To our customers,

Old Company Name in Catalogs and Other Documents

On April 1%, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

LENESANS

10.

11.

12.

Notice

All information included in this document is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

Y ou should not ater, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. Y ou should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonabl e care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errorsin or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific’. The recommended applications for each Renesas Electronics product depends on the product’ s quality grade, as
indicated below. Y ou must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “ Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “ Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is“ Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home el ectronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systemsfor life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

Y ou should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software aloneis very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with al applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note1) “RenesasElectronics’ asused in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

To all our customers

Regarding the change of names mentioned in the document, such as Mitsubishi
Electric and Mitsubishi XX, to Renesas Technology Corp.

The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas
Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog
and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.)
Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi
Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names
have in fact all been changed to Renesas Technology Corp. Thank you for your understanding.
Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been
made to the contents of the document, and these changes do not constitute any alteration to the

contents of the document itself.

Note : Mitsubishi Electric will continue the business operations of high frequency & optical devices

and power devices.

Renesas Technology Corp.
Customer Support Dept.
April 1, 2003

1RENESAS

RenesasTechnology Corp.

LENESAS

N
@)
=~
S
)
-
®
<
)
-
-
=

7900 Series

Software Manual

MITSUBISHI 16-BIT SINGLE-CHIP
MICROCOMPUTER
7700 Family / 7900 Series

—
O

Renesas Electronics]]
WWW.renesas.com New pUbllcatlon, 1997.07

keep safety first in your circuit designs !

e Mitsubishi Electric Corporation puts the maximum effort into making semiconductor
products better and more reliable, but there is always the possibility that trouble
may occur with them. Trouble with semiconductors may lead to personal injury,
fire or property damage. Remember to give due consideration to safety when
making your circuit designs, with appropriate measures such as (i) placement
of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention
against any malfunction or mishap.

Notes regarding these materials

e These materials are intended as a reference to assist our customers in the
selection of the Mitsubishi semiconductor product best suited to the customer’s
application; they do not convey any license under any intellectual property rights,
or any other rights, belonging to Mitsubishi Electric Corporation or a third party.

e Mitsubishi Electric Corporation assumes no responsibility for any damage, or
infringement of any third-party’s rights, originating in the use of any product
data, diagrams, charts or circuit application examples contained in these materials.

e All information contained in these materials, including product data, diagrams
and charts, represent information on products at the time of publication of these
materials, and are subject to change by Mitsubishi Electric Corporation without
notice due to product improvements or other reasons. It is therefore recommended
that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi
Semiconductor product distributor for the latest product information before
purchasing a product listed herein.

e Mitsubishi Electric Corporation semiconductors are not designed or manufactured
for use in a device or system that is used under circumstances in which human
life is potentially at stake. Please contact Mitsubishi Electric Corporation or an
authorized Mitsubishi'Semiconductor product distributor when considering the
use of a product contained herein for any specific purposes, such as apparatus
or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea
repeater use.

e The prior written approval of Mitsubishi Electric Corporation is necessary to
reprint or reproduce in whole or in part these materials.

e If these products or technologies are subject to the Japanese export control
restrictions, they must be exported under a license from the Japanese government
and cannot be imported into a country other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of
JAPAN and/or the country of destination is prohibited.

e Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi
Semiconductor product distributor for further details on these materials or the
products contained therein.

REVISION DESCRIPTION LIST

7900 Series Software Manual

Rev. Revision Description Rev.
No. date
1.0 | First Edition 980731

(1/2)

Preface

This manual describes the software of the Mitsubishi
CMOS 16-bit microcomputers, the 7900 Series. After
reading this manual, the users will be able to
understand the instruction set and the features about
software of the 7900 Series, so that they can utilize
their capabilities fully.

Table of contents

Table of contents

CHAPTER 1. DESCRIPTION

CHAPTER 2. [CENTRAL PROCESSING UNIT (CPU)]

.l _Central ProcessiNg UNIT __L.....ooooiiiiiiiiiiiiiiiiii e 2-2
E.L.1 AccUumuUIAtOr [ACCHcooiiiiiiiiiiiiiiiiie e e e e e e e e e e e s b 2-3
... 2-3
B.1.3 IndeX reqisSter Y (Y ..o 2-3
o ST Yo Yo Tt T £ [TR 2-4
B.1.5 Program counter (POociiiiiiiiiiii e 2-5
R T TR E T TS T (=1 [25
B.1.7 Data bank register (DTccccooiiiieiiiiiic et 2-6

P.1.8 Direct page reqister 0 to (DPRO (o DPRJ)

EIQ Erocessor STATUS TEOISTET (P O] vveerrretereeeeeesitseeeeseeeeeeeeseseaeeeseeeeseeseeeeseesereeseeeseeesees 2-8

... 2-10
D3 ATUTESSING IOUES L veeeveeereeteeeeeeeereeeeeeeeeeeaeeeesets et ees e et e ereeeee et eeee e e e et e et eene et eereeereeeeeeeeees 2-11

E.3.2 Status of 1lags M and X]....cccoveeiiiriiiiiiiciie e 4-230
... 4-230

1.3.4 Performing arithmetic operations 1N deCIMall.......c.ooenveneeeeee e 4-230

APPENDIX

Bopendix T.]7900 Series machine inStruCtionS cccoeeviveiviieceicee e 5-2
Bopendix_Z]Hexadecimal instruction code tables —cccocevveiieiiicecee e 5-44

7900 Series Software Manual i

CHARTER 1
DESCRIPTION

DESCRIPTION

The 7900 Series is upper compatible with the conventional 7700 Family.
The following outlines the features of the 7900 Series:
e Source-level-compatible with the conventional 7700 Family. (e.g., 7700 and 7751 Series).
e Whereas the 7700 and 7751 Series respectively support 103 and 109 instructions, the 7900 Series has
its instruction set expanded to 203 instructions. The following instructions have been added:

(i) 32-bit operation instructions

(i) 8-bit-data-dedicated instructions

(i) Memory-to-memory data transfer instructions

(iv) Zero-clear instructions for register and memory

(v) Add/Subtract without-carry instructions

(vi) Add/Subtract instructions for stack pointer

(vii) OR, AND, and EOR instructions for memory

(viii) Compare instructions for memory

(ix) Signed conditional branch instructions

(x) Compare & Conditional branch instructions

(xi) Decrement & Conditional branch instructions

(xii) PC relative subroutine call instructions
Thanks to its expanded instruction set, the 7900 Series allows program sizes to be reduced by 20 to 30%
on the average from the conventional 7700 Family.
* 16 Mbytes of memory space. Various addressing modes for accessing this memory space are available.
e A 64-Kbyte space from 00000016 to OOFFFF1s can be accessed at high speed by an instruction which has

a small number of bytes. The 7900 Series has 4 direct page registers that can be used for this purpose.

« Reduced instruction execution cycles than the conventional 7700 Family.

1-2 7900 Series Software Manual

CHARTER 2
_ CENTRAL
PROCESSING UNIT

- 2.1 Central processing unit (CPU)
. 2.2 Memory space
2.3 Addressing modes

CENTRAL PROCESSING UNIT (CPU)

2.1 Central processing unit (CPU)

2.1 Central processing unit
The CPU (Central Processing Unit) has 13 registers as shown in Figure 2.1.1.

b15 b8 b7 b0
| AH ! AL Accumulator A (A)
b15 b8 b7 bo!
BH ! BL { Accumulator B (B)
1b31 E bo!
E | Accumulator E (E)
b15 b8 b7 b0
| XH ! XL | Index register X (X)
b15 b8 b7 b0
| YH ! YL | Index register Y (Y)
b15 b8 b7 b0
| SH ! SL | Stack pointer (S)
b7 b0
Data bank register (DT)
b23 b16 b15 b8 b7 b0
| PG | PCH ! PCL | Program counter (PC)
b7 bo
Cormmmmmmmsmmssssssossoo oo Program bank register (PG)
b15 b8 b7 b0
| DPROH | DPROL | Direct page register 0 (DPRO)
b15 b8 b7 b0
| DPR1H ' DPR1L | Direct page register 1 (DPR1)
b15 b8 b7 b0
| DPR2H ' DPR2L | Direct page register 2 (DPR2)
b15 b8 b7 b0
| DPR3H ' DPR3L | Direct page register 3 (DPR3)
b15 b8 b7 b0
| PSH PSL | Processor status register (PS)
{515 b10 b8 b7 b6 b5 b4 b3 b2 bl boﬁg
[o]olololo] w Inv[mlx|0]ilz]c]
: oo t---cCarryflag
o e zenotag
R Interrupt disable flag
: P e Decimal mode flag
: Dol e Index register length flag
i Data length flag
. Overflow flag
E o Negative flag
T TR RRERRIT R Processor interrupt priority level

Fig. 2.1.1 CPU registers structure

2-2 7900 Series Software Manual

CENTRAL PROCESSING UNIT (CPU)

2.1 Central processing unit

2.1.1 Accumulator (Acc)
Accumulators A and B are available. Also, accumulators A and B can be connected in series for use as
a 32-bit accumulator (accumulator E).

(1) Accumulator A (A)
Accumulator A is the main register of the microcomputer. The transaction of data such as calculation,
data transfer, and input/output are performed mainly through accumulator A. It consists of 16 bits, and
the low-order 8 bits can also be used separately. The data length flag (m) determines whether the
register is used as a 16-bit register or as an 8-bit register. Flag m is a part of the processor status
register which is described later. When an 8-bit register is selected, only the low-order 8 bits of
accumulator A are used and the contents of the high-order 8 bits is unchanged.

(2) Accumulator B (B)
Accumulator B is a 16-bit register with the same function as accumulator A. Accumulator B can be
used instead of accumulator A. The use of accumulator B, however except for some instructions,
requires more instruction bytes and execution cycles than that of accumulator A. Accumulator B is also
controlled by the data length flag (m) just as in accumulator A.

(3) Accumulator E (E)
This 32-bit accumulator consists of accumulator A for low-order 16 bits and accumulator B for high-
order 16 bits. This accumulator is used for instructions that handle 32-bit data. It is not controlled by
flag m.

2.1.2 Index register X (X)

Index register X consists of 16 bits and the low-order 8 bits can also be used separately. The index register
length flag (x) determines whether the register is used as a 16-bit register or as an 8-bit register. Flag x
is a part of the processor status register which is described later. When an 8-bit register is selected, only
the low-order 8 bits of index register X are used and the contents of the high-order 8 bits is unchanged.
In an addressing mode in which index register X is used as an index register, the address obtained by
adding the contents of this register to the operand’s contents is accessed.

In the MVP, MVN or RMPA instruction, index register X is used, also.

2.1.3 Index register Y (Y)

Index register Y is a 16-bit register with the same function as index register X. Just as in index register
X, the index register length flag (x) determines whether this register is used as a 16-bit register or as an
8-bit register.

7900 Series Software Manual 2-3

CENTRAL PROCESSING UNIT (CPU)

2.1 Central processing unit (CPU)

2.1.4 Stack pointer (S)

The stack pointer (S) is a 16-bit register. It is used for a subroutine call or an interrupt. It is also used when
addressing modes using the stack are executed. The contents of S indicate an address (stack area) for
storing registers during subroutine calls and interrupts. Bank 016 is specified for the stack area. (Refer to
“2.2 Memory space. ”

When an interrupt request is accepted, the microcomputer stores the contents of the program bank register
(PG) at the address indicated by the contents of S and decrements the contents of S by 1. Then the
contents of the program counter (PC) and the processor status register (PS) are stored. The contents of
S after accepting an interrupt request is equal to the contents of S decremented by 5 before accepting of
the interrupt request. (Refer to Figure 2.1.2.)

When completing the process in the interrupt routine and returning to the original routine, the contents of
registers stored in the stack area are restored into the original registers in the reverse sequence (PS- PC - PG)
by executing the RTI instruction. The contents of S is returned to the state before accepting an interrupt
request.

The same operation is performed during a subroutine call, however, the contents of PS is not automatically
stored. (The contents of PG may not be stored. This depends on the addressing mode.)

During interrupts or subroutine calls, the other registers are not automatically stored. Therefore, if the
contents of these registers need to be held on, be sure to store them by software.

Additionally, the S’s contents become “OFFF16” at reset. The stack area changes when subroutines are
nested or when multiple interrupt requests are accepted. Therefore, make sure of the subroutine’s nesting
depth not to destroy the necessary data.

Stack area
Address

S-5

S—4 | Processor status register’s low-order byte (PS L)

S—3 | Processor status register’s high-order byte (PS H)

S-2 Program counter’s low-order byte (PC L)
S-1 Program counter’s high-order byte (PC H)
S Program bank register (PG)

M

e “S” is the initial address that the stack pointer (S)
indicates at accepting an interrupt request.
The S’s contents become “S — 5” after storing the
above registers.

Fig. 2.1.2 Contents of stack area after accepting interrupt request

2-4 7900 Series Software Manual

CENTRAL PROCESSING UNIT (CPU)

2.1 Central processing unit

2.1.5 Program counter (PC)

The program counter is a 16-bit counter that indicates the low-order 16 bits of the address (24 bits) at
which an instruction to be executed next (in other words, an instruction to be read out from an instruction
gueue buffer next) is stored. The contents of the high-order program counter (PCH) become “FF16,” and
the low-order program counter (PCL) becomes “FE16" at reset. The contents of the program counter
becomes the contents of the reset’s vector address (addresses FFFE16, FFFF16) just after reset.

Figure 2.1.3 shows the program counter and the program bank register.

(b23) (b16)
b7 b0 b15 b8 b7 b0

PG PCH | PCL

Fig. 2.1.3 Program counter and program bank register

2.1.6 Program bank register (PG)

The memory space is divided into units of 64 Kbytes. This unit is called “bank.” (Refer to “2.2 Memory
space.”)

The program bank register is an 8-bit register that indicates the high-order 8 bits of the address (24 hits)
at which an instruction to be executed next (in other words, an instruction to be read out from an instruction
queue buffer next) is stored. These 8 bits indicate a bank.

When a carry occurs after adding the contents of the program counter or adding the offset value to the
contents of the program counter in the branch instruction and others, the contents of the program bank
register is automatically incremented by 1. When a borrow occurs after subtracting the contents of the
program counter, the contents of the program bank register is automatically decremented by 1. Therefore,
there is no need to consider bank boundaries during programming, usually.

This register is cleared to “0016” at reset.

7900 Series Software Manual 2-5

CENTRAL PROCESSING UNIT (CPU)

2.1 Central processing unit (CPU)

2.1.7 Data bank register (DT)
The data bank register is an 8-bit register. In the following addressing modes using the data bank register,
the contents of this register is used as the high-order 8 bits (bank) of a 24-bit address to be accessed.

Use the LDT instruction when setting a value to this register.
This register is cleared to “0016” at reset.

e Addressing modes using data bank register
*Direct indirect
*Direct indexed X indirect
*Direct indirect indexed Y
*Absolute
eAbsolute indexed X
eAbsolute indexed Y
*Absolute bit relative
*Stack pointer relative indirect indexed Y
*Multiplied accumulation

2.1.8 Direct page register 0 to 3 (DPRO to DPR3)

The direct page register is a 16-bit register. The direct page registers (hereafter called the “DPRn”) have
been enhanced from the conventional 7700 Family.

These registers are used to access the 64-Kbyte space in bank 0 efficiently.

The direct page register select bit of processor mode register 1 determines whether to use DPRO only or
DPRO through DPR3. The function of this bit is described below.

Table 2.1.1 Direct page register selection

Direct page register select bit
0 1
DPRn that can be used DPRO DPRO to DPR3
Block size accessible from DPRn as base address 256 bytes 64 bytes
Remarks Compatible with conventional 7700 Family, -

Note : Once the direct page register select bit is set, do not change its value.

2-6 7900 Series Software Manual

CENTRAL PROCESSING UNIT (CPU)

2.1 Central processing unit

m When direct page register select bit = “0” m When direct page register select bit = “1”
B B 0000:¢] Direct hen DPRO = 0000
003F1s irect page area when = 16
004016 i
Direct page area when DPR1 = 004016
007F16
0800 .
Bank 016 Bank 016 1 :I Direct page area when DPR2 = 080016
083F16
0F0016 .
Direct page area OFCO1s
OFFFus when DPRO = “0F0016" OFFFss] Direct page area when DPR3 = OFCO1s
A A= = =
N FFFFe .. FFFF16
1000016 1000016

-
Bank 116
|

-
Bank 116
|

Notes 1: The number of cycles required to generate an address is smaller by 1 when the low-order 8 bits of DPRn are “0016.”
2: If the address value obtained by adding the DPRn’s contents and offset value exceeds bank Ote, the processor accesses bank 16.

Fig. 2.1.4 Direct page area selection example

When the contents of low-order 8 bits of the direct page register is “0016,” the number of cycles required
to generate an address is smaller by 1 than the number when its contents are not “0016.” Accordingly,
the access efficiency can be enhanced in this case.

This register is cleared to “000016” at reset.

e Addressing modes using direct page register
*Direct
eDirect indexed X
eDirect indexed Y
eDirect indirect
eDirect indexed X indirect
eDirect indirect indexed Y
eDirect indirect long
«Direct indirect long indexed Y
eDirect bit relative

7900 Series Software Manual 2-7

CENTRAL PROCESSING UNIT (CPU)

2.1 Central processing unit (CPU)

2.1.9 Processor status register (PS)

The

processor status register is an 11-bit register.

Figure 2.1.5 shows the structure of the processor status register.

b15 bl4 bl3 bl2 bll b10 b9 b8 b7 b6 b5 b4 b3 b2 bl b0
oOofO0O]jO0O] 0] O IPL N[V m] x| D] Z|C

Processor staus
register (PS)

Note: Bits 15 to 11 are always “0” when reading. And fix each of bits 15-11
to “0” when the contents of PS is changed.

Fig. 2.1.5 Processor status register structure

(1)

(2)

(3)

4)

®)

Bit 0: Carry flag (C)

It retains a carry or a borrow generated in the arithmetic and logic unit (ALU) during an arithmetic
operation. This flag is also affected by shift and rotate instructions.

Use the SEC or SEP instruction to set this flag to “1”, and use the CLC or CLP instruction to clear
it to “0".

The contents of this flag is undefined at reset.

Bit 1: Zero flag (2)

It is set to “1” when the result of an arithmetic operation or data transfer is “0,” and cleared to “0” when
otherwise. This flag is invalid in the decimal mode addition.

Use the SEP instruction to set this flag to “1,” and use the CLP instruction to clear it to “0.”

The contents of this flag is undefined at reset.

Bit 2: Interrupt disable flag (I)

It disables all maskable interrupts. Interrupts are disabled when this flag is “1.” When an interrupt
request is accepted, this flag is automatically set to “1” to avoid multiple interrupts. Use the SEI or
SEP instruction to set this flag to “1,” and use the CLI or CLP instruction to clear it to “0.” This flag
is set to “1” at reset.

Bit 3: Decimal mode flag (D)

It determines whether addition and subtraction are performed in binary or decimal. Binary arithmetic
is performed when this flag is “0.” When it is “1,” decimal arithmetic is performed with each 8-bit
treated as 2-digit decimal (at m = 1) or each 16-bit treated as 4-digit decimal (at m = 0). Decimal
adjust is automatically performed. Decimal operation is possible only with the ADC, ADCB, SBC and
SBCB instructions. Use the SEP instruction to set this flag to “1,” and use the CLP instruction to clear
it to “0.” This flag is cleared to “0” at reset.

Bit 4: Index register length flag (x)

It determines whether each of index register X and index register Y is used as a 16-bit register or an
8-bit register. That register is used as a 16-bit register when this flag is “0,” and as an 8-bit register
when it is “1” (Note). Use the SEP instruction to set this flag to “1,” and use the CLP instruction to
clear it to “0.” This flag is cleared to “0” at reset.

Note: When transferring data between registers which are different in bit length, the data is transferred
with the length of the destination register, but except for the TXA, TYA, TXB, TYB, and TXS
instructions.

7900 Series Software Manual

(6)

(1)

(8)

9)

CENTRAL PROCESSING UNIT (CPU)

2.1 Central processing unit

Bit 5: Data length flag (m)

It determines whether to use data as a 16-bit unit or as an 8-bit unit. A data is treated as a 16-bit unit
when this flag is “0,” and as an 8-bit unit when it is “1” (Note).

Use the SEM or SEP instruction to set this flag to “1,” and use the CLM or CLP instruction to clear
it to “0.” This flag is cleared to “0” at reset.

Note: When transferring data between registers which are different in bit length, the data is transferred
with the length of the destination register, but except for the TXA, TYA, TXB, TYB, and TXS
instructions.

Bit 6: Overflow flag (V)

It is used when adding or subtracting with a word regarded as signed binary. The overflow flag is set
to “1” when the result of addition or subtraction exceeds the range between —2147483648 and +2147483647
(when 32-bit length operation), the range between —32768 and +32767 (when 16-bit length operation),
or the range between -128 and +127 (when 8-bit length operation).

The overflow flag is also set to “1” when the result of division exceeds the length of the register which
will store the result, in the DIV or DIVS instruction. This flag is invalid in the decimal mode. Use the
SEP instruction to set this flag to “1,” and use the CLV or CLP instruction to clear it to “0.”

The contents of this flag is undefined at reset.

Bit 7: Negative flag (N)

It is set to “1” when the result of arithmetic operation or data transfer is negative. (The most significant
bit of the result is “1.”) It is cleared to “0” in all other cases. This flag is invalid in the decimal mode.
Use the SEP instruction to set this flag to “1,” and use the CLP instruction to clear it to “0.”

The contents of this flag is undefined at reset.

Bits 10 to 8: Processor interrupt priority level (IPL)

These 3 bits can determine the processor interrupt priority level to one of levels 0 to 7. The interrupt
is enabled when the interrupt priority level of a required interrupt, which is set in each interrupt control
register, is higher than IPL. When an interrupt request is accepted, IPL is stored in the stack area,
and IPL is replaced by the interrupt priority level of the accepted interrupt request.

There are no instruction to directly set or clear the bits of IPL. IPL can be changed by storing the new
IPL into the stack area and updating the processor status register with the PUL or PLP instruction.
The contents of IPL is cleared to “0002” at reset.

7900 Series Software Manual 2-9

CENTRAL PROCESSING UNIT (CPU)

2.2 Access space

2.2 Access space

The memory space of the 7900 Series is a 16-Mbyte space from addresses 0is to FFFFFFis. (Refer to the
Figure 2.2.1.) However, addresses FF0000:s to FFFFFF1s cannot be used because this area is reserved.
A 24-bit address is generated by combination of the program counter (PC), which is 16 bits of structure, and
the program bank register (PG), which is 8 bits of structure. The memory space of the 7900 Series is divided
into units of 64 Kbytes. This unit is called “bank.” The PG indicates the bank number.

The memory and 1/O devices are assigned in the same access space. Accordingly, it is possible to perform
transfer and arithmetic operations using the same instructions without discrimination of the memory from
I/O devices.

00000016
SFR area

Internal RAM area

: ; Bank 016
Internal ROM area
OOFFFFws | .
01000016
: ; Bank 116
02000016 F 777" AREELEEEE : '
FE000016: ™ ~"""""7" L S . 4
E Bank FEuis
FEFFFF1s —+— |:| : Indicates memory assignment of internal areas.
FFO0001s 7777 immsmmsmmsny ——(f——— T

t ' - Indicates that nothing is assigned.
Bank FFis booe ?

FEFEEF16 i : i : Reserved area (Do not use.)

Note : Memory assignment of internal RAM area varies according to the type of microcomputer.
Refer to the latest catalogues or datasheets.

SFR : Special Function Register

Fig. 2.2.1 7900 Series’s access space

2-10 7900 Series Software Manual

ADDRESSING MODES

2.3 Addressing modes

2.3 Addressing modes

2.3.1 Overview

To execute an instruction, when the data required for the operation is retrieved from a memory or the result
of the operation is stored to it, it is necessary to specify the address of the memory location in advance.
Address specification is also necessary when the control is to jump to a certain memory address during
program execution. Addressing means the method of specifying the memory address.

The memory access of the 7900 Series microcomputers is reinforced with 27 different addressing modes.

2.3.2 Explanation of addressing modes
Each addressing mode is explained on the corresponding page indicated below:

[mplied addressing Mode (IMPYcooviririeiriiereeeieieee e 2-12
pmmediate addressing mode (IMM]cccooviiiiiiiiiiiiin e 2-13
Pccumulator addressing mode (A]........cccccoovviriiiiiiiiiiiiciiie e 2-15
Direct addressing mode (DIRY.......vvvoiiireiiiiiee e 2-16
Direct indexed X addressing mode (DIRX]cccooevviieiiiniiiccieenn, 2-19
Direct indexed Y addressing mode (DIR,Y]uviiiiriiiiiiiiiiieieieiiieeee 2-22
Direct indirect addressing mode ((DIR))vvvveeeeeriiiiiieeieiiriiiiieeee e 2-23
Direct indexed X indirect addressing Mode ((DIRX)] . ceeeeeeveeeeeeeereeenn. 2-25
Direct indirect indexed Y addressing mode ((DIRY)] ccccvvvivvveniiiiinnennn. 2-28
Direct indirect long addressing mode (L (DIR)] ...c..ovvvvvvvveeniiiiiiiiiiennnn, 2-31
Direct indirect long indexed Y addressing mode (L (DIR),Y)...cccccvv.... 2-33

Pbsolute addressing MOTE (ABS] - ---ereeereseerrseerereseereseeneeseenssesnsseaessnees 2-36
Ebsolute indexed X addressing mode (ABS.X].........cccevvereiiieiineiinnnns 2-39

Absolute Indexed Y addressing mode (ABS YN oo ooovveeeiiiiiiaeeeeeeeeiiiennn, 2-42
Absolute long addressing mode (ABLY.............ocoeeeiiiiiiiiiinnc i, 2-45
Absolute fong indexed X addressing mode (ABL X).............cccceeeennnn. 2-47
Pbsolute indirect addressing Mode ((ABSvvvevreurrereseereeeeneennes 2-49
IAbsolute indirect long addressing mode (L (ABS)).......ccooveevviiiiiiiinnnnnns 2-50
Pbsolute indexed X indirect addressing mode ((ABS X))]........ccccoevvnne 2-51
Btack addressing Mode (STRN -...oveeeeeeeeeeeeeeeeeeeee oo 2-52
Relative addressing mode (REL).........cccoooiiiiiiiiiiiinci 2-55
Direct bit relative addressing mode (DIRDR)} ..., 2-56
JAbsolute bit relative addressing mode (ABS,D,R)........cccvevviiiiiiiiiiinns 2-58
[Stack pointer relative addressing mode (SRY........coovvvviiiiiiiii e 2-60
[Stack pointer relative indirect indexed Y addressing mode ((SR).Y].... 2-61
Block transter addressing mode (BLK)].......c...cooooeiiiiiiiiiii, 2-64

[MuTtiplied accumulation addressing mode (Muluplied accumulation] 2-66

Note: Unless otherwise noted, in each explanation diagram for the addressing mode of which name
includes “direct,” “Direct page register” means DPRO only.

7900 Series Software Manual 2-11

Implied

Mode : Implied addressing mode
Function These instructions do not have an operand in the mnemonic.
ex. : Mnemonic Machine code
CLC 1416
C flag
ps LI P Tl2l2]2[2[2]2]?]2]2[2]2]
ps LT Tl 12[2[2[2]2]2[2[2[2]2]0]
ex. : Mnemonic Machine code
TXA Adis
(m="1," x="1")
X | | DATAL |
\ The high-order byte is \l{
not changed.
A ¥ | DATAL |
ex. : Mnemonic Machine code
TXA Adis
(m="0," x="0")
X | DATAH | DATAL |
A | DATA+ | DATAL |

2-12 7900 Series Software Manual

Immediate

Mode Immediate addressing mode

Function

ex. : Mnemonic Machine code

PG

ADD A, #0A5H 2616 A516
(m="1") Memory
Op Code (2616)
A — A+ AS16 | — | Operand (A51e)

ex. : Mnemonic Machine code
ADD A, #0A5B7H 2616 B716 Abis

PG

PG

(m=07) Memory
Op Code (2616)
. Operand (B716)
A — A+| AS16: B716| «
: Operand (Abz1e)

ex. : Mnemonic Machine code

PG

PG

LDX #0A5H C616 Abis
(x="1") Memory
Op Code (C616)
X < | AS56| — [Operand (A516)

PG

These instructions operate with a register and a immediate value.

000015 |

| Bank PG

FFFFis |

000015 |

Bank PG

FFFF1s |

000015 |

! Bank PG

FFFFis |

7900 Series Software Manual

2-13

ex.

: Mnemonic

LDX #0A5B7H
(=0")

Immediate

Machine code
C616 B716 Abi16

PG

Op Code (C61s6)

X <| Ab16: B716

Operand (B716)

Operand (Abzie)

PG

000016

i Bank PG

FFFFis |

2-14

7900 Series Software Manual

Accumulator

Mode . Accumulator addressing mode

Function : These instructions manipulate the contents of an accumulator.

ex. : Mnemonic

Machine code
1316

.

ROL A

(m="1")
L b7
Carry flag

ex. : Mnemonic

Accumulator A

Machine code
1316

b0

ROL A

(m="0")
L b15
Carry flag

Accumulator A

7900 Series Software Manual

2-15

Direct

Mode . Direct addressing mode

Function : The memory contents in bank O specified by the result of adding the instruction’s operand and the
contents of the direct page register are an actual data. However, if the value derived by adding
the instruction’s operand and the direct page register’s content’s exceeds the bank 0is range,
memory in bank 1 is specified.

The direct page register select bit of processor mode register 1 allows the user to choose one of
the following options :
* Use direct page register 0 (DPRO) only.
In this case, specify the offset from DPRO in length of 8 bits.
« Use direct page registers 0 through 3 (DPRO through 3).
In this case, use the high-order 2 bits of the operand (8 bits) to specify the direct page register
and the low-order 6 bits to specify the offset.

< Diect addressing mode>

ex. : Mnemonic Machine code
ADD A, 02H 2A16 0216
(m:HlH)
Memory
000015 Bank O1s
A — A+|DATA| « DATA 123615 <+
____________________________ FFFFis __!
Direct page
Op Code (2A16) register
Operand (021s) + 1123416 | = 123616
ex. : Mnemonic Machine code
ADD A, 02H 2A16 0216
(m=“0") Memory
000015 : Bank O1s
, DATAL 123615 <]
A — A+ |DATAH! DATAL| :
; DATAH 123716
____________________________ FFFFis ...
Direct page
Op Code (2A16) register
Operand (0216) + 1123416 | = 123616

2-16 7900 Series Software Manual

Direct

ex. : Mnemonic Machine code
LDX 02H 0216 0216
(x="1")
Memory
000016 ; Bank O1s
X |pAaTA| o DATA 123616 =<———
FFFFis |
Direct page
Op Code (0216) register
Operand (021s) + |123416 | = 123616
ex. : Mnemonic Machine code
LDX 02H 0216 0216
(X:“On)
Memory
000016 ; Bank 016
. DATAL 123616 <—'—
X « |DATAH:DATAL| — ;
: DATAH ;
FFFFis |
Direct page
Op Code (0216) register
Operand (021s) + |123416 | = 123616

7900 Series Software Manual 2-17

Direct

<Extension direct addressing mode>

ex. : Mnemonic Machine code
ADD A, 42H 2A16 4216
(x="0")
Memory
000016 ; Bank Q16
. DATAL 200216
A — |DATAWDATAL| — :
: DATAH ;
FFFFis « !
Direct page
Op Code (2A16) register 1
Operand (4216) + 200016 | = 200216

------ Operand (4216)------3
01000010
L 1

DPR1 Offset (0216)
specified

2-18 7900 Series Software Manual

Direct Indexed X

Mode . Direct indexed X addressing mode

Function : The contents of a memory in bank 016 are an actual data. This memory location is specified by
the result of adding the instruction’s operand, the direct page register’s contents and the index
register X's contents. When, however, the result of adding the instruction’s operand, the direct
page register’'s contents and the index register X's contents exceeds the bank 016 or bank 116
range, the memory location in bank 116 or bank 216 is specified.

ex. : Mnemonic Machine code
ADD A, 1EH, X 2Bi1s 1Ei6
(mzul,u X:uln) Memory 3
00001 Bank 016
A — A+|DATA| « DATA 133815 =<
FFFFs
Direct page Index
Op Code (2Bas) register register XL
Operand (1Ezs) +1123416 | + E = 13381

ex. : Mnemonic Machine code
ADD A, 1EH, X 2B1s 1Eie
(M="0,” x="1") Memory)
0000z ' Bank Oz
. DATAL 133816
A — A+| DATAHDATAL| - 5
' DATAx 133915
FFFFis H
Direct page Index
Op Code (2B1s) register register XL
Operand (1Ezs) + 1123416 | + E =133816

7900 Series Software Manual 2-19

Direct Indexed X

ex. : Mnemonic Machine code
ADD A, 1EH, X 2B1s 1E1s
(m:lll,” X:HO")
Memory
A « A+| DATA| < DATA

Op Code (2Bu1s)

00001 ! Bank Ois

433815 —<—

FFFFis

Direct page Index
register register X

Operand (1Ezs)

+|123416 | + | 30E616| = 433816

ex. : Mnemonic Machine code
ADD A, 1EH, X 2B1s 1Eu1s
(mz“O,n quon) Memory

000016 ' Bank O1s

. DATAL 433815 ==
A —~ A+ DATAHE DATAL] < E
' DATAH 433915

FFFFie

Op Code (2B1s)

Direct page Index
register register X

Operand (1Ezs)

+ 123416 | + | 30E6G16] = 433816

2-20 7900 Series Software Manual

Direct Indexed X
ex. : Mnemonic Machine code
LDY 1EH, X 4116 1B1s 1E1s
(=1 Memory
000016 ; Bank 0O1e
Y «|DATA| - DATA 133815 =—
FFFFis |
Op Code (411s)
Direct page Index
Op Code (1B16) register register XL
Operand (1E 1) +[123416 | + { E61 | = 13381
ex. : Mnemonic Machine code
LDY 1EH, X 4116 1B1s 1E1s
(x="0") Memory
000016 ; Bank O1e
; DATAL 433816 i
Y « |DATAn: DATAL| ;
I DATAH 433916 ;
__________________________ FFFFis
Op Code (411s)
Direct page Index
Op Code (1B16) register register X
Operand (1E) + |123416 | + |30E61s | = 433816

7900 Series Software Manual

2-21

Direct Indexed Y

Mode . Direct indexed Y addressing mode

Function The contents of a memory in bank 016 are an actual data. This memory location is specified by
the result of adding the instruction’s operand, the direct page register’s contents and the index
register Y’'s contents. When, however, the result of adding the instruction’s operand, the direct
page register’'s contents and the index register Y's contents exceeds the bank 016 or bank 116
range, the memory location in bank 116 or bank 216 is specified.

ex. : Mnemonic Machine code
LDX 02H, Y 4116 0516 0216
(x="1)
Memory
000016 i Bank 016
X |DATA | < DATA 131C15 =—
FFFFis |
Op Code (4116)
Direct page Index
Op Code (0516) register register YL
Operand (0216) +1123416 | + i E61s =131C1s
ex. : Mnemonic Machine code
LDX 0O2H, Y 4116 0516 0216
(x="07) Memory
000016 i Bank 016
. DATAL 131Cass
X « |DATAH:DATAL| ~ 5
' DATAH 131D
FFFF1s |

Op Code (411s)
Direct page Index

Op Code (0516) register register Y

Operand (0216) + |123416 | + |OOE6G1s| = 131Cu1se

2-22 7900 Series Software Manual

Direct Indirect

Mode . Direct indirect addressing mode

Function : Specifies a sequence of 2-byte memory in bank 016 by the result of adding the instruction’s
operand to the direct page register’s contents. The contents of the memory location specified by
these 2 bytes in bank DT (DT is the data bank register’s contents) are an actual data. When,
however, the result of adding the instruction’s operand to the direct page register's contents
exceeds the bank 016 range, the memory location in bank 116 is specified.

ex. : Mnemonic Machine code
ADD A, (1EH) 1116 2016 1E1s
(m="1")
Memory
00001 ; Bank 016
12521 ADL (0115) —I
125316 ADw (1216) J
FFFFis |
Op Code (1116)
Direct page
register Op Code (201s)
123416 | + Operand (1E 1)
1
— 125216 . :
""""""""""""""" Data bank
register
A — A+| DATA| < DATA DT [120116 <———

7900 Series Software Manual 2-23

Direct Indirect

ex. : Mnemonic Machine code
ADD A, (1EH) 1116 2016 1E1s
(m:“o”)
Memory
000016 ; Bank O1e
—>125216 ADL (0116) 4‘ i
125316 ADw (1216) J i
___________________________ FFFF1s |
Op Code (1116)
Direct page
register Op Code (2016)
123416 | + Operand (1E1s6)
I
—125216 :
____________________________ Data bank
register
T DATAL DT |12011 <=—
A — A+ | DATAH: DATAL | <
’ DATAH DT |120216

2-24 7900 Series Software Manual

Direct Indexed X Indirect

Mode . Direct indexed X indirect addressing mode

Function : Specifies a sequence of 2-byte memory in bank 016 by the result of adding the instruction’s
operand, the direct page register's contents and the index register X's contents. The contents of
the memory location specified by these bytes in bank DT (DT is the data bank register’s contents)
are an actual data. When, however, the result of adding the instruction’s operand, the direct page
register’s contents and the index register X's contents exceeds the bank 016 or bank 116 range,
the memory location in bank 116 or bank 216 is specified.

ex. : Mnemonic Machine code
ADD A, (1EH, X) 1116 2116 1Ezs
(m="1," x="1")

Memory

F ADL (0015)

L ADw (1415)

Op Code (111s)

Op Code (211s)

Operand (1Eas)

000016

133816

133916

FFFFie

' Bank 016

<

<€

Direct page Index

register

register XL

+ | 123416 +- Eb616

Data bank
register

A — A+| DATA

- DATA

DT

140016

= 133816

7900 Series Software Manual

2-25

ex. : Mnemonic
ADD A, (1EH, X)

Direct Indexed X Indirect

Machine code

1116 2116 1Es

(m="0," x="1") Memory
000016 i Bank 016
r ADv. (0016) 133816
L ADw (1416) 133916
FFFFis
Op Code (111s6)
Direct page Index
Op Code (2116) register register X.
Operand (1Es) +] 12346 + E61 | = 133816
--------------------------- Data bank
register
DATAL DT | 140016
A ~ A+ DATAHE DATAL | ~ DATAH DT | 140116
X. : Mnemonic Machine code
ADD A, (1EH, X) 1116 2116 1E1s
(M="1" x="0") Memory
100001 é Bank 11s
r ADL (0015) 1033816 <
L ADw (141s) 1033916
___________________________ 1FFFFis
Op Code (111s)
Direct page Index
Op Code (2116) register register X
Operand (1Ezs) +|123446| +|FOEG1s| = 1033816
--------------------------- Data bank
\ register
A — A+| DATA| « DATA DT | 14001

2-26

7900 Series Software Manual

Direct Indexed X Indirect

ex. : Mnemonic
ADD A, (1EH, X)

Machine code
1116 2116 1Ez1e

(M="0," x="0") Memory
1000016 Bank Ls
r ADL (0016) 1033815 <
L ADw (1415) 1033916
____________________________ 1FFFF1s
Op Code (1116) .
Direct page Index
Op Code (2116) register register X
Operand (1Ezs) + 1123416 | + |FOE6G16| = 1033816
""""""""""""""""" Data bank
register
DATAL DT | 140016
A — A+ DATAx DATA.| DATAx DT | 140115

7900 Series Software Manual

2-27

Direct Indirect Indexed Y

Mode

Function

Direct indirect indexed Y addressing mode

Specifies a sequence of 2-byte memory in bank 016 by the result of adding the instruction’s

operand to the direct page register’s contents. The following is an actual data: the contents of the
memory location specified by the result of adding the contents of these 2 bytes to the index register
Y’s contents and the contents of the data bank register. When, however, the result of adding the
instruction’s operand to the direct page register's contents exceeds the bank 016 range, the
memory location in bank 116 is specified. Additionally, if the addition of the memory’s contents and
the index register Y’s contents generates a carry, the value which is 1 larger than the contents of
the data bank register indicates the bank.

ex. : Mnemonic

ADD A, (1EH), Y

(m - u1’n X = uln)

A~ A+

Machine code
1116 2816 1Eus
Memory
i Bank 016 Index
; register YL
12525 ADL (Ol1) —| :
> + : E616 | = 12E716
125316 ADw (1215) J :
Op Code (1116)
Direct page
register Op Code (2816)
123416 | + Operand (1Eus)
1
125216
""""""""""""""" Data bank
register
DATA| — DATA DT | 12E716 <

2-28

7900 Series Software Manual

ex. : Mnemonic

ADD A, (1EH), Y
(m=*0,"x = “1")

Direct Indirect Indexed Y

Machine code

1116 2816 1E16

1 Bank 016

A~ A+

DATAw DATAL «

ex. : Mnemonic

ADD A, (1EH), Y
(M = 1. x="0")

Machine code

> 12521

125316

1116 2816 1E16

Memory
12521 ADL (011) <| §
: +
125316 ADw (1216) J ;
Op Code (1116)
Direct page
register Op Code (2815)
123416 | + Operand (1Ezs)
1
125216

Index
register YL

E616 | = 12E716

Data bank
register
DATAL DT | 12E716 «<———
DATAH DT | 12E816
Memory
----- -E Bank Ous
: Index
' register Y
ADv. (0116) :
' +|FOEG1s| = 102E716
ADw (1216) J :

Op Code (1116)

Direqt page
register Op Code (281s)
123416 | + Operand (1Eas)
1
— 125216

Data bank
register

A — A+| DATA] -

DATA

DT |+1 O02E716 <—

[

Bank

7900 Series Software Manual

2-29

ex. : Mnemonic

Direct Indirect Indexed Y

ADD A, (1EH), Y
(m ="0,” x = “0")

A - A+

Machine code

1116 2816 1E1e

125216

125316

Direct page
register

123416

— 125216

DATA- DATAL

Memory
E Bank 016 IndeX
; register Y
ADL (0116) —‘ ;
+|FOE6G1s| = 102E716
ADw (1216) J
Op Code (1116)
Op Code (28:16)
Operand (1Ezis)
----------------------- Data bank
register
DATAL DT |+1 O02E713 <=—
DATAH DT [+1 O02EB8is
L 1
Bank

2-30

7900 Series Software Manual

Direct Indirect Long

Mode . Direct indirect long addressing mode

Function : Specifies a sequence of 3-byte memory in bank 016 by the result of adding the instruction’s
operand to the direct page register's contents. The contents at the address specified by the
contents of these 3 bytes are an actual data. When, however, the result of adding the instruction’s
operand to the direct page register's contents exceeds the bank 016 range, the memory location
in bank 116 is specified. A sequence of 3-byte memory can cross over the bank boundary.

i Bank O1s

ex. : Mnemonic Machine code
ADD A, L (1EH) 1116 2216 1E1s
(m="1")
Memory
—>12521s AD. (EF16)
125316 ADw (0116)
125416 ADH (1216)

Op Code (111s)

Direct page
register Op Code (221s)
123416 | + Operand (1E1s)
1
L—— 125216
A — A+| DATA| — DATA

1201EF1e <—

7900 Series Software Manual

2-31

ex. : Mnemonic
ADD A, L (1EH)

(m="0")

A~ A+

Direct Indirect Long

Machine code
1116 2216 1E16

: Bank O1s

DATAw; DATAL| «

Memory

| >125216 AD. (EF16)

125316 ADw (011)

125416 AD (1216)
_ Op Code (1116)

Direct page
register Op Code (2216)
123416 | + Operand (1Es)
1l
—12521s

DATAL

1201EFw <

DATAH

1201F0zs

2-32

7900 Series Software Manual

Direct Indirect Long Indexed Y

Mode . Direct indirect long indexed Y addressing mode

Function : Specifies a sequence of 3-byte memory in bank 016 by the result of adding the instruction’s
operand to the direct page register’'s contents. The contents at the address specified by the result
of adding the contents of these 3 bytes to the index register Y’s contents are an actual data. When,
however, the result of adding the instruction’s operand to the direct page register’'s contents
exceeds the bank 016 range, the memory location in bank 116 is specified. A sequence of 3-byte
memory can cross over the bank boundary.

ex. : Mnemonic Machine code

ADD A, L (1EH), Y 1116 2916 1E1s6
(m="1"x="1")

Memory
i Bank 016
: Index
——> 125216 AD. (EF1s) . register YL
125316 ADw (011) ; : 2116 | = 1202101
125416 ADH (121) :

Op Code (1116)

Dire(_:t page
register Op Code (29:6)
123416 + Operand (1Ezs)
1
——— 125216
A — A+| DATA| < DATA 12021016

7900 Series Software Manual 2-33

Direct Indirect Long Indexed Y

ex. : Mnemonic Machine code
ADD A, L(1EH), Y 1116 2916 1E1s
(M="0,x="1") Memory
i Bank 016
; Index
————>125216 AD. (EFas) : register YL
125316 ADw (Olis) >+ } 2L | =1202101
125416 ADH (1215)
Op Code (1116)
Dire(_:t page
register Op Code (2916)
123416 | + Operand (1Ezs)
I
———125216
T DATAL 12021016 <—
A — A+ | DATAx DATAY ~
' DATAH 12021116
ex. : Mnemonic Machine code
ADD A, L(1EH), Y 1116 2916 1E1s6
(m = “1," X = uon) Memory ----- .
i Bank 016
i Index
———> 125215 ADL (EF1s) : register Y
125316 ADw (0116) + [EB2L16| = 12E71016
125416 AD# (1215) :

Op Code (1116)
Direct page
register Op Code (29:6)

123416 | + Operand (1Eis)
I
125216

A - A+| DATA| ~ DATA 12E71016

2-34 7900 Series Software Manual

Direct Indirect Long Indexed Y

ex. : Mnemonic

ADD A, L (1EH), Y
(m = HO,” X = HO”)

—>125216

125316

125416

Direct page
register

Machine code
1116 2916 1Euis

Memory

ADL (EFs)

ADw (0116)

ADH (1216)

Op Code (1116)

Op Code (2916)

123416 | +

Operand (1Euzs)

1
—— 125216

A < A+

DATAH DATAL| «

DATAL

DATAH

Bank Oz

SR

Index
register Y

E52116

= 12E7101s

12E71016 <<

12E71116

7900 Series Software Manual

2-35

Absolute

Mode . Absolute addressing mode

Function : The following is an actual data: the contents of the memory location specified by the instruction’s
operands and the contents of the data bank register. Note that, in the cases of the JMP and JSR
instructions, the instruction’s operands are transferred to the program counter.

ex.: Mnemonic Machine code
ADD A, OAD12H 2E16 1216 AD1s
(m="1") Memory
Op Code (2Ezs)

Operand (1216) —I
Operand (ADz1s) J

"""""""""""""" Data bank
register

A - A+ |IDATA| < DATA DT | AD1216 <—

ex. : Mnemonic Machine code
ADD A, OAD12H 2Ei16 1216 AD1s
(m="0") Memory

Op Code (2Ezs)

Operand (1216) ‘I
Operand (ADzs) J

"""""""""""""" Data bank
register
- DATAL DT | AD1216<—
A - A+ | DATAH:DATAL | -
: DATAH DT | AD131s

2-36 7900 Series Software Manual

Absolute

ex. : Mnemonic Machine code
LDX OAC14H 0716 1416 ACis
(X:lllll)
Memory

Op Code (0716)

Operand (141)

.

Operand (AC1s)

|

Data bank
register
X — | DATA| - DATA | DT| AC14, <—
ex. : Mnemonic Machine code
LDX OAC14H 0716 1416 ACis
(x="0")
Memory

X | DATA.} DATA. | -

Op Code (07 1)

Operand (14:6)

Operand (AC1s)

i

"""""""""""" Data bank
register
DATA. DT | AC14: <
DATA- DT | AC15:

7900 Series Software Manual

2-37

ex.

: Mnemonic

JMP 0AC14H

Address to be
executed next

Absolute

Machine code
9C1s 1416 ACis

Memory
PG | 000016
Op Code (9Cis)
Operand (141s) —I
Operand (ACis) J
Program

bank register

PG

PG

Program bank register’s
contents are not affected.

AC1l41s

FFFFis

'
-

Bank PG

Note : Note the branch destination bank in the case where a JMP or a JSR instruction
is located near a bank boundary.

= Refer to the description of a JIMP/JMPL instruction (Page 4-111).
Refer to the description of a JSR/JSRL instruction (Page 4-112).

2-38

7900 Series Software Manual

Absolute Indexed X

Mode

Function

Absolute indexed X addressing mode

The following is an actual data: the contents of the memory location specified by the result of

adding a 16-bit length numerical value expressed with the instruction’s operands to the index
register X's contents, and the contents of the data bank register. If, however, the addition of the
numerical value expressed with the instruction’s operands and the index register X's contents
generates a carry, the value which is 1 larger than the contents of the data bank register indicates
the bank.

ex. : Mnemonic

ADD A, 0AD12H, X
(m="1"x="1"

A~

ex. : Mnemonic

ADD A, OAD12H, X
(Mm="0,"x = “17)

A« A+

Machine code

2F16 1216 AD1s

Op Code (2F1s)

Operand (1216)

Operand (ADa1s)

A+| DATA

- DATA

Index

register XL

Machine code

DATAw |

DATAL | <

2F16 1216 AD1s

Op Code (2F1s)

Operand (1216)

Operand (ADzs)

Data bank
register
DT | AEO0Ois <=—
Index
register XL

--------------------------- Data bank
register
DATAL DT | AEOOs
DATAH DT | AEO1l1s

-

7900 Series Software Manual

2-39

Absolute Indexed X

ex. : Mnemonic Machine code
ADD A, 0AD12H, X 2F16 1216 AD1s
(m = Hl,l! X = HOH)
Memory
Op Code (2F1s) Index

register X

Operand (121s)

+ |10EEs | = BEOO1s

Operand (ADzs)

"""""""""""""""" Data bank
register
A — A+ DATA| < DATA DT | BEOO1s <—
ex. : Mnemonic Machine code
ADD A, 0AD12H, X 2F16 1216 AD1s
(m - UO,H X = HOH)
Memory
Op Code (2F1s) Index
register X

Operand (1216)

+ |10EE1s| = BEOO1s

Operand (ADzs)

--------------------------- Data bank
register
: DATAL DT | BEOO1s <
A — A+| DATAH : DATAL | «
. DATAH DT | BEO1ss

2-40 7900 Series Software Manual

Absolute Indexed X

ex. : Mnemonic

LDY OBC12H, X

(1)

ex. : Mnemonic

LDY O0BC12H, X

(quon)

Machine code
4116 1F16 1216 BCis

Op Code (4116)

~ | DATA

Machine code

DATAH

DATAL | <

Op Code (1F16) Index
register XL
Operand (1216) T
+ i EE1s |= BDO0O1s
Operand (BCs) :
--------------------------- Data bank
register
DATA DT | BD001s <«———
4116 1F16 1216 BCuis
Memory
Op Code (4116)
Op Code (1F1s) Index
register X
Operand (1216)
+ |10EE1s| = CDO001s
Operand (BC1e)
--------------------------- Data bank
register
DATAL DT | CD001s €
DATAH DT | CDO11s

7900 Series Software Manual

2-41

Mode

Function

Absolute Indexed Y

Absolute indexed Y addressing mode

The following is an actual data: the contents of the memory location specified by the result of
adding a 16-bit length numerical value expressed with the instruction’s operands to the index
register Y’s contents, and the contents of the data bank register. If, however, the addition of the
numerical value expressed with the instruction’s operands to the index register Y’s contents gen-
erates a carry, the value which is 1 larger than the contents of the data bank register indicates the

bank.

ex. : Mnemonic

ADD A, OAD12H, Y

(m="1"x="1)

A ~ A+

ex. : Mnemonic

ADD A, OAD12H, Y

(M="1"x="0"

A ~ A+

Machine code
1116 2616 1216 AD1s

Memory

Op Code (1116)

Op Code (2616)

Operand (1216)

Operand (ADa1s)

+

Data

DATA

DATA

register

Index
register YL

[g EE EEis |= AEOQOQ1s

bank

DT

AEQO1s <——

Machine code
1116 2616 1216 AD1s

Memory

Op Code (1116)

Op Code (2616)

Operand (1216)

Operand (ADzs)

DATA

DATA

Index
register Y
+ |10EE1s| = BEOOs
Data bank
register
DT | BEOOws <

2-42

7900 Series Software Manual

ex. : Mnemonic

ADD A, OAD12H, Y
(m="0,"x = *17)

A ~ A+

ex. : Mnemonic

DATAH | DATAL

ADD A, 0AD12H, Y
(M="0,"x="0"

A < A+

Machine code
1116 2616 1216 AD1s

Op Code (1116)

Absolute Indexed Y

Machine code

DATAH : DATAL

Op Code (2616) Index
register YL
Operand (1216) y
+ i EE1s |= AEOQO1s
Operand (ADzs) :
--------------------------- Data bank
register
DATAL DT | AEOO1s <——
DATAH DT | AEOlis
1116 2616 1216 AD1s

Memory
Op Code (1116)
Op Code (2616) Index

register Y
Operand (121s)
+ |10EE1s| = BEOO1s
Operand (ADzs)
"""""""""""""" Data bank
register
DATAL DT | BEOOs <
DATAH DT | BEO11s

7900 Series Software Manual

2-43

ex. : Mnemonic

Absolute Indexed Y

LDX OBC12H, Y

(x="1)

ex. : Mnemonic

Machine code

0616 1216 BCis

Memory

Op Code (4116)

DATA

LDX OBC12H, Y

(x="0)

DATAn | DATAL

Op Code (0616) Index
register YL
Operand (1216) T
+ » EEis |= BDO0O1s
Operand (BCe) .
--------------------------- Data bank
register
DATA DT | BD001g «=——
Machine code
4116 0616 1216 BCis

Memory
Op Code (4116)
Op Code (0616) Index

register Y
Operand (1216)
+ |10EE1s| = CDO0O01s
Operand (BCe)
"""""""""""""" Data bank
register
DATAL DT | CD001s <——
DATAH DT | CDO1l1s

2-44

7900 Series Software Manual

Absolute Long

Mode . Absolute long addressing mode

Function : The contents of the memory location specified by the instruction’s operands are an actual data.
Note that, in the cases of the JMPL and JSRL instructions, the instruction’s second and third bytes
are transferred to the program counter and the fourth byte is transferred to the program bank

register.
ex. : Mnemonic Machine code
ADD A, 123456H 1116 2C16 5616 3416 1216
(m=1)
Memory
Op Code (1116)
Op Code (2C16)
Operand (5616) —‘
Operand (3416)
Operand (1216) J
A — A+ | DATA| < DATA 12345616 «———
ex. : Mnemonic Machine code
ADD A, 123456H 1116 2C16 5616 3416 1216
(m="0")

Memory

Op Code (1116)

Op Code (2C10)

Operand (56 16)

Operand (341s)

Operand (1216)

L

T DATAL 1234561 <

A ~ A+ |DATAH: DATAL| <

DATAH 12345716

7900 Series Software Manual 2-45

Absolute Long

ex. : Mnemonic

Machine code
JMPL 123456H

AC16 5616 3416 1216

Op Code (AC1s)

Operand (561s)

Operand (34 1s)

Operand (1216)

L |

Program bank
register

Address to be 12
executed next 10

345616 «<——

Program bank register’s contents
are replaced by the third operand.

2—-46 7900 Series Software Manual

Absolute Long Indexed X

Mode . Absolute long indexed X addressing mode
Function : The following is an actual data: the contents of the memory location specified by the result of
adding a numerical value expressed with the instruction’s operands to the index register X's
contents.
ex. : Mnemonic Machine code
ADD A, 123456H, X 1116 2D1s 5616 3416 1216

(m="41"x = “1") Memory

Op Code (1116)

Op Code (2D1s)
Index

Operand (56:16) register XL

Operand (341s) + E = 12353716

Operand (121s)

A — A+ |DATA| DATA 12353716
ex. : Mnemonic Machine code
ADD A, 123456H, X 1116 2D16 5616 3416 1216
(m="0,"x =*1") Memory

Op Code (111s)

Op Code (2D1s)
Index

Operand (561s) register XL

Operand (341s) + E = 12353716

Operand (121s)

DATAL 12353716

A« A+ |DATAH: DATAY -

DATAH 12353816

7900 Series Software Manual 247

ex. : Mnemonic
ADD A, 123456H, X

Absolute Long Indexed X

(m="1"x="0")

ex. : Mnemonic

ADD A, 123456H, X

A « A+

(M ="0,"x = “0")

Machine code

1116 2D16 5616 3416 1216

Op Code (1116)

Op Code (2D1s)

Index
Operand (561s) register X
Operand (341s) + | EEE116

Operand (121s)

DATA

DATA

Machine code
1116 2D16 5616 3416 1216

A « A+

DATAH

Op Code (1116)

Op Code (2D1s)

13233716 «<————

Index
Operand (5616) register X
Operand (34us) + |EEEl1s| = 13233716

Operand (1216)

DATAL| ~

DATAL

DATAH

13233716 <

13233816

2-48

7900 Series Software Manual

= 13233716

Absolute Indirect

Mode . Absolute indirect addressing mode

Function : A sequence of 2-byte memory is specified by the instruction’s third and fourth bytes in the same
program bank. The contents of this 2-byte memory specify the branch destination address within

the same program bank.
This addressing mode is used by a JMP instruction.

ex. : Mnemonic Machine code
JMP (1400H) 3116 5C16 0016 1416

Op Code (311s)

Op Code (5Cas)

’7 Operand (001s)

L Operand (141s)

ADL (FFais)

PG

ADw (1Euzs)

Address to be
executed next

PG

140016

1EFF16 <—

Bank PG

Note : Note the reference/branch destination bank when an instruction
or a reference destination is located near a bank boundary.
= Refer to the description of a JIMP/JMPL instruction (Page 4-111).

