

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

Regarding the change of names mentioned in the document, such as Mitsubishi
Electric and Mitsubishi XX, to Renesas Technology Corp.

The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas

Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog

and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.)

Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi

Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names

have in fact all been changed to Renesas Technology Corp. Thank you for your understanding.

Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been

made to the contents of the document, and these changes do not constitute any alteration to the

contents of the document itself.

Note : Mitsubishi Electric will continue the business operations of high frequency & optical devices

 and power devices.

Renesas Technology Corp.

Customer Support Dept.

April 1, 2003

To all our customers

7900 Series
Software Manual

16

S
oftw

are M
anual

New publication, 1997.07

MITSUBISHI 16-BIT SINGLE-CHIP
MICROCOMPUTER
7700 Family / 7900 Series

keep safety first in your circuit designs !

● Mitsubishi Electric Corporation puts the maximum effort into making semiconductor
products better and more reliable, but there is always the possibility that trouble
may occur with them. Trouble with semiconductors may lead to personal injury,
fire or property damage. Remember to give due consideration to safety when
making your circuit designs, with appropriate measures such as (i) placement
of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention
against any malfunction or mishap.

Notes regarding these materials

● These materials are intended as a reference to assist our customers in the
selection of the Mitsubishi semiconductor product best suited to the customer’s
application; they do not convey any license under any intellectual property rights,
or any other rights, belonging to Mitsubishi Electric Corporation or a third party.

● Mitsubishi Electric Corporation assumes no responsibility for any damage, or
infringement of any third-party’s rights, originating in the use of any product
data, diagrams, charts or circuit application examples contained in these materials.

● All information contained in these materials, including product data, diagrams
and charts, represent information on products at the time of publication of these
materials, and are subject to change by Mitsubishi Electric Corporation without
notice due to product improvements or other reasons. It is therefore recommended
that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi
Semiconductor product distributor for the latest product information before
purchasing a product listed herein.

● Mitsubishi Electric Corporation semiconductors are not designed or manufactured
for use in a device or system that is used under circumstances in which human
life is potentially at stake. Please contact Mitsubishi Electric Corporation or an
authorized Mitsubishi Semiconductor product distributor when considering the
use of a product contained herein for any specific purposes, such as apparatus
or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea
repeater use.

● The prior written approval of Mitsubishi Electric Corporation is necessary to
reprint or reproduce in whole or in part these materials.

● If these products or technologies are subject to the Japanese export control
restrictions, they must be exported under a license from the Japanese government
and cannot be imported into a country other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of
JAPAN and/or the country of destination is prohibited.

● Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi
Semiconductor product distributor for further details on these materials or the
products contained therein.

Rev. Rev.

No. date

1.0 First Edition 980731

REVISION DESCRIPTION LIST 7900 Series Software Manual

(1/1)

Revision Description

This manual describes the software of the Mitsubishi
CMOS 16-bit microcomputers, the 7900 Series. After
reading this manual, the users will be able to
understand the instruction set and the features about
software of the 7900 Series, so that they can utilize
their capabilities fully.

Preface

7900 Series Software Manual i

Table of contents

CHAPTER 1. DESCRIPTION

CHAPTER 2. CENTRAL PROCESSING UNIT (CPU)

2.1 Central processing unit ... 2-2
2.1.1 Accumulator (Acc) .. 2-3
2.1.2 Index register X (X) ... 2-3
2.1.3 Index register Y (Y) ... 2-3
2.1.4 Stack pointer (S) .. 2-4
2.1.5 Program counter (PC) ... 2-5
2.1.6 Program bank register (PG) ... 2-5
2.1.7 Data bank register (DT) .. 2-6
2.1.8 Direct page register 0 to 3 (DPR0 to DPR3) .. 2-6
2.1.9 Processor status register (PS) ... 2-8

2.2 Access space ... 2-10
2.3 Addressing modes .. 2-11

2.3.1 Overview .. 2-11
2.3.2 Explanation of addressing modes .. 2-11

CHAPTER 3. HOW TO USE 7900 SERIES INSTRUCTIONS

3.1 Memory access .. 3-2
3.1.1 Direct addressing ... 3-2
3.1.2 Absolute addressing and Absolute long addressing .. 3-2
3.1.3 Indirect addressing and Indirect long addressing .. 3-2

3.2 Direct page registers (DPR0–DPR3) .. 3-4
3.3 8- and 16-bit data processing .. 3-5
3.4 Index registers X and Y ... 3-6
3.5 Branch instructions .. 3-7

CHAPTER 4. INSTRUCTIONS

4.1 Instruction set .. 4-2
4.2 Description of each instruction ... 4-9
4.3 Notes on software development ..4-230

4.3.1 Instruction execution cycles .. 4-230
4.3.2 Status of flags m and x .. 4-230
4.3.3 Tips for data area location ... 4-230
4.3.4 Performing arithmetic operations in decimal .. 4-230

APPENDIX

Appendix 1. 7900 Series machine instructions .. 5-2
Appendix 2. Hexadecimal instruction code tables ... 5-44

Table of contents

CHAPTER 1CHAPTER 1
DESCRIPTION

7900 Series Software Manual

DESCRIPTION

1–2

The 7900 Series is upper compatible with the conventional 7700 Family.
The following outlines the features of the 7900 Series:
• Source-level-compatible with the conventional 7700 Family. (e.g., 7700 and 7751 Series).
• Whereas the 7700 and 7751 Series respectively support 103 and 109 instructions, the 7900 Series has

its instruction set expanded to 203 instructions. The following instructions have been added:
(i) 32-bit operation instructions
(ii) 8-bit-data-dedicated instructions
(iii) Memory-to-memory data transfer instructions
(iv) Zero-clear instructions for register and memory
(v) Add/Subtract without-carry instructions
(vi) Add/Subtract instructions for stack pointer
(vii) OR, AND, and EOR instructions for memory
(viii) Compare instructions for memory
(ix) Signed conditional branch instructions
(x) Compare & Conditional branch instructions
(xi) Decrement & Conditional branch instructions
(xii) PC relative subroutine call instructions

Thanks to its expanded instruction set, the 7900 Series allows program sizes to be reduced by 20 to 30%
on the average from the conventional 7700 Family.
• 16 Mbytes of memory space. Various addressing modes for accessing this memory space are available.
• A 64-Kbyte space from 00000016 to 00FFFF16 can be accessed at high speed by an instruction which has

a small number of bytes. The 7900 Series has 4 direct page registers that can be used for this purpose.
• Reduced instruction execution cycles than the conventional 7700 Family.

CHAPTER 2CHAPTER 2
CENTRAL

PROCESSING UNIT
(CPU)

2.1 Central processing unit (CPU)
2.2 Memory space
2.3 Addressing modes

CENTRAL PROCESSING UNIT (CPU)
2.1 Central processing unit (CPU)

2–2 7900 Series Software Manual

2.1 Central processing unit
The CPU (Central Processing Unit) has 13 registers as shown in Figure 2.1.1.

Fig. 2.1.1 CPU registers structure

Direct page register 1 (DPR1)DPR1H DPR1L

b15 b8 b7 b0

Accumulator B (B)BH BL

b15 b8 b7 b0

Accumulator E (E)E

b31 b0

Index register X (X)XH XL

b15 b8 b7 b0

Index register Y (Y)YH YL

b15 b8 b7 b0

Stack pointer (S)SH SL

b15 b8 b7 b0

Data bank register (DT)DT
b7 b0

Direct page register 0 (DPR0)DPR0H DPR0L

b15 b8 b7 b0

b15 b8 b7 b0b23 b16

Program counter (PC)

Program bank register (PG)

PCH PCLPG
b7 b0

Accumulator A (A)AH AL

b15 b8 b7 b0

Direct page register 2 (DPR2)DPR2H DPR2L

b15 b8 b7 b0

Direct page register 3 (DPR3)DPR3H DPR3L

b15 b8 b7 b0

Processor status register (PS)PSH PSL

b15 b8 b7 b0

b0b1b2b3b4b5b6b7b8b10b15

CZIDxmVNIPL00000

Carry flag

Zero flag

Interrupt disable flag

Decimal mode flag

Index register length flag

Data length flag

Overflow flag

Negative flag

Processor interrupt priority level

2.1 Central processing unit

CENTRAL PROCESSING UNIT (CPU)

2–37900 Series Software Manual

2.1.1 Accumulator (Acc)
Accumulators A and B are available. Also, accumulators A and B can be connected in series for use as
a 32-bit accumulator (accumulator E).

(1) Accumulator A (A)
Accumulator A is the main register of the microcomputer. The transaction of data such as calculation,
data transfer, and input/output are performed mainly through accumulator A. It consists of 16 bits, and
the low-order 8 bits can also be used separately. The data length flag (m) determines whether the
register is used as a 16-bit register or as an 8-bit register. Flag m is a part of the processor status
register which is described later. When an 8-bit register is selected, only the low-order 8 bits of
accumulator A are used and the contents of the high-order 8 bits is unchanged.

(2) Accumulator B (B)
Accumulator B is a 16-bit register with the same function as accumulator A. Accumulator B can be
used instead of accumulator A. The use of accumulator B, however except for some instructions,
requires more instruction bytes and execution cycles than that of accumulator A. Accumulator B is also
controlled by the data length flag (m) just as in accumulator A.

(3) Accumulator E (E)
This 32-bit accumulator consists of accumulator A for low-order 16 bits and accumulator B for high-
order 16 bits. This accumulator is used for instructions that handle 32-bit data. It is not controlled by
flag m.

2.1.2 Index register X (X)
Index register X consists of 16 bits and the low-order 8 bits can also be used separately. The index register
length flag (x) determines whether the register is used as a 16-bit register or as an 8-bit register. Flag x
is a part of the processor status register which is described later. When an 8-bit register is selected, only
the low-order 8 bits of index register X are used and the contents of the high-order 8 bits is unchanged.
In an addressing mode in which index register X is used as an index register, the address obtained by
adding the contents of this register to the operand’s contents is accessed.

In the MVP, MVN or RMPA instruction, index register X is used, also.

2.1.3 Index register Y (Y)
Index register Y is a 16-bit register with the same function as index register X. Just as in index register
X, the index register length flag (x) determines whether this register is used as a 16-bit register or as an
8-bit register.

CENTRAL PROCESSING UNIT (CPU)
2.1 Central processing unit (CPU)

2–4 7900 Series Software Manual

2.1.4 Stack pointer (S)
The stack pointer (S) is a 16-bit register. It is used for a subroutine call or an interrupt. It is also used when
addressing modes using the stack are executed. The contents of S indicate an address (stack area) for
storing registers during subroutine calls and interrupts. Bank 016 is specified for the stack area. (Refer to
“2.2 Memory space. ”
When an interrupt request is accepted, the microcomputer stores the contents of the program bank register
(PG) at the address indicated by the contents of S and decrements the contents of S by 1. Then the
contents of the program counter (PC) and the processor status register (PS) are stored. The contents of
S after accepting an interrupt request is equal to the contents of S decremented by 5 before accepting of
the interrupt request. (Refer to Figure 2.1.2.)
When completing the process in the interrupt routine and returning to the original routine, the contents of
registers stored in the stack area are restored into the original registers in the reverse sequence (PS→PC→PG)
by executing the RTI instruction. The contents of S is returned to the state before accepting an interrupt
request.
The same operation is performed during a subroutine call, however, the contents of PS is not automatically
stored. (The contents of PG may not be stored. This depends on the addressing mode.)
During interrupts or subroutine calls, the other registers are not automatically stored. Therefore, if the
contents of these registers need to be held on, be sure to store them by software.
Additionally, the S’s contents become “0FFF16” at reset. The stack area changes when subroutines are
nested or when multiple interrupt requests are accepted. Therefore, make sure of the subroutine’s nesting
depth not to destroy the necessary data.

Fig. 2.1.2 Contents of stack area after accepting interrupt request

● “S” is the initial address that the stack pointer (S)
indicates at accepting an interrupt request.
The S’s contents become “S – 5” after storing the
above registers.

Address

S–4

S–3

S–2

S–1

S

Stack area

S–5

Processor status register’s low-order byte (PS L)

Processor status register’s high-order byte (PS H)

Program counter’s low-order byte (PC L)

Program counter’s high-order byte (PC H)

Program bank register (PG)

2.1 Central processing unit

CENTRAL PROCESSING UNIT (CPU)

2–57900 Series Software Manual

2.1.5 Program counter (PC)
The program counter is a 16-bit counter that indicates the low-order 16 bits of the address (24 bits) at
which an instruction to be executed next (in other words, an instruction to be read out from an instruction
queue buffer next) is stored. The contents of the high-order program counter (PCH) become “FF16,” and
the low-order program counter (PCL) becomes “FE16” at reset. The contents of the program counter
becomes the contents of the reset’s vector address (addresses FFFE16, FFFF16) just after reset.
Figure 2.1.3 shows the program counter and the program bank register.

Fig. 2.1.3 Program counter and program bank register

2.1.6 Program bank register (PG)
The memory space is divided into units of 64 Kbytes. This unit is called “bank.” (Refer to “2.2 Memory
space.”)
The program bank register is an 8-bit register that indicates the high-order 8 bits of the address (24 bits)
at which an instruction to be executed next (in other words, an instruction to be read out from an instruction
queue buffer next) is stored. These 8 bits indicate a bank.
When a carry occurs after adding the contents of the program counter or adding the offset value to the
contents of the program counter in the branch instruction and others, the contents of the program bank
register is automatically incremented by 1. When a borrow occurs after subtracting the contents of the
program counter, the contents of the program bank register is automatically decremented by 1. Therefore,
there is no need to consider bank boundaries during programming, usually.
This register is cleared to “0016” at reset.

PCH PCL

b7 b0 b15 b8 b7 b0
(b16)

PG

(b23)

CENTRAL PROCESSING UNIT (CPU)
2.1 Central processing unit (CPU)

2–6 7900 Series Software Manual

2.1.7 Data bank register (DT)
The data bank register is an 8-bit register. In the following addressing modes using the data bank register,
the contents of this register is used as the high-order 8 bits (bank) of a 24-bit address to be accessed.

Use the LDT instruction when setting a value to this register.
This register is cleared to “0016” at reset.

●Addressing modes using data bank register
•Direct indirect
•Direct indexed X indirect
•Direct indirect indexed Y
•Absolute
•Absolute indexed X
•Absolute indexed Y
•Absolute bit relative
•Stack pointer relative indirect indexed Y
•Multiplied accumulation

2.1.8 Direct page register 0 to 3 (DPR0 to DPR3)
The direct page register is a 16-bit register. The direct page registers (hereafter called the “DPRn”) have
been enhanced from the conventional 7700 Family.
These registers are used to access the 64-Kbyte space in bank 0 efficiently.
The direct page register select bit of processor mode register 1 determines whether to use DPR0 only or
DPR0 through DPR3. The function of this bit is described below.

Table 2.1.1 Direct page register selection

DPRn that can be used

Block size accessible from DPRn as base address

Remarks

DPR0

256 bytes

Compatible with conventional 7700 Family

DPR0 to DPR3

64 bytes

–

Direct page register select bit

0 1

Note : Once the direct page register select bit is set, do not change its value.

2.1 Central processing unit

CENTRAL PROCESSING UNIT (CPU)

2–77900 Series Software Manual

When the contents of low-order 8 bits of the direct page register is “0016,” the number of cycles required
to generate an address is smaller by 1 than the number when its contents are not “0016.” Accordingly,
the access efficiency can be enhanced in this case.
This register is cleared to “000016” at reset.

●Addressing modes using direct page register
•Direct
•Direct indexed X
•Direct indexed Y
•Direct indirect
•Direct indexed X indirect
•Direct indirect indexed Y
•Direct indirect long
•Direct indirect long indexed Y
•Direct bit relative

000016

003F16

004016

007F16

0FC016

0FFF16

1000016

FFFF16

Bank 016

Direct page area when DPR0 = 000016

Direct page area when DPR1 = 004016

Direct page area when DPR3 = 0FC016

Notes 1: The number of cycles required to generate an address is smaller by 1 when the low-order 8 bits of DPRn are “00

2: If the address value obtained by adding the DPRn’s contents and offset value exceeds bank 0

080016

083F16
Direct page area when DPR2 = 080016

Bank 116

0F0016

0FFF16

1000016

FFFF16

Bank 016

Direct page area

when DPR0 = “0F0016”

Bank 116

■ When direct page register select bit = “1”■ When direct page register select bit = “0”

16.”

16, the processor accesses bank 116.

Fig. 2.1.4 Direct page area selection example

CENTRAL PROCESSING UNIT (CPU)
2.1 Central processing unit (CPU)

2–8 7900 Series Software Manual

b15 b8 b7 b0b1b2b3b4b5b6b14 b9b10b11b12b13

0 N CZIDxmV0 IPL000

2.1.9 Processor status register (PS)
The processor status register is an 11-bit register.
Figure 2.1.5 shows the structure of the processor status register.

Note : Bits 15 to 11 are always “0” when reading. And fix each of bits 15–11
to “0” when the contents of PS is changed.

Processor staus
register (PS)

Fig. 2.1.5 Processor status register structure

(1) Bit 0: Carry flag (C)
It retains a carry or a borrow generated in the arithmetic and logic unit (ALU) during an arithmetic
operation. This flag is also affected by shift and rotate instructions.
Use the SEC or SEP instruction to set this flag to “1”, and use the CLC or CLP instruction to clear
it to “0”.
The contents of this flag is undefined at reset.

(2) Bit 1: Zero flag (Z)
It is set to “1” when the result of an arithmetic operation or data transfer is “0,” and cleared to “0” when
otherwise. This flag is invalid in the decimal mode addition.
Use the SEP instruction to set this flag to “1,” and use the CLP instruction to clear it to “0.”
The contents of this flag is undefined at reset.

(3) Bit 2: Interrupt disable flag (I)
It disables all maskable interrupts. Interrupts are disabled when this flag is “1.” When an interrupt
request is accepted, this flag is automatically set to “1” to avoid multiple interrupts. Use the SEI or
SEP instruction to set this flag to “1,” and use the CLI or CLP instruction to clear it to “0.” This flag
is set to “1” at reset.

(4) Bit 3: Decimal mode flag (D)
It determines whether addition and subtraction are performed in binary or decimal. Binary arithmetic
is performed when this flag is “0.” When it is “1,” decimal arithmetic is performed with each 8-bit
treated as 2-digit decimal (at m = 1) or each 16-bit treated as 4-digit decimal (at m = 0). Decimal
adjust is automatically performed. Decimal operation is possible only with the ADC, ADCB, SBC and
SBCB instructions. Use the SEP instruction to set this flag to “1,” and use the CLP instruction to clear
it to “0.” This flag is cleared to “0” at reset.

(5) Bit 4: Index register length flag (x)
It determines whether each of index register X and index register Y is used as a 16-bit register or an
8-bit register. That register is used as a 16-bit register when this flag is “0,” and as an 8-bit register
when it is “1” (Note) . Use the SEP instruction to set this flag to “1,” and use the CLP instruction to
clear it to “0.” This flag is cleared to “0” at reset.

Note: When transferring data between registers which are different in bit length, the data is transferred
with the length of the destination register, but except for the TXA , TYA , TXB , TYB , and TXS
instructions.

2.1 Central processing unit

CENTRAL PROCESSING UNIT (CPU)

2–97900 Series Software Manual

(6) Bit 5: Data length flag (m)
It determines whether to use data as a 16-bit unit or as an 8-bit unit. A data is treated as a 16-bit unit
when this flag is “0,” and as an 8-bit unit when it is “1” (Note) .
Use the SEM or SEP instruction to set this flag to “1,” and use the CLM or CLP instruction to clear
it to “0.” This flag is cleared to “0” at reset.

Note: When transferring data between registers which are different in bit length, the data is transferred
with the length of the destination register, but except for the TXA , TYA , TXB , TYB , and TXS
instructions.

(7) Bit 6: Overflow flag (V)
It is used when adding or subtracting with a word regarded as signed binary. The overflow flag is set
to “1” when the result of addition or subtraction exceeds the range between –2147483648 and +2147483647
(when 32-bit length operation), the range between –32768 and +32767 (when 16-bit length operation),
or the range between –128 and +127 (when 8-bit length operation).
The overflow flag is also set to “1” when the result of division exceeds the length of the register which
will store the result, in the DIV or DIVS instruction. This flag is invalid in the decimal mode. Use the
SEP instruction to set this flag to “1,” and use the CLV or CLP instruction to clear it to “0.”
The contents of this flag is undefined at reset.

(8) Bit 7: Negative flag (N)
It is set to “1” when the result of arithmetic operation or data transfer is negative. (The most significant
bit of the result is “1.”) It is cleared to “0” in all other cases. This flag is invalid in the decimal mode.
Use the SEP instruction to set this flag to “1,” and use the CLP instruction to clear it to “0.”
The contents of this flag is undefined at reset.

(9) Bits 10 to 8: Processor interrupt priority level (IPL)
These 3 bits can determine the processor interrupt priority level to one of levels 0 to 7. The interrupt
is enabled when the interrupt priority level of a required interrupt, which is set in each interrupt control
register, is higher than IPL. When an interrupt request is accepted, IPL is stored in the stack area,
and IPL is replaced by the interrupt priority level of the accepted interrupt request.
There are no instruction to directly set or clear the bits of IPL. IPL can be changed by storing the new
IPL into the stack area and updating the processor status register with the PUL or PLP instruction.
The contents of IPL is cleared to “0002” at reset.

7900 Series Software Manual2–10

CENTRAL PROCESSING UNIT (CPU)
2.2 Access space

2.2 Access space
The memory space of the 7900 Series is a 16-Mbyte space from addresses 016 to FFFFFF16. (Refer to the
Figure 2.2.1 .) However, addresses FF000016 to FFFFFF16 cannot be used because this area is reserved.
A 24-bit address is generated by combination of the program counter (PC), which is 16 bits of structure, and
the program bank register (PG), which is 8 bits of structure. The memory space of the 7900 Series is divided
into units of 64 Kbytes. This unit is called “bank.” The PG indicates the bank number.
The memory and I/O devices are assigned in the same access space. Accordingly, it is possible to perform
transfer and arithmetic operations using the same instructions without discrimination of the memory from
I/O devices.

Fig. 2.2.1 7900 Series’s access space

 : Indicates that nothing is assigned.
Bank FF16

 : Reserved area (Do not use.)

00000016

00FFFF16

01000016

FE000016

FF000016

FFFFFF16

SFR area

Internal RAM area

Bank 016

•

Internal ROM area

02000016

SFR : Special Function Register

Note : Memory assignment of internal RAM area varies according to the type of microcomputer.
Refer to the latest catalogues or datasheets.

Bank 116

Bank FE16

 : Indicates memory assignment of internal areas.

Reserved area

FEFFFF16

•••
•••

• •

•

7900 Series Software Manual 2–11

ADDRESSING MODES
2.3 Addressing modes

2.3 Addressing modes

2.3.1 Overview
To execute an instruction, when the data required for the operation is retrieved from a memory or the result
of the operation is stored to it, it is necessary to specify the address of the memory location in advance.
Address specification is also necessary when the control is to jump to a certain memory address during
program execution. Addressing means the method of specifying the memory address.
The memory access of the 7900 Series microcomputers is reinforced with 27 different addressing modes.

2.3.2 Explanation of addressing modes
Each addressing mode is explained on the corresponding page indicated below:

Implied addressing mode (IMP) .. 2-12

Immediate addressing mode (IMM) .. 2-13

Accumulator addressing mode (A) .. 2-15

Direct addressing mode (DIR) ... 2-16

Direct indexed X addressing mode (DIR,X) ... 2-19

Direct indexed Y addressing mode (DIR,Y) ... 2-22

Direct indirect addressing mode ((DIR)) ... 2-23

Direct indexed X indirect addressing mode ((DIR,X)) 2-25

Direct indirect indexed Y addressing mode ((DIR,Y)) 2-28

Direct indirect long addressing mode (L (DIR)) 2-31

Direct indirect long indexed Y addressing mode (L (DIR),Y) 2-33

Absolute addressing mode (ABS) ... 2-36

Absolute indexed X addressing mode (ABS,X) 2-39

Absolute indexed Y addressing mode (ABS,Y) 2-42

Absolute long addressing mode (ABL) ... 2-45

Absolute long indexed X addressing mode (ABL,X) 2-47

Absolute indirect addressing mode ((ABS)) .. 2-49

Absolute indirect long addressing mode (L (ABS)) 2-50

Absolute indexed X indirect addressing mode ((ABS,X)) 2-51

Stack addressing mode (STK) .. 2-52

Relative addressing mode (REL) .. 2-55

Direct bit relative addressing mode (DIR,b,R) .. 2-56

Absolute bit relative addressing mode (ABS,b,R) 2-58

Stack pointer relative addressing mode (SR) ... 2-60

Stack pointer relative indirect indexed Y addressing mode ((SR),Y) 2-61

Block transfer addressing mode (BLK) ... 2-64

Multiplied accumulation addressing mode (Multiplied accumulation) 2-66

Note: Unless otherwise noted, in each explanation diagram for the addressing mode of which name
includes “direct,” “Direct page register” means DPR0 only.

7900 Series Software Manual2–12

Implied

Mode : Implied addressing mode

Function : These instructions do not have an operand in the mnemonic.

ex. : Mnemonic
CLC

Machine code

1416

PS

PS

C flag

ex. : Mnemonic
TXA
(m=“1,” x=“1”)

Machine code

X

A

The high-order byte is
 not changed.

ex. : Mnemonic
TXA
(m=“0,” x=“0”)

Machine code
A416

X

A

? ? ? ? ? ? ? ? ? ? ?

DATAL

8A16 DATAL

DATAH DATAL

DATAH

A416

? ? ? ? ? ? ? ? ? ? 0

DATAL

7900 Series Software Manual 2–13

ex. : Mnemonic
ADD A, #0A5H
 (m=“1”)

Machine code
2616 A516

A ← A+ A516 ←

Op Code (2616)

Operand (A516)

Memory

PG

PG

000016

FFFF16

Bank PG

ex. : Mnemonic
ADD A, #0A5B7H
 (m=“0”)

Machine code
2616 B716 A516

←

Op Code (2616)

Operand (A516)

Memory

PG

PG

000016

FFFF16

Bank PGOperand (B716)
A ← A+ A516 B716

ex. : Mnemonic
LDX #0A5H
 (x=“1”)

Machine code
C616 A516

A516 ←

Op Code (C616)

Operand (A516)

Memory

PG

PG

000016

FFFF16

Bank PG
←X

 Immediate

Mode : Immediate addressing mode

Function : These instructions operate with a register and a immediate value.

7900 Series Software Manual2–14

 Immediate

ex. : Mnemonic
LDX #0A5B7H
 (x=“0”)

Machine code
C616 B716 A516

←

Op Code (C616)

Operand (A516)

Memory

PG

PG

000016

FFFF16

Bank PG
Operand (B716)

X ← A516 B716

7900 Series Software Manual 2–15

ex. : Mnemonic

ROL A
(m=“0”)

Machine code

1316

b15 b0

Carry flag Accumulator A

ex. : Mnemonic

ROL A
(m=“1”)

Machine code

1316

b7 b0

Carry flag Accumulator A

Accumulator

Mode : Accumulator addressing mode

Function : These instructions manipulate the contents of an accumulator.

7900 Series Software Manual2–16

Direct

Mode : Direct addressing mode

Function : The memory contents in bank 0 specified by the result of adding the instruction’s operand and the
contents of the direct page register are an actual data. However, if the value derived by adding
the instruction’s operand and the direct page register’s content’s exceeds the bank 016 range,
memory in bank 1 is specified.
The direct page register select bit of processor mode register 1 allows the user to choose one of
the following options :
• Use direct page register 0 (DPR0) only.

In this case, specify the offset from DPR0 in length of 8 bits.
• Use direct page registers 0 through 3 (DPR0 through 3).

In this case, use the high-order 2 bits of the operand (8 bits) to specify the direct page register
and the low-order 6 bits to specify the offset.

ex. : Mnemonic
ADD A, 02H
 (m=“1”)

Machine code
2A16 0216

Op Code (2A16)

Memory

000016

FFFF16

Bank 016

Operand (0216)

←A ← A+ DATA DATA 123616

+ 123416 = 123616

Direct page
 register

ex. : Mnemonic
ADD A, 02H
 (m=“0”)

Machine code
2A16 0216

Op Code (2A 16)

Memory

000016

FFFF16

Bank 016

Operand (0216)

DATAL 123616

+ 123416 = 123616

Direct page
 register

DATAH 123716

←A ← A+ DATAH DATAL

< Diect addressing mode>

7900 Series Software Manual 2–17

Direct

ex. : Mnemonic

LDX 02H
 (x=“1”)

Machine code
0216 0216

Op Code (0216)

Memory

000016

FFFF16

Bank 016

Operand (0216)

←X ← DATA DATA 123616

+ 123416 = 123616

Direct page
 register

ex. : Mnemonic
LDX 02H
 (x=“0”)

Machine code
0216 0216

Op Code (0216)

Memory

000016

FFFF16

Bank 016

Operand (0216)

DATAL 123616

+ 123416 = 123616

Direct page
 register

DATAH

←X ← DATAH DATAL

7900 Series Software Manual2–18

Direct

ex. : Mnemonic
ADD A, 42H
 (x=“0”)

Machine code
2A16 4216

Op Code (2A16)

Memory

000016

FFFF16

Bank 016

Operand (4216)

DATAL 200216

+ 200016 = 200216

Direct page
 register 1

DATAH

←A ← DATAH DATAL

<Extension direct addressing mode>

Operand (4216)

0 1 0 0 0 0 1 0

Offset (0216)DPR1
specified

7900 Series Software Manual 2–19

ex. : Mnemonic

ADD A, 1EH, X
 (m=“1,” x=“1”)

Machine code

2B16 1E16

Op Code (2B16)

Memory

000016

FFFF16

Bank 016

Operand (1E16)

←A ← A+ DATA DATA 133816

+ 123416 +

Direct page
 register

E616 = 133816

 Index
register XL

ex. : Mnemonic

ADD A, 1EH, X
 (m=“0,” x=“1”)

Machine code

2B16 1E16

Op Code (2B16)

Memory

000016

FFFF16

Bank 016

Operand (1E16)

DATAL 133816

+ 123416 +

Direct page
 register

DATAH

←A ← A+ DATAH

E616 = 133816

 Index
register XL

133916

 DATAL

Direct Indexed X

Mode : Direct indexed X addressing mode

Function : The contents of a memory in bank 016 are an actual data. This memory location is specified by
the result of adding the instruction’s operand, the direct page register’s contents and the index
register X’s contents. When, however, the result of adding the instruction’s operand, the direct
page register’s contents and the index register X’s contents exceeds the bank 016 or bank 116

range, the memory location in bank 116 or bank 216 is specified.

7900 Series Software Manual2–20

Direct Indexed X

ex. : Mnemonic
ADD A, 1EH, X
 (m=“1,” x=“0”)

Machine code
2B16 1E16

Op Code (2B16)

Memory

000016

FFFF16

Bank 016

Operand (1E16)

←A ← A+ DATA DATA 433816

+ 123416 +

Direct page
 register

30E616 = 433816

 Index
register X

ex. : Mnemonic

ADD A, 1EH, X
 (m=“0,” x=“0”)

Machine code

2B16 1E16

Op Code (2B16)

Memory

000016

FFFF16

Bank 016

Operand (1E16)

DATAL 433816

+ 123416 +

Direct page
 register

DATAH

←A ← A+ DATAH

30E616 = 433816

 Index
register X

433916

DATAL

7900 Series Software Manual 2–21

Direct Indexed X

ex. : Mnemonic

LDY 1EH, X
(x=“0”)

Machine code
4116 1B16 1E16

Op Code (4116)

Memory

000016

FFFF16

Bank 016

Operand (1E16)

DATAL 433816

+ 123416 +

Direct page
 register

DATAH

←Y ← DATAH

30E616 = 433816

 Index
register X

433916

ex. : Mnemonic
LDY 1EH, X
(x=“1”)

Machine code
4116 1B16 1E16

Op Code (4116)

Memory

000016

FFFF16

Bank 016

Operand (1E16)

←Y ← DATA DATA 133816

+ 123416 +

Direct page
 register

E616 = 133816

 Index
register XL

DATAL

Op Code (1B16)

Op Code (1B16)

7900 Series Software Manual2–22

ex. : Mnemonic

LDX 02H, Y
 (x=“0”)

Machine code

Op Code (4116)

Memory

000016

FFFF16

Bank 016

Operand (0216)

DATAL 131C16

+ 123416 +

Direct page
 register

DATAH

←X ← DATAH

00E616 = 131C16

 Index
register Y

131D16

ex. : Mnemonic
LDX 02H, Y
 (x=“1”)

Machine code
4116 0516 0216

Op Code (4116)

Memory

000016

FFFF16

Bank 016

Operand (0216)

←X ← DATA DATA 131C16

+ 123416 +

Direct page
 register

E616 = 131C16

 Index
register YL

DATAL

4116 0516 0216

Op Code (0516)

Op Code (0516)

Direct Indexed Y

Mode : Direct indexed Y addressing mode

Function : The contents of a memory in bank 016 are an actual data. This memory location is specified by
the result of adding the instruction’s operand, the direct page register’s contents and the index
register Y’s contents. When, however, the result of adding the instruction’s operand, the direct
page register’s contents and the index register Y’s contents exceeds the bank 016 or bank 116

range, the memory location in bank 116 or bank 216 is specified.

7900 Series Software Manual 2–23

ex. : Mnemonic
ADD A, (1EH)
(m=“1”)

Machine code
1116 2016 1E16

Op Code (1116)

Memory

000016

FFFF16

Bank 016

Operand (1E16)

ADL (0116)

123416 +

Direct page
 register

←A ← A+ DATA

125216

125316

125216

DATA DT 120116

Data bank
 register

=

ADM (1216)

Op Code (2016)

Direct Indirect

Mode : Direct indirect addressing mode

Function : Specifies a sequence of 2-byte memory in bank 016 by the result of adding the instruction’s
operand to the direct page register’s contents. The contents of the memory location specified by
these 2 bytes in bank DT (DT is the data bank register’s contents) are an actual data. When,
however, the result of adding the instruction’s operand to the direct page register’s contents
exceeds the bank 016 range, the memory location in bank 116 is specified.

7900 Series Software Manual2–24

Direct Indirect

ex. : Mnemonic

ADD A, (1EH)
(m=“0”)

Machine code
1116 2016 1E16

Op Code (1116)

Memory

000016

FFFF16

Bank 016

Operand (1E16)

ADL (0116)

123416 +

Direct page
 register

ADM (1216)

125216

125316

125216

DATAL DT 120116

Data bank
 register

=

DATAH

←A ← A+ DATAH DATAL

DT 120216

Op Code (2016)

7900 Series Software Manual 2–25

Direct Indexed X Indirect

Mode : Direct indexed X indirect addressing mode

Function : Specifies a sequence of 2-byte memory in bank 016 by the result of adding the instruction’s
operand, the direct page register’s contents and the index register X’s contents. The contents of
the memory location specified by these bytes in bank DT (DT is the data bank register’s contents)
are an actual data. When, however, the result of adding the instruction’s operand, the direct page
register’s contents and the index register X’s contents exceeds the bank 016 or bank 116 range,
the memory location in bank 116 or bank 216 is specified.

ex. : Mnemonic

ADD A, (1EH, X)
(m=“1,” x=“1”)

Machine code

1116 2116 1E16

Op Code (1116)

Memory

000016

FFFF16

Bank 016

Operand (1E16)

ADL (0016)

ADM (1416)

←A ← A+ DATA DATA DT 140016

Data bank
 register

133816

133916

+ 123416 +

Direct page
 register

E616 = 133816

 Index
register XLOp Code (2116)

7900 Series Software Manual2–26

Direct Indexed X Indirect

ex. : Mnemonic
ADD A, (1EH, X)
(m=“0,” x=“1”)

Machine code
1116 2116 1E16

Op Code (1116)

Memory

000016

FFFF16

Bank 016

Operand (1E16)

ADL (0016)

ADM (1416)

DATAL DT 140016

Data bank
 register

DATAH←A ← A+ DATAH DATAL DT 140116

+ 123416 +

Direct page
 register

E616 = 133816

 Index
register XL

133816

133916

ex. : Mnemonic
ADD A, (1EH, X)
(m=“1,” x=“0”)

Machine code

Op Code (1116)

Memory

1FFFF16

Bank 116

Operand (1E16)

ADL (0016)

ADM (1416)

←A ← A+ DATA DATA DT 140016

Data bank
 register

1033816

1033916

+ 123416 +

Direct page
 register

F0E616 = 1033816

 Index
register X

1000016

1116 2116 1E16

Op Code (2116)

Op Code (2116)

7900 Series Software Manual 2–27

Direct Indexed X Indirect

ex. : Mnemonic
ADD A, (1EH, X)
 (m=“0,” x=“0”)

Machine code
1116 2116 1E16

Op Code (1116)

Memory

1FFFF16

Bank 116

Operand (1E16)

ADL (0016)

ADM (1416)

1033816

1033916

+ 123416 +

Direct page
 register

F0E616 = 1033816

 Index
register X

1000016

DATAL DT 140016

Data bank
 register

DATAH←A ← A+ DATAH DATAL DT 140116

Op Code (2116)

7900 Series Software Manual2–28

ex. : Mnemonic
ADD A, (1EH), Y
 (m = “1,” x = “1”)

Machine code
1116 2816 1E16

Op Code (1116)

Memory

Bank 016

Operand (1E16)

ADL (0116)

123416 +

Direct page
 register

125216

125316

125216

=

← DATA DT 12E716

Data bank
 register

ADM (1216)
E616 = 12E716

 Index
register YL

+

A ← A+ DATA

Op Code (2816)

Mode : Direct indirect indexed Y addressing mode

Function : Specifies a sequence of 2-byte memory in bank 016 by the result of adding the instruction’s
operand to the direct page register’s contents. The following is an actual data: the contents of the
memory location specified by the result of adding the contents of these 2 bytes to the index register
Y’s contents and the contents of the data bank register. When, however, the result of adding the
instruction’s operand to the direct page register’s contents exceeds the bank 016 range, the
memory location in bank 116 is specified. Additionally, if the addition of the memory’s contents and
the index register Y’s contents generates a carry, the value which is 1 larger than the contents of
the data bank register indicates the bank.

Direct Indirect Indexed Y

7900 Series Software Manual 2–29

Direct Indirect Indexed Y

ex. : Mnemonic

ADD A, (1EH), Y
 (m = “0,” x = “1”)

Machine code
1116 2816 1E16

Op Code (1116)

Memory

Bank 016

Operand (1E16)

ADL (0116)

123416 +

Direct page
 register

125216

125316

125216

=
DATAL DT 12E716

Data bank
 register

ADM (1216)
E616 = 12E716

 Index
register YL

+

DATAH

←A ← A+ DATAH DATAL

DT 12E816

ex. : Mnemonic

ADD A, (1EH), Y
 (m = “1,” x=“0”)

Machine code

Op Code (1116)

Memory

Bank 016

Operand (1E16)

ADL (0116)

123416 +

Direct page
 register

125216

125316

125216

=

←A ← A+ DATA DATA DT + 1 02E716

Data bank
 register

ADM (1216)
F0E616 = 102E716

 Index
register Y

+

Bank

1116 2816 1E16

Op Code (2816)

Op Code (2816)

7900 Series Software Manual2–30

Direct Indirect Indexed Y

ex. : Mnemonic

ADD A, (1EH), Y
 (m = “0,” x = “0”)

Machine code
1116 2816 1E16

Op Code (1116)

Memory

Bank 016

Operand (1E16)

ADL (0116)

123416 +

Direct page
 register

125216

125316

125216

=

DATAL DT + 1 02E716

Data bank
 register

ADM (1216)

DATAH

←A ← A+ DATAH DATAL

DT + 1 02E816

F0E616 = 102E716

 Index
register Y

+

Bank

Op Code (2816)

7900 Series Software Manual 2–31

ex. : Mnemonic

ADD A, L (1EH)
 (m=“1”)

Machine code
1116 2216 1E16

Memory

Bank 016

ADL (EF16)125216

125316 ADM (0116)

A ← A+ DATA

Op Code (1116)

Operand (1E16)123416 +

Direct page
 register

125216

=

← DATA 1201EF16

ADH (1216)125416

Op Code (2216)

Direct Indirect Long

Mode : Direct indirect long addressing mode

Function : Specifies a sequence of 3-byte memory in bank 016 by the result of adding the instruction’s
operand to the direct page register’s contents. The contents at the address specified by the
contents of these 3 bytes are an actual data. When, however, the result of adding the instruction’s
operand to the direct page register’s contents exceeds the bank 016 range, the memory location
in bank 116 is specified. A sequence of 3-byte memory can cross over the bank boundary.

7900 Series Software Manual2–32

Direct Indirect Long

ex. : Mnemonic

ADD A, L (1EH)
 (m=“0”)

Machine code
1116 2216 1E16

Memory

Bank 016

ADL (EF16)125216

125316 ADM (0116)

ADH (1216)125416

A ← A+ DATAH

Op Code (1116)

Operand (1E16)123416 +

Direct page
 register

125216

=

←
DATAL 1201EF16

DATAH 1201F016

DATAL

Op Code (2216)

7900 Series Software Manual 2–33

ex. : Mnemonic

ADD A, L (1EH), Y
 (m = “1,” x = “1”)

Machine code
1116 2916 1E16

Memory

Bank 016

ADL (EF16)125216

125316 ADM (0116)

A ← A+ DATA

Op Code (1116)

Operand (1E16)123416 +

Direct page
 register

125216

=

← DATA 12021016

ADH (1216)125416

2116 = 12021016

 Index
register YL

+

Op Code (2916)

Direct Indirect Long Indexed Y

Mode : Direct indirect long indexed Y addressing mode

Function : Specifies a sequence of 3-byte memory in bank 016 by the result of adding the instruction’s
operand to the direct page register’s contents. The contents at the address specified by the result
of adding the contents of these 3 bytes to the index register Y’s contents are an actual data. When,
however, the result of adding the instruction’s operand to the direct page register’s contents
exceeds the bank 016 range, the memory location in bank 116 is specified. A sequence of 3-byte
memory can cross over the bank boundary.

7900 Series Software Manual2–34

Direct Indirect Long Indexed Y

ex. : Mnemonic

ADD A, L(1EH), Y
 (m = “0,” x = “1”)

Machine code
1116 2916 1E16

Op Code (1116)

Memory

Bank 016

Operand (1E16)

ADL (EF16)

123416 +

Direct page
 register

125216

125316

125216

=

DATAL 12021016

ADM (0116) 2116 = 12021016

 Index
register YL

+

DATAH

←A ← A+ DATAH DATAL

12021116

125416 ADH (1216)

ex. : Mnemonic

ADD A, L(1EH), Y
 (m = “1,” x = “0”)

Machine code

Op Code (1116)

Memory

Bank 016

Operand (1E16)

ADL (EF16)

123416 +

Direct page
 register

125216

125316

125216

=

DATA 12E71016

ADM (0116)

←A ← A+ DATA

125416 ADH (1216)

+ E52116 = 12E71016

 Index
register Y

1116 2916 1E16

Op Code (2916)

Op Code (2916)

7900 Series Software Manual 2–35

Direct Indirect Long Indexed Y

ex. : Mnemonic

ADD A, L (1EH), Y
 (m = “0,” x = “0”)

Machine code
1116 2916 1E16

Op Code (1116)

Memory

Bank 016

Operand (1E16)

ADL (EF16)

123416 +

Direct page
 register

125216

125316

125216

=

12E71016

ADM (0116)

125416 ADH (1216)

+ E52116 = 12E71016

 Index
register Y

DATAL

DATAH 12E71116

←A ← A+ DATAH DATAL

Op Code (2916)

7900 Series Software Manual2–36

Absolute

Mode : Absolute addressing mode

Function : The following is an actual data: the contents of the memory location specified by the instruction’s
operands and the contents of the data bank register. Note that, in the cases of the JMP and JSR
instructions, the instruction’s operands are transferred to the program counter.

DT

ex.: Mnemonic
ADD A, 0AD12H
 (m=“1”)

Machine code
2E16 1216 AD16

Op Code (2E16)

Operand (AD16)

Memory

Operand (1216)

DATAA ← A+ DATA ← AD1216

Data bank
 register

←A ← A+ DATAH
DT

ex. : Mnemonic
ADD A, 0AD12H
 (m=“0”)

Machine code
2E16 1216 AD16

Op Code (2E16)

Operand (AD16)

Memory

Operand (1216)

DATAL AD1216

Data bank
 register

DATAH DT AD1316

 DATAL

7900 Series Software Manual 2–37

Absolute

DT

ex. : Mnemonic
LDX 0AC14H
 (x=“1”)

Machine code
0716 1416 AC16

Op Code (0716)

Operand (AC16)

Memory

Operand (1416)

DATAX ← DATA ← AC1416

Data bank
 register

←X ← DATAH DATAL

DT

ex. : Mnemonic
LDX 0AC14H
 (x=“0”)

Machine code
0716 1416 AC16

Op Code (0716)

Operand (AC 16)

Memory

Operand (1416)

DATAL AC1416

Data bank
 register

DATAH DT AC1516

7900 Series Software Manual2–38

Absolute

Note the branch destination bank in the case where a JMP or a JSR instruction
is located near a bank boundary.

Refer to the description of a JMP/JMPL instruction (Page 4-111).
Refer to the description of a JSR/JSRL instruction (Page 4-112).

ex. : Mnemonic
JMP 0AC14H

Machine code
9C16 1416 AC16

Op Code (9C16)

Operand (AC16)

Memory

PG 000016

PG FFFF16

Bank PG

Operand (1416)

Address to be
executed next

PG AC1416

Program
bank register

Program bank register’s
contents are not affected.

Note :

7900 Series Software Manual 2–39

DT

ex. : Mnemonic
ADD A, 0AD12H, X
 (m = “1,” x = “1”)

Machine code

2F16 1216 AD16

Op Code (2F16)

Operand (AD16)

Memory

Operand (1216)

DATAA ← A+ DATA ← AE0016

+ EE16 = AE0016

 Index
register XL

←A ← A+ DATAH DATAL

DT

ex. : Mnemonic
ADD A, 0AD12H, X
 (m = “0,” x = “1”)

Machine code
2F16 1216 AD16

Op Code (2F16)

Operand (AD16)

Memory

Operand (1216)

DATAL AE0016

Data bank
register

DATAH DT AE0116

+ EE16 = AE0016

 Index
register XL

Data bank
register

Absolute Indexed X

Mode : Absolute indexed X addressing mode

Function : The following is an actual data: the contents of the memory location specified by the result of
adding a 16-bit length numerical value expressed with the instruction’s operands to the index
register X’s contents, and the contents of the data bank register. If, however, the addition of the
numerical value expressed with the instruction’s operands and the index register X’s contents
generates a carry, the value which is 1 larger than the contents of the data bank register indicates
the bank.

7900 Series Software Manual2–40

Absolute Indexed X

DT

ex. : Mnemonic
ADD A, 0AD12H, X
 (m = “1,” x = “0”)

Machine code

2F16 1216 AD16

Op Code (2F16)

Operand (AD16)

Memory

Operand (1216)

DATAA ← A+ DATA ← BE0016

+ 10EE16 = BE0016

 Index
register X

←A ← A+ DATAH DATAL

DT

ex. : Mnemonic
ADD A, 0AD12H, X
 (m = “0,” x = “0”)

Machine code
2F16 1216 AD16

Op Code (2F16)

Operand (AD16)

Memory

Operand (1216)

DATAL BE0016

Data bank
 register

DATAH DT BE0116

+

Data bank
 register

+ 10EE16 = BE0016

 Index
register X

7900 Series Software Manual 2–41

Absolute Indexed X

DT

ex. : Mnemonic
LDY 0BC12H, X
 (x=“1”)

Machine code

4116 1F16 1216 BC16

Op Code (4116)

Operand (BC16)

Memory

Operand (1216)

DATAY ← DATA ← BD0016

←Y ← DATAH DATAL

DT

ex. : Mnemonic
LDY 0BC12H, X
 (x=“0”)

Machine code

Op Code (4116)

Operand (BC16)

Memory

Operand (1216)

DATAL CD0016

Data bank
 register

DATAH DT CD0116

+

Data bank
 register

+ 10EE16 = CD0016

 Index
register X

+ EE16 = BD0016

 Index
register XL

Op Code (1F16)

Op Code (1F16)

4116 1F16 1216 BC16

7900 Series Software Manual2–42

Absolute Indexed Y

Mode : Absolute indexed Y addressing mode

Function : The following is an actual data: the contents of the memory location specified by the result of
adding a 16-bit length numerical value expressed with the instruction’s operands to the index
register Y’s contents, and the contents of the data bank register. If, however, the addition of the
numerical value expressed with the instruction’s operands to the index register Y’s contents gen-
erates a carry, the value which is 1 larger than the contents of the data bank register indicates the
bank.

DT

ex. : Mnemonic
ADD A, 0AD12H, Y
 (m = “1,” x = “1”)

Machine code

1116 2616 1216 AD16

Op Code (1116)

Operand (AD16)

Memory

Operand (1216)

DATAA ← A+ DATA ← AE0016

DT

ex. : Mnemonic

ADD A, 0AD12H, Y
 (m = “1,” x = “0”)

Machine code

1116 2616 1216 AD16

Op Code (1116)

Operand (AD16)

Memory

Operand (1216)

DATA BE0016

Data bank
 register

+

Data bank
 register

+ 10EE16 = BE0016

 Index
register Y

+ EE16 = AE0016

 Index
register YL

A ← A+ DATA ←

Op Code (2616)

Op Code (2616)

7900 Series Software Manual 2–43

Absolute Indexed Y

ex. : Mnemonic
ADD A, 0AD12H, Y
 (m = “0,” x = “1”)

Machine code

1116 2616 1216 AD16

Op Code (1116)

Operand (AD16)

Memory

Operand (1216)

DATAL DT AE0016

Data bank
 register

+ EE16 = AE0016

 Index
register YL

DATAH DT AE0116

A ← A+ DATAH DATAL ←

ex. : Mnemonic
ADD A, 0AD12H, Y
 (m = “0,” x = “0”)

Machine code
1116 2616 1216 AD16

Op Code (1116)

Operand (AD16)

Memory

Operand (1216)

DATAL

++ 10EE16 = BE0016

 Index
register Y

DT BE0016

Data bank
 register

DT BE0116

A ← A+ DATAH DATAL ←
DATAH

Op Code (2616)

Op Code (2616)

7900 Series Software Manual2–44

Absolute Indexed Y

ex. : Mnemonic
LDX 0BC12H, Y
 (x=“1”)

Machine code

4116 0616 1216 BC16

Op Code (4116)

Operand (BC16)

Memory

Operand (1216)

DATA DT BD0016

Data bank
 register

+ EE16 = BD0016

 Index
register YL

X ← DATA ←

ex. : Mnemonic

LDX 0BC12H, Y
 (x=“0”)

Machine code

4116 0616 1216 BC16

Op Code (4116)

Operand (BC16)

Memory

Operand (1216)

DATAL

++ 10EE16 = CD0016

 Index
register Y

DT CD0016

Data bank
 register

DT CD0116

X ← DATAH DATAL ←
DATAH

Op Code (0616)

Op Code (0616)

7900 Series Software Manual 2–45

ex. : Mnemonic
ADD A, 123456H
 (m=“1”)

Machine code

1116 2C16 5616 3416 1216

Op Code (1116)

Operand (3416)

Memory

Operand (5616)

DATA 12345616A ← A+ DATA ←

Operand (1216)

ex. : Mnemonic
ADD A, 123456H
 (m=“0”)

Machine code
1116 2C16 5616 3416 1216

Op Code (1116)

Operand (3416)

Memory

Operand (5616)

DATAL 12345616

12345716

A ← A+ DATAH DATAL ←
DATAH

Operand (1216)

Op Code (2C16)

Op Code (2C16)

Absolute Long

Mode : Absolute long addressing mode

Function : The contents of the memory location specified by the instruction’s operands are an actual data.
Note that, in the cases of the JMPL and JSRL instructions, the instruction’s second and third bytes
are transferred to the program counter and the fourth byte is transferred to the program bank
register.

7900 Series Software Manual2–46

Absolute Long

ex. : Mnemonic
JMPL 123456H

Machine code

AC16 5616 3416 1216

Op Code (AC16)

Operand (3416)

Memory

Operand (5616)

345616

Operand (1216)

Address to be
executed next

Program bank
 register

1216

Program bank register’s contents
are replaced by the third operand.

7900 Series Software Manual 2–47

+ E116 = 12353716

 Index
register XL

ex. : Mnemonic Machine code

1116 2D16 5616 3416 1216

Op Code (1116)

Operand (3416)

Memory

Operand (5616)

DATA 12353716A ← A+ DATA ←

ex. : Mnemonic
ADD A, 123456H, X
 (m = “0,” x = “1”)

Machine code
1116 2D16 5616 3416 1216

Op Code (1116)

Operand (3416)

Memory

Operand (5616)

DATAL 12353716

12353816

A ← A+ DATAH DATAL ←
DATAH

Operand (1216)

Operand (1216)

+ E116 = 12353716

 Index
register XL

ADD A, 123456H, X
 (m = “1,” x = “1”)

Op Code (2D16)

Op Code (2D16)

Absolute Long Indexed X

Mode : Absolute long indexed X addressing mode

Function : The following is an actual data: the contents of the memory location specified by the result of
adding a numerical value expressed with the instruction’s operands to the index register X’s
contents.

7900 Series Software Manual2–48

Absolute Long Indexed X

ex. : Mnemonic
ADD A, 123456H, X
 (m = “1,” x = “0”)

Machine code

1116 2D16 5616 3416 1216

Op Code (1116)

Operand (3416)

Memory

Operand (5616)

DATA 13233716A ← A+ DATA ←

ex. : Mnemonic

ADD A, 123456H, X
 (m = “0,” x = “0”)

Machine code

1116 2D16 5616 3416 1216

Op Code (1116)

Operand (3416)

Memory

Operand (5616)

DATAL 13233716

13233816

A ← A+ DATAH ←
DATAH

Operand (1216)

Operand (1216)

+

+ EEE116 = 13233716

 Index
register X

EEE116 = 13233716

 Index
register X

DATAL

Op Code (2D16)

Op Code (2D16)

7900 Series Software Manual 2–49

PG

ex. : Mnemonic

JMP (1400H)
Machine code

3116 5C16 0016 1416

Op Code (3116)

Operand (1416)

Memory

Operand (0016)

ADL (FF16) PG 140016

ADM (1E16)

1EFF16
Address to be
executed next

Bank PG

Note the reference/branch destination bank when an instruction
or a reference destination is located near a bank boundary.

Refer to the description of a JMP/JMPL instruction (Page 4-111).

Note :

Op Code (5C16)

Absolute Indirect

Mode : Absolute indirect addressing mode

Function : A sequence of 2-byte memory is specified by the instruction’s third and fourth bytes in the same
program bank. The contents of this 2-byte memory specify the branch destination address within
the same program bank.
This addressing mode is used by a JMP instruction.

7900 Series Software Manual2–50

ex. : Mnemonic
JMPL L(1234H)

Machine code
3116 5D16 3416 1216

Op Code (3116)

Operand (1216)

Memory

Operand (3416)

ADL (1216) PG 123416

ADM (B416)

B41216
Address to be
executed next A116

Bank PG

ADH (A116)

Program bank
 register

ADH is loaded into the
program bank register.

Program bank
 register

Note the reference destination bank when an instruction
is located near a bank boundary.

Refer to the description of a JMP/JMPL instruction (Page 4-111).

Note :

Op Code (5D16)

Absolute Indirect Long

Mode : Absolute indirect long addressing mode

Function : A sequence of 3-byte memory is specified by the instruction’s third and fourth bytes in the same
program bank. The contents of this 3-byte memory specify the branch destination address.
This addressing mode is used by a JMPL instruction.

7900 Series Software Manual 2–51

Absolute Indexed X Indirect

Mode : Absolute indexed X indirect addressing mode

Function : A sequence of 2-byte memory is specified by the result of adding a numerical value expressed with
the instruction’s second and third bytes to the index register X’s contents; the memory bank is
specified by program bank register PG at this time. The contents of this 2-byte memory specify
the branch destination address.
This addressing mode is used by a JMP and a JSR instructions.

ex.: Mnemonic
 JMP (1234H, X)
 (x = “1”)

Machine code
BC16 3416 1216

Op Code (BC16)

Operand (3416)

Operand (1216)

ADL (1216)

Memory

ADM (BC16)

124616

124716

+ 1216

 Index
register XL

= 124616

Address to be
executed next

Program bank
 register

PG BC1216

Bank PG

Note the reference/branch destination bank in the case of a JMP or a
JSR instruction when the instruction or the branch destination address
is located near a bank boundary.
➾ Refer to the description of a JMP/JMPL instruction (Page 4-111).
 Refer to the description of a JSR/JSRL instruction (Page 4-112).

