Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Renesas Starter Kit

RSKM16C62P User's Manual RENESAS SINGLE-CHIP MICROCOMPUTER M16C FAMILY

Table of Contents

Chapter 1. Preface
Chapter 2. Purpose
Chapter 3. Power Supply
3.1. Requirements
3.2. Power – Up Behaviour
Chapter 4. Board Layout
4.1. Component Layout4
4.2. Board Dimensions
Chapter 5. Block Diagram
Chapter 6. User Circuitry7
6.1. Switches7
6.2. LEDs7
6.3. Potentiometer7
6.4. Serial port8
6.5. LCD Module
6.6. Option Links9
6.7. Oscillator Sources12
6.8. Reset Circuit
Chapter 7. Modes14
7.1. Boot mode
7.2. Single chip mode14
Chapter 8. Programming Methods15
Chapter 9. Headers16
9.1. Microcontroller Headers
9.2. Application Headers
Chapter 10. Code Development
10.1. Overview
10.2. Mode Support21
10.3. Breakpoint Support21
10.4. Memory Map22
Chapter 11. Component Placement
Chapter 12. Additional Information

Chapter 1. Preface

Cautions

This document may be, wholly or partially, subject to change without notice.

All rights reserved. Duplication of this document, either in whole or part is prohibited without the written permission of Renesas Technology Europe Limited.

Trademarks

All brand or product names used in this manual are trademarks or registered trademarks of their respective companies or organisations.

Copyright

© Renesas Technology Europe Ltd. 2005. All rights reserved.

Website: <u>http://www.eu.renesas.com/</u>

Glossary

CPU	Central Processing Unit	RTE	Renesas Technology Europe Ltd.
HEW	High-performance Embedded Workshop	RSO	Renesas Solutions Organisation.
LED	Light Emitting Diode	RSK	Renesas Starter Kit
PC	Program Counter		

Chapter 2. Purpose

This RSK is an evaluation tool for Renesas microcontrollers.

Features include:

- Renesas Microcontroller Programming.
- User Code Debugging.
- User Circuitry such as Switches, LEDs and potentiometer(s).
- User or Example Application.
- Sample peripheral device initialisation code.

The RSK board contains all the circuitry required for microcontroller operation.

Chapter 3. Power Supply

3.1. Requirements

This RSK operates from a 5V power supply.

A diode provides reverse polarity protection only if a current limiting power supply is used.

All RSK boards are supplied with an E8A debugger. This product is able to power the RSK board with up to 300mA. When the RSK is connected to another system then that system should supply power to the RSK.

All RSK boards have an optional centre positive supply connector using a 2.1mm barrel power jack.

Warning

The RSK is neither under nor over voltage protected. Use a centre positive supply for this board.

3.2. Power - Up Behaviour

When the RSK is purchased the RSK board has the 'Release' or stand alone code from the example tutorial code pre-programmed into the Renesas microcontroller. On powering up the board the user LEDs will start to flash. After 200 flashes, or after pressing a switch the LEDs will flash at a rate controlled by the potentiometer.

Chapter 4. Board Layout

4.1. Component Layout

The following diagram shows the top layer component layout of the board.

Figure 4-1: Board Layout

4.2. Board Dimensions

The following diagram gives the board dimensions and connector positions. All through hole connectors are on a common 0.1" grid for easy interfacing.

Figure 4-2 : Board Dimensions

Chapter 5. Block Diagram

Figure 5-1 is representative of the CPU board components and their connectivity.

Figure 5-2 shows the connections to the RSK.

Figure 5-2 : RSK Connections

Chapter 6.User Circuitry

6.1. Switches

There are four switches located on the RSK. The function of each switch and its connection are shown in Table 6-1.

Switch	Function	Microcontroller
RES	When pressed the RSK microcontroller is reset.	RESn
SW1/BOOT*	Connects to an IRQ input for user controls.	INTO Pin18
	The switch is also used in conjunction with the RES switch to place	(Port 8, pin 2)
	the device in BOOT mode when not using the E8A debugger.	
SW2*	Connects to an IRQ line for user controls.	INT1 Pin17
		(Port 8, pin 3)
SW3*	Connects to the ADC trigger input. Option link allows connection to	ADTRG Pin 98
	IRQ line. The option is a pair of 0R links.	(Port 9, pin 7)
		OR
		INT2 Pin16
		(Port 8, pin 4)

Table 6-1: Switch Functions

*Refer to schematic for detailed connectivity information.

6.2. LEDs

There are six LEDs on the RSK board. The green 'POWER' LED lights when the board is powered. The orange BOOT LED indicates the device is in BOOT mode when lit. The four user LEDs are connected to an IO port and will light when their corresponding port pin is set low.

Table 6-2, below, shows the LED pin references and their corresponding microcontroller port pin connections.

LED Reference (As shown on silkscreen)	Microcontroller Port Pin function	Microcontroller Pin Number
LED0	Port 4.0	52
LED1	Port 4.1	51
LED2	Port 4.2	50
LED3	Port 4.3	49

Table 6-2: LED Port

6.3. Potentiometer

A single turn potentiometer is connected to AN0.0 (P10.0) of the microcontroller. This may be used to vary the input analogue voltage value to this pin between AVCC and Ground.

6.4. Serial port

The microcontroller programming serial port 1 is connected to the E8A connector. This serial port can optionally be connected to the RS232 transceiver by moving option resistors and fitting the D connector. The connections to be moved are listed in the table 6-3.

Description	Function	Fit For E8A	Remove for	Fit for RS232	Remove for
			E8A		RS232
TxD1	Programming Serial Port	R12	R69	R69	R12
RxD1	Programming Serial Port	R13	R47	R47	R13
CLK1	Programming Serial Port	R14	NA	NA	NA

Table 6-3: Serial Port settings

Secondary and tertiary microcontroller serial ports are connected to the application headers.

6.5. LCD Module

A LCD module is supplied to be connected to the connector J11. This should be fitted so that the LCD module lies over J3. Care should be taken to ensure the pins are inserted correctly into J11. The LCD module uses a 4 bit interface to reduce the pin allocation. No contrast control is provided; this is set by a resistor on the supplied display module. The module supplied with the RSK only supports 5V operation.

	J11						
Pin	Circuit Net Name	Device	Pin	Circuit Net Name	Device		
		Pin			Pin		
1	Ground	-	2	5V Only	-		
3	No Connection	-	4	DLCDRS	70		
5	R/W (Wired to Write only)	-	6	DLCDE	69		
7	No Connection	-	8	No Connection	-		
9	No Connection	-	10	No Connection	-		
11	DLCD4	66	12	DLCD5	65		
13	DLCD6	64	14	DLCD7	63		

Table 6-4 shows the pin allocation and signal names used on this connector.

Table 6-4: LCD Module Connections

6.6.Option Links

Table 6-5 below describes the function of the option links contained on this RSK board.

Option Link Settings					
Reference	Function	Fitted	Alternative (Removed)	Related To	
R14	Programming	Connects SCK to E8A	SCK disconnected from E8A		
	Serial Port				
R12	Programming	Connects E8A to	MUST be removed if R44 fitted.	R44	
	Serial Port	Programming Serial port.			
R13	Programming	Connects E8A to	Should be removed if R68 fitted.	R68	
	Serial Port	Programming Serial port.			
R44	Programming	Connects RS232 port to	MUST be removed if R12, R47	R12, R47, R49	
	Serial Port	Programming SCI port	or R49 fitted.		
R68	Programming	Connects RS232 port to	MUST be removed if R13, R69	R13, R69, R72	
	Serial Port	Programming SCI port	or R72 fitted.		
R42	RS232 Driver	Enables RS232 Serial	MUST be removed if R39	R39	
		Transceiver	Fitted		
R39	RS232 Driver	Disables RS232 Serial	MUST be removed if R42 Fitted	R42	
		Transceiver			
R41	Serial Connector	Connects Alternate serial (CH2)	Disconnects Alternate serial	R40	
		to D connector	from D connector.		
R40	Serial Connector	Connects Alternate serial (CH2)	Disconnects Alternate serial	R41	
		to D connector	from D connector.		
R55	Alternate Serial	Connects Alternate Serial (CH2	Should be removed if SCIb	R50	
		- SCIb) to RS232 Transceiver	not used for RS232.		
R50	Alternate Serial	Connects Alternate Serial (CH2	Should be removed if SCIb	R55	
		- SCIb) to RS232 Transceiver	not used for RS232.		
R72	RS232 Serial on	Connects Application Header to	MUST be removed if R68 or	R68, R69	
	Application Header	RS232 Transceiver	R69 fitted.		
R49	RS232 Serial on	Connects Application Header to	MUST be removed if R44 or	R44, R47	
	Application Header	RS232 Transceiver	R47 fitted.		
R69	RS232 Serial on	Connects Serial Channel 0 to	MUST be removed if R68 or	R68, R72	
	SCIa CH0	RS232 Transceiver	R72 fitted.		
R47	RS232 Serial on	Connects Serial Channel 0 to	MUST be removed if R44 or	R44, R49	
	SCIa CH0	RS232 Transceiver	R49 fitted.		
R96	External Oscillator	Connects External Ring header	Disconnects sensitive	R100	
		pins to Microcontroller	microcontroller signals from		
			external pins.		

	Option Link Settings					
Reference	Function	Fitted	Alternative (Removed)	Related To		
R100	External Oscillator	Connects External Ring header	Disconnects sensitive	R96		
		pins to Microcontroller	microcontroller signals from			
			external pins.			
R97	External Oscillator	Parallel resistor for crystal	Not fitted			
R103	External Subclock	Connects External Ring header	Disconnects sensitive	R105		
	Oscillator	pins to Microcontroller	microcontroller signals from			
			external pins.			
R105	External Subclock	Connects External Ring header	Disconnects sensitive	R103		
	Oscillator	pins to Microcontroller	microcontroller signals from			
			external pins.			
R106	External Subclock	Parallel resistor for crystal	Not fitted			
	Oscillator					
R9	Board VCC	Supply to board from J5	Fit Low ohm resistor to measure			
			current			
R32	Microcontroller	Supply to microcontroller	Fit Low ohm resistor to measure	R33		
	VCC1	VCC1	current			
R33	Microcontroller	Supply to microcontroller	Fit Low ohm resistor to measure	R32		
	VCC2	VCC2	current			
R25	Board VCC1	Board VCC1 connected to	Disconnected	R23,28		
		Connector 3V3				
R28	Board VCC1	Board VCC1 connected to	Disconnected	R23,R25		
		Connector 5V				
R23	Board VCC1	Board VCC1 connected to	Disconnected	R25,R28		
		Connector J5				
R26	Board VCC2	Board VCC2 connected to	Disconnected	R24,29		
		Connector 3V3				
R29	Board VCC2	Board VCC2 connected to	Disconnected	R24,R26		
		Connector 5V				
R24	Board VCC2	Board VCC2 connected to	Disconnected	R26,R29		
		Connector J5				
R31	Analogue Power	Connects Board VCC1	Analogue supply MUST be	JA1,R43		
		supply to Analogue supply	provided from external interface			
			pins. (Fit R43)			
R43	Analogue Power	Connects AVCC supply to	R31 must be fitted	R31		
		Application headers				

Option Link Settings					
Reference	Function	Fitted	Alternative (Removed)	Related To	
R109	VREF	Connects Board VCC1	VREF can be provided from	JA1,R110	
		supply to VREF	external interface pins. (Fit		
			R110)		
R110	VREF	VREF to Application headers	R109 should be fitted	R109	
R35	SW3	Connects SW3 to Analogue	Disconnected	R34	
		Trigger input			
R34	SW3	Connects SW3 to INT2 input	Disconnected	R35	
R82	Microcontroller pin	Connects microcontroller pin	MUST be removed if R80 fitted.	R80	
	function select	28 to IICSDA			
R80	Microcontroller pin	Connects microcontroller pin 28	Should be removed if R82	R82	
	function select	to TXD2 pin	fitted.		
R78	Microcontroller pin	Connects microcontroller pin	MUST be removed if R80 fitted.	R76	
	function select	27 to IICSCL			
R76	Microcontroller pin	Connects microcontroller pin 27	Should be removed if R78	R78	
	function select	to RXD2	fitted.		
R114	Microcontroller pin	Connects microcontroller pin	MUST be removed if R115	R115	
	function select	95 to ADPOT	fitted.		
R115	Microcontroller pin	Connects microcontroller pin 95	Should be removed if R114	R114	
	function select	to AN0	fitted.		
R60	Microcontroller pin	Connects microcontroller pin 44	MUST be removed if R61	R61	
	function select	to Wrn pin	fitted.		
R61	Microcontroller pin	Connects microcontroller pin	Should be removed if R60	R60	
	function select	44 to WRLn pin	fitted.		
R94	Microcontroller pin	Connects microcontroller pin 20	MUST be removed if R93	R93	
	function select	to TA4OUT pin	fitted.		
R93	Microcontroller pin	Connects microcontroller pin	Should be removed if R94	R94	
	function select	20 to Up pin	fitted.		
R92	Microcontroller pin	Connects microcontroller pin 19	MUST be removed if R92	R90	
	function select	to TA4IN pin	fitted.		
R90	Microcontroller pin	Connects microcontroller pin	Should be removed if R92	R92	
	function select	19 to Un pin	fitted.		
R84	Microcontroller pin	Connects microcontroller pin 26	MUST be removed if R83	R90	
	function select	to CLK2 pin	fitted.		
R83	Microcontroller pin	Connects microcontroller pin	Should be removed if R84	R92	
	function select	26 to Vp pin	fitted.		
R87	Microcontroller pin	Connects microcontroller pin 24	MUST be removed if R85	R87	
	function select	to TA2OUT pin	fitted.		

	Option Link Settings					
Reference	Function	Fitted	Alternative (Removed)	Related To		
R85	Microcontroller pin	Connects microcontroller pin	Should be removed if R87	R85		
	function select	24 to Wp pin	fitted.			
R88	Microcontroller pin	Connects microcontroller pin 23	MUST be removed if R86	R86		
	function select	to TA2IN pin	fitted.			
R86	Microcontroller pin	Connects microcontroller pin	Should be removed if R88	R88		
	function select	23 to Wn pin	fitted.			
R128	Microcontroller pin	Connects microcontroller pin 47	MUST be removed if R130	R130		
	function select	to A21 pin	fitted.			
R130	Microcontroller pin	Connects microcontroller pin Should be removed if R128		R128		
	function select	47 to CS2N pin	fitted.			
R118	Microcontroller pin	Connects microcontroller pin 46	MUST be removed if R116	R116		
	function select	to A22 pin	fitted.			
R116	Microcontroller pin	Connects microcontroller pin	Should be removed if R118	R118		
	function select	46 to CS1N pin	fitted.			
R131	Microcontroller pin	Connects microcontroller pin 90	MUST be removed if R129	R129		
	function select	to AN4 pin	fitted.			

Table 6-5: Option Links

6.7.Oscillator Sources

A crystal oscillator is fitted on the RSK and used to supply the main clock input to the Renesas microcontroller. Table 6-6: Oscillators /

Resonators

details the oscillators that are fitted and alternative footprints provided on this RSK:

Component				
Crystal (X1)	Fitted	6 MHz (HC/49U package)		
Subclock (X2)	Fitted	32.768kHz (90SMX		
		package)		

Table 6-6: Oscillators / Resonators

6.8.Reset Circuit

The CPU Board includes a simple latch circuit that links the mode selection and reset circuit. This provides an easy method for swapping the device between Boot Mode, User Boot Mode and User mode. This circuit is not required on customers boards as it is intended for providing easy evaluation of the operating modes of the device on the RSK. Please refer to the hardware manual for more information on the requirements of the reset circuit.

The Reset circuit operates by latching the state of the boot switch on pressing the reset button. This control is subsequently used to modify the mode pin states as required.

The mode pins should change state only while the reset signal is active to avoid possible device damage.

The reset is held in the active state for a fixed period by a pair of resistors and a capacitor. Please check the reset requirements carefully

to ensure the reset circuit on the user's board meets all the reset timing requirements.

Chapter 7. Modes

The RSK supports Boot mode and Single chip mode.

Details of programming the FLASH memory is described in the M16C/62P Group Hardware Manual.

7.1. Boot mode

The boot mode settings for this RSK are shown in Table 7-1: Boot Mode pin settings below:

CNVSS	P5.0	P5.5	LSI State after Reset
			End
1	1	0	Boot Mode

Table 7-1: Boot Mode pin settings

The software supplied with this RSK only supports Boot mode using an E8A and HEW. However, hardware exists to enter boot mode manually, do not connect the E8A in this case. Press and hold the SW1/BOOT. The mode pins above are held in their boot states while reset is pressed and released. Release the boot button. The BOOT LED will be illuminated to indicate that the microcontroller is in boot mode.

When neither the E8A is connected nor the board is placed in boot mode (with CNVSS and P5.5 being pulled low during reset) as above, the P5.5 pin is pulled high by a 10k resistor, the P.5.0 pin is pulled high by a 100k resistor and the CNVSS is pulled low by a 100k resistor.

When an E8A is used these three pins are controlled by the E8A.

7.2. Single chip mode

As CNVSS is being pulled down by a 100k resistor, this RSK will always boot in Single Chip mode when the E8A is not connected and the boot switch is not depressed. Refer to M16C/62 Group Hardware Manual for details of Single chip mode.

CNVSS	P5.0	P5.5	LSI State after Reset
			End
0	1	1	Single Chip Mode

Table 7-2: Single Chip Mode pin settings

Chapter 8. Programming Methods

The board is intended for use with HEW and the supplied E8A debugger. Refer to M16C/62P Group Hardware Manual for details of programming the microcontroller without using these tools.

Chapter 9. Headers

9.1. Microcontroller Headers

Table 9-1 to Table 9-4 show the microcontroller pin headers and their corresponding microcontroller connections. The header pins connect directly to the microcontroller pins. * Marked pins are subject to option links.

	J1						
Pin	Circuit Net Name	Device	Pin	Circuit Net Name	Device		
		Pin			Pin		
1	CAN1OUT (spare)	99	2	CAN1IN(spare)	100		
3	DA1	1	4	DAO	2		
5	TXD2	3	6	RXD2	4		
7	CLK3	5	8	BYTE	6		
9	E8_CNVSS	7	10	CON_XCIN	8		
11	CON_XCOUT	9	12	RESn	10		
13	CON_XOUT	11	14	GROUND	12		
15	CON_XIN	13	16	UC_VCC1	14		
17	NMIn	15	18	INT2	16		
19	INT1	17	20	INTO	18		
21	TA4IN_Un*	19	22	TA4OUT_Up*	20		
23	CANOIN	21	24	CANOOUT	22		
25	TA2IN_Wn	23	26	TA2OUT_Wp*	24		
27	Vn	25	28	CLK2_Vp*	26		
29	IIC_SCL_RXD2*	27	30	IICSDA_TXD2*	28		

Table 9-1: J1

	J2						
Pin	Circuit Net Name	Device	Pin	Circuit Net Name	Device		
		Pin			Pin		
1	PTTX	29	2	PTRX	30		
3	РТСК	31	4	E8_BUSY	32		
5	TXD0	33	6	RXD0	34		
7	CLKO	35	8	CTSRTS	36		
9	RDY	37	10	ALE	38		
11	E8_EPM	39	12	UD	40		
13	TRSTn	41	14	RDn	42		
15	WRHn	43	16	WRLn_WRn	44		
17	A23n_CS0n	45	18	A22_CS1n	46		
19	A21_CS2n	47	20	A20_CS3n	48		

Table 9-2: J2

	J3					
Pin	Circuit Net Name	Device	Pin	Circuit Net Name	Device	
		Pin			Pin	
1	A19_LED3	49	2	A18_LED2	50	
3	A17_LED1	51	2	A16_LED0	52	
5	A15_IO7	53	6	A14_IO6	54	
7	A13_IO5	55	8	A12_IO4	56	
9	A11_IO3	57	10	A10_IO2	58	
11	A9_IO1	59	12	UC_VCC2	60	
13	A8_IO0	61	14	GROUND	62	
15	A7_DLCD7	63	16	A6_DLCD6	64	
17	A5_DLCD5	65	18	A4_DLCD4	66	
19	A3	67	20	A2	68	
21	A1_DLCDE	69	22	A0_DLCDRS	70	
23	D15	71	24	D14	72	
25	D13	73	26	D12	74	
27	D11	75	28	D10	76	
29	D9	77	30	D8	78	

Table 9-3: J3

	J4					
Pin	Circuit Net Name	Device	Pin	Circuit Net Name	Device	
		Pin			Pin	
1	D7	79	2	D6	80	
3	D5	81	4	D4	82	
5	D3	83	6	D2	84	
7	D1	85	8	D0	86	
9	AN7	87	10	AN6	88	
11	AN5	89	12	AN4	90	
13	AN3	91	14	AN2	92	
15	AN1	94	16	AVss	94	
17	ADPOT_AN0	96	18	CON_AVREF	96	
19	CON_AVCC	97	20	ADTRG	99	

Table 9-4: J4

9.2. Application Headers

	JA1								
Pin	Header	Name	RSK Signal	Device	Pin	Header N	lame	RSK Signal	Device
			Name	Pin				Name	Pin
1	Regulated Su	ipply 1	5V		2	Regulated Supp	bly 1	GROUND	
3	Regulated Su	ipply 2	3V3		4	Regulated Supp	oly 2	GROUND	
5	Analogue Su	pply	AVcc	97	6	Analogue Supp	ly	AVss	94
7	Analogue Re	ference	AVref	96	8	ADTRG		ADTRG	98
9	ADC0	10	ADPot_AN0*	95	10	ADC1	11	AN1	93
11	ADC2	12	AN2	92	12	ADC3	13	AN3	91
13	DAC0		DA0	2	14	DAC1		DA1	1
15	IOPort		A8_IO_0	61	16	IOPort		A9_IO_1	59
17	IOPort		A10_IO_2	58	18	IOPort		A11_IO_3	57
19	IOPort		A12_IO_4	56	20	IOPort		A13_IO_5	55
21	IOPort		A14_IO_6	54	22	IOPort		A15_IO_7	53
23	Open drain	IRQAEC	D13_INT3	73	24	I ² C Bus - (3rd pin) N		NC	-
25	I ² C Bus		IIC_SDA*	28	26	I ² C Bus		IIC_SCL*	27

Table 9-5 to Table 9-6 below show the standard application header connections.

Table 9-5: JA1 Standard Generic Header

				JA2			
Pin	Header Name	RSK Signal	Device	Pin	Header Name	RSK Signal	Device
		Name	Pin			Name	Pin
1	Reset	RESn	10	2	External Clock Input	EXTAL	-
3	Interrupt	NMIn	15	4	Regulated Supply 1	Vss1	
5	SPARE	-	-	6	Serial Port	TxD0	33
7	Interrupt	INT0	18	8	Serial Port	RxD0	34
9	Interrupt	INT1	17	10	Serial Port	CLKO	35
11	Motor control	UD	40	12	Serial Port Handshake	CTSRTS	36
13	Motor control	Up*	20	14	Motor control	Un*	19
15	Output	Vp*	26	16	Motor control	Vn	25
17	Input	Wp*	24	18	Motor control	Wn*	23
19	Output	TA2OUT*	23	20	Output	TA4OUT	20
21	Input	TA2IN*	20	22	Input	TA4IN	19
23	Open drain	INT2	16	24	Tristate Control	TRSTn	41
25	SPARE	-		26	SPARE	-	

Table 9-6: JA2 Standard Generic Header JA3

	JA3						
Pin	Header Name	RSK Signal	Device	Pin	Header Name	RSK Signal	Device
		Name	Pin			Name	Pin
1	A0	A0	70	2	A1	A1	69
3	A2	A2	68	4	A3	A3	67
5	A4	A4	66	6	A5	A5	65
7	A6	A6	64	8	A7	A7	63
9	A8	A8	61	10	А9	A9	59
11	A10	A10	58	12	A11	A11	57
13	A12	A12	56	14	A13	A13	55
15	A14	A14	54	16	A15	A15	53
17	D0	D0	86	18	D1	D1	85
19	D2	D2	84	20	D3	D3	83
21	D4	D4	82	22	D5	D5	81
23	D6	D6	80	24	D7	D7	79
25	RDn	RDn	42	26	WRn	WRn	44
27	CSan	A23_CS0n	45	28	CSbn	CS1n	46
29	D8	D8	78	30	D9	D9	77
31	D10	D10	76	32	D11	D11	75
33	D12	D12	74	34	D13	D13	73
35	D14	D14	72	36	D15	D15	71
37	A16	A16	52	38	A15	A15	51
39	A18	A18	50	40	A19	A19	49
41	A20	A20	48	42	A21	A21	47
43	A22	A22	46	44	SDCLK		
45	CScn	CS2n	47	46	ALE	ALE	38
47	HWRn	WRHn	43	48	LWRn	WRLn	44
49	CASn			50	RASn		

Table 9-7: JA3 Optional Generic Header

	JA5								
Pin	Heade	r Name	RSK Signal	Device	Pin	Heade	r Name	RSK Signal	Device
			Name	Pin				Name	Pin
1	ADC4	14	AN4*	90	2	ADC5	15	AN5*	89
3	ADC6	16	AN6*	88	4	ADC7	17	AN7*	97
5	CAN			22	6	CAN			21
7	CAN			99	8	CAN			100
9	Reserved				10	Reserved			
11	Reserved				12	Reserved			
13	Reserved				14	Reserved			
15	Reserved				16	Reserved			
17	17 Reserved				18	Reserved			
19	Reserved				20	Reserved			
21 Reserved				22	Reserved				
23	Reserved				24	Reserved			

Table 9-7 to Table 9-9 below show the optional generic header connections. * Marked pins are subject to option links.

Table 9-8: JA5 Optional Generic Header

	JA6								
Pin	Pin Header Name		RSK Signal	Device	Pin	Header Name		RSK Signal	Device
			Name	Pin				Name	Pin
1	DMA				2	DMA		DACK	
3	DMA				4	Standby (Ope	e n drain)	STBYn	
5	Host Serial	SCIdTX	RS232TX		6	Host Serial	SCIdRX	RS232RX	
7	Serial Port		RXD2*	27	8	Serial Port		TxD2*	28
9	Serial Port	Synchronous	TXD3*	3	10	Serial Port		CLK2	26
11	Serial Port	Synchronous	CLK3	5	12	Serial Port	Synchronous	RxD3*	4
13	Reserved				14	Reserved			
15	Reserved				16	Reserved			
17	Reserved				18	Reserved			
19	19 Reserved				20	Reserved			
21	Reserved				22	Reserved			
23	Reserved				24	Reserved			
25	Reserved				26	Reserved			

Table 9-9: JA6 Optional Generic Header

Chapter 10.Code Development

10.1. Overview

Note: For all code debugging using Renesas software tools, the RSK board must be connected to a PC USB port via an E8A. An E8A is supplied with the RSK product.

10.2. Mode Support

HEW connects to the Microcontroller and programs it via the E8A. Mode support is handled transparently to the user.

10.3. Breakpoint Support

HEW supports breakpoints on the user code, both in RAM and ROM.

Double clicking in the breakpoint column in the code sets the breakpoint. Breakpoints will remain unless they are double clicked to remove them.

10.4. Memory Map

Figure 10-1: Memory Map

Chapter 11. Component Placement

Figure 11-1: Component Placement

Chapter 12. Additional Information

For details on how to use High-performance Embedded Workshop (HEW, refer to the HEW manual available on the CD or from the web site.

For information about the M16C/62P series microcontrollers refer to the M16C/62 Series Hardware Manual

For information about the M16C/62P assembly language, refer to the M16C/60, M16C/20, M16C/Tiny Series Software Programming Manual.

Online technical support and information is available at: http://www.renesas.com/rsk

Technical Contact Details

- America: techsupport.rta@renesas.com
- Europe: tools.support.eu@renesas.com
- Japan: <u>csc@renesas.com</u>

General information on Renesas Microcontrollers can be found on the Renesas website at: http://www.renesas.com/.

Renesas Starter	Renesas Starter Kit for M16C/62P					
User's Manual						
Publication Date	Rev.02.00 25.OCT.2007					
Published by:	Renesas Technology Europe Ltd.					
	Duke's Meadow, Millboard Road, Bourne End					
	Buckinghamshire SL8 5FH, United Kingdom					

 $\label{eq:constraint} @2007 \ {\sf Renesas} \ {\sf Technology} \ {\sf Europe} \ {\sf and} \ {\sf Renesas} \ {\sf Solutions} \ {\sf Corp.}, \quad {\sf All} \ {\sf Rights} \ {\sf Reserved}.$

Renesas Starter Kit RSKM16C62P User's Manual

Renesas Electronics Corporation 1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan