 96 of 180 CANopen Library Version: 4.5

- adherence of the Safeguard cycle time (SCT)

- adherence of the Safety relevant object validation time (SRVT)

It is recommended to use a separate timer in order to realize the part of the safety com-

pletely in the application.

When all checks are done data can be saved into in the object dictionary.

SRDO Indication

TimeOut ?

message 1

received ?

last message

= message 2

n

y

y

y n

last message

= message 1

y

n

time between

message 1 and 2

ok ?

n

y

data valid

save at OD

start time out

Errorreturn

n

Figure 37, Flow Chart srdoInd()

4.16.2.6. Solution for SRDO Reception

Problems:

- execution time of indication function

- priority distribution on the bus (SRDO1 received, then reception of higher priority

SRDO, then SRDO2)

Version: 4.5 CANopen Library Page 97 of 180

- retain the driver concept without changes

- accurate timeout detection

- if many SRDOs (64) needed - i.e. 128 CAN messages

Possible solutions:

a) retain current concept and evaluation in the callback function

b) assign time stamps in ISR

c) usage of priorities within the buffer handling

d) calling of the callback function directly from the ISR

e) SRDO is valid after 1st and 2nd CAN message was received, i.e. timeout timer has

to be reset only after the inverted SRDO was received.

Ok

TimeOut Indication

TimeOut Indication

TimeOut Indication

Figure 38, Timeout Causes of SRDO

4.17. LED Usage Conforming to CANopen

The CiA-303-3 provides a standardized way for state indication of a CANopen device.

There is an error LED and a run LED. It is also possible to use only one of the two LEDs

or instead of two single color LEDs a bicolor LED.

The run LED is green and indicates the CANopen state. The error LED is red and shows

errors of the physical layer.

Page 98 of 180 CANopen Library Version: 4.5

ERR LED State Description Category

off no error MandatoryThe device is in work-

ing condition.

flickering Autobaud/LSS OptionalAuto baud rate detec-

tion or LSS services in

progress

single flash warning limit reached Mandatory (*)At least one of the

error counters of the

CAN controller has

reached or exceeded

the warning limit.

double flash Error Control Event MandatoryA guard event (NMT

slave or NMT master)

or a Heartbeat event

has occurred.

triple flash Sync Error Conditional (**)The SYNC message

has not been received

within then configured

communication cycle

period time out (see

index 1006h).

Quadruple Flash Event-timer error Optional (**)An expected PDO has

not been received

before the event-timer

elapsed.

on Bus Off MandatoryThe CAN controller is

bus-off.

Table 39, States Indicated by the ERR LED

(*) Should be optional, if there are CAN controllers available which do not indicate the

warning level.

(**) Not supported

Version: 4.5 CANopen Library Page 99 of 180

RUN LED State Description Category

Flickering Autobaud/LSS OptionalAuto baud rate detec-

tion or LSS services in

progress

Single flash STOPPED MandatoryThe device is in

STOPPED state.

Blinking PRE-OPERATIONAL MandatoryThe device is in PRE-

OPERATIONAL state.

On *[opState] MandatoryThe device is in

*[opState] state.

Table 40, States Indicated by the RUN LED

4.17.1. Implementation

The LED functionality was implemented in the CANopen Library module led.c. The

calls internal functions on occurrence of an error or event. Switching the LED on or off

has to be done in the indication function

ledInd (led, action)

in module usr_303.c.

The CANopen LED can be activated with the CANopen Design Tool. LED functionality

is controlled with the compiler directives:

Define Description

CONFIG_CO_LED activate led.c module

CONFIG_CO_RUN_LED RUN LED is present

CONFIG_CO_ERR_LED ERR LED is present

CONFIG_CO_BOTH_LED both LEDs are present

CONFIG_CO_BICOLOUR_LED bicolor LED is present

Table 41, Compiler Directives for CANopen LED

Page 100 of 180 CANopen Library Version: 4.5

Example:

#ifdef CONFIG_CO_LED

void ledInd (

UNSIGNED8 led, /**< which CANopen LED */

UNSIGNED8 action /**< turn LED on or off */

)

{

if (led == CO_ERR_LED) {

if (action == CO_LED_ON) {

/* switch Error LED on */

P2.3 = 1;

} else {

/* switch Error LED off */

P2.3 = 0;

}

}

if (led == CO_RUN_LED) {

if (action == CO_LED_ON) {

/* switch Status LED on */

P2.4 = 1;

} else {

/* switch Status LED off */

P2.4 = 0;

}

}

}

#endif /* CONFIG_CO_LED */

Listing 28, Example ledInd()

4.18. Virtual Objects

Normally all data have to be stored in the object dictionary of a device. However, for

special applications it may be necessary to support additional or temporarily available

objects besides the real objects. This objects are called virtual objects. Virtual objects

are entries in the object dictionary that are managed by the user and have no physical

entry in the object dictionary, i.e. have not been created with the CANopen Design Tool.

They are placed in the manufacturer segment of the object dictionary and can only be

accessed via SDO. Within the manufacturer segment virtual and real objects can be cre-

ated in any order. A virtual object can not be appended to a real object.

The user is responsible for checking the data, value ranges and providing the necessary

memory space.

In order to use virtual objects the compiler directive CONFIG_VIRTUAL_OBJECTS has

to be set. Access to real objects in the object dictionary is done via SDO access and fol-

lows the attributes specified. If an object can not be found in the object dictionary access

to a virtual object is assumed and the function getVirtualObjAddr() is called.

Version: 4.5 CANopen Library Page 101 of 180

SDO Response

Abort

SDO reception

object in

object dictionary

object in

manufacturer area

return value from

getVirtualObjAddr()

ok ?

getObjVirtualAddr()

(set pointer to virtual object data

and virtual object size)

continue

SDO work

get virtual object attribute

y

n

n

y

n

y

Figure 39, Flow Chart of an SDO Read Access to a Virtual Object

The application decides whether access to the virtual object with the given index and sub-

index is permitted. If access is allowed then the pointer to the data and the size of the vir-

tual object has to be provided by the application. If access is denied then an SDO abort is

generated depending on the return value of the function. Further processing takes place

in the same manner as for real objects.

It is assumed that virtual objects always are numerical and have read/write access.

4.18.1. Flow Chart for SDO Write Access

Page 102 of 180 CANopen Library Version: 4.5

SDO Response

Abort

user function

testSdoValue()

returns

CO_OK ?

n

pointer to object

is available

(real or virtual object)

write received data to

object address

user function

sdoWrInd()

returns

CO_SDO_IND_BUSY ?

user function

sdoWrInd()

returns

CO_OK ?

call

finishSdoWrInd()

with

CO_OK ?

save data from

object address

SDO Response

successful

restore data from

object address

y

n

n

y

y

y

n

Figure 40, Flow Chart of an SDO Write Access to a Virtual Object

- CANopen Library checks for a virtual object. In case it is a virtual object then the

function RET_T getVirtualObjAddr(index, subIndex, *pData, *size) is called. This

function provides the pointer and the size of the object.

At the same time an error return code can be passed back.

- Check if the given size matches the size given with SDO.

- testSdoValue(index, subIndex, void *data, U32 size) passes the data received.

The user processes the data. The return value is either CO_OK or a defined SDO

abort value.

- The CANopen Library writes the data at the address defined by getVirtualObjAddr()

- writeSdoInd() works the same way as for real objects.

4.18.2. Flow Chart for SDO Read Access

Version: 4.5 CANopen Library Page 103 of 180

SDO Response

Abort

y

pointer to object

is available

(real or virtual object)

read data from

object address

user function

sdoRdInd()

returns

CO_SDO_IND_BUSY ?

user function

sdoRdInd()

returns

CO_OK ?

call

finishSdoRdInd()

with

CO_OK ?

SDO Response

with data

y

n

n

n

y

Figure 41, Flow Chart of an SDO Read Access to a Virtual Object

- CANopen Library checks for a virtual object. In case it is a virtual object then the

function RET_T getVirtualObjAddr(index, subIndex, *pData, *size) is called.

- readSdoInd() works the same way as for real objects.

- Finally data read from the address provided by getVirtualObjAddr() and transmitted.

4.18.3. User-Functions

4.18.3.1. getVirtualObjAddr

RET_T getVirtualObjAddr(U16 index, U8 subIndex, void *pData, U8 *size)

This function is provided in the module usr_301.c and has to be filled by the user. It pro-

vides the CANopen Library with a correct pointer and size of the data. It is used for read

and write access of a virtual object.

4.19. Object Callbacks

Sometimes an application has to react on an access of an object directly, no matter if the

access was due to an PDO or an SDO or an other service. For such application behaviors

the CANopen Library gained the possibility to attach application specific callbacks to an

object. If the CANopen Library is configured for such a behavior the CANopen Library

will call this callback.

Page 104 of 180 CANopen Library Version: 4.5

4.19.1. Object Callbacks Function Pointer

The object specific callback function has the type CO_OBJ_CB_T , which is defined in

co_acces.h.

typedef RET_T (*CO_OBJ_CB_T)(UNSIGNED16 /*index*/,

UNSIGNED8 /*subIndex*/,

CO_OBJ_CB_TYPE_T

CO_COMMA_LINE_PARA_DECL);

So if the user wants to use its own callbacks, the prototype of the function has to look

something like this:

RET_T foo(UNSIGNED16 index, UNSIGNED8 subIndex,

CO_OBJ_CB_TYPE_T reason CO_COMMA_LINE_PARA_DECL);

4.19.2. Object Callbacks Configuration

To globally enable the object callbacks the define CO_CONFIG_ENABLE_OBJ_CALL-

BACK has to be set. This enables the code needed in the internal data structures and in

the object entry structure. With the following defines the events can be configured on

which the callbacks are called.

Define Description

CO_CONFIG_OBJ_CB_PRE_PDO_READ The callback is called before an object is

read by an PDO.

CO_CONFIG_OBJ_CB_POST_PDO_READ The callback is called after an object is

read by an PDO.

CO_CONFIG_OBJ_CB_PRE_PDO_WRITE The callback is called before an object is

written by an PDO.

CO_CONFIG_OBJ_CB_POST_PDO_WRITE The callback is called after an object is

written by an PDO.

CO_CONFIG_OBJ_CB_PRE_SDO_READ The callback is called before an object is

read by an SDO.

CO_CONFIG_OBJ_CB_POST_SDO_READ The callback is called after an object is

read by an SDO.

CO_CONFIG_OBJ_CB_PRE_SDO_WRITE The callback is called before an object is

written by an SDO.

CO_CONFIG_OBJ_CB_POST_SDO_WRITE The callback is called after an object is

written by an SDO.

Table 42, Compiler directives for object callbacks

Version: 4.5 CANopen Library Page 105 of 180

4.19.3. Object Callbacks Usage

If an callback is called the CANopen Library passes an parameter to the callback. With

this parameter the callback knows the service number and the reason for the call. The

type of this parameter is CO_OBJ_CB_TYPE_T and is descripted below.

typedef struct

{

UNSIGNED16 reason;

UNSIGNED16 serviceNbr;

}CO_OBJ_CB_TYPE_T;

The member serviceNbr contains the service number e.g. PDO number or SDO num-

ber. The member reason contains the reason why this callback is called. It could have

the following states:

CO_OBJ_CB_TYPE_PRE_SDO_READ

CO_OBJ_CB_TYPE_POST_SDO_READ

CO_OBJ_CB_TYPE_PRE_SDO_WRITE

CO_OBJ_CB_TYPE_POST_SDO_WRITE

CO_OBJ_CB_TYPE_PRE_PDO_READ

CO_OBJ_CB_TYPE_POST_PDO_READ

CO_OBJ_CB_TYPE_PRE_PDO_WRITE

CO_OBJ_CB_TYPE_POST_PDO_WRITE

If the application needs to set or reset an object callback at runtime the function setOb-

jFuncPtr can be used. The prototype of the function is descripted below.

RET_T setObjFuncPtr(UNSIGNED16 index, CO_OBJ_CB_T pNewFunc

CO_COMMA_LINE_PARA_DECL);

If the application wants to disable this callback, the new function pointer should be set to

NULL.

5. Driver Interface

This chapter describes the driver interface of the CANopen Library. It shows how to

build one’s own driver. The CANopen Library Target Driver Interface consists of two

modules. These are a CAN driver (can<x>.c) and a CPU- or RTOS driver (cpu<y>.c).

A driver module is necessary for using the CANopen Library. The user is responsible for

Page 106 of 180 CANopen Library Version: 4.5

these modules and thus they are always part of the user application. They hav e to be

adapted for the application hardware. port provides many drivers for different targets.

These drivers cover a wide range of systems, but they are not always the optimal solution

for your application.

The prepared drivers work together with the examples of the CANopen Library. In order

to ensure this fact, the engineers of port have inserted a layer between the actual driver

and the CANopen Library.

Driver Module 1 Driver Module 2 Driver Module n

Target Selector

Hardware Abstraction Layer (HAL)

CANopen Application

Figure 42, Hardware Abstraction Layer Principle

The hardware abstraction layer (HAL) realization is shown in figure 43. The example

module main.c calls the HAL functions e.g. initCAN(). These functions are defined in

the target specific initialization file i.e. init_xc164.c. The functions from this file call the

functions from the driver modules i.e. can_twincan.c. The driver module uses a general

include file i.e. can_twincan.h, which contains all CAN controller specific constants.

The module examples.h which is delivered with the CANopen Library, is only necessary

to compile the examples from the delivery. It is not necessary for the end user project,

although some parts may be useful.

If a customized driver module is not available, the user has the option to design it himself.

A generic driver is available for a quick start. In this way the user can tailor the functions

to his specific hardware properties8.

8 Please have a look at the next chapters for programming one’s own drivers.

Version: 4.5 CANopen Library Page 107 of 180

drivers/shar_inc

#include <cal_conf.h>

#include <can_controller_xy.h>

Init_CAN(bitRate,address,output)

{

}

can_<controller_xy>.c

initCAN(bitRate)

{

 Init_CAN(bitRate,address,output);

}

init_<target_xy>.c

can_<controller_xy>.h

/* CAN Controller specific constants */

#define CONTROL_REG 0

#define STATUS_REG 1

drivers/shar_src

drivers/<target_xy>

examples/s<xx>

cal_conf.h

#define CAN_ACCESS_IO_MAP

#include co_drv.h

main()

{

 initCAN(125);

}

main.c

Hardware abstraction layer

(HAL)

Hardware

access

Application

Figure 43, Hardware Abstraction Layer Realization

The HAL is not necessary when only one target is supported by the user application. In

this case the driver functions can be called directly from the user’s main routine. The

driver modules used should be organized in the following manner (figure 44).

Page 108 of 180 CANopen Library Version: 4.5

working directory

user’s application

canopen

drivers

shar_src

shar_inc

user’s target 1

user’s target n

Overwritten

by

Update

Figure 44, User’s Driver Structure

A directory structure like this ensures that your driver will not be overwritten if a

CANopen Library update is installed. Additionally the user is able to make the adapta-

tions, which fit his needs best e.g. removal of unused functionality.

The following points give an overview of the driver requirements.

Figure 45 shows several CAN events to which the drivers has to react.

CAN Receive
Interrupt

CAN Transmit
Interrupt

CAN Error
Interrupt

Timer
Interrupt

Insertion of
valid messages
in RX Queue

Get message
fromTX Queue
and transmit it

Indication of
error messages

actualization
of time base

Figure 45, CANopen Driver Reaction

The driver has to process receive, transmit and error events on the CAN bus. These

ev ents can be initiated by the CAN controller or system messages from an operating sys-

tem driver. The timer interrupt is responsible for updating the internal time base. It is

used for all time based services, like Heartbeat, Node Guarding, synchronous services,

for inhibit time and timeout checks. The reaction to the events mentioned above are

shown in figure 45. Each event sets a global flag when it is triggered. These flags are

evaluated by the CANopen Library. No CANopen Library function is called directly by

the driver. This means the CANopen Library has to be called cyclically in the main loop.