7900 Series Software Manual

2-49

Absolute Indirect Long

Mode . Absolute indirect long addressing mode

Function : A sequence of 3-byte memory is specified by the instruction’s third and fourth bytes in the same
program bank. The contents of this 3-byte memory specify the branch destination address.
This addressing mode is used by a JMPL instruction.

ex. : Mnemonic Machine code
JMPL L(1234H) 3116 5D16 3416 1216
Memory
Op Code (3116) :

Op Code (5Da16)
r Operand (341s)
L Operand (121) :

Program bank { Bank PG
reglster E
ADL (121) —‘ PG | 12341
ADw (B41s)
ADH (Alis) J

Program bank
register

Address to be

executed next Al | B4121s <—

AD+ is loaded into the
program bank register.

Note : Note the reference destination bank when an instruction
is located near a bank boundary.
=>Refer to the description of a JIMP/JMPL instruction (Page 4-111).

2-50 7900 Series Software Manual

Absolute Indexed X Indirect

Mode . Absolute indexed X indirect addressing mode

Function : A sequence of 2-byte memory is specified by the result of adding a numerical value expressed with
the instruction’s second and third bytes to the index register X’s contents; the memory bank is
specified by program bank register PG at this time. The contents of this 2-byte memory specify

the branch destination address.

This addressing mode is used by a JMP and a JSR instructions.

ex.: Mnemonic Machine code
JMP (1234H, X) BCis 3416 1216
(x = “1")
Memory

Op Code (BCzs)

Operand (3416)

Operand (1216)

ADL (1215)

ADM (BCis)

register XL

124616 <&

Bank PG

124716

Program bank
register

Address to be
executed next

PG| BC12:s € ——

Note : Note the reference/branch destination bank in the case of a JMP or a
JSR instruction when the instruction or the branch destination address

is located near a bank boundary.

[Refer to the description of a JMP/JMPL instruction (Page 4-111).
Refer to the description of a JSR/JSRL instruction (Page 4-112).

7900 Series Software Manual

2-51

Stack

Mode . Stack addressing mode
Function The contents of a register or others are stored to or restored from the memory of which location
is specified by the stack pointer; this memory is called “stack area.” The stack area is set in bank
0O1s.
ex. : Mnemonic Machine code
PHA 8516
(m="1") Memory
00000016
00 | s | < After instruction i
execution ;
. . i Bank O1e
S-S-1 AL 00 | s | — Before instruction ;
execution 5
____________________________ O0FFFF16 o
ex. : Mnemonic Machine code
PHA 8516
(m="0") Memory
00000016
00 | S | < After instruction !
execution 5
AL : Bank O1s
AH 00 | s | « Before instruction
S-S-2 execution :
____________________________ OOFFFF16 ol
ex. : Mnemonic Machine code
PHD 8316
Memory
00000016
00 | s | < Afterinstruction :
execution 5
DPROL + Bank 016
S-S-2 DPRO~ 00 | s | —~ Before instruction
execution :
____________________________ OOFFFF16 ol

2-52 7900 Series Software Manual

ex. : Mnemonic
PEA #1234H

ex. : Mnemonic
PEI 12H

Stack

Machine code
3116 4C16 3416 1216

Memory
00000016
00 | s | < Afterinstruction :
execution i Bank 0
3416 i an 16
1216 00 | s | — Before instruction i
execution 5
___________________________ 00FFFF1s
Op Code (3116)
Op Code (4C1s)
Operand (3416)
S-S-2 Operand (1216)
Machine code
3116 4B1s 1216
Memory
00000016
! Bank 016
DATAL 341216 ;
DATA 34131 §
00 | s | < Afterinstruction
execution :
DATAL
DATAH 00 | s | — Before instruction
execution :
--------------------------- OOFFFF1s
Op Code (3116)
Direct page
Op Code (4B1s) register
S-S-2 Operand (121s) + |340016 | = 341216

7900 Series Software Manual

2-53

Stack

ex. : Mnemonic Machine code
PER #1234H 3116 4D16 3416 1216
Memory
00000016 T
'+ Bank 016
o] s <———After instruction
: execution
ACis < .
00 | s | =——— Before instruction
6816 ' execution
............................ O0FFFF16 o
Program bank :
register :
Op Code (3115) PG | 567616 i
Op Code (4D1s) :
- : Bank PG
Operand (3416) ;
S-S-2 Operand (121e) + | 567816 | = 68AC1s
Program counter

2-54 7900 Series Software Manual

Relative

Mode

Function

ex.

Relative addressing mode

Branches to the address specified by the result of adding the program counter’s contents to the
instruction’s second byte. In the case of a long branch with the BRA instruction, the instruction’s
second and third bytes are added to the program counter’'s contents as a 15-bit signed numerical
value. In the case of the BSR instruction, the instruction’s 3 bits of the first byte and the second
byte are added to the program counter’'s contents as a 11-dit signed numerical value. If the
addition generates a carry or a borrow, 1 is added to or subtracted from the program bank register.

: Mnemonic
BCC O0-12

Address to be
executed next

Machine code
9016 F416

Memory

Op Code (901s)

Operand (F41s)

0-12

Branch

Branches to the address [0 - 12

when the carry flag (C) is “0.”

ex. : Mnemonic

BRAL 1234H

Machine code
A716 3416 1216

Memory

Op Code (A7 16)

Operand (3416)

Operand (1216)

PG | FF1216

Address to be
executed next

PG |114616

Memory

Op Code (9016)

Operand (F41s)

Address to be
executed next

Advances to the address [J
when the carry flag (C) is “1.”

i Bank PG

i Bank PG + 1

7900 Series Software Manual

2-55

Direct Bit Relative

Mode

Function : .

ex. : Mnemon

BBS #5AH, 04H, OF6H

(m="1"

Direct bit relative addressing mode

BBC and BBS instructions

Specifies the memory location in bank 016 by the result of adding the instruction’s third byte to
the direct page register’s contents; specifies the multiple bits’ position in that memory by the bit
pattern of the instruction’s fourth and fifth bytes (when the m flag is “1,” the fourth byte only).
Then, when the specified bits all satisfy the branching conditions, branches to the address
specified by the result of adding the instruction’s sixth byte (or when the m flag is “1,” the fifth
byte) as a signed numerical value to the program counter’s contents. When, however, the result
of adding the instruction’s second byte to the direct page register’s contents exceeds the bank
016 range, the memory location in bank 116 is specified.

BBCB and BBSB instructions

Specifies the memory location in bank 016 by the result of adding the instruction’s second byte
to the direct page register’s contents; specifies the multiple bits’ position in that memory by the
bit pattern of the instruction’s third byte. Then, when the specified bits all satisfy the branching
conditions, branches to the address specified by the result of adding the instruction’s fourth byte
as a signed numerical value to the program counter’'s contents. When, however, the result of
adding the instruction’s second byte to the direct page register’s contents exceeds the bank 016
range, the memory location in bank 116 is specified.

ic Machine code
4116 4A16 0416 5A16 F616
)

(Branch) (Note) (Not branch) (Note)

Address to be
executed next

Branch

Memory Memory
011({1(1({1]0|1]|1|0012381s <— 010|1|1({1(0[1]1] 00123815 < iBankOm
i Program
bank register
1116 | FFFD16
Op Code (4116) Op Code (4116)
Direct page Direct page
Op Code (4Aus) register Op Code (4A1s) register
Operand (0416) | +]123416| = 123816 Operand (0416) +1123416| = 123816
Operand (5A1s) Operand (5A1s)
Program Program
Operand (F616) | bank register Operand (F61s) bank register
1216 {0007, Address to be 1216 | 000716
executed next

Note: Whether to branch or not depends on the branching conditions.

2-56

7900 Series Software Manual

Direct Bit Relative

ex. : Mnemonic Machine code

BBS #5AA5H, 04H, OF6H 4116 4A16 0416 AS16 5A16 FB16

(m="0)
(Branch) (Note)

Memory

1{1]1{0]|0|1|1|1]00123815 <

0[1{0]1{1]{0|1]|1|00123916

Address to be
executed next 1116 | FFFE1s

Op Code (411s6)

Direct page
Op Code (4A1s) register
Branch Operand (0416) | +]1234:6| = 123816
Operand (A5is)
Operand (5A16)
Program

Operand (F61s) bank register

1216 | 000816

Address to be
executed next

(Not branch) (Note)

Memory

[

00123816 <]

[

00123916

Op Code (411s)

Op Code (4A15)

i Bank 016

Direct page
register

Operand (0416)

+| 123416| = 123816

Operand (A5zs)

Operand (5Au1s)

Operand (F61s)

Program
bank register

1216 | 000816

Note: Whether to branch or not depends on the branching conditions.

7900 Series Software Manual

2-57

Absolute Bit Relative

Mode

Function

Absolute bit relative addressing mode

« BBC and BBS instructions

Specifies the memory location by the instruction’s third and fourth bytes and the contents of the
data bank register; specifies the multiple bits’ position in that memory by the bit pattern of the
instruction’s fifth and sixth bytes (when the m flag is “1,” the fifth byte only). Then, when the
specified bits all satisfy the branching conditions, branches to the address specified by the result
of adding the instruction’s seventh byte (or when the m flag is “1,” the sixth byte) as a signed
numerical value to the program counter’s contents.

BBCB and BBSB instructions

Specifies the memory location by the instruction’s second and third bytes and the contents of the
data bank register; specifies the multiple bits’ position in that memory by the bit pattern of the
instruction’s fourth byte. Then, when the specified bits all satisfy the branching conditions,
branches to the address specified by the result of adding the instruction’s fifth byte as a signed
numerical value to the program counter’s contents.

ex. : Mnemonic Machine code
BBS #5AH, 1234H, OF6H 4116 4E16 3416 1216 5A16 F616
(m="1)
(Branch) (Note) (Not branch) (Note)
Memory Memory
Program
bank register
Address to be
executed next 111 | FFFD1o
Op Code (4116) Op Code (4116)
Op Code (4Ezs) Op Code (4Eus)
Branch
Operand (341s) —| Operand (341s) —|
Operand (121s) J Operand (1216) J
Operand (5Az6) Operand (5Az6)
Program Program
Operand (F6is) | bank register Operand (F61s) | bank register
Address
1216 | 000716 to be 12151000715
executed
______________________ next
Data bank Data bank
register register
O{1{1f1{1/0(1(Of | DT 12341 < ofofz|1|1|o|1|o| | DT [1234s <

Note: Whether to branch or not depends on the branching conditions.

2-58

7900 Series Software Manual

ex. : Mnemonic
BBS #5AA5H, 1234H, OF6H 4116 4E16 3416 1216 AS16 5A16 Fb16

(m="0")

Address to be
executed next

Branch

(Branch) (Note)

Memory

Absolute Bit Relative

Machine code

Program
bank register

1116 | FFFD1s

Op Code (411s)

Op Code (4Ezs)

Operand (3416)

Operand (1216)

Operand (A516)

Operand (5Aus)

Operand (F61s)

Program
bank register

1216 | 000716

Data bank
register

DT [123416 <—

DT [123516

Address
to be
executed
next

(Not branch) (Note)

Memory

Op Code (411s)

Op Code (4E1s)

Operand (3416)

Operand (1216)

Operand (Ab1s)

Operand (5Ais)

Operand (F616)

.
|

Program
bank register

1216 | 000716

Data bank
register

DT | 123416 <

DT | 123516

Note: Whether to branch or not depends on the branching conditions.

7900 Series Software Manual

2-59

Stack Pointer Relative

Mode . Stack pointer relative addressing mode

Function : The contents of the memory location in bank 016 are an actual data. This memory is specified by
the result of adding the instruction’s operand to the stack pointer’s contents. When, however, the
result of adding the instruction’s operand to the stack pointer’s contents exceeds the bank 016
range, the memory location in bank 116 is specified.

ex. : Mnemonic Machine code
ADD A, 02H, S 11 2316 0215
(m="17) Memory
i Bank O1s
A < A+|DATA| < DATA 123616 <———
Op Code (1116)
Op Code (231¢) Stack pointer
Operand (0216) + 1123416 | = 123616
ex. : Mnemonic Machine code
ADD A, 02H, S 1l 2316 0216
(m="0") Memory
Bank 016
: DATAL 123616 <———
A — A+ |DATAH:DATAL| « H
L DATAH 123716
Op Code (111s)
Op Code (2316) Stack pointer
Operand (021s) + 1123416 | = 123616

2—-60 7900 Series Software Manual

Stack Pointer Relative Indirect Indexed Y

Mode . Stack pointer relative indirect indexed Y addressing mode

Function : Specifies a sequence of 2-byte memory by the result of adding the instruction’s operand to the
stack pointer’s contents. The contents of the memory location specified by the above addition are
added to the index register Y’s contents. The result of second addition and the contents of data
bank register DT indicate the memory location which contents an actual data. If, however, the
result of adding the contents of that sequence of 2-byte memory to the index register Y’s contents
generates a carry, the value which is 1 larger than the contents of the data bank register DT
indicates the bank.

ex. : Mnemonic Machine code

ADD A, (1EH,S), Y 1116 2416 1E1s6
(m="1"x="1"

Bank 016 Index
: register YL
— >12521s ADv (011s) —I T
: + g 1 E616 | = 12E716
125316 ADw (1216) J :
Op Code (111s)
Stack pointer Op Code (241)
123446 | + Operand (1Ezs)
"
———— 125216 fr-memmeemmm e
""""""""""""""" Data bank
register
A — A+ | DATA| DATA DT | 12E716

7900 Series Software Manual 2-61

Stack Pointer Relative Indirect Indexed Y

ex. : Mnemonic
ADD A, (1EH,S), Y

Machine code

1116 2416 1E6

(m="0," x = “17) Memory
i Bank O1s Index
: register YL
———> 12526 ADvL (0116) —| r
' + i E61s | = 12E716
125316 ADw (12156) J
Op Code (111s)
Stack pointer Op Code (2416)
123416 | + Operand (1Ezs)
1
125216 f-cccecmmmemeceeeeas
Data bank
"""""""""""""" register
T DATAL DT |12E71s
A — A+ | DATA4 DATAL| -
' DATAH
ex. : Mnemonic Machine code
ADD A, (1EH,S), Y 1116 2416 1E1s
(m = “1," X = uon) Memory
----- -E Bank O1e
H Index
! register Y
—————> 125216 AD. (011s) —I
' + |FOEG1s| = 102E716
125316 ADw (1216) J T
Op Code (1116)
Stack pointer Op Code (2416)
123416| + Operand (1Ez1s)
11
——— 125216 f---mmememmmmem e
--------------------------- Data bank
register
A — A+ |DATA | « DATA DT |+1 O02E7i6 =—
= |
Bank

2—-62

7900 Series Software Manual

Stack Pointer Relative Indirect Indexed Y

ex.: Mnemonic Machine code
ADD A, (1EH,S), Y 1116 2416 1Eze
(m="0,"x="0 Memory
: Bank O1e Index
: register Y
——> 125216 ADL (0116) 4| ;
E + | FOF616|] = 102E716
125316 ADw (121) J ; -
Op Code (111s)
Stack pointer Op Code (2415)
123416 | + Operand (1Ezs)
I
125216 bememmmmmmm el
--------------------------- Data bank
register
: DATAL DT |+1 O02E715 <=————
A — A+ | DATA: DATAL| — | |
' DATA: Bank

7900 Series Software Manual 2-63

Mode

Function

Block Transfer

Block transfer addressing mode

Specifies the transfer destination data bank by the instruction’s third byte, and specifies the trans-
fer destination address within the data bank by the index register Y’s contents. Specifies the
transfer source data bank by the instruction’s fourth byte, and specifies the address of transfer data
within the data bank by the index register X’'s contents. The accumulator A’s contents are the
number of bytes to be transferred. At termination of transfer, the data bank register's contents

specify the transfer destination data bank.
* MVN instruction

The MVN instruction is used for transfer toward lower addresses. In this case, the contents of

index registers X and Y are incremented each time data is transferred.
* MVP instruction

The MVP instruction is used for transfer toward higher addresses. In this case, the contents of
index registers X and Y are decremented each time data is transferred. The transfer data can

cross over the bank boundary.

ex. : Mnemonic

MVN OEZ2H, OE5H
(m = “0‘” X = UOH)

<< Before transfer >>
Memory

Machine code
3116 2B16 E216 Eb5ie

Bank E216
Op Code (3116)
Op Code (2Bz6) A| 000316
Operand (E216) X| 123416
Operand (E5z16) Y| 567816
______________________________ DTI?_

DATAI

DATA I

DATAII

E5123416 |
E5123515 | Bank E51s
E5123616 !

<< After transfer >>

Memory
DATA | E2567815 |
DATA II E2567916 Bank E216
> DATA Il E2567A16
Op Code (3116)
Op Code (2B16) A| FFFFie
Operand (E216) X| 123716
Operand (E5z16) Y| 567Bi6
______________________________ DT| E216
(16 S At I ;
DATA | E5123416 |
DATA I E5123516 | Bank E5ue
E5123616 !
Second DATA 1lI 16 i

2—-64

7900 Series Software Manual

ex. : Mnemonic

MVP OE5H, OE2H
(m = HO‘H X = Hol!)

<< Before transfer >>

Block Transfer

Machine code
3116 2A16 E516 E216

Memory
DATA | E2567816 |
DATA Il E2567915 | Bank E216
DATA IlI E2567A16
Op Code (3116)
Op Code (2Azs) A| 000316
Operand (E5zs) X| 567A16
Operand (E216) Y| 123616
______________________________ DT| ?

<< After transfer >>

Memory
Second DATA | E2567816
First DATA II E2567916 EBank E216
DATA IlI E2567A16
Op Code (3116)
Op Code (2A16) A| FFFFis
Operand (E5zs) X| 567716
Operand (E21s6) Y| 123316
______________________________ DT| E51e
> DATA E5123416
DATA Il E512355 | Dok ESI
DATA 1l E5123616 '

Note : For block transfer instructions, the number of bytes to be transferred and the range can be
specified as transfer source/destination addresses change with the state of the m and x flags.
However, the transfer unit is unaffected. The transfer unit is “word” (16 bits). However, only 1
byte is transferred when transferring the last byte at odd-byte transfer.

7900 Series Software Manual

2—-65

Multiplied accumulation

Mode

Function

Multiplied accumulation addressing mode

The following is a multiplicand and a multiplier: the contents of the memory location specified by
the contents of index registers X and Y, and the data bank register's contents. The instruction’s
third byte is the repeat number of arithmetic operation. The contents of index registers X and Y
are incremented each time the addition of the contents of accumulators B and A to the multipli-
cation result finishes. Accordingly, the contents of index registers X and Y specify the next address
where the multiplicand and the multiplier are read at last.

Allocate a multiplicand and a multiplier within the same bank and do not cross them over the bank
boundary.

Set index register length flag x to “0” before executing this instruction.

This addressing mode is used by an RMPA instruction.

ex.: Mnemonic Machine code

RMPA #03H 3116 5A16 0316 [rromroremmmemmememmemeeseoes
(m=*%0,"x="0")

Op Code (3116)
Op Code (5A16)
Operand (0316)

Data bank Index
+ register register X

First L DT X (at start)
--------- DATA | -se-moe-
H
Second B L
--------- DATA Il ===
H
Third
--------- DATA I]----------
H
T T o X+6 at end
B, A — B, A+ [DATAu! DATAL|] |DATAH; DATA] |] () :
: E Index ! Bank DT
register Y :
First L DT Y (at start)
--------- DATAL ----------
H
Second L
--------- DATAZ ===+
H
Third
--------- DATAS ===+

DT Y+6 | (atend) |

2—66

7900 Series Software Manual

Multiplied accumulation

e i Machine code
ex. : Mnemonic Memory

RMPA #03H 3116 5A16 0316 [rromrmrmmmmemmmemmemeemees
(m = Hl," X = HOH)

Op Code (3116)

Op Code (5A1s)
Operand (0316)

............................... Data bank Index
register register X
First [| T——1 T o 1 rarctar &
DATA | lor] | x | (atstam
Second
DATA I
Third DATA III

5 5]
BL, AL — BL, AL+ | DATA| O | DATA| [r-ommmmmmmmmmmmmmmsmmmmooos

] : Bank DT
............................ Index :
register Y
:rSt DATAL loT| | v | @tstam
econd DATA2
Third =

.............................. (at end)

7900 Series Software Manual 2-67

CHARTER 3
HOW TO USE
7900 SERIES
INSTRUCTIONS

3.1 Memory access

3.2 Direct page registers
(DPRO-DPR3)

3.3 8- and 16-bit data
processing

3.4 Index registers X and Y

3.5 Branch instructions

HOW TO USE 7900 SERIES INSTRUCTIONS

3.1 Memory access

3.1 Memory access

Memory access modes are typically classified into the following 3 categories:
e Direct addressing

e Absolute addressing and Absolute long addressing

e Indirect addressing and Indirect long addressing

Their features are described below.

3.1.1 Direct addressing
e Each instruction has a length of 2 or 3 bytes.
e Reduced number of consumed instruction execution cycles.
e A block (within bank 0: addresses 00000016—00FFFF16) of which base address is specified by DPRn is
addressable.
(i) Direct page register select bit is “0™:
Block size = 256 bytes
(ii) Direct page register select bit is “1™
Block size = 64 bytes
When a sum of DPRn’s contents and an offset value exceeds the bank boundary, however, access
over the boundary is enabled.

3.1.2 Absolute addressing and Absolute long addressing

(1) Absolute addressing
e Each instruction has a length of 3 or 4 bytes.
e A 64-Kbyte space (a bank within addresses 000000:e—FFFFFF16) is addressable, where the high-
order 8 bits of 24-bit address are specified by DT. For the JMP and JSR instructions, however,
these high-order 8 bits are specified by PG.

(2) Absolute long addressing
e Each instruction has a length of 4 or 5 bytes.
e Addresses 000000:s—FFFFFF1s are addressable. All of 24 bits of the address are directly specified.

3.1.3 Indirect addressing and Indirect long addressing

(1) Direct indirect addressing
e Each instruction has a length of 2 or 3 bytes.
e 16-bit pointer data is placed in the space specified by DPRn, and the specified memory is accessed.
e A 64-KB space (a bank within addresses 000000:1s—FFFFFF16) is addressable, where the high-
order 8 bits of 24-bit address are specified by DT.

(2) Direct indirect long addressing
e Each instruction has a length of 2 or 3 bytes.
e 24-bit pointer data is placed in the space specified by DPRn, and the specified memory is accessed.
e An address within the 16-Mbyte space (addresses 0000001s—FFFFFFi6) is addressable.

3-2 7900 Series Software Manual

HOW TO USE 7900 SERIES INSTRUCTIONS

3.1 Memory access

(3) Absolute indirect addressing

This addressing mode can be used only for the indirect branch and indirect subroutine call instructions.
Each instruction has a length of 3 or 4 bytes.

16-bit pointer data is placed in the space specified by PG, and the specified memory is accessed.
A 64-KB space (a bank within addresses 000000:s—FFFFFFi6) is addressable, where the high-
order 8 bits of 24-bit address are specified by PG.

(4) Absolute indirect long addressing

This addressing mode can be used only for the indirect branch instruction.

Each instruction has a length of 3 or 4 bytes.

24-bit pointer data is placed in the space specified by PG, and the specified memory is accessed.
Any address of the 16-Mbyte space (addresses 000000:1s—FFFFFFi6) is addressable.

Figure 3.1.1 shows a usage example of indirect addressing mode.
Here, the data of the pointers pointing to memory areas are processed in the program, and the results are
referenced as effective addresses.

<— (DPRO)

Internal RAM
<«— (DPRO)+src

CLP X r-- Source Pointer

LDX.W #count [tk Destination Pointer
loop:

LDA A, (DPO+:src)

STA A, (DPO+:dst)

INC DPO+:src Py
INC DPO+:dst \
' Transfer Source
DEX ' Block
BNE loop !
R e
Transfer

Destination Block

O For description format of mnemonics, refer to the tool’s specifications.

Fig. 3.1.1 Usage example of indirect addressing mode: block transfer

The 7900 Series also provides many other useful addressing modes. For details, refer to section “2.3
Addressing modes.”

7900 Series Software Manual 3-3

HOW TO USE 7900 SERIES INSTRUCTIONS
3.2 Direct page registers (DPRO-DPR3)

3.2 Direct page registers (DPRO-DPR3)

The 7900 Series provides more enhanced direct addressing modes than those of the conventional 7700
Family. These powerful addressing modes greatly improve programming efficiency, especially in a range of
addresses 00000016—00FFFF 1s.

In the 7900 Series, just after a reset, only DPRO can be used. When the direct page register select bit of
the processor mode register 1 is set to “1,” however, direct page registers DPRO-DPR3 can be used.
Figure 3.2.1 shows an usage example of DPRO-DPR3.

In the conventional 7700 Family, since only one direct page register can be used, it is required to frequently
change the contents of the direct page register for efficient memory access using direct page addressing
mode. On the contrary, the 7900 Series does not need such a procedure as in the conventional 7700 Family
because it can assign a direct page register to each base address of each block.

00200016 00400016
to to
00203F1s 00403F16
Memory ' External I/O
P P
7900 | (]
Series Data bus
Address bus
000000z SFR <+—— DPR1: for accessing SFR area
00080016 Int 1Y o
0017FF1s nterna <—— DPRO: for accessing internal RAM area
00200016 [TITTITITITITITITII]
00203F6 || EXt€rnal memory|| <—— DPR2: for accessing external memory area
00400016 B Al 10 1 i L/
00403F16 xterna <+—— DPRS: for accessing external I/O area

Fig. 3.2.1 Usage example of DPRO-DPR3

3-4 7900 Series Software Manual

HOW TO USE 7900 SERIES INSTRUCTIONS
3.3 8- and 16-bit data processing

3.3 8- and 16-bit data processing

In the conventional 7700 Family, the same machine code is assigned to an 8- and its corresponding 16-bit
instruction in order to reduce program size, so that it is necessary to specify whether 8- or 16-bit data is
processed, by using flags m and x. The 7900 Series incorporates new instructions with the conventional
instructions. These new instructions enable 8-bit operation independent of flags m and x. By using these
new instructions, 8-bit data can be processed while flags are set for 16-bit data length, preventing an
overhead generated by setting flags. Figure 3.3.1 shows an 8-bit operation example.

CLP m, X ~ Sets flags m and x to “0.”
(16-bit data length selected)

STAB A, store_addr ~ 8-bit data processing

Note: LDAB, LDXB, and LDYB instructions perform “extension zero” operation for 8-bit data which
is indicated by the operand, and then load it to the accumulator as 16-bit data.

Fig. 3.3.1 8-hit operation example

When executing the instructions that require the data length setting by flags m and x, the number of bytes
or execution cycles is affected by this setting. For details, refer to section “4.2 Description of each
instruction” or “Appendix 1. 7900 Series machine instructions.”

7900 Series Software Manual 3-5

HOW TO USE 7900 SERIES INSTRUCTIONS

3.4 Index registers X and Y

3.4 Index registers X and Y

The contents of index register X or Y facilitate to specify an effective address. For example, the direct
indexed X addressing mode is described below. Refer to section “2.3 Addressing modes” for details.

<Example> Direct indexed X addressing mode

A sum of the instruction’s operand, the contents of a direct page register, and the contents of index
register X indicates a memory location in bank 0. The contents in this memory location are data to
be processed. However, when the above sum exceeds the boundary of bank 0 or bank 1, a memory
location in bank 1 or bank 2 is specified, respectively.

Example: Mnemonic Machine code
ADD A, 1EH, X 2B1s 1E1s
(m=0,x=0) Memory
0000 | BankO
: DATAL 433816 == ,
A — A+ [DATAHIDATAL| - :
' DATAH 433915 !
FFFFi !

Contents Contents
Op code (2B1s) of DPRO of X

Operand (1E1s) + |123416 | + | 30E616] = 433816

3—-6 7900 Series Software Manual

HOW TO USE 7900 SERIES INSTRUCTIONS

3.5 Branch instructions

3.5 Branch instructions

The branch instructions are classified into the following 6 categories:
(1) Relative branch

(2) Absolute branches (absolute and absolute long)

(3) Indirect branches (absolute indirect and absolute indirect long)
(4) Relative subroutine call

(5) Absolute subroutine calls (absolute and absolute long)

(6) Indirect subroutine call (absolute Indexed X indirect)

Relative branch and relative subroutine call instructions have the following features:

e Each instruction has a length of 2 or 3 bytes.

e Program area can be reallocated dynamically during program execution.

e Addresses to which the program can branch are limited within a specified range. Refer to section “4.2
Description of each instruction” for details.

Examples:

(i) BRA instruction --- Within a range of —128 to +127 referenced to PC just after instruction
execution

(i) BRAL instruction -+ Within a range of —32768 to +32767 referenced to PC just after instruction
execution

(iii) BSR instruction -+ Within a range of —1024 to +1023 referenced to PC just after instruction
execution

On the other hand, absolute branch, absolute subroutine call, indirect branch and indirect subroutine call

instructions have the following features:

e Any address within the 16-Mbyte space can be directly specified as a branch destination address (absolute long).

e Any address limited within the 64-Kbyte space (a bank), containing PC being used, also can be specified
as a branch destination address. In this case, byte length of an instruction and the number of instruction

execution cycles can be reduced. Refer to section “4.2 Description of each instruction” for details.
Examples:
(i) JMP instruction --- Branches to a 64-Kbyte space specified by PG in which the last byte of an
instruction is located.
(i) IMPL instruction --- Branches to a specified address within the 16-Mbyte space.
(il)) JSR instruction --- Branches to a 64-Kbyte space specified by PG in which the last byte of an

instruction is located. Returns from the branch destination address by the
RTS instruction.
(iv) JSRL instruction --- Branches to a specified address within the 16-Mbyte space. Returns from
the branch destination address by the RTL instruction.
Figure 3.5.1 shows the branch examples by JMP/JMPL and JSR/JSRL instructions.

"""""""""" 1000016

JMP: Branches to an address in the
i _ current bank.
JMPL: Branches to an address outside

the current bank. | [T 2000016

3000016

:lJSR: Calls a subroutine in the current bank.

JSRL: Calls a subroutine outside

the current bank. 4000016

"""""""""" 5000016

Fig. 3.5.1 Branch examples by JMP/JMPL and JSR/JSRL instructions

7900 Series Software Manual 3-7

CHARTER 4
INSTRUCTIONS

4.1 Instruction set
4.2 Description of each instruction
4.3 Notes for software development

INSTRUCTIONS

4.1 Instruction set

4.1 Instruction set

The 7900 Series CPU uses the instruction set with 203 instructions.

Instructions marked by * are the new instructions that have been added to the 7751 Series instruction set.
The remarks column shows that a conventional 7700 Family’s instruction is included in the corresponding
new instruction.

Category Instruction Description Remarks
Load LDA Acc M
* LDAB Acc M8 (Extended with “0"s.)
* LDAD E ~M32
* LDD n DPRnN «IMM16 (n =0 to 3. Multiple operations can be specified.)
LDT DT ~IMMS8
LDX X M
* LDXB X ~IMM8 (Extended with “0”s.)
LDY Y <M
* LDYB Y ~IMM8 (Extended with “0”s.)
Store STA M ~Acc
* STAB M8 ~AccL
* STAD M32 ~E
STX M <X
STY M <Y
Transfer between| * TAD n DPRn <A (n = 0 to 3) including TAD instruction
registers TAS S A
TAX X <A
TAY Y <A
* TBD n DPRn <B (n = 0 to 3) including TBD instruction
TBS S ~B
TBX X ~B
TBY Y ~B
* TDA n A ~DPRn (n = 0 to 3) including TDA instruction
* TDB n B ~DPRn (n = 0 to 3) including TDB instruction
* TDS S ~DPRO
TSA A S
TSB B S
* TSD DPRO ~S
TSX X S
TXA A <X
TXB B <X
TXS S <X
TXY Y <X
TYA A <Y
TYB B <Y
TYX X <Y
XAB A -B

4-2 7900 Series Software Manual

INSTRUCTIONS

4.1 Instruction set

Category

Transfer between
memories

Instruction Description Remarks
MOVM M M including LDM instruction
MOVMB M8 M8

MOVR

M(dest n) —M(source n) (Multiple operations can
be specified.) (n = 0 to 15)

MOVRB

M8(dest n) —M8(source n) (Multiple operations can
be specified.) (n = 0 to 15)

Block transfer MVN M(nton+i-1) «M (mtom+i-1) (i:transfer byte number)

MVP M({(n-i+1ton) «M(m-i+1tom) (i:transfer byte number)
Stack operation PEA Stack - IMM16

PEI Stack « M16 (DPRn + dd) (n = 0 to 3)

PER Stack -« PC + IMM16

PHA Stack < A

PHB Stack - B

PHD Stack - DPRO

PHD n

Stack —« DPRn (n =0 to 3. Multiple operations can be specified.)

PHG Stack « PG

PHP Stack - PS

PHT Stack « DT

PHX Stack ~ X

PHY Stack <Y

PLA A ~ Stack

PLB B ~ Stack

PLD DPRO - Stack

PLD n DPRn ~ Stack (n = 0 to 3. Multiple operations can be specified.)

PLP PS ~Stack

PLT DT Stack

PLX X ~ Stack

PLY Y ~ Stack

PSH Stack — Any specified register among A, B, X, Y,

DPRO, DT, PG, and PS. (Multiple operations
can be specified)

M(Sto S-i+1) <A, B, X,Y,DPRO, DT, PG, PS
S S —i
(i : Number of bytes corresponding to the registers
saved to the stack.)

PUL Any specified register among A, B, X, Y, DPRO,

DT, and PS. — Stack (Multiple operations can be specified)
A, B, X,Y,DPRO,DT,PS «M (S +1to S+i)

S <S+i

(i : Number of bytes corresponding to the registers
restored from the stack.)

7900 Series Software Manual

4-3

INSTRUCTIONS
4.1 Instruction set
Category Instruction Description Remarks
Stack operation & Load | * PHLD n stack « DPRn, DPRn ~IMM16 (n = 0 to 3. Multiple
operations can be specified)
Clearance * CLR Acc -0
* CLRB Acct -0
* CLRM M <0
* CLRMB M8 -0
* CLRX X -0
* CLRY Y -0
Addition ADC Acc ~Acc+ M+ C
* ADCB Acc. ~AccL+ IMM8 + C
* ADCD E ~E +M32 +C
* ADD Acc ~Acc + M
* ADDB Acc. ~AccL+ IMM8
* ADDD E ~E + M32
* ADDM M <M + IMM
* ADDMB M8 ~ M8 + IMMS8
* ADDMD M32 ~M32 + IMM32
* ADDS S S + IMM8
* ADDX X <X + IMM (IMM = 0 to 31)
* ADDY Y <Y + IMM (IMM = 0 to 31)
Increment INC Acc ~Acc+1lorM M+ 1
INX X <X +1
INY Y <Y +1
Subtraction SBC Acc ~Acc—- M -C
* SBCB Acc. <~AccL — IMM8 - C
* SBCD E <E-M32-C
* SUB Acc ~Acc - M
* SUBB Acc. ~Acct — IMM8
* SUBD E ~E - M32
* SUBM M <M — IMM
* SUBMB M8 ~M8 — IMM8
* SUBMD M32 ~M32 — IMM32
* SUBS S ~S - IMM8
* SUBX X <X = IMM (IMM = 0 to 31)
* SUBY Y <Y - IMM (IMM = 0 to 31)
Decrement DEC Acc <Acc—-1lorM M-1
DEX X “X-1
DEY Y <Y -1
Multiplication MPY (B, A) <A (Multiplicand) 00 M (Multiplier), Unsigned
MPYS (B, A) <A (Multiplicand) O M (Multiplier), Signed
Division DIV A (Quoitent), B (remainder) — (B, A) = M, Unsigned
DIVS A (Quoitent), B (remainder) - (B, A) + M, Signed
Multiplied RMPA (B, A) —<(B, A) + M (DT:X) O M (DT:Y)
accumulation (repeating 0 to 255 times)

4-4

7900 Series Software Manual

INSTRUCTIONS

4.1 Instruction set

Category Instruction Description Remarks
Logical OR ORA Acc ~Acclv
* ORAB Acct —Acc.limms
* ORAM M ~MUmMm Including SEB
instruction
* ORAMB | M8 —mM8LIMm8
* ORAMD | M32 —M32[lIMm32
Logical AND AND Acc —Acd M
* ANDB Acc. ~Acc[]IMM8
* ANDM M <M JIMM Including CLB
instruction
* ANDMB M8 ~M8[]IMMS8
* ANDMD M32 M3]IMM32
Logical exclusive OR EOR Acc ~AccM
* EORB Acc. ~AcccdIMM8
* EORM M < MOIMM
* EORMB M8 ~ M8OIMMS8
* EORMD M32 ~M320IMM32
Comparison CMP Acc - M
* CMPB AccL. — IMM8
* CMPD E — IMM32
* CMPM M — IMM
* CMPMB M8 — IMM8
* CMPMD M32 — IMM32
CPX X -M
CPY Y - M
Arithmetic shift left ASL Shifts the contents of Acc or M to the left by 1 bit.
* ASL #n Shifts the contents of A to the left by n bits (n = 0 to 15).
* ASLD #n | Shifts the contents of E to the left by n bits (n = 0 to 31).
Arithmetic shift right ASR Shifts the contents of Acc or M holding a sign to the
right by 1 bit.
* ASR #n Shifts the contents of A holding a sign to the right by n
bits (n = 0 to 15).
* ASRD #n | Shifts the contents of E holding a sign to the right by n
bits (n = 0 to 31).
Logical shift right LSR Shifts the contents of Acc or M to the right by 1 bit.
* LSR #n Shifts the contents of A to the right by n bits (n = 0 to 15).
* LSRD #n | Shifts the contents of E to the right by n bits (n =0 to 31).

7900 Series Software Manual

4-5

INSTRUCTIONS

4.1 Instruction set

Category Instruction Description Remarks
Rotation to left RLA Rotates the contents of A to the left by n bits. (When m =
0:n =0 to 65535, when m = 1:n = 0 to 255)
ROL Links the contents of Acc or M with C, and rotates the

result to the left by 1 bit.

ROL #n

Links the contents of A with C, and rotates the result to
the left by n bits (n = 0 to 15).

ROLD #n | Links the contents of E with C, and rotates the result to
the left by n bits (n = 0 to 31).
Rotation to right ROR Links the contents of Acc or M with C, and rotates the

result to the right by 1 bit.

ROR #n

Links the contents of A with C, and rotates the result to
the right by n bits (n = 0 to 15).

RORD #n | Links the contents of E with C, and rotates the result to
the right by n bits (n = 0 to 31).
Extension Sign EXTS Acc —Acct (Extended with a sign.)
* EXTSD E ~EL (= A) (Extended with a sign.)
Extension Zero EXTZ Acc ~Acc. (Extended with “0"s.)
* EXTZD E ~EL(= A) (Extended with “0”s.)
Sign invertion * NEG Acc ~ —Acc
* NEGD E ~ -E
Absolute value * ABS Acc | Acc |
* ABSD E | E|
Flag manipulation CLC C <0
CLlI I <0
CLM m <0
CLP PSi(bit n) <0 (n = 0 to 7. Multiple operations can be
specified.)
CLV Vv <0
SEC C 1
SEI I <1
SEM m <1
SEP PSc(bit n)~1 (n = 0 to 7. Multiple operations can be
specified.)
Conditional branch BRA/BRAL| PC ~PC + cnt + REL
(cnt : bytes number of BRA/BRAL instruction)
JMP PC ~Destination address
PC <—mmll
JMPL PG, PC Destination address
PC <—mmll
PG <hh

7900 Series Software Manual

INSTRUCTIONS

4.1 Instruction set

Category Instruction Description Remarks
Subroutine call * BSR Stack —PC
PC ~PC+ 2+ REL
JSR Stack —PC
PC ~Destination address
PC ~PC+3
M(S, S-1) ~PC
S ~S-2
PC <mmll
JSRL Stack — PG, PC
PG, PC ~ Destination address
PC ~PC+4
M(S, S-2) PG, PC
S ~S-3
PC —mmll
PG «<hh
Conditional branch BBC Branches relatively when the specified bits of M are all “0.”
* BBCB Branches relatively when the specified bits of M8 are
all “0.”
BBS Branches relatively when the specified bits of M are all “1.”
* BBSB Branches relatively when the specified bits of M8 are
all “1.”
BCC Branches relatively when C = 0.
BCS Branches relatively when C = 1
BEQ Branches relatively when Z = 1.
* BGE Branches relatively when NOV = 0.
* BGT Branches relatively when Z = 0 and N[OV = 0.
* BGTU Branches relatively when C = 1 and Z = 0.
* BLE Branches relatively when Z = 1 or NOV = 1.
* BLEU Branches relatively when C = 0 and Z = 1.
2B LTy Branches relatively when NOV = 1.
BMI Branches relatively when N = 1.
BNE Branches relatively when Z = 0.
BPL Branches relatively when N = 0.
* BSC Branches relatively when the specified one bit of A
or M is “0.”
* BSS Branches relatively when the specified one bit of A
or M is “1.”
BVC Branches relatively when V = 0.
BVS Branches relatively when V = 1.
Compare & * CBEQ Branches relatively when Acc = IMM or M = IMM.
Conditional branch | * CBEQB Branches relatively when AccL.= IMM8 or M8 = IMMS.
* CBNE Branches relatively when Acc # IMM or M # IMM.
* CBNEB Branches relatively when AccL# IMM8 or M8 # IMMS.

7900 Series Software Manual

4-7

INSTRUCT

4.1 Instruction set

IONS

Category Instruction Description Remarks
Decrement & * DEBNE M <M — IMM. Branches relatively when M # 0 (IMM
Conditional branch = 0 to 31).

* DXBNE X <X — IMM. Branches relatively when X # 0 (IMM
= 0 to 31).
* DYBNE Y ~Y — IMM. Branches relatively when Y # 0 (IMM
= 0 to 31).
Return RTI PG, PC, PS Stack
RTL PG, PC ~ Stack
RTS PC ~ Stack
Load & Return * RTLD n | DPRn - Stack, PG, PC —Stack (n = 0 to 3. Multiple
operations can be specified.)
* RTSD n | DPRn « Stack, PC ~ Stack (n = 0 to 3. Multiple
operations can be specified.)
Software interrupt BRK Generates a BRK interrupt.
Special STP Stops oscillation.
WIT Stops the CPU clock.
No operation NOP PC ~PC+1

4-8

7900 Series Software Manual

INSTRUCTIONS

4.2 Description of each instruction

4.2 Description of each instruction

This section describes each instruction. Each instruction is described using one page per one instruction as
a general rule. The description page is headed by the instruction mnemonic, and the pages are arranged
in alphabetical order of the mnemonics. For each instruction, its operation and description (Notes 1, 2),
status flags’ change, and a list sorted by addressing modes of the assembly language coding format (Note
3), the machine code, the byte number and the minimum cycle number (Note 4) are described.

Notes 1: In the description of each instruction operation, the operation regarding PC (program counter) is
described only for an instruction affecting the processing.
When an instruction is executed, its instruction bytes are added to the contents of PC and PC
contains the address of the memory location of the instruction to be executed next. When a carry
occurs at this addition, PG (program bank register) is incremented by 1.

2. [Operation] in the description of each instruction shows the contents of each register and memory
after executing the instruction. The detailed operation sequence is omitted.

3: [Description example] in this manual is an example of assembly language description. Especially
for addressing mode specification, various methods for mnemonic description in the 7900 Series
are available, including the formats shown below. For more information, refer to the user’s
manual of the assembler to be used.

m Methods for specifying addressing modes in Mitsubishi assembler

Addressing mode Specification Instruction coding example
Direct DPO0+:0ffset6/8 ADD A,DP0+:04H
DPO:label ADD A,DPO:WORK
Direct indirect (DPO+:0ffset6/8) ADD A,(DPO0+:04H)
(DPO:label) ADD A,(DPO:WORK)
Direct indirect long L(DPO+:0Offset6/8) ADD A,L(DPO0O+:04H)
L(DPO:label) ADD A,L(DPO:WORK)
Stack pointer relative Offset,S ADD A,05H,S
Stack pointer relative indirect indexed Y | (Offset,S),Y ADD A,(05H,S),Y
Absolute DT+:Offset16 ADD A,DT +:1000H
DT:label ADD A,DT:WORK
Absolute indirect (Address) JMP (1000H)
(label) JMP (TABLE)
Absolute long LG:label ADD A,LG:WORK
Absolute indirect long L(DT+:0ffsetl6) ADD A,L(DT +:1000H)
L(DT:label) ADD A,L(DT:WORK)

e Offset6/8 : 6-bit offset value (when using DPRO through DPR3) or 8-bit offset value (when using DPRO).

e Offset : 8-bit offset value.

e Offsetl6 : 16-bit offset value.

e Address : Memory address to be referenced.

e label . Label indicating the memory address to be referenced.

7900 Series Software Manual 4-9

INSTRUCTIONS

4.2 Description of each instruction

Notes 4: The cycle number shown is the minimum possible number, and this number depends on the

following conditions:
*Value of direct page register’'s low-order byte
The cycle number shown is a number when the direct page register’s low-order byte (DPRnL)

is “0016.” When using an addressing mode that uses the direct page register in the condition of
DPRnL # “0016,” the number which is obtained by adding 1 to the shown number is an actual
cycle number.
«Number of bytes that have been loaded in an instruction queue buffer
*Whether the address of the memory read/write is even or odd

e Accessing of an external memory area in the condition of BYTE = “H” (using 8-bit external bus)

*Bus cycle

4-10 7900 Series Software Manual

4.2 Description of each instruction

INSTRUCTIONS

The following table shows the symbols that are used in instructions’ description and the lists of this section,
and each instruction is described bellow.

Symbol

Description

O o T Z<3XUOU~-NDO
—

|— ogt =

i1

Acc
AcCCH
AccL

AH
AL

BH
BL

EH
EL

XH
XL

YH
YL

Carry flag

Zero flag

Interrupt disable flag

Decimal mode flag

Index register length flag

Data length flag

Overflow flag

Negative flag

Processor interrupt priority level
Addition

Subtraction

Multiplication

Multiplication

Division

Division

Logical AND

Logical OR

Logical exclusive OR

Absolute value

Negation

Movement toward the arrow direction
Movement toward the arrow direction
Exchange

Accumulator

Accumulator’s high-order 8 bits
Accumulator’s low-order 8 bits
Accumulator A

Accumulator A’s high-order 8 bits
Accumulator A’s low-order 8 bits
Accumulator B

Accumulator B’s high-order 8 bits
Accumulator B’s low-order 8 bits
Accumulator E

Accumulator E’s high-order 16 bits
Accumulator E’s low-order 16 bits
Index register X

Index register X’s high-order 8 bits
Index register X's low-order 8 bits
Index register Y

Index register Y’s high-order 8 bits
Index register Y’s low-order 8 bits
Stack pointer

7900 Series Software Manual

4-11

INSTRUCTIONS

4.2 Description of each instruction

Symbol Description

PC Program counter

PChx Program counter’s high-order 8 bits

PCL Program counter’s low-order 8 bits

REL Relative address

PG Program bank register

DT Data bank register

DPRO Direct page register 0

DPRO# Direct page register 0’s high-order 8 bits

DPROu Direct page register 0’s low-order 8 bits

DPRn Direct page register n

DPRn# Direct page register n’s high-order 8 bits

DPRn. Direct page register n's low-order 8 bits

PS Processor status register

PSH Processor status register’s high-order 8 bits

PSL Processor status register’s low-order 8 bits

PS(bit n) The n-th bit of processor status register

M Memory contents

Mn, MEMn n-bit address or contents of memory

M(oprd) Contents of memory location specified by operand

M(bit n) The n-th bit of the contents of memory

IMM Immediate value (8 bits or 16 bits)

IMMn n-bit immediate data

IMMn# High-order data of n-bit immediate data

IMMn. Low-order data of n-bit immediate data

EAR Effective address (16 bits)

EARH High-order 8 bits of effective address

EARL Low-order 8 bits of effective address

MSB Most significant bit

LSB Least significant bit

dd Displacement for DPR (8 bits or 6 bits)

immeximmuimmoimme | 32-bitimmediate value (bytes immasy, immee, immuws, and immwe are shown from the highest one.)

immsimme 16-bit immediate value (immn represents the high-order 8 bits, and imm. represents
the low-order 8 bits.)

imm 8-bit immediate value

immn n-bit immediate value

hhmmll 24-bit address value (hh represents the high-order 8 bits, mm represents the middle-order
8 bit, and Il represents the low-order 8 bits.)

mmll 16-bit address value (mm represents the high-order 8 bits, and Il represents the low-order 8 bits.)

nn Displacement for S (8 bits)

N1, N2 8-bit data (2 types of 8-bit data)

rr Displacement for PC (signed 8 bits)

rrure Displacement for PC (signed 16 bits) (rru represents the high-order 8 bits, and
rre represents the low-order 8 bits.)

hhi, hhz Bank specification (2 types of 8-bit data)

source Operand specified as transfer source

dest Operand specified as transfer destination

4-12

7900 Series Software Manual

ABS

ABS

ABSolute
Function Absolute value
Operation data length : 16 bits or 8 bits
Operation Acc ~ IAccl
When m = “0”
Acc Acc
When m = “1”
Acc. Acc.
O In this case, the contents of Acck do not change.
Description Obtains the absolute value of Acc contents and stores the result in Acc.

Status flags

Z

IPLIl N| V| m]| x | D I

N
O

—lo|v|—|—|—=|=|2z]o0

Always “0” because MSB of the operation result is “0.”

Set to “1” if the operation result exceeds +32767 (or +127 when m = “1"). Otherwise, cleared

to “0.”
Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”
Always “0.”

Addressing mode

Syntax Machine code

Bytes

Cycles

A
A

ABS A
ABS B

Elie
8116, El1s

Description example :

CLM
ABS A
SEM
ABS B

i A < |A]

; BL « |By

7900 Series Software Manual

4-13

AB S D ABSolute at Double-word ABS D

Function . Absolute value

Operation data length : 32 bits

Operation . E < IEl
E E
Description . Obtains the absolute value of the E contents and stores the result in E.

e This instruction is unaffected by flag m.

Status flags
g PLIN|V | m|x|D|1]|Zz]cC
—|lo0o|VvV|—|—|—|—|2Z2|0O0
N Always “0” because MSB of the operation result is “0.”
\% Set to “1” if the operation result exceeds +2147483647. Otherwise, cleared to “0.”
z Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”
C Always “0.”
Addressing mode Syntax Machine code Bytes | Cycles
A ABSD E 3116, 9016 2 5
Description example :
ABSD E i E < |E|

4-14 7900 Series Software Manual

ADC

ADd with Carry AD C

Function

Operation data length :

Operation

Description

Status flags

Addition with carry
16 bits or 8 bits

Acc « Acc+ M + C
When m = “0”
Acc Acc M16

C
IS I N

When m = “1”
AccL AccL M8 C

-0

O In this case, the contents of Acck do not change.

Adds the contents of Acc, memory, and flag C, and stores the result in Acc.
e This instruction operates in decimal when flag D = “1.”

PLIN|V] m|x|D|1]z]|C
—IN[V]|=]=]=|=]2z]C

Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”
Meaningless when flag D = “1.”

Set to “1” when the result of the operation (regarded as a signed operation) is a value outside
the range of —32768 to +32767 (—128 to +127 when flag m = “1”). Otherwise, cleared to “0.”
Meaningless when flag D = “1.”

Set to “1” when the operation result is “0.” Otherwise, cleared to “0.” Meaningless when flag
D="1"

Set to “1” when flag D = “0” and the result of the operation (regarded as an unsigned
operation) exceeds +65535 (+255 when flag m = “1"). Otherwise, cleared to “0.”

Set to “1” when flag D = “1” and the result of the operation (regarded as an unsigned
operation) exceeds +9999 (+99 when flag m = “1"). Otherwise, cleared to “0.”

7900 Series Software Manual 4-15

ADC ADd with Carry ADC

Addressing mode Syntax Machine code Bytes | Cycles
IMM ADC A, #imm 3116, 8716, imm (Blis, 8716, imm) 3 3(3)
DIR ADC A, dd 2116, 8A16, dd (Alis, 8A1s, dd) 3 5(7)
DIR, X ADC A, dd, X 2116, 8B16, dd (Alis, 8B1s, dd) 3 6 (8)
(DIR) ADC A, (dd) 2116, 8016, dd (Alis, 8016, dd) 3 7 (9)
(DIR, X) ADC A, (dd, X) 2116, 8116, dd (Alis, 8116, dd) 3 8 (10)
(DIR), Y ADC A, (dd), Y 2116, 8816, dd (Alis, 8816, dd) 3 8 (10)
L(DIR) ADC A, L(dd) 2116, 8216, dd (Alis, 8216, dd) 3 9 (11)
L(DIR), Y ADC A, L(dd), Y 2116, 8916, dd (Alis, 8916, dd) 3 10(12)
SR ADC A, nn, S 2116, 8316, NN (Alie, 8316, NN) 3 6 (8)
(SR), Y ADC A, (nn, S), Y| 2116, 8416, Nnn (Alis, 8416, NN) 3 9 (11)
ABS ADC A, mmll 2116, 8E1s, Il, mm (Alis, 8Eis, Il, mm) 4 5(7)
ABS, X ADC A, mmll, X 2116, 8F1s, Il, mm (Alis, 8Fis, Il, mm) 4 6 (8)
ABS, Y ADC A, mmll, Y 2116, 8616, Il, mm (Alis, 861s, I, mm) 4 6 (8)
ABL ADC A, hhmmll 2116, 8Cis, Il, mm, hh (Alis, 8Cas, Il, mm, hh) 5 6 (8)
ABL, X ADC A, hhmmll, X| 2116, 8D1s, Il, mm, hh (Alis, 8Dz1s, Il, mm, hh) 5 7 (9)

Notes 1: This table applies when using accumulator A. When using accumulator B, replace “A” with “B” in
the syntax. In this case, the machine code and the number of cycles enclosed in parentheses are
applied.

2: In the immediate addressing mode, the byte number increases by 1 when flag m = “0.”

Description example :

CLM

ADC.W A, #IMM16 ;A « A+ IMM16 + C

ADC B, MEM16 ;B « B+ MEM16 + C
SEM

ADC.B A, #IMM8 ;AL « AL+ IMM8 + C
ADC B, MEMS8 ; BL « BL+ MEM8 + C

4-16 7900 Series Software Manual

ADCB

ADd with Carry at Byte ADC B

Function

Operation data length :

Operation

Description

Status flags

Addition with carry
8 bits

AccL. —~ AccL + IMMS8 +C
AccL AccL C

| |<_| |+IMM8 +|:|

Adds the contents of Acc., the immediate value, and flag C in 8-bit length, and stores the result
in Acc.

e This instruction is unaffected by flag m.
e The contents of Accn do not change.
e This instruction operates in decimal when flag D = “1.”

PL{N| V| m|x|D|I|z]|cC
—IN|V|—=|=|—|=|2z]|C

Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.” Meaningless when
flag D = “1.”

Set to “1” when the result of the operation (regarded as a signed operation) is a value outside
the range of —128 to +127. Otherwise, cleared to “0.” Meaningless when flag D = “1.”

Set to “1” when the operation result is “0.” Otherwise, cleared to “0.” Meaningless when flag
D = Hl.”

Set to “1” when the result of the operation (regarded as an unsigned operation) exceeds +255
(+99 when flag D = “1"). Otherwise, cleared to “0.”

Addressing mode Syntax Machine code Bytes | Cycles
IMM ADCB A, #imm 3116, 1A16, imm 3 3
IMM ADCB B, #imm Blis, 1A16, imm 3 3
Description example :
ADCB A, #IMM8 i AL « AL+ IMM8 + C
ADCB B, #IMM8 ; BL « BL+ IMM8 + C

7900 Series Software Manual 4-17

ADCD

ADCD

ADd with Carry at Double-word

Function

Operation data length :

Operation

Description

Status flags

N

Addition with carry

32 bits

E-E+M32+C

Adds contents of E, memory, and flag C in 32-bit length, and stores the result in E. CPU
operates as binary addition in spite of the contents of decimal mode flag.

e This instruction is unaffected by flag m.
e This instruction cannot operate in decimal. Clear flag D to “0” when using this instruction.

