
13.9 

 

 

 

 

 

 

 

Smart Configurator 
 

User's Manual: RL78 API Reference 
 

 

Rev.1.07 Jan 2026 

RENESAS MCU 

RL78 Family 

 

 

 

 

U
s
e

r’s
 M

a
n

u
a

l 

All information contained in these materials, including products and product specifications, 

represents information on the product at the time of publication and is subject to change by 

Renesas Electronics Corp. without notice. Please review the latest information published by 

Renesas Electronics Corp. through various means, including the Renesas Electronics Corp. 

website (http://www.renesas.com). 

 

 

 

www.renesas.com



© 2026 Renesas Electronics Corporation. All rights reserved. 

Notice 

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products 

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your 

product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of 

these circuits, software, or information. 

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or 

other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this 

document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples. 

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or 

others. 

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, 

manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required. 

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any 

and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering. 

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for 

each Renesas Electronics product depends on the product’s quality grade, as indicated below. 

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home 

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc. 

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key 

financial terminal systems; safety control equipment; etc. 

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas 

Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to 

human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; 

undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims 

any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is 

inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document. 

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics 

hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not 

limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS 

ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING 

RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, 

HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND 

ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT 

PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH 

RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE 

IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. 

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for 

Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by 

Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas 

Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such 

specified ranges. 

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific 

characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability 

product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products 

are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, 

injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety 

design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging 

degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are 

responsible for evaluating the safety of the final products or systems manufactured by you. 

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas 

Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of 

controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these 

applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance 

with applicable laws and regulations. 

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is 

prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations 

promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions. 

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or 

transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document. 

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics. 

14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas 

Electronics products. 

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled 

subsidiaries. 

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics. 
 

(Rev.5.0-1  October 2020) 

Corporate Headquarters  Contact information 

TOYOSU FORESIA, 3-2-24 Toyosu, 

Koto-ku, Tokyo 135-0061, Japan 

www.renesas.com 

 For further information on a product, technology, the most up-to-date version of a document, or 

your nearest sales office, please visit: www.renesas.com/contact/. 

Trademarks   
Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All 

trademarks and registered trademarks are the property of their respective owners. 
  

https://www.renesas.com/
https://www.renesas.com/contact/


 

 

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit 

Products 

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by 

this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products. 

1. Precaution against Electrostatic Discharge (ESD) 

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken 

to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a 

humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and 

transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be 

grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken 

for printed circuit boards with mounted semiconductor devices. 

2. Processing at power-on 

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings 

and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not 

guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip 

power-on reset function are not guaranteed from the time when power is supplied until the power reaches the level at which resetting is specified. 

3. Input of signal during power-off state 

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power 

supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for 

input signal during power-off state as described in your product documentation. 

4. Handling of unused pins 

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-

impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-

through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. 

5. Clock signals 

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until 

the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line 

is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator 

while program execution is in progress, wait until the target clock signal is stable. 

6. Voltage application waveform at input pin 

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (Max.) and VIH (Min.) 

due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the 

transition period when the input level passes through the area between VIL (Max.) and VIH (Min.). 

7. Prohibition of access to reserved addresses 

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the 

correct operation of the LSI is not guaranteed. 

8. Differences between products 

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The 

characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory 

capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, 

and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product. 



 

How to Use This Manual 

 

 

 

 

Readers The target readers of this manual are the application system engineers who use the 

Smart Configurator and need to understand its function.  

 

Purpose The purpose of this manual is to explain the user for understanding and using the 

Smart Configurator functions. 

We aim to help their system development including their hardware and software. 

 

Organization This manual can be broadly divided into the following units. 

 1.GENERAL 

 2.OUTPUT FILES 

 3.API FUNCITONS 

 

How to Read This Manual It is assumed that the readers of this manual have general knowledge of electricity, 

logic circuits, and microcontrollers. 

 

Conventions Deata significance: Higher digits on the left and lower digits on the right 

 Active low representation: XXX  (overscore over pin or signal name) 

 Note: Footnote for item marked with Note in the text 

 Caution: Information requiring particular attention 

 Remark: Supplementary information 

 Numeric representation: Decimal ... XXXX 

   Hexadecimal ... 0xXXXX 

 

 

 

 

 

 

 

 

All trademarks and registered trademarks are the property of their respective owners.



 

 

TABLE OF CONTENTS 

 

1. GENERAL...................................................................................................................................................... 8 

1.1 Overview ............................................................................................................................................................ 8 

1.2 Features ............................................................................................................................................................... 8 

1.3 Cautions .............................................................................................................................................................. 9 

2. OUTPUT FILES ........................................................................................................................................... 10 

2.1 Description ........................................................................................................................................................ 10 

3. INITIALIZATION .......................................................................................................................................... 33 

4. API FUNCTIONS ......................................................................................................................................... 34 

4.1 Overview .......................................................................................................................................................... 34 

4.2 Function Reference ........................................................................................................................................... 35 

4.2.1 General ..................................................................................................................................................... 36 

4.2.2 Port......................................................................................................................................................... 147 

4.2.3 Delay Counter ........................................................................................................................................ 153 

4.2.4 Divider Function .................................................................................................................................... 163 

4.2.5 External Event Counter (Timer Array Unit) .......................................................................................... 170 

4.2.6 External Event Counter (Timer RJ) ....................................................................................................... 179 

4.2.7 Input Pulse High-/Low-Level Width Measurement (Timer Array Unit) ............................................... 186 

4.2.8 Input Pulse High-/Low-Level Width Measurement (Timer RJ) ............................................................ 194 

4.2.9 PWM Output (Timer Array Unit) .......................................................................................................... 202 

4.2.10 PWM Output (Timer Array Unit using PWM mode (Remote control carrier wave)) ........................... 210 

4.2.11 PWM Output (Timer RDn using PWM mode/ Extended PWM mode) ................................................. 220 

4.2.12 PWM Output (Timer RD0 and RD1 using PWM mode/ PWM3 mode/ Extended PWM mode/ Timer 

KB3 PWM Output Gate mode).............................................................................................................. 228 

4.2.13 PWM Output (Timer RG using PWM mode/ PWM2 mode) ................................................................. 238 

4.2.14 PWM Output (Timer KB using standalone mode (period controlled by TKBCRn0 register)/standalone 

mode (period controlled by external trigger input)/interleave PFC output mode) ................................. 245 

4.2.15 PWM Output (Timer KB using simultaneous start/stop mode (period controlled by TKBCRn0 

register)/simultaneous start/stop mode (period controlled by external trigger input)/synchronous 

start/clear mode (period controlled by master)) (1 slave) ...................................................................... 267 

4.2.16 PWM Output (Timer KB using simultaneous start/stop mode (period controlled by TKBCRn0 

register)/simultaneous start/stop mode (period controlled by external trigger input)/synchronous 

start/clear mode (period controlled by master)) (2 slaves) ..................................................................... 288 

4.2.17 Input Pulse Interval/Period Measurement (Timer Array Unit) .............................................................. 309 



 

 

4.2.18 Input Pulse Interval/Period Measurement (Timer RJ) ........................................................................... 317 

4.2.19 Interval Timer (Timer Array Unit) ........................................................................................................ 325 

4.2.20 Interval Timer (Timer RJ) ...................................................................................................................... 338 

4.2.21 Interval Timer (12-bit Interval Timer) ................................................................................................... 345 

4.2.22 Interval Timer (32-bit Interval Timer using 8-bit counter mode) .......................................................... 352 

4.2.23 Interval Timer (32-bit Interval Timer using 16-bit counter mode) ........................................................ 360 

4.2.24 Interval Timer (32-bit Interval Timer using 32-bit counter mode) ........................................................ 370 

4.2.25 Interval Timer (8-bit Interval Timer using 8-bit counter mode) ............................................................ 378 

4.2.26 Interval Timer (8-bit Interval Timer using 16-bit counter mode) .......................................................... 385 

4.2.27 Input Capture Function (Timer RD) ...................................................................................................... 392 

4.2.28 Input Capture Function (Timer RG) ...................................................................................................... 401 

4.2.29 Input Capture Function (Timer RX) ...................................................................................................... 410 

4.2.30 One-Shot Pulse Output .......................................................................................................................... 418 

4.2.31 Square Wave Output (Timer Array Unit) .............................................................................................. 428 

4.2.32 Square Wave Output (Timer RJ) ........................................................................................................... 437 

4.2.33 Output Compare Function (Timer RD) .................................................................................................. 444 

4.2.34 Output Compare Function (Timer RG) .................................................................................................. 451 

4.2.35 Three -phase PWM Output (Timer RD) ................................................................................................ 458 

4.2.36 PWM option unit A (Timer RD) ............................................................................................................ 467 

4.2.37 Phase Counting Mode ............................................................................................................................ 472 

4.2.38 Clock Output/Buzzer Output Controller ................................................................................................ 482 

4.2.39 Real-Time Clock .................................................................................................................................... 488 

4.2.40 A/D Converter ....................................................................................................................................... 509 

4.2.41 12 Bit A/D Single Scan .......................................................................................................................... 531 

4.2.42 12 Bit A/D Continuous Scan.................................................................................................................. 539 

4.2.43 12 Bit A/D Group Scan .......................................................................................................................... 547 

4.2.44 D/A Converter ....................................................................................................................................... 558 

4.2.45 Data Transfer Controller ........................................................................................................................ 565 

4.2.46 Comparator ............................................................................................................................................ 571 

4.2.47 Programmable Gain Amplifier .............................................................................................................. 578 

4.2.48 SPI (CSI) Communication ..................................................................................................................... 584 

4.2.49 UART Communication (Serial array unit) ............................................................................................. 597 

4.2.50 UART Communication (Serial Interface UARTA) ............................................................................... 614 

4.2.51 UART Communication (LIN/UART module) ....................................................................................... 632 

4.2.52 DALI Communication (Control devices) .............................................................................................. 646 

4.2.53 DALI Communication (Control gear).................................................................................................... 670 

4.2.54 IIC Communication (Master mode) (Serial Array Unit) ........................................................................ 690 

4.2.55 IIC Communication (Master mode) (Serial Interface IICA) .................................................................. 704 



 

 

4.2.56 IIC Communication (Master mode, EEPROM communication) (Serial Interface IICA) ...................... 725 

4.2.57 IIC Communication (Slave mode) (Serial Interface IICA) .................................................................... 745 

4.2.58 Interrupt Countroller .............................................................................................................................. 760 

4.2.59 Voltage Detector .................................................................................................................................... 767 

4.2.60 Snooze Mode Sequencer ........................................................................................................................ 773 

4.2.61 Key Interrupt .......................................................................................................................................... 788 

4.2.62 Remote Control Signal Receiver ........................................................................................................... 795 

4.2.63 Watchdog Timer .................................................................................................................................... 811 

4.2.64 Logic and Event Link Controller ........................................................................................................... 817 

4.2.65 Event Link Controller ............................................................................................................................ 827 

4.2.66 LCD Controller/Driver .......................................................................................................................... 832 

4.2.67 Oscillation Stop Detector ....................................................................................................................... 842 

4.2.68 External Signal Sampler ........................................................................................................................ 849 

Appendix  API Function Comparison Table .................................................................................................... 856 

Revision Record ............................................................................................................................................... 862 

 



 

 
Smart Configurator 1.GENERAL 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 8 of 868 
Jan 20, 2026 

1. GENERAL 
This chapter gives an overview of the driver code generator of the Smart Configurator. 

 

1.1 Overview 

This tool can output source code (device driver programs as C source and header files) for controlling 

peripheral modules (clock generation circuit, voltage detection circuit, etc.) of the device by using a GUI to set 

various types of information on the requirements of the project. 

 

1.2 Features 

The features of the Smart Configurator are as follows. 

 

- Generating code 

The Code Generator outputs not only device driver files in accord with the information set in the GUI but 

also a complete set of programs for the build environment, such as a sample program containing the call 

of the main function.  

 

- Reporting 

Information that was set by using the Smart Configurator can be output to files in various formats and used 

as design documentation.  

 

- Renaming 

Default names are given to folders and files output by the Smart Configurator and to the API functions in 

the source code, but these can be changed to user-specified names. 

 

- Protecting user code 

The user can add user's original source code to each API function. When user generated the device driver 

programs again by the Smart Configurator, user's source code within this comment is protected. 

 

[Comment for user source code descriptions] 

/* Start user code for xxxx. Do not edit comment generated here */ 

/* End user code. Do not edit comment generated here */ 

“xxxx” is changed for different user code: 

⚫ “global” – user can add global variables and functions 

⚫ “function” – user can add functions declaration in .h file 

⚫ “user init” – user can add initializing code 

⚫ Interrupt function name – user can add service routine code 

⚫ “adding” – user can add functions in .c file 

⚫ “include” – user can add including file in .c file 

⚫ “pragma” – user can add pragma declaration in .c file 

 

Code written by the user between these comments will be preserved even when the code is generated 

again. 



 

 
Smart Configurator 1.GENERAL 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 9 of 868 
Jan 20, 2026 

1.3 Cautions 

Smart Configurator has the following cautions. 

 

- OSS (Open Source Software) 

The code generation tool does not use OSS. 

  



 

 
Smart Configurator  2. OUTPUT FILES 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 10 of 868 
Jan 20, 2026 

2. OUTPUT FILES 
This chapter explains the file output by the Smart Configurator. 

 

2.1 Description 

The Smart Configurator outputs the following files. 

Table 2-1 Output File List (1/23) 

Component / Folder 

Name 

File Name API Function Name 

General {project name}.c main 

r_smc_entry.h － 

r_cg_systeminit.c R_Systeminit 

r_cg_macrodriver.h － 

r_cg_userdefine.h － 

r_cg_interrupt_handlers.h － 

r_cg_inthandler.c － 

r_cg_vect_table.c － 

r_cg_linker_script.ld － 

r_cg_port.h － 

r_cg_pclbuz.h － 

r_cg_kr.h － 

r_cg_wdt.h － 

r_cg_intc.h － 

r_cg_sms.h － 

r_cg_elc.h － 

r_cg_dtc_common.c R_DTC_Set_PowerOn 

R_DTC_Set_PowerOff 

r_cg_dtc_common.h － 

r_cg_dtc.h － 

r_cg_tau_common.c R_TAUm_Create 

R_TAUm_Set_PowerOn 

R_TAUm_Set_PowerOff 

R_TAUm_Set_Reset 

R_TAUm_Release_Reset 

r_cg_tau_common.h － 

r_cg_tau.h － 

r_cg_itl_common.c R_ITL_Create 

R_ITL_Start_Interrupt 

R_ITL_Stop Interrupt 

R_ITL_Set_PowerOn 

R_ITL_Set_PowerOff 

R_ITL_Set_Reset 

R_ITL_Release_Reset 

r_cg_itl_common_user.c r_itl_interrupt 

r_cg_itl_common.h － 

r_cg_itl.h － 



 

 
Smart Configurator  2. OUTPUT FILES 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 11 of 868 
Jan 20, 2026 

Table 2-2 Output File List (2/23) 

Component / Folder 

Name 

File Name API Function Name 

General r_cg_trd_common.c R_TRD_Create 

R_TRD_Set_PowerOn 

R_TRD_Set_PowerOff 

R_TRD_Set_Reset 

R_TRD_Release_Reset 

R_PWMOPA_Set_PowerOn 

R_PWMOPA_Set_PowerOff 

R_PWMOPA_Set_Reset 

R_PWMOPA_Release_Reset 

R_TRD_ForcedOutput_Enable 

R_TRD_ForcedOutput_Disable 

r_cg_trd_common.h － 

r_cg_trd.h － 

r_cg_trj_common.c R_TRJ_Set_PowerOn 

R_TRJ_Set_PowerOff 

R_TRJ_Set_Reset 

R_TRJ_Release_Reset 

r_cg_trj_common.h － 

r_cg_trj.h － 

r_cg_trg_common.c R_TRG_Set_PowerOn 

R_TRG_Set_PowerOff 

R_TRG_Set_Reset 

R_TRG_Release_Reset 

r_cg_trg_common.h － 

r_cg_trg.h － 

r_cg_trx_common.c R_TRX_Set_PowerOn 

R_TRX_Set_PowerOff 

R_TRX_Set_Reset 

R_TRX_Release_Reset 

r_cg_trx_common.h － 

r_cg_trx.h － 

r_cg_tkb_common.c R_TKB_Create 

R_TKB_Set_PowerOn 

R_TKB_Set_PowerOff 

R_TKB_Set_Reset 

R_TKB_Release_Reset 

r_cg_tkb_common.h － 

r_cg_tkb.h － 

r_cg_rtc_common.c R_RTC_Set_PowerOn 

R_RTC_Set_PowerOff 

r_cg_rtc_common.h － 

r_cg_rtc.h － 



 

 
Smart Configurator  2. OUTPUT FILES 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 12 of 868 
Jan 20, 2026 

Table 2-3 Output File List (3/23) 

Component / Folder Name File Name API Function Name 

General r_cg_it_common.c R_IT_Set_PowerOn 

R_IT_Set_PowerOff 

r_cg_it_common.h － 

r_cg_it.h － 

r_cg_ad_common.c R_ADC_Set_PowerOn 

R_ADC_Set_PowerOff 

R_ADC_Set_Reset 

R_ADC_Release_Reset 

r_cg_ad_common.h － 

r_cg_ad.h － 

r_cg_da_common.c R_DAC_Create 

R_DAC_Set_PowerOn 

R_DAC_Set_PowerOff 

R_DAC_Set_Reset 

R_DAC_Release_Reset 

r_cg_da_common.h － 

r_cg_da.h － 

r_cg_comp_common.c R_COMP_Create 

R_COMP_Set_PowerOn 

R_COMP_Set_PowerOff 

R_COMP_Set_Reset 

R_COMP_Release_Reset 

r_cg_comp_common.h － 

r_cg_comp.h － 

r_cg_pgacomp_common.c R_PGACOMP_Create 

R_PGACOMP_Set_PowerOn 

R_PGACOMP_Set_PowerOff 

R_PGACOMP_Set_Reset 

R_PGACOMP_Release_Reset 

r_cg_pgacomp_common.h － 

r_cg_pgacomp.h － 

r_cg_sau_common.c R_SAUm_Create 

R_SAUm_Set_PowerOn 

R_SAUm_Set_PowerOff 

R_SAUm_Set_Reset 

R_SAUm_Release_Reset 

R_SAUm_Set_SnoozeOn 

R_SAUm_Set_SnoozeOff 

r_cg_sau_common.h － 

r_cg_sau.h － 

r_cg_uarta_common.c R_UARTA_Create 

R_UARTA_Set_PowerOn 

R_UARTA_Set_PowerOff 

r_cg_uarta_common.h － 

r_cg_uarta.h － 



 

 
Smart Configurator  2. OUTPUT FILES 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 13 of 868 
Jan 20, 2026 

Table 2-4 Output File List (4/23) 

Component / Folder 

Name 

File Name API Function Name 

General r_cg_iica_common.c R_IICAn_Set_PowerOn 

R_IICAn_Set_PowerOff 

R_IICAn_Set_Reset 

R_IICAn_Release_Reset 

r_cg_iica_common.h － 

r_cg_iica.h － 

r_cg_rlin3_common.c R_RLIN3n_Set_PowerOn 

R_RLIN3n_Set_PowerOff 

r_cg_rlin3_common.h － 

r_cg_rlin3.h － 

r_cg_dali_common.c R_DALI_Set_PowerOn 

R_DALI_Set_PowerOff 

R_DALI_Set_Reset 

R_DALI_Release_Reset 

r_cg_dali_common.h － 

r_cg_dali.h － 

r_cg_lvd_common.c R_LVD_Start_Interrupt 

R_LVD_Stop_Interrupt 

r_cg_lvd_common_user.c r_lvd_interrupt 

r_cg_lvd_common.h － 

r_cg_lvd.h － 

r_cg_remc_common.c R_REMC_Set_PowerOn 

R_REMC_Set_PowerOff 

R_REMC_Set_Reset 

R_REMC_Release_Reset 

r_cg_remc_common.h － 

r_cg_remc.h － 

r_cg_it8bit_common.c R_ITm_Create 

R_ITm_Set_PowerOn 

R_ITm_Set_PowerOff 

r_cg_it8bit_common.h － 

r_cg_it8bit.h － 

r_cg_lcd.h － 

r_cg_osd_common.c R_OSD_Set_PowerOn 

R_OSD_Set_PowerOff 

R_OSD_Set_Reset 

R_OSD_Release_Reset 

r_cg_osd_common.h － 

r_cg_osd.h － 



 

 
Smart Configurator  2. OUTPUT FILES 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 14 of 868 
Jan 20, 2026 

Table 2-5 Output File List (5/23) 

Component / Folder 

Name 

File Name API Function Name 

General r_cg_exsd_common.c R_EXSD_Set_PowerOn 

R_EXSD_Set_PowerOff 

R_EXSD_Set_Reset 

R_EXSD_Release_Reset 

r_cg_exsd_common.h － 

r_cg_exsd.h － 

Ports {Config_PORT}.c R_{Config_PORT}_Create 

R_{Config_PORT}_ReadPmnValues 

R_{Config_PORT}_ReadDigitalOutputLevel 

{Config_PORT}_user.c R_{Config_PORT}_Create_UserInit 

{Config_PORT}.h － 

Delay Counter {Config_TAUm_n}.c R_{Config_TAUm_n}_Create 

R_{Config_TAUm_n}_Start 

R_{Config_TAUm_n}_Stop 

R_{Config_TAUm_n}_Lower8bits_Start 

R_{Config_TAUm_n}_Lower8bits_Stop 

R_{Config_TAUm_n}_Set_SoftwareTriggerOn 

{Config_TAUm_n}_user.c R_{Config_TAUm_n}_Create_UserInit 

r_{Config_TAUm_n}_ interrupt 

{Config_TAUm_n}.h － 

Divider Function {Config_TAUm_n}.c R_{Config_TAUm_n}_Create 

R_{Config_TAUm_n}_Start 

R_{Config_TAUm_n}_Stop 

{Config_TAUm_n}_user.c R_{Config_TAUm_n}_Create_UserInit 

r_{Config_TAUm_n}_ interrupt 

{Config_TAUm_n}.h － 

External Event Counter 

(Timer Array Unit)  

{Config_TAUm_n}.c R_{Config_TAUm_n}_Create 

R_{Config_TAUm_n}_Start 

R_{Config_TAUm_n}_Stop 

R_{Config_TAUm_n}_Lower8bits_Start 

R_{Config_TAUm_n}_Lower8bits_Stop 

{Config_TAUm_n}_user.c R_{Config_TAUm_n}_Create_UserInit 

r_{Config_TAUm_n}_ interrupt 

{Config_TAUm_n}.h － 

External Event Counter 

(Timer RJ) 

{Config_TRJn}.c R_{Config_TRJn}_Create 

R_{Config_TRJn}_Start 

R_{Config_TRJn}_Stop 

{Config_TRJn}_user.c R_{Config_TRJn}_Create_UserInit 

r_{Config_TRJn}_ interrupt 

{Config_TRJn}.h － 



 

 
Smart Configurator  2. OUTPUT FILES 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 15 of 868 
Jan 20, 2026 

Table 2-6 Output File List (6/23) 

Component / Folder 

Name 

File Name API Function Name 

Input Pulse High-/Low-

Level Width 

Measurement (Timer 

Array Unit) 

{Config_TAUm_n}.c R_{Config_TAUm_n}_Create 

R_{Config_TAUm_n}_Start 

R_{Config_TAUm_n}_Stop 

R_{Config_TAUm_n}_Get_PulseWidth 

{Config_TAUm_n}_user.c R_{Config_TAUm_n}_Create_UserInit 

r_{Config_TAUm_n}_ interrupt 

{Config_TAUm_n}.h － 

Input Pulse High-/Low-

Level Width 

Measurement (Timer 

RJ) 

{Config_TRJn}.c R_{Config_TRJn}_Create 

R_{Config_TRJn}_Start 

R_{Config_TRJn}_Stop 

R_{Config_TRJn}_Get_PulseWidth 

{Config_TRJn}_user.c R_{Config_TRJn}_Create_UserInit 

r_{Config_TRJn}_ interrupt 

{Config_TRJn}.h － 

PWM Output (Timer 

Array Unit)  

{Config_TAUm_n}.c R_{Config_TAUm_n}_Create 

R_{Config_TAUm_n}_Start 

R_{Config_TAUm_n}_Stop 

{Config_TAUm_n}_user.c R_{Config_TAUm_n}_Create_UserInit 

r_{Config_TAUm_n}_channeln_interrupt 

r_{Config_TAUm_n}_channelp_interrupt 

{Config_TAUm_n}.h － 

PWM Output (Timer 

Array Unit using PWM 

mode (remote control 

carrier wave))  

{Config_TAU0_m_TAU0_n}.c R_{Config_TAU0_m_TAU0_n}_Create 

R_{Config_TAU0_m_TAU0_n}_Start 

R_{Config_TAU0_m_TAU0_n}_Stop 

{Config_TAU0_m_TAU0_n}_user.

c 

R_{Config_TAU0_m_TAU0_n}_Create_UserInit 

r_{Config_TAU0_m_TAU0_n}_channelm_interrupt 

r_{Config_TAU0_m_TAU0_n}_channelp_interrupt 

r_{Config_TAU0_m_TAU0_n}_channeln_interrupt 

r_{Config_TAU0_m_TAU0_n}_channelq_interrupt 

{Config_TAU0_m_TAU0_n}.h － 

PWM Output (Timer RD 

using PWM mode/ 

Extended PWM mode) 

{Config_TRDn}.c R_{Config_TRDn}_Create 

R_{Config_TRDn}_Start 

R_{Config_TRDn}_Stop 

R_{Config_TRDn}_Set_TRDn_ReloadTrigger 

{Config_TRDn}_user.c R_{Config_TRDn}_Create_UserInit 

r_{Config_TRDn}_trdn_interrupt  

{Config_TRDn}.h － 



 

 
Smart Configurator  2. OUTPUT FILES 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 16 of 868 
Jan 20, 2026 

Table 2-7  Output File List (7/23) 

Component / Folder 

Name 

File Name API Function Name 

PWM Output (Timer  

RD0 and RD1 using 

PWM mode/ PWM3 

mode/ Extended PWM 

mode/ Timer KB3 PWM 

Output Gate mode) 

{Config_TRD0_TRD1}.c R_{Config_TRD0_TRD1}_Create 

R_{Config_TRD0_TRD1}_Start 

R_{Config_TRD0_TRD1}_Stop 

R_{Config_TRD0_TRD1}_Set_TRDn_ReloadTrigger 

R_{Config_TRD0_TRD1}_Set_TRD0_ReloadTrigger 

R_{Config_TRD0_TRD1}_Set_TRD1_ReloadTrigger 

{Config_TRD0_TRD1}_user.c R_{Config_TRD0_TRD1}_Create_UserInit 

r_{Config_TRD0_TRD1}_trdn_interrupt 

{Config_TRD0_TRD1}.h － 

PWM Output (Timer RG 

using PWM mode/ 

PWM2 mode) 

{Config_TRG}.c R_{Config_TRG}_Create 

R_{Config_TRG}_Start 

R_{Config_TRG}_Stop 

{Config_TRG}_user.c R_{Config_TRG}_Create_UserInit 

r_{Config_TRG}_interrupt 

{Config_TRG}.h － 

PWM Output (Timer KB  

using standalone mode 

(period controlled by 

TKBCRn0 

register)/standalone 

mode (period controlled 

by external trigger 

input)/interleave PFC 

output mode) 

{Config_TKBn}.c R_{Config_TKBn}_Create 

R_{Config_TKBn}_Start 

R_{Config_TKBn}_Stop 

R_{Config_TKBn}_Set_BatchOverwriteRequestOn 

R_{Config_TKBn}_TKBOn0_Forced_Output_Stop_Functi

on1_Start 

R_{Config_TKBn}_TKBOn0_Forced_Output_Stop_Functi

on1_Stop 

R_{Config_TKBn}_TKBOn1_Forced_Output_Stop_Functi

on1_Start 

R_{Config_TKBn}_TKBOn1_Forced_Output_Stop_Functi

on1_Stop 

R_{Config_TKBn}_TKBOn0_SmoothStartFunction_Start 

R_{Config_TKBn}_TKBOn0_SmoothStartFunction_Stop 

R_{Config_TKBn}_TKBOn1_SmoothStartFunction_Start 

R_{Config_TKBn}_TKBOn1_SmoothStartFunction_Stop 

{Config_TKBn}_user.c R_{Config_TKBn}_Create_UserInit 

r_{Config_TKBn}_terminated0_interrupt 

r_{Config_TKBn}_terminated1_interrupt 

r_{Config_TKBn}_activated0_interrupt 

r_{Config_TKBn}_activated1_interrupt 

r_{Config_TKBn}_end_count_interrupt 

{Config_TKBn}.h － 



 

 
Smart Configurator  2. OUTPUT FILES 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 17 of 868 
Jan 20, 2026 

Table 2-8 Output File List (8/23) 

Component / Folder 

Name 

File Name API Function Name 

PWM Output (Timer KB 

using simultaneous 

start/stop mode (period 

controlled by TKBCRn0 

register)/simultaneous 

start/stop mode (period 

controlled by external 

trigger 

input)/synchronous 

start/clear mode (period 

controlled by master)) (1 

slave) 

{Config_TKB0_TKBn}.c R_{Config_TKB0_TKBn}_Create 

R_{Config_TKB0_TKBn}_Start 

R_{Config_TKB0_TKBn}_Stop 

R_{Config_TKB0_TKBn}_TKBm_Set_BatchOverwriteRe

questOn 

R_{Config_TKB0_TKBn}_TKBOm0_Forced_Output_Stop

_Function1_Start 

R_{Config_TKB0_TKBn}_TKBOm0_Forced_Output_Stop

_Function1_Stop 

R_{Config_TKB0_TKBn}_TKBOm1_Forced_Output_Stop

_Function1_Start 

R_{Config_TKB0_TKBn}_TKBOm1_Forced_Output_Stop

_Function1_Stop 

R_{Config_TKB0_TKBn}_TKBOm0_SmoothStartFunctio

n_Start 

R_{Config_TKB0_TKBn}_TKBOm0_SmoothStartFunctio

n_Stop 

R_{Config_TKB0_TKBn}_TKBOm1_SmoothStartFunctio

n_Start 

R_{Config_TKB0_TKBn}_TKBOm1_SmoothStartFunctio

n_Stop 

{Config_TKB0_TKBn}_user.c R_{Config_TKB0_TKBn}_Create_UserInit 

r_{Config_TKB0_TKBn}_tkbm_terminated0_interrupt 

r_{Config_TKB0_TKBn}_tkbm_terminated1_interrupt 

r_{Config_TKB0_TKBn}_tkbm_activated0_interrupt 

r_{Config_TKB0_TKBn}_tkbm_activated1_interrupt 

r_{Config_TKB0_TKBn}_tkbm_end_count_interrupt 

{Config_TKB0_TKBn}.h － 



 

 
Smart Configurator  2. OUTPUT FILES 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 18 of 868 
Jan 20, 2026 

Table 2-9 Output File List (9/23) 

Component / Folder 

Name 

File Name API Function Name 

PWM Output (Timer KB 

using simultaneous 

start/stop mode (period 

controlled by TKBCRn0 

register)/simultaneous 

start/stop mode (period 

controlled by external 

trigger 

input)/synchronous 

start/clear mode (period 

controlled by master)) (2 

slaves) 

{Config_TKB0_TKB1_TKB2}.c R_{Config_TKB0_TKB1_TKB2}_Create 

R_{Config_TKB0_TKB1_TKB2}_Start 

R_{Config_TKB0_TKB1_TKB2}_Stop 

R_{Config_TKB0_TKB1_TKB2}_TKBn_Set_BatchOverwr

iteRequestOn 

R_{Config_TKB_TKB1_TKB2}_TKBOn0_Forced_Output

_Stop_Function1_Start 

R_{Config_TKB0_TKB1_TKB2}_TKBOn0_Forced_Outpu

t_Stop_Function1_Stop 

R_{Config_TKB0_TKB1_TKB2}_TKBOn1_Forced_Outpu

t_Stop_Function1_Start 

R_{Config_TKB0_TKB1_TKB2}_TKBOn1_Forced_Outpu

t_Stop_Function1_Stop 

R_{Config_TKB0_TKB1_TKB2}_TKBOn0_SmoothStartF

unction_Start 

R_{Config_TKB0_TKB1_TKB2}_TKBOn0_SmoothStartF

unction_Stop 

R_{Config_TKB0_TKB1_TKB2}_TKBOn1_SmoothStartF

unction_Start 

R_{Config_TKB0_TKB1_TKB2}_TKBOn1_SmoothStartF

unction_Stop 

{Config_TKB0_TKB1_TKB2}_use

r.c 

R_{Config_TKB0_TKB1_TKB2}_Create_UserInit 

r_{Config_TKB0_TKB1_TKB2}_tkbn_terminated0_interru

pt 

r_{Config_TKB0_TKB1_TKB2}_tkbn_terminated1_interru

pt 

r_{Config_TKB0_TKB1_TKB2}_tkbn_activated0_interrupt 

r_{Config_TKB0_TKB1_TKB2}_tkbn_activated1_interrupt 

r_{Config_TKB0_TKB1_TKB2}_tkbn_end_count_interrupt 

{Config_TKB0_TKB1_TKB2}.h － 



 

 
Smart Configurator  2. OUTPUT FILES 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 19 of 868 
Jan 20, 2026 

Table 2-10  Output File List (10/23) 

Component / Folder 

Name 

File Name API Function Name 

Input Pulse Interval 

Measurement (Timer 

Array Unit)  

{Config_TAUm_n}.c 

 

R_{Config_TAUm_n}_Create 

R_{Config_TAUm_n}_Start 

R_{Config_TAUm_n}_Stop 

R_{Config_TAUm_n}_Get_PulseWidth 

{Config_TAUm_n}_user.c r_{Config_TAUm_n}_ interrupt 

R_{Config_TAUm_n}_Create_UserInit 

{Config_TAUm_n}.h － 

Input Pulse 

Interval/Period 

Measurement (Timer 

RJ) 

{Config_TRJn}.c 

 

R_{Config_TRJn}_Create 

R_{Config_TRJn}_Start 

R_{Config_TRJn}_Stop 

R_{Config_TRJn}_Get_PulseWidth 

{Config_TRJn}_user.c R_{Config_TRJn}_Create_UserInit 

r_{Config_TRJn}_ interrupt 

{Config_TRJn}.h － 

Interval Timer (Timer 

Array Unit)  

{Config_TAUm_n}.c R_{Config_TAUm_n}_Create 

R_{Config_TAUm_n}_Start 

R_{Config_TAUm_n}_Stop 

R_{Config_TAUm_n}_Higher8bits_Start 

R_{Config_TAUm_n}_Higher8bits_Stop 

R_{Config_TAUm_n}_Lower8bits_Start 

R_{Config_TAUm_n}_Lower8bits_Stop 

{Config_TAUm_n}_user.c R_{Config_TAUm_n}_Create_UserInit 

r_{Config_TAUm_n}_interrupt 

r_{Config_TAUm_n}_higher8bits_interrupt 

{Config_TAUm_n}.h － 

Interval Timer (Timer 

RJ) 

{Config_TRJn}.c R_{Config_TRJn}_Create 

R_{Config_TRJn}_Start 

R_{Config_TRJn}_Stop  

{Config_TRJn}_user.c R_{Config_TRJn}_Create_UserInit 

r_{Config_TRJn}_interrupt 

{Config_TRJn}.h － 

Interval Timer (12-bit 

Interval Timer) 

{Config_IT}.c R_{Config_IT}_Create 

R_{Config_IT}_Start 

R_{Config_IT}_Stop  

{Config_IT}_user.c R_{Config_IT}_Create_UserInit 

r_{Config_IT}_interrupt 

{Config_IT}.h － 



 

 
Smart Configurator  2. OUTPUT FILES 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 20 of 868 
Jan 20, 2026 

Table 2-11  Output File List (11/23) 

 

Component / Folder 

Name 

File Name API Function Name 

One-Shot Pulse 

Output 

{Config_TAUm_n}.c R_{Config_TAUm_n}_Create 

R_{Config_TAUm_n}_Start 

R_{Config_TAUm_n}_Stop 

R_{Config_TAUm_n}_Set_SoftwareTriggerOn 

R_{Config_TAUm_n}_Set_Get_PulseWidth 

{Config_TAUm_n}_user.c R_{Config_TAUm_n}_Create_UserInit 

r_{Config_TAUm_n}_channeln_interrupt 

r_{Config_TAUm_n}_channelp_interrupt 

{Config_TAUm_n}.h － 

Square Wave Output 

(Timer Array Unit) 

{Config_TAUm_n}.c R_{Config_TAUm_n}_Create 

R_{Config_TAUm_n}_Start 

R_{Config_TAUm_n}_Stop 

R_{Config_TAUm_n}_Lower8bits_Start 

R_{Config_TAUm_n}_Lower8bits_Stop 

{Config_TAUm_n}_user.c R_{Config_TAUm_n}_Create_UserInit 

r_{Config_TAUm_n}_interrupt 

{Config_TAUm_n}.h － 

Square Wave Output 

(Timer RJ) 

{Config_TRJn}.c R_{Config_TRJn}_Create 

R_{Config_TRJn}_Start 

R_{Config_TRJn}_Stop 

{Config_TRJn}_user.c R_{Config_TRJn}_Create_UserInit 

r_{Config_TRJn}_interrupt 

{Config_TRJn}.h － 

Interval Timer (32-bit 

Interval Timer using 8-

bit counter mode) 

{Config_ITLn}.c R_{Config_ITLn}_Create 

R_{Config_ITLn}_Start 

R_{Config_ITLn}_Stop 

R_{Config_ITLn}_Set_SoftwareTriggerOn 

R_{Config_ITLn}_Set_OperationMode 

R_{Config_ITLn}_Get_CaptureValue 

{Config_ITLn}_user.c R_{Config_ITLn}_Create_UserInit 

r_{Config_ITLn}_Callback_Shared_Interrupt 

{Config_ITLn}.h － 

Interval Timer (32-bit 

Interval Timer using 

16-bit counter mode)  

{Config_ITLn_ITLm}.c R_{Config_ITLn_ITLm}_Create 

R_{Config_ITLn_ITLm}_Start 

R_{Config_ITLn_ITLm}_Stop 

R_{Config_ITLn_ITLm}_Set_SoftwareTriggerOn 

R_{Config_ITLn_ITLm}_Set_OperationMode 

R_{Config_ITLn_ITLm}_Get_CaptureValue 

{Config_ITLn_ITLm}_user.c R_{Config_ITLn_ITLm}_Create_UserInit 

r_{Config_ITLn_ITLm}_Callback_Shared_Interrupt 

{Config_ITLn_ITLm}.h － 



 

 
Smart Configurator  2. OUTPUT FILES 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 21 of 868 
Jan 20, 2026 

Table 2-12  Output File List (12/23) 

Component / Folder 

Name 

File Name API Function Name 

Interval Timer (32-bit 

Interval Timer using 

32-bit counter mode)  

{Config_ITL000_ITL001_ITL012_I

TL013}.c 

R_{Config_ITL000_ITL001_ITL012_ITL013}_Create 

R_{Config_ITL000_ITL001_ITL012_ITL013}_Start 

R_{Config_ITL000_ITL001_ITL012_ITL013}_Stop 

R_{Config_ITL000_ITL001_ITL012_ITL013}_Set_Operati

onMode 

{Config_ITL000_ITL001_ITL012_I

TL013}_user.c 

R_{Config_ITL000_ITL001_ITL012_ITL013}_Create_Use

rInit 

r_{Config_ITL000_ITL001_ITL012_ITL013}_Callback_Sh

ared_Interrupt 

{Config_ITL000_ITL001_ITL012_I

TL013}.h 

－ 

Input Capture Function 

(Timer RD) 

 

{Config_TRDn}.c R_{Config_TRDn}_Create 

R_{Config_TRDn}_Start 

R_{Config_TRDn}_Stop 

R_{Config_TRDn}_Get_PulseWidth 

{Config_TRDn}_user.c R_{Config_TRDn}_Create_UserInit 

r_{Config_TRDn}_trdn_interrupt 

{Config_TRDn}.h － 

Input Capture Function 

(Timer RG) 

 

{Config_TRG}.c R_{Config_TRG}_Create 

R_{Config_TRG}_Start 

R_{Config_TRG}_Stop 

R_{Config_TRG}_Get_PulseWidth 

{Config_TRG}_user.c R_{Config_TRG}_Create_UserInit 

r_{Config_TRG}_interrupt 

{Config_TRG}.h － 

Input Capture Function 

(Timer RX) 

 

{Config_TRX}.c R_{Config_TRX}_Create 

R_{Config_TRX}_Start 

R_{Config_TRX}_Stop 

R_{Config_TRX}_Get_BuffValue 

{Config_TRX}_user.c R_{Config_TRX}_Create_UserInit 

r_{Config_TRX}_interrupt 

{Config_TRX}.h － 

Output Compare 

Function (Timer RD) 

 

{Config_TRDn}.c R_{Config_TRDn}_Create 

R_{Config_TRDn}_Start 

R_{Config_TRDn}_Stop 

{Config_TRDn}_user.c R_{Config_TRDn}_Create_UserInit 

r_{Config_TRDn}_trdn_interrupt 

{Config_TRDn}.h － 



 

 
Smart Configurator  2. OUTPUT FILES 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 22 of 868 
Jan 20, 2026 

Table 2-13  Output File List (13/23) 

Component / Folder 

Name 

File Name API Function Name 

Output Compare 

Function (Timer RG) 

 

{Config_TRG}.c R_{Config_TRG}_Create 

R_{Config_TRG}_Start 

R_{Config_TRG}_Stop 

{Config_TRG}_user.c R_{Config_TRG}_Create_UserInit 

r_{Config_TRG}_interrupt 

{Config_TRG}.h － 

Three -phase PWM 

Output (Timer RD)  

{Config_TRD0_TRD1}.c R_{Config_TRD0_TRD1}_Create 

R_{Config_TRD0_TRD1}_Start 

R_{Config_TRD0_TRD1}_Stop 

R_{Config_TRD0_TRD1}_Set_TRD_ReloadTrigger 

{Config_TRD0_TRD1}_user.c R_{Config_TRD0_TRD1}_Create_UserInit 

r_{Config_TRD0_TRD1}_trd0_Interrupt 

r_{Config_TRD0_TRD1}_trd1_Interrupt 

{Config_TRD0_TRD1}.h － 

PWM option unit A 

(Timer RD)  

{Config_PWMOPA}.c R_{Config_PWMOPA}_Create 

R_{Config_PWMOPA}_Software_Release 

{Config_PWMOPA }_user.c R_{Config_PWMOPA}_Create_UserInit 

{Config_PWMOPA }.h － 

Phase counting mode {Config_TRG}.c R_{Config_TRG}_Create 

R_{Config_TRG}_Start 

R_{Config_TRG}_Stop 

R_{Config_TRG}_Get_MeasurementCapture 

{Config_TRG}_user.c R_{Config_TRG}_Create_UserInit 

r_{Config_TRG}_interrupt 

r_{Config_TRG}_clear_interrupt 

r_{Config_TRG}_capture_interrupt 

{Config_TRG}.h － 

Clock Output/Buzzer 

Output Controller 

{Config_PCLBUZn}.c R_{Config_PCLBUZn}_Create 

R_{Config_PCLBUZn}_Start 

R_{Config_PCLBUZn}_Stop 

{Config_PCLBUZn}_user.c R_{Config_PCLBUZn}_Create_UserInit 

{Config_PCLBUZn}.h － 



 

 
Smart Configurator  2. OUTPUT FILES 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 23 of 868 
Jan 20, 2026 

Table 2-14  Output File List (14/23) 

 

Component / Folder 

Name 

File Name API Function Name 

Real-time Clock {Config_RTC}.c R_{Config_RTC}_Create 

R_{Config_RTC}_Start 

R_{Config_RTC}_Stop 

R_{Config_RTC}_Set_HourSystem 

R_{Config_RTC}_Set_CounterValue 

R_{Config_RTC}_Get_CounterValue 

R_{Config_RTC}_Set_ConstPeriodInterruptOn 

R_{Config_RTC}_Set_ConstPeriodInterruptOff 

R_{Config_RTC}_Set_AlarmOn 

R_{Config_RTC}_Set_AlarmOff 

R_{Config_RTC}_Set_AlarmValue 

R_{Config_RTC}_Get_AlarmValue 

R_{Config_RTC}_Set_RTC1HZOn 

R_{Config_RTC}_Set_RTC1HZOff 

{Config_RTC}_user.c R_{Config_RTC}_Create_UserInit 

r_{Config_RTC}_interrupt 

r_{Config_RTC}_callback_constperiod 

r_{Config_RTC}_callback_alarm 

{Config_RTC}.h － 

A/D Convertor {Config_ADC}.c R_{Config_ADC}_Create 

R_{Config_ADC}_Start 

R_{Config_ADC}_Stop 

R_{Config_ADC}_Set_OperationOn 

R_{Config_ADC}_Set_OperationOff 

R_{Config_ADC}_Set_ADChannel 

R_{Config_ADC}_ADSn_Set_ADChannel 

R_{Config_ADC}_Set_SnoozeOn 

R_{Config_ADC}_Set_SnoozeOff 

R_{Config_ADC}_Set_TestChannel 

R_{Config_ADC}_Get_Result_10bit 

R_{Config_ADC}_Get_Result_8bit 

R_{Config_ADC}_Get_Result_12bit 

R_{Config_ADC}_ADSn_Get_Result_10bit 

R_{Config_ADC}_ADSn_Get_Result_8bit 

R_{Config_ADC}_ADSn_Get_Result_12bit 

{Config_ADC}_user.c R_{Config_ADC}_Create_UserInit 

r_{Config_ADC}_interrupt 

r_{Config_ADC}_adn_interrupt 

{Config_ADC}.h － 



 

 
Smart Configurator  2. OUTPUT FILES 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 24 of 868 
Jan 20, 2026 

Table 2-15  Output File List (15/23) 

Component / Folder 

Name 

File Name API Function Name 

12 Bit A/D Single Scan {Config_S12ADn}.c R_{Config_S12ADn}_Create 

R_{Config_S12ADn}_Start 

R_{Config_S12ADn}_Stop 

R_{Config_S12ADn}_Get_ValueResult 

{Config_S12ADn}_user.c R_{Config_S12ADn}_Create_UserInit 

r_{Config_S12ADn}_interrupt 

{Config_S12ADn}.h － 

12 Bit A/D Continuous 

Scan 

{Config_S12ADn}.c R_{Config_S12ADn}_Create 

R_{Config_S12ADn}_Start 

R_{Config_S12ADn}_Stop 

R_{Config_S12ADn}_Get_ValueResult 

{Config_S12ADn}_user.c R_{Config_S12ADn}_Create_UserInit 

r_{Config_S12ADn}_interrupt 

{Config_S12ADn}.h － 

12 Bit A/D Group Scan {Config_S12ADn}.c R_{Config_S12ADn}_Create 

R_{Config_S12ADn}_Start 

R_{Config_S12ADn}_Stop 

R_{Config_S12ADn}_Get_ValueResult 

{Config_S12ADn}_user.c R_{Config_S12ADn}_Create_UserInit 

r_{Config_S12ADn}_interrupt 

r_{Config_S12ADn}_groupb_interrupt 

{Config_S12ADn}.h － 

D/A Converter {Config_DACn}.c R_{Config_DACn}_Create 

R_{Config_DACn}_Start 

R_{Config_DACn}_Stop 

R_{Config_DACn}_Set_ConversionValue 

{Config_DACn}_user.c R_{Config_DACn}_Create_UserInit 

{Config_DACn}.h － 

Data Transfer 

Controller 

{Config_DTC}.c R_{Config_DTC}_Create 

R_{Config_DTCDn}_Start 

R_{Config_DTCDn}_Stop 

{Config_DTC}_user.c R_{Config_DTC}_Create_UserInit 

{Config_DTC}.h － 

Comparator {Config_COMPn}.c R_{Config_COMPn}_Create 

R_{Config_COMPn}_Start 

R_{Config_COMPn}_Stop 

{Config_COMPn}_user.c R_{Config_COMPn}_Create_UserInit 

r_{Config_COMPn}_interrupt 

{Config_COMPn}.h － 



 

 
Smart Configurator  2. OUTPUT FILES 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 25 of 868 
Jan 20, 2026 

Table 2-16  Output File List (16/23) 

Component / Folder 

Name 

File Name API Function Name 

Programmable Gain 

Amplifier 

{Config_PGA}.c R_{Config_PGA}_Create 

R_{Config_PGADn}_Start 

R_{Config_PGADn}_Stop 

{Config_PGA}_user.c R_{Config_PGA}_Create_UserInit 

{Config_PGA}.h － 

SPI (CSI) 

Communication 

{Config_CSIp}.c R_{Config_CSIp}_Create 

R_{Config_CSIp}_Start 

R_{Config_CSIp}_Stop 

R_{Config_CSIp}_Send 

R_{Config_CSIp}_Receive 

R_{Config_CSIp}_Send_Receive 

{Config_CSIp}_user.c R_{Config_CSIp}_Create_UserInit 

r_{Config_CSIp}_interrupt 

r_{Config_CSIp}_callback_sendend 

r_{Config_CSIp}_callback_receiveend 

r_{Config_CSIp}_callback_error 

{Config_CSIp}.h － 

UART Communication 

(Serial array unit) 

{Config_UARTq}.c R_{Config_UARTq}_Create 

R_{Config_UARTq}_Start 

R_{Config_UARTq}_Stop 

R_{Config_UARTq}_Send 

R_{Config_UARTq}_Receive 

R_{Config_UARTq}_Loopback_Enable 

R_{Config_UARTq}_Loopback_Disble 

{Config_UARTq}_user.c R_{Config_UARTq}_Create_UserInit 

r_{Config_UARTq}_interrupt_send 

r_{Config_UARTq}_interrupt_receive 

r_{Config_UARTq}_interrupt_error 

r_{Config_UARTq}_callback_sendend 

r_{Config_UARTq}_callback_receiveend 

r_{Config_UARTq}_callback_error 

r_{Config_UARTq}_callback_softwareoverrun 

{Config_UARTq}.h － 



 

 
Smart Configurator  2. OUTPUT FILES 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 26 of 868 
Jan 20, 2026 

Table 2-17 Output File List (17/23) 

UART Communication 

(Serial Interface 

UARTA) 

 

{Config_UARTAn}.c R_{Config_UARTAn}_Create 

R_{Config_UARTAn}_Start 

R_{Config_UARTAn}_Stop 

R_{Config_UARTAn}_Send 

R_{Config_UARTAn}_Receive 

R_{Config_UARTAn}_Loopback_Enable 

R_{Config_UARTAn}_Loopback_Disable 

{Config_UARTAn}_user.c R_{Config_UARTAn}_Create_UserInit 

R_{Config_UARTAn}_PollingEnd_UserCode 

r_{Config_UARTAn}_interrupt_send 

r_{Config_UARTAn}_interrupt_receive 

r_{Config_UARTAn}_interrupt_error 

r_{Config_UARTAn}_callback_sendend 

r_{Config_UARTAn}_callback_receiveend 

r_{Config_UARTAn}_callback_error 

{Config_UARTAn}.h － 

UART Communication 

(LIN/UART module) 

{Config_RLIN3n}.c R_{Config_RLIN3n}_Create 

R_{Config_RLIN3n}_Start 

R_{Config_RLIN3n}_Stop 

R_{Config_RLIN3n}_Send 

R_{Config_RLIN3n}_Receive 

{Config_RLIN3n}_user.c R_{Config_RLIN3n}_Create_UserInit 

r_{Config_RLIN3n}_interrupt_send 

r_{Config_RLIN3n}_interrupt_receive 

r_{Config_RLIN3n}_interrupt_error 

r_{Config_RLIN3n}_callback_sendend 

r_{Config_RLIN3n}_callback_receiveend 

r_{Config_RLIN3n}_callback_error  

{Config_RLIN3n}.h － 



 

 
Smart Configurator  2. OUTPUT FILES 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 27 of 868 
Jan 20, 2026 

Table 2-18  Output File List (18/23) 

Component / Folder 

Name 

File Name API Function Name 

DALI Communication 

(Control devices) 

{Config_DALI}.c R_{Config_DALI}_Create 

R_{Config_DALI}_Start 

R_{Config_DALI}_Stop 

R_{Config_DALI}_SoftwareReset 

R_{Config_DALI}_EnableForceActiveState 

R_{Config_DALI}_DisableForceActiveState 

R_{Config_DALI}_GetStatus 

R_{Config_DALI}_Send 

R_{Config_DALI}_GetReceiveFrame 

{Config_DALI}_user.c R_{Config_DALI}_Create_UserInit 

r_{Config_DALI}_interrupt_send 

r_{Config_DALI}_interrupt_receive 

r_{Config_DALI}_interrupt_error 

r_{Config_DALI}_interrupt_falling_edge_detection 

r_{Config_DALI}_interrupt_power_down_detection 

r_{Config_DALI}_interrupt_collision_detection 

r_{Config_DALI}_interrupt_stop_bit_detection 

r_{Config_DALI}_callback_sendend 

r_{Config_DALI}_callback_receiveend 

r_{Config_DALI}_callback_error 

{Config_DALI}.h － 

DALI Communication 

(Control gear) 

{Config_DALI}.c R_{Config_DALI}_Create 

R_{Config_DALI}_Start 

R_{Config_DALI}_Stop 

R_{Config_DALI}_SoftwareReset 

R_{Config_DALI}_EnableForceActiveState 

R_{Config_DALI}_DisableForceActiveState 

R_{Config_DALI}_GetStatus 

R_{Config_DALI}_Send 

R_{Config_DALI}_GetReceiveFrame 

{Config_DALI}_user.c R_{Config_DALI}_Create_UserInit 

r_{Config_DALI}_interrupt_error 

r_{Config_DALI}_interrupt_falling_edge_detection 

r_{Config_DALI}_interrupt_power_down_detection 

r_{Config_DALI}_interrupt_stop_bit_detection 

r_{Config_DALI}_callback_sendend 

r_{Config_DALI}_callback_receiveend 

r_{Config_DALI}_callback_error 

{Config_DALI}.h － 



 

 
Smart Configurator  2. OUTPUT FILES 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 28 of 868 
Jan 20, 2026 

Table 2-19  Output File List (19/23) 

Component / Folder 

Name 

File Name API Function Name 

IIC Communication 

(Master mode) (Serial 

Array Unit) 

{Config_IICr}.c R_{Config_IICr}_Create 

R_{Config_IICr}_StartCondition 

R_{Config_IICr}_StopCondition 

R_{Config_IICr}_Stop 

R_{Config_IICr}_Master_Send 

R_{Config_IICr}_Master_Receive 

{Config_IICr}_user.c R_{Config_IICr}_Create_UserInit 

r_{Config_IICr}_interrupt 

r_{Config_IICr}_callback_master_sendend 

r_{Config_IICr}_callback_master_receiveend 

r_{Config_IICr}_callback_master_error 

{Config_IICr}.h － 

IIC Communication 

(Master mode) (Serial 

Interface IICA) 

{Config_IICAn}.c R_{Config_IICAn}_Create 

R_{Config_IICAn}_StopCondition 

R_{Config_IICAn}_Stop 

R_{Config_IICAn}_Master_Send 

R_{Config_IICAn}_Master_Receive 

R_{Config_IICAn}_Check_Comstate 

R_{Config_IICAn}_Poll 

R_{Config_IICAn}_Wait_Comend 

R_{Config_IICAn}_Bus_Check 

R_{Config_IICAn}_StartCondition 

R_{Config_IICAn}_Wait_Time 

{Config_IICAn}_user.c R_{Config_IICAn}_Create_UserInit 

r_{Config_IICAn}_interrupt 

r_{Config_IICAn}_master_handler 

r_{Config_IICAn}_callback_master_sendend 

r_{Config_IICAn}_callback_master_receiveend 

r_{Config_IICAn}_callback_master_error 

{Config_IICAn}.h － 



 

 
Smart Configurator  2. OUTPUT FILES 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 29 of 868 
Jan 20, 2026 

Table 2-20  Output File List (20/23) 

 

Component / Folder 

Name 

File Name API Function Name 

IIC Communication 

(Master mode, 

EEPROM 

communication) (Serial 

Interface IICA) 

{Config_IICAn}.c R_{Config_IICAn}_Create 

R_{Config_IICAn}_StopCondition 

R_{Config_IICAn}_Stop 

R_{Config_IICAn}_Master_Send 

R_{Config_IICAn}_Master_Receive 

R_{Config_IICAn}_Check_Comstate 

R_{Config_IICAn}_Poll 

R_{Config_IICAn}_Wait_Comend 

R_{Config_IICAn}_Bus_Check 

R_{Config_IICAn}_StartCondition 

R_{Config_IICAn}_Wait_Time 

{Config_IICAn}_user.c R_{Config_IICAn}_Create_UserInit 

r_{Config_IICAn}_interrupt 

r_{Config_IICAn}_master_handler 

r_{Config_IICAn}_callback_master_sendend 

r_{Config_IICAn}_callback_master_receiveend 

r_{Config_IICAn}_callback_master_error 

{Config_IICAn}.h － 

IIC Communication 

(Slave mode) (Serial 

Interface IICA)   

{Config_IICAn}.c R_{Config_IICAn}_Create 

R_{Config_IICAn}_Stop 

R_{Config_IICAn}_Slave_Send 

R_{Config_IICAn}_Slave_Receive 

R_{Config_IICAn}_Set_WakeupOn 

R_{Config_IICAn}_Set_WakeupOff 

{Config_IICAn}_user.c R_{Config_IICAn}_Create_UserInit 

r_{Config_IICAn}_interrupt 

r_{Config_IICAn}_slave_handler 

r_{Config_IICAn}_callback_slave_sendend 

r_{Config_IICAn}_callback_slave_receiveend 

r_{Config_IICAn}_callback_slave_error 

r_{Config_IICAn}_callback_getstopcondition 

{Config_IICAn}.h － 

Interrupt Controller {Config_INTC}.c R_{Config_INTC}_Create 

R_{Config_INTC}_INTPn_Start 

R_{Config_INTC}_INTPn_Stop 

{Config_INTC}_user.c R_{Config_INTC}_Create_UserInit 

r_{Config_INTC}_intpn_interrupt 

{Config_INTC}.h － 



 

 
Smart Configurator  2. OUTPUT FILES 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 30 of 868 
Jan 20, 2026 

Table 2-21  Output File List (21/23) 

  

Component / Folder 

Name 

File Name API Function Name 

Voltage Detector 

 

{Config_LVDn}.c R_{Config_LVDn}_Create 

R_{Config_LVDn} _Start 

R_{Config_LVDn} _Stop 

{Config_LVDn}_user.c R_{Config_LVDn}_Create_UserInit 

{Config_LVDn}.h － 

Snooze Mode 

Sequencer 

{Config_SMS}.c R_{Config_SMS}_Create 

R_{Config_SMS}_Start 

R_{Config_SMS}_Stop 

R_{Config_SMS}_GetStatus 

R_{Config_SMS}_GetReturn 

R_{Config_SMS}_TriggerWait_Disable 

R_{Config_SMS}_TriggerWait_Enable 

R_{Config_SMS}_Set_PowerOn 

R_{Config_SMS}_Set_PowerOff 

R_{Config_SMS}_Set_Reset 

R_{Config_SMS}_Release_Reset 

{Config_SMS}_user.c R_{Config_SMS}_Create_UserInit 

r_{Config_SMS}_interrupt 

{Config_SMS}.h － 

Key Interrupt {Config_KR}.c R_{Config_KR}_Create 

R_{Config_KR} _Start 

R_{Config_KR} _Stop 

{Config_KR}_user.c R_{Config_KR}_Create_UserInit 

r_{Config_KR}_interrupt 

{Config_KR}.h － 

Remote Control Signal 

Receiver 

{Config_REMC}.c R_{Config_REMC}_Create 

R_{Config_REMC} _Start 

R_{Config_REMC} _Stop 

R_{Config_REMC}_Read 

{Config_REMC}_user.c R_{Config_REMC}_Create_UserInit 

r_{Config_REMC}_interrupt 

r_{Config_REMC}_callback_receiveend 

r_{Config_REMC}_callback_comparematch 

r_{Config_REMC}_callback_receiveerror 

r_{Config_REMC}_callback_bufferfull 

r_{Config_REMC}_callback_header 

r_{Config_REMC}_callback_data0 

r_{Config_REMC}_callback_data1 

r_{Config_REMC}_callback_specialdata 

{Config_REMC}.h － 



 

 
Smart Configurator  2. OUTPUT FILES 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 31 of 868 
Jan 20, 2026 

Table 2-22  Output File List (22/23) 

 

Component / Folder 

Name 

File Name API Function Name 

Watchdog Timer {Config_WDT}.c R_{Config_WDT}_Create 

R_{Config_WDT} _Restart 

{Config_WDT}_user.c R_{Config_WDT}_Create_UserInit 

r_{Config_WDT}_interrupt 

{Config_WDT}.h － 

Logic and Event Link 

Controller 

{Config_xxx}.c R_{Config_xxx}_Create 

R_{Config_xxx}_Start 

R_{Config_xxx}_Stop 

{Config_xxx}_user.c R_{Config_xxx}_Create_UserInit 

r_{Config_xxx}_interrupt 

{Config_xxx}.h － 

Event Link Controller {Config_ELC}.c R_{Config_ELC}_Create 

R_{Config_ELC}_Stop 

{Config_ELC}_user.c R_{Config_ELC}_Create_UserInit 

{Config_ELC}.h － 

Interval Timer (8-bit 

Interval Timer using 8-

bit counter mode) 

{Config_ITmn}.c R_{Config_ITmn}_Create 

R_{Config_ITmn}_Start 

R_{Config_ITmn}_Stop 

{Config_ITmn}_user.c R_{Config_ITmn}_Create_UserInit 

r_{Config_ITmn}_interrupt 

{Config_ITmn}.h － 

Interval Timer (8-bit 

Interval Timer using 

16-bit counter mode) 

{Config_ITm0_ITm1}.c R_{Config_ITm0_ITm1}_Create 

R_{Config_ITm0_ITm1}_Start 

R_{Config_ITm0_ITm1}_Stop 

{Config_ITm0_ITm1}_user.c R_{Config_ITm0_ITm1}_Create_UserInit 

r_{Config_ITm0_ITm1}_interrupt 

{Config_ITm0_ITm1}.h － 

LCD controller / driver {Config_LCD}.c R_{Config_LCD}_Create 

R_{Config_LCD}_Start 

R_{Config_LCD}_Stop 

R_{Config_LCD}_Voltage_On 

R_{Config_LCD}_Voltage_Off 

R_{Config_LCD}_Set_DisplayData 

{Config_LCD}_user.c R_{Config_LCD}_Create_UserInit 

{Config_LCD}.h － 



 

 
Smart Configurator  2. OUTPUT FILES 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 32 of 868 
Jan 20, 2026 

Table 2-23  Output File List (23/23) 

 

 

  

Component / Folder 

Name 

File Name API Function Name 

Oscillation Stop 

Detector 

{Config_OSD}.c R_{Config_OSD}_Create 

R_{Config_OSD }_Start 

R_{Config_OSD}_Stop 

{Config_OSD}_user.c R_{Config_OSD}_Create_UserInit 

r_{Config_OSD}_interrupt 

{Config_OSD}.h － 

External Signal 

Sampler 

{Config_EXSD}.c R_{Config_EXSD}_Create 

R_{Config_EXSD }_Start 

R_{Config_EXSD}_Stop 

{Config_EXSD}_user.c R_{Config_EXSD}_Create_UserInit 

r_{Config_EXSD}_interrupt 

{Config_EXSD}.h － 



 

 

Smart Configurator 3. INITIALIZATION 

 
R20UT4852EC0107  Rev.1.07                                                 Page 33 of 868 
Jan 20, 2026 

3. INITIALIZATION 
This chapter describes the flow of initialization by the API functions of the Smart Configurator. 

  

Startup function 
⚫ _start (for renesas compiler) 
⚫ PowerON_Reset (for LLVM compiler) 
⚫ __iar_program_start (for IAR compiler) 

 
1. Setting the stack pointer 
2. Initializing stack area 

mcu_clock_setup 

1. Initializes CPU and peripheral hardware 
clock settings 

User’s pre process when warm start 
Initializes C runtime environment 

hdwinit() 
1. Initializes output pins 
2. Initializes interrupt 
3. Initializes peripheral modules 

Initializing BSS 

bsp_init_hardware 
Initializes callback function array 

ROM data copy 

R_Systeminit 
Initializes peripheral functions 

Main function 

bsp_init_system 
1. Initializes PIOR setting 
2. Initializes WDT refresh 

User’s post process when warm start 
Initializes C runtime environment 

Safety function setting 

Data flash access control 

Process of blue box is 
Board Support Package 
module. 
Please refer to the 
application note  
(R01AN5522) for details. 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 34 of 868 
Jan 20, 2026 

4. API FUNCTIONS 
This chapter describes the API functions output that are output by the Smart Configurator. 

 

4.1 Overview 

The following are the naming conventions for the API functions output by the Smart Configurator.  

 

- Macro names 

These are in all-capital letters.  

Note that if a name includes a number as a prefix, the relevant number is equal to the hexadecimal value 

of the macro.  

 

- Local variable names 

These are in low-case letters only. 

 

- Global variable names 

These are prefixed with “g”, and only the first letters of words that are elements of the names are capitals. 

 

- Names of pointers to global variables 

These are prefixed with “gp”, and only the first letters of words that are elements of the names are capitals. 

 

- Names of elements in enumeration specifiers “enum” 

These are in all-capital letters. 

 

 

Remarks In the generated code by the Smart Configurator tool, the for statement, the while statement, 

the do-while statement (loop processing) are used in register setting reflected waiting process etc. 

If fail-safe processing for infinite loop is required, check the generated code and add processing. 

  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 35 of 868 
Jan 20, 2026 

4.2 Function Reference 

This section describes the API functions output by the Smart Configurator, using the following notation format. 

 

Figure 4.1 Notation Format of API Functions 

 

(1) Name 

Indicates the name of the API function. 

(2) Outline 

Outlines the functions of the API function 

(3) [Syntax] 

Indicates the format to be used when describing an API function to be called in C language. 

(4) [Argument(s)] 

API function arguments are explained in the following format. 

I/O Argument Description 

(a) (b) (c) 

(a) I/O 

 Argument classification 

 I …   Input argument 

 O …   Output argument 

(b) Argument 

 Argument data type 

(c) Description 

 Description of argument 

 

(5) [Return value] 

API function return value is explained in the following format. 

Macro Description 

(a) (b) 

(a) Macro 

 Macro of return value 

(b) Description 

 Description of return value 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 36 of 868 
Jan 20, 2026 

4.2.1 General 

Below is a list of API functions output by the Smart Configurator for common use. 

 

Table 4-1  API Functions: (1/4) 

API Function Name Peripheral 

Name 

Description 

main - Main function. 

R_Systeminit - 

 

Executes initialization processing that is required before controlling 

various peripheral modules. 

R_DTC_Set_PowerOn Data Transfer 

Controller 

Starts the clock supply for DTC. 

R_DTC_Set_PowerOff Stops the clock supply for DTC. 

R_TAUm_Create Timer Array 

Unit 

Executes initialization processing that is required before controlling 

TAUm (enables TAUm input clock supply and initializes TAUm module). 

R_TAUm_Set_PowerOn Starts the clock supply for TAUm. 

R_TAUm_Set_PowerOff Stops the clock supply for TAUm. 

R_TAUm_Set_Reset Sets TAUm module in reset state. 

R_TAUm_Release_Reset Releases TAUm module from reset state. 

R_ITL_Create 32-Bit Interval 

Timer 

Executes initialization processing that is required before controlling the 

32-bits IT (enables input clock supply and initializes ITLm module). 

R_ITL_Start_Interrupt Starts INTITL interrupt. 

R_ITL_Stop Interrupt Stops INTITL interrupt. 

R_ITL_Set_PowerOn Starts the clock supply for 32-bits IT. 

R_ITL_Set_PowerOff Stops the clock supply for 32-bits IT. 

R_ITL_Set_Reset Sets 32-bits IT module in reset state. 

R_ITL_Release_Reset Releases 32-bits IT module from reset state. 

r_itl_interrupt Executes processing in response to 32-bit interval timer interrupt 

(INTITL). 

R_TRD_Create Timer RD Executes initialization processing that is required before controlling TRD 

(enables TRD input clock supply and initializes TRD module). 

R_TRD_Set_PowerOn Starts the clock supply for TRD. 

R_TRD_Set_PowerOff Stops the clock supply for TRD. 

R_TRD_Set_Reset Sets TRD module in reset state. 

R_TRD_Release_Reset Releases TRD module from reset state. 

R_PWMOPA_Set_PowerOn Starts the clock supply for PWMOPA. 

R_PWMOPA_Set_PowerOff Stops the clock supply for PWMOPA. 

R_PWMOPA_Set_Reset Sets PWMOPA module in reset state. 

R_PWMOPA_Release_Reset Releases PWMOPA module from reset state. 

R_TRD_ForcedOutput_Enabl

e 

Enables TRD pulse output forced cutoff. 

R_TRD_ForcedOutput_Disab

le 

Disables TRD pulse output forced cutoff. 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 37 of 868 
Jan 20, 2026 

Table 4-2  API Functions: (2/4) 

API Function Name Peripheral 

Name 

Description 

R_TRJ_Set_PowerOn Timer RJ Starts the clock supply for TRJ. 

R_TRJ_Set_PowerOff Stops the clock supply for TRJ. 

R_TRJ_Set_Reset Sets TRJ module in reset state. 

R_TRJ_Release_Reset Releases TRJ module from reset state. 

R_TRG_Set_PowerOn Timer RG Starts the clock supply for TRG. 

R_TRG_Set_PowerOff Stops the clock supply for TRG. 

R_TRG_Set_Reset Sets TRG module in reset state. 

R_TRG_Release_Reset Releases TRG module from reset state. 

R_TRX_Set_PowerOn Timer RX Starts the clock supply for TRX. 

R_TRX_Set_PowerOff Stops the clock supply for TRX. 

R_TRX_Set_Reset Sets TRX module in reset state. 

R_TRX_Release_Reset Releases TRX module from reset state. 

R_TKB_Create Timer KB Executes initialization processing that is required before controlling TKB 

(enables TKB input clock supply and initializes TKB module). 

R_TKB_Set_PowerOn Starts the clock supply for TKB. 

R_TKB_Set_PowerOff Stops the clock supply for TKB. 

R_TKB_Set_Reset Sets TKB module in reset state. 

R_TKB_Release_Reset Releases TKB module from reset state. 

R_RTC_Set_PowerOn Realtime 

Clock 

Starts the clock supply for RTC. 

R_RTC_Set_PowerOff Stops the clock supply for RTC. 

R_IT_Set_PowerOn 12-bit interval 

timer 

Starts the clock supply for 12-bit interval timer. 

R_IT_Set_PowerOff Stops the clock supply for 12-bit interval timer. 

R_ADC_Set_PowerOn A/D Converter Starts the clock supply for AD converter. 

R_ADC_Set_PowerOff Stops the clock supply for AD converter. 

R_ADC_Set_Reset Sets AD converter module in reset state. 

R_ADC_Release_Reset Releases AD converter module from reset state. 

R_DAC_Create D/A Converter Executes initialization processing that is required before controlling the 

DAC module (enables input clock supply and initializes DAm module). 

R_DAC_Set_PowerOn Starts the clock supply for DA converter. 

R_DAC_Set_PowerOff Stops the clock supply for DA converter. 

R_DAC_Set_Reset Sets DA converter module in reset state. 

R_DAC_Release_Reset Releases DA converter module from reset state. 

R_COMP_Create Comparator Executes initialization processing that is required before controlling the 

COMP module (enables input clock supply and initializes COMP 

module). 

R_COMP_Set_PowerOn Starts the clock supply for comparator. 

R_COMP_Set_PowerOff Stops the clock supply for comparator. 

R_COMP_Set_Reset Sets comparator module in reset state. 

R_COMP_Release_Reset Releases comparator module from reset state. 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 38 of 868 
Jan 20, 2026 

Table 4-3  API Functions: (3/4) 

API Function Name Peripheral Name Description 

R_PGACOMP_Create Comparator and 

Programmable Gain 

Amplifier 

Executes initialization processing that is required 

before controlling the COMP and PGA module 

(enables input clock supply and initializes COMP 

and PGA module). 

R_PGACOMP_Set_Power

On 

Starts the clock supply for COMP and PGA. 

R_PGACOMP_Set_Power

Off 

Stops the clock supply for COMP and PGA. 

R_PGACOMP_Set_Reset Sets COMP and PGA module in reset state. 

R_PGACOMP_Release_Re

set 

Releases COMP and PGA module from reset 

state. 

R_SAUm_Create Serial Array Unit Executes initialization processing that is required 

before controlling SAUm (enables input clock 

supply and initializes SAUm module). 

R_SAUm_Set_PowerOn Starts the clock supply for SAUm. 

R_SAUm_Set_PowerOff Stops the clock supply for SAUm. 

R_SAUm_Set_Reset Sets SAUm module in reset state. 

R_SAUm_Release_Reset Releases SAUm module from reset state. 

R_SAUm_Set_SnoozeOn Enables SAUm wakeup function. 

R_SAUm_Set_SnoozeOff Disables SAUm wakeup function. 

R_UARTA_Create Serial Interface UARTA Executes initialization processing that is required 

before controlling UARTA0/UARTA1 (enables 

input clock supply and initializes module). 

R_UARTA_Set_PowerOn Starts the clock supply for UARTA0/UARTA1. 

R_UARTA_Set_PowerOff Stops the clock supply for UARTA0/UARTA1. 

R_IICAn_Set_PowerOn Serial Interface IICA Starts the clock supply for IICAn. 

R_IICAn_Set_PowerOff Stops the clock supply for IICAn. 

R_IICAn_Set_Reset Sets IICAn module in reset state. 

R_IICAn_Release_Reset Releases IICAn module from reset state. 

R_RLIN3n_Set_PowerOn LIN/UART module Starts the clock supply for RLIN3n. 

R_RLIN3n_Set_PowerOff Stops the clock supply for RLIN3n. 

R_DALI_Set_PowerOn Digital Addressable 

Lighting Interface 

Starts the clock supply for DALI. 

R_DALI_Set_PowerOff Stops the clock supply for DALI. 

R_DALI_Set_Reset Sets DALI module in reset state. 