å All driver functions are part of the user application. Only a few functions are called

directly by the CANopen Library. The interface between the CANopen Library and

the driver can not be changed. Its functions are described in the following para-

graphs.

Version: 4.5 CANopen Library Page 109 of 180

Notes for development of a driver

The driver is composed of the following parts:

1) compiler adaptations/ CPU dependent functions

2) CAN controller specific functions

3) application dependent adaptations

5.1. CAN Driver

5.1.1. Prepared CAN Driver

The prepared driver structure is shown in figure 46. It consists of a hardware independent

and a hardware dependent part. Hardware independent are the receive (RX) and transmit

(TX) buffers and their access mechanism. All of these functions are coded in

drivers/shar_src/cdriver.c.

CAN

Controller

TX Buffer

Hardware independent

Driver Part

Hardware dependent

Driver part

Library

User Interface

pdo.c

usr_301.c
cdriver.c can_twincan.c

writePdoReq()

pdoInd()

canErrorInd()

definePdo()

Transmit_COB()

FlushMbox()

Define_COB()

Set_COB_ID()

Overrun

BusOff

RX Buffer Overflow

TX Buffer Overflow

COB List

RX Buffer

CAN_WRITE()

CAN_READ()

RX INT

TX INT

ERR INT

Error passive

CANopen

Library

FlagGroup
flagIdentification()

Figure 46, Prepared Driver Structure

Page 110 of 180 CANopen Library Version: 4.5

5.1.2. CANopen Driver API

Initialization

Init_CAN()

The parameters of the function Init_CAN() are depending on the CAN controller

and its hardware access. The CAN controller is initialized but left in the state

stopped.

getBitTiming()

Returns a pointer to an entry of the bit-timing table for the bit rate that was passed

as argument.

Set_Baudrate()

Initializes the CAN controller for the given bit rate. The CAN controller is left the

state stopped.

CAN Bus Status

Start_CAN()

Turns the CAN controller from state stopped into state running and enabled the

CAN interrupt.

Stop_CAN()

Turns the CAN controller into state stopped.

Clear_busoff()

After a bus-off this function turns the CAN controller into state running. If this is

successful is not sure. The state change can last some time (128x11 recessive Bits).

Communication Objects (COB)

Communication objects are used for administration of static information of CAN mes-

sages. They are of data type COB_T (see chapter "CAN Driver Basics").

Define_COB()

A new communication object is created. In the TwinCAN driver the helper func-

tion createCob() takes over the biggest part of the functionality. For Full-CAN con-

troller like the TwinCAN hardware message objects are initialized, too. This is

mainly done in the function initChannel().

Set_COB_ID()

Sets a new COB-ID for an existing communication object. The type (RX, TX) of

the communication object can change. It might as well be deactivated. Setting the

COB-ID in a hardware message object in the TwinCAN driver is mostly done in the

function initChannel().

Version: 4.5 CANopen Library Page 111 of 180

Tr ansmit_COB()

Sends a communication object. In drivers for embedded devices the message is

written into the software buffer in the function Insert_TX_Request(). The function

GetNext_TX_Request() activates sending the message.

CAN Driver State

getCanDriverState()

Returns the current state of the CAN driver. (e.g. CANFLAG_ACTIVE,

CANFLAG_BUSOFF).

Interrupts

CAN_int()

This is the interrupt function. In many drivers all interrupts are handled in just one

function.

å Please have a look at the Reference Manual for detailed function descriptions.

5.1.3. CAN Driver Basics

The CAN driver is the interface for reception and transmission of messages. In general

message queues are used for all messages received (pRX_Buffer[]) and transmitted

(pTX_Buffer[]).

For error messages and timer events a group of global flags (coLibFlags,

coCanFlags) are defined. The flags can be set by the CAN and the timer interrupt. In

the function flagIdentification() the flags are evaluated. It is called within the function

FlushMbox() located in the module cdriver.c or in a cpu specific module.

Received messages are processed by the function msgIdentification(). The argument

passed to this function is of the type CAN_MSG_T. It is defined in the module co_stru.h

and contains the CAN message. Assembling the CAN message into a variable of type

CAN_MSG_T and the call to msgIdentification() is done in the function FlushMbox()

from the module cdriver.c.

struct CAN_MSG

{

COB_KIND_T cobType; /* COB Type */

COB_IDENT_T cobId; /* COB Id */

UNSIGNED8 pData[8]; /* data */

UNSIGNED8 length; /* if bit CO_RTR_REQ

* is set -> RTR */

};

typedef struct CAN_MSG CAN_MSG_T;

Listing 29, CAN Message Structure

Page 112 of 180 CANopen Library Version: 4.5

Transmission of CAN messages is done in the function Tr ansmit_COB(). This function

is defined in the module can_xxx.c of the CAN driver. The parameters of this function

are a pointer to the COB type description structure (COB_T), a pointer to the data, and the

CAN line number for the multi-line version. The most important elements of the struc-

ture COB_T are shown in table 43.

Type Name of Element Remarks

COB_IDENT_T cobId ID of the message

COB_KIND_T eType type of message, see table 44

UNSIGNED8 bChannel channel number (CAN driver internal)

Table 43, COB_T Members

The type COB_KIND_T stores the information about the use of the message object, i.e.

receiving, sending, receiving RTR or sending RTR messages. This is the main task. In

addition the CANopen service like PDO, SDO can be specified too.

067Bit

RTR bit

Direction bit

service bits

5

Disable bit

Figure 47,

å Note: The concrete position of the bits are subject to change. Only use the symbolic

names of the CANopen Library.

Type Remarks

CO_COB_RX receive message

CO_COB_TX transmit message

CO_COB_RX_RTR receive message, which can be requested by the local device

(a receive message that can send an RTR request)

CO_COB_TX_RTR transmit message, which can be requested by remote devices

(a transmit message, which can receive an RTR request)

Table 44, Type of CAN Message

CAN error handling covers hardware and software errors, like CAN passive or buffer

overflow. All CAN errors are reported by setting a flag in the global variable coLibFlags.

The concrete error cause is set in the global variable coCanFlags. The function flagIden-

tification() checks the variables coLibFlags and coCanFlags and calls the appropriate

CANopen Library function or a user indication function.

The definition of the CAN error flags and the timer flags is shown in table 46.

Version: 4.5 CANopen Library Page 113 of 180

Flag Name(coLibFlags) Specification

COFLAG_SYNC_RECEIVED Sync message was received

COFLAG_TIMER_PULSED timer interval has pulsed

COFLAG_CAN_EVENT CAN event

Table 45, CAN Error and Timer flags part 1

Flag Name(coCanFlags) Specification

CANFLAG_INIT CAN is in INIT state

CANFLAG_ACTIVE CAN is active

CANFLAG_BUSOFF CAN controller is in bus-off

CANFLAG_PASSIVE CAN controller is in error passive

CANFLAG_OVERFLOW CAN controller has detected an overflow

CANFLAG_TXBUFFER_OVERFLOW TX Buffer overflow at the CAN driver

CANFLAG_RXBUFFER_OVERFLOW RX Buffer overflow at the CAN driver

Table 46, CAN Error flags part 2

5.1.3.1. Adaptation of the flag handling

The default implementation of the flag set/reset macros are located in co_flag.h and

co_drv.h.

#define SET_COLIB_FLAG(FLAG) (GL_ARRAY(coLibFlags) |= (FLAG))

#define RESET_COLIB_FLAG(FLAG) (GL_ARRAY(coLibFlags) &= ˜(FLAG))

#define SET_CAN_FLAG(FLAG) GL_ARRAY(coCanFlags) |= (FLAG)

#define RESET_CAN_FLAG(FLAG) GL_ARRAY(coCanFlags) &= ˜(FLAG)

Changes are possible by a user specific setting in the cal_conf.h. A good working change

is an additional atomic command or anything alike.

An example change could be

#define SET_CAN_FLAG(FLAG) do{\

DISABLE_CPU_INTERRUPTS();\

GL_ARRAY(coCanFlags) |= (FLAG);\

RESTORE_CPU_INTERRUPTS();\

}while(0)

5.1.3.2. Adaptation of the FlushMbox() function

The default implementation of FlushMbox() is located in cdriver.c. For an own imple-

mentation this function can disabled by removing the define CON-

FIG_COLIB_FLUSHMBOX. With the CANopen Design Tool this is done by deselecting

the hardware setting: Driver uses CANopen Library function FlushMbox().

5.1.4. Buffer Handling in Embedded Drivers

Page 114 of 180 CANopen Library Version: 4.5

Embedded CAN drivers use separate buffers for sending and receiving CAN messages.

Sending and receiving is carried out interrupt driven. For drivers used in an operating

system environment like Windows or Linux buffer handling is done by the layer 2 driver

of the system. This driver is provided by the CAN interface manufacturer.

The default buffer handling is activated in the CANopen Design Tool with the option

"Driver uses CANopen Library buffer". The size of the send and receive buffer can be set

independently of each other. The CANopen Design Tool generates the following settings

in the header file cal_conf.h:

#define CONFIG_COLIB_BUFFER 1

#define CONFIG_TX_BUFFER_SIZE 10

#define CONFIG_RX_BUFFER_SIZE 10

This example uses 10 entries separately in the send and receive buffer. The data in the

buffers are of type BUFFER_ENTRY_T.

typedef enum { EMPTY, FULL } MEM_STAT_T;

struct BUFFER_ENTRY

{

VOLATILE MEM_STAT_T eStat;

COB_KIND_T eType;

COB_IDENT_T cobId;

UNSIGNED8 bLength;

UNSIGNED8 pData[8];

UNSIGNED8 bChannel;

};

typedef struct BUFFER_ENTRY XDATA BUFFER_ENTRY_T;

Listing 30, CAN Buffer Entry Structure

Buffer handling for embedded drivers uses macros for read/write access. The macros are

defined in the header file cdriver.h.. The parameter for these macros are:

Parameter Value Remarks

direction TX transmit buffer

RX receive buffer

action Read read from the buffer

Write write to the buffer

source BUFFER_ENTRY_T member

destination BUFFER_ENTRY_T member

Table 47, Buffer Access Macro Parameter

For all macros it is assumed that a local pointer variable

BUFFER_ENTRY_T * pBuffer;

exists.

BUFFER_INIT_PTR(direction, action)

Version: 4.5 CANopen Library Page 115 of 180

Initialize access to the buffer.

BUFFER_READ(direction,source)

Read from buffer

BUFFER_WRITE(direction,destination,data)

Write data to the buffer

BUFFER_ENTRY_INCR (direction,action, status)

Switch to next entry of the buffer.

After a call to this macro the previous BUFFER_INIT_PTR() is invalid. To receive

access to a buffer BUFFER_INIT_PTR() has to be called again.

CHECK_BUFFER_READ (direction)

Checks if the buffer contains a "full" entry and if a message can be read from this

buffer. If the check is true the following code block is executed.

CHECK_BUFFER_READ(RX)

{

/* read from the Buffer */

...

}

CHECK_BUFFER_WRITE (direction,error)

Checks if the buffer contains an "empty" entry and if a message can be written to

this buffer. If the check is true the following code block is executed. Otherwise an

error condition is signaled and the following code block is ignored.

CHECK_BUFFER_WRITE(TX, CANFLAG_TXBUFFER_OVERFLOW)

{

/* write to the Buffer */

...

}

Page 116 of 180 CANopen Library Version: 4.5

Process flow of a buffer read cycle

{

BUFFER_ENTRY_T * pBuffer;

/* allow buffer access */

BUFFER_INIT_PTR(TX, Read);

/* buffer full? */

CHECK_BUFFER_READ(RX)

{

/* read from the buffer */

length = BUFFER_READ(RX, bLength);

...

/* release buffer */

BUFFER_ENTRY_INCR(RX , Read , EMPTY);

}

}

Listing 31, Buffer Handling

In cdriver.c there are more functions that support this buffer handling.

void clearTxBuffer(void)

void clearRxBuffer(void)

Marks all entries in one buffer RX/TX as empty. Messages that are in buffers of the

CAN controller remain unchanged.

BUFFER_INDEX_T getNumberOfTxMessages(void)

BUFFER_INDEX_T getNumberOfRxMessages(void)

Returns number of RX/TX messages in the buffer.

RET_T Insert_TX_Request(COB_T * pCOB, UNSIGNED8 * pData)

Inserts the next transmission request into the queue.

å Please have a look at the Reference Manual for detailed function descriptions.

Version: 4.5 CANopen Library Page 117 of 180

5.1.5. Interrupt Handling

The interrupt handling is shown in figure 48.

n

set SYNC flag

Transmit Interrupt Receive Interrupt State Interrupt

transmit queue

empty ?

transmit next

message

SYNC

received ?
CAN error ?

set ERROR flag
insert into

receive queue

RETI

n

y y

n

n

y

nn

y y

y

Figure 48, CAN Interrupt Handling

For systems which do not use a CAN interrupt e.g. PCs using active CAN cards or sys-

tems which get the CAN message via operating system drivers, it is not necessary to put

the incoming messages into a queue, because all messages are typically buffered in the

operating system driver or in the memory of active CAN cards. The interpretation can be

done directly via msgIdentification() (see above). The reception flow checks two kinds of

messages. The first is the CANopen SYNC telegram. The classification of SYNC has to

be the first in order to guarantee a minimum of jitter. All other messages are put into a

queue which decouples the CAN interrupt service routine from the CANopen Library.

CAN-ISR Management

• SetIntMask()

• ResetIntMask()

• Init_CAN_Interrupts()

• Enable_CAN_Interrupts()

• Disable_CAN_Interrupts()

• Restore_CAN_Interrupts()

For the CAN-ISR management the functions for enabling/disabling CAN interrupts are

mandatory. These functions ensure that the values of the message queue read and write

pointers remain consistent. For active CAN modules these functions are empty. The

functions for the setting and resetting of the CAN-ISR to/from interrupt vector tables are

not implemented for active modules.

Page 118 of 180 CANopen Library Version: 4.5

5.1.6. Driver Example XC164

The embedded driver DP XC164CS consists of the

• CPU Driver Infineon XC166,

• CAN Driver Infineon TwinCAN

and an adaption for the used development board located in the directory drivers/xc164/.

Compiler header files exist for

• the Keil compiler (drivers/shar_inc/co_keil.h) and

• the Tasking compiler (drivers/shar_inc/co_tasking.h).

This combination of CPU and CAN controller is setup with the defines

#define CONFIG_CPU_FAMILY_XC166

#define CONFIG_CAN_FAMILY_TWINCAN

#define CONFIG_COMPILER_KEIL_C166

in the file cal_conf.h

5.1.6.1. Basics

The TwinCAN controller has 32 configurable hardware message objects. The number of

hardware message objects allows to support 3 different software modes in the driver. The

modes are enabled in the file cal_conf.h.

SoftwareModes

without define

The CAN controller is used in Basic-CAN mode. All messages are received. In

this mode the number of CANopen services is only limited by RAM of the CPU.

CONFIG_CAN_FULLCAN_SOFT_RTR

The CAN controller is used in Full-CAN mode. The hardware filtering of the CAN

controller is used. RTR messages are processed by the CANopen Library and not

by the CAN controller. The number of CANopen services is limited.

CONFIG_CAN_FULLCAN_SOFT_RTR

CONFIG_CAN_ONLY_ONE_TRANSMIT_CHANNEL

This is an extension of the Full-CAN mode. It increases the number of CANopen

services for the Full-CAN mode. All send objects that do not use RTR use one

hardware message object. To efficiently use this setting support for RTR should be

avoided. This is achieved by setting bit 30 (PDO_NO_RTR_ALLOWED_BIT) in a

COB-ID of a TPDO.

AccessModes

Version: 4.5 CANopen Library Page 119 of 180

Tw o different modes for access to the CAN controller are supported.

CONFIG_CAN_ACCESS_MEM_MAP

The CAN controller is located in memory address range of the CPU. Access to the

CAN controller can be carried out by pointer.