Note :

7900 Series Software Manual2–52

ex. : Mnemonic
PHA
 (m=“1”)

Machine code

8516

Memory

Bank 016
ALS←S–1

00 S

ex. : Mnemonic

PHA
 (m=“0”)

Machine code

8516

Memory

AL

S←S–2 AH

ex. : Mnemonic

PHD

Machine code

8316
Memory

DPR0L

S←S–2 DPR0H

00000016

00

00FFFF16

S

← After instruction
execution

← Before instruction
execution

Bank 016

00 S

00000016

00

00FFFF16

S

← After instruction
execution

← Before instruction
execution

Bank 016

00 S

00000016

00

00FFFF16

S

← After instruction
execution

← Before instruction
execution

Stack

Mode : Stack addressing mode

Function : The contents of a register or others are stored to or restored from the memory of which location
is specified by the stack pointer; this memory is called “stack area.” The stack area is set in bank
016.

7900 Series Software Manual 2–53

Stack

ex. : Mnemonic
PEA #1234H

Machine code

3116 4C16 3416 1216

Memory

Bank 016
3416

1216

Op Code (3116)

Operand (3416)

Operand (1216)

ex. : Mnemonic
PEI 12H

Machine code

3116 4B16 1216

Memory

Bank 016

S←S – 2

DATAL

DATAH

DATAL

Op Code (3116)

Operand (1216)

341216

341316

Direct page
 register

+ 340016 = 341216

DATAH

00 S

00 S

← After instruction
execution

← Before instruction
execution

00 S

00 S

← After instruction
execution

← Before instruction
execution

Op Code (4C16)

Op Code (4B16)

S←S – 2

00000016

00FFFF16

00000016

00FFFF16

7900 Series Software Manual2–54

Stack

ex. : Mnemonic
PER #1234H

Machine code

3116 4D16 3416 1216

Memory

Bank 016

AC16

6816

Op Code (3116)

Operand (3416)

Operand (1216)

PG 567616

Program bank
 register

Program counter

+ 567816 = 68AC16

Bank PG

S←S – 2

00 S

00 S

After instruction
execution

Before instruction
execution

00000016

00FFFF16

Op Code (4D16)

7900 Series Software Manual 2–55

ex. : Mnemonic

BCC ✽ – 12

Machine code

9016 F416

Memory

Op Code (9016)

Operand (F416)

Address to be
executed next

Branch

 ✽

Branches to the address ✽ – 12
when the carry flag (C) is “0.”

Memory

Op Code (9016)

Operand (F416)

Address to be
executed next

 ✽

Advances to the address ✽
when the carry flag (C) is “1.”

ex. : Mnemonic

BRAL 1234H

Machine code

A716 3416 1216

Memory

Op Code (A7 16)

Operand (3416)

Address to be
executed next

Operand (1216)

PG

PG 114616

FF1216

Bank PG

Bank PG + 1

✽–12

Relative

Mode : Relative addressing mode

Function : Branches to the address specified by the result of adding the program counter’s contents to the
instruction’s second byte. In the case of a long branch with the BRA instruction, the instruction’s
second and third bytes are added to the program counter’s contents as a 15-bit signed numerical
value. In the case of the BSR instruction, the instruction’s 3 bits of the first byte and the second
byte are added to the program counter’s contents as a 11-dit signed numerical value. If the
addition generates a carry or a borrow, 1 is added to or subtracted from the program bank register.

7900 Series Software Manual2–56

Direct Bit Relative

Mode : Direct bit relative addressing mode

Function : • BBC and BBS instructions
Specifies the memory location in bank 016 by the result of adding the instruction’s third byte to
the direct page register’s contents; specifies the multiple bits’ position in that memory by the bit
pattern of the instruction’s fourth and fifth bytes (when the m flag is “1,” the fourth byte only).
Then, when the specified bits all satisfy the branching conditions, branches to the address
specified by the result of adding the instruction’s sixth byte (or when the m flag is “1,” the fifth
byte) as a signed numerical value to the program counter’s contents. When, however, the result
of adding the instruction’s second byte to the direct page register’s contents exceeds the bank
016 range, the memory location in bank 116 is specified.

• BBCB and BBSB instructions
Specifies the memory location in bank 016 by the result of adding the instruction’s second byte
to the direct page register’s contents; specifies the multiple bits’ position in that memory by the
bit pattern of the instruction’s third byte. Then, when the specified bits all satisfy the branching
conditions, branches to the address specified by the result of adding the instruction’s fourth byte
as a signed numerical value to the program counter’s contents. When, however, the result of
adding the instruction’s second byte to the direct page register’s contents exceeds the bank 016

range, the memory location in bank 116 is specified.

ex. : Mnemonic

BBS #5AH, 04H, 0F6H
 (m = “1”)

Machine code

4116 4A16 0416 5A16 F616

Bank 016

Memory

Op Code (4116)

Operand (0416)

Operand (5A16)

Direct page
 register

+ 123416 = 123816

(Branch) (Note)

Operand (F616)

Address to be
executed next

00123816

 Program
bank register

1116 FFFD16

 Program
bank register

1216 000716

Memory

Op Code (4116)

Operand (0416)

Operand (5A16)

Direct page
 register

+ 123416 = 123816

(Not branch) (Note)

Operand (F616)

Address to be
executed next

00123816

 Program
bank register

1216 000716

 0

Branch

 1 1 1 1 0 1 1 0 0 1 1 1 0 1 1

Op Code (4A16) Op Code (4A16)

Note: Whether to branch or not depends on the branching conditions.

7900 Series Software Manual 2–57

Direct Bit Relative

ex. : Mnemonic

BBS #5AA5H, 04H, 0F6H
 (m = “0”)

Machine code

4116 4A16 0416 A516 5A16 F616

Memory

Op Code (4116)

Operand (0416)

Operand (A516)

Direct page
 register

+ 123416 = 123816

 1

Operand (5A16)

Address to be
executed next

Branch

00123816

1116 FFFE16

 Program
bank register

1216 000816

00123916

Operand (F616)

Memory

Op Code (4116)

Operand (0416)

Operand (A516)

Direct page
 register

+ 123416 = 123816

Operand (5A16)

Address to be
executed next

00123816

 Program
bank register

1216 000816

00123916

Operand (F616)

Bank 016

 0

 1

 1

 1

 0

 0

 1

 0

 1

 1

 0

 1

 1

 1

 1

 0

 0

 1

 1

 1

 0

 0

 1

 0

 1

 1

 0

 1

 1

 1

 1

Op Code (4A16) Op Code (4A16)

(Branch) (Note)

Note: Whether to branch or not depends on the branching conditions.

(Not branch) (Note)

7900 Series Software Manual2–58

ex. : Mnemonic
BBS #5AH, 1234H, 0F6H
 (m = “1”)

Machine code

4116 4E16 3416 1216 5A16 F616

Memory

Op Code (4116)

Operand (3416)

Operand (1216)

Operand (5A16)

Address to be
executed next

Branch

 Program
bank register

1116 FFFD16

Data bank
 register

DT 123416

Operand (F616)
 Program
bank register

1216 000716

Op Code (4116)

Operand (3416)

Operand (1216)

Operand (5A16)

Address
to be
executed
next

Data bank
 register

DT 123416

Operand (F616)
 Program
bank register

1216 000716

Memory

 0 1 1 1 1 0 1 0 0 0 1 1 1 0 1 0

Op Code (4E16) Op Code (4E16)

(Branch) (Note)

Note: Whether to branch or not depends on the branching conditions.

(Not branch) (Note)

Absolute Bit Relative

Mode : Absolute bit relative addressing mode

Function : • BBC and BBS instructions
Specifies the memory location by the instruction’s third and fourth bytes and the contents of the
data bank register; specifies the multiple bits’ position in that memory by the bit pattern of the
instruction’s fifth and sixth bytes (when the m flag is “1,” the fifth byte only). Then, when the
specified bits all satisfy the branching conditions, branches to the address specified by the result
of adding the instruction’s seventh byte (or when the m flag is “1,” the sixth byte) as a signed
numerical value to the program counter’s contents.

• BBCB and BBSB instructions
Specifies the memory location by the instruction’s second and third bytes and the contents of the
data bank register; specifies the multiple bits’ position in that memory by the bit pattern of the
instruction’s fourth byte. Then, when the specified bits all satisfy the branching conditions,
branches to the address specified by the result of adding the instruction’s fifth byte as a signed
numerical value to the program counter’s contents.

7900 Series Software Manual 2–59

Absolute Bit Relative

ex. : Mnemonic
BBS #5AA5H, 1234H, 0F6H
 (m = “0”)

Machine code
4116 4E16 3416 1216 A516 5A16 F616

Memory

Op Code (4116)

Operand (3416)

Operand (1216)

Operand (A516)

Address to be
executed next

Branch

 Program
bank register

1216 000716

Operand (5A16)

Memory

Op Code (4116)

Operand (3416)

Operand (1216)

Operand (A516)

Address
to be
executed
next

 Program
bank register

1216 000716

Operand (5A16)

 1

Operand (F616)

1116 FFFD16

 Program
bank register

DT 123416

DT 123516

Data bank
 register

Data bank
 register

DT 123416

DT 123516

Operand (F616)

 1

 0

 1

 1

 0

 1

 1

 0

 1

 1

 1

 0

 1

 1

 0

 0

 1

 0

 1

 1

 0

 1

 1

 0

 1

 1

 1

 0

 1

 1

 0

Op Code (4E16) Op Code (4E16)

(Branch) (Note)

Note: Whether to branch or not depends on the branching conditions.

(Not branch) (Note)

7900 Series Software Manual2–60

ex. : Mnemonic

ADD A, 02H, S
 (m=“1”)

Machine code
1116 2316 0216

Op Code (1116)

Memory

Bank 016

Operand (0216)

DATA←A ← A+ DATA

 = 123616

Stack pointer

+ 123416

123616

ex. : Mnemonic

ADD A, 02H, S
 (m=“0”)

Machine code
1116 2316 0216

Op Code (1116)

Memory

Bank 016

Operand (0216)

DATAL

←A ← A+ DATAH DATAL

 = 123616

Stack pointer

+ 123416

123616

DATAH 123716

Op Code (2316)

Op Code (2316)

Stack Pointer Relative

Mode : Stack pointer relative addressing mode

Function : The contents of the memory location in bank 016 are an actual data. This memory is specified by
the result of adding the instruction’s operand to the stack pointer’s contents. When, however, the
result of adding the instruction’s operand to the stack pointer’s contents exceeds the bank 016

range, the memory location in bank 116 is specified.

7900 Series Software Manual 2–61

Stack Pointer Relative Indirect Indexed Y

Mode : Stack pointer relative indirect indexed Y addressing mode

Function : Specifies a sequence of 2-byte memory by the result of adding the instruction’s operand to the
stack pointer’s contents. The contents of the memory location specified by the above addition are
added to the index register Y’s contents. The result of second addition and the contents of data
bank register DT indicate the memory location which contents an actual data. If, however, the
result of adding the contents of that sequence of 2-byte memory to the index register Y’s contents
generates a carry, the value which is 1 larger than the contents of the data bank register DT
indicates the bank.

E616 = 12E716

 Index
register YL

+

ex. : Mnemonic

ADD A, (1EH, S), Y
 (m = “1,” x = “1”)

Machine code
1116 2416 1E16

Op Code (1116)

Bank 016

Operand (1E16)

ADL (0116)

123416 +

Stack pointer

125216

125316

125216

=

DATA DT 12E716

Data bank
 register

ADM (1216)

← A ← A+ DATA

Op Code (2416)

7900 Series Software Manual2–62

Stack Pointer Relative Indirect Indexed Y

ex. : Mnemonic

ADD A, (1EH, S), Y
 (m = “0,” x = “1”)

Machine code
1116 2416 1E16

Op Code (2416)

Memory

Bank 016

Operand (1E16)

ADL (0116)

123416 +

Stack pointer

125216

125316

125216

=
DATAL DT 12E716

Data bank
 register

ADM (1216)
E616 = 12E716

 Index
register YL

+

DATAH

←A ← A+ DATAH

ex. : Mnemonic

ADD A, (1EH, S), Y
 (m = “1,” x = “0”)

Machine code
1116 2416 1E16

Op Code (1116)

Memory

Bank 016

Operand (1E16)

ADL (0116)

123416 +

Stack pointer

125216

125316

125216

=

← A ← A+ DATA DATA DT + 1 02E716

Data bank
 register

ADM (1216)
 = 102E716

 Index
register Y

+ F0E616

DATAL

Bank

Op Code (2416)

Op Code (1116)

7900 Series Software Manual 2–63

Stack Pointer Relative Indirect Indexed Y

ex.: Mnemonic

ADD A, (1EH, S), Y
 (m = “0,” x = “0”)

Machine code
1116 2416 1E16

Op Code (1116)

Memory

Bank 016

Operand (1E16)

ADL (0116)

123416 +

Stack pointer

125216

125316

125216

=

DATAL DT + 1 02E716

Data bank
 register

ADM (1216)

DATAH

←A ← A+ DATAH

 = 102E716

 Index
register Y

+ F0F616

DATAL

Bank

Op Code (2416)

7900 Series Software Manual2–64

Op Code (2B16)

Operand (E216)

Operand (E516)

DATA I

DATA III

DATA II

E5123416

E5123516

E5123616

Bank E516

Bank E216

000316

123416

567816

A

X

Y

?DT

Memory

<< Before transfer >>

ex. : Mnemonic

MVN 0E2H, 0E5H
(m = “0,” x = “0”)

3116 2B16 E216 E516

Machine code

Op Code (2B16)

Operand (E216)

Operand (E516)

DATA I

DATA III

DATA II

E5123416

E5123516

E5123616

Bank E516

FFFF16

123716

567B16

A

X

Y

DT

Memory

DATA I

DATA III

DATA II

E2567816

E2567916

E2567A16

Bank E216

E216

First

Second

<< After transfer >>

Op Code (3116) Op Code (3116)

Block Transfer

Mode : Block transfer addressing mode

Function : Specifies the transfer destination data bank by the instruction’s third byte, and specifies the trans-
fer destination address within the data bank by the index register Y’s contents. Specifies the
transfer source data bank by the instruction’s fourth byte, and specifies the address of transfer data
within the data bank by the index register X’s contents. The accumulator A’s contents are the
number of bytes to be transferred. At termination of transfer, the data bank register’s contents
specify the transfer destination data bank.
• MVN instruction

The MVN instruction is used for transfer toward lower addresses. In this case, the contents of
index registers X and Y are incremented each time data is transferred.

• MVP instruction
The MVP instruction is used for transfer toward higher addresses. In this case, the contents of
index registers X and Y are decremented each time data is transferred. The transfer data can
cross over the bank boundary.

7900 Series Software Manual 2–65

Block Transfer

Operand (E516)

Op Code (2A16)

Operand (E216)

Bank E516

Bank E216

000316

567A16

123616

A

X

Y

?DT

Memory

<< Before transfer >>

ex. : Mnemonic

MVP 0E5H, 0E2H
(m = “0,” x = “0”)

3116 2A16 E516 E216

Machine code

Op Code (2A16)

Operand (E516)

Operand (E216)

DATA I

DATA III

DATA II

E5123416

E5123516

E5123616

Bank E516

FFFF16

567716

123316

A

X

Y

DT

Memory

DATA I

DATA III

DATA II

E2567816

E2567916

E2567A16

Bank E216

E516

DATA I

DATA III

DATA II

E2567816

E2567916

E2567A16

First

Second

For block transfer instructions, the number of bytes to be transferred and the range can be
specified as transfer source/destination addresses change with the state of the m and x flags.
However, the transfer unit is unaffected. The transfer unit is “word” (16 bits). However, only 1
byte is transferred when transferring the last byte at odd-byte transfer.

<< After transfer >>

Note :

Op Code (3116) Op Code (3116)

7900 Series Software Manual2–66

DT

DT

ex.: Mnemonic

RMPA #03H
(m = “0,” x = “0”)

3116 5A16 0316

Machine code

DATA I

DATA III

DATA II

(at start)DT X

H

Memory

Op Code (3116)

Operand (0316)

Op Code (5A16)

First L

Data bank
 register

 Index
register X

H

L

H

L

X + 6

Second

Third

DATA1

DATA3

DATA2

H

First L

H

L

H

L

Second

Third

B, A ← B, A+ DATAH DATAL ✕ DATAH DATAL
(at end)

(at start)Y

 Index
register Y

DT Y + 6 (at end)

Bank DT

Mode : Multiplied accumulation addressing mode

Function : The following is a multiplicand and a multiplier: the contents of the memory location specified by
the contents of index registers X and Y, and the data bank register’s contents. The instruction’s
third byte is the repeat number of arithmetic operation. The contents of index registers X and Y
are incremented each time the addition of the contents of accumulators B and A to the multipli-
cation result finishes. Accordingly, the contents of index registers X and Y specify the next address
where the multiplicand and the multiplier are read at last.
Allocate a multiplicand and a multiplier within the same bank and do not cross them over the bank
boundary.
Set index register length flag x to “0” before executing this instruction.
This addressing mode is used by an RMPA instruction.

Multiplied accumulation

7900 Series Software Manual 2–67

Multiplied accumulation

ex. : Mnemonic

RMPA #03H
(m = “1,” x = “0”)

3116 5A16 0316

Machine code

DATA I

DATA III

DATA II

(at start)DT X

Memory

Op Code (3116)

Operand (0316)

Op Code (5A16)

First

Data bank
 register

 Index
register X

DT X + 3

Second

Third

DATA1

DATA3

DATA2

First

Second

Third

BL, AL ← BL, AL+ DATA ✕ DATA
(at end)

(at start)DT Y

 Index
register Y

DT Y + 3 (at end)

Bank DT

CHAPTER 3CHAPTER 3
HOW TO USE
7900 SERIES

INSTRUCTIONS
3.1 Memory access
3.2 Direct page registers

(DPR0–DPR3)
3.3 8 - and 16 -b i t da ta

processing
3.4 Index registers X and Y
3.5 Branch instructions

7900 Series Software Manual3–2

HOW TO USE 7900 SERIES INSTRUCTIONS
3.1 Memory access

3.1 Memory access
Memory access modes are typically classified into the following 3 categories:
● Direct addressing
● Absolute addressing and Absolute long addressing
● Indirect addressing and Indirect long addressing

Their features are described below.

3.1.1 Direct addressing
● Each instruction has a length of 2 or 3 bytes.
● Reduced number of consumed instruction execution cycles.
● A block (within bank 0: addresses 00000016–00FFFF16) of which base address is specified by DPRn is

addressable.
(i) Direct page register select bit is “0”:

Block size = 256 bytes
(ii) Direct page register select bit is “1”:

Block size = 64 bytes
When a sum of DPRn’s contents and an offset value exceeds the bank boundary, however, access
over the boundary is enabled.

3.1.2 Absolute addressing and Absolute long addressing

(1) Absolute addressing
● Each instruction has a length of 3 or 4 bytes.
● A 64-Kbyte space (a bank within addresses 00000016–FFFFFF16) is addressable, where the high-

order 8 bits of 24-bit address are specified by DT. For the JMP and JSR instructions, however,
these high-order 8 bits are specified by PG.

(2) Absolute long addressing
● Each instruction has a length of 4 or 5 bytes.
● Addresses 00000016–FFFFFF16 are addressable. All of 24 bits of the address are directly specified.

3.1.3 Indirect addressing and Indirect long addressing

(1) Direct indirect addressing
● Each instruction has a length of 2 or 3 bytes.
● 16-bit pointer data is placed in the space specified by DPRn, and the specified memory is accessed.
● A 64-KB space (a bank within addresses 00000016–FFFFFF16) is addressable, where the high-

order 8 bits of 24-bit address are specified by DT.

(2) Direct indirect long addressing
● Each instruction has a length of 2 or 3 bytes.
● 24-bit pointer data is placed in the space specified by DPRn, and the specified memory is accessed.
● An address within the 16-Mbyte space (addresses 00000016–FFFFFF16) is addressable.

7900 Series Software Manual 3–3

HOW TO USE 7900 SERIES INSTRUCTIONS

(3) Absolute indirect addressing
● This addressing mode can be used only for the indirect branch and indirect subroutine call instructions.
● Each instruction has a length of 3 or 4 bytes.
● 16-bit pointer data is placed in the space specified by PG, and the specified memory is accessed.
● A 64-KB space (a bank within addresses 00000016–FFFFFF16) is addressable, where the high-

order 8 bits of 24-bit address are specified by PG.

(4) Absolute indirect long addressing
● This addressing mode can be used only for the indirect branch instruction.
● Each instruction has a length of 3 or 4 bytes.
● 24-bit pointer data is placed in the space specified by PG, and the specified memory is accessed.
● Any address of the 16-Mbyte space (addresses 00000016–FFFFFF16) is addressable.

Figure 3.1.1 shows a usage example of indirect addressing mode.
Here, the data of the pointers pointing to memory areas are processed in the program, and the results are
referenced as effective addresses.

AAAA
AAAA

AAAA
AAAA

Internal RAM

Source Pointer

(DPR0)

(DPR0)+src

(DPR0)+dst

AAAA
AAAADestination Pointer

Transfer Source
Block

Transfer
Destination Block

CLP x
SEM
LDX.W #count

loop:
LDA A, (DP0+:src)
STA A, (DP0+:dst)
INC DP0+:src
INC DP0+:dst
DEX
BNE loop

❈ For description format of mnemonics, refer to the tool’s specifications.

Fig. 3.1.1 Usage example of indirect addressing mode: block transfer

The 7900 Series also provides many other useful addressing modes. For details, refer to section “2.3
Addressing modes.”

3.1 Memory access

7900 Series Software Manual3–4

HOW TO USE 7900 SERIES INSTRUCTIONS

3.2 Direct page registers (DPR0–DPR3)
The 7900 Series provides more enhanced direct addressing modes than those of the conventional 7700
Family. These powerful addressing modes greatly improve programming efficiency, especially in a range of
addresses 00000016–00FFFF16.
In the 7900 Series, just after a reset, only DPR0 can be used. When the direct page register select bit of
the processor mode register 1 is set to “1,” however, direct page registers DPR0–DPR3 can be used.
Figure 3.2.1 shows an usage example of DPR0–DPR3.
In the conventional 7700 Family, since only one direct page register can be used, it is required to frequently
change the contents of the direct page register for efficient memory access using direct page addressing
mode. On the contrary, the 7900 Series does not need such a procedure as in the conventional 7700 Family
because it can assign a direct page register to each base address of each block.

Fig. 3.2.1 Usage example of DPR0–DPR3

Memory External I/O

7900
Series
MCU

00200016

to
00203F16

00400016

to
00403F16

Data bus

Address bus

AAAA
AAAA
AAAA

SFR

Internal RAM

00000016

00080016

0017FF16

00200016

00203F16

00400016

00403F16

DPR1: for accessing SFR area

DPR0: for accessing internal RAM area

DPR2: for accessing external memory area

DPR3: for accessing external I/O areaExternal I/O

External memory

3.2 Direct page registers (DPR0–DPR3)

7900 Series Software Manual 3–5

HOW TO USE 7900 SERIES INSTRUCTIONS

3.3 8- and 16-bit data processing
In the conventional 7700 Family, the same machine code is assigned to an 8- and its corresponding 16-bit
instruction in order to reduce program size, so that it is necessary to specify whether 8- or 16-bit data is
processed, by using flags m and x. The 7900 Series incorporates new instructions with the conventional
instructions. These new instructions enable 8-bit operation independent of flags m and x. By using these
new instructions, 8-bit data can be processed while flags are set for 16-bit data length, preventing an
overhead generated by setting flags. Figure 3.3.1 shows an 8-bit operation example.

Note: LDAB, LDXB, and LDYB instructions perform “extension zero” operation for 8-bit data which

is indicated by the operand, and then load it to the accumulator as 16-bit data.

CLP m, x

← 8-bit data processing

← Sets flags m and x to “0.”
(16-bit data length selected)

Fig. 3.3.1 8-bit operation example

16-bit data processing

STAB A, store–addr

16-bit data processing

When executing the instructions that require the data length setting by flags m and x, the number of bytes
or execution cycles is affected by this setting. For details, refer to section “4.2 Description of each
instruction” or “Appendix 1. 7900 Series machine instructions.”

3.3 8- and 16-bit data processing

7900 Series Software Manual3–6

HOW TO USE 7900 SERIES INSTRUCTIONS

3.4 Index registers X and Y
The contents of index register X or Y facilitate to specify an effective address. For example, the direct
indexed X addressing mode is described below. Refer to section “2.3 Addressing modes” for details.

<Example> Direct indexed X addressing mode

A sum of the instruction’s operand, the contents of a direct page register, and the contents of index
register X indicates a memory location in bank 0. The contents in this memory location are data to
be processed. However, when the above sum exceeds the boundary of bank 0 or bank 1, a memory
location in bank 1 or bank 2 is specified, respectively.

Example: Mnemonic
ADD A, 1EH, X
 (m = 0, x = 0)

Machine code

2B16 1E16

Op code (2B16)

Memory

000016

FFFF16

Bank 0

Operand (1E16)

DATAL 433816

+ 123416 +

Contents
of DPR0

DATAH

←A ← A+ DATAH

30E616 = 433816

433916

DATAL

Contents
of X

3.4 Index registers X and Y

7900 Series Software Manual 3–7

HOW TO USE 7900 SERIES INSTRUCTIONS

3.5 Branch instructions
The branch instructions are classified into the following 6 categories:
(1) Relative branch
(2) Absolute branches (absolute and absolute long)
(3) Indirect branches (absolute indirect and absolute indirect long)
(4) Relative subroutine call
(5) Absolute subroutine calls (absolute and absolute long)
(6) Indirect subroutine call (absolute Indexed X indirect)

Relative branch and relative subroutine call instructions have the following features:
● Each instruction has a length of 2 or 3 bytes.
● Program area can be reallocated dynamically during program execution.
● Addresses to which the program can branch are limited within a specified range. Refer to section “4.2

Description of each instruction” for details.

Examples:
(i) BRA instruction ... Within a range of –128 to +127 referenced to PC just after instruction

execution
(ii) BRAL instruction ... Within a range of –32768 to +32767 referenced to PC just after instruction

execution
(iii) BSR instruction ... Within a range of –1024 to +1023 referenced to PC just after instruction

execution

On the other hand, absolute branch, absolute subroutine call, indirect branch and indirect subroutine call
instructions have the following features:
● Any address within the 16-Mbyte space can be directly specified as a branch destination address (absolute long).
● Any address limited within the 64-Kbyte space (a bank), containing PC being used, also can be specified

as a branch destination address. In this case, byte length of an instruction and the number of instruction
execution cycles can be reduced. Refer to section “4.2 Description of each instruction” for details.

Examples:
(i) JMP instruction ... Branches to a 64-Kbyte space specified by PG in which the last byte of an

instruction is located.
(ii) JMPL instruction ... Branches to a specified address within the 16-Mbyte space.
(iii) JSR instruction ... Branches to a 64-Kbyte space specified by PG in which the last byte of an

instruction is located. Returns from the branch destination address by the
RTS instruction.

(iv) JSRL instruction ... Branches to a specified address within the 16-Mbyte space. Returns from
the branch destination address by the RTL instruction.

Figure 3.5.1 shows the branch examples by JMP/JMPL and JSR/JSRL instructions.

Fig. 3.5.1 Branch examples by JMP/JMPL and JSR/JSRL instructions

1000016

2000016

3000016

4000016

JMP: Branches to an address in the
 current bank.

JMPL: Branches to an address outside
the current bank.

JSR: Calls a subroutine in the current bank.

JSRL: Calls a subroutine outside
the current bank.

5000016

3.5 Branch instructions

CHAPTER 4CHAPTER 4
INSTRUCTIONS

4.1 Instruction set
4.2 Description of each instruction
4.3 Notes for software development

INSTRUCTIONS

7900 Series Software Manual4–2

4.1 Instruction set
The 7900 Series CPU uses the instruction set with 203 instructions.
Instructions marked by * are the new instructions that have been added to the 7751 Series instruction set.
The remarks column shows that a conventional 7700 Family’s instruction is included in the corresponding
new instruction.

4.1 Instruction set

LDA Acc ←M

* LDAB Acc ←M8 (Extended with “0”s.)

* LDAD E ←M32

* LDD n DPRn←IMM16 (n = 0 to 3. Multiple operations can be specified.)

LDT DT ←IMM8

LDX X ←M

* LDXB X ←IMM8 (Extended with “0”s.)

LDY Y ←M

* LDYB Y ←IMM8 (Extended with “0”s.)

STA M ←Acc

* STAB M8 ←AccL

* STAD M32 ←E

STX M ←X

STY M ←Y

* TAD n DPRn←A (n = 0 to 3) including TAD instruction

TAS S ←A

TAX X ←A

TAY Y ←A

* TBD n DPRn←B (n = 0 to 3) including TBD instruction

TBS S ←B

TBX X ←B

TBY Y ←B

* TDA n A ←DPRn (n = 0 to 3) including TDA instruction

* TDB n B ←DPRn (n = 0 to 3) including TDB instruction

* TDS S ←DPR0

TSA A ←S

TSB B ←S

* TSD DPR0←S

TSX X ←S

TXA A ←X

TXB B ←X

TXS S ←X

TXY Y ←X

TYA A ←Y

TYB B ←Y

TYX X ←Y

XAB A B

Instruction Description Remarks

Load

Transfer between
registers

Store

→←

Category

INSTRUCTIONS

7900 Series Software Manual 4–3

Instruction

* MOVM M ←M

* MOVMB M8 ←M8

* MOVR M(dest n) ←M(source n) (Multiple operations can

be specified.) (n = 0 to 15)

* MOVRB M8(dest n) ←M8(source n) (Multiple operations can

be specified.) (n = 0 to 15)

MVN M (n to n + i – 1) ←M (m to m + i – 1) (i:transfer byte number)

MVP M (n – i + 1 to n) ←M (m – i + 1 to m) (i:transfer byte number)

PEA Stack ←IMM16

PEI Stack ←M16 (DPRn + dd) (n = 0 to 3)

PER Stack ←PC + IMM16

PHA Stack ←A

PHB Stack ←B

PHD Stack ←DPR0

* PHD n Stack ←DPRn (n = 0 to 3. Multiple operations can be specified.)

PHG Stack ←PG

PHP Stack ←PS

PHT Stack ←DT

PHX Stack ←X

PHY Stack ←Y

PLA A ←Stack

PLB B ←Stack

PLD DPR0←Stack

* PLD n DPRn←Stack (n = 0 to 3. Multiple operations can be specified.)

PLP PS ←Stack

PLT DT ←Stack

PLX X ←Stack

PLY Y ←Stack

PSH Stack ←Any specified register among A, B, X, Y,

DPR0, DT, PG, and PS. (Multiple operations

can be specified)

M (S to S – i + 1) ←A, B, X, Y, DPR0, DT, PG, PS

S ←S – i

(i : Number of bytes corresponding to the registers

saved to the stack.)

PUL Any specified register among A, B, X, Y, DPR0,

DT, and PS. ←Stack (Multiple operations can be specified)

A, B, X, Y, DPR0, DT, PS ←M (S + 1 to S + i)

S ←S + i

(i : Number of bytes corresponding to the registers

restored from the stack.)

4.1 Instruction set

Block transfer

Stack operation

Transfer between
memories

Description RemarksCategory

including LDM instruction

INSTRUCTIONS

7900 Series Software Manual4–4

* PHLD n stack ←DPRn, DPRn ←IMM16 (n = 0 to 3. Multiple

operations can be specified)

* CLR Acc ←0

* CLRB AccL ←0

* CLRM M ←0

* CLRMB M8 ←0

* CLRX X ←0

* CLRY Y ←0

4.1 Instruction set

Instruction Description RemarksCategory
Stack operation & Load

Clearance

ADC

* ADCB

* ADCD

* ADD

* ADDB

* ADDD

* ADDM

* ADDMB

* ADDMD

* ADDS

* ADDX

* ADDY

INC

INX

INY

SBC

* SBCB

* SBCD

* SUB

* SUBB

* SUBD

* SUBM

* SUBMB

* SUBMD

* SUBS

* SUBX

* SUBY

DEC

DEX

DEY

MPY

MPYS

DIV

DIVS

RMPA

Acc ←Acc + M + C

AccL ←AccL + IMM8 + C

E ←E + M32 + C

Acc ←Acc + M

AccL ←AccL + IMM8

E ←E + M32

M ←M + IMM

M8 ←M8 + IMM8

M32 ←M32 + IMM32

S ←S + IMM8

X ←X + IMM (IMM = 0 to 31)

Y ←Y + IMM (IMM = 0 to 31)

Acc ←Acc + 1 or M ←M + 1

X ←X + 1

Y ←Y + 1

Acc
__

←Acc – M – C

AccL

__

←AccL – IMM8 – C

E
__

←E – M32 – C

Acc ←Acc – M

AccL ←AccL – IMM8

E ←E – M32

M ←M – IMM

M8 ←M8 – IMM8

M32 ←M32 – IMM32

S ←S – IMM8

X ←X – IMM (IMM = 0 to 31)

Y ←Y – IMM (IMM = 0 to 31)

Acc ←Acc – 1 or M ←M – 1

X ←X – 1

Y ←Y – 1

(B, A) ←A (Multiplicand) ✕ M (Multiplier), Unsigned

(B, A) ←A (Multiplicand) ✕ M (Multiplier), Signed

A (Quoitent), B (remainder)←(B, A) ÷ M, Unsigned

A (Quoitent), B (remainder)←(B, A) ÷ M, Signed

(B, A) ←(B, A) + M (DT:X) ✕ M (DT:Y)

(repeating 0 to 255 times)

Addition

Increment

Subtraction

Decrement

Multiplication

Division

Multiplied

accumulation

INSTRUCTIONS

7900 Series Software Manual 4–5

Acc ←Acc∨M

AccL ←AccL∨IMM8

M ←M∨IMM

M8 ←M8∨IMM8

M32 ←M32∨IMM32

Acc ←Acc M

AccL ←AccL IMM8

M ←M IMM

M8 ←M8 IMM8

M32 ←M32 IMM32

Acc ←Acc∀M

AccL ←AccL∀IMM8

M ←M∀IMM

M8 ←M8∀IMM8

M32 ←M32∀IMM32

Acc – M

AccL – IMM8

E – IMM32

M – IMM

M8 – IMM8

M32 – IMM32

X – M

Y – M

Shifts the contents of Acc or M to the left by 1 bit.

Shifts the contents of A to the left by n bits (n = 0 to 15).

Shifts the contents of E to the left by n bits (n = 0 to 31).

Shifts the contents of Acc or M holding a sign to the

right by 1 bit.

Shifts the contents of A holding a sign to the right by n

bits (n = 0 to 15).

Shifts the contents of E holding a sign to the right by n

bits (n = 0 to 31).

Shifts the contents of Acc or M to the right by 1 bit.

Shifts the contents of A to the right by n bits (n = 0 to 15).

Shifts the contents of E to the right by n bits (n = 0 to 31).

4.1 Instruction set

ORA

* ORAB

* ORAM

* ORAMB

* ORAMD

AND

* ANDB

* ANDM

* ANDMB

* ANDMD

EOR

* EORB

* EORM

* EORMB

* EORMD

CMP

* CMPB

* CMPD

* CMPM

* CMPMB

* CMPMD

CPX

CPY

ASL

* ASL #n

* ASLD #n

ASR

* ASR #n

* ASRD #n

LSR

* LSR #n

* LSRD #n

Including SEB

instruction

Including CLB

instruction

Logical OR

Logical AND

Logical exclusive OR

Comparison

Arithmetic shift left

Instruction Description RemarksCategory

∨
∨

∨

∨
∨

Arithmetic shift right

Logical shift right

INSTRUCTIONS

7900 Series Software Manual4–6

EXTS

* EXTSD

EXTZ

* EXTZD

* NEG

* NEGD

* ABS

* ABSD

CLC

CLI

CLM

CLP

CLV

SEC

SEI

SEM

SEP

BRA/BRAL

JMP

JMPL

RLA

ROL

* ROL #n

* ROLD #n

ROR

* ROR #n

* RORD #n

Instruction Description RemarksCategory

Rotation to right

Rotation to left Rotates the contents of A to the left by n bits. (When m =

0:n = 0 to 65535, when m = 1:n = 0 to 255)

Links the contents of Acc or M with C, and rotates the

result to the left by 1 bit.

Links the contents of A with C, and rotates the result to

the left by n bits (n = 0 to 15).

Links the contents of E with C, and rotates the result to

the left by n bits (n = 0 to 31).

Links the contents of Acc or M with C, and rotates the

result to the right by 1 bit.

Links the contents of A with C, and rotates the result to

the right by n bits (n = 0 to 15).

Links the contents of E with C, and rotates the result to

the right by n bits (n = 0 to 31).

Acc ←AccL (Extended with a sign.)

E ←EL (= A) (Extended with a sign.)

Acc ←AccL (Extended with “0”s.)

E ←EL (= A) (Extended with “0”s.)

Acc ← –Acc

E ← –E

Acc ←I Acc I
E ←I E I
C ←0

I ←0

m ←0

PSL(bit n)←0 (n = 0 to 7. Multiple operations can be

specified.)

V ←0

C ←1

I ←1

m ←1

PSL(bit n)←1 (n = 0 to 7. Multiple operations can be

specified.)

PC ←PC + cnt + REL

(cnt : bytes number of BRA/BRAL instruction)

PC ←Destination address

PC ←mmll

PG, PC ←Destination address

PC ←mmll

PG ←hh

Extension Sign

Extension Zero

Sign invertion

Absolute value

Flag manipulation

Conditional branch

4.1 Instruction set

INSTRUCTIONS

7900 Series Software Manual 4–7

BBC

* BBCB

BBS

* BBSB

BCC

BCS

BEQ

* BGE

* BGT

* BGTU

* BLE

* BLEU

* BLT

BMI

BNE

BPL

* BSC

* BSS

BVC

BVS

* CBEQ

* CBEQB

* CBNE

* CBNEB

Branches relatively when the specified bits of M are all “0.”

Branches relatively when the specified bits of M8 are

all “0.”

Branches relatively when the specified bits of M are all “1.”

Branches relatively when the specified bits of M8 are

all “1.”

Branches relatively when C = 0.

Branches relatively when C = 1.

Branches relatively when Z = 1.

Branches relatively when N∀V = 0.

Branches relatively when Z = 0 and N∀V = 0.

Branches relatively when C = 1 and Z = 0.

Branches relatively when Z = 1 or N∀V = 1.

Branches relatively when C = 0 and Z = 1.

Branches relatively when N∀V = 1.

Branches relatively when N = 1.

Branches relatively when Z = 0.

Branches relatively when N = 0.

Branches relatively when the specified one bit of A

or M is “0.”

Branches relatively when the specified one bit of A

or M is “1.”

Branches relatively when V = 0.

Branches relatively when V = 1.

Branches relatively when Acc = IMM or M = IMM.

Branches relatively when AccL = IMM8 or M8 = IMM8.

Branches relatively when Acc ≠ IMM or M ≠ IMM.

Branches relatively when AccL ≠ IMM8 or M8 ≠ IMM8.

* BSR

JSR

JSRL

4.1 Instruction set

Instruction Description RemarksCategory

Subroutine call Stack ←PC

PC ←PC + 2 + REL

Stack ←PC

PC ←Destination address

PC ←PC + 3

M(S, S – 1) ←PC

S ←S – 2

PC ←mmll

Stack ←PG, PC

PG, PC ←Destination address

PC ←PC + 4

M(S, S – 2) ←PG, PC

S ←S – 3

PC ←mmll

PG ←hh

Compare &

Conditional branch

Conditional branch

INSTRUCTIONS

7900 Series Software Manual4–8

M ←M – IMM. Branches relatively when M ≠ 0 (IMM

= 0 to 31).

X ←X – IMM. Branches relatively when X ≠ 0 (IMM

= 0 to 31).

Y ←Y – IMM. Branches relatively when Y ≠ 0 (IMM

= 0 to 31).

PG, PC, PS ←Stack

PG, PC ←Stack

PC ←Stack

DPRn ←Stack, PG, PC ←Stack (n = 0 to 3. Multiple

operations can be specified.)

DPRn ←Stack, PC ←Stack (n = 0 to 3. Multiple

operations can be specified.)

Generates a BRK interrupt.

Stops oscillation.

Stops the CPU clock.

PC ←PC + 1

* DEBNE

* DXBNE

* DYBNE

RTI

RTL

RTS

* RTLD n

* RTSD n

BRK

STP

WIT

NOP

4.1 Instruction set

Instruction Description RemarksCategory

Decrement &

Conditional branch

Return

Load & Return

Software interrupt
Special

No operation

INSTRUCTIONS

7900 Series Software Manual 4–9

Addressing mode Specification Instruction coding example

4.2 Description of each instruction
This section describes each instruction. Each instruction is described using one page per one instruction as
a general rule. The description page is headed by the instruction mnemonic, and the pages are arranged
in alphabetical order of the mnemonics. For each instruction, its operation and description (Notes 1, 2) ,
status flags’ change, and a list sorted by addressing modes of the assembly language coding format (Note
3), the machine code, the byte number and the minimum cycle number (Note 4) are described.

Notes 1: In the description of each instruction operation, the operation regarding PC (program counter) is
described only for an instruction affecting the processing.
When an instruction is executed, its instruction bytes are added to the contents of PC and PC
contains the address of the memory location of the instruction to be executed next. When a carry
occurs at this addition, PG (program bank register) is incremented by 1.

2: [Operation] in the description of each instruction shows the contents of each register and memory
after executing the instruction. The detailed operation sequence is omitted.

3: [Description example] in this manual is an example of assembly language description. Especially
for addressing mode specification, various methods for mnemonic description in the 7900 Series
are available, including the formats shown below. For more information, refer to the user’s
manual of the assembler to be used.

4.2 Description of each instruction

Direct DP0+:Offset6/8 ADD A,DP0+:04H

DP0:label ADD A,DP0:WORK

Direct indirect (DP0+:Offset6/8) ADD A,(DP0+:04H)

(DP0:label) ADD A,(DP0:WORK)

Direct indirect long L(DP0+:Offset6/8) ADD A,L(DP0+:04H)

L(DP0:label) ADD A,L(DP0:WORK)

Stack pointer relative Offset,S ADD A,05H,S

Stack pointer relative indirect indexed Y (Offset,S),Y ADD A,(05H,S),Y

Absolute DT+:Offset16 ADD A,DT +:1000H

DT:label ADD A,DT:WORK

Absolute indirect (Address) JMP (1000H)

(label) JMP (TABLE)

Absolute long LG:label ADD A,LG:WORK

Absolute indirect long L(DT+:Offset16) ADD A,L(DT +:1000H)

L(DT:label) ADD A,L(DT:WORK)

● Offset6/8 : 6-bit offset value (when using DPR0 through DPR3) or 8-bit offset value (when using DPR0).

● Offset : 8-bit offset value.

● Offset16 : 16-bit offset value.

● Address : Memory address to be referenced.

● label : Label indicating the memory address to be referenced.

■ Methods for specifying addressing modes in Mitsubishi assembler

INSTRUCTIONS

7900 Series Software Manual4–10

4.2 Description of each instruction

Notes 4: The cycle number shown is the minimum possible number, and this number depends on the
following conditions:
•Value of direct page register’s low-order byte
The cycle number shown is a number when the direct page register’s low-order byte (DPRnL)
is “0016.” When using an addressing mode that uses the direct page register in the condition of
DPRnL ≠ “0016,” the number which is obtained by adding 1 to the shown number is an actual
cycle number.

• Number of bytes that have been loaded in an instruction queue buffer
• Whether the address of the memory read/write is even or odd
• Accessing of an external memory area in the condition of BYTE = “H” (using 8-bit external bus)
• Bus cycle

INSTRUCTIONS

7900 Series Software Manual 4–11

Symbol

C

Z

I

D

x

m

V

N

IPL

+

–

✕

✽

÷

/

∨
∀

I I

←
→

Acc

AccH

AccL

A

AH

AL

B

BH

BL

E

EH

EL

X

XH

XL

Y

YH

YL

S

The following table shows the symbols that are used in instructions’ description and the lists of this section,
and each instruction is described bellow.

Description

Carry flag

Zero flag

Interrupt disable flag

Decimal mode flag

Index register length flag

Data length flag

Overflow flag

Negative flag

Processor interrupt priority level

Addition

Subtraction

Multiplication

Multiplication

Division

Division

Logical AND

Logical OR

Logical exclusive OR

Absolute value

Negation

Movement toward the arrow direction

Movement toward the arrow direction

Exchange

Accumulator

Accumulator’s high-order 8 bits

Accumulator’s low-order 8 bits

Accumulator A

Accumulator A’s high-order 8 bits

Accumulator A’s low-order 8 bits

Accumulator B

Accumulator B’s high-order 8 bits

Accumulator B’s low-order 8 bits

Accumulator E

Accumulator E’s high-order 16 bits

Accumulator E’s low-order 16 bits

Index register X

Index register X’s high-order 8 bits

Index register X’s low-order 8 bits

Index register Y

Index register Y’s high-order 8 bits

Index register Y’s low-order 8 bits

Stack pointer

←
→

4.2 Description of each instruction

∨

INSTRUCTIONS

7900 Series Software Manual4–12

PC

PCH

PCL

REL

PG

DT

DPR0

DPR0H

DPR0L

DPRn

DPRnH

DPRnL

PS

PSH

PSL

PS(bit n)

M

Mn, MEMn

M(oprd)

M(bit n)

IMM

IMMn

IMMnH

IMMnL

EAR

EARH

EARL

MSB

LSB

dd

immHHimmHLimmLHimmLL

immHimmL

imm

immn

hhmmll

mmll

nn

n1, n2

rr

rrHrrL

hh1, hh2

source

dest

Program counter

Program counter’s high-order 8 bits

Program counter’s low-order 8 bits

Relative address

Program bank register

Data bank register

Direct page register 0

Direct page register 0’s high-order 8 bits

Direct page register 0’s low-order 8 bits

Direct page register n

Direct page register n’s high-order 8 bits

Direct page register n’s low-order 8 bits

Processor status register

Processor status register’s high-order 8 bits

Processor status register’s low-order 8 bits

The n-th bit of processor status register

Memory contents

n-bit address or contents of memory

Contents of memory location specified by operand

The n-th bit of the contents of memory

Immediate value (8 bits or 16 bits)

n-bit immediate data

High-order data of n-bit immediate data

Low-order data of n-bit immediate data

Effective address (16 bits)

High-order 8 bits of effective address

Low-order 8 bits of effective address

Most significant bit

Least significant bit

Displacement for DPR (8 bits or 6 bits)

32-bit immediate value (bytes immHH, immHL, immLH, and immLL are shown from the highest one.)

16-bit immediate value (immH represents the high-order 8 bits, and immL represents

the low-order 8 bits.)

8-bit immediate value

n-bit immediate value

24-bit address value (hh represents the high-order 8 bits, mm represents the middle-order

8 bit, and ll represents the low-order 8 bits.)

16-bit address value (mm represents the high-order 8 bits, and ll represents the low-order 8 bits.)

Displacement for S (8 bits)

8-bit data (2 types of 8-bit data)

Displacement for PC (signed 8 bits)

Displacement for PC (signed 16 bits) (rrH represents the high-order 8 bits, and

rrL represents the low-order 8 bits.)

Bank specification (2 types of 8-bit data)

Operand specified as transfer source

Operand specified as transfer destination

Symbol Description

4.2 Description of each instruction

7900 Series Software Manual 4–13

Function : Absolute value

Operation data length : 16 bits or 8 bits

Operation : Acc ← lAccl

When m = “0”

Acc Acc

←

When m = “1”

AccL AccL

←

❈ In this case, the contents of AccH do not change.

Description : Obtains the absolute value of Acc contents and stores the result in Acc.

Status flags :

N : Always “0” because MSB of the operation result is “0.”

V : Set to “1” if the operation result exceeds +32767 (or +127 when m = “1”). Otherwise, cleared
to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

C : Always “0.”

Description example :

CLM

ABS A ; A ← |A|
SEM
ABS B ; BL ← |BL|

ABS ABSolute ABS

Addressing mode Syntax Machine code Bytes Cycles

A ABS A E116 1 3

A ABS B 8116, E116 2 4

IPL N V m x D I Z C

– 0 V – – – – Z 0

7900 Series Software Manual4–14

ABSD ABSolute at Double-word ABSD

Function : Absolute value

Operation data length : 32 bits

Operation : E ← lEl

E E

←

Description : Obtains the absolute value of the E contents and stores the result in E.

● This instruction is unaffected by flag m.

Status flags :

N : Always “0” because MSB of the operation result is “0.”

V : Set to “1” if the operation result exceeds +2147483647. Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

C : Always “0.”

Description example :

ABSD E ; E ← |E|

Addressing mode Syntax Machine code Bytes Cycles

A ABSD E 3116, 9016 2 5

IPL N V m x D I Z C

– 0 V – – – – Z 0

7900 Series Software Manual 4–15

Function : Addition with carry

Operation data length : 16 bits or 8 bits

Operation : Acc ← Acc + M + C

When m = “0”

Acc Acc M16 C

← + +

When m = “1”

AccL AccL M8 C

← + +

❈ In this case, the contents of AccH do not change.

Description : Adds the contents of Acc, memory, and flag C, and stores the result in Acc.

● This instruction operates in decimal when flag D = “1.”

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”
Meaningless when flag D = “1.”

V : Set to “1” when the result of the operation (regarded as a signed operation) is a value outside
the range of –32768 to +32767 (–128 to +127 when flag m = “1”). Otherwise, cleared to “0.”
Meaningless when flag D = “1.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.” Meaningless when flag
D = “1.”

C : Set to “1” when flag D = “0” and the result of the operation (regarded as an unsigned
operation) exceeds +65535 (+255 when flag m = “1”). Otherwise, cleared to “0.”

Set to “1” when flag D = “1” and the result of the operation (regarded as an unsigned
operation) exceeds +9999 (+99 when flag m = “1”). Otherwise, cleared to “0.”

ADC ADd with Carry ADC

IPL N V m x D I Z C
– N V – – – – Z C

7900 Series Software Manual4–16

Addressing mode Syntax Machine code Bytes Cycles

IMM ADC A, #imm 3116, 8716, imm (B116, 8716, imm) 3 3 (3)
DIR ADC A, dd 2116, 8A16, dd (A116, 8A16, dd) 3 5 (7)

DIR, X ADC A, dd, X 2116, 8B16, dd (A116, 8B16, dd) 3 6 (8)

(DIR) ADC A, (dd) 2116, 8016, dd (A116, 8016, dd) 3 7 (9)

(DIR, X) ADC A, (dd, X) 2116, 8116, dd (A116, 8116, dd) 3 8 (10)

(DIR), Y ADC A, (dd), Y 2116, 8816, dd (A116, 8816, dd) 3 8 (10)

L(DIR) ADC A, L(dd) 2116, 8216, dd (A116, 8216, dd) 3 9 (11)

L(DIR), Y ADC A, L(dd), Y 2116, 8916, dd (A116, 8916, dd) 3 10(12)

SR ADC A, nn, S 2116, 8316, nn (A116, 8316, nn) 3 6 (8)

(SR), Y ADC A, (nn, S), Y 2116, 8416, nn (A116, 8416, nn) 3 9 (11)

ABS ADC A, mmll 2116, 8E16, ll, mm (A116, 8E16, ll, mm) 4 5 (7)
ABS, X ADC A, mmll, X 2116, 8F16, ll, mm (A116, 8F16, ll, mm) 4 6 (8)

ABS, Y ADC A, mmll, Y 2116, 8616, ll, mm (A116, 8616, ll, mm) 4 6 (8)

ABL ADC A, hhmmll 2116, 8C16, ll, mm, hh (A116, 8C16, ll, mm, hh) 5 6 (8)

ABL, X ADC A, hhmmll, X 2116, 8D16, ll, mm, hh (A116, 8D16, ll, mm, hh) 5 7 (9)

Notes 1: This table applies when using accumulator A. When using accumulator B, replace “A” with “B” in
the syntax. In this case, the machine code and the number of cycles enclosed in parentheses are
applied.

 2: In the immediate addressing mode, the byte number increases by 1 when flag m = “0.”

ADC ADd with Carry ADC

Description example :

CLM
ADC.W A, #IMM16 ; A ← A + IMM16 + C
ADC B, MEM16 ; B ← B + MEM16 + C
SEM
ADC.B A, #IMM8 ; AL ← AL + IMM8 + C
ADC B, MEM8 ; BL ← BL + MEM8 + C

7900 Series Software Manual 4–17

Function : Addition with carry

Operation data length : 8 bits

Operation : AccL ← AccL + IMM8 +C

AccL AccL C

← + IMM8 +

Description : Adds the contents of AccL, the immediate value, and flag C in 8-bit length, and stores the result
in AccL.

● This instruction is unaffected by flag m.

● The contents of AccH do not change.

● This instruction operates in decimal when flag D = “1.”

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.” Meaningless when
flag D = “1.”

V : Set to “1” when the result of the operation (regarded as a signed operation) is a value outside
the range of –128 to +127. Otherwise, cleared to “0.” Meaningless when flag D = “1.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.” Meaningless when flag
D = “1.”

C : Set to “1” when the result of the operation (regarded as an unsigned operation) exceeds +255
(+99 when flag D = “1”). Otherwise, cleared to “0.”

Description example :

ADCB A, #IMM8 ; AL ← AL + IMM8 + C
ADCB B, #IMM8 ; BL ← BL + IMM8 + C

ADCB ADd with Carry at Byte ADCB

Addressing mode Syntax Machine code Bytes Cycles

IMM ADCB A, #imm 3116, 1A16, imm 3 3

IMM ADCB B, #imm B116, 1A16, imm 3 3

IPL N V m x D I Z C

– N V – – – – Z C

7900 Series Software Manual4–18

ADCD ADd with Carry at Double-word ADCD

Function : Addition with carry

Operation data length : 32 bits

Operation : E ← E + M32 + C

E E M32 C

← + +

Description : Adds contents of E, memory, and flag C in 32-bit length, and stores the result in E. CPU
operates as binary addition in spite of the contents of decimal mode flag.

● This instruction is unaffected by flag m.

● This instruction cannot operate in decimal. Clear flag D to “0” when using this instruction.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

V : Set to “1” when the result of the operation (regarded as a signed operation) is a value outside
the range of –2147483648 to +2147483647. Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

C : Set to “1” when the result of the operation (regarded as an unsigned operation) exceeds
+4294967295. Otherwise, cleared to “0.”

Description example :

ADCD E, #IMM32 ; E ← E + IMM32 + C
; (B, A ← B, A + IMM32 + C)

ADCD E, MEM32 ; E ← E + MEM32 + C
; (B, A ← B, A + MEM32 + C)

IPL N V m x D I Z C

– N V – – – – Z C

Addressing mode Syntax Machine code Bytes Cycles

IMM ADCD E, #imm 3116, 1C16, immLL, immLH, immHL, immHH 6 4

DIR ADCD E, dd 2116, 9A16, dd 3 7

DIR, X ADCD E, dd, X 2116, 9B16, dd 3 8

(DIR) ADCD E, (dd) 2116, 9016, dd 3 9
(DIR, X) ADCD E, (dd, X) 2116, 9116, dd 3 10

(DIR), Y ADCD E, (dd), Y 2116, 9816, dd 3 10

L(DIR) ADCD E, L(dd) 2116, 9216, dd 3 11

L(DIR), Y ADCD E, L(dd), Y 2116, 9916, dd 3 12

SR ADCD E, nn, S 2116, 9316, nn 3 8

(SR), Y ADCD E, (nn, S), Y 2116, 9416, nn 3 11

ABS ADCD E, mmll 2116, 9E16, ll, mm 4 7

ABS, X ADCD E, mmll, X 2116, 9F16, ll, mm 4 8

ABS, Y ADCD E, mmll, Y 2116, 9616, ll, mm 4 8

ABL ADCD E, hhmmll 2116, 9C16, ll, mm, hh 5 8
ABL, X ADCD E, hhmmll, X 2116, 9D16, ll, mm, hh 5 9

7900 Series Software Manual 4–19

Function : Addition

Operation data length : 16 bits or 8 bits

Operation : Acc ← Acc + M

When m = “0”

Acc Acc M16

← +

When m = “1”

AccL AccL M8

← +

❈ In this case, the contents of AccH do not change.

Description : Adds the contents of Acc and memory, and stores the result in Acc.

● This instruction cannot operate in decimal. Clear flag D to “0” when using this instruction.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

V : Set to “1” when the result of the operation (regarded as a signed operation) is a value outside
the range of –32768 to +32767 (–128 to +127 when flag m = “1”). Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

C : Set to “1” when the result of the operation (regarded as an unsigned operation) exceeds
+65535 (+255 when flag m = “1”). Otherwise, cleared to “0.”