R_DALI_Release_Reset Releases DALI module from reset state. 

R_LVD_Start_Interrupt Voltage Detector Starts INTLVI interrupt. 

R_LVD_Stop_Interrupt Stops INTLVI interrupt. 

r_lvd_interrupt Executes processing in response to INTLVI 

interrupt. 

R_REMC_Set_PowerOn Remote Control Signal 

Receiver 

Starts the clock supply for REMC. 

R_REMC_Set_PowerOff Stops the clock supply for REMC. 

R_REMC_Set_Reset Sets REMC module in reset state. 

R_REMC_Release_Reset Releases REMC module from reset state. 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 39 of 868 
Jan 20, 2026 

Table 4-4  API Functions: (4/4) 

API Function Name Peripheral Name Description 

R_ITm_Create 8-bit interval timer 

 

Executes initialization processing that is required 

before controlling ITm (enables ITm input clock 

supply and initializes ITm module). 

R_ITm_Set_PowerOn Starts the clock supply for ITm. 

R_ITm_Set_PowerOff Stops the clock supply for ITm. 

R_OSD_Set_PowerOn Oscillation Stop 

Detector 

Starts the clock supply for OSD. 

R_OSD_Set_PowerOff Stops the clock supply for OSD. 

R_OSD_Set_Reset Sets OSD module in reset state. 

R_OSD_Release_Reset Releases OSD module from reset state. 

R_EXSD_Set_PowerOn External Signal Sampler Starts the clock supply for EXSD. 

R_EXSD_Set_PowerOff Stops the clock supply for EXSD. 

R_EXSD_Set_Reset Sets EXSD module in reset state. 

R_EXSD_Release_Reset Releases EXSD module from reset state. 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 40 of 868 
Jan 20, 2026 

main 

This API function implements main function. 

Remark When using SmartConfigurator stand-alone mode or using with CS+, please note to add the 

following code manually: 

1) add “#include "r_smc_entry.h"” 

2) add “EI()” in main() 

 

[Syntax] 

void    main(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 41 of 868 
Jan 20, 2026 

R_Systeminit 

This API function executes initialization processing that is required before controlling various 

peripheral modules. 

 

[Syntax] 

void    R_Systeminit(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 42 of 868 
Jan 20, 2026 

R_DTC_Set_PowerOn 

This API function starts the clock supply for DTC. 

 

[Syntax] 

void    R_DTC_Set_PowerOn(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 43 of 868 
Jan 20, 2026 

R_DTC_Set_PowerOff 

This API function stops the clock supply for DTC. 

 

[Syntax] 

void    R_DTC_Set_PowerOff(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 44 of 868 
Jan 20, 2026 

R_TAUm_Create 

This API function executes initialization processing that is required before controlling TAUm (enables 

TAUm input clock supply and initializes TAUm module). 

Remark This API function is called from R_Systeminit before the main() function is executed. 

 

[Syntax] 

void    R_TAUm_Create(void); 

Remark m is the unit number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 45 of 868 
Jan 20, 2026 

R_TAUm_Set_PowerOn 

This API function starts the clock supply for TAUm. 

 

[Syntax] 

void    R_TAUm_ Set_PowerOn(void); 

Remark m is the unit number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 46 of 868 
Jan 20, 2026 

R_TAUm_Set_PowerOff 

This API function stops the clock supply for TAUm. 

 

[Syntax] 

void    R_TAUm_ Set_PowerOff(void); 

Remark m is the unit number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 47 of 868 
Jan 20, 2026 

R_TAUm_Set_Reset 

This API function sets TAUm module in reset state. 

 

[Syntax] 

void    R_TAUm_ Set_Reset(void); 

Remark m is the unit number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 48 of 868 
Jan 20, 2026 

R_TAUm_Release_Reset 

This API function releases TAUm module from reset state. 

 

[Syntax] 

void    R_TAUm_Release_Reset(void); 

Remark m is the unit number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 49 of 868 
Jan 20, 2026 

R_ITL_Create 

This API function executes initialization processing that is required before controlling the 32-bits IT 

(enables input clock supply and initializes ITLm module). 

Remark This API function is called from R_Systeminit before the main() function is executed. 

 

[Syntax] 

void    R_ ITL_Create(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 50 of 868 
Jan 20, 2026 

R_ITL_Start_Interrupt 

This API function starts INTITL interrupt. 

Remark The 32-bit interval timer interrupt is enabled by calling this API function. For this reason, to 

use 32-bit interval timer interrupt, please call this API function together with 

R_{Config_ITL000_ITL001_ITL012_ITL013}_Start or R_{Config_ITLn_ITLm}_Start or 

R_{Config_ITLn}_Start. 

 

 

[Syntax] 

void    R_ ITL_Start_Interrupt(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 51 of 868 
Jan 20, 2026 

R_ITL_Stop_Interrupt 

This API function stops INTITL interrupt. 

 

[Syntax] 

void    R_ ITL_Stop_Interrupt(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 52 of 868 
Jan 20, 2026 

R_ITL_Set_PowerOn 

This API function starts the clock supply for 32-bits IT. 

 

[Syntax] 

void    R_ ITL_Set_PowerOn(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 53 of 868 
Jan 20, 2026 

R_ITL_Set_PowerOff 

This API function stops the clock supply for 32-bits IT. 

 

[Syntax] 

void    R_ ITL_Set_PowerOff(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 54 of 868 
Jan 20, 2026 

R_ITL_Set_Reset 

This API function sets 32-bits IT module in reset state. 

 

[Syntax] 

void    R_ ITL_Set_Reset(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 55 of 868 
Jan 20, 2026 

R_ITL_Release_Reset 

This API function releases 32-bits IT module from reset state. 

 

[Syntax] 

void    R_ ITL_Release_Reset(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 56 of 868 
Jan 20, 2026 

r_itl_interrupt 

This API function executes processing in response to 32-bit interval timer interrupt (INTITL). 

Remark This API function is called as the interrupt handler for compare match interrupt (INTITL), 

which occur when the counter value in any of channels 0 to 3 matches the compare value. 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_itl_interrupt(void); 

 

For LLVM toolchain: 

void    r_itl_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void    r_itl_interrupt(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 57 of 868 
Jan 20, 2026 

R_TRD_Create 

This API function executes initialization processing that is required before controlling TRD (enables 

TRD input clock supply and initializes TRD module). 

Remark This API function is called from R_Systeminit before the main() function is executed. 

 

[Syntax] 

void    R_TRD_Create(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 58 of 868 
Jan 20, 2026 

R_TRD_Set_PowerOn 

This API function starts the clock supply for TRD. 

 

[Syntax] 

void    R_TRD_Set_PowerOn(void); 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 59 of 868 
Jan 20, 2026 

R_TRD_Set_PowerOff 

This API function stops the clock supply for TRD. 

 

[Syntax] 

void    R_TRD_Set_PowerOff(void); 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 60 of 868 
Jan 20, 2026 

R_TRD_Set_Reset 

This API function sets TRD module in reset state. 

 

[Syntax] 

void    R_TRD_Set_Reset(void); 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 61 of 868 
Jan 20, 2026 

R_TRD_Release_Reset 

This API function releases TRD module from reset state. 

 

[Syntax] 

void    R_TRD_Release_Reset(void); 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

   

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 62 of 868 
Jan 20, 2026 

R_PWMOPA_Set_PowerOn 

This API function starts the clock supply for PWMOPA. 

 

[Syntax] 

void    R_PWMOPA_Set_PowerOn(void); 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 63 of 868 
Jan 20, 2026 

R_PWMOPA_Set_PowerOff 

This API function stops the clock supply for PWMOPA. 

 

[Syntax] 

void    R_PWMOPA_Set_PowerOff(void); 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 64 of 868 
Jan 20, 2026 

R_PWMOPA_Set_Reset 

This API function sets PWMOPA module in reset state. 

 

[Syntax] 

void    R_PWMOPA_Set_Reset(void); 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 65 of 868 
Jan 20, 2026 

R_PWMOPA_Release_Reset 

This API function releases PWMOPA module from reset state. 

 

[Syntax] 

void    R_PWMOPA_Release_Reset(void); 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

   

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 66 of 868 
Jan 20, 2026 

R_TRD_ForcedOutput_Enable 

This API function enables TRD pulse output forced cutoff. It can't be called during timer counter is 

running. Please call it before R_{Config_TRDn}_Start() or R_{Config_TRD0_TRD1}_Start(). 

 

[Syntax] 

void    R_TRD_ForcedOutput_Enable(void); 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 67 of 868 
Jan 20, 2026 

R_TRD_ForcedOutput_Disable 

This API function disables TRD pulse output forced cutoff. It can’t be called during timer counter is 

running. Please call it after R_{Config_TRDn}_Stop() or R_{Config_TRD0_TRD1}_Stop(). 

 

[Syntax] 

void    R_TRD_ForcedOutput_Disable(void); 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 68 of 868 
Jan 20, 2026 

R_TRJ_Set_PowerOn 

This API function starts the clock supply for TRJ. 

 

[Syntax] 

void    R_TRJ_Set_PowerOn(void); 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 69 of 868 
Jan 20, 2026 

R_TRJ_Set_PowerOff 

This API function stops the clock supply for TRJ. 

 

[Syntax] 

void    R_TRJ_Set_PowerOff(void); 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 70 of 868 
Jan 20, 2026 

R_TRJ_Set_Reset 

This API function sets TRJ module in reset state. 

 

[Syntax] 

void    R_TRJ_Set_Reset(void); 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 71 of 868 
Jan 20, 2026 

R_TRJ_Release_Reset 

This API function releases TRJ module from reset state. 

 

[Syntax] 

void    R_TRJ_Release_Reset(void); 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 72 of 868 
Jan 20, 2026 

R_TRG_Set_PowerOn 

This API function starts the clock supply for TRG. 

 

[Syntax] 

void    R_TRG_Set_PowerOn(void); 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 73 of 868 
Jan 20, 2026 

R_TRG_Set_PowerOff 

This API function stops the clock supply for TRG. 

 

[Syntax] 

void    R_TRG_Set_PowerOff(void); 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 74 of 868 
Jan 20, 2026 

R_TRG_Set_Reset 

This API function sets TRG module in reset state. 

 

[Syntax] 

void    R_TRG_Set_Reset(void); 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 75 of 868 
Jan 20, 2026 

R_TRG_Release_Reset 

This API function releases TRG module from reset state. 

 

[Syntax] 

void    R_TRG_Release_Reset(void); 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 76 of 868 
Jan 20, 2026 

R_TRX_Set_PowerOn 

This API function starts the clock supply for TRX. 

 

[Syntax] 

void    R_TRX_Set_PowerOn(void); 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 77 of 868 
Jan 20, 2026 

R_TRX_Set_PowerOff 

This API function stops the clock supply for TRX. 

 

[Syntax] 

void    R_TRX_Set_PowerOff(void); 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 78 of 868 
Jan 20, 2026 

R_TRX_Set_Reset 

This API function sets TRX module in reset state. 

 

[Syntax] 

void    R_TRX_Set_Reset(void); 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 79 of 868 
Jan 20, 2026 

R_TRX_Release_Reset 

This API function releases TRX module from reset state. 

 

[Syntax] 

void    R_TRX_Release_Reset(void); 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

   

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 80 of 868 
Jan 20, 2026 

R_TKB_Create 

This API function executes initialization processing that is required before controlling TKB (enables 

TKB input clock supply and initializes TKB module). 

Remark This API function is called from R_Systeminit before the main() function is executed. 

 

[Syntax] 

void    R_TKB_Create(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 81 of 868 
Jan 20, 2026 

R_TKB_Set_PowerOn 

This API function starts the clock supply for TKB. 

 

[Syntax] 

void    R_TKB_Set_PowerOn(void); 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 82 of 868 
Jan 20, 2026 

R_TKB_Set_PowerOff 

This API function stops the clock supply for TKB. 

 

[Syntax] 

void    R_TKB_Set_PowerOff(void); 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 83 of 868 
Jan 20, 2026 

R_TKB_Set_Reset 

This API function sets TKB module in reset state. 

 

[Syntax] 

void    R_TKB_Set_Reset(void); 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 84 of 868 
Jan 20, 2026 

R_TKB_Release_Reset 

This API function releases TKB module from reset state. 

 

[Syntax] 

void    R_TKB_Release_Reset(void); 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

   

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 85 of 868 
Jan 20, 2026 

R_RTC_Set_PowerOn 

This API function starts the clock supply for RTC. 

 

[Syntax] 

void    R_RTC_Set_PowerOn(void); 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 86 of 868 
Jan 20, 2026 

R_RTC_Set_PowerOff 

This API function stops the clock supply for RTC. 

 

[Syntax] 

void    R_RTC_Set_PowerOff(void); 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 87 of 868 
Jan 20, 2026 

R_IT_Set_PowerOn 

This API function starts the clock supply for 12-bit interval timer. 

 

[Syntax] 

void    R_IT_Set_PowerOn(void); 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 88 of 868 
Jan 20, 2026 

R_IT_Set_PowerOff 

This API function stops the clock supply for 12-bit interval timer. 

 

[Syntax] 

void    R_IT_Set_PowerOff(void); 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 89 of 868 
Jan 20, 2026 

R_ADC_Set_PowerOn 

This API function starts the clock supply for AD converter. 

 

[Syntax] 

void    R_ADC_Set_PowerOn(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 90 of 868 
Jan 20, 2026 

R_ADC_Set_PowerOff 

This API function stops the clock supply for AD converter. 

 

[Syntax] 

void    R_ADC_Set_PowerOff(void); 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 91 of 868 
Jan 20, 2026 

R_ADC_Set_Reset 

This API function sets AD converter module in reset state. 

 

[Syntax] 

void    R_ADC_Set_Reset(void); 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 92 of 868 
Jan 20, 2026 

R_ADC_Release_Reset 

This API function releases AD converter module from reset state. 

 

[Syntax] 

void    R_ADC_Release_Reset(void); 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 93 of 868 
Jan 20, 2026 

R_DAC_Create 

This API function executes initialization processing that is required before controlling the DAC module 

(enables input clock supply and initializes DAm module). 

Remark This API function is called from R_Systeminit before the main() function is executed. 

 

[Syntax] 

void    R_DAC_Create(void); 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 94 of 868 
Jan 20, 2026 

R_DAC_Set_PowerOn 

This API function starts the clock supply for DA converter. 

 

[Syntax] 

void    R_DAC_Set_PowerOn(void); 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 95 of 868 
Jan 20, 2026 

R_DAC_Set_PowerOff 

This API function stops the clock supply for DA converter. 

 

[Syntax] 

void    R_DAC_Set_PowerOff(void); 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 96 of 868 
Jan 20, 2026 

R_DAC_Set_Reset 

This API function sets DA converter module in reset state. 

 

[Syntax] 

void    R_DAC_Set_Reset(void); 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 97 of 868 
Jan 20, 2026 

R_DAC_Release_Reset 

This API function releases DA converter module from reset state. 

 

[Syntax] 

void    R_DAC_Release_Reset(void); 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 98 of 868 
Jan 20, 2026 

R_COMP_Create 

This API function executes initialization processing that is required before controlling the comparator 

module (enables input clock supply and initializes COMPm module). 

Remark This API function is called from R_Systeminit before the main() function is executed. 

 

[Syntax] 

void    R_COMP_Create(void); 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 99 of 868 
Jan 20, 2026 

R_COMP_Set_PowerOn 

This API function starts the clock supply for comparator. 

 

[Syntax] 

void    R_COMP_Set_PowerOn(void); 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 100 of 868 
Jan 20, 2026 

R_COMP_Set_PowerOff 

This API function stops the clock supply for comparator. 

 

[Syntax] 

void    R_COMP_Set_PowerOff(void); 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 101 of 868 
Jan 20, 2026 

R_COMP_Set_Reset 

This API function sets comparator module in reset state. 

 

[Syntax] 

void    R_COMP_Set_Reset(void); 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 102 of 868 
Jan 20, 2026 

R_COMP_Release_Reset 

This API function releases comparator module from reset state. 

 

[Syntax] 

void    R_COMP_Release_Reset(void); 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 103 of 868 
Jan 20, 2026 

R_PGACOMP_Create 

This API function executes initialization processing that is required before controlling the comparator 

module (enables input clock supply and initializes COMPm module) and PGA module. 

Remark This API function is called from R_Systeminit before the main() function is executed. 

 

[Syntax] 

void    R_PGACOMP_Create(void); 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

   

file:///C:/Users/zhao-fei/Downloads/devassist1_3/r20ut4852ec0102-rl78scapi.docx%23_R_Systeminit_1


 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 104 of 868 
Jan 20, 2026 

R_PGACOMP_Set_PowerOn 

This API function starts the clock supply for comparator module and PGA module. 

 

[Syntax] 

void    R_PGACOMP_Set_PowerOn(void); 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 105 of 868 
Jan 20, 2026 

R_PGACOMP_Set_PowerOff 

This API function stops the clock supply for comparator module and PGA module. 

 

[Syntax] 

void    R_PGACOMP_Set_PowerOff(void); 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 106 of 868 
Jan 20, 2026 

R_PGACOMP_Set_Reset 

This API function sets comparator module and PGA module in reset state. 

 

[Syntax] 

void    R_PGACOMP_Set_Reset(void); 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 107 of 868 
Jan 20, 2026 

R_PGACOMP_Release_Reset 

This API function releases comparator module and PGA module from reset state. 

 

[Syntax] 

void    R_PGACOMP_Release_Reset(void); 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 108 of 868 
Jan 20, 2026 

R_SAUm_Create 

This API function executes initialization processing that is required before controlling SAUm (enables 

input clock supply and initializes SAUm module). 

Remark This API function is called from R_Systeminit before the main() function is executed. 

 

[Syntax] 

void    R_SAUm_Create(void); 

Remark m is the unit number. 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 109 of 868 
Jan 20, 2026 

R_SAUm_Set_PowerOn 

This API function starts the clock supply for SAUm. 

 

[Syntax] 

void    R_SAUm_Set_PowerOn(void); 

Remark m is the unit number. 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 110 of 868 
Jan 20, 2026 

R_SAUm_Set_PowerOff 

This API function stops the clock supply for SAUm. 

 

[Syntax] 

void    R_SAUm_Set_PowerOff(void); 

Remark m is the unit number. 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 111 of 868 
Jan 20, 2026 

R_SAUm_Set_Reset 

This API function sets SAUm module in reset state. 

 

[Syntax] 

void    R_SAUm_Set_Reset(void); 

Remark m is the unit number. 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 112 of 868 
Jan 20, 2026 

R_SAUm_Release_Reset 

This API function releases SAUm module from reset state. 

 

[Syntax] 

void    R_SAUm_Release_Reset(void); 

Remark m is the unit number. 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 113 of 868 
Jan 20, 2026 

R_SAUm_Set_SnoozeOn 

This API function enables SAUm wakeup function. 

 

[Syntax] 

void    R_SAUm_Set_SnoozeOn(void); 

Remark m is the unit number. 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 114 of 868 
Jan 20, 2026 

R_SAUm_Set_SnoozeOff 

This API function disables SAUm wakeup function. 

 

[Syntax] 

void    R_SAUm_Set_SnoozeOff(void); 

Remark m is the unit number. 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 115 of 868 
Jan 20, 2026 

R_UARTA_Create 

This API function executes initialization processing that is required before controlling UARTA0/UARTA1 

(enables input clock supply and initializes module). 

Remark This API function is called from R_Systeminit before the main() function is executed. 

 

[Syntax] 

void    R_UARTA_Create(void); 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 116 of 868 
Jan 20, 2026 

R_UARTA_Set_PowerOn 

This API function starts the clock supply for UARTA0/UARTA1. 

 

[Syntax] 

void    R_UARTA_Set_PowerOn(void); 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 117 of 868 
Jan 20, 2026 

R_UARTA_Set_PowerOff 

This API function stops the clock supply for UARTA0/UARTA1. 

 

[Syntax] 

void    R_UARTA_Set_PowerOff(void); 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 118 of 868 
Jan 20, 2026 

R_IICAn_Set_PowerOn 

This API function starts the clock supply for IICAn. 

 

[Syntax] 

void    R_IICAn_Set_PowerOn(void); 

Remark n is the unit number. 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 119 of 868 
Jan 20, 2026 

R_IICAn_Set_PowerOff 

This API function stops the clock supply for IICAn. 

 

[Syntax] 

void    R_IICAn_Set_PowerOff(void); 

Remark n is the unit number. 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 120 of 868 
Jan 20, 2026 

R_IICAn_Set_Reset 

This API function sets IICAn module in reset state. 

 

[Syntax] 

void    R_IICAn_Set_Reset(void); 

Remark n is the unit number. 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 121 of 868 
Jan 20, 2026 

R_IICAn_Release_Reset 

This API function releases IICAn module from reset state. 

 

[Syntax] 

void    R_IICAn_Release_Reset(void); 

Remark n is the unit number. 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 122 of 868 
Jan 20, 2026 

R_RLIN3n_Set_PowerOn 

This API function starts the clock supply for RLIN3n. 

 

[Syntax] 

void    R_RLIN3n_Set_PowerOn(void); 

  Remark n is the unit number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 123 of 868 
Jan 20, 2026 

R_RLIN3n_Set_PowerOff 

This API function stops the clock supply for RLIN3n. 

 

[Syntax] 

void    R_RLIN3n_Set_PowerOff(void); 

  Remark n is the unit number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 124 of 868 
Jan 20, 2026 

R_DALI_Set_PowerOn 

This API function starts the clock supply for DALI. 

 

[Syntax] 

void    R_DALI_Set_PowerOn(void); 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 125 of 868 
Jan 20, 2026 

R_DALI_Set_PowerOff 

This API function stops the clock supply for DALI. 

 

[Syntax] 

void    R_DALI_Set_PowerOff(void); 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 126 of 868 
Jan 20, 2026 

R_DALI_Set_Reset 

This API function sets DALI module in reset state. 

 

[Syntax] 

void    R_DALI_Set_Reset(void); 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 127 of 868 
Jan 20, 2026 

R_DALI_Release_Reset 

This API function releases DALI module from reset state. 

 

[Syntax] 

void    R_DALI_Release_Reset(void); 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 128 of 868 
Jan 20, 2026 

R_LVD_Start_Interrupt 

This API function starts INTLVI interrupt. 

 

[Syntax] 

void    R_LVD_Start_Interrupt(void); 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 129 of 868 
Jan 20, 2026 

R_LVD_Stop_Interrupt 

This API function stops INTLVI interrupt. 

 

[Syntax] 

void    R_LVD_Stop_Interrupt(void); 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 130 of 868 
Jan 20, 2026 

r_lvd_interrupt 

This API function executes processing in response to INTLVI interrupt. 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_lvd_interrupt(void); 

 

For LLVM toolchain: 

void    r_lvd_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void    r_lvd_interrupt(void); 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 131 of 868 
Jan 20, 2026 

R_REMC_Set_PowerOn 

This API function starts the clock supply for REMC. 

 

[Syntax] 

void    R_REMC_Set_PowerOn(void); 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 132 of 868 
Jan 20, 2026 

R_REMC_Set_PowerOff 

This API function stops the clock supply for REMC. 

 

[Syntax] 

void    R_REMC_Set_PowerOff(void); 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 133 of 868 
Jan 20, 2026 

R_REMC_Set_Reset 

This API function sets REMC module in reset state. 

 

[Syntax] 

void    R_REMC_Set_Reset(void); 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 134 of 868 
Jan 20, 2026 

R_REMC_Release_Reset 

This API function releases REMC module from reset state. 

 

[Syntax] 

void    R_REMC_Release_Reset(void); 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 135 of 868 
Jan 20, 2026 

R_ITm_Create 

This API function executes initialization processing that is required before controlling ITm (enables ITm 

input clock supply and initializes ITm module). 

Remark This API function is called from R_Systeminit before the main() function is executed. 

 

[Syntax] 

void    R_ITm_Create(void); 

Remark m is the unit number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 136 of 868 
Jan 20, 2026 

R_ITm_Set_PowerOn 

This API function starts the clock supply for ITm. 

 

[Syntax] 

void    R_ITm_ Set_PowerOn(void); 

Remark m is the unit number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 137 of 868 
Jan 20, 2026 

R_ITm_Set_PowerOff 

This API function stops the clock supply for ITm. 

 

[Syntax] 

void    R_ITm_ Set_PowerOff(void); 

Remark m is the unit number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 138 of 868 
Jan 20, 2026 

R_OSD_Set_PowerOn 

This API function starts the clock supply for oscillation stop detector. 

 

[Syntax] 

void    R_OSD_Set_PowerOn(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 139 of 868 
Jan 20, 2026 

R_OSD_Set_PowerOff 

This API function stops the clock supply for oscillation stop detector. 

 

[Syntax] 

void    R_OSD_Set_PowerOff(void); 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 140 of 868 
Jan 20, 2026 

R_OSD_Set_Reset 

This API function sets oscillation stop detector module in reset state. 

 

[Syntax] 

void    R_OSD_Set_Reset(void); 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 141 of 868 
Jan 20, 2026 

R_OSD_Release_Reset 

This API function releases oscillation stop detector module from reset state. 

 

[Syntax] 

void    R_OSD_Release_Reset(void); 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 142 of 868 
Jan 20, 2026 

R_EXSD_Set_PowerOn 

This API function starts the clock supply for external signal sampler. 

 

[Syntax] 

void    R_EXSD_Set_PowerOn(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 143 of 868 
Jan 20, 2026 

R_EXSD_Set_PowerOff 

This API function stops the clock supply for external signal sampler. 

 

[Syntax] 

void    R_EXSD_Set_PowerOff(void); 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 144 of 868 
Jan 20, 2026 

R_EXSD_Set_Reset 

This API function sets external signal sampler module in reset state. 

 

[Syntax] 

void    R_EXSD_Set_Reset(void); 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 145 of 868 
Jan 20, 2026 

R_EXSD_Release_Reset 

This API function releases external signal sampler module from reset state. 

 

[Syntax] 

void    R_EXSD_Release_Reset(void); 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

   

 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 146 of 868 
Jan 20, 2026 

Usage example 

This is an example for using R_Xxxx_Set_PowerOn(), R_ Xxxx_Set_PowerOff(), R_ Xxxx_Set_Reset(), R_ 

Xxxx_Release_Reset(), R_ Xxxx_Start_Interrupt(), R_ Xxxx_Stop_Interrupt(): 

(Xxxx is peripheral name which user want to use, the following sample code takes 32-bit Interval Timer(ITL) as 

an example) 

 

(Blue code is user code.) 

main.c 

#include "r_smc_entry.h" 
 
void main(void); 
 
void main(void) 
{ 
 // To enable interrupt 

EI(); 
     
    // To enable INTITL interrupt which is shared among ITL each channels  
    R_ITL_Start_Initerrupt(); 
 
    // To enable ITL each channels 

R_Config_ITL000_Start(); 
R_Config_ITL001_Start(); 
 
// To disable ITL each channels 

    R_Config_ITL000_Stop(); 
R_Config_ITL001_Stop(); 
 

    // To Disable INTITL interrupt which is shared among ITL each channels  
    R_ITL_Stop_Initerrupt();     
 

// When ITL is stopped, to reduce the power consumption and noise 
R_Config_ ITL_Set_PowerOff(); 
 
// To use ITL again, supplies input clock. 
R_Config_ ITL_Set_PowerOn(); 
 
// To set ITL in the reset state 
R_ ITL_Set_Reset(); 
 
// To use ITL again, release ITL from the reset state 
R_ ITL_ Release_Reset(); 
 
// To use ITL again, execute initialization processing 
R_ITL_Create(); 
 
// To use ITL again, enable ITL each channels 
R_Config_ITL000_Start(); 
 
// To use ITL again, disable ITL each channels 

    R_Config_ITL000_Stop(); 
 

} 

 

  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 147 of 868 
Jan 20, 2026 

4.2.2 Port 

Below is a list of API functions output by the Smart Configurator for port use. 

 

Table 4-5  API Functions: 

API Function Name Peripheral Name Description 

R_{Config_PORT}_Create I/O Port Executes initialization processing that is required 

before controlling the I/O ports. 

R_{Config_PORT}_ReadPmnValues Specifies the value in the output latch for a port is 

read when the pin is in output mode. 

R_{Config_PORT}_ReadDigitalOutputLevel Specifies the output level on a port pin is read when 

the pin is in output mode. 

R_{Config_PORT}_Create_UserInit Executes user-specific initialization processing for 

the I/O ports. 

 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 148 of 868 
Jan 20, 2026 

R_Config_PORT_Create 

This API function executes initialization processing that is required before controlling the I/O ports. 

Remark This API function is called from R_Systeminit before the main() function is executed. 

 

[Syntax] 

void    R_{Config_PORT}_Create(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 149 of 868 
Jan 20, 2026 

R_{Config_PORT}_ReadPmnValues 

This API function specifies the value in the output latch for a port is read when the pin is in output mode. 

 

[Syntax] 

void    R_{Config_PORT}_ReadPmnValues(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 150 of 868 
Jan 20, 2026 

R_{Config_PORT}_ReadDigitalOutputLevel 

This API function specifies the output level on a port pin is read when the pin is in output mode. 

 

[Syntax] 

void    R_{Config_PORT}_ReadDigitalOutputLevel(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 151 of 868 
Jan 20, 2026 

R_Config_PORT_Create_UserInit 

This API function executes user-specific initialization processing for the port I/O. 

Remark This API functions is called as the R_{Config_PORT}_Create callback routine. 

 

[Syntax] 

void    R_{Config_PORT}_Create_UserInit(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 152 of 868 
Jan 20, 2026 

Usage example 

This is an example for setting the output level on a port pin is read when the pin is in output mode: 

(Blue code is user code.) 

main.c 

#include "r_smc_entry.h" 
 
void main(void); 
 
void main(void) 
{ 
 EI();    //to enable interrupt 
     

//To read the output level on a port pin in output mode 
    R_Config_PORT_ ReadDigitalOutputLevel (); 
} 

 

 
  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 153 of 868 
Jan 20, 2026 

4.2.3 Delay Counter 

Below is a list of API functions output by the Smart Configurator for delay counter use. 

 

Table 4-6  API Functions:  

API Function Name Peripheral Name Description 

R_{Config_TAUm_n}_Create Timer Array Unit Executes initialization processing that is required 

before controlling the TAUm channeln module 

in delay counter mode. 

R_{Config_TAUm_n}_Start Starts the TAUm channeln counter. 

R_{Config_TAUm_n}_Stop Stops the TAUm channeln counter. 

R_{Config_TAUm_n}_Lower8bits_Start Starts the TAUm channeln lower 8 bits counter. 

R_{Config_TAUm_n}_Lower8bits_Stop Stops the TAUm channeln lower 8 bits counter. 

R_{Config_TAUm_n}_Set_SoftwareTriggerOn Generates software trigger. 

R_{Config_TAUm_n}_Create_UserInit Executes user-specific initialization processing 

for the TAUm channeln 

r_{Config_TAUm_n}_interrupt Executes processing in response to end of 

timer channeln count end interrupt (INTTMmn). 

 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 154 of 868 
Jan 20, 2026 

R_{Config_TAUm_n}_Create 

This API function executes initialization processing that is required before controlling the TAUm channeln 

module in delay counter mode. 

Remark This API function is called from R_TAUm_Create. 

 

[Syntax] 

void    R_{Config_TAUm_n}_Create(void); 

Remark m is the unit number, n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 155 of 868 
Jan 20, 2026 

R_{Config_TAUm_n}_Start 

This API function starts the TAUm channeln counter. 

 

[Syntax] 

void    R_{Config_TAUm_n}_Start(void); 

Remark m is the unit number, n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 156 of 868 
Jan 20, 2026 

R_{Config_TAUm_n}_Stop 

This API function stops the TAUm channeln counter. 

 

[Syntax] 

void    R_{Config_TAUm_n}_Stop(void); 

Remark m is the unit number, n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 157 of 868 
Jan 20, 2026 

R_{Config_TAUm_n}_Lower8bits_Start 

This API function starts the TAUm channeln lower 8 bits counter. 

 

[Syntax] 

void    R_{Config_TAUm_n}_Lower8bits_Start(void); 

Remark m is the unit number, n is the channel number 1 or 3. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 158 of 868 
Jan 20, 2026 

R_{Config_TAUm_n}_Lower8bits_Stop 

This API function stops the TAUm channeln lower 8 bits counter. 

 

[Syntax] 

void    R_{Config_TAUm_n}_Lower8bits_Stop(void); 

Remark m is the unit number, n is the channel number 1 or 3. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 159 of 868 
Jan 20, 2026 

R_{Config_TAUm_n}_Set_SoftwareTriggerOn 

Generates software trigger. 

 

[Syntax] 

void    R_{Config_TAUm_n}_Set_SoftwareTriggerOn(void); 

Remark m is the unit number, n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 160 of 868 
Jan 20, 2026 

R_{Config_TAUm_n}_Create_UserInit 

This API function executes user-specific initialization processing for the TAUm channeln. 

Remark This API functions is called from R_{Config_TAUm_n}_Create as a callback routine. 

 

[Syntax] 

void    R_{Config_TAUm_n}_Create_UserInit(void); 

Remark m is the unit number, n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 161 of 868 
Jan 20, 2026 

r_{Config_TAUm_n}_interrupt 

This API function executes processing in response to end of timer channelmn count end interrupt 

(INTTMmn). 

Remark This API function is called as the interrupt handler for count end interrupt (INTTMmn), which 
occur when the current counter value (TCRmn) reaches 0000H. 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_TAUm_n}_interrupt(void); 

 

For LLVM toolchain: 

void    r_{Config_TAUm_n}_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_TAUm_n}_interrupt(void); 

Remark m is the unit number, n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 162 of 868 
Jan 20, 2026 

Usage example 

This is an example for using TAU channel 0 counting as delay counter mode and channel 1 counting as 8-bit 

delay counter for a user-defined period: 

(Blue code is user code.) 

main.c 

#include "r_smc_entry.h" 
extern uint8_t ch0_run_count; 
extern uint8_t ch1_run_count; 
 
void main(void); 
 
void main(void) 
{ 

 EI();    //To enable interrupt 
    R_Config_TAU0_0_Start();    //TAU00 operation enable 
    R_Config_TAU0_0_Set_SoftwareTriggerOn();    //to set TS00 to 1 by software 
    while (ch0_run_count < 20) 
    { 
        //To set TS00 to 1 by software at each timer interrupt generation 
        R_Config_TAU0_0_Set_SoftwareTriggerOn(); 
    } 
    R_Config_TAU0_0_Stop();    //TAU00 operation disable 
 
    R_Config_TAU0_1_Lower8bits_Start();    //TAU01 operation enable 
    R_Config_TAU0_1_Set_SoftwareTriggerOn();    //to set TS01 to 1 by software 
    while (ch1_run_count < 20) 
    { 
        //To set TS01 to 1 by software at each timer interrupt generation 
        R_Config_TAU0_1_Set_SoftwareTriggerOn(); 
    } 
    R_Config_TAU0_1_Lower8bits_Stop();    //TAU01 operation disable 
} 

 

Config_TAU0_0_user.c 

/* Start user code for global. Do not edit comment generated here */ 
uint8_t ch0_run_count; 
/* End user code. Do not edit comment generated here */ 
 
static void __near r_Config_TAU0_0_interrupt (void) 
{ 
    /* Start user code for r_Config_ TAU0_0_interrupt. Do not edit comment generated here */ 
 ch0_run_count ++;    //to count the number of times the interrupt handler is entered 
    /* End user code. Do not edit comment generated here */ 
}  

 

Config_TAU0_1_user.c 

/* Start user code for global. Do not edit comment generated here */ 
uint8_t ch1_run_count;  
/* End user code. Do not edit comment generated here */ 
 
static void __near r_Config_TAU0_1_interrupt (void) 
{ 
    /* Start user code for r_Config_TAU0_1_interrupt. Do not edit comment generated here */ 
 ch1_run_count ++;    //to count the number of times the interrupt handler is entered 
    /* End user code. Do not edit comment generated here */ 
}  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 163 of 868 
Jan 20, 2026 

4.2.4 Divider Function 

Below is a list of API functions output by the Smart Configurator for divider function use. 

 

Table 4-7  API Functions:  

API Function Name Peripheral Name Description 

R_{Config_TAUm_n}_Create Timer Array Unit Executes initialization processing that is required 

before controlling the TAUm channeln module in 

divider function mode. 

R_{Config_TAUm_n}_Start Starts the TAUm channeln counter. 

R_{Config_TAUm_n}_Stop Stops the TAUm channeln counter. 

R_{Config_TAUm_n}_Create_UserInit Executes user-specific initialization processing for the 

TAUm channel. 

r_{Config_TAUm_n}_interrupt Executes processing in response to end of timer 

channeln count end interrupt (INTTMmn). 

 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 164 of 868 
Jan 20, 2026 

R_{Config_TAUm_n}_Create 

This API function executes initialization processing that is required before controlling the TAUm channeln 

module in divider function mode. 

Remark This API function is called from R_TAUm_Create. 

 

[Syntax] 

void    R_{Config_TAUm_n}_Create(void); 

Remark m is the unit number, n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 165 of 868 
Jan 20, 2026 

R_{Config_TAUm_n}_Start 

This API function starts the TAUm channeln counter. 

 

[Syntax] 

void    R_{Config_TAUm_n}_Start(void); 

Remark m is the unit number, n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 166 of 868 
Jan 20, 2026 

R_{Config_TAUm_n}_Stop 

This API function stops the TAUm channeln counter. 

 

[Syntax] 

void    R_{Config_TAUm_n}_Stop(void); 

Remark m is the unit number, n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 167 of 868 
Jan 20, 2026 

R_{Config_TAUm_n}_Create_UserInit 

This API function executes user-specific initialization processing for the TAUm channeln. 

Remark This API functions is called from R_{Config_TAUm_n}_Create as a callback routine. 

 

[Syntax] 

void    R_{Config_TAUm_n}_Create_UserInit(void); 

Remark m is the unit number, n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 168 of 868 
Jan 20, 2026 

r_{Config_TAUm_n}_interrupt 

This API function executes processing in response to end of timer channelmn count end interrupt 

(INTTMmn). 

Remark This API function is called as the interrupt handler for count end interrupt (INTTMmn), which 
occur when the current counter value (TCRmn) reaches 0000H. 

 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_TAUm_n}_interrupt(void); 

 

For LLVM toolchain: 

void    r_{Config_TAUm_n}_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_TAUm_n}_interrupt(void); 

Remark m is the unit number, n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 169 of 868 
Jan 20, 2026 

Usage example 

This is an example for using TAU channel 0 counting as divider mode for a user-defined period: 

(Blue code is user code.) 

main.c 

#include "r_smc_entry.h" 
extern uint8_t ch0_run_count; 
 
void main(void); 
 
void main(void) 
{ 

 EI();    //to enable interrupt 
 
    R_Config_TAU0_0_Start();   //TAU00 operation enable 
    while( ch0_run_count < 20);  //wait until ch0_run_count reaches or exceeds 20, exit the loop 
    R_Config_TAU0_0_Stop();   //TAU00 operation disable 
} 

 

Config_TAU0_0_user.c 

/* Start user code for global. Do not edit comment generated here */ 
uint8_t ch0_run_count;  
/* End user code. Do not edit comment generated here */ 
 
static void __near r_Config_TAU0_0_interrupt (void) 
{ 
    /* Start user code for r_Config_ TAU0_0_interrupt. Do not edit comment generated here */ 
 ch0_run_count ++;    //to count the number of times the interrupt handler is entered 
    /* End user code. Do not edit comment generated here */ 
}  

 

 

 
  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 170 of 868 
Jan 20, 2026 

4.2.5 External Event Counter (Timer Array Unit) 

Below is a list of API functions output by the Smart Configurator for external event counter use. 

 

Table 4-8  API Functions:  

API Function Name Peripheral Name Description 

R_{Config_TAUm_n}_Create Timer Array Unit Executes initialization processing that is required 

before controlling the TAUm channeln module in 

external event counter mode. 

R_{Config_TAUm_n}_Start Starts the TAUm channeln counter. 

R_{Config_TAUm_n}_Stop Stops the TAUm channeln counter. 

R_{Config_TAUm_n}_Lower8bits_Start Starts the TAUm channeln lower 8 bits counter. 

R_{Config_TAUm_n}_Lower8bits_Stop Stops the TAUm channeln lower 8 bits counter. 

R_{Config_TAUm_n}_Create_UserInit Executes user-specific initialization processing for 

the TAUm channeln. 

r_{Config_TAUm_n}_interrupt Executes processing in response to end of timer 

channeln count end interrupt (INTTMmn). 

 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 171 of 868 
Jan 20, 2026 

R_{Config_TAUm_n}_Create 

This API function executes initialization processing that is required before controlling the TAUm channeln 

module in external event counter mode. 

Remark This API function is called from R_TAUm_Create. 

 

[Syntax] 

void    R_{Config_TAUm_n}_Create(void); 

Remark m is the unit number, n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 172 of 868 
Jan 20, 2026 

R_{Config_TAUm_n}_Start 

This API function starts the TAUm channeln counter. 

 

[Syntax] 

void    R_{Config_TAUm_n}_Start(void); 

Remark m is the unit number, n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 173 of 868 
Jan 20, 2026 

R_{Config_TAUm_n}_Stop 

This API function stops the TAUm channeln counter. 

 

[Syntax] 

void    R_{Config_TAUm_n}_Stop(void); 

Remark m is the unit number, n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 174 of 868 
Jan 20, 2026 

R_{Config_TAUm_n}_Lower8bits_Start 

This API function starts the TAUm channeln lower 8 bits counter. 

 

[Syntax] 

void    R_{Config_TAUm_n}_Lower8bits_Start(void); 

Remark m is the unit number, n is the channel number 1 or 3. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 175 of 868 
Jan 20, 2026 

R_{Config_TAUm_n}_Lower8bits_Stop 

This API function stops the TAUm channeln lower 8 bits counter. 

 

[Syntax] 

void    R_{Config_TAUm_n}_Lower8bits_Stop(void); 

Remark m is the unit number, n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 176 of 868 
Jan 20, 2026 

R_{Config_TAUm_n}_Create_UserInit 

This API function executes user-specific initialization processing for the TAUm channeln. 

Remark This API functions is called from R_{Config_TAUm_n}_Create as a callback routine. 

 

[Syntax] 

void    R_{Config_TAUm_n}_Create_UserInit(void); 

Remark m is the unit number, n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 177 of 868 
Jan 20, 2026 

r_{Config_TAUm_n}_interrupt 

This API function executes processing in response to end of timer channelmn count end interrupt 

(INTTMmn). 

Remark This API function is called as the interrupt handler for count end interrupt (INTTMmn), which 
occur when the current counter value (TCRmn) reaches 0000H. 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_TAUm_n}_interrupt(void); 

 

For LLVM toolchain: 

void    r_{Config_TAUm_n}_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_TAUm_n}_interrupt(void); 

Remark m is the unit number, n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 178 of 868 
Jan 20, 2026 

Usage example 

This is an example for using TAU channel 0 counting as external event counter and channel 1 counting as 8-bit 

external event counter for a user-defined period:  

(Blue code is user code.) 

main.c 

#include "r_smc_entry.h" 
extern uint8_t ch0_run_count; 
extern uint8_t ch1_run_count; 
 
void main(void); 
 
void main(void) 
{ 

 EI();    //to enable interrupt 
    R_Config_TAU0_0_Start();   //TAU00 operation enable 
    while (ch0_run_count < 20);  //wait until ch0_run_count reaches or exceeds 20, exit the loop 
    R_Config_TAU0_0_Stop();   //TAU00 operation disable 
 
    R_Config_TAU0_1_Lower8bits_Start();   //TAU01 operation enable 

while (ch1_run_count < 20);  //wait until ch1_run_count reaches or exceeds 20, exit the loop 
    R_Config_TAU0_1_Lower8bits_Stop();   //TAU01 operation disable 
} 

 

Config_TAU0_0_user.c 

/* Start user code for global. Do not edit comment generated here */ 
uint8_t ch0_run_count;  
/* End user code. Do not edit comment generated here */ 
 
static void __near r_Config_TAU0_0_interrupt (void) 
{ 
    /* Start user code for r_Config_ TAU0_0_interrupt. Do not edit comment generated here */ 
 ch0_run_count ++;    //to count the number of times the interrupt handler is entered 
    /* End user code. Do not edit comment generated here */ 
}  

 

Config_TAU0_1_user.c 

/* Start user code for global. Do not edit comment generated here */ 
uint8_t ch1_run_count;  
/* End user code. Do not edit comment generated here */ 
 
static void __near r_Config_TAU0_1_interrupt (void) 
{ 
    /* Start user code for r_Config_TAU0_1_interrupt. Do not edit comment generated here */ 
 ch1_run_count ++;    //to count the number of times the interrupt handler is entered 
    /* End user code. Do not edit comment generated here */ 
}  

 

  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 179 of 868 
Jan 20, 2026 

4.2.6 External Event Counter (Timer RJ) 

Below is a list of API functions output by the Smart Configurator for external event counter (input to the TRJIOn 

pin) use. 

 

Table 4-9  API Functions:  

API Function Name Peripheral Name Description 

R_{Config_TRJn}_Create Timer RJn Executes initialization processing that is required 

before controlling the Timer RJn module in external 

event counter mode. 

R_{Config_TRJn}_Start Starts the TRJn counter. 

R_{Config_TRJn}_Stop Stops the TRJn counter. 

R_{Config_TRJn}_Create_UserInit Executes user-specific initialization processing for 

the TRJn. 

r_{Config_TRJn}_ interrupt Executes processing in response to the interrupt 

(INTTRJn) when TRJn counter underflows. 

 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 180 of 868 
Jan 20, 2026 

R_{Config_TRJn}_Create 

This API function executes initialization processing that is required before controlling the TRJn module in 

external event counter mode. 

Remark This API function is called from R_Systeminit before the main() function is executed. 

 

[Syntax] 

void    R_{Config_TRJn}_Create(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 181 of 868 
Jan 20, 2026 

R_{Config_TRJn}_Start 

This API function starts the TRJn counter. 

 

[Syntax] 

void    R_{Config_TRJn}_Start(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 182 of 868 
Jan 20, 2026 

R_{Config_TRJn}_Stop 

This API function stops the TRJn counter. 

 

[Syntax] 

void    R_{Config_TRJn}_Stop(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 183 of 868 
Jan 20, 2026 

R_{Config_TRJn}_Create_UserInit 

This API function executes user-specific initialization processing for the TRJn. 

Remark This API functions is called from R_{Config_TRJn}_Create as a callback routine. 

 

[Syntax] 

void    R_{Config_TRJn}_Create_UserInit(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 184 of 868 
Jan 20, 2026 

r_{Config_TRJn}_interrupt 

This API function executes processing in response to to the interrupt (INTTRJn) when TRJn counter 

underflows.. 

Remark This API function is called as the interrupt handler for TRJn interrupts (INTTRJn), which 
occur when the counter underflows. 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_TRJn}_interrupt(void); 

 

For LLVM toolchain: 

void    r_{Config_TRJn}_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_TRJn}_interrupt(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 185 of 868 
Jan 20, 2026 

Usage example 

This is an example for using TRJ0 counting as external event counter for a user-defined period:  

(Blue code is user code.) 

main.c 

#include "r_smc_entry.h" 
extern uint8_t ch0_run_count; 
 
void main(void); 
 
void main(void) 
{ 
 EI();    //to enable interrupt 
    R_Config_TRJ0_Start();    //TRJ0 operation enable 
    while (ch0_run_count < 20);    //wait until ch0_run_count reaches or exceeds 20, exit the loop 
    R_Config_TRJ0_Stop();    //TRJ0 operation disable 
} 

 

Config_TRJ0_user.c 

/* Start user code for global. Do not edit comment generated here */ 
uint8_t ch0_run_count; 
/* End user code. Do not edit comment generated here */ 
 
static void __near r_Config_TRJ0_interrupt (void) 
{ 
    /* Start user code for r_Config_TRJ0_interrupt. Do not edit comment generated here */ 
 ch0_run_count ++;    //to count the number of times the interrupt handler is entered 
    /* End user code. Do not edit comment generated here */ 
}  

 
  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 186 of 868 
Jan 20, 2026 

4.2.7 Input Pulse High-/Low-Level Width Measurement (Timer Array Unit) 

Below is a list of API functions output by the Smart Configurator for input pulse high-/low-level width 

measurement use. 

 

Table 4-10  API Functions:  

API Function Name Peripheral Name Description 

R_{Config_TAUm_n}_Create Timer Array Unit Executes initialization processing that is required before 

controlling the TAUm channeln module in input pulse 

high-/low-level width measurement mode. 

R_{Config_TAUm_n}_Start Starts the TAUm channeln counter. 

R_{Config_TAUm_n}_Stop Stops the TAUm channeln counter. 

R_{Config_TAUm_n}_Get_PulseWidth Measures TAUm channeln input pulse width. 

R_{Config_TAUm_n}_Create_UserInit Executes user-specific initialization processing for the 

TAUm channeln. 

r_{Config_TAUm_n}_interrupt Executes processing in response to timer channeln 

capture interrupt (INTTMmn). 

 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 187 of 868 
Jan 20, 2026 

R_{Config_TAUm_n}_Create 

This API function executes initialization processing that is required before controlling the TAUm channeln 

module in input pulse high-/low-level width measurement mode. 

Remark This API function is called from R_TAUm_Create. 

 

[Syntax] 

void    R_{Config_TAUm_n}_Create(void); 

Remark m is the unit number, n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 188 of 868 
Jan 20, 2026 

R_{Config_TAUm_n}_Start 

This API function starts the TAUm channeln counter. 

 

[Syntax] 

void    R_{Config_TAUm_n}_Start(void); 

Remark m is the unit number, n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 189 of 868 
Jan 20, 2026 

R_{Config_TAUm_n}_Stop 

This API function stops the TAUm channeln counter. 

 

[Syntax] 

void    R_{Config_TAUm_n}_Stop(void); 

Remark m is the unit number, n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 190 of 868 
Jan 20, 2026 

R_{Config_TAUm_n}_Get_PulseWidth 

This API function measures TAUm channeln input pulse width. 

 

[Syntax] 

void    R_{Config_TAUm_n}_Get_PulseWidth(uint32_t * const width); 

Remark m is the unit number, n is the channel number. 

 

[Argument(s)] 

I/O Argument(s) Description 

O uint32_t * const width; The address where to write the input pulse width 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 191 of 868 
Jan 20, 2026 

R_{Config_TAUm_n}_Create_UserInit 

This API function executes user-specific initialization processing for the TAUm channeln. 

Remark This API functions is called from R_{Config_TAUm_n}_Create as a callback routine. 

 

[Syntax] 

void    R_{Config_TAUm_n}_Create_UserInit(void); 

Remark m is the unit number, n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 192 of 868 
Jan 20, 2026 

r_{Config_TAUm_n}_interrupt 

This API function executes processing in response to timer channelmn capture interrupt (INTTMmn). 

Remark This API function is called as the interrupt handler for capture interrupts (INTTMmn), which 

occur when the valid capture edge is detected, and the current counter value (TCRmn) is 

transferred to timer data register mn (TDRmn). 

 

 [Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_TAUm_n}_interrupt(void); 

 

For LLVM toolchain: 

void    r_{Config_TAUm_n}_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_TAUm_n}_interrupt(void); 

Remark m is the unit number, n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 193 of 868 
Jan 20, 2026 

Usage example 

This is an example for getting TAU channel 0 input low-level width from TI00 pin: 

(Blue code is user code.) 

main.c 

#include "r_smc_entry.h" 
extern volatile uint8_t tau_interrupt_flag; 
uint32_t width;    //declare a variable to store the measured pulse width 
 
void main(void); 
 
void main(void) 
{ 
 EI();    //to enable interrupt 
    tau_interrupt_flag = 0;    //set the initial value of tau_interrupt_flag 
    //TAU00 operation enable, when the TI00 pin input start edge is detected, the counter counts up from 
0000H. 

R_Config_TAU0_0_Start(); 
 

    //wait until tau_interrupt_flag not equal 0, exit the loop. It indicates that the valid edge of the TI00 pin 
input is detected 

while( tau_interrupt_flag == 0); 
 
R_Config_TAU0_0_Stop();    //TAU00 operation disable 
 

    //Get the measured pulse width (high-level or low-level) from TI00 pin 
    R_Config_TAU0_0_Get_PulseWidth(&width);  
     
} 

 

Config_TAU0_0_user.c 

/* Start user code for global. Do not edit comment generated here */ 
uint8_t tau_interrupt_flag;  
/* End user code. Do not edit comment generated here */ 
 
static void __near r_Config_TAU0_0_interrupt (void) 
{ 
    ... 
    /* Start user code for r_Config_TAU0_0_interrupt. Do not edit comment generated here */ 
    //The valid edge of the TI00 pin input is detected, the count value is transferred to TDR00 
 tau_interrupt_flag = 1U;    /* set the flag */ 
    /* End user code. Do not edit comment generated here */ 
}  

 
  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 194 of 868 
Jan 20, 2026 

4.2.8 Input Pulse High-/Low-Level Width Measurement (Timer RJ) 

Below is a list of API functions output by the Smart Configurator for input pulse high-/low-level width of an 

external signal (input to the TRJIOn pin) measurement use. 

 

Table 4-11  API Functions:  

API Function Name Peripheral Name Description 

R_{Config_TRJn}_Create Timer RJn Executes initialization processing that is required before 

controlling the TRJn module in pulse high-/low-level 

width measurement mode. 

R_{Config_TRJn}_Start Starts the TRJn counter. 

R_{Config_TRJn}_Stop Stops the TRJn counter. 

R_{Config_TRJn}_Get_PulseWidth Measures TRJn input pulse width. 

R_{Config_TRJn}_Create_UserInit Executes user-specific initialization processing for the 

TRJn. 

r_{Config_TRJn}_ interrupt Executes processing in response to the interrupt 

(INTTRJn) when TRJn counter underflows. 

 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 195 of 868 
Jan 20, 2026 

R_{Config_TRJn}_Create 

This API function executes initialization processing that is required before controlling the TRJn module in 

input pulse high-/low-level width of an external signal (input to the TRJIOn pin) measurement mode. 

Remark This API function is called from R_Systeminit before the main() function is executed. 

 

[Syntax] 

void    R_{Config_TRJn}_Create(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 196 of 868 
Jan 20, 2026 

R_{Config_TRJn}_Start 

This API function starts the TRJn counter. 

 

[Syntax] 

void    R_{Config_TRJn}_Start(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 197 of 868 
Jan 20, 2026 

R_{Config_TRJn}_Stop 

This API function stops the TRJn counter. 

 

[Syntax] 

void    R_{Config_TRJn}_Stop(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 198 of 868 
Jan 20, 2026 

R_{Config_TRJn}_Get_PulseWidth 

This API function measures TRJn input pulse width. 

 

[Syntax] 

void    R_{Config_TRJn}_Get_PulseWidth(uint32_t * const width); 

Remark n is the channel number. 

 

[Argument(s)] 

I/O Argument(s) Description 

O uint32_t * const width; The address where to write the input pulse width 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 199 of 868 
Jan 20, 2026 

R_{Config_TRJn}_Create_UserInit 

This API function executes user-specific initialization processing for the TRJn. 

Remark This API functions is called from R_{Config_TRJn}_Create as a callback routine. 

 

[Syntax] 

void    R_{Config_TRJn}_Create_UserInit(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 200 of 868 
Jan 20, 2026 

r_{Config_TRJn}_interrupt 

This API function executes processing in response to the interrupt (INTTRJn) when TRJn counter 

underflows. 

Remark This API function is called as the interrupt handler for TRJn counter underflows interrupts 

(INTTRJn), which occur when the measurement of the active width of the external input 

(TRJIOn) is completed in pulse width measurement mode. 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_TRJn}_interrupt(void); 

 

For LLVM toolchain: 

void    r_{Config_TRJn}_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_TRJn}_interrupt(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 201 of 868 
Jan 20, 2026 

Usage example 

This is an example for getting TRJ0 input pulse width from TRJIO0 pin: 

(Blue code is user code.) 

main.c 

#include "r_smc_entry.h" 
extern volatile uint8_t interrupt_flag; 
uint32_t width;    //variable to store pulse width 
 
void main(void); 
 
void main(void) 
{ 
 EI();    //to enable interrupt 
    interrupt_flag = 0;    //set the initial value of interrupt_flag 
 
    //When the TRJIO0 pin start edge is detected, the counter TRJ0 underflow from the initial value. 

R_Config_TRJ0_Start(); 
 
//Wait until interrupt_flag not equal 0, exit the loop. It indicates that the valid edge of the TRJIO0 pin 

input is detected 
    while(interrupt_flag == 0);     
 

R_Config_TRJ0_Stop();   //TRJ0 operation disable 
 

//The pulse width of the TRJIO0 pin can be read from “width” 

    R_Config_TRJ0_Get_PulseWidth(&width); 
     
} 

 

Config_TRJ0_user.c 

/* Start user code for global. Do not edit comment generated here */ 
uint8_t interrupt_flag; 
/* End user code. Do not edit comment generated here */ 
 
static void __near r_Config_TRJ0_interrupt (void) 
{ 

... 
    /* Start user code for r_Config_TRJ0_interrupt. Do not edit comment generated here */ 
    //The valid edge of the TRJIO0 pin input is detected, the counter TRJ0 is stopped 
 interrupt_flag = 1U;    /* set the flag */ 
    /* End user code. Do not edit comment generated here */ 
}  

 

  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 202 of 868 
Jan 20, 2026 

4.2.9 PWM Output (Timer Array Unit) 

Below is a list of API functions output by the Smart Configurator for PWM output use. 

 

Table 4-12  API Functions: 

API Function Name Peripheral Name Description 

R_{Config_TAUm_n}_Create Timer Array Unit Executes initialization processing that is required 

before controlling the TAUm channeln module in 

PWM mode. 

R_{Config_TAUm_n}_Start Starts the TAUm channeln counter. 

R_{Config_TAUm_n}_Stop Stops the TAUm channeln counter. 

R_{Config_TAUm_n}_Create_UserInit Executes user-specific initialization processing for 

the TAUm channeln. 

r_{Config_TAUm_n}_channeln_interrupt Executes processing in response to timer channeln 

count end interrupt (INTTMmn). 

r_{Config_TAUm_n}_channelp_interrupt Executes processing in response to timer channelp 

count end interrupt (INTTMmp) 

 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 203 of 868 
Jan 20, 2026 

R_{Config_TAUm_n}_Create 

This API function executes initialization processing that is required before controlling the TAUm channeln 

module in PWM mode. 

Remark This API function is called from R_TAUm_Create. 

 

[Syntax] 

void    R_{Config_TAUm_n}_Create(void); 

Remark m is the unit number, n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 204 of 868 
Jan 20, 2026 

R_{Config_TAUm_n}_Start 

This API function starts the TAUm channeln counter. 

 

[Syntax] 

void    R_{Config_TAUm_n}_Start(void); 

Remark m is the unit number, n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 205 of 868 
Jan 20, 2026 

R_{Config_TAUm_n}_Stop 

This API function stops the TAUm channeln counter. 

 

[Syntax] 

void    R_{Config_TAUm_n}_Stop(void); 

Remark m is the unit number, n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 206 of 868 
Jan 20, 2026 

R_{Config_TAUm_n}_Create_UserInit 

This API function executes user-specific initialization processing for the TAUm channeln. 

Remark This API functions is called from R_{Config_TAUm_n}_Create as a callback routine. 

 

[Syntax] 

void    R_{Config_TAUm_n}_Create_UserInit(void); 

Remark m is the unit number, n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 207 of 868 
Jan 20, 2026 

r_{Config_TAUm_n}_channeln_interrupt 

This API function executes processing in response to timer channelmn count end interrupt (INTTMmn). 

Remark This API function is called as the interrupt handler for count end interrupt (INTTMmn), which 
occur when the current counter value (TCRmn) reaches 0000H. 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_TAUm_n}_channeln_interrupt(void); 

 

For LLVM toolchain: 

void    r_{Config_TAUm_n}_channeln_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_TAUm_n}_channeln_interrupt(void); 

Remark m is the unit number, n is the master channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 208 of 868 
Jan 20, 2026 

r_{Config_TAUm_n}_channelp_interrupt 

This API function executes processing in response to timer channelmn count end interrupt (INTTMmp). 

Remark This API function is called as the interrupt handler for count end interrupt (INTTMmp), which 
occur when the current counter value (TCRmp) reaches 0000H. 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_TAUm_n}_channelp_interrupt(void); 

 

For LLVM toolchain: 

void    r_{Config_TAUm_n}_channelp_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_TAUm_n}_channelp_interrupt(void); 

Remark1. m is the unit number, n is the master channel number, p is slave channel number. 

Remark2. n < p ≤ 7. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 209 of 868 
Jan 20, 2026 

Usage example 

This is an example for starting TAU channel 0/1 to output PWM pulses: 

(Blue code is user code.) 

main.c 

#include "r_smc_entry.h" 
extern uint8_t tau_pwm_count; 
 
void main(void); 
 
void main(void) 
{ 
 EI();   //to enable interrupt 
    tau_pwm_count = 0; 
    R_Config_TAU0_0_Start();    //TAU00 operation enable 
    while (tau_pwm_count < 10);    //wait until tau_pwm_count reaches or exceeds 10, exit the loop 
    R_Config_TAU0_0_Stop();    //TAU00 operation disable 
} 

 

Config_TAU0_0_user.c 

/* Start user code for global. Do not edit comment generated here */ 
uint8_t tau_pwm_count; 
/* End user code. Do not edit comment generated here */ 
 
static void __near r_Config_TAU0_1_channel1_interrupt (void) 
{ 
    /* Start user code for r_Config_TAU0_1_channel1_interrupt. Do not edit comment generated here */ 
 tau_pwm_count ++;    //to count the number of times the master channel interrupt handler is 
entered 
    /* End user code. Do not edit comment generated here */ 
}  

 

  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 210 of 868 
Jan 20, 2026 

4.2.10 PWM Output (Timer Array Unit using PWM mode (Remote control carrier wave)) 

Below is a list of API functions output by the Smart Configurator for PWM mode (remote control carrier wave) 

output use. 

 

Table 4-13  API Functions: 

API Function Name Peripheral Name Description 

R_{Config_TAU0_m_TAU0_n}_Create Timer Array Unit Executes initialization processing that is required 

before controlling the TAU0 channelm and channeln 

module in PWM mode (remote control carrier wave). 

R_{Config_TAU0_m_TAU0_n}_Start Starts the TAU0 channelm and channeln counter. 

R_{Config_TAU0_m_TAU0_n}_Stop Stops the TAU0 channelm and channeln counter. 

R_{Config_TAU0_m_TAU0_n}_Create_U

serInit 

Executes user-specific initialization processing for 

the TAU0 channelm and channeln. 

r_{Config_TAU0_m_TAU0_n}_channelm_i

nterrupt 

Executes processing in response to timer channelm 

count end interrupt (INTTM0m). 

r_{Config_TAU0_m_TAU0_n}_channelp_i

nterrupt 

Executes processing in response to timer channelp 

count end interrupt (INTTM0p) 

r_{Config_TAU0_m_TAU0_n}_channeln_i

nterrupt 

Executes processing in response to timer channeln 

count end interrupt (INTTM0n). 

r_{Config_TAU0_m_TAU0_n}_channelq_i

nterrupt 

Executes processing in response to timer channelq 

count end interrupt (INTTM0q) 

 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 211 of 868 
Jan 20, 2026 

R_{Config_TAU0_m_TAU0_n}_Create 

This API function executes initialization processing that is required before controlling the TAU0 channelm 

and channeln module in PWM mode (remote control carrier wave). 

Remark This API function is called from R_TAUm_Create. 

 

[Syntax] 

void    R_{Config_TAU0_m_TAU0_n}_Create(void); 

Remark m is the number of the master channel which outputs masking waveform, n is the number 

of master channel which outputs carrier waveform. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 212 of 868 
Jan 20, 2026 

R_{Config_TAU0_m_TAU0_n}_Start 

This API function starts the TAU0 channelm and channeln counter. 

 

[Syntax] 

void    R_{Config_TAU0_m_TAU0_n}_Start(void); 

Remark m is the number of the master channel which outputs masking waveform, n is the number 

of master channel which outputs carrier waveform. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 213 of 868 
Jan 20, 2026 

R_{Config_TAU0_m_TAU0_n}_Stop 

This API function stops the TAU0 channelm and channeln counter. 

 

[Syntax] 

void    R_{Config_TAU0_m_TAU0_n}_Stop(void); 

Remark m is the number of the master channel which outputs masking waveform, n is the number 

of master channel which outputs carrier waveform. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 214 of 868 
Jan 20, 2026 

R_{Config_TAU0_m_TAU0_n}_Create_UserInit 

This API function executes user-specific initialization processing for the TAU0 channelm and channeln. 

Remark This API functions is called from R_{Config_TAU0_m_TAU0_n}_Create as a callback 

routine. 

 

[Syntax] 

void    R_{Config_TAU0_m_TAU0_n}_Create_UserInit(void); 

Remark m is the number of the master channel which outputs masking waveform, n is the number 

of master channel which outputs carrier waveform. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 215 of 868 
Jan 20, 2026 

r_{Config_TAU0_m_TAU0_n}_channelm_interrupt 

This API function executes processing in response to timer channel0m count end interrupt (INTTM0m). 

Remark This API function is called as the interrupt handler for count end interrupt (INTTM0m), which 
occur when the current counter value (TCR0m) reaches 0000H. 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_TAU0_m_TAU0_n}_channelm_interrupt(void); 

 

For LLVM toolchain: 

void    r_{Config_TAU0_m_TAU0_n}_channelm_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_TAU0_m_TAU0_n}_channelm_interrupt(void); 

Remark m is the number of the master channel which outputs masking waveform, n is the number 

of master channel which outputs carrier waveform. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 216 of 868 
Jan 20, 2026 

r_{Config_TAU0_m_TAU0_n}_channelp_interrupt 

This API function executes processing in response to timer channelmn count end interrupt (INTTM0p). 

Remark This API function is called as the interrupt handler for count end interrupt (INTTM0p), which 
occur when the current counter value (TCR0p) reaches 0000H. 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_TAU0_m_TAU0_n}_channelp_interrupt(void); 

 

For LLVM toolchain: 

void    r_{Config_TAU0_m_TAU0_n}_channelp_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_TAU0_m_TAU0_n}_channelp_interrupt(void); 

Remark. m is the number of the master channel which outputs masking waveform, n is the number 

of master channel which outputs carrier waveform, p is the number of slave channel which 

outputs masking waveform. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 217 of 868 
Jan 20, 2026 

r_{Config_TAU0_m_TAU0_n}_channeln_interrupt 

This API function executes processing in response to timer channelmn count end interrupt (INTTM0n). 

Remark This API function is called as the interrupt handler for count end interrupt (INTTM0n), which 
occur when the current counter value (TCR0n) reaches 0000H. 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_TAU0_m_TAU0_n}_channeln_interrupt(void); 

 

For LLVM toolchain: 

void    r_{Config_TAU0_m_TAU0_n}_channeln_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_TAU0_m_TAU0_n}_channeln_interrupt(void); 

Remark m is the number of the master channel which outputs masking waveform, n is the number 

of master channel which outputs carrier waveform. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 218 of 868 
Jan 20, 2026 

r_{Config_TAU0_m_TAU0_n}_channelq_interrupt 

This API function executes processing in response to timer channelmn count end interrupt (INTTM0q). 

Remark This API function is called as the interrupt handler for count end interrupt (INTTM0q), which 
occur when the current counter value (TCR0q) reaches 0000H. 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_TAU0_m_TAU0_n}_channelq_interrupt(void); 

 

For LLVM toolchain: 

void    r_{Config_TAU0_m_TAU0_n}_channelq_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_TAU0_m_TAU0_n}_channelq_interrupt(void); 

Remark. m is the number of the master channel which outputs masking waveform, n is the number 

of master channel which outputs carrier waveform, q is the number of slave channel which 

outputs carrier waveform. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 219 of 868 
Jan 20, 2026 

Usage example 

This is an example for starting TAU0 channel2 and TAU0 channel4 to output remote control carrier wave: 

(Blue code is user code.) 

main.c 

#include "r_smc_entry.h" 
extern uint8_t tau_remote_count; 
 
void main(void); 
 
void main(void) 
{ 
 EI();     //to enable interrupt 
    tau_remote_count = 0; 
    R_Config_TAU0_2_TAU0_4_Start();    //to enable remote-control output function 
    while (tau_remote_count < 10);    //wait until tau_remote_count reaches or exceeds 10, exit the 
loop 
    R_Config_TAU0_2_TAU0_4_Stop();    //to disable remote-control output function 
} 

 

Config_TAU0_2_TAU0_4_user.c 

/* Start user code for global. Do not edit comment generated here */ 
uint8_t tau_remote_count; 
/* End user code. Do not edit comment generated here */ 
 
static void __near r_Config_TAU0_2_TAU0_4_channel3_interrupt (void) 
{ 
    /* Start user code for r_Config_TAU0_2_TAU0_4_channel3_interrupt. Do not edit comment 
generated here */ 
 tau_remote_count ++;    //to count the number of times the masking waveform interrupt handler is 
entered 
    /* End user code. Do not edit comment generated here */ 
}  

 
  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 220 of 868 
Jan 20, 2026 

4.2.11 PWM Output (Timer RDn using PWM mode/ Extended PWM mode) 

Below is a list of API functions output by the Smart Configurator for outputing three PWM waveforms use. 

 

Table 4-14  API Functions: 

API Function Name Peripheral Name Description 

R_{Config_TRDn}_Create Timer RD Executes initialization processing that is required 

before controlling the TRDn module in PWM mode/ 

Extended PWM mode. 

R_{Config_TRDn}_Start Starts the TRDn counter. 

R_{Config_TRDn}_Stop Stops the TRDn counter. 

R_{Config_TRDn}_Set_TRDn_ReloadTrig

ger 

Generates TRDn buffer registers reload trigger in 

Extended PWM mode. 

R_{Config_TRDn}_Create_UserInit Executes user-specific initialization processing for 

the TRDn. 

r_{Config_TRDn}_trdn_interrupt Executes processing in response to timer RDn count 

compare match interrupt (INTTRDn). 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 221 of 868 
Jan 20, 2026 

R_{Config_TRDn}_Create 

This API function executes initialization processing that is required before controlling the TRDn module in 

PWM mode/ Extended PWM mode. 

Remark This API function is called from R_TRD_Create. 

 

[Syntax] 

void    R_{Config_TRDn}_Create(void); 

Remark n is 0, 1. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 222 of 868 
Jan 20, 2026 

R_{Config_TRDn}_Start 

This API function starts the TRDn counter. 

 

[Syntax] 

void    R_{Config_TRDn}_Start(void); 

Remark n is 0, 1. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 223 of 868 
Jan 20, 2026 

R_{Config_TRDn}_Stop 

This API function stops the TRDn counter. 

 

[Syntax] 

void    R_{Config_TRDn}_Stop(void); 

Remark n is 0, 1. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 224 of 868 
Jan 20, 2026 

R_{Config_TRDn}_Set_TRDn_ReloadTrigger 

This API function generates TRDn buffer registers reload trigger in Extended PWM mode. 

 

[Syntax] 

MD_STATUS  R_{Config_TRDn}_Set_TRDn_ReloadTrigger (st_extpwm_buffer_registers_t * 

buffer); 

Remark n is 0, 1. 

 

[Argument(s)] 

I/O Argument(s) Description 

I st_extpwm_buffer_registers_t * buffer; buffer registers value 

Remark Below is shown the structure st_extpwm_buffer_registers_t. 

 

typedef struct { 
    uint16_t trdgrcn; 
    uint16_t trdgrdn; 
    uint16_t trdcmpdn; 

} st_extpwm_buffer_registers_t; 

 

 [Return value] 

Macro Description 

MD_OK Normal end 

MD_ERROR Waiting for reload trigger status  

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 225 of 868 
Jan 20, 2026 

R_{Config_TRDn}_Create_UserInit 

This API function executes user-specific initialization processing for the TRDn. 

Remark This API functions is called from R_{Config_TRDn}_Create as a callback routine. 

 

[Syntax] 

void    R_{Config_TRDn}_Create_UserInit(void); 

Remark n is 0, 1. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 226 of 868 
Jan 20, 2026 

r_{Config_TRDn}_trdn_interrupt 

This API function executes processing in response to timer RDn count compare match interrupt 

(INTTRDn). 

Remark This API function is called as the interrupt handler for count compare match interrupt 
(INTTRDn), which occur when the content of the TRDn register matches content of the 
TRDGRhn (h = A, B, C, or D) register or TRDn register overflow.  

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_TRDn}_trdn_interrupt(void); 

 

For LLVM toolchain: 

void    r_{Config_TRDn}_trdn_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_TRDn}_trdn_interrupt(void); 

Remark n is 0, 1. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 227 of 868 
Jan 20, 2026 

Usage example 

This is an example for starting TRD0 to output three PWM waveforms pulses and TRDGRA0, TRDGRB0, and 

TRDCMPB0 register values are updated simultaneously.: 

(Blue code is user code.) 

main.c 

#include "r_smc_entry.h" 
extern uint8_t trd_pwm_count; 
 
void main(void); 
 
st_extpwm_buffer_registers_t buffer;    //the buffer register value of Timer RD0 to be written. 
buffer.trdgrcn = 0x1234; 
buffer.trdgrdn = 0x5678; 
buffer.trdcmpdn = 0x9ABC; 
 
static void delay_ms(uint32_t time_ms) 
{ 
    uint32_t i = 0; 
    while(time_ms--) { 
        for(i = 0; i < 156; i++) { 
            NOP(); 
        } 
    } 
} 
 
void main(void) 
{ 
 EI();    //to enable interrupt 
    R_Config_TRD0_Start();    //TRD0 operation enable 

while (trd_pwm_count < 10);    //wait until trd_pwm_count reaches or exceeds 10, exit the loop 
    delay_ms(200);     
    MD_STATUS result = R_Config_TRD0_Set_TRD0_ReloadTrigger(&buffer);    //trigger and reload 
the buffer register value 

while (status != MD_OK); 
delay_ms(2000); 
R_Config_TRD0_Stop();    //TRD0 operation disable   

} 

 

Config_TRD0_user.c 

/* Start user code for global. Do not edit comment generated here */ 
uint8_t trd_pwm_count; 
/* End user code. Do not edit comment generated here */ 
 
static void __near r_Config_TRD0_trd0_interrupt (void) 
{ 
    /* Start user code for r_Config_TRD0_trd0_interrupt. Do not edit comment generated here */ 
 trd_pwm_count ++;    //to count the number of times the interrupt handler is entered 
    /* End user code. Do not edit comment generated here */ 
}  

  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 228 of 868 
Jan 20, 2026 

4.2.12 PWM Output (Timer RD0 and RD1 using PWM mode/ PWM3 mode/ Extended PWM 

mode/ Timer KB3 PWM Output Gate mode) 

Below is a list of API functions output by the Smart Configurator for outputing two PWM waveforms in PWM3 

mode/ Timer KB3 PWM Output Gate mode or four PWM waveforms use in Timer KB3 PWM Output Gate mode 

or six PWM waveforms use in PWM mode/ Extended PWM mode/ Timer KB3 PWM Output Gate mode. 

