LENESANS

-
7
@
ﬁ\-
7
<
Q
S
-
QO

Smart Configurator
User's Manual: RL78 AP| Reference

RENESAS MCU
RL78 Family

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http://www.renesas.com).

Renesas Electronics
WWW.renesas.com Rev.1.07 Jan 2026

Notice

1.

12.

13.
14.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products
and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of
these circuits, software, or information.
Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or
other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
others.
You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system;
undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims
any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is
inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.
No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not
limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products
are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury,
injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety
design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging
degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas

Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is

prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled

subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu, For further information on a product, technology, the most up-to-date version of a document, or
Koto-ku, Tokyo 135-0061, Japan your nearest sales office, please visit: www.renesas.com/contact/.

www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All

trademarks and registered trademarks are the property of their respective owners.

© 2026 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/
https://www.renesas.com/contact/

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit
Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by

this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken
to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a
humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and
transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be
grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken
for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LS| are indeterminate and the states of register settings
and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not
guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip
power-on reset function are not guaranteed from the time when power is supplied until the power reaches the level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power
supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for
input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-
impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-
through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until
the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an extemal oscillator during a reset, ensure that the reset line
is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator
while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between Vi (Max.) and Vi (Min.)
due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the
transition period when the input level passes through the area between Vi (Max.) and Vi (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the
correct operation of the LSl is not guaranteed.

8. Differences between products
Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The
characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory
capacity, layout patter, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise,

and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

Readers

Purpose

Organization

How to Read This Manual

Conventions

How to Use This Manual

The target readers of this manual are the application system engineers who use the
Smart Configurator and need to understand its function.

The purpose of this manual is to explain the user for understanding and using the
Smart Configurator functions.
We aim to help their system development including their hardware and software.

This manual can be broadly divided into the following units.
1.GENERAL

2.0UTPUT FILES

3.API FUNCITONS

It is assumed that the readers of this manual have general knowledge of electricity,
logic circuits, and microcontrollers.

Deata significance: Higher digits on the left and lower digits on the right
Active low representation: XXX (overscore over pin or signal name)

Note: Footnote for item marked with Note in the text
Caution: Information requiring particular attention

Remark: Supplementary information

Numeric representation: Decimal ... XXXX

Hexadecimal ... OxXXXX

All trademarks and registered trademarks are the property of their respective owners.

TABLE OF CONTENTS

L 1 =1 = o PR 8
1.1 OVETVICW ...ttt ettt ettt ettt ettt e b e e bt e bt e et e ae e e e et eh e e eh e em st em st ee e e eseeeb e e eb e e ebeemeeemteeaeeeb e e bt e bt emteembeemsesmeesaeenaeeneeenes 8
1.2 FOATUTES ...ttt ettt e b e e bt e s bt e e et e s et e e it e sa bt e eab e sttt et e e b et e bee s b e e ebeeeanee 8
1.3 L 131510731 9

2 © 1 U I I U N I e | SR 10
2.1 | T Yer 074 (o) s WO 10

R T | I NI 17N I 1 RSP 33

4. APTFUNGCTIONS ... ittt et et ettt e e sttt e e e sttt e e e s bbeeeeabteeaeabaeeeeaaseeeeeaseeeeeanseeeeeanseeeeeaseeeeeanstenananns 34
4.1 OVEIVIEW .evvietienieeieeiteettesttesteesseesteesseesseassesseesseeseesseasseasseass e seesssenseassaessesssesssesssesseanseasseassesssesssensaensennsesssessnns 34
4.2 FUNCHION RETEIENCEiviiiieiieiicieeeee ettt ettt e b e s tae st esaeebeesbeesseessessaessaensaessenssesssessnas 35

4.2.1 L€ 153 1) 21 USSR 36
422 POT. ettt e b b bt a et h bt h e eh e e et e b bbbt eh s et et e benaea 147
423 DICIAY COUNLETuvivieiietieetieteeteete st e st e steeaeeseeesteeteesse e seessaesseassesssesssesseenseenseasseassenssensaensannsenssenssessnas 153
424 DIVIACT FUNCLIONiiiiiiieiieie ettt ettt ettt et e b e esbesaaeseeesseeseesseesseessesssensaessaessenssenssessnas 163
4.2.5 External Event Counter (Timer Array UNIt)ccoeiirierieniieiieiesieseeseesie e eve e seeessaesseesseessesssesnnes 170
4.2.6 External Event Counter (TImer RJ)cccioiiiiiiiiiiiicieeeeee ettt sttt 179
4.2.7 Input Pulse High-/Low-Level Width Measurement (Timer Array Unit)........c.ccceevveeveeeenieeneenieeneenns. 186
4.2.8 Input Pulse High-/Low-Level Width Measurement (Timer RJ)cccccoovviviiniiiiiieiieiieieeeeee e, 194
4.2.9 PWM Output (Timer ATTaY UNIL)ccceevieriieiieiieieeieeeesteesteereeaeseteseeesaeesseesseessesssesssessaesseessesssesssessns 202
4.2.10 PWM Output (Timer Array Unit using PWM mode (Remote control carrier wave))cccceeveennennen. 210
4.2.11 PWM Output (Timer RDn using PWM mode/ Extended PWM mode)........cccccoeveneninineniinencnenens 220
4.2.12 PWM Output (Timer RDO and RD1 using PWM mode/ PWM3 mode/ Extended PWM mode/ Timer
KB3 PWM OUtput Gate MOAE)....cueeiuiereieiieieeieeieeiiestieste et eeteeteseteseeesseesteeeeeneeeneesseesseenseenseensessesnees 228
4.2.13 PWM Output (Timer RG using PWM mode/ PWM2 mode).......ccooeevieiiiiieiieiieieeeeeeeee e 238
4.2.14 PWM Output (Timer KB using standalone mode (period controlled by TKBCRnO register)/standalone

4.2.15

4.2.16

4.2.17

mode (period controlled by external trigger input)/interleave PFC output mode)cceccvevvereeeennen. 245
PWM Output (Timer KB using simultaneous start/stop mode (period controlled by TKBCRnO
register)/simultaneous start/stop mode (period controlled by external trigger input)/synchronous
start/clear mode (period controlled by master)) (1 S1ave)cccccueverinenininieiiineeeeeeeeee e 267
PWM Output (Timer KB using simultaneous start/stop mode (period controlled by TKBCRnO
register)/simultaneous start/stop mode (period controlled by external trigger input)/synchronous
start/clear mode (period controlled by master)) (2 SIaVeSs).....cuieveeeriierieeiiieie e 288

Input Pulse Interval/Period Measurement (Timer Array Unit)cccveeevieeiiieniieeniieniiesieeeieesveeeiee s 309

42.18
42.19
4220
4221
4222
4223
4224
4225
42.26
4227
4228
42.29
4230
4231
42.32
4233
4234
4235
42.36
4237
4238
42.39
4.2.40
4.2.41
42.42
42.43
4.2.44
42.45
4.2.46
4247
42.48
42.49
4.2.50
4251
42.52
42.53
42.54
42.55

Input Pulse Interval/Period Measurement (Timer RJ)ccoveiivrciiiiiiiinieiececeeeeeeeee e 317

Interval Timer (Timer ATTay UNIt)coccveiieriieriieieeieeteeieeteeie et stesee e see e esaeesaessaessaesseessesssesnsesnnes 325
Interval Timer (Timer RJ)....ccouiiiiiiiiiieeieetee ettt sttt e e staessaensaeseensesnsesnnes 338
Interval Timer (12-bit INterval TIMET)cvevieriiiiieieeieieeteeie ettt beenseensesnnes 345
Interval Timer (32-bit Interval Timer using 8-bit counter Mode)ccceevveriieviieierieeienieeee e 352
Interval Timer (32-bit Interval Timer using 16-bit counter Mode)cevverrieviiecierierieniereeie e 360
Interval Timer (32-bit Interval Timer using 32-bit counter MOde)ceevverrreviiecierienierieseeie e 370
Interval Timer (8-bit Interval Timer using 8-bit counter MOde)cevververiieriieieeieeiereere e 378
Interval Timer (8-bit Interval Timer using 16-bit counter MoOde)cccvervverrieviiecierienienieseee e 385
Input Capture Function (Timer RD)ccooouiiiiiiiiiiiiicieceee et 392
Input Capture Function (Timer RG)ccoovuieiiiiiiiiieiiieieeee ettt 401
Input Capture Function (Timer RX)ooovieiiiiiiiiiierieeit ettt sae e esb e snaessaesneens 410
ONE-ShOt PUISE OULPULeevtieiiieieiieiiesieesit et ettt et et e et e et e esaessaeseeesseesseesseessesssesssessaessaenseessesssessnes 418
Square Wave Output (Timer Array UNIt)ccceeierieriieiieieiiesieseesie e eeeestaesse e esseesessnesaeesseesseenns 428
Square Wave Output (TImer RJT) c..ooioiiiiieiiciccieeee ettt sae e ene 437
Output Compare Function (Timer RD)........cciiviiiiiiiiiiiiieiieieeee ettt esse e 444
Output Compare Function (Timer RG).......ccouveiieiiiiiiieiieieeieee ettt 451
Three -phase PWM Output (Timer RD)ccvveiiiiiiiiiieiieieeieete sttt ssaestaesseesseesesnees 458
PWM option unit A (Timer RD).....c.cociiiiiiieiieiieieeteeteieee ettt et e s taebaebeesseessesnnas 467
Phase CouNtINg MOGE.......ccuviiieiiiiiiieiieesit ettt et ete et e esbessaeseaeseeesseesseesseessesssesssessaessaenseessesssessnes 472
Clock Output/Buzzer Output CONtIOLIETcviiiiiieiieiieie ettt see e be s e esseesaesseens 482
REAI-TIME CLOCK ...ttt ettt st b e bt ea et e et st ebesbeebeene et entenaeas 488
AJD COMVEITET ...ttt ettt ettt ettt et b et e et et e e e bt bt e bt es e em b et e s e sbeeb e ebeestessentenbesbeebeebeeneeneeneenbenaeas 509
12 Bit A/D SINELE SCAN....ccuviiiiiiiiiiiieitieieeie ettt ettt te e e aesaestaesaeesaeesbeesseesseesseessessaesseesseessesssessnas 531
12 Bit A/D CONTINUOUS SCAM....c..eiuiiiieiiieitietieteeiiete ettt ettt et et ettt sbe bt eatestestebesbeebesbeeneeneensenaesaeas 539
12 Bit A/D GIOUP SCAN....ecuvieeiiiiieiiieiiiesteeie et et ette et e steebeebeessessaessaesseesseesseesseesseessesssessaasssesseessesssesses 547
/A COMVEITET ...ttt ettt ettt et ettt e b e eb e bt ea e s et et e s bt eb e e bt estes s et e besbeebeebeebeeneentenbenaeas 558
Data Transfer CONIOIIETciiiiiieiere ettt b ettt ettt bbbt st eneentenbesaeas 565
L010311] 01 21 {0) OO 571
Programmable Gain AMPITIETccciiiiiiiiicie ettt s re et e b e esbeessesneas 578
SPI (CSI) COMMUNICALIONveuvveeietieteentiesteeeteeseesseesseesseessesssesseesseesseesseessesssesssessesssesssesssesssesssessessseeses 584
UART Communication (Serial array UNit)...........cccveerererieeiieenieeiieereeeseeesreesieeeseveessveesseessseesssesnsnees 597
UART Communication (Serial Interface UARTA) ..c..oioviiiiiiiiecieeeeett ettt 614
UART Communication (LIN/UART MOQUIE)......c.cceciiiiiiiiiiiiieeiie ettt sve e seve e 632
DALI Communication (CONtrol AEVICES)cccueeriierieeiiieniieniieeiteesieeeiteesreeereesseesseesseessseessesssseesns 646
DALI Communication (CONLIOl ZEAT)........c.eeeuieiiiieiieiiieeieestteeieesreeeaeesreesreesbeesseessseessseessseessseesns 670
IIC Communication (Master mode) (Serial Array Unit).....c.cccceeevieeriiieniieeiiienieenieesreesieesveesveeevee e 690

IIC Communication (Master mode) (Serial Interface IICA).......ccccveviieeiieiiiiienie et 704

4.2.56 IIC Communication (Master mode, EEPROM communication) (Serial Interface I[ICA)...................... 725

4.2.57 IIC Communication (Slave mode) (Serial Interface IICA)cccocvvvierierierieieieeeeeeeeeee e 745
4.2.58 INtEITUPE COUNIIOLIETeeieeiieiii ettt ettt s st e s st e seesseesseesseessessaesaenseensennsesnnes 760
4.2.59 V0] LTl B T) SRR 767
4.2.60 SNO00ZE MOAE SEQUEIICETveivieiiieiietiete et ette et et et eteseaesaesteesseesseesseessesssessaeseensesssesssesssesnseseensennes 773
4.2.61 KEY TIEEITUPL . ..ottt ettt e st et e st e s it e e s et e e s abeesabeesabeesabeesabeessbeesabeesaseennseenas 788
4.2.62 Remote Control Signal RECEIVETccueviiriieriieiieieeieeieitee et sttt estaessaesseenseesseensesnnes 795
4.2.63 WALCHAOZ TIMET ..c.vevieiieit ettt ettt sttt et e et e e st e e st esse e seenseenseessesssessaessaenseansenssenssensaensanns 811
4.2.64 Logic and Event Link COntrOllercccueiieriieriieiieieeieseeteeieetesteseeeseee e esseesseeseessaesseenseensesssesnsesnnes 817
4.2.65 Event Link COMIOLLETc.ccoriiiiiirieiiitinieieienectetence ettt ettt ettt sttt s 827
4.2.66 LCD CONLIOIEI/DIIVELeevinveiiienieiieieneeiteteneetete sttt sttt ettt sa et et saeseetesa et ebesaeneesesaeneenesaennes 832
4.2.67 OSCIlLAtION STOP DIELECIOTeeuiiiiiieieiieiiesteete et ette et et et et e et e esaeseaeseeesseesseesseesseessesssensaesaenseessesssessnas 842
4.2.68 External Si@Nal SAMPIETccueviiiiiiiiiieiieie ettt ettt e stesee e e saeesseesaeessessaessaesaesseesseessesnnas 849
Appendix APl Function Comparison Tableuuuiiiiiiiiiieeee e 856

REVISION RECONA ... oot e e et e ettt e e e et e e e e e e e e e e e e eeaaseeeeaeseseaaeseranseaennnaaes 862

Smart Configurator 1.GENERAL

1. GENERAL

This chapter gives an overview of the driver code generator of the Smart Configurator.

11 Overview

This tool can output source code (device driver programs as C source and header files) for controlling
peripheral modules (clock generation circuit, voltage detection circuit, etc.) of the device by using a GUI to set
various types of information on the requirements of the project.

1.2 Features

The features of the Smart Configurator are as follows.

- Generating code
The Code Generator outputs not only device driver files in accord with the information set in the GUI but
also a complete set of programs for the build environment, such as a sample program containing the call
of the main function.

- Reporting
Information that was set by using the Smart Configurator can be output to files in various formats and used
as design documentation.

- Renaming
Default names are given to folders and files output by the Smart Configurator and to the API functions in
the source code, but these can be changed to user-specified names.

- Protecting user code
The user can add user's original source code to each API function. When user generated the device driver
programs again by the Smart Configurator, user's source code within this comment is protected.

[Comment for user source code descriptions]
[* Start user code for xxxx. Do not edit comment generated here */
/* End user code. Do not edit comment generated here */
“xxxx” is changed for different user code:

® “global” — user can add global variables and functions
“function” — user can add functions declaration in .h file
“user init” — user can add initializing code
Interrupt function name — user can add service routine code
“adding” — user can add functions in .c file
“include” — user can add including file in .c file
“pragma” — user can add pragma declaration in .c file

Code written by the user between these comments will be preserved even when the code is generated
again.

R20UT4852EC0107 Rev.1.07 RENESAS Page 8 of 868
Jan 20, 2026

Smart Configurator 1.GENERAL

1.3 Cautions

Smart Configurator has the following cautions.

- OSS (Open Source Software)
The code generation tool does not use OSS.

R20UT4852EC0107 Rev.1.07 RENESAS Page 9 of 868
Jan 20, 2026

Smart Configurator 2

. OUTPUT FILES

2. OUTPUT FILES

This chapter explains the file output by the Smart Configurator.

2.1 Description

The Smart Configurator outputs the following files.
Table 2-1 Output File List (1/23)

Component / Folder File Name API Function Name
Name

General {project name}.c main

r_smc_entry.h —

r_cg_systeminit.c R_Systeminit

r_cg_macrodriver.h -

r_cg_userdefine.h -

r_cg_interrupt_handlers.h -

r_cg_inthandler.c —

r_cg_vect_table.c -

r_cg_linker_script.ld —

r_cg_port.h -

r_cg_pclbuz.h -

r_cg_kr.h —

r_cg_wdt.h -

r_cg_intc.h —

r_cg_sms.h -

r_cg_elc.h -

r_cg_dtc_common.c R_DTC_Set_PowerOn
R _DTC_Set PowerOff

r_cg_dtc_common.h —

r_cg_dtc.h -

r_cg_tau_common.c R_TAUm_Create
R_TAUm_Set_PowerOn
R_TAUm_Set PowerOff
R_TAUm_Set Reset
R_TAUm_Release_Reset

r_cg_tau_common.h -

r_cg_tau.h —

r_cg_itl_common.c R_ITL Create
R_ITL_Start_Interrupt
R_ITL_Stop Interrupt
R_ITL_Set PowerOn
R_ITL_Set PowerOff
R_ITL_Set_Reset

R _ITL_Release Reset

r_cg_itl_common_user.c r_itl_interrupt

r_cg_itl_common.h -

r_cg_itl.h -

R20UT4852EC0107 Rev.1.07 RENESAS
Jan 20, 2026

Page 10 of 868

Smart Configurator

2. OUTPUT FILES

Table 2-2 Output File List (2/23)

Component / Folder
Name

File Name

API Function Name

General

r_cg_trd_common.c

R_TRD_Create

R_TRD_Set PowerOn
R_TRD_Set PowerOff
R_TRD_Set_Reset
R_TRD_Release_Reset
R_PWMOPA _ Set PowerOn
R_PWMOPA_Set_PowerOff
R_PWMOPA_Set_Reset
R_PWMOPA Release Reset
R_TRD_ForcedOutput_Enable
R_TRD_ForcedOutput_Disable

r_cg_trd_common.h

r_cg_trd.h

r_cg_tri_common.c

R_TRJ_Set_PowerOn
R_TRJ_Set_PowerOff
R_TRJ_Set Reset
R_TRJ_Release_Reset

r_cg_tri_common.h

r_cg_trj.h

r_cg_trg_common.c

R_TRG_Set_PowerOn
R_TRG_Set PowerOff
R_TRG_Set_Reset
R_TRG_Release_Reset

r_cg_trg_common.h

r_cg_trg.h

r_cg_trx_common.c

R_TRX_ Set PowerOn
R_TRX_ Set PowerOff
R_TRX_Set_Reset
R_TRX Release Reset

r_cg_trx_common.h

r_cg_trx.h

r_cg_tkb_common.c

R_TKB_Create
R_TKB_Set_PowerOn
R_TKB_Set PowerOff
R _TKB_Set Reset
R_TKB_Release_Reset

r_cg_tkb_common.h

r_cg_tkb.h

r_cg_rtc_common.c

R_RTC_Set_PowerOn
R_RTC_Set PowerOff

r_cg_rtc_common.h

r_cg_rtc.h

R20UT4852EC0107 Rev.1.07

Jan 20, 2026

RENESAS

Page 11 of 868

Smart Configurator

2. OUTPUT FILES

Table 2-3 Output File List (3/23)

Component / Folder Name

File Name

API Function Name

General

r_cg_it_common.c

R_IT_Set PowerOn
R_IT_Set_PowerOff

r_cg_it_common.h

r_cg_it.h

r_cg_ad_common.c

R_ADC_Set PowerOn
R_ADC_Set PowerOff
R_ADC_Set Reset
R_ADC_Release_Reset

r_cg_ad_common.h

r_cg_ad.h

r_cg_da_common.c

R_DAC_Create
R_DAC_Set_PowerOn
R_DAC_Set PowerOff
R_DAC_Set_Reset
R_DAC_Release_Reset

r_cg_da_common.h

r_cg_da.h

r_cg_comp_common.c

R_COMP_Create
R_COMP_Set_PowerOn
R_COMP_Set_PowerOff
R_COMP_Set_Reset
R_COMP_Release Reset

r_cg_comp_common.h

r_cg_comp.h

r_cg_pgacomp_common.c

R_PGACOMP_Create
R_PGACOMP_Set PowerOn
R_PGACOMP_Set PowerOff
R_PGACOMP_Set_Reset
R_PGACOMP_Release Reset

r_cg_pgacomp_common.h

r_cg_pgacomp.h

r_cg_sau_common.c

R_SAUm_Create
R_SAUm_Set_PowerOn
R_SAUm_Set_PowerOff
R_SAUm_Set Reset
R_SAUm_Release_Reset
R_SAUm_Set_SnoozeOn
R_SAUm_Set_SnoozeOff

r_cg_sau_common.h

r_cg_sau.h

r_cg_uarta_common.c

R_UARTA_Create
R_UARTA_Set_PowerOn
R_UARTA_Set PowerOff

r_cg_uarta_common.h

r_cg_uarta.h

R20UT4852EC0107 Rev.1.07

Jan 20, 2026

RENESAS

Page 12 of 868

Smart Configurator

2. OUTPUT FILES

Table 2-4 Output File List (4/23)

Component / Folder File Name API Function Name
Name
General r_cg_iica_common.c R_IICAn_Set_PowerOn

R_IICAn_Set PowerOff
R_IICAn_Set_Reset
R_IICAn_Release_Reset

r_cg_iica_common.h

r_cg_iica.h

r_cg_rlin3_common.c

R_RLIN3n_Set_PowerOn
R_RLIN3n_Set PowerOff

r_cg_rlin3_common.h

r_cg_rlin3.h

r_cg_dali_common.c

R_DALI_Set_PowerOn
R_DALI_Set_PowerOff
R_DALI_Set Reset
R_DALI_Release_Reset

r_cg_dali_common.h

r_cg_dali.h

r_cg_lvd_common.c

R_LVD_Start_Interrupt
R_LVD_Stop_Interrupt

r_cg_lvd_common_user.c

r_lvd_interrupt

r_cg_lvd_common.h

r_cg_lvd.h

r_cg_remc_common.c

R_REMC_Set PowerOn
R_REMC_Set PowerOff
R_REMC_Set_Reset
R_REMC_Release Reset

r_cg_remc_common.h

r_cg_remc.h

r_cg_it8bit_common.c

R _ITm_Create
R _ITm_Set PowerOn
R_ITm_Set_PowerOff

r_cg_it8bit_common.h

r_cg_it8bit.h

r_cg_lcd.h

r_cg_osd_common.c

R_OSD_Set_PowerOn
R_OSD_Set PowerOff
R_OSD_Set Reset
R_OSD_Release_Reset

r_cg_osd_common.h

r_cg_osd.h

R20UT4852EC0107 Rev.1.07

Jan 20, 2026

RENESAS

Page 13 of 868

Smart Configurator

2. OUTPUT FILES

Table 2-5 Output File List (5/23)

Component / Folder File Name API Function Name
Name
General r_cg_exsd_common.c R_EXSD_Set PowerOn
R_EXSD_Set PowerOff
R_EXSD_Set Reset
R_EXSD_Release_Reset
r_cg_exsd_common.h -
r_cg_exsd.h -
Ports {Config_PORT}.c R_{Config_PORT}_Create

R_{Config_PORT}_ReadPmnValues
R_{Config_PORT}_ReadDigitalOutputLevel

{Config_PORT}_user.c

R_{Config_PORT}_Create_Userlnit

{Config_PORT}.h

Delay Counter

{Config_TAUm_n}.c

R_{Config_TAUm_n}_Create
R_{Config_TAUm_n}_Start
R_{Config_TAUm_n}_Stop
R_{Config_TAUm_n}_Lower8bits_Start
R_{Config_TAUm_n}_Lower8bits_Stop
R_{Config_TAUm_n}_Set_SoftwareTriggerOn

{Config_TAUm_n}_user.c

R_{Config_TAUm_n} Create_Userlnit
r_{Config_TAUm_n}_ interrupt

{Config_TAUm_n}.h

Divider Function

{Config_TAUm_n}.c

R_{Config_TAUm_n}_Create
R_{Config_TAUm_n}_Start
R_{Config_TAUm_n}_Stop

{Config_TAUm_n} user.c

R_{Config_TAUm_n} Create_Userlnit
r_{Config_TAUm_n}_interrupt

{Config_TAUm_n}.h

External Event Counter
(Timer Array Unit)

{Config_TAUm_n}.c

R_{Config_TAUm_n} Create
R_{Config_TAUm_n}_Start
R_{Config_TAUm_n}_Stop
R_{Config_TAUm_n}_Lower8bits_Start
R_{Config_TAUm_n} Lower8bits_Stop

{Config_TAUm_n} user.c

R_{Config_TAUm_n} Create_Userlnit
r_{Config_TAUm_n}_ interrupt

{Config_TAUm_n}.h

External Event Counter
(Timer RJ)

{Config_TRJn}.c

R_{Config_TRJn}_Create
R_{Config_TRJn}_Start
R_{Config_TRJn}_Stop

{Config_TRJn}_user.c

R_{Config_TRJn} Create_Userlnit
r_{Config_TRJn}_ interrupt

{Config_TRJn}.h

R20UT4852EC0107
Jan 20, 2026

Rev.1.07

RENESAS

Page 14 of 868

Smart Configurator

2. OUTPUT FILES

Table 2-6 Output File List (6/23)

Component / Folder
Name

File Name

API Function Name

Input Pulse High-/Low-
Level Width
Measurement (Timer
Array Unit)

{Config_TAUm_n}.c

R_{Config_TAUm_n} Create
R_{Config_TAUm_n} Start
R_{Config_TAUm_n}_ Stop
R_{Config_TAUm_n} Get_PulseWidth

{Config_TAUm_n} user.c

R_{Config_TAUm_n} Create_Userlnit
r_{Config_TAUm_n}_interrupt

{Config_TAUm_n}.h

Input Pulse High-/Low-
Level Width
Measurement (Timer
RJ)

{Config_TRJn}.c

R_{Config_TRJn} Create
R_{Config_TRJn}_Start
R_{Config_TRJn}_Stop
R_{Config_TRJn} _Get_PulseWidth

{Config_TRJn}_user.c

R_{Config_TRJn}_Create_Userlnit
r_{Config_TRJn}_ interrupt

{Config_TRJn}.h

PWM Output (Timer
Array Unit)

{Config_TAUm_n}.c

R_{Config_TAUm_n} Create
R_{Config_TAUm_n}_Start
R_{Config_TAUm_n}_Stop

{Config_TAUm_n}_user.c

R_{Config_TAUm_n} Create_Userlnit
r_{Config_TAUm_n}_channeln_interrupt
r_{Config_TAUm_n}_channelp_interrupt

{Config_TAUm_n}.h

PWM Output (Timer
Array Unit using PWM
mode (remote control
carrier wave))

{Config_TAUO_m_TAUO_n}.c

R_{Config_TAUO_m_TAUO_n} Create
R_{Config_TAUO_m_TAUO_n} Start
R_{Config_TAUO_m_TAUO_n} Stop

{Config_TAUO_m_TAUOQ_n}_user.
c

R_{Config_TAUO_m_TAUO_n} Create_Userlnit

r_{Config_TAUO_m_TAUO_n}_channelm_interrupt
r_{Config_TAUO_m_TAUO_n}_channelp_interrupt
r_{Config_TAUO_m_TAUO_n}_channeln_interrupt
r_{Config_TAUO_m_TAUO_n}_channelq_interrupt

{Config_TAUO_m_TAUO_n}.h

PWM Output (Timer RD
using PWM mode/
Extended PWM mode)

{Config_TRDn}.c

R_{Config_TRDn}_Create
R_{Config_TRDn}_Start
R_{Config_TRDn}_Stop
R_{Config_TRDn}_Set TRDn_ReloadTrigger

{Config_TRDn}_user.c

R_{Config_TRDn}_Create_Userlnit
r_{Config_TRDn}_trdn_interrupt

{Config_TRDn}.h

R20UT4852EC0107 Rev.1.07

Jan 20, 2026

RENESAS

Page 15 of 868

Smart Configurator

2. OUTPUT FILES

Table 2-7 Output File List (7/23)

Component / Folder
Name

File Name

API Function Name

PWM Output (Timer
RDO and RD1 using
PWM mode/ PWM3
mode/ Extended PWM
mode/ Timer KB3 PWM
Output Gate mode)

{Config_TRDO_TRD1}.c

R_{Config_ TRDO_TRD1} Create
R_{Config_TRDO_TRD1}_Start
R_{Config_TRDO_TRD1}_Stop

R_{Config_ TRDO_TRD1} Set TRDn_ReloadTrigger
R_{Config_TRDO_TRD1} Set TRDO_ReloadTrigger
R_{Config_ TRDO_TRD1} Set TRD1_ReloadTrigger

{Config_TRDO_TRD1}_user.c

R_{Config_ TRDO_TRD1} Create_Userlnit
r_{Config_ TRDO_TRD1}_trdn_interrupt

{Config_ TRDO_TRD1}.h

PWM Output (Timer RG
using PWM mode/
PWM2 mode)

{Config_TRG}.c

R_{Config_TRG}_Create
R_{Config_TRG}_Start
R_{Config_TRG}_Stop

{Config_TRG} user.c

R_{Config_TRG}_Create_Userlnit
r_{Config_TRG} interrupt

{Config_TRG}.h

PWM Output (Timer KB
using standalone mode
(period controlled by
TKBCRNO
register)/standalone
mode (period controlled
by external trigger
input)/interleave PFC
output mode)

{Config_TKBn}.c

R_{Config_TKBn}_Create

R_{Config_TKBn}_Start

R_{Config_TKBn}_Stop
R_{Config_TKBn}_Set_BatchOverwriteRequestOn
R_{Config_TKBn}_TKBOnO_Forced_Output_Stop_Functi
on1_Start
R_{Config_TKBn}_TKBOnO_Forced_Output_Stop_Functi
on1_Stop
R_{Config_TKBn}_TKBOn1_Forced_Output_Stop_Functi
on1_Start
R_{Config_TKBn}_TKBOn1_Forced_Output_Stop_Functi
on1_Stop
R_{Config_TKBn}_TKBOnO_SmoothStartFunction_Start
R_{Config_TKBn}_TKBOn0_SmoothStartFunction_Stop
R_{Config_TKBn}_TKBOn1_SmoothStartFunction_Start
R_{Config_TKBn}_TKBOn1_SmoothStartFunction_Stop

{Config_TKBn} user.c

R_{Config_TKBn}_Create_Userlnit
r_{Config_TKBn}_terminatedQ_interrupt
r_{Config_TKBn}_terminated1_interrupt
r_{Config_TKBn}_activated0_interrupt
r_{Config_TKBn}_activated1_interrupt
r_{Config_TKBn}_end_count_interrupt

{Config_TKBn}.h

R20UT4852EC0107 Rev.1.07

Jan 20, 2026

RENESAS

Page 16 of 868

Smart Configurator

2. OUTPUT FILES

Table 2-8 Output File List (8/23)

Component / Folder
Name

File Name

API Function Name

PWM Output (Timer KB
using simultaneous
start/stop mode (period
controlled by TKBCRnO
register)/simultaneous
start/stop mode (period
controlled by external
trigger
input)/synchronous
start/clear mode (period
controlled by master)) (1
slave)

{Config_TKBO_TKBn}.c

R_{Config_TKBO_TKBn} Create
R_{Config_TKBO_TKBn}_Start
R_{Config_TKBO_TKBn}_Stop

R_{Config_TKBO_TKBn} TKBm_Set_BatchOverwriteRe
questOn

R_{Config_TKBO_TKBn} TKBOmO_Forced_Output_Stop
_Function1_Start
R_{Config_TKBO_TKBn}_TKBOmO_Forced_Output_Stop
_Function1_Stop

R_{Config_TKBO_TKBn} TKBOm1_Forced_Output_Stop
_Function1_Start
R_{Config_TKBO_TKBn}_TKBOm1_Forced_Output_Stop
_Function1_Stop

R_{Config_TKB0_TKBn} TKBOmO_SmoothStartFunctio
n_Start
R_{Config_TKBO_TKBn}_TKBOmO0_SmoothStartFunctio
n_Stop
R_{Config_TKBO_TKBn}_TKBOm1_SmoothStartFunctio
n_Start

R_{Config_TKB0_TKBn} TKBOm1_SmoothStartFunctio
n_Stop

{Config_TKBO_TKBn}_user.c

R_{Config_TKBO_TKBn}_Create_Userlnit
r_{Config_TKBO_TKBn}_tkbm_terminatedQ_interrupt
r_{Config_TKBO_TKBn}_tkbm_terminated1_interrupt
r_{Config_TKBO_TKBn}_tkbm_activatedO_interrupt
r_{Config_TKBO_TKBn}_tkbm_activated1_interrupt
r_{Config_TKBO_TKBn}_tkbm_end_count_interrupt

{Config_TKBO_TKBn}.h

R20UT4852EC0107 Rev.1.07

Jan 20, 2026

RENESAS Page 17 of 868

Smart Configurator

2. OUTPUT FILES

Table 2-9 Output File List (9/23)

Component / Folder
Name

File Name

API Function Name

PWM Output (Timer KB
using simultaneous
start/stop mode (period
controlled by TKBCRnO
register)/simultaneous
start/stop mode (period
controlled by external
trigger
input)/synchronous
start/clear mode (period
controlled by master)) (2
slaves)

{Config_TKB0_TKB1_TKB2}.c

R_{Config_TKBO_TKB1_TKB2} Create
R_{Config_TKBO_TKB1_TKB2} Start
R_{Config_TKBO_TKB1_TKB2}_Stop

R_{Config_ TKBO_TKB1_TKB2} TKBn_Set_BatchOverwr
iteRequestOn

R_{Config_TKB_TKB1_TKB2} TKBOnO_Forced_Output
_Stop_Function1_Start

R_{Config_TKBO_TKB1_TKB2} TKBOnO_Forced_Outpu
t Stop_Function1_Stop

R_{Config_TKBO_TKB1_TKB2} TKBOn1_Forced_Outpu
t_Stop_Function1_Start

R_{Config_TKBO_TKB1_TKB2} TKBOn1_Forced_OQOutpu
t Stop_Function1_Stop

R_{Config_TKBO_TKB1_TKB2} TKBOn0_SmoothStartF
unction_Start

R_{Config_TKBO_TKB1_TKB2} TKBOnO0_SmoothStartF
unction_Stop

R_{Config_TKBO_TKB1_TKB2} TKBOn1_SmoothStartF
unction_Start

R_{Config_TKBO_TKB1_TKB2} TKBOn1_SmoothStartF
unction_Stop

{Config_TKBO_TKB1_TKB2} use
r.c

R_{Config_TKBO_TKB1_TKB2} Create_Userlnit
r_{Config_TKBO_TKB1_TKB2}_tkbn_terminated0_interru
pt
r_{Config_TKBO_TKB1_TKB2}_tkbn_terminated1_interru
pt
r_{Config_TKBO_TKB1_TKB2}_tkbn_activated0_interrupt
r_{Config_TKBO_TKB1_TKB2}_tkbn_activated1_interrupt
r_{Config_TKBO_TKB1_TKB2}_tkbn_end_count_interrupt

{Config_TKBO_TKB1_TKB2}.h

R20UT4852EC0107 Rev.1.07

Jan 20, 2026

RENESAS

Page 18 of 868

Smart Configurator

2. OUTPUT FILES

Table 2-10 Output File List (10/23)

Component / Folder
Name

File Name

API Function Name

Input Pulse Interval
Measurement (Timer

{Config_TAUm_n}.c

R_{Config_TAUm_n} Create
R_{Config_TAUm_n} Start

Interval/Period
Measurement (Timer
RJ)

Array Unit) R_{Config_TAUm_n}_ Stop
R_{Config_TAUm_n} Get_PulseWidth
{Config_TAUm_n} user.c r_{Config_TAUm_n}_interrupt
R_{Config_TAUm_n} Create_Userlnit
{Config_TAUm_n}.h —
Input Pulse {Config_TRJn}.c R_{Config_TRJn}_Create

R_{Config_TRJn}_Start
R_{Config_TRJn}_Stop
R_{Config_TRJn}_Get_PulseWidth

{Config_TRJn}_user.c

R_{Config_TRJn}_Create_Userlnit
r_{Config_TRJn}_ interrupt

{Config_TRJn}.h

Interval Timer (Timer
Array Unit)

{Config_TAUm_n}.c

R_{Config_TAUm_n} Create
R_{Config_TAUm_n}_Start
R_{Config_TAUm_n}_Stop
R_{Config_TAUm_n}_Higher8bits_Start
R_{Config_TAUm_n}_Higher8bits_Stop
R_{Config_TAUm_n} Lower8bits_Start
R_{Config_TAUm_n}_Lower8bits_Stop

{Config_TAUm_n} user.c

R_{Config_TAUm_n} Create_Userlnit
r_{Config_TAUm_n}_interrupt
r_{Config_TAUm_n}_higher8bits_interrupt

{Config_TAUm_n}.h

Interval Timer (Timer
RJ)

{Config_TRJn}.c

R_{Config_TRJn}_Create
R_{Config_TRJn}_Start
R_{Config_TRJn}_Stop

{Config_TRJn} user.c

R_{Config_TRJn}_Create_Userlnit
r_{Config_TRJn}_interrupt

{Config_TRJn}.h

Interval Timer (12-bit
Interval Timer)

{Config_IT}.c

R_{Config_IT}_Create
R_{Config_IT}_Start
R_{Config_IT}_Stop

{Config_IT} user.c

R_{Config_IT} Create_Userlnit
r_{Config_IT}_interrupt

{Config_IT}.h

R20UT4852EC0107 Rev.1.07

Jan 20, 2026

RENESAS

Page 19 of 868

Smart Configurator

2. OUTPUT FILES

Table 2-11 Output File List (11/23)

(Timer Array Unit)

Component / Folder File Name API Function Name
Name
One-Shot Pulse {Config_TAUm_n}.c R_{Config_TAUm_n} Create
Output R_{Config_TAUm_n} Start
R_{Config_TAUm_n}_ Stop
R_{Config_TAUm_n} Set_SoftwareTriggerOn
R_{Config_TAUm_n} Set_Get_PulseWidth
{Config_TAUm_n}_user.c R_{Config_TAUm_n}_Create_Userlnit
r_{Config_TAUm_n} channeln_interrupt
r_{Config_TAUm_n} channelp_interrupt
{Config_TAUm_n}.h -
Square Wave Output |{Config_TAUm_n}.c R_{Config_TAUm_n}_Create

R_{Config_TAUm_n}_Start
R_{Config_TAUm_n}_Stop
R_{Config_TAUm_n}_Lower8bits_Start
R_{Config_TAUm_n}_Lower8bits_Stop

{Config_TAUm_n}_user.c

R_{Config_TAUm_n} Create_Userlnit
r_{Config_TAUm_n}_interrupt

{Config_TAUm_n}.h

Square Wave Output
(Timer RJ)

{Config_TRJn}.c

R_{Config_TRJn}_Create
R_{Config_TRJn}_Start
R_{Config_TRJn}_Stop

{Config_TRJn}_user.c

R_{Config_TRJn}_Create_Userlnit
r_{Config_TRJn}_interrupt

{Config_TRJn}.h

Interval Timer (32-bit
Interval Timer using 8-
bit counter mode)

{Config_ITLn}.c

R_{Config_ITLn} Create
R_{Config_ITLn} Start
R_{Config_ITLn}_Stop
R_{Config_ITLn} Set SoftwareTriggerOn
R_{Config_ITLn} Set OperationMode
R_{Config_ITLn}_Get_CaptureValue

{Config_ITLn}_user.c

R_{Config_ITLn}_Create_Userlnit
r_{Config_ITLn}_Callback_Shared_Interrupt

{Config_ITLn}.h

Interval Timer (32-bit
Interval Timer using
16-bit counter mode)

{Config_ITLn_ITLm}.c

R_{Config_ITLn_ITLm}_Create
R_{Config_ITLn_ITLm}_Start
R_{Config_ITLn_ITLm}_Stop
R_{Config_ITLn_ITLm}_Set_SoftwareTriggerOn
R_{Config_ITLn_ITLm}_Set_OperationMode
R_{Config_ITLn_ITLm}_ Get_CaptureValue

{Config_ITLn_ITLm}_user.c

R_{Config_ITLn_ITLm}_ Create_Userlnit
r_{Config_ITLn_ITLm}_Callback_Shared_Interrupt

{Config_ITLn_ITLm}.h

R20UT4852EC0107 Rev.1.07

Jan 20, 2026

RENESAS

Page 20 of 868

Smart Configurator

2. OUTPUT FILES

Table 2-12 Output File List (12/23)

Component / Folder
Name

File Name

API Function Name

Interval Timer (32-bit
Interval Timer using
32-bit counter mode)

{Config_ITLO00_ITLOO1_ITLO12_|
TLO13}.c

R_{Config_ITLOOO_ITLOO1_ITLO12_ITLO13}_Create
R_{Config_ITLOOO_ITLOO1_ITLO12_ITLO13}_Start
R_{Config_ITLO0O_ITLOO1_ITLO12_ITLO13}_Stop
R_{Config_ITLOOO_ITLOO1_ITLO12_ITLO13}_Set Operati
onMode

{Config_ITLOOO_ITLOO1_ITLO12_]I
TLO13} user.c

R_{Config_ITLOOO_ITLOO1_ITLO12_ITLO13}_Create_Use
rinit
r_{Config_ITLOOO_ITLOO1_ITLO12_ITLO13}_Callback_Sh
ared_Interrupt

{Config_ITLO0O_ITLOO1_ITLO12_|
TLO13}.h

Input Capture Function
(Timer RD)

{Config_TRDn}.c

R_{Config_TRDn}_Create
R_{Config_TRDn}_Start
R_{Config_TRDn}_Stop
R_{Config_TRDn}_Get_PulseWidth

{Config_TRDn}_user.c

R_{Config_TRDn}_Create_Userlnit
r_{Config_TRDn}_trdn_interrupt

{Config_TRDn}.h

Input Capture Function
(Timer RG)

{Config_TRG}.c

R_{Config_TRG}_Create
R_{Config_TRG}_Start
R_{Config_TRG}_Stop
R_{Config_TRG}_Get_PulseWidth

{Config_TRG} user.c

R_{Config_TRG}_Create_Userlnit
r_{Config_TRG}_interrupt

{Config_TRG}.h

Input Capture Function
(Timer RX)

{Config_TRX}.c

R_{Config_TRX}_Create
R_{Config_TRX}_Start
R_{Config_TRX}_Stop
R_{Config_TRX}_Get_BuffValue

{Config_TRX}_user.c

R_{Config_TRX}_Create_Userlnit
r_{Config_TRX}_interrupt

{Config_TRX}.h

Output Compare
Function (Timer RD)

{Config_TRDn}.c

R_{Config_TRDn}_Create
R_{Config_TRDn}_Start
R_{Config_TRDn}_Stop

{Config_TRDn}_user.c

R_{Config_TRDn}_Create_Userlnit
r_{Config_TRDn}_trdn_interrupt

{Config_TRDn}.h

R20UT4852EC0107 Rev.1.07

Jan 20, 2026

RENESAS

Page 21 of 868

Smart Configurator

2. OUTPUT FILES

Table 2-13 Output File List (13/23)

Component / Folder
Name

File Name

API Function Name

Output Compare
Function (Timer RG)

{Config_TRG}.c

R_{Config_TRG}_Create
R_{Config_TRG}_Start
R_{Config_TRG}_Stop

{Config_TRG} user.c

R_{Config_TRG}_Create_Userlnit
r_{Config_TRG]} _interrupt

{Config_TRG}.h

Three -phase PWM
Output (Timer RD)

{Config_TRDO_TRD1}.c

R_{Config_ TRDO_TRD1} Create
R _{Config_TRDO_TRD1}_Start
R_{Config_ TRDO_TRD1}_Stop

R_{Config_TRDO_TRD1}_Set TRD_ReloadTrigger

{Config_TRDO_TRD1}_user.c

R_{Config_TRDO_TRD1}_Create_Userlnit
r_{Config_TRDO_TRD1}_trd0_Interrupt
r_{Config_TRDO_TRD1}_trd1_Interrupt

{Config_ TRDO_TRD1}.h

PWM option unit A
(Timer RD)

{Config_PWMOPA}.c

R_{Config_ PWMOPA}_Create
R_{Config_ PWMOPA}_Software_Release

{Config_PWMOPA}_user.c

R_{Config_ PWMOPA}_Create_Userlnit

{Config_ PWMOPA }.h

Phase counting mode

{Config_TRG}.c

R_{Config_TRG}_Create
R_{Config_TRG}_Start
R_{Config_TRG}_Stop
R_{Config_TRG}_Get_MeasurementCapture

{Config_TRG} user.c

R_{Config_TRG}_Create_Userlnit
r_{Config_TRG}_interrupt
r_{Config_TRG]}_clear_interrupt
r_{Config_TRG}_capture_interrupt

{Config_TRG}.h

Clock Output/Buzzer
Output Controller

{Config_PCLBUZn}.c

R_{Config_PCLBUZn}_Create
R_{Config_PCLBUZn}_Start
R_{Config_PCLBUZn}_Stop

{Config_PCLBUZn} user.c

R_{Config_PCLBUZn}_Create_Userlnit

{Config_PCLBUZn}.h

R20UT4852EC0107 Rev.1.07

Jan 20, 2026

RENESAS

Page 22 of 868

Smart Configurator

2. OUTPUT FILES

Table 2-14 Output File List (14/23)

Component / Folder
Name

File Name

API Function Name

Real-time Clock

{Config_RTC}.c

R_{Config_RTC} Create
R_{Config_RTC}_Start

R_{Config_RTC}_ Stop
R_{Config_RTC}_ Set HourSystem
R_{Config_RTC}_Set CounterValue
R_{Config_RTC} Get_CounterValue
R_{Config_RTC} Set ConstPeriodInterruptOn
R_{Config_RTC}_Set_ConstPeriodInterruptOff
R_{Config_RTC}_Set AlarmOn
R_{Config_RTC}_Set AlarmOff
R_{Config_RTC}_Set_AlarmValue
R_{Config_RTC}_Get_AlarmValue
R_{Config_RTC}_Set RTC1HZOn
R_{Config_RTC}_Set RTC1HZOff

{Config_RTC} user.c

R_{Config_RTC} Create_Userlnit
r_{Config_RTC} _interrupt
r_{Config_RTC}_callback_constperiod
r_{Config_RTC}_callback_alarm

{Config_RTC}.h

A/D Convertor

{Config_ADC}.c

R_{Config_ADC}_Create
R_{Config_ADC}_Start
R_{Config_ADC}_Stop
R_{Config_ADC}_Set_OperationOn
R_{Config_ADC}_Set OperationOff
R_{Config_ADC}_Set ADChannel
R_{Config_ADC}_ADSn_Set_ADChannel
R_{Config_ADC}_Set SnoozeOn
R_{Config_ADC}_Set_SnoozeOff
R_{Config_ADC}_Set TestChannel
R_{Config_ADC}_ Get_Result_10bit
R_{Config_ADC} Get_Result_8bit
R_{Config_ADC}_Get_Result_12bit
R_{Config_ADC} ADSn_Get_Result_10bit
R_{Config_ADC}_ADSn_Get_Result_8bit
R_{Config_ADC}_ADSn_Get_Result_12bit

{Config_ADC} user.c

R_{Config_ADC}_Create_Userlnit
r_{Config_ADC} _interrupt
r_{Config_ADC}_adn_interrupt

{Config_ADC}.h

R20UT4852EC0107 Rev.1.07

Jan 20, 2026

RENESAS

Page 23 of 868

Smart Configurator

2. OUTPUT FILES

Table 2-15 Output File List (15/23)

Component / Folder
Name

File Name

API Function Name

12 Bit A/D Single Scan

{Config_S12ADn}.c

R_{Config_S12ADn} Create
R_{Config_S12ADn}_Start
R_{Config_S12ADn}_Stop
R_{Config_S12ADn}_Get_ValueResult

{Config_S12ADn}_user.c

R_{Config_S12ADn} Create_Userlnit
r_{Config_S12ADn} _interrupt

{Config_S12ADn}.h

12 Bit A/D Continuous
Scan

{Config_S12ADn}.c

R_{Config_S12ADn}_Create
R_{Config_S12ADn}_Start
R_{Config_S12ADn}_Stop
R_{Config_S12ADn}_Get_ValueResult

{Config_S12ADn}_user.c

R_{Config_S12ADn}_Create_Userlnit
r_{Config_S12ADn} _interrupt

{Config_S12ADn}.h

12 Bit A/D Group Scan

{Config_S12ADn}.c

R_{Config_S12ADn}_Create
R_{Config_S12ADn}_Start
R_{Config_S12ADn}_Stop
R_{Config_S12ADn}_Get_ValueResult

{Config_S12ADn}_user.c

R_{Config_S12ADn}_Create_Userlnit
r_{Config_S12ADn} _interrupt
r_{Config_S12ADn}_groupb_interrupt

{Config_S12ADn}.h

D/A Converter

{Config_DACn}.c

R_{Config_DACn}_Create
R_{Config_DACn}_Start
R_{Config_DACn}_Stop
R_{Config_DACn}_Set_ConversionValue

{Config_DACn}_user.c

R_{Config_DACn}_Create_Userlnit

{Config_DACn}.h

Data Transfer

{Config_DTC}.c

R_{Config_DTC}_Create

Controller R_{Config_DTCDn}_Start
R_{Config_DTCDn}_Stop
{Config_DTC} user.c R_{Config_DTC} Create_Userlnit
{Config_DTC}.h -
Comparator {Config_COMPn}.c R_{Config_COMPn}_Create

R_{Config_COMPn}_Start
R_{Config_COMPn}_Stop

{Config_COMPn}_user.c

R_{Config_COMPn}_Create_Userlnit
r_{Config_COMPn}_interrupt

{Config_COMPn}.h

R20UT4852EC0107 Rev.1.07

Jan 20, 2026

RENESAS

Page 24 of 868

Smart Configurator

2. OUTPUT FILES

Table 2-16 Output File List (16/23)

Component / Folder
Name

File Name

API Function Name

Programmable Gain
Amplifier

{Config_PGA}.c

R_{Config_PGA} Create
R_{Config_PGADn}_Start
R_{Config_PGADn}_Stop

{Config_PGA} user.c

R_{Config_PGA} Create_Userlnit

{Config_PGA}.h

SPI (CSI)
Communication

{Config_CSilp}.c

R_{Config_CSlIp} Create
R_{Config_CSlp}_Start
R_{Config_CSlIp}_Stop
R_{Config_CSlp} Send
R_{Config_CSIp}_Receive
R_{Config_CSIp}_Send_Receive

{Config_CSIp} user.c

R_{Config_CSlIp} Create_Userlnit
r_{Config_CSlIp}_interrupt
r_{Config_CSlIp}_callback_sendend
r_{Config_CSlp}_callback_receiveend
r_{Config_CSlIp}_callback_error

{Config_CSlp}.h

UART Communication
(Serial array unit)

{Config_UARTQg}.c

R_{Config_UARTq}_Create
R_{Config_UARTq}_Start
R_{Config_UARTq}_Stop
R_{Config_UARTqg}_Send
R_{Config_UARTqg}_Receive
R_{Config_UARTq}_Loopback_Enable
R_{Config_UARTq}_Loopback_Disble

{Config_UARTq} user.c

R_{Config_UARTq}_Create_Userlnit
r_{Config_UARTq}_interrupt_send
r_{Config_UARTq} _interrupt_receive
r_{Config_UARTq}_interrupt_error
r_{Config_UARTq}_callback_sendend
r_{Config_UARTq}_callback_receiveend
r_{Config_UARTq}_callback_error
r_{Config_UARTq}_callback_softwareoverrun

{Config_UARTQg}.h

R20UT4852EC0107 Rev.1.07

Jan 20, 2026

RENESAS

Page 25 of 868

Smart Configurator 2. OUTPUT FILES

Table 2-17 Output File List (17/23)

UART Communication |{Config_UARTAn}.c R_{Config_UARTAn} Create
(Serial Interface R_{Config_ UARTAn}_ Start
UARTA) R_{Config_UARTAn}_ Stop

R_{Config_UARTAn} Send

R_{Config_ UARTAn} Receive
R_{Config_UARTAnN} Loopback_Enable
R_{Config_UARTAn} Loopback_Disable

{Config_UARTAnN} user.c R_{Config_UARTAn} Create_Userlnit
R_{Config_UARTAn} PollingEnd_UserCode
r_{Config_UARTAnN} interrupt_send
r_{Config_ UARTAnN} interrupt_receive
r_{Config_UARTAnN} interrupt_error
r_{Config_UARTAnN}_callback_sendend
r_{Config_UARTAR}_callback_receiveend
r_{Config_UARTAn}_callback_error

{Config_UARTAnN}.h -

UART Communication |{Config_RLIN3n}.c R_{Config_RLIN3n}_Create
(LINJUART module) R_{Config_RLIN3n}_Start
R_{Config_RLIN3n}_Stop
R_{Config_RLIN3n}_Send
R_{Config_RLIN3n}_Receive

{Config_RLIN3n}_user.c R_{Config_RLIN3n}_Create_Userlnit
r_{Config_RLIN3n}_interrupt_send
r_{Config_RLIN3n}_interrupt_receive

r_{Config_RLIN3n}_interrupt_error
r_{Config_RLIN3n}_callback_sendend
r_{Config_RLIN3n}_callback_receiveend
r_{Config_RLIN3n}_callback_error

{Config_RLIN3n}.h -

R20UT4852EC0107 Rev.1.07 RENESAS Page 26 of 868
Jan 20, 2026

Smart Configurator

2. OUTPUT FILES

Table 2-18 Output File List (18/23)

Component / Folder File Name
Name

API Function Name

DALI Communication |{Config_DALI}.c
(Control devices)

R_{Config_DALI} Create
R_{Config_DALI}_Start
R_{Config_DALI} Stop

R_{Config_DALI} SoftwareReset
R_{Config_DALI} EnableForceActiveState
R_{Config_DALI} DisableForceActiveState
R_{Config_DALI} GetStatus
R_{Config_DALI}_Send

R_{Config_DALI} GetReceiveFrame

{Config_DALI} user.c

R_{Config_DALI} Create_Userlnit
r_{Config_DALI}_interrupt_send
r_{Config_DALI}_interrupt_receive
r_{Config_DALI}_interrupt_error
r_{Config_DALI}_interrupt_falling_edge_detection
r_{Config_DALI} interrupt_power_down_detection
r_{Config_DALI}_interrupt_collision_detection
r_{Config_DALI}_interrupt_stop_bit detection
r_{Config_DALI}_callback_sendend
r_{Config_DALI}_callback_receiveend
r_{Config_DALI}_callback_error

{Config_DALI}.h

DALI Communication |{Config_DALI}.c
(Control gear)

R_{Config_DALI}_Create
R_{Config_DALI}_Start
R_{Config_DALI}_Stop
R_{Config_DALI}_SoftwareReset
R_{Config_DALI}_EnableForceActiveState
R_{Config_DALI}_DisableForceActiveState
R_{Config_DALI}_GetStatus
R_{Config_DALI}_Send
R_{Config_DALI}_GetReceiveFrame

{Config_DALI} user.c

R_{Config_DALI} Create_Userlnit
r_{Config_DALI}_interrupt_error
r_{Config_DALI}_interrupt_falling_edge_detection
r_{Config_DALI}_interrupt_power_down_detection
r_{Config_DALI} interrupt_stop_bit_detection
r_{Config_DALI}_callback_sendend
r_{Config_DALI}_callback_receiveend
r_{Config_DALI}_callback_error

{Config_DALI}.h

R20UT4852EC0107 Rev.1.07
Jan 20, 2026

RENESAS

Page 27 of 868

Smart Configurator

2. OUTPUT FILES

Table 2-19 Output File List (19/23)

Component / Folder
Name

File Name

API Function Name

IIC Communication
(Master mode) (Serial
Array Unit)

{Config_lICr}.c

R_{Config_lICr}_Create
R_{Config_lICr}_StartCondition
R_{Config_lICr}_StopCondition
R_{Config_lICr}_Stop
R_{Config_lICr}_Master_Send
R_{Config_lICr}_Master_Receive

{Config_lICr}_user.c

R_{Config_lICr}_Create_Userlnit
r_{Config_lICr}_interrupt

r_{Config_lICr}_callback_master_sendend
r_{Config_lICr}_callback_master_receiveend
r_{Config_lICr}_callback_master_error

{Config_lICr}.h

IIC Communication
(Master mode) (Serial
Interface [ICA)

{Config_lICAn}.c

R_{Config_IICAn}_Create
R_{Config_IICAn}_StopCondition
R_{Config_IICAn}_Stop
R_{Config_IICAn}_Master_Send
R_{Config_lICAn} Master_Receive
R_{Config_IICAn}_Check_Comstate
R_{Config_IICAn}_Poall
R_{Config_IICAn}_Wait_Comend
R_{Config_IICAn} Bus_Check
R_{Config_IICAn}_StartCondition
R_{Config_IICAn}_Wait_Time

{Config_lICAn}_user.c

R_{Config_IICAn}_Create_Userlnit
r_{Config_IICAn}_interrupt
r_{Config_IICAn}_master_handler

r_{Config_lICAn}_callback_master_sendend
r_{Config_IICAn}_callback_master_receiveend
r_{Config_lICAn}_callback_master_error

{Config_lICAn}.h

R20UT4852EC0107 Rev.1.07

Jan 20, 2026

RENESAS

Page 28 of 868

Smart Configurator

2. OUTPUT FILES

Table 2-20 Output File List (20/23)

Component / Folder
Name

File Name

API Function Name

[IC Communication
(Master mode,
EEPROM
communication) (Serial
Interface IICA)

{Config_lICAn}.c

R_{Config_lICAn} Create
R_{Config_lICAn}_StopCondition
R_{Config_IICAn}_Stop
R_{Config_lICAn} Master_Send
R_{Config_lICAn}_Master_Receive
R_{Config_IICAn} Check_Comstate
R_{Config_lICAn} Poll
R_{Config_IICAn}_Wait_Comend
R_{Config_IICAn} Bus_Check
R_{Config_IICAn}_StartCondition
R_{Config_IICAn}_Wait_Time

{Config_lICAn}_user.c

R_{Config_lICAn} Create_Userlnit
r_{Config_IICAn}_interrupt
r_{Config_IICAn}_master_handler
r_{Config_lICAn}_callback_master_sendend
r_{Config_IICAn}_callback_master_receiveend
r_{Config_IICAn}_callback_master_error

{Config_lICAn}.h

lc Communication
(Slave mode) (Serial
Interface [ICA)

{Config_lICAn}.c

R_{Config_IICAn}_Create
R_{Config_IICAn}_Stop
R_{Config_IICAn}_Slave_Send
R_{Config_IICAn}_Slave_Receive
R_{Config_IICAn}_Set_WakeupOn
R_{Config_lICAn}_Set_WakeupOff

{Config_lICAn} user.c

R_{Config_IICAn}_Create_Userlnit
r_{Config_IICAn}_interrupt
r_{Config_lICAn}_slave_handler
r_{Config_IICAn}_callback_slave_sendend
r_{Config_lICAn}_callback_slave_receiveend
r_{Config_IICAn}_callback_slave_error
r_{Config_lICAn}_callback_getstopcondition

{Config_lICAn}.h

Interrupt Controller

{Config_INTC}.c

R_{Config_INTC}_Create
R_{Config_INTC}_INTPn_Start
R_{Config_INTC}_INTPn_Stop

{Config_INTC} user.c

R_{Config_INTC}_Create_Userlnit
r_{Config_INTC}_intpn_interrupt

{Config_INTC}Lh

R20UT4852EC0107 Rev.1.07

Jan 20, 2026

RENESAS

Page 29 of 868

Smart Configurator

2. OUTPUT FILES

Table 2-21 Output File List (21/23)

Component / Folder
Name

File Name

API Function Name

Voltage Detector

{Config_LVDn}.c

R_{Config_LVDn} Create
R_{Config_LVDn} _Start
R_{Config_LVDn} _Stop

{Config_LVDn} user.c

R_{Config_LVDn} Create_Userlnit

{Config_LVDn}.h

Snooze Mode
Sequencer

{Config_SMS}.c

R_{Config_SMS} Create
R_{Config_SMS}_Start
R_{Config_SMS} Stop
R_{Config_SMS}_ GetStatus
R_{Config_SMS} GetReturn
R_{Config_SMS}_TriggerWait_Disable
R_{Config_SMS} TriggerWait_Enable
R_{Config_SMS} Set PowerOn
R_{Config_SMS} Set_PowerOff
R_{Config_SMS} Set Reset
R_{Config_SMS} Release_Reset

{Config_SMS} user.c

R_{Config_SMS} Create_Userlnit
r_{Config_SMS}_interrupt

{Config_SMS}.h

Key Interrupt

{Config_KR}.c

R_{Config_KR}_Create
R_{Config_KR} _Start
R_{Config_KR} _Stop

{Config_KR} user.c

R_{Config_KR}_Create_Userlnit
r_{Config_KR}_interrupt

{Config_KR}.h

Remote Control Signal
Receiver

{Config_REMC}.c

R_{Config_REMC}_Create
R_{Config_REMC} _Start
R_{Config_REMC} _Stop
R_{Config_REMC}_Read

{Config_REMC}_user.c

R_{Config_ REMC}_Create_Userlnit
r_{Config_REMC} _interrupt
r_{Config_REMC}_callback_receiveend
r_{Config_ REMC}_callback_comparematch
r_{Config_REMC}_callback_receiveerror
r_{Config_REMC}_callback_bufferfull
r_{Config_ REMC}_callback_header
r_{Config_REMC}_callback_data0
r_{Config_REMC}_callback_data1
r_{Config_ REMC}_callback_specialdata

{Config_REMC}.h

R20UT4852EC0107 Rev.1.07

Jan 20, 2026

RENESAS

Page 30 of 868

Smart Configurator

2. OUTPUT FILES

Table 2-22 Output File List (22/23)

Component / Folder File Name API Function Name
Name
Watchdog Timer {Config_WDT}.c R_{Config_ WDT}_Create

R_{Config_WDT} _Restart

{Config_WDT}_user.c

R_{Config_WDT}_Create_Userlnit
r_{Config_ WDT} _interrupt

{Config_WDT}.h

Logic and Event Link
Controller

{Config_xxx}.c

R_{Config_xxx}_Create
R_{Config_xxx}_Start
R_{Config_xxx}_Stop

{Config_xxx}_user.c

R_{Config_xxx}_Create_Userlnit
r_{Config_xxx}_interrupt

{Config_xxx}.h

Event Link Controller

{Config_ELC}.c

R_{Config_ELC} Create
R_{Config_ELC}_Stop

{Config_ELC} user.c

R_{Config_ELC} Create_Userlnit

{Config_ELC}.h

Interval Timer (8-bit
Interval Timer using 8-
bit counter mode)

{Config_ITmn}.c

R_{Config_ITmn}_Create
R_{Config_ITmn}_Start
R_{Config_ITmn}_Stop

{Config_ITmn}_user.c

R_{Config_ITmn}_Create_Userlnit
r_{Config_ITmn}_interrupt

{Config_ITmn}.h

Interval Timer (8-bit
Interval Timer using
16-bit counter mode)

{Config_ITmO0_ITm1}.c

R_{Config_ITm0_ITm1} Create
R_{Config_ITm0_ITm1}_Start
R_{Config_ITmO0_ITm1}_Stop

{Config_ITmO_ITm1}_user.c

R_{Config_ITmO0_ITm1}_Create_Userlnit
r_{Config_ITmO_ITm1}_interrupt

{Config_ITmO_ITm1}.h

LCD controller / driver

{Config_LCD}.c

R_{Config_LCD}_Create
R_{Config_LCD}_Start
R_{Config_LCD}_Stop
R_{Config_LCD} Voltage On
R_{Config_LCD}_Voltage Off
R_{Config_LCD}_ Set DisplayData

{Config_LCD}_user.c

R_{Config_LCD}_Create_Userlnit

{Config_LCD}.h

R20UT4852EC0107 Rev.1.07

Jan 20, 2026

RENESAS

Page 31 of 868

Smart Configurator

2

. OUTPUT FILES

Table 2-23 Output File List (23/23)

Component / Folder
Name

File Name

API Function Name

Oscillation Stop
Detector

{Config_OSD}.c

R_{Config_OSD} Create
R_{Config_OSD } Start
R_{Config_OSD}_Stop

{Config_OSD} user.c

R_{Config_OSD} Create_Userlnit
r_{Config_OSD} interrupt

{Config_OSD}.h

External Signal
Sampler

{Config_EXSD}.c

R_{Config_EXSD} Create
R_{Config_EXSD } Start
R_{Config_EXSD}_ Stop

{Config_EXSD}_user.c

R_{Config_EXSD} Create_Userlnit
r_{Config_EXSD} interrupt

{Config_EXSD}.h

R20UT4852EC0107 Rev.1.07

Jan 20, 2026

RENESAS

Page 32 of 868

Smart Configurator 3. INITIALIZATION

3. INITIALIZATION

This chapter describes the flow of initialization by the API functions of the Smart Configurator.

Startup function Process of blue box is
® _start (for renesas compiler) Board Support Package
® PowerON_Reset (for LLVM compiler) module.
® _ jar_program_start (for IAR compiler) Please refer to the
application note
1. Setting the stack pointer (RO1ANS522) for details.

2. Initializing stack area

bsp_init_system
1. Initializes PIOR setting
2. Initializes WDT refresh

mcu_clock_setup

1. Initializes CPU and peripheral hardware
clock settings

User’s pre process when warm start
Initializes C runtime environment

Initializing BSS

ROM data copy

|

bsp_init_hardware
Initializes callback function array

User’s post process when warm start
Initializes C runtime environment

hdwinit()
1. Initializes output pins
2. Initializes interrupt
3. Initializes peripheral modules

R_Systeminit
Initializes peripheral functions

Safety function setting

Data flash access control

Main function

R20UT4852EC0107 Rev.1.07 RENESAS Page 33 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

4. APIFUNCTIONS

This chapter describes the API functions output that are output by the Smart Configurator.

4.1 Overview

The following are the naming conventions for the API functions output by the Smart Configurator.

- Macro names
These are in all-capital letters.
Note that if a name includes a number as a prefix, the relevant number is equal to the hexadecimal value
of the macro.

- Local variable names
These are in low-case letters only.

- Global variable names
These are prefixed with “g”, and only the first letters of words that are elements of the names are capitals.

- Names of pointers to global variables
These are prefixed with “gp”, and only the first letters of words that are elements of the names are capitals.

- Names of elements in enumeration specifiers “enum”
These are in all-capital letters.

Remarks In the generated code by the Smart Configurator tool, the for statement, the while statement,
the do-while statement (loop processing) are used in register setting reflected waiting process etc.
If fail-safe processing for infinite loop is required, check the generated code and add processing.

R20UT4852EC0107 Rev.1.07 RENESAS Page 34 of 868
Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

4.2 Function Reference

This section describes the API functions output by the Smart Configurator, using the following notation format.

Figure 4.1

Notation Format of API Functions

(1)1» |

T

(3)4+— [Syntax]

(4)+— [Argument(s)]

(1{®]

Description

(5)4—[Return value]

Macro

Description

(1) Name
Indicates the name of the API function.

(2) Outline

Outlines the functions of the API function

(3) [Syntax]
Indicates the format to be used when describing an API function to be called in C language.
(4) [Argument(s)]
API function arguments are explained in the following format.

I/0 Argument Description
(a) (b) (€)
(@) 10O
Argument classification
I ... Input argument
@) ... Output argument
(b) Argument
Argument data type
(c) Description
Description of argument
(5) [Return value]
API function return value is explained in the following format.
Macro Description
(a) (b)
(a) Macro
Macro of return value
(b) Description
Description of return value
R20UT4852EC0107 Rev.1.07 RENESAS Page 35 of 868

Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

4.21 General

Below is a list of API functions output by the Smart Configurator for common use.

Table 4-1 API Functions: (1/4)

API Function Name Peripheral Description
Name
main - Main function.
R_Systeminit - Executes initialization processing that is required before controlling

various peripheral modules.

R_DTC_Set PowerOn

Data Transfer

Starts the clock supply for DTC.

R_DTC_Set_PowerOff Controller Stops the clock supply for DTC.

R_TAUm_Create Timer Array Executes initialization processing that is required before controlling
Unit TAUm (enables TAUm input clock supply and initializes TAUm module).

R_TAUm_Set_PowerOn Starts the clock supply for TAUm.

R_TAUm_Set PowerOff Stops the clock supply for TAUm.

R_TAUm_Set_Reset Sets TAUm module in reset state.

R_TAUm_Release_Reset Releases TAUmM module from reset state.

R_ITL_Create 32-Bit Interval | Executes initialization processing that is required before controlling the
Timer 32-bits IT (enables input clock supply and initializes ITLm module).

R_ITL_Start_Interrupt Starts INTITL interrupt.

R_ITL_Stop Interrupt Stops INTITL interrupt.

R_ITL_Set PowerOn Starts the clock supply for 32-bits IT.

R_ITL_Set_PowerOff Stops the clock supply for 32-bits IT.

R_ITL_Set Reset Sets 32-bits IT module in reset state.

R_ITL_Release_Reset Releases 32-bits IT module from reset state.

r_itl_interrupt Executes processing in response to 32-bit interval timer interrupt

(INTITL).
R_TRD_Create Timer RD Executes initialization processing that is required before controlling TRD

R_TRD_Set_PowerOn

R_TRD_Set PowerOff

R_TRD_Set_Reset

R_TRD_Release Reset

R_PWMOPA_Set_PowerOn

R_PWMOPA_Set_PowerOff

R_PWMOPA_ Set Reset

R_PWMOPA_Release_Reset

R_TRD_ForcedOutput_Enabl
e

R_TRD_ForcedOutput_Disab
le

(enables TRD input clock supply and initializes TRD module).

Starts the clock supply for TRD.

Stops the clock supply for TRD.

Sets TRD module in reset state.

Releases TRD module from reset state.

Starts the clock supply for PWMOPA.

Stops the clock supply for PWMOPA.

Sets PWMOPA module in reset state.

Releases PWMOPA module from reset state.

Enables TRD pulse output forced cutoff.

Disables TRD pulse output forced cutoff.

