Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

iot annout

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

To all our customers

Regarding the change of names mentioned in the document, such as Mitsubishi Electric and Mitsubishi XX, to Renesas Technology Corp.

The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.) Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names have in fact all been changed to Renesas Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been made to the contents of the document, and these changes do not constitute any alteration to the contents of the document itself.

Note : Mitsubishi Electric will continue the business operations of high frequency & optical devices and power devices.

-ol-annu-

Renesas Technology Corp. Customer Support Dept. April 1, 2003

16

7900 Series

roduct Software Manual MITSUBISHI 16-BIT SINGLE-CHIP MICROCOMPUTER 7700 Family / 7900 Series

Renesas Electronics www.renesas.com

New publication, 1997.07

Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.
- Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts or circuit application examples contained in these materials.
- All information contained in these materials, including product data, diagrams and charts, represent information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein.
- Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.
- If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of JAPAN and/or the country of destination is prohibited.
- Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.

REVISION DESCRIPTION LIST

7900 Series Software Manual

Rev. No.	Revision Description	Rev. date
1.0	First Edition	980731
	EOL announced product	

Preface

This manual describes the software of the Mitsubishi CMOS 16-bit microcomputers, the 7900 Series. After nan the instr of the 7900 capabilities fully reading this manual, the users will be able to understand the instruction set and the features about software of the 7900 Series, so that they can utilize

Table of contents

CHAPTER 1. DESCRIPTION

CHAPTER 2. CENTRAL PROCESSING UNIT (CPU)

2.1 Central processing unit	
2.1.1 Accumulator (Acc)	2-3
2.1.2 Index register X (X)	
2.1.3 Index register Y (Y)	
2.1.4 Stack pointer (S)	
2.1.5 Program counter (PC)	
2.1.6 Program bank register (PG)	2-5
2.1.7 Data bank register (DT)	
2.1.8 Direct page register 0 to 3 (DPR0 to DPR3)	
2.1.9 Processor status register (PS)	
2.2 Access space	
2.3 Addressing modes	
2.3.1 Overview	2-11
2.3.2 Explanation of addressing modes	2-11

CHAPTER 3. HOW TO USE 7900 SERIES INSTRUCTIONS

3.1 Memory access	
3.1.1 Direct addressing	
3.1.2 Absolute addressing and Absolute long addressing	
3.1.3 Indirect addressing and Indirect long addressing	
3.2 Direct page registers (DPR0-DPR3)	
3.3 8- and 16-bit data processing	
3.4 Index registers X and Y	
3.5 Branch instructions	

CHAPTER 4. INSTRUCTIONS

4.1 Instruction set	
4.2 Description of each instruction	4-9
4.3 Notes on software development	
4.3.1 Instruction execution cycles	
4.3.2 Status of flags m and x	
4.3.3 Tips for data area location	
4.3.4 Performing arithmetic operations in decimal	

APPENDIX

Appendix 1. 7900 Series machine instructions5-2	2
Appendix 2. Hexadecimal instruction code tables5-44	ŀ

The 7900 Series is upper compatible with the conventional 7700 Family.

The following outlines the features of the 7900 Series:

- Source-level-compatible with the conventional 7700 Family. (e.g., 7700 and 7751 Series).
- Whereas the 7700 and 7751 Series respectively support 103 and 109 instructions, the 7900 Series has its instruction set expanded to 203 instructions. The following instructions have been added:
 - (i) 32-bit operation instructions
 - (ii) 8-bit-data-dedicated instructions
 - (iii) Memory-to-memory data transfer instructions
 - (iv) Zero-clear instructions for register and memory
 - (v) Add/Subtract without-carry instructions
 - (vi) Add/Subtract instructions for stack pointer
 - (vii) OR, AND, and EOR instructions for memory
 - (viii) Compare instructions for memory
 - (ix) Signed conditional branch instructions
 - (x) Compare & Conditional branch instructions
 - (xi) Decrement & Conditional branch instructions
 - (xii) PC relative subroutine call instructions

01-21

Thanks to its expanded instruction set, the 7900 Series allows program sizes to be reduced by 20 to 30% on the average from the conventional 7700 Family.

- 16 Mbytes of memory space. Various addressing modes for accessing this memory space are available.
- A 64-Kbyte space from 000000₁₆ to 00FFFF₁₆ can be accessed at high speed by an instruction which has a small number of bytes. The 7900 Series has 4 direct page registers that can be used for this purpose.
- Reduced instruction execution cycles than the conventional 7700 Family.

CHAPTER 2 CENTRAL PROCESSING UNIT (CPU)

- 2.1 Central processing unit (CPU)
- 2.2 Memory space

212

2.3 Addressing modes

2.1 Central processing unit (CPU)

2.1 Central processing unit

The CPU (Central Processing Unit) has 13 registers as shown in Figure 2.1.1.

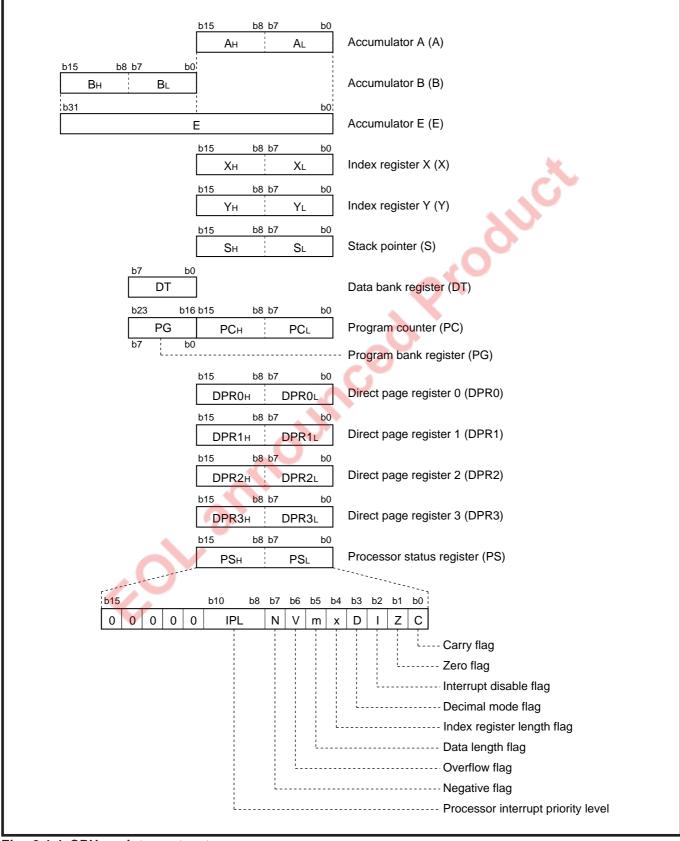


Fig. 2.1.1 CPU registers structure

2.1.1 Accumulator (Acc)

Accumulators A and B are available. Also, accumulators A and B can be connected in series for use as a 32-bit accumulator (accumulator E).

(1) Accumulator A (A)

Accumulator A is the main register of the microcomputer. The transaction of data such as calculation, data transfer, and input/output are performed mainly through accumulator A. It consists of 16 bits, and the low-order 8 bits can also be used separately. The data length flag (m) determines whether the register is used as a 16-bit register or as an 8-bit register. Flag m is a part of the processor status register which is described later. When an 8-bit register is selected, only the low-order 8 bits of accumulator A are used and the contents of the high-order 8 bits is unchanged.

(2) Accumulator B (B)

Accumulator B is a 16-bit register with the same function as accumulator A. Accumulator B can be used instead of accumulator A. The use of accumulator B, however except for some instructions, requires more instruction bytes and execution cycles than that of accumulator A. Accumulator B is also controlled by the data length flag (m) just as in accumulator A.

(3) Accumulator E (E)

This 32-bit accumulator consists of accumulator A for low-order 16 bits and accumulator B for highorder 16 bits. This accumulator is used for instructions that handle 32-bit data. It is not controlled by flag m.

2.1.2 Index register X (X)

Index register X consists of 16 bits and the low-order 8 bits can also be used separately. The index register length flag (x) determines whether the register is used as a 16-bit register or as an 8-bit register. Flag x is a part of the processor status register which is described later. When an 8-bit register is selected, only the low-order 8 bits of index register X are used and the contents of the high-order 8 bits is unchanged. In an addressing mode in which index register X is used as an index register, the address obtained by adding the contents of this register to the operand's contents is accessed.

In the MVP, MVN or RMPA instruction, index register X is used, also.

2.1.3 Index register Y (Y)

Index register Y is a 16-bit register with the same function as index register X. Just as in index register X, the index register length flag (x) determines whether this register is used as a 16-bit register or as an 8-bit register.

2.1 Central processing unit (CPU)

2.1.4 Stack pointer (S)

The stack pointer (S) is a 16-bit register. It is used for a subroutine call or an interrupt. It is also used when addressing modes using the stack are executed. The contents of S indicate an address (stack area) for storing registers during subroutine calls and interrupts. Bank 016 is specified for the stack area. (Refer to "2.2 Memory space."

When an interrupt request is accepted, the microcomputer stores the contents of the program bank register (PG) at the address indicated by the contents of S and decrements the contents of S by 1. Then the contents of the program counter (PC) and the processor status register (PS) are stored. The contents of S after accepting an interrupt request is equal to the contents of S decremented by 5 before accepting of the interrupt request. (Refer to **Figure 2.1.2.**)

When completing the process in the interrupt routine and returning to the original routine, the contents of registers stored in the stack area are restored into the original registers in the reverse sequence (PS \rightarrow PC \rightarrow PG) by executing the RTI instruction. The contents of S is returned to the state before accepting an interrupt request.

The same operation is performed during a subroutine call, however, the contents of PS is not automatically stored. (The contents of PG may not be stored. This depends on the addressing mode.)

During interrupts or subroutine calls, the other registers are not automatically stored. Therefore, if the contents of these registers need to be held on, be sure to store them by software.

Additionally, the S's contents become "0FFF16" at reset. The stack area changes when subroutines are nested or when multiple interrupt requests are accepted. Therefore, make sure of the subroutine's nesting depth not to destroy the necessary data.

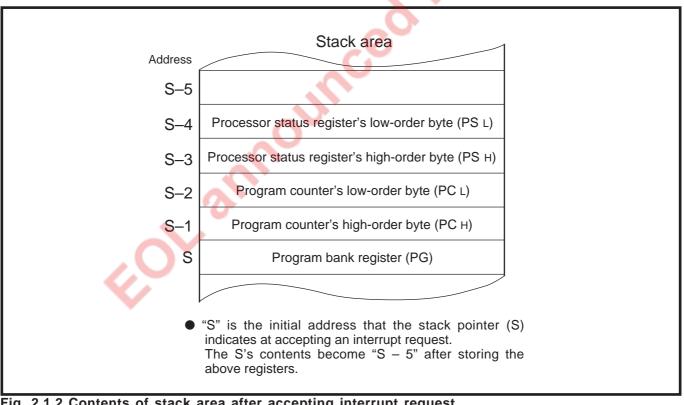
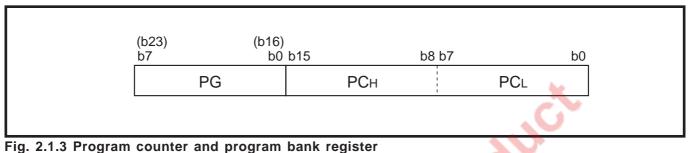



Fig. 2.1.2 Contents of stack area after accepting interrupt request

2.1 Central processing unit

2.1.5 Program counter (PC)

The program counter is a 16-bit counter that indicates the low-order 16 bits of the address (24 bits) at which an instruction to be executed next (in other words, an instruction to be read out from an instruction queue buffer next) is stored. The contents of the high-order program counter (PCH) become "FF16," and the low-order program counter (PCL) becomes "FE16" at reset. The contents of the program counter becomes the contents of the reset's vector address (addresses FFFE16, FFFF16) just after reset. Figure 2.1.3 shows the program counter and the program bank register.

2.1.6 Program bank register (PG)

The memory space is divided into units of 64 Kbytes. This unit is called "bank." (Refer to "2.2 Memory space.")

The program bank register is an 8-bit register that indicates the high-order 8 bits of the address (24 bits) at which an instruction to be executed next (in other words, an instruction to be read out from an instruction queue buffer next) is stored. These 8 bits indicate a bank.

When a carry occurs after adding the contents of the program counter or adding the offset value to the contents of the program counter in the branch instruction and others, the contents of the program bank register is automatically incremented by 1. When a borrow occurs after subtracting the contents of the program counter, the contents of the program bank register is automatically decremented by 1. Therefore, there is no need to consider bank boundaries during programming, usually.

This register is cleared to "0016" at reset.

2.1 Central processing unit (CPU)

2.1.7 Data bank register (DT)

The data bank register is an 8-bit register. In the following addressing modes using the data bank register, the contents of this register is used as the high-order 8 bits (bank) of a 24-bit address to be accessed.

Use the LDT instruction when setting a value to this register. This register is cleared to "0016" at reset.

•Addressing modes using data bank register

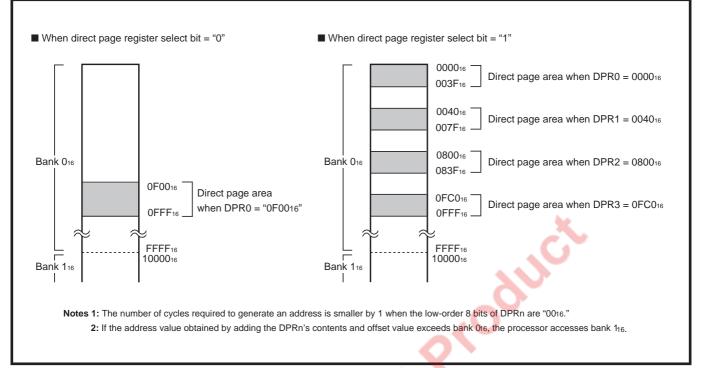
- •Direct indirect
- •Direct indexed X indirect
- •Direct indirect indexed Y
- •Absolute
- •Absolute indexed X
- Absolute indexed Y
- Absolute bit relative
- •Stack pointer relative indirect indexed Y
- •Multiplied accumulation

2.1.8 Direct page register 0 to 3 (DPR0 to DPR3)

The direct page register is a 16-bit register. The direct page registers (hereafter called the "DPRn") have been enhanced from the conventional 7700 Family.

These registers are used to access the 64-Kbyte space in bank 0 efficiently.

The direct page register select bit of processor mode register 1 determines whether to use DPR0 only or DPR0 through DPR3. The function of this bit is described below.


Table 2.1.1 Direct page register selection

	Direct page register select bit	
	0	1
DPRn that can be used	DPR0	DPR0 to DPR3
Block size accessible from DPRn as base address	256 bytes	64 bytes
Remarks	Compatible with conventional 7700 Family	_

Note : Once the direct page register select bit is set, do not change its value.

2.1 Central processing unit

Fig. 2.1.4 Direct page area selection example

When the contents of low-order 8 bits of the direct page register is "0016," the number of cycles required to generate an address is smaller by 1 than the number when its contents are not "0016." Accordingly, the access efficiency can be enhanced in this case. This register is cleared to "000016" at reset.

- •Addressing modes using direct page register
 - Direct
 - •Direct indexed X
 - •Direct indexed Y
 - •Direct indirect
 - •Direct indexed X indirect
 - •Direct indirect indexed Y
 - •Direct indirect long
 - •Direct indirect long indexed Y
 - •Direct bit relative

2.1 Central processing unit (CPU)

2.1.9 Processor status register (PS)

The processor status register is an 11-bit register.

Figure 2.1.5 shows the structure of the processor status register.

<u>5 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0</u>
0 0 0 0 0 IPL N V m x D I Z C Processor s register (PS

Fig. 2.1.5 Processor status register structure

(1) Bit 0: Carry flag (C)

It retains a carry or a borrow generated in the arithmetic and logic unit (ALU) during an arithmetic operation. This flag is also affected by shift and rotate instructions.

Use the **SEC** or **SEP** instruction to set this flag to "1", and use the **CLC** or **CLP** instruction to clear it to "0".

The contents of this flag is undefined at reset.

(2) Bit 1: Zero flag (Z)

It is set to "1" when the result of an arithmetic operation or data transfer is "0," and cleared to "0" when otherwise. <u>This flag is invalid in the decimal mode addition.</u>

Use the **SEP** instruction to set this flag to "1," and use the **CLP** instruction to clear it to "0." The contents of this flag is undefined at reset.

(3) Bit 2: Interrupt disable flag (I)

It disables all maskable interrupts. Interrupts are disabled when this flag is "1." When an interrupt request is accepted, this flag is automatically set to "1" to avoid multiple interrupts. Use the **SEI** or **SEP** instruction to set this flag to "1," and use the **CLI** or **CLP** instruction to clear it to "0." This flag is set to "1" at reset.

(4) Bit 3: Decimal mode flag (D)

It determines whether addition and subtraction are performed in binary or decimal. Binary arithmetic is performed when this flag is "0." When it is "1," decimal arithmetic is performed with each 8-bit treated as 2-digit decimal (at m = 1) or each 16-bit treated as 4-digit decimal (at m = 0). Decimal adjust is automatically performed. Decimal operation is possible only with the **ADC**, **ADCB**, **SBC** and **SBCB** instructions. Use the **SEP** instruction to set this flag to "1," and use the **CLP** instruction to clear it to "0." This flag is cleared to "0" at reset.

(5) Bit 4: Index register length flag (x)

It determines whether each of index register X and index register Y is used as a 16-bit register or an 8-bit register. That register is used as a 16-bit register when this flag is "0," and as an 8-bit register when it is "1" **(Note)**. Use the **SEP** instruction to set this flag to "1," and use the **CLP** instruction to clear it to "0." This flag is cleared to "0" at reset.

Note: When transferring data between registers which are different in bit length, the data is transferred with the length of the destination register, but except for the **TXA**, **TYA**, **TXB**, **TYB**, and **TXS** instructions.

2.1 Central processing unit

(6) Bit 5: Data length flag (m)

It determines whether to use data as a 16-bit unit or as an 8-bit unit. A data is treated as a 16-bit unit when this flag is "0," and as an 8-bit unit when it is "1" (Note).

Use the **SEM** or **SEP** instruction to set this flag to "1," and use the **CLM** or **CLP** instruction to clear it to "0." This flag is cleared to "0" at reset.

Note: When transferring data between registers which are different in bit length, the data is transferred with the length of the destination register, but except for the **TXA**, **TYA**, **TXB**, **TYB**, and **TXS** instructions.

(7) Bit 6: Overflow flag (V)

It is used when adding or subtracting with a word regarded as signed binary. The overflow flag is set to "1" when the result of addition or subtraction exceeds the range between -2147483648 and +2147483647 (when 32-bit length operation), the range between -32768 and +32767 (when 16-bit length operation), or the range between -128 and +127 (when 8-bit length operation).

The overflow flag is also set to "1" when the result of division exceeds the length of the register which will store the result, in the **DIV** or **DIVS** instruction. This flag is invalid in the decimal mode. Use the **SEP** instruction to set this flag to "1," and use the **CLV** or **CLP** instruction to clear it to "0." The contents of this flag is undefined at reset.

(8) Bit 7: Negative flag (N)

It is set to "1" when the result of arithmetic operation or data transfer is negative. (The most significant bit of the result is "1.") It is cleared to "0" in all other cases. This flag is invalid in the decimal mode. Use the **SEP** instruction to set this flag to "1," and use the **CLP** instruction to clear it to "0." The contents of this flag is undefined at reset.

(9) Bits 10 to 8: Processor interrupt priority level (IPL)

These 3 bits can determine the processor interrupt priority level to one of levels 0 to 7. The interrupt is enabled when <u>the interrupt priority level</u> of a required interrupt, which is set in each interrupt control register, is higher than IPL. When an interrupt request is accepted, IPL is stored in the stack area, and IPL is replaced by the interrupt priority level of the accepted interrupt request.

There are no instruction to directly set or clear the bits of IPL. IPL can be changed by storing the new IPL into the stack area and updating the processor status register with the **PUL** or **PLP** instruction. The contents of IPL is cleared to "0002" at reset.

2.2 Access space

2.2 Access space

The memory space of the 7900 Series is a 16-Mbyte space from addresses 0₁₆ to FFFFF₁₆. (Refer to the **Figure 2.2.1**.) However, addresses FF0000₁₆ to FFFFF₁₆ cannot be used because this area is reserved. A 24-bit address is generated by combination of the program counter (PC), which is 16 bits of structure, and the program bank register (PG), which is 8 bits of structure. The memory space of the 7900 Series is divided into units of 64 Kbytes. This unit is called "bank." The PG indicates the bank number.

The memory and I/O devices are assigned in the same access space. Accordingly, it is possible to perform transfer and arithmetic operations using the same instructions without discrimination of the memory from I/O devices.

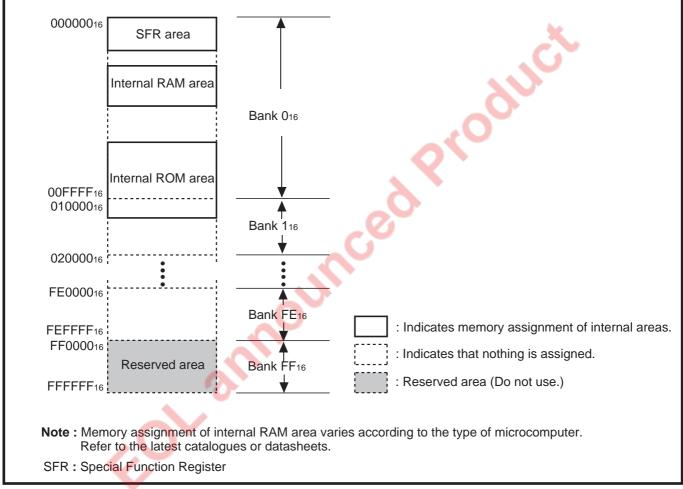


Fig. 2.2.1 7900 Series's access space

2.3 Addressing modes

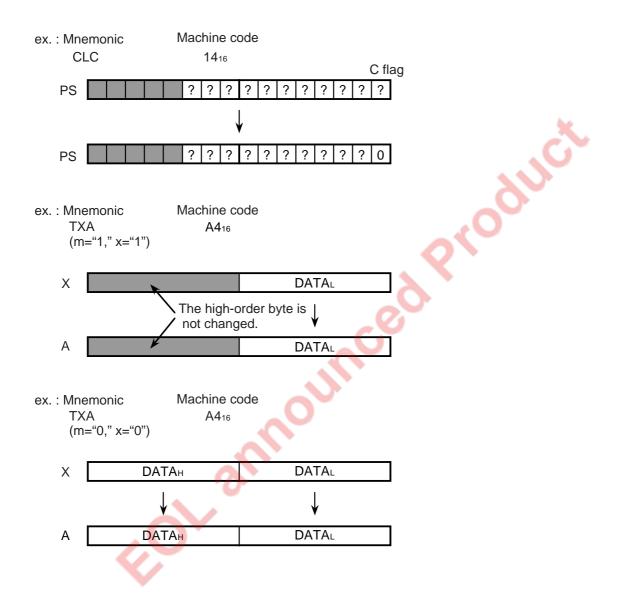
2.3.1 Overview

To execute an instruction, when the data required for the operation is retrieved from a memory or the result of the operation is stored to it, it is necessary to specify the address of the memory location in advance. Address specification is also necessary when the control is to jump to a certain memory address during program execution. Addressing means the method of specifying the memory address.

The memory access of the 7900 Series microcomputers is reinforced with 27 different addressing modes.

2.3.2 Explanation of addressing modes

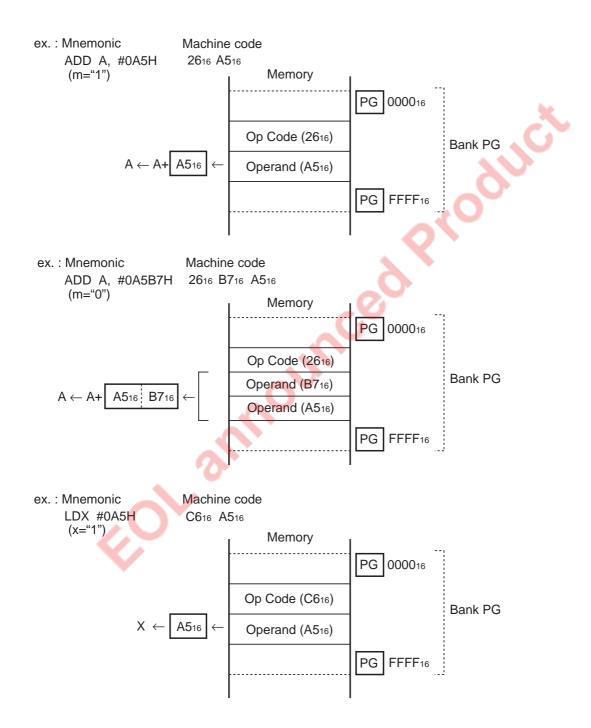
Each addressing mode is explained on the corresponding page indicated below:

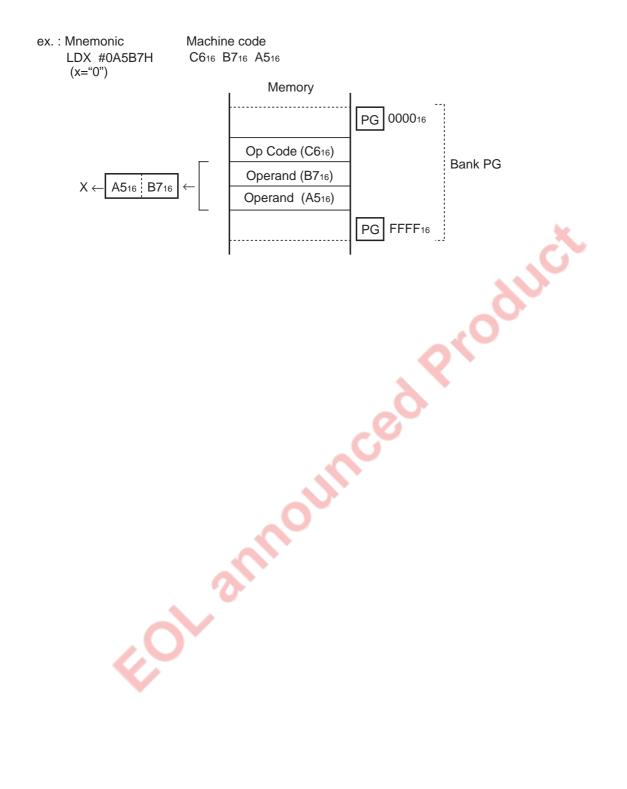

Implied addressing mode (IMP)	2-12	X
Immediate addressing mode (IMM)	2-13	5
Accumulator addressing mode (A)	2-15)
Direct addressing mode (DIR)	2-16	
Direct indexed X addressing mode (DIR,X)	2-19	
Direct indexed Y addressing mode (DIR,Y)	2-22	
Direct indirect addressing mode ((DIR))	2-23	
Direct indexed X indirect addressing mode ((DIR,X))		
Direct indirect indexed Y addressing mode ((DIR,Y))	2-28	
Direct indirect long addressing mode (L (DIR))		
Direct indirect long indexed Y addressing mode (L (DIR),Y)	2-33	
Absolute addressing mode (ABS)	2-36	
Absolute indexed X addressing mode (ABS,X)	2-39	
Absolute indexed Y addressing mode (ABS,Y)	2-42	
Absolute long addressing mode (ABL)	2-45	
Absolute long indexed X addressing mode (ABL,X)	2-47	
Absolute indirect addressing mode ((ABS))	2-49	
Absolute indirect long addressing mode (L (ABS))	2-50	
Absolute indexed X indirect addressing mode ((ABS,X))	2-51	
Stack addressing mode (STK)	2-52	
Relative addressing mode (REL)	2-55	
Direct bit relative addressing mode (DIR,b,R)	2-56	
Absolute bit relative addressing mode (ABS,b,R)	2-58	
Stack pointer relative addressing mode (SR)	2-60	
Stack pointer relative indirect indexed Y addressing mode ((SR),Y)	2-61	
Block transfer addressing mode (BLK)	2-64	
Multiplied accumulation addressing mode (Multiplied accumulation)	2-66	

Note: Unless otherwise noted, in each explanation diagram for the addressing mode of which name includes "direct," "Direct page register" means DPR0 only.

Implied

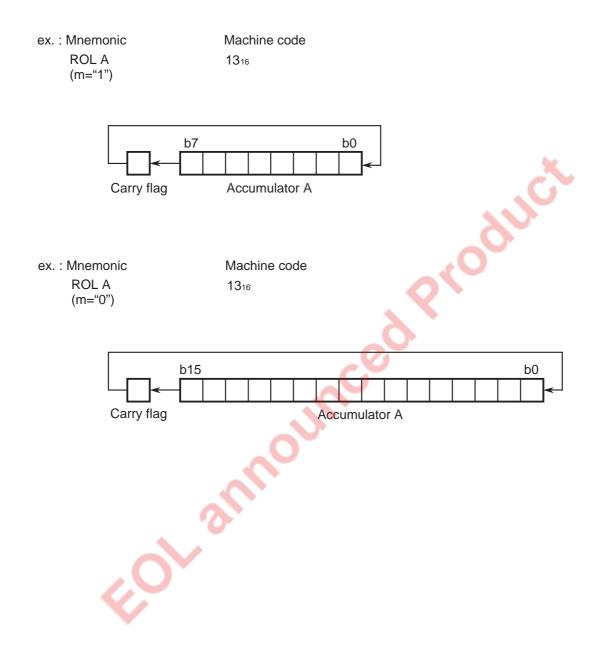
Mode : Implied addressing mode


Function : These instructions do not have an operand in the mnemonic.


Immediate

Mode : Immediate addressing mode

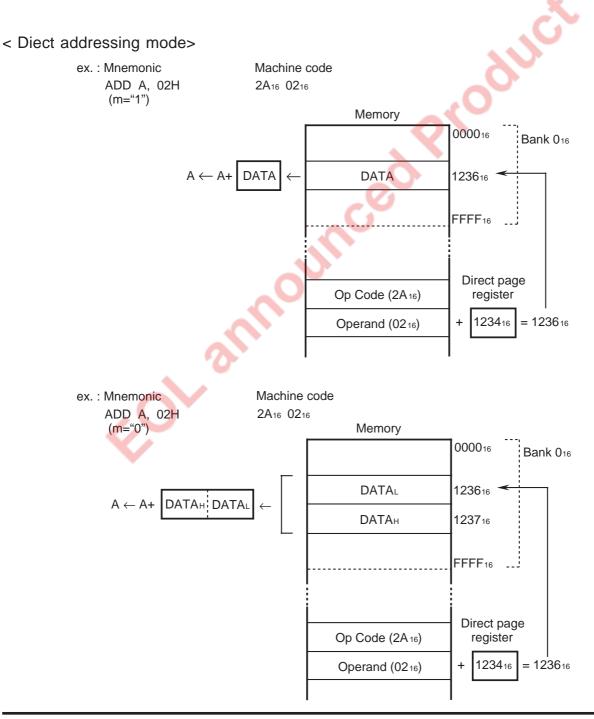
Function : These instructions operate with a register and a immediate value.

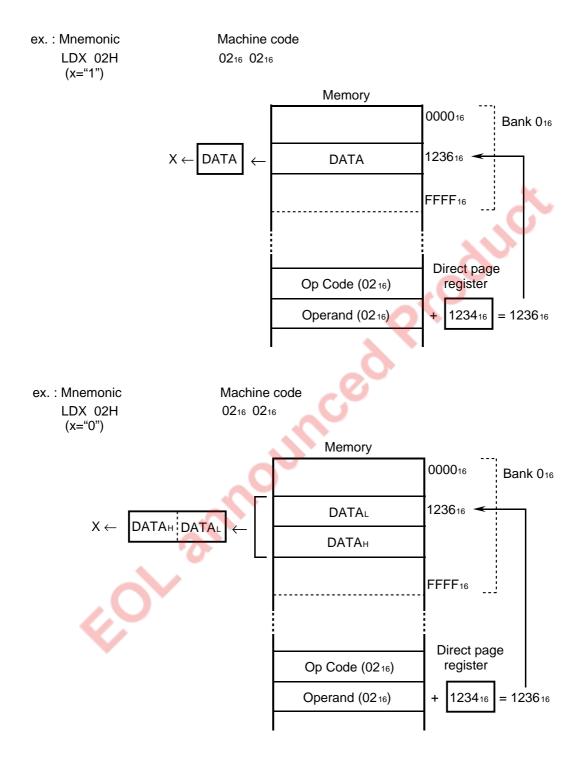

Immediate

Accumulator

Mode : Accumulator addressing mode

Function : These instructions manipulate the contents of an accumulator.

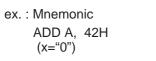



Mode : Direct addressing mode

Function : The memory contents in bank 0 specified by the result of adding the instruction's operand and the contents of the direct page register are an actual data. However, if the value derived by adding the instruction's operand and the direct page register's content's exceeds the bank 0₁₆ range, memory in bank 1 is specified.

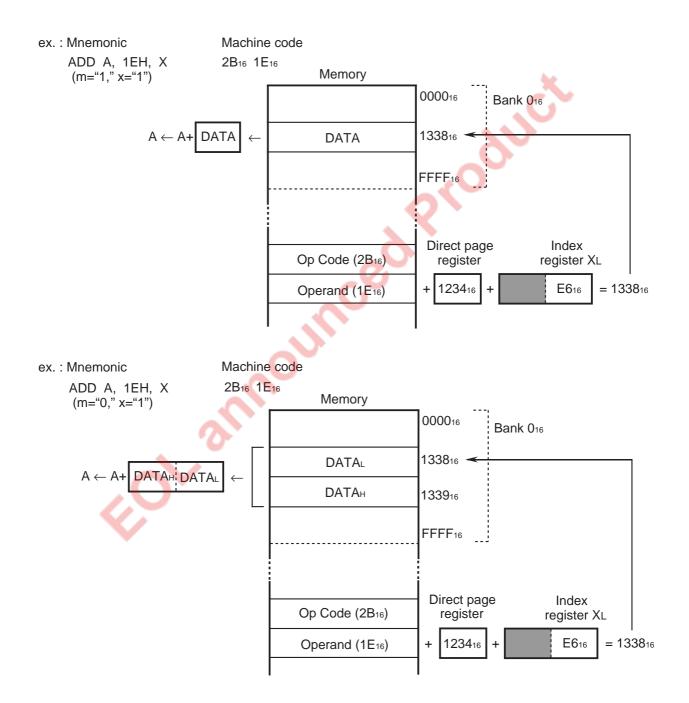
The direct page register select bit of processor mode register 1 allows the user to choose one of the following options :

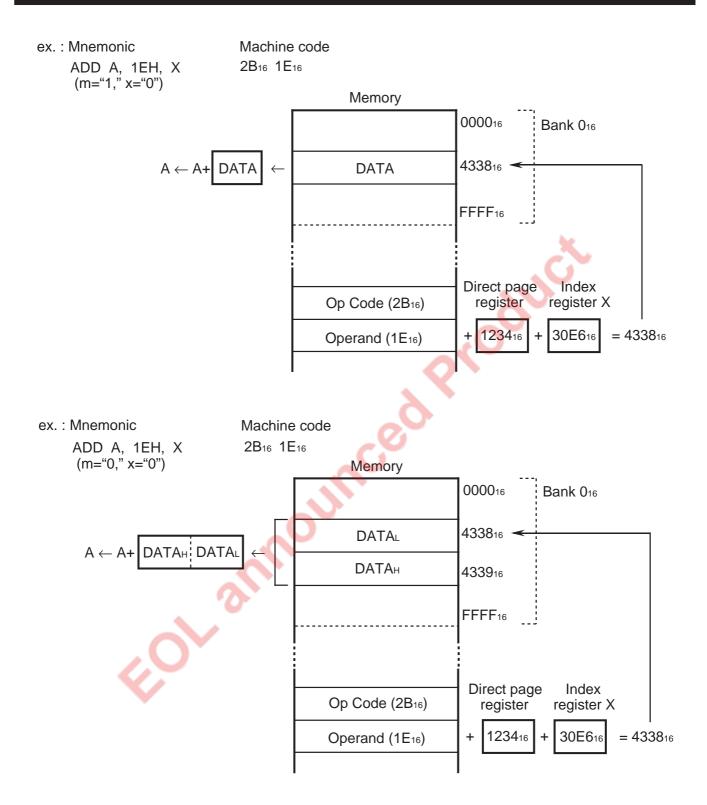
- Use direct page register 0 (DPR0) only. In this case, specify the offset from DPR0 in length of 8 bits.
- Use direct page registers 0 through 3 (DPR0 through 3). In this case, use the high-order 2 bits of the operand (8 bits) to specify the direct page register and the low-order 6 bits to specify the offset.

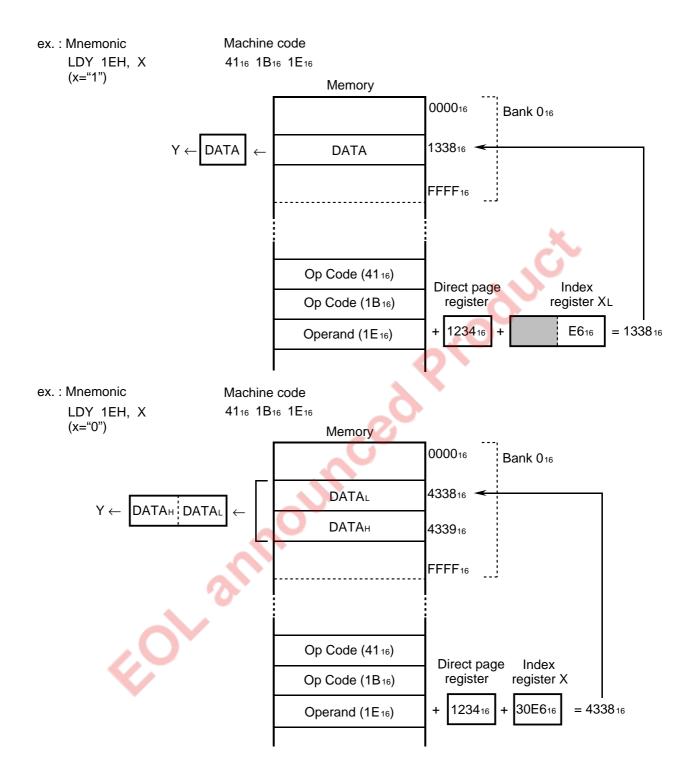


Machine code

2A16 4216

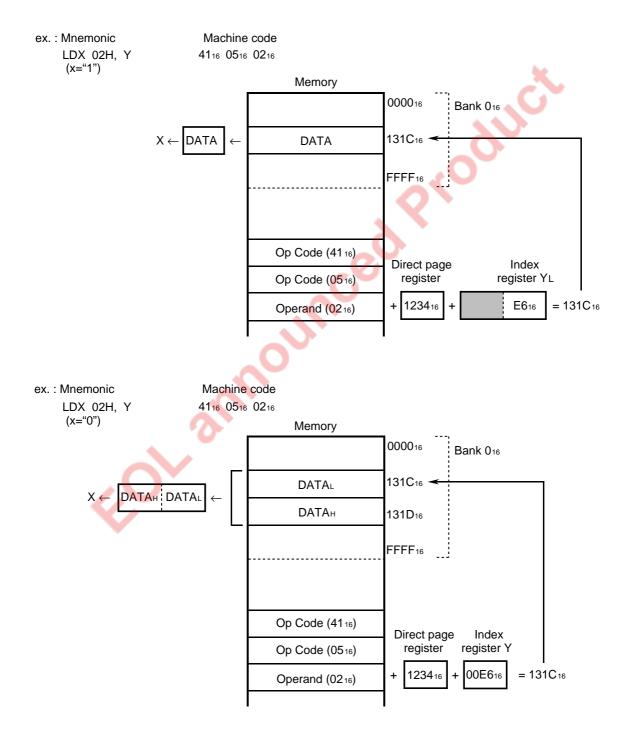

<Extension direct addressing mode>

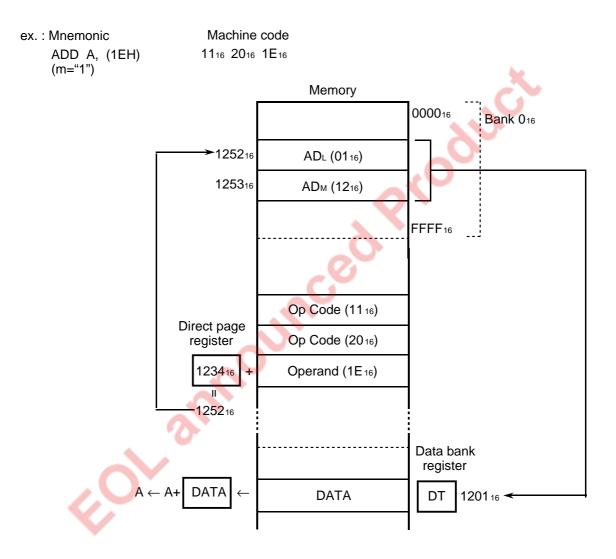


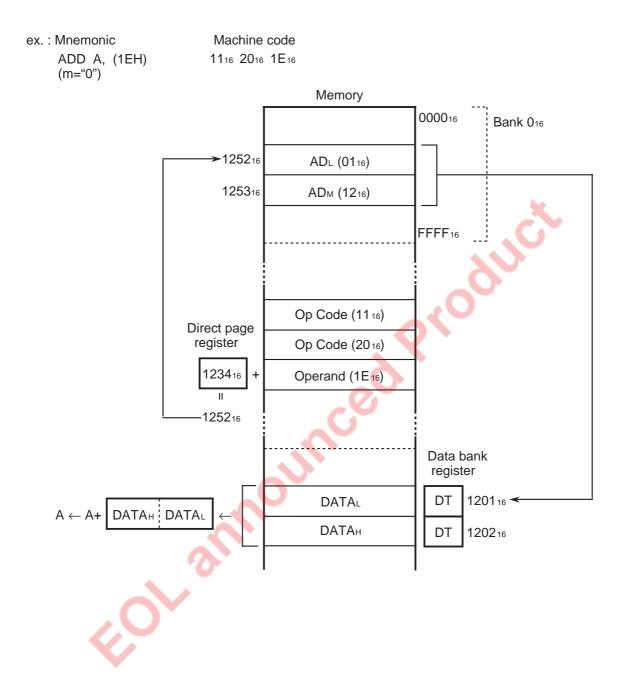

Memory 000016 Bank 0₁₆ 200216 DATAL DATAH DATAL $\mathsf{A} \leftarrow$ 4 DATAH FFFF₁₆ Direct page register 1 Op Code (2A₁₆) Operand (4216) = 200216 200016 + -Operand (4216)-----01000010 DPR1 Offset (0216) specified _____

Mode : Direct indexed X addressing mode

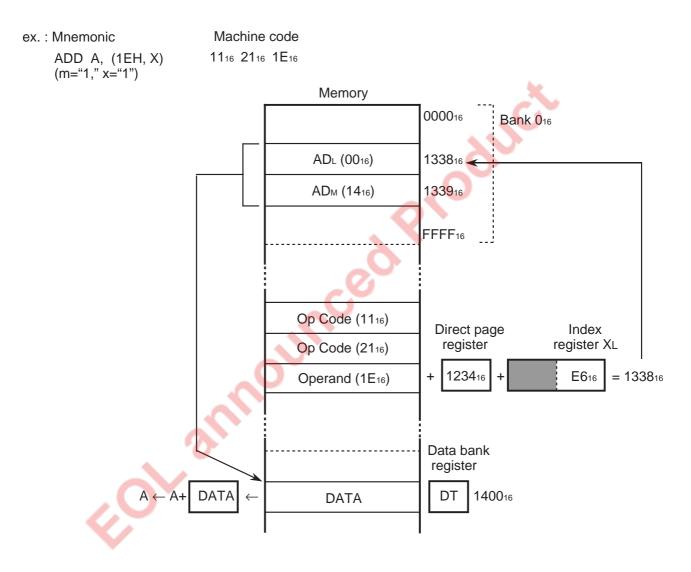
Function : The contents of a memory in bank 016 are an actual data. This memory location is specified by the result of adding the instruction's operand, the direct page register's contents and the index register X's contents. When, however, the result of adding the instruction's operand, the direct page register's contents and the index register X's contents exceeds the bank 016 or bank 116 range, the memory location in bank 116 or bank 216 is specified.

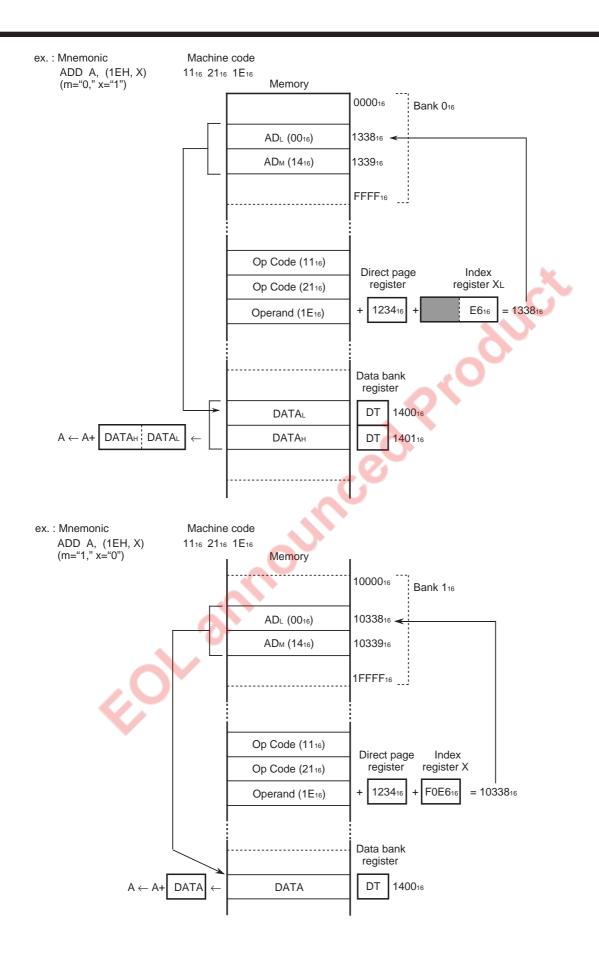


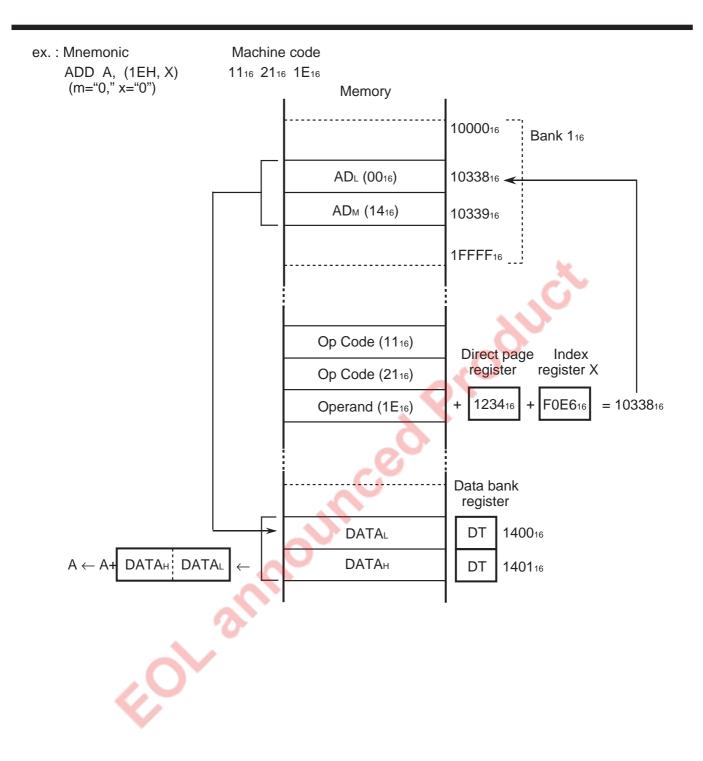

Mode : Direct indexed Y addressing mode


Function : The contents of a memory in bank 016 are an actual data. This memory location is specified by the result of adding the instruction's operand, the direct page register's contents and the index register Y's contents. When, however, the result of adding the instruction's operand, the direct page register's contents and the index register Y's contents exceeds the bank 016 or bank 116 range, the memory location in bank 116 or bank 216 is specified.

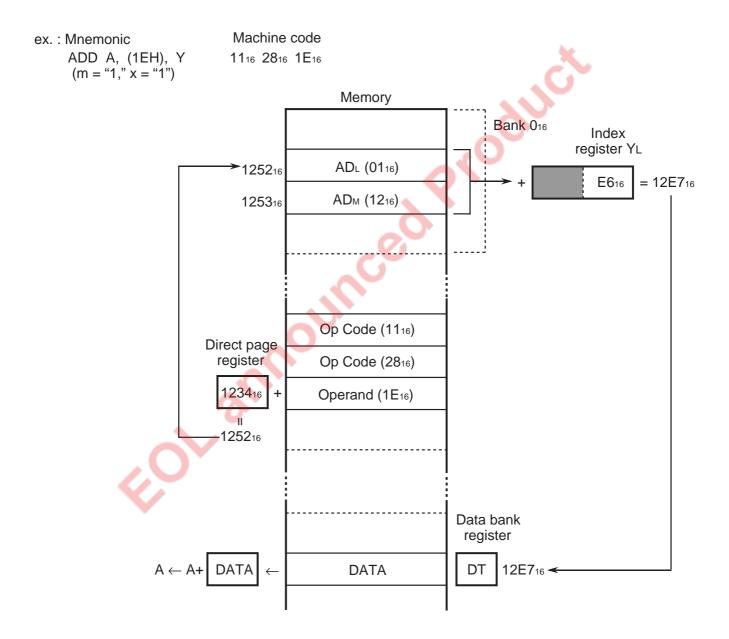
Mode : Direct indirect addressing mode


Function : Specifies a sequence of 2-byte memory in bank 016 by the result of adding the instruction's operand to the direct page register's contents. The contents of the memory location specified by these 2 bytes in bank DT (DT is the data bank register's contents) are an actual data. When, however, the result of adding the instruction's operand to the direct page register's contents exceeds the bank 016 range, the memory location in bank 116 is specified.

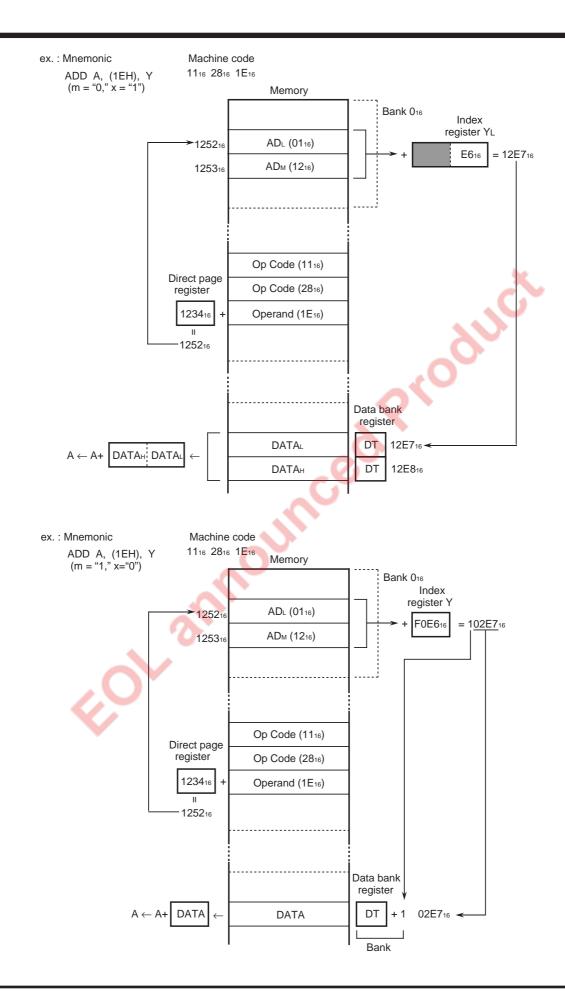


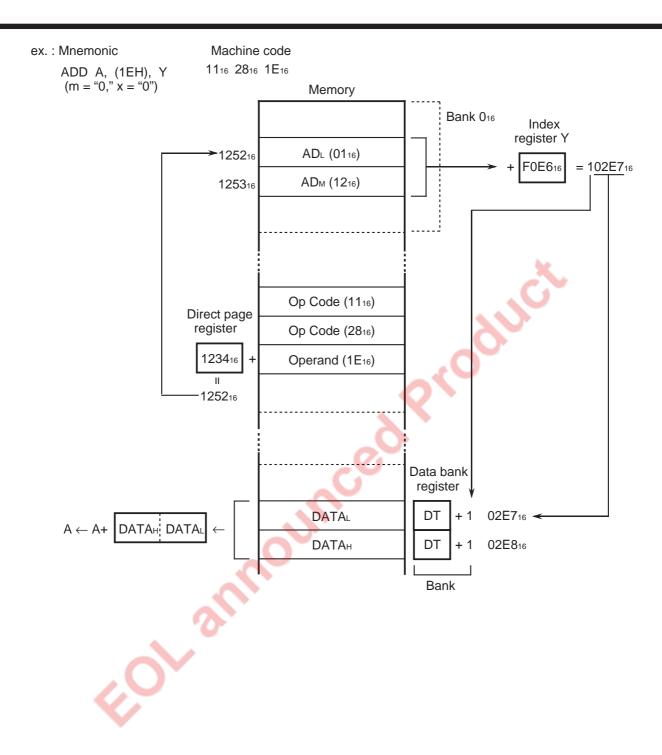

Direct Indexed X Indirect

- Mode : Direct indexed X indirect addressing mode
- **Function** : Specifies a sequence of 2-byte memory in bank 016 by the result of adding the instruction's operand, the direct page register's contents and the index register X's contents. The contents of the memory location specified by these bytes in bank DT (DT is the data bank register's contents) are an actual data. When, however, the result of adding the instruction's operand, the direct page register's contents and the index register X's contents exceeds the bank 016 or bank 116 range, the memory location in bank 116 or bank 216 is specified.

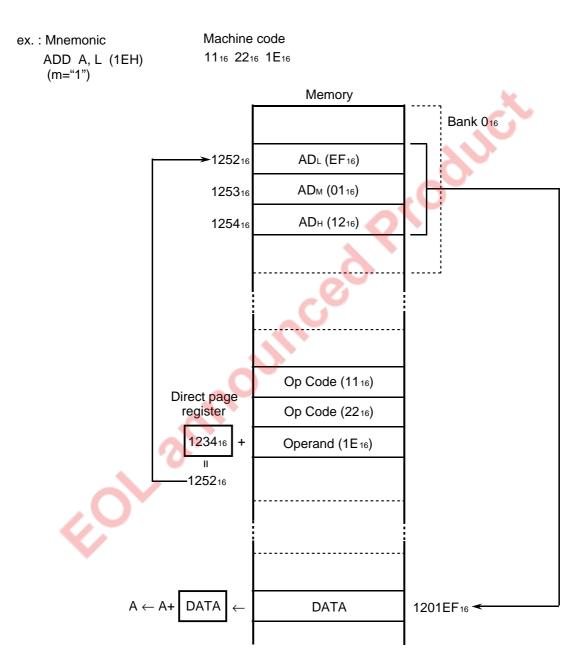


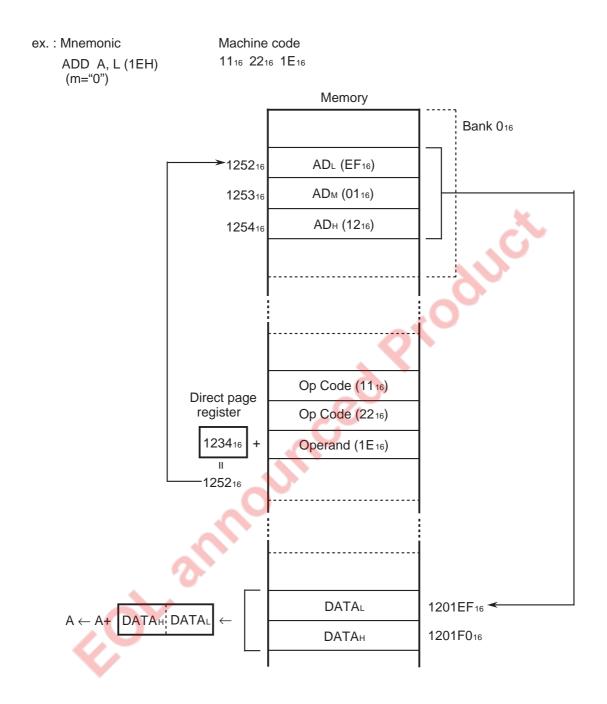
Direct Indexed X Indirect

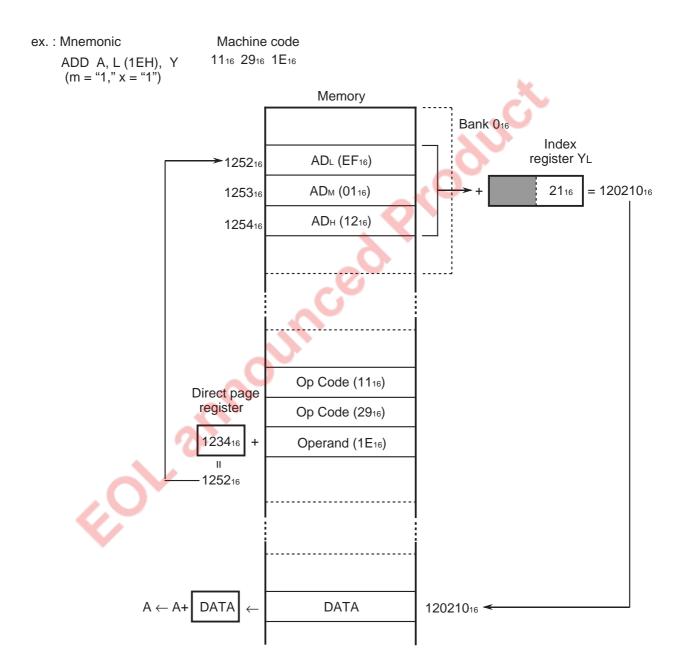


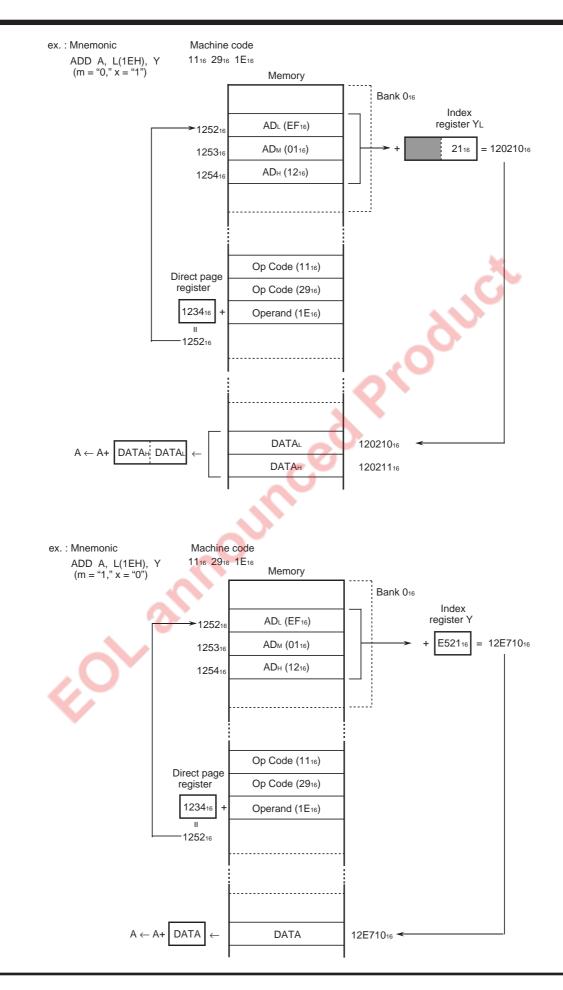


- Mode : Direct indirect indexed Y addressing mode
- **Function** : Specifies a sequence of 2-byte memory in bank 016 by the result of adding the instruction's operand to the direct page register's contents. The following is an actual data: the contents of the memory location specified by the result of adding the contents of these 2 bytes to the index register Y's contents and the contents of the data bank register. When, however, the result of adding the instruction's operand to the direct page register's contents exceeds the bank 016 range, the memory location in bank 116 is specified. Additionally, if the addition of the memory's contents and the index register Y's contents generates a carry, the value which is 1 larger than the contents of the data bank register indicates the bank.

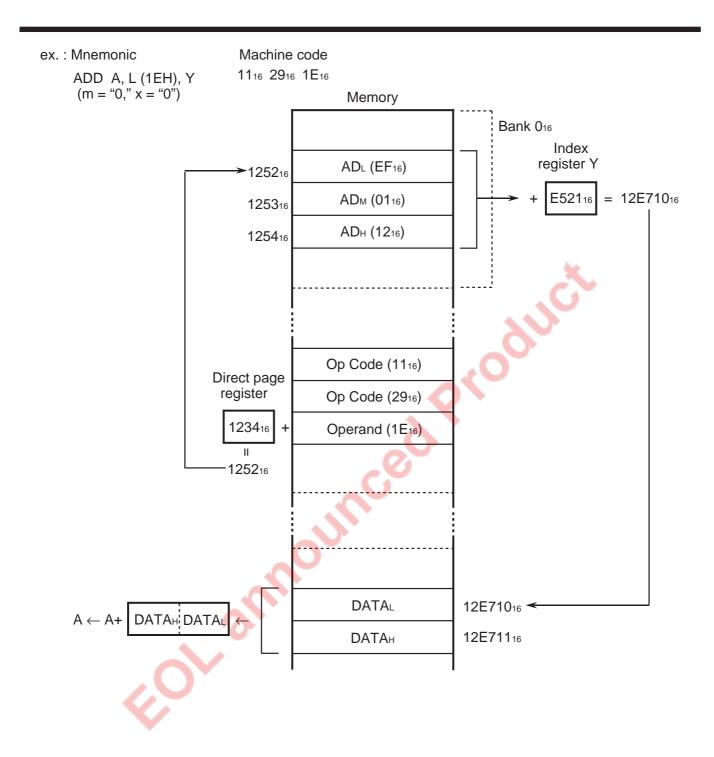



Direct Indirect Indexed Y

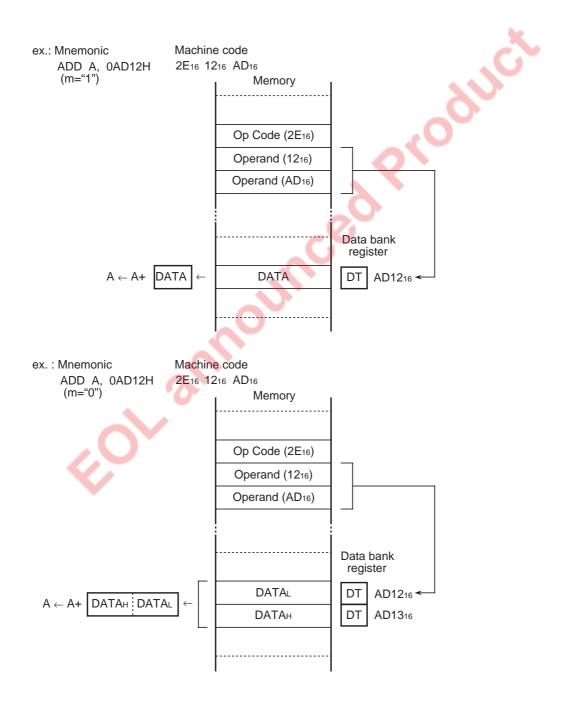

- Mode : Direct indirect long addressing mode
- **Function :** Specifies a sequence of 3-byte memory in bank 016 by the result of adding the instruction's operand to the direct page register's contents. The contents at the address specified by the contents of these 3 bytes are an actual data. When, however, the result of adding the instruction's operand to the direct page register's contents exceeds the bank 016 range, the memory location in bank 116 is specified. A sequence of 3-byte memory can cross over the bank boundary.

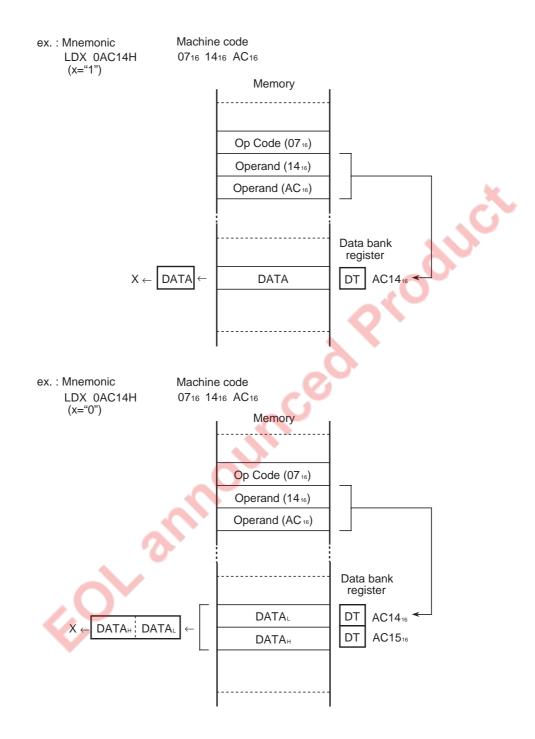


Direct Indirect Long Indexed Y


- Mode : Direct indirect long indexed Y addressing mode
- **Function** : Specifies a sequence of 3-byte memory in bank 016 by the result of adding the instruction's operand to the direct page register's contents. The contents at the address specified by the result of adding the contents of these 3 bytes to the index register Y's contents are an actual data. When, however, the result of adding the instruction's operand to the direct page register's contents exceeds the bank 016 range, the memory location in bank 116 is specified. A sequence of 3-byte memory can cross over the bank boundary.

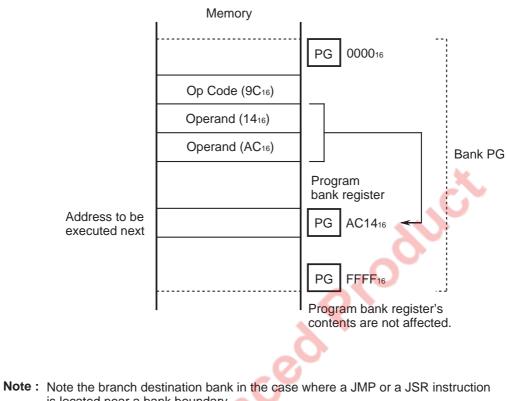
Direct Indirect Long Indexed Y





Mode : Absolute addressing mode

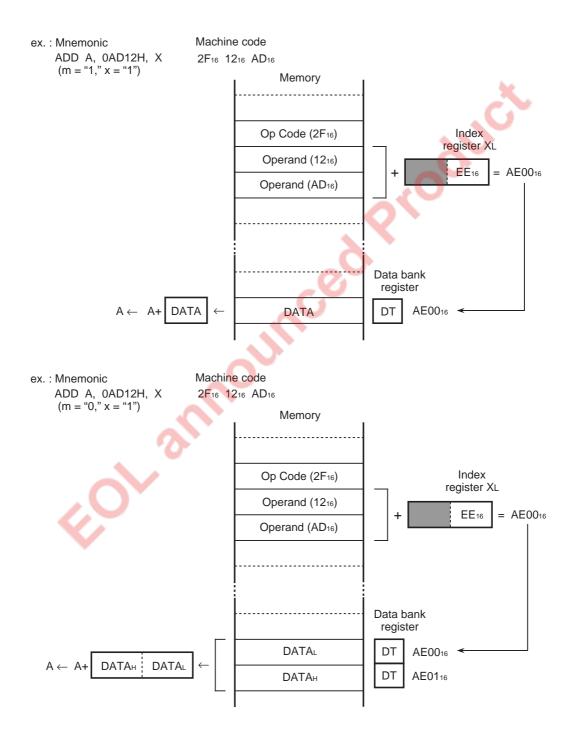
Function : The following is an actual data: the contents of the memory location specified by the instruction's operands and the contents of the data bank register. Note that, in the cases of the JMP and JSR instructions, the instruction's operands are transferred to the program counter.

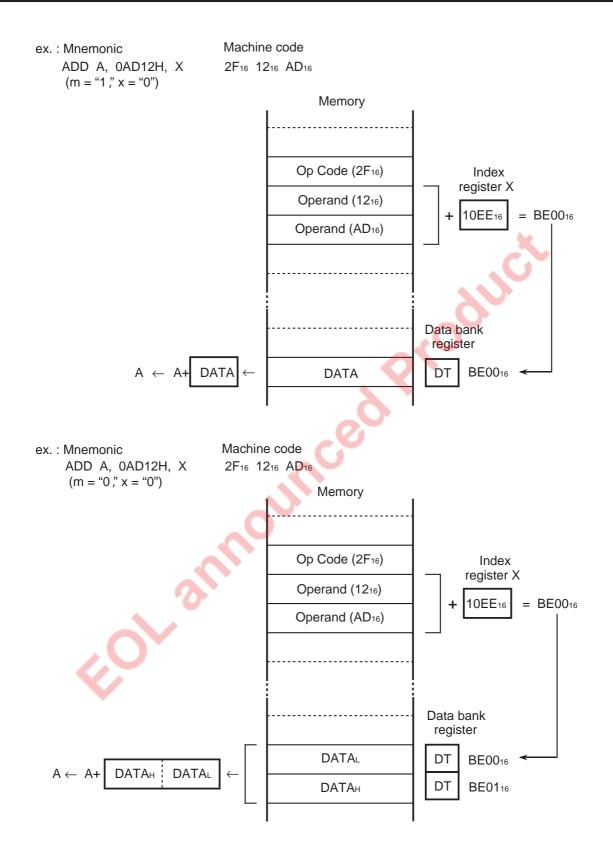


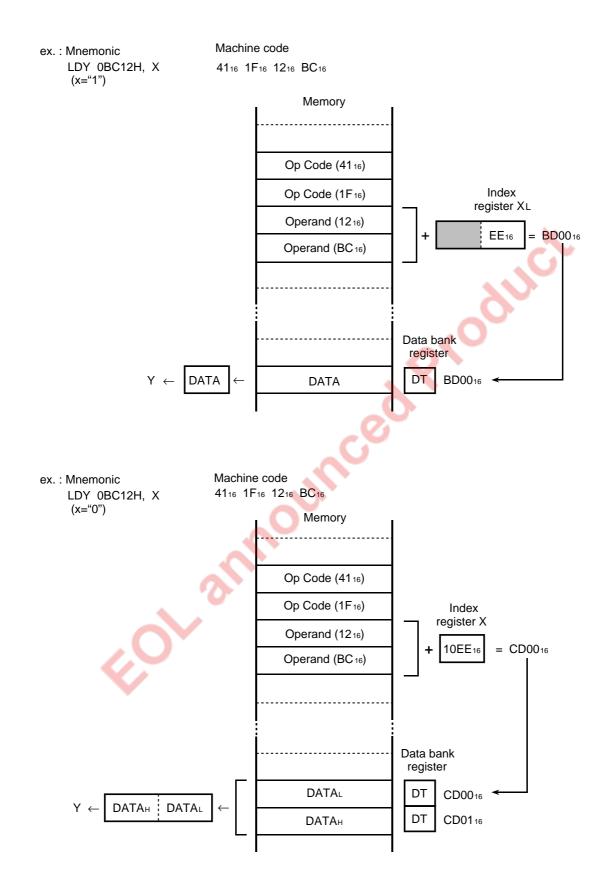
Absolute

ex. : Mnemonic JMP 0AC14H Machine code

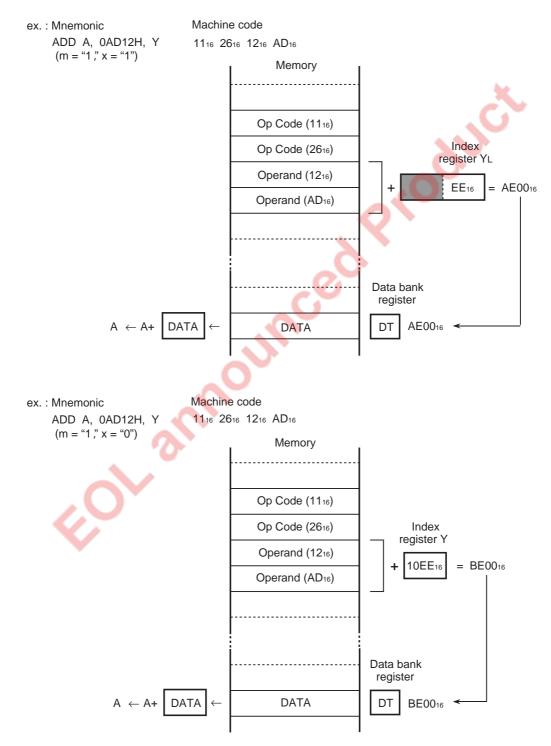
9C16 1416 AC16

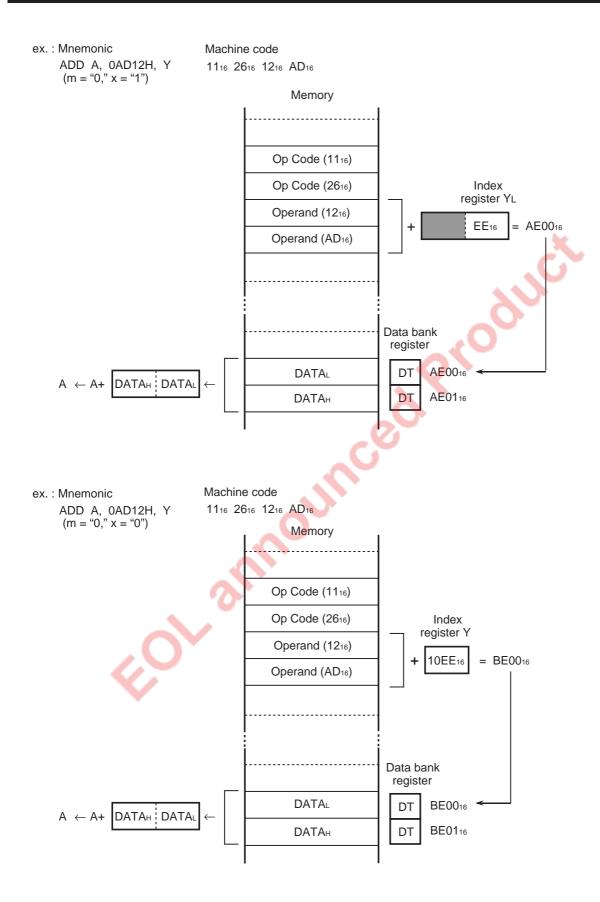

is located near a bank boundary. \Rightarrow Refer to the description of a JMP/JMPL instruction (Page 4-111).