 

Table 4-15  API Functions: 

API Function Name Peripheral Name Description 

R_{Config_TRD0_TRD1}_Create Timer RD Executes initialization processing that is required 

before controlling the TRD0 module in PWM3 mode 

or the TRDn module in PWM mode/ Extended PWM 

mode/ Timer KB3 PWM Output Gate mode. 

R_{Config_TRD0_TRD1}_Start Starts the TRD0 counter in PWM3 mode or the 

TRDn counter in PWM mode/ Extended PWM mode/ 

Timer KB3 PWM Output Gate mode. 

R_{Config_TRD0_TRD1}_Stop Stops the TRD0 counter in PWM3 mode or the 

TRDn counter in PWM mode/ Extended PWM mode/ 

Timer KB3 PWM Output Gate mode. 

R_{Config_TRD0_TRD1}_Set_TRDn_Relo

adTrigger 

Generates TRDn buffer registers reload trigger in 

Extended PWM mode. 

R_{Config_TRD0_TRD1}_Set_TRD0_Relo

adTrigger 

Generates TRD0 buffer registers reload trigger in 

Timer KB3 PWM Output Gate mode. 

R_{Config_TRD0_TRD1}_Set_TRD1_Relo

adTrigger 

Generates TRD1 buffer registers reload trigger in 

Timer KB3 PWM Output Gate mode. 

R_{Config_TRD0_TRD1}_Create_UserInit Executes user-specific initialization processing for 

the TRD0_TRD1. 

r_{Config_TRD0_TRD1}_trdn_interrupt Executes processing in response to timer RDn count 

compare match interrupt (INTTRDn). 

 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 229 of 868 
Jan 20, 2026 

R_{Config_TRD0_TRD1}_Create 

This API function executes initialization processing that is required before controlling the TRD0 module in 

PWM3 mode or the TRDn module in PWM mode/ Extended PWM mode/ Timer KB3 PWM Output Gate 

mode. 

Remark This API function is called from R_TRD_Create. 

 

[Syntax] 

void    R_{Config_TRD0_TRD1}_Create(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 230 of 868 
Jan 20, 2026 

R_{Config_TRD0_TRD1}_Start 

This API function starts the TRD0 counter in PWM3 mode or the TRDn counter in PWM mode/ Extended 

PWM mode/ Timer KB3 PWM Output Gate mode. 

 

[Syntax] 

void    R_{Config_TRD0_TRD1}_Start(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 231 of 868 
Jan 20, 2026 

R_{Config_TRD0_TRD1}_Stop 

This API function stops the TRD0 counter in PWM3 mode or the TRDn counter in PWM mode/ Extended 

PWM mode/ Timer KB3 PWM Output Gate mode. 

 

[Syntax] 

void    R_{Config_TRD0_TRD1}_Stop(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 232 of 868 
Jan 20, 2026 

R_{Config_TRD0_TRD1}_Set_TRDn_ReloadTrigger 

This API function generates TRDn buffer registers reload trigger in Extended PWM mode. 

 

[Syntax] 

MD_STATUS R_{Config_TRD0_TRD1}_Set_TRDn_ReloadTrigger (st_extpwm_buffer_registers_t * 

buffer); 

Remark n is 0, 1. 

 

[Argument(s)] 

I/O Argument(s) Description 

I st_extpwm_buffer_registers_t * buffer; buffer registers value 

Remark Below is shown the structure st_extpwm_buffer_registers_t. 

 

typedef struct { 
    uint16_t trdgrcn; 
    uint16_t trdgrdn; 
    uint16_t trdcmpdn; 

} st_extpwm_buffer_registers_t; 

 

 [Return value] 

Macro Description 

MD_OK Normal end 

MD_ERROR Waiting for reload trigger status 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 233 of 868 
Jan 20, 2026 

R_{Config_TRD0_TRD1}_Set_TRD0_ReloadTrigger 

This API function generates TRD0 buffer registers reload trigger in Timer KB3 PWM Output Gate mode. 

 

[Syntax] 

MD_STATUS R_{Config_TRD0_TRD1}_Set_TRD0_ReloadTrigger 

(st_kb3pwm_ch0_buffer_registers_t * buffer); 

 

[Argument(s)] 

I/O Argument(s) Description 

I st_kb3pwm_ch0_buffer_registers_t * 

buffer; 

buffer registers value 

Remark Below is shown the structure st_kb3pwm_ch1_buffer_registers_t. 

 

typedef struct { 
    uint16_t trdgra0; 
    uint16_t trdgrb0; 
    uint16_t trdcmpb0; 

} st_kb3pwm_ch0_buffer_registers_t; 

 

 [Return value] 

Macro Description 

MD_OK Normal end 

MD_ERROR Waiting for reload trigger status 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 234 of 868 
Jan 20, 2026 

R_{Config_TRD0_TRD1}_Set_TRD1_ReloadTrigger 

This API function generates TRD1 buffer registers reload trigger in Timer KB3 PWM Output Gate mode. 

 

[Syntax] 

MD_STATUS R_{Config_TRD0_TRD1}_Set_TRD1_ReloadTrigger 

(st_kb3pwm_ch1_buffer_registers_t * buffer); 

 

[Argument(s)] 

I/O Argument(s) Description 

I st_kb3pwm_ch1_buffer_registers_t * 

buffer; 

buffer registers value 

Remark Below is shown the structure st_kb3pwm_ch1_buffer_registers_t. 

 

typedef struct { 
    uint16_t trdgra1; 
    uint16_t trdgrb1; 
    uint16_t trdcmpa1; 
    uint16_t trdcmpb1; 
    uint16_t trdcmpe1; 

} st_kb3pwm_ch1_buffer_registers_t; 

 

 [Return value] 

Macro Description 

MD_OK Normal end 

MD_ERROR Waiting for reload trigger status 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 235 of 868 
Jan 20, 2026 

R_{Config_TRD0_TRD1}_Create_UserInit 

This API function executes user-specific initialization processing for the TRD0_TRD1. 

Remark This API functions is called from R_{Config_TRD0_TRD1}_Create as a callback routine. 

 

[Syntax] 

void    R_{Config_TRD0_TRD1}_Create_UserInit(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 236 of 868 
Jan 20, 2026 

r_{Config_TRD0_TRD1}_trdn_interrupt 

This API function executes processing in response to timer TRDn count compare match interrupt 

(INTTRDn). 

Remark This API function is called as the interrupt handler for count compare match interrupt 
(INTTRDn), which occur when the content of the TRDn register matches content of the 
TRDGRjn (j = A, B, C, or D) register in PWM mode/ PWM3 mode/ Extended PWM mode/ 
Timer KB3 PWM Output Gate mode or TRD0 register overflow in PWM mode/ PWM3 mode/ 
Extended PWM mode.  

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_TRD0_TRD1}_trdn_interrupt(void); 

 

For LLVM toolchain: 

void    r_{Config_TRD0_TRD1}_trdn_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_TRD0_TRD1}_trdn_interrupt(void); 

Remark n is 0, 1. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 237 of 868 
Jan 20, 2026 

Usage example 

This is an example for starting TRD0_TRD1 to output six PWM waveforms pulses: 

(Blue code is user code.) 

main.c 

#include "r_smc_entry.h" 
extern uint8_t trd_kb3_pwm_count; 
 
void main(void); 
 
void main(void) 
{ 
 EI();    //to enable interrupt 
    R_Config_TRD0_TRD1_Start();    //TRD0 and TRD1 operation enable 

while (trd_kb3_pwm_count < 20);    //wait until trd_kb3_pwm_count reaches or exceeds 20, exit 
the loop 
    R_Config_TRD0_TRD1_Stop();    //TRD0 and TRD1 operation disable 
} 

 

Config_TRD0_TRD1_user.c 

/* Start user code for global. Do not edit comment generated here */ 
uint8_t trd_kb3_pwm_count; 
/* End user code. Do not edit comment generated here */ 
 
static void __near r_Config_TRD0_TRD1_trd0_interrupt (void) 
{ 
    /* Start user code for r_Config_TRD0_trd0_interrupt. Do not edit comment generated here */ 
 trd_kb3_pwm_count ++;    //to count the number of times the interrupt handler is entered 
    /* End user code. Do not edit comment generated here */ 
}  
 
static void __near r_Config_TRD0_TRD1_trd1_interrupt (void) 
{ 
    /* Start user code for r_Config_TRD0_trd1_interrupt. Do not edit comment generated here */ 
 trd_kb3_pwm_count ++;    //to count the number of times the interrupt handler is entered 
    /* End user code. Do not edit comment generated here */ 
}  
 

  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 238 of 868 
Jan 20, 2026 

4.2.13 PWM Output (Timer RG using PWM mode/ PWM2 mode) 

Below is a list of API functions output by the Smart Configurator for outputing PWM waveforms use. 

 

Table 4-16  API Functions: 

API Function Name Peripheral Name Description 

R_{Config_TRG}_Create Timer RG Executes initialization processing that is required 

before controlling the TRG module in PWM mode/ 

PWM2 mode. 

R_{Config_TRG}_Start Starts the TRG counter. 

R_{Config_TRG}_Stop Stops the TRG counter. 

R_{Config_TRG}_Create_UserInit Executes user-specific initialization processing for 

the TRG. 

r_{Config_TRG}_interrupt Executes processing in response to timer RG count 

compare match interrupt (INTTRG). 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 239 of 868 
Jan 20, 2026 

R_{Config_TRG}_Create 

This API function executes initialization processing that is required before controlling the TRG module in 

PWM mode/ PWM2 mode. 

Remark This API function is called from R_Systeminit before the main() function is executed. 

 

[Syntax] 

void    R_{Config_TRG}_Create(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 240 of 868 
Jan 20, 2026 

R_{Config_TRG}_Start 

This API function starts the TRG counter. 

 

[Syntax] 

void    R_{Config_TRG}_Start(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 241 of 868 
Jan 20, 2026 

R_{Config_TRG}_Stop 

This API function stops the TRG counter. 

 

[Syntax] 

void    R_{Config_TRG}_Stop(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 242 of 868 
Jan 20, 2026 

R_{Config_TRG}_Create_UserInit 

This API function executes user-specific initialization processing for the TRG. 

Remark This API functions is called from R_{Config_TRG}_Create as a callback routine. 

 

[Syntax] 

void    R_{Config_TRG}_Create_UserInit(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 243 of 868 
Jan 20, 2026 

r_{Config_TRG}_interrupt 

This API function executes processing in response to timer RG count compare match interrupt (INTTRG). 

Remark This API function is called as the interrupt handler for count compare match interrupt 
(INTTRG), which occur when the content of the TRG register matches content of the 
TRGGRh (h = A, B, C, or D) register or TRG register overflow.  

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_TRG}_interrupt(void); 

 

For LLVM toolchain: 

void    r_{Config_TRG}_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_TRG}_interrupt(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 244 of 868 
Jan 20, 2026 

Usage example 

This is an example for starting TRG to output PWM waveforms pulses: 

(Blue code is user code.) 

main.c 

#include "r_smc_entry.h" 
extern uint8_t trg_pwm_count; 
 
void main(void); 
 
void main(void) 
{ 
 EI();    //to enable interrupt 
    R_Config_TRG_Start();    //TRG operation enable 

while (trg_pwm_count < 10);    //wait until trg_pwm_count reaches or exceeds 10, exit the loop 
    R_Config_TRG_Stop();    //TRG operation disable 
} 

 

Config_TRG_user.c 

/* Start user code for global. Do not edit comment generated here */ 
uint8_t trg_pwm_count; 
/* End user code. Do not edit comment generated here */ 
 
static void __near r_Config_TRG_interrupt (void) 
{ 
    /* Start user code for r_Config_TRG_interrupt. Do not edit comment generated here */ 
 trg_pwm_count ++;    //to count the number of times the interrupt handler is entered 
    /* End user code. Do not edit comment generated here */ 
}  

  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 245 of 868 
Jan 20, 2026 

4.2.14 PWM Output (Timer KB using standalone mode (period controlled by TKBCRn0 

register)/standalone mode (period controlled by external trigger input)/interleave PFC output 

mode) 

Below is a list of API functions output by the Smart Configurator for outputing PWM waveforms use. 

 

Table 4-17  API Functions: (1/2) 

API Function Name Peripheral Name Description 

R_{Config_TKBn}_Create Timer KB Executes initialization processing that is required 

before controlling the TKBn module in TKB using 

standalone mode (period controlled by TKBCRn0 

register)/standalone mode (period controlled by 

external trigger input)/interleave PFC output mode. 

R_{Config_TKBn}_Start Starts the TKBn counter. 

R_{Config_TKBn}_Stop Stops the TKBn counter. 

R_{Config_TKBn}_Set_BatchOverwriteRe

questOn 

Sets TKBn batch overwrite request function. 

R_{Config_TKBn}_TKBOn0_Forced_Outp

ut_Stop_Function1_Start 

Starts TKBn TKBOn0 forced output stop function 1. 

R_{Config_TKBn}_TKBOn0_Forced_Outp

ut_Stop_Function1_Stop 

Stops TKBn TKBOn0 forced output stop function 1. 

R_{Config_TKBn}_TKBOn1_Forced_Outp

ut_Stop_Function1_Start 

Starts TKBn TKBOn1 forced output stop function 1. 

R_{Config_TKBn}_TKBOn1_Forced_Outp

ut_Stop_Function1_Stop 

Stops TKBn TKBOn1 forced output stop function 1. 

R_{Config_TKBn}_TKBOn0_SmoothStart

Function_Start 

Starts TKBn TKBOn0 smooth start function. 

R_{Config_TKBn}_TKBOn0_SmoothStart

Function_Stop 

Stops TKBn TKBOn0 smooth start function. 

R_{Config_TKBn}_TKBOn1_SmoothStart

Function_Start 

Starts TKBn TKBOn1 smooth start function. 

R_{Config_TKBn}_TKBOn1_SmoothStart

Function_Stop 

Stops TKBn TKBOn1 smooth start function. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 246 of 868 
Jan 20, 2026 

Table 4-18  API Functions: (2/2) 

API Function Name Peripheral Name Description 

R_{Config_TKBn}_Create_UserInit  Executes user-specific initialization processing for 

the TKBn. 

r_{Config_TKBn}_terminated0_interrupt Executes processing in response to timer KBn 

TKBOn0 forced output stop termination interrupt 

(INTTMKBSTPn0). 

r_{Config_TKBn}_terminated1_interrupt Executes processing in response to timer KBn 

TKBOn1 forced output stop termination interrupt 

(INTTMKBSTPn1). 

r_{Config_TKBn}_activated0_interrupt Executes processing in response to timer KBn 

TKBOn0 forced output stop activation interrupt 

(INTTMKBSTRn0). 

r_{Config_TKBn}_activated1_interrupt Executes processing in response to timer KBn 

TKBOn1 forced output stop activation interrupt 

(INTTMKBSTRn1). 

r_{Config_TKBn}_end_count_interrupt Executes processing in response to timer KBn count 

compare match interrupt (INTTMKBn). 

 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 247 of 868 
Jan 20, 2026 

R_{Config_TKBn}_Create 

This API function executes initialization processing that is required before controlling the TKBn module in 

standalone mode (period controlled by TKBCRn0 register)/standalone mode (period controlled by external 

trigger input)/interleave PFC output mode. 

Remark This API function is called from R_TKB_Create. 

 

[Syntax] 

void    R_{Config_TKBn}_Create(void); 

Remark n is 0, 1, 2. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 248 of 868 
Jan 20, 2026 

R_{Config_TKBn}_Start 

This API function starts the TKBn counter. 

 

[Syntax] 

void    R_{Config_TKBn}_Start(void); 

Remark n is 0, 1, 2. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 249 of 868 
Jan 20, 2026 

R_{Config_TKBn}_Stop 

This API function stops the TKBn counter. 

 

[Syntax] 

void    R_{Config_TKBn}_Stop(void); 

Remark n is 0, 1, 2. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 250 of 868 
Jan 20, 2026 

R_{Config_TKBn}_Set_BatchOverwriteRequestOn 

This API function sets TKBn batch overwrite request function. 

 

[Syntax] 

void    R_{Config_TKBn}_Set_BatchOverwriteRequestOn(void); 

Remark n is 0, 1, 2. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 251 of 868 
Jan 20, 2026 

R_{Config_TKBn}_TKBOn0_Forced_Output_Stop_Function1_Start 

This API function starts TKBn TKBOn0 forced output stop function 1. 

 

[Syntax] 

void    R_{Config_TKBn}_TKBOn0_Forced_Output_Stop_Function1_Start(void); 

Remark n is 0, 1, 2. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 252 of 868 
Jan 20, 2026 

R_{Config_TKBn}_TKBOn0_Forced_Output_Stop_Function1_Stop 

This API function stops TKBn TKBOn0 forced output stop function 1. 

 

[Syntax] 

void    R_{Config_TKBn}_TKBOn0_Forced_Output_Stop_Function1_Stop(void); 

Remark n is 0, 1, 2. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 253 of 868 
Jan 20, 2026 

R_{Config_TKBn}_TKBOn1_Forced_Output_Stop_Function1_Start 

This API function starts TKBn TKBOn1 forced output stop function 1. 

 

[Syntax] 

void    R_{Config_TKBn}_TKBOn1_Forced_Output_Stop_Function1_Start(void); 

Remark n is 0, 1, 2. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 254 of 868 
Jan 20, 2026 

R_{Config_TKBn}_TKBOn1_Forced_Output_Stop_Function1_Stop 

This API function stops TKBn TKBOn1 forced output stop function 1. 

 

[Syntax] 

void    R_{Config_TKBn}_TKBOn1_Forced_Output_Stop_Function1_Stop(void); 

Remark n is 0, 1, 2. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 255 of 868 
Jan 20, 2026 

R_{Config_TKBn}_TKBOn0_SmoothStartFunction_Start 

This API function starts TKBn TKBOn0 smooth start function. 

 

[Syntax] 

void    R_{Config_TKBn}_TKBOn0_SmoothStartFunction_Start(void); 

Remark n is 0, 1, 2. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 256 of 868 
Jan 20, 2026 

R_{Config_TKBn}_TKBOn0_SmoothStartFunction_Stop 

This API function stops TKBn TKBOn0 smooth start function. 

 

[Syntax] 

void    R_{Config_TKBn}_TKBOn0_SmoothStartFunction_Stop(void); 

Remark n is 0, 1, 2. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 257 of 868 
Jan 20, 2026 

R_{Config_TKBn}_TKBOn1_SmoothStartFunction_Start 

This API function starts TKBn TKBOn1 smooth start function. 

 

[Syntax] 

void    R_{Config_TKBn}_TKBOn1_SmoothStartFunction_Start(void); 

Remark n is 0, 1, 2. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 258 of 868 
Jan 20, 2026 

R_{Config_TKBn}_TKBOn1_SmoothStartFunction_Stop 

This API function stops TKBn TKBOn1 smooth start function. 

 

[Syntax] 

void    R_{Config_TKBn}_TKBOn1_SmoothStartFunction_Stop(void); 

Remark n is 0, 1, 2. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 259 of 868 
Jan 20, 2026 

R_{Config_TKBn}_Create_UserInit 

This API function executes user-specific initialization processing for the TKBn. 

Remark This API functions is called from R_{Config_TKBn}_Create as a callback routine. 

 

[Syntax] 

void    R_{Config_TKBn}_Create_UserInit(void); 

Remark n is 0, 1, 2. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 260 of 868 
Jan 20, 2026 

r_{Config_TKBn}_terminated0_interrupt 

This API function executes processing in response to timer KBn TKBOn0 forced output stop termination 

interrupt (INTTMKBSTPn0). 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_TKBn}_terminated0_interrupt(void); 

 

For LLVM toolchain: 

void    r_{Config_TKBn}_terminated0_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_TKBn}_terminated0_interrupt(void); 

Remark n is 0, 1, 2. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 261 of 868 
Jan 20, 2026 

r_{Config_TKBn}_terminated1_interrupt 

This API function executes processing in response to timer KBn TKBOn1 forced output stop termination 

interrupt (INTTMKBSTPn1). 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_TKBn}_terminated1_interrupt(void); 

 

For LLVM toolchain: 

void    r_{Config_TKBn}_terminated1_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_TKBn}_terminated1_interrupt(void); 

Remark n is 0, 1, 2. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 262 of 868 
Jan 20, 2026 

r_{Config_TKBn}_activated0_interrupt 

This API function executes processing in response to timer KBn TKBOn0 forced output stop activation 

interrupt (INTTMKBSTRn0). 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_TKBn}_activated0_interrupt(void); 

 

For LLVM toolchain: 

void    r_{Config_TKBn}_activated0_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_TKBn}_activated0_interrupt(void); 

Remark n is 0, 1, 2. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 263 of 868 
Jan 20, 2026 

r_{Config_TKBn}_activated1_interrupt 

This API function executes processing in response to timer KBn TKBOn1 forced output stop activation 

interrupt (INTTMKBSTRn1). 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_TKBn}_activated1_interrupt(void); 

 

For LLVM toolchain: 

void    r_{Config_TKBn}_activated1_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_TKBn}_activated1_interrupt(void); 

Remark n is 0, 1, 2. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 264 of 868 
Jan 20, 2026 

r_{Config_TKBn}_end_count_interrupt 

This API function executes processing in response to timer KBn count compare match interrupt 

(INTTMKBn). 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_TKBn}_end_count_interrupt(void); 

 

For LLVM toolchain: 

void    r_{Config_TKBn}_end_count_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_TKBn}_end_count_interrupt(void); 

Remark n is 0, 1, 2. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 265 of 868 
Jan 20, 2026 

Usage example 1 (smooth start function) 

This is an example for starting TKB1 to output PWM waveforms pulses and smooth start function. Please 

configure the PWM output smooth start function setting on Smart Configurator UI for TKBO10 first: 

(Blue code is user code.) 

main.c 

#include "r_smc_entry.h" 
extern uint8_t tkb_pwm_count; 
 
void main(void); 
 
//Delay function to simulate millisecond-level delay 
static void delay_ms(uint32_t time_ms) 
{ 
    uint32_t i = 0; 
    while(time_ms--) { 
        for(i = 0; i < 156; i++) { 
            NOP(); 
        } 
    } 
} 
 
void main(void) 
{ 
 EI();    //to enable interrupt 
    R_Config_TKB1_TKBO10_SmoothStartFunction_Stop();    //stop TKB1 TKBO10 smooth start 
function 
    R_Config_TKB1_Start();    //TKB1 operation enable 

while (tkb_pwm_count < 10);    //output PWM waveforms pulses, which the duty value is same as 
TKBSIR10 register value  

R_Config_TKB1_Stop();    //TKB1 operation disable 
delay_ms(500); 

    R_Config_TKB1_TKBO10_SmoothStartFunction_Start();    //start TKB1 TKBO10 smooth start 
function 

R_Config_TKB1_Start();    //TKB1 operation restart 
delay_ms(10000);    //output PWM waveforms pulses, which the duty value is same as TKBSSR10 

register value at first. After a while, the smooth start function complete, the duty value is change to 
TKBSIR10 register value 

R_Config_TKB1_Stop();    //TKB1 operation disable 
} 

 

Config_TKB1_user.c 

/* Start user code for global. Do not edit comment generated here */ 
uint8_t tkb_pwm_count; 
/* End user code. Do not edit comment generated here */ 
 
static void __near r_Config_TKB1_end_count_interrupt (void) 
{ 
    /* Start user code for r_Config_TKB1_end_count_interrupt. Do not edit comment generated here */ 
 tkb_pwm_count ++;    //increment PWM pulse count on each interrupt 
    /* End user code. Do not edit comment generated here */ 
}  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 266 of 868 
Jan 20, 2026 

Usage example 2 (compare register batch overwrite) 

This is an example for changing period and duty by batch overwrite function for output PWM waveforms pulses: 

(Blue code is user code.) 

main.c 

#include "r_cg_macrodriver.h" 
#include "Config_TKB0.h" 
 
//Delay function to simulate millisecond-level delay 
static void delay_ms(uint32_t time_ms) 
{ 
    uint32_t i = 0; 
    while(time_ms--) { 
        for(i = 0; i < 156; i++) { 
            NOP(); 
        } 
    } 
} 
 
void main(void) 
{ 
    EI();    //to enable interrupt 
 
    //TKB0 operation start 
    R_Config_TKB0_Start(); 
 
    //Batch overwrite trigger on 
    delay_ms(100); 
    TKBCR00 = 0x0C7FU;    //change PWM period to 100us 
    TKBCR01 = 0x0A00U;    //change Duty(TKBO00) to 80% 
    TKBCR02 = 0x0280U;    //change Duty(TKBO01) to 80% 
    TKBCR03 = 0x0C80U;    //change Delay(TKBO01) to 20% 
    R_Congif_TKB0_Set_BatchOverwriteRequestOn();    //batch overwrite trigger on 
    P14_bit.no0 = ~P14_bit.no0;    //to check the batch overwrite trigger on start timing 
 
    while(1); 
} 

  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 267 of 868 
Jan 20, 2026 

4.2.15 PWM Output (Timer KB using simultaneous start/stop mode (period controlled by 

TKBCRn0 register)/simultaneous start/stop mode (period controlled by external trigger 

input)/synchronous start/clear mode (period controlled by master)) (1 slave) 

Below is a list of API functions output by the Smart Configurator for outputing PWM waveforms use. 

 

Table 4-19  API Functions: (1/2) 

API Function Name Peripheral Name Description 

R_{Config_TKB0_TKBn}_Create Timer KB Executes initialization processing that is required 

before controlling the TKB0 and TKBn modules in 

TKB using simultaneous start/stop mode (period 

controlled by TKBCRn0 register)/simultaneous 

start/stop mode (period controlled by external trigger 

input)/synchronous start/clear mode (period 

controlled by master). 

R_{Config_TKB0_TKBn}_Start Starts the TKB0 and TKBn counters. 

R_{Config_TKB0_TKBn}_Stop Stops the TKB0 and TKBn counters. 

R_{Config_TKB0_TKBn}_TKBm 

_Set_BatchOverwriteRequestOn 

Sets TKBm batch overwrite request function. 

R_{Config_TKB0_TKBn}_TKBOm0_Force

d_Output_Stop_Function1_Start 

Starts TKBm TKBOm0 forced output stop function 1. 

R_{Config_TKB0_TKBn}_TKBOm0_Force

d_Output_Stop_Function1_Stop 

Stops TKBm TKBOm0 forced output stop function 1. 

R_{Config_TKB0_TKBn}_TKBOm1_Force

d_Output_Stop_Function1_Start 

Starts TKBm TKBOm1 forced output stop function 1. 

R_{Config_TKB0_TKBn}_TKBOm1_Force

d_Output_Stop_Function1_Stop 

Stops TKBm TKBOm1 forced output stop function 1. 

R_{Config_TKB0_TKBn}_TKBOm0_Smo

othStartFunction_Start 

Starts TKBm TKBOm0 smooth start function. 

R_{Config_TKB0_TKBn}_TKBOm0_Smo

othStartFunction_Stop 

Stops TKBm TKBOm0 smooth start function. 

R_{Config_TKB0_TKBn}_TKBOm1_Smo

othStartFunction_Start 

Starts TKBm TKBOm1 smooth start function. 

R_{Config_TKB0_TKBn}_TKBOm1_Smo

othStartFunction_Stop 

Stops TKBm TKBOm1 smooth start function. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 268 of 868 
Jan 20, 2026 

Table 4-20  API Functions: (2/2) 

API Function Name Peripheral Name Description 

R_{Config_TKB0_TKBn}_Create_UserInit  Executes user-specific initialization processing for 

the TKB0 and TKBn. 

r_{Config_TKB0_TKBn}_tkbm_terminated

0_interrupt 

Executes processing in response to timer KBm 

TKBOm0 forced output stop termination interrupt 

(INTTMKBSTPm0). 

r_{Config_TKB0_TKBn}_tkbm_terminated

1_interrupt 

Executes processing in response to timer KBm 

TKBOm1 forced output stop termination interrupt 

(INTTMKBSTPm1). 

r_{Config_TKB0_TKBn}_tkbm_activated0

_interrupt 

Executes processing in response to timer KBm 

TKBOm0 forced output stop activation interrupt 

(INTTMKBSTRm0). 

r_{Config_TKB0_TKBn}_tkbm_activated1

_interrupt 

Executes processing in response to timer KBm 

TKBOm1 forced output stop activation interrupt 

(INTTMKBSTRm1). 

r_{Config_TKB0_TKBn}_tkbm_end_count

_interrupt 

Executes processing in response to timer KBm count 

compare match interrupt (INTTMKBm). 

 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 269 of 868 
Jan 20, 2026 

R_{Config_TKB0_TKBn}_Create 

This API function executes initialization processing that is required before controlling the TKB0 and TKBn 

modules in simultaneous start/stop mode (period controlled by TKBCRn0 register)/simultaneous start/stop 

mode (period controlled by external trigger input)/synchronous start/clear mode (period controlled by master). 

Remark This API function is called from R_TKB_Create. 

 

[Syntax] 

void    R_{Config_TKB0_TKBn}_Create(void); 

Remark n is 1, 2. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 270 of 868 
Jan 20, 2026 

R_{Config_TKB0_TKBn}_Start 

This API function starts the TKB0 and TKBn counters. 

 

[Syntax] 

void    R_{Config_TKB0_TKBn}_Start(void); 

Remark n is 1, 2. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 271 of 868 
Jan 20, 2026 

R_{Config_TKB0_TKBn}_Stop 

This API function stops the TKB0 and TKBn counters. 

 

[Syntax] 

void    R_{Config_TKB0_TKBn}_Stop(void); 

Remark n is 1, 2. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 272 of 868 
Jan 20, 2026 

R_{Config_TKB0_TKBn}_TKBm_Set_BatchOverwriteRequestOn 

This API function sets TKBm batch overwrite request function. 

 

[Syntax] 

void    R_{Config_TKB0_TKBn}_TKBm_Set_BatchOverwriteRequestOn(void); 

Remark n is 1, 2. m is 0, n. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 273 of 868 
Jan 20, 2026 

R_{Config_TKB0_TKBn}_TKBOm0_Forced_Output_Stop_Function1_Start 

This API function starts TKBm TKBOm0 forced output stop function 1. 

 

[Syntax] 

void    R_{Config_TKB0_TKBn}_TKBOm0_Forced_Output_Stop_Function1_Start(void); 

Remark n is 1, 2. m is 0, n. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 274 of 868 
Jan 20, 2026 

R_{Config_TKB0_TKBn}_TKBOm0_Forced_Output_Stop_Function1_Stop 

This API function stops TKBm TKBOm0 forced output stop function 1. 

 

[Syntax] 

void    R_{Config_TKB0_TKBn}_TKBOm0_Forced_Output_Stop_Function1_Stop(void); 

Remark n is 1, 2. m is 0, n. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 275 of 868 
Jan 20, 2026 

R_{Config_TKB0_TKBn}_TKBOm1_Forced_Output_Stop_Function1_Start 

This API function starts TKBm TKBOm1 forced output stop function 1. 

 

[Syntax] 

void    R_{Config_TKB0_TKBn}_TKBOm1_Forced_Output_Stop_Function1_Start(void); 

Remark n is 1, 2. m is 0, n. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 276 of 868 
Jan 20, 2026 

R_{Config_TKB0_TKBn}_TKBOm1_Forced_Output_Stop_Function1_Stop 

This API function stops TKBm TKBOm1 forced output stop function 1. 

 

[Syntax] 

void    R_{Config_TKB0_TKBn}_TKBOm1_Forced_Output_Stop_Function1_Stop(void); 

Remark n is 1, 2. m is 0, n. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 277 of 868 
Jan 20, 2026 

R_{Config_TKB0_TKBn}_TKBOm0_SmoothStartFunction_Start 

This API function starts TKBm TKBOm0 smooth start function. 

 

[Syntax] 

void    R_{Config_TKB0_TKBn}_TKBOm0_SmoothStartFunction_Start(void); 

Remark n is 1, 2. m is 0, n. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 278 of 868 
Jan 20, 2026 

R_{Config_TKB0_TKBn}_TKBOm0_SmoothStartFunction_Stop 

This API function stops TKBm TKBOm0 smooth start function. 

 

[Syntax] 

void    R_{Config_TKB0_TKBn}_TKBOm0_SmoothStartFunction_Stop(void); 

Remark n is 1, 2. m is 0, n. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 279 of 868 
Jan 20, 2026 

R_{Config_TKB0_TKBn}_TKBOm1_SmoothStartFunction_Start 

This API function starts TKBm TKBOm1 smooth start function. 

 

[Syntax] 

void    R_{Config_TKB0_TKBn}_TKBOm1_SmoothStartFunction_Start(void); 

Remark n is 1, 2. m is 0, n. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 280 of 868 
Jan 20, 2026 

R_{Config_TKB0_TKBn}_TKBOm1_SmoothStartFunction_Stop 

This API function stops TKBm TKBOm1 smooth start function. 

 

[Syntax] 

void    R_{Config_TKB0_TKBn}_TKBOm1_SmoothStartFunction_Stop(void); 

Remark n is 1, 2. m is 0, n. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 281 of 868 
Jan 20, 2026 

R_{Config_TKB0_TKBn}_Create_UserInit 

This API function executes user-specific initialization processing for the TKB0 and TKBn. 

Remark This API functions is called from R_{Config_TKB0_TKBn}_Create as a callback routine. 

 

[Syntax] 

void    R_{Config_TKB0_TKBn}_Create_UserInit(void); 

Remark n is 1, 2. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 282 of 868 
Jan 20, 2026 

r_{Config_TKB0_TKBn}_tkbm_terminated0_interrupt 

This API function executes processing in response to timer KBm TKBOm0 forced output stop termination 

interrupt (INTTMKBSTPm0). 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_TKB0_TKBn}_tkbm_terminated0_interrupt(void); 

 

For LLVM toolchain: 

void    r_{Config_TKB0_TKBn}_tkbm_terminated0_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_TKB0_TKBn}_tkbm_terminated0_interrupt(void); 

Remark n is 1, 2. m is 0, n. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 283 of 868 
Jan 20, 2026 

r_{Config_TKB0_TKBn}_tkbm_terminated1_interrupt 

This API function executes processing in response to timer KBm TKBOm1 forced output stop termination 

interrupt (INTTMKBSTPm1). 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_TKB0_TKBn}_tkbm_terminated1_interrupt(void); 

 

For LLVM toolchain: 

void    r_{Config_TKB0_TKBn}_tkbm_terminated1_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_TKB0_TKBn}_tkbm_terminated1_interrupt(void); 

Remark n is 1, 2. m is 0, n. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 284 of 868 
Jan 20, 2026 

r_{Config_TKB0_TKBn}_tkbm_activated0_interrupt 

This API function executes processing in response to timer KBm TKBOm0 forced output stop activation 

interrupt (INTTMKBSTRm0). 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_TKB0_TKBn}_tkbm_activated0_interrupt(void); 

 

For LLVM toolchain: 

void    r_{Config_TKB0_TKBn}_tkbm_activated0_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_TKB0_TKBn}_tkbm_activated0_interrupt(void); 

Remark n is 1, 2. m is 0, n. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 285 of 868 
Jan 20, 2026 

r_{Config_TKB0_TKBn}_tkbm_activated1_interrupt 

This API function executes processing in response to timer KBm TKBOm1 forced output stop activation 

interrupt (INTTMKBSTRm1). 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_TKB0_TKBn}_tkbm_activated1_interrupt(void); 

 

For LLVM toolchain: 

void    r_{Config_TKB0_TKBn}_tkbm_activated1_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_TKB0_TKBn}_tkbm_activated1_interrupt(void); 

Remark n is 1, 2. m is 0, n. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 286 of 868 
Jan 20, 2026 

r_{Config_TKB0_TKBn}_tkbm_end_count_interrupt 

This API function executes processing in response to timer KBm count compare match interrupt 

(INTTMKBm). 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_TKB0_TKBn}_tkbm_end_count_interrupt(void); 

 

For LLVM toolchain: 

void    r_{Config_TKB0_TKBn}_tkbm_end_count_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_TKB0_TKBn}_tkbm_end_count_interrupt(void); 

Remark n is 1, 2. m is 0, n. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 287 of 868 
Jan 20, 2026 

Usage example 

This is an example for starting TKB0 and TKB1 to output PWM waveforms pulses and forced output stop function 

by INTP0. Please enable INTP0 as forced output trigger on Smart Configurator UI first: 

(Blue code is user code.) 

main.c 

#include "r_cg_macrodriver.h" 
#include "Config_TKB0_TKB1.h" 
#include "Config_INTC.h"  
 
void main(void); 
 
//Delay function to simulate millisecond-level delay 
static void delay_ms(uint32_t time_ms) 
{ 
    uint32_t i = 0; 
    while(time_ms--) { 
        for(i = 0; i < 156; i++) { 
            NOP(); 
        } 
    } 
} 
 
void main(void) 
{ 
 EI();    //to enable interrupt 
    R_Config_TKB0_TKB1_Start();    //TKB0_TKB1 operation start 
 
    //Activate the TKB0 forced output stop function 1 by INTP0 
    R_Config_INTC_INTP0_Start(); 
    delay_ms(10000); 
    P14_bit.no0 = ~P14_bit.no0;    //generate high level signal to INTP0 
 
    //Terminate the TKB0 forced output stop function 1 by INTP0 
    delay_ms(5000); 
    P14_bit.no0 = ~P14_bit.no0;    //generate low level signal to INTP0 
    R_Config_TKB0_TKB1_TKBO00_Forced_Output_Stop_Function1_Stop();    //terminate for 
TKBO00 
    R_Config_TKB0_TKB1_TKBO01_Forced_Output_Stop_Function1_Stop();    //terminate for 
TKBO01 
    R_Config_INTC_INTP0_Stop();    // INTP0 operation disable 
 
    while(1);  
} 

  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 288 of 868 
Jan 20, 2026 

4.2.16 PWM Output (Timer KB using simultaneous start/stop mode (period controlled by 

TKBCRn0 register)/simultaneous start/stop mode (period controlled by external trigger 

input)/synchronous start/clear mode (period controlled by master)) (2 slaves) 

Below is a list of API functions output by the Smart Configurator for outputing PWM waveforms use. 

 

Table 4-21  API Functions: (1/2) 

API Function Name Peripheral Name Description 

R_{Config_TKB0_TKB1_TKB2}_Create Timer KB Executes initialization processing that is required 

before controlling the TKB0, TKB1 and TKB2 

modules in TKB using simultaneous start/stop mode 

(period controlled by TKBCRn0 

register)/simultaneous start/stop mode (period 

controlled by external trigger input)/synchronous 

start/clear mode (period controlled by master). 

R_{Config_TKB0_TKB1_TKB2}_Start Starts the TKB0, TKB1 and TKB2 counters. 

R_{Config_TKB0_TKB1_TKB2}_Stop Stops the TKB0, TKB1 and TKB2 counters. 

R_{Config_TKB0_TKB1_TKB2}_TKBn 

_Set_BatchOverwriteRequestOn 

Sets TKBn batch overwrite request function. 

R_{Config_TKB0_TKB1_TKB2}_TKBOn0

_Forced_Output_Stop_Function1_Start 

Starts TKBn TKBOn0 forced output stop function 1. 

R_{Config_TKB0_TKB1_TKB2}_TKBOn0

_Forced_Output_Stop_Function1_Stop 

Stops TKBn TKBOn0 forced output stop function 1. 

R_{Config_TKB0_TKB1_TKB2}_TKBOn1

_Forced_Output_Stop_Function1_Start 

Starts TKBn TKBOn1 forced output stop function 1. 

R_{Config_TKB0_TKB1_TKB2}_TKBOn1

_Forced_Output_Stop_Function1_Stop 

Stops TKBn TKBOn1 forced output stop function 1. 

R_{Config_TKB0_TKB1_TKB2}_TKBOn0

_SmoothStartFunction_Start 

Starts TKBn TKBOn0 smooth start function. 

R_{Config_TKB0_TKB1_TKB2}_TKBOn0

_SmoothStartFunction_Stop 

Stops TKBn TKBOn0 smooth start function. 

R_{Config_TKB0_TKB1_TKB2}_TKBOn1

_SmoothStartFunction_Start 

Starts TKBn TKBOn1 smooth start function. 

R_{Config_TKB0_TKB1_TKB2}_TKBOn1

_SmoothStartFunction_Stop 

Stops TKBn TKBOn1 smooth start function. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 289 of 868 
Jan 20, 2026 

Table 4-22  API Functions: (2/2) 

API Function Name Peripheral Name Description 

R_{Config_TKB0_TKB1_TKB2}_Create_

UserInit 

Timer KB Executes user-specific initialization processing for 

the TKB0, TKB1 and TKB2. 

r_{Config_TKB0_TKB1_TKB2}_tkbn_term

inated0_interrupt 

Executes processing in response to timer KBn 

TKBOn0 forced output stop termination interrupt 

(INTTMKBSTPn0). 

r_{Config_TKB0_TKB1_TKB2}_tkbn_term

inated1_interrupt 

Executes processing in response to timer KBn 

TKBOn1 forced output stop termination interrupt 

(INTTMKBSTPn1). 

r_{Config_TKB0_TKB1_TKB2}_tkbn_activ

ated0_interrupt 

Executes processing in response to timer KBn 

TKBOn0 forced output stop activation interrupt 

(INTTMKBSTRn0). 

r_{Config_TKB0_TKB1_TKB2}_tkbn_activ

ated1_interrupt 

Executes processing in response to timer KBn 

TKBOn1 forced output stop activation interrupt 

(INTTMKBSTRn1). 

r_{Config_TKB0_TKB1_TKB2}_tkbn_end

_count_interrupt 

Executes processing in response to timer KBn count 

compare match interrupt (INTTMKBn). 

 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 290 of 868 
Jan 20, 2026 

R_{Config_TKB0_TKB1_TKB2}_Create 

This API function executes initialization processing that is required before controlling the TKB0, TKB1 and 

TKB2 modules in simultaneous start/stop mode (period controlled by TKBCRn0 register)/simultaneous 

start/stop mode (period controlled by external trigger input)/synchronous start/clear mode (period controlled 

by master). 

Remark This API function is called from R_TKB_Create. 

 

[Syntax] 

void    R_{Config_TKB0_TKB1_TKB2}_Create(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 291 of 868 
Jan 20, 2026 

R_{Config_TKB0_TKB1_TKB2}_Start 

This API function starts the TKB0, TKB1 and TKB2 counters. 

 

[Syntax] 

void    R_{Config_TKB0_TKB1_TKB2}_Start(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 292 of 868 
Jan 20, 2026 

R_{Config_TKB0_TKB1_TKB2}_Stop 

This API function stops the TKB0, TKB1 and TKB2 counters. 

 

[Syntax] 

void    R_{Config_TKB0_TKB1_TKB2}_Stop(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 293 of 868 
Jan 20, 2026 

R_{Config_TKB0_TKB1_TKB2}_TKBn_Set_BatchOverwriteRequestOn 

This API function sets TKBn batch overwrite request function. 

 

[Syntax] 

void    R_{Config_TKB0_TKB1_TKB2}_TKBn_Set_BatchOverwriteRequestOn(void); 

Remark n is 0, 1, 2. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 294 of 868 
Jan 20, 2026 

R_{Config_TKB0_TKB1_TKB2}_TKBOn0_Forced_Output_Stop_Function1_Start 

This API function starts TKBn TKBOn0 forced output stop function 1. 

 

[Syntax] 

void    R_{Config_TKB0_TKB1_TKB2}_TKBOn0_Forced_Output_Stop_Function1_Start(void); 

Remark n is 0, 1, 2. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 295 of 868 
Jan 20, 2026 

R_{Config_TKB0_TKB1_TKB2}_TKBOn0_Forced_Output_Stop_Function1_Stop 

This API function stops TKBn TKBOn0 forced output stop function 1. 

 

[Syntax] 

void    R_{Config_TKB0_TKB1_TKB2}_TKBOn0_Forced_Output_Stop_Function1_Stop(void); 

Remark n is 0, 1, 2. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 296 of 868 
Jan 20, 2026 

R_{Config_TKB0_TKB1_TKB2}_TKBOn1_Forced_Output_Stop_Function1_Start 

This API function starts TKBn TKBOn1 forced output stop function 1. 

 

[Syntax] 

void    R_{Config_TKB0_TKB1_TKB2}_TKBOn1_Forced_Output_Stop_Function1_Start(void); 

Remark n is 0, 1, 2. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 297 of 868 
Jan 20, 2026 

R_{Config_TKB0_TKB1_TKB2}_TKBOn1_Forced_Output_Stop_Function1_Stop 

This API function stops TKBn TKBOn1 forced output stop function 1. 

 

[Syntax] 

void    R_{Config_TKB0_TKB1_TKB2}_TKBOn1_Forced_Output_Stop_Function1_Stop(void); 

Remark n is 0, 1, 2. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 298 of 868 
Jan 20, 2026 

R_{Config_TKB0_TKB1_TKB2}_TKBOn0_SmoothStartFunction_Start 

This API function starts TKBn TKBOn0 smooth start function. 

 

[Syntax] 

void    R_{Config_TKB0_TKB1_TKB2}_TKBOn0_SmoothStartFunction_Start(void); 

Remark n is 0, 1, 2. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 299 of 868 
Jan 20, 2026 

R_{Config_TKB0_TKB1_TKB2}_TKBOn0_SmoothStartFunction_Stop 

This API function stops TKBn TKBOn0 smooth start function. 

 

[Syntax] 

void    R_{Config_TKB0_TKB1_TKB2}_TKBOn0_SmoothStartFunction_Stop(void); 

Remark n is 0, 1, 2. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 300 of 868 
Jan 20, 2026 

R_{Config_TKB0_TKB1_TKB2}_TKBOn1_SmoothStartFunction_Start 

This API function starts TKBn TKBOn1 smooth start function. 

 

[Syntax] 

void    R_{Config_TKB0_TKB1_TKB2}_TKBOn1_SmoothStartFunction_Start(void); 

Remark n is 0, 1, 2. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 301 of 868 
Jan 20, 2026 

R_{Config_TKB0_TKB1_TKB2}_TKBOn1_SmoothStartFunction_Stop 

This API function stops TKBn TKBOn1 smooth start function. 

 

[Syntax] 

void    R_{Config_TKB0_TKB1_TKB2}_TKBOn1_SmoothStartFunction_Stop(void); 

Remark n is 0, 1, 2. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 302 of 868 
Jan 20, 2026 

R_{Config_TKB0_TKB1_TKB2}_Create_UserInit 

This API function executes user-specific initialization processing for the TKB0, TKB1 and TKB2. 

Remark This API functions is called from R_{Config_TKB0_TKB1_TKB2}_Create as a callback 

routine. 

 

[Syntax] 

void    R_{Config_TKB0_TKB1_TKB2}_Create_UserInit(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 303 of 868 
Jan 20, 2026 

r_{Config_TKB0_TKB1_TKB2}_tkbn_terminated0_interrupt 

This API function executes processing in response to timer KBn TKBOn0 forced output stop termination 

interrupt (INTTMKBSTPn0). 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_TKB0_TKB1_TKB2}_tkbn_terminated0_interrupt(void); 

 

For LLVM toolchain: 

void    r_{Config_TKB0_TKB1_TKB2}_tkbn_terminated0_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_TKB0_TKB1_TKB2}_tkbn_terminated0_interrupt(void); 

Remark n is 0, 1, 2. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 304 of 868 
Jan 20, 2026 

r_{Config_TKB0_TKB1_TKB2}_tkbn_terminated1_interrupt 

This API function executes processing in response to timer KBn TKBOn1 forced output stop termination 

interrupt (INTTMKBSTPn1). 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_TKB0_TKB1_TKB2}_tkbn_terminated1_interrupt(void); 

 

For LLVM toolchain: 

void    r_{Config_TKB0_TKB1_TKB2}_tkbn_terminated1_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_TKB0_TKB1_TKB2}_tkbn_terminated1_interrupt(void); 

Remark n is 0, 1, 2. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 305 of 868 
Jan 20, 2026 

r_{Config_TKB0_TKB1_TKB2}_tkbn_activated0_interrupt 

This API function executes processing in response to timer KBn TKBOn0 forced output stop activation 

interrupt (INTTMKBSTRn0). 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_TKB0_TKB1_TKB2}_tkbn_activated0_interrupt(void); 

 

For LLVM toolchain: 

void    r_{Config_TKB0_TKB1_TKB2}_tkbn_activated0_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_TKB0_TKB1_TKB2}_tkbn_activated0_interrupt(void); 

Remark n is 0, 1, 2. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 306 of 868 
Jan 20, 2026 

r_{Config_TKB0_TKB1_TKB2}_tkbn_activated1_interrupt 

This API function executes processing in response to timer KBn TKBOn1 forced output stop activation 

interrupt (INTTMKBSTRn1). 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_TKB0_TKB1_TKB2}_tkbn_activated1_interrupt(void); 

 

For LLVM toolchain: 

void    r_{Config_TKB0_TKB1_TKB2}_tkbn_activated1_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_TKB0_TKB1_TKB2}_tkbn_activated1_interrupt(void); 

Remark n is 0, 1, 2. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 307 of 868 
Jan 20, 2026 

r_{Config_TKB0_TKB1_TKB2}_tkbn_end_count_interrupt 

This API function executes processing in response to timer KBn count compare match interrupt 

(INTTMKBn). 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_TKB0_TKB1_TKB2}_tkbn_end_count_interrupt(void); 

 

For LLVM toolchain: 

void    r_{Config_TKB0_TKB1_TKB2}_tkbn_end_count_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_TKB0_TKB1_TKB2}_tkbn_end_count_interrupt(void); 

Remark n is 0, 1, 2. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 308 of 868 
Jan 20, 2026 

Usage example 

This is an example for starting TKB0, TKB1 and TKB2 to output PWM waveforms pulses: 

(Blue code is user code.) 

main.c 

#include "r_smc_entry.h" 
extern uint8_t tkb_pwm_count; 
 
void main(void); 
 
void main(void) 
{ 
 EI();    //to enable interrupt 
    R_Config_TKB0_TKB1_TKB2_Start();    //TKB0, TKB1 and TKB2 operation enable 

while (tkb_pwm_count < 10);    //wait until tkb_pwm_count reaches or exceeds 10, exit the loop 
    R_Config_TKB0_TKB1_TKB2_Stop();    //TKB0, TKB1 and TKB2 operation disable 
} 

 

Config_TKB0_TKB1_TKB2_user.c 

/* Start user code for global. Do not edit comment generated here */ 
uint8_t tkb_pwm_count; 
/* End user code. Do not edit comment generated here */ 
 
static void __near r_Config_TKB0_TKB1_TKB2_tkb0_end_count_interrupt (void) 
{ 
    /* Start user code for r_Config_TKB0_TKB1_TKB2_tkb0_end_count_interrupt. Do not edit comment 
generated here */ 
 tkb_pwm_count ++;    //to count the number of times the interrupt handler is entered 
    /* End user code. Do not edit comment generated here */ 
}  

  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 309 of 868 
Jan 20, 2026 

4.2.17 Input Pulse Interval/Period Measurement (Timer Array Unit) 

Below is a list of API functions output by the Smart Configurator for input pulse interval measurement use. 

 

Table 4-23 API Functions:  

API Function Name Peripheral Name Description 

R_{Config_TAUm_n}_Create Timer Array Unit Executes initialization processing that is required before 

controlling the TAUm channeln module in input pulse 

interval measurement mode 

R_{Config_TAUm_n}_Start Starts the TAUm channeln counter. 

R_{Config_TAUm_n}_Stop Stops the TAUm channeln counter. 

R_{Config_TAUm_n}_Get_PulseWidth Measures TAUm channeln input pulse width. 

R_{Config_TAUm_n}_Create_UserInit Executes user-specific initialization processing for the 

TAUm channeln. 

r_{Config_TAUm_n}_interrupt Executes processing in response to timer channeln 

capture interrupt (INTTMmn). 

 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 310 of 868 
Jan 20, 2026 

R_{Config_TAUm_n}_Create 

This API function executes initialization processing that is required before controlling the TAUm channeln 

module in input pulse interval measurement mode. 

Remark This API function is called from R_TAUm_Create. 

 

[Syntax] 

void    R_{Config_TAUm_n}_Create(void); 

Remark m is the unit number, n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 311 of 868 
Jan 20, 2026 

R_{Config_TAUm_n}_Start 

This API function starts the TAUm channeln counter. 

 

[Syntax] 

void    R_{Config_TAUm_n}_Start(void); 

Remark m is the unit number, n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 312 of 868 
Jan 20, 2026 

R_{Config_TAUm_n}_Stop 

This API function stops the TAUm channeln counter. 

 

[Syntax] 

void    R_{Config_TAUm_n}_Stop(void); 

Remark m is the unit number, n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 313 of 868 
Jan 20, 2026 

R_{Config_TAUm_n}_Get_PulseWidth 

Measures TAUm channel n input pulse width. 

 

[Syntax] 

void    R_{Config_TAUm_n}_Get_PulseWidth(uint32_t * const width); 

Remark m is the unit number, n is the channel number. 

 

[Argument(s)] 

I/O Argument(s) Description 

O uint32_t * const width; the address where to write the input pulse width 

   

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 314 of 868 
Jan 20, 2026 

R_{Config_TAUm_n}_Create_UserInit 

This API function executes user-specific initialization processing for the TAUm channeln. 

Remark This API functions is called from R_{Config_TAUm_n}_Create as a callback routine. 

 

[Syntax] 

void    R_{Config_TAUm_n}_Create_UserInit(void); 

Remark m is the unit number, n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 315 of 868 
Jan 20, 2026 

r_{Config_TAUm_n}_interrupt 

This API function executes processing in response to timer channelmn capture interrupt (INTTMmn). 

Remark This API function is called as the interrupt handler for capture interrupts (INTTMmn), which 

occur when the valid capture edge is detected and the current counter value (TCRmn) is 

transferred to timer data register mn (TDRmn). 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_TAUm_n}_interrupt(void); 

 

For LLVM toolchain: 

void    r_{Config_TAUm_n}_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_TAUm_n}_interrupt(void); 

Remark m is the unit number, n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 316 of 868 
Jan 20, 2026 

Usage example 

This is an example for getting TAU channel 0 input interval width from TI00: 

(Blue code is user code.) 

main.c 

#include "r_smc_entry.h" 
extern volatile uint8_t tau_interrupt_flag; 
uint32_t width;  
 
void main(void); 
 
void main(void) 
{ 
 EI();    //to enable interrupt 
    tau_interrupt_flag = 0;    //set the initial value of tau_interrupt_flag 

R_Config_TAU0_0_Start();    //TAU00 operation enable, the TCR00 register counts up from 
0000H. 

//wait until tau_interrupt_flag not equal 0, exit the loop. It indicates that the valid edge of the TI00 pin 
input is detected 
    while (tau_interrupt_flag == 0); 
    R_Config_TAU0_0_Stop();    //TAU00 operation disable 

//The high-level width or low-level width of the TI00 pin can be read from “width” 
    R_Config_TAU0_0_Get_PulseWidth(&width); 
} 

 

Config_TAU0_0_user.c 

/* Start user code for global. Do not edit comment generated here */ 
uint8_t tau_interrupt_flag;  
/* End user code. Do not edit comment generated here */ 
 
static void __near r_Config_TAU0_0_interrupt (void) 
{ 

... 
    /* Start user code for r_Config_TAU0_0_interrupt. Do not edit comment generated here */ 
    //The valid edge of the TI00 pin input is detected, the count value is transferred to TDR00. 
 tau_interrupt_flag = 1U;    /* set the flag */ 
    /* End user code. Do not edit comment generated here */ 
}  

 

  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 317 of 868 
Jan 20, 2026 

4.2.18 Input Pulse Interval/Period Measurement (Timer RJ) 

Below is a list of API functions output by the Smart Configurator for input pulse period of an external signal 

(input to the TRJIOn pin) measurement use. 

 

Table 4-24  API Functions:  

API Function Name Peripheral Name Description 

R_{Config_TRJn}_Create Timer RJn Executes initialization processing that is required before 

controlling the TRJn module in input pulse width 

measurement mode. 

R_{Config_TRJn}_Start Starts the TRJn counter. 

R_{Config_TRJn}_Stop Stops the TRJn counter. 

R_{Config_TRJn}_Get_PulseWidth Measures TRJn input pulse width. 

R_{Config_TRJn}_Create_UserInit Executes user-specific initialization processing for the 

TRJn. 

r_{Config_TRJn}_ interrupt Executes processing in response to the interrupt 

(INTTRJn) when TRJn counter underflows. 

 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 318 of 868 
Jan 20, 2026 

R_{Config_TRJn}_Create 

This API function executes initialization processing that is required before controlling the TRJn module in 

input pulse width of an external signal (input to the TRJIOn pin) measurement mode. 

Remark This API function is called from R_Systeminit before the main() function is executed. 

 

[Syntax] 

void    R_{Config_TRJn}_Create(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 319 of 868 
Jan 20, 2026 

R_{Config_TRJn}_Start 

This API function starts the TRJn counter. 

 

[Syntax] 

void    R_{Config_TRJn}_Start(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 320 of 868 
Jan 20, 2026 

R_{Config_TRJn}_Stop 

This API function stops the TRJn counter. 

 

[Syntax] 

void    R_{Config_TRJn}_Stop(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 321 of 868 
Jan 20, 2026 

R_{Config_TRJn}_Get_PulseWidth 

This API function measures TRJn input pulse width. 

 

[Syntax] 

void    R_{Config_TRJn}_Get_PulseWidth(uint32_t * const width); 

Remark n is the channel number. 

 

[Argument(s)] 

I/O Argument(s) Description 

O uint32_t * const width; The address where to write the input pulse width 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 322 of 868 
Jan 20, 2026 

R_{Config_TRJn}_Create_UserInit 

This API function executes user-specific initialization processing for the TRJn. 

Remark This API functions is called from R_{Config_TRJn}_Create as a callback routine. 

 

[Syntax] 

void    R_{Config_TRJn}_Create_UserInit(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 323 of 868 
Jan 20, 2026 

r_{Config_TRJn}_interrupt 

This API function executes processing in response to the interrupt (INTTRJn) when TRJn counter 

underflows. 

Remark This API function is called as the interrupt handler for capture interrupts (INTTRJn), which 

occur when the measurement of the active width of the external input (TRJIOn) is 

completed in pulse width measurement mode. 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_TRJn}_interrupt(void); 

 

For LLVM toolchain: 

void    r_{Config_TRJn}_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_TRJn}_interrupt(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 324 of 868 
Jan 20, 2026 

Usage example 

This is an example for getting TRJ0 input pulse period: 

(Blue code is user code.) 

main.c 

#include "r_smc_entry.h" 
volatile uint8_t measure_flag = 0U; 
uint32_t g_width[20] = {0};  
 
void main(void); 
 
void main(void) 
{ 
   EI();    //to enable interrupt 
   R_Config_TRJ0_Start();    //TRJ0 operation enable, the TCR00 register counts up from 0000H. 
   R_Config_TAU0_0_Start();    //Output square wave from TAU0_0 
   //The first interrupt is dummy value, no need to store in g_width 
   while(measure_flag != 1U); 
   measure_flag = 0U; 
 
   for (char i = 0; i < 20; i++)    //to measure 20 times 
   { 

   while(measure_flag != 1U);    //wait until measure_flag equal 1, exit the loop. It indicates that 
the valid edge of the TRJIO0 pin input is detected 
       R_Config_TRJ0_Get_PulseWidth(g_width + i);   //get the pulse period of the TRJIO0 pin can be 
read from g_width 
       measure_flag = 0U; 
   } 
   R_Config_TRJ0_Stop();    //TRJ0 operation disable 
   while(1); 
} 

 

Config_TRJ0_user.c 

/* Start user code for global. Do not edit comment generated here */ 
extern volatile uint8_t measure_flag;  
/* End user code. Do not edit comment generated here */ 
 
static void __near r_Config_TRJ0_interrupt (void) 
{ 

... 
    /* Start user code for r_Config_TRJ0_interrupt. Do not edit comment generated here */    
 measure_flag = 1U;    //when the measurement of the active width of the external input (TRJIO0) 
is completed  
    /* End user code. Do not edit comment generated here */ 
}  
 

  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 325 of 868 
Jan 20, 2026 

4.2.19 Interval Timer (Timer Array Unit) 

Below is a list of API functions output by the Smart Configurator for interval timer (for timer array unit) use. 

 

Table 4-25  API Functions:  

API Function Name Peripheral Name Description 

R_{Config_TAUm_n}_Create Timer Array Unit Executes initialization processing that is required 

before controlling the TAUm channeln module in 

interval timer mode. 

R_{Config_TAUm_n}_Start Starts the TAUm channeln counter. 

R_{Config_TAUm_n}_Stop Stops the TAUm channeln counter. 

R_{Config_TAUm_n}_Higher8bits_Start Starts the TAUm channeln higher 8 bits counter. 

R_{Config_TAUm_n}_Higher8bits_Stop Stops the TAUm channeln higher 8 bits counter. 

R_{Config_TAUm_n}_Lower8bits_Start Starts the TAUm channeln lower 8 bits counter. 

R_{Config_TAUm_n}_Lower8bits_Stop Stops the TAUm channeln lower 8 bits counter. 

R_{Config_TAUm_n}_Create_UserInit Executes user-specific initialization processing for 

the TAUm channeln. 

r_{Config_TAUm_n}_interrupt Executes processing in response to timer channeln 

count end interrupt (INTTMmn). 

r_{Config_TAUm_n}_higher8bits_interrupt Executes processing in response to timer channeln 

count end interrupt (INTTMmnH) (at higher 8-bit 

timer operation). 

 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 326 of 868 
Jan 20, 2026 

R_{Config_TAUm_n}_Create 

This API function executes initialization processing that is required before controlling the TAUm channeln 

module in interval timer mode. 

Remark This API function is called from R_TAUm_Create. 

 

[Syntax] 

void    R_{Config_TAUm_n}_Create(void); 

Remark m is the unit number, n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 327 of 868 
Jan 20, 2026 

R_{Config_TAUm_n}_Start 

This API function starts the TAUm channeln counter. 

 

[Syntax] 

void    R_{Config_TAUm_n}_Start(void); 

Remark m is the unit number, n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 328 of 868 
Jan 20, 2026 

R_{Config_TAUm_n}_Stop 

This API function stops the TAUm channeln counter. 

 

[Syntax] 

void    R_{Config_TAUm_n}_Stop(void); 

Remark m is the unit number, n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 329 of 868 
Jan 20, 2026 

R_{Config_TAUm_n}_Higher8bits_Start 

Starts the TAUm channeln higher 8 bits counter. 

 

[Syntax] 

void    R_{Config_TAUm_n}_Higher8bits_Start(void); 

Remark m is the unit number, n is the channel number 1 or 3. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 330 of 868 
Jan 20, 2026 

R_{Config_TAUm_n}_Higher8bits_Stop 

Stops the TAUm channeln higher 8 bits counter. 

 

[Syntax] 

void    R_{Config_TAUm_n}_Higher8bits_Stop(void); 

Remark m is the unit number, n is the channel number 1 or 3. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 331 of 868 
Jan 20, 2026 

R_{Config_TAUm_n}_Lower8bits_Start 

Starts the TAUm channeln lower 8 bits counter. 

 

[Syntax] 

void    R_{Config_TAUm_n}_Lower8bits_Start(void); 

Remark m is the unit number, n is the channel number 1 or 3. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 332 of 868 
Jan 20, 2026 

R_{Config_TAUm_n}_Lower8bits_Stop 

Stops the TAUm channeln lower 8 bits counter. 

 

[Syntax] 

void    R_{Config_TAUm_n}_Lower8bits_Stop(void); 

Remark m is the unit number, n is the channel number 1 or 3. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 333 of 868 
Jan 20, 2026 

R_{Config_TAUm_n}_Create_UserInit 

This API function executes user-specific initialization processing for the TAUm channeln. 

Remark This API functions is called from R_{Config_TAUm_n}_Create as a callback routine. 

 

[Syntax] 

void    R_{Config_TAUm_n}_Create_UserInit(void); 

Remark m is the unit number, n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 334 of 868 
Jan 20, 2026 

r_{Config_TAUm_n}_interrupt 

This API function executes processing in response to timer channeln count end interrupt (INTTMmn). 

Remark This API function is called as the interrupt handler for count end interrupt (INTTMmn), which 

occur when the current counter value (TCRmn) reaches 0000H. 

 

[Syntax] 

For CCRL78 toolchain:  

static void __near    r_{Config_TAUm_n}_interrupt(void); 

 

For LLVM toolchain: 

void    r_{Config_TAUm_n}_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_TAUm_n}_interrupt(void); 

Remark m is the unit number, n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 335 of 868 
Jan 20, 2026 

r_{Config_TAUm_n}_higher8bits_interrupt 

This API function executes processing in response to timer channeln count end interrupt (INTTMmnH) 

(at higher 8-bit timer operation). 

Remark This API function is called as the interrupt handler for count end interrupt (INTTMmn), 

which occur when the current counter (TCRmn) higher 8-bit value reaches 00H. 

 

 [Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_TAUm_n}_higher8bits_interrupt(void); 

 

For LLVM toolchain: 

void    r_{Config_TAUm_n}_higher8bits_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_TAUm_n}_higher8bits_interrupt(void); 

Remark m is the unit number, n is the channel number 1 or 3. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 336 of 868 
Jan 20, 2026 

Usage example 

This is an example for using TAU channel 0 counting interval timer, channel 3 counting as high 8-bit interval 

timer and channel 1 counting as low 8-bit interval timer for a user-defined period: 

(Blue code is user code.) 

main.c 

#include "r_smc_entry.h" 
extern uint8_t ch0_run_count; 
extern uint8_t ch1_run_count; 
extern uint8_t ch3_run_count; 
 
void main(void); 
 
void main(void) 
{ 
 EI();    //to enable interrupt 
    R_Config_TAU0_0_Start();    //TAU00 operation enable 
    while (ch0_run_count < 20);    //wait until ch0_run_count reaches or exceeds 20, exit the loop 
    R_Config_TAU0_0_Stop();    //TAU00 operation disable 
 
    R_Config_TAU0_1_Lower8bits_Start();    //TAU01 operation enable 
    while (ch1_run_count < 20);   //wait until ch1_run_count reaches or exceeds 20, exit the loop 
    R_Config_TAU0_1_Lower8bits_Stop();    //TAU01 operation disable 
 
    R_Config_TAU0_3_Higher8bits_Start();    //TAU03 operation enable 
    while (ch3_run_count < 20);   //wait until ch3_run_count reaches or exceeds 20, exit the loop 
    R_Config_TAU0_3_Higher8bits_Stop();    //TAU03 operation disable 
} 

 

Config_TAU0_0_user.c 

/* Start user code for global. Do not edit comment generated here */ 
uint8_t ch0_run_count;  
/* End user code. Do not edit comment generated here */ 
 
static void __near r_Config_TAU0_0_interrupt (void) 
{ 
    /* Start user code for r_Config_ TAU0_0_interrupt. Do not edit comment generated here */ 
 ch0_run_count ++;    //to count the number of times the interrupt handler is entered 
    /* End user code. Do not edit comment generated here */ 
}  

 

Config_TAU0_1_user.c 

/* Start user code for global. Do not edit comment generated here */ 
uint8_t ch1_run_count;  
/* End user code. Do not edit comment generated here */ 
 
static void __near r_Config_TAU0_1_interrupt (void) 
{ 
    /* Start user code for r_Config_TAU0_1_interrupt. Do not edit comment generated here */ 
 ch1_run_count ++;    //to count the number of times the interrupt handler is entered 
    /* End user code. Do not edit comment generated here */ 
}  

 

 

 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 337 of 868 
Jan 20, 2026 

Config_TAU0_3_user.c 

/* Start user code for global. Do not edit comment generated here */ 
uint8_t ch3_run_count;  
/* End user code. Do not edit comment generated here */ 
 
static void __near r_Config_TAU0_3 _interrupt (void) 
{ 
    /* Start user code for r_Config_TAU0_3 _interrupt. Do not edit comment generated here */ 
 ch3_run_count ++;    //to count the number of times the interrupt handler is entered 
    /* End user code. Do not edit comment generated here */ 
}  

 
  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 338 of 868 
Jan 20, 2026 

4.2.20 Interval Timer (Timer RJ) 

Below is a list of API functions output by the Smart Configurator for interval timer (Timer RJn) use. 

 

Table 4-26  API Functions:  

API Function Name Peripheral Name Description 

R_{Config_TRJn}_Create Timer RJn Executes initialization processing that is required 

before controlling the Timer RJn module in interval 

timer mode. 

R_{Config_TRJn}_Start Starts the TRJn counter. 

R_{Config_TRJn}_Stop Stops the TRJn counter. 

R_{Config_TRJn}_Create_UserInit Executes user-specific initialization processing for 

the TRJn. 

r_{Config_TRJn}_ interrupt Executes processing in response to the interrupt 

(INTTRJn) when TRJn counter underflows. 

 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 339 of 868 
Jan 20, 2026 

R_{Config_TRJn}_Create 

This API function executes initialization processing that is required before controlling the TRJn module in 

inverval timer mode. 

   Remark This API function is called from R_Systeminit before the main() function is executed. 

 

[Syntax] 

void    R_{Config_TRJn}_Create(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 340 of 868 
Jan 20, 2026 

R_{Config_TRJn}_Start 

This API function starts the TRJn counter. 

 

[Syntax] 

void    R_{Config_TRJn}_Start(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 341 of 868 
Jan 20, 2026 

R_{Config_TRJn}_Stop 

This API function stops the TRJn counter. 

 

[Syntax] 

void    R_{Config_TRJn}_Stop(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 342 of 868 
Jan 20, 2026 

R_{Config_TRJn}_Create_UserInit 

This API function executes user-specific initialization processing for the TRJn. 

Remark This API functions is called from R_{Config_TRJn}_Create as a callback routine. 

 

[Syntax] 

void    R_{Config_TRJn}_Create_UserInit(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 343 of 868 
Jan 20, 2026 

r_{Config_TRJn}_interrupt 

This API function executes processing in response to the interrupt (INTTRJn) when TRJn counter 

underflows. 

Remark This API function is called as the interrupt handler for TRJn interrupts (INTTRJn), which 

occur when the count value reaches 0000H and the next count source is input, the counter underflows. 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_TRJn}_interrupt(void); 

 

For LLVM toolchain: 

void    r_{Config_TRJn}_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_TRJn}_interrupt(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 344 of 868 
Jan 20, 2026 

Usage example 

This is an example for using TRJ0 counting for a user-defined counter value and output a wave form P00 pin:  

(Blue code is user code.) 

main.c 

#include "r_smc_entry.h" 
extern uint8_t ch0_run_count; 
 
void main(void); 
 
void main(void) 
{ 
 EI();    //to enable interrupt 
    R_Config_TRJ0_Start();    //TRJ0 operation enable 
    while (ch0_run_count < 20);    //wait until ch0_run_count reaches or exceeds 20, exit the loop 
    R_Config_TRJ0_Stop();    //TRJ0 operation disable 
} 

 

Config_TRJ0_user.c 

/* Start user code for global. Do not edit comment generated here */ 
uint8_t ch0_run_count; 
/* End user code. Do not edit comment generated here */ 
 
static void __near r_Config_TRJ0_interrupt (void) 
{ 
    /* Start user code for r_Config_TRJ0_interrupt. Do not edit comment generated here */ 
 ch0_run_count ++;    //to count the number of times the interrupt handler is entered 

P0_bit.no0 = ~P0_bit.no0;    //each time an interrupt occurs, the level of P0.0 will flip once 
    /* End user code. Do not edit comment generated here */ 
}  

  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 345 of 868 
Jan 20, 2026 

4.2.21 Interval Timer (12-bit Interval Timer) 

Below is a list of API functions output by the Smart Configurator for interval timer (12-bit Interval Timer) use. 

 

Table 4-27  API Functions:  

API Function Name Peripheral Name Description 

R_{Config_IT}_Create 12-bit Interval 

Timer 

Executes initialization processing that is required 

before controlling the 12-bit interval timer module. 

R_{Config_IT}_Start Starts the 12-bit interval timer counter. 

R_{Config_IT}_Stop Stops the 12-bit interval timer counter. 

R_{Config_IT}_Create_UserInit Executes user-specific initialization processing for 

the 12-bit interval timer. 

r_{Config_IT}_ interrupt Executes processing in response to the interrupt 

(INTIT) when 12-bit interval timer counter 

underflows. 

 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 346 of 868 
Jan 20, 2026 

R_{Config_IT}_Create 

This API function executes initialization processing that is required before controlling the 12-bit interval 

timer module in interval timer mode. 

   Remark This API function is called from R_Systeminit before the main() function is executed. 

 

[Syntax] 

void    R_{Config_IT}_Create(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 347 of 868 
Jan 20, 2026 

R_{Config_IT}_Start 

This API function starts the 12-bit interval timer counter. 

 

[Syntax] 

void    R_{Config_IT}_Start(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 348 of 868 
Jan 20, 2026 

R_{Config_IT}_Stop 

This API function stops the 12-bit interval timer counter. 

 

[Syntax] 

void    R_{Config_IT}_Stop(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 349 of 868 
Jan 20, 2026 

R_{Config_IT}_Create_UserInit 

This API function executes user-specific initialization processing for the 12-bit interval timer. 

Remark This API functions is called from R_{Config_IT}_Create as a callback routine. 

 

[Syntax] 

void    R_{Config_IT}_Create_UserInit(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 350 of 868 
Jan 20, 2026 

r_{Config_IT}_interrupt 

This API function executes processing in response to the interrupt (INTIT) when 12-bit interval timer 

counter is same as compare value. 