R20UT4852EC0107 Rev.1.07

Jan 20, 2026

RENESAS Page 36 of 868

Smart Configurator

4. API FUNCTIONS

Table 4-2 API Functions: (2/4)

API Function Name Peripheral Description
Name
R_TRJ_Set PowerOn Timer RJ Starts the clock supply for TRJ.
R_TRJ_Set_PowerOff Stops the clock supply for TRJ.
R_TRJ_Set Reset Sets TRJ module in reset state.
R_TRJ_Release_Reset Releases TRJ module from reset state.
R_TRG_Set_PowerOn Timer RG Starts the clock supply for TRG.
R_TRG_Set_PowerOff Stops the clock supply for TRG.
R_TRG_Set_Reset Sets TRG module in reset state.
R_TRG_Release_Reset Releases TRG module from reset state.
R_TRX_Set_PowerOn Timer RX Starts the clock supply for TRX.
R_TRX_ Set_PowerOff Stops the clock supply for TRX.
R_TRX_Set_Reset Sets TRX module in reset state.
R_TRX Release Reset Releases TRX module from reset state.
R_TKB_Create Timer KB Executes initialization processing that is required before controlling TKB
(enables TKB input clock supply and initializes TKB module).
R_TKB_Set_PowerOn Starts the clock supply for TKB.
R_TKB_Set_PowerOff Stops the clock supply for TKB.
R_TKB_Set Reset Sets TKB module in reset state.
R_TKB_Release Reset Releases TKB module from reset state.
R_RTC_Set PowerOn Realtime Starts the clock supply for RTC.
R_RTC_Set_PowerOff Clock Stops the clock supply for RTC.

R_IT_Set PowerOn

12-bit interval

R_IT_Set_PowerOff

timer

Starts the clock supply for 12-bit interval timer.

Stops the clock supply for 12-bit interval timer.

R_ADC_Set PowerOn

A/D Converter

R_ADC_Set PowerOff

R_ADC_Set_Reset

R_ADC_Release_Reset

Starts the clock supply for AD converter.

Stops the clock supply for AD converter.

Sets AD converter module in reset state.

Releases AD converter module from reset state.

R_DAC_Create D/A Converter | Executes initialization processing that is required before controlling the
DAC module (enables input clock supply and initializes DAm module).

R_DAC_Set_PowerOn Starts the clock supply for DA converter.

R_DAC_Set_PowerOff Stops the clock supply for DA converter.

R_DAC_Set Reset Sets DA converter module in reset state.

R_DAC_Release_Reset Releases DA converter module from reset state.

R_COMP_Create Comparator Executes initialization processing that is required before controlling the

R_COMP_Set_PowerOn

R_COMP_Set PowerOff

R_COMP_Set_Reset

R_COMP_Release_Reset

COMP module (enables input clock supply and initializes COMP

module).

Starts the clock supply for comparator.

Stops the clock supply for comparator.

Sets comparator module in reset state.

Releases comparator module from reset state.

R20UT4852EC0107 Rev.1.07

Jan 20, 2026

RENESAS Page 37 of 868

Smart Configurator

4. API FUNCTIONS

Table 4-3 API Functions:

(3/4)

API Function Name

Peripheral Name

Description

R_PGACOMP_Create

R_PGACOMP_Set Power
On

R_PGACOMP_Set_Power
Off

R_PGACOMP_Set_Reset

R_PGACOMP_Release Re
set

Comparator and
Programmable Gain
Amplifier

Executes initialization processing that is required
before controlling the COMP and PGA module
(enables input clock supply and initializes COMP
and PGA module).

Starts the clock supply for COMP and PGA.

Stops the clock supply for COMP and PGA.

Sets COMP and PGA module in reset state.

Releases COMP and PGA module from reset
state.

R_SAUm_Create

R_SAUm_Set_PowerOn

R_SAUm_Set PowerOff

R_SAUm_Set Reset

R_SAUm_Release_Reset

R_SAUm_Set _SnoozeOn

R_SAUm_Set _SnoozeOff

Serial Array Unit

Executes initialization processing that is required
before controlling SAUm (enables input clock

supply and initializes SAUm module).

Starts the clock supply for SAUm.

Stops the clock supply for SAUm.

Sets SAUmM module in reset state.

Releases SAUmM module from reset state.

Enables SAUm wakeup function.

Disables SAUm wakeup function.

R_UARTA_ Create

R_UARTA_Set_PowerOn

R_UARTA_Set_PowerOff

Serial Interface UARTA

Executes initialization processing that is required
before controlling UARTAO/UARTA1 (enables

input clock supply and initializes module).

Starts the clock supply for UARTAO/UARTA1.

Stops the clock supply for UARTAO/UARTA1.

R_IICAn_Set_PowerOn

R_IICAn_Set PowerOff

R_IICAn_Set_Reset

R_IICAn_Release_Reset

Serial Interface IICA

Starts the clock supply for IICAn.

Stops the clock supply for ICAn.

Sets IICAn module in reset state.

Releases IICAn module from reset state.

R_RLIN3n_Set PowerOn

R_RLIN3n_Set_PowerOff

LIN/UART module

Starts the clock supply for RLIN3n.

Stops the clock supply for RLIN3n.

R_DALI_Set PowerOn

R_DALI_Set_PowerOff

R_DALI_Set Reset

R_DALI_Release_Reset

Digital Addressable
Lighting Interface

Starts the clock supply for DALI.

Stops the clock supply for DALI.

Sets DALI module in reset state.

Releases DALI module from reset state.

R_LVD_Start_Interrupt

R_LVD_Stop_|Interrupt

r_lvd_interrupt

Voltage Detector

Starts INTLVI interrupt.

Stops INTLVI interrupt.

Executes processing in response to INTLVI

interrupt.

R_REMC_Set_PowerOn

R_REMC_Set PowerOff

R_REMC_Set_Reset

R_REMC_Release_Reset

Remote Control Signal
Receiver

Starts the clock supply for REMC.

Stops the clock supply for REMC.

Sets REMC module in reset state.

Releases REMC module from reset state.

R20UT4852EC0107 Rev.1.07

Jan 20, 2026

RENESAS

Page 38 of 868

Smart Configurator 4. API FUNCTIONS

Table 4-4 API Functions: (4/4)

API Function Name Peripheral Name Description

R _ITm_Create 8-bit interval timer Executes initialization processing that is required
before controlling ITm (enables ITm input clock
supply and initializes ITm module).

R_ITm_Set_PowerOn Starts the clock supply for ITm.

R_ITm_Set_PowerOff Stops the clock supply for ITm.

R_OSD_Set_PowerOn Oscillation Stop Starts the clock supply for OSD.

R_OSD_Set_PowerOff Detector Stops the clock supply for OSD.

R_OSD_Set_Reset Sets OSD module in reset state.

R_OSD_Release_Reset Releases OSD module from reset state.

R_EXSD_Set_PowerOn External Signal Sampler | Starts the clock supply for EXSD.

R_EXSD_Set PowerOff Stops the clock supply for EXSD.

R_EXSD_Set Reset Sets EXSD module in reset state.

R_EXSD_Release_Reset Releases EXSD module from reset state.

R20UT4852EC0107 Rev.1.07 RENESAS Page 39 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

main

This API function implements main function.

Remark When using SmartConfigurator stand-alone mode or using with CS+, please note to add the
following code manually:
1) add “#include "r_smc_entry.h"
2) add “El()” in main()

[Syntax]
void main(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 40 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_Systeminit

This API function executes initialization processing that is required before controlling various
peripheral modules.

[Syntax]
void R_Systeminit(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 41 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R _DTC_Set PowerOn

This API function starts the clock supply for DTC.

[Syntax]
void R_DTC_Set_PowerOn(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 42 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_DTC_Set PowerOff

This API function stops the clock supply for DTC.

[Syntax]
void R_DTC_Set_PowerOff(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 43 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_TAUm_Create

This API function executes initialization processing that is required before controlling TAUm (enables
TAUm input clock supply and initializes TAUm module).

Remark This API function is called from R_Systeminit before the main() function is executed.
[Syntax]
void R_TAUm_Create(void);
Remark m is the unit number.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 44 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_TAUm_Set PowerOn

This API function starts the clock supply for TAUm.

[Syntax]
void R_TAUm_ Set_PowerOn(void);

Remark m is the unit number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 45 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_TAUm_Set PowerOff

This API function stops the clock supply for TAUm.

[Syntax]
void R_TAUm_ Set_PowerOff(void);

Remark m is the unit number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 46 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_TAUm_Set Reset

This API function sets TAUmM module in reset state.

[Syntax]
void R_TAUm_ Set_Reset(void);

Remark m is the unit number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 47 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_TAUm_Release Reset

This API function releases TAUmM module from reset state.

[Syntax]
void R_TAUm_Release_Reset(void);

Remark m is the unit number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 48 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_ITL_ Create

This API function executes initialization processing that is required before controlling the 32-bits IT
(enables input clock supply and initializes ITLm module).
Remark This API function is called from R_Systeminit before the main() function is executed.

[Syntax]
void R_ITL_Create(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 49 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_ITL_Start_Interrupt

This API function starts INTITL interrupt.

Remark The 32-bit interval timer interrupt is enabled by calling this API function. For this reason, to
use 32-bit interval timer interrupt, please call this APl function together with
R_{Config_ITLOOO_ITLOO1_ITLO12_ITLO13}_Start or R _{Config_ITLn ITLm} Start or
R_{Config_ITLn}_Start.

[Syntax]
void R_ITL_Start_Interrupt(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 50 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_ITL_Stop_Interrupt

This API function stops INTITL interrupt.

[Syntax]
void R_ITL_Stop_Interrupt(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 51 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_ITL_Set PowerOn

This API function starts the clock supply for 32-bits IT.

[Syntax]
void R_ITL_Set _PowerOn(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 52 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_ITL_Set PowerOff

This API function stops the clock supply for 32-bits IT.

[Syntax]
void R_ITL_Set_PowerOff(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 53 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_ITL _Set Reset

This API function sets 32-bits IT module in reset state.

[Syntax]
void R_ITL_Set_Reset(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 54 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_ITL_Release Reset

This API function releases 32-bits IT module from reset state.

[Syntax]
void R_ITL_Release_Reset(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 55 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r_itl_interrupt

This API function executes processing in response to 32-bit interval timer interrupt (INTITL).
Remark This API function is called as the interrupt handler for compare match interrupt (INTITL),
which occur when the counter value in any of channels 0 to 3 matches the compare value.

[Syntax]
For CCRL78 toolchain:
static void __near r_itl_interrupt(void);

For LLVM toolchain:
void r_itl_interrupt(void);

For IAR toolchain:
__interrupt static void r_itl_interrupt(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 56 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_TRD_Create

This API function executes initialization processing that is required before controlling TRD (enables
TRD input clock supply and initializes TRD module).
Remark This API function is called from R_Systeminit before the main() function is executed.

[Syntax]
void R_TRD_Create(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 57 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_TRD_Set PowerOn

This API function starts the clock supply for TRD.

[Syntax]
void R_TRD_Set_PowerOn(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 58 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_TRD_Set PowerOff

This API function stops the clock supply for TRD.

[Syntax]
void R_TRD_Set_PowerOff(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 59 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_TRD_Set Reset

This API function sets TRD module in reset state.

[Syntax]
void R_TRD_Set_Reset(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 60 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_TRD_Release_Reset

This API function releases TRD module from reset state.

[Syntax]
void R_TRD_Release_Reset(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 61 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_PWMOPA_Set PowerOn

This API function starts the clock supply for PWMOPA.

[Syntax]
void R_PWMOPA_Set_PowerOn(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 62 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_PWMOPA_Set PowerOff

This API function stops the clock supply for PWMOPA.

[Syntax]
void R_PWMOPA_Set_PowerOff(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 63 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_PWMOPA_Set Reset

This API function sets PWMOPA module in reset state.

[Syntax]
void R_PWMOPA_Set_Reset(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 64 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_PWMOPA _Release Reset

This API function releases PWMOPA module from reset state.

[Syntax]
void R_PWMOPA_Release_Reset(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 65 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_TRD_ForcedOutput_Enable

This API function enables TRD pulse output forced cutoff. It can't be called during timer counter is
running. Please call it before R_{Config_ TRDn} Start() or R_{Config_ TRDO_TRD1}_Start().

[Syntax]
void R_TRD_ForcedOutput_Enable(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 66 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_TRD_ForcedOutput_Disable

This API function disables TRD pulse output forced cutoff. It can’t be called during timer counter is
running. Please call it after R_{Config_TRDn}_ Stop() or R_{Config_ TRDO_TRD1}_Stop().

[Syntax]
void R_TRD_ForcedOutput_Disable(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 67 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_TRJ_Set PowerOn

This API function starts the clock supply for TRJ.

[Syntax]
void R_TRJ_Set PowerOn(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 68 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_TRJ_Set PowerOff

This API function stops the clock supply for TRJ.

[Syntax]
void R_TRJ_Set_PowerOff(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 69 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_TRJ_Set Reset

This API function sets TRJ module in reset state.

[Syntax]
void R_TRJ_Set_Reset(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 70 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_TRJ_Release Reset

This API function releases TRJ module from reset state.

[Syntax]
void R_TRJ_Release_Reset(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 71 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_TRG_Set PowerOn

This API function starts the clock supply for TRG.

[Syntax]
void R_TRG_Set_PowerOn(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 72 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_TRG_Set PowerOff

This API function stops the clock supply for TRG.

[Syntax]
void R_TRG_Set_PowerOff(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 73 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_TRG_Set Reset

This API function sets TRG module in reset state.

[Syntax]
void R_TRG_Set_Reset(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 74 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_TRG_Release_Reset

This API function releases TRG module from reset state.

[Syntax]
void R_TRG_Release_Reset(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 75 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_TRX_Set PowerOn

This API function starts the clock supply for TRX.

[Syntax]
void R_TRX_Set_PowerOn(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 76 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_TRX_ Set PowerOff

This API function stops the clock supply for TRX.

[Syntax]
void R_TRX_Set_PowerOff(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 77 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_TRX_ Set Reset

This API function sets TRX module in reset state.

[Syntax]
void R_TRX_Set_Reset(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 78 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_TRX Release Reset

This API function releases TRX module from reset state.

[Syntax]
void R_TRX_Release_Reset(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 79 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_TKB_Create

This API function executes initialization processing that is required before controlling TKB (enables
TKB input clock supply and initializes TKB module).
Remark This API function is called from R_Systeminit before the main() function is executed.

[Syntax]
void R_TKB_Create(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 80 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_TKB_Set PowerOn

This API function starts the clock supply for TKB.

[Syntax]
void R_TKB_Set PowerOn(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 81 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_TKB_Set PowerOff

This API function stops the clock supply for TKB.

[Syntax]
void R_TKB_Set PowerOff(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 82 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_TKB_Set Reset

This API function sets TKB module in reset state.

[Syntax]
void R_TKB_Set Reset(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 83 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_TKB_Release_Reset

This API function releases TKB module from reset state.

[Syntax]
void R_TKB_Release_Reset(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 84 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_RTC_Set PowerOn

This API function starts the clock supply for RTC.

[Syntax]
void R_RTC_Set_PowerOn(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 85 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_RTC_Set PowerOff

This API function stops the clock supply for RTC.

[Syntax]
void R_RTC_Set_PowerOff(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 86 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_IT_Set PowerOn

This API function starts the clock supply for 12-bit interval timer.

[Syntax]
void R_IT_Set PowerOn(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 87 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_IT_Set PowerOff

This API function stops the clock supply for 12-bit interval timer.

[Syntax]
void R_IT_Set PowerOff(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 88 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_ADC_Set PowerOn

This API function starts the clock supply for AD converter.

[Syntax]
void R_ADC_Set_PowerOn(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 89 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_ADC_Set PowerOff

This API function stops the clock supply for AD converter.

[Syntax]
void R_ADC_Set_PowerOff(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 90 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_ADC_Set Reset

This API function sets AD converter module in reset state.

[Syntax]
void R_ADC_Set_Reset(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 91 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_ADC_Release_ Reset

This API function releases AD converter module from reset state.

[Syntax]
void R_ADC_Release_Reset(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 92 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_DAC_Create

This API function executes initialization processing that is required before controlling the DAC module
(enables input clock supply and initializes DAm module).
Remark This API function is called from R_Systeminit before the main() function is executed.

[Syntax]
void R_DAC_Create(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 93 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_DAC_Set PowerOn

This API function starts the clock supply for DA converter.

[Syntax]
void R_DAC_Set_PowerOn(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 94 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_DAC_Set PowerOff

This API function stops the clock supply for DA converter.

[Syntax]
void R_DAC_Set_PowerOff(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 95 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_DAC_Set Reset

This API function sets DA converter module in reset state.

[Syntax]
void R_DAC_Set_Reset(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 96 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_DAC_Release_Reset

This API function releases DA converter module from reset state.

[Syntax]
void R_DAC_Release_Reset(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 97 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_COMP_Create

This API function executes initialization processing that is required before controlling the comparator
module (enables input clock supply and initializes COMPm module).
Remark This API function is called from R_Systeminit before the main() function is executed.

[Syntax]
void R_COMP_Create(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 98 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_COMP_Set PowerOn

This API function starts the clock supply for comparator.

[Syntax]
void R_COMP_Set_PowerOn(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 99 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_COMP_Set PowerOff

This API function stops the clock supply for comparator.

[Syntax]
void R_COMP_Set_PowerOff(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 100 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_COMP_Set Reset

This API function sets comparator module in reset state.

[Syntax]
void R_COMP_Set_Reset(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 101 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_COMP_Release Reset

This API function releases comparator module from reset state.

[Syntax]
void R_COMP_Release_Reset(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 102 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_PGACOMP_Create

This API function executes initialization processing that is required before controlling the comparator
module (enables input clock supply and initializes COMPm module) and PGA module.
Remark This API function is called from R_Systeminit before the main() function is executed.

[Syntax]
void R_PGACOMP_Create(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 103 of 868
Jan 20, 2026

file:///C:/Users/zhao-fei/Downloads/devassist1_3/r20ut4852ec0102-rl78scapi.docx%23_R_Systeminit_1

Smart Configurator 4. API FUNCTIONS

R_PGACOMP_Set PowerOn

This API function starts the clock supply for comparator module and PGA module.

[Syntax]
void R_PGACOMP_Set_PowerOn(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 104 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_PGACOMP_Set PowerOff

This API function stops the clock supply for comparator module and PGA module.

[Syntax]
void R_PGACOMP_Set_PowerOff(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 105 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_PGACOMP_Set Reset

This API function sets comparator module and PGA module in reset state.

[Syntax]
void R_PGACOMP_Set_Reset(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 106 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_PGACOMP_Release_Reset

This API function releases comparator module and PGA module from reset state.

[Syntax]
void R_PGACOMP_Release_Reset(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 107 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_SAUm_Create

This API function executes initialization processing that is required before controlling SAUm (enables
input clock supply and initializes SAUm module).

Remark This API function is called from R_Systeminit before the main() function is executed.
[Syntax]
void R_SAUm_Create(void);
Remark m is the unit number.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 108 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_SAUm_Set PowerOn

This API function starts the clock supply for SAUm.

[Syntax]
void R_SAUm_Set_PowerOn(void);

Remark m is the unit number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 109 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_SAUm_Set PowerOff

This API function stops the clock supply for SAUm.

[Syntax]
void R_SAUm_Set PowerOff(void);

Remark m is the unit number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 110 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_SAUm_Set Reset

This API function sets SAUmM module in reset state.

[Syntax]
void R_SAUm_Set_Reset(void);

Remark m is the unit number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 111 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_SAUm_Release Reset

This API function releases SAUmM module from reset state.

[Syntax]
void R_SAUm_Release_Reset(void);

Remark m is the unit number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 112 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_SAUm_Set _SnoozeOn

This API function enables SAUmM wakeup function.

[Syntax]
void R_SAUm_Set_SnoozeOn(void);

Remark m is the unit number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 113 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_SAUm_Set _SnoozeOff

This API function disables SAUmM wakeup function.

[Syntax]
void R_SAUm_Set_SnoozeOff(void);

Remark m is the unit number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 114 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_UARTA_Create

This API function executes initialization processing that is required before controling UARTAO/UARTA1
(enables input clock supply and initializes module).
Remark This API function is called from R_Systeminit before the main() function is executed.

[Syntax]
void R_UARTA_Create(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 115 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_UARTA_Set PowerOn

This API function starts the clock supply for UARTAO/UARTAA1.

[Syntax]
void R_UARTA_Set_PowerOn(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 116 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_UARTA_Set PowerOff

This API function stops the clock supply for UARTAO/UARTA1.

[Syntax]
void R_UARTA_Set_PowerOff(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 117 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_IICAn_Set PowerOn

This API function starts the clock supply for [ICAn.

[Syntax]
void R_IICAn_Set_PowerOn(void);

Remark n is the unit number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 118 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_IICAn_Set PowerOff

This API function stops the clock supply for ICAn.

[Syntax]
void R_IICAn_Set_PowerOff(void);

Remark n is the unit number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 119 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_IICAn_Set Reset

This API function sets IICAn module in reset state.

[Syntax]
void R_IICAn_Set_Reset(void);

Remark n is the unit number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 120 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_IICAn_Release Reset

This API function releases IICAn module from reset state.

[Syntax]
void R_IICAn_Release_Reset(void);

Remark n is the unit number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 121 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_RLIN3n_Set PowerOn

This API function starts the clock supply for RLIN3n.

[Syntax]
void R_RLIN3n_Set_PowerOn(void);

Remark n is the unit number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 122 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_RLIN3n_Set PowerOff

This API function stops the clock supply for RLIN3n.

[Syntax]
void R_RLIN3n_Set_PowerOff(void);

Remark n is the unit number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 123 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_DALI_Set PowerOn

This API function starts the clock supply for DALI.

[Syntax]
void R_DALI_Set PowerOn(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 124 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_DALI_Set PowerOff

This API function stops the clock supply for DALI.

[Syntax]
void R_DALI_Set PowerOff(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 125 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_DALI_Set Reset

This API function sets DALI module in reset state.

[Syntax]
void R_DALI_Set Reset(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 126 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_DALI_Release_Reset

This API function releases DALI module from reset state.

[Syntax]
void R_DALI_Release_Reset(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 127 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_LVD_Start_Interrupt

This API function starts INTLVI interrupt.

[Syntax]
void R_LVD_Start_Interrupt(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 128 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_LVD_Stop_Interrupt

This API function stops INTLVI interrupt.

[Syntax]
void R_LVD_Stop_Interrupt(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 129 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r_lvd_interrupt

This API function executes processing in response to INTLVI interrupt.

[Syntax]
For CCRL78 toolchain:
static void __near r_lvd_interrupt(void);

For LLVM toolchain:
void r_lvd_interrupt(void);

For IAR toolchain:
__interrupt static void r_lvd_interrupt(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 130 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_REMC_Set PowerOn

This API function starts the clock supply for REMC.

[Syntax]
void R_REMC_Set_PowerOn(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 131 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_REMC_Set_PowerOff

This API function stops the clock supply for REMC.

[Syntax]
void R_REMC_Set_PowerOff(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 132 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_REMC_Set Reset

This API function sets REMC module in reset state.

[Syntax]
void R_REMC_Set_Reset(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 133 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_REMC_Release Reset

This API function releases REMC module from reset state.

[Syntax]
void R_REMC_Release_Reset(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 134 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_ITm_Create

This API function executes initialization processing that is required before controlling ITm (enables ITm
input clock supply and initializes ITm module).

Remark This API function is called from R_Systeminit before the main() function is executed.
[Syntax]
void R_ITm_Create(void);
Remark m is the unit number.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 135 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R _ITm_Set PowerOn

This API function starts the clock supply for [Tm.

[Syntax]
void R_ITm_ Set_PowerOn(void);

Remark m is the unit number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 136 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_ITm_Set PowerOff

This API function stops the clock supply for ITm.

[Syntax]
void R_ITm_ Set_PowerOff(void);

Remark m is the unit number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 137 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_OSD_Set PowerOn

This API function starts the clock supply for oscillation stop detector.

[Syntax]
void R_OSD_Set_PowerOn(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 138 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_OSD_Set PowerOff

This API function stops the clock supply for oscillation stop detector.

[Syntax]
void R_OSD_Set_PowerOff(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 139 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_OSD_Set Reset

This API function sets oscillation stop detector module in reset state.

[Syntax]
void R_OSD_Set_Reset(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 140 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_OSD_Release Reset

This API function releases oscillation stop detector module from reset state.

[Syntax]
void R_OSD_Release_Reset(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 141 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_EXSD_Set PowerOn

This API function starts the clock supply for external signal sampler.

[Syntax]
void R_EXSD_Set_PowerOn(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 142 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_EXSD_Set PowerOff

This API function stops the clock supply for external signal sampler.

[Syntax]
void R_EXSD_Set_PowerOff(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 143 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_EXSD_Set Reset

This API function sets external signal sampler module in reset state.

[Syntax]
void R_EXSD_Set Reset(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 144 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_EXSD_Release Reset

This API function releases external signal sampler module from reset state.

[Syntax]
void R_EXSD_Release_Reset(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 145 of 868
Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

Usage example

This is an example for using R_Xxxx_Set_PowerOn(), R_ Xxxx_Set_PowerOff(), R_ Xxxx_Set_Reset(), R_
Xxxx_Release_Reset(), R_ Xxxx_Start_Interrupt(), R_ Xxxx_Stop_Interrupt():
(Xxxx is peripheral name which user want to use, the following sample code takes 32-bit Interval Timer(ITL) as

an example)

(Blue code is user code.)
main.c

{

#include "r_smc_entry.h"
void main(void);

void main(void)

/I To enable interrupt
El();

/I To enable INTITL interrupt which is shared among ITL each channels
R_ITL_Start_Initerrupt();

/I To enable ITL each channels
R_Config_ITLO0O0_Start();
R_Config_ITL0O01_Start();

/I To disable ITL each channels
R_Config_ITLO00_Stop();
R_Config_ITLO01_Stop();

/l To Disable INTITL interrupt which is shared among ITL each channels
R_ITL_Stop_Initerrupt();

/I When ITL is stopped, to reduce the power consumption and noise
R_Config_ ITL_Set PowerOff();

/I To use ITL again, supplies input clock.
R_Config_ITL_Set PowerOn();

/I To set ITL in the reset state
R_ITL_Set_Reset();

/I To use ITL again, release ITL from the reset state
R_ITL_ Release_Reset();

/I To use ITL again, execute initialization processing
R_ITL_Create();

/I To use ITL again, enable ITL each channels
R_Config_ITLO00_Start();

/I To use ITL again, disable ITL each channels
R_Config_ITLO0O0_Stop();

R20UT4852EC0107 Rev.1.07 RENESAS
Jan 20, 2026

Page 146 of 868

Smart Configurator

4. API FUNCTIONS

4.2.2 Port

Below is a list of API functions output by the Smart Configurator for port use.

Table 4-5 API Functions:

API Function Name

Peripheral Name

Description

R_{Config_PORT}_Create

R_{Config_PORT}_ReadPmnValues

R_{Config_PORT}_ReadDigitalOutputLevel

R_{Config_PORT}_Create_Userlnit

1/0 Port

Executes initialization processing that is required
before controlling the 1/O ports.

Specifies the value in the output latch for a port is

read when the pin is in output mode.

Specifies the output level on a port pin is read when
the pin is in output mode.

Executes user-specific initialization processing for
the 1/O ports.

R20UT4852EC0107 Rev.1.07
Jan 20, 2026

RENESAS Page 147 of 868

Smart Configurator 4. API FUNCTIONS

R_Config_ PORT_Create

This API function executes initialization processing that is required before controlling the I/O ports.
Remark This API function is called from R_Systeminit before the main() function is executed.

[Syntax]
void R_{Config_PORT}_Create(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 148 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_PORT} ReadPmnValues

This API function specifies the value in the output latch for a port is read when the pin is in output mode.

[Syntax]
void R_{Config_PORT} _ReadPmnValues(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 149 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_PORT} ReadDigitalOutputLevel

This API function specifies the output level on a port pin is read when the pin is in output mode.

[Syntax]
void R_{Config_PORT}_ReadDigitalOutputLevel(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 150 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_Config PORT_Create_Userlnit

This API function executes user-specific initialization processing for the port I/O.
Remark This API functions is called as the R_{Config_ PORT} Create callback routine.

[Syntax]
void R_{Config_PORT}_Create_Userlnit(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 151 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

Usage example

This is an example for setting the output level on a port pin is read when the pin is in output mode:
(Blue code is user code.)
main.c

#include "r_smc_entry.h"

void main(void);

void main(void)

{
El(); /lto enable interrupt
/[To read the output level on a port pin in output mode
R_Config PORT__ ReadDigitalOutputLevel ();
!
R20UT4852EC0107 Rev.1.07 RENESAS Page 152 of 868

Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

4.2.3 Delay Counter

Below is a list of API functions output by the Smart Configurator for delay counter use.

Table 4-6 API Functions:

API Function Name

Peripheral Name

Description

R_{Config_TAUm_n}_Create

R_{Config_TAUm_n}_Start

R_{Config_TAUm_n}_Stop

R_{Config_TAUm_n} Lower8bits_Start

R_{Config_TAUm_n} Lower8bits_Stop

R_{Config_ TAUmM_n} Set SoftwareTriggerOn

R_{Config_TAUm_n} Create_Userlnit

r_{Config_TAUm_n}_interrupt

Timer Array Unit

Executes initialization processing that is required
before controlling the TAUm channeln module

in delay counter mode.

Starts the TAUm channeln counter.

Stops the TAUm channeln counter.

Starts the TAUm channeln lower 8 bits counter.

Stops the TAUm channeln lower 8 bits counter.

Generates software trigger.

Executes user-specific initialization processing
for the TAUm channeln

Executes processing in response to end of
timer channeln count end interrupt (INTTMmn).

R20UT4852EC0107 Rev.1.07
Jan 20, 2026

RENESAS

Page 153 of 868

Smart Configurator 4. API FUNCTIONS

R _{Config_ TAUmM _n} Create

This API function executes initialization processing that is required before controlling the TAUm channeln
module in delay counter mode.

Remark This API function is called from R_TAUm_Create.

[Syntax]
void R_{Config_ TAUmM n} Create(void);

Remark m is the unit number, n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 154 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ TAUm n} Start

This API function starts the TAUm channeln counter.

[Syntax]
void R_{Config_TAUm_n}_Start(void);

Remark m is the unit number, n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 155 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_TAUm_n} Stop

This API function stops the TAUm channeln counter.

[Syntax]
void R_{Config_TAUm_n}_Stop(void);

Remark m is the unit number, n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 156 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_TAUm_n} Lower8bits_Start

This API function starts the TAUm channeln lower 8 bits counter.

[Syntax]
void R_{Config_TAUm_n} Lower8bits_Start(void);

Remark m is the unit number, n is the channel number 1 or 3.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 157 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R _{Config_TAUm _n} Lower8bits_Stop

This API function stops the TAUm channeln lower 8 bits counter.

[Syntax]
void R_{Config_TAUm_n} Lower8bits_Stop(void);

Remark m is the unit number, n is the channel number 1 or 3.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 158 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R _{Config_ TAUmM n} Set SoftwareTriggerOn

Generates software trigger.

[Syntax]
void R_{Config_TAUm_n}_Set_SoftwareTriggerOn(void);

Remark m is the unit number, n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 159 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ TAUm_n} Create_Userlnit

This API function executes user-specific initialization processing for the TAUm channeln.

Remark This API functions is called from R_{Config_ TAUm_n} Create as a callback routine.
[Syntax]
void R_{Config_TAUm_n} Create_Userlnit(void);
Remark m is the unit number, n is the channel number.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 160 of 868
Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

r {Config_ TAUm_n} interrupt

This API function executes processing in response to end of timer channelmn count end interrupt

(INTTMmn).

Remark This API function is called as the interrupt handler for count end interrupt (INTTMmn), which

occur when the current counter value (TCRmn) reaches 0000H.

[Syntax]
For CCRL78 toolchain:

static void __near r {Config_ TAUmM n} interrupt(void);

For LLVM toolchain:

void r_{Config_TAUm_n}_interrupt(void);

For IAR toolchain:

__interrupt static void r_{Config_TAUm_n}_interrupt(void);

Remark m is the unit number, n is the channel number.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07
Jan 20, 2026

RENESAS

Page 161 of 868

Smart Configurator 4. API FUNCTIONS

Usage example

This is an example for using TAU channel 0 counting as delay counter mode and channel 1 counting as 8-bit
delay counter for a user-defined period:
(Blue code is user code.)

main.c

#include "r_smc_entry.h"
extern uint8_t ch0_run_count;
extern uint8_t ch1_run_count;
void main(void);
void main(void)
{
El(); /[To enable interrupt
R_Config_TAUO_0_Start(); /ITAUOO operation enable
R_Config TAUO 0 Set SoftwareTriggerOn(); [Ito set TSOO0 to 1 by software
while (chO_run_count < 20)
/[To set TS00 to 1 by software at each timer interrupt generation
R_Config_TAUO_O0_Set_SoftwareTriggerOn();
}
R_Config_TAUO_0_Stop(); /ITAUOO operation disable
R_Config_TAUO_1_Lower8bits_Start(); /ITAUO1 operation enable
R _Config TAUO_1_Set SoftwareTriggerOn(); /lto set TSO1 to 1 by software
while (ch1_run_count < 20)
/[To set TSO1 to 1 by software at each timer interrupt generation
R _Config TAUO_1_Set SoftwareTriggerOn();
}
R_Config_TAUO_1_Lower8bits_Stop(); /ITAUO1 operation disable
}

Config_TAUO_O_user.c
[* Start user code for global. Do not edit comment generated here */
uint8_t chO_run_count;
/* End user code. Do not edit comment generated here */

static void __near r_Config_TAUO_O_interrupt (void)

/* Start user code for r_Config_ TAUO_O_interrupt. Do not edit comment generated here */
chQ_run_count ++; /lto count the number of times the interrupt handler is entered
/* End user code. Do not edit comment generated here */

Config_TAUO_1_user.c
[* Start user code for global. Do not edit comment generated here */
uint8 tch1 _run_count;
/* End user code. Do not edit comment generated here */

static void __near r_Config_TAUO_1_interrupt (void)

[* Start user code for r_Config TAUO_1_interrupt. Do not edit comment generated here */
ch1_run_count ++; /Ito count the number of times the interrupt handler is entered
/* End user code. Do not edit comment generated here */

R20UT4852EC0107 Rev.1.07 RENESAS Page 162 of 868
Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

4.2.4 Divider Function

Below is a list of API functions output by the Smart Configurator for divider function use.

Table 4-7 API Functions:

API Function Name

Peripheral Name

Description

R_{Config_TAUm_n}_Create

R_{Config_TAUm_n}_Start

R_{Config_TAUm_n}_Stop

R_{Config_ TAUm_n} Create_Userlnit

r_{Config_ TAUm_n} interrupt

Timer Array Unit

Executes initialization processing that is required
before controlling the TAUm channeln module in

divider function mode.

Starts the TAUm channeln counter.

Stops the TAUm channeln counter.

Executes user-specific initialization processing for the
TAUm channel.

Executes processing in response to end of timer
channeln count end interrupt (INTTMmn).

R20UT4852EC0107 Rev.1.07
Jan 20, 2026

RENESAS Page 163 of 868

Smart Configurator 4. API FUNCTIONS

R _{Config_ TAUmM _n} Create

This API function executes initialization processing that is required before controlling the TAUm channeln
module in divider function mode.

Remark This API function is called from R_TAUm_Create.

[Syntax]
void R_{Config_ TAUmM n} Create(void);

Remark m is the unit number, n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 164 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ TAUm n} Start

This API function starts the TAUm channeln counter.

[Syntax]
void R_{Config_TAUm_n}_Start(void);

Remark m is the unit number, n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 165 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_TAUm_n} Stop

This API function stops the TAUm channeln counter.

[Syntax]
void R_{Config_TAUm_n}_Stop(void);

Remark m is the unit number, n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 166 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ TAUm_n} Create_Userlnit

This API function executes user-specific initialization processing for the TAUm channeln.

Remark This API functions is called from R_{Config_ TAUm_n} Create as a callback routine.
[Syntax]
void R_{Config_TAUm_n} Create_Userlnit(void);
Remark m is the unit number, n is the channel number.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 167 of 868
Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

r {Config_ TAUm_n} interrupt

This API function executes processing in response to end of timer channelmn count end interrupt

(INTTMmn).

Remark This API function is called as the interrupt handler for count end interrupt (INTTMmn), which

occur when the current counter value (TCRmn) reaches 0000H.

[Syntax]
For CCRL78 toolchain:

static void __near r_{Config_TAUm_n}_interrupt(void);

For LLVM toolchain:

void r_{Config_ TAUmM_n} _interrupt(void);

For IAR toolchain:

‘ __interrupt static void r_{Config_ TAUm_n} _interrupt(void);

Remark m is the unit number, n is the channel number.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS
Jan 20, 2026

Page 168 of 868

Smart Configurator 4. API FUNCTIONS

Usage example

This is an example for using TAU channel 0 counting as divider mode for a user-defined period:
(Blue code is user code.)
main.c

#include "r_smc_entry.h"
extern uint8_t chO_run_count;

void main(void);

void main(void)

{
El(); /lto enable interrupt
R_Config_ TAUO_0_Start(); //TAUOO operation enable
while(ch0_run_count < 20); //wait until chO_run_count reaches or exceeds 20, exit the loop
R_Config_TAUO_O0_Stop(); //TAUOO operation disable
}

Config_TAUO_O_user.c
[* Start user code for global. Do not edit comment generated here */
uint8_t chO_run_count;
/* End user code. Do not edit comment generated here */

static void __near r_Config_TAUO_O_interrupt (void)

[* Start user code for r_Config_ TAUO_O _interrupt. Do not edit comment generated here */
ch0_run_count ++; /lto count the number of times the interrupt handler is entered
/* End user code. Do not edit comment generated here */

R20UT4852EC0107 Rev.1.07 RENESAS Page 169 of 868
Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

4.2.5 External Event Counter (Timer Array Unit)

Below is a list of API functions output by the Smart Configurator for external event counter use.

Table 4-8 API Functions:

API Function Name

Peripheral Name

Description

R_{Config_TAUm_n}_Create

R_{Config_TAUm_n}_Start

R_{Config_TAUm_n}_Stop

R_{Config_ TAUm_n} Lower8bits_Start

R_{Config_TAUm_n} Lower8bits_Stop

R_{Config_ TAUmM_n} Create_Userlnit

r_{Config_ TAUm_n} interrupt

Timer Array Unit

Executes initialization processing that is required
before controlling the TAUm channeln module in
external event counter mode.

Starts the TAUm channeln counter.

Stops the TAUm channeln counter.

Starts the TAUm channeln lower 8 bits counter.

Stops the TAUm channeln lower 8 bits counter.

Executes user-specific initialization processing for
the TAUm channeln.

Executes processing in response to end of timer
channeln count end interrupt (INTTMmn).

R20UT4852EC0107 Rev.1.07
Jan 20, 2026

RENESAS Page 170 of 868

Smart Configurator 4. API FUNCTIONS

R _{Config_ TAUmM _n} Create

This API function executes initialization processing that is required before controlling the TAUm channeln
module in external event counter mode.

Remark This API function is called from R_TAUm_Create.

[Syntax]
void R_{Config_ TAUmM n} Create(void);

Remark m is the unit number, n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 171 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ TAUm n} Start

This API function starts the TAUm channeln counter.

[Syntax]
void R_{Config_TAUm_n}_Start(void);

Remark m is the unit number, n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 172 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_TAUm_n} Stop

This API function stops the TAUm channeln counter.

[Syntax]
void R_{Config_TAUm_n}_Stop(void);

Remark m is the unit number, n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 173 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_TAUm_n} Lower8bits_Start

This API function starts the TAUm channeln lower 8 bits counter.

[Syntax]
void R_{Config_TAUm_n} Lower8bits_Start(void);

Remark m is the unit number, n is the channel number 1 or 3.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 174 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R _{Config_TAUm _n} Lower8bits_Stop

This API function stops the TAUm channeln lower 8 bits counter.

[Syntax]
void R_{Config_TAUm_n} Lower8bits_Stop(void);

Remark m is the unit number, n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 175 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ TAUm_n} Create_Userlnit

This API function executes user-specific initialization processing for the TAUm channeln.

Remark This API functions is called from R_{Config_ TAUm_n} Create as a callback routine.
[Syntax]
void R_{Config_TAUm_n} Create_Userlnit(void);
Remark m is the unit number, n is the channel number.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 176 of 868
Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

r {Config_ TAUm_n} interrupt

This API function executes processing in response to end of timer channelmn count end interrupt

(INTTMmn).

Remark This API function is called as the interrupt handler for count end interrupt (INTTMmn), which

occur when the current counter value (TCRmn) reaches 0000H.

[Syntax]
For CCRL78 toolchain:

static void __near r {Config_ TAUmM n} interrupt(void);

For LLVM toolchain:

void r_{Config_TAUm_n}_interrupt(void);

For IAR toolchain:

__interrupt static void r_{Config_TAUm_n} _interrupt(void);

Remark m is the unit number, n is the channel number.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07
Jan 20, 2026

RENESAS

Page 177 of 868

Smart Configurator 4. API FUNCTIONS

Usage example

This is an example for using TAU channel 0 counting as external event counter and channel 1 counting as 8-bit
external event counter for a user-defined period:
(Blue code is user code.)

main.c

#include "r_smc_entry.h"
extern uint8_t ch0_run_count;
extern uint8_t ch1_run_count;

void main(void);

void main(void)

{
EI(); /lto enable interrupt
R_Config_TAUO_O0_Start(); //TAUOO operation enable
while (chO_run_count < 20); //wait until chO_run_count reaches or exceeds 20, exit the loop
R_Config_TAUO_O0_Stop(); //TAUOO operation disable
R_Config_TAUO_1_Lower8bits_Start(); //TAUO1 operation enable
while (ch1_run_count < 20); //wait until ch1_run_count reaches or exceeds 20, exit the loop
R_Config_TAUO_1_Lower8bits_Stop(); //TAUO1 operation disable

}

Config_ TAUO_O_user.c
[* Start user code for global. Do not edit comment generated here */

uint8_t chO_run_count;
/* End user code. Do not edit comment generated here */

static void __near r_Config_TAUO_O_interrupt (void)

/* Start user code for r_Config_ TAUO_O0_interrupt. Do not edit comment generated here */
chQ_run_count ++; /lto count the number of times the interrupt handler is entered
/* End user code. Do not edit comment generated here */

Config_ TAUO_1_user.c
[* Start user code for global. Do not edit comment generated here */

uint8 t ch1_run_count;
/* End user code. Do not edit comment generated here */

static void __near r_Config_TAUO_1_interrupt (void)

[* Start user code for r_Config TAUO_1_interrupt. Do not edit comment generated here */
ch1_run_count ++; /lto count the number of times the interrupt handler is entered
/* End user code. Do not edit comment generated here */

R20UT4852EC0107 Rev.1.07 RENESAS Page 178 of 868
Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

4.2.6 External Event Counter (Timer RJ)

Below is a list of API functions output by the Smart Configurator for external event counter (input to the TRJIOn

pin) use.

Table 4-9 API Functions:

API Function Name Peripheral Name Description

R_{Config_TRJn} Create Timer RJn Executes initialization processing that is required
before controlling the Timer RJn module in external
event counter mode.

R_{Config_TRJn}_Start Starts the TRJn counter.

R_{Config_TRJn} Stop Stops the TRJn counter.

R_{Config_TRJn} Create_Userlnit Executes user-specific initialization processing for
the TRJn.

r_{Config_TRJn}_ interrupt Executes processing in response to the interrupt
(INTTRJn) when TRJn counter underflows.

R20UT4852EC0107 Rev.1.07 :{EN ESNS Page 179 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_TRJn} Create

This API function executes initialization processing that is required before controlling the TRJn module in
external event counter mode.

Remark This API function is called from R_Systeminit before the main() function is executed.
[Syntax]
void R_{Config_TRJn}_Create(void);
Remark n is the channel number.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 180 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_TRJn}_ Start

This API function starts the TRJn counter.

[Syntax]
void R_{Config_TRJn}_Start(void);

Remark n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 181 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_TRJn} Stop

This API function stops the TRJn counter.

[Syntax]
void R_{Config_TRJn}_Stop(void);

Remark n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 182 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_TRJn} Create_Userlnit

This API function executes user-specific initialization processing for the TRJn.

Remark This API functions is called from R_{Config_TRJn} Create as a callback routine.
[Syntax]
void R_{Config_TRJn}_Create_Userlnit(void);
Remark n is the channel number.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 183 of 868
Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

r {Config_TRJn}_interrupt

This API function executes processing in response to to the interrupt (INTTRJn) when TRJn counter

underflows..

Remark This API function is called as the interrupt handler for TRJn interrupts (INTTRJn), which

occur when the counter underflows.

[Syntax]
For CCRL78 toolchain:

static void __near r {Config_TRJn}_interrupt(void);

For LLVM toolchain:

void r_{Config_TRJn}_interrupt(void);

For IAR toolchain:

__interrupt static void r_{Config_TRJn}_interrupt(void);

Remark n is the channel number.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS
Jan 20, 2026

Page 184 of 868

Smart Configurator 4. API FUNCTIONS

Usage example

This is an example for using TRJO counting as external event counter for a user-defined period:
(Blue code is user code.)
main.c

#include "r_smc_entry.h"
extern uint8_t chO_run_count;

void main(void);

void main(void)

{
EI(); /lto enable interrupt
R_Config TRJO_Start(); /ITRJO operation enable
while (ch0_run_count < 20); /Iwait until chO_run_count reaches or exceeds 20, exit the loop
R_Config_ TRJO_Stop(); /ITRJO operation disable
}

Config_ TRJO user.c
[* Start user code for global. Do not edit comment generated here */
uint8_t chO_run_count;
/* End user code. Do not edit comment generated here */

static void __near r_Config_TRJO0_interrupt (void)

[* Start user code for r_Config TRJO_interrupt. Do not edit comment generated here */
ch0_run_count ++; /Ito count the number of times the interrupt handler is entered
/* End user code. Do not edit comment generated here */

R20UT4852EC0107 Rev.1.07 RENESAS Page 185 of 868
Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

4.2.7 Input Pulse High-/Low-Level Width Measurement (Timer Array Unit)

Below is a list of API functions output by the Smart Configurator for input pulse high-/low-level width

measurement use.

Table 4-10 API Functions:

API Function Name

Peripheral Name

Description

R_{Config_TAUm_n} Create

R_{Config_TAUm_n}_Start

R_{Config_TAUm_n}_Stop

R_{Config_TAUmM_n}_Get_PulseWidth

R_{Config_ TAUmM_n} Create_Userlnit

r_{Config_ TAUm_n} interrupt

Timer Array Unit

Executes initialization processing that is required before
controlling the TAUm channeln module in input pulse

high-/low-level width measurement mode.

Starts the TAUm channeln counter.

Stops the TAUm channeln counter.

Measures TAUm channeln input pulse width.

Executes user-specific initialization processing for the
TAUm channeln.

Executes processing in response to timer channeln

capture interrupt (INTTMmn).

R20UT4852EC0107 Rev.1.07
Jan 20, 2026

RENESAS Page 186 of 868

Smart Configurator 4. API FUNCTIONS

R _{Config_ TAUmM _n} Create

This API function executes initialization processing that is required before controlling the TAUm channeln
module in input pulse high-/low-level width measurement mode.

Remark This API function is called from R_TAUm_Create.

[Syntax]
void R_{Config_ TAUmM n} Create(void);

Remark m is the unit number, n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 187 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ TAUm n} Start

This API function starts the TAUm channeln counter.

[Syntax]
void R_{Config_TAUm_n}_Start(void);

Remark m is the unit number, n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 188 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_TAUm_n} Stop

This API function stops the TAUm channeln counter.

[Syntax]
void R_{Config_TAUm_n}_Stop(void);

Remark m is the unit number, n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 189 of 868
Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

R _{Config_ TAUmM _n} Get PulseWidth

This API function measures TAUm channeln input pulse width.

[Syntax]
void R_{Config_TAUm_n} Get_PulseWidth(uint32_t * const width);
Remark m is the unit number, n is the channel number.
[Argument(s)]
I/0 Argument(s) Description
O | uint32_t * const width; The address where to write the input pulse width

[Return value]

None.

R20UT4852EC0107 Rev.1.07
Jan 20, 2026

RENESAS Page 190 of 868

Smart Configurator 4. API FUNCTIONS

R_{Config_ TAUm_n} Create_Userlnit

This API function executes user-specific initialization processing for the TAUm channeln.

Remark This API functions is called from R_{Config_ TAUm_n} Create as a callback routine.
[Syntax]
void R_{Config_TAUm_n} Create_Userlnit(void);
Remark m is the unit number, n is the channel number.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 191 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_ TAUm_n} interrupt

This API function executes processing in response to timer channelmn capture interrupt (INTTMmn).
This API function is called as the interrupt handler for capture interrupts (INTTMmn), which

Remark
occur when the valid capture edge is detected, and the current counter value (TCRmn) is
transferred to timer data register mn (TDRmn).
[Syntax]
For CCRL78 toolchain:

static void __near r_{Config_TAUm_n}_interrupt(void);

For LLVM toolchain:
void r_{Config_TAUm_n}_interrupt(void);

For IAR toolchain:
‘ __interrupt static void r_{Config_ TAUm_n} _interrupt(void);

Remark m is the unit number, n is the channel number.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 192 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

Usage example

This is an example for getting TAU channel 0 input low-level width from TIOO pin:
(Blue code is user code.)
main.c

#include "r_smc_entry.h"
extern volatile uint8_t tau_interrupt_flag;
uint32_t width; /ldeclare a variable to store the measured pulse width

void main(void);
void main(void)

El(); /Ito enable interrupt

tau_interrupt_flag = 0; /Iset the initial value of tau_interrupt_flag

/ITAUOO operation enable, when the TI00 pin input start edge is detected, the counter counts up from
0000H.

R_Config_TAUO_0_Start();

/Iwait until tau_interrupt_flag not equal 0, exit the loop. It indicates that the valid edge of the TI00 pin
input is detected
while(tau_interrupt_flag == 0);

R_Config_TAUO_0_Stop(); /ITAUQO operation disable

//Get the measured pulse width (high-level or low-level) from TI00 pin
R_Config_TAUO_0_Get_PulseWidth(&width);

Config_TAUO_O_user.c
[* Start user code for global. Do not edit comment generated here */
uint8_t tau_interrupt_flag;
/* End user code. Do not edit comment generated here */

static void __near r_Config_TAUO_O_interrupt (void)

{
}.*- Start user code for r_Config_ TAUO_O_interrupt. Do not edit comment generated here */
/[The valid edge of the TI00 pin input is detected, the count value is transferred to TDROO
tau_interrupt_flag = 1U; /* set the flag */
/* End user code. Do not edit comment generated here */
}
R20UT4852EC0107 Rev.1.07 RENESAS Page 193 of 868

Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

4.2.8 Input Pulse High-/Low-Level Width Measurement (Timer RJ)

Below is a list of API functions output by the Smart Configurator for input pulse high-/low-level width of an

external signal (input to the TRJIOn pin) measurement use.

Table 4-11 API Functions:

API Function Name Peripheral Name Description

R_{Config_TRJn} Create Timer RJn Executes initialization processing that is required before
controlling the TRJn module in pulse high-/low-level
width measurement mode.

R_{Config_TRJn}_Start Starts the TRJn counter.

R_{Config_TRJn} Stop Stops the TRJn counter.

R_{Config_TRJn}_Get_PulseWidth Measures TRJn input pulse width.

R_{Config_TRJn} Create_Userlnit Executes user-specific initialization processing for the
TRJn.

r_{Config_TRJn}_interrupt Executes processing in response to the interrupt
(INTTRJn) when TRJn counter underflows.

R20UT4852EC0107 Rev.1.07 :{EN ESAS Page 194 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_TRJn} Create

This API function executes initialization processing that is required before controlling the TRJn module in
input pulse high-/low-level width of an external signal (input to the TRJIOn pin) measurement mode.

Remark This API function is called from R_Systeminit before the main() function is executed.
[Syntax]
void R_{Config_TRJn}_Create(void);
Remark n is the channel number.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 195 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_TRJn}_ Start

This API function starts the TRJn counter.

[Syntax]
void R_{Config_TRJn}_Start(void);

Remark n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 196 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_TRJn} Stop

This API function stops the TRJn counter.

[Syntax]
void R_{Config_TRJn}_Stop(void);

Remark n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 197 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_TRJn} Get PulseWidth

This API function measures TRJn input pulse width.

[Syntax]
void R_{Config_TRJn}_Get_PulseWidth(uint32_t * const width);
Remark n is the channel number.
[Argument(s)]
I/0 Argument(s) Description
O | uint32_t * const width; The address where to write the input pulse width

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 198 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_TRJn} Create_Userlnit

This API function executes user-specific initialization processing for the TRJn.

Remark This API functions is called from R_{Config_TRJn} Create as a callback routine.
[Syntax]
void R_{Config_TRJn}_Create_Userlnit(void);
Remark n is the channel number.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 199 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_TRJn}_interrupt

This API function executes processing in response to the interrupt (INTTRJn) when TRJn counter
underflows.
Remark This API function is called as the interrupt handler for TRJn counter underflows interrupts
(INTTRJn), which occur when the measurement of the active width of the external input
(TRJION) is completed in pulse width measurement mode.

[Syntax]
For CCRL78 toolchain:
static void __near r {Config_TRJn}_interrupt(void);

For LLVM toolchain:
void r_{Config_TRJn}_interrupt(void);

For IAR toolchain:
__interrupt static void r_{Config_TRJn}_interrupt(void);

Remark n is the channel number.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 200 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

Usage example

This is an example for getting TRJO input pulse width from TRJIOO pin:
(Blue code is user code.)
main.c

#include "r_smc_entry.h"
extern volatile uint8_t interrupt_flag;
uint32_t width; /Ivariable to store pulse width

void main(void);
void main(void)

El(); /Ito enable interrupt
interrupt_flag = 0; /Iset the initial value of interrupt_flag

//When the TRJIOO pin start edge is detected, the counter TRJO underflow from the initial value.
R_Config_TRJO0_Start();

//Wait until interrupt_flag not equal 0, exit the loop. It indicates that the valid edge of the TRJIOO pin
input is detected

while(interrupt_flag == 0);

R_Config_TRJO0_Stop(); //TRJO operation disable

/[The pulse width of the TRJIOO pin can be read from “width”
R_Config TRJO_Get_ PulseWidth(&width);

Config_ TRJO user.c
[* Start user code for global. Do not edit comment generated here */
uint8_t interrupt_flag;
/* End user code. Do not edit comment generated here */

static void __near r_Config_TRJO0_interrupt (void)

{
};‘. Start user code for r_Config_TRJO0_interrupt. Do not edit comment generated here */
/[The valid edge of the TRJIOO pin input is detected, the counter TRJO is stopped
interrupt_flag = 1U; /* set the flag */
/* End user code. Do not edit comment generated here */
}
R20UT4852EC0107 Rev.1.07 RENESAS Page 201 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

429 PWM Output (Timer Array Unit)
Below is a list of API functions output by the Smart Configurator for PWM output use.

Table 4-12 API Functions:

API Function Name Peripheral Name Description

R_{Config_TAUm_n}_Create Timer Array Unit Executes initialization processing that is required
before controlling the TAUm channeln module in

PWM mode.
R_{Config_TAUm_n}_Start Starts the TAUm channeln counter.
R_{Config_TAUm_n}_Stop Stops the TAUm channeln counter.
R_{Config_TAUm_n} Create_Userlnit Executes user-specific initialization processing for

the TAUm channeln.

r_{Config_ TAUm_n} channeln_interrupt Executes processing in response to timer channeln
count end interrupt (INTTMmn).

r {Config_ TAUm_n} channelp_interrupt Executes processing in response to timer channelp

count end interrupt (INTTMmp)

R20UT4852EC0107 Rev.1.07 RENESAS Page 202 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R _{Config_ TAUmM _n} Create

This API function executes initialization processing that is required before controlling the TAUm channeln
module in PWM mode.

Remark This API function is called from R_TAUm_Create.

[Syntax]
void R_{Config_ TAUmM n} Create(void);

Remark m is the unit number, n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 203 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ TAUm n} Start

This API function starts the TAUm channeln counter.

[Syntax]
void R_{Config_TAUm_n}_Start(void);

Remark m is the unit number, n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 204 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_TAUm_n} Stop

This API function stops the TAUm channeln counter.

[Syntax]
void R_{Config_TAUm_n}_Stop(void);

Remark m is the unit number, n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 205 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ TAUm_n} Create_Userlnit

This API function executes user-specific initialization processing for the TAUm channeln.

Remark This API functions is called from R_{Config_ TAUm_n} Create as a callback routine.
[Syntax]
void R_{Config_TAUm_n} Create_Userlnit(void);
Remark m is the unit number, n is the channel number.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 206 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_TAUm_n} channeln_interrupt

This API function executes processing in response to timer channelmn count end interrupt (INTTMmn).
Remark This API function is called as the interrupt handler for count end interrupt (INTTMmn), which
occur when the current counter value (TCRmn) reaches 0000H.

[Syntax]
For CCRL78 toolchain:
static void __near r_{Config_TAUm_n}_channeln_interrupt(void);

For LLVM toolchain:
void r_{Config_TAUm_n}_channeln_interrupt(void);

For IAR toolchain:
‘ __interrupt static void r_{Config_TAUm_n} channeln_interrupt(void);

Remark m is the unit number, n is the master channel number.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 207 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_TAUm_n} channelp_interrupt

This API function executes processing in response to timer channelmn count end interrupt (INTTMmp).
Remark This API function is called as the interrupt handler for count end interrupt (INTTMmp), which
occur when the current counter value (TCRmp) reaches 0000H.

[Syntax]
For CCRL78 toolchain:
static void __near r_{Config_TAUm_n}_channelp_interrupt(void);

For LLVM toolchain:
void r_{Config_TAUm_n}_channelp_interrupt(void);

For IAR toolchain:
__interrupt static void r_{Config_TAUm_n} channelp_interrupt(void);

Remark1. mis the unit number, n is the master channel number, p is slave channel number.
Remark2. n<p<7.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 208 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

Usage example

This is an example for starting TAU channel 0/1 to output PWM pulses:
(Blue code is user code.)

main.c

#include "r_smc_entry.h"
extern uint8_t tau_pwm_count;

void main(void);

void main(void)

{
El(); //to enable interrupt
tau_pwm_count = 0;
R_Config TAUO_0_Start(); /ITAUOO operation enable
while (tau_pwm_count < 10); /Iwait until tau_pwm_count reaches or exceeds 10, exit the loop
R_Config_TAUO_0_Stop(); /ITAUOO operation disable
}

Config_TAUO_O_user.c
[* Start user code for global. Do not edit comment generated here */
uint8_t tau_pwm_count;
/* End user code. Do not edit comment generated here */

static void __near r_Config_TAUO_1_channel1_interrupt (void)

[* Start user code for r_Config_ TAUO_1_channel1_interrupt. Do not edit comment generated here */

tau_pwm_count ++; /lto count the number of times the master channel interrupt handler is
entered
/* End user code. Do not edit comment generated here */
}
R20UT4852EC0107 Rev.1.07 RENESAS Page 209 of 868

Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

4.2.10

Below is a list of API functions output by the Smart Configurator for PWM mode (remote control carrier wave)

output use.

Table 4-13 API Functions:

PWM Output (Timer Array Unit using PWM mode (Remote control carrier wave))

API Function Name

Peripheral Name

Description

R_{Config_TAUO_m_TAUO_n} Create

R_{Config_TAUO_m_TAUO_n} Start

R_{Config_ TAUO_m_TAUO_n} Stop

R_{Config_TAUO_m_TAUOQ_n} Create_U

serlnit

r_{Config_TAUO_m_TAUQ_n} channelm_i

nterrupt

r_{Config_TAUO_m_TAUOQ_n} channelp_i

nterrupt

r_{Config_TAUO_m_TAUO_n} channeln_i

nterrupt

r_{Config_TAUO_m_TAUOQ_n} channelq_i

nterrupt

Timer Array Unit

Executes initialization processing that is required
before controlling the TAUO channelm and channeln

module in PWM mode (remote control carrier wave).

Starts the TAUO channelm and channeln counter.

Stops the TAUO channelm and channeln counter.

Executes user-specific initialization processing for

the TAUO channelm and channeln.

Executes processing in response to timer channelm
count end interrupt (INTTMOm).

Executes processing in response to timer channelp
count end interrupt (INTTMOp)

Executes processing in response to timer channeln
count end interrupt (INTTMOn).

Executes processing in response to timer channelq
count end interrupt (INTTMOq)

R20UT4852EC0107 Rev.1.07
Jan 20, 2026

RENESAS

Page 210 of 868

Smart Configurator 4. API FUNCTIONS

R _{Config_TAUO_m_TAUO_n} Create

This API function executes initialization processing that is required before controlling the TAUO channelm
and channeln module in PWM mode (remote control carrier wave).

Remark This API function is called from R_TAUm_Create.

[Syntax]
void R_{Config_ TAUO_m TAUO_n} Create(void);

Remark m is the number of the master channel which outputs masking waveform, n is the number
of master channel which outputs carrier waveform.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 211 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ TAUO_m_TAUO n} Start

This API function starts the TAUO channelm and channeln counter.

[Syntax]
void R_{Config_TAUO_m_TAUQ_n} Start(void);

Remark m is the number of the master channel which outputs masking waveform, n is the number
of master channel which outputs carrier waveform.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 212 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_TAUO_m TAUQ_n} Stop

This API function stops the TAUO channelm and channeln counter.

[Syntax]
void R_{Config_TAUO_m_TAUQ_n} Stop(void);

Remark m is the number of the master channel which outputs masking waveform, n is the number
of master channel which outputs carrier waveform.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 213 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R _{Config_ TAUO_m_TAUO _n} Create_Userlnit

This API function executes user-specific initialization processing for the TAUO channelm and channeln.

Remark This API functions is called from R_{Config_ TAUO_m_TAUOQ_n} Create as a callback
routine.

[Syntax]
void R_{Config_ TAUO_m_ TAUO_n} Create_Userlnit(void);

Remark m is the number of the master channel which outputs masking waveform, n is the number
of master channel which outputs carrier waveform.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 214 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_TAUO_m_TAUO_n} channelm_interrupt

This API function executes processing in response to timer channelOm count end interrupt (INTTMOm).
Remark This API function is called as the interrupt handler for count end interrupt (INTTMOm), which
occur when the current counter value (TCROm) reaches 0000H.

[Syntax]
For CCRL78 toolchain:
static void __near r_{Config_TAUO_m_TAUOQ_n} channelm_interrupt(void);

For LLVM toolchain:
void r_{Config_TAUO_m_TAUQ_n} channelm_interrupt(void);

For IAR toolchain:
__interrupt static void r_{Config_TAUO_m_TAUO_n}_channelm_interrupt(void);

Remark m is the number of the master channel which outputs masking waveform, n is the number
of master channel which outputs carrier waveform.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 215 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_TAUO_m_TAUO_n} channelp_interrupt

This API function executes processing in response to timer channelmn count end interrupt (INTTMOp).
Remark This API function is called as the interrupt handler for count end interrupt (INTTMOp), which
occur when the current counter value (TCROp) reaches 0000H.

[Syntax]
For CCRL78 toolchain:
static void __near r_{Config_TAUO_m_TAUOQ_n} channelp_interrupt(void);

For LLVM toolchain:
void r_{Config_TAUO_m_TAUOQ_n} channelp_interrupt(void);

For IAR toolchain:
__interrupt static void r_{Config_TAUO_m_TAUO_n} channelp_interrupt(void);

Remark. m is the number of the master channel which outputs masking waveform, n is the number
of master channel which outputs carrier waveform, p is the number of slave channel which
outputs masking waveform.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 216 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_TAUO_m_TAUO_n} channeln_interrupt

This API function executes processing in response to timer channelmn count end interrupt (INTTMOn).
Remark This API function is called as the interrupt handler for count end interrupt (INTTMOn), which
occur when the current counter value (TCROn) reaches 0000H.

[Syntax]
For CCRL78 toolchain:
static void __near r_{Config_TAUO_m_TAUOQ_n} channeln_interrupt(void);

For LLVM toolchain:
void r_{Config_TAUO_m_TAUOQ_n} channeln_interrupt(void);

For IAR toolchain:
__interrupt static void r_{Config_TAUO_m_TAUO_n}_channeln_interrupt(void);

Remark m is the number of the master channel which outputs masking waveform, n is the number
of master channel which outputs carrier waveform.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 217 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_TAUO_m_TAUO_n} channelq_interrupt

This API function executes processing in response to timer channelmn count end interrupt (INTTMOQ).
Remark This API function is called as the interrupt handler for count end interrupt (INTTMOgq), which
occur when the current counter value (TCR0q) reaches 0000H.

[Syntax]
For CCRL78 toolchain:
static void __near r_{Config_TAUO_m_TAUOQ_n} channelq_interrupt(void);

For LLVM toolchain:
void r_{Config_TAUO_m_TAUOQ_n} channelq_interrupt(void);

For IAR toolchain:
__interrupt static void r_{Config_TAUO_m_TAUO_n} channelq_interrupt(void);

Remark. m is the number of the master channel which outputs masking waveform, n is the number
of master channel which outputs carrier waveform, q is the number of slave channel which
outputs carrier waveform.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 218 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

Usage example

This is an example for starting TAUO channel2 and TAUO channel4 to output remote control carrier wave:
(Blue code is user code.)
main.c

#include "r_smc_entry.h"
extern uint8_t tau_remote_count;

void main(void);
void main(void)

El(); /lto enable interrupt

tau_remote_count = 0;

R _Config TAUO 2 TAUO_ 4 Start(); /Ito enable remote-control output function

while (tau_remote_count < 10); /Iwait until tau_remote_count reaches or exceeds 10, exit the
loop

R_Config_TAUO_2_ TAUO_4_Stop(); [Ito disable remote-control output function
}

Config_TAUO_2 TAUO 4 user.c

[* Start user code for global. Do not edit comment generated here */
uint8_t tau_remote_count;
/* End user code. Do not edit comment generated here */

static void __near r_Config_TAUO_2 TAUO_4 channel3_interrupt (void)

[* Start user code for r_Config_ TAUO 2 TAUO 4 channel3_interrupt. Do not edit comment
generated here */

tau_remote_count ++; /lto count the number of times the masking waveform interrupt handler is
entered
/* End user code. Do not edit comment generated here */
}
R20UT4852EC0107 Rev.1.07 RENESAS Page 219 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

4.2.11 PWM Output (Timer RDn using PWM mode/ Extended PWM mode)

Below is a list of API functions output by the Smart Configurator for outputing three PWM waveforms use.

Table 4-14 API Functions:

API Function Name Peripheral Name Description

R_{Config_TRDn}_ Create Timer RD Executes initialization processing that is required
before controlling the TRDn module in PWM mode/
Extended PWM mode.

R_{Config_TRDn}_Start Starts the TRDn counter.

R_{Config_TRDn}_Stop Stops the TRDn counter.

R_{Config_TRDn} Set TRDn_ReloadTrig Generates TRDn buffer registers reload trigger in

ger Extended PWM mode.

R_{Config_TRDn} Create_Userlnit Executes user-specific initialization processing for
the TRDn.

r_{Config_ TRDn}_trdn_interrupt Executes processing in response to timer RDn count

compare match interrupt (INTTRDn).

R20UT4852EC0107 Rev.1.07 RENESAS Page 220 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_TRDn} Create

This API function executes initialization processing that is required before controlling the TRDn module in
PWM mode/ Extended PWM mode.

Remark This API function is called from R_TRD_Create.

[Syntax]
void R_{Config_TRDn}_Create(void);

Remark nis 0, 1.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 221 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_TRDn}_ Start

This API function starts the TRDn counter.

[Syntax]
void R_{Config_TRDn}_Start(void);

Remark nis 0, 1.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 222 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ TRDn} Stop

This API function stops the TRDn counter.

[Syntax]
void R_{Config_TRDn}_Stop(void);

Remark nis 0, 1.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 223 of 868
Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

R_{Config_TRDn} Set TRDn_ReloadTrigger

This API function generates TRDn buffer registers reload trigger in Extended PWM mode.

[Syntax]

MD_STATUS R_{Config_TRDn} Set TRDn_ReloadTrigger
buffer);

(st_extpwm_buffer_registers t *

Remark nis 0, 1.

[Argument(s)]

1/O Argument(s)

Description

I st_extpwm_buffer_registers_t * buffer; | buffer registers value

Remark Below is shown the structure st_extpwm_buffer registers_t.

typedef struct {
uint16_t trdgrcn;
uint16_t trdgrdn;
uint16_t trdcmpdn;

} st_extpwm_buffer_registers_t;

[Return value]
Macro Description
MD_OK Normal end
MD_ERROR Waiting for reload trigger status
R20UT4852EC0107 Rev.1.07 :{ENESAS Page 224 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_TRDn} Create_Userlnit

This API function executes user-specific initialization processing for the TRDn.

Remark This API functions is called from R_{Config_ TRDn} Create as a callback routine.
[Syntax]
void R_{Config_TRDn}_Create_Userlnit(void);
Remark nis 0, 1.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 225 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_TRDn} trdn_interrupt

This API function executes processing in response to timer RDn count compare match interrupt

(INTTRDn).
Remark This API function is called as the interrupt handler for count compare match interrupt
(INTTRDn), which occur when the content of the TRDn register matches content of the
TRDGRhAn (h = A, B, C, or D) register or TRDn register overflow.

[Syntax]
For CCRL78 toolchain:
static void __near r_{Config_TRDn}_trdn_interrupt(void);

For LLVM toolchain:
void r_{Config_TRDn}_trdn_interrupt(void);

For IAR toolchain:
‘ __interrupt static void r_{Config_TRDn}_trdn_interrupt(void);

Remark nis 0, 1.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 226 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

Usage example

This is an example for starting TRDO to output three PWM waveforms pulses and TRDGRAO, TRDGRBO, and

TRDCMPBO register values are updated simultaneously.:
(Blue code is user code.)
main.c

#include "r_smc_entry.h"
extern uint8_t trd_pwm_count;

void main(void);

st_extpwm_buffer_registers_t buffer; /lthe buffer register value of Timer RDO to be written.
buffer.trdgrcn = 0x1234;

buffer.trdgrdn = 0x5678;

buffer.trdcmpdn = 0x9ABC;

static void delay_ms(uint32_t time_ms)
{
uint32_ti=0;
while(time_ms--) {
for(i = 0; i < 156; i++) {
NOP();
}

}

void main(void)
{
EI(); /lto enable interrupt
R_Config_TRDO_Start(); /[TRDO operation enable
while (trd_pwm_count < 10); /Iwait until trd_pwm_count reaches or exceeds 10, exit the loop
delay_ms(200);

the buffer register value
while (status = MD_OK);
delay_ms(2000);
R_Config_TRDO_Stop(); ~ /TRDO operation disable

MD_STATUS result = R_Config_ TRDO_Set TRDO_ReloadTrigger(&buffer); [ltrigger and reload

Config_ TRDO_user.c

[* Start user code for global. Do not edit comment generated here */
uint8_t trd_pwm_count;
/* End user code. Do not edit comment generated here */

static void __near r_Config_TRDO_trd0_interrupt (void)
[* Start user code for r_Config TRDO_trd0_interrupt. Do not edit comment generated here */

trd_pwm_count ++; /lto count the number of times the interrupt handler is entered
/* End user code. Do not edit comment generated here */

R20UT4852EC0107 Rev.1.07 RENESAS Page 227 of 868

Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

4.2.12

mode/ Timer KB3 PWM Output Gate mode)

PWM Output (Timer RD0 and RD1 using PWM mode/ PWM3 mode/ Extended PWM

Below is a list of API functions output by the Smart Configurator for outputing two PWM waveforms in PWM3
mode/ Timer KB3 PWM Output Gate mode or four PWM waveforms use in Timer KB3 PWM Output Gate mode
or six PWM waveforms use in PWM mode/ Extended PWM mode/ Timer KB3 PWM Output Gate mode.