ADD ADD ADD

IPL N V m x D I Z C
– N V – – – – Z C

7900 Series Software Manual4–20

Addressing mode Syntax Machine code Bytes Cycles

IMM ADD A, #imm 2616, imm (8116, 2616, imm) 2 (3) 1 (2)
DIR ADD A, dd 2A16, dd (8116, 2A16, dd) 2 (3) 3 (4)
DIR, X ADD A, dd, X 2B16, dd (8116, 2B16, dd) 2 (3) 4 (5)
(DIR) ADD A, (dd) 1116, 2016, dd (9116, 2016, dd) 3 (3) 6 (6)
(DIR, X) ADD A, (dd, X) 1116, 2116, dd (9116, 2116, dd) 3 (3) 7 (7)
(DIR), Y ADD A, (dd), Y 1116, 2816, dd (9116, 2816, dd) 3 (3) 7 (7)
L(DIR) ADD A, L(dd) 1116, 2216, dd (9116, 2216, dd) 3 (3) 8 (8)
L(DIR), Y ADD A, L(dd), Y 1116, 2916, dd (9116, 2916, dd) 3 (3) 9 (9)
SR ADD A, nn, S 1116, 2316, nn (9116, 2316, nn) 3 (3) 5 (5)
(SR), Y ADD A, (nn, S), Y 1116, 2416, nn (9116, 2416, nn) 3 (3) 8 (8)
ABS ADD A, mmll 2E16, ll, mm (8116, 2E16, ll, mm) 3 (4) 3 (4)
ABS, X ADD A, mmll, X 2F16, ll, mm (8116, 2F16, ll, mm) 3 (4) 4 (5)
ABS, Y ADD A, mmll, Y 1116, 2616, ll, mm (9116, 2616, ll, mm) 4 (4) 5 (5)
ABL ADD A, hhmmll 1116, 2C16, ll, mm, hh (9116, 2C16, ll, mm, hh) 5 (5) 5 (5)
ABL, X ADD A, hhmmll, X 1116, 2D16, ll, mm, hh (9116, 2D16, ll, mm, hh) 5 (5) 6 (6)

Notes 1: This table applies when using accumulator A. When using accumulator B, replace “A” with “B” in
the syntax. In this case, the machine code, the number of bytes, and the number of cycles enclosed
in parentheses are applied.

 2: In the immediate addressing mode, the byte number increases by 1 when flag m = “0.”

ADD ADD ADD

Description example :

CLM
ADD.W A, #IMM16 ; A ← A + IMM16
ADD B, MEM16 ; B ← B + MEM16
SEM
ADD.B A, #IMM8 ; AL ← AL + IMM8
ADD B, MEM8 ; BL ← BL + MEM8

7900 Series Software Manual 4–21

ADDB ADD at Byte ADDB

Function : Addition

Operation data length : 8 bits

Operation : AccL ← AccL + IMM8

AccL AccL

← + IMM8

Description : Adds the contents of AccL and immediate value in 8-bit length, and stores the result in AccL.

● This instruction is unaffected by flag m.

● The contents of AccH do not change.

● This instruction cannot operate in decimal. Clear flag D to “0” when using this instruction.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

V : Set to “1” when the result of the operation (regarded as a signed operation) is a value outside
the range of –128 to +127. Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

C : Set to “1” when the result of the operation (regarded as an unsigned operation) exceeds +255.
Otherwise, cleared to “0.”

Description example :

ADDB A, #IMM8 ; AL ← AL + IMM8
ADDB B, #IMM8 ; BL ← BL + IMM8

Addressing mode Syntax Machine code Bytes Cycles

IMM ADDB A, #imm 2916, imm 2 1

IMM ADDB B, #imm 8116, 2916, imm 3 2

IPL N V m x D I Z C

– N V – – – – Z C

7900 Series Software Manual4–22

ADDD ADD at Double-word ADDD

Function : Addition

Operation data length : 32 bits

Operation : E ← E + M32

E E M32

← +

Description : Adds the contents of E and memory in 32-bit length, and stores the result in the E.

● This instruction is unaffected by flag m.

● This instruction cannot operate in decimal. Clear flag D to “0” when using this instruction.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

V : Set to “1” when the result of the operation (regarded as a signed operation) is a value outside
the range of –2147483648 to +2147483647. Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

C : Set to “1” when the result of the operation (regarded as an unsigned operation) exceeds
+4294967295. Otherwise, cleared to “0.”

Description example :

ADDD E, #IMM32 ; E ← E + IMM32 (B, A ← B, A + IMM32)
ADDD E, MEM32 ; E ← E + MEM32 (B, A ← B, A + MEM32)

IPL N V m x D I Z C

– N V – – – – Z C

Addressing mode Syntax Machine code Bytes Cycles

IMM ADDD E, #imm 2D16, immLL, immLH, immHL, immHH 5 3

DIR ADDD E, dd 9A16, dd 2 6

DIR, X ADDD E, dd, X 9B16, dd 2 7

(DIR) ADDD E, (dd) 1116, 9016, dd 3 9

(DIR, X) ADDD E, (dd, X) 1116, 9116, dd 3 10

(DIR), Y ADDD E, (dd), Y 1116, 9816, dd 3 10

L(DIR) ADDD E, L(dd) 1116, 9216, dd 3 11

L(DIR), Y ADDD E, L(dd), Y 1116, 9916, dd 3 12

SR ADDD E, nn, S 1116, 9316, nn 3 8
(SR), Y ADDD E, (nn, S), Y 1116, 9416, nn 3 11

ABS ADDD E, mmll 9E16, ll, mm 3 6

ABS, X ADDD E, mmll, X 9F16, ll, mm 3 7

ABS, Y ADDD E, mmll, Y 1116, 9616, ll, mm 4 8

ABL ADDD E, hhmmll 1116, 9C16, ll, mm, hh 5 8

ABL, X ADDD E, hhmmll, X 1116, 9D16, ll, mm, hh 5 9

7900 Series Software Manual 4–23

Function : Addition

Operation data length : 16 bits or 8 bits

Operation : M← M + IMM

When m = “0”

M16 M16

← + IMM16

When m = “1”

M8 M8

← + IMM8

Description : Adds the contents of memory and immediate value, and stores the result in memory.

● This instruction cannot operate in decimal. Clear flag D to “0” when using this instruction.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

V : Set to “1” when the result of the operation (regarded as a signed operation) is a value outside
the range of –32768 to +32767 (–128 to +127 when flag m = “1”). Otherwise, cleared to “0.”

Z : Set to “1” when the result of the operation is “0.” Otherwise, cleared to “0.”

C : Set to “1” when the result of the operation (regarded as an unsigned operation) exceeds
+65535 (+255 when flag m = “1”). Otherwise, cleared to “0.”

ADDM ADD immediate and Memory ADDM

IPL N V m x D I Z C

– N V – – – – Z C

Addressing mode Syntax Machine code Bytes Cycles

DIR ADDM dd, #imm 5116, 0316, dd, imm 4 7

ABS ADDM mmll, #imm 5116, 0716, ll, mm, imm 5 7

Note : When flag m = “0,” the byte number increases by 1.

Description example :

CLM
ADDM.W MEM16, #IMM16 ; MEM16 ← MEM16 + IMM16
SEM
ADDM.B MEM8, #IMM8 ; MEM8 ← MEM8 + IMM8

7900 Series Software Manual4–24

Function : Addition

Operation data length : 8 bits

Operation : M8 ← M8 + IMM8

M8 M8

← + IMM8

Description : Adds the contents of memory and immediate value in 8-bit length, and stored the result in
memory.

● This instruction is unaffected by flag m.

● This instruction cannot operate in decimal. Clear flag D to “0” when using this instruction.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

V : Set to “1” when the result of the operation (regarded as a signed operation) is a value outside
the range of –128 to +127. Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

C : Set to “1” when the result of the operation (regarded as an unsigned operation) exceeds +255.
Otherwise, cleared to “0.”

Description example :

ADDMB MEM8, #IMM8 ; MEM8 ← MEM8 + IMM8

ADDMB ADD immediate and Memory at Byte ADDMB

Addressing mode Syntax Machine code Bytes Cycles

DIR ADDMB dd, #imm 5116, 0216, dd, imm 4 7
ABS ADDMB mmll, #imm 5116, 0616, ll, mm, imm 5 7

IPL N V m x D I Z C
– N V – – – – Z C

7900 Series Software Manual 4–25

ADDMD ADD immediate and Memory at Double-word ADDMD

Function : Addition

Operation data length : 32 bits

Operation : M32 ← M32 + IMM32

M32 M32

← + IMM32

Description : Adds the contents of memory and immediate value in 32-bit length, and stores the result in
memory.

● This instruction is unaffected by flag m.

● This instruction cannot operate in decimal. Clear flag D to “0” when using this instruction.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

V : Set to “1” when the result of the operation (regarded as a signed operation) is a value outside
the range of –2147483648 to +2147483647. Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

C : Set to “1” when the result of the operation (regarded as an unsigned operation) exceeds
+4294967295. Otherwise, cleared to “0.”

Description example :

ADDMD MEM32, #IMM32 ; MEM32 ← MEM32 + IMM32

IPL N V m x D I Z C

– N V – – – – Z C

Addressing mode Syntax Machine code Bytes Cycles

DIR ADDMD dd, #imm 5116, 8316, dd, immLL, immLH, immHL, immHH 7 10

ABS ADDMD mmll, #imm 5116, 8716, ll, mm, immLL, immLH, immHL, immHH 8 10

7900 Series Software Manual4–26

Function : Addition

Operation data length : 16 bits

Operation : S ← S + IMM8

S S

← + IMM8

Description : Adds the contents of S and 8-bit immediate value in 16-bit length, and stores the result in S.
Extend zero of the immediate value to the 16-bit immediate value, at the operation.

● This instruction is unaffected by flag m.

● This instruction cannot operate in decimal. Clear flag D to “0” when using this instruction.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

V : Set to “1” when the result of the operation (regarded as a signed operation) is a value outside
the range of –32768 to +32767. Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

C : Set to “1” when the result of the operation (regarded as an unsigned operation) exceeds
+65535. Otherwise, cleared to “0.”

Description example :

ADDS #IMM8 ; S ← S + IMM8

ADDS ADD Stack pointer and immediate ADDS

IPL N V m x D I Z C

– N V – – – – Z C

Addressing mode Syntax Machine code Bytes Cycles

IMM ADDS #imm 3116, 0A16, imm 3 2

7900 Series Software Manual 4–27

Function : Addition

Operation data length : 16 bits or 8 bits

Operation : X← X + IMM (IMM = 0 to 31)

When x = “0”

X X

← + IMM

When x = “1”

XL XL

← + IMM

❈ In this case, the contents of XH do not change.

Description : Adds the contents of X and immediate value (0 to 31), and stores the result in X.

● This instruction is unaffected by flag m.

● This instruction cannot operate in decimal. Clear flag D to “0” when using this instruction.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

V : Set to “1” when the result of the operation (regarded as a signed operation) is a value outside
the range of –32768 to +32767 (–128 to +127 when flag x is “1”). Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

C : Set to “1” when the result of the operation (regarded as an unsigned operation) exceeds
+65535 (+255 when flag x = “1”). Otherwise, cleared to “0.”

ADDX ADD index register X and immediate ADDX

IPL N V m x D I Z C

– N V – – – – Z C

Description example :

CLP x
ADDX #IMM ; X ← X + IMM
SEP x
ADDX #IMM ; XL ← XL + IMM

Addressing mode Syntax Machine code Bytes Cycles

IMM ADDX #imm 0116, imm 2 2

Note : Any value from 0 to 31 can be set to imm.

7900 Series Software Manual4–28

Function : Addition

Operation data length : 16 bits or 8 bits

Operation : Y← Y + IMM (IMM = 0 to 31)

When x = “0”

Y Y

← + IMM

When x = “1”

YL YL

← + IMM

❈ In this case, the contents of YH do not change.

Description : Adds the contents of Y and immediate value (0 to 31), and stores the result in Y.

● This instruction is unaffected by flag m.

● This instruction cannot operate in decimal. Clear flag D to “0” when using this instruction.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

V : Set to “1” when the result of the operation (regarded as a signed operation) is a value outside
the range of –32768 to +32767 (–128 to +127 when flag x is “1”). Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

C : Set to “1” when the result of the operation (regarded as an unsigned operation) exceeds
+65535 (+255 when flag x = “1”). Otherwise, cleared to “0.”

ADDY ADD index register Y and immediate ADDY

IPL N V m x D I Z C

– N V – – – – Z C

Description example :

CLP x
ADDX #IMM ; Y ← Y + IMM
SEP x
ADDX #IMM ; YL ← YL + IMM

Addressing mode Syntax Machine code Bytes Cycles

IMM ADDY #imm 0116, imm+2016 2 2

Note : Any value from 0 to 31 can be set to imm.

7900 Series Software Manual 4–29

Function : Logical AND

Operation data length : 16 bits or 8 bits

Operation : Acc ← Acc M
When m = “0”

Acc Acc M16

←

When m = “1”

AccL AccL M8

←

❈ In this case, the contents of AccH do not change.

Description : Performs logical AND between the contents of Acc and the contents of a memory, and stores
the result in Acc.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

AND logical AND AND

IPL N V m x D I Z C

– N – – – – – Z –

∨

∨

∨

7900 Series Software Manual4–30

Addressing mode Syntax Machine code Bytes Cycles

IMM AND A, #imm 6616, imm (8116, 6616, imm) 2 (3) 1 (2)
DIR AND A, dd 6A16, dd (8116, 6A16, dd) 2 (3) 3 (4)
DIR, X AND A, dd, X 6B16, dd (8116, 6B16, dd) 2 (3) 4 (5)
(DIR) AND A, (dd) 1116, 6016, dd (9116, 6016, dd) 3 (3) 6 (6)
(DIR, X) AND A, (dd, X) 1116, 6116, dd (9116, 6116, dd) 3 (3) 7 (7)
(DIR), Y AND A, (dd), Y 1116, 6816, dd (9116, 6816, dd) 3 (3) 7 (7)
L(DIR) AND A, L(dd) 1116, 6216, dd (9116, 6216, dd) 3 (3) 8 (8)
L(DIR), Y AND A, L(dd), Y 1116, 6916, dd (9116, 6916, dd) 3 (3) 9 (9)
SR AND A, nn, S 1116, 6316, nn (9116, 6316, nn) 3 (3) 5 (5)
(SR), Y AND A, (nn, S), Y 1116, 6416, nn (9116, 6416, nn) 3 (3) 8 (8)
ABS AND A, mmll 6E16, ll, mm (8116, 6E16, ll, mm) 3 (4) 3 (4)
ABS, X AND A, mmll, X 6F16, ll, mm (8116, 6F16, ll, mm) 3 (4) 4 (5)
ABS, Y AND A, mmll, Y 1116, 6616, ll, mm (9116, 6616, ll, mm) 4 (4) 5 (5)
ABL AND A, hhmmll 1116, 6C16, ll, mm, hh (9116, 6C16, ll, mm, hh) 5 (5) 5 (5)
ABL, X AND A, hhmmll, X 1116, 6D16, ll, mm, hh (9116, 6D16, ll, mm, hh) 5 (5) 6 (6)

Notes 1: This table applies when using accumulator A. When using accumulator B, replace “A” with “B” in
the syntax. In this case, the machine code,the number of bytes, and the number of cycles enclosed
in parentheses are applied.

 2: In the immediate addressing mode, the byte number increases by 1 when flag m = “0.”

Description example :

CLM
AND.W A, #IMM16 ; A ← A IMM16
AND B, MEM16 ; B ← B MEM16
SEM
AND.B A, #IMM8 ; AL ← AL IMM8
AND B, MEM8 ; BL ← BL MEM8

∨
∨

∨
∨

AND logical AND AND

7900 Series Software Manual 4–31

Function : Logical AND

Operation data length : 8 bits

Operation : AccL ← AccL IMM8

AccL AccL

← IMM8

Description : Performs logical AND between the contents of AccL and the immediate value in 8-bit length,
and stores the result in AccL.

● This instruction is unaffected by flag m.

● The contents of AccH do not change.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

Description example :

ANDB A, #IMM8 ; AL ← AL IMM8
ANDB B, #IMM8 ; BL ← BL IMM8

ANDB logical AND between immediate and accumulator (Byte) ANDB

Addressing mode Syntax Machine code Bytes Cycles

IMM ANDB A, #imm 2316, imm 2 1

IMM ANDB B, #imm 8116, 2316, imm 3 2

IPL N V m x D I Z C

– N – – – – – Z –

∨

∨
∨

∨

7900 Series Software Manual4–32

Function : Logical AND

Operation data length : 16 bits or 8 bits

Operation : M← M IMM

When m = “0”

M16 M16

← IMM16

When m = “1”

M8 M8

← IMM8

Description : Performs logical AND between the contents of memory and immediate value, and stores the
result in the memory.

● This instruction includes the function of the CLB instruction in the conventional 7700 Family.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

ANDM logical AND between immediate value and Memory ANDM

IPL N V m x D I Z C

– N – – – – – Z –

Addressing mode Syntax Machine code Bytes Cycles

DIR ANDM dd, #imm 5116, 6316, dd, imm 4 7

ABS ANDM mmll, #imm 5116, 6716, ll, mm, imm 5 7

Note : When flag m = “0,” the byte number increases by 1.

Description example :

CLM
ANDM.W MEM16, #IMM16 ; MEM16 ← MEM16 IMM16
SEM
ANDM.B MEM8, #IMM8 ; MEM8 ← MEM8 IMM8

∨

∨

∨

∨

∨

7900 Series Software Manual 4–33

Function : Logical AND

Operation data length : 8 bits

Operation : M8 ← M8 IMM8

M8 M8

← IMM8

Description : Performs logical AND between the contents of memory and immediate value in 8-bit length,
and stores the result in the memory.

● This instruction is unaffected by flag m.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

Description example :

ANDMB MEM8, #IMM8 ; MEM8 ← MEM8 IMM8

ANDMB logical AND between immediate value and Memory (Byte) ANDMB

Addressing mode Syntax Machine code Bytes Cycles

DIR ANDMB dd, #imm 5116, 6216, dd, imm 4 7

ABS ANDMB mmll, #imm 5116, 6616, ll, mm, imm 5 7

IPL N V m x D I Z C
– N – – – – – Z –

∨

∨

∨

7900 Series Software Manual4–34

ANDMD logical AND between immediate value and Memory (Double word) ANDMD

Function : Logical AND

Operation data length : 32 bits

Operation : M32 ← M32 IMM32

M32 M32

← IMM32

Description : Performs logical AND between the contents of memory and immediate value in 32-bit length,
and stores the result in the memory.

● This instruction is unaffected by flag m.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

Description example :

ANDMD MEM32, #IMM32 ; MEM32 ← MEM32 IMM32

IPL N V m x D I Z C

– N – – – – – Z –

Addressing mode Syntax Machine code Bytes Cycles

DIR ANDMD dd, #imm 5116, E316, dd, immLL, immLH, immHL, immHH 7 10

ABS ANDMD mmll, #imm 5116, E716, ll, mm, immLL, immLH, immHL, immHH 8 10

∨

∨

∨

7900 Series Software Manual 4–35

ASL Arithmetic Shift to Left ASL

IPL N V m x D I Z C

– N – – – – – Z C

Function : Arithmetic shift to the left

Operation data length : 16 bits or 8 bits

Operation : C Acc or M
← 1-bit shift to left ← 0

When m = “0”

C b15 Acc or M16 b0

← ← ← ← ← ← ← ← ← ← 0

When m = “1”

C b7 AccL or M8 b0

← ← ← ← ← ← ← ← ← 0

❈ In this case, the contents of AccH do not change.

Description : Shifts all bits of Acc or a memory to left by 1 bit. In this time, a “0” is placed in LSB of Acc
or the memory. MSB before the shift is placed in flag C.

Status flags

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

C : Set to “1” when MSB of Acc or the memory before the operation is “1.” Otherwise, cleared to
“0.”

Description example :

CLM
ASL A ; A ← A is arithmetically shifted left by 1 bit.
ASL MEM16 ; MEM16 ← MEM16 is arithmetically shifted left by 1 bit.
SEM
ASL A ; AL ← AL is arithmetically shifted left by 1 bit.
ASL MEM8 ; MEM8 ← MEM8 is arithmetically shifted left by 1 bit.

Addressing mode Syntax Machine code Bytes Cycles

A ASL A 0316 1 1

A ASL B 8116, 0316 2 2

DIR ASL dd 2116, 0A16, dd 3 7

DIR, X ASL dd, X 2116, 0B16, dd 3 8
ABS ASL mmll 2116, 0E16, ll, mm 4 7

ABS, X ASL mmll, X 2116, 0F16, ll, mm 4 8

7900 Series Software Manual4–36

ASL #n Arithmetic Shift to Left by n bits ASL #n

Function : Arithmetic shift to the left

Operation data length : 16 bits or 8 bits

Operation : C A
← n-bit shift to left ← 0 (n : Number of times shifted. n = 0 to 15)

When m = “0”

C b15 A b0

← ← ← ← ← ← ← ← ← ← 0

When m = “1”

C b7 AL b0

← ← ← ← ← ← ← ← ← 0

❈ In this case, the contents of AH do not change.

Description : Shifts all bits of A to the left by n bits. In this case, a “0” is placed in bit 0 of A each time its
contents are shifted by 1 bit. MSB is placed in flag C each time its contents are shifted by 1
bit.

● B cannot be used in this instruction.

Status flags

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

C : Set to “1” if MSB = “1” when the contents are shifted by (n – 1) bits. Otherwise, cleared to “0.”

Description example :

CLM
ASL A, #15 ; A ← A is arithmetically shifted to the left by 15 bits.
SEM
ASL A, #7 ; AL ← AL is arithmetically shifted to the left by 7 bits.

IPL N V m x D I Z C

– N – – – – – Z C

Addressing mode Syntax Machine code Bytes Cycles

A ASL A, #imm C116, imm+4016 2 imm+6

Note : Any value (number of times shifted) from 0 to 15 can be set to imm.

7900 Series Software Manual 4–37

ASLD #n Arithmetic Shift to Left by n bits (Double word) ASLD #n

IPL N V m x D I Z C
– N – – – – – Z C

Function : Arithmetic shift to the left

Operation data length : 32 bits

Operation : C E
← n-bit shift to left ← 0 (n : Number of times shifted. n = 0 to 31)

C b31 E b0

← ← ← ← ← ← ← ← ← ← 0

Description : Shifts all bits of E in 32-bit length to the left by n bits. In this case, a “0” is placed in bit 0 of
E each time its contents are shifted by 1 bit. MSB is placed in flag C each time its contents
are shifted by 1 bit.

● This instruction is unaffected by flag m.

Status flags

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

C : Set to “1” if MSB = “1” when the contents are shifted by (n – 1) bits. Otherwise, cleared to “0.”

Description example :

ASLD E, #16 ; E ← E is arithmetically shifted to the left by 16 bits.

Addressing mode Syntax Machine code Bytes Cycles

A ASLD E, #imm D116, imm+4016 2 imm+8

Note : Any value (number of times shifted) from 0 to 31 can be set to imm.

7900 Series Software Manual4–38

ASR Arithmetic Shift to Right ASR

IPL N V m x D I Z C

– N – – – – – Z C

Function : Arithmetic shift to the right

Operation data length : 16 bits or 8 bits

Operation : Acc or M C
→ 1-bit shift to right →

MSB

When m = “0”

b15 Acc or M16 b0 C

→ → → → → → → → → →

When m = “1”

b7 AccL or M8 b0 C

→ → → → → → → → →

❈ In this case, the contents of AccH do not change.

Description : Shifts all bits of Acc or a memory to the left by 1 bit. In this time, MSB before the shift is placed
in MSB of Acc or the memory. LSB before the shift is placed in LSB.

Status flags

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

C : Set to “1” when LSB of Acc or the memory before the operation is “1.” Otherwise, cleared to
“0.”

Description example :

CLM
ASR A ; A ← A is arithmetically shifted to the right by 1 bit.
ASR MEM16 ; MEM16 ← MEM16 is arithmetically shifted to the right by 1 bit.
SEM
ASR A ; AL ← AL is arithmetically shifted to the right by 1 bit.
ASR MEM8 ; MEM8 ← MEM8 is arithmetically shifted to the right by 1 bit.

Addressing mode Syntax Machine code Bytes Cycles

A ASR A 6416 1 1

A ASR B 8116, 6416 2 2
DIR ASR dd 2116, 4A16, dd 3 7

DIR, X ASR dd, X 2116, 4B16, dd 3 8

ABS ASR mmll 2116, 4E16, ll, mm 4 7

ABS, X ASR mmll, X 2116, 4F16, ll, mm 4 8

7900 Series Software Manual 4–39

ASR #n Arithmetic Shift to Right by n bits ASR #n

IPL N V m x D I Z C

– N – – – – – Z C

MSB

Function : Arithmetic shift to the right

Operation data length : 16 bits or 8 bits

Operation : A C
→n-bit shift to right→ (n : Number of times shifted. n = 0 to 15)

When m = “0”

b15 A b0 C
→ → → → → → → → → →

When m = “1”

b7 AL b0 C

→ → → → → → → → →

❈ In this case, the contents of AH do not change.

Description : Shifts all bits of A to the right by n bits. In this time, MSB before the shift is placed in MSB
of A. LSB is placed in flag C each time its contents are shifted by 1 bit.

● B cannot be used in this instruction.

Status flags

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

C : Set to “1” if LSB = “1” when the contents are shifted by (n – 1) bits. Otherwise, cleared to “0.”

Description example :

CLM
ASR A, #15 ; A ← A is arithmetically shifted to the right by 15 bits.
SEM
ASR A, #7 ; AL ← AL is arithmetically shifted to the right by 7 bits.

Addressing mode Syntax Machine code Bytes Cycles

A ASR A, #imm C116, imm+8016 2 imm+6

Note : Any value (number of times shifted) from 0 to 15 can be set to imm.

7900 Series Software Manual4–40

ASRD #n Arithmetic Shift to Right by n bits (Double word) ASRD #n

IPL N V m x D I Z C
– N – – – – – Z C

Function : Arithmetic shift to the right

Operation data length : 32 bits

Operation : E C
→ n-bit shift to right→ (n : Number of times shifted. n = 0 to 31)

b31 E b0 C
→ → → → → → → → → →

Description : Shifts all bits of E in 32-bit length to the right by n bits. In this time, MSB before the shift is
placed in MSB of E. LSB is placed in flag C each time its contents are shifted by 1 bit.

● This instruction is unaffected by flag m.

Status flags

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

C : Set to “1” if LSB = “1” when the contents are shifted by (n – 1) bits. Otherwise, cleared to “0.”

Description example :

ASRD E, #16 ; E ← E is arithmetically shifted to the right by 16 bits.

Addressing mode Syntax Machine code Bytes Cycles

A ASRD E, #imm D116, imm+8016 2 imm+8

Note : Any value (number of times shifted) from 0 to 31 can be set to imm.

MSB

7900 Series Software Manual 4–41

Function : Conditional branch

Operation data length : 16 bits or 8 bits

Operation : Relative branch to the specified address when M (bit n) = “0” (n specifies a bit position; multiple
bits can be specified.)

Description : Branches to the specified address if the contents of all specified bits in memory (multiple bits
can be specified) are “0”s. Use an 8-bit value relative to PC (–128 to +127) to specify the
branch destination address. The bit positions to be tested are indicated by a bit pattern of the
immediate value, in which the bits set to “1” are the subject bits to be tested.

● When m=“0” : This instruction operates in 16-bit length.

When m=“1” : This instruction operates in 8-bit length.

● Branches when no bit is specified that need to be tested.

Status flags :

Description example :

CLM
BBC.W #IMM16, MEM16, LABEL1 ; Branches to LABEL1 if all specified bits in MEM16 are “0”s.
SEM
BBC.B #IMM8, MEM8, LABEL2 ; Branches to LABEL2 if all specified bits in MEM8 are “0”s.

BBC Branch on Bit Clear BBC

Addressing mode Syntax Machine code Bytes Cycles

DIR, b, R BBC #imm, dd, rr 4116, 5A16, dd, imm, rr 5 9

ABS, b, R BBC #imm, mmll, rr 4116, 5E16, ll, mm, imm, rr 6 9

IPL N V m x D I Z C

– – – – – – – – –

Note : When flag m = “0,” the byte number increases by 1.

7900 Series Software Manual4–42

Function : Conditional branch

Operation data length : 8 bits

Operation : Relative branch to the specified address when M8 (bit n) = “0” (n specifies a bit position;
multiple bits can be specified.)

Description : Branches to the specified address if the contents of all specified bits in memory (multiple bits
can be specified) are “0”s. Use an 8-bit value relative to PC (–128 to +127) to specify the
branch destination address. The bit positions to be tested are indicated by a bit pattern of the
8-bit immediate value, in which the bits set to “1” are the subject bits to be tested.

● Branches if no bit is specified that need to be tested.

● This instruction is unaffected by flag m.

Status flags :

Description example :

BBCB #IMM8, MEM8, LABEL ; Branches to LABEL if all specified bits in MEM8 are 0s.

BBCB Branch on Bit Clear (Byte) BBCB

Addressing mode Syntax Machine code Bytes Cycles

DIR, b, R BBCB #imm, dd, rr 5216, dd, imm, rr 4 8

ABS, b, R BBCB #imm, mmll, rr 5716, ll, mm, imm, rr 5 8

IPL N V m x D I Z C

– – – – – – – – –

7900 Series Software Manual 4–43

Function : Conditional branch

Operation data length : 16 bits or 8 bits

Operation : Relative branch to the specified address when M (bit n) = “1” (n specifies a bit position; multiple
bits can be specified.)

Description : Branches to the specified address if the contents of all specified bits in memory (multiple bits
can be specified) are “1”s. Use an 8-bit value relative to PC (–128 to +127) to specify the
branch destination address. The bit positions to be tested are indicated by a bit pattern of the
immediate value, in which the bits set to “1” are the subject bits to be tested.

● When m=“0” : This instruction operates in 16-bit length.

When m=“1” : This instruction operates in 8-bit length.

● Branches if no bit is specified that need to be tested.

Status flags :

Description example :

CLM
BBS.W #IMM16, MEM16, LABEL1 ; Branches to LABEL1 if all specified bits in MEM16 are “1”s.
SEM
BBS.B #IMM8, MEM8, LABEL2 ; Branches to LABEL2 if all specified bits in MEM8 are “1”s.

BBS Branch on Bit Set BBS

Addressing mode Syntax Machine code Bytes Cycles

DIR, b, R BBS #imm, dd, rr 4116, 4A16, dd, imm, rr 5 9

ABS, b, R BBS #imm, mmll, rr 4116, 4E16, ll, mm, imm, rr 6 9

IPL N V m x D I Z C

– – – – – – – – –

Note : When flag m = “0,” the byte number increases by 1.

7900 Series Software Manual4–44

Function : Conditional branch

Operation data length : 8 bits

Operation : Relative branch to the specified address when M8 (bit n) = “1” (n specifies a bit position;
multiple bits can be specified.)

Description : Branches to the specified address if the contents of all specified bits in memory (multiple bits
can be specified) are “1”s. Use an 8-bit value relative to PC (–128 to +127) to specify the
branch destination address. The bit positions to be tested are indicated by a bit pattern of the
8-bit immediate value, in which the bits set to “1” are the subject bits to be tested.

● Branches if no bit is specified that need to be tested.

● This instruction is unaffected by flag m.

Status flags :

Description example :

BBSB #IMM8, MEM8, LABEL ; Branches to LABEL if all specified bits in MEM8 are “1”s.

BBSB Branch on Bit Set (Byte) BBSB

Addressing mode Syntax Machine code Bytes Cycles

DIR, b, R BBSB #imm, dd, rr 4216, dd, imm, rr 4 8

ABS, b, R BBSB #imm, mmll, rr 4716, ll, mm, imm, rr 5 8

IPL N V m x D I Z C

– – – – – – – – –

7900 Series Software Manual 4–45

Function : Conditional branch

Operation data length : –

Operation : Relative branch to the specified address when C = “0.”

Description : Branches to the specified address if flag C is “0.” Use an 8-bit value relative to PC (–128 to
+127) to specify the branch destination address.

Status flags :

Description example :

BCC LABEL ; Branches to LABEL if C = “0.”

BCC Branch on Carry Clear BCC

Addressing mode Syntax Machine code Bytes Cycles

REL BCC rr 9016, rr 2 6

IPL N V m x D I Z C

– – – – – – – – –

7900 Series Software Manual4–46

Function : Conditional branch

Operation data length : –

Operation : Relative branch to the specified address when C = “1.”

Description : Branches to the specified address if flag C is “1.” Use an 8-bit value relative to PC (–128 to
+127) to specify the branch destination address.

Status flags :

Description example :

BCS LABEL ; Branches to LABEL if C = “1.”

BCS Branch on Carry Set BCS

Addressing mode Syntax Machine code Bytes Cycles

REL BCS rr B016, rr 2 6

IPL N V m x D I Z C

– – – – – – – – –

7900 Series Software Manual 4–47

Function : Conditional branch

Operation data length : –

Operation : Relative branch to the specified address when Z = “1.”

Description : Branches to the specified address if flag Z is “1.” Use an 8-bit value relative to PC (–128 to
+127) to specify the branch destination address.

Status flags :

Description example :

BEQ LABEL ; Branches to LABEL if Z = “1.”

BEQ Branch on EQual BEQ

Addressing mode Syntax Machine code Bytes Cycles

REL BEQ rr F016, rr 2 6

IPL N V m x D I Z C

– – – – – – – – –

7900 Series Software Manual4–48

Function : Conditional branch

Operation data length : –

Operation : Relative branch to the specified address when N∀V = “0.”

Description : Branches to the specified address if the contents of flags N and V are the same. Use an 8-
bit value relative to PC (–128 to +127) to specify the branch destination address.

● Branches when the result of the compare instruction or the subtract instruction satisfies
“Greater or Equal ≥” condition.

Status flags :

Description example :

BGE LABEL ; Branches to LABEL if N∀V = “0.”

BGE Branch on Greater or Equal BGE

Addressing mode Syntax Machine code Bytes Cycles

REL BGE rr C016, rr 2 6

IPL N V m x D I Z C

– – – – – – – – –

7900 Series Software Manual 4–49

Function : Conditional branch

Operation data length : –

Operation : Relative branch to the specified address when Z = “0” and N∀V = “0.”

Description : Branches to the specified address if flag Z is “0” and the contents of flags N and V are the
same. Use an 8-bit value relative to PC (–128 to +127) to specify the branch destination
address.

● Branches when the result of the compare instruction or the subtract instruction satisfies
signed “Greater than >” condition.

Status flags :

Description example :

BGT LABEL ; Branches to LABEL if Z = “0” and N∀V = “0.”

BGT Branch on Greater Than BGT

Addressing mode Syntax Machine code Bytes Cycles

REL BGT rr 8016, rr 2 6

IPL N V m x D I Z C

– – – – – – – – –

7900 Series Software Manual4–50

Function : Conditional branch

Operation data length : –

Operation : Relative branch to specified address if C = “1” and flag Z = “0.”

Description : Branches to the specified address if flag C is “1” and flag Z is “0.” Use an 8-bit value relative
to PC (–128 to +127) to specify the branch destination address.

● Branches when the result of the compare instruction or the subtract instruction satisfies
unsigned “Greater than >” condition.

Status flags :

Description example :

BGTU LABEL ; Branches to LABEL if C = “1” and Z = “0.”

BGTU Branch on Greater Than with Unsign BGTU

Addressing mode Syntax Machine code Bytes Cycles

REL BGTU rr 4016, rr 2 6

IPL N V m x D I Z C

– – – – – – – – –

7900 Series Software Manual 4–51

Function : Conditional branch

Operation data length : –

Operation : Relative branch to specified address when Z = “1” or N∀V = “1.”

Description : Branches to the specified address if flag Z is “1” or the contents of flags N and V are different.
Use an 8-bit value relative to PC (–128 to +127) to specify the branch destination address.

● Branches when the result of the compare instruction or the subtract instruction satisfies
signed “Less or Equal ≤” condition.

Status flags :

Description example :

BLE LABEL ; Branches to LABEL if Z= “1” and N∀V = “1.”

Addressing mode Syntax Machine code Bytes Cycles

REL BLE rr A016, rr 2 6

IPL N V m x D I Z C

– – – – – – – – –

BLE Branch on Less or Equal BLE

7900 Series Software Manual4–52

Function : Conditional branch

Operation data length : –

Operation : Relative branch to the specified address if C = “0” or Z = “1.”

Description : Branches to the specified address if flag C is “0” or flag Z is “1.” Use an 8-bit value relative
to PC (–128 to +127) to specify the branch destination address.

● Branches when the result of the compare instruction or the subtract instruction satisfies
unsigned “Less or Equal ≤” condition.

Status flags :

Description example :

BLEU LABEL ; Branches to LABEL if C = “0” or Z = “1.”

Addressing mode Syntax Machine code Bytes Cycles

REL BLEU rr 6016, rr 2 6

IPL N V m x D I Z C

– – – – – – – – –

BLEU Branch on Less Equal with Unsign BLEU

7900 Series Software Manual 4–53

Function : Conditional branch

Operation data length : –

Operation : Relative branch to specified address when N∀V = “1.”

Description : Branches to the specified address if the contents of flags N and V are different. Use an 8-bit
value relative to PC (–128 to +127) to specify the branch destination address.

● Branches when the result of the compare instruction or the subtract instruction satisfies
“Less than <” condition.

Status flags :

Description example :

BLT LABEL ; Branches to LABEL if N∀V = “1.”

Addressing mode Syntax Machine code Bytes Cycles

REL BLT rr E016, rr 2 6

IPL N V m x D I Z C

– – – – – – – – –

BLT Branch on Less Than BLT

7900 Series Software Manual4–54

Function : Conditional branch

Operation data length : –

Operation : Relative branch to specified address if N = “1.”

Description : Branches to the specified address if flag N is “1.” Use an 8-bit value relative to PC (–128 to
+127) to specify the branch destination address.

Status flags :

Description example :

BMI LABEL ; Branches to LABEL if N = “1.”

Addressing mode Syntax Machine code Bytes Cycles

REL BMI rr 3016, rr 2 6

IPL N V m x D I Z C

– – – – – – – – –

BMI Branch on result MInus BMI

7900 Series Software Manual 4–55

Function : Conditional branch

Operation data length : –

Operation : Relative branch to the specified address if Z = “0.”

Description : Branches to the specified address if flag Z is “0.” Use an 8-bit value relative to PC (–128 to
+127) to specify the branch destination address.

Status flags :

Description example :

BNE LABEL ; Branches to LABEL if Z = “0.”

Addressing mode Syntax Machine code Bytes Cycles

REL BNE rr D016, rr 2 6

IPL N V m x D I Z C

– – – – – – – – –

BNE Branch on Not Equal BNE

7900 Series Software Manual4–56

Function : Conditional branch

Operation data length : –

Operation : Relative branch to the specified address when N = “0.”

Description : Branches to the specified address if flag N is “0.” Use an 8-bit value relative to PC (–128 to
+127) to specify the branch destination address.

Status flags :

Description example :

BPL LABEL ; Branches to LABEL if N = “0.”

Addressing mode Syntax Machine code Bytes Cycles

REL BPL rr 1016, rr 2 6

IPL N V m x D I Z C

– – – – – – – – –

BPL Branch on result PLus BPL

7900 Series Software Manual 4–57

Function : Unconditional branch

Operation data length : –

Operation : PC ← PC + cnt + REL (cnt : byte number of the BRA/BRAL instruction)

Description : Branches always to the specified address. Use an 8-bit value relative to PC (BRA : –128 to
+127) or a 16-bit value relative to PC (BRAL : –32768 to +32767) after the branch instruction
execution to specify the branch destination address.

Status flags :

Description example :

BRA REL8 ; Branches to address (PC + 2 + REL8)
BRAL REL16 ; Branches to address (PC + 3 + REL16)

Addressing mode Syntax Machine code Bytes Cycles

REL BRA rr 2016, rr 2 5

BRAL rrHrrL A716, rrL, rrH 3 5

IPL N V m x D I Z C
– – – – – – – – –

BRA/BRAL BRanch Always BRA/BRAL

7900 Series Software Manual4–58

Function : Software interrupt

Operation data length : –

Operation : Generate a BRK interrupt

Description : Saves the address where the instruction next to the BRK instruction is stored and the PS
contents in order of PG, PC, and PS to the stack. Then, branches to the address whose low-
order address is the contents of address FFFA16 and high-order address is the contents of
address FFFB16.

● This instruction is reserved for use in debug tools and cannot be used when using an
emulator.

Status flags :

I : Set to “1.”

Description example :

BRK ;

Addressing mode Syntax Machine code Bytes Cycles

IMP BRK 0016, 7416 2 15

IPL N V m x D I Z C

– – – – – – 1 – –

BRK force BReaK BRK

7900 Series Software Manual 4–59

Function : Conditional branch

Operation data length : 16 bits or 8 bits

Operation : Relative branch to the specified address when A (bit n) = 0 or M (bit n) = 0 (n = 0 to 15. Only
1 bit can be specified).

Description : Branches to the specified address if the contents of the specified bit of A or a memory is “0.”
Use an 8-bit value relative to PC (–128 to +127) to specify the branch address.

● When m = “0” : Any 1 bit between b0 to b15 can be specified.
When m = “1” : Any 1 bit between b0 to b7 can be specified.

● B cannot be used in this instruction.

Status flags :

Description example :

CLM
BSC 8, A, LABEL1 ; Branches to LABEL1 if b8 of A is “0.”
BSC 15, MEM16, LABEL2 ; Branches to LABEL2 if b15 of MEM16 is “0.”
SEM
BSC 7, A, LABEL3 ; Branches to LABEL3 if b7 of A is “0.”
BSC 7, MEM8, LABEL4 ; Branches to LABEL4 if b7 of MEM8 is “0.”

Addressing mode Syntax Machine code Bytes Cycles

A BSC n, A, rr 0116, n+A016, rr 3 7

DIR BSC n, dd, rr 7116, n+A016, dd, rr 4 11

ABS BSC n, mmll, rr 7116, n+E016, ll, mm, rr 5 10

IPL N V m x D I Z C

– – – – – – – – –

BSC Branch on Single bit Clear BSC

Note : Any value from 0 to 15 can be set to n.

7900 Series Software Manual4–60

Function : Subroutine call

Operation data length : –

Operation : Stack ← PC

PC ← PC + 2 + REL

Description : Branches to the specified address after saving the PC contents to the stack. Use an 11-bit
value relative to PC (–1024 to +1023) to specify the branch address.

❈ This instruction cannot be used in branching across bank boundaries.

❈ Do not place this instruction at bank boundaries.

Status flags :

Description example :

BSR LABEL ; Branches to LABEL

Addressing mode Syntax Machine code Bytes Cycles

REL BSR rr (11111b10 b9 b8)2, (b7 b6 b5 b4 b3 b2 b1 b0)2 2 7

❈ b10 to b0 means “b10 to b0 of rr.”

IPL N V m x D I Z C

– – – – – – – – –

BSR Branch to SubRoutine BSR

Note : Any value from –1023 to 1024 (11-bit length) can be set to rr.

7900 Series Software Manual 4–61

Function : Conditional branch

Operation data length : 16 bits or 8 bits

Operation : Relative branch to the specified address when A (bit n) = “1” or M (bit n) = “1” (n = 0 to 15.
Only 1 bit can be specified).

Description : Branches to the specified address if the contents of the specified bit of A or a memory is “1.”
Use an 8-bit value relative to PC (–128 to +127) to specify the branch address. The bit position
to be tested is specified by the bit number.

● When m = “0” : Any 1 bit between b0 to b15 can be specified.
When m = “1” : Any 1 bit between b0 to b7 can be specified.

● B cannot be used in this instruction.

Status flags :

Description example :

CLM
BSS 8, A, LABEL1 ; Branches to LABEL1 if b8 of A is “1.”
BSS 15, MEM16, LABEL2 ; Branches to LABEL2 if b15 of MEM16 is “1.”
SEM
BSS 7, A, LABEL3 ; Branches to LABEL3 if b7 of A is “1.”
BSS 7, MEM8, LABEL4 ; Branches to LABEL4 if b7 of MEM8 is “1.”

Addressing mode Syntax Machine code Bytes Cycles

A BSS n, A, rr 0116, n+8016, rr 3 7

DIR BSS n, dd, rr 7116, n+8016, dd, rr 4 11
ABS BSS n, mmll, rr 7116, n+C016, ll, mm, rr 5 10

IPL N V m x D I Z C

– – – – – – – – –

BSS Branch on Single bit Set BSS

Note : Any value from 0 to 15 can be set to n.

7900 Series Software Manual4–62

Function : Conditional branch

Operation data length : –

Operation : Relative branch to the specified address when V = “0.”

Description : Branches to the specified address if the contents of flag V is “0.” Use an 8-bit value relative
to PC (–128 to +127) to specify the branch address.

Status flags :

Description example :

BVC LABEL ; Branches to LABEL if V = “0.”

Addressing mode Syntax Machine code Bytes Cycles

REL BVC rr 5016, rr 2 6

IPL N V m x D I Z C

– – – – – – – – –

BVC Branch on oVerflow Clear BVC

7900 Series Software Manual 4–63

Function : Conditional branch

Operation data length : –

Operation : Relative branch to the specified address when V = “1.”

Description : Branches to the specified address if the contents of flag V are “1.” Use an 8-bit value relative
to PC (–128 to +127) to specify the branch address.

Status flags :

Description example :

BVS LABEL ; Branches to LABEL if V = “1.”

Addressing mode Syntax Machine code Bytes Cycles

REL BVS rr 7016, rr 2 6

IPL N V m x D I Z C

– – – – – – – – –

BVS Branch on oVerflow Set BVS

7900 Series Software Manual4–64

Addressing mode Syntax Machine code Bytes Cycles

A CBEQ A, #imm, rr A616, imm, rr 3 6

A CBEQ B, #imm, rr 8116, A616, imm, rr 4 7
DIR CBEQ dd, #imm, rr 4116, 6A16, dd, imm, rr 5 9

Function : Comparison & Conditional branch

Operation data length : 16 bits or 8 bits

Operation : Relative branch to the specified address when Acc = IMM or M = IMM.

Description : Branches to the specified address if the contents of Acc or a memory are equal to the
immediate value. Use an 8-bit value relative to PC (–128 to +127) to specify the branch
address.

● When m = “0” : This instruction operates in 16-bit length.
When m = “1” : This instruction operates in 8-bit length.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

V : Set to “1” when the result of the operation (regarded as a signed operation) is a value outside
the range of –32768 to +32767 (–128 to +127 when flag m is “1”). Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

C : Cleared to “0” when the borrow is occurs. Otherwise, set to “1.”

CBEQ Compare immediate and Branch on EQual CBEQ

IPL N V m x D I Z C

– N V – – – – Z C

Note : When flag m = “0,” the byte number increases by 1.

Description example :

CLM
CBEQ.W A, #IMM16, LABEL1 ; Branches to LABEL1 if A = IMM16.
CBEQ.W MEM16, #IMM16, LABEL2 ; Branches to LABEL2 if MEM16 = IMM16.
SEM
CBEQ.B B, #IMM8, LABEL3 ; Branches to LABEL3 if BL = IMM8.

7900 Series Software Manual 4–65

Addressing mode Syntax Machine code Bytes Cycles

A CBEQB A, #imm, rr A216, imm, rr 3 6

A CBEQB B, #imm, rr 8116, A216, imm, rr 4 7

DIR CBEQB dd, #imm, rr 6216, dd, imm, rr 4 8

Function : Comparison & Conditional branch

Operation data length : 8 bits

Operation : Relative branch to the specified address when AccL = IMM8 or M8 = IMM8.

Description : Branches to the specified address if the contents of AccL or a memory are equal to the
immediate value when they are compared in 8-bit length. Use an 8-bit value relative to PC
(–128 to +127) to specify the branch address.

● This instruction is unaffected by flag m.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

V : Set to “1” when the result of the operation (regarded as a signed operation) is a value outside
the range of –128 to +127. Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

C : Cleared to “0” when the borrow occurs. Otherwise, set to “1.”

CBEQB Compare immediate and Branch on EQual at Byte CBEQB

IPL N V m x D I Z C

– N V – – – – Z C

Description example :

CBEQB A, #IMM8, LABEL1 ; Branches to LABEL1 if AL = IMM8.
CBEQB MEM8, #IMM8, LABEL2 ; Branches to LABEL2 if MEM8 = IMM8.

7900 Series Software Manual4–66

Addressing mode Syntax Machine code Bytes Cycles

A CBNE A, #imm, rr B616, imm, rr 3 6

A CBNE B, #imm, rr 8116, B616, imm, rr 4 7

DIR CBNE dd, #imm, rr 4116, 7A16, dd, imm, rr 5 9

Function : Comparison & Conditional branch

Operation data length : 16 bits or 8 bits

Operation : Relative branch to the specified address when Acc ≠ IMM or M ≠ IMM.

Description : Branches to the specified address if the contents of Acc or a memory are not equal to the
immediate value. Use an 8-bit value relative to PC (–128 to +127) to specify the branch
address.

● When m = “0” : This instruction operates in 16-bit length.
When m = “1” : This instruction operates in 8-bit length.

❈ In this case, the contents of AccH do not change.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

V : Set to “1” when the result of the operation (regarded as a signed operation) is a value outside
the range of –32768 to +32767 (–128 to +127 when flag m is “1”). Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

C : Cleared to “0” when the borrow occurs. Otherwise, set to “1.”

CBNE Compare immediate and Branch on Not Equal CBNE

IPL N V m x D I Z C
– N V – – – – Z C

Note : When flag m = “0,” the byte number increases by 1.

Description example :

CLM
CBNE.W A, #IMM16, LABEL1 ; Branches to LABEL1 if A ≠ IMM16.
CBNE.W MEM16, #IMM16, LABEL2 ; Branches to LABEL2 if MEM16 ≠ IMM16.

7900 Series Software Manual 4–67

Addressing mode Syntax Machine code Bytes Cycles

A CBNEB A, #imm, rr B216, imm, rr 3 6

A CBNEB B, #imm, rr 8116, B216, imm, rr 4 7

DIR CBNEB dd, #imm, rr 7216, dd, imm, rr 4 8

Function : Comparison & Conditional branch

Operation data length : 8 bits

Operation : Relative branch to the specified address when AccL ≠ IMM8 or M8 ≠ IMM8.

Description : Branches to the specified address if the contents of AccL or a memory are equal to the
immediate value when they are compared in 8-bit length. Use an 8-bit value relative to PC
(–128 to +127) to specify the branch address.

● This instruction is unaffected by flag m.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

V : Set to “1” when the result of the operation (regarded as a signed operation) is a value outside
the range of –128 to +127. Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

C : Cleared to “0” when the borrow occurs. Otherwise, set to “1.”

CBNEB Compare immediate and Branch on Not Equal at Byte CBNEB

IPL N V m x D I Z C

– N V – – – – Z C

Description example :

CBNEB A, #IMM8, LABEL1 ; Branches to LABEL1 if AL ≠ IMM8.
CBNEB MEM8, #IMM8, LABEL2 ; Branches to LABEL2 if MEM8 ≠ IMM8.

7900 Series Software Manual4–68

Function : Flag manipulation

Operation data length : –

Operation : C ← 0

Description : Clears the contents of flag C to “0.”

Status flags :

C : Cleared to “0.”

Description example :

CLC ; C ← 0

Addressing mode Syntax Machine code Bytes Cycles

IMP CLC 1416 1 1

IPL N V m x D I Z C

– – – – – – – – 0

CLC CLear Carry flag CLC

7900 Series Software Manual 4–69

Function : Flag manipulation

Operation data length : –

Operation : I ← 0

Description : Clears the contents of flag I to “0.”

Status flags :

I : Cleared to “0.”

Description example :

CLI ; I ← 0

Addressing mode Syntax Machine code Bytes Cycles

IMP CLI 1516 1 3

IPL N V m x D I Z C

– – – – – – 0 – –

CLI CLear Interrupt disable status CLI

7900 Series Software Manual4–70

Function : Flag manipulation

Operation data length : –

Operation : m ← 0

Description : Clears the contents of flag m to “0.”

Status flags :

m : Cleared to “0.”

Description example :

CLM ; m ← 0

Addressing mode Syntax Machine code Bytes Cycles

IMP CLM 4516 1 3

IPL N V m x D I Z C

– – – 0 – – – – –

CLM CLear M flag CLM

7900 Series Software Manual 4–71

Function : Flag manipulation

Operation data length : –

Operation : PSL (bit n) ← 0 (n = 0 to 7. Multiple bits can be specified.)

Description : Clears the specified flags (multiple flags can be specified) of PSL to “0.” The flag positions (bits’
positions in PSL) to be specified are indicated by a bit pattern of an 8-bit immediate value, in
which the bits set to “1” are the subject bits to be specified.

● This instruction is unaffected by flag m.

Status flags :

Description example :

CLP #IMM8 ; The specified bits of PSL ← 0

Addressing mode Syntax Machine code Bytes Cycles

IMM CLP #imm 9816, imm 2 4

IPL N V m x D I Z C

– N V m x D I Z C

CLP CLear Processor status CLP

PSL

b7 b6 b5 b4 b3 b2 b1 b0

N V m x D I Z C

7900 Series Software Manual4–72

Function : Clear

Operation data length : 16 bits or 8 bits

Operation : Acc ← 0

When m = “0”

Acc
← 000016

When m = “1”

AccL

← 0016

❈ In this case, the contents of AccH do not change.

Description : Clears the contents of Acc to “0.”

Status flags

N : Always cleared to “0” because MSB of the operation result is “0.”

Z : Always set to “1” because the operation result is “0.”

Description example :

CLM
CLR A ; A ← 000016

CLR B ; B ← 000016

SEM
CLR A ; AL ← 0016

CLR B ; BL ← 0016

CLR CLeaR accumulator CLR

IPL N V m x D I Z C
– 0 – – – – – 1 –

Addressing mode Syntax Machine code Bytes Cycles

A CLR A 5416 1 1
A CLR B 8116, 5416 2 2

7900 Series Software Manual 4–73

Function : Clear

Operation data length : 8 bits

Operation : AccL ← 0016

AccL

← 0016

Description : Clears the contents of AccL to “0016.”

● The contents of AccH do not change.

● This instruction is unaffected by flag m.

Status flags

N : Always cleared to “0” because MSB of the operation result is “0.”

Z : Always set to “1” because the operation result is “0.”

Description example :

CLRB A ; AL ← 0016

CLRB B ; BL ← 0016

Addressing mode Syntax Machine code Bytes Cycles

A CLRB A 4416 1 1
A CLRB B 8116, 4416 2 2

CLRB CLeaR accumulator at Byte CLRB

IPL N V m x D I Z C
– 0 – – – – – 1 –

7900 Series Software Manual4–74

Function : Clear

Operation data length : 16 bits or 8 bits

Operation : M ← 0

When m = “0”

M16
← 000016

When m = “1”

M8
← 0016

Description : Clears the contents of a memory to “0.”

Status flags

Description example :

CLM
CLRM MEM16 ; MEM16 ← 000016

SEM
CLRM MEM8 ; MEM8 ← 0016

Addressing mode Syntax Machine code Bytes Cycles

DIR CLRM dd D216, dd 2 5

ABS CLRM mmll D716, ll, mm 3 5

CLRM CLeaR Memory CLRM

IPL N V m x D I Z C

– – – – – – – – –

7900 Series Software Manual 4–75

Function : Clear

Operation data length : 8 bits

Operation : M8 ← 0016

M8

← 0016

Description : Clears the contents of a memory to “0” in 8-bit length.

● This instruction is unaffected by flag m.

Status flags

Description example :

CLRMB MEM8 ; MEM8 ← 0016

Addressing mode Syntax Machine code Bytes Cycles

DIR CLRMB dd C216, dd 2 5

ABS CLRMB mmll C716, ll, mm 3 5

CLRMB CLeaR Memory at Byte CLRMB

IPL N V m x D I Z C
– – – – – – – – –

7900 Series Software Manual4–76

Function : Clear

Operation data length : 16 bits or 8 bits

Operation : X ← 0

When x = “0”

X
← 000016

When x = “1”

XL

← 0016

❈ In this case, the contents of XH do not change.

Description : Clears the contents of X to “0.”

● This instruction is unaffected by flag m.

Status flags

N : Always cleared to “0” because MSB of the operation result is “0.”

Z : Always set to “1” because the operation result is “0.”

Description example :

CLP x
CLRX ; X ← 000016

SEP x
CLRX ; XL ← 0016

Addressing mode Syntax Machine code Bytes Cycles

IMP CLRX E416 1 1

CLRX CLeaR index register X CLRX

IPL N V m x D I Z C

– 0 – – – – – 1 –

7900 Series Software Manual 4–77

Function : Clear

Operation data length : 16 bits or 8 bits

Operation : Y ← 0

When x = “0”

Y
← 000016

When x = “1”

YL

← 0016

❈ In this case, the contents of YH do not change.

Description : Clears the contents of Y to “0.”

● This instruction is unaffected by flag m.

Status flags

N : Always cleared to “0” because MSB of the operation result is “0.”

Z : Always set to “1” because the operation result is “0.”

Description example :

CLP x
CLRY ; Y ← 000016

SEP x
CLRY ; YL ← 0016

Addressing mode Syntax Machine code Bytes Cycles

IMP CLRY F416 1 1

CLRY CLeaR index register Y CLRY

IPL N V m x D I Z C

– 0 – – – – – 1 –

7900 Series Software Manual4–78

Function : Flag manipulation

Operation data length : –

Operation : V ← 0

Description : Clears the contents of flag V to “0.”

Status flags :

V : Cleared to “0.”

Description example :

CLV ; V ← 0

Addressing mode Syntax Machine code Bytes Cycles

IMP CLV 6516 1 1

IPL N V m x D I Z C

– – 0 – – – – – –

CLV CLear oVerflow flag CLV

7900 Series Software Manual 4–79

Function : Comparison

Operation data length : 16 bits or 8 bits

Operation : Acc – M

When m = “0”

Acc M16

 –

When m = “1”

AccL M8

 –

Description : Subtracts the contents of a memory from the contents of Acc. The result is not stored
anywhere.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

V : Set to “1” when the result of the operation (regarded as a signed operation) is a value outside
the range of –32768 to +32767 (–128 to +127 when flag m is “1”). Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

C : Cleared to “0” when the borrow occurs. Otherwise, set to “1.”