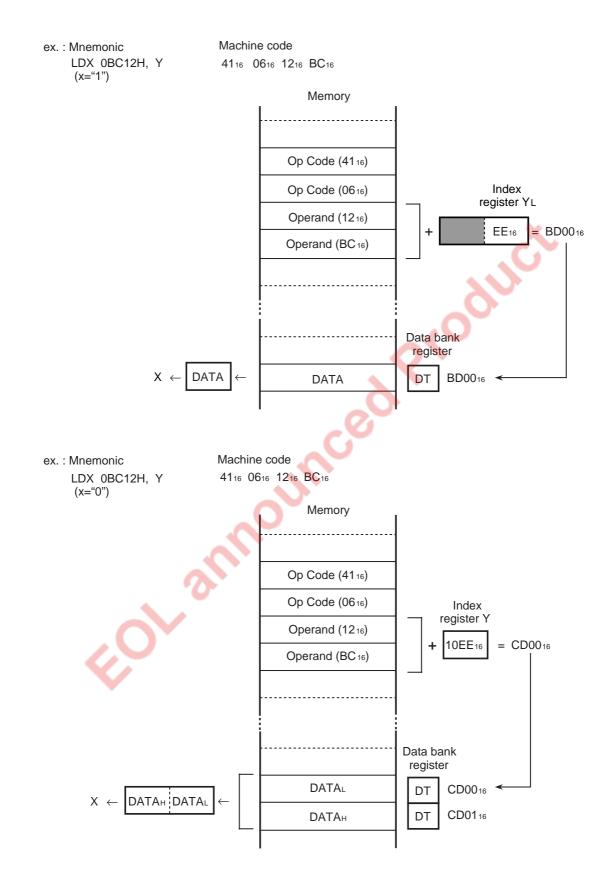

01-31


Refer to the description of a JSR/JSRL instruction (Page 4-112).

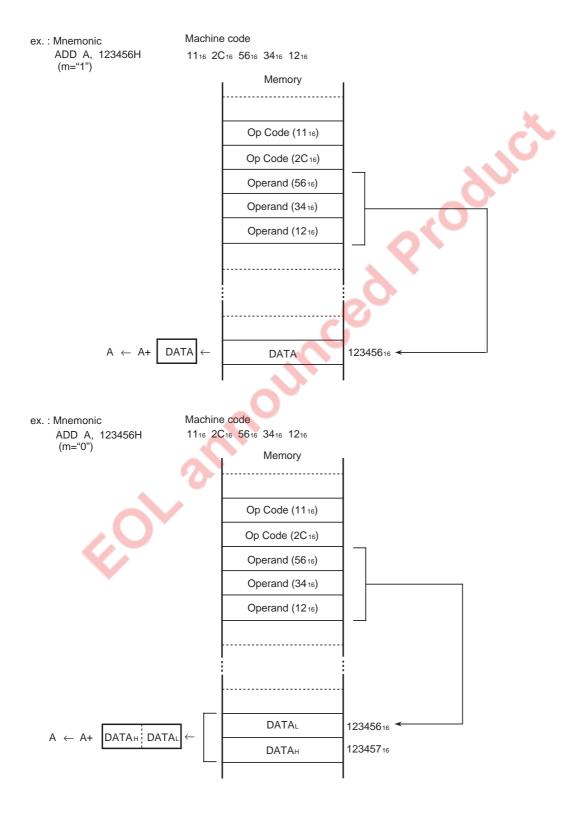
Mode : Absolute indexed X addressing mode

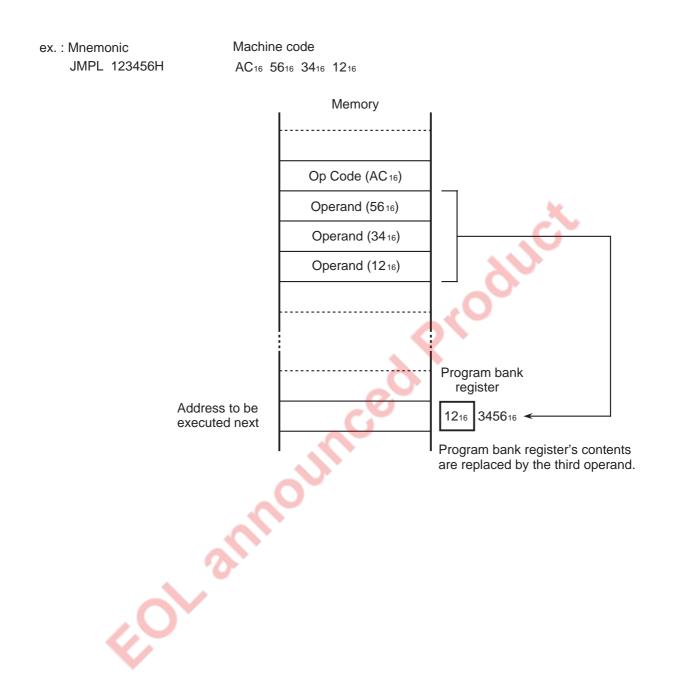

Function : The following is an actual data: the contents of the memory location specified by the result of adding a 16-bit length numerical value expressed with the instruction's operands to the index register X's contents, and the contents of the data bank register. If, however, the addition of the numerical value expressed with the instruction's operands and the index register X's contents generates a carry, the value which is 1 larger than the contents of the data bank register indicates the bank.





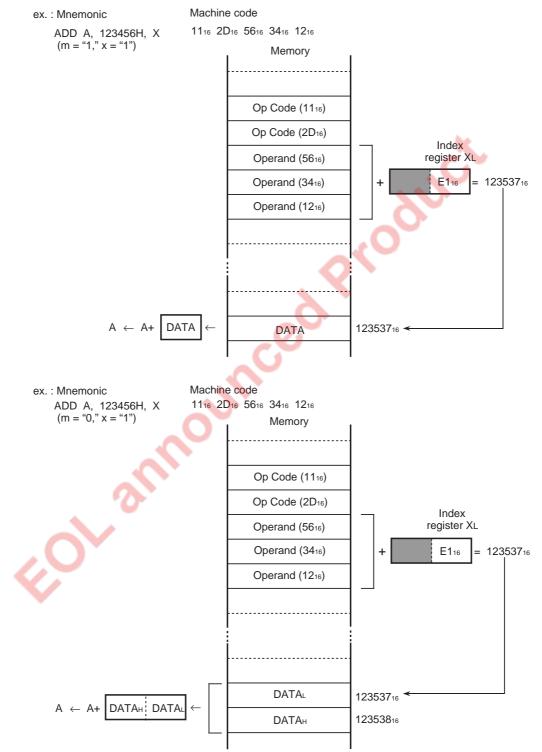
- Mode : Absolute indexed Y addressing mode
- **Function** : The following is an actual data: the contents of the memory location specified by the result of adding a 16-bit length numerical value expressed with the instruction's operands to the index register Y's contents, and the contents of the data bank register. If, however, the addition of the numerical value expressed with the instruction's operands to the index register Y's contents generates a carry, the value which is 1 larger than the contents of the data bank register indicates the bank.

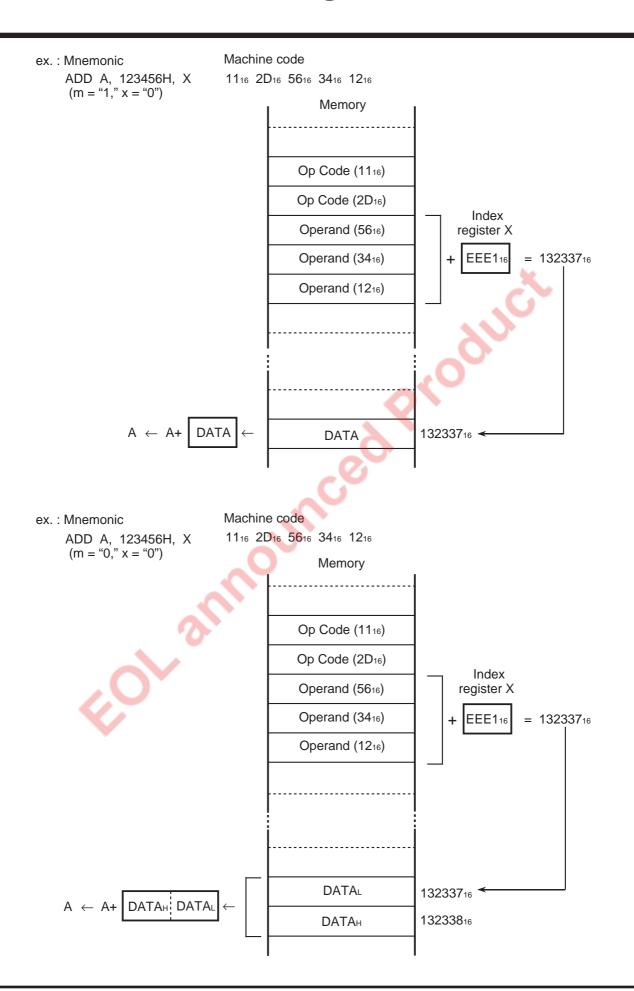




Absolute Long

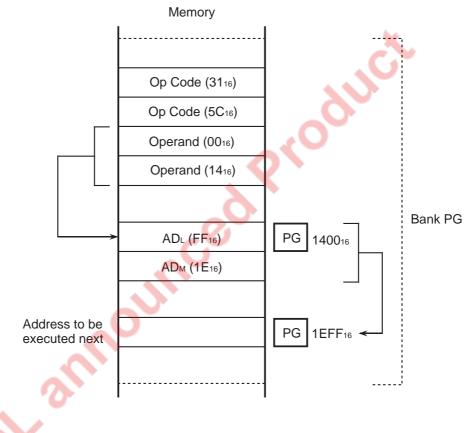
Mode : Absolute long addressing mode


Function : The contents of the memory location specified by the instruction's operands are an actual data. Note that, in the cases of the JMPL and JSRL instructions, the instruction's second and third bytes are transferred to the program counter and the fourth byte is transferred to the program bank register.



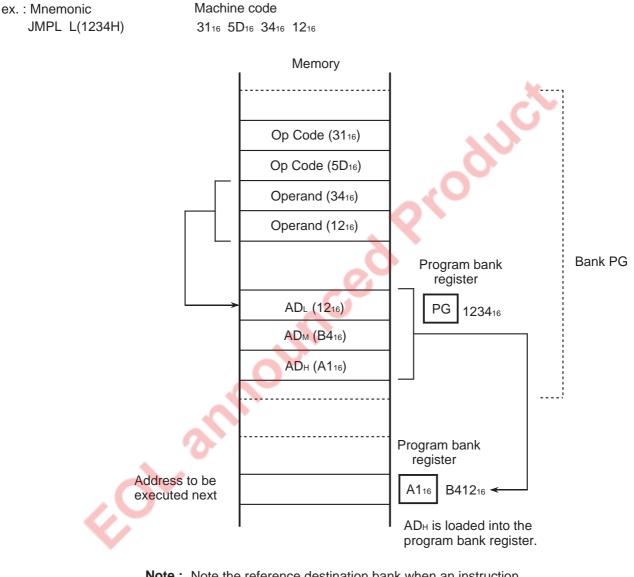
Absolute Long Indexed X

- Mode : Absolute long indexed X addressing mode
- **Function** : The following is an actual data: the contents of the memory location specified by the result of adding a numerical value expressed with the instruction's operands to the index register X's contents.



- Mode : Absolute indirect addressing mode
- **Function** : A sequence of 2-byte memory is specified by the instruction's third and fourth bytes in the same program bank. The contents of this 2-byte memory specify the branch destination address within the same program bank.

This addressing mode is used by a JMP instruction.


ex. : Mnemonic Machine code JMP (1400H) 3116 5C16 0016 1416

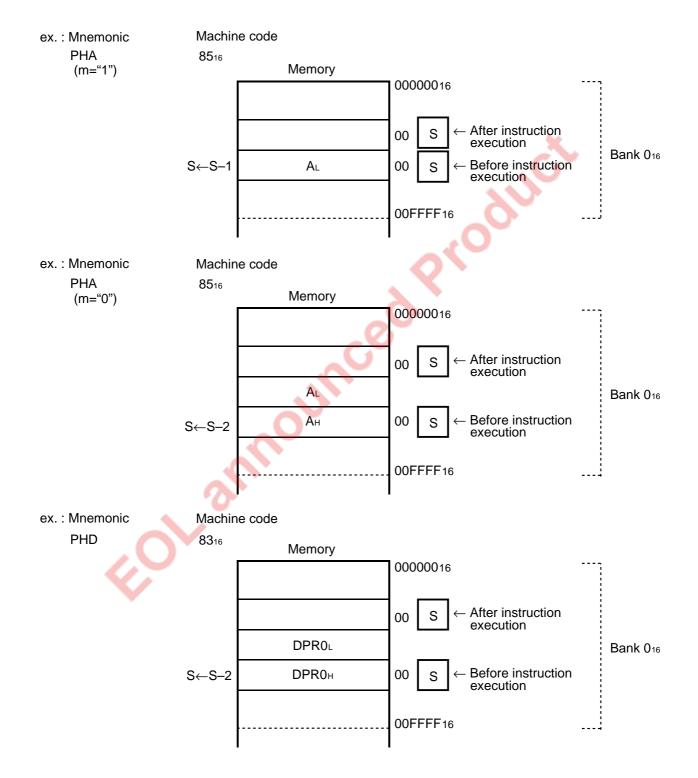
Note : Note the reference/branch destination bank when an instruction or a reference destination is located near a bank boundary.
 ⇒ Refer to the description of a JMP/JMPL instruction (Page 4-111).

Absolute Indirect Long

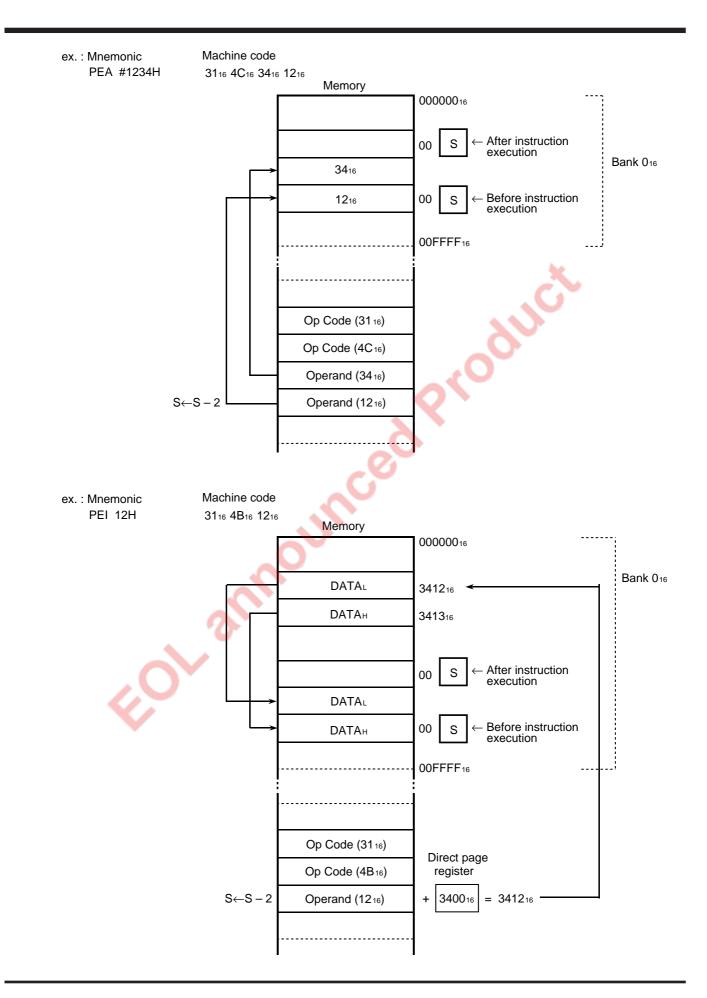
- Mode : Absolute indirect long addressing mode
- **Function** : A sequence of 3-byte memory is specified by the instruction's third and fourth bytes in the same program bank. The contents of this 3-byte memory specify the branch destination address. This addressing mode is used by a JMPL instruction.

Note : Note the reference destination bank when an instruction is located near a bank boundary.
 ⇒Refer to the description of a JMP/JMPL instruction (Page 4-111).

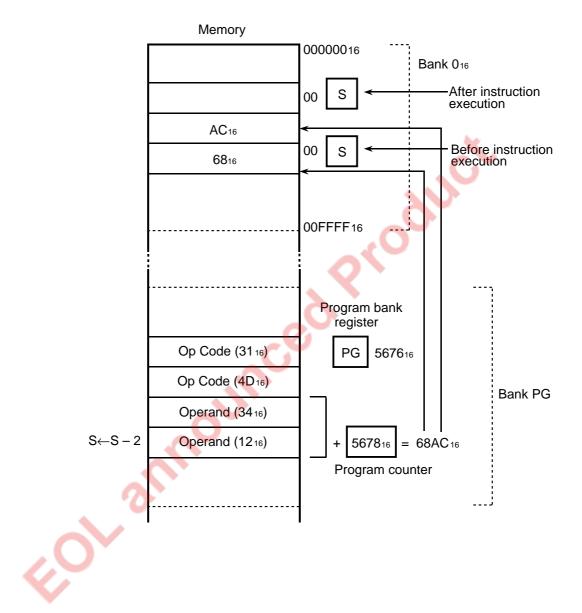
Absolute Indexed X Indirect


- Mode : Absolute indexed X indirect addressing mode
- **Function** : A sequence of 2-byte memory is specified by the result of adding a numerical value expressed with the instruction's second and third bytes to the index register X's contents; the memory bank is specified by program bank register PG at this time. The contents of this 2-byte memory specify the branch destination address.

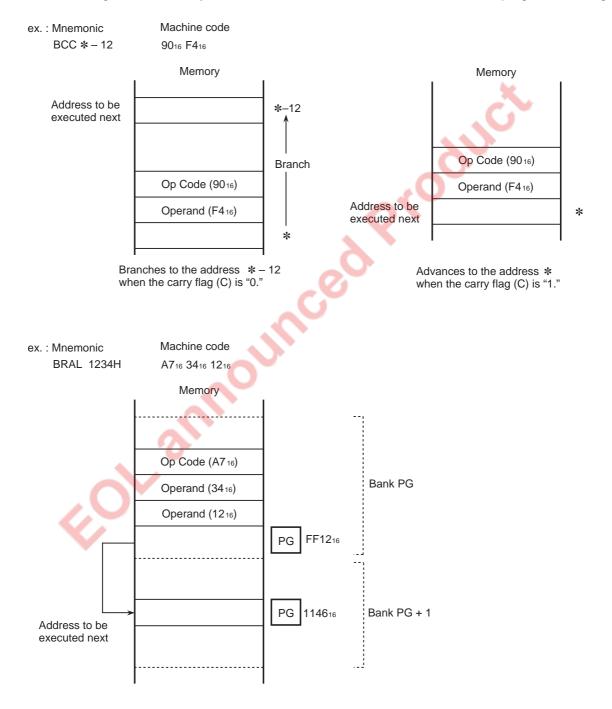
This addressing mode is used by a JMP and a JSR instructions.


- ex.: Mnemonic Machine code JMP (1234H, X) BC16 3416 1216 (x = "1")Memory Index Op Code (BC16) register X∟ Operand (3416) 1216 $= 1246_{16}$ Operand (1216) Bank PG 124616 ADL (1216) ADM (BC16) 124716 Program bank register Address to be PG BC1216 executed next
 - **Note :** Note the reference/branch destination bank in the case of a JMP or a JSR instruction when the instruction or the branch destination address is located near a bank boundary.
 - ➢ Refer to the description of a JMP/JMPL instruction (Page 4-111).
 - Refer to the description of a JSR/JSRL instruction (Page 4-112).

Mode : Stack addressing mode


Function : The contents of a register or others are stored to or restored from the memory of which location is specified by the stack pointer; this memory is called "stack area." The stack area is set in bank 016.

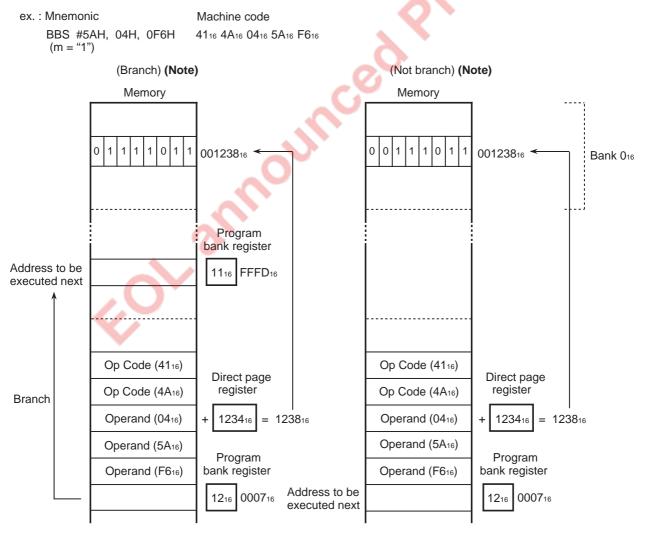
Stack



ex. : Mnemonic PER #1234H Machine code 31₁₆ 4D₁₆ 34₁₆ 12₁₆

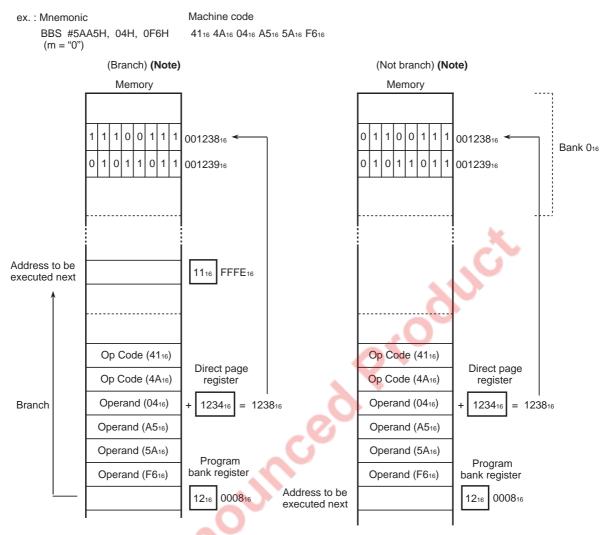
Mode : Relative addressing mode

Function : Branches to the address specified by the result of adding the program counter's contents to the instruction's second byte. In the case of a long branch with the BRA instruction, the instruction's second and third bytes are added to the program counter's contents as a 15-bit signed numerical value. In the case of the BSR instruction, the instruction's 3 bits of the first byte and the second byte are added to the program counter's contents as a 11-dit signed numerical value. If the addition generates a carry or a borrow, 1 is added to or subtracted from the program bank register.


Mode : Direct bit relative addressing mode

Function : • BBC and BBS instructions

Specifies the memory location in bank 016 by the result of adding the instruction's third byte to the direct page register's contents; specifies the multiple bits' position in that memory by the bit pattern of the instruction's fourth and fifth bytes (when the m flag is "1," the fourth byte only). Then, when the specified bits all satisfy the branching conditions, branches to the address specified by the result of adding the instruction's sixth byte (or when the m flag is "1," the fifth byte) as a signed numerical value to the program counter's contents. When, however, the result of adding the instruction's second byte to the direct page register's contents exceeds the bank 016 range, the memory location in bank 116 is specified.


• BBCB and BBSB instructions

Specifies the memory location in bank 016 by the result of adding the instruction's second byte to the direct page register's contents; specifies the multiple bits' position in that memory by the bit pattern of the instruction's third byte. Then, when the specified bits all satisfy the branching conditions, branches to the address specified by the result of adding the instruction's fourth byte as a signed numerical value to the program counter's contents. When, however, the result of adding the instruction's second byte to the direct page register's contents exceeds the bank 016 range, the memory location in bank 116 is specified.

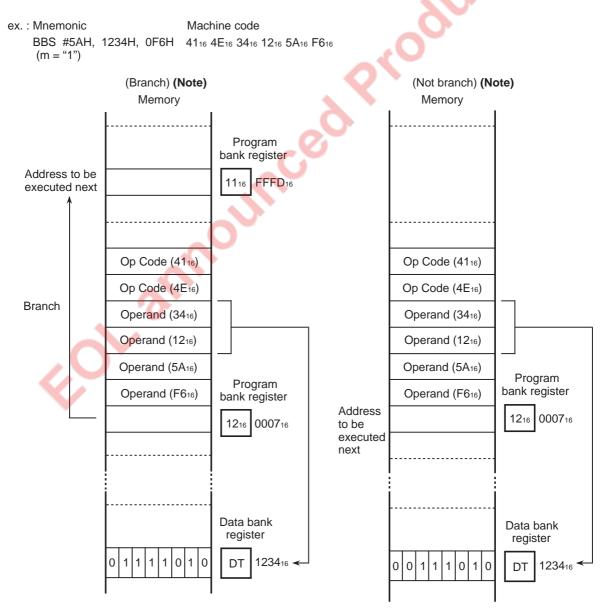
Note: Whether to branch or not depends on the branching conditions.

Direct Bit Relative

Note: Whether to branch or not depends on the branching conditions.

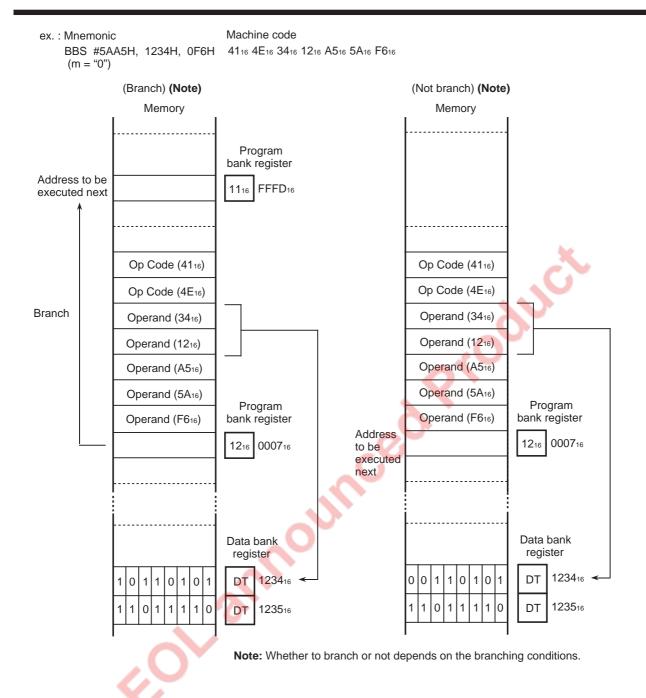
eol a

Absolute Bit Relative

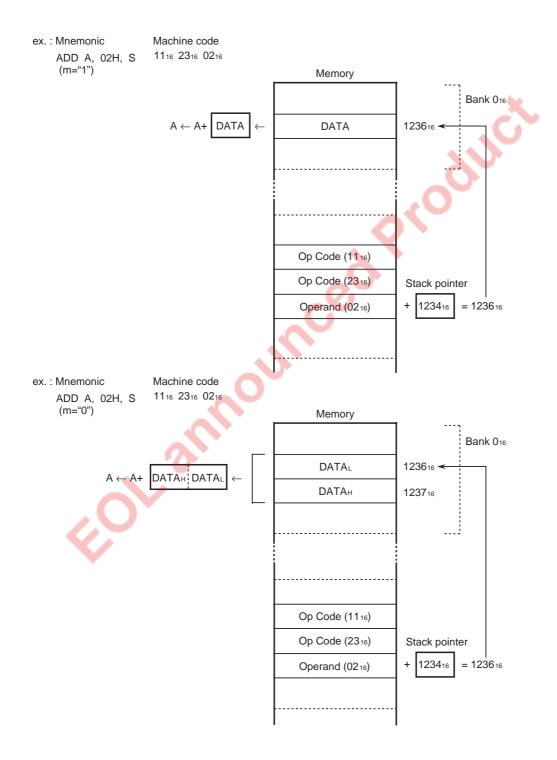

Mode : Absolute bit relative addressing mode

Function : • BBC and BBS instructions

Specifies the memory location by the instruction's third and fourth bytes and the contents of the data bank register; specifies the multiple bits' position in that memory by the bit pattern of the instruction's fifth and sixth bytes (when the m flag is "1," the fifth byte only). Then, when the specified bits all satisfy the branching conditions, branches to the address specified by the result of adding the instruction's seventh byte (or when the m flag is "1," the sixth byte) as a signed numerical value to the program counter's contents.

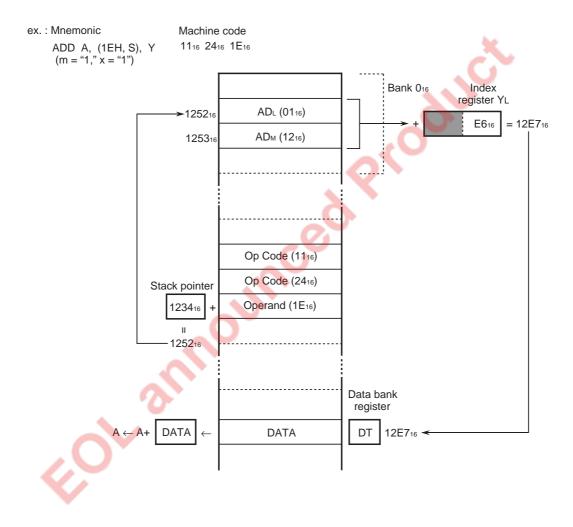

• BBCB and BBSB instructions

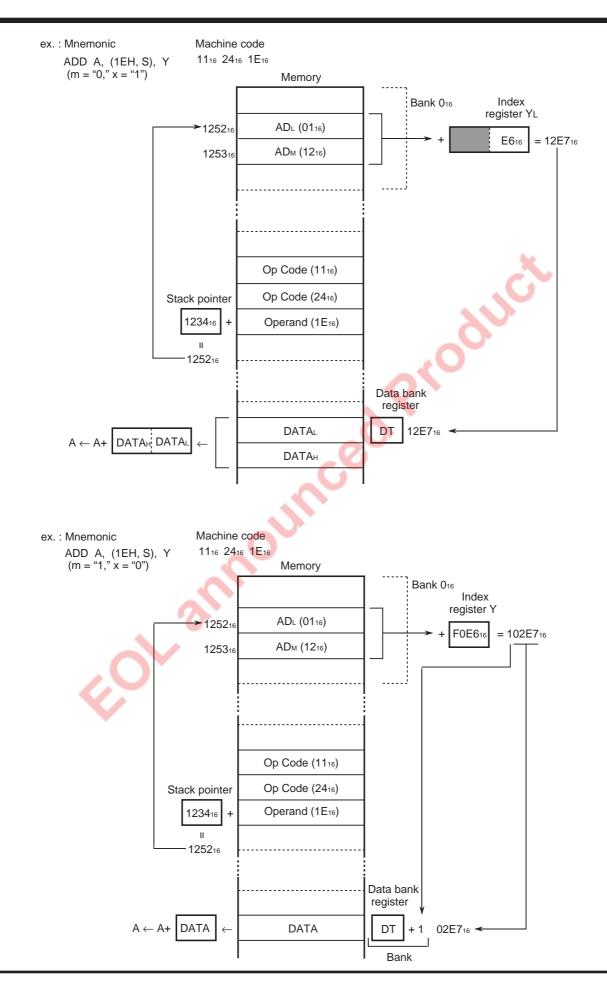
Specifies the memory location by the instruction's second and third bytes and the contents of the data bank register; specifies the multiple bits' position in that memory by the bit pattern of the instruction's fourth byte. Then, when the specified bits all satisfy the branching conditions, branches to the address specified by the result of adding the instruction's fifth byte as a signed numerical value to the program counter's contents.



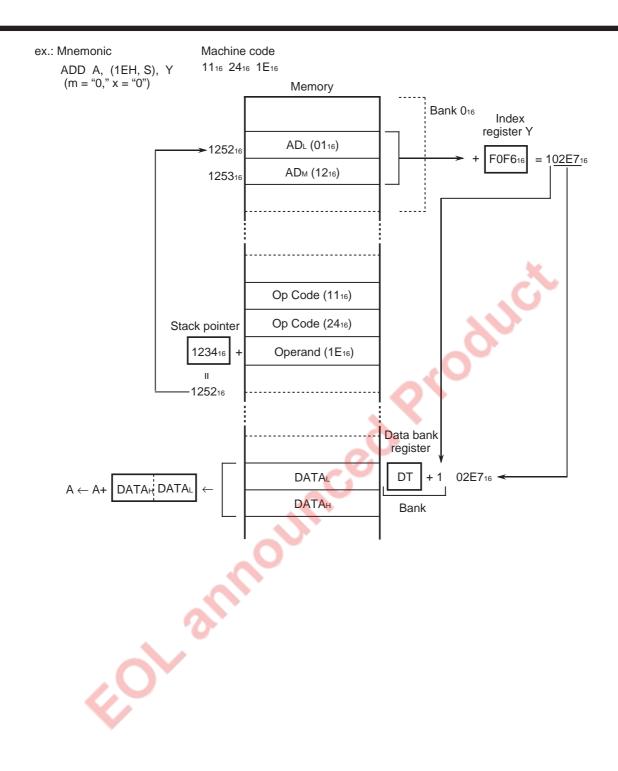
Note: Whether to branch or not depends on the branching conditions.

Absolute Bit Relative

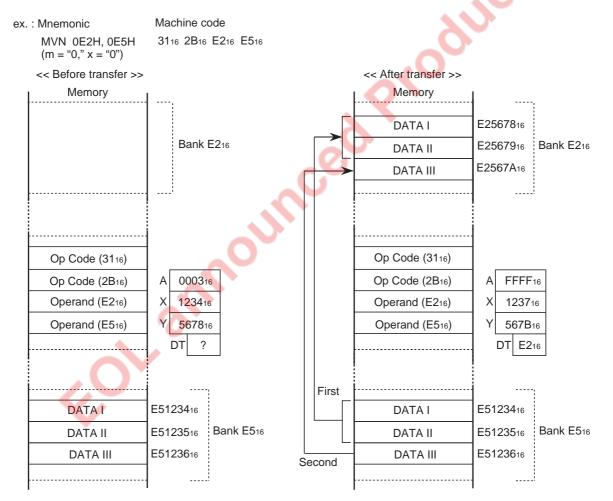

- Mode : Stack pointer relative addressing mode
- **Function** : The contents of the memory location in bank 016 are an actual data. This memory is specified by the result of adding the instruction's operand to the stack pointer's contents. When, however, the result of adding the instruction's operand to the stack pointer's contents exceeds the bank 016 range, the memory location in bank 116 is specified.

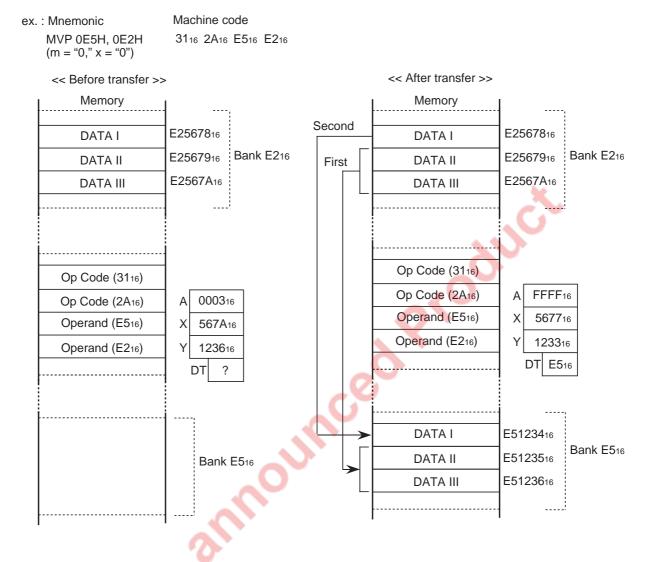

Stack Pointer Relative Indirect Indexed Y

Mode : Stack pointer relative indirect indexed Y addressing mode


Function : Specifies a sequence of 2-byte memory by the result of adding the instruction's operand to the stack pointer's contents. The contents of the memory location specified by the above addition are added to the index register Y's contents. The result of second addition and the contents of data bank register DT indicate the memory location which contents an actual data. If, however, the result of adding the contents of that sequence of 2-byte memory to the index register Y's contents generates a carry, the value which is 1 larger than the contents of the data bank register DT indicates the bank.

Stack Pointer Relative Indirect Indexed Y


Stack Pointer Relative Indirect Indexed Y

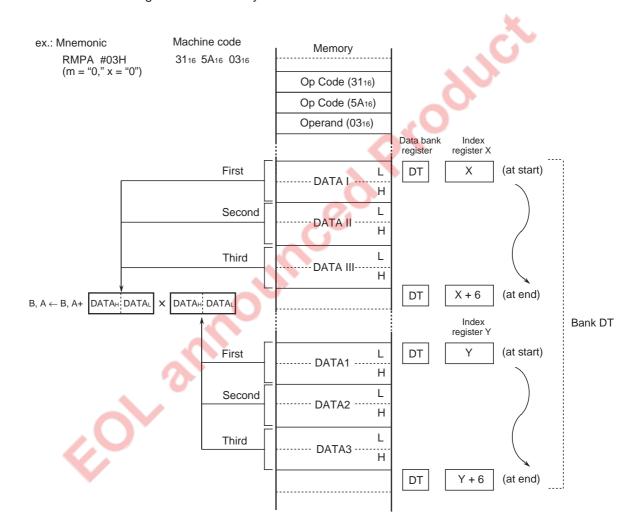


Mode : Block transfer addressing mode

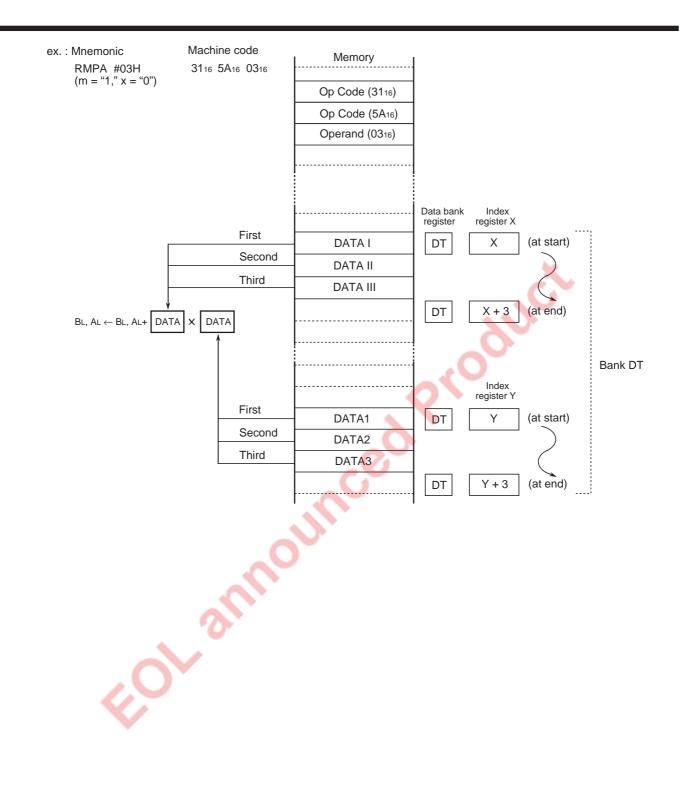
- **Function** : Specifies the transfer destination data bank by the instruction's third byte, and specifies the transfer destination address within the data bank by the index register Y's contents. Specifies the transfer source data bank by the instruction's fourth byte, and specifies the address of transfer data within the data bank by the index register X's contents. The accumulator A's contents are the number of bytes to be transferred. At termination of transfer, the data bank register's contents specify the transfer destination data bank.
 - MVN instruction The MVN instruction is used for transfer toward lower addresses. In this case, the contents of index registers X and Y are incremented each time data is transferred.
 - MVP instruction

The MVP instruction is used for transfer toward higher addresses. In this case, the contents of index registers X and Y are decremented each time data is transferred. The transfer data can cross over the bank boundary.

Note : For block transfer instructions, the number of bytes to be transferred and the range can be specified as transfer source/destination addresses change with the state of the m and x flags. However, the transfer unit is unaffected. The transfer unit is "word" (16 bits). However, only 1 byte is transferred when transferring the last byte at odd-byte transfer.


Multiplied accumulation

Mode : Multiplied accumulation addressing mode


Function : The following is a multiplicand and a multiplier: the contents of the memory location specified by the contents of index registers X and Y, and the data bank register's contents. The instruction's third byte is the repeat number of arithmetic operation. The contents of index registers X and Y are incremented each time the addition of the contents of accumulators B and A to the multiplication result finishes. Accordingly, the contents of index registers X and Y specify the next address where the multiplicand and the multiplier are read at last.

Allocate a multiplicand and a multiplier within the same bank and do not cross them over the bank boundary.

Set index register length flag x to "0" before executing this instruction. This addressing mode is used by an RMPA instruction.

Multiplied accumulation

CHAPTER 3 HOW TO USE 7900 SERIES INSTRUCTIONS

3.1 Memory access

nce

- 3.2 Direct page registers (DPR0-DPR3)
- 3.3 8- and 16-bit data processing
- 3.4 Index registers X and Y
- 3.5 Branch instructions

HOW TO USE 7900 SERIES INSTRUCTIONS

3.1 Memory access

3.1 Memory access

Memory access modes are typically classified into the following 3 categories:

- Direct addressing
- Absolute addressing and Absolute long addressing
- Indirect addressing and Indirect long addressing

Their features are described below.

3.1.1 Direct addressing

- Each instruction has a length of 2 or 3 bytes.
- Reduced number of consumed instruction execution cycles.
- A block (within bank 0: addresses 00000016-00FFF16) of which base address is specified by DPRn is addressable.
 - (i) Direct page register select bit is "0": Block size = 256 bytes
 - (ii) Direct page register select bit is "1": Block size = 64 bytes

When a sum of DPRn's contents and an offset value exceeds the bank boundary, however, access over the boundary is enabled.

3.1.2 Absolute addressing and Absolute long addressing

(1) Absolute addressing

- Each instruction has a length of 3 or 4 bytes.
- A 64-Kbyte space (a bank within addresses 000000₁₆-FFFFF₁₆) is addressable, where the highorder 8 bits of 24-bit address are specified by DT. For the JMP and JSR instructions, however, these high-order 8 bits are specified by PG.

(2) Absolute long addressing

- Each instruction has a length of 4 or 5 bytes.
- Addresses 00000016-FFFFF16 are addressable. All of 24 bits of the address are directly specified.

3.1.3 Indirect addressing and Indirect long addressing

(1) Direct indirect addressing

- Each instruction has a length of 2 or 3 bytes.
- 16-bit pointer data is placed in the space specified by DPRn, and the specified memory is accessed.
- A 64-KB space (a bank within addresses 00000016-FFFFFF16) is addressable, where the highorder 8 bits of 24-bit address are specified by DT.

(2) Direct indirect long addressing

- Each instruction has a length of 2 or 3 bytes.
- 24-bit pointer data is placed in the space specified by DPRn, and the specified memory is accessed.
- An address within the 16-Mbyte space (addresses 00000016-FFFFFF16) is addressable.

3.1 Memory access

(3) Absolute indirect addressing

- This addressing mode can be used only for the indirect branch and indirect subroutine call instructions.
- Each instruction has a length of 3 or 4 bytes.
- 16-bit pointer data is placed in the space specified by PG, and the specified memory is accessed.
- A 64-KB space (a bank within addresses 00000016-FFFFF16) is addressable, where the highorder 8 bits of 24-bit address are specified by PG.

(4) Absolute indirect long addressing

- This addressing mode can be used only for the indirect branch instruction.
- Each instruction has a length of 3 or 4 bytes.
- 24-bit pointer data is placed in the space specified by PG, and the specified memory is accessed.
- Any address of the 16-Mbyte space (addresses 00000016-FFFFF16) is addressable.

Figure 3.1.1 shows a usage example of indirect addressing mode. Here, the data of the pointers pointing to memory areas are processed in the program, and the results are referenced as effective addresses.

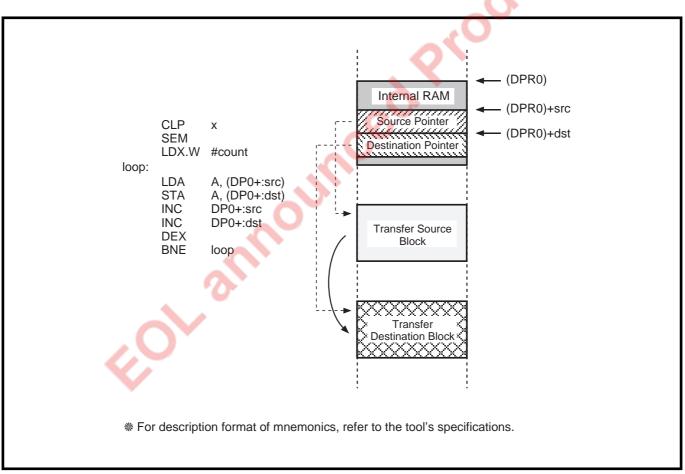


Fig. 3.1.1 Usage example of indirect addressing mode: block transfer

The 7900 Series also provides many other useful addressing modes. For details, refer to section "2.3 Addressing modes."

3.2 Direct page registers (DPR0–DPR3)

3.2 Direct page registers (DPR0-DPR3)

The 7900 Series provides more enhanced direct addressing modes than those of the conventional 7700 Family. These powerful addressing modes greatly improve programming efficiency, especially in a range of addresses $000000_{16}-00FFFF_{16}$.

In the 7900 Series, just after a reset, only DPR0 can be used. When the direct page register select bit of the processor mode register 1 is set to "1," however, direct page registers DPR0–DPR3 can be used. Figure 3.2.1 shows an usage example of DPR0–DPR3.

In the conventional 7700 Family, since only one direct page register can be used, it is required to frequently change the contents of the direct page register for efficient memory access using direct page addressing mode. On the contrary, the 7900 Series does not need such a procedure as in the conventional 7700 Family because it can assign a direct page register to each base address of each block.

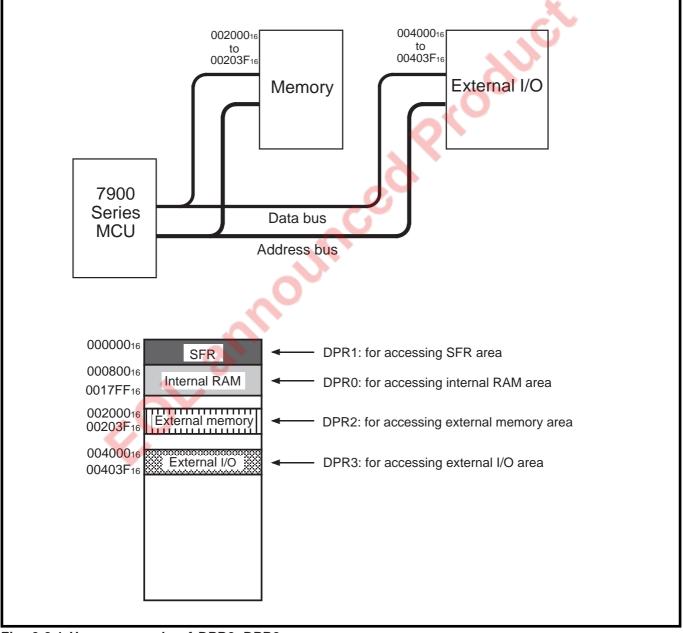


Fig. 3.2.1 Usage example of DPR0–DPR3

3.3 8- and 16-bit data processing

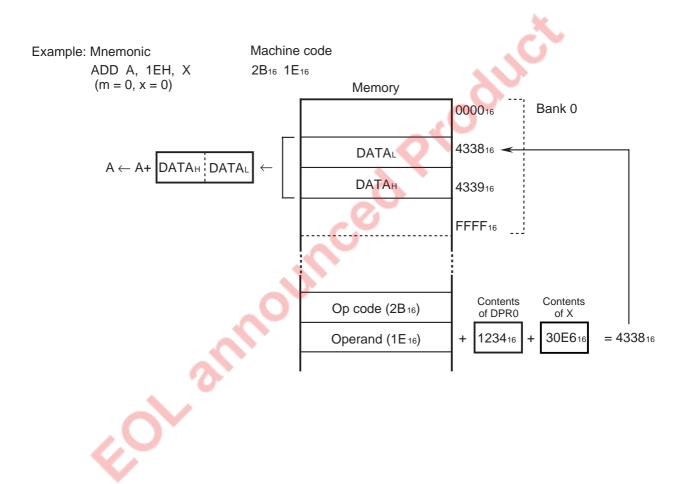
In the conventional 7700 Family, the same machine code is assigned to an 8- and its corresponding 16-bit instruction in order to reduce program size, so that it is necessary to specify whether 8- or 16-bit data is processed, by using flags m and x. The 7900 Series incorporates new instructions with the conventional instructions. These new instructions enable 8-bit operation independent of flags m and x. By using these new instructions, 8-bit data can be processed while flags are set for 16-bit data length, preventing an overhead generated by setting flags. Figure 3.3.1 shows an 8-bit operation example.

CLP m, x	← Sets flags m and x to "0." (16-bit data length selected)
16-bit data processing	JCK .
STAB A, store_addr	← 8-bit data processing
16-bit data processing	60 P
	form "extension zero" operation for 8-bit data which oad it to the accumulator as 16-bit data.

Fig. 3.3.1 8-bit operation example

When executing the instructions that require the data length setting by flags m and x, the number of bytes or execution cycles is affected by this setting. For details, refer to section "4.2 Description of each instruction" or "Appendix 1. 7900 Series machine instructions."

HOW TO USE 7900 SERIES INSTRUCTIONS


3.4 Index registers X and Y

3.4 Index registers X and Y

The contents of index register X or Y facilitate to specify an effective address. For example, the direct indexed X addressing mode is described below. Refer to section "**2.3 Addressing modes**" for details.

<Example> Direct indexed X addressing mode

A sum of the instruction's operand, the contents of a direct page register, and the contents of index register X indicates a memory location in bank 0. The contents in this memory location are data to be processed. However, when the above sum exceeds the boundary of bank 0 or bank 1, a memory location in bank 1 or bank 2 is specified, respectively.

3.5 Branch instructions

3.5 Branch instructions

The branch instructions are classified into the following 6 categories:

- (1) Relative branch
- (2) Absolute branches (absolute and absolute long)
- (3) Indirect branches (absolute indirect and absolute indirect long)
- (4) Relative subroutine call
- (5) Absolute subroutine calls (absolute and absolute long)
- (6) Indirect subroutine call (absolute Indexed X indirect)

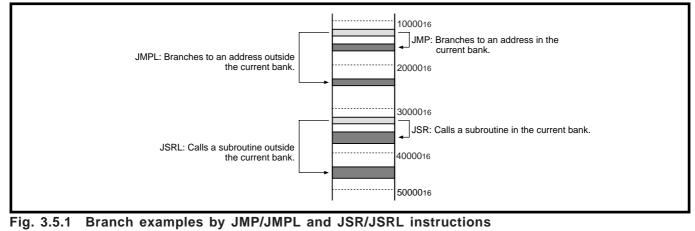
Relative branch and relative subroutine call instructions have the following features:

- Each instruction has a length of 2 or 3 bytes.
- Program area can be reallocated dynamically during program execution.
- Addresses to which the program can branch are limited within a specified range. Refer to section "4.2 Description of each instruction" for details.

Examples:

Exampleoi	
(i) BRA instruction	Within a range of -128 to $+127$ referenced to PC just after instruction
	execution
(ii) BRAL instruction	Within a range of -32768 to +32767 referenced to PC just after instruction
	execution
(iii) BSR instruction	Within a range of -1024 to +1023 referenced to PC just after instruction
	execution

On the other hand, absolute branch, absolute subroutine call, indirect branch and indirect subroutine call instructions have the following features:


• Any address within the 16-Mbyte space can be directly specified as a branch destination address (absolute long).

 Any address limited within the 64-Kbyte space (a bank), containing PC being used, also can be specified as a branch destination address. In this case, byte length of an instruction and the number of instruction execution cycles can be reduced. Refer to section "4.2 Description of each instruction" for details.

Examples:

(i) JMP instruction	Branches to a 64-Kbyte space specified by PG in which the last byte of an instruction is located.
(ii) JMPL instruction …	Branches to a specified address within the 16-Mbyte space.
(iii) JSR instruction	Branches to a 64-Kbyte space specified by PG in which the last byte of an instruction is located. Returns from the branch destination address by the RTS instruction.
(iv) JSRL instruction	Branches to a specified address within the 16-Mbyte space. Returns from the branch destination address by the RTL instruction.

Figure 3.5.1 shows the branch examples by JMP/JMPL and JSR/JSRL instructions.

CHAPTER 4 INSTRUCTIONS

4.1 Instruction set

nce

- 4.2 Description of each instruction
- 4.3 Notes for software development

4.1 Instruction set

4.1 Instruction set

The 7900 Series CPU uses the instruction set with 203 instructions.

Instructions marked by * are the new instructions that have been added to the 7751 Series instruction set. The remarks column shows that a conventional 7700 Family's instruction is included in the corresponding new instruction.

Category	Instruction	Description	Remarks
Load	LDA	Acc ←M	
	* LDAB	Acc ←M8 (Extended with "0"s.)	
	* LDAD	E ←M32	
	* LDD n	DPRn←IMM16 (n = 0 to 3. Multiple operations can be specified.)	
	LDT	DT ←IMM8	
	LDX	X ←M	
	* LDXB	X ←IMM8 (Extended with "0"s.)	
	LDY	Y ←M	
	* LDYB	Y ←IMM8 (Extended with "0"s.)	
Store	STA	M ←Acc	
	* STAB	M8 ←Acc∟	
	* STAD	M32 ←E	
	STX	M ←X	
	STY	M ←Y	
Transfer between	* TAD n	$DPRn \leftarrow A (n = 0 \text{ to } 3)$	including TAD instruction
registers	TAS	S ←A	
	TAX	$X \leftarrow A$	
	TAY	Y ←A	
	* TBD n	$DPRn \leftarrow B (n = 0 \text{ to } 3)$	including TBD instruction
	TBS	S ←B	
	ТВХ	X ←B	
	ТВҮ	Y ←B	
	* TDA n 忆	A \leftarrow DPRn (n = 0 to 3)	including TDA instruction
	* TDB n	B \leftarrow DPRn (n = 0 to 3)	including TDB instruction
	* TDS	S ←DPR0	
	TSA	A ←S	
	TSB	B ←S	
	* TSD	DPR0←S	
	TSX	X ←S	
	TXA	$A \leftarrow X$	
	ТХВ	B ←X	
	TXS	S ←X	
	TXY	Y ←X	
	TYA	$A \leftarrow Y$	
	TYB	B ←Y	
	TYX	$X \leftarrow Y$	
	XAB	A	

Category	Instruction	Description	Remarks
Transfer between	* MOVM	$M \rightarrow M$	including LDM instruction
memories	* MOVMB	$M8 \leftarrow M8$	
	* MOVR	$M(dest n) \leftarrow M(source n)$ (Multiple operations can	
		be specified.) $(n = 0 \text{ to } 15)$	
	* MOVRB	M8(dest n) \leftarrow M8(source n) (Multiple operations can	
		be specified.) $(n = 0 \text{ to } 15)$	
Block transfer	MVN	M (n to n + i - 1) \leftarrow M (m to m + i - 1) (i:transfer byte number)	
	MVP	M (n - i + 1 to n) \leftarrow M (m - i + 1 to m) (i:transfer byte number)	
Stack operation	PEA	Stack ←IMM16	
	PEI	Stack \leftarrow M16 (DPRn + dd) (n = 0 to 3)	
	PER	Stack←PC + IMM16	
	PHA	Stack←A	
	PHB	Stack←B	
	PHD	Stack ← DPR0	
	* PHD n	Stack \leftarrow DPRn (n = 0 to 3. Multiple operations can be specified.)	
	PHG	Stack←PG	
	PHP	Stack ← PS	
	PHT	Stack←DT	
	PHX	Stack ← X	
	PHY	Stack ← Y	
	PLA	A ←Stack	
	PLB	B ←Stack	
	PLD	DPR0←Stack	
	* PLD n	DPRn←Stack (n = 0 to 3. Multiple operations can be specified.)	
	PLP	PS ←Stack	
	PLT	DT ←Stack	
	PLX 🔍	X ←Stack	
	PLY 🕖	Y ←Stack	
	PSH	Stack \leftarrow Any specified register among A, B, X, Y,	
		DPR0, DT, PG, and PS. (Multiple operations	
	$\mathbf{O}^{\mathbf{v}}$	can be specified)	
		M (S to S – i + 1) \leftarrow A, B, X, Y, DPR0, DT, PG, PS	
		$S \leftarrow S - i$	
		(i : Number of bytes corresponding to the registers	
		saved to the stack.)	
	PUL	Any specified register among A, B, X, Y, DPR0,	
	102	DT, and PS. \leftarrow Stack (Multiple operations can be specified)	
		A, B, X, Y, DPR0, DT, PS \leftarrow M (S + 1 to S + i)	
		$S \leftarrow S+i$	
		(i : Number of bytes corresponding to the registers	
		restored from the stack.)	

Category	Instruction	Description	Remarks
Stack operation & Load	* PHLD n	ILD n stack ← DPRn, DPRn ← IMM16 (n = 0 to 3. Multiple	
		operations can be specified)	
Clearance	* CLR	Acc ←0	
	* CLRB	Acc∟ ←0	
	* CLRM	M ←0	
	* CLRMB	M8 ←0	
	* CLRX	X ←0	
	* CLRY	Y ←0	
Addition	ADC	Acc \leftarrow Acc + M + C	
	* ADCB	Acc∟ ←Acc∟ + IMM8 + C	
	* ADCD	$E \leftarrow E + M32 + C$	<u>~</u>
	* ADD	Acc ←Acc + M	-
	* ADDB	$ACCL \leftarrow ACCL + IMM8$	
	* ADDD	$E \leftarrow E + M32$	
	* ADDM	$M \leftarrow M + IMM$	
	* ADDMB	$M8 \leftarrow M8 + IMM8$	
	* ADDMD	$M32 \leftarrow M32 + IMM32$	
	* ADDS	$S \leftarrow S + IMM8$	
	* ADDX	$\begin{array}{c} X \\ \leftarrow X + IMM (IMM = 0 \text{ to } 31) \end{array}$	
	* ADDX	$\begin{array}{c} X \\ \hline \\ \hline \\ \hline \\ Y \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline$	
Increment	INC	Acc \leftarrow Acc + 1 or M \leftarrow M + 1	
morement	INX	$\begin{array}{c} X \\ \leftarrow X + 1 \end{array}$	
Subtraction	INY SBC		
Oublidelion			
	* SBCB	$Acc_{L} \leftarrow Acc_{L} - IMM8 - \overline{C}$	
	0000	$E \leftarrow E - M32 - \overline{C}$	
	* SUB		
	* SUBB		
	* SUBD	$E \leftarrow E - M32$	
	* SUBM	$M \leftarrow M - IMM$	
	* SUBMB	$M8 \leftarrow M8 - IMM8$	
	* SUBMD	$M32 \leftarrow M32 - IMM32$	
	SUBS	$S \leftarrow S - IMM8$	
	* SUBX	$X \leftarrow X - IMM (IMM = 0 \text{ to } 31)$	
	* SUBY	$Y \leftarrow Y - IMM (IMM = 0 \text{ to } 31)$	
Decrement	DEC	Acc \leftarrow Acc - 1 or M \leftarrow M - 1	
	DEX	$X \leftarrow X - 1$	
	DEY	$Y \leftarrow Y - 1$	
Multiplication	MPY	(B, A) \leftarrow A (Multiplicand) X M (Multiplier), Unsigned	
	MPYS	(B, A) \leftarrow A (Multiplicand) X M (Multiplier), Signed	
Division	DIV	A (Quoitent), B (remainder)←(B, A) ÷ M, Unsigned	
	DIVS	A (Quoitent), B (remainder)←(B, A) ÷ M, Signed	
Multiplied	RMPA	$(B, A) \leftarrow (B, A) + M (DT:X) \times M (DT:Y)$	
accumulation		(repeating 0 to 255 times)	
		· · · · · · · · · · · · · · · · · · ·	

Category	Instruction	Description	Remarks
Logical OR	ORA	Acc ←Acc∨M	
	* ORAB	Acc∟ ←Acc∟∨IMM8	
	* ORAM	$M \leftarrow M \lor IMM$	Including SEB
			instruction
	* ORAMB	M8 \leftarrow M8 \vee IMM8	
	* ORAMD	M32 \leftarrow M32 \vee IMM32	
Logical AND	AND	Acc ←Acc∧M	
	* ANDB	Acc∟ ←Acc∟∧IMM8	
	* ANDM	$M \leftarrow M \land IMM$	Including CLB
			instruction
	* ANDMB	M8 ←M8^IMM8	
	* ANDMD	M32 ←M32∧IMM32	
Logical exclusive OR	EOR	Acc ←Acc∀M	
	* EORB	Acc∟ ←Acc∟∀IMM8	
	* EORM	M ←M∀IMM	
	* EORMB	M8 ←M8∀IMM8	
	* EORMD	M32 ←M32∀IMM32	
Comparison	CMP	Acc – M	
	* CMPB	Acc∟ – IMM8	
	* CMPD	E – IMM32	
	* CMPM	M – IMM	
	* CMPMB	M8 – IMM8	
	* CMPMD	M32 – IMM32	
	СРХ	X – M	
	CPY	Y – M	
Arithmetic shift left	ASL	Shifts the contents of Acc or M to the left by 1 bit.	
	* ASL #n	Shifts the contents of A to the left by n bits ($n = 0$ to 15).	
	* ASLD #n	Shifts the contents of E to the left by n bits (n = 0 to 31).	
Arithmetic shift right	ASR	Shifts the contents of Acc or M holding a sign to the	
	\sim	right by 1 bit.	
	* ASR #n	Shifts the contents of A holding a sign to the right by n	
		bits (n = 0 to 15).	
	* ASRD #n	Shifts the contents of E holding a sign to the right by n	
		bits (n = 0 to 31).	
Logical shift right	LSR	Shifts the contents of Acc or M to the right by 1 bit.	
-	* LSR #n	Shifts the contents of A to the right by n bits ($n = 0$ to 15).	
	* LSRD #n	Shifts the contents of E to the right by n bits $(n = 0 \text{ to } 31)$.	

Category	Instruction	Description	Remarks
Rotation to left	RLA	Rotates the contents of A to the left by n bits. (When m =	
		0:n = 0 to 65535, when m = 1:n = 0 to 255)	
	ROL	Links the contents of Acc or M with C, and rotates the	
		result to the left by 1 bit.	
	* ROL #n	Links the contents of A with C, and rotates the result to	
		the left by n bits (n = 0 to 15).	
	* ROLD #n	Links the contents of E with C, and rotates the result to	
		the left by n bits (n = 0 to 31).	
Rotation to right	ROR	Links the contents of Acc or M with C, and rotates the	
-		result to the right by 1 bit.	
	* ROR #n	Links the contents of A with C, and rotates the result to	
		the right by n bits (n = 0 to 15).	
	* RORD #n	Links the contents of E with C, and rotates the result to	
		the right by n bits (n = 0 to 31).	
Extension Sign	EXTS	Acc ←Acc∟ (Extended with a sign.)	
	* EXTSD	$E \leftarrow E_{\perp}$ (= A) (Extended with a sign.)	
Extension Zero	EXTZ	Acc \leftarrow Acc (Extended with "0"s.)	
	* EXTZD	$E \leftarrow E_{L}$ (= A) (Extended with "0"s.)	
Sign invertion	* NEG	$Acc \leftarrow -Acc$	
0	* NEGD	E ← -E	
Absolute value	* ABS	Acc ← Acc	
	* ABSD	E ← E	
Flag manipulation	CLC	$C \leftarrow 0$	
5 1	CLI		
	CLM	m \leftarrow 0	
	CLP	PS _L (bit n)←0 (n = 0 to 7. Multiple operations can be	
		specified.)	
	CLV 🕖	$\vee \leftarrow 0$	
	SEC	C ←1	
	SEI	←1	
	SEM	m ←1	
	SEP	PS _L (bit n)←1 (n = 0 to 7. Multiple operations can be	
		specified.)	
Conditional branch	BRA/BRAL	$PC \leftarrow PC + cnt + REL$	
		(cnt : bytes number of BRA/BRAL instruction)	
	JMP	PC ←Destination address	
		PC ←mmll	
	JMPL	PG, PC ← Destination address	
		PC ←mmll	
		PG ←hh	

Category	Instruction	Description	Remarks
Subroutine call	* BSR	Stack ← PC	
		$PC \leftarrow PC + 2 + REL$	
	JSR	Stack ← PC	
		PC ←Destination address	
		$PC \leftarrow PC + 3$	
		$M(S, S-1) \leftarrow PC$	
		$S \leftarrow S-2$	
		PC ←mmll	
	JSRL	Stack \leftarrow PG, PC	
		PG, PC ←Destination address	
		PC ←PC + 4	
		$M(S, S-2) \leftarrow PG, PC$	
		S ←S-3	
		PC ←mmll	
		PG ←hh	
Conditional branch	BBC	Branches relatively when the specified bits of M are all "0."	
	* BBCB	Branches relatively when the specified bits of M8 are	
		all "0."	
	BBS	Branches relatively when the specified bits of M are all "1."	
	* BBSB	Branches relatively when the specified bits of M8 are	
		all "1."	
	BCC	Branches relatively when $C = 0$.	
	BCS	Branches relatively when $C = 1$.	
	BEQ	Branches relatively when $Z = 1$.	
	* BGE	Branches relatively when $N\forall V = 0$.	
	* BGT	Branches relatively when $Z = 0$ and $N \forall V = 0$.	
	* BGTU	Branches relatively when $C = 1$ and $Z = 0$.	
	* BLE 📿	Branches relatively when $Z = 1$ or $N \forall V = 1$.	
	* BLEU	Branches relatively when $C = 0$ and $Z = 1$.	
	* BLT	Branches relatively when $N\forall V = 1$.	
	BMI	Branches relatively when $N = 1$.	
	BNE	Branches relatively when $Z = 0$.	
	BPL	Branches relatively when $N = 0$.	
	* BSC	Branches relatively when the specified one bit of A	
		or M is "0."	
	* BSS	Branches relatively when the specified one bit of A	
		or M is "1."	
	BVC	Branches relatively when $V = 0$.	
	BVS	Branches relatively when $V = 1$.	
Compare &	* CBEQ	Branches relatively when $Acc = IMM$ or $M = IMM$.	
Conditional branch	* CBEQB	Branches relatively when $Acc_{L} = IMM8$ or $M8 = IMM8$.	
	* CBNE	Branches relatively when Acc \neq IMM or M \neq IMM.	
	* CBNEB	Branches relatively when $Acc \neq IMM8$ or $M8 \neq IMM8$.	

4.1 Instruction set

Category	Instruction	Description	Remarks
Decrement &	* DEBNE	$M \leftarrow M - IMM$. Branches relatively when $M \neq 0$ (IMM)	
Conditional branch		= 0 to 31).	
	* DXBNE	$X \leftarrow X - IMM$. Branches relatively when $X \neq 0$ (IMM)	
		= 0 to 31).	
	* DYBNE	$Y \leftarrow Y - IMM$. Branches relatively when $Y \neq 0$ (IMM)	
		= 0 to 31).	
Return	RTI	PG, PC, PS \leftarrow Stack	
	RTL	PG, PC ←Stack	
	RTS	PC ←Stack	
Load & Return	* RTLD n	DPRn ←Stack, PG, PC ←Stack (n = 0 to 3. Multiple	
		operations can be specified.)	<u> </u>
	* RTSD n	DPRn \leftarrow Stack, PC \leftarrow Stack (n = 0 to 3. Multiple	
		operations can be specified.)	
Software interrupt	BRK	Generates a BRK interrupt.	
Special	STP	Stops oscillation.	
	WIT	Stops the CPU clock.	
No operation	NOP	$PC \leftarrow PC + 1$	

4.2 Description of each instruction

4.2 Description of each instruction

This section describes each instruction. Each instruction is described using one page per one instruction as a general rule. The description page is headed by the instruction mnemonic, and the pages are arranged in alphabetical order of the mnemonics. For each instruction, its operation and description (Notes 1, 2), status flags' change, and a list sorted by addressing modes of the assembly language coding format (Note 3), the machine code, the byte number and the minimum cycle number (Note 4) are described.