Table 4-15 API Functions:

API Function Name Peripheral Name Description

R_{Config_TRDO_TRD1} Create Timer RD Executes initialization processing that is required
before controlling the TRDO module in PWM3 mode
or the TRDn module in PWM mode/ Extended PWM
mode/ Timer KB3 PWM Output Gate mode.

R_{Config_TRDO_TRD1}_ Start Starts the TRDO counter in PWM3 mode or the
TRDn counter in PWM mode/ Extended PWM mode/
Timer KB3 PWM Output Gate mode.

R_{Config_TRDO_TRD1}_Stop Stops the TRDO counter in PWM3 mode or the
TRDn counter in PWM mode/ Extended PWM mode/
Timer KB3 PWM Output Gate mode.

R_{Config_ TRDO_TRD1} Set TRDn_Relo Generates TRDn buffer registers reload trigger in

adTrigger Extended PWM mode.

R_{Config_ TRDO_TRD1} Set TRDO_Relo Generates TRDO buffer registers reload trigger in

adTrigger Timer KB3 PWM Output Gate mode.

R_{Config_ TRDO_TRD1} Set TRD1_Relo Generates TRD1 buffer registers reload trigger in

adTrigger Timer KB3 PWM Output Gate mode.

R _{Config_ TRDO TRD1} Create_ Userlnit Executes user-specific initialization processing for
the TRDO_TRD1.

r {Config. TRDO_TRD1} trdn_interrupt Executes processing in response to timer RDn count
compare match interrupt (INTTRDn).

R20UT4852EC0107 Rev.1.07 :{EN ESNS Page 228 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R _{Config_ TRDO_TRD1} Create

This API function executes initialization processing that is required before controlling the TRDO module in
PWM3 mode or the TRDn module in PWM mode/ Extended PWM mode/ Timer KB3 PWM Output Gate
mode.

Remark This API function is called from R_TRD Create.

[Syntax]
void R_{Config_ TRDO_TRD1}_Create(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 229 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_TRDO_TRD1}_ Start

This API function starts the TRDO counter in PWM3 mode or the TRDn counter in PWM mode/ Extended
PWM mode/ Timer KB3 PWM Output Gate mode.

[Syntax]
void R_{Config_TRDO_TRD1}_Start(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 230 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R _{Config_ TRDO_TRD1} Stop

This API function stops the TRDO counter in PWM3 mode or the TRDn counter in PWM mode/ Extended
PWM mode/ Timer KB3 PWM Output Gate mode.

[Syntax]
void R_{Config_TRDO_TRD1}_Stop(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 231 of 868
Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

R _{Config_ TRDO_TRD1} Set TRDn_ReloadTrigger

This API function generates TRDn buffer registers reload trigger in Extended PWM mode.

[Syntax]
MD_STATUS R_{Config_ TRDO_TRD1}_Set TRDn_ReloadTrigger (st_extpwm_buffer_registers_t*
buffer);
Remark nis 0, 1.
[Argument(s)]
1/O Argument(s) Description
I st_extpwm_buffer_registers_t * buffer; buffer registers value
Remark Below is shown the structure st_extpwm_buffer registers_t.
typedef struct {
uint16_t trdgrcn;
uint16_t trdgrdn;
uint16_t trdcmpdn;
} st_extpwm_buffer_registers_t;
[Return value]
Macro Description
MD_OK Normal end
MD_ERROR Waiting for reload trigger status
R20UT4852EC0107 Rev.1.07 RENESAS Page 232 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R _{Config_ TRDO_TRD1} Set TRDO_ReloadTrigger

This API function generates TRDO buffer registers reload trigger in Timer KB3 PWM Output Gate mode.

[Syntax]
MD_STATUS R_{Config_ TRDO_TRD1}_Set TRDO_ReloadTrigger
(st_kb3pwm_chO_buffer_registers_t * buffer);

[Argument(s)]
I/0 Argument(s) Description
I st_kb3pwm_chO0_buffer_registers_t * | buffer registers value
buffer;
Remark Below is shown the structure st_kb3pwm_ch1_buffer_registers _t.
typedef struct {

uint16_t trdgra0;
uint16_t trdgrb0;
uint16_t trdcmpb0;

} st_ kb3pwm_chO_buffer_registers_t;

[Return value]
Macro Description
MD_OK Normal end
MD_ERROR Waiting for reload trigger status
R20UT4852EC0107 Rev.1.07 :{ENESAS Page 233 of 868

Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

R _{Config_ TRDO_TRD1} Set TRD1_ReloadTrigger

This API function generates TRD1 buffer registers reload trigger in Timer KB3 PWM Output Gate mode.

[Syntax]

(st_kb3pwm_ch1_buffer_registers_t * buffer);

MD_STATUS R_{Config_ TRDO_TRD1}_Set TRD1_ReloadTrigger

[Argument(s)]

I/0 Argument(s)

Description

I st_kb3pwm_ch1_buffer_registers_t
buffer;

buffer registers value

Remark Below is shown the structure st_kb3pwm_ch1_buffer_registers_t.

typedef struct {
uint16_t trdgra1;
uint16_t trdgrb1;
uint16_t trdcmpat;
uint16_t trdcmpb1;
uint16_t trdcmpe1;

} st_kb3pwm_ch1_buffer_registers_t;

[Return value]

Macro Description

MD_OK Normal end

MD_ERROR Waiting for reload trigger status

R20UT4852EC0107 Rev.1.07 RENESAS
Jan 20, 2026

Page 234 of 868

Smart Configurator 4. API FUNCTIONS

R_{Config_ TRDO_TRD1} Create_Userlnit

This API function executes user-specific initialization processing for the TRDO_TRD1.
Remark This API functions is called from R_{Config TRDO_TRD1} Create as a callback routine.

[Syntax]
void R_{Config_ TRDO_TRD1} Create_Userlnit(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 235 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_ TRDO_TRD1} trdn_interrupt

This API function executes processing in response to timer TRDn count compare match interrupt
(INTTRDn).
Remark This API function is called as the interrupt handler for count compare match interrupt
(INTTRDn), which occur when the content of the TRDn register matches content of the
TRDGRjn (j = A, B, C, or D) register in PWM mode/ PWM3 mode/ Extended PWM mode/

Timer KB3 PWM Output Gate mode or TRDO register overflow in PWM mode/ PWM3 mode/
Extended PWM mode.

[Syntax]
For CCRL78 toolchain:
static void __near r {Config_ TRDO_TRD1} trdn_interrupt(void);

For LLVM toolchain:
void r_{Config_TRDO_TRD1}_trdn_interrupt(void);

For IAR toolchain:
__interrupt static void r_{Config_TRDO_TRD1}_trdn_interrupt(void);

Remark nis 0, 1.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 236 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

Usage example

This is an example for starting TRDO_TRD1 to output six PWM waveforms pulses:
(Blue code is user code.)
main.c

#include "r_smc_entry.h"
extern uint8_t trd_kb3 pwm_count;

void main(void);
void main(void)

El(); /Ito enable interrupt

R _Config TRDO_TRD1_Start(); /ITRDO and TRD1 operation enable

while (trd_kb3_pwm_count < 20); /Iwait until trd_kb3 pwm_count reaches or exceeds 20, exit
the loop

R_Config_ TRDO_TRD1_Stop(); /ITRDO and TRD1 operation disable
}

Config_TRDO_TRD1_user.c
[* Start user code for global. Do not edit comment generated here */
uint8_t trd_kb3_pwm_count;
/* End user code. Do not edit comment generated here */

static void __near r_Config_ TRDO_TRD1_trd0_interrupt (void)

[* Start user code for r_Config TRDO_trd0_interrupt. Do not edit comment generated here */
trd_kb3_pwm_count ++; /lto count the number of times the interrupt handler is entered
/* End user code. Do not edit comment generated here */

}
static void __near r_Config_ TRDO_TRD1_trd1_interrupt (void)
[* Start user code for r_Config_ TRDO_trd1_interrupt. Do not edit comment generated here */

trd_kb3 pwm_count ++; [/Ito count the number of times the interrupt handler is entered
/* End user code. Do not edit comment generated here */

R20UT4852EC0107 Rev.1.07 RENESAS Page 237 of 868
Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

4.2.13 PWM Output (Timer RG using PWM mode/ PWM2 mode)

Below is a list of API functions output by the Smart Configurator for outputing PWM waveforms use.

Table 4-16 API Functions:

API Function Name Peripheral Name Description

R_{Config_TRG} Create Timer RG Executes initialization processing that is required
before controlling the TRG module in PWM mode/
PWM2 mode.

R_{Config_TRG}_Start Starts the TRG counter.

R_{Config_TRG}_Stop Stops the TRG counter.

R_{Config_TRG}_ Create_Userlnit Executes user-specific initialization processing for
the TRG.

r_{Config_ TRG} interrupt Executes processing in response to timer RG count
compare match interrupt (INTTRG).

R20UT4852EC0107 Rev.1.07 :{EN ESAS Page 238 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_TRG} Create

This API function executes initialization processing that is required before controlling the TRG module in
PWM mode/ PWM2 mode.

Remark This API function is called from R_Systeminit before the main() function is executed.

[Syntax]
void R_{Config_ TRG} Create(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 239 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ TRG}_ Start

This API function starts the TRG counter.

[Syntax]
void R_{Config_TRG}_Start(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 240 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_TRG}_ Stop

This API function stops the TRG counter.

[Syntax]
void R_{Config_TRG}_Stop(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 241 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ TRG} Create_ Userlnit

This API function executes user-specific initialization processing for the TRG.
Remark This API functions is called from R_{Config TRG} Create as a callback routine.

[Syntax]
void R_{Config_TRG}_Create_Userlnit(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 242 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_ TRG} interrupt

This API function executes processing in response to timer RG count compare match interrupt (INTTRG).

Remark This API function is called as the interrupt handler for count compare match interrupt
(INTTRG), which occur when the content of the TRG register matches content of the
TRGGRA (h =A, B, C, or D) register or TRG register overflow.

[Syntax]
For CCRL78 toolchain:
static void __near r {Config_TRG} interrupt(void);

For LLVM toolchain:
void r_{Config_TRG]} _interrupt(void);

For IAR toolchain:
__interrupt static void r_{Config_TRG]}_interrupt(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 243 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

Usage example

This is an example for starting TRG to output PWM waveforms pulses:
(Blue code is user code.)
main.c

#include "r_smc_entry.h"
extern uint8_t trg_pwm_count;

void main(void);

void main(void)

{
EI(); /lto enable interrupt
R _Config TRG_Start(); /ITRG operation enable
while (trg_pwm_count < 10); /Iwait until trg_pwm_count reaches or exceeds 10, exit the loop
R_Config_TRG_Stop(); //TRG operation disable
}

Config_ TRG_user.c
[* Start user code for global. Do not edit comment generated here */
uint8_t trg_pwm_count;
/* End user code. Do not edit comment generated here */

static void __near r_Config_TRG_interrupt (void)

[* Start user code for r_Config TRG_interrupt. Do not edit comment generated here */
trg_pwm_count ++; /lto count the number of times the interrupt handler is entered
/* End user code. Do not edit comment generated here */

R20UT4852EC0107 Rev.1.07 RENESAS Page 244 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

4214 PWM Output (Timer KB using standalone mode (period controlled by TKBCRnO
register)/standalone mode (period controlled by external trigger input)/interleave PFC output
mode)

Below is a list of API functions output by the Smart Configurator for outputing PWM waveforms use.

Table 4-17 API Functions: (1/2)

API Function Name Peripheral Name Description

R_{Config_TKBn} Create Timer KB Executes initialization processing that is required
before controlling the TKBn module in TKB using
standalone mode (period controlled by TKBCRnO
register)/standalone mode (period controlled by
external trigger input)/interleave PFC output mode.

R_{Config_TKBn}_Start Starts the TKBn counter.

R_{Config_TKBn}_Stop Stops the TKBn counter.

R_{Config_TKBn}_Set BatchOverwriteRe Sets TKBn batch overwrite request function.

questOn

R _{Config_ TKBn} TKBOnO_Forced_Outp Starts TKBn TKBOnO forced output stop function 1.

ut_Stop Function1_Start

R _{Config_ TKBn} TKBOnO_Forced_Outp Stops TKBn TKBOnNO forced output stop function 1.

ut_Stop_ Function1_Stop

R_{Config_ TKBn} TKBOn1_Forced_Outp Starts TKBn TKBOn1 forced output stop function 1.

ut_Stop Function1_Start

R _{Config_ TKBn} TKBOn1_Forced_Outp Stops TKBn TKBOn1 forced output stop function 1.

ut_Stop_ Function1_Stop

R_{Config_TKBn}_TKBOn0_SmoothStart Starts TKBn TKBOnO smooth start function.

Function_Start

R_{Config_TKBn}_TKBOn0_SmoothStart Stops TKBn TKBOnO smooth start function.

Function_Stop

R_{Config_TKBn}_TKBOn1_SmoothStart Starts TKBn TKBOn1 smooth start function.

Function_Start

R_{Config_TKBn}_TKBOn1_SmoothStart Stops TKBn TKBOn1 smooth start function.

Function_Stop

R20UT4852EC0107 Rev.1.07 RENESAS Page 245 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

Table 4-18 API Functions: (2/2)

API Function Name Peripheral Name Description
R {Config TKBn} Create Userlnit Executes user-specific initialization processing for
the TKBn.
r {Config TKBn} terminatedO interrupt Executes processing in response to timer KBn

TKBOnNO forced output stop termination interrupt
(INTTMKBSTPnNO).

r_{Config TKBn} terminated1_interrupt Executes processing in response to timer KBn

TKBON1 forced output stop termination interrupt
(INTTMKBSTPn1).
r {Config TKBn} activatedO_interrupt Executes processing in response to timer KBn

TKBONO forced output stop activation interrupt
(INTTMKBSTRNO).

r_{Config TKBn} activated1 interrupt Executes processing in response to timer KBn

TKBOnN1 forced output stop activation interrupt
(INTTMKBSTRn1).
r {Config TKBn} end count _interrupt Executes processing in response to timer KBn count

compare match interrupt (INTTMKBn).

R20UT4852EC0107 Rev.1.07 RENESAS Page 246 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_TKBn} Create

This API function executes initialization processing that is required before controlling the TKBn module in
standalone mode (period controlled by TKBCRnO register)/standalone mode (period controlled by external
trigger input)/interleave PFC output mode.

Remark This API function is called from R_TKB_Create.

[Syntax]
void R_{Config_TKBn}_ Create(void);

Remark nis0,1, 2.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 247 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_TKBn}_ Start

This API function starts the TKBn counter.

[Syntax]
void R_{Config_TKBn}_Start(void);

Remark nis 0,1, 2.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 248 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ TKBn} Stop

This API function stops the TKBn counter.

[Syntax]
void R_{Config_TKBn}_Stop(void);

Remark nis 0,1, 2.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 249 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_TKBn} Set BatchOverwriteRequestOn

This API function sets TKBn batch overwrite request function.

[Syntax]
void R_{Config_TKBn}_Set BatchOverwriteRequestOn(void);

Remark nis 0,1, 2.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 250 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_TKBn} TKBOnO_ Forced Output _Stop Function1_Start
This API function starts TKBn TKBOnO forced output stop function 1.

[Syntax]
void R_{Config_TKBn} TKBOn0_Forced_Output_Stop_Function1_Start(void);

Remark nis 0,1, 2.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 251 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_TKBn} TKBOnO_ Forced_ Output _Stop Function1_Stop
This API function stops TKBn TKBOnO forced output stop function 1.

[Syntax]
void R_{Config_TKBn} TKBOnNO0_Forced_Output_Stop_Function1_Stop(void);

Remark nis 0,1, 2.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 252 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_TKBn} TKBOn1_Forced_ Output_Stop Function1_Start
This API function starts TKBn TKBOn1 forced output stop function 1.

[Syntax]
void R_{Config_TKBn} TKBOn1_Forced_Output_Stop_Function1_Start(void);

Remark nis 0,1, 2.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 253 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_TKBn} TKBOn1_Forced_Output_Stop Function1_Stop
This API function stops TKBn TKBOn1 forced output stop function 1.

[Syntax]
void R_{Config_TKBn} TKBOn1_Forced_Output_Stop_Function1_Stop(void);

Remark nis 0,1, 2.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 254 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_TKBn} TKBOn0_SmoothStartFunction_Start
This API function starts TKBn TKBOn0 smooth start function.

[Syntax]
void R_{Config_TKBn} TKBOn0_SmoothStartFunction_Start(void);

Remark nis 0,1, 2.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 255 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R _{Config_TKBn} TKBOn0_ SmoothStartFunction_Stop
This API function stops TKBn TKBOnO smooth start function.

[Syntax]
void R_{Config_TKBn}_TKBOn0_SmoothStartFunction_Stop(void);

Remark nis 0,1, 2.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 256 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_TKBn} TKBOn1_SmoothStartFunction_Start

This API function starts TKBn TKBOn1 smooth start function.

[Syntax]
void R_{Config_TKBn} TKBOn1_SmoothStartFunction_Start(void);

Remark nis 0,1, 2.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 257 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R _{Config_TKBn} TKBOn1_SmoothStartFunction_Stop
This API function stops TKBn TKBOn1 smooth start function.

[Syntax]
void R_{Config_TKBn}_TKBOn1_SmoothStartFunction_Stop(void);

Remark nis 0,1, 2.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 258 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_TKBn} Create_Userlnit

This API function executes user-specific initialization processing for the TKBn.
Remark This API functions is called from R_{Config TKBn} Create as a callback routine.

[Syntax]
void R_{Config_TKBn} Create_Userlnit(void);

Remark nis0,1, 2.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 259 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_TKBn} terminatedO_interrupt

This API function executes processing in response to timer KBn TKBOnO0 forced output stop termination
interrupt (INTTMKBSTPnO).

[Syntax]
For CCRL78 toolchain:
static void __near r_{Config_TKBn}_terminatedO_interrupt(void);

For LLVM toolchain:
void r_{Config_TKBn}_terminated0_interrupt(void);

For IAR toolchain:
‘ __interrupt static void r_{Config_TKBn}_terminatedO_interrupt(void);

Remark nis 0,1, 2.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 260 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_TKBn} terminated1_interrupt

This API function executes processing in response to timer KBn TKBOn1 forced output stop termination
interrupt (INTTMKBSTPn1).

[Syntax]
For CCRL78 toolchain:
static void __near r_{Config_TKBn}_terminated1_interrupt(void);

For LLVM toolchain:
void r_{Config_TKBn}_terminated1_interrupt(void);

For IAR toolchain:
‘ __interrupt static void r_{Config_TKBn}_terminated1_interrupt(void);

Remark nis 0,1, 2.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 261 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_TKBn}_ activated0_interrupt

This API function executes processing in response to timer KBn TKBOnO forced output stop activation
interrupt (INTTMKBSTRnNO).

[Syntax]
For CCRL78 toolchain:
static void __near r_{Config_TKBn}_activated0_interrupt(void);

For LLVM toolchain:
void r_{Config_TKBn}_activatedQ_interrupt(void);

For IAR toolchain:
‘ __interrupt static void r_{Config_TKBn}_ activated0_interrupt(void);

Remark nis 0,1, 2.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 262 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_TKBn}_ activated1_interrupt

This API function executes processing in response to timer KBn TKBOn1 forced output stop activation
interrupt (INTTMKBSTRnN1).

[Syntax]
For CCRL78 toolchain:
static void __near r_{Config_TKBn}_ activated1_interrupt(void);

For LLVM toolchain:
void r_{Config_TKBn}_activated1_interrupt(void);

For IAR toolchain:
‘ __interrupt static void r_{Config_TKBn}_ activated1_interrupt(void);

Remark nis 0,1, 2.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 263 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_TKBn} end_count_interrupt

This API function executes processing in response to timer KBn count compare match interrupt
(INTTMKBnN).

[Syntax]
For CCRL78 toolchain:
static void __near r_{Config_TKBn}_end_count_interrupt(void);

For LLVM toolchain:
void r_{Config_TKBn}_end_count_interrupt(void);

For IAR toolchain:
‘ __interrupt static void r_{Config_TKBn}_end_count_interrupt(void);

Remark nis 0,1, 2.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 264 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

Usage example 1 (smooth start function)

This is an example for starting TKB1 to output PWM waveforms pulses and smooth start function. Please
configure the PWM output smooth start function setting on Smart Configurator Ul for TKBO10 first:
(Blue code is user code.)

main.c

#include "r_smc_entry.h"
extern uint8_t tkb_pwm_count;

void main(void);

//Delay function to simulate millisecond-level delay
static void delay_ms(uint32_t time_ms)

{
uint32_ti=0;
while(time_ms--) {
for(i = 0; i < 156; i++) {
NOP();
}
}
}

void main(void)

EI(); /lto enable interrupt

R_Config_ TKB1_TKBO10_SmoothStartFunction_Stop(); /lstop TKB1 TKBO10 smooth start
function

R_Config TKB1_Start(); /ITKB1 operation enable

while (tkb_pwm_count < 10); /loutput PWM waveforms pulses, which the duty value is same as

TKBSIR10 register value

R_Config_TKB1_Stop(); //TKB1 operation disable

delay_ms(500);

R_Config_ TKB1_TKBO10_SmoothStartFunction_Start(); /Istart TKB1 TKBO10 smooth start
function

R_Config_ TKB1_Start(); [ITKB1 operation restart

delay_ms(10000); /loutput PWM waveforms pulses, which the duty value is same as TKBSSR10
register value at first. After a while, the smooth start function complete, the duty value is change to
TKBSIR10 register value

R_Config_TKB1_Stop(); //TKB1 operation disable
}

Config_TKB1_user.c

[* Start user code for global. Do not edit comment generated here */
uint8_t tkb_pwm_count;
/* End user code. Do not edit comment generated here */

static void __near r_Config_TKB1_end_count_interrupt (void)

[* Start user code for r_Config TKB1_end_count_interrupt. Do not edit comment generated here */
tkb_pwm_count ++; /lincrement PWM pulse count on each interrupt
/* End user code. Do not edit comment generated here */

R20UT4852EC0107 Rev.1.07 RENESAS Page 265 of 868
Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

Usage example 2 (compare register batch overwrite)

This is an example for changing period and duty by batch overwrite function for output PWM waveforms pulses:

(Blue code is user code.)
main.c

#include "r_cg_macrodriver.h"
#include "Config_TKBO0.h"
/[Delay function to simulate millisecond-level delay
static void delay_ms(uint32_t time_ms)
{
uint32_ti=0;
while(time_ms--) {
for(i = 0; i < 156; i++) {
NOP();
}
}
}
void main(void)
{
El(); /lto enable interrupt
/ITKBO operation start
R_Config_ TKBO_Start();
//Batch overwrite trigger on
delay_ms(100);
TKBCRO00 = 0x0C7FU; /lchange PWM period to 100us
TKBCRO01 = 0x0A00U; /lchange Duty(TKBOOO) to 80%
TKBCRO2 = 0x0280U; /lchange Duty(TKBOO1) to 80%
TKBCRO3 = 0x0C80U; /Ilchange Delay(TKBOO1) to 20%
R_Congif TKBO_Set BatchOverwriteRequestOn(); //batch overwrite trigger on
P14 _bit.no0 = ~P14_bit.no0; /Ito check the batch overwrite trigger on start timing
while(1);
}
R20UT4852EC0107 Rev.1.07 RENESAS Page 266 of 868

Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

4.2.15

PWM Output (Timer KB using simultaneous start/stop mode (period controlled by

TKBCRnNO register)/simultaneous start/stop mode (period controlled by external trigger
input)/synchronous start/clear mode (period controlled by master)) (1 slave)

Below is a list of API functions output by the Smart Configurator for outputing PWM waveforms use.

Table 4-19 API Functions: (1/2)

API Function Name Peripheral Name Description

R_{Config_TKBO_TKBn}_ Create Timer KB Executes initialization processing that is required
before controlling the TKBO and TKBn modules in
TKB using simultaneous start/stop mode (period
controlled by TKBCRnNO register)/simultaneous
start/stop mode (period controlled by external trigger
input)/synchronous start/clear mode (period
controlled by master).

R_{Config_TKBO_TKBn}_Start Starts the TKBO and TKBn counters.

R_{Config_TKBO_TKBn}_Stop Stops the TKBO and TKBn counters.

R_{Config_ TKBO_TKBn} TKBm Sets TKBm batch overwrite request function.

_Set_BatchOverwriteRequestOn

R_{Config_ TKBO_TKBn} TKBOmO_Force Starts TKBm TKBOmO forced output stop function 1.

d_Output_Stop_Function1_Start

R_{Config_ TKBO_TKBn} TKBOmO_Force Stops TKBm TKBOmO forced output stop function 1.

d_Output_Stop_Function1_Stop

R_{Config_ TKBO_TKBn} TKBOm1_Force Starts TKBm TKBOm1 forced output stop function 1.

d_Output_Stop_Function1_Start

R _{Config_ TKBO_TKBn} TKBOm1_Force Stops TKBm TKBOm1 forced output stop function 1.

d_Output_Stop_Function1_Stop

R_{Config_TKBO_TKBn}_TKBOmO_Smo Starts TKBm TKBOmO smooth start function.

othStartFunction_Start

R_{Config_TKBO_TKBn}_TKBOmO_Smo Stops TKBm TKBOmO smooth start function.

othStartFunction_Stop

R_{Config_TKBO_TKBn}_TKBOm1_Smo Starts TKBm TKBOm1 smooth start function.

othStartFunction_Start

R_{Config_TKBO_TKBn}_TKBOm1_Smo Stops TKBm TKBOm1 smooth start function.

othStartFunction_Stop

R20UT4852EC0107 Rev.1.07 REN ESNS Page 267 of 868

Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

Table 4-20 API Functions: (2/2)

API Function Name

Peripheral Name

Description

R_{Config_TKBO_TKBn}_Create_Userlnit

r_{Config_TKBO_TKBn}_tkbm_terminated

0_interrupt

r_{Config_TKBO_TKBn}_tkbm_terminated

1_interrupt

r_{Config_TKBO_TKBn}_tkbm_activatedO

_interrupt

r_{Config_ TKBO_TKBn} tkbm_activated1

_interrupt

r_{Config_TKBO_TKBn}_tkbm_end_count

_interrupt

Executes user-specific initialization processing for
the TKBO and TKBn.

Executes processing in response to timer KBm
TKBOmO forced output stop termination interrupt
(INTTMKBSTPmO).

Executes processing in response to timer KBm
TKBOm1 forced output stop termination interrupt
(INTTMKBSTPm1).

Executes processing in response to timer KBm
TKBOmO forced output stop activation interrupt
(INTTMKBSTRmO).

Executes processing in response to timer KBm
TKBOm1 forced output stop activation interrupt
(INTTMKBSTRm1).

Executes processing in response to timer KBm count

compare match interrupt (INTTMKBm).

R20UT4852EC0107 Rev.1.07
Jan 20, 2026

RENESAS Page 268 of 868

Smart Configurator 4. API FUNCTIONS

R_{Config_ TKBO_TKBn} Create

This API function executes initialization processing that is required before controlling the TKBO and TKBn
modules in simultaneous start/stop mode (period controlled by TKBCRnNO register)/simultaneous start/stop
mode (period controlled by external trigger input)/synchronous start/clear mode (period controlled by master).

Remark This API function is called from R_TKB_Create.

[Syntax]
void R_{Config_TKBO_TKBn}_Create(void);

Remark nis1, 2.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 269 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R _{Config_ TKBO_TKBn}_ Start

This API function starts the TKBO and TKBn counters.

[Syntax]
void R_{Config_TKBO_TKBn}_Start(void);

Remark nis1, 2.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 270 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ TKBO_TKBn} Stop

This API function stops the TKBO and TKBn counters.

[Syntax]
void R_{Config_TKBO_TKBn}_Stop(void);

Remark nis1, 2.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 271 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_TKBO_TKBn} TKBm_Set BatchOverwriteRequestOn

This API function sets TKBm batch overwrite request function.

[Syntax]
void R_{Config_TKBO_TKBn} TKBm_Set_BatchOverwriteRequestOn(void);

Remark nis1,2.mis0, n.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 272 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R _{Config_ TKBO_TKBn} TKBOmO_Forced_ Output_Stop_ Function1_Start
This API function starts TKBm TKBOmO forced output stop function 1.

[Syntax]
void R_{Config_TKBO_TKBn} TKBOmO_Forced_Output_Stop_Function1_Start(void);

Remark nis1,2.mis0, n.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 273 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ TKBO_TKBn} TKBOmO_Forced_Output_Stop_Function1_Stop

This API function stops TKBm TKBOmO forced output stop function 1.

[Syntax]
void R_{Config_TKBO_TKBn} TKBOmO_Forced_Output_Stop_Function1_Stop(void);

Remark nis1,2.mis0, n.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 274 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R _{Config_ TKBO_TKBn} TKBOm1_Forced_ Output_Stop_ Function1_Start
This API function starts TKBm TKBOm1 forced output stop function 1.

[Syntax]
void R_{Config_TKBO_TKBn} TKBOm1_Forced_Output_Stop_Function1_Start(void);

Remark nis1,2.mis0, n.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 275 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ TKBO_TKBn} TKBOm1_Forced_Output_Stop_Function1_Stop

This API function stops TKBm TKBOm1 forced output stop function 1.

[Syntax]
void R_{Config_TKBO_TKBn} TKBOm1_Forced_Output_Stop_Function1_Stop(void);

Remark nis1,2.mis0, n.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 276 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ TKBO_TKBn} TKBOmMO_SmoothStartFunction_Start
This API function starts TKBm TKBOmO smooth start function.

[Syntax]
void R_{Config_TKBO_TKBn} TKBOmO0_SmoothStartFunction_Start(void);

Remark nis1,2.mis0, n.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 277 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ TKBO_TKBn} TKBOmO_SmoothStartFunction_Stop
This API function stops TKBm TKBOmO smooth start function.

[Syntax]
void R_{Config_TKBO_TKBn} TKBOmO0_SmoothStartFunction_Stop(void);

Remark nis1,2.mis0, n.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 278 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ TKBO_TKBn} TKBOm1_SmoothStartFunction_Start

This API function starts TKBm TKBOm1 smooth start function.

[Syntax]
void R_{Config_TKBO_TKBn} TKBOm1_SmoothStartFunction_Start(void);

Remark nis1,2.mis0, n.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 279 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ TKBO_TKBn} TKBOm1_SmoothStartFunction_Stop
This API function stops TKBm TKBOm1 smooth start function.

[Syntax]
void R_{Config_TKBO_TKBn} TKBOm1_SmoothStartFunction_Stop(void);

Remark nis1,2.mis0, n.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 280 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_TKBO_TKBn} Create Userlnit

This API function executes user-specific initialization processing for the TKBO and TKBn.
Remark This API functions is called from R_{Config_ TKBO TKBn} Create as a callback routine.

[Syntax]
void R_{Config_TKBO_TKBn}_Create_Userlnit(void);

Remark nis1, 2.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 281 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_ TKBO_TKBn} tkbm_terminated0_interrupt

This API function executes processing in response to timer KBm TKBOmO forced output stop termination
interrupt (INTTMKBSTPmO).

[Syntax]
For CCRL78 toolchain:
static void __near r_{Config_TKBO_TKBn}_tkbm_terminated0_interrupt(void);

For LLVM toolchain:
void r_{Config_TKBO_TKBn}_tkbm_terminatedQ_interrupt(void);

For IAR toolchain:
‘ __interrupt static void r_{Config_ TKBO_TKBn}_tkbm_terminatedO_interrupt(void);

Remark nis1,2.mis0, n.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 282 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_ TKBO_TKBn} tkbm_terminated1_interrupt

This API function executes processing in response to timer KBm TKBOm1 forced output stop termination
interrupt (INTTMKBSTPm1).

[Syntax]
For CCRL78 toolchain:
static void __near r_{Config_TKBO_TKBn}_tkbm_terminated1_interrupt(void);

For LLVM toolchain:
void r_{Config_TKBO_TKBn}_tkbm_terminated1_interrupt(void);

For IAR toolchain:
‘ __interrupt static void r_{Config_ TKBO_TKBn}_tkbm_terminated1_interrupt(void);

Remark nis1,2.mis0, n.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 283 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_ TKBO_TKBn} tkbm_activatedO_interrupt

This API function executes processing in response to timer KBm TKBOmO forced output stop activation
interrupt (INTTMKBSTRmO).

[Syntax]
For CCRL78 toolchain:
static void __near r_{Config_TKBO_TKBn}_tkbm_activatedO_interrupt(void);

For LLVM toolchain:
void r_{Config_TKBO_TKBn}_tkbm_activatedO_interrupt(void);

For IAR toolchain:
‘ __interrupt static void r_{Config_ TKBO_TKBn}_tkbm_activatedO_interrupt(void);

Remark nis1,2.mis0, n.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 284 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_TKBO_TKBn} tkbm_activated1_interrupt

This API function executes processing in response to timer KBm TKBOm1 forced output stop activation
interrupt (INTTMKBSTRm1).

[Syntax]
For CCRL78 toolchain:
static void __near r_{Config_TKBO_TKBn}_tkbm_activated1_interrupt(void);

For LLVM toolchain:
void r_{Config_TKBO_TKBn}_tkbm_activated1_interrupt(void);

For IAR toolchain:
‘ __interrupt static void r_{Config_ TKBO_TKBn}_tkbm_activated1_interrupt(void);

Remark nis1,2.mis0, n.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 285 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_ TKBO_TKBn} tkbm_end_count_interrupt

This API function executes processing in response to timer KBm count compare match interrupt
(INTTMKBm).

[Syntax]
For CCRL78 toolchain:
static void __near r_{Config_TKBO_TKBn}_tkbm_end_count_interrupt(void);

For LLVM toolchain:
void r_{Config_TKBO_TKBn}_tkbm_end_count_interrupt(void);

For IAR toolchain:
‘ __interrupt static void r_{Config_ TKBO_TKBn} tkbm_end_count_interrupt(void);

Remark nis1,2.mis0, n.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 286 of 868
Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

Usage example

This is an example for starting TKB0 and TKB1 to output PWM waveforms pulses and forced output stop function

by INTPO. Please enable INTPO as forced output trigger on Smart Configurator Ul first:
(Blue code is user code.)
main.c

#include "r_cg_macrodriver.h"
#include "Config_ TKBO_TKB1.h"
#include "Config_INTC.h"

void main(void);

//Delay function to simulate millisecond-level delay
static void delay_ms(uint32_t time_ms)

{
uint32_ti=0;
while(time_ms--) {
for(i=0; i < 156; i++) {
NOP();
}
}
}
void main(void)
{

EI(); /lto enable interrupt
R_Config TKBO_TKB1_Start(); /ITKBO_TKB1 operation start

/[Activate the TKBO forced output stop function 1 by INTPO
R_Config_INTC_INTPO_Start();

delay_ms(10000);

P14 _bit.no0 = ~P14_bit.no0; /lgenerate high level signal to INTPO

/[Terminate the TKBO forced output stop function 1 by INTPO

delay_ms(5000);

P14_bit.no0 = ~P14_bit.no0; /lgenerate low level signal to INTPO

R _Config TKBO_TKB1_TKBOO0O_Forced_Output_Stop_ Function1_Stop();
TKBOO0O

R _Config TKBO_TKB1_TKBOO01_Forced_Output_Stop_ Function1_Stop();
TKBOO1

R_Config_INTC_INTPO_Stop(); // INTPO operation disable

while(1);

/lterminate for

/lterminate for

R20UT4852EC0107 Rev.1.07 RENESAS
Jan 20, 2026

Page 287 of 868

Smart Configurator

4. API FUNCTIONS

4.2.16

PWM Output (Timer KB using simultaneous start/stop mode (period controlled by

TKBCRnNO register)/simultaneous start/stop mode (period controlled by external trigger
input)/synchronous start/clear mode (period controlled by master)) (2 slaves)

Below is a list of API functions output by the Smart Configurator for outputing PWM waveforms use.

Table 4-21 API Functions: (1/2)

API Function Name Peripheral Name Description

R_{Config_TKBO_TKB1_TKB2} Create Timer KB Executes initialization processing that is required
before controlling the TKBO, TKB1 and TKB2
modules in TKB using simultaneous start/stop mode
(period controlled by TKBCRnO
register)/simultaneous start/stop mode (period
controlled by external trigger input)/synchronous
start/clear mode (period controlled by master).

R_{Config_TKBO_TKB1_TKB2} Start Starts the TKBO, TKB1 and TKB2 counters.

R_{Config_TKBO_TKB1_TKB2} Stop Stops the TKBO, TKB1 and TKB2 counters.

R_{Config_ TKBO_TKB1_TKB2} TKBn Sets TKBn batch overwrite request function.

_Set_BatchOverwriteRequestOn

R _{Config_ TKBO_TKB1_TKB2} TKBOnO0 Starts TKBn TKBOnO forced output stop function 1.

_Forced Output_Stop Function1_Start

R _{Config_ TKBO_TKB1_TKB2} TKBOnO0 Stops TKBn TKBOnNO forced output stop function 1.

_Forced Output_Stop Function1_Stop

R_{Config_ TKBO_TKB1_TKB2} TKBOn1 Starts TKBn TKBOn1 forced output stop function 1.

_Forced Output_Stop Function1_Start

R _{Config_ TKBO_TKB1_TKB2} TKBOn1 Stops TKBn TKBOn1 forced output stop function 1.

_Forced_Output_Stop_Function1_Stop

R_{Config_TKBO_TKB1_TKB2}_TKBOnO Starts TKBn TKBOnO smooth start function.

_SmoothStartFunction_Start

R_{Config_TKBO_TKB1_TKB2}_TKBOnO0 Stops TKBn TKBOnO smooth start function.

_SmoothStartFunction_Stop

R_{Config_TKBO_TKB1_TKB2}_TKBOn1 Starts TKBn TKBOn1 smooth start function.

_SmoothStartFunction_Start

R_{Config_TKBO_TKB1_TKB2}_TKBOn1 Stops TKBn TKBOn1 smooth start function.

_SmoothStartFunction_Stop

R20UT4852EC0107 Rev.1.07 REN ESANAS Page 288 of 868

Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

Table 4-22 API Functions: (2/2)

API Function Name Peripheral Name Description
R_{Config_TKBO_TKB1_TKB2} Create_ | Timer KB Executes user-specific initialization processing for
Userlnit the TKBO, TKB1 and TKB2.
r_{Config_TKBO_TKB1_TKB2} tkbn_term Executes processing in response to timer KBn
inatedO_interrupt TKBOnNO forced output stop termination interrupt

(INTTMKBSTPnNO).
r_{Config_TKBO_TKB1_TKB2} tkbn_term Executes processing in response to timer KBn
inated1_interrupt TKBOnN1 forced output stop termination interrupt
(INTTMKBSTPn1).
r_{Config_TKBO_TKB1_TKB2} tkbn_activ Executes processing in response to timer KBn
atedO_interrupt TKBONO forced output stop activation interrupt
(INTTMKBSTRNO).
r {Config TKBO_TKB1_TKB2} tkbn_activ Executes processing in response to timer KBn
ated1_interrupt TKBOnN1 forced output stop activation interrupt
(INTTMKBSTRnN1).
r_{Config_TKBO_TKB1_TKB2}_tkbn_end Executes processing in response to timer KBn count
_count_interrupt compare match interrupt (INTTMKBn).
R20UT4852EC0107 Rev.1.07 REN ESANAS Page 289 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R _{Config_TKBO_TKB1_TKB2} Create

This API function executes initialization processing that is required before controlling the TKB0O, TKB1 and
TKB2 modules in simultaneous start/stop mode (period controlled by TKBCRNO register)/simultaneous
start/stop mode (period controlled by external trigger input)/synchronous start/clear mode (period controlled
by master).

Remark This API function is called from R_TKB_Create.

[Syntax]
void R_{Config_TKBO_TKB1_TKB2} Create(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 290 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R _{Config_ TKBO_TKB1_TKB2} Start
This API function starts the TKBO, TKB1 and TKB2 counters.

[Syntax]
void R_{Config_TKBO_TKB1_TKB2} Start(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 291 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R _{Config_ TKBO_TKB1_TKB2} Stop
This API function stops the TKBO, TKB1 and TKB2 counters.

[Syntax]
void R _{Config_ TKBO_TKB1_TKB2}_ Stop(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 292 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_TKBO_TKB1_TKB2} TKBn_Set BatchOverwriteRequestOn

This API function sets TKBn batch overwrite request function.

[Syntax]
void R_{Config_TKBO_TKB1_TKB2} TKBn_Set BatchOverwriteRequestOn(void);

Remark nis 0,1, 2.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 293 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ TKBO_TKB1_TKB2} TKBOnO_Forced Output Stop Function1_Start
This API function starts TKBn TKBOnO forced output stop function 1.

[Syntax]
void R_{Config_TKBO_TKB1_TKB2} TKBOn0_Forced_Output_Stop_Function1_Start(void);

Remark nis 0,1, 2.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 294 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R _{Config_ TKBO_TKB1_TKB2} TKBOnO_Forced_Output_Stop Function1_Stop
This API function stops TKBn TKBOnO forced output stop function 1.

[Syntax]
void R_{Config_TKBO_TKB1_TKB2} TKBOnQ_Forced_Output_Stop_Function1_Stop(void);

Remark nis 0,1, 2.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 295 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ TKBO_TKB1_TKB2} TKBOn1_Forced_ Output Stop Function1_Start
This API function starts TKBn TKBOn1 forced output stop function 1.

[Syntax]
void R_{Config_TKBO_TKB1_TKB2} TKBOn1_Forced_Output_Stop_Function1_Start(void);

Remark nis 0,1, 2.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 296 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R _{Config_ TKBO_TKB1_TKB2} TKBOn1_Forced_Output_Stop Function1_Stop
This API function stops TKBn TKBOn1 forced output stop function 1.

[Syntax]
void R_{Config_ TKBO_TKB1_TKB2} TKBOn1_Forced_Output_Stop_Function1_Stop(void);

Remark nis 0,1, 2.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 297 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R _{Config_TKBO_TKB1_TKB2} TKBOn0_SmoothStartFunction_Start
This API function starts TKBn TKBOn0 smooth start function.

[Syntax]
void R_{Config_TKBO_TKB1_TKB2} TKBOn0_SmoothStartFunction_Start(void);

Remark nis 0,1, 2.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 298 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_TKBO_TKB1_TKB2} TKBOn0_SmoothStartFunction_Stop
This API function stops TKBn TKBOnO smooth start function.

[Syntax]
void R_{Config_TKBO_TKB1_TKB2} TKBOn0_SmoothStartFunction_Stop(void);

Remark nis 0,1, 2.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 299 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R _{Config_TKBO_TKB1_TKB2} TKBOn1_SmoothStartFunction_Start

This API function starts TKBn TKBOn1 smooth start function.

[Syntax]
void R_{Config_TKBO_TKB1_TKB2} TKBOn1_SmoothStartFunction_Start(void);

Remark nis 0,1, 2.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 300 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_TKBO_TKB1_TKB2} TKBOn1_SmoothStartFunction_Stop
This API function stops TKBn TKBOn1 smooth start function.

[Syntax]
void R_{Config_TKBO_TKB1_TKB2} TKBOn1_SmoothStartFunction_Stop(void);

Remark nis 0,1, 2.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 301 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R _{Config_ TKBO_TKB1_TKB2} Create Userlnit

This API function executes user-specific initialization processing for the TKBO, TKB1 and TKB2.

Remark This API functions is called from R _{Config TKBO TKB1 TKB2} Create as a callback
routine.

[Syntax]
void R_{Config_TKBO_TKB1_TKB2} Create_Userlnit(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 302 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_ TKBO_TKB1_TKB2} tkbn_terminatedQ_interrupt

This API function executes processing in response to timer KBn TKBOnO0 forced output stop termination
interrupt (INTTMKBSTPnO).

[Syntax]
For CCRL78 toolchain:
static void __near r_{Config_TKBO_TKB1_TKB2} tkbn_terminated0_interrupt(void);

For LLVM toolchain:
void r_{Config_TKBO_TKB1_TKB2} tkbn_terminated0_interrupt(void);

For IAR toolchain:
‘ __interrupt static void r_{Config_ TKBO_TKB1_TKB2} tkbn_terminatedQ_interrupt(void); ‘

Remark nis 0,1, 2.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 303 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_ TKBO_TKB1_TKB2} tkbn_terminated1_interrupt

This API function executes processing in response to timer KBn TKBOn1 forced output stop termination
interrupt (INTTMKBSTPn1).

[Syntax]
For CCRL78 toolchain:
static void __near r_{Config_TKBO_TKB1_TKB2} tkbn_terminated1_interrupt(void);

For LLVM toolchain:
void r_{Config_TKBO_TKB1_TKB2} tkbn_terminated1_interrupt(void);

For IAR toolchain:
‘ __interrupt static void r_ {Config_ TKBO_TKB1_TKB2} tkbn_terminated1_interrupt(void); ‘

Remark nis 0,1, 2.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 304 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_ TKBO_TKB1_TKB2} tkbn_activated0 interrupt

This API function executes processing in response to timer KBn TKBOnO forced output stop activation
interrupt (INTTMKBSTRnNO).

[Syntax]
For CCRL78 toolchain:
static void __near r_{Config_TKBO_TKB1_TKB2} tkbn_activated0_interrupt(void);

For LLVM toolchain:
void r_{Config_TKBO_TKB1_TKB2} tkbn_activatedO_interrupt(void);

For IAR toolchain:
‘ __interrupt static void r_{Config_ TKBO_TKB1_TKB2} tkbn_activated0_interrupt(void);

Remark nis 0,1, 2.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 305 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_ TKBO_TKB1_TKB2} tkbn_activated1_interrupt

This API function executes processing in response to timer KBn TKBOn1 forced output stop activation
interrupt (INTTMKBSTRnN1).

[Syntax]
For CCRL78 toolchain:
static void __near r_{Config_TKBO_TKB1_TKB2} tkbn_activated1_interrupt(void);

For LLVM toolchain:
void r_{Config_TKBO_TKB1_TKB2} tkbn_activated1_interrupt(void);

For IAR toolchain:
‘ __interrupt static void r_{Config_ TKBO_TKB1_TKB2} tkbn_activated1_interrupt(void);

Remark nis 0,1, 2.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 306 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_ TKBO_TKB1_TKB2} tkbn_end_count_interrupt

This API function executes processing in response to timer KBn count compare match interrupt
(INTTMKBn).

[Syntax]
For CCRL78 toolchain:
static void __near r_{Config_TKBO_TKB1_TKB2}_tkbn_end_count_interrupt(void);

For LLVM toolchain:
void r_{Config_TKBO_TKB1_TKB2} tkbn_end_count_interrupt(void);

For IAR toolchain:
‘ __interrupt static void r_{Config_ TKBO_TKB1_TKB2} tkbn_end_count_interrupt(void); ‘

Remark nis 0,1, 2.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 307 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

Usage example

This is an example for starting TKBO, TKB1 and TKB2 to output PWM waveforms pulses:
(Blue code is user code.)
main.c

#include "r_smc_entry.h"
extern uint8_t tkb_pwm_count;

void main(void);

void main(void)

{
EI(); /lto enable interrupt
R_Config TKBO_TKB1_TKB2_Start(); /ITKBO, TKB1 and TKB2 operation enable
while (tkb_pwm_count < 10); /Iwait until tkb_pwm_count reaches or exceeds 10, exit the loop
R _Config TKBO_TKB1_TKB2_Stop(); /ITKBO, TKB1 and TKB2 operation disable
}

Config_TKBO_TKB1_TKB2_user.c
[* Start user code for global. Do not edit comment generated here */
uint8_t tkb_pwm_count;
/* End user code. Do not edit comment generated here */

static void __near r_Config_ TKBO_TKB1_TKB2_tkb0_end_count_interrupt (void)

[* Start user code for r_Config. TKBO_TKB1_TKB2_tkb0 _end_count_interrupt. Do not edit comment
generated here */

tkb_pwm_count ++; /Ito count the number of times the interrupt handler is entered

/* End user code. Do not edit comment generated here */

R20UT4852EC0107 Rev.1.07 RENESAS Page 308 of 868
Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

4.2.17 Input Pulse Interval/Period Measurement (Timer Array Unit)

Below is a list of API functions output by the Smart Configurator for input pulse interval measurement use.

Table 4-23 API Functions:

API Function Name

Peripheral Name

Description

R_{Config_TAUm_n} Create

R_{Config_TAUm_n}_Start

R_{Config_TAUm_n}_Stop

R_{Config_TAUmM_n}_Get_PulseWidth

R_{Config_ TAUmM_n} Create_Userlnit

r_{Config_ TAUm_n} interrupt

Timer Array Unit

Executes initialization processing that is required before
controlling the TAUm channeln module in input pulse

interval measurement mode

Starts the TAUm channeln counter.

Stops the TAUm channeln counter.

Measures TAUm channeln input pulse width.

Executes user-specific initialization processing for the
TAUm channeln.

Executes processing in response to timer channeln

capture interrupt (INTTMmn).

R20UT4852EC0107 Rev.1.07
Jan 20, 2026

RENESAS Page 309 of 868

Smart Configurator 4. API FUNCTIONS

R _{Config_ TAUmM _n} Create

This API function executes initialization processing that is required before controlling the TAUm channeln
module in input pulse interval measurement mode.

Remark This API function is called from R_TAUm_Create.

[Syntax]
void R_{Config_ TAUmM n} Create(void);

Remark m is the unit number, n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 310 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ TAUm n} Start

This API function starts the TAUm channeln counter.

[Syntax]
void R_{Config_TAUm_n}_Start(void);

Remark m is the unit number, n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 311 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_TAUm_n} Stop

This API function stops the TAUm channeln counter.

[Syntax]
void R_{Config_TAUm_n}_Stop(void);

Remark m is the unit number, n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 312 of 868
Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

R _{Config_ TAUmM _n} Get PulseWidth

Measures TAUm channel n input pulse width.

[Syntax]
void R_{Config_TAUm_n} Get_PulseWidth(uint32_t * const width);
Remark m is the unit number, n is the channel number.
[Argument(s)]
I/0 Argument(s) Description
O | uint32_t * const width; the address where to write the input pulse width

[Return value]

None.

R20UT4852EC0107 Rev.1.07
Jan 20, 2026

RENESAS Page 313 of 868

Smart Configurator 4. API FUNCTIONS

R_{Config_ TAUm_n} Create_Userlnit

This API function executes user-specific initialization processing for the TAUm channeln.

Remark This API functions is called from R_{Config_ TAUm_n} Create as a callback routine.
[Syntax]
void R_{Config_TAUm_n} Create_Userlnit(void);
Remark m is the unit number, n is the channel number.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 314 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_ TAUm_n} interrupt

This API function executes processing in response to timer channelmn capture interrupt (INTTMmn).

Remark This API function is called as the interrupt handler for capture interrupts (INTTMmn), which
occur when the valid capture edge is detected and the current counter value (TCRmn) is
transferred to timer data register mn (TDRmn).

[Syntax]
For CCRL78 toolchain:
static void __near r_{Config_TAUm_n}_interrupt(void);

For LLVM toolchain:
void r_{Config_TAUm_n}_interrupt(void);

For IAR toolchain:
‘ __interrupt static void r_{Config_ TAUm_n} _interrupt(void);

Remark m is the unit number, n is the channel number.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 315 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

Usage example

This is an example for getting TAU channel 0 input interval width from TI0O:
(Blue code is user code.)
main.c

#include "r_smc_entry.h"
extern volatile uint8_t tau_interrupt_flag;
uint32_t width;

void main(void);
void main(void)

El(); /Ito enable interrupt

tau_interrupt_flag = 0; /Iset the initial value of tau_interrupt_flag

R_Config TAUO_0_Start(); /ITAUOO operation enable, the TCROO register counts up from
0000H.

/Iwait until tau_interrupt_flag not equal 0, exit the loop. It indicates that the valid edge of the TI00 pin
input is detected

while (tau_interrupt_flag == 0);

R_Config_TAUO_0_Stop(); /ITAUQO operation disable

/[The high-level width or low-level width of the TI00 pin can be read from “width”

R_Config_TAUO_0_Get_PulseWidth(&width);

Config_ TAUO_ 0O _user.c
[* Start user code for global. Do not edit comment generated here */
uint8_t tau_interrupt_flag;
/* End user code. Do not edit comment generated here */

static void __near r_Config_TAUO_O_interrupt (void)

{
};‘. Start user code for r_Config_TAUO_O_interrupt. Do not edit comment generated here */
/[The valid edge of the TI00 pin input is detected, the count value is transferred to TDROO.
tau_interrupt_flag = 1U; /* set the flag */
/* End user code. Do not edit comment generated here */
}
R20UT4852EC0107 Rev.1.07 RENESAS Page 316 of 868

Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

4.2.18 Input Pulse Interval/Period Measurement (Timer RJ)

Below is a list of API functions output by the Smart Configurator for input pulse period of an external signal
(input to the TRJIOnN pin) measurement use.

Table 4-24 API Functions:

API Function Name Peripheral Name Description

R_{Config_TRJn} Create Timer RJn Executes initialization processing that is required before
controlling the TRJn module in input pulse width
measurement mode.

R_{Config_TRJn}_Start Starts the TRJn counter.

R_{Config_TRJn} Stop Stops the TRJn counter.

R_{Config_TRJn}_Get_PulseWidth Measures TRJn input pulse width.

R_{Config_TRJn} Create_Userlnit Executes user-specific initialization processing for the
TRJn.

r_{Config_TRJn}_interrupt Executes processing in response to the interrupt
(INTTRJn) when TRJn counter underflows.

R20UT4852EC0107 Rev.1.07 :{EN ESNS Page 317 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_TRJn} Create

This API function executes initialization processing that is required before controlling the TRJn module in
input pulse width of an external signal (input to the TRJIOn pin) measurement mode.

Remark This API function is called from R_Systeminit before the main() function is executed.
[Syntax]
void R_{Config_TRJn}_Create(void);
Remark n is the channel number.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 318 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_TRJn}_ Start

This API function starts the TRJn counter.

[Syntax]
void R_{Config_TRJn}_Start(void);

Remark n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 319 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_TRJn} Stop

This API function stops the TRJn counter.

[Syntax]
void R_{Config_TRJn}_Stop(void);

Remark n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 320 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_TRJn} Get PulseWidth

This API function measures TRJn input pulse width.

[Syntax]
void R_{Config_TRJn}_Get_PulseWidth(uint32_t * const width);
Remark n is the channel number.
[Argument(s)]
I/0 Argument(s) Description
O | uint32_t * const width; The address where to write the input pulse width

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 321 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_TRJn} Create_Userlnit

This API function executes user-specific initialization processing for the TRJn.

Remark This API functions is called from R_{Config_TRJn} Create as a callback routine.
[Syntax]
void R_{Config_TRJn}_Create_Userlnit(void);
Remark n is the channel number.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 322 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_TRJn}_interrupt

This API function executes processing in response to the interrupt (INTTRJn) when TRJn counter
underflows.
Remark This API function is called as the interrupt handler for capture interrupts (INTTRJn), which
occur when the measurement of the active width of the external input (TRJIOn) is
completed in pulse width measurement mode.

[Syntax]
For CCRL78 toolchain:
static void __near r {Config_TRJn}_interrupt(void);

For LLVM toolchain:
void r_{Config_TRJn}_interrupt(void);

For IAR toolchain:
__interrupt static void r_{Config_TRJn}_interrupt(void);

Remark n is the channel number.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 323 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

Usage example

This is an example for getting TRJO input pulse period:
(Blue code is user code.)
main.c

#include "r_smc_entry.h"
volatile uint8_t measure_flag = 0U;
uint32_t g_width[20] = {0};

void main(void);

void main(void)
{
El(); /Ito enable interrupt
R_Config TRJO_Start(); /ITRJO operation enable, the TCROO register counts up from 0000H.
R _Config TAUO_0_Start(); /[Output square wave from TAUO_0
/[The first interrupt is dummy value, no need to store in g_width
while(measure_flag != 1U);
measure_flag = 0U;

for (chari=0; i< 20; i++) /lto measure 20 times

while(measure_flag != 1U); /lwait until measure_flag equal 1, exit the loop. It indicates that
the valid edge of the TRJIOO pin input is detected

R_Config_TRJO_Get_PulseWidth(g_width +i); //get the pulse period of the TRJIOO0 pin can be
read from g_width

measure_flag = 0U;

}
R_Config_TRJO_Stop(); /ITRJO operation disable
while(1);

Config_ TRJO user.c
[* Start user code for global. Do not edit comment generated here */
extern volatile uint8_t measure_flag;
/* End user code. Do not edit comment generated here */

static void __near r_Config_TRJO0_interrupt (void)

{

[* Start user code for r_Config_ TRJO_interrupt. Do not edit comment generated here */
measure_flag = 1U; /lwhen the measurement of the active width of the external input (TRJIOO)
is completed
/* End user code. Do not edit comment generated here */
}

R20UT4852EC0107 Rev.1.07 RENESAS Page 324 of 868
Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

4.2.19 Interval Timer (Timer Array Unit)

Below is a list of API functions output by the Smart Configurator for interval timer (for timer array unit) use.

Table 4-25 API Functions:

API Function Name

Peripheral Name

Description

R_{Config_TAUm_n}_Create

R_{Config_TAUm_n}_Start

R_{Config_TAUm_n}_Stop

R_{Config_ TAUm_n} Higher8bits_Start

R_{Config_TAUm_n} Higher8bits_Stop

R_{Config_ TAUmM_n} Lower8bits_Start

R_{Config_TAUmM_n} Lower8bits_Stop

R_{Config_ TAUmM_n} Create_Userlnit

r_{Config_TAUm_n}_interrupt

r_{Config_TAUm_n}_higher8bits_interrupt

Timer Array Unit

Executes initialization processing that is required
before controlling the TAUm channeln module in
interval timer mode.

Starts the TAUm channeln counter.

Stops the TAUm channeln counter.

Starts the TAUm channeln higher 8 bits counter.

Stops the TAUm channeln higher 8 bits counter.

Starts the TAUm channeln lower 8 bits counter.

Stops the TAUm channeln lower 8 bits counter.

Executes user-specific initialization processing for
the TAUm channeln.

Executes processing in response to timer channeln

count end interrupt (INTTMmn).

Executes processing in response to timer channeln
count end interrupt (INTTMmnH) (at higher 8-bit
timer operation).

R20UT4852EC0107 Rev.1.07
Jan 20, 2026

RENESAS Page 325 of 868

Smart Configurator 4. API FUNCTIONS

R _{Config_ TAUmM _n} Create

This API function executes initialization processing that is required before controlling the TAUm channeln
module in interval timer mode.

Remark This API function is called from R_TAUm_Create.

[Syntax]
void R_{Config_ TAUmM n} Create(void);

Remark m is the unit number, n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 326 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ TAUm n} Start

This API function starts the TAUm channeln counter.

[Syntax]
void R_{Config_TAUm_n}_Start(void);

Remark m is the unit number, n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 327 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_TAUm_n} Stop

This API function stops the TAUm channeln counter.

[Syntax]
void R_{Config_TAUm_n}_Stop(void);

Remark m is the unit number, n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 328 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ TAUm_n} Higher8bits_Start

Starts the TAUm channeln higher 8 bits counter.

[Syntax]
void R_{Config_TAUm_n} Higher8bits_Start(void);

Remark m is the unit number, n is the channel number 1 or 3.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 329 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_TAUm _n} Higher8bits_Stop

Stops the TAUm channeln higher 8 bits counter.

[Syntax]
void R_{Config_TAUm_n} Higher8bits_Stop(void);

Remark m is the unit number, n is the channel number 1 or 3.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 330 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_TAUm_n} Lower8bits_Start

Starts the TAUm channeln lower 8 bits counter.

[Syntax]
void R_{Config_TAUm_n} Lower8bits_Start(void);

Remark m is the unit number, n is the channel number 1 or 3.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 331 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R _{Config_TAUm _n} Lower8bits_Stop

Stops the TAUm channeln lower 8 bits counter.

[Syntax]
void R_{Config_TAUm_n} Lower8bits_Stop(void);

Remark m is the unit number, n is the channel number 1 or 3.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 332 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ TAUm_n} Create_Userlnit

This API function executes user-specific initialization processing for the TAUm channeln.

Remark This API functions is called from R_{Config_ TAUm_n} Create as a callback routine.
[Syntax]
void R_{Config_TAUm_n} Create_Userlnit(void);
Remark m is the unit number, n is the channel number.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 333 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_ TAUm_n} interrupt

This API function executes processing in response to timer channeln count end interrupt (INTTMmn).
Remark This API function is called as the interrupt handler for count end interrupt (INTTMmn), which
occur when the current counter value (TCRmn) reaches 0000H.

[Syntax]
For CCRL78 toolchain:
static void __near r {Config_ TAUmM n} interrupt(void);

For LLVM toolchain:
void r_{Config_TAUm_n}_interrupt(void);

For IAR toolchain:
__interrupt static void r_{Config_TAUm_n} _interrupt(void);

Remark m is the unit number, n is the channel number.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 334 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_TAUm _n} higher8bits_interrupt

This API function executes processing in response to timer channeln count end interrupt (INTTMmnH)

(at higher 8-bit timer operation).

Remark This API function is called as the interrupt handler for count end interrupt (INTTMmn),
which occur when the current counter (TCRmn) higher 8-bit value reaches 00H.

[Syntax]
For CCRL78 toolchain:
static void __near r_{Config_TAUm_n}_higher8bits_interrupt(void);

For LLVM toolchain:
void r_{Config_TAUm_n}_higher8bits_interrupt(void);

For IAR toolchain:
‘ __interrupt static void r_{Config_ TAUm_n} higher8bits_interrupt(void);

Remark m is the unit number, n is the channel number 1 or 3.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 335 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

Usage example

This is an example for using TAU channel 0 counting interval timer, channel 3 counting as high 8-bit interval
timer and channel 1 counting as low 8-bit interval timer for a user-defined period:
(Blue code is user code.)

main.c

#include "r_smc_entry.h"

extern uint8_t ch0_run_count;

extern uint8_t ch1_run_count;

extern uint8_t ch3_run_count;

void main(void);

void main(void)

{
EI(); /lto enable interrupt
R_Config TAUO_0_Start(); /ITAUOO operation enable
while (chO_run_count < 20); /Iwait until chO_run_count reaches or exceeds 20, exit the loop
R_Config_TAUO_0_Stop(); /ITAUQO operation disable
R_Config_TAUO_1_Lower8bits_Start(); /ITAUO1 operation enable
while (ch1_run_count < 20); //wait until ch1_run_count reaches or exceeds 20, exit the loop
R_Config_TAUO_1_Lower8bits_Stop(); /ITAUO1 operation disable
R_Config_TAUO_3_Higher8bits_Start(); /ITAUQO3 operation enable
while (ch3_run_count < 20); //wait until ch3_run_count reaches or exceeds 20, exit the loop
R_Config_TAUO_3_Higher8bits_Stop(); /ITAUO3 operation disable

}

Config_ TAUO_O_user.c

[* Start user code for global. Do not edit comment generated here */
uint8_t chO_run_count;
/* End user code. Do not edit comment generated here */

static void __near r_Config_TAUO_O_interrupt (void)

[* Start user code for r_Config_ TAUO_O0 _interrupt. Do not edit comment generated here */
ch0_run_count ++; /lto count the number of times the interrupt handler is entered
/* End user code. Do not edit comment generated here */

Config_TAUO_1_user.c
[* Start user code for global. Do not edit comment generated here */
uint8_t ch1_run_count;
/* End user code. Do not edit comment generated here */

static void __near r_Config_TAUO_1_interrupt (void)

[* Start user code for r_Config_ TAUO_1_interrupt. Do not edit comment generated here */
ch1_run_count ++; /lto count the number of times the interrupt handler is entered
/* End user code. Do not edit comment generated here */

R20UT4852EC0107 Rev.1.07 RENESAS Page 336 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

Config_ TAUO_3_user.c
[* Start user code for global. Do not edit comment generated here */
uint8_t ch3_run_count;
/* End user code. Do not edit comment generated here */

static void __near r_Config_ TAUO_3 _interrupt (void)

[* Start user code for r_Config TAUO_3 _interrupt. Do not edit comment generated here */
ch3_run_count ++; /lto count the number of times the interrupt handler is entered
/* End user code. Do not edit comment generated here */

R20UT4852EC0107 Rev.1.07 RENESAS Page 337 of 868
Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

4.2.20 Interval Timer (Timer RJ)

Below is a list of API functions output by the Smart Configurator for interval timer (Timer RJn) use.

Table 4-26 API Functions:

API Function Name Peripheral Name Description

R_{Config_TRJn} Create Timer RJn Executes initialization processing that is required
before controlling the Timer RJn module in interval
timer mode.

R_{Config_TRJn}_Start Starts the TRJn counter.

R_{Config_TRJn}_Stop Stops the TRJn counter.

R_{Config_TRJn} Create_Userlnit Executes user-specific initialization processing for
the TRJn.

r_{Config_TRJn}_interrupt Executes processing in response to the interrupt
(INTTRJn) when TRJn counter underflows.

R20UT4852EC0107 Rev.1.07 :{EN ESNS Page 338 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_TRJn} Create

This API function executes initialization processing that is required before controlling the TRJn module in
inverval timer mode.
Remark This API function is called from R_Systeminit before the main() function is executed.

[Syntax]
void R_{Config_TRJn}_Create(void);

Remark n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 339 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_TRJn}_ Start

This API function starts the TRJn counter.

[Syntax]
void R_{Config_TRJn}_Start(void);

Remark n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 340 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_TRJn} Stop

This API function stops the TRJn counter.

[Syntax]
void R_{Config_TRJn}_Stop(void);

Remark n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 341 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_TRJn} Create_Userlnit

This API function executes user-specific initialization processing for the TRJn.

Remark This API functions is called from R_{Config_TRJn} Create as a callback routine.
[Syntax]
void R_{Config_TRJn}_Create_Userlnit(void);
Remark n is the channel number.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 342 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_TRJn}_interrupt

This API function executes processing in response to the interrupt (INTTRJn) when TRJn counter
underflows.

Remark This API function is called as the interrupt handler for TRJn interrupts (INTTRJn), which

occur when the count value reaches 0000H and the next count source is input, the counter underflows.

[Syntax]
For CCRL78 toolchain:
static void __near r_{Config_TRJn}_interrupt(void);

For LLVM toolchain:
void r_{Config_TRJn}_interrupt(void);

For IAR toolchain:
‘ __interrupt static void r_{Config_TRJn}_interrupt(void);

Remark n is the channel number.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 343 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

Usage example

This is an example for using TRJO counting for a user-defined counter value and output a wave form P00 pin:
(Blue code is user code.)
main.c

#include "r_smc_entry.h"
extern uint8_t chO_run_count;

void main(void);

void main(void)

{
EI(); /lto enable interrupt
R_Config TRJO_Start(); /ITRJO operation enable
while (ch0_run_count < 20); /Iwait until chO_run_count reaches or exceeds 20, exit the loop
R_Config_ TRJO_Stop(); /ITRJO operation disable
}

Config_ TRJO user.c
[* Start user code for global. Do not edit comment generated here */
uint8_t chO_run_count;
/* End user code. Do not edit comment generated here */

static void __near r_Config_TRJO0_interrupt (void)

{
[* Start user code for r_Config TRJO_interrupt. Do not edit comment generated here */
ch0_run_count ++; /Ito count the number of times the interrupt handler is entered
PO_bit.no0 = ~P0_bit.no0; /leach time an interrupt occurs, the level of P0.0 will flip once
/* End user code. Do not edit comment generated here */
}
R20UT4852EC0107 Rev.1.07 RENESAS Page 344 of 868

Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

4.2.21 Interval Timer (12-bit Interval Timer)

Below is a list of API functions output by the Smart Configurator for interval timer (12-bit Interval Timer) use.

Table 4-27 API Functions:

API Function Name Peripheral Name Description
R_{Config_IT} Create 12-bit Interval Executes initialization processing that is required
Timer before controlling the 12-bit interval timer module.

R_{Config_IT} Start Starts the 12-bit interval timer counter.

R_{Config_IT}_Stop Stops the 12-bit interval timer counter.

R_{Config_IT} Create_Userlnit Executes user-specific initialization processing for
the 12-bit interval timer.

r_{Config_IT}_interrupt Executes processing in response to the interrupt
(INTIT) when 12-bit interval timer counter
underflows.

R20UT4852EC0107 Rev.1.07 :{EN ESNS Page 345 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_IT} Create

This API function executes initialization processing that is required before controlling the 12-bit interval
timer module in interval timer mode.
Remark This API function is called from R_Systeminit before the main() function is executed.

[Syntax]
void R_{Config_IT} Create(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 346 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_IT} Start

This API function starts the 12-bit interval timer counter.

[Syntax]
void R_{Config_IT}_ Start(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 347 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_IT} Stop

This API function stops the 12-bit interval timer counter.

[Syntax]
void R_{Config_IT}_ Stop(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 348 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_IT} Create Userlnit

This API function executes user-specific initialization processing for the 12-bit interval timer.
Remark This API functions is called from R_{Config_IT} Create as a callback routine.

[Syntax]
void R_{Config_IT} Create_Userlnit(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 349 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_IT} interrupt

This API function executes processing in response to the interrupt (INTIT) when 12-bit interval timer
counter is same as compare value.

Remark This API function is called as the interrupt handler for 12-bit interval timer interrupts (INTIT),

which occur when the count value reaches compare value.

[Syntax]
For CCRL78 toolchain:
static void __near r_{Config_IT} interrupt(void);

For LLVM toolchain:
void r_{Config_IT} interrupt(void);

For IAR toolchain:
‘ __interrupt static void r_{Config_IT} interrupt(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 350 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

Usage example

This is an example for using 12-bit Interval Timer counting for a user-defined counter value and output a wave
form PQO pin:
(Blue code is user code.)

main.c

#include "r_smc_entry.h"
extern uint8_t count;

void main(void);

void main(void)

{
El(); /Ito enable interrupt
R_Config_IT_Start(); //IT operation enable
while (count < 20); /Iwait until count reaches or exceeds 20, exit the loop
R_Config_IT_Stop(); /T operation disable
}

Config_IT user.c
[* Start user code for global. Do not edit comment generated here */
uint8_t count;
/* End user code. Do not edit comment generated here */

static void __near r_Config_IT_interrupt (void)

{
[* Start user code for r_Config_IT_interrupt. Do not edit comment generated here */
count ++; /Ito count the number of times the interrupt handler is entered
PO_bit.no0 = ~P0_bit.no0; /leach time an interrupt occurs, the level of P0.0 will flip once
/* End user code. Do not edit comment generated here */
}
R20UT4852EC0107 Rev.1.07 RENESAS Page 351 of 868

Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

4.2.22

Interval Timer (32-bit Interval Timer using 8-bit counter mode)

Below is a list of API functions output by the Smart Configurator for interval timer (for 32-bit interval timer

when using 8bit counter mode) use.