CONFIG_CAN_ACCESS_IO_MAP

The CAN controller is addressed via I/O functions. It is also possible to use SPI for

access. Access by pointer is not allowed.

Register Layout

Register layout of the CAN controller can be defined with the following macros.

CONFIG_BIG_ENDIAN

Access with a Big Endian machine (CPU is Big Endian)

CONFIG_CAN_REGISTER_OFFSET

Address offset between to consecutive registers

Macros for Accessing the CAN Controller

Access to the CAN controller is carried out by a number of access macros. In access

mode CONFIG_CAN_ACCESS_MEM_MAP the variable addr is a pointer to an address in

the CAN controller. Unlike in the access mode CONFIG_CAN_ACCESS_IO_MAP the

variable addr is a value of a data type, e.g. UNSIGNED16, that is supported by the I/O

functionality. The use of macros for accessing the CAN controller simplifies adaption of

a driver to a different CPU.

CAN_ADDR_T

Data type for accessing the CAN controller e.g. (UNSIGNED8 *)

void CAN_INIT_BASE_PTR(addr)

Initializes address pointer to the CAN controller to address of addr.

CAN_ADDR_T CAN_ADDR(reg)

Returns the absolute address of a register reg.

UNSIGNED8 CAN_READ_PTR(CAN_ADDR_T addr)

UNSIGNED16 CAN_READW_PTR(CAN_ADDR_T addr)

UNSIGNED32 CAN_READL_PTR(CAN_ADDR_T addr)

Reads a value of the absolute address addr. The address addr should be retrieved

with the macro CAN_ADDR().

UNSIGNED8 CAN_READ(reg)

UNSIGNED16 CAN_READW(reg)

UNSIGNED32 CAN_READL(reg)

Page 120 of 180 CANopen Library Version: 4.5

Reads the register reg.

This is equivalent to: CAN_READ_PTR(CAN_ADDR(reg))

void CAN_WRITE_PTR(CAN_ADDR_T addr, UNSIGNED8 data)

void CAN_WRITEW_PTR(CAN_ADDR_T addr, UNSIGNED16 data)

void CAN_WRITEL_PTR(CAN_ADDR_T addr, UNSIGNED32 data)

Writes the value of data to the absolute address addr of the CAN controller. The

address addr should be retrieved with the macro CAN_ADDR().

void CAN_WRITE(reg , UNSIGNED8 data)

void CAN_WRITEW(reg , UNSIGNED16 data)

void CAN_WRITEL(reg , UNSIGNED32 data)

Writes the value of data to the register reg.

This is equivalent to: CAN_WRITE_PTR(CAN_ADDR(reg)).

void CAN_SET_BIT(reg , UNSIGNED8 bitfield)

void CAN_SET_BITW(reg , UNSIGNED16 bitfield)

void CAN_SET_BITL(reg , UNSIGNED32 bitfield)

Sets all bits of bitfield to register reg.

void CAN_RESET_BIT(reg , UNSIGNED8 bitfield)

void CAN_RESET_BITW(reg , UNSIGNED16 bitfield)

void CAN_RESET_BITL(reg , UNSIGNED32 bitfield)

Clears all bits of bitfield to register reg.

UNSIGNED8 CAN_TEST_BIT(reg , UNSIGNED8 mask)

UNSIGNED16 CAN_TEST_BITW(reg , UNSIGNED16 mask)

UNSIGNED32 CAN_TEST_BITL(reg , UNSIGNED32 mask)

Reads register reg and applies mask to the value.

å Note: The drivers support only one access method to the CAN controller like byte,

word or long access.

Version: 4.5 CANopen Library Page 121 of 180

CAN_ADDR_T ptwincan;

Init_CAN(pBaseAddr, bitrate)

{

 ptwincan = pBaseAddr;

}

void CAN_int(void)

{

 bChannel = CAN_READ(CAN_InterruptRegL);

}

cal_conf.h

#define CONFIG_CAN_ACCESS_MEM_MAP

#define CONFIG_CAN_REGISTER_OFFSET 1

#define CONFIG_CAN_ADDR (void far *)0x200200

define CAN_READ(breg) (*(cptr_t)(ptwincan+(breg)))

can_twincan.h

can_twincan.c

drivers/shar_inc

drivers/shar_src

examples/s<xx>

initCAN(bitRate)

{

 Init_CAN(CONFIG_CAN_ADDR, bitRate);

}

init_xc164.c

drivers/xc164

Figure 49, CAN Driver Macros

Macros for Accessing Hardware Message Objects

Specifically for Full-CAN Controller there are macros for accessing hardware message

objects directly that are based on the above mentioned macros. An adaption for prepared

drivers is normally not necessary. To use these macros the local variable

CAN_ADDR_T pChannel;

is needed.

CAN_INIT_OBJ_PTR(channel)

Access to hardware message object channel of the CAN controller. This macro has

to be invoked every time before a hardware message object is accessed.

CAN_READ_OBJ(channel, reg)

Read register reg of hardware message buffer channel.

Page 122 of 180 CANopen Library Version: 4.5

CAN_WRITE_OBJ(channel, reg , data)

Write the value of data to register reg of the hardware message object channel.

CAN_ADDR_T pChannel;

/* Access to Messagebuffer 1 */

CAN_INIT_OBJ_PTR(1);

/* read mode register */

mode = CAN_READ_OBJ(1, modereg);

UNSIGNED8 * pChannel;

/* calculate pointer to Messagebuffer 1 */

pChannel = pCan+mb_1_startaddress

/* read from CAN Controller memory */

mode = *(pChannel + modereag_offset);

UNSIGNED16 pChannel;

/* calculate address of messagebuffer 1 */

pChannel = io_start_+mb_1_startaddress;

/* read by i/o function */

mode = read_io(pChannel + modereg_offset);

CONFIG_CAN_ACCESS_MEM_MAP

CONFIG_CAN_ACCESS_IO_MAP

Figure 50, Driver Macros Full-CAN Controller

5.1.6.2. Bit-timing Table

The bit-timing table of the driver has to be customized to the used hardware. This is nec-

essary because the values in this table depend on the CAN clock of the CPU. For some

preselected CAN clocks the table is filled with values. The bit-timing tables are located

in the header file of the CAN driver in question.

For the TwinCAN driver they are defined in drivers/shar_inc/can_twincan.h. The

selection of the appropriate table is done in the hardware settings menu of the CANopen

Design Tool. The CANopen Design Tool generates the following in the header file

cal_conf.h:

#define CONFIG_CAN_T_CLK 20

This enables the bit-timing for a CAN clock of 20 MHz in the driver header file. If there

is no table for the specific CAN clock a new table has to be defined. The table shall not

be defined in the generic header files so that changes are not overwritten with a driver

update. An adequate place for the new table is an application header file. This can be

setup in the CANopen Design Tool which in turn generates an include statement in the

header file cal_conf.h. All CANopen bit rates have to be defined in the bit-timing table.

To simplify the generation of a new bit-timing table there is an internet form that calcu-

lates bit-timing values for a given CAN clock. The internet address is:

http://www.port.de/engl/canprod/sv_req_form.html

The CAN clock is the clock before the prescaler.

The bit-timing table is an array for the different bit rates which is used by the function:

Version: 4.5 CANopen Library Page 123 of 180

void * getBitTiming(

UNSIGNED16 rate, /* Baudrate (125 == 125kbit/s)*/

void * p_usr_tab /* NULL == internal table */

)

The table is located in a driver source file. In case of the TwinCAN it is located in the file

can_twincan.c. For the TwinCAN controller with a CAN clock of 20 MHz the following

values are valid. These are located in the header file can_twincan.h:

define CAN_BTR0_10K 0 /* Not possible */

define CAN_BTR1_10K 0 /* Not possible */

define CAN_BTR0_20K 0x31

define CAN_BTR1_20K 0x2f

define CAN_BTR0_50K 0x18

define CAN_BTR1_50K 0x1c

define CAN_BTR0_100K 9

define CAN_BTR1_100K 0x2f

define CAN_BTR0_125K 9

define CAN_BTR1_125K 0x1c

define CAN_BTR0_250K 4

define CAN_BTR1_250K 0x1c

define CAN_BTR0_500K 1

define CAN_BTR1_500K 0x2f

define CAN_BTR0_800K 0

define CAN_BTR1_800K 0x7f

define CAN_BTR0_1000K 0

define CAN_BTR1_1000K 0x2f

Listing 32, Bit-timing Definition

5.1.7. Specials about using Remote Frames (RTR)

Between CAN controllers the implementation of the RTR support differs. This is one

reason that the CiA recommends to implement devices without RTR support. On the CiA

web site a document is available on this subject (see Application note 802). In general a

device should not answer a Remote Request in every case. The CANopen Library needs

to have the complete control about the messages a device sends. With the new CANopen

Library version Remote Requests are only answered by software. For CAN controllers

that can only answer by hardware, RTR support is not possible. The CANopen Library

uses the RTR settings from the object dictionary of the delivered device. It is possible to

set the RTR not allowed bits to disable the RTR support.

5.2. CPU/RTOS Driver

The CPU/RTOS driver is responsible for memory management, timer functionalities,

CAN-ISR management and the CAN controller access. It is coded in target specific mod-

ules like drivers/<target-name>/cpu.c. Functions that are valid for a complete CPU

family are in drivers/shar_src/cpu_<cpu-familie>.c. Functions used by all drivers are

placed in drivers/shar_src/<module>.c.

Page 124 of 180 CANopen Library Version: 4.5

Timer Functions:

• InitTimer()

• ReleaseTimer()

• Timer_int()

The functions ensure the initialization/de-initialization of a hardware or software timer

and the time triggered CANopen Library functionality. The CANopen function

Timer_int() is called by an ISR or is driven by an operating system timer event. The com-

plete time triggered functionality is shown in figure 51. It only increments the counter

coTimerTicks and sets a global flag.

Timer Interrupt

End

Set TimerPulsed Flag

coTimerTick++

Figure 51, Time Triggered Functionality

The functionality of the Timer_int() can also be integrated into a user defined timer func-

tion which is called cyclically.

5.2.1. Timer XC164

For the XC164 the timer handling is implemented in drivers/shar_src/cpu_166.c. It

provides a first initial operation. In the CANopen Design Tool the option "Use pre-config-

ured timer" has to be enabled. This generates in the header file cal_conf.h:

#define CONFIG_COLIB_TIMER

The prepared timer functionality uses Timer 4. It is used as overflow timer with a timer

period of 26.2 ms. This time base is used by the CANopen Library in the constant

coTimerPulse in the unit of 1/10 ms. In the CANopen Design Tool this value is specified

in the input field "Timer Period". The value is used in the define

#define CONFIG_TIMER_INC 262.

In file cpu_166.c the define is assigned to the variable coTimerPulse.

Version: 4.5 CANopen Library Page 125 of 180

UNSIGNED16 CO_CONST coTimerPulse = CONFIG_TIMER_INC;

If a user defined timer should be used then the define CONFIG_COLIB_TIMER shall not

be set. The user timer interrupt service routine only needs to increment the global vari-

able coTimerTicks and set a global flag with

SET_COLIB_FLAG(COFLAG_TIMER_PULSED);

to signal the CANopen Library that the Timer interrupt was triggered.

CANopen Design Tool

Use pre-configured timer:

Timer Period: 262

UNSIGNED16 CO_CONST coTimerPulse = CONFIG_TIMER_INC;

VOLATILE UNSIGNED8 coTimerTicks;

#ifdef CONFIG_COLIB_TIMER

void Timer_int(void)

{

 coTimerTicks++;

 ...

}

#endif

cpu_166.c

drivers/shar_src

examples/s<xx>

cal_conf.h

#define CONFIG_COLIB_TIMER

#define CONFIG_TIMER_INC 262

Figure 52, Timer Definitions

5.2.2. Customer Timer Implementation

Within many implementations no timer resource is free, especially the timer used in the

default implementation. The CANopen Library needs only a function that is called with

a constant period. It is also possible to use an already used timer interrupt. Within this

periodic called function the variable coTimerTicks must be incremented and the

CANopen Library must be informed by calling

coTimerTicks++;

SET_COLIB_FLAG(COFLAG_TIMER_PULSED);

å Note: Please have a look in the delivered default implementation of the timer inter-

rupt or the code fragment within the generic driver implementation.

Page 126 of 180 CANopen Library Version: 4.5

For using an own implementation the default implementation must be deactivated in the

hardware settings. Within the CANopen Design Tool the setting Use pre-configured timer

must be deactivate. This will disable the define CONFIG_COLIB_TIMER in the file

cal_conf.h. The Timer period must set to the new period.

5.2.3. ISR Management

• Init_CPU_Interrupts()

• Enable_CPU_Interrupts()

• Disable_CPU_Interrupts()

• Restore_CPU_Interrupts()

These functions influence the CPU interrupt.

å Note: Locking of CPU interrupts and CAN interrupts can be carried out nested.

5.3. Compiler Adaptations

Compilers support different memory models. For the CANopen Library a memory model

has to be chosen that allows access of a generic data pointer (unsigned char *) similarly

to

- global variables (e.g. canMsg),

- object directory (possibly in Flash memory),

- object directory description structures (possibly in Flash memory),

The CAN controller of the XC164CS is outside of the addressable area of the often used

memory model LARGE. In order not to use a bigger memory model access to the CAN

controller is carried out with a far pointer. For this purpose compiler dependent defini-

tions are used in the header file drivers/shar_inc/co_keil.h.

#define FAR far

#define NEAR near

Some compiler require special constructs when a constant has to be linked into flash

memory. This is not necessary for the XC164. It is sufficient to define

#define CO_CONST const.

5.4. Application Dependent Adaptations

å Note: Additional hints about the default implementation of different drivers are

placed in the README files within the drivers directories.

The hardware dependent adjustments to the driver are located in the directory driv-

ers/xc164. This makes it possible to overwrite the actual driver due to an update in the

directory drivers/shar_inc and drivers/shar_src without carrying out the adjustments

again.

Version: 4.5 CANopen Library Page 127 of 180

The file init_xc164.c contains the hardware initialization function iniDevice() and the

wrapper function initCan(). This wrapper function is needed only by some hardware

architectures. For external CAN controller the access macros have to be adapted and the

hardware connection like chip selects, timings have to be initialized.

The file cpu.c contains the locking and releasing of CAN interrupts. It is important to

note that functions that lock the interrupt with the macro DISABLE_CAN_INTER-

RUPTS() can be called nested. Therefore, releasing of CAN interrupts typically should

be done with the macro RESTORE_CAN_INTERRUPTS(). This ensures that the CAN

interrupt is released in the top most function that initially locked the interrupt.

5.5. Initial Operation

Hints for the initial operation of the prepared CAN driver. It is assumed that

• the hardware has been initialized

• the bit-timing table has been adapted,

• access macros have been selected correctly or adapted respectively.

The emphasis of this chapter lies on checking of the adjustments.

The CANopen Design Tool provides the possibility to enable debug settings for testing

the adjustments. Debug settings are activated by the option "Debug Settings". This

enables the option "Send a test message after Init". If this option is activated the follow-

ing definitions are generated in the header file cal_conf.h:

#define CONFIG_EXPERIMENTAL 1

#define CONFIG_CAN_TX_TEST 1

This option causes that within the function Init_CAN() a message is sent with the COB-

ID 100 and one data byte that has the value AAh. It is sent with the chosen CAN bit rate.

No interrupts are used.

å Note: After this test the options has to be deactivated again.

Page 128 of 180 CANopen Library Version: 4.5

6. CANopen Library on Multi-Tasking Systems

This chapter describes the usage of the CANopen Library on multi-tasking systems.

Multi-tasking systems include multi-tasking operating systems but also interrupt driven

applications without any operating system i.e. application with timer triggered control

loop.

Prepared solutions of the security mechanism for shared resources of the object dictio-

nary are shown. Furthermore possible communication variants are discussed.

