
All information contained in these materials, including products and product specifications,

represents information on the product at the time of publication and is subject to change by

Renesas Electronics Corp. without notice. Please review the latest information published by

Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.

website (http://www.renesas.com).

Rev.1.00 Mar 2016

U
s
e

r's
 M

a
n

u
a

l

www.renesas.com

CcnvCA78K0R
C Source Converter

User's Manual

Target Device

RL78 Family

Target Version

V1.00.00 or later

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you
or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of
third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No
license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of
Renesas Electronics or others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration,
modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The
recommended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below.
“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual

equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.
“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-

crime systems; and safety equipment etc.
Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property
damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas
Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any
application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred
by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas
Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas
Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and
malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation
of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by
you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility
of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and
regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive.
Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws
and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose
manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use
Renesas Electronics products or technology described in this document for any purpose relating to military applications or use
by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas
Electronics products or technology described in this document, you should comply with the applicable export control laws and
regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise
places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this
document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of
unauthorized use of Renesas Electronics products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document
or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(2012.4)

How to Use This Manual

This manual describes the C source converter (CcnvCA78K0R) used for developing application systems for the

RL78 family.

Readers This manual is intended for users who wish to use the CC-RL, which is a C
compiler for the RL78 family, to develop application systems.

Purpose This manual is intended to be used for reference in porting of the

development environment of the CA78K0R, which is a C compiler for RL78

family/78K0R microcontrollers, to the CC-RL.

Organization This manual can be broadly divided into the following units.

1. GENERAL

2. COMMAND REFERENCE

3. CONVERSION SPECIFICATIONS

4. MESSAGE

5. POINTS FOR CAUTION

How to Read This Manual It is assumed that the readers of this manual have general knowledge of
electricity, logic circuits, and microcontrollers.

Data significance: Higher digits on the left and lower digits on the right

Note: Footnote for item marked with Note in the text

Caution: Information requiring particular attention

Remarks: Supplementary information

Numeric representation: Decimal ... XXXX

Hexadecimal ... 0xXXXX

Please refer to the following manuals about CA78K0R and CC-RL. Make sure to refer to the latest versions of

these documents. The newest versions of the documents listed may be obtained from the Renesas Electronics Web

site.

Compiler Document Title Document No.

CA78K0R CubeSuite+ V2.01.00 Integrated Development Environment

User's Manual: RL78,78K0R Coding

CubeSuite+ V2.00.00 Integrated Development Environment

User's Manual: RL78,78K0R Build

R20UT2774EJ0100

R20UT2623EJ0100

CC78K0R User's Manual CC78K0R Ver.2.00 C Compiler Language

User's Manual CC78K0R Ver.2.00 C Compiler Operation

U18548EJ1V0UM00

U18549EJ1V0UM00

CC-RL CC-RL Compiler User's Manual R20UT3123EJ0102

All trademarks or registered trademarks in this document are the property of their respective owners.

TABLE OF CONTENTS

1. GENERAL.. 5

2. COMMAND REFERENCE .. 6

2.1 Overview .. 6

2.2 I/O Files .. 7

2.3 Conversion Result ... 9

2.4 Method for Manipulating .. 11

2.5 Options .. 12

3. CONVERSION SPECIFICATIONS ... 21

3.1 Macro names ... 22

3.2 Reserved words ... 23

3.3 Bit access .. 24

3.4 #pragma section .. 26

3.5 ASM statements .. 32

3.6 Interrupt handler ... 35

3.7 Interrupt handler for RTOS ... 37

3.8 Task function for RTOS ... 39

3.9 Absolute address allocation specification ... 40

3.10 Intrinsic functions ... 42

3.11 Other #pragma directives .. 44

3.12 Standard library functions ... 45

3.13 Difference from Conversion Specifications of -convert_cc Option of CC-RL ... 49

4. MESSAGES .. 50

4.1 Message Formats .. 50

4.2 Message Types .. 51

4.3 Information Types .. 51

4.4 Messages ... 51

4.4.1 Internal errors ... 51

4.4.2 Fatal errors ... 52

4.4.3 Warnings .. 53

4.4.4 Information .. 54

5. POINTS FOR CAUTION ... 55

Revision Record ... C-1

CcnvCA78K0R

R20UT3598EJ0100 Rev.1.00 Page 5 of 60

Mar 01, 2016

1. GENERAL

The CcnvCA78K0R is a C source converter that converts C source files created in a development environment

using the CA78K0R which is a C compiler for RL78 family/78K0R microcontrollers into C source files for the

CC-RL which is a C compiler for the RL78 family. The extended functions for the CA78K0R written in C source

files are converted so that they can be handled by the CC-RL.

The CC-RL has the -convert_cc option which internally converts extended functions of the CA78K0R in C source

files into those of the CC-RL. The -convert_cc option of the CC-RL is useful when the files to be converted are the

target of maintenance and so the future changes are to be made on a small scale or when evaluating how porting of

code affects performance.

Use the CcnvCA78K0R in cases where C source code needs to be modified manually on a massive scale if the

-convert_cc option of the CC-RL is used or where C source files for the CC-RL are required because there will be

new features to be added.

CcnvCA78K0R supports the porting of C source files from the CA78K0R compiler to CC-RL.

Since we do not guarantee the correct operation of programs converted by CcnvCA78K0R, be sure to check the

operation of the C source files after conversion.

Figure 1.1 Comparison between CcnvCA78K0R and -convert_cc (CC-RL Option)

When using CcnvCA78K0R

CcnvCA78K0R CC-RL

When using the -convert_cc option

CC-RL

C source file and C header file

for CA78K0R

(source files before conversion)
Load module file

C source file and C header file

for CC-RL

(source files after conversion)

C source file and C header file

for CA78K0R Load module file

Conversion of C source files Compilation

Compilation with the -convert_cc option

CcnvCA78K0R

R20UT3598EJ0100 Rev.1.00 Page 6 of 60

Mar 01, 2016

2. COMMAND REFERENCE

This section describes the processing flow in the CcnvCA78K0R.

2.1 Overview

The CcnvCA78K0R converts extended language specifications (such as macro names, reserved words, #pragma

directives, and extended functions) in C source programs for the CA78K0R into extended language specifications

for the CC-RL. Then the CcnvCA78K0R generates C source files for the CC-RL.

Figure 2.1 Processing Flow in CcnvCA78K0R

C source file and

C header file

for CA78K0R

(source files before conversion)

or

List file

(file containing all input/output file names)

CcnvCA78K0R

C source file and

C header file for CC-RL

(source files after conversion)

Conversion result file

(information regarding the

conversion process)

CcnvCA78K0R

R20UT3598EJ0100 Rev.1.00 Page 7 of 60

Mar 01, 2016

2.2 I/O Files

The I/O files of the CcnvCA78K0R are shown below.

Table 2.1 I/O Files

File Type I/O Extension Description

C source file

Header file

I/O (Input)

.c

.h

(Output)

free

A C source file or C header file for the CA78K0R is input and the

converted C source file or C header file for the CC-RL is output.

The version information of the CcnvCA78K0R is inserted at the

beginning of the converted file as a comment and the former

description of the converted code is left as a comment.

The extension of the input file is fixed. If a file with another

extension is specified, the input file is directly output without its

contents being converted.

The converted file can be specified with the -o option or -l option.

If a converted file is re-input, the file is directly output without

being converted, and the fact that the file was already converted is

notified.

List file I free Text file which includes the input file names and output file

names.

Specifying the list file with the -l option enables multiple source

files to be converted collectively. For the format of the list file,

see "-l option".

Conversion result file O free Messages in the conversion result that is output to the standard

output file can be output to a file specified by the -r option.

For details on the messages, see "Messages".

Examples of an input file and an output file are shown below. For details on conversion specifications, see

"CONVERSION SPECIFICATIONS".

(Input file: input.c)

#pragma sfr

char c;

void main(void)

{

 c = P0;

}

CcnvCA78K0R

R20UT3598EJ0100 Rev.1.00 Page 8 of 60

Mar 01, 2016

(Output file: output.c)

/* CA78K0R C Source Converter Vx.xx.xx.xx [dd Mmm yyyy] */

/***

 DISCLAIMER

 This software is supplied by Renesas Electronics Corporation and is only

 intended for use with Renesas products. No other uses are authorized. This

 software is owned by Renesas Electronics Corporation and is protected under

 all applicable laws, including copyright laws.

 THIS SOFTWARE IS PROVIDED "AS IS" AND RENESAS MAKES NO WARRANTIES REGARDING

 THIS SOFTWARE, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING BUT NOT

 LIMITED TO WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE

 AND NON-INFRINGEMENT. ALL SUCH WARRANTIES ARE EXPRESSLY DISCLAIMED.

 TO THE MAXIMUM EXTENT PERMITTED NOT PROHIBITED BY LAW, NEITHER RENESAS

 ELECTRONICS CORPORATION NOR ANY OF ITS AFFILIATED COMPANIES SHALL BE LIABLE

 FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES FOR

 ANY REASON RELATED TO THIS SOFTWARE, EVEN IF RENESAS OR ITS AFFILIATES HAVE

 BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

 Renesas reserves the right, without notice, to make changes to this software

 and to discontinue the availability of this software. By using this software,

 you agree to the additional terms and conditions found by accessing the

 following link:

 http://www.renesas.com/disclaimer

 Copyright (C) yyyy Renesas Electronics Corporation. All rights reserved.

**/

//[CcnvCA78K0R]

#include "iodefine.h"

//[CcnvCA78K0R] #pragma sfr

char c;

void main(void)

{

 c = P0;

}

CcnvCA78K0R

R20UT3598EJ0100 Rev.1.00 Page 9 of 60

Mar 01, 2016

2.3 Conversion Result

The CcnvCA78K0R outputs the conversion result to the standard output. The output format is as follows.

Message

Input file name

Result

Number of messages

When the -l option is specified, the above output is repeated for the number of files in the list file.

"Message" is output when there is an error or warning. For the output format of a message, see "Messages". When

the -r option is specified, the message is output not to the standard output file but to the specified file.

"Input file name" is the input file specified on the command line or in the list file.

"Result" displays any one of the following.

・ When there is converted code

Converted successfully.

・ When there is no converted code

Nothing converted.

・ When a converted file is re-input to CcnvCA78K0R

Already converted.

・ When an error has occurred

Conversion failed.

"Number of messages" indicates how many messages were output by message type.

CcnvCA78K0R

R20UT3598EJ0100 Rev.1.00 Page 10 of 60

Mar 01, 2016

An example of the conversion result is shown below.

(Input file: input.c)

#pragma sfr

char c;

void main(void)

{

 c = P0;

}

(Standard output)

CA78K0R C Source Converter Vx.xx.xx.xx [dd Mmm yyyy]

input.c(1):M0591123:[Insert]Inserted #include "iodefine.h".

input.c(1):M0591131:[Delete]#pragma sfr was deleted.

input.c

 Converted successfully.

 1 deleted, 1 inserted, 0 changed, 0 information

 Total warning(s) ： 0

CcnvCA78K0R

R20UT3598EJ0100 Rev.1.00 Page 11 of 60

Mar 01, 2016

2.4 Method for Manipulating

Input on the command line should be made as follows.

CcnvCA78K0R[option]…[file] [option]…

file : File name

option : Option name

[] : Can be omitted

… : Pattern in proceeding [] can be repeated

{ } : Select from items delimited by the pipe symbol ("|")

 : One or more spaces

・ Any file names supported by Windows are allowed as input file names or file names to be specified for

options.

・ Input file names and file names to be specified for options can also be specified with an absolute path or

relative path. When specifying an input file name or a file name to be specified for an option without the

path or with a relative path, the reference point of the path is the current folder.

・ When a space is included in an input file name or a file name to be specified for an option (including the path

name), enclose the file name including the path name in a pair of double quotation marks (").

・ The maximum length of an input file name or a file name to be specified for an option depends on Windows

(up to 259 characters).

・ An error will occur when more than one input file name is specified. Use the -l option to specify multiple

input file names.

・ When an input file is specified, it is certainly necessary to specify an output file name. When an input file

has been specified on the command line, use the -o option to specify the output file.

・ An error will occur if the same option is specified for more than once.

CcnvCA78K0R

R20UT3598EJ0100 Rev.1.00 Page 12 of 60

Mar 01, 2016

2.5 Options

This section explains CcnvCA78K0R options.

・ Uppercase characters and lowercase characters are distinguished for options.

・ When a file name is specified as a parameter, it can include the path (absolute path or relative path). When a

file name without the path or a relative path is specified, the reference point of the path is the current folder.

・ When a parameter includes a space (such as a path name), enclose the parameter in a pair of double

quotation marks (").

Table 2.2 Options

Option Description

-V This option displays the version information of CcnvCA78K0R.

-h This option displays the descriptions of CcnvCA78K0R options.

-c This option specifies the Japanese character code.

-l This option specifies the list file name.

-o This option specifies the output file name.

-r This option specifies where the message is to be output.

-A This option performs conversion with the functions related to the ANSI standard enabled.

CcnvCA78K0R

R20UT3598EJ0100 Rev.1.00 Page 13 of 60

Mar 01, 2016

-V

This option displays the version information of CcnvCA78K0R.

[Specification format]

-V

・Interpretation when omitted

The version information of CcnvCA78K0R is not displayed.

[Detailed description]

・ This option outputs the version information of CcnvCA78K0R to the standard error output.

・ Conversion is not performed when this option is specified.

・ When this option is specified simultaneously with another option, the other option is ignored.

[Example of use]

>CcnvCA78K0R -V

CcnvCA78K0R

R20UT3598EJ0100 Rev.1.00 Page 14 of 60

Mar 01, 2016

-h

This option displays the descriptions of CcnvCA78K0R options.

[Specification format]

-h

・Interpretation when omitted

The descriptions of CcnvCA78K0R options are not displayed.

[Detailed description]

・ This option outputs the descriptions of CcnvCA78K0R options to the standard error output.

・ Conversion is not performed when this option is specified.

・ When this option is specified simultaneously with another option, the other option is ignored.

・ When this option is specified simultaneously with the -V option, the -V option is given priority.

[Example of use]

>CcnvCA78K0R -h

CcnvCA78K0R

R20UT3598EJ0100 Rev.1.00 Page 15 of 60

Mar 01, 2016

-c

This option specifies the Japanese character code.

[Specification format]

-c={none｜sjis｜euc_jp}

・Interpretation when omitted

sjis is assumed as the parameter for this option.

[Detailed description]

・ This option specifies the character code to be used for comments in the input file.

・ An error will occur if the parameter is omitted.

・ The parameters that can be specified are shown below. A warning is output and sjis is assumed if any other

item is specified. Operation is not guaranteed if the specified character code differs from the character code

of the input file.

none Does not process the Japanese character code.

sjis SJIS

euc_jp EUC (Japanese)

[Example of use]

>CcnvCA78K0R input.c -c=euc_jp -o=output.c

CcnvCA78K0R

R20UT3598EJ0100 Rev.1.00 Page 16 of 60

Mar 01, 2016

-l

This option specifies the list file name.

[Specification format]

-l=file

・Interpretation when omitted

The file specified on the command line is converted.

[Detailed description]

・ This option is to be specified when simultaneously converting multiple files.

・ An error will occur if the specified list file does not exist.

・ When this option is specified, a warning is output for the file name specified on the command line and it is

ignored.

・ When this option is specified simultaneously with the -o option, a warning is output and the -o option is

ignored.

・ An error will occur if the parameter is omitted.

・ The format of the list file is as follows.

[-c={none｜sjis｜euc_jp}] [-A] input-file-name output-file-name

[-c={none｜sjis｜euc_jp}] [-A] input-file-name output-file-name

(Omitted from here)

[] : Can be omitted

{ } : Select from items delimited by the pipe symbol ("|")

- The -c option, -A option, input file name, and output file name are to be specified in this order in one

line.

- The -c option and -A option can be omitted. The input and output file names cannot be omitted.

- The input and output file names that can be written are the same as those specifiable on the command

line.

- When a space is included in a file name, enclose the file name in a pair of double quotation marks (").

- If the -c option specification on the command line differs from that in the list file, a warning is output

and the list file specification is given priority.

- If the output file already exists, it will be overwritten and no warning is output.

- An error will occur if the output file name matches the input file name or the file name specified by the

-r option.

- For the list file, only UTF-8N (without BOM) is acceptable for the Japanese character code and only

CR+LF is acceptable for the new line code.

CcnvCA78K0R

R20UT3598EJ0100 Rev.1.00 Page 17 of 60

Mar 01, 2016

[Example of use]

>CcnvCA78K0R -l=listfile.txt

 Contents of list file (listfile.txt)

-c=sjis input\file1.c output\file1.c

-c=sjis input\file2.c output\file2.c

-c=sjis input\file.h output\file.h

CcnvCA78K0R

R20UT3598EJ0100 Rev.1.00 Page 18 of 60

Mar 01, 2016

-o

This option specifies the output file name.

[Specification format]

-o=file

・Interpretation when omitted

This option cannot be omitted except for when the -V, -h, or -l option is specified. An error will occur if this

option is omitted.

[Detailed description]

・ This option specifies the output file name after conversion.

・ If the specified file already exists, it will be overwritten and no warning is output.

・ An error will occur if the output file name matches the input file name or the file name specified by the -r

option.

・ When this option is specified simultaneously with the -l option, a warning is output and this -o option is

ignored.

・ An error will occur if the parameter is omitted.

[Example of use]

>CcnvCA78K0R input.c -o=output.c

CcnvCA78K0R

R20UT3598EJ0100 Rev.1.00 Page 19 of 60

Mar 01, 2016

-r

This option outputs messages to the specified file.

[Specification format]

-r=file

・Interpretation when omitted

Messages are output to the standard output file.

[Detailed description]

・ This option outputs messages to the specified file.

・ If the specified file already exists, it will be overwritten and no warning is output.

・ An error will occur if the specified file name matches the input or output file name of the C source file or C

header file.

・ An error will occur if the parameter is omitted.

[Example of use]

>CcnvCA78K0R input.c -o=output.c -r=input.txt

CcnvCA78K0R

R20UT3598EJ0100 Rev.1.00 Page 20 of 60

Mar 01, 2016

-A

This option performs conversion with the -za option (which is an ANSI-compliant option of CA78K0R) enabled.

[Specification format]

-A

・Interpretation when omitted

Conversion is performed with the -za option disabled.

[Detailed description]

・ When this option is specified, the following words are not regarded as keywords and they will not be

converted.

callt, sreg, boolean, bit

・ Specify this option if the -za option is used in the CA78K0R development environment before conversion.

[Example of use]

>CcnvCA78K0R input.c -o=output.c -A

CcnvCA78K0R

R20UT3598EJ0100 Rev.1.00 Page 21 of 60

Mar 01, 2016

3. CONVERSION SPECIFICATIONS

This section shows the conversion specifications of the CcnvCA78K0R.

・ Correct operation is not guaranteed when a C source program that is syntactically incorrect for the

CA78K0R is input.

・ The contents included in comments and strings are not converted.

・ Nesting of comments is not supported. A nested comment text is not recognized normally and the range of

the comment is invalid. Confirm that there are no nested comments before conversion.

・ When a keyword that is supposed to be converted cannot be found as a keyword due to some reasons, such

as it being generated by a ## operator, the keyword cannot be converted. If the C source program is directly

compiled by the CC-RL, a compile error will occur. Confirm that there is no #define, typedef, or ##

operator for a keyword to be converted.

・ C source programs for a small model and a medium model are converted. Since the CC-RL does not

support a large model, if the C source program before conversion is for a large model, there is a possibility

that the pointer type does not match after conversion. Clearly write the __near or __far keyword for

variables or functions in a C source program for a large model before conversion so that it will run even in a

small model or medium model.

・ Included files in a C source program are not converted. They have to be converted separately.

The following extended language specifications are converted.

- Macro names

- Reserved words

- Bit access

- #pragma section

- ASM statements

- Interrupt handler

- Interrupt handler for RTOS

- Task function for RTOS

- Absolute address allocation specification

- Intrinsic functions

- Other #pragma directives

- Standard library functions

CcnvCA78K0R

R20UT3598EJ0100 Rev.1.00 Page 22 of 60

Mar 01, 2016

3.1 Macro names

The macros supported in the CA78K0R are converted as follows. If there is no corresponding macro in the CC-RL,

the CcnvCA78K0R outputs a message. The CPU macro is not converted and no message is output.

Table 3.1 Conversion of Macro Names

CA78K0R

Macro Name

After Conversion Remarks

__LINE__ Not converted Can be used in the CC-RL without any change.

__FILE__ Not converted Can be used in the CC-RL without any change.

__DATE__ Not converted Can be used in the CC-RL without any change.

__TIME__ Not converted Can be used in the CC-RL without any change.

__STDC__ Not converted Can be used in the CC-RL without any change.

__K0R__ __RL78__

__K0R_SMALL__ __RL78_SMALL__

__K0R_MEDIUM__ __RL78_MEDIUM__

__K0R_LARGE__ Not converted A message is output.

Handled as a user-defined macro in the CC-RL.

__CHAR__UNSIGNED__ __UCHAR

__RL78__ Not converted Can be used in the CC-RL without any change.

__RL78_1__ __RL78_S2__

__RL78_2__ __RL78_S3__

__RL78_3__ __RL78_S1__

__CA78K0R__ Not converted A message is output.

When the -convert_cc option is used in the CC-RL, define

the __CA78K0R__ macro.

CPU macro Not converted A message is not output.

Handled as a user-defined macro in the CC-RL.

CcnvCA78K0R

R20UT3598EJ0100 Rev.1.00 Page 23 of 60

Mar 01, 2016

3.2 Reserved words

The conversion specifications for reserved words are shown here.

Table 3.2 Conversion of Reserved Words

CA78K0R

Reserved Word

After Conversion Remarks

__callt Not converted Can be used in the CC-RL without any change.

callt __callt Converted only when the -A option is invalid.

__sreg __saddr Always converted.

sreg __saddr Converted only when the -A option is invalid.

__boolean _Bool When the -ansi option is specified in the CC-RL, change

the _Bool type to the char type.

boolean _Bool Converted only when the -A option is invalid.

bit _Bool Converted only when the -A option is invalid.

__interrupt #pragma interrupt For details, see "Interrupt handler".

__interrupt_brk #pragma interrupt_brk For details, see "Interrupt handler".

__asm #pragma inline_asm For details, see "ASM statements".

__rtos_interrupt #pragma rtos_interrupt For details, see "Interrupt handler for RTOS".

__directmap #pragma address For details, see "Absolute address allocation

specification".

__near / __far Not converted The operation rules of the far pointer conform to the

CC-RL specifications. For details, see the user's manual

of the CC-RL.

The location to write the __near or __far keyword in the

declaration of a function pointer differs between the

CA78K0R and CC-RL. Since the description location is

not modified in the CcnvCA78K0R, it has to be modified

manually. For details on the description location of

keywords, see the user's manuals of the CA78K0R and

CC-RL.

CcnvCA78K0R

R20UT3598EJ0100 Rev.1.00 Page 24 of 60

Mar 01, 2016

3.3 Bit access

The CC-RL does not support bit access (specifying the bit position after a period for an SFR or the saddr variable)

of the CA78K0R. In the CcnvCA78K0R, bit access for SFRs and the saddr variable are replaced with a type

declaration of a bit field and a macro.

・ The type declaration and macro are output at the beginning of the file and changed to a macro call at an

access point.

・ In bit access, a bit field of 8 or 16 bits is created according to the bit position. If the bit position includes 8

to 15, a bit field with b8 to b15 added is separately created for 16 bits.

[Examples]

・ Bit position is only 0 to 7

Before

conversion

void func(void)

{

i = var.3;

var.5 = 0;

}

After

conversion

#ifndef __BIT8

typedef struct {

unsigned int b0:1;

unsigned int b1:1;

unsigned int b2:1;

unsigned int b3:1;

unsigned int b4:1;

unsigned int b5:1;

unsigned int b6:1;

unsigned int b7:1;

} __Bits8;

#define __BIT8(name,bit) (((volatile __near __Bits8*)&name)->b##bit)

#endif

void func(void)

{

i = __BIT8(var,3);

__BIT8(var,5) = 0;

}

CcnvCA78K0R

R20UT3598EJ0100 Rev.1.00 Page 25 of 60

Mar 01, 2016

・ Bit position includes 8 to 15

Before

conversion

i = var2.10;

var2.12 = 0;

After

conversion

#ifndef __BIT16

typedef struct {

unsigned int b0:1;

unsigned int b1:1;

unsigned int b2:1;

unsigned int b3:1;

unsigned int b4:1;

unsigned int b5:1;

unsigned int b6:1;

unsigned int b7:1;

unsigned int b8:1;

unsigned int b9:1;

unsigned int b10:1;

unsigned int b11:1;

unsigned int b12:1;

unsigned int b13:1;

unsigned int b14:1;

unsigned int b15:1;

} __Bits16;

#define __BIT16(name,bit) (((volatile __near __Bits16*)&name)->b##bit)

#endif

void func(void)

{

i = __BIT16(var2,10);

__BIT16(var2,12) = 0;

}

CcnvCA78K0R

R20UT3598EJ0100 Rev.1.00 Page 26 of 60

Mar 01, 2016

3.4 #pragma section

#pragma section requires the section name to be converted because the section names differ between the CA78K0R

and CC-RL. However, some sections cannot be converted because there are no corresponding sections on the

CC-RL side. Though conversion is possible, some sections have slightly different facilities. The CcnvCA78K0R

outputs a message to the standard error output upon conversion of some sections. For details, see "Correspondence

Table of Section Names".

The format of the CA78K0R is as follows.

#pragma section section-name changed-section-name [AT-start-address]

The format of the CC-RL is as follows.

#pragma section [{text｜const｜data｜bss}] [changed-section-name]

・ Since the CC-RL does not have a facility equivalent to "AT-start-address", if there is "AT-start-address", the

CcnvCA78K0R deletes it and outputs a message. Use the -start option to specify the location of the section in

the CC-RL. For details on the -start option, see the user's manual of the CC-RL.

・ "changed-section-name" is directly output without being converted. If a character unusable in the CC-RL

(e.g., ?) is used in the changed section name, a compile error will occur in the CC-RL. Change the string after

conversion.

・ In #pragma section of the CC-RL, the section name for the near area is "changed section name + _n", the

section name for the far area is "changed section name + _f", and the section name for the saddr area is

"changed section name + _s". For details, see the user's manual of the CC-RL.

・ Since the section for RAM allocation in the CA78K0R cannot be allocated to RAM in the CC-RL, the

CcnvCA78K0R outputs a message. Though specifying the CC-RL link option

-NO_CHECK_SECTION_LAYOUT allows the section to be allocated to RAM, the ROM data needs to be

changed to the far attribute in CC-RL V1.02.

・ If conversion is not possible because there is no corresponding section in the CC-RL, the CcnvCA78K0R

outputs a message and does not perform conversion. Then the CC-RL outputs a message and ignores the

#pragma directive. Modify the C source program in accordance with the section correspondence table

described later.

CcnvCA78K0R

R20UT3598EJ0100 Rev.1.00 Page 27 of 60

Mar 01, 2016

[Examples]

Pattern 1

(Replaced successfully)

Before

conversion

#pragma section @@CODE MY_CODE

After

conversion

#pragma section text MY_CODE

Pattern 2

(Deletion of AT)

Before

conversion

#pragma section @@CODE MY_CODE AT 0x2000

After

conversion

#pragma section text MY_CODE

Pattern 3

(Compile error after

replacement)

Before

conversion

#pragma section @@CODE ??CODE AT 0x2000

After

conversion

#pragma section text ??CODE

Corrective

action

Though conversion is performed, an error will occur at

compilation.

Change the section name.

Pattern 4

(Replacement is not possible)

Before

conversion

#pragma section @@LBASE MY_BASE

After

conversion

#pragma section @@LBASE MY_BASE

Corrective

action

Since there is no corresponding section in the CC-RL, the

program is output without being converted.

Correct the program according to the section correspondence

table.

CcnvCA78K0R

R20UT3598EJ0100 Rev.1.00 Page 28 of 60

Mar 01, 2016

Table 3.3 Correspondence Table of Section Names

CA78K0R

Section Name

Description CC-RL

Section Type

CcnvCA78K0R Operation

Corrective Action after Conversion

@@CODE

@ECODE

Segment for code portion

(allocated to near area)

text The section is changed to the corresponding

section type.

No action is required.

The section name in the CC-RL is "changed

section name + _n".

@@CODEL

@ECODEL

Segment for code portion

(allocated to far area)

text The section is changed to the corresponding

section type.

No action is required.

The section name in the CC-RL is "changed

section name + _f".

@@CODER

@ECODER

Segment for code portion

(allocated to RAM)

text Though the section is changed to the

corresponding section type, a message is output

because the code section cannot be allocated to

RAM in the CC-RL.

Specify the link option

-NO_CHECK_SECTION_LAYOUT to allocate

a section to RAM in the CC-RL.

@@LCODE

@LECODE

Segment for library code

(allocated to near area)

text A message is output and conversion is not

performed.

Delete #pragma.

Specify the location of the library in the CC-RL

with the link option -ROm.

@@LCODEL

@LECODEL

Segment for library code

(allocated to far area)

text A message is output and conversion is not

performed.

Delete #pragma.

Specify the location of the library in the CC-RL

with the link option -ROm.

@@LCODER

@LECODER

Segment for library code

(allocated to RAM)

text A message is output and conversion is not

performed.

Delete #pragma.

Specify the location of the library in the CC-RL

with the link option -ROm.

Specify the link option

-NO_CHECK_SECTION_LAYOUT to allocate

a section to RAM in the CC-RL.

@@CNST

@ECNST

Segment for ROM data

(allocated to near area)

const The section is changed to the corresponding

section type.

No action is required.

The section name in the CC-RL is "changed

section name + _n".

CcnvCA78K0R

R20UT3598EJ0100 Rev.1.00 Page 29 of 60

Mar 01, 2016

CA78K0R

Section Name

Description CC-RL

Section

Type

CcnvCA78K0R Operation

Corrective Action after Conversion

@@CNSTR

@ECNSTR

Segment for ROM data

(allocated to RAM) (allocated

to near area)

const Though the section is changed to the corresponding

section type, a message is output because ROM data

cannot be allocated to RAM in the CC-RL.

Delete #pragma.

The CC-RL has no means to allocate the ROM data

that has been allocated to the near area to RAM. In

order to allocate such data to RAM, change the

variable of the target section to the far attribute.

@@CNSTL

@ECNSTL

Segment for ROM data

(allocated to far area)

const The section is changed to the corresponding section

type.

No action is required.

The section name in the CC-RL is "changed section

name + _f".

@@CNSTLR

@ECNSTR

Segment for ROM data

(allocated to RAM) (allocated

to far area)

const Though the section is changed to the corresponding

section type, a message is output because ROM data

cannot be allocated to RAM in the CC-RL.

Specify the link option

-NO_CHECK_SECTION_LAYOUT to allocate a

section to RAM in the CC-RL.

@@R_INIT

@ER_INIT

Segment for initialized data

(near variable)

data The section is changed to the corresponding section

type.

No action is required.

The section name in the CC-RL is "changed section

name + _n".

@@RLINIT

@ERLINIT

Segment for initialized data

(far variable)

data The section is changed to the corresponding section

type.

No action is required.

The section name in the CC-RL is "changed section

name + _f".

@@R_INIS

@ER_INIS

Segment for initialized data

(sreg variable)

data The section is changed to the corresponding section

type.

No action is required.

The section name in the CC-RL is "changed section

name + _s".

@@CALT Segment for callt function

table

None A message is output and conversion is not

performed.

Delete #pragma.

The section name cannot be changed in the CC-RL.

@@VECTnn

@EVECTnn

Segment for vector table None A message is output and conversion is not

performed.

Delete #pragma.

The section name cannot be changed in the CC-RL.

CcnvCA78K0R

R20UT3598EJ0100 Rev.1.00 Page 30 of 60

Mar 01, 2016

CA78K0R

Section Name

Description CC-RL

Section Type

CcnvCA78K0R Operation

Corrective Action after Conversion

@EXTxx Segment for flash area

branch table

None A message is output and conversion is not

performed.

Delete #pragma.

There is no corresponding facility in the CC-RL.

Processing needs to be reviewed.

@@BASE

@EBASE

Segment for callt function

and interrupt function

text The section is changed to the corresponding

section type.

No action is required.

The section name in the CC-RL is "changed

section name + _n".

@@LBASE Segment for library and callt

function

text A message is output and conversion is not

performed.

Delete #pragma.

Specify the location of the library in the CC-RL

with the link option -ROm.

@@INIT

@EINIT

Segment for data area (near

variable, initialized)

None A message is output and conversion is not

performed.

Delete #pragma.

Specify the section for mapping ROM to RAM

with the link option -ROm.

@@INITL

@EINITL

Segment for data area (far

variable, initialized)

None A message is output and conversion is not

performed.

Delete #pragma.

Specify the section for mapping ROM to RAM

with the link option -ROm.

@@INIS

@EINIS

Segment for data area (sreg

variable, initialized)

None A message is output and conversion is not

performed.

Delete #pragma.

Specify the section for mapping ROM to RAM

with the link option -ROm.

@@DATA

＠EDATA

Segment for data area (near

variable, uninitialized)

bss The section is changed to the corresponding

section type.

No action is required.

The section name in the CC-RL is "changed

section name + _n".

@@DATAL

@EDATAL

Segment for data area (far

variable, uninitialized)

bss The section is changed to the corresponding

section type.

No action is required.

The section name in the CC-RL is "changed

section name + _f".

CcnvCA78K0R

R20UT3598EJ0100 Rev.1.00 Page 31 of 60

Mar 01, 2016

CA78K0R

Section Name

Description CC-RL

Section Type

CcnvCA78K0R Operation

Corrective Action after Conversion

@@DATS

@EDATS

Segment for data area (sreg

variable, uninitialized)

bss The section is changed to the corresponding

section type.

No action is required.

The section name in the CC-RL is "changed

section name + _s".

@@BITS

@EBITS

Segment for boolean type

and bit type variables

None A message is output and conversion is not

performed.

Delete #pragma.

The section is allocated to the same section as

other data as the _Bool type in the CC-RL.

CcnvCA78K0R

R20UT3598EJ0100 Rev.1.00 Page 32 of 60

Mar 01, 2016

3.5 ASM statements

The __asm() function or #asm#endasm is used to write assembly-language code within functions for the

CA78K0R, whereas inline expansion is performed for the assembly-language functions declared in #pragma

inline_asm for the CC-RL. The CcnvCA78K0R creates the __asm() function or the inline_asm function that

executes assembly instructions in the range between #asm and #endasm at the beginning of the file and converts the

program so that this function is called at the position where an assembly instruction is written.

The format of the CA78K0R is as follows.

#asm

 : /* assembly-language code */

#endasm

__asm("assembly-language code");

The format of the CC-RL is as follows.

#pragma inline_asm [(] function-name [, …] [)]

function-declaration {

 : /* assembly-language code */

}

・ A tab is appended as an indent to the assembly-language code within the inline_asm function.

・ The function name to be created should be in the range between __inline_asm_func_00000 and

__inline_asm_func_99999, and an error will occur if the number of functions exceeds 100,000.

・ If a label is in the range between #asm and #endasm or in the __asm function, the CcnvCA78K0R outputs a

message. If a label is written in a function for which #pragma inline_asm is specified in the CC-RL, an error

will occur at compilation. Therefore, if a label is in #asm#endasm or the __asm function, the

CcnvCA78K0R outputs a message. A label written in the assembly language needs to be changed to a local

label to avoid a compile error. For details, see the user's manual of the CC-RL.

・ If double quotation marks (") are included in the target to be converted by the #define macro as shown in

the example below, the inline_asm function cannot be generated from the __asm() function. In such a case,

the CcnvCA78K0R outputs a message. The input file is directly output without its contents being converted.

Perform conversion after expanding the macro in advance.

Example) #define MAC "nop"

 __asm(MAC);

・ If control characters like '\n' or '\t' are included in a string in __asm(), an assembly error will occur after

conversion. Perform conversion after deleting the control characters in advance.

・ If a C-language comment ("/*") is included in the assembly-language comments (";") in the range between

#asm and #endasm, the range of the comment is invalid. Perform conversion after deleting the comments in

advance.

CcnvCA78K0R

R20UT3598EJ0100 Rev.1.00 Page 33 of 60

Mar 01, 2016

[Examples]

Pattern 1 Before

conversion

void func()

{

__asm("nop");

}

After

conversion

#pragma inline_asm __inline_asm_func_00000

static void __inline_asm_func_00000(void)

{

 nop

}

void func()

{

 __inline_asm_func_00000();

}

Pattern 2 Before

conversion

void func(void)

{

#asm

 nop

#endasm

}

After

conversion

#pragma inline_asm __inline_asm_func_00001

static void __inline_asm_func_00001(void)

{

 nop

}

void func()

{

 __inline_asm_func_00001();

}

Pattern 3 Before

conversion

#define ASM_NOP __asm("nop");

After

conversion

#pragma inline_asm __inline_asm_func_00002

static void __inline_asm_func_00002(void)

{

nop

}

#define ASM_NOP __inline_asm_func_00002();

CcnvCA78K0R

R20UT3598EJ0100 Rev.1.00 Page 34 of 60

Mar 01, 2016

Pattern 4

(Error after

conversion)

Before

conversion

void func()

{

__asm("\tnop");

}

After

conversion

#pragma inline_asm __inline_asm_func_00003

static void __inline_asm_func_00003(void)

{

 \tnop

}

void func()

{

 __inline_asm_func_00003();

}

CcnvCA78K0R

R20UT3598EJ0100 Rev.1.00 Page 35 of 60

Mar 01, 2016

3.6 Interrupt handler

#pragma interrupt/vect and the __interrupt and __interrupt_brk keywords of the CA78K0R are converted into

#pragma interrupt/interrupt_brk of the CC-RL.

The format of an interrupt function of the CA78K0R is as follows.

#pragma interrupt(vect) interrupt-request-name function-name function-name

[Stack-change-specification] [{Stack-usage-specification |

No-change-specification |

Register-bank-specification}]

or

__interrupt void func() { processing }

__interrupt_brk void func() { processing }

The format of an interrupt function of the CC-RL is as follows.

#pragma interrupt [(] function-name [([vect=address][,bank=register-bank][,enable={true|false}])][)]

function-declaration

#pragma interrupt_brk [(] function-name [([bank=register-bank][,enable={true|false}])][)]

function-declaration

・ When the interrupt request name exists, #include "iodefine.h" is output.

・ __interrupt is converted into #pragma interrupt and __interrupt_brk is converted into #pragma

interrupt_brk.

・ When the interrupt request name is BRK_I, it is converted into #pragma interrupt_brk.

・ "interrupt-request-name" is converted into "vect=address" as a macro that indicates the address. The macro

value is defined by iodefine.h.

・ "Register-bank-specification" is converted into "bank=register-bank".

・ Since "Stack-change-specification", "Stack-usage-specification", and "No-change-specification" do not

exist in the CC-RL, the CcnvCA78K0R outputs a message and deletes them.

・ When a macro or typedef is used in declaration or definition of an interrupt function using the __interrupt or

__interrupt_brk keyword, the function name may be interpreted erroneously. Perform conversion after

expanding the macro or typedef in advance.

・ If there is a #pragma directive and a description of an interrupt function using a keyword for the same

function, converting both of them into #pragma directives sometimes generates duplicate #pragma

directives after conversion and a compile error will occur. In this case, delete the duplicate description.

・ When omitting parameters of a function declaration in which the __interrupt or __interrupt_brk keyword is

specified, a compile error will occur in the CC-RL. The void type has to be written as the parameter type.

CcnvCA78K0R

R20UT3598EJ0100 Rev.1.00 Page 36 of 60

Mar 01, 2016

[Examples]

Pattern 1 Before conversion #pragma vect INTP0 func sp=buff+10 rb1

void func(void) { }

After conversion #pragma interrupt func(vect=INTP0, bank=RB1)

void func(void) { }

Pattern 2 Before conversion __interrupt void func(void) { }

After conversion #pragma interrupt func

void func(void) { }

Pattern 3 Before conversion #pragma interrupt BRK_I func

void func(void) { }

After conversion #pragma interrupt_brk func

void func(void) { }

Pattern 4 Before conversion __interrupt void func1(void), func2(void);

After conversion #pragma interrupt func1

void func1(void);

#pragma interrupt func2

void func2(void);

Pattern 5 Before conversion #pragma interrupt INTP0 func

__interrupt func(void);

After conversion #pragma interrupt func(vect=INTP0)

void func(void);

#pragma interrupt func

void func(void);

Corrective action Duplicate #pragma directives will cause an error in the CC-RL. Delete

one of the #pragma directives.

Pattern 6 Before conversion typedef void func_t(void);

__interrupt func_t f1;

After conversion typedef void func_t(void);

__interrupt func_t f1;

Corrective action A compile error will occur in the CC-RL. Expand typedef or the macro

in advance.

CcnvCA78K0R

R20UT3598EJ0100 Rev.1.00 Page 37 of 60

Mar 01, 2016

3.7 Interrupt handler for RTOS

#pragma rtos_interrupt and the __rtos_interrupt keyword of the CA78K0R are converted into #pragma

rtos_interrupt of the CC-RL.

The format of the CA78K0R is as follows.

#pragma rtos_interrupt [interrupt-request-name function-name]

or

__rtos_interrupt function-declaration

The format of the CC-RL is as follows.

#pragma rtos_interrupt [(] function-name [(vect=address)][)]

function-declaration

・ When the interrupt request name exists, #include "iodefine.h" is output.

・ __rtos_interrupt is converted into #pragma rtos_interrupt.

・ "interrupt-request-name" is converted into "vect=address" as a macro that indicates the address. The macro

value is defined by iodefine.h.

・ Function names can be omitted in the format of the CA78K0R and so the CA78K0R has a facility that

prevents the user from defining ret_int and _kernel_int_entry which are used by the RTOS interrupt handler.

Since the same facility is not available in the CC-RL, if the interrupt request name and function name are

omitted, the CcnvCA78K0R outputs a message and comments out the #pragma directive.

・ When a macro or typedef is used in declaration or definition of an interrupt function using the

__rtos_interrupt keyword, the function name may be interpreted erroneously. Perform conversion after

expanding the macro or typedef in advance.

・ If there is a #pragma directive and a description of an interrupt function by a keyword for the same function,

converting both of them into #pragma directives sometimes generates duplicate #pragma directives after

conversion and a compile error will occur. In this case, delete the duplicate description.

・ When omitting parameters of a function declaration in which the __rtos_interrupt keyword is specified, a

compile error will occur in the CC-RL. The void type has to be written as the parameter type.

CcnvCA78K0R

R20UT3598EJ0100 Rev.1.00 Page 38 of 60

Mar 01, 2016

[Examples]

Pattern 1 Before

conversion

#pragma rtos_interrupt INTP0 func

void func(void) { }

After

conversion

#pragma rtos_interrupt func (vect=INTP0)

void func(void) { }

Pattern 2 Before

conversion

__rtos_interrupt void func(void) { }

After

conversion

#pragma rtos_interrupt func

void func(void) { }

Pattern 3 Before

conversion

#pragma rtos_interrupt

After

conversion

// #pragma rtos_interrupt

Pattern 4 Before

conversion

__rtos_interrupt void func1(void), func2(void);

After

conversion

#pragma rtos_interrupt func1

void func1(void);

#pragma rtos_interrupt func2

void func2(void);

Pattern 5 Before

conversion

#pragma rtos_interrupt INTP0 func

__rtos_interrupt func(void);

After

conversion

#pragma rtos_interrupt func(vect=INTP0)

void func(void);

#pragma rtos_interrupt func

void func(void);

Corrective

action

Duplicate #pragma directives will cause an error in the CC-RL. Delete one of the

#pragma directives.

Pattern 6 Before

conversion

typedef void func_t(void);

__rtos_interrupt func_t f1;

After

conversion

typedef void func_t(void);

__rtos_interrupt func_t f1;

Corrective

action

A compile error will occur in the CC-RL. Expand typedef or the macro in advance.

CcnvCA78K0R

R20UT3598EJ0100 Rev.1.00 Page 39 of 60

Mar 01, 2016

3.8 Task function for RTOS

The format of the task functions for RTOS is almost the same in the CA78K0R and CC-RL.

The format of the CA78K0R is as follows.

#pragma rtos_task [task-function-name]

The format of the CC-RL is as follows.

#pragma rtos_task [(] task-function-name [, …][)]

function-declaration

・ Task function names can be omitted in the format of the CA78K0R and so the CA78K0R has a facility that

prevents the user from defining ext_tsk which is used by the task functions for RTOS. Since the same

facility is not available in the CC-RL, if the task function name is omitted, the CcnvCA78K0R outputs a

message and comments out the #pragma directive.

[Examples]

Pattern 1 Before conversion #pragma rtos_task task1

After conversion #pragma rtos_task task1

Pattern 2 Before conversion #pragma rtos_task

After conversion // #pragma rtos_task

CcnvCA78K0R

R20UT3598EJ0100 Rev.1.00 Page 40 of 60

Mar 01, 2016

3.9 Absolute address allocation specification

The destination is specified using the __directmap keyword in the CA78K0R, whereas #pragma address is written

immediately before the variable declaration in the CC-RL.

The format of the CA78K0R is as follows.

__directmap [__sreg] [static] type-name variable-name = location-address;

The format of the CC-RL is as follows.

#pragma address variable-name = location-address

variable-declaration

・ The CcnvCA78K0R deletes the __directmap keyword and adds #pragma address just before the variable

declaration. The address specification is deleted from the variable declaration and execution moves to the

address specification of #pragma address.

・ When a macro or function pointer is used in a description using the __directmap keyword, the function

name may be interpreted erroneously. Perform conversion after expanding the macro in advance. The

location specification of the function pointer has to be modified manually.

・ If different variables are assigned to the same address with __directmap, a compile error will occur in the

CC-RL after conversion. Care is required because the CcnvCA78K0R does not check whether different

variables are being assigned to the same address.

CcnvCA78K0R

R20UT3598EJ0100 Rev.1.00 Page 41 of 60

Mar 01, 2016

[Examples]

Pattern 1 Before

conversion

__directmap int i = 0xffe00;

After

conversion

#pragma address i=0xffe00

int i;

Pattern 2 Before

conversion

__directmap int* i = 0xffe00;

After

conversion

#pragma address i=0xffe00

int* i;

Pattern 3 Before

conversion

__directmap int i = 0xffe00, j=0xffe10;

After

conversion

#pragma address i=0xffe00

#pragma address j=0xffe10

int i,j;

Pattern 4 Before

conversion

__directmap struct x {

 char a ;

 char b ;

} xx = { 0xffe30 } ;

After

conversion

#pragma address xx=0xffe30

struct x {

 char a ;

 char b ;

} xx;

Pattern 5 Before

conversion

#define MY_MACRO1 (int i = 0xffe00)

__directmap MY_MACRO1;

After

conversion

#define MY_MACRO1 (int i = 0xffe00)

__directmap MY_MACRO1;

Corrective

action

Perform conversion after expending the macro.

Pattern 6

Before

conversion

__directmap void (*fp[])(void) = 0x1234;

After

conversion

#pragma address void=0x1234

void (*fp[])(void);

Corrective

action

Manually write #pragma address for the CC-RL.

CcnvCA78K0R

R20UT3598EJ0100 Rev.1.00 Page 42 of 60

Mar 01, 2016

3.10 Intrinsic functions

Intrinsic functions were validated by #pragma directives in the CA78K0R, whereas intrinsic functions can always

be used in the CC-RL. If there is an intrinsic function of the CC-RL that corresponds to an intrinsic function of the

CA78K0R, the CcnvCA78K0R deletes the relevant #pragma directive in the C source program and changes the

code where the intrinsic function is called.

・ If there is no relevant #pragma directive, the intrinsic function is determined to be invalid and it will not be

converted.

・ The CcnvCA78K0R deletes #pragma directives for the intrinsic functions that are not supported in the

CC-RL and outputs a message. The code where the intrinsic functions are called will not be converted.

・ The order of the parameters is different in the CA78K0R's intrinsic functions macuw and macsw and their

corresponding CC-RL's intrinsic functions __macui and __macsi. The order of the parameters is also

rearranged at conversion.

CcnvCA78K0R

R20UT3598EJ0100 Rev.1.00 Page 43 of 60

Mar 01, 2016

Table 3.4 Conversion of Intrinsic Functions

CA78K0R

Intrinsic Function

After Conversion Remarks

#pragma DI

DI

Deleted

__DI

#pragma EI

EI

Deleted

__EI

#pragma HALT

HALT

Deleted

__halt

#pragma STOP

STOP

Deleted

__stop

#pragma BRK

BRK

Deleted

__brk

#pragma NOP

NOP

Deleted

__nop

#pragma rot

rolb

rorb

rolw

rorw

Deleted

__rolb

__rorb

__rolw

__rorw

#pragma mul

mulu

muluw

mulsw

Deleted

__mulu

__mului

__mulsi

#pragma div

divuw

moduw

Deleted

__divui

__remui

#pragma mac

macuw (x, y, z)

macsw (x, y, z)

Deleted

__macui(y, z, x)

__macsi(y, z, x)

Also the order of the parameters is rearranged.

#pragma bcd

adbcdb, sbbcdb,

adbcdbe, sbbcdbe,

adbcdw, sbbcdw,

adbcdwe, sbbcdwe,

bcdtob, btobcde,

bcdtow, wtobcd,

btobcd

Deleted

Not any one of them is

converted.

Not supported in the CC-RL.

#pragma opc

__OPC

Deleted

Not converted

Not supported in the CC-RL.

CcnvCA78K0R

R20UT3598EJ0100 Rev.1.00 Page 44 of 60

Mar 01, 2016

3.11 Other #pragma directives

Conversion specifications for other #pragma directives are shown here.

Table 3.5 Conversion of Other #pragma Directives

CA78K0R

#pragma Directive

After conversion Remarks

#pragma sfr #include "iodefine.h" iodefine.h is provided by the integrated

development environment.

#pragma name Deleted Not supported in the CC-RL.

#pragma ext_func Deleted Not supported in the CC-RL.

#pragma inline Deleted Not supported in the CC-RL.

#pragma inline of the CC-RL is a different

facility.

CcnvCA78K0R

R20UT3598EJ0100 Rev.1.00 Page 45 of 60

Mar 01, 2016

3.12 Standard library functions

Among the standard library functions of the CA78K0R, va_starttop and calls of standard library functions for the

near or far pointer whose function name is post-fixed with "_n" or "_f" are converted into standard library functions

of the CC-RL. Normal standard library functions are not converted because the same functions are available.

・ Do not use the CcnvCA78K0R to convert the header file of the standard libraries for the CA78K0R and

make the CC-RL handle the converted header file. Use the header file of the standard libraries for the

CC-RL.

・ Since the function name is converted by replacing strings, if a macro name, variable name, tag name, etc. of

the same name exists, they will also be replaced.

・ The CC-RL does not have a large model. When a C source program for a large model is converted, the type

of parameters or return values of standard libraries may not match. Before performing conversion, manually

modify the descriptions of the C source program to the standard library functions for the far pointer.

Table 3.6 Conversion of Standard Library Functions

Function Name of

CA78K0R

After Conversion Remarks

toup

_toupper

Not converted Handled as a user function in the CC-RL.

Use the toupper function.

tolow

_tolower

Not converted Handled as a user function in the CC-RL.

Use the tolower function.

va_starttop va_start

sprintf_n sprintf Only functions for the far pointer exist in the CC-RL.

After conversion, the pointer type is converted from near to far in

the parameter.

sprintf_f sprintf

sscanf_n sscanf Only functions for the far pointer exist in the CC-RL.

After conversion, the pointer type is converted from near to far in

the parameter.

sscanf_f sscanf

printf_n printf Only functions for the far pointer exist in the CC-RL.

After conversion, the pointer type is converted from near to far in

the parameter.

printf_f printf

scanf_n scanf Only functions for the far pointer exist in the CC-RL.

After conversion, the pointer type is converted from near to far in

the parameter.

scanf_f scanf

vprintf_n vprintf Only functions for the far pointer exist in the CC-RL.

After conversion, the pointer type is converted from near to far in

the parameter.

vprintf_f vprintf

CcnvCA78K0R

R20UT3598EJ0100 Rev.1.00 Page 46 of 60

Mar 01, 2016

Function Name of

CA78K0R

After Conversion Remarks

vsprintf_n vsprintf Only functions for the far pointer exist in the CC-RL.

After conversion, the pointer type is converted from near to far in

the parameter.

vsprintf_f vsprintf

gets_n gets

gets_f _COM_gets_f

puts_n puts

puts_f _COM_puts_f

_putc Not converted Handled as a user function in the CC-RL.

atof_n atof

atof_f _COM_atof_f

atoi_n atoi

atoi_f _COM_atoi_f

atol_n atol

atol_f _COM_atol_f

strtod_n strtod

strtod_f _COM_strtod_ff

strtol_n strtol

strtol_f _COM_strtol_ff

strtoul_n strtoul

strtoul_f _COM_strtoul_ff

atexit Not converted atexit is not supported in the CC-RL.

Handled as a user function in the CC-RL.

brk Not converted Handled as a user function in the CC-RL.

sbrk Not converted Handled as a user function in the CC-RL.

itoa Not converted Handled as a user function in the CC-RL.

ltoa Not converted Handled as a user function in the CC-RL.

ultoa Not converted Handled as a user function in the CC-RL.

bsearch_n bsearch

bsearch_f _COM_bsearch_f

qsort_n qsort

qsort_f _COM_qsort_f

strbrk Not converted Handled as a user function in the CC-RL.

strsbrk Not converted Handled as a user function in the CC-RL.

stritoa Not converted Handled as a user function in the CC-RL.

strltoa Not converted Handled as a user function in the CC-RL.

strultoa Not converted Handled as a user function in the CC-RL.

memcpy_n memcpy

memcpy_f _COM_memcpy_ff

CcnvCA78K0R

R20UT3598EJ0100 Rev.1.00 Page 47 of 60

Mar 01, 2016

Function Name of

CA78K0R

After Conversion Remarks

memmove_n memmove

memmove_f _COM_memmove_ff

strcpy_n strcpy

strcpy_f _COM_strcpy_ff

strncpy_n strncpy

strncpy_f _COM_strncpy_ff

strcat_n strcat

strcat_f _COM_strcat_ff

strncat_n strncat

strncat_f _COM_strncat_ff

memcmp_n memcmp

memcmp_f _COM_memcmp_ff

strcmp_n strcmp

strcmp_f _COM_strcmp_ff

strncmp_n strncmp

strncmp_f _COM_strncmp_ff

memchr_n memchr

memchr_f _COM_memchr_f

strchr_n strchr

strchr_f _COM_strchr_f

strcspn_n strcspn

strcspn_f _COM_strcspn_ff

strpbrk_n strpbrk

strpbrk_f _COM_strpbrk_ff

strrchr_n strrchr

strrchr_f _COM_strrchr_f

strspn_n strspn

strspn_f _COM_strspn_ff

strstr_n strstr

strstr_f _COM_strstr_ff

strtok_n strtok Only functions for the far pointer exist in the CC-RL.

After conversion, the pointer type is converted from near to far in

the parameter.

strtok_f strtok

memset_n memset

memset_f _COM_memset_f

strerror Not converted The type of the return value is the far pointer in the CC-RL.

Change the type at the code where the return value is used.

strlen_n strlen

strlen_f _COM_strlen_f

CcnvCA78K0R

R20UT3598EJ0100 Rev.1.00 Page 48 of 60

Mar 01, 2016

Function Name of

CA78K0R

After Conversion Remarks

strcoll

strcoll_n

strcoll_f

Not converted strcoll is not supported in the CC-RL.

Handled as a user function in the CC-RL.

strxfrm

strxfrm_n

strxfrm_f

Not converted strxfrm is not supported in the CC-RL.

Handled as a user function in the CC-RL.

matherr Not converted Handled as a user function in the CC-RL.

__assertfail Not converted Handled as a user function in the CC-RL.

The assert macro can be used in the CC-RL without any change.

CcnvCA78K0R

R20UT3598EJ0100 Rev.1.00 Page 49 of 60

Mar 01, 2016

3.13 Difference from Conversion Specifications of -convert_cc Option of CC-RL

The difference of extended functions whose operations vary when the CC-RL's option -convert_cc is used and

when conversion is performed by the CcnvCA78K0R is shown here.

Table 3.7 Different Operation from –convert_cc Option of CC-RL

CA78K0R

Extended Function

Operation when -convert_cc Option is Used Conversion by CcnvCA78K0R

__boolean Handled as the _Bool type when the -ansi

option is not specified and handled as the char

type when the -ansi option is specified.

Always converted to the _Bool type.

Since _Bool is not usable when the -ansi

option of the CC-RL is specified, manually

change the type.

__interrupt

__interrupt_brk

__rtos_interrupt

If a #pragma directive for a function with the

same name already exists, the keyword is

ignored.

A #pragma directive is added before the

function declaration. If a #pragma directive

for a function with the same name already

exists, there will be duplicate #pragma

directives after conversion and a compile

error will occur. In such a case, delete the

#pragma directive that was converted from

the keyword.

__asm() Recognized as a normal function call.

It needs to be manually modified to the

inline_asm function.

#pragma inline_asm and a function definition

are output for each __asm().

A function call of __asm() is converted into a

newly generated function call.

#pragma sfr Use the -preinclude option of the CC-RL to

include iodefine.h.

#include "iodefine.h" is inserted at the

beginning of the file.

#asm#endasm A syntax error will occur.

It needs to be manually modified to the

inline_asm function.

#pragma inline_asm and a function definition

are output for each #asm#endasm.

#asm#endasm is converted into a newly

generated function call.

#pragma interrupt

#pragma vect

#pragma rtos_interrupt

If there is an interrupt request name, use the

-preinclude option of the CC-RL to include

iodefine.h.

#include "iodefine.h" is inserted at the

beginning of the file if there is an interrupt

request name.

__CA78K0R__ macro The macro is enabled (decimal constant 1). Conversion is not performed and a message is

output.

Enable the macro using the -D option of the

CC-RL.

CcnvCA78K0R

R20UT3598EJ0100 Rev.1.00 Page 50 of 60

Mar 01, 2016

4. MESSAGES

This section describes messages that are output by the CC-RL.

4.1 Message Formats

The output formats of messages are as follows.

 When the file name and line number are included

- Message number type is information

file-name (line-number):message-number:[information-type] message

 The information type is change, insertion, deletion, or information.

- Message number type is other than information

file-name (line-number):message-number:message

 When the file name and line number are not included

message-number:message

The message number is output as a consecutive string consisting of one alphabetic character, 0591, and a

three-digit number.

CcnvCA78K0R

R20UT3598EJ0100 Rev.1.00 Page 51 of 60

Mar 01, 2016

4.2 Message Types

The message types are classified as follows.

Table 4.1 Message Types

Message Type First Letter Description

Internal error C Processing is aborted.

The C source program is not output after conversion.

Fatal Error E Processing is aborted.

The C source program is not output after conversion.

Warning W Processing continues.

The C source program is output after conversion.

Information M Processing continues.

The C source program is output after conversion.

4.3 Information Types

When the message number type is information, the information types are classified as follows.

Table 4.2 Information Types

Information Type Description

Change Changes were made in the program so that it can be handled by the CC-RL.

Insert Additions were made in the program so that it can be handled by the CC-RL.

Delete Some descriptions were deleted because they are not necessary in the CC-RL.

Info Conversion may not be sufficient in some cases because of the difference between the

CA78K0R and CC-RL specifications.

Each case should be confirmed individually.

4.4 Messages

The messages output by the CcnvCA78K0R are as follows.

4.4.1 Internal errors

Table 4.3 Internal Errors

Number Message Description

C0591nnn Internal error Please contact your vendor or your Renesas

Electronics overseas representative.

nnn is a three-digit decimal number.

CcnvCA78K0R

R20UT3598EJ0100 Rev.1.00 Page 52 of 60

Mar 01, 2016

4.4.2 Fatal errors

Table 4.4 Fatal Errors

Number Message Description

E0591001 Multiple input files are not allowed. Only one input file can be specified.

Use the list file to specify multiple input

files.

E0591002 The option option cannot have an argument. An argument was specified for an option

that should not have arguments.

E0591003 The option option requires an argument. No argument was specified in an option that

requires arguments.

E0591004 The option option is specified more than once. Only one option can be specified at one

time.

E0591005 Requires an output file. The output file corresponding to the input

file was not specified.

E0591006 Failed to read an input file file. The folder name or file name may be

incorrect. If the next file is specified in the

list file, conversion of that file will start.

E0591007 Failed to write a result of conversion file file. The folder name may be incorrect.

E0591008 Failed to write an output file file. The folder name may be incorrect.

E0591009 Failed to read a list file file. The folder name may be incorrect.

E0591010 Syntax errors in list file file. The description of the list file is not correct.

E0591011 File name is corrupted. There are duplicate file names among the

input file, output file, and conversion result

output file.

E0591012 Invalid file name. Either the input file name specified on the

command line or an input or output file

name specified in the list file has exceeded

260 characters.

E0591013 Invalid argument for the option option. The argument specification is invalid or the

specified file name has exceeded 260

characters.

E0591101 Illegal syntax in string. Conversion could not be performed because

there was a syntax that is not allowed in the

CA78K0R. Modify the input file.

E0591102 Can not add inline function for assembly. The number of inline functions for assembly

has exceeded the upper limit. Modify the

input file.

E0591103 Failed to delete a temporary file. Deletion of a temporary file has failed.

Delete the temporary file.

CcnvCA78K0R

R20UT3598EJ0100 Rev.1.00 Page 53 of 60

Mar 01, 2016

4.4.3 Warnings

Table 4.5 Warnings

Number Message Description

W0591051 Input file specified on the command line is

ignored when the "-l" option is specified.

When the list file is specified, an input file

cannot be specified on the command line at

the same time. The list file specified by the

"-l" option is converted and the input file is

ignored.

W0591052 The "-c" option specified on the command line is

ignored when it does not match the specification

in list file (file).

The "-c" option specification corresponding

to the input file "file" specified in the list

file differs between the list file and

command line. Conversion is performed in

accordance with the specification in the list

file.

W0591053 Invalid option option. An invalid option was specified.

Ignore the option.

W0591054 Invalid argument for the option option. The argument specified in the "option"

option is invalid.

If the argument of the "-c" option is invalid,

processing is performed with the default

specification.

W0591055 Requires an input file. The list file specified by the "-l" option is

missing an input file specification.

W0591151 String cannot be changed to syntax of CC-RL. string could not be changed to the CC-RL

format. Modify the input file.

CcnvCA78K0R

R20UT3598EJ0100 Rev.1.00 Page 54 of 60

Mar 01, 2016

4.4.4 Information

Table 4.6 Information

Number Information

Type

Message Description

M0591111 Change String1 was converted into

string2.

The token was converted.

M0591112 Change Bit access of I/O register was

converted into macro call.

Since the bit access method of SFRs differs

between the CA78K0R and CC-RL, the

method is changed to make access using a

macro.

M0591113 Change 'String' has been changed to

syntax of CC-RL.

Since the description format differs between

the CA78K0R and CC-RL, the description

format is changed to that of the CC-RL.

M0591121 Insert Inserted macro definition for bit

access of I/O register.

Since the bit access method of SFRs differs

between the CA78K0R and CC-RL, the

method is changed to make access using a

macro.

M0591122 Insert Inserted #pragma interrupt

NO_VECT.

#pragma interrupt without the vector table

specification was generated.

M0591123 Insert Inserted string. A description in accordance with the

CC-RL format was added.

M0591124 Insert Add inline function string for

assembly.

An inline function for assembly was

generated.

M0591125 Insert Inserted #pragma rtos_interrupt

NO_VECT.

#pragma rtos_interrupt without the vector

table specification was generated.

M0591131 Delete String was deleted. The description format is not available in

the CC-RL. The description was deleted.

M0591141 Info string1 was converted into

string2.

But that cannot map in RAM.

Though the section of #pragma section was

changed, there is a possibility that the

section cannot be allocated. Check the user's

manual of the CC-RL.

M0591142 Info The section can not be converted.

Because there is no matched

section.

The section could not be converted because

there is no corresponding section in the

CC-RL.

M0591143 Info Delete "AT start address". This was deleted because an address cannot

be specified by #pragma section in the

CC-RL.

M0591144 Info The MACRO cannot be converted.

Because there is no matched

macro.

The macro could not be converted because

there is no corresponding macro in the

CC-RL.

M0591145 Info The label detected in the assembly

code. Please correct label to

appropriate content.

Only local labels can be written in an

assembly-language function in the CC-RL.

Modify the label to have suitable contents.

CcnvCA78K0R

R20UT3598EJ0100 Rev.1.00 Page 55 of 60

Mar 01, 2016

5. POINTS FOR CAUTION

If the C source program falls under any of the following items, it may not be possible for the CC-RL to correctly

compile the converted C source program.

Table 5.1 Points for caution

No. Item CcnvCA78K0R

Operation

CC-RL Operation in

Response to

Conversion Result

Reference

Destination

1 When there is nested

comment text

Conversion may not be

performed successfully.

The range of the

comment is invalid.

CONVERSION

SPECIFICATIONS

2 When a keyword cannot

be detected because a ##

operator is being used

No message is output

and conversion is not

performed.

Error E0520065 or

another error will

occur.

CONVERSION

SPECIFICATIONS

3 When the C source

program for the

CA78K0R is for a large

model

The C source program

is converted as a normal

C source program.

Conversion of standard

libraries has an invalid

result.

Since the CC-RL

does not have a large

model, the type of

pointers from which

the __near and __far

keywords have been

omitted is invalid.

CONVERSION

SPECIFICATIONS

Standard library

functions

4 When '?' is included in

the section name for

#pragma section

No message is output

and conversion is not

performed.

Error E0520014 will

occur.

#pragma section

5 When a section name

that does not exist in the

CC-RL is specified for

the section name of

#pragma section

No message is output

and conversion is not

performed.

Warning W0523037

is output and the

#pragma directive is

ignored. There is a

possibility that

section allocation will

fail and operation is

not as expected.

#pragma section

6 When \n or \t is used in

a string in

__asm("string")

A control character is

output without any

change.

Error E0550249 will

occur.

ASM statements

7 When "/*" is included in

an assembly-language

comment (description

after ";") within the

range of #asm#endasm

The assembly-language

comment is output

without any change.

A C-language

comment ("/*") is

given priority over an

assembly-language

comment (";") and the

range of the comment

is invalid.

ASM statements

CcnvCA78K0R

R20UT3598EJ0100 Rev.1.00 Page 56 of 60

Mar 01, 2016

No. Item CcnvCA78K0R

Operation

CC-RL Operation in

Response to

Conversion Result

Reference

Destination

8 When a label is included

in __asm() or the

assembly-language code

within #asm#endasm

A message is output. Error E0550213 will

occur.

ASM statements

[Restrictions] of

#pragma inline_asm

in the CC-RL user's

manual

9 When there is #pragma

interrupt and a

description of the

__interrupt keyword for

the same function in a

file

They are both converted

into #pragma interrupt.

There will be

duplicate #pragma

directives and error

E0523006 will occur.

Interrupt handler

10 When parameters in

function declarations

__interrupt,

__interrupt_brk, and

__rtos_interrupt are

omitted

A #pragma directive is

output and function

declarations are output

without change.

Error E0523008 will

occur since there is no

void type

specification.

Interrupt handler

Interrupt handler for

RTOS

11 When a macro or

typedef is used in code

for obtaining a type

name, function name,

variable name, etc.

A message is output

and the program is

output without being

converted.

Error E0520020,

E0520065, or another

error will occur.

Interrupt handler

Interrupt handler for

RTOS

Absolute address

allocation

specification

12 When there is #pragma

rtos_interrupt and a

description of the

__rtos_interrupt

keyword for the same

function in a file

They are both converted

into #pragma

rtos_interrupt.

There will be

duplicate #pragma

directives and error

E0523006 will occur.

Interrupt handler for

RTOS

13 When the same address

is specified for different

variables in __directmap

No message is output. Error E0541854 will

occur.

Absolute address

allocation

specification

[Restrictions] of

#pragma address in

the CC-RL user's

manual

C - 1

Revision Record

Rev. Date Description

Page Summary

1.00 Mar 01, 2016 － First Edition issued

CcnvCA78K0R C Source Converter User's Manual

Publication Date: Rev.1.00 Mar 01, 2016

Published by: Renesas Electronics Corporation

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2016 Renesas Electronics Corporation. All rights reserved.
Colophon 4.0

CcnvCA78K0R

R20UT3598EJ0100

	1. GENERAL
	2. COMMAND REFERENCE
	2.1 Overview
	2.2 I/O Files
	2.3 Conversion Result
	2.4 Method for Manipulating
	2.5 Options

	3. CONVERSION SPECIFICATIONS
	3.1 Macro names
	3.2 Reserved words
	3.3 Bit access
	3.4 #pragma section
	3.5 ASM statements
	3.6 Interrupt handler
	3.7 Interrupt handler for RTOS
	3.8 Task function for RTOS
	3.9 Absolute address allocation specification
	3.10 Intrinsic functions
	3.11 Other #pragma directives
	3.12 Standard library functions
	3.13 Difference from Conversion Specifications of -convert_cc Option of CC-RL

	4. MESSAGES
	4.1 Message Formats
	4.2 Message Types
	4.3 Information Types
	4.4 Messages
	4.4.1 Internal errors
	4.4.2 Fatal errors
	4.4.3 Warnings
	4.4.4 Information

	5. POINTS FOR CAUTION
	Revision Record