Table 4-28 API Functions:

API Function Name

Peripheral Name

Description

R_{Config_ITLn} Create

R_{Config_ITLn}_Start

R_{Config_ITLn} Stop

R_{Config_ITLn} Set OperationMode

R _{Config_ITLn} Create_Userlnit

r_{Config_ITLn} Callback_Shared_Interrupt

32-bit Interval Timer

Executes initialization processing that is required
before controlling the ITLn module in interval
timer mode (8bit mode).

Starts the ITLn channel.

Stops the ITLn channel.

Used to stop counter and clear interrupt flag
before changing 32-bit interval timer operation

mode.

Executes user-specific initialization processing
for the ITLn channel.

Executes processing in response to 32-bit

interval timer interrupt (INTITL)

R20UT4852EC0107 Rev.1.07
Jan 20, 2026

RENESAS

Page 352 of 868

Smart Configurator 4. API FUNCTIONS

R _{Config_ITLn} Create

This API function executes initialization processing that is required before controlling the ITLn module in
interval timer mode (8bit mode).

Remark This API function is called from R_ITL_Create.
[Syntax]
void R_{Config_ITLn}_Create(void);
Remark n is the channel number.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 353 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ITLn} Start

This API function starts the ITLn channel.

Remark The 32-bit interval timer interrupt is enabled by calling R_ITL_Start_Interrupt. For this
reason, to use 32-bit interval timer interrupt, please call this API function together with
R_ITL_Start_Interrupt.

[Syntax]
void R_{Config_ITLn}_Start(void);

Remark n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 354 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ITLn} Stop

This API function stops the ITLn channel.

[Syntax]
void R_{Config_ITLn}_Stop(void);

Remark n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 355 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ITLn} Set OperationMode

This API function is used to stop counter and clear interrupt flag before changing 32-bit interval timer
operation mode.

[Syntax]
void R_{Config_ITLn}_Set_OperationMode(void);

Remark n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 356 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ITLn} Create Userlnit

This API function executes user-specific initialization processing for the ITLn channel.

Remark This API functions is called from R_{Config_ITLn} Create as a callback routine.
[Syntax]
void R_{Config_ITLn} Create_Userlnit(void);
Remark n is the channel number.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 357 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_ITLn} Callback Shared_interrupt

This API function executes processing in response to 32-bit interval timer interrupt (INTITL).
Remark 1. This API function is called as a callback routine from r_itl_interrupt, which is the interrupt
handler for 32-bit interval timer interrupts.
Remark 2. User should only keep necessary flag set/clear in callback function, other processing code
should be moved out of callback and interrupt function. Otherwise, the interrupt is not processed at the

correct timing.

[Syntax]
For CCRL78 toolchain:
static void __near r_{Config_ITLn} Callback Shared_interrupt(void);

For LLVM toolchain:
void r_{Config_ITLn}_Callback_Shared_interrupt(void);

For IAR toolchain:
__interrupt static void r_{Config_ITLn}_Callback_Shared_interrupt(void);

Remark n is the channel number.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 358 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

Usage example

This is an example for using 8-bit counting for a user-defined counter value and output a wave form PQO pin:
(Blue code is user code.)
main.c

#include "r_smc_entry.h"
extern volatile uint8_t interrupt_flag;

void main(void);
void main(void)

EI(); /lto enable interrupt

interrupt_flag = 0;

R_ITL_Start_Interrupt();

R_Config_ITLO01 _Start(); //ITLOO1 operation enable

while (interrupt_flag < 20); [Iwait until interrupt_flag reaches or exceeds 20, exit the loop
R_Config_ITLO0O1 _Stop(); //ITLOO1 operation disable

Config_ITLO01 _user.c
[* Start user code for global. Do not edit comment generated here */
uint8_t interrupt_flag;
/* End user code. Do not edit comment generated here */

void R_Config_ITLO01_Callback_Shared_Interrupt(void)

[* Start user code for R_Config_ITLO00_Callback_Shared_Interrupt. Do not edit comment generated
here */

interrupt_flag ++; /Ito count the number of times the interrupt handler is entered
PO = ~P0; /leach time an interrupt occurs, the level of POO will flip once
/* End user code. Do not edit comment generated here */
}
R20UT4852EC0107 Rev.1.07 RENESAS Page 359 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

4.2.23 Interval Timer (32-bit Interval Timer using 16-bit counter mode)

Below is a list of API functions output by the Smart Configurator for interval timer (for 32-bit interval timer
when using 16bit counter mode) use.

Table 4-29 API Functions:

API Function Name Peripheral Name Description

R_{Config_ITLn_ITLm}_Create 32-bit Interval Timer | Executes initialization processing that is
required before controlling the ITLn_ITLm
module in interval timer mode (16bit

mode).
R_{Config_ITLn_ITLm}_Start Starts the ITLn_ITLm channel.
R_{Config_ITLn_ITLm}_Stop Stops the ITLn_ITLm channel.
R_{Config_ITLn_ITLm}_ Set_SoftwareTriggerOn Generates software trigger.
R_{Config_ITLn_ITLm}_ Set OperationMode Used to stop counter and clear interrupt

flag before changing 32-bit interval timer
operation mode.

R _{Config_ITLn_ITLm} Get CaptureValue Gets capture value.

R_{Config_ITLn_ITLm}_ Create_Userlnit Executes user-specific initialization
processing for the ITLn_ITLm channel.

r_{Config_ITLn_ITLm}_Callback_Shared_Interrupt Executes processing in response to 32-
bit interval timer interrupt (INTITL).

R20UT4852EC0107 Rev.1.07 RENESAS Page 360 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R _{Config_ITLn_ITLm} Create

This API function executes initialization processing that is required before controlling the ITLn_ITLm
module in interval timer mode (16bit mode).

Remark This API function is called from R_ITL_Create.

[Syntax]
void R_{Config_ITLn_ITLm}_Create(void);
Remark When nis 000, mis 001; When nis 012, mis 013.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 361 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R _{Config_ITLn_ITLm}_ Start

This API function starts the ITLn_ITLm channel.

Remark The 32-bit interval timer interrupt is enabled by calling R_ITL_Start_Interrupt. For this
reason, to use 32-bit interval timer interrupt, please call this API function together with
R_ITL_Start_Interrupt.

[Syntax]
void R_{Config_ITLn_ITLm}_Start(void);
Remark When nis 000, mis 001; When nis 012, mis 013.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 362 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ITLn_ITLm}_ Stop

This API function stops the ITLn_ITLm channel.

[Syntax]
void R _{Config_ITLn_ITLm}_Stop(void);
Remark When nis 000, mis 001; When nis 012, mis 013.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 363 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R _{Config_ITLn _ITLm} Set SoftwareTriggerOn

This API function generates software trigger.

[Syntax]
void R _{Config_ITLn_ITLm}_Set_SoftwareTriggerOn(void);
Remark When nis 000, mis 001; When nis 012, mis 013.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 364 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ITLn_ITLm} Set OperationMode

This API function is used to stop counter and clear interrupt flag before changing 32-bit interval timer
operation mode.

[Syntax]
void R_{Config_ITLn_ITLm}_Set_OperationMode(void);
Remark When nis 000, mis 001; When nis 012, mis 013.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 365 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R _{Config_ITLn_ITLm}_ Get CaptureValue

This API function gets capture value.

[Syntax]
void R_{Config_ITLn_ITLm}_Get_CaptureValue(uint16_t * const value);
Remark When nis 000, mis 001; When nis 012, mis 013.

[Argument(s)]
I/0 Argument(s) Description
O | uint16_t * const value; the address where to write the capture value

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 366 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ITLn_ITLm} Create_Userlnit

This API function executes user-specific initialization processing for the ITLn_ITLm channel.
Remark This API functions is called from R_{Config_ITLn_ITLm} Create as a callback routine.

[Syntax]
void R_{Config_ITLn_ITLm}_ Create_Userlnit(void);
Remark When nis 000, mis 001; When nis 012, mis 013.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 367 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_ITLn_ITLm} Callback Shared_interrupt

This API function executes processing in response to 32-bit interval timer interrupt (INTITL).
Remark 1. This API function is called as a callback routine from r_itl_interrupt, which is the interrupt
handler for 32-bit interval timer interrupts.
Remark 2. User should only keep necessary flag set/clear in callback function, other processing
code should be moved out of callback and interrupt function. Otherwise, the interrupt is
not processed at the correct timing.

[Syntax]
For CCRL78 toolchain:
static void __near r {Config_ITLn_ITLm} Callback_Shared_interrupt(void);

For LLVM toolchain:
void r_{Config_ITLn_ITLm}_Callback_Shared_interrupt(void);

For IAR toolchain:
__interrupt static void r_{Config_ITLn_ITLm}_Callback_Shared_interrupt(void);

Remark When nis 000, mis 001; When nis 012, mis 013.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 368 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

Usage example

This is an example for changing 32-bit interval timer operation mode to user setting (16-bit count mode change
to 16-bit capture mode):
(Blue code is user code.)
main.c

#include "r_smc_entry.h"

void main(void);
void main(void)

El(); /lto enable interrupt

R_Config_ITLO00 ITLO01_Set OperationMode(); /ldisable all counters in the 32-bit interval
timer

[* Capture setting */

ITLCCO |= _80_ITL CAPTURE_ENABLE;

CAPFOCR = 1U;

ITLCCO |=_00_ITL_CAPTURE_COUNTER_RETAIN;

ITLCCO &= _FC_ITL_CAPTURE_TRIGGER_CLEAR;

ITLCCO |= _00_ITL_CAPTURE_TRIGGER_SOFTWARE;

R_Config_ITLO0O_ITLO011_Start(); /ITLO00_ITLOO1 operation enable

R_Config_ITLO0OO_ITLO011_Set_SoftwareTriggerOn(); /lto generate a software trigger for
capturing

}

Config_ITLOO0O_ user.c
volatile uint16_t value = 0U;

void r_Config_ITLOOO_callback_shared_interrupt(void)

//When the capture trigger is detected, the ITLCAPOO register can be read from value
R_Config_ITLO0O_ITLO011_Get_CaptureValue (&value);

}

R20UT4852EC0107 Rev.1.07 RENESAS Page 369 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

4.2.24 Interval Timer (32-bit Interval Timer using 32-bit counter mode)

Below is a list of API functions output by the Smart Configurator for interval timer (for 32-bit interval timer
when using 32bit counter mode) use.

Table 4-30 API Functions:

API Function Name Peripheral Name Description
R_{Config_ITLOOO_ITLOO1_ITLO12_ITLO13} | 32-bit Interval Timer | Executes initialization processing that is required
_Create before controlling the

ITLOOO_ITLOO1_ITLO12_ITLO13 module in

interval timer mode (32bit mode).
R_{Config_ITLO0O_ITLOO1_ITLO12_ITLO13} Starts the ITLO0O_ITLOO1_ITLO12_ITLO13
_Start channel.
R_{Config_ITLO0O_ITLOO1_ITLO12_ITLO13} Stops the ITLOOO_ITLOO1_ITLO12_ITLO13
_Stop channel.
R_{Config_ITLO0O_ITLOO1_ITLO12_ITLO13} Used to stop counter and clear interrupt flag
_Set_OperationMode before changing 32-bit interval timer operation

mode.
R_{Config_ITLO0O_ITLOO1_ITLO12_ITLO13} Executes user-specific initialization processing
_Create_Userlnit for the ITLOOO_ITLOO1_ITLO12_ITLO13 channel.
r_{Config_ITLOOO_ITLOO1_ITLO12_ITLO13} Executes processing in response to 32-bit
_Callback_Shared_Interrupt interval timer interrupt (INTITL).

R20UT4852EC0107 Rev.1.07 REN ESNS Page 370 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ITLO00_ITL00O1_ITLO12_ITLO13} Create

This API function executes initialization processing that is required before controlling the
ITLOOO_ITLOO1_ITLO12_ITLO13 module in interval timer mode (32bit mode).

Remark This API function is called from R_ITL_Create.

[Syntax]
void R_{Config_ITLOOO_ITLO01_ITLO12_ITLO13} Create(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 371 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ITLO00_ITLOO1_ITLO12_ITLO13} Start

This API function starts the ITLO00 ITLOO1 _ITLO12_ITLO13 channel.

Remark The 32-bit interval timer interrupt is enabled by calling R_ITL_Start_Interrupt. For this
reason, to use 32-bit interval timer interrupt, please call this API function together with
R_ITL_Start_Interrupt.

[Syntax]
void R_{Config_ITLO00_ITLO01 ITLO12_ITLO13} Start(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 372 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ITLOOO ITLOO1_ITLO12_ITLO13} Stop
This API function stops the ITLOOO ITLOO1 _ITLO12_ITLO13 channel.

[Syntax]
void R_{Config_ITLO00_ITLO01 ITLO12_ITL0O13}_ Stop(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 373 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ITLOOO ITLOO1 _ITLO12_ITLO13} Set OperationMode

This API function is used to stop counter and clear interrupt flag before changing 32-bit interval timer
operation mode.

[Syntax]
void R _{Config_ITLOOO_ITLO01_ITLO12_ITLO13}_Set_OperationMode(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 374 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ITLO00O_ITLOO1_ITLO12_ITLO13} Create_Userlnit

This API function executes user-specific initialization processing for the ITLOO0_ITLOO1_ITLO12_ITLO13
channel.

Remark This API functions is called from R_{Config_ITLOOO_ITLOO1_ITLO12_ITLO13} Create as
a callback routine.

[Syntax]
void R_{Config_ITLO00_ITLO01 ITLO12_ITLO13} Create_Userlnit(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 375 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_ITLOOO_ITLOO1_ITLO12_ITLO13} Callback Shared_interrupt

This API function executes processing in response to 32-bit interval timer interrupt (INTITL).
Remark 1. This API function is called as a callback routine from r_itl_interrupt, which is the interrupt
handler for 32-bit interval timer interrupts.
Remark 2. User should only keep necessary flag set/clear in callback function, other processing code
should be moved out of callback and interrupt function. Otherwise, the interrupt is not
processed at the correct timing.

[Syntax]
For CCRL78 toolchain:
static void __near
r_{Config_ITLOOO_ITLOO1_ITLO12_ITLO13} Callback_Shared_interrupt(void);

For LLVM toolchain:
‘ void r_{Config_ITLOOO_ITLOO1_ITLO12_ITLO13}_ Callback_Shared_interrupt(void);

For IAR toolchain:

__interrupt static void
r_{Config_ITLOOO_ITLOO1_ITLO12_ITLO13}_Callback_Shared_interrupt(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 376 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

Usage example

This is an example for using 32-bit count mode for a user-defined period:
(Blue code is user code.)
main.c

#include "r_smc_entry.h"
extern uint8_titl_run_count;

void main(void);
void main(void)

El(); /Ito enable interrupt

R_Config_ITLOOO ITLOO1_ITLO12_ITLO13_Start(); //ITLOOO, ITLOO01, ITLO12, ITLO13 operation
enable

while (itl_run_count < 20); /lwait until itl_run_count reaches or exceeds 20, exit the loop

R _Config_ITLOOO ITLOO1_ITLO12_ITLO13_Stop(); //ITLO0O, ITLOO1, ITLO12, ITLO13 operation
disable

}

Config_ITLOOO_ITLOO1_ITLO12_ITLO13_user.c
[* Start user code for global. Do not edit comment generated here */
uint8_titl_run_count;
/* End user code. Do not edit comment generated here */

void R_Config_ITLO00_ITLO01_ITLO12_ITLO13_Callback_Shared_Interrupt(void)

[* Start user code for R_Config_ITLO00 ITL0O01_ITL0O12_ITL0O13_Callback Shared_Interrupt. Do not
edit comment generated here */

itl_run_count ++; /lto count the number of times the interrupt handler is entered

/* End user code. Do not edit comment generated here */

R20UT4852EC0107 Rev.1.07 RENESAS Page 377 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

4.2.25 Interval Timer (8-bit Interval Timer using 8-bit counter mode)

Below is a list of API functions output by the Smart Configurator for interval timer (for 8-bit interval timer when
using 8bit counter mode) use.

Table 4-31 API Functions:

API Function Name Peripheral Name Description

R_{Config_ITmn} Create 32-bit Interval Timer | Executes initialization processing that is required
before controlling the ITmn module in interval
timer mode (8bit mode).

R _{Config_ITmn}_Start Starts the ITmn channel.
R _{Config_ITmn}_Stop Stops the ITmn channel.
R_{Config_ITmn}_Create_Userlnit Executes user-specific initialization processing

for the ITmn channel.

r_{Config_ITmn}_Interrupt Executes processing in response to 8-bit

interval timer interrupt (INTITmn)

R20UT4852EC0107 Rev.1.07 RENESAS Page 378 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ITmn} Create

This API function executes initialization processing that is required before controlling the ITmn module in
interval timer mode (8bit mode).

Remark This API function is called from R_ITm_Create.
[Syntax]
void R_{Config_ITmn}_Create(void);
Remark m is the unit number, n is the channel number.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 379 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ITmn}_Start

This API function starts the ITmn channel.

[Syntax]
void R_{Config_ITmn}_Start(void);

Remark m is the unit number, n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 380 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ITmn}_Stop

This API function stops the ITmn channel.

[Syntax]
void R_{Config_ITmn}_Stop(void);

Remark m is the unit number, n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 381 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ITmn} Create Userlnit

This API function executes user-specific initialization processing for the ITmn channel.

Remark This API functions is called from R_{Config_ITmn} Create as a callback routine.
[Syntax]
void R_{Config_ITmn}_Create_Userlnit(void);
Remark m is the unit number, n is the channel number.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 382 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_ITmn}_interrupt

This API function executes processing in response to 8bit interval timer channeln count end interrupt
(INTITmn).
Remark This API function is called as the interrupt handler for count end interrupt (INTITmn), which
occur when the current counter value (TRTCMPmn) reaches 00H.

[Syntax]
For CCRL78 toolchain:
static void __near r_{Config_ITmn}_interrupt(void);

For LLVM toolchain:
void r_{Config_ITmn}_interrupt(void);

For IAR toolchain:
‘ __interrupt static void r_{Config_ITmn} _interrupt(void);

Remark m is the unit number, n is the channel number.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 383 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

Usage example

This is an example for using 8-bit counting for a user-defined counter value and output a wave form PQO pin:
(Blue code is user code.)
main.c

#include "r_smc_entry.h"
extern volatile uint8_t interrupt_flag;

void main(void);
void main(void)

EI(); /lto enable interrupt

interrupt_flag = 0;

R_Config_IT01 _Start(); //ITO1 operation enable

while (interrupt_flag < 20); [Iwait until interrupt_flag reaches or exceeds 20, exit the loop
R_Config_ITO1 _Stop(); /[ITO1 operation disable

Config_ITO1_user.c
[* Start user code for global. Do not edit comment generated here */
uint8_t interrupt_flag;
/* End user code. Do not edit comment generated here */

void R_Config_IT01_lInterrupt(void)

{
[* Start user code for R_Config_ITO1_Interrupt. Do not edit comment generated here */
interrupt_flag ++; /to count the number of times the interrupt handler is entered
PO_bit.no0 = ~P0_bit.no0; /leach time an interrupt occurs, the level of POO will flip once
/* End user code. Do not edit comment generated here */
}
R20UT4852EC0107 Rev.1.07 RENESAS Page 384 of 868

Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

4.2.26 Interval Timer (8-bit Interval Timer using 16-bit counter mode)

Below is a list of API functions output by the Smart Configurator for interval timer (for 8-bit interval timer when

using 16bit counter mode) use.

Table 4-32 API Functions:

API Function Name

Peripheral Name

Description

R_{Config_ITmO_ITm1}_Create

R_{Config_ITmO0_ITm1}_Start

R_{Config_ITmO_ITm1}_Stop

R _{Config_ITmO_ITn1}_Create_Userlnit

r_{Config_ITmO_ITm1}_Interrupt

32-bit Interval Timer

Executes initialization processing that is required
before controlling the ITm module in interval
timer mode (16bit mode).

Starts the ITm unit.

Stops the ITm unit.

Executes user-specific initialization processing

for the ITm unit.

Executes processing in response to 16-bit

interval timer interrupt (INTITmO)

R20UT4852EC0107 Rev.1.07
Jan 20, 2026

RENESAS

Page 385 of 868

Smart Configurator 4. API FUNCTIONS

R _{Config_ITmO0_ITm1} Create

This API function executes initialization processing that is required before controlling the ITm0_ITm1
module in interval timer mode (16bit mode).

Remark This API function is called from R_ITm_Create.
[Syntax]
void R_{Config_ITm0_ITm1}_Create(void);
Remark m is the unit number.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 386 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R _{Config_ITmO0_ITm1} Start

This API function starts the ITm unit.

[Syntax]
void R_{Config_ITmO0_ITm1}_Start(void);

Remark m is the unit number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 387 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R _{Config_ITmO0_ITm1} Stop

This API function stops the ITm unit.

[Syntax]
void R_{Config_ITmO0_ITm1}_Stop(void);

Remark m is the unit number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 388 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ITm0_ITm1} Create_Userlnit

This API function executes user-specific initialization processing for the ITm unit.

Remark This API functions is called from R_{Config_ITm0_ITm1} Create as a callback routine.
[Syntax]
void R_{Config_ITmO0_ITm1}_Create_Userlnit(void);
Remark m is the unit number.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 389 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_ITmO0_ITm1}_interrupt

This API function executes processing in response to 16bit interval timer unitm count end interrupt
(INTITmO).
Remark This API function is called as the interrupt handler for count end interrupt (INTITmOQ), which
occur when the current counter value (TRTCMPm) reaches 0000H.

[Syntax]
For CCRL78 toolchain:
static void __near r_{Config_ITmO0_ITm1}_interrupt(void);

For LLVM toolchain:
void r_{Config_ITmO0_ITm1}_interrupt(void);

For IAR toolchain:
‘ __interrupt static void r_{Config_ITmO0_ITm1}_interrupt(void);

Remark m is the unit number.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 390 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

Usage example

This is an example for using 16-bit counting for a user-defined counter value and output a wave form P00 pin:
(Blue code is user code.)
main.c

#include "r_smc_entry.h"
extern volatile uint8_t interrupt_flag;

void main(void);
void main(void)

EI(); /lto enable interrupt

interrupt_flag = 0;

R_Config_ITO0_01 _Start(); //ITOO0, ITO1 operation enable

while (interrupt_flag < 20); [Iwait until interrupt_flag reaches or exceeds 20, exit the loop
R_Config_IT00_01 _Stop(); /[ITO0, ITO1 operation disable

Config_IT00_ITO1_user.c
[* Start user code for global. Do not edit comment generated here */
uint8_t interrupt_flag;
/* End user code. Do not edit comment generated here */

void R_Config_IT00_ITO1_Interrupt(void)

{
[* Start user code for R_Config_ITO0_ITO1_Interrupt. Do not edit comment generated here */
interrupt_flag ++; /to count the number of times the interrupt handler is entered
PO = ~P0; /leach time an interrupt occurs, the level of POO will flip once
/* End user code. Do not edit comment generated here */
}
R20UT4852EC0107 Rev.1.07 RENESAS Page 391 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

4.2.27 Input Capture Function (Timer RD)

Below is a list of API functions output by the Smart Configurator for Input Capture Function use.

Table 4-33 API Functions:

API Function Name Peripheral Name Description

R_{Config_TRDn}_ Create Timer RD Executes initialization processing that is required
before controlling the TRDn module in Input Capture
Function mode.

R_{Config_TRDn}_Start Starts the TRDn counter.

R_{Config_TRDn}_Stop Stops the TRDn counter.

R_{Config_TRDn}_Get_PulseWidth Measures TRDn input pulse width.

R_{Config_TRDn}_Create_Userlnit Executes user-specific initialization processing for
the TRDn.

r_{Config_TRDn}_trdn interrupt Executes processing in response to timer RDn

capture interrupt (INTTRDn).

R20UT4852EC0107 Rev.1.07 RENESAS Page 392 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_TRDn} Create

This API function executes initialization processing that is required before controlling the TRDn module in
Input Capture Function mode.

Remark This API function is called from R_TRD_Create.

[Syntax]
void R_{Config_TRDn}_Create(void);

Remark nis 0, 1.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 393 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_TRDn}_ Start

This API function starts the TRDn counter.

[Syntax]
void R_{Config_TRDn}_Start(void);

Remark nis 0, 1.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 394 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ TRDn} Stop

This API function stops the TRDn counter.

[Syntax]
void R_{Config_TRDn}_Stop(void);

Remark nis 0, 1.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 395 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_TRDn} Get_PulseWidth

This API function calculates the TRDn pulse width.

[Syntax]
MD_STATUS R_{Config_TRDn} Get_PulseWidth (uint32_t * const active_width, uint32_t * const
inactive_width, e_timer_channel_t channel);

Remark nis 0, 1.
[Argument(s)]
1/O Argument(s) Description
O | uint32_t * const active_width; The high-level width
O | uint32_t * const inactive_width; The low-level width
I e_timer_channel_t channel The TRDIQji pin (i=0or 1, j=A, B, C, or D) external signal
and ELC signal input.
Remark Below is shown the structure e_timer_channel _t.

typedef enum
{
TMCHANNELA,
TMCHANNELB,
TMCHANNELC,
TMCHANNELD,
TMCHANNELELC
} e_timer_channel_t;

[Return value]
Macro Description
MD_OK Normal end
MD_ERROR Counter doesn’t work as capture mode.
MD_ARGERROR Argument input error.
R20UT4852EC0107 Rev.1.07 :{EN ESAS Page 396 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_TRDn} Create_Userlnit

This API function executes user-specific initialization processing for the TRDn.

Remark This API functions is called from R_{Config_ TRDn} Create as a callback routine.
[Syntax]
void R_{Config_TRDn}_Create_Userlnit(void);
Remark nis 0, 1.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 397 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_TRDn} trdn_interrupt

This API function executes processing in response to timer RDn capture interrupt (INTTRDn).

Remark This API function is called as the interrupt handler for capture interrupts (INTTRDn), which
occur when the valid capture edge of TRDIOjn (j = A, B, C, or D) input is detected, or TRDn
register overflow.

[Syntax]
For CCRL78 toolchain:
static void __near r_{Config_TRDn}_trdn_interrupt(void);

For LLVM toolchain:
void r_{Config_TRDn}_trdn_interrupt(void);

For IAR toolchain:
‘ __interrupt static void r_{Config_TRDn}_trdn_interrupt(void);

Remark nis 0, 1.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 398 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

Usage example

This is an example for getting TRDO input pulse width:
(Blue code is user code.)
main.c

#include "r_smc_entry.h"
void main(void);
typedef struct {
uint32_t active_width;
uint32_t inactive_width;
} TRD_PulseWidth_t;
TRD_PulseWidth_t trd_a;
TRD_PulseWidth_t trd_b;
TRD_PulseWidth_t trd_d;
static void delay_ms(uint32_t time_ms)
{
uint32_ti=0;
while(time_ms--) {
for(i = 0; i < 156; I++) {
NOP();
}
}
}
void main(void)
{
El(); /lto enable interrupt
PO = 0x00U; /luse port 0 to check the frequency of interrupt
R_Config TAUO_0_Start(); /luse TAUOQO to generate pulse for TRDO channel A
R_Config TAUO_1_Start(); /luse TAUO1 to generate pulse for TRDO channel B
R_Config_TAUO_2_Start(); /luse TAUO2 to generate pulse for TRDO channel C
R_Config_TRDO_Start(); /ITRDO operation enable
delay_ms(2000); /Iwait 2s from start
/[The active_width and inactive_width of the each channel can be read
R_Config_ TRDO_Get_PulseWidth(&trd_a.active_width, &trd_a.inactive_width, TMCHANNELA);
R _Config TRDO_Get_PulseWidth(&trd_b.active_width, &trd_b.inactive_width, TMCHANNELB);
R_Config_TRDO_Get_PulseWidth(&trd_d.active_width, &trd_d.inactive_width, TMCHANNELC);
while(1);
}
R20UT4852EC0107 Rev.1.07 RENESAS Page 399 of 868

Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

Config_ TRDO_user.c

{

static void __near r_Config_ TRDO _interrupt(void)

/* Start user code for r_Config_ TRDO interrupt. Do not edit comment generated here */

/* TRDGRAO input capture interrupt */
PO_bit.no0 = ~P0_bit.no0; /luse P00 to check the frequency of interrupt

/* TRDGRBO input capture interrupt */
PO_bit.no1 = ~P0_bit.no1; /luse P01 to check the frequency of interrupt

/* TRDGRDO input capture interrupt */
PO_bit.no2 = ~P0_bit.no2; /luse P02 to check the frequency of interrupt
/* End user code. Do not edit comment generated here */

R20UT4852EC0107 Rev.1.07 RENESAS
Jan 20, 2026

Page 400 of 868

Smart Configurator 4. API FUNCTIONS

4.2.28 Input Capture Function (Timer RG)

Below is a list of API functions output by the Smart Configurator for Input Capture Function use.

Table 4-34 API Functions:

API Function Name Peripheral Name Description

R_{Config_TRG}_ Create Timer RG Executes initialization processing that is required
before controlling the TRG module in Input Capture
Function mode.

R_{Config_TRG}_Start Starts the TRG counter.

R_{Config_TRG}_Stop Stops the TRG counter.

R_{Config_TRG}_Get_PulseWidth Measures TRG input pulse width.

R_{Config_TRG}_Create_Userlnit Executes user-specific initialization processing for
the TRG.

r_{Config_TRG]} interrupt Executes processing in response to timer RG

capture interrupt (INTTRG).

R20UT4852EC0107 Rev.1.07 RENESAS Page 401 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_TRG} Create

This API function executes initialization processing that is required before controlling the TRG module in
Input Capture Function mode.

Remark This API function is called from R_Systeminit before the main() function is executed.

[Syntax]
void R_{Config_ TRG} Create(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 402 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ TRG}_ Start

This API function starts the TRG counter.

[Syntax]
void R_{Config_TRG}_Start(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 403 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_TRG}_ Stop

This API function stops the TRG counter.

[Syntax]
void R_{Config_TRG}_Stop(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 404 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R _{Config_ TRG} Get PulseWidth
This API function calculates the TRG pulse width.

[Syntax]
MD_STATUS R_{Config_ TRG} Get_PulseWidth(uint32_t * const active_width, uint32_t * const
inactive_width, e_trg_channel_t channel);

[Argument(s)]
1/O Argument(s) Description
O | uint32_t * const active_width; The high-level width
O | uint32_t * const inactive_width; The low-level width
I e_trg_channel_t channel The TRGIOA, TRGIOB and ELC signal input.
Remark Below is shown the structure e_trg_channel _t.

typedef enum
{
TRG_CHANNELA,
TRG_CHANNELB,
TRG_CHANNELELC
} e_trg_channel_t;

[Return value]
Macro Description
MD_OK Normal end
MD_ERROR Counter doesn’t work as capture mode.
MD_ARGERROR Argument input error.
R20UT4852EC0107 Rev.1.07 :{EN ESAS Page 405 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ TRG} Create_ Userlnit

This API function executes user-specific initialization processing for the TRG.
Remark This API functions is called from R_{Config_ TRG} Create as a callback routine.

[Syntax]
void R_{Config_TRG}_Create_Userlnit(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 406 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_ TRG} interrupt

This API function executes processing in response to timer RG capture interrupt (INTTRG).

Remark This API function is called as the interrupt handler for capture interrupts (INTTRG), which
occur when the valid capture edge of TRGIOA and TRGIOB input is detected, or TRG
register overflow.

[Syntax]
For CCRL78 toolchain:
static void __near r_{Config_TRG} _interrupt(void);

For LLVM toolchain:
void r_{Config_TRG} _interrupt(void);

For IAR toolchain:
‘ __interrupt static void r_{Config_TRG} interrupt(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 407 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

Usage example

This is an example for getting TRG input pulse width:
(Blue code is user code.)
main.c

#include "r_smc_entry.h"
void main(void);
typedef struct {
uint32_t active_width;
uint32_t inactive_width;
} TRG_PulseWidth_t;
TRG_PulseWidth_t trg_a;
TRG_PulseWidth_t trg_b;
static void delay_ms(uint32_t time_ms)
{
uint32_ti=0;
while(time_ms--) {
for(i = 0; i < 156; I++) {
NOP();
}
}
}
void main(void)
{
EIl(); /Ito enable interrupt
PO = 0x00U; /luse port 0 to check the frequency of interrupt
R_Config TAUO_0_Start(); /luse TAUOQO to generate pulse for TRDO channel A
R_Config TAUO_1_Start(); /luse TAUO1 to generate pulse for TRDO channel B
R_Config_ TRG_Start(); /ITRG operation enable
delay_ms(2000); /Iwait 2s from start
/[The active_width and inactive_width of the each channel can be read
R_Config_ TRG_Get_PulseWidth(&trg_a.active_width, &trg_a.inactive_width, TMCHANNELA);
R_Config_ TRG_Get_PulseWidth(&trg_b.active_width, &trg_b.inactive_width, TMCHANNELB);
while(1);
}
R20UT4852EC0107 Rev.1.07 RENESAS Page 408 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

Config_ TRG_user.c

static void __near r_Config_ TRG_interrupt(void)

{
/* Start user code for r_Config_ TRG_interrupt. Do not edit comment generated here */
/* TRGGRA input capture interrupt */
PO_bit.no0 = ~P0_bit.no0;
/* TRGGRB input capture interrupt */
PO_bit.no1 = ~P0_bit.no1;
/* End user code. Do not edit comment generated here */

}

R20UT4852EC0107 Rev.1.07 RENESAS Page 409 of 868

Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

4.2.29 Input Capture Function (Timer RX)

Below is a list of API functions output by the Smart Configurator for Input Capture Function use.

Table 4-35 API Functions:

API Function Name Peripheral Name Description

R_{Config_TRX}_ Create Timer RX Executes initialization processing that is required
before controlling the TRX module in Input Capture
Function mode.

R_{Config_TRX}_Start Starts the TRX counter.

R_{Config_TRX}_Stop Stops the TRX counter.

R_{Config_TRX}_Get_BufferValue Gets the TRX buffer value.

R_{Config_TRX}_Create_Userlnit Executes user-specific initialization processing for
the TRX.

r_{Config_TRX} interrupt Executes processing in response to timer RX
capture interrupt (INTTRX).

R20UT4852EC0107 Rev.1.07 :{EN ESANAS Page 410 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R _{Config_TRX} Create

This API function executes initialization processing that is required before controlling the TRX module in
Input Capture Function mode.

Remark This API function is called from R_Systeminit before the main() function is executed.

[Syntax]
void R_{Config_TRX}_Create(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 411 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ TRX}_ Start

This API function starts the TRX counter.

[Syntax]
void R_{Config_TRX}_Start(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 412 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_TRX} Stop

This API function stops the TRX counter.

[Syntax]
void R_{Config_TRX}_Stop(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 413 of 868
Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

R_{Config_ TRX} Get BufferValue

This API function gets the TRX buffer value.

[Syntax]

void R_{Config_ TRX} Get_BufferValue(uint32_t * const value);

[Argument(s)]

I/0

Argument(s)

Description

0]

uint32_t * value;

Buffer value

[Return value]

None.

R20UT4852EC0107 Rev.1.07
Jan 20, 2026

RENESAS

Page 414 of 868

Smart Configurator 4. API FUNCTIONS

R_{Config_ TRX} Create Userlnit

This API function executes user-specific initialization processing for the TRX.
Remark This API functions is called from R_{Config_ TRX} Create as a callback routine.

[Syntax]
void R_{Config_TRX} Create_Userlnit(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 415 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_ TRX} interrupt

This API function executes processing in response to timer RX capture interrupt (INTTRX).
Remark This API function is called as the interrupt handler for capture interrupts (INTTRX), which
occur when comparator interrupt signal is detected, or TRX register overflow.

[Syntax]
For CCRL78 toolchain:
static void __near r_{Config_TRX} interrupt(void);

For LLVM toolchain:
void r_{Config_TRX}_interrupt(void);

For IAR toolchain:
__interrupt static void r_{Config_TRX}_interrupt(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 416 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

Usage example

This is an example for getting TRX input pulse width:
(Blue code is user code.)

main.c
#include "r_smc_entry.h"

uint32_t trx_buffer[10] = {0};
volatile uint8_t comp_flag = 0U;

void main(void);

void main(void)
{
El(); /lto enable interrupt
R_Config TRX_Start(); /ITRX operation enable
R_Config_ COMP2_Start(); [ltimer RX counter is reset by a trigger from a comparator 2

/I The first interrupt is dummy value, no need to store in trx_buffer
while(comp_flag != 1U);
comp_flag = 0U;

/[Transfer the capture value to a buffer when an interrupt is generated from comparator 2
for (chari=0;i<10; i++)
{
while(comp_flag != 1U);
R_Config_ TRX_Get_BufferValue(trx_buffer + i); /lcapturing 10 times
comp_flag = 0U;
}

while(1);

Config_ COPMO_user.c

extern volatile uint8_t comp_flag;
static void __near r_Config_ COMP2_interrupt(void)

{
/* Start user code for r_Config_ TRX_interrupt. Do not edit comment generated here */
comp_flag = 1U; /linterrupt output signal for use with timer RX from compartor 2
/* End user code. Do not edit comment generated here */
}
R20UT4852EC0107 Rev.1.07 RENESAS Page 417 of 868

Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

4.2.30 One-Shot Pulse Output

Below is a list of API functions output by the Smart Configurator for one-shot pulse output use.

Table 4-36 API Functions:

API Function Name

Peripheral Name

Description

R_{Config_TAUm_n}_Create

R_{Config_TAUm_n}_Start

R_{Config_TAUm_n}_Stop

R_{Config_ TAUm_n} Set_SoftwareTriggerOn

R_{Config_TAUmM_n}_Get_PulseWidth

R_{Config_ TAUmM_n} Create_Userlnit

r_{Config_ TAUm_n} channeln_interrupt

r {Config_ TAUm_n} channelp_interrupt

Timer Array Unit

Executes initialization processing that is
required before controlling the TAUm channeln
module in one-shot pulse output mode.

Starts the TAUm channeln counter.

Stops the TAUm channeln counter.

Generates software trigger.

Measures TAUm channeln input pulse width.

Executes user-specific initialization processing
for the TAUm channeln.

Executes processing in response to timer
channeln count end interrupt (INTTMmn).

Executes processing in response to timer

channelp count end interrupt (INTTMmp).

R20UT4852EC0107 Rev.1.07
Jan 20, 2026

RENESAS

Page 418 of 868

Smart Configurator 4. API FUNCTIONS

R _{Config_ TAUmM _n} Create

This API function executes initialization processing that is required before controlling the TAUm channeln
module in one-shot pulse output mode.

Remark This API function is called from R_TAUm_Create.

[Syntax]
void R_{Config_ TAUmM n} Create(void);

Remark m is the unit number, n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 419 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ TAUm n} Start

This API function starts the TAUm channeln counter.

[Syntax]
void R_{Config_TAUm_n}_Start(void);

Remark m is the unit number, n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 420 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_TAUm_n} Stop

This API function stops the TAUm channeln counter.

[Syntax]
void R_{Config_TAUm_n}_Stop(void);

Remark m is the unit number, n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 421 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R _{Config_ TAUmM n} Set SoftwareTriggerOn

This API function generates software trigger.

[Syntax]
void R_{Config_TAUm_n}_Set_SoftwareTriggerOn(void);

Remark m is the unit number, n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 422 of 868
Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

R _{Config_ TAUmM _n} Get PulseWidth

This API function measures TAUm channeln input pulse width.

[Syntax]
void R_{Config_TAUm_n} Get_PulseWidth(uint32_t * const width);
Remark m is the unit number, n is the channel number.
[Argument(s)]
I/0 Argument(s) Description
O | uint32_t * const width; The address where to write the input pulse width

[Return value]

None.

R20UT4852EC0107 Rev.1.07
Jan 20, 2026

RENESAS Page 423 of 868

Smart Configurator 4. API FUNCTIONS

R_{Config_ TAUm_n} Create_Userlnit

This API function executes user-specific initialization processing for the TAUm channeln.

Remark This API functions is called from R_{Config_ TAUm_n} Create as a callback routine.
[Syntax]
void R_{Config_TAUm_n} Create_Userlnit(void);
Remark m is the unit number, n is the channel number.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 424 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_TAUm_n} channeln_interrupt

This API function executes processing in response to timer channelmn count end interrupt (INTTMmn).
Remark This API function is called as the interrupt handler for count end interrupt (INTTMmn), which
occur when the current counter value (TCRmn) reaches 0000H.

[Syntax]
For CCRL78 toolchain:
static void __near r {Config_ TAUm n} channeln_interrupt(void);

For LLVM toolchain:
void r_{Config_TAUm_n} channeln_interrupt(void);

For IAR toolchain:
__interrupt static void r_{Config_TAUm_n} channeln_interrupt(void);

Remark m is the unit number, n is the master channel number.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 425 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_TAUm_n} channelp_interrupt

This API function executes processing in response to timer channelmp count end/capture interrupt
(INTTMmp).

Remark1. In one-shot pulse output function, this API function is called as the interrupt handler for count
end interrupt (INTTMmp), which occur when the current counter value (TCRmp) reaches
0000H.

Remark2. In two-channel input with one-shot pulse output function, this API function is called as the
interrupt handler for capture interrupt (INTTMmp), which occur when the valid capture edge
is detected, and the current counter value (TCRmp) is transferred to timer data register mp
(TDRmp).

[Syntax]
For CCRL78 toolchain:
static void __near r_{Config_TAUm_n}_channelp_interrupt(void);

For LLVM toolchain:
void r_{Config_TAUm_n}_channelp_interrupt(void);

For IAR toolchain:
__interrupt static void r_{Config_TAUm_n} channelp_interrupt(void);

Remark1. mis the unit number, n is the master channel number, p is slave channel number.
Remark2. n<p<7.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 426 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

Usage example

This is an example for TAU channel 0 outputting one-shot pulse by software trigger:
(Blue code is user code.)
main.c

#include "r_smc_entry.h"
extern uint8_t tau_oneshot_count;
void main(void);
void main(void)
{
El(); /Ito enable interrupt
tau_oneshot_count = 0;
R_Config TAUO_0_Start(); /ITAUOO operation enable
R _Config TAUO 0 Set SoftwareTriggerOn(); /Ito set TS00 to 1 by software
while (tau_ oneshot_count < 10)
/[To set TS0O to 1 by software at each timer interrupt generation
R_Config TAUO_0_ Set SoftwareTriggerOn();
}
R_Config_TAUO_0_Stop(); /ITAUQO operation disable
}

Config_ TAUO_ 0O _user.c

[* Start user code for global. Do not edit comment generated here */
uint8_t tau_oneshot_count;
/* End user code. Do not edit comment generated here */

static void __near r_Config_TAUO_01_channel1_interrupt (void)

[* Start user code for r_Config_TAUO_01_channel1_interrupt. Do not edit comment generated here

*/
tau_oneshot_count ++; /Ito count the number of times the interrupt handler is entered
/* End user code. Do not edit comment generated here */
}
R20UT4852EC0107 Rev.1.07 RENESAS Page 427 of 868

Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

4.2.31 Square Wave Output (Timer Array Unit)

Below is a list of API functions output by the Smart Configurator for square wave output use.

Table 4-37 API Functions:

API Function Name

Peripheral Name

Description

R_{Config_TAUm_n}_Create

R_{Config_TAUm_n}_Start

R_{Config_TAUm_n}_Stop

R_{Config_ TAUm_n} Lower8bits_Start

R_{Config_TAUm_n} Lower8bits_Stop

R_{Config_ TAUmM_n} Create_Userlnit

r_{Config_ TAUm_n} interrupt

Timer Array Unit

Executes initialization processing that is required before
controlling the TAUm channeln module in square wave

output mode.

Starts the TAUm channeln counter.

Stops the TAUm channeln counter.

Starts the TAUm channeln lower 8 bits counter.

Stops the TAUm channeln lower 8 bits counter.

Executes user-specific initialization processing for the
TAUm channeln.

Executes processing in response to timer channeln
count end interrupt (INTTMmn).

R20UT4852EC0107 Rev.1.07
Jan 20, 2026

RENESAS Page 428 of 868

Smart Configurator 4. API FUNCTIONS

R _{Config_ TAUmM _n} Create

This API function executes initialization processing that is required before controlling the TAUm channeln
module in square wave output mode.

Remark This API function is called from R_TAUm_Create.

[Syntax]
void R_{Config_ TAUmM n} Create(void);

Remark m is the unit number, n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 429 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ TAUm n} Start

This API function starts the TAUm channeln counter.

[Syntax]
void R_{Config_TAUm_n}_Start(void);

Remark m is the unit number, n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 430 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_TAUm_n} Stop

This API function stops the TAUm channeln counter.

[Syntax]
void R_{Config_TAUm_n}_Stop(void);

Remark m is the unit number, n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 431 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_TAUm_n} Lower8bits_Start

This API function starts the TAUm channeln lower 8 bits counter.

[Syntax]
void R_{Config_TAUm_n} Lower8bits_Start(void);

Remark m is the unit number, n is the channel number 1 or 3.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 432 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R _{Config_TAUm _n} Lower8bits_Stop

This API function stops the TAUm channeln lower 8 bits counter.

[Syntax]
void R_{Config_TAUm_n} Lower8bits_Stop(void);

Remark m is the unit number, n is the channel number 1 or 3.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 433 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ TAUm_n} Create_Userlnit

This API function executes user-specific initialization processing for the TAUm channeln.

Remark This API functions is called from R_{Config_ TAUm_n} Create as a callback routine.
[Syntax]
void R_{Config_TAUm_n} Create_Userlnit(void);
Remark m is the unit number, n is the channel number.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 434 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_ TAUm_n} interrupt

This API function executes processing in response to timer channelmn count end interrupt (INTTMmn).
Remark This API function is called as the interrupt handler for count end interrupt (INTTMmn), which
occur when the current counter value (TCRmn) reaches 0000H.

[Syntax]
For CCRL78 toolchain:
static void __near r {Config_ TAUmM n} interrupt(void);

For LLVM toolchain:
void r_{Config_TAUm_n}_interrupt(void);

For IAR toolchain:
__interrupt static void r_{Config_TAUm_n} _interrupt(void);

Remark m is the unit number, n is the channel number.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 435 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

Usage example

This is an example for using TAU channel 0 counter and channel 1 lower 8-bit counter to output square wave
for a user-defined period:
(Blue code is user code.)

main.c

#include "r_smc_entry.h"
extern uint8_t ch0_run_count;
extern uint8_t ch1_run_count;

void main(void);

void main(void)

{
El(); /Ito enable interrupt
R_Config_TAUO_0_Start(); /ITAUOO operation enable
while (chO_run_count < 20); /Iwait until chO_run_count reaches or exceeds 20, exit the loop
R_Config_TAUO_0_Stop(); /ITAUOQO operation disable
R_Config_TAUO_1_Lower8bits_Start(); /ITAUO1 operation enable
while (ch1_run_count < 20); /Iwait until ch1_run_count reaches or exceeds 20, exit the loop
R_Config_TAUO_1_Lower8bits_Stop(); /ITAUO1 operation disable

}

Config_ TAUO_O_user.c
[* Start user code for global. Do not edit comment generated here */

uint8_t chO_run_count;
/* End user code. Do not edit comment generated here */

static void __near r_Config_TAUO_O_interrupt (void)

/* Start user code for r_Config_ TAUO_O0_interrupt. Do not edit comment generated here */
ch0_run_count ++; /lto count the number of times the interrupt handler is entered
/* End user code. Do not edit comment generated here */

Config_ TAUO_1_user.c
[* Start user code for global. Do not edit comment generated here */

uint8 t ch1_run_count;
/* End user code. Do not edit comment generated here */

static void __near r_Config_TAUO_1_interrupt (void)

[* Start user code for r_Config TAUO_1_interrupt. Do not edit comment generated here */
ch1_run_count ++; /lto count the number of times the interrupt handler is entered
/* End user code. Do not edit comment generated here */

R20UT4852EC0107 Rev.1.07 RENESAS Page 436 of 868
Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

4.2.32 Square Wave Output (Timer RJ)

Below is a list of API functions output by the Smart Configurator for square wave output (Timer RJn) use.

Table 4-38 API Functions:

API Function Name Peripheral Name Description

R_{Config_TRJn} Create Timer RJn Executes initialization processing that is required
before controlling the Timer RJn module in square
wave output mode.

R_{Config_TRJn}_Start Starts the TRJn counter.

R_{Config_TRJn}_Stop Stops the TRJn counter.

R_{Config_TRJn} Create_Userlnit Executes user-specific initialization processing for
the TRJn.

r_{Config_TRJn}_interrupt Executes processing in response to the interrupt
(INTTRJn) when TRJn counter underflows.

R20UT4852EC0107 Rev.1.07 :{EN ESNS Page 437 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_TRJn} Create

This API function executes initialization processing that is required before controlling the TRJn module in
square wave output mode.
Remark This API function is called from R_Systeminit before the main() function is executed.

[Syntax]
void R_{Config_TRJn}_Create(void);

Remark n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 438 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_TRJn}_ Start

This API function starts the TRJn counter.

[Syntax]
void R_{Config_TRJn}_Start(void);
Remark n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 439 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_TRJn} Stop

This API function stops the TRJn counter.

[Syntax]
void R_{Config_TRJn}_Stop(void);

Remark n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 440 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_TRJn} Create_Userlnit

This API function executes user-specific initialization processing for the TRJn.

Remark This API functions is called from R_{Config_TRJn} Create as a callback routine.
[Syntax]
void R_{Config_TRJn}_Create_Userlnit(void);
Remark n is the channel number.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 441 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_TRJn}_interrupt

This API function executes processing in response to the interrupt (INTTRJn) when TRJn counter
underflows.

Remark This API function is called as the interrupt handler for TRJn interrupts (INTTRJn), which
occur when the count value reaches 0000H and the next count source is input, the counter
underflows.

[Syntax]
For CCRL78 toolchain:
static void __near r {Config_TRJn}_interrupt(void);

For LLVM toolchain:
void r_{Config_TRJn}_interrupt(void);

For IAR toolchain:
__interrupt static void r_{Config_TRJn}_interrupt(void);

Remark n is the channel number.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 442 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

Usage example

This is an example for using TRJO counting to output an inverted pulse from pins TRJIO0 and TRJOO for a user-
defined period:
(Blue code is user code.)

main.c

#include "r_smc_entry.h"
extern uint8_t ch0_run_count;

void main(void);

void main(void)

{
El(); /Ito enable interrupt
R_Config_ TRJO_Start(); /ITRJO operation enable
while (chO_run_count < 20); /Iwait until chO_run_count reaches or exceeds 20, exit the loop
R_Config_TRJO_Stop(); //TRJO operation disable
}

Config_ TRJO user.c
[* Start user code for global. Do not edit comment generated here */
uint8_t chO_run_count;
/* End user code. Do not edit comment generated here */

static void __near r_Config_TRJO0 _interrupt (void)

[* Start user code for r_Config_ TRJO_interrupt. Do not edit comment generated here */
chQ_run_count ++; /lto count the number of times the interrupt handler is entered
/* End user code. Do not edit comment generated here */

R20UT4852EC0107 Rev.1.07 RENESAS Page 443 of 868
Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

4.2.33 Output Compare Function (Timer RD)

Below is a list of API functions output by the Smart Configurator for Output Compare Function mode use.

Table 4-39 API Functions:

API Function Name Peripheral Name Description

R_{Config_TRDn}_Create Timer RD Executes initialization processing that is required
before controlling the TRDn module in Output
Compare Function mode.

R_{Config_TRDn}_Start Starts the TRDn counter.

R_{Config_TRDn}_Stop Stops the TRDn counter.

R_{Config_TRDn} Create_Userlnit Executes user-specific initialization processing for
the TRDn.

r_{Config_ TRDn}_trdn_interrupt Executes processing in response to timer TRDn
count compare match interrupt (INTTRDn).

R20UT4852EC0107 Rev.1.07 :{EN ESNS Page 444 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_TRDn} Create

This API function executes initialization processing that is required before controlling the TRDn module in
Output Compare Function mode.

Remark This API function is called from R_TRD_Create.

[Syntax]
void R_{Config_TRDn}_Create(void);

Remark nis 0, 1.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 445 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_TRDn}_ Start

This API function starts the TRDn counter.

[Syntax]
void R_{Config_TRDn}_Start(void);

Remark nis 0, 1.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 446 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ TRDn} Stop

This API function stops the TRDn counter.

[Syntax]
void R_{Config_TRDn}_Stop(void);

Remark nis 0, 1.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 447 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_TRDn} Create_Userlnit

This API function executes user-specific initialization processing for the TRDn.

Remark This API functions is called from R_{Config_ TRDn} Create as a callback routine.
[Syntax]
void R_{Config_TRDn}_Create_Userlnit(void);
Remark nis 0, 1.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 448 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_TRDn} trdn_interrupt

This API function executes processing in response to timer TRDn count compare match interrupt

(INTTRDn).
Remark This API function is called as the interrupt handler for count compare match interrupt
(INTTRDn), which occur when the content of the TRDn register matches content of the
TRDGRjn (j = A, B, C, or D) register or TRDn register overflow.

[Syntax]
For CCRL78 toolchain:
static void __near r_{Config_TRDn}_trdn_interrupt(void);

For LLVM toolchain:
void r_{Config_TRDn} _trdn_interrupt(void);

For IAR toolchain:
‘ __interrupt static void r_{Config_TRDn}_trdn_interrupt(void);

Remark nis 0, 1.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 449 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

Usage example

This is an example for using TRD1 to output an arbitrary level from the TRDIOj1 pin:
(Blue code is user code.)

main.c

#include "r_smc_entry.h"
extern uint8_t ch1_run_count;

void main(void);

void main(void)

{
EIl(); /lto enable interrupt
R_Config TRD1_Start(); /ITRD1 operation enable
while (ch1_run_count < 20); /Iwait until ch1_run_count reaches or exceeds 20, exit the loop
R_Config TRD1_Stop(); /ITRD1 operation disable
}

Config_TRD1_user.c
[* Start user code for global. Do not edit comment generated here */

uint8 _t ch1_run_count;
/* End user code. Do not edit comment generated here */

static void __near r_Config_TRD1_trd1_interrupt (void)

[* Start user code for r_Config_ TRD1_trd1_interrupt. Do not edit comment generated here */
ch1_run_count ++; /Ito count the number of times the interrupt handler is entered
/* End user code. Do not edit comment generated here */

R20UT4852EC0107 Rev.1.07 RENESAS Page 450 of 868
Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

4.2.34 Output Compare Function (Timer RG)

Below is a list of API functions output by the Smart Configurator for Output Compare Function mode use.

Table 4-40 API Functions:

API Function Name Peripheral Name Description

R_{Config_TRG} Create Timer RG Executes initialization processing that is required
before controlling the TRG module in Output
Compare Function mode.

R_{Config_TRG}_Start Starts the TRG counter.

R_{Config_TRG}_Stop Stops the TRG counter.

R_{Config_TRG}_ Create_Userlnit Executes user-specific initialization processing for
the TRG.

r {Config_ TRG} TRG_interrupt Executes processing in response to timer TRG
count compare match interrupt (INTTRG).

R20UT4852EC0107 Rev.1.07 :{EN ESAS Page 451 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_TRG} Create

This API function executes initialization processing that is required before controlling the TRG module in
Output Compare Function mode.

Remark This API function is called from R_Systeminit before the main() function is executed.

[Syntax]
void R_{Config_ TRG} Create(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 452 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ TRG}_ Start

This API function starts the TRG counter.

[Syntax]
void R_{Config_TRG}_Start(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 453 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_TRG}_ Stop

This API function stops the TRG counter.

[Syntax]
void R_{Config_TRG}_Stop(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 454 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ TRG} Create_ Userlnit

This API function executes user-specific initialization processing for the TRG.
Remark This API functions is called from R_{Config_ TRG} Create as a callback routine.

[Syntax]
void R_{Config_TRG}_Create_Userlnit(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 455 of 868
Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

r {Config_ TRG} interrupt

This API function executes processing in response to timer TRG count compare match interrupt
(INTTRG).

Remark This API function is called as the interrupt handler for count compare match interrupt

(INTTRG), which occur when the content of the TRG register matches content of the
TRGGRj (j =A, B, C, or D) register or TRG register overflow.

[Syntax]
For CCRL78 toolchain:
static void __near r_{Config_TRG} _interrupt(void);

For LLVM toolchain:
void r_{Config_TRG]} _interrupt(void);

For IAR toolchain:

‘ __interrupt static void

r_{Config_TRG} interrupt(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS
Jan 20, 2026

Page 456 of 868

Smart Configurator 4. API FUNCTIONS

Usage example

This is an example for using TRG to output an arbitrary level from the TRGIQj pin:
(Blue code is user code.)

main.c

#include "r_smc_entry.h"
extern uint8_t ch1_run_count;

void main(void);

void main(void)

{
EIl(); /lto enable interrupt
R_Config TRG_Start(); /ITRG operation enable
while (ch1_run_count < 20); /Iwait until ch1_run_count reaches or exceeds 20, exit the loop
R_Config_TRG_Stop(); //TRG operation disable
}

Config_ TRG_user.c
[* Start user code for global. Do not edit comment generated here */

uint8 _t ch1_run_count;
/* End user code. Do not edit comment generated here */

static void __near r_Config_TRG_interrupt (void)

[* Start user code for r_Config_ TRG_interrupt. Do not edit comment generated here */
ch1_run_count ++; /Ito count the number of times the interrupt handler is entered
/* End user code. Do not edit comment generated here */

R20UT4852EC0107 Rev.1.07 RENESAS Page 457 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

4.2.35 Three -phase PWM Output (Timer RD)

Below is a list of API functions output by the Smart Configurator for Three -phase PWM output (for Timer RD
using reset synchronous PWM mode/ complementary PWM mode/ extended complementary PWM mode) use.

Table 4-41 API Functions:

API Function Name Peripheral Name Description

R_{Config_ TRDO_TRD1} Create Timer RD Executes initialization processing that is required
before controlling the TRDO and TRD1 module in
reset synchronous PWM mode/
complementary PWM mode/ extended
complementary PWM mode.

R_{Config_ TRDO_TRD1}_ Start Starts the TRDO and TRD1 counter.
R_{Config_ TRDO_TRD1} Stop Stops the TRDO and TRD1 counter.
R_{Config_ Generates TRDO and TRD1 buffer registers
TRDO_TRD1} Set TRD_ReloadTrigger reload trigger.
R_{Config_TRDO_TRD1}_Create_Userlnit Executes user-specific initialization processing
for the TRDO_TRD1.
r_{Config_TRDO_TRD1}_trd0_interrupt Executes processing in response to timer RDO

count compare match interrupt (INTTRDO).

r_{Config_TRDO_TRD1} _trd7_interrupt Executes processing in response to timer RD1

count compare match interrupt (INTTRD1).

R20UT4852EC0107 Rev.1.07 RENESAS Page 458 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R _{Config_ TRDO_TRD1} Create

This API function executes initialization processing that is required before controlling the TRDO module in
reset synchronous PWM mode or the TRDO and TRD1 module in complementary PWM mode extended
complementary PWM mode.

Remark This API function is called from R_TRD Create.

[Syntax]
void R_{Config_ TRDO_TRD1}_Create(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 459 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_TRDO_TRD1}_ Start

This API function starts the TRDO counter in reset synchronous PWM mode or the TRDO and TRD1
counter in complementary PWM mode / extended complementary PWM mode.

[Syntax]
void R_{Config_TRDO_TRD1}_Start(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 460 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R _{Config_ TRDO_TRD1} Stop

This API function stops the TRDO counter in reset synchronous PWM mode or the TRDO and TRD1
counter in complementary PWM mode/ extended complementary PWM mode.

[Syntax]
void R_{Config_TRDO_TRD1}_Stop(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 461 of 868
Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

R_{Config_ TRDO_TRD1} Set TRD_ReloadTrigger

This API function generates TRDO and TRD1 buffer registers reload trigger in Extended complementary

PWM mode.
[Syntax]

MD_STATUS R_{Config_ TRDO_TRD1} Set TRD_ReloadTrigger (st_extpwm_buffer_registers_t *

buffer);
[Argument(s)]

I/0 Argument(s) Description

| | st_extpwm_buffer_registers_t * buffer; | buffer registers value
Remark Below is shown the structure st_extpwm_buffer_registers_t.
typedef struct {

uint16_t trdgrdO;
uint16_t trdcmpdoO;
uint16_t trdgrc1;
uint16_t trdcmpcf;
uint16_t trdgrd1;
uint16_t trdcmpd1;
uint16_t trdadtb0;
uint16_t trdadtb1;

} st_extcompwm_buffer_registers_t;

[Return value]
Macro Description
MD_OK Normal end
MD_ERROR Waiting for reload trigger status
R20UT4852EC0107 Rev.1.07 :{ENESAS Page 462 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ TRDO_TRD1} Create_Userlnit

This API function executes user-specific initialization processing for the TRDO_TRD1.
Remark This API functions is called from R_{Config TRDO_TRD1} Create as a callback routine.

[Syntax]
void R_{Config_ TRDO_TRD1} Create_Userlnit(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 463 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_ TRDO_TRD1} trd0O_interrupt

This API function executes processing in response to timer TRDO count compare match interrupt
(INTTRDO) in reset synchronous PWM mode/ complementary PWM mode or response to interrupt request

signal 0 (INTTRDO) with decimation control in extended complementary PWM mode mode.

Remark 1. In reset synchronous PWM mode:
This API function is called as the interrupt handler for count compare match interrupt
(INTTRDO), which occur when the content of the TRDO register matches content of the
TRDGRJ0 (j = A, B, C, or D) register or TRDO register overflow.

Remark 2. In complementary PWM mode mode:
This API function is called as the interrupt handler for count compare match interrupt
(INTTRDO), which occur when the content of the TRDO register matches content of the
TRDGRJ0 (j = A, B, C, or D) register.

Remark 3. In extended complementary PWM mode mode:
This API function is called as the interrupt handler for interrupt request signal 0

(INTTRDO), which occur when TRD1 register overflow.

[Syntax]
For CCRL78 toolchain:
| static void __near r {Config_TRDO_TRD1}_trd0_interrupt(void); |

For LLVM toolchain:
| void r_{Config_TRDO_TRD1}_trd0_interrupt(void); |

For IAR toolchain:
| _interrupt static void r_{Config_TRDO_TRD1}._trd0_interrupt(void); |

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 464 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_ TRDO_TRD1} trd1_interrupt

This API function executes processing in response to timer TRD1 count compare match interrupt
(INTTRD1) or timer TRD1 interrupt request signal 1 (INTTRD1) with decimation control in extended

complementary PWM mode.

Remark1 In reset synchronous PWM mode:
This API function is called as the interrupt handler for count compare match interrupt
(INTTRD1), which occur when the content of the TRD1 register matches content of the
TRDGRA1 and TRDGRB1 register.

Remark2 In complementary PWM mode mode:
This API function is called as the interrupt handler for count compare match interrupt
(INTTRD1), which occur when the content of the TRD1 register matches content of the
TRDGRj1 (j =A, B, C, or D) register or TRD1 register underflow.

Remark3 In extended complementary PWM mode mode:
This API function is called as the interrupt handler for interrupt request signal 1 (INTTRD1),
which occur when TRD1 register underflow.

[Syntax]
For CCRL78 toolchain:
| static void __near r {Config_TRDO_TRD1}_trd1_interrupt(void); |

For LLVM toolchain:
| void r_{Config_TRDO_TRD1}_trd1_interrupt(void); |

For IAR toolchain:
| _interrupt static void r_{Config_TRDO_TRD1}._trd1_interrupt(void); |

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 465 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

Usage example

This is an example for outputting three normal-phases and three counter-phases of the symmetric or
asymmetric PWM waveform with the same period in extended complementary PWM mode:
(Blue code is user code.)

main.c

#include "r_smc_entry.h"
extern uint8_t trd_pwm_count;

void main(void);

void main(void)

{
El(); /Ito enable interrupt
R _Config_ TRDO_TRD1_Start(); //TRDO and TRD1 operation enable
while (trd_pwm_count < 20); /Iwait until trd_pwm_count reaches or exceeds 20, exit the loop
R_Config TRDO_TRD1_Stop(); //TRDO and TRD1 operation disable
}

Config TRDO_TRD1_user.c
[* Start user code for global. Do not edit comment generated here */
uint8_t trd_pwm_count;
/* End user code. Do not edit comment generated here */

static void __near r_Config_ TRDO_TRD1_trd0_interrupt (void)

[* Start user code for r_Config TRDO_trd0_interrupt. Do not edit comment generated here */
trd_pwm_count ++; /lto count the number of times the interrupt handler is entered
/* End user code. Do not edit comment generated here */

}
static void __near r_Config_TRDO_TRD1_trd1_interrupt (void)

[* Start user code for r_Config TRDO_trd1_interrupt. Do not edit comment generated here */
trd_pwm_count ++; /lto count the number of times the interrupt handler is entered
/* End user code. Do not edit comment generated here */

R20UT4852EC0107 Rev.1.07 RENESAS Page 466 of 868
Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

4.2.36 PWM option unit A (Timer RD)

Below is a list of API functions output by the Smart Configurator for PWM option unit A use.

Table 4-42 API Functions:

API Function Name Peripheral Name Description
R_{Config_ PWMOPA} Create Timer RD Executes initialization processing that is required before
controlling the PWM option unit A.
R_{Config_ PWMOPA}_Software_Release Releases output by software.
R_{Config_ PWMOPA}_Create_Userlnit Executes user-specific initialization processing for the
PWM option unit A.
R20UT4852EC0107 Rev.1.07 :{EN ESANAS Page 467 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ PWMOPA } Create

This API function executes initialization processing that is required before controlling the PWM option unit
A.

Remark This API function is called from R_TRD_Create.

[Syntax]
void R_{Config_ PWMOPA}_Create(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 468 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ PWMOPA} Software Release

This API function releases output by software.

[Syntax]
void R_{Config_ PWMOPA}_Software_Release(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 469 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ PWMOPA } Create Userlnit

This API function executes user-specific initialization processing for the TAUm channeln.
Remark This API functions is called from R_{Config PWMOPA} Create as a callback routine.

[Syntax]
void R_{Config_ PWMOPA} Create_Userlnit(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 470 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

Usage example

This is an example for pulse output from the timer RD output pin TRDIQji (j = A, B, C, D; i =0, 1) can release
forced cutoff by software trigger and pulse output is resumed:
(Blue code is user code.)

main.c
#include "r_smc_entry.h"

void main(void);
void main(void)
El(); /lto enable interrupt

R_Config PWMOPA_Software Release(); /Ireleases the output that was forced cutoff.
while(1); /Istop at here

R20UT4852EC0107 Rev.1.07 RENESAS Page 471 of 868
Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

4.2.37

Phase Counting Mode

Below is a list of API functions output by the Smart Configurator for detecting a phase difference between
external input signals from two pins TRGCLKA and TRGCLKB and the TRG counter is incremented or

decremented.

Table 4-43 API Functions:

API Function Name Peripheral Name Description

R_{Config_TRG} Create Timer RG Executes initialization processing that is required
before controlling the TRG module in phase counting
mode.

R_{Config_TRG}_Start Starts the TRG counter.

R_{Config_TRG}_Stop Stops the TRG counter.

R_{Config_ TRG} Get MeasurementCapt Gets TRG measurement capture value to calculate

ure phase change times on TRGCLKA and TRGCLKB.

R_{Config_ TRG} Create_Userlnit Executes user-specific initialization processing for
the TRG.

r_{Config_ TRG} interrupt Executes processing in response to timer RG count
compare match interrupt (INTTRG).

r_{Config_ TRG} clear_interrupt Executes processing in response to timer RG count
compare match counter clearing and Z-signal
detection counter clearing interrupt (INTGCR).

r_{Config_TRG}_capture_interrupt Executes processing in response to timer RG
TRGPMC count compare match interrupt (INTPMC).

R20UT4852EC0107 Rev.1.07 :{EN ESAS Page 472 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_TRG} Create

This API function executes initialization processing that is required before controlling the TRG module in
phase counting mode.

Remark This API function is called from R_Systeminit before the main() function is executed.

[Syntax]
void R_{Config_ TRG} Create(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 473 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ TRG}_ Start

This API function starts the TRG counter.

[Syntax]
void R_{Config_TRG}_Start(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 474 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_TRG}_ Stop

This API function stops the TRG counter.

[Syntax]
void R_{Config_TRG}_Stop(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 475 of 868
Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

R_{Config_ TRG} Get MeasurementCapture

This API function get TRG measurement capture value to calculate phase change times on TRGCLKA

and TRGCLKB.

[Syntax]

void R_{Config_ TRG} Get MeasurementCapture(uint16_t * const capture_value);

[Argument(s)]

I/0

Argument(s)

Description

O | uint16_t * const capture_value;

Measurement capture value

[Return value]
None.

R20UT4852EC0107 Rev.1.07

Jan 20, 2026

RENESAS

Page 476 of 868

Smart Configurator 4. API FUNCTIONS

R_{Config_ TRG} Create_ Userlnit

This API function executes user-specific initialization processing for the TRG.
Remark This API functions is called from R_{Config TRG} Create as a callback routine.

[Syntax]
void R_{Config_TRG}_Create_Userlnit(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 477 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_ TRG} interrupt

This API function executes processing in response to timer RG count compare match interrupt (INTTRG).

Remark This API function is called as the interrupt handler for count compare match interrupt
(INTTRG), which occur when the content of the TRG register matches content of the
TRGGRA (h =A, B, C, or D) register or TRG register overflow.

[Syntax]
For CCRL78 toolchain:
static void __near r {Config_TRG} interrupt(void);

For LLVM toolchain:
void r_{Config_TRG]} _interrupt(void);

For IAR toolchain:
__interrupt static void r_{Config_TRG]}_interrupt(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 478 of 868
Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

r {Config_TRG} clear_interrupt

This API function executes processing in response to timer RG count compare match counter clearing
and Z-signal detection counter clearing interrupt (INTGCR).

[Syntax]
For CCRL78 toolchain:

static void __near r_{Config_TRG} clear_interrupt(void);

For LLVM toolchain:

void r_{Config_TRG}_clear_interrupt(void);

For IAR toolchain:

‘ __interrupt static void r_{Config_TRG} clear_interrupt(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07
Jan 20, 2026

RENESAS

Page 479 of 868

Smart Configurator 4. API FUNCTIONS

r {Config_ TRG} capture_interrupt

This API function executes processing in response to timer RG TRGPMC count compare match interrupt
(INTPMC).

