RENESAS Application Note

. . R20UT3475EJ0300
RL78 Family C Compiler Package (CC-RL) Rev. 3.00

. May 31, 2019
How to Divide Boot and Flash Areas

Introduction

This document describes the processing necessary to divide a program into boot and flash areas when using
the C compiler for the RL78 family (CC-RL).

Versions of Tools with which Correct Operation has been Confirmed
The following tools and versions were used for the descriptions in this document.

e C compiler for the RL78 family (CC-RL): V1.08.00
e e?studio integrated development environment: V7.3.0
e CS+ for CC integrated development environment: V8.01.00

Contents

L. OVEBIVIBW 1.ttt ettt e o444ttt 4244444 b E e et e 4o 4444 e bbb et e e e e e e e e e e e e s 3
1.1 Dividing the BOOt @nd FIAS AFEASceeeiiiiiiiiiiiiiiiieiiieeeeeeeeeeeeeeeeeeeeeeeseeasesssesssessssssssssesessearsereneressrersnnnes 3
1.2 Allocating the Boot and FIash AFBASuuiiiiiiiiieiiit et 4
1.3 Procedures for Creating the Boot Area and Flash Area Projectscccocceveiniiiiiiiiiiee e 4
1.4 Overview of Build Processing for the Boot and FIash Areasccccccceviiiiiiiiiiii e 5
2. Common Processing for the Boot and FIash Areasccoceeiiieiiiiieiiiiii e 6
00 R O = 11 Vo [o {0 =X £ 6
P T R < (1 o o T PSP OTRRURURRN 6
0 O O P 8
2.2 Creating a common program for the boot and flash areas............cccooveeiiii e 10
2.2.1 Address definition file for the branch table (assembly language)cccocueeiiiii e 10
2.3 Hex files for the boot and flaSh Araseeoiiiiiiiiiii e 10
2.4 INItIAlIZAtION PrOCEAUIEuueeiiieiiiiiiiii e s 11
1 T = To Lo | Y (T PP PR 12
3.1 Creating DOOt Area PrOGIAMSeiiiiiiiee ittt e et e et e e e st et e e s s bb e e e e aabbeeeesnbbeeeeanbeeeeeabbeeeeaaes 12
3.1.1 Modifying the startup routing (CSTAMT.ASIM)ouuiiiiiiiiee ittt e e e sbbeeeeaaes 12
3.1.2 Modifying hdwinit.asm and StKINIL.ASIMcooiiiiiiiiii e e e 14
3.1.3 Creating the program such that the on-chip debug area is secured (ocdrom_ce.asm)..........cccccee..... 14
3.1.4 Creating a file for resolving the function addresses in the branch table (extern_ftable.asm)............. 14
T Y o 1= Tod 11/ g [[o oTo) =T (=T-We] o] i o] o F- 3PP PPPRT 15
3.2.1 Output of a file for the externally defined SYmMbDOIS ... 15
3.2.2 Specifying the SECHON AlIOCALIONcoiiiiiiiiiiiiee et e et e e et e e e e sbeeeeeanes 17
3.2.3 Specifying a vector for branching to the interrupt function in the flash area...........cccccccceevvinnnnen. 19
3.2.4 Making necessary settings for the on-chip debugging fuNCLON ..., 20
3.2.5 Specifying hex file output only to the boot area addreSSs rangeooocuuveeeieieiiiiiiiiieeeee e 22
R20UT3475EJ0300 Rev.3.00 Page 1 of 35

May 31, 2019 RENESAS

RL78 Family C Compiler Package (CC-RL) How to Divide Boot and Flash Areas

4. FIASN ATBA ...t e e 23
4.1 Creating flash area PrOgramMIS..........eiiiiiiiiie ittt e s abb e e s sbe e e e s anbe e e e s annneee s 23
4.1.1 Modifying the startup routing (CSTAIT.QSM)eiiiiiriieiiii ittt e s snneee s 23
4.1.2 Creating a branch table program (ftable.asSm) ... 23
4.1.3 Defining an interrupt fFUNCLIONoiiiiii e e e e e s s s r e e e e e e e s nnnraaees 24
4.2 Specifying flash area OPLIONSuuiiiiie e e e e e s s e e e e e e s s s e e e e e e e e e e anneraeees 24
4.2.1 Registering the externally defined symbol file with the projectccccovviiiiieeee e, 24
4.2.2 Specifying the SECtioN @llOCALIONeiiiiiiiiie it e s seneee s 26
4.2.3 Specifying hex file output only to the flash area address range............cccooveeeieiiiieie e 28
4.2.4 Combining the hex files for the boot and flash @reas ... 29
LT 1= o 10 T o 1 g To TN o o 1 ISR 31
5.1 Downloading to DebUQQING TOOuuiuiiiiiiii s 31
B. SAMPIE PrOQIaMSot e e e e e e e ettt e e e e e e e e e e e ettt e e e eaaaeeasataa e eaeaaes 33
6.1 Sample program for the boot area (DOOL.C)c.oiuiieiiiiiiii e 33
6.2 Sample program for the flash area (flaSh.C)c..ooiiiiiii i 34
R20UT3475EJ0300 Rev.3.00 Page 2 of 35

May 31, 2019 RENESAS

RL78 Family C Compiler Package (CC-RL) How to Divide Boot and Flash Areas
1. Overview

1.1 Dividing the Boot and Flash Areas

The purpose of dividing the boot and flash areas is to ensure that only the program in the flash area can be
modified without reconfiguring the program in the boot area.

Flash area

(Application 1)

Boot area . .
) Use the flash memory self-programming function
(Fixed HEX of the microcontroller to update the application
code)

area.

Figure1l Divided Areas on System

Note: In this document, the boot area is defined as an area that cannot be modified following design of the
system while the flash area is defined as an area that can be modified or replaced on the system.

To divide the boot and flash areas, create two projects, one to be used as the boot area project and the other
to be used as the flash area project. These projects must satisfy the following conditions.

e The variables and functions in the boot area are accessible from the flash area.

— The linker option -FSymbol should be used for the boot area project so that externally defined symbols
will be output in a file.

The above externally defined symbol file should be specified as a target of building in the flash area
project.

The functions in the flash area can be called from the boot area through a function table.

— When calling functions in the flash area, the boot area project should call the address of each branch
instruction for a function that is specified in the function table.

A table of branch instructions for functions to be called from the boot area project should be created in
the flash area project.

Use the Reference is
-FSymbol option to ‘ not possible.
output externally ’ RAM area
defined symbols
(variable
references)]
i Reference is not
Flash area | possible.
‘ Use physical
Use the 2 addresses
function calls).
-FSymbol option to Branch table area ‘ 7 : ; >_ ROM area
output externally o
defined symbols
(function calls) Boot area
_

Figure 2 References to Variables and Functions between the Boot and Flash Areas

R20UT3475EJ0300 Rev.3.00

Page 3 of 35
May 31, 2019 RENESAS

RL78 Family C Compiler Package (CC-RL) How to Divide Boot and Flash Areas

1.2 Allocating the Boot and Flash Areas
Allocate the boot and flash areas as follows.

FECOOH

FE900H

02200H
02000H

00000H

Figure 3

RAM area

Flash area

Branch table area >' ROMarea

Boot area

7

Example of Allocating the Boot and Flash Areas

1.3 Procedures for Creating the Boot Area and Flash Area Projects
Follow the procedures below to create the boot area and flash area projects.

1. Creating the boot area project
A. Create boot area programs in the source file.
B. Specify the necessary linker options.
C. Build the boot area project before the flash area project because the boot area project is required for
building the flash area project.

2. Creating the flash area project
A. Create flash area programs in the source files.
B. Specify the necessary linker options.

R20UT3475EJ0300 Rev.3.00
May 31, 2019

Re Page 4 of 35
RENESAS

RL78 Family C Compiler Package (CC-RL)

How to Divide Boot and Flash Areas

1.4 Overview of Build Processing for the Boot and Flash Areas
Figure 4 shows an overview of build processing for the boot and flash areas.

E Boot area
N S— :
boot.c Proj ect
Compile File for resolving the function addresses in the
! branch table
boot.asm extern_ftable.asm

Assemble
—
boot.obj | extern_ftable_obj _
Link

-

boot.abs

i

-fsymbol=
Xxiernd
boot.fsy function ¢

Load module for ~ Symbol information on external
the boot area variables and functions

E Flash area
D project
flash.c
ﬁ/_/
Compile

ariable and
ection

Function table

|

y
/

flash.asm
Assemble
N2 v v
— — :
flash.obj ftable.obj boot.obj :
v v
Link
Load module forthe flash
: area :
Figure 4 Build Processing for the Boot and Flash Areas

R20UT3475EJ0300 Rev.3.00

May 31, 2019

RENESAS

Page 5 of 35

RL78 Family C Compiler Package (CC-RL) How to Divide Boot and Flash Areas

2. Common Processing for the Boot and Flash Areas

2.1 Creating projects

2.1.1 e?studio
1. Create projects

Create a boot area project and a flash area project by following the procedures given in section 1.3,
Procedures for Creating the Boot and Flash Areas.

Place a tick in the “boot” checkbox to configure the flash area project to allow reference to the boot area
project from the flash area project when the flash area project is built. In such cases, the boot area project is
built before the flash area project.

B8 Properties for flash O >

type filter text Project References - v v

Resource . . .
Projects may refer to other projects in the workspace.

Builders Use this page to specify what other projects are referenced by the project.

C/C++ Build
C/C++ General Project references for 'flash:
ML o
Project References =k
Renesas OF
Run/Debug Settings
Task Repository

":?3' Apply and Close Cancel

Figure 5 Setting the Flash Area Project to Allow Reference to the Boot Area Project

R20UT3475EJ0300 Rev.3.00 Page 6 of 35
May 31, 2019 RENESAS

RL78 Family C Compiler Package (CC-RL)

How to Divide Boot and Flash Areas

2. Add files as targets of building

A. Add the following files to the boot area project as targets of building.

e extern_ftable.asm
ftable.inc

ocdmon_ce.asm

B. Add the following files to the flash area project as targets of building.

ftable.asm
ftable.inc
int.c
sub_mot.txt

{5 Project Explorer £3

boot.fsy (this file is generated after the boot area project is built)

v 15 boot

Y Includes

(2 generate

v (2 src
g boot.c
18 extern_ftable.asm

[n ftable.inc
S| ocdmon_ce.asm

—
Boot area project == r
-
=] boot HardwareDebug.launch

—

—
~

==

Add these files as targets of
building.

v | flash [HardwareDebug]
[Includes
(2 generate
Flash area project VRS e - - -
L Bbootfy _ _J
2 Wfeshe _ T
| ftable.asm |
Lg] int.c
— L submotet _

;| flash HardwareDebug.launch

Figure 6

-
”

I’-‘

\

This file is automatically
generated after the boot area
project is built.

—
“

Add these files as targets of
building.

—t

Example of Creating Projects with the e?studio

R20UT3475EJ0300 Rev.3.00

May 31, 2019 RENESAS

Page 7 of 35

RL78 Family C Compiler Package (CC-RL) How to Divide Boot and Flash Areas

212 CS+

1. Create projects
Create the flash area project as the main project and the boot area project as a sub-project*.

Note: The build order in CS+ should be [Sub-project] -> [Main project].
The boot area program will not be modified once it is created. Therefore, when creating the second-
or a later generation flash area project, the sub-project can be deleted.

2. Exclude the automatically generated file from the targets of building
Exclude the following file from the boot area and flash area projects.

e main.c

3. Add files as targets of building

A. Add the following files to the boot area project.
e boot.c
o extern_ftable.asm
e ftable.inc
e ocdmon_ce.asm

B. Add the following files to the flash area project.
e flash.c
o ftable.asm
e ftable.inc
e int.c
e boot.fsy

R20UT3475EJ0300 Rev.3.00 Page 8 of 35
May 31, 2019 RENESAS

RL78 Family C Compiler Package (CC-RL)

How to Divide Boot and Flash Areas

Project Tree 2 x
2 © 2 @&
& [flash Projec
. % RSF104LE (Microcontroller)
L_.)' Pin Configurator (Design Tool)
@ “;'I Code Generator (Design Tool)
.4, CC-RL (Build Tool)
.5 RL78 E1(Serial) (Debug Tool)
‘U Program Analyzer (Analyze Tool)
u j, File
I_:r cstart.asm
Flash area project) hdwinit.asm This file is automatically
e stkinitasm - generated after the boot area
li;.lﬂ"ﬂ"'.‘--------i’"\ R project is built.
0] iodefine.h AN
T .
l_‘u '""‘_________r ‘-'4\\ .
sub motbd o Add these files as targets of
| rc flash.c ____r =,7 building.
Amableine T 1)/
5 lﬁ boot (Subproject) T |
t R5F104LE (Microcontroller) ‘”'
._]) Pin Configurator (Design Tool) U]
"5 Code Generator (Design Tool) '\k
A CC-RL (Build Tool) N
.j'.?-\ RL78 Simulator (Debug Tool) 1 \\)
D Program Analyzer (Analyze Tool) 1 N Exclude these files from the
8 j File : ’,.-\- boqt area and flash area
. 1.7 projects.
Boot area project ‘ﬂ cstart.asm 14
'_:[hdwinit.asm 1
'_ﬂ stkinit.asm ’j
P mane -7/
“lader o000
£-| boot.c : ,’
I" 'ﬁ ftable.inc 1.7
I ':} ocdmon_ce.asm r
I ‘_:} extern_ftable.asm _:

Figure 7

Example of Creating Projects with CS+

R20UT3475EJ0300 Rev.3.00

May 31, 2019 RENESAS

Page 9 of 35

RL78 Family C Compiler Package (CC-RL) How to Divide Boot and Flash Areas

2.2 Creating acommon program for the boot and flash areas

2.2.1 Address definition file for the branch table (assembly language)
e Create ftable.inc, which is the address definition file for the branch table for reference from both the boot
and flash areas.
e FLASH_TABLE: Start address of the branch table
o INTERRUPT_OFFSET: Size of the interrupt area in the branch table

Example: ftable.inc

FLASH TABLE .EQU 0x2000
INTERRUPT OFFSET .EQU 0x100

2.3 Hex files for the boot and flash areas
File names used in this document are listed below (output procedures are described later).

¢ Hex file for the boot and flash areas combined: boot_flash.mot
o Hex file for the flash area: flash2000_ffff.mot
o Hex file for the boot area: boot0000_1fff.mot

Note: A load module file (*.abs) is separately generated for each of the boot and flash areas.

Combined hex file
(boot_flash.mot)

Hex file for the flash area
(flash2000_ffff.mot)
Flash area
Hex file for the boot area
(boot0000_1fff.mot)
2000H
Boot area
0000H
Figure 8 Hex Files for the Boot and Flash Areas
R20UT3475EJ0300 Rev.3.00 Page 10 of 35

May 31, 2019 RENESAS

RL78 Family C Compiler Package (CC-RL) How to Divide Boot and Flash Areas

2.4 Initialization procedure
Figure 9 shows the initialization procedure.

ROM area RAM area

Flash area

Flash area

func() _Copy the initial values
in _start.
° C main()
_start
Branch table area
BR [Ifunc For
functions
BR HVECT02
J;‘Ttp to ”“f, BR 1l VECTO1 For
startup routine BR Il start .
in the flash = Interrupts
area from the Boot area Boot area

end of _start.

Copy the initial values
in _start.
0000H
Figure 9 Initialization Procedure
R20UT3475EJ0300 Rev.3.00 Page 11 of 35

May 31, 2019 RENESAS

RL78 Family C Compiler Package (CC-RL) How to Divide Boot and Flash Areas

3. Boot Area

3.1 Creating boot area programs
The following steps are required for boot area programs.

— Modifying the startup routine

— Modifying hdwinit.asm and stkinit.asm

— Creating the program such that the on-chip debug area is secured

— Creating a file for resolving the function addresses in the branch table

3.1.1 Modifying the startup routine (cstart.asm)
The procedure for modifying the startup routine (cstart.asm) is given below.

1. Add inclusion of the address definition file for the branch table.

Example: Modifying cstart.asm (1/6)

SIFNDEF _ RENESAS VERSION
__RENESAS VERSION .EQU 0x01000000
SENDIF

SINCLUDE "ftable.inc"

2. Comment out the conditional assembly control instructions to make the definition of the .stack_bss
section valid.

Example: Modifying cstart.asm (2/6)

;$IF (__RENESAS VERSION _ < 0x01010000) ; for CC-RL V1.00

! [CAUTION]!!!
; Set up stack size suitable for a project.
.SECTION .stack bss, BSS
__stackend:
.DS 0x200
__stacktop:
; SENDIF

3. Modify the section name to exclude it from the target of the -FSymbol option (which is used to output
externally defined symbols).

Example: Modifying cstart.asm (3/6)

.SECTION .btext, TEXT
_start:

R20UT3475EJ0300 Rev.3.00 Page 12 of 35
May 31, 2019 RENESAS

RL78 Family C Compiler Package (CC-RL) How to Divide Boot and Flash Areas

4. Comment out the conditional assembly control instructions to specify the explicitly allocated .stack _bss
section as the stack pointer.

Example: Modifying cstart.asm (4/6)

;$IF (__RENESAS VERSION _ >= 0x01010000)
; MOVW SP, #LOWW (__STACK_ADDR_START)
; SELSE ; for CC-RL V1.00
MOVW SP, #LOWW (_stacktop)
; SENDIF

5. Modify the main function call to the call to the main function for the boot area, and add a branch
instruction to the flash area startup routine.

Example: Modifying cstart.asm (5/6)

CALL I'l boot main ; main();
BR !'FLASH TABLE

6. Comment out the definition of the .const section when no mirror source area is included in the boot area.

Example: Modifying cstart.asm (6/6)

; section
$IF (_ RENESAS VERSION >= 0x01010000)
.SECTION .RLIB, TEXTF

.L section RLIB:

.SECTION .SLIB, TEXTF

.L section SLIB:

SENDIF

.SECTION .textf, TEXTF

.L section textf:

; .SECTION .const, CONST

;.L section const:

R20UT3475EJ0300 Rev.3.00 Page 13 of 35
May 31, 2019 RENESAS

RL78 Family C Compiler Package (CC-RL) How to Divide Boot and Flash Areas

3.1.2 Modifying hdwinit.asm and stkinit.asm

Modify the section name to exclude it from the target of the -FSymbol option (which is used to output
externally defined symbols).

Example: Modifying hdwinit.asm and stkinit.asm

‘ .btextf .CSEG TEXTF

3.1.3 Creating the program such that the on-chip debug area is secured (ocdrom_ce.asm)
To use the on-chip debugging function, specific memory areas are required to be empty (filled with Oxff).

Specifying the -debug_monitor option of the linker leads to the generation of a load module file in which the
addresses 0x0002 to 0x0003, 0x00ce to 0x00d7, and the last 512 bytes of ROM are filled with Oxff (set up
according to the information in the device file specified with the -device option).

Since the last 512 bytes of ROM are part of the flash area, make the following settings for the boot area.

e Addresses 0x0002 to 0x0003
Specify Oxffff with the linker option -VECTN.

e Addresses 0x00ce to 0x00d7
Make definitions in the assembly source (see the following program).

Example: ocdrom_ce.asm

MON CE .CSEG AT 0x00ce
.DB8 Oxffffffffffffffff
.DB2 Oxffff

e Last 512 bytes of ROM
Allocate this area through the flash area project.

3.1.4 Creating afile for resolving the function addresses in the branch table
(extern_ftable.asm)

o Define symbols for resolving the addresses for the branch table to be used to call functions in the flash
area from the boot area.
o Register this file in the project.

Example: Creating extern_ftable.asm

SINCLUDE "ftable.inc"

.public f1
_f1 .equ (FLASH TABLE + INTERRUPT OFFSET + (0 * 4))
.public f2
7f2 .equ (FLASH TABLE + INTERRUPT OFFSET + (1 * 4))
R20UT3475EJ0300 Rev.3.00 Page 14 of 35

May 31, 2019 RENESAS

RL78 Family C Compiler Package (CC-RL) How to Divide Boot and Flash Areas

3.2 Specifying boot area options
Make the following option settings for the boot area.

— Output of a file for the externally defined symbols

— Specify the section allocation

— Specify a vector for branching to the interrupt function in the flash area
— Make necessary settings for the on-chip debugging function

— Specify hex file output only to the boot area address range

3.2.1 Output of afile for the externally defined symbols

The externally defined symbols need to be output to a file so that the flash area project has access to the
variables and functions in the boot area.

Register all target sections with the -FSymbol option.

Example: e? studio
[Properties]—[C/C++ Build]—[Settings]—[Tool Settings] tabbed page

—[Linker]—[Output]—[Section that outputs external defined symbols to the file]

B8 Froperties for boat m} X
type filter text Settings fe=1n J - -
Resource
Builders .
v C/C++ Build Configuration: |HardwareDebug [Active] ~ Manage Configurations...

Build Variables
Environment

Logging & Tool Settings Toolchain Device #° Build Steps Build Artifact Binary Parsers €3 Error Parsers
(£ y

Settings

Tool Chain Editor i Common Type of output file Absolute ~
C/C++ General i Compiler o = B 0
MeU 1 Assembler S{workspace_loc/${ProjName}/${Confighame}}
Project References ~ B Linker [~ Output debug information
Renesas QF ~ @ Input O Compress debug information
Run/Debug Settings @ Advanced [Delete local symbel name information

T

Task Repository g List DRedu(E memaory occupancy of linker

(# Optimization
(22 Section
Deyice

~ (& Output

[CIFill with padding data at the end of a section

Address setting for unused vector area

[[] Generate divided vector table section

AVanCed e setting for specified area of vector tabl &
3 Miscellaneous ress setting for specified area of vector table L=
@ User
%3 Converter
ROM te RAM mapped section £ w38 &

.sdata=.sdataR

)

Section that outputs external defined symbols to the file & & #

.const
bss
.shss
.data
.sdata v v
H Apply and Close Cancel

Figure 10 Example of Option Setting with the e? studio

R20UT3475EJ0300 Rev.3.00 Page 15 of 35
May 31, 2019 RENESAS

RL78 Family C Compiler Package (CC-RL) How to Divide Boot and Flash Areas

Example: CS+
[CC-RL (Build Tool)]—[Link Options] tabbed page

—[Section]—[Section that outputs external defined symbols to the file]

- X
4, CC-RL Property a P -+
+ Section
Layout sections automatically Yes-AUTO_SECTION_LAYOUT)
Section start address
W, 1on that outputs external defined symbols to the tile geclinn that outputs extemnal defined symbols to the ﬁle[m Y
[00] .constf
o1 text
[02] textf
[03] _const
[04] bss
[05] .sbas
[0€] data
[071 .sdata
[08] .RLIB
LB o
» ROM to RAM mapped section ROMto RAM mapped section[2]
> Verify
» Message
» Others w
[01]
Specifies the section that cutputs external defined symbels to the file in the format of "<section name>", one per line.
This option corresponds to the -FSymbol option of the rlink command.
—
Commaon Options /{ Compile Options {< AssembleOptions l Link Options l Hex Output Options /{ If0 Header File Generation Options / -

Figure 11 Example of Option Setting with CS+

R20UT3475EJ0300 Rev.3.00 Page 16 of 35
May 31, 2019 RENESAS

RL78 Family C Compiler Package (CC-RL) How to Divide Boot and Flash Areas

3.2.2 Specifying the section allocation

Specify the section allocation in the boot area with the linker option -start. Make sure that the sections do not
overlap those in the flash area.

In addition, specify the stack area section.

Example: e? studio
[Properties]—[C/C++ Build]—[Settings]—[Tool Settings] tabbed page

—[Linker]—[Section]—[Section Viewer]

Properties for boot O X

type filter text Settings = v v
Resource R
Builders

v C/C++ Build Configuration: HardwareDebug [Active] ~ | | Manage Configurations...

Build Variables
Environment

Legging i) Tool Settings Toolchain Device A Build Steps Build Artifact Binary Parsers @ Error Parsers
Settings . .
Tool Chain Editor % Common Specify execution start address
C/C++ General i Compiler Execution start address | _start |
i
MCU ® A-ssembler Layout sections automatically
Project References ~ B Linker |
Renesas QE v (& Input Sections btext, btextf, RLIB, text, SLIB, dextf, constf, data, sdata/0D] [..{
Run/Debug Settings (5 Advanced
Task Repository 2 List i %
Optimization
Section Viewer
(2 Device Address Section Name
i)
v (2 Output 0x000000D8 btext
@ Ad\fanced ————————————— btextf
(2 Miscellaneou RLIE
(2 User :
3 Converter ted
SLIB Add Secti
tetf ection y
.constf New Overlay
G data Remove Section el
- sdata
I I Move Up
dataR Mowve Down
| bss
@DDFFEZD I.sdataR
: shss
[[] Override Linker Script
Browse
Import... | | Export... | | Re-Apply
Uk | Cancel
Figure 12 Example of Option Setting with the e?studio
R20UT3475EJ0300 Rev.3.00 Page 17 of 35

May 31, 2019 RENESAS

RL78 Family C Compiler Package (CC-RL) How to Divide Boot and Flash Areas

Example: CS+
[CC-RL (Build Tool)]—[Link Options] tabbed page

—[Section]—[Section start address]

4, CC-RL Property al |2 [+
v Section ~
| ayout sections sutomatically Yes(-AUTO_SECTION_LAYOUT)
art add _btext. btextf. text. RLIB..SLIB. textf. constf . data. sdata/000D8. stack_bss. datz ..
w 1on that outputs externa ined symbpls to the Tile
Section Settings X
[00]
[01] ;
[02] Address Section Add...
03] ‘ J[o-o000e brer ot
odffy...
04 btextf =
[05]
(0] tewt MNew Qveray...
[07] RLIB R
[08] Bemove
[0g] SLIB
5 ROM to RAM mapped section textf Up Down
» Verify constf
» Mesz=age
> Others data -
= _sda‘ta e
Section start address
Specify the section start address. I [FES00 stack bss
This option corresponds to the -STAR! option of the rlink command. dataR
Common Options Compile Options AssembleOptions Link O -
R —— PR A {20 sdataR mpot...
shes Export

Figure 13 Example of Option Setting with CS+

R20UT3475EJ0300 Rev.3.00 Page 18 of 35
May 31, 2019 RENESAS

RL78 Family C Compiler Package (CC-RL) How to Divide Boot and Flash Areas

3.2.3 Specifying a vector for branching to the interrupt function in the flash area
Specify the address in the branch table with the linker option -VECTN.

Example: e? studio
[Properties]—[C/C++ Build]—[Settings]—[Tool Settings] tabbed page
—[Linker]—[Output]—[Address setting for specified area of vector table]

—8=0x2010 (to specify 0x2010 for address 8)

[Properties for boot O x
type filter text Settings = r v
Resource =
Builders ~ B Linker Output debug information "
w C/C++ Build v @ Input [] Compress debug information
Build Variables (% Advanced [[] Delete local symbol name information
. L
Environment %: List [JReduce memeory occupancy of linker
Logging g P |.m|za tn I Fill with padding data at the end of a section
Settings (% Section
Tool Chain Editor Device Address setting for unused vector area
C/C++ General [] Generate divided vector table section
MCU (2% Advanced . — —
Project References (& Miscellaneous Address setting for specified area of vector table & o 8 ﬁ| ,@
Renesas OF (2 User
Run/Debug Settings & Converter
Task Repository
ROM to RAM mapped section 288 5L
.sdata=.sdataR
v
® Apply and Close Cancel
Figure 14 Example of Option Setting with the e?studio
Example: CS+
[CC-RL (Build Tool)]—[Link Options] tabbed page
—[Output Code]—[Address setting for specified area of vector table]
—8=2010 (to specify 0x2010 for address 8)
4, CC-RL Property al 2 |-+
» {Dewice ~
~ Dutput Code
Specify execution start address Mo
Fill with padding data at the end of a section Mo
w Address setting for specified area of vector table Address setting for specified area of vector table[2]
[0] 2=
| D 8-2010 |
Address sething for unused vector area
Generate function list used for detecting illegal indirect function call Mo
Split vector table sections Mo
> List]
Device
Common Options /(Compile Options /(AssembleOpt’lonsl i Link Options ,:' lHex Qutput Options /(I/0 Header File Generation Options / -

Figure 15 Example of Option Setting with CS+

R20UT3475EJ0300 Rev.3.00 Page 19 of 35
May 31, 2019 RENESAS

RL78 Family C Compiler Package (CC-RL)

How to Divide Boot and Flash Areas

3.2.4 Making necessary settings for the on-chip debugging function

1. Allocate the area of addresses 0x0002 and 0x0003 with the linker option -VECTN (if you are using the e2
studio, this area is automatically allocated).

2. Set the linker option —OCDBG to be enabled and specify the value for the on-chip debug option byte.

Example: e? studio

[Properties]—[C/C++ Build]—[Settings]—[Tool Settings] tabbed page

—[Linker]—[Device]—[Set enable/disable on-chip debug by link option]

Note: If you are using a hardware-debug build configuration (i.e. with “E1/E2”, “E2”, or “E2 Lite” selected as
the debugger hardware), deselect the [Secure memory area of OCD monitor] checkbox.

Properties for boot

type filter text

Resource
Builders
w C/C++ Build
Build Variables
Environment
Logging
Settings
Tool Chain Editor
C/C++ General
MICU
Project References
Renesas OF
Run/Debug Settings
Task Repository

O X
Settings L= v
By Commen Security ID value 0 | ~
& Compiler Reserve working memary for RRM/DMM function
%y Assembler
~ BB Linker X N Y
v (3 Input L ey e g e . e eeeeeccccccccccaaaad
(#2 Advanced
@ List .
Set tion b
(2 Optimization [Set user option byte
Section FFFFEF
Set enable/disable on-chip debug by link option
Ty
v e O\.:tput On-chip debug control value | 23|
(22 Advanced
@ Miscellaneous RAM area without section Mone V
i . L
B User Output a warning message when a section is allocated to the RAM area
s
& Converter [] Check specifications of device
[] Suppress checking section allocation that crosses (64KB-1) boundary
[J De not check memery allecation of sections
Address range of memory type &
v
Apply and Close Cancel

Figure 16

Example of Option Setting with the e?studio

R20UT3475EJ0300 Rev.3.00

May 31, 2019

Re Page 20 of 35
RENESAS

RL78 Family C Compiler Package (CC-RL)

Example: CS+

[CC-RL (Build Tool)]—[Link Options] tabbed page

—[Device]—[Option byte values for OCD]

—[Section]—~[Address setting for specified area of vector table]

—2=ffff (to set Oxffff at address 2)

How to Divide Boot and Flash Areas

4, CC-RL Property =
i _hi ink onticn YeaOCDRG)
ID;ion b*lze values for OCD 85
Set debug monitor area Mo
Set user option byte Yes-USER_OPT_BYTE)
User option byte value FFFFEF
Control allocation to self RAM area Mo
w Dutput Code
Specify execution start address Mo
Fill with padding data st the end of section Mo
- ; i . Adgess seting for specified ama of vector tablel]
I [0] P<iiid
[1] 8=2010
Address setting for unused vector ares
Device
[——
Common Options ,{ Compile Options ,{ AssembleOptions) » Link Options IHex Output Options ({ I/ Header File Generation Options /

Figure 17

Example of Option Setting with CS+

R20UT3475EJ0300 Rev.3.00
May 31, 2019

Page 21 of 35

RENESAS

RL78 Family C Compiler Package (CC-RL) How to Divide Boot and Flash Areas

3.2.5 Specifying hex file output only to the boot area address range
Specify the output file name and output addresses.

Example: e? studio

[Properties]—[C/C++ Build]—[Settings]—[Tool Settings] tabbed page
—[Converter]—[Output]

—Select the [Output hex file] checkbox.

—Select [Motorola S-record file] as the output file format.

—Specify the output file name and output addresses in [Division output file].

Properties for boot O X
type filter text Settings =4 - v
Resource
Builders "
w C/C++ Build) Tool Settings Toolchain Device # Build Steps Build Artifact Binary Parsers @ Error Parsers
Build Variables N
Environment & Common /| Output hexfile
Logging &5 Compiler Output file format | Motorola 5-record file
Settings © Asserbler [Check whether add HEX file i in internal ROM or d
o 5 Linker eck whether address range o ileis in interna or data flash area
Tool Chain Editor r - r - o
C/C++ General v & i iomrerter S{workspace_loc/${ProjName}/${ Confighame}/${ArtifactMame}}.
Mcu Division output file & &
Project References (2 Hex format :
Renesas OF @ CRC Operation MDDC' 1fff.mot=0000-1fff
Run/Debug Settings (22 Miscellaneous

T
Task Repository (£ User

Figure 18 Example of Option Setting with the e?studio
Example: CS+
[CC-RL (Build Tool)]—[Hex Output Options] tabbed page
—[Output File]—Specify the output file name and output addresses in [Division output file].
Ao CC-RL Property o (&2 ||+
Cutput hex file Yes ~
O utput folder .BuildModeName ™.
Output file name “ProjectName % mot

HEH

bl Divizion output file Division output file[1]

“%BuildMode Name %"\boot 0000_1fff mot=0000-1fff

Division output file

Specify the division hex file in the format of "<File names={<Start address>-<End address>|<Section name>[:.]i['<Load address:]", one per line. ([<Load address>] can
be specified in case of CC-RLW1.07.00 or later and the [Hex file format] property is Intel HEX file or Motorolz S-record file.)

Specifies the <Start address> and <End address> in hexadecimal without 0x.

The default extenzions depends on [Hex file format]property when extenzion omitted. ..

Common Options ,(Compile Options ,(Azzemble Options ,(Link0ptionsl}, Hexﬂutputﬂptions{,{] If0 Header File Generation Options / -

Figure 19 Example of Option Setting with CS+

R20UT3475EJ0300 Rev.3.00 Page 22 of 35
May 31, 2019 RENESAS

RL78 Family C Compiler Package (CC-RL) How to Divide Boot and Flash Areas

4. Flash Area

4.1 Creating flash area programs
The following steps are required for flash area programs.

— Modifying the startup routine
— Creating a branch table program
— Defining an interrupt function

4.1.1 Modifying the startup routine (cstart.asm)

Comment out the stack pointer settings. The stack pointer specified in the boot area startup routine should
be used; a stack pointer must not be specified again in the flash area.

Example: cstart.asm

;$SIF (_ RENESAS VERSION _ >= 0x01010000)
; MOVW SP, #LOWW(__STACK ADDR_START)

; SELSE ; for CC-RL V1.00

; MOVW SP, #LOWW (_stacktop)

; SENDIF

4.1.2 Creating a branch table program (ftable.asm)

At the addresses called from the boot area, write instructions for branching to the function addresses in the
flash area.

Example: ftable.asm

SINCLUDE "ftable.inc"
.EXTERN start .
.EXTERN _f1 For interrupts
.EXTERN f2

.Jjtext .CSEG AT FLASH_TABLE
br !l start ; RESET V
.DBR4 Oxffffffff ;
.DBR4 Oxffffffff ; INTWDTI
.DBR4 Oxffffffff ; INTLVI
br ! int INTPO ; INTPO
.DBR4 Oxffffffff ; INTP1 .
.DBR4 Oxffffffff ; INTP2 For funCtlonS

Omitted

.Jjtext2 .CSEG AT FLASH_TABLE+INTERRUPT_OFFSET /
br rrof1
br 12

R20UT3475EJ0300 Rev.3.00 Page 23 of 35

May 31, 2019 RENESAS

RL78 Family C Compiler Package (CC-RL) How to Divide Boot and Flash Areas

4.1.3 Defining an interrupt function
e The interrupt vector should be defined in the boot area project.
¢ Do not specify the vector address (vect) with the #pragma interrupt directive in the flash area.

Example: int.c

#include "iodefine.h"
#pragma interrupt int INTPO
volatile char f;

void int INTPO (void)

4.2 Specifying flash area options
Make the following option settings for the flash area.

— Register the externally defined symbol file with the project
— Specify the section allocation

— Specify hex file output only to the flash area address range
— Combine the hex files for the boot and flash areas

4.2.1 Registering the externally defined symbol file with the project

Reqgister the externally defined symbol file created in the boot area with the project to allow access to the
variables and functions in the boot area.

Example: e? studio

If you are using the e? studio, build the boot area project and then manually register the externally defined
symbol file (boot.fsy) created in the boot area with the flash area project.

i Project Bxplarer &3 = O

=% boot
v == flash [HardwareDebug]
it Includes
2 generate
w B osre
boot.fsy
‘-jgrﬂashc
ftable.asm
ftable.inc
[£] int.c
= sub_mot.bd
=| flash HardwareDebug.launch

Figure 20 Example of Option Setting with the e? studio

R20UT3475EJ0300 Rev.3.00 Page 24 of 35
May 31, 2019 RENESAS

RL78 Family C Compiler Package (CC-RL) How to Divide Boot and Flash Areas

Example: CS+
If you are using CS+, building the boot area project will automatically register the externally defined symbol
file (boot.fsy) with the flash area project.

Project Tree B x

; @ 2|

=-|_{3 flash (Project)*

----- i& R5F104LE (Microcontroller)
Eg---/a Pin Configurator (Design Toel)
[jB:,_j Code Generator (Design Tool)

..... 4., CC-RL (Build Tool)

----- i, RL78 E1(Serial) (Debug Tool]

..... ‘E—:‘ Pregram Analyzer (Analyze Tool)

- File

Eﬂ'"ﬂ Build tool generated files

Figure 21 Example of Option Setting with CS+

R20UT3475EJ0300 Rev.3.00 Page 25 of 35

May 31, 2019 RENESAS

RL78 Family C Compiler Package (CC-RL) How to Divide Boot and Flash Areas

4.2.2 Specifying the section allocation
Specify the section allocation in the flash area with the linker option -start.

e Make sure that the sections do not overlap those in the boot area.
e Do not allocate anything to the branch table area.

Example: e? studio
[Properties]—[C/C++ Build]—[Settings]—[Tool Settings] tabbed page

—[Linker]—[Section]—[Section Viewer]

] >

Section Viewer

Address Section Mame

l Che0002 200 I .const

dext
.data
sdata

RLIB
SLIB Mew Overlay

Add Section

teutf Rermowve Section

.constf

Move Up
leDDDFECDD I .dataR

Mowve Down

bss
[ox000FFEE0 | <ttaR
shss
[] Override Linker Script
Browse
Import... | | Export... | | Re-Bpply
0K | | Cancel

Figure 22 Example of Option Setting with the e?studio

R20UT3475EJ0300 Rev.3.00 Page 26 of 35
May 31, 2019 RENESAS

RL78 Family C Compiler Package (CC-RL) How to Divide Boot and Flash Areas

Example: CS+
[CC-RL (Build Tool)]—[Link Options] tabbed page

—[Section]—[Section start address]

Section Settings >
Address Section Add...
02200 const
Modify...
lext
RLIB Mew Overday ...
SLIB Remove
teutf
congtf =F =
data
sdata
(FECOD dataR
| bss
{xFFERD sdataR Import...
| o -

Figure 23 Example of Option Setting with CS+

R20UT3475EJ0300 Rev.3.00 Page 27 of 35
May 31, 2019 RENESAS

RL78 Family C Compiler Package (CC-RL) How to Divide Boot and Flash Areas

4.2.3 Specifying hex file output only to the flash area address range
Specify the output file name and output addresses.

Example: e? studio

[Properties] —[C/C++ Build]—[Settings]—[Tool Settings] tabbed page
—[Converter]—[Output]

—Select the [Output hex file] checkbox.

—Select [Motorola S-record file] as the output file format.

—Specify the output file name and output addresses in [Division output file].

B8 Properties for flash O *

type filter text Settings - > -
Resource R
Builders

s C/C++ Build Configuration: HardwareDebug [Active] *~ | | Manage Configurations...

Build Variables
Environment

Logging ¥ Tool Settings Toolchain Device A Build Steps Build Artifact Binary Parsers @ Error Parsers
p Ly
Settings
Tool Chain Editer & Common Output hexfile
C/C++ General 85 Compiler Output file format | Motorola 5-record file
Mcu ® Assembler T Check whether add f HEX file is in internal ROM or data flash
Project References 5 Linker eckw er address range o ileis in interna or data flash area
Renesas OF w %3 Converter S${workspace_loc:/${ProjName}/${ ConfigName}/${Artifaci
I .)
Run_aDebug seftings Division output file & &
Task Repository Hex format
@ CRC Operation flash2000_ffff.mot= 2000-ffff
@ Miscellanecus
(52 User
v
@
£ Apply and Close Cancel
Figure 24 Example of Option Setting with the e?studio
Example: CS+
[CC-RL (Build Tool)]—[Hex Output Options] tabbed page
—[Output File]—Specify the output file name and output addresses in [Division output file].
4, CC-RL Property a o -+
w Output File
Output hex file Yes
Output folder %BuildModeName ¥
Output file name “%ProjectName . mot
e e ——————————————————]
Al Divizion output file Division output file[1]
[0] % BuildModeName % flash 2000 _ffff mot =20004f
v Hex Format o
Division output file
Specify the division hex file in the format of "<File name>={<Start address>-<End address>|<Section name:[:._]}[/<Load address>]", one per line. ([<Load address>] can
be specified in case of CC-RL W1.07.00 or later and the [Hex file format] property is Intel HEX file or Motorola S-record file.)
Specifies the <Start address> and <End address> in hexadecimal without Ox.. ["
', Commaon Options ,(Compile Options ,{J AssembleOptions ,(Link Optioni A Hex{]utput{]ptionstl If0 Header File Generation Options / -
Figure 25 Example of Option Setting with CS+

R20UT3475EJ0300 Rev.3.00
May 31, 2019

Re Page 28 of 35
RENESAS

RL78 Family C Compiler Package (CC-RL)

How to Divide Boot and Flash Areas

4.2.4 Combining the hex files for the boot and flash areas
To combine the hex files for the boot and flash areas into one file, add the linker execution step after the

build processing.

Example: e? studio

[Properties] ~[C/C++ Build]—[Settings]—[Build Steps] tabbed page—[Post-build steps]
—Add the command to execute the linker (rlink.exe -subcommand=..¥src¥sub_mot.txt) to [Command(s):].

Properties for flash O x
type filter text Settings - > -
Resource R
Builders 3 Tool Settings Toolchain Devic Build Artifact Binary Parsers @ Error Parsers
v C/C++ Build)
Build Variables Pre-build steps
Environment Command(s):
Logging | v|
settings Description:
Tool Chain Editor phon
C/C++ General | V|
MCU)
Project References moostbuild steps
Renesas OF Command(s):
Run/Debug Settings | rlink.exe -subcemmand_.\src\sub_met.td] w
Task Repository Description:
v
Figure 26 Example of Option Setting with the e?studio
Example: CS+
[CC-RL (Build Tool)]J—=[Common Options] tabbed page—[Others]
—Add the command to execute the linker ("%MicomToolPath%¥CC-RL¥V1.08.00¥bin¥rlink.exe" -
subcommand=sub_mot.txt) to [Commands executed after build processing].
4, CC-RL Property a o -+
> Version Select ~
> MNotes
v Others
Output message format % TangetFiles ™
Format of build option list TargetF'Ies Program =Opt|0ns
v Comnarﬂs executed after build processing[1]
[0 “.Micom Tool Path %2ACC-RLYW1.08. 00 bindink exe” subcommand=sub_mot tx v
Commands executed after build processing
Specifies the command to be executed after build processing.
‘wthen specifying = batch file, use a call instruction like “call a.bat”. \When described "#lpython” in the first line, the contents from the second line to the last line are
ommand_..
‘\Commonﬂ _____ Iolls,t Compile Options A/ AssembleOptions ,{ Link Options ,{ Hex Output Options ,(1/0 Header File Generation Options / -

Figure 27

Example of Option Setting with CS+

R20UT3475EJ0300 Rev.3.00
May 31, 2019

RENESAS

Page 29 of 35

RL78 Family C Compiler Package (CC-RL) How to Divide Boot and Flash Areas

Specify the input hex files, their format, and the output file name in the subcommand file for input to the

linker.

Example: sub_mot.txt (e? studio)

—input=..¥..¥boot¥HardwareDebug¥boot0000 1fff.mot
—-input=£flash2000 ffff.mot

-form=stype

-output=boot flash.mot

Example: sub_mot.txt (CS+)

—input=.¥boot¥DefaultBuild¥boot0000 1fff.mot
—input=.¥DefaultBuild¥flash2000 ffff.mot
-form=stype
-output=.¥DefaultBuild¥boot flash.mot

R20UT3475EJ0300 Rev.3.00
May 31, 2019 RENESAS

Page 30 of 35

RL78 Family C Compiler Package (CC-RL)

How to Divide Boot and Flash Areas

5. Debugging Tool

5.1 Downloading to Debugging Tool

Two load module files (*.abs) are generated; one for each of the boot and flash areas. Download both of the
load module files to the debugging tool.

Example: e? studio

[Debug]—[Debug Configurations]—[flash HardwareDebug]—[Startup] tabbed page

—[Load image and symbols]

Add the load module file for the boot area to the project for the flash area.

E Debug Configurations

Create, manage, and run configurations

€3 [Main]: Program does not exist

2X|B®-
type filter text

C/C++ Application

C/C++ Remote Application

=/ EASE Script

GDE Hardware Debugging

GDB Open0OCD Debugging

[£7] GDB Simulater Debugging (RHA50)
Java Applet
Java Application

@ Launch Group

= Launch Group (Deprecated)

[EL Remote Application

:X‘s. Remote Debugger
Remote Java Application

~ [t7] Renesas GDB Hardware Debugging

[c¥| boot HardwareDebug

[£7] Renesas Linux Application

[£7] Renesas Simulator Debugging (R, RL78)

5 Target Communication Framework

Filter matched 19 of 21 items

Mame: | flash HardwareDebug

Main | %5 Debuggeﬁ Common | & Source

Initialization Commands

[] Reset and Delay (seconds):
[Halt

3

Lead image and symbols

Filename

Program Binary [flash.x]

Load type

Image and Symbols

Offset (hex)

On connect

Yes

boot.x [C:\Users\toolgi... |Image and Symbols

0

| No

Runtime Ontione

Revert

Debug

Add...
Edit...
Remove
Move up

Move down

Apply

Close

Debug - flash/src/cstart.asm - e2 studio

File Edit

-

Mavigate

#5 Debug 2
a [c7] flash HardwareD
4 2 flashax [1]
4 o Thread #1
= start()
p| Ci/Renesas/el

5%"%

Search Project Renesas Views Run

..|®'Q',mé\ﬂp

All modules

Window Help
m 2 i

8 &

I All on-connect modules

Clear syrmbol table

s| GDB server

Program Bin

Gl

Figure 28

ary [bootx] [Image and Symbols, (k0]

*Note on e?studio

Set boot.x to “"No"

when

connecting the debugging
tool. Download it after

connection.

Example of Option Setting with the e?studio

R20UT3475EJ0300 Rev.3.00

May 31, 2019

RENESAS

Page 31 of 35

RL78 Family C Compiler Package (CC-RL) How to Divide Boot and Flash Areas

Example: CS+
[RL78 Simulator (Debug Tool)]—[Download File Settings] tabbed page

—[Download]—[Download files]
Add the load module file for the boot area to the project for the flash area.

23 RL78 Simulator Property
v _Download

b | Download files 121
*

CPU Reset after download Download Files

Automatic change method of event setting position _
» Debug Information Download file list: Download file property: |
- - -
- I File _ \boot\Default Build\boot .abs |
P e type Load module Tile
- Download object Yes

Download symbol informatic Yes
Generate the information fo Yes

Fle
Specify the file to be downloaded.
Downlozad files Add Bemove
Specifies the file to be downloaded. The download file dialog box is opened

Connect Settings ({ Debug Tool Settings Ik Download File Settings #{I Hook Transaction Settings /

Figure 29 Example of Option Setting with CS+

R20UT3475EJ0300 Rev.3.00 Page 32 of 35
May 31, 2019 RENESAS

RL78 Family C Compiler Package (CC-RL) How to Divide Boot and Flash Areas

6. Sample Programs

The following pages show examples of boot and flash area programs that were created through the
procedures described in earlier sections.

6.1 Sample program for the boot area (boot.c)

#include "iodefine.h"/* SFR definition file */
#pragma interrupt int INTPI1 (vect=INTPl) /* Interrupt definition in the boot
area */
int boot a 0x12;
int boot b = 0x34;
extern int fl(int); /* Prototype declaration of a function in the flash area
*/
extern int f2(int); /* Prototype declaration of a function in the flash area
*/
void boot main(void) /* Main function in the boot area */
{
/* Main processing in the boot area */
}
void boot func(void)
{
boot a = fl(boot a); /* Call of a function in the flash area */
boot b = f2(boot b); /* Call of a function in the flash area */
}
void int INTP1 (void) /* Interrupt processing in the boot area */

{

boot a = 1;
}

R20UT3475EJ0300 Rev.3.00 Page 33 of 35
May 31, 2019 RENESAS

RL78 Family C Compiler Package (CC-RL) How to Divide Boot and Flash Areas

6.2 Sample program for the flash area (flash.c)

#include "iodefine.h"/* SFR definition file */
int flash a, Db;
extern int boot a, boot b; /* Functions defined in the boot area */
extern void boot func(void); /* Function defined in the boot area */
int f1(int a)
{
return (++a);
}
int f£2(int b)
{

return (--b);
}
void main (void) /* Main function in the flash area */
{
boot a++; /* Access to a variable in the boot area */
boot b++; /* Access to a variable in the boot area */
boot func(); /* Access to a variable in the boot area */
}
R20UT3475EJ0300 Rev.3.00 Page 34 of 35

May 31, 2019 RENESAS

RL78 Family C Compiler Package (CC-RL) How to Divide Boot and Flash Areas

Revision History

Description
Rev. Date Page Summary
1.00 - New release
2.00 All Changed the format of this document

P3, P29, | Updated the version numbers of tools
P32, P47

P32, P33 | Corrected the values to be specified with the -VECTN option

P40 Corrected the branch instruction to the _int_INTPO label

3.00 All Changed the format of this document
Updated the version numbers of tools

R20UT3475EJ0300 Rev.3.00 Page 35 of 35
May 31, 2019 RENESAS

Notice

1.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products
and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of
your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the
use of these circuits, software, or information.
Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.
You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas
Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas
Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.
When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc.
Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products
outside of such specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you
are responsible for evaluating the safety of the final products or systems manufactured by you.
Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.
Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. ltis the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or

transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Notel) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.
(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

Contact information

For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

© 2019 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 Dividing the Boot and Flash Areas
	1.2 Allocating the Boot and Flash Areas
	1.3 Procedures for Creating the Boot Area and Flash Area Projects
	1.4 Overview of Build Processing for the Boot and Flash Areas

	2. Common Processing for the Boot and Flash Areas
	2.1 Creating projects
	2.1.1 e2 studio
	2.1.2 CS+

	2.2 Creating a common program for the boot and flash areas
	2.2.1 Address definition file for the branch table (assembly language)

	2.3 Hex files for the boot and flash areas
	2.4 Initialization procedure

	3. Boot Area
	3.1 Creating boot area programs
	3.1.1 Modifying the startup routine (cstart.asm)
	3.1.2 Modifying hdwinit.asm and stkinit.asm
	3.1.3 Creating the program such that the on-chip debug area is secured (ocdrom_ce.asm)
	3.1.4 Creating a file for resolving the function addresses in the branch table (extern_ftable.asm)

	3.2 Specifying boot area options
	3.2.1 Output of a file for the externally defined symbols
	3.2.2 Specifying the section allocation
	3.2.3 Specifying a vector for branching to the interrupt function in the flash area
	3.2.4 Making necessary settings for the on-chip debugging function
	3.2.5 Specifying hex file output only to the boot area address range

	4. Flash Area
	4.1 Creating flash area programs
	4.1.1 Modifying the startup routine (cstart.asm)
	4.1.2 Creating a branch table program (ftable.asm)
	4.1.3 Defining an interrupt function

	4.2 Specifying flash area options
	4.2.1 Registering the externally defined symbol file with the project
	4.2.2 Specifying the section allocation
	4.2.3 Specifying hex file output only to the flash area address range
	4.2.4 Combining the hex files for the boot and flash areas

	5. Debugging Tool
	5.1 Downloading to Debugging Tool

	6. Sample Programs
	6.1 Sample program for the boot area (boot.c)
	6.2 Sample program for the flash area (flash.c)

	Revision History
	Notice