PLIN| V| m|x|D|I1]2Zz]|C
—IN|V|—=]|—=|=|=]2Z]|C

Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Set to “1” when the result of the operation (regarded as a signed operation) is a value outside
the range of —2147483648 to +2147483647. Otherwise, cleared to “0.”

Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”
Set to “1” when the result of the operation (regarded as an unsigned operation) exceeds

+4294967295. Otherwise, cleared to “0.”

Addressing mode Syntax Machine code Bytes | Cycles
IMM ADCD E, #imm 3116, 1C16, IMmmLL, iMMLH, iMMHL, IMMHH 6 4
DIR ADCD E, dd 2116, 9A1s, dd 3 7
DIR, X ADCD E, dd, X 2116, 9B1s, dd 3 8
(DIR) ADCD E, (dd) 2116, 9016, dd 3 9
(DIR, X) ADCD E, (dd, X) | 2116, 9116, dd 3 10
(DIR), Y ADCD E, (dd), Y | 2116, 9816, dd 3 10
L(DIR) ADCD E, L(dd) 2116, 9216, dd 3 11
L(DIR), Y ADCD E, L(dd), Y | 2116, 9916, dd 3 12
SR ADCD E, nn, S 2116, 9316, NN 3 8
(SR), Y ADCD E, (nn, S), Y| 2116, 9416, Nn 3 11
ABS ADCD E, mmll 2116, 9E1s, I, mm 4 7
ABS, X ADCD E, mmll, X | 211e, 9F1s, Il, mm 4 8
ABS, Y ADCD E, mmll, Y | 2116, 9616, ll, mm 4 8
ABL ADCD E, hhmmll | 2116, 9Czs, Il, mm, hh 5 8
ABL, X ADCD E, hhmmll, X| 2116, 9D1s, I, mm, hh 5 9
Description example :
ADCD E, #IMM32 i E « E+IMM32 + C
:(B,A « B, A+ IMM32 + C)
ADCD E, MEM32 i E « E+ MEM32 + C

; (B, A -« B, A+ MEM32 + C)

4-18

7900 Series Software Manual

ADD

ADD ADD

Function

Operation data length :

Operation

Description

Status flags

z

N

Addition

16 bits or 8 bits

Acc —« Acc + M

When m = “0”
Acc Acc M16
I I
When m = “1”
AccL AccL M8

e

O In this case, the contents of Acck do not change.

Adds the contents of Acc and memory, and stores the result in Acc.
e This instruction cannot operate in decimal. Clear flag D to “0” when using this instruction.

PLIN|V] m|x|D|1]z]|C
—IN[V]|=]=]=|=]2z]C

Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Set to “1” when the result of the operation (regarded as a signed operation) is a value outside
the range of —32768 to +32767 (—128 to +127 when flag m = “1”). Otherwise, cleared to “0.”

Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

Set to “1” when the result of the operation (regarded as an unsigned operation) exceeds
+65535 (+255 when flag m = “1"). Otherwise, cleared to “0.”

7900 Series Software Manual 4-19

ADD

ADD

ADD

Addressing mode Syntax Machine code Bytes | Cycles
IMM ADD A, #imm 2616, imm (8116, 2616, imm) 203) | 12
DIR ADD A, dd 2A16, dd (8116, 2A16, dd) 213) | 34
DIR, X ADD A, dd, X 2B1s6, dd (8116, 2B16, dd) 2(3) | 4 (5
(DIR) ADD A, (dd) 1116, 2016, dd (9116, 2016, dd) 3@3) | 6(6)
(DIR, X) ADD A, (dd, X) 1116, 2116, dd (9116, 2116, dd) 3@ | 7(7)
(DIR), Y ADD A, (dd), Y 1116, 2816, dd (9116, 2816, dd) 3@B3) | 7
L(DIR) ADD A, L(dd) 1116, 2216, dd (9116, 2216, dd) 3@3) | 8(9
L(DIR), Y ADD A, L(dd), Y 1116, 2916, dd (9116, 2916, dd) 33)| 99
SR ADD A, nn, S 1116, 2316, NN (9116, 2316, NN) 3@) | 5(5
(SR), Y ADD A, (nn, S), Y| 1116, 2416, nn (9116, 2416, Nn) 313) | 8(8)
ABS ADD A, mmll 2E1s, ll, mm (8116, 2E1s, Il, mm) 3@4)| 3(@4)
ABS, X ADD A, mmll, X 2F 16, Il, mm (811s, 2F1s, |, mm) 3@)| 4(5)
ABS, Y ADD A, mmll, Y 1116, 2616, Il, mm (9116, 2618, I, mm) 4 (4) 5 (5)
ABL ADD A, hhmmll 1116, 2C1s6, Il, mm, hh (9116, 2C1s, Il, mm, hh)| 5 (5) 5 (5)
ABL, X ADD A, hhmmll, X| 1116, 2Dss, I, mm, hh (9116, 2Dzs, Il, mm, hh)| 5 (5) | 6 (6)

Notes 1: This table applies when using accumulator A. When using accumulator B, replace “A” with “B” in
the syntax. In this case, the machine code, the number of bytes, and the number of cycles enclosed
in parentheses are applied.

2: In the immediate addressing mode, the byte number increases by 1 when flag m = “0.”

Description example :

CLM

ADD.W A, #IMM16
ADD B, MEM16
SEM

ADD.B A, #IMM8

ADD B, MEM8

A« A+ IMM16
B - B+ MEM16

; AL < AL + IMM8
; BL « BL + MEM8

4-20

7900 Series Software Manual

ADDB

ADDB

ADD at Byte
Function :Addition
Operation data length : 8 bits
Operation : Acct «~ Acc. + IMMS8
Accu Acce
| |<_ | | + IMM8
Description : Adds the contents of Acc. and immediate value in 8-bit length, and stores the result in Accu.

e This instruction is unaffected by flag m.

e The contents of Accn do not change.

e This instruction cannot operate in decimal. Clear flag D to “0” when using this instruction.

Status flags

IPL| N| V|m| x | D Z | C
—|IN|V|—|—|—=|—|2Z]|C
N Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”
V : Setto “1” when the result of the operation (regarded as a signed operation) is a value outside
the range of —128 to +127. Otherwise, cleared to “0.”
z Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”
C : Setto “1” when the result of the operation (regarded as an unsigned operation) exceeds +255.

Otherwise, cleared to “0.”

Addressing mode Syntax Machine code Bytes | Cycles
IMM ADDB A, #imm 2916, iImm 2 1
IMM ADDB B, #imm 8116, 2916, imm 3 2
Description example :
ADDB A, #IMM8 ; AL « AL + IMM8
ADDB B, #IMM8 ; BL « BL + IMM8

7900 Series Software Manual

4-21

ADDD

ADDD

ADD at Double-word

Function

Operation data length :

Operation

Description

Status flags

N

Addition

32 bits

E -« E+ M32

Adds the contents of E and memory in 32-bit length, and stores the result in the E.
e This instruction is unaffected by flag m.
e This instruction cannot operate in decimal. Clear flag D to “0” when using this instruction.

PLIN|V | m|x|D| I |]Z]|C
—|IN|V|—=|—=|=|=1]2Z]|C

Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Set to “1” when the result of the operation (regarded as a signed operation) is a value outside
the range of —2147483648 to +2147483647. Otherwise, cleared to “0.”

Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”
Set to “1” when the result of the operation (regarded as an unsigned operation) exceeds

+4294967295. Otherwise, cleared to “0.”

Addressing mode Syntax Machine code Bytes | Cycles
IMM ADDD E, #imm 2D16, immLL, immcH, immHL, immeuH 5 3
DIR ADDD E, dd 9A16, dd 2 6
DIR, X ADDD E, dd, X 9B1s, dd 2 7
(DIR) ADDD E, (dd) 1116, 9016, dd 3 9
(DIR, X) ADDD E, (dd, X) | 111, 9116, dd 3 10
(DIR), Y ADDD E, (dd), Y | 1116, 9816, dd 3 10
L(DIR) ADDD E, L(dd) 1116, 9216, dd 3 11
L(DIR), Y ADDD E, L(dd), Y | 1116, 9916, dd 3 12
SR ADDD E, nn, S 1116, 9316, NN 3 8
(SR), Y ADDD E, (nn, S), Y| 111, 9416, Nn 3 11
ABS ADDD E, mmll 9Ezss, Il, mm 3 6
ABS, X ADDD E, mmll, X | 9Fus, Il, mm 3 7
ABS, Y ADDD E, mmll, Y | 11ie, 961s, I, mm 4 8
ABL ADDD E, hhmmll | 1116, 9Czs, Il, mm, hh 5 8
ABL, X ADDD E, hhmmll, X| 1116, 9Dz1s, Il, mm, hh 5 9
Description example :
ADDD E, #IMM32 ; E « E+IMM32 (B, A - B, A +IMM32)
ADDD E, MEM32 ; E « E+ MEM32 (B, A -« B, A+ MEM32)

4-22

7900 Series Software Manual

ADDM

ADD immediate and Memory

ADDM

Function

Operation data length :

Addition

16 bits or 8 bits

| + IMM16

Operation M- M+ IMM
When m = “0”
M16 M16
L -0
When m = “1”
M8 M8
| | - | | + IMM8
Description

Adds the contents of memory and immediate value, and stores the result in memory.

e This instruction cannot operate in decimal. Clear flag D to “0” when using this instruction.

Status flags

IPLIN|V | m|x|DJ| I |Z]|C
—|/N|V]|—|—|—|—|2Z2]|C
N Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”
V : Setto “1” when the result of the operation (regarded as a signed operation) is a value outside
the range of —32768 to +32767 (—128 to +127 when flag m = “1"). Otherwise, cleared to “0.”
Z : Setto “1” when the result of the operation is “0.” Otherwise, cleared to “0.”
C : Setto “1” when the result of the operation (regarded as an unsigned operation) exceeds
+65535 (+255 when flag m = “1"). Otherwise, cleared to “0.”
Addressing mode Syntax Machine code Bytes | Cycles
DIR ADDM dd, #imm 5116, 0316, dd, imm 4 7
ABS ADDM mmll, #imm| 5116, 0716, Il, mm, imm 5 7

Note : When flag m = “0,” the byte number increases by 1.

Description example :

CLM
ADDM.W
SEM
ADDM.B

MEM16, #IMM16

MEMS, #MM8

; MEM16 —~ MEM16 + IMM16

; MEM8 —~ MEMS8 + IMM8

7900 Series Software Manual

4-23

AD D M B ADD immediate and Memory at Byte AD D M B

Function . Addition

Operation data length : 8 bits

Operation : M8 « M8 + IMM8
M8 M8
| |<_ | | + IMM8
Description : Adds the contents of memory and immediate value in 8-bit length, and stored the result in
memory.

e This instruction is unaffected by flag m.
e This instruction cannot operate in decimal. Clear flag D to “0” when using this instruction.

Status flags PLIN|V I m|x|D|1]z]|cC
— |/ N|V]|—|—|—|—1|2Z|C
N : Setto “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”
V : Setto “1” when the result of the operation (regarded as a signed operation) is a value outside

the range of —128 to +127. Otherwise, cleared to “0.”
Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

C : Setto “1” when the result of the operation (regarded as an unsigned operation) exceeds +255.
Otherwise, cleared to “0.”

N

Addressing mode Syntax Machine code Bytes | Cycles
DIR ADDMB dd, #imm | 5116, 0216, dd, imm 4 7
ABS ADDMB mmll, #imm| 5116, 0616, Il, mm, imm 5 7
Description example :
ADDMB MEMS8, #IMM8 ; MEM8 - MEMS8 + IMM8

4-24 7900 Series Software Manual

AD D M D ADD immediate and Memory at Double-word AD D M D

Function . Addition

Operation data length : 32 bits

Operation © M32 - M32 + IMM32
M32 M32
LT =L LT+ mms2
Description . Adds the contents of memory and immediate value in 32-bit length, and stores the result in
memory.

e This instruction is unaffected by flag m.
e This instruction cannot operate in decimal. Clear flag D to “0” when using this instruction.

Status flags PLUN| V| m|[x|[D|I]|]Z]|C
— | N|V|—|—|—|—|2Z2]|C
N : Setto “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”
V : Setto “1” when the result of the operation (regarded as a signed operation) is a value outside

the range of —2147483648 to +2147483647. Otherwise, cleared to “0.”
Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

C : Setto “1” when the result of the operation (regarded as an unsigned operation) exceeds
+4294967295. Otherwise, cleared to “0.”

N

Addressing mode Syntax Machine code Bytes |Cycles
DIR ADDMD dd, #imm 5116, 8316, dd, immLcLt, immuH, immHuL, immu- 7 10
ABS ADDMD mmll, #imm | 5116, 8716, Il, mm, immcL, immcx, immuL, immuds 8 10
Description example :
ADDMD MEM32, #IMM32 ; MEM32 ~ MEM32 + IMM32

7900 Series Software Manual 4-25

AD DS ADD Stack pointer and immediate AD DS

Function : Addition

Operation data length : 16 bits

Operation : S <« S+ IMM8
S S
| | | - | | | + IMM8
Description : Adds the contents of S and 8-bit immediate value in 16-bit length, and stores the result in S.

Extend zero of the immediate value to the 16-bit immediate value, at the operation.
e This instruction is unaffected by flag m.
e This instruction cannot operate in decimal. Clear flag D to “0” when using this instruction.

Status flags PLIN|V | m|x|D|I1]Zz]|C
— | N|V|—|—]|—|—|2Z]|C
N Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”
V : Setto “1” when the result of the operation (regarded as a signed operation) is a value outside
the range of —32768 to +32767. Otherwise, cleared to “0.”
Z : Setto “1" when the operation result is “0.” Otherwise, cleared to “0.”
C : Setto “1” when the result of the operation (regarded as an unsigned operation) exceeds

+65535. Otherwise, cleared to “0.”

Addressing mode Syntax Machine code Bytes | Cycles
IMM ADDS #imm 3116, 0A16, imm 3 2
Description example :
ADDS #IMM8 ;S « S+ IMM8

4-26 7900 Series Software Manual

ADDX

ADD index register X and immediate AD DX

Function

Operation data length :

Operation

Description

Status flags

N

Addition

16 bits or 8 bits

Xe X+ IMM (IMM = 0 to 31)
When x = “0”
X X
S
When x = “1”
X X

-]

O In this case, the contents of Xu do not change.

Adds the contents of X and immediate value (0 to 31), and stores the result in X.
e This instruction is unaffected by flag m.
e This instruction cannot operate in decimal. Clear flag D to “0” when using this instruction.

PLIN|V | m|x|D|1]z]|C
—IN|V|—|—=|=|=|Zz]C

Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Set to “1” when the result of the operation (regarded as a signed operation) is a value outside
the range of —32768 to +32767 (-128 to +127 when flag x is “1"). Otherwise, cleared to “0.”

Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

Set to “1” when the result of the operation (regarded as an unsigned operation) exceeds
+65535 (+255 when flag x = “1”). Otherwise, cleared to “0.”

Addressing mode Syntax Machine code Bytes | Cycles

IMM ADDX #imm 011, imm 2 2

Note : Any value from 0 to 31 can be set to imm.

Description example :

CLP
ADDX
SEP
ADDX

#MM ; X« X+ IMM
X
#MM ; XL« XL+ IMM

7900 Series Software Manual 4-27

ADDY

ADD index register Y and immediate AD DY

Function

Operation data length :

Operation

Description

Status flags

N

Addition

16 bits or 8 bits

Y~ Y+ IMM (IMM = 0 to 31)
When x = “0”
Y Y
L - fru
When x = “1”

Yo Yo
][]
O In this case, the contents of Yn do not change.
Adds the contents of Y and immediate value (0 to 31), and stores the result in Y.

e This instruction is unaffected by flag m.
e This instruction cannot operate in decimal. Clear flag D to “0” when using this instruction.

PL{N|V | m|x|D|1]|Zz]|C
—|IN|V|—|—=|—=]|—=|2z]|C

Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Set to “1” when the result of the operation (regarded as a signed operation) is a value outside
the range of —32768 to +32767 (-128 to +127 when flag x is “1"). Otherwise, cleared to “0.”

Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

Set to “1” when the result of the operation (regarded as an unsigned operation) exceeds
+65535 (+255 when flag x = “1”). Otherwise, cleared to “0.”

Addressing mode Syntax Machine code Bytes | Cycles

IMM ADDY #imm 0116, imm+2016 2 2

Note : Any value from 0 to 31 can be set to imm.

Description example :

CLP
ADDX
SEP
ADDX

MM Y « Y + IMM

#MM ;YL < YL+ IMM

4-28

7900 Series Software Manual

AND

logical AND AN D

Function

Operation data length :

Operation

Description

Status flags

Logical AND

16 bits or 8 bits

Acc « Acc[] M

When m = “0”
Acc Acc M16
I =
When m = “1”
AccL AccL M8
I

O In this case, the contents of Acck do not change.

Performs logical AND between the contents of Acc and the contents of a memory, and stores
the result in Acc.

IPLIN|V | m|x|Dj| Il |Z]|C
— I Nl ==l =] ==z | =

Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”
Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

7900 Series Software Manual 4-29

AND

logical AND

AND

Addressing mode Syntax Machine code Bytes |[Cycles
IMM AND A, #imm 6616, imm (8116, 6616, imm) 2(3) | 12
DIR AND A, dd 6A16, dd (8116, 6A16, dd) 2(3) | 3(4)
DIR, X AND A, dd, X 6B1s, dd (8116, 6B16, dd) 2(3) | 4 (5
(DIR) AND A, (dd) 1116, 6016, dd (9116, 6016, dd) 3@3) | 6(6)
(DIR, X) AND A, (dd, X) 1116, 6116, dd (9116, 6116, dd) 3@ | 7(7)
(DIR), Y AND A, (dd), Y 1116, 6816, dd (9116, 6816, dd) 3@ | 7(7)
L(DIR) AND A, L(dd) 1116, 6216, dd (9116, 6216, dd) 3@3) | 8(8)
L(DIR), Y AND A, L(dd), Y 1116, 6916, dd (9116, 6916, dd) 3@) | 9(9
SR AND A, nn, S 1116, 6316, NN (9116, 6316, NN) 33 5 (5)
(SR), Y AND A, (nn, S), Y | 1lis, 6416, Nn (9116, 6416, NN) 3@3) | 8(8)
ABS AND A, mmll 6Eus, Il, mm (8116, 6E1s, Il, mm) 3@4) | 3@
ABS, X AND A, mmll, X 6F16, Il, mm (8116, 6F1s, Il, mm) 3@) | 4(
ABS, Y AND A, mmll, Y 1116, 6616, Il, mm (9116, 6616, Il, mm) 4(4) | 50
ABL AND A, hhmmll 1116, 6C1s, Il, mm, hh (9116, 6C1s, Il, mm, hh)| 5 (5) 5 (5)
ABL, X AND A, hhmmll, X | 1116, 6D1s, Il, mm, hh (9116, 6D1s, Il, mm, hh)| 5 (5) | 6 (6)

Notes 1: This table applies when using accumulator A. When using accumulator B, replace “A” with “B” in
the syntax. In this case, the machine code,the number of bytes, and the number of cycles enclosed
in parentheses are applied.

2: In the immediate addressing mode, the byte number increases by 1 when flag m = “0.”

Description example :

CLM

AND.W A, #IMM16
AND B, MEM16
SEM

AND.B A, #IMM8

AND B, MEM8

A < A[] IMM16
;B - B[] MEM16

DAL < AL[] IMM8
. BL « BL[] MEMS8

4-30

7900 Series Software Manual

AN D B logical AND between immediate and accumulator (Byte) AN D B

Function . Logical AND

Operation data length : 8 bits

Operation : AccL ~ Acc. [JIMM8
Accu Acce
| | - | |D IMM8
Description . Performs logical AND between the contents of Acc. and the immediate value in 8-bit length,

and stores the result in Acct.
e This instruction is unaffected by flag m.
e The contents of Accn do not change.

Status flags
IPLI N| V| m|x|D| Il | Z]C
— | N| | —|—| =] —1|2zZ | —
N : Setto “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”
Z : Setto “1” when the operation result is “0.” Otherwise, cleared to “0.”
Addressing mode Syntax Machine code Bytes | Cycles
IMM ANDB A, #imm 2316, Imm 2 1
IMM ANDB B, #imm 8116, 2316, imm 3 2
Description example :
ANDB A, #IMM8 i AL < AL[] IMMS8
ANDB B, #IMM8 ; BL « BL[]IMMS8

7900 Series Software Manual 4-31

AN D M logical AND between immediate value and Memory AN D M

Function . Logical AND

Operation data length : 16 bits or 8 bits

Operation M« M[IMM
When m = “0”
M16 M16
| | | - | | |D IMM16
When m = “1”
M8 M8
| | - | |D IMM8
Description . Performs logical AND between the contents of memory and immediate value, and stores the

result in the memory.
e This instruction includes the function of the CLB instruction in the conventional 7700 Family.

Status flags LN vm|[x]|D]1]z]cC
— I Nl —=| = =| —=|—=1|2z2| —
N : Setto “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”
Z : Setto “1” when the operation result is “0.” Otherwise, cleared to “0.”
Addressing mode Syntax Machine code Bytes | Cycles
DIR ANDM dd, #mm 5116, 6316, dd, imm 4 7
ABS ANDM mmll, #imm| 5116, 6716, Il, mm, imm 5 7

Note : When flag m = “0,” the byte number increases by 1.

Description example :

CLM

ANDM.W MEM16, #IMM16 ; MEM16 -~ MEM16[] IMM16
SEM

ANDM.B MEMS8, #IMM8 ; MEM8 - MEM8[] IMM8

4-32 7900 Series Software Manual

ANDMB

logical AND between immediate value and Memory (Byte)

ANDMB

Function

Logical AND

Operation data length : 8 bits

Operation

Description

Status flags

M8 ~ M8 [] IMM8

M8

M8

| - |

|D IMM8

Performs logical AND between the contents of memory and immediate value in 8-bit length,
and stores the result in the memory.

e This instruction is unaffected by flag m.

Description example :

IPLI N| V| m| x| D| I Z | C
— | N|l—=| =] =] = =] Z | —
Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”
Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”
Addressing mode Syntax Machine code Bytes | Cycles
DIR ANDMB dd, #imm | 5116, 6216, dd, imm 4 7
ABS ANDMB mmll, #imm| 5116, 6616, Il, mm, imm 5 7
ANDMB MEMS, #IMM8 ; MEM8 — MEMS []IMM8

7900 Series Software Manual

4-33

AN D M D logical AND between immediate value and Memory (Double word) AN D M D

Function

Logical AND

Operation data length : 32 bits

Operation

Description

Status flags

M32 — M32[] IMM32
M32 M32
LT][O mus2

Performs logical AND between the contents of memory and immediate value in 32-bit length,
and stores the result in the memory.

e This instruction is unaffected by flag m.

Description example :

IPLI N|V |m| x| D I Z | C
— | N|—| —| —| —| —| 272 | —
N : Setto “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”
Z : Setto “1” when the operation result is “0.” Otherwise, cleared to “0.”
Addressing mode Syntax Machine code Bytes |Cycles
DIR ANDMD dd, #imm 5116, E316, dd, immLL, immtH, immHL, immHuH 7 10
ABS ANDMD mmll, #imm | 5116, E716, I, mm, immcL, immcH, immaL, immud 8 10
ANDMD MEM32, #IMM32 ; MEM32 — MEM32 [] IMM32

4-34

7900 Series Software Manual

ASL

Arithmetic Shift to Left

ASL

Function

Operation data length :

Operation

Description

Status flags

N

Arithmetic shift to the left

16 bits or 8 bits

C Acc or M

| f F]
| ¢ 1-bit shift to left - 0

When m = “0”
C bi1s

Acc or M16

b0

1T 1T 1T 1 IIIIIO
LT T T 7 TTTTT

When m = “1”

b7 AccL or M8

b0

C
EEE!

[T 1
TITTTTT

0

O In this case, the contents of Accu do not change.

Shifts all bits of Acc or a memory to left by 1 bit. In this time, a “0” is placed in LSB of Acc
or the memory. MSB before the shift is placed in flag C.

Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”
Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

IPL

N

Z

N

4

Set to “1” when MSB of Acc or the memory before the operation is “1.” Otherwise, cleared to

“0.”

Addressing mode Syntax Machine code Bytes Cycles
A ASL A 0316 1 1
A ASL B 8116, 0316 2 2
DIR ASL dd 2116, OAzs, dd 3 7
DIR, X ASL dd, X 2116, OB16, dd 3 8
ABS ASL mmll 2116, OEss, Il, mm 4 7
ABS, X ASL mmll, X 2116, OF1s, I, mm 4 8
Description example :
CLM
ASL A i A« A is arithmetically shifted left by 1 bit.
ASL MEM16 ; MEM16 — MEM16 is arithmetically shifted left by 1 bit.
SEM
ASL A ; AL — Ac is arithmetically shifted left by 1 bit.
ASL MEMS8 ; MEM8 — MEMS is arithmetically shifted left by 1 bit.

7900 Series Software Manual

4-35

ASL #n

Arithmetic Shift to Left by n bits AS L #n

Function

Operation data length :

Operation

Description

Status flags

N

Arithmetic shift to the left

16 bits or 8 bits

C A
| + n-bit shift to left <-|, 0 (n: Number of times shifted. n = 0 to 15)

When m = “0”
C bi15 A b0

When m = “1”
C b7 AL b0

DIIIIIIIIIO
TT T TTTTT ™

O In this case, the contents of Aw do not change.

Shifts all bits of A to the left by n bits. In this case, a “0” is placed in bit 0 of A each time its
contents are shifted by 1 bit. MSB is placed in flag C each time its contents are shifted by 1
bit.

e B cannot be used in this instruction.

PL{N| V| m|x|D|I|Zz]|C
—|IN|—=|=]|=|=|=|2z]C

Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”
Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”
Set to “1” if MSB = “1” when the contents are shifted by (n — 1) bits. Otherwise, cleared to “0.”

Addressing mode Syntax Machine code Bytes Cycles

ASL A, #imm Clis, imm+401s 2 imm+6

Note : Any value (number of times shifted) from 0 to 15 can be set to imm.

Description example :

CLM
ASL
SEM
ASL

A, #15 ; A < Ais arithmetically shifted to the left by 15 bits.

A, #7 ; AL « Ac is arithmetically shifted to the left by 7 bits.

4-36

7900 Series Software Manual

ASLD #n Arithmetic Shift to Left by n bits (Double word) ASLD #n

Function

Operation data length :

Operation

Description

Status flags

N

Description example :

Arithmetic shift to the left
32 bits

C E
| .L n-bit shift to left J[0 (n: Number of times shifted. n = 0 to 31)

Shifts all bits of E in 32-bit length to the left by n bits. In this case, a “0” is placed in bit O of
E each time its contents are shifted by 1 bit. MSB is placed in flag C each time its contents
are shifted by 1 bit.

e This instruction is unaffected by flag m.

PLIN|V | m|x|D|]I1]Z]|C
—IN|=|=|=1=|=|2z]|C

Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”
Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”
Set to “1” if MSB = “1” when the contents are shifted by (n — 1) bits. Otherwise, cleared to “0.”

Addressing mode Syntax Machine code Bytes Cycles

A

ASLD E, #imm D11es, imm+4016 2 imm+8

ASLD

Note : Any value (number of times shifted) from 0 to 31 can be set to imm.

E, #16 ; E <« E is arithmetically shifted to the left by 16 bits.

7900 Series Software Manual 4-37

AS R Arithmetic Shift to Right AS R

Function . Arithmetic shift to the right
Operation data length : 16 bits or 8 bits

Operation : Acc or M C
[1-pit <hi ; I
I:T 1-bit shift to right T
MSB

When m = “0”

b15 Acc or M16 bo C
[T T T 1 [T

[T 1
TIT T TT TTTTTD

When m = “1”
b7 AccL or M8 bo C

trrrrreri

O In this case, the contents of Acck do not change.

Description . Shifts all bits of Acc or a memory to the left by 1 bit. In this time, MSB before the shift is placed
in MSB of Acc or the memory. LSB before the shift is placed in LSB.

Status flags PLIN| V| m|x|D|1]|Zz]|C
— |/ N|—|—|—|—|—]|2Z]|C
N : Setto “1l” when MSB of the operation result is “1.” Otherwise, cleared to “0.”
Z : Setto “1” when the operation result is “0.” Otherwise, cleared to “0.”
C : Setto “1” when LSB of Acc or the memory before the operation is “1.” Otherwise, cleared to
IEO.H
Addressing mode Syntax Machine code Bytes Cycles
A ASR A 6416 1 1
A ASR B 8116, 6416 2 2
DIR ASR dd 2116, 4A16, dd 3 7
DIR, X ASR dd, X 2116, 4B1s, dd 3 8
ABS ASR mmll 2116, 4E1s, Il, mm 4 7
ABS, X ASR mmll, X 2116, 4F1s, Il, mm 4 8

Description example :

CLM

ASR A i A — Ais arithmetically shifted to the right by 1 bit.

ASR MEM16 ; MEM16 —~ MEMZ16 is arithmetically shifted to the right by 1 bit.
SEM

ASR A ; AL « Ac is arithmetically shifted to the right by 1 bit.

ASR MEMS8 ; MEM8 ~ MEMS is arithmetically shifted to the right by 1 bit.

4-38 7900 Series Software Manual

ASR #n Arithmetic Shift to Right by n bits ASR #n

Function . Arithmetic shift to the right

Operation data length : 16 bits or 8 bits

Operation : A C
|:]|_>n-bit shift to right; | (0 : Number of times shifted. n = 0 to 15)
MSB
When m = “0”
|b15| [FA—I [IbOI =

[TLTTTT _TTTT

—
When m = “1”

b7 AL

bo C
[I 1T T T 1
Drrrrrrrnj

O In this case, the contents of Ax do not change.

Description . Shifts all bits of A to the right by n bits. In this time, MSB before the shift is placed in MSB
of A. LSB is placed in flag C each time its contents are shifted by 1 bit.

e B cannot be used in this instruction.

Status flags PLl N | v

m| x | D I Z | C
— | N|—|—|—|—|—| Z]|C
N : Setto “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”
Z Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

C : Setto“1”if LSB = “1" when the contents are shifted by (n — 1) bits. Otherwise, cleared to “0.”

Addressing mode Syntax Machine code Bytes Cycles

A ASR A, #imm Clis, imm+801s 2 imm+6
Note :-Any value (number of times shifted) from 0 to 15 can be set to imm.

Description example :

CLM
ASR A, #15 ; A < A is arithmetically shifted to the right by 15 bits.
SEM
ASR A, #7 ; AL — Acis arithmetically shifted to the right by 7 bits.

7900 Series Software Manual 4-39

ASRD #n

ASRD #n

Arithmetic Shift to Right by n bits (Double word)

Function

Arithmetic shift to the right

Operation data length : 32 bits
Operation E C
E{nbnshmtongm_}| (n : Number of times shifted. n = 0 to 31)
MSB
IbalIIIIEIIIIbO
T rrr...rTrCrro|
]
Description Shifts all bits of E in 32-bit length to the right by n bits. In this time, MSB before the shift is

placed in MSB of E. LSB is placed in flag C each time its contents are shifted by 1 bit.
e This instruction is unaffected by flag m.

Status flags PLUN|V | m|x|D|1]2Zz]|C
— | N|—|—|—|—|=—1|2Z2|C
N : Setto “1l” when MSB of the operation result is “1.” Otherwise, cleared to “0.”
Z : Setto “1” when the operation result is “0.” Otherwise, cleared to “0.”
C : Setto“1”if LSB = “1" when the contents are shifted by (n — 1) bits. Otherwise, cleared to “0.”

Addressing mode

Syntax

Machine code Bytes

Cycles

A

ASRD E, #imm

D116, imm+8016

imm+8

Note : Any value (number of times shifted) from 0 to 31 can be set to imm.

Description example :
ASRD

E, #16 ; E <« E is arithmetically shifted to the right by 16 bits.

4-40

7900 Series Software Manual

BBC

Branch on Bit Clear

BBC

Function . Conditional branch

Operation data length : 16 bits or 8 bits

Operation : Relative branch to the specified address when M (bit n) = “0” (n specifies a bit position; multiple
bits can be specified.)

Description . Branches to the specified address if the contents of all specified bits in memory (multiple bits
can be specified) are “0”s. Use an 8-bit value relative to PC (-128 to +127) to specify the
branch destination address. The bit positions to be tested are indicated by a bit pattern of the
immediate value, in which the bits set to “1” are the subject bits to be tested.

e When m="0" : This instruction operates in 16-bit length.
When m="“1" : This instruction operates in 8-bit length.
e Branches when no bit is specified that need to be tested.

Status flags

IPLI N|V | m| x| D

Addressing mode Syntax Machine code Bytes | Cycles
DIR, b, R BBC #imm, dd, rr | 4116, 5A16, dd, imm, rr 5 9
ABS, b, R BBC #imm, mmll, rr| 4116, 5E1s, Il, mm, imm, rr 6 9

Note : When flag m = “0,” the byte number increases by 1.

Description example :

CLM

BBC.W #MM16, MEM16, LABEL1
SEM

BBC.B #IMM8, MEMS8, LABEL?2

; Branches to LABELL1 if all specified bits in MEM16 are “0”s.

; Branches to LABEL?2 if all specified bits in MEM8 are “0”s.

7900 Series Software Manual

4-41

BBCB

Branch on Bit Clear (Byte) B BC B

Function . Conditional branch

Operation data length : 8 bits

Operation : Relative branch to the specified address when M8 (bit n) = “0” (n specifies a bit position;

multiple bits can be specified.)

Description : Branches to the specified address if the contents of all specified bits in memory (multiple bits
can be specified) are “0”s. Use an 8-bit value relative to PC (-128 to +127) to specify the
branch destination address. The bit positions to be tested are indicated by a bit pattern of the
8-bit immediate value, in which the bits set to “1” are the subject bits to be tested.

e Branches if no bit is specified that need to be tested.
e This instruction is unaffected by flag m.

Status flags

IPL

Addressing mode Syntax Machine code Bytes | Cycles
DIR, b, R BBCB #imm, dd, rr| 5216, dd, imm, rr 4 8
ABS, b, R BBCB #imm, mmll, rr| 571s, Il, mm, imm, rr 5 8
Description example :
BBCB #IMM8, MEMS8, LABEL ; Branches to LABEL if all specified bits in MEMS8 are Os.

4-42

7900 Series Software Manual

BBS

Branch on Bit Set

BBS

Function . Conditional branch

Operation data length : 16 bits or 8 bits

Operation : Relative branch to the specified address when M (bit n) = “1” (n specifies a bit position; multiple
bits can be specified.)

Description . Branches to the specified address if the contents of all specified bits in memory (multiple bits
can be specified) are “1”s. Use an 8-bit value relative to PC (-128 to +127) to specify the
branch destination address. The bit positions to be tested are indicated by a bit pattern of the
immediate value, in which the bits set to “1” are the subject bits to be tested.

e When m="0" : This instruction operates in 16-bit length.
When m="“1" : This instruction operates in 8-bit length.
e Branches if no bit is specified that need to be tested.

Status flags

IPLI N|V | m| x| D

Addressing mode Syntax Machine code Bytes | Cycles
DIR, b, R BBS #imm, dd, rr | 4116, 4A16, dd, imm, rr 5 9
ABS, b, R BBS #imm, mmll, rr| 4116, 4E1s, Il, mm, imm, rr 6 9

Note : When flag m = “0,” the byte number increases by 1.

Description example :

CLM

BBS.W #MM16, MEM16, LABEL1
SEM

BBS.B #IMM8, MEMS8, LABEL2

; Branches to LABELL1 if all specified bits in MEM16 are “1"s.

; Branches to LABEL?2 if all specified bits in MEM8 are “1"s.

7900 Series Software Manual

4-43

BBSB

Branch on Bit Set (Byte) B BS B

Function . Conditional branch

Operation data length : 8 bits

Operation : Relative branch to the specified address when M8 (bit n) = “1” (n specifies a bit position;

multiple bits can be specified.)

Description : Branches to the specified address if the contents of all specified bits in memory (multiple bits
can be specified) are “1"s. Use an 8-bit value relative to PC (-128 to +127) to specify the
branch destination address. The bit positions to be tested are indicated by a bit pattern of the
8-bit immediate value, in which the bits set to “1” are the subject bits to be tested.

e Branches if no bit is specified that need to be tested.
e This instruction is unaffected by flag m.

Status flags

IPL

Addressing mode Syntax Machine code Bytes | Cycles
DIR, b, R BBSB #imm, dd, rr| 4216, dd, imm, rr 4 8
ABS, b, R BBSB #imm, mmll, rr| 471, Il, mm, imm, rr 5 8
Description example :
BBSB #IMM8, MEMS8, LABEL ; Branches to LABEL if all specified bits in MEM8 are “1"s.

4-44

7900 Series Software Manual

BCC

Branch on Carry Clear

BCC

Function

Operation data length :

Operation

Description

Status flags

Conditional branch

Relative branch to the specified address when C = “0.”

Branches to the specified address if flag C is “0.” Use an 8-bit value relative to PC (-128 to
+127) to specify the branch destination address.

IPL

Addressing mode Syntax Machine code Bytes | Cycles
REL BCC rr 90us, IT 2 6
Description example :
BCC LABEL ; Branches to LABEL if C = “0.”
7900 Series Software Manual 4-45

BCS

Branch on Carry Set

BCS

Function

Operation data length :

Operation

Description

Status flags

Conditional branch

Relative branch to the specified address when C = “1.”

Branches to the specified address if flag C is “1.” Use an 8-bit value relative to PC (-128 to
+127) to specify the branch destination address.

IPL

Addressing mode

Syntax

Machine code

Bytes

Cycles

REL

BCS rr

BOzis, rr

Description example :

BCS

LABEL

; Branches to LABEL if C = “1.”

4-46

7900 Series Software Manual

BEQ

Branch on EQual

BEQ

Function

Operation data length :

Operation

Description

Status flags

Conditional branch

Relative branch to the specified address when Z = “1.”

Branches to the specified address if flag Z is “1.” Use an 8-bit value relative to PC (-128 to
+127) to specify the branch destination address.

IPL

Addressing mode Syntax Machine code Bytes | Cycles
REL BEQ rr FOus, rr 2 6
Description example :
BEQ LABEL ; Branches to LABEL if Z = “1.”
7900 Series Software Manual 4-47

BGE

Branch on Greater or Equal

BGE

Function

Operation data length :

Operation

Description

Status flags

Conditional branch

Relative branch to the specified address when N[OV = “0.”

Branches to the specified address if the contents of flags N and V are the same. Use an 8-
bit value relative to PC (=128 to +127) to specify the branch destination address.

e Branches when the result of the compare instruction or the subtract instruction satisfies
“Greater or Equal =" condition.

IPL

Addressing mode

Syntax

Machine code

Bytes

Cycles

REL

BGE rr

COus, rr

Description example :

BGE LABEL

; Branches to LABEL if NOV = “0.”

4-48

7900 Series Software Manual

BGT

Branch on Greater Than

BGT

Function

Operation data length :

Operation

Description

Conditional branch

Relative branch to the specified address when Z = “0” and NOV = “0.”

Branches to the specified address if flag Z is “0” and the contents of flags N and V are the
same. Use an 8-bit value relative to PC (128 to +127) to specify the branch destination

address.

e Branches when the result of the compare instruction or the subtract instruction satisfies
signed “Greater than >" condition.

Status flags PNl vIim! x| D
Addressing mode Syntax Machine code Bytes | Cycles
REL BGT rr 801s, IT 2 6
Description example :
BGT LABEL ; Branches to LABEL if Z = “0” and NOV = “0.”
7900 Series Software Manual 4-49

BGTU

Branch on Greater Than with Unsign

BGTU

Function

Operation data length :

Operation

Description

Status flags

Conditional branch

Relative branch to specified address if C = “1” and flag Z = “0.”

Branches to the specified address if flag C is “1” and flag Z is “0.” Use an 8-bit value relative

to PC (—128 to +127) to specify the branch destination address.

e Branches when the result of the compare instruction or the subtract instruction satisfies
unsigned “Greater than >" condition.

IPL

Addressing mode

Syntax

Machine code

Bytes

Cycles

REL

BGTU rr

4016, It

Description example :

BGTU LABEL

; Branches to LABEL if C = “1" and Z = “0.”

4-50

7900 Series Software Manual

B LE Branch on Less or Equal B LE

Function . Conditional branch

Operation data length :

Operation : Relative branch to specified address when Z = “1” or NOV = “1.”

Description . Branches to the specified address if flag Z is “1” or the contents of flags N and V are different.
Use an 8-bit value relative to PC (—128 to +127) to specify the branch destination address.

e Branches when the result of the compare instruction or the subtract instruction satisfies
signed “Less or Equal <" condition.

Status flags PLIN|[V | m|x|D| I |Z]|C

Addressing mode Syntax Machine code Bytes | Cycles
REL BLE rr AOzs, rr 2 6

Description example :
BLE LABEL ; Branches to LABEL if Z= “1" and NOV = “1.”

7900 Series Software Manual 4-51

B LEU Branch on Less Equal with Unsign

BLEU

Function . Conditional branch

Operation data length :

Operation : Relative branch to the specified address if C = “0” or Z = “1.”

Description : Branches to the specified address if flag C is “0” or flag Z is “1.” Use an 8-bit value relative

to PC (—128 to +127) to specify the branch destination address.

e Branches when the result of the compare instruction or the subtract instruction satisfies
unsigned “Less or Equal <" condition.

Status flags

IPL

Addressing mode Syntax Machine code Bytes | Cycles
REL BLEU rr 6016, IT 2 6
Description example :
BLEU LABEL ; Branches to LABEL if C = “0” or Z = “1.”

4-52 7900 Series Software Manual

B LT Branch on Less Than B LT

Function . Conditional branch

Operation data length :
Operation : Relative branch to specified address when N[OV = “1.”

Description . Branches to the specified address if the contents of flags N and V are different. Use an 8-bit
value relative to PC (-128 to +127) to specify the branch destination address.
e Branches when the result of the compare instruction or the subtract instruction satisfies
“Less than <” condition.

Status flags PLIN|[V | m|x|D| I |Z]|C

Addressing mode Syntax Machine code Bytes | Cycles

REL BLT rr EOz1s, rr 2 6

Description example :
BLT LABEL ; Branches to LABEL if NOV = “1.”

7900 Series Software Manual 4-53

B M I Branch on result Minus B M I

Function . Conditional branch

Operation data length :

Operation : Relative branch to specified address if N = “1.”

Description : Branches to the specified address if flag N is “1.” Use an 8-bit value relative to PC (-128 to
+127) to specify the branch destination address.

fl :
Status flags PLIN|V i m|x|D|1]|2Zz]C

Addressing mode Syntax Machine code Bytes | Cycles

REL BMI rr 301s, Ir 2 6

Description example :
BMI LABEL ; Branches to LABEL if N = “1.”

4-54 7900 Series Software Manual

BNE

Branch on Not Equal

BNE

Function

Operation data length :

Operation

Description

Status flags

Conditional branch

Relative branch to the specified address if Z = “0.”

Branches to the specified address if flag Z is “0.” Use an 8-bit value relative to PC (-128 to
+127) to specify the branch destination address.

IPL

Addressing mode Syntax Machine code Bytes | Cycles
REL BNE rr DOa1s, Ir 2 6
Description example :
BNE LABEL ; Branches to LABEL if Z = “0.”
7900 Series Software Manual 4-55

BPL

Branch on result PLus

BPL

Function

Operation data length :

Operation

Description

Status flags

Conditional branch

Relative branch to the specified address when N = “0.”

Branches to the specified address if flag N is “0.” Use an 8-bit value relative to PC (-128 to
+127) to specify the branch destination address.

IPL

Addressing mode

Syntax

Machine code

Bytes

Cycles

REL

BPL rr

101s, rr

Description example :

BPL LABEL

; Branches to LABEL if N = “0.”

4-56

7900 Series Software Manual

BRA/BRAL

BRanch Always

BRA/BRAL

Function . Unconditional branch

Operation data length : —

Operation : PC -« PC +cnt+ REL

(cnt : byte number of the BRA/BRAL instruction)

Description : Branches always to the specified address. Use an 8-bit value relative to PC (BRA : -128 to
+127) or a 16-bit value relative to PC (BRAL : —32768 to +32767) after the branch instruction
execution to specify the branch destination address.

Status flags

IPL

Addressing mode Syntax Machine code Bytes | Cycles
REL BRA rr 2018, IT 2 5
BRAL rrurro AT1s, IrL, I 3 5
Description example :
BRA REL8 ; Branches to address (PC + 2 + RELS)
BRAL REL16 ; Branches to address (PC + 3 + REL16)
7900 Series Software Manual 4-57

BRK

force BReaK B R K

Function

Operation data length :

Operation

Description

Status flags

Software interrupt

Generate a BRK interrupt

Saves the address where the instruction next to the BRK instruction is stored and the PS
contents in order of PG, PC, and PS to the stack. Then, branches to the address whose low-
order address is the contents of address FFFA1s and high-order address is the contents of
address FFFBue.

e This instruction is reserved for use in debug tools and cannot be used when using an

emulator.
IPLIN|V | m| x| D I Z | C
| — | — = = =] 212 =1]=
I Setto“l.”
Addressing mode Syntax Machine code Bytes | Cycles
IMP BRK 0016, 7416 2 15

Description example :

BRK ;

4-58

7900 Series Software Manual

BSC

Branch on Single bit Clear

BSC

Function . Conditional branch

Operation data length : 16 bits or 8 bits

Operation : Relative branch to the specified address when A (bit n) = 0 or M (bit n) =0 (n = 0 to 15. Only
1 bit can be specified).

Description . Branches to the specified address if the contents of the specified bit of A or a memory is “0.”

Use an 8-bit value relative to PC (-128 to +127) to specify the branch address.

e When m =
When m =

Status flags

“0” : Any 1 bit between b0 to b15 can be specified.
“1” : Any 1 bit between b0 to b7 can be specified.

e B cannot be used in this instruction.

IPLIN|V|m|x |D I Z

Addressing mode Syntax Machine code ﬂBytes Cycles
A BSC n, A, rr 0116, N+AOQzs, IT 7
DIR BSC n, dd, rr 7116, n+AO1s, dd, rr 11
ABS BSC n, mmll, rr 7116, Nn+EO1s, Il, mm, rr 10
Note : Any value from 0 to 15 can be set to n.
Description example :

CLM

BSC 8, A, LABEL1 : Branches to LABELL1 if b8 of A is “0.”

BSC 15, MEM16, LABEL2 ; Branches to LABEL2 if b15 of MEM16 is “0.”

SEM

BSC 7, A, LABEL3 ; Branches to LABEL3 if b7 of A is “0.”

BSC 7, MEM8, LABEL4 ; Branches to LABEL4 if b7 of MEM8 is “0.”

7900 Series Software Manual 4-59

BSR

Branch to SubRoutine

BSR

Function

Operation data length :

Operation

Description

Status flags

Subroutine call

Stack —~ PC

PC - PC+ 2+ REL

Branches to the specified address after saving the PC contents to the stack. Use an 11-bit
value relative to PC (-1024 to +1023) to specify the branch address.

O This instruction cannot be used in branching across bank boundaries.

0 Do not place this instruction at bank boundaries.

IPL

Addressing mode

Syntax

Machine code

Bytes

Cycles

REL

BSR rr

(11111b1o be bs)2, (b7 be bs ba bz b2 b1 bo)2
O bioto bo means “b10 to b0 of rr.”

Note : Any value from —1023 to 1024 (11-bit length) can be set to rr.

Description example :

BSR LABEL

; Branches to LABEL

4-60

7900 Series Software Manual

BSS

Branch on Single bit Set BSS

Function

Operation data length :

Operation

Description

Status flags

Conditional branch
16 bits or 8 bits

Relative branch to the specified address when A (bit n) = “1” or M (bit n) = “1” (n = 0 to 15.
Only 1 bit can be specified).

Branches to the specified address if the contents of the specified bit of A or a memory is “1.”
Use an 8-hit value relative to PC (=128 to +127) to specify the branch address. The bit position
to be tested is specified by the bit number.

e When m = “0” : Any 1 bit between b0 to b15 can be specified.
When m = “1" : Any 1 bit between b0 to b7 can be specified.

e B cannot be used in this instruction.

IPLI N | V| m]| X D | Z | C
Addressing mode Syntax Machine code Bytes | Cycles
A BSS n, A, rr 0116, n+801s, rr 3 7
DIR BSS n, dd, rr 7116, N+801s, dd, rr 4 11
ABS BSS n, mmll, rr 7116, N+CO01s, Il, mm, rr 5 10

Note : Any value from 0 to 15 can be set to n.

Description example :

CLM
BSS
BSS
SEM
BSS
BSS

8, A, LABEL1 : Branches to LABELL1 if b8 of A is “1.”
15, MEM16, LABEL2 ; Branches to LABEL?2 if b15 of MEM16 is “1.”

7, A, LABEL3 ; Branches to LABEL3 if b7 of A is “1.”
7, MEM8, LABEL4 ; Branches to LABEL4 if b7 of MEM8 is “1.”

7900 Series Software Manual 4-61

BVC

Branch on oVerflow Clear

BVC

Function

Operation data length :

Operation

Description

Status flags

Conditional branch

Relative branch to the specified address when V = “0.”

Branches to the specified address if the contents of flag V is “0.” Use an 8-bit value relative
to PC (—128 to +127) to specify the branch address.

IPL

Addressing mode

Syntax

Machine code

Bytes

Cycles

REL

BVC rr

501s, rr

Description example :

BVvVC LABEL

; Branches to LABEL if V = “0.”

4-62

7900 Series Software Manual

BVS

Branch on oVerflow Set

BVS

Function

Operation data length :

Operation

Description

Status flags

Conditional branch

Relative branch to the specified address when V = “1.”

Branches to the specified address if the contents of flag V are “1.” Use an 8-bit value relative
to PC (—128 to +127) to specify the branch address.

IPL

Addressing mode Syntax Machine code Bytes | Cycles
REL BVS rr 7018, Ir 2 6
Description example :
BVS LABEL ; Branches to LABEL if V = “1.”
7900 Series Software Manual 4—-63

CB EQ Compare immediate and Branch on EQual C B EQ

Function : Comparison & Conditional branch

Operation data length : 16 bits or 8 bits

Operation . Relative branch to the specified address when Acc = IMM or M = IMM.

Description : Branches to the specified address if the contents of Acc or a memory are equal to the
immediate value. Use an 8-bit value relative to PC (—128 to +127) to specify the branch
address.

e When m = “0” : This instruction operates in 16-bit length.

When m = “1" : This instruction operates in 8-bit length.

Status flags PLIN|V | m|x|D|I|Z]|C
—|IN|V|—|—=|=|—=|2Z]C
N Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

V . Setto “1” when the result of the operation (regarded as a signed operation) is a value outside
the range of —32768 to +32767 (-128 to +127 when flag m is “1”). Otherwise, cleared to “0.”

z Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

C : Cleared to “0” when the borrow is occurs. Otherwise, set to “1.”
Addressing mode Syntax Machine code Bytes | Cycles
A CBEQ A, #imm, rr| A61s, imm, rr 3 6
A CBEQ B, #imm, rr | 8116, A61s, imm, rr 4 7
DIR CBEQ dd, #imm, rr| 41is, 6A16, dd, imm, rr 5 9

Note : When flag m = “0,” the byte number increases by 1.

Description example :

CLM

CBEQ.W A, #IMM16, LABEL1 ; Branches to LABEL1 if A = IMM16.
CBEQ.W MEM16, #IMM16, LABEL2 ; Branches to LABEL2 if MEM16 = IMM16.
SEM

CBEQ.B B, #IMM8, LABELS3 ; Branches to LABEL3 if BL = IMM8.

4-64 7900 Series Software Manual

CB EQ B Compare immediate and Branch on EQual at Byte CB EQ B

Function . Comparison & Conditional branch

Operation data length : 8 bits

Operation : Relative branch to the specified address when Acc. = IMM8 or M8 = IMMS.

Description : Branches to the specified address if the contents of Acc. or a memory are equal to the
immediate value when they are compared in 8-bit length. Use an 8-bit value relative to PC
(=128 to +127) to specify the branch address.

e This instruction is unaffected by flag m.

Status flags - PLUN|V | m|x|D|I1]|z]|C
— | N|V|—|—|—|—1]2Z]|C
N : Setto “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”
V : Setto “1” when the result of the operation (regarded as a signed operation) is a value outside

the range of —128 to +127. Otherwise, cleared to “0.”
Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”
C : Cleared to “0” when the borrow occurs. Otherwise, set to “1.”

N

Addressing mode Syntax Machine code Bytes | Cycles
A CBEQB A, #imm, rr| A21e, imm, rr 3 6
A CBEQB B, #imm, rr| 8116, A216, imm, rr 4 7
DIR CBEQB dd, #imm, rr| 6216, dd, imm, rr 4 8
Description example :
CBEQB A, #IMM8, LABEL1 ; Branches to LABEL1 if AL = IMMS8.
CBEQB MEMS, #IMM8, LABEL2 ; Branches to LABEL2 if MEM8 = IMMS.

7900 Series Software Manual 4—65

C B N E Compare immediate and Branch on Not Equal C B N E

Function : Comparison & Conditional branch

Operation data length : 16 bits or 8 bits

Operation : Relative branch to the specified address when Acc # IMM or M # IMM.

Description : Branches to the specified address if the contents of Acc or a memory are not equal to the
immediate value. Use an 8-bit value relative to PC (—128 to +127) to specify the branch
address.

e When m = “0” : This instruction operates in 16-bit length.
When m = “1" : This instruction operates in 8-bit length.
O In this case, the contents of Acck do not change.

Status flags PNV Im|x|D]1]z]cC
— | N|V|—|—|—|=—|2Z|C
N : Setto “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”
V : Setto “1” when the result of the operation (regarded as a signed operation) is a value outside

the range of —32768 to +32767 (-128 to +127 when flag m is “1"). Otherwise, cleared to “0.”

z Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

C : Cleared to “0” when the borrow occurs. Otherwise, set to “1.”
Addressing mode Syntax Machine code Bytes | Cycles
A CBNE A, #imm, rr | B61s, imm, rr 3 6
A CBNE B, #imm, rr | 811s, B61s, imm, rr 4 7
DIR CBNE dd, #imm, rr| 4116, 7A1s6, dd, imm, rr 5 9

Note : When flag m = “0,” the byte number increases by 1.

Description example :

CLM
CBNE.W A, #IMM16, LABEL1 ; Branches to LABELL if A # IMM16.
CBNE.W MEM16, #IMM16, LABEL2 ; Branches to LABEL2 if MEM16 # IMM16.

4—-66 7900 Series Software Manual

C B N E B Compare immediate and Branch on Not Equal at Byte C B N E B

Function . Comparison & Conditional branch

Operation data length : 8 bits

Operation : Relative branch to the specified address when Acc. # IMM8 or M8 # IMMS.

Description : Branches to the specified address if the contents of Acc. or a memory are equal to the
immediate value when they are compared in 8-bit length. Use an 8-bit value relative to PC
(=128 to +127) to specify the branch address.

e This instruction is unaffected by flag m.

Status flags - PLUN|V | m|x|D|1]|z]|C
— | N|V|—|—|—|—| 2| C
N : Setto “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”
V : Setto “1” when the result of the operation (regarded as a signed operation) is a value outside

the range of —128 to +127. Otherwise, cleared to “0.”

V4 Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

C : Cleared to “0” when the borrow occurs. Otherwise, set to “1.”
Addressing mode Syntax Machine code Bytes | Cycles
A CBNEB A, #imm, rr| B21s, imm, rr 3 6
A CBNEB B, #imm, rr| 8116, B21s, imm, rr 4 7
DIR CBNEB dd, #imm, rr| 7216, dd, imm, rr 4 8

Description example :

CBNEB A, #IMM8, LABEL1 ; Branches to LABEL1 if AL# IMMS8.
CBNEB MEMS8, #IMM8, LABEL?2 ; Branches to LABEL2 if MEM8 # IMMS.

7900 Series Software Manual 4—67

C L C CLear Carry flag C LC

Function . Flag manipulation

Operation data length :

Operation . Ce<0
Description . Clears the contents of flag C to “0.”
Status flags
IPLIN|V |m| x| D I Z | C
- - == =—|—]—=]1—10
C : Clearedto “0.”
Addressing mode Syntax Machine code Bytes | Cycles
IMP CLC 1416 1 1
Description example :
CLC ;C <0

4—-68 7900 Series Software Manual

CLI

ClLear Interrupt disable status

CLI

Function . Flag manipulation

Operation data length : —

Operation 1 <0

Description . Clears the contents of flag | to “0.”

Status flags

| : Cleared to “0."