- Notes 1: In the description of each instruction operation, the operation regarding PC (program counter) is described only for an instruction affecting the processing.When an instruction is executed, its instruction bytes are added to the contents of PC and PC contains the address of the memory location of the instruction to be executed next. When a carry
 - occurs at this addition, PG (program bank register) is incremented by 1. **2:** [**Operation**] in the description of each instruction shows the contents of each register and memory after executing the instruction. The detailed operation sequence is omitted.
 - **3:** [**Description example**] in this manual is an example of assembly language description. Especially for addressing mode specification, various methods for mnemonic description in the 7900 Series are available, including the formats shown below. For more information, refer to the user's manual of the assembler to be used.

Addressing mode	Specification	Instruction coding example
Direct	DP0+:Offset6/8	ADD A,DP0+:04H
	DP0:label	ADD A,DP0:WORK
Direct indirect	(DP0+:Offset6/8)	ADD A,(DP0+:04H)
	(DP0:label)	ADD A,(DP0:WORK)
Direct indirect long	L(DP0+:Offset6/8)	ADD A,L(DP0+:04H)
	L(DP0:label)	ADD A,L(DP0:WORK)
Stack pointer relative	Offset,S	ADD A,05H,S
Stack pointer relative indirect indexed Y	(Offset,S),Y	ADD A,(05H,S),Y
Absolute	DT+:Offset16	ADD A,DT +:1000H
	DT:label	ADD A,DT:WORK
Absolute indirect	(Address)	JMP (1000H)
	(label)	JMP (TABLE)
Absolute long	LG:label	ADD A,LG:WORK
Absolute indirect long	L(DT+:Offset16)	ADD A,L(DT +:1000H)
	L(DT:label)	ADD A,L(DT:WORK)

■ Methods for specifying addressing modes in Mitsubishi assembler

• Offset6/8 : 6-bit offset value (when using DPR0 through DPR3) or 8-bit offset value (when using DPR0).

• Offset : 8-bit offset value.

• Offset16 : 16-bit offset value.

• Address : Memory address to be referenced.

• label : Label indicating the memory address to be referenced.

4.2 Description of each instruction

Notes 4: The cycle number shown is the minimum possible number, and this number depends on the following conditions:

•Value of direct page register's low-order byte

The cycle number shown is a number when the direct page register's low-order byte (DPRnL) is "0016." When using an addressing mode that uses the direct page register in the condition of DPRnL \neq "0016," the number which is obtained by adding 1 to the shown number is an actual cycle number.

- •Number of bytes that have been loaded in an instruction queue buffer
- Whether the address of the memory read/write is even or odd
- Accessing of an external memory area in the condition of BYTE = "H" (using 8-bit external bus) • Bus cycle

JS

4.2 Description of each instruction

The following table shows the symbols that are used in instructions' description and the lists of this section, and each instruction is described bellow.

Symbol	Description		
С	Carry flag		
Z	Zero flag		
I	Interrupt disable flag		
D	Decimal mode flag		
Х	Index register length flag		
m	Data length flag		
V	Overflow flag		
Ν	Negative flag Processor interrupt priority level Addition Subtraction Multiplication Division		
IPL	Processor interrupt priority level		
+	Addition		
-	Subtraction		
Х	Multiplication		
*	Multiplication		
÷	Division		
/	Division		
\wedge	Logical AND		
\vee	Logical OR		
\forall	Logical exclusive OR		
11	Absolute value		
_	Negation		
\leftarrow	Movement toward the arrow direction		
\rightarrow	Movement toward the arrow direction		
$\stackrel{\leftarrow}{\rightarrow}$	Exchange		
Acc	Accumulator		
Ассн	Accumulator's high-order 8 bits		
Accl	Accumulator's low-order 8 bits		
А	Accumulator A		
Ан	Accumulator A's high-order 8 bits		
AL	Accumulator A's low-order 8 bits		
в	Accumulator B		
Вн	Accumulator B's high-order 8 bits		
BL	Accumulator B's low-order 8 bits		
E	Accumulator E		
Ен	Accumulator E's high-order 16 bits		
EL	Accumulator E's low-order 16 bits		
Х	Index register X		
Хн	Index register X's high-order 8 bits		
XL	Index register X's low-order 8 bits		
Y	Index register Y		
Үн	Index register Y's high-order 8 bits		
YL	Index register Y's low-order 8 bits		
S	Stack pointer		

4.2 Description of each instruction

Symbol	Description		
PC	Program counter		
РСн	Program counter's high-order 8 bits		
PC∟	Program counter's low-order 8 bits		
REL	Relative address		
PG	Program bank register		
DT	Data bank register		
DPR0	Direct page register 0		
DPR0H	Direct page register 0's high-order 8 bits		
DPR0L	Direct page register 0's low-order 8 bits		
DPRn	Direct page register n		
DPRnH	Direct page register n's high-order 8 bits		
DPRn∟	Direct page register n's high-order 8 bits Direct page register n's low-order 8 bits Processor status register Processor status register's high-order 8 bits Processor status register's low-order 8 bits		
PS	Processor status register		
PSH	Processor status register's high-order 8 bits		
PS∟	Processor status register's low-order 8 bits		
PS(bit n)	The n-th bit of processor status register		
M	Memory contents		
Mn, MEMn	n-bit address or contents of memory		
M(oprd)	Contents of memory location specified by operand		
M(bit n)	The n-th bit of the contents of memory		
IMM	Immediate value (8 bits or 16 bits)		
IMMn	n-bit immediate data		
IMMn _H	High-order data of n-bit immediate data		
IMMn∟	Low-order data of n-bit immediate data		
EAR	Effective address (16 bits)		
EARH	High-order 8 bits of effective address		
EAR∟	Low-order 8 bits of effective address		
MSB	Most significant bit		
LSB	Least significant bit		
dd	Displacement for DPR (8 bits or 6 bits)		
	32-bit immediate value (bytes imm _{HH} , imm _{HL} , imm _{LH} , and imm _{LL} are shown from the highest one.)		
imm⊦imm∟	16-bit immediate value (imm ^H represents the high-order 8 bits, and imm ^L represents		
	the low-order 8 bits.)		
imm	8-bit immediate value		
imm _n	n-bit immediate value		
hhmmll	24-bit address value (hh represents the high-order 8 bits, mm represents the middle-order		
	8 bit, and II represents the low-order 8 bits.)		
mmll	16-bit address value (mm represents the high-order 8 bits, and II represents the low-order 8 bits.)		
nn	Displacement for S (8 bits)		
N1, N2	8-bit data (2 types of 8-bit data)		
rrrr	Displacement for PC (signed 8 bits)		
rr⊣rr∟	Displacement for PC (signed 16 bits) (rr _H represents the high-order 8 bits, and		
hh, hh-	rrL represents the low-order 8 bits.)		
hh1, hh2	Bank specification (2 types of 8-bit data)		
source	Operand specified as transfer source		
dest	Operand specified as transfer destination		

ABS

Function	:	Absolute value	
Operation data lene	gth:	16 bits or 8 bits	
Operation	:	Acc ← lAccl When m = "0" Acc Acc When m = "1" Acc AccL Men m = "1" AccL AccL When m = "1" AccL AccL Men m = "1" AccL AccL Men m = "1" Men m = "1" Men m = "1" AccL AccL Men m = "1" Men m = "1" Me	
Description	:	Obtains the absolute value of Acc contents and stores the result in Acc.	
Status flags	:	IPL N V m x D I Z C 0 V Z 0	
Ν	1:	Always "0" because MSB of the operation result is "0."	
V	:	Set to "1" if the operation result exceeds +32767 (or +127 when m = "1"). Otherwise, cleared to "0."	
Z	:	Set to "1" when the operation result is "0." Otherwise, cleared to "0."	
C	; :	Always "0."	

Addressing mode	Syntax	Machine code	Bytes	Cycles
Α 🥠	ABS A	E1 ₁₆	1	3
A	ABS B	8116, E116	2	4
.0				

CLM		
ABS	А	; $A \leftarrow A $
SEM		
ABS	В	; $B_{L} \leftarrow B_{L} $

ABSD

"0."

Function	:	Absolute value
Operation data lengt	th:	32 bits
Operation	:	$E \leftarrow IEI$ $E \qquad E$ $\Box \Box \Box \Box \Box \Box \Box$
Description	:	Obtains the absolute value of the E contents and stores the result in E. ● This instruction is unaffected by flag m.
Status flags	:	IPL N V m x D I Z C - 0 V - - - Z 0
Ν	:	Always "0" because MSB of the operation result is "0."
V	:	Set to "1" if the operation result exceeds +2147483647. Otherwise, cleared to
Z	:	Set to "1" when the operation result is "0." Otherwise, cleared to "0."
0		

 $; \mathsf{E} \leftarrow |\mathsf{E}|$

C : Always "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
А	ABSD E	3116, 9016	2	5

Description example:

- ; E ← |i ABSD

ADC

Function :	Addition with carry	
Operation data length:	16 bits or 8 bits	
Operation :	$Acc \leftarrow Acc + M + C$ $\underline{When m = "0"}$ $Acc \qquad Acc \qquad M16 \qquad C$ $\qquad \qquad $	
	$\frac{\text{When } \text{m} = \text{``1''}}{\text{AccL}} \xrightarrow{\text{AccL}} \text{M8} \xrightarrow{\text{C}} \\ \bigcirc \leftarrow \bigcirc + \bigcirc + \bigcirc + \bigcirc \\ \hline \\$	
	In this case, the contents of Acc _H do not change.	
Description :	Adds the contents of Acc, memory, and flag C, and stores the result in Acc. • This instruction operates in decimal when flag $D = "1$."	
Status flags :	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
Ν :	Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0." Meaningless when flag $D = "1."$	
V :	Set to "1" when the result of the operation (regarded as a signed operation) is a value outside the range of -32768 to $+32767$ (-128 to $+127$ when flag m = "1"). Otherwise, cleared to "0. Meaningless when flag D = "1."	
Ζ:	Set to "1" when the operation result is "0." Otherwise, cleared to "0." Meaningless when flat $D = "1."$	
C :	Set to "1" when flag D = "0" and the result of the operation (regarded as an unsigned operation) exceeds +65535 (+255 when flag m = "1"). Otherwise, cleared to "0."	
	Set to "1" when flag D = "1" and the result of the operation (regarded as an unsigned operation) exceeds +9999 (+99 when flag m = "1"). Otherwise, cleared to "0."	

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	ADC A, #imm	3116, 8716, imm (B116, 8716, imm)	3	3 (3)
DIR	ADC A, dd	2116, 8A16, dd (A116, 8A16, dd)	3	5 (7)
DIR, X	ADC A, dd, X	2116, 8B16, dd (A116, 8B16, dd)	3	6 (8)
(DIR)	ADC A, (dd)	2116, 8016, dd (A116, 8016, dd)	3	7 (9)
(DIR, X)	ADC A, (dd, X)	2116, 8116, dd (A116, 8116, dd)	3	8 (10)
(DIR), Y	ADC A, (dd), Y	2116, 8816, dd (A116, 8816, dd)	3	8 (10)
L(DIR)	ADC A, L(dd)	2116, 8216, dd (A116, 8216, dd)	3	9 (11)
L(DIR), Y	ADC A, L(dd), Y	2116, 8916, dd (A116, 8916, dd)	3	10(12)
SR	ADC A, nn, S	2116, 8316, nn (A116, 8316, nn)	3	6 (8)
(SR), Y	ADC A, (nn, S), Y	2116, 8416, nn (A116, 8416, nn)	3	9 (11)
ABS	ADC A, mmll	2116, 8E16, II, mm (A116, 8E16, II, mm)	4	5 (7)
ABS, X	ADC A, mmll, X	2116, 8F16, II, mm (A116, 8F16, II, mm)	4	6 (8)
ABS, Y	ADC A, mmll, Y	2116, 8616, II, mm (A116, 8616, II, mm)	4	6 (8)
ABL	ADC A, hhmmll	2116, 8C16, II, mm, hh (A116, 8C16, II, mm, hh)	5	6 (8)
ABL, X	ADC A, hhmmll, X	2116, 8D16, II, mm, hh (A116, 8D16, II, mm, hh)	5	7 (9)

Notes 1: This table applies when using accumulator A. When using accumulator B, replace "A" with "B" in the syntax. In this case, the machine code and the number of cycles enclosed in parentheses are applied.

2: In the immediate addressing mode, the byte number increases by 1 when flag m = "0."

ample:	-	nced
CLM		
ADC.W	A, #IMM16	; $A \leftarrow A + IMM16 + C$
ADC	B, MEM16	; $B \leftarrow B + MEM16 + C$
SEM		
ADC.B	A, #IMM8	; $A_{L} \leftarrow A_{L} + IMM8 + C$
ADC	B, MEM8	; $B_L \leftarrow B_L + MEM8 + C$
4	3	

ADCB

Function	:	Addition with carry	
Operation data len	gth:	8 bits	
Operation	:	$Acc \leftarrow Acc + IMM8 + C$ $Acc \leftarrow Acc \leftarrow C$ $\Box \leftarrow \Box + IMM8 + \Box$	
Description	:	 Adds the contents of AccL, the immediate value, and flag C in 8-bit length, and stores the result in AccL. This instruction is unaffected by flag m. The contents of AccH do not change. This instruction operates in decimal when flag D = "1." 	
Status flags	:	IPL N V m x D I Z C - N V - - - Z C	
Ν	1:	Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0." Meaningless when flag $D = "1."$	
V	/ :	Set to "1" when the result of the operation (regarded as a signed operation) is a value outside the range of -128 to $+127$. Otherwise, cleared to "0." Meaningless when flag D = "1."	
Z	2 :	Set to "1" when the operation result is "0." Otherwise, cleared to "0." Meaningless when flag $D = "1$."	
C	:	Set to "1" when the result of the operation (regarded as an unsigned operation) exceeds +255 (+99 when flag $D = $ "1"). Otherwise, cleared to "0."	

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	ADCB A, #imm	3116, 1A16, imm	3	3
IMM	ADCB B, #imm	B116, 1A16, imm	3	3

ADCB	A, #IMM8	; AL \leftarrow AL + IMM8 + C
ADCB	B, #IMM8	; BL \leftarrow BL + IMM8 + C

ADCD

Function	:	Addition with carry
Operation data le	ength:	32 bits
Operation	:	$E \leftarrow E + M32 + C$ $E \qquad E \qquad M32 \qquad C$ $\Box \qquad \Box \qquad \leftarrow \Box \qquad \Box \qquad + \Box \qquad + \Box$
Description	:	 Adds contents of E, memory, and flag C in 32-bit length, and stores the result in E. CPU operates as binary addition in spite of the contents of decimal mode flag. This instruction is unaffected by flag m. This instruction cannot operate in decimal. Clear flag D to "0" when using this instruction.
Status flags	6 :	IPL N V m x D I Z C - N V - - - Z C
	N :	Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."
	V :	Set to "1" when the result of the operation (regarded as a signed operation) is a value outside the range of -2147483648 to +2147483647. Otherwise, cleared to "0."
	Ζ:	Set to "1" when the operation result is "0." Otherwise, cleared to "0."

C : Set to "1" when the result of the operation (regarded as an unsigned operation) exceeds +4294967295. Otherwise, cleared to "0."

		~		
Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	ADCD E, #imm	3116, 1С16, immll, immlн, immнl, immнн	6	4
DIR	ADCD E, dd	2116, 9A16, dd	3	7
DIR, X	ADCD E, dd, X	2116, 9B16, dd	3	8
(DIR)	ADCD E, (dd)	2116, 9016, dd	3	9
(DIR, X)	ADCD E, (dd, X)	2116, 9116, dd	3	10
(DIR), Y	ADCD E, (dd), Y	2116, 9816, dd	3	10
L(DIR)	ADCD E, L(dd)	2116, 9216, dd	3	11
L(DIR), Y	ADCD E, L(dd), Y	2116, 9916, dd	3	12
SR	ADCD E, nn, S	2116, 9316, nn	3	8
(SR), Y	ADCD E, (nn, S), Y	2116, 9416, nn	3	11
ABS	ADCD E, mmll	2116, 9E16, II, mm	4	7
ABS, X	ADCD E, mmll, X	2116, 9F16, II, mm	4	8
ABS, Y	ADCD E, mmll, Y	2116, 9616, II, mm	4	8
ABL	ADCD E, hhmmll	2116, 9C16, II, mm, hh	5	8
ABL, X	ADCD E, hhmmll, X	2116, 9D16, II, mm, hh	5	9

ADCD	E, #IMM32	; $E \leftarrow E + IMM32 + C$
		; (B, A \leftarrow B, A + IMM32 + C)
ADCD	E, MEM32	; $E \leftarrow E + MEM32 + C$
		; (B, A \leftarrow B, A + MEM32 + C)

ADD

Function :	Addition
Operation data length:	16 bits or 8 bits
Operation :	$Acc \leftarrow Acc + M$ $\underline{When m = "0"}$ $Acc \qquad Acc \qquad M16$ $\boxed{\qquad} \leftarrow \boxed{\qquad} + \boxed{\qquad}$
	$\frac{\text{When } m = "1"}{\text{Acc}} \text{Acc} M8$ $ \qquad \qquad$
Description :	Adds the contents of Acc and memory, and stores the result in Acc. • This instruction cannot operate in decimal. Clear flag D to "0" when using this instruction.
Status flags :	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
N :	Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."
V :	Set to "1" when the result of the operation (regarded as a signed operation) is a value outside the range of -32768 to $+32767$ (-128 to $+127$ when flag m = "1"). Otherwise, cleared to "0."
Ζ:	Set to "1" when the operation result is "0." Otherwise, cleared to "0."
C :	Set to "1" when the result of the operation (regarded as an unsigned operation) exceeds +65535 (+255 when flag m = "1"). Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	ADD A, #imm	2616, imm (8116, 2616, imm)	2 (3)	1 (2)
DIR	ADD A, dd	2A16, dd (8116, 2A16, dd)	2 (3)	3 (4)
DIR, X	ADD A, dd, X	2B16, dd (8116, 2B16, dd)	2 (3)	4 (5)
(DIR)	ADD A, (dd)	1116, 2016, dd (9116, 2016, dd)	3 (3)	6 (6)
(DIR, X)	ADD A, (dd, X)	1116, 2116, dd (9116, 2116, dd)	3 (3)	7 (7)
(DIR), Y	ADD A, (dd), Y	1116, 2816, dd (9116, 2816, dd)	3 (3)	7 (7)
L(DIR)	ADD A, L(dd)	1116, 2216, dd (9116, 2216, dd)	3 (3)	8 (8)
L(DIR), Y	ADD A, L(dd), Y	1116, 2916, dd (9116, 2916, dd)	3 (3)	9 (9)
SR	ADD A, nn, S	1116, 2316, nn (9116, 2316, nn)	3 (3)	5 (5)
(SR), Y	ADD A, (nn, S), Y	1116, 2416, nn (9116, 2416, nn)	3 (3)	8 (8)
ABS	ADD A, mmll	2E16, II, mm (8116, 2E16, II, mm)	3 (4)	3 (4)
ABS, X	ADD A, mmll, X	2F16, II, mm (8116, 2F16, II, mm)	3 (4)	4 (5)
ABS, Y	ADD A, mmll, Y	1116, 2616, II, mm (9116, 2616, II, mm)	4 (4)	5 (5)
ABL	ADD A, hhmmll	1116, 2C16, II, mm, hh (9116, 2C16, II, mm, hh)	5 (5)	5 (5)
ABL, X	ADD A, hhmmll, X	1116, 2D16, II, mm, hh (9116, 2D16, II, mm, hh)	5 (5)	6 (6)

Notes 1: This table applies when using accumulator A. When using accumulator B, replace "A" with "B" in the syntax. In this case, the machine code, the number of bytes, and the number of cycles enclosed in parentheses are applied.

2: In the immediate addressing mode, the byte number increases by 1 when flag m = "0."

A, #IMM16		\bigcirc A \leftarrow A + IMM16
B, MEM16	C	$; B \leftarrow B + MEM16$
A, #IMM8		; $AL \leftarrow AL + IMM8$
B, MEM8		; $BL \leftarrow BL + MEM8$
1-211	nou	
	B, MEM16 A, #IMM8	B, MEM16 A, #IMM8

ADDB

Function Addition ŝ Operation data length: 8 bits Operation $Acc_{L} \leftarrow Acc_{L} + IMM8$. Acc_L Acc + IMM8 Description Adds the contents of AccL and immediate value in 8-bit length, and stores the result in AccL. • • This instruction is unaffected by flag m. • The contents of AccH do not change. This instruction cannot operate in decimal. Clear flag D to "0" when using this instruction. Status flags 1 Ζ IPL V D С Ν m х 1

N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."

Ν

V : Set to "1" when the result of the operation (regarded as a signed operation) is a value outside the range of -128 to +127. Otherwise, cleared to "0."

V

Ζ

С

- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."
- C : Set to "1" when the result of the operation (regarded as an unsigned operation) exceeds +255. Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	ADDB A, #imm	2916, imm	2	1
IMM	ADDB B, #imm	8116, 2916, imm	3	2

ADDD

Function	:	Addition
Operation data	ength:	32 bits
Operation	:	$E \leftarrow E + M32$ $E \qquad E \qquad M32$ $\Box \qquad \Box \qquad$
Description	ı :	 Adds the contents of E and memory in 32-bit length, and stores the result in the E. This instruction is unaffected by flag m. This instruction cannot operate in decimal. Clear flag D to "0" when using this instruction.
Status flag	s :	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
	N : V :	

- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."
- C : Set to "1" when the result of the operation (regarded as an unsigned operation) exceeds +4294967295. Otherwise, cleared to "0."

.

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	ADDD E, #imm	2D16, immLL, immLH, immHL, immHH	5	3
DIR	ADDD E, dd	9A16, dd	2	6
DIR, X	ADDD E, dd, X	9B16, dd	2	7
(DIR)	ADDD E, (dd)	1116, 9016, dd	3	9
(DIR, X)	ADDD E, (dd, X)	1116, 9116, dd	3	10
(DIR), Y	ADDD E, (dd), Y	1116, 9816, dd	3	10
L(DIR)	ADDD E, L(dd)	1116, 9216, dd	3	11
L(DIR), Y	ADDD E, L(dd), Y	1116, 9916, dd	3	12
SR	ADDD E, nn, S	1116, 9316, nn	3	8
(SR), Y	ADDD E, (nn, S), Y	1116, 9416, nn	3	11
ABS	ADDD E, mmll	9E16, II, mm	3	6
ABS, X	ADDD E, mmll, X	9F16, II, mm	3	7
ABS, Y	ADDD E, mmll, Y	1116, 9616, II, mm	4	8
ABL	ADDD E, hhmmll	1116, 9C16, II, mm, hh	5	8
ABL, X	ADDD E, hhmmll, X	1116, 9D16, II, mm, hh	5	9

Description example:

ADDD	
ADDD	

E, #IMM32 E, MEM32 ; E \leftarrow E + IMM32 (B, A \leftarrow B, A + IMM32) ; E \leftarrow E + MEM32 (B, A \leftarrow B, A + MEM32)

ADDM

Function :	Addition
Operation data length:	16 bits or 8 bits
Operation :	$M \leftarrow M + IMM$ $\underline{When m = "0"}$ $M16 \qquad M16$ $\Box \qquad \leftarrow \Box \qquad + IMM16$ $\underline{When m = "1"}$ $M8 \qquad M8$ $\Box \qquad \leftarrow \Box \qquad + IMM8$
Description :	Adds the contents of memory and immediate value, and stores the result in memory. • This instruction cannot operate in decimal. Clear flag D to "0" when using this instruction.
Status flags :	IPL N V m x D I Z C - N V - - - Z C
N : V : Z :	Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0." Set to "1" when the result of the operation (regarded as a signed operation) is a value outside the range of -32768 to $+32767$ (-128 to $+127$ when flag m = "1"). Otherwise, cleared to "0." Set to "1" when the result of the operation is "0." Otherwise, cleared to "0."

C : Set to "1" when the result of the operation (regarded as an unsigned operation) exceeds +65535 (+255 when flag m = "1"). Otherwise, cleared to "0."

Syntax	Machine code	Bytes	Cycles
ADDM dd, #imm	5116, 0316, dd, imm	4	7
ADDM mmll, #imm	5116, 0716, II, mm, imm	5	7
	ADDM dd, #imm		ADDM dd, #imm 5116, 0316, dd, imm 4

Note : When flag m = "0," the byte number increases by 1.

CLM ADDM.W SEM	MEM16, #IMM16	; MEM16 \leftarrow MEM16 + IMM16
ADDM.B	MEM8, #IMM8	; MEM8 \leftarrow MEM8 + IMM8

ADDMB

Function	:	Addition		
Operation data le	ength:	8 bits		
Operation	:	$M8 \leftarrow M8 + IMM8$ $M8 \qquad M8$ $\Box \leftarrow \Box + IMM8$		
Description	:	 Adds the contents of memory and immediate value in 8-bit length, and stored the result in memory. This instruction is unaffected by flag m. This instruction cannot operate in decimal. Clear flag D to "0" when using this instruction. 		
Status flags	5 :	IPL N V m x D I Z C - N V - - - Z C		
	 N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0." V : Set to "1" when the result of the operation (regarded as a signed operation) is a value outs the range of -128 to +127. Otherwise, cleared to "0." 			

Set to "1" when the operation result is "0." Otherwise, cleared to "0." Ζ:

C : Set to "1" when the result of the operation (regarded as an unsigned operation) exceeds +255. Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
DIR	ADDMB dd, #imm	5116, 0216, dd, imm	4	7
ABS	ADDMB mmll, #imm	5116, 0616, II, mm, imm	5	7

Description example:

ADDMB

MEM8, #IMM8

; $MEM8 \leftarrow MEM8 + IMM8$

ADDMD

Function	:	Addition
Operation data le	ngth :	32 bits
Operation	:	$\begin{array}{c c} M32 \leftarrow M32 + IMM32 \\ \hline M32 & M32 \\ \hline \hline \\ \hline $
Description	:	 Adds the contents of memory and immediate value in 32-bit length, and stores the result in memory. This instruction is unaffected by flag m. This instruction cannot operate in decimal. Clear flag D to "0" when using this instruction.
Status flags	;	IPL N V m x D I Z C - N V - - - Z C
	N : V :	Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0." Set to "1" when the result of the operation (regarded as a signed operation) is a value outside the range of –2147483648 to +2147483647. Otherwise, cleared to "0."

- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."
- C : Set to "1" when the result of the operation (regarded as an unsigned operation) exceeds +4294967295. Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
DIR	ADDMD dd, #imm	5116, 8316, dd, immll, immlh, immhl, immhh	7	10
ABS	ADDMD mmll, #imm	5116, 8716, II, mm, immll, immlh, immhl, immhh	8	10

Description example:

ADDMD

MEM32, #IMM32

; MEM32 \leftarrow MEM32 + IMM32

ADDS

Function Addition 1 Operation data length: 16 bits $S \leftarrow S + IMM8$ Operation ÷ S S + IMM8 4 Description Adds the contents of S and 8-bit immediate value in 16-bit length, and stores the result in S. 1 Extend zero of the immediate value to the 16-bit immediate value, at the operation. • This instruction is unaffected by flag m. • This instruction cannot operate in decimal. Clear flag D to "0" when using this instruction. Status flags 1 IPL Ν V m х D I Ζ С Ζ Ν V С Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0." N : Set to "1" when the result of the operation (regarded as a signed operation) is a value outside V : the range of -32768 to +32767. Otherwise, cleared to "0." Set to "1" when the operation result is "0." Otherwise, cleared to "0." Ζ: C : Set to "1" when the result of the operation (regarded as an unsigned operation) exceeds +65535. Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	ADDS #imm	3116, 0A16, imm	3	2

Description example:

ADDS

#IMM8

; S \leftarrow S + IMM8

ADDX

Function	:	Addition			
Operation data ler	ngth :	16 bits or 8 bits			
Operation :		$X \leftarrow X + IMM \qquad (IMM = 0 \text{ to } 31)$ $\frac{When \ x = "0"}{X} \qquad X$ $\Box \qquad \leftarrow \Box \qquad + IMM$			
		$\begin{array}{ccc} \underline{When \ x = ``1''} & & \\ & X_L & X_L & \\ & & & \leftarrow & \\ & & & \leftarrow & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$			
Description	:	 Adds the contents of X and immediate value (0 to 31), and stores the result in X. This instruction is unaffected by flag m. This instruction cannot operate in decimal. Clear flag D to "0" when using this instruction. 			
Status flags :		IPL N V m x D I Z C - N V - - - Z C			
1	N :	Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."			
V :		Set to "1" when the result of the operation (regarded as a signed operation) is a value outside the range of -32768 to $+32767$ (-128 to $+127$ when flag x is "1"). Otherwise, cleared to "0."			
-	Z :	Set to "1" when the operation result is "0." Otherwise, cleared to "0."			
C :		Set to "1" when the result of the operation (regarded as an unsigned operation) exceeds +65535 (+255 when flag $x = "1"$). Otherwise, cleared to "0."			

Addressing r	node	Syntax	Machine code	Bytes	Cycles
IMM		ADDX #imm	0116, imm	2	2

Note : Any value from 0 to 31 can be set to imm.

CLP	х	
ADDX	#IMM	; $X \leftarrow X + IMM$
SEP	х	
ADDX	#IMM	; $X_L \leftarrow X_L + IMM$

ADDY

2

2

Function	:	Addition				
Operation data length	n:	16 bits or 8 bits				
Operation	:	$Y \leftarrow Y + IMM \qquad (IMM = 0)$ $\frac{When \ x = "0"}{Y} \qquad Y$ $\Box \qquad \Box \qquad \leftarrow \Box$		1) ⊦ IMM		
		$\frac{\text{When } x = "1"}{Y_L} \qquad Y_L$ $\longrightarrow \text{ In this case, the cont}$	ents	of Y _H do not change.		
Description	:	• This instruction is unaffect	ed by	diate value (0 to 31), and stores the res / flag m. in decimal. Clear flag D to "0" when usin		struction.
Status flags	:		IPL —	N V m x D I Z C N V Z C		
N	:	Set to "1" when MSB of the	opera	ation result is "1." Otherwise, cleared to "	0."	
V	:	Set to "1" when the result of the operation (regarded as a signed operation) is a value outside the range of -32768 to $+32767$ (-128 to $+127$ when flag x is "1"). Otherwise, cleared to "0."				
Z	:	Set to "1" when the operation result is "0." Otherwise, cleared to "0."				
C	:	Set to "1" when the result o +65535 (+255 when flag x =		operation (regarded as an unsigned op Otherwise, cleared to "0."	eration)	exceeds
	A	ddressing mode Syntax		Machine code	Bytes	Cycles

IMM ADDY #imm 0116, imm+2016

Note : Any value from 0 to 31 can be set to imm.

CLP	Х	
ADDX	#IMM	; $Y \leftarrow Y + IMM$
SEP	Х	
ADDX	#IMM	; $Y_{L} \leftarrow Y_{L} + IMM$

AND

Function :	Logical AND
Operation data length:	16 bits or 8 bits
Operation :	$\begin{array}{c} Acc \leftarrow Acc \land M \\ \underline{When \ m = "0"} \\ Acc \qquad Acc \qquad M16 \\ \hline \end{array} \qquad \qquad$
	$ \begin{array}{c} \underline{When \ m = "1"} \\ AccL & AccL & M8 \\ \hline & \leftarrow & \frown & \land \\ & & & \\ \end{array} \\ & & & \\ &$
Description :	Performs logical AND between the contents of Acc and the contents of a memory, and stores the result in Acc.
Status flags :	IPL N V m x D I Z C - N - - - - Z -
N : Z :	Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0." Set to "1" when the operation result is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	AND A, #imm	6616, imm (8116, 6616, imm)	2 (3)	1 (2)
DIR	AND A, dd	6A16, dd (8116, 6A16, dd)	2 (3)	3 (4)
DIR, X	AND A, dd, X	6B16, dd (8116, 6B16, dd)	2 (3)	4 (5)
(DIR)	AND A, (dd)	1116, 6016, dd (9116, 6016, dd)	3 (3)	6 (6)
(DIR, X)	AND A, (dd, X)	1116, 6116, dd (9116, 6116, dd)	3 (3)	7 (7)
(DIR), Y	AND A, (dd), Y	1116, 6816, dd (9116, 6816, dd)	3 (3)	7 (7)
L(DIR)	AND A, L(dd)	1116, 6216, dd (9116, 6216, dd)	3 (3)	8 (8)
L(DIR), Y	AND A, L(dd), Y	1116, 6916, dd (9116, 6916, dd)	3 (3)	9 (9)
SR	AND A, nn, S	1116, 6316, nn (9116, 6316, nn)	3 (3)	5 (5)
(SR), Y	AND A, (nn, S), Y	1116, 6416, nn (9116, 6416, nn)	3 (3)	8 (8)
ABS	AND A, mmll	6E16, II, mm (8116, 6E16, II, mm)	3 (4)	3 (4)
ABS, X	AND A, mmll, X	6F16, II, mm (8116, 6F16, II, mm)	3 (4)	4 (5)
ABS, Y	AND A, mmll, Y	1116, 6616, II, mm (9116, 6616, II, mm) 🗮	4 (4)	5 (5)
ABL	AND A, hhmmll	1116, 6C16, II, mm, hh (9116, 6C16, II, mm, hh)	5 (5)	5 (5)
ABL, X	AND A, hhmmll, X	1116, 6D16, II, mm, hh (9116, 6D16, II, mm, hh)	5 (5)	6 (6)

Notes 1: This table applies when using accumulator A. When using accumulator B, replace "A" with "B" in the syntax. In this case, the machine code,the number of bytes, and the number of cycles enclosed in parentheses are applied.

2: In the immediate addressing mode, the byte number increases by 1 when flag m = "0."

CLM AND.W AND SEM	A, #IMM16 B, MEM16	; $A \leftarrow A \land IMM16$; $B \leftarrow B \land MEM16$
AND.B	A, #IMM8	; $A_{L} \leftarrow A_{L} \land IMM8$
AND	B, MEM8	; $B_{L} \leftarrow B_{L} \land MEM8$
4	J- ann	

ANDB

Function	:	Logical AND			
Operation data ler	ngth :	8 bits			
Operation	:	$Acc \leftarrow Acc \land IMM8$ $Acc \land Acc \land Acc \land IMM8$ $\frown \land IMM8$			
Description	:	 Performs logical AND between the contents of AccL and the immediate value in 8-bit length, and stores the result in AccL. This instruction is unaffected by flag m. The contents of AccH do not change. 			
Status flags	:	IPL N V m x D I Z C - N Z -			
	N : Z :	Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0." Set to "1" when the operation result is "0." Otherwise, cleared to "0."			

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	ANDB A, #imm <	2316, imm	2	1
IMM	ANDB B, #imm	8116, 2316, imm	3	2

Description example:

ANDB ANDB A, #IMM8 B, #IMM8 ; $A_L \leftarrow A_L \land IMM8$; $B_L \leftarrow B_L \land IMM8$

Function :	Logical AND
Operation data length:	16 bits or 8 bits
Operation :	$M \leftarrow M \land IMM$ $\underline{When m = "0"}$ $M16 \qquad M16$ $\Box \qquad \leftarrow \square \land IMM16$ $\underline{When m = "1"}$ $M8 \qquad M8$ $\Box \leftarrow \square \land IMM8$
Description :	 Performs logical AND between the contents of memory and immediate value, and stores the result in the memory. This instruction includes the function of the CLB instruction in the conventional 7700 Family.
Status flags :	IPL N V m x D I Z C - N - - - - Z -

- N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."
- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
DIR	ANDM dd, #imm	5116, 6316, dd, imm	4	7
ABS	ANDM mmll, #imm	5116, 6716, II, mm, imm	5	7
Note : When flag m =	"0" the byte numbe	r increases by 1		

Note : When flag m = "0," the byte number increases by 1.

CLM ANDM.W	MEM16, #IMM16	; MEM16 \leftarrow MEM16 \land IMM16
SEM		
ANDM.B	MEM8, #IMM8	; MEM8 \leftarrow MEM8 \land IMM8

ANDMB

ANDMB

Function Logical AND 2 Operation data length: 8 bits Operation $M8 \leftarrow M8 \land IMM8$ ÷ M8 M8 ∧ IMM8 Description Performs logical AND between the contents of memory and immediate value in 8-bit length, 2 and stores the result in the memory. • This instruction is unaffected by flag m. Status flags : Ζ IPL Ν V D С m х Ζ Ν N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0." Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0." Machine code Addressing mode **Syntax Bytes** Cycles DIR ANDMB dd, #imm 5116, 6216, dd, imm 4 7 7 5 ABS ANDMB mmll, #imm 5116, 6616, II, mm, imm Description example: ANDMB MEM8, #IMM8 ; MEM8 \leftarrow MEM8 \land IMM8 222

ANDMD logical AND between immediate value and Memory (Double word)

Function	:	Logical AND
Operation data ler	igth :	32 bits
Operation	:	$\begin{array}{c c} M32 \leftarrow M32 \land IMM32 \\ \hline M32 & M32 \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \$
Description	:	 Performs logical AND between the contents of memory and immediate value in 32-bit length, and stores the result in the memory. This instruction is unaffected by flag m.
Status flags	:	IPL N V m x D I Z C - N - - - - Z -
1	N :	Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."

Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
DIR	ANDMD dd, #imm	5116, E316, dd, immll, immlh, immhl, immhh	7	10
ABS	ANDMD mmll, #imm	5116, E716, II, mm, immll, immlh, immнl, immнн	8	10

Description example:

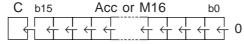
ANDMD

MEM32, #IMM32

; MEM32 \leftarrow MEM32 \land IMM32

ASL

Operation data length: 16 bits or 8 bits


С

÷

Operation

Acc or M 1-bit shift to left $\leftarrow 1$ 0

<u>When m = "0"</u>

<u>When m = "1"</u>

C b7	Acc∟ or M8	b0
	- $+$ $+$ $+$ $+$ $+$ $+$	

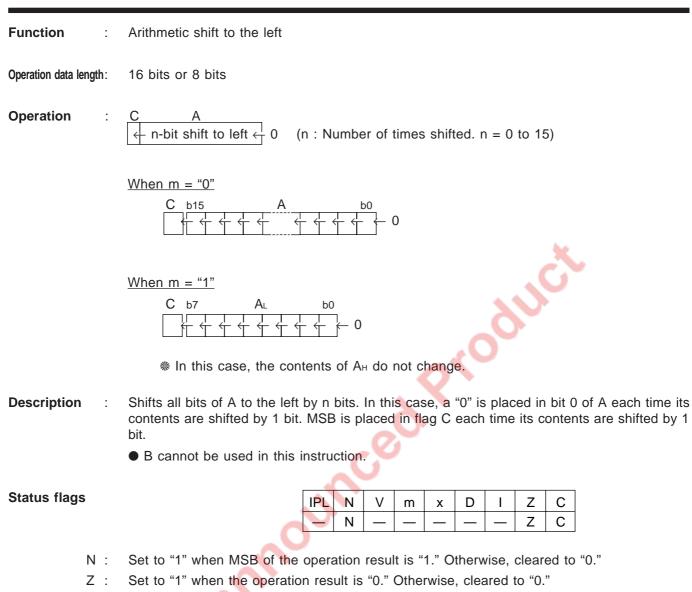
In this case, the contents of Acc_H do not change.

Description : Shifts all bits of Acc or a memory to left by 1 bit. In this time, a "0" is placed in LSB of Acc or the memory. MSB before the shift is placed in flag C.

Status flags

IPL	Ν	V	m	х	D	Ι	Ζ	С
—	Ν	Ĭ	—	_	_	_	Ζ	С

Juci


- N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."
- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."
- C : Set to "1" when MSB of Acc or the memory before the operation is "1." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
A	ASL A	0316	1	1
A	ASL B	8116, 0316	2	2
DIR	ASL dd	2116, 0A16, dd	3	7
DIR, X	ASL dd, X	2116, 0B16, dd	3	8
ABS	ASL mmll	2116, 0E16, II, mm	4	7
ABS, X	ASL mmll, X	2116, 0F16, II, mm	4	8

CLM		
ASL	A	; $A \leftarrow A$ is arithmetically shifted left by 1 bit.
ASL	MEM16	; MEM16 \leftarrow MEM16 is arithmetically shifted left by 1 bit.
SEM		
ASL	A	; $A_{L} \leftarrow A_{L}$ is arithmetically shifted left by 1 bit.
ASL	MEM8	; MEM8 \leftarrow MEM8 is arithmetically shifted left by 1 bit.

ASL #n

ASL #n

C : Set to "1" if MSB = "1" when the contents are shifted by (n - 1) bits. Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
А	ASL A, #imm	C116, imm+4016	2	imm+6

Note : Any value (number of times shifted) from 0 to 15 can be set to imm.

CLM ASL	A. #15	: $A \leftarrow A$ is arithmetically shifted to the left by 15 bits.
SEM	.,	,
ASL	A, #7	; $A_L \leftarrow A_L$ is arithmetically shifted to the left by 7 bits.

ASLD #n

ASLD #n

Function : Arithmetic shift to the left

Operation data length: 32 bits

Operation : C E \leftarrow n-bit shift to left \leftarrow 0 (n : Number of times shifted. n = 0 to 31)

С	b31		E	b0	
	ᢤᢤ	~ ~ ~	\leftrightarrow		} 0

Description : Shifts all bits of E in 32-bit length to the left by n bits. In this case, a "0" is placed in bit 0 of E each time its contents are shifted by 1 bit. MSB is placed in flag C each time its contents are shifted by 1 bit.

• This instruction is unaffected by flag m.

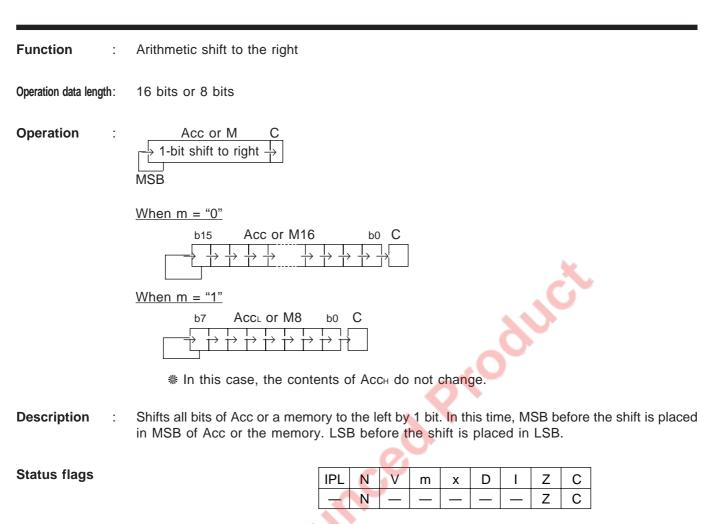
Status flags

IPL	N	V	m	х	D	Z	С
—	Ν			_	Y	Ζ	С

- N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."
- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."
- C : Set to "1" if MSB = "1" when the contents are shifted by (n 1) bits. Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
А	ASLD E, #imm	D116, imm+4016	2	imm+8

Note : Any value (number of times shifted) from 0 to 31 can be set to imm.

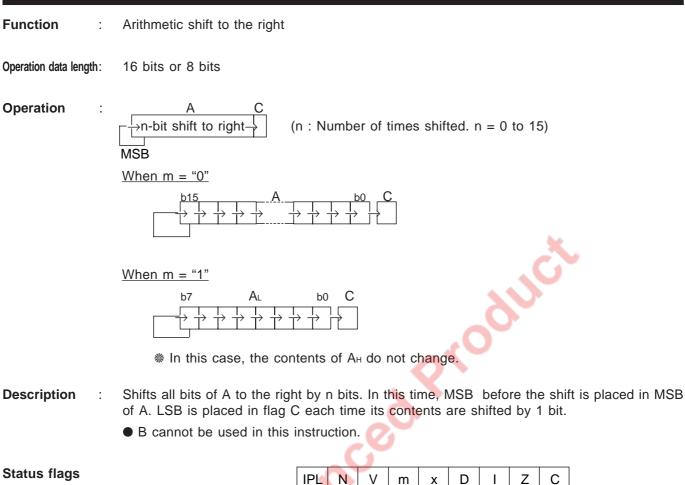

Description example:

ASLD

E, <u>#</u>16

; E \leftarrow E is arithmetically shifted to the left by 16 bits.

ASR



- N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."
- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."
- C : Set to "1" when LSB of Acc or the memory before the operation is "1." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
A	ASR A	6416	1	1
А	ASR B	8116, 6416	2	2
DIR	ASR dd	2116, 4A16, dd	3	7
DIR, X	ASR dd, X	2116, 4B16, dd	3	8
ABS	ASR mmll	2116, 4E16, II, mm	4	7
ABS, X	ASR mmll, X	2116, 4F16, II, mm	4	8

CLM		
ASR	A	; $A \leftarrow A$ is arithmetically shifted to the right by 1 bit.
ASR	MEM16	; MEM16 \leftarrow MEM16 is arithmetically shifted to the right by 1 bit.
SEM		
ASR	A	; $A_L \leftarrow A_L$ is arithmetically shifted to the right by 1 bit.
ASR	MEM8	; MEM8 \leftarrow MEM8 is arithmetically shifted to the right by 1 bit.

ASR #n

Status flags

		1					

Z

- N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."
- Ζ: Set to "1" when the operation result is "0." Otherwise, cleared to "0."
- C : Set to "1" if LSB = "1" when the contents are shifted by (n - 1) bits. Otherwise, cleared to "0."

A ASR A #imm C116 imm+8016 2 im	Addressing mode	Syntax	Machine code	Bytes	Cycles
	A	ASR A, #imm	C116, imm+8016	2	imm+6

Note : Any value (number of times shifted) from 0 to 15 can be set to imm.

CLM		
ASR	A, #15	; $A \leftarrow A$ is arithmetically shifted to the right by 15 bits.
SEM		
ASR	A, #7	; $A_L \leftarrow A_L$ is arithmetically shifted to the right by 7 bits.

ASRD #n

ASRD #n

Function : Arithmetic shift to the right

Operation data length: 32 bits

Operation : E C n-bit shift to right (n : Number of times shifted. n = 0 to 31) MSB b31 E b0 CC

- **Description** : Shifts all bits of E in 32-bit length to the right by n bits. In this time, MSB before the shift is placed in MSB of E. LSB is placed in flag C each time its contents are shifted by 1 bit.
 - This instruction is unaffected by flag m.

Status flags

IPL	Ν	V	m	х	D	Z	С
—	Ν	_	—	—		Ζ	С

- N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."
- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."
- C : Set to "1" if LSB = "1" when the contents are shifted by (n 1) bits. Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
A	ASRD E, #imm	D116, imm+8016	2	imm+8

Note : Any value (number of times shifted) from 0 to 31 can be set to imm.

Description example:

ASRD

E, #16

; $\mathsf{E} \leftarrow \mathsf{E}$ is arithmetically shifted to the right by 16 bits.

BBC

Function : Conditional branch

Operation data length: 16 bits or 8 bits

- **Operation** : Relative branch to the specified address when M (bit n) = "0" (n specifies a bit position; multiple bits can be specified.)
- **Description** : Branches to the specified address if the contents of all specified bits in memory (multiple bits can be specified) are "0"s. Use an 8-bit value relative to PC (-128 to +127) to specify the branch destination address. The bit positions to be tested are indicated by a bit pattern of the immediate value, in which the bits set to "1" are the subject bits to be tested.
 - When m="0" : This instruction operates in 16-bit length.
 - When m="1" : This instruction operates in 8-bit length.
 - Branches when no bit is specified that need to be tested.

Status flags :

IPL	Ν	V	m	x	D	(\mathbf{r})	z	С
—	_	_	_	—	E.) —	—	_

Addressing mode	Syntax	Machine code	Bytes	Cycles
DIR, b, R	BBC #imm, dd, rr	4116, 5A16, dd, imm, rr	5	9
ABS, b, R	BBC #imm, mmll, rr	4116, 5E16, II, mm, imm, rr	6	9

Note : When flag m = "0," the byte number increases by 1.

5.4

CLM		
BBC.W	#IMM16, MEM16, LABEL1	; Branches to LABEL1 if all specified bits in MEM16 are "0"s.
SEM		
BBC.B	#IMM8, MEM8, LABEL2	; Branches to LABEL2 if all specified bits in MEM8 are "0"s.

Operation data length: 8 bits

- **Operation** : Relative branch to the specified address when M8 (bit n) = "0" (n specifies a bit position; multiple bits can be specified.)
- **Description** : Branches to the specified address if the contents of all specified bits in memory (multiple bits can be specified) are "0"s. Use an 8-bit value relative to PC (-128 to +127) to specify the branch destination address. The bit positions to be tested are indicated by a bit pattern of the 8-bit immediate value, in which the bits set to "1" are the subject bits to be tested.
 - Branches if no bit is specified that need to be tested.
 - This instruction is unaffected by flag m.

Status flags

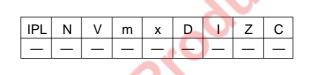
Addressing mode	Syntax	Machine code	Bytes	Cycles
DIR, b, R	BBCB #imm, dd, rr	5216, dd, imm, rr	4	8
ABS, b, R	BBCB #imm, mmll, rr	5716, II, mm, imm, rr	5	8

Description example:

BBCB

 \checkmark

1


#IMM8, MEM8, LABEL); Branches to LABEL if all specified bits in MEM8 are 0s.

Function : Conditional branch

Operation data length: 16 bits or 8 bits

- **Operation** : Relative branch to the specified address when M (bit n) = "1" (n specifies a bit position; multiple bits can be specified.)
- **Description** : Branches to the specified address if the contents of all specified bits in memory (multiple bits can be specified) are "1"s. Use an 8-bit value relative to PC (-128 to +127) to specify the branch destination address. The bit positions to be tested are indicated by a bit pattern of the immediate value, in which the bits set to "1" are the subject bits to be tested.
 - When m="0" : This instruction operates in 16-bit length.
 - When m="1": This instruction operates in 8-bit length.
 - Branches if no bit is specified that need to be tested.

Status flags :

Addressing mode	Syntax	Machine code	Bytes	Cycles
DIR, b, R	BBS #imm, dd, rr	4116, 4A16, dd, imm, rr	5	9
ABS, b, R	BBS #imm, mmll, rr	4116, 4E16, II, mm, imm, rr	6	9

Note : When flag m = "0," the byte number increases by 1.

3

CLM		
BBS.W	#IMM16, MEM16, LABEL1	; Branches to LABEL1 if all specified bits in MEM16 are "1"s.
SEM		
BBS.B	#IMM8, MEM8, LABEL2	; Branches to LABEL2 if all specified bits in MEM8 are "1"s.

Function : Conditional branch

Operation data length: 8 bits

- **Operation** : Relative branch to the specified address when M8 (bit n) = "1" (n specifies a bit position; multiple bits can be specified.)
- **Description** : Branches to the specified address if the contents of all specified bits in memory (multiple bits can be specified) are "1"s. Use an 8-bit value relative to PC (-128 to +127) to specify the branch destination address. The bit positions to be tested are indicated by a bit pattern of the 8-bit immediate value, in which the bits set to "1" are the subject bits to be tested.
 - Branches if no bit is specified that need to be tested.
 - This instruction is unaffected by flag m.

Status flags

Addressing mode	Syntax	Machine code	Bytes	Cycles
DIR, b, R	BBSB #imm, dd, rr	4216, dd, imm, rr	4	8
ABS, b, R	BBSB #imm, mmll, rr	4716, II, mm, imm, rr	5	8

Description example:

BBSB

 $\overline{\mathbf{v}}$

1

#IMM8, MEM8, LABEL ; Branches to LABEL if all specified bits in MEM8 are "1"s.

BCC

Function	: Conditional brai	nch							
Operation data length	n: —								
Operation : Relative branch to the specified address when C = "0."									
Description : Branches to the specified address if flag C is "0." Use an 8-bit value relative to PC (-128 to +127) to specify the branch destination address.									
Status flags	flags : IPL N V m x D I Z C 								
	Addressing mode	Syntax	Machine code	Bytes	Cycles				
	REL BCC rr		9016, rr	2	6				
	e: CC LABE	our	; Branches to LABEL if C = "0."						

BCS

BCS

Function	: Conditional brar	nch								
Operation data length: –										
Operation : Relative branch to the specified address when C = "1."										
Description : Branches to the specified address if flag C is "1." Use an 8-bit value relative to PC (-128 to +127) to specify the branch destination address.										
Status flags	:	IPL N V m x D I Z C - - - - - - - -								
	Addressing mode	Syntax	Machine code	Bytes	Cycles					
	REL	BCS rr	B016, rr	2	6					
Description example BC		nour	; Branches to LABEL if C = "1."							

4–46

Β	E	Q
---	---	---

BEQ

Function	: C	onditional bran	ch									
Operation data length	: –											
Operation : Relative branch to the specified address when Z = "1."												
Description : Branches to the specified address if flag Z is "1." Use an 8-bit value relative to PC (-128 to +127) to specify the branch destination address.												
Status flags	:	IPL N V m x D I Z C - - - - - - - - -										
	Add	lressing mode	Syntax		Machine code				Bytes	Cycles		
	REL		BEQ rr		F016, rr				0		2	6

Function	:	Conditional bran	ch					
Operation data lengt	h:	_						
Operation	:	Relative branch	to the specified a	ddress when $N\forall V = "0."$				
Description : Branches to the specified address if the contents of flags N and V are the same. Use an 8- bit value relative to PC (-128 to +127) to specify the branch destination address.								
 Branches when the result of the compare instruction or the subtract instruction satisfies "Greater or Equal ≥" condition. 								
Status flags	:		IPL —	N V m x D I Z C 				
	4	Addressing mode	Syntax	Machin <mark>e cod</mark> e	Bytes	Cycles		
	R	EL	BGE rr	C016, rr	2	6		
Description exampl B(ЭΕ	LABEL	nou	; Branches to LABEL if N∀V = "0."				
		FOL 3						

Function	: Conditional bra	nch							
Operation data length	h: —								
Operation	: Relative branc	n to the specified a	ddress when $Z = "0"$ and $N \forall V = "0."$						
 Description : Branches to the specified address if flag Z is "0" and the contents of flags N and V are the same. Use an 8-bit value relative to PC (-128 to +127) to specify the branch destination address. Branches when the result of the compare instruction or the subtract instruction satisfies signed "Greater than >" condition. 									
Status flags	:	IPL —	N V m x D I Z C — — — — — — — —						
	Addressing mode	Syntax	Machine code	Bytes	Cycles				
	REL	BGT rr	8016, rr	2	6				
REL BGT rr 8016, rr 2 6 Description example: BGT LABEL ; Branches to LABEL if Z = "0" and N∀V = "0."									
				= "0."					

Function	:	Conditional brar	nch					
Operation data length	1:	_						
Operation	:	Relative branch	to specified addre	ess if C = "1"	and flag Z = "0.	"		
Description	:		specified address +127) to specify th	-	-		8-bit valu	le relative
			en the result of th eater than >" cond	•	struction or the	subtract ir	structior	1 satisfies
Status flags	:		IPL —	N V m — — —	x D I	z c — —		
Γ	•	ddressing mode	Syntax		Machine code	<u>v</u>	Bytes	Cycles

Addressing mode	Syntax	Machine code	Bytes	Cycles
REL	BGTU rr	4016, rr	2	6

Description example:

BGTU

LABEL

; Branches to LABEL if C = "1" and Z = "0."

Function	:	Conditional brar	nch								
Operation data lengt	h:	-									
Operation	:	Relative branch	to specified addre	ess when Z =	"1" or N∀V = "1."						
Description	:	Use an 8-bit va • Branches wh	anches to the specified address if flag Z is "1" or the contents of flags N and V are different. Se an 8-bit value relative to PC (-128 to +127) to specify the branch destination address. Branches when the result of the compare instruction or the subtract instruction satisfies signed "Less or Equal \leq " condition.								
Status flags	:		IPL —	N V m — — —	x D I Z C 						
	A	ddressing mode	Syntax		Machine code	Bytes	Cycles				
	RE	iL	BLE rr	A016, rr		2	6				

Description example:

BLE

LABEL

; Branches to LABEL if Z= "1" and N \forall V = "1."

Function	: Conditional brar	nch		
Operation data length	: –			
Operation	: Relative branch	to the specified a	ddress if $C = "0"$ or $Z = "1."$	
Description	to PC (−128 to ● Branches wh	+127) to specify th	if flag C is "0" or flag Z is "1." Use an a ne branch destination address. ne compare instruction or the subtract in adition.	
Status flags	:	IPL —	N V m x D I Z C — — — — — — — —	
	Addressing mode	Syntax	Machine code	Bytes Cycles

Addressing mode	Syntax		Machine code	Bytes	Cycles
REL	BLEU rr	6016, rr		2	6

Description example:

BLEU

LABEL

; Branches to LABEL if C = "0" or Z = "1."

BLT

Function	: Conditional bra	nch								
Operation data leng	th: —									
Operation	: Relative branch	n to specified addre	ess when $N\forall V = "1."$							
Description	value relative to	value relative to PC (-128 to +127) to specify the branch destination address. ● Branches when the result of the compare instruction or the subtract instruction satisfies								
"Less than <" condition.										
Status flags	:	IPL —	N V m x D I Z	C -						
	Addressing mode REL	Syntax BLT rr	Machine code E016, rr	BytesCycles26						
Description example: BLT LABEL ; Branches to LABEL if N∀V = "1."										
		JUN NO								

BMI

Function	:	Conditional brar	nch											
Operation data lengt	h:	_												
Operation	:	Relative branch	to specified	addre	ess if	N = '	"1."							
Description	+127) to specify the branch destination address.													
Status flags	:		IPL N V m x D I Z C - <th></th>											
	A	ddressing mode	Syntax				N	/lachi	ne co	ode	3	Bytes	Cycles	
	RE	EL	BMI rr		3016	, rr				C		2	6	
Description exampl								2	C					
BI		LABEI	nno	5		anche		-ABE	L If N	. = "1				

4–54

BNE

Function	:	Conditional brai	nch						
Operation data length	h:	_							
Operation	:	Relative branch	to the specified	address if Z = "0."					
Description : Branches to the specified address if flag Z is "0." Use an 8-bit value relative to PC (-128 to +127) to specify the branch destination address.									
Status flags	:		IPL —	N V m x D I Z C — — — — — — — —	•				
	A	ddressing mode	Syntax	Machine code	Bytes	Cycles			
	RE	EL	BNE rr	D016, rr	2	6			
Description example: BNE LABEL ; Branches to LABEL if Z = "0."									
			annou	ncer					

BPL

Function	:	Conditional brai	nch							
Operation data lengt	h:	_								
Operation	:	Relative branch	to the specified	address when N = "0."						
Description : Branches to the specified address if flag N is "0." Use an 8-bit value relative to PC (-128 to +127) to specify the branch destination address.										
Status flags	:		IPL N V m x D I Z C -							
	A	ddressing mode	Syntax	Machine code		Bytes	Cycles			
	R	EL	BPL rr	1016, rr		2	6			
Description exampl	ЪГ		nnoi	; Branches to LABEL if N = "	0."					

BRA/BRAL

Function : Unconditional branch

Operation data length:

Operation : $PC \leftarrow PC + cnt + REL$ (cnt : byte number of the BRA/BRAL instruction)

Description : Branches always to the specified address. Use an 8-bit value relative to PC (BRA : -128 to +127) or a 16-bit value relative to PC (BRAL : -32768 to +32767) after the branch instruction execution to specify the branch destination address.

Status flags :

IPL	Ν	V	m	х	D	I	Z	С
—	—		_	—		_	_	Y,
								5

Addressing mode	Syntax	Machine code	Bytes	Cycles
REL	BRA rr	2016, rr	2	5
	BRAL rrнrr∟	A716, rrl, rrh	3	5

Description example:

BRA REL8 BRAL REL16

olannoun

; Branches to address (PC + 2 + REL8)

; Branches to address (PC + 3 + REL16)

BRK

BRK

Function 1 Software interrupt

Operation data length:

Operation Generate a BRK interrupt :

- Description Saves the address where the instruction next to the BRK instruction is stored and the PS : contents in order of PG, PC, and PS to the stack. Then, branches to the address whose loworder address is the contents of address FFFA₁₆ and high-order address is the contents of address FFFB₁₆.
 - This instruction is reserved for use in debug tools and cannot be used when using an emulator.

Status flags :

							1	
IPL	Ν	V	m	х	D	I.	Z	С
_	_	—	_	_	_	1	5	—

I : Set to "1."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMP	BRK	0016, 7416	2	15
	BRIT	0010; 7 + 10	2	10
9:				
RK				
		,		
	N			

Description example:

BRK

Function : Conditional branch	11

Operation data length: 16 bits or 8 bits

- **Operation** : Relative branch to the specified address when A (bit n) = 0 or M (bit n) = 0 (n = 0 to 15. Only 1 bit can be specified).
- **Description** : Branches to the specified address if the contents of the specified bit of A or a memory is "0." Use an 8-bit value relative to PC (-128 to +127) to specify the branch address.
 - When m = "0": Any 1 bit between b0 to b15 can be specified.
 When m = "1": Any 1 bit between b0 to b7 can be specified.
 - B cannot be used in this instruction.

Status flags	s flags
--------------	---------

2

Addressing mode	Syntax	Machine code	Bytes	Cycles
А	BSC n, A, rr	0116, n+A016, rr	3	7
DIR	BSC n, dd, rr	7116, n+A016, dd, rr	4	11
ABS	BSC n, mmll, rr	7116, n+E016, II, mm, rr	5	10

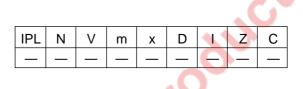
Note : Any value from 0 to 15 can be set to n.

CLM		
BSC	8, A, LABEL1	; Branches to LABEL1 if b8 of A is "0."
BSC	15, MEM16, LABEL2	; Branches to LABEL2 if b15 of MEM16 is "0."
SEM		
BSC	7, A, LABEL3	; Branches to LABEL3 if b7 of A is "0."
BSC	7, MEM8, LABEL4	; Branches to LABEL4 if b7 of MEM8 is "0."

BSR

BSR

Function : Subroutine call


Operation data length:

Description : Branches to the specified address after saving the PC contents to the stack. Use an 11-bit value relative to PC (-1024 to +1023) to specify the branch address.

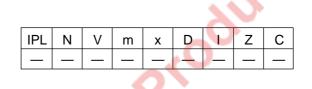
 $\ensuremath{\#}$ This instruction cannot be used in branching across bank boundaries.

* Do not place this instruction at bank boundaries.

Status flags :

Addressing mode	Syntax	Machine code	Bytes	Cycles
REL	BSR rr	(11111b10 b9 b8)2, (b7 b6 b5 b4 b3 b2 b1 b0)2	2	7
		# b10 to b0 means "b10 to b0 of rr."		

Note : Any value from -1023 to 1024 (11-bit length) can be set to rr.


Description example:

BSR LABEL ; Branches to LABEL

Operation data length: 16 bits or 8 bits

- **Operation** : Relative branch to the specified address when A (bit n) = "1" or M (bit n) = "1" (n = 0 to 15. Only 1 bit can be specified).
- **Description** : Branches to the specified address if the contents of the specified bit of A or a memory is "1." Use an 8-bit value relative to PC (-128 to +127) to specify the branch address. The bit position to be tested is specified by the bit number.
 - When m = "0": Any 1 bit between b0 to b15 can be specified.
 When m = "1": Any 1 bit between b0 to b7 can be specified.
 - B cannot be used in this instruction.

Status flags :

Addressing mode	Syntax	Machine code	Bytes	Cycles
А	BSS n, A, rr	0116, n+8016, rr	3	7
DIR	BSS n, dd, rr	7116, n+8016, dd, rr	4	11
ABS	BSS n, mmll, rr	7116, n+C016, II, mm, rr	5	10

Note : Any value from 0 to 15 can be set to n.

CLM	\sim	
BSS	8, A, LABEL1	; Branches to LABEL1 if b8 of A is "1."
BSS	15, MEM16, LABEL2	; Branches to LABEL2 if b15 of MEM16 is "1."
SEM	A	
BSS	7, A, LABEL3	; Branches to LABEL3 if b7 of A is "1."
BSS	7, MEM8, LABEL4	; Branches to LABEL4 if b7 of MEM8 is "1."

BVC

Function	:	Conditional brai	nch			
Operation data lengtl	h:	_				
Operation	:	Relative branch	to the specified a	ddress when V = "0."		
Description	:			if the contents of flag V is "0." Use an a ne branch address.	3-bit valu	ie relative
Status flags	:		IPL —	N V m x D I Z C 		
	A	ddressing mode	Syntax	Machine code	Bytes	Cycles
	R	EL	BVC rr	5016, rr	2	6
Description example	/C		ou	; Branches to LABEL if V = "0."		

4–62

Function	:	Conditional brar	Conditional branch											
Operation data lengt	Operation data length: —													
Operation	:	Relative branch	to the specif	fied a	ddres	ss wh	ien V	= "1	.,,					
Description	:	Branches to the to PC (-128 to							g V a	are "1	." Us	e an	8-bit valu	ie relative
Status flags	:			IPL	N	V	m	x	D	1	Z	С		
				_	—	_	—	—	—	—	—			
											. (
	A	ddressing mode	Syntax				N	/ achi	ne co	ode	3		Bytes	Cycles
	RE	L	BVS rr		7016	, rr				C			2	6
Description exampl	/S	LABEI	nno	J.			es to L	ABE	L if V	= "1.	31			

Function :	Comparison & Conditional branch					
Operation data length:	16 bits or 8 bits					
Operation :	Relative branch to the specified address when $Acc = IMM$ or $M = IMM$.					
Description :	Branches to the specified address if the contents of Acc or a memory are equal to the immediate value. Use an 8-bit value relative to PC (-128 to +127) to specify the branch address.					
	 When m = "0": This instruction operates in 16-bit length. When m = "1": This instruction operates in 8-bit length. 					
Status flags :	IPL N V m x D I Z C - N V Z C					

- N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."
- V : Set to "1" when the result of the operation (regarded as a signed operation) is a value outside the range of -32768 to +32767 (-128 to +127 when flag m is "1"). Otherwise, cleared to "0."
- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."
- C : Cleared to "0" when the borrow is occurs. Otherwise, set to "1."

Addressing mode	Syntax	Machine code	Bytes	Cycles
А	CBEQ A, #imm, rr	A6 ₁₆ , imm, rr	3	6
A	CBEQ B, #imm, rr	8116, A616, imm, rr	4	7
DIR	CBEQ dd, #imm, rr	4116, 6A16, dd, imm, rr	5	9

Note : When flag m = "0," the byte number increases by 1.

Description example:

CLM	
CBEQ.W	A, #IMM16, LABEL1
CBEQ.W	MEM16, #IMM16, LABEL2
SEM	
CBEQ.B	B, #IMM8, LABEL3

; Branches to LABEL1 if A = IMM16. ; Branches to LABEL2 if MEM16 = IMM16.

; Branches to LABEL3 if $B_{L} = IMM8$.

CBEQB

Function : Comparison & Conditional branch

Operation data length: 8 bits

- **Operation** : Relative branch to the specified address when $Acc_{L} = IMM8$ or M8 = IMM8.
- **Description** : Branches to the specified address if the contents of Acc_⊥ or a memory are equal to the immediate value when they are compared in 8-bit length. Use an 8-bit value relative to PC (-128 to +127) to specify the branch address.
 - This instruction is unaffected by flag m.

Status flags

1

IPL	Ν	V	m	х	D	I	Ζ	С
—	Ν	V	_	—	—	_	Ζ	С

- N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."
- V : Set to "1" when the result of the operation (regarded as a signed operation) is a value outside the range of -128 to +127. Otherwise, cleared to "0."
- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."
- C : Cleared to "0" when the borrow occurs. Otherwise, set to "1."

Addressing mode	Syntax	Machine code	Bytes	Cycles
А	CBEQB A, #imm, rr	A2 ₁₆ , imm, rr	3	6
А	CBEQB B, #imm, rr	8116, A216, imm, rr	4	7
DIR	CBEQB dd, #imm, rr	6216, dd, imm, rr	4	8

Description example:

CBEQB CBEQB

A, #IMM8,	LABEL 1
<i>/</i> (, <i>#</i> 11011010,	
MEM8, #II	MM8. LABEL2

- ; Branches to LABEL1 if $A_{L} = IMM8$.
- ; Branches to LABEL2 if MEM8 = IMM8.

Operation data length: 16 bits or 8 bits

- **Operation** : Relative branch to the specified address when $Acc \neq IMM$ or $M \neq IMM$.
- **Description** : Branches to the specified address if the contents of Acc or a memory are not equal to the immediate value. Use an 8-bit value relative to PC (-128 to +127) to specify the branch address.
 - When m = "0": This instruction operates in 16-bit length.
 - When m = "1": This instruction operates in 8-bit length.

In this case, the contents of Acc_H do not change.

Status flags :

						6	
IPL	Ν	V	m	х	D	Z	С
—	Ν	V	_	_	—	Z	С

- N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."
- V : Set to "1" when the result of the operation (regarded as a signed operation) is a value outside the range of -32768 to +32767 (-128 to +127 when flag m is "1"). Otherwise, cleared to "0."
- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."
- C : Cleared to "0" when the borrow occurs. Otherwise, set to "1."

Addressing mode	Syntax	Machine code	Bytes	Cycles
А	CBNE A, #imm, rr	B616, imm, rr	3	6
A	CBNE B, #imm, rr	8116, B616, imm, rr	4	7
DIR	CBNE dd, <mark>#imm,</mark> rr	4116, 7A16, dd, imm, rr	5	9

Note : When flag m = "0," the byte number increases by 1.

Description example:

CLM CBNE.W CBNE.W

A, #IMM16, LABEL1 MEM16, #IMM16, LABEL2 ; Branches to LABEL1 if A \neq IMM16.

; Branches to LABEL2 if MEM16 \neq IMM16.

CBNEB

Function : Comparison & Conditional branch

Operation data length: 8 bits

- **Operation** : Relative branch to the specified address when $Acc \neq IMM8$ or $M8 \neq IMM8$.
- **Description** : Branches to the specified address if the contents of Acc_⊥ or a memory are equal to the immediate value when they are compared in 8-bit length. Use an 8-bit value relative to PC (-128 to +127) to specify the branch address.
 - This instruction is unaffected by flag m.

Status flags

ŝ

IPL	Ν	V	m	х	D	I	Z	С
	Ν	V	—	—	_	_	Ζ	С

- N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."
- V : Set to "1" when the result of the operation (regarded as a signed operation) is a value outside the range of -128 to +127. Otherwise, cleared to "0."
- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."
- C : Cleared to "0" when the borrow occurs. Otherwise, set to "1."

Addressing mode	Syntax	Machine code	Bytes	Cycles
А	CBNEB A, #imm, rr	B2 ₁₆ , imm, rr	3	6
A	CBNEB B, #imm, rr	8116, B216, imm, rr	4	7
DIR	CBNEB dd, #imm, rr	7216, dd, imm, rr	4	8

Description example:

CBNEB CBNEB A, #IMM<mark>8, LABE</mark>L1 MEM<mark>8, #IM</mark>M8, LABEL2

- ; Branches to LABEL1 if $A \downarrow \neq IMM8$.
- ; Branches to LABEL2 if MEM8 \neq IMM8.

CLC

Function : Flag manipulation

Operation data length:

÷

Description : Clears the contents of flag C to "0."