[Syntax]
For CCRL78 toolchain:
static void __near r_{Config_TRG}_capture_interrupt(void);

For LLVM toolchain:
void r_{Config_TRG}_capture_interrupt(void);

For IAR toolchain:
‘ __interrupt static void r_{Config_TRG} capture_interrupt(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 480 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

Usage example

This is an example for Phase Counting Mode clearing by TRGGRA compare match:
(Blue code is user code.)
main.c

#include "r_cg_macrodriver.h"
#include "Config_ TAUO_0.h"
#include "Config_TAUO_3.h"
#include "Config_ TRG.h"

extern uint8_t count;
void main(void);

void main(void)
{
EI();

/[support external signal input to the TRGCLKA
R_Config TAUO_0_Start();

/Isupport external signal input to the TRGCLKB
R_Config TAUO_3_Start();

R_Config TRG_Start(); /ITRG operation enable

while (count > 0U); /lexit the loop once the count exceeds 0, indicating that the interrupt handler
has been triggered

R_Config_TRG_Stop(); /ITRG operation disable
}

Config_ TRG_user.c

[* Start user code for global. Do not edit comment generated here */
uint8_t count = 0U;
/* End user code. Do not edit comment generated here */

static void __near r_Config_TRG_interrupt (void)

[* Start user code for r_Config_ TRG_interrupt. Do not edit comment generated here */
count ++; //to count the number of times the interrupt handler is entered
/* End user code. Do not edit comment generated here */

R20UT4852EC0107 Rev.1.07 RENESAS Page 481 of 868
Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

4.2.38 Clock Output/Buzzer Output Controller

Below is a list of API functions output by the Smart Configurator for clock output/buzzer output controller use.

Table 4-44 API Functions:

API Function Name

Peripheral Name

Description

R_{Config_PCLBUZn}_Create

R_{Config_PCLBUZn}_Start

R_{Config_PCLBUZn}_Stop

R_{Config_PCLBUZn}_Create_Userlnit

Clock Output/Buzzer
Output Controller

Executes initialization processing that is required
before controlling the PCLBUZn module.

Starts the PCLBUZn module.

Stops the PCLBUZn module.

Executes user-specific initialization processing for
the PCLBUZn.

R20UT4852EC0107 Rev.1.07
Jan 20, 2026

RENESAS Page 482 of 868

Smart Configurator 4. API FUNCTIONS

R_{Config_PCLBUZn} Create

This API function executes initialization processing that is required before controlling the PCLBUZn module.

Remark This API function is called from R_Systeminit before the main() function is executed.
[Syntax]
void R_{Config_PCLBUZn} Create(void);
Remark n is the channel number.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 483 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_PCLBUZn} Start
This API function starts the PCLBUZn converter.

[Syntax]
void R_{Config_PCLBUZn}_Start(void);

Remark n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 484 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_PCLBUZn} Stop

This API function stops the PCLBUZn converter.

[Syntax]
void R_{Config_PCLBUZn}_ Stop(void);

Remark n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 485 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_PCLBUZn} Create_Userlnit

This API function executes user-specific initialization processing for the PCLBUZ.

Remark This API functions is called from R_{Config_ PCLBUZn} Create as a callback routine.
[Syntax]
void R_{Config_PCLBUZn} Create_Userlnit(void);
Remark n is the channel number.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 486 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

Usage example

This is an example for using clock output/buzzer output controller O:
(Blue code is user code.)
main.c

#include "r_smc_entry.h"

void main(void);
void main(void)

El(); /Ito enable interrupt
R_Config_PCLBUZO0_Start(); //PCLBUZO0 operation enable

R20UT4852EC0107 Rev.1.07 RENESAS Page 487 of 868
Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

4.2.39 Real-Time Clock

Below is a list of API functions output by the Smart Configurator for real-time clock use.

Table 4-45 API Functions:

API Function Name

Peripheral Name

Description

R_{Config_RTC} Create

Real-Time Clock

R_{Config_RTC}_Start

R_{Config_RTC}_Stop

R _{Config_ RTC} Set HourSystem

R_{Config_RTC}_Set_CounterValue

R_{Config_RTC}_Get_CounterValue

R_{Config_RTC}_Set_ConstPeriodInterruptOn

R_{Config_RTC}_Set_ConstPeriodInterruptOff

R_{Config_RTC}_Set_AlarmOn

R_{Config_RTC}_Set_AlarmOff

R_{Config_RTC}_Set_AlarmValue

R_{Config_RTC}_Get_AlarmValue

R_{Config_RTC} Set RTC1HZOn

R_{Config_RTC} Set RTC1HZOff

R_{Config_RTC}_Create_Userlnit

r_{Config_RTC}_interrupt

r_{Config_RTC}_callback_constperiod

r_{Config_RTC}_callback_alarm

Executes initialization processing that is
required before controlling the real-time clock
module.

Enables the real-time clock counter.

Disables the real-time clock counter.

Chooses 12-hour system or 24-hour system.

Changes the real-time clock counter value.

Reads the results of real-time clock and store
them in the variables.

Enables constant-period interrupt.

Disables constant-period interrupt.

Starts the alarm operation.

Stops the alarm operation.

Sets alarm value.

Gets alarm value.

Enables RTC1HZ output.

Disables RTC1HZ output.

Executes user-specific initialization
processing for the real-time clock.

Executes processing in response to INTRTC

interrupt.

Executes processing in response to INTRTC
fixed-cycle interrupt.

Executes processing in response to INTRTC

alarm interrupt.

R20UT4852EC0107 Rev.1.07
Jan 20, 2026

RENESAS

Page 488 of 868

Smart Configurator 4. API FUNCTIONS

R_{Config_RTC} Create

This API function executes initialization processing that is required before controlling the real-time clock
module.

Remark This API function is called from R_Systeminit before the main() function is executed.

[Syntax]
void R_{Config_RTC} Create(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 489 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R _{Config_RTC} Start

This API function enables the real-time clock counter.

[Syntax]
void R_{Config_RTC}_Start(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 490 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_RTC} Stop

This API function disables the real-time clock counter.

[Syntax]
void R_{Config_RTC}_Stop(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 491 of 868
Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

R_{Config_RTC} Set HourSystem

Chooses 12-hour system or 24-hour system.

[Syntax]

MD_STATUS

R_{Config_RTC} Set HourSystem(e_rtc_hour_system_t hour_system);

[Argument(s)]

I/0

Argument(s)

Description

I e_rtc_hour_system_t hour_system; Clock type
HOUR12: 12-hour clock
HOUR24: 24-hour clock

Remark

Below is shown the structure e_rtc_hour_system_t (hour system).

typedef enum

HOUR12,
HOUR24

} e_rtc_hour_system_t;

[Return value]

Macro Description
MD_OK Normal end
MD_BUSY1 Busy 1.
MD_BUSY2 Busy 2.
MD_ARGERROR Error argument input error.
R20UT4852EC0107 Rev.1.07 :{ENESAS Page 492 of 868

Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

R_{Config_RTC} Set CounterValue

Changes the real-time clock counter value.

[Syntax]

MD_STATUS R_{Config_RTC} Set_CounterValue(st_rtc_counter_value_t counter_write_val);

[Argument(s)]

I/0 Argument(s)

Description

I st_rtc_counter_value_t counter_write_val; | The expected real-time clock value (BCD code)

Remark Below is shown the structure st_rtc_counter_value_t (counter conditions).

typedef struct

uint8_t sec;
uint8_t min;
uint8_t hour;
uint8_t day;
uint8_t week;
uint8_t month;
uint8_t year;
} st_rtc_counter_value_t;

[Return value]

Macro Description
MD_OK Normal end
MD_BUSY1 Busy 1.
MD_BUSY2 Busy 2.
R20UT4852EC0107 Rev.1.07 :{ENESAS Page 493 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_RTC} Get CounterValue

This API function reads the results of real-time clock and store them in the variables.

[Syntax]
MD_STATUS R_{Config_RTC} Get_CounterValue(st_rtc_counter_value_t * const
counter_read_val);

[Argument(s)]
1/O Argument(s) Description
I st_rtc_counter_value_t * const The current real-time clock value (BCD code)
counter_read_val;

Remark For structure st_rtc_counter_value_t, see R_{Config_ RTC} Set CounterValue.

[Return value]

Macro Description
MD_OK Normal end
MD_BUSY1 Busy 1.
MD_BUSY2 Busy 2.
R20UT4852EC0107 Rev.1.07 RENESAS Page 494 of 868

Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

R_{Config_RTC} Set ConstPeriodinterruptOn

Enables constant-period interrupt.

[Syntax]
MD_STATUS R_{Config_RTC}_Set_ConstPeriodinterruptOn(e_rtc_int_period_t period);
[Argument(s)]
1/0 Argument(s) Description
I e_rtc_int_period_t period; The constant period of INTRTC
Remark Below is shown the structure e_rtc_int_period_t period (period conditions).
typedef enum
HALFSEC = 1U,
ONESEC,
ONEMIN,
ONEHOUR,
ONEDAY,
ONEMONTH
} e_rtc_int_period_t;

[Return value]

Macro Description
MD_OK Normal end
MD_ARGERROR Error argument input error.
R20UT4852EC0107 Rev.1.07 :{ENESAS Page 495 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_RTC} Set ConstPeriodInterruptOff

Disables constant-period interrupt.

[Syntax]
void R_{Config_RTC}_Set_ConstPeriodInterruptOff(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 496 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R _{Config_RTC} Set AlarmOn

This API function starts the alarm operation.

[Syntax]
void R_{Config_RTC}_Set_AlarmOn(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 497 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R _{Config_RTC} Set AlarmOff

This API function stops the alarm operation.

[Syntax]
void R_{Config_RTC}_Set_AlarmOff(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 498 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R _{Config_RTC} Set AlarmValue

This API function sets alarm value.

[Syntax]
void R_{Config_RTC}_Set_AlarmValue(st_rtc_alarm_value_t alarm_val);

[Argument(s)]
I/0 Argument(s) Description
I st_rtc_alarm_value_t alarm_val; The expected alarm value (BCD code)
Remark Below is shown the structure st_rtc_alarm_value_t alarm_val (alarm conditions).
typedef struct

uint8_t alarmwm;
uint8_t alarmwh;
uint8_t alarmww;

} st_rtc_alarm_value_t;

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 499 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R _{Config_RTC} Get AlarmValue

Gets alarm value.

[Syntax]
void R_{Config_RTC} Get_AlarmValue(st_rtc_alarm_value_t * const alarm_val);

[Argument(s)]
I/0 Argument(s) Description
O | st_rtc_alarm_value_t * const alarm_val; The address to save alarm value (BCD code)
Remark For structure st_rtc_alarm_value_t * const alarm_val,

see R {Config RTC} Set AlarmValue.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 500 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R _{Config_RTC} Set RTC1HZOn
Enables RTC1HZ output.

[Syntax]
void R_{Config_RTC} Set RTC1HZOn(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 501 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_RTC} Set RTC1HZOff
Disables RTC1HZ output.

[Syntax]
void R_{Config_RTC} Set RTC1HZOff(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 502 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_RTC} Create_Userlnit

This API function executes user-specific initialization processing for the real-time clock.
Remark This API functions is called from R_{Config_RTC} Create as a callback routine.

[Syntax]
void R_{Config_RTC}_ Create_Userlnit(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 503 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_RTC]} interrupt

This API function executes processing in response to INTRTC interrupt.

[Syntax]
For CCRL78 toolchain:
static void __near r {Config_RTC} interrupt(void);

For LLVM toolchain:
void r_{Config_RTC} _interrupt(void);

For IAR toolchain:
__interrupt static void r_{Config_RTC} _interrupt(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 504 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_RTC} callback constperiod

This API function executes processing in response to INTRTC fixed-cycle interrupt.

Remark This API function is called as the callback routine of interrupt process
r_{Config_RTC} interrupt corresponding to the fixed-cycle interrupt.

[Syntax]
static void r {Config_RTC} callback constperiod(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 505 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_RTC} callback alarm

This API function executes processing in response to INTRTC alarm interrupt.

Remark This API function is called as the callback routine of interrupt process
r_{Config_RTC} interrupt corresponding to the alarm interrupt.

[Syntax]
static void r_{Config_RTC} callback_ alarm(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 506 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

Usage example 1 (alarm interrupt)

This is an example for using alarm interrupts to implement virtual processing for leap second correction (turning
back the clock from 23:59:59 to 23:59:58 on a scheduled day):
(Blue code is user code.)

main.c
#include "r_smc_entry.h"

void main(void);
void main(void)
El(); /Ito enable interrupt

R_Config RTC_Set_AlarmOn(); /Istarts the alarm operation
R_ Config_RTC_Start(); /Ithe real-time clock counter operation enable

Config_ RTC_ user.c

[* Start user code for global. Do not edit comment generated here */

volatile st_rtc_counter_value_t counter_val;

/* End user code. Do not edit comment generated here */

static void r_Config_RTC_callback_alarm(void)

{
[* Start user code for r_Config RTC_callback_alarm. Do not edit comment generated here */
//IReads the results of real-time clock and store them in the variables
R_Config RTC_Get_CounterValue ((st_rtc_counter_value_t *)&counter_val);
/* Change the seconds */
counter_val.rseccnt = 0x58U;
R_Config_RTC_Set_CounterValue (counter_val); /lchanges the real-time clock counter value
/* End user code. Do not edit comment generated here */

}

R20UT4852EC0107 Rev.1.07 RENESAS Page 507 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

Usage example 2 (constant-period interrupt)

This is an example for using constant-period interrupts to implement generating an alarm intetrrupt every 1 hour:
(Blue code is user code.)

main.c

#include "r_smc_entry.h"
st_rtc_counter_value t currTime;
st_rtc_alarm_value_talarm; b

void main(void);
void main(void)

EI(); /lto enable interrupt

R_Config_ RTC_Set_ConstPeriodInterruptOn(ONEHOUR); /lenables constant-period interrupt,
interrupt handler generated once every hour

R_ Config_RTC_Start(); /Ithe real-time clock counter operation enable
}

Config_ RTC_ user.c

[* Start user code for global. Do not edit comment generated here */
st_rtc_counter_value_t currTime;

st_rtc_alarm_value_t alarm;

/* End user code. Do not edit comment generated here */

static void r_Config_RTC_callback_constperiod (void)
{

[* Start user code for r_Config RTC_callback_constperiod. Do not edit comment generated here */

/IReads the results of real-time clock and store them in the variables

R_Config RTC_Get_CounterValue(&currTime);

/[Reads the alarm value of real-time clock and store them in the variables

R_Config_ RTC_Get_AlarmValue(&alarm);

/[Changes the alarm value to current counter value

alarm.alarmww = currTime.week;

alarm.alarmwh = currTime.hour;

alarm.alarmwm = currTime.min + 5;

R_Config_ RTC_Set_AlarmValue(alarm); /Isets the alarm value

R_Config RTC_Set_AlarmOn(); /Istarts the alarm operation

/* End user code. Do not edit comment generated here */

R20UT4852EC0107 Rev.1.07 RENESAS Page 508 of 868
Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

4.2.40 A/D Converter

Below is a list of API functions output by the Smart Configurator for A/D converter use.

Table 4-46 API Functions:

API Function Name

Peripheral Name

Description

R_{Config_ADC}_ Create

R_{Config_ADC}_Start

R_{Config_ADC}_Stop

R_{Config_ ADC}_Set OperationOn

R_{Config_ ADC}_Set_OperationOff

R_{Config_ADC}_Set ADChannel

R _{Config_ ADC} ADSn_Set ADChan
nel

R _{Config_ ADC} Set SnoozeOn

R_{Config_ADC}_Set_SnoozeOff

R_{Config_ ADC} Set TestChannel

R_{Config_ ADC} Get Result_10bit

R_{Config_ADC} Get_Result_8bit

R_{Config_ ADC} Get Result_12bit

R_{Config_ ADC}_ADSn_Get_Result_1
Obit

R_{Config_ADC} ADSn_Get_Result_8
bit

R_{Config_ADC} ADSn_Get_Result_1
2bit

R _{Config_ ADC} Create_ Userlnit

r_{Config_ADC} interrupt

r_{Config_ADC}_adn_interrupt

A/D Converter

Executes initialization processing that is required before
controlling the ADC module.

Starts the AD converter.

Stops the AD converter.

Enables AD voltage comparator operation.

Disables AD voltage comparator operation.

Selects analog input channel.

Selects analog input channel (Only when selecting "AD
Advanced Mode").

Enables AD wakeup function.

Disables AD wakeup function.

Sets test function.

Returns the high 10 bits conversion result in the buffer.

Returns the high 8 bits conversion result in the buffer.

Returns the low 12 bits conversion result in the buffer.

Returns the high 10 bits conversion result in the buffer
(Only when selecting "AD Advanced Mode").

Returns the high 8 bits conversion result in the buffer
(Only when selecting "AD Advanced Mode").

Returns the low 12 bits conversion result in the buffer
(Only when selecting "AD Advanced Mode").

Executes user-specific initialization processing for the
AD converter.

Executes processing in response to INTAD interrupt.

Executes processing in response to INTADn interrupt
(Only when selecting "AD Advanced Mode").

R20UT4852EC0107 Rev.1.07
Jan 20, 2026

RENESAS

Page 509 of 868

Smart Configurator 4. API FUNCTIONS

R_{Config_ADC} Create

This API function executes initialization processing that is required before controlling the ADC module.
Remark This API function is called from R_Systeminit before the main() function is executed.

[Syntax]
void R_{Config_ADC}_Create(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 510 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ADC}_Start

This API function starts the AD converter.

[Syntax]
void R_{Config_ADC}_Start(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 511 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ADC} Stop

This API function stops the AD converter.

[Syntax]
void R_{Config_ADC}_Stop(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 512 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ADC} Set OperationOn

Enables AD voltage comparator operation.

[Syntax]
void R_{Config_ADC} Set OperationOn(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 513 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ADC} Set OperationOff

Disables AD voltage comparator operation.

[Syntax]
void R_{Config_ADC} Set OperationOff(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 514 of 868
Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

R_{Config_ADC} Set ADChannel

This API function selects analog input channel.

[Syntax]
MD_STATUS R_{Config_ADC}_Set ADChannel(e_ad_channel_t channel);
[Argument(s)]
I/0 Argument(s) Description
I e_ad_channel_t channel; Analog input channel

Remark

Below is shown an example of the structure e_ad_channel_t channel (channel conditions).

typedef enum

ADCHANNELO, ADCHANNEL1, ADCHANNEL2, ADCHANNEL3, ADCHANNEL4,
ADCHANNELS5, ADCHANNELG, ADCHANNEL7, ADCHANNELS, ADCHANNELS9,
ADCHANNEL10, ADCHANNEL11, ADCHANNEL12, ADCHANNEL13,
ADCHANNEL14, ADCHANNEL16 = 16U, ADCHANNEL17, ADCHANNEL18,
ADCHANNEL19, ADCHANNEL20, ADCHANNEL21, ADCHANNEL22,
ADCHANNEL23, ADCHANNEL24, ADCHANNEL25, ADCHANNEL?26,
ADTEMPERSENSORO = 128U, ADINTERREFVOLT

} e_ad_channel_t;

[Return value]

Macro Description
MD_OK Normal end
MD_ARGERROR Error argument input error.
R20UT4852EC0107 Rev.1.07 :{ENESAS Page 515 of 868

Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

R_{Config_ADC} ADSn_Set ADChannel

This API function selects analog input channel (Only when selecting "AD Advanced Mode").

[Syntax]
MD_STATUS R_{Config_ADC} ADSn_Set ADChannel(e_ad_channel_t channel);
[Argument(s)]
1/0 Argument(s) Description
I e_ad_channel_t channel; Analog input channel

Remark

Below is shown an example of the structure e_ad_channel_t channel (channel conditions).

typedef enum

} e_ad_channel_t;

ADCHANNELO, ADCHANNEL1, ADCHANNEL2, ADCHANNEL3, ADCHANNEL4,
ADCHANNELS5, ADCHANNELG, ADCHANNEL7, ADCHANNELS, ADCHANNELS9,
ADCHANNEL10, ADCHANNEL11, ADCHANNEL12, ADCHANNEL13,
ADCHANNEL14, ADCHANNEL16 = 16U, ADCHANNEL17, ADCHANNEL18,
ADCHANNEL19, ADCHANNEL20, ADCHANNEL21, ADCHANNEL22,
ADCHANNEL23, ADCHANNEL24, ADCHANNEL25, ADCHANNEL?26,
ADTEMPERSENSORO = 128U, ADINTERREFVOLT

[Return value]

Macro Description
MD_OK Normal end
MD_ARGERROR Error argument input error.
R20UT4852EC0107 Rev.1.07 :{ENESAS Page 516 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ADC} Set SnoozeOn

Enables AD wakeup function.

[Syntax]
void R_{Config_ADC}_Set _SnoozeOn(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 517 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ ADC} Set SnoozeOff

Disables AD wakeup function.

[Syntax]
void R_{Config_ADC}_Set_SnoozeOff(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 518 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ADC} Set TestChannel

This API function sets test function.

[Syntax]
MD_STATUS R_{Config_ADC}_Set TestChannel(e_test_channel_t channel);

[Argument(s)]
I/0 Argument(s) Description
I e_test_channel_t channel; Sets test channel
Remark Below is shown the structure e_test_channel_t channel (input channel conditions).

typedef enum

ADNORMALINPUT,
ADAVREFM = 2U,
ADAVREFP

} e_test_channel_t;

[Return value]

Macro Description
MD_OK Normal end
MD_ARGERROR Error argument input error.
R20UT4852EC0107 Rev.1.07 RENESAS Page 519 of 868

Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

R_{Config_ADC} Get Result_10bit

This API function returns the high 10 bits conversion result in the buffer.

[Syntax]

void R_{Config_ADC}_ Get Result_10bit(uint16_t * const buffer);

[Argument(s)]

I/0 Argument(s)

Description

| uint16_t * const buffer;

The address where to write the conversion result

[Return value]
None.

R20UT4852EC0107 Rev.1.07
Jan 20, 2026

RENESAS Page 520 of 868

Smart Configurator

4. API FUNCTIONS

R _{Config_ADC} Get Result_8bit

This API function returns the high 8 bits conversion result in the buffer.

[Syntax]

void R_{Config_ADC}_ Get_Result_8bit(uint8_t * const buffer);

[Argument(s)]

I/0 Argument(s)

Description

| uint8_t * const buffer;

The address where to write the conversion result

[Return value]
None.

R20UT4852EC0107 Rev.1.07
Jan 20, 2026

RENESAS Page 521 of 868

Smart Configurator

4. API FUNCTIONS

R_{Config_ADC} Get Result_12bit

This API function returns the low 12 bits conversion result in the buffer.

[Syntax]

void R_{Config_ADC}_Get Result_12bit(uint16_t * const buffer);

[Argument(s)]

I/0 Argument(s)

Description

| uint16_t * const buffer;

the address where to write the conversion result

[Return value]
None.

R20UT4852EC0107 Rev.1.07
Jan 20, 2026

RENESAS Page 522 of 868

Smart Configurator

4. API FUNCTIONS

R_{Config_ADC} ADSn_Get_ Result_10bit

This API function returns the high 10 bits conversion result in the buffer (Only when selecting "AD
Advanced Mode").

[Syntax]

void R_{Config_ ADC} ADSn_Get_Result_10bit(uint16_t * const buffer);
[Argument(s)]

1/O Argument(s) Description

uint16_t * const buffer;

The address where to write the conversion result

[Return value]

None.

R20UT4852EC0107 Rev.1.07
Jan 20, 2026

RENESAS Page 523 of 868

Smart Configurator

4. API FUNCTIONS

R_{Config_ADC} ADSn_Get Result_8bit

This API function returns the high 8 bits conversion result in the buffer (Only when selecting "Advanced

Mode").
[Syntax]

void R_{Config_ADC} ADSn_Get_Result_8bit(uint8_t * const buffer);
[Argument(s)]

1/O Argument(s) Description

uint8_t * const buffer;

The address where to write the conversion result

[Return value]

None.

R20UT4852EC0107 Rev.1.07
Jan 20, 2026

RENESAS Page 524 of 868

Smart Configurator

4. API FUNCTIONS

R_{Config_ADC} ADSn_Get_ Result_12bit

This API function returns the low 12 bits conversion result in the buffer (Only when selecting "Advanced

Mode").
[Syntax]

void R_{Config_ADC} ADSn_Get_Result_12bit(uint16_t * const buffer);
[Argument(s)]

1/O Argument(s) Description

uint16_t * const buffer;

the address where to write the conversion result

[Return value]

None.

R20UT4852EC0107 Rev.1.07
Jan 20, 2026

RENESAS Page 525 of 868

Smart Configurator 4. API FUNCTIONS

R_{Config_ADC} Create_ Userlnit

This API function executes user-specific initialization processing for the AD converter.
Remark This API functions is called from R_{Config_ ADC} Create as a callback routine.

[Syntax]
void R_{Config_ADC}_Create_Userlnit(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 526 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_ADC} interrupt

This API function executes processing in response to INTAD interrupt.

[Syntax]
For CCRL78 toolchain:
static void __near r {Config_ADC} interrupt(void);

For LLVM toolchain:
void r_{Config_ADC} _interrupt(void);

For IAR toolchain:
__interrupt static void r_{Config_ADC]}_interrupt(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 527 of 868
Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

r {Config_ADC} adn_interrupt

This API function executes processing in response to INTADn interrupt (Only when selecting "AD

Advanced Mode").

[Syntax]
For CCRL78 toolchain:

static void __near r_{Config_ADC} _adn_interrupt(void);

For LLVM toolchain:

void r_{Config_ADC}_adn_interrupt(void);

For IAR toolchain:

‘ __interrupt static void r_{Config_ADC} adn_interrupt(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07
Jan 20, 2026

RENESAS

Page 528 of 868

Smart Configurator

4. API FUNCTIONS

Usage example 1 (Normal Mode)

This is an example for getting the 8-bit A/D conversion result of normal mode:
(Blue code is user code.)

main.c
#include "r_smc_entry.h"
uint8_t adc_data[1] = {0}; /lused to store 8-bit A/D conversion results

extern uint8_t adc_Interrupt_flag;
void main(void);

void main(void)
{
El(); /Ito enable interrupt
adc_|Interrupt_flag = 0U;
R_Config ADC_Set_OperationOn(); [Istart the A/D comparator
R_Config_ADC_Start (); [Istart A/D conversion

the adc_data array
R_Config_ADC_Stop (); //stop ADC conversion
R_Config ADC_Set OperationOff(); /Istop the A/D comparator

while(adc_Interrupt_flag != 1U); [/Iwait for A/D conversion to complete
R _Config ADC_Get_Result_8bit(adc_data); /lget the 8-bit A/D conversion result and store it in

}
Config_ ADC_user.c

[* Start user code for global. Do not edit comment generated here */
uint8_t adc_Interrupt_flag;
/* End user code. Do not edit comment generated here */

static void __near r_Config_ADC _interrupt(void)

{
[* Start user code for r_Config_ ADC _interrupt. Do not edit comment generated here */
//Set the interrupt flag to indicate that the A/D conversion is complete
adc_Interrupt_flag = 1U;
/* End user code. Do not edit comment generated here */
}
R20UT4852EC0107 Rev.1.07 RENESAS Page 529 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

Usage example 2 (Advanced Mode)

This is an example for getting the 10-bit A/D conversion result of advanced mode:
(Blue code is user code.)
main.c

#include "r_smc_entry.h"
uint16_t adc_data[2]= {0}; [larray to store two 10-bit A/D conversion results
volatile uint8_t adc_Interrupt_flag = 0U;

void main(void);

void main(void)

{
El(); /Ito enable interrupt
/IConfigure ANI4 pin as analog input
PMCA2 |= 0x10U;
PM2 |= 0x10U;

R_Config ADC_Set_ OperationOn(); /Istart the A/D comparator
R_Config_ ADC_Start(); /[start A/D conversion

R_Config ADC_Set_SoftwareTriggerOn(); /ltrigger A/D conversion via software

while(adc_Interrupt_flag != 1); /Iwait until interrupt flag is set (conversion complete)

R _Config ADC_ADSO_Get Result_10bit(adc_data); /lget first 10-bit A/D result and store in
adc_data[0]

R_Config_ ADC_ADSO0_Set_ ADChannel(ADCHANNEL4); /Iset A/C channel to ADCHANNEL4
(ANI4)

for(char i=0; i<100; i++);
adc_|Interrupt_flag=0;

R_Config ADC_Set_SoftwareTriggerOn(); /ltrigger second ADC conversion via software

while(adc_Interrupt_flag != 1); /Iwait until conversion is complete

R _Config ADC_ADSO0_Get Result_10bit(adc_data + 1); /lget second result and store in
adc_data[1]

R_Config_ ADC_Stop(); /Istop ADC conversion
R_Config_ ADC_Set_ OperationOff(); /Istop the A/D comparator
while(1);

}

Config_ADC_user.c
[* Start user code for global. Do not edit comment generated here */
extern volatile uint8_t adc_Interrupt_flag;
/* End user code. Do not edit comment generated here */

static void __near r_Config_ADC _interrupt(void)

{
[* Start user code for r_Config_ADC_interrupt. Do not edit comment generated here */
//Set the interrupt flag to indicate that the A/D conversion is complete
adc_Interrupt_flag = 1U;
/* End user code. Do not edit comment generated here */
}
R20UT4852EC0107 Rev.1.07 RENESAS Page 530 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

4.2.41 12 Bit A/D Single Scan

Below is a list of API functions output by the Smart Configurator for 12 Bit A/D Single Scan use.

Table 4-47 API Functions:

API Function Name Peripheral Name Description
R_{Config_S12ADn} Create 12-bit A/D Executes initialization processing that is required before
converter controlling the 12-bit A/D converter module.
R_{Config_S12ADn}_Start Starts the 12-bit AD converter.
R_{Config_S12ADn}_Stop Stops the12-bit AD converter.
R_{Config_S12ADn}_Get_ValueResult Returns 12 bits conversion result in the buffer.
R_{Config_S12ADn}_Create_Userlnit Executes user-specific initialization processing for the
12-bit A/D converter.
r_{Config_S12ADn} interrupt Executes processing in response to INTAD interrupt.
R20UT4852EC0107 Rev.1.07 REN ESNS Page 531 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_S12ADn} Create

This API function executes initialization processing that is required before controlling the 12-bit A/D
converter module.

Remark This API function is called from R_Systeminit before the main() function is executed.
[Syntax]
void R_{Config_S12ADn}_Create(void);
Remark nis 0.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 532 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_S12ADn} Start

This API function starts the 12 Bit A/D converter.

[Syntax]
void R_{Config_S12ADn}_Start(void);
Remark nis 0.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 533 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_S12ADn} Stop

This API function stops the 12 Bit A/D converter.

[Syntax]
void R_{Config_S12ADn}_Stop(void);
Remark nis 0.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 534 of 868
Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

R_{Config_S12ADn} Get_ValueResult

This API function returns the 12 bits conversion result in the buffer.

[Syntax]
void R_{Config_S12ADn}_Get ValueResult (e_ad_channel_t channel, uint16_t * const buffer);
Remark nis 0.
[Argument(s)]
1/O Argument(s) Description

I e_ad_channel_t channel;

The channel of data register to be read

| uint16_t * const buffer;

The address where to write the conversion result

Remark Below is shown the structure e_ad_channel_t channel (channel conditions).

typedef enum

{

} e_ad_channel_t;

ADCHANNELO, ADCHANNEL1, ADCHANNEL2, ADCHANNEL3, ADCHANNEL4,
ADCHANNELS, ADCHANNELG6, ADCHANNEL7, ADCHANNELS8, ADCHANNELS,
ADCHANNEL10, ADCHANNEL11, ADCHANNEL12, ADCHANNEL13, ADCHANNEL14,
ADCHANNEL15, ADCHANNEL 16, ADCHANNEL17, ADCHANNEL18, ADCHANNEL19,
ADCHANNEL20, ADCHANNEL21, ADCHANNEL22, ADCHANNEL23, ADCHANNEL24,

ADCHANNEL25, ADCHANNEL26, ADCHANNEL27, ADCHANNEL28, ADCHANNEL29,
ADCHANNEL30, ADINTERREFVOLT, ADSELFDIAGNOSIS

[Return value]
None.

R20UT4852EC0107 Rev.1.07
Jan 20, 2026

RENESAS

Page 535 of 868

Smart Configurator 4. API FUNCTIONS

R_{Config_S12ADn} Create_Userlnit

This API function executes user-specific initialization processing for the 12 Bit A/D converter.

Remark This API functions is called from R_{Config_S12ADn} Create as a callback routine.
[Syntax]
void R_{Config_S12ADn}_Create_Userlnit(void);
Remark nis 0.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 536 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_S12ADn} interrupt

This API function executes processing in response to INTAD interrupt.

[Syntax]
For CCRL78 toolchain:
static void __near r {Config_S12ADn} interrupt(void);

For LLVM toolchain:
void r_{Config_S12ADn}_interrupt(void);

For IAR toolchain:
__interrupt static void r_{Config_S12ADn}_interrupt(void);

Remark nis 0.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 537 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

Usage example
This is an example for getting the 12-bit A/D conversion result of single scan mode:
(Blue code is user code.)

main.c
#include "r_smc_entry.h"

void main(void);

extern volatile uint8_t interrupt_flag;
uint16_t AD_buffer 0 = 0; /Ivariable to store A/D result from channel 0
uint16_t AD_buffer_30 = 0; /Ivariable to store A/D result from channel 30

void main(void)
{
EI();

interrupt_flag = 0;

R_Config_S12ADO0_Start(); [Istart A/D conversion in single scan mode

while(interrupt_flag !=1); /Iwait until A/D conversion is complete (interrupt flag is set)

R_Config_S12AD0_Get_ValueResult (ADCHANNELO, &AD_buffer_0); /lget 12-bit A/D result from
channel 0

R_Config_S12AD0_Get_ValueResult (ADCHANNEL30, &AD_buffer_30); /lget 12-bit A/D result
from channel 30

interrupt_flag = 2; /Iset flag to indicate data has been read

while(1);
}

Config_S12ADO0_user.c
[* Start user code for global. Do not edit comment generated here */
volatile uint8_t interrupt_flag;
/* End user code. Do not edit comment generated here */

static void __near r_Config_S12ADO0_interrupt(void)

[* Start user code for r_Config_S12ADO0_interrupt. Do not edit comment generated here */
interrupt_flag = 1; /Iset interrupt flag to indicate A/D conversion is complete
/* End user code. Do not edit comment generated here */

R20UT4852EC0107 Rev.1.07 RENESAS Page 538 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

4.2.42 12 Bit A/D Continuous Scan

Below is a list of API functions output by the Smart Configurator for 12 Bit A/D Continuous Scan use.

Table 4-48 API Functions:

API Function Name Peripheral Name Description
R_{Config_S12ADn} Create 12-bit A/D Executes initialization processing that is required before
converter controlling the 12-bit A/D converter module.
R_{Config_S12ADn}_Start Starts the 12-bit AD converter.
R_{Config_S12ADn}_Stop Stops the12-bit AD converter.
R_{Config_S12ADn}_Get_ValueResult Returns 12 bits conversion result in the buffer.
R_{Config_S12ADn}_Create_Userlnit Executes user-specific initialization processing for the
12-bit A/D converter.
r_{Config_S12ADn} _interrupt Executes processing in response to INTAD interrupt.
R20UT4852EC0107 Rev.1.07 REN ESNS Page 539 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_S12ADn} Create

This API function executes initialization processing that is required before controlling the 12-bit A/D module.

Remark This API function is called from R_Systeminit before the main() function is executed.
[Syntax]
void R_{Config_S12ADn}_Create(void);
Remark nis 0.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 540 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_S12ADn} Start

This API function starts the 12 Bit A/D converter.

[Syntax]
void R_{Config_S12ADn}_Start(void);
Remark nis 0.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 541 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_S12ADn} Stop

This API function stops the 12 Bit A/D converter.

[Syntax]
void R_{Config_S12ADn}_Stop(void);
Remark nis 0.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 542 of 868
Jan 20, 2026

Smart Configurator

R_{Config_S12ADn} Get_ValueResult

This API function returns the 12 bits conversion result in the buffer.

[Syntax]
void R_{Config_S12ADn}_Get ValueResult (e_ad_channel_t channel, uint16_t * const buffer);
Remark nis 0.
[Argument(s)]
I/0 Argument(s) Description
I e_ad_channel_t channel; The channel of data register to be read
| uint16_t * const buffer; The address where to write the conversion result
Remark Below is shown the structure e_ad_channel_t channel (channel conditions).

4. API FUNCTIONS

typedef enum
{
ADCHANNELO, ADCHANNEL1, ADCHANNEL2, ADCHANNEL3, ADCHANNEL4,
ADCHANNEL5, ADCHANNEL6, ADCHANNEL7, ADCHANNEL8, ADCHANNELSY,
ADCHANNEL10, ADCHANNEL11, ADCHANNEL12, ADCHANNEL13, ADCHANNEL14,
ADCHANNEL15, ADCHANNEL16, ADCHANNEL17, ADCHANNEL18, ADCHANNEL19,
ADCHANNEL20, ADCHANNEL21, ADCHANNEL22, ADCHANNEL23, ADCHANNEL24,
ADCHANNEL25, ADCHANNEL26, ADCHANNEL27, ADCHANNEL28, ADCHANNEL29,
ADCHANNEL30, ADSELFDIAGNOSIS

} e_ad_channel_t;

[Return value]

None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 543 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_S12ADn} Create_Userlnit

This API function executes user-specific initialization processing for the 12 Bit A/D converter.

Remark This API functions is called from R_{Config_S12ADn} Create as a callback routine.
[Syntax]
void R_{Config_S12ADn}_Create_Userlnit(void);
Remark nis 0.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 544 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_S12ADn} interrupt

This API function executes processing in response to INTAD interrupt.

[Syntax]
For CCRL78 toolchain:
static void __near r {Config_S12ADn} interrupt(void);

For LLVM toolchain:
void r_{Config_S12ADn}_interrupt(void);

For IAR toolchain:
__interrupt static void r_{Config_S12ADn}_interrupt(void);

Remark nis 0.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 545 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

Usage example
This is an example for getting the 12-bit A/D conversion result of continuous scan mode by a TAU software
trigger input:
(Blue code is user code.)
main.c
#include "r_smc_entry.h"

void main(void);

extern volatile uint8_t interrupt_flag;

uint16_t AD_buffer_3 = 0; IIbuffer to store A/D result from channel 3
uint16_t AD_buffer_28 = 0; I/buffer to store A/D result from channel 28
uint8_t continues_num = 0; /[counter for number of A/D conversions

void main(void)

{
EI();

interrupt_flag = 0;

continues_num = 0;

R_Config_S12ADO0_Start(); [Istart A/D conversion

R_Config_TAUO_1_Start(); /ITAUO1 operation enable

R_Config TAUO_1_Set SoftwareTriggerOn(); /lto generate a start trigger for A/D conversion

while(1){
if(interrupt_flag == 1 { /lcheck if A/D interrupt occurred
interrupt_flag = 0; [Ireset interrupt flag
continues_num ++; /lincrement conversion counter

/IGet A/D result from channel 3 and store in buffer
R_Config_S12AD0_Get_ValueResult (ADCHANNELS3, &AD_buffer_3);
/IGet A/D result from channel 28 and store in buffer
R_Config_S12AD0_Get_ValueResult (ADCHANNEL28, &AD_buffer_28);

if(continues_num >=3){ /Istop after 3 conversions
R_Config_S12ADO0_Stop(); //stop the A/D module
break;

}
I3
interrupt_flag = 2; //set flag to indicate completion

while(1);
}

Config_S12ADO0_user.c

[* Start user code for global. Do not edit comment generated here */
volatile uint8_t interrupt_flag;
/* End user code. Do not edit comment generated here */

static void _near r_Config_S12ADO0_interrupt(void)

{
/* Start user code for r_Config_S12ADO0_interrupt. Do not edit comment generated here */
interrupt_flag = 1; /Iset interrupt flag to indicate A/D conversion is complete
/* End user code. Do not edit comment generated here */
!
R20UT4852EC0107 Rev.1.07 RENESAS Page 546 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

4.2.43 12 Bit A/D Group Scan

Below is a list of API functions output by the Smart Configurator for 12 Bit A/D Group Scan use.

Table 4-49 API Functions:

API Function Name Peripheral Name Description
R_{Config_S12ADn} Create 12-bit A/D Executes initialization processing that is required before
converter controlling the 12-bit A/D converter module.
R_{Config_S12ADn}_Start Starts the 12-bit AD converter.
R_{Config_S12ADn}_Stop Stops the12-bit AD converter.
R_{Config_S12ADn}_Get_ValueResult Returns 12 bits conversion result in the buffer.
R_{Config_S12ADn}_Create_Userlnit Executes user-specific initialization processing for the
12-bit A/D converter.
r_{Config_S12ADn} interrupt Executes processing in response to INTAD interrupt.
r_{Config_S12ADn}_groupb_interrupt Executes processing in response to INTADGB interrupt.
R20UT4852EC0107 Rev.1.07 REN ESNS Page 547 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_S12ADn} Create

This API function executes initialization processing that is required before controlling the 12-bit A/D module.
Remark This API function is called from R_Systeminit before the main() function is executed.

[Syntax]
void R_{Config_S12ADn}_Create(void);
Remark nis 0.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 548 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_S12ADn} Start

This API function starts the 12 Bit A/D converter.

[Syntax]
void R_{Config_S12ADn}_Start(void);
Remark nis 0.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 549 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_S12ADn} Stop

This API function stops the 12 Bit A/D converter.

[Syntax]
void R_{Config_S12ADn}_Stop(void);
Remark nis 0.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 550 of 868
Jan 20, 2026

Smart Configurator

R_{Config_S12ADn} Get_ValueResult

This API function returns the 12 bits conversion result in the buffer.

[Syntax]
void R_{Config_S12ADn}_Get ValueResult (e_ad_channel_t channel, uint16_t * const buffer);
Remark nis 0.
[Argument(s)]
I/0 Argument(s) Description
I e_ad_channel_t channel; The channel of data register to be read
| uint16_t * const buffer; The address where to write the conversion result
Remark Below is shown the structure e_ad_channel_t channel (channel conditions).

typedef enum
{
ADCHANNELO, ADCHANNEL1, ADCHANNEL2, ADCHANNEL3, ADCHANNEL4,
ADCHANNEL5, ADCHANNEL6, ADCHANNEL7, ADCHANNEL8, ADCHANNELSY,
ADCHANNEL10, ADCHANNEL11, ADCHANNEL12, ADCHANNEL13, ADCHANNEL14,
ADCHANNEL15, ADCHANNEL16, ADCHANNEL17, ADCHANNEL18, ADCHANNEL19,
ADCHANNEL?20, ADCHANNEL21, ADCHANNEL22, ADCHANNEL23,
ADCHANNEL24, ADCHANNEL25, ADCHANNEL26, ADCHANNEL27, ADCHANNEL28,
ADCHANNEL29, ADCHANNEL30, ADINTERREFVOLT, ADSELFDIAGNOSIS

} e_ad_channel_t;

[Return value]

None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 551 of 868

Jan 20, 2026

4. API FUNCTIONS

Smart Configurator 4. API FUNCTIONS

R_{Config_S12ADn} Create_Userlnit

This API function executes user-specific initialization processing for the 12 Bit A/D converter.

Remark This API functions is called from R_{Config_S12ADn} Create as a callback routine.
[Syntax]
void R_{Config_S12ADn}_Create_Userlnit(void);
Remark nis 0.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 552 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_S12ADn} interrupt

This API function executes processing in response to INTAD interrupt.

[Syntax]
For CCRL78 toolchain:
static void __near r {Config_S12ADn} interrupt(void);

For LLVM toolchain:
void r_{Config_S12ADn}_interrupt(void);

For IAR toolchain:
__interrupt static void r_{Config_S12ADn}_interrupt(void);

Remark nis 0.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 553 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_S12ADn} groupb_interrupt

This API function executes processing in response to INTADGB interrupt.

[Syntax]
For CCRL78 toolchain:
static void __near r_{Config_S12ADn} groupb_interrupt(void);

For LLVM toolchain:
void r_{Config_S12ADn}_groupb_interrupt(void);

For IAR toolchain:
__interrupt static void r_{Config_S12ADn}_groupb_interrupt(void);

Remark nis 0.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 554 of 868
Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

Usage example

This is an example for getting the 12-bit A/D conversion result of group scan mode by a synchronous trigger

from the timer function:

(Blue code is user code.)

main.c (1/2)

#include "r_cg_macrodriver.h"

void main(void);

extern volatile uint8_t interrupt_flag_GA,;
extern volatile uint8_t interrupt_flag_GB;

/Igroup A interrupt flag
/I[group B interrupt flag

/I Declare variables to store A/D results for three rounds of readings

uint16_t GB_ANIO_1;
uint16_t GB_ANI1_1;
uint16_t GB_ANI2_1;
uint16_t GA_ANI3_1;
uint16_t GA_ANI4_1;

uint16_t GB_ANIO_2;
uint16_t GB_ANI1_2;
uint16_t GB_ANI2_2;
uint16_t GA_ANI3_2;
uint16_t GA_ANI4_2;

uint16_t GB_ANIO_3;
uint16_t GB_ANI1_3;
uint16_t GB_ANI2_3;
uint16_t GA_ANI3_3;
uint16_t GA_ANI4_3;

void main(void)

{
EI();

RAMSAR = 0x9F;

/Igroup B, channel ANIO, first reading
/Igroup B, channel ANI1, first reading
/Igroup B, channel ANI2, first reading
/Igroup A, channel ANI3, first reading
/Igroup A, channel ANI4, first reading

/I[group B, channel ANIO, second reading
/I[group B, channel ANI1, second reading
/I[group B, channel ANI2, second reading
/Igroup A, channel ANI3, second reading
/Igroup A, channel ANI4, second reading

/I[group B, channel ANIO, third reading
/I[group B, channel ANI1, third reading
/I[group B, channel ANI2, third reading
/Igroup A, channel ANI3, third reading
/Igroup A, channel ANI4, third reading

/lallow the user to access RAM

interrupt_flag GA = 0;
interrupt_flag_GB = 0;

/linitialize all A/D result buffers to 0

GB_ANIO_1=0;
GB_ANI1_1 =0;
GB_ANI2_1
GA_ANI3_1
GA_ANI4_1
GB_ANIO_2
GB_ANI1_2
GB_ANI2 2
GA_ANI3 2
GA_ANI4_2

ODO0O0O0O0OO O

R _Config_S12ADO0_Start();
R _Config TAUO_0_Start();
R _Config TAUO 4 Start();

/I Group B, ANIO buf, first reading

/I Group A, ANI3 buf, first reading

/I Group B, ANIO buf, second reading

/I Group A, ANI3 buf, second reading

/Istart A/D conversion
/lto enable TAUOO one-shot
/lto enable TAUO4 one-shot

R_Config_TRDO_Start();

R_Config TAUO_4_Set_SoftwareTriggerOn(); //trigger Group B

R20UT4852EC0107 Rev.1.07
Jan 20, 2026

RENESAS

Page 555 of 868

Smart Configurator

4. API FUNCTIONS

main.c (2/2)

/lInput voltage of 1v
while(1){
//State 1: Wait for Group B conversion complete
if(interrupt_flag_GB == 1){ /ffirst reading, read Group B A/D results
/I Group B (Group B conversion completed)
R_Config S12AD0_Get_ValueResultf(ADCHANNELO, &GB_ANIO0 1);
R_Config S12AD0_Get_ValueResultf(ADCHANNEL1, &GB_ANI1_1);
R_Config S12AD0_Get_ValueResultf(ADCHANNEL2, &GB_ANI2_1);
/I Group A (Group A not start)
R_Config S12AD0_Get_ValueResultf(ADCHANNEL3, &GA_ANI3_1);
R_Config_S12AD0_Get_ValueResult(ADCHANNEL4, &GA_ANI4_1);
interrupt_flag_GB =2; //read once, Group B conversion completed

R_Config TAUO_0_Set_SoftwareTriggerOn(); // trigger Group A

//State 2: Wait for Group A conversion complete

if(interrupt_flag_GA == 1){ // second reading, read Group A A/D results
/I Group B (Group B not start)
R_Config_S12AD0_Get_ValueResult(ADCHANNELO, &GB_ANIO_2);
R_Config_S12AD0_Get_ValueResult(ADCHANNEL1, &GB_ANI1_2);
R_Config_S12AD0_Get_ValueResult(ADCHANNEL2, &GB_ANI2_2);
/I Group A (Group A start)
R _Config_ S12AD0_Get_ValueResult(ADCHANNEL3, &GA_ANI3_2);
R _Config_ S12AD0_Get_ValueResult(ADCHANNEL4, &GA_ANI4_2);
interrupt_flag GA=2; //read once, Group A conversion completed

/[State 3: Exit loop when both groups have completed conversion
if((interrupt_flag_GA == 2) && (interrupt_flag_GB == 2)){

break; //Complete all conversions.
}

}

R_Config_S12AD0_Stop(); // stop conversion
/[Prepare for third reading

GB_ANIO_3 =0;

GB_ANI1_3 =0;

GB_ANI2_3 =0;

GA_ANI3_3 =0;

GA_ANI4_3 =0;

/IReset Group A and B flags

interrupt_flag_ GA = 0;

interrupt_flag_GB = 0;

/lInput voltage of 0.6V

R_Config_S12ADO0_Start(); /lgroup scan restart
R_Config_TAUO_0_Set_SoftwareTriggerOn(); [ltrigger Group A again

while(interrupt_flag_GA !=1);

/IGroup B (Group B not start)
R_Config_S12AD0_Get_ValueResult(ADCHANNELO, &GB_ANIO_3);
R_Config_S12AD0_Get_ValueResult(ADCHANNEL1, &GB_ANI1_3);
R_Config_S12AD0_Get_ValueResult(ADCHANNEL2, &GB_ANI2_3);
/IGroup A (Group A start)
R_Config_S12AD0_Get_ValueResult(ADCHANNELS3, &GA_ANI3_3);
R_Config_S12AD0_Get_ValueResult(ADCHANNEL4, &GA_ANI4_3);

while(1);

R20UT4852EC0107 Rev.1.07 RENESAS
Jan 20, 2026

Page 556 of 868

Smart Configurator 4. API FUNCTIONS

Config_S12ADO0_user.c

[* Start user code for global. Do not edit comment generated here */
uint8_t interrupt_flag_GA,;

uint8_t interrupt_flag_GB;

/* End user code. Do not edit comment generated here */

static void __near r_Config_S12ADO0 _interrupt(void)

/* Start user code for r_Config_S12ADO0_interrupt. Do not edit comment generated here */
interrupt_flag GA = 1; /Iset Group A interrupt flag when conversion completes
/* End user code. Do not edit comment generated here */

}
static void __near r_Config_S12ADO0_groupb_interrupt(void)

/* Start user code for r_Config_S12AD0_groupb_interrupt. Do not edit comment generated here */
interrupt_flag_GB = 1; /Iset Group B interrupt flag when conversion completes
/* End user code. Do not edit comment generated here */

R20UT4852EC0107 Rev.1.07 RENESAS Page 557 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

4.2.44 D/A Converter

Below is a list of API functions output by the Smart Configurator for D/A converter use.

Table 4-50 API Functions:

API Function Name Peripheral Name Description
R_{Config_DACn}_Create D/A Converter Executes initialization processing that is required
before controlling the DACn module.
R_{Config_DACn}_Start Starts the DACn module.
R_{Config_DACn}_Stop Stops the DACn module.
R_{Config_DACn}_Set_ConversionValue Sets the DACn value to convert.
R_{Config_DACn}_Create_Userlnit Executes user-specific initialization processing for
the DACn.
R20UT4852EC0107 Rev.1.07 REN ESNS Page 558 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_DACn} Create

This API function executes initialization processing that is required before controlling the DACn module.
Remark This API function is called from R_DAC _Create.

[Syntax]
void R_{Config_DACn}_Create(void);

Remark n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 559 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_DACn} Start

This API function starts the DACn converter.

[Syntax]
void R_{Config_DACn}_Start(void);

Remark n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 560 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_DACn} Stop

This API function stops the DACn converter.

[Syntax]
void R_{Config_DACn}_Stop(void);

Remark n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 561 of 868
Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

R_{Config_DACn} Set ConversionValue

This API function sets the DACn value to convert.

[Syntax]
void R_{Config_DACn}_Set_ConversionValue(uint8_t reg_value);
Remark n is the channel number.
[Argument(s)]
1/0 Argument(s) Description

uint8_t reg_value;

Value of conversion

[Return value]

None.

R20UT4852EC0107 Rev.1.07
Jan 20, 2026

RENESAS

Page 562 of 868

Smart Configurator 4. API FUNCTIONS

R_{Config_DACn} Create_Userlnit

This API function executes user-specific initialization processing for the DACnh.

Remark This API functions is called from R_{Config DACn} Create as a callback routine.
[Syntax]
void R_{Config_DACn}_Create_Userlnit(void);
Remark n is the channel number.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 563 of 868
Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

Usage example

This is an example for starting D/A conversion with a user-define value:

(Blue code is user code.)
main.c

#include "r_smc_entry.h"
void main(void);
void main(void)
El(); /Ito enable interrupt

R_Config DACO_Start();

R_Config_ DACO_Set ConversionValue(0xFO0);

/Istart D/A conversion

/Iset the conversion value for DACO to OxFO

R20UT4852EC0107 Rev.1.07
Jan 20, 2026

RENESAS Page 564 of 868

Smart Configurator 4. API FUNCTIONS

4.2.45 Data Transfer Controller

Below is a list of API functions output by the Smart Configurator for data transfer controller use.

Table 4-51 API Functions:

API Function Name Peripheral Name Description
R_{Config_ DTC} Create Data Transfer Controller Executes initialization processing that is required
before controlling the DTC module.
R_{Config_DTCDn}_Start Starts DTCDn module operation.
R_{Config_DTCDn}_Stop Stops DTCDn module operation.
R _{Config_ DTC} Create_Userlnit Executes user-specific initialization processing for

the data transfer controller.

R20UT4852EC0107 Rev.1.07 RENESAS Page 565 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R _{Config_DTC} Create

This API function executes initialization processing that is required before controlling the DTC module.
Remark This API function is called from R_Systeminit before the main() function is executed.

[Syntax]
void R_{Config_DTC}_Create(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 566 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R _{Config_DTCDn}_Start

This API function starts DTCDn module operation

[Syntax]
void R_{Config_DTCDn}_Start(void);

Remark n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 567 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_DTCDn}_Stop

This API function stops DTCDn module operation

[Syntax]
void R_{Config_DTCDn}_Stop(void);

Remark n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 568 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R _{Config_DTC} Create_Userlnit

This API function executes user-specific initialization processing for the data transfer controller.
Remark This API functions is called from R_{Config_DTC} Create as a callback routine.

[Syntax]
void R_{Config_DTC}_Create_Userlnit(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 569 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

Usage example

This is an example for using DTC data transfer in response to fixed-cycle signal of real-time clock/alarm match
detection:

(Blue code is user code.)
main.c

#include "r_smc_entry.h"

void main(void);
void main(void)

El(); /lenable global interrupts to allow the system to respond to interrupt events

R_DTCDOQ_Start(); /I[start DTC channel 0 to enable automatic data transfer triggered by
RTC/alarm match

R_Config_RTC_Start(); /Istart the real-time clock module to begin generating fixed-cycle signals

while(dtc_controldata_0.dtcct != 0); /Iwait until the DTC transfer is complete (dtcct becomes 0)
R_Config_RTC_Stop(); /Istop the real-time clock module after transfer is done
R_DTCDOQ_Stop(); /Istop DTC channel 0 to end data transfer operations
}
R20UT4852EC0107 Rev.1.07 RENESAS Page 570 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

4.2.46 Comparator

Below is a list of API functions output by the Smart Configurator for comparator use.

Table 4-52 API Functions:

API Function Name Peripheral Name Description

R_{Config_ COMPn}_Create Comparator Executes initialization processing that is required before

controlling the comparator n module.

R_{Config_ COMPn}_Start Starts the comparator n.
R_{Config_ COMPn}_Stop Stops the comparator n.
R_{Config_COMPn}_Create_Userlnit Executes user-specific initialization processing for the
comparator n.
r_{Config_COMPn}_interrupt Executes processing in response to INTCMPn interrupt.
R20UT4852EC0107 Rev.1.07 :{EN ESNS Page 571 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_COMPn} Create

This API function executes initialization processing that is required before controlling the comparator n
module.

Remark This API function is called from R_COMP_Create or R_PGACOMP_Create.

[Syntax]
void R_{Config_ COMPn} Create(void);

Remark n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 572 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ COMPn}_Start

This API function starts the comparator n converter.

[Syntax]
void R_{Config_COMPn}_Start(void);

Remark n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 573 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_COMPn}_Stop

This API function stops the comparator n converter.

[Syntax]
void R_{Config_COMPn}_Stop(void);

Remark n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 574 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ COMPn}_Create Userlnit

This API function executes user-specific initialization processing for the comparator n.

Remark This API functions is called from R_{Config_ COMPn} Create as a callback routine.
[Syntax]
void R_{Config_COMPn}_Create_Userlnit(void);
Remark n is the channel number.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 575 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_ COMPn} _interrupt

This API function executes processing in response to INTCMPn interrupt.

Remark This API function is called as the interrupt handler for comparator interrupts, which occur
when an active edge of the comparator output is detected.

[Syntax]
For CCRL78 toolchain:
static void __near r_{Config_COMPn}_interrupt(void);

For LLVM toolchain:
void r_{Config_COMPn}_interrupt(void);

For IAR toolchain:
‘ __interrupt static void r_{Config_ COMPn} _interrupt(void);

Remark n is the channel number.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 576 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

Usage example

This is an example for setting a flag when detecting an active edge of the comparator output:
(Blue code is user code.)
main.c

#include "r_smc_entry.h"
extern uint8_t comp0_trig_flag;

void main(void);
void main(void)

EI(); /lenable global interrupts to allow the system to respond to interrupt events
compO_trig_flag = OU;

/* Start comparator 0 */

R_Config COMPO_Start (); //[COMPO operation enable

while(compO_trig_flag != 1U); /Iwaiting for an active edge

comp1_trig_flag = OU;

R_Config_ COMPO_Stop (); //ICOMPO operation disable

Config_ COMPOQ_user.c
[* Start user code for global. Do not edit comment generated here */
uint8_t comp0_trig_flag = OU;
/* End user code. Do not edit comment generated here */

static void __near r_Config_ COMPO_interrupt(void)

{
[* Start user code for r_Config COMPO _interrupt. Do not edit comment generated here */
[* Set the flag */
compO_trig_flag = 1U; /lit indicats an active edge of the comparator output is detected
/* End user code. Do not edit comment generated here */
}
R20UT4852EC0107 Rev.1.07 RENESAS Page 577 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

4.2.47 Programmable Gain Amplifier

Below is a list of API functions output by the Smart Configurator for programmable gain amplifier use.

Table 4-53 API Functions:

API Function Name Peripheral Name Description
R_{Config_ PGA} Create Programmable Executes initialization processing that is required before
Gain Amplifier controlling the PGA module.
R_{Config_PGA}_Start Starts the PGA.
R_{Config_PGA}_Stop Stops the PGA.
R _{Config_PGA} Create_Userlnit Executes user-specific initialization processing for the
PGA.
R20UT4852EC0107 Rev.1.07 :{EN ESNS Page 578 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_PGA} Create

This API function executes initialization processing that is required before controlling the PGA module.
Remark This API function is called from R_PGACOMP_Create.

[Syntax]
void R_{Config_PGA}_Create(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 579 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_PGA} Start
This API function starts the PGA.

[Syntax]
void R_{Config_PGA}_Start(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 580 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_PGA} Stop
This API function stops the PGA.

[Syntax]
void R_{Config_PGA}_Stop(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 581 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_PGA} Create_ Userlnit

This API function executes user-specific initialization processing for the PGA.
Remark This API functions is called from R_{Config_ PGA} Create as a callback routine.

[Syntax]
void R_{Config_PGA}_Create_Userlnit(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 582 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

Usage example

This is an example for outputting an amplifying signal when inputing a signal:
(Blue code is user code.)
main.c

#include "r_smc_entry.h"

void main(void);

void main(void)

{
El(); /lenable global interrupts to allow the system to respond to interrupt events
/* Start comparator 0 */
R_Config PGA_Start ();
while(1U);
!
R20UT4852EC0107 Rev.1.07 RENESAS Page 583 of 868

Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

4.2.48

SPI (CSI) Communication

Below is a list of API functions output by the Smart Configurator for SPI (CSIl) communication use.

Table 4-54 API Functions:

API Function Name

Peripheral Name

Description

R_{Config_CSIp}_Create

R_{Config_CSlp}_Start

R_{Config_CSlp}_Stop

R_{Config_CSIp}_Send

R_{Config_CSIp}_Receive

R_{Config_CSlp}_Send_Receive

R_{Config_CSlIp} Create_Userlnit

r_{Config_CSIp}_interrupt

r_{Config_CSlIp}_callback sendend

r_{Config_CSlIp}_callback_receiveend

r_{Config_CSlp}_callback_error

Serial Array Unit

Executes initialization processing that is required
before controlling the CSIp module.

Starts the CSlp module operation.

Stops the CSlp module operation.

Sends CSlp data.

Receives CSlp data.

Sends and receives CSlp data.

Executes user-specific initialization processing for
the CSlp.

Executes processing in response to transfer end
interrupt/buffer empty interrupt (INTCSIp).

Eexecutes processing in response to transmit end

interrupt.

Executes processing in response to receive end

interrupt.

Executes processing in response to occur transfer

error.

R20UT4852EC0107 Rev.1.07
Jan 20, 2026

RENESAS

Page 584 of 868

Smart Configurator

4. API FUNCTIONS

R_{Config_CSIp} Create

This API function executes initialization processing that is required before controlling the CSlp module.

Remark1. This API function is called from R_SAUm_Create.
Remark2. When mis 0, pis 00, 01, 10, 11; When mis 1, p is 20, 21, 30, 31.
[Syntax]
void R_{Config_CSlIp} Create(void);
Remark pis 00, 01, 10, 11, 20, 21, 30, 31.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS
Jan 20, 2026

Page 585 of 868

Smart Configurator 4. API FUNCTIONS

R_{Config_CSlIp} Start

This API function starts the CSlp module operation.

[Syntax]
void R_{Config_CSIp}_Start(void);
Remark pis 00, 01, 10, 11, 20, 21, 30, 31.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 586 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_CSlIp} Stop

This API function stops the CSlp module operation.

[Syntax]
void R_{Config_CSIp}_Stop(void);
Remark pis 00, 01, 10, 11, 20, 21, 30, 31.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 587 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_CSlIp} Send
This API function sends CSlp data.

[Syntax]
MD_STATUS R_{Config_CSIp}_Send(uint8_t * const tx_buf, uint16_t tx_num);
Remark pis 00, 01, 10, 11, 20, 21, 30, 31.

[Argument(s)]
1/0 Argument(s) Description
I uint8_t * const tx_buf; Transfer buffer pointer
I uint16_t tx_num; Buffer size

—

Return value]

Macro Description
MD_OK Normal end
MD_ARGERROR Error argument input error.
R20UT4852EC0107 Rev.1.07 :{ENESAS Page 588 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_CSIp} Receive

This API function receives CSlp data.

[Syntax]
MD_STATUS R_{Config_CSIp} Receive(uint8_t * const rx_buf, uint16_t rx_num);
Remark pis 00, 01, 10, 11, 20, 21, 30, 31.

[Argument(s)]
1/0 Argument(s) Description
O | uint8_t * const rx_buf; Receive buffer pointer
I uint16_t rx_num; Buffer size

—

Return value]

Macro Description
MD_OK Normal end
MD_ARGERROR Error argument input error.
R20UT4852EC0107 Rev.1.07 :{ENESAS Page 589 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_CSIp} Send_Receive

Sends and receives CSlp data.

[Syntax]
MD_STATUS R_{Config_CSIp}_Send_Receive(uint8_t * const tx_buf, uint16_t tx_num, uint8_t
* const rx_buf);

Remark pis 00, 01, 10, 11, 20, 21, 30, 31.

[Argument(s)]
1/O Argument(s) Description
I uint8_t * const tx_buf; Transfer buffer pointer
O | uint8_t * const rx_buf; Receive buffer pointer
I uint16_t tx_num; Buffer size

[Return value]

Macro Description
MD_OK Normal end
MD_ARGERROR Error argument input error.
R20UT4852EC0107 Rev.1.07 :{ENESAS Page 590 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_CSlIp} Create_Userlnit

This API function executes user-specific initialization processing for the CSlp.
Remark This API functions is called from R_{Config_CSIp} Create as a callback routine.

[Syntax]
void R_{Config_CSIp} Create_Userlnit(void);
Remark pis 00, 01, 10, 11, 20, 21, 30, 31.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 591 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_CSIp} interrupt

This API function executes processing in response to transfer end interrupt/buffer empty interrupt
(INTCSIp).

[Syntax]
For CCRL78 toolchain:
static void __near r_{Config_CSIp}_interrupt(void);

For LLVM toolchain:
void r_{Config_CSIp}_interrupt(void);

For IAR toolchain:
‘ __interrupt static void r_{Config_CSIp} _interrupt(void);
Remark pis 00, 01, 10, 11, 20, 21, 30, 31.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 592 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_CSIp} callback sendend

This API function executes processing in response to transmit end interrupt.

Remark 1. This API function is called as the callback routine of interrupt process
r_{Config_CSlp} interrupt corresponding to the CSlp interrupt.

Remark 2. User should only keep necessary flag set/clear in callback function, other processing code
should be moved out of callback and interrupt function. Otherwise, the interrupt is not
processed at the correct timing.

[Syntax]
static void r_{Config_CSIp}_callback_sendend(void);
Remark pis 00, 01, 10, 11, 20, 21, 30, 31.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 593 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_CSIp} callback receiveend

This API function executes processing in response to receive end interrupt.
Remark 1. This API function is called as the callback routine of interrupt process
r_{Config_CSlp} interrupt corresponding to the CSlp interrupt.

Remark 2. User should only keep necessary flag set/clear in callback function, other processing code
should be moved out of callback and interrupt function. Otherwise, the interrupt is not
processed at the correct timing.

[Syntax]
static void r_{Config_CSIp}_callback_receiveend(void);
Remark pis 00, 01, 10, 11, 20, 21, 30, 31.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 594 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_CSIp}_callback_error

This API function executes processing in response to occur transfer error.

Remark 1. This API function is called as the callback routine of interrupt process
r_{Config_CSlp} interrupt corresponding to the CSlp interrupt.

Remark 2. User should only keep necessary flag set/clear in callback function, other processing code
should be moved out of callback and interrupt function. Otherwise, the interrupt is not
processed at the correct timing.

[Syntax]
static void r_{Config_CSIp}_callback_error(uint8_t err_type);
Remark pis 00, 01, 10, 11, 20, 21, 30, 31.

[Argument(s)]

I/O Argument(s) Description

|| uint8_t err_type; Error type value
Bit0: Overrun error

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 595 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

Usage example

This is an example for CSI00 send data and CSI11 receive these data in continuous mode:
(Blue code is user code.)
main.c

#include "r_smc_entry.h"

uint8_t tx_buf[6] = {0xAS5,0x3F,0xC0,0x5C,0xB6,0x37}; //define the transmit buffer with 6 bytes of data
to send

uint8_t rx_buf[6] = {0x00,0x00,0x00,0x00,0x00,0x00}; //define the receive buffer to store 6 bytes of
received data

volatile uint8_t transmitend_flag = 0U;

volatile uint8_t receiveend_flag = 0U;

void main(void);

void main(void)
{
El(); /lenable global interrupts to allow the system to respond to interrupt events
R_Config_CSI11_Start(); /Istart the CSI11 module (receiver)
R_Config_CSI00_Start(); /Istart the CSI0O0 module (transmitter)
R_Config_CSI11_Receive(rx_buf, sizeof(rx_buf)); /Istart receiving data on CSI11, store into
rx_buf

R_Config_CSI00_Send(tx_buf, sizeof(tx_buf)); /Istart sending data on CSI00, send contents of
tx_buf

while(transmitend_flag = 1U); /Iwait until transmission is complete
transmitend_flag = 0U; /Ireset the transmission end flag
while(receiveend_flag != 1U); /Iwait until reception is complete
receiveend_flag = 0U; /Ireset the reception end flag

R_Config_CSI00_Stop(); /Istop the CSI00 module after transmission is done
R_Config_CSI11_Stop(); /Istop the CSI11 module after reception is done

Config_CSIO00_user.c

[* Start user code for global. Do not edit comment generated here */
extern volatile uint8_t transmitend_flag;
/* End user code. Do not edit comment generated here */

static void r_Config_CSI00_callback sendend(void)

[* Start user code for r_Config_CSIO0_callback_sendend. Do not edit comment generated here */
transmitend_flag = 1U; /Iset the flag to indicate transmission is complete
/* End user code. Do not edit comment generated here */

Config_CSI11_user.c

[* Start user code for global. Do not edit comment generated here */
extern volatile uint8_t receiveend_flag;

/* End user code. Do not edit comment generated here */

static void r_Config_CSI11_callback_receiveend (void)

[* Start user code for r_Config_CSI11_callback_receiveend. Do not edit comment generated here */
receiveend_flag = 1U; /Iset the flag to indicate reception is complete
/* End user code. Do not edit comment generated here */

R20UT4852EC0107 Rev.1.07 RENESAS Page 596 of 868
Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

4.2.49

UART Communication (Serial array unit)

Below is a list of API functions output by the Smart Configurator for UART Communication use.

Table 4-55 API Functions:

API Function Name

Peripheral Name

Description

R_{Config_UARTq}_Create

R_{Config_UARTq}_Start

R_{Config_UARTq}_Stop

R_{Config_UARTq}_Send

R_{Config_UARTq}_Receive

R_{Config_UARTq}_Loopback_Enable

R _{Config UARTq} Loopback_Disable

R_{Config_UARTq} Create_Userlnit

r_{Config_UARTQq}_interrupt_send

r_{Config_UARTq}_interrupt_receive

r_{Config_ UARTQq} interrupt_error

r_{Config_ UARTq} callback sendend

r {Config_ UARTq} callback receiveend

r {Config_ UARTq} callback error

r {Config_ UARTq} callback_ softwareoverrun

Serial Array Unit

Executes initialization processing that is
required before controlling the UARTg module.

Starts UARTq module operation.

Stops UARTq module operation.

Sends UARTq data.

Receives UART(q data.

Enables the UARTq loopback function.

Disables the UARTq loopback function.

Executes user-specific initialization processing
for the UARTq.

Executes processing in response to UARTq
transmit end interrupt (in single-transfer mode)
or buffer empty interrupt (in continuous transfer
mode).

Executes processing in response to UARTq

receive end interrupt.

Executes processing in response to UARTq

error interrupt.

Executes processing in response to transmit
end interrupt.

Executes processing in response to receive
end interrupt.

Executes processing in response to receive

error interrupt.

Executes processing in response to receive an

overflow data.

R20UT4852EC0107 Rev.1.07
Jan 20, 2026

RENESAS

Page 597 of 868

Smart Configurator

4. API FUNCTIONS

R_{Config_UARTq} Create

This API function executes initialization processing that is required before controlling the UARTqg module.