IPL

Addressing mode

Syntax

Machine code

Bytes

Cycles

IMP

CLI

1516

Description example :
CLI

1l <0

7900 Series Software Manual

4-69

CLM CLear M flag CLM

Function . Flag manipulation

Operation data length :

Operation :m< 0
Description . Clears the contents of flag m to “0.”
Status flags
IPLIN|V |m| x| D I Z | C
— =] =] 0| =] = =] = =
m : Cleared to “0.”
Addressing mode Syntax Machine code Bytes | Cycles
IMP CLM 4516 1 3
Description example :
CLM ;m <0

4-70 7900 Series Software Manual

C L P ClLear Processor status

CLP

Function . Flag manipulation

Operation data length :

Operation : PSc (bitn) « 0 (n =0 to 7. Multiple bits can be specified.)

Description . Clears the specified flags (multiple flags can be specified) of PS. to “0.” The flag positions (bits’
positions in PSy) to be specified are indicated by a bit pattern of an 8-bit immediate value, in
which the bits set to “1” are the subject bits to be specified.

e This instruction is unaffected by flag m.

PSL
b7 b6 b5 b4 b3 b2 bl b0

INJv]m]x[o[i]z]c]

Status flags

IPL

zZ
<
3
@)

Addressing mode Syntax

Machine code

Bytes

Cycles

IMM CLP #imm

9816, imm

Description example :
CLP #IMM8

; The specified bits of PS. «~ 0

7900 Series Software Manual

4-71

C L R CLeaR accumulator C L R

Function . Clear

Operation data length : 16 bits or 8 bits

Operation : Acc - O
When m = “0”
Acc
~ 000016
When m = “1”
AccL
« 0016

O In this case, the contents of Accs do not change.

Description . Clears the contents of Acc to “0.”

Status flags
IPLI N| V| m| x| D I Z | C
— ol =] =l=|=|=111]=
N : Always cleared to “0” because MSB of the operation result is “0.”
Z : Always set to “1” because the operation result is “0.”
Addressing mode Syntax Machine code Bytes Cycles
A CLR A 5416 1 1
A CLR B 8116, 5416 2 2
Description example :
CLM
CLR A ;A — 000016
CLR B ; B — 000016
SEM
CLR A 7 AL « 0016
CLR B ; BL « 0016

4-72 7900 Series Software Manual

CLRB

CLeaR accumulator at Byte

CLRB

Function

Operation data length :

Operation

Description

Status flags

Clear

8 bits

AccL « 0016

AccL

« 0016

Clears the contents of AccLto “00is.”

e The contents of Accn do not change.
e This instruction is unaffected by flag m.

IPL{N|V |m]| x| D] I Z | C
— o0 | =] =] = =]l =1]11=
N : Always cleared to “0” because MSB of the operation result is “0.”
4 Always set to “1” because the operation result is “0.”
Addressing mode Syntax Machine code Bytes Cycles
A CLRB A 4416 1 1
A CLRB B 8116, 4416 2 2
Description example :
CLRB A ; AL « 0016
CLRB B ; BL « 0016

7900 Series Software Manual

4-73

CLRM CLeaR Memory CLRM

Function . Clear

Operation data length : 16 bits or 8 bits

Operation M <O
When m = “0”
M16
~ 000016
When m = “1”
M8
« 0016
Description . Clears the contents of a memory to “0.”
Status flags PL N[V | m|[x|D|1]|2Zz]|C
Addressing mode Syntax Machine code Bytes Cycles
DIR CLRM dd D216, dd 2 5
ABS CLRM mmll D71s, Il, mm 3 5
Description example :
CLM
CLRM MEM16 ; MEM16 ~ 000016
SEM
CLRM MEMS8 ; MEM8 ~ 0016

4-74 7900 Series Software Manual

CLRMB

CLeaR Memory at Byte

CLRMB

Function . Clear

Operation data length : 8 bits

Operation : M8 < 001

M8

« 0016

Description . Clears the contents of a memory to “0” in 8-bit length.
e This instruction is unaffected by flag m.

Status flags

IPL V| |mj| x| D C
Addressing mode Syntax Machine code Bytes Cycles
DIR CLRMB dd C21e, dd 2 5
ABS CLRMB mmll C716, Il, mm 3 5
Description example :
CLRMB MEM8 ; MEM8 ~ 0016

7900 Series Software Manual

4-75

CLRX CLeaR index register X CLRX

Function . Clear

Operation data length : 16 bits or 8 bits

Operation T X <0
When x = “0”
X
~ 000016
When x = “1”
XL
« 0016

O In this case, the contents of Xu do not change.

Description . Clears the contents of X to “0.”
e This instruction is unaffected by flag m.

Status flags

IPLI N| V| m]| x D | Z | C
— ol == =|=|=11|=
N : Always cleared to “0” because MSB of the operation result is “0.”
Z : Always set to “1” because the operation result is “0.”
Addressing mode Syntax Machine code Bytes Cycles
IMP CLRX Ed1e 1 1
Description example :
CLP X
CLRX ; X « 000016
SEP X
CLRX ; XL « 0016

4-76 7900 Series Software Manual

CLRY

CLeaR index register Y

CLRY

Function

Operation data length :

Operation

Description

Status flags

Clear

16 bits or 8 bits

Y « 0
When x = “0”
Y
~ 000016
When x = “1”
Yo
« 0016

O In this case, the contents of Yu do not change.

Clears the contents of Y to “0.”
e This instruction is unaffected by flag m.

IPLI N| V| m]| X D I Z | C
— 0| =] -] =] =] =111
N : Always cleared to “0” because MSB of the operation result is “0.”
Z Always set to “1” because the operation result is “0.”
Addressing mode Syntax Machine code Bytes Cycles
IMP CLRY F416 1 1
Description example :
CLP X
CLRY ;'Y —~ 000016
SEP X
CLRY ;YL « 0016

7900 Series Software Manual

4-77

C LV CLear oVerflow flag C LV

Function . Flag manipulation

Operation data length :

Operation V<O
Description . Clears the contents of flag V to “0.”
Status flags
IPLIN|V |m| x| D I Z | C
— =] 0| =l =] = =] = =
V : Cleared to “0.”
Addressing mode Syntax Machine code Bytes | Cycles
IMP CLV 6516 1 1
Description example :
CLV iV <0

4-78 7900 Series Software Manual

CMP

CoMPare C M P

Function

Operation data length :

Operation

Description

Status flags

zZ

Comparison
16 bits or 8 bits

Acc — M
When m = “0”
Acc M16

When m = “1”
AccL M8

Subtracts the contents of a memory from the contents of Acc. The result is not stored
anywhere.

IPL

z
<
3
x
w)
N
O

Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Set to “1” when the result of the operation (regarded as a signed operation) is a value outside
the range of —32768 to +32767 (=128 to +127 when flag m is “1”). Otherwise, cleared to “0.”

Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”
Cleared to “0” when the borrow occurs. Otherwise, set to “1.”

7900 Series Software Manual 4-79

CMP

CoMPare

CMP

Addressing mode Syntax Machine code Bytes |[Cycles
IMM CMP A, #imm 4616, imm (8116, 4616, imm) 2 (3) 1(2)
DIR CMP A, dd 4As6, dd (8116, 4A1s, dd) 2@3) | 3@
DIR, X CMP A, dd, X 4B16, dd (8116, 4B1s, dd) 23) | 4(5
(DIR) CMP A, (dd) 1116, 4016, dd (9116, 4016, dd) 3(3) | 6(6)
(DIR, X) CMP A, (dd, X) 1116, 4116, dd (9116, 4116, dd) 3@) | 7(7)
(DIR), Y CMP A, (dd), Y 1116, 4816, dd (9116, 4816, dd) 3@3) | 7
L(DIR) CMP A, L(dd) 1116, 4216, dd (9116, 4216, dd) 3(3) | 8(8)
L(DIR), Y CMP A, L(dd), Y | 1116, 4916, dd (9116, 4916, dd) 3@3) | 9(9
SR CMP A, nn, S 1116, 4316, NN (9116, 4316, NN) 3@3) | 5(0)
(SR), Y CMP A, (nn, S), Y | 1116, 4416, nn (9116, 4416, Nn) 3@3) | 8(8)
ABS CMP A, mmll 4Ez1s, Il, mm (8116, 4E1s, Il, mm) 3 (4) 3 (4)
ABS, X CMP A, mmll, X 4F1s, Il, mm (811e, 4F1s, ll, mm) 3 (4) 4 (5)
ABS, Y CMP A, mmll, Y 1116, 4616, Il, mm (9116, 4616, Il, mm) 4 (4) 5 (5)
ABL CMP A, hhmmll 1116, 4Czs, Il, mm, hh (9116, 4Cas, Il, mm, hh) 5 (5) 5 (5)
ABL, X CMP A, hhmmll, X | 1116, 4D1s, Il, mm, hh (9116, 4Dss, Il, mm, hh) | 5 (5) 6 (6)

Notes 1: This table applies when using accumulator A. When using accumulator B, replace “A” with “B” in
the syntax. In this case, the machine code, the number of bytes, and the number of cycles enclosed
in parentheses are applied.

2: In the immediate addressing mode, the byte number increases by 1 when flag m = “0.”

Description example :

CLM

CMP.W A, #IMM16
CMP B, MEM16
SEM

CMP.B A, #IMM8

CMP B, MEM8

i A - IMM16
; B — MEM16

; AL — IMM8
; BL— MEM8

4-80

7900 Series Software Manual

CMPB

CoMPare at Byte C M P B

Function

Operation data length :

Operation

Description

Status flags

Description example :

Comparison

8 bits

Acc. — IMM8
Acc.

I:I— IMM8

Subtracts the immediate value from the contents of Acct in 8-bit length. The result is not stored
anywhere.

e This instruction is unaffected by flag m.

PLIN|V | m|x|D|I|Z]|C
—IN|V|—|—|=|—=|2Zz]|C

N Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”
\% Set to “1” when the result of the operation (regarded as a signed operation) is a value outside
the range of —128 to +127. Otherwise, cleared to “0.”

Z Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

C Cleared to “0” when the borrow occurs. Otherwise, set to “1.”
Addressing mode Syntax Machine code Bytes | Cycles
IMM CMPB A, #imm 3816, imm 2 1
IMM CMPB B, #imm 8116, 3816, IMmM 3 2

CMPB A, #IMM8 ; AL — IMM8

CMPB B, #IMM8 ; BL — IMM8

7900 Series Software Manual 4-81

CMPD

CMPD

CoMPare at Double-word

Function

Operation data length :

Operation

Description

Status flags

P

N

Comparison

32 bits

E - IMM32

| — IMM32

Subtracts the immediate value from the contents of E in 32-bit length. The result is not stored
anywhere.

e This instruction is unaffected by flag m.

PLIN|V | m|x|D| I |]Z]|C
—|IN|V|—=|—=|=|=1]2Z]|C

Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Set to “1” when the result of the operation (regarded as a signed operation) is a value outside
the range of —2147483648 to +2147483647. Otherwise, cleared to “0.”

Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

Cleared to “0” when the borrow occurs. Otherwise, set to “1.”

Addressing mode Syntax Machine code Bytes | Cycles
IMM CMPD E, #imm 3Ci6, IimmLL, IMMLH, IMMHAL, iMMHH 5 3
DIR CMPD E, dd BAu1s, dd 2 6
DIR, X CMPD E, dd, X BBus, dd 2 7
(DIR) CMPD E, (dd) 1116, BO1s, dd 3 9
(DIR, X) CMPD E, (dd, X) | 11is, Blis, dd 3 10
(DIR), Y CMPD E, (dd), Y | 11is, B81s, dd 3 10
L(DIR) CMPD E, L(dd) 1116, B216, dd 3 11
L(DIR), Y CMPD E, L(dd), Y| 1116, B91s, dd 3 12
SR CMPD E, nn, S 1116, B316, Nn 3 8
(SR), Y CMPD E, (nn, S), Y| 11is, B4ies, nn 3 11
ABS CMPD E, mmll BEzs, Il, mm 3 6
ABS, X CMPD E, mmll, X | BFus, Il, mm 3 7
ABS, Y CMPD E, mmll, Y | 1116, B61s, Il, mm 4 8
ABL CMPD E, hhmmll | 111s, BCus, Il, mm, hh 5 8
ABL, X CMPD E, hhmmll, X| 1116, BDzs, Il, mm, hh 5 9
Description example :
CMPD E, #IMM32 ; E — IMM32

4-82

7900 Series Software Manual

C M P M CoMPare immediate with Memory C M P M

Function . Comparison

Operation data length : 16 bits or 8 bits

Operation . M-IMM
When m = “0”
M16
When m = “1”
M8
[|-t
Description : Subtracts the immediate value from the contents of a memory. The result is not stored
anywhere.
Status flags
g LN v im|lx]|D]1]z]c
— | N|V|—|—|—|—|2Z]|C
N Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”
V : Setto “1” when the result of the operation (regarded as a signed operation) is a value outside
the range of —32768 to +32767 (=128 to +127 when flag m is “1”). Otherwise, cleared to “0.”
Z : Setto “1” when the result of the operation is “0.” Otherwise, cleared to “0.”
C : Cleared to “0” when the borrow occurs. Otherwise, set to “1.”
Addressing mode Syntax Machine code Bytes | Cycles
DIR CMPM dd, #imm 5116, 2316, dd, imm 4 5
ABS CMPM mmll, #imm| 5116, 2716, Il, mm, imm 5 5

Note : When flag m = “0.” the byte number increases by 1.

Description example :

CLM

CMPM.W MEM16, #IMM16 ; MEM16 — IMM16
SEM

CMPM.B MEMS8, #IMM8 ; MEM8 — IMM8

7900 Series Software Manual 4—-83

C M P M B CoMPare immediate with Memory at Byte C M P M B

Function . Comparison
Operation data length : 8 bits

Operation M8 - IMM8
M8

D — IMMS8

Description : Subtracts the immediate value from the contents of a memory in 8-bit length. The result is not
stored anywhere.

e This instruction is unaffected by flag m.

Status flags : pPLINlVIim] x| D | 71 c
— | N|V|—|—|—|—]2]|C
N Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

V : Setto “1” when the result of the operation (regarded as a signed operation) is a value outside
the range of —128 to +127. Otherwise, cleared to “0.”

N

Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”
C : Cleared to “0” when the borrow occurs. Otherwise, set to “1.”

Addressing mode Syntax Machine code Bytes | Cycles
DIR CMPMB dd, #imm | 5116, 2216, dd, imm 4 5
ABS CMPMB mmll, #imm| 5116, 2616, ll, mm, imm 5 5
Description example :
CMPMB MEMS8, #IMM8 ; MEM8 — IMMS8

4-84 7900 Series Software Manual

CMPMD

CoMPare immediate with Memory at Double-word C M P M D

Function

Operation data length :

Operation

Description

Status flags

Z

N

Comparison
32 bits
M32 — IMM32

M32
[T [[-

Subtracts the immediate value from the contents of a memory in 32-bit length. The result is
not stored anywhere.

e This instruction is unaffected by flag m.

PLI{N|V | m|x|D| I | Z]|C
—|IN|lV|=|=|=|=|2Z]|C

Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Set to “1” when the result of the operation (regarded as a signed operation) is a value outside
the range of —2147483648 to +2147483647. Otherwise, cleared to “0.”

Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”
Cleared to “0” when the borrow occurs. Otherwise, set to “1.”

Addressing mode Syntax Machine code Bytes | Cycles
CMPMD dd, #imm | 5116, A31s6, dd, immcL, immcH, immmL, imma- 7 7
ABS CMPMD mmll, #imm| 5116, A71s, Il, mm, immcc, immtH, immHL, immus 8 7
Description example :
CMPMD MEM32, #IMM32 ; MEM32 — IMM32

7900 Series Software Manual 4—-85

CPX

ComPare memory and index register X

CPX

Function . Comparison

Operation data length : 16 bits or 8 bits

Operation o X=M
When x = “0”
X M16
L Lo-0
When x = “1”
Xu M8
L -0
Description

e This instruction is unaffected by flag m.

Status flags

Subtracts the contents of a memory from the contents of X. The result is not stored anywhere.

IPL| N | V x | D Z | C
— | N | V — | — Z | C
N Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”
V : Setto “1" when the result of the operation (regarded as a signed operation) is a value outside
the range of —32768 to +32767 (=128 to +127 when flag x is “1”). Otherwise, cleared to “0.”
Z : Setto “1” when the operation result is “0.” Otherwise, cleared to “0.”
C : Cleared to “0” when the borrow occurs. Otherwise, set to “1.”

Addressing mode Syntax Machine code Bytes | Cycles
IMM CPX #imm E616, imm 2 1
DIR CPX dd 2216, dd 2 3
ABS CPX mmll 4116, 2Ezs, Il, mm 4 4

Note : In the immediate addressing mode with flag x = “0,” the byte number incleases by 1.

Description example :

CLP X
CPX.W #IMM16
CPX MEM16
SEP X
CPX.B #IMM8
CPX MEMS8

; X — IMM16
; X — MEM16

; XL — IMM8
; XL — MEM8

4—-86

7900 Series Software Manual

C PY ComPare memory and index register Y C PY

Function . Comparison

Operation data length : 16 bits or 8 bits

Operation D Y-M
When x = “0”
Y M16
When x = “1”
Yo M8
Description . Subtracts the contents of a memory from the contents of Y. The result is not stored anywhere.

e This instruction is unaffected by flag m.

Status flags

IPLIN|V | m|x|DJ| I |Z]|C
—|/N|V]|—|—|—|—|2Z2]|C
N Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”
V : Setto “1” when the result of the operation (regarded as a signed operation) is a value outside
the range of —32768 to +32767 (—128 to +127 when flag x is “1”). Otherwise, cleared to “0.”
Z : Setto “1” when the operation result is “0.” Otherwise, cleared to “0.”
C : Cleared to “0” when the borrow occurs. Otherwise, set to “1.”
Addressing mode Syntax Machine code Bytes | Cycles
IMM CPY #imm F616, imm 2 1
DIR CPY dd 3216, dd 2 3
ABS CPY mmll 4116, 3E1s6, Il, mm 4 4

Note : In the immediate addressing mode with flag x = “0,” the byte number incleases by 1.

Description example :

CLP X

CPY.W #IMM16 ;Y — IMM16

CPY MEM16 ;Y — MEM16
SEP X

CPY.B #IMM8 ; YL — IMM8

CPY MEM8 ; YL — MEMS8

7900 Series Software Manual 4-87

D E B N E DEcrement memory and Branch on Not Equal D E B N E

Function . Decrement & Conditional branch

Operation data length : 16 bits or 8 bits

Operation M <« M-=-IMM (IMM = 0 to 31)
When m = “0”
M16 M16

L1 -0] f-tum

e \When M16 (result of operation) = 0, executes the next instruction.
e \When M16 (result of operation) # 0, branches to the specified address.

When m = “1”
M8 M8
- [

e When M8 (result of operation) = 0, executes the next instruction.
e When M8 (result of operation) # 0, branches to the specified address.

Description : Subtracts the immediate value (0 to 31) from the contents of a memory, and stores the result
to the memory. In this time, branches to the specified address, if the operation result is not
“0.” Use an 8-bit value relative to PC (-128 to +127) to specify the branch address.

Status flags : Pl NnTvIiml x| b | 2] c
Addressing mode Syntax Machine code Bytes | Cycles
DIR DEBNE dd, #imm, rr | Clis, imm+AOQO1s, dd, rr 4 12
ABS DEBNE mmll, #imm, rr| D11s, imm+EOQOu1s, Il, mm, rr 5 11
Note : Any value from 0 to 31 can be set to imm.
Description example :
CLM
DEBNE MEM16, #IMM, LABEL1 ; Branches to LABELL1, if the result of MEM16 — IMM(O to 31) is not O.
SEM
DEBNE MEMS, #IMM, LABEL2 ; Branches to LABEL2, if the result of MEM8 — IMM(O to 31) is not O.

4-88 7900 Series Software Manual

D EC DECrement by one

DEC

Function : Decrement

Operation data length : 16 bits or 8 bits

Operation © Acc « Acc—-1orM « M-1
When m = “0”
Acc Acc
I R
or
M16 M16
I
When m = “1”
AccL AccL
L -1 -1
or
M8 M8
RS B

O In this case, the contents of Accu do not change.

Description . Decrements 1 from the contents of Acc or the contents of a memory.
Status flags PLIN|V | m|x|D|1]|2Zz]|C
— I N|—| —| —| —| —1| Z| —
N : Setto “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”
Z : Setto “1” when the operation result is “0.” Otherwise, cleared to “0.”
Addressing mode Syntax Machine code Bytes Cycles
A DEC A B31e 1 1
A DEC B 8116, B316 2 2
DIR DEC dd 9216, dd 2 6
DIR, X DEC dd, X 4116, 9B16, dd 3 8
ABS DEC mmll 9716, Il, mm 3 6
ABS, X DEC mmll, X 4116, 9F 16, Il, mm 4 8
Description example :
CLM
DEC A A - A-1
SEM
DEC A VAL <« AL-1
7900 Series Software Manual 4-89

D EX DEcrement index register X by one D EX

Function . Decrement
Operation data length : 16 bits or 8 bits

Operation X e X-=-1
When x = “0”
X X

A I e N

When x = “1”
Xu Xi
-

O In this case, the contents of X1 do not change.

Description . Decrements 1 from the contents of X.
e This instruction is unaffected by flag m.

Status flags PL| N |V im|[x|D|1]|z]|cC
— I Nl =] =] = =] 2Z| —
N : Setto “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”
Z : Setto “1” when the operation result is “0.” Otherwise, cleared to “0.”
Addressing mode Syntax Machine code Bytes Cycles
IMP DEX E316 1 1
Description example :
CLP X
DEX X« X=1
SEP X
DEX XL« Xe—=1

4-90 7900 Series Software Manual

D EY DEcrement index register Y by one D EY

Function . Decrement
Operation data length : 16 bits or 8 bits

Operation Y e«Y-1
When x = “0”
Y Y

e B

When x = “1”
Yo Yo
-

O In this case, the contents of Yu do not change.

Description . Decrements 1 from the contents of V.
e This instruction is unaffected by flag m.

Status flags PLIN|V im|[x|D|1I|z]|cC
— I Nl = =] = =| Z | —
N : Setto “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”
Z : Setto “1” when the operation result is “0.” Otherwise, cleared to “0.”
Addressing mode Syntax Machine code Bytes Cycles
IMP DEY F316 1 1
Description example :
CLP X
DEY Y Y -1
SEP X
DEY YL« Yu—1

7900 Series Software Manual 4-91

DIV

DIVide unsigned D IV

Function

Operation data length :

Operation

Description

Status flags

Division (Unsigned)

16 bits or 8 bits

A (quotient), B (remainder) — (B, A) + M

When m = “0”
A B B A M16
| Quo:tient |,| Reméinder | - | | Divi(:jend | | -+ | Div:isor
When m = “1”
AL BL B A M8
|Quotient| ,|Remainder| P | Divit:iend | - |Divisor|

O In this case, the contents of Aw and Budo not change.

Divides the data whose high-order bits consist of the contents of accumulator B and low-order
bits consist of the contents of accumulator A by the memory’s contents. Stores the quotient
to accumulator A, and stores the remainder to accumulator B.

e If an overflow occurs as an operation result, flag V is set to “1” and the contents of
accumulators A and B become undefined.

e When the divisor is “0,” the zero divide interrupt is generated. In that case, the contents of
accumulators A and B are not changed.

PLIN| V| m|x |D| I | Z]C
— | N|V|—|—|—]| 1] Z]C

Set to “1” if the quotient (A as the operation result)’s MSB is “1.” Unaffected when an overflow
occurs or the divisor is “0.” Otherwise, cleared to “0.”

Set to “1” when an overflow occurs. Unaffected when the divisor is “0.” Otherwise, cleared to
“0_”

Set to “1” when the divisor is “0.” Otherwise, unaffected.

Set to “1” when the quotient (A as the operation result) is “0.” Unaffected when an overflow
occurs or the divisor is “0.” Otherwise, cleared to “0.”

Set to “1” when an overflow occurs. Unaffected when the divisor is “0.” Otherwise, cleared to
HO.H

4-92

7900 Series Software Manual

DIV

DIVide unsigned

D

IV

Addressing mode Syntax Machine code Bytes Cycles
IMM DIV #imm 3116, E716, imm 3 15
DIR DIV dd 2116, EA1e, dd 3 16
DIR, X DIV dd, X 2116, EB1s, dd 3 17
(DIR) DIV (dd) 2116, EO16, dd 3 18
(DIR, X) DIV (dd, X) 2116, El1s, dd 3 19
(DIR), Y DIV (dd), Y 2116, E816, dd 3 19
L(DIR) DIV L(dd) 2116, E216, dd 3 20
L(DIR), Y DIV L(dd), Y 2116, E916, dd 3 21
SR DIV nn, S 2116, E316, NN 3 17
(SR), Y DIV (nn, S), Y 2116, E416, Nn 3 20
ABS DIV mmll 2116, EE1s, Il, mm 4 16
ABS, X DIV mmll, X 2116, EF1s, I, mm 4 17
ABS, Y DIV mmll, Y 2116, E61s, I, mm 4 17
ABL DIV hhmmll 2116, ECus, Il, mm, hh 5 17
ABL, X DIV hhmmll, X 2116, EDz1s, Il, mm, hh 5 18
Notes 1: In the immediate addressing mode, the byte number increases by 1 when flag m = “0.”

2:

3:

Description example :

CLM
DIV
DIV.W
SEM
DIV
DIV.B

The cycle number in this table applies to the case of 16-bit + 8-bit operation. In the case of 32-
bit + 16-bit operation, the cycle number increases by 8.
The cycle number in this table and Note 2 is the number when the operation is completed normally
(in other words, when no interrupt has been generated). If a zero divide interrupt is generated, the
cycle number is 16 cycles regardless of the operation’s data length.

MEM16
#IMM16

MEMS8
#IMM8

i A, B « (B, A)/ MEM16

i A, B « (B, A)/IMM16

; Ai, B « (B, A) / MEMS8
; Ai, BL < (B, Al) / IMM8

7900 Series Software Manual

4-93

DIVS

DIVide with Sign D IVS

Function

Operation data length :

Division (Signed)

16 bits or 8 bits

Operation A (quotient), B (remainder) — (B, A) + M
When m = “0”
A B B A M16
! Quo'tient | , ! Remainder | o | Divicllend | | s ! Div'isor
1 S] S 1 S 1
O “s” represents MSB of data.
When m = “1”
AL B BL AL M8
uotient| , |Remainder] Diviéend + | Divisor
Juten] , erae] — | owigena | + |
O “s” represents MSB of data.
O In this case, the contents of Aw and Bu do not change.
Description Divides the signed data whose high-order bits consist of the contents of accumulator B and

Status flags

low-order bits consist of the contents of accumulator A by the memory’s contents (signed).
Stores the signed quotient to accumulator A, and stores the signed remainder to accumulator
B.

e The sign of remainder becomes same as that of dividend.

e If an overflow occurs as an operation result (the quotient exceeds the range —32767 to
+32767 when flag m is “0,” or =127 to +127 when flag m is “1"), the operation finishes
halfway and flag V is set to “1.” In that case, the contents of accumulators A and B become
undefined.

e When the divisor is “0,” the zero divide interrupt is generated. In that case, the contents of
accumulators A and B are not changed.

IPLIN|V | m|x |D| Il |Z]|C
— | N|V|—|—|—] 1| 2Z]|C

Set to “1” if the quotient (A as the operation result)’s MSB is “1.” Unaffected when an overflow
occurs or the divisor is “0.” Otherwise, cleared to “0.”

Set to “1” when an overflow occurs. Unaffected when the divisor is “0.” Otherwise, cleared to
HO.H

Set to “1” when the divisor is “0.” Otherwise, unaffected.

Set to “1” when the quotient (A as the operation result) is “0.” Unaffected when an overflow
occurs or the divisor is “0.” Otherwise, cleared to “0.”

Set to “1” when an overflow occurs. Unaffected when the divisor is “0.” Otherwise, cleared to
“0_”

4-94

7900 Series Software Manual

DIVS

DIVide with Sign

DIVS

Addressing mode Syntax Machine code Bytes |Cycles
IMM DIVS #imm 3116, F716, imm 3 22
DIR DIVS dd 2116, FA1s6, dd 3 23
DIR, X DIVS dd, X 2116, FB1s, dd 3 24
(DIR) DIVS (dd) 2116, FOzs, dd 3 25
(DIR, X) DIVS (dd, X) 2116, Fl1s, dd 3 26
(DIR), Y DIVS (dd), Y 2116, F816, dd 3 26
L(DIR) DIVS L(dd) 2116, F216, dd 3 27
L(DIR), Y DIVS L(dd), Y 2116, F916, dd 3 28
SR DIVS nn, S 2116, F316, NN 3 24
(SR), Y DIVS (nn, S), Y 2116, F416, NN 3 27
ABS DIVS mmll 2116, FEz1s, Il, mm 4 23
ABS, X DIVS mmll, X 2116, FFis, Il, mm 4 24
ABS, Y DIVS mmll, Y 2116, F61s, Il, mm 4 24
ABL DIVS hhmmll 2116, FCas, I, mm, hh 5 24
ABL, X DIVS hhmmll, X 2116, FD1s, Il, mm, hh 5 25

Notes 1: In the immediate

addressing mode, the byte number increases by 1 when flag m = “0.”

2: The cycle number in this table applies to the case of 16-bit + 8-bit operation. In the case of 32-
bit + 16-bit operation, the cycle number increases by 8.
3: The cycle number in this table and Note 2 is the number when the operation is completed normally
(in other words, when no interrupt has been generated). If a zero divide interrupt is generated, the
cycle number is 16 cycles regardless of the operation’s data length.

Description example :

CLM
DIVS
SEM
DIVS.B

MEM16

#IMM8

A, B < (B, A/ MEM16

; AL, BL « (B, AL) / IMM8

7900 Series Software Manual

4-95

DXB N E Decrement index register X and Branch on Not Equal DXB N E

Function . Decrement & Conditional branch
Operation data length : 16 bits or 8 bits

Operation X « X=1IMM (IMM = 0 to 31)
When x = “0”
X X
L - [

e When X (result of operation) = 0, executes the next instruction.
e When X (result of operation) # 0, branches to the specified address.

When x = “1”
XL XL
- [

e When X. (result of operation) = 0, executes the next instruction.
e When Xu. (result of operation) # 0, branches to the specified address.
O In this case, the contents of Xu do not change.

Description . Subtracts the immediate value (0 to 31) from the contents of X, and stores the result to the
X. In this time, branches to the specified address, if the operation result is not “0.” Use an 8-
bit value relative to PC (-128 to +127) to specify the branch address.

e This instruction is unaffected by flag m.

Status flags PLUN|V | m|[x|D|1]Zz]C
Addressing mode Syntax Machine code Bytes | Cycles
IMM DXBNE #imm, rr 0116, imm+COus, rr 3 7

Note : Any value from 0 to 31 can be set to imm.

Description example :

CLP X

DXBNE #IMM, LABEL1 ; Branches to LABELL1, if the result of X — IMM(O to 31) is not 0.
SEP X

DXBNE #IMM, LABEL2 ; Branches to LABELZ2, if the result of XL — IMM(O to 31) is not 0.

4-96 7900 Series Software Manual

DYB N E Decrement index register Y and Branch on Not Equal DYB N E

Function . Decrement & Conditional branch
Operation data length : 16 bits or 8 bits

Operation Y « Y-IMM (IMM = 0 to 31)
When x = “0”
Y Y
L -] f-tum

e When Y (result of operation) = 0, executes the next instruction.
e When Y (result of operation) # 0, branches to the specified address.

When x = “1”
Yo @
- [

e When Y. (result of operation) = 0, executes the next instruction.
e When Y. (result of operation) # 0, branches to the specified address.
O In this case, the contents of Yu do not change.

Description . Subtracts the immediate value (0 to 31) from the contents of Y, and stores the result to the
Y. In this time, branches to the specified address, if the result of the operation is not “0.” Use

an 8-bit value relative to PC (-128 to +127) to specify the branch address.
e This instruction is unaffected by flag m.

Status flags
g PLIN |V im|x|D|1]|z]|cC
Addressing mode Syntax Machine code Bytes | Cycles
IMM DYBNE #imm, rr 0116, imm+EOQus, rr 3 7
Note : Any value from 0 to 31 can be set to imm.
Description example :
CLP X
DYBNE #IMM, LABEL1 ; Branches to LABEL1, if the result of Y — IMM(O to 31) is not O.
SEP X
DYBNE #IMM, LABEL2 ; Branches to LABEL2, if the result of Y. — IMM(O to 31) is not 0.

7900 Series Software Manual

4-97

EOR

Exclusive OR memory with accumulator EO R

Function

Operation data length :

Operation

Description

Status flags

Logical exclusive OR

16 bits or 8 bits

Acc —« Acc O M

When m = “0”
Acc Acc M16
oL - e]
When m = “1”
AccL AccL M8
L - _Jo[]

O In this case, the contents of Accut do not change.

Performs the logical exclusive OR between the contents of Acc and the contents of a memory
by each bit, and stores the result in Acc.

PLIN|V | m|x|D| I |Z]|C
—IN| ==l =]=]=]z|=

Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”
Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

4-98

7900 Series Software Manual

EO R Exclusive OR memory with accumulator EO R

Addressing mode Syntax Machine code Bytes [Cycles
IMM EOR A, #imm 7616, imm (8116, 7616, imm) 23) | 1)
DIR EOR A, dd 7A16, dd (8116, 7A1e, dd) 23)| 3(4)
DIR, X EOR A, dd, X 7B16, dd (8116, 7B1s, dd) 2@3)| 4(5)
(DIR) EOR A, (dd) 1116, 7016, dd (9116, 7016, dd) 3@3)| 6(6)
(DIR, X) EOR A, (dd, X) 1116, 7116, dd (9116, 7116, dd) 3@)| 7(7)
(DIR), Y EOR A, (dd), Y 1116, 7816, dd (9116, 7816, dd) 3@)| 7()
L(DIR) EOR A, L(dd) 1116, 7216, dd (9116, 7216, dd) 3(3)| 8(8)
L(DIR), Y EOR A, L(dd), Y 1116, 7916, dd (9116, 7916, dd) 3@)| 9(9
SR EOR A, nn, S 1116, 7316, NN (9116, 7316, NN) 3@)| 5()
(SR), Y EOR A, (nn, S), Y | 1116, 7416, nn (9116, 7416, NN) 3@3)| 8(8)
ABS EOR A, mmll 7Ess, Il, mm (8116, 7Ezs, Il, mm) 3(4)| 3@
ABS, X EOR A, mmll, X 7F1s, Il, mm (8116, 7F1s, II, mm) 3(4)| 4 ()
ABS, Y EOR A, mmll, Y 1116, 7616, Il, mm (9116, 7616, I, mm) 4 4)| 5(5)
ABL EOR A, hhmmll 1116, 7Ci1s, Il, mm, hh (9116, 7C1s, I, mm, hh)| 5 (5) | 5 (5)
ABL, X EOR A, hhmmll, X | 1116, 7D1s, ll, mm, hh (9116, 7D1s, ll, mm, hh)| 5 (5) | 6 (6)

Notes 1: This table applies when using accumulator A. When using accumulator B, replace “A” with “B” in
the syntax. In this case, the machine code, the number of bytes, and the number of cycles enclosed
in parentheses are applied.

2: In the immediate addressing mode, the byte number increases by 1 when flag m = “0.”

Description example :

CLM

EOR.W A, #IMM16 A « ADO IMM16

EOR B, MEM16 B - BO MEM16
SEM

EOR.B A, #IMM8 ;AL AL O IMMS8

EOR B, MEM8 ; BL « B OO MEMS8

7900 Series Software Manual 4—-99

EO R B Exclusive OR immediate with accumulator at Byte EO R B

Function

Logical exclusive OR

Operation data length : 8 bits

Operation

Description

Status flags

AccL — Acc. O IMM8
AccL AccL

[]- []omwms

Performs the logical exclusive OR in 8-bit length between the contents of Acc. and the
contents of a memory by each bit, and stores the result in Acc..

e This instruction is unaffected by flag m.
e The contents of Accw do not change.

PL{N|V | m|x|DJ|]I|Z]C
— I Nl = —| —| —=|—=1|2Z | —
N : Setto “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

Description example :

Addressing mode Syntax Machine code Bytes Cycles
IMM EORB A, #imm 3316, imm 2 1
IMM EORB B, #imm 8116, 3316, imm 3 2
EORB A, #IMM8 ;AL < AL O IMMS8
EORB B, #IMM8 ; BL « BL O IMMS8

4-100

7900 Series Software Manual

EORM

Exclusive OR immediate with Memory

EORM

Function

Logical exclusive OR

Operation data length : 16 bits or 8 bits

Operation

Description

Status flags

M <« MO IMM
When m = “0”
M16

M16

| - |

When m = “1”

M8 M8
[][]omwe

| 0 IMM16

Performs the logical exclusive OR between the contents of a memory and the immediate

value, and stores the result in the memory.

IPL

N

m| x| D]| I | Z

N

— | —| ==z

Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Addressing mode Syntax Machine code Bytes | Cycles
DIR EORM dd, #imm 5116, 7316, dd, imm 4 7
ABS EORM mmll, #imm| 511e, 7716, Il, mm, imm 5 7

Note : When flag m = “0,” the byte number increases by 1.

Description example :

CLM

EORM.W MEM16, #IMM16
SEM

EORM.B MEMS8, #IMM8

; MEM16 —~ MEM16 OO0 IMM16

; MEM8 —~ MEMS8 00 IMM8

7900 Series Software Manual

4-101

EO R M B Exclusive OR immediate with Memory at Byte EO R M B

Function

Logical exclusive OR

Operation data length : 8 bits

Operation

Description

Status flags

M8 ~ M8 [0 IMM8
M8

M8
D@ D 0 IMM8

Performs the logical exclusive OR in 8-bit length between the contents of a memory and the
immediate value, and stores the result in the memory.

e This instruction is unaffected by flag m.

IPLIN|V | m|x |DJ| I | Z]|C
— I Nl =] =] =] = =] Z | —
N : Setto “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

Description example :

Addressing mode Syntax Machine code Bytes Cycles

DIR EORMB dd, #imm 5116, 7216, dd, imm 4 7

ABS EORMB mmll, #imm 5116, 7616, Il, mm, imm 5 7
EORMB MEMS, #IMM8 ; MEM8 - MEMS8 [0 IMM8

4-102

7900 Series Software Manual

EORMD

Exclusive OR immediate with Memory at Double-word EO R M D

Function

Operation data length :

Operation

Description

Logical exclusive OR
32 bits
M32 — M32 O IMM32

M32 M32
LI P I-0 [] Jomvs

Performs the logical exclusive OR in 32-bit length between the contents of a memory and the
immediate value, and stores the result in the memory.

e This instruction is unaffected by flag m.

Status flags
IPL| N| V| m| x| D | Z | C
— | N|l—=| =] —=| = =] Z| —
N Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”
Z Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”
Addressing mode Syntax Machine code Bytes [Cycles
DIR EORMD dd, #imm 5116, F316, dd, immL, immucH, immHuL, immdx 7 10
ABS EORMD mmll, #imm| 5116, F716, [l, mm, immcLc, immcH, immaL, immux 8 10
Description example :
EORMD MEM32, #IMM32 ; MEM32 - MEM32 [0 IMM32

7900 Series Software Manual 4-103

EXTS

EXTension Sign EXTS

Function

Operation data length :

Operation

Description

Extension sign

16 bits

Acc — Acc. (Extension sign)
When bit 7 of Acc. = “0”

AccH « 0016
AccH AccL AccCH AccL
0016 oxxxxxxxz| - | ? OXXXXXXX2

When bit 7 of Acc. = “1”

AccH — FFaie
AccH AccL AccCH AccL
FFis 1xxxxxxxz| - | ? TXXXXXXX2

00 The contents of Acct change regardless of flag m.

This instruction is used to extend Acc. to Acc with signs.
e This instruction is unaffected by flag m.

Status flags PLIN|V | m|x|D|I]|Z]|C
— | Nl =] ==l =] —=| =1 2z2]| —
N Set to “1” when bit 15 of the operation result is “1.” Otherwise, cleared to “0.”
Z Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”
Addressing mode Syntax Machine code Bytes [Cycles
A EXTS A 3516 1 1
A EXTS B 8116, 3516 2 2
Description example :
EXTS A : AH «~ 0016 or FFie
EXTS B : BH «~ 0016 or FFie

4-104

7900 Series Software Manual

EXTSD

EXTension Sign at Double-word EXTS D

Function

Operation data length :

Operation

Description

Status flags

Extension sign

32 bits

E-E (=A (Extension sign)
When bit 15 of A = “0”

Ex ~ 000016

Exn (=B) EL(=A) Ex (= B) EL (=A)
b15 b0 b15 b0 b15 b0 b15 b0
| 000016 | 00X+ XXz | - | ? | 0X-+- XXz |

When bit 15 of A = “1”

Ev « FFFFus

En (=B) EL(=A) Ex (= B) E. (= A)
bl5 bObI5 b0 bl5 b0Obl5 bo
| OFFFFs | x|« | 2 | axexx |

O The high-order 2 bytes change regardless of flag m.

This instruction is used to extend E. (= A) to E with signs.
e This instruction is unaffected by flag m.

IPLILN| V| m|x | D|I |Z]C
— Nl === =] =]z | =

N Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”
z Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”
Addressing mode Syntax Machine code Bytes [Cycles
A EXTSD E 3116, BO16 2 5
Description example :
EXTSD E i E « EL

. (B — 000015 or FFFF1s, A A)

7900 Series Software Manual 4-105

EXTZ EXTension Zero EXTZ

Function . Extension zero

Operation data length : 16 bits

Operation : Acc —~ Acc. (Extension zero)
AccH AccL AccH Acct
| 00 | e

00 The contents of Acct change regardless of flag m.

Description : This instruction is used to extend Acc. to Acc with 0s.
e This instruction is unaffected by flag m.
e The content of Accn always set to “001s.”

Status flags PLIN|V | m|x|D|1]|2z]|C
— ol =] =|=|=| =12z =
N : Setto “1l” when MSB of the operation result is “1.” Otherwise, cleared to “0.”
Z : Setto “1” when the operation result is “0.” Otherwise, cleared to “0.”
Addressing mode Syntax Machine code Bytes [Cycles
A EXTZ A 3416 1 1
A EXTZ B 8116, 3416 2 2

Description example :

EXTZ
EXTZ

i A« AL(AH <« 0016 , AL ~ AL)
;B « BL(BH « 0016 , BL «~ BL)

w >

4-106 7900 Series Software Manual

EXTZD EXTension Zero at Double-word EXTZD

Function . Extension zero

Operation data length : 32 bits

Operation : E<E (A (Extension zero)
En (=B) EL(=A) Ex (= B) E. (= A)
b15 b0 b15 b0 b15 b0 b15 b0
| 0000ss | R |

(0 The high-order 2 bytes change regardless of flag m.

Description . This instruction is used to extend EL (= A) to E with Os.
e This instruction is unaffected by flag m.
e The high-order word; En (= B) becomes “00001s.”

Status flags PLIN| v m|x|D]1]z]c
— 0|l =| = =] = =2z | =
N : Always “0” because MSB of the operation result is “0.”
Z : Setto “1” when the operation result is “0.” Otherwise, cleared to “0.”
Addressing mode Syntax Machine code Bytes |Cycles
A EXTZD E 3116, AO16 2 3
Description example :
EXTZD E i E « EL(B < 000015, A — A)

7900 Series Software Manual 4-107

I N C INCrement by one I N C

Function : Increment

Operation data length : 16 bits or 8 bits

Operation : Acc « Acc+lorM - M+1
When m = “0”
Acc Acc
I
or
M16 M16
L - e
When m = “1”
AccL AccL
L -1+
or
M8 M8
R S

O In this case, the contents of Accu do not change.

Description : Adds 1 to the contents of Acc or a memory.
Status flags PLUN|V | m|[x|D|1]|z]|C
— I N|—| —| —| —| —1| Z | —
N : Setto “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”
Z : Setto “1” when the operation result is “0.” Otherwise, cleared to “0.”
Addressing mode Syntax Machine code Bytes Cycles
A INC A A316 1 1
A INC B 8116, A316 2 2
DIR INC dd 8216, dd 2 6
DIR, X INC dd, X 4116, 8B1s, dd 3 8
ABS INC mmll 8716, Il, mm 3 6
ABS, X INC mmll, X 4116, 8F1e, Il, mm 4 8
Description example :
CLM
INC A A - A+ 1
INC MEM16 ; MEM16 -~ MEM16 + 1
SEM
INC B ;BL « BL+1
INC MEM8 ; MEM8 - MEMS8 + 1

4-108 7900 Series Software Manual

INX

INcrement index register X by one

INX

Function

Operation data length :

Operation

Description

Status flags

Increment
16 bits or 8 bits
X « X+1

When x = “0”
X

When x = 1"

Xu Xu
290

O In this case, the contents of Xu do not change.

Adds 1 to the contents of X.
e This instruction is unaffected by flag m.

Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”
Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

IPL

N

Z

N

Z

Addressing mode Syntax Machine code Bytes Cycles
IMP INX C316 1 1
Description example :
CLP X
INX X « X+1
SEP X
INX XL« XL+ 1

7900 Series Software Manual

4-109

I NY INcrement index register Y by one I NY

Function . Increment
Operation data length : 16 bits or 8 bits

Operation Y «Y+1
When x = “0”
Y Y

L -] et

When x = “1”
Yo Yo
T

O In this case, the contents of Yu do not change.

Description : Adds 1 to the contents of Y.
e This instruction is unaffected by flag m.

Status flags PLIN|V im|x|D|1]Zz]|C
— | Nl ==l =] —=| =1 2z2]| —
N : Setto “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”
Z : Setto “1” when the operation result is “0.” Otherwise, cleared to “0.”
Addressing mode Syntax Machine code Bytes Cycles
IMP INY D316 1 1
Description example :
CLP X
INY Y « Y +1
SEP X
INY YL < YL+ 1

4-110 7900 Series Software Manual

JMP/IMPL

JuMP

JMP/IMPL

Function : Jump always

Operation data length :

Operation : * JMP instruction

PC — Specified address

PC < mmll

* JMPL instruction

PG, PC ~ Specified address

PC < mmll
PG < hh

Description :Jumps to the specified address. Use a 16-bit (JMP) or 24-bit (JMPL) address to specify the
destination jump address.

e [f the last byte of the JMP instruction is placed at the highest address (XXFFFFis) or the
instruction is located across bank boundaries, the contents of PG are incremented by 1,
causing control to jump to the specified address in the next bank.

e \When using indirect addressing, the memory to be referenced is in the same program bank
(the bank indicated by PG).

Status flags PLIN|[V] m|x|D|1]z]cC
Addressing mode Syntax Machine code Bytes Cycles
ABS JMP mmll 9Cis, Il, mm 3 4
ABL JMPL hhmmll ACis, Il, mm, hh 4 5
(ABS) JMP (mmll) 3116, 5Cis, I, mm 4 7
L(ABS) JMPL L(mmll) 3116, 5Ds6, Il, mm 4 9
(ABS, X) JMP (mmll, X) BCis, Il, mm 3 7
Description example :
JMP ADDR16 ; Jump to the address ADDR16
JMPL ADDR24 ; Jump to the address ADDR24

7900 Series Software Manual

4-111

JSR/JSRL Jump to SubRoutine JSR/JSRL

Function : Subroutine call

Operation data length : —

Operation : *JSR instruction
Stack - PC” Stack
PC ~ Specified address (S) just after instruction execution
PC -« PC +3 PCL
M(S, S — 1) — PC (S) just before instruction execution PCH
S ~-S-2
PC « mmll
¢ JSRL instruction
Stack
Stack — PG, PC (S) just after instruction execution
PG, PC ~ Specified address PCL
PC - PC+4) iust before i . PCH
ust before instruction execution
M(Sto S — 2) — PG, PC ©)] PG
S «S-3
PC « mmll
PG < hh
Description . This instruction stores the contents of PG and PC to stack, and jumps to the specified address.

Use a 16-bit (JSR) or 24-bit (JSRL) address to specify the destination jump address.

e |f the last byte of the JSR instruction is placed at the highest address (XXFFFFis) or the
instruction is located across bank boundaries, the contents of PG are incremented by 1,
causing control to jump to the specified address in the next bank.

e When using indirect addressing, the memory to be referenced is in the same program bank
(the bank indicated by PG).

IPLI N| V|m]| x | D | Z | C
Status flags
Addressing mode Syntax Machine code Bytes [Cycles
ABS JSR mmll 9Dz1s, Il, mm 3 6
ABL JSRL hhmmll ADzs, Il, mm, hh 4 7
(ABS, X) JSR (mmll, X) BDas, Il, mm 3 8
Description example :
JSR ADDR16 ; Jump to the address ADDR16
JSRL ADDR24 ; Jump to the address ADDR24

4-112 7900 Series Software Manual

LDA

LoaD Accumulator from memory

LDA

Function

Operation data length :

Operation

Description

Status flags

Load
16 bits or 8 bits
Acc « M

When m = “0”
Acc M16

When m = “1”
AccL M8

O In this case, the contents of Acck do not change.

Loads the contents of a memory into Acc.

IPLI N| V| m| x| D

Z

— I Nl =] —| | —

z

Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”
Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

7900 Series Software Manual

4-113

L DA LoaD Accumulator from memory L DA

Addressing mode Syntax Machine code Bytes | Cycles
IMM LDA A, #imm 1616, imm (811, 1616, imm) 2 (3) 1(2)
DIR LDA A, dd 1Az6, dd (8116, 1A16, dd) 2 (3) 3(4)
DIR, X LDA A, dd, X 1B1s, dd (8116, 1B16, dd) 2 (3) 4 (5)
(DIR) LDA A, (dd) 1116, 1016, dd (9116, 1016, dd) 3(3) 6 (6)
(DIR, X) LDA A, (dd, X) 1116, 1116, dd (9116, 1116, dd) 3(3) 7 (7)
(DIR), Y LDA A, (dd), Y 1816, dd (8116, 1816, dd) 2 (3) 6 (7)
L(DIR) LDA A, L(dd) 1116, 1216, dd (9116, 1216, dd) 3(3) 8 (8)
L(DIR), Y LDA A, L(dd), Y 1916, dd (8116, 1916, dd) 2 (3) 8 (9)
SR LDA A, nn, S 1116, 1316, Nn (9116, 1316, NN) 3(3) 5 (5)
(SR), Y LDA A, (nn, S), Y | 1116, 1416, nn (9116, 1416, NN) 3(3) 8 (8)
ABS LDA A, mmll 1Ezie, Il, mm (8116, 1Ezs, I, mm) 3(4) 34
ABS, X LDA A, mmll, X 1F1se, I, mm (8116, 1Fus, Il, mm) 3(4) 4 (5)
ABS, Y LDA A, mmll, Y 1116, 1616, I, mm (9116, 1616, I, mm) 4 (4) 5 (5)
ABL LDA A, hhmmll 1Czs, I, mm, hh (8116, 1Cz1s, I, mm, hh) 4 (5) 4 (5)
ABL, X LDA A, hhmmll, X | 1Dass, Il, mm, hh (8116, 1D1s, Il, mm, hh) 4 (5) 5 (6)

Notes 1: This table applies when using accumulator A. When using accumulator B, replace “A” with “B” in
the syntax. In this case, the machine code, the number of bytes, and the number of cycles enclosed
in parentheses are applied.

2: In the immediate addressing mode, the byte number increases by 1 when flag m = “0.”

Description example :

CLM
LDA.W A, #IMM16 i A« IMM16
LDA B, MEM16 ; B « MEM16
SEM
LDA.B A, #IMM8 i AL« IMM8
LDA B, MEM8 ; BL « MEM8

4-114 7900 Series Software Manual

LDAB LoaD Accumulator from memory at Byte LDAB

Function . Load

Operation data length : 16 bits

Operation : Acc —~ M8 (Extension zero)
Acc M8
e J-| | |
Description . Transfers 8-bit data from memory to Acc after zero-extending it to 16 bits.

e This instruction is unaffected by flag m.
e The contents of Acck are always set to “001s.”

Status flags PLIN| Vv m|x|D|]1]2Zz]cC
—lo|l=|l=l=|=1=|z| =
N : Setto “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”
Z : Setto “1” when the operation result is “0.” Otherwise, cleared to “0.”
Addressing mode Syntax Machine code Bytes | Cycles
IMM LDAB A, #imm 2816, imm (8116, 2816, imm) 23| 1)
DIR LDAB A, dd 0A1s, dd (8116, OA1s, dd) 2(3) | 3@
DIR, X LDAB A, dd, X OB1s, dd (8116, OB1s, dd) 2(3) | 4
(DIR) LDAB A, (dd) 1116, 0016, dd (9116, 0016, dd) 3(3) 6 (6)
(DIR, X) LDAB A, (dd, X) | 111, Ol1s, dd (9116, Olis, dd) 3@ | 7
(DIR), Y LDAB A, (dd), Y | 0816, dd (8116, 0816, dd) 2(3) | 6()
L(DIR) LDAB A, L(dd) 1116, 0216, dd (9116, 0216, dd) 3(3) | 8(8)
L(DIR), Y LDAB A, L(dd), Y | 0916, dd (8116, 0916, dd) 2 (3) 8 (9)
SR LDAB A, nn, S 1116, 0316, NN (9116, 0316, NN) 3 (3) 5 (5)
(SR), Y LDAB A, (nn, S), Y| 1lie, 0416, Nn (9116, 0416, NN) 3 (3) 8 (8)
ABS LDAB A, mmll OE1s, Il, mm (8116, OE1s, I, mm) 34| 34
ABS, X LDAB A, mmll, X | OFis, Il, mm (8116, OFzs, Il, mm) 34| 4
ABS, Y LDAB A, mmll, Y | 11lie, 0616, Il, mm (9116, 0616, Il, mm) 4 (4) 5 (5)
ABL LDAB A, hhmmll | OCus, Il, mm, hh (8116, OCus, Il, mm, hh) 4(5)| 4(5)
ABL, X LDAB A, hhmmll, X| ODss, Il, mm, hh (8116, ODzs, Il, mm, hh) 4 () | 5(6)

Note : This table applies when using accumulator A. When using accumulator B, replace “A” with “B” in the
syntax. In this case, the machine code, the number of bytes, and the number of cycles enclosed in
parentheses are applied.

Description example :

LDAB A, #IMM8 i A« IMM8 (AH ~ 0016, AL —~ IMMB8)
LDAB B, MEMS8 ; B « MEM8 (BH ~ 0016, BL — MEMS)

7900 Series Software Manual 4-115

LDAD LoaD Accumulator from memory at Double-word LDAD

Function . Load

Operation data length : 32 bits

Operation : E < M32
E M32
HEEESEEEE
Description . Loads the 32-bit data of a memory to E.

e This instruction is unaffected by flag m.

Status flags
IPLI N | V| m]| x D I Z | C
— N — — — J— b Z —
N : Setto “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”
Z . Setto “1” when the operation result is “0.” Otherwise, cleared to “0.”
Addressing mode Syntax Machine code Bytes | Cycles
IMM LDAD E, #imm 2C16, ImmLL, iMMLH, IMMHL, iIMMHH 5 3
DIR LDAD E, dd 8Au1s, dd 2 6
DIR, X LDAD E, dd, X 8B1s, dd 2 7
(DIR) LDAD E, (dd) 1116, 8016, dd 3 9
(DIR, X) LDAD E, (dd, X) | 1116, 8116, dd 3 10
(DIR), Y LDAD E, (dd), Y | 8816, dd 2 9
L(DIR) LDAD E, L(dd) 1116, 8216, dd 3 11
L(DIR), Y LDAD E, L(dd), Y | 8916, dd 2 11
SR LDAD E, nn, S 1116, 8316, NN 3 8
(SR), Y LDAD E, (nn, S), Y| 1116, 8416, nn 3 11
ABS LDAD E, mmll 8Eus, I, mm 3 6
ABS, X LDAD E, mmll, X | 8Fus, I, mm 3 7
ABS, Y LDAD E, mmll, Y | 1lie, 8616, Il, mm 4 8
ABL LDAD E, hhmmll 8Cis, Il, mm, hh 4 7
ABL, X LDAD E, hhmmll, X| 8Dz1s, Il, mm, hh 4 8
Description example :
LDAD E, #IMM32 ; E « IMM32
; (B« IMM32+, A — IMM32y)
LDAD E, MEM32 ; E « MEM32

. (B < IMM32+, A — IMM324)

4-116 7900 Series Software Manual

LDD n

LoaD immediate to Direct page register n

LDD n

Function . Load

Operation data length : 16 bits

Operation : DPRO ~ IMM16a (can be specified to multiple DPRS)

DPR1 —
DPR2 -
DPR3 ~

DPRO

:

DPR1

:

DPR2

:

DPR3

:

IMM16b
IMM16¢c
IMM16d

~ IMM16a

~ IMM16b

~ IMM16c

~ IMM16d

Description . Transfers a 16-bit immediate value to DPRO through DPR3.
e This instruction is unaffected by flag m.

e A value can be set to multiple DPRs by 1 instruction.

transfers are performed in order of DPRO, DPR1, DPR2, and DPR3.