Status flags

IPL	Ν	V	m	х	D	Ι	Ζ	С
—		—				—		0

C : Cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycle
ſΡ	CLC	1416	1	1
		; C ← 0		
		0		
	~~~~			
	and			
	anne			
	anne			
	anne			
0	anne			
	anne			
F.Or	anne			
F.01-	anne			
F.Or	anne			

Description example:

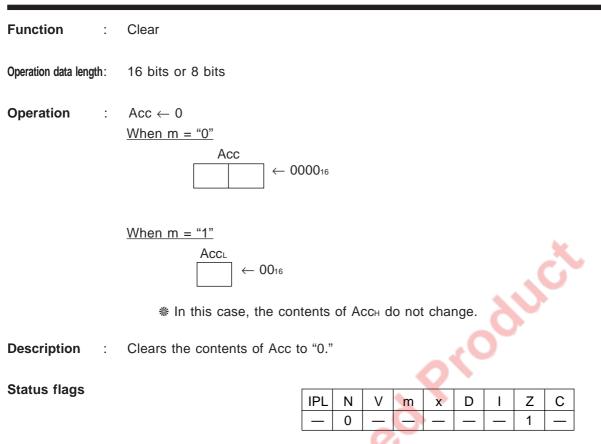
CLC

4–68

# CLI

Function	: Flag manipulation	on				
Operation data leng	gth: —					
Operation	: $I \leftarrow 0$					
Description	: Clears the cont	: Clears the contents of flag I to "0."				
Status flags	:	IPL	N V m x D I Z C 0			
	I : Cleared to	"O."	Ċ			
	Addressing mode	Syntax	Machine code	Bytes	Cycles	
	IMP	CLI	1516	1	3	
Description examp	CLI	nnou	; I ← 0			
	FOL.	0.				

## CLM


CLM

Function	:	Flag manipulation	on										
Operation data leng	ıth:	_											
Operation	:	$m \leftarrow 0$											
Description	:	Clears the contents of flag m to "0."											
Status flags	:		[	IPL	N V		x	D	I	Z	С		
	m	: Cleared to '	'0."			- 0	<u> </u>	<u> </u>			3		
													•
		ddressing mode	Syntax				Mach	ine co	ode			Bytes	Cycles
	A IM		CLM		4516			ine co	ode			Bytes 1	3
<b>Description examp</b> C	IM			کر		0		ine co	ode				

C	LP
· · ·	

Function	:	Flag manipulation	on				
Operation data lene	gth:	-					
Operation	:	PS∟ (bit n) ← 0	(n = 0 to 7. Multi	ple bits can be spec	cified.)		
Description	:	positions in PSi which the bits s ● This instructi	) to be specified a set to "1" are the s on is unaffected by	re indicated by a bit ubject bits to be spe	ed) of PS∟ to "0." The pattern of an 8-bit ir ecified.		
		PS b7 b6 b5 b4 b N V m x [	3 b2 b1 b0		with		
Status flags	:		IPL —	NVMX NVMX	D I Z C D I Z C		
	A	ddressing mode	Syntax	Machi	ine code	Bytes	Cycles
	IN	ИМ	CLP #imm	9816, imm		2	4
Description exam	ole: CLP	#IMM8		; The specified bits	of $PS_{L} \leftarrow 0$		
		EOL					

# CLR



- N : Always cleared to "0" because MSB of the operation result is "0."
- Z : Always set to "1" because the operation result is "0."

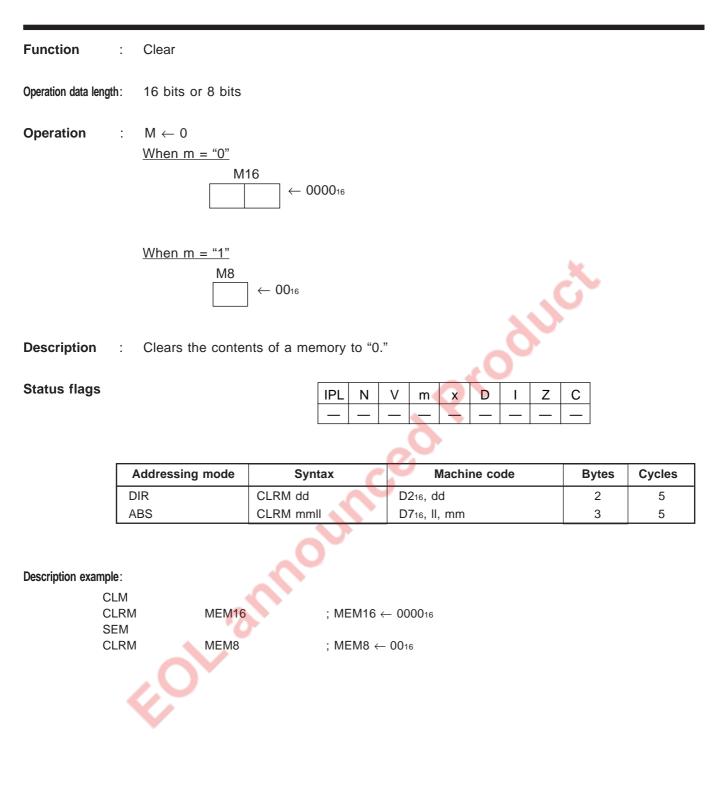
Addressing mode	Syntax	Machine code	Bytes	Cycles
A	CLR A	5416	1	1
А	CLR B	<b>81</b> 16, <b>54</b> 16	2	2

CLM CLR CLR	AB	; A ← 000016 ; B ← 000016
SEM CLR CLR	A B	; AL $\leftarrow$ 0016 ; BL $\leftarrow$ 0016

# **CLRB**

**Function** ÷ Clear Operation data length: 8 bits Operation  $Acc_{L} \leftarrow 00_{16}$ 2 Acc ← 0016 Description Clears the contents of AccL to "0016." 1 ● The contents of Acc_H do not change. • This instruction is unaffected by flag m. Status flags IPL Ν V m х D 1 Ζ С 0 1 _ N : Always cleared to "0" because MSB of the operation result is "0." Ζ: Always set to "1" because the operation result is "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
А	CLRB A	4416	1	1
А	CLRB B	8116, 4416	2	2


Description example:

CLRB

CLRB А ; AL  $\leftarrow$  0016 В ; BL ← 0016

# CLRM

**CLRM** 



# CLRMB

X

Function : Clear

Operation data length: 8 bits

**Operation** : M8  $\leftarrow$  00₁₆

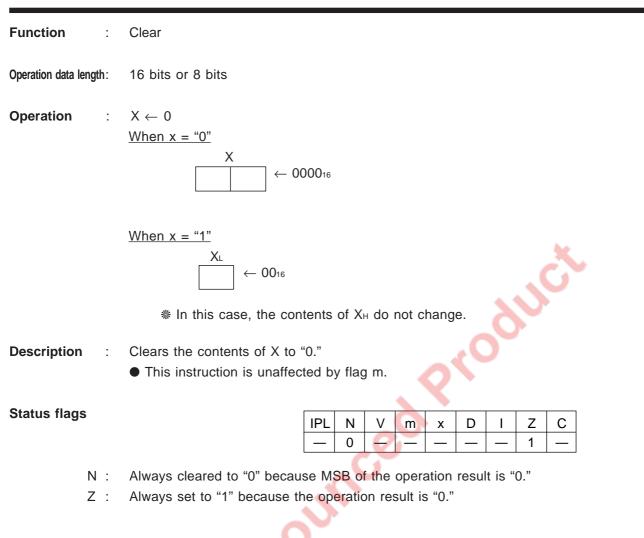
M8 □ ← 0016

**Description** : Clears the contents of a memory to "0" in 8-bit length.

• This instruction is unaffected by flag m.

Status flags

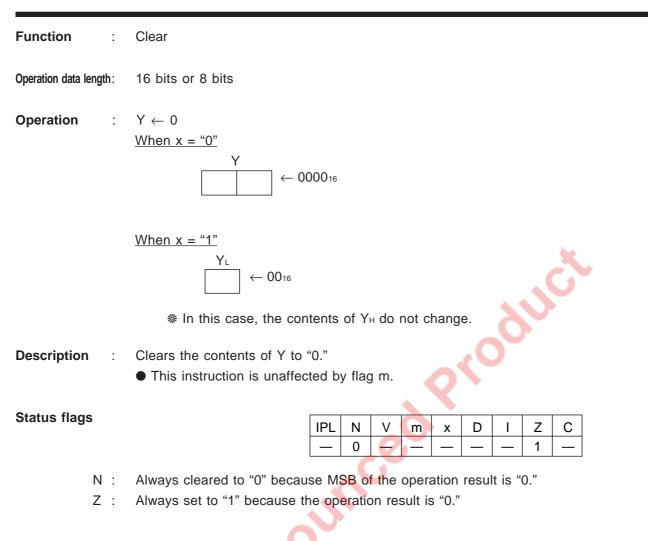
IPL	Ν	V	m	x	D	T	Z	С
—		—			_		Ć	_


6

Addressing mode	Syntax	Machine code	Bytes	Cycles
DIR	CLRMB dd	C216, dd	2	5
ABS	CLRMB mmll	C716, II, mm	3	5

Description example:

mpie: CLRMB MEM8 ; MEM8 ← 0016


# CLRX



Addressing mode	Syntax	Machine code	Bytes	Cycles
IMP	CLRX	E416	1	1

CL	_P 🕻	x	
CL	RX		; X ← 000016
SE	EP	х	
CL	_RX		; XL $\leftarrow$ 0016

# CLRY



Addressing mode	Syntax	Machine code	Bytes	Cycles
IMP	CLRY	F416	1	1

•		
CLP 👝	x	
CLRY		; Y ← 000016
SEP	Х	
CLRY		; YL $\leftarrow$ 0016

## **CLV**

21 V

Flag manipulation Function 1

Operation data length:

Operation :  $V \leftarrow 0$ 

÷

Description Clears the contents of flag V to "0." ÷

Status flags

IPL	Ν	V	m	х	D	I	Z	С
_		0			_	_	_	_

Cleared to "0." V :

				)	
Addressing mode	Syntax		Machine code	Bytes	Cycle
MP	CLV	6516		1	1
					-
			$\circ$		
		; V ← 0	×		
		; V ← 0			
		$\sim$			
	$\sim$				
6					

Description example:

CLV

## CMP

Function :	Comparison
Operation data length:	16 bits or 8 bits
Operation :	Acc – M <u>When m = "0"</u> Acc M16 <u>When m = "1"</u>
Description :	Subtracts the contents of a memory from the contents of Acc. The result is not stored anywhere.
Status flags :	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

- N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."
- V : Set to "1" when the result of the operation (regarded as a signed operation) is a value outside the range of -32768 to +32767 (-128 to +127 when flag m is "1"). Otherwise, cleared to "0."
- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."
- C : Cleared to "0" when the borrow occurs. Otherwise, set to "1."

Orain

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	CMP A, #imm	4616, imm (8116, 4616, imm)	2 (3)	1 (2)
DIR	CMP A, dd	4A16, dd (8116, 4A16, dd)	2 (3)	3 (4)
DIR, X	CMP A, dd, X	4B16, dd (8116, 4B16, dd)	2 (3)	4 (5)
(DIR)	CMP A, (dd)	1116, 4016, dd (9116, 4016, dd)	3 (3)	6 (6)
(DIR, X)	CMP A, (dd, X)	1116, 4116, dd (9116, 4116, dd)	3 (3)	7 (7)
(DIR), Y	CMP A, (dd), Y	1116, 4816, dd (9116, 4816, dd)	3 (3)	7 (7)
L(DIR)	CMP A, L(dd)	1116, 4216, dd (9116, 4216, dd)	3 (3)	8 (8)
L(DIR), Y	CMP A, L(dd), Y	1116, 4916, dd (9116, 4916, dd)	3 (3)	9 (9)
SR	CMP A, nn, S	1116, 4316, nn (9116, 4316, nn)	3 (3)	5 (5)
(SR), Y	CMP A, (nn, S), Y	1116, 4416, nn (9116, 4416, nn)	3 (3)	8 (8)
ABS	CMP A, mmll	4E16, II, mm (8116, 4E16, II, mm)	3 (4)	3 (4)
ABS, X	CMP A, mmll, X	4F16, II, mm (8116, 4F16, II, mm)	3 (4)	4 (5)
ABS, Y	CMP A, mmll, Y	1116, 4616, II, mm (9116, 4616, II, mm) 🔨	4 (4)	5 (5)
ABL	CMP A, hhmmll	1116, 4C16, II, mm, hh (9116, 4C16, II, mm, hh)	5 (5)	5 (5)
ABL, X	CMP A, hhmmll, X	1116, 4D16, II, mm, hh (9116, 4D16, II, mm, hh)	5 (5)	6 (6)

**Notes 1:** This table applies when using accumulator A. When using accumulator B, replace "A" with "B" in the syntax. In this case, the machine code, the number of bytes, and the number of cycles enclosed in parentheses are applied.

2: In the immediate addressing mode, the byte number increases by 1 when flag m = "0."

#### Description example:

npie.		
CLM		0.
CMP.W	A, #IMM16	; A – IMM16
CMP	B, MEM16	🌙 ; B – MEM16
SEM		
CMP.B	A, #IMM8	; A∟ – IMM8
CMP	B, MEM8	; B∟ – MEM8

FOrsult

## CMPB

Function	:	Comparison
Operation data leng	ith:	8 bits
Operation	:	Accl – IMM8 Accl – IMM8
Description	:	<ul> <li>Subtracts the immediate value from the contents of Acc_L in 8-bit length. The result is not stored anywhere.</li> <li>This instruction is unaffected by flag m.</li> </ul>
Status flags	:	IPLNVmxDIZC $-$ NV $  -$ ZC
Ν	:	Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."
V	:	Set to "1" when the result of the operation (regarded as a signed operation) is a value outside the range of $-128$ to $+127$ . Otherwise, cleared to "0."
Z	:	Set to "1" when the operation result is "0." Otherwise, cleared to "0."
С	:	Cleared to "0" when the borrow occurs. Otherwise, set to "1."

		G		
Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	CMPB A, #imm	3816, imm	2	1
IMM	CMPB B, #imm	8116, 3816, imm	3	2

### Description example:

CMPB CMPB A, #IMM8 B, #IMM8 ; Al – IMM8 ; Bl – IMM8

## CMPD

**CMPD** 

Function	:	Comparison
Operation data leng	gth:	32 bits
Operation	:	E – IMM32 E – IMM32
Description	:	<ul><li>Subtracts the immediate value from the contents of E in 32-bit length. The result is not stored anywhere.</li><li>This instruction is unaffected by flag m.</li></ul>
Status flags	:	IPL         N         V         m         x         D         I         Z         C           -         N         V         -         -         -         Z         C
	l : ' :	Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0." Set to "1" when the result of the operation (regarded as a signed operation) is a value outside the range of –2147483648 to +2147483647. Otherwise, cleared to "0."

- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."
- C : Cleared to "0" when the borrow occurs. Otherwise, set to "1."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	CMPD E, #imm	3C16, immLL, immLH, immHL, immHH	5	3
DIR	CMPD E, dd	BA16, dd	2	6
DIR, X	CMPD E, dd, X	BB ₁₆ , dd	2	7
(DIR)	CMPD E, (dd)	1116, B016, dd	3	9
(DIR, X)	CMPD E, (dd, X)	1116, B116, dd	3	10
(DIR), Y	CMPD E, (dd), Y	1116, B816, dd	3	10
L(DIR)	CMPD E, L(dd)	1116, B216, dd	3	11
L(DIR), Y	CMPD E, L(dd), Y	1116, B916, dd	3	12
SR	CMPD E, nn, S	1116, B316, nn	3	8
(SR), Y	CMPD E, (nn, S), Y	1116, B416, nn	3	11
ABS	CMPD E, mmll	BE16, II, mm	3	6
ABS, X	CMPD E, mmll, X	BF16, II, mm	3	7
ABS, Y	CMPD E, mmll, Y	1116, B616, II, mm	4	8
ABL	CMPD E, hhmmll	1116, BC16, II, mm, hh	5	8
ABL, X	CMPD E, hhmmll, X	1116, BD16, II, mm, hh	5	9

20

#### Description example:

CMPD

E, #IMM32

; E – IMM32

## CMPM

Function Comparison ŝ Operation data length: 16 bits or 8 bits Operation M - IMM÷ <u>When m = "0"</u> M16 – IMM16 When m = "1"M8 - IMM8 Description Subtracts the immediate value from the contents of a memory. The result is not stored 1 anywhere. Status flags ÷ IPL Ν V х D Ζ С m I Ν V Z С N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0." V : Set to "1" when the result of the operation (regarded as a signed operation) is a value outside the range of -32768 to +32767 (-128 to +127 when flag m is "1"). Otherwise, cleared to "0."

- Z : Set to "1" when the result of the operation is "0." Otherwise, cleared to "0."
- C : Cleared to "0" when the borrow occurs. Otherwise, set to "1."

Addressing mode	Syntax	Machine code	Bytes	Cycles
DIR	CMPM dd, #imm	5116, 2316, dd, imm	4	5
ABS	CMPM mmll, #imm	5116, 2716, II, mm, imm	5	5

**Note** : When flag m = "0." the byte number increases by 1.

CLM CMPM.W	MEM16, #IMM16	; MEM16 – IMM16
SEM CMPM.B	MEM8, #IMM8	; MEM8 – IMM8

## СМРМВ

**Function** Comparison 1 Operation data length: 8 bits Operation M8 – IMM8 : M8 - IMM8 Subtracts the immediate value from the contents of a memory in 8-bit length. The result is not Description • stored anywhere. This instruction is unaffected by flag m. Status flags : Ζ IPL V С Ν D m х Ν V Ζ С N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0." V Set to "1" when the result of the operation (regarded as a signed operation) is a value outside : the range of -128 to +127. Otherwise, cleared to "0." Ζ: Set to "1" when the operation result is "0." Otherwise, cleared to "0."

C : Cleared to "0" when the borrow occurs. Otherwise, set to "1."

Addressing mode	Syntax	Machine code	Bytes	Cycles
DIR	CMPMB dd, #imm	5116, 2216, dd, imm	4	5
ABS	CMPMB mmll, #imm	5116, 2616, II, mm, imm	5	5

Description e	xample:
---------------	---------

CMPMB

MEM8, #IMM8

; MEM8 – IMM8

## CMPMD

**CMPMD** 

Function	:	Comparison
Operation data len	gth:	32 bits
Operation	:	M32 - IMM32 M32 - IMM32
Description	:	<ul><li>Subtracts the immediate value from the contents of a memory in 32-bit length. The result is not stored anywhere.</li><li>This instruction is unaffected by flag m.</li></ul>
Status flags	:	IPL         N         V         m         x         D         I         Z         C           -         N         V         -         -         -         Z         C
		Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0." Set to "1" when the result of the operation (regarded as a signed operation) is a value outside the range of -2147483648 to +2147483647. Otherwise, cleared to "0."

- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."
- C : Cleared to "0" when the borrow occurs. Otherwise, set to "1."

Addressing mode	Syntax 🧹	Machine code	Bytes	Cycles
DIR	CMPMD dd, #imm	5116, A316, dd, immll, immlh, immhl, immhh	7	7
ABS	CMPMD mmll, #imm	5116, A716, II, mm, immll, immlh, immhl, immhh	8	7

#### Description example:

CMPMD

MEM32, #IMM32

; MEM32 - IMM32

### СРХ

Function	:	Comparison
Operation data lengt	h:	16 bits or 8 bits
Operation	:	$X - M$ $When x = "0"$ $X M16$ $When x = "1"$ $X_{L} M8$ $M8$
Description	:	<ul><li>Subtracts the contents of a memory from the contents of X. The result is not stored anywhere.</li><li>This instruction is unaffected by flag m.</li></ul>
Status flags	:	IPL     N     V     m     x     D     I     Z     C       -     N     V     -     -     -     Z     C

- N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."
- V : Set to "1" when the result of the operation (regarded as a signed operation) is a value outside the range of -32768 to +32767 (-128 to +127 when flag x is "1"). Otherwise, cleared to "0."
- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."
- C : Cleared to "0" when the borrow occurs. Otherwise, set to "1."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	CPX #imm	E616, imm	2	1
DIR	CPX dd	2216, dd	2	3
ABS	CPX mmll	4116, 2E16, II, mm	4	4

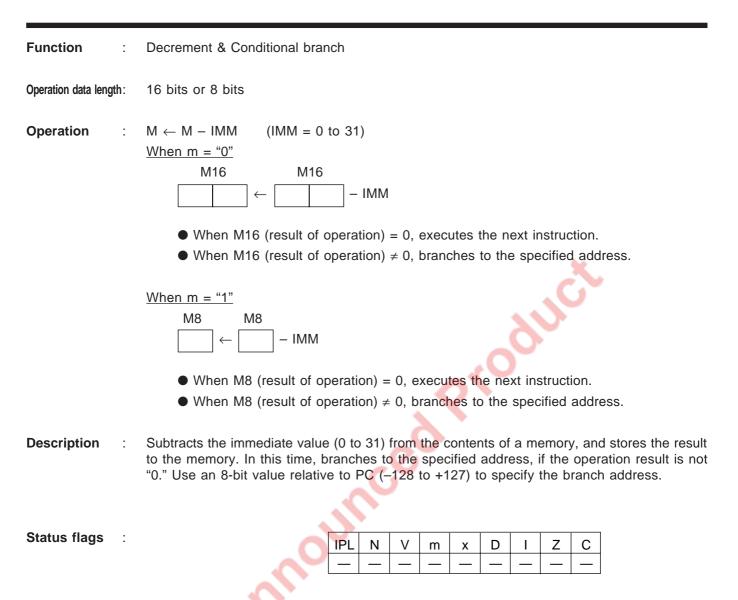
Note : In the immediate addressing mode with flag x = 0, the byte number incleases by 1.

CLP	Х	
CPX.W	#IMM16	; X – IMM16
CPX	MEM16	; X – MEM16
SEP	х	
CPX.B	#IMM8	; X∟ – IMM8
CPX	MEM8	; X∟ – MEM8

## CPY

Function	:	Comparison
Operation data le	ngth:	16 bits or 8 bits
Operation	:	$Y - M$ $\underline{When \ x = "0"}$ $Y \qquad M16$ $\underline{When \ x = "1"}$ $\underline{Y_L} \qquad M8$ $- \qquad - \qquad$
Description	:	<ul><li>Subtracts the contents of a memory from the contents of Y. The result is not stored anywhere.</li><li>This instruction is unaffected by flag m.</li></ul>
Status flags		IPL         N         V         m         x         D         I         Z         C           -         N         V         -         -         -         Z         C
	N :	Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."

- V : Set to "1" when the result of the operation (regarded as a signed operation) is a value outside the range of -32768 to +32767 (-128 to +127 when flag x is "1"). Otherwise, cleared to "0."
- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."
- C : Cleared to "0" when the borrow occurs. Otherwise, set to "1."


Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	CPY #imm	F616, imm	2	1
DIR	CPY dd	3216, dd	2	3
ABS	CPY mmll	4116, 3E16, II, mm	4	4

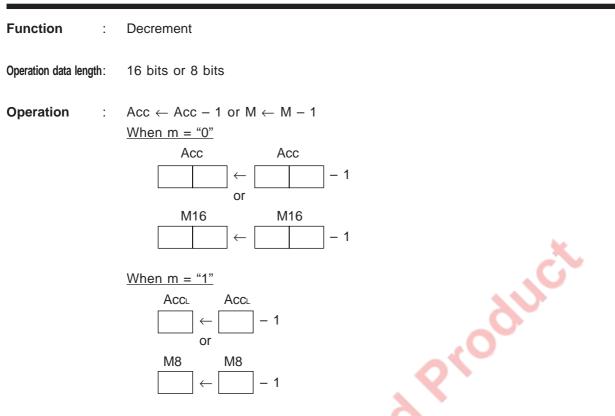
Note : In the immediate addressing mode with flag x = 0, the byte number incleases by 1.

CLP	Х	
CPY.W	#IMM16	; Y – IMM16
CPY	MEM16	; Y – MEM16
SEP	х	
CPY.B	#IMM8	; Y∟ – IMM8
CPY	MEM8	; Y∟ – MEM8

## DEBNE






Addressing mode	Syntax	Machine code	Bytes	Cycles
DIR	DEBNE dd, #imm, rr	C116, imm+A016, dd, rr	4	12
ABS	DEBNE mmll, #imm, rr	D116, imm+E016, II, mm, rr	5	11
	DEBNE mmll, #imm, rr		5	

value from 0 to 31 can be set to imm.

CLM DEBNE SEM	MEM16, #IMM, LABEL1	; Branches to LABEL1, if the result of MEM16 – IMM(0 to 31) is not 0.
DEBNE	MEM8, #IMM, LABEL2	; Branches to LABEL2, if the result of MEM8 – IMM(0 to 31) is not 0.

## DEC

DEC



In this case, the contents of Acc_H do not change.

.

**Description** : Decrements 1 from the contents of Acc or the contents of a memory.

#### Status flags

1

IPL	Ν	V	m	х	D	Ι	Ζ	С
	Ν		_	_			Ζ	

N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."

Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
A	DEC A	B316	1	1
A	DEC B	8116, B316	2	2
DIR	DEC dd	9216, dd	2	6
DIR, X	DEC dd, X	4116, 9B16, dd	3	8
ABS	DEC mmll	9716, II, mm	3	6
ABS, X	DEC mmll, X	4116, 9F16, II, mm	4	8

CLM DEC	A	; A ← A − 1
SEM		
DEC	Α	; $A_L \leftarrow A_L - 1$

## DEX

Function :	Decrement
Operation data length:	16 bits or 8 bits
Operation :	$\begin{array}{c} X \leftarrow X - 1 \\ \underline{When \ x = "0"} \\ X \\ \hline \end{array} \\ \hline \end{array} \\ \leftarrow \boxed{\begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array}} - 1 \end{array}$
	$\frac{\text{When } x = "1"}{\sum_{L} X_{L}} \leftarrow \sum_{L} - 1$
	* In this case, the contents of X _H do not change.
Description :	<ul><li>Decrements 1 from the contents of X.</li><li>This instruction is unaffected by flag m.</li></ul>
Status flags :	IPL     N     V     m     x     D     I     Z     C       -     N     -     -     -     -     Z     -
N :	Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."
Ζ:	Set to "1" when the operation result is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMP	DEX	E316	1	1

#### Description example:

CLP DEX SEP DEX C

х

х

;	$X \gets X - 1$
;	$X_L \leftarrow X_L - 1$

# DEY

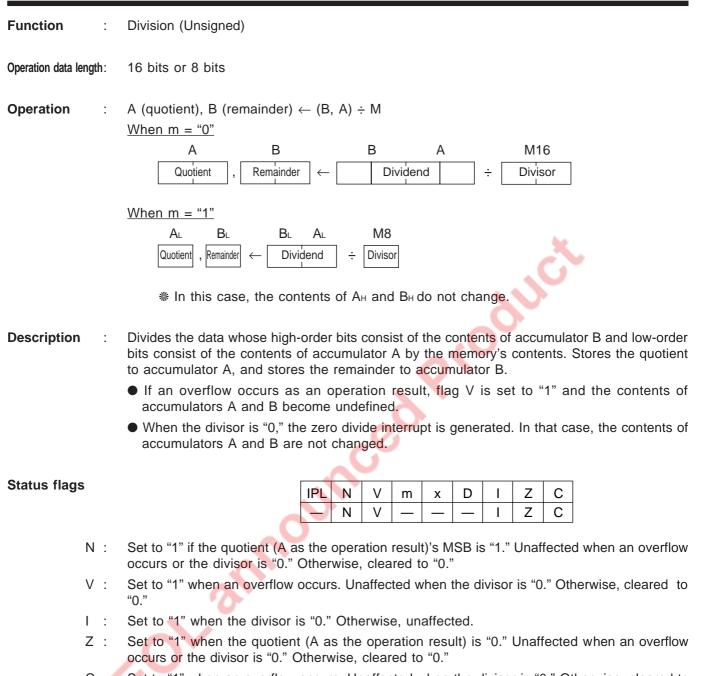
Function :	Decrement
Operation data length:	16 bits or 8 bits
Operation :	$Y \leftarrow Y - 1$ $\underline{When \ x = "0"}$ $Y \qquad Y$ $\Box \qquad \qquad$
	When x = "1" $Y_{L}$ Y _L $Y_{L}$ → $Y_{L}$ $Y_{L}$ → $Y_{L}$ $Y_{L}$ → $Y_{L}$ $Y_{H}$ do not change.
Description :	<ul><li>Decrements 1 from the contents of Y.</li><li>This instruction is unaffected by flag m.</li></ul>
Status flags :	IPL     N     V     m     x     D     I     Z     C       -     N     -     -     -     -     Z     -
N : Z :	Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0." Set to "1" when the operation result is "0." Otherwise, cleared to "0."

 Addressing mode
 Syntax
 Machine code
 Bytes
 Cycles

 IMP
 DEY
 F316
 1
 1

Description example:

CLP DEY SEP


DEY

Х

Х

;  $Y \leftarrow Y - 1$ ;  $Y_L \leftarrow Y_L - 1$ 

## DIV



C : Set to "1" when an overflow occurs. Unaffected when the divisor is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	DIV #imm	3116, E716, imm	3	15
DIR	DIV dd	2116, EA16, dd	3	16
DIR, X	DIV dd, X	2116, EB16, dd	3	17
(DIR)	DIV (dd)	2116, E016, dd	3	18
(DIR, X)	DIV (dd, X)	2116, E116, dd	3	19
(DIR), Y	DIV (dd), Y	2116, E816, dd	3	19
L(DIR)	DIV L(dd)	2116, E216, dd	3	20
L(DIR), Y	DIV L(dd), Y	2116, E916, dd	3	21
SR	DIV nn, S	2116, E316, nn	3	17
(SR), Y	DIV (nn, S), Y	2116, E416, nn	3	20
ABS	DIV mmll	2116, EE16, II, mm	4	16
ABS, X	DIV mmll, X	2116, EF16, II, mm	4	17
ABS, Y	DIV mmll, Y	2116, E616, II, mm	4	17
ABL	DIV hhmmll	2116, EC16, II, mm, hh	5	17
ABL, X	DIV hhmmll, X	2116, ED16, II, mm, hh	5	18

Notes 1: In the immediate addressing mode, the byte number increases by 1 when flag m = "0."

C

2: The cycle number in this table applies to the case of 16-bit ÷ 8-bit operation. In the case of 32bit ÷ 16-bit operation, the cycle number increases by 8.

**3:** The cycle number in this table and Note 2 is the number when the operation is completed normally (in other words, when no interrupt has been generated). If a zero divide interrupt is generated, the cycle number is 16 cycles regardless of the operation's data length.

Description example:

CLM	
DIV	
DIV.W	
SEM	
DIV	
DIV.B	

MEM16 #IMM16 MEM8 #IMM8

; A, B ← (B, A) / MEM16 ; A, B ← (B, A) / IMM16

; A_L, B_L  $\leftarrow$  (B_L, A_L) / MEM8 ; A_L, B_L  $\leftarrow$  (B_L, A_L) / IMM8

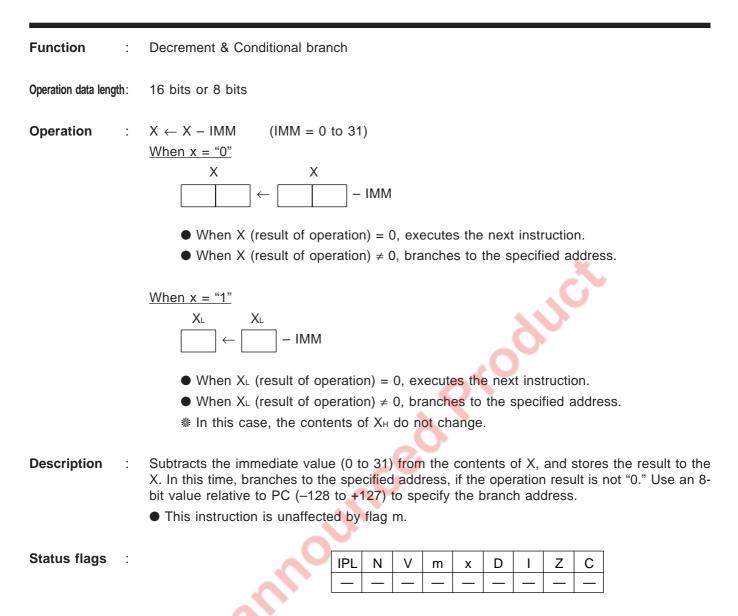
### DIVS

Function Division (Signed) 1 16 bits or 8 bits Operation data length: Operation A (quotient), B (remainder)  $\leftarrow$  (B, A)  $\div$  M <u>When m = "0"</u> M16 А В В A Dividend Divisor Quotient Remainder s * "s" represents MSB of data. <u>When m = "1"</u> A B M8 R. A Quotient Dividend Divisor Remainder * "s" represents MSB of data. * In this case, the contents of A_H and B_H do not change. Description Divides the signed data whose high-order bits consist of the contents of accumulator B and low-order bits consist of the contents of accumulator A by the memory's contents (signed). Stores the signed quotient to accumulator A, and stores the signed remainder to accumulator Β. • The sign of remainder becomes same as that of dividend. ● If an overflow occurs as an operation result (the quotient exceeds the range -32767 to +32767 when flag m is "0," or -127 to +127 when flag m is "1"), the operation finishes halfway and flag V is set to "1." In that case, the contents of accumulators A and B become undefined. • When the divisor is "0," the zero divide interrupt is generated. In that case, the contents of accumulators A and B are not changed. Status flags IPL Ν V D Ζ С m I х Ν V L Ζ С N :

- N : Set to "1" if the quotient (A as the operation result)'s MSB is "1." Unaffected when an overflow occurs or the divisor is "0." Otherwise, cleared to "0."
- V : Set to "1" when an overflow occurs. Unaffected when the divisor is "0." Otherwise, cleared to "0."
- I : Set to "1" when the divisor is "0." Otherwise, unaffected.
- Z : Set to "1" when the quotient (A as the operation result) is "0." Unaffected when an overflow occurs or the divisor is "0." Otherwise, cleared to "0."
- C : Set to "1" when an overflow occurs. Unaffected when the divisor is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	DIVS #imm	3116, F716, imm	3	22
DIR	DIVS dd	2116, FA16, dd	3	23
DIR, X	DIVS dd, X	2116, FB16, dd	3	24
(DIR)	DIVS (dd)	2116, F016, dd	3	25
(DIR, X)	DIVS (dd, X)	2116, F116, dd	3	26
(DIR), Y	DIVS (dd), Y	2116, F816, dd	3	26
L(DIR)	DIVS L(dd)	2116, F216, dd	3	27
L(DIR), Y	DIVS L(dd), Y	2116, F916, dd	3	28
SR	DIVS nn, S	2116, F316, nn	3	24
(SR), Y	DIVS (nn, S), Y	2116, F416, nn	3	27
ABS	DIVS mmll	2116, FE16, II, mm	4	23
ABS, X	DIVS mmll, X	2116, FF16, II, mm	4	24
ABS, Y	DIVS mmll, Y	2116, F616, II, mm 📃 🏓	4	24
ABL	DIVS hhmmll	2116, FC16, II, mm, hh	5	24
ABL, X	DIVS hhmmll, X	2116, FD16, II, mm, hh	5	25

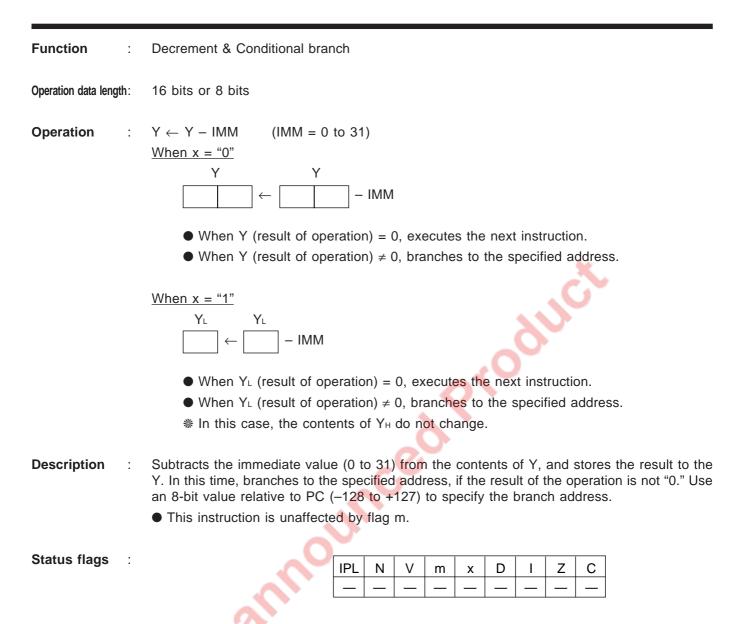
Notes 1: In the immediate addressing mode, the byte number increases by 1 when flag m = "0."


2: The cycle number in this table applies to the case of 16-bit ÷ 8-bit operation. In the case of 32bit ÷ 16-bit operation, the cycle number increases by 8.

**3:** The cycle number in this table and Note 2 is the number when the operation is completed normally (in other words, when no interrupt has been generated). If a zero divide interrupt is generated, the cycle number is 16 cycles regardless of the operation's data length.

xample.		
CLM DIVS SEM	MEM16	; A, B ← (B, A) / MEM16
DIVS.B	#IMM8	; Al, Bl $\leftarrow$ (Bl, Al) / IMM8
	20	
L.	0	

## DXBNE


### DXBNE



Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	DXBNE #imm, rr	0116, imm+C016, rr	3	7
Note : Any value from 0 to 31 can be set to imm.				

CLP	Х	
DXBNE SEP	#IMM, LABEL1	; Branches to LABEL1, if the result of $X - IMM(0 \text{ to } 31)$ is not 0.
DXBNE	* #IMM. LABEL2	Pranchas to LAREL2 if the result of Y IMM(0 to 21) is not 0
DADNE	#IIVIIVI, LABELZ	; Branches to LABEL2, if the result of $X_{L}$ – IMM(0 to 31) is not 0.

## DYBNE



Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	DYBNE #imm, rr	0116, imm+E016, rr	3	7
Note : Any value from	n 0 to 31 can be set to	imm.		

CLP	Х	
DYBNE	#IMM, LABEL1	; Branches to LABEL1, if the result of Y – IMM(0 to 31) is not 0.
SEP	Х	
DYBNE	#IMM, LABEL2	; Branches to LABEL2, if the result of $Y_L$ – IMM(0 to 31) is not 0.

# EOR

Function :	Logical exclusive OR
Operation data length:	16 bits or 8 bits
Operation :	$Acc \leftarrow Acc \forall M$ $\underline{When m = "0"}$ $Acc \qquad Acc \qquad M16$ $\qquad \qquad $
	$\frac{\text{When m} = \text{``1''}}{\text{Acc}} \xrightarrow{\text{Acc}} \frac{\text{M8}}{\text{``}}$
	In this case, the contents of Acc ^H do not change.
Description :	Performs the logical exclusive OR between the contents of Acc and the contents of a memory by each bit, and stores the result in Acc.
Status flags :	IPL     N     V     m     x     D     I     Z     C       -     N     -     -     -     -     Z     -
N :	Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."
Ζ:	Set to "1" when the operation result is "0." Otherwise, cleared to "0."

Addrossing mode	Syntax	Machine code	Putoc	Cycles
Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	EOR A, #imm	7616, imm (8116, 7616, imm)	2 (3)	1 (2)
DIR	EOR A, dd	7A16, dd (8116, 7A16, dd)	2 (3)	3 (4)
DIR, X	EOR A, dd, X	7B16, dd (8116, 7B16, dd)	2 (3)	4 (5)
(DIR)	EOR A, (dd)	1116, 7016, dd (9116, 7016, dd)	3 (3)	6 (6)
(DIR, X)	EOR A, (dd, X)	1116, 7116, dd (9116, 7116, dd)	3 (3)	7 (7)
(DIR), Y	EOR A, (dd), Y	1116, 7816, dd (9116, 7816, dd)	3 (3)	7 (7)
L(DIR)	EOR A, L(dd)	1116, 7216, dd (9116, 7216, dd)	3 (3)	8 (8)
L(DIR), Y	EOR A, L(dd), Y	1116, 7916, dd (9116, 7916, dd)	3 (3)	9 (9)
SR	EOR A, nn, S	1116, 7316, nn (9116, 7316, nn)	3 (3)	5 (5)
(SR), Y	EOR A, (nn, S), Y	1116, 7416, nn (9116, 7416, nn)	3 (3)	8 (8)
ABS	EOR A, mmll	7E16, II, mm (8116, 7E16, II, mm)	3 (4)	3 (4)
ABS, X	EOR A, mmll, X	7F16, II, mm (8116, 7F16, II, mm)	3 (4)	4 (5)
ABS, Y	EOR A, mmll, Y	1116, 7616, II, mm (9116, 7616, II, mm) 🛛 🛶	4 (4)	5 (5)
ABL	EOR A, hhmmll	1116, 7C16, II, mm, hh (9116, 7C16, II, mm, hh)	5 (5)	5 (5)
ABL, X	EOR A, hhmmll, X	1116, 7D16, II, mm, hh (9116, 7D16, II, mm, hh)	5 (5)	6 (6)

**Notes 1:** This table applies when using accumulator A. When using accumulator B, replace "A" with "B" in the syntax. In this case, the machine code, the number of bytes, and the number of cycles enclosed in parentheses are applied.

2: In the immediate addressing mode, the byte number increases by 1 when flag m = "0."

#### Description example:

CLM			0
EOR.W	A, #IMM16		$(A \leftarrow A \forall IMM16)$
EOR	B, MEM16	C	; B ← B $\forall$ MEM16
SEM			
EOR.B	A, #IMM8		; Al $\leftarrow$ Al $\forall$ IMM8
EOR	B, MEM8		; $B_{L} \leftarrow B_{L} \forall MEM8$
		<b>O</b>	

eor ani.



FORB

Function 1 Logical exclusive OR Operation data length: 8 bits  $\mathsf{Acc}_{\mathsf{L}} \gets \mathsf{Acc}_{\mathsf{L}} \ \forall \ \mathsf{IMM8}$ Operation : Acc Acc ∀ IMM8 4 Description Performs the logical exclusive OR in 8-bit length between the contents of AccL and the ÷ contents of a memory by each bit, and stores the result in AccL. • This instruction is unaffected by flag m. ● The contents of Acc_H do not change. Status flags : Ζ IPL Ν V m D I С Х Ν Ζ Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0." N :

Ζ: Set to "1" when the operation result is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	EORB A, #imm	3316, imm	2	1
IMM	EORB B, #imm	8116, 3316, imm	3	2

•		
EORB	A, <b>#IMM8</b>	; $A_L \leftarrow A_L \forall IMM8$
EORB	B, #IMM8	; $B_{L} \leftarrow B_{L} \forall IMM8$
	0	

## EORM

**Function** 2 Logical exclusive OR Operation data length: 16 bits or 8 bits Operation  $\mathsf{M} \gets \mathsf{M} ~\forall~ \mathsf{IMM}$ 2 <u>When m = "0"</u> M16 M16 ∀ IMM16 When m = "1"M8 M8 ∀ IMM8

**Description** : Performs the logical exclusive OR between the contents of a memory and the immediate value, and stores the result in the memory.

Status flags

:

IPL	N	V	m	x	D		Z	С
-	N	-	-		—	_		

- N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."
- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
DIR	EORM dd, #imm	5116, 7316, dd, imm	4	7
ABS	EORM mmll, #imm	5116, 7716, II, mm, imm	5	7

**Note :** When flag m = "0," the byte number increases by 1.

CLM EORM.W	MEM16, #IMM16	; MEM16 $\leftarrow$ MEM16 $\forall$ IMM16
SEM EORM.B	MEM8, #IMM8	; MEM8 $\leftarrow$ MEM8 $\forall$ IMM8

## EORMB

EORMB

Function	:	Logical exclusive OR
Operation data leng	th:	8 bits
Operation	:	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Description	:	<ul> <li>Performs the logical exclusive OR in 8-bit length between the contents of a memory and the immediate value, and stores the result in the memory.</li> <li>This instruction is unaffected by flag m.</li> </ul>
Status flags	:	IPL N V m x D I Z C — N — — — — Z —
Ν	:	Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."
Z	:	Set to "1" when the operation result is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
DIR	EORMB dd, #imm	5116, 7216, dd, imm	4	7
ABS	EORMB mmll, #imm	5116, 7616, II, mm, imm	5	7

### Description example:

EORMB

MEM8, #IMM8

; MEM8  $\leftarrow$  MEM8  $\forall$  IMM8

## EORMD

EORMD

Function	:	Logical exclus	ive OR															
Operation data leng	th:	32 bits																
Operation	:	M32 ← M32 ☆ M32		M32		∀ IM	M32											
Description	:	immediate val	ogical exclusive ue, and stores t tion is unaffecte	he re	sult i	n the				n th	e co	ontei	nts o	of a	men	ory	and	the
Status flags	:			IPL —	N N	V —	m —	x —		D -	1	Z Z	_	C —				
	:		en MSB of the o	•										to "(	D."			
	Add	dressing mode	Syntax			)	M	lach	ine	cod	е				Byt	es	Cycle	s
															- 		10 10	
	Addressing mode       Syntax       Machine code         DIR       EORMD dd, #imm       5116, F316, dd, immLL, immLH, immHL, immHL         ABS       EORMD mmll, #imm       5116, F716, II, mm, immLL, immLH, immHL, immHL         escription example:       EORMD       MEM32, #IMM32       ; MEM32 ← MEM32 ∀ IMM32																	

## EXTS

**EXTS** 

Function :	Extension sign
Operation data length:	16 bits
Operation :	$\begin{array}{c} Acc \leftarrow Acc_{L} \ (Extension sign) \\ \hline \\ \underline{Mhen bit 7 of Acc_{L} = "0"} \\ \underline{Acc_{H}} & \underline{Acc_{L}} & \underline{Acc_{H}} & \underline{Acc_{L}} \\ \hline \\ \underline{00_{16}} \ 0XXXXXX2} \ \leftarrow & \underline{?} \ 0XXXXX22 \\ \hline \\ \hline \\ \underline{00_{16}} \ 0XXXXXX2} \ \leftarrow & \underline{?} \ 0XXXXX22 \\ \hline \\ \hline \\ \underline{When bit 7 of Acc_{L} = "1"} \\ \underline{Acc_{H}} \ \underline{Acc_{L}} \ \underline{Acc}_{L} \ \underline{Acc_{L}} \ \underline{Acc}_{L} \ \underline{Acc}_{L} \ \underline{Acc}_{L} \ \underline{Acc}_{L}} \ \underline{Acc}_{L} \ \underline{Acc}_{L} \ \underline{Acc}_{L} \ \underline{Acc}_{L} \ \underline{Acc}_{L} \ \underline{Acc}} \ \underline{Acc} \ \underline{Acc} \ \underline{Acc} \ \underline{Acc}} \ \underline{Acc} \ \underline{Acc} \ \underline{Acc}} \ \underline{Acc} \ \underline{Acc}} \ \underline{Acc} \ $
Description :	This instruction is used to extend Acc⊾ to Acc with signs. ● This instruction is unaffected by flag m.
Status flags :	IPL     N     V     m     x     D     I     Z     C       -     N     -     -     -     -     Z     -
N : Z :	Set to "1" when bit 15 of the operation result is "1." Otherwise, cleared to "0." Set to "1" when the operation result is "0." Otherwise, cleared to "0."

	Addressing	mode	Syntax	Machine code	Bytes	Cycles
	A A			3516 8116, 3516	1 2	1 2
Description exa	mple: EXTS EXTS	A B		н ← 0016 or FF16 н ← 0016 or FF16		

## EXTSD

**EXTSD** 

Operation data length:32 bitsOperation: $E \leftarrow E_{\perp}$ (= A) (Extension sign) When bit 15 of A = "0" $E_{H} \leftarrow 0000_{16}$ $E_{H}$ (= B) $E_{\perp}$ (= A) $E_{H}$ (= B) $E_{\perp}$ (= A) b15 b0 b15 b0		
When bit 15 of A = "0" $E_H \leftarrow 0000_{16}$ $E_H (= B)$ $E_L (= A)$ $E_H (= B)$ $E_L (= A)$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{array}{l} \hline When \ bit \ 15 \ of \ A = "1" \\ E_H \leftarrow FFFF_{16} \\ E_H \ (= \ B)  E_L \ (= \ A) \\ b15  b0 \ b15  b0 \\ \hline FFFF_{16}  1X \cdots XX_2 \end{array} \leftarrow \begin{array}{c} E_H \ (= \ B) \\ ? \\ 1X \cdots XX_2 \end{array}$ $\  \  \  \  \  \  \  \  \  \  \  \  \  $		
<ul> <li>Description : This instruction is used to extend E_L (= A) to E with signs.</li> <li>● This instruction is unaffected by flag m.</li> </ul>		
Status flags         :         IPL         N         V         m         x         D         I         Z         C           -         N         -         -         -         -         Z         -		
<ul> <li>N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."</li> </ul>	0."	
Addressing mode Syntax Machine code B	ytes	
A EXTSD E 3116, B016	2	

### Description example:

EXTSD

Е

; E  $\leftarrow$  EL ; (B  $\leftarrow$  000016 or FFFF16, A  $\leftarrow$  A)

Cycles 5

# EXTZ

Function 2 Extension zero Operation data length: 16 bits Operation Acc  $\leftarrow$  AccL (Extension zero) ÷ Ассн Acc Acc Ассн 0016 ? * The contents of Acc_H change regardless of flag m. This instruction is used to extend Acc_L to Acc with 0s. Description 2 • This instruction is unaffected by flag m. ● The content of Acc_H always set to "00₁₆." Status flags 1 IPL D I Ζ С Ν V m X 0 Ζ

- N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."
- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

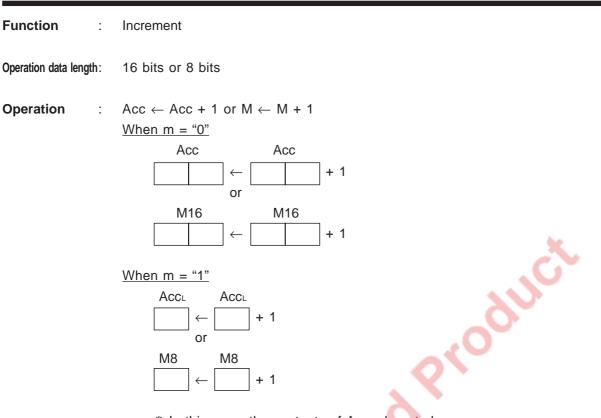
Addressing mode	Syntax	Machine code	Bytes	Cycles
A	EXTZ A	3416	1	1
A	EXTZ B	8116, 3416	2	2



## EXTZD

EXTZD

Function :	Extension zero
Operation data length:	32 bits
Operation :	$E \leftarrow E_{L}$ (= A) (Extension zero)
	$\begin{array}{c c} E_{H} (=B) & E_{L} (=A) \\ \hline b15 & b0 & b15 & b0 \\ \hline 0000_{16} \end{array} & \leftarrow \hline ? \end{array}$ $\begin{array}{c c} & & & \\ \hline & & \\ \end{array} \\ \hline $ \\ \hline $ \rule \\ \hline \end{array} \\ \hline \\ \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \\ \\ \hline \end{array} \\ \hline $ \\ \hline  \\ \hline \\ \hline \\ \\ \hline \end{array} \\ \hline \\ \\ \hline \end{array} \\ \\ \hline  \\ \hline  \\ \hline \\ \\ \hline  \\ \hline \\ \\ \\ \\ \\
Description :	<ul> <li>This instruction is used to extend E_L (= A) to E with 0s.</li> <li>This instruction is unaffected by flag m.</li> <li>The high-order word; E_H (= B) becomes "0000₁₆."</li> </ul>
Status flags :	IPL     N     V     m     x     D     I     Z     C       -     0     -     -     -     -     Z     -
N : Z :	Always "0" because MSB of the operation result is "0." Set to "1" when the operation result is "0." Otherwise, cleared to "0."


	JI			
Addressing mode	Syntax	Machine code	Bytes	Cycles
А	EXTZD E	3116, A016	2	3
ample: EXTZD E	; E	← El (B ← 000016, A ← A)		

Description example:

EXTZD

# INC

INC



* In this case, the contents of Acc_H do not change.

Description : Adds 1 to the contents of Acc or a memory.

### Status flags

1

IPL	N	V	m	х	D	Ι	Z	С
_	Ν				_	_	Ζ	_

N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."

Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
A	INC A	A316	1	1
A	INC B	8116, A316	2	2
DIR	INC dd	8216, dd	2	6
DIR, X	INC dd, X	4116, 8B16, dd	3	8
ABS	INC mmll	8716, II, mm	3	6
ABS, X	INC mmll, X	4116, 8F16, II, mm	4	8

CLM		
INC	A	; A ← A + 1
INC	MEM16	; MEM16 $\leftarrow$ MEM16 + 1
SEM		
INC	В	; B∟ ← B∟ + 1
INC	MEM8	; MEM8 $\leftarrow$ MEM8 + 1

## INX

Function	:	Increment
Operation data length	1:	16 bits or 8 bits
Operation	:	$X \leftarrow X + 1$ $\underline{When \ x = "0"}$ $X \qquad X$ $\Box \qquad \leftarrow \qquad \Box \qquad + 1$
		$ \begin{array}{c} \underline{When \ x = ``1"} \\ \hline X_L & X_L \\ \hline & \leftarrow \boxed + 1 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
Description	:	Adds 1 to the contents of X.
Status flags	:	IPL     N     V     m     x     D     I     Z     C       -     N     -     -     -     -     Z     -
N Z		Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0." Set to "1" when the operation result is "0." Otherwise, cleared to "0."

	Addressing mode	Syntax	Machine code	Bytes	Cycles
	IMP	INX	C316	1	1
IN	LP x IX EP x		; X ← X + 1 ; X∟ ← X∟ + 1		

# INY

Function	:	Increment
Operation data leng	jth:	16 bits or 8 bits
Operation	:	$Y \leftarrow Y + 1$ $\underline{When \ x = "0"}$ $Y \qquad Y$ $\downarrow \qquad \qquad$
		$\begin{array}{c} \underline{When \ x = ``1''} \\ & \begin{array}{c} Y_{L} & Y_{L} \\ \hline & \leftarrow \end{array} + 1 \\ \\ & \ensuremath{\ast} \ \text{In this case, the contents of } Y_{H} \ \text{do not change.} \end{array}$
Description	:	Adds 1 to the contents of Y. This instruction is unaffected by flag m.
Status flags	:	IPL     N     V     m     x     D     I     Z     C       -     N     -     -     -     -     Z     -
	:	Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0." Set to "1" when the operation result is "0." Otherwise, cleared to "0."

[	Addressing mode	Syntax	Machine code	Bytes	Cycles
[	IMP	INY	D316	1	1
	2				
on example					
CL	P x				

Descriptio CLP

INY SEP INY

х

;  $Y_{L} \leftarrow Y_{L} + 1$ 

; Y ← Y + 1

# JMP/JMPL

JuMP

Function Jump always ŝ Operation data length: Operation JMP instruction ÷ PC ← Specified address PC ← mmll JMPL instruction PG, PC ← Specified address  $PC \leftarrow mmll$  $\mathsf{PG} \gets \mathsf{hh}$ Description Jumps to the specified address. Use a 16-bit (JMP) or 24-bit (JMPL) address to specify the ÷ destination jump address. • If the last byte of the JMP instruction is placed at the highest address (XXFFFF₁₆) or the instruction is located across bank boundaries, the contents of PG are incremented by 1, causing control to jump to the specified address in the next bank. • When using indirect addressing, the memory to be referenced is in the same program bank (the bank indicated by PG). **Status flags** ŝ IPL N V m D Т Ζ С Х Addressing mode Syntax Machine code **Bytes** Cycles

	ABS	JMP mmll	9C16, II, mm	3	4				
	ABL	JMPL hhmmll	AC16, II, mm, hh	4	5				
	(ABS)	JMP (mmll)	3116, 5C16, II, mm	4	7				
	L(ABS)	JMPL L(mmll)	3116, 5D16, II, mm	4	9				
	(ABS, X)	JMP (mmll, X)	BC16, II, mm	3	7				
Description example:									
			an to the eddress ADDD10						

JMP JMPL ADDR16 ADDR24 ; Jump to the address ADDR16 ; Jump to the address ADDR24

# **JSR/JSRL**

Jump to SubRoutine

Function Subroutine call t Operation data length: Operation JSR instruction Stack  $\leftarrow$  PC Stack PC ← Specified address (S) just after instruction execution PCL  $PC \leftarrow PC + 3$ (S) just before instruction execution РСн  $M(S, S - 1) \leftarrow PC$  $S \leftarrow S - 2$ PC ← mmll JSRL instruction Stack Stack  $\leftarrow$  PG, PC (S) just after instruction execution PG, PC ← Specified address PCL РСн  $PC \leftarrow PC + 4$ (S) just before instruction execution PG M(S to S - 2)  $\leftarrow$  PG, PC  $\mathsf{S} \leftarrow \mathsf{S} - \mathsf{3}$  $\mathsf{PC} \gets \mathsf{mmll}$  $PG \leftarrow hh$ 

**Description** : This instruction stores the contents of PG and PC to stack, and jumps to the specified address. Use a 16-bit (JSR) or 24-bit (JSRL) address to specify the destination jump address.

- If the last byte of the JSR instruction is placed at the highest address (XXFFFF₁₆) or the instruction is located across bank boundaries, the contents of PG are incremented by 1, causing control to jump to the specified address in the next bank.
- When using indirect addressing, the memory to be referenced is in the same program bank (the bank indicated by PG).

Status flags

	PL	N	V	m	Х	D	I	Ζ	С
-	_	—							—

Addressing mode	Syntax	Machine code	Bytes	Cycles
ABS	JSR mmll	9D16, II, mm	3	6
ABL	JSRL hhmmll	AD16, II, mm, hh	4	7
(ABS, X)	JSR (mmll, X)	BD16, II, mm	3	8

### Description example:

JSR JSRL

ADDR16 ADDR24 ; Jump to the address ADDR16 ; Jump to the address ADDR24

## LDA

Function	:	Load
Operation data lengt	h:	16 bits or 8 bits
Operation		Acc $\leftarrow$ M <u>When m = "0"</u> Acc M16 <u>When m = "1"</u> <u>Acc</u> M8 $\bigcirc$ $\leftarrow$ $\bigcirc$ * In this case, the contents of AccH do not change.
Description	:	Loads the contents of a memory into Acc.
Status flags	:	IPL     N     V     m     x     D     I     Z     C       -     N     -     -     -     -     Z     -
N	:	Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."
Z		Set to "1" when the operation result is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	LDA A, #imm	1616, imm (8116, 1616, imm)	2 (3)	1 (2)
DIR	LDA A, dd	1A16, dd (8116, 1A16, dd)	2 (3)	3 (4)
DIR, X	LDA A, dd, X	1B16, dd (8116, 1B16, dd)	2 (3)	4 (5)
(DIR)	LDA A, (dd)	1116, 1016, dd (9116, 1016, dd)	3 (3)	6 (6)
(DIR, X)	LDA A, (dd, X)	1116, 1116, dd (9116, 1116, dd)	3 (3)	7 (7)
(DIR), Y	LDA A, (dd), Y	1816, dd (8116, 1816, dd)	2 (3)	6 (7)
L(DIR)	LDA A, L(dd)	1116, 1216, dd (9116, 1216, dd)	3 (3)	8 (8)
L(DIR), Y	LDA A, L(dd), Y	1916, dd (8116, 1916, dd)	2 (3)	8 (9)
SR	LDA A, nn, S	1116, 1316, nn (9116, 1316, nn)	3 (3)	5 (5)
(SR), Y	LDA A, (nn, S), Y	1116, 1416, nn (9116, 1416, nn)	3 (3)	8 (8)
ABS	LDA A, mmll	1E16, II, mm (8116, 1E16, II, mm)	3 (4)	3 (4)
ABS, X	LDA A, mmll, X	1F16, II, mm (8116, 1F16, II, mm)	3 (4)	4 (5)
ABS, Y	LDA A, mmll, Y	1116, 1616, II, mm (9116, 1616, II, mm)👥	4 (4)	5 (5)
ABL	LDA A, hhmmll	1C16, II, mm, hh (8116, 1C16, II, mm, hh)	4 (5)	4 (5)
ABL, X	LDA A, hhmmll, X	1D16, II, mm, hh (8116, 1D16, II, mm, hh)	4 (5)	5 (6)

**Notes 1:** This table applies when using accumulator A. When using accumulator B, replace "A" with "B" in the syntax. In this case, the machine code, the number of bytes, and the number of cycles enclosed in parentheses are applied.

2: In the immediate addressing mode, the byte number increases by 1 when flag m = "0."

#### Description example:

CLM			0.
LDA.W	A, #IMM16	· · · · ·	$A \leftarrow IMM16$
LDA	B, MEM16		$ > ; B \leftarrow MEM16 $
SEM			
LDA.B	A, #IMM8		; $A \downarrow \leftarrow IMM8$
LDA	B, MEM8		; $B_{L} \leftarrow MEM8$
		0	

eol ani

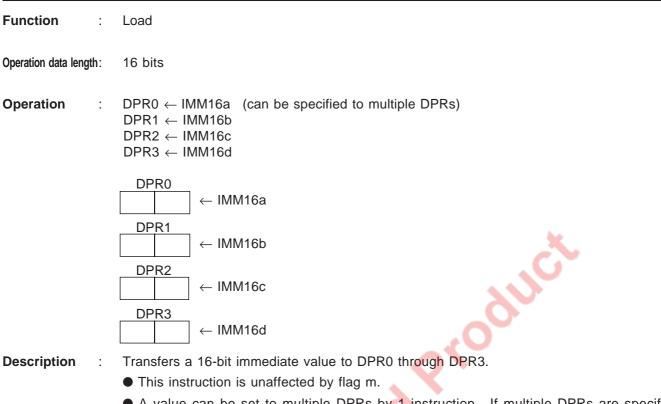
## LDAB

Function	:	Load
Operation data lengt	h:	16 bits
Operation	:	$Acc \leftarrow M8  (Extension zero)$ $Acc \qquad M8$ $00_{16} \qquad \leftarrow \qquad \square$
Description	:	<ul> <li>Transfers 8-bit data from memory to Acc after zero-extending it to 16 bits.</li> <li>This instruction is unaffected by flag m.</li> <li>The contents of Acc_H are always set to "00₁₆."</li> </ul>
Status flags	:	IPL     N     V     m     x     D     I     Z     C       -     0     -     -     -     -     Z     -
N Z	:	Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0." Set to "1" when the operation result is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	LDAB A, #imm	2816, imm (8116, 2816, imm)	2 (3)	1 (2)
DIR	LDAB A, dd 🍡	0A16, dd (8116, 0A16, dd)	2 (3)	3 (4)
DIR, X	LDAB A, dd, X	0B16, dd (8116, 0B16, dd)	2 (3)	4 (5)
(DIR)	LDAB A, (dd)	1116, 0016, dd (9116, 0016, dd)	3 (3)	6 (6)
(DIR, X)	LDAB A, (dd, X)	1116, 0116, dd (9116, 0116, dd)	3 (3)	7 (7)
(DIR), Y	LDAB A, (dd), Y	0816, dd (8116, 0816, dd)	2 (3)	6 (7)
L(DIR)	LDAB A, L(dd)	1116, 0216, dd (9116, 0216, dd)	3 (3)	8 (8)
L(DIR), Y	LDAB A, L(dd), Y	0916, dd (8116, 0916, dd)	2 (3)	8 (9)
SR	LDAB A, nn, S	1116, 0316, nn (9116, 0316, nn)	3 (3)	5 (5)
(SR), Y	LDAB A, (nn, S), Y	1116, 0416, nn (9116, 0416, nn)	3 (3)	8 (8)
ABS 💊	LDAB A, mmll	0E16, II, mm (8116, 0E16, II, mm)	3 (4)	3 (4)
ABS, X	LDAB A, mmll, X	0F16, II, mm (8116, 0F16, II, mm)	3 (4)	4 (5)
ABS, Y	LDAB A, mmll, Y	1116, 0616, II, mm (9116, 0616, II, mm)	4 (4)	5 (5)
ABL	LDAB A, hhmmll	0C16, II, mm, hh (8116, 0C16, II, mm, hh)	4 (5)	4 (5)
ABL, X	LDAB A, hhmmll, X	0D16, II, mm, hh (8116, 0D16, II, mm, hh)	4 (5)	5 (6)

**Note :** This table applies when using accumulator A. When using accumulator B, replace "A" with "B" in the syntax. In this case, the machine code, the number of bytes, and the number of cycles enclosed in parentheses are applied.

LDAB	A, #IMM8	; A $\leftarrow$ IMM8 (Ah $\leftarrow$ 0016, AL $\leftarrow$ IMM8)
LDAB	B, MEM8	; $B \leftarrow MEM8$ (BH $\leftarrow$ 0016, BL $\leftarrow$ MEM8)


## LDAD

Function :	Load				
Operation data length:	32 bits				
Operation :	E ← M32 E	M32 ]←			
Description :		data of a memory n is unaffected by			
Status flags :		IPL —	N V m x D I Z C N — — — — — Z —		
N :	Set to "1" when	MSB of the operat	ion result is "1." Otherwise, cleared to "0	)."	
Ζ :		-	It is "0." Otherwise, cleared to "0."		
	Addressing mode	Syntax	Machine code	Bytes	Cycles
		LDAD E, #imm	2C16, immll, immlh, immhl, immhh	5	3

	$\Box DAD E, #IIIIII$	2016, IIIIIIILL, IIIIIILH, IIIIIIHL, IIIIIIHH	5	5
DIR	LDAD E, dd	8A16, dd	2	6
DIR, X	LDAD E, dd, X	8B16, dd	2	7
(DIR)	LDAD E, (dd) 🛛 🔏	1116, 8016, dd	3	9
(DIR, X)	LDAD E, (dd, X)	1116, 8116, dd	3	10
(DIR), Y	LDAD E, (dd), Y	8816, dd	2	9
L(DIR)	LDAD E, L(dd)	1116, 8216, dd	3	11
L(DIR), Y	LDAD E, L(dd), Y	8916, dd	2	11
SR	LDAD E, nn, S	1116, 8316, nn	3	8
(SR), Y	LDAD E, (nn, S), Y	1116, 8416, nn	3	11
ABS 👩	LDAD E, mmll	8E16, II, mm	3	6
ABS, X	LDAD E, mmll, X	8F16, II, mm	3	7
ABS, Y 🔺 🔒	LDAD E, mmll, Y	1116, 8616, II, mm	4	8
ABL	LDAD E, hhmmll	8C16, II, mm, hh	4	7
ABL, X	LDAD E, hhmmll, X	8D16, II, mm, hh	4	8
	·			

LDAD	E, #IMM32	; E ← IMM32
		; (B $\leftarrow$ IMM32H, A $\leftarrow$ IMM32L)
LDAD	E, MEM32	; $E \leftarrow MEM32$
		; (B $\leftarrow$ IMM32H, A $\leftarrow$ IMM32L)

## LDD n



• A value can be set to multiple DPRs by 1 instruction. If multiple DPRs are specified, transfers are performed in order of DPR0, DPR1, DPR2, and DPR3.

### Status flags :

-								
IPL	N	V	m	x	D	I	Z	С
J.	_	_	_	—	_		—	_

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	LDD n, #imm	B816, ?016, imm∟, immн	4	13
	LDD (n1,, ni), #imm1,, #immi	В816, ?016, imm∟1, immн1 ,, imm⊥i, immнi		2 X i+11

Notes 1: Any value from 0 to 3 can be set to n.

2: The second line of the syntax format sets values to multiple DPRs by 1 instruction.

**3:** The inside of parentheses (n1, ..., ni) specifies 0 to 3 (numbers representing DPRn).

4: i: Indicates DPRn specified (1 to 4).

**5**: ?: The bit corresponding to a specified DPRn is set to "1." The diagram below shows the relationship between bits and DPRn.

b7							b0
DPR3	DPR2	DPR1	DPR0	0	0	0	0

LDD	0, #IMM16	; DPR0 $\leftarrow$ IMM16
LDD	(0, 3), #IMM16a, #IMM16b	; DPR0 $\leftarrow$ IMM16a
		; DPR3 $\leftarrow$ IMM16b

# LDT

Function	: Load					
Operation data length: 8 bits						
Operation	: $DT \leftarrow IMM8$					
	DT — IMM8					
Description		ediate value to DT. on is unaffected by				
Status flags	:	IPL —	N V m x D I Z C — — — — — — — —			
			00-			
	Addressing mode	Syntax	Machine code	Bytes	Cycles	
	IMM	LDT #imm	3116, 4A16, imm	3	4	

# LDX

Function	:	Load
Operation data lengt	h:	16 bits or 8 bits
Operation	:	$\begin{array}{c} X \leftarrow M \\ \underline{When \ x = "0"} \\ \hline X & M16 \\ \hline \\ \hline \\ \underline{When \ x = "1"} \\ \underline{X_{L}} & \underline{M8} \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \end{array} \\ \hline \\ \hline \\ \\ \\ \hline \\ \\ \hline \\ \\ \\ \\ \hline \\ \\ \\ \\ \hline \\ \\ \\ \hline \\ \\ \\ \\ \hline \\ \\ \\ \\ \hline \\ \\ \\ \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
Description	:	Loads the contents of a memory to X.
Status flags	:	IPL     N     V     m     x     D     I     Z     C       -     N     -     -     -     -     Z     -

- N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."
- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	LDX #imm	C616, imm	2	1
DIR	LDX dd	0216, dd	2	3
DIR, Y	LDX dd, Y	4116, 0516, dd	3	5
ABS	LDX mmll	0716, II, mm	3	3
ABS, Y	LDX mmll, Y	4116, 0616, II, mm	4	5

**Note :** In the immediate addressing mode, the byte number inclease by 1 when flag x = "0."

CLM		
LDX.W	#IMM16	; $X \leftarrow IMM16$
LDX	MEM16	; $X \leftarrow MEM16$
SEM		
LDX.B	#IMM8	; $X_L \leftarrow IMM8$
LDX	MEM8	; $X_{L} \leftarrow MEM8$

## **LDXB**

LDXB

Function	: Load					
Operation data length	: 16 bits					
Operation	: $X \leftarrow IMM8$ (Ex	tension zero)				
Description	to X.			mmediate value with 0s, a	nd loads	the data
	The contents	of $X_{\mbox{\tiny H}}$ are always	set to "0016."	- C		
Status flags	:	IPL —	N V m 0 — —	x D I Z C — — — Z —		
Ν	: Always "0" beca	ause MSB of the o	peration result	: is "0."		
Z	: Set to "1" when	the operation rest	ult is "0." Othe	rwise, cleared to "0."		
	Addressing mode	Syntax	0	Machine code	Bytes	Cycles
	IMM	LDXB #imm	2716, imm		2	1
Description example:						

LDXB

#IMM8

-Or an

;  $X \leftarrow IMM8$  (XH  $\leftarrow$  0016, XL  $\leftarrow$  IMM8)

# LDY

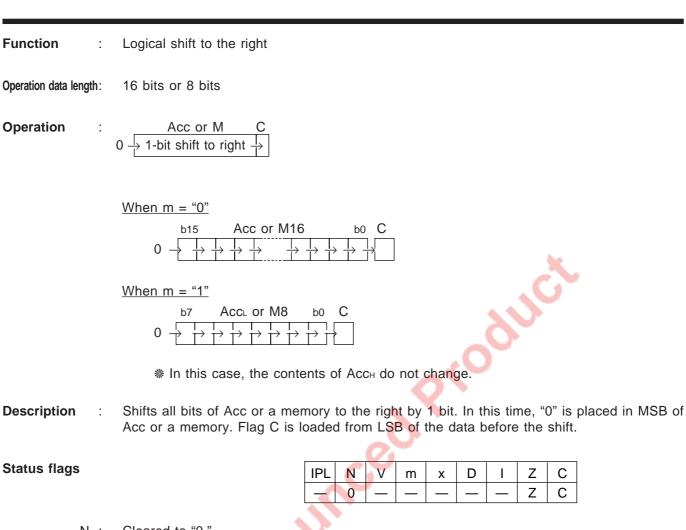
Function :	Load
Operation data length:	16 bits or 8 bits
Operation :	$\begin{array}{c} Y \leftarrow M \\ \hline \underline{When \ x = "0"} \\ Y & M16 \\ \hline \underline{\ \ } & \leftarrow \end{array}$
Description :	Loads the contents of a memory to Y.
Status flags	IPL     N     V     m     x     D     I     Z     C       -     N     -     -     -     -     Z     -

- N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."
- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	LDY #imm	D616, imm	2	1
DIR	LDY dd	1216, dd	2	3
DIR, X 🧹	LDY dd, X	4116, 1B16, dd	3	5
ABS	LDY mmll	1716, II, mm	3	3
ABS, X	LDY mmll, X	4116, 1F16, II, mm	4	5

**Note :** In the immediate addressing mode, the byte number inclease by 1 when flag x = "0."

CLM		
LDY.W	#IMM16	; $Y \leftarrow IMM16$
LDY	MEM16	; $Y \leftarrow MEM16$
SEM		
LDY.B	#IMM8	; $Y_{L} \leftarrow IMM8$
LDY	MEM8	; $Y_{L} \leftarrow MEM8$


# LDYB

Function	:	Load					
Operation data length	n:	16 bits					
Operation	:	$Y \leftarrow IMM8$ (Ext	tension zero)				
		Y 0016 ← IM	1M8				
Description	:	Extends the 8-bit to Y.	t immediate value	to the 16-bit i	mmediate value with 0s, a	nd loads	the data
		• This instruction	on is unaffected by	/ flag x.			
		• The contents	of Y _H are always	set to "0016."			
Status flags	:		IPL	N V m	X D I Z C		
			_	0 — —	— <u> </u>		
					JO L		
N	-	-	use MSB of the o	·			
Z	Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."						
	Ac	Idressing mode	Syntax	0.	Machine code	Bytes	Cycles
	IMI	N	LDYB #imm	3716, imm		2	1
		·					

Description example:

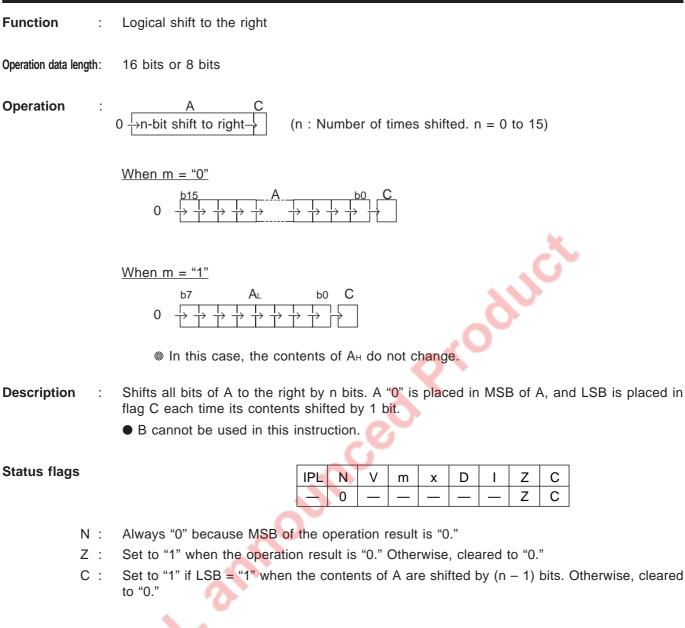
LDYB #IMM8

; Y  $\leftarrow$  IMM8 (Yh  $\leftarrow$  0016, Yl  $\leftarrow$  IMM8)



Cleared to "0." N :

0


- Ζ: Set to "1" when the operation result is "0." Otherwise, cleared to "0."
- Set to "1" when LSB before the operation is "1." Otherwise, cleared to "0." C :

Addressing mode	Syntax	Machine code	Bytes	Cycles
A	LSR A	4316	1	1
A	LSR B	8116, 4316	2	2
DIR	LSR dd	2116, 2A16, dd	3	7
DIR, X	LSR dd, X	2116, 2B16, dd	3	8
ABS	LSR mmll	2116, 2E16, II, mm	4	7
ABS, X	LSR mmll, X	2116, 2F16, II, mm	4	8

CLM		
LSR	А	; $A \leftarrow A$ is logically shifted to the right by 1 bit.
LSR	MEM16	; MEM16 $\leftarrow$ MEM16 is logically shifted to the right by 1 bit.
SEM		
LSR	A	; $A_{L} \leftarrow A_{L}$ is logically shifted to the right by 1 bit.
LSR	MEM8	; MEM8 $\leftarrow$ MEM8 is logically shifted to the right by 1 bit.

## LSR #n

LSR #n



Addressing	mode S	Syntax	Machine code	Bytes	Cycles
A	LSR A,	#imm	C1 ₁₆ , imm	2	imm+6

Note : Any value (number of times shifted) from 0 to 15 can be set to imm.

CLM LSR	A, #15	; A $\leftarrow$ A is logically shifted to the right by 15 bits.
SEM		
LSR	A, #7	; $A_{\text{\tiny L}} \leftarrow A_{\text{\tiny L}}$ is logically shifted to the right by 7 bits.

## LSRD #n

LSRD #n

Function: Logical shift to the rightOperation data length:32 bitsOperation: E C<br/>0 - n-bit shift to right (n : Number of times shifted. n = 0 to 31)0b31E<br/>b10b31E<br/>b10b31E<br/>b10b31E<br/>b1

**Description** : Shifts all bits of E in 32-bit length to the right by n bits. A "0" is placed in MSB of E, and LSB is placed in flag C each time its contents are shifted by 1 bit.

• This instruction is unaffected by flag m.

### **Status flags**

IPL	Ν	V	m	x	D	Z	С
—	0	—		—	A	Z	С

- N : Always "0" because MSB of the operation result is "0."
- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."
- C : Set to "1" if LSB = "1" when the contents of E are shifted by (n 1) bits. Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
А	LSRD E, #imm	D116, imm	2	imm+8