CMP CoMPare CMP

IPL N V m x D I Z C
– N V – – – – Z C

7900 Series Software Manual4–80

Addressing mode Syntax Machine code Bytes Cycles

IMM CMP A, #imm 4616, imm (8116, 4616, imm) 2 (3) 1 (2)
DIR CMP A, dd 4A16, dd (8116, 4A16, dd) 2 (3) 3 (4)
DIR, X CMP A, dd, X 4B16, dd (8116, 4B16, dd) 2 (3) 4 (5)
(DIR) CMP A, (dd) 1116, 4016, dd (9116, 4016, dd) 3 (3) 6 (6)
(DIR, X) CMP A, (dd, X) 1116, 4116, dd (9116, 4116, dd) 3 (3) 7 (7)
(DIR), Y CMP A, (dd), Y 1116, 4816, dd (9116, 4816, dd) 3 (3) 7 (7)
L(DIR) CMP A, L(dd) 1116, 4216, dd (9116, 4216, dd) 3 (3) 8 (8)
L(DIR), Y CMP A, L(dd), Y 1116, 4916, dd (9116, 4916, dd) 3 (3) 9 (9)
SR CMP A, nn, S 1116, 4316, nn (9116, 4316, nn) 3 (3) 5 (5)
(SR), Y CMP A, (nn, S), Y 1116, 4416, nn (9116, 4416, nn) 3 (3) 8 (8)
ABS CMP A, mmll 4E16, ll, mm (8116, 4E16, ll, mm) 3 (4) 3 (4)
ABS, X CMP A, mmll, X 4F16, ll, mm (8116, 4F16, ll, mm) 3 (4) 4 (5)
ABS, Y CMP A, mmll, Y 1116, 4616, ll, mm (9116, 4616, ll, mm) 4 (4) 5 (5)
ABL CMP A, hhmmll 1116, 4C16, ll, mm, hh (9116, 4C16, ll, mm, hh) 5 (5) 5 (5)
ABL, X CMP A, hhmmll, X 1116, 4D16, ll, mm, hh (9116, 4D16, ll, mm, hh) 5 (5) 6 (6)

Notes 1: This table applies when using accumulator A. When using accumulator B, replace “A” with “B” in
the syntax. In this case, the machine code, the number of bytes, and the number of cycles enclosed
in parentheses are applied.

 2: In the immediate addressing mode, the byte number increases by 1 when flag m = “0.”

Description example :

CLM
CMP.W A, #IMM16 ; A – IMM16
CMP B, MEM16 ; B – MEM16
SEM
CMP.B A, #IMM8 ; AL – IMM8
CMP B, MEM8 ; BL – MEM8

CMP CoMPare CMP

7900 Series Software Manual 4–81

CMPB CoMPare at Byte CMPB

Function : Comparison

Operation data length : 8 bits

Operation : AccL – IMM8

AccL

– IMM8

Description : Subtracts the immediate value from the contents of AccL in 8-bit length. The result is not stored
anywhere.

● This instruction is unaffected by flag m.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

V : Set to “1” when the result of the operation (regarded as a signed operation) is a value outside
the range of –128 to +127. Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

C : Cleared to “0” when the borrow occurs. Otherwise, set to “1.”

Description example :

CMPB A, #IMM8 ; AL – IMM8
CMPB B, #IMM8 ; BL – IMM8

Addressing mode Syntax Machine code Bytes Cycles

IMM CMPB A, #imm 3816, imm 2 1

IMM CMPB B, #imm 8116, 3816, imm 3 2

IPL N V m x D I Z C
– N V – – – – Z C

7900 Series Software Manual4–82

CMPD CoMPare at Double-word CMPD

Function : Comparison

Operation data length : 32 bits

Operation : E – IMM32

E

– IMM32

Description : Subtracts the immediate value from the contents of E in 32-bit length. The result is not stored
anywhere.

● This instruction is unaffected by flag m.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

V : Set to “1” when the result of the operation (regarded as a signed operation) is a value outside
the range of –2147483648 to +2147483647. Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

C : Cleared to “0” when the borrow occurs. Otherwise, set to “1.”

Description example :

CMPD E, #IMM32 ; E – IMM32

IPL N V m x D I Z C

– N V – – – – Z C

Addressing mode Syntax Machine code Bytes Cycles

IMM CMPD E, #imm 3C16, immLL, immLH, immHL, immHH 5 3
DIR CMPD E, dd BA16, dd 2 6

DIR, X CMPD E, dd, X BB16, dd 2 7

(DIR) CMPD E, (dd) 1116, B016, dd 3 9

(DIR, X) CMPD E, (dd, X) 1116, B116, dd 3 10

(DIR), Y CMPD E, (dd), Y 1116, B816, dd 3 10
L(DIR) CMPD E, L(dd) 1116, B216, dd 3 11

L(DIR), Y CMPD E, L(dd), Y 1116, B916, dd 3 12

SR CMPD E, nn, S 1116, B316, nn 3 8

(SR), Y CMPD E, (nn, S), Y 1116, B416, nn 3 11

ABS CMPD E, mmll BE16, ll, mm 3 6
ABS, X CMPD E, mmll, X BF16, ll, mm 3 7

ABS, Y CMPD E, mmll, Y 1116, B616, ll, mm 4 8

ABL CMPD E, hhmmll 1116, BC16, ll, mm, hh 5 8

ABL, X CMPD E, hhmmll, X 1116, BD16, ll, mm, hh 5 9

7900 Series Software Manual 4–83

Function : Comparison

Operation data length : 16 bits or 8 bits

Operation : M – IMM

When m = “0”

M16

– IMM16

When m = “1”

M8

– IMM8

Description : Subtracts the immediate value from the contents of a memory. The result is not stored
anywhere.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

V : Set to “1” when the result of the operation (regarded as a signed operation) is a value outside
the range of –32768 to +32767 (–128 to +127 when flag m is “1”). Otherwise, cleared to “0.”

Z : Set to “1” when the result of the operation is “0.” Otherwise, cleared to “0.”

C : Cleared to “0” when the borrow occurs. Otherwise, set to “1.”

CMPM CoMPare immediate with Memory CMPM

IPL N V m x D I Z C

– N V – – – – Z C

Addressing mode Syntax Machine code Bytes Cycles

DIR CMPM dd, #imm 5116, 2316, dd, imm 4 5

ABS CMPM mmll, #imm 5116, 2716, ll, mm, imm 5 5

Note : When flag m = “0.” the byte number increases by 1.

Description example :

CLM
CMPM.W MEM16, #IMM16 ; MEM16 – IMM16
SEM
CMPM.B MEM8, #IMM8 ; MEM8 – IMM8

7900 Series Software Manual4–84

Function : Comparison

Operation data length : 8 bits

Operation : M8 – IMM8

M8

 – IMM8

Description : Subtracts the immediate value from the contents of a memory in 8-bit length. The result is not
stored anywhere.

● This instruction is unaffected by flag m.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

V : Set to “1” when the result of the operation (regarded as a signed operation) is a value outside
the range of –128 to +127. Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

C : Cleared to “0” when the borrow occurs. Otherwise, set to “1.”

Description example :

CMPMB MEM8, #IMM8 ; MEM8 – IMM8

CMPMB CoMPare immediate with Memory at Byte CMPMB

Addressing mode Syntax Machine code Bytes Cycles

DIR CMPMB dd, #imm 5116, 2216, dd, imm 4 5
ABS CMPMB mmll, #imm 5116, 2616, ll, mm, imm 5 5

IPL N V m x D I Z C
– N V – – – – Z C

7900 Series Software Manual 4–85

CMPMD CoMPare immediate with Memory at Double-word CMPMD

Function : Comparison

Operation data length : 32 bits

Operation : M32 – IMM32

M32

– IMM32

Description : Subtracts the immediate value from the contents of a memory in 32-bit length. The result is
not stored anywhere.

● This instruction is unaffected by flag m.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

V : Set to “1” when the result of the operation (regarded as a signed operation) is a value outside
the range of –2147483648 to +2147483647. Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

C : Cleared to “0” when the borrow occurs. Otherwise, set to “1.”

Description example :

CMPMD MEM32, #IMM32 ; MEM32 – IMM32

IPL N V m x D I Z C

– N V – – – – Z C

Addressing mode Syntax Machine code Bytes Cycles

DIR CMPMD dd, #imm 5116, A316, dd, immLL, immLH, immHL, immHH 7 7
ABS CMPMD mmll, #imm 5116, A716, ll, mm, immLL, immLH, immHL, immHH 8 7

7900 Series Software Manual4–86

Addressing mode Syntax Machine code Bytes Cycles

IMM CPX #imm E616, imm 2 1

DIR CPX dd 2216, dd 2 3

ABS CPX mmll 4116, 2E16, ll, mm 4 4

Function : Comparison

Operation data length : 16 bits or 8 bits

Operation : X – M

When x = “0”

X M16

 –

When x = “1”

XL M8

 –

Description : Subtracts the contents of a memory from the contents of X. The result is not stored anywhere.

● This instruction is unaffected by flag m.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

V : Set to “1” when the result of the operation (regarded as a signed operation) is a value outside
the range of –32768 to +32767 (–128 to +127 when flag x is “1”). Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

C : Cleared to “0” when the borrow occurs. Otherwise, set to “1.”

CPX ComPare memory and index register X CPX

IPL N V m x D I Z C
– N V – – – – Z C

Description example :

CLP x
CPX.W #IMM16 ; X – IMM16
CPX MEM16 ; X – MEM16
SEP x
CPX.B #IMM8 ; XL – IMM8
CPX MEM8 ; XL – MEM8

Note : In the immediate addressing mode with flag x = “0,” the byte number incleases by 1.

7900 Series Software Manual 4–87

Addressing mode Syntax Machine code Bytes Cycles

IMM CPY #imm F616, imm 2 1

DIR CPY dd 3216, dd 2 3

ABS CPY mmll 4116, 3E16, ll, mm 4 4

Function : Comparison

Operation data length : 16 bits or 8 bits

Operation : Y – M

When x = “0”

Y M16

 –

When x = “1”

YL M8

 –

Description : Subtracts the contents of a memory from the contents of Y. The result is not stored anywhere.

● This instruction is unaffected by flag m.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

V : Set to “1” when the result of the operation (regarded as a signed operation) is a value outside
the range of –32768 to +32767 (–128 to +127 when flag x is “1”). Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

C : Cleared to “0” when the borrow occurs. Otherwise, set to “1.”

CPY ComPare memory and index register Y CPY

IPL N V m x D I Z C
– N V – – – – Z C

Description example :

CLP x
CPY.W #IMM16 ; Y – IMM16
CPY MEM16 ; Y – MEM16
SEP x
CPY.B #IMM8 ; YL – IMM8
CPY MEM8 ; YL – MEM8

Note : In the immediate addressing mode with flag x = “0,” the byte number incleases by 1.

7900 Series Software Manual4–88

IPL N V m x D I Z C
– – – – – – – – –

Function : Decrement & Conditional branch

Operation data length : 16 bits or 8 bits

Operation : M ← M – IMM (IMM = 0 to 31)

When m = “0”

M16 M16

← – IMM

● When M16 (result of operation) = 0, executes the next instruction.

● When M16 (result of operation) ≠ 0, branches to the specified address.

When m = “1”

M8 M8

← – IMM

● When M8 (result of operation) = 0, executes the next instruction.

● When M8 (result of operation) ≠ 0, branches to the specified address.

Description : Subtracts the immediate value (0 to 31) from the contents of a memory, and stores the result
to the memory. In this time, branches to the specified address, if the operation result is not
“0.” Use an 8-bit value relative to PC (–128 to +127) to specify the branch address.

Status flags :

DEBNE DEcrement memory and Branch on Not Equal DEBNE

Addressing mode Syntax Machine code Bytes Cycles

DIR DEBNE dd, #imm, rr C116, imm+A016, dd, rr 4 12

ABS DEBNE mmll, #imm, rr D116, imm+E016, ll, mm, rr 5 11

Note : Any value from 0 to 31 can be set to imm.

Description example :

CLM
DEBNE MEM16, #IMM, LABEL1 ; Branches to LABEL1, if the result of MEM16 – IMM(0 to 31) is not 0.
SEM
DEBNE MEM8, #IMM, LABEL2 ; Branches to LABEL2, if the result of MEM8 – IMM(0 to 31) is not 0.

7900 Series Software Manual 4–89

Function : Decrement

Operation data length : 16 bits or 8 bits

Operation : Acc ← Acc – 1 or M ← M – 1

When m = “0”

Acc Acc

← – 1

or

M16 M16

← – 1

When m = “1”

AccL AccL

← – 1

or

M8 M8

← – 1

❈ In this case, the contents of AccH do not change.

Description : Decrements 1 from the contents of Acc or the contents of a memory.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

DEC DECrement by one DEC

IPL N V m x D I Z C
– N – – – – – Z –

Description example :

CLM
DEC A ; A ← A – 1
SEM
DEC A ; AL ← AL – 1

Addressing mode Syntax Machine code Bytes Cycles

A DEC A B316 1 1
A DEC B 8116, B316 2 2
DIR DEC dd 9216, dd 2 6
DIR, X DEC dd, X 4116, 9B16, dd 3 8
ABS DEC mmll 9716, ll, mm 3 6
ABS, X DEC mmll, X 4116, 9F16, ll, mm 4 8

7900 Series Software Manual4–90

Function : Decrement

Operation data length : 16 bits or 8 bits

Operation : X ← X – 1

When x = “0”

X X

← – 1

When x = “1”

XL XL

← – 1

❈ In this case, the contents of XH do not change.

Description : Decrements 1 from the contents of X.

● This instruction is unaffected by flag m.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

DEX DEcrement index register X by one DEX

IPL N V m x D I Z C

– N – – – – – Z –

Description example :

CLP x
DEX ; X ← X – 1
SEP x
DEX ; XL ← XL – 1

Addressing mode Syntax Machine code Bytes Cycles

IMP DEX E316 1 1

7900 Series Software Manual 4–91

Function : Decrement

Operation data length : 16 bits or 8 bits

Operation : Y ← Y – 1

When x = “0”

Y Y

← – 1

When x = “1”

YL YL

← – 1

❈ In this case, the contents of YH do not change.

Description : Decrements 1 from the contents of Y.

● This instruction is unaffected by flag m.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

DEY DEcrement index register Y by one DEY

IPL N V m x D I Z C

– N – – – – – Z –

Description example :

CLP x
DEY ; Y ← Y – 1
SEP x
DEY ; YL ← YL – 1

Addressing mode Syntax Machine code Bytes Cycles

IMP DEY F316 1 1

7900 Series Software Manual4–92

DIV DIVide unsigned DIV

Function : Division (Unsigned)

Operation data length : 16 bits or 8 bits

Operation : A (quotient), B (remainder) ← (B, A) ÷ M

When m = “0”

A B B A M16

Quotient , Remainder ← Dividend ÷ Divisor

When m = “1”

AL BL BL AL M8

Quotient , Remainder ← Dividend ÷ Divisor

❈ In this case, the contents of AH and BH do not change.

Description : Divides the data whose high-order bits consist of the contents of accumulator B and low-order
bits consist of the contents of accumulator A by the memory’s contents. Stores the quotient
to accumulator A, and stores the remainder to accumulator B.

● If an overflow occurs as an operation result, flag V is set to “1” and the contents of
accumulators A and B become undefined.

● When the divisor is “0,” the zero divide interrupt is generated. In that case, the contents of
accumulators A and B are not changed.

Status flags

N : Set to “1” if the quotient (A as the operation result)’s MSB is “1.” Unaffected when an overflow
occurs or the divisor is “0.” Otherwise, cleared to “0.”

V : Set to “1” when an overflow occurs. Unaffected when the divisor is “0.” Otherwise, cleared to
“0.”

I : Set to “1” when the divisor is “0.” Otherwise, unaffected.

Z : Set to “1” when the quotient (A as the operation result) is “0.” Unaffected when an overflow
occurs or the divisor is “0.” Otherwise, cleared to “0.”

C : Set to “1” when an overflow occurs. Unaffected when the divisor is “0.” Otherwise, cleared to
“0.”

IPL N V m x D I Z C
– N V – – – I Z C

7900 Series Software Manual 4–93

DIV DIVide unsigned DIV

Addressing mode Syntax Machine code Bytes Cycles

IMM DIV #imm 3116, E716, imm 3 15
DIR DIV dd 2116, EA16, dd 3 16
DIR, X DIV dd, X 2116, EB16, dd 3 17
(DIR) DIV (dd) 2116, E016, dd 3 18
(DIR, X) DIV (dd, X) 2116, E116, dd 3 19
(DIR), Y DIV (dd), Y 2116, E816, dd 3 19
L(DIR) DIV L(dd) 2116, E216, dd 3 20
L(DIR), Y DIV L(dd), Y 2116, E916, dd 3 21
SR DIV nn, S 2116, E316, nn 3 17
(SR), Y DIV (nn, S), Y 2116, E416, nn 3 20
ABS DIV mmll 2116, EE16, ll, mm 4 16
ABS, X DIV mmll, X 2116, EF16, ll, mm 4 17
ABS, Y DIV mmll, Y 2116, E616, ll, mm 4 17
ABL DIV hhmmll 2116, EC16, ll, mm, hh 5 17
ABL, X DIV hhmmll, X 2116, ED16, ll, mm, hh 5 18

Notes 1: In the immediate addressing mode, the byte number increases by 1 when flag m = “0.”
 2: The cycle number in this table applies to the case of 16-bit ÷ 8-bit operation. In the case of 32-

bit ÷ 16-bit operation, the cycle number increases by 8.
 3: The cycle number in this table and Note 2 is the number when the operation is completed normally

(in other words, when no interrupt has been generated). If a zero divide interrupt is generated, the
cycle number is 16 cycles regardless of the operation’s data length.

Description example :

CLM
DIV MEM16 ; A, B ← (B, A) / MEM16
DIV.W #IMM16 ; A, B ← (B, A) / IMM16
SEM
DIV MEM8 ; AL, BL ← (BL, AL) / MEM8
DIV.B #IMM8 ; AL, BL ← (BL, AL) / IMM8

7900 Series Software Manual4–94

Function : Division (Signed)

Operation data length : 16 bits or 8 bits

Operation : A (quotient), B (remainder) ← (B, A) ÷ M

When m = “0”

A B B A M16

Quotient , Remainder ← Dividend ÷ Divisor

❈ “s” represents MSB of data.

When m = “1”

AL BL BL AL M8

Quotient , Remainder ← Dividend ÷ Divisor

❈ “s” represents MSB of data.
❈ In this case, the contents of AH and BH do not change.

Description : Divides the signed data whose high-order bits consist of the contents of accumulator B and
low-order bits consist of the contents of accumulator A by the memory’s contents (signed).
Stores the signed quotient to accumulator A, and stores the signed remainder to accumulator
B.

● The sign of remainder becomes same as that of dividend.

● If an overflow occurs as an operation result (the quotient exceeds the range –32767 to
+32767 when flag m is “0,” or –127 to +127 when flag m is “1”), the operation finishes
halfway and flag V is set to “1.” In that case, the contents of accumulators A and B become
undefined.

● When the divisor is “0,” the zero divide interrupt is generated. In that case, the contents of
accumulators A and B are not changed.

Status flags

N : Set to “1” if the quotient (A as the operation result)’s MSB is “1.” Unaffected when an overflow
occurs or the divisor is “0.” Otherwise, cleared to “0.”

V : Set to “1” when an overflow occurs. Unaffected when the divisor is “0.” Otherwise, cleared to
“0.”

I : Set to “1” when the divisor is “0.” Otherwise, unaffected.

Z : Set to “1” when the quotient (A as the operation result) is “0.” Unaffected when an overflow
occurs or the divisor is “0.” Otherwise, cleared to “0.”

C : Set to “1” when an overflow occurs. Unaffected when the divisor is “0.” Otherwise, cleared to
“0.”

DIVS DIVide with Sign DIVS

IPL N V m x D I Z C

– N V – – – I Z C

s s s s

s s s s

7900 Series Software Manual 4–95

DIVS DIVide with Sign DIVS

Addressing mode Syntax Machine code Bytes Cycles

IMM DIVS #imm 3116, F716, imm 3 22
DIR DIVS dd 2116, FA16, dd 3 23
DIR, X DIVS dd, X 2116, FB16, dd 3 24
(DIR) DIVS (dd) 2116, F016, dd 3 25
(DIR, X) DIVS (dd, X) 2116, F116, dd 3 26
(DIR), Y DIVS (dd), Y 2116, F816, dd 3 26
L(DIR) DIVS L(dd) 2116, F216, dd 3 27
L(DIR), Y DIVS L(dd), Y 2116, F916, dd 3 28
SR DIVS nn, S 2116, F316, nn 3 24
(SR), Y DIVS (nn, S), Y 2116, F416, nn 3 27
ABS DIVS mmll 2116, FE16, ll, mm 4 23
ABS, X DIVS mmll, X 2116, FF16, ll, mm 4 24
ABS, Y DIVS mmll, Y 2116, F616, ll, mm 4 24
ABL DIVS hhmmll 2116, FC16, ll, mm, hh 5 24
ABL, X DIVS hhmmll, X 2116, FD16, ll, mm, hh 5 25

Description example :

CLM
DIVS MEM16 ; A, B ← (B, A) / MEM16
SEM
DIVS.B #IMM8 ; AL, BL ← (BL, AL) / IMM8

Notes 1: In the immediate addressing mode, the byte number increases by 1 when flag m = “0.”
 2: The cycle number in this table applies to the case of 16-bit ÷ 8-bit operation. In the case of 32-

bit ÷ 16-bit operation, the cycle number increases by 8.
 3: The cycle number in this table and Note 2 is the number when the operation is completed normally

(in other words, when no interrupt has been generated). If a zero divide interrupt is generated, the
cycle number is 16 cycles regardless of the operation’s data length.

7900 Series Software Manual4–96

Function : Decrement & Conditional branch

Operation data length : 16 bits or 8 bits

Operation : X ← X – IMM (IMM = 0 to 31)

When x = “0”

X X

← – IMM

● When X (result of operation) = 0, executes the next instruction.

● When X (result of operation) ≠ 0, branches to the specified address.

When x = “1”

XL XL

← – IMM

● When XL (result of operation) = 0, executes the next instruction.

● When XL (result of operation) ≠ 0, branches to the specified address.

❈ In this case, the contents of XH do not change.

Description : Subtracts the immediate value (0 to 31) from the contents of X, and stores the result to the
X. In this time, branches to the specified address, if the operation result is not “0.” Use an 8-
bit value relative to PC (–128 to +127) to specify the branch address.

● This instruction is unaffected by flag m.

Status flags :

DXBNE Decrement index register X and Branch on Not Equal DXBNE

IPL N V m x D I Z C
– – – – – – – – –

Addressing mode Syntax Machine code Bytes Cycles

IMM DXBNE #imm, rr 0116, imm+C016, rr 3 7

Note : Any value from 0 to 31 can be set to imm.

Description example :

CLP x
DXBNE #IMM, LABEL1 ; Branches to LABEL1, if the result of X – IMM(0 to 31) is not 0.
SEP x
DXBNE #IMM, LABEL2 ; Branches to LABEL2, if the result of XL – IMM(0 to 31) is not 0.

7900 Series Software Manual 4–97

Function : Decrement & Conditional branch

Operation data length : 16 bits or 8 bits

Operation : Y ← Y – IMM (IMM = 0 to 31)

When x = “0”

Y Y

← – IMM

● When Y (result of operation) = 0, executes the next instruction.

● When Y (result of operation) ≠ 0, branches to the specified address.

When x = “1”

YL YL

← – IMM

● When YL (result of operation) = 0, executes the next instruction.

● When YL (result of operation) ≠ 0, branches to the specified address.

❈ In this case, the contents of YH do not change.

Description : Subtracts the immediate value (0 to 31) from the contents of Y, and stores the result to the
Y. In this time, branches to the specified address, if the result of the operation is not “0.” Use
an 8-bit value relative to PC (–128 to +127) to specify the branch address.

● This instruction is unaffected by flag m.

Status flags :

DYBNE Decrement index register Y and Branch on Not Equal DYBNE

IPL N V m x D I Z C
– – – – – – – – –

Addressing mode Syntax Machine code Bytes Cycles

IMM DYBNE #imm, rr 0116, imm+E016, rr 3 7

Note : Any value from 0 to 31 can be set to imm.

Description example :

CLP x
DYBNE #IMM, LABEL1 ; Branches to LABEL1, if the result of Y – IMM(0 to 31) is not 0.
SEP x
DYBNE #IMM, LABEL2 ; Branches to LABEL2, if the result of YL – IMM(0 to 31) is not 0.

7900 Series Software Manual4–98

Function : Logical exclusive OR

Operation data length : 16 bits or 8 bits

Operation : Acc ← Acc ∀ M

When m = “0”

Acc Acc M16

← ∀

When m = “1”

AccL AccL M8

← ∀

❈ In this case, the contents of AccH do not change.

Description : Performs the logical exclusive OR between the contents of Acc and the contents of a memory
by each bit, and stores the result in Acc.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

EOR Exclusive OR memory with accumulator EOR

IPL N V m x D I Z C

– N – – – – – Z –

7900 Series Software Manual 4–99

Addressing mode Syntax Machine code Bytes Cycles

IMM EOR A, #imm 7616, imm (8116, 7616, imm) 2 (3) 1 (2)
DIR EOR A, dd 7A16, dd (8116, 7A16, dd) 2 (3) 3 (4)
DIR, X EOR A, dd, X 7B16, dd (8116, 7B16, dd) 2 (3) 4 (5)
(DIR) EOR A, (dd) 1116, 7016, dd (9116, 7016, dd) 3 (3) 6 (6)
(DIR, X) EOR A, (dd, X) 1116, 7116, dd (9116, 7116, dd) 3 (3) 7 (7)
(DIR), Y EOR A, (dd), Y 1116, 7816, dd (9116, 7816, dd) 3 (3) 7 (7)
L(DIR) EOR A, L(dd) 1116, 7216, dd (9116, 7216, dd) 3 (3) 8 (8)
L(DIR), Y EOR A, L(dd), Y 1116, 7916, dd (9116, 7916, dd) 3 (3) 9 (9)
SR EOR A, nn, S 1116, 7316, nn (9116, 7316, nn) 3 (3) 5 (5)
(SR), Y EOR A, (nn, S), Y 1116, 7416, nn (9116, 7416, nn) 3 (3) 8 (8)
ABS EOR A, mmll 7E16, ll, mm (8116, 7E16, ll, mm) 3 (4) 3 (4)
ABS, X EOR A, mmll, X 7F16, ll, mm (8116, 7F16, ll, mm) 3 (4) 4 (5)
ABS, Y EOR A, mmll, Y 1116, 7616, ll, mm (9116, 7616, ll, mm) 4 (4) 5 (5)
ABL EOR A, hhmmll 1116, 7C16, ll, mm, hh (9116, 7C16, ll, mm, hh) 5 (5) 5 (5)
ABL, X EOR A, hhmmll, X 1116, 7D16, ll, mm, hh (9116, 7D16, ll, mm, hh) 5 (5) 6 (6)

Notes 1: This table applies when using accumulator A. When using accumulator B, replace “A” with “B” in
the syntax. In this case, the machine code, the number of bytes, and the number of cycles enclosed
in parentheses are applied.

 2: In the immediate addressing mode, the byte number increases by 1 when flag m = “0.”

EOR Exclusive OR memory with accumulator EOR

Description example :

CLM
EOR.W A, #IMM16 ; A ← A ∀ IMM16
EOR B, MEM16 ; B ← B ∀ MEM16
SEM
EOR.B A, #IMM8 ; AL ← AL ∀ IMM8
EOR B, MEM8 ; BL ← BL ∀ MEM8

7900 Series Software Manual4–100

Function : Logical exclusive OR

Operation data length : 8 bits

Operation : AccL ← AccL ∀ IMM8

AccL AccL

← ∀ IMM8

Description : Performs the logical exclusive OR in 8-bit length between the contents of AccL and the
contents of a memory by each bit, and stores the result in AccL.

● This instruction is unaffected by flag m.

● The contents of AccH do not change.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

EORB Exclusive OR immediate with accumulator at Byte EORB

IPL N V m x D I Z C

– N – – – – – Z –

Addressing mode Syntax Machine code Bytes Cycles

IMM EORB A, #imm 3316, imm 2 1
IMM EORB B, #imm 8116, 3316, imm 3 2

Description example :

EORB A, #IMM8 ; AL ← AL ∀ IMM8
EORB B, #IMM8 ; BL ← BL ∀ IMM8

7900 Series Software Manual 4–101

Function : Logical exclusive OR

Operation data length : 16 bits or 8 bits

Operation : M ← M ∀ IMM

When m = “0”

M16 M16

← ∀ IMM16

When m = “1”

M8 M8

← ∀ IMM8

Description : Performs the logical exclusive OR between the contents of a memory and the immediate
value, and stores the result in the memory.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

EORM Exclusive OR immediate with Memory EORM

IPL N V m x D I Z C
– N – – – – – Z –

Addressing mode Syntax Machine code Bytes Cycles

DIR EORM dd, #imm 5116, 7316, dd, imm 4 7

ABS EORM mmll, #imm 5116, 7716, ll, mm, imm 5 7

Note : When flag m = “0,” the byte number increases by 1.

Description example :

CLM
EORM.W MEM16, #IMM16 ; MEM16 ← MEM16 ∀ IMM16
SEM
EORM.B MEM8, #IMM8 ; MEM8 ← MEM8 ∀ IMM8

7900 Series Software Manual4–102

Function : Logical exclusive OR

Operation data length : 8 bits

Operation : M8 ← M8 ∀ IMM8

 M8 M8

← ∀ IMM8

Description : Performs the logical exclusive OR in 8-bit length between the contents of a memory and the
immediate value, and stores the result in the memory.

● This instruction is unaffected by flag m.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

EORMB Exclusive OR immediate with Memory at Byte EORMB

IPL N V m x D I Z C

– N – – – – – Z –

Addressing mode Syntax Machine code Bytes Cycles

DIR EORMB dd, #imm 5116, 7216, dd, imm 4 7
ABS EORMB mmll, #imm 5116, 7616, ll, mm, imm 5 7

Description example :

EORMB MEM8, #IMM8 ; MEM8 ← MEM8 ∀ IMM8

7900 Series Software Manual 4–103

Function : Logical exclusive OR

Operation data length : 32 bits

Operation : M32 ← M32 ∀ IMM32

 M32 M32

← ∀ IMM32

Description : Performs the logical exclusive OR in 32-bit length between the contents of a memory and the
immediate value, and stores the result in the memory.

● This instruction is unaffected by flag m.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

EORMD Exclusive OR immediate with Memory at Double-word EORMD

IPL N V m x D I Z C

– N – – – – – Z –

Description example :

EORMD MEM32, #IMM32 ; MEM32 ← MEM32 ∀ IMM32

Addressing mode Syntax Machine code Bytes Cycles

DIR EORMD dd, #imm 5116, F316, dd, immLL, immLH, immHL, immHH 7 10
ABS EORMD mmll, #imm 5116, F716, ll, mm, immLL, immLH, immHL, immHH 8 10

7900 Series Software Manual4–104

Function : Extension sign

Operation data length : 16 bits

Operation : Acc ← AccL (Extension sign)

When bit 7 of AccL = “0”

AccH ← 0016

AccH AccL AccH AccL

0016 0XXXXXXX2 ← ? 0XXXXXXX2

When bit 7 of AccL = “1”

AccH ← FF16

AccH AccL AccH AccL

FF16 1XXXXXXX2 ← ? 1XXXXXXX2

❈ The contents of AccH change regardless of flag m.

Description : This instruction is used to extend AccL to Acc with signs.

● This instruction is unaffected by flag m.

Status flags :

N : Set to “1” when bit 15 of the operation result is “1.” Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

EXTS EXTension Sign EXTS

IPL N V m x D I Z C

– N – – – – – Z –

Description example :

EXTS A ; AH ← 0016 or FF16

EXTS B ; BH ← 0016 or FF16

Addressing mode Syntax Machine code Bytes Cycles

A EXTS A 3516 1 1
A EXTS B 8116, 3516 2 2

7900 Series Software Manual 4–105

Function : Extension sign

Operation data length : 32 bits

Operation : E ← EL (= A) (Extension sign)

When bit 15 of A = “0”

EH ← 000016

 EH (= B) EL (= A) EH (= B) EL (= A)

b15 b0 b15 b0 b15 b0 b15 b0

000016 0X....XX2 ← ? 0X....XX2

When bit 15 of A = “1”

EH ← FFFF16

 EH (= B) EL (= A) EH (= B) EL (= A)

b15 b0 b15 b0 b15 b0 b15 b0

FFFF16 1X....XX2 ← ? 1X....XX2

❈ The high-order 2 bytes change regardless of flag m.

Description : This instruction is used to extend EL (= A) to E with signs.

● This instruction is unaffected by flag m.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

EXTSD EXTension Sign at Double-word EXTSD

IPL N V m x D I Z C
– N – – – – – Z –

Description example :

EXTSD E ; E ← EL

; (B ← 000016 or FFFF16, A ← A)

Addressing mode Syntax Machine code Bytes Cycles

A EXTSD E 3116, B016 2 5

7900 Series Software Manual4–106

Function : Extension zero

Operation data length : 16 bits

Operation : Acc ← AccL (Extension zero)

AccH AccL AccH AccL

0016 ← ?

❈ The contents of AccH change regardless of flag m.

Description : This instruction is used to extend AccL to Acc with 0s.

● This instruction is unaffected by flag m.

● The content of AccH always set to “0016.”

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

EXTZ EXTension Zero EXTZ

IPL N V m x D I Z C

– 0 – – – – – Z –

Description example :

EXTZ A ; A ← AL (AH ← 0016 , AL ← AL)
EXTZ B ; B ← BL (BH ← 0016 , BL ← BL)

Addressing mode Syntax Machine code Bytes Cycles

A EXTZ A 3416 1 1
A EXTZ B 8116, 3416 2 2

7900 Series Software Manual 4–107

Function : Extension zero

Operation data length : 32 bits

Operation : E ← EL (= A) (Extension zero)

 EH (= B) EL (= A) EH (= B) EL (= A)

b15 b0 b15 b0 b15 b0 b15 b0

000016 ← ?

❈ The high-order 2 bytes change regardless of flag m.

Description : This instruction is used to extend EL (= A) to E with 0s.

● This instruction is unaffected by flag m.

● The high-order word; EH (= B) becomes “000016.”

Status flags :

N : Always “0” because MSB of the operation result is “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

EXTZD EXTension Zero at Double-word EXTZD

IPL N V m x D I Z C

– 0 – – – – – Z –

Description example :

EXTZD E ; E ← EL (B ← 000016, A ← A)

Addressing mode Syntax Machine code Bytes Cycles

A EXTZD E 3116, A016 2 3

7900 Series Software Manual4–108

Function : Increment

Operation data length : 16 bits or 8 bits

Operation : Acc ← Acc + 1 or M ← M + 1

When m = “0”

Acc Acc

← + 1

or

M16 M16

← + 1

When m = “1”

AccL AccL

← + 1

or

M8 M8

← + 1

❈ In this case, the contents of AccH do not change.

Description : Adds 1 to the contents of Acc or a memory.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

INC INCrement by one INC

IPL N V m x D I Z C
– N – – – – – Z –

Description example :

CLM
INC A ; A ← A + 1
INC MEM16 ; MEM16 ← MEM16 + 1
SEM
INC B ; BL ← BL + 1
INC MEM8 ; MEM8 ← MEM8 + 1

Addressing mode Syntax Machine code Bytes Cycles

A INC A A316 1 1
A INC B 8116, A316 2 2
DIR INC dd 8216, dd 2 6
DIR, X INC dd, X 4116, 8B16, dd 3 8
ABS INC mmll 8716, ll, mm 3 6
ABS, X INC mmll, X 4116, 8F16, ll, mm 4 8

7900 Series Software Manual 4–109

Function : Increment

Operation data length : 16 bits or 8 bits

Operation : X ← X + 1

When x = “0”

X X

← + 1

When x = “1”

XL XL

← + 1

❈ In this case, the contents of XH do not change.

Description : Adds 1 to the contents of X.

● This instruction is unaffected by flag m.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

INX INcrement index register X by one INX

IPL N V m x D I Z C

– N – – – – – Z –

Description example :

CLP x
INX ; X ← X + 1
SEP x
INX ; XL ← XL + 1

Addressing mode Syntax Machine code Bytes Cycles

IMP INX C316 1 1

7900 Series Software Manual4–110

Function : Increment

Operation data length : 16 bits or 8 bits

Operation : Y ← Y + 1

When x = “0”

Y Y

← + 1

When x = “1”

YL YL

← + 1

❈ In this case, the contents of YH do not change.

Description : Adds 1 to the contents of Y.

● This instruction is unaffected by flag m.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

INY INcrement index register Y by one INY

IPL N V m x D I Z C

– N – – – – – Z –

Description example :

CLP x
INY ; Y ← Y + 1
SEP x
INY ; YL ← YL + 1

Addressing mode Syntax Machine code Bytes Cycles

IMP INY D316 1 1

7900 Series Software Manual 4–111

Function : Jump always

Operation data length : –

Operation : • JMP instruction

PC ← Specified address

PC ← mmll

• JMPL instruction

PG, PC ← Specified address

PC ← mmll

PG ← hh

Description : Jumps to the specified address. Use a 16-bit (JMP) or 24-bit (JMPL) address to specify the
destination jump address.

● If the last byte of the JMP instruction is placed at the highest address (XXFFFF16) or the
instruction is located across bank boundaries, the contents of PG are incremented by 1,
causing control to jump to the specified address in the next bank.

● When using indirect addressing, the memory to be referenced is in the same program bank
(the bank indicated by PG).

Status flags :

JMP/JMPL JuMP JMP/JMPL

IPL N V m x D I Z C
– – – – – – – – –

Description example :

JMP ADDR16 ; Jump to the address ADDR16
JMPL ADDR24 ; Jump to the address ADDR24

Addressing mode Syntax Machine code Bytes Cycles

ABS JMP mmll 9C16, ll, mm 3 4
ABL JMPL hhmmll AC16, ll, mm, hh 4 5
(ABS) JMP (mmll) 3116, 5C16, ll, mm 4 7
L(ABS) JMPL L(mmll) 3116, 5D16, ll, mm 4 9
(ABS, X) JMP (mmll, X) BC16, ll, mm 3 7

7900 Series Software Manual4–112

Function : Subroutine call

Operation data length : –

Operation : • JSR instruction

Stack ← PC

PC ← Specified address

PC ← PC + 3

M(S, S – 1) ← PC

S ← S – 2

PC ← mmll

• JSRL instruction

Stack ← PG, PC

PG, PC ← Specified address

PC ← PC + 4

M(S to S – 2) ← PG, PC

S ← S – 3

PC ← mmll

PG ← hh

Description : This instruction stores the contents of PG and PC to stack, and jumps to the specified address.
Use a 16-bit (JSR) or 24-bit (JSRL) address to specify the destination jump address.

● If the last byte of the JSR instruction is placed at the highest address (XXFFFF16) or the
instruction is located across bank boundaries, the contents of PG are incremented by 1,
causing control to jump to the specified address in the next bank.

● When using indirect addressing, the memory to be referenced is in the same program bank
(the bank indicated by PG).

Status flags :

JSR/JSRL Jump to SubRoutine JSR/JSRL

IPL N V m x D I Z C
– – – – – – – – –

Description example :

JSR ADDR16 ; Jump to the address ADDR16
JSRL ADDR24 ; Jump to the address ADDR24

Addressing mode Syntax Machine code Bytes Cycles

ABS JSR mmll 9D16, ll, mm 3 6
ABL JSRL hhmmll AD16, ll, mm, hh 4 7
(ABS, X) JSR (mmll, X) BD16, ll, mm 3 8

Stack

PCL

PCH

(S) just after instruction execution

(S) just before instruction execution

Stack

PCL

PCH

PG

(S) just after instruction execution

(S) just before instruction execution

7900 Series Software Manual 4–113

Function : Load

Operation data length : 16 bits or 8 bits

Operation : Acc ← M

When m = “0”

Acc M16

←

When m = “1”

AccL M8

←

❈ In this case, the contents of AccH do not change.

Description : Loads the contents of a memory into Acc.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

LDA LoaD Accumulator from memory LDA

IPL N V m x D I Z C
– N – – – – – Z –

7900 Series Software Manual4–114

Addressing mode Syntax Machine code Bytes Cycles

IMM LDA A, #imm 1616, imm (8116, 1616, imm) 2 (3) 1 (2)
DIR LDA A, dd 1A16, dd (8116, 1A16, dd) 2 (3) 3 (4)
DIR, X LDA A, dd, X 1B16, dd (8116, 1B16, dd) 2 (3) 4 (5)
(DIR) LDA A, (dd) 1116, 1016, dd (9116, 1016, dd) 3 (3) 6 (6)
(DIR, X) LDA A, (dd, X) 1116, 1116, dd (9116, 1116, dd) 3 (3) 7 (7)
(DIR), Y LDA A, (dd), Y 1816, dd (8116, 1816, dd) 2 (3) 6 (7)
L(DIR) LDA A, L(dd) 1116, 1216, dd (9116, 1216, dd) 3 (3) 8 (8)
L(DIR), Y LDA A, L(dd), Y 1916, dd (8116, 1916, dd) 2 (3) 8 (9)
SR LDA A, nn, S 1116, 1316, nn (9116, 1316, nn) 3 (3) 5 (5)
(SR), Y LDA A, (nn, S), Y 1116, 1416, nn (9116, 1416, nn) 3 (3) 8 (8)
ABS LDA A, mmll 1E16, ll, mm (8116, 1E16, ll, mm) 3 (4) 3 (4)
ABS, X LDA A, mmll, X 1F16, ll, mm (8116, 1F16, ll, mm) 3 (4) 4 (5)
ABS, Y LDA A, mmll, Y 1116, 1616, ll, mm (9116, 1616, ll, mm) 4 (4) 5 (5)
ABL LDA A, hhmmll 1C16, ll, mm, hh (8116, 1C16, ll, mm, hh) 4 (5) 4 (5)
ABL, X LDA A, hhmmll, X 1D16, ll, mm, hh (8116, 1D16, ll, mm, hh) 4 (5) 5 (6)

Notes 1: This table applies when using accumulator A. When using accumulator B, replace “A” with “B” in
the syntax. In this case, the machine code, the number of bytes, and the number of cycles enclosed
in parentheses are applied.

 2: In the immediate addressing mode, the byte number increases by 1 when flag m = “0.”

Description example :

CLM
LDA.W A, #IMM16 ; A ← IMM16
LDA B, MEM16 ; B ← MEM16
SEM
LDA.B A, #IMM8 ; AL ← IMM8
LDA B, MEM8 ; BL ← MEM8

LDA LoaD Accumulator from memory LDA

7900 Series Software Manual 4–115

Function : Load

Operation data length : 16 bits

Operation : Acc ← M8 (Extension zero)

Acc M8

0016 ←

Description : Transfers 8-bit data from memory to Acc after zero-extending it to 16 bits.

● This instruction is unaffected by flag m.

● The contents of AccH are always set to “0016.”

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

LDAB LoaD Accumulator from memory at Byte LDAB

IPL N V m x D I Z C

– 0 – – – – – Z –

Addressing mode Syntax Machine code Bytes Cycles

IMM LDAB A, #imm 2816, imm (8116, 2816, imm) 2 (3) 1 (2)
DIR LDAB A, dd 0A16, dd (8116, 0A16, dd) 2 (3) 3 (4)
DIR, X LDAB A, dd, X 0B16, dd (8116, 0B16, dd) 2 (3) 4 (5)
(DIR) LDAB A, (dd) 1116, 0016, dd (9116, 0016, dd) 3 (3) 6 (6)
(DIR, X) LDAB A, (dd, X) 1116, 0116, dd (9116, 0116, dd) 3 (3) 7 (7)
(DIR), Y LDAB A, (dd), Y 0816, dd (8116, 0816, dd) 2 (3) 6 (7)
L(DIR) LDAB A, L(dd) 1116, 0216, dd (9116, 0216, dd) 3 (3) 8 (8)
L(DIR), Y LDAB A, L(dd), Y 0916, dd (8116, 0916, dd) 2 (3) 8 (9)
SR LDAB A, nn, S 1116, 0316, nn (9116, 0316, nn) 3 (3) 5 (5)
(SR), Y LDAB A, (nn, S), Y 1116, 0416, nn (9116, 0416, nn) 3 (3) 8 (8)
ABS LDAB A, mmll 0E16, ll, mm (8116, 0E16, ll, mm) 3 (4) 3 (4)
ABS, X LDAB A, mmll, X 0F16, ll, mm (8116, 0F16, ll, mm) 3 (4) 4 (5)
ABS, Y LDAB A, mmll, Y 1116, 0616, ll, mm (9116, 0616, ll, mm) 4 (4) 5 (5)
ABL LDAB A, hhmmll 0C16, ll, mm, hh (8116, 0C16, ll, mm, hh) 4 (5) 4 (5)
ABL, X LDAB A, hhmmll, X 0D16, ll, mm, hh (8116, 0D16, ll, mm, hh) 4 (5) 5 (6)

Note : This table applies when using accumulator A. When using accumulator B, replace “A” with “B” in the
syntax. In this case, the machine code, the number of bytes, and the number of cycles enclosed in
parentheses are applied.

Description example :

LDAB A, #IMM8 ; A ← IMM8 (AH ← 0016, AL ← IMM8)
LDAB B, MEM8 ; B ← MEM8 (BH ← 0016, BL ← MEM8)

7900 Series Software Manual4–116

Function : Load

Operation data length : 32 bits

Operation : E ← M32

E M32

←

Description : Loads the 32-bit data of a memory to E.

● This instruction is unaffected by flag m.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

LDAD LoaD Accumulator from memory at Double-word LDAD

IPL N V m x D I Z C

– N – – – – – Z –

Addressing mode Syntax Machine code Bytes Cycles

IMM LDAD E, #imm 2C16, immLL, immLH, immHL, immHH 5 3
DIR LDAD E, dd 8A16, dd 2 6
DIR, X LDAD E, dd, X 8B16, dd 2 7
(DIR) LDAD E, (dd) 1116, 8016, dd 3 9
(DIR, X) LDAD E, (dd, X) 1116, 8116, dd 3 10
(DIR), Y LDAD E, (dd), Y 8816, dd 2 9
L(DIR) LDAD E, L(dd) 1116, 8216, dd 3 11
L(DIR), Y LDAD E, L(dd), Y 8916, dd 2 11
SR LDAD E, nn, S 1116, 8316, nn 3 8
(SR), Y LDAD E, (nn, S), Y 1116, 8416, nn 3 11
ABS LDAD E, mmll 8E16, ll, mm 3 6
ABS, X LDAD E, mmll, X 8F16, ll, mm 3 7
ABS, Y LDAD E, mmll, Y 1116, 8616, ll, mm 4 8
ABL LDAD E, hhmmll 8C16, ll, mm, hh 4 7
ABL, X LDAD E, hhmmll, X 8D16, ll, mm, hh 4 8

Description example :

LDAD E, #IMM32 ; E ← IMM32
; (B ← IMM32H, A ← IMM32L)

LDAD E, MEM32 ; E ← MEM32
; (B ← IMM32H, A ← IMM32L)

7900 Series Software Manual 4–117

Function : Load

Operation data length : 16 bits

Operation : DPR0 ← IMM16a (can be specified to multiple DPRs)
DPR1 ← IMM16b
DPR2 ← IMM16c
DPR3 ← IMM16d

DPR0
← IMM16a

DPR1
← IMM16b

DPR2
← IMM16c

DPR3
← IMM16d

Description : Transfers a 16-bit immediate value to DPR0 through DPR3.

● This instruction is unaffected by flag m.

● A value can be set to multiple DPRs by 1 instruction. If multiple DPRs are specified,
transfers are performed in order of DPR0, DPR1, DPR2, and DPR3.

Status flags :

LDD n LoaD immediate to Direct page register n LDD n

IPL N V m x D I Z C

– – – – – – – – –

Description example :

LDD 0, #IMM16 ; DPR0 ← IMM16
LDD (0, 3), #IMM16a, #IMM16b ; DPR0 ← IMM16a

; DPR3 ← IMM16b

Addressing mode Syntax Machine code Bytes Cycles

IMM LDD n, #imm B816, ?016, immL, immH 4 13
LDD (n1, …, ni), #imm1, …, #immi B816, ?016, immL1, immH1 2 ✕ i + 2 2 ✕ i + 11

 , …, immLi, immHi

 b7 b0

DPR3 DPR2 DPR1 DPR0 0 0 0 0

Notes 1: Any value from 0 to 3 can be set to n.
 2: The second line of the syntax format sets values to multiple DPRs by 1 instruction.
 3: The inside of parentheses (n1, ..., ni) specifies 0 to 3 (numbers representing DPRn).
 4: i: Indicates DPRn specified (1 to 4).
 5: ?: The bit corresponding to a specified DPRn is set to “1.” The diagram below shows the

relationship between bits and DPRn.

7900 Series Software Manual4–118

Function : Load

Operation data length : 8 bits

Operation : DT ← IMM8

DT

← IMM8

Description : Loads the immediate value to DT.

● This instruction is unaffected by flag m.

Status flags :

LDT LoaD immediate to DaTa bank register LDT

IPL N V m x D I Z C

– – – – – – – – –

Description example :

LDT #IMM8 ; DT ← IMM8

Addressing mode Syntax Machine code Bytes Cycles

IMM LDT #imm 3116, 4A16, imm 3 4

7900 Series Software Manual 4–119

Function : Load

Operation data length : 16 bits or 8 bits

Operation : X ← M

When x = “0”

X M16

←

When x = “1”

XL M8

←

❈ In this case, the contents of XH do not change.

Description : Loads the contents of a memory to X.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

LDX LoaD index register X from memory LDX

IPL N V m x D I Z C
– N – – – – – Z –

Addressing mode Syntax Machine code Bytes Cycles

IMM LDX #imm C616, imm 2 1
DIR LDX dd 0216, dd 2 3
DIR, Y LDX dd, Y 4116, 0516, dd 3 5
ABS LDX mmll 0716, ll, mm 3 3
ABS, Y LDX mmll, Y 4116, 0616, ll, mm 4 5

Description example :

CLM
LDX.W #IMM16 ; X ← IMM16
LDX MEM16 ; X ← MEM16
SEM
LDX.B #IMM8 ; XL ← IMM8
LDX MEM8 ; XL ← MEM8

Note : In the immediate addressing mode, the byte number inclease by 1 when flag x = “0.”

7900 Series Software Manual4–120

Function : Load

Operation data length : 16 bits

Operation : X ← IMM8 (Extension zero)

X

0016 ← IMM8

Description : Extends the 8-bit immediate value to the 16-bit immediate value with 0s, and loads the data
to X.

● This instruction is unaffected by flag x.

● The contents of XH are always set to “0016.”

Status flags :

N : Always “0” because MSB of the operation result is “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

LDXB LoaD index register X from memory at Byte LDXB

IPL N V m x D I Z C

– 0 – – – – – Z –

Description example :

LDXB #IMM8 ; X ← IMM8 (XH ← 0016, XL ← IMM8)

Addressing mode Syntax Machine code Bytes Cycles

IMM LDXB #imm 2716, imm 2 1

7900 Series Software Manual 4–121

Function : Load

Operation data length : 16 bits or 8 bits

Operation : Y ← M

When x = “0”

Y M16

←

When x = “1”

YL M8

←

❈ In this case, the contents of YH do not change.

Description : Loads the contents of a memory to Y.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

LDY LoaD index register Y from memory LDY

IPL N V m x D I Z C
– N – – – – – Z –

Addressing mode Syntax Machine code Bytes Cycles

IMM LDY #imm D616, imm 2 1
DIR LDY dd 1216, dd 2 3
DIR, X LDY dd, X 4116, 1B16, dd 3 5
ABS LDY mmll 1716, ll, mm 3 3
ABS, X LDY mmll, X 4116, 1F16, ll, mm 4 5

Description example :

CLM
LDY.W #IMM16 ; Y ← IMM16
LDY MEM16 ; Y ← MEM16
SEM
LDY.B #IMM8 ; YL ← IMM8
LDY MEM8 ; YL ← MEM8

Note : In the immediate addressing mode, the byte number inclease by 1 when flag x = “0.”

7900 Series Software Manual4–122

Function : Load

Operation data length : 16 bits

Operation : Y ← IMM8 (Extension zero)

Y

0016 ← IMM8

Description : Extends the 8-bit immediate value to the 16-bit immediate value with 0s, and loads the data
to Y.

● This instruction is unaffected by flag x.

● The contents of YH are always set to “0016.”

Status flags :

N : Always “0” because MSB of the operation result is “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

LDYB LoaD index register Y from memory at Byte LDYB

IPL N V m x D I Z C

– 0 – – – – – Z –

Description example :

LDYB #IMM8 ; Y ← IMM8 (YH ← 0016, YL ← IMM8)

Addressing mode Syntax Machine code Bytes Cycles

IMM LDYB #imm 3716, imm 2 1

7900 Series Software Manual 4–123

LSR Logical Shift Right LSR

Function : Logical shift to the right

Operation data length : 16 bits or 8 bits

Operation : Acc or M C
0 → 1-bit shift to right →

When m = “0”

b15 Acc or M16 b0 C

0 → → → → → → → → → →

When m = “1”

b7 AccL or M8 b0 C

0 → → → → → → → → →

❈ In this case, the contents of AccH do not change.

Description : Shifts all bits of Acc or a memory to the right by 1 bit. In this time, “0” is placed in MSB of
Acc or a memory. Flag C is loaded from LSB of the data before the shift.

Status flags

N : Cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

C : Set to “1” when LSB before the operation is “1.” Otherwise, cleared to “0.”

Description example :

CLM
LSR A ; A ← A is logically shifted to the right by 1 bit.
LSR MEM16 ; MEM16 ← MEM16 is logically shifted to the right by 1 bit.
SEM
LSR A ; AL ← AL is logically shifted to the right by 1 bit.
LSR MEM8 ; MEM8 ← MEM8 is logically shifted to the right by 1 bit.

IPL N V m x D I Z C

– 0 – – – – – Z C

Addressing mode Syntax Machine code Bytes Cycles

A LSR A 4316 1 1

A LSR B 8116, 4316 2 2

DIR LSR dd 2116, 2A16, dd 3 7

DIR, X LSR dd, X 2116, 2B16, dd 3 8

ABS LSR mmll 2116, 2E16, ll, mm 4 7
ABS, X LSR mmll, X 2116, 2F16, ll, mm 4 8

7900 Series Software Manual4–124

LSR #n Logical n bits Shift Right LSR #n

Function : Logical shift to the right

Operation data length : 16 bits or 8 bits

Operation : A C
0 →n-bit shift to right→ (n : Number of times shifted. n = 0 to 15)

When m = “0”

b15 A b0 C
0 → → → → → → → → → →

When m = “1”

b7 AL b0 C

0 → → → → → → → → →

❈ In this case, the contents of AH do not change.

Description : Shifts all bits of A to the right by n bits. A “0” is placed in MSB of A, and LSB is placed in
flag C each time its contents shifted by 1 bit.

● B cannot be used in this instruction.

Status flags

N : Always “0” because MSB of the operation result is “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

C : Set to “1” if LSB = “1” when the contents of A are shifted by (n – 1) bits. Otherwise, cleared
to “0.”

Description example :

CLM
LSR A, #15 ; A ← A is logically shifted to the right by 15 bits.
SEM
LSR A, #7 ; AL ← AL is logically shifted to the right by 7 bits.

IPL N V m x D I Z C

– 0 – – – – – Z C

Addressing mode Syntax Machine code Bytes Cycles

A LSR A, #imm C116, imm 2 imm+6

Note : Any value (number of times shifted) from 0 to 15 can be set to imm.

7900 Series Software Manual 4–125

LSRD #n Logical n bits Shift Right at Double-word LSRD #n

Function : Logical shift to the right

Operation data length : 32 bits

Operation : E C
0 → n-bit shift to right→ (n : Number of times shifted. n = 0 to 31)

b31 E b0 C
0 → → → → → → → → → →

Description : Shifts all bits of E in 32-bit length to the right by n bits. A “0” is placed in MSB of E, and LSB
is placed in flag C each time its contents are shifted by 1 bit.

● This instruction is unaffected by flag m.

Status flags

N : Always “0” because MSB of the operation result is “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

C : Set to “1” if LSB = “1” when the contents of E are shifted by (n – 1) bits. Otherwise, cleared
to “0.”

Description example :

LSRD E, #16 ; E ← E is logically shifted to the right by 16 bits.

IPL N V m x D I Z C
– 0 – – – – – Z C

Addressing mode Syntax Machine code Bytes Cycles

A LSRD E, #imm D116, imm 2 imm+8

Note : Any value (number of times shifted) from 0 to 31 can be set to imm.

7900 Series Software Manual4–126

Function : Move memory to memory

Operation data length : 16 bits or 8 bits

Operation : M ← M

When m = “0”

M16(dest) M16(source)

←

When m = “1”

M8(dest) M8(source)

←

Description : Transfers the contents of the source memory to the destination memory.