Remark1. This API function is called from R_SAUm_Create.

Remark2. WhenmisO0, qisO0,1; Whenmis1,qis 2, 3.
[Syntax]

void R_{Config_ UARTq} Create(void);

Remark qis0,1,2,3.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS
Jan 20, 2026

Page 598 of 868

Smart Configurator 4. API FUNCTIONS

R_{Config_UARTq}_ Start

This API function starts UARTq module operation.

[Syntax]
void R_{Config_UARTq}_Start(void);
Remark qis0,1,2,3.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 599 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_UARTq} Stop

This API function stops UARTq module operation.

[Syntax]
void R_{Config_UARTQq}_Stop(void);
Remark qis0,1,2,3.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 600 of 868
Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

R_{Config_UARTq} Send

This API function sends UARTq data.

[Syntax]

MD_STATUS

R_{Config_UARTq}_Send(uint8_t * const tx_buf, uint16_t tx_num);

Remark qis0,1,2,3.

[Argument(s)]

I/0

Argument(s)

Description

uint8_t * const tx_buf;

Transfer buffer pointer

uint16_t tx_num;

Buffer size

—

Return value]

Macro Description
MD_OK Normal end (send the first data)
MD_ARGERROR Error argument input error.
R20UT4852EC0107 Rev.1.07 :{EN ESNS Page 601 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ UARTq} Receive

This API function receives UARTq data.

[Syntax]
MD_STATUS R_{Config_UARTq}_Receive(uint8_t * const rx_buf, uint16_t rx_num);
Remark qis0,1,2,3.

[Argument(s)]
1/0 Argument(s) Description
O | uint8_t * const rx_buf; Receive buffer pointer
I uint16_t rx_num; Buffer size

—

Return value]

Macro Description
MD_OK Normal end
MD_ARGERROR Error argument input error.
R20UT4852EC0107 Rev.1.07 :{ENESAS Page 602 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_UARTq} Loopback_ Enable

This API function enables the UARTq loopback function.

[Syntax]
void R_{Config_UARTQq} Loopback_ Enable(void);
Remark qis0,1,2,3.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 603 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_UARTq} Loopback_Disable
This API function disables the UARTq loopback function.

[Syntax]
void R_{Config_UARTQq} Loopback_Disable(void);
Remark qis0,1,2,3.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 604 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_UARTq} Create Userlnit

This API function executes user-specific initialization processing for the UARTq.
Remark This API functions is called from R_{Config_ UARTq} Create as a callback routine.

[Syntax]
void R_{Config_UARTQq} Create_Userlnit(void);
Remark qis0,1,2,3.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 605 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_UARTQq} interrupt_send

This API function executes processing in response to UARTq transmit end interrupt (in single-transfer
mode) or buffer empty interrupt (in continuous transfer mode).

[Syntax]
For CCRL78 toolchain:
static void __near r_{Config_UARTQq} _interrupt_send(void);

For LLVM toolchain:
void r_{Config_UARTQq}_interrupt_send(void);

For IAR toolchain:
‘ __interrupt static void r_{Config_UARTq} _interrupt_send(void);
Remark qis0,1,2,3.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 606 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_UARTQq} interrupt_receive

This API function executes processing in response to UARTq receive end interrupt.

[Syntax]
For CCRL78 toolchain:
static void __near r {Config_ UARTQq} interrupt_receive(void);

For LLVM toolchain:
void r_{Config_UARTQq}_interrupt_receive(void);

For IAR toolchain:
__interrupt static void r_{Config_UARTQq}_interrupt_receive(void);
Remark qis0,1,2,3.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 607 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_UARTQq} interrupt_error

This API function executes processing in response to UARTq error interrupt.

[Syntax]
For CCRL78 toolchain:
static void __near r {Config_ UARTQq} interrupt_error(void);

For LLVM toolchain:
void r_{Config_UARTQq}_interrupt_error(void);

For IAR toolchain:
__interrupt static void r_{Config_UARTQq}_interrupt_error(void);
Remark qis0,1,2,3.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 608 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_UARTQq} callback_sendend

This API function executes processing in response to transmit end interrupt.
Remark 1. This API function is called as the callback routine of interrupt process
r_{Config_UARTQq} interrupt_send corresponding to the UARTq transmit end interrupt.

Remark 2. User should only keep necessary flag set/clear in callback function, other processing code
should be moved out of callback and interrupt function. Otherwise, the interrupt is not
processed at the correct timing.

[Syntax]
static void r_{Config_UARTQq}_callback_sendend(void);
Remark qis0,1,2,3.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 609 of 868
Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

r {Config_UARTQq} callback_receiveend

This API function executes processing in response to receive end interrupt.
Remark 1.

This API function is called as the callback routine of interrupt process

r_{Config_UARTQq} interrupt_receive corresponding to the UARTq receive end interrupt.
Remark 2. User should only keep necessary flag set/clear in callback function, other processing code

should be moved out of callback and interrupt function. Otherwise, the interrupt is not
processed at the correct timing.

[Syntax]
static void

r_{Config_UARTQq} callback_receiveend(void);
Remark qis0,1,2,3.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS
Jan 20, 2026

Page 610 of 868

Smart Configurator 4. API FUNCTIONS

r {Config_UARTQq} callback_error

This API function executes processing in response to receive error interrupt.

Remark 1. This API function is called as the callback routine of interrupt process
r {Config UARTQq} interrupt_error corresponding to the UARTq receive error interrupt.
Remark 2. User should only keep necessary flag set/clear in callback function, other processing code
should be moved out of callback and interrupt function. Otherwise, the interrupt is not
processed at the correct timing.
[Syntax]
static void

r_{Config_UARTQq}_ callback_error(uint8_t err_type);
Remark qis0,1,2,3.

[Argument(s)]
e}

Argument(s) Description

I uint8_t err_type; Error type info

Bit0: Overrun error
Bit1: Parity error

Bit2: Framing error

Bit3 to Bit7: 0
[Return value]
None.
R20UT4852EC0107 Rev.1.07 RENESAS Page 611 of 868
Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

r {Config_UARTQq} callback_softwareoverrun

Remark 1.

This API function executes processing in response to receive an overflow data.

This API function is called as the callback routine of interrupt process

r_{Config_UARTQq} interrupt_receive corresponding to the UART(q receive end interrupt.
Remark 2. User should only keep necessary flag set/clear in callback function, other processing code

should be moved out of callback and interrupt function. Otherwise, the interrupt is not
processed at the correct timing.

[Syntax]
static void r_{Config_UARTQq}_callback_softwareoverrun(uint16_t rx_data);
Remark qis0,1,2,3.
[Argument(s)]
I/O Argument(s) Description
I uint16_t rx_data; Receive data
[Return value]
None.
R20UT4852EC0107 Rev.1.07 RENESAS
Jan 20, 2026

Page 612 of 868

Smart Configurator 4. API FUNCTIONS

Usage example

This is an example for UARTO send data and UART1 receive these data:
(Blue code is user code.)
main.c

#include "r_smc_entry.h"

uint8_t tx_buf[6] = {0xAS5,0x3F,0xC0,0x5C,0xB6,0x37}; //define the transmit buffer with 6 bytes of data
to send

uint8_t rx_buf[6] = {0x00,0x00,0x00,0x00,0x00,0x00}; //define the receive buffer to store 6 bytes of
received data

volatile uint8_t transmitend_flag = 0U;

volatile uint8_t receiveend_flag = 0U;

void main(void);

void main(void)
{

El(); /lenable global interrupts to allow the system to respond to interrupt events

R_Config UARTO_Start(); /Istart the UARTO module (transmitter)

R_Config UART1_Start(); /Istart the UART1 module (receiver)

R_Config UART1_Receive(rx_buf, 6); /Istart receiving 6 bytes of data on UART1, store into
rx_buf

R_Config_UARTO_Send(tx_buf, 6); /Istart receiving 6 bytes of data on UART1, store into rx_buf

while(transmitend_flag != 1U && receiveend_flag != 1U); /lwait until both transmission and
reception are complete

transmitend_flag = 0U; /Ireset the transmission end flag

receiveend_flag = 0U; /Ireset the reception end flag

R_Config_ UARTO_Stop(); /Istop the UARTO module after transmission is done
R_Config_ UART1_Stop(); /Istop the UART1 module after reception is done

Config_ UARTO_user.c
[* Start user code for global. Do not edit comment generated here */
extern volatile uint8_t transmitend_flag;
/* End user code. Do not edit comment generated here */

static void r_Config_ UARTO_callback sendend(void)

[* Start user code for r_Config UARTO_callback_sendend. Do not edit comment generated here */
transmitend_flag = 1U; /Iset the flag to indicate transmission is complete
/* End user code. Do not edit comment generated here */

Config_ UART1_user.c
[* Start user code for global. Do not edit comment generated here */
extern volatile uint8_t receiveend_flag;
/* End user code. Do not edit comment generated here */

static void r_Config_ UART1_callback receiveend (void)

[* Start user code for r_Config UART1_callback_receiveend. Do not edit comment generated here

*/
receiveend_flag = 1U; /Iset the flag to indicate reception is complete
/* End user code. Do not edit comment generated here */
}
R20UT4852EC0107 Rev.1.07 RENESAS Page 613 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

4.2.50 UART Communication (Serial Interface UARTA)

Below is a list of API functions output by the Smart Configurator for UART communication (for serial interface
UARTA) use.

Table 4-56 API Functions:

API Function Name Peripheral Name Description

R_{Config_UARTAn}_Create Serial Interface Executes initialization processing that is required
UARTA before controlling the UARTAnN module.
R_{Config_ UARTAn}_Start Starts UARTAN module operation.
R_{Config_ UARTAnN}_Stop Stops UARTAnN module operation.
R_{Config_ UARTAn} Send Sends UARTAnN data.
R_{Config_UARTAnN} Receive Receives UARTAnN data.
R_{Config UARTAn} Loopback_Enable Enables the UARTAn loopback function.
R_{Config_UARTAnN} Loopback_Disable Disables the UARTAnN loopback function.
R_{Config_ UARTAn}_Create_Userlnit Executes user-specific initialization processing for the
UARTAnN.

R_{Config_ UARTAn}_PollingEnd_UserCo Executes user code in response to completion of
de continuous transmission by polling.
r_{Config_UARTAn} interrupt_send Executes processing in response to UARTAn

transmission completion interrupt (INTUTn).

r_{Config_UARTAnN}_interrupt_receive Executes processing in response to UARTAn

reception transfer end interrupt (INTURnN).

r_{Config_UARTAR} interrupt_error Executes processing in response to UARTAnN

reception communication error interrupt (INTURER).

r_{Config_UARTAR}_callback_sendend Executes processing in response to UARTAN

transmission completion interrupt.

r_{Config_UARTAR}_callback_receiveend Executes processing in response to UARTANn

reception transfer end interrupt.

r {Config_ UARTAn} callback_error Executes processing in response to UARTAnN

reception communication error interrupt.

R20UT4852EC0107 Rev.1.07 RENESAS Page 614 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config UARTAnN} Create

This API function executes initialization processing that is required before controlling the UARTAn module.
Remark This API function is called from R_UARTA_Create.

[Syntax]
void R_{Config_UARTAnR}_ Create(void);

Remark n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 615 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_UARTAn} Start

This API function starts UARTAn module operation.

[Syntax]
void R_{Config_UARTAnR}_Start(void);

Remark n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 616 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_UARTAnN} Stop

This API function stops UARTAN module operation.

[Syntax]
void R_{Config_UARTAnN}_Stop(void);

Remark n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 617 of 868
Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

R_{Config_ UARTAn} Send

This API function sends UARTAnN data.

[Syntax]
MD_STATUS R_{Config_UARTAnN}_Send(uint8_t * const tx_buf, uint16_t tx_num);
Remark n is the channel number.
[Argument(s)]
110 Argument(s) Description

uint8_t * const tx_buf;

Transfer buffer pointer

uint16_t tx_num;

Buffer size

—

Return value]

Macro Description
MD_OK Normal end (send the first data)
MD_ARGERROR Error argument input error.
R20UT4852EC0107 Rev.1.07 :{ENESAS Page 618 of 868

Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

R_{Config_UARTAnN} Receive

This API function receives UARTAnN data.

[Syntax]
MD_STATUS R_{Config_UARTAnN} Receive(uint8_t * const rx_buf, uint16_t rx_num);
Remark n is the channel number.
[Argument(s)]
I/0 Argument(s) Description
O | uint8_t * const rx_buf; Receive buffer pointer
I uint16_t tx_num; Buffer size

—

Return value]

Macro Description
MD_OK Normal end
MD_ARGERROR Error argument input error.
R20UT4852EC0107 Rev.1.07 :{ENESAS Page 619 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ UARTAnN} Loopback Enable

This API function enables the UARTAnN loopback function.

[Syntax]
void R_{Config_UARTAnN} Loopback_ Enable(void);

Remark n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 620 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ UARTAnN} Loopback Disable

This API function disables the UARTAnN loopback function.

[Syntax]
void R_{Config_ UARTAnN}_Loopback_Disable(void);

Remark n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 621 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ UARTAnN} Create_Userlnit

This API function executes user-specific initialization processing for the UARTAN.

Remark This API functions is called from R_{Config_ UARTAn} Create as a callback routine.
[Syntax]
void R_{Config_UARTAnR}_ Create_Userlnit(void);
Remark n is the channel number.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 622 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ UARTAnN} PollingEnd_UserCode

This API function executes user code in response to completion of continuous transmission by polling.

Remark This API function is called from R_{Config UARTAn} Send corresponding to data
transmission completion.

[Syntax]
void R_{Config_ UARTAn} PollingEnd_UserCode(void);

Remark n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 623 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_ UARTAR} interrupt_send

This API function executes processing in response to UARTAn transmission completion interrupt
(INTUTn).

[Syntax]
For CCRL78 toolchain:
static void __near r_{Config_UARTARN} _interrupt_send(void);

For LLVM toolchain:
void r_{Config_UARTAR} interrupt_send(void);

For IAR toolchain:
‘ __interrupt static void r_{Config_UARTAnR} interrupt_send(void);

Remark n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 624 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_ UARTAR} interrupt_receive

This API function executes processing in response to UARTAnN reception transfer end interrupt (INTURnN).

[Syntax]
For CCRL78 toolchain:
static void __near r {Config_ UARTAR} interrupt_receive(void);

For LLVM toolchain:
void r_{Config_UARTAR} interrupt_receive(void);

For IAR toolchain:
__interrupt static void r_{Config_UARTAR} interrupt_receive(void);

Remark n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 625 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_ UARTAnN} interrupt_error

This API function executes processing in response to UARTAnN reception communication error interrupt
(INTUREN).

[Syntax]
For CCRL78 toolchain:
static void __near r_{Config_UARTARN} _interrupt_error(void);

For LLVM toolchain:
void r_{Config_UARTAR} interrupt_error(void);

For IAR toolchain:
‘ __interrupt static void r_{Config_UARTAR} interrupt_error(void);

Remark n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 626 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_UARTAnN} callback_sendend

This API function executes processing in response to UARTAnN transmission completion interrupt.
Remark 1. This API function is called as the callback routine of interrupt process

r_{Config_UARTAR} interrupt_send corresponding to the UARTAn transmission
completion interrupt.

Remark 2. User should only keep necessary flag set/clear in callback function, other processing code
should be moved out of callback and interrupt function. Otherwise, the interrupt is not
processed at the correct timing.

[Syntax]
static void r {Config_ UARTAR} callback_sendend(void);
Remark n is the channel number.
[Argument(s)]
None.

[Return value]

None.
R20UT4852EC0107 Rev.1.07 :{ENESAS Page 627 of 868

Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

r {Config_ UARTAnN} callback_receiveend

This API function executes processing in response to UARTAnN reception transfer end interrupt.
Remark 1. This API function is called as the callback routine of interrupt process

r_{Config_UARTAR} interrupt_receive corresponding to the UARTAn reception transfer
end interrupt.

Remark 2. User should only keep necessary flag set/clear in callback function, other processing
code should be moved out of callback and interrupt function. Otherwise, the interrupt is
not processed at the correct timing.

[Syntax]
static void r {Config_ UARTAR} callback_receiveend(void);
Remark n is the channel number.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS
Jan 20, 2026

Page 628 of 868

Smart Configurator

4. API FUNCTIONS

r {Config_ UARTAnR} callback_error

This API function executes processing in response to UARTAnN reception communication error interrupt.

Remark 1. This API function is called as the callback routine of interrupt process
r_{Config_UARTAR} interrupt_error corresponding to the UARTAn reception
communication error interrupt.

Remark 2. User should only keep necessary flag set/clear in callback function, other processing
code should be moved out of callback and interrupt function. Otherwise, the interrupt is
not processed at the correct timing.

[Syntax]
static void r_{Config_ UARTAR} callback_error(uint8_t err_type);
Remark n is the channel number.
[Argument(s)]
1/0 Argument(s) Description

uint8_t err_type;

Error type value:
Bit0: Overrun error
Bit1: Framing error
Bit2: Parity error

Bit3 to Bit7: 0
[Return value]

None.
R20UT4852EC0107 Rev.1.07 RENESAS Page 629 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

Usage example

This is an example for UARTAQ transmit and receive data by polling mode and UARTA1 also transmit and
receive data twice:

(Blue code is user code.)
main.c

#include "r_smc_entry.h"

uint8_t tx_buf0[] = {0x7A}; [ltransmit buffer for UARTAO (1 byte)

uint8_t tx_buf1[] = {0x7A, 0x6C, 0x27, 0x1F, 0xF8}; [/ltransmit buffer for UARTA1 (5 bytes)
uint8_t rx_buf0[] = {Ox00}; IIreceive buffer for UARTAO (1 byte)

uint8_t rx_buf1[] = {0x00, 0x00, 0x00, 0x00, 0x00}; /Ireceive buffer for UARTA1 (5 bytes)
volatile uint8_t transmitend_flag = 0U;

volatile uint8_t receptend_flag = OU;

void main(void);

void main(void)
{
El(); /lenable global interrupts to allow the system to respond to interrupt events
R_Config_ UARTAO_Start(); /Istart UARTAO module
R_Config_ UARTA1_Start(); /Istart UARTA1 module

Il 1st transmission (UARTAO to UARTA1)
R_Config_ UARTA1_Receive(rx_buf0, sizeof(rx_buf0)); //[UARTA1 prepares to receive 1 byte
R_Config_ UARTAO_Send(tx_buf0, sizeof(tx_buf0)); //UARTAO sends 1 byte

while((1U != transmitend_flag) || (1U != receptend_flag)); /lwait until both transmission and
reception are complete

// 2nd transmission (UARTA1 to UARTAO)
R_Config UARTAOQO_Receive(rx_buf1, sizeof(rx_buf1)); //UARTAQO prepares to receive 5 bytes
R_Config_ UARTA1_Send(tx_buf1, sizeof(tx_buf1)); //[UARTA1 sends 5 bytes

while((2U != transmitend_flag) || (2U != receptend_flag)); /lwait until both transmission and
reception are complete

R_Config_UARTAO_Stop(); //stop UARTAQO module
R_Config_UARTA1_Stop(); //stop UARTA1 module

R20UT4852EC0107 Rev.1.07 RENESAS Page 630 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

Config UARTAOQ_user.c

[* Start user code for global. Do not edit comment generated here */
extern volatile uint8_t transmitend_flag;

extern volatile uint8_t receptend_flag;

/* End user code. Do not edit comment generated here */

void R_Config_ UARTAO_PollingEnd_UserCode(void)

[* Start user code for R_Config UARTAO_PollingEnd_UserCode. Do not edit comment generated
here */

transmitend_flag++; /lincrement transmission flag when UARTAOQ transmission ends

/* End user code. Do not edit comment generated here */

}
static void r_Config_ UARTAOQ_callback_receiveend (void)

[* Start user code for r_Config UARTAQ_callback_sendend. Do not edit comment generated here */
receptend_flag++; /lincrement reception flag when UARTAO reception ends
/* End user code. Do not edit comment generated here */

Config_UARTA1_user.c

[* Start user code for global. Do not edit comment generated here */
extern volatile uint8_t transmitend_flag;

extern volatile uint8_t receptend_flag;

/* End user code. Do not edit comment generated here */

void R_Config_ UARTA1_PollingEnd_UserCode (void)

[* Start user code for R_Config UARTA1_PollingEnd_UserCode. Do not edit comment generated
here */

transmitend_flag++; /lincrement transmission flag when UARTA1 transmission ends

/* End user code. Do not edit comment generated here */

}

static void r_Config_ UARTA1_callback_receiveend (void)

[* Start user code for r_Config_ UARTA1_callback_receiveend. Do not edit comment generated here

*/
receptend_flag++; /lincrement reception flag when UARTA1 reception ends
/* End user code. Do not edit comment generated here */
}
R20UT4852EC0107 Rev.1.07 RENESAS Page 631 of 868

Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

4.2.51 UART Communication (LIN/'UART module)

Below is a list of API functions output by the Smart Configurator for UART Communication (LIN/UART module)

use.

Table 4-57 API Functions:

API Function Name

Peripheral Name

Description

R_{Config_RLIN3n} Create LIN/UART Executes initialization processing that is
module required before controlling the RLIN3n module.

R_{Config_RLIN3n}_Start Starts RLIN3n module operation.

R_{Config_RLIN3n}_Stop Stops RLIN3n module operation.

R_{Config_RLIN3n}_Send Sends RLIN3n data.

R_{Config_RLIN3n}_Receive Receives RLIN3n data.

R_{Config_RLIN3n} Create Userlnit Executes user-specific initialization processing
for the RLIN3n.

r_{Config_RLIN3n} interrupt_send Executes processing in response to RLIN3n
transmit end interrupt (in single-transfer mode)
or buffer empty interrupt (in continuous transfer
mode).

r_{Config_RLIN3n} interrupt_receive Executes processing in response to RLIN3n
receive end interrupt.

r_{Config_RLIN3n} interrupt_error Executes processing in response to RLIN3n
error interrupt.

r_{Config_RLIN3n} callback_sendend Executes processing in response to transmit
end interrupt.

r_{Config_RLIN3n}_callback_receiveend Executes processing in response to receive
end interrupt.

r_{Config_RLIN3n}_callback_error Executes processing in response to receive
error interrupt.

R20UT4852EC0107 Rev.1.07 REN ESNS Page 632 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_RLIN3n} Create

This API function executes initialization processing that is required before controlling the RLIN3n module.
Remark This API function is called from R_Systeminit before the main() function is executed.

[Syntax]
void R_{Config_RLIN3n}_Create(void);

Remark nis0,1, 2.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 633 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_RLIN3n} Start

This API function starts RLIN3n module operation.

[Syntax]
void R_{Config_RLIN3n}_Start(void);

Remark nis 0,1, 2.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 634 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_RLIN3n} Stop

This API function stops RLIN3n module operation.

[Syntax]
void R_{Config_RLIN3n}_Stop(void);

Remark nis 0,1, 2.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 635 of 868
Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

R_{Config_RLIN3n} Send

This API function sends RLIN3n data.

[Syntax]

MD_STATUS

R_{Config_RLIN3n}_Send(uint8_t * const tx_buf, uint16_t tx_num);

Remark nis 0,1, 2.

[Argument(s)]

I/0

Argument(s)

Description

uint8_t * const tx_buf;

Transfer buffer pointer

uint16_t tx_num;

Buffer size

—

Return value]

Macro Description
MD_OK Normal end (send the first data)
MD_ARGERROR Error argument input error.
R20UT4852EC0107 Rev.1.07 :{EN ESNS Page 636 of 868

Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

R_{Config_RLIN3n} Receive

This API function receives RLIN3n data.

[Syntax]

MD_STATUS

R_{Config_RLIN3n}_Receive(uint8_t * const rx_buf, uint16_t rx_num);

Remark nis 0,1, 2.

[Argument(s)]
1/0 Argument(s) Description
O | uint8_t * const rx_buf; Receive buffer pointer
I uint16_t rx_num; Buffer size

—

Return value]

Macro Description
MD_OK Normal end
MD_ARGERROR Error argument input error.
R20UT4852EC0107 Rev.1.07 :{ENESAS Page 637 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_RLIN3n} Create Userlnit

This API function executes user-specific initialization processing for the RLIN3n.
Remark This API functions is called from R_{Config_RLIN3n} Create as a callback routine.

[Syntax]
void R_{Config_RLIN3n}_Create_Userlnit(void);

Remark nis0,1, 2.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 638 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_RLIN3n} interrupt_send

This API function executes processing in response to RLIN3n transmit end interrupt (in single-transfer
mode) or buffer empty interrupt (in continuous transfer mode).

[Syntax]
For CCRL78 toolchain:
static void __near r_{Config_RLIN3n}_interrupt_send(void);

For LLVM toolchain:
void r_{Config_RLIN3n} _interrupt_send(void);

For IAR toolchain:
‘ __interrupt static void r_{Config_RLIN3n} interrupt_send(void);

Remark nis 0,1, 2.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 639 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_RLIN3n} interrupt_receive

This API function executes processing in response to RLIN3n receive end interrupt.

[Syntax]
For CCRL78 toolchain:
static void __near r {Config_RLIN3n} interrupt_receive(void);

For LLVM toolchain:
void r_{Config_RLIN3n} _interrupt_receive(void);

For IAR toolchain:
__interrupt static void r_{Config_RLIN3n}_interrupt_receive(void);

Remark nis 0,1, 2.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 640 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_RLIN3n} interrupt_error

This API function executes processing in response to RLIN3n error interrupt.

[Syntax]
For CCRL78 toolchain:
static void __near r {Config_RLIN3n} interrupt_error(void);

For LLVM toolchain:
void r_{Config_RLIN3n} _interrupt_error(void);

For IAR toolchain:
__interrupt static void r_{Config_RLIN3n} interrupt_error(void);

Remark nis 0,1, 2.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 641 of 868
Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

r {Config_RLIN3n}_ callback_sendend

This API function executes processing in response to transmit end interrupt.
Remark 1.

This API function is called as the callback routine of interrupt process

r_{Config_RLIN3n} interrupt_send corresponding to the RLIN3n transmit end interrupt.
Remark 2. User should only keep necessary flag set/clear in callback function, other processing

code should be moved out of callback and interrupt function. Otherwise, the interrupt is
not processed at the correct timing.

[Syntax]
static void

r_{Config_RLIN3n}_callback_sendend(void);
Remark nis0,1, 2.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS
Jan 20, 2026

Page 642 of 868

Smart Configurator

4. API FUNCTIONS

r {Config_RLIN3n} callback_receiveend

This API function executes processing in response to receive end interrupt.
Remark 1.

This API function is called as the callback routine of interrupt process

r_{Config_RLIN3n} interrupt_receive corresponding to the RLIN3n receive end interrupt.
Remark 2. User should only keep necessary flag set/clear in callback function, other processing

code should be moved out of callback and interrupt function. Otherwise, the interrupt is
not processed at the correct timing.

[Syntax]
static void

r_{Config_RLIN3n}_callback_receiveend(void);
Remark nis0,1, 2.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS
Jan 20, 2026

Page 643 of 868

Smart Configurator

4. API FUNCTIONS

r {Config_RLIN3n} callback_error

This API function executes processing in response to receive error interrupt.

Remark 1.

Remark 2.

This API function is called as the callback routine of interrupt process

r_{Config_RLIN3n} interrupt_error corresponding to the RLIN3n receive error interrupt.

User should only keep necessary flag set/clear in callback function, other processing

code should be moved out of callback and interrupt function. Otherwise, the interrupt is
not processed at the correct timing.

[Syntax]

static void

r_{Config_RLIN3n}_callback_error(uint8_t err_type);

Remark nis0,1, 2.

[Argument(s)]

I/0

Argument(s)

Description

uint8_t err_type;

Error type info
Bit2: Overrun error
Bit3: Framing error
Bit4: Expansion bit detection flag
Bit5: ID match flag
Bit6: Parity error

Bit0, 1,7: 0
[Return value]
None.
R20UT4852EC0107 Rev.1.07 RENESAS Page 644 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

Usage example

This is an example for RLIN30 receive data and RLIN31 send data:
(Blue code is user code.)

main.c
#include "r_smc_entry.h"

uint8_t tx_buf0[] = {0x7a, 0x85, Oxbc, 0x26, 0x01, 0x4f}; [ltransmit buffer for RLIN31 (6 bytes of data
to send)

uint8_t rx_buf0[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; [Ireceive buffer for RLIN30 (6 bytes of space
to store received data)

volatile uint8_t sendend_flag = 0U;

volatile uint8_t receiveend_flag = 0U;

void main(void);

void main(void)
{
El(); /lenable global interrupts to allow the system to respond to interrupt events
R_Config_RLIN30_Start(); /Istart RLIN30 module (receiver)
R_Config_RLIN31_Start(); /Istart RLIN31 module (transmitter)
sendend_flag = 0U; /Ireset transmission completion flag
receiveend_flag = 0U; /Ireset reception completion flag
R_Config_RLIN30_Receive(rx_buf0, sizeof(rx_buf0)); //begin receiving data on RLIN30
R_Config_RLIN31_Send(tx_buf0, sizeof(tx_buf0)); //begin sending data on RLIN31
while((1U != sendend_flag) || (1U != receiveend_flag)); /lwait until both transmission and
reception are completed

R_Config_RLIN30_Stop(); //stop RLIN30 module
R_Config_RLIN31_Stop(); //stop RLIN31 module
while(1); /linfinite loop to keep the program running

Config_RLIN31_user.c

[* Start user code for global. Do not edit comment generated here */
extern volatile uint8_t sendend_flag;
/* End user code. Do not edit comment generated here */

static void r_Config_RLIN31_callback_sendend(void)

[* Start user code for r_Config_RLIN31_callback_sendend. Do not edit comment generated here */
sendend_flag = 1U; /Iset flag to indicate RLIN31 has finished sending data
/* End user code. Do not edit comment generated here */

Config_RLIN30_user.c
[* Start user code for global. Do not edit comment generated here */
extern volatile uint8_t receiveend_flag;
/* End user code. Do not edit comment generated here */

static void r_Config_RLIN30_callback_receiveend (void)

[* Start user code for r_Config_RLIN30_callback_receiveend. Do not edit comment generated here

*/
receiveend_flag = 1U; /Iset flag to indicate RLIN30 has finished receiving data
/* End user code. Do not edit comment generated here */
}
R20UT4852EC0107 Rev.1.07 RENESAS Page 645 of 868

Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

4.2.52

DALI Communication (Control devices)

Below is a list of API functions output by the Smart Configurator for DALI communication (Control devices)

use.

Table 4-58 API Functions: (1/2)

API Function Name Peripheral Name Description

R_{Config_DALI}_Create DALI Executes initialization processing that is required
before controlling the DALI communication (Control
devices).

R_{Config_DALI}_ Start Starts DALI communication (Control devices)
operation.

R_{Config_DALI}_ Stop Stops DALI communication (Control devices)
operation.

R _{Config_ DALI} SoftwareReset Resets DALI communication (Control devices)
operation.

R_{Config_DALI}_EnableForceActiveState Enable DALITxDO assertion and assertion level (active
state) is low. The output from the DALITXDO pin is
driven low.

R_{Config_DALI} DisableForceActiveStat Disable DALITxDO assertion. Internal data for

€ transmission are output from the DALITxDO pin.

R_{Config DALI} GetStatus Gets the state of the DALI communication (Control
devices).

R_{Config_DALI} Send Sends frame data.

R_{Config_DALI}_GetReceiveFrame Receives frame data and frame length.

R_{Config_DALI}_Create_Userlnit Executes user-specific initialization processing for the
DALI communication (Control devices).

r_{Config_DALI}_interrupt_send Executes processing in response to DALI
communication (Control devices) transmission 32bit-
data completion interrupt (INTTD).

r {Config_DALI} interrupt _receive Executes processing in response to DALI
communication (Control devices) reception 32bit-data
completion interrupt (INTRD).

r_{Config_DALI} interrupt_error Executes processing in response to DALI
communication (Control devices) reception
communication error interrupt (INTED).

R20UT4852EC0107 Rev.1.07 REN ESNS Page 646 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

Table 4-59 API Functions: (2/2)

API Function Name Peripheral Name Description

r_{Config_DALI} interrupt_falling_edge d Executes processing in response to DALI

etection communication (Control devices) falling edge detection
interrupt (INTFED).

r_{Config_DALI} interrupt_power_down_d Executes processing in response to DALI

etection communication (Control devices) power down
detection interrupt (INTBPD).

r_{Config_DALI} interrupt_collision_detect Executes processing in response to DALI

ion communication (Control devices) collision detection
interrupt (INTCLD).

r_{Config_DALLI} interrupt_stop_bit detect Executes processing in response to DALI

ion communication (Control devices) stop bit detection
interrupt (INTSDD).

r_{Config_DALI} callback_sendend Executes processing in response to DALI
communication (Control devices) stop bit detection
interrupt.

r_{Config_DALI} callback_receiveend Executes processing in response to DALI
communication (Control devices) stop bit detection
interrupt.

r_{Config_DALI} callback_error Executes processing in response to DALI
communication (Control devices) reception
communication error interrupt.

R20UT4852EC0107 Rev.1.07 RENESAS Page 647 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_DALI} Create

This API function executes initialization processing that is required before controlling the DALI
communication (Control devices).

Remark This API function is called from R_Systeminit before the main() function is executed.

[Syntax]
void R_{Config_DALI}_Create(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 648 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_DALI} Start

This API function starts DALI communication (Control devices) operation.

[Syntax]
void R_{Config_DALI}_Start(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 649 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_DALI} Stop

This API function stops DALI communication (Control devices) operation.

[Syntax]
void R_{Config_DALI}_Stop(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 650 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_DALI} SoftwareReset

This API function resets DALI communication (Control devices) operation.

[Syntax]
void R_{Config_DALI}_SoftwareReset(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 651 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_DALI} EnableForceActiveState

This API function enable DALITXDO assertion and assertion level (active state) is low. The output from
the DALITxDO pin is driven low.

[Syntax]
void R_{Config_DALI} EnableForceActiveState(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 652 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_DALI} DisableForceActiveState

This API function disable DALITxDO assertion. Internal data for transmission are output from the
DALITxDO pin.

[Syntax]
void R_{Config_DALI} DisableForceActiveState(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 653 of 868
Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

R_{Config_DALI} GetStatus

This API function gets the state of the DALI communication (Control devices).

[Syntax]
void R_{Config_DALI} GetStatus(uint16_t * const status);
[Argument(s)]
I/0 Argument(s) Description
I uint16_t * const status; DALI status register buffer pointer

[Return value]

None

R20UT4852EC0107 Rev.1.07
Jan 20, 2026

RENESAS

Page 654 of 868

Smart Configurator

4. API FUNCTIONS

R_{Config_DALI} Send

This API function sends frame data. The frame length is set in the GUI and it is a fixed value.

[Syntax]
void R_{Config_DALI} Send(uint16_t * const tx_buf);
[Argument(s)]
1/0 Argument(s) Description
I uint16_t * const tx_buf; Transfer buffer pointer

Remark

Frame length

tx_buf[] length

8 bits

1

16 bits

17 bits

20 bits

24 bits

32 bits

64 bits

128 bits

| ININ NN (=

256 bits

[Return value]

None

Below is shown the relationship between frame length and tx_buf length.

R20UT4852EC0107 Rev.1.07
Jan 20, 2026

RENESAS

Page 655 of 868

Smart Configurator

4. API FUNCTIONS

R_{Config_DALI} GetReceivedFrame

This API function receives frame data and frame length.

[Syntax]
MD_STATUS R_{Config_DALI} GetReceivedFrame(uint32_t * const rx_buf, uint16_t * const
rx_num);
[Argument(s)]
1/O Argument(s) Description
O | uint32_t * const rx_buf; Receive buffer pointer
I uint16_t * const rx_num; Buffer frame length

[Return value]

Macro Description
MD_OK Normal end
MD_ARGERROR Error argument input error
R20UT4852EC0107 Rev.1.07 RENESAS Page 656 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_DALI} Create_Userlnit

This API function executes user-specific initialization processing for the DALI communication (Control
devices).

Remark This API functions is called from R_{Config_DALI} Create as a callback routine.

[Syntax]
void R_{Config_DALI} Create_Userlnit(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 657 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_DALI} interrupt_send

This API function executes processing in response to DALl communication (Control devices)
transmission each 32bit-data completion interrupt (INTTD).

Remark This API function is only useful when transmission data length is larger then 32bit.

[Syntax]
For CCRL78 toolchain:
static void __near r_{Config_DALI} interrupt_send(void);

For LLVM toolchain:
void r_{Config_DALI} interrupt_send(void);

For IAR toolchain:
‘ __interrupt static void r_{Config_DALI} interrupt_send(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 658 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_DALI} interrupt_receive

This API function executes processing in response to DALI communication (Control devices) reception
each 32bit-data completion interrupt (INTRD).

Remark This API function is only useful when reception data length is larger then 32bit.

[Syntax]
For CCRL78 toolchain:
static void __near r_{Config_DALI} interrupt_receive(void);

For LLVM toolchain:
void r_{Config_DALI} interrupt_receive(void);

For IAR toolchain:
‘ __interrupt static void r_{Config_DALI} interrupt_receive(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 659 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_DALI} interrupt_error

This API function executes processing in response to DALI communication (Control devices) reception
communication error interrupt (INTED).

[Syntax]
For CCRL78 toolchain:
static void __near r_{Config_DALI} interrupt_error(void);

For LLVM toolchain:
void r_{Config_DALI} interrupt_error(void);

For IAR toolchain:
‘ __interrupt static void r_{Config_DALI} interrupt_error(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 660 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_DALI} interrupt_falling_edge detection

This API function executes processing in response to DALI communication (Control devices) falling edge
detection interrupt (INTFED).

[Syntax]
For CCRL78 toolchain:
static void __near r_{Config_DALI} interrupt_falling_edge_detection(void);

For LLVM toolchain:
void r_{Config_DALI} interrupt_falling_edge_detection(void);

For IAR toolchain:
‘ __interrupt static void r_{Config_DALI} interrupt_falling_edge_detection(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 661 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_DALI} interrupt_power_down_detection

This API function executes processing in response to DALl communication (Control devices) power
down detection interrupt (INTBPD).

[Syntax]
For CCRL78 toolchain:
static void __near r_{Config_DALI} interrupt_power_down_detection(void);

For LLVM toolchain:
void r_{Config_DALI} interrupt_power_down_detection(void);

For IAR toolchain:
‘ __interrupt static void r_{Config_DALI} interrupt_power_down_detection(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 662 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_DALI} interrupt_collision_detection

This API function executes processing in response to DALI communication (Control devices) collision
detection interrupt (INTCLD).

[Syntax]
For CCRL78 toolchain:
static void __near r_{Config_DALI} interrupt_collision_detection(void);

For LLVM toolchain:
void r_{Config_DALI} interrupt_collision_detection(void);

For IAR toolchain:
‘ __interrupt static void r_{Config_DALI} interrupt_collision_detection(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 663 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_DALI} interrupt_stop_bit_detection

This API function executes processing in response to DALI communication (Control devices) stop bit
detection interrupt (INTSDD).

[Syntax]
For CCRL78 toolchain:
static void __near r_{Config_DALI} interrupt_stop_bit_detection(void);

For LLVM toolchain:
void r_{Config_DALI} interrupt_stop_bit_detection(void);

For IAR toolchain:
‘ __interrupt static void r_{Config_DALI} interrupt_stop_bit_detection(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 664 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_DALI} callback sendend

This API function executes processing in response to DALI communication (Control devices) stop bit
detection interrupt.
Remark 1. This API function is called as the callback routine of interrupt process
r_{Config DALI} interrupt stop bit detection corresponding to the DALI communication
(Control devices) stop bit detection interrupt.

Remark 2. User should only keep necessary flag set/clear in callback function, other processing code
should be moved out of callback and interrupt function. Otherwise, the interrupt is not
processed at the correct timing.

[Syntax]
static void r_{Config_DALI} callback_sendend(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 665 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_DALI} callback receiveend

This API function executes processing in response to DALI communication (Control devices) stop bit
detection interrupt.
Remark 1. This API function is called as the callback routine of interrupt process
r_{Config DALI} interrupt stop bit detection corresponding to the DALI communication
(Control devices) stop bit detection interrupt.

Remark 2. User should only keep necessary flag set/clear in callback function, other processing code
should be moved out of callback and interrupt function. Otherwise, the interrupt is not
processed at the correct timing.

[Syntax]
static void r_{Config_DALI} callback_receiveend(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 666 of 868
Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

r {Config_DALI} callback_error

This API function executes processing in response to DALI communication (Control devices) reception
communication error interrupt.

Remark 1. This API function is called as the callback routine of interrupt process
r_{Config_DALI} interrupt_error corresponding to the DALI communication (Control
devices) reception communication error interrupt.

Remark 2. User should only keep necessary flag set/clear in callback function, other processing code
should be moved out of callback and interrupt function. Otherwise, the interrupt is not
processed at the correct timing.

[Syntax]

static void r_{Config_DALI} callback_error(uint16_t err_type);
[Argument(s)]

1/0 Argument(s) Description

uint16_t err_type;

Error type value:

Bit1: Overrun error

Bit0: Manchester framing error

Bit2: Frame size violation error

Bit3: Bit timing violation error

Bit4 to Bit7: 0
[Return value]
None.
R20UT4852EC0107 Rev.1.07 RENESAS Page 667 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

Usage example

This is an example for DALl communication (Control devices) transmit a 16bit frame data and DALI
communication (Control gear) receieve data:
(Blue code is user code.)

main.c for DALI communication (Control devices)
#include "r_smc_entry.h"

uint16_t tx_bufO[] = {OxFF66}; /ltransmit buffer containing one 16-bit DALI frame (0OxFF66)
volatile uint8_t sendend_flag = 0U;
void main(void);

void main(void)

{
EIl(); /lenable global interrupts to allow the system to respond to interrupt events
R_Config_DALI_Start(); /Istart DALI communication as a control device (master)
R_Config_DALI_Send(tx_buf0); /Isend 16-bit DALI frame using the configured device
while(1U != sendend_flag); /Iwait until transmission is complete
R_Config_DALI_Stop(); /Istop DALI device communication

}

main.c for DALI communication (Control gear)
#include "r_smc_entry.h"

uint8_t rx_bufO[]; /lpointer to hold received frame

uint8_t rx_buf1[100]; /Ibuffer to store multiple received frames

uint8_t p_rx_num = 0U; /lpointer to number of bytes received in current frame
uint8_t rx_num = 0U; /[counter for total received frames

volatile uint8_t receiveend_flag = QU;
void main(void);

void main(void)

{
El(); /lenable global interrupts to allow the system to respond to interrupt events
R_Config_DALI_Start(); /Istart DALI communication as a control gear (slave)
while(1U != receiveend_flag); [Iwait until a frame is received
/IGet received frame and store it if reception was successful
if(R_Config_DALI1_GetReceivedFrame(&rx_buf0,&p_rx_num) == MD_OK)

rx_buf1[rx_num]= rx_buf0; /Istore received byte/frame into buffer
rx_num-++; /lincrement received frame counter

}
R_Config_ DALI1_Stop(); //stop DALI gear communication

R20UT4852EC0107 Rev.1.07 RENESAS Page 668 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

Config_DALI_Device user.c
[* Start user code for global. Do not edit comment generated here */
extern volatile uint8_t sendend_flag;
/* End user code. Do not edit comment generated here */

static void r_Config_DALI_Device_callback sendend (void)

[* Start user code for r_Config_DALI Device_callback_sendend. Do not edit comment generated
here */

sendend_flag++; /Iset flag to indicate DALI frame has been sent

/* End user code. Do not edit comment generated here */

Config_DALI1_Gear_user.c
[* Start user code for global. Do not edit comment generated here */
extern volatile uint8_t receiveend flag;
/* End user code. Do not edit comment generated here */

static void r_Config_DALI_Gear_callback_receiveend (void)

[* Start user code for r_Config DALI_Gear_callback_receiveend. Do not edit comment generated
here */

receiveend_flag++; /Iset flag to indicate DALI frame has been received

/* End user code. Do not edit comment generated here */

R20UT4852EC0107 Rev.1.07 RENESAS Page 669 of 868
Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

4.2.53

DALI Communication (Control gear)

Below is a list of API functions output by the Smart Configurator for DALI communication (Control gear) use.

Table 4-60 API Functions: (1/2)

API Function Name Peripheral Name Description

R_{Config_DALI} Create DALI Executes initialization processing that is required
before controlling the DALI communication (Control
gear).

R_{Config_DALI}_ Start Starts DALI communication (Control gear) operation.

R_{Config_DALI}_ Stop Stops DALI communication (Control gear) operation.

R_{Config_DALI}_SoftwareReset Resets DALI communication (Control gear) operation.

R_{Config_DALI}_EnableForceActiveState Enable DALITxDO assertion and assertion level (active
state) is low. The output from the DALITxDO pin is
driven low.

R_{Config_DALI} DisableForceActiveStat Disable DALITxDO assertion. Internal data for

€ transmission are output from the DALITxDO pin.

R_{Config DALI} GetStatus Gets the state of the DALI communication (Control
gear).

R_{Config_DALI} Send Sends frame data.

R_{Config_DALI} GetReceiveFrame Receives frame data and frame length.

R_{Config_DALI}_Create_Userlnit Executes user-specific initialization processing for the
DALI communication (Control gear).

r_{Config_DALI} interrupt_error Executes processing in response to DALI
communication (Control gear) reception
communication error interrupt (INTED).

R20UT4852EC0107 Rev.1.07 REN ESNS Page 670 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

Table 4-61 API Functions: (2/2)

API Function Name Peripheral Name Description

r_{Config_DALI} interrupt_falling_edge d Executes processing in response to DALI

etection communication (Control gear) falling edge detection
interrupt (INTFED).

r_{Config_DALI} interrupt_power_down_d Executes processing in response to DALI

etection communication (Control gear) power down detection
interrupt (INTBPD).

r_{Config_DALI} interrupt_stop_bit_detect Executes processing in response to DALI

ion communication (Control gear) stop bit detection
interrupt (INTSDD).

r_{Config_DALI}_callback_sendend Executes processing in response to DALI

communication (Control gear) stop bit detection

interrupt.

r_{Config_DALI} callback_receiveend Executes processing in response to DALI
communication (Control gear) stop bit detection

interrupt.

r_{Config_DALI} callback_error Executes processing in response to DALI
communication (Control gear) reception

communication error interrupt.

R20UT4852EC0107 Rev.1.07 RENESAS Page 671 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_DALI} Create

This API function executes initialization processing that is required before controlling the DALI
communication (Control gear).

Remark This API function is called from R_Systeminit before the main() function is executed.

[Syntax]
void R_{Config_DALI}_Create(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 672 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_DALI} Start

This API function starts DALI communication (Control gear) operation.

[Syntax]
void R_{Config_DALI}_Start(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 673 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_DALI} Stop

This API function stops DALI communication (Control gear) operation.

[Syntax]
void R_{Config_DALI}_Stop(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 674 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_DALI} SoftwareReset

This API function resets DALI communication (Control gear) operation.

[Syntax]
void R_{Config_DALI}_SoftwareReset(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 675 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_DALI} EnableForceActiveState

This API function enable DALITXDO assertion and assertion level (active state) is low. The output from
the DALITxDO pin is driven low.

[Syntax]
void R_{Config_DALI} EnableForceActiveState(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 676 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_DALI} DisableForceActiveState

This API function disable DALITxDO assertion. Internal data for transmission are output from the
DALITxDO pin.

[Syntax]
void R_{Config_DALI} DisableForceActiveState(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 677 of 868
Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

R_{Config_DALI} GetStatus

This API function gets the state of the DALI communication (Control gear).

[Syntax]
void R_{Config_DALI} GetStatus(uint16_t * const status);
[Argument(s)]
I/0 Argument(s) Description
I uint16_t * const status; DALI status register buffer pointer

[Return value]

None

R20UT4852EC0107 Rev.1.07
Jan 20, 2026

RENESAS

Page 678 of 868

Smart Configurator 4. API FUNCTIONS

R_{Config_DALI} Send

This API function sends frame data. The frame length is fixed to 8 bits.

Remark This API function sets the data from the buffer specified in argument tx_buf to register
TDR1L. And enter r_{ConfigDALI} interrupt_stop_bit_detection when register TDR1L
transmission is completed.

[Syntax]
void R_{Config_DALI} _Send(uint8_t tx_buf);

[Argument(s)]

I/0 Argument(s) Description

I uint8_t tx_buf; Transfer buffer

[Return value]
None

R20UT4852EC0107 Rev.1.07 RENESAS Page 679 of 868
Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

R_{Config_DALI} GetReceivedFrame

This API function receives frame data and frame length.

[Syntax]
MD_STATUS R_{Config_DALI} GetReceivedFrame(uint32_t * const rx_buf, uint16_t * const
rx_num);
[Argument(s)]
1/O Argument(s) Description
O | uint32_t * const rx_buf; Receive buffer pointer
I uint16_t * const rx_num; Buffer frame length

[Return value]

Macro Description
MD_OK Normal end
MD_ARGERROR Error argument input error
R20UT4852EC0107 Rev.1.07 RENESAS Page 680 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_DALI} Create_Userlnit

This API function executes user-specific initialization processing for the DALI communication (Control
gear).
Remark This API functions is called from R_{Config_DALI} Create as a callback routine.

[Syntax]
void R_{Config_DALI} Create_Userlnit(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 681 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_DALI} interrupt_error

This API function executes processing in response to DALI communication (Control gear) reception
communication error interrupt (INTED).

[Syntax]
For CCRL78 toolchain:
static void __near r_{Config_DALI} interrupt_error(void);

For LLVM toolchain:
void r_{Config_DALI} interrupt_error(void);

For IAR toolchain:
‘ __interrupt static void r_{Config_DALI} interrupt_error(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 682 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_DALI} interrupt_falling_edge detection

This API function executes processing in response to DALI communication (Control gear) falling edge
detection interrupt (INTFED).

[Syntax]
For CCRL78 toolchain:
static void __near r_{Config_DALI} interrupt_falling_edge_detection(void);

For LLVM toolchain:
void r_{Config_DALI} interrupt_falling_edge_detection(void);

For IAR toolchain:
‘ __interrupt static void r_{Config_DALI} interrupt_falling_edge_detection(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 683 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_DALI} interrupt_power_down_detection

This API function executes processing in response to DALI communication (Control gear) power down
detection interrupt (INTBPD).

[Syntax]
For CCRL78 toolchain:
static void __near r_{Config_DALI} interrupt_power_down_detection(void);

For LLVM toolchain:
void r_{Config_DALI} interrupt_power_down_detection(void);

For IAR toolchain:
‘ __interrupt static void r_{Config_DALI} interrupt_power_down_detection(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 684 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_DALI} interrupt_stop_bit_detection

This API function executes processing in response to DALI communication (Control gear) stop bit
detection interrupt (INTSDD).

[Syntax]
For CCRL78 toolchain:
static void __near r_{Config_DALI} interrupt_stop_bit_detection(void);

For LLVM toolchain:
void r_{Config_DALI} interrupt_stop_bit_detection(void);

For IAR toolchain:
‘ __interrupt static void r_{Config_DALI} interrupt_stop_bit_detection(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 685 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_DALI} callback sendend

This API function executes processing in response to DALI communication (Control gear) stop bit
detection interrupt.
Remark 1. This API function is called as the callback routine of interrupt process
r_{Config DALI} interrupt stop bit detection corresponding to the DALI communication
(Control devices) stop bit detection interrupt.

Remark 2. User should only keep necessary flag set/clear in callback function, other processing code
should be moved out of callback and interrupt function. Otherwise, the interrupt is not
processed at the correct timing.

[Syntax]
static void r_{Config_DALI} callback_sendend(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 686 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_DALI} callback receiveend

This API function executes processing in response to DALI communication (Control gear) stop bit
detection interrupt.
Remark 1. This API function is called as the callback routine of interrupt process
r_{Config DALI} interrupt stop bit detection corresponding to the DALI communication
(Control devices) stop bit detection interrupt.

Remark 2. User should only keep necessary flag set/clear in callback function, other processing code
should be moved out of callback and interrupt function. Otherwise, the interrupt is not
processed at the correct timing.

[Syntax]
static void r_{Config_DALI} callback_receiveend(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 687 of 868
Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

r {Config_DALI} callback_error

This API function executes processing in response to DALI communication (Control gear) reception
communication error interrupt.

Remark 1. This API function is called as the callback routine of interrupt process
r {Config_DALI} interrupt_error corresponding to the DALI communication (Control gear)
reception communication error interrupt.

Remark 2. User should only keep necessary flag set/clear in callback function, other processing code
should be moved out of callback and interrupt function. Otherwise, the interrupt is not
processed at the correct timing.

[Syntax]

static void r_{Config_DALI} callback_error(uint16_t err_type);
[Argument(s)]

1/0 Argument(s) Description

uint16_t err_type;

Error type value:

Bit1: Overrun error

Bit0: Manchester framing error

Bit2: Frame size violation error

Bit3: Bit timing violation error

Bit4 to Bit7: 0
[Return value]
None.
R20UT4852EC0107 Rev.1.07 RENESAS Page 688 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

Usage example

Refer to DALI Communication (Control devices) mode Usage example.

R20UT4852EC0107 Rev.1.07 RENESAS Page 689 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

4.2.54 lIC Communication (Master mode) (Serial Array Unit)

Below is a list of API functions output by the Smart Configurator for IIC communication (master mode) (serial
array unit) use.

Table 4-62 API Functions:

API Function Name Peripheral Name Description

R_{Config_lICr}_Create Serial Array Unit Executes initialization processing that is required
before controlling the [ICr master module.

R_{Config_IICr}_StartCondition Issues a start condition.

R_{Config_lICr}_StopCondition Issues a stop condition.

R_{Config_lICr}_Stop Stops the [ICr module.

R_{Config_lICr}_Master_Send Starts transferring data for IICrin master mode.

R _{Config_lICr}_Master_Receive Starts receiving data for lICrin master mode.

R_{Config_IlICr}_Create_Userlnit Executes user-specific initialization processing
for the IICr.

r_{Config_IICr}_interrupt Executes processing in response to INTIICr

transfer end interrupt.

r_{Config_lICr}_callback_master_sendend Executes processing in response to master
transmit end interrupt.

r_{Config_lICr}_callback_master_receiveend Executes processing in response to master
receive completed interrupt.

r_{Config_lICr}_callback_master_error Executes processing in response to the detection
of an overrun or NACK error.

R20UT4852EC0107 Rev.1.07 RENESAS Page 690 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_lICr}_Create

This API function executes initialization processing that is required before controlling the [ICr master
module.

Remark1. This API function is called from R_SAUm_Create..
Remark2. When mis O, ris 00, 01, 10, 11; When mis 1, ris 20, 21, 30, 31.

[Syntax]
void R_{Config_lICr}_Create(void);
Remark ris 00, 01, 10, 11, 20, 21, 30, 31.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 691 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_lICr}_StartCondition

This API function issues a start condition.

Remark This API function is used as an internal function of R_{Config_lICr} Master_Send and
R_{Config_lICr} _Master_Receive . For this reason, there is normally no need to call it from
a user program.

[Syntax]
void R_{Config_lICr}_StartCondition(void);
Remark ris 00, 01, 10, 11, 20, 21, 30, 31.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 692 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_lICr}_StopCondition

This API function issues a stop condition.

[Syntax]
void R_{Config_lICr}_StopCondition(void);
Remark nmis 00, 01, 10, 11, 20, 21, 30, 31.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 693 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_lICr}_Stop

This API function stops the 1ICr module.

[Syntax]
void R_{Config_lICr}_Stop(void);
Remark ris 00, 01, 10, 11, 20, 21, 30, 31.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 694 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_lICr} _Master_Send

This API function starts transferring data for [ICr in master mode.

Remark 1. This API function repeats the byte-level simple IIC master transmission from the buffer
specified in argument tx_buf the number of times specified in argument tx_num.

Remark 2. Before calling this API, please check that communiacation is stopped/suspended and
SDA/SCL are High level.

[Syntax]
void R_{Config_lICr} _Master_Send(uint8_t adr, uint8_t * const tx_buf, uint16_t tx_num);
Remark ris 00, 01, 10, 11, 20, 21, 30, 31.

[Argument(s)]
I/O Argument(s) Description
I uint8_t adr; Set address for select slave
I uint8_t * const tx_buf; Pointer to a buffer storing the transmission data
I uint16_t tx_num; Total amount of data to send

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 695 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_lICr}_Master_Receive

This API function starts receiving data for lICr in master mode.

Remark 1. This API function performs byte-level simple 1IC master reception the number of times

specified by the argument rx_num, and stores the data in the buffer specified by the

argument rx_buf.
Remark 2. Before calling this API, please check that communiacation is stopped/suspended and

SDA/SCL are High level.

[Syntax]

void R_{Config_lICr}_Master_Receive(uint8_t adr, uint8_t * const rx_buf, uint16_t rx_num);
Remark ris 00, 01, 10, 11, 20, 21, 30, 31.

[Argument(s)]
1/0 Argument(s) Description
| uint8_t adr; Set address for select slave
O | uint8_t * const rx_buf; Pointer to a buffer to store the received data
O | uint16_t rx_num; Total amount of data to receive

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS

Page 696 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_lICr}_Create_Userlnit

This API function executes user-specific initialization processing for the 1ICr.
Remark This API functions is called from R_{Config_IICr}_Create as a callback routine.

[Syntax]
void R_{Config_lICr}_Create_Userlnit(void);
Remark ris 00, 01, 10, 11, 20, 21, 30, 31.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 697 of 868
Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

r {Config_IlICr}_interrupt

This API function executes processing in response to INTIICr transfer end interrupt.

[Syntax]
For CCRL78 toolchain:

static void __near r {Config_lICr}_interrupt(void);

For LLVM toolchain:

void r_{Config_lICr}_interrupt(void);

For IAR toolchain:

__interrupt static void r_{Config_lICr}_interrupt(void);

Remark ris 00, 01, 10, 11, 20, 21, 30, 31.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS
Jan 20, 2026

Page 698 of 868

Smart Configurator

4. API FUNCTIONS

r {Config_IlICr}_callback _master_sendend

This API function executes processing in response to master transmit end interrupt.
Remark 1.

This API function is called as the callback routine of interrupt process
r_{Config_lICr}_interrupt corresponding to the lICr master transmit end interrupt.
Remark 2. Please take note to keep necessary flag set/clear in callback function and move other

processing code out of callback and interrupt function. Otherwise, the next interrupt won’t
be processed at the correct timing.

[Syntax]
static void r_{Config_lICr}_callback_master_sendend(void);
Remark ris 00, 01, 10, 11, 20, 21, 30, 31.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS
Jan 20, 2026

Page 699 of 868

Smart Configurator

4. API FUNCTIONS

r {Config_IICr}_callback_master_receiveend

This API function executes processing in response to master receive completed interrupt.
Remark 1.

This API function is called as the callback routine of interrupt process
r_{Config_lICr}_interrupt corresponding to the [ICr master receive completed interrupt.
Remark 2. Please take note to keep necessary flag set/clear in callback function and move other

processing code out of callback and interrupt function. Otherwise, the next interrupt won’t
be processed at the correct timing.

[Syntax]
static void r_{Config_lICr}_callback_master_receiveend(void);
Remark ris 00, 01, 10, 11, 20, 21, 30, 31.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS
Jan 20, 2026

Page 700 of 868

Smart Configurator

4. API FUNCTIONS

r {Config_IlICr}_callback _master_error

This API function executes processing in response to the detection of an overrun or NACK error.
This API function is called as the callback routine of interrupt process

Remark 1.

r_{Config_lICr}_interrupt corresponding to the IICr transmit error.

Remark 2. Please take note to keep necessary flag set/clear in callback function and move other

processing code out of callback and interrupt function. Otherwise, the next interrupt won’t
be processed at the correct timing.

[Syntax]
static void r_{Config_lICr}_callback_error(MD_STATUS flag);
Remark ris 00, 01, 10, 11, 20, 21, 30, 31.
[Argument(s)]
I/O Argument(s)

Description

| | MD_STATUS flag;

Error type:

MD_NACK: Detection of NACK error
MD_OVERRUN: Detection of overrun error

[Return value]
None.

R20UT4852EC0107 Rev.1.07

Jan 20, 2026

RENESAS

Page 701 of 868

Smart Configurator 4. API FUNCTIONS

Usage example

This is an example for 1ICO master communication with IICAOQ slave (including 1ICO master send, and master
receive mode):

(Blue code is user code.)
main.c

#include "r_smc_entry.h"

uint8_t tx_buf[6] = {0xA5,0x3F,0xC0,0x5C,0xB6,0x37}; [ltransmit buffer with 6 bytes of data
uint8_t rx_buf1[6] = {0x00,0x00,0x00,0x00,0x00,0x00}; IIreceive buffer 1 initialized to zero
uint8_t rx_buf2[6] = {0x00,0x00,0x00,0x00,0x00,0x00}; /Ireceive buffer 2 initialized to zero
volatile uint8_t transmitend_flag = 0U;

volatile uint8_t receiveend_flag = 0U;

void main(void);
void main(void)

El(); /lenable global interrupts to allow the system to respond to interrupt events
R_Config_IIC00_StartCondition(); /linitiate 1IC start condition for communication

R_Config_lIC00_Master_Receive(0x24,rx_buf1,sizeof(rx1_buf)); /Imaster receives data from
slave address 0x24 into rx_buf1

R_Config_lICA1_Slave_Send(tx_buf,sizeof(tx_buf)); /Islave sends data from tx_buf

while(receiveend_flag != 1); /Iwait until receive operation is complete
transmitend = 0; /Ireset transmit end flag
receiveend = 0; lIreset receive end flag

R_Config_lIC00_StopCondition(); /Isend stop condition to end current IIC communication
R_Config_IIC00_StartCondition(); /Istart a new 1IC communication

R_Config_IICA1_Slave_Receive(rx_buf2, sizeof(rx_buf2)); /Islave receives data into rx_buf2

R_Config_lIC00_Master_Send(0x24, tx_buf,sizeof(tx_buf)); /Imaster sends data to slave
address 0x24 from tx_buf

while(receiveend_flag != 1); /Iwait until receive operation is complete

transmitend_flag = 0; /Ireset transmit end flag

receiveend_flag = 0; /Ireset receive end flag

R_Config_lIC00_StopCondition(); /Isend stop condition to end current IIC communication

R_Config_IIC00_Stop(); /Istop 11IC0O0 module
R_Config_IICAQ_Stop(); /Istop IICAO module

R20UT4852EC0107 Rev.1.07 RENESAS Page 702 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

Config_lIC00_user.c
[* Start user code for global. Do not edit comment generated here */
extern volatile uint8_t transmitend_flag;
extern uint8_t receiveend_flag
/* End user code. Do not edit comment generated here */

static void r_Config_IIC00_callback_master_sendend (void)

[* Start user code for r_Config IICO0_callback_master_sendend. Do not edit comment
generated here */

transmitend_flag = 1U; /Iset transmit end flag to indicate transmission is complete

/* End user code. Do not edit comment generated here */

}

static void r_Config_IIC00_callback_master_receiveend (void)

[* Start user code for r_Config_IICO0_callback_master_receiveend. Do not edit comment
generated here */

receiveend_flag = 1U; /Iset receive end flag to indicate reception is complete

/* End user code. Do not edit comment generated here */

Config_IICAQ_user.c
/* Start user code for global. Do not edit comment generated here */
extern volatile uint8_t transmitend_flag;
extern uint8_t receiveend_flag;
/* End user code. Do not edit comment generated here */

static void r_Config_IICAO_callback_slave_sendend(void)

[* Start user code for r_Config_IICAQ_callback_slave_sendend. Do not edit comment generated
here */

transmitend_flag = 1U; /[set transmit end flag to indicate slave transmission is complete

/* End user code. Do not edit comment generated here */

}

static void r_Config_IICAQ_callback_slave_receiveend(void)

[* Start user code for r_Config_IICAO _callback_slave receiveend. Do not edit comment
generated here */

receiveend_flag = 1U; /Iset receive end flag to indicate slave reception is complete

/* End user code. Do not edit comment generated here */

R20UT4852EC0107 Rev.1.07 RENESAS Page 703 of 868
Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

4.2.55

IIC Communication (Master mode) (Serial Interface IICA)

Below is a list of API functions output by the Smart Configurator for IIC communication (master mode) (serial

interface IICA) use.

Table 4-63 API Functions:

API Function Name

Peripheral Name

Description

R_{Config_IICAn}_Create

R_{Config_IICAn}_StopCondition

R_{Config_IICAn}_Stop

R_{Config_IICAn} Master_Send

R_{Config_lICAn} Master_Receive

R_{Config_IICAn}_Check_Comstate

R_{Config_lICAn}_Poll

R_{Config_IICAn}_Wait_Comend

R_{Config_IICAn}_Bus_Check

R_{Config_lICAn}_StartCondition

R_{Config_lICAn} Wait_Time

R_{Config_IICAn} Create_Userlnit

r_{Config_IICAn}_interrupt

r_{Config_IlICAn}_master_handler

r {Config_lICAn} callback_master_sendend

r_{Config_lICAn} callback _master_receiveend

r_{Config_lICAn}_ callback _master_error

Serial Interface [ICA

Executes initialization processing that is
required before controlling the IICAn master
module.

Issues a stop condition.

Stops the IICAn master operation.

Starts transferring data in master mode.

Starts receiving data in master mode.

Readouts of communication status.

Checks the communication status. Judging
by the value of the status variable.

Waits in the function until communication is
finished.

Checks bus status and issues start
condition if released.

Processes of issuing start condition.

Waits 50us.

Executes user-specific initialization

processing for the 1ICAnN.

Executes processing in response to end of
IICAn communication interrupt (INTHICAN).

Controls IICAn data transmission / reception
/ error in master mode..

Executes processing in response to master
transmit end.

Executes processing in response to master
receive completed.

Executes processing in response to the

detection of a bus busy or NACK error.

R20UT4852EC0107 Rev.1.07
Jan 20, 2026

RENESAS

Page 704 of 868

Smart Configurator 4. API FUNCTIONS

R_{Config_IICAn} Create

This API function executes initialization processing that is required before controlling the [ICAn master
module.

Remark This API function is called from R_Systeminit before the main() function is executed.
[Syntax]
void R_{Config_lICAn}_Create(void);
Remark n is the channel number.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 705 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_IICAn} StopCondition

This API function issues a stop condition.

[Syntax]
uint8_t R_{Config_IICAn}_StopCondition(void);

Remark n is the channel number.

[Argument(s)]
None.

[Return value]

Macro Description
SUCCESS Operation complete.
BUS_FREE IIC bus is free (SUCCESS).
BUS_ERROR Bus or lICAn is busy error.
R20UT4852EC0107 Rev.1.07 :{EN ESNS Page 706 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_IICAn} Stop

This API function stops the IICAn master operation.

[Syntax]
void R_{Config_lICAn}_Stop(void);

Remark n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 707 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_IICAn} Master_Send

This API function starts to send data as master mode.

[Syntax]
void R_{Config_IICAn}_Master_Send(uint8_t sladr8, uint8_t * const tx_buf, uint16_t tx_num, uint8_t
wait) ;

Remark n is the channel number.
[Argument(s)]
1/O Argument(s) Description
I uint8_t sladr8; Transfer address
I uint8_t * const tx_buf; Pointer to the buffer where the data to be transmitted are
stored
I uint16_t tx_num; Number of bytes to be transmitted
I uint8_t wait; Wait for start condition
[Return value]
Macro Description
BUS_ERROR Bus or lICAn is busy error.
SUCCESS Operation complete.
R20UT4852EC0107 Rev.1.07 :{ENESAS Page 708 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_IICAn} Master_Receive

This API function starts to receive data as master mode.

[Syntax]
void R_{Config_lICAn} Master_Receive(uint8_t sladr8, uint8_t * const rx_buf, uint16_t rx_num,
uint8_t wait);

Remark n is the channel number.
[Argument(s)]
1/O Argument(s) Description
I uint8_t sladr8; Receive address
O | uint8_t * const rx_buf; Pointer to the buffer where the received data are to be stored
O | uint16_t rx_num; Number of bytes to be received
uint8_t wait Wait for start condition

[Return value]

Macro Description
COM_ERROR Other error of communication.
SUCCESS Operation complete.
R20UT4852EC0107 Rev.1.07 :{EN ESNS Page 709 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_IICAn} Check Comstate

This API function readouts of communication status.

[Syntax]
uint8_t R_{Config_lICAn}_Check_Comstate(void);
Remark n is the channel number.
[Argument(s)]
None.

[Return value]

Macro Description

g_iican_status -

R20UT4852EC0107 Rev.1.07 RENESAS Page 710 of 868
Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

R_{Config_lICAn} Poll

This API function checks the communication status. Judging by the value of the status variable.

[Syntax]
uint8_t R_{Config_lICAn}_Poll(void);
Remark n is the channel number.
[Argument(s)]
None.

[Return value]

Macro Description
SUCCESS Operation complete.
ON_COMMU On communication.
BUS_ERROR Bus or lICAn is busy error.
NO_SLAVE NACK for slave address
NO_ACK NACK for transmit data.
R20UT4852EC0107 Rev.1.07 :{EN ESANAS Page 711 of 868

Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

R_{Config_IICAn} Wait_Comend

This API function waits in the function until communication is finished.

[Syntax]
uint8_t R_{Config_lICAn}_Wait_Comend(uint8_t stop);
Remark n is the channel number.
[Argument(s)]
I/0 Argument(s) Description
I uint8_t stop; Issue stop condition.

[Return value]

Macro Description
ON_COMMU On communication.
SUCCESS Operation complete.
R20UT4852EC0107 Rev.1.07 :{EN ESNS Page 712 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_IICAn} Bus_Check

This API function checks bus status and issues start condition if released.

[Syntax]
uint8_t R_{Config_lICAn} Bus_Check(void);
Remark n is the channel number.
[Argument(s)]
None.

[Return value]

Macro Description
SUCCESS Operation complete.
BUS_HOLD Hold IIC bus (same as above).
BUS_ERROR Bus or lICAn is busy error.
R20UT4852EC0107 Rev.1.07 :{EN ESNS Page 713 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_lICAn} StartCondition

This API function processes of issuing start condition.

[Syntax]
uint8_t R_{Config_lICAn}_StartCondition(void);
Remark n is the channel number.
[Argument(s)]
None.

[Return value]

Macro Description
SUCCESS Operation complete.
BUS_ERROR Bus or lICAn is busy error.
R20UT4852EC0107 Rev.1.07 :{EN ESNS Page 714 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_IICAn} Wait_Time

This API function waits 50us.

[Syntax]
void R_{Config_lICAn} Wait_Time(void);

Remark n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 715 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_IICAn} Create_Userlnit

This API function executes user-specific initialization processing for the lICAn.

Remark This API functions is called from R_{Config_IICAn} Create as a callback routine.
[Syntax]
void R_{Config_lICAn} Create_Userlnit(void);
Remark n is the channel number.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 716 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r_{Config_IICAn} interrupt

This API function executes processing in response to end of ICAn communication interrupt (INTIICAn).

[Syntax]
For CCRL78 toolchain:
static void __near r_{Config_lICAn}_interrupt(void);

For LLVM toolchain:
void r_{Config_lICAn}_interrupt(void);

For IAR toolchain:
__interrupt static void r_{Config_lICAn}_interrupt(void);

Remark n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 717 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_IICAn} master_handler

This API function controls IICAn data transmission / reception / error in master mode.

Remark This API function is called as the callback routine of interrupt process r_{Config_
[ICAn}_interrupt corresponding to the IICAnN interrupt.

[Syntax]
void R_{Config_lICAn} _master_handler(void);

Remark n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 718 of 868
Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

r {Config_IICAn} callback master_sendend

This API function executes processing in response to master transmit end.
Remark 1.

This API function is called as the callback routine of interrupt process
R _{Config_IICAn} master_handler.

Remark 2. Please take note to keep necessary flag set/clear in callback function and move other

processing code out of callback and interrupt function. Otherwise, the next interrupt won’t
be processed at the correct timing.

[Syntax]
static void r_{Config_lICAn} callback_master_sendend(void);
Remark n is the channel number.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS
Jan 20, 2026

Page 719 of 868

Smart Configurator

4. API FUNCTIONS

r {Config_IICAn} callback master_receiveend

This API function executes processing in response to master receive completed.
Remark 1.

This API function is called as the callback routine of interrupt process
R _{Config_IICAn} master_handler.
Remark 2. Please take note to keep necessary flag set/clear in callback function and move other

processing code out of callback and interrupt function. Otherwise, the next interrupt won’t
be processed at the correct timing.

[Syntax]
static void r_{Config_lICAn} callback_master_receiveend(void);
Remark n is the channel number.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS
Jan 20, 2026

Page 720 of 868

Smart Configurator

4. API FUNCTIONS

r {Config_IICAn} callback master_error

This API function executes processing in response to the detection of a bus busy or NACK error.
Remark 1. This API function is called as the callback routine of interrupt process

R _{Config_IICAn} master_handler.
Remark 2. Please take note to keep necessary flag set/clear in callback function and move other

processing code out of callback and interrupt function. Otherwise, the next interrupt won’t
be processed at the correct timing.

[Syntax]
static void r_{Config_lICAn}_callback_master_error(MD_STATUS flag);
Remark n is the channel number.
[Argument(s)]
I/O Argument(s) Description
I MD_STATUS flag; Status flag

MD_NACK: NACK error

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS
Jan 20, 2026

Page 721 of 868

Smart Configurator 4. API FUNCTIONS

Usage example

This is an example for ICAO0 master communication with IICA1 slave (including both send and receive mode):
(Blue code is user code.)
main.c

#include "r_smc_entry.h"

uint8_t tx_buf[6] = {0xA5,0x3F,0xC0,0x5C,0xB6,0x37}; [ltransmit buffer with 6 bytes of data
uint8_t rx_buf1[6] = {0x00,0x00,0x00,0x00,0x00,0x00}; [Ireceive buffer 1 initialized to zero
uint8_t rx_buf2[6] = {0x00,0x00,0x00,0x00,0x00,0x00}; [Ireceive buffer 2 initialized to zero
volatile uint8_t transmitend_flag = 0U;

volatile uint8_t receiveend_flag = 0U;

void main(void);
void main(void)

{

El(); //fenable global interrupts to allow the system to respond to interrupt events

/* Check bus status */
if (R_Config_IICAO_Bus_Check() != 0U)

// Bus busy, wait or handle error
R_Config_IICA0_Wait_Time();
}

/* Start condition */
if (R_Config_IICAQ_StartCondition() == 0U)

/] Start successful

}
[* Slave ready to receive */
R_Config_IICA1_Slave Receive(rx_buf1, sizeof(tx_buf)); /Islave receives data into rx_buf1

/* Master sends data */
if (R_Config_IICAO_Master_Send(0x24, tx_buf, sizeof(tx_buf), 100) == 0U) //master sends data
to slave with address 0x24

/I Send start successful

}

/* Wait for communication to finish */
while (R_Config_IICAO_Check_Comstate() != 0U)

R_Config_IICAQ_Poll(); // Poll communication status

}
R_Config_IICAO0_Wait_Comend(1U); // Wait for communication completion and send STOP

while (receiveend_flag != 1U); /Iwait until reception is complete
transmitend_flag = 0U; /Ireset transmission flag
receiveend_flag = 0U; /Ireset reception flag
R20UT4852EC0107 Rev.1.07 RENESAS Page 722 of 868

Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

main.c

[* Start condition again */
R_Config_IICAQ_StartCondition();

/* Master receives data */

receives data from slave

{
}

/* Wait for communication to finish */
while (R_Config_IICA0_Check_Comstate() != 0U)

/I Receive start successful

R_Config_IICAO0_Poll();
}
R_Config_IICA0_Wait_Comend(1U);

while (receiveend_flag != 1U);
transmitend_flag = 0U;
receiveend_flag = 0U;

/* Slave sends data */
R_Config_IICA1_Slave_Send(tx_buf, sizeof(tx_buf));

while (receiveend_flag != 1U);
transmitend_flag = 0U;
receiveend_flag = 0U;

[* Stop communication */
R_Config_IICAO0_Stop(); /Istop IICAO communication
R_Config_IICA1_Stop(); /Istop [ICA1 communication

if (R_Config_IICAO_Master Receive(0x24, rx_buf2, sizeof(rx_buf2), 100) == 0U) /Imaster

R20UT4852EC0107 Rev.1.07 RENESAS
Jan 20, 2026

Page 723 of 868

Smart Configurator 4. API FUNCTIONS

Config_IICAQ_user.c

[* Start user code for global. Do not edit comment generated here */
extern volatile uint8_t transmitend_flag;

extern volatile uint8_t receiveend_flag;

/* End user code. Do not edit comment generated here */

static void r_Config_IICAOQ_callback_master_sendend (void)

SPTO =1U;

/* Start user code for r_Config_IICAO_callback_master_sendend. Do not edit comment
generated here */

transmitend_flag = 1U; /Iset transmission flag to indicate completion

/* End user code. Do not edit comment generated here */

}

static void r_Config_IICAOQ_callback_master_receiveend (void)

SPTO = 0U;

/* Start user code for r_Config_IICAQO_callback_master_receiveend. Do not edit comment
generated here */

receiveend_flag = 1U; /Iset reception flag to indicate completion

/* End user code. Do not edit comment generated here */

Config_IICA1_user.c

[* Start user code for global. Do not edit comment generated here */
extern volatile uint8_t transmitend_flag;

extern volatile uint8_t receiveend_flag;

/* End user code. Do not edit comment generated here */

static void r_Config_IICA1_callback_slave_sendend(void)

[* Start user code for r_Config_IICA1_callback_slave_sendend. Do not edit comment generated
here */

transmitend_flag = 1U; /Iset transmission flag to indicate slave send completion

/* End user code. Do not edit comment generated here */

}

static void r_Config_IICA1_callback_slave_receiveend(void)

/* Start user code for r_Config_IICA1_callback_slave_receiveend. Do not edit comment
generated here */

receiveend_flag = 1U; /Iset reception flag to indicate slave receive completion

/* End user code. Do not edit comment generated here */

R20UT4852EC0107 Rev.1.07 RENESAS Page 724 of 868
Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

4.2.56

lIC Communication (Master mode, EEPROM communication) (Serial Interface IICA)

Below is a list of APl functions output by the Smart Configurator for IIC communication (Master mode,
EEPROM communication) (serial interface [ICA) use.

Table 4-64 API Functions:

API Function Name

Peripheral Name

Description

R_{Config_IICAn}_Create

R_{Config_IICAn}_StopCondition

R_{Config_IICAn}_Stop

R_{Config_IICAn} Master_Send

R_{Config_lICAn} Master_Receive

R_{Config_IICAn}_Check_Comstate

R_{Config_lICAn}_Poll

R_{Config_IICAn}_Wait_Comend

R_{Config_IICAn}_Bus_Check

R_{Config_lICAn}_StartCondition

R_{Config_lICAn} Wait_Time

R_{Config_IICAn} Create_Userlnit

r_{Config_IICAn}_interrupt

r_{Config_IlICAn}_master_handler

r {Config_lICAn} callback_master_sendend

r_{Config_lICAn} callback _master_receiveend

r_{Config_lICAn}_ callback _master_error

Serial Interface [ICA

Executes initialization processing that is
required before controlling the IICAn master
module.

Issues a stop condition.

Stops the IICAn master operation.

Starts transferring data in master mode.

Starts receiving data in master mode.

Readouts of communication status.

Checks the communication status. Judging
by the value of the status variable.

Waits in the function until communication is
finished.

Checks bus status and issues start
condition if released.

Processes of issuing start condition.

Waits 50us.

Executes user-specific initialization

processing for the 1ICAnN.

Executes processing in response to end of
IICAn communication interrupt (INTHICAN).

Controls IICAn data transmission / reception
/ error in master mode..

Executes processing in response to master
transmit end.

Executes processing in response to master
receive completed.

Executes processing in response to the

detection of a bus busy or NACK error.

R20UT4852EC0107 Rev.1.07
Jan 20, 2026

RENESAS

Page 725 of 868

Smart Configurator 4. API FUNCTIONS

R_{Config_IICAn} Create

This API function executes initialization processing that is required before controlling the [ICAn master
module.

Remark This API function is called from R_Systeminit before the main() function is executed.
[Syntax]
void R_{Config_lICAn}_Create(void);
Remark n is the channel number.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 726 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_IICAn} StopCondition

This API function issues a stop condition.

[Syntax]
uint8_t R_{Config_lICAn}_StopCondition(void);
Remark n is the channel number.
[Argument(s)]
None.

[Return value]

Macro Description
SUCCESS Operation complete.
BUS_FREE IIC bus is free (SUCCESS).
BUS_ERROR Bus or lICAn is busy error.
R20UT4852EC0107 Rev.1.07 :{EN ESNS Page 727 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_IICAn} Stop

This API function stops the IICAn master operation.

[Syntax]
void R_{Config_lICAn}_Stop(void);

Remark n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 728 of 868
Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

R _{Co

nfig_IICAn} Master_Send

This API function starts to send data as master mode.

[Syntax]

void

R_{Config_lICAn} Master_Send(uint8_t sladr7, uint8_t adr, uint8_t * const tx_buf, uint16_t
tx_num, uint8_t wait);

Remark n is the channel number.
[Argument(s)]
1/O Argument(s) Description
I uint8_t sladr7; Slave address
| uint8_t adr; Transfer address
I uint8_t * const tx_buf; Pointer to the buffer where the data to be transmitted are
stored
I uint16_t tx_num; Number of bytes to be transmitted
| uint8_t wait; Wait for start condition
[Return value]
Macro Description
BUS_ERROR Bus or lICAn is busy error.
SUCCESS Operation complete.
R20UT4852EC0107 Rev.1.07 :{ENESAS Page 729 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_IICAn} Master_Receive

This API function starts to receive data as master mode.

[Syntax]
void R_{Config_IICAn} Master_Receive(uint8_t sladr7, uint8_t adr, uint8_t * const rx_buf,
uint16_t rx_num, uint8_t wait);

Remark n is the channel number.
[Argument(s)]
1/O Argument(s) Description
| | uint8_t sladr7; Slave address
| uint8_t adr; Receive address
O | uint8_t * const rx_buf; Pointer to the buffer where the received data are to be stored
O | uint16_t rx_num; Number of bytes to be received
uint8_t wait Wait for start condition

[Return value]

Macro Description
COM_ERROR Other error of communication.
SUCCESS Operation complete.
R20UT4852EC0107 Rev.1.07 :{EN ESNS Page 730 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_IICAn} Check Comstate

This API function readouts of communication status.

[Syntax]
uint8_t R_{Config_lICAn}_Check_Comstate(void);
Remark n is the channel number.
[Argument(s)]
None.

[Return value]

Macro Description

g_iican_status -

R20UT4852EC0107 Rev.1.07 RENESAS Page 731 of 868
Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

R_{Config_lICAn} Poll

This API function checks the communication status. Judging by the value of the status variable.

[Syntax]
uint8_t R_{Config_lICAn}_Poll(void);
Remark n is the channel number.
[Argument(s)]
None.

[Return value]

Macro Description
SUCCESS Operation complete.
ON_COMMU On communication.
BUS_ERROR Bus or lICAn is busy error.
NO_SLAVE NACK for slave address.
NO_ACK NACK for transmit data.
R20UT4852EC0107 Rev.1.07 :{EN ESNS Page 732 of 868

Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

R_{Config_IICAn} Wait_Comend

This API function waits in the function until communication is finished.

[Syntax]
uint8_t R_{Config_lICAn}_Wait_Comend(uint8_t stop);
Remark n is the channel number.
[Argument(s)]
I/0 Argument(s) Description
I uint8_t stop; Issue stop condition.

[Return value]

Macro Description
ON_COMMU On communication.
SUCCESS Operation complete.
R20UT4852EC0107 Rev.1.07 :{ENESAS Page 733 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_IICAn} Bus_Check

This API function checks bus status and issues start condition if released.

[Syntax]
uint8_t R_{Config_lICAn} Bus_Check(void);
Remark n is the channel number.
[Argument(s)]
None.

[Return value]

Macro Description
SUCCESS Operation complete.
BUS_HOLD Hold IIC bus (same as above).
BUS_ERROR Bus or lICAn is busy error.
R20UT4852EC0107 Rev.1.07 :{EN ESNS Page 734 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_lICAn} StartCondition

This API function processes of issuing start condition.

[Syntax]
uint8_t R_{Config_lICAn}_StartCondition(void);
Remark n is the channel number.
[Argument(s)]
None.

[Return value]

Macro Description
SUCCESS Operation complete.
BUS_ERROR Bus or lICAn is busy error.
R20UT4852EC0107 Rev.1.07 :{EN ESNS Page 735 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_IICAn} Wait_Time

This API function waits 50us.

[Syntax]
void R_{Config_lICAn} Wait_Time(void);

Remark n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 736 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_IICAn} Create_Userlnit

This API function executes user-specific initialization processing for the lICAn.

Remark This API functions is called from R_{Config_IICAn} Create as a callback routine.
[Syntax]
void R_{Config_lICAn} Create_Userlnit(void);
Remark n is the channel number.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 737 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r_{Config_IICAn} interrupt

This API function executes processing in response to end of ICAn communication interrupt (INTIICAn).

[Syntax]
For CCRL78 toolchain:
static void __near r_{Config_lICAn}_interrupt(void);

For LLVM toolchain:
void r_{Config_lICAn}_interrupt(void);

For IAR toolchain:
__interrupt static void r_{Config_lICAn}_interrupt(void);

Remark n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 738 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_IICAn} master_handler

This API function controls IICAn data transmission / reception / error in master mode.

Remark This API function is called as the callback routine of interrupt process r_{Config_
[ICAn}_interrupt corresponding to the IICAn interrupt.

[Syntax]
void R_{Config_lICAn} _master_handler(void);

Remark n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 739 of 868
Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

r {Config_IICAn} callback master_sendend

This API function executes processing in response to master transmit end.
Remark 1.

This API function is called as the callback routine of interrupt process
R _{Config_IICAn} master_handler.

Remark 2. Please take note to keep necessary flag set/clear in callback function and move other

processing code out of callback and interrupt function. Otherwise, the next interrupt won’t
be processed at the correct timing.

[Syntax]
static void r_{Config_lICAn} callback_master_sendend(void);
Remark n is the channel number.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS
Jan 20, 2026

Page 740 of 868

Smart Configurator

4. API FUNCTIONS

r {Config_IICAn} callback master_receiveend

This API function executes processing in response to master receive completed.
Remark 1.

This API function is called as the callback routine of interrupt process
R _{Config_IICAn} master_handler.
Remark 2. Please take note to keep necessary flag set/clear in callback function and move other

processing code out of callback and interrupt function. Otherwise, the next interrupt won’t
be processed at the correct timing.

[Syntax]
static void r_{Config_lICAn} callback_master_receiveend(void);
Remark n is the channel number.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS
Jan 20, 2026

Page 741 of 868

Smart Configurator

4. API FUNCTIONS

r {Config_IICAn} callback master_error

This API function executes processing in response to the detection of a bus busy or NACK error.
Remark 1. This API function is called as the callback routine of interrupt process

R _{Config_IICAn} master_handler.
Remark 2. Please take note to keep necessary flag set/clear in callback function and move other

processing code out of callback and interrupt function. Otherwise, the next interrupt won’t
be processed at the correct timing.

[Syntax]
static void r_{Config_lICAn}_callback_master_error(MD_STATUS flag);
Remark n is the channel number.
[Argument(s)]
I/O Argument(s) Description
I MD_STATUS flag; Status flag

MD_NACK: NACK error

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS
Jan 20, 2026

Page 742 of 868

Smart Configurator 4. API FUNCTIONS

Usage example

This is an example for ICA1 master communication with EEPROM (including both send and receive mode):
(Blue code is user code.)
main.c

#include "r_smc_entry.h"

#define EEPROM_ADDR 0x50 /I 7-bit EEPROM slave address
#define MEM_ADDR 0x00 /l EEPROM memory address
#define TIMEOUT 100 /l Timeout for communication

[* Write buffer: memory address + 4 data bytes */
uint8_t write_data[5] = {MEM_ADDR, 0x11, 0x22, 0x33, 0x44};
uint8_t read_data[4] = {0}; // Read back 4 data bytes

volatile uint8_t transmitend_flag = 0U;
volatile uint8_t receiveend_flag = 0U;

void main(void)

{
EI(); // Enable global interrupts

/* Check if bus is free */
if (R_Config_IICA1_Bus_Check() != 0U)

R_Config_IICA1_Wait_Time(); // Wait if bus is busy
}

/* ---- Write to EEPROM ---- */

R_Config_IICA1_StartCondition(); // Generate START condition

if (R_Config IICA1_Master Send(EEPROM_ADDR, MEM_ADDR, write_data, sizeof(write_data),
TIMEOUT) == 0U)

{

}

[* Wait for transmit complete using flag */
while (transmitend_flag == 0U);
transmitend_flag = 0U;

/I Write operation started successfully

[* Poll communication state until complete */
while (R_Config_IICA1_Check_Comstate() != 0U)

R_Config_IICA1_Poll();
}
R_Config_IICA1_Wait_Comend(1U); // STOP condition
/* ---- Read from EEPROM ---- */
R_Config_IICA1_StartCondition(); // Generate START condition again
if (R_Config_lICA1_Master_ Receive(EEPROM_ADDR, MEM_ADDR, read_data, sizeof(read_data),
TIMEOUT) == 0U)

/I Read operation started successfully

R20UT4852EC0107 Rev.1.07 RENESAS Page 743 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

main.c
/* Wait for receive complete using flag */
while (receiveend_flag == 0U);
receiveend_flag = 0U;

/* Poll communication state until complete */
while (R_Config_IICA1_Check_Comstate() != 0U)
{

}
R_Config_IICA1_Wait_Comend(1U); // STOP condition

R_Config_IICA1_Poll();

[* Stop IICA1 channel */
R_Config_IICA1_Stop();

[* Verify received data */
if (read_data[0] == 0x11 && read_data[1] == 0x22 && read_data[2] == 0x33 && read_data[3] ==

0x44)
{
/I Data verification successful
}
while (1)
/I Main loop
}
}

Config_IICA1_user.c

/* Start user code for global. Do not edit comment generated here */
extern volatile uint8_t transmitend_flag;

extern volatile uint8_t receiveend_flag;

/* End user code. Do not edit comment generated here */

static void r_Config_IICA1_callback_master_sendend(void)

[* Start user code for r_Config_IICA1_callback_master_sendend. Do not edit comment
generated here */

transmitend_flag = 1U; /Iset transmission flag to indicate master send completion
/* End user code. Do not edit comment generated here */

}

static void r_Config_IICA1_callback_master_receiveend(void)

/* Start user code for r_Config_IICA1_callback_master_receiveend. Do not edit comment
generated here */

receiveend_flag = 1U; /Iset reception flag to indicate master receive completion

/* End user code. Do not edit comment generated here */

R20UT4852EC0107 Rev.1.07 RENESAS Page 744 of 868
Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

4.2.57

lIC Communication (Slave mode) (Serial Interface IICA)

Below is a list of API functions output by the Smart Configurator for [IC communication (slave mode) (serial

interface IICA) use.

Table 4-65 API Functions:

API Function Name

Peripheral Name

Description

R_{Config_IICAn}_Create

R_{Config_IICAn}_Stop

R_{Config_IICAn}_Slave_Send

R_{Config_lICAn}_Slave_Receive

R_{Config_lICAn}_Set WakeupOn

R_{Config_IICAn}_Set WakeupOff

R_{Config_lICAn} Create_Userlnit

r_{Config_IICAn}_interrupt

r_{Config_IICAn}_slave_handler

r_{Config_lICAn}_callback_slave_sendend

r_{Config_IICAn}_callback_slave_receiveend

r_{Config_lICAn}_callback_slave_error

r_{Config_IICAn}_callback_getstopcondition

Serial Interface [ICA

Executes initialization processing that is
required before controlling the IICAn slave
module.

Stops IICAn slave operation.

Starts transferring data in slave mode.

Starts receiving data in slave mode.

Enables operation of address match wakeup
function in STOP mode.

Disables operation of address match wakeup
function in STOP mode.

Executes user-specific initialization
processing for the IICAn.

Executes processing in response to end of
IICAO communication interrupt (INTIICAn).

Controls IICAn data transmission / reception /
error in slave mode.

Executes processing in response to slave
transmit end.

Executes processing in response to slave

receive completed.

Executes processing in response to the
detection of an addresses not match or NACK

error.

Executes processing in response to IICAn get
a slave stop condition.

R20UT4852EC0107 Rev.1.07
Jan 20, 2026

RENESAS

Page 745 of 868

Smart Configurator 4. API FUNCTIONS

R_{Config_IICAn} Create

This API function executes initialization processing that is required before controlling the [ICAn slave
module.

Remark This API function is called from_R_Systeminit before the main() function is executed.

[Syntax]
void R_{Config_lICAn}_Create(void);

Remark n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 746 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_IICAn} Stop

This API function stops IICAn slave operation.

[Syntax]
void R_{Config_lICAn}_Stop(void);

Remark n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 747 of 868
Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

R_{Config_IlICAn} Slave Send

This API function starts transferring data in slave mode.

Remark For the case of the master restarts without issuing a stop condition when communication is
completed, be careful to take note to call the corresponding slave function on slave device.
For example, on master device, R_{Config_IICAn} Master_Receive function is called to
restart communication, while R_{Config_IICAn} Slave_Send function is called on slave
device. In other words, Master and Slave API should be called in pair, otherwise, the [ICA

operaion is not guaranteed.

[Syntax]
void R_{Config_lICAn}_Slave Send(uint8_t * const tx_buf, uint16_t tx_num);
Remark n is the channel number.
[Argument(s)]
1/0 Argument(s) Description

uint8_t * const tx_buf;

stored

Pointer to the buffer where the data to be transmitted are

uint16_t tx_num;

Number of bytes to be transmitted

[Return
None.

value]

R20UT4852EC0107 Rev.1.07
Jan 20, 2026

RENESAS

Page 748 of 868

Smart Configurator 4. API FUNCTIONS

R_{Config_IICAn} Slave Receive

This API function starts receiving data in slave mode.

Remark For the case of the master restarts without issuing a stop condition when communication is
completed, be careful to take note to call the corresponding slave function on slave device.
For example, on master device, R_{Config_IICAn} Master_Send function is called to
restart communication, while R_{Config_IICAn} Slave_Receive function is called on slave
device. In other words, Master and Slave API should be called in pair, otherwise, the [ICA
operaion is not guaranteed.
[Syntax]
void R_{Config_IICAn} _Slave Receive(uint8_t * const rx_buf, uint16_t rx_num);
Remark n is the channel number.
[Argument(s)]
I/O Argument(s) Description

O | uint8_t * const rx_buf; Pointer to the buffer where the received data are to be stored

Number of bytes to be received

O | uint16_t rx_num;

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS

Page 749 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_IICAn} Set WakeupOn

This API function enables operation of address match wakeup function in STOP mode.

[Syntax]
void R_{Config_lICAn} Set WakeupOn(void);

Remark n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 750 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_IICAn} Set WakeupOff

This API function disables operation of address match wakeup function in STOP mode.

[Syntax]
void R_{Config_lICAn}_Set WakeupOff(void);

Remark n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 751 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_IICAn} Create_Userlnit

This API function executes user-specific initialization processing for the lICAn.

Remark This API functions is called from R_{Config_IICAn} Create as a callback routine.
[Syntax]
void R_{Config_lICAn} Create_Userlnit(void);
Remark n is the channel number.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 752 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r_{Config_IICAn} interrupt

This API function executes processing in response to end of ICA0 communication interrupt (INTIICAn).

[Syntax]
For CCRL78 toolchain:
static void __near r_{Config_lICAn}_interrupt(void);

For LLVM toolchain:
void r_{Config_lICAn}_interrupt(void);

For IAR toolchain:
__interrupt static void r_{Config_lICAn}_interrupt(void);

Remark n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 753 of 868
Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

r {Config_IICAn} slave handler

This API function controls IICAn data transmission / reception / error in slave mode.
Remark 1.

This API function is called as the callback routine of interrupt process r_{Config_
[ICAn}_interrupt corresponding to the IICAnN interrupt.

Remark 2. Smart Configurator use "g_iican_slave_status_flag" to control user program flow. The
initialization of "g_iica0_slave_status_flag" is in R_{Config_IICAn} Slave_Send function
and R_{Config_IICAn}_Slave_Receive function.

[Syntax]
void R_{Config_lICAn}_slave_handler(void);
Remark n is the channel number.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS
Jan 20, 2026

Page 754 of 868

Smart Configurator

4. API FUNCTIONS

r_{Config_IICAn} callback_slave sendend

This API function executes processing in response to slave transmit end.
Remark 1.

This API function is called as the callback routine of interrupt process
R _{Config_IICAn}_slave handler.

Remark 2. Please take note to keep necessary flag set/clear in callback function and move other

processing code out of callback and interrupt function. Otherwise, the next interrupt won’t
be processed at the correct timing.

[Syntax]
static void r_{Config_lICAn} callback_slave_sendend(void);
Remark n is the channel number.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS
Jan 20, 2026

Page 755 of 868

Smart Configurator

4. API FUNCTIONS

r_{Config_IICAn} callback_slave_receiveend

This API function executes processing in response to slave receive completed.
Remark 1.

This API function is called as the callback routine of interrupt process
R _{Config_IICAn}_slave handler.

Remark 2. Please take note to keep necessary flag set/clear in callback function and move other

processing code out of callback and interrupt function. Otherwise, the next interrupt won’t
be processed at the correct timing.

[Syntax]
static void r_{Config_lICAn} callback_slave_receiveend(void);
Remark n is the channel number.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS
Jan 20, 2026

Page 756 of 868

Smart Configurator 4. API FUNCTIONS

r {Config_IICAn} callback_slave_error

This API function executes processing in response to the detection of an addresses not match or NACK
error.

Remark 1. This API function is called as the callback routine of interrupt process
R_{Config_lICANn}_slave_handler.
Remark 2. Please take note to keep necessary flag set/clear in callback function and move other

processing code out of callback and interrupt function. Otherwise, the next interrupt won’t
be processed at the correct timing.

[Syntax]
static void r_{Config_lICAn}_callback_slave_error(MD_STATUS flag);
Remark n is the channel number.
[Argument(s)]
1/0 Argument(s) Description
I MD_STATUS flag; Status flag

MD_NACK: NACK error
MD_ERROR: addresses not match error

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 757 of 868
Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

r {Config_IICAn}_callback_getstopcondition

This API function executes processing in response to IICAn get a slave stop condition.
Remark 1.

This API function is called as the callback routine of interrupt process
R _{Config_IICAn}_slave handler.

Remark 2. Please take note to keep necessary flag set/clear in callback function and move other

processing code out of callback and interrupt function. Otherwise, the next interrupt won’t
be processed at the correct timing.

[Syntax]
static void r_{Config_lICAn} callback_getstopcondition(void);
Remark n is the channel number.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS
Jan 20, 2026

Page 758 of 868

Smart Configurator 4. API FUNCTIONS

Usage example

Refer to Serial Array Unit [IC master mode Usage example.

R20UT4852EC0107 Rev.1.07 RENESAS Page 759 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

4.2.58 Interrupt Countroller

Below is a list of API functions output by the Smart Configurator for interrupt countroller use.

Table 4-66 API Functions:

API Function Name Peripheral Name Description

R_{Config_INTC} Create Interrupt function Executes initialization processing that is required before
controlling the INTC module.

R _{Config_INTC} INTPn_Start Clears INTPn interrupt flag and enables interrupt.

R_{Config_INTC}_INTPn_Stop Disables INTPn interrupt and clears interrupt flag.

R_{Config_INTC}_Create_Userlnit Executes user-specific initialization processing for the
INTC module.

r_{Config_INTC} _intpn_interrupt Executes processing in response to INTPn interrupt.

R20UT4852EC0107 Rev.1.07 :{EN ESNS Page 760 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_INTC} Create

This API function executes initialization processing that is required before controlling the INTC module.
Remark This API function is called from R_Systeminit before the main() function is executed.

[Syntax]
void R_{Config_INTC}_ Create(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 761 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R _{Config _INTC} INTPn_Start

This API function clears INTPn interrupt flag and enables interrupt.

[Syntax]
void R_{Config_INTC} _INTPn_Start(void);

Remark n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 762 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R _{Config _INTC} INTPn_Stop

This API function disables INTPn interrupt and clears interrupt flag.

[Syntax]
void R_{Config_INTC} INTPn_Stop(void);

Remark n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 763 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_INTC} Create_Userlnit

This API function executes user-specific initialization processing for the INTC module.
Remark This API functions is called from R_{Config_INTC} Create as a callback routine.

[Syntax]
void R_{Config_INTC}_ Create_Userlnit(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 764 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_INTC} intpn_interrupt

This API function executes processing in response to INTPn interrupt.

[Syntax]
For CCRL78 toolchain:
static void __near r {Config_INTC} intpn_interrupt(void);

For LLVM toolchain:
void r_{Config_INTC} intpn_interrupt(void);

For IAR toolchain:
__interrupt static void r_{Config_INTC}_intpn_interrupt(void);

Remark n is the channel number.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 765 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

Usage example

This is an example for setting a flag when detecting INTPO valid edge input:
(Blue code is user code.)
main.c

#include "r_smc_entry.h"
extern uint8_t intp0_int_flag;

void main(void);
void main(void)

EI(); /lenable global interrupts to allow interrupt handling
intp0_int_flag = 0U; [linitialize the INTPO interrupt flag to 0
R_Config INTC_INTPO_Start (); /Istart INTPO interrupt detection
while(intp0_int_flag != 1U); [/Iwait until INTPO interrupt flag is set
R_Config_ INTC_INTPO_Stop (); /Istop INTPO interrupt detection

Config_INTC_user.c

[* Start user code for global. Do not edit comment generated here */
uint8_t intp0_int_flag = 0U;
/* End user code. Do not edit comment generated here */

static void __near r_Config_INTC_intpO_interrupt(void)

{
[* Start user code for r_Config INTC_intpQ_interrupt. Do not edit comment generated here */
[* Set the flag */
intpO_int_flag = 1U; /Iset the INTPO interrupt flag when a valid edge is detected
/* End user code. Do not edit comment generated here */
}
R20UT4852EC0107 Rev.1.07 RENESAS Page 766 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

4.2.59 Voltage Detector

Below is a list of API functions output by the Smart Configurator for voltage detector use.

Table 4-67 API Functions:

API Function Name Peripheral Name Description
R_{Config_LVDn} Create Voltage Detector Executes initialization processing that is required before
controlling the voltage detector module.
R_{Config_LVDn}_Start Starts the voltage detector operation.
R_{Config_LVDn}_Stop Stops the voltage detector operation.
R_{Config_LVDn} Create_Userlnit Executes user-specific initialization processing for the

voltage detector.

R20UT4852EC0107 Rev.1.07 RENESAS Page 767 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_LVDn} Create

This API function executes initialization processing that is required before controlling the voltage detector
module.

Remark This API function is called from R_Systeminit before the main() function is executed.
[Syntax]
void R_{Config_LVDn} Create(void);
Remark n is the channel number.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 768 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R _{Config_LVDn} Start

This API function starts the voltage detector operation.

[Syntax]
void R_{Config_LVDn}_Start(void);

Remark n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 769 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R _{Config_LVDn} Stop

This API function stops the voltage detector operation.

[Syntax]
void R_{Config_LVDn}_ Stop(void);

Remark n is the channel number.

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 770 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_LVDn} Create_Userlnit

This API function executes user-specific initialization processing for the voltage detector.

Remark This API functions is called from R_{Config_LVDn} Create as a callback routine.
[Syntax]
void R_{Config_LVDn} Create_Userlnit(void);
Remark n is the unit number.
[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 771 of 868
Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

Usage example

This is an example for LVD operating in interrupt mode:
(Blue code is user code.)
main.c

#include "r_smc_entry.h"
void main(void);
void main(void)
El(); /lenable global interrupts to allow interrupt handling

R_LVD_Start_Interrupt(); [Istart LVD in interrupt mode
R_Config_LVD1_Start(); [Istart configuration for LVD1 module

r_cg_Ilvd_common_user.c

static void __near r_Ivd_interrupt(void)

{
[* Start user code for r_Ivd_interrupt. Do not edit comment generated here */
[*Clear Flag*/
DLVD1FCLR = 1U; /Iwrite 1 to DLVD1FCLR bit to clear the flag
/* End user code. Do not edit comment generated here */
}
R20UT4852EC0107 Rev.1.07 RENESAS Page 772 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

4.2.60 Snooze Mode Sequencer

Below is a list of API functions output by the Smart Configurator for snooze mode sequencer use.

Table 4-68 API Functions:

API Function Name Peripheral Name Description
R_{Config_SMS} Create Snooze Mode Executes initialization processing that is required before
Sequencer controlling the SMS module, including configure SMS,

copy the SMS instructions, and copy the SMS data.

R_{Config_SMS}_Start Sets SMS data from arguments and starts SMS
module operation.

R_{Config_SMS} Stop Stops SMS module operation.

R_{Config_SMS} GetStatus Checks SMS wakeup status.

R_{Config_ SMS} GetReturn Returns SMS data.

R_{Config_SMS} TriggerWait_Enable Enables trigger wait operation.

R_{Config_ SMS} TriggerWait_Disable Disables trigger wait operation.

R_{Config_SMS}_Set_PowerOn Starts the clock supply for SMS module.

R_{Config_SMS}_Set_PowerOff Stops the clock supply for SMS module.

R_{Config_SMS} Set Reset Sets SMS module in reset state.

R_{Config_SMS} Release Reset Releases SMS module from reset state.

R _{Config_ SMS} Create_Userlnit Executes user-specific initialization processing for the
SMS module.

r_{Config_ SMS} interrupt Executes processing in response to INTSMSE
interrupt.

R20UT4852EC0107 Rev.1.07 REN ESNS Page 773 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_SMS} Create

This API function executes initialization processing that is required before controlling the SMS module,
including configure SMS, copy the SMS instructions and copy the SMS data.

Remark This API function is called from R_Systeminit before the main() function is executed.

[Syntax]
void R_{Config_SMS} Create(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 774 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_SMS} Start

This API function sets SMS data from arguments and starts SMS module operation.

[Syntax]
void R_{Config_SMS}_Start(void);

void R_{Config_SMS}_ Start(uint16_t arg1, uint16_t arg2, , uint16_t argn);
Remark 1. The arguments of this API function varies according to Start Block setting.
For example, if there are three arguments in Start Block setting, this API will be
R_{Config_SMS}_Start(uint16_t arg1, uint16_t arg2, uint16_t arg3).
Remark 2. n<14.

[Argument(s)]

I/O Argument(s) Description
|| uint16_t argn; SMS start data (n<=14)
Remark n=1-14.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 775 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_SMS} Stop

This API function stops SMS module operation.

[Syntax]
void R_{Config_SMS}_ Stop(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 776 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_SMS} GetStatus

This API function checks SMS wakeup status.

[Syntax]
uint8_t R_{Config_SMS}_ GetStatus(void);

[Argument(s)]
None.

[Return value]

Macro Description
uint8_t SMS finish flag
g_sms_finish_flag 0 — SMS not wakeup
1 — SMS wakeup

R20UT4852EC0107 Rev.1.07 RENESAS Page 777 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R _{Config_ SMS} GetReturn
This API function returns SMS data.

[Syntax]
void R_{Config_SMS}_ GetReturn(void);

void R_{Config_SMS} GetReturn(uint16_t *p_ret1, uint16_t *p_ret2,, uint16_t *p_retn);
Remark 1. The arguments of this API function vary according to Wake Up Block setting.
For example, if there are two arguments in Wake Up Block setting, this API will be
R_{Config_SMS} GetReturn(uint16_t *p_ret1, uint16_t *p_ret2).
Remark 2. n<14.

[Argument(s)]

I/O Argument(s) Description
|| uint16_t *p_retn; SMS data (n<=14)
Remark n=1-14.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 778 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_SMS} TriggerWait Enable

This API function enables trigger wait operation.

[Syntax]
void R_{Config_SMS} TriggerWait_Enable(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 779 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_SMS} TriggerWait_Disable

This API function disables trigger wait operation.

[Syntax]
void R_{Config_SMS}_ TriggerWait_Disable(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 780 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_SMS} Set PowerOn

This API function starts the clock supply for SMS module.

[Syntax]
void R_{Config_SMS} Set PowerOn(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 781 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_SMS} Set PowerOff

This API function stops the clock supply for SMS module.

[Syntax]
void R_{Config_SMS} Set PowerOff(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 782 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ SMS} Set Reset

This API function sets SMS module in reset state.

[Syntax]
void R_{Config_SMS} Set_Reset(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 783 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ SMS} Release Reset

This API function releases SMS module from reset state.

[Syntax]
void R_{Config_SMS} Release_Reset(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 784 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_SMS} Create Userlnit

This API function executes user-specific initialization processing for the SMS module.
Remark This API functions is called from R_{Config_ SMS} Create as a callback routine.

[Syntax]
void R_{Config_SMS} Create_Userlnit(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 785 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_SMS} interrupt

This API function executes processing in response to INTSMSE interrupt.

[Syntax]
For CCRL78 toolchain:
static void __near r {Config_SMS} interrupt(void);

For LLVM toolchain:
void r_{Config_SMS} _interrupt(void);

For IAR toolchain:
__interrupt static void r_{Config_SMS} _interrupt(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 786 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

Usage example

This is an example for using SMS to read A/D conversion result:
(Blue code is user code.)
main.c

#include "r_smc_entry.h"

uint8_t g sms_finish_flag; /[flag to indicate SMS operation completion
uint16_t adc_single_chl = 0x7890; /Ivariable to store A/D conversion result

void main(void);

void main(void)
{

El(); /lenable global interrupts to allow interrupt handling

/I Set SMS as sequencer stopped state

R_Config_ SMS_TriggerWait_Enable();

R_Config SMS_Start ((uint16_t)&adc_single chl, (uint16_t)&adc_single chl); /Istart SMS
operation with the address of adc_single_chl as both source and destination

/I Set SMS as sequencer operating state

R_Config_ SMS_TriggerWait_Disable();

STOP (); /lenter low-power mode until interrupt occurs
while (g_sms_finish_flag != 1); /Iwait until SMS operation is complete
g_sms_finish_flag = 0; [Ireset the finish flag for next operation

R_Config_SMS_Stop (); /Istop SMS operation

Config_ SMS_user.c

[* Start user code for global. Do not edit comment generated here */
extern volatile uint8_t g_sms_finish_flag;
/* End user code. Do not edit comment generated here */

static void __near r_Config_SMS _interrupt(void)

[* Start user code for r_Config_SMS_interrupt. Do not edit comment generated here */
g_sms_finish_flag = 1; /Iset the finish flag when SMS interrupt occurs
/* End user code. Do not edit comment generated here */

R20UT4852EC0107 Rev.1.07 RENESAS Page 787 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

4.2.61 Key Interrupt

Below is a list of API functions output by the Smart Configurator for key Interrupt use.

Table 4-69 API Functions:

API Function Name Peripheral Name Description

R_{Config_KR} Create Key Interrupt Executes initialization processing that is required before
controlling the key interrupt module.

R_{Config_KR}_ Start Clears INTKR interrupt flag and enables interrupt.

R_{Config_KR}_Stop Disables INTKR interrupt and clears interrupt flag.

R _{Config_KR} Create_Userlnit Executes user-specific initialization processing for the key
interrupt.

r_{Config_KR}_interrupt Executes processing in response to INTKR interrupt.

R20UT4852EC0107 Rev.1.07 :{EN ESNS Page 788 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_KR} Create

This API function executes initialization processing that is required before controlling the key interrupt
module.

Remark This API function is called from R_Systeminit before the main() function is executed.

[Syntax]
void R_{Config_ KR} Create(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 789 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R _{Config_KR} Start

This API function clears INTKR interrupt flag and enables interrupt.

[Syntax]
void R_{Config_KR}_Start(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 790 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_KR} Stop

This API function disables INTKR interrupt and clears interrupt flag.

[Syntax]
void R_{Config_KR}_Stop(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 791 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R _{Config_KR} Create_ Userlnit

This API function executes user-specific initialization processing for the key interrupt.
Remark This API functions is called from R_{Config_ KR} Create as a callback routine.

[Syntax]
void R_{Config_KR}_Create_Userlnit(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 792 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_KR} interrupt

This API function executes processing in response to INTKR interrupt.

[Syntax]
For CCRL78 toolchain:
static void __near r_{Config_KR} interrupt(void);

For LLVM toolchain:
void r_{Config_KR}_interrupt(void);

For IAR toolchain:
__interrupt static void r_{Config_KR}_interrupt(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 793 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

Usage example

This is an example for setting a flag when detecting KR interrupt:
(Blue code is user code.)
main.c

#include "r_smc_entry.h"
extern uint8_t kr_int_flag;

void main(void);

void main(void)

{
EI(); /lenable global interrupts to allow interrupt handling
kr_int_flag = 0U; /linitialize KR interrupt flag to 0
R_Config KR_Start (); /Istart the KR interrupt detection module
while(kr_int_flag != 1U); /Iwait in loop until KR interrupt flag is set to 1
R_Config_ KR_Stop (); /Istop the KR interrupt detection module

}

Config_KR_user.c

[* Start user code for global. Do not edit comment generated here */
uint8_t kr_int_flag = OU;
/* End user code. Do not edit comment generated here */

static void __near r_Config_KR _interrupt(void)

{
[* Start user code for r_Config_ KR _interrupt. Do not edit comment generated here */
[* Set the flag */
kr_int_flag = 1U; /Iset the KR interrupt flag to 1 when interrupt occurs
/* End user code. Do not edit comment generated here */
}
R20UT4852EC0107 Rev.1.07 RENESAS Page 794 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

4.2.62 Remote Control Signal Receiver

Below is a list of API functions output by the Smart Configurator for remote control signal receiver use.

Table 4-70 API Functions:

API Function Name Peripheral Name Description
R_{Config_ REMC}_Create Remote Control Executes initialization processing that is required
Signal Receiver before controlling the REMC module.

R_{Config_ REMC}_Start Starts operation of the remote control signal
receiver.

R_{Config_ REMC}_Stop Stops operation of the remote control signal
receiver.

R_{Config_ REMC} Read Specifies the location where the received data
are to be stored and the number of bytes to be
received.

R_{Config_ REMC} Create Userlnit Executes user-specific initialization processing

for the the remote control signal receiver.

r_{Config_ REMC} interrupt Executes processing in response to INTREMC
interrupt.
r_{Config_ REMC} _callback_receiveend Executes processing in response to data

reception complete interrupts.

r_{Config_ REMC} callback_comparematch Executes processing in response to compare

match interrupts.

r_{Config_ REMC} _callback_receiveerror Executes processing in response to receive error
interrupt.
r_{Config_ REMC} callback_bufferfull Executes processing in response to receive

buffer full interrupts.

r_{Config_REMC}_callback_header Executes processing in response to header

pattern match interrupt.

r_{Config_REMC}_callback_data0 Executes processing in response to data "0"

pattern match interrupt.

r_{Config_REMC}_callback_data1 Executes processing in response to data "1"

pattern match interrupt.

r_{Config_REMC]}_callback_specialdata Executes processing in response to special data

pattern match interrupt.

R20UT4852EC0107 Rev.1.07 RENESAS Page 795 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ REMC} Create

This API function executes initialization processing that is required before controlling the remote control
signal receiver.

Remark This API function is called from R_Systeminit before the main() function is executed.

[Syntax]
void R_{Config_REMC]}_Create(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 796 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ REMC}_Start

This API function starts operation of the remote control signal receiver.

[Syntax]
void R_{Config_ REMC}_Start(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 797 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ REMC}_ Stop

This API function stops operation of the remote control signal receiver.

[Syntax]
void R_{Config_ REMC}_Stop(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 798 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ REMC} Read

This API function specifies the location where the received data are to be stored and the number of bytes
to be received.

Remark This API function specifies the location where the received data read by the REMC interrupt
routine at the end of data reception are to be stored.

[Syntax]
MD_STATUS R_{Config_ REMC} Read(uint8_t * const rx_buf, uint8_t rx_num);
[Argument(s)]
I/0 Argument(s) Description
O | uint8_t * const rx_buf; Pointer to the buffer where the received data are to be stored
O | Uint8_t rx_num; Number of bytes to be received

[Return value]

Macro Description
MD_OK Normal end
MD_ERROR1 The specification of argument rx_num is invalid.
R20UT4852EC0107 Rev.1.07 :{EN ESNS Page 799 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ REMC} Create_ Userlnit

This API function executes user-specific initialization processing for the the remote control signal receiver.
Remark This API functions is called from R_{Config_ REMC} Create as a callback routine.

[Syntax]
void R_{Config_ REMC}_Create_Userlnit(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 800 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_ REMC} interrupt

This API function executes processing in response to INTREMC interrupt.

[Syntax]
For CCRL78 toolchain:
static void __near r {Config_ REMC} interrupt(void);

For LLVM toolchain:
void r_{Config_REMC} _interrupt(void);

For IAR toolchain:
__interrupt static void r_{Config_REMC} _interrupt(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 801 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_ REMC} _callback_receiveend

This API function executes processing in response to data reception complete interrupts.

Remark This API function is called as the callback routine of interrupt process
r_{Config_REMC} interrupt corresponding to data reception completion.

[Syntax]
static void r {Config_ REMC} _callback_receiveend(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 802 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_ REMC} _callback _comparematch

This API function executes processing in response to compare match interrupts.

Remark This API function is called as the callback routine of interrupt process
r_{Config_ REMC} interrupt corresponding to the REMC compare match is triggered.

[Syntax]
static void r_{Config_REMC]}_callback_comparematch(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 803 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_ REMC} _callback_receiveerror

This API function executes processing in response to receive error interrupt.

Remark This API function is called as the callback routine of interrupt process
r_{Config_REMC} interrupt corresponding to receive error.

[Syntax]
static void r {Config_ REMC} _callback_receiveerror(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 804 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_ REMC} _callback_bufferfull

This API function executes processing in response to receive buffer full interrupts.

Remark This API function is called as the callback routine of interrupt process
r_{Config_ REMC} interrupt corresponding to the REMC receive buffer full.

[Syntax]
static void r_{Config_ REMC} _callback_bufferfull(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 805 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_ REMC} _callback _header

This API function executes processing in response to header pattern match interrupt.

Remark This API function is called as the callback routine of interrupt process
r_{Config_ REMC} interrupt corresponding to the REMC header pattern match.

[Syntax]
static void r_{Config_ REMC} _callback_header(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 806 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_ REMC} _callback data0

This API function executes processing in response to data "0" pattern match interrupt.

Remark This API function is called as the callback routine of interrupt process
r_{Config_ REMC} interrupt corresponding to the REMC data "0" pattern match.

[Syntax]
static void r {Config_ REMC} _callback_dataO(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 807 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_ REMC} _callback_data1

This API function executes processing in response to data "1" pattern match interrupt.

Remark This API function is called as the callback routine of interrupt process
r_{Config_ REMC} interrupt corresponding to the REMC data "1" pattern match.

[Syntax]
static void r {Config_ REMC} _callback_data1(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 808 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_ REMC} _callback_specialdata

This API function executes processing in response to special data pattern match interrupt.

Remark This API function is called as the callback routine of interrupt process
r_{Config_ REMC} interrupt corresponding to the REMC special data pattern match.

[Syntax]
static void r {Config REMC} _callback_specialdata(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 809 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

Usage example

This is an example for stopping operation of the remote control signal receiver at the end of data reception:
(Blue code is user code.)

main.c
#include "r_smc_entry.h"

volatile uint8_t g_remc_rx_buf[8]; /ldeclare a volatile buffer to store received remote control signal
data

void main(void);

void main(void)
{
El(); /lenable global interrupts to allow interrupt handling
[* Start the REMC operation */
R_Config_ REMC_Start();

/* Read data from receive data buffer */
R_Config REMC_Read((uint8_t *)g_remc_rx_buf, 8U); /lIread 8 bytes of received data into
g_remc_rx_buf

}

Config REMC _user.c
static void r_Config_ REMC_callback_receiveend(void)

[* Start user code for r_Config REMC_callback_receiveend. Do not edit comment generated here */
R_Config_ REMC_Stop(); /Istop the REMC operation after data reception is complete
/* End user code. Do not edit comment generated here */

R20UT4852EC0107 Rev.1.07 RENESAS Page 810 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

4.2.63 Watchdog Timer

Below is a list of API functions output by the Smart Configurator for watchdog timer use.

Table 4-71 API Functions:

API Function Name Peripheral Name Description

R_{Config_WDT}_Create Watchdog Timer Executes initialization processing that is required before
controlling the watchdog timer module.

R_{Config_ WDT}_ Restart Clears the counter in the watchdog timer, and then
restarts counting by the counter.

R _{Config_ WDT}_ Create_Userlnit Executes user-specific initialization processing for the
watchdog timer.
r_{Config_ WDT} interrupt Executes processing in response to maskable INTWDTI
interrupt.
R20UT4852EC0107 Rev.1.07 REN ESNS Page 811 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ WDT} Create

This API function executes initialization processing that is required before controlling the watchdog timer
module.

Remark This API function is called from R_Systeminit before the main() function is executed.

[Syntax]
void R_{Config_WDT}_Create(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 812 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ WDT} Restart

This API function clears the counter in the watchdog timer, and then restarts counting by the counter.

[Syntax]
void R_{Config_WDT}_Restart(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 813 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ WDT} Create Userlnit

This API function executes user-specific initialization processing for the watchdog timer.
Remark This API functions is called from R_{Config_ WDT} Create as a callback routine.

[Syntax]
void R_{Config_WDT}_Create_Userlnit(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 814 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_WDT} interrupt

This API function executes processing in response to maskable INTWDTI interrupt.

Remark This API function is called as the interrupt handler for maskable interrupts when 75% of the
overflow time + 1/4 flL is reached.

[Syntax]
For CCRL78 toolchain:
static void __near r_{Config_ WDT]}_interrupt(void);

For LLVM toolchain:
void r_{Config_WDT} _interrupt(void);

For IAR toolchain:
‘ __interrupt static void r_{Config_ WDT} _interrupt(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 815 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

Usage example

This is an example for refreshing the counter value on every loop of the main function and issuing a software
reset in response to an underflow of the counter:
(Blue code is user code.)

main.c
#include "r_smc_entry.h"

void main(void);
void main(void)

EI(); /lenable global interrupts to allow interrupt handling
while (1U) //infinite loop to continuously refresh the watchdog timer

/* Restarts WDT module */

R_Config_ WDT_Restart(); /Irefresh the watchdog timer via software reset for response to
an underflow of the counter
}
}
R20UT4852EC0107 Rev.1.07 RENESAS Page 816 of 868

Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

4.2.64 Logic and Event Link Controller

The Logic and Event Link Controller(ELCL) component have 2 types, 1 type is fixed function ELCL component
such as “ELCL chattering prevention”, “ELCL slave select pin function” etc, the other 1 type is “ELCL Flexible
Circuit”. The 2 types ELCL component API are not same. Below is a list of all API functions output by the Smart
Configurator for logic and event link controller (ELCL) use.

Table 4-72 API Functions:

API Function Name

Peripheral Name

Description

R_{Config_xxx} Create

R_{Config_xxx}_Start

Logic and Event
Link Controller

Executes initialization processing that is required before
controlling the ELCL module.

Enables ELCL output.

R_{Config_xxx}_Stop

Disables ELCL output.

R_{Config_xxx} OUTPUTn_Start

Starts the ELCL output of singal [n].

R _{Config_xxx} OUTPUTn_Stop

Stops the ELCL output of singal [n].

R_{Config_xxx} GetStatus

Get the value ELOENCTL register to know which output is
enabled.

R_{Config_xxx} Create_Userlnit

r_{Config_xxx}_interrupt

Executes user-specific initialization processing for the
ELCL.

Executes processing in response to INTELCL interrupt.

Remark1. “xxx” is ELCL module name.

Remark2. r_{Config_xxx}_interrupt function is generated only when ELCL output signal used as INTELCL
in the ELCL function GUI.

Remark3 Only “ELCL Flexible Circuit” component have the API funcs: R_{Config_xxx} OUTPUTn_Start,

R_{Config_xxx} OUTPUTn_Stop and R_{Config_xxx} GetStatus. For fixed function ELCL
component, there don’t have these API functions.

R20UT4852EC0107 Rev.1.07
Jan 20, 2026

RENESAS Page 817 of 868

Smart Configurator 4. API FUNCTIONS

R_{Config_xxx} Create

This API function executes initialization processing that is required before controlling the ELCL module.
Remark This API function is called from R_Systeminit before the main() function is executed.

[Syntax]
void R_{Config_xxx} Create(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 818 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_xxx} Start

This API function clears ELCL interrupt flag and enables ELCL output.

[Syntax]
void R_{Config_xxx}_Start(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 819 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_xxx} Stop

This API function disables INTELCL interrupt and clears interrupt flag, disable ELCL output.

[Syntax]
void R_{Config_xxx}_Stop(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 820 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_xxx} OUTPUTn_Start

This API function start ELCL output n.

[Syntax]
void R_{Config_xxx} OUTPUT_Stat(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 821 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R _{Config_xxx} OUTPUTn_Stop
This API function stops ELCL output n.

[Syntax]
void R_{Config_xxx} OUTPUTn_Stop(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 822 of 868
Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

R_{Config_xxx} GetStatus

This API function get the value ELOENCTL register to know which output is enabled..

[Syntax]

uint8_t R_{Config_xxx}_GetStatus(void);

[Argument(s)]

I/0

Argument(s)

Description

Uint8_t status;

ELOENCTL register value.

[Return value]

None.

R20UT4852EC0107 Rev.1.07
Jan 20, 2026

RENESAS

Page 823 of 868

Smart Configurator 4. API FUNCTIONS

R_{Config_xxx} Create_Userlnit

This API function executes user-specific initialization processing for ELCL.
Remark This API functions is called from R_{Config_xxx} Create as a callback routine.

[Syntax]
void R_{Config_xxx} Create_Userlnit(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 824 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_xxx} _interrupt

This API function executes processing in response to INTELCL interrupt.

[Syntax]
For CCRL78 toolchain:
static void __near r { Config_xxx} _interrupt(void);

For LLVM toolchain:
void r_{Config_xxx}_interrupt(void);

For IAR toolchain:
__interrupt static void r_{ Config_xxx}_interrupt(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 825 of 868
Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

Usage example

Exampel1: This is an example for using “ELCL AND” component to implement 2 port signal AND logic.

(Blue code is user code.)

main.c

#include "r_smc_entry.h"
void main(void);
void main(void)

{

R_Config_ AND_Start();

El(); /lenable global interrupts to allow interrupt handling

/Istart the AND logic component configured

Example2: This is an example for using “ELCL Flexible Circuit” component to implement below ELCL function.

Input Logic cell blocks Qutput
Output from TAUD channel 1 | -,
:Ou::uz R ; LiLo ¢ {SAUD Ch1 fSCK,/TAUD ChO inp|
utput from channel 2 | -
|O e e 2 L20 | iSAUD ChO receive/TAUD Ch1 |
(Blue code is user code.)
main.c
#include "r_smc_entry.h"
void main(void);
void main(void)
{
uint8_t status;
EI(); /lenable global interrupts to allow interrupt handling
R_Config_ ELCL_OUTPUT3_Start(); /Istart ELCL output channel 3
R_Config ELCL_OUTPUT4_Start(); /Istart ELCL output channel 4
Status = R_Config ELCL_GetStatus(); /lget the current status of the ELCL circuit
while (1)
{
}
!

R20UT4852EC0107 Rev.1.07
Jan 20, 2026

RENESAS

Page 826 of 868

Smart Configurator 4. API FUNCTIONS

4.2.65 Event Link Controller

Below is a list of API functions output by the Smart Configurator for event link controller (ELC) use.

Table 4-73 API Functions:

API Function Name Peripheral Name Description
R_{Config_ ELC} Create Event Link Executes initialization processing that is required before
Controller controlling the ELC module.
R _{Config_ELC} Stop Disables ELC output
R_{Config_ELC}_Create_Userlnit Executes user-specific initialization processing for the
ELC.
R20UT4852EC0107 Rev.1.07 :{EN ESNS Page 827 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ELC} Create

This API function executes initialization processing that is required before controlling the ELC module.
Remark This API function is called from R_Systeminit before the main() function is executed.

[Syntax]
void R_{Config_ELC} Create(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 828 of 868
Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

R _{Config_ELC} Stop

This API function stops the ELC event resources.

[Syntax]
void R_{Config_ELC} Stop(uint32_t event);
[Argument(s)]
1/O Argument(s) Description

uint32_t event

Event resources to be stopped (bit n of ELSELRn)

[Return value]

None.

R20UT4852EC0107 Rev.1.07
Jan 20, 2026

RENESAS Page 829 of 868

Smart Configurator 4. API FUNCTIONS

R _{Config_ELC} Create_ Userlnit

This API function executes user-specific initialization processing for ELC.
Remark This API functions is called from R_{Config_ELC} Create as a callback routine.

[Syntax]
void R_{Config_ELC} Create_Userlnit(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 830 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

Usage example

This is an example for ELC is used to stop “Key return signal detection” event generation:
(Blue code is user code.)

main.c
#include "r_smc_entry.h"

void main(void);
void main(void)

uint32_t stp_event = 0x00000020; /ldefine a variable representing the event ID to be stopped
(Key return signal detection)

EI(); /lenable global interrupts to allow interrupt handling

R _Config ELC_Stop(stp_even); /Istop the specified ELC event (Key return signal detection)

while (1) /linfinite loop to keep the program running

{
}
}
R20UT4852EC0107 Rev.1.07 RENESAS Page 831 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

4.2.66 LCD Controller/Driver

Below is a list of API functions output by the Smart Configurator for LCD controller/driver use.

Table 4-74 API Functions:

API Function Name Peripheral Name Description

R_{Config_LCD} Create LCD Executes initialization processing that is required before
Controller/Driver controlling the LCD controller/driver module.

R_{Config_LCD} _ Start Starts the LCD controller/driver operation.
R_{Config_LCD}_Stop Stops the LCD controller/driver operation.
R_{Config_LCD} Voltage On Enables voltage boost circuit or capacitor split circuit.
R_{Config_LCD} Voltage Off Disables voltage boost circuit or capacitor split circuit.
R_{Config_LCD}_Set_DisplayData Sets the data to be displayed on the LCD controller/driver.
R _{Config LCD} Create_ Userlnit Executes user-specific initialization processing for the

LCD controller/driver.

R20UT4852EC0107 Rev.1.07 RENESAS Page 832 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R _{Config_LCD} Create

This API function executes initialization processing that is required before controlling the LCD
controller/driver module.

Remark This API function is called from R_Systeminit before the main() function is executed.

[Syntax]
void R_{Config_LCD} Create(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 833 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_LCD}_ Start

This API function starts the LCD controller/driver operation.

[Syntax]
void R_{Config_LCD}_Start(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 834 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_LCD} Stop

This API function stops the LCD controller/driver operation.

[Syntax]
void R_{Config_LCD}_Stop(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 835 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_LCD} Voltage On

This API function enables voltage boost circuit or capacitor split circuit.

[Syntax]
void R_{Config_LCD} Voltage_On(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 836 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_LCD} Voltage Off

This API function disables voltage boost circuit or capacitor split circuit.

[Syntax]
void R_{Config_LCD} Voltage_ Off(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 837 of 868
Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

R_{Config_LCD} Set DisplayData

This API function sets the data to be displayed on the LCD controller/driver.

[Syntax]
MD_STATUS R_{Config_LCD}_Set DisplayData(uint8_t index, uint8_t data);
[Argument(s)]
I/0 Argument(s) Description
I uint8_t index; Specify index of LCD display data register(SEGn) (n = 0 to 55)
I uint8_t data; data to be displayed
[Return value]
Macro Description
MD_OK Normal end
MD_ARGERROR Error argument input error.
R20UT4852EC0107 Rev.1.07 :{EN ESNS Page 838 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_LCD} Create Userlnit

This API function executes user-specific initialization processing for the LCD controller/driver.
Remark This API functions is called from R_{Config_LCD} Create as a callback routine.

[Syntax]
void R_{Config_LCD}_Create_Userlnit(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 839 of 868
Jan 20, 2026

Smart Configurator

4. API FUNCTIONS

Usage example

This is an example for LCD controller/driver:
(Blue code is user code.)
main.c (1/2)

{

#include "r_smc_entry.h"
void main(void);

void main(void)

EI(); /lenable global interrupts to allow interrupt handling
//Set segment data for digit 1, digit 1 displays number 1

R _Config LCD_Set DisplayData(7, 0x00);

R _Config LCD_Set DisplayData(8, 0x00);

R _Config LCD_Set DisplayData(12, 0x00);
R_Config_LCD_Set_ DisplayData(13, 0x06);

//Set segment data for digit 2, digit 2 displays number 2
R _Config LCD_Set DisplayData(6, 0x03);

R _Config LCD_Set DisplayData(5, 0x02);

R _Config LCD_Set DisplayData(14, 0x04);

R _Config LCD_Set DisplayData(15, 0x0C);

//Set segment data for digit 3, digit 3 displays number 3
R_Config_LCD_Set DisplayData(4, 0x01);
R_Config_LCD_Set DisplayData(3, 0x02);
R_Config_LCD_Set DisplayData(16, 0x04);
R_Config_LCD_Set DisplayData(17, OxOE);

//Set segment data for digit 4, digit 4 displays number 4
R _Config LCD_Set DisplayData(2, 0x04);

R _Config LCD_Set DisplayData(1, 0x02);

R _Config LCD_Set DisplayData(20, 0x04);

R _Config LCD_Set DisplayData(21, 0x06);

//Set segment data for digit 5, digit 5 displays number 5
R_Config_LCD_Set_DisplayData(0, 0x05);
R_Config_LCD_Set DisplayData(50, 0x02);
R_Config_LCD_Set DisplayData(28, 0x04);
R_Config LCD_Set DisplayData(51, 0x0A);

//Set segment data for digit 6, digit 6 displays number 6
R _Config LCD_Set DisplayData(49, 0x07);
R _Config LCD_Set DisplayData(48, 0x02);
R _Config LCD_Set DisplayData(52, 0x04);
R _Config LCD_Set DisplayData(53, 0x0A);

//Set segment data for digit 7, digit 7 displays number 7
R_Config LCD_Set DisplayData(47, 0x00);
R_Config LCD_Set DisplayData(39, 0x00);
R_Config LCD_Set DisplayData(54, 0x00);
R_Config LCD_Set DisplayData(55, 0xOE)

R20UT4852EC0107 Rev.1.07 RENESAS
Jan 20, 2026

Page 840 of 868

Smart Configurator 4. API FUNCTIONS

main.c (2/2)

//Set segment data for digit 8, digit 8 displays number 8
R _Config LCD_Set DisplayData(37, 0x02);
R _Config LCD_Set DisplayData(38, 0x07);
R _Config LCD_Set DisplayData(35, 0x04);
R _Config LCD_Set DisplayData(36, 0xOE);

R _Config LCD_Voltage On(); /Iturn on the LCD voltage supply
R _Config LCD_Start(); /Istart the LCD controller

R_Config RTC_Start(); /[start the Real-Time Clock module
while(1) /linfinite loop to keep the program running

/l TODO: add application code here

R20UT4852EC0107 Rev.1.07 RENESAS Page 841 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

4.2.67 Oscillation Stop Detector

Below is a list of API functions output by the Smart Configurator for oscillation stop detector use.

Table 4-75 API Functions:

API Function Name Peripheral Name Description
R_{Config_OSD} Create Oscillation Stop Executes initialization processing that is required before
Detector controlling the oscillation stop detector module.
R_{Config_OSD}_Start Starts the oscillation stop detector.
R_{Config_OSD}_Stop Stops the oscillation stop detector.
R_{Config_OSD} Create_Userlnit Executes user-specific initialization processing for the
oscillation stop detector.
r_{Config_OSD}_interrupt Executes processing in response to INTOSDC interrupt.
R20UT4852EC0107 Rev.1.07 :{EN ESNS Page 842 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_OSD} Create

This API function executes initialization processing that is required before controlling the oscillation stop
detector module.

Remark This API function is called from R_Systeminit before the main() function is executed.

[Syntax]
void R_{Config_OSD} Create(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 843 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_OSD}_ Start

This API function starts oscillation stop detector.

[Syntax]
void R_{Config_OSD}_Start(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 844 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_OSD} Stop

This API function stops oscillation stop detector.

[Syntax]
void R_{Config_0OSD}_Stop(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 845 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_OSD} Create_Userlnit

This API function executes user-specific initialization processing for the oscillation stop detector.
Remark This API functions is called from R_{Config_ OSD} Create as a callback routine.

[Syntax]
void R_{Config_OSD}_ Create_Userlnit(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 846 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_OSD} interrupt

This API function executes processing in response to INTOSDC interrupt.

[Syntax]
For CCRL78 toolchain:
static void __near r {Config_OSD} interrupt(void);

For LLVM toolchain:
void r_{Config_OSD} interrupt(void);

For IAR toolchain:
__interrupt static void r_{Config_OSD} interrupt(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 847 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

Usage example

This is an example for setting a flag when detecting oscillation stop detector:
(Blue code is user code.)
main.c

#include "r_smc_entry.h"
extern uint8_t osd_flag;

void main(void);
void main(void)
EI(); /lenable global interrupts to allow interrupt handling

R_Config OSD_Start(); /Istart the Oscillation Stop Detector module
while(1U); /linfinite loop to keep the program running

Config_OSD_user.c

[* Start user code for global. Do not edit comment generated here */
uint8_t osd_flag = 0U;
/* End user code. Do not edit comment generated here */

static void __near r_Config_OSD_interrupt(void)

[* Start user code for r_Config_OSD _interrupt. Do not edit comment generated here */
osd_flag++; /lincrement the flag when an oscillation stop is detected
/* End user code. Do not edit comment generated here */

Config_WDT _user.c
static void __near r_Config_WDT _interrupt(void)

/* Start user code for r_Config_ WDT _interrupt. Do not edit comment generated here */
R_Config_ WDT_Restart(); /Irestart the Watchdog Timer to prevent system reset
/* End user code. Do not edit comment generated here */

R20UT4852EC0107 Rev.1.07 RENESAS Page 848 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

4.2.68 External Signal Sampler

Below is a list of API functions output by the Smart Configurator for external signal sampler use.

Table 4-76 API Functions:

API Function Name Peripheral Name Description
R_{Config_ EXSD} Create External Signal Executes initialization processing that is required before
Sampler controlling the external signal sampler module.
R_{Config_ EXSD}_Start Starts the external signal sampler.
R_{Config_EXSD}_Stop Stops the external signal sampler.
R_{Config_ EXSD} Create_Userlnit Executes user-specific initialization processing for the
external signal sampler.
r_{Config_EXSD}_interrupt Executes processing in response to INTEXSD interrupt.
R20UT4852EC0107 Rev.1.07 :{EN ESNS Page 849 of 868

Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_EXSD} Create

This API function executes initialization processing that is required before controlling the external signal
sampler module.

Remark This API function is called from R_Systeminit before the main() function is executed.

[Syntax]
void R_{Config_EXSD} Create(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 850 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_EXSD} Start

This API function clears INTEXSD interrupt flag and enables interrupt.

[Syntax]
void R_{Config_EXSD}_Start(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 851 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_ EXSD} Stop

This API function disables INTEXSD interrupt and clears interrupt flag.

[Syntax]
void R_{Config_EXSD}_Stop(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 852 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

R_{Config_EXSD} Create Userlnit

This API function executes user-specific initialization processing for the external signal sampler.
Remark This API functions is called from R_{Config_ EXSD} Create as a callback routine.

[Syntax]
void R_{Config_EXSD} Create_Userlnit(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 853 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

r {Config_EXSD} interrupt

This API function executes processing in response to INTEXSD interrupt.

Remark The INTEXSD interrupt can’t be used in STOP mode and SNOOZE mode because
operation is in synchronization with the CPU/peripheral hardware clock (fCLK), which is
stopped.

[Syntax]
For CCRL78 toolchain:
static void __near r {Config_ EXSD} interrupt(void);

For LLVM toolchain:
void r_{Config_EXSD}_interrupt(void);

For IAR toolchain:
__interrupt static void r_{Config_EXSD} interrupt(void);

[Argument(s)]
None.

[Return value]
None.

R20UT4852EC0107 Rev.1.07 RENESAS Page 854 of 868
Jan 20, 2026

Smart Configurator 4. API FUNCTIONS

Usage example

This is an example for outputting signal when detecting external signal sampler:
(Blue code is user code.)
main.c

#include "r_smc_entry.h"

void main(void);
void main(void)

EI(); /lenable global interrupts to allow interrupt handling

R_Config EXSD_Start(); /Istart the External Signal Sampler module to begin monitoring external
signals

R_Config_IT00_Start(); /[start the 8-bit interval timer 00 to provide output period

while(1U);

R20UT4852EC0107 Rev.1.07 RENESAS Page 855 of 868
Jan 20, 2026

Smart Configurator

Appendix APl Function Comparison Table

Appendix API Function Comparison Table

This chapter compares the API functions which are output by the Code Generator with the API functions which
are output by the Smart Configurator. The user who used to use the Code Generator tool can understand which
the corresponding API functions are generated by Smart Configurator.