Note : Any value (number of times shifted) from 0 to 31 can be set to imm.

### Description example:

LSRD 🔨

E, <u>#</u>16

;  $\mathsf{E} \leftarrow \mathsf{E}$  is logically shifted to the right by 16 bits.

## MOVM

Function	:	Move memory to	memory					
Operation data ler	ngth :	16 bits or 8 bits						
Operation	:	<u>When m = "0"</u> M16(dest)	M16(source) ← 3(source)		č			
Description Status flags	:		ntents of the source m includes the function of IPL N — —			-	7700 Fam	ily.
	A	ddressing mode	Syntax	Machine co	de	Bytes	Cycles	

Addressing mode		Syntax Machine code		Bytes	Cycles
dest	source	Syntax	Machine code	Dytes	Cycles
DIR	IMM	MOVM dd, #imm	8616, imm, dd	3	5
DIR	ABS	MOVM dd, mmll	5C16, II, mm, dd	4	6
DIR	ABS, X	MOVM dd, mmll, X	5D16, II, mm, dd	4	7
ABS	IMM	MOVM mmll, #imm	9616, imm, II, mm	4	4
ABS	DIR	MOVM mmll, dd	7816, dd, ll, mm	4	5
ABS	DIR, X	MOVM mmll, dd, X	7916, dd, ll, mm	4	6
ABS, X	IMM	MOVM mmll, X, #imm	3116, 5716, imm, II, mm	5	6
ABS	ABS 🌅	MOVM mmll ₁ , mmll ₂	7C16, II2, mm2, II1, mm1	5	5
DIR, X	IMM 🦳	MOVM dd, X, #imm	3116, 4716, imm, dd	4	7
DIR	DIR	MOVM dd1, dd2	5816, dd2, dd1	3	6

Note : In the immediate addressing mode, the byte number increases by 1 when flag m = "0."

### Description example:

1

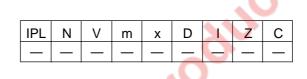
CLM MOVM.W MOVM SEM	MEM16, #IMM16 MEM16(dest), MEM16(source)	; MEM16 ← IMM16 ; MEM16(dest) ← MEM16(source)
MOVM.B	MEM8, #IMM8	; MEM8 ← IMM8
MOVM	MEM8(dest), MEM8(source)	; MEM8(dest) ← MEM8(source)

## MOVMB

 Function
 :
 Move memory to memory

 Operation data length:
 8 bits

 Operation
 :
 M8 ← M8


 M8(dest)
 M8(source)

 ←
 ______

### Description

- : Transfers the contents of the source memory to the destination memory in 8-bit length.
  - The contents of the source memory do not change.
  - This instruction is unaffected by flag m.

### Status flags :



Addressing mode		Syntax	Machine code	Bytes	Cycles
dest	source	- Oyntax		Dytes	Cycles
DIR	IMM	MOVMB dd, #imm	A916, imm, dd	3	5
DIR	ABS	MOVMB dd, mmll	4C16, II, mm, dd	4	6
DIR	ABS, X	MOVMB dd, mmll, X 🛛 🌔	4D16, II, mm, dd	4	7
ABS	IMM	MOVMB mmll, #imm	B916, imm, II, mm	4	4
ABS	DIR	MOVMB mmll, dd	6816, dd, ll, mm	4	5
ABS	DIR, X	MOVMB mmll, dd, X	6916, dd, ll, mm	4	6
ABS, X	IMM	MOVMB mmll, X, #imm	3116, 3B16, imm, II, mm	5	6
ABS	ABS	MOVMB mmll ₁ , mmll ₂	6C16, II2, mm2, II1, mm1	5	5
DIR, X	IMM	MOVMB dd, X, #imm	3116, 3A16, imm, dd	4	7
DIR	DIR	MOVMB dd1, dd2	4816, dd2, dd1	3	6

### Description example:

MOVMB MEM8, #IMM8 MOVMB MEM8(dest), MEM8(source) ; MEM8 ← IMM8 ; MEM8(dest) ← MEM8(source)

## **MOVR**

Function :	Move memory to memory
Operation data length:	16 bits or 8 bits
Operation :	$ \begin{array}{c} M(dest\ 1) \leftarrow M(source\ 1) \ (n: Number of times repeated transferring.\ n = 0 \ to\ 15) \\ M(dest\ 2) \leftarrow M(source\ 2) \\ \vdots & \vdots \\ M(dest\ n) \leftarrow M(source\ n) \\ \hline \\ \hline \\ \underline{Mhen\ m} = \underbrace{"0"}_{i} \\ \hline \\ M16(dest\ 1) \ M16(source\ 1) \\ \hline \\ \hline \\ \vdots & \vdots \\ M16(dest\ n) \ M16(source\ n) \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \end{array} \right) \\ \hline $
Description :	When m = "1"         M8(dest 1)       M8(source 1)         ↓       ↓         i       ↓         M8(dest n)       M8(source n)         ↓       ↓         M8(dest n)       M8(source n)         ↓       ↓         ↓       ↓         Performs multiple memory-to-memory transfers by 1 instruction. Transfers are performed according to the addresses specified in the third and following bytes of the instruction. Up to 15 transfers can be performed.         Memory contents on the source side do not change.         No transfer is performed if a "0" is specified for the transfer count.         This instruction can specify the different addressing modes for the source and destination, respectively; these addressing modes, however, cannot be changed until the multiple transfer specified by 1 instruction is completed.
Status flags :	IPL         N         V         m         x         D         I         Z         C           -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -

7900 Series Software Manual

Addressing mode					
dest	source	Syntax	Machine code	Bytes	Cycles
DIR	IMM	MOVR #n, dd1, #imm1 ,, ddn, #immn	6116, n+1016, imm1, dd1,, immn, ddn	2Xn+2 (Notes 2)	5Xn+3
DIR	DIR	MOVR #n, ddd1, dds1 ,, dddn, ddsn	6116, n+5016, dds1, ddd1,, ddsn, dddn	2Xn+2	6Xn+3
DIR	ABS	MOVR #n, dd1, mmll1 ,, ddn, mmlln	6116, n+9016, ll1, mm1, dd1 ,, lln, mmn, ddn	3Xn+2	6Xn+3
DIR	ABS, X	MOVR #n, dd1, mmll1, X ,, ddn, mmlln, X	7116, n+1016, ll1, mm1, dd1 ,, lln, mmn, ddn	3Xn+2	6Xn+3
ABS	IMM	MOVR #n, mmll1, #imm1 ,, mmlln, #immn	6116, n+3016, imm1, ll1, mm1 ,, immn, lln, mmn	3Xn+2 (Notes 2)	4 <b>X</b> n+3
ABS	DIR	MOVR #n, mmll1, dd1 ,, mmlln, ddn	6116, n+7016, dd1, ll1, mm1 ,, ddn, lln, mmn	3Xn+2	5 <b>X</b> n+3
ABS	DIR, X	MOVR #n, mmll1, dd1, X ,, mmlln, ddn, X	7116, n+7016, dd1, ll1, mm1 ,, ddn, lln, mmn	3Xn+2	6Xn+3
ABS	ABS	MOVR #n, mmlld1, mmlls1 ,, mmlldn, mmllsn	6116, n+B016, lls1, mms1, lld1, mmd1 ,, llsn, mmsn, lldn, mmdn	4Xn+2	5 <b>X</b> n+3

#### Description example:

	ny value from 0 to 15 can be set to n. Icremented by n bytes when flag m = "0."	0
		.0
ample:		
CLM MOVR.W	2, MEM16(dest1), #IMM16a, MEM16(dest2), #IMM1	16b
-		; MEM16(dest1) ← IMM16a ; MEM16(dest2) ← IMM16b
MOVR	2, MEM16(dest1), MEM16(source1), MEM16(dest2)	<ul> <li>MEM16(source2)</li> <li>; MEM16(dest1) ← MEM16(source1)</li> <li>; MEM16(dest2) ← MEM16(source2)</li> </ul>
SEM		
MOVR.B	2, MEM8(dest1), #IMM8a, MEM8(dest2), #IMM8b	; MEM8(dest1) ← IMM8a ; MEM8(dest2) ← IMM8b
MOVR	2, MEM8(dest1), MEM8(source1), MEM8(dest2), M	EM8(source2)
		; MEM8(dest1) ← MEM8(source1) ; MEM8(dest2) ← MEM8(source2)
	0	
	$\sim$	

## **MOVRB**

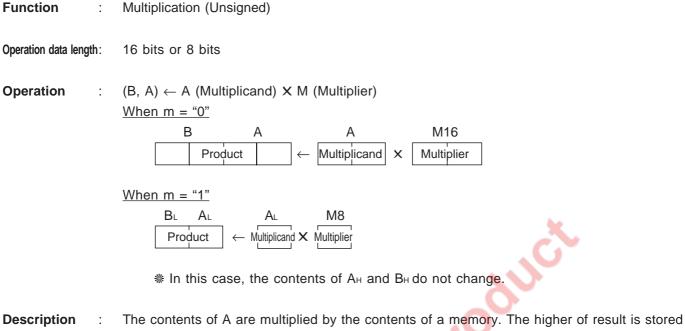
Function :	Move memory to memory
Operation data length:	8 bits
Operation :	$\begin{array}{l} M8(dest\ 1) \leftarrow M8(source\ 1)  (n:Number of times repeated transferring.\ n = 0 \ to\ 15) \\ M8(dest\ 2) \leftarrow M8(source\ 2) \\ \vdots & \vdots \\ M8(dest\ n) \leftarrow M8(source\ n) \\ M8(dest\ 1) M8(source\ 1) \\ \hline & \vdots \\ \vdots & \vdots \\ M8(dest\ n) M8(source\ n) \end{array}$
Description :	← ☐ Performs multiple memory-to-memory transfers by 1 instruction. Transfers are performed according to the addresses specified in the 3rd and following bytes of the instruction, in byte length. Up to 15 transfers can be performed.
	<ul> <li>Memory contents on the source side do not change.</li> <li>No transfer is performed if a "0" is specified for the transfer count.</li> <li>This instruction can specify the different addressing modes for the source and destination, respectively; these addressing modes, however, cannot be changed until the multiple transfer specified by 1 instruction is completed.</li> <li>This instruction is unaffected by flag m.</li> </ul>

Status flag	<b>s</b> :			IPL	N	V	m	x	D	Ι	Z	С	
			~	_			_		_	_	_	—	
	Addressing mode dest source		Syntax				Ма	chine	code	9		Byte	es

Address	ing mode	Syntax	Machine code	Bytes	Cycles
dest	source	Syntax	Machine code	Dytes	Cycles
DIR	IMM	MOVRB #n, dd1, #imm1 ,, ddn, #immn	6116, n+0016, imm1, dd1,, immn, ddn	2Xn+2	5Xn+3
DIR	DIR	MOVRB #n, ddd1, dds1 ,, dddn, ddsn	6116, n+4016, dds1, ddd1,, ddsn, dddn	2Xn+2	6Xn+3
DIR	ABS	MOVRB #n, dd1, mmll1 ,, ddn, mmlln	6116, n+8016, ll1, mm1, dd1 ,, lln, mmn, ddn	3Xn+2	6Xn+3
DIR	ABS, X	MOVRB #n, dd1, mmll1, X ,, ddn, mmlln, X	7116, n+0016, ll1, mm1, dd13Xn+2 ,, lln, mmn, ddn	6Xn+3	
ABS	IMM	MOVRB #n, mmll1, #imm1 ,, mmlln, #immn	6116, n+2016, imm1, ll1, mm13×n+2 ,, immn, lln, mmn	4Xn+3	
ABS	DIR	MOVRB #n, mmll1, dd1 ,, mmlln, ddn	6116, n+6016, dd1, ll1, mm1 ,, ddn, lln, mmn	3Xn+2	5Xn+3
ABS	DIR, X	MOVRB #n, mmll1, dd1, X ,, mmlln, ddn, X	7116, n+6016, dd1, ll1, mm13Xn+2 ,, ddn, lln, mmn	6Xn+3	
ABS	ABS	MOVRB #n, mmlld1, mmlls1 ,, mmlldn, mmllsn	6116, n+A016, lls1, mms1, lld1, mmd1 ,, llsn, mmsn, lldn, mmdn	4Xn+2	5Xn+3

Note : Any value from 0 to 15 can be set to n.

### Description example:


MOVRB	2, MEM8(dest1), #IMM8a, MEM8(dest2), #IMM8b    ; MEM8(dest1) ← IMM8a
	; MEM8(dest2) ← IMM8b
MOVRB	2, MEM8(dest1), MEM8(source1), MEM8(dest2), MEM8(source2)
	; MEM8(dest1) $\leftarrow$ MEM8(source1)
	; $MEM8(dest2) \leftarrow MEM8(source2)$

4-130

## MPY

**MultiPIY** 

MPY



**Description** : The contents of A are multiplied by the contents of a memory. The higher of result is stored in B and lower is stored in A.

### Status flags

	Z	U
- N	Z	0

- N : Set to "1" when MSB (MSB of B) of the operation result is "1." Otherwise, cleared to "0."
- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."
- C : Cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	MPY #imm	3116, C716, imm	3	8
DIR	MPY dd	2116, CA16, dd	3	9
DIR, X	MPY dd, X	2116, CB16, dd	3	10
(DIR)	MPY (dd)	2116, C016, dd	3	11
(DIR, X)	MPY (dd, X)	2116, C116, dd	3	12
(DIR), Y	MPY (dd), Y	2116, C816, dd	3	12
L(DIR)	MPY L(dd)	2116, C216, dd	3	13
L(DIR), Y	MPY L(dd), Y	2116, C916, dd	3	14
SR	MPY nn, S	2116, C316, nn	3	10
(SR), Y	MPY (nn, S), Y	2116, C416, nn	3	13
ABS	MPY mmll	2116, CE16, II, mm	4	9
ABS, X	MPY mmll, X	2116, CF16, II, mm	4	10
ABS, Y	MPY mmll, Y	2116, C616, II, mm	4	10
ABL	MPY hhmmll	2116, CC16, II, mm, hh	5	10
ABL, X	MPY hhmmll, X	2116, CD16, II, mm, hh	5	11

**Notes 1:** In the immediate addressing mode, the byte number increases by 1 when flag m = "0."

2: The cycle number in this table applies to the case of 8-bit X 8-bit operation. In the case of 16-bit X 16-bit operation, the cycle number increases by 4.

CLM		
MPY.W	#IMM16	; B, A $\leftarrow$ A X IMM16
MPY SEM	MEM16	; B, A $\leftarrow$ A X MEM16
MPY.B	#IMM8	; Bl, Al $\leftarrow$ Al X IMM8
MPY	MEM8	; Bl, Al $\leftarrow$ Al X MEM8

## **MPYS**

### Function : Multiplication (Signed)

Operation data length: 16 bits or 8 bits

•

Operation

(B, A)  $\leftarrow$  A (Multiplicand) X M (Multiplier)

<u>When m = "0"</u>

* S represents MSB of the data.

<u>When m = "1"</u>

 $\begin{array}{c} \mathsf{B}_{\mathsf{L}} \quad \mathsf{A}_{\mathsf{L}} \\ \hline \mathsf{S} \quad \mathsf{Product} \end{array} \leftarrow \begin{array}{c} \mathsf{A}_{\mathsf{L}} \\ \mathsf{Multiplicand} \\ \mathsf{M} \\ \mathsf{Multiplier} \end{array} \\ \end{array}$ 

* S represents MSB of the data.

* In this case, the contents of Ан and Вн do not change.

**Description** : The contents of A are multiplied by the contents of a memory. The high order of result is stored in B and low order is stored in A. MSB of B becomes the sign bit.

### Status flags

IPL	Ν	V	m	х	D	I	Z	С
-	N	_		—			Ζ	0

10

N : Set to "1" when MSB (MSB of B) of the operation result is "1." Otherwise, cleared to "0."

(74

- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."
- C : Cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM 🛛 🚺	MPYS #imm	3116, D716, imm	3	8
DIR	MPYS dd	2116, DA16, dd	3	9
DIR, X	MPYS dd, X	2116, DB16, dd	3	10
(DIR)	MPYS (dd)	2116, D016, dd	3	11
(DIR, X)	MPYS (dd, X)	2116, D116, dd	3	12
(DIR), Ý	MPYS (dd), Y	2116, D816, dd	3	12
L(DIR)	MPYS L(dd)	2116, D216, dd	3	13
L(DIR), Y	MPYS L(dd), Y	2116, D916, dd	3	14
SR	MPYS nn, S	2116, D316, nn	3	10
(SR), Y	MPYS (nn, S), Y	2116, D416, nn	3	13
ABS	MPYS mmll	2116, DE16, II, mm	4	9
ABS, X	MPYS mmll, X	2116, DF16, II, mm	4	10
ABS, Y	MPYS mmll, Y	2116, D616, II, mm	4	10
ABL	MPYS hhmmll	2116, DC16, II, mm, hh	5	10
ABL, X	MPYS hhmmll, X	2116, DD16, II, mm, hh	5	11

Notes 1: In the immediate addressing mode, the byte number increases by 1 when flag m = "0."

2: The cycle number in this table applies to the case of 8-bit X 8-bit operation. In the case of 16-bit X 16-bit operation, the cycle number increases by 4.

CLM MPYS.W MPYS SEM	#IMM16 MEM16	; B, A $\leftarrow$ A X IMM16 ; B, A $\leftarrow$ A X MEM16
MPYS.B	#IMM8	; Bl, Al $\leftarrow$ Al X IMM8
MPYS	MEM8	; Bl, Al $\leftarrow$ Al X MEM8

### MVN

Function	:	Move												
Operation data lengt	th:	16 bits or 8 bits												
Operation	:	M (n to n + i – 1	1 (n to n + i - 1) $\leftarrow$ M (m to m + i - 1) (i : transfer byte number)											
Description	:	Normally, a block is performed in th					•							The transfe
								n+i	- 1 m		5	rection	de are	ansfer stination ea ansfer urce
								m +					are	
<ul> <li>The 3rd byte of the instruction The 4th byte of the instruction X</li> <li>Transfer destination bank,</li> <li>Transfer source bank,</li> <li>Transfer destination address,</li> <li>Transfer source address,</li> <li>Transfer source address,</li> <li>Byte number of the transfed data block are specified.</li> <li>(Specify X, Y, and A before this instruction is executed.)</li> <li>When m = "0": 0- to 65535-byte data can be transferred.</li> <li>When m = "1": 0- to 255-byte data can be transferred.</li> <li>When x = "0": Transfer source area and transfer destination area can be set to th addresses from 0 to 65535 (FFFF₁₆).</li> <li>When x = "1": Transfer source area and transfer destination area can be set to th addresses from 0 to 255 (FF₁₆).</li> <li>Contents of registers after transfer</li> <li>X : Transfer source area end (highest) address + 1</li> <li>Y : Transfer destination area end (highest) address + 1</li> </ul>														
Status flags	:	A : FFFF ₁₆ DT : Bank nun	nber of trans							.				
		$\mathbf{V}$		IPL —	N —	V —	m —		D —	 	Z —	С —		
		Addressing mode	Synta	ax			Ma	achin	e coc	le		Byte	es	Cycles

Addressing mode	Syntax	Maciline code	Dytes	Cycles	
BLK	MVN hh1, hh2	3116, 2B16, hh1, hh2	4	5 X i + 5	
Note: The cycle num	per in this table applies	when the number of bytes tra	ansferred, i	i, is an eve	n

number. When i is an odd number, the cycle number is obtained as follows: 5 X i + 10.

CLM		•		I	1
LDA.W	#IMM16	;	LABEL1		IMM16 bytes (BANK1)
LDX	LABEL2	•	$\rightarrow$	•	
LDY	LABEL1	•	LABEL2		
MVN	BANK1, BANK2	•		↓	IMM16 bytes (BANK2)

#### **MVP**

Function	:	Move				
Operation data leng	th:	16 bits or 8 bits				
Operation	:	$M (n - i + 1 \text{ to } n) \leftarrow M (m - i + 1 \text{ to } m)  (i : transfer \text{ byte number})$				
Description	:	Normally, a block of data is transferred from lower addresses to higher addresses. The transfer is performed in the descending address order of the block being transferred.				
		$\begin{array}{c c} m-i+1 \\ \uparrow Transfer direction \\ m \\ \hline n-i+1 \\ \hline \\ n \\ \end{array} \begin{array}{c c} \uparrow Transfer direction \\ \hline \\ Transfer direction \\ area \\ \end{array} \end{array} \begin{array}{c c} Transfer \\ destination \\ area \\ \end{array}$				
	<ul> <li>The 3rd byte of the instruction The 4th byte of the instruction X</li> <li>Transfer destination bank,</li> <li>Transfer source bank,</li> <li>Transfer destination address,</li> <li>Transfer source address,</li> <li>Transfer source address,</li> <li>Byte number of the transfed data block are specified (Specify X, Y, and A before this instruction is executed.)</li> <li>When m = "0" : 0- to 65535-byte data can be transferred.</li> <li>When m = "1" : 0- to 255-byte data can be transferred.</li> <li>When x = "0" : Transfer source area and transfer destination area can be set to t addresses from 0 to 65535 (FFFF₁₆).</li> <li>When x = "1" : Transfer source area and transfer destination area can be set to t addresses from 0 to 255 (FF₁₆).</li> <li>Contents of registers after transfer</li> </ul>					
Status flags	:	Y       : Transfer destination area end (lowest) address – 1         A       : FFFF16         DT       : Bank number of transfer destination         IPL       N       V       m       x       D       I       Z       C         —       —       —       —       —       —       —       —       —				

	Addressing mode	Syntax	Machine code	Bytes	Cycles
	BLK	MVP hh1, hh2	3116, 2A16, hh1, hh2	4	5 X i + 9
i i	late. The surple second	and the Alata Andala annullan.	where the survey have all houses and		

**Note:** The cycle number in this table applies when the number of bytes transferred, i, is an even number. When i is an odd number, the cycle number is obtained as follows:

5 X i + 14 (note that the cycle number becomes 10 when 1 byte is transferred).

CLM		•		I	I
LDA.W	#IMM16	•	LABEL1		IMM16 bytes (BANK1)
LDX	LABEL1	;	$\rightarrow$	•	
LDY	LABEL2	•	LABEL2		
MVP	BANK2, BANK1	•	L	↓	IMM16 bytes (BANK2)

# NEG

Function :	Negation
Operation data length:	16 bits or 8 bits
Operation :	Acc $\leftarrow$ -Acc <u>When m = "0"</u> <u>Acc</u> -Acc <u>When m = "1"</u> <u>Acc</u> -AccL <u> </u>
Description :	Negates the sign of Acc contents, and stores the result in Acc.
Status flags :	IPL         N         V         m         x         D         I         Z         C           -         N         V         -         -         -         Z         C
N : V :	Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0." Set to "1" when the result of the operation (regarded as a signed operation) is a value outside the range of –32768 to +32767 (–128 to +127 when flag m is "1"). Otherwise, cleared to "0."

- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."
- C : Set to "1" when the result of the operation (regarded as an unsigned operation) exceeds +65535 (+255 when flag m is "1"). Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
A	NEG A	2416	1	1
A	NEG B	8116, 2416	2	2

CLM NEG	А	; A ← −A
SEM		
NEG	В	; $B_{L} \leftarrow -B_{L}$

# NEGD

Function		:	Negation					
Operation data le	engt	h:	32 bits					
Operation		:	$E \leftarrow -E$ $E$ $\leftarrow$	—E				
Description	ì	:	Negates the sign of	E contents, and stores	s the result in E.			
Status flag	S	:		IPLNV—NV		C C		
	Ν	:	Set to "1" when MSI	B of the operation resu	It is "1." Otherwise, cleared	d to "0."		
	V	:			egarded as a signed operat 7. Otherwise, cleared to "0."		alue outsi	de
	Ζ	:	Set to "1" when the	operation result is "0."	Otherwise, cleared to "0."			
	C		+4294967295. Other	rwise, cleared to "0."	n (regarded as an unsigne	-		us
		A	Addressing mode	Syntax NEGD E	Machine code 3116, 8016	Bytes 2	Cycles 4	
Description exa				OUN				
	NE	∃GD			; E ← –E			

### NOP

**No OPeration** 

NOP

Function	:	No operation						
Operation data ler	ngth :	-						
Operation	:	$PC \leftarrow PC + 1$	rs in PC	$;, PG \leftarrow PG + 1$	)			
Description	:	Only increments the				ing else.		
Status flags	:			IPL N V — — —	m >	C D I Z	C —	
		Addressing mode		Suptox	D.	achine code	Préss	Cycles
	IMP	-	NOP	Syntax	7416		Bytes	Cycles 1
Description exan	NOP			unce	2			

# ORA

Logical OR
16 bits or 8 bits
$Acc \leftarrow Acc \lor M$ $\underline{When \ m = "0"}$ $\underline{Acc} \qquad Acc \qquad M16$ $\boxed{\qquad} \qquad $
$\begin{array}{c} \underline{When \ m = "1"} \\ Acc_{L} & Acc_{L} & M8 \\ \hline & \leftarrow & \checkmark & \frown \\ & & & & \\ \end{array}$
Performs the logical OR between the contents of Acc and the contents of a memory, and stores the result in Acc.
IPL     N     V     m     x     D     I     Z     C       -     N     -     -     -     -     Z     -
Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0." Set to "1" when the operation result is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	ORA A, #imm	5616, imm (8116, 5616, imm)	2 (3)	1 (2)
DIR	ORA A, dd	5A16, dd (8116, 5A16, dd)	2 (3)	3 (4)
DIR, X	ORA A, dd, X	5B16, dd (8116, 5B16, dd)	2 (3)	4 (5)
(DIR)	ORA A, (dd)	1116, 5016, dd (9116, 5016, dd)	3 (3)	6 (6)
(DIR, X)	ORA A, (dd, X)	1116, 5116, dd (9116, 5116, dd)	3 (3)	7 (7)
(DIR), Y	ORA A, (dd), Y	1116, 5816, dd (9116, 5816, dd)	3 (3)	7 (7)
L(DIR)	ORA A, L(dd)	1116, 5216, dd (9116, 5216, dd)	3 (3)	8 (8)
L(DIR), Y	ORA A, L(dd), Y	1116, 5916, dd (9116, 5916, dd)	3 (3)	9 (9)
SR	ORA A, nn, S	1116, 5316, nn (9116, 5316, nn)	3 (3)	5 (5)
(SR), Y	ORA A, (nn, S), Y	1116, 5416, nn (9116, 5416, nn)	3 (3)	8 (8)
ABS	ORA A, mmll	5E16, II, mm (8116, 5E16, II, mm)	3 (4)	3 (4)
ABS, X	ORA A, mmll, X	5F16, II, mm (8116, 5F16, II, mm)	3 (4)	4 (5)
ABS, Y	ORA A, mmll, Y	1116, 5616, II, mm (9116, 5616, II, mm) 🛶	4 (4)	5 (5)
ABL	ORA A, hhmmll	1116, 5C16, II, mm, hh (9116, 5C16, II, mm, hh)	5 (5)	5 (5)
ABL, X	ORA A, hhmmll, X	1116, 5D16, II, mm, hh (9116, 5D16, II, mm, hh)	5 (5)	6 (6)

**Notes 1:** This table applies when using accumulator A. When using accumulator B, replace "A" with "B" in the syntax. In this case, the machine code, the number of bytes, and the number of cycles enclosed in parentheses are applied.

2: In the immediate addressing mode, the byte number increases by 1 when flag m = "0."

npie:		
CLM		
ORA.W	A, #IMM16	$()$ ; A $\leftarrow$ A $\vee$ IMM16
ORA	B, MEM16	; $B \leftarrow B \lor MEM16$
SEM		
ORA.B	A, #IMM8	; $A_L \leftarrow A_L \lor IMM8$
ORA	B, MEM8	; $B_{L} \leftarrow B_{L} \lor MEM8$
	0	

### ORAB

Function :	Logical OR
Operation data length:	8 bits
Operation :	$Acc_{L} \leftarrow Acc_{L} \lor IMM8$ $Acc_{L} \land Acc_{L}$ $\frown \lor IMM8$
Description :	<ul> <li>Performs logical OR between the contents of AccL and immediate value in length of 8 bits, and stores the result in Acc.</li> <li>This instruction is unaffected by flag m.</li> <li>The contents of AccH do not change.</li> </ul>
Status flags :	IPL     N     V     m     x     D     I     Z     C       -     N     -     -     -     -     Z     -
N :	Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."
Ζ:	Set to "1" when the operation result is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	ORAB A, #imm <	6316, imm	2	1
IMM	ORAB B, #imm	8116, 6316, imm	3	2

#### Description example:

ORAB ORAB A, #IMM8 B, #IMM8 ; AL  $\leftarrow$  AL  $\lor$  IMM8 ; BL  $\leftarrow$  BL  $\lor$  IMM8

# ORAM

Function :	Logical OR
Operation data length:	16 bits or 8 bits
Operation :	$\begin{array}{c} M \leftarrow M \lor IMM \\ \underline{When  m = "0"} \\ & M16 \\ \hline & M16 \\ \hline & \leftarrow & \frown & \lor IMM16 \end{array}$
	$\frac{\text{When } \text{m} = \text{``1''}}{\text{M8}} \qquad \qquad \text{M8} \qquad \qquad$
Description :	<ul> <li>Performs the logical OR between the contents of a memory and the immediate value, and stores the result in the memory.</li> <li>This instruction includes the function of the SEB instruction in the conventional 7700 Family.</li> </ul>
Status flags :	IPL         N         V         m         x         D         I         Z         C           -         N         -         -         -         -         Z         -

- N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."
- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
DIR	ORAM dd, #imm	5116, 3316, dd, imm	4	7
ABS	ORAM mmll, #imm	5116, 3716, II, mm, imm	5	7
Note : When flag m =	"0" the byte number	er increases by 1		

**Note :** When flag m = "0." the byte number increases by 1.

CLM		
ORAM.W	MEM16, #IMM16	; MEM16 $\leftarrow$ MEM16 $\lor$ IMM16
SEM		
ORAM.B	MEM8, #IMM8	; MEM8 $\leftarrow$ MEM8 $\lor$ IMM8

# ORAMB

Function Logical OR 2 Operation data length: 8 bits Operation ÷  $M8 \leftarrow M8 \lor IMM8$ M8 M8 ∨IMM8 Description Performs the logical OR between the contents of a memory and the immediate value in 8 bits ÷ length, and stores the result in the memory. • This instruction is unaffected by flag m. Status flags : IPL V Ζ С Ν D m М Х Ζ Ν ____ ____ _____ N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0." Ζ: Set to "1" when the operation result is "0." Otherwise, cleared to "0." Machine code Addressing mode Syntax **Bytes** Cycles DIR ORAMB dd, #imm 5116, 3216, dd, imm 4 7 7 5 ABS ORAMB mmll, #imm 5116, 3616, II, mm, imm Description example: ORAMB MEM8, #IMM8 ; MEM8  $\leftarrow$  MEM8  $\lor$  IMM8 01

# ORAMD

Function	:	Logical OR
Operation data le	ngth:	32 bits
Operation	:	$\begin{array}{c c} M32 \leftarrow M32 \lor IMM32 \\ \hline M32 & M32 \\ \hline \\ $
Description	:	<ul><li>Performs the logical OR between the contents of a memory and immediate value in 32 bits length, and stores the result in the memory.</li><li>This instruction is unaffected by flag m.</li></ul>
Status flags	;	IPL         N         V         m         x         D         I         Z         C           -         N         -         -         -         -         Z         -
	N :	Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."

Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
DIR	ORAMD dd, #imm	5116, B316, dd, immll, immlh, immhl, immhh	7	10
ABS	ORAMD mmll, #imm	5116, B716, II, mm, immll, immlh, immhl, immhh	8	10

#### Description example:

ORAMD

MEM32, #IMM32

; MEM32  $\leftarrow$  MEM32  $\vee$  IMM32

Function	:	Stack manipulation (P	rush)			
Operation data leng	jth :	16 bits				
Operation	:	Stack ← IMM16		after instruction execution fore instruction execution	Stack IMM⊾ IMM⊦	
Description	:	Pushes the 16-bit imr ● This instruction is u	nediate value onto the s unaffected by flag m.	tack.	L.	
Status flags	:		IPL         N         V           —         —         —	m x D I Z -		
		Addressing mode	Syntax	Machine code	Bytes	Cycles
	ST	K	PEA #imm⊦imm∟	3116, 4C16, imm∟, immн	4	5
Description over			5			
Description examp	DIE: PEA	#IMM16		← IMM16н – 1) ← IMM16∟		

# PEI

Function	:	Stack manipulation (P	ush)							
Operation data leng	th:	16 bits								
Operation	:	Stack ← M16(DPRn ·	+ dd) (	n = 0		(S) j		nstruction execu	M(DPR	n+dd)
Description	:	Pushes the contents of offset value onto the set offset value onto the set of this instruction is used.	stack in	16-bi	t leng	gth.	by the sur	n of the content	s of the DF	Rn and the
Status flags	:			IPL —	N 	V 	m x — —	D I Z 	C —	
		Addressing mode		Synt	ax		M	achine code	Bytes	Cycles
	ST	K	PEI dd			4	3116, 4B	16, dd	3	7
Description examp P	le: El	DP0+: offset	0	20	, c	; (5	S) ← (DPR( S − 1) ← (E	0 + dd + 1) DPR0 + dd)		



Function	:	Stack manipulation (P	^{&gt;} ush)			
Operation data leng	jth:	16 bits				
Operation	:	$\begin{array}{c c} Stack \leftarrow PC + IMM16 & Stack \\ (S) just after instruction execution \\ (S) just before instruction execution \\ \hline EAR_{H} \\ \hline \end{array} \\ & \& EAR = PC + IMM16 \end{array}$				
Description	:	bits.	e PC contents and 16-bit immediate value onto the stack in length of 16 unaffected by flag m.			
Status flags	:		IPL N V m x D I Z C 			
		Addressing mode	Syntax Machine code Bytes Cycles			
	ST	K	PER #immнimmL         3116, 4D16, immL, immн         4         6			
Description examp	le: ER	#IMM16	; (S) ← (PC + IMM16)н ; (S − 1) ← (PC + IMM16)∟			
		FOr su	no			

# PHA

Stack manipulation (P	rush)				
16 bits or 8 bits					
Stack ← A <u>When m = "0"</u>				on AL	
<u>When m = "1"</u>				on	
Pushes the contents	of A onto the sta	ack.	.0		
	IPL N — —	V m >	<u>C</u> DIZ 	C —	
Addressing mode	Syntax	5	Machine code	Bytes	Cycles
ТК	РНА	8516		1	4
FOr su	now	; (S) ← Ан, ; (S) ← АL	$(S - 1) \leftarrow A_L$		
	16 bits or 8 bits Stack $\leftarrow$ A When m = "0" When m = "1" Pushes the contents Addressing mode TK	Stack $\leftarrow$ A         When m = "0"         When m = "1"         Pushes the contents of A onto the state $\boxed{IPL \ N}$ $\boxed{Addressing mode}$ $\boxed{K}$ PHA	16 bits or 8 bits         Stack $\leftarrow$ A         When m = "0"         (S) just after         (S) just before         When m = "1"         (S) just after         (S) just before         Pushes the contents of A onto the stack.         IPL N V m >         Addressing mode         Syntax         TK         PHA         (S) $\leftarrow$ AH,         ; (S) $\leftarrow$ AL	16 bits or 8 bits Stack $\leftarrow$ A When m = "0" (S) just after instruction execution (S) just before instruction execution (S) just after instruction execution (S) just after instruction execution (S) just before instruction execution (S) just before instruction execution Pushes the contents of A onto the stack. $\frac{IPL N V m x D I Z m}{ $	16 bits or 8 bits Stack $\leftarrow A$ When m = "0" (S) just after instruction execution (S) just before instruction execution (S) just after instruction execution (S) just after instruction execution (S) just after instruction execution (S) just before instruction execution Automotion Pushes the contents of A onto the stack. <u>IPL N V m x D I Z C</u> <u>Addressing mode</u> <u>Syntax</u> <u>Machine code</u> <u>Bytes</u> TK PHA 8516 1 ; (S) $\leftarrow A_{H}$ , (S – 1) $\leftarrow A_{L}$ ; (S) $\leftarrow A_{L}$

# PHB

Function	:	Stack manipulation (P	Push)					
Operation data leng	gth:	16 bits or 8 bits						
Operation	:	$Stack \gets B$						
		<u>When m = "0"</u>			(S) iu	st after instruction executi	on	ck
					(-)].		Bu	
					(S) just	before instruction executi	on B⊦	1
		<u>When m = "1"</u>					L ∣ Sta	ck I
					(S) ju	st after instruction executi		<u>5N</u>
						before instruction executi		-
							I	
Description	:	Pushes the contents	of B or	ito the sta	CK.	JO L		
Status flags								
Status flags	:			IPL N	V	m x D I Z	С	
							—	
					0			
		Addressing mode		Syntax	5	Machine code	Bytes	Cycles
	ST	K	PHB			8116, 8516	2	5
				$\mathcal{O}$				<u> </u>
Description examp	DIE: CLM		$\sim$					
	PHB				; (S)	)		
S	SEM							
F	РΗВ				; (S)	) ← BL		
		FOr						

## PHD

PHD

Function	:	Stack manipulation (Push)				
Operation data lengt	th:	16 bits				
Operation	:	Stack ← DPR0       Stack         (S) just after instruction execution       DPR0∟         (S) just before instruction execution       DPR0⊢				
Description	:	Pushes the contents o ● This instruction is u	of DPR0 in 16-bit length unaffected by flag m.	onto the stack.	L	
Status flags	:		IPL         N         V           —         —         —         —	m x D I Z	с —	
		Addressing mode	Syntax	Machine code	Bytes	Cycles
Addressing modeSyntaxMachine codeBytesCyclesSTKPHD $8316$ 14Description example: PHD; (S, S - 1) $\leftarrow$ DPR0						
	L	ТК	PHD	8316	-	



Function Stack manipulation 5 Operation data length: 16 bits Operation Stack  $\leftarrow$  DPRn (n = 0 to 3. Multiple DPRs can be pushed onto the stack.) • When DPR0 to DPR3 are specified Stack (S) just after instruction execution DPR3L DPR3H DPR2∟ DPR2H DPR1L DPR1H DPR0L DPR0H (S) just before instruction execution Description Pushes the contents of the specified DPRn (DPR0 to DPR3) in 16-bit length onto the stack. 5 • Multiple DPRs can be pushed onto the stack by 1 instruction. If multiple DPRs are specified, they are pushed onto the stack in order of DPR0, DPR1, DPR2, and DPR3. • This instruction is unaffected by flag m. Status flags 1 IPL N V D Ζ С m х I Addressing mode **Svntax** Machine code **Bytes** Cycles STK PHD n B816, 0?16 2 12 PHD (n1, ..., ni) B816, 0?16 2 i + 11 Notes 1: Any value from 0 to 3 can be set to n. 2: The second line of the syntax format pushes multiple DPRs by 1 instruction. 3: The inside of parentheses (n1, ..., ni) specifies 0 to 3 (numbers representing DPRn). 4: i : indicates DPRn specified (1 to 4). 5: ?: the bit corresponding to the specified DPRn becomes "1." The diagram below shows the relationship between bits and DPRn. b7 b0 DPR3 DPR2 DPR1 DPR0 0 0 0 0 Description example: PHD ; (S, S − 1) ← DPR1 1 PHD ; (S, S – 1)  $\leftarrow$  DPR0 (0, 3);  $(S - 2, S - 3) \leftarrow DPR3$ 

# PHG

Function	:	Stack manipulation (P	Push)			
Operation data leng	jth:	8 bits				
Operation	:	$\begin{array}{c c} Stack \leftarrow PG \\ \hline (S) \text{ just after instruction execution} \\ \hline (S) \text{ just before instruction execution} \\ \hline PG \\ \hline \end{array}$				
Description	:	Pushes the contents o ● This instruction is u	of PG in 8-bit length on unaffected by flag m.	to the stack.	C	
Status flags	:		IPL         N         V           —         —         —	m x D I Z — — — — — —	с —	
		Addressing mode	Syntax	Machine code	Bytes	Cycles
STK         PHG         3116, 6016         2         4           Description example:         PHG         ; (S) ← PG         ; (S) ← PG						
	Die: PHG	ТК	PHG	3116, 6016	-	

## PHLD n

PHLD n

Function	:	Stack manipulation and Load
Operation data lengtl	h:	16 bits
Operation	:	Stack $\leftarrow$ DPRn (n = 0 to 3. Multiple DPRs can be specified.)         DPRn $\leftarrow$ IMM16         When DPR0 to DPR3 are specified         (S) just after instruction execution             Stack         DPR0         DPR0         DPR0         C         DPR3L
		(S) just before instruction execution $\overrightarrow{DPR0_H}$ $\overrightarrow{DPR2_L}$ $\overrightarrow{DPR1_L}$ $\overrightarrow{DPR1_L}$ $\overrightarrow{DPR1_H}$ $\overrightarrow{DPR0_L}$ $\overrightarrow{DPR0_H}$ $\overrightarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overleftarrow{DPR3}$ $\overrightarrow$
Description	:	Loads the 16-bit immediate value to DPRn (DPR0 to DPR3), after pushing the contents of the specified DPRn in 16-bit length onto the stack.
		<ul> <li>Multiple DPRs can be specified. If multiple DPRs are specified, they are pushed onto the stack in order of DPR0, DPR1, DPR2, and DPR3, and loads the immediate value in the same order.</li> <li>This instruction is unaffected by flag m.</li> </ul>
Status flags	:	

<u>г</u>	Addrossing mode	Suntax				Ma	chino	code	<u>`</u>		By#	26	_
			—	—	—	—		—	_	—	—		
3			IPL	N	V	m	Х	D	I	Z	С		

Addressing mode	Syntax	Machine code	Bytes	Cycles
STK	PHLD n, #imm	B816, ??16, imm∟, immн	4	14
	PHLD (n1,, ni) , #imm1,, #immi	B816, ??16, imm∟1, immн1 ,, imm⊔, immнi	2 X i + 2	3 X i + 11

Notes 1: Any value from 0 to 3 can be set to n.

2: The second line of the syntax format pushes multiple DPRs by 1 instruction.

3: The inside of parentheses (n1, ..., ni) specifies 0 to 3 (numbers representing DPRn).

4: i : indicates DPRn specified (1 to 4).

5: ? : the bit corresponding to the specified DPRn becomes "1."

The diagram below shows the relationship between bits and DPRn.

	b7							b0
	DPR3	DPR2	DPR1	DPR0	DPR3	DPR2	DPR1	DPR0
3	* b(n) a	nd b(n +	- 4) beco	ome the	same co	ontents (	n = 0 to	3).

PHLD	0, #IMM16	; (S, S – 1) $\leftarrow$ DPR0
PHLD	(0, 3), #IMM16a, #IMM16b	; DPR0 $\leftarrow$ IMM16 : (S S $=$ 1) $\leftarrow$ DPP0
FILD	(0, 3), #INNET0a, #INNET0a	$(S, S - 1) \leftarrow DFRO$ ; $(S - 2, S - 3) \leftarrow DPR3$
		; DPR0 $\leftarrow$ IMM16a
		; DPR3 $\leftarrow$ IMM16b

### PHP

PHP

Function	:	Stack manipulation (P	'ush)			
Operation data lenge	th:	16 bits				
Operation	:	Stack $\leftarrow$ PS		t after instruction execution before instruction execution	Stack PS∟ PS⊦	
Description	:	Pushes the contents of ● This instruction is u	-	onto the stack.	C	
Status flags	:		IPL     N     V       —     —     —	m x D I Z	C —	
		Addressing mode	Syntax PHP	Machine code	Bytes 1	Cycles 4
Description examp P	Le: HP		0	A516 S, S – 1) ← PS		

Ρ	Н	Т

Function	:	Stack manipulation (P	lush)					
Operation data leng	th:	8 bits						
Operation	:	Stack $\leftarrow$ DT		after instruction execution efore instruction execution	Stack DT			
Description	:	Pushes the contents of ● This instruction is u	of DT in 8-bit length on unaffected by flag m.	to the stack.	L.			
Status flags	:		IPL         N         V           —         —         —	m x D I Z -	с —			
	<u> </u>	Addrossing mode	Syntox	All a little a state	Puter	Cycles		
		Addressing mode	Syntax	Machine code	Dytes	Oycles		
Addressing mode     Syntax     Machine code     Bytes     Cycles       STK     PHT     31r6, 40r6     2     4   Description example: PHT $(S) \leftarrow DT$								
	le: HT	ТК	РНТ	3116, 4016	-			

# PHX

Function		Stack manipulation (P	ush)					
	•	Cluck manipulation (i	uony					
Operation data leng	th:	16 bits or 8 bits						
Operation	:	$Stack \gets X$						
		When $x = "0"$			(C) iu	at after instruction executi	Stad	<u>k</u>
					(S) Ju	st after instruction execution	XL	
				(	S) just	before instruction execution		
							Ι	Ι
		When $x = "1"$					Stac	:k ∣
					(S) ju	st after instruction execution		
				(	S) just	before instruction execution	on X∟	
Description	:	Pushes the contents of	of X on	to the stac	:k.			
Status flags	:			IPL N	V	m x D I Z (	С	
							_	
				·i	0			
				-	<u>v</u>			
		Addressing mode		Syntax		Machine code	Bytes	Cycles
	S	ТК	PHX			C516	1	4
Description examp	ام.		$\sim$					
	LP	x	$\sim$					
	HX				; (S,	, S − 1) ← X		
	ΕP	x						
PHX ; (S) $\leftarrow$ XL								
		0						
		Ţ						

# PHY

Function	:	Stack manipulation (P	ush)					
Operation data leng	th:	16 bits or 8 bits						
Operation	:	$Stack \gets Y$						
		When $x = "0"$			(S) ju:	st after instruction exec	ution Sta	ck
						before instruction exec	Y	
					(S) just	before instruction exec		1
		<u>When x = "1"</u>						
					(S) iu	st after instruction exec	Sta	ck
						before instruction exec		
Description	:	Pushes the contents	of Y on	to the sta	ack.			
Status flags	:			IPL N	V	m x D I Z	С	
					7		_	
					0			
		Addressing mode		Syntax	5	Machine code	Bytes	Cycles
	S	ТК	PHY	$\sim$		E516	1	4
Description examp		a.	$\sim$					
	LP HY	x			· (S	, S − 1) ← Y		
S	EΡ	x						
P	ΉY				; (S)	) ← YL		
		, OV						
		$\sim$						
		•						

### PLA

Function :	Stack manipulation
Operation data length:	16 bits or 8 bits
Operation :	$A \leftarrow Stack$ $\underline{When \ m = "0"} \qquad A$ (S) just before instruction execution (S) just after instruction execution (S) just after instruction execution
	When m = "1" AL (S) just before instruction execution (S) just after instruction execution
	* In this case, the contents of A _H do not change.
Description :	Restores the contents of the stack to A.
Status flags :	IPL     N     V     m     x     D     I     Z     C       -     N     -     -     -     -     Z     -
N :	Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."

Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
STK	PLA	<b>95</b> 16	1	4
<u>v</u>				

Description example:

CLB PLA SEB PLA

; AL  $\leftarrow$  (S + 1) , AH  $\leftarrow$  (S + 2) ; AL  $\leftarrow$  (S + 1)

### PLB

Function :	Stack manipulation
Operation data length:	16 bits or 8 bits
Operation :	$\begin{array}{c} B \leftarrow Stack \\ \underline{When  m = ``0"} \\ (S) \text{ just before instruction execution} \\ (S) \text{ just after instruction execution} \end{array} $
	When m = "1" (S) just before instruction execution (S) just after instruction execution
	* In this case, the contents of B _H do not change.
Description :	Restores the contents of the stack to B.
Status flags :	IPL     N     V     m     x     D     I     Z     C       -     N     -     -     -     -     Z     -
N :	Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."

Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

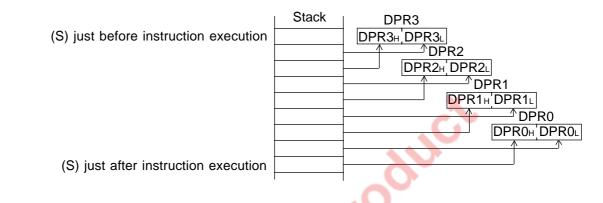
Addressing mode	Syntax	Machine code	Bytes	Cycles
STK	PLB	8116, 9516	2	5
<u>v</u>				

Description example:

CLB PLB SEB PLB

;  $B_L \leftarrow (S + 1)$  ,  $B_H \leftarrow (S + 2)$ ;  $B_L \leftarrow (S + 1)$ 

### PLD


Function :	Stack manipulation					
Operation data length:	16 bits					
Operation :	DPR0 ← Stack DPR0 (S) just before instruction execution (S) just after instruction execution					
Description :	<ul><li>Restores the contents of the stack in 16-bit length to DPR0.</li><li>This instruction is unaffected by flag m.</li></ul>					
Status flags :	IPL     N     V     m     x     D     I     Z     C       -     -     -     -     -     -     -     -					
	Addressing mode Syntax Machine code Bytes Cycles					
STKPLD931615Description example: PLD; DPR0L $\leftarrow$ (S + 1) ; DPR0H $\leftarrow$ (S + 2)						
	; DPR0н ← (S + 2)					



**Function** : Stack manipulation

Operation data length: 16 bits

Operation:DPRn  $\leftarrow$  Stack (n = 0 to 3. The contents of the stack can be restored to multiple DPRs.)When DPR0 to DPR3 are specified



- **Description** : Restores the contents of the stack to the specified DPRn (DPR0 to DPR3) in 16-bit length.
  - Only 1 instruction can restore the contents of the stack to multiple DPRs. If multiple DPRs are specified, the contents of the stack are restored to DPRs in order of DPR3, DPR2, DPR1, and DPR0.
    - This instruction is unaffected by flag m.

Status flags :

IPL	N	V	m	x	D	I	Ζ	С
	_				_	_	—	_

Addressing mode	Syntax	Machine code	Bytes	Cycles
STK	PLD n	7716, ?016	2	11
	PLD (n1,, ni)	7716, ?016	2	3 X i + 8

- Notes 1: Any value from 0 to 3 can be set to n.
  - 2: The second line of the syntax format restores the contents of the stack to multiple DPRs by 1 instruction.
  - 3: Inside of the parentheses (n1, ..., ni) specifies 0 to 3 (numbers representing DPRn).
  - 4: i : indicates the number of the DPRn specified (1 to 4)
  - 5: ?: the bit corresponding to the specified DPRn becomes "1."
    - The diagram below shows the relationship between bits and DPRn.

Descri	otion	exam	ole:
000011		CAUITI	010.

PLD PLD

b7							b0
DPR3	DPR2	DPR1	DPR0	0	0	0	0
1 (0, 3)			;	DPR3	← (S · ← (S · ← (S ·	+ 1, S	+ 2)

### PLP

Function	:	Stack manipulation					
Operation data leng	th:	16 bits					
Operation	:	$PS \gets Stack$	(S) just before instruc (S) just after instruc			PS _H	S PS∟ 
Description	:	Restores the contents ● This instruction is u	s of the stack in 16-bit unaffected by flag m.	length to I	PS.	κ.	
Status flags	:		IPLNVIPLNV	m x m x	D I Z D I Z	C C	
		Addressing mode	Syntax	M	achine code	Bytes	Cycles
	S	Addressing mode	Syntax PLP	<b>M</b> a B516	achine code	Bytes 1	Cycles 5
<b>Description examp</b> ₽	le: LP	ТК	PLP				

пт

- Function 1 Stack manipulation
- Operation data length: 8 bits
- Operation : DT ← Stack

		DI
	Stack	
(S) just before instruction execution		
(S) just after instruction execution		

Restores the contents of the stack in 8-bit length to DT. Description 1

Status flags :

IPL	Ν	V	m	x	D		z	С
—	Ν				K	Ć	Z	—

- Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0." N :
- Set to "1" when the operation result is "0." Otherwise, cleared to "0." Ζ:

annout

or sr

Addressing mode	Syntax	2	Machine code	Bytes	Cycles
STK	PLT		<b>31</b> 16, <b>50</b> 16	2	6

Description example:

PLT

; DT  $\leftarrow$  (S + 1)

# PLX

Function :	Stack manipulation
Operation data length:	16 bits or 8 bits
Operation :	$\begin{array}{c} X \leftarrow Stack \\ \underline{When \ x = "0"} \\ (S) \ just \ before \ instruction \ execution \\ (S) \ just \ after \ instruction \ execution \\ \hline\end{array}$
	When x = "1" XL (S) just before instruction execution (S) just after instruction execution
	* In this case, the contents of X _H do not change.
Description :	Restores the contents of the stack to X.
Status flags :	IPL     N     V     m     x     D     I     Z     C       -     N     -     -     -     -     Z     -
N :	Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."

Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

(

	Addressing mode	Syntax	Machine code	Bytes	Cycles
	STK	PLX	D516	1	4
Description examp					
P		; X	L $\leftarrow$ (S + 1) , Хн $\leftarrow$ (S + 2)		

PLX SEP PLX

х

; X∟ ← (S + 1)

# PLY

Function :	Stack manipulation
Operation data length:	16 bits or 8 bits
Operation :	$Y \leftarrow Stack$ <u>When x = "0"</u> Y         (S) just before instruction execution
	(S) just after instruction execution
	When x = "1" (S) just before instruction execution (S) just after instruction execution
	* In this case, the contents of Y _H do not change.
Description :	Restores the contents of the stack to Y.
Status flags :	IPL     N     V     m     x     D     I     Z     C       -     N     -     -     -     -     Z     -
N :	Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."
7.	

Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

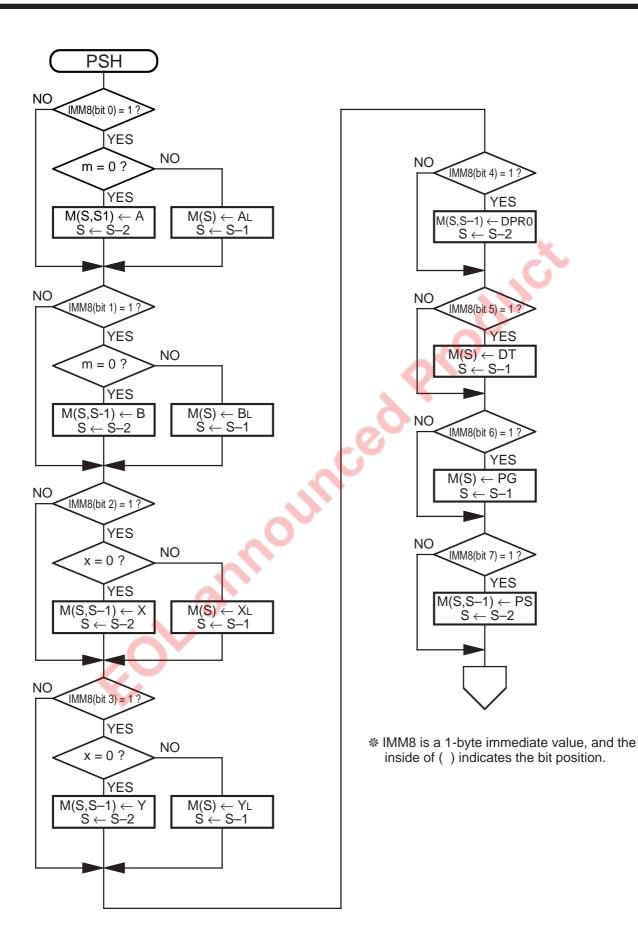
Addressing mode	Syntax	Machine code	Bytes	Cycles
STK	PLY	F516	1	4
5				

Description example:

CLP PLY SEP PLY

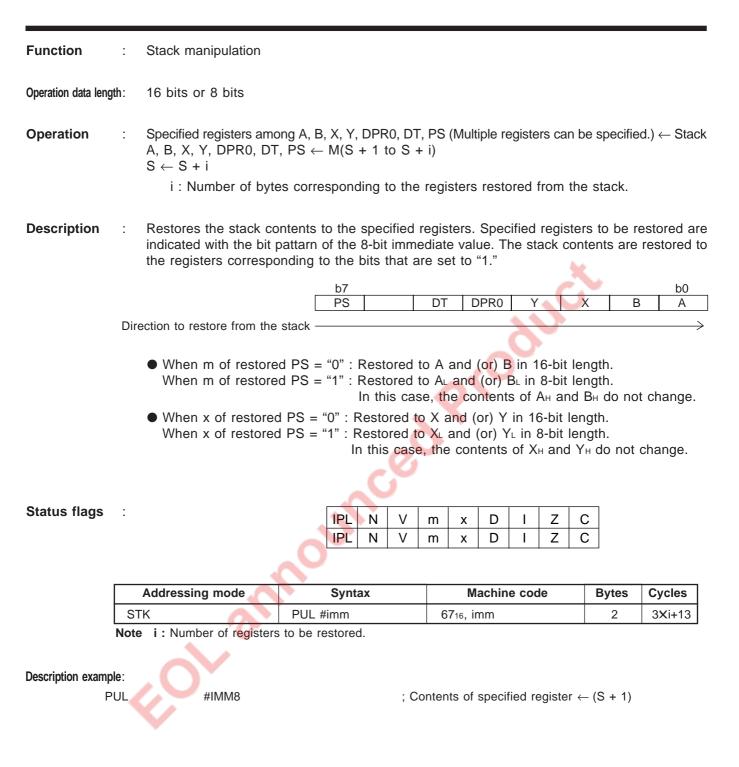
X

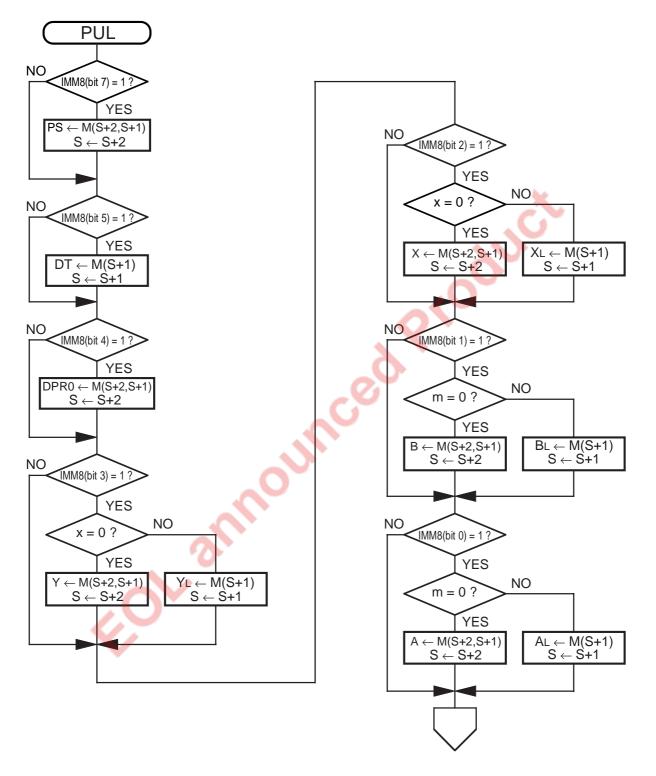
Х


;  $Y_L \leftarrow (S + 1)$ ,  $Y_H \leftarrow (S + 2)$ ;  $Y_L \leftarrow (S + 1)$ 

# PSH

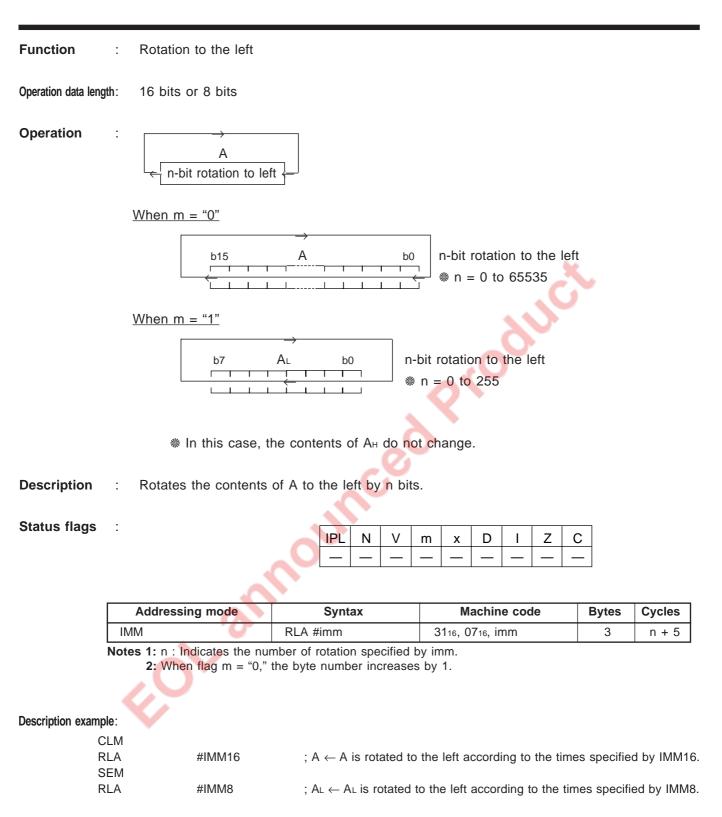
PuSH


Function :	Stack manipulation			
Operation data length:	16 bits or 8 bits			
<b>Operation</b> :	$\begin{array}{l} \text{Stack} \leftarrow \text{Specified registers among A, B, X, Y, DPR0, DT, PG, PS (Multiple registers can be specified.)} \\ \text{M}(\text{S to } \text{S}-\text{i}+1) \leftarrow \text{A, B, X, Y, DPR0, DT, PG, PS} \\ \text{S} \leftarrow \text{S}-\text{i} \\ \text{i}: \text{Number of bytes corresponding to the registers pushed onto the stack.} \end{array}$			
Description :	Pushes the contents of the specified registers onto the stack. Specified registers to be pushed are indicated with the bit pattarn of the 8-bit immediate value. The contents of the registers corresponding to the bits set to "1" are pushed onto the stack.			
	<ul> <li>When m = "0" : A and (or) B are (is) pushed in 16-bit length. When m = "1" : A_L and (or) B_L are (is) pushed in 8-bit length.</li> <li>When x = "0" : X and (or) Y are (is) pushed in 16-bit length. When x = "1" : X_L and (or) Y_L are (is) pushed in 8-bit length.</li> <li>This instruction is unaffected by the flags m and x when the contents of PS, PG, DT, and DPR0 are pushed onto the stack.</li> </ul>			
Status flags :	IPL N V m x D I Z C 			
	Addressing mode Syntax Machine code Bytes Cycles			
s	TK         PSH #imm         A816, imm         2         2Xi1+i2+11			
Not	es i1 : Number of registers to be pushed is indicated among A, B, X, Y, DPR0 and PS.			
iz : Number of registers to be pushed DT and PG. Description example: PSH #IMM8 ; (S) ← Contents of specified register				


# PSH



# PUL


PuLI





* IMM8 is a 1-byte immediate value, and the inside of () indicates the bit position.

## RLA



### **RMPA**

Function : Multiplied accumulation repeated

Operation data length: 16 bits or 8 bits

### **Operation** : $(B, A) \leftarrow (B, A) + M (DT:X) \times M (DT:Y)$ (repeated 0 to 255 times.)

**Description** : Performs signed multiplication between the contents of addresses specified by the contents of X and Y in the bank indicated by DT. Then, the multiplication result is added to the contents of B and A respectively, and these addition results are stored in B and A; and the contents of X and Y each are incremented. This operation is repeated as many times (0 to 255 times) as specified by the 8-bit immediate value in the third byte of this instruction.

• When m = "0" : Operates in 16-bit length, and the result becomes the 32-bit value.  $E \leftarrow E + M16 (DT:X) \times M16 (DT:Y)$ After the addition, the contents of X and Y each are incremented by 2.

- When m = "1": Operates in 8-bit length, and the result becomes the 16-bit value. (B_L, A_L) ← (B_L, A_L) + M8 (DT:X) X M8 (DT:Y) In this case, the contents of A_H and B_H do not change. After the addition, the contents of X and Y each are incremented by 1.
- Contents of X and Y after operation: The addresses next to those of the multiplicand and multiplier which were read out last, respectively.
- If an overflow occurs as an addition result, the flag V is set to "1" and the operation finishes halfway. In this time, the contents of A and B become undefined. The contents of X and Y become the addresses next to those of the multiplicand and multiplier which were read out last, respectively.
- The instruction is terminated without performing any operation if a "0" is specified for the repeat count. In this case, the contents of A, B, X, and Y do not change.

Status flags :	IPL	N	V	m	х	D	1	Z	С
	—	Ν	V	_	_	_	_	Ζ	С

- N : This flag is checked for each addition performed. If MSB (MSB of B) of the addition result becomes "1," this flag becomes "1." Otherwise, cleared to "0."
- V : This flag is checked for each addition performed. If the addition result is a value outside the range of -2147483648 to +2147483647 (or -32768 to +32767 when flag m = "1"), this flag is set to "1." Otherwise, cleared to "0." If flag V = "0" when the instruction is terminated, it means that the operation has terminated normally; if flag V = "1," it means that an overflow occured.
- Z : This flag is checked for each addition performed. Set to "1," when the addition result becomes "0." Otherwise, cleared to "0."
- C : This flag is checked for each addition performed. Set to "1" when the addition result (regarded as an unsigned data) exceeds +4294967295 (or +65536 when flag m = "1"). Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
Multiplied accumulation	RMPA #imm	3116, 5A16, imm	3	14Ximm+5

Notes 1: imm ; indicates the number of repeated operation.

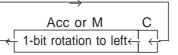
Description example:

RMPA

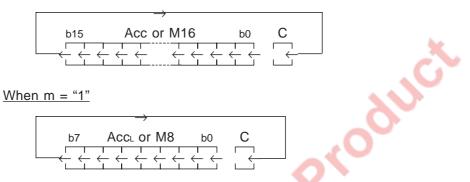
#IMM8

; repeates the operation IMM8 times.

^{2:} The cycle number in this table applies when flag m = "1." When flag m = "0," the cycle number becomes 18 X imm + 5.


## ROL

Function : Rotation to the left


Operation data length: 16 bits or 8 bits

÷

Operation



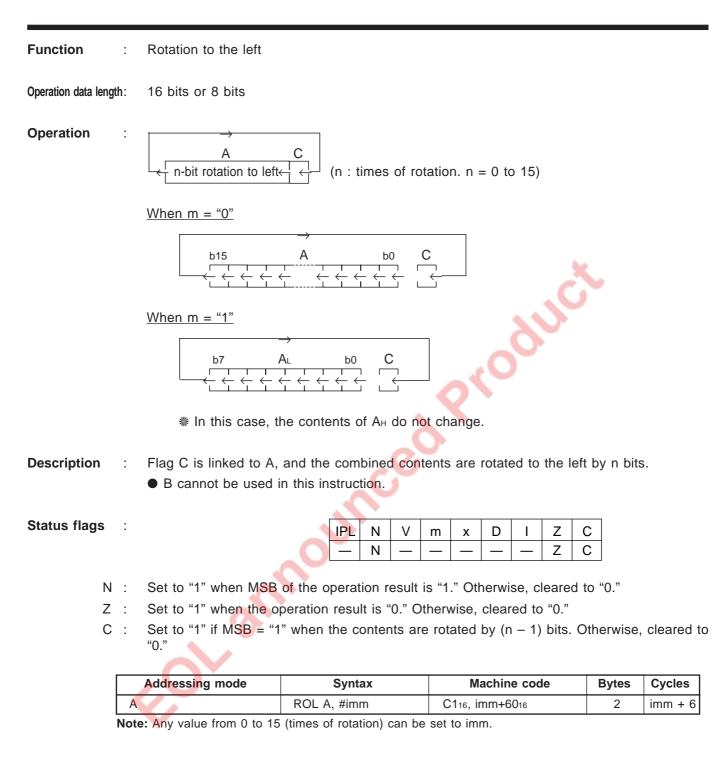
When m = "0"



# In this case, the contents of Acc_H do not change.

**Description** : Flag C is linked to Acc or a memory, and the combined contents are rotated to the left by 1 bit.

### Status flags :


	IPL	N	V	m	х	D	I	Z	С
0		Ν	_	—	—	—		Ζ	С

- N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."
- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."
- C : Set to "1" when MSB of the data before rotation is "1." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
A	ROL A	1316	1	1
A	ROL B	8116, 1316	2	2
DIR	ROL A, dd	2116, 1A16, dd	3	7
DIR, X	ROL A, dd, X	2116, 1B16, dd	3	8
ABS	ROL A, mmll	2116, 1E16, II, mm	4	7
ABS, X	ROL A, mmll, X	2116, 1F16, II, mm	4	8

CLM		
ROL	A	; A is rotated to the left by 1 bit.
ROL	MEM16	; MEM16 is rotated to the left by 1 bit.
SEM		
ROL	В	; B∟ is rotated to the left by 1 bit.
ROL	MEM16	; MEM8 is rotated to the left by 1 bit.

## ROL #n



CLM		
ROL	A, #15	; $A \leftarrow A$ combined with C is rotated to the left by 15 bits.
SEM		
ROL	A, #7	; $A_{L} \leftarrow A_{L}$ combined with C is rotated to the left by 7 bits.

### ROLD #n

Function :	Rotation to the left
Operation data length:	32 bits
Operation :	$ \xrightarrow{b31} E \xrightarrow{b0} C \\ \leftarrow n-bit rotation to left \leftarrow (n : times of rotation. n = 0 to 31) $
Description :	<ul><li>Flag C is linked to E, and the combined contents are rotated to the left by n bits in 32-bit length.</li><li>This instruction is unaffected by flag m.</li></ul>
Status flags :	IPL     N     V     m     x     D     J     Z     C       -     N     -     -     -     -     Z     C
N : Z : C :	Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0." Set to "1" when the operation result is "0." Otherwise, cleared to "0." Set to "1" if MSB = "1" when the contents are rotated by $(n-1)$ bits. Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
A	ROLD E, #imm	D116, imm+6016	2	imm + 8

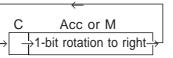
Note: Any value from 0 to 31 (times of rotation) can be set to imm.

E, #16

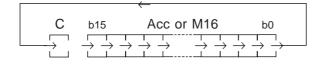