● This instruction includes the function of the LDM instruction in the conventional 7700 Family.

Status flags :

MOVM MOVe Memory to memory MOVM

IPL N V m x D I Z C
– – – – – – – – –

dest source

DIR IMM MOVM dd, #imm 8616, imm, dd 3 5
DIR ABS MOVM dd, mmll 5C16, ll, mm, dd 4 6
DIR ABS, X MOVM dd, mmll, X 5D16, ll, mm, dd 4 7
ABS IMM MOVM mmll, #imm 9616, imm, ll, mm 4 4
ABS DIR MOVM mmll, dd 7816, dd, ll, mm 4 5
ABS DIR, X MOVM mmll, dd, X 7916, dd, ll, mm 4 6
ABS, X IMM MOVM mmll, X, #imm 3116, 5716, imm, ll, mm 5 6
ABS ABS MOVM mmll1, mmll2 7C16, ll2, mm2, ll1, mm1 5 5
DIR, X IMM MOVM dd, X, #imm 3116, 4716, imm, dd 4 7
DIR DIR MOVM dd1, dd2 5816, dd2, dd1 3 6

Note : In the immediate addressing mode, the byte number increases by 1 when flag m = “0.”

Addressing mode
Syntax Machine code Bytes Cycles

Description example :

CLM
MOVM.W MEM16, #IMM16 ; MEM16 ← IMM16
MOVM MEM16(dest), MEM16(source) ; MEM16(dest) ← MEM16(source)
SEM
MOVM.B MEM8, #IMM8 ; MEM8 ← IMM8
MOVM MEM8(dest), MEM8(source) ; MEM8(dest) ← MEM8(source)

7900 Series Software Manual 4–127

Function : Move memory to memory

Operation data length : 8 bits

Operation : M8 ← M8

M8(dest) M8(source)

←

Description : Transfers the contents of the source memory to the destination memory in 8-bit length.

● The contents of the source memory do not change.

● This instruction is unaffected by flag m.

Status flags :

MOVMB MOVe Memory to memory at Byte MOVMB

IPL N V m x D I Z C
– – – – – – – – –

Description example :

MOVMB MEM8, #IMM8 ; MEM8 ← IMM8
MOVMB MEM8(dest), MEM8(source) ; MEM8(dest) ← MEM8(source)

dest source

DIR IMM MOVMB dd, #imm A916, imm, dd 3 5
DIR ABS MOVMB dd, mmll 4C16, ll, mm, dd 4 6
DIR ABS, X MOVMB dd, mmll, X 4D16, ll, mm, dd 4 7
ABS IMM MOVMB mmll, #imm B916, imm, ll, mm 4 4
ABS DIR MOVMB mmll, dd 6816, dd, ll, mm 4 5
ABS DIR, X MOVMB mmll, dd, X 6916, dd, ll, mm 4 6
ABS, X IMM MOVMB mmll, X, #imm 3116, 3B16, imm, ll, mm 5 6
ABS ABS MOVMB mmll1, mmll2 6C16, ll2, mm2, ll1, mm1 5 5
DIR, X IMM MOVMB dd, X, #imm 3116, 3A16, imm, dd 4 7
DIR DIR MOVMB dd1, dd2 4816, dd2, dd1 3 6

Addressing mode
Syntax Machine code Bytes Cycles

7900 Series Software Manual4–128

Function : Move memory to memory

Operation data length : 16 bits or 8 bits

Operation : M(dest 1) ← M(source 1) (n : Number of times repeated transferring. n = 0 to 15)

M(dest 2) ← M(source 2)

: :

M(dest n) ← M(source n)

When m = “0”

M16(dest 1) M16(source 1)

←
: :

M16(dest n) M16(source n)

←

When m = “1”

M8(dest 1) M8(source 1)

←
: :

M8(dest n) M8(source n)

←

Description : Performs multiple memory-to-memory transfers by 1 instruction. Transfers are performed
according to the addresses specified in the third and following bytes of the instruction. Up to
15 transfers can be performed.

● Memory contents on the source side do not change.

● No transfer is performed if a “0” is specified for the transfer count.

● This instruction can specify the different addressing modes for the source and destination,
respectively; these addressing modes, however, cannot be changed until the multiple
transfer specified by 1 instruction is completed.

Status flags :

MOVR MOVe Repeat memory to memory MOVR

IPL N V m x D I Z C
– – – – – – – – –

7900 Series Software Manual 4–129

dest source

DIR IMM MOVR #n, dd1, #imm1 6116, n+1016, imm1, dd1, …, immn, ddn 2✕n+2 5✕n+3
 , …, ddn, #immn (Notes 2)

DIR DIR MOVR #n, ddd1, dds1 6116, n+5016, dds1, ddd1, …, ddsn, dddn 2✕n+2 6✕n+3
 , …, dddn, ddsn

DIR ABS MOVR #n, dd1, mmll1 6116, n+9016, ll1, mm1, dd1 3✕n+2 6✕n+3
, …, ddn, mmlln , …, lln, mmn, ddn

DIR ABS, X MOVR #n, dd1, mmll1, X 7116, n+1016, ll1, mm1, dd1 3✕n+2 6✕n+3
, …, ddn, mmlln, X , …, lln, mmn, ddn

ABS IMM MOVR #n, mmll1, #imm1 6116, n+3016, imm1, ll1, mm1 3✕n+2 4✕n+3
, …, mmlln, #immn , …, immn, lln, mmn (Notes 2)

ABS DIR MOVR #n, mmll1, dd1 6116, n+7016, dd1, ll1, mm1 3✕n+2 5✕n+3
, …, mmlln, ddn , …, ddn, lln, mmn

ABS DIR, X MOVR #n, mmll1, dd1, X 7116, n+7016, dd1, ll1, mm1 3✕n+2 6✕n+3
, …, mmlln, ddn, X , …, ddn, lln, mmn

ABS ABS MOVR #n, mmlld1, mmlls1 6116, n+B016, lls1, mms1, lld1, mmd1 4✕n+2 5✕n+3
, …, mmlldn, mmllsn , …, llsn, mmsn, lldn, mmdn

Notes 1 : Any value from 0 to 15 can be set to n.
2 : Incremented by n bytes when flag m = “0.”

Addressing mode
Syntax Machine code Bytes Cycles

Description example :

CLM
MOVR.W 2, MEM16(dest1), #IMM16a, MEM16(dest2), #IMM16b

; MEM16(dest1) ← IMM16a
; MEM16(dest2) ← IMM16b

MOVR 2, MEM16(dest1), MEM16(source1), MEM16(dest2), MEM16(source2)
; MEM16(dest1) ← MEM16(source1)
; MEM16(dest2) ← MEM16(source2)

SEM
MOVR.B 2, MEM8(dest1), #IMM8a, MEM8(dest2), #IMM8b ; MEM8(dest1) ← IMM8a

; MEM8(dest2) ← IMM8b
MOVR 2, MEM8(dest1), MEM8(source1), MEM8(dest2), MEM8(source2)

; MEM8(dest1) ← MEM8(source1)
; MEM8(dest2) ← MEM8(source2)

MOVR MOVe Repeat memory to memory MOVR

7900 Series Software Manual4–130

dest source

DIR IMM MOVRB #n, dd1, #imm1 6116, n+0016, imm1, dd1, …, immn, ddn 2✕n+2 5✕n+3
 , …, ddn, #immn

DIR DIR MOVRB #n, ddd1, dds1 6116, n+4016, dds1, ddd1, …, ddsn, dddn 2✕n+2 6✕n+3
 , …, dddn, ddsn

DIR ABS MOVRB #n, dd1, mmll1 6116, n+8016, ll1, mm1, dd1 3✕n+2 6✕n+3
, …, ddn, mmlln , …, lln, mmn, ddn

DIR ABS, X MOVRB #n, dd1, mmll1, X 7116, n+0016, ll1, mm1, dd13✕n+2 6✕n+3
, …, ddn, mmlln, X , …, lln, mmn, ddn

ABS IMM MOVRB #n, mmll1, #imm1 6116, n+2016, imm1, ll1, mm13✕n+2 4✕n+3
, …, mmlln, #immn , …, immn, lln, mmn

ABS DIR MOVRB #n, mmll1, dd1 6116, n+6016, dd1, ll1, mm1 3✕n+2 5✕n+3
, …, mmlln, ddn , …, ddn, lln, mmn

ABS DIR, X MOVRB #n, mmll1, dd1, X 7116, n+6016, dd1, ll1, mm13✕n+2 6✕n+3
, …, mmlln, ddn, X , …, ddn, lln, mmn

ABS ABS MOVRB #n, mmlld1, mmlls1 6116, n+A016, lls1, mms1, lld1, mmd1 4✕n+2 5✕n+3
, …, mmlldn, mmllsn , …, llsn, mmsn, lldn, mmdn

Function : Move memory to memory

Operation data length : 8 bits

Operation : M8(dest 1) ← M8(source 1) (n : Number of times repeated transferring. n = 0 to 15)

M8(dest 2) ← M8(source 2)

: :

M8(dest n) ← M8(source n)

M8(dest 1) M8(source 1)

←
: :

M8(dest n) M8(source n)

←

Description : Performs multiple memory-to-memory transfers by 1 instruction. Transfers are performed
according to the addresses specified in the 3rd and following bytes of the instruction, in byte
length. Up to 15 transfers can be performed.

● Memory contents on the source side do not change.

● No transfer is performed if a “0” is specified for the transfer count.

● This instruction can specify the different addressing modes for the source and destination,
respectively; these addressing modes, however, cannot be changed until the multiple
transfer specified by 1 instruction is completed.

● This instruction is unaffected by flag m.

Status flags :

MOVRB MOVe Repeat memory to memory at Byte MOVRB

IPL N V m x D I Z C
– – – – – – – – –

Note : Any value from 0 to 15 can be set to n.

Addressing mode
Syntax Machine code Bytes Cycles

Description example :

MOVRB 2, MEM8(dest1), #IMM8a, MEM8(dest2), #IMM8b ; MEM8(dest1) ← IMM8a
; MEM8(dest2) ← IMM8b

MOVRB 2, MEM8(dest1), MEM8(source1), MEM8(dest2), MEM8(source2)
; MEM8(dest1) ← MEM8(source1)
; MEM8(dest2) ← MEM8(source2)

7900 Series Software Manual 4–131

MPY MultiPlY MPY

Function : Multiplication (Unsigned)

Operation data length : 16 bits or 8 bits

Operation : (B, A) ← A (Multiplicand) ✕ M (Multiplier)

When m = “0”

B A A M16

Product ← Multiplicand ✕ Multiplier

When m = “1”

BL AL AL M8

Product ← Multiplicand ✕ Multiplier

❈ In this case, the contents of AH and BH do not change.

Description : The contents of A are multiplied by the contents of a memory. The higher of result is stored
in B and lower is stored in A.

Status flags

N : Set to “1” when MSB (MSB of B) of the operation result is “1.” Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

C : Cleared to “0.”

IPL N V m x D I Z C
– N – – – – – Z 0

Addressing mode Syntax Machine code Bytes Cycles

IMM MPY #imm 3116, C716, imm 3 8
DIR MPY dd 2116, CA16, dd 3 9
DIR, X MPY dd, X 2116, CB16, dd 3 10
(DIR) MPY (dd) 2116, C016, dd 3 11
(DIR, X) MPY (dd, X) 2116, C116, dd 3 12
(DIR), Y MPY (dd), Y 2116, C816, dd 3 12
L(DIR) MPY L(dd) 2116, C216, dd 3 13
L(DIR), Y MPY L(dd), Y 2116, C916, dd 3 14
SR MPY nn, S 2116, C316, nn 3 10
(SR), Y MPY (nn, S), Y 2116, C416, nn 3 13
ABS MPY mmll 2116, CE16, ll, mm 4 9
ABS, X MPY mmll, X 2116, CF16, ll, mm 4 10
ABS, Y MPY mmll, Y 2116, C616, ll, mm 4 10
ABL MPY hhmmll 2116, CC16, ll, mm, hh 5 10
ABL, X MPY hhmmll, X 2116, CD16, ll, mm, hh 5 11

Description example :

CLM
MPY.W #IMM16 ; B, A ← A ✕ IMM16
MPY MEM16 ; B, A ← A ✕ MEM16
SEM
MPY.B #IMM8 ; BL, AL ← AL ✕ IMM8
MPY MEM8 ; BL, AL ← AL ✕ MEM8

Notes 1: In the immediate addressing mode, the byte number increases by 1 when flag m = “0.”
 2: The cycle number in this table applies to the case of 8-bit ✕ 8-bit operation. In the case of 16-bit

✕ 16-bit operation, the cycle number increases by 4.

7900 Series Software Manual4–132

MPYS MultiPlY with Sign MPYS

Function : Multiplication (Signed)

Operation data length : 16 bits or 8 bits

Operation : (B, A) ← A (Multiplicand) ✕ M (Multiplier)

When m = “0”

B A A M16

Product ← Multiplicand ✕ Multiplier

❈ S represents MSB of the data.

When m = “1”

BL AL AL M8

Product ← Multiplicand ✕ Multiplier

❈ S represents MSB of the data.

❈ In this case, the contents of AH and BH do not change.

Description : The contents of A are multiplied by the contents of a memory. The high order of result is stored
in B and low order is stored in A. MSB of B becomes the sign bit.

Status flags

N : Set to “1” when MSB (MSB of B) of the operation result is “1.” Otherwise, cleared to “0.”
Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”
C : Cleared to “0.”

IPL N V m x D I Z C
– N – – – – – Z 0

Addressing mode Syntax Machine code Bytes Cycles

IMM MPYS #imm 3116, D716, imm 3 8
DIR MPYS dd 2116, DA16, dd 3 9
DIR, X MPYS dd, X 2116, DB16, dd 3 10
(DIR) MPYS (dd) 2116, D016, dd 3 11
(DIR, X) MPYS (dd, X) 2116, D116, dd 3 12
(DIR), Y MPYS (dd), Y 2116, D816, dd 3 12
L(DIR) MPYS L(dd) 2116, D216, dd 3 13
L(DIR), Y MPYS L(dd), Y 2116, D916, dd 3 14
SR MPYS nn, S 2116, D316, nn 3 10
(SR), Y MPYS (nn, S), Y 2116, D416, nn 3 13
ABS MPYS mmll 2116, DE16, ll, mm 4 9
ABS, X MPYS mmll, X 2116, DF16, ll, mm 4 10
ABS, Y MPYS mmll, Y 2116, D616, ll, mm 4 10
ABL MPYS hhmmll 2116, DC16, ll, mm, hh 5 10
ABL, X MPYS hhmmll, X 2116, DD16, ll, mm, hh 5 11

Description example :
CLM
MPYS.W #IMM16 ; B, A ← A ✕ IMM16
MPYS MEM16 ; B, A ← A ✕ MEM16
SEM
MPYS.B #IMM8 ; BL, AL ← AL ✕ IMM8
MPYS MEM8 ; BL, AL ← AL ✕ MEM8

Notes 1: In the immediate addressing mode, the byte number increases by 1 when flag m = “0.”
 2: The cycle number in this table applies to the case of 8-bit ✕ 8-bit operation. In the case of 16-bit

✕ 16-bit operation, the cycle number increases by 4.

s s s

s s s

7900 Series Software Manual 4–133

Function : Move

Operation data length : 16 bits or 8 bits

Operation : M (n to n + i – 1) ← M (m to m + i – 1) (i : transfer byte number)

Description : Normally, a block of data is transferred from higher addresses to lower addresses. The transfer
is performed in the ascending address order of the block being transferred.

● The 3rd byte of the instruction : Transfer destination bank,
The 4th byte of the instruction : Transfer source bank,
X : Transfer destination address,
Y : Transfer source address,
A : Byte number of the transfed data block are specified.

 (Specify X, Y, and A before this instruction is executed.)
● When m = “0” : 0- to 65535-byte data can be transferred.

When m = “1” : 0- to 255-byte data can be transferred.
When x = “0” : Transfer source area and transfer destination area can be set to the

addresses from 0 to 65535 (FFFF16).
When x = “1” : Transfer source area and transfer destination area can be set to the

addresses from 0 to 255 (FF16).
● Contents of registers after transfer

X : Transfer source area end (highest) address + 1
Y : Transfer destination area end (highest) address + 1
A : FFFF16

DT : Bank number of transfer destination

Status flags :

MVN MoVe Negative MVN

IPL N V m x D I Z C

– – – – – – – – –

Description example :

CLM ;
LDA.W #IMM16 ;
LDX LABEL2 ;
LDY LABEL1 ;
MVN BANK1, BANK2 ;

Addressing mode Syntax Machine code Bytes Cycles

BLK MVN hh1, hh2 3116, 2B16, hh1, hh2 4 5 ✕ i + 5

n Transfer
↓ Transfer direction destination

n + i – 1 area

m Transfer
↓ Transfer direction source

m + i – 1 area

LABEL1

LABEL2

→ ↓

↓

]

] IMM16 bytes (BANK2)

IMM16 bytes (BANK1)

Note: The cycle number in this table applies when the number of bytes transferred, i, is an even
number. When i is an odd number, the cycle number is obtained as follows:

5 ✕ i + 10.

7900 Series Software Manual4–134

Function : Move

Operation data length : 16 bits or 8 bits

Operation : M (n – i + 1 to n) ← M (m – i + 1 to m) (i : transfer byte number)

Description : Normally, a block of data is transferred from lower addresses to higher addresses. The transfer
is performed in the descending address order of the block being transferred.

● The 3rd byte of the instruction : Transfer destination bank,
The 4th byte of the instruction : Transfer source bank,
X : Transfer destination address,
Y : Transfer source address,
A : Byte number of the transfed data block are specified.

 (Specify X, Y, and A before this instruction is executed.)
● When m = “0” : 0- to 65535-byte data can be transferred.

When m = “1” : 0- to 255-byte data can be transferred.
When x = “0” : Transfer source area and transfer destination area can be set to the

addresses from 0 to 65535 (FFFF16).
When x = “1” : Transfer source area and transfer destination area can be set to the

addresses from 0 to 255 (FF16).
● Contents of registers after transfer

X : Transfer source area end (lowest) address – 1
Y : Transfer destination area end (lowest) address – 1
A : FFFF16

DT : Bank number of transfer destination

Status flags :

MVP MoVe Positive MVP

IPL N V m x D I Z C

– – – – – – – – –

Description example :

CLM ;
LDA.W #IMM16 ;
LDX LABEL1 ;
LDY LABEL2 ;
MVP BANK2, BANK1 ;

Addressing mode Syntax Machine code Bytes Cycles

BLK MVP hh1, hh2 3116, 2A16, hh1, hh2 4 5 ✕ i + 9

LABEL1

LABEL2

↓

↓

]

] IMM16 bytes (BANK2)

IMM16 bytes (BANK1)

m – i + 1 Transfer
↑ Transfer direction source

m area

n – i + 1 Transfer
↑ Transfer direction destination

n area

Note: The cycle number in this table applies when the number of bytes transferred, i, is an even
number. When i is an odd number, the cycle number is obtained as follows:

5 ✕ i + 14 (note that the cycle number becomes 10 when 1 byte is transferred).

→

7900 Series Software Manual 4–135

Function : Negation

Operation data length : 16 bits or 8 bits

Operation : Acc ← –Acc

When m = “0”

Acc –Acc

←

When m = “1”

AccL –AccL

←

❈ In this case, the contents of AccH do not change.

Description : Negates the sign of Acc contents, and stores the result in Acc.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

V : Set to “1” when the result of the operation (regarded as a signed operation) is a value outside
the range of –32768 to +32767 (–128 to +127 when flag m is “1”). Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

C : Set to “1” when the result of the operation (regarded as an unsigned operation) exceeds
+65535 (+255 when flag m is “1”). Otherwise, cleared to “0.”

NEG NEGative NEG

IPL N V m x D I Z C

– N V – – – – Z C

Description example :

CLM
NEG A ; A ← –A
SEM
NEG B ; BL ← –BL

Addressing mode Syntax Machine code Bytes Cycles

A NEG A 2416 1 1
A NEG B 8116, 2416 2 2

7900 Series Software Manual4–136

Function : Negation

Operation data length : 32 bits

Operation : E ← –E

E –E

←

Description : Negates the sign of E contents, and stores the result in E.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

V : Set to “1” when the result of the operation (regarded as a signed operation) is a value outside
the range of –2147483648 to +2147483647. Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

C : Set to “1” when the result of the operation (regarded as an unsigned operation) exceeds
+4294967295. Otherwise, cleared to “0.”

NEGD NEGative at Double-word NEGD

IPL N V m x D I Z C

– N V – – – – Z C

Description example :

NEGD E ; E ← –E

Addressing mode Syntax Machine code Bytes Cycles

A NEGD E 3116, 8016 2 4

7900 Series Software Manual 4–137

Function : No operation

Operation data length : –

Operation : PC ← PC + 1

(If a carry occurs in PC, PG ← PG + 1)

Description : Only increments the program counter by 1 and nothing else.

Status flags :

NOP No OPeration NOP

IPL N V m x D I Z C

– – – – – – – – –

Description example :

NOP ;

Addressing mode Syntax Machine code Bytes Cycles

IMP NOP 7416 1 1

7900 Series Software Manual4–138

Function : Logical OR

Operation data length : 16 bits or 8 bits

Operation : Acc ← Acc ∨ M

When m = “0”

Acc Acc M16

← ∨

When m = “1”

AccL AccL M8

← ∨

❈ In this case, the contents of AccH do not change.

Description : Performs the logical OR between the contents of Acc and the contents of a memory, and
stores the result in Acc.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

ORA OR memory with Accumulator ORA

IPL N V m x D I Z C
– N – – – – – Z –

7900 Series Software Manual 4–139

Addressing mode Syntax Machine code Bytes Cycles

IMM ORA A, #imm 5616, imm (8116, 5616, imm) 2 (3) 1 (2)
DIR ORA A, dd 5A16, dd (8116, 5A16, dd) 2 (3) 3 (4)
DIR, X ORA A, dd, X 5B16, dd (8116, 5B16, dd) 2 (3) 4 (5)
(DIR) ORA A, (dd) 1116, 5016, dd (9116, 5016, dd) 3 (3) 6 (6)
(DIR, X) ORA A, (dd, X) 1116, 5116, dd (9116, 5116, dd) 3 (3) 7 (7)
(DIR), Y ORA A, (dd), Y 1116, 5816, dd (9116, 5816, dd) 3 (3) 7 (7)
L(DIR) ORA A, L(dd) 1116, 5216, dd (9116, 5216, dd) 3 (3) 8 (8)
L(DIR), Y ORA A, L(dd), Y 1116, 5916, dd (9116, 5916, dd) 3 (3) 9 (9)
SR ORA A, nn, S 1116, 5316, nn (9116, 5316, nn) 3 (3) 5 (5)
(SR), Y ORA A, (nn, S), Y 1116, 5416, nn (9116, 5416, nn) 3 (3) 8 (8)
ABS ORA A, mmll 5E16, ll, mm (8116, 5E16, ll, mm) 3 (4) 3 (4)
ABS, X ORA A, mmll, X 5F16, ll, mm (8116, 5F16, ll, mm) 3 (4) 4 (5)
ABS, Y ORA A, mmll, Y 1116, 5616, ll, mm (9116, 5616, ll, mm) 4 (4) 5 (5)
ABL ORA A, hhmmll 1116, 5C16, ll, mm, hh (9116, 5C16, ll, mm, hh) 5 (5) 5 (5)
ABL, X ORA A, hhmmll, X 1116, 5D16, ll, mm, hh (9116, 5D16, ll, mm, hh) 5 (5) 6 (6)

Notes 1: This table applies when using accumulator A. When using accumulator B, replace “A” with “B” in
the syntax. In this case, the machine code, the number of bytes, and the number of cycles enclosed
in parentheses are applied.

 2: In the immediate addressing mode, the byte number increases by 1 when flag m = “0.”

Description example :

CLM
ORA.W A, #IMM16 ; A ← A ∨ IMM16
ORA B, MEM16 ; B ← B ∨ MEM16
SEM
ORA.B A, #IMM8 ; AL ← AL ∨ IMM8
ORA B, MEM8 ; BL ← BL ∨ MEM8

ORA OR memory with Accumulator ORA

7900 Series Software Manual4–140

Function : Logical OR

Operation data length : 8 bits

Operation : AccL ← AccL ∨ IMM8

AccL AccL

← ∨ IMM8

Description : Performs logical OR between the contents of AccL and immediate value in length of 8 bits, and
stores the result in Acc.

● This instruction is unaffected by flag m.

● The contents of AccH do not change.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

Description example :

ORAB A, #IMM8 ; AL ← AL ∨ IMM8
ORAB B, #IMM8 ; BL ← BL ∨ IMM8

ORAB OR immediate with Accumulator at Byte ORAB

Addressing mode Syntax Machine code Bytes Cycles

IMM ORAB A, #imm 6316, imm 2 1

IMM ORAB B, #imm 8116, 6316, imm 3 2

IPL N V m x D I Z C
– N – – – – – Z –

7900 Series Software Manual 4–141

Function : Logical OR

Operation data length : 16 bits or 8 bits

Operation : M← M ∨ IMM

When m = “0”

M16 M16

← ∨ IMM16

When m = “1”

M8 M8

← ∨ IMM8

Description : Performs the logical OR between the contents of a memory and the immediate value, and
stores the result in the memory.

● This instruction includes the function of the SEB instruction in the conventional 7700 Family.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

ORAM OR immediAte with Memory ORAM

IPL N V m x D I Z C

– N – – – – – Z –

Addressing mode Syntax Machine code Bytes Cycles

DIR ORAM dd, #imm 5116, 3316, dd, imm 4 7

ABS ORAM mmll, #imm 5116, 3716, ll, mm, imm 5 7

Note : When flag m = “0.” the byte number increases by 1.

Description example :

CLM
ORAM.W MEM16, #IMM16 ; MEM16 ← MEM16 ∨ IMM16
SEM
ORAM.B MEM8, #IMM8 ; MEM8 ← MEM8 ∨ IMM8

7900 Series Software Manual4–142

Function : Logical OR

Operation data length : 8 bits

Operation : M8 ← M8 ∨ IMM8

M8 M8

← ∨ IMM8

Description : Performs the logical OR between the contents of a memory and the immediate value in 8 bits
length, and stores the result in the memory.

● This instruction is unaffected by flag m.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

Description example :

ORAMB MEM8, #IMM8 ; MEM8 ← MEM8 ∨ IMM8

ORAMB OR immediAte with Memory at Byte ORAMB

Addressing mode Syntax Machine code Bytes Cycles

DIR ORAMB dd, #imm 5116, 3216, dd, imm 4 7

ABS ORAMB mmll, #imm 5116, 3616, ll, mm, imm 5 7

IPL N V m x D I Z C

– N – – – – – Z –

7900 Series Software Manual 4–143

ORAMD OR immediAte with Memory at Double-word ORAMD

Function : Logical OR

Operation data length : 32 bits

Operation : M32 ← M32 ∨ IMM32

M32 M32

← ∨ IMM32

Description : Performs the logical OR between the contents of a memory and immediate value in 32 bits
length, and stores the result in the memory.

● This instruction is unaffected by flag m.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

Description example :

ORAMD MEM32, #IMM32 ; MEM32 ← MEM32 ∨ IMM32

IPL N V m x D I Z C

– N – – – – – Z –

Addressing mode Syntax Machine code Bytes Cycles

DIR ORAMD dd, #imm 5116, B316, dd, immLL, immLH, immHL, immHH 7 10

ABS ORAMD mmll, #imm 5116, B716, ll, mm, immLL, immLH, immHL, immHH 8 10

7900 Series Software Manual4–144

Function : Stack manipulation (Push)

Operation data length : 16 bits

Operation : Stack ← IMM16

Description : Pushes the 16-bit immediate value onto the stack.

● This instruction is unaffected by flag m.

Status flags :

PEA Push Effective Address PEA

IPL N V m x D I Z C

– – – – – – – – –

Description example :

PEA #IMM16 ; (S) ← IMM16H

; (S – 1) ← IMM16L

Addressing mode Syntax Machine code Bytes Cycles

STK PEA #immHimmL 3116, 4C16, immL, immH 4 5

Stack

IMML

IMMH

(S) just after instruction execution

(S) just before instruction execution

7900 Series Software Manual 4–145

Function : Stack manipulation (Push)

Operation data length : 16 bits

Operation : Stack ← M16(DPRn + dd) (n = 0 to 3)

Description : Pushes the contents of the address specified by the sum of the contents of the DPRn and the
offset value onto the stack in 16-bit length.

● This instruction is unaffected by flag m.

Status flags :

PEI Push Effective Indirect address PEI

IPL N V m x D I Z C

– – – – – – – – –

Description example :

PEI DP0+: offset ; (S) ← (DPR0 + dd + 1)
; (S – 1) ← (DPR0 + dd)

Addressing mode Syntax Machine code Bytes Cycles

STK PEI dd 3116, 4B16, dd 3 7

Stack

M(DPRn+dd)
M(DPRn+dd+1)

(S) just after instruction execution

(S) just before instruction execution

7900 Series Software Manual4–146

Function : Stack manipulation (Push)

Operation data length : 16 bits

Operation : Stack ← PC + IMM16

Description : Pushes the sum of the PC contents and 16-bit immediate value onto the stack in length of 16
bits.

● This instruction is unaffected by flag m.

Status flags :

PER Push Effective program counter Relative address PER

IPL N V m x D I Z C
– – – – – – – – –

Description example :

PER #IMM16 ; (S) ← (PC + IMM16)H

; (S – 1) ← (PC + IMM16)L

Addressing mode Syntax Machine code Bytes Cycles

STK PER #immHimmL 3116, 4D16, immL, immH 4 6

Stack

EARL

EARH

(S) just after instruction execution

(S) just before instruction execution

❈ EAR = PC + IMM16

7900 Series Software Manual 4–147

Function : Stack manipulation (Push)

Operation data length : 16 bits or 8 bits

Operation : Stack ← A
When m = “0”

When m = “1”

Description : Pushes the contents of A onto the stack.

Status flags :

PHA PusH accumulator A on stack PHA

IPL N V m x D I Z C
– – – – – – – – –

Description example :

CLM
PHA ; (S) ← AH, (S – 1) ← AL

SEM
PHA ; (S) ← AL

Addressing mode Syntax Machine code Bytes Cycles

STK PHA 8516 1 4

Stack

AL

AH

(S) just after instruction execution

(S) just before instruction execution

Stack

AL

(S) just after instruction execution
(S) just before instruction execution

7900 Series Software Manual4–148

Function : Stack manipulation (Push)

Operation data length : 16 bits or 8 bits

Operation : Stack ← B
When m = “0”

When m = “1”

Description : Pushes the contents of B onto the stack.

Status flags :

PHB PusH accumulator B on stack PHB

IPL N V m x D I Z C
– – – – – – – – –

Description example :

CLM
PHB ; (S) ← BH, (S – 1) ← BL

SEM
PHB ; (S) ← BL

Addressing mode Syntax Machine code Bytes Cycles

STK PHB 8116, 8516 2 5

Stack

BL

BH

(S) just after instruction execution

(S) just before instruction execution

Stack

BL

(S) just after instruction execution
(S) just before instruction execution

7900 Series Software Manual 4–149

Function : Stack manipulation (Push)

Operation data length : 16 bits

Operation : Stack ← DPR0

Description : Pushes the contents of DPR0 in 16-bit length onto the stack.

● This instruction is unaffected by flag m.

Status flags :

PHD PusH Direct page register on stack PHD

IPL N V m x D I Z C

– – – – – – – – –

Description example :

PHD ; (S, S – 1) ← DPR0

Addressing mode Syntax Machine code Bytes Cycles

STK PHD 8316 1 4

Stack

DPR0L

DPR0H

(S) just after instruction execution

(S) just before instruction execution

7900 Series Software Manual4–150

Function : Stack manipulation

Operation data length : 16 bits

Operation : Stack ← DPRn (n = 0 to 3. Multiple DPRs can be pushed onto the stack.)

When DPR0 to DPR3 are specified

Description : Pushes the contents of the specified DPRn (DPR0 to DPR3) in 16-bit length onto the stack.

● Multiple DPRs can be pushed onto the stack by 1 instruction. If multiple DPRs are specified,
they are pushed onto the stack in order of DPR0, DPR1, DPR2, and DPR3.

● This instruction is unaffected by flag m.

Status flags :

PHD n PusH Direct page register n on stack PHD n

IPL N V m x D I Z C
– – – – – – – – –

DPR3L

DPR3H

DPR2L

DPR2H

DPR1L

DPR1H

DPR0L

DPR0H

Stack

(S) just after instruction execution

(S) just before instruction execution

Addressing mode Syntax Machine code Bytes Cycles

STK PHD n B816, 0?16 2 12
PHD (n1, …, ni) B816, 0?16 2 i + 11

Description example :

PHD 1 ; (S, S – 1) ← DPR1
PHD (0, 3) ; (S, S – 1) ← DPR0

; (S – 2, S – 3) ← DPR3

 b7 b0

0 0 0 0 DPR3 DPR2 DPR1 DPR0

Notes 1: Any value from 0 to 3 can be set to n.
 2: The second line of the syntax format pushes multiple DPRs by 1 instruction.
 3: The inside of parentheses (n1, …, ni) specifies 0 to 3 (numbers representing DPRn).
 4: i : indicates DPRn specified (1 to 4).
 5: ? : the bit corresponding to the specified DPRn becomes “1.”

The diagram below shows the relationship between bits and DPRn.

7900 Series Software Manual 4–151

Function : Stack manipulation (Push)

Operation data length : 8 bits

Operation : Stack ← PG

Description : Pushes the contents of PG in 8-bit length onto the stack.

● This instruction is unaffected by flag m.

Status flags :

PHG PusH proGram bank register on stack PHG

IPL N V m x D I Z C

– – – – – – – – –

Description example :

PHG ; (S) ← PG

Addressing mode Syntax Machine code Bytes Cycles

STK PHG 3116, 6016 2 4

Stack

PG
(S) just after instruction execution

(S) just before instruction execution

7900 Series Software Manual4–152

Function : Stack manipulation and Load

Operation data length : 16 bits

Operation : Stack ← DPRn (n = 0 to 3. Multiple DPRs can be specified.)

DPRn ← IMM16

When DPR0 to DPR3 are specified

Description : Loads the 16-bit immediate value to DPRn (DPR0 to DPR3), after pushing the contents of the
specified DPRn in 16-bit length onto the stack.

● Multiple DPRs can be specified. If multiple DPRs are specified, they are pushed onto the
stack in order of DPR0, DPR1, DPR2, and DPR3, and loads the immediate value in the
same order.

● This instruction is unaffected by flag m.

Status flags :

PHLD n PusH dpr n to stack and Load immediate to Dpr n PHLD n

IPL N V m x D I Z C

– – – – – – – – –

DPR3L

DPR3H

DPR2L

DPR2H

DPR1L

DPR1H

DPR0L

DPR0H

Stack

(S) just after instruction execution

(S) just before instruction execution

Description example :
PHLD 0, #IMM16 ; (S, S – 1) ← DPR0

; DPR0 ← IMM16
PHLD (0, 3), #IMM16a, #IMM16b ; (S, S – 1) ← DPR0

; (S – 2, S – 3) ← DPR3
; DPR0 ← IMM16a
; DPR3 ← IMM16b

 b7 b0

DPR3 DPR2 DPR1 DPR0 DPR3 DPR2 DPR1 DPR0
✽ b(n) and b(n + 4) become the same contents (n = 0 to 3).

Notes 1: Any value from 0 to 3 can be set to n.
 2: The second line of the syntax format pushes multiple DPRs by 1 instruction.
 3: The inside of parentheses (n1, …, ni) specifies 0 to 3 (numbers representing DPRn).
 4: i : indicates DPRn specified (1 to 4).
 5: ? : the bit corresponding to the specified DPRn becomes “1.”

The diagram below shows the relationship between bits and DPRn.

DPR0
← IMM16a

DPR1
← IMM16b

DPR2
← IMM16c

DPR3
← IMM16d

→

Addressing mode Syntax Machine code Bytes Cycles

STK PHLD n, #imm B816, ??16, immL, immH 4 14

PHLD (n1, …, ni) B816, ??16, immL1, immH1 2 ✕ i + 2 3 ✕ i + 11
, #imm1, …, #immi , …, immLi, immHi

7900 Series Software Manual 4–153

Function : Stack manipulation (Push)

Operation data length : 16 bits

Operation : Stack ← PS

Description : Pushes the contents of PS in 16-bit length onto the stack.

● This instruction is unaffected by flag m.

Status flags :

PHP PusH Processor status on stack PHP

IPL N V m x D I Z C

– – – – – – – – –

Description example :

PHP ; (S, S – 1) ← PS

Addressing mode Syntax Machine code Bytes Cycles

STK PHP A516 1 4

Stack

PSL

PSH

(S) just after instruction execution

(S) just before instruction execution

7900 Series Software Manual4–154

PHT PusH daTa bank register on stack PHT

Function : Stack manipulation (Push)

Operation data length : 8 bits

Operation : Stack ← DT

Description : Pushes the contents of DT in 8-bit length onto the stack.

● This instruction is unaffected by flag m.

Status flags : IPL N V m x D I Z C

– – – – – – – – –

Description example :

PHT ; (S) ← DT

Addressing mode Syntax Machine code Bytes Cycles

STK PHT 3116, 4016 2 4

Stack

DT
(S) just after instruction execution

(S) just before instruction execution

7900 Series Software Manual 4–155

Function : Stack manipulation (Push)

Operation data length : 16 bits or 8 bits

Operation : Stack ← X
When x = “0”

When x = “1”

Description : Pushes the contents of X onto the stack.

Status flags :

PHX PusH index register X on stack PHX

IPL N V m x D I Z C
– – – – – – – – –

Description example :

CLP x
PHX ; (S, S – 1) ← X
SEP x
PHX ; (S) ← XL

Addressing mode Syntax Machine code Bytes Cycles

STK PHX C516 1 4

Stack

XL

XH

(S) just after instruction execution

(S) just before instruction execution

Stack

XL

(S) just after instruction execution
(S) just before instruction execution

7900 Series Software Manual4–156

Function : Stack manipulation (Push)

Operation data length : 16 bits or 8 bits

Operation : Stack ← Y
When x = “0”

When x = “1”

Description : Pushes the contents of Y onto the stack.

Status flags :

PHY PusH index register Y on stack PHY

IPL N V m x D I Z C
– – – – – – – – –

Description example :

CLP x
PHY ; (S, S – 1) ← Y
SEP x
PHY ; (S) ← YL

Addressing mode Syntax Machine code Bytes Cycles

STK PHY E516 1 4

Stack

YL

YH

(S) just after instruction execution

(S) just before instruction execution

Stack

YL

(S) just after instruction execution
(S) just before instruction execution

7900 Series Software Manual 4–157

Function : Stack manipulation

Operation data length : 16 bits or 8 bits

Operation : A ← Stack

When m = “0”

When m = “1”

❈ In this case, the contents of AH do not change.

Description : Restores the contents of the stack to A.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

PLA PuLl accumulator A from stack PLA

IPL N V m x D I Z C

– N – – – – – Z –

Description example :

CLB
PLA ; AL ← (S + 1) , AH ← (S + 2)
SEB
PLA ; AL ← (S + 1)

Addressing mode Syntax Machine code Bytes Cycles

STK PLA 9516 1 4

Stack
(S) just before instruction execution

(S) just after instruction execution

Stack

AH AL

AL

(S) just after instruction execution
(S) just before instruction execution

A

7900 Series Software Manual4–158

Function : Stack manipulation

Operation data length : 16 bits or 8 bits

Operation : B ← Stack

When m = “0”

When m = “1”

❈ In this case, the contents of BH do not change.

Description : Restores the contents of the stack to B.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

PLB PuLl accumulator B from stack PLB

IPL N V m x D I Z C

– N – – – – – Z –

Description example :

CLB
PLB ; BL ← (S + 1) , BH ← (S + 2)
SEB
PLB ; BL ← (S + 1)

Addressing mode Syntax Machine code Bytes Cycles

STK PLB 8116, 9516 2 5

Stack
(S) just before instruction execution

(S) just after instruction execution

Stack

BH BL

BL

(S) just after instruction execution
(S) just before instruction execution

B

7900 Series Software Manual 4–159

Function : Stack manipulation

Operation data length : 16 bits

Operation : DPR0 ← Stack

Description : Restores the contents of the stack in 16-bit length to DPR0.

● This instruction is unaffected by flag m.

Status flags :

PLD PuLl Direct page register from stack PLD

IPL N V m x D I Z C

– – – – – – – – –

Description example :

PLD ; DPR0L ← (S + 1)
; DPR0H ← (S + 2)

Addressing mode Syntax Machine code Bytes Cycles

STK PLD 9316 1 5

Stack
DPR0

(S) just after instruction execution

(S) just before instruction execution
DPR0H DPR0L

7900 Series Software Manual4–160

Function : Stack manipulation

Operation data length : 16 bits

Operation : DPRn ← Stack (n = 0 to 3. The contents of the stack can be restored to multiple DPRs.)

When DPR0 to DPR3 are specified

Description : Restores the contents of the stack to the specified DPRn (DPR0 to DPR3) in 16-bit length.

● Only 1 instruction can restore the contents of the stack to multiple DPRs. If multiple DPRs
are specified, the contents of the stack are restored to DPRs in order of DPR3, DPR2,
DPR1, and DPR0.

● This instruction is unaffected by flag m.

Status flags :

PLD n PuLl Direct page register n from stack PLD n

IPL N V m x D I Z C

– – – – – – – – –

Stack

(S) just before instruction execution

(S) just after instruction execution

Addressing mode Syntax Machine code Bytes Cycles

STK PLD n 7716, ?016 2 11
PLD (n1, …, ni) 7716, ?016 2 3 ✕ i + 8

Description example :

PLD 1 ; DPR1 ← (S + 1, S + 2)
PLD (0, 3) ; DPR3 ← (S + 1, S + 2)

; DPR0 ← (S + 3, S + 4)

 b7 b0

DPR3 DPR2 DPR1 DPR0 0 0 0 0

Notes 1: Any value from 0 to 3 can be set to n.
 2: The second line of the syntax format restores the contents of the stack to multiple DPRs by 1

instruction.
 3: Inside of the parentheses (n1, …, ni) specifies 0 to 3 (numbers representing DPRn).
 4: i : indicates the number of the DPRn specified (1 to 4)
 5: ? : the bit corresponding to the specified DPRn becomes “1.”

The diagram below shows the relationship between bits and DPRn.

DPR3H DPR3L

DPR2H DPR2L

DPR1H DPR1L

DPR0H DPR0L

DPR3

DPR2

DPR1

DPR0

7900 Series Software Manual 4–161

Function : Stack manipulation

Operation data length : 16 bits

Operation : PS ← Stack

Description : Restores the contents of the stack in 16-bit length to PS.

● This instruction is unaffected by flag m.

Status flags :

PLP PuLl Processor status from stack PLP

IPL N V m x D I Z C

IPL N V m x D I Z C

Description example :

PLP ; PSL ← (S + 1)
; PSH ← (S + 2)

Addressing mode Syntax Machine code Bytes Cycles

STK PLP B516 1 5

Stack
PS

(S) just after instruction execution

(S) just before instruction execution
PSH PSL

7900 Series Software Manual4–162

Function : Stack manipulation

Operation data length : 8 bits

Operation : DT ← Stack

Description : Restores the contents of the stack in 8-bit length to DT.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

PLT PuLl daTa bank register from stack PLT

IPL N V m x D I Z C

– N – – – – – Z –

Description example :

PLT ; DT ← (S + 1)

Addressing mode Syntax Machine code Bytes Cycles

STK PLT 3116, 5016 2 6

Stack
DT

(S) just after instruction execution
(S) just before instruction execution

7900 Series Software Manual 4–163

Function : Stack manipulation

Operation data length : 16 bits or 8 bits

Operation : X ← Stack

When x = “0”

When x = “1”

❈ In this case, the contents of XH do not change.

Description : Restores the contents of the stack to X.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

PLX PuLl index register X from stack PLX

IPL N V m x D I Z C

– N – – – – – Z –

Description example :

CLP x
PLX ; XL ← (S + 1) , XH ← (S + 2)
SEP x
PLX ; XL ← (S + 1)

Addressing mode Syntax Machine code Bytes Cycles

STK PLX D516 1 4

Stack
(S) just before instruction execution

(S) just after instruction execution

Stack

XH XL

XL

(S) just after instruction execution
(S) just before instruction execution

X

7900 Series Software Manual4–164

Function : Stack manipulation

Operation data length : 16 bits or 8 bits

Operation : Y ← Stack

When x = “0”

When x = “1”

❈ In this case, the contents of YH do not change.

Description : Restores the contents of the stack to Y.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

PLY PuLl index register Y from stack PLY

IPL N V m x D I Z C

– N – – – – – Z –

Description example :

CLP x
PLY ; YL ← (S + 1) , YH ← (S + 2)
SEP x
PLY ; YL ← (S + 1)

Addressing mode Syntax Machine code Bytes Cycles

STK PLY F516 1 4

Stack
(S) just before instruction execution

(S) just after instruction execution

Stack

YH YL

YL

(S) just after instruction execution
(S) just before instruction execution

Y

7900 Series Software Manual 4–165

PSH PuSH PSH

Function : Stack manipulation

Operation data length : 16 bits or 8 bits

Operation : Stack ← Specified registers among A, B, X, Y, DPR0, DT, PG, PS (Multiple registers can be
specified.)
M(S to S – i + 1) ← A, B, X, Y, DPR0, DT, PG, PS
S ← S – i

i : Number of bytes corresponding to the registers pushed onto the stack.

Description : Pushes the contents of the specified registers onto the stack. Specified registers to be pushed
are indicated with the bit pattarn of the 8-bit immediate value. The contents of the registers
corresponding to the bits set to “1” are pushed onto the stack.

● When m = “0” : A and (or) B are (is) pushed in 16-bit length.
When m = “1” : AL and (or) BL are (is) pushed in 8-bit length.

● When x = “0” : X and (or) Y are (is) pushed in 16-bit length.
When x = “1” : XL and (or) YL are (is) pushed in 8-bit length.

● This instruction is unaffected by the flags m and x when the contents of PS, PG, DT, and
DPR0 are pushed onto the stack.

Status flags :
IPL N V m x D I Z C

– – – – – – – – –

Description example :

PSH #IMM8 ; (S) ← Contents of specified register

Addressing mode Syntax Machine code Bytes Cycles

STK PSH #imm A816, imm 2 2✕i1+i2+11

b7 b0
PS PG DT DPR0 Y X B A

Direction to push onto the stack

Notes i 1 : Number of registers to be pushed is indicated among A, B, X, Y, DPR0 and PS.
i2 : Number of registers to be pushed DT and PG.

7900 Series Software Manual4–166

PSH PuSH PSH

P

S

H

N

O
I

M

M

8

(

b

i

t

0

)

=

1

?

m

=

0

?

M

(

S

,

S

1

)

 ←

A
S

 ←

S

–

2
M

(

S

)

 ←

AL
S

 ←

S

–

1

N

O

I

M

M

8

(

b

i

t

1

)

=

1

?

m

=

0

?
N

O

N

O

M

(

S

,

S

-

1

)

 ←

B
S

 ←

S

–

2
M

(

S

)

 ←

BL
S

 ←

S

–

1

I

M

M

8

(

b

i

t

2

)

=

1

?

x

=

0

?

N

O

N

O

M

(

S

,

S

–

1

)

 ←

X
S

 ←

S

–

2
M

(

S

)

 ←

XL
S

 ←

S

–

1

I

M

M

8

(

b

i

t

3

)

=

1

?

x

=

0

?

N

O

N

O

M

(

S

,

S

–

1

)

 ←

Y
S

 ←

S

–

2
M

(

S

)

 ←

YL
S

 ←

S

–

1

I

M

M

8

(

b

i

t

4

)

=

1

?

M

(

S

,

S–1

)

 ←
S

 ←

S

–

2

M

(

S

)

 ←

D

T
S

 ←

S

–

1

I

M

M

8

(

b

i

t

5

)

=

1

?

M

(

S

)

 ←

P

G
S

 ←

S

–

1

I

M

M

8

(

b

i

t

6

)

=

1

?

I

M

M

8

(

b

i

t

7

)

=

1

?

M

(

S

,

S

–

1

)

 ←

P

S
S

 ←

S

–

2

N

O

N

O

N

O

N

O

❊

I

M

M

8

i

s

a

1

-

b

y

t

e

i

m

m

e

d

i

a

t

e

v

a

l

u

e

,

a

n

d

t

h

e

i

n

s

i

d

e

o

f

(

)

i

n

d

i

c

a

t

e

s

t

h

e

b

i

t

p

o

s

i

t

i

o

n

.

Y

E

S

Y

E

S

Y

E

S

Y

E

S

Y

E

S

Y

E

S

Y

E

S

Y

E

S

Y

E

S

Y

E

S

Y

E

S

Y

E

S
D

P

R

0

7900 Series Software Manual 4–167

PUL PuLl PUL

Function : Stack manipulation

Operation data length : 16 bits or 8 bits

Operation : Specified registers among A, B, X, Y, DPR0, DT, PS (Multiple registers can be specified.) ← Stack
A, B, X, Y, DPR0, DT, PS ← M(S + 1 to S + i)
S ← S + i

i : Number of bytes corresponding to the registers restored from the stack.

Description : Restores the stack contents to the specified registers. Specified registers to be restored are
indicated with the bit pattarn of the 8-bit immediate value. The stack contents are restored to
the registers corresponding to the bits that are set to “1.”

● When m of restored PS = “0” : Restored to A and (or) B in 16-bit length.
When m of restored PS = “1” : Restored to AL and (or) BL in 8-bit length.

In this case, the contents of AH and BH do not change.

● When x of restored PS = “0” : Restored to X and (or) Y in 16-bit length.
When x of restored PS = “1” : Restored to XL and (or) YL in 8-bit length.

In this case, the contents of XH and YH do not change.

Status flags :
IPL N V m x D I Z C
IPL N V m x D I Z C

Description example :

PUL #IMM8 ; Contents of specified register ← (S + 1)

Addressing mode Syntax Machine code Bytes Cycles

STK PUL #imm 6716, imm 2 3✕i+13

b7 b0
PS DT DPR0 Y X B A

Direction to restore from the stack

Note i : Number of registers to be restored.

7900 Series Software Manual4–168

P

U

L

N

O
I

M

M

8

(

b

i

t

7

)

=

1

?

x

=

0

?

P

S

 ←

M

(

S

+

2

,

S

+

1

)
S

 ←

S

+

2

XL ←

M

(

S

+

1

)
S

 ←

S

+

1

N

O

I

M

M

8

(

b

i

t

5

)

=

1

?
N

O

X

 ←

M

(

S

+

2

,

S

+

1

)
S

 ←

S

+

2

I

M

M

8

(

b

i

t

1

)

=

1

?

m

=

0

?
N

O

N

O

B

 ←

M

(

S

+

2

,

S

+

1

)
S

 ←

S

+

2
BL ←

M

(

S

+

1

)
S

 ←

S

+

1
I

M

M

8

(

b

i

t

3

)

=

1

?

x

=

0

?

N

O

N

O

S

 ←

S

+

2
YL ←

M

(

S

+

1

)
S

 ←

S

+

1

N

O
I

M

M

8

(

b

i

t

4

)

=

1

?

D

P

R

0

 ←
S

 ←

S

+

2

N

O
I

M

M

8

(

b

i

t

2

)

=

1

?

I

M

M

8

(

b

i

t

0

)

=

1

?

m

=

0

?
N

O

N

O

A

 ←

M

(

S

+

2

,

S

+

1

)
S

 ←

S

+

2
AL ←

M

(

S

+

1

)
S

 ←

S

+

1

Y

 ←

M

(

S

+

2

,

S

+

1

)

D

T

 ←

M

(

S

+

1

)
S

 ←

S

+

1

Y

E

S

Y

E

S

Y

E

S

Y

E

S

Y

E

S

Y

E

S

Y

E

S

Y

E

S

Y

E

S

Y

E

S

Y

E

S

❊

I

M

M

8

i

s

a

1

-

b

y

t

e

i

m

m

e

d

i

a

t

e

v

a

l

u

e

,

a

n

d

t

h

e

i

n

s

i

d

e

o

f

(

)

i

n

d

i

c

a

t

e

s

t

h

e

b

i

t

p

o

s

i

t

i

o

n

.

M

(

S

+

2

,

S

+

1

)

PUL PuLl PUL

7900 Series Software Manual 4–169

Addressing mode Syntax Machine code Bytes Cycles

IMM RLA #imm 3116, 0716, imm 3 n + 5

←

← ←

RLA Rotate Left accumulator A RLA

IPL N V m x D I Z C
– – – – – – – – –

Description example :

CLM
RLA #IMM16 ; A ← A is rotated to the left according to the times specified by IMM16.
SEM
RLA #IMM8 ; AL ← AL is rotated to the left according to the times specified by IMM8.

Notes 1: n : Indicates the number of rotation specified by imm.
 2: When flag m = “0,” the byte number increases by 1.

Function : Rotation to the left

Operation data length : 16 bits or 8 bits

Operation : →
A

← n-bit rotation to left ←

When m = “0”

→
b15 A b0 n-bit rotation to the left

❈ n = 0 to 65535

When m = “1”

→
b7 AL b0 n-bit rotation to the left

❈ n = 0 to 255

❈ In this case, the contents of AH do not change.

Description : Rotates the contents of A to the left by n bits.

Status flags :

7900 Series Software Manual4–170

RMPA Repeat Multiply and Accumulate RMPA

Function : Multiplied accumulation repeated

Operation data length : 16 bits or 8 bits

Operation : (B, A) ← (B, A) + M (DT:X) ✕ M (DT:Y) (repeated 0 to 255 times.)

Description : Performs signed multiplication between the contents of addresses specified by the contents of
X and Y in the bank indicated by DT. Then, the multiplication result is added to the contents
of B and A respectively, and these addition results are stored in B and A; and the contents
of X and Y each are incremented. This operation is repeated as many times (0 to 255 times)
as specified by the 8-bit immediate value in the third byte of this instruction.

● When m = “0” : Operates in 16-bit length, and the result becomes the 32-bit value.
E ← E + M16 (DT:X) ✕ M16 (DT:Y)
After the addition, the contents of X and Y each are incremented by 2.

● When m = “1” : Operates in 8-bit length, and the result becomes the 16-bit value.
(BL, AL) ← (BL, AL) + M8 (DT:X) ✕ M8 (DT:Y)
In this case, the contents of AH and BH do not change.
After the addition, the contents of X and Y each are incremented by 1.

● Contents of X and Y after operation: The addresses next to those of the multiplicand and
multiplier which were read out last, respectively.

● If an overflow occurs as an addition result, the flag V is set to “1” and the operation finishes
halfway. In this time, the contents of A and B become undefined. The contents of X and Y
become the addresses next to those of the multiplicand and multiplier which were read out
last, respectively.

● The instruction is terminated without performing any operation if a “0” is specified for the
repeat count. In this case, the contents of A, B, X, and Y do not change.

Status flags :

N : This flag is checked for each addition performed. If MSB (MSB of B) of the addition result
becomes “1,” this flag becomes “1.” Otherwise, cleared to “0.”

V : This flag is checked for each addition performed. If the addition result is a value outside the
range of –2147483648 to +2147483647 (or –32768 to +32767 when flag m = “1”), this flag is
set to “1.” Otherwise, cleared to “0.” If flag V = “0” when the instruction is terminated, it means
that the operation has terminated normally; if flag V = “1,” it means that an overflow occured.

Z : This flag is checked for each addition performed. Set to “1,” when the addition result becomes
“0.” Otherwise, cleared to “0.”

C : This flag is checked for each addition performed. Set to “1” when the addition result (regarded
as an unsigned data) exceeds +4294967295 (or +65536 when flag m = “1”). Otherwise,
cleared to “0.”

IPL N V m x D I Z C
– N V – – – – Z C

Description example :

RMPA #IMM8 ; repeates the operation IMM8 times.

Addressing mode Syntax Machine code Bytes Cycles

Multiplied accumulation RMPA #imm 3116, 5A16, imm 3 14✕imm+5

Notes 1: imm ; indicates the number of repeated operation.
2: The cycle number in this table applies when flag m = “1.” When flag m = “0,” the cycle number

becomes 18 ✕ imm + 5.

7900 Series Software Manual 4–171

ROL ROtate one bit Left ROL

Description example :

CLM
ROL A ; A is rotated to the left by 1 bit.
ROL MEM16 ; MEM16 is rotated to the left by 1 bit.
SEM
ROL B ; BL is rotated to the left by 1 bit.
ROL MEM16 ; MEM8 is rotated to the left by 1 bit.

Addressing mode Syntax Machine code Bytes Cycles

A ROL A 1316 1 1
A ROL B 8116, 1316 2 2
DIR ROL A, dd 2116, 1A16, dd 3 7
DIR, X ROL A, dd, X 2116, 1B16, dd 3 8
ABS ROL A, mmll 2116, 1E16, ll, mm 4 7
ABS, X ROL A, mmll, X 2116, 1F16, ll, mm 4 8

Function : Rotation to the left

Operation data length : 16 bits or 8 bits

Operation : →
Acc or M C

← 1-bit rotation to left← ←

When m = “0”

→
b15 Acc or M16 b0 C

← ← ← ← ← ← ← ← ← ← ←

When m = “1”

→
b7 AccL or M8 b0 C

← ← ← ← ← ← ← ← ← ←

❈ In this case, the contents of AccH do not change.