Remark This API function is called as the interrupt handler for 12-bit interval timer interrupts (INTIT), 

which occur when the count value reaches compare value. 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_IT}_interrupt(void); 

 

For LLVM toolchain: 

void    r_{Config_IT}_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_IT}_interrupt(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 351 of 868 
Jan 20, 2026 

Usage example 

This is an example for using 12-bit Interval Timer counting for a user-defined counter value and output a wave 

form P00 pin:  

(Blue code is user code.) 

main.c 

#include "r_smc_entry.h" 
extern uint8_t count; 
 
void main(void); 
 
void main(void) 
{ 
 EI();    //to enable interrupt 
    R_Config_IT_Start();    //IT operation enable 
    while (count < 20);    //wait until count reaches or exceeds 20, exit the loop 
    R_Config_IT_Stop();    //IT operation disable 
} 

 

Config_IT_user.c 

/* Start user code for global. Do not edit comment generated here */ 
uint8_t count; 
/* End user code. Do not edit comment generated here */ 
 
static void __near r_Config_IT_interrupt (void) 
{ 
    /* Start user code for r_Config_IT_interrupt. Do not edit comment generated here */ 
 count ++;    //to count the number of times the interrupt handler is entered 

P0_bit.no0 = ~P0_bit.no0;    //each time an interrupt occurs, the level of P0.0 will flip once 
    /* End user code. Do not edit comment generated here */ 
}  

  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 352 of 868 
Jan 20, 2026 

4.2.22 Interval Timer (32-bit Interval Timer using 8-bit counter mode) 

Below is a list of API functions output by the Smart Configurator for interval timer (for 32-bit interval timer 

when using 8bit counter mode) use. 

 

Table 4-28  API Functions:  

API Function Name Peripheral Name Description 

R_{Config_ITLn}_Create 32-bit Interval Timer Executes initialization processing that is required 

before controlling the ITLn module in interval 

timer mode (8bit mode). 

R_{Config_ITLn}_Start Starts the ITLn channel. 

R_{Config_ITLn}_Stop Stops the ITLn channel. 

R_{Config_ITLn}_Set_OperationMode Used to stop counter and clear interrupt flag 

before changing 32-bit interval timer operation 

mode. 

R_{Config_ITLn}_Create_UserInit Executes user-specific initialization processing 

for the ITLn channel. 

r_{Config_ITLn}_Callback_Shared_Interrupt Executes processing in response to 32-bit 

interval timer interrupt (INTITL) 

 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 353 of 868 
Jan 20, 2026 

R_{Config_ITLn}_Create 

This API function executes initialization processing that is required before controlling the ITLn module in 

interval timer mode (8bit mode). 

Remark This API function is called from R_ITL_Create. 

 

[Syntax] 

void    R_{Config_ITLn}_Create(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 354 of 868 
Jan 20, 2026 

R_{Config_ITLn}_Start 

This API function starts the ITLn channel. 

Remark The 32-bit interval timer interrupt is enabled by calling R_ITL_Start_Interrupt. For this 

reason, to use 32-bit interval timer interrupt, please call this API function together with 

R_ITL_Start_Interrupt. 

 

[Syntax] 

void    R_{Config_ITLn}_Start(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 355 of 868 
Jan 20, 2026 

R_{Config_ITLn}_Stop 

This API function stops the ITLn channel. 

 

[Syntax] 

void    R_{Config_ITLn}_Stop(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 356 of 868 
Jan 20, 2026 

R_{Config_ITLn}_Set_OperationMode 

This API function is used to stop counter and clear interrupt flag before changing 32-bit interval timer 

operation mode. 

 

[Syntax] 

void    R_{Config_ITLn}_Set_OperationMode(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 357 of 868 
Jan 20, 2026 

R_{Config_ITLn}_Create_UserInit 

This API function executes user-specific initialization processing for the ITLn channel. 

Remark This API functions is called from R_{Config_ITLn}_Create as a callback routine. 

 

[Syntax] 

void    R_{Config_ITLn}_Create_UserInit(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 358 of 868 
Jan 20, 2026 

r_{Config_ITLn}_Callback_Shared_interrupt 

This API function executes processing in response to 32-bit interval timer interrupt (INTITL). 

Remark 1.  This API function is called as a callback routine from r_itl_interrupt, which is the interrupt 

handler for 32-bit interval timer interrupts. 

Remark 2.  User should only keep necessary flag set/clear in callback function, other processing code 

should be moved out of callback and interrupt function. Otherwise, the interrupt is not processed at the 

correct timing. 

 

 [Syntax] 

For CCRL78 toolchain: 

static void __near r_{Config_ITLn}_Callback_Shared_interrupt(void); 

 

For LLVM toolchain: 

void r_{Config_ITLn}_Callback_Shared_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void r_{Config_ITLn}_Callback_Shared_interrupt(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 359 of 868 
Jan 20, 2026 

Usage example 

This is an example for using 8-bit counting for a user-defined counter value and output a wave form P00 pin: 

(Blue code is user code.) 

main.c 

#include "r_smc_entry.h" 
extern volatile uint8_t interrupt_flag; 
 
void main(void); 
 
void main(void) 
{ 
 EI();    //to enable interrupt 

interrupt_flag = 0; 
R_ITL_Start_Interrupt(); 

    R_Config_ITL001 _Start();    //ITL001 operation enable 
    while (interrupt_flag < 20);    //wait until interrupt_flag reaches or exceeds 20, exit the loop 
    R_Config_ITL001 _Stop();    //ITL001 operation disable 
} 

 

Config_ITL001 _user.c  

/* Start user code for global. Do not edit comment generated here */ 
uint8_t interrupt_flag;  
/* End user code. Do not edit comment generated here */ 
 
void R_Config_ITL001_Callback_Shared_Interrupt(void) 
{ 
    /* Start user code for R_Config_ITL000_Callback_Shared_Interrupt. Do not edit comment generated 
here */ 
    interrupt_flag ++;    //to count the number of times the interrupt handler is entered 
    P0 = ~P0;    //each time an interrupt occurs, the level of P00 will flip once 
    /* End user code. Do not edit comment generated here */ 
} 

 

 
  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 360 of 868 
Jan 20, 2026 

4.2.23 Interval Timer (32-bit Interval Timer using 16-bit counter mode) 

Below is a list of API functions output by the Smart Configurator for interval timer (for 32-bit interval timer 

when using 16bit counter mode) use. 

 

Table 4-29  API Functions:  

API Function Name Peripheral Name Description 

R_{Config_ITLn_ITLm}_Create 32-bit Interval Timer Executes initialization processing that is 

required before controlling the ITLn_ITLm 

module in interval timer mode (16bit 

mode). 

R_{Config_ITLn_ITLm}_Start Starts the ITLn_ITLm channel. 

R_{Config_ITLn_ITLm}_Stop Stops the ITLn_ITLm channel. 

R_{Config_ITLn_ITLm}_Set_SoftwareTriggerOn Generates software trigger. 

R_{Config_ITLn_ITLm}_Set_OperationMode Used to stop counter and clear interrupt 

flag before changing 32-bit interval timer 

operation mode. 

R_{Config_ITLn_ITLm}_Get_CaptureValue Gets capture value. 

R_{Config_ITLn_ITLm}_Create_UserInit Executes user-specific initialization 

processing for the ITLn_ITLm channel. 

r_{Config_ITLn_ITLm}_Callback_Shared_Interrupt Executes processing in response to 32-

bit interval timer interrupt (INTITL). 

 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 361 of 868 
Jan 20, 2026 

R_{Config_ITLn_ITLm}_Create 

This API function executes initialization processing that is required before controlling the ITLn_ITLm 

module in interval timer mode (16bit mode). 

Remark This API function is called from R_ITL_Create. 

   

[Syntax] 

void    R_{Config_ITLn_ITLm}_Create(void); 

Remark When n is 000, m is 001; When n is 012, m is 013. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 362 of 868 
Jan 20, 2026 

R_{Config_ITLn_ITLm}_Start 

This API function starts the ITLn_ITLm channel. 

Remark The 32-bit interval timer interrupt is enabled by calling R_ITL_Start_Interrupt. For this 

reason, to use 32-bit interval timer interrupt, please call this API function together with 

R_ITL_Start_Interrupt. 

 

[Syntax] 

void    R_{Config_ITLn_ITLm}_Start(void); 

Remark When n is 000, m is 001; When n is 012, m is 013. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 363 of 868 
Jan 20, 2026 

R_{Config_ITLn_ITLm}_Stop 

This API function stops the ITLn_ITLm channel. 

 

[Syntax] 

void    R_{Config_ITLn_ITLm}_Stop(void); 

Remark When n is 000, m is 001; When n is 012, m is 013. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 364 of 868 
Jan 20, 2026 

R_{Config_ITLn_ITLm}_Set_SoftwareTriggerOn 

This API function generates software trigger. 

 

[Syntax] 

void    R_{Config_ITLn_ITLm}_Set_SoftwareTriggerOn(void); 

Remark When n is 000, m is 001; When n is 012, m is 013. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 365 of 868 
Jan 20, 2026 

R_{Config_ITLn_ITLm}_Set_OperationMode 

This API function is used to stop counter and clear interrupt flag before changing 32-bit interval timer 

operation mode. 

 

[Syntax] 

void    R_{Config_ITLn_ITLm}_Set_OperationMode(void); 

Remark When n is 000, m is 001; When n is 012, m is 013. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 366 of 868 
Jan 20, 2026 

R_{Config_ITLn_ITLm}_Get_CaptureValue 

This API function gets capture value. 

 

[Syntax] 

void    R_{Config_ITLn_ITLm}_Get_CaptureValue(uint16_t * const value); 

Remark When n is 000, m is 001; When n is 012, m is 013. 

 

[Argument(s)] 

I/O Argument(s) Description 

O uint16_t * const value; the address where to write the capture value 

   

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 367 of 868 
Jan 20, 2026 

R_{Config_ITLn_ITLm}_Create_UserInit 

This API function executes user-specific initialization processing for the ITLn_ITLm channel. 

Remark This API functions is called from R_{Config_ITLn_ITLm}_Create as a callback routine. 

 

[Syntax] 

void    R_{Config_ITLn_ITLm}_Create_UserInit(void); 

Remark When n is 000, m is 001; When n is 012, m is 013. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 368 of 868 
Jan 20, 2026 

r_{Config_ITLn_ITLm}_Callback_Shared_interrupt 

This API function executes processing in response to 32-bit interval timer interrupt (INTITL). 

Remark 1.  This API function is called as a callback routine from r_itl_interrupt, which is the interrupt 

handler for 32-bit interval timer interrupts. 

Remark 2.   User should only keep necessary flag set/clear in callback function, other processing 

code should be moved out of callback and interrupt function. Otherwise, the interrupt is 

not processed at the correct timing. 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_ITLn_ITLm}_Callback_Shared_interrupt(void); 

 

For LLVM toolchain: 

void    r_{Config_ITLn_ITLm}_Callback_Shared_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_ITLn_ITLm}_Callback_Shared_interrupt(void); 

Remark When n is 000, m is 001; When n is 012, m is 013. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 369 of 868 
Jan 20, 2026 

Usage example 

This is an example for changing 32-bit interval timer operation mode to user setting (16-bit count mode change 

to 16-bit capture mode): 

(Blue code is user code.) 

main.c 

#include "r_smc_entry.h" 
 
void main(void); 
 
void main(void) 
{ 
 EI();    //to enable interrupt 
    R_Config_ITL000_ITL001_Set_OperationMode();    //disable all counters in the 32-bit interval 
timer 
    /* Capture setting */ 

ITLCC0 |= _80_ITL_CAPTURE_ENABLE; 
    CAPF0CR = 1U; 
    ITLCC0 |= _00_ITL_CAPTURE_COUNTER_RETAIN; 
    ITLCC0 &= _FC_ITL_CAPTURE_TRIGGER_CLEAR; 
    ITLCC0 |= _00_ITL_CAPTURE_TRIGGER_SOFTWARE; 
    R_Config_ITL000_ITL0011_Start();    //ITL000_ITL001 operation enable 
    R_Config_ITL000_ITL0011_Set_SoftwareTriggerOn();    //to generate a software trigger for 
capturing 
} 

 

Config_ITL000_user.c 

volatile uint16_t value = 0U; 
 
void r_Config_ITL000_callback_shared_interrupt(void) 
{ 
  //When the capture trigger is detected, the ITLCAP00 register can be read from value 
  R_Config_ITL000_ITL0011_Get_CaptureValue (&value); 
} 

  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 370 of 868 
Jan 20, 2026 

4.2.24 Interval Timer (32-bit Interval Timer using 32-bit counter mode) 

Below is a list of API functions output by the Smart Configurator for interval timer (for 32-bit interval timer 

when using 32bit counter mode) use. 

 

Table 4-30  API Functions:  

API Function Name Peripheral Name Description 

R_{Config_ITL000_ITL001_ITL012_ITL013}

_Create 

32-bit Interval Timer Executes initialization processing that is required 

before controlling the 

ITL000_ITL001_ITL012_ITL013 module in 

interval timer mode (32bit mode). 

R_{Config_ITL000_ITL001_ITL012_ITL013}

_Start 

Starts the ITL000_ITL001_ITL012_ITL013 

channel. 

R_{Config_ITL000_ITL001_ITL012_ITL013}

_Stop 

Stops the ITL000_ITL001_ITL012_ITL013 

channel. 

R_{Config_ITL000_ITL001_ITL012_ITL013}

_Set_OperationMode 

Used to stop counter and clear interrupt flag 

before changing 32-bit interval timer operation 

mode. 

R_{Config_ITL000_ITL001_ITL012_ITL013}

_Create_UserInit 

Executes user-specific initialization processing 

for the ITL000_ITL001_ITL012_ITL013 channel. 

r_{Config_ITL000_ITL001_ITL012_ITL013}

_Callback_Shared_Interrupt 

Executes processing in response to 32-bit 

interval timer interrupt (INTITL). 

 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 371 of 868 
Jan 20, 2026 

R_{Config_ITL000_ITL001_ITL012_ITL013}_Create 

This API function executes initialization processing that is required before controlling the 

ITL000_ITL001_ITL012_ITL013 module in interval timer mode (32bit mode). 

Remark This API function is called from R_ITL_Create. 

 

[Syntax] 

void    R_{Config_ITL000_ITL001_ITL012_ITL013}_Create(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 372 of 868 
Jan 20, 2026 

R_{Config_ITL000_ITL001_ITL012_ITL013}_Start 

This API function starts the ITL000_ITL001_ITL012_ITL013 channel.  

Remark The 32-bit interval timer interrupt is enabled by calling R_ITL_Start_Interrupt. For this 

reason, to use 32-bit interval timer interrupt, please call this API function together with 

R_ITL_Start_Interrupt. 

 

[Syntax] 

void    R_{Config_ITL000_ITL001_ITL012_ITL013}_Start(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 373 of 868 
Jan 20, 2026 

R_{Config_ITL000_ITL001_ITL012_ITL013}_Stop 

This API function stops the ITL000_ITL001_ITL012_ITL013 channel. 

 

[Syntax] 

void    R_{Config_ITL000_ITL001_ITL012_ITL013}_Stop(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 374 of 868 
Jan 20, 2026 

R_{Config_ITL000_ITL001_ITL012_ITL013}_Set_OperationMode 

This API function is used to stop counter and clear interrupt flag before changing 32-bit interval timer 

operation mode. 

 

[Syntax] 

void    R_{Config_ITL000_ITL001_ITL012_ITL013}_Set_OperationMode(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 375 of 868 
Jan 20, 2026 

R_{Config_ITL000_ITL001_ITL012_ITL013}_Create_UserInit 

This API function executes user-specific initialization processing for the ITL000_ITL001_ITL012_ITL013 

channel. 

Remark This API functions is called from R_{Config_ITL000_ITL001_ITL012_ITL013}_Create as 

a callback routine. 

 

[Syntax] 

void    R_{Config_ITL000_ITL001_ITL012_ITL013}_Create_UserInit(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 376 of 868 
Jan 20, 2026 

r_{Config_ITL000_ITL001_ITL012_ITL013}_Callback_Shared_interrupt 

This API function executes processing in response to 32-bit interval timer interrupt (INTITL). 

Remark 1.  This API function is called as a callback routine from r_itl_interrupt, which is the interrupt 

handler for 32-bit interval timer interrupts. 

Remark 2.  User should only keep necessary flag set/clear in callback function, other processing code 

should be moved out of callback and interrupt function. Otherwise, the interrupt is not 

processed at the correct timing. 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near 

    r_{Config_ITL000_ITL001_ITL012_ITL013}_Callback_Shared_interrupt(void); 

 

For LLVM toolchain: 

void    r_{Config_ITL000_ITL001_ITL012_ITL013}_Callback_Shared_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void 

     r_{Config_ITL000_ITL001_ITL012_ITL013}_Callback_Shared_interrupt(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 377 of 868 
Jan 20, 2026 

Usage example 

This is an example for using 32-bit count mode for a user-defined period: 

(Blue code is user code.) 

main.c 

#include "r_smc_entry.h" 

extern uint8_t itl_run_count; 

 
void main(void); 
 
void main(void) 
{ 
 EI();    //to enable interrupt 
    R_Config_ITL000_ITL001_ITL012_ITL013_Start();    //ITL000, ITL001, ITL012, ITL013 operation 
enable 
    while (itl_run_count < 20);    //wait until itl_run_count reaches or exceeds 20, exit the loop 
    R_Config_ITL000_ITL001_ITL012_ITL013_Stop();    //ITL000, ITL001, ITL012, ITL013 operation 
disable 
} 

 

Config_ITL000_ITL001_ITL012_ITL013_user.c  

/* Start user code for global. Do not edit comment generated here */ 
uint8_t itl_run_count; 
/* End user code. Do not edit comment generated here */ 
 
void R_Config_ITL000_ITL001_ITL012_ITL013_Callback_Shared_Interrupt(void) 
{ 
    /* Start user code for R_Config_ITL000_ITL001_ITL012_ITL013_Callback_Shared_Interrupt. Do not 
edit comment generated here */ 
    itl_run_count ++;    //to count the number of times the interrupt handler is entered 
    /* End user code. Do not edit comment generated here */ 
} 

 

 

 
  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 378 of 868 
Jan 20, 2026 

4.2.25 Interval Timer (8-bit Interval Timer using 8-bit counter mode) 

Below is a list of API functions output by the Smart Configurator for interval timer (for 8-bit interval timer when 

using 8bit counter mode) use. 

 

Table 4-31  API Functions:  

API Function Name Peripheral Name Description 

R_{Config_ITmn}_Create 32-bit Interval Timer Executes initialization processing that is required 

before controlling the ITmn module in interval 

timer mode (8bit mode). 

R_{Config_ITmn}_Start Starts the ITmn channel. 

R_{Config_ITmn}_Stop Stops the ITmn channel. 

R_{Config_ITmn}_Create_UserInit Executes user-specific initialization processing 

for the ITmn channel. 

r_{Config_ITmn}_Interrupt Executes processing in response to 8-bit 

interval timer interrupt (INTITmn) 

 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 379 of 868 
Jan 20, 2026 

R_{Config_ITmn}_Create 

This API function executes initialization processing that is required before controlling the ITmn module in 

interval timer mode (8bit mode). 

Remark This API function is called from R_ITm_Create. 

 

[Syntax] 

void    R_{Config_ITmn}_Create(void); 

Remark m is the unit number, n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 380 of 868 
Jan 20, 2026 

R_{Config_ITmn}_Start 

This API function starts the ITmn channel. 

 

[Syntax] 

void    R_{Config_ITmn}_Start(void); 

Remark m is the unit number, n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 381 of 868 
Jan 20, 2026 

R_{Config_ITmn}_Stop 

This API function stops the ITmn channel. 

 

[Syntax] 

void    R_{Config_ITmn}_Stop(void); 

Remark m is the unit number, n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 382 of 868 
Jan 20, 2026 

R_{Config_ITmn}_Create_UserInit 

This API function executes user-specific initialization processing for the ITmn channel. 

Remark This API functions is called from R_{Config_ITmn}_Create as a callback routine. 

 

[Syntax] 

void    R_{Config_ITmn}_Create_UserInit(void); 

Remark m is the unit number, n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 383 of 868 
Jan 20, 2026 

r_{Config_ITmn}_interrupt 

This API function executes processing in response to 8bit interval timer channeln count end interrupt 

(INTITmn). 

Remark This API function is called as the interrupt handler for count end interrupt (INTITmn), which 

occur when the current counter value (TRTCMPmn) reaches 00H. 

 

[Syntax] 

For CCRL78 toolchain:  

static void __near    r_{Config_ITmn}_interrupt(void); 

 

For LLVM toolchain: 

void    r_{Config_ITmn}_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_ITmn}_interrupt(void); 

Remark m is the unit number, n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 384 of 868 
Jan 20, 2026 

Usage example 

This is an example for using 8-bit counting for a user-defined counter value and output a wave form P00 pin: 

(Blue code is user code.) 

main.c 

#include "r_smc_entry.h" 
extern volatile uint8_t interrupt_flag; 
 
void main(void); 
 
void main(void) 
{ 
 EI();    //to enable interrupt 

interrupt_flag = 0; 
    R_Config_IT01 _Start();    //IT01 operation enable 
    while (interrupt_flag < 20);    //wait until interrupt_flag reaches or exceeds 20, exit the loop 
    R_Config_IT01 _Stop();    //IT01 operation disable 
} 

 

Config_IT01_user.c  

/* Start user code for global. Do not edit comment generated here */ 
uint8_t interrupt_flag;  
/* End user code. Do not edit comment generated here */ 
 
void R_Config_IT01_Interrupt(void) 
{ 
    /* Start user code for R_Config_IT01_Interrupt. Do not edit comment generated here */ 
    interrupt_flag ++;    //to count the number of times the interrupt handler is entered 
    P0_bit.no0 = ~P0_bit.no0;    //each time an interrupt occurs, the level of P00 will flip once 
    /* End user code. Do not edit comment generated here */ 
} 

 

  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 385 of 868 
Jan 20, 2026 

4.2.26 Interval Timer (8-bit Interval Timer using 16-bit counter mode) 

Below is a list of API functions output by the Smart Configurator for interval timer (for 8-bit interval timer when 

using 16bit counter mode) use. 

 

Table 4-32  API Functions:  

API Function Name Peripheral Name Description 

R_{Config_ITm0_ITm1}_Create 32-bit Interval Timer Executes initialization processing that is required 

before controlling the ITm module in interval 

timer mode (16bit mode). 

R_{Config_ITm0_ITm1}_Start Starts the ITm unit. 

R_{Config_ITm0_ITm1}_Stop Stops the ITm unit. 

R_{Config_ITm0_ITn1}_Create_UserInit Executes user-specific initialization processing 

for the ITm unit. 

r_{Config_ITm0_ITm1}_Interrupt Executes processing in response to 16-bit 

interval timer interrupt (INTITm0) 

 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 386 of 868 
Jan 20, 2026 

R_{Config_ITm0_ITm1}_Create 

This API function executes initialization processing that is required before controlling the ITm0_ITm1 

module in interval timer mode (16bit mode). 

Remark This API function is called from R_ITm_Create. 

 

[Syntax] 

void    R_{Config_ITm0_ITm1}_Create(void); 

Remark m is the unit number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 387 of 868 
Jan 20, 2026 

R_{Config_ITm0_ITm1}_Start 

This API function starts the ITm unit. 

 

[Syntax] 

void    R_{Config_ITm0_ITm1}_Start(void); 

Remark m is the unit number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 388 of 868 
Jan 20, 2026 

R_{Config_ITm0_ITm1}_Stop 

This API function stops the ITm unit. 

 

[Syntax] 

void    R_{Config_ITm0_ITm1}_Stop(void); 

Remark m is the unit number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 389 of 868 
Jan 20, 2026 

R_{Config_ITm0_ITm1}_Create_UserInit 

This API function executes user-specific initialization processing for the ITm unit. 

Remark This API functions is called from R_{Config_ITm0_ITm1}_Create as a callback routine. 

 

[Syntax] 

void    R_{Config_ITm0_ITm1}_Create_UserInit(void); 

Remark m is the unit number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 390 of 868 
Jan 20, 2026 

r_{Config_ITm0_ITm1}_interrupt 

This API function executes processing in response to 16bit interval timer unitm count end interrupt 

(INTITm0). 

Remark This API function is called as the interrupt handler for count end interrupt (INTITm0), which 

occur when the current counter value (TRTCMPm) reaches 0000H. 

 

[Syntax] 

For CCRL78 toolchain:  

static void __near    r_{Config_ITm0_ITm1}_interrupt(void); 

 

For LLVM toolchain: 

void    r_{Config_ITm0_ITm1}_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_ITm0_ITm1}_interrupt(void); 

Remark m is the unit number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 391 of 868 
Jan 20, 2026 

Usage example 

This is an example for using 16-bit counting for a user-defined counter value and output a wave form P00 pin: 

(Blue code is user code.) 

main.c 

#include "r_smc_entry.h" 
extern volatile uint8_t interrupt_flag; 
 
void main(void); 
 
void main(void) 
{ 
 EI();    //to enable interrupt 

interrupt_flag = 0; 
    R_Config_IT00_01 _Start();    //IT00, IT01 operation enable 
    while (interrupt_flag < 20);    //wait until interrupt_flag reaches or exceeds 20, exit the loop 
    R_Config_IT00_01 _Stop();    //IT00, IT01 operation disable 
} 

 

Config_IT00_IT01_user.c  

/* Start user code for global. Do not edit comment generated here */ 
uint8_t interrupt_flag;  
/* End user code. Do not edit comment generated here */ 
 
void R_Config_IT00_IT01_Interrupt(void) 
{ 
    /* Start user code for R_Config_IT00_IT01_Interrupt. Do not edit comment generated here */ 
    interrupt_flag ++;    //to count the number of times the interrupt handler is entered 
    P0 = ~P0;    //each time an interrupt occurs, the level of P00 will flip once 
    /* End user code. Do not edit comment generated here */ 
} 

 

 
  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 392 of 868 
Jan 20, 2026 

4.2.27 Input Capture Function (Timer RD) 

Below is a list of API functions output by the Smart Configurator for Input Capture Function use. 

 

Table 4-33  API Functions: 

API Function Name Peripheral Name Description 

R_{Config_TRDn}_Create Timer RD Executes initialization processing that is required 

before controlling the TRDn module in Input Capture 

Function mode. 

R_{Config_TRDn}_Start Starts the TRDn counter. 

R_{Config_TRDn}_Stop Stops the TRDn counter. 

R_{Config_TRDn}_Get_PulseWidth Measures TRDn input pulse width. 

R_{Config_TRDn}_Create_UserInit Executes user-specific initialization processing for 

the TRDn. 

r_{Config_TRDn}_trdn_interrupt Executes processing in response to timer RDn 

capture interrupt (INTTRDn). 

 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 393 of 868 
Jan 20, 2026 

R_{Config_TRDn}_Create 

This API function executes initialization processing that is required before controlling the TRDn module in 

Input Capture Function mode. 

Remark This API function is called from R_TRD_Create. 

 

[Syntax] 

void    R_{Config_TRDn}_Create(void); 

Remark n is 0, 1. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 394 of 868 
Jan 20, 2026 

R_{Config_TRDn}_Start 

This API function starts the TRDn counter. 

 

[Syntax] 

void    R_{Config_TRDn}_Start(void); 

Remark n is 0, 1. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 395 of 868 
Jan 20, 2026 

R_{Config_TRDn}_Stop 

This API function stops the TRDn counter. 

 

[Syntax] 

void    R_{Config_TRDn}_Stop(void); 

Remark n is 0, 1. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 396 of 868 
Jan 20, 2026 

R_{Config_TRDn}_Get_PulseWidth 

This API function calculates the TRDn pulse width. 

 

[Syntax] 

MD_STATUS R_{Config_TRDn}_Get_PulseWidth (uint32_t * const active_width, uint32_t * const 

inactive_width, e_timer_channel_t channel); 

Remark n is 0, 1. 

 

[Argument(s)] 

I/O Argument(s) Description 

O uint32_t * const active_width; The high-level width 

O uint32_t * const inactive_width; The low-level width 

I e_timer_channel_t channel The TRDIOji pin (i = 0 or 1, j = A, B, C, or D) external signal 

and ELC signal input. 

Remark Below is shown the structure e_timer_channel_t. 

 

typedef enum 

{ 

    TMCHANNELA, 

    TMCHANNELB, 

    TMCHANNELC, 

    TMCHANNELD, 

    TMCHANNELELC 

} e_timer_channel_t; 

 

 

 [Return value] 

Macro Description 

MD_OK Normal end 

MD_ERROR Counter doesn’t work as capture mode. 

MD_ARGERROR Argument input error. 

 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 397 of 868 
Jan 20, 2026 

R_{Config_TRDn}_Create_UserInit 

This API function executes user-specific initialization processing for the TRDn. 

Remark This API functions is called from R_{Config_TRDn}_Create as a callback routine. 

 

[Syntax] 

void    R_{Config_TRDn}_Create_UserInit(void); 

Remark n is 0, 1. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 398 of 868 
Jan 20, 2026 

r_{Config_TRDn}_trdn_interrupt 

This API function executes processing in response to timer RDn capture interrupt (INTTRDn). 

Remark This API function is called as the interrupt handler for capture interrupts (INTTRDn), which 

occur when the valid capture edge of TRDIOjn (j = A, B, C, or D) input is detected, or TRDn 

register overflow. 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_TRDn}_trdn_interrupt(void); 

 

For LLVM toolchain: 

void    r_{Config_TRDn}_trdn_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_TRDn}_trdn_interrupt(void); 

Remark n is 0, 1. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 399 of 868 
Jan 20, 2026 

Usage example 

This is an example for getting TRD0 input pulse width: 

(Blue code is user code.) 

main.c 

#include "r_smc_entry.h" 
 
void main(void); 
 
typedef struct { 
    uint32_t active_width; 
    uint32_t inactive_width; 
} TRD_PulseWidth_t; 
 
TRD_PulseWidth_t trd_a; 
TRD_PulseWidth_t trd_b; 
TRD_PulseWidth_t trd_d; 
 
static void delay_ms(uint32_t time_ms) 
{ 
    uint32_t i = 0; 
    while(time_ms--) { 
        for(i = 0; i < 156; I++) { 
            NOP(); 
        } 
    } 
} 
 
void main(void) 
{ 
    EI();    //to enable interrupt 
 
    P0 = 0x00U;    //use port 0 to check the frequency of interrupt 
    R_Config_TAU0_0_Start();    //use TAU00 to generate pulse for TRD0 channel A 
    R_Config_TAU0_1_Start();    //use TAU01 to generate pulse for TRD0 channel B 
    R_Config_TAU0_2_Start();    //use TAU02 to generate pulse for TRD0 channel C 
    R_Config_TRD0_Start();    //TRD0 operation enable 
 
    delay_ms(2000);    //wait 2s from start 
    //The active_width and inactive_width of the each channel can be read 
    R_Config_TRD0_Get_PulseWidth(&trd_a.active_width, &trd_a.inactive_width, TMCHANNELA); 
    R_Config_TRD0_Get_PulseWidth(&trd_b.active_width, &trd_b.inactive_width, TMCHANNELB); 
    R_Config_TRD0_Get_PulseWidth(&trd_d.active_width, &trd_d.inactive_width, TMCHANNELC); 
 
    while(1); 
} 

  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 400 of 868 
Jan 20, 2026 

Config_TRD0_user.c 

static void __near r_Config_TRD0_interrupt(void) 
{ 

... 
     /* Start user code for r_Config_TRD0_interrupt. Do not edit comment generated here */ 
 
    /* TRDGRA0 input capture interrupt */ 
    P0_bit.no0 = ~P0_bit.no0;    //use P00 to check the frequency of interrupt 
 
    /* TRDGRB0 input capture interrupt */ 
    P0_bit.no1 = ~P0_bit.no1;    //use P01 to check the frequency of interrupt     
 
    /* TRDGRD0 input capture interrupt */ 
    P0_bit.no2 = ~P0_bit.no2;    //use P02 to check the frequency of interrupt 
    /* End user code. Do not edit comment generated here */ 
} 
 

 

  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 401 of 868 
Jan 20, 2026 

4.2.28 Input Capture Function (Timer RG) 

Below is a list of API functions output by the Smart Configurator for Input Capture Function use. 

 

Table 4-34  API Functions: 

API Function Name Peripheral Name Description 

R_{Config_TRG}_Create Timer RG Executes initialization processing that is required 

before controlling the TRG module in Input Capture 

Function mode. 

R_{Config_TRG}_Start Starts the TRG counter. 

R_{Config_TRG}_Stop Stops the TRG counter. 

R_{Config_TRG}_Get_PulseWidth Measures TRG input pulse width. 

R_{Config_TRG}_Create_UserInit Executes user-specific initialization processing for 

the TRG. 

r_{Config_TRG}_interrupt Executes processing in response to timer RG 

capture interrupt (INTTRG). 

 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 402 of 868 
Jan 20, 2026 

R_{Config_TRG}_Create 

This API function executes initialization processing that is required before controlling the TRG module in 

Input Capture Function mode. 

Remark This API function is called from R_Systeminit before the main() function is executed. 

 

[Syntax] 

void    R_{Config_TRG}_Create(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 403 of 868 
Jan 20, 2026 

R_{Config_TRG}_Start 

This API function starts the TRG counter. 

 

[Syntax] 

void    R_{Config_TRG}_Start(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 404 of 868 
Jan 20, 2026 

R_{Config_TRG}_Stop 

This API function stops the TRG counter. 

 

[Syntax] 

void    R_{Config_TRG}_Stop(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 405 of 868 
Jan 20, 2026 

R_{Config_TRG}_Get_PulseWidth 

This API function calculates the TRG pulse width. 

 

[Syntax] 

MD_STATUS R_{Config_TRG}_Get_PulseWidth(uint32_t * const active_width, uint32_t * const 

inactive_width, e_trg_channel_t channel); 

 

[Argument(s)] 

I/O Argument(s) Description 

O uint32_t * const active_width; The high-level width 

O uint32_t * const inactive_width; The low-level width 

I e_trg_channel_t channel The TRGIOA, TRGIOB and ELC signal input. 

Remark Below is shown the structure e_trg_channel_t. 

 

typedef enum 

{ 

    TRG_CHANNELA, 

    TRG_CHANNELB, 

    TRG_CHANNELELC 

} e_trg_channel_t; 

 

 

 [Return value] 

Macro Description 

MD_OK Normal end 

MD_ERROR Counter doesn’t work as capture mode. 

MD_ARGERROR Argument input error. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 406 of 868 
Jan 20, 2026 

R_{Config_TRG}_Create_UserInit 

This API function executes user-specific initialization processing for the TRG. 

Remark This API functions is called from R_{Config_TRG}_Create as a callback routine. 

 

[Syntax] 

void    R_{Config_TRG}_Create_UserInit(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 407 of 868 
Jan 20, 2026 

r_{Config_TRG}_interrupt 

This API function executes processing in response to timer RG capture interrupt (INTTRG). 

Remark This API function is called as the interrupt handler for capture interrupts (INTTRG), which 

occur when the valid capture edge of TRGIOA and TRGIOB input is detected, or TRG 

register overflow. 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_TRG}_interrupt(void); 

 

For LLVM toolchain: 

void    r_{Config_TRG}_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_TRG}_interrupt(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 408 of 868 
Jan 20, 2026 

Usage example 

This is an example for getting TRG input pulse width: 

(Blue code is user code.) 

main.c 

#include "r_smc_entry.h" 
 
void main(void); 
 
typedef struct { 
    uint32_t active_width; 
    uint32_t inactive_width; 
} TRG_PulseWidth_t; 
 
TRG_PulseWidth_t trg_a; 
TRG_PulseWidth_t trg_b; 
 
static void delay_ms(uint32_t time_ms) 
{ 
    uint32_t i = 0; 
    while(time_ms--) { 
        for(i = 0; i < 156; I++) { 
            NOP(); 
        } 
    } 
} 
 
void main(void) 
{ 
    EI();    //to enable interrupt 
 
    P0 = 0x00U;    //use port 0 to check the frequency of interrupt 
    R_Config_TAU0_0_Start();    //use TAU00 to generate pulse for TRD0 channel A 
    R_Config_TAU0_1_Start();    //use TAU01 to generate pulse for TRD0 channel B 
    R_Config_TRG_Start();    //TRG operation enable 
 
    delay_ms(2000);    //wait 2s from start 
    //The active_width and inactive_width of the each channel can be read 
    R_Config_TRG_Get_PulseWidth(&trg_a.active_width, &trg_a.inactive_width, TMCHANNELA); 
    R_Config_TRG_Get_PulseWidth(&trg_b.active_width, &trg_b.inactive_width, TMCHANNELB); 
 
    while(1); 
} 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 409 of 868 
Jan 20, 2026 

Config_TRG_user.c 

static void __near r_Config_TRG_interrupt(void) 
{ 

... 
     /* Start user code for r_Config_TRG_interrupt. Do not edit comment generated here */ 
 
    /* TRGGRA input capture interrupt */ 
    P0_bit.no0 = ~P0_bit.no0; 
 
    /* TRGGRB input capture interrupt */ 
    P0_bit.no1 = ~P0_bit.no1; 
    /* End user code. Do not edit comment generated here */ 
} 
 

 

 

  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 410 of 868 
Jan 20, 2026 

4.2.29 Input Capture Function (Timer RX) 

Below is a list of API functions output by the Smart Configurator for Input Capture Function use. 

 

Table 4-35  API Functions: 

API Function Name Peripheral Name Description 

R_{Config_TRX}_Create Timer RX Executes initialization processing that is required 

before controlling the TRX module in Input Capture 

Function mode. 

R_{Config_TRX}_Start Starts the TRX counter. 

R_{Config_TRX}_Stop Stops the TRX counter. 

R_{Config_TRX}_Get_BufferValue Gets the TRX buffer value. 

R_{Config_TRX}_Create_UserInit Executes user-specific initialization processing for 

the TRX. 

r_{Config_TRX}_interrupt Executes processing in response to timer RX 

capture interrupt (INTTRX). 

 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 411 of 868 
Jan 20, 2026 

R_{Config_TRX}_Create 

This API function executes initialization processing that is required before controlling the TRX module in 

Input Capture Function mode. 

Remark This API function is called from R_Systeminit before the main() function is executed. 

 

[Syntax] 

void    R_{Config_TRX}_Create(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 412 of 868 
Jan 20, 2026 

R_{Config_TRX}_Start 

This API function starts the TRX counter. 

 

[Syntax] 

void    R_{Config_TRX}_Start(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 413 of 868 
Jan 20, 2026 

R_{Config_TRX}_Stop 

This API function stops the TRX counter. 

 

[Syntax] 

void    R_{Config_TRX}_Stop(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 414 of 868 
Jan 20, 2026 

R_{Config_TRX}_Get_BufferValue 

This API function gets the TRX buffer value. 

 

[Syntax] 

void R_{Config_TRX}_Get_BufferValue(uint32_t * const value); 

 

[Argument(s)] 

I/O Argument(s) Description 

O uint32_t * value; Buffer value 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 415 of 868 
Jan 20, 2026 

R_{Config_TRX}_Create_UserInit 

This API function executes user-specific initialization processing for the TRX. 

Remark This API functions is called from R_{Config_TRX}_Create as a callback routine. 

 

[Syntax] 

void    R_{Config_TRX}_Create_UserInit(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 416 of 868 
Jan 20, 2026 

r_{Config_TRX}_interrupt 

This API function executes processing in response to timer RX capture interrupt (INTTRX). 

Remark This API function is called as the interrupt handler for capture interrupts (INTTRX), which 

occur when comparator interrupt signal is detected, or TRX register overflow. 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_TRX}_interrupt(void); 

 

For LLVM toolchain: 

void    r_{Config_TRX}_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_TRX}_interrupt(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 417 of 868 
Jan 20, 2026 

Usage example 

This is an example for getting TRX input pulse width: 

(Blue code is user code.) 

main.c 

#include "r_smc_entry.h" 
 
uint32_t trx_buffer[10] = {0}; 
volatile uint8_t comp_flag = 0U; 
 
void main(void); 
 
void main(void) 
{ 
    EI();    //to enable interrupt 
    R_Config_TRX_Start();    //TRX operation enable 
    R_Config_COMP2_Start();    //timer RX counter is reset by a trigger from a comparator 2 
 
    // The first interrupt is dummy value, no need to store in trx_buffer 
    while(comp_flag != 1U); 
    comp_flag = 0U; 
 
    //Transfer the capture value to a buffer when an interrupt is generated from comparator 2 
    for (char i = 0; i < 10; i++) 
    { 
        while(comp_flag != 1U); 
        R_Config_TRX_Get_BufferValue(trx_buffer + i);    //capturing 10 times 
        comp_flag = 0U; 
    } 
 
    while(1); 
} 

 

Config_COPM0_user.c 

extern volatile uint8_t comp_flag; 
static void __near r_Config_COMP2_interrupt(void) 
{ 

... 
     /* Start user code for r_Config_TRX_interrupt. Do not edit comment generated here */ 

comp_flag = 1U;    //interrupt output signal for use with timer RX from compartor 2 
     /* End user code. Do not edit comment generated here */ 
} 
 

 

  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 418 of 868 
Jan 20, 2026 

4.2.30 One-Shot Pulse Output 

Below is a list of API functions output by the Smart Configurator for one-shot pulse output use. 

 

Table 4-36  API Functions:  

API Function Name Peripheral Name Description 

R_{Config_TAUm_n}_Create Timer Array Unit Executes initialization processing that is 

required before controlling the TAUm channeln 

module in one-shot pulse output mode. 

R_{Config_TAUm_n}_Start Starts the TAUm channeln counter. 

R_{Config_TAUm_n}_Stop Stops the TAUm channeln counter. 

R_{Config_TAUm_n}_Set_SoftwareTriggerOn Generates software trigger. 

R_{Config_TAUm_n}_Get_PulseWidth Measures TAUm channeln input pulse width. 

R_{Config_TAUm_n}_Create_UserInit Executes user-specific initialization processing 

for the TAUm channeln. 

r_{Config_TAUm_n}_channeln_interrupt Executes processing in response to timer 

channeln count end interrupt (INTTMmn). 

r_{Config_TAUm_n}_channelp_interrupt Executes processing in response to timer 

channelp count end interrupt (INTTMmp). 

 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 419 of 868 
Jan 20, 2026 

R_{Config_TAUm_n}_Create 

This API function executes initialization processing that is required before controlling the TAUm channeln 

module in one-shot pulse output mode. 

Remark This API function is called from R_TAUm_Create. 

 

[Syntax] 

void    R_{Config_TAUm_n}_Create(void); 

Remark m is the unit number, n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 420 of 868 
Jan 20, 2026 

R_{Config_TAUm_n}_Start 

This API function starts the TAUm channeln counter. 

 

[Syntax] 

void    R_{Config_TAUm_n}_Start(void); 

Remark m is the unit number, n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 421 of 868 
Jan 20, 2026 

R_{Config_TAUm_n}_Stop 

This API function stops the TAUm channeln counter. 

 

[Syntax] 

void    R_{Config_TAUm_n}_Stop(void); 

Remark m is the unit number, n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 422 of 868 
Jan 20, 2026 

R_{Config_TAUm_n}_Set_SoftwareTriggerOn 

This API function generates software trigger. 

 

[Syntax] 

void    R_{Config_TAUm_n}_Set_SoftwareTriggerOn(void); 

Remark m is the unit number, n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 423 of 868 
Jan 20, 2026 

R_{Config_TAUm_n}_Get_PulseWidth 

This API function measures TAUm channeln input pulse width. 

 

[Syntax] 

void    R_{Config_TAUm_n}_Get_PulseWidth(uint32_t * const width); 

Remark m is the unit number, n is the channel number. 

 

[Argument(s)] 

I/O Argument(s) Description 

O uint32_t * const width; The address where to write the input pulse width 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 424 of 868 
Jan 20, 2026 

R_{Config_TAUm_n}_Create_UserInit 

This API function executes user-specific initialization processing for the TAUm channeln. 

Remark This API functions is called from R_{Config_TAUm_n}_Create as a callback routine. 

 

[Syntax] 

void    R_{Config_TAUm_n}_Create_UserInit(void); 

Remark m is the unit number, n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 425 of 868 
Jan 20, 2026 

r_{Config_TAUm_n}_channeln_interrupt 

This API function executes processing in response to timer channelmn count end interrupt (INTTMmn). 

Remark This API function is called as the interrupt handler for count end interrupt (INTTMmn), which 

occur when the current counter value (TCRmn) reaches 0000H. 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_TAUm_n}_channeln_interrupt(void); 

 

For LLVM toolchain: 

void    r_{Config_TAUm_n}_channeln_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_TAUm_n}_channeln_interrupt(void); 

Remark m is the unit number, n is the master channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 426 of 868 
Jan 20, 2026 

r_{Config_TAUm_n}_channelp_interrupt 

This API function executes processing in response to timer channelmp count end/capture interrupt 

(INTTMmp). 

Remark1. In one-shot pulse output function, this API function is called as the interrupt handler for count 

end interrupt (INTTMmp), which occur when the current counter value (TCRmp) reaches 

0000H. 

Remark2. In two-channel input with one-shot pulse output function, this API function is called as the 

interrupt handler for capture interrupt (INTTMmp), which occur when the valid capture edge 

is detected, and the current counter value (TCRmp) is transferred to timer data register mp 

(TDRmp). 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_TAUm_n}_channelp_interrupt(void); 

 

For LLVM toolchain: 

void    r_{Config_TAUm_n}_channelp_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_TAUm_n}_channelp_interrupt(void); 

Remark1. m is the unit number, n is the master channel number, p is slave channel number. 

Remark2. n < p ≤ 7. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 427 of 868 
Jan 20, 2026 

Usage example 

This is an example for TAU channel 0 outputting one-shot pulse by software trigger: 

(Blue code is user code.) 

main.c 

#include "r_smc_entry.h" 
extern uint8_t tau_oneshot_count; 
 
void main(void); 
 
void main(void) 
{ 
 EI();    //to enable interrupt 
    tau_oneshot_count = 0; 

R_Config_TAU0_0_Start();    //TAU00 operation enable 
    R_Config_TAU0_0_Set_SoftwareTriggerOn();    //to set TS00 to 1 by software 
    while (tau_ oneshot_count < 10) 

{ 
        //To set TS00 to 1 by software at each timer interrupt generation 
        R_Config_TAU0_0_Set_SoftwareTriggerOn(); 
    } 

R_Config_TAU0_0_Stop();    //TAU00 operation disable 
 
} 

 

Config_TAU0_0_user.c 

/* Start user code for global. Do not edit comment generated here */ 
uint8_t tau_oneshot_count;  
/* End user code. Do not edit comment generated here */ 
 
static void __near r_Config_TAU0_01_channel1_interrupt (void) 
{ 
    /* Start user code for r_Config_TAU0_01_channel1_interrupt. Do not edit comment generated here 
*/ 
 tau_oneshot_count ++;    //to count the number of times the interrupt handler is entered 
    /* End user code. Do not edit comment generated here */ 
}  

 

 
  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 428 of 868 
Jan 20, 2026 

4.2.31 Square Wave Output (Timer Array Unit) 

Below is a list of API functions output by the Smart Configurator for square wave output use. 

 

Table 4-37  API Functions:  

API Function Name Peripheral Name Description 

R_{Config_TAUm_n}_Create Timer Array Unit Executes initialization processing that is required before 

controlling the TAUm channeln module in square wave 

output mode. 

R_{Config_TAUm_n}_Start Starts the TAUm channeln counter. 

R_{Config_TAUm_n}_Stop Stops the TAUm channeln counter. 

R_{Config_TAUm_n}_Lower8bits_Start Starts the TAUm channeln lower 8 bits counter. 

R_{Config_TAUm_n}_Lower8bits_Stop Stops the TAUm channeln lower 8 bits counter. 

R_{Config_TAUm_n}_Create_UserInit Executes user-specific initialization processing for the 

TAUm channeln. 

r_{Config_TAUm_n}_interrupt Executes processing in response to timer channeln 

count end interrupt (INTTMmn). 

 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 429 of 868 
Jan 20, 2026 

R_{Config_TAUm_n}_Create 

This API function executes initialization processing that is required before controlling the TAUm channeln 

module in square wave output mode. 

Remark This API function is called from R_TAUm_Create. 

 

[Syntax] 

void    R_{Config_TAUm_n}_Create(void); 

Remark m is the unit number, n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 430 of 868 
Jan 20, 2026 

R_{Config_TAUm_n}_Start 

This API function starts the TAUm channeln counter. 

 

[Syntax] 

void    R_{Config_TAUm_n}_Start(void); 

Remark m is the unit number, n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 431 of 868 
Jan 20, 2026 

R_{Config_TAUm_n}_Stop 

This API function stops the TAUm channeln counter. 

 

[Syntax] 

void    R_{Config_TAUm_n}_Stop(void); 

Remark m is the unit number, n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 432 of 868 
Jan 20, 2026 

R_{Config_TAUm_n}_Lower8bits_Start 

This API function starts the TAUm channeln lower 8 bits counter. 

 

[Syntax] 

void    R_{Config_TAUm_n}_Lower8bits_Start(void); 

Remark m is the unit number, n is the channel number 1 or 3. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 433 of 868 
Jan 20, 2026 

R_{Config_TAUm_n}_Lower8bits_Stop 

This API function stops the TAUm channeln lower 8 bits counter. 

 

[Syntax] 

void    R_{Config_TAUm_n}_Lower8bits_Stop(void); 

Remark m is the unit number, n is the channel number 1 or 3. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 434 of 868 
Jan 20, 2026 

R_{Config_TAUm_n}_Create_UserInit 

This API function executes user-specific initialization processing for the TAUm channeln. 

Remark This API functions is called from R_{Config_TAUm_n}_Create as a callback routine. 

 

[Syntax] 

void    R_{Config_TAUm_n}_Create_UserInit(void); 

Remark m is the unit number, n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 435 of 868 
Jan 20, 2026 

r_{Config_TAUm_n}_interrupt 

This API function executes processing in response to timer channelmn count end interrupt (INTTMmn). 

Remark This API function is called as the interrupt handler for count end interrupt (INTTMmn), which 

occur when the current counter value (TCRmn) reaches 0000H. 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_TAUm_n}_interrupt(void); 

 

For LLVM toolchain: 

void    r_{Config_TAUm_n}_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_TAUm_n}_interrupt(void); 

Remark m is the unit number, n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 436 of 868 
Jan 20, 2026 

Usage example 

This is an example for using TAU channel 0 counter and channel 1 lower 8-bit counter to output square wave 

for a user-defined period: 

(Blue code is user code.) 

main.c 

#include "r_smc_entry.h" 
extern uint8_t ch0_run_count; 
extern uint8_t ch1_run_count; 
 
void main(void); 
 
void main(void) 
{ 
 EI();    //to enable interrupt 
    R_Config_TAU0_0_Start();        //TAU00 operation enable 
    while (ch0_run_count < 20);    //wait until ch0_run_count reaches or exceeds 20, exit the loop 
    R_Config_TAU0_0_Stop();    //TAU00 operation disable 
 
    R_Config_TAU0_1_Lower8bits_Start();    //TAU01 operation enable 
    while (ch1_run_count < 20);    //wait until ch1_run_count reaches or exceeds 20, exit the loop 
    R_Config_TAU0_1_Lower8bits_Stop();    //TAU01 operation disable 

 
} 

 

Config_TAU0_0_user.c 

/* Start user code for global. Do not edit comment generated here */ 
uint8_t ch0_run_count;  
/* End user code. Do not edit comment generated here */ 
 
static void __near r_Config_TAU0_0_interrupt (void) 
{ 
    /* Start user code for r_Config_ TAU0_0_interrupt. Do not edit comment generated here */ 
 ch0_run_count ++;    //to count the number of times the interrupt handler is entered 
    /* End user code. Do not edit comment generated here */ 
}  

 

Config_TAU0_1_user.c 

/* Start user code for global. Do not edit comment generated here */ 
uint8_t ch1_run_count;  
/* End user code. Do not edit comment generated here */ 
 
static void __near r_Config_TAU0_1_interrupt (void) 
{ 
    /* Start user code for r_Config_TAU0_1_interrupt. Do not edit comment generated here */ 
 ch1_run_count ++;    //to count the number of times the interrupt handler is entered 
    /* End user code. Do not edit comment generated here */ 
}  

 

 
  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 437 of 868 
Jan 20, 2026 

4.2.32 Square Wave Output (Timer RJ) 

Below is a list of API functions output by the Smart Configurator for square wave output (Timer RJn) use. 

 

Table 4-38  API Functions:  

API Function Name Peripheral Name Description 

R_{Config_TRJn}_Create Timer RJn Executes initialization processing that is required 

before controlling the Timer RJn module in square 

wave output mode. 

R_{Config_TRJn}_Start Starts the TRJn counter. 

R_{Config_TRJn}_Stop Stops the TRJn counter. 

R_{Config_TRJn}_Create_UserInit Executes user-specific initialization processing for 

the TRJn. 

r_{Config_TRJn}_ interrupt Executes processing in response to the interrupt 

(INTTRJn) when TRJn counter underflows. 

 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 438 of 868 
Jan 20, 2026 

R_{Config_TRJn}_Create 

This API function executes initialization processing that is required before controlling the TRJn module in 

square wave output mode. 

   Remark This API function is called from R_Systeminit before the main() function is executed. 

 

[Syntax] 

void    R_{Config_TRJn}_Create(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 439 of 868 
Jan 20, 2026 

R_{Config_TRJn}_Start 

This API function starts the TRJn counter. 

 

[Syntax] 

void    R_{Config_TRJn}_Start(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 440 of 868 
Jan 20, 2026 

R_{Config_TRJn}_Stop 

This API function stops the TRJn counter. 

 

[Syntax] 

void    R_{Config_TRJn}_Stop(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 441 of 868 
Jan 20, 2026 

R_{Config_TRJn}_Create_UserInit 

This API function executes user-specific initialization processing for the TRJn. 

Remark This API functions is called from R_{Config_TRJn}_Create as a callback routine. 

 

[Syntax] 

void    R_{Config_TRJn}_Create_UserInit(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 442 of 868 
Jan 20, 2026 

r_{Config_TRJn}_interrupt 

This API function executes processing in response to the interrupt (INTTRJn) when TRJn counter 

underflows. 

 

Remark This API function is called as the interrupt handler for TRJn interrupts (INTTRJn), which 
occur when the count value reaches 0000H and the next count source is input, the counter 
underflows. 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_TRJn}_interrupt(void); 

 

For LLVM toolchain: 

void    r_{Config_TRJn}_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_TRJn}_interrupt(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 443 of 868 
Jan 20, 2026 

Usage example 

This is an example for using TRJ0 counting to output an inverted pulse from pins TRJIO0 and TRJO0 for a user-

defined period: 

(Blue code is user code.) 

main.c 

#include "r_smc_entry.h" 
extern uint8_t ch0_run_count; 
 
void main(void); 
 
void main(void) 
{ 
 EI();    //to enable interrupt 
    R_Config_TRJ0_Start();    //TRJ0 operation enable 
    while (ch0_run_count < 20);    //wait until ch0_run_count reaches or exceeds 20, exit the loop 
    R_Config_TRJ0_Stop();    //TRJ0 operation disable 
} 

 

Config_TRJ0_user.c 

/* Start user code for global. Do not edit comment generated here */ 
uint8_t ch0_run_count;  
/* End user code. Do not edit comment generated here */ 
 
static void __near r_Config_TRJ0_interrupt (void) 
{ 
    /* Start user code for r_Config_ TRJ0_interrupt. Do not edit comment generated here */ 
 ch0_run_count ++;    //to count the number of times the interrupt handler is entered 
    /* End user code. Do not edit comment generated here */ 
}  

  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 444 of 868 
Jan 20, 2026 

4.2.33 Output Compare Function (Timer RD) 

Below is a list of API functions output by the Smart Configurator for Output Compare Function mode use. 

 

Table 4-39  API Functions: 

API Function Name Peripheral Name Description 

R_{Config_TRDn}_Create Timer RD Executes initialization processing that is required 

before controlling the TRDn module in Output 

Compare Function mode. 

R_{Config_TRDn}_Start Starts the TRDn counter. 

R_{Config_TRDn}_Stop Stops the TRDn counter. 

R_{Config_TRDn}_Create_UserInit Executes user-specific initialization processing for 

the TRDn. 

r_{Config_TRDn}_trdn_interrupt Executes processing in response to timer TRDn 

count compare match interrupt (INTTRDn). 

 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 445 of 868 
Jan 20, 2026 

R_{Config_TRDn}_Create 

This API function executes initialization processing that is required before controlling the TRDn module in 

Output Compare Function mode. 

Remark This API function is called from R_TRD_Create. 

 

[Syntax] 

void    R_{Config_TRDn}_Create(void); 

Remark n is 0, 1. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 446 of 868 
Jan 20, 2026 

R_{Config_TRDn}_Start 

This API function starts the TRDn counter. 

 

[Syntax] 

void    R_{Config_TRDn}_Start(void); 

Remark n is 0, 1. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 447 of 868 
Jan 20, 2026 

R_{Config_TRDn}_Stop 

This API function stops the TRDn counter. 

 

[Syntax] 

void    R_{Config_TRDn}_Stop(void); 

Remark n is 0, 1. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 448 of 868 
Jan 20, 2026 

R_{Config_TRDn}_Create_UserInit 

This API function executes user-specific initialization processing for the TRDn. 

Remark This API functions is called from R_{Config_TRDn}_Create as a callback routine. 

 

[Syntax] 

void    R_{Config_TRDn}_Create_UserInit(void); 

Remark n is 0, 1. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 449 of 868 
Jan 20, 2026 

r_{Config_TRDn}_trdn_interrupt 

This API function executes processing in response to timer TRDn count compare match interrupt 

(INTTRDn). 

Remark This API function is called as the interrupt handler for count compare match interrupt 
(INTTRDn), which occur when the content of the TRDn register matches content of the 
TRDGRjn (j = A, B, C, or D) register or TRDn register overflow.  

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_TRDn}_trdn_interrupt(void); 

 

For LLVM toolchain: 

void    r_{Config_TRDn}_trdn_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_TRDn}_trdn_interrupt(void); 

Remark n is 0, 1. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 450 of 868 
Jan 20, 2026 

Usage example 

This is an example for using TRD1 to output an arbitrary level from the TRDIOj1 pin: 

(Blue code is user code.) 

main.c 

#include "r_smc_entry.h" 
extern uint8_t ch1_run_count; 
 
void main(void); 
 
void main(void) 
{ 
    EI();    //to enable interrupt 

R_Config_TRD1_Start();    //TRD1 operation enable 
    while (ch1_run_count < 20);    //wait until ch1_run_count reaches or exceeds 20, exit the loop 
    R_Config_TRD1_Stop();    //TRD1 operation disable 
} 

 

Config_TRD1_user.c 

/* Start user code for global. Do not edit comment generated here */ 
uint8_t ch1_run_count;  
/* End user code. Do not edit comment generated here */ 
 
static void __near r_Config_TRD1_trd1_interrupt (void) 
{ 
    /* Start user code for r_Config_ TRD1_trd1_interrupt. Do not edit comment generated here */ 
 ch1_run_count ++;    //to count the number of times the interrupt handler is entered 
    /* End user code. Do not edit comment generated here */ 
}  

 

  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 451 of 868 
Jan 20, 2026 

4.2.34 Output Compare Function (Timer RG) 

Below is a list of API functions output by the Smart Configurator for Output Compare Function mode use. 

 

Table 4-40  API Functions: 

API Function Name Peripheral Name Description 

R_{Config_TRG}_Create Timer RG Executes initialization processing that is required 

before controlling the TRG module in Output 

Compare Function mode. 

R_{Config_TRG}_Start Starts the TRG counter. 

R_{Config_TRG}_Stop Stops the TRG counter. 

R_{Config_TRG}_Create_UserInit Executes user-specific initialization processing for 

the TRG. 

r_{Config_TRG}_TRG_interrupt Executes processing in response to timer TRG 

count compare match interrupt (INTTRG). 

 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 452 of 868 
Jan 20, 2026 

R_{Config_TRG}_Create 

This API function executes initialization processing that is required before controlling the TRG module in 

Output Compare Function mode. 

Remark This API function is called from R_Systeminit before the main() function is executed. 

 

[Syntax] 

void    R_{Config_TRG}_Create(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 453 of 868 
Jan 20, 2026 

R_{Config_TRG}_Start 

This API function starts the TRG counter. 

 

[Syntax] 

void    R_{Config_TRG}_Start(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 454 of 868 
Jan 20, 2026 

R_{Config_TRG}_Stop 

This API function stops the TRG counter. 

 

[Syntax] 

void    R_{Config_TRG}_Stop(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 455 of 868 
Jan 20, 2026 

R_{Config_TRG}_Create_UserInit 

This API function executes user-specific initialization processing for the TRG. 

Remark This API functions is called from R_{Config_TRG}_Create as a callback routine. 

 

[Syntax] 

void    R_{Config_TRG}_Create_UserInit(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 456 of 868 
Jan 20, 2026 

r_{Config_TRG}_interrupt 

This API function executes processing in response to timer TRG count compare match interrupt 

(INTTRG). 

Remark This API function is called as the interrupt handler for count compare match interrupt 
(INTTRG), which occur when the content of the TRG register matches content of the 
TRGGRj (j = A, B, C, or D) register or TRG register overflow.  

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_TRG}_interrupt(void); 

 

For LLVM toolchain: 

void    r_{Config_TRG}_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_TRG}_interrupt(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 457 of 868 
Jan 20, 2026 

Usage example 

This is an example for using TRG to output an arbitrary level from the TRGIOj pin: 

(Blue code is user code.) 

main.c 

#include "r_smc_entry.h" 
extern uint8_t ch1_run_count; 
 
void main(void); 
 
void main(void) 
{ 
    EI();    //to enable interrupt 

R_Config_TRG_Start();    //TRG operation enable 
    while (ch1_run_count < 20);    //wait until ch1_run_count reaches or exceeds 20, exit the loop 
    R_Config_TRG_Stop();    //TRG operation disable 
} 

 

Config_TRG_user.c 

/* Start user code for global. Do not edit comment generated here */ 
uint8_t ch1_run_count;  
/* End user code. Do not edit comment generated here */ 
 
static void __near r_Config_TRG_interrupt (void) 
{ 
    /* Start user code for r_Config_ TRG_interrupt. Do not edit comment generated here */ 
 ch1_run_count ++;    //to count the number of times the interrupt handler is entered     
    /* End user code. Do not edit comment generated here */ 
}  

 

  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 458 of 868 
Jan 20, 2026 

4.2.35 Three -phase PWM Output (Timer RD) 

Below is a list of API functions output by the Smart Configurator for Three -phase PWM output (for Timer RD 

using reset synchronous PWM mode/ complementary PWM mode/ extended complementary PWM mode) use. 

 

Table 4-41  API Functions: 

API Function Name Peripheral Name Description 

R_{Config_TRD0_TRD1}_Create Timer RD Executes initialization processing that is required 

before controlling the TRD0 and TRD1 module in 

reset synchronous PWM mode/ 

complementary PWM mode/ extended 

complementary PWM mode. 

R_{Config_TRD0_TRD1}_Start Starts the TRD0 and TRD1 counter. 

R_{Config_TRD0_TRD1}_Stop Stops the TRD0 and TRD1 counter. 

R_{Config_ 

TRD0_TRD1}_Set_TRD_ReloadTrigger 

Generates TRD0 and TRD1 buffer registers 

reload trigger. 

R_{Config_TRD0_TRD1}_Create_UserInit Executes user-specific initialization processing 

for the TRD0_TRD1. 

r_{Config_TRD0_TRD1}_trd0_interrupt Executes processing in response to timer RD0 

count compare match interrupt (INTTRD0). 

r_{Config_TRD0_TRD1}_trd1_interrupt Executes processing in response to timer RD1 

count compare match interrupt (INTTRD1). 

 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 459 of 868 
Jan 20, 2026 

R_{Config_TRD0_TRD1}_Create 

This API function executes initialization processing that is required before controlling the TRD0 module in 

reset synchronous PWM mode or the TRD0 and TRD1 module in complementary PWM mode extended 

complementary PWM mode. 

Remark This API function is called from R_TRD_Create. 

 

[Syntax] 

void    R_{Config_TRD0_TRD1}_Create(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 460 of 868 
Jan 20, 2026 

R_{Config_TRD0_TRD1}_Start 

This API function starts the TRD0 counter in reset synchronous PWM mode or the TRD0 and TRD1 

counter in complementary PWM mode / extended complementary PWM mode. 

 

[Syntax] 

void    R_{Config_TRD0_TRD1}_Start(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 461 of 868 
Jan 20, 2026 

R_{Config_TRD0_TRD1}_Stop 

This API function stops the TRD0 counter in reset synchronous PWM mode or the TRD0 and TRD1 

counter in complementary PWM mode/ extended complementary PWM mode. 

 

[Syntax] 

void    R_{Config_TRD0_TRD1}_Stop(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 462 of 868 
Jan 20, 2026 

R_{Config_TRD0_TRD1}_Set_TRD_ReloadTrigger 

This API function generates TRD0 and TRD1 buffer registers reload trigger in Extended complementary 

PWM mode. 

 

[Syntax] 

MD_STATUS R_{Config_ TRD0_TRD1}_Set_TRD_ReloadTrigger (st_extpwm_buffer_registers_t * 

buffer); 

 

[Argument(s)] 

I/O Argument(s) Description 

I st_extpwm_buffer_registers_t * buffer; buffer registers value 

Remark Below is shown the structure st_extpwm_buffer_registers_t. 

 

typedef struct { 

    uint16_t trdgrd0; 

    uint16_t trdcmpd0; 

    uint16_t trdgrc1; 

    uint16_t trdcmpc1; 

    uint16_t trdgrd1; 

    uint16_t trdcmpd1; 

    uint16_t trdadtb0; 

    uint16_t trdadtb1; 

} st_extcompwm_buffer_registers_t; 

 

 [Return value] 

Macro Description 

MD_OK Normal end 

MD_ERROR Waiting for reload trigger status 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 463 of 868 
Jan 20, 2026 

R_{Config_TRD0_TRD1}_Create_UserInit 

This API function executes user-specific initialization processing for the TRD0_TRD1. 

Remark This API functions is called from R_{Config_TRD0_TRD1}_Create as a callback routine. 

 

[Syntax] 

void    R_{Config_TRD0_TRD1}_Create_UserInit(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 464 of 868 
Jan 20, 2026 

r_{Config_TRD0_TRD1}_trd0_interrupt 

This API function executes processing in response to timer TRD0 count compare match interrupt 

(INTTRD0) in reset synchronous PWM mode/ complementary PWM mode or response to interrupt request 

signal 0 (INTTRD0) with decimation control in extended complementary PWM mode mode. 

Remark 1.   In reset synchronous PWM mode: 
This API function is called as the interrupt handler for count compare match interrupt 
(INTTRD0), which occur when the content of the TRD0 register matches content of the 
TRDGRj0 (j = A, B, C, or D) register or TRD0 register overflow.  

Remark 2.  In complementary PWM mode mode: 
This API function is called as the interrupt handler for count compare match interrupt 
(INTTRD0), which occur when the content of the TRD0 register matches content of the 
TRDGRj0 (j = A, B, C, or D) register.  

Remark 3.  In extended complementary PWM mode mode: 
This API function is called as the interrupt handler for interrupt request signal 0 
(INTTRD0), which occur when TRD1 register overflow.  

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_TRD0_TRD1}_trd0_interrupt(void); 

 

For LLVM toolchain: 

void    r_{Config_TRD0_TRD1}_trd0_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_TRD0_TRD1}_trd0_interrupt(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 465 of 868 
Jan 20, 2026 

r_{Config_TRD0_TRD1}_trd1_interrupt 

This API function executes processing in response to timer TRD1 count compare match interrupt 

(INTTRD1) or timer TRD1 interrupt request signal 1 (INTTRD1) with decimation control in extended 

complementary PWM mode. 

Remark1 In reset synchronous PWM mode: 
This API function is called as the interrupt handler for count compare match interrupt 
(INTTRD1), which occur when the content of the TRD1 register matches content of the 
TRDGRA1 and TRDGRB1 register.   

Remark2 In complementary PWM mode mode: 
This API function is called as the interrupt handler for count compare match interrupt 
(INTTRD1), which occur when the content of the TRD1 register matches content of the 
TRDGRj1 (j = A, B, C, or D) register or TRD1 register underflow.  

Remark3 In extended complementary PWM mode mode: 
This API function is called as the interrupt handler for interrupt request signal 1 (INTTRD1), 
which occur when TRD1 register underflow.  

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_TRD0_TRD1}_trd1_interrupt(void); 

 

For LLVM toolchain: 

void    r_{Config_TRD0_TRD1}_trd1_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_TRD0_TRD1}_trd1_interrupt(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 466 of 868 
Jan 20, 2026 

Usage example 

This is an example for outputting three normal-phases and three counter-phases of the symmetric or 

asymmetric PWM waveform with the same period in extended complementary PWM mode: 

(Blue code is user code.) 

main.c 

#include "r_smc_entry.h" 
extern uint8_t trd_pwm_count; 
 
void main(void); 
 
void main(void) 
{ 
 EI();    //to enable interrupt 
    R_Config_TRD0_TRD1_Start();    //TRD0 and TRD1 operation enable 

while (trd_pwm_count < 20);    //wait until trd_pwm_count reaches or exceeds 20, exit the loop 
    R_Config_TRD0_TRD1_Stop();    //TRD0 and TRD1 operation disable 
} 

 

Config_TRD0_TRD1_user.c 

/* Start user code for global. Do not edit comment generated here */ 
uint8_t trd_pwm_count;  
/* End user code. Do not edit comment generated here */ 
 
static void __near r_Config_TRD0_TRD1_trd0_interrupt (void) 
{ 
    /* Start user code for r_Config_TRD0_trd0_interrupt. Do not edit comment generated here */ 
 trd_pwm_count ++;    //to count the number of times the interrupt handler is entered 
    /* End user code. Do not edit comment generated here */ 
}  
 
static void __near r_Config_TRD0_TRD1_trd1_interrupt (void) 
{ 
    /* Start user code for r_Config_TRD0_trd1_interrupt. Do not edit comment generated here */ 
 trd_pwm_count ++;    //to count the number of times the interrupt handler is entered 
    /* End user code. Do not edit comment generated here */ 
}  

  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 467 of 868 
Jan 20, 2026 

4.2.36 PWM option unit A (Timer RD) 

Below is a list of API functions output by the Smart Configurator for PWM option unit A use. 

 

Table 4-42  API Functions:  

API Function Name Peripheral Name Description 

R_{Config_PWMOPA}_Create Timer RD Executes initialization processing that is required before 

controlling the PWM option unit A. 

R_{Config_PWMOPA}_Software_Release Releases output by software. 

R_{Config_PWMOPA}_Create_UserInit Executes user-specific initialization processing for the 

PWM option unit A. 

 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 468 of 868 
Jan 20, 2026 

R_{Config_ PWMOPA }_Create 

This API function executes initialization processing that is required before controlling the PWM option unit 

A. 

Remark This API function is called from R_TRD_Create. 

 

[Syntax] 

void    R_{Config_ PWMOPA }_Create(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 469 of 868 
Jan 20, 2026 

R_{Config_PWMOPA}_Software_Release 

This API function releases output by software. 

 

[Syntax] 

void    R_{Config_PWMOPA}_Software_Release(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 470 of 868 
Jan 20, 2026 

R_{Config_ PWMOPA }_Create_UserInit 

This API function executes user-specific initialization processing for the TAUm channeln. 

Remark This API functions is called from R_{Config_PWMOPA}_Create as a callback routine. 

 

[Syntax] 

void    R_{Config_ PWMOPA }_Create_UserInit(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 471 of 868 
Jan 20, 2026 

Usage example 

This is an example for pulse output from the timer RD output pin TRDIOji (j = A, B, C, D; i = 0, 1) can release 

forced cutoff by software trigger and pulse output is resumed: 

(Blue code is user code.) 

main.c 

#include "r_smc_entry.h" 
 
void main(void); 
 
void main(void) 
{ 
 EI();    //to enable interrupt 
    R_Config_PWMOPA_Software_Release();    //releases the output that was forced cutoff. 
    while(1);    //stop at here 
} 

  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 472 of 868 
Jan 20, 2026 

4.2.37 Phase Counting Mode 

Below is a list of API functions output by the Smart Configurator for detecting a phase difference between 

external input signals from two pins TRGCLKA and TRGCLKB and the TRG counter is incremented or 

decremented. 

 

Table 4-43  API Functions: 

API Function Name Peripheral Name Description 

R_{Config_TRG}_Create Timer RG Executes initialization processing that is required 

before controlling the TRG module in phase counting 

mode. 

R_{Config_TRG}_Start Starts the TRG counter. 

R_{Config_TRG}_Stop Stops the TRG counter. 

R_{Config_TRG}_Get_MeasurementCapt

ure 

Gets TRG measurement capture value to calculate 

phase change times on TRGCLKA and TRGCLKB. 

R_{Config_TRG}_Create_UserInit Executes user-specific initialization processing for 

the TRG. 

r_{Config_TRG}_interrupt Executes processing in response to timer RG count 

compare match interrupt (INTTRG). 

r_{Config_TRG}_clear_interrupt Executes processing in response to timer RG count 

compare match counter clearing and Z-signal 

detection counter clearing interrupt (INTGCR). 

r_{Config_TRG}_capture_interrupt Executes processing in response to timer RG 

TRGPMC count compare match interrupt (INTPMC). 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 473 of 868 
Jan 20, 2026 

R_{Config_TRG}_Create 

This API function executes initialization processing that is required before controlling the TRG module in 

phase counting mode. 

Remark This API function is called from R_Systeminit before the main() function is executed. 

 

[Syntax] 

void    R_{Config_TRG}_Create(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 474 of 868 
Jan 20, 2026 

R_{Config_TRG}_Start 

This API function starts the TRG counter. 

 

[Syntax] 

void    R_{Config_TRG}_Start(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 475 of 868 
Jan 20, 2026 

R_{Config_TRG}_Stop 

This API function stops the TRG counter. 

 

[Syntax] 

void    R_{Config_TRG}_Stop(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 476 of 868 
Jan 20, 2026 

R_{Config_TRG}_Get_MeasurementCapture 

This API function get TRG measurement capture value to calculate phase change times on TRGCLKA 

and TRGCLKB. 

 

[Syntax] 

void R_{Config_TRG}_Get_MeasurementCapture(uint16_t * const capture_value); 

 

[Argument(s)] 

I/O Argument(s) Description 

O uint16_t * const capture_value; Measurement capture value 

 

 [Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 477 of 868 
Jan 20, 2026 

R_{Config_TRG}_Create_UserInit 

This API function executes user-specific initialization processing for the TRG. 

Remark This API functions is called from R_{Config_TRG}_Create as a callback routine. 