### Description example:

ROLD

;  $E \leftarrow E$  combined with C is rotated to the left by 16 bits.


## ROR

### **Function** : Rotation to the right


Operation data length: 16 bits or 8 bits

:

Operation



When m = "0"



<u>When m = "1"</u>

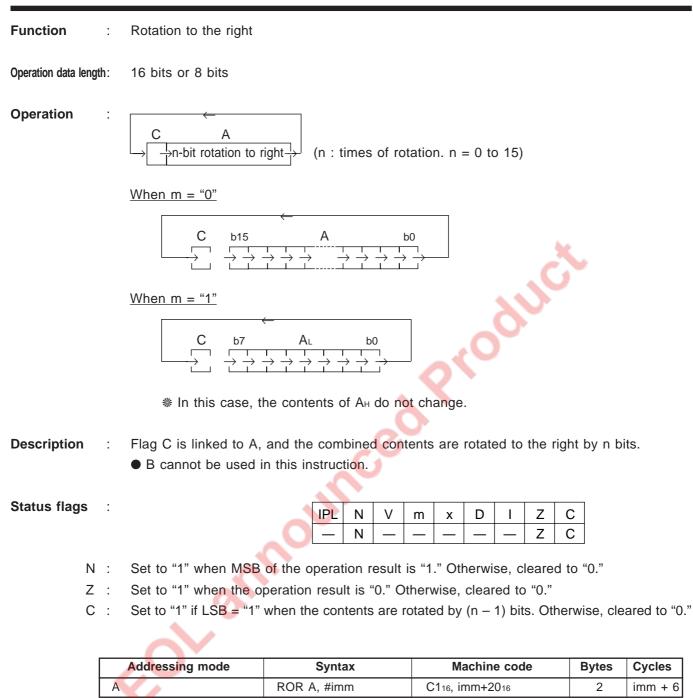
		$\leftarrow$	
С	b7	Acc∟or M8	b0
	$\overline{\Box}$	$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$	

# In this case, the contents of Acc_H do not change.

**Description** : Flag C is linked to Acc or a memory, and the combined contents are rotated to the right by 1 bit.

### Status flags :

IPL	N	V	m	х	D	Ι	Z	С
_	Ν				—	—	Ζ	С


oduci

- N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."
- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."
- C : Set to "1" when LSB of the data before rotation is "1." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
A	ROR A	5316	1	1
A	ROR B	8116, 5316	2	2
DIR	ROR A, dd	2116, 3A16, dd	3	7
DIR, X	ROR A, dd, X	2116, 3B16, dd	3	8
ABS	ROR A, mmll	2116, 3E16, II, mm	4	7
ABS, X	ROR A, mmll, X	2116, 3F16, II, mm	4	8

CLM		
ROR	А	; A is rotated to the right by 1 bit.
ROR	MEM16	; MEM16 is rotated to the right by 1 bit.
SEM		
ROR	В	; B∟ is rotated to the right by 1 bit.
ROR	MEM8	; MEM8 is rotated to the right by 1 bit.

## ROR #n



Note: Any value from 0 to 15 (times of rotation) can be set to imm.

CLM		
ROR	A, #15	; A $\leftarrow$ A combined with C is rotated to the right by 15 bits.
SEM		
ROR	A, #7	; $A_{L} \leftarrow A_{L}$ combined with C is rotated to the right by 7 bits.

### RORD #n

Function	:	Rotation to the right
Operation data leng	gth:	32 bits
Operation	:	$ \begin{array}{c} \leftarrow \\ \hline C \ b31 \ E \ b0 \\ \hline \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
Description	:	<ul><li>Flag C is linked to E, and the combined contents are rotated to the right by n bits in 32-bits length.</li><li>This instruction is unaffected by flag m.</li></ul>
Status flags	:	IPL     N     V     m     x     D     I     Z     C       -     N     -     -     -     -     Z     C
	I : : : ; :	Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0." Set to "1" when the operation result is "0." Otherwise, cleared to "0." Set to "1" if LSB = "1" when the contents are rotated by $(n-1)$ bits. Otherwise, cleared to "0."

Addressing mode Syntax	Machine code	Bytes	Cycles
RORD E, #imm	D116, imm+2016	2	imm + 8

Note: Any value from 0 to 31 (times of rotation) can be set to imm.

### Description example:

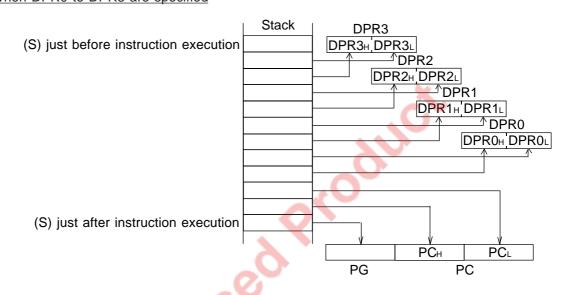
RORD

E, #16

; E  $\leftarrow$  E combined with C is rotated to the right by 16 bits.

## RTI

Function	:	Return											
Operation data leng	th:	-											
Operation	:	PG, PC, PS $\leftarrow$ Stack (S) just before instruction execution				Stack				PS	PS H	S	
		(S) just afte	r instruc	tion execu	tion			PC		PC	н РС	PC∟	
Description	:	Restores the stack co • Use this instruction		-				, PC,		PG.	_		
Status flags	:			IPL N IPL N	V V	m x m x	D D		Z Z	C C			
		Addressing mode		Syntax	0	M	achin	e coc	le	Ву	/tes	Cycles	]
	IN	1P	RTI	J.C.	)	F116					1	12	]
Description examp R	TI	FOr su	<i>.</i> 00		; PC	$\mathbf{S} \leftarrow (\mathbf{S} + \mathbf{S})$ $\mathbf{S} \leftarrow (\mathbf{S} + \mathbf{S})$ $\mathbf{S} \leftarrow (\mathbf{S} + \mathbf{S})$	4, S +						


## RTL

Function	:	Return					
Operation data leng	th:	-					
Operation	:	PG, PC $\leftarrow$ Stack	instruction execution	Stack	<		
			instruction execution		PG	Р Сн Р	PC∟ C
Description	:	Restores the stack co ● Use this instruction	-			RL.	
Status flags	:		IPL N V — — —	m >	C D I Z C	C	
		Addressing mode	Syntax	0	Machine code	Bytes	Cycles
	IN	-				-	-
		1P	RTL	9416		1	10
<b>Description examp</b> R	le: TL	1P	JNC		+ 2, S + 1)	1	10

## RTLD n ReTurn from subroutine Long and pull Direct page register n RTLD n

Function : Load & Return

**Operation data length:** 16 bits



- **Description** : After restoring the contents of the specified DPRn (DPR0 to DPR3) from the stack in length of 16 bits, this instruction executes the RTL instruction (to restore the stack contents in order of PC and PG).
  - Multiple DPRs can be specified for restoration from the stack. When multiple DPRs are specified, the stack contents are restored to DPRs in order of DPR3, DPR2, DPR1, and DPR0.

Status flags :

IPL	N	V	m	х	D	I	Z	С
—	—		—	—	_	—	—	—

Addressing mode	Syntax	Machine code	Bytes	Cycles
STK	RTLD n	7716, ?C16	2	15
	RTLD (n1,, ni)	7716, ?C16	2	3 X i + 12

Notes 1: Any value from 0 can be set to 3 to n.

2: The second line of the syntax format specifies multiple DPRs by 1 instruction.

3: Inside of the parentheses (n1, ..., ni) specifies any of 0 to 3 (numbers representing DPRn).

4: i : indicates the number of DPRn (1 to 4)

5: ? : the bit corresponding to the specified DPRn becomes "1."

The diagram below shows the relationship between bits and DPRn.

	b7							b0
	DPR3	DPR2	DPR1	DPR0	1	1	0	0
Description example:								
RTLD	1				DPR1 RTL	$\leftarrow$ (S $\cdot$	+ 1)	
RTLD (	(0, 3)			;	DPR3	← (S - ← (S -		

## RTS

:	Return				
h:	-				
:	$PC \gets Stack$		Stack		
				PCL	
:	<ul> <li>Use this instruction</li> </ul>	when returning from th			
:		IPL N V — — —	m x D I Z	C —	
	Addressing mode	Syntax	Machine code	Bytes	Cycles
IN	IP	RTS	8416	1	7
e: TS	FOr su	, PC	S ← (S + 2, S + 1)		
	h: : :	h: – : PC ← Stack (S) just before (S) just after : Restores the stack co • Use this instruction • If this instruction is incremented by 1. : Addressing mode IMP e:	h: -         : $PC \leftarrow Stack$ (S) just before instruction execution         (S) just after instruction execution         (S) just after instruction execution         :         Use this instruction when returning from th         • If this instruction is located at a bank's higher incremented by 1.         :         IMP         RTS         e:         TS         ; PC	h: - : $PC \leftarrow Stack$ (S) just before instruction execution (S) just after instruction execution (S) just after instruction execution (S) just after instruction execution PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH PCH	h: - : $PC \leftarrow Stack$ (S) just before instruction execution (S) just after instruction execution (S) just after instruction execution PCH PCH PCL PC : Restores the stack contents to PC. • Use this instruction when returning from the subroutine called by JSR or BSR • If this instruction is located at a bank's highest address (XXFFFFrie), the content incremented by 1. : $\frac{IPL N V m x D 1 Z C}{$

# RTSD n ReTurn from Subroutine and pull Direct page register n

Function Load & Return t Operation data length: 16 bits Operation DPRn  $\leftarrow$  Stack (n = 0 to 3. Multiple registers can be specified.) PC ← Stack When DPR0 to DPR3 are specified Stack DPR3 (S) just before instruction execution DPR3H DPR3L ^小DPR2 DPR2⊢ DPR2∟ [≜]DPR1 DPR1H DPR1L ^ADPR0 DPR0H DPR0L (S) just after instruction execution РСн PC PC

- **Description** : After restoring the contents of the specified DPRn (DPR0 to DPR3) from the stack in length of 16 bits, this instruction executes the RTS instruction (to restore the stack contents to PC).
  - Multiple DPRs can be specified for return from the stack. When multiple DPRs are specified, the stack contents are restored to DPRs respectively, in order of DPR3, DPR2, DPR1, and DPR0.

Status flags

IPL	Ν	V	m	х	D	I	Ζ	С
—	_	—	—	—	—			_

Addressi	ng mode	Syntax	Machine code	Bytes	Cycles
STK 📐		RTSD n	7716, ?816	2	14
		RTSD (n1,, ni)	7716, ?816	2	3 X i +11

Notes 1: Any value from 0 to 3 can be set to n.

2: The second line of the syntax format specifies multiple DPRs by 1 instruction.

3: Inside of the parentheses (n1, ..., ni) specifies any of 0 to 3 (numbers representing DPRn).

4: i : indicates the number of DPRn (1 to 4)

5: ? : the bit corresponding to the specified DPRn becomes "1."

The diagram below shows the relationship between bits and DPRn.

	b7							b0
	DPR3	DPR2	DPR1	DPR0	1	0	0	0
Description example:								
RTSD	1				DPR1 RTS	$\leftarrow$ (S $\cdot$	+ 1)	
RTSD	(0, 3)			- - - -	DPR3	← (S · ← (S ·		

RISD

## SBC

Function :	Subtract with carry
•	
Operation data length:	16 bits or 8 bits
Operation :	$Acc \leftarrow Acc - M - \overline{C}$ $\underline{When m = "0"}$ $Acc \qquad Acc \qquad M16  \overline{C}$ $\qquad \qquad $
	$\frac{\text{When } \text{m} = \text{``1''}}{\text{Acc} \text{L}} \xrightarrow{\text{Acc} \text{L}} \frac{\text{M8}}{\text{C}} \xrightarrow{\overline{\text{C}}} - $
	In this case, the contents of Acc _H do not change.
Description :	<ul> <li>Subtracts the contents of a memory and the complement of flag C from the contents of Acc, and stores the result in Acc.</li> <li>The decimal operation is performed when flag D = "1."</li> </ul>
Status flags :	IPL     N     V     m     x     D     I     Z     C       -     N     V        Z     C
N :	Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."
V :	Set to "1" when the result of the operation (regarded as a signed operation) is a value outside the range of $-32768$ to $+32767$ ( $-128$ to $+127$ when flag m is "1"). Otherwise, cleared to "0." Meaningless when flag D = "1."
Ζ:	Set to "1" when the operation result is "0." Otherwise, cleared to "0." Meaningless when flag $D = "1."$
C :	D = "1." Cleared to "0" when the borrow occurs. Otherwise, set to "1."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	SBC A, #imm	3116, A716, imm (B116, A716, imm)	3	3 (3)
DIR	SBC A, dd	2116, AA16, dd (A116, AA16, dd)	3	5 (7)
DIR, X	SBC A, dd, X	2116, AB16, dd (A116, AB16, dd)	3	6 (8)
(DIR)	SBC A, (dd)	2116, A016, dd (A116, A016, dd)	3	7 (9)
(DIR, X)	SBC A, (dd, X)	2116, A116, dd (A116, A116, dd)	3	8 (10)
(DIR), Y	SBC A, (dd), Y	2116, A816, dd (A116, A816, dd)	3	8 (10)
L(DIR)	SBC A, L(dd)	2116, A216, dd (A116, A216, dd)	3	9 (11)
L(DIR), Y	SBC A, L(dd), Y	2116, A916, dd (A116, A916, dd)	3	10(12)
SR	SBC A, nn, S	2116, A316, nn (A116, A316, nn)	3	6 (8)
(SR), Y	SBC A, (nn, S), Y	2116, A416, nn (A116, A416, nn)	3	9 (11)
ABS	SBC A, mmll	2116, AE16, II, mm (A116, AE16, II, mm)	4	5 (7)
ABS, X	SBC A, mmll, X	2116, AF16, II, mm (A116, AF16, II, mm)	4	6 (8)
ABS, Y	SBC A, mmll, Y	2116, A616, II, mm (A116, A616, II, mm)	4	6 (8)
ABL	SBC A, hhmmll	2116, AC16, II, mm, hh (A116, AC16, II, mm, hh)	5	6 (8)
ABL, X	SBC A, hhmmll, X	2116, AD16, II, mm, hh (A116, AD16, II, mm, hh)	5	7 (9)

Notes 1: This table applies when using accumulator A. When using accumulator B, replace "A" with "B" in the syntax. In this case, the machine code and the number of cycles enclosed in parentheses are applied.

2: In the immediate addressing mode, the byte number increases by 1 when flag m = "0."

### Description example:

CLM		
SBC.W	A, #IMM16	$\overline{C}$ ; A $\leftarrow$ A – IMM16 – $\overline{C}$
SBC	B, MEM16	$\overline{C}$ ; B $\leftarrow$ B – MEM16 – $\overline{C}$
SEB		
SBC.B	A, #IMM8	; $A_{L} \leftarrow A_{L} - IMM8 - \overline{C}$
SBC	B, MEM8	; $B_{L} \leftarrow B_{L} - MEM8 - \overline{C}$

col-ani

### SBCB

Function	: Subtract with carry
Operation data length:	: 8 bits
Operation :	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Description	<ul> <li>Subtracts the immediate value and the complement of flag C from the contents of AccL in 8-bit length, and stores the result in AccL.</li> <li>This instruction is unaffected by flag m.</li> <li>The contents of AccH do not change.</li> <li>The decimal operation is performed when flag D = "1."</li> </ul>
Status flags	IPL     N     V     m     x     D     I     Z     C       -     N     V     -     -     -     Z     C
N :	: Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0." Meaningless when flag D = "1."
V :	Set to "1" when the result of the operation (regarded as a signed operation) is a value outside the range of $-128$ to $+127$ . Otherwise, cleared to "0." Meaningless when flag D = "1."
Z	: Set to "1" when the operation result is "0." Otherwise, cleared to "0." Meaningless when flag D = "1."
C	
	Addressing mode Syntax Machine code Bytes Cycles

	3
	3
3	3

Description example:

SBCB SBCB A, #IMM8 B, #IMM8 ; AL  $\leftarrow$  AL - IMM8 -  $\overline{C}$ ; BL  $\leftarrow$  BL - IMM8 -  $\overline{C}$ 

## SBCD

Function	:	Subtract with carry
Operation data length:	:	32 bits
Operation :	:	$E \leftarrow E - M32 - \overline{C}$ $E \qquad E \qquad M32 \qquad \overline{C}$ $\Box \qquad \Box \qquad \leftarrow \Box \qquad \Box \qquad = \Box \qquad = \Box \qquad = \Box$
Description :	:	<ul> <li>Subtracts the contents of a memory and the complement of flag C from the contents of E in 32-bit length, and stores the result in E.</li> <li>This instruction is unaffected by flag m.</li> <li>This instruction cannot operate in decimal. Set flag D = "0" when using this instruction.</li> </ul>
Status flags	:	IPL     N     V     m     x     D     I     Z     C       -     N     V     -     -     -     Z     C
N :	:	Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."
V :	:	Set to "1" when the result of the operation (regarded as a signed operation) is a value outside

the range of -2147483648 to +2147483647. Otherwise, cleared to "0." Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

1

C : Cleared to "0" when the borrow occurs. Otherwise, set to "1."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	SBCD E, #imm	3116, 1D16, immll, immlн, immнl, immнн	6	4
DIR	SBCD E, dd	2116, BA16, dd	3	7
DIR, X	SBCD E, dd, X	2116, BB16, dd	3	8
(DIR)	SBCD E, (dd)	2116, B016, dd	3	9
(DIR, X)	SBCD E, (dd, X)	2116, B116, dd	3	10
(DIR), Y	SBCD E, (dd), Y	2116, B816, dd	3	10
L(DIR)	SBCD E, L(dd)	2116, B216, dd	3	11
L(DIR), Y	SBCD E, L(dd), Y	2116, B916, dd	3	12
SR	SBCD E, nn, S	2116, B316, nn	3	8
(SR), Y	SBCD E, (nn, S), Y	2116, B416, nn	3	11
ABS	SBCD E, mmll	2116, BE16, II, mm	4	7
ABS, X	SBCD E, mmll, X	2116, BF16, II, mm	4	8
ABS, Y	SBCD E, mmll, Y	2116, B616, II, mm	4	8
ABL	SBCD E, hhmmll	2116, BC16, II, mm, hh	5	8
ABL, X	SBCD E, hhmmll, X	2116, BD16, II, mm, hh	5	9

SBCD	E, #IMM32	; E $\leftarrow$ E – IMM32 – $\overline{C}$ (B, A $\leftarrow$ B, A – IMM32 – $\overline{C}$ )
SBCD	E, MEM32	; $E \leftarrow E - MEM32 - \overline{C}$ (B, $A \leftarrow B$ , $A - MEM32 - \overline{C}$ )

## SEC

Function	: Flag manipulation	n			
Operation data length	: –				
Operation	: C ← 1				
Description	: Sets flag C to "1	"			
Status flags	:	IPL —	N         V         m         x         D         I         Z         C               1	]	
C	: Set to "1."		JCK NORTH	•	
	Addressing mode	Syntax	Machine code	Bytes	Cycles
	IMP	SEC	0416	1	1
Description example		nnou	; C ← 1		
	<u> </u>				

## SEI

Function	: Flag manipulation	n			
Operation data length	: –				
Operation	: I ← 1				
Description	: Sets flag I to "1.	"			
Status flags	:	IPL —	N V m x D I Z C 1		
I	: Set to "1."		JCL .		
	Addressing mode	Syntax	Machine code	Bytes	Cycles
	IMP	SEI	0516	1	4
Description example SE		nnour	, I ← 1		
	40 ²				

## SEM

Function	: Flag manipulation	n			
Operation data length	: –				
Operation	: m ← 1				
Description	: Sets flag m to "1	33			
Status flags	:		- N V m x D I Z C 1		
m	: Set to "1."		John Stranger		
	Addressing mode	Syntax	Machine code	Bytes	Cycles
	IMP	SEM	2516	1	3
Description example SE	Μ	nnou	; m ← 1		
	FOLS				

SEP	)
-----	---

SEP

Function	:	Flag manipulatio	n												
Operation data lengt	th:	-													
Operation	:	PS⊾ (bit n) ← 1	(n = 0 to 7. I	Multip	le bi	ts ca	n be	spec	cified	d.)					
Description	<ul><li>specified are indicated by a bit pattern of the immediate value, in which the bits set to "1" are the subject bits to be specified.</li><li>This instruction is unaffected by flag m.</li></ul>														
		PS∟ b7 b6 b5 b4 b3 b2 N V m x D I										č	*		
Status flags	:			IPL	N	V	m	x			z	с 			
				_	Ν	V	m	x	C		Z	C			
								0							
	Γ	Addressing mode	Syntax					Macl	hine	code			В	lytes	Cycles
		IMM	SEP #imm		991	6, imr	n							2	3
<b>Description examp</b>	le: EP	#IMM8	20	3	5	; T	he sp	pecifie	ed bi	ts of I	PS∟ ←	- 1			
	•	£01-8													

## STA

Function :	Store
Operation data length:	16 bits or 8 bits
Operation :	$M \leftarrow Acc$ $\underline{When \ m = "0"}$ $M16 \qquad Acc$ $\Box \qquad \Box \qquad \leftarrow \Box$
	$\frac{\text{When } m = "1"}{\text{M8}}  \text{Acc}_{\perp}$

**Description** : Stores the contents of Acc into a memory. The contents of Acc do not change.

Status flags :

IPL	Ν	V	m	х	D	I	Ζ	С
—		_		6	_	—	—	

Addressing mode	Syntax	Machine code	Bytes	Cycles
DIR	STA A, dd 🛛 🥖	DA16, dd (8116, DA16, dd)	2 (3)	4 (5)
DIR, X	STA A, dd, X 🔨	DB16, dd (8116, DB16, dd)	2 (3)	5 (6)
(DIR)	STA A, (dd)	1116, D016, dd (9116, D016, dd)	3 (3)	7 (7)
(DIR, X)	STA A, (dd, X)	1116, D116, dd (9116, D116, dd)	3 (3)	8 (8)
(DIR), Y	STA A, (dd), Y	D816, dd (8116, D816, dd)	2 (3)	7 (8)
L(DIR)	STA A, L(dd)	1116, D216, dd (9116, D216, dd)	3 (3)	9 (9)
L(DIR), Y	STA A, L(dd), Y	D916, dd (8116, D916, dd)	2 (3)	9 (10)
SR	STA A, nn, S	1116, D316, nn (9116, D316, nn)	3 (3)	6 (6)
(SR), Y	STA A, (nn, S), Y	1116, D416, nn (9116, D416, nn)	3 (3)	9 (9)
ABS	STA A, mmll	DE16, II, mm (8116, DE16, II, mm)	3 (4)	4 (5)
ABS, X	STA A, mmll, X	DF16, II, mm (8116, DF16, II, mm)	3 (4)	5 (6)
ABS, Y	STA A, mmll, Y	1116, D616, II, mm (9116, D616, II, mm)	4 (4)	6 (6)
ABL	STA A, hhmmll	DC16, II, mm, hh (8116, DC16, II, mm, hh)	4 (5)	5 (6)
ABL, X	STA A, hhmmll, X	DD16, II, mm, hh (8116, DD16, II, mm, hh)	4 (5)	6 (7)

**Note :** This table applies when using accumulator A. When using accumulator B, replace "A" with "B" in the syntax. In this case, the machine code, the number of bytes, and the number of cycles enclosed in parentheses are applied.

CLM		
STA	A, MEM16	; MEM16 $\leftarrow$ A
SEM		
STA	B, MEM8	; MEM8 $\leftarrow$ BL

## **STAB**

**STAB** 

Function	:	Store												
Operation data leng	th:	8 bits												
Operation	:	M8 ← Acc∟ M8 ←												
<ul> <li>Description : Stores the contents of AccL into a memory in 8-bit length.</li> <li>The contents of Acc (AccH and AccL) do not change.</li> <li>This instruction is unaffected by flag m.</li> </ul>														
Status flags	:			IPL	N	V	m	x	D		z	С		
				_	_	_	_	_	_		_	_		
								2	C					
	4	Addressing mode	Syntax					Machi	ine c	ode			Bytes	Cycles
	C	DIR	STAB A, dd		~	و و	(8116.	CA16	s, dd)				2 (3)	4 (5)
			<b>•</b> · · · <b>•</b> · · , • · •		CA16	s, aa	(0.10,							- (a)
		DIR, X	STAB A, dd,		CB1	s, dd	( <mark>81</mark> 16,	CB16					2 (3)	5 (6)
	(	DIR)	STAB A, dd, STAB A, (dd)		CB16 1116	s, <mark>dd</mark> , C016	( <mark>81</mark> 16, 6, dd	<b>(91</b> 16,	C016				2 (3) 3 (3)	7 (7)
	(	DIR) DIR, X)	STAB A, dd, STAB A, (dd) STAB A, (dd,	X)	CB16 1116 1116	6, dd , C016 , C116	( <mark>81</mark> 16, 5, dd 5, dd	(9116, (9116,	C016 C116				2 (3) 3 (3) 3 (3)	7 (7) 8 (8)
	() () ()	DIR) DIR, X) DIR), Y	STAB A, dd, STAB A, (dd) STAB A, (dd, STAB A, (dd)	X) , Y	CB16 1116 1116 C816	5, dd , C016 , C116 , dd (	(8116, 5, dd 5, dd 6, dd (8116,	(9116, (9116, C816	C016 C116 , dd)	, dd)			2 (3) 3 (3) 3 (3) 2 (3)	7 (7) 8 (8) 7 (8)
	(  (  (  L	DIR) DIR, X) DIR), Y (DIR)	STAB A, dd, STAB A, (dd) STAB A, (dd, STAB A, (dd) STAB A, L(dd)	X) , Y J)	CB16 1116 1116 C816 1116	6, dd , C016 , C116 , dd ( , C216	(8116, 5, dd 5, dd (8116, 5, dd	(9116, (9116, C816 (9116,	C016 C116 , dd) C216	, dd)			2 (3) 3 (3) 3 (3) 2 (3) 3 (3)	7 (7) 8 (8) 7 (8) 9 (9)
	(    (    (    L	DIR) DIR, X) DIR), Y (DIR) (DIR), Y	STAB A, dd, STAB A, (dd) STAB A, (dd, STAB A, (dd) STAB A, L(dd) STAB A, L(dd)	X) , Y I) I), Y	CB16 1116 1116 C816 1116 C916	6, dd , C016 , C116 , dd ( , C216 , dd (	(8116, 5, dd 5, dd (8116, 5, dd (8116,	(9116, (9116, C816 (9116, C916	C016 C116 , dd) C216 , dd)	, dd) , dd)			2 (3) 3 (3) 3 (3) 2 (3) 3 (3) 2 (3) 2 (3)	7 (7) 8 (8) 7 (8) 9 (9) 9 (10)
	(   (  	DIR) DIR, X) DIR), Y (DIR) (DIR), Y SR	STAB A, dd, STAB A, (dd) STAB A, (dd, STAB A, (dd) STAB A, L(dd) STAB A, L(dd) STAB A, L(dd)	X) , Y I) J), Y S	CB16 1116 1116 C816 1116 C916 1116	s, dd , C016 , C116 , dd ( , C216 , dd ( , C316	(8116, 5, dd 5, dd (8116, 5, dd (8116, 5, nn	(9116, (9116, C816 (9116, C916 (9116,	C016 C116 , dd) C216 , dd) C316	, dd) , dd) , nn)			2 (3) 3 (3) 3 (3) 2 (3) 2 (3) 2 (3) 3 (3)	7 (7) 8 (8) 7 (8) 9 (9) 9 (10) 6 (6)
	(I (I L S (;	DIR) DIR, X) DIR), Y (DIR) (DIR), Y SR SR), Y	STAB A, dd, STAB A, (dd) STAB A, (dd, STAB A, (dd) STAB A, L(dd) STAB A, L(dd) STAB A, nn, STAB A, (nn,	X) , Y J), Y S S), Y	CB16 1116 1116 C816 1116 C916 1116	5, dd , C016 , C116 , dd ( , C216 , C216 , C316 , C416	(8116, 5, dd 5, dd (8116, 5, dd (8116, 5, nn 5, nn 5, nn	(9116, (9116, C816 (9116, C916 (9116, (9116,	C016 C116 , dd) C216 , dd) C316 C416	, dd) , dd) , nn) , nn)	٦)		2 (3) 3 (3) 3 (3) 2 (3) 2 (3) 3 (3) 2 (3) 3 (3) 3 (3)	7 (7) 8 (8) 7 (8) 9 (9) 9 (10) 6 (6) 9 (9)
	(  (              	DIR) DIR, X) DIR), Y (DIR) (DIR), Y SR	STAB A, dd, STAB A, (dd) STAB A, (dd, STAB A, (dd) STAB A, L(dd) STAB A, L(dd) STAB A, L(dd) STAB A, nn, STAB A, nn,	X) , Y I) J), Y S S), Y II	CB10 1116 1116 C810 1116 C910 1116 1116 CE10	s, dd , C016 , C116 , dd ( , C216 , C216 , C316 , C316 , C416	(8116, s, dd s, dd (8116, s, dd (8116, s, nn s, nn s, nn (8	(9116, (9116, C816 (9116, (9116, (9116, (9116, C	C016 C116 , dd) C216 , dd) C316 C416 CE16,	s, dd) s, dd) s, nn) s, nn) II, mr			2 (3) 3 (3) 3 (3) 2 (3) 3 (3) 2 (3) 3 (3) 3 (3) 3 (3) 3 (4)	7 (7) 8 (8) 7 (8) 9 (9) 9 (10) 6 (6) 9 (9) 4 (5)
	(  (                  	DIR) DIR, X) DIR), Y (DIR) (DIR), Y SR SR), Y BS	STAB A, dd, STAB A, (dd) STAB A, (dd, STAB A, (dd) STAB A, L(dd) STAB A, L(dd) STAB A, nn, STAB A, (nn,	X) , Y t), Y S S), Y II II, X	CB10 1116 1116 C810 1116 C910 1116 1116 CE10 CF10	s, dd , C016 , C116 , dd ( , C216 , dd ( , C316 , C316 , C316 , C116 , C116	(8116, 5, dd 5, dd (8116, 5, dd (8116, 5, nn 5, nn 5, nn 1, nn (8 1, nn 1, nnn	(9116, (9116, C816 (9116, (9116, (9116, (9116, (116, C 116, C	C016 C116 , dd) C216 , dd) C316 C416 CE16, CF16,	, dd) , dd) , nn) , nn) II, mn II, mn		))	2 (3) 3 (3) 3 (3) 2 (3) 2 (3) 3 (3) 2 (3) 3 (3) 3 (3)	7 (7) 8 (8) 7 (8) 9 (9) 9 (10) 6 (6) 9 (9)
	(  (  	DIR) DIR, X) DIR), Y (DIR) (DIR), Y GR SR), Y BS BS, X	STAB A, dd, STAB A, (dd) STAB A, (dd) STAB A, (dd) STAB A, L(dd) STAB A, L(dd) STAB A, L(dd) STAB A, nn, STAB A, nn, STAB A, mml STAB A, mml STAB A, mml	X) , Y ຢ), Y S S), Y II II, X II, Y IIII, Y	CB10 1116 1116 C816 1116 C916 1116 CE10 CF16 1116 CC10	s, dd , C016 , C116 , dd ( , C216 , C216 , C316 , C316 , C416 s, II, n s, II, n s, II, n	(8116, 5, dd 5, dd (8116, 5, dd (8116, 5, nn 5, nn 5, nn 1, nn 8, nn 8, nn 8, nn 8, nn 8, nn 1,	(9116, (9116, C816 (9116, (9116, (9116, (9116, (116, C 116, C nm (9 th (81)	C016 C116 , dd) C216 , dd) C316 C416 CE16, CF16, 0116, C	, dd) , dd) , nn) , nn) II, mn II, mn C616, II	n) I, mm , mm,	hh)	2 (3) 3 (3) 2 (3) 2 (3) 3 (3) 2 (3) 3 (3) 3 (3) 3 (4) 3 (4)	7 (7) 8 (8) 7 (8) 9 (9) 9 (10) 6 (6) 9 (9) 4 (5) 5 (6)
	(    ) 	DIR) DIR, X) DIR), Y (DIR) (DIR), Y GR SR), Y BS BS, X BS, X BS, Y	STAB A, dd, STAB A, (dd) STAB A, (dd) STAB A, (dd) STAB A, L(dc) STAB A, L(dc) STAB A, L(dc) STAB A, nn, STAB A, nn, STAB A, mml STAB A, mml	X) , Y ຢ), Y S S), Y II II, X II, Y IIII, Y	CB10 1116 1116 C816 1116 C916 1116 CE10 CF16 1116 CC10	s, dd , C016 , C116 , dd ( , C216 , C216 , C316 , C316 , C416 s, II, n s, II, n s, II, n	(8116, 5, dd 5, dd (8116, 5, dd (8116, 5, nn 5, nn 5, nn 1, nn 8, nn 8, nn 8, nn 8, nn 8, nn 1,	(9116, (9116, C816 (9116, (9116, (9116, (9116, (116, C 116, C nm (9 th (81)	C016 C116 , dd) C216 , dd) C316 C416 CE16, CF16, 0116, C	, dd) , dd) , nn) , nn) II, mn II, mn C616, II	n) I, mm , mm,	hh)	2 (3) 3 (3) 3 (3) 2 (3) 3 (3) 2 (3) 3 (3) 3 (3) 3 (4) 3 (4) 4 (4)	$\begin{array}{c} 7 & (7) \\ 8 & (8) \\ 7 & (8) \\ 9 & (9) \\ 9 & (10) \\ 6 & (6) \\ 9 & (9) \\ 4 & (5) \\ 5 & (6) \\ 6 & (6) \end{array}$

### Description example:

STAB

A, MEM8

; MEM8  $\leftarrow$  AL

## **STAD**

Function	: Store								
Operation data length	: 32 bits								
Operation	: M32 ← E								
	M32	E ]←							
Description	<b>Description</b> : Stores the contents of E into a memory in 32-bit length.								
	The contents	of E do not chang	je.						
<ul> <li>This instruction is unaffected by flag m.</li> </ul>									
Status flags									
Status nags		IPL	N V m x D L Z C						
			S O						
	Addressing mode	Syntax	Machine code	Bytes	Cycles				
	DIR	STAD E, dd	EA16, dd	2	6				
	DIR DIR, X	STAD E, dd STAD E, dd, X	EA16, dd EB16, dd	2 2	6 7				
	DIR DIR, X (DIR)	STAD E, dd STAD E, dd, X STAD E, (dd)	EA16, dd EB16, dd 1116 <b>, E0</b> 16, dd	2 2 3	6 7 9				
	DIR DIR, X (DIR) (DIR, X)	STAD E, dd STAD E, dd, X STAD E, (dd) STAD E, (dd, X)	EA16, dd EB16, dd 1116, E016, dd 1116, E116, dd	2 2 3 3	6 7 9 10				
	DIR DIR, X (DIR) (DIR, X) (DIR), Y	STAD E, dd STAD E, dd, X STAD E, (dd) STAD E, (dd, X) STAD E, (dd), Y	EA16, dd EB16, dd 1116, E016, dd 1116, E116, dd E816, dd	2 2 3 3 2	6 7 9 10 9				
	DIR DIR, X (DIR) (DIR, X) (DIR), Y L(DIR)	STAD E, dd STAD E, dd, X STAD E, (dd) STAD E, (dd, X) STAD E, (dd), Y STAD E, L(dd)	EA16, dd EB16, dd 1116, E016, dd 1116, E116, dd E816, dd 1116, E216, dd	2 2 3 3 2 3	6 7 9 10 9 11				
	DIR DIR, X (DIR) (DIR, X) (DIR), Y	STAD E, dd STAD E, dd, X STAD E, (dd) STAD E, (dd, X) STAD E, (dd), Y	EA16, dd EB16, dd 1116, E016, dd 1116, E116, dd E816, dd 1116, E216, dd	2 2 3 3 2	6 7 9 10 9				
	DIR DIR, X (DIR, X) (DIR, X) (DIR), Y L(DIR) L(DIR), Y	STAD E, dd STAD E, dd, X STAD E, (dd) STAD E, (dd, X) STAD E, (dd), Y STAD E, L(dd) STAD E, L(dd), Y	EA16, dd EB16, dd 1116, E016, dd 1116, E116, dd E816, dd 1116, E216, dd E916, dd 1116, E316, nn	2 2 3 3 2 3 2 3 2	6 7 9 10 9 11 11				
	DIR DIR, X (DIR, X) (DIR, X) (DIR), Y L(DIR) L(DIR), Y SR (SR), Y ABS	STAD E, dd STAD E, dd, X STAD E, (dd) STAD E, (dd), Y STAD E, (dd), Y STAD E, L(dd) STAD E, L(dd), Y STAD E, nn, S STAD E, nn, S, Y STAD E, mmll	EA16, dd EB16, dd 1116, E016, dd 1116, E116, dd E816, dd 1116, E216, dd E916, dd 1116, E316, nn 1116, E416, nn EE16, II, mm	2 2 3 3 2 3 2 3 3 3 3 3	6 7 9 10 9 11 11 8				
	DIR DIR, X (DIR, X) (DIR), Y L(DIR), Y SR (SR), Y ABS ABS, X	STAD E, dd STAD E, dd, X STAD E, (dd) STAD E, (dd), Y STAD E, (dd), Y STAD E, L(dd) STAD E, L(dd), Y STAD E, nn, S STAD E, nn, S, Y STAD E, mmll STAD E, mmll, X	EA16, dd EB16, dd 1116, E016, dd 1116, E116, dd E816, dd 1116, E216, dd E916, dd 1116, E316, nn 1116, E416, nn EE16, II, mm EF16, II, mm	2 2 3 3 2 3 2 3 3 3 3 3 3 3	6 7 9 10 9 11 11 11 8 11 6 7				
	DIR DIR, X (DIR, X) (DIR, X) (DIR), Y L(DIR) L(DIR), Y SR (SR), Y ABS ABS, X ABS, Y	STAD E, dd STAD E, dd, X STAD E, (dd) STAD E, (dd, X) STAD E, (dd), Y STAD E, L(dd) STAD E, L(dd), Y STAD E, nn, S STAD E, nn, S STAD E, mmll STAD E, mmll, X STAD E, mmll, Y	EA16, dd EB16, dd 1116, E016, dd 1116, E116, dd E816, dd 1116, E216, dd E916, dd 1116, E316, nn 1116, E416, nn EE16, II, mm EF16, II, mm 1116, E616, II, mm	2 2 3 2 3 2 3 3 3 3 3 4	6 7 9 10 9 11 11 8 11 6 7 8				
	DIR DIR, X (DIR, X) (DIR, X) (DIR), Y L(DIR) L(DIR), Y SR (SR), Y ABS ABS, X ABS, X ABS, Y ABL	STAD E, dd STAD E, dd, X STAD E, (dd) STAD E, (dd, X) STAD E, (dd), Y STAD E, L(dd) STAD E, L(dd), Y STAD E, nn, S STAD E, nn, S STAD E, mmll STAD E, mmll, X STAD E, mmll, Y STAD E, hhmmll	EA16, dd EB16, dd 1116, E016, dd 1116, E116, dd E816, dd 1116, E216, dd E916, dd 1116, E316, nn 1116, E416, nn EF16, II, mm EF16, II, mm 1116, E616, II, mm EC16, II, mm, hh	2 2 3 2 3 2 3 2 3 3 3 3 4 4	6 7 9 10 9 11 11 8 11 6 7 8 7				
	DIR DIR, X (DIR, X) (DIR, X) (DIR), Y L(DIR) L(DIR), Y SR (SR), Y ABS ABS, X ABS, Y	STAD E, dd STAD E, dd, X STAD E, (dd) STAD E, (dd, X) STAD E, (dd), Y STAD E, L(dd) STAD E, L(dd), Y STAD E, nn, S STAD E, nn, S STAD E, mmll STAD E, mmll, X STAD E, mmll, Y	EA16, dd EB16, dd 1116, E016, dd 1116, E116, dd E816, dd 1116, E216, dd E916, dd 1116, E316, nn 1116, E416, nn EF16, II, mm EF16, II, mm 1116, E616, II, mm EC16, II, mm, hh	2 2 3 2 3 2 3 3 3 3 3 4	6 7 9 10 9 11 11 8 11 6 7 8				
	DIR DIR, X (DIR, X) (DIR, X) (DIR), Y L(DIR) L(DIR), Y SR (SR), Y ABS ABS, X ABS, X ABS, Y ABL	STAD E, dd STAD E, dd, X STAD E, (dd) STAD E, (dd, X) STAD E, (dd), Y STAD E, L(dd) STAD E, L(dd), Y STAD E, nn, S STAD E, nn, S STAD E, mmll STAD E, mmll, X STAD E, mmll, Y STAD E, hhmmll	EA16, dd EB16, dd 1116, E016, dd 1116, E116, dd E816, dd 1116, E216, dd E916, dd 1116, E316, nn 1116, E416, nn EF16, II, mm EF16, II, mm 1116, E616, II, mm EC16, II, mm, hh	2 2 3 2 3 2 3 2 3 3 3 3 4 4	6 7 9 10 9 11 11 8 11 6 7 8 7				
Description example	DIR DIR, X (DIR, X) (DIR, X) (DIR), Y L(DIR) L(DIR), Y SR (SR), Y ABS ABS, X ABS, X ABS, Y ABL ABL, X	STAD E, dd STAD E, dd, X STAD E, (dd) STAD E, (dd, X) STAD E, (dd), Y STAD E, L(dd) STAD E, L(dd), Y STAD E, nn, S STAD E, nn, S STAD E, mmll STAD E, mmll, X STAD E, mmll, Y STAD E, hhmmll	EA16, dd EB16, dd 1116, E016, dd 1116, E116, dd E816, dd 1116, E216, dd E916, dd 1116, E316, nn 1116, E416, nn EF16, II, mm EF16, II, mm 1116, E616, II, mm EC16, II, mm, hh	2 2 3 2 3 2 3 2 3 3 3 3 4 4	6 7 9 10 9 11 11 8 11 6 7 8 7				
Description example	DIR DIR, X (DIR, X) (DIR, X) (DIR), Y L(DIR) L(DIR), Y SR (SR), Y ABS ABS, X ABS, X ABS, Y ABL ABL, X	STAD E, dd STAD E, dd, X STAD E, (dd) STAD E, (dd), Y STAD E, L(dd), Y STAD E, L(dd), Y STAD E, L(dd), Y STAD E, nn, S STAD E, nn, S STAD E, mmll STAD E, mmll, X STAD E, mmll, X STAD E, hhmmll STAD E, hhmmll, X	EA16, dd EB16, dd 1116, E016, dd 1116, E116, dd E816, dd 1116, E216, dd E916, dd 1116, E316, nn 1116, E416, nn EF16, II, mm EF16, II, mm 1116, E616, II, mm EC16, II, mm, hh	2 2 3 2 3 2 3 3 3 3 4 4 4	6 7 9 10 9 11 11 8 11 6 7 8 7 8				

STP

SToP

Function	: Special								
Operation data leng	th: –								
Operation	: Stop the oscilla	tion							
Description	restart, generat	esets the flip-flop for oscillator control and stops the oscillation of the oscillation circuit. To start, generate an interrupt request or perform the hardware reset. The microcomputer will ereby be released from the STP state.							
Status flags	:	IPL —	N V m x D I Z C 	•					
	Addressing mode	Syntax	Machine code	Bytes	Cycles				
	IMP	STP	3116, 3016	2	_				
	ole: STP	annou							

4–193

## STX

Store				
16 bits or 8 bits				
$M \leftarrow X$ <u>When x = "0"</u> M16 $\longleftarrow$ <u>When x = "1"</u>	X			
M8 X∟	]			
		e contents of X do not ch	ange.	
	IPL N V — — —	m x D I Z — — — — —	C —	
Addressing mode	Syntax	Machine code	Bytes	Cycles
				4 6
				4
x MEM16 x MEM8		; MEM16 ← X ; MEM8 ← X∟		
	16 bits or 8 bits $M \leftarrow X$ <u>When x = "0"</u> <u>M16</u> <u>When x = "1"</u> <u>M8</u> XL <u>C</u> <u>When x = "1"</u> <u>M8</u> XL <u>C</u> <u>Stores the contents</u> • This instruction is <u>Addressing mode</u> R, Y <u>S</u> <u>X</u> <u>MEM16</u>	16 bits or 8 bits $M \leftarrow X$ When $x = "0"$ M16       X $\square$ $\leftarrow$ When $x = "1"$ M8       XL $\square$ $\leftarrow$ Stores the contents of X into a memory. The         • This instruction is unaffected by flag m. $\square$ <t< th=""><th>16 bits or 8 bits $M \leftarrow X$ When x = "0" $M16 \qquad X$ $When x = "1"$ $M8 \qquad X_{L}$ $M8 \qquad X_{L}$ M8 $X_{L}$ M8 $X_{L}$ M8 $X_{L}$ Stores the contents of X into a memory. The contents of X do not ch • This instruction is unaffected by flag m. $IPL \qquad N \qquad V \qquad m \qquad x \qquad D \qquad i \qquad Z$ Addressing mode $Syntax \qquad Machine \ code$ R, Y STX dd, Y STX dd, Y STX dd, Y STX dd, Y STX mml $E2_{16}, \ dd$ $E_{16}, \ dd$ $E_{16$</th><th>16 bits or 8 bits $M \leftarrow X$ $\underline{When x = "0"}$ $\underline{M16} \qquad X$ $\underline{When x = "1"}$ $\underline{M8} \qquad X_{L}$ $\underline{When x = "1"}$ $\underline{M8} \qquad X_{L}$ $\underline{When x = "1"}$ $\underline{M8} \qquad X_{L}$ $\underline{M16} \qquad X_{L}$ $$</th></t<>	16 bits or 8 bits $M \leftarrow X$ When x = "0" $M16 \qquad X$ $When x = "1"$ $M8 \qquad X_{L}$ $M8 \qquad X_{L}$ M8 $X_{L}$ M8 $X_{L}$ M8 $X_{L}$ Stores the contents of X into a memory. The contents of X do not ch • This instruction is unaffected by flag m. $IPL \qquad N \qquad V \qquad m \qquad x \qquad D \qquad i \qquad Z$ Addressing mode $Syntax \qquad Machine \ code$ R, Y STX dd, Y STX dd, Y STX dd, Y STX dd, Y STX mml $E2_{16}, \ dd$ $E_{16}, \ dd$ $E_{16$	16 bits or 8 bits $M \leftarrow X$ $\underline{When x = "0"}$ $\underline{M16} \qquad X$ $\underline{When x = "1"}$ $\underline{M8} \qquad X_{L}$ $\underline{When x = "1"}$ $\underline{M8} \qquad X_{L}$ $\underline{When x = "1"}$ $\underline{M8} \qquad X_{L}$ $\underline{M16} \qquad X_{L}$ $$

## STY

					(	
Function	:	Store				
Operation data le	ngth:	16 bits or 8 bits				
Operation	:	$\begin{array}{c} M \leftarrow Y \\ \underline{When  x = "0"} \\ \mathbf{M16} \\ \hline \end{array} \leftarrow \end{array}$	Y			
		$\frac{\text{When } x = "1"}{\text{M8}} Y_{\text{L}}$	]		К.,	
Description	:		of Y into a memory. The unaffected by flag m.	e contents of Y do not ch	ange.	
Status flags	:		IPL N V — — —	m x D I Z — — — — —	C —	
	A	ddressing mode	Syntax	Machine code	Bytes	Cycles
	DIR DIR, ABS	x	STY dd STY dd, X STY mmll	F216, dd 4116, FB16, dd F716, II, mm	2 3 3	4 6 4
	nple: CLP STY SEP STY	x MEM16 x MEM8	n	; MEM16 ← Y ; MEM8 ← Y∟		

## SUB

:	Subtract
h:	16 bits or 8 bits
:	$Acc \leftarrow Acc - M$ $\underline{When m = "0"}$ $Acc \qquad Acc \qquad M16$ $\boxed{\qquad} \leftarrow \boxed{\qquad} - \boxed{\qquad}$
	$\frac{\text{When } m = "1"}{\text{Acc}_{L}} \xrightarrow{\text{Acc}_{L}} \frac{\text{M8}}{\text{M8}}$
	In this case, the contents of Acc ^H do not change.
:	<ul> <li>Subtracts the contents of a memory from the contents of Acc, and stores the result in Acc.</li> <li>● This instruction cannot operate in decimal. Set flag D = "0" when using this instruction.</li> </ul>
:	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
:	Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."
:	Set to "1" when the result of the operation (regarded as a signed operation) is a value outside the range of $-32768$ to $+32767$ ( $-128$ to $+127$ when flag m is "1"). Otherwise, cleared to "0."
:	Set to "1" when the operation result is "0." Otherwise, cleared to "0."
:	Cleared to "0" when the borrow occurs. Otherwise, set to "1."
	:

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	SUB A, #imm	3616, imm (8116, 3616, imm)	2 (3)	1 (2)
DIR	SUB A, dd	3A16, dd (8116, 3A16, dd)	2 (3)	3 (4)
DIR, X	SUB A, dd, X	3B16, dd (8116, 3B16, dd)	2 (3)	4 (5)
(DIR)	SUB A, (dd)	1116, 3016, dd (9116, 3016, dd)	3 (3)	6 (6)
(DIR, X)	SUB A, (dd, X)	1116, 3116, dd (9116, 3116, dd)	3 (3)	7 (7)
(DIR), Y	SUB A, (dd), Y	1116, 3816, dd (9116, 3816, dd)	3 (3)	7 (7)
L(DIR)	SUB A, L(dd)	1116, 3216, dd (9116, 3216, dd)	3 (3)	8 (8)
L(DIR), Y	SUB A, L(dd), Y	1116, 3916, dd (9116, 3916, dd)	3 (3)	9 (9)
SR	SUB A, nn, S	1116, 3316, nn (9116, 3316, nn)	3 (3)	5 (5)
(SR), Y	SUB A, (nn, S), Y	1116, 3416, nn (9116, 3416, nn)	3 (3)	8 (8)
ABS	SUB A, mmll	3E16, II, mm (8116, 3E16, II, mm)	3 (4)	3 (4)
ABS, X	SUB A, mmll, X	3F16, II, mm (8116, 3F16, II, mm)	3 (4)	4 (5)
ABS, Y	SUB A, mmll, Y	1116, 3616, II, mm (9116, 3616, II, mm)	4 (4)	5 (5)
ABL	SUB A, hhmmll	1116, 3C16, II, mm, hh (9116, 3C16, II, mm, hh)	5 (5)	5 (5)
ABL, X	SUB A, hhmmll, X	1116, 3D16, II, mm, hh (9116, 3D16, II, mm, hh)	5 (5)	6 (6)

**Notes 1:** This table applies when using accumulator A. When using accumulator B, replace "A" with "B" in the syntax. In this case, the machine code, the number of bytes, and the number of cycles enclosed in parentheses are applied.

2: In the immediate addressing mode, the byte number increases by 1 when flag m = "0."

ampic.		
CLM SUB.W	A, #IMM16	; A ← A − IMM16
SUB SEM	B, MEM16	; $B \leftarrow B - MEM16$
SUB.B	A, #IMM8	; $A_L \leftarrow A_L - IMM8$
SUB	B, MEM8	; BL ← BL − MEM8
ł	or sui	

## **SUBB**

Function	:	Subtract
Operation data length	1:	8 bits
Operation	:	$Acc \leftarrow Acc \leftarrow IMM8$ $Acc \leftarrow Acc \leftarrow Acc \leftarrow IMM8$ $\Box \leftarrow \Box - IMM8$
Description	:	<ul> <li>Subtracts the immediate value from the contents of AccL in 8-bit length, and stores the result in AccL.</li> <li>This instruction is unaffected by flag m.</li> <li>The contents of AccH do not change.</li> <li>This instruction cannot operate in decimal. Set flag D = "0" when using this instruction.</li> </ul>
Status flags	:	IPL     N     V     m     x     D     I     Z     C       -     N     V     -     -     -     Z     C
Ν	:	Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."
V	:	Set to "1" when the result of the operation (regarded as a signed operation) is a value outside the range of $-128$ to $+127$ . Otherwise, cleared to "0."
Z	:	Set to "1" when the operation result is "0." Otherwise, cleared to "0."

C : Cleared to "0" when the borrow occurs. Otherwise, set to "1."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	SUBB A, #imm	3916, imm	2	1
IMM 💋	SUBB B, #imm	8116, 3916, imm	3	2

### Description example:

SUBB SUBB A, #IMM8 B, #IMM8 ;  $A_L \leftarrow A_L - IMM8$ ;  $B_L \leftarrow B_L - IMM8$ 

## SUBD

Function	:	Subtract
Operation data le	ength:	32 bits
Operation	:	$E \leftarrow E - M32$ $E \qquad E \qquad M32$ $\Box \qquad \Box \qquad$
Description	:	<ul> <li>Subtracts the contents of a memory from the contents of E in 32-bit length, and stores the result in E.</li> <li>This instruction is unaffected by flag m.</li> <li>This instruction cannot operate in decimal. Set flag D = "0" when using this instruction.</li> </ul>
Status flags	<b>s</b> :	IPL         N         V         m         x         D         I         Z         C           -         N         V         -         -         -         Z         C
	N :	Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."
	V :	Set to "1" when the result of the operation (regarded as a signed operation) is a value outside the range of –2147483648 to +2147483647. Otherwise, cleared to "0."
	Ζ:	Set to "1" when the operation result is "0." Otherwise, cleared to "0."

C : Cleared to "0" when the borrow occurs. Otherwise, set to "1."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	SUBD E, #imm	3D16, immll, immlh, immhl, immhh	5	3
DIR	SUBD E, dd	AA16, dd	2	6
DIR, X	SUBD E, dd, X	AB16, dd	2	7
(DIR)	SUBD E, (dd)	1116, A016, dd	3	9
(DIR, X)	SUBD E, (dd, X)	1116, A116, dd	3	10
(DIR), Y	SUBD E, (dd), Y	1116, A816, dd	3	10
L(DIR)	SUBD E, L(dd)	1116, A216, dd	3	11
L(DIR), Y	SUBD E, L(dd), Y	1116, A916, dd	3	12
SR	SUBD E, nn, S	1116, A316, nn	3	8
(SR), Y	SUBD E, (nn, S), Y	1116, A416, nn	3	11
ABS	SUBD E, mmll	AE16, II, mm	3	6
ABS, X	SUBD E, mmll, X	AF16, II, mm	3	7
ABS, Y	SUBD E, mmll, Y	1116, A616, II, mm	4	8
ABL	SUBD E, hhmmll	1116, AC16, II, mm, hh	5	8
ABL, X	SUBD E, hhmmll, X	1116, AD16, II, mm, hh	5	9

G

SUBD	E, #IMM32	; $E \leftarrow E - IMM32$ (B, $A \leftarrow B$ , $A - IMM32$ )
SUBD	E, MEM32	; $E \leftarrow E - MEM32$ (B, $A \leftarrow B$ , $A - MEM32$ )

## SUBM

Function :	Subtract
Operation data length:	16 bits or 8 bits
Operation :	$M \leftarrow M - IMM$ $\underline{When \ m = "0"}$ $M16 \qquad M16$ $\boxed{\qquad} \qquad $
Description :	<ul> <li>Subtracts the immediate value from the contents of a memory, and stores the result in the memory.</li> <li>This instruction cannot operate in decimal. Set flag D = "0" when using this instruction.</li> </ul>
Status flags :	IPL     N     V     m     x     D     I     Z     C       -     N     V     -     -     -     Z     C
N : V :	Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0." Set to "1" when the result of the operation (regarded as a signed operation) is a value outside the range of $-32768$ to $+32767$ ( $-128$ to $+127$ when flag m is "1"). Otherwise, cleared to "0."

- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."
- C : Cleared to "0" when the borrow occurs. Otherwise, set to "1."

Addressing mode	Syntax	Machine code	Bytes	Cycles
DIR	SUBM dd, #imm	5116, 1316, dd, imm	4	7
ABS	SUBM mmll, #imm	5116, 1716, II, mm, imm	5	7

**Note :** When flag m = "0," the byte number increases by 1.

CLM SUBM.W SEM	MEM16, #IMM16	; MEM16 $\leftarrow$ MEM16 – IMM16
SUBM.B	MEM8, #IMM8	; MEM8 $\leftarrow$ MEM8 – IMM8

## SUBMB

Function Subtract ŝ Operation data length: 8 bits Operation  $M8 \leftarrow M8 - IMM8$ ÷ M8 M8 - IMM8 Description Subtracts the immediate value from the contents of a memory in 8-bit length, and stores the result in the memory. • This instruction is unaffected by flag m. • This instruction cannot operate in decimal. Set flag D = "0" when using this instruction. **Status flags** 1 IPL Ν V m х D I Ζ С V Ζ С Ν Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0." N : V : Set to "1" when the result of the operation (regarded as a signed operation) is a value outside the range of -128 to +127. Otherwise, cleared to "0."

- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."
- C : Cleared to "0" when the borrow occurs. Otherwise, set to "1."

Addressing mode	Syntax	Machine code	Bytes	Cycles
DIR	SUBMB dd, #imm	5116, 1216, dd, imm	4	7
ABS	SUBMB mmll, #imm	5116, 1616, II, mm, imm	5	7

Description example:

SUBMB

MEM8, #IMM8

; MEM8  $\leftarrow$  MEM8 – IMM8

## SUBMD

**SUBMD** 

Function		:	Subtract
Operation data le	ength	1:	32 bits
Operation		:	$\begin{array}{c c} M32 \leftarrow M32 - IMM32 \\ \hline M32 & M32 \\ \hline \\ $
Description		:	<ul> <li>Subtracts the immediate value from the contents of a memory in 32-bit length, and stores the result in the memory.</li> <li>This instruction is unaffected by flag m.</li> <li>This instruction cannot operate in decimal. Set flag D = "0" when using this instruction.</li> </ul>
Status flag	5	:	IPL         N         V         m         x         D         I         Z         C           -         N         V         -         -         -         Z         C
	N V		Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0." Set to "1" when the result of the operation (regarded as a signed operation) is a value outside the range of -2147483648 to +2147483647. Otherwise, cleared to "0."

- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."
- C : Cleared to "0" when the borrow occurs. Otherwise, set to "1."

Addressing mode	Syntax	Machine code	Bytes	Cycles
DIR	SUBMD dd, #imm	5116, 9316, dd, immll, immlh, immhl, immhh	7	10
ABS	SUBMD mmll, #imm	5116, 9716, II, mm, immll, immlh, immhl, immhh	8	10

### Description example:

SUBMB

MEM32, #IMM32

; MEM32  $\leftarrow$  MEM32 – IMM32

## **SUBS**

Function	:	Subtract
Operation data leng	th:	16 bits
Operation	:	$S \leftarrow S - IMM8$ $S \qquad S$ $\Box \qquad \Box \qquad \leftarrow \qquad \Box \qquad - IMM8$
Description	:	<ul> <li>Subtract the 8-bit immediate value from the contents of S in 16-bit length, and stores the result in S. The immediate value is extended to 16-bit length with 0s in operation.</li> <li>This instruction is unaffected by flag m.</li> <li>This instruction cannot operate in decimal. Set flag D = "0" when using this instruction.</li> </ul>
Status flags	:	IPL     N     V     m     x     D     I     Z     C       -     N     V     -     -     -     Z     C
	:	Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0." Set to "1" when the result of the operation (regarded as a signed operation) is a value outside the range of $-32768$ to $+32767$ . Otherwise, cleared to "0."

- Set to "1" when the operation result is "0." Otherwise, cleared to "0." Ζ:
- Cleared to "0" when the borrow occurs. Otherwise, set to "1." C :

	5			
Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	SUBS #imm	3116, 0B16, imm	3	2

### Description example:

SUBS

#IMM8

; S  $\leftarrow$  S – IMM8

## **SUBX**

Function :	Subtract	
Operation data length:	16 bits or 8 bits	
Operation :	$X \leftarrow X - IMM \qquad (IMM = 0 \text{ to } 31)$ $\underline{When \ x = "0"} \\ X \qquad X \\                              $	
	$\begin{array}{ccc} \underline{When \ x = ``1''} & & \\ & X_{L} & X_{L} & \\ & & & \\ & & \leftarrow & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$	
Description :	<ul> <li>Subtracts the immediate value (0 to 31) from the contents of X, and stores the result in X.</li> <li>This instruction is unaffected by flag m.</li> <li>This instruction cannot operate in decimal. Set flag D = "0" when using this instruction.</li> </ul>	
Status flags :	IPL     N     V     m     x     D     I     Z     C       -     N     V     -     -     -     Z     C	
N :	Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."	
V ·	Set to "1" when the result of the operation (regarded as a signed operation) is a value outs	

- : Set to "1" when the result of the operation (regarded as a signed operation) is a value outside the range of -32768 to +32767 (-128 to +127 when flag x is "1"). Otherwise, cleared to "0."
- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."
- C : Cleared to "0" when the borrow occurs. Otherwise, set to "1."

Addressing mode	Syntax	Machine code	Bytes	Cycles	
IMM	SUBX #imm	0116, imm+4016	2	2	
Note : Any value from 0 to 31 can be set to imm.					

2

CLP SUBX	× #IMM	: $X \leftarrow X - IMM(0 \text{ to } 31)$
SEP	х	
SUBX	#IMM	; $X_{L} \leftarrow X_{L} - IMM(0 \text{ to } 31)$

# **SUBY**

Function :	Subtract
Operation data length:	16 bits or 8 bits
Operation :	$Y \leftarrow Y - IMM \qquad (IMM = 0 \text{ to } 31)$ $\underline{When \ x = "0"} \qquad Y \qquad Y$ $\Box \qquad \qquad$
	$\begin{array}{ccc} \underline{When \ x = ``1''} & & \\ & Y_{L} & Y_{L} & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$
Description :	<ul> <li>Subtracts the immediate value (0 to 31) from the contents of Y, and stores the result in Y.</li> <li>This instruction is unaffected by flag m.</li> <li>This instruction cannot operate in decimal. Set flag D = "0" when using this instruction.</li> </ul>
Status flags :	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
N :	Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."
V :	Set to "1" when the result of the operation (regarded as a signed operation) is a value outside

- the range of -32768 to +32767 (-128 to +127 when flag x is "1"). Otherwise, cleared to "0."
- Set to "1" when the operation result is "0." Otherwise, cleared to "0." Ζ:
- C : Cleared to "0" when the borrow occurs. Otherwise, set to "1."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	SUBY #imm	0116, imm+6016	2	2
Note : Any value from	n 0 to 31 can be set	to imm.		

### Description example:

CLP SUBY	x #IMM	; $Y \leftarrow Y - IMM(0 \text{ to } 31)$
SEP	х	
SUBY	#IMM	; $Y_L \leftarrow Y_L - IMM(0 \text{ to } 31)$

# TAD n

TAD n

Function	:	Transfer betwee	en registers												
Operation data lengt	h:	16 bits													
Operation	:	DPRn ← A DPRn	(n = 0 to 3 A →	3)											
Description	:	Transfers the co Specify one of The contents This instruction This instruction	of DPR0 to DF of A do not c on is unaffecte	PR3 t hang ed by	for the ge. / flag	e des m.	stina	tion	of tr	rans	sfer.		X		
Status flags	:			IPL —	N —	V —	m 	x			0	Z —	C —	]	
	Ad	Idressing mode	Syntax					Mach	ine	cod	е			Bytes	Cycles
	IMF	D C	TAD n		3116,	n216	0							2	3
Description example	e: AD	e : Any value from	1 0 to 3 can be	set to	o n.			← A							
ΤA			anne			; D	PR1	← A							

# TAS

Function	:	Transfer betwee	en registers			
Operation data lengt	h:	16 bits				
Operation	:	S ← A S	A →			
Description	:		ontents of A to S on is unaffected b	in 16-bit length. The contents of y flag m.	f A do not chang	e.
Status flags	:		IPL —	N V m x D I	z c – –	
	<u> </u>			Maakina aada	Dutas	Cycles
	Ac	ddressing mode	Syntax	Machine code	Bytes	Cycles
	Ac IMI	_	Syntax TAS	3116, 8216	2	2
Description exampl	IMI	_	TAS			-

### ΤΑΧ

Function :	Transfer between registers
Operation data length:	16 bits or 8 bits
Operation :	$X \leftarrow A$ $\underbrace{When \ x = "0"}_{X \qquad A}$ $\underbrace{When \ x = "1"}_{XL \qquad AL}$
Description :	<ul> <li>In this case, the contents of X_H do not change.</li> <li>Transfers the contents of A to X. The contents of A do not change.</li> </ul>
Status flags :	IPL     N     V     m     x     D     I     Z     C       -     N     -     -     -     -     Z     -

- N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."
- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMP	TAX	C416	1	1

### Description example:

CLP	X	
TAX		; $X \leftarrow A$
SEP	x	
TAX		; $X_L \leftarrow A_L$

## TAY

Function :	Transfer between registers
Operation data length:	16 bits or 8 bits
Operation :	$\begin{array}{c} Y \leftarrow A \\ \underline{When \ x = "0"} \\ \hline Y & A \\ \hline \Box & \leftarrow \Box \\ \end{array}$ $\begin{array}{c} When \ x = "1" \\ Y_{L} & A_{L} \\ \hline \Box & \leftarrow \Box \\ \end{array}$ $\begin{array}{c} \# \ In \ this \ case, \ the \ contents \ of \ Y_{H} \ do \ not \ change. \end{array}$
Description :	Transfers the contents of A to Y. The contents of A do not change.
Status flags :	IPL     N     V     m     x     D     I     Z     C       -     N     -     -     -     -     Z     -
N :	Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."

Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMP	TAY	D416	1	1

### Description example:

CLP xTAY  $; Y \leftarrow A$ SEP X  $; Y_{L} \leftarrow A_{L}$ 

### TBD n

TBD n

: Transfer betv	veen registers				
h: 16 bits					
: DPRn ← B DPRI	(n = 0  to  3)				
<ul><li>Specify or</li><li>The conte</li><li>This instruct</li></ul>	e of DPR0 to DPR3 hts of B do not chan ction is unaffected b	for the destination of ge. y flag m.	transfer.	•	
:		- N V m x	D I Z C 		
Addressing mod	e Syntax	Machin	e code	Bytes	Cycles
IMP	TBD n	B116, n216		2	3
<b>e</b> : 3D 0 3D 1	nnou	; DPR0 ← B ; DPR1 ← B			