Application Task

Object Dictionary

Read/Write

release

protected resource

CANopen Services

allocate releaseallocate

Read/Write

CAN Driver

Figure 53, Security Mechanism for RTOS

A user application on a multi-tasking system consists of at least 2 processes: the applica-

tion task and the CANopen communication task (figure 53). The variables of the object

dictionary should be accessible by both the application and the communication task.

Therefore it is necessary to protect the object dictionary. This resource has to be allo-

cated for each read or write access. The resource is blocked until the access is finished.

Blocking of the resource during read/ write access for other processes ensures that the

data are always consistent.

Sometimes it is useful to have shadow variable segments e.g. if certain parameters should

become valid on command. In this case, it is only to ensure that in the moment of the

data updating no access is possible. The update can be done by switching between the

Version: 4.5 CANopen Library Page 129 of 180

two data buffers (new pointer value assignment) or by copying data.

If more than one application task uses the services of the CANopen task, all CANopen

services have to be protected because they are not reentrant. Two possibilities to use the

CANopen functions are provided: firstly the direct usage (figure 53) and secondly to use a

message distributor (figure 54, 55).

ISR Line 1 ISR Line n

CANopen Task

Signal or

Event

Signal

Event

CAN InterruptCAN Interrupt

Signal

Event

Receive Message
Distributor

User
Task 1

User
Task n

User
Task 2

Figure 54, Message Reception on RTOS

The advantage of using a message distributor is the decoupling of application tasks from

the CANopen Library. Only the message distributor programmer needs CANopen and

the CANopen Library knowledge. All other application programmers can work with the

commonly used mechanisms.

A further advantage is the easy switching to another communication system by replacing

the distributor. So it is possible to support more then one field bus with one application

software. The message distributor is a process which uses the interprocess communica-

tion mechanism of the operating system to inform the application about new messages

(figure 54). For that purpose the application can read the new value from the object dic-

tionary or the value can be sent via a queue mechanism. For data transmission the appli-

cation task sends a message to the distributor. The distributor is responsible for the

Page 130 of 180 CANopen Library Version: 4.5

message handling to and from the CANopen Library. It manages all CANopen Library

function calls and can schedule the message transmission order.

CAN Driver Line 1 CAN Driver Line n

CANopen Task

Signal

Event

CAN InterruptCAN Interrupt

Signal

Event

Transmit Message
Distributor

User
Task 1

User
Task n

User
Task 2

Figure 55, Message Transmission on RTOS

For resource protection many mechanisms are prepared within the CANopen Library by

port. The following macro defines can be used to adapt the protection mechanism to your

application and operating system needs.

• CO_NEW_RX_MSG(CO_LINE)

• CO_COM_PART_ALLOC(CO_LINE)

• CO_COM_PART_RELEASE(CO_LINE)

• CO_APPL_PART_ALLOC(CO_LINE)

• CO_APPL_PART_RELEASE(CO_LINE)

The macros listed above use a #define for the currently number of the used CAN line.

For the single line version the CO_LINE define is empty. The task of the

CO_NEW_RX_MSG macro is to inform the communication task that a new CAN message

or a new error message is in the receive queue (waking up of CANopen task).

The other macros are necessary for allocating and releasing the object dictionary. The

Version: 4.5 CANopen Library Page 131 of 180

communication and application part can be protected separately. The listing 33 shows

this mechanism of the example of RTX51 for the multi line version. For the single line

version the parameter canLine is not necessary.

/* use semaphore for protection */

#define CO_SEMA_L0 13

#define CO_SEMA_L1 14

#define CO_APPL_PART_ALLOC(canLine) \

if(canLine == 0) \

os_wait(K_MBX+CO_SEMA_L0,0,NULL) \

else \

os_wait(K_MBX+CO_SEMA_L1,0,NULL)

#define CO_APPL_PART_RELEASE(canLine) \

if(canLine == 0) \

os_send_token(CO_SEMA_L0) \

else \

os_send_token(CO_SEMA_L1)

void resetActualVelocity(void)

{

/* allocate od application part */

CO_APPL_PART_ALLOC(0);

/* reset velocity value (CAN line 0)*/

l0_actual_velocity = 0;

/* release od application part */

CO_APPL_PART_RELEASE(0);

}

Listing 33, Resource Protection Example for RTX51

å Between allocation and release of a resource only a few instructions should be

made, in order to prevent unnecessary blocking of other tasks.

Page 132 of 180 CANopen Library Version: 4.5

#define CO_SEMA_L0 13

#define CO_SEMA_L1 14

#define CO_NEW_RX_MSG(canLine) \

if(canLine == 0) \

os_send_token(CO_SEMA_L0); \

else \

os_send_token(CO_SEMA_L1);

while (1)

{

/*

* sleep while no new message on line 0

*

* CANopen task should be waken up:

* - if a new message is received

* - if the CANopen timer is expired

* in order to check all CANopen timers

*/

os_wait(K_MBX+CO_SEMA_L0,0,NULL);

/*

* interpret message for line 0

* or handle CANopen timers

*/

FlushMbox(0);

}

Listing 34, Process Activation Example for RTX51

There are no prepared mechanisms of resource protection within the functions of the

CANopen Library. The user is responsible for ensuring that these functions are not inter-

rupted.

One relatively simple way to make a CANopen Library thread-safe is to create a single

mutex, lock it upon each entry to the library, and unlock it upon each exit from the

CANopen Library.

For single tasking systems, which use the same resources within the application and the

interrupt service routines, equivalent protection mechanism have to be used. The easiest

way is to disable the interrupt(s) in the allocation macros.

Version: 4.5 CANopen Library Page 133 of 180

Page 134 of 180 CANopen Library Version: 4.5

7. Multi-Line Version

This chapter describes the properties of port’s multi-line version. With this version a sin-

gle process application can access more than one CAN network (CAN line). So it is pos-

sible to implement CANopen for multiple CAN lines on target platforms without an oper-

ating system, with a single-tasking operating system or a multi-tasking operating system

with a reduced resource protection mechanism. Such applications can be devices, which

use an internal and an external CANopen network e.g. production cells, robots etc. Fur-

thermore it is possible to build gateways between several networks. The CANopen net-

work functionality (master/slave) can be different for each CAN line. Other typical appli-

cations are data loggers, monitoring systems and global network masters.

å An easy way to build a multi-line system is to use a PC with more than one CAN

card or multi-port CAN cards.

A multi-CAN line device has <number of CAN lines> object dictionaries (Figure 56).

This means that the device behavior can be different for each line.

There are two special defines for the multi line usage:

CONFIG_MULT_LINES define for maximum number of CAN lines

CO_MAX_CAN_LINES is used for actual number of CAN lines

Object Dictionary

Line 1

User’s Application

Inter-Line Data Connections

View into Device

from Line 1

View into Device

from Line 2

0x1000 ...

0x1001 ...

0x1003 ...

0x1200 ...

0x2000 ...

0x2200 ...

0x4000 ...

0x1000 ...

0x1001 ...

0x1004 ...

0x6000 ...

0x6001 ...

0x1000 ...

0x1001 ...

0x1003 ...

0x1200 ...

0x2000 ...

0x2200 ...

0x4000 ...

Object Dictionary

Line 2

Object Dictionary

Line n

View into Device

from Line n

Figure 56, Multi-Line Object Dictionary

If a device variable should be accessible by two or more lines, the address references in

the object dictionary of all lines have to point to the same variable (Listing 35). The

object dictionary index of this variable can be different on every line.

Version: 4.5 CANopen Library Page 135 of 180

/* values line 0 */

UNSIGNED32 l0_p301_device_type = 0x00000000UL;

UNSIGNED8 l0_p301_error_register = 0x00;

UNSIGNED8 myInterlineValue = 0x00;

/* values line 1 */

UNSIGNED32 l1_p301_device_type = 0x00000000UL;

UNSIGNED8 l1_p301_error_register = 0x00;

/* definition of object dictionary line 0 */

OBJDIR_T objDirLine0[] = {

{ (UNSIGNED8 *)&l0_p301_device_type,

l0_p301_device_type_desc,

0x1000, 1 }

,{ (UNSIGNED8 *)&l0_p301_error_register,

l0_p301_error_register_desc,

0x1001, 1 }

, ...

,{ (UNSIGNED8 *)&myInterLineValue,

l0_myInterLineValue_desc,

0x2200, 1 }

}

/* definition of object dictionary line 1 */

OBJDIR_T objDirLine1[] = {

{ (UNSIGNED8 *)&l1_p301_device_type,

l1_p301_device_type_desc,

0x1000, 1 }

,{ (UNSIGNED8 *)&l1_301_error_register,

l1_p301_error_register_desc,

0x1001, 1 }

, ...

/* link to variable of line 0 */

,{ (UNSIGNED8 *)myInterLineValue,

l1_myInterLineValue_desc,

0x4200, 1 }

/* end of link to variable of line 0 */

,{ (UNSIGNED8 *)&l1_otherVal,

l1_otherVal_desc,

0x5001, 1 }

}

/* object dictionary manager */

OBJDIR_T *objDirMan[2] = { objDirLine0 , objDirLine1 };

Listing 35, Multi-Line Object Dictionary

The data flow within a multiple CAN line device is shown in figure 57.

Page 136 of 180 CANopen Library Version: 4.5

User’s Application

CANopen Library

CAN Driver

CAN Line

Selector

(parameter)

CAN Driver

Line 1

CAN Driver

Line 2

CAN Driver

Line n

Inter-Driver Communication (not default)

Inter-Line Communication (default)

Line 1

User

Interface

CANopen
Services

Line 2

User

Interface

Line n

User

Interface

CAN 1 CAN 2 CAN n

Figure 57, Multi-Line Software Layers

The figure shows the software layers and the inter-line communication of the multi-line

version. Every CAN line has its own CAN driver module. For identical hardware on

each line the same module can be used. In this case only the CAN controller address has

to be switched and the received message put into the corresponding receive buffer.

The chosen driver concept ensures that the CAN controller can be different on every line.

If all CAN controllers are equal, code size can be saved. Furthermore an inter-driver

communication is possible. The reason for a communication like this is to realize a con-

figuration gateway. Such a gateway is the basis for configuration of all nodes in all con-

nected networks by one network participant. Usually the gateway has to have a shadow

object dictionary of each node to parameterize these nodes (see inter-line communica-

tion). If any object dictionary is changed the gateway shadow dictionary has to receive an

update. An update means a new configuration of the gateway (device must be pro-

grammable) or new compilation of the software (not practicable).

The condition for doing this is to have one on the side which has to be configured and

one server SDO (default) on the side of the configuration software. A SDO connection

has to be established via a control word which contains the line number and the node-ID.

It has to be ensured that this connection is only possible in the PRE-OPERATIONAL

state in order to prevent application errors in a certain CAN line. In this bypass mode

received server messages are transmitted as client messages and all client messages

received are transmitted as server answers to the originator. The easiest way to do this is

to copy the data from the receive buffer of the one line to the transmit buffer of the other

line. After the configuration, the bypass mode should be exited.

å All functionality which is coded into the driver is hardware dependent and mostly

not portable. Such message handling is only an exception for weak performance

Version: 4.5 CANopen Library Page 137 of 180

micro controllers.

Each message from a CAN line goes via the CAN driver and the CANopen Library to

user indication CANopen Library interfaces. These interfaces are the indication func-

tions i.e. pdoInd(). All of these functions have a parameter canLine which gives the

information about the source line. For the request interfaces e.g. writePdoReq() the

parameter canLine selects the destination line (CAN line selector).

It is very easy to distribute messages over various CAN networks via this mechanism.

The transmission of a message to another line can be triggered with the reception of a

message (Listing 36).

/**

*

* pdoInd - PDO indication function

*

* sends PDO 2 on line 1 if PDO 1 has been received on CAN line 0

*

* RETURNS

* .TP

* nothing

*/

void pdoInd(

UNSIGNED16 pdoNr, /* number of PDO */

#ifdef CONFIG_MULT_LINES

,UNSIGNED8 canLine /**< number of CAN line 0..CONFIG_MULT_LINES-1 */

#endif

)

{

if (canLine == 0 && pdoNr == 1)

{

/* pdoNr., canLine */

writePdoReq(2, 1);

}

}

Listing 36, Inter-Line Communication

Page 138 of 180 CANopen Library Version: 4.5

8. How to Make an Application

This chapter describes the design flow for a CANopen device by using the CANopen

Library provided by port. The way to built a NMT master and a NMT slave application

will be shown by the delivered examples s1 for the NMT slave and parts of m1 for the

NMT master. Both examples are located in the example directory.

The design is separated in the following steps:

• decision about the kind of device (master/slave)

• pre-definition of the CANopen services (number, properties)

• decision about the target system (hardware/operating system)

After that the user knows the device properties and can start with the coding of the com-

munication part of his application. The necessary steps are listed below:

• preparation

• configuration of the hardware

• building up the object dictionary

• coding of the main routine

• coding of the reset behavior

• coding of the indication behavior

• optimization

8.1. Preparations

The easiest way to start programming of a new project is to use an existing example

delivered by the CANopen Library. All examples are located at the directory examples.

The Readme file there shows the main features for all available examples. Furthermore

the directory examples/template contains skeletons for master and slave applications and

for all indication functions. The user only has to fill these function bodies with his own

needs. The names of the needed files for your application are shown in table 48.

For the first step we suggest using a slave example s1. This example can be compiled

within its directory with the delivered make and project files.

Version: 4.5 CANopen Library Page 139 of 180

Module Cat. Remark

main.c x Main module

usr_301.c x user’s service indication function for CiA-301 services

usr_302.c (x) user’s service indication function for CiA-302 services

usr_303.c (x) user’s service indication function for CiA-303 services

usr_304.c (x) user’s service indication function for CiA-304 services

usr_305.c (x) user’s service indication function for CiA-305 services

nmtslave.c x network management behavior functions

cal_conf.h x contains the configuration of the CANopen Library

in general this file is generated by the CANopen

Design Tool

objects.h x contains the object dictionary

in general this file is generated by the CANopen

Design Tool

co_init.c x contains the initialization of the CANopen Library

in general this file is generated by the CANopen

Design Tool

Cat. ... category, x ... mandatory files, (x) ... optional files

Table 48, Validity of User Templates

The next step is to build a make file or project file. Within this file all dependencies of

your project files should be set9 .

Furthermore the search paths for #include files of your makefile or development envi-

ronment are to be set to:

• your working directory

to ensure that the cal_conf.h there is included first before all other include files

• canopen/include

• drivers/shar_inc

• drivers/<target>

8.2. Configuration of the Hardware

The configuration of the hardware can be done by using the CANopen Design Tool. All

settings are saved at the header file cal_conf.h as compiler defines.

8.2.1. Usage of the CANopen Design Tool

The CANopen Design Tool simplifies the configuration of the CANopen Library and the

creation of the object dictionary. It generates header files (cal_conf.h,objects.h) for the

CANopen Library, an initialization file (co_init.c), an Electronic Data Sheet(EDS) and a

9 The dependencies of the CANopen Library files are listed in the appendix.

Page 140 of 180 CANopen Library Version: 4.5

documentation of the implemented objects.

The light edition of the CANopen Design Tool is delivered with the CANopen Library

and generates only the CANopen Library configuration file cal_conf.h.

The basic steps to create a configuration file with the CANopen Design Tool Light are

explained in the following paragraphs. For detailed information see the user manual of

the CANopen Design Tool or look in the appendix (Tools).

8.2.1.1. General Settings

The menu point General Settings contains the main options for the CANopen node. Here

you have to define the type of the node (master or slave) and other general settings. A

detailed online help for each #define is in the CANopen Design Tool help menu "List

of Compiler directives" available.

8.2.1.2. Hardware Settings

Here you can import an existing configuration or specify a new. In the sub-menu Debug

Settings #defines for development and debugging are defined. Using it will generate

additionally debugging code for the CPU and the can driver. See the source code or the

Context-Help in CANopen Design Tool for further information and be careful if you use

it.

The sub-menu CPU settings contains the available CPU driver modules. All CPU spe-

cific settings can be set here.

The sub-menu Compiler Settings contains settings to specify the used compiler. Further

the alignment can be set here.

The sub-menu CAN Settings contains the available can driver modules. Further options

that have to be set are the mode of operating for Full-CAN controller, the access type for

the CAN controller, the CAN controller address and the CAN controller buffer size.

For multi-line configurations the CAN settings have to be configured for each line.

8.2.1.3. Object Dictionary Configuration

The #defines to enable and to configure the CANopen services are derived from the

object dictionary. There the used number of CAN lines must be created and the Commu-

nication Segment of each line must be filled. The fastest way to fill the Communication

Segment is to import the objects from the CiA-S301 profile database. Select the Commu-

nication Segment in the object tree, click on "Import Data from File" and select the file

profile301.pro.

å There is no need to configure the remaining sections, if the CANopen Design Tool

Light is used.

After the configuration is done save it in a project file (.can) and start the generation of

the file cal_conf.h.

Version: 4.5 CANopen Library Page 141 of 180

The example s1 is a simple slave device, which supports Heartbeat, 1 server SDO and 1

Receive PDO. The listing of cal_conf.h for it is shown below (Listing 37).

Page 142 of 180 CANopen Library Version: 4.5

/*

* CANopen Library V 4.5

* Design Tool Light 2.3

*

* Automatically generated C config: don’t edit

* 10-07-2005 03:03PM

*/

#ifndef __CAL_CONF_H

#define __CAL_CONF_H

#define CONFIG_DESIGNTOOL_VERSION 0x0202

/* active configuration : 0 */

#define CONFIG_USE_TARGET_0 1

/*

* General Settings

*/

#define CONFIG_CAN_ERROR_HANDLING 1

#define CONFIG_FAST_SORT 1

#define CONFIG_SLAVE 1

#define CONFIG_CAN_OBJECTS 8

/*

* Hardware configuration 0: 0

*/

/*

* Code Maturity Level Options

*/

/*

* CPU Setup

*/

#ifdef CONFIG_USE_TARGET_0

#define CONFIG_COLIB_TIMER 1

#define CONFIG_CPU_FAMILY_HCS12 1

#define CONFIG_CPU_TYPE_HCS12 1

#define CONFIG_TIMER_INC 28

ifdef DEF_HW_PART

include <cpu_hcs12.h>

endif /* DEF_HW_PART */

#endif /* CONFIG_USE_TARGET_0 */

/*

* CAN Controller Setup

*/

#ifdef CONFIG_USE_TARGET_0

#define CONFIG_CAN_FAMILY_MSCAN 1

#define CONFIG_COLIB_BUFFER 1

#define CONFIG_COLIB_FLUSHMBOX 1

#define CONFIG_RX_BUFFER_SIZE 10

Version: 4.5 CANopen Library Page 143 of 180

#define CONFIG_TX_BUFFER_SIZE 10

#define CONFIG_CAN_START_TYPE 1

#define CONFIG_CAN_ACCESS_MEM_MAP 1

#define CONFIG_CAN_HCS12_NUMBER 0

#define CONFIG_CAN_REGISTER_OFFSET 1

#define CONFIG_CAN_TYPE_HCS12 1

#define CONFIG_CAN_T_CLK 8

#define CONFIG_CAN_USE_MEMCPY 1

#define CONFIG_STANDARD_IDENTIFIER 1

#define CONFIG_CAN_ADDR {(void *) 0x0140}

#endif /* CONFIG_USE_TARGET_0 */

/*

* Compiler Setup

*/

#ifdef CONFIG_USE_TARGET_0

#define CONFIG_ALIGNMENT 1

#define CONFIG_BIG_ENDIAN 1

#define CONFIG_COMPILER_CW_HC12 1

include <co_codewarrior.h>

#endif /* CONFIG_USE_TARGET_0 */

/*

* CANopen Services

*/

#define CONFIG_HEARTBEAT_PRODUCER 1

#define CONFIG_MAPPING_CNT 2

#define CONFIG_PDO_CONSUMER 1

#define CONFIG_SDO_SERVER 1

/*

* Additional CANopen Settings

*/

#define CONFIG_CONST_OBJDIR 1

#endif /* __CAL_CONF_H */

Listing 37, Part of Configuration Header for Example s1

For this example listing, all hardware specific defines are set for a HCS12 board.

The settings have to be adapted for the specific hardware.

8.3. Building the Object Dictionary

The object dictionary has to be filled with the necessary variables for the CANopen com-

munication profile and for the user’s application or device profile. Its structure is

described in chapter 3. For each variable the user has to define:

• the index number

• the number of elements (structure or field members)

Page 144 of 180 CANopen Library Version: 4.5

• the reference to the variable

• the reference to the variables description field

The parameters described above ensure the access to the variable10 via the index. The

access via sub-index and the test for limits, read/write permission is realized by the

description field. Each entry of this field contains information about one sub-index entry.

This information is necessary to build a robust interface for the device.

å The CANopen Design Tool is available for an automatic generation of an object dic-

tionary, in the file objects.h.

The example s1 uses only 2 device profile variables.

Index Subindex Name Data Type Assignment

0x6200 1 p401_write_state_8 UNSIGNED8

0x6202 2 p401_polarity_write_8 UNSIGNED8
RPDO 1

Table 49, Device Profile Variables of Example s1

The listing 38 shows the implementation of the user variables and the PDO parameters.

The object dictionary implementation contains a definition part (the #define

DEF_OBJ_DIC has to be set before objects.h is included) and a declaration part. In the

definition part all variables are defined. The object dictionary consists of three kinds of

data. The first are the user application and the second kind are CANopen communication

variables. For each of these variables there is a description (<variable name>_desc).

The third kind is the object dictionary objDir. This contains references to all variables

and their descriptions.

The PDO mappings for the first TPDO and the first RPDO are set to the variables

p301_n1_transmit_pdo_mapping and p301_n1_receive_pdo_mapping. Therefore it is

very easy to see the assignment of application variables to the PDO. In general the appli-

cation knows nothing about the communication variables.

/*

* objects.h - generated object dictionary for a CANopen device

*

*---

*/

/**

* \file objects.h

* \author port GmbH, Halle (Saale)

* $Revision: 1.14 $

* $Date: 2012/05/11 10:18:44 $

*

* This file contains the selected objects for a CANopen device.

* It was generated by the CANopen Design Tool V2.3

* by port GmbH, Halle.

* Generation: 01-19-2006 12:29

*

10 A variable can be a common variable, a structure or an array.

Version: 4.5 CANopen Library Page 145 of 180

*/

/* additional typedefs to those in headerfiles*/

#ifdef DEF_OBJ_DIC

/* number of entries in the object dictionary */

UNSIGNED16 maxObjDicElements = 10;

/* Definition of Variables (Device Objects) */

UNSIGNED32 p301_device_type = { 0x00020191UL };

UNSIGNED8 p301_error_register = { 0x00 };

VIS_STRING_T p301_manu_device_name[35] =

{ "demo - port GmbH Linux Starter Kit" };

UNSIGNED16 p301_prod_hb_time = { 0x000003E8 };

IDENTITY_T p301_identity = { 0x4, 0x34UL, 0x0UL, 0x0UL, 0x0UL };

SDO_COMM_PAR_T p301_n1_ssdo_par = { 2, 0x00000600UL, 0x00000580UL, 0x00 };

PDO_COMM_PAR3_T p301_n1_rpdo_para = { 0x03, 0x00000200UL, 0xFE, 0x0 };

PDO_MAPPING2_T p301_n1_rpdo_map = { 0x02, { 0x62000108UL, 0x62000208UL }};

UNSIGNED8 p401_write_state_8[3] = { 0x2, 0x00, 0x00};

UNSIGNED8 p401_polarity_write_8[3] = { 0x2, 0x00, 0x00};

/* Default values */

UNSIGNED8 l0_default0_0005[12] = { 0,4,2,3,254,2,2,0,0,2,0,0 };

UNSIGNED16 l0_default0_0006[2] = { 0x3e8,0x0 };

UNSIGNED32 l0_default0_0007[10] = { 0x20191,0x34,0x0,0x0,0x0,

0x600,0x580,0x200,0x62000108,0x62000208 };

STRING_DATA_T l0_string_data[1] = {{0x23, 0x23}};

/* Definition of Value Descriptions */

VALUE_DESC_T p301_device_type_desc[1] = {

{ (UNSIGNED8 *) &l0_default0_0007[0],

CO_TYPEDESC_UNSIGNED32, CO_WRITE_PERM | CO_READ_PERM | CO_NUM_VAL }

};

VALUE_DESC_T p301_error_register_desc[1] = {

{ (UNSIGNED8 *) &l0_default0_0005[0],

CO_TYPEDESC_UNSIGNED8, CO_READ_PERM | CO_NUM_VAL }

};

VALUE_DESC_T p301_manu_device_name_desc[1] = {

{ (UNSIGNED8 *) &l0_string_data[0],

CO_TYPEDESC_VISSTRING, CO_WRITE_PERM | CO_READ_PERM }

};

VALUE_DESC_T p301_prod_hb_time_desc[1] = {

{ (UNSIGNED8 *) &l0_default0_0006[0],

CO_TYPEDESC_UNSIGNED16,

CO_READ_PERM | CO_WRITE_PERM | CO_NUM_VAL }

};

VALUE_DESC_T p301_identity_desc[5] = {

{ (UNSIGNED8 *)&l0_default0_0005[1],

CO_TYPEDESC_UNSIGNED8, CO_READ_PERM | CO_NUM_VAL },

{ (UNSIGNED8 *)&l0_default0_0007[1],

CO_TYPEDESC_UNSIGNED32, CO_READ_PERM | CO_NUM_VAL },

{ (UNSIGNED8 *)&l0_default0_0007[2],

CO_TYPEDESC_UNSIGNED32, CO_READ_PERM | CO_NUM_VAL },

Page 146 of 180 CANopen Library Version: 4.5

{ (UNSIGNED8 *)&l0_default0_0007[3],

CO_TYPEDESC_UNSIGNED32, CO_READ_PERM | CO_NUM_VAL },

{ (UNSIGNED8 *)&l0_default0_0007[4],

CO_TYPEDESC_UNSIGNED32, CO_READ_PERM | CO_NUM_VAL }

};

VALUE_DESC_T p301_n1_ssdo_par_desc[3] = {

{ (UNSIGNED8 *)&l0_default0_0005[2],

CO_TYPEDESC_UNSIGNED8, CO_READ_PERM | CO_NUM_VAL },

{ (UNSIGNED8 *)&l0_default0_0007[5],

CO_TYPEDESC_UNSIGNED32, CO_READ_PERM | CO_NUM_VAL },

{ (UNSIGNED8 *)&l0_default0_0007[6],

CO_TYPEDESC_UNSIGNED32, CO_READ_PERM | CO_NUM_VAL }

};

VALUE_DESC_T p301_n1_rpdo_para_desc[4] = {

{ (UNSIGNED8 *)&l0_default0_0005[3],

CO_TYPEDESC_UNSIGNED8, CO_READ_PERM | CO_NUM_VAL },

{ (UNSIGNED8 *)&l0_default0_0007[7],

CO_TYPEDESC_UNSIGNED32,

CO_READ_PERM | CO_WRITE_PERM | CO_NUM_VAL },

{ (UNSIGNED8 *)&l0_default0_0005[4],

CO_TYPEDESC_UNSIGNED8,

CO_READ_PERM | CO_WRITE_PERM | CO_NUM_VAL },

{ (UNSIGNED8 *)&l0_default0_0006[1],

CO_TYPEDESC_UNSIGNED16,

CO_READ_PERM | CO_WRITE_PERM | CO_NUM_VAL }

};

VALUE_DESC_T p301_n1_rpdo_map_desc[3] = {

{ (UNSIGNED8 *)&l0_default0_0005[5],

CO_TYPEDESC_UNSIGNED8, CO_READ_PERM | CO_NUM_VAL },

{ (UNSIGNED8 *)&l0_default0_0007[8],

CO_TYPEDESC_UNSIGNED32, CO_READ_PERM | CO_NUM_VAL },

{ (UNSIGNED8 *)&l0_default0_0007[9],

CO_TYPEDESC_UNSIGNED32, CO_READ_PERM | CO_NUM_VAL }

};

VALUE_DESC_T p401_write_state_8_desc[3] = {

{ (UNSIGNED8 *)&l0_default0_0005[6],

CO_TYPEDESC_UNSIGNED8, CO_READ_PERM | CO_NUM_VAL },

{ (UNSIGNED8 *)&l0_default0_0005[7],

CO_TYPEDESC_UNSIGNED8,

CO_MAP_PERM | CO_READ_PERM | CO_WRITE_PERM | CO_NUM_VAL },

{ (UNSIGNED8 *)&l0_default0_0005[8],

CO_TYPEDESC_UNSIGNED8,

CO_MAP_PERM | CO_READ_PERM | CO_WRITE_PERM | CO_NUM_VAL }

};

VALUE_DESC_T p401_polarity_write_8_desc[3] = {

{ (UNSIGNED8 *)&l0_default0_0005[9],

CO_TYPEDESC_UNSIGNED8, CO_READ_PERM | CO_NUM_VAL },

{ (UNSIGNED8 *)&l0_default0_0005[10],

CO_TYPEDESC_UNSIGNED8,

CO_READ_PERM | CO_WRITE_PERM | CO_NUM_VAL },

{ (UNSIGNED8 *)&l0_default0_0005[11],

CO_TYPEDESC_UNSIGNED8,

CO_READ_PERM | CO_WRITE_PERM | CO_NUM_VAL }

Version: 4.5 CANopen Library Page 147 of 180

};

/* Definition of the object directory */

OBJDIR_T objDir[] = {

{ (UNSIGNED8 *)&p301_device_type,

(VALUE_DESC_T *)p301_device_type_desc,

0x1000, 1 }

Listing 38,

Parts of the Object Dictionary Implementation for Example s1

8.4. Coding of the Main Routine

There is a template (template/main.c) for coding the main routine. It is recommended

to use this template for rapid programming. The following steps are necessary for the

design of an application:

• Design of the boot-up behavior (initialization)

• Design of the application

• Design of the shutdown behavior

All differences between the master and slave applications are shown in bracket com-

ments.

The boot-up behavior of an application required the following:

• hardware initialization (optional i.e. setting of chip selects) iniDevice()

• initialization of CAN controller, timer and ISR’s initCan()

• initialization of the CANopen Library init_CANopen() - include reset of the object

dictionary (*)

• modify communication parameter at the object dictionary if the predefined connec-

tion set should not be used (p.e. by defining INIT_USER_SETTINGS) (*)

• definition of the CANopen communication objects which should be used defi-

neEmcy() (*), defineSdo() (*), definePdo() (*)

• definition of a local node createNodeReq() (*)

• creation of a node management list createNetworkReq() (only master) (*)

• insertion of information about all nodes in the network to the management list

addRemoteNodeReq() (only master) (*)

• starting of the local node startRemoteNodeReq() (only master) (*)

• activation of interrupts for CAN and timer

• starting of all nodes startRemoteNodeReq() (only master)

All steps that are marked with (*) are carried out by the CANopen Design Tool11. There-

fore it creates the file co_init.c, which provides the function init_Library(). In this case

init_Library() must be called after initCan() .

11 Only the standard edition, not CANopen Design Tool Light

Page 148 of 180 CANopen Library Version: 4.5

The difference between a master and a slave is that the master controls all network parti-

cipants. Therefore each master application has to manage the network. In the CANopen

Library the master collects all communication relevant information in a node manage-

ment list (network). With this list the master is able to guard the nodes and to influence

their communication states. Before all network participants go to the OPERATIONAL

state the master or another configuration application can parameterize their communica-

tion variables i.e. COB-ID, PDO mapping.

int main(void)

{

RET_T commonRet; /* return value for CANopen functions */

UNSIGNED8 ret; /* return value for common purpose */

BOOL_T err = CO_FALSE; /* error flag */

/* Hardware Initializion; e.g SIO, Chip-Selects, ... */

ret = iniDevice();

PRINTRET("iniDevice: %02x\n", (int)ret);

/*

* CAN_START_BIT_RATE = 0 : read bit timing from init file

* CAN_START_BIT_RATE = bitRate : use local bitRate variable

*/

ret = initCan(CAN_START_BIT_RATE);

PRINTRET("initCan: %02x\n", (int)ret);

/* defines also the Network control Object -- NMT

* reset communication and goes to the

* state preoperational + Initialization of CANopen

*/

commonRet = init_Library();

PRINTRET("init_Library: 0x%02x\n", (int)commonRet);

/*

* timer is needed for inhibit time and

* host life guarding (if life guarding is supported)

*/

initTimer();

SetIntMask();

Start_CAN();

ENABLE_CPU_INTERRUPTS();

}

/* Inititialization of CANopen

* defines also the Network control Object -- NMT

* resets communication

*/

RET_T init_Library(void)

{

commonRet = initCANopen();

PRINTRET("initCANopen: %02x\n", (int)commonRet);

Version: 4.5 CANopen Library Page 149 of 180

/* modify communication parameter,

* if the predefined connection set shouldn’t be used

* it’s not used in s1

*/

INIT_USER_SETTINGS();

/* Definition of CANopen objects */

/* ============================= */

/* definition of the 1st SDO

* first parameter is SDO number, for later references

* second parameter is SDO type: CLIENT | SERVER

*/

commonRet = defineSdo(1, SERVER);

PRINTRET("Define 1. Server SDO: %02x\n", (int)commonRet);

/* Definition of the 1st RPDO

* 1st parameter - type of PDO: RECEIVE | TRANSMIT

* 2nd parameter - PDO number for later references

* 3rd parameter - permission for dynamically mapping

*/

commonRet = definePdo(RECEIVE_PDO,1 , CO_FALSE);

PRINTRET("Define 1. Receive PDO: %02x\n", (int)commonRet);

/* creating a network node */

/* definition of the local node */

/* Node Guarding, Heartbeat */

commonRet = createNodeReq(CO_FALSE, CO_TRUE);

PRINTRET("NMT Node created: %02x\n", (int)commonRet);

}

Listing 39, Example s1, Initialization

During the function initCANopen() all entries of the object dictionary are set to their

default values, and all COB-IDs are set according to the predefined connection set, in-

depend the saved entries at objects.h. If the application needs other values it can be set

by defining INIT_USER_SETTINGS() as macro or as function.

The design of the application is the user’s task. He has to ensure that the CAN message

buffer is read continuously or event driven. The easiest way to perform this is an endless

loop from which the buffer read function and the application functions are called cycli-

cally. (listing 40).

while(1)

{

/* read and interpret CAN message */

FlushMbox();

/* application function */

application();

}

Page 150 of 180 CANopen Library Version: 4.5

Listing 40, Endless Loop Reception Process But it is also possible to call this function by

a Real Time Operating System signal or other mechanisms (listing 41). Then the user’s

application runs within other tasks.

while(1)

{

/*

* sleep while no CAN event

*

* CANopen task should be waken up:

* - if a new message is received

* - if the CANopen timer is expired

* in order to check all CANopen timers

*/

os_wait(event);

/*

* interpret received message

* or handle CANopen timers

*/

FlushMbox();

}

Listing 41, Signal Driven Reception Process

The implementation of the shutdown behavior is only necessary if the CANopen Library

can be left during the run time of the application i.e. if running on a operating system.

The called functions will free the allocated system resources. The following steps are to

be made for this:

• stop all nodes stopRemoteNodeReq() (only master)

• deactivate the ISRs for CAN and timer

• de-initialize CAN controller, timer and their ISR’s

• delete the node entries removeRemoteNodeReq() (only master)

• delete the local node deleteNodeReq()

• delete the node management list (network) deleteNetworkReq() (only master)

• de-initialize the CANopen Library leaveCANopen()

main()

{

....

/*

* Application really ends

*

* release all resources.

*/

releaseTimer();

ResetIntMask();

deleteNodeReq();

/* leaves CANopen */

leaveCANopen();

Version: 4.5 CANopen Library Page 151 of 180

putchar(’X’);

return(0);

}

Listing 42, Example s1, Shutdown

The file co_init.c, generated by the CANopen Design Tool contains the function

deinit_Library() that does all necessary steps to shutdown the CANopen Library.

8.5. Coding of the Reset Behavior

The reset behavior is a property only for slaves. Each slave can receive a Reset Applica-

tion or a Reset Communication command from the master. In the module nmtslave.c the

user will find the functions resetApplInd() and resetCommInd(). Within these functions

an individual reset of the application data and states can be implemented. In the function

for the communication reset the CAN bit rate12 or node-ID can be changed.

Furthermore there is the function newStateInd(). This function informs the user’s appli-

cation about each transition of the communication state machine. This information can

be important, because a few communication services are not available in certain states.

For example, the application transmits error codes via PDOs and the master forces the

node to PRE-OPERATIONAL. Then PDOs are not allowed.

8.6. Coding of the Indication Behavior

For each received CANopen message an indication function is called. Templates for

these functions can be found in the module template/usr_301.c. The task of these func-

tions is to start an error handling or additional post-processing or pre-processing for

object dictionary entries or to initiate a reaction. There are three kinds of errors which

can be handled with the indication functions. The first kind are errors in the CAN con-

troller and CAN driver message queues. The function canErrorInd() informs the applica-

tion about error of the CAN controller e.g. "Bus-Off", "Error passive" and about the over-

flow of the receive and transmit buffer since the last call to canErrorInd(). The current

state of the CAN controller can be queried by getCanDriverState().

If an emergency message is received, the function emcyInd() is called at the EMCY con-

sumer. There the user can handle fatal errors of remote devices.

The second kind of errors are the Node Guarding errors. In the case of a lost connection

between master and slave the function mGuardErrorInd() is called at the master and the

function sGuardErrorInd() at the slave.

The other functions of the module are for the common data service handling. For each

received PDO the function pdoInd() is called. Within this function the user can define

reactions which should be initiated by certain PDOs.

/***

*

12 Please ensure that all devices in the network use the same CAN bit rate.

Page 152 of 180 CANopen Library Version: 4.5

* pdoInd - indicates the occurrence of a PDO

*

* In this function the user has to define his application specific

* handling for PDOs.

*

* \returns nothing

*/

void pdoInd(

UNSIGNED16 pdoNr /* nr of PDO */

#ifdef CONFIG_MULT_LINES

,UNSIGNED8 canLine /**< number of CAN line

0..CONFIG_MULT_LINES-1 */

#endif

)

{

switch(pdoNr) {

case 1:

/* we have a fixed PDO mapping.

* Therefore we know that the two sub-indices of 0x6200

* are mapped. The content now in the object directory

* has to be transferred to the two hardware ports 1 and 2.

*/

set_outputs(1);

set_outputs(2);

break;

}

}

Listing 43, Example PDO Indication

The server SDO services are divided into read and write access functions. For every kind

there is a function sdoWrInd() for write access and sdoRdInd() for read access. It is pos-

sible to initiate reactions or to manipulate values i.e. unit transformations with these func-

tions.

Version: 4.5 CANopen Library Page 153 of 180

/***

* sdoWrInd - indicates the occurrence of a SDO write access

*

* \retval CO_OK success

* \retval CO_E_xxx error

*

*/

RET_T sdoWrInd(

UNSIGNED16 index, /* index to object */

UNSIGNED8 subIndex /* sub-index to object */

#ifdef CONFIG_MULT_LINES

,UNSIGNED8 canLine /**< number of CAN line

0..CONFIG_MULT_LINES-1 */

#endif

)

{

if (index == 0x6200) {

/* write request to the digital output 8-bit ports */

set_outputs(subIndex);

}

return CO_OK;

}

Listing 44, Example s1, SDO Write Indication

/***

* sdoRdInd - indicates the occurrence of a SDO read access

*

* \retval CO_OK success

* \retval CO_E_xxx error

*

*

*/

RET_T sdoRdInd(

UNSIGNED16 index, /* index to object */

UNSIGNED8 subIndex /* index to object */

#ifdef CONFIG_MULT_LINES

,UNSIGNED8 canLine /**< number of CAN line

0..CONFIG_MULT_LINES-1 */

#endif

)

{

return CO_OK;

}

Listing 45, Example s1, SDO Read Indication

Further service indications and confirmations are defined within usr_301.c.

Page 154 of 180 CANopen Library Version: 4.5

The function getNodeId() is very important. This function returns the node-ID which was

read i.e. by a DIP switch or from a nonvolatile memory. It is called implicitly during the

CANopen Library initialization initCANopen() and before executing Reset Communica-

tion.

The function timeInd() indicates a received Time Stamp.

testSdoValue() is a filter function for values which should be written to the object dictio-

nary by SDO. Using this filter the application can check values before they are written

into the object dictionary.

In a SDO client the functions sdoWrCon() and sdoRdCon() are called if the confirmation

message to a SDO read or write request was received. Within these functions the applica-

tion can react to the successful service or to the errors resulting from an abort domain

transfer.

For a convenient usage of nonvolatile memory to store data via object 1010h the functions

saveParameterInd(), clearParameterInd() and loadParameterInd() have been introduced.

å For detailed information about the function mentioned above please have a look to

the Reference Manual.

8.7. Optimization

On completion of the programming of the application behavior, all communication needs

are fixed. Therefore the communication part can be optimized.

The optimization can be done in:

• cal_conf.h

• objects.h

• driver modules

In the configuration header cal_conf.h all services which are not used by the application

can be disabled. That is a typical code size optimization.

In the object dictionary implementation, all unused variables of the communication and

the application should be removed. Data memory space can be saved.

In the driver modules for CAN and the timer, all unnecessary functionalities can be

removed in order to reduce code size. Furthermore the run time behavior can be opti-

mized, for example by removing the transmit queue for Full-CAN controller.

Version: 4.5 CANopen Library Page 155 of 180

Page 156 of 180 CANopen Library Version: 4.5

9. Trouble Shooting

This chapter describes possible error situations. If you have trouble with the CANopen

Library, please read the following error descriptions first.

If you do not find a solution for your problem in this chapter, you can request support, see

chapter 1.6, or see the other appendixes for more description of internal behavior.

Please check the following points:

- Hav e you checked the return values of the functions?

- Are the #defines in cal_conf.h set correctly for the services used?

- Hav e you checked the order of function calls?

- Hav e you included the associated objects.h and cal_conf.h?

- Hav e you recompiled the sources after changing objects.h and cal_conf.h?

- Do you have an overview which functionalities should be made on your local device

and which on the remote device(s)?

Detailed error situation descriptions are listed in table 50.

Description Error Reason

no transmission of PDOs

is possible

node is not in state OPERATIONAL

PDO disabled, see PDO parameter

PDO is only a RTR PDO

#define CONFIG_PDO_PRODUCER is not set

no reception of PDOs is

possible

node is not in state OPERATIONAL

PDO disabled, see PDO parameter

#define CONFIG_PDO_CONSUMER is not set

value of TPDO contents of

remote device is wrong

dynamic mapping was not carried out

your compiler does not support byte alignment and

#define CONFIG_ALIGNMENT is not set

variable PDO mapping is

not possible on remote

device (Abort Domain

Transfer)

mapping flag not set for selected variable (objects.h)

at RPDO: selected variable is read only (objects.h)

at TPDO: selected variable is write only (objects.h)

#define CONFIG_DYN_PDO_MAPPING was not set

#define CONFIG_MAX_DYN_MAP_ENTRIES was

not set or their value is too low

variables contains wrong

values

your compiler does not support byte alignment and

#define CONFIG_ALIGNMENT is not set or has

wrong value

you have included the wrong object dictionary

object dictionary variables are parameterized incorrectly

Version: 4.5 CANopen Library Page 157 of 180

Description Error Reason

definePdo() returns

E_MAP

mapping entry in objects.h does not exist

your compiler does not support byte alignment and

#define CONFIG_ALIGNMENT is not set or has

wrong value

your processor uses big-endian format and #define

CONFIG_BIG_ENDIAN is not set

device does not answer to

SDO Transfer

#define CONFIG_SDO_SERVER is not set

device does not initiate to

SDO Transfer

#define CONFIG_SDO_CLIENT is not set

no data transfer is possible

after system integration

COB-ID of sender and receiver are not equal

Table 50, Suggestions for Trouble Shooting

Page 158 of 180 CANopen Library Version: 4.5

10. Appendices

10.1. Appendix — Header Files

This appendix contains an overview of all header files for the CANopen Library. The

location mentioned in the tables is the location of the headers within the installation path.

There are 4 kinds of header files for the CANopen Library compilation.

1. project specific headers

2. shared driver headers

3. example driver headers

4. CANopen Library interface headers

Location: <project include>

Name Description

cal_conf.h configuration header for CANopen Library compilation

objects.h object dictionary implementation

Table 51, Project Specific Headers

Location: drivers/shar_inc

Name Description

cdriver.h constants for all CAN controllers

cpu_xxx.h constants for CPU driver part

can_xxx.h constants for CAN driver part

co_xxx.h constants for special compilers

Table 52, Shared Driver Headers

Location: drivers/<hardware>

Name Description

examples.h adaptations to use our examples

Table 53, Example Driver Headers

Location: canopen/include

Name Description

co_acces.h access to the object dictionary

Version: 4.5 CANopen Library Page 159 of 180

Location: canopen/include

Name Description

co_cobid.h defines of predefine COB-IDs in CiA-301

co_debug.h defines for debug interface

co_def.h global defines for the CANopen Library

co_drv.h defines for driver interface

co_drvif.h typedefs for driver interface

co_drvmc.h additionally defines for multi can devices

co_drvry.h additionally defines for redundancy support

co_emcy.h defines for EMCY

co_flag.h defines for internal flag usage

co_flyma.h defines for Flying Master

co_guard.h defines for Node Guarding

co_hb.h defines for Heartbeat

co_led.h defines for Led

co_lme.h defines for layer management

co_lss.h defines for LSS

co_mcpy.h macros for memcpy

co_mpdo.h defines for MPDOs

co_nmt.h defines for NMT

co_nmt_m.h defines for NMT master services

co_odidx.h object dictionary indexes

co_pdo.h defines for PDO

co_redcy.h defines for redundancy support

co_sdo.h defines for SDO

co_sdomg.h defines for SDO Manager

co_sdorq.h defines for SDO Requester

co_setcp.h defines for internal communication parameter

co_splus.h defines for SLAVE with NMT capabilities

co_srdo.h defines for Safety Relevant Objects

co_stor.h defines for parameter storage

co_stru.h structure definition

co_sync.h defines for SYNC

co_time.h defines for time

Page 160 of 180 CANopen Library Version: 4.5

Location: canopen/include

Name Description

co_timer.h defines for timer routines

co_type.h type definition

co_usr.h defines for user interface

co_util.h defines for utilities

co_vers.h version information

Table 54, CANopen Library Interface Headers

10.2. Appendix — Data Types

This appendix describes the basic data types of the CANopen Library. All atomic data

types are defined within the header file co_type.h. In general this file is part of the

CANopen Library interface headers, but some development environments define these

types, too. Therefore it is necessary to overload this file by a co_type.h in your project

include directory.

å The compiler’s search path has to contain your project include directory path before

the CANopen Library include path.

Then your co_type.h file (or any other name used) is the project specific data type header

file.

The following table describes the types. Using only the type definition BOOL_T,

UNSIGNED<x> and INTEGER<x> in own applications is recommended.

Type Description

BOOL_T boolean type

UNSIGNED8 unsigned 8 bit value

UNSIGNED16 unsigned 16 bit value

UNSIGNED32 unsigned 32 bit value

UNSIGNED64 unsigned 64 bit value

INTEGER8 signed 8 bit value

INTEGER16 signed 16 bit value

INTEGER32 signed 32 bit value

LOOPCNT_U8 unsigned 8 bit value - register variable (only Keil C51)

LOOPCNT_U16 unsigned 16 bit value - register variable (only Keil C51)

REAL32 float 32 bit value

VIS_STRING_T unsigned char

OCT_STRING_T unsigned char

Version: 4.5 CANopen Library Page 161 of 180

Type Description

BIT_STRING_T unsigned char

DOMAIN_T void *

COB_KIND_T enumeration of types of CAN messages

BASIC_DATA_T enumeration of CANopen basic types

NODE_STATE_T enumeration of NMT states

USER_T enumeration for SDO types

CO_USER_T enumeration for PDO types

RET_T return values of CANopen functions

ERROR_SPEC_T defines for error conditions

STATE_T enumeration

Table 55, Atomic Types

10.3. Appendix — SDO Abort Codes

The SDO Abort Transfer is a negative conformation of a SDO request. This service con-

tains a code, which specifies the kind of the abort. The CANopen Library by port sup-

ports the following SDO abort codes:

RET_T Value DescriptionSDO Abort

Code

0504 0000h CO_E_SDO_TIMEOUT SDO protocol timed out

0504 0001h CO_E_SDO_CMD_SPEC_INVALID client/server command specifier

not valid or unknown

0504 0002h CO_E_SDO_INVALID_BLKSIZE invalid block size (block mode

only)

0504 0004h CO_E_SDO_INVALID_BLKCRC CRC error (block mode only)

0504 0005h CO_E_MEM out of memory

0601 0001h CO_E_NO_READ_PERM attempt to read a write only object

0601 0002h CO_E_NO_WRITE_PERM attempt to write a read only object

0602 0000h CO_E_NONEXIST_OBJECT object does not exist in the object

dictionary

0604 0041h CO_E_MAP object can not be mapped to the

PDO

Page 162 of 180 CANopen Library Version: 4.5

RET_T Value DescriptionSDO Abort

Code

0604 0042h CO_E_DATA_LENGTH the number and length of the

objects to be mapped would

exceed PDO length

0604 0043h CO_E_PARA_INCOMP general parameter incompatibility

reason

0606 0000h CO_E_HARDWARE_FAULT access failed due to an hardware

error

0607 0010h CO_E_WRONG_SIZE data type does not match, length of

service parameter does not match

0609 0011h CO_E_NONEXIST_SUBINDEX sub-index does not exist

0609 0030h CO_E_TRANS_TYPE value range of parameter exceeded

(only for write access)

0609 0031h CO_E_VALUE_TO_HIGH value of parameter written too high

0609 0032h CO_E_VALUE_TO_LOW value of parameter written too low

060A 0023h CO_E_SRD_NO_RESSOURCE no resources available

0800 0000h CO_E_SDO_OTHER general error

0800 0020h CO_E_INVALID_TRANSMODE data can not be transferred or

stored to the application

0800 0022h CO_E_DEVICE_STATE data can not be transferred or

stored to the application because of

the present device state

0800 0023h CO_E_SRD_NO_RESSOURCE object dictionary dynamic genera-

tion fails or no object dictionary is

present (e.g. object dictionary is

generated from file and generation

fails because of an file error)

0800 0024h CO_E_NO_DATA_AVAILABLE no data available

Table 56, SDO Abort Codes

10.4. Appendix — Tools

In the context of the CANopen Library there are many useful tools available for software

implementation and system integration.

All tools are available via the web page of port . 〈http://www.port.de〉 Without a

valid license file the tools can be used in demo mode.

Version: 4.5 CANopen Library Page 163 of 180

10.4.1. CANopen Design Tool

The CANopen Design Tool makes the configuration of the CANopen Library and the cre-

ation of the object dictionary possible. This tool generates source code file in C for the

CANopen Library, electronic device descriptions and various documentations.

Figure 58, CANopen Design Tool

Page 164 of 180 CANopen Library Version: 4.5

10.4.2. CANopen Server

The CANopen Server is one of the more comprehensive examples for the use of the

CANopen Library. The CANopen Server realizes a complete Class 3 CANopen manager

node according to the CiA specification CiA-309-3.

With its additional console interface it is possible to test one’s own application.

Figure 59, CANopen CiA-309-3 Gateway (m4d)

A commercial full featured version of m4d is available. It provides a complete set of

CANopen services as well as an easy to use server interface to access all services via

TCP/IP sockets.

Version: 4.5 CANopen Library Page 165 of 180

10.4.3. CANopen Device Monitor

The CANopen Device Monitor of port is a tool for the graphical inspection and configura-

tion of CANopen devices in a CANopen network. The embedded scripting ability makes

it possible to access the implemented CANopen services and to write test or control

applications with a minimum of effort.

Figure 60, CANopen Device Monitor

Page 166 of 180 CANopen Library Version: 4.5

10.4.4. CAN-REport

The CAN-REport is a monitoring tool for CAN traffic. It is useful for message recording

and interpretation.

Figure 61, CAN-REport

10.5. Appendix — Abbreviations

CAN Controller Area Network

CAL CAN Application Layer (CANopen base)

CDM CANopen Device Monitor

CDT CANopen Design Tool

CiA CAN in Automation international users and manufacturers group e.V.

CMS CAN Message Specification

COB Communication Object (CAN Message)

Version: 4.5 CANopen Library Page 167 of 180

COB-ID Communication Object Identifier

CRC Cyclic redundancy check. Bit error protection method for data com-

munication.

CSDO

DAM Destination Address Mode

EDS File Electronic Data Sheet. This is a file with the device specific parame-

ter description and is provided by the manufacturer of a DeviceNet

or CANopen device.

EMCY Emergency Object

HAL Hardware Abstraction Layer

HMI Human Machine Interface

IG Interest Group, working group within CiA

responsible for higher layer protocols, e.g. CANopen

ISR Interrupt Service Routine

LME Layer Management Entity

LMT Layer Management

LSS Layer Setting Services

MPDO Multiplexed PDO

NMT Network Management

OD Object Dictionary

PDO Process Data Objects. They are messages in a unconfirmed service.

They are used for the transfer of real-time data to and from the

device.

RPDO Receive PDO

RTR Remote Transmission Request

SAM Source Address Mode

SCT Safeguard Cycle Time (CANopen Safety)

SDO Service Data Objects, messages in a confirmed service. They are

used for the access of entries in the object dictionary.

SIG Special Interest Group, working group within CiA

SRD SDO Requesting Device

SRDO Safety Relevant Data Objects

SRVT Safety Relevant object Validation Time (CANopen Safety)

SSDO server SDO

SYNC Synchronization Object (CANopen communication object)

TIME Time Stamp Object

TPDO Transmit PDO

Page 168 of 180 CANopen Library Version: 4.5

10.6. Appendix — Modification for Version V4.x

The chapters describing the modifications made against the previous one. This should

help upgrading older projects to the latest CANopen Library version.

10.6.1. Modification Summary V4.5

- Adaption to actual standard CiA-301, V 4.2 (June 2011).

- The CANopen Library supports optional object function pointer now.

- The object attributes got changed from UNSIGNED8 to UNSIGNED16. This is due

the additional attribute flags needed now and in the future.

- A new attribute for signaling non volatile storage is added to the object description,

to ease the selection which object should be stored.

- New request getObjStoreEnabledReq, which returns if an object should be stored in

non volatile memory.

- For speed optimization the access function got changed. This will enhance the

startup time and SDO services.

- The CANopen Library discards SDO messages which where not requested or do not

have an multiplexer.

10.6.2. Modification Summary V4.4

- Adaption to actual standard CiA-301, V 4.1 (October 2006)

- All CANopen Library and driver internal structures are static now, no malloc() calls

necessary.

- All driver functions return a RET_T return value. It is evaluated by the CANopen

Library.

- optimization of memory usage for internal structures

- fast sort algorithm (for large data arrays) available

- no hardware dependencies in the CANopen Library (no full/basic can checks more)

(RTRs are always answered by the CANopen Library)

- CANopen Library supports 29 bit identifier - usage is depending on the driver

- NMT master, Node Guarding master and Heartbeat consumer can be used indepen-

dent. But they can be used also with the function addRemoteNodeReq().

- CANopen Library status flags are divided into coLibFlags and coCanFlags.

The CAN flags shows at all times the actual state of the driver.

- The boot-up messages can be received from each node, if it is initialized for Node

Guarding master or Heartbeat consumer.

Version: 4.5 CANopen Library Page 169 of 180

- If the emergency list at the object dictionary is available, all nodes from the list will

be initialized for EMCY consumer. If the list is not present, nodes can be used as

EMCY consumer by calling setEmcyConsumerCobId(node,id).

- SDO client transfers are all times finished by a confirmation function. Time out

monitoring and transmission of an abort is automatically done by the CANopen

Library.

- Indication/confirmation function for SDO transfers after determined count of data.

- Start/stop SYNC set also the bits for the SYNC-COB-ID at the OD.

10.6.2.1. Modification of the User Interface

- All driver functions returns a RET_T value.

- defineHBConsumer() - initialize the Heartbeat consumer list

- setEmcyConsumerCobId(node,id) initialization of EMCY consumer, if the EMCY

consumer list at the object dictionary does not exist.

- defineEmcy(PRODUCER/CONSUMER)

- writeEmcyReq()

- emcyInd(node,emcy_t)

- addGuardingSlave(node,guardTime,lifeTime)

- setGuardTimePara(node,guardTime,lifeTimeFac)

- getRemoteNodeState()

- createNetworkReq()

- addRemoteNodeReq(node,GuardTime,LifeTime,useHB,useGuard)

- writeSdoReq(sdoNr,index,subIndex,*pData,length,timeOut))

- readSdoReq(sdoNr,index,subIndex,*pData,length,timeOut))

- rtrPdoInd(pdoNr)

- waitForSdoRes(sdoNr)

- setCobId(index,subIndex,cobid)

10.6.3. Modification Summary V4.3

- new timer concept

- new modules: SRDO, LSS, LED

- new NMT function setNodePREOP() - set node in state PRE-OPERATIONAL

- documentation revision

- virtual objects introduced

- defines for COB-IDs unified in module co_cobid.h

Page 170 of 180 CANopen Library Version: 4.5

- Type of COB passed to the driver

- defines for SDO command codes introduced

- coWait not available by default (enable with define)

- addRemoteNodeReq not necessary for local node

- ResetComm changes values only in object dictionary to the defaults Other values

are reloaded with loadParameterInd(). This values are then accounted when setting

the COB-IDs

The same applies for the start of the program: with initCANopen() the object dictio-

nary is initialized. After that the user can change the entries in the object dictionary

with loadParaInd(). These changes are accounted when the services are initialized.

10.6.3.1. Modification of the User Interface

For unified function names the following function names has been changed:

old function name new function name

resetApplication() resetApplInd()

resetCommunication() resetCommInd()

For optimal support some function parameter or return values have been changed:

- Return values of sdoWrInd()/sdoRdInd changed - possible values are:

CO_OK - access ok

CO_WAIT - indication not finished yet

CO_xxx - SDO Abort Code

- generic driver: Version for first tests with the new CANopen Library

- driver concept of v4.2 slightly adapted

Within the driver modules the name of some files has changed:

CANopen Library v4.2 CANopen Library v4.3

can82527.h can_82527.h

can82527.c can_82527.c

can90540.h can_90540.h

can90540.c can_90540.c

10.6.3.2. Changes in the Naming of Configuration Constants

CANopen Library v4.2 CANopen Library v4.3

CONFIG_STANDARD_xxx CONFIG_COLIB_xxx

CAN_ACCESS_xxx CONFIG_CAN_ACCESS_xxx

Version: 4.5 CANopen Library Page 171 of 180

CANopen Library v4.2 CANopen Library v4.3

CONFIG_DRIVER_USE_xxx CONFIG_CAN_USE_xxx

CAN_T_CLK CONFIG_CAN_T_CLK

SIZE_POOL CONFIG_SIZE_POOL

CONFIG_SYSTEM_MALLOC14 CONFIG_COLIB_MALLOC

CO_TIMER_INC CONFIG_TIMER_INC

CAN_REGISTER_OFFSET CONFIG_CAN_REGISTER_OFFSET

CONFIG_GROUP_CHANNEL CONFIG_SPECIAL_CHANNEL

TARGET_xxx CONFIG_CPU_FAMILY_xxx

CONFIG_CPU_TYPE_xxx

CONFIG_CAN_FAMILY_xxx

CONFIG_CAN_TYPE_xxx

CONFIG_CPU_xxx CONFIG_CPU_FAMILY_xxx

CONFIG_CPU_TYPE_xxx

CONFIG_CAN_xxx CONFIG_CAN_FAMILY_xxx

CONFIG_CAN_TYPE_xxx

CAN_ISR_NUMBER_xxx CONFIG_CAN_ISR_NUMBER

CAN_ISR_REGISTERBANK_xxx CONFIG_CAN_ISR_REGISTERBANK

TIMER_ISR_REGISTERBANK CONFIG_TIMER_ISR_REGISTERBANK

TIMER_ISR_NUMBER CONFIG_TIMER_ISR_NUMBER

CAN_C167CS_IPC CONFIG_CAN_C167CS_IPC

CAN_IF_REG_VAL CONFIG_CAN_82527_IF_REG_VAL

CAN_BUS_CONF_VAL CONFIG_CAN_82527_BUS_CONF_VAL

CAN_CDR_VAL CONFIG_CAN_82C200_CDR_VAL

CONFIG_CPU_F2MC16LX_IRQ_LEVEL_TIMER CONFIG_TIMER_IRQ_LEVEL

CONFIG_CPU_F2MC16LX_IRQ_LEVEL_CAN CONFIG_CAN_IRQ_LEVEL

10.6.4. Modification Summary V4.2

- New header- and c-file concept - divide all functionality depending the services

- New indications added for boot-up and start Heartbeat

- If emergency is supported, the emergency entry in the object dictionary is manda-

tory

- Inhibit Time for emergency supported

- Multiplexed PDO for destination address mode and source address mode available

13 The define CONFIG_SYSTEM_MALLOC enables the compiler specific memory allocation.

The define CONFIG_COLIB_MALLOC enables our common customized simply memory allocation.

Page 172 of 180 CANopen Library Version: 4.5

- New driver for Fujitsu 90540 CPU and CAN controller available

- Support for the TMS320 signal processor family

- Flying Master and Redundancy Support

- Slave with master capabilities available

- New indication function syncCmd() to start user function after the received SYNC

message

10.6.4.1. Modification of the User Interface

All defines in the CANopen Library are changed to CANopen compatible names

old define new define

CONFIG_EMCY_SERVER CONFIG_EMCY_PRODUCER

CONFIG_EMCY_CLIENT CONFIG_EMCY_CONSUMER

CONFIG_PDO_CLIENT CONFIG_PDO_CONSUMER

CONFIG_PDO_SERVER CONFIG_PDO_PRODUCER

10.6.5. Modification Summary V4.1

- Function calls Enable_CAL_Interrupts() and Disable_CAL_Interrupts() replaced by

the macros ENABLE_CAN_INTERRUPTS and DISABLE_CAN_INTERRUPTS

- Using of FLOAT variable type in the object dictionary is now possible

- Define DATA replaced by CO_DAT A

- Prepared more drivers for using multi-line

- Change the driver interface for mod167 to use multiple CAN controller types

- support for SDO block up/download released

automatic usage by controlling the data size

if the client was not understand SDO block transfer automatically falls back to seg-

mented transfer

- Optimization for the Heartbeat consumer

- Release SDO Manager/SDO Requester functionality

10.6.5.1. Modification of the User Interface

SDO transfer for block transfer adapted - function waitForSdoRes() and abort condition

for time out changed

10.6.5.2. Driver Interface

- New macros defined for ENABLE_CAN_INTERRUPTS and DIS-

ABLE_CAN_INTERRUPTS for calling Enable_CAN_Interrupts()/Dis-

able_CAN_Interrupts().

Version: 4.5 CANopen Library Page 173 of 180

- Driver for mod167 prepared for usage with multi can controller types

10.6.5.3. Structures

Only internal structures have been changed.

Object dictionary layout has changed, CANopen Design Tool Version number greater than

13 has to be used.

10.6.5.4. Tools

Add new features (SDO block transfer, multi-CAN controller) to the ConfigTool.

10.6.6. Modification Summary V4.0

- CANopen Library is now compatible with the CANopen Standard CiA-301, V4.0

- All CAL dependencies are removed

- All interrupt functions are modified

CANopen functionality is no longer carried out within the interrupt routines. Within

the ISR only flags are set. These flags are valued by the function FlushMbox() and

the corresponding function is called. This is why you have to call the function

FlushMbox() regularly in the main loop.

- Some of the user functions have been changed.

- The object dictionary can be stored in ROM.

- A lot of the structures have been optimized.

- For a better understanding some of the defines have changed. (There are no longer

defines with _NO_.)

10.6.6.1. Modification of the User Interface

Please have a look at the reference manual for a detailed description of the functions.

Page 174 of 180 CANopen Library Version: 4.5

old function new function

LME_Init_CAL_req("", "", "") initCANopen()

LME_Leave_CAL_req() leaveCANopen()

NMT_CreateNode_req("", lNodeId, 0) createNodeReq(CO_TRUE,

CO_FALSE)

NMT_DeleteNode_req() deleteNodeReq()

NMT_CreateNetwork_req(0) createNetworkReq(CO_FALSE)

NMT_DeleteNetwork_req() deleteNetworkReq()

addRemoteNodeReq(rNodeId, 2000, 3)NMT_AddRemoteNode_req("",

rNodeId, 1792+rNodeId, 2000, 3)

removeRemoteNodeReq(rNodeId)NMT_RemoveRemoteNode_req("",

rNodeId)

definePdo(TRANSMIT_PDO, 1, 0, 0) definePdo(TRANSMIT_PDO, 1,

CO_TRUE)

defineEmcy(CLIENT, &emcy[0],

REQ_ID_EMCY1+rNodeId)

defineEmcy(CLIENT, 1,

REQ_ID_EMCY1+rNodeId)

10.6.6.2. Modification of the Object Dictionary

The following entries are obsolete:

Index Sub-Index Meaning

1004 0 Number of PDOs

100B 0 node-ID

100E 0 COB-ID Guarding

100F 0 Number of SDOs

1400 4 PDO priority

1800 4 PDO priority

New entries at the Object Dictionary:

Index Sub-Index Meaning

1016 0-255 Heartbeat consumer Time

1017 0 Heartbeat producer Time

1018 0..4 Identity Object

1800 5 Event Time

- The object dictionary now has the new type OBJDIR_T.

- With the define CONFIG_CONST_OBJDIR it can be saved in ROM.

Version: 4.5 CANopen Library Page 175 of 180

10.6.6.3. Structures

The following structures have been optimized (especially for byte alignment on 8 bit con-

trollers):

typedef struct

{

UNSIGNED8 *pObj; /* pointer to data */

VALUE_DESC_T *pValDesc; /* value description */

UNSIGNED16 index; /* index of object */

UNSIGNED8 numOfElem; /* number of elements */

} LIST_ELEMENT_T;

typedef struct

{

UNSIGNED32 defaultVal; /* default value or size of domains */

#ifdef CONFIG_LIMITS_CHECK

UNSIGNED32 minRange; /* min. range of object element */

UNSIGNED32 maxRange; /* max. range of object element*/

#endif

INTEGER8 size; /* size of element in Bytes

if size negative object is value

a signed type*/

UNSIGNED8 attribute; /* domain type = 1, short desc = 2,

reserved = 4, num_val = 0x10,

read permitted = 0x20,

write permitted = 0x40,

write permitted = 0x40,

pdoMAPPING allowed = 0x80 bit-coded ! */

} VALUE_DESC_T;

Page 176 of 180 CANopen Library Version: 4.5

11. Index

- A -

Abort

codes, SDO 48

Domain Transfer 44

Domain Transfer, SDO 44

addGuardingSlave() 75

addRemoteNodeReq() 75, 77

addTimerEvent() 46

- B -

block transfer, SDO 30

- C -

CAL 13

cal_conf.h 36, 140

callback functions 44

CAN, error 31

CANopen gateway 135

changeTimerEvent() 46

checkActiveTimer() 46

checklist, problem 157

clearParameterInd() 89

CO_APPL_PART_ALLOC() 131

CO_APPL_PART_RELEASE() 131

CO_COM_PART_ALLOC() 131

CO_COM_PART_RELEASE() 131

CO_CONFIG_ENABLE_OBJ_CALLBACK

105

CO_LOST_CONNECTION 74

CO_LOST_GUARDING_MSG 74

CO_NEW_RX_MSG() 131

CO_OBJ_CB_T 105

CO_OK 43

cob-ID, priority 25

CONFIG_BIT_ENCODING 62

CONFIG_BLOCK_CRC 58

CONFIG_BLOCK_MAX_CNT 58

CONFIG_BLOCK_MIN_DAT ASIZE 58

CONFIG_LARGE_TIMER 46

CONFIG_VIRTUAL_OBJECTS 101

configuration, gateway 137

confirmation, service 154

CPU, Driver 124

createNetworkReq() 77

- D -

DCF 33

defineEmcy() 69

defineHeartbeatConsumer() 77

definePdo() 62

defineSdo() 47

defineSrdo() 96

defineSync() 72

Device Configuration File 33

directory structure 10

dispatcher list, MPDO 69

domain transfer 52

DOMAIN_T 52

Driver

CPU 124

RT OS 124

dummy mapping, PDO 20

dynSdoManInd() 59

- E -

editor settings 11

EDS 32

Electronic Data Sheet 32

emcyInd() 71

enterPreopState() 78

eraseErr() 70

error

CAN 31

codes 48

field, pre-defined 70

expedited transfer, SDO 52

Version: 4.5 CANopen Library Page 177 of 180

- F -

field, pre-defined error 70

Frames, RTR, Remote 124

function, indication 152

- G -

gateway, configuration 137

getDomainAddr() 53

getDomainSize() 53

getNodeId() 45

getVirtualObjAddr() 101, 104

guard time 21

guarding time 75

- I -

identity object, LSS 89

indication

function 152

service 154

inhibit time, PDO 18, 63

initialization 148

initSdoManager() 59

Inquiry Services, LSS 93

inter-driver communication 137

inter-line communication 137

- L -

life

guarding 21, 76

time 75

time factor 21

Line switching, Redundancy 84

LIST_ELEMENT_T 38

loadParameterInd() 89

LSS 89

identity object 89

Inquiry Services 93

lssMasterCon() 93

- M -

Manager, SDO 58

mapSrdo() 96

message distributor 130

mGuardErrInd() 73, 77

MPDO 30

dispatcher list 69

scanner list 68

mpdoInd() 66

multi-line 29

system 135

- N -

network master 135

newStateInd() 78

NMT, Reset

Reset Application 78

Reset Communication 78

nmtslave.c 78

nmtslave.c 36

node-ID 155

nonvolatile memory 88

- O -

object dictionary shadow 137

objects.h 52

operating system

message-distributor 130

multi-tasking 135

security-mechanism 129

single-tasking 135

OPERATIONAL 23, 64

optimization 155

- P -

PDO

COB-ID 18

dummy mapping 20

inhibit time 18, 63

Synchronization 72

time triggered 64

transmission type 18

Page 178 of 180 CANopen Library Version: 4.5

pdoEventTimerInd() 64

pdoInd() 64

pre-defined error field 70

predefined error field 21

PRE-OPERATIONAL 23

problem, checklist 157

- R -

readSdoReq() 51

Redundancy 84

Line switching 84

redundancyInd() 84

Remote Frames, RTR 124

removeTimerEvent() 46

Reset

Application, NMT 78

behavior 152

reset behavior 78

Reset Communication, NMT 78

resetApplInd() 78

resetCommInd() 78

RPDO 18

RT OS, Driver 124

RTR 76

frame 22

frames 30

Remote Frames 124

rtrPdoInd() 64

- S -

Safety Relevant Data Objects 95

saveParameterInd() 89

scanner list, MPDO 68

SCT, SRDO 95

SDO

Abort codes 48

Abort Domain Transfer 44

block transfer 30

cob-ID 15

expedited transfer 52

Manager 58

sdoRdCon() 51

sdoRdInd() 48

sdoReadCon() 51

sdoWrCon() 51

sdoWrInd() 48

sdoWriteCon() 51

security mechanism 129

service

confirmation 154

indication 154

setCobId() 47, 50

setCommPar() 62, 70

setDomainAddr() 53

setDomainSize() 53

sGuardErrInd() 73

shadow object dictionary 137

shutdown behavior 151

single-tasking system 133

SRDO 95

SCT 95

SRVT 95

srdoInd() 96

SRVT, SRDO 95

startRemoteNodeReq() 78

STOPPED 23

stopRemoteNodeReq() 78

Synchronization, PDO 72

SYNC-PDO 64

- T -

tab-stop editor 11

templates 139

thread-save 133

time triggered, PDO 64

TPDO 18

transmission type, PDO 18

- U -

userTimerEvent() 46

usr_301.c 152

Version: 4.5 CANopen Library Page 179 of 180

- V -

VALUE_DESC_T 38

- W -

writeEmcyReq() 70

writeLssStoreParameterReq() 93

writeMPdoReq() 66–67

writePdoReq() 63

writeSdoReq() 51

writeSrdoReq() 96

Page 180 of 180 CANopen Library Version: 4.5

	1. Introduction
	1.1. Applicability of the Documentation
	1.2. Product Overview
	1.3. System Requirements
	1.4. Additional Tools
	1.5. Installation
	1.6. Support by port

	2. CANopen Communication Model
	2.1. Object Dictionary
	2.2. Service Data Objects
	2.3. Process Data Objects
	2.4. Emergency Objects
	2.5. SYNC Objects
	2.6. Time Stamp Objects
	2.7. Error Control Mechanisms
	2.7.1. Node Guarding
	2.7.2. Heartbeat

	2.8. Boot-up Message
	2.9. Network Behavior
	2.10. CANopen Device Profiles

	3. CANopen Library
	3.1. CANopen Library Concept
	3.2. Design Flow
	3.3. CANopen Library Structure
	3.3.1. Object Dictionary
	3.3.2. CANopen Library Configuration
	3.3.2.1. Configuration Header
	3.3.2.2. Coding of 64-bit Values

	4. Using the CANopen Library
	4.1. Service Definition Interface
	4.2. Service Request Interface
	4.3. Service Indication/Confirmation Interface
	4.4. Configuration Interface
	4.5. Timer Usage
	4.6. SDO Usage
	4.6.1. SDO-Server
	4.6.2. SDO-Client
	4.6.3. Domain Up/Download
	4.6.4. SDO Block Transfer
	4.6.5. Dynamic SDO Connections
	4.6.5.1. SDO Requester

	4.7. PDO Usage
	4.7.1. Multiplexed PDO Usage
	4.7.1.1. Destination Address Mode
	4.7.1.2. Source Address Mode

	4.8. Emergency
	4.9. SYNC Usage
	4.10. Error-Control-Mechanisms
	4.10.1. Node Guarding
	4.10.2. Heartbeat

	4.11. NMT Service Usage
	4.12. Flying Master Usage
	4.12.1. Common Hints
	4.12.2. Flying CANopen Master Functionality
	4.12.2.1. CANopen Master Boot-up Process
	4.12.2.2. Detection of an active CANopen Master
	4.12.2.3. Master Negotiation
	4.12.2.4. Force Master Negotiation
	4.12.2.5. Detecting CANopen Master Capable Devices

	4.12.3. Application Programming Interface

	4.13. Redundant Communication
	4.13.1. Line Switching
	4.13.1.1. Line Negotiation at Boot-up
	4.13.1.2. Line Monitoring

	4.13.2. Message Transmission
	4.13.3. Transmission of PDO
	4.13.4. Indication Function

	4.14. Nonvolatile Memory Usage
	4.15. Layer Setting Services
	4.15.1. LSS Communication
	4.15.1.1. Switching Between Sub-States

	4.15.2. Configuration Services
	4.15.3. Inquiry Services
	4.15.4. FastScan Service

	4.16. Safety with CANopen
	4.16.1. Operation of Safety Critical Communication
	4.16.2. Implementation
	4.16.2.1. Object Dictionary
	4.16.2.2. Initializing of SRDO
	4.16.2.3. Communication with SRDOs
	4.16.2.4. Transmitting SRDOs
	4.16.2.5. Reception of SRDO
	4.16.2.6. Solution for SRDO Reception

	4.17. LED Usage Conforming to CANopen
	4.17.1. Implementation

	4.18. Virtual Objects
	4.18.1. Flow Chart for SDO Write Access
	4.18.2. Flow Chart for SDO Read Access
	4.18.3. User-Functions
	4.18.3.1. getVirtualObjAddr

	4.19. Object Callbacks
	4.19.1. Object Callbacks Function Pointer
	4.19.2. Object Callbacks Configuration
	4.19.3. Object Callbacks Usage

	5. Driver Interface
	5.1. CAN Driver
	5.1.1. Prepared CAN Driver
	5.1.2. CANopen Driver API
	5.1.3. CAN Driver Basics
	5.1.3.1. Adaptation of the flag handling
	5.1.3.2. Adaptation of the FlushMbox() function

	5.1.4. Buffer Handling in Embedded Drivers
	5.1.5. Interrupt Handling
	5.1.6. Driver Example XC164
	5.1.6.1. Basics
	5.1.6.2. Bit-timing Table

	5.1.7. Specials about using Remote Frames (RTR)

	5.2. CPU/RTOS Driver
	5.2.1. Timer XC164
	5.2.2. Customer Timer Implementation
	5.2.3. ISR Management

	5.3. Compiler Adaptations
	5.4. Application Dependent Adaptations
	5.5. Initial Operation

	6. CANopen Library on Multi-Tasking Systems
	7. Multi-Line Version
	8. How to Make an Application
	8.1. Preparations
	8.2. Configuration of the Hardware
	8.2.1. Usage of the CANopen Design Tool
	8.2.1.1. General Settings
	8.2.1.2. Hardware Settings
	8.2.1.3. Object Dictionary Configuration

	8.3. Building the Object Dictionary
	8.4. Coding of the Main Routine
	8.5. Coding of the Reset Behavior
	8.6. Coding of the Indication Behavior
	8.7. Optimization

	9. Trouble Shooting
	10. Appendices
	10.1. Appendix Header Files
	10.2. Appendix Data Types
	10.3. Appendix SDO Abort Codes
	10.4. Appendix Tools
	10.4.1. CANopen Design Tool
	10.4.2. CANopen Server
	10.4.3. CANopen Device Monitor
	10.4.4. CAN-REport

	10.5. Appendix Abbreviations
	10.6. Appendix Modification for Version V4.x
	10.6.1. Modification Summary V4.5
	10.6.2. Modification Summary V4.4
	10.6.2.1. Modification of the User Interface

	10.6.3. Modification Summary V4.3
	10.6.3.1. Modification of the User Interface
	10.6.3.2. Changes in the Naming of Configuration Constants

	10.6.4. Modification Summary V4.2
	10.6.4.1. Modification of the User Interface

	10.6.5. Modification Summary V4.1
	10.6.5.1. Modification of the User Interface
	10.6.5.2. Driver Interface
	10.6.5.3. Structures
	10.6.5.4. Tools

	10.6.6. Modification Summary V4.0
	10.6.6.1. Modification of the User Interface
	10.6.6.2. Modification of the Object Dictionary
	10.6.6.3. Structures

	11. Index