Description : Flag C is linked to Acc or a memory, and the combined contents are rotated to the left by 1
bit.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

C : Set to “1” when MSB of the data before rotation is “1.” Otherwise, cleared to “0.”

IPL N V m x D I Z C

– N – – – – – Z C

7900 Series Software Manual4–172

ROL #n n bits ROtate Left ROL #n

Function : Rotation to the left

Operation data length : 16 bits or 8 bits

Operation : →
A C

← n-bit rotation to left← ← (n : times of rotation. n = 0 to 15)

When m = “0”

→
b15 A b0 C

← ← ← ← ← ← ← ← ← ← ←

When m = “1”

→
b7 AL b0 C

← ← ← ← ← ← ← ← ← ←

❈ In this case, the contents of AH do not change.

Description : Flag C is linked to A, and the combined contents are rotated to the left by n bits.

● B cannot be used in this instruction.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

C : Set to “1” if MSB = “1” when the contents are rotated by (n – 1) bits. Otherwise, cleared to
“0.”

IPL N V m x D I Z C
– N – – – – – Z C

Description example :

CLM
ROL A, #15 ; A ← A combined with C is rotated to the left by 15 bits.
SEM
ROL A, #7 ; AL ← AL combined with C is rotated to the left by 7 bits.

Addressing mode Syntax Machine code Bytes Cycles

A ROL A, #imm C116, imm+6016 2 imm + 6

Note: Any value from 0 to 15 (times of rotation) can be set to imm.

7900 Series Software Manual 4–173

ROLD #n n bits ROtate Left at Double-word ROLD #n

Function : Rotation to the left

Operation data length : 32 bits

Operation : →
b31 E b0 C

← n-bit rotation to left← ← (n : times of rotation. n = 0 to 31)

Description : Flag C is linked to E, and the combined contents are rotated to the left by n bits in 32-bit
length.

● This instruction is unaffected by flag m.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

C : Set to “1” if MSB = “1” when the contents are rotated by (n–1) bits. Otherwise, cleared to “0.”

IPL N V m x D I Z C

– N – – – – – Z C

Description example :

ROLD E, #16 ; E ← E combined with C is rotated to the left by 16 bits.

Addressing mode Syntax Machine code Bytes Cycles

A ROLD E, #imm D116, imm+6016 2 imm + 8

Note: Any value from 0 to 31 (times of rotation) can be set to imm.

7900 Series Software Manual4–174

ROR ROtate one bit Right ROR

Description example :

CLM
ROR A ; A is rotated to the right by 1 bit.
ROR MEM16 ; MEM16 is rotated to the right by 1 bit.
SEM
ROR B ; BL is rotated to the right by 1 bit.
ROR MEM8 ; MEM8 is rotated to the right by 1 bit.

Addressing mode Syntax Machine code Bytes Cycles

A ROR A 5316 1 1
A ROR B 8116, 5316 2 2
DIR ROR A, dd 2116, 3A16, dd 3 7
DIR, X ROR A, dd, X 2116, 3B16, dd 3 8
ABS ROR A, mmll 2116, 3E16, ll, mm 4 7
ABS, X ROR A, mmll, X 2116, 3F16, ll, mm 4 8

Function : Rotation to the right

Operation data length : 16 bits or 8 bits

Operation : ←
C Acc or M

→ →1-bit rotation to right→

When m = “0”

←
C b15 Acc or M16 b0

→ → → → → → → → → → →

When m = “1”

←
C b7 AccL or M8 b0

→ → → → → → → → → →

❈ In this case, the contents of AccH do not change.

Description : Flag C is linked to Acc or a memory, and the combined contents are rotated to the right by
1 bit.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

C : Set to “1” when LSB of the data before rotation is “1.” Otherwise, cleared to “0.”

IPL N V m x D I Z C

– N – – – – – Z C

7900 Series Software Manual 4–175

ROR #n n bits ROtate Right ROR #n

Function : Rotation to the right

Operation data length : 16 bits or 8 bits

Operation : ←
C A

→ →n-bit rotation to right→ (n : times of rotation. n = 0 to 15)

When m = “0”

←
C b15 A b0

→ → → → → → → → → → →

When m = “1”

←
C b7 AL b0

→ → → → → → → → → →

❈ In this case, the contents of AH do not change.

Description : Flag C is linked to A, and the combined contents are rotated to the right by n bits.

● B cannot be used in this instruction.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

C : Set to “1” if LSB = “1” when the contents are rotated by (n – 1) bits. Otherwise, cleared to “0.”

IPL N V m x D I Z C

– N – – – – – Z C

Description example :

CLM
ROR A, #15 ; A ← A combined with C is rotated to the right by 15 bits.
SEM
ROR A, #7 ; AL ← AL combined with C is rotated to the right by 7 bits.

Addressing mode Syntax Machine code Bytes Cycles

A ROR A, #imm C116, imm+2016 2 imm + 6

Note: Any value from 0 to 15 (times of rotation) can be set to imm.

7900 Series Software Manual4–176

RORD #n n bits ROtate Right at Double-word RORD #n

Function : Rotation to the right

Operation data length : 32 bits

Operation : ←
C b31 E b0

→ →n-bit rotation to right→ (n : times of rotation. n = 0 to 31)

Description : Flag C is linked to E, and the combined contents are rotated to the right by n bits in 32-bits
length.

● This instruction is unaffected by flag m.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

C : Set to “1” if LSB = “1” when the contents are rotated by (n–1) bits. Otherwise, cleared to “0.”

IPL N V m x D I Z C

– N – – – – – Z C

Description example :

RORD E, #16 ; E ← E combined with C is rotated to the right by 16 bits.

Addressing mode Syntax Machine code Bytes Cycles

A RORD E, #imm D116, imm+2016 2 imm + 8

Note: Any value from 0 to 31 (times of rotation) can be set to imm.

7900 Series Software Manual 4–177

RTI Return from Interrupt RTI

Function : Return

Operation data length : –

Operation : PG, PC, PS ← Stack

Description : Restores the stack contents to the registers in order of PS, PC, and PG.

● Use this instruction when returning from the interrupt routine.

Status flags :
IPL N V m x D I Z C

IPL N V m x D I Z C

Description example :

RTI ; PS ← (S + 2, S + 1)
; PC ← (S + 4, S + 3)
; PG ← (S + 5)

Addressing mode Syntax Machine code Bytes Cycles

IMP RTI F116 1 12

PSH PSL

(S) just after instruction execution

(S) just before instruction execution

PS

PG PC

Stack

PCH PCL

7900 Series Software Manual4–178

Addressing mode Syntax Machine code Bytes Cycles

IMP RTL 9416 1 10

RTL ReTurn from subroutine Long RTL

Function : Return

Operation data length : –

Operation : PG, PC ← Stack

Description : Restores the stack contents to the registers in order of PC and PG.

● Use this instruction when returning from the subroutine called by JSRL.

Status flags :
IPL N V m x D I Z C

– – – – – – – – –

Description example :

RTL ; PC ← (S + 2, S + 1)
; PG ← (S + 3)

(S) just before instruction execution

(S) just after instruction execution

PG PC

Stack

PCH PCL

7900 Series Software Manual 4–179

Function : Load & Return

Operation data length : 16 bits

Operation : DPRn ← Stack (n = 0 to 3. Multiple DPRs can be specified.)

PG, PC ← Stack

When DPR0 to DPR3 are specified

Description : After restoring the contents of the specified DPRn (DPR0 to DPR3) from the stack in length
of 16 bits, this instruction executes the RTL instruction (to restore the stack contents in order
of PC and PG).

● Multiple DPRs can be specified for restoration from the stack. When multiple DPRs are
specified, the stack contents are restored to DPRs in order of DPR3, DPR2, DPR1, and
DPR0.

Status flags :

RTLD n ReTurn from subroutine Long and pull Direct page register n RTLD n

IPL N V m x D I Z C
– – – – – – – – –

Stack

(S) just before instruction execution

(S) just after instruction execution

Addressing mode Syntax Machine code Bytes Cycles

STK RTLD n 7716, ?C16 2 15
RTLD (n1, …, ni) 7716, ?C16 2 3 ✕ i + 12

Description example :

RTLD 1 ; DPR1 ← (S + 1)
; RTL

RTLD (0, 3) ; DPR3 ← (S + 1)
; DPR0 ← (S + 3)
; RTL

 b7 b0

DPR3 DPR2 DPR1 DPR0 1 1 0 0

Notes 1: Any value from 0 can be set to 3 to n.
 2: The second line of the syntax format specifies multiple DPRs by 1 instruction.
 3: Inside of the parentheses (n1, …, ni) specifies any of 0 to 3 (numbers representing DPRn).
 4: i : indicates the number of DPRn (1 to 4)
 5: ? : the bit corresponding to the specified DPRn becomes “1.”

The diagram below shows the relationship between bits and DPRn.

DPR3H DPR3L

DPR2H DPR2L

DPR1H DPR1L

DPR0H DPR0L

DPR3

DPR2

DPR1

DPR0

PCH PCL

PG PC

7900 Series Software Manual4–180

RTS ReTurn from Subroutine RTS

Function : Return

Operation data length : –

Operation : PC ← Stack

Description : Restores the stack contents to PC.

● Use this instruction when returning from the subroutine called by JSR or BSR.

● If this instruction is located at a bank’s highest address (XXFFFF16), the contents of PG are
incremented by 1.

Status flags :
IPL N V m x D I Z C

– – – – – – – – –

Description example :

RTS ; PC ← (S + 2, S + 1)

Addressing mode Syntax Machine code Bytes Cycles

IMP RTS 8416 1 7

(S) just before instruction execution

(S) just after instruction execution

PC

Stack

PCH PCL

7900 Series Software Manual 4–181

Function : Load & Return

Operation data length : 16 bits

Operation : DPRn ← Stack (n = 0 to 3. Multiple registers can be specified.)

PC ← Stack

When DPR0 to DPR3 are specified

Description : After restoring the contents of the specified DPRn (DPR0 to DPR3) from the stack in length
of 16 bits, this instruction executes the RTS instruction (to restore the stack contents to PC).

● Multiple DPRs can be specified for return from the stack. When multiple DPRs are specified,
the stack contents are restored to DPRs respectively, in order of DPR3, DPR2, DPR1, and
DPR0.

Status flags :

RTSD n ReTurn from Subroutine and pull Direct page register n RTSD n

IPL N V m x D I Z C
– – – – – – – – –

Stack

(S) just before instruction execution

(S) just after instruction execution

Addressing mode Syntax Machine code Bytes Cycles

STK RTSD n 7716, ?816 2 14
RTSD (n1, …, ni) 7716, ?816 2 3 ✕ i +11

Description example :

RTSD 1 ; DPR1 ← (S + 1)
; RTS

RTSD (0, 3) ; DPR3 ← (S + 1)
; DPR0 ← (S + 3)
; RTS

 b7 b0

DPR3 DPR2 DPR1 DPR0 1 0 0 0

Notes 1: Any value from 0 to 3 can be set to n.
 2: The second line of the syntax format specifies multiple DPRs by 1 instruction.
 3: Inside of the parentheses (n1, …, ni) specifies any of 0 to 3 (numbers representing DPRn).
 4: i : indicates the number of DPRn (1 to 4)
 5: ? : the bit corresponding to the specified DPRn becomes “1.”

The diagram below shows the relationship between bits and DPRn.

DPR3H DPR3L

DPR2H DPR2L

DPR1H DPR1L

DPR0H DPR0L

DPR3

DPR2

DPR1

DPR0

PCH PCL

PC

7900 Series Software Manual4–182

Function : Subtract with carry

Operation data length : 16 bits or 8 bits

Operation :
__

Acc ← Acc – M – C

When m = “0”

Acc Acc M16
__

C

← – –

When m = “1”

AccL AccL M8
__

C

← – –

❈ In this case, the contents of AccH do not change.

Description : Subtracts the contents of a memory and the complement of flag C from the contents of Acc,
and stores the result in Acc.

● The decimal operation is performed when flag D = “1.”

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

V : Set to “1” when the result of the operation (regarded as a signed operation) is a value outside
the range of –32768 to +32767 (–128 to +127 when flag m is “1”). Otherwise, cleared to “0.”
Meaningless when flag D = “1.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.” Meaningless when flag
D = “1.”

C : Cleared to “0” when the borrow occurs. Otherwise, set to “1.”

SBC SuBtract with Carry SBC

IPL N V m x D I Z C

– N V – – – – Z C

7900 Series Software Manual 4–183

Addressing mode Syntax Machine code Bytes Cycles

IMM SBC A, #imm 3116, A716, imm (B116, A716, imm) 3 3 (3)
DIR SBC A, dd 2116, AA16, dd (A116, AA16, dd) 3 5 (7)
DIR, X SBC A, dd, X 2116, AB16, dd (A116, AB16, dd) 3 6 (8)
(DIR) SBC A, (dd) 2116, A016, dd (A116, A016, dd) 3 7 (9)
(DIR, X) SBC A, (dd, X) 2116, A116, dd (A116, A116, dd) 3 8 (10)
(DIR), Y SBC A, (dd), Y 2116, A816, dd (A116, A816, dd) 3 8 (10)
L(DIR) SBC A, L(dd) 2116, A216, dd (A116, A216, dd) 3 9 (11)
L(DIR), Y SBC A, L(dd), Y 2116, A916, dd (A116, A916, dd) 3 10(12)
SR SBC A, nn, S 2116, A316, nn (A116, A316, nn) 3 6 (8)
(SR), Y SBC A, (nn, S), Y 2116, A416, nn (A116, A416, nn) 3 9 (11)
ABS SBC A, mmll 2116, AE16, ll, mm (A116, AE16, ll, mm) 4 5 (7)
ABS, X SBC A, mmll, X 2116, AF16, ll, mm (A116, AF16, ll, mm) 4 6 (8)
ABS, Y SBC A, mmll, Y 2116, A616, ll, mm (A116, A616, ll, mm) 4 6 (8)
ABL SBC A, hhmmll 2116, AC16, ll, mm, hh (A116, AC16, ll, mm, hh) 5 6 (8)
ABL, X SBC A, hhmmll, X 2116, AD16, ll, mm, hh (A116, AD16, ll, mm, hh) 5 7 (9)

Notes 1: This table applies when using accumulator A. When using accumulator B, replace “A” with “B” in
the syntax. In this case, the machine code and the number of cycles enclosed in parentheses are
applied.

 2: In the immediate addressing mode, the byte number increases by 1 when flag m = “0.”

SBC SuBtract with Carry SBC

Description example :

CLM
SBC.W A, #IMM16

__

; A ← A – IMM16 – C
SBC B, MEM16

__

; B ← B – MEM16 – C
SEB
SBC.B A, #IMM8

__

; AL ← AL – IMM8 – C
SBC B, MEM8

__

; BL ← BL – MEM8 – C

7900 Series Software Manual4–184

Function : Subtract with carry

Operation data length : 8 bits

Operation :
__

AccL ← AccL – IMM8 – C

AccL AccL

__

C

← – IMM8 –

Description : Subtracts the immediate value and the complement of flag C from the contents of AccL in 8-
bit length, and stores the result in AccL.

● This instruction is unaffected by flag m.

● The contents of AccH do not change.

● The decimal operation is performed when flag D = “1.”

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.” Meaningless when
flag D = “1.”

V : Set to “1” when the result of the operation (regarded as a signed operation) is a value outside
the range of –128 to +127. Otherwise, cleared to “0.” Meaningless when flag D = “1.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.” Meaningless when flag
D = “1.”

C : Cleared to “0” when the borrow occurs. Otherwise, set to “1.”

Description example :

SBCB A, #IMM8
__

; AL ← AL – IMM8 – C
SBCB B, #IMM8

__

; BL ← BL – IMM8 – C

SBCB SuBtract with Carry at Byte SBCB

Addressing mode Syntax Machine code Bytes Cycles

IMM ABCB A, #imm 3116, 1B16, imm 3 3

IMM ABCB B, #imm B116, 1B16, imm 3 3

IPL N V m x D I Z C

– N V – – – – Z C

7900 Series Software Manual 4–185

SBCD SuBtract with Carry at Double-word SBCD

Function : Subtract with carry

Operation data length : 32 bits

Operation :
__

E ← E – M32 – C

E E M32
__

C

← – –

Description : Subtracts the contents of a memory and the complement of flag C from the contents of E in
32-bit length, and stores the result in E.

● This instruction is unaffected by flag m.

● This instruction cannot operate in decimal. Set flag D = “0” when using this instruction.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

V : Set to “1” when the result of the operation (regarded as a signed operation) is a value outside
the range of –2147483648 to +2147483647. Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

C : Cleared to “0” when the borrow occurs. Otherwise, set to “1.”

Description example :

SBCD E, #IMM32
__ __

; E ← E – IMM32 – C (B, A ← B, A – IMM32 – C)
SBCD E, MEM32

__ __

; E ← E – MEM32 – C (B, A ← B, A – MEM32 – C)

IPL N V m x D I Z C

– N V – – – – Z C

Addressing mode Syntax Machine code Bytes Cycles

IMM SBCD E, #imm 3116, 1D16, immLL, immLH, immHL, immHH 6 4
DIR SBCD E, dd 2116, BA16, dd 3 7
DIR, X SBCD E, dd, X 2116, BB16, dd 3 8
(DIR) SBCD E, (dd) 2116, B016, dd 3 9
(DIR, X) SBCD E, (dd, X) 2116, B116, dd 3 10
(DIR), Y SBCD E, (dd), Y 2116, B816, dd 3 10
L(DIR) SBCD E, L(dd) 2116, B216, dd 3 11
L(DIR), Y SBCD E, L(dd), Y 2116, B916, dd 3 12
SR SBCD E, nn, S 2116, B316, nn 3 8
(SR), Y SBCD E, (nn, S), Y 2116, B416, nn 3 11
ABS SBCD E, mmll 2116, BE16, ll, mm 4 7
ABS, X SBCD E, mmll, X 2116, BF16, ll, mm 4 8
ABS, Y SBCD E, mmll, Y 2116, B616, ll, mm 4 8
ABL SBCD E, hhmmll 2116, BC16, ll, mm, hh 5 8
ABL, X SBCD E, hhmmll, X 2116, BD16, ll, mm, hh 5 9

7900 Series Software Manual4–186

Function : Flag manipulation

Operation data length : –

Operation : C ← 1

Description : Sets flag C to “1.”

Status flags :

C : Set to “1.”

Description example :

SEC ; C ← 1

SEC SEt Carry flag SEC

IPL N V m x D I Z C
– – – – – – – – 1

Addressing mode Syntax Machine code Bytes Cycles

IMP SEC 0416 1 1

7900 Series Software Manual 4–187

Function : Flag manipulation

Operation data length : –

Operation : I ← 1

Description : Sets flag I to “1.”

Status flags :

I : Set to “1.”

Description example :

SEI ; I ← 1

SEI SEt Interrupt disable status SEI

IPL N V m x D I Z C
– – – – – – 1 – –

Addressing mode Syntax Machine code Bytes Cycles

IMP SEI 0516 1 4

7900 Series Software Manual4–188

Function : Flag manipulation

Operation data length : –

Operation : m ← 1

Description : Sets flag m to “1.”

Status flags :

m : Set to “1.”

Description example :

SEM ; m ← 1

SEM SEt M flag SEM

IPL N V m x D I Z C
– – – 1 – – – – –

Addressing mode Syntax Machine code Bytes Cycles

IMP SEM 2516 1 3

7900 Series Software Manual 4–189

Function : Flag manipulation

Operation data length : –

Operation : PSL (bit n) ← 1 (n = 0 to 7. Multiple bits can be specified.)

Description : Sets the specified flags (multiple flags can be specified) of PSL to “1.” The flag positions to be
specified are indicated by a bit pattern of the immediate value, in which the bits set to “1” are
the subject bits to be specified.

● This instruction is unaffected by flag m.

Status flags :

Description example :

SEP #IMM8 ; The specified bits of PSL ← 1

SEP SEt Processor status SEP

IPL N V m x D I Z C
– N V m x D I Z C

Addressing mode Syntax Machine code Bytes Cycles

IMM SEP #imm 9916, imm 2 3

PSL

 b7 b6 b5 b4 b3 b2 b1 b0

N V m x D I Z C

7900 Series Software Manual4–190

Function : Store

Operation data length : 16 bits or 8 bits

Operation : M ← Acc

When m = “0”

M16 Acc

←

When m = “1”

M8 AccL

←

Description : Stores the contents of Acc into a memory. The contents of Acc do not change.

Status flags :

STA STore Accumulator in memory STA

IPL N V m x D I Z C
– – – – – – – – –

Addressing mode Syntax Machine code Bytes Cycles

DIR STA A, dd DA16, dd (8116, DA16, dd) 2 (3) 4 (5)
DIR, X STA A, dd, X DB16, dd (8116, DB16, dd) 2 (3) 5 (6)
(DIR) STA A, (dd) 1116, D016, dd (9116, D016, dd) 3 (3) 7 (7)
(DIR, X) STA A, (dd, X) 1116, D116, dd (9116, D116, dd) 3 (3) 8 (8)
(DIR), Y STA A, (dd), Y D816, dd (8116, D816, dd) 2 (3) 7 (8)
L(DIR) STA A, L(dd) 1116, D216, dd (9116, D216, dd) 3 (3) 9 (9)
L(DIR), Y STA A, L(dd), Y D916, dd (8116, D916, dd) 2 (3) 9 (10)
SR STA A, nn, S 1116, D316, nn (9116, D316, nn) 3 (3) 6 (6)
(SR), Y STA A, (nn, S), Y 1116, D416, nn (9116, D416, nn) 3 (3) 9 (9)
ABS STA A, mmll DE16, ll, mm (8116, DE16, ll, mm) 3 (4) 4 (5)
ABS, X STA A, mmll, X DF16, ll, mm (8116, DF16, ll, mm) 3 (4) 5 (6)
ABS, Y STA A, mmll, Y 1116, D616, ll, mm (9116, D616, ll, mm) 4 (4) 6 (6)
ABL STA A, hhmmll DC16, ll, mm, hh (8116, DC16, ll, mm, hh) 4 (5) 5 (6)
ABL, X STA A, hhmmll, X DD16, ll, mm, hh (8116, DD16, ll, mm, hh) 4 (5) 6 (7)

Note : This table applies when using accumulator A. When using accumulator B, replace “A” with “B” in the
syntax. In this case, the machine code, the number of bytes, and the number of cycles enclosed in
parentheses are applied.

Description example :

CLM
STA A, MEM16 ; MEM16 ← A
SEM
STA B, MEM8 ; MEM8 ← BL

7900 Series Software Manual 4–191

Function : Store

Operation data length : 8 bits

Operation : M8 ← AccL

M8 AccL

←

Description : Stores the contents of AccL into a memory in 8-bit length.

● The contents of Acc (AccH and AccL) do not change.

● This instruction is unaffected by flag m.

Status flags :

STAB STore Accumulator in memory at Byte STAB

IPL N V m x D I Z C

– – – – – – – – –

Addressing mode Syntax Machine code Bytes Cycles

DIR STAB A, dd CA16, dd (8116, CA16, dd) 2 (3) 4 (5)
DIR, X STAB A, dd, X CB16, dd (8116, CB16, dd) 2 (3) 5 (6)
(DIR) STAB A, (dd) 1116, C016, dd (9116, C016, dd) 3 (3) 7 (7)
(DIR, X) STAB A, (dd, X) 1116, C116, dd (9116, C116, dd) 3 (3) 8 (8)
(DIR), Y STAB A, (dd), Y C816, dd (8116, C816, dd) 2 (3) 7 (8)
L(DIR) STAB A, L(dd) 1116, C216, dd (9116, C216, dd) 3 (3) 9 (9)
L(DIR), Y STAB A, L(dd), Y C916, dd (8116, C916, dd) 2 (3) 9 (10)
SR STAB A, nn, S 1116, C316, nn (9116, C316, nn) 3 (3) 6 (6)
(SR), Y STAB A, (nn, S), Y 1116, C416, nn (9116, C416, nn) 3 (3) 9 (9)
ABS STAB A, mmll CE16, ll, mm (8116, CE16, ll, mm) 3 (4) 4 (5)
ABS, X STAB A, mmll, X CF16, ll, mm (8116, CF16, ll, mm) 3 (4) 5 (6)
ABS, Y STAB A, mmll, Y 1116, C616, ll, mm (9116, C616, ll, mm) 4 (4) 6 (6)
ABL STAB A, hhmmll CC16, ll, mm, hh (8116, CC16, ll, mm, hh) 4 (5) 5 (6)
ABL, X STAB A, hhmmll, X CD16, ll, mm, hh (8116, CD16, ll, mm, hh) 4 (5) 6 (7)

Note : This table applies when using accumulator A. When using accumulator B, replace “A” with “B” in the
syntax. In this case, the machine code, the number of bytes, and the number of cycles enclosed in
parentheses are applied.

Description example :

STAB A, MEM8 ; MEM8 ← AL

7900 Series Software Manual4–192

Function : Store

Operation data length : 32 bits

Operation : M32 ← E

M32 E

←

Description : Stores the contents of E into a memory in 32-bit length.

● The contents of E do not change.

● This instruction is unaffected by flag m.

Status flags :

STAD STore Accumulator in memory at Double-word STAD

IPL N V m x D I Z C

– – – – – – – – –

Addressing mode Syntax Machine code Bytes Cycles

DIR STAD E, dd EA16, dd 2 6
DIR, X STAD E, dd, X EB16, dd 2 7
(DIR) STAD E, (dd) 1116, E016, dd 3 9
(DIR, X) STAD E, (dd, X) 1116, E116, dd 3 10
(DIR), Y STAD E, (dd), Y E816, dd 2 9
L(DIR) STAD E, L(dd) 1116, E216, dd 3 11
L(DIR), Y STAD E, L(dd), Y E916, dd 2 11
SR STAD E, nn, S 1116, E316, nn 3 8
(SR), Y STAD E, (nn, S), Y 1116, E416, nn 3 11
ABS STAD E, mmll EE16, ll, mm 3 6
ABS, X STAD E, mmll, X EF16, ll, mm 3 7
ABS, Y STAD E, mmll, Y 1116, E616, ll, mm 4 8
ABL STAD E, hhmmll EC16, ll, mm, hh 4 7
ABL, X STAD E, hhmmll, X ED16, ll, mm, hh 4 8

Description example :

STAD E, MEM32 ; MEM32 ← E (MEM32H ← B, MEM32L ← A)

7900 Series Software Manual 4–193

Function : Special

Operation data length : –

Operation : Stop the oscillation

Description : Resets the flip-flop for oscillator control and stops the oscillation of the oscillation circuit. To
restart, generate an interrupt request or perform the hardware reset. The microcomputer will
thereby be released from the STP state.

Status flags :

Description example :

STP ;

STP SToP STP

IPL N V m x D I Z C

– – – – – – – – –

Addressing mode Syntax Machine code Bytes Cycles

IMP STP 3116, 3016 2 –

7900 Series Software Manual4–194

Function : Store

Operation data length : 16 bits or 8 bits

Operation : M ← X

When x = “0”

M16 X

←

When x = “1”

M8 XL

←

Description : Stores the contents of X into a memory. The contents of X do not change.

● This instruction is unaffected by flag m.

Status flags :

STX STore index register X in memory STX

IPL N V m x D I Z C
– – – – – – – – –

Addressing mode Syntax Machine code Bytes Cycles

DIR STX dd E216, dd 2 4
DIR, Y STX dd, Y 4116, E516, dd 3 6
ABS STX mmll E716, ll, mm 3 4

Description example :

CLP x
STX MEM16 ; MEM16 ← X
SEP x
STX MEM8 ; MEM8 ← XL

7900 Series Software Manual 4–195

Function : Store

Operation data length : 16 bits or 8 bits

Operation : M ← Y

When x = “0”

M16 Y

←

When x = “1”

M8 YL

←

Description : Stores the contents of Y into a memory. The contents of Y do not change.

● This instruction is unaffected by flag m.

Status flags :

STY STore index register Y in memory STY

IPL N V m x D I Z C
– – – – – – – – –

Addressing mode Syntax Machine code Bytes Cycles

DIR STY dd F216, dd 2 4
DIR, X STY dd, X 4116, FB16, dd 3 6
ABS STY mmll F716, ll, mm 3 4

Description example :

CLP x
STY MEM16 ; MEM16 ← Y
SEP x
STY MEM8 ; MEM8 ← YL

7900 Series Software Manual4–196

Function : Subtract

Operation data length : 16 bits or 8 bits

Operation : Acc ← Acc – M

When m = “0”

Acc Acc M16

← –

When m = “1”

AccL AccL M8

← –

❈ In this case, the contents of AccH do not change.

Description : Subtracts the contents of a memory from the contents of Acc, and stores the result in Acc.

● This instruction cannot operate in decimal. Set flag D = “0” when using this instruction.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

V : Set to “1” when the result of the operation (regarded as a signed operation) is a value outside
the range of –32768 to +32767 (–128 to +127 when flag m is “1”). Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

C : Cleared to “0” when the borrow occurs. Otherwise, set to “1.”

SUB SUBtract SUB

IPL N V m x D I Z C
– N V – – – – Z C

7900 Series Software Manual 4–197

Addressing mode Syntax Machine code Bytes Cycles

IMM SUB A, #imm 3616, imm (8116, 3616, imm) 2 (3) 1 (2)
DIR SUB A, dd 3A16, dd (8116, 3A16, dd) 2 (3) 3 (4)
DIR, X SUB A, dd, X 3B16, dd (8116, 3B16, dd) 2 (3) 4 (5)
(DIR) SUB A, (dd) 1116, 3016, dd (9116, 3016, dd) 3 (3) 6 (6)
(DIR, X) SUB A, (dd, X) 1116, 3116, dd (9116, 3116, dd) 3 (3) 7 (7)
(DIR), Y SUB A, (dd), Y 1116, 3816, dd (9116, 3816, dd) 3 (3) 7 (7)
L(DIR) SUB A, L(dd) 1116, 3216, dd (9116, 3216, dd) 3 (3) 8 (8)
L(DIR), Y SUB A, L(dd), Y 1116, 3916, dd (9116, 3916, dd) 3 (3) 9 (9)
SR SUB A, nn, S 1116, 3316, nn (9116, 3316, nn) 3 (3) 5 (5)
(SR), Y SUB A, (nn, S), Y 1116, 3416, nn (9116, 3416, nn) 3 (3) 8 (8)
ABS SUB A, mmll 3E16, ll, mm (8116, 3E16, ll, mm) 3 (4) 3 (4)
ABS, X SUB A, mmll, X 3F16, ll, mm (8116, 3F16, ll, mm) 3 (4) 4 (5)
ABS, Y SUB A, mmll, Y 1116, 3616, ll, mm (9116, 3616, ll, mm) 4 (4) 5 (5)
ABL SUB A, hhmmll 1116, 3C16, ll, mm, hh (9116, 3C16, ll, mm, hh) 5 (5) 5 (5)
ABL, X SUB A, hhmmll, X 1116, 3D16, ll, mm, hh (9116, 3D16, ll, mm, hh) 5 (5) 6 (6)

Notes 1: This table applies when using accumulator A. When using accumulator B, replace “A” with “B” in
the syntax. In this case, the machine code, the number of bytes, and the number of cycles enclosed
in parentheses are applied.

 2: In the immediate addressing mode, the byte number increases by 1 when flag m = “0.”

Description example :

CLM
SUB.W A, #IMM16 ; A ← A – IMM16
SUB B, MEM16 ; B ← B – MEM16
SEM
SUB.B A, #IMM8 ; AL ← AL – IMM8
SUB B, MEM8 ; BL ← BL – MEM8

SUB SUBtract SUB

7900 Series Software Manual4–198

SUBB SUBtract at Byte SUBB

Function : Subtract

Operation data length : 8 bits

Operation : AccL ← AccL – IMM8

AccL AccL

← – IMM8

Description : Subtracts the immediate value from the contents of AccL in 8-bit length, and stores the result
in AccL.

● This instruction is unaffected by flag m.

● The contents of AccH do not change.

● This instruction cannot operate in decimal. Set flag D = “0” when using this instruction.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

V : Set to “1” when the result of the operation (regarded as a signed operation) is a value outside
the range of –128 to +127. Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

C : Cleared to “0” when the borrow occurs. Otherwise, set to “1.”

Description example :

SUBB A, #IMM8 ; AL ← AL – IMM8
SUBB B, #IMM8 ; BL ← BL – IMM8

Addressing mode Syntax Machine code Bytes Cycles

IMM SUBB A, #imm 3916, imm 2 1

IMM SUBB B, #imm 8116, 3916, imm 3 2

IPL N V m x D I Z C

– N V – – – – Z C

7900 Series Software Manual 4–199

SUBD SUBtract at Double-word SUBD

Function : Subtract

Operation data length : 32 bits

Operation : E ← E – M32

E E M32

← –

Description : Subtracts the contents of a memory from the contents of E in 32-bit length, and stores the
result in E.

● This instruction is unaffected by flag m.

● This instruction cannot operate in decimal. Set flag D = “0” when using this instruction.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

V : Set to “1” when the result of the operation (regarded as a signed operation) is a value outside
the range of –2147483648 to +2147483647. Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

C : Cleared to “0” when the borrow occurs. Otherwise, set to “1.”

Description example :

SUBD E, #IMM32 ; E ← E – IMM32 (B, A ← B, A – IMM32)
SUBD E, MEM32 ; E ← E – MEM32 (B, A ← B, A – MEM32)

IPL N V m x D I Z C

– N V – – – – Z C

Addressing mode Syntax Machine code Bytes Cycles

IMM SUBD E, #imm 3D16, immLL, immLH, immHL, immHH 5 3
DIR SUBD E, dd AA16, dd 2 6
DIR, X SUBD E, dd, X AB16, dd 2 7
(DIR) SUBD E, (dd) 1116, A016, dd 3 9
(DIR, X) SUBD E, (dd, X) 1116, A116, dd 3 10
(DIR), Y SUBD E, (dd), Y 1116, A816, dd 3 10
L(DIR) SUBD E, L(dd) 1116, A216, dd 3 11
L(DIR), Y SUBD E, L(dd), Y 1116, A916, dd 3 12
SR SUBD E, nn, S 1116, A316, nn 3 8
(SR), Y SUBD E, (nn, S), Y 1116, A416, nn 3 11
ABS SUBD E, mmll AE16, ll, mm 3 6
ABS, X SUBD E, mmll, X AF16, ll, mm 3 7
ABS, Y SUBD E, mmll, Y 1116, A616, ll, mm 4 8
ABL SUBD E, hhmmll 1116, AC16, ll, mm, hh 5 8
ABL, X SUBD E, hhmmll, X 1116, AD16, ll, mm, hh 5 9

7900 Series Software Manual4–200

Function : Subtract

Operation data length : 16 bits or 8 bits

Operation : M← M – IMM

When m = “0”

M16 M16

← – IMM16

When m = “1”

M8 M8

← – IMM8

Description : Subtracts the immediate value from the contents of a memory, and stores the result in the
memory.

● This instruction cannot operate in decimal. Set flag D = “0” when using this instruction.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

V : Set to “1” when the result of the operation (regarded as a signed operation) is a value outside
the range of –32768 to +32767 (–128 to +127 when flag m is “1”). Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

C : Cleared to “0” when the borrow occurs. Otherwise, set to “1.”

SUBM SUBtract immediate from Memory SUBM

IPL N V m x D I Z C

– N V – – – – Z C

Addressing mode Syntax Machine code Bytes Cycles

DIR SUBM dd, #imm 5116, 1316, dd, imm 4 7

ABS SUBM mmll, #imm 5116, 1716, ll, mm, imm 5 7

Note : When flag m = “0,” the byte number increases by 1.

Description example :

CLM
SUBM.W MEM16, #IMM16 ; MEM16 ← MEM16 – IMM16
SEM
SUBM.B MEM8, #IMM8 ; MEM8 ← MEM8 – IMM8

7900 Series Software Manual 4–201

Function : Subtract

Operation data length : 8 bits

Operation : M8 ← M8 – IMM8

M8 M8

← – IMM8

Description : Subtracts the immediate value from the contents of a memory in 8-bit length, and stores the
result in the memory.

● This instruction is unaffected by flag m.

● This instruction cannot operate in decimal. Set flag D = “0” when using this instruction.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

V : Set to “1” when the result of the operation (regarded as a signed operation) is a value outside
the range of –128 to +127. Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

C : Cleared to “0” when the borrow occurs. Otherwise, set to “1.”

Description example :

SUBMB MEM8, #IMM8 ; MEM8 ← MEM8 – IMM8

SUBMB SUBtract immediate from Memory at Byte SUBMB

Addressing mode Syntax Machine code Bytes Cycles

DIR SUBMB dd, #imm 5116, 1216, dd, imm 4 7

ABS SUBMB mmll, #imm 5116, 1616, ll, mm, imm 5 7

IPL N V m x D I Z C
– N V – – – – Z C

7900 Series Software Manual4–202

SUBMD SUBtract immediate from Memory at Double-word SUBMD

Function : Subtract

Operation data length : 32 bits

Operation : M32 ← M32 – IMM32

M32 M32

← – IMM32

Description : Subtracts the immediate value from the contents of a memory in 32-bit length, and stores the
result in the memory.

● This instruction is unaffected by flag m.

● This instruction cannot operate in decimal. Set flag D = “0” when using this instruction.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

V : Set to “1” when the result of the operation (regarded as a signed operation) is a value outside
the range of –2147483648 to +2147483647. Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

C : Cleared to “0” when the borrow occurs. Otherwise, set to “1.”

Description example :

SUBMB MEM32, #IMM32 ; MEM32 ← MEM32 – IMM32

IPL N V m x D I Z C

– N V – – – – Z C

Addressing mode Syntax Machine code Bytes Cycles

DIR SUBMD dd, #imm 5116, 9316, dd, immLL, immLH, immHL, immHH 7 10

ABS SUBMD mmll, #imm 5116, 9716, ll, mm, immLL, immLH, immHL, immHH 8 10

7900 Series Software Manual 4–203

SUBS SUBtract Stack pointer SUBS

Function : Subtract

Operation data length : 16 bits

Operation : S ← S – IMM8

S S

← – IMM8

Description : Subtract the 8-bit immediate value from the contents of S in 16-bit length, and stores the result
in S. The immediate value is extended to 16-bit length with 0s in operation.

● This instruction is unaffected by flag m.

● This instruction cannot operate in decimal. Set flag D = “0” when using this instruction.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

V : Set to “1” when the result of the operation (regarded as a signed operation) is a value outside
the range of –32768 to +32767. Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

C : Cleared to “0” when the borrow occurs. Otherwise, set to “1.”

Description example :

SUBS #IMM8 ; S ← S – IMM8

IPL N V m x D I Z C

– N V – – – – Z C

Addressing mode Syntax Machine code Bytes Cycles

IMM SUBS #imm 3116, 0B16, imm 3 2

7900 Series Software Manual4–204

Function : Subtract

Operation data length : 16 bits or 8 bits

Operation : X ← X – IMM (IMM = 0 to 31)

When x = “0”

X X

← – IMM

When x = “1”

XL XL

← – IMM

❈ In this case, the contents of XH do not change.

Description : Subtracts the immediate value (0 to 31) from the contents of X, and stores the result in X.

● This instruction is unaffected by flag m.

● This instruction cannot operate in decimal. Set flag D = “0” when using this instruction.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

V : Set to “1” when the result of the operation (regarded as a signed operation) is a value outside
the range of –32768 to +32767 (–128 to +127 when flag x is “1”). Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

C : Cleared to “0” when the borrow occurs. Otherwise, set to “1.”

SUBX SUBtract immediate from index register X SUBX

IPL N V m x D I Z C

– N V – – – – Z C

Description example :

CLP x
SUBX #IMM ; X ← X – IMM(0 to 31)
SEP x
SUBX #IMM ; XL ← XL – IMM(0 to 31)

Addressing mode Syntax Machine code Bytes Cycles

IMM SUBX #imm 0116, imm+4016 2 2

Note : Any value from 0 to 31 can be set to imm.

7900 Series Software Manual 4–205

Function : Subtract

Operation data length : 16 bits or 8 bits

Operation : Y ← Y – IMM (IMM = 0 to 31)

When x = “0”

Y Y

← – IMM

When x = “1”

YL YL

← – IMM

❈ In this case, the contents of YH do not change.

Description : Subtracts the immediate value (0 to 31) from the contents of Y, and stores the result in Y.

● This instruction is unaffected by flag m.

● This instruction cannot operate in decimal. Set flag D = “0” when using this instruction.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

V : Set to “1” when the result of the operation (regarded as a signed operation) is a value outside
the range of –32768 to +32767 (–128 to +127 when flag x is “1”). Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

C : Cleared to “0” when the borrow occurs. Otherwise, set to “1.”

SUBY SUBtract immediate from index register Y SUBY

IPL N V m x D I Z C

– N V – – – – Z C

Description example :

CLP x
SUBY #IMM ; Y ← Y – IMM(0 to 31)
SEP x
SUBY #IMM ; YL ← YL – IMM(0 to 31)

Addressing mode Syntax Machine code Bytes Cycles

IMM SUBY #imm 0116, imm+6016 2 2

Note : Any value from 0 to 31 can be set to imm.

7900 Series Software Manual4–206

Function : Transfer between registers

Operation data length : 16 bits

Operation : DPRn ← A (n = 0 to 3)

DPRn A

←

Description : Transfers the contents of A to the specified DPRn (DPR0 to DPR3) in 16-bit length.

● Specify one of DPR0 to DPR3 for the destination of transfer.

● The contents of A do not change.

● This instruction is unaffected by flag m.

● This instruction includes the function of the TAD instruction in the conventional 7700 Family.

Status flags :

TAD n Transfer accumulator A to Direct page register n TAD n

IPL N V m x D I Z C

– – – – – – – – –

Description example :

TAD 0 ; DPR0 ← A
TAD 1 ; DPR1 ← A

Addressing mode Syntax Machine code Bytes Cycles

IMP TAD n 3116, n216 2 3

Note : Any value from 0 to 3 can be set to n.

7900 Series Software Manual 4–207

Function : Transfer between registers

Operation data length : 16 bits

Operation : S ← A

S A

←

Description : Transfers the contents of A to S in 16-bit length. The contents of A do not change.

● This instruction is unaffected by flag m.

Status flags :

TAS Transfer accumulator A to Stack pointer TAS

IPL N V m x D I Z C

– – – – – – – – –

Description example :

TAS ; S ← A

Addressing mode Syntax Machine code Bytes Cycles

IMP TAS 3116, 8216 2 2

7900 Series Software Manual4–208

Function : Transfer between registers

Operation data length : 16 bits or 8 bits

Operation : X ← A

When x = “0”

X A

←

When x = “1”

XL AL

←

❈ In this case, the contents of XH do not change.

Description : Transfers the contents of A to X. The contents of A do not change.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

TAX Transfer accumulator A to index register X TAX

IPL N V m x D I Z C
– N – – – – – Z –

Description example :

CLP x
TAX ; X ← A
SEP x
TAX ; XL ← AL

Addressing mode Syntax Machine code Bytes Cycles

IMP TAX C416 1 1

7900 Series Software Manual 4–209

Function : Transfer between registers

Operation data length : 16 bits or 8 bits

Operation : Y ← A

When x = “0”

Y A

←

When x = “1”

YL AL

←

❈ In this case, the contents of YH do not change.

Description : Transfers the contents of A to Y. The contents of A do not change.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

TAY Transfer accumulator A to index register Y TAY

IPL N V m x D I Z C
– N – – – – – Z –

Description example :

CLP x
TAY ; Y ← A
SEP x
TAY ; YL ← AL

Addressing mode Syntax Machine code Bytes Cycles

IMP TAY D416 1 1

7900 Series Software Manual4–210

Function : Transfer between registers

Operation data length : 16 bits

Operation : DPRn ← B (n = 0 to 3)

DPRn B

←

Description : Transfers the contents of B to the specified DPRn (DPR0 to DPR3) in 16-bit length.

● Specify one of DPR0 to DPR3 for the destination of transfer.

● The contents of B do not change.

● This instruction is unaffected by flag m.

● This instruction includes the function of the TBD instruction in the conventional 7700 Family.

Status flags :

TBD n Transfer accumulator B to Direct page register n TBD n

IPL N V m x D I Z C
– – – – – – – – –

Description example :

TBD 0 ; DPR0 ← B
TBD 1 ; DPR1 ← B

Addressing mode Syntax Machine code Bytes Cycles

IMP TBD n B116, n216 2 3

Note : Any value from 0 to 3 can be set to n.

7900 Series Software Manual 4–211

Function : Transfer between registers

Operation data length : 16 bits

Operation : S ← B

S B

←

Description : Transfers the contents of B to S in 16-bit length. The contents of B do not change.

● This instruction is unaffected by flag m.

Status flags :

TBS Transfer accumulator B to Stack pointer TBS

IPL N V m x D I Z C

– – – – – – – – –

Description example :

TBS ; S ← B

Addressing mode Syntax Machine code Bytes Cycles

IMP TBS B116, 8216 2 2

7900 Series Software Manual4–212

Function : Transfer between registers

Operation data length : 16 bits or 8 bits

Operation : X ← B

When x = “0”

X B

←

When x = “1”

XL BL

←

❈ In this case, the contents of XH do not change.

Description : Transfers the contents of B to X. The contents of B do not change.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

TBX Transfer accumulator B to index register X TBX

IPL N V m x D I Z C
– N – – – – – Z –

Description example :

CLP x
TBX ; X ← B
SEP x
TBX ; XL ← BL

Addressing mode Syntax Machine code Bytes Cycles

IMP TBX 8116, C416 2 2

7900 Series Software Manual 4–213

Function : Transfer between registers

Operation data length : 16 bits or 8 bits

Operation : Y ← B

When x = “0”

Y B

←

When x = “1”

YL BL

←

❈ In this case, the contents of YH do not change.

Description : Transfers Y with the contents of B. The contents of B do not change.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

TBY Transfer accumulator B to index register Y TBY

IPL N V m x D I Z C
– N – – – – – Z –

Description example :

CLP x
TBY ; Y ← B
SEP x
TBY ; YL ← BL

Addressing mode Syntax Machine code Bytes Cycles

IMP TBY 8116, D416 2 2

7900 Series Software Manual4–214

Function : Transfer between registers

Operation data length : 16 bits or 8 bits

Operation : A ← DPRn (n = 0 to 3)

When m = “0”

A DPRn

←

When m = “1”

AL DPRnL

←

❈ In this case, the contents of AH do not change.

Description : Transfers the contents of the specified DPRn (DPR0 to DPR3) to A.

● Specify one of DPR0 to DPR3 for the destination of transfer.

● The contents of DPRn do not change.

● This instruction includes the function of the TDA instruction in the conventional 7700 Family.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

TDA n Transfer Direct page register n to accumulator A TDA n

IPL N V m x D I Z C
– N – – – – – Z –

Description example :

TDA 0 ; A ← DPR0
TDA 1 ; A ← DPR1

Addressing mode Syntax Machine code Bytes Cycles

IMP TDA n 3116, n216+4016 2 2

Note : Any value from 0 to 3 can be set to n.

7900 Series Software Manual 4–215

Function : Transfer between registers

Operation data length : 16 bits or 8 bits

Operation : B ← DPRn (n = 0 to 3)

When m = “0”

B DPRn

←

When m = “1”

BL DPRnL

←

❈ In this case, the contents of BH do not change.

Description : Transfers the contents of specified DPRn (DPR0 to DPR3) to B.

● Specify one of DPR0 to DPR3 for the destination of transfer.

● The contents of DPRn do not change.

● This instruction includes the function of the TDB instruction in the conventional 7700 Family.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

TDB n Transfer Direct page register n to accumulator B TDB n

IPL N V m x D I Z C
– N – – – – – Z –

Description example :

TDB 0 ; B ← DPR0
TDB 1 ; B ← DPR1

Addressing mode Syntax Machine code Bytes Cycles

IMP TDB n B116, n216+4016 2 2

Note : Any value from 0 to 3 can be set to n.

7900 Series Software Manual4–216

Function : Transfer between registers

Operation data length : 16 bits

Operation : S ← DPR0

S DPR0

←

Description : Transfers the contents of DPR0 to S in 16-bit length.

● The contents of DPR0 do not change.

Status flags :

TDS Transfer Direct page register to Stack pointer TDS

IPL N V m x D I Z C

– – – – – – – – –

Description example :

TDS ; S ← DPR0

Addressing mode Syntax Machine code Bytes Cycles

IMP TDS 3116, 7316 2 2

7900 Series Software Manual 4–217

Function : Transfer between registers

Operation data length : 16 bits or 8 bits

Operation : A ← S

When m = “0”

A S

←

When m = “1”

AL SL

←

❈ The contents of AH do not change.

Description : Transfers the contents of S to A. The contents of S do not change.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

TSA Transfer Stack pointer to accumulator A TSA

IPL N V m x D I Z C
– N – – – – – Z –

Description example :

CLM
TSA ; A ← S
SEM
TSA ; AL ← SL

Addressing mode Syntax Machine code Bytes Cycles

IMP TSA 3116, 9216 2 2

7900 Series Software Manual4–218

Function : Transfer between registers

Operation data length : 16 bits or 8 bits

Operation : B ← S

When m = “0”

B S

←

When m = “1”

BL SL

←

❈ The contents of BH do not change.

Description : Transfers the contents of S to B. The contents of S do not change.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

TSB Transfer Stack pointer to accumulator B TSB

IPL N V m x D I Z C
– N – – – – – Z –

Description example :

CLM
TSB ; B ← S
SEM
TSB ; BL ← SL

Addressing mode Syntax Machine code Bytes Cycles

IMP TSB B116, 9216 2 2

7900 Series Software Manual 4–219

Function : Transfer between registers

Operation data length : 16 bits

Operation : DPR0 ← S

DPR0 S

←

Description : Transfers the contents of S to DPR0 in 16-bit length.

● The contents of S do not change.

Status flags :

TSD Transfer Stack pointer to Direct page register TSD

IPL N V m x D I Z C
– – – – – – – – –

Description example :

TSD ; DPR0 ← S

Addressing mode Syntax Machine code Bytes Cycles

IMP TSD 3116, 7016 2 4

7900 Series Software Manual4–220

Function : Transfer between registers

Operation data length : 16 bits or 8 bits

Operation : X ← S

When x = “0”

X S

←

When x = “1”

XL SL

←

❈ The contents of XH do not change.

Description : Transfers the contents of S to X. The contents of S do not change.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

TSX Transfer Stack pointer to index register X TSX

IPL N V m x D I Z C
– N – – – – – Z –

Description example :

CLP x
TSX ; X ← S
SEP x
TSX ; XL ← SL

Addressing mode Syntax Machine code Bytes Cycles

IMP TSX 3116, F216 2 2

7900 Series Software Manual 4–221

Function : Transfer between registers

Operation data length : 16 bits or 8 bits

Operation : A ← X

When m = “0” and x = “0”

A X

←

When m = “0” and x = “1”

A XL

00 ←
❈ The data “0016” is set to AH.

When m = “1”

AL XL

←
❈ The contents of AH do not change.

Description : Transfers the contents of X to A. The contents of X do not change.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

TXA Transfer index register X to accumulator A TXA

IPL N V m x D I Z C

– N – – – – – Z –

Description example :

TXA ; A ← X

Addressing mode Syntax Machine code Bytes Cycles

IMP TXA A416 1 1

7900 Series Software Manual4–222

Function : Transfer between registers

Operation data length : 16 bits or 8 bits

Operation : B ← X

When m = “0” and x = “0”

B X

←

When m = “0” and x = “1”

B XL

00 ←
❈ The data “0016” is set to BH.

When m = “1”

BL XL

←
❈ The contents of BH do not change.

Description : Transfers the contents of X to B. The contents of X do not change.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

TXB Transfer index register X to accumulator B TXB

IPL N V m x D I Z C

– N – – – – – Z –

Description example :

TXB ; B ← X

Addressing mode Syntax Machine code Bytes Cycles

IMP TXB 8116, A416 2 2

7900 Series Software Manual 4–223

Function : Transfer between registers

Operation data length : 16 bits or 8 bits

Operation : S ← X

When x = “0”

S X

←

When x = “1”

S XL

00 ←
❈ The data “0016” is set to SH.

Description : Transfers the contents of X to S. The contents of X do not change.

Status flags :

TXS Transfer index register X to Stack pointer TXS

IPL N V m x D I Z C

– – – – – – – – –

Description example :

CLP x
TXS ; S ← X
SEP x
TXS ; SL ← XL, SH ← 0016

Addressing mode Syntax Machine code Bytes Cycles

IMP TXS 3116, E216 2 2

7900 Series Software Manual4–224

Function : Transfer between registers

Operation data length : 16 bits or 8 bits

Operation : Y ← X

When x = “0”

Y X

←

When x = “1”

YL XL

←
❈ The contents of YH do not change.

Description : Transfers the contents of X to Y. The contents of X do not change.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

TXY Transfer index register X to Y TXY

IPL N V m x D I Z C

– N – – – – – Z –

Description example :

CLP x
TXY ; Y ← X
SEP x
TXY ; YL ← XL

Addressing mode Syntax Machine code Bytes Cycles

IMP TXY 3116, C216 2 2

7900 Series Software Manual 4–225

Function : Transfer between registers

Operation data length : 16 bits or 8 bits

Operation : A ← Y

When m = “0” and x = “0”

A Y

←

When m = “0” and x = “1”

A YL

00 ←
❈ The data “0016” is set to AH.

When m = “1”

AL YL

←
❈ The contents of AH do not change.

Description : Transfers the contents of Y to A. The contents of Y do not change.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

TYA Transfer index register Y to accumulator A TYA

IPL N V m x D I Z C

– N – – – – – Z –

Description example :

TYA ; A ← Y

Addressing mode Syntax Machine code Bytes Cycles

IMP TYA B416 1 1

7900 Series Software Manual4–226

Function : Transfer between registers

Operation data length : 16 bits or 8 bits

Operation : B ← Y

When m = “0” and x = “0”

B Y

←

When m = “0” and x = “1”

B YL

00 ←
❈ The data “0016” is set to BH.

When m = “1”

BL YL

←
❈ The contents of BH do not change.

Description : Transfers the contents of Y to B. The contents of Y do not change.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

TYB Transfer index register Y to accumulator B TYB

IPL N V m x D I Z C

– N – – – – – Z –

Description example :

TYB ; B ← Y

Addressing mode Syntax Machine code Bytes Cycles

IMP TYB 8116, B416 2 2

7900 Series Software Manual 4–227

Function : Transfer between registers

Operation data length : 16 bits or 8 bits

Operation : X ← Y

When x = “0”

X Y

←

When x = “1”

XL YL

←
❈ The contents of XH do not change.

Description : Transfers the contents of Y to X. The contents of Y do not change.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

TYX Transfer index register Y to X TYX

IPL N V m x D I Z C

– N – – – – – Z –

Description example :

CLP x
TYX ; X ← Y
SEP x
TYX ; XL ← YL

Addressing mode Syntax Machine code Bytes Cycles

IMP TYX 3116, D216 2 2

7900 Series Software Manual4–228

Function : Clock control

Operation data length : –

Operation : Stop the CPU clock.

Description : Stops the internal clock. However, the oscillation of the oscillation circuit is not stopped. To
restart the internal clock, generate an interrupt request or perform the hardware reset. The
microcomputer will thereby be released from the WIT state.

Status flags :

WIT WaIT WIT

IPL N V m x D I Z C
– – – – – – – – –

Description example :

WIT ;

Addressing mode Syntax Machine code Bytes Cycles

IMP WIT 3116, 1016 2 –

7900 Series Software Manual 4–229

Function : Transfer between registers

Operation data length : 16 bits or 8 bits

Operation : A ← B

When m = “0”

A B

←

When m = “1”

AL BL

←

❈ In this case, the contents of AH and BH do not change.

Description : Exchanges the contentss of A and B.

Status flags :

N : Set to “1” when MSB of the operation result is “1.” Otherwise, cleared to “0.”

Z : Set to “1” when the operation result is “0.” Otherwise, cleared to “0.”

XAB eXchange accumulator A and B XAB

IPL N V m x D I Z C
– N – – – – – Z –

Description example :

CLM x
XAB ; A ← B
SEM x
XAB ; AL ← BL

Addressing mode Syntax Machine code Bytes Cycles

IMP XAB 5516 1 2

→

→

→

→

→

7900 Series Software Manual4–230

INSTRUCTION
4.3 Notes on software development

4.3 Notes on software development
The following are notes on software development.

4.3.1 Instruction execution cycles
The number of instruction execution cycles shown in this manual is applied to an ideal operating state. The
actual instruction execution cycles vary with the instruction queue, the bus width for memory access, and
the setting for Wait state.
When estimating a theoretical program execution speed by using the values shown in this manual or when
implementing timers by software, be sure to consider that the estimated or anticipated execution time is
only an approximate value.

4.3.2 Status of flags m and x
Writing a 16-bit immediate value to the instruction operand while the contents of flag m is “1” (8 bits of data
length) or an 8-bit immediate value to the instruction operand while the contents of flag m is “0” (16 bits
of data length) causes the program to run out of control.
The above is also applied to flag x. Refer to the user’s manual of the assembler you are using and make
sure that no discrepancy will occur between the flag state and the data length to be operated on.

4.3.3 Tips for data area location
(1) If the contents of low-order 8 bits of the direct page register (DPRnL) are set to any value other than

“0016,” the processing time is extended by 1 machine cycle as compared to the cases where the
contents are set to “0016.” Therefore, Mitsubishi recommends setting these low-order bits to “0016”
whenever possible because this helps to increase the execution speed of program.

(2) Mitsubishi recommends locating 16-bit data at even address boundaries whenever possible because
this is effective for increasing the program execution speed. If 16-bit data are located at odd address
boundaries, 2 bus cycles need to be generated for accessing this data, resulting in a reduced program
execution speed.

4.3.4 Performing arithmetic operations in decimal
(1) Arithmetic operations can be performed in decimal by setting flag D to “1.” However, decimal operations

can be performed only by the following 4 instructions:
• ADC
• ADCB
• SBC
• SBCB

(2) Pay attention to the flag behavior when performing decimal operations. Although the results of decimal
operations are reflected correctly in flag C, the results are not reflected in any of flags Z, N, and V.

Appendix 1. 7900 Series machine instructions
Appendix 2. Hexadecimal instruction code tables

APPENDIX

Appendix 1. 7900 Series machine instructions

APPENDIX
Appendix 1. 7900 Series machine instructions

APPENDIX

7900 Series Software Manual5-2 7900 Series Software Manual 5-3

IMP
IMM
A
DIR
DIR, X
DIR, Y
(DIR)
(DIR, X)
(DIR), Y
L(DIR)
L(DIR), Y
ABS
ABS, X
ABS, Y
ABL
ABL, X
(ABS)
L(ABS)
(ABS, X)
STK
REL
DIR, b, R
ABS, b, R
SR
(SR), Y

BLK
Multiplied
accumulation
op
n
#
C
Z
I
D
x
m
V
N
IPL
+
–
✕

÷

∨
∀
| |

→
←
⇔
Acc
AccH

AccL

A
AH

AL

B
BH

BL

E
EH

EL

X
XH

XL

Y
YH

YL

S
REL
PC
PCH

PCL

PG
DT
DPR0
DPR0H

DPR0L

DPRn
DPRnH

DPRnL

PS
PSH

PSL

PSL(bit n)
M
M(S)

M(bit n)
Mn
IMM
IMMn
IMMH

IMML

ADH

ADM

ADL

EAR
EARH

EARL

imm
immn

dd
i
i1, i2
source
dest

SymbolDescription Description

Implied addressing mode
Immediate addressing mode
Accumulator addressing mode
Direct addressing mode
Direct indexed X addressing mode
Direct indexed Y addressing mode
Direct indirect addressing mode
Direct indexed X indirect addressing mode
Direct indirect indexed Y addressing mode
Direct indirect long addressing mode
Direct indirect long indexed Y addressing mode
Absolute addressing mode
Absolute indexed X addressing mode
Absolute indexed Y addressing mode
Absolute long addressing mode
Absolute long indexed X addressing mode
Absolute indirect addressing mode
Absolute indirect long addressing mode
Absolute indexed X indirect addressing mode
Stack addressing mode
Relative addressing mode
Direct bit relative addressing mode
Absolute bit relative addressing mode
Stack pointer relative addressing mode
Stack pointer relative indirect indexed Y addressing
mode
Block transfer addressing mode
Multiplied accumulation addressing mode

Instruction code (Op code)
Number of cycles
Number of bytes
Carry flag
Zero flag
Interrupt disable flag
Decimal operation mode flag
Index register length selection flag
Data length selection flag
Overflow flag
Negative flag
Processor interrupt priority level
Addition
Subtraction
Multiplication
Division
Logical AND
Logical OR
Logical exclusive OR
Absolute value
Negation
Movement to the arrow direction
Movement to the arrow direction
Exchange
Accumulator
Accumulator’s high-order 8 bits
Accumulator’s low-order 8 bits
Accumulator A
Accumulator A’s high-order 8 bits
Accumulator A’s low-order 8 bits
Accumulator B
Accumulator B’s high-order 8 bits
Accumulator B’s low-order 8 bits

Accumulator E
Accumulator E’s high-order 16 bits (Accumulator B)
Accumulator E’s low-order 16 bits (Accumulator A)
Index register X
Index register X’s high-order 8 bits
Index register X’s low-order 8 bits
Index register Y
Index register Y’s high-order 8 bits
Index register Y’s low-order 8 bits
Stack pointer
Relative address
Program counter
Program counter’s high-order 8 bits
Program counter’s low-order 8 bits
Program bank register
Data back register
Direct page register 0
Direct page register 0’s high-order 8 bits
Direct page register 0’s low-order 8 bits
Direct page register n
Direct page register n’s high-order 8 bits
Direct page register n’s low-order 8 bits
Processor status register
Processor status register’s high-order 8 bits
Processor status register’s low-order 8 bits
nth bit in processor status register
Contents of memory
Contents of memory at address indicated by stack
pointer
nth bit of memory
n-bit memory’s address or contents
Immediate value (8 bits or 16 bits)
n-bit immediate value
16-bit immediate value’s high-order 8 bits
16-bit immediate value’s low-order 8 bits
Value of 24-bit address’s high-order 8 bits (A23–A16)
Value of 24-bit address’s middle-order 8 bits (A15–A8)
Value of 24-bit address’s low-order 8 bits (A7–A0)
Effective address (16 bits)
Effective address’s high-order 8 bits
Effective address’s low-order 8 bits
8-bit immediate value
n-bit immediate value
Displacement for DPR (8 bits or 16 bits)
Number of transfer bytes, rotation or repeated operations
Number of registers pushed or pulled
Operand to specify transfer source
Operand to specify transfer destination

SymbolAppendix 1. 7900 Series machine instructions

[How to use this table]
● The corresponding op code, the number of execution cycles, and the number of instruction bytes are

indicated for each addressing mode of each instruction.
● A flag affected by the operation result is also indicated.
● For symbols used in this table, refer to the table on the next page. Also, refer to “Notes for machine

instruction table” on pages 5-42 and 5-43.
● The operation length of an instruction of which column “Operation length (Bit)” includes “16/8” depends

on the setting of flag m or x.

∨

7900 Series Software Manual 5-5

Appendix 1. 7900 Series machine instructions

APPENDIX

L(DIR), Y

Appendix 1. 7900 Series machine instructions

APPENDIX

7900 Series Software Manual5-4

Function Operation
length (Bit)

Addressing Modes

op n #
IMP IMM A DIR DIR, X DIR, Y (DIR) (DIR, X) (DIR), YSymbol L(DIR)

op n #op n #op n # op n # op n # op n # op n #op n #op n #op n #
ABS

op n # op n #
ABS, X

op n #
ABS, Y

op n #
ABL

op n #
ABL, X

op n #
(ABS)

op n #
L(ABS)

op n #
(ABS, X)

op n #
STK

op n #
REL

op n #
DIR, b, R

op n #
ABS, b, R

op n #
SR

op n #
(SR), Y

op n #
BLK

op n #
MAA 10 9 8 7 6 5 4 3 2 1 0

 IPL N V m x D I Z C

Addressing Modes Processor Status register

21 12 3
99

21 7 4
9E

21 8 4
96

21 8 5
9C

21 9 5
9D

21 8 3
93

21 11 3
94

11 9 3
29

2E 3 3 2F 4 3 11 5 4
26

11 6 5
2D

11 5 5
2C

11 5 3
93

11 8 3
24

91 9 3
29

81 4 4
2E

81 5 4
2F

91 5 4
26

91 6 5
2D

91 5 5
2C

91 5 3
23

91 8 3
24

• • • 0 V • • • • Z 0

• • • N V • • • • Z C

• • • N V • • • • Z C

• • • N V • • • • Z C

21 8 4
9F

• • • N V • • • • Z C21 10 3
89

21 5 4
8E

21 6 4
8F

21 6 4
86

21 7 5
8D

21 6 5
8C

21 6 3
83

21 9 3
84

 A1 12 3
89

A1 7 4
8E

A1 8 4
8F

A1 8 4
86

A1 9 5
8D

A1 8 5
8C

A1 8 3
83

A1 11 3
84

• • • 0 V • • • • Z 0

• • • N V • • • • Z C

7900 Series Machine Instructions

Acc← | Acc |ABS
(Note 1)

E1 3 1

81 4 2
E1

31 4 6
1C

21 7 3
9A

21 8 3
9B

21 9 3
90

21 10 3
91

21 10 3
98

21 11 3
92

11 7 3
21

11 6 3
20

2B 4 226 1 2 2A 3 2 11 7 3
28

11 8 3
22

91 7 3
21

91 6 3
20

81 5 3
2B

81 2 3
26

81 4 3
2A

91 7 3
28

 91 8 3
22

29 1 2

81 2 3
29

16/8

32

16/8

8

16/8 21 8 3
81

21 7 3
80

21 6 3
8B

31 3 3
87

21 5 3
8A

21 8 3
88

21 9 3
82

A1 10 3
81

A1 9 3
80

A1 8 3
8B

B1 3 3
87

A1 7 3
8A

A1 10 3
88

 A1 11 3
82

Acc←Acc + M + CADC
(Notes 1 and
2)

E← | E |ABSD

AccL←AccL + IMM8 + CADCB
(Note 1)

31 5 2
90

31 3 3
1A

B1 3 3
1A

32

8

AccL←AccL + IMM8

E←E + M32 + C

ADD
(Notes 1 and
2)

ADDB
(Note 1)

Acc←Acc + M

ADCD

• • • N V • • • • Z C

11 12 3
99

9E 6 3 9F 7 3 11 8 4
96

11 9 5
9D

11 8 5
9C

11 8 3
93

11 11 3
94

• • • N V • • • • Z C

51 7 5
07

• • • N V • • • • Z C

51 7 5
06

51 10 8
87

• • • N V • • • • Z C

• • • N V • • • • Z CS←S + IMM8ADDS

M8←M8 + IMM8ADDMB

M←M + IMM

E←E + M32ADDD

ADDM
(Note 3)

M32←M32 + IMM32ADDMD

11 10 3
91

11 9 3
90

9B 7 22D 3 5

51 7 4
03

11 10 3
98

11 11 3
92

51 7 4
02

51 10 7
83

31 2 3
0A

9A 6 2

• • • N V • • • • Z C

• • • N V • • • • Z CY←Y + IMM (IMM = 0 to 31)

ADDX

ADDY
(Note 4)

X←X + IMM (IMM = 0 to 31) 01 2 2

01 2 2
20
+

 imm

32

16/8

8

32

16

16/8

16/8

7900 Series Software Manual 5-7

Appendix 1. 7900 Series machine instructions

APPENDIX

L(DIR), Y

Appendix 1. 7900 Series machine instructions

APPENDIX

7900 Series Software Manual5-6

Function Operation
length (Bit)

Addressing Modes

op n #
IMP IMM A DIR DIR, X DIR, Y (DIR) (DIR, X) (DIR), YSymbol L(DIR)

op n #op n #op n # op n # op n # op n # op n #op n #op n #op n #
ABS

op n # op n #
ABS, X

op n #
ABS, Y

op n #
ABL

op n #
ABL, X

op n #
(ABS)

op n #
L(ABS)

op n #
(ABS, X)

op n #
STK

op n #
REL

op n #
DIR, b, R

op n #
ABS, b, R

op n #
SR

op n #
(SR), Y

op n #
BLK

op n #
MAA 10 9 8 7 6 5 4 3 2 1 0

 IPL N V m x D I Z C

Addressing Modes Processor Status register

 → b15 … b0 → C

 → b7 … b0 → C

 → b15 … b0 → C

 → b7 … b0 → C

C ← b15 … b0 ← 0

C ← b7 … b0 ← 0

C ← b15 … b0 ← 0

C ← b7 … b0 ← 0

Arithmetic shift to the right by n bits
(n = 0 to 15)

m = 0

m = 1

Arithmetic shift to the right by 1 bit
m = 0

Acc or M16

m = 1
AccL or M8

Arithmetic shift to the left by n
bits (n = 0 to 31)

E

Arithmetic shift to the left by n
bits (n = 0 to 15)
m = 0

A

m = 1
AL

Arithmetic shift to the left by 1 bit

m = 0
Acc or M16

m = 1
AccL or M8

• • • N • • • • • Z •11 9 3
 69

6E 3 3 6F 4 3 11 5 4
66

11 6 5
 6D

11 5 5
 6C

11 5 3
63

11 8 3
 64

91 9 3
69

81 4 4
6E

81 5 4
6F

91 5 4
66

91 6 5
6D

91 5 5
6C

91 5 3
63

91 8 3
64

21 7 4
0E

21 8 4
0F

• • • N • • • • • Z C

• • • N • • • • • Z •

• • • N • • • • • Z •

• • • N • • • • • Z •

• • • N • • • • • Z C

• • • N • • • • • Z •

51 7 5
67

51 7 5
66

 51 10 8
E7

ASL
(Note 1)

M32←M32 IMM32

ASL #n
(Note 4)

ANDMD

M←M IMMANDM
(Note 3)

AccL←AccL IMM8ANDB
(Note 1)

M8←M8 IMM8ANDMB

81 4 3
6A

Acc←Acc M 11 7 3
61

11 6 3
60

 66 1 2 11 7 3
68

11 8 3
62

91 7 3
61

91 6 3
60

81 5 3
6B

81 2 3
66

91 7 3
68

AND
(Notes 1 and
2)

91 8 3
62

 6A 3 2 6B 4 2

 23 1 2

81 2 3
23

51 7 4
63

51 7 4
62

51 10 7
E3

03 1 1

81 2 2
03

21 7 3
0A

21 8 3
0B

C1 6 2
40 +
+ imm

 imm

• • • N • • • • • Z C21 7 4
4E

21 8 4
4F

• • • N • • • • • Z CASLD #n
(Note 4)

64 1 1 21 7 3
4A

21 8 3
4B

81 2 2
64

ASR
(Note 1)

D1 8 2
40 +
+ imm

 immC ← b31 … b0 ← 0

• • • N • • • • • Z CASR #n
(Note 4)

C1 6 2
80 +
+ imm

 imm

16/8

8

16/8

8

32

16/8

16/8

32

16/8

16/8

∨

∨

∨

∨

∨

A

AL

7900 Series Software Manual 5-9

Appendix 1. 7900 Series machine instructions

APPENDIX

L(DIR), Y

Appendix 1. 7900 Series machine instructions

APPENDIX

7900 Series Software Manual5-8

Function Operation
length (Bit)

Addressing Modes

op n #
IMP IMM A DIR DIR, X DIR, Y (DIR) (DIR, X) (DIR), YSymbol L(DIR)

op n #op n #op n # op n # op n # op n # op n #op n #op n #op n #
ABS

op n # op n #
ABS, X

op n #
ABS, Y

op n #
ABL

op n #
ABL, X

op n #
(ABS)

op n #
L(ABS)

op n #
(ABS, X)

op n #
STK

op n #
REL

op n #
DIR, b, R

op n #
ABS, b, R

op n #
SR

op n #
(SR), Y

op n #
BLK

op n #
MAA 10 9 8 7 6 5 4 3 2 1 0

 IPL N V m x D I Z C

Addressing Modes Processor Status register

Arithmetic shift to the right by n bits
(n = 0 to 31)

• • • • • • • • • • •41 9 6
5E

41 9 5
5A

• • • • • • • • • • •57 8 552 8 4

41 9 6
4E

41 9 5
4A

• • • • • • • • • • •

47 8 542 8 4

90 6 2

B0 6 2 • • • • • • • • • • •

F0 6 2

• • • N • • • • • Z C

• • • • • • • • • • •

• • • • • • • • • • •

• • • • • • • • • • •

if C = 0
then PC←PC + 2 + REL (–128 to
+127)

BCC

if M(bit n) = 0
then PC←PC + cnt + REL (–128
to +127)
(cnt: Number of bytes of instruction)

BBC
(Note 3)

ASRD #n
(Note 4)

if M8(bit n) = 0
then PC←PC + cnt + REL (–128
to +127)
(cnt: Number of bytes of instruction)

BBCB

if M(bit n) = 1
then PC←PC + cnt + REL (–128
to +127)
(cnt: Number of bytes of instruction)

BBS
(Note 3)

if M8(bit n) = 1
then PC←PC+cnt+REL (–128 to
+127)
(cnt: Number of bytes of instruction)

BBSB

if C = 1
then PC←PC + 2 + REL (–128 to
+127)

BCS

if Z = 1
then PC←PC + 2 + REL (–128 to
+127)

BEQ

D1 8 2
80 +
+ imm

 imm

• • • • • • • • • • •

• • • • • • • • • • •

C0 6 2

80 6 2

40 6 2 • • • • • • • • • • •

• • • • • • • • • • •A0 6 2

• • • • • • • • • • •60 6 2

BGE

BGT

BGTU

BLE

BLEU

if Z = 0 and N∀V = 0
then PC←PC + 2 + REL (–128 to
+127)

if C = 1 and Z = 0
then PC←PC + 2 + REL (–128 to
+127)

• • • • • • • • • • •E0 6 2BLT

32

16/8

8

16/8

8

–

–

–

–

–

–

–

–

–

if N∀V = 0
then PC←PC + 2 + REL (–128 to
+127)

if Z = 1 or N∀V = 1
then PC←PC + 2 + REL (–128 to
+127)

if C = 0 or Z = 1
then PC←PC + 2 + REL(–128 to
+127)

if N∀V = 1
then PC←PC + 2 + REL (–128 to
+127)

E
 → b31 … b0 ← C

7900 Series Software Manual 5-11

Appendix 1. 7900 Series machine instructions

APPENDIX

L(DIR), Y

Appendix 1. 7900 Series machine instructions

APPENDIX

7900 Series Software Manual5-10

Function Operation
length (Bit)

Addressing Modes

op n #
IMP IMM A DIR DIR, X DIR, Y (DIR) (DIR, X) (DIR), YSymbol L(DIR)

op n #op n #op n # op n # op n # op n # op n #op n #op n #op n #
ABS

op n # op n #
ABS, X

op n #
ABS, Y

op n #
ABL

op n #
ABL, X

op n #
(ABS)

op n #
L(ABS)

op n #
(ABS, X)

op n #
STK

op n #
REL

op n #
DIR, b, R

op n #
ABS, b, R

op n #
SR

op n #
(SR), Y

op n #
BLK

op n #
MAA 10 9 8 7 6 5 4 3 2 1 0

 IPL N V m x D I Z C

Addressing Modes Processor Status register

• • • • • • • • • • •

D0 6 2 • • • • • • • • • • •

30 6 2

10 6 2 • • • • • • • • • • •

BMI

BNE

BPL

• • • • • • • • • • •

A7 5 3

20 5 2

• • • • • • • • 1 • •

50 6 2 • • • • • • • • • • •

70 6 2 • • • • • • • • • • •

 71 10 5
E
+
n

 71 10 5
C0
+
n

• • • • • • • • • • •

• • • • • • • • • • •

• • • • • • • • • • •

 F8 7 2
|

FF

PC←PC + cn t + REL
(BRA:–128 to +127,
BRAL: –32768 to +32767)
(cnt: Number of bytes of instruction)
PG←PG + 1
(When carry occurs)
PG←PG – 1
(When borrow occurs)

BRA/BRAL
(Note 5)

PC←PC + 2
M(S)←PG
S←S – 1
M(S)←PCH

S←S – 1
M(S)←PCL
S←S – 1
M(S)←PSH

S←S – 1
M(S)←PSL

S←S – 1
I←1
PCL←ADL

PCH←ADM

PG←0016 or FF16

BRK
(Note 6)

 00 15 2
74

BVC

BVS

BSR

BSS
(Note 7)

BSC
(Note 7)

 01 7 3
A0
+
n

 71 11 4
A0
+
n

 01 7 3
80
+
n

 71 11 4
80
+
n

(S)←PC
PC←PC + 2 + REL (–1024 to
+1023)

–

–

–

–

–

16/8

–

16/8

–

–

if N = 1
then PC←PC + 2 + REL (–128 to
+127)

if Z = 0
then PC←PC + 2 + REL (–128 to
+127)

if N = 0
then PC←PC + 2 + REL (–128 to
+127)

if A(bit n) or M(bit n) = 0
(n = 0 to 15), then PC←PC + cnt +
REL (–128 to +127)
(cnt: Number of bytes of instruction)

if A(bit n) or M(bit n) = 1 (n = 0 to
15), then PC←PC + cnt + REL
(–128 to +127)
(cnt: Number of bytes of instruction)

if V = 0
then PC←PC + 2 + REL (–128 to
+127)

if V = 1
then PC←PC + 2 + REL (–128 to
+127)

7900 Series Software Manual 5-13

Appendix 1. 7900 Series machine instructions

APPENDIX

L(DIR), Y

Appendix 1. 7900 Series machine instructions

APPENDIX

7900 Series Software Manual5-12

Function Operation
length (Bit)

Addressing Modes

op n #
IMP IMM A DIR DIR, X DIR, Y (DIR) (DIR, X) (DIR), YSymbol L(DIR)

op n #op n #op n # op n # op n # op n # op n #op n #op n #op n #
ABS

op n # op n #
ABS, X

op n #
ABS, Y

op n #
ABL

op n #
ABL, X

op n #
(ABS)

op n #
L(ABS)

op n #
(ABS, X)

op n #
STK

op n #
REL

op n #
DIR, b, R

op n #
ABS, b, R

op n #
SR

op n #
(SR), Y

op n #
BLK

op n #
MAA 10 9 8 7 6 5 4 3 2 1 0

 IPL N V m x D I Z C

Addressing Modes Processor Status register

• • • • • • • • • • 0

• • • • • • • • 0 • •

• • • • • 0 • • • • •

• • • N V • • • • Z C

• • • N V • • • • Z C

• • •

• • • 0 • • • • • 1 •

• • • 0 • • • • • 1 •

C←0CLC

I←0CLI

m←0CLM 45 3 1

14 1 1

15 3 1

CBNE
(Notes 1 and
3)

CBNEB
(Note 1)

 B6 6 3 41 9 5
7A

 81 7 4
B6

 B2 6 3 72 8 4

 81 7 4
B2

PSL(bit n)←0
(n = 0 to 7. Multiple bits can
be specified.)

CLP 98 4 2

Acc←0CLR
(Note 1)

AccL←0016CLRB
(Note 1)

 54 1 1

 81 2 2
 54

 44 1 1

 81 2 2
 44

• • • 0 • • • • • 1 •

• • • 0 • • • • • 1 •

 D7 5 3

 C7 5 3

• • • • • • • • • • •

• • • • • • • • • • •

X←0CLRX

Y←0CLRY

 E4 1 1

 F4 1 1

M←0CLRM

M8←0016CLRMB

 D2 5 2

 C2 5 2

• • • N V • • • • Z C

• • • N V • • • • Z C

 A6 6 3 41 9 5
6A

 81 7 4
A6

CBEQ
(Notes 1 and
3)

CBEQB
(Note 1)

 A2 6 3 62 8 4

 81 7 4
A2

16/8

8

16/8

8

–

–

–

–

16/8

8

16/8

8

16/8

16/8

if Acc = IMM or M = IMM
then PC←PC + cnt + REL(–128 to
+127)
(cnt: Number of bytes of instruction)

if AccL = IMM8 or M8 = IMM8
then PC←PC + cnt + REL (–128 to
+127)
(cnt: Number of bytes of instruction)

if Acc ≠ IMM or M ≠ IMM
then PC←PC + cnt + REL (–128 to
+127)
(cnt: Number of bytes of instruction)

if AccL ≠ IMM8 or M8 ≠ IMM8
then PC←PC+cnt+REL(–128 to
+127)
(cnt: Number of bytes of instruction)

Specified flag
becomes “0.”

7900 Series Software Manual 5-15

Appendix 1. 7900 Series machine instructions

APPENDIX

L(DIR), Y

Appendix 1. 7900 Series machine instructions

APPENDIX

7900 Series Software Manual5-14

Function Operation
length (Bit)

Addressing Modes

op n #
IMP IMM A DIR DIR, X DIR, Y (DIR) (DIR, X) (DIR), YSymbol L(DIR)

op n #op n #op n # op n # op n # op n # op n #op n #op n #op n #
ABS

op n # op n #
ABS, X

op n #
ABS, Y

op n #
ABL

op n #
ABL, X

op n #
(ABS)

op n #
L(ABS)

op n #
(ABS, X)

op n #
STK

op n #
REL

op n #
DIR, b, R

op n #
ABS, b, R

op n #
SR

op n #
(SR), Y

op n #
BLK

op n #
MAA 10 9 8 7 6 5 4 3 2 1 0

 IPL N V m x D I Z C

Addressing Modes Processor Status register

11 5 4
46

• • • • 0 • • • • • •

• • • N V • • • • Z C11 9 3
49

91 9 3
49

11 6 5
4D

 11 8 3
 44

91 8 3
 44

91 5 3
43

91 5 4
46

91 5 5
4C

81 5 4
4F

4F 4 34E 3 3

81 4 4
4E

11 5 5
4C

91 6 5
4D

 11 5 3
43

• • • N V • • • • Z C

• • • N V • • • • Z C

• • • N V • • • • Z C

• • • N V • • • • Z C

• • • N V • • • • Z C

11 8 4
B6

11 12 3
B9

11 9 5
BD

 11 11 3
B4

BF 7 3BE 6 3 11 8 5
 BC

 11 8 3
B3

51 5 5
27

51 5 5
26

51 7 8
A7

41 4 4
2E

• • • N V • • • • Z C

 41 4 4
3E

• • • N V • • • • Z C

V←0CLV 65 1 1

Acc – MCMP
(Notes 1 and
2)

46 1 2 4A 3 2

81 4 3
4A

4B 4 2

81 5 3
4B

11 6 3
40

91 6 3
40

11 7 3
41

91 7 3
41

11 7 3
48

91 7 3
48

11 8 3
42

91 8 3
42

81 2 3
46

AccL – IMM8CMPB
(Note 1)

E – IMM32CMPD

M – IMMCMPM
(Note 3)

M8 – IMM8CMPMB

M32 – IMM32CMPMD

 38 1 2

81 2 3
38

3C 3 5 BA 6 2 BB 7 2 11 9 3
B0

11 10 3
B1

11 10 3
 B8

11 11 3
B2

51 5 4
23

51 5 4
22

51 7 7
A3

X – MCPX
(Note 8)

E6 1 2 22 3 2

Y – MCPY
(Note 8)

F6 1 2 32 3 2

• • • N • • • • • Z •97 6 3 41 8 4
9F

• • • N • • • • • Z •

• • • N • • • • • Z •

• • • N V • • • I Z C21 21 3
E9

21 17 4
EF

21 17 4
E6

21 18 5
ED

21 17 3
E3

21 20 3
E4

21 16 4
EE

21 17 5
EC

• • • • • • • • • • • D1 11 5
E0
+

 imm

Acc←Acc – 1
or
M←M – 1

DEC
(Note 1)

B3 1 1 41 8 3
9B

81 2 2
B3

X←X – 1DEX E3 1 1

92 6 2

M←M – IMM(IMM = 0 to 31)
if M ≠ 0, then PC←PC + cnt + REL
(–128 to +127)
(cnt: Number of bytes of instruction)

DEBNE
(Note 4)

 F3 1 1Y←Y – 1DEY

31 15 3
E7

21 16 3
EA

21 17 3
EB

21 18 3
E0

21 19 3
E1

 21 19 3
E8

21 20 3
E2

A (quotient) ← (B, A) ÷ M
B (remainder)

DIV
(Notes 2, 9,
and 10)

 C1 12 4
A0
+

 imm

–

16/8

8

32

16/8

8

32

16/8

16/8

16/8

16/8

16/8

16/8

16/8

7900 Series Software Manual 5-17

Appendix 1. 7900 Series machine instructions

APPENDIX

L(DIR), Y

Appendix 1. 7900 Series machine instructions

APPENDIX

7900 Series Software Manual5-16

Function Operation
length (Bit)

Addressing Modes

op n #
IMP IMM A DIR DIR, X DIR, Y (DIR) (DIR, X) (DIR), YSymbol L(DIR)

op n #op n #op n # op n # op n # op n # op n #op n #op n #op n #
ABS

op n # op n #
ABS, X

op n #
ABS, Y

op n #
ABL

op n #
ABL, X

op n #
(ABS)

op n #
L(ABS)

op n #
(ABS, X)

op n #
STK

op n #
REL

op n #
DIR, b, R

op n #
ABS, b, R

op n #
SR

op n #
(SR), Y

op n #
BLK

op n #
MAA 10 9 8 7 6 5 4 3 2 1 0

 IPL N V m x D I Z C

Addressing Modes Processor Status register

• • • N V • • • I Z C21 28 3
F9

21 24 4
F6

21 25 5
FD

21 24 3
F3

21 27 3
F4

21 23 4
FE

21 24 5
FC

21 24 4
FF

• • • • • • • • • • •

• • • • • • • • • • •

A (quotient) ←(B, A) ÷ M
B (remainder) (Signed)

DIVS
(Notes 2, 9,
and 10)

31 22 3
F7

21 23 3
FA

21 24 3
FB

21 25 3
F0

21 26 3
F1

21 26 3
F8

21 27 3
F2

X←X – IMM (IMM = 0 to 31)
if X ≠ 0, then PC←PC + cnt + REL
(–128 to +127)
(cnt: Number of bytes of instruction)

DXBNE
(Note 4)

Y←Y – IMM (IMM = 0 to 31)
if Y≠0, then PC←PC + cnt + REL
(–128 to +127)
(cnt: Number of bytes of instruction)

DYBNE
(Note 4)

01 7 3
C0

 +
 imm

01 7 3
E0

 +
 imm

• • • N • • • • • Z •

• • • N • • • • • Z •

• • • N • • • • • Z •

• • • N • • • • • Z •

51 7 5
77

51 7 5
76

51 10 8
F7

 11 9 3
79

• • • N • • • • • Z •7E 3 3 7F 4 3 11 5 4
76

11 5 5
 7C

11 6 5
 7D

 11 5 3
73

11 8 3
74

91 9 3
79

81 4 4
7E

81 5 4
7F

91 5 4
76

91 5 5
7C

91 6 5
7D

91 5 3
73

91 8 3
 74

• • • 0 • • • • • Z •

• • • N • • • • • Z •

• • • N • • • • • Z •

• • • 0 • • • • • Z •

AccL←AccL∀IMMBEORB
(Note 1)

M←M∀IMMEORM
(Note 3)

M8←M8∀IMM8EORMB

M32←M32∀IMM32EORMD

33 1 2

81 2 3
33

51 7 4
73

51 7 4
72

51 10 7
F3

91 8 3
72

11 8 3
 72

Acc←Acc∀MEOR
(Notes 1 and
2)

76 1 2 7A 3 2 7B 4 2 11 6 3
70

11 7 3
 71

11 7 3
78

81 4 3
 7A

 81 5 3
7B

91 6 3
70

91 7 3
71

91 7 3
78

81 2 3
76

EXTZD

EXTZ
(Note 1)

81 2 2
34

34 1 1

00000000
b15 b8 b7 b0

Acc←AccL (Extension sign)
(Bit 7 of AccL = 0)

EXTS
(Note 1)

(Bit 7 of AccL = 1)

 35 1 1

00000000 0

b15 b7 b0

11111111 1

b15 b7 b0

81 2 2
35

EXTSD 31 5 2
B0

31 3 2
A0

E←EL(= A) (Extension sign)
(Bit 15 of A = 0)

(Bit 15 of A = 1)

00000000 0

b15 b0 b15 b0

11111111 1

b15 b0 b15 b0

00000000
b15 b8 b7 b0

EH(B) EL(A)

EH(B) EL(A)

EH(B) EL(A)

16/8

16/8

16/8

16/8

8

16/8

8

32

16

32

16

32

Acc←AccL (Extension zero)

E←EL(= A) (Extension zero)

AccH AccL

AccH AccL

AccH AccL

7900 Series Software Manual 5-19

Appendix 1. 7900 Series machine instructions

APPENDIX

L(DIR), Y

Appendix 1. 7900 Series machine instructions

APPENDIX

7900 Series Software Manual5-18

Function Operation
length (Bit)

Addressing Modes

op n #
IMP IMM A DIR DIR, X DIR, Y (DIR) (DIR, X) (DIR), YSymbol L(DIR)

op n #op n #op n # op n # op n # op n # op n #op n #op n #op n #
ABS

op n # op n #
ABS, X

op n #
ABS, Y

op n #
ABL

op n #
ABL, X

op n #
(ABS)

op n #
L(ABS)

op n #
(ABS, X)

op n #
STK

op n #
REL

op n #
DIR, b, R

op n #
ABS, b, R

op n #
SR

op n #
(SR), Y

op n #
BLK

op n #
MAA 10 9 8 7 6 5 4 3 2 1 0

 IPL N V m x D I Z C

Addressing Modes Processor Status register

• • • N • • • • • Z •41 8 4
 8F

• • • N • • • • • Z •

• • • N • • • • • Z •

• • • • • • • • • • •9C 4 3 AC 5 4 31 7 4
5C

31 9 4
5D

BC 7 3

87 6 3

9D 6 3 AD 7 4 BD 8 3 • • • • • • • • • • •

INC
(Note 1)

Acc←Acc + 1
or
M←M + 1

A3 1 1

81 2 2
A3

82 6 2 41 8 3
8B

C3 1 1

D3 1 1

INX X←X + 1

INY Y←Y + 1

JMP/JMPL When ABS specified
PCL←ADL

PCH←ADM

When ABL specified
PCL←ADL

PCH←ADM

PG←ADH

When (ABS) specified
PCL←(ADM, ADL)
PCH←(ADM, ADL + 1)

When L(ABS) specified
PCL←(ADM, ADL)
PCH←(ADM, ADL + 1)
PG←(ADM, ADL + 2)

When (ABS,X) specified
PCL←(ADM, ADL + X)
PCH←(ADM, ADL + X + 1)

When ABS specified
M(S)←PCH

S←S–1
M(S)←PCL

S←S–1
PCL←ADL

PCH←ADM

When ABL specified
M(S)←PG
S←S – 1
M(S)←PCH

S←S – 1
M(S)←PCL

S←S – 1
PCL←ADL

PCH←ADM

PG←ADH

When (ABS,X) specified
M(S)←PCH

S←S – 1
M(S)←PCL

S←S – 1
PCL←(ADM, ADL + X)
PCH←(ADM, ADL + X + 1)

JSR/JSRL

1F 4 3

81 5 4
1F

1E 3 3

81 4 4
 1E

 19 8 2

81 9 3
19

1D 5 4

81 6 5
1D

1C 4 4

81 5 5
1C

11 5 4
16

91 5 4
16

 11 8 3
14

91 8 3
14

11 5 3
13

91 5 3
13

• • • N • • • • • Z •

0F 4 30E 3 3 09 8 2 0D 5 40C 4 411 5 4
06

 11 8 3
04

11 5 3
03

• • • 0 • • • • • Z •

81 2 3
16

Acc←MLDA
(Notes 1 and
2)

1A 3 2

81 4 3
1A

 1B 4 2

81 5 3
1B

 11 6 3
10

91 6 3
10

 11 7 3
11

91 7 3
11

 18 6 2

81 7 3
18

 11 8 3
12

91 8 3
12

16 1 2

Acc←M8 (Extension zero)LDAB
(Note 1)

0A 3 2 0B 4 2 11 6 3
00

 11 7 3
 01

 08 6 2 11 8 3
02

28 1 2

81 5 5
0C

81 5 4
 0F

81 4 4
 0E

81 9 3
09

81 6 5
0D

91 5 4
06

91 8 3
04

91 5 3
03

81 7 3
08

91 7 3
01

81 2 3
28

81 4 3
0A

81 5 3
 0B

91 6 3
00

91 8 3
02

16/8

16/8

16/8

–

–

16/8

16

7900 Series Software Manual 5-21

Appendix 1. 7900 Series machine instructions

APPENDIX

L(DIR), Y

Appendix 1. 7900 Series machine instructions

APPENDIX

7900 Series Software Manual5-20

Function Operation
length (Bit)

Addressing Modes

op n #
IMP IMM A DIR DIR, X DIR, Y (DIR) (DIR, X) (DIR), YSymbol L(DIR)

op n #op n #op n # op n # op n # op n # op n #op n #op n #op n #
ABS

op n # op n #
ABS, X

op n #
ABS, Y

op n #
ABL

op n #
ABL, X

op n #
(ABS)

op n #
L(ABS)

op n #
(ABS, X)

op n #
STK

op n #
REL

op n #
DIR, b, R

op n #
ABS, b, R

op n #
SR

op n #
(SR), Y

op n #
BLK

op n #
MAA 10 9 8 7 6 5 4 3 2 1 0

 IPL N V m x D I Z C

Addressing Modes Processor Status register

0→ b15 … b0 →C

0→ b7 … b0 →C

0→ b15 … b0 →C

0→ b7 … b0 →C

Logical shift to the right by n bits (n =
0 to 15)

m = 0
A

m = 1
AL

Logical shift to the right by 1 bit

m = 0
Acc or M16

m = 1
AccL or M8

• • • • • • • • • • •

07 3 3 • • • N • • • • • Z •41 5 4
06

17 3 3 • • • N • • • • • Z •41 5 4
1F

8F 7 38E 6 389 11 2 8D 8 48C 7 411 8 4
86

 11 11 3
84

11 8 3
83

• • • N • • • • • Z •

• • • • • • • • • • •

• • • 0 • • • • • Z •

• • • 0 • • • • • Z •

DT←IMM8LDT 31 4 3
4A

X←MLDX
(Note 8)

C6 1 2 02 3 2 41 5 3
05

Y←MLDY
(Note 8)

 D6 1 2 12 3 2 41 5 3
1B

E←M32LDAD

LDD n
(Notes 11
and 12)

LDXB X←IMM8 (Extension zero)

8A 6 2 8B 7 2 11 9 3
80

 11 10 3
 81

 88 9 2 11 11 3
82

2C 3 5

B8 11 2
 ?0 + +
 2 i 2 i

B8 13 4
?0

27 1 2

DPRn←IMM16
(n = 0 to 3. Multiple DPRs can
be specified.)

LDYB Y←IMM8 (Extension zero) 37 1 2

 21 7 4
2E

• • • 0 • • • • • Z C21 8 4
2F

• • • 0 • • • • • Z C

• • • 0 • • • • • Z C

LSR
(Note 1)

 21 8 3
2B

43 1 1 21 7 3
2A

81 2 2
43

LSR #n
(Note 4)

LSRD #n
(Note 4)

C1 6 2
+

imm

D1 8 2
+

imm

32

16

8

16/8

16

16/8

16

16/8

16/8

32Logical shift to the right by n bits (n =
0 to 31)

E
0→ b31 … b0 →C

Destination

op n #
IMP IMM A DIRSymbol

op n #op n # op n #
DIR, X DIR, Y (DIR) (DIR, X) (DIR), Y L(DIR)

op n # op n # op n #op n #op n #op n # op n #

Function
Operation
length (Bit)

L(DIR), Y ABS
op n # op n #

ABS, X
op n #
ABS, Y

op n #
ABL

op n #
ABL, X

op n #
(ABS)

op n #
L(ABS)

op n #
(ABS, X)

op n #
STK

op n #
REL

op n #
DIR, b, R

op n #
ABS, b, R

op n #
SR

op n #
(SR), Y

op n #
BLK

op n #
MAA

 IPL N V m x D I Z C

Destination Processor Status register

10 9 8 7 6 5 4 3 2 1 0

Appendix 1. 7900 series machine instructions

APPENDIX
Appendix 1. 7900 series machine instructions

APPENDIX

7900 series Software Manual5-22 7900 series Software Manual 5-23

• • • • • • • • • • •

• • • • • • • • • • •

• • • • • • • • • • •

• • • • • • • • • • •

96 4 4 31 6 5
57

78 5 4

79 6 4

7C 5 5

B9 4 4 31 6 5
3B

68 5 4

69 6 4

6C 5 5

61 3 2
 30 + +
 + 4n 3n
 n

61 3 2
 70 + +
 + 5n 3n
 n

71 3 2
 70 + +
 + 6n 3n
 n

61 3 2
 B0 + +
 + 5n 4n
 n

61 3 2
 20 + +
 + 4n 3n
 n

61 3 2
 60 + +
 + 5n 3n
 n

71 3 2
 60 + +
 + 6n 3n
 n

61 3 2
 A0 + +
 + 5n 4n
 n

MOVR
(Notes 7 and
13)

MOVRB
(Note 7)

m = 0
M16(dest1) ←M16(source1)

M16(dest n)←M16(source n)

m = 1
M8(dest1) ←M8(source1)

M8(dest n)←M8(source n)

(n = 0 to 15)

M8(dest1) ←M8(source1)

M8(dest n)←M8(source n)

(n = to 15)

m = 0
M16(dest)←M16(source)

m = 1
M8(dest)←M8(source)

MOVM
(Note 2)

M8(dest)←M8(source)MOVMB

86 5 3 31 7 4
47

58 6 3

5C 6 4

5D 7 4

A9 5 3 31 7 4
3A

48 6 3

4C 6 4

4D 7 4

61 3 2
 10 + +
 + 5n 2n
 n

61 3 2
 50 + +
 + 6n 2n
 n

61 3 2
 90 + +
 + 6n 3n
 n

71 3 2
 10 + +
 + 6n 3n
 n

61 3 2
 00 + +
 + 5n 2n
 n

61 3 2
 40 + +
 + 6n 2n
 n

61 3 2
 80 + +
 + 6n 3n
 n

71 3 2
 00 + +
 + 6n 3n
 n

IMM

DIR

DIR, X

ABS

ABS, X

IMM

DIR

DIR, X

ABS

ABS, X

IMM

DIR

DIR, X

ABS

ABS, X

IMM

DIR

DIR, X

ABS

ABS, X

S
ou

rc
e

16/8

8

16/8

8

S
ou

rc
e

S
ou

rc
e

S
ou

rc
e

… …

… …

… …

7900 Series Software Manual 5-25

Appendix 1. 7900 Series machine instructions

APPENDIX

L(DIR), Y

Appendix 1. 7900 Series machine instructions

APPENDIX

7900 Series Software Manual5-24

Function Operation
length (Bit)

Addressing Modes

op n #
IMP IMM A DIR DIR, X DIR, Y (DIR) (DIR, X) (DIR), YSymbol L(DIR)

op n #op n #op n # op n # op n # op n # op n #op n #op n #op n #
ABS

op n # op n #
ABS, X

op n #
ABS, Y

op n #
ABL

op n #
ABL, X

op n #
(ABS)

op n #
L(ABS)

op n #
(ABS, X)

op n #
STK

op n #
REL

op n #
DIR, b, R

op n #
ABS, b, R

op n #
SR

op n #
(SR), Y

op n #
BLK

op n #
MAA 10 9 8 7 6 5 4 3 2 1 0

 IPL N V m x D I Z C

Addressing Modes Processor Status register

• • • • • • • • • • •

• • • N • • • • • Z 021 14 3
C9

21 9 4
CE

21 10 4
CF

21 10 4
C6

21 10 5
CC

21 11 5
CD

21 10 3
C3

21 13 3
C4

• • • N • • • • • Z 021 14 3
D9

21 9 4
 DE

 21 10 4
DF

21 10 4
D6

21 10 5
 DC

21 11 5
 DD

• • • • • • • • • • •

21 10 3
 D3

 21 13 3
 D4

31 5 4
 2B +
 5 i

31 9 4
 2A +
 5 i

• • • • • • • • • • •

• • • N V • • • • Z C

• • • N V • • • • Z C

MVP
(Note 16)

(B, A)←A ✕ MMPY
(Notes 2 and
14)

21 10 3
 CB

31 8 3
C7

21 9 3
CA

21 11 3
C0

21 12 3
C1

21 12 3
C8

21 13 3
C2

(B, A)←A ✕ M (Signed)MPYS
(Notes 2 and
14)

21 10 3
 DB

31 8 3
D7

21 9 3
DA

21 11 3
D0

21 12 3
D1

21 12 3
D8

21 13 3
D2

MVN
(Note 15)

PC←PC + 1

When catty occurs in PC
PG←PG + 1

NOP 74 1 1

Acc← –AccNEG
(Note 1)

E← –ENEGD

24 1 1

81 2 2
24

31 4 2
80

i: Number of transfer bytes
specified by accumulator A()

()

• • • • • • • • • • •31 5 4
 4C

• • • N • • • • • Z •

• • • N • • • • • Z •

51 7 5
 36

51 10 8
B7

• • • N • • • • • Z •11 9 3
 59

91 9 3
59

5E 3 3

81 4 4
5E

5F 4 3

81 5 4
5F

 11 5 4
56

91 5 4
56

11 5 5
 5C

91 5 5
5C

11 6 5
 5D

91 6 5
5D

11 8 3
 54

91 8 3
54

11 5 3
 53

91 5 3
53

• • • N • • • • • Z •

• • • N • • • • • Z •51 7 5
 37

M(S)←IMMH

S←S – 1
M(S)←IMML

S←S – 1

PEA

M8←M8∨IMM8ORAMB

M32←M32∨IMM32ORAMD

51 7 4
 32

51 10 7
B3

M←M∨IMMORAM
(Note 3)

56 1 2Acc←Acc∨MORA
(Notes 1 and
2)

81 2 3
56

5A 3 2

 81 4 3
5A

5B 4 2

81 5 3
5B

11 6 3
 50

91 6 3
50

11 7 3
51

91 7 3
51

11 7 3
 58

91 7 3
58

11 8 3
 52

91 8 3
52

AccL←AccL∨IMM8ORAB
(Note 1)

63 1 2

81 2 3
63

51 7 4
 33

• • • • • • • • • • •31 7 3
4B

M(S)←M((DPRn) + dd + 1)
S←S + 1
M(S)←M((DPRn)+dd)
S←S – 1 (n = 0 to 3)

PEI

16/8

16/8

16/8

16/8

16/8

32

–

16/8

8

16/8

8

32

16

16

i: Number of transfer bytes
specified by accumulator A

M(Y + k)←M(X + k)
k = 0 to i – 1

M(Y–k)←M(X–k)
k = 0 to i–1

7900 Series Software Manual 5-27

Appendix 1. 7900 Series machine instructions

APPENDIX

L(DIR), Y

Appendix 1. 7900 Series machine instructions

APPENDIX

7900 Series Software Manual5-26

Function Operation
length (Bit)

Addressing Modes

op n #
IMP IMM A DIR DIR, X DIR, Y (DIR) (DIR, X) (DIR), YSymbol L(DIR)

op n #op n #op n # op n # op n # op n # op n #op n #op n #op n #
ABS

op n # op n #
ABS, X

op n #
ABS, Y

op n #
ABL

op n #
ABL, X

op n #
(ABS)

op n #
L(ABS)

op n #
(ABS, X)

op n #
STK

op n #
REL

op n #
DIR, b, R

op n #
ABS, b, R

op n #
SR

op n #
(SR), Y

op n #
BLK

op n #
MAA 10 9 8 7 6 5 4 3 2 1 0

 IPL N V m x D I Z C

Addressing Modes Processor Status register

• • • • • • • • • • •31 6 4
 4D

• • • • • • • • • • • 85 4 1

• • • • • • • • • • •81 5 2
85

EAR←PC + IMM16
M(S)←EARH

S←S – 1
M(S)←EARL

S←S – 1

PER

m = 0
M(S)←AH

S←S – 1
M(S)←AL

S←S – 1

m = 1
M(S)←AL

S←S – 1

PHA

m = 0
M(S)←BH

S←S – 1
M(S)←BL

S←S – 1

m=1
M(S)←BL

S←S – 1

PHB

• • • • • • • • • • •83 4 1

 B8 12 2
 01
 0F

 B8 11 2
 01 +

| i
0F

• • • • • • • • • • •31 4 2
60

• • • • • • • • • • •

• • • • • • • • • • •

B8 14 4
 01

|
0F

 B8 11 2
 01 + +

| 3 i 2 i
 0F

M(S)←DPR0H

S←S – 1
M(S)←DPR0L

S←S – 1

PHD

PHD n
(Note 11)

M(S)←PG
S←S – 1

PHG

PHLD n
(Note 11)

M(S)←DPRnH

S←S – 1
M(S)←DPRnL

S←S – 1 (n = 0 to 3)

When multiple DPRs are
specified, the above
operations are repeated.

M(S)←DPRnH

S←S – 1
M(S)←DPRnL

S←S – 1
DPRn←IMM16 (n = 0 to 3)

When multiple DPRs are
specified, the above
operations are repeated.

• • • • • • • • • • •A5 4 1

• • • • • • • • • • •31 4 2
 40

M(S)←PSH

S←S – 1
M(S)←PSL

S←S – 1

PHP

M(S)←DT
S←S – 1

PHT

16

16/8

16/8

16

16

8

16

16

8

7900 Series Software Manual 5-29

Appendix 1. 7900 Series machine instructions

APPENDIX

L(DIR), Y

Appendix 1. 7900 Series machine instructions

APPENDIX

7900 Series Software Manual5-28

Function Operation
length (Bit)

Addressing Modes

op n #
IMP IMM A DIR DIR, X DIR, Y (DIR) (DIR, X) (DIR), YSymbol L(DIR)

op n #op n #op n # op n # op n # op n # op n #op n #op n #op n #
ABS

op n # op n #
ABS, X

op n #
ABS, Y

op n #
ABL

op n #
ABL, X

op n #
(ABS)

op n #
L(ABS)

op n #
(ABS, X)

op n #
STK

op n #
REL

op n #
DIR, b, R

op n #
ABS, b, R

op n #
SR

op n #
(SR), Y

op n #
BLK

op n #
MAA 10 9 8 7 6 5 4 3 2 1 0

 IPL N V m x D I Z C

Addressing Modes Processor Status register

E5 4 1 • • • • • • • • • • •

C5 4 1 • • • • • • • • • • •

• • • N • • • • • Z •95 4 1

x = 0
M(S)←XH

S←S – 1
M(S)←XL

S←S – 1

x = 1
M(S)←XL

S←S – 1

PHX

x = 0
M(S)←YH

S←S – 1
M(S)←YL

S←S – 1

x = 1
M(S)←YL

S←S – 1

PHY

m = 0
S←S + 1
AL←M(S)
S←S + 1
AH←M(S)

m = 1
S←S + 1
AL←M(S)

PLA

81 5 2
95

• • • N • • • • • Z •

93 5 1 • • • • • • • • • • •

77 11 2
 ?0

• • • • • • • • • • •

m = 0
S←S + 1
BL←M(S)
S←S + 1
BH←M(S)

m = 1
S←S + 1
BL←M(S)

PLB

S←S + 1
DPR0L←M(S)
S←S + 1
DPR0H←M(S)

PLD

PLD n
(Notes 11 and
12)

S←S + 1
DPRnL←M(S)
S←S + 1
DPRnH←M(S) (n = 0 to 3)

When multiple DPRs are specified,
the above operations are
repeated.

B5 5 1

31 6 2
50

• • • N • • • • • Z •

Value restored from
stack

77 8 2
 ?0 +

3 i

PLP S←S + 1
PSL←M(S)
S←S + 1
PSH←M(S)

PLT S←S + 1
DT←M(S)

16/8

16/8

16/8

16/8

16

16

16

8

7900 Series Software Manual 5-31

Appendix 1. 7900 Series machine instructions

APPENDIX

L(DIR), Y

Appendix 1. 7900 Series machine instructions

APPENDIX

7900 Series Software Manual5-30

Function Operation
length (Bit)

Addressing Modes

op n #
IMP IMM A DIR DIR, X DIR, Y (DIR) (DIR, X) (DIR), YSymbol L(DIR)

op n #op n #op n # op n # op n # op n # op n #op n #op n #op n #
ABS

op n # op n #
ABS, X

op n #
ABS, Y

op n #
ABL

op n #
ABL, X

op n #
(ABS)

op n #
L(ABS)

op n #
(ABS, X)

op n #
STK

op n #
REL

op n #
DIR, b, R

op n #
ABS, b, R

op n #
SR

op n #
(SR), Y

op n #
BLK

op n #
MAA 10 9 8 7 6 5 4 3 2 1 0

 IPL N V m x D I Z C

Addressing Modes Processor Status register

 ← b15 … b0 ←

 ← b7 … b0 ←

Rotate to the left by n bits

m = 0 (n = 0 to 65535)

A

m = 1 (n = 0 to 255)

AL

• • • N • • • • • Z •F5 4 1

• • • • • • • • • • •A8 11 2
 +

2i1 + i2

67 13 2
 +
3 i

When the contents of PS
is restored, this becomes
the value. In the other
cases, nothing changes.

x = 0
S←S + 1
YL←M(S)
S←S + 1
YH←M(S)

x = 1
S←S + 1
YL←M(S)

PLY

PSH
(Note 17)

M(S to S – i + 1)←A, B, X…
S←S – i
i: Number of bytes corresponding
 to register pushed on stack

PUL
(Note 18)

A, B, X…←M(S + 1 to S + i)
S←S + i
i: Number of bytes corresponding

to register restored from stack

D5 4 1 • • • N • • • • • Z •PLX x = 0
S←S + 1
XL←M(S)
S←S + 1
XH←M(S)

x = 1
S←S + 1
XL←M(S)

• • • • • • • • • • •

• • • N V • • • • Z C31 5 3
5A +
14 imm

RLA
(Note 3)

RMPA
(Note 19)

m = 0
Repeat

(B, A)←(B, A) + M(DT:X)✕
M(DT:Y) (Signed)

X←X + 2
Y←Y + 2
i←i – 1

Until i = 0

m = 1
Repeat

(BL, AL)←(BL, AL)+M(DT,X)
M(DT,Y) (Signed)

X←X + 1
Y←Y + 1
i←i – 1

Until i = 0

i: Numder of repetitions (0 to 255)

16/8

16/8

16/8

16/8

16/8

16/8

31 5 3
07 +

n

7900 Series Software Manual 5-33

Appendix 1. 7900 Series machine instructions

APPENDIX

L(DIR), Y

Appendix 1. 7900 Series machine instructions

APPENDIX

7900 Series Software Manual5-32

Function Operation
length (Bit)

Addressing Modes

op n #
IMP IMM A DIR DIR, X DIR, Y (DIR) (DIR, X) (DIR), YSymbol L(DIR)

op n #op n #op n # op n # op n # op n # op n #op n #op n #op n #
ABS

op n # op n #
ABS, X

op n #
ABS, Y

op n #
ABL

op n #
ABL, X

op n #
(ABS)

op n #
L(ABS)

op n #
(ABS, X)

op n #
STK

op n #
REL

op n #
DIR, b, R

op n #
ABS, b, R

op n #
SR

op n #
(SR), Y

op n #
BLK

op n #
MAA 10 9 8 7 6 5 4 3 2 1 0

 IPL N V m x D I Z C

Addressing Modes Processor Status register

Rotate to the right by n bits (n = 0 to
31)

E

Rotate to the right by n bits (n = 0 to
15)

m = 0
A

 → C → b15 … b0 →

m = 1
AL

 → C → b7 … b0 →

Rotate to the left by n bits (n = 0 to
31)

E
 ← b31 … b0 ← C ←

Rotate to the left by n bits (n = 0 to
15)
m = 0

A
 ← b15 … b0 ← C ←

m = 1
AL

 ← b7 … b0 ← C ←

Rotate to the right by 1 bit

m = 0
Acc or M16

 → C → b15 … b0 →

m = 1
AccL or M8

 → C → b7 … b0 →

• • • N • • • • • Z C

• • • N • • • • • Z C

21 7 4
1E

21 8 4
1F

21 7 4
3E

21 8 4
3F

• • • N • • • • • Z C

• • • N • • • • • Z C

• • • N • • • • • Z C

ROL
(Note 1)

21 7 3
1A

21 8 3
1B

21 7 3
3A

21 8 3
3B

Rotate to the left by 1 bit

m = 0
Acc or M16

 ← b15 … b0 ← C ←

m = 1
AccL or M8

 ← b7 … b0 ← C ←

ROR
(Note 1)

13 1 1

81 2 2
13

53 1 1

81 2 2
53

ROL #n
(Note 4)

ROLD #n
(Note 4)

ROR #n
(Note 4)

C1 6 2
 60 +
 + imm
 imm

D1 8 2
 60 +
 + imm
 imm

C1 6 2
 20 +
 + imm
 imm

• • • N • • • • • Z CRORD #n
(Note 4)

D1 8 2
20 +
 + imm
 imm

16/8

16/8

32

16/8

16/8

32

 → b31 … b0 → C →

7900 Series Software Manual 5-35

Appendix 1. 7900 Series machine instructions

APPENDIX

L(DIR), Y

Appendix 1. 7900 Series machine instructions

APPENDIX

7900 Series Software Manual5-34

Function Operation
length (Bit)

Addressing Modes

op n #
IMP IMM A DIR DIR, X DIR, Y (DIR) (DIR, X) (DIR), YSymbol L(DIR)

op n #op n #op n # op n # op n # op n # op n #op n #op n #op n #
ABS

op n # op n #
ABS, X

op n #
ABS, Y

op n #
ABL

op n #
ABL, X

op n #
(ABS)

op n #
L(ABS)

op n #
(ABS, X)

op n #
STK

op n #
REL

op n #
DIR, b, R

op n #
ABS, b, R

op n #
SR

op n #
(SR), Y

op n #
BLK

op n #
MAA 10 9 8 7 6 5 4 3 2 1 0

 IPL N V m x D I Z C

Addressing Modes Processor Status register

Acc←Acc – M – C

• • • • • • • • • • •

Value restored from
stack

• • • • • • • • • • •

77 12 2
 ?C +

3 i

77 15 2
?C

• • • • • • • • • • •

• • • N V • • • • Z C21 10 3
 A9

 A1 12 3
A9

21 5 4
AE

A1 7 4
AE

A1 8 4
AF

A1 8 4
A6

A1 9 5
AD

A1 11 3
A4

A1 8 3
A3

A1 8 5
AC

21 6 4
AF

21 6 4
A6

21 7 5
AD

21 6 5
AC

21 6 3
A3

21 9 3
A4

• • • • • • • • • • •

• • • N V • • • • Z C

77 11 2
 ?8 +

3 i

77 14 2
 ?8

S←S + 1
PSL←M(S)
S←S + 1
PSH←M(S)
S←S + 1
PCL←M(S)
S←S + 1
PCH←M(S)
S←S + 1
PG←M(S)

RTI F1 12 1

S←S + 1
PCL←M(S)
S←S + 1
PCH←M(S)
S←S + 1
PG←M(S)

RTL 94 10 1

RTLD n
(Notes 11 and
12)

S←S + 1
DPRnL←M(S)
S←S + 1
DPRnH←M(S)
S←S + 1
PCL←M(S)
S←S + 1
PCH←M(S)
S←S + 1
PG←M(S). (n = 0 to 3. Multiple DPRs
can be specified.)

B1 3 3
A7

S←S + 1
PCL←M(S)
S←S + 1
PCH←M(S)

RTS 84 7 1

SBC
(Notes 1 and
2)

31 3 3
A7

21 5 3
AA

A1 7 3
AA

21 6 3
AB

A1 8 3
AB

21 7 3
A0

A1 9 3
A0

21 8 3
A1

A1 10 3
A1

21 8 3
A8

A1 10 3
A8

21 9 3
A2

A1 11 3
A2

RTSD n
(Notes 11 and
12)

SBCB
(Note 1)

AccL←AccL – IMM8 – C

B1 3 3
1B

31 3 3
1B

S←S + 1
DPRnL←M(S)
S←S + 1
DPRnH←M(S)
S←S + 1
PCL←M(S)
S←S + 1
PCH←M(S), (n = 0 to 3. Multiple DPRs
can be specified.)

• • • • • • • • • • 1

• • • • • • • • 1 • •

• • • N V • • • • Z C21 12 3
 B9

21 7 4
BE

21 8 4
BF

21 8 4
B6

21 9 5
BD

21 8 5
BC

21 8 3
B3

21 11 3
B4

C←1SEC 04 1 1

I←1SEI 05 4 1

SBCD E←E – M32 – C 31 4 6
1D

21 7 3
BA

21 8 3
BB

21 9 3
B0

21 10 3
B1

21 10 3
B8

21 11 3
B2

–

–

16

–

16

16/8

8

32

–

–

7900 Series Software Manual 5-37

Appendix 1. 7900 Series machine instructions

APPENDIX

L(DIR), Y

Appendix 1. 7900 Series machine instructions

APPENDIX

7900 Series Software Manual5-36

Function Operation
length (Bit)

Addressing Modes

op n #
IMP IMM A DIR DIR, X DIR, Y (DIR) (DIR, X) (DIR), YSymbol L(DIR)

op n #op n #op n # op n # op n # op n # op n #op n #op n #op n #
ABS

op n # op n #
ABS, X

op n #
ABS, Y

op n #
ABL

op n #
ABL, X

op n #
(ABS)

op n #
L(ABS)

op n #
(ABS, X)

op n #
STK

op n #
REL

op n #
DIR, b, R

op n #
ABS, b, R

op n #
SR

op n #
(SR), Y

op n #
BLK

op n #
MAA 10 9 8 7 6 5 4 3 2 1 0

 IPL N V m x D I Z C

Addressing Modes Processor Status register

• • • • • 1 • • • • •

• • • Specified flag
becomes “1.”

• • • • • • • • • • •

 81 10 3
 D9

81 5 4
 DE

81 6 4
DF

91 6 4
D6

81 6 5
DC

81 7 5
DD

11 6 3
 D3

91 6 3
 D3

11 9 3
 D4

91 9 3
D4

 D9 9 2 DE 4 3 DF 5 3 11 6 4
D6

 DC 5 4 DD 6 4

• • • • • • • • • • •

 81 10 3
 C9

81 5 4
CE

81 6 4
CF

91 6 4
C6

81 6 5
CC

81 7 5
CD

11 6 3
 C3

91 6 3
C3

11 9 3
C4

91 9 3
C4

 C9 9 2 CE 4 3 CF 5 3 11 6 4
C6

 CC 5 4 CD 6 4

• • • • • • • • • • •11 8 3
E3

11 11 3
 E4

 E9 11 2 EE 6 3 EF 7 3 11 8 4
 E6

 EC 7 4 ED 8 4

• • • • • • • • • • •

• • • • • • • • • • •E7 4 3

• • • • • • • • • • •F7 4 3

• • • N V • • • • Z C

 91 9 3
 39

81 4 4
3E

81 5 4
3F

91 5 4
 36

91 5 5
3C

91 6 5
3D

11 5 3
33

91 5 3
33

11 8 3
34

91 8 3
34

 11 9 3
 39

 3E 3 3 3F 4 3 11 5 4
 36

11 5 5
3C

11 6 5
3D

• • • N V • • • • Z C

m←1SEM 25 3 1

PSL(bit n)←1
(n = 0 to 7. Multiple bits can be
specified.)

SEP 99 3 2

M←AccSTA
(Note 1)

DA 4 2

81 5 3
DA

 81 6 3
 DB

11 7 3
D0

91 7 3
 D0

11 8 3
D1

91 8 3
D1

D8 7 2

81 8 3
D8

11 9 3
D2

91 9 3
D2

STAB
(Note 1)

STAD

M8←AccL

M32←E

DB 5 2

CA 4 2

81 5 3
CA

 81 6 3
 CB

11 7 3
C0

91 7 3
C0

11 8 3
C1

91 8 3
C1

C8 7 2

81 8 3
C8

11 9 3
C2

91 9 3
C2

 CB 5 2

EA 6 2 11 9 3
E0

11 10 3
E1

E8 9 2 11 11 3
E2

EB 7 2

STP

M←XSTX E2 4 2 41 6 3
E5 @ @ @

M 'YSTY F2 4 2 41 6 3
FB

31 – 2
30

SUB
(Notes 1 and
2)

SUBB
(Note 1)

Acc←Acc – M

AccL←AccL – IMM8

3A 3 2

81 4 3
 3A

81 5 3
3B

 11 6 3
30

91 6 3
30

11 7 3
31

 91 7 3
 31

11 7 3
38

91 7 3
38

11 8 3
32

91 8 3
32

3B 4 236 1 2

81 2 3
36

39 1 2

81 2 3
39

• • • N V • • • • Z C11 8 3
A3

11 11 3
A4

 11 12 3
 A9

 AE 6 3 AF 7 3 11 8 4
A6

11 8 5
AC

11 9 5
AD

• • • N V • • • • Z C

• • • N V • • • • Z C

• • • N V • • • • Z C

51 7 5
17

 51 7 5
16

 51 10 8
97

SUBD

SUBM
(Note 3)

SUBMB

SUBMD

E←E – M32

M←M – IMM

M8←M8 – IMM8

M32←M32 – IMM32

AA 6 2 11 9 3
A0

11 10 3
A1

11 10 3
A8

11 11 3
A2

AB 7 23D 3 5

 51 7 4
13

 51 7 4
12

 51 10 7
 93

–

–

16/8

8

32

–

16/8

16/8

16/8

8

32

16/8

8

32

Oscillation stopped

7900 Series Software Manual 5-39

Appendix 1. 7900 Series machine instructions

APPENDIX

L(DIR), Y

Appendix 1. 7900 Series machine instructions

APPENDIX

7900 Series Software Manual5-38

Function Operation
length (Bit)

Addressing Modes

op n #
IMP IMM A DIR DIR, X DIR, Y (DIR) (DIR, X) (DIR), YSymbol L(DIR)

op n #op n #op n # op n # op n # op n # op n #op n #op n #op n #
ABS

op n # op n #
ABS, X

op n #
ABS, Y

op n #
ABL

op n #
ABL, X

op n #
(ABS)

op n #
L(ABS)

op n #
(ABS, X)

op n #
STK

op n #
REL

op n #
DIR, b, R

op n #
ABS, b, R

op n #
SR

op n #
(SR), Y

op n #
BLK

op n #
MAA 10 9 8 7 6 5 4 3 2 1 0

 IPL N V m x D I Z C

Addressing Modes Processor Status register

• • • N V • • • • Z C

• • • N V • • • • Z C

• • • N V • • • • Z C

SUBS

SUBX
(Note 4)

S←S – IMM8

X←X – IMM (IMM = 0 to 31)

31 2 3
0B

SUBY
(Note 4)

Y←Y – IMM (IMM = 0 to 31)

01 2 2
40
+

 imm

01 2 2
60
+

 imm

• • • • • • • • • • •

• • • • • • • • • • •

• • • N • • • • • Z •

• • • N • • • • • Z •

• • • • • • • • • • •

• • • • • • • • • • •

• • • N • • • • • Z •

• • • N • • • • • Z •

• • • N • • • • • Z •

DPRn←A (n = 0 to 3)TAD n
(Note 20)

S←ATAS

S←B

DPRn←B (n = 0 to 3)

X←ATAX

Y←A

X←B

Y←B

A←DPRn (n = 0 to 3)

TBS

TBD n
(Note 20)

TBX

TBY

TDA n
(Note 20)

TAY

31 3 2
n2

31 2 2
82

C4 1 1

D4 1 1

B1 3 2
n2

B1 2 2
82

81 2 2
C4

81 2 2
D4

• • • N • • • • • Z •

• • • • • • • • • • •

B←DPRn (n = 0 to 3)TDB n
(Note 20)

S←DPR0TDS 31 2 2
73

B1 2 2
40
+

n2

31 2 2
40
+

 n2

16

16/8

16/8

16

16

16/8

16/8

16

16

16/8

16/8

16/8

16/8

16

7900 Series Software Manual 5-41

Appendix 1. 7900 Series machine instructions

APPENDIX

L(DIR), Y

Appendix 1. 7900 Series machine instructions

APPENDIX

7900 Series Software Manual5-40

Function Operation
length (Bit)

Addressing Modes

op n #
IMP IMM A DIR DIR, X DIR, Y (DIR) (DIR, X) (DIR), YSymbol L(DIR)

op n #op n #op n # op n # op n # op n # op n #op n #op n #op n #
ABS

op n # op n #
ABS, X

op n #
ABS, Y

op n #
ABL

op n #
ABL, X

op n #
(ABS)

op n #
L(ABS)

op n #
(ABS, X)

op n #
STK

op n #
REL

op n #
DIR, b, R

op n #
ABS, b, R

op n #
SR

op n #
(SR), Y

op n #
BLK

op n #
MAA 10 9 8 7 6 5 4 3 2 1 0

 IPL N V m x D I Z C

Addressing Modes Processor Status register

A B→←

• • • N • • • • • Z •

• • • N • • • • • Z •

• • • N • • • • • Z •

• • • N • • • • • Z •

• • • N • • • • • Z •

• • • • • • • • • • •

• • • N • • • • • Z •

• • • • • • • • • • •

A←S

B←S

X←S

TSA

TSB

TSX

A←XTXA

B←XTXB

S←XTXS

Y←XTXY

DPR0←STSD

31 2 2
92

B1 2 2
92

31 4 2
70

31 2 2
F2

A4 1 1

81 2 2
A4

31 2 2
E2

31 2 2
C2

• • • N • • • • • Z •

• • • N • • • • • Z •

• • • N • • • • • Z •

• • • N • • • • • Z •

• • • • • • • • • • •

A←YTYA

B←YTYB

X←YTYX

WIT

XAB

B4 1 1

81 2 2
B4

31 2 2
 D2

31 – 2
10

55 2 1

16/8

16/8

16

16/8

16/8

16/8

16/8

16/8

16/8

16/8

16/8

–

16/8

CPU clock stopped

Appendix 1. 7900 Series machine instructions

APPENDIX
Appendix 1. 7900 Series machine instructions

APPENDIX

7900 Series Software Manual5-42 7900 Series Software Manual 5-43

Notes for machine instructions table
This table lists the minimum number of instruction cycles for each instruction. The number of cycles of the
addressing mode related with DPRn (n = 0 to 3) is applied when DPRnL = 0. When DPRnL ≠ 0, add 1 to
the number of cycles.
The number of cycles also varies according to the number of bytes fetched into the instruction queue
buffer, or according to whether the memory accessed is at an odd address or an even address. Furthermore,
it also varies when the external area is accessed with BYTE = “H.”

Note 1. The op code at the upper row is used for accumulator A, and the op code at the lower row is
used for accumulator B.

Note 2. When handing 16-bit data with flag m = 0 in the IMM addressing mode, add 1 to the numder of
bytes (#).

Note 3. When handing 16-bit data with flag m = 0, add 1 to the numder of bytes.

Note 4. Imm is the immediate value specified with an operand.

Note 5. The op code at the upper row is used for branching in the range of –128 to +127, and the op
code at the lower row is used for branching in the range of –32768 to +32767.

Note 6. The BRK instruction is a reserved instruction for debugging tools; it cannot be used when an
emulator is used.

Note 7. Any value from 0 through 15 is placed in an “n” in column “Addressing Modes.”

Note 8. When handling 16-bit data with flag x = 0 in the IMM addressing mode, add 1 to the numder of
bytes.

Note 9. The number of cycles is the case of the 16-bit ÷ 8-bit operation. In the case of the 32-bit ÷
16-bit operation, add 8 to the number of cycles.

Note 10. When a zero division interrupt occurs, the number of cycles is 16 cycles. It is regardless of the
data length.

Note 11. When placing a value in any of DPRs, the lower row is applied. When placing values to multiple
DPRs, the lower row is applied. The letter “i” represents the number of DPRn specified: 1 to 4.

Note 12. A “?” indicates that the bit corressing to the specified DPRn becomes “1.”

Note 13. When the source is in the addressing mode and flag m = 0, the number of bytes (#) is incremented
by n (n = 0 to 15).

Note 14. The number of cycles of the case of the 8-bit ✕ 8-bit operation. In the case of the 16-bit ✕

16-bit operation, add 4 to the number of cycles.

Note 15. The number of cycles is the case where the number of bytes to be transferred (#) is even.
When the number of bytes to be transferred (#) is odd, the number is calculated as;

5 ✕ i + 10

Note 16. The number of cycles is the case where the number of bytes to be transferred (#) is even.
When the number of bytes to be transferred (#) is odd, the number is calculated as;

5 ✕ i + 14
Note that it is 10 cycles in the case of 1-byte thanster.

Note 17. Add the number of cycles corresponding to the registers to be stored. i1 is the number of registers
to be stored among A, B, X, Y, DPR0, and PS. i2 is the number of registers to be stored between
DT and PG.

Note 18. Letter “i” indicates the number of registers to be restored.

Note 19. The number of cycles is applied when flag m = “1.” When flag m=“0,” the number is calculated
as;

18 ✕ imm + 5

Note 20. Any value from 0 through 3 is placed in an “n” in column “Addressing Modes.”

Appendix 2. Hexadecimal instruction code tables

APPENDIX

7900 Series Software Manual5-44

Appendix 2. Hexadecimal instruction code tables

[How to use these tables]
● First, see instruction code table 0-A.
● For an instruction of which op code consists of 2 bytes, the code corresponding to the 2nd byte is listed

in another table. The 1st byte of the instruction listed in another table is indicated as “PAGE XX” in
instruction code table 0-A.

● See the following:

Op code

Effective address

Number of instruction
execution cycles

✼ Number of
 instruction bytes

Effective address
ADD
A,DIR

2/3

✼ The inside of parentheses is applied when 16-bit data is handled with flag m =

“0” or flag x= “0.” Unless otherwise noted, the instruction is unaffected by

flags m and x.

Appendix 2. Hexadecimal instruction code tables

APPENDIX

7900 Series Software Manual 5-45

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

LDAB
A,(DIR)

3/6

LDA
A,(DIR)

3/6

ADD
A,(DIR)

3/6

SUB
A,(DIR)

3/6

CMP
A,(DIR)

3/6

ORA
A,(DIR)

3/6

AND
A,(DIR)

3/6

EOR
A,(DIR)

3/6

LDAD
E,(DIR)

3/9

ADDD
E,(DIR)

3/9

SUBD
E,(DIR)

3/9

CMPD
E,(DIR)

3/9

STAB
A,(DIR)

3/7

STA
A,(DIR)

3/7

STAD
E,(DIR)

3/9

LDAB
A,(DIR,X)

3/7

LDA
A,(DIR,X)

3/7

ADD
A,(DIR,X)

3/7

SUB
A,(DIR,X)

3/7

CMP
A,(DIR,X)

3/7

ORA
A,(DIR,X)

3/7

AND
A,(DIR,X)

3/7

EOR
A,(DIR,X)

3/7

LDAD
E,(DIR,X)

3/10

ADDD
E,(DIR,X)

3/10

SUBD
E,(DIR,X)

3/10

CMPD
E,(DIR,X)

3/10

STAB
A,(DIR,X)

3/8

STA
A,(DIR,X)

3/8

STAD
E,(DIR,X)

3/10

LDAB
A,L(DIR)

3/8

LDA
A,L(DIR)

3/8

ADD
A,L(DIR)

3/8

SUB
A,L(DIR)

3/8

CMP
A,L(DIR)

3/8

ORA
A,L(DIR)

3/8

AND
A,L(DIR)

3/8

EOR
A,L(DIR)

3/8

LDAD
E,L(DIR)

3/11

ADDD
E,L(DIR)

3/11

SUBD
E,L(DIR)

3/11

CMPD
E,L(DIR)

3/11

STAB
A,L(DIR)

3/9

STA
A,L(DIR)

3/9

STAD
E,L(DIR)

3/11

LDAB
A,SR
3/5

LDA
A,SR
3/5

ADD
A,SR
3/5

SUB
A,SR
3/5

CMP
A,SR
3/5

ORA
A,SR
3/5

AND
A,SR
3/5

EOR
A,SR
3/5

LDAD
E,SR
3/8

ADDD
E,SR
3/8

SUBD
E,SR
3/8

CMPD
E,SR
3/8

STAB
A,SR
3/6

STA
A,SR
3/6

STAD
E,SR
3/8

LDAB
A,(SR),Y

3/8

LDA
A,(SR),Y

3/8

ADD
A,(SR),Y

3/8

SUB
A,(SR),Y

3/8

CMP
A,(SR),Y

3/8

ORA
A,(SR),Y

3/8

AND
A,(SR),Y

3/8

EOR
A,(SR),Y

3/8

LDAD
E,(SR),Y

3/11

ADDD
E,(SR),Y

3/11

SUBD
E,(SR),Y

3/11

CMPD
E,(SR),Y

3/11

STAB
A,(SR),Y

3/9

STA
A,(SR),Y

3/9

STAD
E,(SR),Y

3/11

LDAB
A,ABS,Y

4/5

LDA
A,ABS,Y

4/5

ADD
A,ABS,Y

4/5

SUB
A,ABS,Y

4/5

CMP
A,ABS,Y

4/5

ORA
A,ABS,Y

4/5

AND
A,ABS,Y

4/5

EOR
A,ABS,Y

4/5

LDAD
E,ABS,Y

4/8

ADDD
E,ABS,Y

4/8

SUBD
E,ABS,Y

4/8

CMPD
E,ABS,Y

4/8

STAB
A,ABS,Y

4/6

STA
A,ABS,Y

4/6

STAD
E,ABS,Y

4/8

ADD
A,(DIR),Y

3/7

SUB
A,(DIR),Y

3/7

CMP
A,(DIR),Y

3/7

ORA
A,(DIR),Y

3/7

AND
A,(DIR),Y

3/7

EOR
A,(DIR),Y

3/7

ADDD
E,(DIR),Y

3/10

SUBD
E,(DIR),Y

3/10

CMPD
E,(DIR),Y

3/10

ADD
A,L(DIR),Y

3/9

SUB
A,L(DIR),Y

3/9

CMP
A,L(DIR),Y

3/9

ORA
A,L(DIR),Y

3/9

AND
A,L(DIR),Y

3/9

EOR
A,L(DIR),Y

3/9

ADDD
E,L(DIR),Y

3/12

SUBD
E,L(DIR),Y

3/12

CMPD
E,L(DIR),Y

3/12

ADD
A,ABL

5/5

SUB
A,ABL

5/5

CMP
A,ABL

5/5

ORA
A,ABL

5/5

AND
A,ABL

5/5

EOR
A,ABL

5/5

ADDD
E,ABL

5/8

SUBD
E,ABL

5/8

CMPD
E,ABL

5/8

ADD
A,ABL,X

5/6

SUB
A,ABL,X

5/6

CMP
A,ABL,X

5/6

ORA
A,ABL,X

5/6

AND
A,ABL,X

5/6

EOR
A,ABL,X

5/6

ADDD
E,ABL,X

5/9

SUBD
E,ABL,X

5/9

CMPD
E,ABL,X

5/9

D3–D0

D7–D4

Instruction code table 1-A (PAGE 1-A)

Hexadecimal
notation

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

D3–D0

D7–D4

Instruction code table 0-A

NOP
IMP
1/1

ASL
A

1/1

SEC
IMP
1/1

NEG
A

1/1

LDA
A,IMM
2(3)/1

LDX
ABS
3/3

LDAB
A,ABS,X

3/4

BPL
REL
2/6

PAGE1-A
LDY
DIR
2/3

ROL
A

1/1

CLC
IMP
1/1

ABS
A

1/3

LDY
ABS
3/3

PAGE2-A
CPX
DIR
2/3

PSH
STK

2/Note 4

SEI
IMP
1/4

EXTZ
A

1/1

ADD
A,IMM
2(3)/1

LDXB
IMM
2/1

BMI
REL
2/6

PAGE3-A
CPY
DIR
2/3

PUL
STK

2/Note 2

CLI
IMP
1/3

EXTS
A

1/1

SUB
A,IMM
2(3)/1

LDYB
IMM
2/1

BGTU
REL
2/6

PAGE4
LSR

A
1/1

SEM
IMP
1/3

CLRB
A

1/1

CMP
A,IMM
2(3)/1

BBSB
ABS,b,REL

5/8

BVC
REL
2/6

PAGE5
BBCB

 DIR,b,REL
4/8

ROR
A

1/1

CLR
A

1/1

ORA
A,IMM
2(3)/1

BBCB
ABS,b,REL

5/8

CLM
IMP
1/3

BLEU
REL
2/6

PAGE6
CBEQB

DIR/IMM,REL
4/8

PHD
STK
1/4

CLV
IMP
1/1

XAB
IMP
1/2

AND
A,IMM
2(3)/1

BRAL
REL
3/5

BVS
REL
2/6

PAGE7
CBNEB

DIR/IMM,REL
4/8

PLD
STK
1/5

RTI
IMP
1/12

ASR
A

1/1

EOR
A,IMM
2(3)/1

BGT
REL
2/6

PAGE0-B
INC
DIR
2/6

INC
A

1/1

RTS
IMP
1/7

PHA
STK
1/4

MOVM
DIR/IMM

3(4)/5

INC
ABS
3/6

BCC
REL
2/6

PAGE1-B
DEC
DIR
2/6

DEC
A

1/1

RTL
IMP
1/10

PLA
STK
1/4

MOVM
ABS/IMM

4(5)/4

DEC
ABS
3/6

BCS
REL
2/6

PAGE2-B
CBEQB

A/IMM,REL
3/6

SEP
IMM
2/3

TXA
IMP
1/1

PHP
STK
1/4

STK/IMM
/Note 5 and 6

PAGE3-B
CBNEB

A/IMM,REL
3/6

CLP
IMM
2/4

TYA
IMP
1/1

PLP
STK
1/5

CBEQ
A/IMM,REL

3(4)/6

BLE
REL
2/6

LDA
A,ABS,X

3/4

ADD
A,ABS,X

3/4

SUB
A,ABS,X

3/4

CMP
A,ABS,X

3/4

ORA
A,ABS,X

3/4

AND
A,ABS,X

3/4

EOR
A,ABS,X

3/4

CLRMB
DIR
2/5

STX
DIR
2/4

LDAD
E,ABS,X

3/7

ADDD
E,ABS,X

3/7

SUBD
E,ABS,X

3/7

CMPD
E,ABS,X

3/7

STAB
A,ABS,X

3/5

STA
A,ABS,X

3/5

STAD
E,ABS,X

3/7

BGE
REL
2/6

PAGE8
INX
IMP
1/1

TAX
IMP
1/1

PHX
STK
1/4

CLRMB
ABS
3/5

BNE
REL
2/6

PAGE9
CLRM
DIR
2/5

INY
IMP
1/1

TAY
IMP
1/1

PLX
STK
1/4

LDX
IMM

2(3)/1

CLRM
ABS
3/5

BLT
REL
2/6

DEX
IMP
1/1

CLRX
IMP
1/1

PHY
STK
1/4

CPX
IMM

2(3)/1

STX
ABS
3/4

BEQ
REL
2/6

STY
DIR
2/4

DEY
IMP
1/1

CLRY
IMP
1/1

PLY
STK
1/4

CPY
IMM

2(3)/1

STY
ABS
3/4

BRK
(Note 1)

IMP
2/15

LDX
DIR
2/3

BBSB
 DIR,b,REL

4/8

CBNE
A/IMM,REL

3(4)/6

LDY
IMM

2(3)/1

LDAB
A,ABS

3/3

LDA
A,ABS

3/3

ADD
A,ABS

3/3

SUB
A,ABS

3/3

CMP
A,ABS

3/3

ORA
A,ABS

3/3

AND
A,ABS

3/3

EOR
A,ABS

3/3

LDAD
E,ABS

3/6

ADDD
E,ABS

3/6

SUBD
E,ABS

3/6

CMPD
E,ABS

3/6

STAB
A,ABS

3/4

STA
A,ABS

3/4

STAD
E,ABS

3/6

LDAB
A,ABL,X

4/5

LDA
A,ABL,X

4/5

ADDD
E,IMM

5/3

SUBD
E,IMM

5/3

MOVMB
DIR/ABS,X

4/7

MOVM
DIR/ABS,X

4/7

LDAD
E,ABL,X

4/8

JSR
ABS
3/6

JSRL
ABL
4/7

JSR
(ABS,X)

3/8

STAB
A,ABL,X

4/6

STA
A,ABL,X

4/6

STAD
E,ABL,X

4/8

LDAB
A,ABL

4/4

LDA
A,ABL

4/4

LDAD
E,IMM

5/3

CMPD
E,IMM

5/3

MOVMB
DIR/ABS

4/6

MOVM
DIR/ABS

4/6

MOVMB
ABS/ABS

5/5

MOVM
ABS/ABS

5/5

LDAD
E,ABL

4/7

JMP
ABS
3/4

JMPL
ABL
4/5

JMP
(ABS,X)

3/7

STAB
A,ABL

4/5

STA
A,ABL

4/5

STAD
E,ABL

4/7

LDAB
A,DIR,X

2/4

LDA
A,DIR,X

2/4

ADD
A,DIR,X

2/4

SUB
A,DIR,X

2/4

CMP
A,DIR,X

2/4

ORA
A,DIR,X

2/4

AND
A,DIR,X

2/4

EOR
A,DIR,X

2/4

LDAD
E,DIR,X

2/7

ADDD
E,DIR,X

2/7

SUBD
E,DIR,X

2/7

CMPD
E,DIR,X

2/7

STAB
A,DIR,X

2/5

STA
A,DIR,X

2/5

STAD
E,DIR,X

2/7

LDAB
A,DIR

2/3

LDA
A,DIR

2/3

ADD
A,DIR

2/3

SUB
A,DIR

2/3

CMP
A,DIR

2/3

ORA
A,DIR

2/3

AND
A,DIR

2/3

EOR
A,DIR

2/3

LDAD
E,DIR

2/6

ADDD
E,DIR

2/6

SUBD
E,DIR

2/6

CMPD
E,DIR

2/6

STAB
A,DIR

2/4

STA
A,DIR

2/4

STAD
E,DIR

2/6

LDAB
A,L(DIR),Y

2/8

LDA
A,L(DIR),Y

2/8

ADDB
A,IMM

2/1

SUBB
A,IMM

2/1

MOVMB
ABS/DIR,X

4/6

MOVM
ABS/DIR,X

4/6

LDAD
E,L(DIR),Y

2/11

BRA
REL
2/5

MOVMB
DIR/IMM

3/5

MOVMB
ABS/IMM

4/4

STAB
A,L(DIR),Y

2/9

STA
A,L(DIR),Y

2/9

STAD
E,L(DIR),Y

2/11

LDAB
A,(DIR),Y

2/6

LDA
A,(DIR),Y

2/6

LDAB
A,IMM

2/1

CMPB
A,IMM

2/1

MOVMB
DIR/DIR

3/6

MOVM
DIR/DIR

3/6

MOVMB
ABS/DIR

4/5

MOVM
ABS/DIR

4/5

LDAD
E,(DIR),Y

2/9

ORAB
A,IMM

2/1

ANDB
A,IMM

2/1

EORB
A,IMM

2/1

STAB
A,(DIR),Y

2/7

STA
A,(DIR),Y

2/7

STAD
E,(DIR),Y

2/9

BSR

2/7
REL

PAGE10

Hexadecimal
notation

2/Note 3

PLD n

/RTSD n
STK

/RTLD n

LDD n

/PHLD n
/PHD n

Appendix 2. Hexadecimal instruction code tables

APPENDIX

7900 Series Software Manual5-46

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

ADC
A,(DIR)

3/7

ADCD
E,(DIR)

3/9

SBC
A,(DIR)

3/7

SBCD
E,(DIR)

3/9

MPY
(DIR)

3/11/Note 7

MPYS
(DIR)

3/11/Note 7

DIV
(DIR)

3/18/Note 8,9

DIVS
(DIR)

3/25/Note 8,9

ADC
A,(DIR,X)

3/8

ADCD
E,(DIR,X)

3/10

SBC
A,(DIR,X)

3/8

SBCD
E,(DIR,X)

3/10

MPY
(DIR,X)

3/12/Note 7

MPYS
(DIR,X)

3/12/Note 7

DIV
(DIR,X)

3/19/Note 8,9

DIVS
(DIR,X)

3/26/Note 8,9

ADC
A,L(DIR)

3/9

ADCD
E,L(DIR)

3/11

SBC
A,L(DIR)

3/9

SBCD
E,L(DIR)

3/11

MPY
L(DIR)

3/13/Note 7

MPYS
L(DIR)

3/13/Note 7

DIV
L(DIR)

3/20/Note 8,9

DIVS
L(DIR)

3/27/Note 8,9

ADC
A,SR
3/6

ADCD
E,SR
3/8

SBC
A,SR
3/6

SBCD
E,SR
3/8

MPY
SR

3/10/Note 7

MPYS
SR

3/10/Note 7

DIV
SR

3/17/Note 8,9

DIVS
SR

3/24/Note 8,9

ADC
A,(SR),Y

3/9

ADCD
E,(SR),Y

3/11

SBC
A,(SR),Y

3/9

SBCD
E,(SR),Y

3/11

MPY
(SR),Y

3/13/Note 7

MPYS
(SR),Y

3/13/Note 7

DIV
(SR),Y

3/20/Note 8,9

DIVS
(SR),Y

3/27/Note 8,9

ADC
A,(DIR),Y

3/8

ADCD
E,(DIR),Y

3/10

SBC
A,(DIR),Y

3/8

SBCD
E,(DIR),Y

3/10

MPY
(DIR),Y

3/12/Note 7

MPYS
(DIR),Y

3/12/Note 7

DIV
(DIR),Y

3/19/Note 8,9

DIVS
(DIR),Y

3/26/Note 8,9

ADC
A,L(DIR),Y

3/10

ADCD
E,L(DIR),Y

3/12

SBC
A,L(DIR),Y

3/10

SBCD
E,L(DIR),Y

3/12

MPY
L(DIR),Y

3/14/Note 7

MPYS
L(DIR),Y

3/14/Note 7

DIV
L(DIR),Y

3/21/Note 8,9

DIVS
L(DIR),Y

3/28/Note 8,9

ADC
A,DIR

3/5

ADCD
E,DIR

3/7

SBC
A,DIR

3/5

SBCD
E,DIR

3/7

MPY
DIR

3/9/Note 7

MPYS
DIR

3/9/Note 7

DIV
DIR

3/16/Note 8,9

DIVS
DIR

3/23/Note 8,9

ADC
A,DIR,X

3/6

ADCD
E,DIR,X

3/8

SBC
A,DIR,X

3/6

SBCD
E,DIR,X

3/8

MPY
DIR,X

3/10/Note 7

MPYS
DIR,X

3/10/Note 7

DIV
DIR,X

3/17/Note 8,9

DIVS
DIR,X

3/24/Note 8,9

ADC
A,ABS,Y

4/6

ADCD
E,ABS,Y

4/8

SBC
A,ABS,Y

4/6

SBCD
E,ABS,Y

4/8

MPY
ABS,Y

4/10/Note 7

MPYS
ABS,Y

4/10/Note 7

DIV
ABS,Y

4/17/Note 8,9

DIVS
ABS,Y

4/24/Note 8,9

ADC
A,ABS

4/5

ADCD
E,ABS

4/7

SBC
A,ABS

4/5

SBCD
E,ABS

4/7

MPY
ABS

4/9/Note 7

MPYS
ABS

4/9/Note 7

DIV
ABS

4/16/Note 8,9

DIVS
ABS

4/23/Note 8,9

ADC
A,ABS,X

4/6

ADCD
E,ABS,X

4/8

SBC
A,ABS,X

4/6

SBCD
E,ABS,X

4/8

MPY
ABS,X

4/10/Note 7

MPYS
ABS,X

4/10/Note 7

DIV
ABS,X

4/17/Note 8,9

DIVS
ABS,X

4/24/Note 8,9

ADC
A,ABL

5/6

ADCD
E,ABL

5/8

SBC
A,ABL

5/6

SBCD
E,ABL

5/8

MPY
ABL

5/10/Note 7

MPYS
ABL

5/10/Note 7

DIV
ABL

5/17/Note 8,9

DIVS
ABL

5/24/Note 8,9

ADC
A,ABL,X

5/7

ADCD
E,ABL,X

5/9

SBC
A,ABL,X

5/7

SBCD
E,ABL,X

5/9

MPY
ABL,X

5/11/Note 7

MPYS
ABL,X

5/11/Note 7

DIV
ABL,X

5/18/Note 8,9

DIVS
ABL,X

5/25/Note 8,9

ASL
DIR
3/7

ROL
DIR
3/7

LSR
DIR
3/7

ROR
DIR
3/7

ASR
DIR
3/7

ASL
DIR,X

3/8

ROL
DIR,X

3/8

LSR
DIR,X

3/8

ROR
DIR,X

3/8

ASR
DIR,X

3/8

ASL
ABS
4/7

ROL
ABS
4/7

LSR
ABS
4/7

ROR
ABS
4/7

ASR
ABS
4/7

ASL
ABS,X

4/8

ROL
ABS,X

4/8

LSR
ABS,X

4/8

ROR
ABS,X

4/8

ASR
ABS,X

4/8

D3–D0

D7–D4

Instruction code table 2-A (PAGE 2-A)

Hexadecimal
notation

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

WIT
IMP
2/-

STP
IMP
2/-

PHT
STK
2/4

PLT
STK
2/6

PHG
STK
2/4

NEGD
E

2/4

ABSD
E

2/5

EXTZD
E

2/3

EXTSD
E

2/5

TAD,0
IMP
2/3

TAD,1
IMP
2/3

TAD,2
IMP
2/3

TAD,3
IMP
2/3

TDA,0
IMP
2/2

TDA,1
IMP
2/2

TDA,2
IMP
2/2

TDA,3
IMP
2/2

TAS
IMP
2/2

TSA
IMP
2/2

TXY
IMP
2/2

TYX
IMP
2/2

TXS
IMP
2/2

ADC
A,IMM
3(4)/3

SBC
A,IMM
3(4)/3

MOVM
DIR,X/IMM

4(5)/7

MOVM
ABS,X/IMM

5(6)/6

RLA
A

3(4)/n+5
/Note 10

MPY
IMM

3(4)/8/Note 7

MPYS
IMM

3(4)/8/Note 7

DIV
IMM

3(4)/15/Note 8,9

ADDS
IMM
3/2

ADCB
A,IMM

3/3

MVP
BLK

4/5i+9/Note 11

MOVMB
DIR,X/IMM

4/7

LDT
IMM
3/4

RMPA
Multiplied accumulation

3/14imm+5
/Note 13

TSX
IMP
2/2

DIVS
IMM

3(4)/22/Note 8,9

SUBS
IMM
3/2

SBCB
A,IMM

3/3

MVN
BLK

4/5i+5/Note 12

MOVMB
ABS,X/IMM

5/6

PEI
STK
3/7

ADCD
E,IMM

6/4

PEA
STK
4/5

JMP
(ABS)

4/7

SBCD
E,IMM

6/4

PER
STK
4/6

JMPL
L(ABS)

4/9

TDS
IMP
2/2

TSD
IMP
2/4

D3–D0

D7–D4

Instruction code table 3-A (PAGE 3-A)

Hexadecimal
notation

Appendix 2. Hexadecimal instruction code tables

APPENDIX

7900 Series Software Manual 5-47

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

BBS
DIR,b,REL

5(6)/9

BBC
DIR,b,REL

5(6)/9

CBEQ
DIR/IMM,REL

5(6)/9

LDY
DIR,X

3/5

INC
DIR,X

3/8

DEC
DIR,X

3/8

CPX
ABS
4/4

BBS
ABS,b,REL

6(7)/9

BBC
ABS,b,REL

6(7)/9

LDY
ABS,X

4/5

INC
ABS,X

4/8

DEC
ABS,X

4/8

LDX
DIR,Y

3/5

LDX
ABS,Y

4/5

STX
DIR,Y

3/6

STY
DIR,X

3/6

CPY
ABS
4/4

CBNE
DIR/IMM,REL

5(6)/9

D3–D0

D7–D4

Instruction code table 4 (PAGE 4)

Hexadecimal
notation

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

ADDMD
DIR/IMM

7/10

SUBMD
DIR/IMM

7/10

CMPMD
DIR/IMM

7/7

ORAMD
DIR/IMM

7/10

ANDMD
DIR/IMM

7/10

EORMD
DIR/IMM

7/10

ADDMB
DIR/IMM

4/7

SUBMB
DIR/IMM

4/7

CMPMB
DIR/IMM

4/5

ORAMB
DIR/IMM

4/7

ANDMB
DIR/IMM

4/7

EORMB
DIR/IMM

4/7

ADDM
DIR/IMM

4(5)/7

SUBM
DIR/IMM

4(5)/7

CMPM
DIR/IMM

4(5)/5

ORAM
DIR/IMM

4(5)/7

ANDM
DIR/IMM

4(5)/7

EORM
DIR/IMM

4(5)/7

ADDMD
ABS/IMM

8/10

SUBMD
ABS/IMM

8/10

CMPMD
ABS/IMM

8/7

ORAMD
ABS/IMM

8/10

ANDMD
ABS/IMM

8/10

EORMD
ABS/IMM

8/10

ADDMB
ABS/IMM

5/7

SUBMB
ABS/IMM

5/7

CMPMB
ABS/IMM

5/5

ORAMB
ABS/IMM

5/7

ANDMB
ABS/IMM

5/7

EORMB
ABS/IMM

5/7

ADDM
ABS/IMM

5(6)/7

SUBM
ABS/IMM

5(6)/7

CMPM
ABS/IMM

5(6)/5

ORAM
ABS/IMM

5(6)/7

ANDM
ABS/IMM

5(6)/7

EORM
ABS/IMM

5(6)/7

D3–D0

D7–D4

Instruction code table 5 (PAGE 5)

Hexadecimal
notation

Appendix 2. Hexadecimal instruction code tables

APPENDIX

7900 Series Software Manual5-48

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

MOVRB
DIR/ABS

3n+2/6n+3
/Note 14

MOVR
DIR/ABS

3n+2/6n+3
/Note 14

MOVRB
ABS/ABS
4n+2/5n+3
/Note 14

MOVR
ABS/ABS
4n+2/5n+3
/Note 14

MOVRB
DIR/IMM

2n+2/5n+3
/Note 14

MOVR
DIR/IMM

2n(3n)+2/5n+3
/Note 14

MOVRB
ABS/IMM

3n+2/4n+3/
Note 14

MOVR
ABS/IMM

3n(4n)+2/4n+3
/Note 14

MOVRB
DIR/DIR

2n+2/6n+3
/Note 14

MOVR
DIR/DIR

2n+2/6n+3
/Note 14
MOVRB
ABS/DIR

3n+2/5n+3
/Note 14

MOVR
ABS/DIR

3n+2/5n+3
/Note 14

D3–D0

D7–D4

Instruction code table 6 (PAGE 6)

Hexadecimal

notation

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

BSS
DIR,b,REL

4/11

BSC
DIR,b,REL

4/11

BSC
ABS,b,REL

5/10

MOVRB
DIR/ABS,X
3n+2/6n+3
/Note 14

BSS
ABS,b,REL

5/10

MOVR
DIR/ABS,X
3n+2/6n+3
/Note 14

MOVRB
ABS/DIR,X
3n+2/6n+3
/Note 14

MOVR
ABS/DIR,X
3n+2/6n+3
/Note 14

D3–D0

D7–D4

Instruction code table 7 (PAGE 7)

Hexadecimal

notation

Appendix 2. Hexadecimal instruction code tables

APPENDIX

7900 Series Software Manual 5-49

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

DEBNE
DIR/IMM,REL

4/12

ASR,#n
A

2/imm+6
/Note 15

ASL,#n
A

2/imm+6
/Note 15

ROL,#n
A

2/imm+6
/Note 15

LSR,#n
A

2/imm+6
/Note 15

ROR,#n
A

2/imm+6
/Note 15

D3–D0

D7–D4

Instruction code table 8 (PAGE 8)

Hexadecimal
notation

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

DEBNE
ABS/IMM,REL

5/11

ASRD,#n
E

2/imm+8
/Note 16

ASLD,#n
E

2/imm+8
/Note 16

ROLD,#n
E

2/imm+8
/Note 16

LSRD,#n
E

2/imm+8
/Note 16

RORD,#n
E

2/imm+8
/Note 16

D3–D0

D7–D4

Instruction code table 9 (PAGE 9)

Hexadecimal

notation

Appendix 2. Hexadecimal instruction code tables

APPENDIX

7900 Series Software Manual5-50

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

DXBNE
IMM,REL

3/7

ADDX
IMM
2/2

ADDY
IMM
2/2

SUBX
IMM
2/2

SUBY
IMM
2/2

DYBNE
IMM,REL

3/7

BSS
A,b,REL

3/7

BSC
A,b,REL

3/7

D3–D0

D7–D4

Instruction code table 10 (PAGE 10)

Hexadecimal
notation

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

ASL
B

2/2

NEG
B

2/2

LDA
B,IMM
3(4)/2

LDAB
B,ABS,X

4/5

ROL
B

2/2

ABS
B

2/4

EXTZ
B

2/2

ADD
B,IMM
3(4)/2

EXTS
B

2/2

SUB
B,IMM
3(4)/2

LSR
B

2/2

CLRB
B

2/2

CMP
B,IMM
3(4)/2

ROR
B

2/2

CLR
B

2/2

ORA
B,IMM
3(4)/2

AND
B,IMM
3(4)/2

ASR
B

2/2

EOR
B,IMM
3(4)/2

INC
B

2/2

PHB
STK
2/5

DEC
B

2/2

PLB
STK
2/5

TXB
IMP
2/2

CBNEB
B/IMM,REL

4/7

TYB
IMP
2/2

CBEQ
B/IMM,REL

4(5)/7

LDA
B,ABS,X

4/5

ADD
B,ABS,X

4/5

SUB
B,ABS,X

4/5

CMP
B,ABS,X

4/5

ORA
B,ABS,X

4/5

AND
B,ABS,X

4/5

EOR
B,ABS,X

4/5

STAB
B,ABS,X

4/6

STA
B,ABS,X

4/6

TBX
IMP
2/2

TBY
IMP
2/2

CBNE
B/IMM,REL

4(5)/7

LDAB
B,ABS

4/4

LDA
B,ABS

4/4

ADD
B,ABS

4/4

SUB
B,ABS

4/4

CMP
B,ABS

4/4

ORA
B,ABS

4/4

AND
B,ABS

4/4

EOR
B,ABS

4/4

STAB
B,ABS

4/5

STA
B,ABS

4/5

LDAB
B,ABL,X

5/6

LDA
B,ABL,X

5/6

STAB
B,ABL,X

5/7

STA
B,ABL,X

5/7

LDAB
B,ABL

5/5

LDA
B,ABL

5/5

STAB
B,ABL

5/6

STA
B,ABL

5/6

LDAB
B,DIR,X

3/5

LDA
B,DIR,X

3/5

ADD
B,DIR,X

3/5

SUB
B,DIR,X

3/5

CMP
B,DIR,X

3/5

ORA
B,DIR,X

3/5

AND
B,DIR,X

3/5

EOR
B,DIR,X

3/5

STAB
B,DIR,X

3/6

STA
B,DIR,X

3/6

LDAB
B,DIR

3/4

LDA
B,DIR

3/4

ADD
B,DIR

3/4

SUB
B,DIR

3/4

CMP
B,DIR

3/4

ORA
B,DIR

3/4

AND
B,DIR

3/4

EOR
B,DIR

3/4

STAB
B,DIR

3/5

STA
B,DIR

3/5

LDAB
B,L(DIR),Y

3/9

LDA
B,L(DIR),Y

3/9

ADDB
B,IMM

3/2

SUBB
B,IMM

3/2

STAB
B,L(DIR),Y

3/10

STA
B,L(DIR),Y

3/10

LDAB
B,(DIR),Y

3/7

LDA
B,(DIR),Y

3/7

LDAB
B,IMM

3/2

CMPB
B,IMM

3/2

ORAB
B,IMM

3/2

ANDB
B,IMM

3/2

EORB
B,IMM

3/2

STAB
B,(DIR),Y

3/8

STA
B,(DIR),Y

3/8

CBEQB
B/IMM,REL

4/7

D3–D0

D7–D4

Instruction code table 0-B (PAGE 0-B)

Hexadecimal
notation

Appendix 2. Hexadecimal instruction code tables

APPENDIX

7900 Series Software Manual 5-51

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

LDAB
B,(DIR)

3/6

LDA
B,(DIR)

3/6

ADD
B,(DIR)

3/6

SUB
B,(DIR)

3/6

CMP
B,(DIR)

3/6

ORA
B,(DIR)

3/6

AND
B,(DIR)

3/6

EOR
B,(DIR)

3/6

STAB
B,(DIR)

3/7

STA
B,(DIR)

3/7

LDAB
B,(DIR,X)

3/7

LDA
B,(DIR,X)

3/7

ADD
B,(DIR,X)

3/7

SUB
B,(DIR,X)

3/7

CMP
B,(DIR,X)

3/7

ORA
B,(DIR,X)

3/7

AND
B,(DIR,X)

3/7

EOR
B,(DIR,X)

3/7

STAB
B,(DIR,X)

3/8

STA
B,(DIR,X)

3/8

LDAB
B,L(DIR)

3/8

LDA
B,L(DIR)

3/8

ADD
B,L(DIR)

3/8

SUB
B,L(DIR)

3/8

CMP
B,L(DIR)

3/8

ORA
B,L(DIR)

3/8

AND
B,L(DIR)

3/8

EOR
B,L(DIR)

3/8

STAB
B,L(DIR)

3/9

STA
B,L(DIR)

3/9

LDAB
B,SR
3/5

LDA
B,SR
3/5

ADD
B,SR
3/5

SUB
B,SR
3/5

CMP
B,SR
3/5

ORA
B,SR
3/5

AND
B,SR
3/5

EOR
B,SR
3/5

STAB
B,SR
3/6

STA
B,SR
3/6

LDAB
B,(SR),Y

3/8

LDA
B,(SR),Y

3/8

ADD
B,(SR),Y

3/8

SUB
B,(SR),Y

3/8

CMP
B,(SR),Y

3/8

ORA
B,(SR),Y

3/8

AND
B,(SR),Y

3/8

EOR
B,(SR),Y

3/8

STAB
B,(SR),Y

3/9

STA
B,(SR),Y

3/9

LDAB
B,ABS,Y

4/5

LDA
B,ABS,Y

4/5

ADD
B,ABS,Y

4/5

SUB
B,ABS,Y

4/5

CMP
B,ABS,Y

4/5

ORA
B,ABS,Y

4/5

AND
B,ABS,Y

4/5

EOR
B,ABS,Y

4/5

STAB
B,ABS,Y

4/6

STA
B,ABS,Y

4/6

ADD
B,(DIR),Y

3/7

SUB
B,(DIR),Y

3/7

CMP
B,(DIR),Y

3/7

ORA
B,(DIR),Y

3/7

AND
B,(DIR),Y

3/7

EOR
B,(DIR),Y

3/7

ADD
B,L(DIR),Y

3/9

SUB
B,L(DIR),Y

3/9

CMP
B,L(DIR),Y

3/9

ORA
B,L(DIR),Y

3/9

AND
B,L(DIR),Y

3/9

EOR
B,L(DIR),Y

3/9

ADD
B,ABL

5/5

SUB
B,ABL

5/5

CMP
B,ABL

5/5

ORA
B,ABL

5/5

AND
B,ABL

5/5

EOR
B,ABL

5/5

ADD
B,ABL,X

5/6

SUB
B,ABL,X

5/6

CMP
B,ABL,X

5/6

ORA
B,ABL,X

5/6

AND
B,ABL,X

5/6

EOR
B,ABL,X

5/6

D3–D0

D7–D4

Instruction code table 1-B (PAGE 1-B)

Hexadecimal
notation

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

ADC
B,(DIR)

3/9

SBC
B,(DIR)

3/9

ADC
B,(DIR,X)

3/10

SBC
B,(DIR,X)

3/10

ADC
B,L(DIR)

3/11

SBC
B,L(DIR)

3/11

ADC
B,SR
3/8

SBC
B,SR
3/8

ADC
B,(SR),Y

3/11

SBC
B,(SR),Y

3/11

ADC
B,(DIR),Y

3/10

SBC
B,(DIR),Y

3/10

ADC
B,L(DIR),Y

3/12

SBC
B,L(DIR),Y

3/12

ADC
B,DIR

3/7

SBC
B,DIR

3/7

ADC
B,DIR,X

3/8

SBC
B,DIR,X

3/8

ADC
B,ABS,Y

4/8

SBC
B,ABS,Y

4/8

ADC
B,ABS

4/7

SBC
B,ABS

4/7

ADC
B,ABS,X

4/8

SBC
B,ABS,X

4/8

ADC
B,ABL

5/8

SBC
B,ABL

5/8

ADC
B,ABL,X

5/9

SBC
B,ABL,X

5/9

D3–D0

D7–D4

Instruction code table 2-B (PAGE 2-B)

Hexadecimal
notation

Appendix 2. Hexadecimal instruction code tables

APPENDIX

7900 Series Software Manual5-52

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

TBD,0
IMP
2/3

TBD,1
IMP
2/3

TBD,2
IMP
2/3

TBD,3
IMP
2/3

TDB,0
IMP
2/2

TDB,1
IMP
2/2

TDB,2
IMP
2/2

TDB,3
IMP
2/2

TBS
IMP
2/2

TSB
IMP
2/2

ADC
B,IMM
3(4)/3

SBC
B,IMM
3(4)/3

ADCB
B,IMM

3/3

SBCB
B,IMM

3/3

D3–D0

D7–D4

Instruction code table 3-B (PAGE 3-B)

Hexadecimal
notation

Notes for machine instructions table
This table lists the minimum number of instruction cycles for each instruction. The number of cycles of the
addressing mode related with DPRn (n = 0 to 3) is applied when DPRnL = 0. When DPRnL ≠ 0, add 1 to
the number of cycles.
The number of cycles also varies according to the number of bytes fetched into the instruction queue
buffer, or according to whether the memory accessed is at an odd address or an even address. Furthermore,
it also varies when the external area is accessed with BYTE=“H.”

Note 1. The BRK instruction is a reserved instruction for debugging tools; it cannot be used when an
emulator is used.

Note 2. 3i + 13 i is the number of registers to be restored.

Note 3. PLDn : 11, PLD (n1, …, ni) : 3i + 8 (n1, …, ni) : 0 to 3 (numbers representing DPRn)
RTLDn : 15, RTLD (n1, …, ni) : 3i + 12 i is the number of DPRs specified (1 to 4).
RTSDn : 14, RTSD (n1, …, ni) : 3i + 11

Note 4. 2i1 + i2 + 11 Add the number of cycles corresponding to the registers to be stored. i1 is the
number of registers to be stored among A, B, X, Y, DPR0, and PS. i2 is the
number of registers to be stored between DT and PG.

Appendix 2. Hexadecimal instruction code tables

APPENDIX

7900 Series Software Manual 5-53

Note 5. LDDn : 4, LDD (n1, …, ni) : 2i + 2 (n1, …, ni) : 0 to 3 (numbers representing DPRn)
PHDn : 2, PHD (n1, …, ni) : 2 i is the number of DPRs specified (1 to 4).
PHLDn : 4, PHLD (n1, …, ni) : 2i + 2

Note 6. LDDn : 13, LDD (n1, …, ni) : 2i + 11 (n1, …, ni) : 0 to 3 (numbers representing DPRn)
PHDn : 12, PHD (n1, …, ni) : i + 11 i is the number of DPRs specified (1 to 4).
PHLDn : 14, PHLD (n1, …, ni) : 3i + 11

Note 7. The number of cycles is the case of the 8-bit ✕ 8-bit operation. Add 4 to the number of cycles
in the case of the 16-bit ✕ 16-bit operation.

Note 8. The number of cycles is the case of the 16-bit ÷ 8-bit operation. Add 8 to the number of cycles
in the case of the 32-bit ÷ 16-bit operation.

Note 9. When a zero division interrupt occurs, the number of cycles is 16 cycles. It is regardless of the
data length.

Note 10. n is the number of rotation specified by imm.
m = 0 : n = 0 to 65535
m = 1 : n = 0 to 255

Note 11. The number of cycles is the case where the number of bytes to be transferred (#) is even.
When the number of bytes to be transferred (#) is odd, the number is calculated as;

5 ✕ i + 14
Note that it is 10 cycles in the case of 1-byte transfer.

Note 12. The number of cycles is the case where the number of bytes to be transferred (#) is even.
When the number of bytes to be transferred (#) is odd, the number is calculated as;

5 ✕ i + 10

Note 13. The number of cycles is the case where flag m=“1.” When flag m=“0,” the number is calculated
as;

18 ✕ imm + 5 (imm = number of repeat times, 0 to 255)

Note 14. n = 0 to 15

Note 15. imm = 0 to 15

Note 16. imm = 0 to 31

MITSUBISHI SEMICONDUCTORS
Software Manual
7900 Series

Jul., First Edition 1998

Editioned by
Committee of editing of Mitsubishi Semiconductor Software Manual

Published by
Mitsubishi Electric Corp., Semiconductor Marketing Division

This book, or parts thereof, may not be reproduced in any form without permission
of Mitsubishi Electric Corporation.
©1998 MITSUBISHI ELECTRIC CORPORATION

1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan

7900 Series
Software Manual

	Table of contents
	CHAPTER 1 DESCRIPTION
	CHAPTER 2 CENTRAL PROCESSING UNIT (CPU)
	2.1 Central processing unit
	2.1.1 Accumulator (Acc)
	2.1.2 Index register X (X)
	2.1.3 Insex register Y (Y)
	2.1.4Stack pointer (S)
	2.1.5 Program xounter (PC)
	2.1.6 Program bank register (PC)
	2.1.7 Data bank register (DT)
	2.1.8 Direct page register 0 to 3 (DPR0 to DPR3)
	2.1.9 Processor status register (PS)

	2.2 Access space
	2.3 Addressing modes
	2.3.1 Overview
	2.3.2 Explanation of addressing modes

	CHAPTER 3 HOW TO USE 7900 SERIES INSTRUCTIONS
	3.1 Memory access
	3.1.1 Direct addressing
	3.1.2 Abosolute addressing and Abosolute long addressing
	3.1.3 Indirect addressing and indirect long addressing

	3.2 Drect page registers (DPR0–DRP3)
	3.3 8- and 16-bit data processing
	3.4 Index registers X and Y
	3.5 Branch instructions

	CHAPTER 4 INSTRUCTIONS
	4.1 Instruction set
	4.2 Description of each instruction
	4.3 Notes on software development
	4.3.1 Instruction execution cycles
	4.3.2 Status of flags m and x
	4.3.3 Tips for data location
	4.3.4 Performing arithmetic operations in decimal

	APPENDIX
	Appendix 1.
	Appendix 2.