Status flags

If multiple DPRs are specified,

IPL| N | V | m| X D | Z | C
Addressing mode Syntax Machine code Bytes |[Cycles
IMM LDD n, #imm B81s, ?016, immL, immH 4 13
LDD (n, ..., ni), #imma, ..., #Himmi | B81s, ?016, immu1, immu1 (20 i+2 (20 i+11
L ..., IMMmLi, immui

Notes 1: Any value from O to 3 can be set to n.
2: The second line of the syntax format sets values to multiple DPRs by 1 instruction.

3: The inside of parentheses (n1, ..., ni) specifies 0 to 3 (numbers representing DPRn).
4: i: Indicates DPRn specified (1 to 4).

5: ?: The bit corresponding to a specified DPRn is set to “1.” The diagram below shows the

relationship between bits and DPRn.

b7

bO

|DPR3|DPR2[DPR1[DPRO| 0 [0 | 0 | 0 |

Description example :

LDD
LDD

0, #IMM16

(0, 3), #IMM16a, #IMM16b

; DPRO ~ IMM16
; DPRO ~ IMM16a
; DPR3 « IMM16b

7900 Series Software Manual

4-117

LDT LoaD immediate to DaTa bank register LDT

Function . Load

Operation data length : 8 bits

Operation : DT « IMM8
DT
D — IMM8
Description : Loads the immediate value to DT.

e This instruction is unaffected by flag m.

Status flags PLIN|lV I Im| x| DI|1]|2z]|cC

Addressing mode Syntax Machine code Bytes | Cycles

IMM LDT #imm 3116, 4A16, imm 3 4

Description example :
LDT #IMM8 ; DT « IMM8

4-118 7900 Series Software Manual

LDX

LoaD index register X from memory

LDX

Function

Operation data length :

Operation

Description

Status flags

Load

16 bits or 8 bits

X « M
When x = “0”

XL M8

O In this case, the contents of X1 do not change.

Loads the contents of a memory to X.

Description example :

CLM

LDX.W #IMM16
LDX MEM16
SEM

LDX.B #IMM8
LDX MEMS8

IPL| N m| x | D | Z | C
— | N N U N I A
N Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”
4 Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”
Addressing mode Syntax Machine code Bytes Cycles
IMM LDX #imm C616, imm 2 1
DIR LDX dd 0216, dd 2 3
DIR, Y LDX dd, Y 4116, 0516, dd 3 5
ABS LDX mmll 0716, Il, mm 3 3
ABS, Y LDX mmll, Y 4116, 0616, I, mm 4 5
Note : In the immediate addressing mode, the byte number inclease by 1 when flag x = “0

; X « IMM16
; X « MEM16

i XL~ IMM8
; XL « MEMS8

7900 Series Software Manual 4-119

LDXB LoaD index register X from memory at Byte LDXB

Function . Load

Operation data length : 16 bits

Operation : X « IMM8 (Extension zero)
X
G0 |- e
Description : Extends the 8-bit immediate value to the 16-bit immediate value with Os, and loads the data
to X.

e This instruction is unaffected by flag x.
e The contents of Xu are always set to “001s.”

Status flags PLIN|V | m|[x|D|1]|Zz]|C
— 0|l =] =] =] = =12z | =
N : Always “0” because MSB of the operation result is “0.”
Z : Setto “1” when the operation result is “0.” Otherwise, cleared to “0.”
Addressing mode Syntax Machine code Bytes | Cycles
IMM LDXB #imm 2716, imm 2 1

Description example :
LDXB #IMM8 i X « IMM8 (X1 « 0016, XL « IMM8)

4-120 7900 Series Software Manual

LDY

LoaD index register Y from memory

LDY

Function Load

Operation data length : 16 bits or 8 bits

Operation Y « M
When x = “0”
Y M16
When x = “1”
Yo M8
O In this case, the contents of Yn do not change.
Description Loads the contents of a memory to Y.
Status flags . IPL| N m X D | Z C
— | N — =] =l =z | =
N : Setto “1l” when MSB of the operation result is “1.” Otherwise, cleared to “0.”
Z : Setto “1” when the operation result is “0.” Otherwise, cleared to “0.”

Addressing mode Syntax Machine code Bytes Cycles
IMM LDY #imm D616, imm 2 1
DIR LDY dd 1216, dd 2 3
DIR, X LDY dd, X 4116, 1B16, dd 3 5
ABS LDY mmll 1716, Il, mm 3 3
ABS, X LDY mmll, X 4116, 1F1s, Il, mm 4 5
Note : In the immediate addressing mode, the byte number inclease by 1 when flag x = “0

Description example :
CLM
LDY.W #IMM16 ;Y <« IMM16
LDY MEM16 ;Y « MEM16
SEM
LDY.B #IMM8 ;YL « IMMS8
LDY MEMS8 ;YL « MEMS8
7900 Series Software Manual 4-121

LDYB LoaD index register Y from memory at Byte LDYB

Function . Load

Operation data length : 16 bits

Operation Y « IMM8 (Extension zero)
Y
G0 |- e
Description : Extends the 8-bit immediate value to the 16-bit immediate value with Os, and loads the data
to Y.

e This instruction is unaffected by flag x.
e The contents of Yu are always set to “001s.”

Status flags PLIN|V | m|[x|D|1]|Zz]|C
— 0|l =] =] =] = =12z | =
N : Always “0” because MSB of the operation result is “0.”
Z : Setto “1” when the operation result is “0.” Otherwise, cleared to “0.”
Addressing mode Syntax Machine code Bytes | Cycles
IMM LDYB #imm 3716, imm 2 1

Description example :
LDYB #IMM8 ;Y « IMM8 (YH < 0016, YL « IMMB8)

4-122 7900 Series Software Manual

LSR Logical Shift Right LSR

Function : Logical shift to the right
Operation data length : 16 bits or 8 bits

Operation : Acc or M C
0 — 1-bit shift to right -

When m = “0”
b15 Acc or M16 bo C

[T T T 1 [1T T T 1
O4rrrrT rrrer

When m = “1”
b7 AccL or M8 bo C

1T 1T T 1T T T T 1
0 1 rr*r*r'rrr'nj

O In this case, the contents of Acck do not change.

Description : Shifts all bits of Acc or a memory to the right by 1 bit. In this time, “0” is placed in MSB of
Acc or a memory. Flag C is loaded from LSB of the data before the shift.

Status flags PLIN| V| m|x|DJ|]1]|z]|C
—|lO0|—-|—|—|—|—1]2Z]|C

N : Cleared to “0.”

Z Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”
C : Setto “1” when LSB before the operation is “1.” Otherwise, cleared to “0.”
Addressing mode Syntax Machine code Bytes Cycles
A LSR A 4316 1 1
A LSR B 8116, 4316 2 2
DIR LSR dd 2116, 2A16, dd 3 7
DIR, X LSR dd, X 2116, 2B1s, dd 3 8
ABS LSR mmll 2116, 2E1s, Il, mm 4 7
ABS, X LSR mmll, X 2116, 2F16, I, mm 4 8
Description example :
CLM
LSR A ; A — Ais logically shifted to the right by 1 bit.
LSR MEM16 ; MEM16 — MEM16 is logically shifted to the right by 1 bit.
SEM
LSR A i AL « Ac is logically shifted to the right by 1 bit.
LSR MEMS8 ; MEM8 —~ MEMS is logically shifted to the right by 1 bit.

7900 Series Software Manual 4-123

LSR #n

Logical n bits Shift Right LSR #n

Function

Operation data length :

Operation

Description

Status flags

N

Logical shift to the right
16 bits or 8 bits

A C
0]Ln-bit shift to right_{ | (n : Number of times shifted. n = 0 to 15)

When m = “0”
b15 A b0

0 [T 1T 1T T [
TTTTT

L,
L
L
L
[

When m = “1”
b7 AL b0

C
1T 1T T T T T T 1
Orrrrrrrrnj

O In this case, the contents of A do not change.

Shifts all bits of A to the right by n bits. A “0” is placed in MSB of A, and LSB is placed in
flag C each time its contents shifted by 1 bit.

e B cannot be used in this instruction.

IPL| N| V|m| x | D I Z | C

Always “0” because MSB of the operation result is “0.”
Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

Set to “1” if LSB = “1" when the contents of A are shifted by (n — 1) bits. Otherwise, cleared
to “0.”

Addressing mode Syntax Machine code Bytes Cycles

A LSR A, #imm Clie, imm 2 imm-+6

Note : Any value (number of times shifted) from 0 to 15 can be set to imm.

Description example :

CLM
LSR
SEM
LSR

A, #15 ; A — Ais logically shifted to the right by 15 bits.

A, #7 ; AL — Ac is logically shifted to the right by 7 bits.

4-124

7900 Series Software Manual

LSRD #n

Logical n bits Shift Right at Double-word

LSRD #n

Function

Operation data length :

Operation

Description

Status flags

N

0 _% n-bit shift to right_} | (n : Number of times shifted. n = 0 to 31)

Logical shift to the right

32 bits

E C

b31 E I boI

Shifts all bits of E in 32-bit length to the right by n bits. A “0” is placed in MSB of E, and LSB

is placed in flag C each time its contents are shifted by 1 bit.
e This instruction is unaffected by flag m.

N

IPLI N| V| m| x| D I

Always “0” because MSB of the operation result is “0.”

Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

Set to “1” if LSB = “1” when the contents of E are shifted by (n — 1) bits. Otherwise, cleared

to “0_"
Addressing mode Syntax Machine code Bytes Cycles
A LSRD E, #imm D116, imm 2 imm+8
Note : Any value (number of times shifted) from O to 31 can be set to imm.
Description example :
LSRD E, #16 ; E <« E is logically shifted to the right by 16 bits.
7900 Series Software Manual 4-125

MOVM

Function

Operation data length :

Operation

Description

Status flags

MOVe Memory to memory

Move memory to memory

16 bits or 8 bits

M16(source)

M <« M

When m = “0”
M16(dest)

When m = “1”

e This instruction includes the function of the LDM instruction in the conventional 7700 Family.

M8(dest) M8(source)

-

Transfers the contents of the source memory to the destination memory.

MOVM

IPL| N V | m X D | Z C
Addressing mode .
Syntax Machine code Bytes [Cycles
dest source
DIR IMM MOVM dd, #imm 8616, imm, dd 3 5
DIR ABS MOVM dd, mmll 5Cis, Il, mm, dd 4 6
DIR ABS, X MOVM dd, mmll, X 5Da1s, Il, mm, dd 4 7
ABS IMM MOVM mmll, #imm 9616, imm, Il, mm 4 4
ABS DIR MOVM mmll, dd 7816, dd, ll, mm 4 5
ABS DIR, X MOVM mmll, dd, X 7916, dd, ll, mm 4 6
ABS, X IMM MOVM mmll, X, #imm 3116, 5716, imm, ll, mm 5 6
ABS ABS MOVM mmllz, mmll2 7Czs, ll2, mmz, Ilz, mmz 5 5
DIR, X IMM MOVM dd, X, #imm 3116, 4716, Iimm, dd 4 7
DIR DIR MOVM ddzi, dd2 5816, dd2, dd1 3 6

Note : In the immediate addressing mode, the byte number increases by 1 when flag m = “0.”

Description example :

CLM
MOVM.W
MOVM
SEM
MOVM.B
MOVM

MEM16, #IMM16
MEM16(dest), MEM16(source)

MEMS, #IMM8
MEM8(dest), MEM8(source)

; MEM16 ~ IMM16
; MEM16(dest) — MEMZ16(source)

; MEM8 ~ IMMS8
; MEM8(dest) — MEMB8(source)

4-126

7900 Series Software Manual

MOVMB

MOVe Memory to memory at Byte

MOVMB

Function

Move memory to memory

M8(dest) M8(source)

| - |

Operation data length : 8 bits
Operation M8 ~ M8
Description

e The contents of the source memory do not change.

e This instruction is unaffected by flag m.

Transfers the contents of the source memory to the destination memory in 8-bit length.

Status flags
IPL| N| V| m X D | Z C
Addressing mode .
g Syntax Machine code Bytes [Cycles
dest source
DIR IMM MOVMB dd, #imm A916, imm, dd 3 5
DIR ABS MOVMB dd, mmll 4Css, Il, mm, dd 4 6
DIR ABS, X MOVMB dd, mmll, X 4Das, Il, mm, dd 4 7
ABS IMM MOVMB mmll, #imm B916, imm, Il, mm 4 4
ABS DIR MOVMB mmll, dd 6816, dd, Il, mm 4 5
ABS DIR, X MOVMB mmll, dd, X 6916, dd, I, mm 4 6
ABS, X IMM MOVMB mmll, X, #imm 3116, 3B1s, imm, Il, mm 5 6
ABS ABS MOVMB mmllz, mmll2 6Cis, ll2, mmz, Ill1, mmz 5 5
DIR, X IMM MOVMB dd, X, #imm 3116, 3A16, imm, dd 4 7
DIR DIR MOVMB ddz, dd2 4816, dd2, dd1 3 6
Description example :
MOVMB MEMS, #IMM8 : MEM8 — IMMS8
MOVMB MEM8(dest), MEM8(source) ; MEM8(dest) — MEMS8(source)

7900 Series Software Manual

4-127

MOVR

MOVe Repeat memory to memory

MOVR

Function

Operation data length :

Operation

Description

Status flags

Move memory to memory

16 bits or 8 bits

M(dest 1) — M(source 1) (n : Number of times repeated transferring. n = 0 to 15)

M(dest 2) — M(source 2)

M(dest n) —~ M(source n)
When m = “0”
M16(dest 1) M16(source 1)

M16(dest n) M16(source n)

When m = “1”
M8(dest 1) M8(source 1)

«—

M8(dest n) M8(source n)

—

Performs multiple memory-to-memory transfers by 1 instruction. Transfers are performed
according to the addresses specified in the third and following bytes of the instruction. Up to

15 transfers can be performed.

e Memory contents on the source side do not change.
e No transfer is performed if a “0” is specified for the transfer count.

e This instruction can specify the different addressing modes for the source and destination,
respectively; these addressing modes, however, cannot be changed until the multiple

transfer specified by 1 instruction is completed.

IPL

4-128

7900 Series Software Manual

MOVR

MOVe Repeat memory to memory

MOVR

Addressing mode . L
Syntax Machine code Bytes Cycles
dest source
DIR IMM MOVR #n, dd1, #immu 6116, N+1016, imma, dds, ..., immn, ddn| 20n+2 | 50n+3
, ..., ddn, #immn (Notes 2)
DIR DIR MOVR #n, ddd1, dds1 6116, N+5016, dds1, ddd1, ..., ddsn, dddn | 20n+2 | 600n+3
) ey dddn, ddsn
DIR ABS MOVR #n, ddi1, mmllz 6116, N+901s, Il1, mma1, dd1 30n+2 | 60n+3
. ddn, mmlln s eeey ||n, mmMmn, ddn
DIR ABS, X MOVR #n, ddi1, mmllz, X 7116, n+101s, ll1, mma, ddz1 30n+2 | 60n+3
. ddn, mmIIn, X . ||n, mmMmn, ddn
ABS IMM MOVR #n, mmlly, #imm1 6116, N+3016, imma, Il1, mmz 30n+2 | 40n+3
s oo, mmiln, #immn y «r, iImmn, lln, mmn |(Notes 2)
ABS DIR MOVR #n, mmllz, ddz1 6116, N+7016, dd1, Illz, mmz 30n+2 | 50n+3
. mmIIn, ddn . ddn, ”n, mmMmn
ABS DIR, X MOVR #n, mmll1, dd1, X | 7116, n+7016, dda, ll1, mma 30n+2 | 60n+3
. mmlln, ddn, X . ddn, ||n, mmMmn
ABS ABS MOVR #n, mmllda, mmllsz | 6116, N+B01s, lls1, mmsa, lld, mmds | 40n+2 | 50n+3
. mm”dn, mmllsn) ey ||sn, MMsn, ||dn, MMdn

Notes 1 : Any value from 0 to 15 can be set to n.

2 : Incremented by n bytes when flag m = “0.”

Description example :

CLM
MOVR.W

MOVR
SEM

MOVR.B

MOVR

2, MEM16(dest1), #IMM16a, MEM16(dest2), #IMM16b
; MEM16(destl) —~ IMM16a
; MEM16(dest2) — IMM16b
2, MEM16(dest1), MEM16(sourcel), MEM16(dest2), MEM16(source2)
; MEM16(destl) — MEM16(sourcel)
; MEM16(dest2) — MEM16(source2)

2, MEM8(dest1), #IMM8a, MEM8(dest2), #IMM8b

; MEM8(destl) — IMM8a

; MEM8(dest2) —~ IMM8b
2, MEM8(destl), MEM8(sourcel), MEM8(dest2), MEM8(source?2)
; MEM8(destl) — MEMS8(sourcel)
; MEM8(dest2) — MEMS8(source2)

7900 Series Software Manual

4-129

M OVR B MOVe Repeat memory to memory at Byte M OVR B

Function . Move memory to memory
Operation data length : 8 bits

Operation : MB8(dest 1) —~ M8(source 1) (n : Number of times repeated transferring. n = 0 to 15)
M8(dest 2) —~ M8(source 2)

M8(dest n) —~ M8(source n)
M8(dest 1) M8(source 1)

- []
M8(dest n) M8(source n)

Description . Performs multiple memory-to-memory transfers by 1 instruction. Transfers are performed
according to the addresses specified in the 3rd and following bytes of the instruction, in byte
length. Up to 15 transfers can be performed.

e Memory contents on the source side do not change.
e No transfer is performed if a “0” is specified for the transfer count.

e This instruction can specify the different addressing modes for the source and destination,
respectively; these addressing modes, however, cannot be changed until the multiple
transfer specified by 1 instruction is completed.

e This instruction is unaffected by flag m.

Status flags
9 PLIN|V | m|x|D|1]|2z]|C
Addressing mode
g Syntax Machine code Bytes | Cycles
dest source
DIR IMM MOVRB #n, dd1, #imma 6116, n+0016, immz, dd1, ..., immn, ddn | 20n+2 | 50n+3
. ddn, #immn
DIR DIR MOVRB #n, dddi1, dds1 6116, N+4016, dds1, dddz, ..., ddsn, ddan | 20n+2 | 60n+3
) oeeey dddn, ddsn
DIR ABS MOVRB #n, ddi, mmll1 6116, N+801s, ll1, mma, ddi1 30n+2 | 60n+3
) oaeey ddn, mmlin s oaeey ||n, mmMmn, ddn
DIR ABS, X MOVRB #n, dd1, mmllz, X| 7116, n+001s, ll1, mmz1, dd130n+2 | 60n+3
P ddn, mmIIn, X . ||n, mMmMmn, ddn
ABS IMM MOVRB #n, mmll1, #immai | 6116, Nn+2016, immz, ll1, mm130n+2 40n+3
s e, mmlln, #Fimmn s ey immn, ln, mmn
ABS DIR MOVRB #n, mmlli, dd1 6116, N+6016, dda, Il1, mmz 30n+2 | 50n+3
P mmIIn, ddn . ddn, ||n, mmMmn
ABS DIR, X MOVRB #n, mmlli, ddi, X| 7116, n+6016, dd1, ll1, mmi30n+2 | 60n+3
PR mmIIn, ddn, X) oeeey ddn, ”n, mmn
ABS ABS MOVRB #n, mmlldz, mmlls1| 6116, N+A0u1s, lls1, mmsa, lla1, mmdi| 40n+2 | 50n+3
) ey mm”dn, mmllsn . ||sn, MMsn, ||dn, MMdn

Note : Any value from O to 15 can be set to n.

Description example :

MOVRB 2, MEM8(destl), #IMM8a, MEM8(dest2), #IMM8b ; MEM8(destl) — IMM8a
; MEM8(dest2) — IMM8b
MOVRB 2, MEM8(destl), MEM8(sourcel), MEM8(dest2), MEM8(source?2)
; MEM8(destl) —~ MEM8(sourcel)
; MEM8(dest2) — MEMB8(source2)

4-130 7900 Series Software Manual

MPY

MultiPlY

MPY

Function

Operation data length :

Operation

Description

Status flags

Multiplication (Unsigned)

(B, A) « A (Multiplicand) OO0 M (Multiplier)

16 bits or 8 bits

When m = “0”
B A A M16
| | Proéiuct | | - |Mu|tipiicand| ad | Multilplier |
When m = “1”
B. AL AL M8

| Pr0(:juct | - M:ultiplican:dD l\:/lultiplief

O In this case, the contents of Ax and Bn do not change.

The contents of A are multiplied by the contents of a memory. The higher of result is stored
in B and lower is stored in A.

IPL| N m| x | D I Z | C
— | N —|—|—|—=12Z1|0

N Set to “1” when MSB (MSB of B) of the operation result is “1.” Otherwise, cleared to “0.”

Z Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

C : Clearedto “0.”

Addressing mode Syntax Machine code Bytes Cycles

IMM MPY #imm 3116, C716, Imm 3 8
DIR MPY dd 2116, CA1s, dd 3 9
DIR, X MPY dd, X 2116, CBu1s, dd 3 10
(DIR) MPY (dd) 2116, CO1s, dd 3 11
(DIR, X) MPY (dd, X) 2116, Cl1s, dd 3 12
(DIR), Y MPY (dd), Y 2116, C816, dd 3 12
L(DIR) MPY L(dd) 2116, C216, dd 3 13
L(DIR), Y MPY L(dd), Y 2116, C916, dd 3 14
SR MPY nn, S 2116, C316, NN 3 10
(SR), Y MPY (nn, S), Y 2116, C4is, NN 3 13
ABS MPY mmll 2116, CEz1s, I, mm 4 9
ABS, X MPY mmll, X 2116, CF1s, Il, mm 4 10
ABS, Y MPY mmll, Y 2116, C61s, Il, mm 4 10
ABL MPY hhmmll 2116, CCis, Il, mm, hh 5 10
ABL, X MPY hhmmll, X 2116, CD1s, Il, mm, hh 5 11

Notes 1: In the immediate addressing mode, the byte number increases by 1 when flag m = “0.”
2: The cycle number in this table applies to the case of 8-bit [J 8-bit operation. In the case of 16-bit
0 16-bit operation, the cycle number increases by 4.

Description example :

CLM

MPY.W #IMM16
MPY MEM16
SEM

MPY.B #IMM8
MPY MEM8

; B, A « Al IMM16
; B, A « AU MEM16

: B, AL « AL 00 IMM8
; BL, AL - AL 0 MEMS8

7900 Series Software Manual

4-131

MPYS

MPYS

MultiPIY with Sign

Function

Operation data length :

Operation

Description

Multiplication (Signed)
16 bits or 8 bits

(B, A) « A (Multiplicand) OO0 M (Multiplier)
When m = “0”
B A A

| | Proauct |
S 1

M16
| - |Mu|tipllicand| g | Multiplier
s ! s L

O S represents MSB of the data.

When m = “1”
B. A AL M8
| Prolduct

S |

« Multiplicand O Multiplier
S | S |

O S represents MSB of the data.
O In this case, the contents of Ax and Bn do not change.

The contents of A are multiplied by the contents of a memory. The high order of result is stored
in B and low order is stored in A. MSB of B becomes the sign bit.

Status flags PLUN|V | m|x|D|1I|Zz]|C
— | N|—|—|—|—|—1] 2|0

N : Setto “1” when MSB (MSB of B) of the operation result is “1.” Otherwise, cleared to “0.”

Z : Setto “1” when the operation result is “0.” Otherwise, cleared to “0.”

C : Clearedto “0.”

Addressing mode Syntax Machine code Bytes Cycles

IMM MPYS #imm 3116, D716, imm 3 8
DIR MPYS dd 2116, DA1s, dd 3 9
DIR, X MPYS dd, X 2116, DB1s, dd 3 10
(DIR) MPYS (dd) 2116, D016, dd 3 11
(DIR, X) MPYS (dd, X) 2116, D116, dd 3 12
(DIR), Y MPYS (dd), Y 2116, D81s, dd 3 12
L(DIR) MPYS L(dd) 2116, D216, dd 3 13
L(DIR), Y MPYS L(dd), Y 2116, D916, dd 3 14
SR MPYS nn, S 2116, D316, NN 3 10
(SR), Y MPYS (nn, S), Y 2116, D416, Nn 3 13
ABS MPYS mmll 2116, DEz1s, Il, mm 4 9
ABS, X MPYS mmll, X 2116, DF1s, Il, mm 4 10
ABS, Y MPYS mmll, Y 2116, D616, Il, mm 4 10
ABL MPYS hhmmll 2116, DCis, Il, mm, hh 5 10
ABL, X MPYS hhmmll, X 2116, DD1s, Il, mm, hh 5 11

Notes 1: In the immediate addressing mode, the byte number increases by 1 when flag m = “0.”

2: The cycle number in this table applies to the case of 8-bit [1 8-bit operation. In the case of 16-bit

[] 16-bit operation, the cycle number increases by 4.

Description example :

CLM

MPYS.W #IMM16 ; B, A « A IMM16
MPYS MEM16 ; B, A « A MEM16
SEM

MPYS.B #IMM8 ; By, AL « AL 0 IMM8
MPYS MEM8 ; B, AL « AL 0 MEMS8

4-132

7900 Series Software Manual

MVN

MoVe Negative

MVN

Function

Operation data length :

Operation

Description

Status flags

Move

Mnhton+i—-1) « M(mtom +i-1)

16 bits or 8 bits

(i : transfer byte number)

Normally, a block of data is transferred from higher addresses to lower addresses. The transfer
is performed in the ascending address order of the block being transferred.

e The 3rd byte of the instruction
The 4th byte of the instruction

X

Y

A

(Specify X, Y,
e When m = “0”

When m = “1”

When x = “0”

When x = “1”

e Contents of registers after transfer

L Transfer direction

Transfer
destination
area

m+i-1

L Transfer direction

Transfer
source
area

. Transfer destination bank,

. Transfer source bank,

. Transfer destination address,
: Transfer source address,

: Byte number of the transfed data block are specified.

and A before this instruction is executed.)
. 0- to 65535-hyte data can be transferred.
. 0- to 255-byte data can be transferred.
. Transfer source area and transfer destination area can be set to the
addresses from 0 to 65535 (FFFFus).
. Transfer source area and transfer destination area can be set to the
addresses from 0 to 255 (FFus).

X : Transfer source area end (highest) address + 1
Y : Transfer destination area end (highest) address + 1
A : FFFFs
DT : Bank number of transfer destination
IPLI N|V |m]| x| D] I Z | C
Addressing mode Syntax Machine code Bytes Cycles
BLK MVN hhi, hh2 3116, 2B16, hh1, hh2 4 50i+5

Note: The cycle number in this table applies

number. When i is an odd number, the cycle number is obtained as follows:

5010+ 10.
Description example :
CLM
LDAW #IMM16
LDX LABEL2
LDY LABEL1
MVN BANK1, BANK2

LABEL1

when the number of bytes transferred, i, is an even

IMM16 bytes (BANK1)

LABEL2

IMM16 bytes (BANK2)

7900 Series Software Manual

4-133

MVP

MoVe Positive

MVP

Function

Operation data length :

Operation

Description

Status flags

Move

Mnh-i+1lton) « M(m—-i+1tom)

16 bits or 8 bits

(i : transfer byte number)

Normally, a block of data is transferred from lower addresses to higher addresses. The transfer
is performed in the descending address order of the block being transferred.

e The 3rd byte of the instruction
The 4th byte of the instruction

X

Y

A

(Specify X, Y,
e When m = “0"

When m = “1”

When x = “0”

When x = “1”

m-i+1 Transfer
— | t Transfer direction |source
m area
I I
I I
n—i+1 Transfer
L= | 1 Transfer direction |destination
n area

: Transfer destination bank,

. Transfer source bank,

: Transfer destination address,

: Transfer source address,

: Byte number of the transfed data block are specified.

and A before this instruction is executed.)

. 0- to 65535-hyte data can be transferred.

. 0- to 255-byte data can be transferred.

. Transfer source area and transfer destination area can be set to the
addresses from 0 to 65535 (FFFFus).

. Transfer source area and transfer destination area can be set to the
addresses from 0 to 255 (FFus).

e Contents of registers after transfer

X : Transfer source area end (lowest) address — 1
Y : Transfer destination area end (lowest) address — 1

A : FFFFs
DT

: Bank number of transfer destination

IPL

N|V | m|x|D I Z | C

Addressing mode

Syntax

Machine code Bytes Cycles

BLK

MVP hhi, hh2

50i+9

3116, 2A16, hh1, hh2 4

Note: The cycle number in this table applies when the number of bytes transferred, i, is an even
number. When i is an odd number, the cycle number is obtained as follows:
5 0 i + 14 (note that the cycle number becomes 10 when 1 byte is transferred).

Description example :

CLM

LDAW #IMM16

LDX LABEL1

LDY LABEL2

MVP BANK2, BANK1

LABEL1

1 IMM16 bytes (BANK1)

LABEL2
— ! IMM16 bytes (BANK2)

4-134

7900 Series Software Manual

NEG

NEGative N E G

Function

Operation data length :

Operation

Description

Status flags

Negation

16 bits or 8 bits

Acc — —Acc
When m = “0”
Acc

—Acc

When m = “1”
AccL

O In this case, the contents of Acck do not change.

Negates the sign of Acc contents, and stores the result in Acc.

PL{N|V | m|x|D|1]z]|C
—IN|V|[—|—=|=|=|2z]|C

N Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”
\% Set to “1” when the result of the operation (regarded as a signed operation) is a value outside
the range of —32768 to +32767 (128 to +127 when flag m is “1"). Otherwise, cleared to “0.”
z Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”
C Set to “1” when the result of the operation (regarded as an unsigned operation) exceeds
+65535 (+255 when flag m is “1"). Otherwise, cleared to “0.”
Addressing mode Syntax Machine code Bytes Cycles
A NEG A 2416 1 1
A NEG B 8116, 2416 2 2
Description example :
CLM
NEG A A« A
SEM
NEG B ; BL « —BL

7900 Series Software Manual 4-135

N EG D NEGative at Double-word N EG D

Function : Negation

Operation data length : 32 bits

Operation : E < -E
E -E
Description . Negates the sign of E contents, and stores the result in E.
Status flags PLIN| Vv im|[x|D|i1]|z]cC
— | N|V|—|—|—|—|2]|C

z

Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

V : Setto “1” when the result of the operation (regarded as a signed operation) is a value outside
the range of —2147483648 to +2147483647. Otherwise, cleared to “0.”

Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

C : Setto “1” when the result of the operation (regarded as an unsigned operation) exceeds
+4294967295. Otherwise, cleared to “0.”

N

Addressing mode Syntax Machine code Bytes [Cycles
A NEGD E 3116, 8016 2 4
Description example :
NEGD E i E « —E

4-136 7900 Series Software Manual

NOP

No OPeration

NOP

Function

Operation data length :

Operation

Description

No operation

PC « PC+1

(If a carry occurs in PC, PG « PG + 1)

Only increments the program counter by 1 and nothing else.

fl
Status flags IPL m| x| D]| I c
Addressing mode Syntax Machine code Bytes [Cycles
IMP NOP 7416 1 1
Description example :
NOP
7900 Series Software Manual 4-137

ORA

OR memory with Accumulator O RA

Function

Operation data length :

Operation

Description

Status flags

Logical OR

16 bits or 8 bits

Acc — Acc M

When m = "0”
Acc Acc M16
I e =
When m = “1"
AccL AccL M8
L -8

O In this case, the contents of Acck do not change.

Performs the logical OR between the contents of Acc and the contents of a memory, and
stores the result in Acc.

IPLIN| Vi m| x| D| I | Z]C
— I Nl == ===z | =

Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”
Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

4-138

7900 Series Software Manual

ORA

OR memory with Accumulator

ORA

Addressing mode Syntax Machine code Bytes |Cycles
IMM ORA A, #imm 5616, imm (8116, 5616, imm) 23) | 1@
DIR ORA A, dd 5A16, dd (8116, 5A16, dd) 2 (3) 3 (4)
DIR, X ORA A, dd, X 5B16, dd (8116, 5B16, dd) 23) | 4(5
(DIR) ORA A, (dd) 1116, 5016, dd (9116, 5016, dd) 3(3) 6 (6)
(DIR, X) ORA A, (dd, X) 1116, 5116, dd (9116, 5116, dd) 3(3) 7 (7)
(DIR), Y ORA A, (dd), Y 1116, 5816, dd (9116, 5816, dd) 3(3) 7 (7)
L(DIR) ORA A, L(dd) 1116, 5216, dd (9116, 5216, dd) 3(3) 8 (8)
L(DIR), Y ORA A, L(dd), Y 1116, 5916, dd (9116, 5916, dd) 3(3) 9 (9)
SR ORA A, nn, S 1116, 5316, NN (9116, 5316, NN) 3@3) | 5(5
(SR), Y ORA A, (nn, S), Y| 1116, 5416, nn (9116, 5415, Nn) 3(3) | 8(8)
ABS ORA A, mmll 5Ess, Il, mm (811, 5E1s, Il, mm) 34) | 3@
ABS, X ORA A, mmll, X | 5Fs, IIl, mm (8116, 5Fs, I, mm) 3(4) | 4()
ABS, Y ORA A, mmll, Y | 1116, 5616, Il, mm (9115, 561, Il, mm) 4(4) | 5(5)
ABL ORA A, hhmmll 1116, 5Cis6, Il, mm, hh (9116, 5Cus, Il, mm, hh)| 5 (5) 5 (5)
ABL, X ORA A, hhmmll, X| 1116, 5D1s, Il, mm, hh (9116, 5D1s, Il, mm, hh) | 5 (5) 6 (6)

Notes 1: This table applies when using accumulator A. When using accumulator B, replace “A” with “B” in
the syntax. In this case, the machine code, the number of bytes, and the number of cycles enclosed
in parentheses are applied.

2: In the immediate addressing mode, the byte number increases by 1 when flag m = “0.”

Description example :

CLM

ORA.W A, #IMM16
ORA B, MEM16
SEM

ORA.B A, #IMM8

ORA B, MEM8

‘A < AlIMM16
;B « BLMEM16

cAL < AL IMMS
:BL « BLLIMEMS

7900 Series Software Manual

4-139

O RAB OR immediate with Accumulator at Byte O RAB

Function . Logical OR

Operation data length : 8 bits

Operation : AccL « Acc. LI IMM8
Acct Acct
| |- | |Omms
Description . Performs logical OR between the contents of Acc. and immediate value in length of 8 bits, and

stores the result in Acc.
e This instruction is unaffected by flag m.
e The contents of Accw do not change.

fl
Status flags PLUN|V | m|x|Dli1]lz]|cC
— I Nl =] =] =] == 2Z | —
N : Setto “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”
Z . Setto “1” when the operation result is “0.” Otherwise, cleared to “0.”
Addressing mode Syntax Machine code Bytes | Cycles
IMM ORAB A, #imm 6316, Imm 2 1
IMM ORAB B, #imm 8116, 6316, IMmM 3 2
Description example :
ORAB A, #IMM8 i AL« Ac LD IMM8
ORAB B, #IMM8 :BL « BL JIMM8

4-140 7900 Series Software Manual

O RAM OR immediAte with Memory

ORAM

Function . Logical OR

Operation data length : 16 bits or 8 bits

Operation © Me M UOIMM
When m = “0”
M16 M16
| | |& | | |D|MM16
When m = “1”
M8 M8
| | - | | Ll IMM8
Description . Performs the logical OR between the contents of a memory and the immediate value, and

stores the result in the memory.
e This instruction includes the function of the SEB instruction in the conventional 7700 Family.

Status flags pPLINTVIm! x D 7
— | N|—| —|—|— z
N : Setto “1l” when MSB of the operation result is “1.” Otherwise, cleared to “0.”
Z : Setto “1” when the operation result is “0.” Otherwise, cleared to “0.”

Addressing mode Syntax Machine code Bytes | Cycles
DIR ORAM dd, #imm | 5116, 3316, dd, imm 4 7
ABS ORAM mmll, #imm| 5116, 3716, Il, mm, imm 5 7

Note : When flag m = “0.” the byte number increases by 1.

Description example :

CLM

ORAM.W MEM16, #IMM16
SEM

ORAM.B MEMS8, #IMM8

: MEM16 — MEM16 [JIMM16

: MEM8 —~ MEMS8 []IMM8

7900 Series Software Manual

4-141

O RAM B OR immediAte with Memory at Byte O RAM B

Function . Logical OR

Operation data length : 8 bits

Operation : M8 ~ M8 LIMM8
M8 M8
| |- | |Omws
Description . Performs the logical OR between the contents of a memory and the immediate value in 8 bits

length, and stores the result in the memory.
e This instruction is unaffected by flag m.

Status flags - Ll N[V Im|[x|D|li1]z]|c
— I Nl —=| =] = = =] Z| —
N : Setto “1l” when MSB of the operation result is “1.” Otherwise, cleared to “0.”
Z : Setto “1” when the operation result is “0.” Otherwise, cleared to “0.”
Addressing mode Syntax Machine code Bytes | Cycles
DIR ORAMB dd, #imm | 5116, 3216, dd, imm 4 7
ABS ORAMB mmll, #imm| 5116, 3616, Il, mm, imm 5 7
Description example :
ORAMB MEMS, #IMM8 : MEM8 ~ MEM8 []IMM8

4-142 7900 Series Software Manual

O RAM D OR immediAte with Memory at Double-word O RAM D

Function

Logical OR

Operation data length : 32 bits

Operation

Description

Status flags

M32 — M32 0 IMM32
M32 M32
LT -]] D2

Performs the logical OR between the contents of a memory and immediate value in 32 bits

length, and stores the result in the memory.
e This instruction is unaffected by flag m.

Description example :

IPL| N|V | m| x| D I Z | C
— I N| —| —| —| —| —1] 2| —
N : Setto “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”
Z . Setto “1” when the operation result is “0.” Otherwise, cleared to “0.”
Addressing mode Syntax Machine code Bytes |Cycles
DIR ORAMD dd, #imm 5116, B316, dd, immcL, immuH, immuL, immuH 7 10
ABS ORAMD mmll, #imm | 5116, B71s, Il, mm, immcr, immcx, immue, imman 8 10
ORAMD MEM32, #IMM32 : MEM32 — MEM32 [J1MM32

7900 Series Software Manual

4-143

P EA Push Effective Address P EA

Function : Stack manipulation (Push)

Operation data length : 16 bits

Operation . Stack ~ IMM16 Stack
(S) just after instruction execution
IMML
(S) just before instruction execution| MM+
Description : Pushes the 16-bit immediate value onto the stack.

e This instruction is unaffected by flag m.

Status flags PLUN|V | m|x|D|1]|zZ]|cC
Addressing mode Syntax Machine code Bytes [Cycles
STK PEA #immuimmL 3116, 4C16, immc, immn 4 5

Description example :

PEA #MM16 7 (S) « IMM16+
(S —1) <« IMM16L

4-144 7900 Series Software Manual

PEI

Function

Push Effective Indirect address

Stack manipulation (Push)

Operation data length : 16 bits

Operation

Description

Status flags

Stack « M16(DPRn + dd) (n =0 to 3)

(S) just after instruction execution

(S) just before instruction execution MDPRn+dd+1)

PEI

Stack

M(DPRn+dd)

Pushes the contents of the address specified by the sum of the contents of the DPRn and the
offset value onto the stack in 16-bit length.

e This instruction is unaffected by flag m.

IPLI N | V| m

Addressing mode

Syntax

Machine code

Bytes Cycles

STK

PEI dd 3116, 4B1s, dd

3 7

Description example :

PEI DPO+: offset

- (S) — (DPRO + dd + 1)
- (S - 1) — (DPRO + dd)

7900 Series Software Manual

4-145

P ER Push Effective program counter Relative address

Function : Stack manipulation (Push)

Operation data length : 16 bits

Operation . Stack ~ PC + IMM16

(S) just after instruction execution

Stack

EARL

(S) just before instruction execution| EARHu

Description . Pushes the sum of the PC contents and 16-bit immediate value onto the stack in length of 16

bits.

e This instruction is unaffected by flag m.

PER

0 EAR = PC + IMM16

Status flags PLIN|V | m|[x|[D|Il]|Z]|C
Addressing mode Syntax Machine code Bytes Cycles
STK PER #mmuimmLc 3116, 4D1s, immL, immu 4 6
Description example :
PER #IMM16 ; (S) « (PC + IMM16)H

; (S-1) « (PC + IMM16)L

4-146

7900 Series Software Manual

P HA PusH accumulator A on stack P HA

Function . Stack manipulation (Push)

Operation data length : 16 bits or 8 bits

Operation : Stack <« A
When m = “0” Stack
(S) just after instruction execution
AL
(S) just before instruction execution An
When m = “1”
Stack
(S) just after instruction execution
(S) just before instruction execution Ac
Description . Pushes the contents of A onto the stack.
Status flags
g PLIN|V I m|x|D|1]|Zz]|C
Addressing mode Syntax Machine code Bytes Cycles
STK PHA 8516 1 4
Description example :
CLM
PHA 1(S) « AH, (S—1) « AL
SEM
PHA 1 (S) « AL

7900 Series Software Manual

4-147

P H B PusH accumulator B on stack P H B

Function : Stack manipulation (Push)

Operation data length : 16 bits or 8 bits

Operation : Stack -~ B
When m = “0” Stack
(S) just after instruction execution
BL
(S) just before instruction execution Bn
When m = “1”
Stack
(S) just after instruction execution
(S) just before instruction execution Be
Description . Pushes the contents of B onto the stack.
Status flags
g PLUN|V | m|x|D|I1]|Z]|C
Addressing mode Syntax Machine code Bytes Cycles
STK PHB 8116, 8516 2 5
Description example :
CLM
PHB 1 (S) « Bu, (S—1) « BL
SEM
PHB ;1 (S) « BL

4-148 7900 Series Software Manual

P H D PusH Direct page register on stack

PHD

Function . Stack manipulation (Push)
Operation data length : 16 bits

Operation : Stack - DPRO Stack

(S) just after instruction execution

DPRO.

(S) just before instruction execution| DPROx

Description . Pushes the contents of DPRO in 16-bit length onto the stack.
e This instruction is unaffected by flag m.

Status flags PLUN|V | m|x|D| 1]|z]|cC
Addressing mode Syntax Machine code Bytes Cycles
STK PHD 8316 1 4
Description example :
PHD (S, S-1) - DPRO

7900 Series Software Manual

4-149

P H D n PusH Direct page register n on stack P H D n

Function : Stack manipulation

Operation data length : 16 bits

Operation . Stack « DPRn (n =0 to 3. Multiple DPRs can be pushed onto the stack.)
When DPRO to DPR3 are specified

Stack

(S) just after instruction execution

DPR3L
DPR3H

DPR2L
DPR2H

DPR1L
DPR1H

DPROL
(S) just before instruction execution DPROH

Description . Pushes the contents of the specified DPRn (DPRO to DPR3) in 16-bit length onto the stack.

e Multiple DPRs can be pushed onto the stack by 1 instruction. If multiple DPRs are specified,
they are pushed onto the stack in order of DPR0O, DPR1, DPR2, and DPR3.

e This instruction is unaffected by flag m.

Status flags

IPLI N | V | m| x D | Z | C
Addressing mode Syntax Machine code Bytes [Cycles
STK PHD n B816, 0?16 2 12
PHD (ng, ..., ni) B81s, 0?16 2 i+ 11

Notes 1: Any value from 0 to 3 can be set to n.
2: The second line of the syntax format pushes multiple DPRs by 1 instruction.
3: The inside of parentheses (n1, ..., ni) specifies 0 to 3 (numbers representing DPRn).
4: i : indicates DPRn specified (1 to 4).
5: 2 : the bit corresponding to the specified DPRn becomes “1.”
The diagram below shows the relationship between bits and DPRn.

b7 bo
| o | o | o | o |oPr3|pPR2|DPR1|DPRO|

Description example :
PHD 1 (S, S-1) « DPR1
PHD (0, 3) (S, S—1) « DPRO
;(S-2,S-3) -« DPR3

4-150 7900 Series Software Manual

P H G PusH proGram bank register on stack P H G

Function . Stack manipulation (Push)
Operation data length : 8 bits

Operation . Stack ~ PG Stack

(S) just after instruction execution
(S) just before instruction execution PG

Description : Pushes the contents of PG in 8-bit length onto the stack.
e This instruction is unaffected by flag m.

Status flags PLUN|V | m|x|D| 1]|z]|cC
Addressing mode Syntax Machine code Bytes Cycles
STK PHG 3116, 6016 2 4
Description example :
PHG (S) « PG

7900 Series Software Manual 4-151

P H L D n PusH dpr n to stack and Load immediate to Dpr n P H L D n

Function : Stack manipulation and Load
Operation data length : 16 bits
Operation . Stack « DPRn (n =0 to 3. Multiple DPRs can be specified.)

DPRNn ~ IMM16
When DPRO to DPR3 are specified

Stack 4 DPRO N
(S) just after instruction execution |:|:| ~ IMM16a
DPR3L
DPR3+ DPR1
o] | oess
L
DPRI1H I:I:I - IMM16e
DPROL DPR3
(S) just before instruction execution | DPROx |:|:| ~ IMM16d
\ J
Description . Loads the 16-bit immediate value to DPRn (DPRO to DPR3), after pushing the contents of the

specified DPRn in 16-bit length onto the stack.

e Multiple DPRs can be specified. If multiple DPRs are specified, they are pushed onto the
stack in order of DPRO, DPR1, DPR2, and DPR3, and loads the immediate value in the
same order.

e This instruction is unaffected by flag m.

Status flags PLIN|V m|[x|D|1|z]|cC
Addressing mode Syntax Machine code Bytes Cycles
STK PHLD n, #imm B816, ??16, ImmL, immn 4 14
PHLD (ng, ..., ni) B816, ??16, immL1, imm#1 20i+2 |30i+11
, #Himma, ..., #immi , ..., IMML, IMMH

Notes 1: Any value from O to 3 can be set to n.
2: The second line of the syntax format pushes multiple DPRs by 1 instruction.
3: The inside of parentheses (nl, ---, ni) specifies 0 to 3 (numbers representing DPRn).
4: i : indicates DPRn specified (1 to 4).
5: ? : the bit corresponding to the specified DPRn becomes “1.”
The diagram below shows the relationship between bits and DPRn.

b7 b0

|DPR3|DPR2|DPR1|DPRO| DPR3|DPR2 [DPR1 [DPRO|
O b(n) and b(n + 4) become the same contents (n = 0 to 3).

Description example :

PHLD 0, #IMM16 . (S, S—1) - DPRO
: DPRO IMM16
PHLD (0, 3), #IMM16a, #IMM16b ; (S, S — 1) — DPRO

;(S-2,5S-3) - DPR3
; DPRO ~ IMM16a
; DPR3 ~ IMM16b

4-152 7900 Series Software Manual

P H P PusH Processor status on stack

PHP

Function . Stack manipulation (Push)
Operation data length : 16 bits

Operation . Stack - PS Stack

(S) just after instruction execution

PS.

(S) just before instruction execution PSH

Description : Pushes the contents of PS in 16-bit length onto the stack.
e This instruction is unaffected by flag m.

Status flags PLUN|V | m|x|D| 1]|z]|cC
Addressing mode Syntax Machine code Bytes Cycles
STK PHP Abi16 1 4
Description example :
PHP 7 (S,8-1) - PS

7900 Series Software Manual

4-153

P HT PusH daTa bank register on stack P HT

Function : Stack manipulation (Push)
Operation data length : 8 bits

Operation . Stack - DT

Stack
(S) just after instruction execution
(S) just before instruction execution DT
Description : Pushes the contents of DT in 8-bit length onto the stack.

e This instruction is unaffected by flag m.

Status flags PL|N|V | m|x|D| 1 |Z]|C
Addressing mode Syntax Machine code Bytes [Cycles
STK PHT 3116, 4016 2 4
Description example :
PHT +(S) ~ DT

4-154 7900 Series Software Manual

P HX PusH index register X on stack P HX

Function . Stack manipulation (Push)

Operation data length : 16 bits or 8 bits

Operation : Stack « X
When x = “0” Stack
(S) just after instruction execution
)
(S) just before instruction execution X
When x = “1”
Stack
(S) just after instruction execution
(S) just before instruction execution Xu
Description . Pushes the contents of X onto the stack.
Status flags
g PLIN|V I m|x|D|1]|Zz]|C
Addressing mode Syntax Machine code Bytes Cycles
STK PHX Cbi6 1 4
Description example :
CLP X
PHX 1(S,85-1) « X
SEP X
PHX P (S) < Xu

7900 Series Software Manual 4-155

P HY PusH index register Y on stack P HY

Function : Stack manipulation (Push)

Operation data length : 16 bits or 8 bits

Operation : Stack <« Y
When x = “0” Stack
(S) just after instruction execution
Yo
(S) just before instruction execution Y
When x = “1”
Stack
(S) just after instruction execution
(S) just before instruction execution \C
Description . Pushes the contents of Y onto the stack.
Status flags
g PLUN|V | m|x|D|I1]|Z]|C
Addressing mode Syntax Machine code Bytes Cycles
STK PHY E516 1 4
Description example :
CLP X
PHY 1(S,8S-1) < Y
SEP X
PHY i (S) - WL

4-156 7900 Series Software Manual

PLA

PuLl accumulator A from stack P LA

Function . Stack manipulation

Operation data length : 16 bits or 8 bits

Operation . A < Stack
When m = “0”
When m = “1”

Stack | A | AL |

(S) just before instruction execution

(S) just after instruction execution

AL

Stack

(S) just before instruction execution
(S) just after instruction execution

O In this case, the contents of Ax do not change.

Description . Restores the contents of the stack to A.
Status flags PLIN|V | m|x|D|1]|z]|cC
— | N|=| —|—=| —| —=|2Z | —
N : Setto “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”
Z . Setto “1” when the operation result is “0.” Otherwise, cleared to “0.”
Addressing mode Syntax Machine code Bytes Cycles
STK PLA 9516 1 4
Description example :
CLB
PLA AL « (S+1),An « (S +2)
SEB
PLA AL <« (S + 1)

7900 Series Software Manual 4-157

PLB

PuLl accumulator B from stack

PLB

Function

Operation data length :

Stack manipulation

16 bits or 8 bits

Operation B ~ Stack
When m = “0” B
Stack | Bu | BL |
(S) just before instruction execution
(S) just after instruction execution
When m = “1”
B.
Stack
(S) just before instruction execution
(S) just after instruction execution
O In this case, the contents of Bn do not change.
Description Restores the contents of the stack to B.
Status fla
us Tags PL{N|Vv I m|x|D|1]|Zz]|C
— I N| =] —| —| —| —1| Z| —
N Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”
Z Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”
Addressing mode Syntax Machine code Bytes [Cycles
STK PLB 8116, 9516 2 5

Description example :

CLB

PLB Bl <« (S+1),BH « (S+2)
SEB

PLB ;BL « (S+1)

4-158

7900 Series Software Manual

PLD

PuLl Direct page register from stack P LD

Function

Stack manipulation

Operation data length : 16 bits

Operation

Description

Status flags

DPRO - Stack DPRO
Stack | [DPRO: | DPRO. |

(S) just before instruction execution

(S) just after instruction execution

Restores the contents of the stack in 16-bit length to DPRO.
e This instruction is unaffected by flag m.

IPLIN| V| |m|x |D I Z | C

Addressing mode Syntax Machine code Bytes Cycles
STK PLD 9316 1 5

Description example :

PLD “DPROL « (S + 1)
: DPROH « (S + 2)

7900 Series Software Manual 4-159

P L D n PuLl Direct page register n from stack P L D n

Function : Stack manipulation

Operation data length : 16 bits

Operation : DPRn ~ Stack (n = 0 to 3. The contents of the stack can be restored to multiple DPRs.)
When DPRO to DPR3 are specified

Stack DPR3
(S) just before instruction execution IDPR3+. DPR3.]
"DPR2

DPR2+ DPR2.

DPR1
DPR11 DPR1L

DPRO
DPRO+ DPROL

(S) just after instruction execution

Description : Restores the contents of the stack to the specified DPRn (DPRO to DPR3) in 16-bit length.

e Only 1 instruction can restore the contents of the stack to multiple DPRs. If multiple DPRs
are specified, the contents of the stack are restored to DPRs in order of DPR3, DPR2,
DPR1, and DPRO.

e This instruction is unaffected by flag m.

Status flags

IPLI N | V| m| x D | Z | C
Addressing mode Syntax Machine code Bytes [Cycles
STK PLD n 7716, ?016 2 11
PLD (ni, ..., ni) 7716, ?016 2 30i+8

Notes 1: Any value from 0 to 3 can be set to n.
2: The second line of the syntax format restores the contents of the stack to multiple DPRs by 1
instruction.
3: Inside of the parentheses (n1, ..., ni) specifies 0 to 3 (numbers representing DPRn).
4: i :indicates the number of the DPRn specified (1 to 4)
5: ?: the bit corresponding to the specified DPRn becomes “1.”
The diagram below shows the relationship between bits and DPRn.

b7 bo
|DPR3|DPR2| DPR1/DPRO] 0 | 0 | 0 | 0 |

Description example :
PLD 1 :DPR1 « (S+1,S+2)
PLD (0, 3) :DPR3 « (S+1,S+2)
; DPRO « (S+3,S +4)

4-160 7900 Series Software Manual

PLP

PuLl Processor status from stack P LP

Function

Stack manipulation

Operation data length : 16 bits

Operation

Description

Status flags

PS ~ Stack PS
Stack | PSi | PS. |

(S) just before instruction execution

(S) just after instruction execution

Restores the contents of the stack in 16-bit length to PS.
e This instruction is unaffected by flag m.

Description example :

IPLI N| V|m| x| D | Z | C
IPLI N| V|m| x| D | Z | C
Addressing mode Syntax Machine code Bytes Cycles
STK PLP B516 1 5
PLP yPSL — (S +1)
tPSH < (S +2)

7900 Series Software Manual 4-161

PLT

PuLl daTa bank register from stack

PLT

Function : Stack manipulation

Operation data length : 8 bits

Operation DT < Stack
DT
Stack
(S) just before instruction execution
(S) just after instruction execution
Description : Restores the contents of the stack in 8-bit length to DT.
Status flags
g PLIN| v Im|x|D|l1]z]cC
— I Nl = =] === 2z | —
N : Setto “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”
Z : Setto “1” when the operation result is “0.” Otherwise, cleared to “0.”
Addressing mode Syntax Machine code Bytes Cycles
STK PLT 3116, 5016 2 6
Description example :
PLT ;DT ~ (S+1)

4-162

7900 Series Software Manual

PLX

PuLl index register X from stack

PLX

Function . Stack manipulation

Operation data length : 16 bits or 8 bits

Operation . X « Stack
When x = “0” X
Stack | Xi | N |
(S) just before instruction execution
(S) just after instruction execution
When x = “1”
XL
Stack
(S) just before instruction execution
(S) just after instruction execution
O In this case, the contents of Xu do not change.
Description . Restores the contents of the stack to X.
Status fla
us flags PLN| V| m|x|D|1]|2z]|cC
— | N|=| —|—=| —| —=|2Z | —
N : Setto “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”
Z . Setto “1” when the operation result is “0.” Otherwise, cleared to “0.”
Addressing mode Syntax Machine code Bytes Cycles
STK PLX D516 1 4
Description example :
CLP X
PLX XL« (S+1),Xn <« (S+2)
SEP X
PLX i XL« (S+1)

7900 Series Software Manual

4-163

PLY

PuLl index register Y from stack

PLY

Function : Stack manipulation

Operation data length : 16 bits or 8 bits

Operation Y « Stack
When x = “0” v
Stack | Y | Yo |
(S) just before instruction execution
(S) just after instruction execution
When x = “1”
Yo
Stack
(S) just before instruction execution
(S) just after instruction execution
O In this case, the contents of Yu do not change.
Description . Restores the contents of the stack to Y.
Status fla
us Tags PL{N|Vv I m|x|D|1]|Zz]|C
— I N| =] —| —| —| —1| Z| —
N : Setto “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”
Z : Setto “1” when the operation result is “0.” Otherwise, cleared to “0.”
Addressing mode Syntax Machine code Bytes [Cycles
STK PLY F516 1 4
Description example :
CLP X
PLY iYL« (S+1),YH <« (8S+2)
SEP X
PLY ;YL <« (S +1)

4-164

7900 Series Software Manual

PSH pusH PSH

Function . Stack manipulation

Operation data length : 16 bits or 8 bits

Operation . Stack — Specified registers among A, B, X, Y, DPRO, DT, PG, PS (Multiple registers can be
specified.)
M(StoS—-i+1) « A B, X, Y, DPRO, DT, PG, PS
S « S—i

i : Number of bytes corresponding to the registers pushed onto the stack.

Description . Pushes the contents of the specified registers onto the stack. Specified registers to be pushed
are indicated with the bit pattarn of the 8-bit immediate value. The contents of the registers
corresponding to the bits set to “1” are pushed onto the stack.

b7 b0
[p s | p6 | pT [DPRO] ¥ | x | B | A |

Direction to push onto the stack

e When m =*“0" : A and (or) B are (is) pushed in 16-bit length.
When m = “1” : AL and (or) B are (is) pushed in 8-bit length.

e When x = “0” : X and (or) Y are (is) pushed in 16-bit length.
When x = “1" : Xc and (or) Y. are (is) pushed in 8-bit length.

e This instruction is unaffected by the flags m and x when the contents of PS, PG, DT, and
DPRO are pushed onto the stack.

Status flags

IPL| N | V | m| X D I Z | C
Addressing mode Syntax Machine code Bytes Cycles
STK PSH #mm A816, imm 2 20i1+i+11

Notes i1 : Number of registers to be pushed is indicated among A, B, X, Y, DPRO and PS.
i2 : Number of registers to be pushed DT and PG.

Description example :
PSH #IMM8 ; (S) ~ Contents of specified register

7900 Series Software Manual 4-165

PSH pusH PSH

(PSH)

NO
IMM8(bit 0) = 17
YES

e
IMM8(bit 4) = 17
YES

M(S,S1) - A M(S) « AL M(S.S=1)
S — S-2 S - S-1 ('S 3 S_DZPRO

NO _ NO
YES YES

M(S) < DT
S« S-1

M(S,S-1) — B M(S) — BL NO
S . $2 S s
YES

M(S) < PG
S . S-1

NO
YES

M(S,5-1) — X M(S) — XL M(S’Sszl)sfzps
S «—

S - S-2

_>

\/

O IMM8 is a 1-byte immediate value, and the

inside of () indicates the bit position.
M(S,S-1) ~ Y M(S) « YL
S ~ S-2 S S-1
L

4-166 7900 Series Software Manual

PUL PuLl PUL

Function . Stack manipulation

Operation data length : 16 bits or 8 bits

Operation : Specified registers among A, B, X, Y, DPRO, DT, PS (Multiple registers can be specified.) — Stack
A, B, X, Y, DPRO, DT, PS « M(S+1to S +1i)
S « S+

i : Number of bytes corresponding to the registers restored from the stack.

Description . Restores the stack contents to the specified registers. Specified registers to be restored are
indicated with the bit pattarn of the 8-bit immediate value. The stack contents are restored to
the registers corresponding to the bits that are set to “1.”

b7 b0
[pPs | | ot [pPRO|] Y | X | B | A |

Direction to restore from the stack

e When m of restored PS = “0” : Restored to A and (or) B in 16-bit length.
When m of restored PS = “1” : Restored to AL and (or) B in 8-bit length.
In this case, the contents of Aw and Bux do not change.
e When x of restored PS = “0” : Restored to X and (or) Y in 16-bit length.
When x of restored PS = “1” : Restored to X. and (or) Y. in 8-bit length.
In this case, the contents of Xu and Yw do not change.

Status flags

IPLI N| V| m| x D | Z | C
IPL| N| V| m]| X D | Z | C
Addressing mode Syntax Machine code Bytes Cycles
STK PUL #imm 6716, imm 2 30i+13
Note i: Number of registers to be restored.
Description example :
PUL #IMM8 ; Contents of specified register ~ (S + 1)

7900 Series Software Manual 4-167

PUL

PulLl

PUL

(

PUL)

NO
IMM8(bit 7) = 1 2
YES

PS < M(S+2,5+1)

S - S+2

YES

DT — M(S+1)
S - S+1

YES

DPRO — M(S+2,S+1)

S — S+2

NO
YES

Y < M(S+2,S+1) YL « M(S+1)
S — S+2 S - S+1
-

NO

YES

X « M(S+2,5+1)
S - S+2

XL — M(S+1)
S . S+1

NO

YES

B — M(S+2,S+1)
S - S+2

BL - M(S+1)

S «

S+1

A « M(S+2,S+1) AL « M(S+1)
S - S+2 S - S+1
-

\/

0 IMM8 is a 1-byte immediate value, and the
inside of () indicates the bit position.

4-168

7900 Series Software Manual

RLA

Rotate Left accumulator A

RLA

Function . Rotation to the left

Operation data length : 16 bits or 8 bits

Operation : =
L A
<_: n-bit rotation to left '
When m = “0”
b15 A b0
1 T 1 I T T T T 1
T 1 | L1 o1 T
When m = “1”
b7 AL b0 n-bit
[T T L T T T 1 D n

n-bit rotation to the left

0 n =0 to 65535

rotation to the left
=0 to 255

O In this case, the contents of Ax do not change.

Description : Rotates the contents of A to the left by n bits.

Status flags

IPLI N| V| m| x D | Z | C
Addressing mode Syntax Machine code Bytes [Cycles
IMM RLA #imm 3116, 0716, imm 3 n+5

Notes 1: n : Indicates the number of rotation specified by imm.
2: When flag m = “0,” the byte number increases by 1.

Description example :

CLM

RLA #IMM16
SEM

RLA #IMM8

i A — A is rotated to the left according to the times specified by IMM16.

; AL — AL is rotated to the left according to the times specified by IMMS8.

7900 Series Software Manual

4-169

RMPA

Repeat Multiply and Accumulate R M PA

Function

Operation data length :

Operation

Description

Status flags

Multiplied accumulation repeated

16 bits or 8 bits

(B,A) « (B,A) + M (DT:X) O M (DT:Y) (repeated 0 to 255 times.)

Performs signed multiplication between the contents of addresses specified by the contents of
X and Y in the bank indicated by DT. Then, the multiplication result is added to the contents
of B and A respectively, and these addition results are stored in B and A; and the contents
of X and Y each are incremented. This operation is repeated as many times (0 to 255 times)
as specified by the 8-bit immediate value in the third byte of this instruction.

e When m = “0” : Operates in 16-bit length, and the result becomes the 32-bit value.
E « E + M16 (DT:X) O M16 (DT:Y)
After the addition, the contents of X and Y each are incremented by 2.

e When m = “1" : Operates in 8-bit length, and the result becomes the 16-bit value.
(B, A) « (Bt, Al) + M8 (DT:X) O M8 (DT:Y)
In this case, the contents of Ax and B do not change.
After the addition, the contents of X and Y each are incremented by 1.

e Contents of X and Y after operation: The addresses next to those of the multiplicand and
multiplier which were read out last, respectively.

e |f an overflow occurs as an addition result, the flag V is set to “1” and the operation finishes
halfway. In this time, the contents of A and B become undefined. The contents of X and Y
become the addresses next to those of the multiplicand and multiplier which were read out
last, respectively.

e The instruction is terminated without performing any operation if a “0” is specified for the
repeat count. In this case, the contents of A, B, X, and Y do not change.

PL{N|V | m|x|D|I1]|z]|C
—IN|[V]|=]=|=|=]2Zz]C

This flag is checked for each addition performed. If MSB (MSB of B) of the addition result
becomes “1,” this flag becomes “1.” Otherwise, cleared to “0.”

This flag is checked for each addition performed. If the addition result is a value outside the
range of —2147483648 to +2147483647 (or —32768 to +32767 when flag m = “1"), this flag is
set to “1.” Otherwise, cleared to “0.” If flag V = “0” when the instruction is terminated, it means
that the operation has terminated normally; if flag V = “1,” it means that an overflow occured.

This flag is checked for each addition performed. Set to “1,” when the addition result becomes
“0.” Otherwise, cleared to “0.”

This flag is checked for each addition performed. Set to “1” when the addition result (regarded
as an unsigned data) exceeds +4294967295 (or +65536 when flag m = “1"). Otherwise,
cleared to “0.”

Addressing mode Syntax Machine code Bytes Cycles

Multiplied accumulation RMPA #imm 3116, 5A16, imm 3 140imm+5

Notes 1: imm ; indicates the number of repeated operation.

Description example :

RMPA

2: The cycle number in this table applies when flag m = “1.” When flag m = “0,” the cycle number
becomes 18 O imm + 5.

#IMM8 ; repeates the operation IMMS8 times.

4-170

7900 Series Software Manual

ROL

ROtate one bit Left

ROL

Function . Rotation to the left

Operation data length : 16 bits or 8 bits

Operation : =

Acc or M

' 1-bit rotation to Ieft<_I

|

|

When m = “0”

b15 Acc or M16 b0 C

I T T T T T T T T 1 1

T Ty T T T YT
When m = “1”

b7 AccL or M8 b0 C

I T T T T T T T 1 1

R R S W A S T T R

O In this case, the contents of Acct do not change.

Description : Flag Cis linked to Acc or a memory, and the combined contents are rotated to the left by 1
bit.
Status flags PLIN|V | m|x|D|1|Zz]|cC
— |/ N|—|—|—|—|—|2Z2]|C
N : Setto “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”
Z Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”
C : Setto “1” when MSB of the data before rotation is “1.” Otherwise, cleared to “0.”
Addressing mode Syntax Machine code Bytes Cycles
A ROL A 1316 1 1
A ROL B 8116, 1316 2 2
DIR ROL A, dd 2116, 1A16, dd 3 7
DIR, X ROL A, dd, X 2116, 1B1s, dd 3 8
ABS ROL A, mmll 2116, 1E1s, I, mm 4 7
ABS, X ROL A, mmll, X 2116, 1F1s, Il, mm 4 8

Description example :

CLM

ROL A

ROL MEM16
SEM

ROL B

ROL MEM16

; A is rotated to the left by 1 bit.
; MEM16 is rotated to the left by 1 bit.

; BL is rotated to the left by 1 bit.
; MEMS is rotated to the left by 1 bit.

7900 Series Software Manual

4-171

ROL #n n bits ROtate Left RO L #n

Function . Rotation to the left

Operation data length : 16 bits or 8 bits

Operation : =
M
' n-bit rotation to Ieft‘_l'—e'l (n : times of rotation. n = 0 to 15)

When m = “0”
b15 A b0 C
I T T T T T T T T 1 [
N RS T LT T LT
When m = “1”
b7 AL b0 C
I T T T T T T T 1 [
I I N T S S A S N T R

O In this case, the contents of Ax do not change.

Description : Flag C is linked to A, and the combined contents are rotated to the left by n bits.
e B cannot be used in this instruction.

Status flags : PLI N | v

m| x | D I Z | C
— | N|—|—|—|—|—1|2Z|C
N : Setto “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”
Z Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”
C : Setto “1” if MSB = “1” when the contents are rotated by (n — 1) bits. Otherwise, cleared to
5‘0.”
Addressing mode Syntax Machine code Bytes [Cycles
A ROL A, #imm Cli6, imm+6016 2 imm + 6

Note: Any value from 0 to 15 (times of rotation) can be set to imm.

Description example :

CLM
ROL A, #15 ; A — A combined with C is rotated to the left by 15 bits.
SEM
ROL A, #7 ; AL — AL combined with C is rotated to the left by 7 bits.

4-172 7900 Series Software Manual

RO L D #n n bits ROtate Left at Double-word RO LD #n

Function

Operation data length :

Operation

Description

Status flags

N

Rotation to the left

32 bits

b31 E bo C J
! n-bit rotation to Ieft<_|'—<_'[(n : times of rotation. n = 0 to 31)

Flag C is linked to E, and the combined contents are rotated to the left by n bits in 32-bit
length.

e This instruction is unaffected by flag m.

PL{N|V | m|x|D|1]Zz]|C
—IN|=|—=|=|=]—=]2Zz]C

Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”
Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”
Set to “1” if MSB = “1” when the contents are rotated by (n—1) bits. Otherwise, cleared to “0.”

Addressing mode Syntax Machine code Bytes Cycles

A

ROLD E, #imm D1l1s, imm+6016 2 imm + 8

Note: Any value from 0 to 31 (times of rotation) can be set to imm.

Description example :

ROLD

E, #16 ; E « E combined with C is rotated to the left by 16 bits.

7900 Series Software Manual 4-173

ROR

ROtate one bit Right

ROR

Function Rotation to the right

Operation data length : 16 bits or 8 bits

Operation =
L C Acc or M
| _:.1-bit rotation to right !
When m = “0”
C bis Acc or M16 bo
[T T T I T I I T
N T T T T
When m = “1”
C b7 AccLor M8 bo
[[T T T T T I 1
N S
O In this case, the contents of Accy do not change.
Description

1 bit.

Flag C is linked to Acc or a memory, and the combined contents are rotated to the right by

Status flags
g PLIN| VI m|[x|D|li1]z]cC
— | N|—|—|—|—|—]|2Z]|C
N Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”
Z Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”
C Set to “1” when LSB of the data before rotation is “1.” Otherwise, cleared to “0.”
Addressing mode Syntax Machine code Bytes Cycles
A ROR A 5316 1 1
A ROR B 8116, 5316 2 2
DIR ROR A, dd 2116, 3A1s, dd 3 7
DIR, X ROR A, dd, X 2116, 3B1s, dd 3 8
ABS ROR A, mmll 2116, 3E1s, Il, mm 4 7
ABS, X ROR A, mmll, X 2116, 3F16, Il, mm 4 8
Description example :
CLM
ROR A ; A is rotated to the right by 1 bit.
ROR MEM16 ; MEM16 is rotated to the right by 1 bit.
SEM
ROR B ; BL is rotated to the right by 1 bit.
ROR MEM8 ; MEMS is rotated to the right by 1 bit.

4-174

7900 Series Software Manual

RO R #n n bits ROtate Right RO R #n

Function : Rotation to the right

Operation data length : 16 bits or 8 bits

Operation =
L ¢ a
| +n-bit rotation to right L (n : times of rotation. n = 0 to 15)

When m = “0”
C bi5 A b0
[T T I 1 I I I T 1
T LYY T T YT

When m = “1”
C b7 AL b0
[[I I I I T I 1

I M

O In this case, the contents of Ax do not change.

Description : Flag C is linked to A, and the combined contents are rotated to the right by n bits.
e B cannot be used in this instruction.

Status flags pPLIN|v Im|x|D|1]z]c
—|N|—|—|—|—|—|2Z]|C
N : Setto “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”
4 Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”
C : Setto“1”if LSB = “1” when the contents are rotated by (n — 1) bits. Otherwise, cleared to “0.”

Addressing mode Syntax Machine code Bytes Cycles
A ROR A, #imm Cl1e, imm+2016 2 imm + 6
Note: Any value from 0 to 15 (times of rotation) can be set to imm.

Description example :

CLM
ROR A, #15 ; A — A combined with C is rotated to the right by 15 bits.
SEM
ROR A, #7 ; AL « AL combined with C is rotated to the right by 7 bits.

7900 Series Software Manual 4-175

RO R D #n n bits ROtate Right at Double-word RO R D #n

Function

Operation data length :

Operation

Description

Status flags

N

Rotation to the right

32 bits

L C b3l E b0
| _:.n-bit rotation to right ! (n : times of rotation. n = 0 to 31)

Flag C is linked to E, and the combined contents are rotated to the right by n bits in 32-bits
length.

e This instruction is unaffected by flag m.

PLIN|V | m|x|D|I1]2Zz]|C
—IN|=|=|=|=|=|2z|C

Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”
Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”
Set to “1” if LSB = “1” when the contents are rotated by (n—1) bits. Otherwise, cleared to “0.”

Addressing mode Syntax Machine code Bytes Cycles

A

RORD E, #imm D116, imm+201s 2 imm + 8

Note: Any value from 0 to 31 (times of rotation) can be set to imm.

Description example :

RORD

E, #16 ; E « E combined with C is rotated to the right by 16 bits.

4-176

7900 Series Software Manual

RT I Return from Interrupt

RTI

Function . Return

Operation data length :

Operation : PG, PC, PS < Stack

Stack PS
PSH | PSL |
(S) just before instruction execution
(S) just after instruction execution ﬂ
| PCh | Pc. |
PG PC
Description : Restores the stack contents to the registers in order of PS, PC, and PG.

e Use this instruction when returning from the interrupt routine.

Status flags : pPLINT v I m D | c
IPL| N | V| m D | C
Addressing mode Syntax Machine code Bytes Cycles
IMP RTI Flie 1 12
Description example :
RTI i PS « (S+2,S+1)
:PC « (S+4,S+3)
; PG « (S +5)
7900 Series Software Manual 4-177

RTL ReTurn from subroutine Long RTL

Function . Return

Operation data length :

Operation . PG, PC ~ Stack Stack
(S) just before instruction execution
(S) just after instruction execution —l
| | PCnx | PCL |
PG PC
Description . Restores the stack contents to the registers in order of PC and PG.

e Use this instruction when returning from the subroutine called by JSRL.

Status flags

IPLI N|V |m| x| D I Z | C
Addressing mode Syntax Machine code Bytes Cycles
IMP RTL 9416 1 10
Description example :
RTL i PC « (S+2,S+1)
; PG « (S +3)

4-178 7900 Series Software Manual

RTL D n ReTurn from subroutine Long and pull Direct page register n RTL D n

Function . Load & Return
Operation data length : 16 bits
Operation : DPRn < Stack (n = 0 to 3. Multiple DPRs can be specified.)

PG, PC ~ Stack
When DPRO to DPR3 are specified

Stack DPR3
(S) just before instruction execution IDPR3:+.DPR3.]
TDPR2
DPR2+ DPR2L
'DPR1
DPR1+ DPR1L
DPRO
DPRO+, DPROL
(S) just after instruction execution —i
| | pPca [PC. |

PG PC

Description : After restoring the contents of the specified DPRn (DPRO to DPR3) from the stack in length

of 16 bits, this instruction executes the RTL instruction (to restore the stack contents in order
of PC and PG).

e Multiple DPRs can be specified for restoration from the stack. When multiple DPRs are
specified, the stack contents are restored to DPRs in order of DPR3, DPR2, DPR1, and

DPRO.
Status flags PLIN|V | m|x|D| I |Z]|C
Addressing mode Syntax Machine code Bytes [Cycles
STK RTLD n 7716, ?C16 2 15
RTLD (n1, ..., ni) 7716, ?C16 2 30i+12

Notes 1: Any value from 0 can be set to 3 to n.
2: The second line of the syntax format specifies multiple DPRs by 1 instruction.
3: Inside of the parentheses (n1, ..., ni) specifies any of 0 to 3 (numbers representing DPRn).
4: i : indicates the number of DPRn (1 to 4)
5: ? : the bit corresponding to the specified DPRn becomes “1.”
The diagram below shows the relationship between bits and DPRn.

b7 b0
|oPR3|DPR2|DPR1[DPRO] 1 | 1 | 0 | o |

Description example :

RTLD 1 :DPR1 < (S + 1)
. RTL

RTLD (0, 3) :DPR3 — (S + 1)
: DPRO « (S + 3)
. RTL

7900 Series Software Manual 4-179

RTS

ReTurn from Subroutine RTS

Function

Operation data length :

Operation

Description

Status flags

Return

PC ~ Stack
Stack

(S) just before instruction execution

(S) just after instruction execution

Restores the stack contents to PC.
e Use this instruction when returning from the subroutine called by JSR or BSR.

e [f this instruction is located at a bank’s highest address (XXFFFFs), the contents of PG are
incremented by 1.

IPLI N|V |m| x| D I Z | C

Addressing mode Syntax Machine code Bytes [Cycles

IMP

RTS 8416 1 7

Description example :
RTS

i PC « (S+2,S+1)

4-180

7900 Series Software Manual

RTS D n ReTurn from Subroutine and pull Direct page register n RTS D n

Function . Load & Return
Operation data length : 16 bits
Operation : DPRn ~ Stack (n = 0 to 3. Multiple registers can be specified.)

PC ~ Stack
When DPRO to DPR3 are specified

Stack DPR3
(S) just before instruction execution IDPR3:+.DPR3.]
T"DPR2
DPR2x DPR2L
"DPR1
DPR1+ DPR1L
DPRO
DPROx DPROL
(S) just after instruction execution —i
| pch | pPC |
PC
Description . After restoring the contents of the specified DPRn (DPRO to DPR3) from the stack in length

of 16 bits, this instruction executes the RTS instruction (to restore the stack contents to PC).

e Multiple DPRs can be specified for return from the stack. When multiple DPRs are specified,
the stack contents are restored to DPRs respectively, in order of DPR3, DPR2, DPR1, and

DPRO.
Status flags : PLINTVIm!I x| DI 7z | c
Addressing mode Syntax Machine code Bytes [Cycles
STK RTSD n 7716, ?816 2 14
RTSD (n1, ..., nj) 7716, ?816 2 30i0+11

Notes 1: Any value from 0 to 3 can be set to n.
2: The second line of the syntax format specifies multiple DPRs by 1 instruction.
3: Inside of the parentheses (n1, ..., ni) specifies any of 0 to 3 (numbers representing DPRn).
4: i : indicates the number of DPRn (1 to 4)
5: ? : the bit corresponding to the specified DPRn becomes “1.”
The diagram below shows the relationship between bits and DPRn.

b7 bo
|DPR3|DPR2| DPR1/DPRO] 1 [0 | 0 [0 |

Description example :

RTSD 1 :DPR1 « (S +1)
i RTS

RTSD (0, 3) :DPR3 < (S +1)
: DPRO < (S + 3)
: RTS

7900 Series Software Manual 4-181

SBC

SuBtract with Carry S B C

Function

Operation data length :

Operation

Description

Status flags

Subtract with carry
16 bits or 8 bits

Acc « Acc—M-C
When m = “0”
Acc Acc M16

A O e O B o |—E

When m = “1”
AccL AccL M8 C

I

O In this case, the contents of Accs do not change.

Subtracts the contents of a memory and the complement of flag C from the contents of Acc,
and stores the result in Acc.

e The decimal operation is performed when flag D = “1.”

PLIN|V | m|x|D|1I|z]|C
—|IN|V|—|—=|—=|—=]2z]C

Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Set to “1” when the result of the operation (regarded as a signed operation) is a value outside
the range of —32768 to +32767 (=128 to +127 when flag m is “1"). Otherwise, cleared to “0.”
Meaningless when flag D = “1.”

Set to “1” when the operation result is “0.” Otherwise, cleared to “0.” Meaningless when flag
D="1"

Cleared to “0” when the borrow occurs. Otherwise, set to “1.”

4-182

7900 Series Software Manual

S B C SuBtract with Carry S B C

Addressing mode Syntax Machine code Bytes | Cycles
IMM SBC A, #imm 3116, A716, imm (Blis, A716, imm) 3 3 (3)
DIR SBC A, dd 2116, AA1s, dd (Alis, AA1s, dd) 3 5 (7)
DIR, X SBC A, dd, X 2116, AB1s6, dd (Alis, AB1s, dd) 3 6 (8)
(DIR) SBC A, (dd) 2116, AO16, dd (Alis, AO1s, dd) 3 7 (9)
(DIR, X) SBC A, (dd, X) 2116, Alis, dd (Alis, Alis, dd) 3 8 (10)
(DIR), Y SBC A, (dd), Y 2116, A816, dd (Alis, A8is, dd) 3 8 (10)
L(DIR) SBC A, L(dd) 2116, A216, dd (Alis, A216, dd) 3 9 (11)
L(DIR), Y SBC A, L(dd), Y 2116, A916, dd (Alis, A91s, dd) 3 10(12)
SR SBC A, nn, S 2116, A316, Nn (Alis, A316, NN) 3 6 (8)
(SR), Y SBC A, (nn, S), Y | 211s, Adis, Nn (Alis, Adis, NN) 3 9 (11)
ABS SBC A, mmli 2116, AEz1s, Il, mm (Alis, AE1s, Il, mm) 4 5 (7)
ABS, X SBC A, mmll, X 2116, AF1s, Il, mm (Alis, AFis, Il, mm) 4 6 (8)
ABS, Y SBC A, mmll, Y 2116, Ab61s, Il, mm (Alis, Ab61s, Il, mm) 4 6 (8)
ABL SBC A, hhmmll 2116, ACis, Il, mm, hh (Alis, ACis, Il, mm, hh) 5 6 (8)
ABL, X SBC A, hhmmll, X | 2116, ADss, I, mm, hh (Alis, AD1s, I, mm, hh) 5 7 (9)

Notes 1: This table applies when using accumulator A. When using accumulator B, replace “A” with “B” in
the syntax. In this case, the machine code and the number of cycles enclosed in parentheses are
applied.

2: In the immediate addressing mode, the byte number increases by 1 when flag m = “0.”

Description example :

CLM

SBC.W A, #IMM16 A <« A-IMM16 -C

SBC B, MEM16 ;B « B-MEM16 - C
SEB

SBC.B A, #IMM8 ;AL « AL—IMM8 - C

SBC B, MEM8 ;BL « BL—-MEM8 -C

7900 Series Software Manual 4-183

SBCB

SuBtract with Carry at Byte S B C B

Function

Operation data length :

Operation

Description

Status flags

Subtract with carry

8 bits

AccL — AccL. — IMM8 - C
AccL AccL C

[- -[]

Subtracts the immediate value and the complement of flag C from the contents of Accw in 8-
bit length, and stores the result in Accu.

e This instruction is unaffected by flag m.
e The contents of Accu do not change.
e The decimal operation is performed when flag D = “1.”

PLIN|V | m|x|D|1]|z]|cC
—|IN|V|—]|—=|—=|=]2Zz]C

Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.” Meaningless when
flag D = “1.”

Set to “1” when the result of the operation (regarded as a signed operation) is a value outside
the range of —128 to +127. Otherwise, cleared to “0.” Meaningless when flag D = “1.”

Set to “1” when the operation result is “0.” Otherwise, cleared to “0.” Meaningless when flag
D = Hl.ﬂ

Cleared to “0” when the borrow occurs. Otherwise, set to “1.”

Addressing mode Syntax Machine code Bytes | Cycles
IMM ABCB A, #imm 3116, 1B16, imm 3 3
IMM ABCB B, #imm Blis, 1B1s, imm 3 3
Description example :
SBCB A, #IMM8 i AL « AL — IMM8 — §
SBCB B, #IMM8 ;B « BL—IMM8 - C

4-184

7900 Series Software Manual

SBCD

SBCD

SuBtract with Carry at Double-word

Function

Operation data length :

Operation

Description

Status flags

N

Subtract with carry

32 bits

E - E-M32-C
E E M32 C

=L - -0

Subtracts the contents of a memory and the complement of flag C from the contents of E in
32-bit length, and stores the result in E.

e This instruction is unaffected by flag m.
e This instruction cannot operate in decimal. Set flag D = “0” when using this instruction.

IPL| N

N

\'%
\Y

Z
z

C
C

Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Set to “1” when the result of the operation (regarded as a signed operation) is a value outside
the range of —2147483648 to +2147483647. Otherwise, cleared to “0.”

Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”
Cleared to “0” when the borrow occurs. Otherwise, set to “1.”

Addressing mode Syntax Machine code Bytes | Cycles
IMM SBCD E, #imm 3116, 1D16, immLL, immuH, iMmmMHL, iMmMHH 6 4
DIR SBCD E, dd 2116, BA1s, dd 3 7
DIR, X SBCD E, dd, X 2116, BB1s, dd 3 8
(DIR) SBCD E, (dd) 2116, BO1s, dd 3 9
(DIR, X) SBCD E, (dd, X) | 2116, Bls, dd 3 10
(DIR), Y SBCD E, (dd), Y | 2116, B8us, dd 3 10
L(DIR) SBCD E, L(dd) 2116, B216, dd 3 11
L(DIR), Y SBCD E, L(dd), Y | 2116, B91s, dd 3 12
SR SBCD E, nn, S 2116, B316, NN 3 8
(SR), Y SBCD E, (nn, S), Y| 2116, B4is, nn 3 11
ABS SBCD E, mmll 2116, BEz1s, I, mm 4 7
ABS, X SBCD E, mmll, X | 2116, BFis, Il, mm 4 8
ABS, Y SBCD E, mmll, Y | 2116, B61s, Il, mm 4 8
ABL SBCD E, hhmmll 2116, BCus, Il, mm, hh 5 8
ABL, X SBCD E, hhmmll, X| 2116, BDzs, Il, mm, hh 5 9
Description example :
SBCD E, #IMM32 iE <« E-IMM32-C (B, A « B,A-IMM32 -C)
SBCD E, MEM32 iE « E-MEM32-C (B, A - B, A— MEM32 - C)

7900 Series Software Manual

4-185

S EC SEt Carry flag S EC

Function : Flag manipulation

Operation data length :

Operation . C <1
Description : Sets flag C to “1.”
Status flags PLIN|V | m|[x|D|I1|Z]|cC
- =] === —]|—|—11
C : Setto“l”
Addressing mode Syntax Machine code Bytes | Cycles
IMP SEC 0416 1 1
Description example :
SEC inCOWF 1

4-186 7900 Series Software Manual

SEI

SEt Interrupt disable status

SEI

Function

Operation data length :

Operation

Description

Status flags

Description example :

SEI

Flag manipulation

I <1

Sets flag | to “1.”

IPLI N| V|m]| x | D |
— - — | —|—|—11
Set to “1.”
Addressing mode Syntax Machine code Bytes | Cycles
IMP SEI 0516 1 4

o\ ¥)

7900 Series Software Manual

4-187

SEM SEt M flag SEM

Function : Flag manipulation

Operation data length : —

Operation oom <1
Description : Sets flag m to “1.”
Status flags PLIN|V | m|[x|D|I1|Z]|cC
= =1 | =] = = =] =
m : Setto “l.”
Addressing mode Syntax Machine code Bytes | Cycles
IMP SEM 2516 1 3
Description example :
SEM inl Tl 1

4-188 7900 Series Software Manual

S E P SEt Processor status

SEP

Function . Flag manipulation

Operation data length :

Operation : PSc(bitn) « 1 (n =0 to 7. Multiple bits can be specified.)

Description . Sets the specified flags (multiple flags can be specified) of PS. to “1.” The flag positions to be
specified are indicated by a bit pattern of the immediate value, in which the bits set to “1” are
the subject bits to be specified.

e This instruction is unaffected by flag m.

PSL
b7 b6 b5 b4b3 b2 bl b0
IN[V[m[x[D]1]z][c]

Status flags

IPLI N| V| m| x | D I Z
— | N| V| |m| x |D I 4
Addressing mode Syntax Machine code Bytes | Cycles
IMM SEP #imm 9916, imm 2 3
Description example :
SEP #IMM8 ; The specified bits of PSL - 1

7900 Series Software Manual

4-189

STA

STore Accumulator in memory

STA

Function

Operation data length :

Operation

Description

Status flags

Store

16 bits or 8 bits

M « Acc
When m = “0”
M16 Acc
L -
When m = “1”

M8
[1-

AccL

[]

Stores the contents of Acc into a memory. The contents of Acc do not change.

IPL

Addressing mode Syntax Machine code Bytes | Cycles
DIR STA A, dd DAass, dd (8116, DA1s, dd) 2 (3) 4 (5)
DIR, X STA A, dd, X DBu1s, dd (8116, DB1s, dd) 2 (3) 5 (6)
(DIR) STA A, (dd) 1116, D016, dd (9116, DO1s, dd) 33 7 (7)
(DIR, X) STA A, (dd, X) 1116, D116, dd (9116, D116, dd) 3(3) 8 (8)
(DIR), Y STA A, (dd), Y D816, dd (8116, D816, dd) 2 (3) 7 (8)
L(DIR) STA A, L(dd) 1116, D216, dd (9116, D216, dd) 3(3) 9 (9)
L(DIR), Y STA A, L(dd), Y D916, dd (8116, D916, dd) 2(3) | 9(10)
SR STA A, nn, S 1116, D316, Nn (9116, D316, Nn) 33 6 (6)
(SR), Y STA A, (nn, S), Y | 1116, D41s, nn (9116, D416, Nn) 3(3) 9 (9)
ABS STA A, mmll DEzs, Il, mm (8116, DEz1s, I, mm) 34 4 (5)
ABS, X STA A, mmll, X DFis, Il, mm (8116, DF1s, Il, mm) 34 5 (6)
ABS, Y STA A, mmll, Y 1116, D616, ll, mm (9116, D61s, Il, mm) 4 (4) 6 (6)
ABL STA A, hhmmll DCis, Il, mm, hh (8116, DC1s, Il, mm, hh) 4 (5) 5 (6)
ABL, X STA A, hhmmll, X | DDzs, Il, mm, hh (8116, DD1s, Il, mm, hh) 4 (5) 6 (7)
Note : This table applies when using accumulator A. When using accumulator B, replace “A” with “B” in the

Description example :

CLM
STA
SEM
STA

syntax. In this case, the machine code, the number of bytes, and the number of cycles enclosed in

parentheses ar

A, ME

B, ME

e applied.

M16

M8

; MEM16 ~ A

; MEM8 ~ BL

4-190

7900 Series Software Manual

STAB

STore Accumulator in memory at Byte

STAB

Function

Operation data length :

Operation

Description

Store

8 bits

M8 — AccL
M8

AccL

-

Stores the contents of AccLinto a memory in 8-bit length.
e The contents of Acc (Accn and Acci) do not change.
e This instruction is unaffected by flag m.

Status flags
IPL| N| V| m]| X D | Z | C
Addressing mode Syntax Machine code Bytes | Cycles
DIR STAB A, dd CAuis, dd (8116, CA1s, dd) 2 (3) 4 (5)
DIR, X STAB A, dd, X CBas, dd (8116, CBu1s, dd) 2 (3) 5 (6)
(DIR) STAB A, (dd) 1116, CO16, dd (9116, CO1s, dd) 33 7 (7)
(DIR, X) STAB A, (dd, X) 1116, Cl16, dd (9116, Clis, dd) 3(3) 8 (8)
(DIR), Y STAB A, (dd), Y C816, dd (8116, C81s, dd) 2 (3) 7 (8)
L(DIR) STAB A, L(dd) 1116, C216, dd (9116, C21s6, dd) 3(3) 9 (9)
L(DIR), Y STAB A, L(dd), Y | C916, dd (8116, C916, dd) 2(3) | 9(10)
SR STAB A, nn, S 1116, C316, NN (9116, C316, NN) 33 6 (6)
(SR), Y STAB A, (nn, S), Y| 1116, C41s, nn (9116, C41s, NN) 3(3) 9(9)
ABS STAB A, mmll CEzs, Il, mm (8116, CEus, I, mm) 3(4) 4 (5)
ABS, X STAB A, mmll, X | CFuis, ll, mm (8116, CF1s, Il, mm) 3(4) 5 (6)
ABS, Y STAB A, mmll, Y | 1116, C6us, Il, mm (9116, C61s, Il, mm) 4 (4) 6 (6)
ABL STAB A, hhmmll CCis, Il, mm, hh (8116, CCis, ll, mm, hh) 4 (5) 5 (6)
ABL, X STAB A, hhmmll, X| CDas, Il, mm, hh (8116, CDa1s, Il, mm, hh) 4 (5) 6 (7)
Note : This table applies when using accumulator A. When using accumulator B, replace “A” with “B” in the

Description example :
STAB

syntax. In this case, the machine code, the number of bytes, and the number of cycles enclosed in
parentheses are applied.

A, MEMS8

; MEM8 — AL

7900 Series Software Manual

4-191

STAD

Function

Operation data length :

Operation

Description

STore Accumulator in memory at Double-word

Store

32 bits

M32 - E
M32

| - |

Stores the contents of E into a memory in 32-bit length.
e The contents of E do not change.
e This instruction is unaffected by flag m.

STAD

Status flags PN Vv]m]x|D]1]z]cC
Addressing mode Syntax Machine code Bytes | Cycles
DIR STAD E, dd EAzs, dd 2 6
DIR, X STAD E, dd, X EB1s, dd 2 7
(DIR) STAD E, (dd) 1116, EO16, dd 3 9
(DIR, X) STAD E, (dd, X) 1116, El1s, dd 3 10
(DIR), Y STAD E, (dd), Y | E8us, dd 2 9
L(DIR) STAD E, L(dd) 1116, E216, dd 3 11
L(DIR), Y STAD E, L(dd), Y | E91s, dd 2 11
SR STAD E, nn, S 1116, E316, NN 3 8
(SR), Y STAD E, (nn, S), Y| 1116, E41s, nn 3 11
ABS STAD E, mmll EEzs, Il, mm 3 6
ABS, X STAD E, mmll, X | EFus, Il, mm 3 7
ABS, Y STAD E, mmll, Y | 1116, E61s, Il, mm 4 8
ABL STAD E, hhmmll | ECzs, I, mm, hh 4 7
ABL, X STAD E, hhmmll, X| EDzs, I, mm, hh 4 8

Description example :

STAD E, MEM32 ; MEM32 ~ E (MEM324 —~ B, MEM32L ~ A)

4-192

7900 Series Software Manual

STP

SToP

STP

Function

Operation data length :

Operation

Description

Status flags

Special

Stop the oscillation

Resets the flip-flop for oscillator control and stops the oscillation of the oscillation circuit. To
restart, generate an interrupt request or perform the hardware reset. The microcomputer will
thereby be released from the STP state.

IPL

Addressing mode

Syntax

Machine code

Bytes

Cycles

IMP

STP

3116, 3016

Description example :

STP

7900 Series Software Manual

4-193

STX STore index register X in memory STX

Function . Store

Operation data length : 16 bits or 8 bits

Operation M <X
When x = “0”
M16 X
L Lo-
When x = “1”

=

Description . Stores the contents of X into a memory. The contents of X do not change.
e This instruction is unaffected by flag m.

Status flags : PLIN|V | m|[x|D|1I]|Z]|C
Addressing mode Syntax Machine code Bytes Cycles
DIR STX dd E216, dd 2 4
DIR, Y STX dd, Y 4116, E516, dd 3 6
ABS STX mmll E716, I, mm 3 4

Description example :

CLP X
STX MEM16 ; MEM16 ~ X
SEP X
STX MEMS8 ; MEM8 ~ Xu

4-194 7900 Series Software Manual

STY

STY

STore index register Y in memory

Function

Operation data length :

Operation

Description

Store
16 bits or 8 bits

M <Y
When x = “0”
M16 Y

When x = “1”
M8 Yo

Stores the contents of Y into a memory. The contents of Y do not change.
e This instruction is unaffected by flag m.

Status flags PLIN|V | m|x|D|1]|Z]|C
Addressing mode Syntax Machine code Bytes Cycles
DIR STY dd F216, dd 2 4
DIR, X STY dd, X 4116, FB1s, dd 3 6
ABS STY mmll F716, Il, mm 3 4

Description example :

CLP
STY
SEP
STY

MEM16 ; MEM16 ~ Y

MEM8 ; MEM8 ~ YL

7900 Series Software Manual

4-195

SUB

SUBtract S U B

Function

Operation data length :

Operation

Description

Status flags

zZ

N

Subtract
16 bits or 8 bits

Acc ~ Acc — M
When m = “0”
Acc Acc M16

When m = “1”
AccL AccL M8

O In this case, the contents of Accs do not change.

Subtracts the contents of a memory from the contents of Acc, and stores the result in Acc.
e This instruction cannot operate in decimal. Set flag D = “0” when using this instruction.

PL{N|V | m|x|D|1]|Zz]|C
—IN[V]|=]=|=]=]2z]C

Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Set to “1” when the result of the operation (regarded as a signed operation) is a value outside
the range of —32768 to +32767 (—128 to +127 when flag m is “1"). Otherwise, cleared to “0.”

Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”
Cleared to “0” when the borrow occurs. Otherwise, set to “1.”

4-196

7900 Series Software Manual

SUB

SUBtract

SUB

Addressing mode Syntax Machine code Bytes | Cycles
IMM SUB A, #imm 3616, imm (8116, 3616, imm) 23) | 12
DIR SUB A, dd 3Azs, dd (8116, 3A16, dd) 213) | 34
DIR, X SUB A, dd, X 3B16, dd (8116, 3B1s, dd) 2(3) | 4 (5
(DIR) SUB A, (dd) 1116, 3016, dd (9116, 3016, dd) 3(3) | 6(6)
(DIR, X) SUB A, (dd, X) 1116, 3116, dd (9116, 3116, dd) 3@) | 7@
(DIR), Y SUB A, (dd), Y 1116, 3816, dd (9116, 3816, dd) 3@) | 7@
L(DIR) SUB A, L(dd) 1116, 3216, dd (9116, 3216, dd) 3(3) | 8(8)
L(DIR), Y SUB A, L(dd), Y 1116, 3916, dd (9116, 3916, dd) 33)| 99
SR SUB A, nn, S 1116, 3316, NN (9116, 3316, NN) 3@) | 5()
(SR), Y SUB A, (nn, S), Y| 1lis, 3416, nn (9116, 3416, NN) 3(3) | 8(8)
ABS SUB A, mmll 3Ezs, Il, mm (8116, 3Ezs, I, mm) 3(@4)| 3@14)
ABS, X SUB A, mmll, X 3Fz1s, Il, mm (8116, 3F1s, I, mm) 3@)| 4(5)
ABS, Y SUB A, mmll, Y 1116, 3616, I, mm (9116, 3616, I, mm) 4(4) | 5(5
ABL SUB A, hhmmll 1116, 3Cis, ll, mm, hh (9116, 3Cus, Il, mm, hh)| 5 (5) | 5 (5)
ABL, X SUB A, hhmmll, X| 1116, 3D1s, Il, mm, hh (9116, 3Dz1s, ll, mm, hh)| 5 (5) | 6 (6)

Notes 1: This table applies when using accumulator A. When using accumulator B, replace “A” with “B” in
the syntax. In this case, the machine code, the number of bytes, and the number of cycles enclosed
in parentheses are applied.

2: In the immediate addressing mode, the byte number increases by 1 when flag m = “0.”

Description example :

CLM

SUB.W A, #IMM16
SUB B, MEM16
SEM

SUB.B A, #IMM8

SUB B, MEM8

i A - A-IMM16
; B « B- MEM16

AL < AL — IMMS8
:BL « BL— MEMS8

7900 Series Software Manual

4-197

SU BB SUBtract at Byte SU BB

Function . Subtract

Operation data length : 8 bits

Operation : AccL « AccL — IMM8
Acct Acct
| | - | | - IMM8
Description : Subtracts the immediate value from the contents of Accu in 8-bit length, and stores the result
in Acc.

e This instruction is unaffected by flag m.
e The contents of Accu do not change.
e This instruction cannot operate in decimal. Set flag D = “0” when using this instruction.

Status flags PLIN|V|m|x|DJ|1I]|]z]|C

—IN|V|—|=|=|=]2z]C

P

Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

V : Setto “1” when the result of the operation (regarded as a signed operation) is a value outside
the range of —128 to +127. Otherwise, cleared to “0.”

Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”
C : Cleared to “0” when the borrow occurs. Otherwise, set to “1.”

N

Addressing mode Syntax Machine code Bytes | Cycles
IMM SUBB A, #imm 3916, imm 2 1
IMM SUBB B, #imm 8116, 3916, imm 3 2
Description example :
SUBB A, #IMM8 ;AL « AL - IMM8
SUBB B, #IMM8 ; BL « BL—IMM8

4-198 7900 Series Software Manual

SUBD

SUBD

SUBtract at Double-word

Function

Operation data length :

Operation

Description

Status flags

Subtract

32 bits

E - E-M32

Subtracts the contents of a memory from the contents of E in 32-bit length, and stores the
result in E.

e This instruction is unaffected by flag m.
e This instruction cannot operate in decimal. Set flag D = “0” when using this instruction.

IPL| N

N

\'%
\Y

Z
z

C
C

N Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”
\% Set to “1” when the result of the operation (regarded as a signed operation) is a value outside
the range of —2147483648 to +2147483647. Otherwise, cleared to “0.”

Z Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

C Cleared to “0” when the borrow occurs. Otherwise, set to “1.”
Addressing mode Syntax Machine code Bytes | Cycles
IMM SUBD E, #imm 3Da16, immLL, immLH, iIMMHL, iIMMHH 5 3
DIR SUBD E, dd AAzie, dd 2 6
DIR, X SUBD E, dd, X AB1e, dd 2 7
(DIR) SUBD E, (dd) 1116, AO1s, dd 3 9
(DIR, X) SUBD E, (dd, X) | 111s, Alis, dd 3 10
(DIR), Y SUBD E, (dd), Y | 111s, A81s, dd 3 10
L(DIR) SUBD E, L(dd) 1116, A216, dd 3 11
L(DIR), Y SUBD E, L(dd), Y | 1116, A916, dd 3 12
SR SUBD E, nn, S 1116, A316, NN 3 8
(SR), Y SUBD E, (nn, S), Y| 1116, Ad1s, Nn 3 11
ABS SUBD E, mmli AEis, Il, mm 3 6
ABS, X SUBD E, mmll, X | AFus, I, mm 3 7
ABS, Y SUBD E, mmll, Y | 11ie, AB1e, Il, mm 4 8
ABL SUBD E, hhmmll 1116, ACzs, Il, mm, hh 5 8
ABL, X SUBD E, hhmmll, X| 1116, AD1s, Il, mm, hh 5 9

Description example :
SUBD E, #IMM32 i E « E-IMM32 (B, A -« B, A-1IMM32)
SUBD E, MEM32 iE « E-MEM32 (B, A -« B, A— MEM32)

7900 Series Software Manual

4-199

S U B M SUBtract immediate from Memory S U B M

Function

Subtract

Operation data length : 16 bits or 8 bits

Operation

Description

Status flags

M< M= IMM
When m = “0”
M16 M16
T - []-mws

When m = “1”

M8 M8
(]~ (]~

Subtracts the immediate value from the contents of a memory, and stores the result in the
memory.

e This instruction cannot operate in decimal. Set flag D = “0” when using this instruction.

IPLIN|V | im|x|D| I |Z]C
—|[N|V|—|—|—|—]2Z]|C

N : Setto “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

V : Setto “1" when the result of the operation (regarded as a signed operation) is a value outside

the range of —32768 to +32767 (128 to +127 when flag m is “1"). Otherwise, cleared to “0.”
Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”
C : Cleared to “0” when the borrow occurs. Otherwise, set to “1.”

N

Addressing mode Syntax Machine code Bytes | Cycles
DIR SUBM dd, #imm 5116, 1316, dd, imm 4 7
ABS SUBM mmll, #imm| 5116, 1716, Il, mm, imm 5 7

Note : When flag m = “0,” the byte number increases by 1.

Description example :

CLM

SUBM.W MEM16, #IMM16 ; MEM16 —~ MEM16 — IMM16
SEM

SUBM.B MEMS8, #IMM8 ; MEM8 ~ MEM8 — IMM8

4-200

7900 Series Software Manual

S U B M B SUBtract immediate from Memory at Byte S U B M B

Function . Subtract

Operation data length : 8 bits

Operation : M8 « M8 - IMM8
M8 M8
| |- |-™mws
Description : Subtracts the immediate value from the contents of a memory in 8-bit length, and stores the

result in the memory.
e This instruction is unaffected by flag m.
e This instruction cannot operate in decimal. Set flag D = “0” when using this instruction.

Status flags PLUN|V I m|x|D|l1]z]|cC
— | N| V]| —|—|—|—|Z|C
N : Setto “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”
V : Setto “1” when the result of the operation (regarded as a signed operation) is a value outside

the range of —128 to +127. Otherwise, cleared to “0.”
Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”
C : Cleared to “0” when the borrow occurs. Otherwise, set to “1.”

N

Addressing mode Syntax Machine code Bytes | Cycles
DIR SUBMB dd, #imm 5116, 1216, dd, imm 4 7
ABS SUBMB mmll, #imm| 5116, 1616, I, mm, imm 5 7
Description example :
SUBMB MEMS, #IMM8 ; MEM8 ~ MEM8 — IMM8

7900 Series Software Manual 4-201

S U B M D SUBtract immediate from Memory at Double-word S U B M D

Function . Subtract

Operation data length : 32 bits

Operation : M32 « M32 - IMM32
M32 M32
[(TTT-[TT T -z
Description . Subtracts the immediate value from the contents of a memory in 32-bit length, and stores the

result in the memory.
e This instruction is unaffected by flag m.
e This instruction cannot operate in decimal. Set flag D = “0” when using this instruction.

Status flags - PLIN|[V | m|[x|D|Il]Z]|C
—|IN|V|—|—|—|—|2Z|C
N Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

V : Setto “1” when the result of the operation (regarded as a signed operation) is a value outside
the range of —2147483648 to +2147483647. Otherwise, cleared to “0.”

Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”
C : Cleared to “0” when the borrow occurs. Otherwise, set to “1.”

N

Addressing mode Syntax Machine code Bytes |Cycles
DIR SUBMD dd, #imm 5116, 9316, dd, immLt, immtH, immHL, imMMuH 7 10
ABS SUBMD mmll, #imm | 5116, 9716, Il, mm, immcc, immcH, immaL, immau 8 10
Description example :
SUBMB MEM32, #IMM32 ; MEM32 « MEM32 — IMM32

4-202 7900 Series Software Manual

S U B S SUBtract Stack pointer S U B S

Function . Subtract

Operation data length : 16 bits

Operation S <« S-1IMM8
S S
Ll -] s
Description : Subtract the 8-bit immediate value from the contents of S in 16-bit length, and stores the result

in S. The immediate value is extended to 16-bit length with Os in operation.
e This instruction is unaffected by flag m.
e This instruction cannot operate in decimal. Set flag D = “0” when using this instruction.

Status flags PLIN|V | m|[x|D|1|z]|cC
—|/N|V|—|—|—|—|2Z|C
N Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”
V : Setto “1” when the result of the operation (regarded as a signed operation) is a value outside
the range of —32768 to +32767. Otherwise, cleared to “0.”
Z . Setto “1” when the operation result is “0.” Otherwise, cleared to “0.”
C : Cleared to “0” when the borrow occurs. Otherwise, set to “1.”
Addressing mode Syntax Machine code Bytes | Cycles
IMM SUBS #imm 3116, 0B1s, imm 3 2
Description example :
SUBS #IMM8 ;7S « S—-1IMMS8

7900 Series Software Manual 4-203

SUBX

SUBtract immediate from index register X S U BX

Function

Operation data length :

Operation

Description

Status flags

N

Subtract
16 bits or 8 bits

X « X =IMM (IMM = 0 to 31)
When x = “0”
X X
L -] |-

When x = “1”
Xt Xu
-
O In this case, the contents of Xu do not change.

Subtracts the immediate value (0 to 31) from the contents of X, and stores the result in X.
e This instruction is unaffected by flag m.
e This instruction cannot operate in decimal. Set flag D = “0” when using this instruction.

PLIN|V | m|x|D|1I|z]|C
—|IN|V|—|—=|—=|—=]2z]C

Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Set to “1” when the result of the operation (regarded as a signed operation) is a value outside
the range of —32768 to +32767 (-128 to +127 when flag x is “1"). Otherwise, cleared to “0.”

Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”
Cleared to “0” when the borrow occurs. Otherwise, set to “1.”

Addressing mode Syntax Machine code Bytes | Cycles

IMM SUBX #imm 0116, imm+4016 2 2

Note : Any value from 0 to 31 can be set to imm.

Description example :

CLP
SUBX
SEP
SUBX

#IMM X « X — IMM(O to 31)

#IMM XL « XL— IMM(O to 31)

4-204

7900 Series Software Manual

SUBY

SUBtract immediate from index register Y S U BY

Function

Operation data length :

Operation

Description

Status flags

N

Subtract

16 bits or 8 bits

Y < Y- IMM (IMM = 0 to 31)

When x = “0”
Y Y
L - fetm
When x = “1”
Yo Yo

o g e R

O In this case, the contents of Yu do not change.

Subtracts the immediate value (0 to 31) from the contents of Y, and stores the result in Y.
e This instruction is unaffected by flag m.
e This instruction cannot operate in decimal. Set flag D = “0” when using this instruction.

PLIN|V | m|x|D|1]|Zz]|C
—IN|V|—|—=]|—=]—=|2z]|C

Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Set to “1” when the result of the operation (regarded as a signed operation) is a value outside
the range of —32768 to +32767 (-128 to +127 when flag x is “1"). Otherwise, cleared to “0.”

Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”
Cleared to “0” when the borrow occurs. Otherwise, set to “1.”

Addressing mode Syntax Machine code Bytes | Cycles

IMM SUBY #imm 0116, imm+6016 2 2

Note : Any value from 0 to 31 can be set to imm.

Description example :

CLP
SUBY
SEP
SUBY

X

#IMM 'Y < Y = IMM(O to 31)
X

#IMM YL < YL — IMM(O to 31)

7900 Series Software Manual 4-205

TAD n

Transfer accumulator A to Direct page register n TAD n

Function

Operation data length :

Operation

Description

Status flags

Transfer between registers
16 bits

DPRn ~ A (n=0to 3)
DPRn A

Transfers the contents of A to the specified DPRn (DPRO to DPR3) in 16-bit length.
e Specify one of DPRO to DPR3 for the destination of transfer.
The contents of A do not change.

This instruction is unaffected by flag m.

This instruction includes the function of the TAD instruction in the conventional 7700 Family.

IPLIN| V| m| x| D] I Z | C

Addressing mode Syntax Machine code Bytes | Cycles

IMP

TAD n 3116, N216 2 3

Note : Any value from O to 3 can be set to n.

Description example :

TAD
TAD

0 ; DPRO ~ A
1 ; DPR1 ~ A

4-206

7900 Series Software Manual

TAS Transfer accumulator A to Stack pointer TAS

Function . Transfer between registers
Operation data length : 16 bits

Operation S <A

Description . Transfers the contents of A to S in 16-bit length. The contents of A do not change.
e This instruction is unaffected by flag m.

Status flags
IPLI N|V | m| x| D | Z | C
Addressing mode Syntax Machine code Bytes | Cycles
IMP TAS 3116, 8216 2 2
Description example :
TAS 'S < A

7900 Series Software Manual 4-207

TAX Transfer accumulator A to index register X TAX

Function . Transfer between registers

Operation data length : 16 bits or 8 bits

Operation o X <A
When x = “0”
X A
L Lo-
When x = “1”

Xt AL
O In this case, the contents of Xu do not change.

Description . Transfers the contents of A to X. The contents of A do not change.

Status flags

IPLI N | V| m]| X D | Z | C
— I N|—| —| —| —| — 1| Z | —
N : Setto “1l” when MSB of the operation result is “1.” Otherwise, cleared to “0.”
Z . Setto “1” when the operation result is “0.” Otherwise, cleared to “0.”
Addressing mode Syntax Machine code Bytes | Cycles
IMP TAX C4is 1 1
Description example :
CLP X
TAX X <« A
SEP X
TAX XL« AL

4-208 7900 Series Software Manual

TAY

Transfer accumulator A to index register Y

TAY

Function

Operation data length :

Operation

Description

Status flags

Transfer between registers

16 bits or 8 bits

Y « A
When x = “0”

Y A
L -]
When x = “1”

Yo AL
O In this case, the contents of Yu do not change.

Transfers the contents of A to Y. The contents of A do not change.

IPL| N | V| m| X D | Z | C
— I N| —| —| — | —| —1| Z | —
N Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”
4 Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”
Addressing mode Syntax Machine code Bytes | Cycles
IMP TAY D416 1 1
Description example :
CLP X
TAY Y <« A
SEP X
TAY YL < AL

7900 Series Software Manual

4-209

TBD n

Transfer accumulator B to Direct page register n TB D n

Function

Operation data length :

Operation

Description

Status flags

Transfer between registers
16 bits

DPRn - B (n=0to 3)
DPRn B

Transfers the contents of B to the specified DPRn (DPRO to DPR3) in 16-bit length.
e Specify one of DPRO to DPR3 for the destination of transfer.
The contents of B do not change.

This instruction is unaffected by flag m.

This instruction includes the function of the TBD instruction in the conventional 7700 Family.

IPLIN|V|Im| x| D] Z | C

Addressing mode Syntax Machine code Bytes | Cycles

IMP

TBD n Bl1s, N216 2 3

Note : Any value from O to 3 can be set to n.

Description example :

TBD
TBD

0 ; DPRO -~ B
1 ; DPR1 -~ B

4-210

7900 Series Software Manual

TBS

Transfer accumulator B to Stack pointer

TBS

Function

Transfer between registers

Operation data length : 16 bits

Operation

Description

Status flags

S «B

Transfers the contents of B to S in 16-bit length. The contents of B do not change.
e This instruction is unaffected by flag m.

IPL

Addressing mode

Syntax

Machine code

Bytes

Cycles

IMP

TBS

Blis, 8216

Description example :

TBS

7S « B

7900 Series Software Manual

4-211

TBX Transfer accumulator B to index register X TBX

Function . Transfer between registers

Operation data length : 16 bits or 8 bits

Operation X <« B
When x = “0”
X B
L Lo-
When x = “1”

Xt BL
O In this case, the contents of Xu do not change.

Description . Transfers the contents of B to X. The contents of B do not change.

Status flags

IPLI N | V| m]| X D | Z | C
— I N|—| —| —| —| — 1| Z | —
N : Setto “1l” when MSB of the operation result is “1.” Otherwise, cleared to “0.”
Z . Setto “1” when the operation result is “0.” Otherwise, cleared to “0.”
Addressing mode Syntax Machine code Bytes | Cycles
IMP TBX 8116, C416 2 2
Description example :
CLP X
TBX ;X « B
SEP X
TBX ; XL« BL

4-212 7900 Series Software Manual

TBY

Transfer accumulator B to index register Y

TBY

Function

Operation data length :

Operation

Description

Status flags

Transfer between registers

16 bits or 8 bits

Y -« B
When x = “0”

Y B
L -]
When x = “1”

Yo B
O In this case, the contents of Yu do not change.

Transfers Y with the contents of B. The contents of B do not change.

IPL| N | V| m| X D | Z | C
— I N| —| —| — | —| —1| Z | —
N Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”
4 Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”
Addressing mode Syntax Machine code Bytes | Cycles
IMP TBY 8116, D416 2 2
Description example :
CLP X
TBY 'Y < B
SEP X
TBY YL « B

7900 Series Software Manual

4-213

TDA N

Transfer Direct page register n to accumulator A TDA n

Function

Operation data length :

Operation

Description

Status flags

Transfer between registers

16 bits or 8 bits

A — DPRn (n=0to 3)
When m = “0”
A DPRnN
C T 11]
When m = “1”
AL DPRnNL

-

O In this case, the contents of Ax do not change.

Transfers the contents of the specified DPRn (DPRO to DPRS3) to A.

e Specify one of DPRO to DPR3 for the destination of transfer.

e The contents of DPRn do not change.

e This instruction includes the function of the TDA instruction in the conventional 7700 Family.

IPL Vim| x| D] I C
— I N|—| —| —| —| — 1| Z | —

pzd
N

Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”
Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

Addressing mode Syntax Machine code Bytes | Cycles

IMP TDA n 3116, N216+4016 2 2

Note : Any value from 0 to 3 can be set to n.

Description example :

TDA
TDA

0 ; A -« DPRO
1 ; A « DPR1

4-214

7900 Series Software Manual

TDB n

Transfer Direct page register n to accumulator B TD B n

Function

Operation data length :

Operation

Description

Status flags

Transfer between registers

16 bits or 8 bits

B —~ DPRn (n=0to 3)
When m = “0”
B DPRnN
C T[T]
When m = “1”
BL DPRnNL

-

O In this case, the contents of Bu do not change.

Transfers the contents of specified DPRn (DPRO to DPR3) to B.

e Specify one of DPRO to DPR3 for the destination of transfer.

e The contents of DPRn do not change.

e This instruction includes the function of the TDB instruction in the conventional 7700 Family.

IPL Vim| x| D] I C
— I N|—| —| — | —| —1| Z | —

pzd
N

Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”
Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

Addressing mode Syntax Machine code Bytes | Cycles

TDB n Blis, n216+4016 2 2

Note : Any value from 0 to 3 can be set to n.

Description example :

TDB
TDB

0 ; B < DPRO
1 ; B « DPR1

7900 Series Software Manual 4-215

TDS Transfer Direct page register to Stack pointer TDS

Function . Transfer between registers

Operation data length : 16 bits

Operation . S « DPRO
S DPRO
Description . Transfers the contents of DPRO to S in 16-bit length.

e The contents of DPRO do not change.

Status flags

IPLI N| V| m| x| D I Z | C
Addressing mode Syntax Machine code Bytes | Cycles
IMP TDS 3116, 7316 2 2
Description example :
TDS ; S —« DPRO

4-216 7900 Series Software Manual

TSA

Transfer Stack pointer to accumulator A

TSA

Function . Transfer between registers

Operation data length : 16 bits or 8 bits

| - |

Operation A <S
When m = “0”
A
When m = “1”

-

0 The contents of Ax do not change.

Description . Transfers the contents of S to A. The contents of S do not change.

Status flags

IPL| N | V| m| X D | VA
— |/ N|—|—|—|—|—| Z
N : Setto “1l” when MSB of the operation result is “1.” Otherwise, cleared to “0.”
Z : Setto “1” when the operation result is “0.” Otherwise, cleared to “0.”
Addressing mode Syntax Machine code Bytes | Cycles
IMP TSA 3116, 9216 2 2
Description example :
CLM
TSA A« S
SEM
TSA AL < SL

7900 Series Software Manual

4-217

TS B Transfer Stack pointer to accumulator B TS B

Function . Transfer between registers

Operation data length : 16 bits or 8 bits

Operation : B <« S
When m = “0”
B S
I
When m = “1”
BL St

O The contents of B+ do not change.

Description . Transfers the contents of S to B. The contents of S do not change.

Status flags

IPLI N | V| m]| X D | Z | C
— I N|—| —|—=| —| —| Z | —
N : Setto “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”
Z : Setto “1” when the operation result is “0.” Otherwise, cleared to “0.”
Addressing mode Syntax Machine code Bytes | Cycles
IMP TSB Blies, 9216 2 2
Description example :
CLM
TSB ;B « S
SEM
TSB ; BL « S

4-218 7900 Series Software Manual

TSD

Transfer Stack pointer to Direct page register

TSD

Function

Operation data length :

Operation

Description

Status flags

Transfer between registers
16 bits

DPRO - S
DPRO S

Transfers the contents of S to DPRO in 16-bit length.

e The contents of S do not change.

IPLI N| V| m| X

Addressing mode Syntax Machine code

Bytes

Cycles

IMP

TSD 3116, 7016

Description example :

TSD

; DPRO - S

7900 Series Software Manual

4-219

TSX Transfer Stack pointer to index register X TSX

Function . Transfer between registers

Operation data length : 16 bits or 8 bits

Operation . X <« S
When x = “0”
X S
e
When x = “1”
XL St

O The contents of X# do not change.

Description . Transfers the contents of S to X. The contents of S do not change.

Status flags

IPLI N | V| m]| X D | Z | C
— I N|—| —|—=| —| —| Z | —
N : Setto “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”
Z : Setto “1” when the operation result is “0.” Otherwise, cleared to “0.”
Addressing mode Syntax Machine code Bytes | Cycles
IMP TSX 3116, F216 2 2
Description example :
CLP X
TSX ;i X « S
SEP X
TSX ; XL« SL

4-220 7900 Series Software Manual

TXA

Transfer index register X to accumulator A TXA

Function

Operation data length :

Operation

Description

Status flags

Transfer between registers
16 bits or 8 bits

A« X
When m = “0” and x = “0”
A X

When m = “0” and x = “1”

A Xu
Lo J-EE]

0 The data “0016” is set to An.

When m = “1”
AL XL

-]

O The contents of Au do not change.

Transfers the contents of X to A. The contents of X do not change.

PLIN| V| m|x |D|I |Z]|C
—IN| =] === =]2z2]|=

Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”
Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

Addressing mode Syntax Machine code Bytes | Cycles

TXA Adie 1 1

Description example :

TXA

A <« X

7900 Series Software Manual 4-221

TXB Transfer index register X to accumulator B TXB

Function . Transfer between registers
Operation data length : 16 bits or 8 bits

Operation B <X
When m = “0” and x = “0”
B X

When m = “0” and x = “1”

(oo |- EH |

O The data “0016” is set to Bn.

When m = “1”
BL)
L]

O The contents of B+ do not change.

Description . Transfers the contents of X to B. The contents of X do not change.
Status flags PLIN|V | m|[x|D|1]|2z]|C
— [N|—|—| —| —| =z | —
N : Setto “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”
Z . Setto “1” when the operation result is “0.” Otherwise, cleared to “0.”
Addressing mode Syntax Machine code Bytes | Cycles
IMP TXB 8116, Adis 2 2
Description example :
TXB B« X

4-222 7900 Series Software Manual

TXS

Transfer index register X to Stack pointer

XS

Function

Operation data length :

Operation

Description

Status flags

Transfer between registers

16 bits or 8 bits

S « X
When x = “0”
S X
L -]
When x = “1”
S XL

(oo |- |

0 The data “0016” is set to Sk.

Transfers the contents of X to S. The contents of X do not change.

IPL

Addressing mode Syntax Machine code Bytes | Cycles
IMP TXS 3116, E216 2 2
Description example :
CLP X
TXS
SEP X
TXS St « Xi, SH « 0016

7900 Series Software Manual

4-223

TXY Transfer index register X to Y TXY

Function . Transfer between registers

Operation data length : 16 bits or 8 bits

Operation Y X
When x = “0”
Y X
L Lo-
When x = “1”
Yo XL
S

O The contents of Yu do not change.

Description . Transfers the contents of X to Y. The contents of X do not change.

Status flags
IPLI N | V|m]| X D I Z | C
— IN|—| = —| —| —=| Z | —
N : Setto “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”
Z . Setto “1” when the operation result is “0.” Otherwise, cleared to “0.”
Addressing mode Syntax Machine code Bytes | Cycles
IMP XY 3116, C216 2 2
Description example :
CLP X
XY Y « X
SEP X
XY YL <« XL

4-224 7900 Series Software Manual

TYA

Transfer index register Y to accumulator A TYA

Function

Operation data length :

Operation

Description

Status flags

Transfer between registers
16 bits or 8 bits

A~Y
When m = “0” and x = “0”
A Y

When m = “0” and x = “1”

A Yo
(oo [~]

0 The data “0016” is set to An.

When m = “1”
AL Yo

-]

0 The contents of Ax do not change.

Transfers the contents of Y to A. The contents of Y do not change.

PLIN| V| m|x|D|I|Z]C
— I N|=|=|=|=|=|2z]|=

Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”
Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

Addressing mode Syntax Machine code Bytes | Cycles

TYA B41s 1 1

Description example :

TYA

A <Y

7900 Series Software Manual 4-225

TYB Transfer index register Y to accumulator B TYB

Function . Transfer between registers
Operation data length : 16 bits or 8 bits

Operation . B <Y
When m = “0” and x = “0”
B Y

When m = “0” and x = “1”

(oo |- EH |

O The data “0016” is set to Bn.

When m = “1”
BL Yo
L]

O The contents of B+ do not change.

Description . Transfers the contents of Y to B. The contents of Y do not change.
Status flags PLIN|V | m|[x|D|1]|2z]|C
— [N|—|—| —| —| =z | —
N : Setto “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”
Z . Setto “1” when the operation result is “0.” Otherwise, cleared to “0.”
Addressing mode Syntax Machine code Bytes | Cycles
IMP TYB 8116, B41s 2 2
Description example :
TYB B <Y

4-226 7900 Series Software Manual

TYX Transfer index register Y to X TYX

Function . Transfer between registers

Operation data length : 16 bits or 8 bits

Operation X <Y
When x = “0”
X Y
L=
When x = “1”
XL Yo
e

O The contents of X« do not change.

Description . Transfers the contents of Y to X. The contents of Y do not change.

Status flags
IPL| N | V| m]| X D | Z | C
— I Nl —=| —| — | —=| —=1| Z | —
N : Setto “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”
Z . Setto “1” when the operation result is “0.” Otherwise, cleared to “0.”
Addressing mode Syntax Machine code Bytes | Cycles
IMP TYX 3116, D216 2 2
Description example :
CLP X
TYX i X <Y
SEP X
TYX P XL o« YL

7900 Series Software Manual 4-227

WIT

warr WIT

Function

Operation data length :

Operation

Description

Status flags

Clock control

Stop the CPU clock.

Stops the internal clock. However, the oscillation of the oscillation circuit is not stopped. To
restart the internal clock, generate an interrupt request or perform the hardware reset. The
microcomputer will thereby be released from the WIT state.

IPLI N|V|m| x| D I Z | C

Addressing mode Syntax Machine code Bytes | Cycles

IMP WIT 3116, 1016 2 -

Description example :

WIT

4-228

7900 Series Software Manual

XAB

eXchange accumulator A and B

XAB

Function

Operation data length :

Operation

Description

Status flags

Transfer between registers

16 bits or 8 bits

A-=>B
When m = “0”

A B
=N
When m = “1”

AL B
O In this case, the contents of Awand Bx do not change.

Exchanges the contentss of A and B.

IPL| N | V| m| X D | Z | C
— I N| —| —| — | —| —1| Z | —
N Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”
4 Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”
Addressing mode Syntax Machine code Bytes | Cycles
IMP XAB 5516 1 2
Description example :
CLM X
XAB A 2B
SEM X
XAB AL 2 BL

7900 Series Software Manual

4-229

INSTRUCTION

4.3 Notes on software development

4.3 Notes on software development
The following are notes on software development.

4.3.1 Instruction execution cycles

The number of instruction execution cycles shown in this manual is applied to an ideal operating state. The
actual instruction execution cycles vary with the instruction queue, the bus width for memory access, and
the setting for Wait state.

When estimating a theoretical program execution speed by using the values shown in this manual or when
implementing timers by software, be sure to consider that the estimated or anticipated execution time is
only an approximate value.

4.3.2 Status of flags m and x

Writing a 16-bit immediate value to the instruction operand while the contents of flag m is “1” (8 bits of data
length) or an 8-bit immediate value to the instruction operand while the contents of flag m is “0” (16 bits
of data length) causes the program to run out of control.

The above is also applied to flag x. Refer to the user’'s manual of the assembler you are using and make
sure that no discrepancy will occur between the flag state and the data length to be operated on.

4.3.3 Tips for data area location

(1) If the contents of low-order 8 bits of the direct page register (DPRnL) are set to any value other than
“0016,” the processing time is extended by 1 machine cycle as compared to the cases where the
contents are set to “0016.” Therefore, Mitsubishi recommends setting these low-order bits to “001¢”
whenever possible because this helps to increase the execution speed of program.

(2) Mitsubishi recommends locating 16-bit data at even address boundaries whenever possible because
this is effective for increasing the program execution speed. If 16-bit data are located at odd address
boundaries, 2 bus cycles need to be generated for accessing this data, resulting in a reduced program
execution speed.

4.3.4 Performing arithmetic operations in decimal
(1) Arithmetic operations can be performed in decimal by setting flag D to “1.” However, decimal operations
can be performed only by the following 4 instructions:
* ADC
* ADCB
* SBC
* SBCB
(2) Pay attention to the flag behavior when performing decimal operations. Although the results of decimal
operations are reflected correctly in flag C, the results are not reflected in any of flags Z, N, and V.

4-230 7900 Series Software Manual

APPENDIX

Appendix 1. 7900 Series machine instructions
Appendix 2. Hexadecimal instruction code tables

APPENDIX

Appendix 1. 7900 Series machine instructions

Appendix 1. 7900 Series machine instructions

[How to use this table]

e The corresponding op code, the number of execution cycles, and the number of instruction bytes are
indicated for each addressing mode of each instruction.

e A flag affected by the operation result is also indicated.

e For symbols used in this table, refer to the table on the next page. Also, refer to “Notes for machine
instruction table” on pages 5-42 and 5-43.

e The operation length of an instruction of which column “Operation length (Bit)” includes “16/8” depends
on the setting of flag m or x.

5.2 7900 Series Software Manual

APPENDIX

Appendix 1. 7900 Series machine instructions

Symbol Description Symbol Description
IMP Implied addressing mode E Accumulator E
IMM Immediate addressing mode En Accumulator E’s high-order 16 bits (Accumulator B)
A Accumulator addressing mode Ev Accumulator E’s low-order 16 bits (Accumulator A)
DIR Direct addressing mode X Index register X)
DIR, X Direct indexed X addressing mode X Index register X's high-order 8 bits
DIR, Y Direct indexed Y addressing mode X Index reg!sler X's low-order 8 bits
(DIR) Direct indirect addressing mode M Index regfster Y, . .
(DIR, X) Direct indexed X indirect addressing mode M Index register ¥'s high-order 8 l.ms
! X o X < Yu Index register Y's low-order 8 bits
(DIR), Y D!rect !nd!rect indexed Y ad}dressmg mode s Stack pointer
L(DIR) Direct indirect long addressing mode REL Relative address
L(DIR), Y Direct indirect long indexed Y addressing mode PC Program counter
ABS Absolute addressing mode PCH Program counter’s high-order 8 bits
ABS, X Absolute indexed X addressing mode PCL Program counter’s low-order 8 bits
ABS, Y Absolute indexed Y addressing mode PG Program bank register
ABL Absolute long addressing mode DT Data back register
ABL, X Absolute long indexed X addressing mode DPRO Direct page register 0
(ABS) Absolute indirect addressing mode DPRO Direct page register 0's high-order 8 bits
L(ABS) Absolute indirect long addressing mode DPROL Direct page register 0's low-order 8 bits
(ABS, X) Absolute indexed X indirect addressing mode DPRn D!rect page reg!sler n X X
STK Stack addressing mode DPRnH D!rect page reg!ster n’s high-order 8 plts
3 ! DPRNL Direct page register n's low-order 8 bits
REL Relative addressing mode .
. . . . PS Processor status register
DIR, bR Direct bit rgla!lve.addressmg.mode PSH Processor status register’'s high-order 8 bits
ABS, b, R Absolute bit relative addressing mode PSL Processor status register’s low-order 8 bits
SR Stack pointer relative addressing mode PSi(bitn) | nth bit in processor status register
(SR), Y Stack pointer relative indirect indexed Y addressing M Contents of memory
mode M(S) Contents of memory at address indicated by stack
BLK Block transfer addressing mode pointer
Multiplied Multiplied accumulation addressing mode M(bit n) nth bit of memory
accumulation Mn n-bit memory’s address or contents
op Instruction code (Op code) IMM Immediate value (8 bits or 16 bits)
n Number of cycles IMMn n-bit immediate value
Number of bytes IMMH 16-bit immediate value’s high-order 8 bits
c Carry flag IMML 16-hit immedi_ate value's onv-order 8 bit§
7 Zero flag ADH Value of 24-b!t address’s hlgh-order 8 bItS.(A237A16)
\ Interrupt disable flag ADm Value of 24-b!t address’s mlddle-order§ bits (Ais—As)
. N ADL Value of 24-bit address’s low-order 8 bits (A7—Ao)
D Decimal gperatlon mode fla.g EAR Effective address (16 bits)
X Index register length selection flag EARH Effective address's high-order 8 bits
m Data length selection flag EARL Effective address's low-order 8 bits
v Overflow flag imm 8-bit immediate value
N Negative flag immn n-bit immediate value
IPL Processor interrupt priority level dd Displacement for DPR (8 bits or 16 bits)
+ Addition i Number of transfer bytes, rotation or repeated operations
- Subtraction i1, i2 Number of registers pushed or pulled
8] Multiplication source Operand to specify transfer source
. Division dest Operand to specify transfer destination
o Logical AND
) Logical OR
0 Logical exclusive OR
1 Absolute value
] Negation
- Movement to the arrow direction
- Movement to the arrow direction
- Exchange
Acc Accumulator
Acch Accumulator’s high-order 8 bits
AccL Accumulator’s low-order 8 bits
A Accumulator A
AH Accumulator A’s high-order 8 bits
AL Accumulator A’s low-order 8 bits
B Accumulator B
B Accumulator B's high-order 8 bits
BL Accumulator B’s low-order 8 bits

7900 Series Software Manual

APPENDIX APPENDIX

Appendix 1. 7900 Series machine instructions Appendix 1. 7900 Series machine instructions

7900 Series Machine Instructions

. Addressing Modes Addressing Modes Processor Status register
Symbol Function IOpe":";_T iMP [MM | A | DIR [DIR, X[DIR, Y[(DIR) |(DIR, X)| OIR), Y| L(DIR)|L(DIR) V| ABs [aBs, x[aBs, Y[ABL [aBL, x] (aBs) [LaBs)[#8s, x| sTK | ReL [or.b,Rpes.b.R[SR [(sR), Y] BLK [maa [io[o]s] 7] 6[5]4[3] 2] 1]o
ength (BiY op| n| #|op| n|# [op| n|# [op| n[#[op| n]# [on n|# [op| n]#op| n|# [op| | # op| n[# [op| n[# op n| #|op| n|# |op(n| #|op n| #|op(n|# |op(n # fop n| #|op| n|# |op(n #|op n|#|opl n|#|op(nf#|op n|#|opl n|#|op(n|#|op n|#| IPL |N|v|m|x|D|I|Z]|C]
ABS Acc — | Acc | 16/8 Ell 3|1 ole|elofv|e]e]]+ |Z]0
(Note 1) -
81] 4(2
Elf
ABSD Ec|E| 32 31[5]2 elelolv] ol e ofe 1 2]0
90]
ADC Acc~Acc+M+C 16/8 31 3|3 215(3 |21/ 6/3 21| 73 (21} 8] 3 (21 8(3 |21] 9| 3 [21[10(3 21(5|4(21(6 [4P16|4|21(6]5[21|7 5 21)16 31219 | 3 ofe| o[NIV| || o|e|Z|C
(Notes 1 and 187 | | 8A 88| 80] 81| 88| 82] 89| E| BF| 6 8C| 8D) 83] 84
2 Bl 3|3 W1[7)3 (AL 8|3 A1) 93 [A1f103 ALfl0[3 |AL|123 [ALf123 L7 [4]AL[8 | 4[AL|8 [4]AL|8| 5(AL9 |5 A1 8 [3]A1f11] 3
81 Al 88| 80} 81 88 82| 89) IBE 8F| 186 8C| 80) 83] 84
ADCB AccL—AccL + IMM8 + C 8 ofefeIN|V]e]e|«|s |Z]|C
(Note 1)
ADCD E-E+M32+C 32 31 4|6 21| 7|3 [21f 8|3 21| 9|3 [21{10 3 (21|10{3 |21]11 3 (21|12 3 21) 7 [4]21]8 | 421(8 [4[21]8 [5]21]|9 |5 21|18 | 3]21f11) 3 ofe| [NV || o|e|Z|C
1q 9A 98| 90} 91 98] 92] 99| 9] 9| 6 oc D 93] 94]
ADD Acc ~Acc+M 16/8 26 1|2 RA| 3| 2 [2B[4 2 1116 3 [11{7{3 [11|7(3 |11|8|3 (11| 9|3 PE| 3|3 |2F|4 |3 [11[5 | 4|11]5 |5 [11]6 |5 11{5|3[11(8 |3 o] o[NIV| || o|e|Z|C
(Notes 1 and R0 21 28 22| 29| p6 2C D 93) 24
2 81 2|3 11413 |81f 5(3 911 6 (3 [91) 7|3 (91| 7|3 |91 8] 3 [91]9|3 81(4 [4181(5 (4015 |4|91(5 [5(91|6 |5 91{5 31918 |3
29 A 28| 20| 21 28] 22] 29 E 2F] 6 2C| 2D 23] 24]
ADDB Acct — AccL + IMM8 8 912 eleeInfv] oo] o] |21
(Note 1) - -
81 2|3
29
ADDD E~E+M32 32 2013 |5 PA|6]2(99 7| 2 11) 93 [11{10] 3 [11)10{3 |11|113 (11|13 E|6 |3 |9F{7 |3 |11(8 4|11|8 | 5|11{9 |5 11(8 | 3[11f11|3 ofe|oIN[V]e|e]o]s |Z]C
90} 91| 98] 92| 99| 961 9C| D 93] 94]
ADDM M =M + IMM 16/8 51| 7|4 5175 el eInpv] o o] o] |zl
(Note 3) 03 07
ADDMB M8 — M8 + IMM8 8 51| 7|4 5175 oo INe]e] o]s 1z I
02] 06|
ADDMD M32 ~M32 + IMM32 32 51|10 7 51{10| 8 ofe| o[N|V| || o|e|Z|C
83] 87
ADDS S-S +IMM8 16 31 2|3 el eInfv] o o] o] |ZIe
0A
ADDX XX+ IMM (IMM = 0 to 31) 16/8 022 e oInfv] oo] e]e |Z1e
ADDY Y Y +IMM (IMM = 0 to 31) 16/8 022 el eInfv] o] o] |ZIe
(Note 4) 2
+
imm
|

5-4 7900 Series Software Manual 7900 Series Software Manual 5-5

APPENDIX APPENDIX

Appendix 1. 7900 Series machine instructions Appendix 1. 7900 Series machine instructions
. Addressing Modes Addressing Modes Processor Status register
Symbol Function IOpe’:""_” iMP [MM | A | DIR [DIR, X[DIR, Y[(DIR) |(DIR, X)| OIR), Y| L(DIR)|L(DIR) V| ABs [aBs, x[aBs, Y[ABL [aBL, x] (aBs) [LaBs)[#8s, x| sTK | ReL [or.b,Rpes.b.R[SR [(sR), Y] BLK [maa [io[o]s] 7] 6[5]4[3] 2] 1]o
ength (Bit) op| n|#|op n|# fop| n|# [op| n| #|op| n|# |op| n[# |op[n|# fop| n|# fop| n|# fop| nf # op| nf # op| n#]op(n|# |op| n| #[on n| #[opl n|#|opl n|# op n|#[op| n|#[op| n|#|op n{#|op{ n|#|op{ n|#[op n|#[op n|#[op nf#|op nf#| PL [N|Vv|m|x|D|1]|z]|cC!
AND Acc . Acc[JM 16/8 66 1(2 6A|3 |2 (6B 4f 2 11) 6 (3 [11f 7| 3 (117 (3 |11| 8] 3(11|9(3 I6E| 3 |3 |6F| 4 |3 |11| 5| 4|11|5|5|11|{ 6|5 11{5|3(11(83 ol feN]e]e]e| | |Z]*
(Notes 1 and NN 60} 61} 68 62] 69) 66} 6C 6D) 63] 64]
2 81(2|3 8[43 [81]5]3 91| 6 (3 [91) 7|3 (91| 7| 3]91f 8] 3(91| 9| 3 81| 4[4 |81(5[4 [91|5] 4|91 5[5(91| 6|5 91 5(3191(83
66| I6A 68| 60} 61, 68] 62 69| E| 6| 66} 6C| 60) 63} 64]
ANDB AccL —AccL[JIMM8 8 23 1|2 ofo|eNfefo]e]ofe|Z]e
(Note 1) - -
81 23
23
ANDM M ~M[]IMM 16/8 51| 7|4 511 7|5 ofo|eINfefo]e]ofe |Z]
(Note 3) 63 67
ANDMB M8 — M8[]IMM8 8 51| 7| 4 511 7|5 ofo| ofN|o|]| o|e]Z|~
62] 66|
ANDMD M32 ~M32[JIMM32 32 pL{I0| 7 51/10/8 ol feN]e]o]e| o] |Z]*
E E7
ASL Arithmetic shift to the left by 1 bit| ~ 16/8 3|1 1p1(7]3]2L 8|3 21| 74 21(8[4 Sl ANL o] o] 12 [C
B|
(Note 1) m=0 A [0 El OF|
Acc or M16
@ sl Tbal- o L]
m=1 81(2|2
Acc. or M8 03
[bo] - O
ASL #n Arithmetic shift to the left by n 16/8 IC1) 6(2 ofe[eIN|e ||| |Z]|C
(Note 4) bits (n = 0 to 15) 40| +
m=0 +fmm
imm
m=1
A
[€]-
ASLD #n Arithmetic shift to the left by n 32 D1 8] 2 oo |eIN|e|o]e] ¢]s |Z|C
(Note 4) bits (n =0 to 31) 40[+
E +mm
[c]- el ool 0 imm
ASR Arithmetic shift to the right by 1 bit 16/8 64| 1|1 21|73 2183 21 7|4 (2184 ofe| o[N|o|]| ¢|e|Z|C
(Note 1) m=0 kA | sl 3 4
Acc or M16
[BTl -]
m=1 81] 2| 2
Acc. or M8 54
[BrLIool-[e]
ASR #n Arithmetic shift to the right by n bits 16/8 (C1 6|2 elo|o[N|ef]| ¢ |Z|C
(Note 4) (n=0to 15) 80| +
_ +mm
m=0_ A imin
~[bas]..Too] -
m=1 A
[B-el-[A]

5-6 7900 Series Software Manual 7900 Series Software Manual 5-7

APPENDIX APPENDIX

Appendix 1. 7900 Series machine instructions Appendix 1. 7900 Series machine instructions

Addressing Modes Addressing Modes Processor Status register
MP | IMM A DIR [DIR, X|DIR, Y| (DIR) | (DIR, X)| (DIR), Y| L(DIR)|L(DIR), ABS, X|ABS, Y| ABL |ABL, X| (ABS) |L(ABS)|(ABS, X)| STK | REL [DIR,b,R}ABS,b,R| SR |(SR), Y| BLK | MAA 10|9|B 7|6[5(4[3]2]|1]|0
op| n|#|op n|# fop| n|# [op| n| #|op| n|# |op| n[# |op[n|# fop| n|# fop| n|# fop| nf # op| nf # op| n#]op(n|# |op| n| #[on n| #[opl n|#|opl n|# op n|#[op| n|#[op| n|#|op n{#|op{ n|#|op{ n|#[op n|#[op n|#[op nf#|op nf#| PL [N|Vv|m|x|D|1]|z]|cC!

Operation

Symbol Function X
length (Bit)

<
>
@
»

ASRD #n Arithmetic shift to the right by n bits 32 D1 8] 2 efefo[Nfe]]| o[|z|C
(Note 4) (n=0to031) 80| +

E
rBLF-E o
BBC if M(bitn)=0 16/8 41) 95|41 9[6 ool ofofofe]e] ofe]e]e
(Note 3) then PC—PC +cnt + REL (-128 5A 5E|
to +127)
(cnt: Number of bytes of instruction)

BBCB if M8(bitn)=0 8 52| 841578 |5 of of of of of of of ofe]fe
then PC—PC +cnt + REL (-128
to +127)

(cnt: Number of bytes of instruction)

BBS if M(bitn)=1 16/8 41| 9|5 |41 9] 6 ofofofofe]ofe] ofe |e]e
(Note 3) then PC —PC +cnt + REL (-128 4A 4]
to +127)

(cnt: Number of bytes of instruction)

BBSB if M8(bitn) =1 8 42| 84147185 of of of of of of of ofe]fe
then PC .~ PC+cnt+REL (-128 to
+127)

(cnt: Number of bytes of instruction)

BCC if cC=0 - 90[6 | 2
then PC.PC + 2 + REL (-128 to
+127)

BCS if c=1 - Bof 6|2
then PC.PC +2 + REL (-128 to
+127)

BEQ if z=1 - Fof 6 | 2
then PC.PC +2 + REL (-128 to
+127)

BGE if NOV=0 - 6 |2
then PC.—PC + 2 + REL (-128 to
+127)

BGT if Z=0and NOV=0 - 80[6 |2
then PC . PC + 2 + REL (~128 to
+127)

BGTU if C=1landZ=0 - 40 6 (2 ofofofofe]e]e] o]
then PC—PC + 2 + REL (-128 to
+127)

BLE if Z=1orNOV=1 - AQ 6| 2
then PC . PC +2 + REL (-128 to
+127)

BLEU if C=00rz=1 - 60[6 [2
then PC . PC + 2 + REL(-128 to
+127)

BLT if NOV=1 - Eof 6 |2
then PC . PC + 2 + REL (-128 to
+127)

5-8 7900 Series Software Manual 7900 Series Software Manual 5-9

APPENDIX APPENDIX

Appendix 1. 7900 Series machine instructions Appendix 1. 7900 Series machine instructions

Addressing Modes Addressing Modes Processor Status register
MP | IMM A DIR [DIR, X|DIR, Y| (DIR) | (DIR, X)| (DIR), Y| L(DIR)|L(DIR), ABS, X|ABS, Y| ABL |ABL, X| (ABS) |L(ABS)|(ABS, X)| STK | REL [DIR,b,R}ABS,b,R| SR |(SR), Y| BLK | MAA 10|9|B 7|6[5(4[3]2]|1]|0
op| n|#|op n|# fop| n|# [op| n| #|op| n|# |op| n[# |op[n|# fop| n|# fop| n|# fop| nf # op| nf # op| n#]op(n|# |op| n| #[on n| #[opl n|#|opl n|# op n|#[op| n|#[op| n|#|op n{#|op{ n|#|op{ n|#[op n|#[op n|#[op nf#|op nf#| PL [N|Vv|m|x|D|1]|z]|cC!

Operation

Symbol Function X
length (Bit)

<
>
@
»

BMI ifN=1 - 30[6[2
then PC - PC + 2 + REL (128 to
+127)

BNE ifz=0 - oq 6[2
then PC - PC + 2 + REL (128 to
+127)

BPL if N=0 - 10[6[2
then PC - PC + 2 + REL (128 to
+127)

BRA/BRAL PC-PC+cnt+REL - 20(5|2 ofofofe]e]e
(Note 5) (BRA-128 to +127,

BRAL: —32768 to +32767)

(cnt: Number of bytes of instruction)
PG -PG+1

(When carry occurs)

PG -PG-1

(When borrow occurs)

AT 5(3

BRK PCPC+2 - 00j15| 2
(Note 6) M(S)- PG 74

PG 0016 or FF16

BSC if A(bitn) or M(bit n)= 0 16/8 01|73 [71[u1] 4 71[10(5 el olelofe] ofe o]
(Note 7) (n=0 to15), then PC—PC +cnt + A0] E
REL (-128 to +127) + + +
(cnt: Number of bytes of instruction) n n n

BSR (S)-PC - Fg| 72
PC. PC +2 + REL (~1024 to |
+1023) A

BSS if A(bitn) or M(bitn)=1 (n=0to 16/8 01|73 [71[u1] 4 71(10[5 oo olelofe] ofe o]
(Note 7) 15), then PC - PC + cnt + REL 0 0 ICO)
(~128 to +127) + + +
(cnt: Number of bytes of instruction) n n n

BVC if V=0 - 506 |2
then PC —PC + 2 + REL (128 to
+127)

BVS ifv=1 - 7062
then PC —PC + 2 + REL (128 to
+127)

5-10 7900 Series Software Manual 7900 Series Software Manual 5-11

APPENDIX

Appendix 1. 7900 Series machine instructions

APPENDIX

Appendix 1. 7900 Series machine instructions

Addressing Modes

Processor Status register

STK | REL [DIR.b,R}ABS,b,R| SR [(SR). 1[o[s] 7] 6[5]4[3[2] 1]o
op| n|#|op[n|#op| n|#|op| n|#|op n|# op IPL |N|V[m|x[D|1|z|C
ol e | o[N[V]e]e] o[|z|C
ofefo[N[V]]| o[+ |z|C
ol e | o[N[V]e]e] o[|z|C
ofefo[N[V]]| o[+ |z|C

Specified flag
becomes “0.”

Symbol Function IOpe’:‘i"_” WP | MM | A [
ength (Bit) op{ n| #|op[n|# op| n| #
CBEQ if Acc=IMM or M =IMM 16/8 A6[6] 3
(Notes 1 and | then PC - PC + cnt + REL(-128 to
3) +127) 1] 7] 4
(cnt: Number of bytes of instruction) I
CBEQB if Acc.=IMM8 or M8 = IMM8 8 2|63
(Note 1) then PC — PC + cnt + REL (-128 to HEN
+127) 1| 7| 4
(cnt: Number of bytes of instruction) o
CBNE if Acc # IMM or M # IMM 16/8 B6(6] 3
(Notes 1 and | then PC — PC + cnt + REL (128 to HEN
3) +127) 1] 7] 4
(cnt: Number of bytes of instruction) ks
CBNEB if Acc.#IMM8 or M8 # IMM8 8 B2(6]3
(Note 1) then PC — PC+cnt+REL(-128 to
+127)
(cnt: Number of bytes of instruction)
CLC Cc-0 - na|1)1
CLI 1-0 - 15131
CLM m-0 - 4503 | 1
cLpP PS.(bit)0 - 98] 4 |2
(n=0to 7. Multiple bits can
be specified.)
CLR Acc -0 16/8 54| 1(1
(Note 1) 1|
81(2 (2
54]
CLRB Acct 001 8 44111
(Note 1) -
81| 2|2
44
CLRM M0 16/8
CLRMB M8 0016 8
CLRX X0 16/8 E4|1|1
CLRY Y0 16/8 F4|1]1

7900 Series Software Manual

7900 Series Software Manual

5-13

APPENDIX

Appendix 1. 7900 Series machine instructions

APPENDIX

Appendix 1. 7900 Series machine instructions

Operation
length (Bit)

Processor Status register

<

10[9[8

7

6

5|4[3|2[1]0

IPL

N

\

m|x|D|1|Z|C!

0

16/8

32

16/8

32

16/8

16/8

16/8

16/8

>

16/8

16/8

Symbol Function
CLv V-0
CMP Acc-M
(Notes 1 and
2)
CMPB Acce—- IMM8
(Note 1)
CMPD E - IMM32
CMPM M- IMM
(Note 3)
CMPMB M8 — IMM8
CMPMD M32 — IMM32
CPX X-M
(Note 8)
CPY Y-M
(Note 8)
DEBNE M M = IMM(IMM = 0 to 31)
(Note 4) if M # 0, then PC .~ PC + cnt + REL
(~128 to +127)
(cnt: Number of bytes of instruction)
DEC Acc ~Acc—1
(Note 1) or
MeM-1
DEX XeX-1
DEY YeY-1
DIV A (quotient) ~ (B, A)+M
(Notes 2,9, | B (remainder)
and 10)

16/8

7900 Series Software Manual

7900 Series Software Manual

APPENDIX

Appendix 1. 7900 Series machine instructions

APPENDIX

Appendix 1. 7900 Series machine instructions

Symbol

Function

<

DIVS
(Notes 2, 9,
and 10)

A (quotient) (B, A) +M
B (remainder) (Signed)

DXBNE
(Note 4)

XX=IMM (IMM =0 to 31)

if X #0, then PC-PC + cnt + REL
(-128 to +127)

(cnt: Number of bytes of instruction)

DYBNE
(Note 4)

Y <Y =IMM (IMM = 0 to 31)

if Y20, then PC — PC + cnt + REL
(~128 to +127)

(cnt: Number of bytes of instruction)

EOR
(Notes 1 and
2)

Acc . AccIM

EORB AccL — AccLOIMMB
(Note 1)
EORM M ~MOIMM
(Note 3)
EORMB M8 — M8JIMM8
EORMD M32 ~M320IMM32
EXTS Acc AccL (Extension sign)
(Note 1) (Bit 7 of AccL = 0)
bis b7 bo
00000000J0]
Accn Accc
(Bit 7 of AccL = 1)
bis b7 bo
11111111
ACCH ACCL
EXTSD E~Eu(=A) (Extension sign)
(Bit 15 of A = 0)
bis bo bis bo
00000000 [0 |
En(B) EA)
(Bit150f A=1)
bis bo b1s bo
11111111
En(B) Ei(A)
EXTZ Acc AccL (Extension zero)
(Note 1) bis bs b7 bo
00000000]] 2
Acch Acc.
EXTZD E — E.(= A) (Extension zero)

bis bs b7 bo

En(B) E(A)

Addressing Modes Processor Status register
STK | REL [DIR,b,RIABS,b,R| SR [(SR), 5(4[3]2| 1|0
op| n|#|op n|#]op| n|#]op| n|#|og n|# op m|x|D|1]z|c

21{24{3 121 oo |1 |Z]C

F3) 2

1] 5|3 |11 oo ez

73 74

9115 (3 |91

73 74]
ofef el |Z]e
ofef ofe|z]*
olo]ofe [Z]e
olo]ofe [Z]e
ofefefe |z]
ofefefe |Z]e
olefefe |Z]e
olefefe |Z]e

7900 Series Software Manual

7900 Series Software Manual

APPENDIX APPENDIX

Appendix 1. 7900 Series machine instructions Appendix 1. 7900 Series machine instructions

Addressing Modes Addressing Modes Processor Status register
MP | IMM A DIR [DIR, X|DIR, Y| (DIR) | (DIR, X)| (DIR), Y| L(DIR)|L(DIR), ABS, X|ABS, Y| ABL |ABL, X| (ABS) |L(ABS)|(ABS, X)| STK | REL [DIR,b,R}ABS,b,R| SR |(SR), Y| BLK | MAA 10|9|B 7|6[5(4[3]2]|1]|0
op| n|#|op n|# fop| n|# [op| n| #|op| n|# |op| n[# |op[n|# fop| n|# fop| n|# fop| nf # op| nf # op| n#]op(n|# |op| n| #[on n| #[opl n|#|opl n|# op n|#[op| n|#[op| n|#|op n{#|op{ n|#|op{ n|#[op n|#[op n|#[op nf#|op nf#| PL [N|Vv|m|x|D|1]|z]|cC!

Operation

Symbol Function X
length (Bit)

<
>
@
»

INC Acc ~Acc + 1 16/8 3| 1| 1182|6241/ 8(3 87| 63]41] 8| 4 ofo| ofN|o|]| o|e]Z|~
(Note 1) or 88| BF
MeM+1 61| 2

A3
INX XeX+1 16/8 C3 1|1 efefo[Nfe]e]e] ofe|2]*

~

INY YeY+1 16/8 D3 1)1 ool eINfe|o]e]]e 2]

JMP/IMPL When ABS specified - 9g4|3 IACI5 [4 3Y7(4(309]|4pC7 (3 ofefe]ele]e]efefe]|
PCL~ADL 51 50)
PCH~ ADm

When ABL specified
PCL-ADL

PCH— ADm

PG —ADH

When (ABS) specified
PCL . (ADwm, ADL)
PCH. (ADM,ADL + 1)

When L(ABS) specified
PCL —(ADm, ADL)
PCH . (ADM,ADL + 1)
PG . (ADM,ADL +2)

When (ABS,X) specified
PCL . (ADM, ADL + X)
PCH (ADM,ADL + X + 1)

JSR/JSRL When ABS specified - 90 6/3 JAD(7 4 BD| 8|3 oo fefefe]o]e] efe|e]e
M(S) - PCH
S.S-1

M(S) - PCL
S~S-1

PCL~ ADL
PCH— ADm

When ABL specified
M(S) — PG

S-S-1

M(S) PCH

When (ABS,X) specified
M(S) —PCh

PCL < (ADw, ADL+ X)
PCH - (ADw, ADL + X + 1)

LDA Acc M 16/8 16|12 [A[3]2|(1B] 4] 2 11(6 (3 (11 7| 3|18[6] 2 |11(8| 3[19| 8| 2 E[3[3|1F| 4|3 [L1|5[4|1C| 4| 4|10y 5|4 11153 [11] 8(3 oo eINfeo]e]o]e |z]|
(Notes 1 and 1o 11 12] 116 13 14
2)

15 hal | e o | [a1 | fsof | 2| | [l e[| [iFf | |u6| | |oc| | |0 13 | |

LDAB Acc M8 (Extension zero) 16 28(1 |2 A[3 |2 [0B] 4] 2 111(6 (3 (11| 7| 3]08[62 |L11| 8| 3]09 8f 2 OE[3 (3 |OF| 4|3 [11| 5[4|0C| 4 4[0D) 5|4 11/ 5] 3(11 8|3 slelelo]e]e]e]o]e |Z]*
(Note 1) 0 01} 02] 06} 03] 04

28 A 0| 0 01] 08 02 09 E OF| 06} 0C| 0D) 03 04

5-18 7900 Series Software Manual 7900 Series Software Manual 5-19

APPENDIX APPENDIX

Appendix 1. 7900 Series machine instructions Appendix 1. 7900 Series machine instructions
. Addressing Modes Addressing Modes Processor Status register
Symbol Function IOpe":";_T iMP [MM | A | DIR [DIR, X[DIR, Y[(DIR) |(DIR, X)| OIR), Y| L(DIR)|L(DIR) V| ABs [aBs, x[aBs, Y[ABL [aBL, x] (aBs) [LaBs)[#8s, x| sTK | ReL [or.b,Rpes.b.R[SR [(sR), Y] BLK [maa [io[o]s] 7] 6[5]4[3] 2] 1]o
eng (I)upn#opn#opn#opn#opn#opn#opn#opn#opn#opn#opn# op n| #|op| n|# |op(n| #|op n| #|op(n|# |op(n # fop n| #|op| n|# |op(n #|op n|#|opl n|#|op(nf#|op n|#|opl n|#|op(n|#|op n|#| IPL |N|v|m|x|D|I|Z]|C]
LDAD E ~M32 32 20 3|5 A|6(28B|7(2 11|19 |3 [11(10] 3(88|9 (2 [1]11| 3 (89|11 2 BE| 6|3 [8F|7 |3 [L1{8|4|8C|7|4|8D| 8|4 11{ 8| 3[11(11] 3 ofo|eINfefo]e]ofe |Z]
80} 81] 2 6 83] 84
LDDn DPRn ~ IMM16 16 B8[13| 4 ofo|ofofefole] ofe o]
(Notes 11 (n=0to 3. Multiple DPRs can 120 | |
and 12) be specified.) et
20|+ |+
21|21
LDT DT ~IMM8 8 31 43 ofo ofofefofe] ofe o]
47
LDX XM 16/8 cq 12 2|3|2 41| 5| 3 07] 3|3 41(5[4 ofo|oINfefo]e]ofe|Z]e
(Note 8) 05, 06,
LDXB X — IMM8 (Extension zero) 16 271 1]2 ofefe]lO)e]o]e]e]e|Z]e
LDY Y-M 16/8 D61 |2 2132 1415|3 17 3|3 [41) 5|4 ol feN]e]e]o]e]s|Z]
(Note 8) B 1]
LDYB Y — IMM8 (Extension zero) 16 371 1|2 ofefe]o]e]e]e|e]s|Z]
LSR Logical shift to the right by 1 bit 16/8 W3\ 1|1 (21| 7| 32183 21|17 [4121] 8| 4 ofo|efo]ef]| ¢|e|z]C
(Note 1) 24 | |28 26] 2F|
m=0
Acc or M16
bug]... Joo] - C L]
m=1 81 2 2
Acc. or M8 43
0-[b7[...Jbo] - C
LSR #n Logical shift to the right by n bits (n = 16/8 C1) 6[2 ofo|efo]ef]| ¢|e|z]C
(Note 4) 0to 15) +
m=0 imm
LSRD #n Logical shift to the right by n bits (n = 32 D1f 8] 2 ofo|efo]ef]| ¢|e|Z]C
(Note 4) 0to31) +
imm

5-20 7900 Series Software Manual 7900 Series Software Manual 5-21

APPENDIX APPENDIX

Appendix 1. 7900 series machine instructions Appendix 1. 7900 series machine instructions
) Destination Destination Processor Status register
Symbol Function IOpetLa";_’!‘ mp [imm [A | oir [oIR x[DIR, Y] @IR) [DIR,)DR), Y]LOIR) |LOR), ABs |aBs, x[aBs, Y] ABL [asL, x] (ABs) [Lias)|aBs, x| sTK | ReL [or.b,R]es.b.R[SR [isRr), [Bk [maa fio[o[s]7]6]s]4]3]2[1]o
ength (Bit) op[n|{# jop| n|#|op n|#[op n|# [op{ n| #|op n{#|op(n[#|op n|#[op n|#[op n|#op nf# op| n|# fopl n|#[op|n|#[op n|#[op|n|# op|n|# [op n| #|op| n|# fop| n|# fop| n| # op| n|# fop| n|# |o n[#fop| n|# Jop| n|# log nf#| 1pL [N|VvIm|x[D|1]Z]|C!
MOVM m=0 16/8 MM o[5 (3 (31 7] 4 96| 4| 4(34 6|5
(Note 2) M16(dest) — M16(source) 47 57]
me1 DR 58] 6 |3 785 (4
M8(dest) — M8(source) ®
8
Slor.x 79614
n
ABS k|6 [4 7c| 5[5
Ass. x o 7 [4
MOVMB M8(dest) - M8(source) 8 MM h9 5| 331 7| 4 B9|4[4p1f6[5 elelole o] o o] o]+
3 s8]
R 4] 6 |3 68|54
3 696 [4
5[DIR, X
o
2]
ABS k| 6|4 6c|5 |5
ABS, X ko[7 [4
MOVR m=0 16/8 61 3|2 6132
(Notes 7 and | M16(destl) — M16(sourcel) MM 10] +| + 30]+ | +
13) : : +|5n| 20| +[4nf3n
: : N n
M16(dest n) - M16(source n)
61/ 3|2 613 [2
m=1 DIR 50(+| + 70[+ | +
M8(dest1) - M8(sourcel) +|6n|2n| + [onf3n
: : n n
M8(dest n) — MB(source n) © 7113|2
2|or x 70+ +
(n=0to 15) 3 + [6nf3n
n
61 3|2 613 [2
90| +| + BO[+| +
ABS +6n|3n| + [5nan
n n
71 3|2
10 + | +
ABS, X +|6nf3nl
n
MOVRB M8(destl) — M8(sourcel) 8 61]3 |2 613 [2 elelele |l o] oo] o]
(Note 7) . . MM 00|+ |+ 20(+ |+
3 B 5n[21 4n3)
M8(dest n) - MB(source n) ; e ; "
(n=to15) o1 32 6132
DIR o1 sol+ | +
+ {6n|2n| +15n|3n
n n
713 |2
@
£ 60|+ [+
S|oR x + [6n[3n
n n
61/ 3|2 613 [2
80| + | + 0| +| +
ABS +[6n|3n| + [5njan
n n
71 3|2
00| +
ABS, X ool
n

5-22 7900 series Software Manual 7900 series Software Manual 5-23

APPENDIX APPENDIX

Appendix 1. 7900 Series machine instructions Appendix 1. 7900 Series machine instructions
. Addressing Modes Addressing Modes Processor Status register
Symbol Function IOpe":";_T iMP [MM | A | DIR [DIR, X[DIR, Y[(DIR) |(DIR, X)| OIR), Y| L(DIR)|L(DIR) V| ABs [aBs, x[aBs, Y[ABL [aBL, x] (aBs) [LaBs)[#8s, x| sTK | ReL [or.b,Rpes.b.R[SR [(sR), Y] BLK [maa [io[o]s] 7] 6[5]4[3] 2] 1]o
ength (Bit) op{ n| #|op| n|# op| n|# |op| n[#op| n| # [op| n|# [op| n|#op| n|# op| n|# op| n[# op| n| # op| n| #|op| n|# |op[n| #|op| n| #|op(n|# |op[n # [op| n| #|op(n|# |op| n[#|op| n|#|op| n|# |op[n[#|op n|#|op[n|#|op(n[#|op n|#| L |N[v|m|[x|D|1|z|cC]
MPY (B,A)-AOM 16/8 31(8(3 1(9] 3 [21f10] 3 2111 3(21(12| 3 (2112 3 |21|13| 3[21(14] 3 21(9 |4 2110 4 [21)10] 4|21 [10{ 5 (21|11 |5 21{10] 3 (2113 3; ofe|o|Nfe|e]e] | |Zz]0
(Notes 2 and & ICAl C C C1] C C2 IC9) ICE| ICF| 6 IcC CD) c3 C4
14)
MPYS (B, A) - A0 M (Signed) 16/8 31 8|3 119 |3 [21[10| 3 21)11| 3(21(12| 32112 32113 3[21|14f 3 21(9 |4 [21[10(4 [21)10] 4|21 [10{5 [21)11(5 21{10| 3{21{13| 3 ofe| o[N|o|]| |e|Z|O
(Notes 2 and D7 A DB 0y DI D8 D2 D9 DH DF| D6} DQ DO D! D4
14)
MVN M(Y + K) — M(X + k) 16/8 31(5(4 o olo oo]e]e]e]e |o
(Note 15) k=0toi—-1 28] +
i Number of transfer bytes 5i
specified by accumulator A
MVP M(Y=k) - M(X—k) 16/8 31(9|4 elo el oo]ofe] ol]e]
(Note 16) k=0toi-1 2A +
i Number of transfer bytes 5i
specified by accumulator A
NEG Acc ~ -Acc 16/8 24 1] 1 oo |eIN|V]e]e] ¢+]Z|C
(Note 1) -
81(2(2
24]
NEGD E--E 32 3142 ole foINfv e e Lol 2]
80]
NOP PC-PC+1 - 11 ofo|ofofefofe] ofe o]
When catty occurs in PC
PG PG +1
ORA Acc - Acc[IM 16/8 56(112 PA|3|2 [5Bf 4|2 (1116 |3 (11| 73 [11)7 |3 |11| 8| 3 (11|93 5E| 3|3 |5F| 4|3 |11{ 5[4|11|5|5|11|{ 6|5 11 5|3(11(8|3 ofo|oINfe]ofe]o]e]Z]e
(Notes 1 and HEE B0 51| b8 52] 59 56} 5C 50) 53] 54]
2 8123 81]43 [81] 5|3 01(6 (3 (92| 7| 391 7{3 |91/ 8| 391 9| 3 81] 4[4 |81(54 (91| 54|91 5[5 [91) 6|5 91| 5(3)91f 83
56| PA 58| B0 51 58] 52| 59| 5E| 5F 56} 5C| 50) 53 54
ORAB Acct - Acc.IMM8 8 63 12 e foIne e]e] o] e 2]«
(Note 1) - -
81(2|3
63|
ORAM M ~MmOMM 16/8 pL|7]4 511715 oo o[N|o|]| ofe]Z]
(Note 3) B3 37
ORAMB M8 — M8LIIMM8 8 51| 7| 4 517 |5 ofo|eINfe o] ofe]Z]
B2 36
ORAMD M32 ~M32[0MM32 32 5110 7 51{10| 8 ofo o Nfe [ole]efe 2]
B3 BT
PEA M(S) ~IMMH 16 31| 5|4 ofo|ofofefofe] ofe o]
S-S-1 4G
M(S) ~IMML
S-S-1
PEI M(S) ~M((DPRn) + dd + 1) 16 31|73 ol fe]o]e]o]efefe]e]s
S-S+1 48]
M(S) —M((DPRn)+dd)
S-S-1 (n=0t03)

5-24 7900 Series Software Manual 7900 Series Software Manual 5-25

APPENDIX APPENDIX

Appendix 1. 7900 Series machine instructions Appendix 1. 7900 Series machine instructions
. Addressing Modes Addressing Modes Processor Status register
Symbol Function IOpe":";_T iMP [MM | A | DIR [DIR, X[DIR, Y[(DIR) |(DIR, X)| OIR), Y| L(DIR)|L(DIR) V| ABs [aBs, x[aBs, Y[ABL [aBL, x] (aBs) [LaBs)[#8s, x| sTK | ReL [or.b,Rpes.b.R[SR [(sR), Y] BLK [maa [io[o]s] 7] 6[5]4[3] 2] 1]o
ength (Bit) op| n|#|op n|# fop| n|# [op| n| #|op| n|# |op| n[# |op[n|# fop| n|# fop| n|# fop| nf # op| nf # op| n#]op(n|# |op| n| #[on n| #[opl n|#|opl n|# op n|#[op| n|#[op| n|#|op n{#|op{ n|#|op{ n|#[op n|#[op n|#[op nf#|op nf#| PL [N|Vv|m|x|D|1]|z]|cC!
PER EAR ~PC + IMM16 16 3164 ofo|ofofefole] ofe]e]e
M(S) - EARH 40)
S-S-1
M(S) — EARL
S-S-1
PHA m=0 16/8 85(4 |1 ofefe]e]e]e]ofefe]e]e
M(S) — An
~S-1
M(S) — AL
~S-1
m=1
M(S) - AL
~S-1
PHB m=0 16/8 81(5 |2 oo fe]efoo]e]e]e]e]e
M(S) - BH 85,
~S-1
M(S) - BL
~S-1
m=1
M(S) — BL
S-S-1
PHD M(S) — DPROH 16 3[4 (1 elo el]efe]ofe]]
S-S-1
M(S) - DPROL
S-S-1
PHD n M(S) — DPRnH 16 Baf12| 2 ool ool efe] o] e
(Note 11) S.S-1 01
M(S) — DPRNL oF|
Ses-1 (n=0t03)
‘When multiple DPRs are B8|11|2
specified, the above 01 [+
operations are repeated. | i
F
PHG M(S) - PG 8 31| 4|2
S-s-1 60
PHLD n M(S) — DPRnH 16 B8[14) 4 ofofofofefofe] ofe]e]e
(Note 11) S.S-1 1
M(S) - DPRnL |
S-S-1 F|
DPRn~IMM16 (n=0to 3) =
Bg|11) 2
‘When multiple DPRs are 01]+ | +
specified, the above 1Bi]2i
operations are repeated. OF|
PHP M(S)— PSH 16 s[4 |1
S-S-1
M(S) PSL
S-S-1
PHT M(S)- DT 8 31 4|2
S-S-1 ko

5-26 7900 Series Software Manual 7900 Series Software Manual 5-27

APPENDIX APPENDIX

Appendix 1. 7900 Series machine instructions Appendix 1. 7900 Series machine instructions

Addressing Modes Addressing Modes Processor Status register
MP | IMM A DIR [DIR, X|DIR, Y| (DIR) | (DIR, X)| (DIR), Y| L(DIR)|L(DIR), ABS, X|ABS, Y| ABL |ABL, X| (ABS) |L(ABS)|(ABS, X)| STK | REL [DIR,b,R}ABS,b,R| SR |(SR), Y| BLK | MAA 10|9|B 7|6[5(4[3]2]|1]|0
op| n|#|op n|# fop| n|# [op| n| #|op| n|# |op| n[# |op[n|# fop| n|# fop| n|# fop| nf # op| nf # op| n#]op(n|# |op| n| #[on n| #[opl n|#|opl n|# op n|#[op| n|#[op| n|#|op n{#|op{ n|#|op{ n|#[op n|#[op n|#[op nf#|op nf#| PL [N|Vv|m|x|D|1]|z]|cC!