 

[Syntax] 

void    R_{Config_TRG}_Create_UserInit(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 478 of 868 
Jan 20, 2026 

r_{Config_TRG}_interrupt 

This API function executes processing in response to timer RG count compare match interrupt (INTTRG). 

Remark This API function is called as the interrupt handler for count compare match interrupt 
(INTTRG), which occur when the content of the TRG register matches content of the 
TRGGRh (h = A, B, C, or D) register or TRG register overflow.  

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_TRG}_interrupt(void); 

 

For LLVM toolchain: 

void    r_{Config_TRG}_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_TRG}_interrupt(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 479 of 868 
Jan 20, 2026 

r_{Config_TRG}_clear_interrupt 

This API function executes processing in response to timer RG count compare match counter clearing 

and Z-signal detection counter clearing interrupt (INTGCR).  

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_TRG}_clear_interrupt(void); 

 

For LLVM toolchain: 

void    r_{Config_TRG}_clear_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_TRG}_clear_interrupt(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 480 of 868 
Jan 20, 2026 

r_{Config_TRG}_capture_interrupt 

This API function executes processing in response to timer RG TRGPMC count compare match interrupt 

(INTPMC). 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_TRG}_capture_interrupt(void); 

 

For LLVM toolchain: 

void    r_{Config_TRG}_capture_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_TRG}_capture_interrupt(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 481 of 868 
Jan 20, 2026 

Usage example 

This is an example for Phase Counting Mode clearing by TRGGRA compare match: 

(Blue code is user code.) 

main.c 

#include "r_cg_macrodriver.h" 
#include "Config_TAU0_0.h" 
#include "Config_TAU0_3.h" 
#include "Config_TRG.h" 
 
extern uint8_t count; 
 
void main(void); 
 
void main(void) 
{ 
 EI(); 
 

//support external signal input to the TRGCLKA 
    R_Config_TAU0_0_Start(); 
    //support external signal input to the TRGCLKB 
    R_Config_TAU0_3_Start(); 
    R_Config_TRG_Start();    //TRG operation enable 
 
    while (count > 0U);    //exit the loop once the count exceeds 0, indicating that the interrupt handler 
has been triggered 
    R_Config_TRG_Stop();    //TRG operation disable 
} 

 

Config_TRG_user.c 

/* Start user code for global. Do not edit comment generated here */ 
uint8_t count = 0U; 
/* End user code. Do not edit comment generated here */ 
 
static void __near r_Config_TRG_interrupt (void) 
{ 
    /* Start user code for r_Config_TRG_interrupt. Do not edit comment generated here */ 
 count ++;   //to count the number of times the interrupt handler is entered 
    /* End user code. Do not edit comment generated here */ 
}  

 

  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 482 of 868 
Jan 20, 2026 

4.2.38 Clock Output/Buzzer Output Controller 

Below is a list of API functions output by the Smart Configurator for clock output/buzzer output controller use. 

 

Table 4-44  API Functions:  

API Function Name Peripheral Name Description 

R_{Config_PCLBUZn}_Create Clock Output/Buzzer 

Output Controller 

Executes initialization processing that is required 

before controlling the PCLBUZn module. 

R_{Config_PCLBUZn}_Start Starts the PCLBUZn module. 

R_{Config_PCLBUZn}_Stop Stops the PCLBUZn module. 

R_{Config_PCLBUZn}_Create_UserInit Executes user-specific initialization processing for 

the PCLBUZn. 

 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 483 of 868 
Jan 20, 2026 

R_{Config_PCLBUZn}_Create 

This API function executes initialization processing that is required before controlling the PCLBUZn module. 

Remark This API function is called from R_Systeminit before the main() function is executed. 

 

[Syntax] 

void    R_{Config_PCLBUZn}_Create(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 484 of 868 
Jan 20, 2026 

R_{Config_PCLBUZn}_Start 

This API function starts the PCLBUZn converter. 

 

[Syntax] 

void    R_{Config_PCLBUZn}_Start(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 485 of 868 
Jan 20, 2026 

R_{Config_PCLBUZn}_Stop 

This API function stops the PCLBUZn converter. 

 

[Syntax] 

void    R_{Config_PCLBUZn}_Stop(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 486 of 868 
Jan 20, 2026 

R_{Config_PCLBUZn}_Create_UserInit 

This API function executes user-specific initialization processing for the PCLBUZ. 

Remark This API functions is called from R_{Config_PCLBUZn}_Create as a callback routine. 

 

[Syntax] 

void    R_{Config_PCLBUZn}_Create_UserInit(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 487 of 868 
Jan 20, 2026 

Usage example 

This is an example for using clock output/buzzer output controller 0: 

(Blue code is user code.) 

main.c 

#include "r_smc_entry.h" 
 
void main(void); 
 
void main(void) 
{ 
 EI();    //to enable interrupt 
    R_Config_PCLBUZ0_Start();    //PCLBUZ0 operation enable 
} 

 

  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 488 of 868 
Jan 20, 2026 

4.2.39 Real-Time Clock 

Below is a list of API functions output by the Smart Configurator for real-time clock use. 

 

Table 4-45  API Functions:  

API Function Name Peripheral Name Description 

R_{Config_RTC}_Create Real-Time Clock Executes initialization processing that is 

required before controlling the real-time clock 

module. 

R_{Config_RTC}_Start Enables the real-time clock counter. 

R_{Config_RTC}_Stop Disables the real-time clock counter. 

R_{Config_RTC}_Set_HourSystem Chooses 12-hour system or 24-hour system. 

R_{Config_RTC}_Set_CounterValue Changes the real-time clock counter value. 

R_{Config_RTC}_Get_CounterValue Reads the results of real-time clock and store 

them in the variables. 

R_{Config_RTC}_Set_ConstPeriodInterruptOn Enables constant-period interrupt. 

R_{Config_RTC}_Set_ConstPeriodInterruptOff Disables constant-period interrupt. 

R_{Config_RTC}_Set_AlarmOn Starts the alarm operation. 

R_{Config_RTC}_Set_AlarmOff Stops the alarm operation. 

R_{Config_RTC}_Set_AlarmValue Sets alarm value. 

R_{Config_RTC}_Get_AlarmValue Gets alarm value. 

R_{Config_RTC}_Set_RTC1HZOn Enables RTC1HZ output. 

R_{Config_RTC}_Set_RTC1HZOff Disables RTC1HZ output. 

R_{Config_RTC}_Create_UserInit Executes user-specific initialization 

processing for the real-time clock. 

r_{Config_RTC}_interrupt Executes processing in response to INTRTC 

interrupt. 

r_{Config_RTC}_callback_constperiod Executes processing in response to INTRTC 

fixed-cycle interrupt. 

r_{Config_RTC}_callback_alarm Executes processing in response to INTRTC 

alarm interrupt. 

 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 489 of 868 
Jan 20, 2026 

R_{Config_RTC}_Create 

This API function executes initialization processing that is required before controlling the real-time clock 

module. 

Remark This API function is called from R_Systeminit before the main() function is executed. 

 

[Syntax] 

void    R_{Config_RTC}_Create(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 490 of 868 
Jan 20, 2026 

R_{Config_RTC}_Start 

This API function enables the real-time clock counter. 

 

[Syntax] 

void    R_{Config_RTC}_Start(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 491 of 868 
Jan 20, 2026 

R_{Config_RTC}_Stop 

This API function disables the real-time clock counter. 

 

[Syntax] 

void    R_{Config_RTC}_Stop(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 492 of 868 
Jan 20, 2026 

R_{Config_RTC}_Set_HourSystem 

Chooses 12-hour system or 24-hour system. 

 

[Syntax] 

MD_STATUS    R_{Config_RTC}_Set_HourSystem(e_rtc_hour_system_t hour_system); 

 

[Argument(s)] 

I/O Argument(s) Description 

I e_rtc_hour_system_t hour_system; Clock type 

HOUR12: 12-hour clock 

HOUR24: 24-hour clock 

Remark Below is shown the structure e_rtc_hour_system_t (hour system). 

 

typedef enum 
{ 
    HOUR12, 
    HOUR24 

} e_rtc_hour_system_t; 

 

[Return value] 

Macro Description 

MD_OK Normal end 

MD_BUSY1 Busy 1. 

MD_BUSY2 Busy 2. 

MD_ARGERROR Error argument input error. 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 493 of 868 
Jan 20, 2026 

R_{Config_RTC}_Set_CounterValue 

Changes the real-time clock counter value. 

 

[Syntax] 

MD_STATUS    R_{Config_RTC}_Set_CounterValue(st_rtc_counter_value_t counter_write_val); 

 

[Argument(s)] 

I/O Argument(s) Description 

I st_rtc_counter_value_t counter_write_val; The expected real-time clock value (BCD code) 

Remark Below is shown the structure st_rtc_counter_value_t (counter conditions). 

 

typedef struct 
{ 
    uint8_t sec; 
    uint8_t min; 
    uint8_t hour; 
    uint8_t day; 
    uint8_t week; 
    uint8_t month; 
    uint8_t year; 

} st_rtc_counter_value_t; 

 

[Return value] 

Macro Description 

MD_OK Normal end 

MD_BUSY1 Busy 1. 

MD_BUSY2 Busy 2. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 494 of 868 
Jan 20, 2026 

R_{Config_RTC}_Get_CounterValue 

This API function reads the results of real-time clock and store them in the variables. 

 

[Syntax] 

MD_STATUS    R_{Config_RTC}_Get_CounterValue(st_rtc_counter_value_t * const 

counter_read_val); 

 

[Argument(s)] 

I/O Argument(s) Description 

I st_rtc_counter_value_t * const 

counter_read_val; 

The current real-time clock value (BCD code) 

Remark For structure st_rtc_counter_value_t, see R_{Config_RTC}_Set_CounterValue. 

 

[Return value] 

Macro Description 

MD_OK Normal end 

MD_BUSY1 Busy 1. 

MD_BUSY2 Busy 2. 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 495 of 868 
Jan 20, 2026 

R_{Config_RTC}_Set_ConstPeriodInterruptOn 

Enables constant-period interrupt. 

 

[Syntax] 

MD_STATUS    R_{Config_RTC}_Set_ConstPeriodInterruptOn(e_rtc_int_period_t period); 

 

[Argument(s)] 

I/O Argument(s) Description 

I e_rtc_int_period_t period; The constant period of INTRTC 

Remark Below is shown the structure e_rtc_int_period_t period (period conditions). 

 

typedef enum 
{ 
    HALFSEC = 1U, 
    ONESEC, 
    ONEMIN, 
    ONEHOUR, 
    ONEDAY, 
    ONEMONTH 

} e_rtc_int_period_t; 

 

[Return value] 

Macro Description 

MD_OK Normal end 

MD_ARGERROR Error argument input error. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 496 of 868 
Jan 20, 2026 

R_{Config_RTC}_Set_ConstPeriodInterruptOff 

Disables constant-period interrupt. 

 

[Syntax] 

void    R_{Config_RTC}_Set_ConstPeriodInterruptOff(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 497 of 868 
Jan 20, 2026 

R_{Config_RTC}_Set_AlarmOn 

This API function starts the alarm operation. 

 

[Syntax] 

void    R_{Config_RTC}_Set_AlarmOn(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 498 of 868 
Jan 20, 2026 

R_{Config_RTC}_Set_AlarmOff 

This API function stops the alarm operation. 

 

[Syntax] 

void    R_{Config_RTC}_Set_AlarmOff(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 499 of 868 
Jan 20, 2026 

R_{Config_RTC}_Set_AlarmValue 

This API function sets alarm value. 

 

[Syntax] 

void    R_{Config_RTC}_Set_AlarmValue(st_rtc_alarm_value_t alarm_val); 

 

[Argument(s)] 

I/O Argument(s) Description 

I st_rtc_alarm_value_t alarm_val; The expected alarm value (BCD code) 

Remark Below is shown the structure st_rtc_alarm_value_t alarm_val (alarm conditions). 

 

typedef struct 
{ 
    uint8_t alarmwm; 
    uint8_t alarmwh; 
    uint8_t alarmww; 

} st_rtc_alarm_value_t; 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 500 of 868 
Jan 20, 2026 

R_{Config_RTC}_Get_AlarmValue 

Gets alarm value. 

 

[Syntax] 

void    R_{Config_RTC}_Get_AlarmValue(st_rtc_alarm_value_t * const alarm_val); 

 

[Argument(s)] 

I/O Argument(s) Description 

O st_rtc_alarm_value_t * const alarm_val; The address to save alarm value (BCD code) 

Remark For structure st_rtc_alarm_value_t * const alarm_val,  

see R_{Config_RTC}_Set_AlarmValue. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 501 of 868 
Jan 20, 2026 

R_{Config_RTC}_Set_RTC1HZOn 

Enables RTC1HZ output. 

 

[Syntax] 

void    R_{Config_RTC}_Set_RTC1HZOn(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 502 of 868 
Jan 20, 2026 

R_{Config_RTC}_Set_RTC1HZOff 

Disables RTC1HZ output. 

 

[Syntax] 

void    R_{Config_RTC}_Set_RTC1HZOff(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 503 of 868 
Jan 20, 2026 

R_{Config_RTC}_Create_UserInit 

This API function executes user-specific initialization processing for the real-time clock. 

Remark This API functions is called from R_{Config_RTC}_Create as a callback routine. 

 

[Syntax] 

void    R_{Config_RTC}_Create_UserInit(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 504 of 868 
Jan 20, 2026 

r_{Config_RTC}_interrupt 

This API function executes processing in response to INTRTC interrupt. 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_RTC}_interrupt(void); 

 

For LLVM toolchain: 

void    r_{Config_RTC}_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_RTC}_interrupt(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 505 of 868 
Jan 20, 2026 

r_{Config_RTC}_callback_constperiod 

This API function executes processing in response to INTRTC fixed-cycle interrupt. 

Remark This API function is called as the callback routine of interrupt process 

r_{Config_RTC}_interrupt corresponding to the fixed-cycle interrupt. 

 

[Syntax] 

static void    r_{Config_RTC}_callback_constperiod(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 506 of 868 
Jan 20, 2026 

r_{Config_RTC}_callback_alarm 

This API function executes processing in response to INTRTC alarm interrupt. 

Remark This API function is called as the callback routine of interrupt process 

r_{Config_RTC}_interrupt corresponding to the alarm interrupt. 

 

[Syntax] 

static void    r_{Config_RTC}_callback_alarm(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 507 of 868 
Jan 20, 2026 

Usage example 1 (alarm interrupt) 

This is an example for using alarm interrupts to implement virtual processing for leap second correction (turning 

back the clock from 23:59:59 to 23:59:58 on a scheduled day):  

(Blue code is user code.) 

 

main.c 

#include "r_smc_entry.h" 
 
void main(void); 
 
void main(void) 
{ 
 EI();    //to enable interrupt 
    R_Config_RTC_Set_AlarmOn();    //starts the alarm operation 
    R_ Config_RTC_Start();    //the real-time clock counter operation enable 
} 
 

 

Config_RTC_user.c 

/* Start user code for global. Do not edit comment generated here */ 
volatile st_rtc_counter_value_t counter_val; 
/* End user code. Do not edit comment generated here */ 
 
static void r_Config_RTC_callback_alarm(void) 
{ 
    /* Start user code for r_Config_RTC_callback_alarm. Do not edit comment generated here */     
 //Reads the results of real-time clock and store them in the variables 

R_Config_RTC_Get_CounterValue ((st_rtc_counter_value_t *)&counter_val); 
 
 /* Change the seconds */ 
 counter_val.rseccnt = 0x58U; 
  
 R_Config_RTC_Set_CounterValue (counter_val);    //changes the real-time clock counter value 
    /* End user code. Do not edit comment generated here */ 
} 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 508 of 868 
Jan 20, 2026 

Usage example 2 (constant-period interrupt) 

This is an example for using constant-period interrupts to implement generating an alarm intetrrupt every 1 hour:  

(Blue code is user code.) 

 

main.c 

#include "r_smc_entry.h" 
st_rtc_counter_value_t  currTime; 
st_rtc_alarm_value_t alarm;   b 
 
void main(void); 
 
void main(void) 
{ 
 EI();    //to enable interrupt 

    R_Config_RTC_Set_ConstPeriodInterruptOn(ONEHOUR);    //enables constant-period interrupt，

interrupt handler generated once every hour  
    R_ Config_RTC_Start();    //the real-time clock counter operation enable 
} 
 

 

Config_RTC_user.c 

/* Start user code for global. Do not edit comment generated here */ 
st_rtc_counter_value_t  currTime; 
st_rtc_alarm_value_t alarm; 
/* End user code. Do not edit comment generated here */ 
 
static void r_Config_RTC_callback_constperiod (void) 
{ 
    /* Start user code for r_Config_RTC_callback_constperiod. Do not edit comment generated here */     
 //Reads the results of real-time clock and store them in the variables 

R_Config_RTC_Get_CounterValue(&currTime); 
//Reads the alarm value of real-time clock and store them in the variables 

    R_Config_RTC_Get_AlarmValue(&alarm);   
    //Changes the alarm value to current counter value 
 alarm.alarmww = currTime.week; 
 alarm.alarmwh = currTime.hour; 
 alarm.alarmwm = currTime.min + 5; 
 R_Config_RTC_Set_AlarmValue(alarm);    //sets the alarm value 

R_Config_RTC_Set_AlarmOn();        //starts the alarm operation 
    /* End user code. Do not edit comment generated here */ 
} 

 
  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 509 of 868 
Jan 20, 2026 

4.2.40 A/D Converter 

Below is a list of API functions output by the Smart Configurator for A/D converter use. 

 

Table 4-46  API Functions:  

API Function Name Peripheral Name Description 

R_{Config_ADC}_Create A/D Converter Executes initialization processing that is required before 

controlling the ADC module. 

R_{Config_ADC}_Start Starts the AD converter. 

R_{Config_ADC}_Stop Stops the AD converter. 

R_{Config_ADC}_Set_OperationOn Enables AD voltage comparator operation. 

R_{Config_ADC}_Set_OperationOff Disables AD voltage comparator operation. 

R_{Config_ADC}_Set_ADChannel Selects analog input channel. 

R_{Config_ADC}_ADSn_Set_ADChan

nel 

Selects analog input channel (Only when selecting "AD 

Advanced Mode"). 

R_{Config_ADC}_Set_SnoozeOn Enables AD wakeup function. 

R_{Config_ADC}_Set_SnoozeOff Disables AD wakeup function. 

R_{Config_ADC}_Set_TestChannel Sets test function. 

R_{Config_ADC}_Get_Result_10bit Returns the high 10 bits conversion result in the buffer. 

R_{Config_ADC}_Get_Result_8bit Returns the high 8 bits conversion result in the buffer. 

R_{Config_ADC}_Get_Result_12bit Returns the low 12 bits conversion result in the buffer. 

R_{Config_ADC}_ADSn_Get_Result_1

0bit 

Returns the high 10 bits conversion result in the buffer 

(Only when selecting "AD Advanced Mode"). 

R_{Config_ADC}_ADSn_Get_Result_8

bit 

Returns the high 8 bits conversion result in the buffer 

(Only when selecting "AD Advanced Mode"). 

R_{Config_ADC}_ADSn_Get_Result_1

2bit 

Returns the low 12 bits conversion result in the buffer 

(Only when selecting "AD Advanced Mode"). 

R_{Config_ADC}_Create_UserInit Executes user-specific initialization processing for the 

AD converter. 

r_{Config_ADC}_interrupt Executes processing in response to INTAD interrupt. 

r_{Config_ADC}_adn_interrupt Executes processing in response to INTADn interrupt 

(Only when selecting "AD Advanced Mode"). 

 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 510 of 868 
Jan 20, 2026 

R_{Config_ADC}_Create 

This API function executes initialization processing that is required before controlling the ADC module. 

Remark This API function is called from R_Systeminit before the main() function is executed. 

 

[Syntax] 

void    R_{Config_ADC}_Create(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 511 of 868 
Jan 20, 2026 

R_{Config_ADC}_Start 

This API function starts the AD converter. 

 

[Syntax] 

void    R_{Config_ADC}_Start(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 512 of 868 
Jan 20, 2026 

R_{Config_ADC}_Stop 

This API function stops the AD converter. 

 

[Syntax] 

void    R_{Config_ADC}_Stop(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 513 of 868 
Jan 20, 2026 

R_{Config_ADC}_Set_OperationOn 

Enables AD voltage comparator operation. 

 

[Syntax] 

void    R_{Config_ADC}_Set_OperationOn(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 514 of 868 
Jan 20, 2026 

R_{Config_ADC}_Set_OperationOff 

Disables AD voltage comparator operation. 

 

[Syntax] 

void    R_{Config_ADC}_Set_OperationOff(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 515 of 868 
Jan 20, 2026 

R_{Config_ADC}_Set_ADChannel 

This API function selects analog input channel. 

 

[Syntax] 

MD_STATUS    R_{Config_ADC}_Set_ADChannel(e_ad_channel_t channel); 

 

[Argument(s)] 

I/O Argument(s) Description 

I e_ad_channel_t channel; Analog input channel 

Remark Below is shown an example of the structure e_ad_channel_t channel (channel conditions). 

 

typedef enum 
{ 
    ADCHANNEL0, ADCHANNEL1, ADCHANNEL2, ADCHANNEL3, ADCHANNEL4, 

ADCHANNEL5, ADCHANNEL6, ADCHANNEL7, ADCHANNEL8, ADCHANNEL9, 
ADCHANNEL10, ADCHANNEL11, ADCHANNEL12, ADCHANNEL13, 
ADCHANNEL14, ADCHANNEL16 = 16U, ADCHANNEL17, ADCHANNEL18, 
ADCHANNEL19, ADCHANNEL20, ADCHANNEL21, ADCHANNEL22, 
ADCHANNEL23, ADCHANNEL24, ADCHANNEL25, ADCHANNEL26, 
ADTEMPERSENSOR0 = 128U, ADINTERREFVOLT 

} e_ad_channel_t; 

 

[Return value] 

Macro Description 

MD_OK Normal end 

MD_ARGERROR Error argument input error. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 516 of 868 
Jan 20, 2026 

R_{Config_ADC}_ADSn_Set_ADChannel 

This API function selects analog input channel (Only when selecting "AD Advanced Mode"). 

 

[Syntax] 

MD_STATUS    R_{Config_ADC}_ADSn_Set_ADChannel(e_ad_channel_t channel); 

 

[Argument(s)] 

I/O Argument(s) Description 

I e_ad_channel_t channel; Analog input channel 

Remark Below is shown an example of the structure e_ad_channel_t channel (channel conditions). 

 

typedef enum 
{ 
    ADCHANNEL0, ADCHANNEL1, ADCHANNEL2, ADCHANNEL3, ADCHANNEL4, 

ADCHANNEL5, ADCHANNEL6, ADCHANNEL7, ADCHANNEL8, ADCHANNEL9, 
ADCHANNEL10, ADCHANNEL11, ADCHANNEL12, ADCHANNEL13, 
ADCHANNEL14, ADCHANNEL16 = 16U, ADCHANNEL17, ADCHANNEL18, 
ADCHANNEL19, ADCHANNEL20, ADCHANNEL21, ADCHANNEL22, 
ADCHANNEL23, ADCHANNEL24, ADCHANNEL25, ADCHANNEL26, 
ADTEMPERSENSOR0 = 128U, ADINTERREFVOLT 

} e_ad_channel_t; 

 

[Return value] 

Macro Description 

MD_OK Normal end 

MD_ARGERROR Error argument input error. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 517 of 868 
Jan 20, 2026 

R_{Config_ADC}_Set_SnoozeOn 

Enables AD wakeup function. 

 

[Syntax] 

void    R_{Config_ADC}_Set_SnoozeOn(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 518 of 868 
Jan 20, 2026 

R_{Config_ADC}_Set_SnoozeOff 

Disables AD wakeup function. 

 

[Syntax] 

void    R_{Config_ADC}_Set_SnoozeOff(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 519 of 868 
Jan 20, 2026 

R_{Config_ADC}_Set_TestChannel 

This API function sets test function. 

 

[Syntax] 

MD_STATUS    R_{Config_ADC}_Set_TestChannel(e_test_channel_t channel); 

 

[Argument(s)] 

I/O Argument(s) Description 

I e_test_channel_t channel; Sets test channel 

Remark Below is shown the structure e_test_channel_t channel (input channel conditions). 

 

typedef enum 
{ 
    ADNORMALINPUT, 
    ADAVREFM = 2U, 
    ADAVREFP 

} e_test_channel_t; 

 

[Return value] 

Macro Description 

MD_OK Normal end 

MD_ARGERROR Error argument input error. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 520 of 868 
Jan 20, 2026 

R_{Config_ADC}_Get_Result_10bit 

This API function returns the high 10 bits conversion result in the buffer. 

 

[Syntax] 

void    R_{Config_ADC}_Get_Result_10bit(uint16_t * const buffer); 

 

[Argument(s)] 

I/O Argument(s) Description 

I uint16_t * const buffer; The address where to write the conversion result 

 

[Return value] 

  None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 521 of 868 
Jan 20, 2026 

R_{Config_ADC}_Get_Result_8bit 

This API function returns the high 8 bits conversion result in the buffer. 

 

[Syntax] 

void    R_{Config_ADC}_Get_Result_8bit(uint8_t * const buffer); 

 

[Argument(s)] 

I/O Argument(s) Description 

I uint8_t * const buffer; The address where to write the conversion result 

 

[Return value] 

  None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 522 of 868 
Jan 20, 2026 

R_{Config_ADC}_Get_Result_12bit 

This API function returns the low 12 bits conversion result in the buffer. 

 

[Syntax] 

void    R_{Config_ADC}_Get_Result_12bit(uint16_t * const buffer); 

 

[Argument(s)] 

I/O Argument(s) Description 

I uint16_t * const buffer; the address where to write the conversion result 

 

[Return value] 

  None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 523 of 868 
Jan 20, 2026 

R_{Config_ADC}_ADSn_Get_Result_10bit 

This API function returns the high 10 bits conversion result in the buffer (Only when selecting "AD 

Advanced Mode"). 

 

[Syntax] 

void    R_{Config_ADC}_ADSn_Get_Result_10bit(uint16_t * const buffer); 

 

[Argument(s)] 

I/O Argument(s) Description 

I uint16_t * const buffer; The address where to write the conversion result 

 

[Return value] 

  None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 524 of 868 
Jan 20, 2026 

R_{Config_ADC}_ADSn_Get_Result_8bit 

This API function returns the high 8 bits conversion result in the buffer (Only when selecting "Advanced 

Mode"). 

 

[Syntax] 

void    R_{Config_ADC}_ADSn_Get_Result_8bit(uint8_t * const buffer); 

 

[Argument(s)] 

I/O Argument(s) Description 

I uint8_t * const buffer; The address where to write the conversion result 

 

[Return value] 

  None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 525 of 868 
Jan 20, 2026 

R_{Config_ADC}_ADSn_Get_Result_12bit 

This API function returns the low 12 bits conversion result in the buffer (Only when selecting "Advanced 

Mode"). 

 

[Syntax] 

void    R_{Config_ADC}_ADSn_Get_Result_12bit(uint16_t * const buffer); 

 

[Argument(s)] 

I/O Argument(s) Description 

I uint16_t * const buffer; the address where to write the conversion result 

 

[Return value] 

  None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 526 of 868 
Jan 20, 2026 

R_{Config_ADC}_Create_UserInit 

This API function executes user-specific initialization processing for the AD converter. 

Remark This API functions is called from R_{Config_ADC}_Create as a callback routine. 

 

[Syntax] 

void    R_{Config_ADC}_Create_UserInit(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 527 of 868 
Jan 20, 2026 

r_{Config_ADC}_interrupt 

This API function executes processing in response to INTAD interrupt. 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_ADC}_interrupt(void); 

 

For LLVM toolchain: 

void    r_{Config_ADC}_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_ADC}_interrupt(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 528 of 868 
Jan 20, 2026 

r_{Config_ADC}_adn_interrupt 

This API function executes processing in response to INTADn interrupt (Only when selecting "AD 

Advanced Mode"). 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_ADC}_adn_interrupt(void); 

 

For LLVM toolchain: 

void    r_{Config_ADC}_adn_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_ADC}_adn_interrupt(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 529 of 868 
Jan 20, 2026 

Usage example 1 (Normal Mode) 

This is an example for getting the 8-bit A/D conversion result of normal mode: 

(Blue code is user code.) 

main.c 

#include "r_smc_entry.h" 
uint8_t  adc_data[1] = {0};    //used to store 8-bit A/D conversion results 
extern uint8_t  adc_Interrupt_flag;  
 
void main(void); 
 
void main(void) 
{ 
 EI();    //to enable interrupt 
    adc_Interrupt_flag = 0U; 

R_Config_ADC_Set_OperationOn();    //start the A/D comparator 
 R_Config_ADC_Start ();    //start A/D conversion 
 while(adc_Interrupt_flag != 1U);     //wait for A/D conversion to complete 
    R_Config_ADC_Get_Result_8bit(adc_data);    //get the 8-bit A/D conversion result and store it in 
the adc_data array 
    R_Config_ADC_Stop ();    //stop ADC conversion 
    R_Config_ADC_Set_OperationOff();    //stop the A/D comparator 

} 

Config_ADC_user.c 

/* Start user code for global. Do not edit comment generated here */ 
uint8_t  adc_Interrupt_flag;  
/* End user code. Do not edit comment generated here */ 
 
static void __near r_Config_ADC_interrupt(void) 
{ 
    /* Start user code for r_Config_ADC_interrupt. Do not edit comment generated here */ 
    //Set the interrupt flag to indicate that the A/D conversion is complete 
 adc_Interrupt_flag = 1U; 
    /* End user code. Do not edit comment generated here */ 
}  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 530 of 868 
Jan 20, 2026 

Usage example 2 (Advanced Mode) 

This is an example for getting the 10-bit A/D conversion result of advanced mode: 

(Blue code is user code.) 

main.c 

#include "r_smc_entry.h" 
uint16_t adc_data[2]= {0};    //array to store two 10-bit A/D conversion results 
volatile uint8_t adc_Interrupt_flag = 0U; 
 
void main(void); 
 
void main(void) 
{ 
 EI();    //to enable interrupt 
    //Configure ANI4 pin as analog input 
    PMCA2 |= 0x10U; 
    PM2 |= 0x10U; 
 
    R_Config_ADC_Set_OperationOn();    //start the A/D comparator 
    R_Config_ADC_Start();    //start A/D conversion 
 
    R_Config_ADC_Set_SoftwareTriggerOn();    //trigger A/D conversion via software 
    while(adc_Interrupt_flag != 1);    //wait until interrupt flag is set (conversion complete) 
    R_Config_ADC_ADS0_Get_Result_10bit(adc_data);    //get first 10-bit A/D result and store in 
adc_data[0] 
    R_Config_ADC_ADS0_Set_ADChannel(ADCHANNEL4);    //set A/C channel to ADCHANNEL4 
(ANI4) 
 
    for(char i=0; i<100; i++); 
 
    adc_Interrupt_flag=0; 
 
    R_Config_ADC_Set_SoftwareTriggerOn();    //trigger second ADC conversion via software 
    while(adc_Interrupt_flag != 1);    //wait until conversion is complete 
    R_Config_ADC_ADS0_Get_Result_10bit(adc_data + 1);    //get second result and store in 
adc_data[1] 
 
    R_Config_ADC_Stop();    //stop ADC conversion 
 R_Config_ADC_Set_ OperationOff();    //stop the A/D comparator 
    while(1); 
} 

Config_ADC_user.c 

/* Start user code for global. Do not edit comment generated here */ 
extern volatile uint8_t adc_Interrupt_flag; 
/* End user code. Do not edit comment generated here */ 
 
static void __near r_Config_ADC_interrupt(void) 
{ 
    /* Start user code for r_Config_ADC_interrupt. Do not edit comment generated here */ 
    //Set the interrupt flag to indicate that the A/D conversion is complete 
 adc_Interrupt_flag = 1U; 
    /* End user code. Do not edit comment generated here */ 
}  

 

  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 531 of 868 
Jan 20, 2026 

4.2.41 12 Bit A/D Single Scan 

Below is a list of API functions output by the Smart Configurator for 12 Bit A/D Single Scan use. 

 

Table 4-47  API Functions:  

API Function Name Peripheral Name Description 

R_{Config_S12ADn}_Create 12-bit A/D 

converter 

Executes initialization processing that is required before 

controlling the 12-bit A/D converter module. 

R_{Config_S12ADn}_Start Starts the 12-bit AD converter. 

R_{Config_S12ADn}_Stop Stops the12-bit AD converter. 

R_{Config_S12ADn}_Get_ValueResult Returns 12 bits conversion result in the buffer. 

R_{Config_S12ADn}_Create_UserInit Executes user-specific initialization processing for the 

12-bit A/D converter. 

r_{Config_S12ADn}_interrupt Executes processing in response to INTAD interrupt. 

 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 532 of 868 
Jan 20, 2026 

R_{Config_S12ADn}_Create 

This API function executes initialization processing that is required before controlling the 12-bit A/D 

converter module. 

Remark This API function is called from R_Systeminit before the main() function is executed. 

 

[Syntax] 

void    R_{Config_S12ADn}_Create(void); 

Remark n is 0. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 533 of 868 
Jan 20, 2026 

R_{Config_S12ADn}_Start 

This API function starts the 12 Bit A/D converter. 

 

[Syntax] 

void    R_{Config_S12ADn}_Start(void); 

Remark n is 0. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 534 of 868 
Jan 20, 2026 

R_{Config_S12ADn}_Stop 

This API function stops the 12 Bit A/D converter. 

 

[Syntax] 

void    R_{Config_S12ADn}_Stop(void); 

Remark n is 0. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 535 of 868 
Jan 20, 2026 

R_{Config_S12ADn}_Get_ValueResult 

This API function returns the 12 bits conversion result in the buffer. 

 

[Syntax] 

void    R_{Config_S12ADn}_Get_ValueResult (e_ad_channel_t channel, uint16_t * const buffer); 

Remark n is 0. 

 

[Argument(s)] 

I/O Argument(s) Description 

I e_ad_channel_t channel; The channel of data register to be read 

I uint16_t * const buffer; The address where to write the conversion result 

Remark Below is shown the structure e_ad_channel_t channel (channel conditions). 

 

typedef enum 

{ 

ADCHANNEL0, ADCHANNEL1, ADCHANNEL2, ADCHANNEL3, ADCHANNEL4, 

ADCHANNEL5, ADCHANNEL6, ADCHANNEL7, ADCHANNEL8, ADCHANNEL9, 

ADCHANNEL10, ADCHANNEL11, ADCHANNEL12, ADCHANNEL13, ADCHANNEL14, 

ADCHANNEL15, ADCHANNEL16, ADCHANNEL17, ADCHANNEL18, ADCHANNEL19, 

ADCHANNEL20, ADCHANNEL21, ADCHANNEL22, ADCHANNEL23, ADCHANNEL24, 

ADCHANNEL25, ADCHANNEL26, ADCHANNEL27, ADCHANNEL28, ADCHANNEL29, 

ADCHANNEL30, ADINTERREFVOLT, ADSELFDIAGNOSIS 

} e_ad_channel_t; 

 

[Return value] 

  None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 536 of 868 
Jan 20, 2026 

R_{Config_S12ADn}_Create_UserInit 

This API function executes user-specific initialization processing for the 12 Bit A/D converter. 

Remark This API functions is called from R_{Config_S12ADn}_Create as a callback routine. 

 

[Syntax] 

void    R_{Config_S12ADn}_Create_UserInit(void); 

Remark n is 0. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 537 of 868 
Jan 20, 2026 

r_{Config_S12ADn}_interrupt 

This API function executes processing in response to INTAD interrupt. 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_S12ADn}_interrupt(void); 

 

For LLVM toolchain: 

void    r_{Config_S12ADn}_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_S12ADn}_interrupt(void); 

Remark n is 0. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 538 of 868 
Jan 20, 2026 

Usage example 

This is an example for getting the 12-bit A/D conversion result of single scan mode: 

(Blue code is user code.) 

main.c 

#include "r_smc_entry.h" 
 
void main(void); 
 
extern volatile uint8_t interrupt_flag; 
uint16_t AD_buffer_0 = 0;     //variable to store A/D result from channel 0 
uint16_t AD_buffer_30 = 0;     //variable to store A/D result from channel 30 
 
void main(void) 
{ 
  EI(); 
 
  interrupt_flag = 0; 
  R_Config_S12AD0_Start();    //start A/D conversion in single scan mode   
  while(  interrupt_flag != 1 );    //wait until A/D conversion is complete (interrupt flag is set) 
  R_Config_S12AD0_Get_ValueResult (ADCHANNEL0, &AD_buffer_0);    //get 12-bit A/D result from 
channel 0 
  R_Config_S12AD0_Get_ValueResult (ADCHANNEL30, &AD_buffer_30);    //get 12-bit A/D result 
from channel 30 
  interrupt_flag = 2;    //set flag to indicate data has been read 
 
  while(1); 
} 

 

Config_S12AD0_user.c 

/* Start user code for global. Do not edit comment generated here */ 
volatile uint8_t interrupt_flag; 
/* End user code. Do not edit comment generated here */ 
 
static void __near r_Config_S12AD0_interrupt(void) 
{ 
    /* Start user code for r_Config_S12AD0_interrupt. Do not edit comment generated here */ 
     interrupt_flag = 1;    //set interrupt flag to indicate A/D conversion is complete 
    /* End user code. Do not edit comment generated here */ 
}  

 

  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 539 of 868 
Jan 20, 2026 

4.2.42 12 Bit A/D Continuous Scan 

Below is a list of API functions output by the Smart Configurator for 12 Bit A/D Continuous Scan use. 

 

Table 4-48  API Functions:  

API Function Name Peripheral Name Description 

R_{Config_S12ADn}_Create 12-bit A/D 

converter 

Executes initialization processing that is required before 

controlling the 12-bit A/D converter module. 

R_{Config_S12ADn}_Start Starts the 12-bit AD converter. 

R_{Config_S12ADn}_Stop Stops the12-bit AD converter. 

R_{Config_S12ADn}_Get_ValueResult  Returns 12 bits conversion result in the buffer. 

R_{Config_S12ADn}_Create_UserInit Executes user-specific initialization processing for the 

12-bit A/D converter. 

r_{Config_S12ADn}_interrupt Executes processing in response to INTAD interrupt. 

 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 540 of 868 
Jan 20, 2026 

R_{Config_S12ADn}_Create 

This API function executes initialization processing that is required before controlling the 12-bit A/D module. 

Remark This API function is called from R_Systeminit before the main() function is executed. 

 

[Syntax] 

void    R_{Config_S12ADn}_Create(void); 

Remark n is 0. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 541 of 868 
Jan 20, 2026 

R_{Config_S12ADn}_Start 

This API function starts the 12 Bit A/D converter. 

 

[Syntax] 

void    R_{Config_S12ADn}_Start(void); 

Remark n is 0. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 542 of 868 
Jan 20, 2026 

R_{Config_S12ADn}_Stop 

This API function stops the 12 Bit A/D converter. 

 

[Syntax] 

void    R_{Config_S12ADn}_Stop(void); 

Remark n is 0. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 543 of 868 
Jan 20, 2026 

R_{Config_S12ADn}_Get_ValueResult 

This API function returns the 12 bits conversion result in the buffer. 

 

[Syntax] 

void    R_{Config_S12ADn}_Get_ValueResult (e_ad_channel_t channel, uint16_t * const buffer); 

Remark n is 0. 

 

[Argument(s)] 

I/O Argument(s) Description 

I e_ad_channel_t channel; The channel of data register to be read 

I uint16_t * const buffer; The address where to write the conversion result 

Remark Below is shown the structure e_ad_channel_t channel (channel conditions). 

 

typedef enum 

{ 

ADCHANNEL0, ADCHANNEL1, ADCHANNEL2, ADCHANNEL3, ADCHANNEL4, 

ADCHANNEL5, ADCHANNEL6, ADCHANNEL7, ADCHANNEL8, ADCHANNEL9, 

ADCHANNEL10, ADCHANNEL11, ADCHANNEL12, ADCHANNEL13, ADCHANNEL14, 

ADCHANNEL15, ADCHANNEL16, ADCHANNEL17, ADCHANNEL18, ADCHANNEL19, 

ADCHANNEL20, ADCHANNEL21, ADCHANNEL22, ADCHANNEL23, ADCHANNEL24, 

ADCHANNEL25, ADCHANNEL26, ADCHANNEL27, ADCHANNEL28, ADCHANNEL29, 

ADCHANNEL30, ADSELFDIAGNOSIS 

} e_ad_channel_t; 

 

[Return value] 

  None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 544 of 868 
Jan 20, 2026 

R_{Config_S12ADn}_Create_UserInit 

This API function executes user-specific initialization processing for the 12 Bit A/D converter. 

Remark This API functions is called from R_{Config_S12ADn}_Create as a callback routine. 

 

[Syntax] 

void    R_{Config_S12ADn}_Create_UserInit(void); 

Remark n is 0. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 545 of 868 
Jan 20, 2026 

r_{Config_S12ADn}_interrupt 

This API function executes processing in response to INTAD interrupt. 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_S12ADn}_interrupt(void); 

 

For LLVM toolchain: 

void    r_{Config_S12ADn}_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_S12ADn}_interrupt(void); 

Remark n is 0. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 546 of 868 
Jan 20, 2026 

Usage example 

This is an example for getting the 12-bit A/D conversion result of continuous scan mode by a TAU software 
trigger input: 

(Blue code is user code.) 

main.c 

#include "r_smc_entry.h" 
 
void main(void); 
 
extern volatile uint8_t interrupt_flag; 
uint16_t AD_buffer_3 = 0;    //buffer to store A/D result from channel 3 
uint16_t AD_buffer_28 = 0;    //buffer to store A/D result from channel 28 
uint8_t continues_num = 0;    //counter for number of A/D conversions 
 
void main(void) 
{ 
 EI(); 
 
  interrupt_flag = 0; 
  continues_num = 0; 
  R_Config_S12AD0_Start();    //start A/D conversion 
  R_Config_TAU0_1_Start();    //TAU01 operation enable  
  R_Config_TAU0_1_Set_SoftwareTriggerOn();    //to generate a start trigger for A/D conversion  
   
  while( 1 ){ 
     if( interrupt_flag == 1 ){    //check if A/D interrupt occurred 
         interrupt_flag = 0;    //reset interrupt flag 
         continues_num ++;    //increment conversion counter 
          //Get A/D result from channel 3 and store in buffer 
          R_Config_S12AD0_Get_ValueResult (ADCHANNEL3, &AD_buffer_3);  
          //Get A/D result from channel 28 and store in buffer 
          R_Config_S12AD0_Get_ValueResult (ADCHANNEL28, &AD_buffer_28);  
 
           if( continues_num >=3 ){    //stop after 3 conversions 
                R_Config_S12AD0_Stop();    //stop the A/D module 
                break; 
           } 
     } 
  }; 
  interrupt_flag = 2;   //set flag to indicate completion 
 
  while(1); 
} 
 

 

Config_S12AD0_user.c 

/* Start user code for global. Do not edit comment generated here */ 
volatile uint8_t interrupt_flag; 
/* End user code. Do not edit comment generated here */ 
 
static void _near r_Config_S12AD0_interrupt(void) 
{ 
  

/* Start user code for r_Config_S12AD0_interrupt. Do not edit comment generated here */ 
    interrupt_flag = 1;        //set interrupt flag to indicate A/D conversion is complete 
    /* End user code. Do not edit comment generated here */ 
}  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 547 of 868 
Jan 20, 2026 

4.2.43 12 Bit A/D Group Scan 

Below is a list of API functions output by the Smart Configurator for 12 Bit A/D Group Scan use. 

 

Table 4-49  API Functions:  

API Function Name Peripheral Name Description 

R_{Config_S12ADn}_Create 12-bit A/D 

converter 

Executes initialization processing that is required before 

controlling the 12-bit A/D converter module. 

R_{Config_S12ADn}_Start Starts the 12-bit AD converter. 

R_{Config_S12ADn}_Stop Stops the12-bit AD converter. 

R_{Config_S12ADn}_Get_ValueResult Returns 12 bits conversion result in the buffer. 

R_{Config_S12ADn}_Create_UserInit Executes user-specific initialization processing for the 

12-bit A/D converter. 

r_{Config_S12ADn}_interrupt Executes processing in response to INTAD interrupt. 

r_{Config_S12ADn}_groupb_interrupt Executes processing in response to INTADGB interrupt. 

 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 548 of 868 
Jan 20, 2026 

R_{Config_S12ADn}_Create 

This API function executes initialization processing that is required before controlling the 12-bit A/D module. 

Remark This API function is called from R_Systeminit before the main() function is executed. 

 

[Syntax] 

void    R_{Config_S12ADn}_Create(void); 

Remark n is 0. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 549 of 868 
Jan 20, 2026 

R_{Config_S12ADn}_Start 

This API function starts the 12 Bit A/D converter. 

 

[Syntax] 

void    R_{Config_S12ADn}_Start(void); 

Remark n is 0. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 550 of 868 
Jan 20, 2026 

R_{Config_S12ADn}_Stop 

This API function stops the 12 Bit A/D converter. 

 

[Syntax] 

void    R_{Config_S12ADn}_Stop(void); 

Remark n is 0. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 551 of 868 
Jan 20, 2026 

R_{Config_S12ADn}_Get_ValueResult 

This API function returns the 12 bits conversion result in the buffer. 

 

[Syntax] 

void    R_{Config_S12ADn}_Get_ValueResult (e_ad_channel_t channel, uint16_t * const buffer); 

Remark n is 0. 

 

[Argument(s)] 

I/O Argument(s) Description 

I e_ad_channel_t channel; The channel of data register to be read 

I uint16_t * const buffer; The address where to write the conversion result 

Remark Below is shown the structure e_ad_channel_t channel (channel conditions). 

 

typedef enum 

{ 

ADCHANNEL0, ADCHANNEL1, ADCHANNEL2, ADCHANNEL3, ADCHANNEL4, 

ADCHANNEL5, ADCHANNEL6, ADCHANNEL7, ADCHANNEL8, ADCHANNEL9, 

ADCHANNEL10, ADCHANNEL11, ADCHANNEL12, ADCHANNEL13, ADCHANNEL14, 

ADCHANNEL15, ADCHANNEL16, ADCHANNEL17, ADCHANNEL18, ADCHANNEL19, 

ADCHANNEL20, ADCHANNEL21, ADCHANNEL22, ADCHANNEL23,   

ADCHANNEL24, ADCHANNEL25, ADCHANNEL26, ADCHANNEL27, ADCHANNEL28, 

ADCHANNEL29, ADCHANNEL30, ADINTERREFVOLT, ADSELFDIAGNOSIS 

} e_ad_channel_t; 

 

[Return value] 

  None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 552 of 868 
Jan 20, 2026 

R_{Config_S12ADn}_Create_UserInit 

This API function executes user-specific initialization processing for the 12 Bit A/D converter. 

Remark This API functions is called from R_{Config_S12ADn}_Create as a callback routine. 

 

[Syntax] 

void    R_{Config_S12ADn}_Create_UserInit(void); 

Remark n is 0. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 553 of 868 
Jan 20, 2026 

r_{Config_S12ADn}_interrupt 

This API function executes processing in response to INTAD interrupt. 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_S12ADn}_interrupt(void); 

 

For LLVM toolchain: 

void    r_{Config_S12ADn}_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_S12ADn}_interrupt(void); 

Remark n is 0. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 554 of 868 
Jan 20, 2026 

r_{Config_S12ADn}_ groupb_interrupt 

This API function executes processing in response to INTADGB interrupt. 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_S12ADn}_groupb_interrupt(void); 

 

For LLVM toolchain: 

void    r_{Config_S12ADn}_groupb_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_S12ADn}_groupb_interrupt(void); 

Remark n is 0. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 555 of 868 
Jan 20, 2026 

Usage example 

This is an example for getting the 12-bit A/D conversion result of group scan mode by a synchronous trigger 

from the timer function: 

(Blue code is user code.) 

main.c (1/2) 

#include "r_cg_macrodriver.h" 
 
void main(void); 
 
extern volatile uint8_t interrupt_flag_GA;    //group A interrupt flag 
extern volatile uint8_t interrupt_flag_GB;    //group B interrupt flag 
// Declare variables to store A/D results for three rounds of readings 
uint16_t GB_ANI0_1;    //group B, channel ANI0, first reading 
uint16_t GB_ANI1_1;    //group B, channel ANI1, first reading 
uint16_t GB_ANI2_1;    //group B, channel ANI2, first reading 
uint16_t GA_ANI3_1;    //group A, channel ANI3, first reading 
uint16_t GA_ANI4_1;    //group A, channel ANI4, first reading 
 
uint16_t GB_ANI0_2;    //group B, channel ANI0, second reading 
uint16_t GB_ANI1_2;    //group B, channel ANI1, second reading 
uint16_t GB_ANI2_2;    //group B, channel ANI2, second reading 
uint16_t GA_ANI3_2;    //group A, channel ANI3, second reading 
uint16_t GA_ANI4_2;    //group A, channel ANI4, second reading 
 
uint16_t GB_ANI0_3;    //group B, channel ANI0, third reading 
uint16_t GB_ANI1_3;    //group B, channel ANI1, third reading 
uint16_t GB_ANI2_3;    //group B, channel ANI2, third reading 
uint16_t GA_ANI3_3;    //group A, channel ANI3, third reading 
uint16_t GA_ANI4_3;    //group A, channel ANI4, third reading 
 
void main(void) 
{ 
    EI(); 
    RAMSAR = 0x9F;    //allow the user to access RAM 
 
    interrupt_flag_GA = 0; 
    interrupt_flag_GB = 0; 
 
    //initialize all A/D result buffers to 0 
    GB_ANI0_1 = 0;  // Group B, ANI0 buf, first reading 
    GB_ANI1_1 = 0; 
    GB_ANI2_1 = 0; 
    GA_ANI3_1 = 0;  // Group A, ANI3 buf, first reading 
    GA_ANI4_1 = 0; 
    GB_ANI0_2 = 0;  // Group B, ANI0 buf, second reading 
    GB_ANI1_2 = 0; 
    GB_ANI2_2 = 0; 
    GA_ANI3_2 = 0;  // Group A, ANI3 buf, second reading 
    GA_ANI4_2 = 0; 
  
    R_Config_S12AD0_Start();    //start A/D conversion 
    R_Config_TAU0_0_Start();    //to enable TAU00 one-shot 
    R_Config_TAU0_4_Start();    //to enable TAU04 one-shot 
    R_Config_TRD0_Start(); 
 
    R_Config_TAU0_4_Set_SoftwareTriggerOn();  //trigger Group B 
    
 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 556 of 868 
Jan 20, 2026 

main.c (2/2) 

//Input voltage of 1v  
    while(1){   
        //State 1: Wait for Group B conversion complete 
        if(interrupt_flag_GB == 1){  //first reading, read Group B A/D results 
            // Group B (Group B conversion completed) 
            R_Config_S12AD0_Get_ValueResult(ADCHANNEL0, &GB_ANI0_1);       
            R_Config_S12AD0_Get_ValueResult(ADCHANNEL1, &GB_ANI1_1);  
            R_Config_S12AD0_Get_ValueResult(ADCHANNEL2, &GB_ANI2_1);   
            // Group A (Group A not start)           
            R_Config_S12AD0_Get_ValueResult(ADCHANNEL3, &GA_ANI3_1);  
            R_Config_S12AD0_Get_ValueResult(ADCHANNEL4, &GA_ANI4_1);  
            interrupt_flag_GB = 2;  // read once,  Group B conversion completed 
 
            R_Config_TAU0_0_Set_SoftwareTriggerOn();  // trigger Group A 
        } 
        //State 2: Wait for Group A conversion complete 
        if(interrupt_flag_GA == 1){ // second reading, read Group A A/D results 
            // Group B (Group B not start)     
            R_Config_S12AD0_Get_ValueResult(ADCHANNEL0, &GB_ANI0_2);       
            R_Config_S12AD0_Get_ValueResult(ADCHANNEL1, &GB_ANI1_2);   
            R_Config_S12AD0_Get_ValueResult(ADCHANNEL2, &GB_ANI2_2);  
            // Group A (Group A start)      
            R_Config_S12AD0_Get_ValueResult(ADCHANNEL3, &GA_ANI3_2);    
            R_Config_S12AD0_Get_ValueResult(ADCHANNEL4, &GA_ANI4_2);    
            interrupt_flag_GA = 2;  // read once,  Group A conversion completed 
        } 
        //State 3: Exit loop when both groups have completed conversion 
        if((interrupt_flag_GA == 2) && (interrupt_flag_GB == 2)){ 
            break;  //Complete all conversions. 
        } 
    } 
    R_Config_S12AD0_Stop();  // stop conversion 
    //Prepare for third reading 
    GB_ANI0_3 = 0; 
    GB_ANI1_3 = 0; 
    GB_ANI2_3 = 0; 
    GA_ANI3_3 = 0; 
    GA_ANI4_3 = 0; 
    //Reset Group A and B flags 
    interrupt_flag_GA = 0;   
    interrupt_flag_GB = 0; 
    //Input voltage of 0.6V  
    R_Config_S12AD0_Start();    //group scan restart 
    R_Config_TAU0_0_Set_SoftwareTriggerOn();    //trigger Group A again 
 
    while(interrupt_flag_GA != 1); 
    //Group B (Group B not start)     
    R_Config_S12AD0_Get_ValueResult(ADCHANNEL0, &GB_ANI0_3); 
    R_Config_S12AD0_Get_ValueResult(ADCHANNEL1, &GB_ANI1_3); 
    R_Config_S12AD0_Get_ValueResult(ADCHANNEL2, &GB_ANI2_3); 
    //Group A (Group A start)    
    R_Config_S12AD0_Get_ValueResult(ADCHANNEL3, &GA_ANI3_3); 
    R_Config_S12AD0_Get_ValueResult(ADCHANNEL4, &GA_ANI4_3); 
 
    while(1); 
} 

 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 557 of 868 
Jan 20, 2026 

Config_S12AD0_user.c 

/* Start user code for global. Do not edit comment generated here */ 
uint8_t  interrupt_flag_GA; 
uint8_t  interrupt_flag_GB;  
/* End user code. Do not edit comment generated here */ 
 
static void __near r_Config_S12AD0_interrupt(void) 
{ 

/* Start user code for r_Config_S12AD0_interrupt. Do not edit comment generated here */ 
    interrupt_flag_GA = 1;    //set Group A interrupt flag when conversion completes 
    /* End user code. Do not edit comment generated here */ 
} 
static void __near r_Config_S12AD0_groupb_interrupt(void) 
{ 

/* Start user code for r_Config_S12AD0_groupb_interrupt. Do not edit comment generated here */ 
    interrupt_flag_GB = 1;    //set Group B interrupt flag when conversion completes 
    /* End user code. Do not edit comment generated here */ 
}  

 

 

 
  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 558 of 868 
Jan 20, 2026 

4.2.44 D/A Converter 

Below is a list of API functions output by the Smart Configurator for D/A converter use. 

 

Table 4-50  API Functions:  

API Function Name Peripheral Name Description 

R_{Config_DACn}_Create D/A Converter Executes initialization processing that is required 

before controlling the DACn module. 

R_{Config_DACn}_Start Starts the DACn module. 

R_{Config_DACn}_Stop Stops the DACn module. 

R_{Config_DACn}_Set_ConversionValue Sets the DACn value to convert. 

R_{Config_DACn}_Create_UserInit Executes user-specific initialization processing for 

the DACn. 

 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 559 of 868 
Jan 20, 2026 

R_{Config_DACn}_Create 

This API function executes initialization processing that is required before controlling the DACn module. 

Remark This API function is called from R_DAC_Create. 

 

[Syntax] 

void    R_{Config_DACn}_Create(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 560 of 868 
Jan 20, 2026 

R_{Config_DACn}_Start 

This API function starts the DACn converter. 

 

[Syntax] 

void    R_{Config_DACn}_Start(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 561 of 868 
Jan 20, 2026 

R_{Config_DACn}_Stop 

This API function stops the DACn converter. 

 

[Syntax] 

void    R_{Config_DACn}_Stop(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 562 of 868 
Jan 20, 2026 

R_{Config_DACn}_Set_ConversionValue 

This API function sets the DACn value to convert. 

 

[Syntax] 

void    R_{Config_DACn}_Set_ConversionValue(uint8_t reg_value); 

Remark n is the channel number. 

 

[Argument(s)] 

I/O Argument(s) Description 

I uint8_t reg_value; Value of conversion 

 

[Return value] 

  None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 563 of 868 
Jan 20, 2026 

R_{Config_DACn}_Create_UserInit 

This API function executes user-specific initialization processing for the DACn. 

Remark This API functions is called from R_{Config_DACn}_Create as a callback routine. 

 

[Syntax] 

void    R_{Config_DACn}_Create_UserInit(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 564 of 868 
Jan 20, 2026 

Usage example 

This is an example for starting D/A conversion with a user-define value: 

(Blue code is user code.) 

main.c 

#include "r_smc_entry.h" 
 
void main(void); 
 
void main(void) 
{ 
 EI();    //to enable interrupt 
    R_Config_DAC0_Set_ConversionValue(0xF0);    //set the conversion value for DAC0 to 0xF0 
    R_Config_DAC0_Start();    //start D/A conversion 
 
} 

 

 
  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 565 of 868 
Jan 20, 2026 

4.2.45 Data Transfer Controller 

Below is a list of API functions output by the Smart Configurator for data transfer controller use. 

 

Table 4-51  API Functions:  

API Function Name Peripheral Name Description 

R_{Config_DTC}_Create Data Transfer Controller Executes initialization processing that is required 

before controlling the DTC module. 

R_{Config_DTCDn}_Start Starts DTCDn module operation. 

R_{Config_DTCDn}_Stop Stops DTCDn module operation. 

R_{Config_DTC}_Create_UserInit Executes user-specific initialization processing for 

the data transfer controller. 

 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 566 of 868 
Jan 20, 2026 

R_{Config_DTC}_Create 

This API function executes initialization processing that is required before controlling the DTC module. 

Remark This API function is called from R_Systeminit before the main() function is executed. 

 

[Syntax] 

void    R_{Config_DTC}_Create(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 567 of 868 
Jan 20, 2026 

R_{Config_DTCDn}_Start 

This API function starts DTCDn module operation 

 

[Syntax] 

void    R_{Config_DTCDn}_Start(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 568 of 868 
Jan 20, 2026 

R_{Config_DTCDn}_Stop 

This API function stops DTCDn module operation 

 

[Syntax] 

void    R_{Config_DTCDn}_Stop(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 569 of 868 
Jan 20, 2026 

R_{Config_DTC}_Create_UserInit 

This API function executes user-specific initialization processing for the data transfer controller. 

Remark This API functions is called from R_{Config_DTC}_Create as a callback routine. 

 

[Syntax] 

void    R_{Config_DTC}_Create_UserInit(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 570 of 868 
Jan 20, 2026 

Usage example 

This is an example for using DTC data transfer in response to fixed-cycle signal of real-time clock/alarm match 

detection: 

(Blue code is user code.) 

main.c 

#include "r_smc_entry.h" 
 
void main(void); 
 
void main(void) 
{ 
 EI();    //enable global interrupts to allow the system to respond to interrupt events 
    R_DTCD0_Start();    //start DTC channel 0 to enable automatic data transfer triggered by 
RTC/alarm match 
    R_Config_RTC_Start();    //start the real-time clock module to begin generating fixed-cycle signals 
 
    while(dtc_controldata_0.dtcct != 0);    //wait until the DTC transfer is complete (dtcct becomes 0) 
 
    R_Config_RTC_Stop();    //stop the real-time clock module after transfer is done 
    R_DTCD0_Stop();    //stop DTC channel 0 to end data transfer operations 
} 

 

  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 571 of 868 
Jan 20, 2026 

4.2.46 Comparator 

Below is a list of API functions output by the Smart Configurator for comparator use. 

 

Table 4-52  API Functions:  

API Function Name Peripheral Name Description 

R_{Config_COMPn}_Create Comparator Executes initialization processing that is required before 

controlling the comparator n module. 

R_{Config_COMPn}_Start Starts the comparator n. 

R_{Config_COMPn}_Stop Stops the comparator n. 

R_{Config_COMPn}_Create_UserInit Executes user-specific initialization processing for the 

comparator n. 

r_{Config_COMPn}_interrupt Executes processing in response to INTCMPn interrupt. 

 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 572 of 868 
Jan 20, 2026 

R_{Config_COMPn}_Create 

This API function executes initialization processing that is required before controlling the comparator n 

module. 

Remark This API function is called from R_COMP_Create or R_PGACOMP_Create. 

 

[Syntax] 

void    R_{Config_COMPn}_Create(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 573 of 868 
Jan 20, 2026 

R_{Config_COMPn}_Start 

This API function starts the comparator n converter. 

 

[Syntax] 

void    R_{Config_COMPn}_Start(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 574 of 868 
Jan 20, 2026 

R_{Config_COMPn}_Stop 

This API function stops the comparator n converter. 

 

[Syntax] 

void    R_{Config_COMPn}_Stop(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 575 of 868 
Jan 20, 2026 

R_{Config_COMPn}_Create_UserInit 

This API function executes user-specific initialization processing for the comparator n. 

Remark This API functions is called from R_{Config_COMPn}_Create as a callback routine. 

 

[Syntax] 

void    R_{Config_COMPn}_Create_UserInit(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 576 of 868 
Jan 20, 2026 

r_{Config_COMPn}_interrupt 

This API function executes processing in response to INTCMPn interrupt. 

Remark This API function is called as the interrupt handler for comparator interrupts, which occur 

when an active edge of the comparator output is detected.  

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_COMPn}_interrupt(void); 

 

For LLVM toolchain: 

void    r_{Config_COMPn}_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_COMPn}_interrupt(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 577 of 868 
Jan 20, 2026 

Usage example 

This is an example for setting a flag when detecting an active edge of the comparator output: 

(Blue code is user code.) 

main.c 

#include "r_smc_entry.h" 
extern uint8_t comp0_trig_flag; 
 
void main(void); 
 
void main(void) 
{ 
 EI();    //enable global interrupts to allow the system to respond to interrupt events 
    comp0_trig_flag = 0U; 

/* Start comparator 0 */ 
 R_Config_COMP0_Start ();    //COMP0 operation enable 
 while(comp0_trig_flag != 1U);    //waiting for an active edge 
    comp1_trig_flag = 0U; 
    R_Config_COMP0_Stop ();    //COMP0 operation disable 
} 

 

Config_COMP0_user.c 

/* Start user code for global. Do not edit comment generated here */ 
uint8_t comp0_trig_flag = 0U; 
/* End user code. Do not edit comment generated here */ 
 
static void __near r_Config_COMP0_interrupt(void) 
{ 
    /* Start user code for r_Config_COMP0_interrupt. Do not edit comment generated here */ 
    /* Set the flag */ 
 comp0_trig_flag = 1U;    //it indicats an active edge of the comparator output is detected 
    /* End user code. Do not edit comment generated here */ 
}  

 

  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 578 of 868 
Jan 20, 2026 

4.2.47 Programmable Gain Amplifier 

Below is a list of API functions output by the Smart Configurator for programmable gain amplifier use. 

 

Table 4-53  API Functions:  

API Function Name Peripheral Name Description 

R_{Config_PGA}_Create Programmable 

Gain Amplifier 

Executes initialization processing that is required before 

controlling the PGA module. 

R_{Config_PGA}_Start Starts the PGA. 

R_{Config_PGA}_Stop Stops the PGA. 

R_{Config_PGA}_Create_UserInit Executes user-specific initialization processing for the 

PGA. 

 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 579 of 868 
Jan 20, 2026 

R_{Config_PGA}_Create 

This API function executes initialization processing that is required before controlling the PGA module. 

Remark This API function is called from R_PGACOMP_Create. 

 

[Syntax] 

void    R_{Config_PGA}_Create(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 580 of 868 
Jan 20, 2026 

R_{Config_PGA}_Start 

This API function starts the PGA. 

 

[Syntax] 

void    R_{Config_PGA}_Start(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 581 of 868 
Jan 20, 2026 

R_{Config_PGA}_Stop 

This API function stops the PGA. 

 

[Syntax] 

void    R_{Config_PGA}_Stop(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 582 of 868 
Jan 20, 2026 

R_{Config_PGA}_Create_UserInit 

This API function executes user-specific initialization processing for the PGA. 

Remark This API functions is called from R_{Config_PGA}_Create as a callback routine. 

 

[Syntax] 

void    R_{Config_PGA}_Create_UserInit(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 583 of 868 
Jan 20, 2026 

Usage example 

This is an example for outputting an amplifying signal when inputing a signal: 

(Blue code is user code.) 

main.c 

#include "r_smc_entry.h" 
 
void main(void); 
 
void main(void) 
{ 
 EI();    //enable global interrupts to allow the system to respond to interrupt events 

/* Start comparator 0 */ 
 R_Config_PGA_Start (); 
 while(1U); 
} 

 

  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 584 of 868 
Jan 20, 2026 

4.2.48 SPI (CSI) Communication 

Below is a list of API functions output by the Smart Configurator for SPI (CSI) communication use. 

 

Table 4-54  API Functions:  

API Function Name Peripheral Name Description 

R_{Config_CSIp}_Create Serial Array Unit Executes initialization processing that is required 

before controlling the CSIp module. 

R_{Config_CSIp}_Start Starts the CSIp module operation. 

R_{Config_CSIp}_Stop Stops the CSIp module operation. 

R_{Config_CSIp}_Send Sends CSIp data. 

R_{Config_CSIp}_Receive Receives CSIp data. 

R_{Config_CSIp}_Send_Receive Sends and receives CSIp data. 

R_{Config_CSIp}_Create_UserInit Executes user-specific initialization processing for 

the CSIp. 

r_{Config_CSIp}_interrupt Executes processing in response to transfer end 

interrupt/buffer empty interrupt (INTCSIp). 

r_{Config_CSIp}_callback_sendend Eexecutes processing in response to transmit end 

interrupt. 

r_{Config_CSIp}_callback_receiveend Executes processing in response to receive end 

interrupt. 

r_{Config_CSIp}_callback_error Executes processing in response to occur transfer 

error. 

 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 585 of 868 
Jan 20, 2026 

R_{Config_CSIp}_Create 

This API function executes initialization processing that is required before controlling the CSIp module. 

Remark1. This API function is called from R_SAUm_Create. 

Remark2. When m is 0, p is 00, 01, 10, 11; When m is 1, p is 20, 21, 30, 31. 

 

[Syntax] 

void    R_{Config_CSIp}_Create(void); 

Remark p is 00, 01, 10, 11, 20, 21, 30, 31. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 586 of 868 
Jan 20, 2026 

R_{Config_CSIp}_Start 

This API function starts the CSIp module operation. 

 

[Syntax] 

void    R_{Config_CSIp}_Start(void); 

Remark p is 00, 01, 10, 11, 20, 21, 30, 31. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 587 of 868 
Jan 20, 2026 

R_{Config_CSIp}_Stop 

This API function stops the CSIp module operation. 

 

[Syntax] 

void    R_{Config_CSIp}_Stop(void); 

Remark p is 00, 01, 10, 11, 20, 21, 30, 31. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 588 of 868 
Jan 20, 2026 

R_{Config_CSIp}_Send 

This API function sends CSIp data. 

 

[Syntax] 

MD_STATUS    R_{Config_CSIp}_Send(uint8_t * const tx_buf, uint16_t tx_num); 

Remark p is 00, 01, 10, 11, 20, 21, 30, 31. 

 

[Argument(s)] 

I/O Argument(s) Description 

I uint8_t * const tx_buf; Transfer buffer pointer 

I uint16_t tx_num; Buffer size 

 

[Return value] 

Macro Description 

MD_OK Normal end 

MD_ARGERROR Error argument input error. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 589 of 868 
Jan 20, 2026 

R_{Config_CSIp}_Receive 

This API function receives CSIp data. 

 

[Syntax] 

MD_STATUS    R_{Config_CSIp}_Receive(uint8_t * const rx_buf, uint16_t rx_num); 

Remark p is 00, 01, 10, 11, 20, 21, 30, 31. 

 

[Argument(s)] 

I/O Argument(s) Description 

O uint8_t * const rx_buf; Receive buffer pointer 

I uint16_t rx_num; Buffer size 

 

[Return value] 

Macro Description 

MD_OK Normal end 

MD_ARGERROR Error argument input error. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 590 of 868 
Jan 20, 2026 

R_{Config_CSIp}_Send_Receive 

Sends and receives CSIp data. 

 

[Syntax] 

MD_STATUS    R_{Config_CSIp}_Send_Receive(uint8_t * const tx_buf, uint16_t tx_num, uint8_t 

* const rx_buf); 

Remark p is 00, 01, 10, 11, 20, 21, 30, 31. 

 

[Argument(s)] 

I/O Argument(s) Description 

I uint8_t * const tx_buf; Transfer buffer pointer 

O uint8_t * const rx_buf; Receive buffer pointer 

I uint16_t tx_num; Buffer size 

 

[Return value] 

Macro Description 

MD_OK Normal end 

MD_ARGERROR Error argument input error. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 591 of 868 
Jan 20, 2026 

R_{Config_CSIp}_Create_UserInit 

This API function executes user-specific initialization processing for the CSIp. 

Remark This API functions is called from R_{Config_CSIp}_Create as a callback routine. 

 

[Syntax] 

void    R_{Config_CSIp}_Create_UserInit(void); 

Remark p is 00, 01, 10, 11, 20, 21, 30, 31. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 592 of 868 
Jan 20, 2026 

r_{Config_CSIp}_interrupt 

This API function executes processing in response to transfer end interrupt/buffer empty interrupt 

(INTCSIp). 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_CSIp}_interrupt(void); 

 

For LLVM toolchain: 

void    r_{Config_CSIp}_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_CSIp}_interrupt(void); 

Remark p is 00, 01, 10, 11, 20, 21, 30, 31. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 593 of 868 
Jan 20, 2026 

r_{Config_CSIp}_callback_sendend 

This API function executes processing in response to transmit end interrupt. 

Remark 1.  This API function is called as the callback routine of interrupt process 

r_{Config_CSIp}_interrupt corresponding to the CSIp interrupt. 

Remark 2.  User should only keep necessary flag set/clear in callback function, other processing code 

should be moved out of callback and interrupt function. Otherwise, the interrupt is not 

processed at the correct timing. 

 

[Syntax] 

static void    r_{Config_CSIp}_callback_sendend(void); 

Remark p is 00, 01, 10, 11, 20, 21, 30, 31. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 594 of 868 
Jan 20, 2026 

r_{Config_CSIp}_callback_receiveend 

This API function executes processing in response to receive end interrupt. 

Remark 1.  This API function is called as the callback routine of interrupt process 

r_{Config_CSIp}_interrupt corresponding to the CSIp interrupt. 

Remark 2.  User should only keep necessary flag set/clear in callback function, other processing code 

should be moved out of callback and interrupt function. Otherwise, the interrupt is not 

processed at the correct timing. 

 

[Syntax] 

static void    r_{Config_CSIp}_callback_receiveend(void); 

Remark p is 00, 01, 10, 11, 20, 21, 30, 31. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 595 of 868 
Jan 20, 2026 

r_{Config_CSIp}_callback_error 

This API function executes processing in response to occur transfer error. 

Remark 1.  This API function is called as the callback routine of interrupt process 

r_{Config_CSIp}_interrupt corresponding to the CSIp interrupt. 

Remark 2.  User should only keep necessary flag set/clear in callback function, other processing code 

should be moved out of callback and interrupt function. Otherwise, the interrupt is not 

processed at the correct timing. 

 

[Syntax] 

static void    r_{Config_CSIp}_callback_error(uint8_t err_type); 

Remark p is 00, 01, 10, 11, 20, 21, 30, 31. 

 

[Argument(s)] 

I/O Argument(s) Description 

I uint8_t err_type; Error type value 

Bit0: Overrun error 

   

[Return value] 

None. 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 596 of 868 
Jan 20, 2026 

Usage example 

This is an example for CSI00 send data and CSI11 receive these data in continuous mode: 

(Blue code is user code.) 

main.c 

#include "r_smc_entry.h" 
 
uint8_t tx_buf[6] = {0xA5,0x3F,0xC0,0x5C,0xB6,0x37};    //define the transmit buffer with 6 bytes of data 
to send 
uint8_t rx_buf[6] = {0x00,0x00,0x00,0x00,0x00,0x00};    //define the receive buffer to store 6 bytes of 
received data 
volatile uint8_t transmitend_flag = 0U; 
volatile uint8_t receiveend_flag = 0U; 
 
void main(void); 
 
void main(void) 
{ 
 EI();    //enable global interrupts to allow the system to respond to interrupt events 
    R_Config_CSI11_Start();    //start the CSI11 module (receiver) 
    R_Config_CSI00_Start();    //start the CSI00 module (transmitter) 

  R_Config_CSI11_Receive(rx_buf, sizeof(rx_buf));    //start receiving data on CSI11, store into 
rx_buf 
    R_Config_CSI00_Send(tx_buf, sizeof(tx_buf));    //start sending data on CSI00, send contents of 
tx_buf 
    while(transmitend_flag != 1U);    //wait until transmission is complete 
    transmitend_flag = 0U;    //reset the transmission end flag 
    while(receiveend_flag != 1U);    //wait until reception is complete 
    receiveend_flag = 0U;    //reset the reception end flag 
    R_Config_CSI00_Stop();    //stop the CSI00 module after transmission is done 
    R_Config_CSI11_Stop();    //stop the CSI11 module after reception is done 
} 

 

Config_CSI00_user.c 

/* Start user code for global. Do not edit comment generated here */ 
extern volatile uint8_t transmitend_flag;  
/* End user code. Do not edit comment generated here */ 
 
static void r_Config_CSI00_callback_sendend(void) 
{ 
    /* Start user code for r_Config_CSI00_callback_sendend. Do not edit comment generated here */ 
    transmitend_flag = 1U;    //set the flag to indicate transmission is complete 
    /* End user code. Do not edit comment generated here */ 
}  

 

Config_CSI11_user.c 

/* Start user code for global. Do not edit comment generated here */ 
extern volatile uint8_t receiveend_flag;  
/* End user code. Do not edit comment generated here */ 
 
static void r_Config_CSI11_callback_receiveend (void) 
{ 
    /* Start user code for r_Config_CSI11_callback_receiveend. Do not edit comment generated here */ 
    receiveend_flag = 1U;    //set the flag to indicate reception is complete 
    /* End user code. Do not edit comment generated here */ 
}  

  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 597 of 868 
Jan 20, 2026 

4.2.49 UART Communication (Serial array unit) 

Below is a list of API functions output by the Smart Configurator for UART Communication use. 

 

Table 4-55  API Functions:  

API Function Name Peripheral Name Description 

R_{Config_UARTq}_Create Serial Array Unit Executes initialization processing that is 

required before controlling the UARTq module. 

R_{Config_UARTq}_Start Starts UARTq module operation. 

R_{Config_UARTq}_Stop Stops UARTq module operation. 

R_{Config_UARTq}_Send Sends UARTq data. 

R_{Config_UARTq}_Receive Receives UARTq data. 

R_{Config_UARTq}_Loopback_Enable Enables the UARTq loopback function. 

R_{Config_UARTq}_Loopback_Disable Disables the UARTq loopback function. 

R_{Config_UARTq}_Create_UserInit Executes user-specific initialization processing 

for the UARTq. 

r_{Config_UARTq}_interrupt_send Executes processing in response to UARTq 

transmit end interrupt (in single-transfer mode) 

or buffer empty interrupt (in continuous transfer 

mode). 

r_{Config_UARTq}_interrupt_receive Executes processing in response to UARTq 

receive end interrupt. 

r_{Config_UARTq}_interrupt_error Executes processing in response to UARTq 

error interrupt. 

r_{Config_UARTq}_callback_sendend Executes processing in response to transmit 

end interrupt. 

r_{Config_UARTq}_callback_receiveend Executes processing in response to receive 

end interrupt. 

r_{Config_UARTq}_callback_error Executes processing in response to receive 

error interrupt. 

r_{Config_UARTq}_callback_softwareoverrun Executes processing in response to receive an 

overflow data. 

 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 598 of 868 
Jan 20, 2026 

R_{Config_UARTq}_Create 

This API function executes initialization processing that is required before controlling the UARTq module. 

Remark1. This API function is called from R_SAUm_Create. 

Remark2. When m is 0, q is 0, 1; When m is 1, q is 2, 3. 

 

[Syntax] 

void    R_{Config_UARTq}_Create(void); 

Remark q is 0, 1, 2, 3. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 599 of 868 
Jan 20, 2026 

R_{Config_UARTq}_Start 

This API function starts UARTq module operation. 

 

[Syntax] 

void    R_{Config_UARTq}_Start(void); 

Remark q is 0, 1, 2, 3. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 600 of 868 
Jan 20, 2026 

R_{Config_UARTq}_Stop 

This API function stops UARTq module operation. 

 

[Syntax] 

void    R_{Config_UARTq}_Stop(void); 

Remark q is 0, 1, 2, 3. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 601 of 868 
Jan 20, 2026 

R_{Config_UARTq}_Send 

This API function sends UARTq data. 

 

[Syntax] 

MD_STATUS    R_{Config_UARTq}_Send(uint8_t * const tx_buf, uint16_t tx_num); 

Remark q is 0, 1, 2, 3. 

 

[Argument(s)] 

I/O Argument(s) Description 

I uint8_t * const tx_buf; Transfer buffer pointer 

I uint16_t tx_num; Buffer size 

 

[Return value] 

Macro Description 

MD_OK Normal end (send the first data) 

MD_ARGERROR Error argument input error. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 602 of 868 
Jan 20, 2026 

R_{Config_UARTq}_Receive 

This API function receives UARTq data. 

 

[Syntax] 

MD_STATUS    R_{Config_UARTq}_Receive(uint8_t * const rx_buf, uint16_t rx_num); 

Remark q is 0, 1, 2, 3. 

 

[Argument(s)] 

I/O Argument(s) Description 

O uint8_t * const rx_buf; Receive buffer pointer 

I uint16_t rx_num; Buffer size 

 

[Return value] 

Macro Description 

MD_OK Normal end 

MD_ARGERROR Error argument input error. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 603 of 868 
Jan 20, 2026 

R_{Config_UARTq}_Loopback_Enable 

This API function enables the UARTq loopback function. 

 

[Syntax] 

void    R_{Config_UARTq}_Loopback_Enable(void); 

Remark q is 0, 1, 2, 3. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 604 of 868 
Jan 20, 2026 

R_{Config_UARTq}_Loopback_Disable 

This API function disables the UARTq loopback function. 

 

[Syntax] 

void    R_{Config_UARTq}_Loopback_Disable(void); 

Remark q is 0, 1, 2, 3. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 605 of 868 
Jan 20, 2026 

R_{Config_UARTq}_Create_UserInit 

This API function executes user-specific initialization processing for the UARTq. 

Remark This API functions is called from R_{Config_UARTq}_Create as a callback routine. 

 

[Syntax] 

void    R_{Config_UARTq}_Create_UserInit(void); 

Remark q is 0, 1, 2, 3. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 606 of 868 
Jan 20, 2026 

r_{Config_UARTq}_interrupt_send 

This API function executes processing in response to UARTq transmit end interrupt (in single-transfer 

mode) or buffer empty interrupt (in continuous transfer mode). 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_UARTq}_interrupt_send(void); 

 

For LLVM toolchain: 

void    r_{Config_UARTq}_interrupt_send(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_UARTq}_interrupt_send(void); 

Remark q is 0, 1, 2, 3. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 607 of 868 
Jan 20, 2026 

r_{Config_UARTq}_interrupt_receive 

This API function executes processing in response to UARTq receive end interrupt. 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_UARTq}_interrupt_receive(void); 

 

For LLVM toolchain: 

void    r_{Config_UARTq}_interrupt_receive(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_UARTq}_interrupt_receive(void); 

Remark q is 0, 1, 2, 3. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 608 of 868 
Jan 20, 2026 

r_{Config_UARTq}_interrupt_error 

This API function executes processing in response to UARTq error interrupt. 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_UARTq}_interrupt_error(void); 

 

For LLVM toolchain: 

void    r_{Config_UARTq}_interrupt_error(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_UARTq}_interrupt_error(void); 

Remark q is 0, 1, 2, 3. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 609 of 868 
Jan 20, 2026 

r_{Config_UARTq}_callback_sendend 

This API function executes processing in response to transmit end interrupt. 

Remark 1.  This API function is called as the callback routine of interrupt process 

r_{Config_UARTq}_interrupt_send corresponding to the UARTq transmit end interrupt. 

Remark 2.  User should only keep necessary flag set/clear in callback function, other processing code 

should be moved out of callback and interrupt function. Otherwise, the interrupt is not 

processed at the correct timing. 

 

[Syntax] 

static void    r_{Config_UARTq}_callback_sendend(void); 

Remark q is 0, 1, 2, 3. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 610 of 868 
Jan 20, 2026 

r_{Config_UARTq}_callback_receiveend 

This API function executes processing in response to receive end interrupt. 

Remark 1.  This API function is called as the callback routine of interrupt process 

r_{Config_UARTq}_interrupt_receive corresponding to the UARTq receive end interrupt. 

Remark 2.  User should only keep necessary flag set/clear in callback function, other processing code 

should be moved out of callback and interrupt function. Otherwise, the interrupt is not 

processed at the correct timing. 

 

[Syntax] 

static void    r_{Config_UARTq}_callback_receiveend(void); 

Remark q is 0, 1, 2, 3. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 611 of 868 
Jan 20, 2026 

r_{Config_UARTq}_callback_error 

This API function executes processing in response to receive error interrupt. 

Remark 1.  This API function is called as the callback routine of interrupt process 

r_{Config_UARTq}_interrupt_error corresponding to the UARTq receive error interrupt. 

Remark 2.  User should only keep necessary flag set/clear in callback function, other processing code 

should be moved out of callback and interrupt function. Otherwise, the interrupt is not 

processed at the correct timing. 

 

[Syntax] 

static void    r_{Config_UARTq}_callback_error(uint8_t err_type); 

Remark q is 0, 1, 2, 3. 

 

[Argument(s)] 

I/O Argument(s) Description 

I uint8_t err_type; Error type info 

Bit0: Overrun error 

Bit1: Parity error  

Bit2: Framing error 

Bit3 to Bit7: 0 

   

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 612 of 868 
Jan 20, 2026 

r_{Config_UARTq}_callback_softwareoverrun 

This API function executes processing in response to receive an overflow data. 

Remark 1.  This API function is called as the callback routine of interrupt process 

r_{Config_UARTq}_interrupt_receive corresponding to the UARTq receive end interrupt. 

Remark 2.  User should only keep necessary flag set/clear in callback function, other processing code 

should be moved out of callback and interrupt function. Otherwise, the interrupt is not 

processed at the correct timing. 

 

[Syntax] 

static void    r_{Config_UARTq}_callback_softwareoverrun(uint16_t rx_data); 

Remark q is 0, 1, 2, 3. 

 

[Argument(s)] 

I/O Argument(s) Description 

I uint16_t rx_data; Receive data 

   

[Return value] 

None. 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 613 of 868 
Jan 20, 2026 

Usage example 

This is an example for UART0 send data and UART1 receive these data: 

(Blue code is user code.) 

main.c 

#include "r_smc_entry.h" 
 
uint8_t tx_buf[6] = {0xA5,0x3F,0xC0,0x5C,0xB6,0x37};    //define the transmit buffer with 6 bytes of data 
to send 
uint8_t rx_buf[6] = {0x00,0x00,0x00,0x00,0x00,0x00};    //define the receive buffer to store 6 bytes of 
received data 
volatile uint8_t transmitend_flag = 0U; 
volatile uint8_t receiveend_flag = 0U; 
 
void main(void); 
 
void main(void) 
{ 
 EI();    //enable global interrupts to allow the system to respond to interrupt events 
    R_Config_UART0_Start();    //start the UART0 module (transmitter) 
    R_Config_UART1_Start();    //start the UART1 module (receiver) 
    R_Config_UART1_Receive(rx_buf, 6);    //start receiving 6 bytes of data on UART1, store into 
rx_buf 
    R_Config_UART0_Send(tx_buf, 6);    //start receiving 6 bytes of data on UART1, store into rx_buf 
    while(transmitend_flag != 1U && receiveend_flag != 1U);    //wait until both transmission and 
reception are complete 
    transmitend_flag = 0U;    //reset the transmission end flag 
    receiveend_flag = 0U;    //reset the reception end flag 
    R_Config_UART0_Stop();    //stop the UART0 module after transmission is done 
    R_Config_UART1_Stop();    //stop the UART1 module after reception is done 
} 

 

Config_UART0_user.c 

/* Start user code for global. Do not edit comment generated here */ 
extern volatile uint8_t transmitend_flag;  
/* End user code. Do not edit comment generated here */ 
 
static void r_Config_UART0_callback_sendend(void) 
{ 
    /* Start user code for r_Config_UART0_callback_sendend. Do not edit comment generated here */ 
    transmitend_flag = 1U;    //set the flag to indicate transmission is complete 
    /* End user code. Do not edit comment generated here */ 
}  

 

Config_UART1_user.c 

/* Start user code for global. Do not edit comment generated here */ 
extern volatile uint8_t receiveend_flag;  
/* End user code. Do not edit comment generated here */ 
 
static void r_Config_UART1_callback_receiveend (void) 
{ 
    /* Start user code for r_Config_UART1_callback_receiveend. Do not edit comment generated here 
*/ 
    receiveend_flag = 1U;    //set the flag to indicate reception is complete 
    /* End user code. Do not edit comment generated here */ 
}  

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 614 of 868 
Jan 20, 2026 

 

4.2.50 UART Communication (Serial Interface UARTA) 

Below is a list of API functions output by the Smart Configurator for UART communication (for serial interface 

UARTA) use. 

 

Table 4-56  API Functions: 

API Function Name Peripheral Name Description 

R_{Config_UARTAn}_Create Serial Interface 

UARTA 

Executes initialization processing that is required 

before controlling the UARTAn module. 

R_{Config_UARTAn}_Start Starts UARTAn module operation. 

R_{Config_UARTAn}_Stop Stops UARTAn module operation. 

R_{Config_UARTAn}_Send Sends UARTAn data. 

R_{Config_UARTAn}_Receive Receives UARTAn data. 

R_{Config_UARTAn}_Loopback_Enable Enables the UARTAn loopback function. 

R_{Config_UARTAn}_Loopback_Disable Disables the UARTAn loopback function. 

R_{Config_UARTAn}_Create_UserInit Executes user-specific initialization processing for the 

UARTAn. 

R_{Config_UARTAn}_PollingEnd_UserCo

de 

Executes user code in response to completion of 

continuous transmission by polling. 

r_{Config_UARTAn}_interrupt_send Executes processing in response to UARTAn 

transmission completion interrupt (INTUTn). 

r_{Config_UARTAn}_interrupt_receive Executes processing in response to UARTAn 

reception transfer end interrupt (INTURn). 

r_{Config_UARTAn}_interrupt_error Executes processing in response to UARTAn 

reception communication error interrupt (INTUREn). 

r_{Config_UARTAn}_callback_sendend Executes processing in response to UARTAn 

transmission completion interrupt. 

r_{Config_UARTAn}_callback_receiveend Executes processing in response to UARTAn 

reception transfer end interrupt. 

r_{Config_UARTAn}_callback_error Executes processing in response to UARTAn 

reception communication error interrupt. 

 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 615 of 868 
Jan 20, 2026 

R_{Config_UARTAn}_Create 

This API function executes initialization processing that is required before controlling the UARTAn module. 

Remark This API function is called from R_UARTA_Create. 

 

[Syntax] 

void    R_{Config_UARTAn}_Create(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 616 of 868 
Jan 20, 2026 

R_{Config_UARTAn}_Start 

This API function starts UARTAn module operation. 

 

[Syntax] 

void    R_{Config_UARTAn}_Start(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 617 of 868 
Jan 20, 2026 

R_{Config_UARTAn}_Stop 

This API function stops UARTAn module operation. 

 

[Syntax] 

void    R_{Config_UARTAn}_Stop(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 618 of 868 
Jan 20, 2026 

R_{Config_UARTAn}_Send 

This API function sends UARTAn data. 

 

[Syntax] 

MD_STATUS    R_{Config_UARTAn}_Send(uint8_t * const tx_buf, uint16_t tx_num); 

Remark n is the channel number. 

 

[Argument(s)] 

I/O Argument(s) Description 

I uint8_t * const tx_buf; Transfer buffer pointer 

I uint16_t tx_num; Buffer size 

 

[Return value] 

Macro Description 

MD_OK Normal end (send the first data) 

MD_ARGERROR Error argument input error. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 619 of 868 
Jan 20, 2026 

R_{Config_UARTAn}_Receive 

This API function receives UARTAn data. 

 

[Syntax] 

MD_STATUS    R_{Config_UARTAn}_Receive(uint8_t * const rx_buf, uint16_t rx_num); 

Remark n is the channel number. 

 

[Argument(s)] 

I/O Argument(s) Description 

O uint8_t * const rx_buf; Receive buffer pointer 

I uint16_t tx_num; Buffer size 

 

[Return value] 

Macro Description 

MD_OK Normal end 

MD_ARGERROR Error argument input error. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 620 of 868 
Jan 20, 2026 

R_{Config_UARTAn}_Loopback_Enable 

This API function enables the UARTAn loopback function. 

 

[Syntax] 

void    R_{Config_UARTAn}_Loopback_Enable(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 621 of 868 
Jan 20, 2026 

R_{Config_UARTAn}_Loopback_Disable 

This API function disables the UARTAn loopback function. 

 

[Syntax] 

void    R_{Config_UARTAn}_Loopback_Disable(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 622 of 868 
Jan 20, 2026 

R_{Config_UARTAn}_Create_UserInit 

This API function executes user-specific initialization processing for the UARTAn. 

Remark This API functions is called from R_{Config_UARTAn}_Create as a callback routine. 

 

[Syntax] 

void    R_{Config_UARTAn}_Create_UserInit(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 623 of 868 
Jan 20, 2026 

R_{Config_UARTAn}_PollingEnd_UserCode 

This API function executes user code in response to completion of continuous transmission by polling. 

Remark This API function is called from R_{Config_UARTAn}_Send corresponding to data 

transmission completion. 

. 

 

[Syntax] 

void   R_{Config_UARTAn}_PollingEnd_UserCode(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 624 of 868 
Jan 20, 2026 

r_{Config_UARTAn}_interrupt_send 

This API function executes processing in response to UARTAn transmission completion interrupt 

(INTUTn).  

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_UARTAn}_interrupt_send(void); 

 

For LLVM toolchain: 

void    r_{Config_UARTAn}_interrupt_send(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_UARTAn}_interrupt_send(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 625 of 868 
Jan 20, 2026 

r_{Config_UARTAn}_interrupt_receive 

This API function executes processing in response to UARTAn reception transfer end interrupt (INTURn). 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_UARTAn}_interrupt_receive(void); 

 

For LLVM toolchain: 

void    r_{Config_UARTAn}_interrupt_receive(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_UARTAn}_interrupt_receive(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 626 of 868 
Jan 20, 2026 

r_{Config_UARTAn}_interrupt_error 

This API function executes processing in response to UARTAn reception communication error interrupt 

(INTUREn). 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_UARTAn}_interrupt_error(void); 

 

For LLVM toolchain: 

void    r_{Config_UARTAn}_interrupt_error(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_UARTAn}_interrupt_error(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 627 of 868 
Jan 20, 2026 

r_{Config_UARTAn}_callback_sendend 

This API function executes processing in response to UARTAn transmission completion interrupt. 

Remark 1.  This API function is called as the callback routine of interrupt process 

r_{Config_UARTAn}_interrupt_send corresponding to the UARTAn transmission 

completion interrupt. 

Remark 2.  User should only keep necessary flag set/clear in callback function, other processing code 

should be moved out of callback and interrupt function. Otherwise, the interrupt is not 

processed at the correct timing. 

 

[Syntax] 

static void    r_{Config_UARTAn}_callback_sendend(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 628 of 868 
Jan 20, 2026 

r_{Config_UARTAn}_callback_receiveend 

This API function executes processing in response to UARTAn reception transfer end interrupt. 

Remark 1.  This API function is called as the callback routine of interrupt process 

r_{Config_UARTAn}_interrupt_receive corresponding to the UARTAn reception transfer 

end interrupt. 

Remark 2.   User should only keep necessary flag set/clear in callback function, other processing 

code should be moved out of callback and interrupt function. Otherwise, the interrupt is 

not processed at the correct timing. 

 

[Syntax] 

static void    r_{Config_UARTAn}_callback_receiveend(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 629 of 868 
Jan 20, 2026 

r_{Config_UARTAn}_callback_error 

This API function executes processing in response to UARTAn reception communication error interrupt. 

Remark 1.  This API function is called as the callback routine of interrupt process 

r_{Config_UARTAn}_interrupt_error corresponding to the UARTAn reception 

communication error interrupt. 

Remark 2.   User should only keep necessary flag set/clear in callback function, other processing 

code should be moved out of callback and interrupt function. Otherwise, the interrupt is 

not processed at the correct timing. 

 

[Syntax] 

static void    r_{Config_UARTAn}_callback_error(uint8_t err_type); 

Remark n is the channel number. 

 

[Argument(s)] 

I/O Argument(s) Description 

I uint8_t err_type; Error type value: 

Bit0: Overrun error 

Bit1: Framing error 

Bit2: Parity error 

Bit3 to Bit7: 0 

   

[Return value] 

None. 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 630 of 868 
Jan 20, 2026 

Usage example 

This is an example for UARTA0 transmit and receive data by polling mode and UARTA1 also transmit and 

receive data twice: 

(Blue code is user code.) 

main.c 

#include "r_smc_entry.h" 
 
uint8_t tx_buf0[] = {0x7A};    //transmit buffer for UARTA0 (1 byte) 
uint8_t tx_buf1[] = {0x7A, 0x6C, 0x27, 0x1F, 0xF8};    //transmit buffer for UARTA1 (5 bytes) 
uint8_t rx_buf0[] = {0x00};    //receive buffer for UARTA0 (1 byte) 
uint8_t rx_buf1[] = {0x00, 0x00, 0x00, 0x00, 0x00};    //receive buffer for UARTA1 (5 bytes) 
volatile uint8_t transmitend_flag = 0U; 
volatile uint8_t receptend_flag = 0U; 
void main(void); 
 
void main(void) 
{ 
 EI();    //enable global interrupts to allow the system to respond to interrupt events 
    R_Config_UARTA0_Start();    //start UARTA0 module 
    R_Config_UARTA1_Start();    //start UARTA1 module 
 
    // 1st transmission (UARTA0 to UARTA1) 
    R_Config_UARTA1_Receive(rx_buf0, sizeof(rx_buf0));    //UARTA1 prepares to receive 1 byte 
    R_Config_UARTA0_Send(tx_buf0, sizeof(tx_buf0));    //UARTA0 sends 1 byte 
 
    while((1U != transmitend_flag) || (1U != receptend_flag));    //wait until both transmission and 
reception are complete 
 
    // 2nd transmission (UARTA1 to UARTA0) 
    R_Config_UARTA0_Receive(rx_buf1, sizeof(rx_buf1));    //UARTA0 prepares to receive 5 bytes 
    R_Config_UARTA1_Send(tx_buf1, sizeof(tx_buf1));    //UARTA1 sends 5 bytes 
 
    while((2U != transmitend_flag) || (2U != receptend_flag));    //wait until both transmission and 
reception are complete 
 
    R_Config_UARTA0_Stop();    //stop UARTA0 module 
    R_Config_UARTA1_Stop();    //stop UARTA1 module 
} 

  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 631 of 868 
Jan 20, 2026 

Config_UARTA0_user.c 

/* Start user code for global. Do not edit comment generated here */ 
extern volatile uint8_t transmitend_flag; 
extern volatile uint8_t receptend_flag; 
/* End user code. Do not edit comment generated here */ 
 
void R_Config_UARTA0_PollingEnd_UserCode(void) 
{ 
    /* Start user code for R_Config_UARTA0_PollingEnd_UserCode. Do not edit comment generated 
here */ 
    transmitend_flag++;    //increment transmission flag when UARTA0 transmission ends 
    /* End user code. Do not edit comment generated here */ 
} 
 
static void r_Config_UARTA0_callback_receiveend (void) 
{ 
    /* Start user code for r_Config_UARTA0_callback_sendend. Do not edit comment generated here */ 
    receptend_flag++;    //increment reception flag when UARTA0 reception ends 
    /* End user code. Do not edit comment generated here */ 
}  

 

Config_UARTA1_user.c 

/* Start user code for global. Do not edit comment generated here */ 
extern volatile uint8_t transmitend_flag; 
extern volatile uint8_t receptend_flag;  
/* End user code. Do not edit comment generated here */ 
 
void R_Config_UARTA1_PollingEnd_UserCode (void) 
{ 
    /* Start user code for R_Config_UARTA1_PollingEnd_UserCode. Do not edit comment generated 
here */ 
    transmitend_flag++;    //increment transmission flag when UARTA1 transmission ends 
    /* End user code. Do not edit comment generated here */ 
} 
 
static void r_Config_UARTA1_callback_receiveend (void) 
{ 
    /* Start user code for r_Config_UARTA1_callback_receiveend. Do not edit comment generated here 
*/ 
    receptend_flag++;    //increment reception flag when UARTA1 reception ends 
    /* End user code. Do not edit comment generated here */ 
}  

 
  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 632 of 868 
Jan 20, 2026 

4.2.51 UART Communication (LIN/UART module) 

Below is a list of API functions output by the Smart Configurator for UART Communication (LIN/UART module) 

use. 

 

Table 4-57  API Functions:  

API Function Name Peripheral Name Description 

R_{Config_RLIN3n}_Create LIN/UART 

module 

Executes initialization processing that is 

required before controlling the RLIN3n module. 

R_{Config_RLIN3n}_Start Starts RLIN3n module operation. 

R_{Config_RLIN3n}_Stop Stops RLIN3n module operation. 

R_{Config_RLIN3n}_Send Sends RLIN3n data. 

R_{Config_RLIN3n}_Receive Receives RLIN3n data. 

R_{Config_RLIN3n}_Create_UserInit Executes user-specific initialization processing 

for the RLIN3n. 

r_{Config_RLIN3n}_interrupt_send Executes processing in response to RLIN3n 

transmit end interrupt (in single-transfer mode) 

or buffer empty interrupt (in continuous transfer 

mode). 

r_{Config_RLIN3n}_interrupt_receive Executes processing in response to RLIN3n 

receive end interrupt. 

r_{Config_RLIN3n}_interrupt_error Executes processing in response to RLIN3n 

error interrupt. 

r_{Config_RLIN3n}_callback_sendend Executes processing in response to transmit 

end interrupt. 

r_{Config_RLIN3n}_callback_receiveend Executes processing in response to receive 

end interrupt. 

r_{Config_RLIN3n}_callback_error Executes processing in response to receive 

error interrupt. 

 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 633 of 868 
Jan 20, 2026 

R_{Config_RLIN3n}_Create 

This API function executes initialization processing that is required before controlling the RLIN3n module. 

Remark This API function is called from R_Systeminit before the main() function is executed. 

 

[Syntax] 

void    R_{Config_RLIN3n}_Create(void); 

Remark n is 0, 1, 2. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 634 of 868 
Jan 20, 2026 

R_{Config_RLIN3n}_Start 

This API function starts RLIN3n module operation. 

 

[Syntax] 

void    R_{Config_RLIN3n}_Start(void); 

Remark n is 0, 1, 2. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 635 of 868 
Jan 20, 2026 

R_{Config_RLIN3n}_Stop 

This API function stops RLIN3n module operation. 

 

[Syntax] 

void    R_{Config_RLIN3n}_Stop(void); 

Remark n is 0, 1, 2. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 636 of 868 
Jan 20, 2026 

R_{Config_RLIN3n}_Send 

This API function sends RLIN3n data. 

 

[Syntax] 

MD_STATUS    R_{Config_RLIN3n}_Send(uint8_t * const tx_buf, uint16_t tx_num); 

Remark n is 0, 1, 2. 

 

[Argument(s)] 

I/O Argument(s) Description 

I uint8_t * const tx_buf; Transfer buffer pointer 

I uint16_t tx_num; Buffer size 

 

[Return value] 

Macro Description 

MD_OK Normal end (send the first data) 

MD_ARGERROR Error argument input error. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 637 of 868 
Jan 20, 2026 

R_{Config_RLIN3n}_Receive 

This API function receives RLIN3n data. 

 

[Syntax] 

MD_STATUS    R_{Config_RLIN3n}_Receive(uint8_t * const rx_buf, uint16_t rx_num); 

Remark n is 0, 1, 2. 

 

[Argument(s)] 

I/O Argument(s) Description 

O uint8_t * const rx_buf; Receive buffer pointer 

I uint16_t rx_num; Buffer size 

 

[Return value] 

Macro Description 

MD_OK Normal end 

MD_ARGERROR Error argument input error. 

   

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 638 of 868 
Jan 20, 2026 

R_{Config_RLIN3n}_Create_UserInit 

This API function executes user-specific initialization processing for the RLIN3n. 

Remark This API functions is called from R_{Config_RLIN3n}_Create as a callback routine. 

 

[Syntax] 

void    R_{Config_RLIN3n}_Create_UserInit(void); 

Remark n is 0, 1, 2. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 639 of 868 
Jan 20, 2026 

r_{Config_RLIN3n}_interrupt_send 

This API function executes processing in response to RLIN3n transmit end interrupt (in single-transfer 

mode) or buffer empty interrupt (in continuous transfer mode). 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_RLIN3n}_interrupt_send(void); 

 

For LLVM toolchain: 

void    r_{Config_RLIN3n}_interrupt_send(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_RLIN3n}_interrupt_send(void); 

Remark n is 0, 1, 2. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 640 of 868 
Jan 20, 2026 

r_{Config_RLIN3n}_interrupt_receive 

This API function executes processing in response to RLIN3n receive end interrupt. 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_RLIN3n}_interrupt_receive(void); 

 

For LLVM toolchain: 

void    r_{Config_RLIN3n}_interrupt_receive(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_RLIN3n}_interrupt_receive(void); 

Remark n is 0, 1, 2. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 641 of 868 
Jan 20, 2026 

r_{Config_RLIN3n}_interrupt_error 

This API function executes processing in response to RLIN3n error interrupt. 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_RLIN3n}_interrupt_error(void); 

 

For LLVM toolchain: 

void    r_{Config_RLIN3n}_interrupt_error(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_RLIN3n}_interrupt_error(void); 

Remark n is 0, 1, 2. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 642 of 868 
Jan 20, 2026 

r_{Config_RLIN3n}_callback_sendend 

This API function executes processing in response to transmit end interrupt. 

Remark 1.  This API function is called as the callback routine of interrupt process 

r_{Config_RLIN3n}_interrupt_send corresponding to the RLIN3n transmit end interrupt. 

Remark 2.   User should only keep necessary flag set/clear in callback function, other processing 

code should be moved out of callback and interrupt function. Otherwise, the interrupt is 

not processed at the correct timing. 

 

[Syntax] 

static void    r_{Config_RLIN3n}_callback_sendend(void); 

Remark n is 0, 1, 2. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 643 of 868 
Jan 20, 2026 

r_{Config_RLIN3n}_callback_receiveend 

This API function executes processing in response to receive end interrupt. 

Remark 1.  This API function is called as the callback routine of interrupt process 

r_{Config_RLIN3n}_interrupt_receive corresponding to the RLIN3n receive end interrupt. 

Remark 2.   User should only keep necessary flag set/clear in callback function, other processing 

code should be moved out of callback and interrupt function. Otherwise, the interrupt is 

not processed at the correct timing. 

 

[Syntax] 

static void    r_{Config_RLIN3n}_callback_receiveend(void); 

Remark n is 0, 1, 2. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 644 of 868 
Jan 20, 2026 

r_{Config_RLIN3n}_callback_error 

This API function executes processing in response to receive error interrupt. 

Remark 1.  This API function is called as the callback routine of interrupt process 

r_{Config_RLIN3n}_interrupt_error corresponding to the RLIN3n receive error interrupt. 

Remark 2.   User should only keep necessary flag set/clear in callback function, other processing 

code should be moved out of callback and interrupt function. Otherwise, the interrupt is 

not processed at the correct timing. 

 

[Syntax] 

static void    r_{Config_RLIN3n}_callback_error(uint8_t err_type); 

Remark n is 0, 1, 2. 

 

[Argument(s)] 

I/O Argument(s) Description 

I uint8_t err_type; Error type info 

Bit2: Overrun error 

Bit3: Framing error 

Bit4: Expansion bit detection flag 

Bit5: ID match flag 

Bit6: Parity error  

Bit0, 1, 7: 0 

   

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 645 of 868 
Jan 20, 2026 

Usage example 

This is an example for RLIN30 receive data and RLIN31 send data: 

(Blue code is user code.) 

main.c 

#include "r_smc_entry.h" 
 
uint8_t tx_buf0[] = {0x7a, 0x85, 0xbc, 0x26, 0x01, 0x4f};    //transmit buffer for RLIN31 (6 bytes of data 
to send) 
uint8_t rx_buf0[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00};    //receive buffer for RLIN30 (6 bytes of space 
to store received data) 
volatile uint8_t sendend_flag = 0U; 
volatile uint8_t receiveend_flag = 0U; 
 
void main(void); 
 
void main(void) 
{ 
    EI();    //enable global interrupts to allow the system to respond to interrupt events 
    R_Config_RLIN30_Start();    //start RLIN30 module (receiver) 
    R_Config_RLIN31_Start();    //start RLIN31 module (transmitter) 
    sendend_flag = 0U;    //reset transmission completion flag 
    receiveend_flag = 0U;    //reset reception completion flag 
    R_Config_RLIN30_Receive(rx_buf0, sizeof(rx_buf0));    //begin receiving data on RLIN30 
    R_Config_RLIN31_Send(tx_buf0, sizeof(tx_buf0));    //begin sending data on RLIN31 
    while((1U != sendend_flag) || (1U != receiveend_flag));    //wait until both transmission and 
reception are completed 
 
    R_Config_RLIN30_Stop();    //stop RLIN30 module 
    R_Config_RLIN31_Stop();    //stop RLIN31 module 
    while(1);    //infinite loop to keep the program running 
} 

 

Config_RLIN31_user.c 

/* Start user code for global. Do not edit comment generated here */ 
extern volatile uint8_t sendend_flag;  
/* End user code. Do not edit comment generated here */ 
 
static void r_Config_RLIN31_callback_sendend(void) 
{ 
    /* Start user code for r_Config_RLIN31_callback_sendend. Do not edit comment generated here */ 
    sendend_flag = 1U;    //set flag to indicate RLIN31 has finished sending data 
    /* End user code. Do not edit comment generated here */ 
}  

 

Config_RLIN30_user.c  

/* Start user code for global. Do not edit comment generated here */ 
extern volatile uint8_t receiveend_flag;   
/* End user code. Do not edit comment generated here */ 
 
static void r_Config_RLIN30_callback_receiveend (void) 
{ 
    /* Start user code for r_Config_RLIN30_callback_receiveend. Do not edit comment generated here 
*/ 
    receiveend_flag = 1U;    //set flag to indicate RLIN30 has finished receiving data 
    /* End user code. Do not edit comment generated here */ 
}  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 646 of 868 
Jan 20, 2026 

4.2.52 DALI Communication (Control devices) 

Below is a list of API functions output by the Smart Configurator for DALI communication (Control devices) 

use. 

 

Table 4-58  API Functions: (1/2) 

API Function Name Peripheral Name Description 

R_{Config_DALI}_Create DALI Executes initialization processing that is required 

before controlling the DALI communication (Control 

devices). 

R_{Config_DALI}_Start Starts DALI communication (Control devices) 

operation. 

R_{Config_DALI}_Stop Stops DALI communication (Control devices) 

operation. 

R_{Config_DALI}_SoftwareReset Resets DALI communication (Control devices) 

operation. 

R_{Config_DALI}_EnableForceActiveState Enable DALITxD0 assertion and assertion level (active 

state) is low. The output from the DALITxD0 pin is 

driven low. 

R_{Config_DALI}_DisableForceActiveStat

e 

Disable DALITxD0 assertion. Internal data for 

transmission are output from the DALITxD0 pin. 

R_{Config_DALI}_GetStatus Gets the state of the DALI communication (Control 

devices). 

R_{Config_DALI}_Send Sends frame data. 

R_{Config_DALI}_GetReceiveFrame Receives frame data and frame length. 

R_{Config_DALI}_Create_UserInit Executes user-specific initialization processing for the 

DALI communication (Control devices). 

r_{Config_DALI}_interrupt_send Executes processing in response to DALI 

communication (Control devices) transmission 32bit-

data completion interrupt (INTTD).  

r_{Config_DALI}_interrupt_receive Executes processing in response to DALI 

communication (Control devices) reception 32bit-data 

completion interrupt (INTRD).  

r_{Config_DALI}_interrupt_error Executes processing in response to DALI 

communication (Control devices) reception 

communication error interrupt (INTED). 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 647 of 868 
Jan 20, 2026 

Table 4-59  API Functions: (2/2) 

API Function Name Peripheral Name Description 

r_{Config_DALI}_interrupt_falling_edge_d

etection 

 Executes processing in response to DALI 

communication (Control devices) falling edge detection 

interrupt (INTFED). 

r_{Config_DALI}_interrupt_power_down_d

etection 

Executes processing in response to DALI 

communication (Control devices) power down 

detection interrupt (INTBPD). 

r_{Config_DALI}_interrupt_collision_detect

ion 
Executes processing in response to DALI 

communication (Control devices) collision detection 

interrupt (INTCLD). 

r_{Config_DALI}_interrupt_stop_bit_detect

ion 

Executes processing in response to DALI 

communication (Control devices) stop bit detection 

interrupt (INTSDD). 

r_{Config_DALI}_callback_sendend Executes processing in response to DALI 

communication (Control devices) stop bit detection 

interrupt. 

r_{Config_DALI}_callback_receiveend Executes processing in response to DALI 

communication (Control devices) stop bit detection 

interrupt. 

r_{Config_DALI}_callback_error Executes processing in response to DALI 

communication (Control devices) reception 

communication error interrupt. 

 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 648 of 868 
Jan 20, 2026 

R_{Config_DALI}_Create 

This API function executes initialization processing that is required before controlling the DALI 

communication (Control devices). 

Remark This API function is called from R_Systeminit before the main() function is executed. 

 

[Syntax] 

void    R_{Config_DALI}_Create(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 649 of 868 
Jan 20, 2026 

R_{Config_DALI}_Start 

This API function starts DALI communication (Control devices) operation. 

 

[Syntax] 

void    R_{Config_DALI}_Start(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 650 of 868 
Jan 20, 2026 

R_{Config_DALI}_Stop 

This API function stops DALI communication (Control devices) operation. 

 

[Syntax] 

void    R_{Config_DALI}_Stop(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 651 of 868 
Jan 20, 2026 

R_{Config_DALI}_SoftwareReset 

This API function resets DALI communication (Control devices) operation. 

 

[Syntax] 

void    R_{Config_DALI}_SoftwareReset(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 652 of 868 
Jan 20, 2026 

R_{Config_DALI}_EnableForceActiveState 

This API function enable DALITxD0 assertion and assertion level (active state) is low. The output from 

the DALITxD0 pin is driven low. 

 

[Syntax] 

void    R_{Config_DALI}_EnableForceActiveState(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 653 of 868 
Jan 20, 2026 

R_{Config_DALI}_DisableForceActiveState 

This API function disable DALITxD0 assertion. Internal data for transmission are output from the 

DALITxD0 pin. 

 

[Syntax] 

void    R_{Config_DALI}_DisableForceActiveState(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 654 of 868 
Jan 20, 2026 

R_{Config_DALI}_GetStatus 

This API function gets the state of the DALI communication (Control devices). 

 

[Syntax] 

void    R_{Config_DALI}_GetStatus(uint16_t * const status); 

 

[Argument(s)] 

I/O Argument(s) Description 

I uint16_t * const status; DALI status register buffer pointer 

 

[Return value] 

  None 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 655 of 868 
Jan 20, 2026 

R_{Config_DALI}_Send 

This API function sends frame data. The frame length is set in the GUI and it is a fixed value. 

 

[Syntax] 

void    R_{Config_DALI}_Send(uint16_t * const tx_buf); 

 

[Argument(s)] 

I/O Argument(s) Description 

I uint16_t * const tx_buf; Transfer buffer pointer 

Remark Below is shown the relationship between frame length and tx_buf length. 

 

Frame length tx_buf[] length 

8 bits 1 

16 bits 1 

17 bits 2 

20 bits 2 

24 bits 2 

32 bits 2 

64 bits 4 

128 bits 8 

256 bits 16 

 

[Return value] 

  None 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 656 of 868 
Jan 20, 2026 

R_{Config_DALI}_GetReceivedFrame 

This API function receives frame data and frame length. 

 

[Syntax] 

MD_STATUS    R_{Config_DALI}_GetReceivedFrame(uint32_t * const rx_buf, uint16_t * const 

rx_num); 

 

[Argument(s)] 

I/O Argument(s) Description 

O uint32_t * const rx_buf; Receive buffer pointer 

I uint16_t * const rx_num; Buffer frame length 

 

[Return value] 

Macro Description 

MD_OK Normal end 

MD_ARGERROR Error argument input error 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 657 of 868 
Jan 20, 2026 

R_{Config_DALI}_Create_UserInit 

This API function executes user-specific initialization processing for the DALI communication (Control 

devices). 

Remark This API functions is called from R_{Config_DALI}_Create as a callback routine. 

 

[Syntax] 

void    R_{Config_DALI}_Create_UserInit(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 658 of 868 
Jan 20, 2026 

r_{Config_DALI}_interrupt_send 

This API function executes processing in response to DALI communication (Control devices) 

transmission each 32bit-data completion interrupt (INTTD).  

Remark  This API function is only useful when transmission data length is larger then 32bit. 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_DALI}_interrupt_send(void); 

 

For LLVM toolchain: 

void    r_{Config_DALI}_interrupt_send(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_DALI}_interrupt_send(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 659 of 868 
Jan 20, 2026 

r_{Config_DALI}_interrupt_receive 

This API function executes processing in response to DALI communication (Control devices) reception 

each 32bit-data completion interrupt (INTRD). 

Remark  This API function is only useful when reception data length is larger then 32bit. 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_DALI}_interrupt_receive(void); 

 

For LLVM toolchain: 

void    r_{Config_DALI}_interrupt_receive(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_DALI}_interrupt_receive(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 660 of 868 
Jan 20, 2026 

r_{Config_DALI}_interrupt_error 

This API function executes processing in response to DALI communication (Control devices) reception 

communication error interrupt (INTED). 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_DALI}_interrupt_error(void); 

 

For LLVM toolchain: 

void    r_{Config_DALI}_interrupt_error(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_DALI}_interrupt_error(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 661 of 868 
Jan 20, 2026 

r_{Config_DALI}_interrupt_falling_edge_detection 

This API function executes processing in response to DALI communication (Control devices) falling edge 

detection interrupt (INTFED). 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_DALI}_interrupt_falling_edge_detection(void); 

 

For LLVM toolchain: 

void    r_{Config_DALI}_interrupt_falling_edge_detection(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_DALI}_interrupt_falling_edge_detection(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 662 of 868 
Jan 20, 2026 

r_{Config_DALI}_interrupt_power_down_detection 

This API function executes processing in response to DALI communication (Control devices) power 

down detection interrupt (INTBPD). 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_DALI}_interrupt_power_down_detection(void); 

 

For LLVM toolchain: 

void    r_{Config_DALI}_interrupt_power_down_detection(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_DALI}_interrupt_power_down_detection(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 663 of 868 
Jan 20, 2026 

r_{Config_DALI}_interrupt_collision_detection 

This API function executes processing in response to DALI communication (Control devices) collision 

detection interrupt (INTCLD). 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_DALI}_interrupt_collision_detection(void); 

 

For LLVM toolchain: 

void    r_{Config_DALI}_interrupt_collision_detection(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_DALI}_interrupt_collision_detection(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 664 of 868 
Jan 20, 2026 

r_{Config_DALI}_interrupt_stop_bit_detection 

This API function executes processing in response to DALI communication (Control devices) stop bit 

detection interrupt (INTSDD). 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_DALI}_interrupt_stop_bit_detection(void); 

 

For LLVM toolchain: 

void    r_{Config_DALI}_interrupt_stop_bit_detection(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_DALI}_interrupt_stop_bit_detection(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 665 of 868 
Jan 20, 2026 

r_{Config_DALI}_callback_sendend 

This API function executes processing in response to DALI communication (Control devices) stop bit 

detection interrupt. 

Remark 1.  This API function is called as the callback routine of interrupt process 

r_{Config_DALI}_interrupt_stop_bit_detection corresponding to the DALI communication 

(Control devices) stop bit detection interrupt. 

Remark 2.  User should only keep necessary flag set/clear in callback function, other processing code 

should be moved out of callback and interrupt function. Otherwise, the interrupt is not 

processed at the correct timing. 

 

[Syntax] 

static void    r_{Config_DALI}_callback_sendend(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 666 of 868 
Jan 20, 2026 

r_{Config_DALI}_callback_receiveend 

This API function executes processing in response to DALI communication (Control devices) stop bit 

detection interrupt. 

Remark 1.  This API function is called as the callback routine of interrupt process 

r_{Config_DALI}_interrupt_stop_bit_detection corresponding to the DALI communication 

(Control devices) stop bit detection interrupt. 

Remark 2.  User should only keep necessary flag set/clear in callback function, other processing code 

should be moved out of callback and interrupt function. Otherwise, the interrupt is not 

processed at the correct timing. 

 

[Syntax] 

static void    r_{Config_DALI}_callback_receiveend(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 667 of 868 
Jan 20, 2026 

r_{Config_DALI}_callback_error 

This API function executes processing in response to DALI communication (Control devices) reception 

communication error interrupt. 

Remark 1.  This API function is called as the callback routine of interrupt process 

r_{Config_DALI}_interrupt_error corresponding to the DALI communication (Control 

devices) reception communication error interrupt. 

Remark 2.  User should only keep necessary flag set/clear in callback function, other processing code 

should be moved out of callback and interrupt function. Otherwise, the interrupt is not 

processed at the correct timing. 

 

[Syntax] 

static void    r_{Config_DALI}_callback_error(uint16_t err_type); 

 

[Argument(s)] 

I/O Argument(s) Description 

I uint16_t err_type; Error type value: 

Bit0: Manchester framing error 

Bit1: Overrun error 

Bit2: Frame size violation error 

Bit3: Bit timing violation error 

Bit4 to Bit7: 0 

   

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 668 of 868 
Jan 20, 2026 

Usage example 

This is an example for DALI communication (Control devices) transmit a 16bit frame data and DALI 

communication (Control gear) receieve data: 

(Blue code is user code.) 

main.c for DALI communication (Control devices) 

#include "r_smc_entry.h" 
 
uint16_t tx_buf0[] = {0xFF66};    //transmit buffer containing one 16-bit DALI frame (0xFF66) 
volatile uint8_t sendend_flag = 0U; 
void main(void); 
 
void main(void) 
{ 
    EI();    //enable global interrupts to allow the system to respond to interrupt events 
    R_Config_DALI_Start();    //start DALI communication as a control device (master) 
    R_Config_DALI_Send(tx_buf0);    //send 16-bit DALI frame using the configured device 

while(1U != sendend_flag);    //wait until transmission is complete 
    R_Config_DALI_Stop();    //stop DALI device communication 
} 

 

main.c for DALI communication (Control gear) 

#include "r_smc_entry.h" 
 
uint8_t rx_buf0[];    //pointer to hold received frame 
uint8_t rx_buf1[100];    //buffer to store multiple received frames 
uint8_t p_rx_num = 0U;    //pointer to number of bytes received in current frame 
uint8_t rx_num = 0U;    //counter for total received frames 
volatile uint8_t receiveend_flag = 0U; 
void main(void); 
 
void main(void) 
{ 
    EI();    //enable global interrupts to allow the system to respond to interrupt events 

R_Config_DALI_Start();    //start DALI communication as a control gear (slave) 
while(1U != receiveend_flag);    //wait until a frame is received 
//Get received frame and store it if reception was successful 
if(R_Config_DALI1_GetReceivedFrame(&rx_buf0,&p_rx_num) == MD_OK) 

    { 
rx_buf1[rx_num]= rx_buf0;    //store received byte/frame into buffer 
rx_num++;    //increment received frame counter 

} 
 
    R_Config_ DALI1_Stop();    //stop DALI gear communication 
} 

  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 669 of 868 
Jan 20, 2026 

Config_DALI_Device_user.c 

/* Start user code for global. Do not edit comment generated here */ 
extern volatile uint8_t sendend_flag; 
/* End user code. Do not edit comment generated here */ 
 
static void r_Config_DALI_Device_callback_sendend (void) 
{ 
    /* Start user code for r_Config_DALI_Device_callback_sendend. Do not edit comment generated 
here */ 
    sendend_flag++;    //set flag to indicate DALI frame has been sent 
    /* End user code. Do not edit comment generated here */ 
} 
 

 

Config_DALI1_Gear_user.c 

/* Start user code for global. Do not edit comment generated here */ 
extern volatile uint8_t receiveend_flag; 
/* End user code. Do not edit comment generated here */ 
 
static void r_Config_DALI_Gear_callback_receiveend (void) 
{ 
    /* Start user code for r_Config_DALI_Gear_callback_receiveend. Do not edit comment generated 
here */ 
    receiveend_flag++;    //set flag to indicate DALI frame has been received 
    /* End user code. Do not edit comment generated here */ 
}  

 

  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 670 of 868 
Jan 20, 2026 

4.2.53 DALI Communication (Control gear) 

Below is a list of API functions output by the Smart Configurator for DALI communication (Control gear) use. 

 

Table 4-60  API Functions: (1/2) 

API Function Name Peripheral Name Description 

R_{Config_DALI}_Create DALI Executes initialization processing that is required 

before controlling the DALI communication (Control 

gear). 

R_{Config_DALI}_Start Starts DALI communication (Control gear) operation. 

R_{Config_DALI}_Stop Stops DALI communication (Control gear) operation. 

R_{Config_DALI}_SoftwareReset Resets DALI communication (Control gear) operation. 

R_{Config_DALI}_EnableForceActiveState Enable DALITxD0 assertion and assertion level (active 

state) is low. The output from the DALITxD0 pin is 

driven low. 

R_{Config_DALI}_DisableForceActiveStat

e 

Disable DALITxD0 assertion. Internal data for 

transmission are output from the DALITxD0 pin. 

R_{Config_DALI}_GetStatus Gets the state of the DALI communication (Control 

gear). 

R_{Config_DALI}_Send Sends frame data. 

R_{Config_DALI}_GetReceiveFrame Receives frame data and frame length. 

R_{Config_DALI}_Create_UserInit Executes user-specific initialization processing for the 

DALI communication (Control gear). 

r_{Config_DALI}_interrupt_error Executes processing in response to DALI 

communication (Control gear) reception 

communication error interrupt (INTED). 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 671 of 868 
Jan 20, 2026 

Table 4-61  API Functions: (2/2) 

API Function Name Peripheral Name Description 

r_{Config_DALI}_interrupt_falling_edge_d

etection 

 Executes processing in response to DALI 

communication (Control gear) falling edge detection 

interrupt (INTFED). 

r_{Config_DALI}_interrupt_power_down_d

etection 

Executes processing in response to DALI 

communication (Control gear) power down detection 

interrupt (INTBPD). 

r_{Config_DALI}_interrupt_stop_bit_detect

ion 
Executes processing in response to DALI 

communication (Control gear) stop bit detection 

interrupt (INTSDD). 

r_{Config_DALI}_callback_sendend Executes processing in response to DALI 

communication (Control gear) stop bit detection 

interrupt. 

r_{Config_DALI}_callback_receiveend Executes processing in response to DALI 

communication (Control gear) stop bit detection 

interrupt. 

r_{Config_DALI}_callback_error Executes processing in response to DALI 

communication (Control gear) reception 

communication error interrupt. 

 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 672 of 868 
Jan 20, 2026 

R_{Config_DALI}_Create 

This API function executes initialization processing that is required before controlling the DALI 

communication (Control gear). 

Remark This API function is called from R_Systeminit before the main() function is executed. 

 

[Syntax] 

void    R_{Config_DALI}_Create(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 673 of 868 
Jan 20, 2026 

R_{Config_DALI}_Start 

This API function starts DALI communication (Control gear) operation. 

 

[Syntax] 

void    R_{Config_DALI}_Start(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 674 of 868 
Jan 20, 2026 

R_{Config_DALI}_Stop 

This API function stops DALI communication (Control gear) operation. 

 

[Syntax] 

void    R_{Config_DALI}_Stop(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 675 of 868 
Jan 20, 2026 

R_{Config_DALI}_SoftwareReset 

This API function resets DALI communication (Control gear) operation. 

 

[Syntax] 

void    R_{Config_DALI}_SoftwareReset(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 676 of 868 
Jan 20, 2026 

R_{Config_DALI}_EnableForceActiveState 

This API function enable DALITxD0 assertion and assertion level (active state) is low. The output from 

the DALITxD0 pin is driven low. 

 

[Syntax] 

void    R_{Config_DALI}_EnableForceActiveState(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 677 of 868 
Jan 20, 2026 

R_{Config_DALI}_DisableForceActiveState 

This API function disable DALITxD0 assertion. Internal data for transmission are output from the 

DALITxD0 pin. 

 

[Syntax] 

void    R_{Config_DALI}_DisableForceActiveState(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 678 of 868 
Jan 20, 2026 

R_{Config_DALI}_GetStatus 

This API function gets the state of the DALI communication (Control gear). 

 

[Syntax] 

void    R_{Config_DALI}_GetStatus(uint16_t * const status); 

 

[Argument(s)] 

I/O Argument(s) Description 

I uint16_t * const status; DALI status register buffer pointer 

 

[Return value] 

  None 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 679 of 868 
Jan 20, 2026 

R_{Config_DALI}_Send 

This API function sends frame data. The frame length is fixed to 8 bits. 

Remark This API function sets the data from the buffer specified in argument tx_buf to register 

TDR1L. And enter r_{Config_DALI}_interrupt_stop_bit_detection when register TDR1L 

transmission is completed. 

 

[Syntax] 

void    R_{Config_DALI}_Send(uint8_t tx_buf); 

 

[Argument(s)] 

I/O Argument(s) Description 

I uint8_t tx_buf; Transfer buffer 

 

[Return value] 

  None 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 680 of 868 
Jan 20, 2026 

R_{Config_DALI}_GetReceivedFrame 

This API function receives frame data and frame length. 

 

[Syntax] 

MD_STATUS    R_{Config_DALI}_GetReceivedFrame(uint32_t * const rx_buf, uint16_t * const 

rx_num); 

 

[Argument(s)] 

I/O Argument(s) Description 

O uint32_t * const rx_buf; Receive buffer pointer 

I uint16_t * const rx_num; Buffer frame length 

 

[Return value] 

Macro Description 

MD_OK Normal end 

MD_ARGERROR Error argument input error 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 681 of 868 
Jan 20, 2026 

R_{Config_DALI}_Create_UserInit 

This API function executes user-specific initialization processing for the DALI communication (Control 

gear). 

Remark This API functions is called from R_{Config_DALI}_Create as a callback routine. 

 

[Syntax] 

void    R_{Config_DALI}_Create_UserInit(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 682 of 868 
Jan 20, 2026 

r_{Config_DALI}_interrupt_error 

This API function executes processing in response to DALI communication (Control gear) reception 

communication error interrupt (INTED). 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_DALI}_interrupt_error(void); 

 

For LLVM toolchain: 

void    r_{Config_DALI}_interrupt_error(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_DALI}_interrupt_error(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 683 of 868 
Jan 20, 2026 

r_{Config_DALI}_interrupt_falling_edge_detection 

This API function executes processing in response to DALI communication (Control gear) falling edge 

detection interrupt (INTFED). 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_DALI}_interrupt_falling_edge_detection(void); 

 

For LLVM toolchain: 

void    r_{Config_DALI}_interrupt_falling_edge_detection(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_DALI}_interrupt_falling_edge_detection(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 684 of 868 
Jan 20, 2026 

r_{Config_DALI}_interrupt_power_down_detection 

This API function executes processing in response to DALI communication (Control gear) power down 

detection interrupt (INTBPD). 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_DALI}_interrupt_power_down_detection(void); 

 

For LLVM toolchain: 

void    r_{Config_DALI}_interrupt_power_down_detection(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_DALI}_interrupt_power_down_detection(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 685 of 868 
Jan 20, 2026 

r_{Config_DALI}_interrupt_stop_bit_detection 

This API function executes processing in response to DALI communication (Control gear) stop bit 

detection interrupt (INTSDD). 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_DALI}_interrupt_stop_bit_detection(void); 

 

For LLVM toolchain: 

void    r_{Config_DALI}_interrupt_stop_bit_detection(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_DALI}_interrupt_stop_bit_detection(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 686 of 868 
Jan 20, 2026 

r_{Config_DALI}_callback_sendend 

This API function executes processing in response to DALI communication (Control gear) stop bit 

detection interrupt. 

Remark 1.  This API function is called as the callback routine of interrupt process 

r_{Config_DALI}_interrupt_stop_bit_detection corresponding to the DALI communication 

(Control devices) stop bit detection interrupt. 

Remark 2.  User should only keep necessary flag set/clear in callback function, other processing code 

should be moved out of callback and interrupt function. Otherwise, the interrupt is not 

processed at the correct timing. 

 

[Syntax] 

static void    r_{Config_DALI}_callback_sendend(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 687 of 868 
Jan 20, 2026 

r_{Config_DALI}_callback_receiveend 

This API function executes processing in response to DALI communication (Control gear) stop bit 

detection interrupt. 

Remark 1.  This API function is called as the callback routine of interrupt process 

r_{Config_DALI}_interrupt_stop_bit_detection corresponding to the DALI communication 

(Control devices) stop bit detection interrupt. 

Remark 2.  User should only keep necessary flag set/clear in callback function, other processing code 

should be moved out of callback and interrupt function. Otherwise, the interrupt is not 

processed at the correct timing. 

 

[Syntax] 

static void    r_{Config_DALI}_callback_receiveend(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 688 of 868 
Jan 20, 2026 

r_{Config_DALI}_callback_error 

This API function executes processing in response to DALI communication (Control gear) reception 

communication error interrupt. 

Remark 1.  This API function is called as the callback routine of interrupt process 

r_{Config_DALI}_interrupt_error corresponding to the DALI communication (Control gear) 

reception communication error interrupt. 

Remark 2.  User should only keep necessary flag set/clear in callback function, other processing code 

should be moved out of callback and interrupt function. Otherwise, the interrupt is not 

processed at the correct timing. 

 

[Syntax] 

static void    r_{Config_DALI}_callback_error(uint16_t err_type); 

 

[Argument(s)] 

I/O Argument(s) Description 

I uint16_t err_type; Error type value: 

Bit0: Manchester framing error 

Bit1: Overrun error 

Bit2: Frame size violation error 

Bit3: Bit timing violation error 

Bit4 to Bit7: 0 

   

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 689 of 868 
Jan 20, 2026 

Usage example 

Refer to DALI Communication (Control devices) mode Usage example.  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 690 of 868 
Jan 20, 2026 

4.2.54 IIC Communication (Master mode) (Serial Array Unit) 

Below is a list of API functions output by the Smart Configurator for IIC communication (master mode) (serial 

array unit) use. 

 

Table 4-62  API Functions:  

API Function Name Peripheral Name Description 

R_{Config_IICr}_Create Serial Array Unit Executes initialization processing that is required 

before controlling the IICr master module. 

R_{Config_IICr}_StartCondition Issues a start condition. 

R_{Config_IICr}_StopCondition Issues a stop condition. 

R_{Config_IICr}_Stop Stops the IICr module. 

R_{Config_IICr}_Master_Send Starts transferring data for IICr in master mode. 

R_{Config_IICr}_Master_Receive Starts receiving data for IICr in master mode. 

R_{Config_IICr}_Create_UserInit Executes user-specific initialization processing 

for the IICr. 

r_{Config_IICr}_interrupt Executes processing in response to INTIICr 

transfer end interrupt. 

r_{Config_IICr}_callback_master_sendend Executes processing in response to master 

transmit end interrupt. 

r_{Config_IICr}_callback_master_receiveend Executes processing in response to master 

receive completed interrupt. 

r_{Config_IICr}_callback_master_error Executes processing in response to the detection 

of an overrun or NACK error. 

 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 691 of 868 
Jan 20, 2026 

R_{Config_IICr}_Create 

This API function executes initialization processing that is required before controlling the IICr master 

module. 

Remark1. This API function is called from R_SAUm_Create.. 

Remark2. When m is 0, r is 00, 01, 10, 11; When m is 1, r is 20, 21, 30, 31. 

   

[Syntax] 

void    R_{Config_IICr}_Create(void); 

Remark r is 00, 01, 10, 11, 20, 21, 30, 31. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 692 of 868 
Jan 20, 2026 

R_{Config_IICr}_StartCondition 

This API function issues a start condition. 

Remark This API function is used as an internal function of R_{Config_IICr}_Master_Send and 

R_{Config_IICr}_Master_Receive . For this reason, there is normally no need to call it from 

a user program. 

 

[Syntax] 

void    R_{Config_IICr}_StartCondition(void); 

Remark r is 00, 01, 10, 11, 20, 21, 30, 31. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 693 of 868 
Jan 20, 2026 

R_{Config_IICr}_StopCondition 

This API function issues a stop condition. 

 

[Syntax] 

void    R_{Config_IICr}_StopCondition(void); 

Remark nm is 00, 01, 10, 11, 20, 21, 30, 31. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 694 of 868 
Jan 20, 2026 

R_{Config_IICr}_Stop 

This API function stops the IICr module. 

 

[Syntax] 

void    R_{Config_IICr}_Stop(void); 

Remark r is 00, 01, 10, 11, 20, 21, 30, 31. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 695 of 868 
Jan 20, 2026 

R_{Config_IICr}_Master_Send 

This API function starts transferring data for IICr in master mode. 

Remark 1. This API function repeats the byte-level simple IIC master transmission from the buffer 

specified in argument tx_buf the number of times specified in argument tx_num. 

Remark 2. Before calling this API, please check that communiacation is stopped/suspended and 

SDA/SCL are High level. 

 

[Syntax] 

void    R_{Config_IICr}_Master_Send(uint8_t adr, uint8_t * const tx_buf, uint16_t tx_num); 

Remark r is 00, 01, 10, 11, 20, 21, 30, 31. 

 

[Argument(s)] 

I/O Argument(s) Description 

I uint8_t adr; Set address for select slave 

I uint8_t * const tx_buf; Pointer to a buffer storing the transmission data 

I uint16_t tx_num; Total amount of data to send 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 696 of 868 
Jan 20, 2026 

R_{Config_IICr}_Master_Receive 

This API function starts receiving data for IICr in master mode. 

Remark 1. This API function performs byte-level simple IIC master reception the number of times 

specified by the argument rx_num, and stores the data in the buffer specified by the 

argument rx_buf. 

Remark 2. Before calling this API, please check that communiacation is stopped/suspended and 

SDA/SCL are High level. 

 

[Syntax] 

void    R_{Config_IICr}_Master_Receive(uint8_t adr, uint8_t * const rx_buf, uint16_t rx_num); 

Remark r is 00, 01, 10, 11, 20, 21, 30, 31. 

 

[Argument(s)] 

I/O Argument(s) Description 

I uint8_t adr; Set address for select slave 

O uint8_t * const rx_buf; Pointer to a buffer to store the received data 

O uint16_t rx_num; Total amount of data to receive 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 697 of 868 
Jan 20, 2026 

R_{Config_IICr}_Create_UserInit 

This API function executes user-specific initialization processing for the IICr. 

Remark This API functions is called from R_{Config_IICr}_Create as a callback routine. 

 

[Syntax] 

void    R_{Config_IICr}_Create_UserInit(void); 

Remark r is 00, 01, 10, 11, 20, 21, 30, 31. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 698 of 868 
Jan 20, 2026 

r_{Config_IICr}_interrupt 

This API function executes processing in response to INTIICr transfer end interrupt. 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_IICr}_interrupt(void); 

 

For LLVM toolchain: 

void    r_{Config_IICr}_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_IICr}_interrupt(void); 

Remark r is 00, 01, 10, 11, 20, 21, 30, 31. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 699 of 868 
Jan 20, 2026 

r_{Config_IICr}_callback_master_sendend 

This API function executes processing in response to master transmit end interrupt. 

Remark 1.  This API function is called as the callback routine of interrupt process 

r_{Config_IICr}_interrupt corresponding to the IICr master transmit end interrupt. 

Remark 2.  Please take note to keep necessary flag set/clear in callback function and move other 

processing code out of callback and interrupt function. Otherwise, the next interrupt won’t 

be processed at the correct timing. 

 

[Syntax] 

static void    r_{Config_IICr}_callback_master_sendend(void); 

Remark r is 00, 01, 10, 11, 20, 21, 30, 31. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 700 of 868 
Jan 20, 2026 

r_{Config_IICr}_callback_master_receiveend 

This API function executes processing in response to master receive completed interrupt. 

Remark 1.  This API function is called as the callback routine of interrupt process 

r_{Config_IICr}_interrupt corresponding to the IICr master receive completed interrupt. 

Remark 2.  Please take note to keep necessary flag set/clear in callback function and move other 

processing code out of callback and interrupt function. Otherwise, the next interrupt won’t 

be processed at the correct timing. 

 

[Syntax] 

static void    r_{Config_IICr}_callback_master_receiveend(void); 

Remark r is 00, 01, 10, 11, 20, 21, 30, 31. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 701 of 868 
Jan 20, 2026 

r_{Config_IICr}_callback_master_error 

This API function executes processing in response to the detection of an overrun or NACK error. 

Remark 1.  This API function is called as the callback routine of interrupt process 

r_{Config_IICr}_interrupt corresponding to the IICr transmit error. 

Remark 2.  Please take note to keep necessary flag set/clear in callback function and move other 

processing code out of callback and interrupt function. Otherwise, the next interrupt won’t 

be processed at the correct timing. 

 

[Syntax] 

static void    r_{Config_IICr}_callback_error(MD_STATUS flag); 

Remark r is 00, 01, 10, 11, 20, 21, 30, 31. 

 

[Argument(s)] 

I/O Argument(s) Description 

I MD_STATUS flag; Error type: 

MD_NACK: Detection of NACK error 

MD_OVERRUN: Detection of overrun error 

 

[Return value] 

None. 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 702 of 868 
Jan 20, 2026 

Usage example 

This is an example for IIC0 master communication with IICA0 slave (including IIC0 master send, and master 

receive mode): 

(Blue code is user code.) 

main.c 

#include "r_smc_entry.h" 
 
uint8_t tx_buf[6] = {0xA5,0x3F,0xC0,0x5C,0xB6,0x37};    //transmit buffer with 6 bytes of data 
uint8_t rx_buf1[6] = {0x00,0x00,0x00,0x00,0x00,0x00};    //receive buffer 1 initialized to zero 
uint8_t rx_buf2[6] = {0x00,0x00,0x00,0x00,0x00,0x00};    //receive buffer 2 initialized to zero 
volatile uint8_t transmitend_flag = 0U; 
volatile uint8_t receiveend_flag = 0U; 
 
void main(void); 
 
void main(void) 
{ 
 EI();    //enable global interrupts to allow the system to respond to interrupt events 
    R_Config_IIC00_StartCondition();    //initiate IIC start condition for communication 
  
 R_Config_IIC00_Master_Receive(0x24,rx_buf1,sizeof(rx1_buf));    //master receives data from 
slave address 0x24 into rx_buf1 
 R_Config_IICA1_Slave_Send(tx_buf,sizeof(tx_buf));    //slave sends data from tx_buf 
  
 while(receiveend_flag != 1);    //wait until receive operation is complete 
 transmitend = 0;    //reset transmit end flag 
 receiveend = 0;    //reset receive end flag 
 
    R_Config_IIC00_StopCondition();    //send stop condition to end current IIC communication 
    R_Config_IIC00_StartCondition();    //start a new IIC communication 
  
 R_Config_IICA1_Slave_Receive(rx_buf2, sizeof(rx_buf2));    //slave receives data into rx_buf2 
 R_Config_IIC00_Master_Send(0x24, tx_buf,sizeof(tx_buf));    //master sends data to slave 
address 0x24 from tx_buf 
  
 while(receiveend_flag != 1);    //wait until receive operation is complete 
 transmitend_flag = 0;    //reset transmit end flag 
 receiveend_flag = 0;    //reset receive end flag 
 

R_Config_IIC00_StopCondition();    //send stop condition to end current IIC communication 
 R_Config_IIC00_Stop();    //stop IIC00 module 
 R_Config_IICA0_Stop();    //stop IICA0 module 
} 

 

  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 703 of 868 
Jan 20, 2026 

Config_IIC00_user.c 

/* Start user code for global. Do not edit comment generated here */ 
extern volatile uint8_t transmitend_flag; 
extern uint8_t receiveend_flag 
/* End user code. Do not edit comment generated here */ 
 
static void r_Config_IIC00_callback_master_sendend (void) 
{ 
    /* Start user code for r_Config_IIC00_callback_master_sendend. Do not edit comment 
generated here */ 
    transmitend_flag = 1U;    //set transmit end flag to indicate transmission is complete 
    /* End user code. Do not edit comment generated here */ 
}  
 
static void r_Config_IIC00_callback_master_receiveend (void) 
{ 
    /* Start user code for r_Config_IIC00_callback_master_receiveend. Do not edit comment 
generated here */ 
    receiveend_flag = 1U;    //set receive end flag to indicate reception is complete 
    /* End user code. Do not edit comment generated here */ 
}  
 

 

Config_IICA0_user.c 

/* Start user code for global. Do not edit comment generated here */ 
extern volatile uint8_t transmitend_flag; 
extern uint8_t receiveend_flag;  
/* End user code. Do not edit comment generated here */ 
 
static void r_Config_IICA0_callback_slave_sendend(void) 
{ 
    /* Start user code for r_Config_IICA0_callback_slave_sendend. Do not edit comment generated 
here */ 
    transmitend_flag = 1U;    //set transmit end flag to indicate slave transmission is complete 
    /* End user code. Do not edit comment generated here */ 
} 
 
static void r_Config_IICA0_callback_slave_receiveend(void) 
{ 
    /* Start user code for r_Config_IICA0_callback_slave_receiveend. Do not edit comment 
generated here */ 
    receiveend_flag = 1U;    //set receive end flag to indicate slave reception is complete 
    /* End user code. Do not edit comment generated here */ 
} 
  

 
  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 704 of 868 
Jan 20, 2026 

4.2.55 IIC Communication (Master mode) (Serial Interface IICA) 

Below is a list of API functions output by the Smart Configurator for IIC communication (master mode) (serial 

interface IICA) use. 

 

Table 4-63  API Functions:  

API Function Name Peripheral Name Description 

R_{Config_IICAn}_Create Serial Interface IICA Executes initialization processing that is 

required before controlling the IICAn master 

module. 

R_{Config_IICAn}_StopCondition Issues a stop condition. 

R_{Config_IICAn}_Stop Stops the IICAn master operation. 

R_{Config_IICAn}_Master_Send Starts transferring data in master mode. 

R_{Config_IICAn}_Master_Receive Starts receiving data in master mode. 

R_{Config_IICAn}_Check_Comstate Readouts of communication status. 

R_{Config_IICAn}_Poll Checks the communication status. Judging 

by the value of the status variable. 

R_{Config_IICAn}_Wait_Comend Waits in the function until communication is 

finished. 

R_{Config_IICAn}_Bus_Check Checks bus status and issues start 

condition if released. 

R_{Config_IICAn}_StartCondition Processes of issuing start condition. 

R_{Config_IICAn}_Wait_Time Waits 50us. 

R_{Config_IICAn}_Create_UserInit Executes user-specific initialization 

processing for the IICAn. 

r_{Config_IICAn}_interrupt Executes processing in response to end of 

IICAn communication interrupt (INTIICAn). 

r_{Config_IICAn}_master_handler Controls IICAn data transmission / reception 

/ error in master mode.. 

r_{Config_IICAn}_callback_master_sendend Executes processing in response to master 

transmit end. 

r_{Config_IICAn}_callback_master_receiveend Executes processing in response to master 

receive completed. 

r_{Config_IICAn}_callback_master_error Executes processing in response to the 

detection of a bus busy or NACK error. 

 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 705 of 868 
Jan 20, 2026 

R_{Config_IICAn}_Create 

This API function executes initialization processing that is required before controlling the IICAn master 

module. 

Remark This API function is called from R_Systeminit before the main() function is executed. 

 

[Syntax] 

void    R_{Config_IICAn}_Create(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 706 of 868 
Jan 20, 2026 

R_{Config_IICAn}_StopCondition 

This API function issues a stop condition. 

 

[Syntax] 

uint8_t  R_{Config_IICAn}_StopCondition(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value]  

Macro Description 

SUCCESS Operation complete. 

BUS_FREE IIC bus is free (SUCCESS). 

BUS_ERROR Bus or IICAn is busy error. 

 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 707 of 868 
Jan 20, 2026 

R_{Config_IICAn}_Stop 

This API function stops the IICAn master operation. 

 

[Syntax] 

void    R_{Config_IICAn}_Stop(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 708 of 868 
Jan 20, 2026 

R_{Config_IICAn}_Master_Send 

This API function starts to send data as master mode. 

 

[Syntax] 

void R_{Config_IICAn}_Master_Send(uint8_t sladr8, uint8_t * const tx_buf, uint16_t tx_num, uint8_t 

wait) ; 

Remark n is the channel number. 

 

[Argument(s)] 

I/O Argument(s) Description 

I uint8_t sladr8; Transfer address 

I uint8_t * const tx_buf; Pointer to the buffer where the data to be transmitted are 

stored 

I uint16_t tx_num; Number of bytes to be transmitted 

I uint8_t wait; Wait for start condition 

 

[Return value] 

Macro Description 

BUS_ERROR Bus or IICAn is busy error. 

SUCCESS Operation complete. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 709 of 868 
Jan 20, 2026 

R_{Config_IICAn}_Master_Receive 

This API function starts to receive data as master mode. 

 

[Syntax] 

void    R_{Config_IICAn}_Master_Receive(uint8_t sladr8, uint8_t * const rx_buf, uint16_t rx_num, 

uint8_t wait); 

Remark n is the channel number. 

 

[Argument(s)] 

I/O Argument(s) Description 

I uint8_t sladr8; Receive address 

O uint8_t * const rx_buf; Pointer to the buffer where the received data are to be stored 

O uint16_t rx_num; Number of bytes to be received 

 uint8_t wait Wait for start condition 

 

[Return value] 

Macro Description 

COM_ERROR Other error of communication. 

SUCCESS Operation complete. 

   

  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 710 of 868 
Jan 20, 2026 

R_{Config_IICAn}_Check_Comstate 

This API function readouts of communication status. 

 

[Syntax] 

uint8_t    R_{Config_IICAn}_Check_Comstate(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

Macro Description 

g_iican_status - 

   

  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 711 of 868 
Jan 20, 2026 

R_{Config_IICAn}_Poll 

This API function checks the communication status. Judging by the value of the status variable. 

 

[Syntax] 

uint8_t    R_{Config_IICAn}_Poll(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

Macro Description 

SUCCESS Operation complete. 

ON_COMMU On communication. 

BUS_ERROR Bus or IICAn is busy error. 

NO_SLAVE NACK for slave address 

NO_ACK NACK for transmit data. 

   

  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 712 of 868 
Jan 20, 2026 

R_{Config_IICAn}_Wait_Comend 

This API function waits in the function until communication is finished. 

 

[Syntax] 

uint8_t    R_{Config_IICAn}_Wait_Comend(uint8_t stop); 

Remark n is the channel number. 

 

[Argument(s)] 

I/O Argument(s) Description 

I uint8_t stop; Issue stop condition. 

 

[Return value] 

Macro Description 

ON_COMMU On communication. 

SUCCESS Operation complete. 

   

  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 713 of 868 
Jan 20, 2026 

R_{Config_IICAn}_Bus_Check 

This API function checks bus status and issues start condition if released. 

 

[Syntax] 

uint8_t    R_{Config_IICAn}_Bus_Check(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

Macro Description 

SUCCESS Operation complete. 

BUS_HOLD Hold IIC bus (same as above). 

BUS_ERROR Bus or IICAn is busy error. 

   

  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 714 of 868 
Jan 20, 2026 

R_{Config_IICAn}_StartCondition 

This API function processes of issuing start condition. 

 

[Syntax] 

uint8_t    R_{Config_IICAn}_StartCondition(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

Macro Description 

SUCCESS Operation complete. 

BUS_ERROR Bus or IICAn is busy error. 

   

  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 715 of 868 
Jan 20, 2026 

R_{Config_IICAn}_Wait_Time 

This API function waits 50us. 

 

[Syntax] 

void    R_{Config_IICAn}_Wait_Time(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 716 of 868 
Jan 20, 2026 

R_{Config_IICAn}_Create_UserInit 

This API function executes user-specific initialization processing for the IICAn. 

Remark This API functions is called from R_{Config_IICAn}_Create as a callback routine. 

 

[Syntax] 

void    R_{Config_IICAn}_Create_UserInit(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 717 of 868 
Jan 20, 2026 

r_{Config_IICAn}_interrupt 

This API function executes processing in response to end of IICAn communication interrupt (INTIICAn). 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_IICAn}_interrupt(void); 

 

For LLVM toolchain: 

void    r_{Config_IICAn}_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_IICAn}_interrupt(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 718 of 868 
Jan 20, 2026 

r_{Config_IICAn}_master_handler 

This API function controls IICAn data transmission / reception / error in master mode. 

Remark This API function is called as the callback routine of interrupt process r_{Config_ 

IICAn}_interrupt corresponding to the IICAn interrupt. 

 

[Syntax] 

void    R_{Config_IICAn}_master_handler(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 719 of 868 
Jan 20, 2026 

r_{Config_IICAn}_callback_master_sendend 

This API function executes processing in response to master transmit end. 

Remark 1.  This API function is called as the callback routine of interrupt process 

R_{Config_IICAn}_master_handler. 

Remark 2.  Please take note to keep necessary flag set/clear in callback function and move other 

processing code out of callback and interrupt function. Otherwise, the next interrupt won’t 

be processed at the correct timing. 

 

[Syntax] 

static void    r_{Config_IICAn}_callback_master_sendend(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 720 of 868 
Jan 20, 2026 

r_{Config_IICAn}_callback_master_receiveend 

This API function executes processing in response to master receive completed. 

Remark 1.  This API function is called as the callback routine of interrupt process 

R_{Config_IICAn}_master_handler. 

Remark 2.  Please take note to keep necessary flag set/clear in callback function and move other 

processing code out of callback and interrupt function. Otherwise, the next interrupt won’t 

be processed at the correct timing. 

 

 

[Syntax] 

static void    r_{Config_IICAn}_callback_master_receiveend(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 721 of 868 
Jan 20, 2026 

r_{Config_IICAn}_callback_master_error 

This API function executes processing in response to the detection of a bus busy or NACK error. 

Remark 1.  This API function is called as the callback routine of interrupt process 

R_{Config_IICAn}_master_handler. 

Remark 2.  Please take note to keep necessary flag set/clear in callback function and move other 

processing code out of callback and interrupt function. Otherwise, the next interrupt won’t 

be processed at the correct timing. 

 

 

[Syntax] 

static void    r_{Config_IICAn}_callback_master_error(MD_STATUS flag); 

Remark n is the channel number. 

 

[Argument(s)] 

I/O Argument(s) Description 

I MD_STATUS flag; Status flag 

MD_NACK: NACK error 

   

[Return value] 

None. 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 722 of 868 
Jan 20, 2026 

Usage example 

This is an example for IICA0 master communication with IICA1 slave (including both send and receive mode): 

(Blue code is user code.) 

main.c 

#include "r_smc_entry.h" 
 
uint8_t tx_buf[6] = {0xA5,0x3F,0xC0,0x5C,0xB6,0x37};    //transmit buffer with 6 bytes of data 
uint8_t rx_buf1[6] = {0x00,0x00,0x00,0x00,0x00,0x00};    //receive buffer 1 initialized to zero 
uint8_t rx_buf2[6] = {0x00,0x00,0x00,0x00,0x00,0x00};    //receive buffer 2 initialized to zero 
volatile uint8_t transmitend_flag = 0U; 
volatile uint8_t receiveend_flag = 0U; 
 
void main(void); 
 
void main(void) 
{ 

EI(); //enable global interrupts to allow the system to respond to interrupt events 
 
    /* Check bus status */ 
    if (R_Config_IICA0_Bus_Check() != 0U) 
    { 
        // Bus busy, wait or handle error 
        R_Config_IICA0_Wait_Time(); 
    } 
 
    /* Start condition */ 
    if (R_Config_IICA0_StartCondition() == 0U) 
    { 
        // Start successful 
    } 
 
    /* Slave ready to receive */ 
    R_Config_IICA1_Slave_Receive(rx_buf1, sizeof(tx_buf));    //slave receives data into rx_buf1 
 
    /* Master sends data */ 
    if (R_Config_IICA0_Master_Send(0x24, tx_buf, sizeof(tx_buf), 100) == 0U)    //master sends data 
to slave with address 0x24 
    { 
        // Send start successful 
    } 
 
    /* Wait for communication to finish */ 
    while (R_Config_IICA0_Check_Comstate() != 0U) 
    { 
        R_Config_IICA0_Poll(); // Poll communication status 
    } 
    R_Config_IICA0_Wait_Comend(1U); // Wait for communication completion and send STOP 
 
    while (receiveend_flag != 1U);    //wait until reception is complete 
    transmitend_flag = 0U;    //reset transmission flag 
    receiveend_flag = 0U;    //reset reception flag 
 
    

  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 723 of 868 
Jan 20, 2026 

main.c 

/* Start condition again */ 
    R_Config_IICA0_StartCondition(); 
 
    /* Master receives data */ 
    if (R_Config_IICA0_Master_Receive(0x24, rx_buf2, sizeof(rx_buf2), 100) == 0U)    //master 
receives data from slave 
    { 
        // Receive start successful 
    } 
 
    /* Wait for communication to finish */ 
    while (R_Config_IICA0_Check_Comstate() != 0U) 
    { 
        R_Config_IICA0_Poll(); 
    } 
    R_Config_IICA0_Wait_Comend(1U); 
 
    while (receiveend_flag != 1U); 
    transmitend_flag = 0U; 
    receiveend_flag = 0U; 
 
    /* Slave sends data */ 
    R_Config_IICA1_Slave_Send(tx_buf, sizeof(tx_buf)); 
 
    while (receiveend_flag != 1U); 
    transmitend_flag = 0U; 
    receiveend_flag = 0U; 
 
    /* Stop communication */ 
    R_Config_IICA0_Stop();    //stop IICA0 communication 
    R_Config_IICA1_Stop();    //stop IICA1 communication  
} 

 

  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 724 of 868 
Jan 20, 2026 

Config_IICA0_user.c 

/* Start user code for global. Do not edit comment generated here */ 
extern volatile uint8_t transmitend_flag; 
extern volatile uint8_t receiveend_flag; 
/* End user code. Do not edit comment generated here */ 
 
static void r_Config_IICA0_callback_master_sendend (void) 
{ 
    SPT0 = 1U; 
    /* Start user code for r_Config_IICA0_callback_master_sendend. Do not edit comment 
generated here */ 
    transmitend_flag = 1U;    //set transmission flag to indicate completion 
    /* End user code. Do not edit comment generated here */ 
}  
 
static void r_Config_IICA0_callback_master_receiveend (void) 
{ 
    SPT0 = 0U; 
    /* Start user code for r_Config_IICA0_callback_master_receiveend. Do not edit comment 
generated here */ 
    receiveend_flag = 1U;    //set reception flag to indicate completion 
    /* End user code. Do not edit comment generated here */ 
}  
 

 

Config_IICA1_user.c 

/* Start user code for global. Do not edit comment generated here */ 
extern volatile uint8_t transmitend_flag; 
extern volatile uint8_t receiveend_flag;  
/* End user code. Do not edit comment generated here */ 
 
static void r_Config_IICA1_callback_slave_sendend(void) 
{ 
    /* Start user code for r_Config_IICA1_callback_slave_sendend. Do not edit comment generated 
here */ 
    transmitend_flag = 1U;    //set transmission flag to indicate slave send completion 
    /* End user code. Do not edit comment generated here */ 
} 
 
static void r_Config_IICA1_callback_slave_receiveend(void) 
{ 
    /* Start user code for r_Config_IICA1_callback_slave_receiveend. Do not edit comment 
generated here */ 
    receiveend_flag = 1U;    //set reception flag to indicate slave receive completion 
    /* End user code. Do not edit comment generated here */ 
} 
  

 

 

 

 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 725 of 868 
Jan 20, 2026 

4.2.56 IIC Communication (Master mode, EEPROM communication) (Serial Interface IICA) 

Below is a list of API functions output by the Smart Configurator for IIC communication (Master mode, 

EEPROM communication) (serial interface IICA) use. 

 

Table 4-64  API Functions:  

API Function Name Peripheral Name Description 

R_{Config_IICAn}_Create Serial Interface IICA Executes initialization processing that is 

required before controlling the IICAn master 

module. 

R_{Config_IICAn}_StopCondition Issues a stop condition. 

R_{Config_IICAn}_Stop Stops the IICAn master operation. 

R_{Config_IICAn}_Master_Send Starts transferring data in master mode. 

R_{Config_IICAn}_Master_Receive Starts receiving data in master mode. 

R_{Config_IICAn}_Check_Comstate Readouts of communication status. 

R_{Config_IICAn}_Poll Checks the communication status. Judging 

by the value of the status variable. 

R_{Config_IICAn}_Wait_Comend Waits in the function until communication is 

finished. 

R_{Config_IICAn}_Bus_Check Checks bus status and issues start 

condition if released. 

R_{Config_IICAn}_StartCondition Processes of issuing start condition. 

R_{Config_IICAn}_Wait_Time Waits 50us. 

R_{Config_IICAn}_Create_UserInit Executes user-specific initialization 

processing for the IICAn. 

r_{Config_IICAn}_interrupt Executes processing in response to end of 

IICAn communication interrupt (INTIICAn). 

r_{Config_IICAn}_master_handler Controls IICAn data transmission / reception 

/ error in master mode.. 

r_{Config_IICAn}_callback_master_sendend Executes processing in response to master 

transmit end. 

r_{Config_IICAn}_callback_master_receiveend Executes processing in response to master 

receive completed. 

r_{Config_IICAn}_callback_master_error Executes processing in response to the 

detection of a bus busy or NACK error. 

 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 726 of 868 
Jan 20, 2026 

R_{Config_IICAn}_Create 

This API function executes initialization processing that is required before controlling the IICAn master 

module. 

Remark This API function is called from R_Systeminit before the main() function is executed. 

 

[Syntax] 

void    R_{Config_IICAn}_Create(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 727 of 868 
Jan 20, 2026 

R_{Config_IICAn}_StopCondition 

This API function issues a stop condition. 

 

[Syntax] 

uint8_t    R_{Config_IICAn}_StopCondition(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value]  

Macro Description 

SUCCESS Operation complete. 

BUS_FREE IIC bus is free (SUCCESS). 

BUS_ERROR Bus or IICAn is busy error. 

 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 728 of 868 
Jan 20, 2026 

R_{Config_IICAn}_Stop 

This API function stops the IICAn master operation. 

 

[Syntax] 

void    R_{Config_IICAn}_Stop(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 729 of 868 
Jan 20, 2026 

R_{Config_IICAn}_Master_Send 

This API function starts to send data as master mode. 

 

[Syntax] 

void    R_{Config_IICAn}_Master_Send(uint8_t sladr7, uint8_t adr, uint8_t * const tx_buf, uint16_t 

tx_num, uint8_t wait); 

Remark n is the channel number. 

 

[Argument(s)] 

I/O Argument(s) Description 

I uint8_t sladr7; Slave address 

I uint8_t adr; Transfer address 

I uint8_t * const tx_buf; Pointer to the buffer where the data to be transmitted are 

stored 

I uint16_t tx_num; Number of bytes to be transmitted 

I uint8_t wait; Wait for start condition 

 

[Return value] 

Macro Description 

BUS_ERROR Bus or IICAn is busy error. 

SUCCESS Operation complete. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 730 of 868 
Jan 20, 2026 

R_{Config_IICAn}_Master_Receive 

This API function starts to receive data as master mode. 

 

[Syntax] 

void    R_{Config_IICAn}_Master_Receive(uint8_t sladr7, uint8_t adr, uint8_t * const rx_buf, 

uint16_t rx_num, uint8_t wait); 

Remark n is the channel number. 

 

[Argument(s)] 

I/O Argument(s) Description 

I uint8_t sladr7; Slave address 

I uint8_t adr; Receive address 

O uint8_t * const rx_buf; Pointer to the buffer where the received data are to be stored 

O uint16_t rx_num; Number of bytes to be received 

 uint8_t wait Wait for start condition 

 

[Return value] 

Macro Description 

COM_ERROR Other error of communication. 

SUCCESS Operation complete. 

  

  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 731 of 868 
Jan 20, 2026 

R_{Config_IICAn}_Check_Comstate 

This API function readouts of communication status. 

 

[Syntax] 

uint8_t    R_{Config_IICAn}_Check_Comstate(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

Macro Description 

g_iican_status - 

   

  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 732 of 868 
Jan 20, 2026 

R_{Config_IICAn}_Poll 

This API function checks the communication status. Judging by the value of the status variable. 

 

[Syntax] 

uint8_t    R_{Config_IICAn}_Poll(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

Macro Description 

SUCCESS Operation complete. 

ON_COMMU On communication. 

BUS_ERROR Bus or IICAn is busy error. 

NO_SLAVE NACK for slave address. 

NO_ACK NACK for transmit data. 

   

  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 733 of 868 
Jan 20, 2026 

R_{Config_IICAn}_Wait_Comend 

This API function waits in the function until communication is finished. 

 

[Syntax] 

uint8_t    R_{Config_IICAn}_Wait_Comend(uint8_t stop); 

Remark n is the channel number. 

 

[Argument(s)] 

I/O Argument(s) Description 

I uint8_t stop; Issue stop condition. 

 

[Return value] 

Macro Description 

ON_COMMU On communication. 

SUCCESS Operation complete. 

   

  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 734 of 868 
Jan 20, 2026 

R_{Config_IICAn}_Bus_Check 

This API function checks bus status and issues start condition if released. 

 

[Syntax] 

uint8_t    R_{Config_IICAn}_Bus_Check(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

Macro Description 

SUCCESS Operation complete. 

BUS_HOLD Hold IIC bus (same as above). 

BUS_ERROR Bus or IICAn is busy error. 

   

  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 735 of 868 
Jan 20, 2026 

R_{Config_IICAn}_StartCondition 

This API function processes of issuing start condition. 

 

[Syntax] 

uint8_t    R_{Config_IICAn}_StartCondition(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

Macro Description 

SUCCESS Operation complete. 

BUS_ERROR Bus or IICAn is busy error. 

   

  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 736 of 868 
Jan 20, 2026 

R_{Config_IICAn}_Wait_Time 

This API function waits 50us. 

 

[Syntax] 

void    R_{Config_IICAn}_Wait_Time(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 737 of 868 
Jan 20, 2026 

R_{Config_IICAn}_Create_UserInit 

This API function executes user-specific initialization processing for the IICAn. 

Remark This API functions is called from R_{Config_IICAn}_Create as a callback routine. 

 

[Syntax] 

void    R_{Config_IICAn}_Create_UserInit(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 738 of 868 
Jan 20, 2026 

r_{Config_IICAn}_interrupt 

This API function executes processing in response to end of IICAn communication interrupt (INTIICAn). 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_IICAn}_interrupt(void); 

 

For LLVM toolchain: 

void    r_{Config_IICAn}_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_IICAn}_interrupt(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 739 of 868 
Jan 20, 2026 

r_{Config_IICAn}_master_handler 

This API function controls IICAn data transmission / reception / error in master mode. 

Remark This API function is called as the callback routine of interrupt process r_{Config_ 

IICAn}_interrupt corresponding to the IICAn interrupt. 

 

[Syntax] 

void    R_{Config_IICAn}_master_handler(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 740 of 868 
Jan 20, 2026 

r_{Config_IICAn}_callback_master_sendend 

This API function executes processing in response to master transmit end. 

Remark 1.  This API function is called as the callback routine of interrupt process 

R_{Config_IICAn}_master_handler. 

Remark 2.  Please take note to keep necessary flag set/clear in callback function and move other 

processing code out of callback and interrupt function. Otherwise, the next interrupt won’t 

be processed at the correct timing. 

 

[Syntax] 

static void    r_{Config_IICAn}_callback_master_sendend(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 741 of 868 
Jan 20, 2026 

r_{Config_IICAn}_callback_master_receiveend 

This API function executes processing in response to master receive completed. 

Remark 1.  This API function is called as the callback routine of interrupt process 

R_{Config_IICAn}_master_handler. 

Remark 2.  Please take note to keep necessary flag set/clear in callback function and move other 

processing code out of callback and interrupt function. Otherwise, the next interrupt won’t 

be processed at the correct timing. 

 

 

[Syntax] 

static void    r_{Config_IICAn}_callback_master_receiveend(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 742 of 868 
Jan 20, 2026 

r_{Config_IICAn}_callback_master_error 

This API function executes processing in response to the detection of a bus busy or NACK error. 

Remark 1.  This API function is called as the callback routine of interrupt process 

R_{Config_IICAn}_master_handler. 

Remark 2.  Please take note to keep necessary flag set/clear in callback function and move other 

processing code out of callback and interrupt function. Otherwise, the next interrupt won’t 

be processed at the correct timing. 

 

 

[Syntax] 

static void    r_{Config_IICAn}_callback_master_error(MD_STATUS flag); 

Remark n is the channel number. 

 

[Argument(s)] 

I/O Argument(s) Description 

I MD_STATUS flag; Status flag 

MD_NACK: NACK error 

   

[Return value] 

None. 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 743 of 868 
Jan 20, 2026 

Usage example 

This is an example for IICA1 master communication with EEPROM (including both send and receive mode): 

(Blue code is user code.) 

main.c 

#include "r_smc_entry.h" 
 
#define EEPROM_ADDR   0x50    // 7-bit EEPROM slave address 
#define MEM_ADDR      0x00    // EEPROM memory address 
#define TIMEOUT       100     // Timeout for communication 
 
/* Write buffer: memory address + 4 data bytes */ 
uint8_t write_data[5] = {MEM_ADDR, 0x11, 0x22, 0x33, 0x44};  
uint8_t read_data[4] = {0}; // Read back 4 data bytes 
 
volatile uint8_t transmitend_flag = 0U; 
volatile uint8_t receiveend_flag = 0U; 
 
void main(void) 
{ 
    EI(); // Enable global interrupts 
 
    /* Check if bus is free */ 
    if (R_Config_IICA1_Bus_Check() != 0U) 
    { 
        R_Config_IICA1_Wait_Time(); // Wait if bus is busy 
    } 
 
    /* ---- Write to EEPROM ---- */ 
    R_Config_IICA1_StartCondition(); // Generate START condition 
    if (R_Config_IICA1_Master_Send(EEPROM_ADDR, MEM_ADDR, write_data, sizeof(write_data), 
TIMEOUT) == 0U) 
    { 
        // Write operation started successfully 
    } 
 
    /* Wait for transmit complete using flag */ 
    while (transmitend_flag == 0U); 
    transmitend_flag = 0U; 
 
    /* Poll communication state until complete */ 
    while (R_Config_IICA1_Check_Comstate() != 0U) 
    { 
        R_Config_IICA1_Poll(); 
    } 
    R_Config_IICA1_Wait_Comend(1U); // STOP condition 
 

/* ---- Read from EEPROM ---- */ 
    R_Config_IICA1_StartCondition(); // Generate START condition again 
    if (R_Config_IICA1_Master_Receive(EEPROM_ADDR, MEM_ADDR, read_data, sizeof(read_data), 
TIMEOUT) == 0U) 
    { 
        // Read operation started successfully 
    } 

 

 
  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 744 of 868 
Jan 20, 2026 

main.c 

/* Wait for receive complete using flag */ 
    while (receiveend_flag == 0U); 
    receiveend_flag = 0U; 
 
    /* Poll communication state until complete */ 
    while (R_Config_IICA1_Check_Comstate() != 0U) 
    { 
        R_Config_IICA1_Poll(); 
    } 
    R_Config_IICA1_Wait_Comend(1U); // STOP condition 
 
    /* Stop IICA1 channel */ 
    R_Config_IICA1_Stop(); 
 
    /* Verify received data */ 
    if (read_data[0] == 0x11 && read_data[1] == 0x22 && read_data[2] == 0x33 && read_data[3] == 
0x44) 
    { 
        // Data verification successful 
    } 
 
    while (1) 
    { 
        // Main loop 
    } 
} 

 

Config_IICA1_user.c 

/* Start user code for global. Do not edit comment generated here */ 
extern volatile uint8_t transmitend_flag; 
extern volatile uint8_t receiveend_flag;  
/* End user code. Do not edit comment generated here */ 
 
static void r_Config_IICA1_callback_master_sendend(void) 
{ 
    /* Start user code for r_Config_IICA1_callback_master_sendend. Do not edit comment 
generated here */ 
    transmitend_flag = 1U;    //set transmission flag to indicate master send completion 
    /* End user code. Do not edit comment generated here */ 
} 
 
static void r_Config_IICA1_callback_master_receiveend(void) 
{ 
    /* Start user code for r_Config_IICA1_callback_master_receiveend. Do not edit comment 
generated here */ 
    receiveend_flag = 1U;    //set reception flag to indicate master receive completion 
    /* End user code. Do not edit comment generated here */ 
} 
  

 
  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 745 of 868 
Jan 20, 2026 

4.2.57 IIC Communication (Slave mode) (Serial Interface IICA) 

Below is a list of API functions output by the Smart Configurator for IIC communication (slave mode) (serial 

interface IICA) use. 

 

Table 4-65  API Functions: 

API Function Name Peripheral Name Description 

R_{Config_IICAn}_Create Serial Interface IICA Executes initialization processing that is 

required before controlling the IICAn slave 

module. 

R_{Config_IICAn}_Stop Stops IICAn slave operation. 

R_{Config_IICAn}_Slave_Send Starts transferring data in slave mode. 

R_{Config_IICAn}_Slave_Receive Starts receiving data in slave mode. 

R_{Config_IICAn}_Set_WakeupOn Enables operation of address match wakeup 

function in STOP mode. 

R_{Config_IICAn}_Set_WakeupOff Disables operation of address match wakeup 

function in STOP mode. 

R_{Config_IICAn}_Create_UserInit Executes user-specific initialization 

processing for the IICAn. 

r_{Config_IICAn}_interrupt Executes processing in response to end of 

IICA0 communication interrupt (INTIICAn). 

r_{Config_IICAn}_slave_handler Controls IICAn data transmission / reception / 

error in slave mode. 

r_{Config_IICAn}_callback_slave_sendend Executes processing in response to slave 

transmit end. 

r_{Config_IICAn}_callback_slave_receiveend Executes processing in response to slave 

receive completed. 

r_{Config_IICAn}_callback_slave_error Executes processing in response to the 

detection of an addresses not match or NACK 

error. 

r_{Config_IICAn}_callback_getstopcondition Executes processing in response to IICAn get 

a slave stop condition. 

 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 746 of 868 
Jan 20, 2026 

R_{Config_IICAn}_Create 

This API function executes initialization processing that is required before controlling the IICAn slave 

module. 

Remark This API function is called from R_Systeminit before the main() function is executed. 

 

[Syntax] 

void    R_{Config_IICAn}_Create(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 747 of 868 
Jan 20, 2026 

R_{Config_IICAn}_Stop 

This API function stops IICAn slave operation. 

 

[Syntax] 

void    R_{Config_IICAn}_Stop(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 748 of 868 
Jan 20, 2026 

R_{Config_IICAn}_Slave_Send 

This API function starts transferring data in slave mode. 

Remark  For the case of the master restarts without issuing a stop condition when communication is 

completed, be careful to take note to call the corresponding slave function on slave device. 

For example, on master device, R_{Config_IICAn}_Master_Receive function is called to 

restart communication, while R_{Config_IICAn}_Slave_Send function is called on slave 

device. In other words, Master and Slave API should be called in pair, otherwise, the IICA 

operaion is not guaranteed. 

 

[Syntax] 

void    R_{Config_IICAn}_Slave_Send(uint8_t * const tx_buf, uint16_t tx_num); 

Remark n is the channel number. 

 

[Argument(s)] 

I/O Argument(s) Description 

I uint8_t * const tx_buf; Pointer to the buffer where the data to be transmitted are 

stored 

I uint16_t tx_num; Number of bytes to be transmitted 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 749 of 868 
Jan 20, 2026 

R_{Config_IICAn}_Slave_Receive 

This API function starts receiving data in slave mode. 

Remark   For the case of the master restarts without issuing a stop condition when communication is 

completed, be careful to take note to call the corresponding slave function on slave device. 

For example, on master device, R_{Config_IICAn}_Master_Send function is called to 

restart communication, while R_{Config_IICAn}_Slave_Receive function is called on slave 

device. In other words, Master and Slave API should be called in pair, otherwise, the IICA 

operaion is not guaranteed. 

 

[Syntax] 

void    R_{Config_IICAn}_Slave_Receive(uint8_t * const rx_buf, uint16_t rx_num); 

Remark n is the channel number. 

 

[Argument(s)] 

I/O Argument(s) Description 

O uint8_t * const rx_buf; Pointer to the buffer where the received data are to be stored 

O uint16_t rx_num; Number of bytes to be received 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 750 of 868 
Jan 20, 2026 

R_{Config_IICAn}_Set_WakeupOn 

This API function enables operation of address match wakeup function in STOP mode. 

 

[Syntax] 

void    R_{Config_IICAn}_Set_WakeupOn(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 751 of 868 
Jan 20, 2026 

R_{Config_IICAn}_Set_WakeupOff 

This API function disables operation of address match wakeup function in STOP mode. 

 

[Syntax] 

void    R_{Config_IICAn}_Set_WakeupOff(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 752 of 868 
Jan 20, 2026 

R_{Config_IICAn}_Create_UserInit 

This API function executes user-specific initialization processing for the IICAn. 

Remark This API functions is called from R_{Config_IICAn}_Create as a callback routine. 

 

[Syntax] 

void    R_{Config_IICAn}_Create_UserInit(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 753 of 868 
Jan 20, 2026 

r_{Config_IICAn}_interrupt 

This API function executes processing in response to end of IICA0 communication interrupt (INTIICAn). 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_IICAn}_interrupt(void); 

 

For LLVM toolchain: 

void    r_{Config_IICAn}_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_IICAn}_interrupt(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 754 of 868 
Jan 20, 2026 

r_{Config_IICAn}_slave_handler 

This API function controls IICAn data transmission / reception / error in slave mode. 

Remark 1. This API function is called as the callback routine of interrupt process r_{Config_ 

IICAn}_interrupt corresponding to the IICAn interrupt. 

Remark 2.  Smart Configurator use "g_iican_slave_status_flag" to control user program flow. The 

initialization of "g_iica0_slave_status_flag" is in R_{Config_IICAn}_Slave_Send function 

and R_{Config_IICAn}_Slave_Receive function. 

 

[Syntax] 

void    R_{Config_IICAn}_slave_handler(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 755 of 868 
Jan 20, 2026 

r_{Config_IICAn}_callback_slave_sendend 

This API function executes processing in response to slave transmit end. 

Remark 1.  This API function is called as the callback routine of interrupt process 

R_{Config_IICAn}_slave_handler. 

Remark 2.  Please take note to keep necessary flag set/clear in callback function and move other 

processing code out of callback and interrupt function. Otherwise, the next interrupt won’t 

be processed at the correct timing. 

 

[Syntax] 

static void    r_{Config_IICAn}_callback_slave_sendend(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 756 of 868 
Jan 20, 2026 

r_{Config_IICAn}_callback_slave_receiveend 

This API function executes processing in response to slave receive completed. 

Remark 1.  This API function is called as the callback routine of interrupt process 

R_{Config_IICAn}_slave_handler.  

Remark 2.  Please take note to keep necessary flag set/clear in callback function and move other 

processing code out of callback and interrupt function. Otherwise, the next interrupt won’t 

be processed at the correct timing. 

 

[Syntax] 

static void    r_{Config_IICAn}_callback_slave_receiveend(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 757 of 868 
Jan 20, 2026 

r_{Config_IICAn}_callback_slave_error 

This API function executes processing in response to the detection of an addresses not match or NACK 

error. 

Remark 1.  This API function is called as the callback routine of interrupt process 

R_{Config_IICAn}_slave_handler. 

Remark 2.  Please take note to keep necessary flag set/clear in callback function and move other 

processing code out of callback and interrupt function. Otherwise, the next interrupt won’t 

be processed at the correct timing. 

 

[Syntax] 

static void    r_{Config_IICAn}_callback_slave_error(MD_STATUS flag); 

Remark n is the channel number. 

 

[Argument(s)] 

I/O Argument(s) Description 

I MD_STATUS flag; Status flag 

MD_NACK: NACK error 

MD_ERROR: addresses not match error 

   

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 758 of 868 
Jan 20, 2026 

r_{Config_IICAn}_callback_getstopcondition 

This API function executes processing in response to IICAn get a slave stop condition. 

Remark 1.  This API function is called as the callback routine of interrupt process 

R_{Config_IICAn}_slave_handler. 

Remark 2.  Please take note to keep necessary flag set/clear in callback function and move other 

processing code out of callback and interrupt function. Otherwise, the next interrupt won’t 

be processed at the correct timing. 

 

[Syntax] 

static void    r_{Config_IICAn}_callback_getstopcondition(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

   

[Return value] 

None. 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 759 of 868 
Jan 20, 2026 

Usage example 

Refer to Serial Array Unit IIC master mode Usage example. 

 
  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 760 of 868 
Jan 20, 2026 

4.2.58 Interrupt Countroller 

Below is a list of API functions output by the Smart Configurator for interrupt countroller use. 

 

Table 4-66  API Functions: 

API Function Name Peripheral Name Description 

R_{Config_INTC}_Create Interrupt function Executes initialization processing that is required before 

controlling the INTC module. 

R_{Config_INTC}_INTPn_Start Clears INTPn interrupt flag and enables interrupt. 

R_{Config_INTC}_INTPn_Stop Disables INTPn interrupt and clears interrupt flag. 

R_{Config_INTC}_Create_UserInit Executes user-specific initialization processing for the 

INTC module. 

r_{Config_INTC}_intpn_interrupt Executes processing in response to INTPn interrupt. 

 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 761 of 868 
Jan 20, 2026 

R_{Config_INTC}_Create 

This API function executes initialization processing that is required before controlling the INTC module. 

Remark This API function is called from R_Systeminit before the main() function is executed. 

 

[Syntax] 

void    R_{Config_INTC}_Create(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 762 of 868 
Jan 20, 2026 

R_{Config_INTC}_INTPn_Start 

This API function clears INTPn interrupt flag and enables interrupt. 

 

[Syntax] 

void    R_{Config_INTC}_INTPn_Start(void); 

Remark n is the channel number. 

   

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 763 of 868 
Jan 20, 2026 

R_{Config_INTC}_INTPn_Stop 

This API function disables INTPn interrupt and clears interrupt flag. 

 

[Syntax] 

void    R_{Config_INTC}_INTPn_Stop(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 764 of 868 
Jan 20, 2026 

R_{Config_INTC}_Create_UserInit 

This API function executes user-specific initialization processing for the INTC module. 

Remark This API functions is called from R_{Config_INTC}_Create as a callback routine. 

 

[Syntax] 

void    R_{Config_INTC}_Create_UserInit(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 765 of 868 
Jan 20, 2026 

r_{Config_INTC}_intpn_interrupt 

This API function executes processing in response to INTPn interrupt. 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_INTC}_intpn_interrupt(void); 

 

For LLVM toolchain: 

void    r_{Config_INTC}_intpn_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_INTC}_intpn_interrupt(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 766 of 868 
Jan 20, 2026 

Usage example 

This is an example for setting a flag when detecting INTP0 valid edge input: 

(Blue code is user code.) 

main.c 

#include "r_smc_entry.h" 
extern uint8_t intp0_int_flag; 
 
void main(void); 
 
void main(void) 
{ 
 EI();    //enable global interrupts to allow interrupt handling 
    intp0_int_flag = 0U;    //initialize the INTP0 interrupt flag to 0 
 R_Config_INTC_INTP0_Start ();      //start INTP0 interrupt detection 
 while(intp0_int_flag != 1U);    //wait until INTP0 interrupt flag is set 
    R_Config_ INTC_INTP0_Stop ();    //stop INTP0 interrupt detection 
} 

 

Config_INTC_user.c 

/* Start user code for global. Do not edit comment generated here */ 
uint8_t intp0_int_flag = 0U;  
/* End user code. Do not edit comment generated here */ 
 
static void __near r_Config_INTC_intp0_interrupt(void) 
{ 
    /* Start user code for r_Config_INTC_intp0_interrupt. Do not edit comment generated here */ 
    /* Set the flag */ 
 intp0_int_flag = 1U;    //set the INTP0 interrupt flag when a valid edge is detected 
    /* End user code. Do not edit comment generated here */ 
}  

 
  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 767 of 868 
Jan 20, 2026 

4.2.59 Voltage Detector 

Below is a list of API functions output by the Smart Configurator for voltage detector use. 

 

Table 4-67  API Functions:  

API Function Name Peripheral Name Description 

R_{Config_LVDn}_Create Voltage Detector Executes initialization processing that is required before 

controlling the voltage detector module. 

R_{Config_LVDn}_Start Starts the voltage detector operation. 

R_{Config_LVDn}_Stop Stops the voltage detector operation. 

R_{Config_LVDn}_Create_UserInit Executes user-specific initialization processing for the 

voltage detector. 

 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 768 of 868 
Jan 20, 2026 

R_{Config_LVDn}_Create 

This API function executes initialization processing that is required before controlling the voltage detector 

module. 

Remark This API function is called from R_Systeminit before the main() function is executed. 

 

[Syntax] 

void    R_{Config_LVDn}_Create(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 769 of 868 
Jan 20, 2026 

R_{Config_LVDn}_Start 

This API function starts the voltage detector operation. 

 

[Syntax] 

void    R_{Config_LVDn}_Start(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 770 of 868 
Jan 20, 2026 

R_{Config_LVDn}_Stop 

This API function stops the voltage detector operation. 

 

[Syntax] 

void    R_{Config_LVDn}_Stop(void); 

Remark n is the channel number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 771 of 868 
Jan 20, 2026 

R_{Config_LVDn}_Create_UserInit 

This API function executes user-specific initialization processing for the voltage detector. 

Remark This API functions is called from R_{Config_LVDn}_Create as a callback routine. 

 

[Syntax] 

void    R_{Config_LVDn}_Create_UserInit(void); 

Remark n is the unit number. 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 772 of 868 
Jan 20, 2026 

Usage example 

This is an example for LVD operating in interrupt mode: 

(Blue code is user code.) 

main.c 

#include "r_smc_entry.h" 
 
void main(void); 
 
void main(void) 
{ 
 EI();    //enable global interrupts to allow interrupt handling 
    R_LVD_Start_Interrupt();    //start LVD in interrupt mode 
    R_ Config_LVD1_Start();    //start configuration for LVD1 module 
} 

 

r_cg_lvd_common_user.c 

static void __near r_lvd_interrupt(void) 
{ 
    /* Start user code for r_lvd_interrupt. Do not edit comment generated here */ 
    /*Clear Flag*/ 
    DLVD1FCLR = 1U;    //write 1 to DLVD1FCLR bit to clear the flag 
    /* End user code. Do not edit comment generated here */ 
} 
 

 

 

 
  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 773 of 868 
Jan 20, 2026 

4.2.60 Snooze Mode Sequencer 

Below is a list of API functions output by the Smart Configurator for snooze mode sequencer use. 

 

Table 4-68  API Functions:  

API Function Name Peripheral Name Description 

R_{Config_SMS}_Create Snooze Mode 

Sequencer 

Executes initialization processing that is required before 

controlling the SMS module, including configure SMS, 

copy the SMS instructions, and copy the SMS data. 

R_{Config_SMS}_Start Sets SMS data from arguments and starts SMS 

module operation. 

R_{Config_SMS}_Stop Stops SMS module operation. 

R_{Config_SMS}_GetStatus Checks SMS wakeup status. 

R_{Config_SMS}_GetReturn Returns SMS data. 

R_{Config_SMS}_TriggerWait_Enable Enables trigger wait operation. 

R_{Config_SMS}_TriggerWait_Disable Disables trigger wait operation. 

R_{Config_SMS}_Set_PowerOn Starts the clock supply for SMS module. 

R_{Config_SMS}_Set_PowerOff Stops the clock supply for SMS module. 

R_{Config_SMS}_Set_Reset Sets SMS module in reset state. 

R_{Config_SMS}_Release_Reset Releases SMS module from reset state. 

R_{Config_SMS}_Create_UserInit Executes user-specific initialization processing for the 

SMS module. 

r_{Config_SMS}_interrupt Executes processing in response to INTSMSE 

interrupt. 

 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 774 of 868 
Jan 20, 2026 

R_{Config_SMS}_Create 

This API function executes initialization processing that is required before controlling the SMS module, 

including configure SMS, copy the SMS instructions and copy the SMS data. 

Remark This API function is called from R_Systeminit before the main() function is executed. 

 

[Syntax] 

void    R_{Config_SMS}_Create(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 775 of 868 
Jan 20, 2026 

R_{Config_SMS}_Start 

This API function sets SMS data from arguments and starts SMS module operation. 

 

[Syntax] 

void    R_{Config_SMS}_Start(void); 

 

void    R_{Config_SMS}_Start(uint16_t arg1, uint16_t arg2, ……, uint16_t argn); 

Remark 1. The arguments of this API function varies according to Start Block setting.  

For example, if there are three arguments in Start Block setting, this API will be 

R_{Config_SMS}_Start(uint16_t arg1, uint16_t arg2, uint16_t arg3). 

Remark 2. n ≤ 14. 

 

[Argument(s)] 

I/O Argument(s) Description 

I uint16_t argn; SMS start data (n<=14) 

  Remark n = 1 - 14. 

   

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 776 of 868 
Jan 20, 2026 

R_{Config_SMS}_Stop 

This API function stops SMS module operation. 

 

[Syntax] 

void    R_{Config_SMS}_Stop(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 777 of 868 
Jan 20, 2026 

R_{Config_SMS}_GetStatus 

This API function checks SMS wakeup status. 

 

[Syntax] 

uint8_t    R_{Config_SMS}_GetStatus(void); 

 

[Argument(s)] 

  None. 

   

[Return value] 

Macro Description 

uint8_t 

g_sms_finish_flag 

SMS finish flag 

0 – SMS not wakeup 

1 – SMS wakeup 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 778 of 868 
Jan 20, 2026 

R_{Config_SMS}_GetReturn 

This API function returns SMS data. 

 

[Syntax] 

void    R_{Config_SMS}_GetReturn(void); 

 

void    R_{Config_SMS}_GetReturn(uint16_t *p_ret1, uint16_t *p_ret2, …..., uint16_t *p_retn); 

Remark 1. The arguments of this API function vary according to Wake Up Block setting.  

For example, if there are two arguments in Wake Up Block setting, this API will be 

R_{Config_SMS}_GetReturn(uint16_t *p_ret1, uint16_t *p_ret2). 

Remark 2. n ≤ 14. 

 

[Argument(s)] 

I/O Argument(s) Description 

I uint16_t *p_retn; SMS data (n<=14) 

  Remark n = 1 - 14. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 779 of 868 
Jan 20, 2026 

R_{Config_SMS}_TriggerWait_Enable 

This API function enables trigger wait operation. 

 

[Syntax] 

void    R_{Config_SMS}_TriggerWait_Enable(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 780 of 868 
Jan 20, 2026 

R_{Config_SMS}_TriggerWait_Disable 

This API function disables trigger wait operation. 

 

[Syntax] 

void    R_{Config_SMS}_TriggerWait_Disable(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 781 of 868 
Jan 20, 2026 

R_{Config_SMS}_Set_PowerOn 

This API function starts the clock supply for SMS module. 

 

[Syntax] 

void    R_{Config_SMS}_Set_PowerOn(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 782 of 868 
Jan 20, 2026 

R_{Config_SMS}_Set_PowerOff 

This API function stops the clock supply for SMS module. 

 

[Syntax] 

void    R_{Config_SMS}_Set_PowerOff(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 783 of 868 
Jan 20, 2026 

R_{Config_SMS}_Set_Reset 

This API function sets SMS module in reset state. 

 

[Syntax] 

void    R_{Config_SMS}_Set_Reset(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 784 of 868 
Jan 20, 2026 

R_{Config_SMS}_Release_Reset 

This API function releases SMS module from reset state. 

 

[Syntax] 

void    R_{Config_SMS}_Release_Reset(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 785 of 868 
Jan 20, 2026 

R_{Config_SMS}_Create_UserInit 

This API function executes user-specific initialization processing for the SMS module. 

Remark This API functions is called from R_{Config_SMS}_Create as a callback routine. 

 

[Syntax] 

void    R_{Config_SMS}_Create_UserInit(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 786 of 868 
Jan 20, 2026 

r_{Config_SMS}_interrupt 

This API function executes processing in response to INTSMSE interrupt. 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_SMS}_interrupt(void); 

 

For LLVM toolchain: 

void    r_{Config_SMS}_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_SMS}_interrupt(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 787 of 868 
Jan 20, 2026 

Usage example 

This is an example for using SMS to read A/D conversion result: 

(Blue code is user code.) 

main.c 

#include "r_smc_entry.h" 
 
uint8_t g_sms_finish_flag;    //flag to indicate SMS operation completion 
uint16_t adc_single_chl = 0x7890;    //variable to store A/D conversion result 
 
void main(void); 
 
void main(void) 
{ 

 EI();    //enable global interrupts to allow interrupt handling 
 
// Set SMS as sequencer stopped state 
R_Config_ SMS_TriggerWait_Enable(); 

    R_Config_SMS_Start ((uint16_t)&adc_single_chl, (uint16_t)&adc_single_chl);    //start SMS 
operation with the address of adc_single_chl as both source and destination 
    // Set SMS as sequencer operating state 
 R_Config_ SMS_TriggerWait_Disable(); 
    STOP ();    //enter low-power mode until interrupt occurs 
    while (g_sms_finish_flag != 1);    //wait until SMS operation is complete 
    g_sms_finish_flag = 0;    //reset the finish flag for next operation 
    R_Config_SMS_Stop ();    //stop SMS operation 
} 
 

 

Config_SMS_user.c 

/* Start user code for global. Do not edit comment generated here */ 
extern volatile uint8_ t  g_sms_finish_flag; 
/* End user code. Do not edit comment generated here */ 
 
static void __near r_Config_SMS_interrupt(void) 
{ 
    /* Start user code for r_Config_SMS_interrupt. Do not edit comment generated here */ 
    g_sms_finish_flag = 1;    //set the finish flag when SMS interrupt occurs 
    /* End user code. Do not edit comment generated here */ 
} 

 
  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 788 of 868 
Jan 20, 2026 

4.2.61 Key Interrupt 

Below is a list of API functions output by the Smart Configurator for key Interrupt use. 

 

Table 4-69  API Functions:  

API Function Name Peripheral Name Description 

R_{Config_KR}_Create Key Interrupt Executes initialization processing that is required before 

controlling the key interrupt module. 

R_{Config_KR}_Start Clears INTKR interrupt flag and enables interrupt. 

R_{Config_KR}_Stop Disables INTKR interrupt and clears interrupt flag. 

R_{Config_KR}_Create_UserInit Executes user-specific initialization processing for the key 

interrupt. 

r_{Config_KR}_interrupt Executes processing in response to INTKR interrupt. 

 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 789 of 868 
Jan 20, 2026 

R_{Config_KR}_Create 

This API function executes initialization processing that is required before controlling the key interrupt 

module. 

Remark This API function is called from R_Systeminit before the main() function is executed. 

 

[Syntax] 

void    R_{Config_KR}_Create(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 790 of 868 
Jan 20, 2026 

R_{Config_KR}_Start 

This API function clears INTKR interrupt flag and enables interrupt. 

 

[Syntax] 

void    R_{Config_KR}_Start(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 791 of 868 
Jan 20, 2026 

R_{Config_KR}_Stop 

This API function disables INTKR interrupt and clears interrupt flag. 

 

[Syntax] 

void    R_{Config_KR}_Stop(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 792 of 868 
Jan 20, 2026 

R_{Config_KR}_Create_UserInit 

This API function executes user-specific initialization processing for the key interrupt. 

Remark This API functions is called from R_{Config_KR}_Create as a callback routine. 

 

[Syntax] 

void    R_{Config_KR}_Create_UserInit(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 793 of 868 
Jan 20, 2026 

r_{Config_KR}_interrupt 

This API function executes processing in response to INTKR interrupt. 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_KR}_interrupt(void); 

 

For LLVM toolchain: 

void    r_{Config_KR}_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_KR}_interrupt(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 794 of 868 
Jan 20, 2026 

Usage example 

This is an example for setting a flag when detecting KR interrupt: 

(Blue code is user code.) 

main.c 

#include "r_smc_entry.h" 
extern uint8_t kr_int_flag; 
 
void main(void); 
 
void main(void) 
{ 
 EI();    //enable global interrupts to allow interrupt handling 
    kr_int_flag = 0U;    //initialize KR interrupt flag to 0 
 R_Config_KR_Start ();    //start the KR interrupt detection module 
 while(kr_int_flag != 1U);    //wait in loop until KR interrupt flag is set to 1 
    R_Config_ KR_Stop ();    //stop the KR interrupt detection module 
} 

 

Config_KR_user.c 

/* Start user code for global. Do not edit comment generated here */ 
uint8_t kr_int_flag = 0U; 
/* End user code. Do not edit comment generated here */ 
 
static void __near r_Config_KR_interrupt(void) 
{ 
    /* Start user code for r_Config_KR_interrupt. Do not edit comment generated here */ 
    /* Set the flag */ 
 kr_int_flag = 1U;    //set the KR interrupt flag to 1 when interrupt occurs 
    /* End user code. Do not edit comment generated here */ 
}  

 
  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 795 of 868 
Jan 20, 2026 

4.2.62 Remote Control Signal Receiver 

Below is a list of API functions output by the Smart Configurator for remote control signal receiver use. 

 

Table 4-70  API Functions: 

API Function Name Peripheral Name Description 

R_{Config_REMC}_Create Remote Control 

Signal Receiver 

Executes initialization processing that is required 

before controlling the REMC module. 

R_{Config_REMC}_Start Starts operation of the remote control signal 

receiver. 

R_{Config_REMC}_Stop Stops operation of the remote control signal 

receiver. 

R_{Config_REMC}_Read Specifies the location where the received data 

are to be stored and the number of bytes to be 

received. 

R_{Config_REMC}_Create_UserInit Executes user-specific initialization processing 

for the the remote control signal receiver. 

r_{Config_REMC}_interrupt Executes processing in response to INTREMC 

interrupt. 

r_{Config_REMC}_callback_receiveend Executes processing in response to data 

reception complete interrupts. 

r_{Config_REMC}_callback_comparematch Executes processing in response to compare 

match interrupts. 

r_{Config_REMC}_callback_receiveerror Executes processing in response to receive error 

interrupt. 

r_{Config_REMC}_callback_bufferfull Executes processing in response to receive 

buffer full interrupts. 

r_{Config_REMC}_callback_header Executes processing in response to header 

pattern match interrupt. 

r_{Config_REMC}_callback_data0 Executes processing in response to data "0" 

pattern match interrupt. 

r_{Config_REMC}_callback_data1 Executes processing in response to data "1" 

pattern match interrupt. 

r_{Config_REMC}_callback_specialdata Executes processing in response to special data 

pattern match interrupt. 

 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 796 of 868 
Jan 20, 2026 

R_{Config_REMC}_Create 

This API function executes initialization processing that is required before controlling the remote control 

signal receiver. 

Remark This API function is called from R_Systeminit before the main() function is executed. 

 

[Syntax] 

void    R_{Config_REMC}_Create(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 797 of 868 
Jan 20, 2026 

R_{Config_REMC}_Start 

This API function starts operation of the remote control signal receiver. 

 

[Syntax] 

void    R_{Config_REMC}_Start(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 798 of 868 
Jan 20, 2026 

R_{Config_REMC}_Stop 

This API function stops operation of the remote control signal receiver. 

 

[Syntax] 

void    R_{Config_REMC}_Stop(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 799 of 868 
Jan 20, 2026 

R_{Config_REMC}_Read 

This API function specifies the location where the received data are to be stored and the number of bytes 

to be received. 

Remark This API function specifies the location where the received data read by the REMC interrupt 

routine at the end of data reception are to be stored. 

 

[Syntax] 

MD_STATUS     R_{Config_REMC}_Read(uint8_t * const rx_buf, uint8_t rx_num); 

 

[Argument(s)] 

I/O Argument(s) Description 

O uint8_t * const rx_buf; Pointer to the buffer where the received data are to be stored 

O Uint8_t rx_num; Number of bytes to be received 

 

[Return value] 

Macro Description 

MD_OK Normal end 

MD_ERROR1 The specification of argument rx_num is invalid. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 800 of 868 
Jan 20, 2026 

R_{Config_REMC}_Create_UserInit 

This API function executes user-specific initialization processing for the the remote control signal receiver. 

Remark This API functions is called from R_{Config_REMC}_Create as a callback routine. 

 

[Syntax] 

void    R_{Config_REMC}_Create_UserInit(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 801 of 868 
Jan 20, 2026 

r_{Config_REMC}_interrupt 

This API function executes processing in response to INTREMC interrupt. 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_REMC}_interrupt(void); 

 

For LLVM toolchain: 

void    r_{Config_REMC}_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_REMC}_interrupt(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 802 of 868 
Jan 20, 2026 

r_{Config_REMC}_callback_receiveend 

This API function executes processing in response to data reception complete interrupts. 

Remark This API function is called as the callback routine of interrupt process 

r_{Config_REMC}_interrupt corresponding to data reception completion. 

 

[Syntax] 

static void    r_{Config_REMC}_callback_receiveend(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 803 of 868 
Jan 20, 2026 

r_{Config_REMC}_callback_comparematch 

This API function executes processing in response to compare match interrupts. 

Remark This API function is called as the callback routine of interrupt process 

r_{Config_REMC}_interrupt corresponding to the REMC compare match is triggered. 

 

[Syntax] 

static void    r_{Config_REMC}_callback_comparematch(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 804 of 868 
Jan 20, 2026 

r_{Config_REMC}_callback_receiveerror 

This API function executes processing in response to receive error interrupt.  

Remark This API function is called as the callback routine of interrupt process 

r_{Config_REMC}_interrupt corresponding to receive error. 

 

[Syntax] 

static void    r_{Config_REMC}_callback_receiveerror(void); 

 

[Argument(s)] 

None. 

   

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 805 of 868 
Jan 20, 2026 

r_{Config_REMC}_callback_bufferfull 

This API function executes processing in response to receive buffer full interrupts. 

Remark This API function is called as the callback routine of interrupt process 

r_{Config_REMC}_interrupt corresponding to the REMC receive buffer full. 

 

[Syntax] 

static void    r_{Config_REMC}_callback_bufferfull(void); 

 

[Argument(s)] 

None. 

   

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 806 of 868 
Jan 20, 2026 

r_{Config_REMC}_callback_header 

This API function executes processing in response to header pattern match interrupt. 

Remark This API function is called as the callback routine of interrupt process 

r_{Config_REMC}_interrupt corresponding to the REMC header pattern match. 

 

[Syntax] 

static void    r_{Config_REMC}_callback_header(void); 

 

[Argument(s)] 

None. 

   

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 807 of 868 
Jan 20, 2026 

r_{Config_REMC}_callback_data0 

This API function executes processing in response to data "0" pattern match interrupt. 

Remark This API function is called as the callback routine of interrupt process 

r_{Config_REMC}_interrupt corresponding to the REMC data "0" pattern match. 

 

[Syntax] 

static void    r_{Config_REMC}_callback_data0(void); 

 

[Argument(s)] 

None. 

   

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 808 of 868 
Jan 20, 2026 

r_{Config_REMC}_callback_data1 

This API function executes processing in response to data "1" pattern match interrupt. 

Remark This API function is called as the callback routine of interrupt process 

r_{Config_REMC}_interrupt corresponding to the REMC data "1" pattern match. 

 

[Syntax] 

static void    r_{Config_REMC}_callback_data1(void); 

 

[Argument(s)] 

None. 

   

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 809 of 868 
Jan 20, 2026 

r_{Config_REMC}_callback_specialdata 

This API function executes processing in response to special data pattern match interrupt. 

Remark This API function is called as the callback routine of interrupt process 

r_{Config_REMC}_interrupt corresponding to the REMC special data pattern match. 

 

[Syntax] 

static void    r_{Config_REMC}_callback_specialdata(void); 

 

[Argument(s)] 

None. 

   

[Return value] 

None. 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 810 of 868 
Jan 20, 2026 

Usage example 

This is an example for stopping operation of the remote control signal receiver at the end of data reception: 

(Blue code is user code.) 

main.c 

#include "r_smc_entry.h" 
 
volatile uint8_t g_remc_rx_buf[8];    //declare a volatile buffer to store received remote control signal 
data 
 
void main(void); 
 
void main(void) 
{ 
 EI();    //enable global interrupts to allow interrupt handling 
    /* Start the REMC operation */ 
 R_Config_REMC_Start(); 
 
 /* Read data from receive data buffer */ 
 R_Config_REMC_Read((uint8_t *)g_remc_rx_buf, 8U);    //read 8 bytes of received data into 
g_remc_rx_buf 
} 

 

Config_REMC_user.c 

static void r_Config_REMC_callback_receiveend(void) 
{ 
    /* Start user code for r_Config_REMC_callback_receiveend. Do not edit comment generated here */ 
    R_Config_REMC_Stop();    //stop the REMC operation after data reception is complete 

    /* End user code. Do not edit comment generated here */ 
} 

  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 811 of 868 
Jan 20, 2026 

4.2.63 Watchdog Timer 

Below is a list of API functions output by the Smart Configurator for watchdog timer use. 

 

Table 4-71  API Functions:  

API Function Name Peripheral Name Description 

R_{Config_WDT}_Create Watchdog Timer Executes initialization processing that is required before 

controlling the watchdog timer module. 

R_{Config_WDT}_Restart Clears the counter in the watchdog timer, and then 

restarts counting by the counter. 

R_{Config_WDT}_Create_UserInit Executes user-specific initialization processing for the 

watchdog timer. 

r_{Config_WDT}_interrupt Executes processing in response to maskable INTWDTI 

interrupt. 

 

  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 812 of 868 
Jan 20, 2026 

R_{Config_WDT}_Create 

This API function executes initialization processing that is required before controlling the watchdog timer 

module. 

Remark This API function is called from R_Systeminit before the main() function is executed. 

 

[Syntax] 

void    R_{Config_WDT}_Create(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 813 of 868 
Jan 20, 2026 

R_{Config_WDT}_Restart 

This API function clears the counter in the watchdog timer, and then restarts counting by the counter. 

 

[Syntax] 

void    R_{Config_WDT}_Restart(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 814 of 868 
Jan 20, 2026 

R_{Config_WDT}_Create_UserInit 

This API function executes user-specific initialization processing for the watchdog timer. 

Remark This API functions is called from R_{Config_WDT}_Create as a callback routine. 

 

[Syntax] 

void    R_{Config_WDT}_Create_UserInit(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 815 of 868 
Jan 20, 2026 

r_{Config_WDT}_interrupt 

This API function executes processing in response to maskable INTWDTI interrupt. 

Remark This API function is called as the interrupt handler for maskable interrupts when 75% of the 

overflow time + 1/4 fIL is reached.  

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_WDT}_interrupt(void); 

 

For LLVM toolchain: 

void    r_{Config_WDT}_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_WDT}_interrupt(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 816 of 868 
Jan 20, 2026 

Usage example 

This is an example for refreshing the counter value on every loop of the main function and issuing a software 

reset in response to an underflow of the counter: 

(Blue code is user code.) 

 

main.c 

#include "r_smc_entry.h" 
 
void main(void); 
 
void main(void) 
{ 
 EI();    //enable global interrupts to allow interrupt handling 
    while (1U)   //infinite loop to continuously refresh the watchdog timer 
 { 
  /* Restarts WDT module */ 
  R_Config_WDT_Restart();    //refresh the watchdog timer via software reset for response to 
an underflow of the counter 
 } 
} 

  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 817 of 868 
Jan 20, 2026 

4.2.64 Logic and Event Link Controller 

The Logic and Event Link Controller(ELCL) component have 2 types, 1 type is fixed function ELCL component 

such as “ELCL chattering prevention”, “ELCL slave select pin function” etc, the other 1 type is “ELCL Flexible 

Circuit”. The 2 types ELCL component API are not same. Below is a list of all API functions output by the Smart 

Configurator for logic and event link controller (ELCL) use.  

 

Table 4-72  API Functions:  

API Function Name Peripheral Name Description 

R_{Config_xxx}_Create Logic and Event 

Link Controller 

Executes initialization processing that is required before 

controlling the ELCL module. 

R_{Config_xxx}_Start Enables ELCL output. 

R_{Config_xxx}_Stop  Disables ELCL output. 

R_{Config_xxx}_OUTPUTn_Start  Starts the ELCL output of singal [n]. 

R_{Config_xxx}_OUTPUTn_Stop   Stops the ELCL output of singal [n]. 

R_{Config_xxx}_GetStatus  Get the value ELOENCTL register to know which output is 

enabled. 

R_{Config_xxx}_Create_UserInit  Executes user-specific initialization processing for the 

ELCL. 

r_{Config_xxx}_interrupt Executes processing in response to INTELCL interrupt. 

Remark1. “xxx” is ELCL module name. 

Remark2.  r_{Config_xxx}_interrupt function is generated only when ELCL output signal used as INTELCL 

in the ELCL function GUI. 

Remark3 Only “ELCL Flexible Circuit” component have the API funcs: R_{Config_xxx}_OUTPUTn_Start, 

R_{Config_xxx}_OUTPUTn_Stop and R_{Config_xxx}_GetStatus. For fixed function ELCL 

component, there don’t have these API functions.  

 

  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 818 of 868 
Jan 20, 2026 

R_{Config_xxx}_Create 

This API function executes initialization processing that is required before controlling the ELCL module. 

Remark This API function is called from R_Systeminit before the main() function is executed. 

 

[Syntax] 

void    R_{Config_xxx}_Create(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 819 of 868 
Jan 20, 2026 

R_{Config_xxx}_Start 

This API function clears ELCL interrupt flag and enables ELCL output. 

 

[Syntax] 

void    R_{Config_xxx}_Start(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 820 of 868 
Jan 20, 2026 

R_{Config_xxx}_Stop 

This API function disables INTELCL interrupt and clears interrupt flag, disable ELCL output. 

 

[Syntax] 

void    R_{Config_xxx}_Stop(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 821 of 868 
Jan 20, 2026 

R_{Config_xxx}_OUTPUTn_Start 

This API function start ELCL output n. 

 

[Syntax] 

void    R_{Config_xxx}_OUTPUT_Stat(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 822 of 868 
Jan 20, 2026 

R_{Config_xxx}_OUTPUTn_Stop 

This API function stops ELCL output n. 

 

[Syntax] 

void    R_{Config_xxx}_OUTPUTn_Stop(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 823 of 868 
Jan 20, 2026 

R_{Config_xxx}_GetStatus 

This API function get the value ELOENCTL register to know which output is enabled.. 

 

[Syntax] 

uint8_t    R_{Config_xxx}_GetStatus(void); 

 

[Argument(s)] 

I/O Argument(s) Description 

I Uint8_t status; ELOENCTL register value. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 824 of 868 
Jan 20, 2026 

R_{Config_xxx}_Create_UserInit 

This API function executes user-specific initialization processing for ELCL. 

Remark This API functions is called from R_{Config_xxx}_Create as a callback routine. 

 

[Syntax] 

void    R_{Config_xxx}_Create_UserInit(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 825 of 868 
Jan 20, 2026 

r_{Config_xxx}_interrupt 

This API function executes processing in response to INTELCL interrupt. 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{ Config_xxx}_interrupt(void); 

 

For LLVM toolchain: 

void    r_{Config_xxx}_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void    r_{ Config_xxx}_interrupt(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 826 of 868 
Jan 20, 2026 

Usage example 

Exampel1: This is an example for using “ELCL AND” component to implement 2 port signal AND logic. 

(Blue code is user code.) 

 

main.c 

#include "r_smc_entry.h" 
 
void main(void); 
 
void main(void) 
{ 
 EI();    //enable global interrupts to allow interrupt handling 
 
    R_Config_AND_Start();    //start the AND logic component configured 
} 

 
 
Example2: This is an example for using “ELCL Flexible Circuit” component to implement below ELCL function. 

(Blue code is user code.) 

main.c 

#include "r_smc_entry.h" 
 
void main(void); 
 
void main(void) 
{ 
 uint8_t status; 
 EI();    //enable global interrupts to allow interrupt handling 
 
    R_Config_ELCL_OUTPUT3_Start();    //start ELCL output channel 3 
 R_Config_ELCL_OUTPUT4_Start();    //start ELCL output channel 4 
    … 
  
 Status = R_Config_ELCL_GetStatus();    //get the current status of the ELCL circuit 
    while (1) 
    { 
        ; 
    } 
} 

  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 827 of 868 
Jan 20, 2026 

4.2.65 Event Link Controller 

Below is a list of API functions output by the Smart Configurator for event link controller (ELC) use. 

 

Table 4-73  API Functions:  

API Function Name Peripheral Name Description 

R_{Config_ELC}_Create Event Link 

Controller 

Executes initialization processing that is required before 

controlling the ELC module. 

R_{Config_ELC}_Stop Disables ELC output 

R_{Config_ELC}_Create_UserInit Executes user-specific initialization processing for the 

ELC. 

 

  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 828 of 868 
Jan 20, 2026 

R_{Config_ELC}_Create 

This API function executes initialization processing that is required before controlling the ELC module. 

Remark This API function is called from R_Systeminit before the main() function is executed. 

 

[Syntax] 

void    R_{Config_ELC}_Create(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 829 of 868 
Jan 20, 2026 

R_{Config_ELC}_Stop 

This API function stops the ELC event resources. 

 

[Syntax] 

void    R_{Config_ELC}_Stop(uint32_t event); 

 

[Argument(s)] 

   

I/O Argument(s) Description 

I uint32_t event Event resources to be stopped (bit n of ELSELRn) 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 830 of 868 
Jan 20, 2026 

R_{Config_ELC}_Create_UserInit 

This API function executes user-specific initialization processing for ELC. 

Remark This API functions is called from R_{Config_ELC}_Create as a callback routine. 

 

[Syntax] 

void    R_{Config_ELC}_Create_UserInit(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 831 of 868 
Jan 20, 2026 

Usage example 

This is an example for ELC is used to stop “Key return signal detection” event generation: 

(Blue code is user code.) 

 

main.c 

#include "r_smc_entry.h" 
 
void main(void); 
 
void main(void) 
{ 
    uint32_t stp_event = 0x00000020;    //define a variable representing the event ID to be stopped 
(Key return signal detection) 
 EI();    //enable global interrupts to allow interrupt handling 
    R_Config_ELC_Stop(stp_even);    //stop the specified ELC event (Key return signal detection) 
 
    while (1)    //infinite loop to keep the program running 
    { 
        ; 
    } 
} 

 
 
  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 832 of 868 
Jan 20, 2026 

4.2.66 LCD Controller/Driver 

Below is a list of API functions output by the Smart Configurator for LCD controller/driver use. 

 

Table 4-74  API Functions:  

API Function Name Peripheral Name Description 

R_{Config_LCD}_Create LCD 

Controller/Driver 

Executes initialization processing that is required before 

controlling the LCD controller/driver module. 

R_{Config_LCD}_Start Starts the LCD controller/driver operation. 

R_{Config_LCD}_Stop Stops the LCD controller/driver operation. 

R_{Config_LCD}_Voltage_On Enables voltage boost circuit or capacitor split circuit. 

R_{Config_LCD}_Voltage_Off Disables voltage boost circuit or capacitor split circuit. 

R_{Config_LCD}_Set_DisplayData Sets the data to be displayed on the LCD controller/driver. 

R_{Config_LCD}_Create_UserInit Executes user-specific initialization processing for the 

LCD controller/driver. 

 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 833 of 868 
Jan 20, 2026 

R_{Config_LCD}_Create 

This API function executes initialization processing that is required before controlling the LCD 

controller/driver module. 

Remark This API function is called from R_Systeminit before the main() function is executed. 

 

[Syntax] 

void    R_{Config_LCD}_Create(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 834 of 868 
Jan 20, 2026 

R_{Config_LCD}_Start 

This API function starts the LCD controller/driver operation. 

 

[Syntax] 

void    R_{Config_LCD}_Start(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 835 of 868 
Jan 20, 2026 

R_{Config_LCD}_Stop 

This API function stops the LCD controller/driver operation. 

 

[Syntax] 

void    R_{Config_LCD}_Stop(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 836 of 868 
Jan 20, 2026 

R_{Config_LCD}_Voltage_On 

This API function enables voltage boost circuit or capacitor split circuit. 

 

[Syntax] 

void    R_{Config_LCD}_Voltage_On(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 837 of 868 
Jan 20, 2026 

R_{Config_LCD}_Voltage_Off 

This API function disables voltage boost circuit or capacitor split circuit. 

 

[Syntax] 

void    R_{Config_LCD}_Voltage_Off(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 838 of 868 
Jan 20, 2026 

R_{Config_LCD}_Set_DisplayData 

This API function sets the data to be displayed on the LCD controller/driver. 

 

[Syntax] 

MD_STATUS    R_{Config_LCD}_Set_DisplayData(uint8_t index, uint8_t data); 

 

[Argument(s)] 

I/O Argument(s) Description 

I uint8_t index; Specify index of LCD display data register(SEGn) (n = 0 to 55) 

I uint8_t data; data to be displayed 

 

[Return value] 

Macro Description 

MD_OK Normal end 

MD_ARGERROR Error argument input error. 

   

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 839 of 868 
Jan 20, 2026 

R_{Config_LCD}_Create_UserInit 

This API function executes user-specific initialization processing for the LCD controller/driver. 

Remark This API functions is called from R_{Config_LCD}_Create as a callback routine. 

 

[Syntax] 

void    R_{Config_LCD}_Create_UserInit(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 840 of 868 
Jan 20, 2026 

Usage example 

This is an example for LCD controller/driver: 

(Blue code is user code.) 

main.c (1/2) 

#include "r_smc_entry.h" 
 
void main(void); 
 
void main(void) 
{ 
 EI();    //enable global interrupts to allow interrupt handling 
    //Set segment data for digit 1, digit 1 displays number 1  
    R_Config_LCD_Set_DisplayData(7, 0x00); 
    R_Config_LCD_Set_DisplayData(8, 0x00); 
    R_Config_LCD_Set_DisplayData(12, 0x00); 
    R_Config_LCD_Set_DisplayData(13, 0x06); 
 
    //Set segment data for digit 2, digit 2 displays number 2 
    R_Config_LCD_Set_DisplayData(6, 0x03); 
    R_Config_LCD_Set_DisplayData(5, 0x02); 
    R_Config_LCD_Set_DisplayData(14, 0x04); 
    R_Config_LCD_Set_DisplayData(15, 0x0C); 
 
    //Set segment data for digit 3, digit 3 displays number 3 
    R_Config_LCD_Set_DisplayData(4, 0x01); 
    R_Config_LCD_Set_DisplayData(3, 0x02); 
    R_Config_LCD_Set_DisplayData(16, 0x04); 
    R_Config_LCD_Set_DisplayData(17, 0x0E); 
 
    //Set segment data for digit 4, digit 4 displays number 4 
    R_Config_LCD_Set_DisplayData(2, 0x04); 
    R_Config_LCD_Set_DisplayData(1, 0x02); 
    R_Config_LCD_Set_DisplayData(20, 0x04); 
    R_Config_LCD_Set_DisplayData(21, 0x06); 
 
    //Set segment data for digit 5, digit 5 displays number 5 
    R_Config_LCD_Set_DisplayData(0, 0x05); 
    R_Config_LCD_Set_DisplayData(50, 0x02); 
    R_Config_LCD_Set_DisplayData(28, 0x04); 
    R_Config_LCD_Set_DisplayData(51, 0x0A); 
 
    //Set segment data for digit 6, digit 6 displays number 6 
    R_Config_LCD_Set_DisplayData(49, 0x07); 
    R_Config_LCD_Set_DisplayData(48, 0x02); 
    R_Config_LCD_Set_DisplayData(52, 0x04); 
    R_Config_LCD_Set_DisplayData(53, 0x0A); 
 
    //Set segment data for digit 7, digit 7 displays number 7 
    R_Config_LCD_Set_DisplayData(47, 0x00); 
    R_Config_LCD_Set_DisplayData(39, 0x00); 
    R_Config_LCD_Set_DisplayData(54, 0x00); 
    R_Config_LCD_Set_DisplayData(55, 0x0E); 

 

  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 841 of 868 
Jan 20, 2026 

main.c (2/2) 

    //Set segment data for digit 8, digit 8 displays number 8 
    R_Config_LCD_Set_DisplayData(37, 0x02); 
    R_Config_LCD_Set_DisplayData(38, 0x07); 
    R_Config_LCD_Set_DisplayData(35, 0x04); 
    R_Config_LCD_Set_DisplayData(36, 0x0E); 
 
    R_Config_LCD_Voltage_On();    //turn on the LCD voltage supply 
    R_Config_LCD_Start();    //start the LCD controller 
    R_Config_RTC_Start();    //start the Real-Time Clock module 
 
    while(1)    //infinite loop to keep the program running 
    { 
        // TODO: add application code here 
    } 
} 

 

  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 842 of 868 
Jan 20, 2026 

4.2.67 Oscillation Stop Detector 

Below is a list of API functions output by the Smart Configurator for oscillation stop detector use. 

 

Table 4-75  API Functions:  

API Function Name Peripheral Name Description 

R_{Config_OSD}_Create Oscillation Stop 

Detector 

Executes initialization processing that is required before 

controlling the oscillation stop detector module. 

R_{Config_OSD}_Start Starts the oscillation stop detector. 

R_{Config_OSD}_Stop Stops the oscillation stop detector. 

R_{Config_OSD}_Create_UserInit Executes user-specific initialization processing for the 

oscillation stop detector. 

r_{Config_OSD}_interrupt Executes processing in response to INTOSDC interrupt. 

 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 843 of 868 
Jan 20, 2026 

R_{Config_OSD}_Create 

This API function executes initialization processing that is required before controlling the oscillation stop 

detector module. 

Remark This API function is called from R_Systeminit before the main() function is executed. 

 

[Syntax] 

void    R_{Config_OSD}_Create(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 844 of 868 
Jan 20, 2026 

R_{Config_OSD}_Start 

This API function starts oscillation stop detector. 

 

[Syntax] 

void    R_{Config_OSD}_Start(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 845 of 868 
Jan 20, 2026 

R_{Config_OSD}_Stop 

This API function stops oscillation stop detector. 

 

[Syntax] 

void    R_{Config_OSD}_Stop(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 846 of 868 
Jan 20, 2026 

R_{Config_OSD}_Create_UserInit 

This API function executes user-specific initialization processing for the oscillation stop detector. 

Remark This API functions is called from R_{Config_OSD}_Create as a callback routine. 

 

[Syntax] 

void    R_{Config_OSD}_Create_UserInit(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 847 of 868 
Jan 20, 2026 

r_{Config_OSD}_interrupt 

This API function executes processing in response to INTOSDC interrupt. 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_OSD}_interrupt(void); 

 

For LLVM toolchain: 

void    r_{Config_OSD}_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_OSD}_interrupt(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 848 of 868 
Jan 20, 2026 

Usage example 

This is an example for setting a flag when detecting oscillation stop detector: 

(Blue code is user code.) 

main.c 

#include "r_smc_entry.h" 
extern uint8_t osd_flag; 
 
void main(void); 
 
void main(void) 
{ 
 EI();    //enable global interrupts to allow interrupt handling 
 R_Config_OSD_Start();    //start the Oscillation Stop Detector module 
 while(1U);    //infinite loop to keep the program running 
} 

 

Config_OSD_user.c 

/* Start user code for global. Do not edit comment generated here */ 
uint8_t osd_flag = 0U; 
/* End user code. Do not edit comment generated here */ 
 
static void __near r_Config_OSD_interrupt(void) 
{ 
    /* Start user code for r_Config_OSD_interrupt. Do not edit comment generated here */ 
    osd_flag++;    //increment the flag when an oscillation stop is detected 
    /* End user code. Do not edit comment generated here */ 
}  

 

Config_WDT_user.c 

static void __near r_Config_WDT_interrupt(void) 
{ 
    /* Start user code for r_Config_WDT_interrupt. Do not edit comment generated here */ 
    R_Config_WDT_Restart();    //restart the Watchdog Timer to prevent system reset 
    /* End user code. Do not edit comment generated here */ 
}  

 

  



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 849 of 868 
Jan 20, 2026 

4.2.68 External Signal Sampler 

Below is a list of API functions output by the Smart Configurator for external signal sampler use. 

 

Table 4-76  API Functions:  

API Function Name Peripheral Name Description 

R_{Config_EXSD}_Create External Signal 

Sampler 

Executes initialization processing that is required before 

controlling the external signal sampler module. 

R_{Config_EXSD}_Start Starts the external signal sampler. 

R_{Config_EXSD}_Stop Stops the external signal sampler. 

R_{Config_EXSD}_Create_UserInit Executes user-specific initialization processing for the 

external signal sampler. 

r_{Config_EXSD}_interrupt Executes processing in response to INTEXSD interrupt. 

 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 850 of 868 
Jan 20, 2026 

R_{Config_EXSD}_Create 

This API function executes initialization processing that is required before controlling the external signal 

sampler module. 

Remark This API function is called from R_Systeminit before the main() function is executed. 

 

[Syntax] 

void    R_{Config_EXSD}_Create(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 851 of 868 
Jan 20, 2026 

R_{Config_EXSD}_Start 

This API function clears INTEXSD interrupt flag and enables interrupt. 

 

[Syntax] 

void    R_{Config_EXSD}_Start(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 852 of 868 
Jan 20, 2026 

R_{Config_EXSD}_Stop 

This API function disables INTEXSD interrupt and clears interrupt flag. 

 

[Syntax] 

void    R_{Config_EXSD}_Stop(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 853 of 868 
Jan 20, 2026 

R_{Config_EXSD}_Create_UserInit 

This API function executes user-specific initialization processing for the external signal sampler. 

Remark This API functions is called from R_{Config_EXSD}_Create as a callback routine. 

 

[Syntax] 

void    R_{Config_EXSD}_Create_UserInit(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 

   



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 854 of 868 
Jan 20, 2026 

r_{Config_EXSD}_interrupt 

This API function executes processing in response to INTEXSD interrupt. 