Table 5-1 Code Generator and Smart Configurator APl Comparison List (1/6)

Peripheral Function

Code Generator APl Function Name

Smart Configurator APl Function Name

Common

main

main

R_MAIN_Userserlnit

hdwinit

R_Systeminit

R_Systeminit

low_level_init

HardwareSetup

Clock generator

R_CGC_Create

R_CGC_Set_ClockMode

R _CGC_Create Userlnit

R_CGC_Get_ResetSource

Port functions

R_PORT_Create

R_{Config_ PORT} Create

R_PORT_Create_Userlnit

R_{Config_ PORT} Create_Userlnit

Timer array unit

R TAUm Create

R TAUm Create

R _TAUm Channeln Start

R {Config TAUm n} Start

R _TAUm_ Channeln Higher8bits Start

R {Config TAUm n} Higher8bits Start

R TAUm Channeln Lower8bits Start

R {Config TAUm n} Lower8bits Start

R_TAUm_Channeln_Stop

R _{Config TAUm n} Stop

R_TAUm_Channeln Higher8bits Stop

R {Config TAUm n} Higher8bits Stop

R _TAUm Channeln Lower8bits Stop

R {Config TAUm n} Lower8bits Stop

R TAUm Reset

R TAUm Set Reset

R TAUm Set PowerOff

R TAUm Set PowerOff

R _TAUm Channeln _Get PulseWidth

R {Config TAUm n} Get PulseWidth

R_TAUm_Channeln_Set_SoftwareTriggerOn

R {Config TAUm_n} Set SoftwareTriggerOn

R_TAUm_Create_Userlnit

R_{Config_TAUm_n} Create_Userlnit

r_taum_channeln_interrupt

r_{Config_TAUm_n}_interrupt

r_taum_channeln_higher8bits_interrupt

r_{Config_TAUm_n}_higher8bits_interrupt

Real-time clock

R_RTC_Create

R_{Config_RTC} Create

R_RTC_Start

R_{Config_RTC}_Start

R_RTC_Stop

R {Config RTC} Stop

R_RTC_Set_PowerOff

R RTC_ Set PowerOff

R_RTC_Set_HourSystem

R {Config RTC} Set HourSystem

R_RTC_Set_CounterValue

R {Config RTC} Set CounterValue

R_RTC_Get_CounterValue

R {Config RTC} Get CounterValue

R_RTC_Set_ConstPeriodInterruptOn

R {Config RTC} Set ConstPeriodinterruptOn

R_RTC_Set_ConstPeriodInterruptOff

R_{Config_RTC}_ Set_ConstPeriodInterruptOff

R_RTC_Set AlarmOn

R_{Config_ RTC} Set_AlarmOn

R_RTC_Set AlarmOff

R_{Config_RTC}_ Set_AlarmOff

R_RTC_Set_AlarmValue

R_{Config_RTC}_ Set_AlarmValue

R_RTC_Get_AlarmValue

R_{Config_RTC} Get_AlarmValue

R_RTC_Set RTC1HZOn

R_{Config_RTC} Set RTC1HZOn

R_RTC_Set RTC1HZOff

R_{Config RTC} Set RTC1HZOff

R_RTC_Create_Userlnit

R _{Config RTC} Create Userlnit

r_rtc_interrupt

r_{Config_RTC} interrupt

r_rtc_callback_constperiod

r_{Config_RTC} callback_constperiod

r_rtc_callback_alarm

r_{Config_RTC} callback_ alarm

R20UT4852EC0107 Rev.1.07 RENESAS

Jan 20, 2026

Page 856 of 868

Smart Configurator

Appendix APl Function Comparison Table

Table 5-2 Code Generator and Smart Configurator APl comprison List (2/6)

Peripheral Function

Code Generator APl Function Name

Smart Configurator APl Function Name

Clock output/buzzer
output controller

R_PCLBUZn_Create

R _{Config PCLBUZn} Create

R_PCLBUZn_Start

R _{Config PCLBUZn} Start

R_PCLBUZn_Stop

R _{Config PCLBUZn} Stop

R_PCLBUZn_Create_Userlnit

R_{Config_PCLBUZn}_Create_Userlnit

Watchdog timer

R_WDT_Create

R _{Config WDT} Create

R_WDT_Restart

R _{Config WDT} Restart

R_WDT_Create_Userlnit

R _{Config WDT} Create_Userlnit

r_wdt_interrupt

r_{Config_ WDT} interrupt

A/D converter

R_ADC_Create

R _{Config ADC} Create

R_ADC_Start

R _{Config ADC} Start

R_ADC_Stop

R _{Config ADC} Stop

R_ADC_Set_OperationOn

R _{Config ADC} Set OperationOn

R_ADC_Set_OperationOff

R_{Config_ADC}_Set_OperationOff

R_ADC_Reset

R_ADC_Set_Reset

R_ADC_Set_PowerOff

R_ADC_Set_PowerOff

R_ADC_Set_ADChannel

R_{Config_ADC}_Set_ADChannel

R_ADC_Set_SnoozeOn

R_{Config_ADC}_Set_SnoozeOn

R_ADC_Set_SnoozeOff

R_{Config_ADC}_Set_SnoozeOff

R_ADC_Set_TestChannel

R_{Config_ ADC}_Set_TestChannel

R_ADC_Get_Result

R _{Config_ ADC} Get_Result_10bit

R_ADC_Get_Result_8bit

R _{Config_ ADC} Get_Result_8bit

R_ADC_Create_Userlnit

R_{Config_ ADC} Create_Userlnit

r_adc_interrupt

r_{Config_ADC} interrupt

D/A converter R_DAC_Create R _DAC_Create
R_DACn_Start R_{Config_DACn}_Start
R_DACn_Stop R _{Config DACn} Stop
R_DAC_Set_PowerOff R_DAC_Set_PowerOff
R_DACn_Set_ConversionValue R_{Config_DACn}_Set_ConversionValue
R_DAC_Reset R_DAC_Set_Reset
R_DACn_Create_UserlInit R_{Config_DACn} Create_Userlnit
Comparator R_COMP_Create R_COMP_Create

R_COMPn_Start

R_{Config_ COMPn}_ Start

R_COMPn_Stop

R_{Config_ COMPn} Stop

R_COMP_Reset

R COMP_Set Reset

R_COMP_Set_PowerOff

R _COMP_Set PowerOff

R_COMP_Create_Userlnit

R_{Config_ COMPn}_ Create_Userlnit

r_compn_interrupt

r_{Config_ COMPn}_interrupt

Programmable gain | R_PGA_Create R _{Config PGA} Create
amplifier R_PGA_Start R_{Config PGA} Start
R_PGA_Stop R {Config PGA} Stop
R_PGA_Create_Userlnit R_{Config_PGA}_Create_UserlInit
R20UT4852EC0107 Rev.1.07 RENESAS Page 857 of 868

Jan 20, 2026

Smart Configurator

Appendix APl Function Comparison Table

Table 5-3 Code Generator and Smart Configurator APl Comparison List (3/6)

Peripheral Function

Code Generator APl Function Name

Smart Configurator APl Function Name

Serial array unit

R_SAUm_Create

R _SAUm_Create

R_SAUm_Reset

R_SAUm_Set Reset

R_SAUm_Set_PowerOff

R _SAUm_Set PowerOff

R_SAUm_Set_SnoozeOn

R SAUm_ Set SnoozeOn

R_SAUm_Set_SnoozeOff

R SAUm Set SnoozeOff

R_UARTn_Create

R _{Config UARTq} Create

R_UARTn_Start

R _{Config UARTq} Start

R_UARTn_Stop

R_{Config UARTqg} Stop

R_UARTn_Send

R_{Config UARTq} Send

R_UARTn_Receive

R {Config UARTq} Receive

R_CSImn_Create

R {Config CSlp} Create

R_CSImn_Start R {Config CSlp} Start
R_CSImn_Stop R {Config CSlp} Stop
R_CSImn_Send R_{Config_CSIp} Send

R_CSImn_Receive

R_{Config_CSIp} Receive

R_CSImn_Send_Receive

R_{Config_CSIp}_Send_Receive

R_lIICmn_Create

R_{Config_IlICr} Create

R_IICmn_StartCondition

R_{Config_IICr}_StartCondition

R_IICmn_StopCondition

R_{Config_IICr}_StopCondition

R_IICmn_Stop

R {Config IICr} Stop

R_IICmn_Master_Send

R_{Config_IICr} Master_Send

R_IICmn_Master_Receive

R _{Config_IICr}_Master_Receive

R_SAUm_Create_Userlnit

r_uartn_interrupt_send

r_{Config_ UARTQq} interrupt_send

r_uartn_interrupt_receive

r_{Config_ UARTQq} interrupt_receive

r_uartn_interrupt_error

r_{Config_ UARTQq} interrupt_error

r_uartn_callback_sendend

r_{Config_ UARTQq} callback sendend

r_uartn_callback_receiveend

r {Config_ UARTq} callback receiveend

r_uartn_callback_error

r {Config_ UARTq} callback_error

r_uartn_callback_softwareoverrun

r {Config_ UARTq} callback_ softwareoverrun

r_csimn_interrupt

r_{Config_CSlIp}_interrupt

r_csimn_callback _sendend

r {Config_CSIp} callback sendend

r_csimn_callback_receiveend

r {Config_CSIp} callback receiveend

r_csimn_callback_error

r_{Config_CSlp} callback_error

r_iicmn_interrupt

r_{Config_lICr} interrupt

r_iicmn_callback_master_sendend

r_{Config_lICr} callback_master_sendend

r_iicmn_callback_master_receiveend

r_{Config_lICr} callback_master_receiveend

r_iicmn_callback_master_error

r {Config_lICr} callback master_error

R20UT4852EC0107 Rev.1.07

Jan 20, 2026

RENESAS

Page 858 of 868

Smart Configurator

Appendix APl Function Comparison Table

Table 5-4 Code Generator and Smart Configurator APl Comparison List (4/6)

Peripheral Function

Code Generator APl Function Name

Smart Configurator APl Function Name

Serial interface IICA

R_IICAn_Create

R {Config_IICAn} Create

R_IICAn_StopCondition

R {Config IICAn} StopCondition

R_IICAn_Stop

R {Config IICAn} Stop

R_IICAn_Reset

R IICAn_Set Reset

R_IICAn_Set_PowerOff

R _IICAn_Set PowerOff

R_IICAn_Master_Send

R_{Config_IICAn} Master Send

R_IICAn_Master_Receive

R_{Config_IICAn} Master Receive

R_IICAn_Slave_Send

R_{Config_IICAn} Slave Send

R_IICAn_Slave_Receive

R _{Config_IICAn} Slave Receive

R_IICAn_Set_SnoozeOn

R_IICAn_Set_SnoozeOff

R_IICAn_Set_WakeupOn

R {Config IICAn} Set WakeupOn

R_IICAn_Set_WakeupOff

R {Config IICAn} Set WakeupOff

R_IICAn_Create_Userlnit

R_{Config_IICAn} Create_Userlnit

r_iican_interrupt

r_{Config_lICAn} interrupt

r_iican_callback_master_sendend

r_{Config_IICAn} callback _master_sendend

r_iican_callback_master_receiveend

r_{Config_IICAn} callback _master receiveend

r_iican_callback_master_error

r {Config_IICAn} callback master_error

r_iican_callback_slave _sendend

r {Config_IICAn} callback_slave_sendend

r_iican_callback_slave_receiveend

r {Config_IICAn} callback_slave receiveend

r_iican_callback_slave_error

r_{Config_IICAn} callback_slave_error

r_iican_callback_getstopcondition

r_{Config_lICAn} callback_getstopcondition

Data transfer controller

R_DTC_Create

R_{Config_DTC} Create

R_DTCn_Start

R_{Config_DTCDn}_Start

R_DTCn_Stop

R_{Config_DTCDn}_Stop

R_DTC_Set PowerOff

R _DTC_Set PowerOff

R_DTC_Create_Userlnit

R_{Config_DTC}_Create_Userlnit

Event link controller

R_ELC_Create

R _{Config_ ELC} Create

R_ELC_Stop

R_{Config_ELC} Stop

R_ELC_Create_Userlnit

R_{Config_ELC}_Create_Userlnit

Interrupt functions

R_INTC_Create

R_{Config_INTC} Create

R_INTCn_Start

R_{Config_INTC} INTPn_Start

R_INTCn_Stop

R_{Config_INTC} INTPn_Stop

R_INTC_Create_Userlnit

R_{Config_INTC}_Create_Userlnit

r_intcn_interrupt

r_{Config_INTC} intpn_interrupt

Key interrupt function

R_KEY_Create

R_{Config_KR}_ Create

R_KEY_Start

R_{Config_KR} Start

R_KEY_Stop

R_{Config_KR} Stop

R_KEY_Create_Userlnit

R_{Config_KR} Create_Userlnit

r_key_interrupt

r_{Config_KR} interrupt

Voltage detector

R_LVD_Create

R_{Config_LVDn} Create

R_LVD_InterruptMode_Start

R _LVD_Start Interrupt

R_LVD_Create_Userlnit

R_{Config_LVDn}_ Create_Userlnit

r_lvd_interrupt

r_lvd_interrupt

R20UT4852EC0107
Jan 20, 2026

Rev.1.07 RENESAS

Page 859 of 868

Smart Configurator

Appendix APl Function Comparison Table

Table 5-5 Code Generator and Smart Configurator APl Comparison List (5/6)

Peripheral Function

Code Generator APl Function Name

Smart Configurator APl Function Name

Timer RD

R_TMRDn_Create

R _TRD_Create

R_TMRDn_Start

R {Config TRDn} Start

R_TMRDn_Stop

R {Config TRDn} Stop

R_TMRDn_Set_PowerOff

R TRD Set PowerOff

R_TMRDn_ForcedOutput_Start

R _TRD ForcedOutput Enable

R_TMRDn_ForcedOutput_Stop

R TRD ForcedOutput Disable

R_TMRDn_Get_PulseWidth

R _{Config TRDn} Get PulseWidth

R_TMRD_PWMOP_ForcedOutput_Stop

R_{Config PWMOPA} Software_ Release

R_TMRD_PWMOP_Set_PowerOff

R_PWMOPA_Set_PowerOff

R_TMRDn_Create_Userlnit

R {Config TRDn} Create Userlnit

r_tmrdn_interrupt

r {Config_ TRDn} trdn_interrupt

Timer RJ

R_TMRJn_Create

R {Config TRJn} Create

R_TMRJn_Create_Userlnit

R {Config TRJn} Create Userlnit

r_tmrjn_interrupt

r_{Config_TRJn} interrupt

R_TMRJn_Start

R _{Config_TRJn} Start

R_TMRJn_Stop

R _{Config TRJn} Stop

R_TMRJn_Set_PowerOff

R_TRJ_Set PowerOff

R_TMRJn_Get_PulseWidth

R_{Config_TRJn} Get_PulseWidth

12-bit interval timer

R_IT_Create

R_{Config_IT} Create

R_IT_Create_Userlnit

R_{Config_IT} Create_Userlnit

r_it_interrupt

r_{Config_IT} interrupt

IT_Start

R_{Config_IT} Start

R_
R_IT_Stop

R_{Config_IT} Stop

R_IT_Set_PowerOff

R IT Set PowerOff

Timer RG R_TMRGn_Create R_{Config_ TRG} Create
R_TMRGn_Create_Userlnit R _{Config TRG} Create_Userlnit
r_tmrgn_interrupt r_{Config_TRG} interrupt
R_TMRGn_Start R_{Config_TRG}_Start
R_TMRGn_Stop R_{Config_TRG}_ Stop
R_TMRGn_Set_PowerOff R_TRG_Set_PowerOff
R_TMRGn_Get_PulseWidth R_{Config_ TRG} Get_PulseWidth

Timer RX R_TMRX_Create R_{Config_TRX} Create

R_TMRX_Create_Userlnit

R_{Config_TRX} Create_Userlnit

r_tmrx_interrupt

r {Config_TRX} interrupt

R_TMRX_Start

R_{Config_ TRX} Start

R_TMRX_Stop

R_{Config TRX} Stop

R_TMRX_Set_PowerOff

R TRX Set PowerOff

R_TMRX_Get_BufferValue

R {Config TRX} Get BufferValue

R20UT4852EC0107 Rev.1.07

Jan 20, 2026

RENESAS

Page 860 of 868

Smart Configurator

Appendix APl Function Comparison Table

Table 5-6 Code Generator and Smart Configurator APl Comparison List (6/6)

Peripheral Function

Code Generator APl Function Name

Smart Configurator APl Function Name

Timer KB

R_KBn_Create

R {Config TKBn} Create

R_KBn_Start

R {Config TKBn} Start

R_KBn_Stop

R {Config TKBn} Stop

R_KBn_Simultaneous_Start

R_KBn_Simultaneous_Stop

R_KBn_Synchronous_Start

R_KBn_Synchronous_Stop

R_KBn_TKBOmO0_SmoothStartFunction_Start

R_{Config_TKBn}_TKBOnO_SmoothStartFuncti
on_Start

R_KBn_TKBOmO0_SmoothStartFunction_Stop

R_{Config_TKBn} TKBOnO_SmoothStartFuncti
on_Stop

R_KBn_TKBOm1_SmoothStartFunction_Start

R_{Config_TKBn} TKBOn1_SmoothStartFuncti
on_Start

R_KBn_TKBOm1_SmoothStartFunction_Stop

R_{Config_TKBn}_TKBOn1_SmoothStartFuncti
on_Stop

R_KBn_Set_BatchOverwriteRequestOn

R_{Config_TKBn}_Set_BatchOverwriteRequest
On

R_KBn_TKBOmO_Forced_Output_Stop_Functi

R_{Config_TKBn}_TKBONO_Forced_Output_St

on1_Start op_Function1 Start
R_KBn_TKBOmO_Forced_Output_Stop_Functi |R {Config TKBn} TKBOnO Forced Output_ St
on1_Stop op_Function1_Stop
R_KBn_TKBOm1_Forced_Output_Stop_Functi |R_{Config_ TKBn} TKBOn1_Forced Output_St
on1_Start op_Function1_Start
R_KBn_TKBOm1_Forced_Output_Stop_Functi |R {Config TKBn} TKBOn1 Forced Output_ St
on1_Stop op_Function1_Stop

R_KBn_Set_PowerOff

R_{Config_TKBn} Set PowerOff

R_KBn_Create_Userlnit

R _{Config TKBn} Create_Userlnit

r_kbn_interrupt

r_{Config_TKBn} end_count_interrupt

LCD controller/driver

R_LCD_Create

R_{Config_LCD} Create

R_LCD_Create_Userlnit

R_{Config LCD} Create_Userlnit

R_LCD_Start

R_{Config_LCD}_Start

R_LCD_Stop

R_{Config_LCD} Stop

R_LCD_Voltage_On

R_{Config_LCD} Voltage On

R_LCD_Voltage Off

R_{Config_LCD} Voltage Off

R _{Config LCD} Set_DisplayData

R20UT4852EC0107 Rev.1.07

Jan 20, 2026

RENESAS

Page 861 of 868

Revision Record

Rev. Section Description
1.00 — First Edition issued
1.01 Section 2.1 Description Table 2.8 Output File List (8/10):
Add a new function r_{Config_ UARTAn}_PollingEnd_UserCode()
Remove two functions r_{Config_ UARTAn}_send_1byte() and
R_{Config_UARTAnN}_Send_Polling() from {Config_UARTAnR} user.c.
Table 2.10 Output File List (10/10):
update Logic and Event Link Controller API:
1.Added new API r_{Config_xxx}_interrupt()
2.Update remark info for R_{Config_xxx}_Create()
3.Update usage example to remove R_Config_ AND_Create() calling in main()
Section 4.2 Function 4.2.23 UART Communication (Serial Interface UARTA):
Reference Add a new function r_{Config_ UARTAn}_PollingEnd_UserCode()
Remove two functions r_{Config_ UARTAn}_send_1byte() and
R_{Config_UARTAnN}_Send_Polling() from {Config_UARTAnR}_user.c.
4.2.33 Logic and Event Link Controller:
1.Added new API r_{Config_xxx}_interrupt()
2.Update remark info for R_{Config_xxx}_Create()
3.Update usage example to remove R_Config_ AND_Create() calling in main()
1.02 | all Add remark for all callback functions

Section 4.2 Function
Reference

4.2.1 General: Update Table 4-1 and Table 4-2

Add 4.2.6 External Event Counter (Timer RJ)

Add 4.2.8 Input Pulse High-/Low-Level Width Measurement (Timer RJ)

Add 4.2.10 PWM Output (Timer RDn using PWM mode/ Extended PWM mode)

Add 4.2.11 PWM Output (Timer RDO and RD1 using PWM mode/ PWM3 mode/
Extended PWM mode)

4.2.12 Input Pulse Interval/Period Measurement (Timer Array Unit): Update
chapter name

Add 4.2.13 Input Pulse Interval/Period Measurement (Timer RJ)

Add 4.2.15 Interval Timer (Timer RJ)

Add 4.2.18 Square Wave Output (Timer RJ)

Add 4.2.22 Input Capture Function (Timer RD)

Add 4.2.23 Output Compare Function (Timer RD)

Add 4.2.24 Three -phase PWM Output (Timer RD)

Add 4.2.25 PWM option unit A (Timer RD)

Add 4.2.29 12 Bit A/D Single Scan

Add 4.2.30 12 Bit A/D Continuous Scan

Rev.

Section

Description

1.02

Section 4.2 Function
Reference

Add 4.2.31 12 Bit A/D Group Scan

Add 4.2.38 UART Communication (LIN'UART module)

Add 4.2.49 Event Link Controller

4.2.41 1IC Communication (Slave mode) (Serial Interface IICA): Add remark for
R_{Config_lICAn} Slave_Send/R_{Config_lICAn}_Slave_Receive/r_{Config_lICAn} sl
ave_handler

Appendix API Function
Comparison Table

Add Table 5-5 Code Generator and Smart Configurator APl Comparison List (5/5)

1.03

Section 2.1 Description

Update Table 2-2 Output File List (2/14), Table 2-6 Output File List (6/14), Table 2-14
Output File List (14/14)

Section 4.2 Function
Reference

4.2.1 General:

1.Update Table 4-1 and Table 4-2;

2.Update R_ITL_Start_Interrupt;

3.Add R_TRD_ForcedOutput_Enable, R_TRD_ForcedOutput_disable,
R _IT_Set PowerOn and R_IT_Set_PowerOff

Add 4.2.16 Interval Timer (12-bit Interval Timer)

4.2.17 One-Shot Pulse Output: Add R_{Config_ TAUm_n} Get_PulseWidth

4.2.20 Interval Timer (32-bit Interval Timer using 8-bit counter mode): Update
R_{Config_ITLn}_ Start

4.2.21 Interval Timer (32-bit Interval Timer using 16-bit counter mode): Update
R_{Config_ITLn_ITLm}_Start

4.2.22 Interval Timer (32-bit Interval Timer using 32-bit counter mode): Update
R_{Config_ITLOO0O_ITLOO1_ITLO12_ITLO13}_Start

Update 4.2.49 Logic and Event Link Controller

Appendix API Function

Comparison Table

Update Table 5-5 Code Generator and Smart Configurator API Comparison List (5/5)

1.04

Section 2.1 Description

Update Table 2-1 to Table 2-21

Section 4.2 Function
Reference

4.2.1 General: Add R_TRD_Set_Reset, R TRD_Release_Reset,
R_PWMOPA Set Reset, R PWMOPA Release Reset, R TRJ Set Reset,
R_TRJ_Release_Reset, R_TRG_Set PowerOn, R_TRG_Set_PowerOff,

R TRG_Set Reset, R TRG_Release Reset, R TRX Set PowerOn,

R_TRX_Set PowerOff, R_TRX_ Set_Reset, R TRX_ Release_Reset, R_TKB_Create,
R _TKB_Set PowerOn, R TKB_Set PowerOff, R_ TKB_Set Reset,
R_TKB_Release_Reset, R_PGACOMP_Create, R_PGACOMP_Set_PowerOn,

R _PGACOMP_Set PowerOff, R_ PGACOMP_Set Reset,
R_PGACOMP_Release_Reset, R_DALI_Set_PowerOn, R_DALI_Set PowerOff,

R _DALI Set Reset, R DALI Release Reset

4.2.7 Input Pulse High-/Low-Level Width Measurement (Timer Array Unit): Update the
hyperlink in Remark of R_{Config_TAUm_n} Create_Userlnit

Add 4.2.11 PWM Output (Timer RDO and RD1 using PWM mode/ PWM3 mode/
Extended PWM mode/ Timer KB3 PWM Output Gate mode)

Add 4.2.12 PWM Output (Timer RG using PWM mode/ PWM2 mode)

Rev.

Section

Description

1.04

Section 4.2 Function
Reference

Add 4.2.13 PWM Output (Timer KB using standalone mode (period controlled by
TKBCRnNO register)/standalone mode (period controlled by external trigger
input)/interleave PFC output mode)

Add 4.2.14 PWM Output (Timer KB using simultaneous start/stop mode (period
controlled by TKBCRnNO register)/simultaneous start/stop mode (period controlled by
external trigger input)/synchronous start/clear mode (period controlled by master)) (1
slave)

Add 4.2.15 PWM Output (Timer KB using simultaneous start/stop mode (period
controlled by TKBCRnNO register)/simultaneous start/stop mode (period controlled by
external trigger input)/synchronous start/clear mode (period controlled by master)) (2

slaves)

4.2.16 Input Pulse Interval/Period Measurement (Timer Array Unit): Update the
hyperlink in Remark of R_{Config_ TAUm_n} Create_Userlnit

4.2.18 Interval Timer (Timer Array Unit): Update the content of example

4.2.22 Square Wave Output (Timer Array Unit): Update the hyperlink in Remark of
R_{Config_TAUm_n}_Create_Userlnit and the content of example

Add 4.2.28 Input Capture Function (Timer RG)

Add 4.2.29 Input Capture Function (Timer RX)

Add 4.2.31 Output Compare Function (Timer RG)

Add 4.2.34 Phase Counting Mode

4.2.37 AID Converter: Add API

4.2.42 Data Transfer Controller: Update the hyperlink in R_{Config_DTC}_Create

4.2.43 Comparator: Update description of R_{Config_COMPn}_Create

Add 4.2.44 Programmable Gain Amplifier

4.2.46 UART Communication (Serial array unit): Update the description of
R_{Config_UARTQq}_Send and the content of example

4.2.47 UART Communication (Serial Interface UARTA): Update the description of
R_{Config_UARTq}_Send and the hyperlink in Remark of
R_{Config_UARTAnN} Create Userlnit

4.2.48 UART Communication (LIN'UART module): Update the description of
R_{Config_RLIN3n}_Send and the hyperlink in Remark of
r_{Config_RLIN3n}_callback_receiveend

Add 4.2.49 DALI Communication (Control devices)

Add 4.2.50 DALI Communication (Control gear)

Appendix API Function
Comparison Table

Update Table 5-2 Code Generator and Smart Configurator API comprison List (2/6),
Table 5-5 Code Generator and Smart Configurator API comprison List (5/6), Table 5-6
Code Generator and Smart Configurator APl comprison List (6/6)

Rev.

Section

Description

1.05

Section 2.1 Description

Table 2-7 Output File List (7/21): Remove

R_{Config_TKBn} TKBONOQ_DitheringFunction_Start,
R_{Config_TKBn}_TKBONOQ_DitheringFunction_Stop,
R_{Config_TKBn}_TKBOnN1_DitheringFunction_Start,
R_{Config_TKBn} TKBON1_DitheringFunction_Stop

Table 2-8 Output File List (8/21): Remove

R_{Config_TKBO_TKBn} TKBOmO_DitheringFunction_Start,
R_{Config_TKBO_TKBn} TKBOmO_DitheringFunction_Stop,
R_{Config_TKBO_TKBn} _TKBOm1_DitheringFunction_Start,
R_{Config_TKBO_TKBn} TKBOm1_DitheringFunction_Stop

Table 2-9 Output File List (9/21): Remove

R_{Config_TKBO_TKB1_TKB2} _TKBONO_DitheringFunction_Start,
R_{Config_TKBO_TKB1_TKB2} TKBONO_DitheringFunction_Stop,
R_{Config_TKBO_TKB1_TKB2} _TKBOnN1_DitheringFunction_Start,
R_{Config_TKBO_TKB1_TKB2} TKBOnN1_DitheringFunction_Stop

Section 4.2 Function
Reference

4.2.8 Input Pulse High-/Low-Level Width Measurement (Timer RJ): Update the link in
R_{Config_TRJn} Create_Userlnit

4.2.13 PWM Output (Timer KB using standalone mode (period controlled by TKBCRnO
register)/standalone mode (period controlled by external trigger input)/interleave PFC
output mode): Remove R_{Config_TKBn}_TKBONO_DitheringFunction_Start,
R_{Config_TKBn} TKBONOQ_DitheringFunction_Stop,
R_{Config_TKBn}_TKBOnN1_DitheringFunction_Start,

R_{Config_TKBn} TKBON1_DitheringFunction_Stop

4.2.14 PWM Output (Timer KB using simultaneous start/stop mode (period controlled
by TKBCRnO register)/simultaneous start/stop mode (period controlled by external
trigger input)/synchronous start/clear mode (period controlled by master)) (1 slave):
Remove R_{Config TKBO_TKBn} TKBOmO_DitheringFunction_Start,
R_{Config_TKBO_TKBn}_TKBOmO_DitheringFunction_Stop,
R_{Config_TKBO_TKBn} TKBOm1_DitheringFunction_Start,
R_{Config_TKBO_TKBn}_TKBOm1_DitheringFunction_Stop

4.2.15 PWM Output (Timer KB using simultaneous start/stop mode (period controlled
by TKBCRnO register)/simultaneous start/stop mode (period controlled by external
trigger input)/synchronous start/clear mode (period controlled by master)) (2 slaves):
Remove R_{Config_TKBO_TKB1_TKB2} _TKBONO_DitheringFunction_Start,
R_{Config_TKBO_TKB1_TKB2} TKBONO_DitheringFunction_Stop,
R_{Config_TKBO_TKB1_TKB2} TKBOnN1_DitheringFunction_Start,

R _{Config_TKBO_TKB1_TKB2} TKBOnN1_DitheringFunction_Stop

4.2.23 Square Wave Output (Timer RJ): Update the link in
R _{Config_TRJn}_Create_Userlnit

4.2.48 UART Communication (LIN'UART module): Update n value to 0, 1, 2

4.2.55 Voltage Detector: Update R_{Config_LVDn} Startand R_{Config_LVDn} Stop

Appendix API Function
Comparison Table

Update Table 5-6 Code Generator and Smart Configurator API Comparison List (6/6)

Rev.

Section

Description

1.06

Section 1.GENERAL

Add 1.3 Cautions

Section 2.1 Description

Table 2-4 Output File List (4/22): Add r_cg_it8bit_common.c, r_cg_it8bit_common.h,
r_cg_it8bit.h, r_cg_lcd.h, r_cg_osd_common.c, r_cg_osd_common.h, r_cg_osd.h

Table 2-5 Output File List (5/22): Add r_cg_exsd_common.c, r_cg_exsd_common.h,

r_cg_exsd.h

Table 2-6 Output File List (6/22): Add PWM Output (Timer Array Unit using PWM

mode (remote control carrier wave))

Add Table 2-22 Output File List (22/22)

Section 4.2 Function
Reference

4.2.1 General: Add Table 4-4 API Functions: (4/4), R_ITm_Create,
R_ITm_Set PowerOn, R_ITm_Set_PowerOff, R_OSD_Set_PowerOn,
R_OSD_Set_PowerOff, R_OSD_Set Reset, R_OSD_Release_Reset,
R_EXSD_Set PowerOn, R_EXSD_Set PowerOff, R_EXSD_Set Reset,
R_EXSD_Release_Reset

Update 4.2.6 External Event Counter (Timer RJ)

Update 4.2.9 PWM Output (Timer Array Unit)

Add 4.2.10 PWM Output (Timer Array Unit using PWM mode (remote control carrier

wave))

Update 4.2.18 Input Pulse Interval/Period Measurement (Timer RJ)

Update 4.2.20 Interval Timer (Timer RJ)

Add 4.2.25 Interval Timer (8-bit Interval Timer using 8-bit counter mode)

Add 4.2.26 Interval Timer (16-bit Interval Timer using 8-bit counter mode)

Update 4.2.32 Square Wave Output (Timer RJ)

Add 4.2.65 LCD Controller/Driver

Add 4.2.66 Oscillation Stop Detector

Add 4.2.67 External Signal Sampler

Appendix APl Function

Comparison Table

Table 5-6 Code Generator and Smart Configurator APl Comparison List (6/6): Add
LCD API

1.07

Section 2.1 Description

Table 2.19 Output File List (19/23):
Add new functions for IIC Communication (Master mode) (Serial Interface [ICA)

Table 2.20 Output File List (20/23):
Add new functions for IIC Communication (Master mode, EEPROM communication)
(Serial Interface IICA)

Section 4.2 Function
Reference

Added explanations in comment format to all usage example chapters.

Update 4.2.55 1IC Communication (Master mode) (Serial Interface 1ICA)

Add 4.2.56 1IC Communication (Master mode, EEPROM communication) (Serial
Interface [ICA)

Smart Configurator User's Manual: RL78 API Reference

Publication Date: Rev.1.00 Apr 01, 2021
Rev.1.07 Jan 20, 2026

Published by: Renesas Electronics Corporation

Smart Configurator

LENESANS

Renesas Electronics Corporation R2OUTA852EC0107

	1. GENERAL
	1.1 Overview
	1.2 Features
	1.3 Cautions

	2. OUTPUT FILES
	2.1 Description

	3. INITIALIZATION
	4. API FUNCTIONS
	4.1 Overview
	4.2 Function Reference
	4.2.1 General
	main
	R_Systeminit
	R_DTC_Set_PowerOn
	R_DTC_Set_PowerOff
	R_TAUm_Create
	R_TAUm_Set_PowerOn
	R_TAUm_Set_PowerOff
	R_TAUm_Set_Reset
	R_TAUm_Release_Reset
	R_ITL_Create
	R_ITL_Start_Interrupt
	R_ITL_Stop_Interrupt
	R_ITL_Set_PowerOn
	R_ITL_Set_PowerOff
	R_ITL_Set_Reset
	R_ITL_Release_Reset
	r_itl_interrupt
	R_TRD_Create
	R_TRD_Set_PowerOn
	R_TRD_Set_PowerOff
	R_TRD_Set_Reset
	R_TRD_Release_Reset
	R_PWMOPA_Set_PowerOn
	R_PWMOPA_Set_PowerOff
	R_PWMOPA_Set_Reset
	R_PWMOPA_Release_Reset
	R_TRD_ForcedOutput_Enable
	R_TRD_ForcedOutput_Disable
	R_TRJ_Set_PowerOn
	R_TRJ_Set_PowerOff
	R_TRJ_Set_Reset
	R_TRJ_Release_Reset
	R_TRG_Set_PowerOn
	R_TRG_Set_PowerOff
	R_TRG_Set_Reset
	R_TRG_Release_Reset
	R_TRX_Set_PowerOn
	R_TRX_Set_PowerOff
	R_TRX_Set_Reset
	R_TRX_Release_Reset
	R_TKB_Create
	R_TKB_Set_PowerOn
	R_TKB_Set_PowerOff
	R_TKB_Set_Reset
	R_TKB_Release_Reset
	R_RTC_Set_PowerOn
	R_RTC_Set_PowerOff
	R_IT_Set_PowerOn
	R_IT_Set_PowerOff
	R_ADC_Set_PowerOn
	R_ADC_Set_PowerOff
	R_ADC_Set_Reset
	R_ADC_Release_Reset
	R_DAC_Create
	R_DAC_Set_PowerOn
	R_DAC_Set_PowerOff
	R_DAC_Set_Reset
	R_DAC_Release_Reset
	R_COMP_Create
	R_COMP_Set_PowerOn
	R_COMP_Set_PowerOff
	R_COMP_Set_Reset
	R_COMP_Release_Reset
	R_PGACOMP_Create
	R_PGACOMP_Set_PowerOn
	R_PGACOMP_Set_PowerOff
	R_PGACOMP_Set_Reset
	R_PGACOMP_Release_Reset
	R_SAUm_Create
	R_SAUm_Set_PowerOn
	R_SAUm_Set_PowerOff
	R_SAUm_Set_Reset
	R_SAUm_Release_Reset
	R_SAUm_Set_SnoozeOn
	R_SAUm_Set_SnoozeOff
	R_UARTA_Create
	R_UARTA_Set_PowerOn
	R_UARTA_Set_PowerOff
	R_IICAn_Set_PowerOn
	R_IICAn_Set_PowerOff
	R_IICAn_Set_Reset
	R_IICAn_Release_Reset
	R_RLIN3n_Set_PowerOn
	R_RLIN3n_Set_PowerOff
	R_DALI_Set_PowerOn
	R_DALI_Set_PowerOff
	R_DALI_Set_Reset
	R_DALI_Release_Reset
	R_LVD_Start_Interrupt
	R_LVD_Stop_Interrupt
	r_lvd_interrupt
	R_REMC_Set_PowerOn
	R_REMC_Set_PowerOff
	R_REMC_Set_Reset
	R_REMC_Release_Reset
	R_ITm_Create
	R_ITm_Set_PowerOn
	R_ITm_Set_PowerOff
	R_OSD_Set_PowerOn
	R_OSD_Set_PowerOff
	R_OSD_Set_Reset
	R_OSD_Release_Reset
	R_EXSD_Set_PowerOn
	R_EXSD_Set_PowerOff
	R_EXSD_Set_Reset
	R_EXSD_Release_Reset
	Usage example

	4.2.2 Port
	R_Config_PORT_Create
	R_{Config_PORT}_ReadPmnValues
	R_{Config_PORT}_ReadDigitalOutputLevel
	R_Config_PORT_Create_UserInit
	Usage example

	4.2.3 Delay Counter
	R_{Config_TAUm_n}_Create
	R_{Config_TAUm_n}_Start
	R_{Config_TAUm_n}_Stop
	R_{Config_TAUm_n}_Lower8bits_Start
	R_{Config_TAUm_n}_Lower8bits_Stop
	R_{Config_TAUm_n}_Set_SoftwareTriggerOn
	R_{Config_TAUm_n}_Create_UserInit
	r_{Config_TAUm_n}_interrupt
	Usage example

	4.2.4 Divider Function
	R_{Config_TAUm_n}_Create
	R_{Config_TAUm_n}_Start
	R_{Config_TAUm_n}_Stop
	R_{Config_TAUm_n}_Create_UserInit
	r_{Config_TAUm_n}_interrupt
	Usage example

	4.2.5 External Event Counter (Timer Array Unit)
	R_{Config_TAUm_n}_Create
	R_{Config_TAUm_n}_Start
	R_{Config_TAUm_n}_Stop
	R_{Config_TAUm_n}_Lower8bits_Start
	R_{Config_TAUm_n}_Lower8bits_Stop
	R_{Config_TAUm_n}_Create_UserInit
	r_{Config_TAUm_n}_interrupt
	Usage example

	4.2.6 External Event Counter (Timer RJ)
	R_{Config_TRJn}_Create
	R_{Config_TRJn}_Start
	R_{Config_TRJn}_Stop
	R_{Config_TRJn}_Create_UserInit
	r_{Config_TRJn}_interrupt
	Usage example

	4.2.7 Input Pulse High-/Low-Level Width Measurement (Timer Array Unit)
	R_{Config_TAUm_n}_Create
	R_{Config_TAUm_n}_Start
	R_{Config_TAUm_n}_Stop
	R_{Config_TAUm_n}_Get_PulseWidth
	R_{Config_TAUm_n}_Create_UserInit
	r_{Config_TAUm_n}_interrupt
	Usage example

	4.2.8 Input Pulse High-/Low-Level Width Measurement (Timer RJ)
	R_{Config_TRJn}_Create
	R_{Config_TRJn}_Start
	R_{Config_TRJn}_Stop
	R_{Config_TRJn}_Get_PulseWidth
	R_{Config_TRJn}_Create_UserInit
	r_{Config_TRJn}_interrupt
	Usage example

	4.2.9 PWM Output (Timer Array Unit)
	R_{Config_TAUm_n}_Create
	R_{Config_TAUm_n}_Start
	R_{Config_TAUm_n}_Stop
	R_{Config_TAUm_n}_Create_UserInit
	r_{Config_TAUm_n}_channeln_interrupt
	r_{Config_TAUm_n}_channelp_interrupt
	Usage example

	4.2.10 PWM Output (Timer Array Unit using PWM mode (Remote control carrier wave))
	R_{Config_TAU0_m_TAU0_n}_Create
	R_{Config_TAU0_m_TAU0_n}_Start
	R_{Config_TAU0_m_TAU0_n}_Stop
	R_{Config_TAU0_m_TAU0_n}_Create_UserInit
	r_{Config_TAU0_m_TAU0_n}_channelm_interrupt
	r_{Config_TAU0_m_TAU0_n}_channelp_interrupt
	r_{Config_TAU0_m_TAU0_n}_channeln_interrupt
	r_{Config_TAU0_m_TAU0_n}_channelq_interrupt
	Usage example

	4.2.11 PWM Output (Timer RDn using PWM mode/ Extended PWM mode)
	R_{Config_TRDn}_Create
	R_{Config_TRDn}_Start
	R_{Config_TRDn}_Stop
	R_{Config_TRDn}_Set_TRDn_ReloadTrigger
	R_{Config_TRDn}_Create_UserInit
	r_{Config_TRDn}_trdn_interrupt
	Usage example

	4.2.12 PWM Output (Timer RD0 and RD1 using PWM mode/ PWM3 mode/ Extended PWM mode/ Timer KB3 PWM Output Gate mode)
	R_{Config_TRD0_TRD1}_Create
	R_{Config_TRD0_TRD1}_Start
	R_{Config_TRD0_TRD1}_Stop
	R_{Config_TRD0_TRD1}_Set_TRDn_ReloadTrigger
	R_{Config_TRD0_TRD1}_Set_TRD0_ReloadTrigger
	R_{Config_TRD0_TRD1}_Set_TRD1_ReloadTrigger
	R_{Config_TRD0_TRD1}_Create_UserInit
	r_{Config_TRD0_TRD1}_trdn_interrupt
	Usage example

	4.2.13 PWM Output (Timer RG using PWM mode/ PWM2 mode)
	R_{Config_TRG}_Create
	R_{Config_TRG}_Start
	R_{Config_TRG}_Stop
	R_{Config_TRG}_Create_UserInit
	r_{Config_TRG}_interrupt
	Usage example

	4.2.14 PWM Output (Timer KB using standalone mode (period controlled by TKBCRn0 register)/standalone mode (period controlled by external trigger input)/interleave PFC output mode)
	R_{Config_TKBn}_Create
	R_{Config_TKBn}_Start
	R_{Config_TKBn}_Stop
	R_{Config_TKBn}_Set_BatchOverwriteRequestOn
	R_{Config_TKBn}_TKBOn0_Forced_Output_Stop_Function1_Start
	R_{Config_TKBn}_TKBOn0_Forced_Output_Stop_Function1_Stop
	R_{Config_TKBn}_TKBOn1_Forced_Output_Stop_Function1_Start
	R_{Config_TKBn}_TKBOn1_Forced_Output_Stop_Function1_Stop
	R_{Config_TKBn}_TKBOn0_SmoothStartFunction_Start
	R_{Config_TKBn}_TKBOn0_SmoothStartFunction_Stop
	R_{Config_TKBn}_TKBOn1_SmoothStartFunction_Start
	R_{Config_TKBn}_TKBOn1_SmoothStartFunction_Stop
	R_{Config_TKBn}_Create_UserInit
	r_{Config_TKBn}_terminated0_interrupt
	r_{Config_TKBn}_terminated1_interrupt
	r_{Config_TKBn}_activated0_interrupt
	r_{Config_TKBn}_activated1_interrupt
	r_{Config_TKBn}_end_count_interrupt
	Usage example 1 (smooth start function)
	Usage example 2 (compare register batch overwrite)

	4.2.15 PWM Output (Timer KB using simultaneous start/stop mode (period controlled by TKBCRn0 register)/simultaneous start/stop mode (period controlled by external trigger input)/synchronous start/clear mode (period controlled by master)) (1 slave)
	R_{Config_TKB0_TKBn}_Create
	R_{Config_TKB0_TKBn}_Start
	R_{Config_TKB0_TKBn}_Stop
	R_{Config_TKB0_TKBn}_TKBm_Set_BatchOverwriteRequestOn
	R_{Config_TKB0_TKBn}_TKBOm0_Forced_Output_Stop_Function1_Start
	R_{Config_TKB0_TKBn}_TKBOm0_Forced_Output_Stop_Function1_Stop
	R_{Config_TKB0_TKBn}_TKBOm1_Forced_Output_Stop_Function1_Start
	R_{Config_TKB0_TKBn}_TKBOm1_Forced_Output_Stop_Function1_Stop
	R_{Config_TKB0_TKBn}_TKBOm0_SmoothStartFunction_Start
	R_{Config_TKB0_TKBn}_TKBOm0_SmoothStartFunction_Stop
	R_{Config_TKB0_TKBn}_TKBOm1_SmoothStartFunction_Start
	R_{Config_TKB0_TKBn}_TKBOm1_SmoothStartFunction_Stop
	R_{Config_TKB0_TKBn}_Create_UserInit
	r_{Config_TKB0_TKBn}_tkbm_terminated0_interrupt
	r_{Config_TKB0_TKBn}_tkbm_terminated1_interrupt
	r_{Config_TKB0_TKBn}_tkbm_activated0_interrupt
	r_{Config_TKB0_TKBn}_tkbm_activated1_interrupt
	r_{Config_TKB0_TKBn}_tkbm_end_count_interrupt
	Usage example

	4.2.16 PWM Output (Timer KB using simultaneous start/stop mode (period controlled by TKBCRn0 register)/simultaneous start/stop mode (period controlled by external trigger input)/synchronous start/clear mode (period controlled by master)) (2 slaves)
	R_{Config_TKB0_TKB1_TKB2}_Create
	R_{Config_TKB0_TKB1_TKB2}_Start
	R_{Config_TKB0_TKB1_TKB2}_Stop
	R_{Config_TKB0_TKB1_TKB2}_TKBn_Set_BatchOverwriteRequestOn
	R_{Config_TKB0_TKB1_TKB2}_TKBOn0_Forced_Output_Stop_Function1_Start
	R_{Config_TKB0_TKB1_TKB2}_TKBOn0_Forced_Output_Stop_Function1_Stop
	R_{Config_TKB0_TKB1_TKB2}_TKBOn1_Forced_Output_Stop_Function1_Start
	R_{Config_TKB0_TKB1_TKB2}_TKBOn1_Forced_Output_Stop_Function1_Stop
	R_{Config_TKB0_TKB1_TKB2}_TKBOn0_SmoothStartFunction_Start
	R_{Config_TKB0_TKB1_TKB2}_TKBOn0_SmoothStartFunction_Stop
	R_{Config_TKB0_TKB1_TKB2}_TKBOn1_SmoothStartFunction_Start
	R_{Config_TKB0_TKB1_TKB2}_TKBOn1_SmoothStartFunction_Stop
	R_{Config_TKB0_TKB1_TKB2}_Create_UserInit
	r_{Config_TKB0_TKB1_TKB2}_tkbn_terminated0_interrupt
	r_{Config_TKB0_TKB1_TKB2}_tkbn_terminated1_interrupt
	r_{Config_TKB0_TKB1_TKB2}_tkbn_activated0_interrupt
	r_{Config_TKB0_TKB1_TKB2}_tkbn_activated1_interrupt
	r_{Config_TKB0_TKB1_TKB2}_tkbn_end_count_interrupt
	Usage example

	4.2.17 Input Pulse Interval/Period Measurement (Timer Array Unit)
	R_{Config_TAUm_n}_Create
	R_{Config_TAUm_n}_Start
	R_{Config_TAUm_n}_Stop
	R_{Config_TAUm_n}_Get_PulseWidth
	R_{Config_TAUm_n}_Create_UserInit
	r_{Config_TAUm_n}_interrupt
	Usage example

	4.2.18 Input Pulse Interval/Period Measurement (Timer RJ)
	R_{Config_TRJn}_Create
	R_{Config_TRJn}_Start
	R_{Config_TRJn}_Stop
	R_{Config_TRJn}_Get_PulseWidth
	R_{Config_TRJn}_Create_UserInit
	r_{Config_TRJn}_interrupt
	Usage example

	4.2.19 Interval Timer (Timer Array Unit)
	R_{Config_TAUm_n}_Create
	R_{Config_TAUm_n}_Start
	R_{Config_TAUm_n}_Stop
	R_{Config_TAUm_n}_Higher8bits_Start
	R_{Config_TAUm_n}_Higher8bits_Stop
	R_{Config_TAUm_n}_Lower8bits_Start
	R_{Config_TAUm_n}_Lower8bits_Stop
	R_{Config_TAUm_n}_Create_UserInit
	r_{Config_TAUm_n}_interrupt
	r_{Config_TAUm_n}_higher8bits_interrupt
	Usage example

	4.2.20 Interval Timer (Timer RJ)
	R_{Config_TRJn}_Create
	R_{Config_TRJn}_Start
	R_{Config_TRJn}_Stop
	R_{Config_TRJn}_Create_UserInit
	r_{Config_TRJn}_interrupt
	Usage example

	4.2.21 Interval Timer (12-bit Interval Timer)
	R_{Config_IT}_Create
	R_{Config_IT}_Start
	R_{Config_IT}_Stop
	R_{Config_IT}_Create_UserInit
	r_{Config_IT}_interrupt
	Usage example

	4.2.22 Interval Timer (32-bit Interval Timer using 8-bit counter mode)
	R_{Config_ITLn}_Create
	R_{Config_ITLn}_Start
	R_{Config_ITLn}_Stop
	R_{Config_ITLn}_Set_OperationMode
	R_{Config_ITLn}_Create_UserInit
	r_{Config_ITLn}_Callback_Shared_interrupt
	Usage example

	4.2.23 Interval Timer (32-bit Interval Timer using 16-bit counter mode)
	R_{Config_ITLn_ITLm}_Create
	R_{Config_ITLn_ITLm}_Start
	R_{Config_ITLn_ITLm}_Stop
	R_{Config_ITLn_ITLm}_Set_SoftwareTriggerOn
	R_{Config_ITLn_ITLm}_Set_OperationMode
	R_{Config_ITLn_ITLm}_Get_CaptureValue
	R_{Config_ITLn_ITLm}_Create_UserInit
	r_{Config_ITLn_ITLm}_Callback_Shared_interrupt
	Usage example

	4.2.24 Interval Timer (32-bit Interval Timer using 32-bit counter mode)
	R_{Config_ITL000_ITL001_ITL012_ITL013}_Create
	R_{Config_ITL000_ITL001_ITL012_ITL013}_Start
	R_{Config_ITL000_ITL001_ITL012_ITL013}_Stop
	R_{Config_ITL000_ITL001_ITL012_ITL013}_Set_OperationMode
	R_{Config_ITL000_ITL001_ITL012_ITL013}_Create_UserInit
	r_{Config_ITL000_ITL001_ITL012_ITL013}_Callback_Shared_interrupt
	Usage example

	4.2.25 Interval Timer (8-bit Interval Timer using 8-bit counter mode)
	R_{Config_ITmn}_Create
	R_{Config_ITmn}_Start
	R_{Config_ITmn}_Stop
	R_{Config_ITmn}_Create_UserInit
	r_{Config_ITmn}_interrupt
	Usage example

	4.2.26 Interval Timer (8-bit Interval Timer using 16-bit counter mode)
	R_{Config_ITm0_ITm1}_Create
	R_{Config_ITm0_ITm1}_Start
	R_{Config_ITm0_ITm1}_Stop
	R_{Config_ITm0_ITm1}_Create_UserInit
	r_{Config_ITm0_ITm1}_interrupt
	Usage example

	4.2.27 Input Capture Function (Timer RD)
	R_{Config_TRDn}_Create
	R_{Config_TRDn}_Start
	R_{Config_TRDn}_Stop
	R_{Config_TRDn}_Get_PulseWidth
	R_{Config_TRDn}_Create_UserInit
	r_{Config_TRDn}_trdn_interrupt
	Usage example

	4.2.28 Input Capture Function (Timer RG)
	R_{Config_TRG}_Create
	R_{Config_TRG}_Start
	R_{Config_TRG}_Stop
	R_{Config_TRG}_Get_PulseWidth
	R_{Config_TRG}_Create_UserInit
	r_{Config_TRG}_interrupt
	Usage example

	4.2.29 Input Capture Function (Timer RX)
	R_{Config_TRX}_Create
	R_{Config_TRX}_Start
	R_{Config_TRX}_Stop
	R_{Config_TRX}_Get_BufferValue
	R_{Config_TRX}_Create_UserInit
	r_{Config_TRX}_interrupt
	Usage example

	4.2.30 One-Shot Pulse Output
	R_{Config_TAUm_n}_Create
	R_{Config_TAUm_n}_Start
	R_{Config_TAUm_n}_Stop
	R_{Config_TAUm_n}_Set_SoftwareTriggerOn
	R_{Config_TAUm_n}_Get_PulseWidth
	R_{Config_TAUm_n}_Create_UserInit
	r_{Config_TAUm_n}_channeln_interrupt
	r_{Config_TAUm_n}_channelp_interrupt
	Usage example

	4.2.31 Square Wave Output (Timer Array Unit)
	R_{Config_TAUm_n}_Create
	R_{Config_TAUm_n}_Start
	R_{Config_TAUm_n}_Stop
	R_{Config_TAUm_n}_Lower8bits_Start
	R_{Config_TAUm_n}_Lower8bits_Stop
	R_{Config_TAUm_n}_Create_UserInit
	r_{Config_TAUm_n}_interrupt
	Usage example

	4.2.32 Square Wave Output (Timer RJ)
	R_{Config_TRJn}_Create
	R_{Config_TRJn}_Start
	R_{Config_TRJn}_Stop
	R_{Config_TRJn}_Create_UserInit
	r_{Config_TRJn}_interrupt
	Usage example

	4.2.33 Output Compare Function (Timer RD)
	R_{Config_TRDn}_Create
	R_{Config_TRDn}_Start
	R_{Config_TRDn}_Stop
	R_{Config_TRDn}_Create_UserInit
	r_{Config_TRDn}_trdn_interrupt
	Usage example

	4.2.34 Output Compare Function (Timer RG)
	R_{Config_TRG}_Create
	R_{Config_TRG}_Start
	R_{Config_TRG}_Stop
	R_{Config_TRG}_Create_UserInit
	r_{Config_TRG}_interrupt
	Usage example

	4.2.35 Three -phase PWM Output (Timer RD)
	R_{Config_TRD0_TRD1}_Create
	R_{Config_TRD0_TRD1}_Start
	R_{Config_TRD0_TRD1}_Stop
	R_{Config_TRD0_TRD1}_Set_TRD_ReloadTrigger
	R_{Config_TRD0_TRD1}_Create_UserInit
	r_{Config_TRD0_TRD1}_trd0_interrupt
	r_{Config_TRD0_TRD1}_trd1_interrupt
	Usage example

	4.2.36 PWM option unit A (Timer RD)
	R_{Config_ PWMOPA }_Create
	R_{Config_PWMOPA}_Software_Release
	R_{Config_ PWMOPA }_Create_UserInit
	Usage example

	4.2.37 Phase Counting Mode
	R_{Config_TRG}_Create
	R_{Config_TRG}_Start
	R_{Config_TRG}_Stop
	R_{Config_TRG}_Get_MeasurementCapture
	R_{Config_TRG}_Create_UserInit
	r_{Config_TRG}_interrupt
	r_{Config_TRG}_clear_interrupt
	r_{Config_TRG}_capture_interrupt
	Usage example

	4.2.38 Clock Output/Buzzer Output Controller
	R_{Config_PCLBUZn}_Create
	R_{Config_PCLBUZn}_Start
	R_{Config_PCLBUZn}_Stop
	R_{Config_PCLBUZn}_Create_UserInit
	Usage example

	4.2.39 Real-Time Clock
	R_{Config_RTC}_Create
	R_{Config_RTC}_Start
	R_{Config_RTC}_Stop
	R_{Config_RTC}_Set_HourSystem
	R_{Config_RTC}_Set_CounterValue
	R_{Config_RTC}_Get_CounterValue
	R_{Config_RTC}_Set_ConstPeriodInterruptOn
	R_{Config_RTC}_Set_ConstPeriodInterruptOff
	R_{Config_RTC}_Set_AlarmOn
	R_{Config_RTC}_Set_AlarmOff
	R_{Config_RTC}_Set_AlarmValue
	R_{Config_RTC}_Get_AlarmValue
	R_{Config_RTC}_Set_RTC1HZOn
	R_{Config_RTC}_Set_RTC1HZOff
	R_{Config_RTC}_Create_UserInit
	r_{Config_RTC}_interrupt
	r_{Config_RTC}_callback_constperiod
	r_{Config_RTC}_callback_alarm
	Usage example 1 (alarm interrupt)
	Usage example 2 (constant-period interrupt)

	4.2.40 A/D Converter
	R_{Config_ADC}_Create
	R_{Config_ADC}_Start
	R_{Config_ADC}_Stop
	R_{Config_ADC}_Set_OperationOn
	R_{Config_ADC}_Set_OperationOff
	R_{Config_ADC}_Set_ADChannel
	R_{Config_ADC}_ADSn_Set_ADChannel
	R_{Config_ADC}_Set_SnoozeOn
	R_{Config_ADC}_Set_SnoozeOff
	R_{Config_ADC}_Set_TestChannel
	R_{Config_ADC}_Get_Result_10bit
	R_{Config_ADC}_Get_Result_8bit
	R_{Config_ADC}_Get_Result_12bit
	R_{Config_ADC}_ADSn_Get_Result_10bit
	R_{Config_ADC}_ADSn_Get_Result_8bit
	R_{Config_ADC}_ADSn_Get_Result_12bit
	R_{Config_ADC}_Create_UserInit
	r_{Config_ADC}_interrupt
	r_{Config_ADC}_adn_interrupt
	Usage example 1 (Normal Mode)
	Usage example 2 (Advanced Mode)

	4.2.41 12 Bit A/D Single Scan
	R_{Config_S12ADn}_Create
	R_{Config_S12ADn}_Start
	R_{Config_S12ADn}_Stop
	R_{Config_S12ADn}_Get_ValueResult
	R_{Config_S12ADn}_Create_UserInit
	r_{Config_S12ADn}_interrupt
	Usage example

	4.2.42 12 Bit A/D Continuous Scan
	R_{Config_S12ADn}_Create
	R_{Config_S12ADn}_Start
	R_{Config_S12ADn}_Stop
	R_{Config_S12ADn}_Get_ValueResult
	R_{Config_S12ADn}_Create_UserInit
	r_{Config_S12ADn}_interrupt
	Usage example

	4.2.43 12 Bit A/D Group Scan
	R_{Config_S12ADn}_Create
	R_{Config_S12ADn}_Start
	R_{Config_S12ADn}_Stop
	R_{Config_S12ADn}_Get_ValueResult
	R_{Config_S12ADn}_Create_UserInit
	r_{Config_S12ADn}_interrupt
	r_{Config_S12ADn}_ groupb_interrupt
	Usage example

	4.2.44 D/A Converter
	R_{Config_DACn}_Create
	R_{Config_DACn}_Start
	R_{Config_DACn}_Stop
	R_{Config_DACn}_Set_ConversionValue
	R_{Config_DACn}_Create_UserInit
	Usage example

	4.2.45 Data Transfer Controller
	R_{Config_DTC}_Create
	R_{Config_DTCDn}_Start
	R_{Config_DTCDn}_Stop
	R_{Config_DTC}_Create_UserInit
	Usage example

	4.2.46 Comparator
	R_{Config_COMPn}_Create
	R_{Config_COMPn}_Start
	R_{Config_COMPn}_Stop
	R_{Config_COMPn}_Create_UserInit
	r_{Config_COMPn}_interrupt
	Usage example

	4.2.47 Programmable Gain Amplifier
	R_{Config_PGA}_Create
	R_{Config_PGA}_Start
	R_{Config_PGA}_Stop
	R_{Config_PGA}_Create_UserInit
	Usage example

	4.2.48 SPI (CSI) Communication
	R_{Config_CSIp}_Create
	R_{Config_CSIp}_Start
	R_{Config_CSIp}_Stop
	R_{Config_CSIp}_Send
	R_{Config_CSIp}_Receive
	R_{Config_CSIp}_Send_Receive
	R_{Config_CSIp}_Create_UserInit
	r_{Config_CSIp}_interrupt
	r_{Config_CSIp}_callback_sendend
	r_{Config_CSIp}_callback_receiveend
	r_{Config_CSIp}_callback_error
	Usage example

	4.2.49 UART Communication (Serial array unit)
	R_{Config_UARTq}_Create
	R_{Config_UARTq}_Start
	R_{Config_UARTq}_Stop
	R_{Config_UARTq}_Send
	R_{Config_UARTq}_Receive
	R_{Config_UARTq}_Loopback_Enable
	R_{Config_UARTq}_Loopback_Disable
	R_{Config_UARTq}_Create_UserInit
	r_{Config_UARTq}_interrupt_send
	r_{Config_UARTq}_interrupt_receive
	r_{Config_UARTq}_interrupt_error
	r_{Config_UARTq}_callback_sendend
	r_{Config_UARTq}_callback_receiveend
	r_{Config_UARTq}_callback_error
	r_{Config_UARTq}_callback_softwareoverrun
	Usage example

	4.2.50 UART Communication (Serial Interface UARTA)
	R_{Config_UARTAn}_Create
	R_{Config_UARTAn}_Start
	R_{Config_UARTAn}_Stop
	R_{Config_UARTAn}_Send
	R_{Config_UARTAn}_Receive
	R_{Config_UARTAn}_Loopback_Enable
	R_{Config_UARTAn}_Loopback_Disable
	R_{Config_UARTAn}_Create_UserInit
	R_{Config_UARTAn}_PollingEnd_UserCode
	r_{Config_UARTAn}_interrupt_send
	r_{Config_UARTAn}_interrupt_receive
	r_{Config_UARTAn}_interrupt_error
	r_{Config_UARTAn}_callback_sendend
	r_{Config_UARTAn}_callback_receiveend
	r_{Config_UARTAn}_callback_error
	Usage example

	4.2.51 UART Communication (LIN/UART module)
	R_{Config_RLIN3n}_Create
	R_{Config_RLIN3n}_Start
	R_{Config_RLIN3n}_Stop
	R_{Config_RLIN3n}_Send
	R_{Config_RLIN3n}_Receive
	R_{Config_RLIN3n}_Create_UserInit
	r_{Config_RLIN3n}_interrupt_send
	r_{Config_RLIN3n}_interrupt_receive
	r_{Config_RLIN3n}_interrupt_error
	r_{Config_RLIN3n}_callback_sendend
	r_{Config_RLIN3n}_callback_receiveend
	r_{Config_RLIN3n}_callback_error
	Usage example

	4.2.52 DALI Communication (Control devices)
	R_{Config_DALI}_Create
	R_{Config_DALI}_Start
	R_{Config_DALI}_Stop
	R_{Config_DALI}_SoftwareReset
	R_{Config_DALI}_EnableForceActiveState
	R_{Config_DALI}_DisableForceActiveState
	R_{Config_DALI}_GetStatus
	R_{Config_DALI}_Send
	R_{Config_DALI}_GetReceivedFrame
	R_{Config_DALI}_Create_UserInit
	r_{Config_DALI}_interrupt_send
	r_{Config_DALI}_interrupt_receive
	r_{Config_DALI}_interrupt_error
	r_{Config_DALI}_interrupt_falling_edge_detection
	r_{Config_DALI}_interrupt_power_down_detection
	r_{Config_DALI}_interrupt_collision_detection
	r_{Config_DALI}_interrupt_stop_bit_detection
	r_{Config_DALI}_callback_sendend
	r_{Config_DALI}_callback_receiveend
	r_{Config_DALI}_callback_error
	Usage example

	4.2.53 DALI Communication (Control gear)
	R_{Config_DALI}_Create
	R_{Config_DALI}_Start
	R_{Config_DALI}_Stop
	R_{Config_DALI}_SoftwareReset
	R_{Config_DALI}_EnableForceActiveState
	R_{Config_DALI}_DisableForceActiveState
	R_{Config_DALI}_GetStatus
	R_{Config_DALI}_Send
	R_{Config_DALI}_GetReceivedFrame
	R_{Config_DALI}_Create_UserInit
	r_{Config_DALI}_interrupt_error
	r_{Config_DALI}_interrupt_falling_edge_detection
	r_{Config_DALI}_interrupt_power_down_detection
	r_{Config_DALI}_interrupt_stop_bit_detection
	r_{Config_DALI}_callback_sendend
	r_{Config_DALI}_callback_receiveend
	r_{Config_DALI}_callback_error
	Usage example

	4.2.54 IIC Communication (Master mode) (Serial Array Unit)
	R_{Config_IICr}_Create
	R_{Config_IICr}_StartCondition
	R_{Config_IICr}_StopCondition
	R_{Config_IICr}_Stop
	R_{Config_IICr}_Master_Send
	R_{Config_IICr}_Master_Receive
	R_{Config_IICr}_Create_UserInit
	r_{Config_IICr}_interrupt
	r_{Config_IICr}_callback_master_sendend
	r_{Config_IICr}_callback_master_receiveend
	r_{Config_IICr}_callback_master_error
	Usage example

	4.2.55 IIC Communication (Master mode) (Serial Interface IICA)
	R_{Config_IICAn}_Create
	R_{Config_IICAn}_StopCondition
	R_{Config_IICAn}_Stop
	R_{Config_IICAn}_Master_Send
	R_{Config_IICAn}_Master_Receive
	R_{Config_IICAn}_Check_Comstate
	R_{Config_IICAn}_Poll
	R_{Config_IICAn}_Wait_Comend
	R_{Config_IICAn}_Bus_Check
	R_{Config_IICAn}_StartCondition
	R_{Config_IICAn}_Wait_Time
	R_{Config_IICAn}_Create_UserInit
	r_{Config_IICAn}_interrupt
	r_{Config_IICAn}_master_handler
	r_{Config_IICAn}_callback_master_sendend
	r_{Config_IICAn}_callback_master_receiveend
	r_{Config_IICAn}_callback_master_error
	Usage example

	4.2.56 IIC Communication (Master mode, EEPROM communication) (Serial Interface IICA)
	R_{Config_IICAn}_Create
	R_{Config_IICAn}_StopCondition
	R_{Config_IICAn}_Stop
	R_{Config_IICAn}_Master_Send
	R_{Config_IICAn}_Master_Receive
	R_{Config_IICAn}_Check_Comstate
	R_{Config_IICAn}_Poll
	R_{Config_IICAn}_Wait_Comend
	R_{Config_IICAn}_Bus_Check
	R_{Config_IICAn}_StartCondition
	R_{Config_IICAn}_Wait_Time
	R_{Config_IICAn}_Create_UserInit
	r_{Config_IICAn}_interrupt
	r_{Config_IICAn}_master_handler
	r_{Config_IICAn}_callback_master_sendend
	r_{Config_IICAn}_callback_master_receiveend
	r_{Config_IICAn}_callback_master_error
	Usage example

	4.2.57 IIC Communication (Slave mode) (Serial Interface IICA)
	R_{Config_IICAn}_Create
	R_{Config_IICAn}_Stop
	R_{Config_IICAn}_Slave_Send
	R_{Config_IICAn}_Slave_Receive
	R_{Config_IICAn}_Set_WakeupOn
	R_{Config_IICAn}_Set_WakeupOff
	R_{Config_IICAn}_Create_UserInit
	r_{Config_IICAn}_interrupt
	r_{Config_IICAn}_slave_handler
	r_{Config_IICAn}_callback_slave_sendend
	r_{Config_IICAn}_callback_slave_receiveend
	r_{Config_IICAn}_callback_slave_error
	r_{Config_IICAn}_callback_getstopcondition
	Usage example

	4.2.58 Interrupt Countroller
	R_{Config_INTC}_Create
	R_{Config_INTC}_INTPn_Start
	R_{Config_INTC}_INTPn_Stop
	R_{Config_INTC}_Create_UserInit
	r_{Config_INTC}_intpn_interrupt
	Usage example

	4.2.59 Voltage Detector
	R_{Config_LVDn}_Create
	R_{Config_LVDn}_Start
	R_{Config_LVDn}_Stop
	R_{Config_LVDn}_Create_UserInit
	Usage example

	4.2.60 Snooze Mode Sequencer
	R_{Config_SMS}_Create
	R_{Config_SMS}_Start
	R_{Config_SMS}_Stop
	R_{Config_SMS}_GetStatus
	R_{Config_SMS}_GetReturn
	R_{Config_SMS}_TriggerWait_Enable
	R_{Config_SMS}_TriggerWait_Disable
	R_{Config_SMS}_Set_PowerOn
	R_{Config_SMS}_Set_PowerOff
	R_{Config_SMS}_Set_Reset
	R_{Config_SMS}_Release_Reset
	R_{Config_SMS}_Create_UserInit
	r_{Config_SMS}_interrupt
	Usage example

	4.2.61 Key Interrupt
	R_{Config_KR}_Create
	R_{Config_KR}_Start
	R_{Config_KR}_Stop
	R_{Config_KR}_Create_UserInit
	r_{Config_KR}_interrupt
	Usage example

	4.2.62 Remote Control Signal Receiver
	R_{Config_REMC}_Create
	R_{Config_REMC}_Start
	R_{Config_REMC}_Stop
	R_{Config_REMC}_Read
	R_{Config_REMC}_Create_UserInit
	r_{Config_REMC}_interrupt
	r_{Config_REMC}_callback_receiveend
	r_{Config_REMC}_callback_comparematch
	r_{Config_REMC}_callback_receiveerror
	r_{Config_REMC}_callback_bufferfull
	r_{Config_REMC}_callback_header
	r_{Config_REMC}_callback_data0
	r_{Config_REMC}_callback_data1
	r_{Config_REMC}_callback_specialdata
	Usage example

	4.2.63 Watchdog Timer
	R_{Config_WDT}_Create
	R_{Config_WDT}_Restart
	R_{Config_WDT}_Create_UserInit
	r_{Config_WDT}_interrupt
	Usage example

	4.2.64 Logic and Event Link Controller
	R_{Config_xxx}_Create
	R_{Config_xxx}_Start
	R_{Config_xxx}_Stop
	R_{Config_xxx}_OUTPUTn_Start
	R_{Config_xxx}_OUTPUTn_Stop
	R_{Config_xxx}_GetStatus
	R_{Config_xxx}_Create_UserInit
	r_{Config_xxx}_interrupt
	Usage example

	4.2.65 Event Link Controller
	R_{Config_ELC}_Create
	R_{Config_ELC}_Stop
	R_{Config_ELC}_Create_UserInit
	Usage example

	4.2.66 LCD Controller/Driver
	R_{Config_LCD}_Create
	R_{Config_LCD}_Start
	R_{Config_LCD}_Stop
	R_{Config_LCD}_Voltage_On
	R_{Config_LCD}_Voltage_Off
	R_{Config_LCD}_Set_DisplayData
	R_{Config_LCD}_Create_UserInit
	Usage example

	4.2.67 Oscillation Stop Detector
	R_{Config_OSD}_Create
	R_{Config_OSD}_Start
	R_{Config_OSD}_Stop
	R_{Config_OSD}_Create_UserInit
	r_{Config_OSD}_interrupt
	Usage example

	4.2.68 External Signal Sampler
	R_{Config_EXSD}_Create
	R_{Config_EXSD}_Start
	R_{Config_EXSD}_Stop
	R_{Config_EXSD}_Create_UserInit
	r_{Config_EXSD}_interrupt
	Usage example

	Appendix API Function Comparison Table
	Revision Record