	h: 16 bits : DPRn $\leftarrow$ B DPRr DPRr : Transfers the • Specify on • The conter • This instrue • This instrue • This instrue • This instrue • This value fr Note : Any value fr e: BD 0 BD 1	: DPRn $\leftarrow$ B       (n = 0 to 3)         DPRn       B $\leftarrow$ $\perp$ : Transfers the contents of B to the       • Specify one of DPR0 to DPR3         • The contents of B do not chan       • This instruction is unaffected b         • This instruction includes the fun       • This instruction includes the fun         :       IPI         MP       TBD n         Note : Any value from 0 to 3 can be set         BD       0	h: 16 bits : DPRn $\leftarrow$ B (n = 0 to 3) DPRn B $\leftarrow$ DPRn $\leftarrow$ B : Transfers the contents of B to the specified DPRn (DF • Specify one of DPR0 to DPR3 for the destination of • The contents of B do not change. • This instruction is unaffected by flag m. • This instruction includes the function of the TBD instruction • This instruction includes the function of the TBD instruction • This instruction includes the function of the TBD instruction • This instruction includes the function of the TBD instruction • This instruction includes the function of the TBD instruction • This instruction includes the function of the TBD instruction • This instruction includes the function of the TBD instruction • This instruction includes the function of the TBD instruction • This instruction includes the function of the TBD instruction • This instruction of the TBD instruction • TBD n B1 ₁₆ , n2 ₁₆ • Note : Any value from 0 to 3 can be set to n. • DPR0 $\leftarrow$ B • DPR1 $\leftarrow$ B	h:       16 bits         :       DPRn $\leftarrow$ B (n = 0 to 3)         DPRn $\leftarrow$ B         :       Transfers the contents of B to the specified DPRn (DPR0 to DPR3) in 16-         :       Specify one of DPR0 to DPR3 for the destination of transfer.         :       The contents of B do not change.         :       This instruction is unaffected by flag m.         :       IPL N V m x D I Z C         .       .         Machine code         IMP       TBD n         B116, n216         Note : Any value from 0 to 3 can be set to n.         :       :         :       :         :       :         :       :         :       :         :       :         D       0         :       :         :       :         D       0         :       :         :       :         :       :         :       :         :       :         :       :         :       :         :       :         :       :         :       :         :	h: 16 bits : DPRn $\leftarrow$ B (n = 0 to 3) DPRn $\leftarrow$ B : Transfers the contents of B to the specified DPRn (DPR0 to DPR3) in 16-bit leng • Specify one of DPR0 to DPR3 for the destination of transfer. • The contents of B do not change. • This instruction is unaffected by flag m. • This instruction includes the function of the TBD instruction in the conventional 77 : IPL N V m x D I Z C 

## TBS

Function	:	Transfer betwee	en registers			
Operation data lengt	th:	16 bits				
Operation	:	S ← B S	B			
Description	:		ontents of B to S i on is unaffected by	n 16-bit length. The contents of B do n y flag m.	ot chang	e.
Status flags	:		IPL —	N V m x D I Z C		
	A	ddressing mode	Syntax	Machine code	Bytes	Cycles
	L	5			-	
	IM	Ρ	TBS	B116, 8216	2	2
Description exampl ⊤₽	le: 3S		nnou		2	2



Function :	Transfer between registers
Operation data length:	16 bits or 8 bits
Operation :	$\begin{array}{c} X \leftarrow B \\ \underline{When \ x = "0"} \\ \hline X & B \\ \hline \Box & \leftarrow \Box \\ \hline \end{array} \\ \hline \\ \underline{When \ x = "1"} \\ X_{L} & B_{L} \\ \hline \Box & \leftarrow \Box \\ \hline \end{array} \\ \hline \\ \ast \ \text{In this case, the contents of } X_{H} \ \text{do not change.} \end{array}$
Description :	Transfers the contents of B to X. The contents of B do not change.
Status flags :	IPL     N     V     m     x     D     I     Z     C       -     N     -     -     -     -     Z     -

- N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."
- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMP	твх	8116, C416	2	2

#### Description example:

CLP	×	
TBX		; X ← B
SEP	x	
ТВХ		; $X_{L} \leftarrow B_{L}$

# TBY

Function :	Transfer between registers
Operation data length:	16 bits or 8 bits
Operation :	$\begin{array}{c} Y \leftarrow B \\ \underline{When \ x = "0"} \\ Y \\ B \\ \hline \\ H \\ H$
Description :	Transfers Y with the contents of B. The contents of B do not change.
Status flags :	IPL     N     V     m     x     D     I     Z     C       -     N     -     -     -     -     Z     -
N :	Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."

ob

Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0." 

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMP	ТВҮ	8116, D416	2	2

### Description example:

. . . . . . . . . . . . . x CLP TBY ; Y \leftarrow B SEP Х TBY ;  $\mathsf{Y}_{\mathsf{L}} \gets \mathsf{B}_{\mathsf{L}}$ 

## TDA n

Function :	Transfer between registers
Operation data length:	16 bits or 8 bits
Operation :	$A \leftarrow DPRn \qquad (n = 0 \text{ to } 3)$ $\frac{When m = "0"}{A} \qquad DPRn$ $\Box \qquad \leftarrow \Box$
	When m = "1"         A _L DPRn _L →       →         * In this case, the contents of A _H do not change.
Description :	<ul> <li>Transfers the contents of the specified DPRn (DPR0 to DPR3) to A.</li> <li>Specify one of DPR0 to DPR3 for the destination of transfer.</li> <li>The contents of DPRn do not change.</li> <li>This instruction includes the function of the TDA instruction in the conventional 7700 Family.</li> </ul>
Status flags :	IPL     N     V     m     x     D     I     Z     C       -     N     -     -     -     -     Z     -
N : Z :	Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0." Set to "1" when the operation result is "0." Otherwise, cleared to "0."

	Addressing mode	Syntax	Machine code	Bytes	Cycles
	IMP 🧳	TDA n	3116, n216+4016	2	2
	Note : Any value from	n 0 to 3 can be set t	to n.		
Description example TE TE	DA 0		; A ← DPR0 ; A ← DPR1		

### TDB n

Function :	Transfer between registers
Operation data length:	16 bits or 8 bits
Operation :	$B \leftarrow DPRn \qquad (n = 0 \text{ to } 3)$ $\underline{When m = "0"}$ $B \qquad DPRn$ $\Box \qquad \leftarrow \Box$ $When m = "1"$ $B_{L} \qquad DPRn_{L}$ $\Box \qquad \leftarrow \Box$ $* \text{ In this case, the contents of } B_{H} \text{ do not change.}$
Description :	<ul> <li>Transfers the contents of specified DPRn (DPR0 to DPR3) to B.</li> <li>Specify one of DPR0 to DPR3 for the destination of transfer.</li> <li>The contents of DPRn do not change.</li> </ul>
Status flags :	<ul> <li>This instruction includes the function of the TDB instruction in the conventional 7700 Family.</li> <li>IPL N V m x D I Z C</li> <li>N Z -</li> </ul>
N :	Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."

Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

 $\sim$ 

	Addressing mode	Syntax	Machine code	Bytes	Cycles
I	MP 🏉	TDB n	B116, n216+4016	2	2
No	ote : Any value from	n 0 to 3 can be set t	o n.		
<b>Description example</b> : TDB TDB	-		; B ← DPR0 ; B ← DPR1		

### TDS

Function	: Transfer betwe	en registers			
Operation data lengt	h: 16 bits				
Operation	: S ← DPR0 S	DPR0			
Description		contents of DPR0 t s of DPR0 do not o	o S in 16-bit length. change.		
Status flags	:	IPL —	N V m x D I Z C	]	
	Addressing mode	Syntax	Machine code	Bytes	Cycles
	IMP	TDS	3116, 7316	2	2
Addressing mode       Syntax       Machine code       Bytes       Cycles					
	DS	annou	; S ← DPR0		

# TSA

Function :	Transfer between registers
Operation data length:	16 bits or 8 bits
Operation :	$A \leftarrow S$ $\underline{When \ m = "0"}$ $A \qquad S$ $\underline{\Box \qquad \Box} \leftarrow \underline{\Box}$ $When \ m = "1"$
	$\begin{array}{c} A_{L} & S_{L} \\ \hline & \leftarrow \\ \end{array}$ * The contents of A _H do not change.
Description :	Transfers the contents of S to A. The contents of S do not change.
Status flags :	IPL     N     V     m     x     D     I     Z     C       -     N     -     -     -     -     Z     -

- N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."
- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMP	TSA	3116, 9216	2	2

### Description example:

mple: CLM TSA SEM TSA ; A  $\leftarrow$  S ; A  $\leftarrow$  S ; A  $\leftarrow$  S

# TSB

Function :	Transfer between registers
Operation data length:	16 bits or 8 bits
Operation :	$B \leftarrow S$ $\underline{When \ m = "0"}$ $B \qquad S$ $\Box \qquad \Box \qquad \leftarrow \Box$
	$\begin{array}{c} \underline{When \ m = "1"} \\ B_{L} & S_{L} \\ \hline & \frown & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$
Description :	Transfers the contents of S to B. The contents of S do not change.
Status flags :	IPL     N     V     m     x     D     I     Z     C       -     N     -     -     -     -     Z     -

- N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."
- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMP	TSB	B116, 9216	2	2

### Description example:

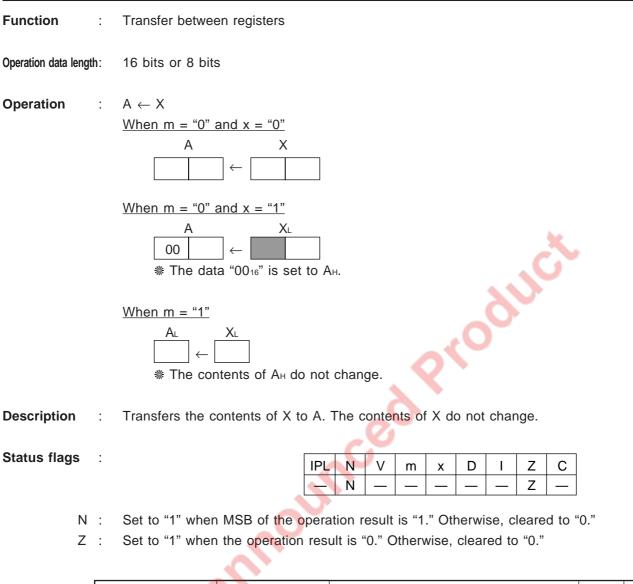
. CLM TSB ;  $B \leftarrow S$  SEM TSB ;  $B_{L} \leftarrow S_{L}$ 

# TSD

Function	: Т	ransfer betwe	en registers					
Operation data leng	th: 10	6 bits						
Operation	: D	PR0 ← S DPR0	S					
Description			contents of S to DF s of S do not chan		length.			
Status flags	:		IPL —	NV	m x D — — —	1 Z C — — —	ł	
	Addr	essing mode	Syntax		Machine co	de	Bytes	Cycles
	IMP		TSD	<b>31</b> 16, <b>70</b> 16	~		2	4
Description examp	le: SD		annou	; DPF	R0 ← S			

# TSX

Function :	Transfer between registers
Operation data length:	16 bits or 8 bits
Operation :	$X \leftarrow S$ $\underline{When \ x = "0"}$ $X \qquad S$ $\underline{Vhen \ x = "1"}$ $X_{L} \qquad S_{L}$
	$\leftarrow$ $\Rightarrow$ The contents of X _H do not change.
Description :	Transfers the contents of S to X. The contents of S do not change.
Status flags :	IPL     N     V     m     x     D     I     Z     C       —     N     —     —     —     —     Z     —


- N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."
- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMP	TSX	3116, F216	2	2

### Description example:

CLP	X	
TSX		; $X \leftarrow S$
SEP	x	
TSX		; X∟ ← S∟

### ТХА



Addressing mode	Syntax	Machine code	Bytes	Cycles
IMP	ТХА	A416	1	1

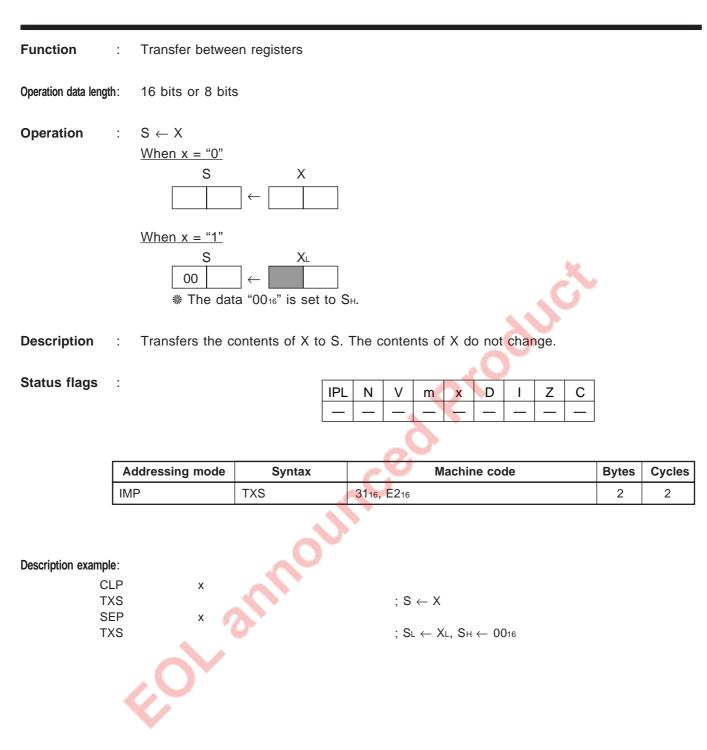
Description example:

ТХА

; A  $\leftarrow$  X

### TXB

Function :	Transfer between registers
Operation data length:	16 bits or 8 bits
Operation :	$B \leftarrow X$ When m = "0" and x = "0" B X B X When m = "0" and x = "1" B X 00 $\leftarrow$
	* The data " $00_{16}$ " is set to B _H . <u>When m = "1"</u> B _L X _L $\leftarrow$ $\square$ * The contents of B _H do not change.
Description :	Transfers the contents of X to B. The contents of X do not change.
Status flags :	IPL     N     V     m     x     D     I     Z     C       -     N     -     -     -     -     Z     -
N : Z :	Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0." Set to "1" when the operation result is "0." Otherwise, cleared to "0."


Addressing mode	Syntax	Machine code	Bytes	Cycles
IMP	ТХВ	8116, A416	2	2

Description example:

ТХВ

;  $\mathsf{B} \leftarrow \mathsf{X}$ 

# TXS



# ΤΧΥ

Transfer between registers Function 2 16 bits or 8 bits Operation data length:  $Y \leftarrow X$ Operation 2 When x = "0"Υ Х When x = "1"Y∟ XL * The contents of  $Y_H$  do not change. Description Transfers the contents of X to Y. The contents of X do not change. 2 Status flags 1 V Ζ IPL Ν x D Т С m

N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."

Ν

Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

IMP TXY 3116, C216 2 2	Addressing mode	Syntax		Machine code	Bytes	Cycles
	IMP	ТХҮ	Ç	3116, C216	2	2

Ζ

#### Description example:

CLP	x	
TXY		; $Y \leftarrow X$
SEP	X	
TXY		; $Y_L \leftarrow X_L$

### TYA

Function	:	Transfer between registers
Operation data length	:	16 bits or 8 bits
Operation	:	$A \leftarrow Y$ $\underline{When m = "0" and x = "0"}$ $A \qquad Y$ $\underline{Mhen m = "0" and x = "1"}$ $\underline{A} \qquad Y_{L}$ $\underline{00} \qquad \leftarrow \qquad \downarrow \downarrow \downarrow$ $\mathbb{When m = "1"}$ $\underline{A_{L}} \qquad Y_{L}$ $\underline{H_{L}} \qquad \downarrow \downarrow \downarrow$ $\mathbb{When m = "1"}$ $\underline{A_{L}} \qquad Y_{L}$ $\mathbb{When m = "1"}$ $\mathbb{When m = "1"$ $\mathbb{When m = "1"}$ $\mathbb{When m = "1"$ $\mathbb{When m = "1"}$ $\mathbb{When m m = "1"}$ $\mathbb{When m m = "1"}$ $\mathbb{When m m = "1"$ $\mathbb{When m m = "1"}$ $\mathbb{When m m = "1"$ $\mathbb{When m m = "1"}$ $When m m = "$
Description	:	Transfers the contents of Y to A. The contents of Y do not change.
Status flags	:	IPL     N     V     m     x     D     I     Z     C       -     N     -     -     -     -     Z     -
N Z		Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0." Set to "1" when the operation result is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMP	ТҮА	B416	1	1

Description example:

TYA

; A  $\leftarrow$  Y

### TYB

Function :	Transfer between registers
Operation data length:	16 bits or 8 bits
Operation :	$\begin{array}{c} B \leftarrow Y \\ \hline When  m = "0" \text{ and } x = "0" \\ \hline B & Y \\ \hline D & \leftarrow D \\ \hline Mhen  m = "0" \text{ and } x = "1" \\ \hline 00 & \leftarrow D \\ \ast The  data  "00_{16}" \text{ is set to } B_{H}. \\ \hline When  m = "1" \\ \hline B_{L} & Y_{L} \\ \hline D & \leftarrow D \\ \ast The contents of  B_{H} \text{ do not change.} \end{array}$
Description :	Transfers the contents of Y to B. The contents of Y do not change.
Status flags :	IPL     N     V     m     x     D     I     Z     C       -     N     -     -     -     -     Z     -
N :	Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."
Z :	Set to "1" when the operation result is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMP	ТҮВ	8116, B416	2	2

Description example:

ΤYΒ

; B \leftarrow Y

# ΥХ

Transfer between registers **Function** 2 16 bits or 8 bits Operation data length:  $X \leftarrow Y$ Operation 1 When x = "0"Х Y When x = "1"XL Y∟ * The contents of X_H do not change. Description Transfers the contents of Y to X. The contents of Y do not change. 1 **Status flags** 1 V Ζ С IPL Ν x D Т m Ν Ζ

- Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0." N :
- Set to "1" when the operation result is "0." Otherwise, cleared to "0." Z :

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMP	түх	3116, D216	2	2

_

Description example:

impic.		
CLP	x O	
TYX		; X $\leftarrow$ Y
SEP	X	
TYX		; $XL \leftarrow YL$

WalT

Function :	Clock control
Operation data length:	_

Operation Stop the CPU clock. 2

Description Stops the internal clock. However, the oscillation of the oscillation circuit is not stopped. To ÷ restart the internal clock, generate an interrupt request or perform the hardware reset. The microcomputer will thereby be released from the WIT state.

**Status flags** 1

IPL	Ν	V	m	х	D	I	Ζ	С
—			_	_	_	—		×.

ddressing mode	Syntax		Machine code	Bytes	Cycle
IP	WIT	3116, 1016		2	-
IP	WIT	3116, 1016		2	-
		; 🔿			
		20			
	-				
9	<b>N</b>				

Description example:

WIT

# XAB

**Function** 2 Transfer between registers 16 bits or 8 bits Operation data length: Operation 1  $\mathsf{A}\rightleftarrows\mathsf{B}$ When m = "0"A В  $\rightleftharpoons$ When m = "1"B∟ ΑL  $\rightleftharpoons$ * In this case, the contents of A_H and B_H do not change. Description Exchanges the contentss of A and B. 2 **Status flags** ÷ IPL V Ζ Ν D С х T m Ν Ζ ____ _

- N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."
- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMP	ХАВ	5516	1	2

#### Description example:

 $\begin{array}{c} CLM \\ XAB \\ SEM \\ XAB \end{array} ; A \rightleftharpoons B \\ ; AL \rightleftharpoons BL \end{array}$ 

### 4.3 Notes on software development

### 4.3 Notes on software development

The following are notes on software development.

### 4.3.1 Instruction execution cycles

The number of instruction execution cycles shown in this manual is applied to an ideal operating state. The actual instruction execution cycles vary with the instruction queue, the bus width for memory access, and the setting for Wait state.

When estimating a theoretical program execution speed by using the values shown in this manual or when implementing timers by software, be sure to consider that the estimated or anticipated execution time is only an approximate value.

#### 4.3.2 Status of flags m and x

Writing a 16-bit immediate value to the instruction operand while the contents of flag m is "1" (8 bits of data length) or an 8-bit immediate value to the instruction operand while the contents of flag m is "0" (16 bits of data length) causes the program to run out of control.

The above is also applied to flag x. Refer to the user's manual of the assembler you are using and make sure that no discrepancy will occur between the flag state and the data length to be operated on.

### 4.3.3 Tips for data area location

- (1) If the contents of low-order 8 bits of the direct page register (DPRnL) are set to any value other than "0016," the processing time is extended by 1 machine cycle as compared to the cases where the contents are set to "0016." Therefore, Mitsubishi recommends setting these low-order bits to "0016" whenever possible because this helps to increase the execution speed of program.
- (2) Mitsubishi recommends locating 16-bit data at even address boundaries whenever possible because this is effective for increasing the program execution speed. If 16-bit data are located at odd address boundaries, 2 bus cycles need to be generated for accessing this data, resulting in a reduced program execution speed.

#### 4.3.4 Performing arithmetic operations in decimal

- (1) Arithmetic operations can be performed in decimal by setting flag D to "1." However, decimal operations can be performed only by the following 4 instructions:
  - ADC
  - ADCB
  - SBC
  - SBCB
- (2) Pay attention to the flag behavior when performing decimal operations. Although the results of decimal operations are reflected correctly in flag C, the results are not reflected in any of flags Z, N, and V.



### APPENDIX

Appendix 1. 7900 Series machine instructions Appendix 2. Hexadecimal instruction code tables

#### Appendix 1. 7900 Series machine instructions

#### Appendix 1. 7900 Series machine instructions

[How to use this table]

- The corresponding op code, the number of execution cycles, and the number of instruction bytes are indicated for each addressing mode of each instruction.
- A flag affected by the operation result is also indicated.
- For symbols used in this table, refer to the table on the next page. Also, refer to "Notes for machine instruction table" on pages 5-42 and 5-43.
- The operation length of an instruction of which column "Operation length (Bit)" includes "16/8" depends on the setting of flag m or x.

		F F		
s	Symbol	Description	Symbol	Description
	IMP	Implied addressing mode	E	Accumulator E
	IMM	Immediate addressing mode	Ен	Accumulator E's high-order 16 bits (Accumulator B)
cution cycles, and the number of instruction bytes are	A	Accumulator addressing mode	EL	Accumulator E's low-order 16 bits (Accumulator A)
struction.	DIR	Direct addressing mode	X	Index register X
ndicated.	DIR, X	Direct indexed X addressing mode	XH XL	Index register X's high-order 8 bits Index register X's low-order 8 bits
e on the next page. Also, refer to "Notes for machine	DIR, Y	Direct indexed Y addressing mode	Y	Index register X s low-order a bits
e on the next page. Also, refer to <b>Notes for machine</b>	(DIR)	Direct indirect addressing mode	Чн	Index register Y's high-order 8 bits
	(DIR, X)	Direct indexed X indirect addressing mode	YL	Index register Y's low-order 8 bits
column "Operation length (Bit)" includes "16/8" depends	(DIR), Y	Direct indirect indexed Y addressing mode	S	Stack pointer
	L(DIR)	Direct indirect long addressing mode	REL	Relative address
	L(DIR), Y	Direct indirect long indexed Y addressing mode	PC	Program counter
	ABS ABS, X	Absolute addressing mode Absolute indexed X addressing mode	PC⊦ PC∟	Program counter's high-order 8 bits
	ABS, X ABS, Y	Absolute indexed X addressing mode	PG	Program counter's low-order 8 bits Program bank register
	ABS, T	Absolute indexed 1 addressing mode	DT	Data back register
	ABL. X	Absolute long indexed X addressing mode	DPR0	Direct page register 0
	(ABS)	Absolute indirect addressing mode	DPR0H	Direct page register 0's high-order 8 bits
	L(ABS)	Absolute indirect long addressing mode	DPR0L	Direct page register 0's low-order 8 bits
	(ABS, X)	Absolute indexed X indirect addressing mode	DPRn	Direct page register n
	STK	Stack addressing mode	DPRnH	Direct page register n's high-order 8 bits
	REL	Relative addressing mode	DPRnL	Direct page register n's low-order 8 bits
	DIR, b, R	Direct bit relative addressing mode	PS	Processor status register
	ABS, b, R	Absolute bit relative addressing mode	PS⊦ PS∟	Processor status register's high-order 8 bits
	0.0	Stack pointer relative addressing mode	PSL(bit n)	Processor status register's low-order 8 bits nth bit in processor status register
	(SR), Y	Stack pointer relative indirect indexed Y addressing	M	Contents of memory
		mode	M(S)	Contents of memory at address indicated by stack
	BLK	Block transfer addressing mode	(-)	pointer
	Multiplied	Multiplied accumulation addressing mode	M(bit n)	nth bit of memory
	accumulation	1	Mn	n-bit memory's address or contents
	ор	Instruction code (Op code)	IMM	Immediate value (8 bits or 16 bits)
	n	Number of cycles	IMMn	n-bit immediate value
	#	Number of bytes	IMMH IMML	16-bit immediate value's high-order 8 bits 16-bit immediate value's low-order 8 bits
	С	Carry flag	ADH	Value of 24-bit address's high-order 8 bits (A23–A16)
	Z	Zero flag	ADM	Value of 24-bit address's might order of bits (A3-A16) Value of 24-bit address's middle-order 8 bits (A15-A4
	1	Interrupt disable flag	ADL	Value of 24-bit address's Initiale-order 8 bits (Ar-Ao)
	D	Decimal operation mode flag	EAR	Effective address (16 bits)
	x	Index register length selection flag	EARH	Effective address's high-order 8 bits
	m	Data length selection flag	EAR∟	Effective address's low-order 8 bits
	V	Overflow flag	imm	8-bit immediate value
	N	Negative flag	imm	n-bit immediate value
	IPL	Processor interrupt priority level	dd	Displacement for DPR (8 bits or 16 bits)
	+	Addition	i 1, i2	Number of transfer bytes, rotation or repeated operat Number of registers pushed or pulled
	-	Subtraction	source	Operand to specify transfer source
	×	Multiplication Division	dest	Operand to specify transfer destination
	÷	Logical AND		
	^	Logical AND Logical OR		
	¥.	Logical exclusive OR		
	, v	Absolute value		
	11	Negation		
	_	Movement to the arrow direction		
	7	Movement to the arrow direction		
	-	Exchange		
	Acc	Accumulator		
	Ассн	Accumulator's high-order 8 bits		
$\overline{\mathbf{v}}$	Accl	Accumulator's low-order 8 bits		
	A	Accumulator A		
- or announce	AH	Accumulator A's high-order 8 bits		
	AL	Accumulator A's low-order 8 bits		
	В	Accumulator B		
	Вн	Accumulator B's high-order 8 bits		
	B∟	Accumulator B's low-order 8 bits		

7900 Series Machine Instructions

0	<b>F</b>	Operation		_			-		-		_	Ad	_	_	_		_	_		_									-	
Symbol	Function	length (Bit)	IM op r	IP 1#	IN op		ор	A n #		DIF																		R), Y		
ABS (Note 1)	Acc←   Acc	16/8					E1	3	1			r									-			- 1-			F -			
ABSD	E← E	32				Ī		5 2	2																				-	
ADC (Notes 1 and 2)	Acc←Acc + M + C	16/8			87 B1	3 3 3 3			2 8/ A ⁺		3 2 8 3 A 8	1 8	3 3			21 80 A1 80	9	3	21 81 A1 ⁻ 81	8 3 10 3	A	10	3	21 82 A1 82	9 11	3 2' 8' 3 A	1 1	0 3 2 3	-	
ADCB (Note 1)	Accl←Accl + IMM8 + C	8			1A	3 3 3 3			8/		8	в				80			81		88			82		8	9			
ADCD	E←E + M32 + C	32		Ħ	+	4 6			21 9/	7	32	1 8 B	3			21 90	9	3	21 ⁻ 91	10 3	2' 91	1 10	3	21 92	11 :	3 2 9!	1 1: 9	2 3		
ADD (Notes 1 and 2)	Acc←Acc + M	16/8			$\downarrow$	1 2 2 3			2/ 81 2/	4	2 2 3 8 2	1 5	2 3			11 20 91 20	6	3	11 21 91 21	73 73	28 9'	7	3	22 91	8	3 1 ⁻ 2! 3 91 29	9 1 9	) 3   3	C	ç
ADDB (Note 1)	Accl←Accl + IMM8	8		Π	29	1 2			21		2	D				20			21		21			22		23	3		Jnc	
ADDD	E←E + M32	32		-	-	3 5			9/	16	2 9	18 7	2			11 90	9	3	11 ⁻ 91	10 3	91 91	10	3	11 92	11 3	9	1 1:	2 3		
ADDM (Note 3)	M←M + IMM	16/8							5' 0(	17	4				Ī											6				
ADDMB	M8←M8 + IMM8	8							5' 02	17	4									(										
ADDMD	M32←M32 + IMM32	32							5' 8'	1 10	7																			
ADDS	S←S + IMM8	16			31 0A	2 3																								
ADDX	X←X + IMM (IMM = 0 to 31)	16/8			01	2 2	2																						1	
ADDY (Note 4)	Y←Y + IMM (IMM = 0 to 31)	16/8			01 20 +	2 2																							]	

A	BS	/	٩B	S, 1	x/	٩B	S,	Y	A	B	_	A	BL	, X		(AE	3S	) [	_(A	AB:	Ad S)	ίA	BS	5.)	0	S	тκ		F	RE	L	DI	R, 1	b, F	۲A	BS,	b, F	2	S	R	(	SF	R),	Y	В	LΚ	Τ	M/	٩A	1	Pro 0 9	8	7	6	5 5	5 4	3	2	2	1
op	n	# c	pp	n	# 0	pp	n	#	ор	n	#	op	n	ħ	1 0	p I	n	# c	p	n	#	op	r	n i	<i>#</i> (	op	n	#	ор	n	#	op	n	ħ	1 0	p r	1 #	0	рı	n #	# c	pp	n	# 0	р	n	# 0	рı	n ‡	ŧ	IP					n x				
																				6																														•	•	•	0	V	•	•	•	•	Z	2
												4																																						•	•		0	V		•	•	•	Z	z
21 3E	5	4 2	21	6	4 2	1	6	4	21	6	5	21	7	5	1		ŀ	T				t	t	t	t	1	1				t		t	t	t	t	t	2	1 6 3		3 2	21 !	9	3	t	t	T	t	t	ŀ	•	ŀ	• N	v		• •		•	Z	z
۱1	7	4 /	٥r 1	в	4 /	1	8	4	A1	8	5	A1	9	5		1																						A	3 1 8 3		3 A	04 \1_1	11	3																
BE		8	SF		8	16			80			80																										8	3		8	34					T			•	•	•	N	v	•	•	•	•	Z	7
21 9E	7	4 2	21 9F	В	4 2	16	8	4	21 9C	8	5	21 9D	9	5	;																							2 ⁻ 9:	18	1	3 2 9	21 1	1	3						•	•	•	• N	v		• •		•	Z	z
2E	3 :	3 2	?F	4	3 1	1	5	4	11 2C	5	5	11 2D	6	5				+								+												1' 9;	15	; ;	3 1	1	в	3					+	•	•	•	• N	v		• •		•	Z	z
31 4 2E		4 8	11 PE	5	4 9	1	5			5	5	91 20	6	5																								9 ⁻ 21	15		3 9	1	в	3																
						.0			20																													2.				.7								•	•	•	N	v	•	•	•	•	Z	7
9E	5 :	3 9	9F	7	3 1	11 96	8	4	11 9C	8	5	11 9D	9	5	;																							1 9:	18	; ;	3 1 9	11 14	1	3						•	•	•	N	v	•	•	•	•	z	- 7
51 )7	7	5																																																•	•	•	· N	v		• •	•	•	Z	z
51 06	7	5																																																•	•	•	N	v	•	•	•	•	Z	Z
51 1 87	0	8		+	+												+	+						$\left  \right $		+														$\left  \right $							+		+	•	•	•	• N	v	, .	• •		•	Z	Z
				+	+													+						+		+																								•	•	•	· N	v		• •		•	Z	7
					+																																													•	•	•	N	v		•	•	•	z	7
	+	+		+	+	+	+		_							+	+	+	+	_				+	+	+	-									$\downarrow$				+	_	+	4	4	+	+	+	-	+				• N						z	_

		Operation			_					ssing				_		_		_				_			_					A	\ddre	ssing	Mod	es	_		_				_								egiste	
Symbol	Function	Operation length (Bit)	IMP op n #	IMN		A	DIR			DIR,																		X (A	BS) L	(ABS	) (ABS	5, X)	STK	RE	L D	IR, b, F	ABS,	b, R	SR	(SR)	, Y E	BLK	MA	A 10					2 1	
AND (Notes 1 and 2)	Acc←Acc ∧M	16/8	op n #	66 1 81 2	2	_	6A 3 81 4		4 2	op n i	11	63	11 7	# 0p 3 11 68 3 91 68	7 3	11	8 3	11 9	3 3		op n 6E 3 81 4 6E	3 6F		11 5 66	4 11 6C	5 5	11 6 6D	# op 5 5	n # c	pna	≠ op r	1 # 0	p n a	op n	# 0	pn#	opr	11	53	11 8	3 3	n #	op n		IPL • •		••	: D	I Z	•
ANDB (Note 1)	Accl←Accl ∧IMM8	8		00 23 1 81 2 23			DA	ов			00		01	00		62		09			OE	or		00	00		OD											0.		04				•	•••	N •	•••	• •	Z	•
ANDM (Note 3)	M←M∧IMM	16/8					51 7 63	1													51 7 67	5				C																		ŀ	•••	N •	•••	•	• Z	•
ANDMB	M8←M8∧IMM8	8					51 7 62	4													51 7 66	5																						ŀ	•••	N •	•	•••	• Z	•
ANDMD	M32←M32∧IMM32	32					51 10 E3	7													51 10 E7	8																							•••	N •	•		Z	•
ASL (Note 1)	Arithmetic shift to the left by 1 bit m = 0 Acc or M16 $\boxed{C} \leftarrow [\underline{br_{1},,b_{0}}] \leftarrow 0$ m = 1 Acc. or M8 $\boxed{C} \leftarrow [\underline{br_{1},,b_{0}}] \leftarrow 0$	16/8			03 81 03	1 1	21 7 DA	3 21 1 0B	8 3											Ince	21 7 0E	4 21 0F	84																					·	•••	N •	•••		• Z	5
ASL #n (Note 4)	Arithmetic shift to the left by n bits (n = 0 to 15) m = 0 A $C \leftarrow bts(bo) \leftarrow 0$ m = 1 $C \leftarrow br(bo) \leftarrow 0$	16/8			C1 40 +i	6 2 + mm 1																																						·	•••	N •	•••	• •	• Z	c
ASLD #n (Note 4)	Arithmetic shift to the left by n bits (n = 0 to 31) E $C \leftarrow bat \dots b = 0$	32			40	8 2 + mm 1								9																														•	•••	N •	•••	•	Z	c
ASR (Note 1)	Arithmetic shift to the right by 1 bit m = 0 Acc or M16 $\rightarrow brisbo \rightarrow C$ m = 1 Acc. or M8 $\rightarrow bribo \rightarrow C$	16/8			64 81 64	1 1 :	21 7 4A	3 21 4B	8 3												21 7 4E	4 21 4F	84																					•	•	N •	•	•	·Z	5
ASR #n (Note 4)	Arithmetic shift to the right by n bits (n = 0 to 15) m = 0 A $\rightarrow brisbo \rightarrow C$ m = 1 AL $\rightarrow bribo \rightarrow C$	16/8			C1 80 + imr	6 2 + mm 1																																							•••	N •	•	••	• Z	

								A	ddre	ssing	g Mo	des							1											Add	ressir	ng Me	odes											Pr	oces	sor	Stat	tus r	regi	iste
Symbol	Function	Operation length (Bit)	IMP	IM	М	А	DI	r di	R, X	DIR,	Y (	DIR)	(DIR,	X) (D	IR), Y	L(D	IR) L	(DIR),	(	ABS	S A	BS, >	ABS	Y A	BL	ABL,	X (A	BS)	L(AB	S) (Al	BS, X)	STI	K F						R (									4 3		
			op n #	op n			op n	# op	n #	op n	# op	n #	op n	# ор	n #	op n	# 0	p n i		op n	# op	pn#	op n	# ор	n #	op n	# op	n # 1	op n	# op	n #	op n	# op	n #	op n	1 # O	pn#	# op	n # 0	p n :	# ор	n # a	op n	#	PL	ΝV	m	хD	凷	ΖC
ASRD #n (Note 4)	Arithmetic shift to the right by n bits (n = 0 to 31) 	32			D 8	1 8 2 0 + + mm																																							• •	N •	•	• •	•	zc
					in	nm																								T		- 1																		
BBC (Note 3)	if M(bit n) = 0 then PC-PC + cnt + REL (-128 to +127) (cnt: Number of bytes of instruction)	16/8																																	41 9 5A	5 4 5	19(	6						•	•••	•••	•	•••		•••
BBCB	if M8(bit n) = 0 then PC $\leftarrow$ PC + cnt + REL (-128 to +127) (cnt: Number of bytes of instruction)	8																							C										52 8	4 5	78	5						•	•••	•••	•	•••		•••
BBS (Note 3)	if $M(bit n) = 1$ then $PC \leftarrow PC + cnt + REL (-128 to +127)$ (cnt: Number of bytes of instruction)	16/8																				0													41 9 4A	5 4 4	19(	6						•	•••	••	•	•••	•	•••
BBSB	if M8(bit n) = 1 then PC←PC+cnt+REL (–128 to +127) (cnt: Number of bytes of instruction)	8																		0															42 8	4 4	78	5						•	•••	•••	•	•••	•	•••
BCC	if C = 0 then PC←PC + 2 + REL (-128 to +127)	-																															90	62										•	•••	•••	•	•••		•••
BCS	if C = 1 then PC-PC + 2 + REL (-128 to +127)	-																															BO	6 2										•	•••	•••	•	•••		•••
BEQ	if Z = 1 then PC←PC + 2 + REL (-128 to +127)	-																															F0	6 2										•	•••	•••	•	•••		•••
BGE	if $N \forall V = 0$ then $PC \leftarrow PC + 2 + REL$ (-128 to +127)	-													C																		CO	62										•	•••	•••	•	•••		•••
BGT	if Z = 0 and N $\forall$ V = 0 then PC $\leftarrow$ PC + 2 + REL (–128 to +127)	_							4					0																			80	6 2										•	•••	••	•	•••	•	•••
BGTU	if C = 1 and Z = 0 then PC←PC + 2 + REL (-128 to +127)	-																															40	62										•	•••	•••	•	•••	•	•
BLE	if Z = 1 or N∀V = 1 then PC←PC + 2 + REL (–128 to +127)	-																															A0	62										•	•••	•••	•	•••		•••
BLEU	if C = 0 or Z = 1 then PC←PC + 2 + REL(-128 to +127)	-																															60	62										•	• •	•••	•	•••		•••
BLT	if $N \forall V = 1$ then $PC \leftarrow PC + 2 + REL$ (–128 to +127)	-																	]														E0	62										•	•••	•••	•	•••	•	•••

											ng Ma																						/lode												roce					
Symbol	Function	Operation length (Bit)				А	DI	R D	IR, X	DIF	λ, Υ	(DIR)	(DIR	t, X) (I	DIR), ۱	( L(C	DIR) L	(DIR),		ABS	AB	S, X	ABS,	Y	ABL	ABI	, X	(ABS)	) L(A	BS) (A	BS, X	) S1	тк	REL	. DIF	R, b, R	ABS, b	), R	SR	(SR)	, Y I	BLK	MA	A 10	98					
BMI	if N = 1 then PC $\leftarrow$ PC + 2 + REL (–128 to +127)	-	op n	# ор	n # 0	op n i	# op n	n #op	on#	op	n # of	on#	op n	i # of	pn#	opi	n # 0	pni		op n	# op	n #	op n	# op	pn#	# op	n # 0	pin #	# op	n # 01	o n #	opi		op n #		n #	op n	# ot	pn#	op n	# op	o n #	op n	*	IPL	••	V m	× D	•••	<u>² c</u>
BNE	if Z = 0 then PC←PC + 2 + REL (–128 to +127)	-																											5					20 6 2	2											•••	•••	•••		
BPL	if N = 0 then PC + 2 + REL (-128 to +127)	-																							C			2					1	10 6 2	2									•	•••	•	•••	•••	•	•
BRA/BRAL (Note 5)	$\begin{array}{l} PC{\leftarrow}PC \leftarrow on \ t + REL \\ (BRA{\leftarrow}{-}128 \ to \ +127, \\ BRA{\leftarrow}{-}328 \ to \ +32767) \\ (cnt: Number \ of \ bytes \ of \ instruction) \\ PG{\leftarrow}{-}PG{+}1 \\ (When \ carry \ occurs) \\ PG{\leftarrow}PG{-}1 \\ (When \ borrow \ occurs) \end{array}$	-																																20 5 2	2									•	•	•••	•••	•		, •
BRK (Note 6)	$\begin{array}{l} PC \leftarrow PC + 2 \\ M(S) \leftarrow PG \\ S \leftarrow S - 1 \\ M(S) \leftarrow PC \\ S \leftarrow S - 1 \\ M(S) \leftarrow PC \\ S \leftarrow S - 1 \\ M(S) \leftarrow PS \\ S \leftarrow S - 1 \\ K - 1 \\ K - 1 \\ K - 1 \\ K - 1 \\ PC \\ K - AD \\ PG \\ H \\ PG \\ H \\ PG \\ H \\ F \\ \mathsf$	_	00 15 74	2															unce																									•		• •	• •	•	1	•
BSC (Note 7)	if A(bit n) or M(bit n) = 0 (n = 0 to 15), then PC $\leftarrow$ PC + cnt + REL (-128 to +127) (cnt: Number of bytes of instruction)	16/8			( A	01 7 \0 + n	3 71 11 A0 + n	1 4							6			6		71 10 E + n	5																							•	•••	•••	•••	•••		,
BSR	(S)←PC PC←PC + 2 + REL (−1024 to +1023)	-											1	D																			F	-8 7 :   -F	2									•	•••	•••	•••	•••		
BSS (Note 7)	if A(bit n) or M(bit n) = 1 (n = 0 to 15), then PC $\leftarrow$ PC + cnt + REL (-128 to +127) (cnt: Number of bytes of instruction)	16/8			8	01 7 10 + n	3 71 11 80 + n	14												71 10 C0 + n	5																							•	•••	•••	•••	•••		, .
BVC	if V = 0 then PC←PC + 2 + REL (-128 to +127)	-																															5	50 6 3	2											•	•••	• •		
BVS	if V = 1 then PC←PC + 2 + REL (–128 to +127)	-																															7	70 6 2	2									•	•••	•••	•••	•••		•••

										ssing																					ng Mo															Statu			
Symbol	Function	Operation length (Bit)	IMP op n	IN # op	1M	A Inl#	DIF	t DI	R, X	DIR,	Y (E # 00	DIR)	(DIR, )	K) (DI	R), Y	L(DIF	R) L(D	IR), Y		AB	3S .	ABS,	X ABS # op n	S, Y	ABL	., X (	ABS)	L(AE	3S) (A	BS, X)	STH	( F	REL	DIR, b	, R AE	BS, b, l	R S	R (	(SR),	Y B	LK	MA/	A 10	98	76	154	43	2 1	0
CBEQ (Notes 1 and 3)	if Acc = IMM or M = IMM then PC $\leftarrow$ PC + cnt + REL(-128 to +127) (cnt: Number of bytes of instruction)	16/8		# OP		63			11 #	op n	# OP			# UP			# UP			op 1			* op n	1 # 0	,p 11 #	1 # 0			# Of			# 0p			# 04	p II *	# 0p		Jp 11	# OP		op II	•		NV			• Z	
CBEQB (Note 1)	if Acc _L = IMM8 or M8 = IMM8 then PC $\leftarrow$ PC + cnt + REL (-128 to +127) (cnt: Number of bytes of instruction)	8			A2 81 A2	6 3 7 4	62 8	4																																			•	•••	NV	•••	•••	• z	с
CBNE (Notes 1 and 3)	if Acc $\neq$ IMM or M $\neq$ IMM then PC $\leftarrow$ PC + cnt + REL (-128 to +127) (cnt: Number of bytes of instruction)	16/8			B6 81 86	63 74	41 9 7A	5																	C	U																	•	•••	NV	•••	•••	• z	с
CBNEB (Note 1)	if Acc. $\neq$ IMM8 or M8 $\neq$ IMM8 then PC $\leftarrow$ PC+cnt+REL(-128 to +127) (cnt: Number of bytes of instruction)	8				63 74		4																																			•	•••	NV		•••	• z	С
CLC	C←0	-	14 1	1																																							•	•••	•••	•••	•	••	0
CLI	1←0	-	15 3	1															me																								•	•••	•••	•••	•	0.	•
CLM	m←0	-	45 3	1															11																								•	•••	•••	0.		••	•
CLP	$PS\iota(bit n) \leftarrow 0$ (n = 0 to 7. Multiple bits can be specified.)	-		98	4 2													C																									•	•••	Spe	ecifie come	id fla es "0	ag )."	
CLR (Note 1)	Acc←0	16/8			54 81 54	1 1																																					•	•••	0•	•••	•	• 1	•
CLRB (Note 1)	Accl.←0016	8			44 81 44	1 1			4																																		•	•••	0•		•••	• 1	•
CLRM	M←0	16/8					D2 5	2												D7 5	3																						•	• •	•••		•••	•••	•
CLRMB	M8←00 ₁₆	8					C2 5	2												C7 5	3																						•	•••	•••	•••	•		•
CLRX	X←0	16/8	E4 1	1																																							·	•••	0•	•	•••	• 1	•
CLRY	Y←0	16/8	F4 1	1																																							•	• •	0 •		•		•

		Operation		_					ddres					_		_					,						_					Modes		_						_							egiste
Symbol	Function	Operation length (Bit)	IMP		M	A #	DIR	DI	R, X	DIR, )	Y (D	IR) (	(DIR, )	X) (DI	R), Y	L(DI	R) L(	DIR), Y		ABS	AI	BS, X	ABS,	Y A	BL /	ABL, )	X (AE	3S) L(	ABS)	(ABS,	X) S	TK	REL	DIR,	, b, R Al	BS, b, F	R SF	२ (S	R), Y	BLI	< M	AA 1	0 9 8	3 7 6	654	43	2 1
			op n #	r op n	# ор	n #	op n	# ор	n # c	op n #	≠ op	n #o	pni	# op	n #	op n	# ор	n #		op n	# op	n#	op n	# op	n # 0	opn	# op r	n # op	n #	op n	# op	n # o	pn#	# op	n # o	pn #	F op n	# op	n#	op n	# op	n #	IPL	NV	/ m x	x D	IZ
CLV	V~0	-	65 1 1																										P															• • 0		•••	•••
CMP (Notes 1 and 2)	Acc – M	16/8		46 1 81 2 46	2		4A 3 81 4 4A		4 2 5 3		11 6 40 91 6 40	5 3 1 4 5 3 9 4	11 7 : 11 91 7 : 11	3 11 7 48 3 91 48	73 73	11 8 42 91 8 42	3 11 49 3 91 49	93		4E 3 81 4 4E			46	4C	4	11 6 4 10 91 6 5 10				-							11 5 43 91 5 43	3 11 44 3 91 44	8 3 8 3	-			•	• N V		• •	• Z
CMPB (Note 1)	Acci – IMM8	8		38 1 81 2 38	2																				C																		• •	• N V	′ • •	•••	• Z
CMPD	E – IMM32	32		3C 3	5		BA 6	2 BB	7 2		11 ! B0	931 B	11 10 : 31	3 11 1 B8	10 3	11 11 B2	3 11 B9			BE 6	3 BF	73	11 8 B6	4 11 BC		11 9 3D	5										11 8 B3	3 11 B4	11 3					• N V		•••	• Z
CMPM (Note 3)	M – IMM	16/8					51 5 23	4												51 5 27	5																							• N V		•••	• Z
СМРМВ	M8 – IMM8	8					51 5 22	4											- CO	51 5 26	5																							• N V	/ <b>· ·</b>	•••	• Z
CMPMD	M32 – IMM32	32					51 7 A3	7											nce	51 7 A7	8																						•••	• N V		•••	• z
CPX (Note 8)	X – M	16/8		E6 1	2		22 3	2										Ø		41 4 2E	4																					•	•	• N V		•••	• Z
CPY (Note 8)	Y – M	16/8		F6 1	2		32 3	2							C					41 4 3E	4																							• N V	•••	•••	• Z
DEBNE (Note 4)	$\begin{array}{l} M{\leftarrow}M-IMM(IMM=0\ to\ 31)\\ \text{if}\ M\neq0,\ \text{then}\ PC{\leftarrow}PC\ +\ cnt\ +\ REL\\ (-128\ to\ +127)\\ (cnt:\ Number\ of\ bytes\ of\ instruction) \end{array}$	16/8					C1 12 A0 + imm	4												D1 11 E0 + imm	5																						•	•••		•••	•••
DEC (Note 1)	$Acc \leftarrow Acc - 1$ or $M \leftarrow M - 1$	16/8			B3 81 B3	1 1 2 2	92 6	2 41 9B	8 3											97 6	3 41 9F	84																						• • •	•••	•••	• Z
DEX	X-X-1	16/8	E3 1 1																																								•	• N •		• •	• z
DEY	Y←Y - 1	16/8	F3 1 1																																									• N •	•••	•••	• Z
DIV (Notes 2, 9, and 10)	A (quotient) ← (B, A) ÷ M B (remainder)	16/8		31 15 E7	3		21 16 EA	3 21 1 EB	17 3		21 1 E0	8 3 2 E	21 19 3 E1	3 21 1 E8	93	21 20 E2	3 21 E9	21 3		21 16 EE	4 21 EF	17 4	21 17 E6	4 21 f EC	17 5 2	21 18 4 ED	5										21 17 E3	3 21 E4	20 3					• N V		• •	Z

Cumbal	Function	Operation					-					odes							_	F					-							essin				-			-			-		-		oces				
Symbol	Function	length (Bit)	IMP op n	IMI # op n	M # or	A n#	DIF op n	R DI # 00	R, X n #	DIR op n	, Y # 0	(DIR)	(DIF t op i r	R, X) (	(DIR),	Y L(I # 00	DIR) n #	L(DIR)	), Y #	0	ABS	# 00	3S, X n #	ABS,	Y A	BL . n #	ABL,	X (A # 00	BS)   n # 1	L(ABS	S) (AB # op	S, X)	STK	( F # op	REL	DIR,	b, R A	BS, b,	R S # op r	R (	(SR),	Y B # op	BLK n #	MA/	¥ 10	9 8 PL				
DIVS (Notes 2, 9, and 10)	$\begin{array}{l} A \ (quotient) \ \leftarrow (B, A) \div M \\ B \ (remainder) \ \ (Signed) \end{array}$	16/8		31 22 F7				3 21 FB					21 2 F1						3	2 FI	1 23 E	4 21 FF	24 4	21 24 F6	# op 4 21 2 FC	24 5	21 25 FD	5											21 2 F3	4 3 2 F	21 27 =4	3			•	• •	_		_	_
DXBNE (Note 4)	$\begin{array}{l} X {\leftarrow\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	16/8		01 7 C0 + imm	3															-							1																		•	•••	•••	•••		•
DYBNE (Note 4)	$\begin{array}{l} Y{\leftarrow}Y-IMM \;(IMM=0\;to\;31)\\ \text{if}\; Y{\neq}0,\; then\; PC{\leftarrow}PC \;+\; cnt \;+\; REL\\ (-128\;to\;+127)\\ (cnt:\; Number\; of\; bytes\; of\; instruction) \end{array}$	16/8		01 7 E0 +	3															-						0																			•	• •	•••	•••	•	
EOR (Notes 1 and 2)	Acc←Acc∀M	16/8		76 1 81 2 76				2 7B 3 81 7B	5 3			1 6 3 D 8 3			1 7 18 91 7 3			11 9 79 91 9 79	3 3	8	E 3 1 4 E	1	5 4	11 5 76 91 5 76	4 11 7C 4 91 7C	5 5	11 6 7D 91 6 7D												11 5 73 91 5 73	7	11 8 74 91 8 74				•	•••	N •	•••	, .	• Z
EORB (Note 1)	Accl←Accl∀IMMB	8		33 1 81 2 33																																									•	• •	N •	•••	•	Z
EORM (Note 3)	M←M∀IMM	16/8					51 7 73	4												57	1 7 7	5																							•	•••	N •	•••		• z
EORMB	M8←M8∀IMM8	8					51 7 72	4												57	1 7 6	5																							•	•••	N •	•••	•	, z
EORMD	M32←M32∀IMM32	32					51 10 F3	7												5 F	1 10 7	8																							•	•••	N •	•••	•	Z
EXTS (Note 1)	$\begin{array}{c} Acc\leftarrow Aca. (Extension sign)\\ (Bit 7 of Acc. = 0)\\ bis & br & bo\\ \hline 00000000 [ 0 \\ \hline Acci & Acci.\\ (Bit 7 of Acc. = 1)\\ bis & br & bo\\ \hline 1111111 1 \\ \hline Acci & Acc. \end{array}$	16				1 1								0	5																														•	•••	N •	•••	•	, z
EXTSD	$\begin{array}{llllllllllllllllllllllllllllllllllll$	32			31 B0	5 2														-																									•	•••	N •	•••	•	· Z
EXTZ (Note 1)	Acc←AccL (Extension zero) b15 b8 b7 b0 00000000 Acc+ Acc.	16				1 1 2 2														-																									•	• •	0•	•••	•	, z
EXTZD	E←EL(= A) (Extension zero) b15 b8 b7 b0 00000000 EH(B) EL(A)	32			31 AC	3 2														-																									•	• •	0•	•••	•	, z

									Addr	essin	g Mo	des							]											Add	ressi	ng M	odes											Proc	esso	or Sta	atus	regis	ter
Symbol	Function	Operation length (Bit)	IMP		IMM	А		IR	DIR, X	DIR	, Y (I	DIR)	(DIR,	X) ([	DIR), Y	L(D	IR) L	(DIR),									, X (			3S) (A	BS, X)	) ST	κI	REL										10 9	8 7	65	4 3	3 2 .	1 0
		length (Bit)	op n	# 0j	n #	op n	# ор	n # c	pn#	op n	# ор	n #	op n	# op	pn#	op n	n # oj	pn #		op n	#	op n #	op n	# op	pn #	# op i	n # op	on#	op n	ı # op	5 n #	op n	# op	n #	op n	# op	n #	op n	# op	n #	op n	# op	n #	IPL	. N	Vm	хD	117	<u>'</u> C
INC (Note 1)	Acc←Acc + 1 or M←M + 1	16/8				A3 1 81 2		6 2 4	183 B											87 6	3	1 8 4									K													•••	• N	•••	••••	• 2	<u>'</u> •
INX	X-X + 1	16/8	C3 1	1		r.s																									2													••	• N	•••	•••	•• 2	<u>'</u> •
INY	Y←Y + 1	16/8	D3 1	1																					C	5	0																	•••	• N	•••	•••	• Z	·
JMP/JMPL	$\label{eq:constraints} \begin{array}{l} \mbox{When ABS specified} \\ \mbox{PCL} \leftarrow \mbox{ADL} \\ \mbox{PCH} \leftarrow \mbox{ADM} \\ \mbox{When ABL specified} \\ \mbox{PCH} \leftarrow \mbox{ADL} \\ \mbox{PCH} \leftarrow \mbox{ADM} \\ \mbox{PCH} \leftarrow \mbox{ADM} \\ \mbox{PCH} \leftarrow \mbox{ADM} \\ \mbox{PCH} \leftarrow \mbox{ADM} \\ \mbox{ADL} + \mbox{1} \\ \mbox{PCH} \leftarrow \mbox{ADM} \\ \mbox{ADL} + \mbox{X} \\ \mbox{PCH} \leftarrow \mbox{ADM} \\ \mbox{ADL} + \mbox{X} \\ \mbox{PCH} \leftarrow \mbox{ADM} \\ \mbox{PCH} + \mbox{X} \\ \mbox{PCH} \\ \mbox{ADM} \\ \mbox{PCH} + \mbox{X} \\ \mbox{PCH} \\ \mbox{ADM} \\ A$	-																	Ince	90 4	3			AC	254		3'50	174	31 9 5D	I 4 BC	273													•	••		• •	•••	•
JSR/JSRL	$ \begin{array}{l} \mbox{When ABS specified} \\ \mbox{When ABS specified} \\ \mbox{WishePCL} \\ \mbox{S} \leftarrow S - 1 \\ \mbox{PC} \leftarrow ADL \\ \mbox{PC} \leftarrow ADL \\ \mbox{PC} \leftarrow ADL \\ \mbox{When ABL specified} \\ \mbox{WishePC} \\ \mbox{S} \leftarrow S - 1 \\ \mbox{WishePCL} \\ \mbox{S} \leftarrow S - 1 \\ \mbox{WishePCL} \\ \mbox{S} \leftarrow S - 1 \\ \mbox{PC} \leftarrow ADL \\ \mbox{PC} \leftarrow ADL \\ \mbox{PC} \leftarrow ADL \\ \mbox{PC} \leftarrow ADL \\ \mbox{PC} \leftarrow S \leftarrow S - 1 \\ \mbox{When (ABS,X) specified} \\ \mbox{WishePCL} \\ \mbox{S} \leftarrow S - 1 \\ \mbox{When (ABS,X) specified} \\ \mbox{WishePCL} \\ \mbox{S} \leftarrow S - 1 \\ \mbox{WishePCL} \\ \mbox{S} \leftarrow S - 1 \\ \mbox{PCL} \leftarrow (ADL,ADL + X) \\ \mbox{PC} \leftarrow (ADM,ADL + X + 1) \\ \end{array} $	-																		90 6					074	1				BC	083													•	• •	• •	• •	•••	•
LDA (Notes 1 and 2)	Acc←M	16/8			1 2 2 3		1A 81 1A	3 2 1 4 3 8 1	B 4 2 1 5 3 B			6 3 6 3	11	3 81 18	1 7 3 8	91 8 12	3 3 8 1	9 8 2 1 9 3 9			$\square$	IF 4 3 81 5 4 IF	16	4 1C 4 81 1C	155	4 1D 5 5 81 1D												13	3 11 14 3 91 14	83				•••	• N	•••	•	• z	•
LDAB (Note 1)	Acc←M8 (Extension zero)	16			1 2 2 3		0A 3 81 4 0A	3 2 0 4 3 8	B 4 2 1 5 3 B				11 7 01 91 7 01		B 6 2 1 7 3 8			9 8 1 1 9 3 9		0E 3 81 4 0E	3	++	06	4 0C 4 81 0C		4 0D 5 5 81 0 0D												11 5 03 91 5 03	3 11 04 3 91 04	8 3 8 3				•••	• 0	•••	•••	• 2	:•

								Ac	Idres	sing	Mode	s																		Add	ressi	ng Me	odes												Proc	ess	or S	tatu	IS IF	gis
Symbol	Function	Operation	IMP	IMI	M	A	DIR	DIR	2. X	DIR. '	( (D	R) (	DIR, X	() (DI	R), Y	L(DIF	R) L(DI	R), Y		AB	s /	ABS, )	X AB	S, Y	ABL	ABL	L, X	(ABS)	L(AE	3S) (A	BS, X)	STI	< F	REL	DIR, I	, R AB	S, b, F	r s	R (	SR),	ΥB	BLK	MA	AA 1	0 9					
		length (Bit)	op n #	t op n	# op	n #	op n	# op r	ń # 0	p n #	ŧ op r	n # 0	pn #	‡ op	n # c	p n	# op	n #		op n	# 0	op n #	‡ op i	n # (	op n #	≠ op r	n # 0	op n #	≠ op r	# op	n #	op n	# op	n #	op n	# op	n #	op 1	n # c	pp n	# op	n #	op n	n #	IPL	. N	Vr	n x	D	ιz
LDAD	E←M32	32		2C 3			BA 6										3 89			8E 6	38	F 7 3	11 8 86	3 4 8	3C 7 4	4 8D 8	8 4											11 8 83		11 11 34						• N				
LDD n (Notes 11 and 12)	DPRn←IMM16 (n = 0 to 3. Multiple DPRs can be specified.)	16		B8 13 ?0 B8 11 ?0 + 2 i	2+																																								•••	•••	•	•••	•	•••
LDT	DT ←IMM8	8		31 4 4A	3																			e	C																				• •	•••	•	•••	•	•
LDX (Note 8)	X←M	16/8		C6 1	2		02 3	2	4	11 5 15	3									07 3	3		41 ±	5 4																					•••	• N	•	•••	•	, z
LDXB	X←IMM8 (Extension zero)	16		27 1	2														0	0																									• •	• 0	•	•••	•	, z
LDY (Note 8)	Y←M	16/8		D6 1	2		12 3 2	2 41 5 1B	5 3										nce	17 3	34	11 5 4 IF	4																						• •	• N	•	•••	•	• z
LDYB	Y←IMM8 (Extension zero)	16		37 1	2														5																										•••	• 0	•	•••	•	, z
LSR (Note 1)	Logical shift to the right by 1 bit m = 0 Acc or M16 $0 \rightarrow \underline{br_{5}b_{2D}} \rightarrow C$ m = 1 Acc. or M8 $0 \rightarrow \underline{br_{1}b_{2D}} \rightarrow C$	16/8			43 81 43	1 1	21 7 2A	3 21 8 2B	3 3				0							21 7 2E	4 2		4																						•••	• 0	•	•••	•	• z
LSR #n (Note 4)	Logical shift to the right by n bits (n = 0 to 15) m = 0 A $0 \rightarrow \underline{bts}\underline{bs} \rightarrow C$ m = 1 A $0 \rightarrow \underline{bts}\underline{bs} \rightarrow C$	16/8				6 2 + mm																																							•••	• 0	•	•••		
LSRD #n (Note 4)	Logical shift to the right by n bits (n = 0 to 31) $E$ $0 \rightarrow \boxed{b_{31}b_{0}} \rightarrow C$	32				8 2 + mm																																							• •	• 0	•	•••	•	• Z

										D	estin	ation									ſ											inatio											Р	roce	ssor	Statu	is re	giste
Symbol	Function	Operation length (Bit)				MM	A		DIR pn#			Y (D										AB	S ABS	S, X /	ABS, Y	Y AE	BL /	BL, )	K (AB ≇on In		(ABS) (. n # c	) ST	K F	REL	DIR, b,	R ABS						MA. op n		98				
MOVM (Note 2)	m = 0 M16(dest)←M16(source)	16/8	IMM		# 01	,	op n	_	5 5 3	++		# 0p		opin	# 0p	11 #	+ op	11 #	op n	n #			4 31 57			* op 1	n # c	pini	+ up n	# 0			i # up	11 #	opin	# 0p	11 #	opini	+ op	11 # 0	p 11 #	op n	•	_	N V	++	•••	
	m = 1 M8(dest)←M8(source)		DIR					58	363													78 5	4								P																	
			DIR, 3																		i	79 6	4																									
			ABS					50	64													7C 5	5																									
			ABS,	×				5C	74																																							
MOVMB	M8(dest)←M8(source)	8	IMM					A	953	31 7 4 3A											I	39 4	4 31 ( 3B	6 5																			•	• •	•••	•••		•
			DIR					48	363													58 5	1				T																					
			DIR,	<																		59 6	4																									
			ABS					40	64													5 SC	5																									
			ABS,	×				4C	74																																							
MOVR (Notes 7 and 13)	m = 0 M16(dest1) ← M16(source1) : :		імм					61 10 + n	1 3 2 ) + + 5n 2n												0	51 3 30 + + 4n n	+																				•	•••	•••	•••	•	•
	M16(dest n)←M16(source n) m = 1 M8(dest1) ←M8(source1)		DIR					61 50 +	1 3 2 ) + + 6n 2n													61 3 70 + + 5n																										
	:: M8(dest n)←M8(source n) (n = 0 to 15)		DIR,	ĸ															1			71 3 70 + + 6n	2 + 3n																									
			ABS					61 90 + n	1 3 2 ) + + 6n 3n													n 51 3 30 + + 5n n	+																									
			ABS,	x				71 10 + n	1 3 2 ) + + 6n 3n					5																																		
MOVRB (Note 7)	M8(dest1) ←M8(source1) : M8(dest n)←M8(source n)	8	IMM					00	1 3 2 ) + + 5n 2n				<i>•</i>								:	51 3 20 + + 4n n	+ 3n																				•	•••	•••	•••		
	(n = to 15)		DIR					61 40 + n	1 3 2 0 + + 6n 2n													61 3 60 + + 5n n	+																									
			DIR, 2	<																		71 3 50 + + 6n n	+																									
			ABS					61 80 + n	1 3 2 ) + + 6n 3n													61 3 40 + + 5n n	+																									
			ABS,	×				71 00 + n	1 3 2 ) + + 6n 3n																																							

			Г										A	dd	res	sinę	g N	lod	les											1					
Symbol	Function	Operation length (Bit)		MP		IMI	_	-	A		DI	_	DI	R, 3	X	DIR,	Y	(D	DIR)										R), Y						
		iengin (bit)	ор	n i	+	p n		ор	n ‡	# c	op n	+			-	p n	$\vdash$	-	+	+		-	-	+	+	+ +	-	-	n #	-					
MPY (Notes 2 and 14)	(B, A)←A X M	16/8			3 [.]		3			2 C			21 CB		3			21 1 C0	11 3	3 21 C1			21 1 C8	2 3	3 21 C2			21 1 29	4 3						
MPYS (Notes 2 and 14)	(B, A)←A X M (Signed)	16/8			3 D		3			2 D	19 A		21 DB	10	3		1	21 1 D0	11 3	3 21 D1	12	3	21 1 D8	2 3	3 21 D2	13	3 2	21 1 09	4 3	3					
MVN (Note 15)	$\begin{array}{l} M(Y+k){\leftarrow}M(X+k)\\ k=0 \text{ to } i-1\\ \left(i: \text{ Number of transfer bytes }\\ \text{specified by accumulator } A \end{array}\right)$	16/8																																	
MVP (Note 16)	$\begin{array}{l} M(Y-k){\leftarrow} M(X-k) \\ k=0 \text{ to } i{-}1 \\ (i: Number of transfer bytes \\ specified by accumulator A \end{array} \right)$	16/8																																	
NEG (Note 1)	Acc←-Acc	16/8								1																									
NEGD	E←-E	32						31 80	4 1	2																									
NOP	$PC \leftarrow PC + 1$ When catty occurs in PC $PG \leftarrow PG + 1$	-	74	1	1																										Ś				
ORA (Notes 1 and 2)	Acc←Acc∨M	16/8			56	6 1 1 2	2				A 3							50		51		1	58		52		5	i9	9 3						
					56		Ŭ			5			5B	Ĵ				50	ľ	91 51	ľ	Ĭ	58		52	ľ		59							
ORAB (Note 1)	Accı←Acoı∨IMM8	8			6 8 6	1 2	2																												
ORAM (Note 3)	M←M∨IMM	16/8								5	1 7 3	4										0													
ORAMB	M8←M8∨IMM8	8								53	i1 7 2	4																							
ORAMD	M32←M32∨1MM32	32								5 B	i1 10	7																							
PEA	$\begin{array}{l} M(S) \leftarrow IMMH\\ S \leftarrow S-1\\ M(S) \leftarrow IMML\\ S \leftarrow S-1 \end{array}$	16				Ī																													
PEI	$\begin{array}{l} M(S) {\leftarrow} M((DPRn) + dd + 1) \\ S {\leftarrow} S + 1 \\ M(S) {\leftarrow} M((DPRn) {+} dd) \\ S {\leftarrow} S {-} 1 \qquad (n = 0 \text{ to } 3) \end{array}$	16																																	

A	BS	; ]	AB	S.	Х	AE	3S.	Y	Ľ	AB	L	1/	٩BI		xI	(A	B	5)	L	AE	001	10		• v	Л	0	тν	de	D	EL	. 1	DIF	ζ. b	. R	AB	S. b	). R		SF	2	(S	R).	Y	В	LK		М	AA	1		918	17	6	Sta	4	3 11	eg 2	13
ор	n	#	ор	n	#	ор	n	#	op	n	#	ŧ c	pp	n	#	op	n	#	ор	n	#	0	p r	n #	<i>#</i> (	op	n	#	ор	n	#	ор	n	#	ор	n	#	ор	n	#	òр	n	#	ор	n	# c	p	ni	ŧ	IF	۶L	N	v	m	x	3 D	I	z