Operation

Symbol Function X
length (Bit)

<
>
@
»

PHX x=0 16/8 C5 4|1 oo felefe]o]e] oo]e]e

PHY x=0 16/8 E5[4 |1 oo felefe]o]e] o]e o]

PLA m=0 16/8 os| 41 el eIn] el o] o] ol el 2]

AH—M(S)

m=1
S.S+1
AL-M(S)

PLB m=0 16/8 81| 5 [2 oelonfe] o] o el 2]
S-S+1 95|
BL—M(S)
S-S+1
B M(S)
m=1

S-S+1
BL-M(S)

PLD SeS+1 16 ba |5 |1
DPROL - M(S)
S-S+1

DPROH - M(S)

PLD n S-S+1 16 7711| 2 ofo|ofofefole] ofe]e]e
(Notes 11 and | DPRnL — M(S) 20}
12) S-S+1
DPRnH—M(S) (n=0to3) -
77}
When multiple DPRs are specified, 20
the above operations are
repeated.

PLP S-S+1 16 BS| 5|1 Value restored from
PSL-M(S) stack
S-S+1

PSH.M(S)

o |

=

PLT S.S+1 8 3162 e lefn]e o]l o] 2]
DT - M(S) 50

5-28 7900 Series Software Manual 7900 Series Software Manual 5-29

APPENDIX APPENDIX

Appendix 1. 7900 Series machine instructions Appendix 1. 7900 Series machine instructions
. Addressing Modes Addressing Modes Processor Status register
Symbol Function IOpe":";_T iMP [MM | A | DIR [DIR, X[DIR, Y[(DIR) |(DIR, X)| OIR), Y| L(DIR)|L(DIR) V| ABs [aBs, x[aBs, Y[ABL [aBL, x] (aBs) [LaBs)[#8s, x| sTK | ReL [or.b,Rpes.b.R[SR [(sR), Y] BLK [maa [io[o]s] 7] 6[5]4[3] 2] 1]o
ength (Bit) op{ n| #|op| n|# op| n|# |op| n[#op| n| # [op| n|# [op| n|#op| n|# op| n|# op| n[# op| n| # op| n| #|op| n|# |op[n| #|op| n| #|op(n|# |op[n # [op| n| #|op(n|# |op| n[#|op| n|#|op| n|# |op[n[#|op n|#|op[n|#|op(n[#|op n|#| L |N[v|m|[x|D|1|z|cC]
PLX x=0 16/8 D5[4 |1 oo eINfe|o]e] oo]zZ]"
S-S+1
XL M(S)
S-S+1
XH—M(S)
x=1
S-S+1
XL M(S)
PLY x=0 16/8 Fs| 4|1 oo eINfe|o]e] oo]z]"
S~S+1
YL M(S)
S-S+1
YH<M(S)
x=1
S-S+1
YL —M(S)
PSH M(StoS—i+1)-A, B, X... 16/8 a1l 2 ofo|ofofefole] ofe]e]e
(Note 17) S-S-i +
i- Number of bytes corresponding 2itt iz
to register pushed on stack
PUL AB X...cM(S+1toS+i) 16/8 67(13(2 When the contents of PS
(Note 18) S-S+i + is restored, this becomes
i Number of bytes corresponding 3ij the value. In the other
to register restored from stack cases, nothing changes.
RLA Rotate to the left by n bits 16/8 35|3 ofofe]o]e]e]ofofe]e]e
(Note 3) m=0 (n=0to65535) o .
8D
m=1 (n=0to255)
RMPA m=0 16/8 31 5[3]s fo | o[nIV]e|e] | |Z]C
(Note 19) Repeat 5A +
(B, A)~ (B, A) + M(DT:X)OI 14im:
M(DT:Y) (Signed)
XeX+2
YY+2
ici-1
m=1
Repeat
(B, A) — (BL, AL)+M(DT,X)
M(DT,Y) (Signed)
XeX+1
YeY+1
-1
Until i=0
i- Numder of repetitions (0 to 255)

5-30 7900 Series Software Manual 7900 Series Software Manual 5-31

APPENDIX APPENDIX

Appendix 1. 7900 Series machine instructions Appendix 1. 7900 Series machine instructions
. Addressing Modes Addressing Modes Processor Status register
Symbol Function IOpe’:""_” iMP [MM | A | DIR [DIR, X[DIR, Y[(DIR) |(DIR, X)| OIR), Y| L(DIR)|L(DIR) V| ABs [aBs, x[aBs, Y[ABL [aBL, x] (aBs) [LaBs)[#8s, x| sTK | ReL [or.b,Rpes.b.R[SR [(sR), Y] BLK [maa [io[o]s] 7] 6[5]4[3] 2] 1]o
ength (BiY op| n| #|op| n|# [op| n|# [op| n[#[op| n]# [on n|# [op| n]#op| n|# [op| | # op| n[# [op| n[# op n| #|op| n|# |op(n| #|op n| #|op(n|# |op(n # fop n| #|op| n|# |op(n #|op n|#|opl n|#|op(nf#|op n|#|opl n|#|op(n|#|op n|#| IPL |N|v|m|x|D|I|Z]|C]
ROL Rotate to the left by 1 bit 16/8 13[11 o1 7| 3|21] 8 3 1|7 |4 [21f8 |4 el eInle] o] o] o]zl
(Note 1) _ ial | |18 e[| A
m=0
12|2
13
ROL #n 16/8 C1] 6(2 oo o[N|ef o] of<|Z]C
(Note 4) 60| +
+m
imm
ROLD #n Rotate to the left by n bits (n =0 to 32 D1/ 8| 2 oo e|N]e|e]e] o]e|zlc
(Note 4) 31) 60| +
E + fimi
| m & imm
ROR Rotate to the right by 1 bit 16/8 53|11 21f7]3]2t(8)3 2|7 (4218 |4 ool on]o| o] o] o +|2]C
(Note 1) Al |8 e 3]
m=0
Acc. or M8
L Jbo]-
ROR #n Rotate to the right by n bits (n =0 to 16/8 C1] 6(2 of o o[N|e|e]e] ¢ e|z]C
(Note 4) 15) 20|+
_ + fim
m=0 imm
RORD #n Rotate to the right by n bits (n =0 to 32 D1f 8] 2 efo[eIN[eefe] ¢z
(Note 4) 31) 0|+
+ fim)
) E ﬂ imm

5-32 7900 Series Software Manual 7900 Series Software Manual 5-33

APPENDIX APPENDIX

Appendix 1. 7900 Series machine instructions Appendix 1. 7900 Series machine instructions

Addressing Modes Addressing Modes Processor Status register
mp | ivv | A [bir [DIR x|[DIR, Y| @IR) @R, X)|(DIR). Y] LOIR)[LIDR), aBs, x[aBs, Y[ABL [aBL, x] (ABS) [Lags)[aes, x| sTK | ReL [or.b,Rpes.b.R[SR [(sR), Y] BLK [maa [io[o[s] 7] 6[5]4[3] 2] 1o
op[n[#[od n[# op| n[# [op] [#]op] n[# [od n[# [on] n]#]op| n]# fop| n[# op| n[# [op] n[# o n[#[op] n[# |op| n[#]od n[#[op] n[#]op| n[#[od n]#[on n]#]op| n[#[od n]#[on n]#[op] n[#[od n]#[od n]#][on n[#]od n IPL|N|v|m|x|D|I|Z|C

RTI S-S+1 - F1[12(1 Value restored from
PSL-M(S) stack

S-S+1
PSH«—M(S)
S-S+1
PCL-M(S)
S-S+1
PCH«-M(S)
S-S+1
PG - M(S)

Operation

Symbol Function X
length (Bit)

<
>
@
»

3

RTL S-S+1 - 94110(1 ool ofofo| o] ofe]e]
PCL-M(S)
S-S+1
PCH . M(S)
S-S+1
PG~ M(S)

RTLD n S-S+1 16 77[15) 2 ofefe]ele]e]efefe]e]e
(Notes 11 and | DPRnL — M(S) (]
S-S+1
DPRNH — M(S)
S-S+1
PCL—M(S)]
S-S+1 77]12.
PCH«M(S) 7C +
S-S+1 3
PG — M(S). (n=0to3. Multiple DPRs
can be specified.)

~

RTS S-S+1 - 84(7(1 oo lelo]ofofo]o]e]e]e
PCL-M(S)
S.S+1
PCH . M(S)

RTSD n S-S+1 16 74|12 ofo|ofofefole] ofe]e]e
(Notes 11 and | DPRNL—M(S)]
S-S+1

DPRNH — M(S)
S.S+1 -
PCL-M(S) 7711
S-S+1 28| +
PCH« M(S), (n=0to 3. Multiple DPRs 3
can be specified.)

~

SBC Acc —Acc—M-C 16/8 31133 R1[5]3(21] 6] 3 R1(7 (3 [21] 8] 3|21f 8 3|21| 9| 3|21f10(3 21| 5| 4[21) 6| 4[21] 6 4]21|6|5 [21]7 |5 211 6)3[21) 9|3 oo e|N[V]|e]e] ¢]e|z|C
(Notes 1 and AT] AA |AB| A0 Al A8 A2 AY JAE| AF A6 AG AD| A A4

2 Bl 3|3 AL[7[3[ALf 8] 3 ALl 9| 3[Alf10 3]|ALj10] 3 JA1|1Y 3]|AN12| 3 IAL|7 [4|AL1| 8 [4[ALf 8] 4|AL|8(5 (AL[9 |5 ALf8 |3 AL1L(3
ATl PA IAB| 0 ALl Ag] A2 A9 IAE] JAF 6 Ad] AD| A A4

SBCB Acct —Acci— IMM8 - T 8
(Note 1)

SBCD E-E-M32-C 32 31(4|6 R1[7]3(21] 8] 3 R1(9 (3 (21101 3 p1piof 3 R1{L1| 3210123 21 7| 4218 |4 1|8 |4]21)8|5[21]9 |5 21| 8| 3)21(11(3 oo |eIN[V]e]e] ¢]e|z|C
10 BA| BB| BO B1] BS| B2 BY BH BF| B6 BC| BD| B! B4|

SEC C-1 - 04 1|1 efefofofe]e]e] ofefefr

5-34 7900 Series Software Manual 7900 Series Software Manual 5-35

APPENDIX

Appendix 1. 7900 Series machine instructions

APPENDIX

Appendix 1. 7900 Series machine instructions

Processor Status register

10[9[8

5|4[3|2[1]0

IPL

m|x|D|1|Z|C!

1] ofe]e]e

becomes “1.”

Cl

ified flag

E7|4

81 4
13E|

51(7
17

51{7
16

Symbol Function [LDIR), Y|
op)
SEM me1
SEP PSu(bit n) 1
(n=0to 7. Multiple bits can be
specified.)
STA M« Acc D!
(Note 1)
81]
DY)
STAB M8 — Accu C
(Note 1)
81]
IC9)
STAD M32 -E E9
STP Oscillation stopped
STX M X 6|
a
STY MY
SuB Acc—Acc-M 11
(Notes 1 and 3]
2 91}
39)
SUBB Accu—Acc - IMM8
(Note 1)
SUBD E~E-M32 11
A9
SUBM M <M - IMM
(Note 3)
SUBMB M8 — M8 — IMM8
SUBMD M32 ~M32 - IMM32

5-36

7900 Series Software Manual

7900 Series Software Manual

5-37

APPENDIX APPENDIX

Appendix 1. 7900 Series machine instructions Appendix 1. 7900 Series machine instructions
Addressing Modes Addressing Modes Processor Status register
Symbol Function IOpe’:""_” iMP [MM | A | DIR [DIR, X[DIR, Y[(DIR) |(DIR, X)| OIR), Y| L(DIR)|L(DIR) V| ABs [aBs, x[aBs, Y[ABL [aBL, x] (aBs) [LaBs)[#8s, x| sTK | ReL [or.b,Rpes.b.R[SR [(sR), Y] BLK [maa [io[o]s] 7] 6[5]4[3] 2] 1]o
ength (Bit) op{ n| #|op| n|# op| n|# |op| n[#op| n| # [op| n|# [op| n|#op| n|# op| n|# op| n[# op| n| # op| n| #|op| n|# |op[n| #|op| n| #|op(n|# |op[n # [op| n| #|op(n|# |op| n[#|op| n|#|op| n|# |op[n[#|op n|#|op[n|#|op(n[#|op n|#| L |N[v|m|[x|D|1|z|cC]
SUBS S.S-IMM8 16 3123 ol feInfv]e]e] o] 1z]e
08
SUBX XX = IMM (IMM = 0 to 31) 16/8 1] 2|2 el eInfv] o o] o] o] Zle
(Note 4) 40|
+
imm
SUBY Y« Y = IMM (IMM =0 to 31) 16/8 1] 2|2 el eInfv] o] o] e lZIe
(Note 4) 60|
+
imm
TAD n DPRn~A (n=0to3) 16 31| 3| 2 ofo|ofofefole] ofe]e]e
(Note 20) n2
TAS S-A 16 31| 2| 2 ofo|ofofefofe] ofe o]
82]
TAX XA 16/8 |cd1ft e feoInfe ool o] e 12
TAY YA 16/8 1|1 el eInfe] o) o] oo]2]
TBD n DPRn-B (n=0to3) 16 B1|3|2 ool ofofofe]of ofe]e]e
(Note 20) n2
TBS S-B 16 Bl 2| 2 ofo o] ofefofe] ofe]e]e
82]
TBX X-B 168 |81 2|2 el eInfe] o) o] o] o] 2]
C4
TBY Y.-B 16/8 |81 2|2 e feoInfe ool o] e 12
D4
TDAN A-DPRn (n=0to3) 168 |3 2|2 e leoInfe ool o] e 12]e
(Note 20) I
+
n2|
TDB n B DPRn (n=0to3) 16/8 pi2|2 e loInfe ool o] e 12
(Note 20) 40}
+
n2|
TDS S DPRO 16 31| 2| 2 ofo|ofofefole] ofe]e]e
73]

5-38 7900 Series Software Manual 7900 Series Software Manual 5-39

APPENDIX APPENDIX

Appendix 1. 7900 Series machine instructions Appendix 1. 7900 Series machine instructions

Addressing Modes Addressing Modes Processor Status register

Symbol Function Ope’:""_” iMP [MM | A | DIR [DIR, X[DIR, Y[(DIR) |(DIR, X)| OIR), Y| L(DIR)|L(DIR) V| ABs [aBs, x[aBs, Y[ABL [aBL, x] (aBs) [LaBs)[#8s, x| sTK | ReL [or.b,Rpes.b.R[SR [(sR), Y] BLK [maa [io[o]s] 7] 6[5]4[3] 2] 1]o

tength (Bit) op| n|#|op n|# fop| n|# [op| n| #|op| n|# |op| n[# |op[n|# fop| n|# fop| n|# fop| nf # op| nf # op| n#]op(n|# |op| n| #[on n| #[opl n|#|opl n|# op n|#[op| n|#[op| n|#|op n{#|op{ n|#|op{ n|#[op n|#[op n|#[op nf#|op nf#| PL [N|Vv|m|x|D|1]|z]|cC!

TSA A-S 168 [3122 e feInle ool e] e 12]
92|

TSB B-S 16/8 [BY2|2 e leInfe ool o] e 12]e
92|

TSD DPRO-S 16 31| 4|2 ofefe]ele]e]efefe]e]e
70}

TSX XS 16/8 [312[2 e leInle ool e] e 12]e
F2)

TXA A-X 16/8 1|1 e feInfe ool o] e 12]e

TXB B.-X 16/8 |81 2|2 e feoInfe ool o] e 12
A4

TXS SX 16/8 31 2| 2 ofefe]ele]e]efefe]e]e
E2)

TXY Y X 168 [312|2 e leInle ool o] e 12
C2

TYA A-Y 16/8 B4 1|1 e leInfe ool o] e 12]e

TYB B-Y 168 |81 2|2 e leInle ool o] e 12
B4|

TYX XY 16/8 [312[2 e leInle ool o] e 12]-
D2

wIT CPU clock stopped - 31] -2 oo felefe]o]e] oo]e]e
10}

XAB ASB 16/8 |55 2[1 e feoInfe ool o] e]Z] -

5-40 7900 Series Software Manual 7900 Series Software Manual 5-41

APPENDIX

Appendix 1. 7900 Series machine instructions

Notes for machine instructions table

This table lists the minimum number of instruction cycles for each instruction. The number of cycles of the
addressing mode related with DPRn (n = 0 to 3) is applied when DPRn. = 0. When DPRnc. # 0, add 1 to
the number of cycles.

The number of cycles also varies according to the number of bytes fetched into the instruction queue
buffer, or according to whether the memory accessed is at an odd address or an even address. Furthermore,
it also varies when the external area is accessed with BYTE = “H.”

Note

Note

Note

Note

Note

Note

Note

Note

Note

Note

Note

Note

Note

Note

1.

2.

10.

12.

13.

14.

The op code at the upper row is used for accumulator A, and the op code at the lower row is
used for accumulator B.

When handing 16-bit data with flag m = 0 in the IMM addressing mode, add 1 to the numder of
bytes (#).

When handing 16-bit data with flag m = 0, add 1 to the numder of bytes.
Imm is the immediate value specified with an operand.

The op code at the upper row is used for branching in the range of —128 to +127, and the op
code at the lower row is used for branching in the range of —32768 to +32767.

The BRK instruction is a reserved instruction for debugging tools; it cannot be used when an
emulator is used.

Any value from 0 through 15 is placed in an “n” in column “Addressing Modes.”

When handling 16-bit data with flag x = 0 in the IMM addressing mode, add 1 to the numder of
bytes.

The number of cycles is the case of the 16-bit + 8-bit operation. In the case of the 32-bit +
16-bit operation, add 8 to the number of cycles.

When a zero division interrupt occurs, the number of cycles is 16 cycles. It is regardless of the
data length.

. When placing a value in any of DPRs, the lower row is applied. When placing values to multiple

DPRs, the lower row is applied. The letter “i” represents the number of DPRn specified: 1 to 4.
A “?” indicates that the bit corressing to the specified DPRn becomes “1.”

When the source is in the addressing mode and flag m = 0, the number of bytes (#) is incremented
by n (n = 0 to 15).

The number of cycles of the case of the 8-bit O 8-bit operation. In the case of the 16-bit O
16-bit operation, add 4 to the number of cycles.

5-42

7900 Series Software Manual

APPENDIX

Appendix 1. 7900 Series machine instructions

Note

Note

Note

Note

Note

Note

15.

16.

17.

18.

19.

20.

The number of cycles is the case where the number of bytes to be transferred (#) is even.
When the number of bytes to be transferred (#) is odd, the number is calculated as;
50i+ 10

The number of cycles is the case where the number of bytes to be transferred (#) is even.

When the number of bytes to be transferred (#) is odd, the number is calculated as;
50i+ 14

Note that it is 10 cycles in the case of 1-byte thanster.

Add the number of cycles corresponding to the registers to be stored. i is the number of registers
to be stored among A, B, X, Y, DPRO, and PS. iz is the number of registers to be stored between
DT and PG.

Letter “i” indicates the number of registers to be restored.

The number of cycles is applied when flag m = “1.” When flag m="0,” the number is calculated
as;
18 O imm + 5

Any value from 0 through 3 is placed in an “n” in column “Addressing Modes.”

7900 Series Software Manual 5-43

APPENDIX

Appendix 2. Hexadecimal instruction code tables

Appendix 2. Hexadecimal instruction code tables

[How to use these tables]

e First, see instruction code table 0-A.

e For an instruction of which op code consists of 2 bytes, the code corresponding to the 2nd byte is listed
in another table. The 1st byte of the instruction listed in another table is indicated as “PAGE XX in
instruction code table 0-A.

e See the following:

Op code
A
ADD
Effective address —— 9 A D|R<€f—— Effective address
213
Number of instruction
execution cycles
O Number of
instruction bytes

O The inside of parentheses is applied when 16-bit data is handled with flag m =
“0” or flag x= “0.” Unless otherwise noted, the instruction is unaffected by
flags m and x.

5-44 7900 Series Software Manual

Instruction code table 0-A

Appendix 2. Hexadecimal instruction code tables

APPENDIX

D3-Dol gopp | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111
lexadecim
D7-D4 "\ notation 0 1 2 3 4 5 6 7 8 9 A B C D E F
(N‘f’fjl) LDX ASL SEC SEI LDX LDAB LDAB LDAB LDAB LDAB LDAB LDAB LDAB
0000 0 e | PAGEL0 DIR A IMP MP ABS | A(DIR).Y |ALDIR)Y| ADR | ADRX | AABL | AABLX | AABS | AABSX
2115 2/3 11 1/1 1/4 3/3 2/6 2/8 2/3 2/4 414 4/5 3/3 3/4
BPL LDY ROL cLc cLl LDA LDy LDA LDA LDA LDA LDA LDA LDA LDA
0001 1 REL | PAGELA DIR A IMP P AIMM ABS |A(DR)Y |ALDIR)Y| ADR | ADIRX | AABL | AABLX | AABS | AABSX
2/6 213 11 11 3 2(3)1 313 216 2/8 213 2/4 414 415 33 3/4
BRA CPX ANDB NEG SEM ADD LDXB LDAB ADDB ADD ADD LDAD ADDD ADD ADD
0010 2 REL | PAGE2-A| DR AlIMM A IMP AlIMM IMM AIMM AIMM ADIR | ADIRX | EJIMM EIMM | AABS | AABSX
2/5 213 211 11 13 2(3)/1 21 211 21 213 2/4 53 5/3 313 314
BMI cPyY EORB EXTZ EXTS SuB LDYB | CMPB sueB suB suB CMPD SUBD suB suB
0011 3 REL [PAGE3-A| DR A MM A A AIMM IMM AIMM AJIMM ADIR | ADIRX | EIMM EIMM | AABS | AABSX
2/6 23 2/1 11 1 2(3)11 2/1 2/1 21 213 2/4 5/3 5/3 33 3/4
BGTU BBSB LSR CLRB cLMm cMP BBSB | MOVMB cMP cMP MOVMB | MOVMB | CMP cmP
0100 4 REL PAGE4 | DIRb,REL A A IMP AJIMM [ABSb,REL| DIR/DIR ADIR | ADIRX | DIR/ABS |DIR/ABSX| AABS | AABSX
2/6 48 1 1/1 113 2(3)1 5/8 3/6 213 2/4 416 47 313 34
BVC BBCB ROR CLR XAB ORA BBCB MOVM ORA ORA MOVM MOVM ORA ORA
0101 5 REL PAGE5 | DIR,b,REL A A IMP AIMM | ABS b,REL| DIRIDIR ADIR | ADIRX | DIR/ABS |DIRIABSX| AABS | AABSX
2/6 418 1 11 12 2(3)1 5/8 3/6 213 2/4 416 47 3/3 3/4
BLEU CBEQB | ORAB ASR cLv AND PUL | MOVMB | MOVMB | AND AND | MOVMB AND AND
0110 6 REL PAGE6 [DIRIMMREL A,IMM A IMP AIMM STK | ABSIDIR |ABSIDIRX| ADIR | ADIRX |ABSIABS AABS | AABSX
2/6 418 21 11 11 2(3)1 | 2/Note 2 45 416 213 2/4 5/5 3/3 314
BVS CBNEB NOP Eor (PRr, | Movm EOR EOR MOVM EOR EOR
0111 7 REL PAGE7 [DIR/IMM,REL] IMP AIMM JRTSDn| ABS/DIR [ABS/DIRX| ADIR ADIRX | ABS/ABS AABS | AABSX
2/6 418 11 23)1 2Rioke 3 415 416 213 214 5/5 313 314
BGT INC PHD RTS PHA MOVM INC LDAD LDAD LDAD LDAD LDAD LDAD LDAD LDAD
1000 8 REL PAGEO-B| DR STK IMP STK DIR/IMM ABS | E(DIR).Y |[ELDIR)Y| EDR | EDRX | EABL EABLX | EABS | EABSX
2/6 2/6 4 7 14 3(4)/5 3/6 2/9 2/11 2/6 27 a7 418 3/6 317
BCC DEC PLD RTL PLA MOVM DEC cLp SEP ADDD ADDD VP ISR ADDD | ADDD
1001 9 REL | PAGEL-B| DIR STK IMP STK | ABSIMM | ABS IMM IMM EDIR | EDRX | ABS ABS EABS | EABSX
2/6 2/6 5 /10 V4 4(5)/4 3/6 2/4 23 2/6 217 3/4 306 3/6 37
BLE CBEQB INC TXA PHP CBEQ BRAL PSH MOVMB | SUBD SUBD IMPL JSRL SUBD SUBD
1010 A REL PAGE2-B | A/IMM,REL| A IMP STK |A/IMM,REL| REL STK DIR/IMM EDIR E.DIR,X ABL ABL E.ABS E,ABS,X
2/6 3/6 U1 11 14 3(4)6 35 2/Note 4 35 2/6 415 a7 3/6 317
BCS CBNEB pEC TvA PLP CBNE L%, | movms | cmpp | cmPD JMP ISR CcMPD | cmPD
1011 B REL PAGE3-B | A/IMM,REL| A IMP STK [A/IMM,REL! STmm" ABS/IMM | EDIR EDIRX | (ABSX) (ABS,X) E,ABS E.ABSX
206 3/6 i 1 15 3(4)16 NotsSands | 414 2/6 217 Eld 3/8 306 37
BGE CLRMB INX TAX PHX LDX CLRMB | STAB STAB STAB STAB STAB STAB STAB STAB
1100 C REL PAGES DIR IMP IMP STK IMM ABS | A/(DIR)Y |AL(DIR).,Y| ADIR ADIRX | AABL AABLX | AABS | AABSX
2/6 2/5 1 U1 14 2(3)/1 3/5 27 2/9 214 2/5 415 416 3/4 35
BNE CLRM INY TAY PLX LDy CLRM STA STA STA STA STA STA STA STA
1101 D REL PAGE9 DIR IMP IMP STK IMM ABS | A(DIR).Y |ALDIR)Y| ADR | ADRX | AABL | AABLX | AABS | AABSX
2/6 2/5 11 11 1/4 2(3)11 3/5 2/7 219 2/4 2/5 4/5 4/6 3/4 3/5
BLT ABS STX DEX CLRX PHY CPX STX STAD STAD STAD STAD STAD STAD STAD STAD
1110 E REL A DIR IMP IMP STK IMM ABS | E(DIR).Y [ELOIR)Y| EDR | EDIRX | EABL | EABLX | EABS | EABSX
2/6 3 2/4 1 1 14 2(3)1 3/4 2/9 2/11 2/6 27 a7 418 3/6 317
BEQ RTI STY DEY CLRY PLY cPY sTY BSR
1111 F REL IMP DIR IMP IMP STK IMM ABS <& >
2/6 112 2/4 U1 U1) 2(3)/1 3/4 217
Instruction code table 1-A (PAGE 1-A)
D3-Do |l 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111
D7-D4 otation| 0 1 2 3 4 5 6 7 8 9 A B C D E F
LDAB LDAB LDAB LDAB LDAB LDAB
0000 0 ADIR) | ADRX) [ALOIR) | ASR | A(SR.Y AABS,Y
316 317 3/8 3/5 3/8 45
LDA LDA LDA LDA LDA LDA
0001 1 ADIR) | ADRX) | ALDIR) | ASR | A(SR).Y AABS,Y
3/6 317 3/8 3/5 3/8 45
ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD
0010 2 ADR) | ADRX) [ALDIR) | ASR [A(SR.Y AABS,Y AIR),Y |ALDIR).Y AABL | AABLX
316 317 3/8 3/5 3/8 415 37 3/9 5/5 5/6
suB suB suB suB suB suB SUB suB SUB suB
0011 3 A(DIR) | ADRX) | ALDIR) | ASR | A(SR).Y AABS,Y A(DIR)Y [ALDIR)Y AABL | AABLX
3/6 317 3/8 315 3/8 45 37 3/9 5/5 5/6
cmP CMP cmP cMP cMP cMP cMP cmP cMP cMP
0100 4 | A(DR) |ADRX) [ALDIR) [ASR | A(SR)Y AABSY A(DIR).Y [AL(DIR).Y AABL | AABLX
3/6 317 3/8 315 318 4/5 317 319 5/5 5/6
ORA ORA ORA ORA ORA ORA ORA ORA ORA ORA
0101 5 A(IR) | ADIRX) | ALOIR) | ASR | A(SR)Y AABS,Y A(DIR).Y | AL(DIR),Y AABL | AABLX
3/6 37 3/8 35 3/8 45 37 319 5/5 5/6
AND AND AND AND AND AND AND AND AND AND
0110 6 A(DIR) | ADIRX) | ALDIR) ASR AJ(SR),Y AABS,Y A(DIR),Y |ALDIR).Y AABL | AABLX
3/6 317 318 3/5 3/8 415 37 319 5/5 5/6
EOR EOR EOR EOR EOR EOR EOR EOR EOR EOR
0111 7 A(DIR) | AMDIRX) | ALDIR) ASR A(SR),Y AABS,Y A(DIR).Y [AL(DIR),Y AABL | AABLX
3/6 37 318 35 3/8 4/5 317 319 5/5 5/6
LDAD LDAD LDAD LDAD LDAD LDAD
1000 8 E(DIR) | E(DIRX) | EL(DIR) E,SR E,(SR),Y E.ABSY
3/9 3110 3/11 318 311 418
ADDD | ADDD | ADDD | ADDD | ADDD ADDD ADDD | ADDD ADDD ADDD
1001 9 E(DIR) | E(DIRX) | EL(DIR) E,SR E,(SR).Y E,ABS,Y E,(DIR),Y | EL(DIR).Y EABL | EABLX
3/9 3110 3/11 3/8 311 458 3/10 312 5/8 5/9
SUBD SUBD SUBD SUBD SUBD SUBD SUBD SUBD SUBD
1010 A E,DIR) | E(DIRX) | EL(DIR) E.SR E,(SR),Y E.ABS,Y E,(DIR),Y [EL(DIR),Y E,ABL E.ABL,X
3/9 3/10 311 3/8 311 418 3/10 3/12 5/8 5/9
cMPD | CMPD | cMPD | CMPD | CMPD CMPD CMPD cMPD | cMPD
1011 B E(DIR) | E@ORX) | ELDIR) | ESR | E(SR).Y E,ABS,Y E(DIR),Y |EL(DIR),Y EABL | EABLX
3/9 3110 3/11 3/8 311 418 3/10 3/12 5/8 5/9
STAB STAB STAB STAB STAB STAB
1100 C || A@R | ADRX | ALDIR) | ASR | A(SR).Y AABS,Y
317 38 3/9 3/6 3/9 416
STA STA STA STA STA STA
1101 D A(DIR) | A(DIRX) | AL(DIR) ASR A(SR),Y AABS,Y
3 318 3/9 3/6 3/9 416
STAD STAD STAD STAD STAD STAD
1110 E | E@R |E(DRX | ELDIR) [ESR | E(SR).Y EABS,Y
3/9 3/10 3/11 3/8 311 458
1111 F

7900 Series Software Manual

5-45

APPENDIX

Appendix 2. Hexadecimal instruction code tables

Instruction code table 2-A (PAGE 2-A)

3-Dol 0ooo | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111
Hexadecima]
D7-D4 N notationl| O 1 2 3 4 5 6 7 8 9 A B C D E F
ASL ASL ASL ASL
0000 0 DIR DIR,X ABS ABS,X
37 3/8 417 418
ROL ROL ROL ROL
0001 1 DIR DIR,X ABS ABS.X
317 318 417 48
LSR LSR LSR LSR
0010 2 DIR DIR X ABS ABS,X
317 3/8 417 4/8
ROR ROR ROR ROR
0011 3 DIR DIR,X ABS ABS X
37 3/8 47 418
ASR ASR ASR ASR
0100 4 DIR DIR X ABS ABS,X
37 3/8 417 418
0101 5
0110 6
0111 7
ADC ADC ADC ADC ADC ADC ADC ADC ADC ADC ADC ADC ADC ADC
1000 8 ADIR) | A(DIRX) | ALDIR) | ASR | A(SR)Y AABS,Y A(R)Y |ALDIR).Y| ADIR | ADIRX | AABL | AABLX | AABS | AABSX
37 3/8 3/9 3/6 3/9 416 318 3/10 3/5 3/6 5/6 5/7 415 416
ADCD | ADCD ADCD ADCD ADCD ADCD ADCD ADCD | ADCD ADCD ADCD | ADCD | ADCD
1001 9 E(@IR) | E(DIRX) | ELDIR) ESR | E(SR).Y E,ABS,Y E(IR).Y [ELDIR)Y| EDR | EDIRX | EABL | EABLX | EABS [EABSX
3/9 3/10 311 3/8 311 4/8 3/10 3/12 317 3/8 5/8 5/9 417 418
SBC SBC SBC SBC SBC SBC SBC SBC SBC SBC SBC SBC SBC SBC
1010 A ADIR) | A(DIRX) | AL(DIR) ASR | A(SR).Y AABS,Y ADIR).Y | ALDIR).Y| ADIR | ADRX | AABL | AABLX | AABS | AABSX
37 3/8 3/9 3/6 319 416 3/8 3/10 315 3/6 5/6 5/7 4I5 416
SBCD SBCD SBCD SBCD SBCD SBCD SBCD | SBCD SBCD SBCD SBCD SBCD SBCD | sBCD
1011 B E(DIR) | E(DRX) | EL(DIR) ESR | E(SR)Y E,ABS,Y E(IR).Y |ELDIR),Y| EDR | EDRX | EABL | EABLX| EABS | EABSX
3/9 3/10 311 358 311 48 3/10 3/12 37 358 5/8 5/9 417 418
MPY MPY MPY MPY MPY MPY MPY MPY MPY MPY MPY MPY MPY MPY
1100 C (DIR) (DIRX) | L(DIR) SR (SR),Y ABS,Y (DIR),Y | L(DIR),Y DIR DIR,X ABL ABL, ABS ABS,X
3/11/Note 7| 3/12/Note 7| 3/13/Note 7| 3/10/Note 7| 3/13/Note 7 4/10/Note 7, 3/12/Note 7|3/14/Note 7| 3/9/Note 7 |3/10/Note 7 |5/10/Note 7 |5/11/Note 7| 4/9/Note 7 |4/10/Note 7
MPYS | MPYS MPYS MPYS | MPYS MPYS MPYS | MPYS MPYS | MPYS MPYS mMPYs | MPYS | wmPYS
1101 D (DIR) (DIR,X) L(DIR) SR (SR),Y ABS,Y (DIR),Y | L(DIR),Y DIR DIR,X ABL ABL,X ABS ABS,X
3/11/Note 7|3/12/Note 7|3/13/Note 7| 3/10/Note 7|3/13/Note 7, 4/10/Note 7| 3/12/Note 7|3/14/Note 7| 3/9/Note 7 |3/10/Note 7|5/10/Note 7 5/11/Note 7| 4/9/Note 7 |4/10/Note 7,
DIV DIV DIV DIV DIV DIV DIV DIV DIV DIV DIV DIV DIV DIV
1110 E (DIR) (DIR,X) L(DIR) SR (SR).Y ABS,Y (DIR),Y | L(DIR),Y DIR DIR,X ABL ABL,X ABS ABS,X
3/18/Note 8.9|3/19/Note 8.9 | 3/20/Note 89| 3/17/Note 8.9 3/20/Note 8.9 4117 /Note 8.9 3/19/Note 85| 3/21/Note 8.9 3/16/Note 8.9| 3/17/Note 8.9 5/17/Note 8.5 5/18/Note 8. 4/16/Note 8.9| 4/17/Note 8.9
DIVS DIVS DIVS DIVS DIVS DIVS DIVS DIVS DIVS DIVS DIVS DIVS DIVS DIVS
1111 F (DIR) (DIR,X) L(DIR) SR (SR),Y ABS,Y (DIR),Y | L(DIR),Y DIR DIR,X ABL ABL,X ABS ABS X
3/25/Note 8,9 [3/26/Note 8,9 [3/27/Note 8,9 |3/24/Note 8,9 | 3/27/Note 8,9 4/24/Note 8,9 3/26/Note 8,9| 3/28/Note 8,9 | 3/23/Note 8,9| 3/24/Note 8,9 | 5/24/Note 8,9| 5/25/Note 8,9] 4/23/Note 8.9|4/24/Note 8,9
Instruction code table 3-A (PAGE 3-A)
D3-Do 0000 | 0001 | 0010 | OO11 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111
Hexadecima]
D7-D4 notatior] 0 1 2 3 4 E 6 7 8 9 A B C D E F
TAD,0 R;L\A ADDS | suss
0000 0 IMP e IMM IMM
213 (i 32 312
wIT TAD,1 ADCB | SBCB ADCD SBCD
0001 1 IMP IMP AIMM AIMM EIMM EIMM
2/- 2/3 33 33 6/4 6/4
TAD,2 MVP MVN
0010 2 IMP BLK BLK
2/3 4/5i+9/Note 11[4/5i+5/Note 12|
STP TAD,3 MOVMB | MOVMB
0011 3 IMP IMP DIR X/IMM |ABS X/IMM
2/- 2/3 417 5/6
PHT TDAO MOVM LoT PEI PEA PER
0100 4 STK IMP DIR,X/IMM IMM STK STK STK
214 212 4(5)17 3/4 37 45 4/6
PLT TDA1 MOVM - RMPA IMP JMPL
0101 5 STK IMP 1ABS X/IMM Muliplied accurulation ®BS) | L(aBS)
2/6 212 5(6)/6 /Note 13 an 419
PHG TDA,2
0110 6 STK IMP
214 212
TSD TDA3 DS
0111 7 IMP IMP IMP
2/4 212 212
NEGD TAS ADC
1000 8 E IMP A MM
2/4 212 3(4)3
ABSD TSA
1001 9 E IMP
2/5 212
EXTZD SBC
1010 A E AIMM
2/3 3(4)/3
EXTSD
1011 B E
215
™>Y MPY
1100 C IMP IMM
22 7
TYX MPYS
1101 D IMP IMM
212 3(4)/8/Note 7
T>S DIV
1110 E IMP IMM
212 13(4)/15/Note 8,9}
TSX DIVS
1111 F IMP IMM
22 v

5-46

7900 Series Software Manual

APPENDIX

Appendix 2. Hexadecimal instruction code tables

Instruction code table 4 (PAGE 4)

D3-Doll 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111
D7-Da &M g 1 2 3 4 5 6 7 8 9 A B c D E F
0000 | 0 bRy | ABSY

3/5 4/5
Loy Loy
0001 1 DIR,X ABS,X
3l5 415
cPX
0010 2 ABS
4/4
cpy
0011 3 ABS
414
BBS BBS
0100 4 DIR,b,REL ABS b,REL
5(6)/9 6(7)/9
BBC BBC
0101 5 DIR,b,REL ABS,b,REL
5(6)/9 6(7)/9
CBEQ
0110 6 IDIR/IMM,REL|
5(6)/9
CBNE
0111 7 DIR/IMM,REL]
5(6)/9
INC INC
1000 8 DIR,X ABS X
3/8 48
1001 | 9 DRX AdSX
3/8 4/8
1010 A
1011 B
1100 C
1101 D
STX
1110 E DIR,Y
3/6
STY
1111 F DIR X
306

Instruction code table 5 (PAGE 5)

D3-Do 0000 | 0001 | 0010 | OO11 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111
Hexadeci
D7-D4 exanj:,';'f] 0 1 2 3 4 5 6 7 8 9 A B c D E F
ADDMB | ADDM ADDMB | ADDM
0000 0 DIR/IMM | DIR/IMM ABS/IMM | ABS/IMM
417 4(5)/7 5/7 5(6)/7
SUBMB | SUBM SUBMB | SUBM
0001 1 DIRIMM | DIRIMM ABS/IMM | ABS/IMM
47 4(5)17 5/7 5(6)/7
CMPMB | CMPM CMPMB | CMPM
0010 2 DIR/IMM | DIR/IMM ABS/IMM | ABS/IMM
4/5 4(5)/5 5/5 5(6)/5
ORAMB | ORAM ORAMB | ORAM
0011 3 DIR/IMM | DIRIMM ABS/IMM | ABS/IMM
417 AB)7 57 5(6)/7
0100 4
0101 5
ANDMB ANDM ANDMB ANDM
0110 6 DIR/IMM | DIR/IMM ABS/IMM | ABS/IMM
417 4(5)/7 57 5(6)/7
EORMB | EORM EORMB | EORM
0111 7 DIR/IMM | DIR/IMM ABS/IMM | ABS/IMM
417 4(5)7 5/7 5(6)/7
ADDMD ADDMD
1000 8 DIR/IMM ABS/IMM
7/10 8/10
SUBMD SUBMD
1001 9 DIR/IMM ABS/IMM
7/10 8/10
CMPMD CMPMD
1010 A DIR/IMM ABS/IMM
i 87
ORAMD ORAMD
1011 B DIR/IMM ABS/IMM
7110 8/10
1100 C
1101 D
ANDMD ANDMD
1110 E DIR/IMM ABS/IMM
7110 8/10
EORMD EORMD
1111 F DIR/IMM ABS/IMM
7110 8/10

7900 Series Software Manual 5-47

APPENDIX

Appendix 2. Hexadecimal instruction code tables

Instruction code table 6 (PAGE 6)

300 0poo | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111

D7-D4" sguaia] 0 1 2 3 4 5 6 7 8 9 A B c D E F
MOVRB

0000 | 0 |27 >
/Note 14
MOVR

0001 | 1 |[,2Rmm, >
/Note 14
MOVRB

0010 | 2 [AC5mm, >
Note 14
MOVR
ABS/IMM >

0011 3 INote 14
MOVRB

0100 | 4 sk >
/Note 14
MOVR

0101 | 5 |l2n56ns >
/Note 14
MOVRB

0110 | 6 [#358% >
/Note 14
MOVR

o111 | 7 [|430% >
/Note 14
MOVRB

1000 | 8 | S, >
/Note 14
MOVR

1001 | 9 [SFAes >
/Note 14
MOVRB

1010 | A || 455655 >
/Note 14
MOVR

1011 | B |A88/8S >
[Note 14

1100 | C

1101 | D

1110 | E

111 | F

Instruction code table 7 (PAGE 7)
D3-Do| 0po0 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111
D7-DA M o 1 2 3 4 5 6 7 8 9 A B c D E F
0000 | o [[oiRAsEx
3n+2/6n+3
/Note 14

0001 | 1 [oRAESx
3n+2/6n+3
/Note 14

0010 | 2

0011 | 3

0100 | 4

0101 | 5
MO/VRB

0110 | 6 |[ASSRRX
/Note 14
ABSDIRX

0111 7 3n§2/16n+'3
/Note 14

1000

1001

1010

1011

1100

1101

1110

111 | F

5-48

7900 Series Software Manual

Instruction code table 8 (PAGE 8)

APPENDIX

Appendix 2. Hexadecimal instruction code tables

R3Doll 0ooo | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111
D7-D M 0 1 2 3 4 5 6 7 8 9 A B C D E F

0000 | O

o001 | 1

0010 | 2

o011 | 3

ASL#n

010 | 4 Rz

0101 | 5

0110

0111

1000

1001

DIR/IMM,REL
4112

1011

1100 | c

1101 | D

110 | E

111 | F

Instruction code table 9 (PAGE 9)

D3-Doll 5000 | 0001 | 0010 | 0011 | 0100 | 0201 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111
D7Dl 0 1 2 3 4 5 6 7 8 9 A B c b | E F
0000 | O LSRD #n
2lmmes
0001 1 /Note 16
0010 | 2 RORD, i
2/im$n+a
0011 3 /Note 16
0100 4 ASLD/#n
2/imm+8
0101 5 /Note 16
0110 6 ROIéD,#n
e
o111 | 7 T
1000 8 ASRED.#n
2/imm+8
1001 9 /Note 16
1010 A
1011 B
1100 C
1101 D
1110 E DEBNE
ABS/IMM,REL
5/11
1111 F

7900 Series Software Manual

5-49

APPENDIX

Appendix 2. Hexadecimal instruction code tables

Instruction code table 10 (PAGE 10)

R3-Doll 5900 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111
D7-Da o 1 2 3 4 5 6 7 8 9 A B c D E F

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8

1001 9

1010 A

1011 B

1100 C

1101 D

1110 E

1111 F

Instruction code table 0-B (PAGE 0-B)

R3-Doll oo | 0001 | 0010 | 0011 | 0100 | 0102 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111
D7-D4 notator 0 1 2 3 4 5 6 7 8 9 A B C D E F
ASL LDAB LDAB LDAB LDAB LDAB LDAB LDAB LDAB
0000 0 B B,DIR).Y [BL(DIR),Y| BDIR BDIRX | BABL | BABLX | BABS | B.ABSX
212 317 3/9 3/4 3/5 5/5 5/6 4/4 4/5
ROL LDA LDA LDA LDA LDA LDA LDA LDA LDA
0001 1 B B.IMM B,DIR).Y [BL(DIR).Y| BDIR BDIRX | BABL | BABLX | BABS | BABSX
212 3(4)/2 317 319 3/4 3/5 5/5 5/6 4/4 415
010 2 ANDB NEG ADD LDAB ADDB ADD ADD ADD ADD
0 B,IMM B B,IMM B,IMM BIMM | BDIR | BDIRX BABS | BABSX
312 212 3(4)12 312 312 3/4 3/5 414 45
EORB EXTZ EXTS SUB CMPB SUBB suB suB SUB SUB
0011 3 B,IMM B B B,IMM B,IMM B.IMM BDIR | BDIRX BABS | BABSX
312 212 212 3(4)12 312 32 3/4 3/5 414 45
LSR CLRB CMP CMP CMP CMP CMP
0100 4 B B BIMM BDIR | BDIRX BABS | BABSX
212 212 3(4)/2 314 3/5 414 415
ROR CLR ORA ORA ORA ORA ORA
0101 5 B B B,IMM BDIR | BDIRX BABS | BABSX
212 212 3(4)2 3/4 3/5 44 415
ORAB ASR AND AND AND AND AND
0110 6 B,IMM B B,IMM B.DIR B,DIR,X BABS | BABSX
312 212 3(4)12 3/4 3/5 44 4/5
EOR EOR EOR EOR EOR
0111 7 B,IMM BDIR | BDIRX BABS | BABSX
3(4)/2 3/4 3/5 414 415
PHB
1000 8 STK
2I5
PLB
1001 9 STK
2/5
CBEQB INC TXB CBEQ
1010 A B/IMM,REL B IMP B/IMM,REL
A 212 212 A(5)17
CBNEB DEC VB CBNE
1011 B B/IMM,REL B IMP B/IMM,REL
47 212 212 4B
TBX STAB STAB STAB STAB STAB STAB STAB STAB
1100 C IMP B(DIR)Y |BL(DIR)Y| BDIR | BDIRX | BABL | BABLX | BABS [BABSX
212 318 3/10 3/5 3/6 5/6 5/7 415 4/6
TBY STA STA STA STA STA STA STA STA
1101 D IMP B,DIR).Y |BL(DIR),Y| BDIR BDIRX | BABL BABLX | BABS | BABSX
212 318 3/10 3/5 3/6 5/6 5/7 4/5 4/6
ABS
1110 E B
2/4
1111 F

5-50 7900 Series Software Manual

Instruction code table 1-B (PAGE 1-B)

APPENDIX

Appendix 2. Hexadecimal instruction code tables

R3-Do|l 5000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111
D7-D4 \noatio]] 0 1 2 3 4 5 6 7 8 9 A B C D E F
LDAB LDAB LDAB LDAB LDAB LDAB
0000 0 B,(DIR) | B,(DIRX) | BL(DIR) B,SR B,(SR),Y B,ABS,Y
3/6 317 3/8 3/5 3/8 415
LDA LDA LDA LDA LDA LDA
0001 1 B,(DIR) | B,DIRX) | B.L(DIR) B,SR B,(SR),Y B,ABS,Y
3/6 37 3/8 3/5 3/8 415
ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD
0010 2 B,(DIR) | B,(DIRX) | BL(DIR) B,SR B,(SR),Y B,ABS,Y B,(DIR),Y |B,L(DIR),Y BABL | BABLX
3/6 317 3/8 3/5 3/8 415 37 319 5/5 5/6
suB suB suB SuB suB SuB SUB suB SuB suB
0011 3 B,(DIR) | B,(DIRX) | B.L(DIR) B.SR B.(SR),Y B.ABS,Y B,(DIR),Y | B.L(DIR),Y B,ABL B,ABL,X
3/6 317 3/8 3/5 3/8 415 37 3/9 5/5 5/6
cMP cMP cmP cMP cMP cmP cmP cmP cMP cMP
0100 4 B,DIR) [B,(DIRX) | BLOIR) | BSR | B(SR)Y B,ABS,Y B,(DIR).Y [BL(DIR),Y BABL | BABLX
3/6 317 318 3/5 3/8 4/5 317 3/9 5/5 5/6
ORA ORA ORA ORA ORA ORA ORA ORA ORA ORA
0101 5 B,(DIR) | B,(DIR.X) | B.L(DIR) B.SR B,(SR),Y B,ABS,Y B,(DIR),Y | B.L(DIR),Y BABL | BABLX
3/6 37 3/8 3l5 3/8 415 317 3/9 5/5 5/6
AND AND AND AND AND AND AND AND AND AND
0110 6 B,(DIR) | B(DIRX) | BLOIR) [BSR | B(SR).Y B,ABS,Y B,(DIR),Y |BL(DIR),Y BABL | BABLX
3/6 317 3/8 3/5 3/8 45 37 3/9 5/5 5/6
EOR EOR EOR EOR EOR EOR EOR EOR EOR EOR
0111 7 B,(DIR) | B,(DIRX) | BLODIR) | BSR [B,(SR).Y B,ABS,Y B,(DIR),Y |B,L(DIR).Y BABL | B,ABLX
306 Elld 318 3/5 3/8 4/5 37 3/9 5/5 5/6
1000 8
1001 9
1010 A
1011 B
STAB STAB STAB STAB STAB STAB
1100 C B,(DIR) | B(DIRX) | BL(DIR) B,SR B,(SR),Y B,ABS,Y
3 38 319 306 3/9 416
STA STA STA STA STA STA
1101 D B,(DIR) | B,(DIRX) | B,L(DIR) B,SR B,(SR),Y B,ABS,Y
37 3/8 3/9 3/6 3/9 416
1110 E
1111 F
Instruction code table 2-B (PAGE 2-B)
R3-Do 0000 | 0001 | 0010 | 0O11 | 0100 | 0101 | 0110 | O111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111
D7-D4 notatior] 0 1 2 3 4 5 6 7 8 9 A B C D E F
0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
ADC ADC ADC ADC ADC ADC ADC ADC ADC ADC ADC ADC ADC ADC
1000 8 B,(DIR) | B,(DIRX) | BL(DIR) B,SR B,(SR).Y B,ABS,Y B,(DIR),Y |BL(DIR).Y| BDIR | BDIRX | BABL | BABLX | BABS | BABSX
319 3110 311 3/8 311 4/8 3/10 3/12 317 3/8 5/8 5/9 417 48
1001 9
SBC SBC SBC SBC SBC SBC SBC SBC SBC SBC SBC SBC SBC SBC
1010 A || B©OR) [B®DRX | BLOR) | BSR | B(SR).Y BABS,Y B(DIR)Y |BL(OIR)Y| BDR | BDIRX | BABL | BABLX | BABS | BABSX
3/9 3/10 311 3/8 311 418 3/10 3/12 37 318 5/8 5/9 a7 48
1011 B
1100 C
1101 D
1110 E
1111 F

7900 Series Software Manual

5-51

APPE

NDIX

Appendix 2. Hexadecimal instruction code tables

Instruction code table 3-B (PAGE 3-B)

Db3-Do 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | O111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111
D7-D4 Hexafjjﬁ":g 0 1 2 3 4 5 6 7 8 9 A B C D E F
TBD,0
0000 0 IMP
213
TBD,1 ADCB | SBcB
0001 1 IMP BIMM | BIMM
213 3/3 33
TBD,2
0010 2 IMP
213
TBD,3
0011 3 IMP
213
TDB,0
0100 4 IMP
212
TDB,1
0101 5 IMP
212
TDB,2
0110 6 IMP
22
TDB,3
0111 7 IMP
212
8BS ADC
1000 8 IMP B,IMM
212 3(4)3
TSB
1001 9 IMP
22
SBC
1010 A B,IMM
3(4)/3
1011 B
1100 C
1101 D
1110 E
1111 F

Notes for machine instructions table
This table lists the minimum number of instruction cycles for each instruction. The number of cycles of the
addressing mode related with DPRn (n = 0 to 3) is applied when DPRn. = 0. When DPRn. # 0, add 1 to

the numb

er of cycles.

The number of cycles also varies according to the number of bytes fetched into the instruction queue
buffer, or according to whether the memory accessed is at an odd address or an even address. Furthermore,
it also varies when the external area is accessed with BYTE="H.”

Note 1.

Note 2.

Note 3.

Note 4.

The BRK instruction is a reserved instruction for debugging tools; it cannot be used when an
emulator is used.

3i+ 13
PLDn : 11,
RTLDn : 15,
RTSDn : 14,
211+ i2+ 11

i is the number of registers to be restored.

PLD (n1, ..., n) :3i+8 (N ..., n): 0to 3 (numbers representing DPRnN)
RTLD (n1, ..., ni) : 3i + 12 i is the number of DPRs specified (1 to 4).
RTSD (na, ..., m) : 3i + 11

Add the number of cycles corresponding to the registers to be stored. i1 is the
number of registers to be stored among A, B, X, Y, DPRO, and PS. iz is the
number of registers to be stored between DT and PG.

5-52

7900 Series Software Manual

Note

Note

Note

Note

Note

Note

Note

Note

Note

Note

Note

Note

5.

6.

10.

11.

12.

13.

14.

15.

16.

APPENDIX

Appendix 2. Hexadecimal instruction code tables

LDDn : 4, LDD (n1, ..., n)) :2i+2 (N1, ..., n): 0to 3 (numbers representing DPRN)
PHDn : 2, PHD (ni, ..., ni) : 2 i is the number of DPRs specified (1 to 4).
PHLDn : 4, PHLD (ni, ..., ni) : 2i + 2

LDDn : 13, LDD (ni, ..., n) :2i+11 (N1, ..., n): Oto 3 (numbers representing DPRN)
PHDn : 12, PHD (ni, ..., n) i+ 11 i is the number of DPRs specified (1 to 4).
PHLDn : 14, PHLD (nz, ..., ni) : 3i + 11

The number of cycles is the case of the 8-bit [J 8-bit operation. Add 4 to the number of cycles

in the case of the 16-bit 0 16-bit operation.

The number of cycles is the case of the 16-bit + 8-bit operation. Add 8 to the number of cycles

in the case of the 32-bit + 16-bit operation.

When a zero division interrupt occurs, the number of cycles is 16 cycles. It is regardless of the

data length.

n is the number of rotation specified by imm.
m=0:n =0 to 65535
m=1:n=0to 255

The number of cycles is the case where the number of bytes to be transferred (#) is even.
When the number of bytes to be transferred (#) is odd, the number is calculated as;

50i+ 14
Note that it is 10 cycles in the case of 1-byte transfer.

The number of cycles is the case where the number of bytes to be transferred (#) is even.
When the number of bytes to be transferred (#) is odd, the number is calculated as;

50i+ 10

The number of cycles is the case where flag m="1."” When flag m="0," the number is calculated

18 0 imm + 5 (imm = number of repeat times, 0 to 255)

as;
n=0to 15
imm = 0 to 15

imm = 0 to 31

7900 Series Software Manual

5-53

MITSUBISHI SEMICONDUCTORS
Software Manual
7900 Series

Jul., First Edition 1998

Editioned by
Committee of editing of Mitsubishi Semiconductor Software Manual

Published by
Mitsubishi Electric Corp., Semiconductor Marketing Division

This book, or parts thereof, may not be reproduced in any form without permission
of Mitsubishi Electric Corporation.
©1998 MITSUBISHI ELECTRIC CORPORATION

7900 Series
Software Manual

RENESAS

Renesas Electronics Corporation
1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan

	Table of contents
	CHAPTER 1 DESCRIPTION
	CHAPTER 2 CENTRAL PROCESSING UNIT (CPU)
	2.1 Central processing unit
	2.1.1 Accumulator (Acc)
	2.1.2 Index register X (X)
	2.1.3 Insex register Y (Y)
	2.1.4Stack pointer (S)
	2.1.5 Program xounter (PC)
	2.1.6 Program bank register (PC)
	2.1.7 Data bank register (DT)
	2.1.8 Direct page register 0 to 3 (DPR0 to DPR3)
	2.1.9 Processor status register (PS)

	2.2 Access space
	2.3 Addressing modes
	2.3.1 Overview
	2.3.2 Explanation of addressing modes

	CHAPTER 3 HOW TO USE 7900 SERIES INSTRUCTIONS
	3.1 Memory access
	3.1.1 Direct addressing
	3.1.2 Abosolute addressing and Abosolute long addressing
	3.1.3 Indirect addressing and indirect long addressing

	3.2 Drect page registers (DPR0–DRP3)
	3.3 8- and 16-bit data processing
	3.4 Index registers X and Y
	3.5 Branch instructions

	CHAPTER 4 INSTRUCTIONS
	4.1 Instruction set
	4.2 Description of each instruction
	4.3 Notes on software development
	4.3.1 Instruction execution cycles
	4.3.2 Status of flags m and x
	4.3.3 Tips for data location
	4.3.4 Performing arithmetic operations in decimal

	APPENDIX
	Appendix 1.
	Appendix 2.