Remark The INTEXSD interrupt can’t be used in STOP mode and SNOOZE mode because 

operation is in synchronization with the CPU/peripheral hardware clock (fCLK), which is 

stopped. 

 

[Syntax] 

For CCRL78 toolchain: 

static void __near    r_{Config_EXSD}_interrupt(void); 

 

For LLVM toolchain: 

void    r_{Config_EXSD}_interrupt(void); 

 

For IAR toolchain: 

__interrupt static void    r_{Config_EXSD}_interrupt(void); 

 

[Argument(s)] 

None. 

 

[Return value] 

None. 



 

 
Smart Configurator 4. API FUNCTIONS 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 855 of 868 
Jan 20, 2026 

Usage example 

This is an example for outputting signal when detecting external signal sampler: 

(Blue code is user code.) 

main.c 

#include "r_smc_entry.h" 
 
void main(void); 
 
void main(void) 
{ 
 EI();    //enable global interrupts to allow interrupt handling 
 R_Config_EXSD_Start();    //start the External Signal Sampler module to begin monitoring external 
signals 
 R_Config_IT00_Start();    //start the 8-bit interval timer 00 to provide output period 
 while(1U); 
} 

 

 

  



 

 
Smart Configurator Appendix  API Function Comparison Table 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 856 of 868 
Jan 20, 2026 

Appendix  API Function Comparison Table 
This chapter compares the API functions which are output by the Code Generator with the API functions which 

are output by the Smart Configurator. The user who used to use the Code Generator tool can understand which 

the corresponding API functions are generated by Smart Configurator. 

 

Table 5-1 Code Generator and Smart Configurator API Comparison List (1/6) 

Peripheral Function Code Generator API Function Name Smart Configurator API Function Name 

Common main main 

R_MAIN_UserserInit - 

hdwinit - 

R_Systeminit R_Systeminit 
low_level_init - 

HardwareSetup - 

Clock generator R_CGC_Create - 

R_CGC_Set_ClockMode - 

R_CGC_Create_UserInit - 

R_CGC_Get_ResetSource - 

Port functions R_PORT_Create R_{Config_PORT}_Create 

R_PORT_Create_UserInit R_{Config_PORT}_Create_UserInit 

Timer array unit 
 

R_TAUm_Create R_TAUm_Create 
R_TAUm_Channeln_Start R_{Config_TAUm_n}_Start 

R_TAUm_Channeln_Higher8bits_Start R_{Config_TAUm_n}_Higher8bits_Start 
R_TAUm_Channeln_Lower8bits_Start R_{Config_TAUm_n}_Lower8bits_Start 

R_TAUm_Channeln_Stop R_{Config_TAUm_n}_Stop 
R_TAUm_Channeln_Higher8bits_Stop R_{Config_TAUm_n}_Higher8bits_Stop 

R_TAUm_Channeln_Lower8bits_Stop R_{Config_TAUm_n}_Lower8bits_Stop 
R_TAUm_Reset R_TAUm_Set_Reset 

R_TAUm_Set_PowerOff R_TAUm_Set_PowerOff 
R_TAUm_Channeln_Get_PulseWidth R_{Config_TAUm_n}_Get_PulseWidth 

R_TAUm_Channeln_Set_SoftwareTriggerOn R_{Config_TAUm_n}_Set_SoftwareTriggerOn 

R_TAUm_Create_UserInit R_{Config_TAUm_n}_Create_UserInit 

r_taum_channeln_interrupt r_{Config_TAUm_n}_interrupt 

r_taum_channeln_higher8bits_interrupt r_{Config_TAUm_n}_higher8bits_interrupt 

Real-time clock R_RTC_Create R_{Config_RTC}_Create 

R_RTC_Start R_{Config_RTC}_Start 

R_RTC_Stop R_{Config_RTC}_Stop 

R_RTC_Set_PowerOff R_RTC_Set_PowerOff 

R_RTC_Set_HourSystem R_{Config_RTC}_Set_HourSystem 

R_RTC_Set_CounterValue R_{Config_RTC}_Set_CounterValue 

R_RTC_Get_CounterValue R_{Config_RTC}_Get_CounterValue 

R_RTC_Set_ConstPeriodInterruptOn R_{Config_RTC}_Set_ConstPeriodInterruptOn 

R_RTC_Set_ConstPeriodInterruptOff R_{Config_RTC}_Set_ConstPeriodInterruptOff 

R_RTC_Set_AlarmOn R_{Config_RTC}_Set_AlarmOn 

R_RTC_Set_AlarmOff R_{Config_RTC}_Set_AlarmOff 

R_RTC_Set_AlarmValue R_{Config_RTC}_Set_AlarmValue 

R_RTC_Get_AlarmValue R_{Config_RTC}_Get_AlarmValue 

R_RTC_Set_RTC1HZOn R_{Config_RTC}_Set_RTC1HZOn 

R_RTC_Set_RTC1HZOff R_{Config_RTC}_Set_RTC1HZOff 

R_RTC_Create_UserInit R_{Config_RTC}_Create_UserInit 

r_rtc_interrupt r_{Config_RTC}_interrupt 

r_rtc_callback_constperiod r_{Config_RTC}_callback_constperiod 

r_rtc_callback_alarm r_{Config_RTC}_callback_alarm 



 

 
Smart Configurator Appendix  API Function Comparison Table 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 857 of 868 
Jan 20, 2026 

Table 5-2 Code Generator and Smart Configurator API comprison List (2/6) 

Peripheral Function Code Generator API Function Name Smart Configurator API Function Name 

Clock output/buzzer  
output controller 

R_PCLBUZn_Create R_{Config_PCLBUZn}_Create 

R_PCLBUZn_Start R_{Config_PCLBUZn}_Start 

R_PCLBUZn_Stop R_{Config_PCLBUZn}_Stop 

R_PCLBUZn_Create_UserInit R_{Config_PCLBUZn}_Create_UserInit 

Watchdog timer R_WDT_Create R_{Config_WDT}_Create 

R_WDT_Restart R_{Config_WDT}_Restart 

R_WDT_Create_UserInit R_{Config_WDT}_Create_UserInit 

r_wdt_interrupt r_{Config_WDT}_interrupt 

A/D converter R_ADC_Create R_{Config_ADC}_Create 

R_ADC_Start R_{Config_ADC}_Start 

R_ADC_Stop R_{Config_ADC}_Stop 

R_ADC_Set_OperationOn R_{Config_ADC}_Set_OperationOn 

R_ADC_Set_OperationOff R_{Config_ADC}_Set_OperationOff 

R_ADC_Reset R_ADC_Set_Reset 

R_ADC_Set_PowerOff R_ADC_Set_PowerOff 

R_ADC_Set_ADChannel R_{Config_ADC}_Set_ADChannel 

R_ADC_Set_SnoozeOn R_{Config_ADC}_Set_SnoozeOn 

R_ADC_Set_SnoozeOff R_{Config_ADC}_Set_SnoozeOff 

R_ADC_Set_TestChannel R_{Config_ADC}_Set_TestChannel 

R_ADC_Get_Result R_{Config_ADC}_Get_Result_10bit 

R_ADC_Get_Result_8bit R_{Config_ADC}_Get_Result_8bit 

R_ADC_Create_UserInit R_{Config_ADC}_Create_UserInit 

r_adc_interrupt r_{Config_ADC}_interrupt 

D/A converter R_DAC_Create R_DAC_Create 

R_DACn_Start R_{Config_DACn}_Start 

R_DACn_Stop R_{Config_DACn}_Stop 

R_DAC_Set_PowerOff R_DAC_Set_PowerOff 

R_DACn_Set_ConversionValue R_{Config_DACn}_Set_ConversionValue 

R_DAC_Reset R_DAC_Set_Reset 

R_DACn_Create_UserInit R_{Config_DACn}_Create_UserInit 

Comparator R_COMP_Create R_COMP_Create 

R_COMPn_Start R_{Config_COMPn}_Start 

R_COMPn_Stop R_{Config_COMPn}_Stop 

R_COMP_Reset R_COMP_Set_Reset 

R_COMP_Set_PowerOff R_COMP_Set_PowerOff 

R_COMP_Create_UserInit R_{Config_COMPn}_Create_UserInit 

r_compn_interrupt r_{Config_COMPn}_interrupt 

Programmable gain 

amplifier 

R_PGA_Create R_{Config_PGA}_Create 
R_PGA_Start R_{Config_PGA}_Start 
R_PGA_Stop R_{Config_PGA}_Stop 
R_PGA_Create_UserInit R_{Config_PGA}_Create_UserInit 

 

  



 

 
Smart Configurator Appendix  API Function Comparison Table 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 858 of 868 
Jan 20, 2026 

Table 5-3 Code Generator and Smart Configurator API Comparison List (3/6) 

Peripheral Function Code Generator API Function Name Smart Configurator API Function Name 

Serial array unit R_SAUm_Create  R_SAUm_Create 

R_SAUm_Reset R_SAUm_Set_Reset 

R_SAUm_Set_PowerOff R_SAUm_Set_PowerOff 

R_SAUm_Set_SnoozeOn R_SAUm_Set_SnoozeOn 

R_SAUm_Set_SnoozeOff R_SAUm_Set_SnoozeOff 

R_UARTn_Create R_{Config_UARTq}_Create 

R_UARTn_Start R_{Config_UARTq}_Start 

R_UARTn_Stop R_{Config_UARTq}_Stop 

R_UARTn_Send R_{Config_UARTq}_Send 

R_UARTn_Receive R_{Config_UARTq}_Receive 

R_CSImn_Create R_{Config_CSIp}_Create 

R_CSImn_Start R_{Config_CSIp}_Start 

R_CSImn_Stop R_{Config_CSIp}_Stop 

R_CSImn_Send R_{Config_CSIp}_Send 

R_CSImn_Receive R_{Config_CSIp}_Receive 

R_CSImn_Send_Receive R_{Config_CSIp}_Send_Receive 

R_IICmn_Create R_{Config_IICr}_Create 

R_IICmn_StartCondition R_{Config_IICr}_StartCondition 

R_IICmn_StopCondition R_{Config_IICr}_StopCondition 

R_IICmn_Stop R_{Config_IICr}_Stop 

R_IICmn_Master_Send R_{Config_IICr}_Master_Send 

R_IICmn_Master_Receive R_{Config_IICr}_Master_Receive 

R_SAUm_Create_UserInit - 

r_uartn_interrupt_send r_{Config_UARTq}_interrupt_send 

r_uartn_interrupt_receive r_{Config_UARTq}_interrupt_receive 

r_uartn_interrupt_error r_{Config_UARTq}_interrupt_error 

r_uartn_callback_sendend r_{Config_UARTq}_callback_sendend 

r_uartn_callback_receiveend r_{Config_UARTq}_callback_receiveend 

r_uartn_callback_error r_{Config_UARTq}_callback_error 

r_uartn_callback_softwareoverrun r_{Config_UARTq}_callback_softwareoverrun 

r_csimn_interrupt r_{Config_CSIp}_interrupt 

r_csimn_callback_sendend r_{Config_CSIp}_callback_sendend 

r_csimn_callback_receiveend r_{Config_CSIp}_callback_receiveend 

r_csimn_callback_error r_{Config_CSIp}_callback_error 

r_iicmn_interrupt r_{Config_IICr}_interrupt 

r_iicmn_callback_master_sendend r_{Config_IICr}_callback_master_sendend 

r_iicmn_callback_master_receiveend r_{Config_IICr}_callback_master_receiveend 

r_iicmn_callback_master_error r_{Config_IICr}_callback_master_error 

 

  



 

 
Smart Configurator Appendix  API Function Comparison Table 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 859 of 868 
Jan 20, 2026 

Table 5-4 Code Generator and Smart Configurator API Comparison List (4/6) 

Peripheral Function Code Generator API Function Name Smart Configurator API Function Name 

Serial interface IICA R_IICAn_Create R_{Config_IICAn}_Create 

R_IICAn_StopCondition R_{Config_IICAn}_StopCondition 

R_IICAn_Stop R_{Config_IICAn}_Stop 

R_IICAn_Reset R_IICAn_Set_Reset 

R_IICAn_Set_PowerOff R_IICAn_Set_PowerOff 

R_IICAn_Master_Send R_{Config_IICAn}_Master_Send 

R_IICAn_Master_Receive R_{Config_IICAn}_Master_Receive 

R_IICAn_Slave_Send R_{Config_IICAn}_Slave_Send 

R_IICAn_Slave_Receive R_{Config_IICAn}_Slave_Receive 

R_IICAn_Set_SnoozeOn - 

R_IICAn_Set_SnoozeOff - 

R_IICAn_Set_WakeupOn R_{Config_IICAn}_Set_WakeupOn 

R_IICAn_Set_WakeupOff R_{Config_IICAn}_Set_WakeupOff 

R_IICAn_Create_UserInit R_{Config_IICAn}_Create_UserInit 

r_iican_interrupt r_{Config_IICAn}_interrupt 

r_iican_callback_master_sendend r_{Config_IICAn}_callback_master_sendend 

r_iican_callback_master_receiveend r_{Config_IICAn}_callback_master_receiveend 

r_iican_callback_master_error r_{Config_IICAn}_callback_master_error 

r_iican_callback_slave_sendend r_{Config_IICAn}_callback_slave_sendend 

r_iican_callback_slave_receiveend r_{Config_IICAn}_callback_slave_receiveend 

r_iican_callback_slave_error r_{Config_IICAn}_callback_slave_error 

r_iican_callback_getstopcondition r_{Config_IICAn}_callback_getstopcondition 

Data transfer controller R_DTC_Create R_{Config_DTC}_Create 

R_DTCn_Start R_{Config_DTCDn}_Start 

R_DTCn_Stop R_{Config_DTCDn}_Stop 

R_DTC_Set_PowerOff R_DTC_Set_PowerOff 

R_DTC_Create_UserInit R_{Config_DTC}_Create_UserInit 

Event link controller R_ELC_Create R_{Config_ELC}_Create 

R_ELC_Stop R_{Config_ELC}_Stop 

R_ELC_Create_UserInit R_{Config_ELC}_Create_UserInit 

Interrupt functions R_INTC_Create R_{Config_INTC}_Create 

R_INTCn_Start R_{Config_INTC}_INTPn_Start 

R_INTCn_Stop R_{Config_INTC}_INTPn_Stop 

R_INTC_Create_UserInit R_{Config_INTC}_Create_UserInit 

r_intcn_interrupt r_{Config_INTC}_intpn_interrupt 

Key interrupt function R_KEY_Create R_{Config_KR}_Create 

R_KEY_Start R_{Config_KR}_Start 

R_KEY_Stop R_{Config_KR}_Stop 

R_KEY_Create_UserInit R_{Config_KR}_Create_UserInit 

r_key_interrupt r_{Config_KR}_interrupt 

Voltage detector R_LVD_Create R_{Config_LVDn}_Create 

R_LVD_InterruptMode_Start R_LVD_Start_Interrupt 

R_LVD_Create_UserInit R_{Config_LVDn}_Create_UserInit 

r_lvd_interrupt r_lvd_interrupt 

  



 

 
Smart Configurator Appendix  API Function Comparison Table 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 860 of 868 
Jan 20, 2026 

Table 5-5 Code Generator and Smart Configurator API Comparison List (5/6) 

Peripheral Function Code Generator API Function Name Smart Configurator API Function Name 

Timer RD R_TMRDn_Create R_TRD_Create 

R_TMRDn_Start R_{Config_TRDn}_Start 

R_TMRDn_Stop R_{Config_TRDn}_Stop 

R_TMRDn_Set_PowerOff R_TRD_Set_PowerOff 

R_TMRDn_ForcedOutput_Start R_TRD_ForcedOutput_Enable 

R_TMRDn_ForcedOutput_Stop R_TRD_ForcedOutput_Disable 

R_TMRDn_Get_PulseWidth R_{Config_TRDn}_Get_PulseWidth 

R_TMRD_PWMOP_ForcedOutput_Stop R_{Config_PWMOPA}_Software_Release 

R_TMRD_PWMOP_Set_PowerOff R_PWMOPA_Set_PowerOff 

R_TMRDn_Create_UserInit R_{Config_TRDn}_Create_UserInit 

r_tmrdn_interrupt r_{Config_TRDn}_trdn_interrupt 

Timer RJ R_TMRJn_Create R_{Config_TRJn}_Create 

R_TMRJn_Create_UserInit R_{Config_TRJn}_Create_UserInit 

r_tmrjn_interrupt r_{Config_TRJn}_ interrupt 

R_TMRJn_Start R_{Config_TRJn}_Start 

R_TMRJn_Stop R_{Config_TRJn}_Stop 

R_TMRJn_Set_PowerOff R_TRJ_Set_PowerOff 

R_TMRJn_Get_PulseWidth R_{Config_TRJn}_Get_PulseWidth 

12-bit interval timer R_IT_Create R_{Config_IT}_Create 

R_IT_Create_UserInit R_{Config_IT}_Create_UserInit 

r_it_interrupt r_{Config_IT}_ interrupt 

R_IT_Start R_{Config_IT}_Start 

R_IT_Stop R_{Config_IT}_Stop 

R_IT_Set_PowerOff R_IT_Set_PowerOff 

Timer RG R_TMRGn_Create R_{Config_TRG}_Create 
R_TMRGn_Create_UserInit R_{Config_TRG}_Create_UserInit 
r_tmrgn_interrupt r_{Config_TRG}_ interrupt 
R_TMRGn_Start R_{Config_TRG}_Start 
R_TMRGn_Stop R_{Config_TRG}_Stop 
R_TMRGn_Set_PowerOff R_TRG_Set_PowerOff 
R_TMRGn_Get_PulseWidth R_{Config_TRG}_Get_PulseWidth 

Timer RX R_TMRX_Create R_{Config_TRX}_Create 
R_TMRX_Create_UserInit R_{Config_TRX}_Create_UserInit 
r_tmrx_interrupt r_{Config_TRX}_ interrupt 
R_TMRX_Start R_{Config_TRX}_Start 
R_TMRX_Stop R_{Config_TRX}_Stop 
R_TMRX_Set_PowerOff R_TRX_Set_PowerOff 
R_TMRX_Get_BufferValue R_{Config_TRX}_Get_BufferValue 

 



 

 
Smart Configurator Appendix  API Function Comparison Table 

 

 
R20UT4852EC0107  Rev.1.07                                                 Page 861 of 868 
Jan 20, 2026 

Table 5-6 Code Generator and Smart Configurator API Comparison List (6/6) 

Peripheral Function Code Generator API Function Name Smart Configurator API Function Name 

Timer KB R_KBn_Create R_{Config_TKBn}_Create 

R_KBn_Start R_{Config_TKBn}_Start 

R_KBn_Stop R_{Config_TKBn}_Stop 

R_KBn_Simultaneous_Start - 

R_KBn_Simultaneous_Stop - 

R_KBn_Synchronous_Start - 

R_KBn_Synchronous_Stop - 

R_KBn_TKBOm0_SmoothStartFunction_Start R_{Config_TKBn}_TKBOn0_SmoothStartFuncti

on_Start 

R_KBn_TKBOm0_SmoothStartFunction_Stop R_{Config_TKBn}_TKBOn0_SmoothStartFuncti

on_Stop 

R_KBn_TKBOm1_SmoothStartFunction_Start R_{Config_TKBn}_TKBOn1_SmoothStartFuncti

on_Start 

R_KBn_TKBOm1_SmoothStartFunction_Stop R_{Config_TKBn}_TKBOn1_SmoothStartFuncti

on_Stop 

R_KBn_Set_BatchOverwriteRequestOn R_{Config_TKBn}_Set_BatchOverwriteRequest

On 

R_KBn_TKBOm0_Forced_Output_Stop_Functi
on1_Start 

R_{Config_TKBn}_TKBOn0_Forced_Output_St

op_Function1_Start 

R_KBn_TKBOm0_Forced_Output_Stop_Functi
on1_Stop 

R_{Config_TKBn}_TKBOn0_Forced_Output_St

op_Function1_Stop 

R_KBn_TKBOm1_Forced_Output_Stop_Functi
on1_Start 

R_{Config_TKBn}_TKBOn1_Forced_Output_St

op_Function1_Start 

R_KBn_TKBOm1_Forced_Output_Stop_Functi
on1_Stop 

R_{Config_TKBn}_TKBOn1_Forced_Output_St

op_Function1_Stop 

R_KBn_Set_PowerOff R_{Config_TKBn}_Set_PowerOff 

R_KBn_Create_UserInit R_{Config_TKBn}_Create_UserInit 

r_kbn_interrupt r_{Config_TKBn}_end_count_interrupt 

LCD controller/driver R_LCD_Create R_{Config_LCD}_Create 
R_LCD_Create_UserInit R_{Config_LCD}_Create_UserInit 
R_LCD_Start R_{Config_LCD}_Start 
R_LCD_Stop R_{Config_LCD}_Stop 
R_LCD_Voltage_On R_{Config_LCD}_Voltage_On 
R_LCD_Voltage_Off R_{Config_LCD}_Voltage_Off 
- R_{Config_LCD}_Set_DisplayData 

 

 



 

 

 

Revision Record 
 

Rev. Section Description 

1.00 － First Edition issued 

1.01 Section 2.1 Description Table 2.8 Output File List (8/10): 

Add a new function r_{Config_UARTAn}_PollingEnd_UserCode() 

Remove two functions r_{Config_UARTAn}_send_1byte() and 

R_{Config_UARTAn}_Send_Polling() from {Config_UARTAn}_user.c. 

Table 2.10 Output File List (10/10): 

update Logic and Event Link Controller API: 

1.Added new API r_{Config_xxx}_interrupt() 

2.Update remark info for R_{Config_xxx}_Create() 

3.Update usage example to remove R_Config_AND_Create() calling in main() 

Section 4.2 Function 

Reference 

4.2.23 UART Communication (Serial Interface UARTA): 

Add a new function r_{Config_UARTAn}_PollingEnd_UserCode() 

Remove two functions r_{Config_UARTAn}_send_1byte() and 

R_{Config_UARTAn}_Send_Polling() from {Config_UARTAn}_user.c. 

4.2.33 Logic and Event Link Controller: 

1.Added new API r_{Config_xxx}_interrupt() 

2.Update remark info for R_{Config_xxx}_Create() 

3.Update usage example to remove R_Config_AND_Create() calling in main() 

1.02 all Add remark for all callback functions  

Section 4.2 Function 

Reference 

4.2.1 General: Update Table 4-1 and Table 4-2 

Add 4.2.6 External Event Counter (Timer RJ) 

Add 4.2.8 Input Pulse High-/Low-Level Width Measurement (Timer RJ) 

Add 4.2.10 PWM Output (Timer RDn using PWM mode/ Extended PWM mode)  

Add 4.2.11 PWM Output (Timer RD0 and RD1 using PWM mode/ PWM3 mode/ 

Extended PWM mode) 

4.2.12 Input Pulse Interval/Period Measurement (Timer Array Unit): Update 

chapter name 

Add 4.2.13 Input Pulse Interval/Period Measurement (Timer RJ) 

Add 4.2.15 Interval Timer (Timer RJ) 

Add 4.2.18 Square Wave Output (Timer RJ) 

Add 4.2.22 Input Capture Function (Timer RD) 

Add 4.2.23 Output Compare Function (Timer RD) 

Add 4.2.24 Three -phase PWM Output (Timer RD) 

Add 4.2.25 PWM option unit A (Timer RD) 

Add 4.2.29 12 Bit A/D Single Scan 

Add 4.2.30 12 Bit A/D Continuous Scan 



 

 

 

Rev. Section Description 

1.02 Section 4.2 Function 

Reference 

Add 4.2.31 12 Bit A/D Group Scan 

Add 4.2.38 UART Communication (LIN/UART module)  

Add 4.2.49 Event Link Controller 

4.2.41 IIC Communication (Slave mode) (Serial Interface IICA): Add remark for 

R_{Config_IICAn}_Slave_Send/R_{Config_IICAn}_Slave_Receive/r_{Config_IICAn}_sl

ave_handler 

Appendix API Function 

Comparison Table 

Add Table 5-5 Code Generator and Smart Configurator API Comparison List (5/5) 

1.03 Section 2.1 Description Update Table 2-2 Output File List (2/14), Table 2-6 Output File List (6/14), Table 2-14 

Output File List (14/14) 

Section 4.2 Function 

Reference 

4.2.1 General:  

1.Update Table 4-1 and Table 4-2;  

2.Update R_ITL_Start_Interrupt;  

3.Add R_TRD_ForcedOutput_Enable, R_TRD_ForcedOutput_disable, 

R_IT_Set_PowerOn and R_IT_Set_PowerOff 

Add 4.2.16 Interval Timer (12-bit Interval Timer) 

4.2.17 One-Shot Pulse Output: Add R_{Config_TAUm_n}_Get_PulseWidth 

4.2.20 Interval Timer (32-bit Interval Timer using 8-bit counter mode): Update 

R_{Config_ITLn}_Start 

4.2.21 Interval Timer (32-bit Interval Timer using 16-bit counter mode): Update 

R_{Config_ITLn_ITLm}_Start 

4.2.22 Interval Timer (32-bit Interval Timer using 32-bit counter mode): Update 

R_{Config_ITL000_ITL001_ITL012_ITL013}_Start 

Update 4.2.49 Logic and Event Link Controller 

Appendix API Function 

Comparison Table 

Update Table 5-5 Code Generator and Smart Configurator API Comparison List (5/5) 

1.04 Section 2.1 Description Update Table 2-1 to Table 2-21 

Section 4.2 Function 

Reference 

4.2.1 General: Add R_TRD_Set_Reset, R_TRD_Release_Reset, 

R_PWMOPA_Set_Reset, R_PWMOPA_Release_Reset, R_TRJ_Set_Reset, 

R_TRJ_Release_Reset, R_TRG_Set_PowerOn, R_TRG_Set_PowerOff, 

R_TRG_Set_Reset, R_TRG_Release_Reset, R_TRX_Set_PowerOn, 

R_TRX_Set_PowerOff, R_TRX_Set_Reset, R_TRX_Release_Reset, R_TKB_Create, 

R_TKB_Set_PowerOn, R_TKB_Set_PowerOff, R_TKB_Set_Reset, 

R_TKB_Release_Reset, R_PGACOMP_Create, R_PGACOMP_Set_PowerOn, 

R_PGACOMP_Set_PowerOff, R_PGACOMP_Set_Reset, 

R_PGACOMP_Release_Reset, R_DALI_Set_PowerOn, R_DALI_Set_PowerOff, 

R_DALI_Set_Reset, R_DALI_Release_Reset 

4.2.7 Input Pulse High-/Low-Level Width Measurement (Timer Array Unit): Update the 

hyperlink in Remark of R_{Config_TAUm_n}_Create_UserInit 

Add 4.2.11 PWM Output (Timer RD0 and RD1 using PWM mode/ PWM3 mode/ 

Extended PWM mode/ Timer KB3 PWM Output Gate mode) 

Add 4.2.12 PWM Output (Timer RG using PWM mode/ PWM2 mode) 

  



 

 

 

Rev. Section Description 

1.04 Section 4.2 Function 

Reference 

Add 4.2.13 PWM Output (Timer KB using standalone mode (period controlled by 

TKBCRn0 register)/standalone mode (period controlled by external trigger 

input)/interleave PFC output mode) 

Add 4.2.14 PWM Output (Timer KB using simultaneous start/stop mode (period 

controlled by TKBCRn0 register)/simultaneous start/stop mode (period controlled by 

external trigger input)/synchronous start/clear mode (period controlled by master)) (1 

slave) 

Add 4.2.15 PWM Output (Timer KB using simultaneous start/stop mode (period 

controlled by TKBCRn0 register)/simultaneous start/stop mode (period controlled by 

external trigger input)/synchronous start/clear mode (period controlled by master)) (2 

slaves) 

4.2.16 Input Pulse Interval/Period Measurement (Timer Array Unit): Update the 

hyperlink in Remark of R_{Config_TAUm_n}_Create_UserInit 

4.2.18 Interval Timer (Timer Array Unit): Update the content of example 

4.2.22 Square Wave Output (Timer Array Unit): Update the hyperlink in Remark of 

R_{Config_TAUm_n}_Create_UserInit and the content of example 

Add 4.2.28 Input Capture Function (Timer RG) 

Add 4.2.29 Input Capture Function (Timer RX) 

Add 4.2.31 Output Compare Function (Timer RG) 

Add 4.2.34 Phase Counting Mode 

4.2.37 A/D Converter: Add API 

4.2.42 Data Transfer Controller: Update the hyperlink in R_{Config_DTC}_Create 

4.2.43 Comparator: Update description of R_{Config_COMPn}_Create 

Add 4.2.44 Programmable Gain Amplifier 

4.2.46 UART Communication (Serial array unit): Update the description of 

R_{Config_UARTq}_Send and the content of example 

4.2.47 UART Communication (Serial Interface UARTA): Update the description of 

R_{Config_UARTq}_Send and the hyperlink in Remark of 

R_{Config_UARTAn}_Create_UserInit 

4.2.48 UART Communication (LIN/UART module): Update the description of 

R_{Config_RLIN3n}_Send and the hyperlink in Remark of 

r_{Config_RLIN3n}_callback_receiveend 

Add 4.2.49 DALI Communication (Control devices) 

Add 4.2.50 DALI Communication (Control gear) 

Appendix  API Function 

Comparison Table 

Update Table 5-2 Code Generator and Smart Configurator API comprison List (2/6), 

Table 5-5 Code Generator and Smart Configurator API comprison List (5/6), Table 5-6 

Code Generator and Smart Configurator API comprison List (6/6) 

 



 

 

 

Rev. Section Description 

1.05 Section 2.1 Description Table 2-7 Output File List (7/21): Remove 

R_{Config_TKBn}_TKBOn0_DitheringFunction_Start, 

R_{Config_TKBn}_TKBOn0_DitheringFunction_Stop, 

R_{Config_TKBn}_TKBOn1_DitheringFunction_Start, 

R_{Config_TKBn}_TKBOn1_DitheringFunction_Stop 

Table 2-8 Output File List (8/21): Remove 

R_{Config_TKB0_TKBn}_TKBOm0_DitheringFunction_Start, 

R_{Config_TKB0_TKBn}_TKBOm0_DitheringFunction_Stop, 

R_{Config_TKB0_TKBn}_TKBOm1_DitheringFunction_Start, 

R_{Config_TKB0_TKBn}_TKBOm1_DitheringFunction_Stop 

Table 2-9 Output File List (9/21): Remove 

R_{Config_TKB0_TKB1_TKB2}_TKBOn0_DitheringFunction_Start, 

R_{Config_TKB0_TKB1_TKB2}_TKBOn0_DitheringFunction_Stop, 

R_{Config_TKB0_TKB1_TKB2}_TKBOn1_DitheringFunction_Start, 

R_{Config_TKB0_TKB1_TKB2}_TKBOn1_DitheringFunction_Stop 

Section 4.2 Function 

Reference 

4.2.8 Input Pulse High-/Low-Level Width Measurement (Timer RJ): Update the link in 

R_{Config_TRJn}_Create_UserInit 

4.2.13 PWM Output (Timer KB using standalone mode (period controlled by TKBCRn0 

register)/standalone mode (period controlled by external trigger input)/interleave PFC 

output mode): Remove R_{Config_TKBn}_TKBOn0_DitheringFunction_Start, 

R_{Config_TKBn}_TKBOn0_DitheringFunction_Stop, 

R_{Config_TKBn}_TKBOn1_DitheringFunction_Start, 

R_{Config_TKBn}_TKBOn1_DitheringFunction_Stop 

4.2.14 PWM Output (Timer KB using simultaneous start/stop mode (period controlled 

by TKBCRn0 register)/simultaneous start/stop mode (period controlled by external 

trigger input)/synchronous start/clear mode (period controlled by master)) (1 slave): 

Remove R_{Config_TKB0_TKBn}_TKBOm0_DitheringFunction_Start, 

R_{Config_TKB0_TKBn}_TKBOm0_DitheringFunction_Stop, 

R_{Config_TKB0_TKBn}_TKBOm1_DitheringFunction_Start, 

R_{Config_TKB0_TKBn}_TKBOm1_DitheringFunction_Stop 

4.2.15 PWM Output (Timer KB using simultaneous start/stop mode (period controlled 

by TKBCRn0 register)/simultaneous start/stop mode (period controlled by external 

trigger input)/synchronous start/clear mode (period controlled by master)) (2 slaves): 

Remove R_{Config_TKB0_TKB1_TKB2}_TKBOn0_DitheringFunction_Start, 

R_{Config_TKB0_TKB1_TKB2}_TKBOn0_DitheringFunction_Stop, 

R_{Config_TKB0_TKB1_TKB2}_TKBOn1_DitheringFunction_Start, 

R_{Config_TKB0_TKB1_TKB2}_TKBOn1_DitheringFunction_Stop 

4.2.23 Square Wave Output (Timer RJ): Update the link in 

R_{Config_TRJn}_Create_UserInit 

4.2.48 UART Communication (LIN/UART module): Update n value to 0, 1, 2 

4.2.55 Voltage Detector: Update R_{Config_LVDn}_Start and R_{Config_LVDn}_Stop 

Appendix  API Function 

Comparison Table 

Update Table 5-6 Code Generator and Smart Configurator API Comparison List (6/6) 

 



 

 

 

Rev. Section Description 

1.06 Section 1.GENERAL Add 1.3 Cautions 

Section 2.1 Description Table 2-4 Output File List (4/22): Add r_cg_it8bit_common.c, r_cg_it8bit_common.h, 

r_cg_it8bit.h, r_cg_lcd.h, r_cg_osd_common.c, r_cg_osd_common.h, r_cg_osd.h 

Table 2-5 Output File List (5/22): Add r_cg_exsd_common.c, r_cg_exsd_common.h, 

r_cg_exsd.h 

Table 2-6 Output File List (6/22): Add PWM Output (Timer Array Unit using PWM 

mode (remote control carrier wave)) 

Add Table 2-22 Output File List (22/22) 

Section 4.2 Function 

Reference 

4.2.1 General: Add Table 4-4 API Functions: (4/4), R_ITm_Create, 

R_ITm_Set_PowerOn, R_ITm_Set_PowerOff, R_OSD_Set_PowerOn, 

R_OSD_Set_PowerOff, R_OSD_Set_Reset, R_OSD_Release_Reset, 

R_EXSD_Set_PowerOn, R_EXSD_Set_PowerOff, R_EXSD_Set_Reset, 

R_EXSD_Release_Reset 

Update 4.2.6 External Event Counter (Timer RJ) 

Update 4.2.9 PWM Output (Timer Array Unit) 

Add 4.2.10 PWM Output (Timer Array Unit using PWM mode (remote control carrier 

wave)) 

Update 4.2.18 Input Pulse Interval/Period Measurement (Timer RJ) 

Update 4.2.20 Interval Timer (Timer RJ) 

Add 4.2.25 Interval Timer (8-bit Interval Timer using 8-bit counter mode) 

Add 4.2.26 Interval Timer (16-bit Interval Timer using 8-bit counter mode) 

Update 4.2.32 Square Wave Output (Timer RJ) 

Add 4.2.65 LCD Controller/Driver 

Add 4.2.66 Oscillation Stop Detector 

Add 4.2.67 External Signal Sampler 

Appendix  API Function 

Comparison Table 

Table 5-6 Code Generator and Smart Configurator API Comparison List (6/6): Add 

LCD API 

1.07 

 

Section 2.1 Description Table 2.19 Output File List (19/23): 

Add new functions for IIC Communication (Master mode) (Serial Interface IICA) 

Table 2.20 Output File List (20/23): 

Add new functions for IIC Communication (Master mode, EEPROM communication) 

(Serial Interface IICA) 

Section 4.2 Function 

Reference 

 

Added explanations in comment format to all usage example chapters. 

Update 4.2.55 IIC Communication (Master mode) (Serial Interface IICA) 

Add 4.2.56 IIC Communication (Master mode, EEPROM communication) (Serial 

Interface IICA) 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Smart Configurator User's Manual: RL78 API Reference 
 

Publication Date: Rev.1.00  Apr 01, 2021  

 Rev.1.07  Jan 20, 2026 

 

Published by: Renesas Electronics Corporation 

 



 

  

 

 

 

 

 

 

 

 

 

Smart Configurator 

R20UT4852EC0107 


	1. GENERAL
	1.1 Overview
	1.2 Features
	1.3 Cautions

	2. OUTPUT FILES
	2.1 Description

	3. INITIALIZATION
	4. API FUNCTIONS
	4.1 Overview
	4.2 Function Reference
	4.2.1 General
	main
	R_Systeminit
	R_DTC_Set_PowerOn
	R_DTC_Set_PowerOff
	R_TAUm_Create
	R_TAUm_Set_PowerOn
	R_TAUm_Set_PowerOff
	R_TAUm_Set_Reset
	R_TAUm_Release_Reset
	R_ITL_Create
	R_ITL_Start_Interrupt
	R_ITL_Stop_Interrupt
	R_ITL_Set_PowerOn
	R_ITL_Set_PowerOff
	R_ITL_Set_Reset
	R_ITL_Release_Reset
	r_itl_interrupt
	R_TRD_Create
	R_TRD_Set_PowerOn
	R_TRD_Set_PowerOff
	R_TRD_Set_Reset
	R_TRD_Release_Reset
	R_PWMOPA_Set_PowerOn
	R_PWMOPA_Set_PowerOff
	R_PWMOPA_Set_Reset
	R_PWMOPA_Release_Reset
	R_TRD_ForcedOutput_Enable
	R_TRD_ForcedOutput_Disable
	R_TRJ_Set_PowerOn
	R_TRJ_Set_PowerOff
	R_TRJ_Set_Reset
	R_TRJ_Release_Reset
	R_TRG_Set_PowerOn
	R_TRG_Set_PowerOff
	R_TRG_Set_Reset
	R_TRG_Release_Reset
	R_TRX_Set_PowerOn
	R_TRX_Set_PowerOff
	R_TRX_Set_Reset
	R_TRX_Release_Reset
	R_TKB_Create
	R_TKB_Set_PowerOn
	R_TKB_Set_PowerOff
	R_TKB_Set_Reset
	R_TKB_Release_Reset
	R_RTC_Set_PowerOn
	R_RTC_Set_PowerOff
	R_IT_Set_PowerOn
	R_IT_Set_PowerOff
	R_ADC_Set_PowerOn
	R_ADC_Set_PowerOff
	R_ADC_Set_Reset
	R_ADC_Release_Reset
	R_DAC_Create
	R_DAC_Set_PowerOn
	R_DAC_Set_PowerOff
	R_DAC_Set_Reset
	R_DAC_Release_Reset
	R_COMP_Create
	R_COMP_Set_PowerOn
	R_COMP_Set_PowerOff
	R_COMP_Set_Reset
	R_COMP_Release_Reset
	R_PGACOMP_Create
	R_PGACOMP_Set_PowerOn
	R_PGACOMP_Set_PowerOff
	R_PGACOMP_Set_Reset
	R_PGACOMP_Release_Reset
	R_SAUm_Create
	R_SAUm_Set_PowerOn
	R_SAUm_Set_PowerOff
	R_SAUm_Set_Reset
	R_SAUm_Release_Reset
	R_SAUm_Set_SnoozeOn
	R_SAUm_Set_SnoozeOff
	R_UARTA_Create
	R_UARTA_Set_PowerOn
	R_UARTA_Set_PowerOff
	R_IICAn_Set_PowerOn
	R_IICAn_Set_PowerOff
	R_IICAn_Set_Reset
	R_IICAn_Release_Reset
	R_RLIN3n_Set_PowerOn
	R_RLIN3n_Set_PowerOff
	R_DALI_Set_PowerOn
	R_DALI_Set_PowerOff
	R_DALI_Set_Reset
	R_DALI_Release_Reset
	R_LVD_Start_Interrupt
	R_LVD_Stop_Interrupt
	r_lvd_interrupt
	R_REMC_Set_PowerOn
	R_REMC_Set_PowerOff
	R_REMC_Set_Reset
	R_REMC_Release_Reset
	R_ITm_Create
	R_ITm_Set_PowerOn
	R_ITm_Set_PowerOff
	R_OSD_Set_PowerOn
	R_OSD_Set_PowerOff
	R_OSD_Set_Reset
	R_OSD_Release_Reset
	R_EXSD_Set_PowerOn
	R_EXSD_Set_PowerOff
	R_EXSD_Set_Reset
	R_EXSD_Release_Reset
	Usage example

	4.2.2 Port
	R_Config_PORT_Create
	R_{Config_PORT}_ReadPmnValues
	R_{Config_PORT}_ReadDigitalOutputLevel
	R_Config_PORT_Create_UserInit
	Usage example

	4.2.3 Delay Counter
	R_{Config_TAUm_n}_Create
	R_{Config_TAUm_n}_Start
	R_{Config_TAUm_n}_Stop
	R_{Config_TAUm_n}_Lower8bits_Start
	R_{Config_TAUm_n}_Lower8bits_Stop
	R_{Config_TAUm_n}_Set_SoftwareTriggerOn
	R_{Config_TAUm_n}_Create_UserInit
	r_{Config_TAUm_n}_interrupt
	Usage example

	4.2.4 Divider Function
	R_{Config_TAUm_n}_Create
	R_{Config_TAUm_n}_Start
	R_{Config_TAUm_n}_Stop
	R_{Config_TAUm_n}_Create_UserInit
	r_{Config_TAUm_n}_interrupt
	Usage example

	4.2.5 External Event Counter (Timer Array Unit)
	R_{Config_TAUm_n}_Create
	R_{Config_TAUm_n}_Start
	R_{Config_TAUm_n}_Stop
	R_{Config_TAUm_n}_Lower8bits_Start
	R_{Config_TAUm_n}_Lower8bits_Stop
	R_{Config_TAUm_n}_Create_UserInit
	r_{Config_TAUm_n}_interrupt
	Usage example

	4.2.6 External Event Counter (Timer RJ)
	R_{Config_TRJn}_Create
	R_{Config_TRJn}_Start
	R_{Config_TRJn}_Stop
	R_{Config_TRJn}_Create_UserInit
	r_{Config_TRJn}_interrupt
	Usage example

	4.2.7 Input Pulse High-/Low-Level Width Measurement (Timer Array Unit)
	R_{Config_TAUm_n}_Create
	R_{Config_TAUm_n}_Start
	R_{Config_TAUm_n}_Stop
	R_{Config_TAUm_n}_Get_PulseWidth
	R_{Config_TAUm_n}_Create_UserInit
	r_{Config_TAUm_n}_interrupt
	Usage example

	4.2.8 Input Pulse High-/Low-Level Width Measurement (Timer RJ)
	R_{Config_TRJn}_Create
	R_{Config_TRJn}_Start
	R_{Config_TRJn}_Stop
	R_{Config_TRJn}_Get_PulseWidth
	R_{Config_TRJn}_Create_UserInit
	r_{Config_TRJn}_interrupt
	Usage example

	4.2.9 PWM Output (Timer Array Unit)
	R_{Config_TAUm_n}_Create
	R_{Config_TAUm_n}_Start
	R_{Config_TAUm_n}_Stop
	R_{Config_TAUm_n}_Create_UserInit
	r_{Config_TAUm_n}_channeln_interrupt
	r_{Config_TAUm_n}_channelp_interrupt
	Usage example

	4.2.10 PWM Output (Timer Array Unit using PWM mode (Remote control carrier wave))
	R_{Config_TAU0_m_TAU0_n}_Create
	R_{Config_TAU0_m_TAU0_n}_Start
	R_{Config_TAU0_m_TAU0_n}_Stop
	R_{Config_TAU0_m_TAU0_n}_Create_UserInit
	r_{Config_TAU0_m_TAU0_n}_channelm_interrupt
	r_{Config_TAU0_m_TAU0_n}_channelp_interrupt
	r_{Config_TAU0_m_TAU0_n}_channeln_interrupt
	r_{Config_TAU0_m_TAU0_n}_channelq_interrupt
	Usage example

	4.2.11 PWM Output (Timer RDn using PWM mode/ Extended PWM mode)
	R_{Config_TRDn}_Create
	R_{Config_TRDn}_Start
	R_{Config_TRDn}_Stop
	R_{Config_TRDn}_Set_TRDn_ReloadTrigger
	R_{Config_TRDn}_Create_UserInit
	r_{Config_TRDn}_trdn_interrupt
	Usage example

	4.2.12 PWM Output (Timer RD0 and RD1 using PWM mode/ PWM3 mode/ Extended PWM mode/ Timer KB3 PWM Output Gate mode)
	R_{Config_TRD0_TRD1}_Create
	R_{Config_TRD0_TRD1}_Start
	R_{Config_TRD0_TRD1}_Stop
	R_{Config_TRD0_TRD1}_Set_TRDn_ReloadTrigger
	R_{Config_TRD0_TRD1}_Set_TRD0_ReloadTrigger
	R_{Config_TRD0_TRD1}_Set_TRD1_ReloadTrigger
	R_{Config_TRD0_TRD1}_Create_UserInit
	r_{Config_TRD0_TRD1}_trdn_interrupt
	Usage example

	4.2.13 PWM Output (Timer RG using PWM mode/ PWM2 mode)
	R_{Config_TRG}_Create
	R_{Config_TRG}_Start
	R_{Config_TRG}_Stop
	R_{Config_TRG}_Create_UserInit
	r_{Config_TRG}_interrupt
	Usage example

	4.2.14 PWM Output (Timer KB using standalone mode (period controlled by TKBCRn0 register)/standalone mode (period controlled by external trigger input)/interleave PFC output mode)
	R_{Config_TKBn}_Create
	R_{Config_TKBn}_Start
	R_{Config_TKBn}_Stop
	R_{Config_TKBn}_Set_BatchOverwriteRequestOn
	R_{Config_TKBn}_TKBOn0_Forced_Output_Stop_Function1_Start
	R_{Config_TKBn}_TKBOn0_Forced_Output_Stop_Function1_Stop
	R_{Config_TKBn}_TKBOn1_Forced_Output_Stop_Function1_Start
	R_{Config_TKBn}_TKBOn1_Forced_Output_Stop_Function1_Stop
	R_{Config_TKBn}_TKBOn0_SmoothStartFunction_Start
	R_{Config_TKBn}_TKBOn0_SmoothStartFunction_Stop
	R_{Config_TKBn}_TKBOn1_SmoothStartFunction_Start
	R_{Config_TKBn}_TKBOn1_SmoothStartFunction_Stop
	R_{Config_TKBn}_Create_UserInit
	r_{Config_TKBn}_terminated0_interrupt
	r_{Config_TKBn}_terminated1_interrupt
	r_{Config_TKBn}_activated0_interrupt
	r_{Config_TKBn}_activated1_interrupt
	r_{Config_TKBn}_end_count_interrupt
	Usage example 1 (smooth start function)
	Usage example 2 (compare register batch overwrite)

	4.2.15 PWM Output (Timer KB using simultaneous start/stop mode (period controlled by TKBCRn0 register)/simultaneous start/stop mode (period controlled by external trigger input)/synchronous start/clear mode (period controlled by master)) (1 slave)
	R_{Config_TKB0_TKBn}_Create
	R_{Config_TKB0_TKBn}_Start
	R_{Config_TKB0_TKBn}_Stop
	R_{Config_TKB0_TKBn}_TKBm_Set_BatchOverwriteRequestOn
	R_{Config_TKB0_TKBn}_TKBOm0_Forced_Output_Stop_Function1_Start
	R_{Config_TKB0_TKBn}_TKBOm0_Forced_Output_Stop_Function1_Stop
	R_{Config_TKB0_TKBn}_TKBOm1_Forced_Output_Stop_Function1_Start
	R_{Config_TKB0_TKBn}_TKBOm1_Forced_Output_Stop_Function1_Stop
	R_{Config_TKB0_TKBn}_TKBOm0_SmoothStartFunction_Start
	R_{Config_TKB0_TKBn}_TKBOm0_SmoothStartFunction_Stop
	R_{Config_TKB0_TKBn}_TKBOm1_SmoothStartFunction_Start
	R_{Config_TKB0_TKBn}_TKBOm1_SmoothStartFunction_Stop
	R_{Config_TKB0_TKBn}_Create_UserInit
	r_{Config_TKB0_TKBn}_tkbm_terminated0_interrupt
	r_{Config_TKB0_TKBn}_tkbm_terminated1_interrupt
	r_{Config_TKB0_TKBn}_tkbm_activated0_interrupt
	r_{Config_TKB0_TKBn}_tkbm_activated1_interrupt
	r_{Config_TKB0_TKBn}_tkbm_end_count_interrupt
	Usage example

	4.2.16 PWM Output (Timer KB using simultaneous start/stop mode (period controlled by TKBCRn0 register)/simultaneous start/stop mode (period controlled by external trigger input)/synchronous start/clear mode (period controlled by master)) (2 slaves)
	R_{Config_TKB0_TKB1_TKB2}_Create
	R_{Config_TKB0_TKB1_TKB2}_Start
	R_{Config_TKB0_TKB1_TKB2}_Stop
	R_{Config_TKB0_TKB1_TKB2}_TKBn_Set_BatchOverwriteRequestOn
	R_{Config_TKB0_TKB1_TKB2}_TKBOn0_Forced_Output_Stop_Function1_Start
	R_{Config_TKB0_TKB1_TKB2}_TKBOn0_Forced_Output_Stop_Function1_Stop
	R_{Config_TKB0_TKB1_TKB2}_TKBOn1_Forced_Output_Stop_Function1_Start
	R_{Config_TKB0_TKB1_TKB2}_TKBOn1_Forced_Output_Stop_Function1_Stop
	R_{Config_TKB0_TKB1_TKB2}_TKBOn0_SmoothStartFunction_Start
	R_{Config_TKB0_TKB1_TKB2}_TKBOn0_SmoothStartFunction_Stop
	R_{Config_TKB0_TKB1_TKB2}_TKBOn1_SmoothStartFunction_Start
	R_{Config_TKB0_TKB1_TKB2}_TKBOn1_SmoothStartFunction_Stop
	R_{Config_TKB0_TKB1_TKB2}_Create_UserInit
	r_{Config_TKB0_TKB1_TKB2}_tkbn_terminated0_interrupt
	r_{Config_TKB0_TKB1_TKB2}_tkbn_terminated1_interrupt
	r_{Config_TKB0_TKB1_TKB2}_tkbn_activated0_interrupt
	r_{Config_TKB0_TKB1_TKB2}_tkbn_activated1_interrupt
	r_{Config_TKB0_TKB1_TKB2}_tkbn_end_count_interrupt
	Usage example

	4.2.17 Input Pulse Interval/Period Measurement (Timer Array Unit)
	R_{Config_TAUm_n}_Create
	R_{Config_TAUm_n}_Start
	R_{Config_TAUm_n}_Stop
	R_{Config_TAUm_n}_Get_PulseWidth
	R_{Config_TAUm_n}_Create_UserInit
	r_{Config_TAUm_n}_interrupt
	Usage example

	4.2.18 Input Pulse Interval/Period Measurement (Timer RJ)
	R_{Config_TRJn}_Create
	R_{Config_TRJn}_Start
	R_{Config_TRJn}_Stop
	R_{Config_TRJn}_Get_PulseWidth
	R_{Config_TRJn}_Create_UserInit
	r_{Config_TRJn}_interrupt
	Usage example

	4.2.19 Interval Timer (Timer Array Unit)
	R_{Config_TAUm_n}_Create
	R_{Config_TAUm_n}_Start
	R_{Config_TAUm_n}_Stop
	R_{Config_TAUm_n}_Higher8bits_Start
	R_{Config_TAUm_n}_Higher8bits_Stop
	R_{Config_TAUm_n}_Lower8bits_Start
	R_{Config_TAUm_n}_Lower8bits_Stop
	R_{Config_TAUm_n}_Create_UserInit
	r_{Config_TAUm_n}_interrupt
	r_{Config_TAUm_n}_higher8bits_interrupt
	Usage example

	4.2.20 Interval Timer (Timer RJ)
	R_{Config_TRJn}_Create
	R_{Config_TRJn}_Start
	R_{Config_TRJn}_Stop
	R_{Config_TRJn}_Create_UserInit
	r_{Config_TRJn}_interrupt
	Usage example

	4.2.21 Interval Timer (12-bit Interval Timer)
	R_{Config_IT}_Create
	R_{Config_IT}_Start
	R_{Config_IT}_Stop
	R_{Config_IT}_Create_UserInit
	r_{Config_IT}_interrupt
	Usage example

	4.2.22 Interval Timer (32-bit Interval Timer using 8-bit counter mode)
	R_{Config_ITLn}_Create
	R_{Config_ITLn}_Start
	R_{Config_ITLn}_Stop
	R_{Config_ITLn}_Set_OperationMode
	R_{Config_ITLn}_Create_UserInit
	r_{Config_ITLn}_Callback_Shared_interrupt
	Usage example

	4.2.23 Interval Timer (32-bit Interval Timer using 16-bit counter mode)
	R_{Config_ITLn_ITLm}_Create
	R_{Config_ITLn_ITLm}_Start
	R_{Config_ITLn_ITLm}_Stop
	R_{Config_ITLn_ITLm}_Set_SoftwareTriggerOn
	R_{Config_ITLn_ITLm}_Set_OperationMode
	R_{Config_ITLn_ITLm}_Get_CaptureValue
	R_{Config_ITLn_ITLm}_Create_UserInit
	r_{Config_ITLn_ITLm}_Callback_Shared_interrupt
	Usage example

	4.2.24 Interval Timer (32-bit Interval Timer using 32-bit counter mode)
	R_{Config_ITL000_ITL001_ITL012_ITL013}_Create
	R_{Config_ITL000_ITL001_ITL012_ITL013}_Start
	R_{Config_ITL000_ITL001_ITL012_ITL013}_Stop
	R_{Config_ITL000_ITL001_ITL012_ITL013}_Set_OperationMode
	R_{Config_ITL000_ITL001_ITL012_ITL013}_Create_UserInit
	r_{Config_ITL000_ITL001_ITL012_ITL013}_Callback_Shared_interrupt
	Usage example

	4.2.25 Interval Timer (8-bit Interval Timer using 8-bit counter mode)
	R_{Config_ITmn}_Create
	R_{Config_ITmn}_Start
	R_{Config_ITmn}_Stop
	R_{Config_ITmn}_Create_UserInit
	r_{Config_ITmn}_interrupt
	Usage example

	4.2.26 Interval Timer (8-bit Interval Timer using 16-bit counter mode)
	R_{Config_ITm0_ITm1}_Create
	R_{Config_ITm0_ITm1}_Start
	R_{Config_ITm0_ITm1}_Stop
	R_{Config_ITm0_ITm1}_Create_UserInit
	r_{Config_ITm0_ITm1}_interrupt
	Usage example

	4.2.27 Input Capture Function (Timer RD)
	R_{Config_TRDn}_Create
	R_{Config_TRDn}_Start
	R_{Config_TRDn}_Stop
	R_{Config_TRDn}_Get_PulseWidth
	R_{Config_TRDn}_Create_UserInit
	r_{Config_TRDn}_trdn_interrupt
	Usage example

	4.2.28 Input Capture Function (Timer RG)
	R_{Config_TRG}_Create
	R_{Config_TRG}_Start
	R_{Config_TRG}_Stop
	R_{Config_TRG}_Get_PulseWidth
	R_{Config_TRG}_Create_UserInit
	r_{Config_TRG}_interrupt
	Usage example

	4.2.29 Input Capture Function (Timer RX)
	R_{Config_TRX}_Create
	R_{Config_TRX}_Start
	R_{Config_TRX}_Stop
	R_{Config_TRX}_Get_BufferValue
	R_{Config_TRX}_Create_UserInit
	r_{Config_TRX}_interrupt
	Usage example

	4.2.30 One-Shot Pulse Output
	R_{Config_TAUm_n}_Create
	R_{Config_TAUm_n}_Start
	R_{Config_TAUm_n}_Stop
	R_{Config_TAUm_n}_Set_SoftwareTriggerOn
	R_{Config_TAUm_n}_Get_PulseWidth
	R_{Config_TAUm_n}_Create_UserInit
	r_{Config_TAUm_n}_channeln_interrupt
	r_{Config_TAUm_n}_channelp_interrupt
	Usage example

	4.2.31 Square Wave Output (Timer Array Unit)
	R_{Config_TAUm_n}_Create
	R_{Config_TAUm_n}_Start
	R_{Config_TAUm_n}_Stop
	R_{Config_TAUm_n}_Lower8bits_Start
	R_{Config_TAUm_n}_Lower8bits_Stop
	R_{Config_TAUm_n}_Create_UserInit
	r_{Config_TAUm_n}_interrupt
	Usage example

	4.2.32 Square Wave Output (Timer RJ)
	R_{Config_TRJn}_Create
	R_{Config_TRJn}_Start
	R_{Config_TRJn}_Stop
	R_{Config_TRJn}_Create_UserInit
	r_{Config_TRJn}_interrupt
	Usage example

	4.2.33 Output Compare Function (Timer RD)
	R_{Config_TRDn}_Create
	R_{Config_TRDn}_Start
	R_{Config_TRDn}_Stop
	R_{Config_TRDn}_Create_UserInit
	r_{Config_TRDn}_trdn_interrupt
	Usage example

	4.2.34 Output Compare Function (Timer RG)
	R_{Config_TRG}_Create
	R_{Config_TRG}_Start
	R_{Config_TRG}_Stop
	R_{Config_TRG}_Create_UserInit
	r_{Config_TRG}_interrupt
	Usage example

	4.2.35 Three -phase PWM Output (Timer RD)
	R_{Config_TRD0_TRD1}_Create
	R_{Config_TRD0_TRD1}_Start
	R_{Config_TRD0_TRD1}_Stop
	R_{Config_TRD0_TRD1}_Set_TRD_ReloadTrigger
	R_{Config_TRD0_TRD1}_Create_UserInit
	r_{Config_TRD0_TRD1}_trd0_interrupt
	r_{Config_TRD0_TRD1}_trd1_interrupt
	Usage example

	4.2.36 PWM option unit A (Timer RD)
	R_{Config_ PWMOPA }_Create
	R_{Config_PWMOPA}_Software_Release
	R_{Config_ PWMOPA }_Create_UserInit
	Usage example

	4.2.37 Phase Counting Mode
	R_{Config_TRG}_Create
	R_{Config_TRG}_Start
	R_{Config_TRG}_Stop
	R_{Config_TRG}_Get_MeasurementCapture
	R_{Config_TRG}_Create_UserInit
	r_{Config_TRG}_interrupt
	r_{Config_TRG}_clear_interrupt
	r_{Config_TRG}_capture_interrupt
	Usage example

	4.2.38 Clock Output/Buzzer Output Controller
	R_{Config_PCLBUZn}_Create
	R_{Config_PCLBUZn}_Start
	R_{Config_PCLBUZn}_Stop
	R_{Config_PCLBUZn}_Create_UserInit
	Usage example

	4.2.39 Real-Time Clock
	R_{Config_RTC}_Create
	R_{Config_RTC}_Start
	R_{Config_RTC}_Stop
	R_{Config_RTC}_Set_HourSystem
	R_{Config_RTC}_Set_CounterValue
	R_{Config_RTC}_Get_CounterValue
	R_{Config_RTC}_Set_ConstPeriodInterruptOn
	R_{Config_RTC}_Set_ConstPeriodInterruptOff
	R_{Config_RTC}_Set_AlarmOn
	R_{Config_RTC}_Set_AlarmOff
	R_{Config_RTC}_Set_AlarmValue
	R_{Config_RTC}_Get_AlarmValue
	R_{Config_RTC}_Set_RTC1HZOn
	R_{Config_RTC}_Set_RTC1HZOff
	R_{Config_RTC}_Create_UserInit
	r_{Config_RTC}_interrupt
	r_{Config_RTC}_callback_constperiod
	r_{Config_RTC}_callback_alarm
	Usage example 1 (alarm interrupt)
	Usage example 2 (constant-period interrupt)

	4.2.40 A/D Converter
	R_{Config_ADC}_Create
	R_{Config_ADC}_Start
	R_{Config_ADC}_Stop
	R_{Config_ADC}_Set_OperationOn
	R_{Config_ADC}_Set_OperationOff
	R_{Config_ADC}_Set_ADChannel
	R_{Config_ADC}_ADSn_Set_ADChannel
	R_{Config_ADC}_Set_SnoozeOn
	R_{Config_ADC}_Set_SnoozeOff
	R_{Config_ADC}_Set_TestChannel
	R_{Config_ADC}_Get_Result_10bit
	R_{Config_ADC}_Get_Result_8bit
	R_{Config_ADC}_Get_Result_12bit
	R_{Config_ADC}_ADSn_Get_Result_10bit
	R_{Config_ADC}_ADSn_Get_Result_8bit
	R_{Config_ADC}_ADSn_Get_Result_12bit
	R_{Config_ADC}_Create_UserInit
	r_{Config_ADC}_interrupt
	r_{Config_ADC}_adn_interrupt
	Usage example 1 (Normal Mode)
	Usage example 2 (Advanced Mode)

	4.2.41 12 Bit A/D Single Scan
	R_{Config_S12ADn}_Create
	R_{Config_S12ADn}_Start
	R_{Config_S12ADn}_Stop
	R_{Config_S12ADn}_Get_ValueResult
	R_{Config_S12ADn}_Create_UserInit
	r_{Config_S12ADn}_interrupt
	Usage example

	4.2.42 12 Bit A/D Continuous Scan
	R_{Config_S12ADn}_Create
	R_{Config_S12ADn}_Start
	R_{Config_S12ADn}_Stop
	R_{Config_S12ADn}_Get_ValueResult
	R_{Config_S12ADn}_Create_UserInit
	r_{Config_S12ADn}_interrupt
	Usage example

	4.2.43 12 Bit A/D Group Scan
	R_{Config_S12ADn}_Create
	R_{Config_S12ADn}_Start
	R_{Config_S12ADn}_Stop
	R_{Config_S12ADn}_Get_ValueResult
	R_{Config_S12ADn}_Create_UserInit
	r_{Config_S12ADn}_interrupt
	r_{Config_S12ADn}_ groupb_interrupt
	Usage example

	4.2.44 D/A Converter
	R_{Config_DACn}_Create
	R_{Config_DACn}_Start
	R_{Config_DACn}_Stop
	R_{Config_DACn}_Set_ConversionValue
	R_{Config_DACn}_Create_UserInit
	Usage example

	4.2.45 Data Transfer Controller
	R_{Config_DTC}_Create
	R_{Config_DTCDn}_Start
	R_{Config_DTCDn}_Stop
	R_{Config_DTC}_Create_UserInit
	Usage example

	4.2.46 Comparator
	R_{Config_COMPn}_Create
	R_{Config_COMPn}_Start
	R_{Config_COMPn}_Stop
	R_{Config_COMPn}_Create_UserInit
	r_{Config_COMPn}_interrupt
	Usage example

	4.2.47 Programmable Gain Amplifier
	R_{Config_PGA}_Create
	R_{Config_PGA}_Start
	R_{Config_PGA}_Stop
	R_{Config_PGA}_Create_UserInit
	Usage example

	4.2.48 SPI (CSI) Communication
	R_{Config_CSIp}_Create
	R_{Config_CSIp}_Start
	R_{Config_CSIp}_Stop
	R_{Config_CSIp}_Send
	R_{Config_CSIp}_Receive
	R_{Config_CSIp}_Send_Receive
	R_{Config_CSIp}_Create_UserInit
	r_{Config_CSIp}_interrupt
	r_{Config_CSIp}_callback_sendend
	r_{Config_CSIp}_callback_receiveend
	r_{Config_CSIp}_callback_error
	Usage example

	4.2.49 UART Communication (Serial array unit)
	R_{Config_UARTq}_Create
	R_{Config_UARTq}_Start
	R_{Config_UARTq}_Stop
	R_{Config_UARTq}_Send
	R_{Config_UARTq}_Receive
	R_{Config_UARTq}_Loopback_Enable
	R_{Config_UARTq}_Loopback_Disable
	R_{Config_UARTq}_Create_UserInit
	r_{Config_UARTq}_interrupt_send
	r_{Config_UARTq}_interrupt_receive
	r_{Config_UARTq}_interrupt_error
	r_{Config_UARTq}_callback_sendend
	r_{Config_UARTq}_callback_receiveend
	r_{Config_UARTq}_callback_error
	r_{Config_UARTq}_callback_softwareoverrun
	Usage example

	4.2.50 UART Communication (Serial Interface UARTA)
	R_{Config_UARTAn}_Create
	R_{Config_UARTAn}_Start
	R_{Config_UARTAn}_Stop
	R_{Config_UARTAn}_Send
	R_{Config_UARTAn}_Receive
	R_{Config_UARTAn}_Loopback_Enable
	R_{Config_UARTAn}_Loopback_Disable
	R_{Config_UARTAn}_Create_UserInit
	R_{Config_UARTAn}_PollingEnd_UserCode
	r_{Config_UARTAn}_interrupt_send
	r_{Config_UARTAn}_interrupt_receive
	r_{Config_UARTAn}_interrupt_error
	r_{Config_UARTAn}_callback_sendend
	r_{Config_UARTAn}_callback_receiveend
	r_{Config_UARTAn}_callback_error
	Usage example

	4.2.51 UART Communication (LIN/UART module)
	R_{Config_RLIN3n}_Create
	R_{Config_RLIN3n}_Start
	R_{Config_RLIN3n}_Stop
	R_{Config_RLIN3n}_Send
	R_{Config_RLIN3n}_Receive
	R_{Config_RLIN3n}_Create_UserInit
	r_{Config_RLIN3n}_interrupt_send
	r_{Config_RLIN3n}_interrupt_receive
	r_{Config_RLIN3n}_interrupt_error
	r_{Config_RLIN3n}_callback_sendend
	r_{Config_RLIN3n}_callback_receiveend
	r_{Config_RLIN3n}_callback_error
	Usage example

	4.2.52 DALI Communication (Control devices)
	R_{Config_DALI}_Create
	R_{Config_DALI}_Start
	R_{Config_DALI}_Stop
	R_{Config_DALI}_SoftwareReset
	R_{Config_DALI}_EnableForceActiveState
	R_{Config_DALI}_DisableForceActiveState
	R_{Config_DALI}_GetStatus
	R_{Config_DALI}_Send
	R_{Config_DALI}_GetReceivedFrame
	R_{Config_DALI}_Create_UserInit
	r_{Config_DALI}_interrupt_send
	r_{Config_DALI}_interrupt_receive
	r_{Config_DALI}_interrupt_error
	r_{Config_DALI}_interrupt_falling_edge_detection
	r_{Config_DALI}_interrupt_power_down_detection
	r_{Config_DALI}_interrupt_collision_detection
	r_{Config_DALI}_interrupt_stop_bit_detection
	r_{Config_DALI}_callback_sendend
	r_{Config_DALI}_callback_receiveend
	r_{Config_DALI}_callback_error
	Usage example

	4.2.53 DALI Communication (Control gear)
	R_{Config_DALI}_Create
	R_{Config_DALI}_Start
	R_{Config_DALI}_Stop
	R_{Config_DALI}_SoftwareReset
	R_{Config_DALI}_EnableForceActiveState
	R_{Config_DALI}_DisableForceActiveState
	R_{Config_DALI}_GetStatus
	R_{Config_DALI}_Send
	R_{Config_DALI}_GetReceivedFrame
	R_{Config_DALI}_Create_UserInit
	r_{Config_DALI}_interrupt_error
	r_{Config_DALI}_interrupt_falling_edge_detection
	r_{Config_DALI}_interrupt_power_down_detection
	r_{Config_DALI}_interrupt_stop_bit_detection
	r_{Config_DALI}_callback_sendend
	r_{Config_DALI}_callback_receiveend
	r_{Config_DALI}_callback_error
	Usage example

	4.2.54 IIC Communication (Master mode) (Serial Array Unit)
	R_{Config_IICr}_Create
	R_{Config_IICr}_StartCondition
	R_{Config_IICr}_StopCondition
	R_{Config_IICr}_Stop
	R_{Config_IICr}_Master_Send
	R_{Config_IICr}_Master_Receive
	R_{Config_IICr}_Create_UserInit
	r_{Config_IICr}_interrupt
	r_{Config_IICr}_callback_master_sendend
	r_{Config_IICr}_callback_master_receiveend
	r_{Config_IICr}_callback_master_error
	Usage example

	4.2.55 IIC Communication (Master mode) (Serial Interface IICA)
	R_{Config_IICAn}_Create
	R_{Config_IICAn}_StopCondition
	R_{Config_IICAn}_Stop
	R_{Config_IICAn}_Master_Send
	R_{Config_IICAn}_Master_Receive
	R_{Config_IICAn}_Check_Comstate
	R_{Config_IICAn}_Poll
	R_{Config_IICAn}_Wait_Comend
	R_{Config_IICAn}_Bus_Check
	R_{Config_IICAn}_StartCondition
	R_{Config_IICAn}_Wait_Time
	R_{Config_IICAn}_Create_UserInit
	r_{Config_IICAn}_interrupt
	r_{Config_IICAn}_master_handler
	r_{Config_IICAn}_callback_master_sendend
	r_{Config_IICAn}_callback_master_receiveend
	r_{Config_IICAn}_callback_master_error
	Usage example

	4.2.56 IIC Communication (Master mode, EEPROM communication) (Serial Interface IICA)
	R_{Config_IICAn}_Create
	R_{Config_IICAn}_StopCondition
	R_{Config_IICAn}_Stop
	R_{Config_IICAn}_Master_Send
	R_{Config_IICAn}_Master_Receive
	R_{Config_IICAn}_Check_Comstate
	R_{Config_IICAn}_Poll
	R_{Config_IICAn}_Wait_Comend
	R_{Config_IICAn}_Bus_Check
	R_{Config_IICAn}_StartCondition
	R_{Config_IICAn}_Wait_Time
	R_{Config_IICAn}_Create_UserInit
	r_{Config_IICAn}_interrupt
	r_{Config_IICAn}_master_handler
	r_{Config_IICAn}_callback_master_sendend
	r_{Config_IICAn}_callback_master_receiveend
	r_{Config_IICAn}_callback_master_error
	Usage example

	4.2.57 IIC Communication (Slave mode) (Serial Interface IICA)
	R_{Config_IICAn}_Create
	R_{Config_IICAn}_Stop
	R_{Config_IICAn}_Slave_Send
	R_{Config_IICAn}_Slave_Receive
	R_{Config_IICAn}_Set_WakeupOn
	R_{Config_IICAn}_Set_WakeupOff
	R_{Config_IICAn}_Create_UserInit
	r_{Config_IICAn}_interrupt
	r_{Config_IICAn}_slave_handler
	r_{Config_IICAn}_callback_slave_sendend
	r_{Config_IICAn}_callback_slave_receiveend
	r_{Config_IICAn}_callback_slave_error
	r_{Config_IICAn}_callback_getstopcondition
	Usage example

	4.2.58 Interrupt Countroller
	R_{Config_INTC}_Create
	R_{Config_INTC}_INTPn_Start
	R_{Config_INTC}_INTPn_Stop
	R_{Config_INTC}_Create_UserInit
	r_{Config_INTC}_intpn_interrupt
	Usage example

	4.2.59 Voltage Detector
	R_{Config_LVDn}_Create
	R_{Config_LVDn}_Start
	R_{Config_LVDn}_Stop
	R_{Config_LVDn}_Create_UserInit
	Usage example

	4.2.60 Snooze Mode Sequencer
	R_{Config_SMS}_Create
	R_{Config_SMS}_Start
	R_{Config_SMS}_Stop
	R_{Config_SMS}_GetStatus
	R_{Config_SMS}_GetReturn
	R_{Config_SMS}_TriggerWait_Enable
	R_{Config_SMS}_TriggerWait_Disable
	R_{Config_SMS}_Set_PowerOn
	R_{Config_SMS}_Set_PowerOff
	R_{Config_SMS}_Set_Reset
	R_{Config_SMS}_Release_Reset
	R_{Config_SMS}_Create_UserInit
	r_{Config_SMS}_interrupt
	Usage example

	4.2.61 Key Interrupt
	R_{Config_KR}_Create
	R_{Config_KR}_Start
	R_{Config_KR}_Stop
	R_{Config_KR}_Create_UserInit
	r_{Config_KR}_interrupt
	Usage example

	4.2.62 Remote Control Signal Receiver
	R_{Config_REMC}_Create
	R_{Config_REMC}_Start
	R_{Config_REMC}_Stop
	R_{Config_REMC}_Read
	R_{Config_REMC}_Create_UserInit
	r_{Config_REMC}_interrupt
	r_{Config_REMC}_callback_receiveend
	r_{Config_REMC}_callback_comparematch
	r_{Config_REMC}_callback_receiveerror
	r_{Config_REMC}_callback_bufferfull
	r_{Config_REMC}_callback_header
	r_{Config_REMC}_callback_data0
	r_{Config_REMC}_callback_data1
	r_{Config_REMC}_callback_specialdata
	Usage example

	4.2.63 Watchdog Timer
	R_{Config_WDT}_Create
	R_{Config_WDT}_Restart
	R_{Config_WDT}_Create_UserInit
	r_{Config_WDT}_interrupt
	Usage example

	4.2.64 Logic and Event Link Controller
	R_{Config_xxx}_Create
	R_{Config_xxx}_Start
	R_{Config_xxx}_Stop
	R_{Config_xxx}_OUTPUTn_Start
	R_{Config_xxx}_OUTPUTn_Stop
	R_{Config_xxx}_GetStatus
	R_{Config_xxx}_Create_UserInit
	r_{Config_xxx}_interrupt
	Usage example

	4.2.65 Event Link Controller
	R_{Config_ELC}_Create
	R_{Config_ELC}_Stop
	R_{Config_ELC}_Create_UserInit
	Usage example

	4.2.66 LCD Controller/Driver
	R_{Config_LCD}_Create
	R_{Config_LCD}_Start
	R_{Config_LCD}_Stop
	R_{Config_LCD}_Voltage_On
	R_{Config_LCD}_Voltage_Off
	R_{Config_LCD}_Set_DisplayData
	R_{Config_LCD}_Create_UserInit
	Usage example

	4.2.67 Oscillation Stop Detector
	R_{Config_OSD}_Create
	R_{Config_OSD}_Start
	R_{Config_OSD}_Stop
	R_{Config_OSD}_Create_UserInit
	r_{Config_OSD}_interrupt
	Usage example

	4.2.68 External Signal Sampler
	R_{Config_EXSD}_Create
	R_{Config_EXSD}_Start
	R_{Config_EXSD}_Stop
	R_{Config_EXSD}_Create_UserInit
	r_{Config_EXSD}_interrupt
	Usage example



	Appendix  API Function Comparison Table
	Revision Record