21 9 XE	)	4	21 CF	10	4	21 C6	10	4	21 CC	10	5	2	21 1 D	1	5									ſ														21 C3	10	3	21 C4	13	3					ni	•				•		•			z
21 S DE	)	4	21 DF	10	4	21 D6	10	4	21 D(	10	5	2	21 1	1	5								Ì															21 D3	10	3	21 D4	13	3						ŀ		•	• •	•	•	•	•	•	Z
																																												31 2B	5 + 5 i	4			•			•	•	•	•	•	•	•
				1																																								31 2A	9 + 5 i	4			•			•	•	•	•	•	•	•
						100 M																																											•	•	•	· N	v	•	•	•	•	
																																																	•	•		N	v	•	•	•	•	
																																																	ŀ		•	•	•	•	•	•	•	
5E 81 5E	3	3	5F 81	4	3	11 56 91	5 5	4	11 5C 91	5	5	1	11 iD	6	5																							11 53 91	5	3	11 54 91 54	8	3						ŀ		•	N	•	•	•	•	•	
5Ε			5F			56			5C	:		5	5D																			_						53			54								•		•	N	•	•	•	•	•	
51 i 37	7	5					_																									_																	•		•	• •	•	•	•	•	•	
51 7	7	5																								+																				+		+	•		•	N	•	•	•	•	•	
51 1 B7	0	8																								+																							•	•	•	N	•	•	•	•	•	2
																									3	31 4C	5	4																					ŀ		•	•	•	•	•	•	•	
											ſ														3	31 4B	7	3																					•	•	•	•	•	•	•	•	•	

								Addi	essino	g Mode	es																Ac	Idress	sing M	lodes										Pr	oces	sor S	Statu	s red	gister	1
Symbol	Function	Operation length (Bit)	IMP	IN	1M	А	DIR	DIR, )	DIR,	Y (D	IR) (D	DIR, X)	(DIR), Y	L(DI	IR) L(D	DIR), Y		AB	S A	BS, X	ABS	6, Y A	ABL	ABL,	X (A	BS)L(	(ABS)	(ABS, 2	X) ST	к	REL	DIR, b	, R ABS	i, b, R	SR	(SR	.), Y	BLK	MAA	A 10	98	76	5 4	3 2	2 1 0	
		length (Bit)	op n	# op	n # op	n # 0	op n #	op n 🕴	t op n	# op r	n # op	o n #	op n #	op n	# ор	n #		op n	# 0	p n #	op n	n # op	on#	op n	# op	n # op	o n #	op n	# op r	n # op	n #	op n	# op	n # (	op n i	# op r	n # op	n #	op n	# 1	PL	ΝV	m x	DI	ZC	;
PER	$\begin{array}{l} EAR \leftarrow PC + IMM16 \\ M(S) \leftarrow EARH \\ S \leftarrow S - 1 \\ M(S) \leftarrow EARL \\ S \leftarrow S - 1 \end{array}$	16																											31 6 4D	6 4										•	•••	•••	••	•••	••	
PHA	$\label{eq:main_state} \begin{array}{l} m=0 \\ M(S) \leftarrow AH \\ S \leftarrow S-1 \\ M(S) \leftarrow AL \\ S \leftarrow S-1 \\ m=1 \end{array}$	16/8																											85 4	1										•	•••	•••	•••	••	•••	
	$M(S) \leftarrow AL$ $S \leftarrow S - 1$																							2																						
PHB	$\begin{array}{l} m=0\\ M(S)\leftarrow BH\\ S\leftarrow S-1\\ M(S)\leftarrow BL\\ S\leftarrow S-1\\ m=1\\ M(S)\leftarrow BL\\ S\leftarrow S-1\\ \end{array}$	16/8															0												81 5 85	2										•	•••	•••	•••	••	• •	
PHD	$\begin{array}{l} M(S) \leftarrow DPR0H\\ S \leftarrow S - 1\\ M(S) \leftarrow DPR0L\\ S \leftarrow S - 1 \end{array}$	16															Ince												83 4	1										•	•••	•••	•••	•••	••	
PHD n (Note 11)	$\begin{array}{l} M(S) \leftarrow DPRn \texttt{H} \\ S \leftarrow S - 1 \\ M(S) \leftarrow DPRn \texttt{L} \\ S \leftarrow S - 1 \\ (n = 0 \text{ to } 3) \end{array}$ When multiple DPRs are specified, the above operations are repeated.	16															Jul.												B8 12 01 0F B8 11 01 + 1 0F											·	•••	•••	•••	••	••	
PHG	$\begin{array}{l} M(S) \leftarrow PG \\ S \leftarrow S - 1 \end{array}$	8																											31 4 60	2										•	•••	•••	•••	••	••	
PHLD n (Note 11)	$\begin{array}{l} M(S){\leftarrow}DPRn{\scriptscriptstyle H}\\ S{\leftarrow}S{-1}\\ M(S){\leftarrow}DPRn{\scriptscriptstyle L}\\ S{\leftarrow}S{-1}\\ DPRn{\leftarrow}{\scriptstyle IMM16}  (n{=0}\text{ to }3)\\ \text{When multiple DPRs are specified, the above operations are repeated.} \end{array}$	16																											B8 14 01 0F B8 11 01 +   3 0F											•	•••	•••	••	•••	• •	
PHP	$\begin{array}{l} M(S) \leftarrow PSH\\ S \leftarrow S-1\\ M(S) \leftarrow PSL\\ S \leftarrow S-1 \end{array}$	16																											A5 4	1										•	• •	•••	•••	•••	••	1
PHT	M(S)←DT S←S - 1	8																											31 4 40	1 2										•	• •	•••	•••	•••	••	

								Addre	essing	Mode	es							Г										Addre	essing	g Mode	es										Pr	oces	sor	Statu	is re	gister	7
Symbol	Function	Operation length (Bit)	IMP	IM	A V	A [		DIR. X	DIR.	Y (D	IR) (	DIR, X	) (DIR	), Y L	(DIR)	L(DIF	, Y	E.	ABS	ABS	, X AI	BS, Y	ABL	. Ae	BL, X	(ABS)	L(AE	3S) (AB	S. X)	STK	REL	L DI	R, b, R	ABS, b,	), R	SR	(SR),	ΥB	LK	MAA	10	98	76	5 4	3	2 1 0	)
		lengin (bit)	op n	# op n	# ор	n # op	n #op	pn#	op n #	≭ op r	n # op	pn#	op n	# ор	n #	op r	#	ot	n #	t op r	n # op	o n #	op n	# ор	n # c	op n ≉	≠ op n	# op			op n	# op	on#	op n	# op	n # 0	op n i	# op	n # 0	op n ≉				m x	D	I Z C	;
РНХ	$\begin{array}{l} x=0 \\ M(S) \leftarrow X_{H} \\ S \leftarrow S-1 \\ M(S) \leftarrow X_{L} \\ S \leftarrow S-1 \\ x=1 \\ M(S) \leftarrow X_{L} \\ S \leftarrow S-1 \end{array}$	16/8																											c	25 4 1											•	• •	•••	•••	•	••	
	$\begin{array}{l} x=0 \\ M(S) \leftarrow Y_{H} \\ S \leftarrow S-1 \\ M(S) \leftarrow Y_{L} \\ S \leftarrow S-1 \\ x=1 \\ M(S) \leftarrow Y_{L} \\ S \leftarrow S-1 \end{array}$	16/8																											E	541											•	•••	•••	•••	•••	•••	
PLA	$\begin{array}{l} m=0 \\ S \leftarrow S+1 \\ A \sqcup \leftarrow M(S) \\ S \leftarrow S+1 \\ A \amalg \leftarrow M(S) \\ m=1 \\ S \leftarrow S+1 \\ A \sqcup \leftarrow M(S) \end{array}$	16/8																0											98	5 4 1											•	•••	N •	••	•	- Z •	-
PLB	$\begin{array}{l} m=0 \\ S \leftarrow S + 1 \\ B \iota \leftarrow M(S) \\ S \leftarrow S + 1 \\ B H \leftarrow M(S) \\ m=1 \\ S \leftarrow S + 1 \\ B \iota \leftarrow M(S) \end{array}$	16/8															JUN												81 95	1 5 2											•	•••	N •	••	•	• z •	-
PLD	$S \leftarrow S + 1$ $DPR0 \sqcup \leftarrow M(S)$ $S \leftarrow S + 1$ $DPR0 \vdash \leftarrow M(S)$	16																											93	3 5 1											•	•••	••	••	••	••	-
PLD n (Notes 11 and 12)	$\begin{array}{l} S {\leftarrow} S + 1 \\ DPRIL {\leftarrow} M(S) \\ S {\leftarrow} S + 1 \\ DPRn {\leftarrow} M(S)  (n = 0 \ to \ 3) \\ When multiple DPRs are specified, \\ the above operations are \\ repeated. \end{array}$	16																											?(	7 11 2 0 7 8 2 0 + 3 i											•	•	•	••	•	••	
PLP	$\begin{array}{l} S \leftarrow S + 1 \\ PS_{L} \leftarrow M(S) \\ S \leftarrow S + 1 \\ PS_{H} \leftarrow M(S) \end{array}$	16																											B	551											V st	alue tack	rest	ored	fron	1	
PLT	$\begin{array}{l} S {\leftarrow} S + 1 \\ DT {\leftarrow} M(S) \end{array}$	8																											31 50	162											•	• •	N •	•••	•	Ζ•	1

							A	Addres	sing N	Modes	3						Ι										Add	ressi	ng Mo	des										F	Proce	essoi	r Sta	tus	regis	ster
Symbol	Function	Operation	IMP	IMM		D	IR D	IR, X	DIR, Y	(DIF	(DIR	t, X) (D	DIR), Y	L(DIF	R) L(C	DIR), Y		AB	S AB	S, X	ABS,	Y AI	BL /	BL, X	(AB	S) L(A	BS) (A	BS. X	STK	RE	EL D	VIR, b, I	R ABS,	b, R	SR	(SR)	, Y I	BLK	MA	A 1	0 9 8		-			_
		length (Bit)	op n #	op n #	t op n	# op	n #op	n # c	op n #	op n	# op n	# op	n #	op n	# op	n #		op n	# op	n #	op n	# op	n # c	pn #	≠ op n	# op	n # op	o n #	op n	# op r	n # o	p n i	≠ op r	n # o	pn#	op n	# op	n #	op n	#	IPL	N	Vm	хD	117	z c
PLX	$\begin{array}{l} x = 0 \\ S \leftarrow S + 1 \\ X \perp \leftarrow M(S) \\ S \leftarrow S + 1 \\ X \sqcap \leftarrow M(S) \\ x = 1 \\ S \leftarrow S + 1 \\ S \leftarrow S + 1 \\ X \perp \leftarrow M(S) \end{array}$	16/8																								5			D5 4	1											•				• 2	:•
PLY	$\begin{array}{l} x = 0 \\ S \leftarrow S + 1 \\ Y_{L \leftarrow} M(S) \\ S \leftarrow S + 1 \\ Y_{H \leftarrow} M(S) \\ x = 1 \\ S \leftarrow S + 1 \\ S \leftarrow S + 1 \\ Y_{L \leftarrow} M(S) \end{array}$	16/8																		2			0						F5 4 '	1											•	• N ·	•••	•••	• 2	<u>:</u> •
PSH (Note 17)	$\begin{array}{l} M(S \text{ to } S-i+1) {\leftarrow} A, B, X\\ S {\leftarrow} S-i\\ i: \text{ Number of bytes corresponding}\\ \text{ to register pushed on stack} \end{array}$	16/8																											A8 11 + 2i1+ i2	2										•		•	•••	•••	•••	•
PUL (Note 18)	A, B, X←M(S + 1 to S + i) S←S + i i: Number of bytes corresponding to register restored from stack	16/8															Ince												67 13 + 3 i	2										l i	Wher s res the va	toreo alue.	d, thi In th	is be he o	ecom	nes
RLA (Note 3)	Rotate to the left by n bits $m = 0  (n = 0 \text{ to } 65535)$ $(-b \pm 5 \dots b = 0 \text{ to } 255)$ $m = 1  (n = 0 \text{ to } 255)$ $(-b \pm 1 \dots b = 0 \text{ to } 255)$	16/8		31 5 3 07 + n																																					•	• •	•••	•••	•	•
RMPA (Note 19)	$\begin{array}{l} m = 0 \\ Repeat \\ (B, A) \leftarrow (B, A) + M(DT:X) X \\ M(DT:Y) (Signed) \\ X \leftarrow X + 2 \\ Y \leftarrow Y + 2 \\ i \leftarrow i - 1 \\ Until i = 0 \\ m = 1 \\ (Bu, AL) \leftarrow (Bu, AL) + M(DT, X) \\ M(DT, Y) (Signed) \\ X \leftarrow X + 1 \\ Y \leftarrow Y + 1 \\ i \leftarrow i - 1 \\ Until i = 0 \\ i: Numder of repetitions (0 to 255) \end{array}$	16/8																																					31 5 5A + 14 im			• • •	•	• •	• 2	: c

		Operation			Addressing															essing												registe
Symbol	Function	length (Bit)	IMP		A DIR DIR, X DIR, # op n # op n # op n # op n	Y (DIR) (D	NR, X) (DIR), '	Y L(DIR)	L(DIR), Y			AB	S AB	S, X AB	S, Y A	BL AB	BL, X (Al	BS) L(A	ABS) (AB	3S, X) S	TK F	EL D	IR, b, R A	BS, b, R	SR	(SR), Y	BLK	MAA				3 2 1 (
ROL (Note 1)	Rotate to the left by 1 bit m = 0 Acc  or  M16 $brs \dots bo \leftarrow C \leftarrow$ m = 1 Acc  or  M8 $\leftarrow br \dots bo \leftarrow C \leftarrow$	16/8	op n #	<i>"</i> op i1 <i>f</i>	II         II         II         III         IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII			00 11 #				21 7 1E	4 21 8 1F	3 4	n # op		n # op		11 # Op	н <i>ж</i> ор	11 # Op	11 # 0	p 11 # 0		00 II #	op II #	<u>op n #</u>			• N •		D I Z (
ROL #n (Note 4)	Rotate to the left by n bits (n = 0 to 15) m = 0 $(-b_1 + b_2 + b_$	16/8			C1 6 2 . 60 + + pmn imm									2		Ø		-											•••	• N •	••	• • Z (
ROLD #n (Note 4)	Rotate to the left by n bits (n = 0 to 31) $\overbrace{\leftarrow b_{31},,b_{0}}^{E} \leftarrow C \leftarrow$	32			D1 8 2 60 + + jimm iimm						e																		•••	• • •	••	• • z (
ROR (Note 1)	Rotate to the right by 1 bit $m = 0$ $  \begin{array}{c} Acc \text{ or } M16 \\ \hline \bigcirc C \rightarrow \boxed{b15 \dots b0} \end{array} \\ m = 1$ $  \begin{array}{c} Acc \text{ or } M8 \\ \hline \bigcirc C \rightarrow \boxed{b7 \dots b0} \end{array} \end{array}$	16/8			53         1         1         21         7         3         21         8         3           3A         7         3         3B         3         3B         3           81         2         2         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4<				Ó	<u>)</u> (	çe	21 7 3E	4 21 8 3F	3 4															••	• N •	••	• • Z (
ROR #n (Note 4)	Rotate to the right by n bits (n = 0 to 15) m = 0 m = 0 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1	16/8			C1 6 2 2 20 + + prm imm		8																						•••	• N •	••	• • Z (
RORD #n (Note 4)	Rotate to the right by n bits (n = 0 to 31) E $b_{31}$ b0 $C$	32			D1 8 2 20 + + jmm imm																								•••	• • •	•••	• • z (

Symbol	Function	Operation	IMP	IM	M	A	DIR	Add DIR, 2	ressir X DIF			(DIR.	X) (DI	R), Y	L(DIR	R) L(D	IR), Y		A	as I	ABS	XAE	3S, Y	AB	_ A	BL, X	(AE	S) L(		sing X)			el II	DIR, b	, R AB	IS, b. 1	2	R	(SR)	), Y	BLK	MAA					tatu 5 4		
-		length (Bit)			n # op		pn#	op n	# op r	n # op	n #	op n	# op	n # a	p n ≉	# op	n #											# op															ŧ	IPL	Ν	Vn	n x	D	I Z
	$\begin{array}{l} S {\leftarrow} S + 1 \\ PS {\leftarrow} {\leftarrow} M(S) \\ S {\leftarrow} S + 1 \\ PS {\leftarrow} {\leftarrow} S + 1 \\ PS {\leftarrow} {\leftarrow} M(S) \\ S {\leftarrow} S + 1 \\ PC {\leftarrow} M(S) \\ S {\leftarrow} S + 1 \\ PC {\leftarrow} M(S) \\ S {\leftarrow} S + 1 \\ PG {\leftarrow} M(S) \end{array}$	-	F1 12	1																																								alue ack		store	ed f	rom	
RTL	$\begin{array}{l} S{\leftarrow}S+1 \\ PO{\cdot}{\leftarrow}M(S) \\ S{\leftarrow}S+1 \\ PO{\cdot}{\leftarrow}M(S) \\ S{\leftarrow}S+1 \\ PG{\leftarrow}M(S) \end{array}$	-	94 10	1																	e																						•	•	•	•	•••	•	•••
(Notes 11 and 12)	$\begin{array}{l} S {\leftarrow} S + 1 \\ DPRnt {\leftarrow} - M(S) \\ S {\leftarrow} S + 1 \\ DPRn {+} {\leftarrow} M(S) \\ S {\leftarrow} S + 1 \\ PC {\leftarrow} - M(S) \\ S {\leftarrow} S + 1 \\ PC {+} {\leftarrow} M(S) \\ S {\leftarrow} S + 1 \\ PG {\leftarrow} M(S). \ (n = 0 \ to \ 3. \ Multiple \ DPRs \\ can be specified.) \end{array}$	16																nce												77 ?C 77 ?C	15 2 12 2 12 3	2											•	•	•	•	•	•	
	$\begin{array}{l} S {\leftarrow} S+1 \\ P C {\leftarrow} M(S) \\ S {\leftarrow} S+1 \\ P C {+} {\leftarrow} M(S) \end{array}$	-	84 7 1	1														J.C.																									•	•••	•	•	•••	•	•••
(Notes 11 and 12)	$\begin{array}{l} S {\leftarrow} S + 1 \\ DPRnt {\leftarrow} M(S) \\ S {\leftarrow} S + 1 \\ DPRn {\leftarrow} M(S) \\ S {\leftarrow} S + 1 \\ PCt {\leftarrow} M(S) \\ S {\leftarrow} S + 1 \\ PCt {\leftarrow} M(S) \\ S {\leftarrow} S + 1 \\ PCt {\leftarrow} M(S), (n = 0 \text{ to } 3. \text{ Multiple DPRs} \\ \text{can be specified.} \end{array}$	16																												?8	14 2 11 2 11 3 3	2											•	•	•	•	••	•	•••
SBC (Notes 1 and	$\overline{\mathbf{O}} - \mathbf{M} - \overline{\mathbf{O}}$	16/8		31 3	3	21	1 5 3	21 6 AB	3	21	7 3	21 8	3 21 A8	8 3 2	1 9	3 21 1	10 3		21 AE	5 4	21 6	4 21	64	21 6	5 21	175					$\square$		$\top$				21 A3	63	21 9 A4	3		Π	•	• •	N	v	• •	•	• z
2)				B1 3 A7	3	A	173		3	A1 A0	93	A1 10 A1	3 A1 1 A8	10 3 A	1 11 : 2	3 A1 A9	12 3		A1 7 AE	4	A1 8 AF	4 A1 A6	8 4	A1 8 AC	5 A1	)   9 5 											$\rightarrow$	3 3	_	3									
SBCB (Note 1)	Aca.←Acc.− IMM8 − C	8		31 3 1B B1 3 1B				C																																			•	•	N	V	•	•	• z
SBCD	E←E – M32 – Ĉ	32		31 4 1D	6	21 Bi	1 7 3 A	21 8 BB	3	21 B0		21 10 B1	3 21 1 B8		111:	3 21 1 B9	12 3		21 BE		21 8 BF	4 21 B6	8 4	21 8 BC	5 21 BC												21 B3	8 3	21 11 B4	3			•	•••	N	v	•••	•	• z
SEC	C←1	-	04 1	1																	T																		T				•	•	•••	•	•••	•	•••
SEI	l←1	-	05 4	1																																							•	•••	•	•	•••	•	1•

Symbol	Function	Operation	-		1M						ng M			in vel	(DID)		(D)(C)	L. mar	D) 1/		-	<b>D</b> O	40.0		<b>DO</b> 1		. 1	4.07	V.					g Mo			Dur.		100		0.5	10			1					sor				
Symbol	Function	length (Bit)	IMP	# op		A n #		R D	DIR, 2		R, Y	(DIF	2) (D # on	IR, X)	(DIR)	), Y L # on	(DIR)	) L(DI	R), Y			BS n #	ABS	i, X A	BS, `	Y AE	3L n #	ABL,	., X (	) L(#	ABS)	(ABS, on n	, X) # 0	STK	F # on	REL	DIF # on	n #	ABS,	b, R	SR	(S	R), ` In It	Y B # on	n #	MA	A 1	09 IPL	8	7 6	35 (m	4	3	긕
SEM	m←1	-	25 3	-++																										 					,		,							F			•	•	•	•••	1	•	-	
SEP	$PS\iota(bit n) \leftarrow 1$ (n = 0 to 7. Multiple bits can be specified.)	-		99	3 2																																					T						•	•	Spe	ecif com	ied nes	fla "1.	
TA Note 1)	M-Acc	16/8					DA 4 81 5 DA					91 7 00	3 91 D1	8 3 8 3	81 8 D8	3 91 D2	93	81 1 D9	9 2 0 3		DE 81 DE	ľ		D6		4 81 0 DC														1 D 9 C		D4	9 3 9	3				•	•	•••	•	•	•	•
TAB lote 1)	M8←Aco.	8					CA 4 81 5 CA			2	1	11 7	3 11 C1	8 3 8 3	C8 7	2 11 C2	93	3 C9	9 2		CE 81 CE	4 3	CF 5	3 11 C6	64		54	CD 6	4											1 C 9 C	16 3 116 3	3 11 C4 3 91 C4		3				•••	•	•••	•	•	•	•
TAD	M32←E	32					EA 6			2	1	11 9 20	3 11 E1	10 3 1	E8 9	2 11 E2	11 3	E9 1	1 2		EE	63	EF 7	3 11 E6	84	EC	74	ED 8	4											++	18			++				•	•	•••	•	•	•	•
TP	Oscillation stopped	-	31 - 30	2																G	3											T										T					•	•	•	•••	•	•	•	•
тх	M←X	16/8					E2 4	2		41 E5	63 @@@										E7	4 3										T																•	•	•••	•	•	•	•
STY	М 'Y	16/8					F2 4	2 4 FE	16	3									0		F7	4 3																									•	•	•	•••	•	•	•	•
SUB (Notes 1 and 2)	Acc-Acc - M	16/8		36 81 36	1 2 2 3		3A 3 81 4 3A			2	3	30	3 11 31 3 91 31	73	38	32	8 3	3 11 9 39 91 9 39			3E 81 3E			3 11 36 4 91 36		4 91 5 3C		11 6 3D 91 6 3D												ТE	1 5 13 11 5 13	34	83					•••	•	N V	•	•	•	•
SUBB (Note 1)	Accı←Aco.− IMM8	8			1 2 2 3									C																																		•••	•	NV	•	•	•	•
SUBD	E←E – M32	32		3D	3 5		AA 6	2 AI	37	2	1	11 9 40	3 11 A1	10 3	11 10 A8	3 11 A2	11 3	11 1: A9	2 3		AE	63	AF 7	3 11 A6	84	4 11 8 AC	3 5	11 9 AD	5											1 A	18 3	3 11 A4	11 3	3				•	•	NV	•	•	•	•
SUBM Note 3)	M←M – IMM	16/8					51 7 13	4													51 17	75																										•	•	NV	•	•	•	•
SUBMB	M8-M8 - IMM8	8					51 7 12	4													51 16	75																										•••	•	NV	•	•	•	
UBMD	M32←M32 – IMM32	32					51 10 93	7													51) 97	10 8																										•••	•	NV	•	•	•	

									Add																						A	ddre	ssing	g Mo	des												Pro	ces	sor	Stat	atus	s re	gist	er
Symbol	Function	Operation length (Bit)	IMF		MM	A		DIR	DIR,	X D	IR, Y	(DI	R) ([	DIR, X	) (DIF	t), Y L	(DIR)	L(DIF	R), Y		ABS	S AI	BS, )	ABS	, Y .	ABL p n #	ABL.	., X	(ABS	S) L(	ABS)	(ABS	S, X)	STK	F	REL	DIR	, b, R	ABS, t	), R	SR	(SR	), Y	BLK	M	IAA	10 9	8	76	5	4	3	2 1	0
		Ierigiii (Bit)	op n				# op	n #	op n	# ор	n #	op n	# op	o n #	op r	n # op	o n #	op r	n #		op n	# op	n #	op r	# 0	pn#	op n	n # C	op n	# op	n #	op 1	n # 0	p n	# op	n #	ор	n #	op n	# op	n #	op 1	n # c	op n	# op	n #	IP	Ľ	ΝV	'm	хI	D	ı z	C
SUBS	S←S – IMM8	16		31 0B	2 3																										e																•••	•	NV	•	•	•	• z	С
SUBX (Note 4)	X←X – IMM (IMM = 0 to 31)	16/8		01 40 + imi																																											••	•	NV	•	•	•	• z	с
SUBY (Note 4)	Y←Y – IMM (IMM = 0 to 31)	16/8		01 60 + imi	2 2 m																				. (	C																					••	•	NV	•	•	•	• z	с
TAD n (Note 20)	DPRn←A (n = 0 to 3)	16	31 3 n2	2																	1		0																								•••	•	•••	•	•	•		•
TAS	S←A	16	31 2 82	2																																											•••	•	•••	•	•	•	•	•
ТАХ	X←A	16/8	C4 1	1																unce																											•••	•	N •	•	•	•	• z	•
ТАҮ	Y←A	16/8	D4 1	1																JC -																											•••	•	N •	•	•	•	• z	•
TBD n (Note 20)	DPRn←B (n = 0 to 3)	16	B1 3 n2	2															0																												••	•	•••	•	•	•		•
TBS	S←B	16	B1 2 82	2																																											•••	•	•••	•	•	•		•
ТВХ	X←B	16/8	81 2 C4	2										C																																	•••	•	N •	•	•	•	• z	•
ТВҮ	Y←B	16/8	81 2 D4	2																																											•••	•	N •	•	•	•	· Z	•
TDA n (Note 20)	A←DPRn (n = 0 to 3)	16/8	31 2 40 + n2	2																																											•••	•	N •	•	•	•	• z	•
TDB n (Note 20)	B←DPRn (n = 0 to 3)	16/8	B1 2 40 + n2	2																																											•••	•	N •	•	•	•	• z	•
TDS	S←DPR0	16	31 2 73	2																																											•••	•	•	•	•	•	•	•

									ddres																					Ad	dres	sing	Mod	es											F	roce	SSO	Sta	tus	regi	ster
Symbol	Function	Operation length (Bit)	IMP		MM	A	DIF	R DI	R, X	DIR, '	Y (C	IR) (	DIR, )	<) (DI	R), Y	L(DI	R) L([	DIR), Y		AB	S A	BS, X	ABS	5, Y /	ABL	ABL # op r	., X	(ABS	S) L(/	ABS)	(ABS,	X) 5	STK	RE	LC	DIR, b,	R ABS	S, b, R	S	R (;	SR),	Y B	LK	MAA	A 10	98	7	65	4 3	2	10
			op n		n # o	pn#	op n	# op	n # c	p n #	# op	n #o	p n #	¥ op	n #	op n	# ор	n #		op n	# op	on#	op n	1 # OP	pn	# op r	n # c	op n	# op	n #	op n	# op	n #	op n	1 # 0	p n :	# op	n #	op r	1 # 0	p n i	# op	n #	op n	#	IPL	Ν	/ m	хD		<u> 2</u> C
TSA	A←S	16/8	31 2 92	2																																									•	•	N	•	• •	•	•
TSB	B←S	16/8	B1 2 92	2																																									•	•	N	•	• •	•	<u>'</u> •
TSD	DPR0←S	16	31 4 3 70	2																					C																				•	•	•	•	•••	•	•
TSX	X←S	16/8	31 2 3 F2	2																		0																							•	•	N	•	•••	•	<u>'</u> •
ТХА	A←X	16/8	A4 1	1																																									•	•	N	•	•••	•	<u>'</u> •
ТХВ	B←X	16/8	81 2 A4	2															<u> </u>																										•	•	N	•	•••	•	<u>'</u> •
TXS	S←X	16/8	31 2 E2	2															In																										•	•	•	•	•••	•	•
TXY	Y←X	16/8	31 2 C2	2																																									•	•	N	•	•••	•	<u>'</u> •
TYA	A←Y	16/8	B4 1	1																																									•	•	N	•	•••	•	<u>'</u> •
ТҮВ	B←Y	16/8	81 2 B4	2									1																																•	•	N	•	•••	•	<u>'</u> •
ТҮХ	X-Y	16/8	31 2 1 D2	2																																									•	•	N	•	•••	•	<u>'</u> •
WIT	CPU clock stopped	-	31 – 2 10	2																																									•	•	•	•	•••	•	
ХАВ	A≒B	16/8	55 2	1																																									•	•	N	•	•••	•	<u>'</u> •

# APPENDIX

#### Appendix 1. 7900 Series machine instructions

#### Notes for machine instructions table

This table lists the minimum number of instruction cycles for each instruction. The number of cycles of the addressing mode related with DPRn (n = 0 to 3) is applied when  $DPRn_{L} = 0$ . When  $DPRn_{L} \neq 0$ , add 1 to the number of cycles.

The number of cycles also varies according to the number of bytes fetched into the instruction queue buffer, or according to whether the memory accessed is at an odd address or an even address. Furthermore, it also varies when the external area is accessed with BYTE = "H."

- Note 1. The op code at the upper row is used for accumulator A, and the op code at the lower row is used for accumulator B.
- Note 2. When handing 16-bit data with flag m = 0 in the IMM addressing mode, add 1 to the numder of bytes (#).
- Note 3. When handing 16-bit data with flag m = 0, add 1 to the number of bytes.
- Note 4. Imm is the immediate value specified with an operand.
- Note 5. The op code at the upper row is used for branching in the range of -128 to +127, and the op code at the lower row is used for branching in the range of -32768 to +32767.
- Note 6. The BRK instruction is a reserved instruction for debugging tools; it cannot be used when an emulator is used.
- Note 7. Any value from 0 through 15 is placed in an "n" in column "Addressing Modes."
- Note 8. When handling 16-bit data with flag x = 0 in the IMM addressing mode, add 1 to the numder of bytes.
- Note 9. The number of cycles is the case of the 16-bit ÷ 8-bit operation. In the case of the 32-bit ÷ 16-bit operation, add 8 to the number of cycles.
- Note 10. When a zero division interrupt occurs, the number of cycles is 16 cycles. It is regardless of the data length.
- Note 11. When placing a value in any of DPRs, the lower row is applied. When placing values to multiple DPRs, the lower row is applied. The letter "i" represents the number of DPRn specified: 1 to 4.
- Note 12. A "?" indicates that the bit corressing to the specified DPRn becomes "1."
- Note 13. When the source is in the addressing mode and flag m = 0, the number of bytes (#) is incremented by n (n = 0 to 15).
- Note 14. The number of cycles of the case of the 8-bit X 8-bit operation. In the case of the 16-bit X 16-bit operation, add 4 to the number of cycles.

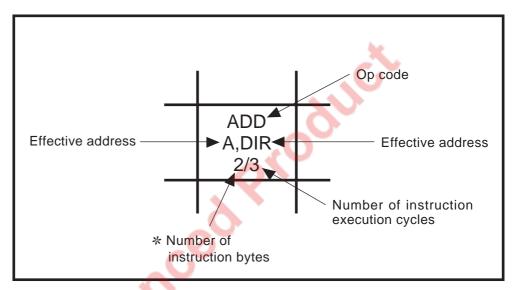
- Note 15. The number of cycles is the case where the number of bytes to be transferred (#) is even. When the number of bytes to be transferred (#) is odd, the number is calculated as;  $5 \times i + 10$
- Note 16. The number of cycles is the case where the number of bytes to be transferred (#) is even. When the number of bytes to be transferred (#) is odd, the number is calculated as;  $5 \times i + 14$

Note that it is 10 cycles in the case of 1-byte thanster.

Note 17. Add the number of cycles corresponding to the registers to be stored. in is the number of registers to be stored among A, B, X, Y, DPR0, and PS. i₂ is the number of registers to be stored between DT and PG.

Note 18. Letter "i" indicates the number of registers to be restored.

as:


Note 19. The number of cycles is applied when flag m = "1." When flag m="0," the number is calculated

18 X imm + 5

Note 20. Any value from 0 through 3 is placed in an "n" in column "Addressing Modes."

[How to use these tables]

- First, see instruction code table 0-A.
- For an instruction of which op code consists of 2 bytes, the code corresponding to the 2nd byte is listed in another table. The 1st byte of the instruction listed in another table is indicated as "PAGE XX" in instruction code table 0-A.
- See the following:



* The inside of parentheses is applied when 16-bit data is handled with flag m = "0" or flag x= "0." Unless otherwise noted, the instruction is unaffected by flags m and x.

Instruction code table 0-A

	3-D0									1							
	decimal	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
	notation	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
0000	0	BRK (Note 1) IMP 2/15	PAGE10	LDX DIR 2/3	ASL A 1/1	SEC IMP 1/1	SEI IMP 1/4		LDX ABS 3/3	LDAB A,(DIR),Y 2/6	LDAB A,L(DIR),Y 2/8	LDAB A,DIR 2/3	LDAB A,DIR,X 2/4	LDAB A,ABL 4/4	LDAB A,ABL,X 4/5	LDAB A,ABS 3/3	LDAB A,ABS,X 3/4
0001	1	BPL REL 2/6	PAGE1-A	LDY DIR 2/3	ROL A 1/1	CLC IMP 1/1	CLI IMP 1/3	LDA A,IMM 2(3)/1	LDY ABS 3/3	LDA A,(DIR),Y 2/6	LDA A,L(DIR),Y 2/8	LDA A,DIR 2/3	LDA A,DIR,X 2/4	LDA A,ABL 4/4	LDA A,ABL,X 4/5	LDA A,ABS 3/3	LDA A,ABS,X 3/4
0010	2	BRA REL 2/5	PAGE2-A	CPX DIR 2/3	ANDB A,IMM 2/1	NEG A 1/1	SEM IMP 1/3	ADD A,IMM 2(3)/1	LDXB IMM 2/1	LDAB A,IMM 2/1	ADDB A,IMM 2/1	ADD A,DIR 2/3	ADD A,DIR,X 2/4	LDAD E,IMM 5/3	ADDD E,IMM 5/3	ADD A,ABS 3/3	ADD A,ABS,X 3/4
0011	3	BMI REL 2/6	PAGE3-A	CPY DIR 2/3	EORB A,IMM 2/1	EXTZ A 1/1	EXTS A 1/1	SUB A,IMM 2(3)/1	LDYB IMM 2/1	CMPB A,IMM 2/1	SUBB A,IMM 2/1	SUB A,DIR 2/3	SUB A,DIR,X 2/4	CMPD E,IMM 5/3	SUBD E,IMM 5/3	SUB A,ABS 3/3	SUB A,ABS,X 3/4
0100	4	BGTU REL 2/6	PAGE4	BBSB DIR,b,REL 4/8	LSR A 1/1	CLRB A 1/1	CLM IMP 1/3	CMP A,IMM 2(3)/1	BBSB ABS,b,REL 5/8	MOVMB DIR/DIR 3/6		CMP A,DIR 2/3	CMP A,DIR,X 2/4	MOVMB DIR/ABS 4/6	MOVMB DIR/ABS,X 4/7	CMP A,ABS 3/3	CMP A,ABS,X 3/4
0101	5	BVC REL 2/6	PAGE5	BBCB DIR,b,REL 4/8	ROR A 1/1	CLR A 1/1	XAB IMP 1/2	ORA A,IMM 2(3)/1	BBCB ABS,b,REL 5/8	MOVM DIR/DIR 3/6		ORA A,DIR 2/3	ORA A,DIR,X 2/4	MOVM DIR/ABS 4/6	MOVM DIR/ABS,X 4/7	ORA A,ABS 3/3	ORA A,ABS,X 3/4
0110	6	BLEU REL 2/6	PAGE6	CBEQB DIR/IMM,REL 4/8	ORAB A,IMM 2/1	ASR A 1/1	CLV IMP 1/1	AND A,IMM 2(3)/1	PUL STK 2/Note 2	MOVMB ABS/DIR 4/5	MOVMB ABS/DIR,X 4/6	AND A,DIR 2/3	AND A,DIR,X 2/4	MOVMB ABS/ABS 5/5		AND A,ABS 3/3	AND A,ABS,X 3/4
0111	7	BVS REL 2/6	PAGE7	CBNEB DIR/IMM,REL 4/8		NOP IMP 1/1		EOR A,IMM 2(3)/1	PLD n /RTLD n /RTSD n STK 2/Note 3	MOVM ABS/DIR 4/5	MOVM ABS/DIR,X 4/6	EOR A,DIR 2/3	EOR A,DIR,X 2/4	MOVM ABS/ABS 5/5		EOR A,ABS 3/3	EOR A,ABS,X 3/4
1000	8	BGT REL 2/6	PAGE0-B	INC DIR 2/6	PHD STK 1/4	RTS IMP 1/7	PHA STK 1/4	MOVM DIR/IMM 3(4)/5	INC ABS 3/6	LDAD E,(DIR),Y 2/9	LDAD E,L(DIR),Y 2/11	LDAD E,DIR 2/6	LDAD E,DIR,X 2/7	LDAD E,ABL 4/7	LDAD E,ABL,X 4/8	LDAD E,ABS 3/6	LDAD E,ABS,X 3/7
1001	9	BCC REL 2/6	PAGE1-B	DEC DIR 2/6	PLD STK 1/5	RTL IMP 1/10	PLA STK 1/4	MOVM ABS/IMM 4(5)/4	DEC ABS 3/6	CLP IMM 2/4	SEP IMM 2/3	ADDD E,DIR 2/6	ADDD E,DIR,X 2/7	JMP ABS 3/4	JSR ABS 3/6	ADDD E,ABS 3/6	ADDD E,ABS,X 3/7
1010	А	BLE REL 2/6	PAGE2-B	CBEQB A/IMM,REL 3/6	INC A 1/1	TXA IMP 1/1	PHP STK 1/4	CBEQ A/IMM,REL 3(4)/6	BRAL REL 3/5	PSH STK 2/Note 4	MOVMB DIR/IMM 3/5	SUBD E,DIR 2/6	SUBD E,DIR,X 2/7	JMPL ABL 4/5	JSRL ABL 4/7	SUBD E,ABS 3/6	SUBD E,ABS,X 3/7
1011	в	BCS REL 2/6	PAGE3-B	CBNEB A/IMM,REL 3/6	DEC A 1/1	TYA IMP 1/1	PLP STK 1/5	CBNE A/IMM,REL 3(4)/6		LDD n /PHD n /PHLD n STK/IMM /Note 5 and 6	MOVMB ABS/IMM 4/4	CMPD E,DIR 2/6	CMPD E,DIR,X 2/7	JMP (ABS,X) 3/7	JSR (ABS,X) 3/8	CMPD E,ABS 3/6	CMPD E,ABS,X 3/7
1100	С	BGE REL 2/6	PAGE8	CLRMB DIR 2/5	INX IMP 1/1	TAX IMP 1/1	PHX STK 1/4	LDX IMM 2(3)/1	CLRMB ABS 3/5	STAB A,(DIR),Y 2/7	STAB A,L(DIR),Y 2/9	STAB A,DIR 2/4	STAB A,DIR,X 2/5	STAB A,ABL 4/5	STAB A,ABL,X 4/6	STAB A,ABS 3/4	STAB A,ABS,X 3/5
1101	D	BNE REL 2/6	PAGE9	CLRM DIR 2/5	INY IMP 1/1	TAY IMP 1/1	PLX STK 1/4	LDY IMM 2(3)/1	CLRM ABS 3/5	STA A,(DIR),Y 2/7	STA A,L(DIR),Y 2/9	STA A,DIR 2/4	STA A,DIR,X 2/5	STA A,ABL 4/5	STA A,ABL,X 4/6	STA A,ABS 3/4	STA A,ABS,X 3/5
1110	E	BLT REL 2/6	ABS A 1/3	STX DIR 2/4	DEX IMP 1/1	CLRX IMP 1/1	PHY STK 1/4	CPX IMM 2(3)/1	STX ABS 3/4	STAD E,(DIR),Y 2/9	STAD E,L(DIR),Y 2/11	STAD E,DIR 2/6	STAD E,DIR,X 2/7	STAD E,ABL 4/7	STAD E,ABL,X 4/8	STAD E,ABS 3/6	STAD E,ABS,X 3/7
1111	F	BEQ REL 2/6	RTI IMP 1/12	STY DIR 2/4	DEY IMP 1/1	CLRY IMP 1/1	PLY STK 1/4	CPY IMM 2(3)/1	STY ABS 3/4	-			R	SR EL			
Instruc	ation	odo to	blo 1-4	(PAGE	1_0)		-		~	5			<u> </u>				
-					<u></u>		-										
	3-D0	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111

### Instruction code table 1-A (PAGE 1-A)

	3-D0	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
	decima notation	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
0000	0	LDAB A,(DIR) 3/6	LDAB A,(DIR,X) 3/7	LDAB A,L(DIR) 3/8	LDAB A,SR 3/5	LDAB A,(SR),Y 3/8		LDAB A,ABS,Y 4/5									
0001	1	LDA A,(DIR) 3/6	LDA A,(DIR,X) 3/7	LDA A,L(DIR) 3/8	LDA A,SR 3/5	LDA A,(SR),Y 3/8		LDA A,ABS,Y 4/5									
0010	2	ADD A,(DIR) 3/6	ADD A,(DIR,X) 3/7	ADD A,L(DIR) 3/8	ADD A,SR 3/5	ADD A,(SR),Y 3/8		ADD A,ABS,Y 4/5		ADD A,(DIR),Y 3/7	ADD A,L(DIR),Y 3/9			ADD A,ABL 5/5	ADD A,ABL,X 5/6		
0011	3	SUB A,(DIR) 3/6	SUB A,(DIR,X) 3/7	SUB A,L(DIR) 3/8	SUB A,SR 3/5	SUB A,(SR),Y 3/8		SUB A,ABS,Y 4/5		SUB A,(DIR),Y 3/7	SUB A,L(DIR),Y 3/9			SUB A,ABL 5/5	SUB A,ABL,X 5/6		
0100	4	CMP A,(DIR) 3/6	CMP A,(DIR,X) 3/7	CMP A,L(DIR) 3/8	CMP A,SR 3/5	CMP A,(SR),Y 3/8		CMP A,ABS,Y 4/5		CMP A,(DIR),Y 3/7	CMP A,L(DIR),Y 3/9			CMP A,ABL 5/5	CMP A,ABL,X 5/6		
0101	5	ORA A,(DIR) 3/6	ORA A,(DIR,X) 3/7	ORA A,L(DIR) 3/8	ORA A,SR 3/5	ORA A,(SR),Y 3/8		ORA A,ABS,Y 4/5		ORA A,(DIR),Y 3/7	ORA A,L(DIR),Y 3/9			ORA A,ABL 5/5	ORA A,ABL,X 5/6		
0110	6	AND A,(DIR) 3/6	AND A,(DIR,X) 3/7	AND A,L(DIR) 3/8	AND A,SR 3/5	AND A,(SR),Y 3/8		AND A,ABS,Y 4/5		AND A,(DIR),Y 3/7	AND A,L(DIR),Y 3/9			AND A,ABL 5/5	AND A,ABL,X 5/6		
0111	7	EOR A,(DIR) 3/6	EOR A,(DIR,X) 3/7	EOR A,L(DIR) 3/8	EOR A,SR 3/5	EOR A,(SR),Y 3/8		EOR A,ABS,Y 4/5		EOR A,(DIR),Y 3/7	EOR A,L(DIR),Y 3/9			EOR A,ABL 5/5	EOR A,ABL,X 5/6		
1000	8	LDAD E,(DIR) 3/9	LDAD E,(DIR,X) 3/10	LDAD E,L(DIR) 3/11	LDAD E,SR 3/8	LDAD E,(SR),Y 3/11		LDAD E,ABS,Y 4/8									
1001	9	ADDD E,(DIR) 3/9	ADDD E,(DIR,X) 3/10	ADDD E,L(DIR) 3/11	ADDD E,SR 3/8	ADDD E,(SR),Y 3/11		ADDD E,ABS,Y 4/8		ADDD E,(DIR),Y 3/10	ADDD E,L(DIR),Y 3/12			ADDD E,ABL 5/8	ADDD E,ABL,X 5/9		
1010	А	SUBD E,(DIR) 3/9	SUBD E,(DIR,X) 3/10	SUBD E,L(DIR) 3/11	SUBD E,SR 3/8	SUBD E,(SR),Y 3/11		SUBD E,ABS,Y 4/8		SUBD E,(DIR),Y 3/10	SUBD E,L(DIR),Y 3/12			SUBD E,ABL 5/8	SUBD E,ABL,X 5/9		
1011	В	CMPD E,(DIR) 3/9	CMPD E,(DIR,X) 3/10	CMPD E,L(DIR) 3/11	CMPD E,SR 3/8	CMPD E,(SR),Y 3/11		CMPD E,ABS,Y 4/8		CMPD E,(DIR),Y 3/10	CMPD E,L(DIR),Y 3/12			CMPD E,ABL 5/8	CMPD E,ABL,X 5/9		
1100	С	STAB A,(DIR) 3/7	STAB A,(DIR,X) 3/8	STAB A,L(DIR) 3/9	STAB A,SR 3/6	STAB A,(SR),Y 3/9		STAB A,ABS,Y 4/6									
1101	D	STA A,(DIR) 3/7	STA A,(DIR,X) 3/8	STA A,L(DIR) 3/9	STA A,SR 3/6	STA A,(SR),Y 3/9		STA A,ABS,Y 4/6									
1110	Е	STAD E,(DIR) 3/9	STAD E,(DIR,X) 3/10	STAD E,L(DIR) 3/11	STAD E,SR 3/8	STAD E,(SR),Y 3/11		STAD E,ABS,Y 4/8									
1111	F																

11300	00011				<u> </u>												
	3–D0	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
	adecima notation	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
0000	0											ASL DIR 3/7	ASL DIR,X 3/8			ASL ABS 4/7	ASL ABS,X 4/8
0001	1											ROL DIR 3/7	ROL DIR,X 3/8			ROL ABS 4/7	ROL ABS,X 4/8
0010	2											LSR DIR 3/7	LSR DIR,X 3/8			LSR ABS 4/7	LSR ABS,X 4/8
0011	3											ROR DIR 3/7	ROR DIR,X 3/8			ROR ABS 4/7	ROR ABS,X 4/8
0100	4											ASR DIR 3/7	ASR DIR,X 3/8			ASR ABS 4/7	ASR ABS,X 4/8
0101	5																
0110	6														-		
0111	7																
1000	8	ADC A,(DIR) 3/7	ADC A,(DIR,X) 3/8	ADC A,L(DIR) 3/9	ADC A,SR 3/6	ADC A,(SR),Y 3/9		ADC A,ABS,Y 4/6		ADC A,(DIR),Y 3/8	ADC A,L(DIR),Y 3/10	ADC A,DIR 3/5	ADC A,DIR,X 3/6	ADC A,ABL 5/6	ADC A,ABL,X 5/7	ADC A,ABS 4/5	ADC A,ABS,X 4/6
1001	9	ADCD E,(DIR) 3/9	ADCD E,(DIR,X) 3/10	ADCD E,L(DIR) 3/11	ADCD E,SR 3/8	ADCD E,(SR),Y 3/11		ADCD E,ABS,Y 4/8		ADCD E,(DIR),Y 3/10	ADCD E,L(DIR),Y 3/12	ADCD E,DIR 3/7	ADCD E,DIR,X 3/8	ADCD E,ABL 5/8	ADCD E,ABL,X 5/9	ADCD E,ABS 4/7	ADCD E,ABS,X 4/8
1010	А	SBC A,(DIR) 3/7	SBC A,(DIR,X) 3/8	SBC A,L(DIR) 3/9	SBC A,SR 3/6	SBC A,(SR),Y 3/9		SBC A,ABS,Y 4/6		SBC A,(DIR),Y 3/8	SBC A,L(DIR),Y 3/10	SBC A,DIR 3/5	SBC A,DIR,X 3/6	SBC A,ABL 5/6	SBC A,ABL,X 5/7	SBC A,ABS 4/5	SBC A,ABS,X 4/6
1011	в	SBCD E,(DIR) 3/9	SBCD E,(DIR,X) 3/10	SBCD E,L(DIR) 3/11	SBCD E,SR 3/8	SBCD E,(SR),Y 3/11		SBCD E,ABS,Y 4/8		SBCD E,(DIR),Y 3/10	SBCD E,L(DIR),Y 3/12	SBCD E,DIR 3/7	SBCD E,DIR,X 3/8	SBCD E,ABL 5/8	SBCD E,ABL,X 5/9	SBCD E,ABS 4/7	SBCD E,ABS,X 4/8
1100	с	MPY (DIR) 3/11/Note 7	MPY (DIR,X) 3/12/Note 7	MPY L(DIR) 3/13/Note 7	MPY SR 3/10/Note 7	MPY (SR),Y 3/13/Note 7		MPY ABS,Y 4/10/Note 7		MPY (DIR),Y 3/12/Note 7	MPY L(DIR),Y 3/14/Note 7	MPY DIR 3/9/Note 7	MPY DIR,X 3/10/Note 7	MPY ABL 5/10/Note 7	MPY ABL,X 5/11/Note 7	MPY ABS 4/9/Note 7	MPY ABS,X 4/10/Note 7
1101	D	MPYS (DIR) 3/11/Note 7	MPYS (DIR,X) 3/12/Note 7	MPYS L(DIR) 3/13/Note 7	MPYS SR 3/10/Note 7	MPYS (SR),Y 3/13/Note 7		MPYS ABS,Y 4/10/Note 7		MPYS (DIR),Y 3/12/Note 7	MPYS L(DIR),Y 3/14/Note 7	MPYS DIR 3/9/Note 7	MPYS DIR,X 3/10/Note 7	MPYS ABL 5/10/Note 7	MPYS ABL,X 5/11/Note 7	MPYS ABS 4/9/Note 7	MPYS ABS,X 4/10/Note 7
1110	Е	DIV (DIR) 3/18/Note 8,9	DIV (DIR,X) 3/19/Note 8,9	DIV L(DIR) 3/20/Note 8,9	DIV SR 3/17/Note 8,9	DIV (SR),Y 3/20/Note 8,9		DIV ABS,Y 4/17/Note 8,9		DIV (DIR),Y 3/19/Note 8,9	DIV L(DIR),Y 3/21/Note 8,9	DIV DIR 3/16/Note 8,9	DIV DIR,X 3/17/Note 8,9	DIV ABL 5/17/Note 8,9	DIV ABL,X 5/18/Note 8,9	DIV ABS 4/16/Note 8,9	DIV ABS,X 4/17/Note 8,9
1111	F	DIVS (DIR) 3/25/Note 8,9	DIVS (DIR,X) 3/26/Note 8,9	DIVS L(DIR) 3/27/Note 8,9	DIVS SR 3/24/Note 8,9	DIVS (SR),Y 3/27/Note 8,9		DIVS ABS,Y 4/24/Note 8,9	C	DIVS (DIR),Y 3/26/Note 8,9	DIVS L(DIR),Y 3/28/Note 8,9	DIVS DIR 3/23/Note 8,9	DIVS DIR,X 3/24/Note 8,9	DIVS ABL 5/24/Note 8,9	DIVS ABL,X 5/25/Note 8,9	DIVS ABS 4/23/Note 8,9	DIVS ABS,X 4/24/Note 8,9
Instru	ction	code ta	able 3-A	(PAGE	<u>= 3-A)</u>												
<u> </u>	-		1							1	1		1	1	1		1

Instruction code table 2-A (PAGE 2-A)

### Instruction code table 3-A (PAGE 3-A)

	3-D0																
Hex	adecimal	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
	notation	0	1	2	3	4	5	6	7	8	9	A	В	С	D	E	F
0000	0			TAD,0 IMP 2/3		$\sim$			RLA A 3(4)/n+5 /Note 10			ADDS IMM 3/2	SUBS IMM 3/2				
0001	1	WIT IMP 2/-		TAD,1 IMP 2/3								ADCB A,IMM 3/3	SBCB A,IMM 3/3	ADCD E,IMM 6/4	SBCD E,IMM 6/4		
0010	2			TAD,2 IMP 2/3	0							MVP BLK 4/5i+9/Note 11	MVN BLK 4/5i+5/Note 12				
0011	3	STP IMP 2/-		TAD,3 IMP 2/3								MOVMB DIR,X/IMM 4/7	MOVMB ABS,X/IMM 5/6				
0100	4	PHT STK 2/4		TDA,0 IMP 2/2					MOVM DIR,X/IMM 4(5)/7			LDT IMM 3/4	PEI STK 3/7	PEA STK 4/5	PER STK 4/6		
0101	5	PLT STK 2/6		TDA,1 IMP 2/2					MOVM ABS,X/IMM 5(6)/6		Multip	RMPA blied accumu 3/14imm+5 /Note 13	lation	JMP (ABS) 4/7	JMPL L(ABS) 4/9		
0110	6	PHG STK 2/4		TDA,2 IMP 2/2													
0111	7	TSD IMP 2/4		TDA,3 IMP 2/2	TDS IMP 2/2												
1000	8	NEGD E 2/4		TAS IMP 2/2					ADC A,IMM 3(4)/3								
1001	9	ABSD E 2/5		TSA IMP 2/2													
1010	А	EXTZD E 2/3							SBC A,IMM 3(4)/3								
1011	в	EXTSD E 2/5															
1100	С			TXY IMP 2/2					MPY IMM 3(4)/8/Note 7								
1101	D			TYX IMP 2/2					MPYS IMM 3(4)/8/Note 7								
1110	Е			TXS IMP 2/2					DIV IMM 3(4)/15/Note 8,9								
1111	F			TSX IMP 2/2					DIVS IMM 3(4)/22/Note 8,9								

				AGE 4	7												
	3-D0	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
	adecimal notation	0	1	2	3	4	5	6	7	8	9	А	В	С	D	E	F
0000	0						LDX DIR,Y 3/5	LDX ABS,Y 4/5									
0001	1												LDY DIR,X 3/5				LDY ABS,X 4/5
0010	2															CPX ABS 4/4	
0011	3															CPY ABS 4/4	
0100	4											BBS DIR,b,REL 5(6)/9				BBS ABS,b,REL 6(7)/9	
0101	5											BBC DIR,b,REL 5(6)/9				BBC ABS,b,REL 6(7)/9	
0110	6											CBEQ DIR/IMM,REL 5(6)/9			2		
0111	7											CBNE DIR/IMM,REL 5(6)/9			6		
1000	8												INC DIR,X 3/8		$\mathbf{D}_{\mathbf{r}}$		INC ABS,X 4/8
1001	9												DEC DIR,X 3/8		•		DEC ABS,X 4/8
1010	А												2				
1011	в											$\mathbf{\Sigma}$					
1100	С										N						
1101	D									2							
1110	E						STX DIR,Y 3/6			2							
1111	F								C				STY DIR,X 3/6				
	ction		able 5 (I	PAGE 5	<u>5)</u>												

Instruction code table 4 (PAGE 4)

### Instruction code table 5 (PAGE 5)

	03-D0	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
D7-D4	xadecimal notation	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
0000	0			ADDMB DIR/IMM 4/7	ADDM DIR/IMM 4(5)/7	$\leq$		ADDMB ABS/IMM 5/7	ADDM ABS/IMM 5(6)/7								
0001	1			SUBMB DIR/IMM 4/7	SUBM DIR/IMM 4(5)/7			SUBMB ABS/IMM 5/7	SUBM ABS/IMM 5(6)/7								
0010	2			CMPMB DIR/IMM 4/5	CMPM DIR/IMM 4(5)/5			CMPMB ABS/IMM 5/5	CMPM ABS/IMM 5(6)/5								
0011	3			ORAMB DIR/IMM 4/7	ORAM DIR/IMM 4(5)/7			ORAMB ABS/IMM 5/7	ORAM ABS/IMM 5(6)/7								
0100	4																
0101	5																
0110	6			ANDMB DIR/IMM 4/7	ANDM DIR/IMM 4(5)/7			ANDMB ABS/IMM 5/7	ANDM ABS/IMM 5(6)/7								
0111	7			EORMB DIR/IMM 4/7	EORM DIR/IMM 4(5)/7			EORMB ABS/IMM 5/7	EORM ABS/IMM 5(6)/7								
1000	8				ADDMD DIR/IMM 7/10				ADDMD ABS/IMM 8/10								
1001	9				SUBMD DIR/IMM 7/10				SUBMD ABS/IMM 8/10								
1010	А				CMPMD DIR/IMM 7/7				CMPMD ABS/IMM 8/7								
1011	В				ORAMD DIR/IMM 7/10				ORAMD ABS/IMM 8/10								
1100	С																
1101	D																
1110	Е				ANDMD DIR/IMM 7/10				ANDMD ABS/IMM 8/10								
1111	F				EORMD DIR/IMM 7/10				EORMD ABS/IMM 8/10								

	3-D0	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
	adecimal	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
0000	0	MOVRB DIR/IMM 2n+2/5n+3 /Note 14															>
0001	1	MOVR DIR/IMM ^{2n(3n)+2/5n+3} /Note 14															
0010	2	MOVRB ABS/IMM 3n+2/4n+3/ Note 14															>
0011	3	MOVR ABS/IMM 3n(4n)+2/4n+3 /Note 14															>
0100	4	MOVRB DIR/DIR 2n+2/6n+3 /Note 14															$\rightarrow$
0101	5	MOVR DIR/DIR 2n+2/6n+3 /Note 14															$\rightarrow$
0110	6	MOVRB ABS/DIR 3n+2/5n+3 /Note 14															$\rightarrow$
0111	7	MOVR ABS/DIR 3n+2/5n+3 /Note 14															>
1000	8	MOVRB DIR/ABS 3n+2/6n+3 /Note 14															$\rightarrow$
1001	9	MOVR DIR/ABS 3n+2/6n+3 /Note 14															$\rightarrow$
1010	A	MOVRB ABS/ABS 4n+2/5n+3 /Note 14															$\rightarrow$
1011	в	MOVR ABS/ABS 4n+2/5n+3 /Note 14															>
1100	с																
1101	D																
1110	Е										J.						
1111	F								C	0							
Instruc	ction	code ta	<u>ble 7 (</u> F	PAGE 7	<u>)</u>			5									

Instruction code table 6 (PAGE 6)

### Instruction code table 7 (PAGE 7)

-																	
	3-D0	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
	adecima notation	0	1	2	3	4	5	6	7	8	9	А	В	С	D	E	F
0000	0	MOVRB DIR/ABS,X 3n+2/6n+3 /Note 14				3											
0001	1	MOVR DIR/ABS,X 3n+2/6n+3 /Note 14															
0010	2				0												
0011	3																
0100	4																
0101	5																
0110	6	MOVRB ABS/DIR,X 3n+2/6n+3 /Note 14															
0111	7	MOVR ABS/DIR,X 3n+2/6n+3 /Note 14															>
1000	8								B: DIR,t 4/	SS p,REL 11							
1001	9																
1010	A								DIR,	SC p,REL 11							
1011	В																
1100	с								ABS.	SS b,REL 10							
1101	D																
1110	Е								B ABS, 5	SC b,REL /10							
1111	F																

Instru	ction	code ta		PAGE 8	3)												
	3–D0	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
D7-D4	adecima	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
0000	0								LSR 2/imi /Note	1,#n \ m+6 e 15							
0001	1																
0010	2								ROF /A 2/imi /Note	R,#n m+6 e 15							
0011	3																
0100	4								ASL A 2/imi /Note	.,#n m+6 e 15							
0101	5																
0110	6								ROL A 2/imi /Note	.,#n m+6 e 15							
0111	7														X		
1000	8								ASR A 2/imr /Note	1,#n m+6 e 15					0		
1001	9													2			
1010	А								DEE DIR/IM	BNE		ß	~	3			
1011	в								4/- 4/-	12			V				
1100	С										$\mathbf{\mathbf{\nabla}}$						
1101	D																
1110	Е									~	7						
1111	F								C	0							
Instru	ction	code ta	ible 9 (I	PAGES	<u>))</u>												

Instruction code table 8 (PAGE 8)

#### Instruction code table 9 (PAGE 9)

				AUL 3			-		-								
	3-D0	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
	adecimal notation	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
0000	0					~	*		LSRI	D,#n							
0001	1								2/im /Note	m+8 ≥ 16							
0010	2				0				ROR E 2/imi /Not	D,#n							
0011	3				•				2/im /Not	m+8 e 16							
0100	4								ASLI E 2/im /Note	D,#n							
0101	5								2/im /Note	m+8 e 16							
0110	6								ROLI 2/imi /Note	D,#n							
0111	7								/Note	11+0 e 16							
1000	8								ASR 2/im /Note	D,#n							
1001	9								/Not	m+8 e 16							
1010	А																
1011	в																
1100	С																
1101	D																
1110	Е								DE ABS/IN	BNE IM,REL							
1111	F								5/	11							

<u>1130 a</u>	CUOIT				10)												
	3–D0	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
	adecimal notation	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
0000	0								AD	DX IM							
0001	1								2	/2							
0010	2								AD	IDY							
0011	3								2	/2							
0100	4								SU IN	IBX							
0101	5								2	/2							
0110	6								SU	IBY							
0111	7								2	/2					X		
1000	8								BS A,b, 3/	REL					J		
1001	9																
1010	А								BS A,b, 3	REL			~	8			
1011	в																
1100	с								DXE IMM,	3NE REL	$\bigcirc$						
1101	D								3/	7							
1110	Е								DYE IMM,	BNE	P						
1111	F								3/	7							
Instrue	ction	code ta	ble 0-B	(PAGE	<u> </u>			5									

Instruction code table 10 (PAGE 10)

### Instruction code table 0-B (PAGE 0-B)

	3–D0	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
D7-D4 Hex	adecima	0	1	2	3	4	5	6	7	8	9	A	В	С	D	E	F
0000	0				ASL B 2/2	$\leq$				LDAB B,(DIR),Y 3/7	LDAB B,L(DIR),Y 3/9	LDAB B,DIR 3/4	LDAB B,DIR,X 3/5	LDAB B,ABL 5/5	LDAB B,ABL,X 5/6	LDAB B,ABS 4/4	LDAB B,ABS,X 4/5
0001	1				ROL B 2/2			LDA B,IMM 3(4)/2		LDA B,(DIR),Y 3/7	LDA B,L(DIR),Y 3/9	LDA B,DIR 3/4	LDA B,DIR,X 3/5	LDA B,ABL 5/5	LDA B,ABL,X 5/6	LDA B,ABS 4/4	LDA B,ABS,X 4/5
0010	2				ANDB B,IMM 3/2	NEG B 2/2		ADD B,IMM 3(4)/2		LDAB B,IMM 3/2	ADDB B,IMM 3/2	ADD B,DIR 3/4	ADD B,DIR,X 3/5			ADD B,ABS 4/4	ADD B,ABS,X 4/5
0011	3				EORB B,IMM 3/2	EXTZ B 2/2	EXTS B 2/2	SUB B,IMM 3(4)/2		CMPB B,IMM 3/2	SUBB B,IMM 3/2	SUB B,DIR 3/4	SUB B,DIR,X 3/5			SUB B,ABS 4/4	SUB B,ABS,X 4/5
0100	4				LSR B 2/2	CLRB B 2/2		CMP B,IMM 3(4)/2				CMP B,DIR 3/4	CMP B,DIR,X 3/5			CMP B,ABS 4/4	CMP B,ABS,X 4/5
0101	5				ROR B 2/2	CLR B 2/2		ORA B,IMM 3(4)/2				ORA B,DIR 3/4	ORA B,DIR,X 3/5			ORA B,ABS 4/4	ORA B,ABS,X 4/5
0110	6				ORAB B,IMM 3/2	ASR B 2/2		AND B,IMM 3(4)/2				AND B,DIR 3/4	AND B,DIR,X 3/5			AND B,ABS 4/4	AND B,ABS,X 4/5
0111	7							EOR B,IMM 3(4)/2				EOR B,DIR 3/4	EOR B,DIR,X 3/5			EOR B,ABS 4/4	EOR B,ABS,X 4/5
1000	8						PHB STK 2/5										
1001	9						PLB STK 2/5										
1010	А			CBEQB B/IMM,REL 4/7	INC B 2/2	TXB IMP 2/2		CBEQ B/IMM,REL 4(5)/7									
1011	В			CBNEB B/IMM,REL 4/7	DEC B 2/2	TYB IMP 2/2		CBNE B/IMM,REL 4(5)/7									
1100	С					TBX IMP 2/2				STAB B,(DIR),Y 3/8	STAB B,L(DIR),Y 3/10	STAB B,DIR 3/5	STAB B,DIR,X 3/6	STAB B,ABL 5/6	STAB B,ABL,X 5/7	STAB B,ABS 4/5	STAB B,ABS,X 4/6
1101	D					TBY IMP 2/2				STA B,(DIR),Y 3/8	STA B,L(DIR),Y 3/10	STA B,DIR 3/5	STA B,DIR,X 3/6	STA B,ABL 5/6	STA B,ABL,X 5/7	STA B,ABS 4/5	STA B,ABS,X 4/6
1110	Е		ABS B 2/4														
1111	F																

Instru	ction	code ta	able 1-B	(PAGE	<u>E 1-B)</u>												
	3–D0	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
	adecima notation	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
0000	0	LDAB B,(DIR) 3/6	LDAB B,(DIR,X) 3/7	LDAB B,L(DIR) 3/8	LDAB B,SR 3/5	LDAB B,(SR),Y 3/8		LDAB B,ABS,Y 4/5									
0001	1	LDA B,(DIR) 3/6	LDA B,(DIR,X) 3/7	LDA B,L(DIR) 3/8	LDA B,SR 3/5	LDA B,(SR),Y 3/8		LDA B,ABS,Y 4/5									
0010	2	ADD B,(DIR) 3/6	ADD B,(DIR,X) 3/7	ADD B,L(DIR) 3/8	ADD B,SR 3/5	ADD B,(SR),Y 3/8		ADD B,ABS,Y 4/5		ADD B,(DIR),Y 3/7	ADD B,L(DIR),Y 3/9			ADD B,ABL 5/5	ADD B,ABL,X 5/6		
0011	3	SUB B,(DIR) 3/6	SUB B,(DIR,X) 3/7	SUB B,L(DIR) 3/8	SUB B,SR 3/5	SUB B,(SR),Y 3/8		SUB B,ABS,Y 4/5		SUB B,(DIR),Y 3/7	SUB B,L(DIR),Y 3/9			SUB B,ABL 5/5	SUB B,ABL,X 5/6		
0100	4	CMP B,(DIR) 3/6	CMP B,(DIR,X) 3/7	CMP B,L(DIR) 3/8	CMP B,SR 3/5	CMP B,(SR),Y 3/8		CMP B,ABS,Y 4/5		CMP B,(DIR),Y 3/7	CMP B,L(DIR),Y 3/9			CMP B,ABL 5/5	CMP B,ABL,X 5/6		
0101	5	ORA B,(DIR) 3/6	ORA B,(DIR,X) 3/7	ORA B,L(DIR) 3/8	ORA B,SR 3/5	ORA B,(SR),Y 3/8		ORA B,ABS,Y 4/5		ORA B,(DIR),Y 3/7	ORA B,L(DIR),Y 3/9			ORA B,ABL 5/5	ORA B,ABL,X 5/6		
0110	6	AND B,(DIR) 3/6	AND B,(DIR,X) 3/7	AND B,L(DIR) 3/8	AND B,SR 3/5	AND B,(SR),Y 3/8		AND B,ABS,Y 4/5		AND B,(DIR),Y 3/7	AND B,L(DIR),Y 3/9			AND B,ABL 5/5	AND B,ABL,X 5/6		
0111	7	EOR B,(DIR) 3/6	EOR B,(DIR,X) 3/7	EOR B,L(DIR) 3/8	EOR B,SR 3/5	EOR B,(SR),Y 3/8		EOR B,ABS,Y 4/5		EOR B,(DIR),Y 3/7	EOR B,L(DIR),Y 3/9			EOR B,ABL 5/5	EOR B,ABL,X 5/6		
1000	8														9		
1001	9																
1010	A																
1011	В																
1100	с	STAB B,(DIR) 3/7	STAB B,(DIR,X) 3/8	STAB B,L(DIR) 3/9	STAB B,SR 3/6	STAB B,(SR),Y 3/9		STAB B,ABS,Y 4/6									
1101	D	STA B,(DIR) 3/7	STA B,(DIR,X) 3/8	STA B,L(DIR) 3/9	STA B,SR 3/6	STA B,(SR),Y 3/9		STA B,ABS,Y 4/6									
1110	Е																
1111	F								C	0							
Instru	Instruction code table 2-B (PAGE 2-B)																
							-				· · · · ·						

# Instruction code table 1-B (PAGE 1-B)

## Instruction code table 2-B (PAGE 2-B)

	3-D0	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
D7–D4	adecima notation	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
0000	0																
0001	1																
0010	2				0												
0011	3																
0100	4																
0101	5																
0110	6																
0111	7																
1000	8	ADC B,(DIR) 3/9	ADC B,(DIR,X) 3/10	ADC B,L(DIR) 3/11	ADC B,SR 3/8	ADC B,(SR),Y 3/11		ADC B,ABS,Y 4/8		ADC B,(DIR),Y 3/10	ADC B,L(DIR),Y 3/12	ADC B,DIR 3/7	ADC B,DIR,X 3/8	ADC B,ABL 5/8	ADC B,ABL,X 5/9	ADC B,ABS 4/7	ADC B,ABS,X 4/8
1001	9																
1010	А	SBC B,(DIR) 3/9	SBC B,(DIR,X) 3/10	SBC B,L(DIR) 3/11	SBC B,SR 3/8	SBC B,(SR),Y 3/11		SBC B,ABS,Y 4/8		SBC B,(DIR),Y 3/10	SBC B,L(DIR),Y 3/12	SBC B,DIR 3/7	SBC B,DIR,X 3/8	SBC B,ABL 5/8	SBC B,ABL,X 5/9	SBC B,ABS 4/7	SBC B,ABS,X 4/8
1011	В																
1100	С																
1101	D																
1110	Е																
1111	F																

Instituction code table 3-b (PAGE 3-b)																	
	3–D0	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
D7-D4	adecimal notation	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
0000	0			TBD,0 IMP 2/3													
0001	1			TBD,1 IMP 2/3								ADCB B,IMM 3/3	SBCB B,IMM 3/3				
0010	2			TBD,2 IMP 2/3													
0011	3			TBD,3 IMP 2/3													
0100	4			TDB,0 IMP 2/2													
0101	5			TDB,1 IMP 2/2													
0110	6			TDB,2 IMP 2/2													
0111	7			TDB,3 IMP 2/2													
1000	8			TBS IMP 2/2					ADC B,IMM 3(4)/3				4		2		
1001	9			TSB IMP 2/2										2			
1010	А								SBC B,IMM 3(4)/3				6				
1011	В											Y					
1100	С										$\sim$						
1101	D																
1110	Е																
1111	F								C	9							

Instruction code table 3-B (PAGE 3-B)

## Notes for machine instructions table

This table lists the minimum number of instruction cycles for each instruction. The number of cycles of the addressing mode related with DPRn (n = 0 to 3) is applied when  $DPRn_{L} = 0$ . When  $DPRn_{L} \neq 0$ , add 1 to the number of cycles.

The number of cycles also varies according to the number of bytes fetched into the instruction queue buffer, or according to whether the memory accessed is at an odd address or an even address. Furthermore, it also varies when the external area is accessed with BYTE="H."

Note 1. The BRK instruction is a reserved instruction for debugging tools; it cannot be used when an emulator is used.

Note 2. 3i + 13	i is the number of registers to be restored.
-----------------	----------------------------------------------

Note 3.	PLDn : 11,	PLD (n1,, ni) : 3i + 8	(n ₁ ,, n _i ): 0 to 3 (numbers representing DPRn)
	RTLDn : 15,	RTLD (n1,, ni) : 3i + 12	i is the number of DPRs specified (1 to 4).
	RTSDn : 14,	RTSD (n1,, ni) : 3i + 11	

Note 4.  $2i_1 + i_2 + 11$  Add the number of cycles corresponding to the registers to be stored.  $i_1$  is the number of registers to be stored among A, B, X, Y, DPR0, and PS.  $i_2$  is the number of registers to be stored between DT and PG.

APPENDIX

Appendix 2. Hexadecimal instruction code tables

- Note 5.LDDn: 4,LDD  $(n_1, ..., n_i)$ : 2i + 2 $(n_1, ..., n_i)$ : 0 to 3 (numbers representing DPRn)PHDn: 2,PHD  $(n_1, ..., n_i)$ : 2i is the number of DPRs specified (1 to 4).PHLDn: 4,PHLD  $(n_1, ..., n_i)$ : 2i + 2
- Note 6.LDDn: 13,LDD  $(n_1, ..., n_i)$ : 2i + 11 $(n_1, ..., n_i)$ : 0 to 3 (numbers representing DPRn)PHDn: 12,PHD  $(n_1, ..., n_i)$ : i + 11i is the number of DPRs specified (1 to 4).PHLDn: 14,PHLD  $(n_1, ..., n_i)$ : 3i + 11
- Note 7. The number of cycles is the case of the 8-bit X 8-bit operation. Add 4 to the number of cycles in the case of the 16-bit X 16-bit operation.
- Note 8. The number of cycles is the case of the 16-bit ÷ 8-bit operation. Add 8 to the number of cycles in the case of the 32-bit ÷ 16-bit operation.
- Note 9. When a zero division interrupt occurs, the number of cycles is 16 cycles. It is regardless of the data length.
- Note 10. n is the number of rotation specified by imm. m = 0: n = 0 to 65535 m = 1: n = 0 to 255
- Note 11. The number of cycles is the case where the number of bytes to be transferred (#) is even. When the number of bytes to be transferred (#) is odd, the number is calculated as; 5 X i + 14

Note that it is 10 cycles in the case of 1-byte transfer.

- Note 12. The number of cycles is the case where the number of bytes to be transferred (#) is even. When the number of bytes to be transferred (#) is odd, the number is calculated as; 5 X i + 10
- Note 13. The number of cycles is the case where flag m="1." When flag m="0," the number is calculated as;

18 X imm + 5 (imm = number of repeat times, 0 to 255)

Note 14. n = 0 to 15

Note 15. imm = 0 to 15

Note 16. imm = 0 to 31

mounced **MITSUBISHI SEMICONDUCTORS** Software Manual 7900 Series

Jul., First Edition 1998

Editioned by Committee of editing of Mitsubishi Semiconductor Software Manual

Published by Mitsubishi Electric Corp., Semiconductor Marketing Division

This book, or parts thereof, may not be reproduced in any form without permission of Mitsubishi Electric Corporation.

©1998 MITSUBISHI ELECTRIC CORPORATION

7900 Series Software Manual



Renesas Electronics Corporation 1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan