LENESAS

-
7
12
o~
<
Q
-
-
D

RX64M Group

Renesas Starter Kit+ Code Generator Tutorial Manual
For CubeSuite+

RENESAS MCU
RX Family / RX600 Series

All information contained in these materials, including products and product specifications, represents
information on the product at the time of publication and is subject to change by Renesas Electronics
Corporation without notice. Please review the latest information published by Renesas Electronics
Corporation through various means, including the Renesas Electronics Corporation website
(http://www.renesas.com).

Renesas Electronics
Www.renesas.com Rev. 1.00 Mar 2014

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the
operation of semiconductor products and application examples. You are fully responsible for the incorporation of these
circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for
any losses incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas
Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever
for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property
rights of third parties by or arising from the use of Renesas Electronics products or technical information described in
this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other
intellectual property rights of Renesas Electronics or others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or
in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such
alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High
Quality”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade,
as indicated below.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio
and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial
robots etc.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster
systems; anticrime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a
direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may
cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality
grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas
Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable
for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for
which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas
Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage
range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no
liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified
ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products
have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use
conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to
implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire
in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including
but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or
any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please
evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all
applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation,
the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your
noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose
manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not
use Renesas Electronics products or technology described in this document for any purpose relating to military
applications or use by the military, including but not limited to the development of weapons of mass destruction. When
exporting the Renesas Electronics products or technology described in this document, you should comply with the
applicable export control laws and regulations and follow the procedures required by such laws and regulations.

10. Itis the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or
otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set
forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as
a result of unauthorized use of Renesas Electronics products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of
Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its
majority owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(2012.4)

Disclaimer

By using this Renesas Starter Kit+ (RSK+), the user accepts the following terms:

The RSK+ is not guaranteed to be error free, and the entire risk as to the results and performance of the RSK+ is
assumed by the User. The RSK+ is provided by Renesas on an “as is” basis without warranty of any kind whether
express or implied, including but not limited to the implied warranties of satisfactory quality, fitness for a particular
purpose, title and non-infringement of intellectual property rights with regard to the RSK+. Renesas expressly
disclaims all such warranties. Renesas or its affiliates shall in no event be liable for any loss of profit, loss of data,
loss of contract, loss of business, damage to reputation or goodwill, any economic loss, any reprogramming or recall
costs (whether the foregoing losses are direct or indirect) nor shall Renesas or its affiliates be liable for any other
direct or indirect special, incidental or consequential damages arising out of or in relation to the use of this RSK+,
even if Renesas or its affiliates have been advised of the possibility of such damages.

Precautions

The following precautions should be observed when operating any RSK+ product:

This Renesas Starter Kit+ is only intended for use in a laboratory environment under ambient temperature and
humidity conditions. A safe separation distance should be used between this and any sensitive equipment. Its use
outside the laboratory, classroom, study area or similar such area invalidates conformity with the protection
requirements of the Electromagnetic Compatibility Directive and could lead to prosecution.

The product generates, uses, and can radiate radio frequency energy and may cause harmful interference to radio
communications. However, there is no guarantee that interference will not occur in a particular installation. If this
equipment causes harmful interference to radio or television reception, which can be determined by turning the
equipment off or on, you are encouraged to try to correct the interference by one or more of the following measures;

e ensure attached cables do not lie across the equipment

e reorient the receiving antenna

e increase the distance between the equipment and the receiver

e connect the equipment into an outlet on a circuit different from that which the receiver is connected
e power down the equipment when not in use

e consult the dealer or an experienced radio/TV technician for help NOTE: It is recommended that wherever
possible shielded interface cables are used.

The product is potentially susceptible to certain EMC phenomena. To mitigate against them it is recommended that the
following measures be undertaken;

e The user is advised that mobile phones should not be used within 20m of the product when in use.
e The user is advised to take ESD precautions when handling the equipment.

The Renesas Starter Kit does not represent an ideal reference design for an end product and does not fulfil the
regulatory standards for an end product.

How to Use This Manual

1. Purpose and Target Readers

This manual is designed to provide the user with an understanding of how to use Application Leading Tool
(Code Generator) for RX together with the CubeSuite+ IDE to create a working project for the RSK+ platform.
It is intended for users designing sample code on the RSK+ platform, using the many different incorporated
peripheral devices.

The manual comprises of step-by-step instructions to generate code and import it into CubeSuite+, but does
not intend to be a complete guide to software development on the RSK+ platform. Further details regarding
operating the RX64M microcontroller may be found in the Hardware Manual and within the provided sample
code.

Particular attention should be paid to the precautionary notes when using the manual. These notes occur within the body
of the text, at the end of each section, and in the Usage Notes section.

The revision history summarizes the locations of revisions and additions. It does not list all revisions. Refer to the text of
the manual for details.

The following documents apply to the RX64M Group. Make sure to refer to the latest versions of these
documents. The newest versions of the documents listed may be obtained from the Renesas Electronics Web
site.

Document Type Description Document Title Document No.
User’'s Manual Describes the technical details of the RSK+ RSK+RX64M User's R20UT2590EG
hardware. Manual
Tutorial Provides a guide to setting up RSK+ environment, RSK+RX64M R20UT2591EG
running sample code and debugging programs. Tutorial Manual
Quick Start Guide Provides simple instructions to setup the RSK+ and RSK+RX64M Quick R20UT2592EG
run the first sample. Start Guide
Code Generator Provides a guide to code generation and importing RSK+RX64M Code R20UT2930EG
Tutorial into the CubeSuite+ IDE. Generator Tutorial
Manual
Schematics Full detail circuit schematics of the RSK+. RSK+RX64M R20UT2589EG
Schematics
Hardware Manual Provides technical details of the RX600 RX600 Group RO1UHO0377EJ
microcontroller. Hardware Manual

2. List of Abbreviations and Acronyms

Abbreviation Full Form

ADC Analog-to-Digital Converter

API Application Programming Interface

CMT Compare Match Timer

COM COMmunications port referring to PC serial port

CPU Central Processing Unit

DVD Digital Versatile Disc

El On-chip Debugger

GUI Graphical User Interface

IDE Integrated Development Environment

IRQ Interrupt Request line

LCD Liquid Crystal Display

LED Light Emitting Diode

MCU Micro-controller Unit

MSB Most Significant Bit

PC Personal Computer

Pmod™ Digilent Pmod™ Compatible connector. PmodTM is registered to Digilent Inc.
Digilent-Pmod_Interface_Specification (Link valid at 26Jun2013)

PLL Phase-locked Loop

RSK+ Renesas Starter Kit Plus

SCI Serial Communications Interface

SPI Serial Peripheral Interface

UART Universal Asynchronous Receiver/Transmitter

Table of Contents

O V=T 4T PP 7
R U o [0 1= TP PUUPPPPRPPPINN 7
A T 11U | =T TP TP PP PP TPPPPPPPPN 7
P20 111 0T 3 Tox 1 o o 8
3. Project Creation With CUDESUITE+.........ueiiii e 9
R 700 R [o1 1o T [V 1o o I TP TP PUPRRPT 9
R I O (- 1] o i 4 U= 1T o PRSP 9
4. Code Generation Using the CubeSuite+ plug iN.......coooeeiiiiiiiiiiiiee e 11
o | i o o[0T 1o o SRR SP 11
N e To [€1 =T a1 =Y (o] g Ko 11 SRR 11
o T 0o To [1 =T o [T = Vi o] PP U UPTPPPRT 13
5. Completing the TULOal PrOJECT.ccooiiiieiiieee e 26
L0 A o 1=t A0S Y=Y 1] o PSR 26
L2 Vo (o 11 i o] g T T o] (o L= S S UP PSP 28
LR T @1 B I @ To [N 1] (== L1 o] o IO EER 29
Lo 111 (od T @Yo [N 1 (=0 = L1 o] o O EER 32
LTI 0 1= o 18 o [@ o (=T 01 €= = U1 o] o I OSSR 38
LN T U 7Y = I o o L= [g1 1=To | = 1o o IO EER 39
5.7 LED COOE INTEGIALIONeiiiiiiiiiiiiiieiee e ettt e ettt et e e e e e ettt et e e e e e s s st e beeeeaaeeeaannbbbeeeeaaeesanbbaneaaaeeaaannnes 42
6. Debugging the PrOjJECE ... e e 44
7. Running the Code Generator TULONAl..........coeeeeiiiiieiiie e 45
4% N =¥] o 1o Y1 o € U= U1 = | SRR 45

8. AdAitIoNAl INTOMMATION .. e e 46

ENESANS

RSK+RX64M
RENESAS STARTER KIT

R20UT2930EG0100

Rev. 1.00
Jul 21, 2014

1. Overview

1.1 Purpose

This RSK+ is an evaluation tool for Renesas microcontrollers. This manual describes how to use the

CubeSuite+ IDE code generator plug in to create a working project for the RSK+ platform.

1.2 Features

This RSK+ provides an evaluation of the following features:
« Project Creation with CubeSuite+

« Code Generation using the code generator plug in.
« User circuitry such as switches, LEDs and a potentiometer

The RSK+ board contains all the circuitry required for microcontroller operation.

R20UT2930EG0100 Rev. 1.00
Jul 21, 2014 RENESAS

Page 7 of 50

RSK+RX64M 2. Introduction

2. Introduction

This manual is designed to answer, in tutorial form, how to use the code generator plug in for the RX family
together with the CubeSuite+ IDE to create a working project for the RSK+ platform. The tutorials help explain
the following:

e Project generation using the CubeSuite+

e Detailed use of the code generator plug in for CubeSuite+
e Integration with custom code

e Building the project CubeSuite+

The project generator will create a tutorial project with three selectable build configurations:

e ‘DefaultBuild’ is a project with debug support and optimisation level set to two.

e ‘Debug’is a project built with the debugger support included. Optimisation is set to zero.

o ‘Release’ is a project with optimised compile options, producing code suitable for release in a product.

Some of the illustrative screenshots in this document will show text in the form RXxxx. These are general
screenshots and are applicable across the whole RX family. In this case, simply substitute RXxxx for RX64M

These tutorials are designed to show you how to use the RSK+ and are not intended as a comprehensive introduction to
the CubeSuite+ debugger, compiler toolchains or the E1 emulator. Please refer to the relevant user manuals for more in-
depth information.

R20UT2930EG0100 Rev. 1.00 ——
Jul 21, 2014 RENESAS

RSK+RX64M

4. Code Generation Using the CubeSuite+ plug in

3. Project Creation with CubeSuite+

3.1

Introduction

In this section the user will be guided through the steps required to create a new C project for the RX64M

MCU, ready to generate peripheral driver code using Code Generator.

necessary to create the MCU-specific project and debug files.

3.2

Creating the Project

Start Cubesuite+ by selecting it
from the Start Menu. Cubesuite+
will show the Start Page. Use the
‘GO’ button to create a new project

In the ‘Create Project’ dialog, select
‘RX’ from the ‘Microcontroller’ pull-
down.

In the ‘Using Microcontroller’ list
control, scroll down to ‘RX64M’ and
expand the tree control by clicking
+, Select
‘R5F564MLCXFC(176pin)’.

Ensure that in the ‘Kind of project’
pull-down, ‘Empty Application(CC-
RX) is selected.

Choose an appropriate name and
location for the project, then click
‘Create’.

A new project can be created.

This project generation step is

A new project can alzo be created by reusing the file configuration registered to an existing project.

-
Create Project

Microcontraller: R

Using microcontrollar:

e Y REF5E4MLCAFC(1 76pin]
W F5FSG4MLCEFP(O0pin)

-

B Tl T TR W 'l L

Kind of project: Ernpty &pplication[CC-Rx)
Froject name: CG_Tutorial
Flace: CvWworkspace’

Idake the project folder

C:\workspace \CG_Tutorial\CG_Tutorial mtpj

7] Pazs the file composition of an esisting project to the new project

& (Search microcontroller) Update...
E REF5EAMLCRFB(1 44pin) | | Product Name:REFSE4MLCxFC
""" On-chip ROM size[KBptes 4096

On-chip RAM size[Bytez]: 524288
Additional Information: Pack age=FLOPOT 7EKEB-A

[=]

=1 (oo |

Froject to be passed: Brawse. ..
Copy compozition files in the diverted project folder to a new project folder.
LCreate l ’ Cancel] ’ Help
R20UT2930EG0100 Rev. 1.00 RENESAS Page 9 of 50

Jul 21, 2014

RSK+RX64M

4. Code Generation Using the CubeSuite+ plug in

e CubeSuite will create the project
files and a ‘Code Generator’ node
will be found in the left-hand

@ CG_Tutorial - CubeSuite+ - [Project Tree]
File Edit Miew Project Build Debug Tool Window Help

‘Project Tree’ window pane. @ stat |[JH G X @9 o 58 &
083 S
roject Tree o x
% @ 8 IE n_;d Code Generator Property
=-| 15 CG Tutorial (Project) 4 Generate File Mode
. RSFSE4MLCHFC (Microcontroller) APl output control
=8 J Code Generator (Design Tool} D.utput folde.r
PG 7 Pin View File generation control
pre |n.] Register files
;j Peripheral .Functlons Report type
[#-4a4 Code Preview 4 Product Information
4\ CC-R¥ (Build Toal) Release date
iz, RX Simulator (Debug Tool) Version
iorell oo
R20UT2930EG0100 Rev. 1.00 leNESAS Page 10 of 50

Jul 21, 2014

RSK+RX64M 4. Code Generation Using the CubeSuite+ plug in

4.Code Generation Using the CubeSuite+ plug in

4.1 Introduction

Code Generator is a Windows™ GUI tool for generating template ‘C’ source code and project settings for the
RX64M. When using Code Generator, the user is able to configure various MCU features and operating
parameters using intuitive GUI controls, thereby bypassing the need in most cases to refer to sections of the
Hardware Manual.

Once the user has configured the project, the ‘Generate Code’ function is used to generate three code
modules for each specific MCU feature selected. These code modules are name ‘r_cg_xxx.h’, ‘r_cg_xxx.c’,
and ‘r_cg_xxx_user.c’, where ‘xxx’ is a three letter acronym for the relevant MCU feature, for example ‘adc’.
Within these code modules, the user is then free to add custom code to meet their specific requirement.
Custom code should be added, whenever possible, in between the following comment delimiters:

/* Start user code for adding. Do not edit comment generated here */
/* End user code. Do not edit comment generated here */

Code Generator will locate these comment delimiters, and preserve any custom code inside the delimiters on
subsequent code generation operations. This is useful if, after adding custom code, the user needs to re-visit
Code Generator to change any MCU operating parameters.

By following the steps detailed in this Tutorial, the user will generate a Cubesuite+ project called CG_Tutorial.
The fully completed Tutorial project is contained on the DVD and may be imported into Cubesuite+ by
following the steps in the Quick Start Guide. This Tutorial is intended as a learning exercise for users who
wish to use the Code Generator to generate their own custom projects for Cubesuite+.

The CG_Tutorial project uses interrupts for switch inputs, the ADC module, the Compare Match Timer (CMT),
the Serial Communications Interface (SCI) and uses these modules to perform A/D conversion and display the
results via the Virtual COM port to a terminal program and also on the LCD display on the RSK+.

Following a tour of the key user interface features of Code Generator in 84.2, the reader is guided through
each of the peripheral function configuration dialogs in §4.3. In 85, the reader is familiarised with the structure
of the template code, as well as how to add their own code to the user code areas provided by the code
generator.

4.2 Code Generator Tour

In this section a brief tour of Code Generator is presented. For further details of the Code Generator
paradigm and reference, refer to the Application Leading Tool Common Operations manual
(r20ut2663ej0100_Code Generator.pdf). Application Leading Tool is the stand-alone version of Code
Generator and this manual is

In the Project Tree pane, expand the ‘Code Generator’ node and double-click the ‘Peripheral Functions’ node.
The CubeSuite+ main window will now contain a ‘Peripheral Functions’ tab with the Initial View as show in
Figure 4-1.

R20UT2930EG0100 Rev. 1.00 RENESAS Page 11 of 50
Jul 21, 2014

RSK+RX64M 4. Code Generation Using the CubeSuite+ plug in

G/ Tutorial = CubeSuiter = [Perpheral Functions] = =
File Edit View Project Build Debug Tool Window Help

@, start |[B @ X 00w & - g B DefaultBuild g DM @ ®E " 5= %= dh

P38 Q5
Project Tree % | & Property 2 Peripheral Functions T x
8 @8 @ G GenerateCode | % 0 Sk # WA LT DU DHEDDBHERL T FolEFE OGS S

= £6 Tutorial (Project] Ciock seiiing!| Black diagram | o

5 R5F564MLCxFC (Microcontroller)

a Main clock oscillator and RTCMCLK setting
(= J Code Generator (Design Tool)

V| Operati
Pin View perEten
B £‘|P sheral Functions [] Main clock oscilator forced oscilation
@ Clock Generator Main clock oscillation source Resonator =
W' Voltage Detection Circuit
Clock Frequency Accuracy Mes Frequency 24 MHz)
Low Power Consumption Oscillator wait time 11000 (i5) (Actual value: 11090.909) =
Interrupt Controller Unit
Oscillation stop detection function Disabled -

Buses
DMA Centroller

PLL circuit seting
Data Transfer Controller

Event Link Controller [T Operation

/0 Ports Main clock oscillater
Multi-Function Timer Pulse Unil
Port Qutput Enable 3 B
General PWM Timer x100
16-Bit Timer Pulse Unit
Programmable Pulse Generator
-Bit Timer Sub-clock oscillator and RTC (RTCSCLK) setting
Compare Match Timer [Operation

Comnpare Match Tirner W
Realtime Clock

Watchdog Timer

Independent Watchdog Timer
Serial Communications Interfac
Serial Communications Interfac| | - High speed clock escillator (HOCO) setting

12C Bus Interface [Operation
Serial Peripheral Interface 1
CRC Calculator
12-Bit A/D Converter Low speed clock escillator (LOCO) setting
12-Bit D/A Converter Operation
.’ Data Operation Circuit 3 san ~
S Code Preview Output 1 X
-4 CC-RX (Build Tool) Informacion [M0Z0000Z) : The following plug-ins are not enabled.] A
~£2 RX Simulator (Debug Tool) |=|
3 File Code Generator Plug-in] 5
Debug Console Plug-in]
Pin Configurator Plug-in|
Program Analyzer Plug-in|
IrcnPython Console Plug-inm| -
", All Messages / -
4 T v || Output E Error L\stl
=] k2 M [le= B e] [lF2]] ma
543 DISCONNECT
T = = —— = = = — T = T = == W

Fig_u re 4-1 Initial Vi e[vvﬂ

Code Generator provides GUI features for configuration of MCU sub systems. Once the user has configured
all required MCU sub systems and peripherals, the user can click the ‘Generate Code’ button, resulting in a
fully configured CubeSuite+ project that builds and runs without error.

Navigation to the MCU peripheral configuration screens may be performed by double-clicking the required
function in the Project Tree -> Project Name -> Peripheral Function on the left.

It is also possible to see a preview of the code that will be generated for the current peripheral function
settings by double-clicking the required function in the Project Tree -> Project Name -> Code Preview on the
left.

R20UT2930EG0100 Rev. 1.00 RENESAS Page 12 of 50
Jul 21, 2014

RSK+RX64M 4. Code Generation Using the CubeSuite+ plug in

4.3 Code Generation

In the following sub-sections, the reader is guided through the steps to configure the MCU for a simple project
containing interrupts for switch inputs, timers, ADC and a UART.

431 Clock Generator

Figure 4-2 shows a screenshot of Code Generator with the Clock Generator function open. Click on the
‘Clock setting’ sub tab. Configure the system clocks as shown in the figure. In this tutorial we are using the
on board 24 MHz crystal resonator for our main clock oscillation source and the PLL circuit is in operation.
The PLL output is used as the main system clock and the divisors should be set as shown in Figure 4-2.

R20UT2930EG0100 Rev. 1.00 RENESAS Page 13 of 50
Jul 21, 2014

RSK+RX64M

4. Code Generation Using the CubeSuite+ plug in

Prcperty/yzﬂ Peripheral Functions™]

- %

5] GenersteCode | % 0 AE B EHTEHO B0 0 A0 0D EART T HTE

Clock sefting | Block diagram |

|’l|

—Main clock oscillater and RTCMCLK setting
Cperation
[[] Main clock oscillator forced oscilation (o

y for RTC, software standby and deep software standby mode)

Oscillator wait time

- High speed clock oscillater (HOCO) setting

Main clock oscillation source Resonator -
Frequency 24 (MHz)
Oscillator wat ime 11000 () (Actual value: 11030909 1s)
Oscillation stop detection function Disabled -
—PLL circuit setting
Cperation
PLL clock source Main clock oscillator -
Input frequency division ratio x1 -
Frequency muttiplication factor *100 -
Frequency 2407 (MHz)
— Sub-clock oscillator and RTC (RTCSCLEK) setting
[Operation
oscillator dive capacity | Dirive capacity for low CL v|
Frequency | 32768 | {kHz)

225273 {ms) (Actual value: 2296.182 ms)

— IWDT-dedicated low-speed clock escillater (WDTLOCO) setting

[] Operation

Frequency | 16 - | (MHz)
— Low speed clock oscillator (LOCO) setting

Operation

Frequency 240 (kHz)

m

—BCLK pin output setting

[T Operation
Frequency | 120 | {kHz)
-RTC clock setting
[Operation
SO0UrCE | Sub-clock oscillator hd |
- System clock setting
Clock source PLL circuit -
System clock (ICLK) x 172 - 120 (MHz)
Peripheral module clock (PCLKA) x1/2 - 120 (MHz)
Peripheral module clock {PCLKBE) x4 - &0 (MHz)
Peripheral module clock for ADC (PCLKC) x1/4 - &0 (MHz)
Peripheral module clock for ADC (PCLKD) x4 - &0 (MHz)
Exdemal bus clock (BCLK) x1/4 - 60 {MHz)
Flash IF clock (FCLK) x 14 - 60 (MHz)
USB clock (UCLK) x1/5 - 48 (MHz)

[Operation

< output source

Enable BCLK forced output

BCLK -

- SDCLK pin output setting
[Operation

Proceed to the next section on Interrupt

Figure 4-2 Clock setting tab

R20UT2930EG0100 Rev. 1.00
Jul 21, 2014

RENESAS

Page 14 of 50

RSK+RX64M 4. Code Generation Using the CubeSuite+ plug in

431 Interrupt Controller Unit

Referring to the RSK+ schematic, SW1 is connected to IRQ5 (P15) and SW2 is connected to IRQ2 (P12).
SW3 is connected to directly to the ADCTRGONn and will be configured later in 84.3.3. Navigate to the
‘Interrupt Controller Unit’ node in Code Generator and in the ‘General’ tab, configure these two interrupts as
falling edge triggered as shown in Figure 4-3 below.

1 Property. E,_g Peripheral Functions™ - X
5] GenerateCode | & [qm B M 2 Bt WL T O A T A O = e~ B R - B R §
General | Group Interrupts | Interrupt B/A selection | i
Fast interrupt setting
[T Fastintemupt BSC (BUSERR vect=16)
Software interrupt setting
[Software intemupt Level 15 (highest)
[T Software intemupt 2 Lewvel 15 (highest)
NMI setting
[T] MM pin interupt Falling Mo filter 0
IRQ0 setting
[IR0 P30 Mo filter D
Low level Lewvel 15 (highest)
IRG1 setting
[1R@1 P31 Mo filter D
Low level Level 15 (highest)
IRQZ setting
IRG2 Pin P12 - Digital fiter Mo filter - |0
Vald edge Falling - Priority ~ Lewvel 15 (highest) -
IRQ3 setting
[T ra3 P33 Mo filter D
Low level Level 15 (highest)
IR(34 setting E
[T R4 PB1 Mo filter D
Low level Level 15 (highest)
IRQE setting
IRG5 Pin P15 - Digital fiter Mo filter - |D
Valid edge Falling - Priority ~ Level 15 (highest) -

Figure 4-3 Interrupt Functions tab

Navigate to the ‘Group Interrupts’ sub tab and ensure that the ‘Group BLO’ interrupt is selected as shown in
Figure 4-4. The Group BLO interrupt is used for SCI Transmit End Interrupts (TEI) and Reception Error
Interrupts (ERI) as described in 84.3.4.

R20UT2930EG0100 Rev. 1.00 RENESAS Page 15 of 50
Jul 21, 2014

RSK+RX64M 4. Code Generation Using the CubeSuite+ plug in

% Property.” £ Peripheral Functions™ - X
] GenerateCode | 2 0 & = # W & A D OO0 GO0 EHESS TS E
General | Group Interrupts |Interrupt BiA selection |

Group BED setting
[Group BED Level 15 (highest)

T

Group BLO setting
Group BLO Priofity Lewel 15 (lughest) -

Group BL1 setting
[T Group BL1 Lewel 15 (highest)

Group ALD setting
[T Group ALD Lewel 15 (highest)

Group AL1 setting
[Group AL1 Level 15 (highest)

Figure 4-4 Group Interrupt Functions tab

4.3.2 Compare Match Timer

Navigate to the ‘Compare Match Timer’ node in Code Generator. CMTO will be used as an interval timer for
generation of accurate delays. CMT1 and CMT2 will be used as timers in de-bouncing of switch interrupts.

In the ‘CMTOQ’ sub-tab configure CMTO as shown in Figure 4-5. This timer is configured to generate a High
priority interrupt every 1ms. We will use this interrupt later in the tutorial to provide an API for generating high
accuracy delays required in our application.

- X

= Property. "E,_EJ Peripheral Functions™
%] GenerateCode | % O F & # ¥ H E S DO D DGR DHBOR ST T off TR G S
CMTO | cmT1 | cMT2 | CMT3 |

Compare match timer operation setting
) Unused @ Used

| v Hi

om

Count clock setting
@ PCLK/B @) PCLK/32 &) PCLKAM28 @ PCLK/312

Interval value setting

Interval value 1 ms w (Actual value: 1)
Interrupt setting

Enable compare match intemupt (CMI0)

Pricrity Level 10 -

Figure 4-5 CMTO tab

Navigate to the ‘CMTL1’ sub-tab and configure CMT1 as shown in Figure 4-6. This timer is configured to
generate a High priority interrupt after 20ms. This timer is used as our short switch de-bounce timer later in
this tutorial.

R20UT2930EG0100 Rev. 1.00 RENESAS Page 16 of 50
Jul 21, 2014

RSK+RX64M

4. Code Generation Using the CubeSuite+ plug in

= Property. j_’,_aJ Peripheral Functions®

L

%] GenerateCode | & 0 & = # ¥ S A wm O OO G D G E

] & & F F o T I G

- X

| >l

| cmTo | CMT1:| cmT2 | cMT3 |

Compare match timer operation setting
) Unused

Count clock setting

) PCLK/B @ PCLK/32

Interval value setting
Interval value

Interrupt setting
Enable compare match intemupt (CMI1)

Priarity

) PCLK/128

@ Used

0 PCLK/512

ms » (Actual value: 20)

Level 10 -

Figure 4-6 CMTL1 tab

m

Navigate to the ‘CMT2’ sub-tab and configure CMT2 as shown in Figure 4-7. This timer is configured to
generate a High priority interrupt after 200ms. This timer is used as our long switch de-bounce timer later in

this tutorial.

= Property j_’,_ﬂ Peripheral Functions®
%] GenerateCode | & O & B @ ¥ &

£
Bk

e

s Nt B M R W T Y Y I S 0 e - SR N

- X

3

| »

| cMTO | CMT1| CMT2 | cMT3 |

Compare match timer operation setting
) Unused

Count clock setting

©) PCLK/B © PCLK/32

Interval value setting
Interval value

Interrupt setting
Enable compare match intemupt (CMIZ)

Priority

4.3.3 12-bit A/D Converter

@ PCLKA28

@ Used

@ PCLK/512

ms v (Actual value: 200 004267)

Level 10 -

Figure 4-7 CMT2 tab

m

Navigate to the '12-bit A/D Converter’ tab in Code Generator. Refer to the screenshot shown in Figure 4-8
and configure the S12AD0 as shown. We will be using the S12ADO0 in 12-bit one shot mode on the ANOOO
input, which is connected to the RV1 potentiometer output on the RSK+. The conversion start trigger will be

via the pin connected to SW3.

R20UT2930EG0100 Rev. 1.00
Jul 21, 2014

RENESAS

Page 17 of 50

RSK+RX64M

4. Code Generation Using the CubeSuite+ plug in

T Froperty.” $J Peripheral Functions |

- X

Gl Genemtetode B O FE# B HEATHODRDDEDDBHES LT FHELEGH D

S124D0 | 512401 |
Setting 1} Setting 2 |
- 5128D0 setting

Unused
- Dperation mode setting

Used

Single scan mode

Group scan mode

(2 Continuous scan mode

— Double trigger mode setting
Disable Enable
- Self is setting
Mode Unused -
Vohage used [use vREFHOX0 -]
- Disconnection detection assist setting
Charge setting | Unused -|
Period [1apcLK -

- Group scan priority setting
Group A priority
Group B action

- AVD converted value count setting

| Group A without prionity

- ‘

| Mot restarted or continued due to Group A priority ‘

Addition mode

— Analeg input channel setting

Convert (Group A}
ANDOO
ANDDT
ANDO2
ANDO3
ANDD4
ANDOS
ANDDE
ANDO7

-~ Conversion start trigger setting

Convert (Group B)

oooooooo

Add/Average AD value
O
O

oooooodo

Dedicated sample and hold

Conversion start trigger (Group A}

AD conversion start trigger pin

Conversion start trigger {Group B)

Compare match with or input capture to MTUD.TGRA

ADTRGO# pin selection

- Data registers setting

PO7 -

AD converted value addition count
Data placement
Automatic clearing

Data accuracy

1-time conversion

Right-alignment -

Diszble automatic clearing

12-bit accuracy -

- Dedicated sample and hold circuit setting
Input sampling time

- ANOOD / Self-di

(The input value is invalid)

time setting

Input sampling time

:

(1) (Actual value: 3.667)

- ANOD1 conversion time setting

Input sampling time

w
@
@
=

{Actual value: 3.667)

- ANO02 conversion time setting
Input sampling time

- ANOO3 conversion time setting

w
@
&
<

(Actual value: 3.

Input sampling time

- ANO04 conversion time setting

w
@
@
=

{Actual value: 3.667)

Input sampling time

- ANOO5 conversion time setting

w
@
&
<

(us) (Actual value: 3.667)

Input sampling time

- ANODE conversion time setting

w
@
@
=

{Actual value: 3.667)

Input sampling time

- ANOO7 conversion time setting

w
@
&
=

{Actual value: 3.667)

Input sampling time

-G ion time setting

w
@
@
=

{Actual value: 3.667)

Total conversion time (Group A)
Total conversion time (Group B)
{Note: Continuous sampling is disabled)

- Interrupt setting

-

|

Enable AD conversion end intermupt (512ADID)

Priority

Level 15 (highest) -

[¥] Enable AD conversion end intemupt for group B (S 12GEADID)

Priority

I

Level 15 (highest)

nr

Figure 4-8 A/D Converter tab

R20UT2930EG0100 Rev. 1.00

Jul 21, 2014

RENESAS

Page 18 of 50

RSK+RX64M 4. Code Generation Using the CubeSuite+ plug in

4.3.4 Serial Communications Interface

Navigate to the ‘Serial Communications Interface’ tab in Code Generator, select the SCI6 sub-tab and apply
the settings shown in Figure 4-9. In the RSK+RX64M SCI6 is used as an SPI master for the Okaya Pmod™

LCD on the PMOD1 connector as shown in the schematic.

= Property j_’,_g Peripheral Functions® - X
] GenerateCode | = 0 S E # M A A S DO DO G DD DHOL LT TP L
scio | scit | sciz | sci | sci | scis | SCIE | sci7 | sciz | o
Generalseﬂing§| Setting |
Function setting £

) Unused
) Asynchronous mode Transmission M
) Asynchronous mode (Multiprocessor) Transmission
() Clock synchronous mode Transmission
() Smart card inteface mode Transmission
) Simple IIC bus
@ Simple SPIbus Master transmit only -
Pin setting
P01
TXD&/SMOS5I6/S5DAG POO -
Il [T | 3

Figure 4-9 SCI6 General Setting tab

Select the SCI6 ‘Setting’ sub-tab and configure the SPI Master as illustrated in Figure 4-10. Make sure the
‘Transfer direction setting’ is set to ‘MSB-first’ and the ‘Bit rate’ is set to 1500000. All other settings remain at

their defaults.

R20UT2930EG0100 Rev. 1.00 RENESAS Page 19 of 50
Jul 21, 2014

RSK+RX64M 4. Code Generation Using the CubeSuite+ plug in

- X

¥ Property. E._é Peripheral Functions™

%] GenerateCode | % (1 B = # WSS D 000 D0 HEE ST ESE WS

"
=~}
~

| scio | scn | sciz | sci3 | sci4 | scis | sCi6 | sci7 | scnz | 8-Bit Timer |
| General setting| Setting

— Transfer direction setting

(") LSBHirst @ MSBirst
- Data inversion setting A
@ Momal) Inverted 3

— Transfer rate setting

Transfer clock Internal clock - FO2 -
Bit rate 1500000 - bps) (Actual value: 1500000, Emor : 0%)
[Enable modulation duty comection 255 N
SCKE pin function selection Clock output -
- Clock setting
Clock delay Clock i= not delayed -

[7] Enable clock polarity inversion

- Data handling setting

Transmit data handling Data handled in interrupt service routing -
~Interrupt setting

TXI6 priority Lewvel 15 (highest) -

TEI6, ERIG priorty {(Group BLO) Level 15 {highest)

- Callback function setting
Transmission end

L] LI I

Figure 4-10 SCI6 SPI Master Setting

Staying in the ‘Serial Communications Interface’ tab in Code Generator, select the SCI7 sub-tab and apply the
settings shown in Figure 4-11. In the RSK+RX64M SCI7 is connected via a Renesas RL78/G1C to provide a
USB virtual COM port as shown in the schematic.

3 Property. E,_d Peripheral Functions™ - X
[@jGEﬂEI'atECDdE _-;"-_- = ﬁﬁ;ﬁf#;g;;gﬁmiﬁ@{ﬁ@@ﬁ@%é)tﬁ;tﬁ)vf‘-fﬁlg“fﬁn Lr'\‘“hdl’l%“;
scio | scit | sci2 | sci | sci | scis | scie | sCiT | scnz | o
Genersl setting | Setting | |
~Function setting 1

) Unused
@ Asynchronous mode Transmission/reception -
) Asynchronous mode (Multi-processar) Transmission
() Clock synchronous mode Transmission
(") Smart card interfface mode Transmission
) Simple 1IC bus
() Simple 5P| bus Slave transmitreceive
—PFin setting
RXD7/SMISO7/SSCLT P52 -
TXD7/SMOSI7/SSDAT P30 - |
4| 1 3
Figure 4-11 SCI7 General Setting tab
R20UT2930EG0100 Rev. 1.00 RENESAS Page 20 of 50

Jul 21, 2014

RSK+RX64M

4. Code Generation Using the CubeSuite+ plug in

Select the SCI7 ‘Setting’ sub-tab and configure SCI7 as illustrated in Figure 4-12. Make sure the ‘Start bit
edge detection’ is set as ‘Falling edge on RXD7 pin’ and the ‘Bit rate’ is set to 19200 bps. All other settings

remain at their defaults.

= Property E._d Peripheral Functions™

%] GenerateCode | % O S = # M L& LB D AH D AD D BHOL LT T HETIE G S L

- X

| scio | scin | sciz | sciz | sci4 | scis | scie | SCZ | scinz2 |

"
-7}
-

| General setting | Setting :

- Start bit edge detection setting

) Low level on RXD7 pin

@ Falling edge on RXD7 pin

- Data length setting

Enable emor intemupt (ERIT)
TEI7, ERIT priorty (Group BLO)

- Callback function setting

) 9bits @ 8bits) 7hits
- Parity setting
@ Mone) Even) Odd
- Stop bit length setting
@ 1bit) 2bits =
- Transfer direction setting
@ LSBirst () MSBirst
- Transfer rate setting
Transfer clock Internal clock - P31
Bit rate 15200 - bps) (Actual value: 15230769, Emor: 0.16%)
[] Enable modulation duty comection 255
SCK7 pin function SCKT is not used -
— Moise filter setting
[Enable noise filter
Noize fiter cloc Clock signal divided by 1 GODDO000 Hz
- Hardware flow contral setting
@ None @ CTS © RTS
CTS7/RTS7 pir P93
- Data handling setting
Transmit data handling Data handled in interrupt service routine -
Receive data handling Diata handled in interrupt service routine -
- Interrupt setting
TXI7 priorty Level 15 (highest) -
RXI7 priority Level 15 (highest) -

Level 15 fhighest)

Transmission end

Reception end Reception emor

ol

LI k

Figure 4-12 SCI7 Asynchronous Setting

R20UT2930EG0100 Rev. 1.00
Jul 21, 2014

:{ENESAS Page 21 of 50

RSK+RX64M

4. Code Generation Using the CubeSuite+ plug in

4.3.5 I/O Ports

Referring to the RSK+ schematic, LEDO is connected to P03, LED1 is connected to P05, LED2 is connected
to P26 and LED3 is connected to P27. Navigate to the ‘I/O Ports’ tab in Code Generator and configure these
four I/O lines as shown in Figure 4-13 and Figure 4-14 below. Ensure that the ‘Output 1’ tick box is checked.
This ensures that the code is generated to set LEDs initially off.

Propertyvfﬂ Peripheral Functions®]
'f;j Generate Code

- X

SLUFEFBELEEDRDDOD0DHEES LT THETIE SN

Bort | Port1 | Port2 | Port3 | Port4 | Ports | Ports | Port7 | Port@ | Port9 | Porté | PortB | PertC | PortD | PortE | PortF | PortG | Ports | i
- P00
@ Unused @ In 2 @ Out 2 Pull-up |CMDS output v| Output 1 High-drive output
- P01 3
@ Unused) In) Out Pull-up |CMDS output v| Output 1 High-drive output
- P02
@ Unused @ In M @ Out 2 Pull-up |CMDSoutput v| Output 1 High-drive output
- P03
) Unused @ In @ Out Pull-up CMOS output - Output 1 High-drive output
- P05
) Unused © In @ Out Pull-up CMOS output - Output 1 High-drive output
- PO7
@ Unused @ In M @ Out 2 Pull-up CMOS output v| Output 1 High-drive output
< T v
Figure 4-13 1/O ports — Port0
Propertyvzﬂ Peripheral Functions™] - X
%] Generate Code | (1 sttt 2 e 5 O 0 @ O D D [B BT TR T IE b
| Portd | Port1 | Port2 | Pori3 | Porté | Fort5 | Porté | Port7 | Port8 | Fortd | Portd | FortB | PortC | PortD | PortE | PortF | PortG | Port) | ol
@ Unused) In) Out Pull-up |CMDS output v| Output 1 High-drive output
- P21
@ Unused @ In) Out Pull-up |CMDSoutput v| Output 1 High-drive output =
- P22
@ Unused @ In) Out Pull-up |CMDS output v| Output 1 High-drive output
- P23
@ Unused @ In) Out Pull-up |CMDS output v| Output 1 High-drive output B
-F24
@ Unused) In) Out Pull-up |CMDS output v| Output 1 High-drive output
- F25
@ Unused) In) Out Pull-up |CMDS output v| Output 1 High-drive output
- P26
) Unused @ In @ Out Pull-up CMOS output - Output 1 High-drive output
- P27
) Unused @ In @ Out Pull-up CMOS output - Output 1 High-drive output
< T v

Figure 4-14 1/O ports — Port2

P45 is used as one of the LCD control lines, together with P46 and P47. Configure these lines as shown in

Figure 4-15.

R20UT2930EG0100 Rev. 1.00

Jul 21, 2014

RENESAS

Page 22 of 50

RSK+RX64M 4. Code Generation Using the CubeSuite+ plug in

F'roperty]/fﬂ Peripheral Functions® I - X
f] GenerateCode | X I S X # M A A NSO R DDA DDDHORLLT THETIEL Gd L
| Port0 | Port1 | Portz | Port3 | Port2 | Port5 | Ports | Port7 | Porte | Ports | Porta | PortB | PortC | PortD | PortE | PortF | PortG | Ports | o

@ Unused @ In Y @ Out 2 Pull-up |CMDS output vl CQutput 1
- P41

@ Unused @ In) Out Pull-up |CMDS output vl Output 1 =
- P42

@ Unused @ In) Out Pull-up |CMDS output vl Output 1
- P43

@ Unused @ In) Out Pull-up |CMDS output vl Output 1 T
- P44

@ Unused O n © Out Pulup [CMOS output -| Output 1
- P45

) Unused @ In @ Out Pull-up CMOS output - Output 1
- P46

) Unused @ In @ Out Pull-up CMOS output - Output 1
- P47

) Unused @ In @ Out Pull-up CMOS output - [Qutput 1 |
4| m 0

Figure 4-15 1/O ports — Port4

Peripheral function configuration is now complete. Save the project using the File -> Save Project menu item,
then click ‘Generate Code’. The Output pane should report ‘The operation of generating file was successful’,
as shown Figure 4-16 below.

R20UT2930EG0100 Rev. 1.00 RENESANAS Page 23 of 50
Jul 21, 2014

RSK+RX64M 4. Code Generation Using the CubeSuite+ plug in

M0403002:The generating source folder is: C: \HurkspacE\CG_Tuturial\(J
MO0405%001:The following files were generated:,[J
M04053000:cg_srchr cg main.c was generat Ed_(J
M0403000:-eg_srchr_eg_dbact.c was generated_,[J
M0403000:-cg_sreh\r_eg_intprg.c was generated_(J
M0403000:eg_srchr_cg_resetprg.c was generated_ij
M0405000:2g_srchr_eg_sbrk.c was generat Ed_(J
M0405000:cg_srehr_cg_wvectthbl.c was generat Ed.(J
M0405000:cg_srchr_cg_sbrk.h was generated.tj
M0405000:cg_srchr_cg stacksct.h was generated.d
M0405000:cg_srchr_cg_wvect.h was generated.cj
MO0403000:2g_srchr_og hardware setup.c wWas generated.cj
M0405000:cg_srcehr_eog macrodriver.h was generated.cj
M0403000:-eg_srchr_ecg userdefine. h was generated_(J
M04053000:-cg_srchr_ecg_cgc.c wWas generated_(J
M0403000:-cg_srchr_cg_cgc_user.c was generated_,d
M04053000:-eg_srchr_eg_cgc.h was generated_(J
M04053000:-cg_srcehr_eg_ilcu.c was generated_(J
M0405000:g_srchr_eog_icu user.c was generated_ij
M0405000:cg_srehr_cg_icu.h was generated_d
M0405000:cg_srehr_cg port.c was generated.cj
M0405000:cg_srohr_cg port_user.c wWas generated.‘J
M0405000:cg_srchr_cg_port.h was generated.cj
M0403000:cg_srchr_cg cmbt.c wWas generated_cj
M0405000:eg_srchr_cg cmt_user.c was generated.d
M04053000:eg_srchr_cg cmt.h was generated_(J
M04053000:-cg_srchr_ecg_sci.c was generated_(J
M04053000:-eg_srchr_ecg_sSci_user.c was generated_ij
M0403000:-cg_srchr_eg_sci.h was generated_(J
M0405000:eg_srchr_eg_sliZad.c was generated_ij
M0405000:-cg_srchr_eg_slZad user.c was generated_(J
M0405000:0g_srchr_cg_sliad.h was generated.d
M0403003:The operation of generating file was successful-,lj
[ECF]

m

\ :All Message A “Code Generator ({ *Rapid Build /

Cutput IE Errar LiStl

Figure 4-16 Code generator console

Figure 4-17 shows the Code Generator Files in the Project Tree pane. In the next section the CG_Tutorial

project will be completed by adding user code into these files and adding new source files to the project.

R20UT2930EG0100 Rev. 1.00 RENESANAS Page 24 of 50

Jul 21, 2014

RSK+RX64M 4. Code Generation Using the CubeSuite+ plug in

Project Tree

: @ 2 @

=-| % CG Tutorial (Project)
.. % RSFS64MLCxFC (Microcontroller)

B:J Code Generator (Design Tool)

.. A, CC-RX (Build Tool)

- 5?\ R Simulator (Debug Tool)

- File

.. ﬂ Build tool generated files

Elm Code Generator
..... E-| r_cg_main.c

..... | r_cg_dbsct.c

..... IEI r_cg_intprg.c

..... IEI r_cg_resetprg.c
----- ‘EI r_cg_shrk.c

..... Q r_cg_vecttbl.c

----- ‘EI r_cg_hardware_setup.c
..... ‘;EI r_cg_cgc.c

..... '-';EI r_Cg_Cgc_userc
..... & r_cg_icu.c

..... & r_cg_icu_user.c
..... '-'EI r_cg_port.c

..... ‘EI r_cg_port_user.c
..... !EI r_cg_cmt.c

..... IEI r_cg_cmt_user.c
..... '-'EI r_cg_sci.c

..... | r_cg_sci_user.c
..... ‘:;I r_cg_sl2ad.c

..... IEI r_cg_sl2ad_user.c

----- EI r_cg_sbrk.h
----- EI r_cg_stacksct.h

----- EI r_cg_cmt.h

----- Q r_cg_sci.h

----- El r_cg_sl2ad.h

Figure 4-17 Code Generator Files in the Project Tree

R20UT2930EG0100 Rev. 1.00 RENESAS
Jul 21, 2014

Page 25 of 50

RSK+RX64M

5. Completing the Tutorial Project

Project Settings

In the ‘Project Tree' pane, select
‘CC-RX (Build Tool). The build
properties will appear in the main
window.

CubeSuite+ creates a single build
configuration called ‘Default Build’
for the project. This has standard
code optimisation turned on by
default.

Select the ‘Compile Options’ tab at
the bottom of the properties window
pane. Under ‘Language of the C
source file’ select ‘C99(-lang=c99)’
as shown opposite.

Select the ‘Link Options’ tab at the
bottom of the properties window
pane. Under ‘Section -> ROM to
RAM mapped section’, add the
three mappings as shown opposite.

5. Completing the Tutorial Project

A, CC-RX Property
4 BuildMode
Build mode
4 CPU
Instruction set architecture
Uses floating-paint. operation instructions
Endian type for data
Rounding method for floating-point constant operations
Handling of denomalized numbers in floating-point constants
Precision of the double type and long double type
Replaces the int type with the short type:
Sign of the char type
Sign of the bit-field type
Selects the enumeration type size automatically
Order of bitfigld members
Assumes the boundary alignment value far structure members is 1
Enables C++ exceptional handling function [try, catch and throw)]
Enables the C++ exceptional handling function [dynamic_cast and typeid]
General registers used only in fast intermupt functions
Branch width size
Base register for ROM
Base register for RahM
Address value of base register that sets the address value
Register of baze register that sets the address value

Build mode
Selects the build made name ta be uzed during build,

4 Source

Language of th ce file
Larguage of the C++ source file
Additional include paths

System include paths

Include files at the head of compiling unitz
Macro definition

Irvealidates the oredefined macra

VW v v

4 Optimization
Optimization type

4 Section
Section start address

Mo optimizel-MO0Ptimize)

DefaultBuild

Fw2 architecturel-isa=rav2)

Yes|-fpu)

Litle-endian datal-endian=little]

round to nearest-raund=nearest)
Handles as zeros|-denormalize=off]
Handles in single precision|-dbl_size=4]
Mo

Handles as unsigned char(-unsigned_char|
Handles as unsigned(-unsigned_bitfield]
Mo

Allacates from right{-bit_order=right)
No[-unpack)

No[-hoesception]

Nal-rtti=off)

None{-fint_register=0]

Compiles within 24 bits(-branch=24)
Mone

Mone

00000000

Mone

C99[-lang=c99]

Include files at the head of cor
M.acro definition[0]

B_1.R_1B_2R_2BR.5U.5/04 PResetPRG/OFFFFS000.C_1 C

> The specified zection that outputs The specified section that outputs externally defined symbols to tk

> Section alignment

Fll RO to BAM mappet h
[0 D-R
[D_1=R_1
[21 b 2=k 2

Section alignment[0]
ROM to RAM mapped section[3] [

R20UT2930EG0100 Rev. 1.00
Jul 21, 2014

RENESAS

Page 26 of 50

RSK+RX64M

5. Completing the Tutorial Project

e These settings are easily added by
clicking the button ‘... and pasting
the following text into the dialog:

D=R
D_1=R_1
D_2=R 2

e This ensures that the linker assigns
RAM rather than ROM addresses
to C variables.

e From the ‘Build’ menu, select ‘Build
Mode Settings...”. Click ‘Duplicate’
and in the resulting ‘Character
String Input’ dialog, enter ‘Debug’
for the name of the duplicate build
mode.

e The new ‘Debug’ build mode will be
added to the Build mode list. Click
‘Close’. Now, in the main CC-RX
Property window, under the
‘Common Options’ tab, click on the
line containing ‘Build Mode’, click
the pull-down arrow and select
‘Debug’ from the pull-down’.

Text Edit -

===

Text:

-
-

ok || cCancel || Heb

Build Mode Settings
Selected build mode:

|
Build mode list:

e

-

=]

Intermediate file output folder

[Close J [Help
A LR Property E][
4 Build Mode
Build mode Defautt Build [=]
4 Qutput File Type and Fath Deefault Build
Output file type Debug

L O TV IO TGS 7=

R20UT2930EG0100 Rev. 1.00
Jul 21, 2014

RENESAS

Page 27 of 50

RSK+RX64M

Completing the Tutorial Project

e Inthe ‘Frequently Used Options (for

Compile)’ group, select the
‘Optimization Level option and
select ‘0’ from the pull-down. We

have now created a ‘Debug’ build
mode with no code optimisation
and will be using the Build mode to
create and debug the project.

e All of the sample code projects
contained in this RSK are
configured with three Build modes;
‘DefaultBuild’, ‘Debug’ and
‘Release’. ‘Release’ is created in
the same way as above; by
duplicating ‘Default Build'.
‘Release’ build mode leaves code
optimisation turned on and
removes debug information from
the output file.

e To remove debug information from
the ‘Release’ build mode, in the
‘CC-RX Property’ window, select
the ‘Common Options’ tab at the
bottom of the window pane. For
the ‘Outputs debugging information’
option, select ‘No(-nodebug).

e Reset the build mode back to
‘Debug’ using the ‘Build Mode’ pull-
down control.

e From the menus, select ‘File ->

Save Al to save all project
settings.
5.2 Additional Folders

e Before new source files are added
to the project, we will create two
additional folders in the CubeSuite+
Project Tree.

¢ In the Project Tree pane, right-click
the CG_Tutorial project and select
‘Add -> Add New Category’.

"\ CC-R* Property

4 BuildMode

Build mode

CPU

PIC/PID

Dutput File Type andPath

Output file type

Irterrnediate file output folder

Frequently Used Options[for Compie]
Additional include paths

Syztem include paths

Macro definition

Outputs debugging information

Olpti tior level

Outputs additional information for inter-module optimization
Optinization type

Outputs a zource list file

Frequently Used Options[for Assemble]

|

EE A N

1Y

@) (2 &)l

Debug

Execute Module[Load Module File]
*BuildtdodeM ameZ

Additional include paths[2]
Syztem include paths[0]

Macro definition[0]

“Y'es[-debug]

0[-optimize=0]

1[-optimize=1]
2[-optimize=2]
b ax(-optimize=max]

"\ CC-R¥ Property

4 BuildMode

Build mode

CPU

PIC/PID

4 Dutput File Type andPath
Output file type

Intermediate file output folder
F Iy Used O ptions(f

Compie]

Additional include paths
System include paths
Macro definition

v v Vv h

ebugging information

@) (2 =)

Debug

Execute Module[Load Module File]
#%BuildodeM ame?

Additional include paths[2]
System include paths[0]

Macro definition[0]
HNo[-nodebug]

Optimization level

Outputs additional information for inter-module optimization
Optirmization type

Outputs a saurce list file

Frequently Used Options[for Assemble]

Additional include paths
Syztem include paths

M acro definition

F Iy Used O ptions(f
Uzing libraries

Outputs debugging infarmation

Link)

v b v T VT h

Dutputs debugging information
Selects whether to output debugging information.

Mal-roliztfile]

Additional include paths [0]
Syztem include paths [0]
tacro definition [0]

LUsing libraries{0]
Yes [Outputs to the output file][-DEBuUg)

Thiz comesponds to the -debug and -nodebug options of the compiler.

Project Tree a X Property ,E_J Per
5 @ 8@ [CG_Tutorial Property
ERY <G Tutorial (Projecty’] 4 File
R5F564MLCxFC (M Build CG_Tuterial
Code Generator (D . . Absolute pat
Rebuild CG_Tutorial > Notes

=]
<y, CC-RX (Build Tool 2
gl RX Simulator (Deb .4 Clean CG_Tutorial
=[50 File 2
'ﬂ] Build tool gene
-l | Code Generato E

Open Folder with Explorer
Windows Explorer Menu

Add

-

\ F Add Subproject..

ffa Set CG_Tutorial as Active Project

Save Project and Development Tools as Package.., 71 Add File...
& Paste Ctri+V "] Add New File...
g Rename F2 |, Add New Category

+ﬁ Add New Subproject...

R20UT2930EG0100 Rev. 1.00
Jul 21, 2014

RENESAS

Page 28 of 50

RSK+RX64M 5. Completing the Tutorial Project

e Rename the newly-created ‘New .| CG Tutorial (Project)*
Category’ folder to ‘C Source Files’. e

- & RSF564MLCxFC (Microcontroller)
Repeat these step§ to create a ne’w -5 Code Generator (Design Tool)
category folder for ‘Dependencies’. A, CC-RX (Build Tool)

L RX Simulator (Debug Tool)

=-[F) File

------ ﬂ Build tool generated files

| Code Generator

- ¥ C Source Files

5.3 LCD Code Integration

API functions for the Okaya LCD display are provided with the RSK+. Locate the files ascii.h , r_okaya_lcd.h,
ascii.c, and r_okaya_lcd.c on the RSK+ DVD. These files can be found in the RSK+RX64M_Tutorial project
for CubeSuite+ in the ‘Tutorial’ folder. Copy these files into the C:\Workspace\CG_Tutorial folder.

e Right-click on the ‘C Source Files’ -3 File

in the Project Tree and select ‘Add - Bl Build tool generated files

> Add File...’ - |} Code Generator
e Browse to the files asciic, and ‘..] Dependen Add VI3 acarie.

r_okaya_lcd.c in the B8 Ooen Folder with Exol ___1 A Nen il

H Upen rolder with cxXplorer e EwW rlle...

C:\Workspace\CG_Tutorial ~ folder Ry ~pen Forderwith Eplorer ,

and click ‘Add’ Zl| Windows Explorer Menu)| Add Mew Category
e Repeat the above steps to add the @ Removefrom Project Shift-Del

files ascii.h , r_okaya lcd.h to the 3y Copy Ctrl+C

‘Dependencies’ folder. # Paste Cirl+V

Code must be inserted in to the user code area in many files in this project, in the areas delimited by
comments as follows:

/* Start user code for _xxxxx_. Do not edit comment generated here */
/* End user code. Do not edit comment generated here */

Where _xxxx_ depends on the particular area of code, i.e. ‘function’ for insertion of user functions and
prototypes, ‘global’ for insertion of user global variable declarations, or ‘include’ for insertion of pre-processor
include directives. User code inserted inside these comment delimiters is protected from being overwritten by
Code Generator, if the user needs to subsequently change any of the Code Generator-generated code.

In the Cubesuite+ Project Tree, expand the ‘Code Generator’ folder and open the file ‘r_cg_userdefine.h’ by
double-clicking on it. Insert the following #defines in between the user code delimiter comments as shown
below.

R20UT2930EG0100 Rev. 1.00 RENESAS Page 29 of 50
Jul 21, 2014

RSK+RX64M 5. Completing the Tutorial Project

/* Start user code for global. Do not edit comment generated here */
#define TRUE (¢D)

#define FALSE)

/* End user code. Do not edit comment generated here */

In the Cubesuite+ Project Tree, open the file ‘r_cg_main.c’ by double-clicking on it. Insert #include
"r_okaya_lcd.h" in between the user code delimiter comments as shown below.

/* Start user code for include. Do not edit comment generated here */
#include "r_okaya_lcd._h"
/* End user code. Do not edit comment generated here */

Scroll down to the ‘main()’ function and insert the highlighted code as shown below into the beginning of the
user code area of the main() function:

void main(void)

{
R_MAIN_UserlInit(Q);
/* Start user code. Do not edit comment generated here */
/* Initialise the debug LCD */
R_LCD_Init();
/* Displays the application name on the debug LCD */
R_LCD_Display(0, (uint8_t *)' RSK+RX64M ');
R_LCD_Display(1l, (uint8_t *)" Tutorial ");
R_LCD_Display(2, (uint8_t *)" Press Any Switch ");
while (1U)
{
/* End user code. Do not edit comment generated here */
3

5.3.1 SPICode

The Okaya LCD display is driven by the SPI Master that was configured using Code Generator in §4.3.4. In
the Cubesuite+ Project Tree, open the file ‘r_cg_sci.h’ by double-clicking on it. Insert the following code in the
user code area at the end of the file:

/* Start user code for function. Do not edit comment generated here */
MD_STATUS R_SCI16_SPIMasterTransmit(uint8_t * const tx_buf, const uintl6_t tx_num);
/* End user code. Do not edit comment generated here */

Now, open the r_cg_sci_user.c file and insert the following code in the user area for global:

/* Start user code for global. Do not edit comment generated here */
/* Flag used locally to detect transmission complete */

static volatile uint8_t sci6_txdone;

/* End user code. Do not edit comment generated here */

Insert the following code in the transmitend call-back function for SCI6:

static void r_sci6_callback_transmitend(void)

/* Start user code. Do not edit comment generated here */
sci6_txdone = TRUE;
/* End user code. Do not edit comment generated here */

}

Now insert the following function in the user code area at the end of the file:

/

* Function Name: R_SCI6_SPIMasterTransmit

* Description : This function sends SPI6 data to slave device.
* Arguments - tx_buf -

* transfer buffer pointer

* t>x_num -

* buffer size

*

Return Value : status -

R20UT2930EG0100 Rev. 1.00 RENESAS Page 30 of 50
Jul 21, 2014

RSK+RX64M 5. Completing the Tutorial Project

* MD_OK or MD_ARGERROR

/
MD_STATUS R_SCI6_SPIMasterTransmit (uint8_t * const tx_buf, const uintl6_t tx_num)

{
MD_STATUS status = MD_OK;

/* clear the flag before initiating a new transmission */
sci6_txdone = FALSE;

/* Send the data using the APl */
status = R_SCI6_SPI1_Master_Send(tx_buf, tx_num);

/* Wait for the transmit end flag */
while (FALSE == sci6_txdone)

/* Wait */
}

return (status);

N

End of function R_SCI6_SPIMasterTransmit

/
This function uses the transmit end callback function to perform flow control on the SPI transmission to the
LCD, and is used as the main API call in the LCD code module.

5.3.2 CMT Code

The LCD code needs to insert delays to meet the timing requirements of the display module. This is achieved
using the dedicated timer which was configured using Code Generator in 84.3.2. Open the file r_cg_cmth
and insert the following code in the user area for function at the end of the file:

/* Start user code for function. Do not edit comment generated here */
void R_CMT_MsDelay(const uintl6_t millisec);
/* End user code. Do not edit comment generated here */

Open the file r_cg_cmt_user.c and insert the following code in the user area for global at the beginning of the
file:

/* Start user code for global. Do not edit comment generated here */
static volatile uint8_t one_ms_delay complete = FALSE;
/* End user code. Do not edit comment generated here */

Scroll down to the r_cmt_cmiQ_interrupt() function and insert the following line in the user code area:
static void r_cmt_cmiO_interrupt(void)

/* Start user code. Do not edit comment generated here */
one_ms_delay_complete = TRUE;
/* End user code. Do not edit comment generated here */

}

R20UT2930EG0100 Rev. 1.00 RENESAS Page 31 of 50
Jul 21, 2014

RSK+RX64M 5. Completing the Tutorial Project

Then insert the following function in the user code area at the end of the file:

Function Name: R_CMT_MsDelay

Description : Uses CMTO to wait for a specified number of milliseconds
Arguments : uintl6_t millisecs, number of milliseconds to wait
Return Value : None

Ok X ok T~

void R_CMT_MsDelay (const uintl6_t millisec)
uintl6é_t ms_count = O;

do
{
R_CMTO_Start();
while (FALSE == one_ms_delay_complete)

{
/* Wait */

}
R_CMTO_Stop();
one_ms_delay complete = FALSE;
ms_count++;
3} while (ms_count < millisec);

}

/
End of function R_CMT_MsDelay

/
Select ‘Build Project’ from the ‘Build’ menu, or press F7. Cubesuite+ will build the project with no errors.

The project may now be run using the debugger as described in §6. The program will display ‘RSK+X64M
Tutorial Press Any Switch on 3 lines in the LCD display.

5.4 Switch Code Integration

API functions for user switch control are provided with the RSK+. Locate the files rskrx64def.h, r_rsk_switch.h
and r_rsk_switch.c on the RSK+ DVD. RSK+RX64M_Tutorial project for CubeSuite+ in the ‘Tutorial’ folder.
Copy these files into the C:\Workspace\CG_Tutorial folder. Import these two files into the project in the same
way as the Icd files.

The switch code uses interrupt code in the files r_cg_icu.h, r_cg_icu.c and r_cg_icu_user.c and timer code in
the files r_cg_cmt.h, r_cg_cmt.c and r_cg_cmt_user.c, as described in 84.3.1 and 84.3.2. It is necessary to
provide additional user code in these files to implement the switch press/release detection and de-bouncing
required by the API functions in r_rsk_switch.c.

54.1 Interrupt Code

In the Cubesuite+ Project Tree, expand the ‘Code Generator’ folder and open the file ‘r_cg_icu.h’ by double-
clicking on it. Insert the following code in the user code area at the end of the file:

/* Start user code for function. Do not edit comment generated here */

/* Function prototypes for detecting and setting the edge trigger of ICU_IRQ */
uint8_t R_ICU_IRQIsFallingEdge(const uint8_t irg_no);

void R_ICU_IRQSetFallingEdge(const uint8_t irg_no, const uint8_t set_f_edge);
void R_ICU_IRQSetRisingEdge(const uint8_t irg_no, const uint8_t set_r_edge);

/* End user code. Do not edit comment generated here */

R20UT2930EG0100 Rev. 1.00 RENESAS Page 32 of 50
Jul 21, 2014

RSK+RX64M 5. Completing the Tutorial Project

Now, open the r_cg_icu.c file and insert the following code in the user code area at the end of the file:

Function Name: R_ICU_IRQIsFallingEdge

Description : This function returns 1 if the specified ICU_IRQ is set to
falling edge triggered, otherwise O.

Arguments uint8_t irg_no

Return Value : 1 if falling edge triggered, O if not

o oX X XN

uint8_t R_ICU_IRQIsFallingEdge (const uint8_t irg_no)
{
uint8_t falling_edge_trig = 0xO0;
iT (ICU.IRQCR[irg_no]-BYTE & _04 I1CU_IRQ_EDGE_FALLING)

falling_edge_trig = 1;
3

return falling_edge_trig;

N

End of function R_ICU_IRQIsFallingEdge

Function Name: R_ICU_IRQSetFallingEdge

Description : This function sets/clears the falling edge trigger for the
specified ICU_IRQ.

Arguments : uint8_t irg_no
uint8_t set_f edge, 1 if setting falling edge triggered, O if
clearing

Return Value : None

*ox % ok o XN

/
void R_ICU_IRQSetFallingEdge (const uint8_t irg_no, const uint8_ t set f_edge)

ifT (1 == set_T _edge)
ICU. IRQCR[irg_no].BYTE |= _04 ICU_IRQ_EDGE_FALLING;
}

else

ICU. IRQCR[irg_no].BYTE &= (uint8_t) ~ 04 ICU_IRQ EDGE_FALLING;
}

}
/
* End of function R_ICU_IRQSetFallingEdge

Function Name: R_ICU_IRQSetRisingEdge

Description : This function sets/clear the rising edge trigger for the
specified ICU_IRQ.

Arguments D uint8_t irg_no
uint8_t set_r_edge, 1 if setting rising edge triggered, O if
clearing

Return Value : None

ook X X % X XN\

void R_ICU_IRQSetRisingEdge (const uint8_t irg_no, const uint8_t set_r_edge)
if (1 == set_r_edge)
ICU. IRQCR[irg_no].BYTE |= _08_ICU_IRQ EDGE RISING;
}

else

ICU. IRQCR[irg_no].BYTE &= (uint8_t) ~_08_ICU_IRQ_EDGE_RISING;

* NS

End of function R_ICU_IRQSetRisingEdge

R20UT2930EG0100 Rev. 1.00 RENESAS Page 33 of 50
Jul 21, 2014

RSK+RX64M 5. Completing the Tutorial Project

Open the r_cg_intp_user file.c file and insert the following code in the user code area for include near the top
of the file:

/* Defines switch callback functions required by interrupt handlers */
#include "r_rsk_switch._h"

In the same file insert the following code in the user code area inside the function r_icu_irg2_interrupt ():

/* Switch 2 callback handler */
R_SWITCH_IsrCallback2();

In the same file insert the following code in the user code area inside the function r_icu_irg5_interrupt ():

/* Switch 1 callback handler */
R_SWITCH_IsrCallbackl1();

5.4.2 De-bounce Timer Code

Open the r_cg_cmt_user.c file and insert the following code in the user code area for include near the top of
the file:

/* Defines switch callback functions required by interrupt handlers */
#include "r_rsk_switch._h"

In the same file insert the following code in the user code area inside the function r_cmt_cmil_interrupt ():

/* Stop this timer - we start it again in the de-bounce routines */
R_CMT1_Stop(Q);

/* Call the de-bounce call back routine */
R_SWITCH_DebouncelsrCal lback();

In the same file insert the following code in the user code area inside the function r_cmt_cmi2_interrupt ():

/* Stop this timer - we start it again in the de-bounce routines */
R_CMT2_Stop();

/* Call the de-bounce call back routine */
R_SWITCH_DebouncelsrCal lback();

5.4.3 Main Switch and ADC Code

In this part of the tutorial we add the code to act on the switch presses to activate A/D conversions and display
the result on the LCD. In 84.3.3 we configured the ADC to be triggered from the ADTRGO# pin. In this code,
we also perform software triggered A/D conversion from the user switches SW1 and SW2, by reconfiguring
the ADC trigger source on-the-fly once an SW1 or SW2 press is detected.

In the Cubesuite+ Project Tree, expand the ‘Code Generator’ folder and open the file ‘r_cg_userdefine.h’ by
double-clicking on it. Insert the following code the user code area, resulting in the code shown below

/* Start user code for function. Do not edit comment generated here */
#define TRUE (¢D)
#define FALSE)

extern volatile uint8_t g_adc_trigger;
/* End user code. Do not edit comment generated here */

Open the file ‘'r_cg_main.c’ and insert #include "r_rsk_switch.h" in the user code area for include, resulting in
the code shown below:

/* Start user code for include. Do not edit comment generated here */
#include "r_okaya_lcd._h"
#include "'r_rsk switch.h"

R20UT2930EG0100 Rev. 1.00 RENESAS Page 34 of 50
Jul 21, 2014

RSK+RX64M

5. Completing the Tutorial Project

/* End user code. Do not edit comment generated here */

Next add the switch module initialisation function call highlighted in the user code area inside the main()
function, resulting in the code shown below:

void main(void)

{

}

R_MAIN_UseriInit(Q);

/* Start user code. Do not edit comment generated here */

/* Initialise the switch module */

R_SWITCH_InitQ);

/* Initialise the debug LCD */

R_LCD_INitQ;

/* Displays the application name on the debug LCD */

R_LCD_Display(0, (uint8_t *)" RSK+RX64M ');
R_LCD Display(1, (uint8_t *)" Tutorial ");
R_LCD _Display(2, (uint8_t *)" Press Any Switch ");

while (1U0)
{

/* End user code. Do not edit comment generated here */

In the same file, insert the declarations in the user code area for global, resulting in the code shown below:

/* Start user code for global. Do not edit comment generated here */

/* Prototype declaration for cb_switch _press */
static void cb_switch_press (void);

/* Prototype declaration for get _adc */
static uintl6_t get_adc(void);

/* Prototype declaration for lcd_display_adc */
static void lcd_display adc (const uintl6_t adc_result);

/* Variable for flagging user requested ADC conversion */
volatile uint8_t g_adc_trigger = FALSE;

/* End user code. Do not edit comment generated here */

Next add the highlighted code below in the user code area inside the main() function and the code inside the
while loop, resulting in the code shown below:

void main(void)

{
R_MAIN_UserlInit(Q);
/* Start user code. Do not edit comment generated here */
/* Initialise the switch module */
R_SWITCH_Init(Q);
/* Set the call back function when SW1 or SW2 is pressed */
R_SWITCH_SetPressCal lback(cb_switch_press);
/* Initialise the debug LCD */
R_LCD_Init ;
/* Displays the application name on the debug LCD */
R_LCD_Display(0, (uint8_t *)" RSK+RX64M ');
R_LCD_Display(1, (uint8_t *)" Tutorial ');
R_LCD _Display(2, (uint8_t *)" Press Any Switch ");
/* Start the A/D converter */
R_S12AD0O_Start();
while (1U)
{
R20UT2930EG0100 Rev. 1.00 .zEN ESNS Page 35 of 50

Jul 21, 2014

RSK+RX64M

5. Completing the Tutorial Project

uintlé_t adc_result;

/* Wait for

if (TRUE == g_adc_trigger)

{

/* Call the function to perform an A/D conversion */
adc_result = get_adc();

/* Display the result on the LCD */
Icd_display_adc(adc_result);

/* Reset the flag */
g_adc_trigger = FALSE;

by
/* SW3 is directly wired into the ADTRGOn pin so will

cause the interrupt to fire */

else if (TRUE == g_adc_complete)

{

}

/* Get the result of the A/D conversion */
R_S12AD0_Get_ValueResult(ADCHANNELO, &adc_result);

/* Display the result on the LCD */
Icd_display_adc(adc_result);

/* Reset the flag */
g_adc_complete = FALSE;

/* End user code. Do not edit comment generated here */

user requested A/D conversion flag to be set (SW1 or SW2) */

3
Then add the definition for the switch call-back, get_adc() and Icd_display_adc() functions in the user code
area for adding at the end of the file, as shown below:

/
* Function Name : cb_switch_press
* Description : Switch press callback function. Sets g_adc_trigger flag.
* Argument I none
* Return value : none
/
static void cb_switch_press (void)
{
/* Check if switch 1 or 2 was pressed */
1T (g_switch_flag & (SWITCHPRESS_1 | SWITCHPRESS_2))
{
/* set the flag indicating a user requested A/D conversion is required */
g_adc_trigger = TRUE;
/* Clear flag */
g_switch_flag = 0x0;
}
by
/
* End of function cb_switch_press
/
/
* Function Name : get_adc
* Description : Reads the ADC result, converts it to a string and displays
* it on the LCD panel.
* Argument I none
* Return value : uintl6_t adc value
/

static uintl6_t get_adc (void)

/* A variable to retrieve the adc result */
uintl6_t adc_result;

/* Stop the A/D converter being triggered from the pin ADTRGOnN

R_S12AD0_Stop();

/* Start a conversion */
R_S12ADO_SWTriggerStart();

/* Wait for the A/D conversion to complete */
while (FALSE == g_adc_complete)

{

*/

R20UT2930EG0100 Rev. 1.00 RENESAS

Jul 21, 2014

Page 36 of 50

RSK+RX64M 5. Completing the Tutorial Project

/* Wait */
3

/* Stop conversion */
R_S12ADO_SWTriggerStop();

/* Clear ADC flag */
g_adc_complete = FALSE;

R_S12AD0O_Get_ValueResult(ADCHANNELO, &adc_result);

/* Set AD conversion start trigger source back to ADTRGOn pin */
R_S12ADO_Start();

return adc_result;

* N

End of function get_adc

Function Name : lcd_display_adc

Description : Converts adc result to a string and displays
it on the LCD panel.

Argument : uintl6_t adc result

Return value : none

ook X ok XN

static void lcd_display_adc (const uintl6_t adc_result)
{

/* Declare a temporary variable */

uint8_t a;

/* Declare temporary character string */
char lcd_buffer[11] = " ADC: XXXH";

/* Convert ADC result into a character string, and store in the local.
Casting to ensure use of correct data type. */

a = (uint8_t)((adc_result & OxOF00) >> 8);

Icd_buffer[6] = (char)((a < 0x0A) ? (a + 0x30) : (a + 0x37));

a = (uint8_t)((adc_result & O0x00F0) >> 4);

lIcd_buffer[7] = (char)((a < Ox0A) ? (a + 0x30) : (a + 0x37));

a = (uint8_t)(adc_result & 0x000F);

Icd_buffer[8] = (char)((a < Ox0A) ? (a + 0x30) : (a + 0x37));

/* Display the contents of the local string lcd_buffer */
R_LCD Display(3, (uint8_t *)lcd_buffer);

* NS

End of function lcd_display_adc

/

Open the file ‘r_cg_s12ad.h’ by double-clicking on it. Insert the following code in the in the user code area for
function, resulting in the code shown below:

/* Start user code for function. Do not edit comment generated here */

/* Flag indicates when A/D conversion is complete */
extern volatile uint8_t g_adc_complete;

/* Functions for starting and stopping software triggered A/D conversion */
void R_S12ADO_SWTriggerStart(void);

void R_S12AD0O_SWTriggerStop(void);

/* End user code. Do not edit comment generated here */

Open the file ‘r_cg_s12ad.c’ by double-clicking on it. Insert the following code in the in the user code area for
adding at the end of the file, resulting in the code shown below:

/* Start user code for adding. Do not edit comment generated here */

/

* Function Name: R_S12ADO_SWTriggerStart

* Description : This function starts the ADO converter.

* Arguments : None

R20UT2930EG0100 Rev. 1.00 .{EN ESNS Page 37 of 50

Jul 21, 2014

RSK+RX64M 5. Completing the Tutorial Project

* Return Value : None

void R_S12ADO_SWTriggerStart(void)
{
IR(PERIB, INTB129) = 0U;
IEN(PERIB, INTB129) 1U;
ICU.GENBL1.BIT.EN19 1U;
S12AD.ADCSR.BIT.ADST = 1U;

b4
/

End of function R_S12AD0 SWTriggerStart

Function Name: R_S12ADO_SWTriggerStop

Description : This function stops the ADO converter.
Arguments > None

Return Value : None

L I I N

void R_S12ADO_SWTriggerStop(void)

S12AD.ADCSR.BIT.ADST = 0U;
IEN(PERIB, INTB129) = 0U;
IR(PERIB, INTB129) = 0U;
ICU.GENBL1.BIT.EN19 = 0U;
3
/
End of function R_S12AD0O_SWTriggerStop

/* End user code. Do not edit comment generated here */

Open the file r_cg_sl12ad_user.c and insert the following code in the in the user code area for global, resulting
in the code shown below:

/* Start user code for global. Do not edit comment generated here */
/* Flag indicates when A/D conversion is complete */

volatile uint8_t g_adc_complete;

/* End user code. Do not edit comment generated here */

Insert the following code in the in the user code area of the r_s12ad0_interrupt () function, resulting in the
code shown below:

static void r_s12ad0_interrupt(void)

/* Start user code. Do not edit comment generated here */
g_adc_complete = TRUE;
/* End user code. Do not edit comment generated here */

¥
Select ‘Build Project’ from the ‘Build’ menu, or press F7. Cubesuite+ will build the project with no errors.

The project may now be run using the debugger as described in 86. When any switch is pressed, the
program will perform an A/D conversion of the voltage level on the ADPOT line and display the result on the
LCD panel. Return to this point in the Tutorial to add the UART user code.

5.5 Debug Code Integration

API functions for trace debugging via the RSK serial port are provided with the RSK. Locate the files
r_rsk_debug.h and r_rsk_debug.c on the RSK DVD. RSK+RX64M_Tutorial project for CubeSuite+ in the
‘Tutorial’ folder. Copy these files into the C:\Workspace\CG_Tutorial folder. Import these two files into the
project in the same way as the LCD files.

In the r_rsk_debug.h file, ensure the following macro definition is included:

/* Macro for definition of serial debug transmit function - user edits this */
#define SerialDbgWrite (R_SCI17_AsyncTransmit)

This macro is referenced in the r_rsk_debug.c file and allows easy re-direction of debug output if a different
debug interface is used.

R20UT2930EG0100 Rev. 1.00 RENESAS Page 38 of 50
Jul 21, 2014

RSK+RX64M 5. Completing the Tutorial Project

5.6 UART Code Integration

5.6.1 SCI Code

In the Cubesuite+ Project Tree, expand the ‘Code Generator’ folder and open the file ‘r_cg_sci.h’ by double-
clicking on it. Insert the following code in the user code area at the end of the file:

/* Start user code for function. Do not edit comment generated here */

/* Exported functions used to transmit a number of bytes and wait for completion */
MD_STATUS R_SCI6_SPIMasterTransmit(uint8_t * const tx_buf, const uintl6_t tx_num);
MD_STATUS R_SCI7_AsyncTransmit(uint8_t * const tx_buf, const uintl6_t tx_num);

/* Character is used to receive key presses from PC terminal */
extern uint8_t g_rx_char;

/* Flag used to control transmission to PC terminal */
extern volatile uint8_t g_tx flag;

/* End user code. Do not edit comment generated here */

Open the file ‘r_cg_sci_user.c. Insert the following code in the user area for global near the beginning of the
file:

/* Start user code for global. Do not edit comment generated here */

/* Global used to receive a character from the PC terminal */
uint8_t g_rx_char;

/* Flag used to control transmission to PC terminal */
volatile uint8_t g_tx_flag = FALSE;

/* Flag used locally to detect transmission complete */
static volatile uint8_t sci6_txdone;
static volatile uint8_t sci7_txdone;

/* End user code. Do not edit comment generated here */

In the same file, insert the following code in the user code area inside the r_sci7_callback_transmitend()
function:

static void r_sci7_callback_transmitend(void)

/* Start user code. Do not edit comment generated here */
sci7_txdone = TRUE;

/* End user code. Do not edit comment generated here */

}

In the same file, insert the following code in the user code area inside the r_sci7_callback_receiveend()
function:

static void r_sci7_callback_receiveend(void)

{

/* Start user code. Do not edit comment generated here */
/* Check the contents of g_rx_char */
iIf (("c” == g_rx_char) || (°C" == g_rx_char))

g_adc_trigger = TRUE;
by

/* Set up SCI7 receive buffer and callback function again */
R_SC17_Serial_Receive((uint8_t *)&g_rx_char, 1);

/* End user code. Do not edit comment generated here */

}

At the end of the file, in the user code area for adding, add the following function definition:

/
* Function Name: R_SCI7_AsyncTransmit

R20UT2930EG0100 Rev. 1.00 RENESAS Page 39 of 50
Jul 21, 2014

RSK+RX64M 5. Completing the Tutorial Project

* Description : This function sends SCI7 data and waits for the transmit end flag.
* Arguments : tx_buf -
* transfer buffer pointer
* t>x_num -
* buffer size
* Return Value : status -
* MD_OK or MD_ARGERROR
/

MD_STATUS R_SCI7_AsyncTransmit (uint8_t * const tx_buf, const uintl6_t tx_num)
{

MD_STATUS status = MD_OK;

/* clear the flag before initiating a new transmission */

sci7_txdone = FALSE;

/* Send the data using the APl */

status = R_SCI7_Serial_Send(tx_buf, tx_num);

/* Wait for the transmit end flag */

while (FALSE == sci7_txdone)

{

/* Wait */

return (status);
¥
/
* End of function R_SCI7_AsyncTransmit

/

5.6.2 Main UART code

Open the file ‘r_cg_main.c’. Add the following declaration to the user code area for include near the top of the
file:

#include "r_rsk_debug.h"
Add the following declaration to the user code area for global near the top of the file:

/* Prototype declaration for uart_display_adc */
static void uart_display_adc(const uint8_t adc_count, const uintl6_t adc_result);

/* Variable to store the A/D conversion count for user display */
static uint8_t adc_count = 0;

Add the following highlighted code to the user code area in the main function:

void main(void)

{
R_MAIN_UseriInit(Q);
/* Start user code. Do not edit comment generated here */
/* Initialise the switch module */
R_SWITCH_Init();
/* Set the call back function when SW1 or SW2 is pressed */
R_SWITCH_SetPressCallback(cb_switch_press);
/* Initialise the debug LCD */
R_LCD_Init Q;
/* Displays the application name on the debug LCD */
R_LCD Display(0, (uint8_t *)" RSK+RX64M ');
R_LCD Display(1, (uint8_t *)" Tutorial ");
R_LCD Display(2, (uint8_t *)" Press Any Switch ");
/* Start the A/D converter */
R_S12ADO_Start();
/* Set up SCI7 receive buffer and callback function */
R_SC17_Serial_Receive((uint8_t *)&g_rx_char, 1);
/* Enable SCI7 operations */
R_SC17_Start();
R20UT2930EG0100 Rev. 1.00 .zEN ESNS Page 40 of 50

Jul 21, 2014

RSK+RX64M 5. Completing the Tutorial Project

while (1U)

/* Wait for user requested A/D conversion flag to be set */
if (TRUE == g_adc_trigger)

uintl6é_t adc_result;

/* Call the function to perform an A/D conversion */
adc_result = get_adc();

/* Display the result on the LCD */
Icd_display_adc(adc_result);

/* Increment the adc_count */
if (16 == ++adc_count)
{

}

/* Send the result to the UART */
uart_display_adc(adc_count, adc_result);

adc_count = 0;

/* Reset the flag */
g_adc_trigger = FALSE;

/* SW3 is directly wired into the ADTRGOn pin so will
cause the interrupt to fire */

else if (TRUE == g_adc_complete)

{
/* Get the result of the A/D conversion */
R_S12AD0O_Get_ValueResult(ADCHANNELO, &adc_result);

/* Display the result on the LCD */
Icd_display_adc(adc_result);

/* Increment the adc_count */
if (16 == ++adc_count)
{

}

/* Send the result to the UART */
uart_display_adc(adc_count, adc_result);

adc_count = 0;

/* Reset the flag */
g_adc_complete = FALSE;
}

/* End user code. Do not edit comment generated here */

}

Then, add the following function definition in the user code area at the end of the file:

/

* Function Name : uart_display_adc

* Description : Converts adc result to a string and sends it to the UARTL.
* Argument : uint8_t : adc_count

* uintl6é_t: adc result

* Return value : none

/
static void uart_display_adc (const uint8_t adc_count, const uintl6_t adc_result)
{

/* Declare a temporary variable */

char a;

/* Declare temporary character string */
static char uart_buffer[] = "ADC xH Value: »xxxH\r\n";

/* Convert ADC result into a character string, and store in the local.
Casting to ensure use of correct data type. */
a = (char)(adc_count & 0x000F);
uart_buffer[4] = (char)((a < Ox0A) ? (a + 0x30) : (a + 0x37));
a = (char)((adc_result & 0OxOF00) >> 8);
uart_buffer[14] = (char)((a < 0x0A) ? (a + 0x30) : (a + 0x37));
a = (char)((adc_result & 0x00F0) >> 4);
uart_buffer[15] = (char)((a < 0x0A) ? (a + 0x30) : (a + 0x37));

R20UT2930EG0100 Rev. 1.00 RENESAS Page 41 of 50
Jul 21, 2014

RSK+RX64M 5. Completing the Tutorial Project

a = (char)(adc_result & Ox000F);
uart_buffer[16] = (char)((a < O0x0A) ? (a + 0x30) : (a + 0x37));

/* Send the string to the UART */
R_DEBUG_Print(uart_buffer);

}

/
* End of function uart_display_adc

/
Select ‘Build Project’ from the ‘Build’ menu, or press F7. Cubesuite+ will build the project with no errors.

The project may now be run using the debugger as described in 86. Connect the RSK G1CUSBO port to a
USB port on a PC. If this is the first time the RSK+ has been connected to the PC then a device driver will be
installed automatically. Open Device Manager, the virtual COM port will now appear under 'Port (COM & LPT)'
as 'RSK USB Serial Port (COMXx)', where x is a number.

Open a terminal program, such as HyperTerminal, on the PC with the same settings as for SCI7 (see §4.3.4).
When any switch is pressed, or when ‘c’ is sent via the COM port, the program will perform an A/D conversion
of the voltage level on the ADPOT line and display the result on the LCD panel and send the result to the PC
terminal program via the via SCI7. Return to this point in the Tutorial to add the LED user code.

5.7 LED Code Integration

Open the file ‘r_cg_main.c’. Add the following declaration to the user code area for include near the top of the
file:

#include "'rskrx64mdef.h"

Add the following declaration to the user code area for global near the top of the file:

/* Prototype declaration for led_display_count */
static void led_display_count(const uint8_t count);

Add the following highlighted code to the user code area in the main function:

void main(void)

{
R_MAIN_UseriInit(Q);
/* Start user code. Do not edit comment generated here */
/* Initialise the switch module */
R_SWITCH_InitQ);
/* Set the call back function when SW1 or SW2 is pressed */
R_SWITCH_SetPressCallback(cb_switch_press);
/* Initialise the debug LCD */
R_LCD_Init);
/* Displays the application name on the debug LCD */
R_LCD Display(0, (uint8_t *)" RSK+RX64M ');
R_LCD Display(1l, (uint8_t *)" Tutorial ");
R_LCD Display(2, (uint8_t *)" Press Any Switch ");
/* Sart the A/D converter */
R_S12AD0O_Start();
/* Set up SCI7 receive buffer and callback function */
R_SC17_Serial_Receive((uint8_t *)&g_rx_char, 1);
/* Enable SCI7 operations */
R_SCI17_Start();
while (1U)
{
uintlé_t adc_result;
R20UT2930EG0100 Rev. 1.00 .zEN ESNS Page 42 of 50

Jul 21, 2014

RSK+RX64M 5. Completing the Tutorial Project

/* Wait for user requested A/D conversion flag to be set(SW1 or SW2) */
if (TRUE == g_adc_trigger)
{

/* Call the function to perform an A/D conversion */

adc_result = get_adc();

/* Display the result on the LCD */
Icd_display_adc(adc_result);

/* Increment the adc_count and display using the LEDs */
if (16 == ++adc_count)
{

3

led_display_count(adc_count);

adc_count = 0;

/* Send the result to the UART */
uart_display_adc(adc_count, adc_result);

/* Reset the flag */
g_adc_trigger = FALSE;

by

/* SW3 is directly wired into the ADTRGOn pin so will
cause the interrupt to fire */

else if (TRUE == g_adc_complete)

{

/* Get the result of the A/D conversion */
R_S12AD0O_Get_ValueResult(ADCHANNELO, &adc_result);

/* Display the result on the LCD */
Icd_display_adc(adc_result);

/* Increment the adc_count and display using the LEDs */
if (16 == ++adc_count)
{

adc_count = 0;

led_display_count(adc_count);

/* Send the result to the UART */
uart_display_adc(adc_count, adc_result);

/* Reset the flag */
g_adc_complete = FALSE;
¥

/* End user code. Do not edit comment generated here */

}

Then, add the following function definition in the user code area at the end of the file:

/
* Function Name : led_display_count
* Description : Converts count to binary and displays on 4 LEDSO-3
* Argument : uint8_t count
* Return value : none
/
static void led_display_count (const uint8_t count)
{
/* Set LEDs according to lower nibble of count parameter */
LEDO = (count & Ox01) ? LED_ON : LED_OFF;
LED1 = (count & 0x02) ? LED_ON : LED_OFF;
LED2 = (count & 0x04) ? LED_ON : LED_OFF;
LED3 = (count & 0Ox08) ? LED_ON : LED_OFF;
ks
/
* End of function led_display_count
/

Select ‘Build Project’ from the ‘Build’ menu, or press F7. Cubesuite+ will build the project with no errors.

The project may now be run using the debugger as described in 86. The code will perform the same but now
the LEDs will display the adc _count in binary form.

R20UT2930EG0100 Rev. 1.00 RENESAS Page 43 of 50
Jul 21, 2014

RSK+RX64M 6. Debugging the Project

6. Debugging the Project

. In the ‘Project Tree’ pane, right- =~ CG Tutorial (Project) - |Jtne] &
click the ‘RX Simulator (Debug : RSFS64MLCHFC (Micracontraller) =14 *-Funct
, qai A, CC-R¥ (Build Taol) 532 #-Descr
Tool). Select ‘Using Debug o . o + . Argum
Tool -> RX El(seria|)" B irulator (Debug Tool) _ : i
=[P File Using Debug Tool » || RX(EI(Seriah) ||
ﬁrﬂ Build tool generated file = Propery R3¢ ELETAG) 5
B[C Source Files) h
& regcgee | R E20{Serial)
° Double-click ‘RX E1(Serial) % Property | |#] r_co_macrodriverh{ [# r_co_cmt_user.c{ [F r_co_icu_userc-{ [r_cg_userd
(Debug Tool)' to display the |& RXE1(Senal) Property
debugger tool properties. 4 Internal ROWRAM
Under ‘Clock’, change the main 5;?25 ::irterra: i?rr»![ﬁsﬂesi —55;
Size of internal RAM[KEytes]
clock frequency to 24 MHz. Size of DataFlash memory[KEytes] 64
. All other settings can remain at a ;k?*l) AL
H ain CloCK source
their defaults. Main clock frequency[MHz] 240000
Allews changing of the clock source on writing internal flash memony Mo
4 Connection with Emulator
Emulator serial Mo.
4 | Connection with Target Board
Paoner target from the emulator. (MAX 200md) Mo
Communications method FINE
FINE baud rate[bps] 2000000
. Connect the E1 to the PC and
the RSK+ E1 connector.
Connect the +5V PSU to the
PWR connector on the RSK+.
Connect the Okaya PMOD
LCD to the PMOD1 connector.
. From the ‘Debug’ menu select
‘Download’ to start the debug
session and download code to
the target.
R20UT2930EG0100 Rev. 1.00 RENESANS Page 44 of 50

Jul 21, 2014

RSK+RX64M 7. Running the Code Generator Tutorial

7.Running the Code Generator Tutorial

7.1 Running the Tutorial

Click the ‘Go’ button or press F5 to begin the program from the current program counter
position. It is recommended that you run through the program once first, and then continue to
the Tutorial manual to review the code.

Once the program has been downloaded onto the RSK+ device, the program can be executed. @

R20UT2930EG0100 Rev. 1.00 RENESAS Page 45 of 50
Jul 21, 2014

RSK+RX64M 8. Additional Information

8.Additional Information

Technical Support
For details on how to use CubeSuite+, refer to the manual available on the DVD or from the web site.

For information about the RX64M group microcontroller refer to the RX64M Group Hardware Manual.
For information about the RX assembly language, refer to the RX Family Software Manual.
Technical Contact Details

Please refer to the contact details listed in section 9 of the “Quick Start Guide”

General information on Renesas microcontrollers can be found on the Renesas website at:
http://www.renesas.com/

Trademarks
All brand or product names used in this manual are trademarks or registered trademarks of their respective
companies or organisations.

Copyright

This document may be, wholly or partially, subject to change without notice. All rights reserved. Duplication of
this document, either in whole or part is prohibited without the written permission of Renesas Electronics
Europe Limited.

© 2014 Renesas Electronics Europe Limited. All rights reserved.
© 2014 Renesas Electronics Corporation. All rights reserved.
© 2014 Renesas Solutions Corp. All rights reserved.

R20UT2930EG0100 Rev. 1.00 RENESAS Page 46 of 50
Jul 21, 2014

http://www.renesas.com/

REVISION HISTORY

RSK+RX64M Code Generator Tutorial Manual

Rev.

Date

Description

Page

Summary

1.00

Jul 21, 2014

First Edition issued

Renesas Starter Kit Manual: Code Generator Tutorial Manual

Publication Date: Rev. 1.00 Jul 21, 2014

Published by: Renesas Electronics Corporation

LENESAS

SALES OFFICES Renesas Electronics Corporatlon http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.

2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.

Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited

1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada

Tel: +1-905-898-5441, Fax: +1-905-898-3220

Renesas Electronics Europe Limited

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K

Tel: +44-1628-651-700, Fax: +44-1628-651-804

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Dusseldorf, Germany

Tel: +49-211-65030, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.

7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.

Unit 301, Tower A, Central Towers, 555 LanGao Rd., Putuo District, Shanghai, China
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited

Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044

Renesas Electronics Taiwan Co., Ltd.

13F, No. 363, Fu Shing North Road, Taipei, Taiwan

Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.

80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre Singapore 339949

Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.

Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, JIn Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics Korea Co., Ltd.

12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea

Tel: +82-2-558-3737, Fax: +82-2-558-5141

© 2014 Renesas Electronics Corporation. All rights reserved.
Colophon 2.0

RX64M Group

RENESAS

Renesas Electronics Corporation R20UT2930EG0100

	1. Overview
	1.1 Purpose
	1.2 Features

	2. Introduction
	3. Project Creation with CubeSuite+
	3.1 Introduction
	3.2 Creating the Project

	4. Code Generation Using the CubeSuite+ plug in
	4.1 Introduction
	4.2 Code Generator Tour
	4.3 Code Generation
	4.3.1 Clock Generator
	4.3.1 Interrupt Controller Unit
	4.3.2 Compare Match Timer
	4.3.3 12-bit A/D Converter
	4.3.4 Serial Communications Interface
	4.3.5 I/O Ports

	5. Completing the Tutorial Project
	5.1 Project Settings
	5.2 Additional Folders
	5.3 LCD Code Integration
	5.3.1 SPI Code
	5.3.2 CMT Code

	5.4 Switch Code Integration
	5.4.1 Interrupt Code
	5.4.2 De-bounce Timer Code
	5.4.3 Main Switch and ADC Code

	5.5 Debug Code Integration
	5.6 UART Code Integration
	5.6.1 SCI Code
	5.6.2 Main UART code

	5.7 LED Code Integration

	6. Debugging the Project
	7. Running the Code Generator Tutorial
	7.1 Running the Tutorial

	8. Additional Information

