Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Preliminary User's Manual

V850E/MS2[™]

32-/16-Bit Single-Chip Microcontrollers

Hardware

 μ PD703130

[MEMO]

NOTES FOR CMOS DEVICES -

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

② HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

V850E/MS1, V850E/MS2, and V850 Family are trademarks of NEC Corporation.

Windows is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.

Green Hills Software is a trademark of Green Hills Software, Inc.

- The information contained in this document is being issued in advance of the production cycle for the device. The parameters for the device may change before final production or NEC Corporation, at its own discretion, may withdraw the device prior to its production.
- Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written
 consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
 this document.
- NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property
 rights of third parties by or arising from use of a device described herein or any other liability arising from use
 of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other
 intellectual property rights of NEC Corporation or others.
- Descriptions of circuits, software, and other related information in this document are provided for illustrative
 purposes in semiconductor product operation and application examples. The incorporation of these circuits,
 software, and information in the design of the customer's equipment shall be done under the full responsibility
 of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third
 parties arising from the use of these circuits, software, and information.
- While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
- NEC devices are classified into the following three quality grades:
- "Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.
 - Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

M5D 98.12

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- · Device availability
- Ordering information
- · Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288

NEC Electronics (Germany) GmbH

Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.

Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Italiana s.r.l.

Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH

Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

NEC Electronics (France) S.A.

Velizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

NEC Electronics (France) S.A.

Madrid Office Madrid, Spain Tel: 91-504-2787 Fax: 91-504-2860

NEC Electronics (Germany) GmbH

Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388

NEC Electronics Hong Kong Ltd.

Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.

Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.

United Square, Singapore Tel: 65-253-8311 Fax: 65-250-3583

NEC Electronics Taiwan Ltd.

Taipei, Taiwan Tel: 02-2719-2377 Fax: 02-2719-5951

NEC do Brasil S.A.

Electron Devices Division Guarulhos-SP Brasil Tel: 55-11-6462-6810 Fax: 55-11-6462-6829

J00.7

[MEMO]

INTRODUCTION

Target Readers

This manual is intended for users who wish to understand the functions of the V850E/MS2 (μ PD703130) to design application systems using the V850E/MS2.

Purpose

This manual is designed to help users understand the hardware functions of the V850E/MS2.

Organization

The V850E/MS2 User's Manual consists of two manuals: Hardware (this manual) and Architecture (V850E/MS1[™] User's Manual Architecture). The organization of each manual is as follows:

Hardware

- Pin functions
- CPU function
- Internal peripheral functions

Architecture

- Data type
- Register set
- · Instruction format and instruction set
- · Interrupts and exceptions
- Pipeline operation

How to Use This Manual

It is assumed that the readers of this manual have general knowledge of electrical engineering, logic circuits, and microcontrollers.

- To find the details of a register where the name is known
 - → Refer to APPENDIX A REGISTER INDEX.
- To find the details of a function, etc. where the name is known
 - → Refer to APPENDIX C INDEX.
- To understand the details of an instruction function
 - → Refer to the V850E/MS1 User's Manual Architecture.
- To understand the overall functions of the V850E/MS2
 - \rightarrow Read this manual in the order of the **CONTENTS**.

Conventions Data significance: Higher digits on the left and lower digits on the right

Active low representation: \overline{xxx} (overscore over pin or signal name)

Memory map address: Higher address on the top and lower address on the bottom

Note: Footnote for item marked with **Note** in the text

Caution: Information requiring particular attention

Remark: Supplementary information

Numerical representation: Binary ... xxxx or xxxxB

Decimal ... xxxx

Hexadecimal ... xxxxH

Prefix indicating the power K (kilo) ... $2^{10} = 1,024$ of 2 (address space, M (mega) ... $2^{20} = 1,024^2$ memory capacity): G (giga) ... $2^{30} = 1,024^3$

Word ... 32 bits

Data type: Halfword ... 16 bits

Byte ... 8 bits

Related Documents

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

Document related to device

Document Name	Document No.
V850E/MS2 User's Manual Hardware	This manual
V850E/MS1 User's Manual Architecture	U12197E

CONTENTS

CHAPT	TER 1 INTRODUCTION	19
1.1	Outline	19
1.2	Features	20
1.3	Applications	22
1.4	Ordering Information	22
1.5	Pin Configuration (Top View)	23
1.6	Function Block	25
	1.6.1 Internal block diagram	25
	1.6.2 Internal units	26
CHAPT	TER 2 PIN FUNCTIONS	
2.1	List of Pin Functions	
2.2	Pin Status	
2.3	Description of Pin Functions	
2.4	Pin I/O Circuits and Recommended Connection of Unused	
2.5	Pin I/O Circuits	48
СНАРТ	TER 3 CPU FUNCTION	
3.1	Features	
3.2	CPU Register Set	
	3.2.1 Program register set	
	3.2.2 System register set	
3.3	Operation Modes	
	3.3.1 Operation modes	
	3.3.2 Operation mode specification	
3.4	Address Space	
	3.4.1 CPU address space	
	3.4.2 Image	
	3.4.3 Wrap-around of CPU address space	
	3.4.4 Memory map	
	3.4.5 Area	
	3.4.6 External expansion mode	
	3.4.7 Recommended use of address space	
	3.4.9 Specific registers	
	3.4.9 Specific registers	78
СНАРТ	TER 4 BUS CONTROL FUNCTION	77
4.1	Features	77
4.2	Bus Control Pins	77
4.3	Memory Block Function	78
4.4	Bus Cycle Type Control Function	79
	4.4.1 Bus cycle type configuration register (BCT)	
4.5	Bus Access	81
	4.5.1 Number of access clocks	81

	4.5.2	Bus sizing function	82
	4.5.3	Bus width	83
4.6	Wait F	Function	87
	4.6.1	Programmable wait function	87
	4.6.2	External wait function	8888
	4.6.3	Relationship between programmable wait and external wait	88
	4.6.4	Bus cycles in which the wait function is valid	89
4.7	Idle St	tate Insertion Function	91
4.8	Bus H	lold Function	93
	4.8.1	Outline of function	93
	4.8.2	Bus hold procedure	94
	4.8.3	Operation in power save mode	94
	4.8.4	Bus hold timing	95
4.9	Bus P	riority Order	96
4.10	Bound	dary Operation Conditions	96
	4.10.1	Program space	96
	4.10.2	Data space	97
CHAPT		MEMORY ACCESS CONTROL FUNCTION	
5.1	SRAM	I, External ROM, External I/O Interface	
	5.1.1	SRAM connections	99
	5.1.2	SRAM, external ROM, external I/O access	
5.2	Page I	ROM Controller (ROMC)	
	5.2.1	Features	
	5.2.2	Page ROM connections	
	5.2.3	On-page/off-page judgment	
	5.2.4	Page ROM configuration register (PRC)	
	5.2.5	Page ROM access	
5.3	DRAM	l Controller	
	5.3.1	Features	
	5.3.2	DRAM connections	
	5.3.3	Address multiplex function	
	5.3.4	DRAM configuration registers 0 to 3 (DRC0 to DRC3)	
	5.3.5	DRAM type configuration register (DTC)	
	5.3.6	DRAM access	
	5.3.7	DRAM access during DMA flyby transfer	
	5.3.8	Refresh control function	
	5.3.9	Self-refresh functions	132
CHAPT		DMA FUNCTIONS (DMA CONTROLLER)	
6.1		res	
6.2		guration	
6.3		ol Registers	
	6.3.1	DMA source address registers 0 to 3 (DSA0 to DSA3)	
	6.3.2	DMA destination address registers 0 to 3 (DDA0 to DDA3)	
	6.3.3	DMA byte count registers 0 to 3 (DBC0 to DBC3)	
	6.3.4	DMA addressing control registers 0 to 3 (DADC0 to DADC3)	
	6.3.5	DMA channel control registers 0 to 3 (DCHC0 to DCHC3)	

	6.3.6	DMA trigger factor registers 0 to 3 (DTFR0 to DTFR3)	145
	6.3.7	DMA disable status register (DDIS)	147
	6.3.8	DMA restart register (DRST)	147
	6.3.9	Flyby transfer data wait control register (FDW)	148
6.4	DMA I	Bus States	149
	6.4.1	Types of bus states	149
	6.4.2	DMAC state transition	152
6.5	Trans	fer Mode	153
	6.5.1	Single transfer mode	153
	6.5.2	Single-step transfer mode	154
	6.5.3	Block transfer mode	154
6.6	Trans	fer Types	155
	6.6.1	Two-cycle transfer	155
	6.6.2	Flyby transfer	159
6.7	Trans	fer Objects	163
	6.7.1	Transfer type and transfer objects	163
	6.7.2	External bus cycle during DMA transfer	163
6.8	DMA (Channel Priorities	164
6.9	Next A	Address Setting Function	164
6.10	DMA 7	Transfer Start Factors	165
6.11	Interr	upting DMA Transfer	166
	6.11.1	Interruption factors	166
	6.11.2		
6.12	Termi	nating DMA Transfer	166
	6.12.1	DMA transfer end interrupt	166
	6.12.2	Forcible termination	167
6.13	Bound	dary of Memory Area	168
6.14	Trans	fer of Misalign Data	168
6.15		s of DMA Transfer	
6.16	Maxin	num Response Time to DMA Request	168
6.17	One T	ime Single Transfer with DMARQ0 to DMARQ3	170
		Arbitration for CPU	
6.19	Preca	ution	171
		INTERRUPT/EXCEPTION PROCESSING FUNCTION	
7.1		res	
7.2	Non-N	Maskable Interrupt	
	7.2.1	Operation	
	7.2.2	Restore	
	7.2.3	Non-maskable interrupt status flag (NP)	
	7.2.4	Noise elimination	
	7.2.5	Edge detection function	
7.3		able Interrupts	
	7.3.1	Operation	
	7.3.2	Restore	
	7.3.3	Priorities of maskable interrupts	
	7.3.4	Interrupt control register (xxICn)	
	7.3.5	In-service priority register (ISPR)	191

	7.3.6	Maskable interrupt status flag (ID)	191
	7.3.7	Noise elimination	192
	7.3.8	Edge detection function	193
7.4	Softw	are Exception	195
	7.4.1	Operation	195
	7.4.2	Restore	196
	7.4.3	Exception status flag (EP)	197
7.5	Excep	ption Trap	198
	7.5.1	Illegal op code definition	198
	7.5.2	Operation	199
	7.5.3	Restore	
7.6	Multip	ple Interrupt Servicing Control	200
7.7		upt Latency Time	
7.8	Perio	ds in Which Interrupt Is Not Acknowledged	202
0114 DT		OLOGIC GENERATOR FUNCTIONS	
		CLOCK GENERATOR FUNCTIONS	
8.1		ires	
8.2		guration Clock Selection	
8.3	•	Direct mode	
	8.3.1		_
	8.3.2 8.3.3	PLL mode Clock control register (CKC)	
8.4		ockup	
8.5		r Saving Control	
0.5	8.5.1	Outline	
	8.5.2	Control registers	
	8.5.3	HALT mode	
	8.5.4	IDLE mode	
	8.5.5	Software STOP mode	
	8.5.6	Clock output inhibit mode	
8.6		ring Oscillation Stabilization Time	
	8.6.1	Specifying securing of oscillation stabilization time	
	8.6.2	Time base counter (TBC)	
СНАРТ	ER 9	TIMER/COUNTER FUNCTION (REAL-TIME PULSE UNIT)	219
9.1	Featu	ires	219
9.2	Basic	Configuration	220
	9.2.1	Timer 1	223
	9.2.2	Timer 4	225
9.3	Contr	ol Registers	226
9.4	Timer	1 Operation	233
	9.4.1	Count operation	233
	9.4.2	Count clock selection	
	9.4.3	Overflow	
	9.4.4	Clearing/starting timer by TCLR1n signal input	
	9.4.5	Capture operation	
	9.4.6	Compare operation	
9.5	Timer	r 4 Operation	242

	9.5.1	Count operation	242
	9.5.2	Count clock selection	242
	9.5.3	Overflow	242
	9.5.4	Compare operation	243
9.6	Applic	ation Example	245
9.7	Precau	ution	252
CHAPTI		SERIAL INTERFACE FUNCTION	
10.1		es	
10.2	Async	hronous Serial Interfaces 0, 1 (UART0, UART1)	256
	10.2.1	Features	
	10.2.2	Configuration	257
	10.2.3	Control registers	259
	10.2.4	Interrupt request	266
	10.2.5	Operation	267
10.3	Clocke	ed Serial Interfaces 0, 1 (CSI0, CSI1)	271
	10.3.1	Features	271
	10.3.2	Configuration	271
	10.3.3	Control registers	273
	10.3.4	Basic operation	276
	10.3.5	Transmission by CSI0, CSI1	278
	10.3.6	Reception by CSI0, CSI1	279
	10.3.7	Transmission and reception by CSI0, CSI1	280
	10.3.8	Example of system configuration	281
10.4	Dedica	ated Baud Rate Generators 0, 1 (BRG0, BRG1)	282
	10.4.1	Configuration and function	282
	10.4.2	Baud rate generator compare registers 0, 1 (BRGC0, BRGC1)	285
	10.4.3	Baud rate generator prescaler mode registers 0, 1 (BPRM0, BPRM1)	286
CHAPTI	FR 11	A/D CONVERTER	287
11.1		es	
		uration	
	_	ol Registers	
11.4		onverter Operation	
	11.4.1	Basic operation of A/D converter	
	11.4.2	Operation mode and trigger mode	
11.5		tion in A/D Trigger Mode	
	11.5.1	Select mode operations	
	11.5.2	Scan mode operations	
11.6	_	tion in Timer Trigger Mode	
	11.6.1	Select mode operations	
	11.6.2	Scan mode operations	
11.7	_	ting Precautions	
	11.7.1	Stopping conversion operation	
	11.7.1	Timer trigger interval	
	11.7.2	Operation of standby mode	
	11.7.3	Compare match interrupt when in timer trigger mode	
	1 1 . 7 . 7	Compare materiality when in time trigger mode	

CHAPTI	ER 12 PORT FUNCTIONS	311
12.1	Features	311
12.2	Port Configuration	312
12.3	Port Pin Functions	328
	12.3.1 Port 0	328
	12.3.2 Port 1	331
	12.3.3 Port 2	334
	12.3.4 Port 3	337
	12.3.5 Port 4	339
	12.3.6 Port 5	341
	12.3.7 Port 6	343
	12.3.8 Port 7	345
	12.3.9 Port 8	346
	12.3.10 Port 9	350
	12.3.11 Port 10	353
	12.3.12 Port A	355
	12.3.13 Port B	357
	12.3.14 Port X	359
OLIA DEI	ED 40 DEGET FUNCTIONS	004
	ER 13 RESET FUNCTIONS	
_	Features	
	Pin Functions	
13.3	Initialization	362
APPENI	DIX A CAUTIONS	365
A.1 F	Restriction on Repeated Execution of sld Instruction	365
	A.1.1 Details of malfunction	365
	A.1.2 Countermeasures	367
APPENI	DIX B REGISTER INDEX	369
APPENI	DIX C INSTRUCTION SET LIST	375
C.1	General Examples	375
C.2	Instruction Set (in Alphabetical Order)	
A DDENI	DIV D INDEV	295

LIST OF FIGURES (1/3)

Figu	re No.	Title	
3-1	Program Counter (PC)		51
3-2	Interrupt Source Register (ECR)		52
3-3	Program Status Word (PSW)		53
3-4	CPU Address Space		55
3-5	Image on Address Space		56
3-6	Recommended Memory Map		66
4-1	Example of Inserting Wait States		88
5-1	Example of Connection to SRAM		99
5-2	SRAM, External ROM, External I/O Access	Timing	100
5-3	Example of Page ROM Connections		104
5-4	On-Page/Off-Page Judgment for Page ROI	M Connection	106
5-5	Page ROM Access Timing		109
5-6	Examples of Connections to DRAM		111
5-7	Row Address/Column Address Output		112
5-8	High-Speed Page DRAM Access Timing		117
5-9	EDO DRAM Access Timing		121
5-10	DRAM Access Timing During DMA Flyby T	ransfer	125
5-11	CBR Refresh Timing		131
5-12	CBR Self-Refresh Timing		133
6-1	DMAC Bus Cycle State Transition Diagram	l	152
6-2	Single Transfer Example 1		153
6-3	Single Transfer Example 2		153
6-4	Single-Step Transfer Example 1		154
6-5	Single-Step Transfer Example 2		154
6-6	Block Transfer Example		154
6-7	Timing of Two-Cycle Transfer		155
6-8	Timing of Flyby Transfer (DRAM \rightarrow External	al I/O)	159
6-9	Timing of Flyby Transfer (Internal Periphera	al I/O → Internal RAM)	162
6-10	Buffer Register Configuration		164
6-11	Example of Forcible Termination of DMA T	ransfer	167
7-1	Block Diagram of Interrupt Control Function	າ	176
7-2	Processing Configuration of Non-Maskable	Interrupt	178
7-3	Acknowledging Non-Maskable Interrupt Re	equest	179
7-4	RETI Instruction Processing		180
7-5	Maskable Interrupt Servicing		183
7-6	RETI Instruction Processing		184
7-7	Example of Servicing in Which Another Inte	errupt Request Is Issued While	
	Interrupt Is Being Serviced		186

LIST OF FIGURES (2/3)

Figur	e No. Title	Page
7-8	Example of Servicing Interrupt Requests Simultaneously Generated	
7-9	Example of Noise Elimination Timing	192
7-10	Software Exception Processing	195
7-11	RETI Instruction Processing	
7-12	Exception Trap Processing	199
7-13	Pipeline Operation at Interrupt Request Acknowledgement (Outline)	202
8-1	Power Save Mode State Transition Diagram	208
9-1	Basic Operation of Timer 1	233
9-2	Operation After Overflow (If ECLR1n = 0 and OSTn = 1)	235
9-3	Timer Clear/Start Operation by TCLR1n Signal Input (If ECLR1n = 1 and OSTn = 0)	236
9-4	Relationship Between Clear/Start by TCLR1n Signal Input and Overflow Operation	
	(If ECLR1n = 1 and OSTn = 1)	237
9-5	Example of Capture Operation	238
9-6	Example of TM11 Capture Operation (When Both Edges Are Specified)	239
9-7	Example of Compare Operation	240
9-8	Example of TM11 Compare Operation (Set/Reset Output Mode)	241
9-9	Basic Operation of Timer 4	242
9-10	Example of TM40 Compare Operation	243
9-11	Example of Timing in Interval Timer Operation	245
9-12	Example of Interval Timer Operation Setting Procedure	245
9-13	Example of Pulse Measurement Timing	246
9-14	Example of Pulse Width Measurement Setting Procedure	247
9-15	Example of Interrupt Request Servicing Routine Which Calculates the Pulse Width	247
9-16	Example of PWM Output Timing	248
9-17	Example of PWM Output Setting Procedure	249
9-18	Example of Interrupt Request Servicing Routine for Rewriting Compare Value	249
9-19	Example of Frequency Measurement Timing	250
9-20	Example of Frequency Measurement Setting Procedure	251
9-21	Example of Interrupt Request Servicing Routine Which Calculates the Frequency	251
10-1	Block Diagram of Asynchronous Serial Interface	258
10-2	Transmission/Reception Data Format of Asynchronous Serial Interface	267
10-3	Asynchronous Serial Interface Transmission Completion Interrupt Timing	268
10-4	Asynchronous Serial Interface Reception Complete Interrupt Timing	270
10-5	Receive Error Timing	270
10-6	Block Diagram of Clocked Serial Interface	272
10-7	Timing of 3-Wire Serial I/O Mode (Transmission)	278
10-8	Timing of 3-Wire Serial I/O Mode (Reception)	279
10-9	Timing of 3-Wire Serial I/O Mode (Transmission/Reception)	281
10-10	Example of CSI System Configuration	281

LIST OF FIGURES (3/3)

Figure	e No. Title	Page
10-11	Block Diagram of Dedicated Baud Rate Generator	282
11-1	A/D Converter Block Diagram	289
11-2	Relationship Between Analog Input Voltage and A/D Conversion Results	
11-3	Select Mode Operation Timing: 1-Buffer Mode (ANI1)	
11-4	Select Mode Operation Timing: 4-Buffer Mode (ANI3)	
11-5	Scan Mode Operation Timing: 4-Channel Scan (ANI0 to ANI3)	
11-6	Example of 1-Buffer Mode (A/D Trigger Select 1-Buffer) Operation	
11-7	Example of 4-Buffer Mode (A/D Trigger Select 4-Buffer) Operation	301
11-8	Example of Scan Mode (A/D Trigger Scan) Operation	302
11-9	Example of 1-Trigger Mode (Timer Trigger Select 1-Buffer 1-Trigger) Operation	304
11-10	Example of 4-Trigger Mode (Timer Trigger Select 1-Buffer 4-Trigger) Operation	305
11-11	Example of 1-Trigger Mode (Timer Trigger Select 4-Buffer 1-Trigger) Operation	306
11-12	Example of 4-Trigger Mode (Timer Trigger Select 4-Buffer 4-Trigger) Operation	307
11-13	Example of 1-Trigger Mode (Timer Trigger Scan 1-Trigger) Operation	308
11-14	Example of 4-Trigger Mode (Timer Trigger Scan 4-Trigger) Operation	309
12-1	Type A Block Diagram	316
12-2	Type B Block Diagram	317
12-3	Type C Block Diagram	318
12-4	Type D Block Diagram	319
12-5	Type E Block Diagram	320
12-6	Type F Block Diagram	321
12-7	Type G Block Diagram	321
12-8	Type H Block Diagram	322
12-9	Type I Block Diagram	
12-10	Type K Block Diagram	
12-11	Type M Block Diagram	
12-12	Type O Block Diagram	
	Type P Block Diagram	
12-14	Type Q Block Diagram	327
A-1	Malfunction When Executing sld Instructions	366

LIST OF TABLES

Tabl	le No. Title		Page
3-1	Program Registers		51
3-2	System Register Numbers		52
3-3	Interrupt/Exception Table		60
4-1	Bus Cycles in Which the Wait Function Is Valid		89
4-2	Bus Priority Order		96
5-1	Example of DRAM and Address Multiplex Width		112
5-2	Example of DRAM Refresh Interval		129
5-3	Example of Interval Factor Settings		129
6-1	Relationship Between Transfer Type and Transfer O	oject	163
6-2	External Bus Cycle During DMA Transfer		163
6-3	Minimum Execution Clock in DMA Cycle		168
6-4	\overline{DMAAKn} Active $\to \overline{DMARQn}$ Inactive Time for Single	Transfer to External Memory	170
7-1	Interrupt List		174
7-2	Interrupt Control Register Addresses and Bits		190
8-1	Clock Generator Operation by Power Save Control		208
8-2	Operating States When in HALT Mode		210
8-3	Operations After HALT Mode Is Released by Interrup	t Request	211
8-4	Operating States When in IDLE Mode		212
8-5	Operating States When in Software STOP Mode		214
8-6	Example of Count Time ($\phi = 5 \times fxx$)		218
9-1	RPU Configuration List		220
9-2	Capture Trigger Signals (TM1n) to 16-Bit Capture Re	gisters	237
9-3	Interrupt Request Signals (TM1n) from 16-Bit Compa	re Registers	240
10-1	Default Priority of Interrupt		266
10-2	Baud Rate Generator Setup Values		284
13-1	Operating State of Each Pin During Reset		361
13-2	Initial Values of CPU, Internal RAM, and Internal Per	pheral I/O After Reset	363
A-1	Instructions That Write to a Register Immediately Be	ore the sld Instructions	367

CHAPTER 1 INTRODUCTION

The V850E/MS2 is one of NEC's "V850 Family™" of single-chip microcontrollers. This chapter gives a simple outline of the V850E/MS2.

1.1 Outline

The V850E/MS2 is a 32-/16-bit single-chip microcontroller which uses the V850 Family's "V850E" CPU, and incorporates peripheral functions such as RAM, various types of memory controllers, a DMA controller, real-time pulse unit, serial interface and A/D converter, realizing large volume data processing and sophisticated real-time control.

(1) "V850E" CPU included

The "V850E" CPU supports the RISC instruction set, and through the use of basic instructions, each of which can be executed in 1 clock period, and an optimized pipeline, achieves a marked improvement in instruction execution speed. In addition, in order to make it ideal for use in digital servo control, a 32-bit hardware multiplier enables this CPU to support multiply instructions, saturated multiply instructions, bit operation instructions, etc.

Also, through 2-byte basic instructions and instructions compatible with high level languages, etc., the object code efficiency in a C compiler is increased, and the program size can be made more compact.

Further, since the on-chip interrupt controller provides a high speed interrupt response, including processing, this device is suited to high level real-time control fields.

(2) External memory interface function

The V850E/MS1 features various on-chip external memory interfaces including separately address configured (24 bits) and data (16 bits) buses, and SRAM and ROM interfaces, as well as on-chip memory controllers that can be directly linked to EDO DRAM, high-speed page DRAM, page ROM, etc., thereby raising the system performance and reducing the number of parts needed for application systems.

Also, through the DMA controller, CPU internal calculations and data transfers can be performed simultaneously with transfers with external memory, so it is possible to process large volumes of image data or voice data, etc., and through the high-speed execution of instructions using internal RAM, motor control, communications control and other real-time control tasks can be realized simultaneously.

(3) A full range of middleware and development environment products

The V850E/MS2 can execute middleware such as JPEG, JBIG and MH/MR/MMR at high speed. Also, middleware that enables voice recognition, voice synthesis and other such processing is available; by including these middleware programs, a multimedia system can be easily realized.

A development environment system that includes an optimized C compiler, debugger, in-circuit emulator, simulator, system performance analyzer and other elements is also available.

1.2 Features

O Number of instructions: 81 O Minimum instruction execution time: 33 ns (at internal 30 MHz) O General-purpose registers: 32 bits \times 32 O Instruction set: Upwardly compatible with V850 CPU Signed multiplication (16 bits \times 16 bits \rightarrow 32 bits or 32 bits \times 32 bits \rightarrow 64 bits) Saturated operation instructions (with overflow/underflow detection function) 32-bit shift instructions Bit manipulation instructions Load/store instructions with long/short format Signed load instructions 22 MB linear address space (common program/data use) O Memory space: Chip select output function: 4 spaces Memory block division function: 2, 4, 8 MB/block Programmable wait function Idle state insertion function O External bus interface: 16-bit data bus (address/data multiplexed) 16-/8-bit bus sizing function Bus hold function External wait function O Internal memory: Part Number Internal ROM Internal RAM *μ*PD703130 4 KB None O Interrupt/exception: External interrupts: 10 (including NMI) Internal interrupts: 35 sources Exceptions: 1 source Eight levels of priorities can be set.

DRAM controller (Compatible with EDO DRAM and high-speed page

DRAM)

Page-ROM controller

O Memory access controller:

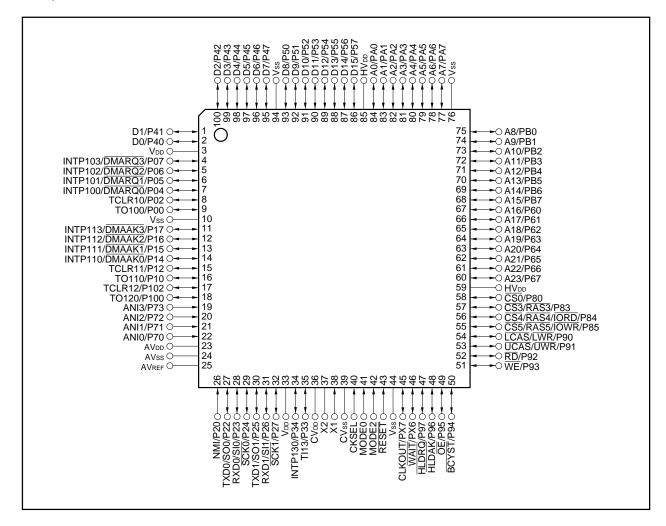
CHAPTER 1 INTRODUCTION

O DMA controller:	4 channels Transfer units: 8 bits/16 bits Maximum transfer count: 65,536 (2 ¹⁶) Transfer type: Flyby (1-cycle)/2-cycle Transfer mode: Single/Single step/Block
O I/O lines:	Input ports: 5
	I/O ports: 76
O Real-time pulse unit:	16-bit timer/event counter: 4 channels 16-bit timers: 4 16-bit capture/compare registers: 9 16-bit compare registers: 7
	16-bit interval timer: 2 channels
O Serial interface:	Asynchronous serial interface (UART) Clocked serial interface (CSI) UART/CSI: 2 channels Dedicated baud rate generator: 2 channels
O A/D converter:	10-bit resolution A/D converter: 4 channels
O Clock generator:	A multiply-by-five function via a PLL clock synthesizer. A divide-by-two function via external clock input.
O Power save function:	HALT/IDLE/software STOP mode Clock output stop function
O Package:	100-pin plastic LQFP: pin pitch 0.5 mm
O CMOS technology:	All static circuits

1.3 Applications

- OA devices (printers, facsimiles, PPCs, etc.)
- Multimedia devices (digital still cameras, video printers, etc.)
- Consumer appliances (single lens reflex cameras, etc.)
- Industrial devices (motor control, NC machine tools, etc.)

1.4 Ordering Information


Part Number	Package	Maximum Operating Frequency	On-chip ROM	HV _{DD}
μPD703130GC-8EU ^{Note}	03130GC-8EU ^{Note} 100-pin plastic LQFP (Fine pitch)		None	4.5 to 5.5 V
	$(14 \times 14 \text{ mm})$			

Note Under development

1.5 Pin Configuration (Top View)

100-pin plastic LQFP (fine pitch) (14 × 14 mm)

μPD703130GC-8EU

Pin Name

A0 to A23: Address Bus P60 to P67: Port 6 ANI0 to ANI3: P70 to P73: Port 7 **Analog Input** AVDD: Port 8 **Analog Power Supply** P80, P83 to P85: AVREF: Port 9 Analog Reference Voltage P90 to P97: Port 10 AVss: **Analog Ground** P100, P102: BCYST: Port A **Bus Cycle Start Timing** PA0 to PA7: CKSEL: Clock Generator Operating Mode Select PB0 to PB7: Port B CLKOUT: Clock Output PX6, PX7: Port X

CS0, CS3 to CS5: Chip Select RAS3 to RAS5: Row Address Strobe

CVDD: Clock Generator Power Supply $\overline{\text{RD}}$: Read CVss: Clock Generator Ground $\overline{\text{RESET}}$: Reset

D0 to D15: Data Bus RXD0, RXD1: Receive Data DMAAK0 to DMAAK3: DMA Acknowledge SCK0, SCK1: Serial Clock DMARQ0 to DMARQ3: **DMA Request** SI0, SI1: Serial Input HLDAK: Hold Acknowledge SO0, SO1: Serial Output HLDRQ: Hold Request TCLR10 to TCLR12: Timer Clear Power Supply for External Pins HV_{DD}: TI13: Timer Input

INTP100 to INTP103, TO100, TO110,

INTP110 to INTP113, TO120: Timer Output INTP130: Interrupt Request from Peripherals TXD0, TXD1: Transmit Data

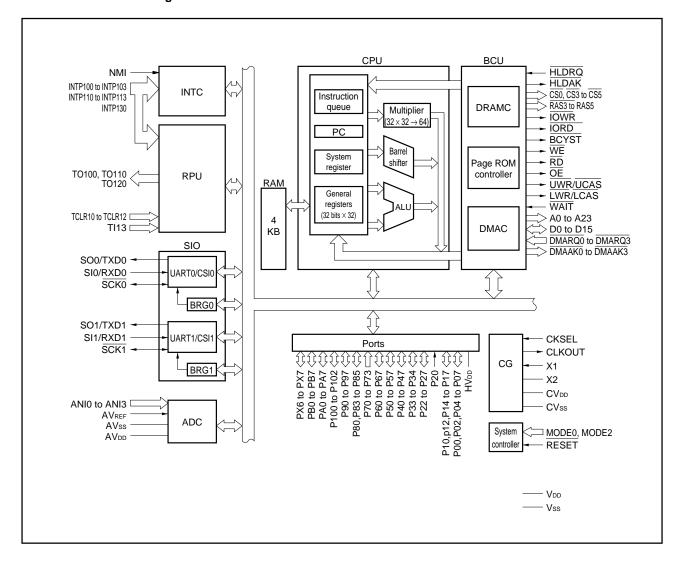
IORD: I/O Read Strobe UCAS: Upper Column Address Strobe

IOWR: I/O Write Strobe UWR: Upper Write Strobe

LOWER Column Address Strobe VDD: Power Supply for Internal Unit

 LWR:
 Lower Write Strobe
 Vss:
 Ground

 MODE0, MODE2:
 Mode
 WAIT:
 Wait


 NMI:
 Non-Maskable Interrupt Request
 WE:
 Write Enable

OE: Output Enable X1, X2: Crystal

P00, P02, P04 to P07: Port 0
P10, P12, P14 to P17: Port 1
P20, P22 to P27: Port 2
P33, P34: Port 3
P40 to P47: Port 4
P50 to P57: Port 5

1.6 Function Block

1.6.1 Internal block diagram

1.6.2 Internal units

(1) CPU

The CPU uses five-stage pipeline control to enable single-clock execution of address calculations, arithmetic logic operations, data transfers, and almost all other instruction processing.

Other dedicated on-chip hardware, such as a multiplier (16 bits \times 16 bits \to 32 bits or 32 bits \times 32 bits \to 64 bits) and a barrel shifter (32 bits), help accelerate processing of complex instructions.

(2) Bus control unit (BCU)

The BCU starts a required external bus cycle based on the physical address obtained by the CPU. When an instruction is fetched from external memory space and the CPU does not send a bus cycle start request, the BCU generates a prefetch address and prefetches the instruction code. The prefetched instruction code is stored in an instruction queue in the CPU.

The BCU incorporates a DRAM controller (DRAMC), page ROM controller, and DMA controller (DMAC).

(a) DRAM controller (DRAMC)

This controller generates the RAS, UCAS and LCAS signals (2CAS control) and controls DRAM access. It is compatible with high-speed DRAM and EDO DRAM. When accessing DRAM, there are 2 types of cycle; normal access (off page) and page access (on page).

Also, it includes a refresh function that is compatible with the CBR refresh cycle.

(b) Page ROM controller

This controller is compatible with ROM that includes a page access function.

It performs address comparisons with the immediately preceding bus cycle and executes wait control for normal access (off page)/page access (on page). It can handle page widths of 8 to 64 bytes.

(c) DMA controller (DMAC)

This controller transfers data between memory and I/O in place of the CPU.

There are two address modes, flyby (1 cycle) transfer, and 2-cycle transfer. There are three bus modes, single transfer, single step transfer, and block transfer.

(3) RAM

4 KB of RAM is mapped from address FFFFE000H. During instruction fetch, data can be accessed from the CPU in 1-clock cycles.

(4) Interrupt controller (INTC)

This controller handles hardware interrupt requests (NMI, INTP100 to INTP103, INTP110 to INTP113, INTP130) from internal peripheral I/O and external hardware. Eight levels of interrupt priorities can be specified for these interrupt requests, and multiplexed servicing control can be performed for interrupt sources.

(5) Clock generator (CG)

This clock generator supplies frequencies that are 5 times the input clock (fxx) (used by the internal PLL) and 1/2 the input clock (when the internal PLL is not used) as an internal system clock (ϕ). As the input clock, an external oscillator is connected to pins X1 and X2 (only when an internal PLL synthesizer is used) or an external clock is input from pin X1.

(6) Real-time pulse unit (RPU)

This unit has a 4-channel 16-bit timer/event counter and 2-channel 16-bit interval timer on-chip, and it is possible to measure pulse widths or frequency and to output a programmable pulse.

(7) Serial interface (SIO)

The serial interface has a total of 2 channels of asynchronous serial interfaces (UART) and synchronous or clocked serial interfaces (CSI). These channels can be switched between UART and CSI.

UART transfers data by using the TXD and RXD pins and the CSI transfers data by using the SO, SI, and $\overline{\text{SCK}}$ pins.

The serial clock source can be selected from dedicated baud rate generator output or internal system clock.

(8) A/D converter (ADC)

This high-speed, high-resolution 10-bit A/D converter includes 4 analog input pins. Conversion uses the successive approximation method.

(9) Ports

As shown below, the following ports have general port functions and control pin functions.

Port	Port Function	Control Function
Port 0	6-bit I/O	Real-time pulse unit input/output, external interrupt input, DMA controller input
Port 1	6-bit I/O	Real-time pulse unit input/output, external interrupt input, DMA controller output
Port 2	1-bit input, 6-bit I/O	NMI input, serial interface input/output
Port 3	2-bit I/O	Real-time pulse unit input, external interrupt input
Port 4	8-bit I/O	External data bus
Port 5	8-bit I/O	External data bus
Port 6	8-bit I/O	External address bus
Port 7	4-bit input	A/D converter input
Port 8	4-bit I/O	External bus interface control signal output
Port 9	8-bit I/O	External bus interface control signal input/output
Port 10	2-bit I/O	Real-time pulse unit input/output
Port A	8-bit I/O	External address bus
Port B	8-bit I/O	External address bus
Port X	2-bit I/O	Wait insertion signal input, internal system clock output

[MEMO]

CHAPTER 2 PIN FUNCTIONS

The names and functions of this product's pins are listed below. These pins can be divided into port pins and non-port pins according to their functions.

2.1 List of Pin Functions

(1) Port pins

(1/2)

Pin Name	I/O	Function	Alternate Function
P00	I/O	Port 0	TO100
P02		6-bit I/O port Input/output mode can be specified in 1-bit units.	TCLR10
P04			INTP100/DMARQ0
P05			INTP101/DMARQ1
P06			INTP102/DMARQ2
P07			INTP103/DMARQ3
P10	I/O	Port 1	TO110
P12		6-bit I/O port	TCLR11
P14		Input/output mode can be specified in 1-bit units.	INTP110/DMAAK0
P15			INTP111/DMAAK1
P16			INTP112/DMAAK2
P17			INTP113/DMAAK3
P20	Input	Port 2	NMI
P22	I/O	P20 is an input-only port. If a valid edge is input, it operates as an NMI input. Also, the status of the NMI input is shown by bit 0 of the P2 register. P22 to P27 are 6-bit I/O ports. Input/output mode can be specified in 1-bit units.	TXD0/SO0
P23			RXD0/SI0
P24			SCK0
P25			TXD1/SO1
P26			RXD1/SI1
P27			SCK1
P33	I/O	Port 3	TI13
P34		2-bit I/O port Input/output mode can be specified in 1-bit units.	INTP130
P40 to P47	I/O	Port 4 8-bit I/O port Input/output mode can be specified in 1-bit units.	D0 to D7
P50 to P57	I/O	Port 5 8-bit I/O port Input/output mode can be specified in 1-bit units.	D8 to D15
P60 to P67	I/O	Port 6 8-bit I/O port Input/output mode can be specified in 1-bit units.	A16 to A23

(1) Port pins

(2/2)

Pin Name	I/O	Function	Alternate Function	
P70 to P73	Input	Port 7 4-bit input-only port	ANI0 to ANI3	
P80	I/O	Port 8	CS0	
P83		4-bit I/O port	CS3/RAS3	
P84		Input/output mode can be specified in 1-bit units.	CS4/RAS4/IOWR	
P85			CS5/RAS5/IORD	
P90	I/O	Port 9	LCAS/LWR	
P91		8-bit I/O port	UCAS/UWR	
P92		Input/output mode can be specified in 1-bit units.	RD	
P93			WE	
P94			BCYST	
P95			ŌĒ	
P96			HLDAK	
P97			HLDRQ	
P100	I/O	Port 10	TO120	
P102		2-bit I/O port Input/output mode can be specified in 1-bit units.	TCLR12	
PA0	I/O	Port A 8-bit I/O port Input/output mode can be specified in 1-bit units.	A0	
PA1			A1	
PA2			A2	
PA3			А3	
PA4			A4	
PA5			A5	
PA6			A6	
PA7			A7	
PB0	I/O	Port B	A8	
PB1		8-bit I/O port Input/output mode can be specified in 1-bit units.	А9	
PB2		input output mode can be specified in 1-bit drifts.	A10	
PB3			A11	
PB4			A12	
PB5			A13	
PB6			A14	
PB7			A15	
PX6	I/O	Port X	WAIT	
PX7		2-bit I/O port Input/output mode can be specified in 1-bit units.	CLKOUT	

(2) Non-port pins

(1/2)

Pin Name	I/O	Function	Alternate Function
TO100	Output	Pulse signal output of timers 10 to 12	P00
TO110			P10
TO120]		P100
TCLR10	Input	External clear signal input of timers 10 to 12	P02
TCLR11			P12
TCLR12			P102
TI13	Input	External count clock input of timer 13	P33
INTP100	Input	External maskable interrupt request input, or timer 10 external	P04/DMARQ0
INTP101		capture trigger input	P05/DMARQ1
INTP102			P06/DMARQ2
INTP103			P07/DMARQ3
INTP110	Input	External maskable interrupt request input, or timer 11 external	P14/DMAAK0
INTP111		capture trigger input	P15/DMAAK1
INTP112			P16/DMAAK2
INTP113			P17/DMAAK3
INTP130	Input	External maskable interrupt request input, or timer 13 external capture trigger input	P34
SO0	Input	CSI0, CSI1 serial transmission data output (3-wire)	P22/TXD0
SO1			P25/TXD1
SI0	Input	CSI0, CSI1 serial reception data input (3-wire)	P23/RXD0
SI1			P26/RXD1
SCK0	1/0	CSI0, CSI1 serial clock input/output (3-wire)	P24
SCK1			P27
TXD0	Output	UART0 and UART1 serial transmission data output	P22/SO0
TXD1			P25/SO1
RXD0	Input	UART0 and UART1 serial reception data input	P23/SI0
RXD1			P26/SI1
D0 to D7	1/0	16-bit data bus for external memory	P40 to P47
D8 to D15			P50 to P57
A0 to A7	Output	24-bit address bus for external memory	PA0 to PA7
A8 to A15			PB0 to PB7
A16 to A23			P60 to P67
LWR	Output	External data bus lower byte write enable signal output	P90/LCAS
UWR	Output	External data bus higher byte write enable signal output	P91/UCAS
RD	Output	External data bus read strobe signal output	P92
WE	Output	Write enable signal output for DRAM	P93
ŌE	Output	Output enable signal output for DRAM	P95

(2) Non-port pins

(2/2)

Pin Name	I/O	Function	(2/2) Alternate Function
LCAS	Output	Column address strobe signal output for DRAM lower data	P90/LWR
UCAS	Output	Column address strobe signal output for DRAM higher data	P91/UWR
RAS3	Output	Row address strobe signal output for DRAM	P83/CS3
RAS4	=		P84/CS4/IOWR
RAS5	=		P85/CS5/IORD
BCYST	Output	Strobe signal output that shows the start of the bus cycle	P94
CS0	Output	Chip select signal output	P80
CS3			P83/RAS3
CS4			P84/RAS4/IOWR
CS5	1		P85/RAS5/IORD
WAIT	Input	Control signal input that inserts a wait in the bus cycle	PX6
ĪOWR	Output	DMA write strobe signal output	P84/RAS4/CS4
ĪORD	Output	DMA read strobe signal output	P85/RAS5/CS5
DMARQ0 to DMARQ3	Input	DMA request signal input	P04/INTP100 to P07/INTP103
DMAAK0 to DMAAK3	Output	DMA acknowledge signal output	P14/INTP110 to P17/INTP113
HLDAK	Output	Bus hold acknowledge output	P96
HLDRQ	Input	Bus hold request input	P97
ANI0 to ANI3	Input	Analog inputs to the A/D converter	P70 to P73
NMI	Input	Non-maskable interrupt request input	P20
CLKOUT	Output	System clock output	PX7
CKSEL	Input	Input which specifies the clock generator's operating mode	_
MODE0, MODE2	Input	Operation mode specification	_
RESET	Input	System reset input	_
X1	Input	Connects the system clock oscillator. In the case of an external	_
X2	_	source supplying the clock, it is input to X1.	_
AVREF	Input	Reference voltage applied to A/D converter	_
AV _{DD}	_	Positive power supply to A/D converter	_
AVss	_	Ground for A/D converter	_
CV _{DD}	_	Supplies a positive power supply for the dedicated clock generator.	_
CVss		Ground potential for the dedicated clock generator	
V _{DD}	_	Supplies the positive power supply (internal unit power supply).	
HV _{DD}	_	Supplies the positive power supply (external pin power supply).	
Vss	_	Ground potential	_

2.2 Pin Status

The state of each pin after reset, in a power save mode (software STOP, IDLE, HALT), during bus hold (TH), and in the idle state (TI), is shown below.

Operating State	Reset	Software STOP Mode	IDLE Mode	HALT Mode	Bus Hold (TH)	Idle State (TI)
D0 to D15	Hi-Z	HI-Z (output) — (input)	HI-Z (output) — (input)	Operating	Hi-Z	Hi-Z
A0 to A23	Hi-Z	Hi-Z	Hi-Z	Operating	Hi-Z	Hold
$\overline{\text{WE}}, \overline{\text{OE}}, \overline{\text{RD}}, \overline{\text{BCYST}}$	Hi-Z	Hi-Z	Hi-Z	Operating	Hi-Z	Н
$\overline{\text{UWR}}$, $\overline{\text{LWR}}$, $\overline{\text{IORD}}$, $\overline{\text{IOWR}}$, $\overline{\text{CS0}}$, $\overline{\text{CS3}}$ to $\overline{\text{CS5}}$	Hi-Z	Н	Н	Operating	Hi-Z	Н
RAS3 to RAS5	Hi-Z	Operating	Operating	Operating	Hi-Z	Hold ^{Note}
UCAS, LCAS	Hi-Z	Operating	Operating	Operating	Hi-Z	Н
HLDRQ	_	_	_	Operating	Operating	Operating
HLDAK	Hi-Z	Hi-Z	Hi-Z	Operating	L	Operating
WAIT	_	_	_	Operating	_	_
CLKOUT	Operating	L	L	Operating	Operating	Operating
DMARQ0 to DMARQ3	_	_	_	Operating	Operating	Operating
DMAAK0 to DMAAK3	Hi-Z	Н	Н	Operating	Н	Н
INTP100 to INTP103, INTP110 to INTP113, INTP130	_	_	_	Operating	Operating	Operating
NMI	_	Operating	Operating	Operating	Operating	Operating
P00, P02, P04 to P07, P10, P12, P14 to P17, P20, P22 to P27, P33, P34, P40 to P47, P50 to P57, P60 to P67, P70 to P73, P80, P83 to P85, P90 to P97, P100, P102, PA0 to PA7, PB0 to PB7, PX6, PX7	Hi-Z	Hold (output) — (input)	Hold (output) — (input)	Operating	Operating	Operating
TCLR10 to TCLR12		_	_	Operating	Operating	Operating
TI13	_	_	_	Operating	Operating	Operating
TO100, TO110, TO120	Hi-Z	Hold	Hold	Operating	Operating	Operating

Operating State Pin	Reset	Software STOP Mode	IDLE Mode	HALT Mode	Bus Hold (TH)	Idle State (TI)
SI0, SI1	_	_	_	Operating	Operating	Operating
SO0, SO1	Hi-Z	Hold	Hold	Operating	Operating	Operating
SCK0, SCK1	Hi-Z	Hold (output) — (input)	Hold (output) — (input)	Operating	Operating	Operating
RXD0, RXD1	_	_	_	Operating	Operating	Operating
TXD0, TXD1	Hi-Z	Hold	Hold	Operating	Operating	Operating
ANI0 to ANI3	_	_	_	Operating	Operating	Operating

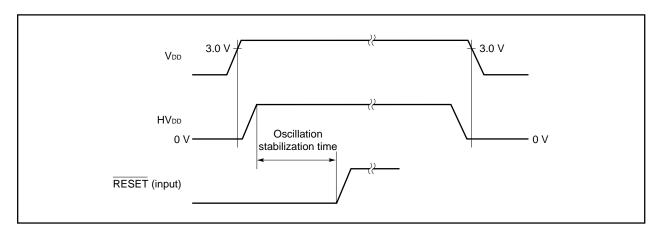
Note In the idle state (TI) just before and just after bus hold, H

Remark Hi-Z: High-impedance

Hold: State during immediately preceding external bus cycle is held

H: High-level outputL: Low-level output—: No sampling of input

Cautions when turning on/off power supply


The V850E/MS2 is configured with two power supply pins: the internal unit power supply pin (VDD) and the external pin power supply pin (HVDD). If the voltage exceeds its operation guaranteed range, the input/output state of the I/O pins may become undefined. If this input/output undefined state causes problems in the system, the pin status can be made high impedance by taking the following countermeasures.

• When turning on the power

Apply 0 V to the HVpp pin until the voltage of the Vpp pin is within the operation guaranteed range (3.0 to 3.6 V).

• When turning off the power

Apply a voltage within the operation guaranteed range (3.0 to 3.6 V) to the VDD pin until the voltage of the HVDD pin becomes 0 V.

2.3 Description of Pin Functions

(1) P00, P02, P04 to P07 (Port 0) --- 3-state I/O

Port 0 is a 6-bit input/output port that can be set to input or output in 1-bit units.

Besides functioning as a port, in the control mode it operates as the input/output for the real-time pulse unit (RPU), the external interrupt request input and the DMA request input.

The operation mode can be set as port or control in 1-bit units, specified by the port 0 mode control register (PMC0).

(a) Port mode

P00, P02, and P04 to P07 can be set to input or output in bit units by the port 0 mode register (PM0).

(b) Control mode

P00, P02, and P04 to P07 can be set in the port/control mode in bit units by the PMC0 register.

(i) TO100 (Timer Output) --- output

Outputs the pulse signal for timer 1.

(ii) TCLR10 (Timer Clear) --- input

This is an input pin for external clear signals for timer 1.

(iii) INTP100 to INTP103 (Interrupt Request from Peripherals) --- input

These are input pins for external interrupt requests for timer 1.

(iv) DMARQ0 to DMARQ3 (DMA Request) --- input

These are DMA service request signals. They correspond to DMA channels 0 to 3, respectively, and operate independently of each other. The priority order is fixed at $\overline{\text{DMARQ0}} > \overline{\text{DMARQ1}} > \overline{\text{DMARQ2}} > \overline{\text{DMARQ3}}$.

This signal is sampled when the CLKOUT signal falls. Maintain the active level until a DMA request is received.

(2) P10, P12, P14 to P17 (Port 1) --- 3-state I/O

Port 1 is a 6-bit input/output port that can be set to input or output in 1-bit units.

Besides functioning as a port, in the control mode it operates as the input/output for the real-time pulse unit (RPU), the external interrupt request input and the DMA request input.

The operation mode can be set as port or control in 1-bit units, specified by the port 1 mode control register (PMC1).

(a) Port mode

P10, P12, and P14 to P17 can be set to input or output in bit units by the port 1 mode register (PM1).

(b) Control Mode

P10, P12, and P14 to P17 can be set in the port/control mode in bit units by the PMC1 register.

(i) TO110 (Timer Output) --- output

Outputs the pulse signal for timer 1.

(ii) TCLR11 (Timer Clear) ... input

This is an input pin for external clear signals for timer 1.

(iii) INTP110 to INTP113 (Interrupt Request from Peripherals) ... input

These are input pins for external interrupt requests for timer 1.

(iv) DMAAK0 to DMAAK3 (DMA Acknowledge) --- output

This signal shows that a DMA service request was acknowledged.

They correspond to DMA channels 0 to 3, respectively, and operate independently of each other.

These signals become active only when external memory is being accessed. When DMA transfers are being executed between internal RAM and internal peripheral I/O, they do not become active.

These signals are activated on the falling of the CLKOUT signal in the T0, T1R, or T1FH state of the DMA cycle, and are retained at the active level during DMA transfers.

(3) P20, P22 to P27 (Port 2) --- 3-state I/O

Port 2, except for P20, which is an input-only pin, is an input/output port which can be set to input or output in 1-bit units.

Besides functioning as a port, in the control mode it operates as the input/output for the serial interface (UART0/CSI0, UART1/CST1).

The operation mode can be set as port or control in 1-bit units, specified by the port 2 mode control register (PMC2).

(a) Port mode

P22 to P27 can be set to input or output in bit units by the port 2 mode register (PM2). P20 is an exclusive input port, and if a valid edge is input, it operates as an NMI input.

(b) Control mode

P22 to P27 can be set in the port/control mode in bit units by the PMC2 register.

(i) NMI (Non-Maskable Interrupt Request) --- input

This is the input pin for non-maskable interrupt requests.

(ii) TXD0, TXD1 (Transmit Data) --- output

Output UART0, UART1 serial transmit data.

(iii) RXD0, RXD1 (Receive Data) ... input

Input UART0, UART1 serial receive data.

(iv) SO0, SO1 (Serial Output) -- output

Output CSI0, CSI1 serial transmit data.

(v) SI0, SI1 (Serial Input) ... input

Input CSI0, CSI1 serial receive data.

(vi) SCK0, SCK1 (Serial Clock) --- 3-state I/O

These are the input/output pins for the CSI0, CSI1 serial clock.

(4) P33, P34 (Port 3) --- 3-state I/O

Port 3 is a 2-bit input/output port that can be set to input or output in 1-bit units.

Besides functioning as a port, in the control mode it operates as the input for the real-time pulse unit (RPU) and the external request input. The operation mode can be set as port or control in 1-bit units, specified by the port 3 mode control register (PMC3).

(a) Port mode

P33, P34 can be set to input or output in bit units by the port 3 mode register (PM3).

(b) Control mode

P33, P34 can be set in the port/control mode in bit units by the PMC3 register.

(i) TI13 (Timer Input) ... input

This is an input pin for an external count clock for timer 1.

(ii) INTP130 (Interrupt Request from Peripherals) --- input

This is an input pin for external interrupt requests for timer 1.

(5) P40 to P47 (Port 4) --- 3-state I/O

Port 4 is an 8-bit input/output port that can be set to input or output in 1-bit units.

Besides functioning as a port, in the control mode (external expansion mode) it operates as a data bus (D0 to D7) when memory is externally expanded.

The operation mode is specified by the mode specification pins (MODE0 and MODE2) and the memory expansion mode register (MM).

(a) Port mode

P40 to P47 can be set to input or output in bit units by the port 4 mode register (PM4).

(b) Control mode (External expansion mode)

P40 to P47 can be set as D0 to D7 by using the MODE0 and MODE2 pins and MM register.

(i) D0 to D7 (Data) --- 3-state I/O

These pins constitute the data bus that is used for external access. They operate as the lower 8-bit input/output bus pins for 16-bit data. The output changes in synchronization with the falling of the clock in the T1 state CLKOUT signal of the bus cycle. In the idle state (TI), the impedance becomes high.

(6) P50 to P57 (Port 5) --- 3-state I/O

Port 5 is an 8-bit input/output port that can be set to input or output in 1-bit units.

Besides functioning as an I/O port, in the control mode (external expansion mode) it operates as a data bus (D8 to D15) when memory is externally expanded.

The operation mode is specified by the mode specification pins (MODE0 and MODE2) and the memory expansion mode register (MM).

(a) Port mode

P50 to P57 can be set to input or output in bit units by the port 5 mode register (PM5).

(b) Control mode (External expansion mode)

P50 to P57 can be set as D8 to D15 by using the MODE0 and MODE2 pins and MM register.

(i) D8 to D15 (Data) --- 3-state I/O

These pins constitute the data bus that is used for external access. They operate as the higher 8-bit input/output bus pins for 16-bit data. The output changes in synchronization with the falling of the clock in the T1 state CLKOUT signal of the bus cycle. In the idle state (TI), the impedance becomes high.

(7) P60 to P67 (Port 6) --- 3-state I/O

Port 6 is an 8-bit input/output port that can be set to input or output in 1-bit units.

Besides functioning as a port, in the control mode (external expansion mode) it operates as an address bus (A16 to A23) when memory is externally expanded.

The operation mode can be set as port or control in 2-bit units, specified by the mode specification pins (MODE0 and MODE2) and the memory expansion mode register (MM).

(a) Port mode

P60 to P67 can be set to input or output in bit units by the port 6 mode register (PM6).

(b) Control mode (External expansion mode)

P60 to P67 can be set as A16 to A23 by using the MODE0 and MODE2 pins and MM register.

(i) A16 to A23 (Address) --- output

These pins constitute the higher 8-bits of a 24-bits address bus when the external memory is accessed. The output changes in synchronization with the falling edge of the CLKOUT signal in the T1 state of the bus cycle. In the idle state (TI), the previous bus cycle's address is held.

(8) P70 to P73 (Port 7) ... input

Port 7 is a 4-bit input-only port in which all pins are fixed as input pins.

Besides functioning as a port, in the control mode it operates as analog input for the A/D converter. However, the input port and analog input pin cannot be switched.

(a) Port mode

P70 to P73 are input-only pins.

(b) Control mode

P70 to P73 function alternately pins ANI0 to ANI3, but these alternate functions are not switchable.

(i) ANI0 to ANI3 (Analog Input) --- input

These are analog input pins for the A/D converter.

Connect a capacitor between these pins and AVss to prevent noise-related operation faults. Also, do not apply voltage that is outside the range for AVss and AVREF to pins that are being used as inputs for the A/D converter. If it is possible for noise above the AVREF range or below the AVss to enter, clamp these pins using a diode that has a small VF value.

(9) P80, P83 to P85 (Port 8) --- 3-state I/O

Port 8 is a 4-bit input/output port that can be set to input or output in 1-bit units.

Besides functioning as a port, in the control mode it operates as a control signal output when memory and peripheral I/O are externally expanded.

The operation mode can be set as port or control in 1-bit units, specified by the port 8 mode control register (PMC8).

(a) Port mode

P80, P83 to P85 can be set to input or output in bit units by the port 8 mode register (PM8).

(b) Control mode

P80, P83 to P85 can be set in the port/control mode in bit units by the PMC8 register.

(i) CS0, CS3 to CS5 (Chip Select) --- 3-state output

This is the chip select signal for SRAM, external ROM, external peripheral I/O, and page ROM area. The $\overline{\text{CSn}}$ signal is assigned to memory block n (n = 0, 3 to 5).

It becomes active at the time the bus cycle when the corresponding memory block is accessed starts. In the idle state (TI), it becomes inactive.

(ii) RAS3 to RAS5 (Row Address Strobe) --- 3-state output

This is the strobe signal for the row address for the DRAM area and the strobe signal for the CBR refresh cycle.

The RASn signal is assigned to memory block n (n = 3 to 5).

During on-page disable, after the DRAM access bus cycle ends, it becomes inactive.

During on-page enable, even after the DRAM access bus cycle ends, it is kept in the active state.

During the reset period and during a hold period, it is in the high impedance state, so connect it to HV_{DD} via a resistor.

(iii) IORD (I/O Read) --- 3-state output

This is the read strobe signal for external I/O during DMA flyby transfer. It indicates whether the bus cycle currently being executed is a read cycle for external I/O during flyby transfer, or a read cycle for the SRAM area.

In order to make it possible to connect directly to memory or external I/O during DMA flyby transfer, $\overline{\text{UWR}}$ or $\overline{\text{LWR}}$ rises before $\overline{\text{IORD}}$ rises.

(iv) IOWR (I/O Write) --- 3-state output

This is the write strobe signal for external I/O during DMA flyby transfer. It indicates whether the bus cycle currently being executed is a write cycle for external I/O during flyby transfer, or a write cycle for the SRAM area.

In order to make it possible to connect directly to memory or external I/O during DMA flyby transfer, $\overline{\text{IOWR}}$ rises before $\overline{\text{RD}}$ rises.

(10) P90 to P97 (Port 9) --- 3-state I/O

Port 9 is an 8-bit input/output port that can be set to input or output in 1-bit units.

Besides functioning as a port, in the control mode it operates as a control signal output and bus hold control signal input/output when memory is externally expanded.

The operation mode can be set as port or control in 1-bit units, specified by the port 9 mode control register (PMC9).

(a) Port mode

P90 to P97 can be set to input or output in bit units by the port 9 mode register (PM9).

(b) Control mode

P90 to P97 can be set in the port/control mode in bit units by the PMC9 register.

(i) LCAS (Lower Column Address Strobe) --- 3-state output

This is the strobe signal for column address for DRAM and the strobe signal for the CBR refresh cycle.

In the data bus, the lower byte is valid.

(ii) UCAS (Upper Column Address Strobe) --- 3-state output

This is the strobe signal for column address for DRAM and the strobe signal for the CBR refresh cycle.

In the data bus, the higher byte is valid.

(iii) LWR (Lower Byte Write Strobe) --- 3-state output

This strobe signal shows whether the bus cycle currently being executed is a write cycle for the SRAM, external ROM, external peripheral I/O, or page ROM.

In the data bus, the lower byte becomes valid. If the bus cycle is a lower memory write, it becomes active at the rise of the T1 state's CLKOUT signal and becomes inactive at the rise of the T2 state's CLKOUT signal.

(iv) UWR (Upper Byte Write Strobe) --- 3-state output

This strobe signal shows whether the bus cycle currently being executed is a write cycle for the SRAM, external ROM, external peripheral I/O, or page ROM.

In the data bus, the higher byte becomes valid. If the bus cycle is a higher memory write, it becomes active at the rise of the T1 state's CLKOUT signal and becomes inactive at the rise of the T2 state's CLKOUT signal.

(v) RD (Read Strobe) --- 3-state output

This strobe signal shows that the bus cycle currently being executed is a read cycle for the SRAM, external ROM, external peripheral I/O, or page ROM.

In the idle state (TI), it becomes inactive.

(vi) WE (Write Enable) -- 3-state output

This signal shows that the bus cycle currently being executed is a write cycle for the SRAM area. In the idle state (TI), it becomes inactive.

(vii) BCYST (Bus Cycle Start Timing) --- 3-state output

This outputs a status signal showing the start of the bus cycle. It becomes active for 1 clock cycle from the start of each cycle.

In the idle state (TI), it becomes inactive.

(viii) OE (Output Enable) --- 3-state output

This signal shows that the bus cycle currently being executed is a read cycle for the DRAM area. In the idle state (TI), it becomes inactive.

(ix) HLDAK (Hold Acknowledge) --- output

In this mode, this pin is the output pin for the acknowledge signal that indicates high impedance status for the address bus, data bus, and control bus when the V850E/MS2 receives a bus hold request.

While this signal is active, the impedance of the address bus, data bus and control bus becomes high and the bus mastership is transferred to the external bus master.

(x) HLDRQ (Hold Request) ... input

In this mode, this pin is the input pin by which an external device requests the V850E/MS2 to release the address bus, data bus, and control bus. This pin accepts asynchronous input for the CLKOUT signal. When this pin is active, the address bus, data bus, and control bus are set to high impedance. This occurs either when the V850E/MS2 completes execution of the current bus cycle or immediately if no bus cycle is being executed, then the HLDAK signal is set as active and the bus is released.

In order to make the bus hold state secure, keep the HLDRQ signal active until the HLDAK signal is output.

(11) P100, P102 (Port 10) --- 3-state I/O

Port 10 is a 2-bit input/output port that can be set to input or output in 1-bit units.

Besides functioning as a port, in the control mode it operates as an output for real time pulse unit (RPU).

The operation mode can be set as port or control in 1-bit units, specified by the port 10 mode control register (PMC10).

(a) Port mode

P100 and P102 can be set to input or output in bit units by the port 10 mode register (PM10).

(b) Control mode

P100 and P102 can be set in the port/control mode in bit units by the PMC10 register.

(i) TO120 (Timer Output) --- output

Outputs the pulse signal of timer 1.

(ii) TCLR12 (Timer Clear) --- input

This is an input pin for external clear signals for timer 1.

(12) PA0 to PA7 (Port A) --- 3-state I/O

Port A is an 8-bit input/output port that can be set to input or output in 1-bit units.

Besides functioning as a port, in the control mode (external expansion mode) it operates as an address bus (A0 to A7) when memory is externally expanded.

The operation mode is specified by the mode specification pins (MODE0, MODE2) and the memory expansion mode register (MM).

(a) Port mode

PA0 to PA7 can be set to input or output in bit units by the port A mode register (PMA).

(b) Control mode (External expansion mode)

PA0 to PA7 can be set as A0 to A7 by using the MODE0 and MODE2 pins and MM register.

(i) A0 to A7 (Address) ... output

These pins constitute the address bus that is used for external access. The output changes in synchronization with the falling of the CLKOUT signal in the T1 state of the bus cycle. In the idle state (TI), the previous bus cycle's address is held.

(13) PB0 to PB7 (Port B) --- 3-state I/O

Port B is an 8-bit input/output port that can be set to input or output in 1-bit units.

Besides functioning as a port, in the control mode (external expansion mode) it operates as an address bus (A8 to A15) when memory is externally expanded.

The operation mode can be set as port or control in 2-bit or 4-bit units, specified by the mode specification pins (MODE0, MODE2) and memory expansion mode register (MM).

(a) Port mode

PB0 to PB7 can be set to input or output in bit units by the port B mode register (PMB).

(b) Control mode (External expansion mode)

PB0 to PB7 can be set as A8 to A15 by using the MODE0 and MODE2 pins and MM register.

(i) A8 to A15 (Address) ... output

These pins constitute the address bus when the external memory is accessed.

The output changes in synchronization with the rising edge of the CLKOUT signal in the T1 state of the bus cycle. In the idle state (TI), the impedance becomes high.

(14) PX6, PX7 (Port X) --- 3-state I/O

Port X is a 2-bit input/output port that can be set to input or output in 1-bit units.

Besides functioning as a port, in the control mode it operates as a wait insertion signal input and system clock output.

The operation mode can be set as port or control in 1-bit units, specified by the port X mode control register (PMCX).

(a) Port mode

PX6 and PX7 can be set to input or output in bit units by the port X mode register (PMX).

(b) Control mode

PX6 and PX7 can be set in the port/control mode in bit units by the PMCX register.

(i) WAIT (Wait) ... input

This is the control signal input pin that inserts a data wait in the bus cycle, and it can be input asynchronously with respect to the CLKOUT signal. When the CLKOUT signal falls, sampling is executed. When the set/hold time is not terminated within the sampling timing, the wait insertion may not be executed.

(ii) CLKOUT (Clock Output) ... output

This is the internal system clock output pin. Output from the CLKOUT pin can be executed even during reset.

(15) CKSEL (Clock Generator Operating Mode Select) ... input

This is the input pin that specifies the clock generator's operation mode.

Make sure the input level does not change during operation.

(16) MODE0, MODE2 (Mode) --- input

These are the input pins that specify the operation mode. There are two operation modes: ROM-less modes 0 and 1 (for details, refer to **3.3 Operation Modes**). The operation mode is determined by sampling the status of each of the MODE0 and MODE2 pins during reset.

Note that this status must be fixed so that the input level does not change during operation.

MODE2	MODE0	Operation Mode					
L	L	Normal operation mode	ROM-less mode 0				
L	Н		ROM-less mode 1				
Other than above		Setting prohibited					

Remark L: Low-level input

H: High-level input

(17) RESET (Reset) ... input

RESET input is asynchronous input for a signal that has a constant low-level width regardless of the operating clock's status. When this signal is input, a system reset is executed as the first priority ahead of all other operations.

In addition to being used for ordinary initialization/start operations, this pin can also be used to release a power save mode (HALT, IDLE, or software STOP).

(18) X1, X2 (Crystal) ... input

These pins are used to connect the resonator that generates the system clock.

An external clock source can be referenced by connecting the external clock input to the X1 pin and leaving the X2 pin open.

(19) CVDD (Power Supply for Clock Generator)

This pin supplies positive power to the clock generator.

(20) CVss (Ground for Clock Generator)

This is the ground pin of the clock generator.

(21) VDD (Power Supply for Internal Unit)

These are the positive power supply pins for each internal unit. All the VDD pins should be connected to a positive power source (3.3 V).

(22) HVDD (Power Supply for External Pins)

These are the positive power supply pins for external pins. All the HV_{DD} pins should be connected to a positive power source (5 V).

(23) Vss (Ground)

These are ground pins. All the Vss pins should be connected to ground.

(24) AVDD (Analog VDD)

This is the analog power supply pin for the A/D converter.

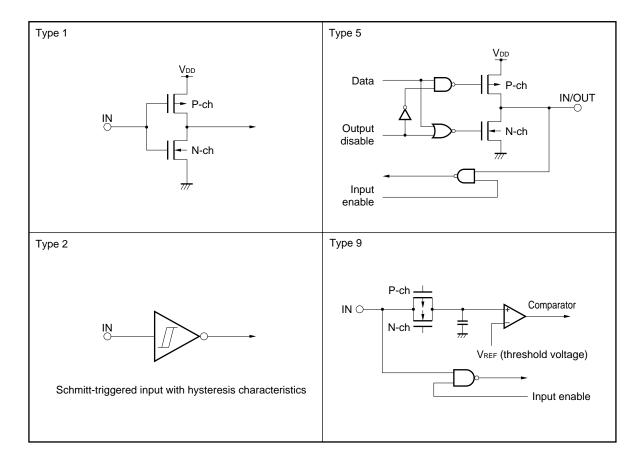
(25) AVss (Analog Vss)

This is the ground pin for the A/D converter.

(26) AVREF (Analog Reference Voltage) ... input

This is the reference voltage supply pin for the A/D converter.

2.4 Pin I/O Circuits and Recommended Connection of Unused Pins


If connecting to VDD or Vss via resistors, it is recommended that 1 to 10 k Ω resistors be connected.

Pin Name	I/O Circuit Type	Recommended Connection of Unused Pins
P00/TO100	5	Input: Independently connect to HV _{DD} or Vss via a resistor.
P02,TCLR10		Output: Leave open.
P04/INTP100/DMARQ0 to P07/INTP103/DMARQ3		
P10/TO110		
P12/TCLR11		
P14/INTP110/DMAAK0 to P17/INTP113/DMAAK3		
P20/NMI	2	Connect directly to Vss.
P22/TXD0/SO0	5	Input: Independently connect to HVDD or Vss via a resistor.
P23/RXD0/SI0		Output: Leave open.
P24/SCK0		
P25/TXD1/SO1		
P26/RXD1/SI1		
P27/SCK1		
P33/TI13		
P34/INTP130		
P40/D0 to P47/D7		
P50/D8 to P57/D15		
P60/A16 to P67/A23		
P70/ANI0 to P73/ANI3	9	Connect directly to Vss.
P80/CS0, P83/CS3/RAS3	5	Input: Independently connect to HVDD or Vss via a resistor.
P84/ <u>CS4</u> / <u>RAS4</u> / <u>IOWR</u> , P85/ <u>CS5</u> / <u>RAS5</u> / <u>IORD</u>		Output: Leave open.
P90/LCAS/LWR		
P91/UCAS/UWR		
P92/RD		
P93/WE		
P94/BCYST		
P95/OE		
P96/HLDAK		
P97/HLDRQ		
P100/TO120		

CHAPTER 2 PIN FUNCTIONS

Pin Name	I/O Circuit Type	Recommended Connection of Unused Pins
P102/TCLR12	5	Input: Independently connect to HVpp or Vss via a resistor.
PA0/A0 to PA7/A7		Output: Leave open.
PB0/A8 to PB7/A15		
PX6/WAIT		
PX7/CLKOUT		
CKSEL	1	Connect directly to HVDD.
RESET	2	_
MODE0, MODE2		
AVREF, AVSS	_	Connect directly to Vss.
AV _{DD}	_	Connect directly to HVDD.

2.5 Pin I/O Circuits

Caution Note that V_{DD} in the circuit diagram is replaced by HV_{DD} .

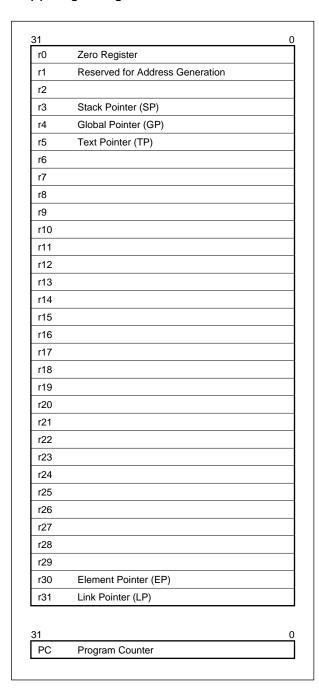
CHAPTER 3 CPU FUNCTION

The CPU of the V850E/MS2 is based on RISC architecture and executes the instructions using 5-stage pipeline control.

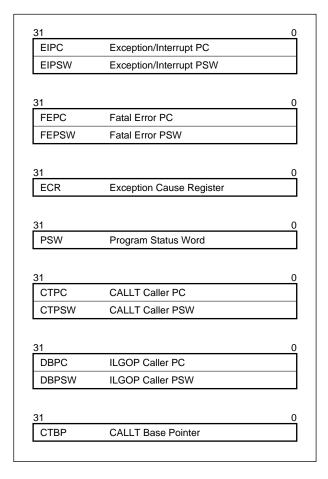
3.1 Features

- Minimum instruction execution time: 33 ns (at internal 30 MHz operation)
- Memory space Program space: 64 MB linear

Data space: 4 GB linear


- Thirty-two 32-bit general-purpose registers
- Internal 32-bit architecture
- Five-stage pipeline control
- Multiplication/division instructions
- Saturated operation instructions
- 32-bit shift instruction
- · Long/short instruction format
- Four types of bit manipulation instructions
 - Set
 - Clear
 - Not
 - Test

3.2 CPU Register Set


The registers of the V850E/MS2 can be classified into two categories: a general-purpose program register set and a dedicated system register set. The size of the registers is 32 bits.

For details, refer to V850E/MS1 User's Manual Architecture.

(1) Program register set

(2) System register set

3.2.1 Program register set

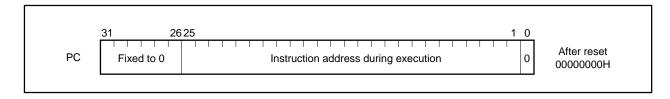
The program register set includes general-purpose registers and a program counter.

(1) General-purpose registers

Thirty-two general-purpose registers, r0 to r31, are available. Any of these registers can be used as a data variable or address variable.

However, r0 and r30 are implicitly used by instructions, and care must be exercised when using these registers. Also, r1, r3, r4, r5, and r31 are implicitly used by the assembler and C compiler. Therefore, before using these registers, their contents must be saved so that they are not lost. The contents must be restored to the registers after the registers have been used. r2 may be used by the real-time OS. When not being used by the real-time OS, r2 can be used as a variable register.

Name Usage Operation r0 Zero register Always holds 0 r1 Assembler-reserved register Working register for generating 32-bit immediate data r2 Address/data variable register (when this register is not used by the real-time OS) r3 Stack pointer Used to generate stack frame when function is called r4 Global pointer Used to access global variable in data area r5 Text pointer Register to indicate the start of the text area (where program code is located) r6 to r29 Address/data variable registers r30 Element pointer Base pointer when memory is accessed r31 Link pointer Used by compiler when calling function Holds instruction address during program execution PC Program counter


Table 3-1. Program Registers

(2) Program counter

This register holds the instruction address during program execution. The lower 26 bits of this register are valid, and bits 31 to 26 are fixed to 0. If a carry occurs from bit 25 to 26, it is ignored.

Bit 0 is fixed to 0, and branching to an odd address cannot be performed.

Figure 3-1. Program Counter (PC)

3.2.2 System register set

System registers control the status of the CPU and hold interrupt information.

Table 3-2. System Register Numbers

No.	System Register Name	Usage	Operation
0	EIPC	Status saving register during interrupt	These registers save the PC and PSW when a software exception or interrupt occurs. Because only
1	EIPSW		one set of these registers is available, their contents must be saved when multiple interrupts are enabled.
2	FEPC	Status saving register during	These registers save the PC and PSW when an NMI
3	FEPSW	NMI	occurs.
4	ECR	Interrupt source register	If an exception, maskable interrupt, or NMI occurs, this register will contain information referencing the interrupt source. The higher 16 bits of this register are called FECC, to which the exception code of the NMI is set. The lower 16 bits are called EICC, to which the exception code of the exception/interrupt is set. Refer to Figure 3-2.
5	PSW	Program status word	The program status word is a collection of flags that indicate the program status (instruction execution result) and CPU status. Refer to Figure 3-3 .
16	CTPC	Status saving register during	If the CALLT instruction is executed, this register
17	CTPSW	CALLT execution	saves the PC and PSW.
18	DBPC	Status saving register during	If an exception trap is generated due to detection of
19	DBPSW	exception trap	an illegal instruction code, this register saves the PC and PSW.
20	СТВР	CALLT base pointer	This is used to specify the table address and generate the target address.
6 to 15 21 to 31	Reserved		

To read/write these system registers, specify the system register number indicated by a system register load/store instruction (LDSR or STSR instruction).

Figure 3-2. Interrupt Source Register (ECR)

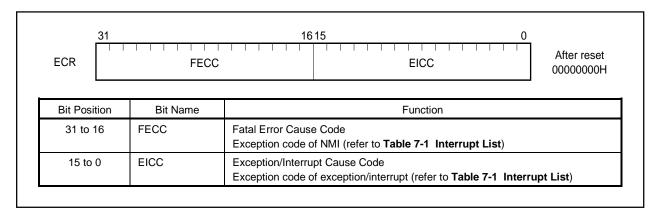
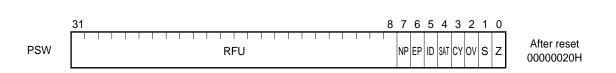



Figure 3-3. Program Status Word (PSW)

Bit Position	Flag	Function
31 to 8	RFU	Reserved field (fixed to 0).
7	NP	NMI Pending Indicates that NMI servicing is in progress. This flag is set when an NMI is accepted, and disables multiple interrupts.
6	EP	Exception Pending Indicates that exception processing is in progress. This flag is set when an exception is generated. Moreover, interrupt requests can be accepted when this bit is set.
5	ID	Interrupt Disable Indicates that accepting maskable interrupt request is disabled.
4	SAT	Saturated Math This flag is set if the result of executing saturated operation instruction overflows (if overflow does not occur, value of previous operation is held).
3	CY	Carry This flag is set if carry or borrow occurs as result of operation (if carry or borrow does not occur, it is reset).
2	OV	Overflow This flag is set if overflow occurs during operation (if overflow does not occur, it is reset).
1	S	Sign This flag is set if the result of operation is negative (it is reset if the result is positive).
0	Z	Zero This flag is set if the result of operation is zero (if the result is not zero, it is reset).

3.3 Operation Modes

3.3.1 Operation modes

The V850E/MS2 has the following operation modes. Mode specification is carried out by pins MODE0 and MODE2.

(1) Normal operation mode

(a) ROM-less modes 0, 1

After system reset is cancelled, each pin related to the bus interface enters the control mode, branches to the external device (memory) reset entry address and starts instruction processing.

In ROM-less mode 0, the data bus is a 16-bit data bus and in ROM-less mode 1, the data bus is an 8-bit data bus.

3.3.2 Operation mode specification

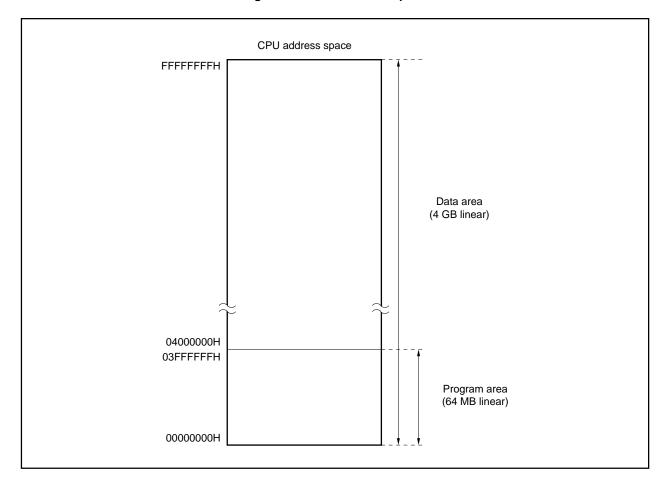
The operation mode is specified according to the status of pins MODE0 and MODE2. In an application system fix the specification of these pins and do not change them during operation.

Operation is not guaranteed if these pins are changed during operation.

MODE2	MODE0	Operat	ion Mode	External Data Bus Width	Remarks
L	L	Normal operation	ROM-less mode 0	16 bits	_
L	Н	mode	ROM-less mode 1	8 bits	
Other than above		Setting prohibited		_	

Remark L: Low-level input

H: High-level input


3.4 Address Space

3.4.1 CPU address space

The CPU of the V850E/MS2 is of 32-bit architecture and supports up to 4 GB of linear address space (data space) during operand addressing (data access). Also, in instruction address addressing, a maximum of 64 MB of linear address space (program space) is supported.

Figure 3-4 shows the CPU address space.

Figure 3-4. CPU Address Space

3.4.2 Image

The core CPU supports 4 GB of "virtual" addressing space, or 64 memory blocks, each containing 64 MB physical address space. In actuality, the same 64 MB physical address space is accessed regardless of the values of bits 31 to 26 of the CPU address. Figure 3-5 shows the image of the virtual addressing space.

Because the higher 6 bits of a 32-bit CPU address are disregarded and access is made to a 26-bit physical address, physical address x0000000H can be seen as CPU address 00000000H, and in addition, can be seen as address 04000000H, address 08000000H, address F8000000H or address FC000000H.

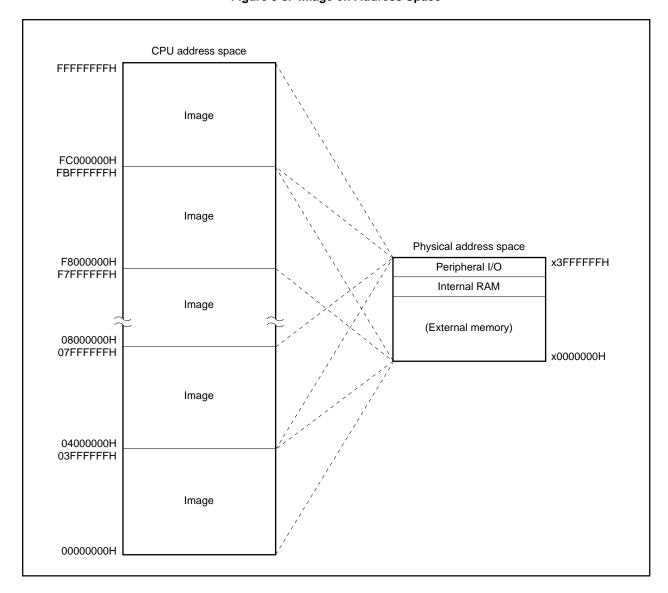
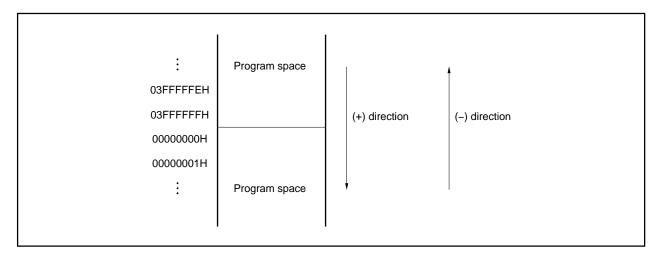


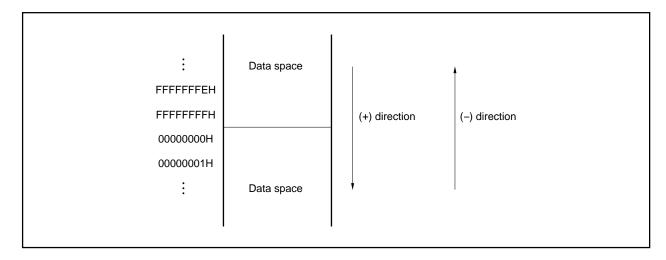
Figure 3-5. Image on Address Space


3.4.3 Wrap-around of CPU address space

(1) Program space

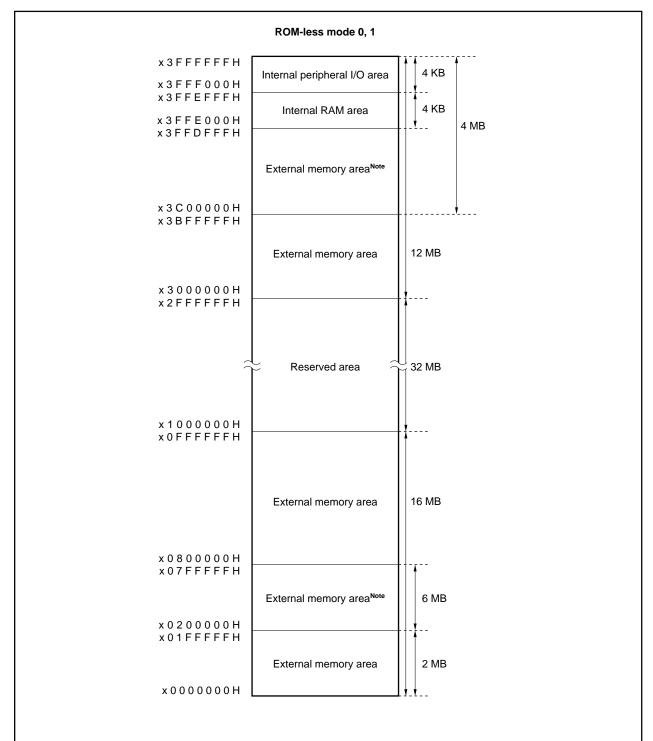
Of the 32 bits of the PC (program counter), the higher 6 bits are set to 0, and only the lower 26 bits are valid. Even if a carry or borrow occurs from bit 25 to 26 as a result of branch address calculation, the higher 6 bits ignore the carry or borrow.

Therefore, the lower-limit address of the program space, address 00000000H, and the upper-limit address 03FFFFFH become contiguous addresses. Wrap-around refers to the situation that the lower-limit address and upper-limit address become contiguous like this.


Caution No instruction can be fetched from the 4 KB area of 03FFF000H to 03FFFFFFH because this area is defined as the peripheral I/O area. Therefore, do not execute any branch address calculation in which the result will reside in any part of this area.

(2) Data space

The result of an operand address calculation that exceeds 32 bits is ignored.


Therefore, the lower-limit address of the program space, address 00000000H, and the upper-limit address FFFFFFFH are contiguous addresses, and the data space is wrapped around at the boundary of these addresses.

3.4.4 Memory map

The V850E/MS2 reserves areas as shown below.

Each mode is specified by the MM register and the MODE0 and MODE2 pins.

Note The chip select signal is not output. When using this area, it is necessary to decode an address signal and generate the chip select signal.

3.4.5 Area

(1) Interrupt/exception table

The V850E/MS2 increases the interrupt response speed by assigning handler addresses corresponding to interrupts/exceptions.

The collection of these handler addresses is called an interrupt/exception table, which is located in the program area. When an interrupt/exception request is granted, execution jumps to the handler address, and the program written at that memory is executed. Table 3-3 shows the sources of interrupts/exceptions, and the corresponding addresses.

Table 3-3. Interrupt/Exception Table (1/2)

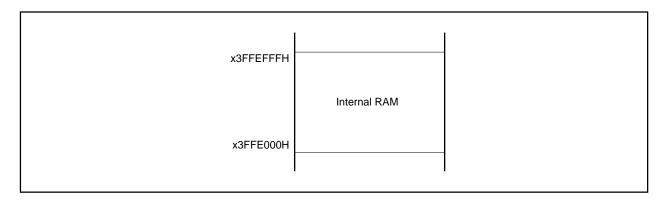
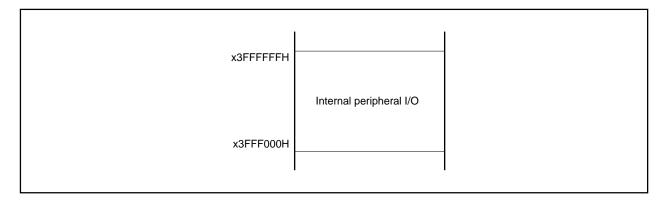

Start Address of Interrupt/Exception Table	Interrupt/Exception Source
0000000H	RESET
00000010H	NMI
0000040H	TRAP0n (n = 0 to FH)
00000050H	TRAP1n (n = 0 to FH)
00000060Н	ILGOP
00000080H	INTOV10
00000090Н	INTOV11
000000A0H	INTOV12
000000В0Н	INTOV13
00000100H	INTP100/INTCC100
00000110H	INTP101/INTCC101
00000120H	INTP102/INTCC102
00000130H	INTP103/INTCC103
00000140H	INTP110/INTCC110
00000150H	INTP111/INTCC111
00000160H	INTP112/INTCC112
00000170H	INTP113/INTCC113
00000180H	INTCC120
00000190H	INTCC121
000001A0H	INTCC122
000001B0H	INTCC123
000001C0H	INTP130/INTCC130
000001D0H	INTCC131
000001E0H	INTCC132
000001F0H	INTCC133
00000280H	INTCM40
00000290H	INTCM41
000002A0H	INTDMA0
000002B0H	INTDMA1
000002C0H	INTDMA2
000002D0H	INTDMA3
00000300H	INTCSI0
00000310H	INTSER0
00000320H	INTSR0
00000330H	INTST0
00000340H	INTCSI1

Table 3-3. Interrupt/Exception Table (2/2)

Start Address of Interrupt/Exception Table	Interrupt/Exception Source
00000350H	INTSER1
00000360H	INTSR1
00000370H	INTST1
00000400H	INTAD


(2) Internal RAM area

4 KB of memory, addresses 3FFE000H to 3FFEFFFH, is provided as a physical internal RAM area.

(3) Internal peripheral I/O area

4 KB of memory, addresses 3FFF000H to 3FFFFFH, is provided as an internal peripheral I/O area.

Peripheral I/O registers associated with the operation mode specification and the state monitoring for the internal peripheral I/O are all memory-mapped to the internal peripheral I/O area. Program fetches are not allowed in this area.

- Cautions 1. The least significant bit of an address is not decoded. If byte access is executed in the register at an odd address (2n + 1), the register at the even address (2n) will be accessed because of the hardware specification.
 - 2. In the V850E/MS2, no registers exist which are capable of word access, but if word access is executed in the register, for the word area, disregarding the bottom 2 bits of the address, halfword access is performed twice in the order of lower, then higher.
 - 3. For registers in which byte access is possible, if halfword access is executed, the higher 8 bits become non-specific during the read operation, and the lower 8 bits of data are written to the register during the write operation.
 - 4. Addresses that are not defined as registers are reserved for future expansion. If these addresses are accessed, the operation is undefined and not guaranteed.

(4) External memory area

The following areas can be used as external memory area. However, the reserved area from x1000000H to x2FFFFFH is excluded.

• x0000000H to x3FFDFFFH

Access to the external memory area uses the chip select signal assigned to each memory block (refer to **4.4 Bus Cycle Type Control Function**).

Note that the internal RAM and internal peripheral I/O areas cannot be accessed as external memory areas.

3.4.6 External expansion mode

The V850E/MS2 allows external devices to be connected to the external memory space by using the pins of ports 4, 5, 6, A, and B. Setting the external expansion mode is carried out by selecting each pin of ports 4, 5, 6, A, and B in the control mode by means of the MM register.

Note that the status at reset time differs as shown below in accordance with the operating mode specification set by pins MODE0 and MODE2 (refer to **3.3 Operation Modes** for details of the operation modes).

(1) Status at reset time in each operation mode

(a) In the case of ROM-less mode 0

At reset time, each pin of ports 4, 5, 6, A, and B enters the control mode, so the external expansion mode is set without changing the MM register (the external data bus width is 16 bits).

(b) In the case of ROM-less mode 1

At reset time, each pin of ports 4, 5, 6, A, and B enters the control mode, so the external expansion mode is set without changing the setting of the MM register (the external data bus width is 8 bits).

(2) Memory expansion mode register (MM)

This register sets the mode of each pin of ports 4, 5, 6, A, and B. In the external expansion mode, an external device can be connected to an external memory area of up to 22 MB. However, an external device cannot be connected to the internal RAM area and internal peripheral I/O area (even if connected physically, it does not become an access target.).

The MM register can be read/written in 8- or 1-bit units. However, bits 4 to 7 are fixed to 0.

 7
 6
 5
 4
 3
 2
 1
 0

 MM
 0
 0
 0
 0
 MM3
 MM2
 MM1
 MM0
 Address FFFFF04CH
 After reset FFFFF04CH
 Note

Note When in ROM-less mode 0: 07H When in ROM-less mode 1: 0FH

Bit Position	Bit Name	Function													
3 to 0	MM3 to MM0	Memory Expansion Mode Set the function of ports 4, 5, 6, A, and B.													
		ММЗ	MM3 MM2 MM1 MM0 Port 4 Port 5 Port A Port B Port 6												
		0	0	0	0	P40 to P47	P50 to P57	PA0 to PA7	PB0 to PB3	PB4,	PB6,	P60,	P62,	P64,	P66,
		0	0	0	1	D0 to D7	D8 to D15	A0 to A7	A8 to A11	PB5	PB7	P61	P63	P65	P67
		0	0	1	0					A12,					
		0	0	1	1					A13	A14,				
		0	1	0	0						A15	A16,			
		0	1	0	1							A17		400	
		0	1	1	1								A19	A20,	A22
		U	'	'	'									AZI	A22,
		1	0	0	0	P40 to P47	P50 to P57	PA0 to PA7	PB0 to PB3	PB4,	PB6,	P60,	P62,	P64,	
		1	0	0	1	D0 to D7		A0 to A7	A8 to A11	PB5	PB7	P61	P63	P65	P67
		1	0	1	0					A12,					
		1	0	1	1					A13	A14,				
		1	1	0	0						A15	A16,			
		1	1	0	1							A17	A18,		
		1	1	1	0								A19	A20,	
		1	1	1	1									A21	A22,
															A23

Caution Write to the MM register after reset, and then do not change the set value. Also, do not access an external memory area other than the one for this initialization routine until the initial setting of the MM register is complete. However, it is possible to access an external memory area whose initialization is complete.

Remarks 1. For details of the operation of each port's pins, refer to 2.3 Description of Pin Functions.

2. The function of each port at system reset time is as shown below.

Operation Mode	MM Register	Port 4	Port 5	Port A	Port B	Port 6
ROM-less mode 0	07H	D0 to D7	D8 to D15	A0 to A7	A8 to A15	A16 to A23
ROM-less mode 1	0FH		P50 to P57			

3.4.7 Recommended use of address space

The architecture of the V850E/MS2 requires that a register that serves as a pointer be secured for address generation when accessing the operand data in the data space. An instruction can be used to directly access operand data at the address in this pointer register ±32 KB. However, the general-purpose registers that can be used as a pointer register are limited. Therefore, by minimizing the deterioration of address calculation performance when changing the pointer value, the number of usable general-purpose registers for handling variables is maximized, and the program size can be saved.

To enhance the efficiency of using the pointer in connection with the memory map of the V850E/MS2, the following points are recommended:

(1) Program space

Of the 32 bits of the PC (program counter), the higher 6 bits are fixed to 0, and only the lower 26 bits are valid. Therefore, a contiguous 64 MB space, starting from address 00000000H, unconditionally corresponds to the memory map of the program space.

(2) Data space

For the efficient use of resources using the wrap-around feature of the data space, the continuous 16 MB address spaces 00000000H to 00FFFFFH and FF000000H to FFFFFFFH of the 4 GB CPU are used as the data space. With the V850E/MS2, the 64 MB physical address space is seen as 64 images in the 4 GB CPU address space. The highest bit (bit 25) of this 26-bit address is assigned as address sign-extended to 32 bits.

Example Application of wrap-around

When R = r0 (zero register) is specified for the LD/ST disp16 [R] instruction, an addressing range of 00000000H ± 32 KB can be referenced with the sign-extended, 16-bit displacement value. By mapping the external memory in the 24 KB area in the figure, all resources including internal hardware can be accessed with one pointer.

The zero register (r0) is a register set to 0 by hardware, and eliminates the need for additional registers for the pointer.

Program space Data space FFFFFFFH FFFFF5F7H FFFFF5F6H Internal peripheral I/O FFFF000H **FFFFEFFH** Internal RAM FFFFE000H **FFFFDFFFH** External x3FFFFFFH memory x3FFF5F7H x3FFF5F6H Internal FF000000H peripheral I/O x3FFF000H **FEFFFFFH** x3FFEFFFH 04000000H Internal RAM 03FFFFFFH x3FFF000H Internal x3FFDFFFH peripheral I/ONG 03FFF000H 03FFEFFFH External memory Internal RAM 03FFE000H x3000000H 03FFDFFFH x2FFFFFH Reserved x1000000H External x0FFFFFH memory External 03000000H memory 02FFFFFFH 64 Mbytes Reserved area 01000000H x0100000H 00FFFFFH x00FFFFFH External External memory memory x0020000H x001FFFFH 00100000H External memory 16 Mbytes 000FFFFFH ROM X0000000H 00020000H 0001FFFFH External memory External mémory ROM 00000000H **Note** This area cannot be used as a program area. The arrows indicate the recommended area.

Figure 3-6. Recommended Memory Map

3.4.8 Peripheral I/O registers

(1/6)

Address	Function Register Name	Symbol	R/W	Bit Unit	(1/6) After		
				1 bit	8 bits	16 bits	Reset
FFFFF000H	Port 0	P0	R/W	0	0		Undefined
FFFFF002H	Port 1	P1		0	0		
FFFFF004H	Port 2	P2		0	0		
FFFFF006H	Port 3	P3		0	0		
FFFFF008H	Port 4	P4		0	0		
FFFFF00AH	Port 5	P5		0	0		
FFFFF00CH	Port 6	P6		0	0		
FFFFF00EH	Port 7	P7	R	0	0		
FFFFF010H	Port 8	P8	R/W	0	0		
FFFFF012H	Port 9	P9		0	0		
FFFFF014H	Port 10	P10		0	0		
FFFFF01CH	Port A	PA		0	0		
FFFFF01EH	Port B	РВ		0	0		
FFFFF020H	Port 0 mode register	PM0		0	0		FFH
FFFFF022H	Port 1 mode register	PM1		0	0		
FFFFF024H	Port 2 mode register	PM2		0	0		
FFFFF026H	Port 3 mode register	PM3		0	0		
FFFFF028H	Port 4 mode register	PM4		0	0		
FFFFF02AH	Port 5 mode register	PM5		0	0		
FFFFF02CH	Port 6 mode register	PM6		0	0		
FFFFF030H	Port 8 mode register	PM8		0	0		
FFFFF032H	Port 9 mode register	PM9		0	0		
FFFFF034H	Port 10 mode register	PM10		0	0		
FFFFF03CH	Port A mode register	PMA		0	0		
FFFFF03EH	Port B mode register	PMB		0	0		
FFFFF040H	Port 0 mode control register	PMC0		0	0		00H
FFFFF042H	Port 1 mode control register	PMC1		0	0		
FFFFF044H	Port 2 mode control register	PMC2		0	0		01H
FFFFF046H	Port 3 mode control register	PMC3		0	0		00H
FFFFF04CH	Memory expansion mode register	MM		0	0		07H/0FH
FFFFF050H	Port 8 mode control register	PMC8		0	0		FFH
FFFFF052H	Port 9 mode control register	PMC9		0	0		
FFFFF054H	Port 10 mode control register	PMC10		0	0		00H
FFFFF060H	Data wait control register 1	DWC1				0	FFFFH
FFFFF062H	Bus cycle control register	BCC				0	5555H
FFFFF064H	Bus cycle type control register	вст				0	0000H

(2/6)

Address	Function Register Name	Symbol	R/W	Bit Unit	(2/6) After		
				1 bit	8 bits	16 bits	Reset
FFFFF066H	Bus size configuration register	BSC	R/W			0	5555H/ 0000H
FFFFF06AH	Data wait control register 2	DWC2		0	0		FFH
FFFFF06CH	Fly-by transfer data wait control register	FDW		0	0		00H
FFFFF070H	Power save control register	PSC		0	0		
FFFFF072H	Clock control register	СКС		0	0		
FFFFF078H	System status register	SYS		0	0		0000000×B
FFFFF084H	Baud rate generator compare register 0	BRGC0		0	0		Undefined
FFFFF086H	Baud rate generator prescaler mode register 0	BPRM0		0	0		00H
FFFFF088H	Clocked serial interface mode register 0	CSIM0		0	0		
FFFFF08AH	Serial I/O shift register 0	SIO0		0	0		Undefined
FFFFF094H	Baud rate generator compare register 1	BRGC1		0	0		
FFFFF096H	Baud rate generator prescaler mode register 1	BPRM1		0	0		00H
FFFFF098H	Clocked serial interface mode register 1	CSIM1		0	0		
FFFFF09AH	Serial I/O shift register 1	SIO1		0	0		Undefined
FFFFF0C0H	Asynchronous serial interface mode register 00	ASIM00		0	0		80H
FFFFF0C2H	Asynchronous serial interface mode register 01	ASIM01		0	0		00H
FFFFF0C4H	Asynchronous serial interface status register 0	ASIS0	R	0	0		
FFFFF0C8H	Receive buffer 0 (9 bits)	RXB0				0	Undefined
FFFFF0CAH	Receive buffer 0L (lower 8 bits)	RXB0L		0	0		
FFFFF0CCH	Transmit shift register 0 (9 bits)	TXS0	W			0	
FFFFF0CEH	Transmit shift register 0L (lower 8 bits)	TXS0L			0		
FFFFF0D0H	Asynchronous serial interface mode register 10	ASIM10	R/W	0	0		80H
FFFFF0D2H	Asynchronous serial interface mode register 11	ASIM11		0	0		00H
FFFFF0D4H	Asynchronous serial interface status register 1	ASIS1	R	0	0		
FFFFF0D8H	Receive buffer 1 (9 bits)	RXB1				0	Undefined
FFFFF0DAH	Receive buffer 1L (lower 8 bits)	RXB1L		0	0		
FFFFF0DCH	Transmit shift register 1 (9 bits)	TXS1	W			0	
FFFFF0DEH	Transmit shift register 1L (lower 8 bits)	TXS1L			0		
FFFFF100H	Interrupt control register	OVIC10	R/W	0	0		47H
FFFFF102H	Interrupt control register	OVIC11		0	0		
FFFFF104H	Interrupt control register	OVIC12		0	0		
FFFFF106H	Interrupt control register	OVIC13		0	0		
FFFFF10CH	Interrupt control register	CMIC40		0	0		
FFFFF10EH	Interrupt control register	CMIC41		0	0		
FFFFF110H	Interrupt control register	P10IC0		0	0		
FFFFF112H	Interrupt control register	P10IC1		0	0		

(3/6)

Address	Function Register Name	Symbol	R/W	Bit Units for Manipulation			(3/6) After
				1 bit	8 bits	16 bits	Reset
FFFFF114H	Interrupt control register	P10IC2	R/W	0	0		47H
FFFFF116H	Interrupt control register	P10IC3		0	0		
FFFFF118H	Interrupt control register	P11IC0		0	0		
FFFFF11AH	Interrupt control register	P11IC1		0	0		
FFFFF11CH	Interrupt control register	P11IC2		0	0		
FFFFF11EH	Interrupt control register	P11IC3		0	0		
FFFFF120H	Interrupt control register	P12IC0		0	0		
FFFFF122H	Interrupt control register	P12IC1		0	0		
FFFFF124H	Interrupt control register	P12IC2		0	0		
FFFFF126H	Interrupt control register	P12IC3		0	0		
FFFFF128H	Interrupt control register	P13IC0		0	0		
FFFFF12AH	Interrupt control register	P13IC1		0	0		
FFFFF12CH	Interrupt control register	P13IC2		0	0		
FFFFF12EH	Interrupt control register	P13IC3		0	0		
FFFFF140H	Interrupt control register	DMAIC0		0	0		
FFFFF142H	Interrupt control register	DMAIC1		0	0		
FFFFF144H	Interrupt control register	DMAIC2		0	0		
FFFFF146H	Interrupt control register	DMAIC3		0	0		
FFFFF148H	Interrupt control register	CSIC0		0	0		
FFFFF14AH	Interrupt control register	CSIC1		0	0		
FFFFF150H	Interrupt control register	SEIC0		0	0		
FFFFF152H	Interrupt control register	SRIC0		0	0		
FFFFF154H	Interrupt control register	STIC0		0	0		
FFFFF156H	Interrupt control register	SEIC1		0	0		
FFFFF158H	Interrupt control register	SRIC1		0	0		
FFFFF15AH	Interrupt control register	STIC1		0	0		
FFFFF15CH	Interrupt control register	ADIC		0	0		
FFFFF166H	In-service priority register	ISPR	R	0	0		00H
FFFFF170H	Command register	PRCMD	W		0		Undefined
FFFFF180H	External interrupt mode register 0	INTM0	R/W	0	0		00H
FFFFF182H	External interrupt mode register 1	INTM1		0	0		
FFFFF184H	External interrupt mode register 2	INTM2		0	0		
FFFFF188H	External interrupt mode register 4	INTM4		0	0		
FFFFF1A0H	DMA source address register 0H	DSA0H				0	Undefined
FFFFF1A2H	DMA source address register 0L	DSA0L				0	
FFFFF1A4H	DMA destination address register 0H	DDA0H	-			0	
FFFFF1A6H	DMA destination address register 0L	DDA0L				0	

(4/6)

Address	Function Register Name	Symbol	R/W	Bit Units for Manipulation			(4/6) After
				1 bit	8 bits	16 bits	Reset
FFFFF1A8H	DMA source address register 1H	DSA1H	R/W			0	Undefined
FFFFF1AAH	DMA source address register 1L	DSA1L				0	
FFFFF1ACH	DMA destination address register 1H	DDA1H				0	0000H
FFFFF1AEH	DMA destination address register 1L	DDA1L				0	
FFFFF1B0H	DMA source address register 2H	DSA2H				0	
FFFFF1B2H	DMA source address register 2L	DSA2L				0	
FFFFF1B4H	DMA destination address register 2H	DDA2H				0	
FFFFF1B6H	DMA destination address register 2L	DDA2L				0	
FFFFF1B8H	DMA source address register 3H	DSA3H				0	
FFFFF1BAH	DMA source address register 3L	DSA3L				0	
FFFFF1BCH	DMA destination address register 3H	DDA3H				0	
FFFFF1BEH	DMA destination address register 3L	DDA3L				0	
FFFFF1E0H	DMA byte count register 0	DBC0				0	
FFFFF1E2H	DMA byte count register 1	DBC1				0	
FFFFF1E4H	DMA byte count register 2	DBC2				0	
FFFFF1E6H	DMA byte count register 3	DBC3				0	
FFFFF1F0H	DMA addressing control register 0	DADC0				0	
FFFFF1F2H	DMA addressing control register 1	DADC1				0	
FFFFF1F4H	DMA addressing control register 2	DADC2				0	
FFFFF1F6H	DMA addressing control register 3	DADC3				0	
FFFFF200H	DRAM configuration register 0	DRC0				0	
FFFFF202H	DRAM configuration register 1	DRC1				0	
FFFFF204H	DRAM configuration register 2	DRC2				0	
FFFFF206H	DRAM configuration register 3	DRC3				0	
FFFFF210H	Refresh control register 0	RFC0				0	0000H
FFFFF212H	Refresh control register 1	RFC1				0	
FFFFF214H	Refresh control register 2	RFC2				0	
FFFFF216H	Refresh control register 3	RFC3				0	
FFFFF218H	Refresh wait control register	RWC		0	0		00H
FFFFF220H	DRAM type configuration register	DTC				0	0000H
FFFFF224H	Page-ROM configuration register	PRC	1	0	0		E0H
FFFFF230H	Timer overflow status register	TOVS	1	0	0		00H
FFFFF240H	Timer unit mode register 10	TUM10]			0	0000H
FFFFF242H	Timer control register 10	TMC10		0	0		00H
FFFFF244H	Timer output control register 10	TOC10		0	0		1
FFFFF250H	Timer 10	TM10	R			0	0000H
FFFFF252H	Capture/compare register 100	CC100	R/W			0	Undefined

(5/6)

Address	Function Register Name	Symbol	R/W	Bit Unit	s for Mani	pulation	(5/6) After
				1 bit	8 bits	16 bits	Reset
FFFFF254H	Capture/compare register 101	CC101	R/W			0	Undefined
FFFFF256H	Capture/compare register 102	CC102				0	
FFFFF258H	Capture/compare register 103	CC103				0	
FFFFF260H	Timer unit mode register 11	TUM11				0	0000H
FFFFF262H	Timer control register 11	TMC11		0	0		00H
FFFFF264H	Timer output control register 11	TOC11		0	0		
FFFFF270H	Timer 11	TM11	R			0	0000H
FFFFF272H	Capture/compare register 110	CC110	R/W			0	Undefined
FFFF274H	Capture/compare register 111	CC111				0	
FFFFF276H	Capture/compare register 112	CC112				0	
FFFFF278H	Capture/compare register 113	CC113				0	
FFFFF280H	Timer unit mode register 12	TUM12				0	0000H
FFFFF282H	Timer control register 12	TMC12		0	0		00H
FFFFF284H	Timer output control register 12	TOC12		0	0		
FFFFF290H	Timer 12	TM12	R			0	0000H
FFFFF292H	Capture/compare register 120	CC120	R/W			0	Undefined
FFFFF294H	Capture/compare register 121	CC121				0	
FFFFF296H	Capture/compare register 122	CC122				0	
FFFFF298H	Capture/compare register 123	CC123				0	
FFFFF2A0H	Timer unit mode register 13	TUM13				0	0000H
FFFFF2A2H	Timer control register 13	TMC13		0	0		00H
FFFFF2B0H	Timer 13	TM13	R			0	Undefined
FFFFF2B2H	Capture/compare register 130	CC130	R/W			0	
FFFFF2B4H	Capture/compare register 131	CC131				0	
FFFFF2B6H	Capture/compare register 132	CC132				0	
FFFFF2B8H	Capture/compare register 133	CC133				0	
FFFFF342H	Timer control register 40	TMC40		0	0		00H
FFFFF346H	Timer control register 41	TMC41		0	0		
FFFFF350H	Timer 40	TM40	R			0	0000H
FFFFF352H	Compare register 40	CM40	R/W			0	Undefined
FFFFF354H	Timer 41	TM41	R			0	0000H
FFFFF356H	Compare register 41	CM41	R/W			0	Undefined
FFFFF380H	A/D converter mode register 0	ADM0		0	0		00H
FFFFF382H	A/D converter mode register 1	ADM1		0	0		07H
FFFFF390H	A/D conversion result register 0	ADCR0	R			0	Undefined
FFFFF392H	A/D conversion result register 0H	ADCR0H		0	0		
FFFFF394H	A/D conversion result register 1	ADCR1				0	

(6/6)

		<u> </u>					(6/6)
Address	Function Register Name	Symbol	R/W	Bit Unit	s for Mani	pulation	After
				1 bit	8 bits	16 bits	Reset
FFFFF396H	A/D conversion result register 1H	ADCR1H	R	0	0		Undefined
FFFFF398H	A/D conversion result register 2	ADCR2				0	
FFFFF39AH	A/D conversion result register 2H	ADCR2H		0	0		
FFFFF39CH	A/D conversion result register 3	ADCR3				0	
FFFFF39EH	A/D conversion result register 3H	ADCR3H		0	0		
FFFFF41AH	Port X	PX	R/W	0	0		
FFFFF43AH	Port X mode register	PMX	W		0		FFH
FFFFF45AH	Port X mode control register	PMCX			0		E0H
FFFFF580H	Port/control select register 0	PCS0	R/W	0	0		00H
FFFFF582H	Port/control select register 1	PCS1		0	0		
FFFFF590H	Port/control select register 8	PCS8		0	0		
FFFFF5D0H	DMA disable status register	DDIS	R	0	0		
FFFFF5D2H	DMA restart register	DRST	R/W	0	0		
FFFFF5E0H	DMA trigger factor register 0	DTFR0		0	0		
FFFFF5E2H	DMA trigger factor register 1	DTFR1		0	0		
FFFFF5E4H	DMA trigger factor register 2	DTFR2		0	0		
FFFFF5E6H	DMA trigger factor register 3	DTFR3		0	0		
FFFF5F0H	DMA channel control register 0	DCHC0	1	0	0		
FFFF5F2H	DMA channel control register 1	DCHC1		0	0		
FFFF5F4H	DMA channel control register 2	DCHC2		0	0		
FFFFF5F6H	DMA channel control register 3	DCHC3		0	0		

3.4.9 Specific registers

Specific registers are registers that are protected from being written with illegal data due to erroneous program execution, etc. The write access of these specific registers is executed in a specific sequence, and if abnormal store operations occur, the system status register (SYS) is notified. The V850E/MS2 has two specific registers, clock control register (CKC) and the power save control register (PSC). For details of the CKC register, refer to **8.3.3** and for details of the PSC register, refer to **8.5.2**.

The access sequence to the specific registers is shown below.

The following sequence shows the data setting of the specific registers.

- <1> Provide data in the desired general-purpose register to be set in the specific register.
- <2> Write the general-purpose register prepared in <1> in the command register (PRCMD).
- <3> Write to the specific register using the general-purpose register prepared in <1> (do this using the following instructions).
 - Store instruction (ST/SST instruction)
 - Bit operation instruction (SET1/CLR1/NOT1 instruction)
- <4> If the system moves to the IDLE or software STOP mode, insert a NOP instruction (1 instruction).

```
Example <1> MOV 0x04, r10 
<2> ST.B r10, PRCMD [r0] 
<3> ST.B r10, PSC [r0] 
<4> NOP
```

No special sequence is required when reading the specific registers.

Caution Do not write to the PRCMD register or to a specific register by DMA transfer.

Remarks 1. A store instruction to a command register will not be received with an interrupt.

This presupposes that this is done with the continuous store instructions in <1> and <2> above in the program. If another instruction is placed between <1> and <2>, when an interrupt is received by that instruction, the above sequence may not be established, and cause a malfunction, so caution is necessary.

- 2. The data written in the PRCMD register is dummy data, but use the same general-purpose register for writing to the PRCMD register (<2> in the example above) as was used in setting data in the specific register (<3> in the example above). Addressing is the same in the case where a general-purpose register is used.
- 3. It is necessary to insert 1 or more NOP instructions just after a store instruction to the PSC register for setting it in the software STOP or IDLE mode. When releasing each power save mode by interrupt, or when resetting after executing interrupt servicing, start execution from the next instruction without executing the instruction just after the store instruction.

[Example of Description]

ST reg_code, PRCMD ; PRCMD write

(reg_code: Registration code)

ST data, PSC ; Setting of the PSC register

NOP ; Dummy instruction (1 instruction)

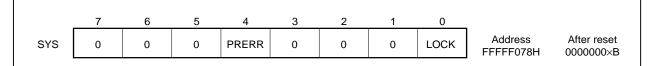
(next instruction) ; Execution routine after releasing the software

STOP/IDLE mode

The case where bit operation instructions are used in the PSC register settings is the same.

(1) Command register (PRCMD)

The command register (PRCMD) is a register used when write-accessing the specific register to prevent incorrect writing to the specific registers due to the erroneous program execution.


This register can be written in 8-bit units. It becomes undefined in a read cycle.

Occurrence of illegal store operations can be checked by the PRERR bit of the SYS register.

ſ	7	6	5	4	3	2	1	0	1	
PRCMD	REG7	REG6	REG5	REG4	REG3	REG2	REG1	REG0	Address FFFFF170H	After reset Undefined
					1					
Bit Position	on Bit	Name				ļ	Function			
7 to 0	REG REG		Registrati	egistration Code						
			Specif	ic Registe	•	Reg	istration C	ode		
			CKC		Any 8	-bit data				
			PSC		Any 8	-bit data				

(2) System status register (SYS)

This register is assigned status flags showing the operating state of the entire system. This register can be read/written in 8- or 1-bit units.

Bit Position	Bit Name	Function
4	PRERR	Protection Error Flag This is a cumulative flag that shows that writing to a specific register was not done in the correct sequence and that a protection error occurred Note. 0: Protection error did not occur 1: Protection error occurred
0	LOCK	Lock Status Flag This is an exclusive read out flag. It shows that the PLL is in the locked state (for details, refer to 8.4 PLL Lockup). 0: Locked. 1: Unlocked.

Note Operation conditions of PRERR flag

• Set conditions <1> If the store instruction most recently executed to peripheral I/O does not (PRERR = "1") write data to the PRCMD register, but to the specific register.

<2> If the first store instruction executed after the write operation to the PRCMD register is to a peripheral I/O register other than the specific registers.

• Reset conditions: <1> When "0" is written to the PRERR flag of the SYS register.

(PRERR = "0") <2> At system reset.

[MEMO]

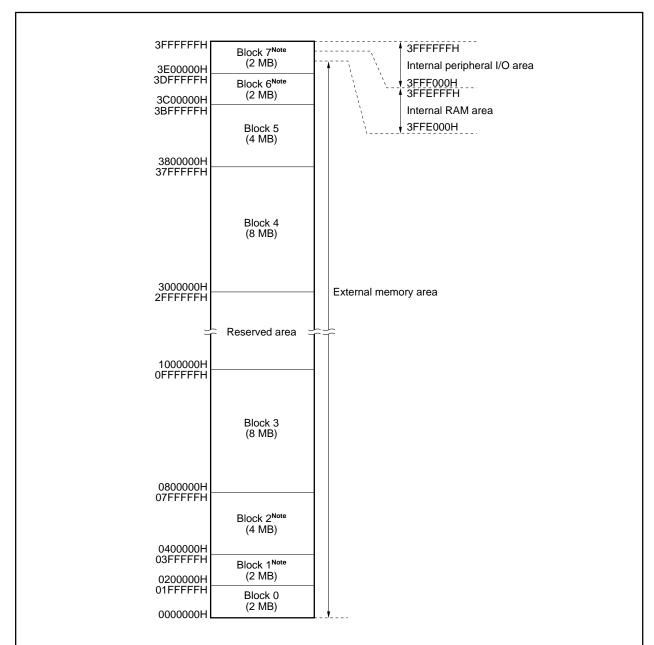
CHAPTER 4 BUS CONTROL FUNCTION

The V850E/MS2 is provided with an external bus interface function by which external memories such as ROM and RAM, and I/O can be connected.

4.1 Features

- 16-bit/8-bit data bus sizing function
- 4-space chip select output function
- Wait function
 - Programmable wait function, capable of inserting up to 7 wait states for each memory block
 - External wait function via WAIT pin
- Idle state insertion function
- · Bus mastership arbitration function
- Bus hold function
- · Capable of connecting to external devices via alternate function pins

4.2 Bus Control Pins


The following pins are used for connecting to external devices:

Bus Control Pin (Function When in the Control Mode)	Function When in the Port Mode	Register Which Performs Port/Control Mode Switching
Data bus (D0 to D7)	P40 to P47 (Port 4)	MM
Data bus (D8 to D15)	P50 to P57 (Port 5)	MM
Address bus (A0 to A7)	PA0 to PA7 (Port A)	MM
Address bus (A8 to A15)	PB0 to PB7 (Port B)	MM
Address bus (A16 to A23)	P60 to P67 (Port 6)	MM
Chip select (CS0, CS3 to CS5, RAS3 to RAS5, IORD, IOWR)	P80, P83 to P85 (Port 8)	PMC8
Read/write control (LCAS, UCAS, LWR, UWR, RD, WE, OE)	P90 to P93, P95 (Port 9)	PMC9
Bus cycle start (BCYST)	P94 (Port 9)	PMC9
External wait control (WAIT)	PX6 (Port X)	PMCX
Bus hold control (HLDAK, HLDRQ)	P96, P97 (Port 9)	PMC9
Internal system clock (CLKOUT)	PX7 (Port X)	PMCX

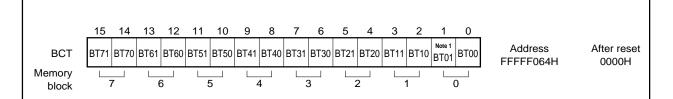
Remark When the system is reset, each bus control pin becomes unconditionally valid (however, D8 to D15 are valid only in ROM-less mode 0). For details, refer to **3.4.6 External expansion mode**.

4.3 Memory Block Function

The 64 MB memory space is divided into memory blocks of 2 MB, 4 MB, and 8 MB units. The programmable wait function and bus cycle operation mode can be independently controlled for each individual memory block.

Note The chip select signal is not output. When using this area, it is necessary to decode an address signal and generate the chip select signal. The settings for the BCT, DWC1, DWC0, and BCC registers are also valid for this area.

4.4 Bus Cycle Type Control Function


In the V850E/MS2, the following external devices can be connected directly to each memory block.

- SRAM, external ROM, external I/O
- Page ROM
- DRAM

Connected external devices are specified by the bus cycle type configuration register (BCT).

4.4.1 Bus cycle type configuration register (BCT)

This register can be read /written in 16-bit units.

Bit Position	Bit Name			Function					
15 to 0	BTn1, BTn0 (n = 7 to 0)	, ,,	Bus Cycle Type Specifies the external device connected to memory block n.						
		BTn1	BTn0	External Device Connected Directly to Memory Block n					
		0	0	SRAM, external ROM, external I/O					
		0	1	Page ROM					
		1	1 0 DRAM ^{Note 2}						
		1	1 1 Setting prohibited						

Notes 1. Be sure to set bit BT01 to 0.

2. Using the DTC register, one DRAM access type setting can be selected out of 4 types for each memory block (refer to 5.3.5 DRAM type configuration register (DTC)).

Caution Write to the BCT register after reset, and then do not change the set value. Also, do not access an external memory area other than the one for this initialization routine until the initial setting of the BCT register is complete. However, it is possible to access an external memory area whose initialization is complete.

CHAPTER 4 BUS CONTROL FUNCTION

The chip select signals ($\overline{CS0}$, $\overline{CS3}/\overline{RAS3}$ to $\overline{CS5}/\overline{RAS5}$) are output as follows in correspondence with blocks 0 to 7.

External Device Memory Block	e SRAM, External ROM, External I/O Page ROM	DRAM
Block 0	CS0	_
Block 3	CS3	RAS3
Block 4	CS4	RAS4
Block 5	CS5	RAS5

4.5 Bus Access

4.5.1 Number of access clocks

The number of basic clocks necessary for accessing each resource is as follows.

		Bus Cycl	e Configuration	Instructi	on Fetch	Operand D	ata Access
Resource (Bu	s Width)			Normal Access	Burst Access	Normal Access	Burst Access
Internal RAM	(32 bits)			1 or 2	_	1	_
Internal periph	neral I/O (1	6 bits)		_	_	3 + n	_
External SRAM, external ROM, external I/O (16/8 bits)				2 + n	_	2 + n	_
device		During DMA flyby tran	nsfer	_	_	2 + n	_
	Page R	OM (16/8 bits)		2 + n	2 + n	2 + n	2 + n
	High-sp	eed page DRAM (16/8	bits)	3 + n	2 + n	3 + n	2 + n
		During DMA flyby	During read	_	_	3 + n	2 + n
		transfer		_	_	3 + n	3 + n
	EDO DRAM (16/8 bits)				1 + n	3 + n	1 + n
		During DMA flyby	During read	_	_	3 + n	2 + n
		transfer	During write	_	_	3 + n	3 + n

Remarks 1. Unit: Clock/access

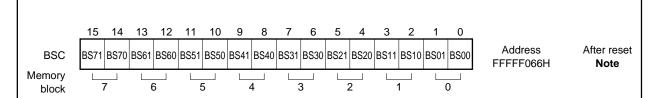
2. n: Number of wait insertions

(1) Internal peripheral I/O interface

The contents of the access to internal peripheral I/O are not output to the external bus. Therefore, during instruction fetch access, internal peripheral I/O access can be performed in parallel.

Internal peripheral I/O access is basically 3-clock access. However, on some occasions, access to internal peripheral I/O registers with timer/counter functions also involves a wait.

Internal Peripheral I/O Register	Access	Waits	Clock Cycles
CC1n0 to CC1n3,	Read	1	4
TM1n (n = 0 to 5)	Write	0/1	3/4
CM40, CM41	Read	0	3
	Write	0/1	3/4
TM40, TM41	Read	0/1	3/4
	Write	0	3
Other	Read	0	3
	Write	0	3


4.5.2 Bus sizing function

The V850E/MS2 is provided with a bus sizing function that is used to control the data bus width of each memory block.

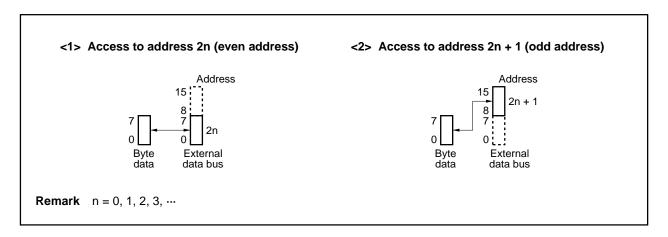
The data bus width is specified by using the bus size configuration register (BSC).

(1) Bus size configuration register (BSC)

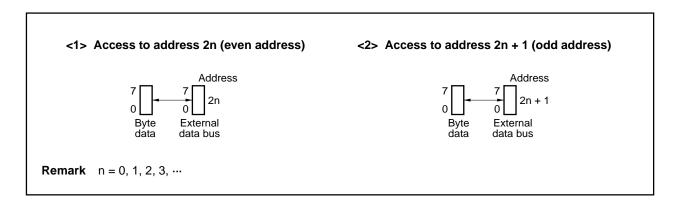
This register can be read/written in 16-bit units.

Note When in ROM-less mode 0: 5555H
When in ROM-less mode 1: 0000H

Bit Position	Bit Name			Function				
15 to 0	BSn1, BSn0 (n = 7 to 0)		Data Bus Width Sets the data bus width of memory block n.					
		BSn1	BSn0	Data Bus Width of Memory Block n				
		0	0	8 bits				
		0	1	16 bits				
		1	Optional	RFU (Reserved)				

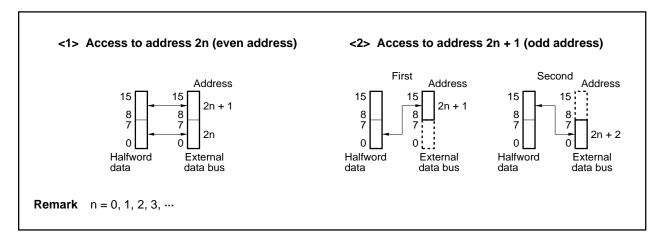

- Cautions 1. Write to the BSC register after reset, and then do not change the set value. Also, do not access an external memory area other than the one for this initialization routine until the initial setting of the BSC register is complete. However, it is possible to access an external memory area whose initialization is complete.
 - 2. The in-circuit emulator (IE-703102-MC) for the V850E/MS2 does not support 8-bit width external ROM emulation.
 - 3. When 8-bit data bus width is selected, only the write signal LWR becomes active, UWR does not become active.

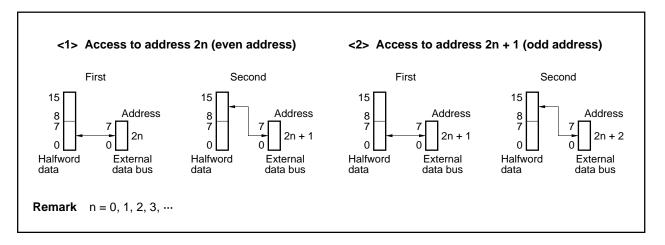
4.5.3 Bus width


V850E/MS2 carries out peripheral I/O access and external memory access in 8, 16, or 32 bits. The following shows the operation for each access. All data is accessed in order from the lower side.

(1) Byte access (8 bits)

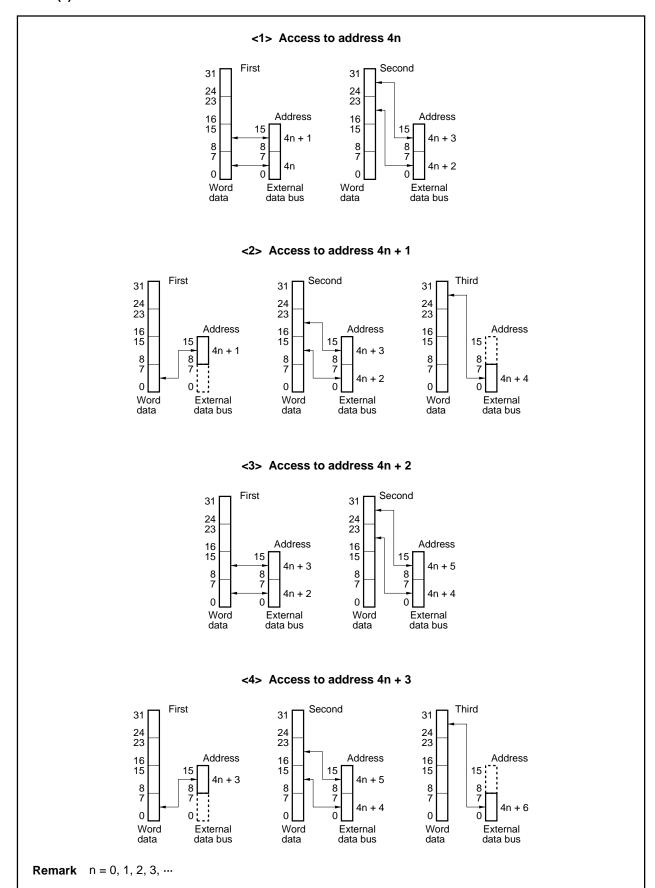
(a) When the data bus width is 16 bits

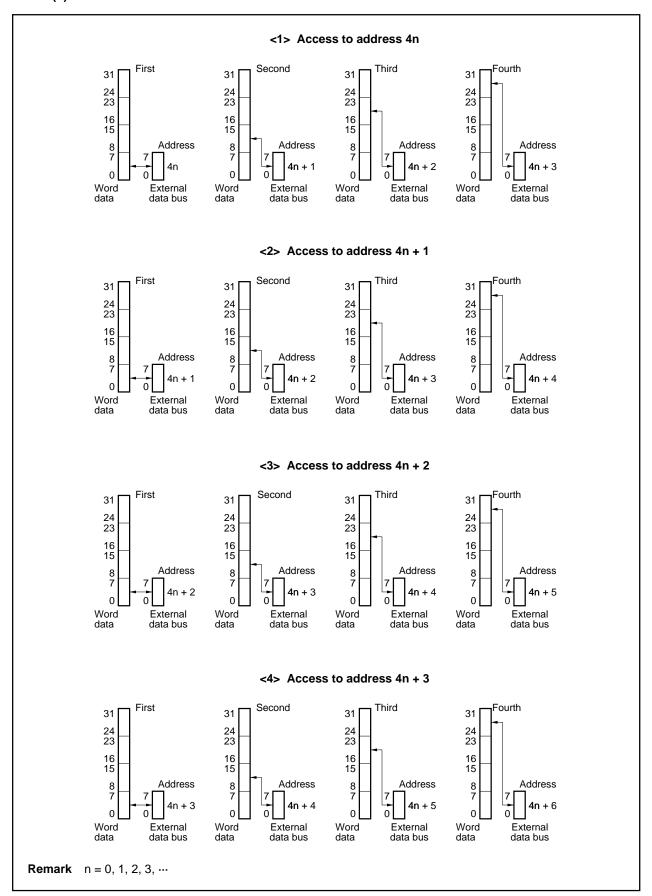

(b) When the data bus width is 8 bits


(2) Halfword access (16 bits)

In halfword access to external memory, data is exchanged as is, or accessed in the order of lower byte, then higher byte.

(a) When the data bus width is 16 bits


(b) When the data bus width is 8 bits


(3) Word access (32 bits)

In word access to external memory, data is accessed in order from the lower halfword, then the higher halfword, or in order from the lowest byte to the highest byte.

(a) When the data bus width is 16 bits

(b) When the data bus width is 8 bits

4.6 Wait Function

4.6.1 Programmable wait function

With the aim of realizing easy interfacing with low-speed memory or with I/Os, it is possible to insert up to 7 data wait states with respect to the starting bus cycle for each memory block.

The number of wait states can be set by data wait control registers 1 and 2 (DWC1, DWC2) and can be specified by program. Just after system reset, all blocks have 7 data wait states inserted.

(1) Data wait control registers 1, 2 (DWC1, DWC2)

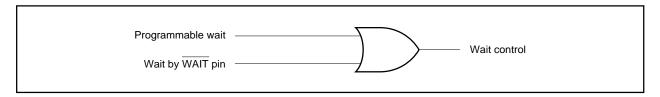
It is possible to read/write the DWC1 register in 16-bit units and the DWC2 register in 8/1-bit units.

	15 14	13 12	11 10	9 8	7 6	5 4	3 2	1 0		
DWC1	DW71 DW70	DW61 DW60	DW51 DW50	DW41 DW40	DW31 DW30	DW21 DW20	DW11 DW10	DW01 DW00	Address FFFFF060H	After reset FFFFH
Memory block	7	6	5	4	3	2	1	0		
	7	6	5	4	3	2	1	0		
DWC2	DW72	DW62	DW52	DW42	DW32	DW22	DW12	DW02	Address FFFFF06AH	After reset FFH
Memory block	7	6	5	4	3	2	1	0		

Register Name	Bit Position	Bit Name			Fu	ınction
DWC1	15 to 0	DWn1, DWn0 (n = 7 to 0)	•			nserted in memory block n. in combination.
			DWn2	DWn1	DWn0	Number of Wait States Inserted in Memory Block n
			0	0	0	0
DWC2	7 to 0	DWn2	0	0	1	1
		(n = 7 to 0)	0	1	0	2
			0	1	1	3
			1	0	0	4
			1	0	1	5
			1	1	0	6
			1	1	1	7

- Cautions 1. The internal RAM area is not subject to programmable waits and ordinarily no wait access is carried out. Neither is the internal peripheral I/O area subject to programmable wait states, with wait control performed only by each peripheral function.
 - 2. In the following cases, the settings of registers DWC1 and DWC2 are invalid (wait control is performed by each memory controller).
 - DRAM access
 - Page ROM on-page access
 - 3. Write to the DWC1 and DWC2 registers after reset, and then do not change the set values. Also, do not access an external memory area other than the one for this initialization routine until the initial setting of the DWC1 and DWC2 registers is complete. However, it is possible to access an external memory area whose initialization is complete.

4.6.2 External wait function


When an extremely slow device, I/O, or asynchronous system is connected, any number of wait states can be inserted in a bus cycle by the external wait pin (\overline{WAIT}) to synchronize with the external device.

Just as with programmable waits, access to internal RAM and internal peripheral I/O areas cannot be controlled by external waits.

Input of the external WAIT signal can be done asynchronously to CLKOUT and is sampled at the falling edge of the clock in the T1 and TW states of a bus cycle. If the setup/hold time in the sampling timing is not satisfied, a wait may or may not be inserted in the next state.

4.6.3 Relationship between programmable wait and external wait

A wait cycle is inserted as a result of an OR operation between the wait cycle specified by the set value of programmable wait and the wait cycle controlled by the $\overline{\text{WAIT}}$ pin. In other words, the number of wait cycles is determined by whichever has the most cycles.

For example, if the programmable wait is two waits, and the timing of the $\overline{\text{WAIT}}$ pin input signal is as illustrated below, three wait states will be inserted in the bus cycle.

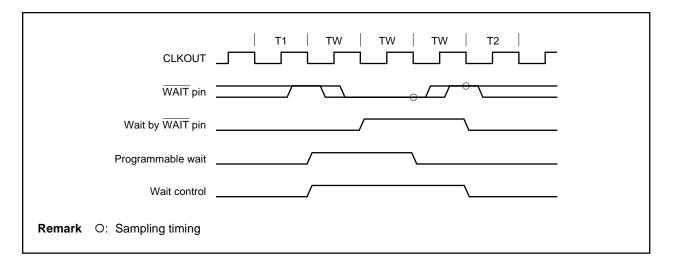


Figure 4-1. Example of Inserting Wait States

4.6.4 Bus cycles in which the wait function is valid

In the V850E/MS2, the number of waits can be specified according to the type of memory specified for each memory block.

The registers which set the bus cycles and waits in which the wait function is valid are as shown below.

Table 4-1. Bus Cycles in Which the Wait Function Is Valid (1/2)

Bus Cycle			Type of Wait	Programmable Wait Setting		Wait by
				Higher Order: Register	Number	WAIT Pin
				Lower Order: Bit	of Waits	
SRAM, external ROM, external I/O cycle			Data access wait	DWC1, DWC2	0 to 7	0
				DWxx	Vxx	
Page ROM cycle	Off-page		Data access wait	DWC1, DWC2	0 to 7	0
				DWxx		
	On-page		Data access wait	PRC	0 to 7	0
				PRW0 to PRW2		
EDO DRAM, high-	Read access	Off-page	RAS pre-charge	DRCn	0 to 3	×
speed page DRAM				RPC0n, RPC1n		
cycle			Row address hold	DRCn	0 to 3	×
				RHC0n, RHC1n		
			Data access wait	DRCn	0 to 3	Note
				DAC0n, DAC1n		
		On-page	CAS pre-charge	DRCn	0 to 3	×
				CPC0n, CPC1n		
			Data access wait	DRCn	0 to 3	×
				DAC0n, DAC1n		
	Write access	Off-page	RAS pre-charge	DRCn	0 to 3	×
				RPC0n, RPC1n		
			Row address hold	DRCn	0 to 3	Note
				RHC0n, RHC1n		
			Data access wait	DRCn	0 to 3	×
				DAC0n, DAC1n		
		On-page	CAS pre-charge	DRCn	0 to 3	×
				CPC0n, CPC1n		
			Data access wait	DRCn	0 to 3	×
				DAC0n, DAC1n		
CBR refresh cycle			RAS pre-charge	RWC	0 to 3	×
				RRW0, RRW1		
			RAS active width	RWC	0 to 7	×
				RCW0 to RCW2		

Note EDO DRAM cycle: \times High-speed page DRAM cycle: O

Remarks 1. O: Valid ×: Invalid

2. n = 0 to 3

xx = 00 to 02, 10 to 12, 20 to 22, 30 to 32, 40 to 42, 50 to 52, 60 to 62, 70 to 72

Table 4-1. Bus Cycles in Which the Wait Function Is Valid (2/2)

Bus Cycle		Type of Wa	ait	Programmable Wait Setting		Wait by	
•					Higher Order: Register	Number	WAIT Pir
					Lower Order: Bit	of Waits	
CBR self-refresh cycle			RAS pre-char	ge	RWC	0 to 3	×
					RRW0, RRW1		
			RAS active width		RWC	0 to 7	×
					RCW0 to RCW2		
			Self-refresh		RWC	0 to 14	×
			release width		SRW0 to SRW2		
DMA flyby transfer	External I/O ↔ SRAM		Data access wait	TW	DWC1, DWC2	0 to 7	0
cycle					DWxx		
				TF	FDW	0, 1	×
					FDWm		
	$DRAM \to$	Off-page	RAS pre-char	ge	DRCn	0 to 3	×
	External I/O				RPC0n, RPC1n		
			Row address	hold	DRCn	0 to 3	×
					RHC0n, RHC1n		
			Data access	TW	DRCn	0 to 3	0
			wait		DAC0n, DAC1n		
				TF	FDW	0, 1	×
					FDWm		
		On-page	CAS pre-char	ge	DRCn	0 to 3	×
					CPC0n, CPC1n		
			Data access	TW	DRCn	0 to 3	0
			wait		DAC0n, DAC1n	0, 1	×
				TF	FDW		
					FDWm		
	External I/O	Off-page	RAS pre-charge		DRCn	0 to 3	×
	\rightarrow DRAM				RPC0n, RPC1n		
			Row address hold		DRCn	0 to 3	0
					RHC0n, RHC1n		
			Data access	TW	DRCn	0 to 3	×
			wait		DAC0n, DAC1n		
				TF	FDW	0, 1	×
					FDWm		
		On-page	CAS pre-charge		DRCn	1 to 3	0
					CPC0n, CPC1n		
			Data access	TW	DRCn	0 to 3	×
			wait		DAC0n, DAC1n		
				TF	FDW	0, 1	×
					FDWm		

Remarks 1. O: Valid x: Invalid

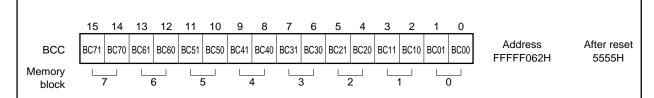
2. n = 0 to 3

m = 0 to 7

xx = 00 to 02, 10 to 12, 20 to 22, 30 to 32, 40 to 42, 50 to 52, 60 to 62, 70 to 72

4.7 Idle State Insertion Function

To facilitate interfacing with low-speed memory devices, an idle state (TI) can be inserted into the current bus cycle after the T2 state in order to meet the data output float delay time (tDF) on memory read accesses for each memory block. The bus cycle following the T2 state starts after the idle state is inserted.

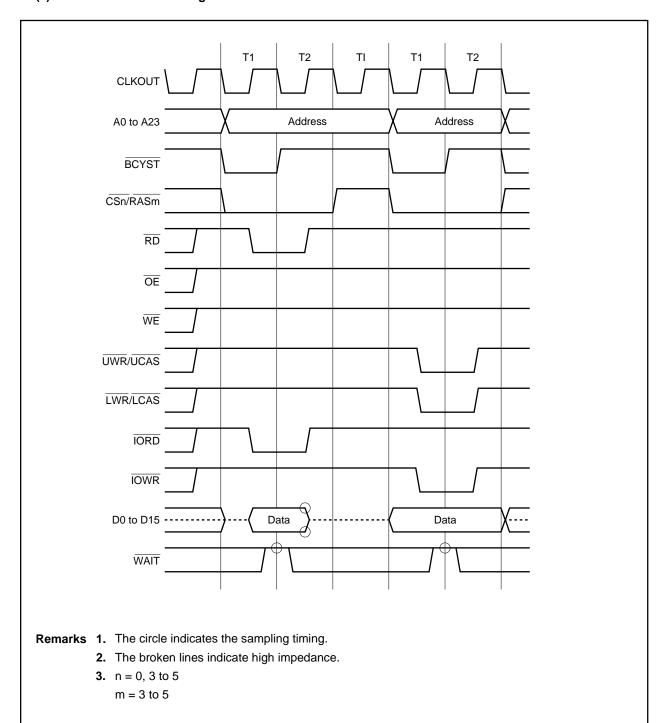

Specifying insertion of the idle state is programmable by setting the bus cycle control register (BCC).

Immediately after the system reset is cancelled, idle state insertion is automatically programmed for all memory blocks.

The idle state is inserted only if the read cycle is followed by a write cycle.

(1) Bus cycle control register (BCC)

This register can be read/written in 16-bit units.



Bit Position	Bit Name	Function			
15 to 0	BCn1, BCn0 (n = 7 to 0)	Bus Cycle Specifies insertion of an idle state in memory block n.			
		BCn1 BCn0 Idle State in Memory Block n			
		0	0	Not inserted	
		0	1	Inserted	
		1	Optional	RFU (Reserved)	

Cautions 1. The internal RAM area and internal peripheral I/O area are not subject to insertion of an idle state.

2. Write to the BCC register after reset, and then do not change the set value. Also, do not access an external memory area other than the one for this initialization routine until the initial setting of the BCC register is complete. However, it is possible to access an external memory area whose initialization is complete.

(2) Idle state insertion timing

4.8 Bus Hold Function

4.8.1 Outline of function

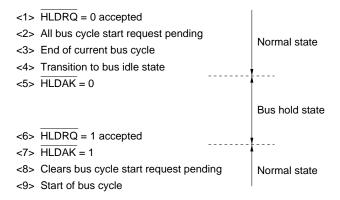
If pins P96 and P97 are specified in the control mode, the HLDAK and HLDRQ functions become valid.

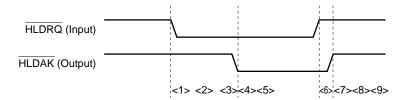
If it is determined that the $\overline{\text{HLDRQ}}$ pin has become active (low level) as a bus acquisition request from another bus master, the external address/data bus and each strobe pin are shifted to high impedance and released (bus hold state). If the $\overline{\text{HLDRQ}}$ pin becomes inactive (high level) and the bus acquisition request is canceled, driving of these pins begins again.

During the bus hold interval, internal operations in the V850E/MS2 continue until there is external memory access.

The bus hold state can be known by the HLDAK pin becoming active (low level).

In a multiprocessor configuration, etc., a system that has multiple bus masters can be configured.

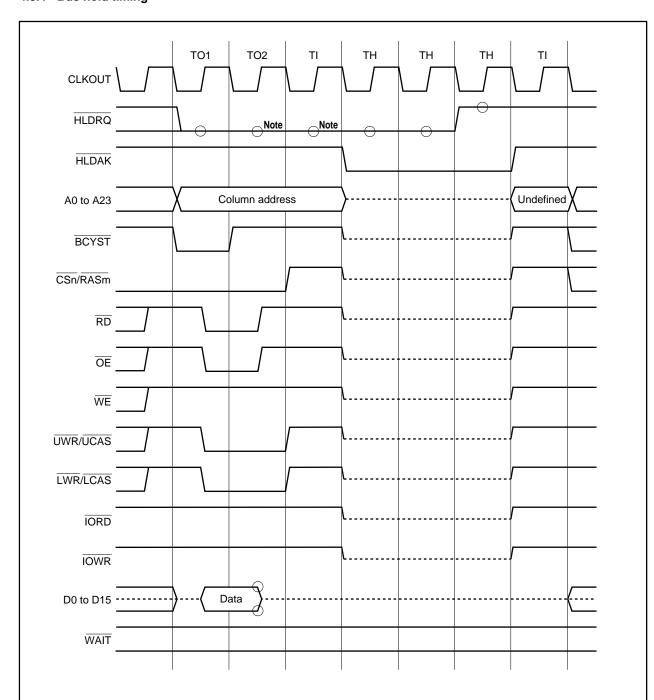

Note that bus hold requests are not received with the following timings.


Caution The HLDRQ function is invalid during the reset period. When the RESET pin and HLDRQ pin are made active simultaneously, and then the RESET pin is made inactive, the HLDAK pin becomes active after a one-clock idle cycle has been inserted. Note that for a power-on reset, even if the RESET pin and HLDRQ pin are made active simultaneously, and then the RESET pin is made inactive, the HLDAK pin does not become active. When a bus master other than the V850E/MS2 is externally connected, execute arbitration at the moment of power-on using the RESET signal.

State	Data Bus Width	Access Configuration	Timing in Which Bus Hold Request Will Not Be Received	
CPU bus lock	16 bits	Word access to even address	Between 1st and 2nd times	
		Word access to odd address	Between 1st and 2nd times	
			Between 2nd and 3rd times	
		Halfword access to odd address	Between 1st and 2nd times	
	8 bits	Word access	Between 1st and 2nd times	
			Between 2nd and 3rd times	
			Between 3rd and 4th times	
		Halfword access	Between 1st and 2nd times	
Read modify write access to bit operation instruction	_	_	Between read access and write access	

4.8.2 Bus hold procedure

The procedure of the bus hold function is illustrated below.



4.8.3 Operation in power save mode

In the STOP or IDLE mode, the internal system clock is stopped. Consequently, the bus hold state is not accepted and set even if the $\overline{\text{HLDRQ}}$ pin becomes active.

In the HALT mode, the HLDAK pin immediately becomes active when the HLDRQ pin becomes active, and the bus hold state is set. When the HLDRQ pin becomes inactive, the HLDAK pin becomes inactive. As a result, the bus hold state is cleared, and the HALT mode is set again.

4.8.4 Bus hold timing

Note If HLDRQ signal is inactive (high level) at this sampling timing, bus hold state is not entered.

Remarks 1. The circle indicates the sampling timing.

- 2. The broken lines indicate high impedance.
- 3. n = 0, 3 to 5m = 3 to 5
- 4. Timing from DRAM access to bus hold state.

4.9 Bus Priority Order

There are five external bus cycles: bus hold, instruction fetch, operand data access, DMA cycle and refresh cycle. Bus hold has the highest priority, then the refresh cycle, DMA cycle, instruction fetch and operand data access, in descending order.

Between read access and write access in read modify write access, an instruction fetch may be inserted. Also, between bus access and bus access during CPU bus lock, an instruction fetch may be inserted.

Priority Order External Bus Cycle Bus Master

High Bus hold External device

Refresh cycle DRAM controller

DMA cycle DMA controller

Instruction fetch CPU

Operand data access CPU

Table 4-2. Bus Priority Order

4.10 Boundary Operation Conditions

4.10.1 Program space

- (1) Branching to the peripheral I/O area or successive fetch from the internal RAM area to the internal peripheral I/O area is prohibited. In terms of hardware, fetching the NOP op code continues, and fetching from the external memory is not performed.
- (2) If a branch instruction exists at the upper limit of the internal RAM area, a pre-fetch operation (invalid fetch) that straddles over the internal peripheral I/O area does not occur when instruction fetch is performed.
- (3) In burst fetch mode, if an instruction fetch is performed for contiguous memory blocks, the burst fetch is terminated at the upper limit of a block, and the start-up cycle is started at the lower limit of the next block.
- (4) Burst fetch is valid only in the external memory area. In memory block 7, it is terminated when the internal address count value has reached the upper limit of the external memory area.

4.10.2 Data space

The V850E/MS2 incorporates an address misalign function.

Through this function, regardless of the data format (word data, halfword data), data can be placed in all addresses. However, in the case of word data and halfword data, if data is not subject to boundary alignment, the bus cycle will be generated at least 2 times and bus efficiency will drop.

(1) In the case of halfword length data access

When the address's lowest bit is a 1, the byte length bus cycle will be generated 2 times.

(2) In the case of word length data access

- (a) When the address's lowest bit is a 1, bus cycles will be generated in the order of byte length bus cycle, halfword length bus cycle, and byte length bus cycle.
- (b) When the address's lower 2 bits are 10, the halfword length bus cycle will be generated 2 times.

[MEMO]

CHAPTER 5 MEMORY ACCESS CONTROL FUNCTION

5.1 SRAM, External ROM, External I/O Interface

5.1.1 SRAM connections

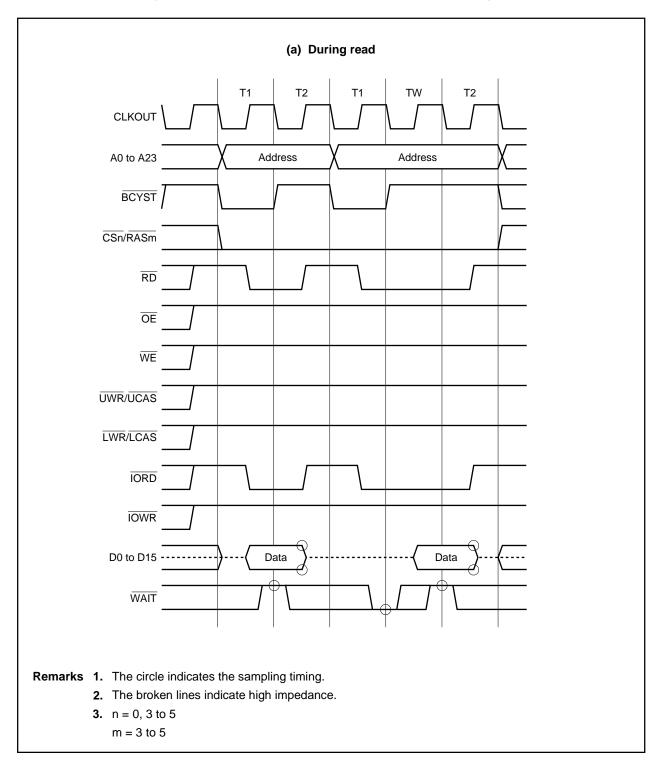

An example of connection to SRAM is shown below.

Figure 5-1. Example of Connection to SRAM

5.1.2 SRAM, external ROM, external I/O access

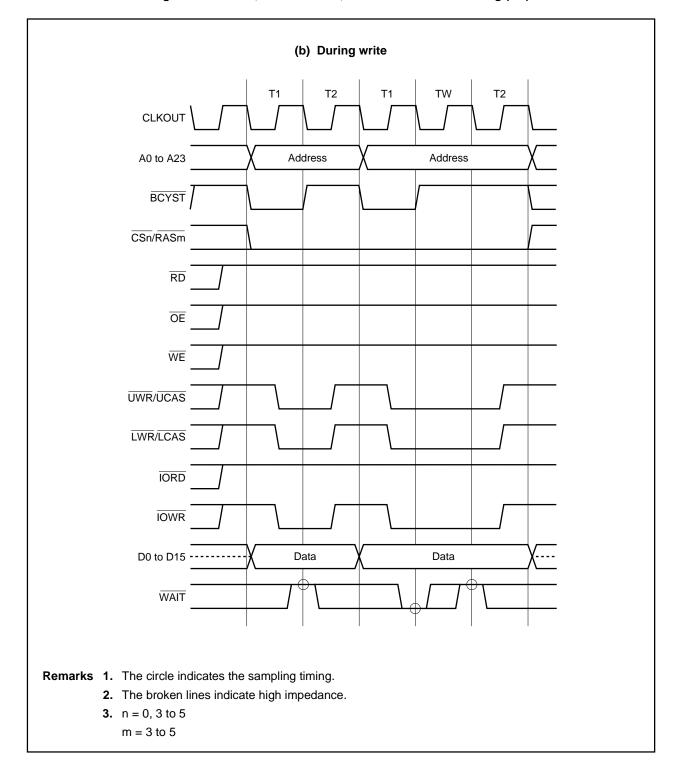


Figure 5-2. SRAM, External ROM, External I/O Access Timing (2/4)

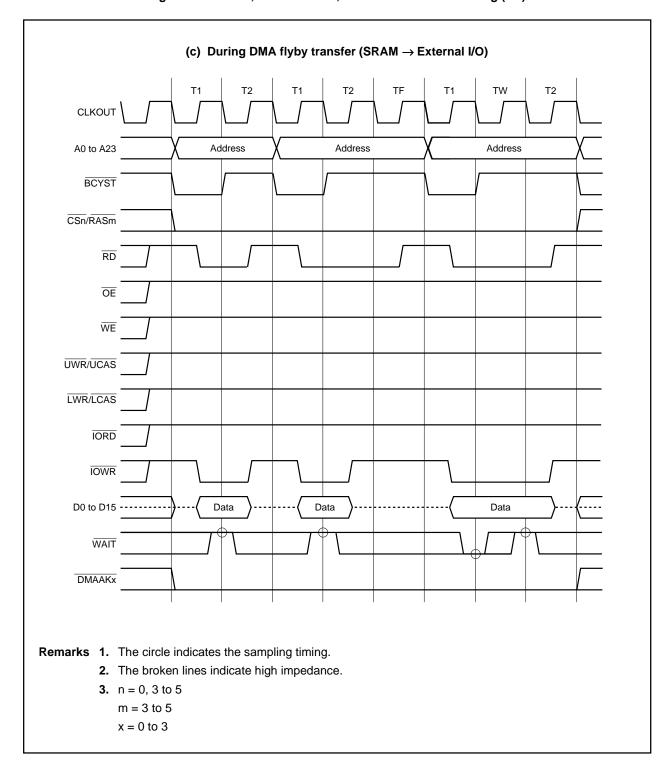


Figure 5-2. SRAM, External ROM, External I/O Access Timing (3/4)

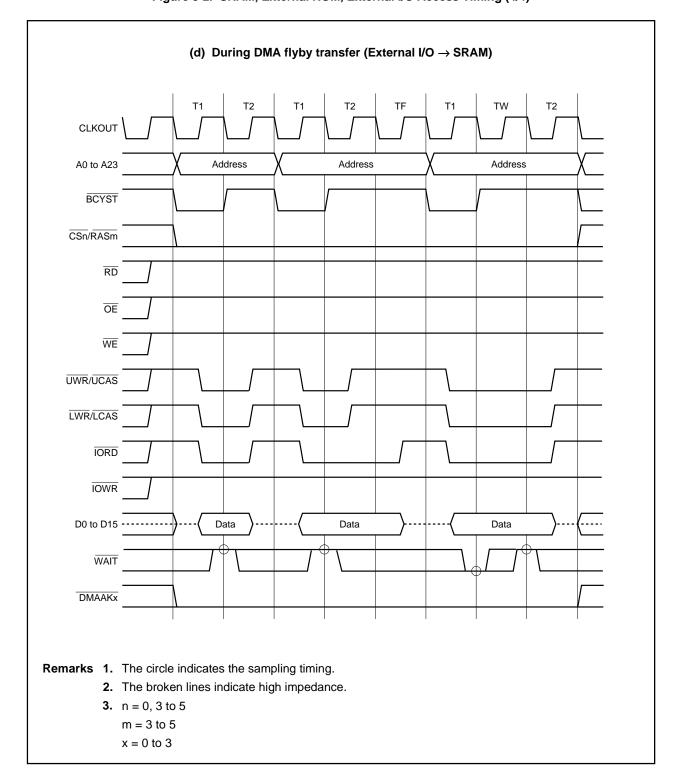
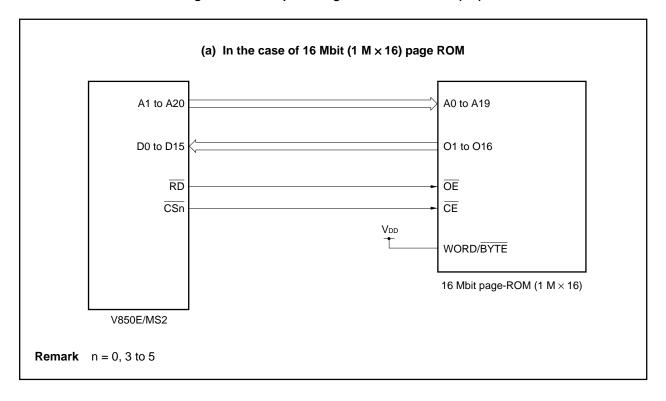


Figure 5-2. SRAM, External ROM, External I/O Access Timing (4/4)

5.2 Page ROM Controller (ROMC)

The page ROM controller (ROMC) is for access to ROM (page ROM) with a page access function.

Comparison of addresses with the immediately previous bus cycle is carried out and wait control for normal access (off-page) and page access (on-page) is executed. This controller is capable of handling page widths of from 8 to 64 bytes.


5.2.1 Features

- It can connect directly to 8-bit/16-bit page ROM.
- When the bus width is 16 bits, it can handle 4/8/16/32-word page access.
 When the bus width is 8 bits, it can handle 8/16/32/64-word page access.
- Individual wait settings (0 to 7 waits) for off-page and on-page are possible.

5.2.2 Page ROM connections

Examples of page ROM connections are shown below.

Figure 5-3. Example of Page ROM Connections (1/2)

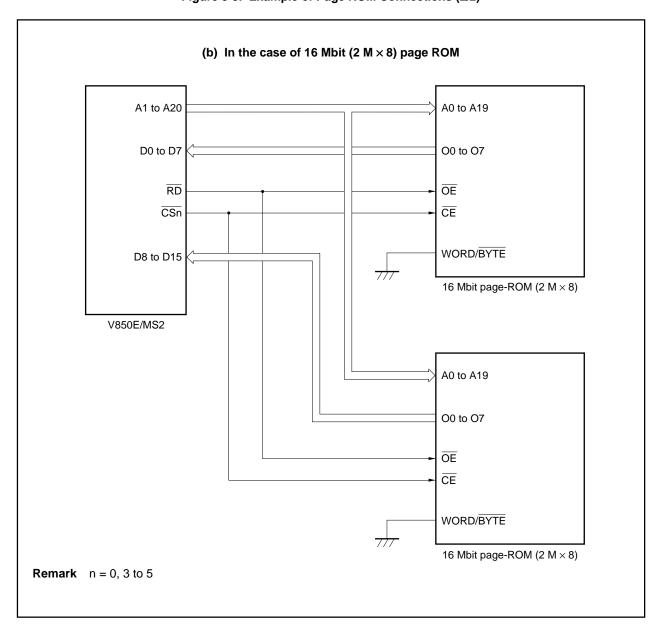


Figure 5-3. Example of Page ROM Connections (2/2)

5.2.3 On-page/off-page judgment

Whether a page ROM cycle is on-page or off-page is judged by latching the address of the previous cycle and comparing it with the address of the current cycle.

Using the page ROM configuration register (PRC), one of the addresses (A3 to A5) is set as the masking address (no comparison is made) according to the configuration of the connected page ROM and the number of continuously readable bits.

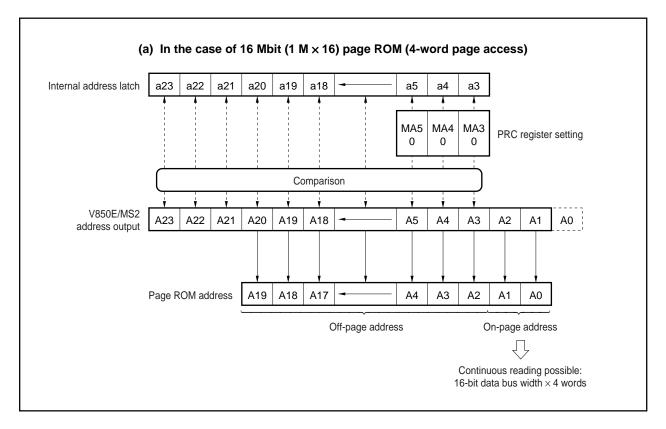


Figure 5-4. On-Page/Off-Page Judgment for Page ROM Connection (1/2)

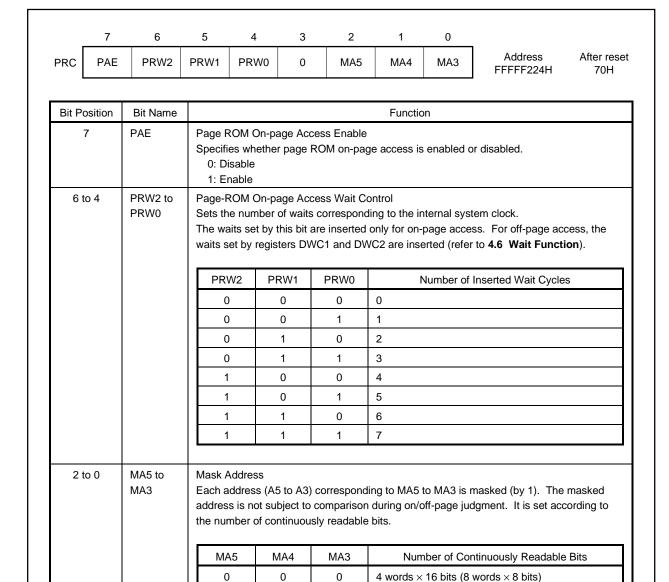

(b) In the case of 16 Mbit (2 M \times 8) page ROM (8-word page access) Internal address latch a23 a22 a21 a20 a19 a18 а5 a4 аЗ MA5 MA4 MA3 PRC register setting 0 0 Comparison V850E/MS2 A22 A21 A19 A18 Α5 Α4 Α1 A23 A20 АЗ Α2 Α0 address output Page ROM address A19 A18 A17 A4 АЗ A2 A1 A0 A-1 Off-page address On-page address Continuous reading possible: 8-bit data bus width × 8 words (c) In the case of 16 Mbit (1 M × 16) Page ROM (8-word page access) Internal address latch a23 a22 a21 a20 a19 a18 а5 a4 а3 MA5 MA4 MA3 PRC register setting 0 Comparison V850E/MS2 A19 A18 A22 A21 A20 Α5 A4 АЗ A2 Α1 A0 address output Page ROM address A19 A18 A17 Α4 АЗ A2 Α1 A0 Off-page address On-page address Continuous reading possible: 16-bit data bus width \times 8 words

Figure 5-4. On-Page/Off-Page Judgment for Page ROM Connection (2/2)

5.2.4 Page ROM configuration register (PRC)

This specifies whether page ROM on-page access is enabled or disabled. Also, if on-page access is enabled, the masked addresses (no comparison is made) out of the addresses (A3 to A5) corresponding to the configuration of the connected page ROM and the number of bits that can be read continuously, as well as the number of waits corresponding to the internal system clock, are set.

This register can be read/written in 8- or 1-bit units.

Caution Write to the PRC register after reset, and then do not change the set value. Also, do not access an external memory area other than the one for this initialization routine until the initial setting of the PRC register is complete. However, it is possible to access an external memory area whose initialization is complete.

1

1

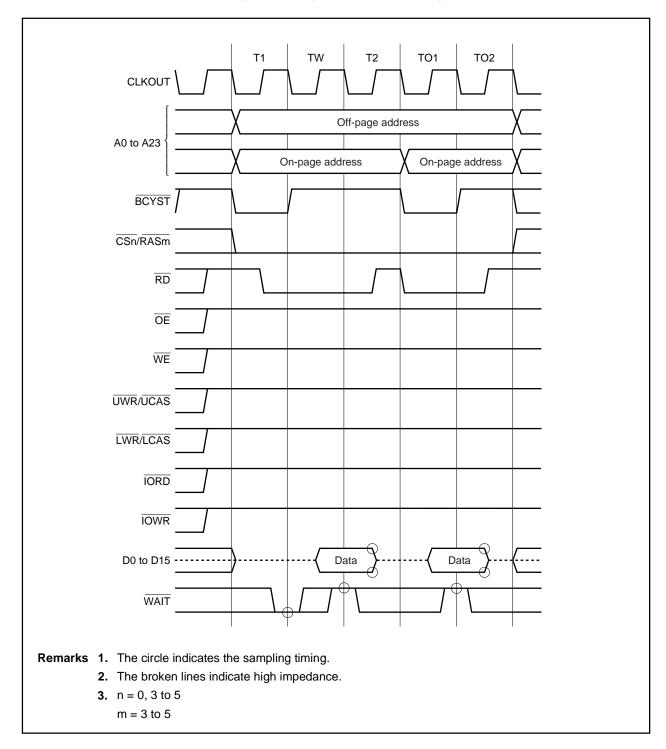
8 words \times 16 bits (16 words \times 8 bits)

16 words \times 16 bits (32 words \times 8 bits)

32 words \times 16 bits (64 words \times 8 bits)

0

0

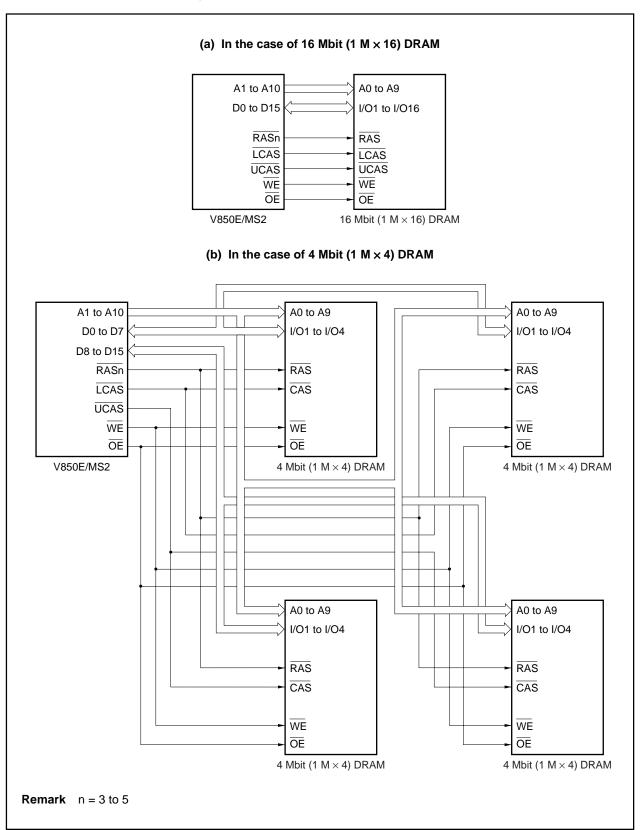

0

1

1

5.2.5 Page ROM access

5.3 DRAM Controller


5.3.1 Features

- O Generates the RAS, LCAS and UCAS signals.
- O Can be connected directly to high-speed page DRAM and EDO DRAM.
- O Supports the RAS hold mode.
- O 4 types of DRAM can be assigned to 8 memory block spaces.
- O Can handle 2CAS type DRAM
- O Can be switched between row and column address multiplex widths.
- O Waits (0 to 3 waits) can be inserted at the following timings.
 - Row address precharge wait
 - Row address hold wait
 - Data access wait
 - Column address precharge wait
- O Supports CBR refresh and CBR self-refresh.

5.3.2 DRAM connections

Examples of connections to DRAM are shown below.

Figure 5-6. Examples of Connections to DRAM

5.3.3 Address multiplex function

Depending on the value of the DAW0n and DAW1n bits in DRAM configuration register n (DRCn), the row address, column address output in the DRAM cycle is multiplexed as shown in Figure 5-7 (n = 0 to 3). In Figure 5-7, a0 to a23 show the addresses output from the CPU and A0 to A23 show the V850E/MS2's address pins. For example, when DAW0n and DAW1n = 11, it indicates that a12 to a22 are output from the address pins (A1 to A11) as row addresses and a1 to a11 are output as column addresses.

Table 5-1 shows the relationship between connectable DRAM and the address multiplex width. Depending on the DRAM being connected, DRAM space is from 128 KB to 8 MB.

Address pin A23 to A18 A17 A16 A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 Row address a23 to a18 a17 a16 a15 a25 a24 a23 a22 a21 a20 a19 a18 a17 a16 a15 a14 a13 a12 a11 (DAW1n, DAW0n = 11) Row address a23 to a18 a17 a16 a25 a24 a23 a22 a21 a20 a19 a18 a17 a16 a15 a14 a13 a12 a11 a10 (DAW1n, DAW0n = 10)Row address a23 to a18| a17| a25| a24| a23| a22| a21| a20| a19| a18| a17| a16| a15| a14| a13| a12| a11| a10| a9 (DAW1n, DAW0n = 01)Row address a23 to a18 a25 a24 a23 a22 a21 a20 a19 a18 a17 a16 a15 a14 a13 a12 a11 a10 а9 а8 (DAW1n, DAW0n = 00)a23 to a18 a17 a16 a15 a14 a13 a12 a11 a10 a8 а7 a6 аЗ a9 а5 a4 a2 a1 a0 Column address

Figure 5-7. Row Address/Column Address Output

Table 5-1. Example of DRAM and Address Multiplex Width

Address		DRAM Capacity (Bits) and Configuration												
Multiplex Width	256 K	1 M	4 M	16 M	64 M	(Bytes)								
8 bits	64 K×4	_	_	_	_	128 K								
9 bits	_	256 K × 4	256 K × 16	_	_	512 K								
	_	_	512 K × 8	_	_	1 M								
	_	_	_	_	4 M × 16	8 M								
10 bits	_	_	1 M×4	1 M×16	_	2 M								
	_	_	_	2 M × 8	_	4 M								
	_	_	_	_	4 M × 16	8 M								
11 bits	_	_	_	4 M × 4	_	8 M								

5.3.4 DRAM configuration registers 0 to 3 (DRC0 to DRC3)

This sets the type of DRAM to be connected.

These registers can be read/written in 16-bit units.

Caution If the object of access is a DRAM area, the wait set in registers DWC1 and DWC2 becomes invalid. In this case, waits are controlled by registers DRC0 to DRC3.

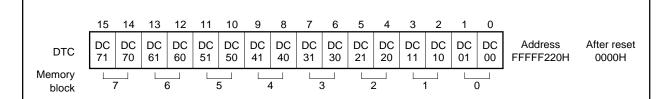
(1/3)

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
DRC0	PAE 10	PAE 00	RPC 10	RPC 00	RHC 10	RHC 00	DAC 10	DAC 00	CPC 10	CPC 00	0	RHD 0	0	0	DAW 10	DAW 00	Address FFFFF200H	After res 3FC1F
DRC1	PAE 11	PAE 01	RPC 11	RPC 01	RHC 11	RHC 01	DAC 11	DAC 01	CPC 11	CPC 01	0	RHD 1	0	0	DAW 11	DAW 01	FFFFF202H	3FC1ŀ
DRC2	PAE 12	PAE 02	RPC 12	RPC 02	RHC 12	RHC 02	DAC 12	DAC 02	CPC 12	CPC 02	0	RHD 2	0	0	DAW 12	DAW 02	FFFFF204H	3FC1F
DRC3	PAE 13	PAE 03	RPC 13	RPC 03	RHC 13	RHC 03	DAC 13	DAC 03	CPC 13	CPC 03	0	RHD 3	0	0	DAW 13	DAW 03	FFFFF206H	3FC1I
Bit F	Positio	n	Bit N	ame									Funct	tion				
15	5, 14		PAE1r PAE0r	•				-		s Mod ccess								
						PA	E1n		PAE0)n					Acce	ess Mo	ode	
							0		0		On-	page a	acces	s disa	abled.			
							0		1		Higl	n-spee	d pag	ge DF	RAM			
							1		0		EDO	D DRA	М					
							1		1		Sett	ing pro	ohibit	ed				
1;	3, 12		RPC1ı RPC0ı			ow A	ddres		charg	e Con f wait	itrol				v addr	ess pi	echarge time.	
1:	3, 12					ow A	ddres	e num	charg	f wait	itrol		rted a	ıs rov			recharge time. tes Inserted	
1;	3, 12					ow A pecifi RP	ddres es the	e num	charg ber o	f wait	itrol		rted a	ıs rov				
1:	3, 12					ow A pecifi RP	ddres es the C1n	e num	charg ber of	f wait	itrol state		rted a	ıs rov				
1;	3, 12					ow A pecifi RP	ddres es the C1n	e num	charg ber of RPC0	f wait	state		rted a	ıs rov				

(2/3)

Bit Position	Bit Name			Function
11, 10	RHC1n, RHC0n	Row Address Specifies the		ntrol it states inserted as row address hold time.
		RHC1n	RHC0n	Number of Wait States Inserted
		0	0	0
		0	1	1
		1	0	2
		1	1	3
9, 8	DAC1n, DAC0n	Data Access I Specifies the	-	e Wait Control it states inserted as data access time in DRAM access.
		DAC1n	DAC0n	Number of Wait States Inserted
		0	0	0
		0	1	1
		1	0	2
		1	1	3
7, 6	CPC1n, CPC0n	Column Addre Specifies the	_	e Control it states inserted as column address precharge time.
		CPC1n	CPC0n	Number of Wait States Inserted
		0	0	O ^{Note}
		0	1	1
		1	0	2
		1	1	3
		Note 1 wait is	s inserted duri	ng DRAM write access in DMA flyby transfer.
4	RHDn	another space (low level) dur state. In this v of the other sp	hold mode. RAM during of the midway, the time the way, if access	n-page operation is not continuous, and access enters RASm signal (m = 3 to 5) is maintained in the active state ne other space is being accessed in the RAS hold mode continues in the same DRAM row address following access operation can be continued.

(3/3)

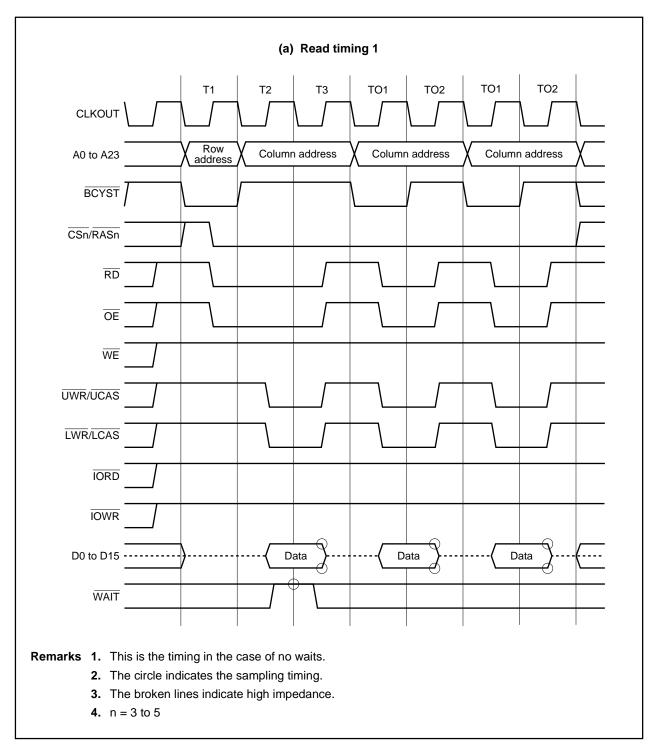

Bit Position	Bit Name	Function												
1, 0	DAW1n, DAW0n	DRAM Addres	•	idth Control lex width (refer to 5.3.3 Address multiplex function).										
		DAW1n	DAW0n	Address Multiplex Width										
		0	0	8 bits										
		0	1	9 bits										
		1	0	10 bits										
		1	1	11 bits										

Caution Write to the DRCn register after reset, and then do not change the set value. Also, do not access an external memory area other than the one for this initialization routine until the initial setting of the DRCn register is complete. However, it is possible to access an external memory area whose initialization is complete.

5.3.5 DRAM type configuration register (DTC)

This controls the relationship between DRAM configuration register n (DRCn) and memory block m (n = 0 to 3, m = 0 to 7).

These registers can be read/written in 16-bit units.


Bit Position	Bit Name			Function
15 to 0	DCm1, DCm0	-	DRAM configu	uration register n (DRCn) corresponding to memory block m. ning if the memory block m is not specified in the DRAM
		DCm1	DCm0	DRAM Configuration Register n (DRCn) Corresponding to Memory Block m
		0	0	DRC0
		0	1	DRC1
		1	0	DRC2
		1	1	DRC3

Caution Write to the DTC register after reset, and then do not change the set value. Also, do not access an external memory area other than the one for this initialization routine until the initial setting of the DTC register is complete. However, it is possible to access an external memory area whose initialization is complete.

Remark n = 0 to 3m = 3 to 5

5.3.6 DRAM access

Figure 5-8. High-Speed Page DRAM Access Timing (1/4)

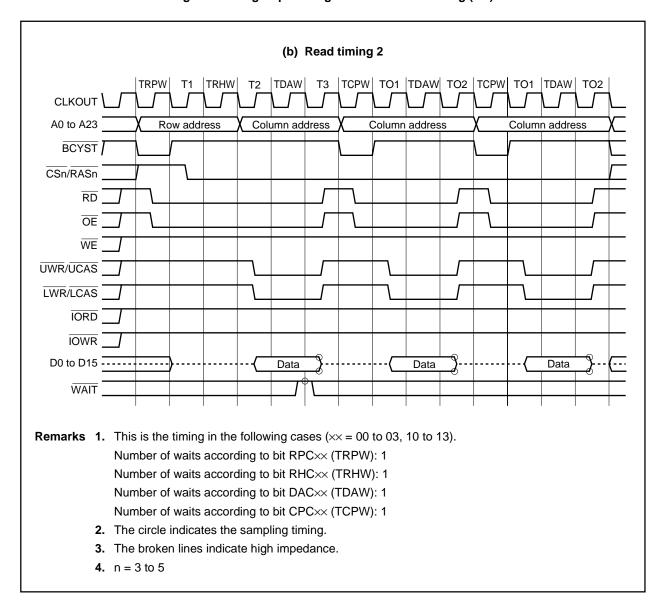


Figure 5-8. High-Speed Page DRAM Access Timing (2/4)

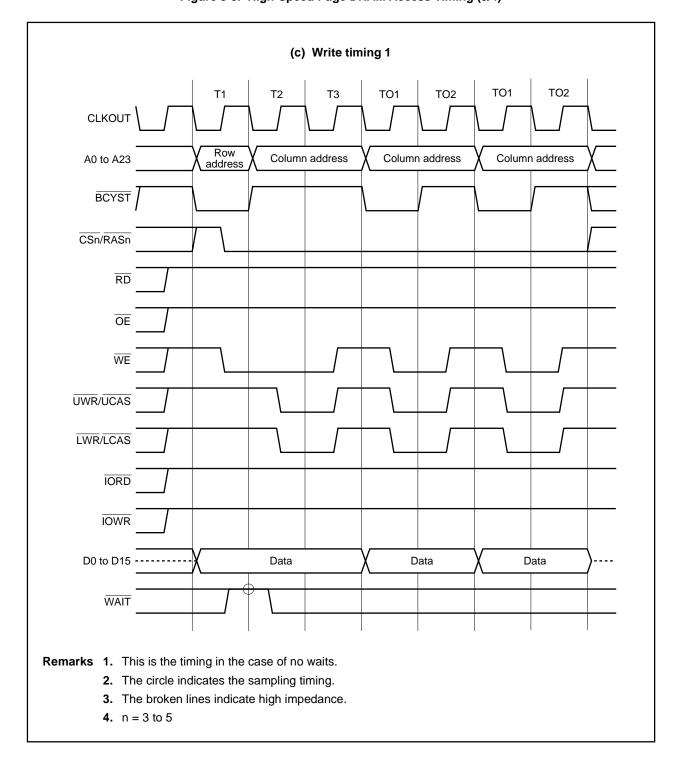


Figure 5-8. High-Speed Page DRAM Access Timing (3/4)

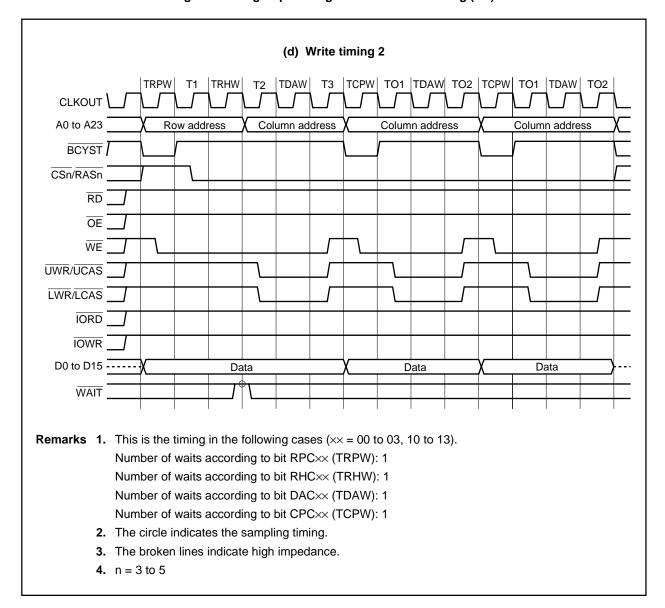


Figure 5-8. High-Speed Page DRAM Access Timing (4/4)

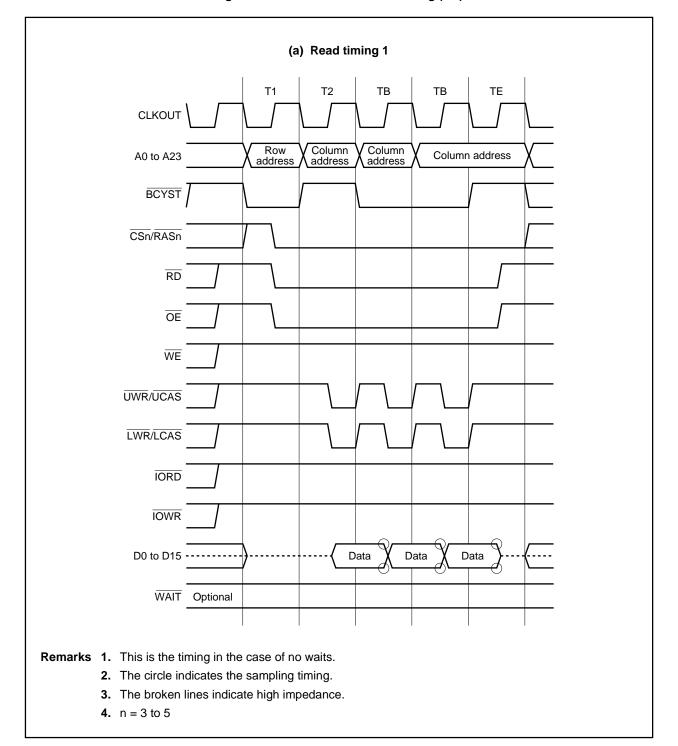


Figure 5-9. EDO DRAM Access Timing (1/4)

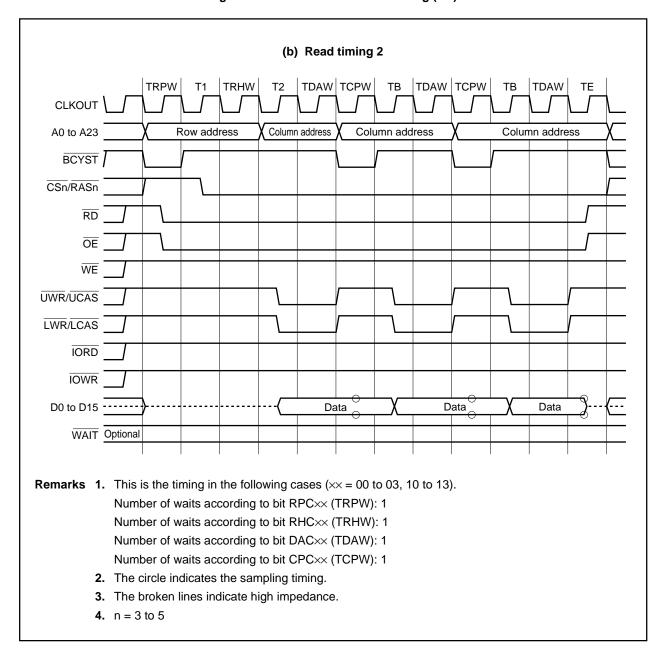


Figure 5-9. EDO DRAM Access Timing (2/4)

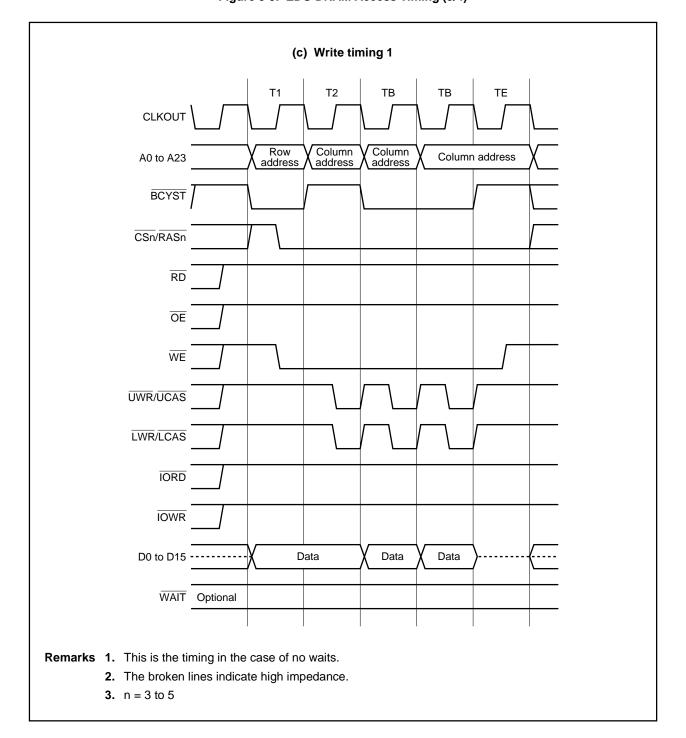


Figure 5-9. EDO DRAM Access Timing (3/4)

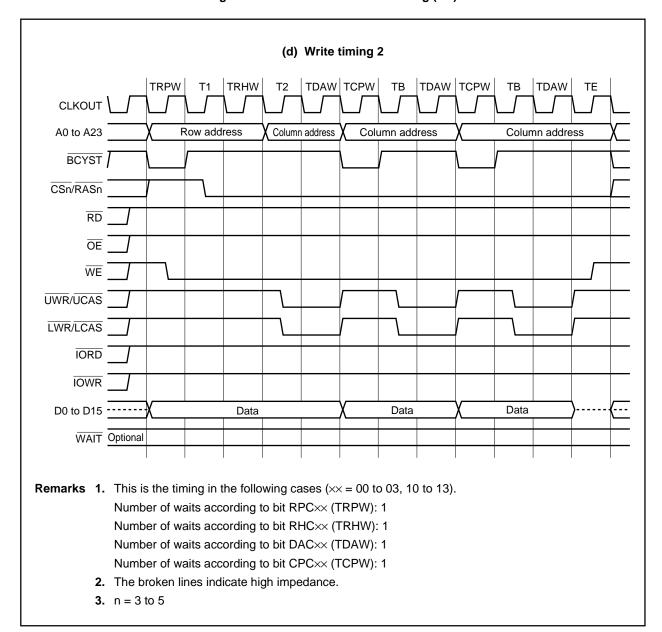
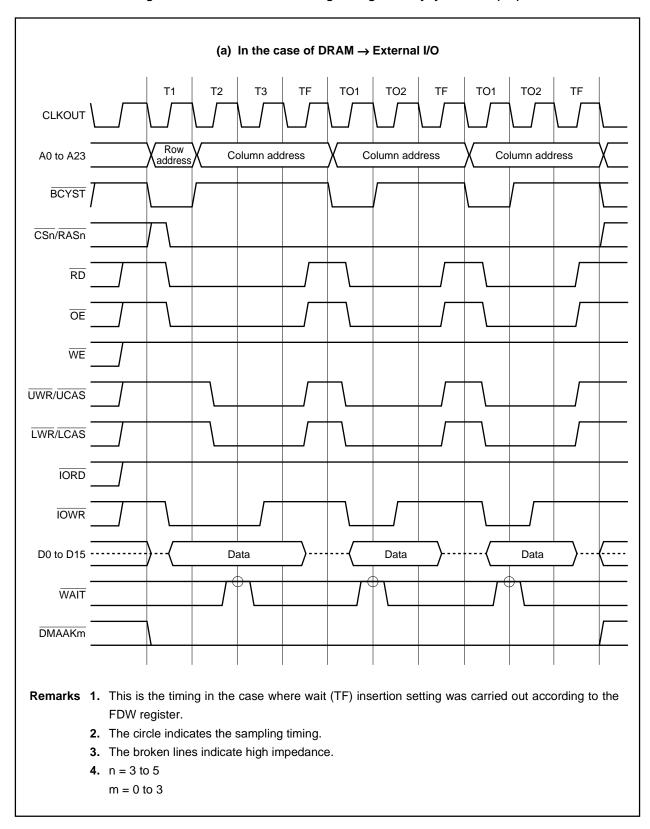



Figure 5-9. EDO DRAM Access Timing (4/4)

5.3.7 DRAM access during DMA flyby transfer

Figure 5-10. DRAM Access Timing During DMA Flyby Transfer (1/2)

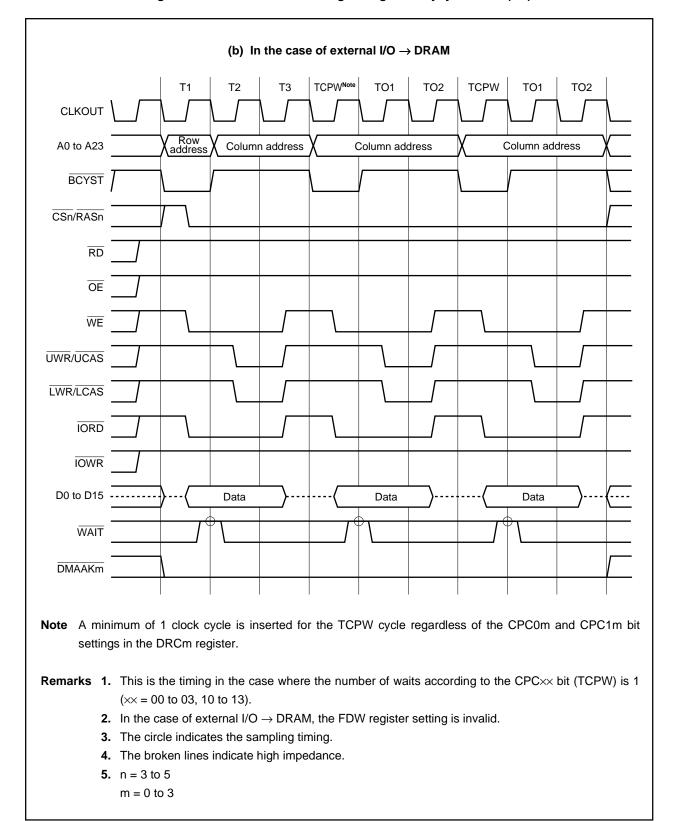


Figure 5-10. DRAM Access Timing During DMA Flyby Transfer (2/2)

5.3.8 Refresh control function

V850E/MS2 can create a CBR (CAS-before-RAS) refresh cycle. The refresh cycle is set with the refresh control register (RFC).

When another bus master occupies the external bus, the DRAM controller cannot occupy the external bus. If another bus master occupies the external bus, therefore, release the bus in accordance with the refresh interval.

During the refresh interval, the address bus maintains the state it was in just before the refresh cycle.

(1) Refresh control registers 0 to 3 (RFC0 to RFC3)

These set whether refresh is enabled or disabled, and the refresh interval. The refresh interval is determined by the following calculation formula.

Refresh interval (μ s) = Refresh count clock (TRCY) × Interval factor

The refresh count clock and interval factor are determined by the RENn bit and Rln bit, respectively, of the RFCn register.

Note that n corresponds to the register number (0 to 3) of DRAM configuration registers 0 to 3 (DRC0 to DRC3).

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
RFC0	REN 0	0	0	0	0	0	RCC 01	RCC 00	0	0	RI 05	RI 04	RI 03	RI 02	RI 01	RI 00	Address FFFFF210H	After reset 0000H
RFC1	REN 1	0	0	0	0	0	RCC 11	RCC 10	0	0	RI 15	RI 14	RI 13	RI 12	RI 11	RI 10	FFFFF212H	0000H
RFC2	REN 2	0	0	0	0	0	RCC 21	RCC 20	0	0	RI 25	RI 24	RI 23	RI 22	RI 21	RI 20	FFFFF214H	0000H
RFC3	REN 3	0	0	0	0	0	RCC 31	RCC 30	0	0	RI 35	RI 34	RI 33	RI 32	RI 31	RI 30	FFFFF216H	0000H
																ш		

Bit Position	Bit Name						Function	١							
15	RENn	0: Re		er CBR isabled	refresh	is enable	ed or dis	abled.							
9, 8	RCCn1, RCCn0	Refresh Specifie			unt Clo	ck (Trcy)									
		RCC	n1	RCCn	0		Ref	resh Count Clock (Trcy)							
		0	0 0 32/φ												
		0		1	1	28/ <i>φ</i>									
		1		0	2	56/ <i>φ</i>									
		1		1	5	Setting pr	ohibited								
5 to 0	RIn5 to RIn0	Refresh Sets the			of the in	terval tim	ner for ge	eneration of refresh timing. Interval Factor							
		0	0	0	0	0	0	1							
		0	0	0	0	0	1	2							
		0	0	0	0	1	0	3							
		0	0	0	0	1	1	4							
			:	:	:	+	<u>'</u>	:							
			1	1	1	1	1	64							
				<u>'</u>	<u> </u>	<u> </u>	<u> </u>	1							

Caution After refresh enable, if changing the refresh count clock or the interval factor, first clear the RENn bit (0) (refresh disable state), then perform reset.

Remark n = 0 to 3

 ϕ : Internal system clock frequency

Example An example of the DRAM refresh interval and an example of setting the interval factor are shown below.

Table 5-2. Example of DRAM Refresh Interval

DRAM Capacity (bits)	Refresh Cycle (Cycles/ms)	Refresh Interval (μs)
256 K	256/4	15.6
1 M	512/8	15.6
	512/64	125
4 M	512/128	250
	1 K/16	15.6
	1 K/128	125
16 M	1 K/256	250
	2 K/256	125
	4 K/64	15.6
	4 K/256	62.5
64 M	4 K/64	15.6

Table 5-3. Example of Interval Factor Settings

Specified Refresh	Refresh Count	In	terval Factor Value ^{Notes}	1, 2
Interval Value (μs)	Clock (Trcy)	When $\phi = 16 \text{ MHz}$	When $\phi = 20 \text{ MHz}$	When $\phi = 30 \text{ MHz}$
15.6	32/ <i>φ</i>	7 (14)	9 (14.4)	14 (14.9)
	128/ <i>φ</i>	1 (8)	2 (12.8)	3 (12.8)
	256/φ	_	1 (12.8)	1 (8.5)
62.5	32/ <i>φ</i>	30 (60)	38 (60.8)	58 (61.9)
	128/ <i>φ</i>	7 (56)	9 (57.6)	14 (59.7)
	256/ <i>φ</i>	3 (48)	4 (51.2)	7 (59.7)
125	32/ <i>φ</i>	_	_	_
	128/ <i>φ</i>	15 (120)	19 (121.6)	29 (123.7)
	256/ <i>φ</i>	7 (112)	9 (115.2)	14 (119.5)
250	32/ <i>φ</i>	_	_	_
	128/ <i>φ</i>	31 (248)	38 (243.2)	58 (247.5)
	256/φ	15 (240)	19 (243.2)	29 (247.5)

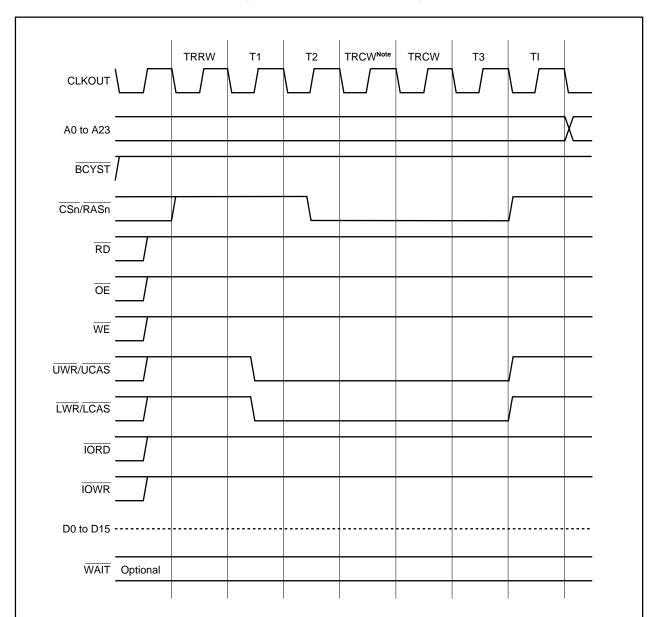
Notes 1. The interval factor is set by bits Rln0 to Rln5 of the RFCn register (n = 0 to 3).

2. The values in parentheses are the calculated value (μ s) for the refresh interval. Refresh Interval (μ s) = Refresh count clock (TRCY) × Interval factor

Remark ϕ : Internal system clock frequency

(2) Refresh wait control register (RWC)

This specifies insertion of wait states during the refresh cycle. The register can be read/written in 8- or 1-bit units.


7 6 5 4 3 2 1 0 After reset Address RWC RRW1 RRW0 RCW2 RCW1 RCW0 SRW2 SRW1 SRW0 FFFFF218H 00H

Bit Position	Bit Name				Function
7, 6	RRW1, RRW0	Refresh R Specifies to level width	he numbe	er of wait s	tates inserted as hold time for the RASm signal's high
		RRW	1 I	RRW0	Number of Insertion Wait States
		0		0	0
		0		1	1
		1		0	2
		1		1	3
5 to 3	RCW2 to RCW0	width durir	he numbe	er of wait sefresh.	tates inserted as hold time for the RASm signal's low level
		RCW2	RCW1	RCW0	Number of Insertion Wait States
		0	0	0	0
		0	0	1	1
		0	1	0	2
		0	0	0	3
			0	1	5
		1	1	0	6
		1	1	1	7
		<u> </u>	·	1] '
2 to 0	SRW2 to SRW0	Self-refres Specifies t			ntrol tates inserted as CBR self-refresh release time.
		SRW2	SRW1	SRW0	Number of Insertion Wait States
		0	0	0	0
		0	0	1	1
		0	1	0	2
		0	1	1	3
		1	0	0	4
		1	0	1	5
		1	1	0	6
		1	1	1	7

Caution Write to the RWC register after reset, and then do not change the set value. Also, do not access an external memory area other than the one for this initialization routine until the initial setting of the RWC register is complete. However, it is possible to access an external memory area whose initialization is complete.

(3) Refresh timing

Note A minimum of 1 clock cycle is inserted for the TRCW cycle regardless of the RCW0 to RCW2 bit settings in the RWC register.

Remarks 1. This is the timing in the case where the number of waits (TRCW) according to the bits RCW0 to RCW2 is 1.

2. n = 3 to 5

5.3.9 Self-refresh functions

In the case of IDLE mode and software STOP mode, the DRAM controller generates a CBR self-refresh cycle. However, the RASn pulse width of DRAM should meet the specifications to enter a self-refresh operation mode (n = 3 to 5).

To release the self-refresh cycle, follow either of two methods below.

(1) Release by NMI input

(a) In the case of self-refresh cycle with IDLE mode

Set the RASn, LCAS, UCAS signals to inactive (high level) immediately to release the self-refresh cycle.

(b) In the case of self-refresh cycle with software STOP mode

Set the RASn, LCAS, UCAS signals to inactive (high level) after stabilizing oscillation to release the self-refresh cycle.

(2) Release by RESET input

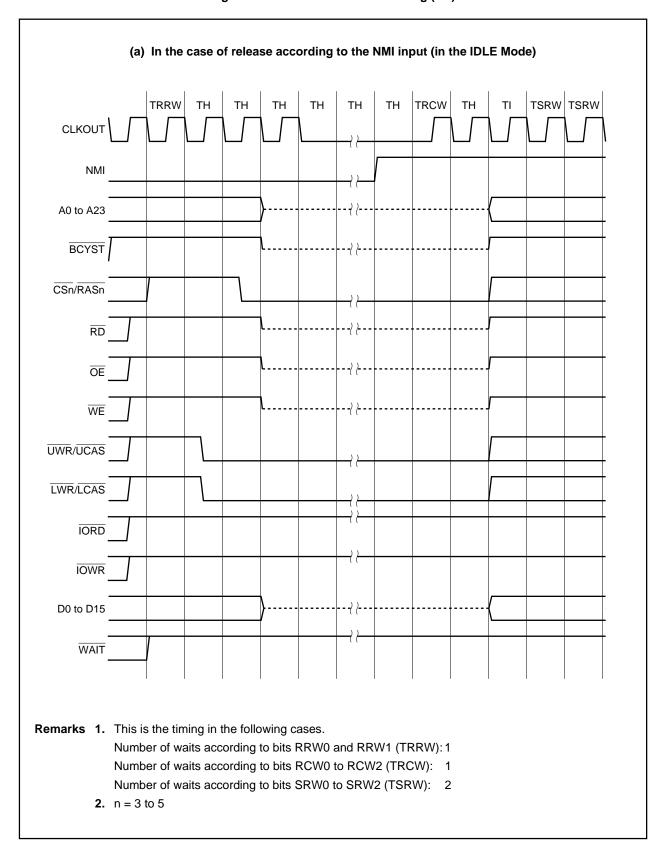


Figure 5-12. CBR Self-Refresh Timing (1/2)

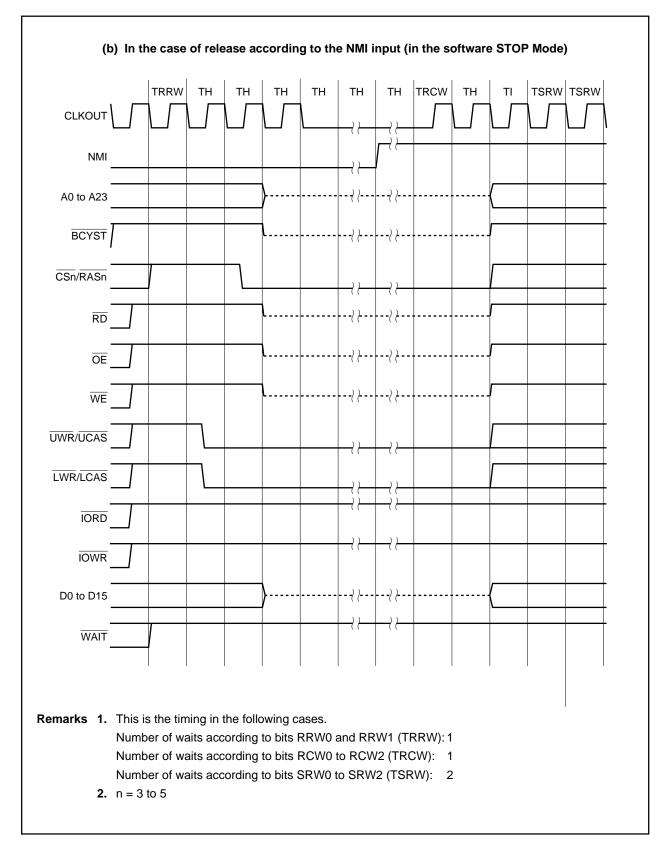
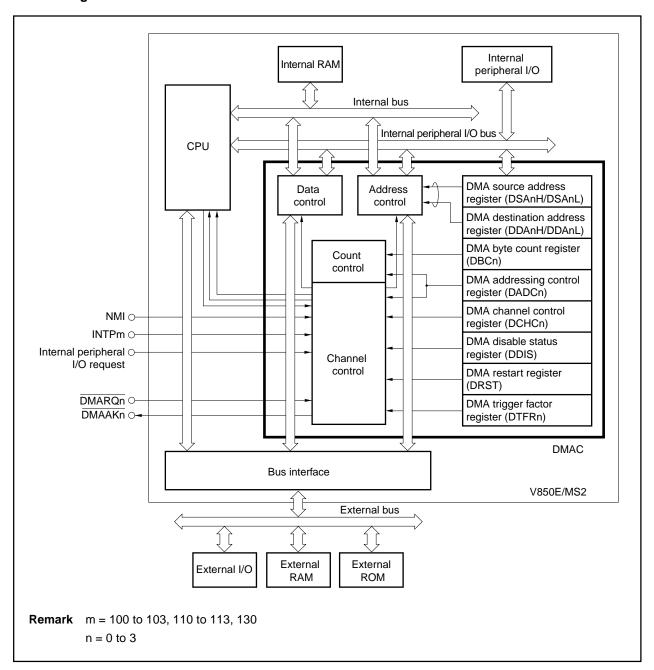


Figure 5-12. CBR Self-Refresh Timing (2/2)

CHAPTER 6 DMA FUNCTIONS (DMA CONTROLLER)


The V850E/MS2 includes a DMA (Direct Memory Access) controller (DMAC), which executes and controls DMA transfer.

The DMAC (DMA controller) transfers data between memory and I/O, or within memory, based on DMA requests issued by the internal peripheral I/O (serial interface and real-time pulse unit), $\overline{\rm DMARQ0}$ to $\overline{\rm DMARQ3}$ pins, or software triggers.

6.1 Features

- O 4 independent DMA channels
- O Transfer unit: 8/16 bits
- O Maximum transfer count: 65,536 (216)
- O Two types of transfer
 - Flyby (one-cycle) transfer
 - Two-cycle transfer
- O Three transfer modes
 - Single transfer mode
 - Single-step transfer mode
 - · Block transfer mode
- O Transfer requests
 - DMARQ0 to DMARQ3 pin (× 4)
 - Requests from internal peripheral I/O (serial interface and real-time pulse unit)
 - · Requests from software
- O Transfer objects
 - · Memory to I/O and vice versa
 - Memory to memory

6.2 Configuration

6.3 Control Registers

6.3.1 DMA source address registers 0 to 3 (DSA0 to DSA3)

These registers are used to set the DMA source addresses (26 bits each) for DMA channel n (n = 0 to 3). They are divided into two 16-bit registers, DSAnH and DSAnL.

During DMA transfer, the registers store the next DMA source addresses.

When flyby transfer between external memory and external I/O is specified with the TTYP bits of DMA addressing control register n (DADCn), the external memory addresses are set with the DSAn register. The setting made with DMA destination address register n (DDAn) is ignored.

(1) DMA source address registers 0H to 3H (DSA0H to DSA3H)

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
DSA0H	0	0	0	0	0	0	SA 25	SA 24	SA 23	SA 22	SA 21	SA 20	SA 19	SA 18	SA 17	SA 16	Address FFFFF1A0H	After reset Undefined
							SA	SA	SA	SA	SA	SA	SA	SA	SA	SA		
DSA1H	0	0	0	0	0	0	25	24	23	22	21	20	19	18	17	16	FFFFF1A8H	Undefined
DSA2H	0	0	0	0	0	0	SA 25	SA 24	SA 23	SA 22	SA 21	SA 20	SA 19	SA 18	SA 17	SA 16	FFFFF1B0H	Undefined
DSA3H	0	0	0	0	0	0	SA 25	SA 24	SA 23	SA 22	SA 21	SA 20	SA 19	SA 18	SA 17	SA 16	FFFFF1B8H	Undefined
Bit	Positi	on		Bit I	Name						•	•		Func	tion			
Ş	9 to 0 SA25 to SA16							kt DM	DMA A sou	sour	ddres	s. Du	ıring f	lyby t		_	DMA transfer, it ween external m	

(2) DMA source address registers 0L to 3L (DSA0L to DSA3L)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
SA 15	SA 14	SA 13	SA 12	SA 11	SA 10	SA 9	SA 8	SA 7	SA 6	SA 5	SA 4	SA 3	SA 2	SA 1	SA 0	Address FFFFF1A2H	After reset Undefined
SA 15	SA 14	SA 13	SA 12	SA 11	SA 10	SA 9	SA 8	SA 7	SA 6	SA 5	SA 4	SA 3	SA 2	SA 1	SA 0	FFFFF1AAH	Undefined
SA 15	SA 14	SA 13	SA 12	SA 11	SA 10	SA 9	SA 8	SA 7	SA 6	SA 5	SA 4	SA 3	SA 2	SA 1	SA 0	FFFFF1B2H	Undefined
SA 15	SA 14	SA 13	SA 12	SA 11	SA 10	SA 9	SA 8	SA 7	SA 6	SA 5	SA 4	SA 3	SA 2	SA 1	SA 0	FFFFF1BAH	Undefined
Positi	on		Bit	Name	Э								Func	tion			
SA15 to SA0 Source Address Sets the DMA source address (A15 to A0). During DMA transfer, it stores next DMA source address. During flyby transfer between external memo																	
	SA 15 SA 15 SA 15 SA 15 Positi	SA SA 15 14 SA SA 15 14 SA SA 15 14 SA SA 15 14 Position	SA SA SA SA 15 14 13 SA SA SA SA 15 14 13 SA SA SA SA SA 15 14 13 SA SA SA SA SA 15 14 13	SA SA SA SA SA 15 14 13 12 SA SA SA SA SA 15 14 13 12 SA SA SA SA SA 15 14 13 12 Position Bit	SA SA<	SA SA<	SA SA<	SA SA<	SA SA<	SA SA<	SA SA<	SA SA<	SA SA<	SA SA<	SA SA<	SA SA<	SA SA<

6.3.2 DMA destination address registers 0 to 3 (DDA0 to DDA3)

These registers are used to set the DMA destination addresses (26 bits each) for DMA channel n (n = 0 to 3). They are divided into two 16-bit registers, DDAnH and DDAnL.

During DMA transfer, the registers store the next DMA destination addresses.

When flyby transfer between external memory and external I/O is specified with the TTYP bits of DMA addressing control register n (DADCn), the setting of these registers are ignored. But when flyby transfer between internal RAM and internal peripheral I/O has been set, the DMA destination address registers (DDA0 to DDA3) must be set.

(1) DMA destination address registers 0H to 3H (DDA0H to DDA3H)

											_			_		_		
DDA0H	0	0	0	0	0	0	9 DA 25	8 DA 24	7 DA 23	6 DA 22	5 DA 21	4 DA 20	3 DA 19	2 DA 18	1 DA 17	0 DA 16	Address FFFFF1A4H	After reset Undefined
_																		
DDA1H	0	0	0	0	0	0	DA 25	DA 24	DA 23	DA 22	DA 21	DA 20	DA 19	DA 18	DA 17	DA 16	FFFFF1ACH	Undefined
Г																		
DDA2H	0	0	0	0	0	0	DA 25	DA 24	DA 23	DA 22	DA 21	DA 20	DA 19	DA 18	DA 17	DA 16	FFFFF1B4H	Undefined
Г																		
DDA3H	0	0	0	0	0	0	DA 25	DA 24	DA 23	DA 22	DA 21	DA 20	DA 19	DA 18	DA 17	DA 16	FFFFF1BCH	Undefined
Bit Pos	sition	1	В	Bit Na	me								Fı	unctio	n			
9 to	0 0		DA2	5 to D	A16		Destin										5.11 .	
													•		,	•	g DMA transfer, i during flyby tran	
															•		to set this regist	
											•			-			eral I/O.	9

(2) DMA destination address registers 0L to 3L (DDA0L to DDA3L)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
DA 15	DA 14	DA 13	DA 12	DA 11	DA 10	DA 9	DA 8	DA 7	DA 6	DA 5	DA 4	DA 3	DA 2	DA 1	DA 0	Address FFFFF1A6H	After reset Undefined
DA 15	DA 14	DA 13	DA 12	DA 11	DA 10	DA 9	DA 8	DA 7	DA 6	DA 5	DA 4	DA 3	DA 2	DA 1	DA 0	FFFFF1AEH	Undefined
	,																
DA 15	DA 14	DA 13	DA 12	DA 11	DA 10	DA 9	DA 8	DA 7	DA 6	DA 5	DA 4	DA 3	DA 2	DA 1	DA 0	FFFFF1B6H	Undefined
	,																
DA 15	DA 14	DA 13	DA 12	DA 11	DA 10	DA 9	DA 8	DA 7	DA 6	DA 5	DA 4	DA 3	DA 2	DA 1	DA 0	FFFFF1BEH	Undefined
ositio	n		Bit N	lame								F	uncti	on			
to 0		DA	15 to	DA0		Sets the betv	s the I next [veen	DMA o	destir destin	ation ation emory	addre and	ess. T	This is nal I/C	disre), but	egarde be su	ed during flyby tra re to set this reg	ansfer ister
	DA 15 DA 15 DA 15 DA 15	DA DA 14 DA DA 15 DA DA 14 DA DA 14 DA DA 14	15	15	15	15 14 13 12 11 10 DA DA DA DA DA DA DA 15 14 13 12 11 10 DA DA DA DA DA DA 15 14 13 12 11 10 DA DA DA DA DA DA 15 14 13 12 11 10 sition Bit Name	15 14 13 12 11 10 9 DA DA <td>15</td> <td>15 14 13 12 11 10 9 8 7 DA Sets the DMA <</td> <td>15 14 13 12 11 10 9 8 7 6 DA DA</td> <td>15 14 13 12 11 10 9 8 7 6 5 DA DA</td> <td>15 14 13 12 11 10 9 8 7 6 5 4 DA DA</td> <td>15 14 13 12 11 10 9 8 7 6 5 4 3 DA DA</td> <td>15 14 13 12 11 10 9 8 7 6 5 4 3 2 DA DA</td> <td>15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 DA DA</td> <td>15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 DA DA</td> <td>15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 FFFFF1A6H DA D</td>	15	15 14 13 12 11 10 9 8 7 DA Sets the DMA <	15 14 13 12 11 10 9 8 7 6 DA DA	15 14 13 12 11 10 9 8 7 6 5 DA DA	15 14 13 12 11 10 9 8 7 6 5 4 DA DA	15 14 13 12 11 10 9 8 7 6 5 4 3 DA DA	15 14 13 12 11 10 9 8 7 6 5 4 3 2 DA DA	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 DA DA	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 DA DA	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 FFFFF1A6H DA D

6.3.3 DMA byte count registers 0 to 3 (DBC0 to DBC3)

These 16-bit registers are used to set the byte transfer counts for DMA channel n (n = 0 to 3).

They store the remaining transfer counts during DMA transfer.

These registers are decremented by 1 for byte transfer and by two for 16-bit transfer. Transfer ends when a borrow occurs. Thus, "transfer count -1" should be set for byte transfer and "(transfer count -1) \times 2" for 16-bit transfer.

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
DBC0	BC 15	BC 14	BC 13	BC 12	BC 11	BC 10	BC 9	BC 8	BC 7	BC 6	BC 5	BC 4	BC 3	BC 2	BC 1	BC 0	Address FFFFF1E0H	After rese Undefined
DBC1	BC 15	BC 14	BC 13	BC 12	BC 11	BC 10	BC 9	BC 8	BC 7	BC 6	BC 5	BC 4	BC 3	BC 2	BC 1	BC 0	FFFFF1E2H	Undefined
DBC2	BC 15	BC 14	BC 13	BC 12	BC 11	BC 10	BC 9	BC 8	BC 7	BC 6	BC 5	BC 4	BC 3	BC 2	BC 1	BC 0	FFFFF1E4H	Undefined
DBC3	BC 15	BC 14	BC 13	BC 12	BC 11	BC 10	BC 9	BC 8	BC 7	BC 6	BC 5	BC 4	BC 3	BC 2	BC 1	BC 0	FFFFF1E6H	Undefined
Bit P	ositior	1	Bit N	ame									Funct	tion				
15	to 0		3C15 t	to	S	yte Cets the		e tran	sfer c	ount.	Durii	ng DM	ΛA tra	ınsfer	, it sto	ores th	ne remaining byte	e transfer
					1	DE	3Cn							Sta	ates			
						000)0H	В	yte tra	ansfer	coun	t 1 or	the re	emain	ing b	yte tra	insfer count	
							00H 01H	+-									insfer count	
						000		B	yte tra	ansfer	coun	t 2 or	the re	emain	ing b	yte tra		

6.3.4 DMA addressing control registers 0 to 3 (DADC0 to DADC3)

These 16-bit registers are used to control the DMA transfer operation modes for DMA channel n (n = 0 to 3). These registers can be read/written in 16-bit units.

Caution During DMA transfer, do not perform writing to these registers.

(1/2)

																		(
г	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
DADC0	0	0	0	0	0	0	0	DS	SAD 1	SAD 0	DAD 1	DAD 0	TM 1	TM 0	TTYF	TDIR	Address FFFFF1F0H	After rese 0000H	
[_							SAD	SAD	DAD	DAD	TM	ТМ					
DADC1	0	0	0	0	0	0	0	DS	1	0	1	0	1	0	TTYF	TDIR	FFFFF1F2H	0000H	
DADC2	0	0	0	0	0	0	0	DS	SAD 1	SAD 0	DAD 1	DAD 0	TM 1	TM 0	TTYF	TDIR	FFFFF1F4H	0000H	
							I												
DADC3	0	0	0	0	0	0	0	DS	SAD 1	SAD 0	DAD 1	DAD 0	TM 1	TM 0	TTYF	TDIR	FFFFF1F6H	0000H	
Bit Position Bit Name						Function													
8	8 DS		Se	Data Size Sets the transfer data size for DMA transfer. 0: 8 bits 1: 16 bits															
			AD1, AD0			Source Address count Direction Sets the count direction of the source address for DMA channel n.													
						SA	D1		SADO)					Coun	t Direc	tion		
						C)		0		Incre	ment							
						0			1		Decr	emen	t						
						1			0		Fixed								
								_											

142

(2/2)

Bit Position	Bit Name	Function						
5, 4	DAD1, DAD0	Destination Ad Sets the count		Direction the destination address for DMA channel n.				
		DAD1	DAD0	Count Direction				
		0	0	Increment				
		0	1	Decrement				
		1	1 0 Fixed					
		1	1	Setting prohibited				
3, 2	TM1, TM0	Transfer Mode Sets the trans		ing DMA transfer. Transfer Mode				
		0	0	Single transfer mode				
		0	1	Single-step transfer mode				
		1	0	Block transfer mode				
		1	1	Setting prohibited				
1	TTYP	Transfer Type Sets the DMA transfer type. 0: Two-cycle transfer 1: Flyby transfer Transfer Direction Sets the transfer direction during transfer between I/O and memory. The setting is valuring flyby transfer only and ignored during two-cycle transfer. 0: Memory → I/O (read) 1: I/O → memory (write)						
0	TDIR							

Remark n = 0 to 3

6.3.5 DMA channel control registers 0 to 3 (DCHC0 to DCHC3)

These 8-bit registers are used to control the DMA transfer operation mode for DMA channel n (n = 0 to 3).

These registers can be read/written in 8-bit units. (However, bit 7 is read-only and bits 2 and 1 are write-only. When the DMA channel control registers are read, bits 2 and 1 are always 0.)

	7	6	5	4	3	2	1	0		
DCHC0	TC0	0	0	0	0	INIT0	STG0	EN0	Address FFFFF5F0H	After reset 00H
ſ										
DCHC1	TC1	0	0	0	0	INIT1	STG1	EN1	FFFFF5F2H	00H
DCHC2	TC2	0	0	0	0	INIT2	STG2	EN2	FFFFF5F4H	00H
DCHC3	TC3	0	0	0	0	INIT3	STG3	EN3	FFFF5F6H	00H
Bit Po	sition	Bit N	Name				Fu	ınction		
7	7	TCn		Terminal Count This status bit indicates whether DMA transfer through DMA channel n has ended or not. This bit can only be read. It is set (1) when DMA transfer ends with a terminal count and reset (0) when it is read. 0: DMA transfer has not ended. 1: DMA transfer has ended.						
2	2	INITn		Initialize), the DMA	transfer is	forcibly te	rminated.	
,	I	STGn		Software Trigger In DMA transfer enable state (TCn bit = 0, ENn bit = 1), if this bit is set (1), DMA transfer can be started by software.						
disabled. It is res				et (0) when the set (0)	n DMA trai	nsfer ends	annel n is to be ena with a terminal cou s of setting (1) NMI	nt. It is also		

Remark n = 0 to 3

6.3.6 DMA trigger factor registers 0 to 3 (DTFR0 to DTFR3)

These 8-bit registers are used to control the DMA transfer start trigger through interrupt requests from peripheral I/O.

The interrupt requests that are set with these registers start DMA transfer.

These registers can be read/written in 8- or 1-bit units.

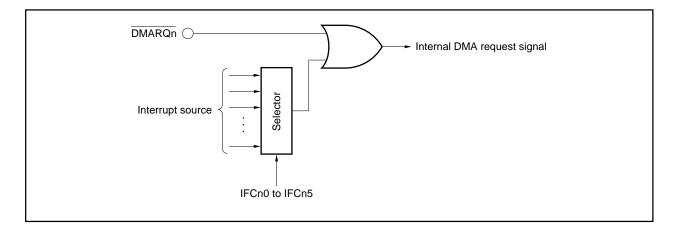
Bit Name

Bit Position

(1/2)

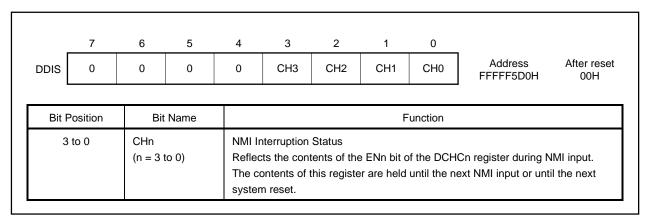
	7	6	5	4	3	2	1	0		
DTFR0	0	0	IFC05	IFC04	IFC03	IFC02	IFC01	IFC00	Address FFFFF5E0H	After reset 00H
DTFR1	0	0	IFC15	IFC14	IFC13	IFC12	IFC11	IFC10	FFFFF5E2H	00H
DTFR2	0	0	IFC25	IFC24	IFC23	IFC22	IFC21	IFC20	FFFFF5E4H	00H
DTFR3	0	0	IFC35	IFC34	IFC33	IFC32	IFC31	IFC30	FFFFF5E6H	00H
I										

Function

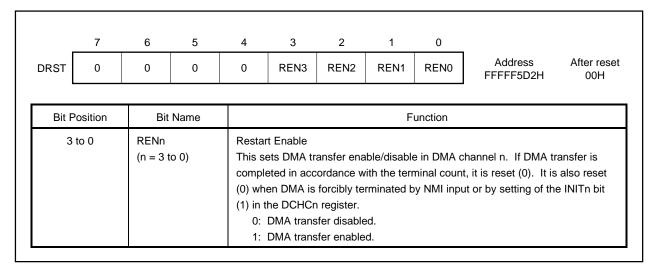

Dit i osition	Dit Name					i unction		
5 to 0	IFCn5 to IFCn0	Interrupt F This code			ce of the I	OMA trans	sfer trigge	er.
		IFCn5	IFCn4	IFCn3	IFCn2	IFCn1	IFCn0	Interrupt Source
		0	0	0	0	0	0	DMA request from internal peripheral I/O disabled.
		0	0	0	0	0	1	INTCM40
		0	0	0	0	1	0	INTCM41
		0	0	0	0	1	1	INTCSI0
		0	0	0	1	0	0	INTSR0
		0	0	0	1	0	1	INTST0
		0	0	0	1	1	0	INTCSI1
		0	0	0	1	1	1	INTSR1
		0	0	1	0	0	0	INTST1
		0	0	1	0	1	1	INTP100/INTCC100
		0	0	1	1	0	0	INTP101/INTCC101
		0	0	1	1	0	1	INTP102/INTCC102
		0	0	1	1	1	0	INTP103/INTCC103
		0	0	1	1	1	1	INTP110/INTCC110
		0	1	0	0	0	0	INTP111/INTCC111
		0	1	0	0	0	1	INTP112/INTCC112
		0	1	0	0	1	0	INTP113/INTCC113

(2/2)

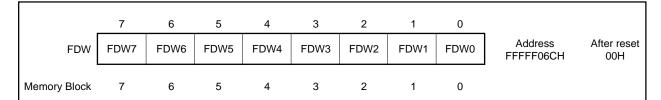
Bit Position	Bit Name	Function						
5 to 0	IFCn5 to		1	1			T	
	IFCn0	IFCn5	IFCn4	IFCn3	IFCn2	IFCn1	IFCn0	Interrupt Source
		0	1	0	0	1	1	INTCC120
		0	1	0	1	0	0	INTCC121
		0	1	0	1	0	1	INTCC122
		0	1	0	1	1	0	INTCC123
		0	1	0	1	1	1	INTP130/INTCC130
		0	1	1	0	0	0	INTCC131
		0	1	1	0	0	1	INTCC132
		0	1	1	0	1	0	INTCC133
		1	0	0	0	1	1	INTAD
		Other th	nan abov	е				Setting prohibited


Remark n = 0 to 3

Remark The relationship between the \overline{DMARQn} signal and the interrupt source which becomes the DMA transfer start trigger is as follows (n = 0 to 3).


6.3.7 DMA disable status register (DDIS)

This register holds the contents of the ENn bit of the DCHCn register during NMI input (n = 0 to 3). It is read-only, in 8- or 1-bit units.


6.3.8 DMA restart register (DRST)

This register is used to restart DMA transfer that was forcibly interrupted during NMI input. The RENn bit of this register and the ENn bit of the DCHCn register are linked to each other (n = 0 to 3). After NMI is completed, the DDIS register is referred to and the DMA channel that was interrupted is confirmed, then by setting the RENn bit in the corresponding channel (1), DMA transfer can be restarted. The register can be read/written in 8- or 1-bit units.

6.3.9 Flyby transfer data wait control register (FDW)

To prevent illegal writing during flyby transfer, this register sets the insertion of wait states (TF) for securing the time from when the write signal (\overline{IOWR} , \overline{IWR} , \overline{IWR} , \overline{WE}) becomes inactive until the read signal (\overline{RD} , \overline{IORD} , \overline{OE}) becomes inactive. This register can be read/written in 8- or 1-bit units.

Bit Position	Bit Name	Function
7 to 0	FDWn (n = 7 to 0)	Flyby Data Wait Sets wait state insertion for memory block n. 0: Wait state not inserted. 1: Wait state inserted.

Caution Write to the FDW register after reset, and then do not change the value. Also, do not access an external memory area until the initial setting of the FDW register is complete. (However, the memory area 0000000H to 01FFFFFH is excluded.)

Remark Setting of the FDW register is valid during the DMA transfers shown below.

Type of Memory	SRAM, Page ROM	DRAM
Object of Transfer		
Memory → I/O	Valid	Valid
I/O → Memory	Valid	Invalid

6.4 DMA Bus States

6.4.1 Types of bus states

The DMAC bus cycle consists of the following 25 states:

(1) TI state

The TI state is idle state, during which no access request is issued.

The DMARQ0 to DMARQ3 signals are sampled at the falling edge of the CLKOUT signal.

(2) T0 state

DMA transfer ready state. (A DMA transfer request has been issued, causing bus mastership to be acquired for the first DMA transfer).

(3) T1R state

The bus enters the T1R state at the beginning of a read operation in two-cycle transfer mode. Address driving starts. After entering the T1R state, the bus invariably enters the T2R state.

(4) T1RI state

T1RI is a state in which the bus is waiting for the acknowledge in response to an external memory read request. After entering the last T1RI state, the bus invariably enters the T2R state.

(5) T2R state

The T2R state corresponds to the last state of a read operation in two-cycle transfer mode, or to a wait state. In the last T2R state, read data is sampled. After entering the last T2R state, the bus invariably enters the T1W state.

(6) T2RI state

Internal peripheral I/O or internal RAM DMA transfer ready state (Bus mastership is acquired for DMA transfer to internal peripheral I/O or internal RAM). After entering the last T2RI state, the bus invariably enters the T1W state.

(7) T1W state

The bus enters the T1W state at the beginning of a write operation in two-cycle transfer mode. Address driving starts. After entering the T1W state, the bus invariably enters the T2W state.

(8) T1WI state

T1WI is a state in which the bus is waiting for the acknowledge signal in response to an external memory write request. After entering the last T1WI state, the bus invariably enters the T2W state.

(9) T2W state

The T2W state corresponds to the last state of a write operation in two-cycle transfer mode, or to a wait state. In the last T2W state, the write strobe signal is made inactive.

(10) T1F state

The bus enters the T1F state at the beginning of a flyby transfer from internal peripheral I/O to internal RAM. The read cycle from internal peripheral I/O is started. After entering the T1F state, the bus invariably enters the T2F state.

(11) T2F state

The T2F state corresponds to the middle state of a flyby transfer from internal peripheral I/O to internal RAM. The write cycle to internal RAM is started. After entering the T2F state, the bus invariably enters the T3F state.

(12) T3F state

The T3F state corresponds to the last state of a flyby transfer from internal peripheral I/O to internal RAM, or a wait state. In the last T3F state, the write strobe signal is made inactive.

(13) T1FR state

The bus enters the T1FR state at the beginning of a flyby transfer from internal RAM to internal peripheral I/O. The read cycle from internal RAM is started. After entering the T1FR state, the bus invariably enters the T2FR state.

(14) T2FR state

The T2FR state corresponds to the middle state of a flyby transfer from internal RAM to internal peripheral I/O. The write cycle to internal peripheral I/O is started. After entering the T2FR state, the bus invariably enters the T3FR state.

(15) T3FR state

T3FR is a state in which it is judged whether a flyby transfer from internal RAM to internal peripheral I/O is continued or not. If the next transfer is executed in block transfer mode, the bus enters the T1FRB state after the T3FR state, otherwise, the bus enters the T4 state.

(16) T1FRB state

The bus enters the T1FRB state at the beginning of a flyby block transfer from internal RAM to internal peripheral I/O. The read cycle from internal RAM is started.

(17) T1FRBI state

The T1FRBI state corresponds to a wait state of a flyby block transfer from internal RAM to internal peripheral I/O.

A wait state requested by peripheral hardware is generated, and the bus enters the T2FRB state.

(18) T2FRB state

The T2FRB state corresponds to the middle state of a flyby block transfer from internal RAM to internal peripheral I/O. The write cycle to internal peripheral I/O is started. After entering the T2FRB state, the bus invariably enters the T3FRB state.

(19) T3FRB state

T3FRB is a state in which it is judged whether a flyby transfer from internal RAM to internal peripheral I/O is continued or not. If the next transfer is executed in block transfer mode, the bus enters the T1FRB state after the T3FRB state, otherwise, the bus enters the T4 state.

(20) T4 state

The T4 state corresponds to a wait state of a flyby transfer from internal RAM to internal peripheral I/O. A wait state requested by peripheral hardware is generated, and the bus enters the T3 state.

(21) T1FH state

The T1FH state corresponds to the standard state of a flyby transfer between external memory and external I/O, and is the executing cycle of this transfer. After entering the T1FH state, the bus enters the T2FH state.

(22) T1FHI state

The T1FHI state corresponds to the last state of a flyby transfer between external memory and external I/O, and is a state in which the bus is waiting for end of DMA flyby transfer. After entering the T1FHI state, the bus is released, and enters the TE state.

(23) T2FH state

T2FH is a state in which it is judged whether a flyby transfer between external memory and external I/O is continued or not. If the next transfer is executed in block transfer mode, the bus enters the T1FH state after the T2FH state, otherwise, when a wait is issued, the bus enters the T1FHI state. When a wait is not issued, the bus is released, and enters the TE state.

(24) T3 state

The bus enters the T3 state when a DMA transfer has been completed, and the bus has been released. After entering the T3 state, the bus invariably enters the TE state.

(25) TE state

The TE state corresponds to the output state. In the TE state, the DMAC generates an internal signal to indicate DMA transfer end (TCn = 1), and initializes miscellaneous internal signals (n = 0 to 3). After entering the TE state, the bus invariably enters the TI state.

6.4.2 DMAC state transition

Except block transfer mode, each time the processing for a DMA service is completed, the bus is released (the bus enters bus release mode).

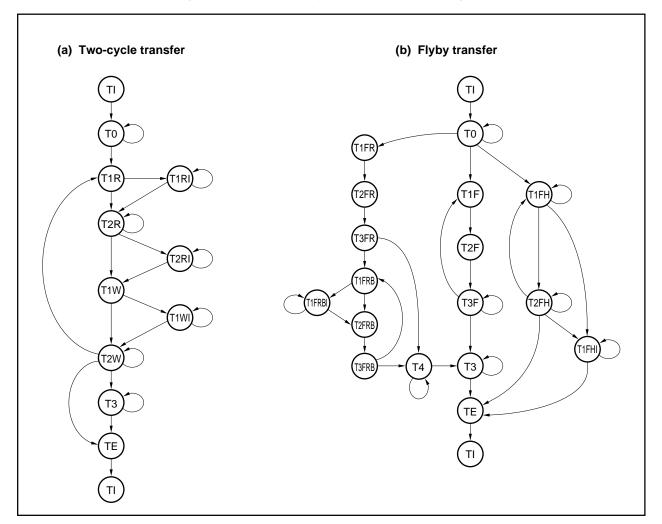


Figure 6-1. DMAC Bus Cycle State Transition Diagram

6.5 Transfer Mode

6.5.1 Single transfer mode

In single transfer mode, the DMAC releases the bus at each byte/halfword transfer. If there is a subsequent DMA transfer request, transfer is performed again. This operation continues until a terminal count occurs.

When the DMAC has released the bus, if another higher priority DMA transfer request is issued, the higher priority DMA request always takes precedence. If a single transfer is executed, the internal DMA request is cleared each time one DMA cycle has been completed. If any other channel requests DMA after completion of one DMA cycle, therefore, the DMA transfer request with the highest priority is selected from the channels other than the one for which the DMA cycle has just been completed.

Figures 6-2 and 6-3 show examples of single transfer. Figure 6-3 shows an example of single transfer in which a higher priority DMA request is issued. DMA channels 0 to 2 are in block transfer mode and channel 3 is in single transfer mode.

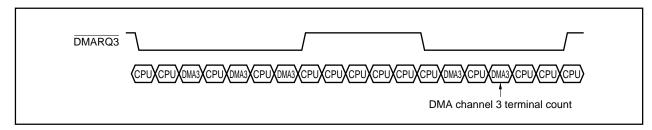
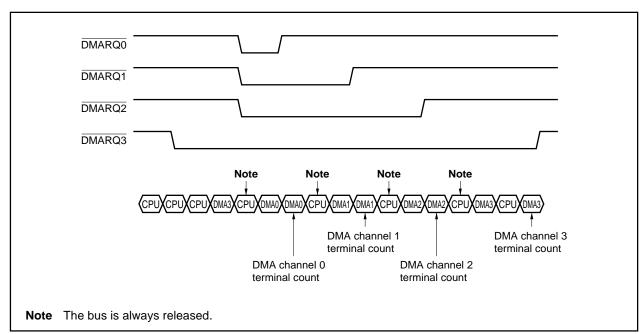



Figure 6-2. Single Transfer Example 1

6.5.2 Single-step transfer mode

In single-step transfer mode, DMAC releases the bus at each byte/halfword transfer. Once a request signal (DMARQ0 to DMARQ3) is received, this operation continues until a terminal count occurs.

When the DMAC has released the bus, if another higher priority DMA transfer request is issued, the higher priority DMA request always takes precedence.

Figures 6-4 and 6-5 show examples of single-step transfer.

Figure 6-4. Single-Step Transfer Example 1

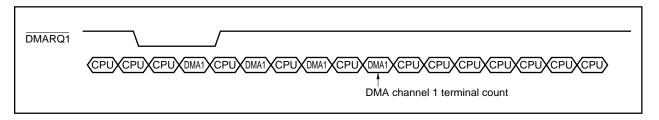
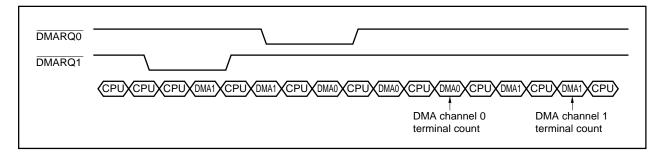



Figure 6-5. Single-Step Transfer Example 2

6.5.3 Block transfer mode

In block transfer mode, once transfer starts, the transfer continues without the bus being released, until a terminal count occurs. No other DMA requests are accepted during block transfer.

After the block transfer ends and DMAC releases the bus, another DMA transfer can be accepted.

Figures 6-6 shows an example of block transfer. In this block transfer example, a high priority DMA request is issued. DMA channels 2 and 3 are in block transfer mode.

Note that caution is required when in block transfer mode. For details, refer to 6.19 Precautions.

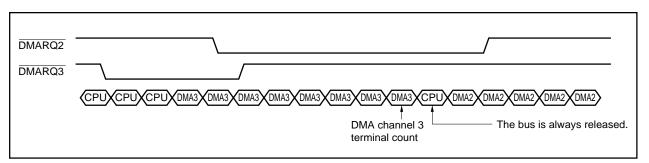
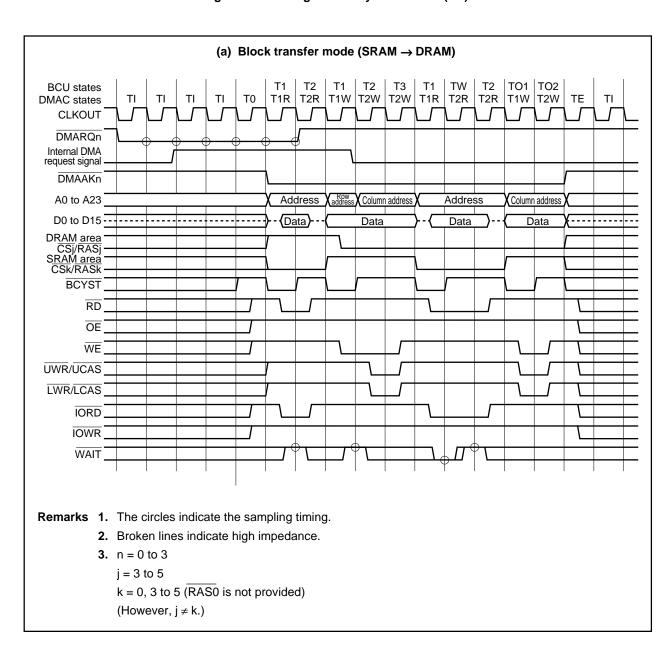


Figure 6-6. Block Transfer Example

6.6 Transfer Types

6.6.1 Two-cycle transfer


In two-cycle transfer, data transfer is performed in two-cycles, source to DMAC then DMAC to destination.

In the first cycle, the source address is output to perform reading from the source to DMAC. In the second cycle, the destination address is output to perform writing from DMAC to the destination.

Figure 6-7 shows examples of two-cycle transfer.

Note that caution is required when in two-cycle transfer. For details, refer to 6.19 Precautions.

Figure 6-7. Timing of Two-Cycle Transfer (1/4)

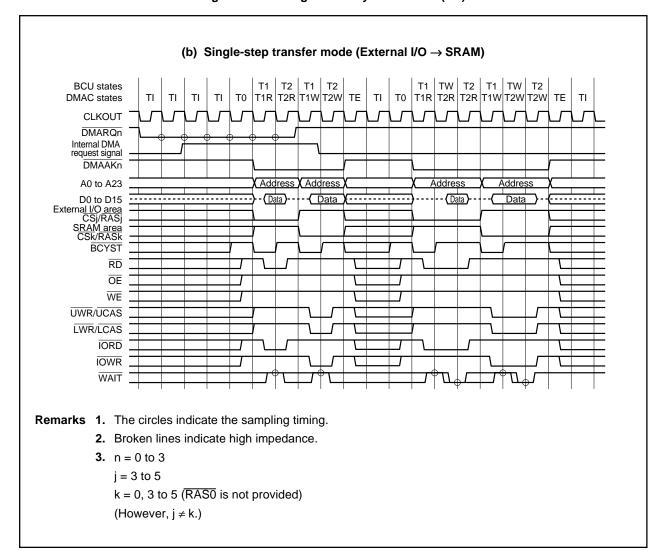


Figure 6-7. Timing of Two-Cycle Transfer (2/4)

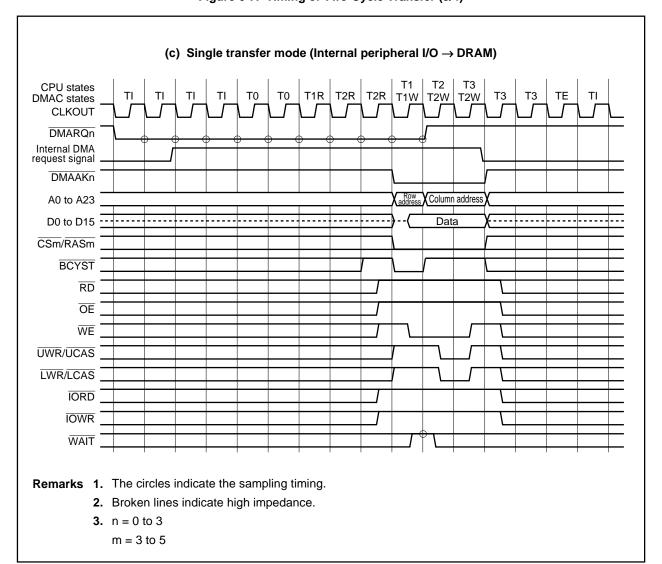


Figure 6-7. Timing of Two-Cycle Transfer (3/4)

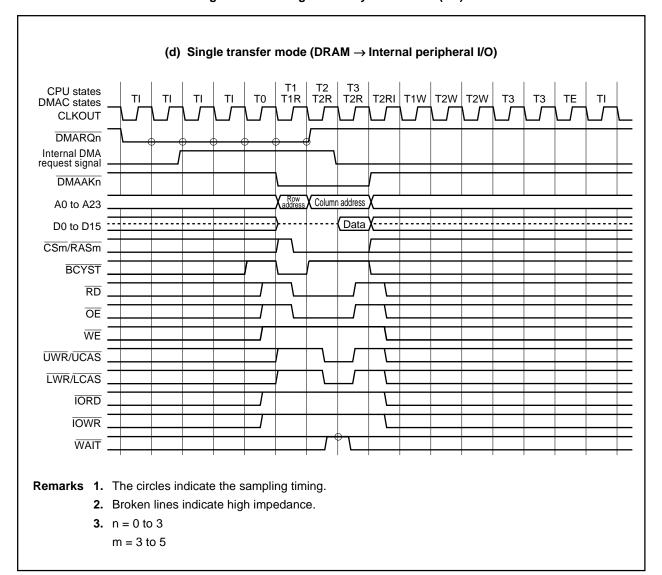


Figure 6-7. Timing of Two-Cycle Transfer (4/4)

6.6.2 Flyby transfer

The V850E/MS2 supports flyby transfer between external memory and external I/O, and internal RAM and internal peripheral I/O.

(1) Flyby transfer between external memory and external I/O

This data transfer between memory and I/O is performed in one cycle. To achieve single-cycle transfer, the memory address is always output irrespective of whether it is that of the source or the destination, and the read/write strobe signals for the memory and I/O are made active at the same time.

The external I/O is selected with the DMAAKO to DMAAK3 signal.

Figure 6-8 shows examples of flyby DMA transfer for an external device.

(a) Block transfer mode **CPU** states T1 T2 Т3 TO1 TW TO2 T2FH T1FHI DMAC states **CLKOUT DMARQn** Internal DMA request signal DMAAKn A0 to A23 Column address Column address Data D0 to D15 Data CSm/RASm BCYST $\overline{\mathsf{RD}}$ ŌĒ WE UWR/UCAS LWR/LCAS IORD **IOWR** WAIT Remarks 1. The circles indicate the sampling timing. 2. Broken lines indicate high impedance. 3. n = 0 to 3m = 3 to 5

Figure 6-8. Timing of Flyby Transfer (DRAM → External I/O) (1/3)

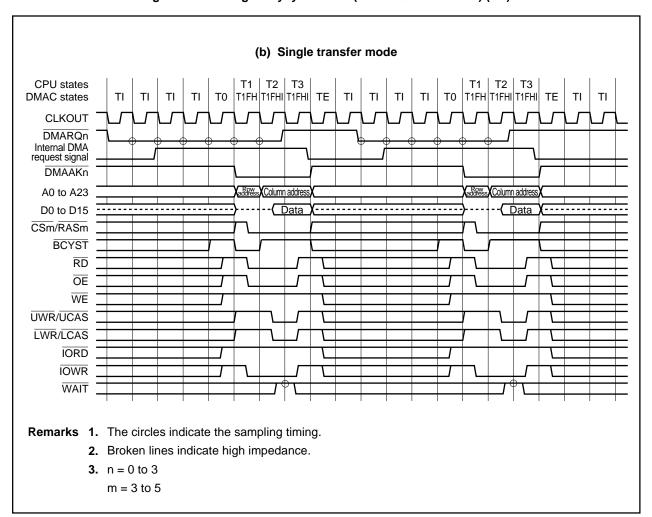


Figure 6-8. Timing of Flyby Transfer (DRAM → External I/O) (2/3)

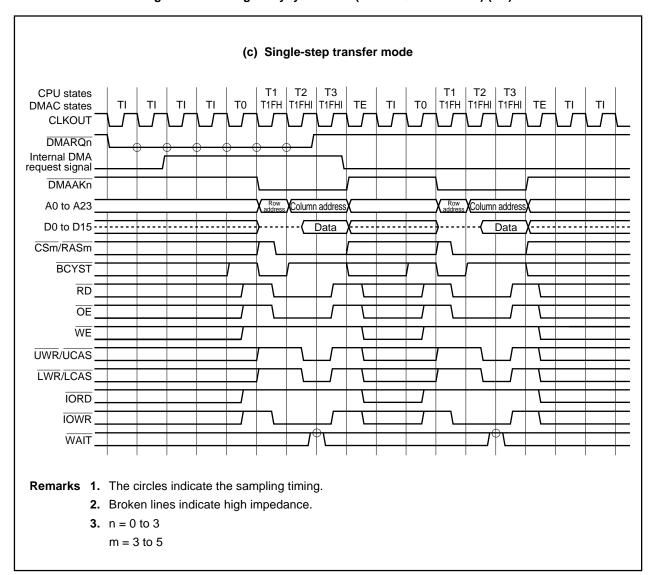


Figure 6-8. Timing of Flyby Transfer (DRAM → External I/O) (3/3)

(2) Flyby transfer between internal RAM and internal peripheral I/O

Internal RAM and internal peripheral I/O are mapped on different address spaces. Therefore, different addresses are always output, and the read/write strobe signals for internal RAM and internal peripheral I/O are controlled at the same time.

Figure 6-9 shows an example of flyby DMA transfer (block transfer mode) between internal RAM and internal peripheral I/O.

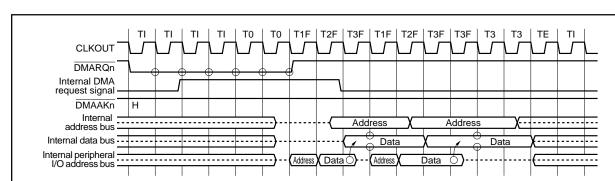


Figure 6-9. Timing of Flyby Transfer (Internal Peripheral I/O → Internal RAM)

- Remarks 1. The circles indicate the sampling timing.
 - 2. Broken lines indicate high impedance.
 - **3.** n = 0 to 3
 - 4. With this timing, the external bus operates independently of the internal bus, so there is no influence on the external bus.

6.7 Transfer Objects

6.7.1 Transfer type and transfer objects

Table 6-1 lists the relationship between transfer type and transfer object.

- Cautions 1. Among the transfer destinations and sources shown in Table 6-1, when an "x" is indicated for a combination, that operation is not guaranteed.
 - 2. Make the data bus width of the transfer destination and source the same (for two-cycle transfer and flyby transfer).

Table 6-1. Relationship Between Transfer Type and Transfer Object

(a) Two-cycle transfer

(b) Flyby transfer

			Destination					
		Internal peripheral I/O	External I/O	Internal RAM	External memory			
	Internal peripheral I/O	×	×	0	0			
rce Ce	External I/O	×	×	0	0			
Source	Internal RAM	0	0	0	0			
	External memory	0	0	0	0			

		Destination						
		Internal peripheral I/O	External I/O	Internal RAM	External memory			
	Internal peripheral I/O	×	×	0	×			
Source	External I/O	×	×	×	0			
So	Internal RAM	0	×	×	×			
	External memory	×	0	×	×			

Remark o: Possible

x: Impossible

6.7.2 External bus cycle during DMA transfer

The external bus cycle during DMA transfer is as follows.

Table 6-2. External Bus Cycle During DMA Transfer

Transfer Type	Transfer Object	External Bus Cycle		
Two-cycle transfer	Internal peripheral I/O, Internal RAM	None ^{Note}	_	
	External I/O	Yes	SRAM cycle	
	External memory	Yes	Memory access cycle set in the BCT register	
Flyby transfer	Between internal RAM and internal peripheral I/O	None ^{Note}	_	
	Between external memory and external I/O	Yes	The memory access DMA flyby transfer cycle set by the BCT register as external memory	

Note Other external bus cycles, such as a CPU-based bus cycle, can be started.

6.8 DMA Channel Priorities

The DMA channel priorities are fixed, as follows:

DMA channel 0 > DMA channel 1 > DMA channel 2 > DMA channel 3

These priorities are valid in the TI state only. In block transfer mode, the channel used for transfer is never switched.

In single-step transfer mode, if a higher priority DMA transfer request is issued while the bus is released (in the TI state), the higher priority DMA transfer request is accepted.

6.9 Next Address Setting Function

The DMA source address registers (DSAnH, DSAnL) DMA destination address registers (DDAnH, DDAnL) and DMA byte count register (DBCn) are buffer registers with a 2-stage FIFO configuration (n = 0 to 3).

When the terminal count is issued, these registers are rewritten with the value that was set just previously. Therefore, during DMA transfer, these registers' contents do not become valid even if they are rewritten. When starting DMA transfer with the rewritten contents of these registers, set the ENn bit (1) of the DCHCn register.

Figure 6-10 shows the buffer register configuration.

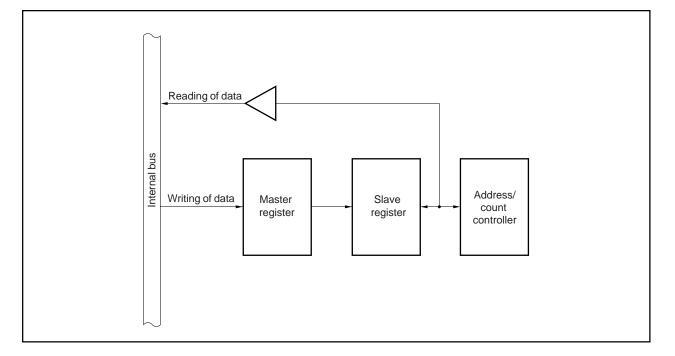


Figure 6-10. Buffer Register Configuration

6.10 DMA Transfer Start Factors

There are 3 types of DMA transfer start factors, as shown below.

(1) Request from an external pin (DMARQn)

Although requests from the \overline{DMARQn} pin are sampled each time the CLKOUT signal falls, sampling should be continued until the \overline{DMAAKn} signal becomes active (n = 0 to 3).

If a state in which the ENn bit of the DCHCn register = 1 and the TCn bit = 0 is set, the \overline{DMARQn} signal in the T1 state becomes active. If the \overline{DMARQn} signal becomes active in the T1 state, it changes to the T0 state and DMA transfer starts.

(2) Request from software

If the STGn, ENn and TCn bits of the DCHCn register are set as follows, DMA transfer starts (n = 0 to 3).

- STGn bit = 1
- ENn bit = 1
- TCn bit = 0

(3) Request from internal peripheral I/O

If, when the ENn and TCn bits of the DCHCn register are set as shown below, an interrupt request is issued from the internal peripheral I/O that is set in the DTFRn register, DMA transfer starts (n = 0 to 3).

- ENn bit = 1
- TCn bit = 0

6.11 Interrupting DMA Transfer

6.11.1 Interruption factors

DMA transfer is interrupted if the following factors occur.

- · Bus hold
- · Refresh cycle

If the factor that is interrupting DMA transfer disappears, DMA transfer promptly restarts.

6.11.2 Forcible interruption

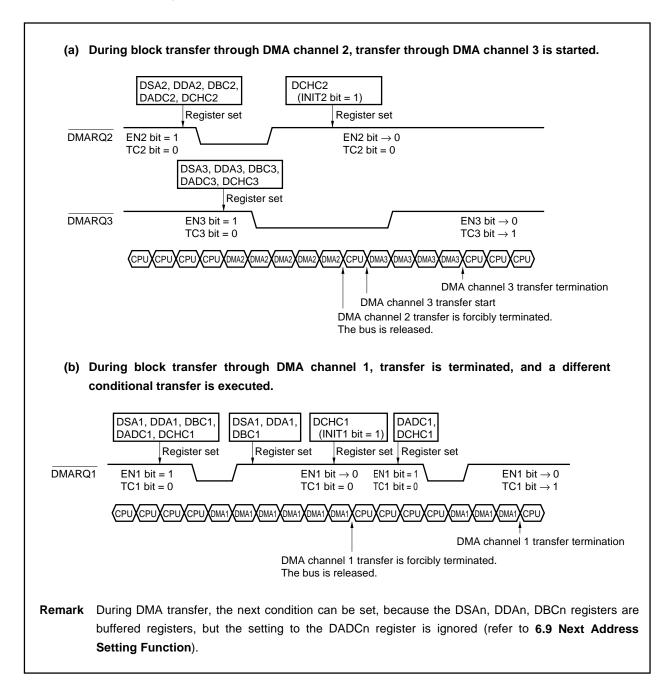
DMA transfer can be forcibly interrupted by an NMI input during DMA transfer.

At such a time, the DMAC resets the ENn bit of the DCHCn register of all channels (0) and activates the DMA transfer disabled state, after which the DMA transfer being executed when the NMI was input is terminated (n = 0 to 3).

When in the single step mode or block transfer mode, the DMA transfer request is held in the DMAC. If the ENn bit is reset (1), DMA transfer restarts from the point where it was interrupted.

When in the single transfer mode, if the ENn bit is set (1), the next DMA transfer request is received and DMA transfer starts.

6.12 Terminating DMA Transfer


6.12.1 DMA transfer end interrupt

When DMA transfer ends and the TC bit of the corresponding DCHCn register is set (1), a DMA transfer end interrupt (INTDMAn) is issued (n = 0 to 3) to the interrupt controller (INTC).

6.12.2 Forcible termination

In addition to forcible interruption of DMA transfer by NMI input, DMA transfer can also be terminated forcibly by the INITn bit of the DCHCn register. Examples of the forcible termination operation are shown below (n = 0 to 3).

Figure 6-11. Example of Forcible Termination of DMA Transfer

6.13 Boundary of Memory Area

The transfer operation is not guaranteed if the source or the destination address is over the area of DMA objects (external memory, internal RAM, external I/O, or internal peripheral I/O) during DMA transfer.

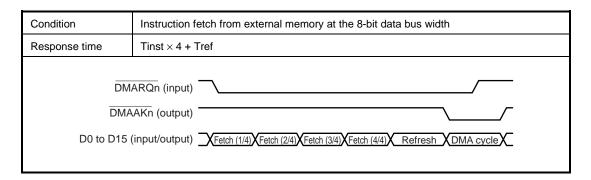
6.14 Transfer of Misalign Data

16-bit DMA transfer of misalign data is not supported. If the source or the destination address is set to an odd address, the LSB bit of the address is forcibly accepted as "0".

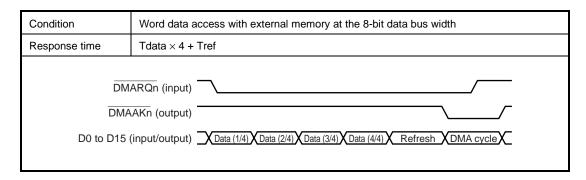
6.15 Clocks of DMA Transfer

Table 6-3 lists the overhead before and after DMA transfer and minimum execution clock for DMA transfer.

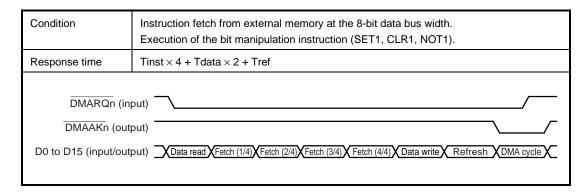
Table 6-3. Minimum Execution Clock in DMA Cycle


From accepting DMARQn to falling edge of DMAAKn	4 clocks
External memory access	Refer to miscellaneous memory and I/O cycle
Internal RAM access	2 clocks
Internal peripheral I/O access	3 clocks

Remark n = 0 to 3


6.16 Maximum Response Time to DMA Request

Under the conditions shown below, the response time to a DMA request becomes the maximum time (this is the state permitted by the DRAM refresh cycle).


(1) Condition 1

(2) Condition 2

(3) Condition 3

Remarks 1. Tinst: The number of clocks per bus cycle during instruction fetch.

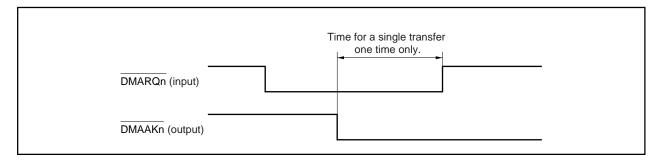
Tdata: The number of clocks per bus cycle during data access.

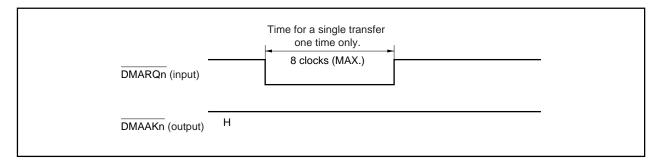
Tref: The number of clocks per refresh cycle.

2. n = 0 to 3

6.17 One Time Single Transfer with DMARQ0 to DMARQ3

To execute one time single transfer to external memory via \overline{DMARQn} signal input, \overline{DMARQn} should be inactive within the clock time shown in Table 6-4 from when \overline{DMAAKn} becomes active (n = 0 to 3). If \overline{DMARQn} is active for more than the clock time shown in Table 6-4, single transfers are continuously executed.




Table 6-4. DMAAKn Active → DMARQn Inactive Time for Single Transfer to External Memory

Transfer Type	Source	Destination	DMAAKn Signal Active → DMARQn Inactive Time (Max.)
Two-cycle transfer	DRAM (off page)	All objects	5 clocks
	DRAM (on page)	All objects	4 clocks
	SRAM or external I/O	All objects	4 clocks
	Internal RAM or internal peripheral I/O	DRAM (off page)	7 clocks
	Internal RAM or internal peripheral I/O	DRAM (on page)	6 clocks
	Internal RAM	SRAM or external I/O	6 clocks
	Internal peripheral I/O	SRAM	6 clocks
Flyby transfer	DRAM (off page) ↔ External I/O	3 clocks	
	DRAM (on page) ↔ External I/O		2 clocks
	SRAM ↔ External I/O		2 clocks

Note When inserting waits, add the number of waits together.

Remark n = 0 to 3

Also, if a single transfer is executed between internal RAM and internal peripheral I/O, it is necessary that the DMARQn signal be inactivated within 8 clock cycles after it is activated. If 8 clock cycles are exceeded, transfer may continue. Note that the DMAAKn signal does not become active at this time.

6.18 Bus Arbitration for CPU

The CPU can access any external memory, external I/O, internal RAM, and internal peripheral I/O not undergoing DMA transfer.

While data is being transferred between external memory and external I/O, the CPU can access internal RAM and internal peripheral I/O.

While data transfer is being executed between internal RAM and internal peripheral I/O, the CPU can access external memory and external I/O.

6.19 Precaution

If a DMA transfer which satisfies all the following conditions is interrupted by NMI input, the \overline{DMAAKn} signal may become active and remain so until the next DMA transfer (n = 0 to 3).

- Two-cycle transfer
- Block transfer mode
- Transfer from external memory to external memory, or from external I/O to external I/O
- The destination side is EDO DRAM, with no-wait on-page access.

Note that device operations other than the DMAAKn signal are not influenced.

Change the DMAAKn signal to inactive by executing the routine shown below in the NMI handler, etc.

- LD.B DDIS[r0], reg; Confirm the interrupted DMA channel by NMI input.
- ST.B reg, DRST[r0]; Restart transfer in the interrupted channel.
- ST.B r0, DRST[r0]; By immediately interrupting transfer again, after DMA transfer only once, the DMAAKn signal becomes inactive.

[MEMO]

CHAPTER 7 INTERRUPT/EXCEPTION PROCESSING FUNCTION

The V850E/MS2 is provided with a dedicated interrupt controller (INTC) for interrupt servicing and can process a total of 36 interrupt requests.

An interrupt is an event that occurs independently of program execution, and an exception is an event that is dependent on program execution. Generally, an exception takes precedence over an interrupt.

The V850E/MS2 can process interrupt requests from the internal peripheral hardware and external sources. Moreover, exception processing can be started by the TRAP instruction (software exception) or by the generation of an exception event (fetching of an illegal op code), which is known as an exception trap.

7.1 Features

O Interrupts

Non-maskable interrupts: 1 sourceMaskable interrupts: 35 sources

- 8 levels of programmable priorities
- · Mask specification for interrupt requests according to priority
- Mask can be specified for each maskable interrupt request.
- · Noise elimination, edge detection, and valid edge of external interrupt request signal can be specified.

O Exceptions

· Software exceptions: 32 sources

• Exception trap: 1 source (illegal op code exception)

Interrupt/exception sources are listed in Table 7-1.

Table 7-1. Interrupt List (1/2)

Туре	Classification	Interrupt/Exception Source					Exception	Handler	Restored PC	
		Name	Controlling Register	Source	Generating Unit	Priority	Code	Address		
Reset	Interrupt	RESET	_	RESET input	Pin	_	0000H	00000000H	Undefined	
Non-maskable	Interrupt	NMI	_	NMI input	Pin	_	0010H	00000010H	nextPC	
Software exception	Exception	TRAP0 ^{Note}	_	TRAP instruction	_	_	004n ^{Note} H	00000040H	nextPC	
	Exception	TRAP1n ^{Note}	_	TRAP instruction	_	_	005n ^{Note} H	00000050H	nextPC	
Exception trap	Exception	ILGOP	_	Illegal op code	_	_	0060H	00000060H	nextPC	
Maskable	Interrupt	INTOV10	OVIC10	Timer 10 overflow	RPU	0	0080H	00000080H	nextPC	
	Interrupt	INTOV11	OVIC11	Timer 11 overflow	RPU	1	0090H	00000090H	nextPC	
	Interrupt	INTOV12	OVIC12	Timer 12 overflow	RPU	2	00A0H	000000A0H	nextPC	
	Interrupt	INTOV13	OVIC13	Timer 13 overflow	RPU	3	00B0H	000000B0H	nextPC	
	Interrupt	INTP100/ INTCC100	P10IC0	Match of INTP100 pin/CC100	Pin/RPU	4	0100H	00000100H	nextPC	
	Interrupt	INTP101/ INTCC101	P10IC1	Match of INTP101 pin/CC101	Pin/RPU	5	0110H	00000110H	nextPC	
	Interrupt	INTP102/ INTCC102	P10IC2	Match of INTP102 pin/CC102	Pin/RPU	6	0120H	00000120H	nextPC	
	Interrupt	INTP103/ INTCC103	P10IC3	Match of INTP103 pin/CC103	Pin/RPU	7	0130H	00000130H	nextPC	
	Interrupt	INTP110/ INTCC110	P11IC0	Match of INTP110 pin/CC110	Pin/RPU	8	0140H	00000140H	nextPC	
	Interrupt	INTP111/ INTCC111	P11IC1	Match of INTP111 pin/CC111	Pin/RPU	9	0150H	00000150H	nextPC	
	Interrupt	INTP112/ INTCC112	P11IC2	Match of INTP112 pin/CC112	Pin/RPU	10	0160H	00000160H	nextPC	
	Interrupt	INTP113/ INTCC113	P11IC3	Match of INTP113 pin/CC113	Pin/RPU	11	0170H	00000170H	nextPC	
	Interrupt	INTCC120	P12IC0	Match of CC120	RPU	12	0180H	00000180H	nextPC	
	Interrupt	INTCC121	P12IC1	Match of CC121	RPU	13	0190H	00000190H	nextPC	
	Interrupt	INTCC122	P12IC2	Match of CC122	RPU	14	01A0H	000001A0H	nextPC	
	Interrupt	INTCC123	P12IC3	Match of CC123	RPU	15	01B0H	000001B0H	nextPC	
	Interrupt	INTP130/ INTCC130	P13IC0	Match of INTP130 pin/CC130	Pin/RPU	16	01C0H	000001C0H	nextPC	
	Interrupt	INTCC131	P13IC1	Match of CC131	RPU	17	01D0H	000001D0H	nextPC	

Note n = 0 to FH

Table 7-1. Interrupt List (2/2)

Туре	Classification	Interrupt/Exception Source					Exception	Handler	Restored
		Name	Controlling Register	Source	Generating Unit	Priority	Code	Address	PC
Maskable	Interrupt	INTCC132	P13IC2	Match of CC132	RPU	18	01E0H	000001E0H	nextPC
	Interrupt	INTCC133	P13IC3	Match of CC133	RPU	19	01F0H	000001F0H	nextPC
	Interrupt	INTCM40	CMIC40	CM40 match signal	RPU	20	0280H	00000280H	nextPC
	Interrupt	INTCM41	CMIC41	CM41 match signal	RPU	21	0290H	00000290H	nextPC
	Interrupt	INTDMA0	DMAIC0	DMA channel 0 transfer completion	DMAC	22	02A0H	000002A0H	nextPC
	Interrupt	INTDMA1	DMAIC1	DMA channel 1 transfer completion	DMAC	23	02B0H	000002B0H	nextPC
	Interrupt	INTDMA2	DMAIC2	DMA channel 2 transfer completion	DMAC	24	02C0H	000002C0H	nextPC
	Interrupt	INTDMA3	DMAIC3	DMA channel 3 transfer completion	DMAC	25	02D0H	000002D0H	nextPC
	Interrupt	INTCSI0	CSIC0	CSI0 transmission/ reception completion	SIO	26	0300H	00000300H	nextPC
	Interrupt	INTSER0	SEIC0	UART0 reception error	SIO	27	0310H	00000310H	nextPC
	Interrupt	INTSR0	SRIC0	UART0 reception completion	SIO	28	0320H	00000320H	nextPC
	Interrupt	INTST0	STIC0	UART0 transmission completion	SIO	29	0330H	00000330H	nextPC
	Interrupt	INTCSI1	CSIC1	CSI1 transmission/ reception completion	SIO	30	0340H	00000340H	nextPC
	Interrupt	INTSER1	SEIC1	UART1 reception error	SIO	31	0350H	00000350H	nextPC
	Interrupt	INTSR1	SRIC1	UART1 reception completion	SIO	32	0360H	00000360H	nextPC
	Interrupt	INTST1	STIC1	UART1 transmission completion	SIO	33	0370H	00000370H	nextPC
	Interrupt	INTAD	ADIC	A/D conversion completion	ADC	34	0400H	00000400H	nextPC

Caution INTP1mn (external interrupt) and INTCC1mn (compare register match interrupt) share a control register. Set the valid interrupt request using bits 3 to 0 (IMS1mn) of timer unit mode registers 10 to 13 (TUM10 to TUM13) (see 9.3 (1) Timer unit mode registers 10 to 13 (TUM10 to TUM13)).

Remarks 1. Default priority: The priority order when two or more maskable interrupt requests occur at the

same time. The highest priority is 0.

Restored PC: The value of the PC saved to EIPC or FEPC when interrupt/exception processing is started. However, the value of the PC, which is saved when an interrupt is acknowledged during division (DIV, DIVH, DIVU, and DIVHU) instruction execution, is the value of the PC of the current instruction (DIV, DIVH, DIVU, and DIVHU).

2. The execution address of the illegal instruction when an illegal op code exception occurs is d

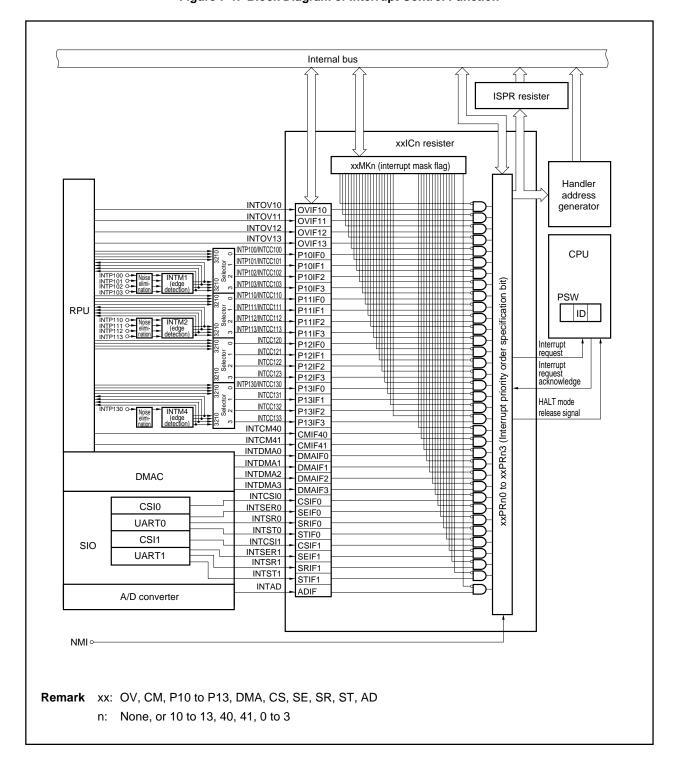


Figure 7-1. Block Diagram of Interrupt Control Function

7.2 Non-Maskable Interrupt

A non-maskable interrupt request is acknowledged unconditionally, even when interrupts are in the interrupt disabled (DI) status. An NMI is not subject to priority control and takes precedence over all other interrupts.

A non-maskable interrupt request is input from the NMI pin. When the valid edge specified by bit 0 (ESN0) of the external interrupt mode register 0 (INTM0) is detected on the NMI pin, the interrupt occurs.

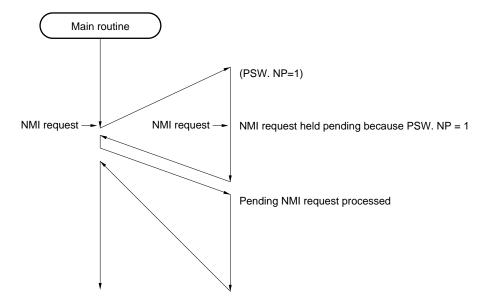
While the service program of the non-maskable interrupt is being executed (PSW.NP = 1), the acknowledgement of another non-maskable interrupt requests is held pending. The pending NMI is acknowledged after the original service program of the non-maskable interrupt under execution has been terminated (by the RETI instruction), or when PSW.NP is cleared to 0 by the LDSR instruction. Note that if two or more NMI requests are input during the execution of the service program for an NMI, the number of NMIs that will be acknowledged after PSW.NP goes to "0", is only one.

Remark PSW.NP: The NP bit of the PSW register.

7.2.1 Operation

If a non-maskable interrupt is generated, the CPU performs the following processing, and transfers control to the handler routine:

- (1) Saves the restored PC to FEPC.
- (2) Saves the current PSW to FEPSW.
- (3) Writes the exception code (0010H) to the higher halfword (FECC) of ECR.
- (4) Sets the NP and ID bits of PSW and clears the EP bit.
- (5) Sets the handler address (00000010H) corresponding to the non-maskable interrupt to the PC, and transfers control.


The processing configuration of a non-maskable interrupt is shown in Figure 7-2.

NMI input NMI acknowledged Non-maskable interrupt request CPU processing PSW.NP 0 FEPC → restored PC Interrupt request pending **FEPSW ←** PSW ECR.FECC ← 0010H PSW.NP PSW.EP PSW.ID **←** 00000010H PC Interrupt servicing

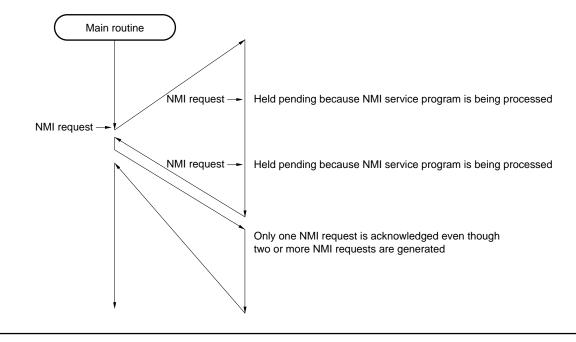

Figure 7-2. Processing Configuration of Non-Maskable Interrupt

Figure 7-3. Acknowledging Non-Maskable Interrupt Request

(a) If a new NMI request is generated while an NMI service program is being executed:

(b) If a new NMI request is generated twice while an NMI service program is being executed:

7.2.2 Restore

Execution is restored from the non-maskable interrupt servicing by the RETI instruction.

When the RETI instruction is executed, the CPU performs the following processing, and transfers control to the address of the restored PC.

- (1) Restores the values of the PC and PSW from FEPC and FEPSW, respectively, because the EP bit of PSW is 0 and the NP bit of PSW is 1.
- (2) Transfers control back to the address of the restored PC and PSW.

Figure 7-4 illustrates how the RETI instruction is processed.

PSW.EP

0

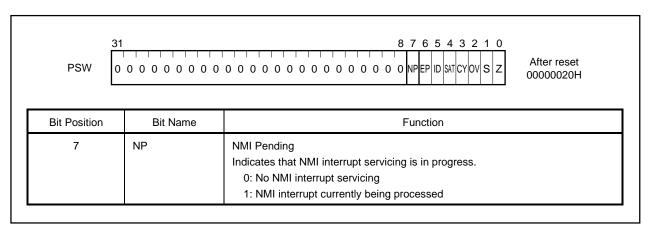
PSW.NP

1

PC +-EIPC
PSW +-EIPSW

Original processing restored

Figure 7-4. RETI Instruction Processing


Caution When the PSW.EP bit and PSW.NP bit are changed by the LDSR instruction during nonmaskable interrupt servicing, in order to restore the PC and PSW correctly during recovery by the RETI instruction, it is necessary to set PSW.EP back to 0 and PSW.NP back to 1 using the LDSR instruction immediately before the RETI instruction.

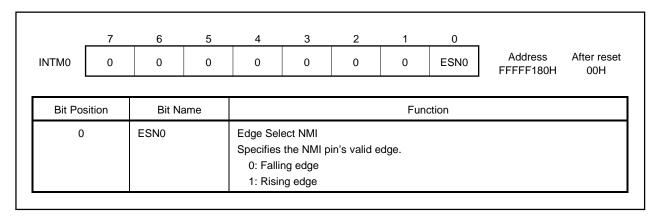
Remark The solid line shows the CPU processing flow.

7.2.3 Non-maskable interrupt status flag (NP)

The NP flag is bit 7 of the PSW.

The NP flag is a status flag that indicates that non-maskable interrupt (NMI) servicing is under execution. This flag is set when the NMI interrupt has been acknowledged, and masks all interrupt requests and exceptions to prohibit multiple interrupts from being acknowledged.

7.2.4 Noise elimination


NMI pin noise is eliminated with analog delay. The delay time is 60 to 220 ns. The signal input that changes within the delay time is not internally acknowledged.

The NMI pin is used for releasing the software STOP mode. In the software STOP mode, the internal system clock is not used for noise elimination because the internal system clock is stopped.

7.2.5 Edge detection function

INTM0 is a register that specifies the valid edge of the non-maskable interrupt (NMI). The NMI valid edge can be specified to be either the rising edge or the falling edge by the ESN0 bit.

This register can be read/written in 8- or 1-bit units.

7.3 Maskable Interrupts

Maskable interrupt requests can be masked by interrupt control registers. The V850E/MS1 has 47 maskable interrupt sources.

If two or more maskable interrupt requests are generated at the same time, they are acknowledged according to the default priority. In addition to the default priority, eight levels of priorities can be specified by using the interrupt control registers (programmable priority control).

When an interrupt request has been acknowledged, the acknowledgement of other maskable interrupt requests is disabled and the interrupt disabled (DI) status is set.

When the EI instruction is executed in an interrupt servicing routine, the interrupt enabled (EI) status is set which enables interrupts having a higher priority than the interrupt requests in progress (specified by the interrupt control register). Note that only interrupts with a higher priority will have this capability; interrupts with the same priority level cannot be nested.

However, if multiplexed interrupts are executed, the following servicing is necessary.

- <1> Save EIPC and EIPSW in memory or a general-purpose register before executing the EI instruction.
- <2> Execute the DI instruction before executing the RETI instruction, then reset EIPC and EIPSW with the values saved in <1>.

7.3.1 Operation

If a maskable interrupt occurs by INT input, the CPU performs the following servicing, and transfers control to a handler routine:

- (1) Saves the restored PC to EIPC.
- (2) Saves the current PSW to EIPSW.
- (3) Writes an exception code to the lower halfword of ECR (EICC).
- (4) Sets the ID bit of the PSW and clears the EP bit.
- (5) Sets the handler address corresponding to each interrupt to the PC, and transfers control.

The processing configuration of a maskable interrupt is shown in Figure 7-5.

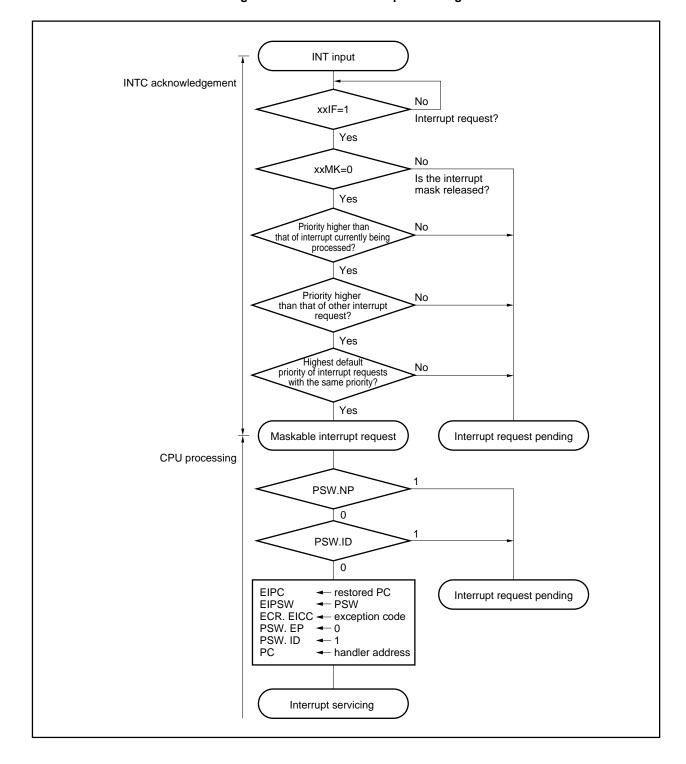
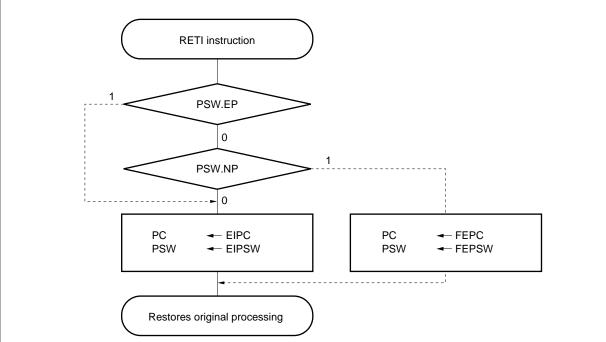


Figure 7-5. Maskable Interrupt Servicing

The INT input masked by the interrupt controllers and the INT input that occurs while another interrupt is being processed (when PSW.NP = 1 or PSW.ID = 1) are held pending internally by the interrupt controller. When the interrupts are unmasked, or when PSW.NP = 0 and PSW.ID = 0 are set by the RETI and LDSR instructions, input of the pending INT starts the new maskable interrupt servicing.

7.3.2 Restore


To restore from the maskable interrupt servicing, the RETI instruction is used.

When the RETI instruction is executed, the CPU performs the following steps, and transfers control to the address of the restored PC.

- (1) Restores the values of the PC and PSW from EIPC and EIPSW because the EP bit of the PSW is 0 and the NP bit of the PSW is 0.
- (2) Transfers control to the address of the restored PC and PSW.

Figure 7-6 illustrates the processing of the RETI instruction.

Figure 7-6. RETI Instruction Processing

Caution When the PSW.EP bit and the PSW.NP bit are changed by the LDSR instruction during maskable interrupt servicing, in order to restore the PC and PSW correctly during recovery by the RETI instruction, it is necessary to set PSW.EP back to 0 and PSW.NP back to 0 using the LDSR instruction immediately before the RETI instruction.

Remark The solid line shows the CPU processing flow.

7.3.3 Priorities of maskable interrupts

The V850E/MS1 provides multiple interrupt servicing whereby an interrupt is acknowledged while another interrupt is being serviced. Multiple interrupts can be controlled by priority levels.

There are two types of priority level control: control based on the default priority levels, and control based on the programmable priority levels which are specified by the interrupt priority level specification bit (xxPRn) of the interrupt control register (xxICn). When two or more interrupts having the same priority level specified by the xxPRn bit are generated at the same time, interrupts are serviced in order depending on the priority level allocated to each interrupt request type (default priority level) beforehand. For more information, refer to **Table 7-1 Interrupt List**. The programmable priority control customizes interrupt requests into eight levels by setting the priority level specification flag.

Note that when an interrupt request is acknowledged, the ID flag of the PSW is automatically set to 1. Therefore, when multiple interrupts are to be used, clear the ID flag to 0 beforehand (for example, by placing the EI instruction into the interrupt service program) to set the interrupt enable mode.

Main routine Servicing of a Servicing of b ĒΙ ĖΙ Interrupt Interrupt request a request b Interrupt request b is acknowledged because the (level 3) (level 2) priority ofb is higher than that of a and interrupts are enabled. Servicing of c Interrupt request c Interrupt request d Although the priority of interrupt request d is higher (level 3) (level 2)than that of c, d is held pending because interrupts are disabled. Servicing of d Servicing of e ΕI Interrupt request e Interrupt request f Interrupt request f is held pending even if interrupts are (level 2) (level 3) enabled because its priority is lower than that of e. Servicing of f Servicing of g ĒΙ Interrupt request h Interrupt request g -(level 1) → Interrupt request h is held pending even if interrupts are (level 1) enabled because its priority is the same as that of g. Servicing of h

Figure 7-7. Example of Servicing in Which Another Interrupt Request Is Issued While Interrupt Is Being Serviced (1/2)

Remarks 1. a to u in the figure are the names of interrupt requests shown for the sake of explanation.

2. The default priority in the figure indicates the relative priority between two interrupt requests.

Caution The values of the EIPC and EIPSW registers must be saved before executing multiple interrupts.

Main routine Servicing of i ĖΙ Servicing of k Ínterrupt request j (level 3) Interrupt request i (level 2) Interrupt request j is held pending because its Interrupt request k priority is lower than that of i. k, which occurs after (level 1) j, is acknowledged because it has the higher priority. Servicing of j Servicing of I Interrupt requests m and n are held pending Interrupt because servicing of I is performed in the interrupt request m disabled status. Interrupt request I Interrupt request n
(level 1) (level 2) Pending interrupt requests are acknowledged after Servicing of n servicing of interrupt request I. At this time, interrupt requests n is acknowledged first even though m has occurred first because the priority of n is higher than that of m. Servicing of m Servicing of o Servicing of p FΙ Servicing of q Interrupt request o ĒΙ Ínterrupt Servicing of r (level 3) Interrupt ĖΙ request p request q (level 1) Interrupt request r (level 0) If levels 3 to 0 are acknowledged Pending interrupt requests t and u are Servicing of s acknowledged after servicing of s. Because the priorities of t and u are the same, u is Interrupt acknowledged first because it has the higher request t default priority, regardless of the order in which the (level 2) -Interrupt request s interrupt requests were generated. Interrupt request u (level 1) (level 2) -Servicing of u Servicing of t Notes 1. Lower default priority 2. Higher default priority

Figure 7-7. Example of Servicing in Which Another Interrupt Request Is Issued While Interrupt Is Being Serviced (2/2)

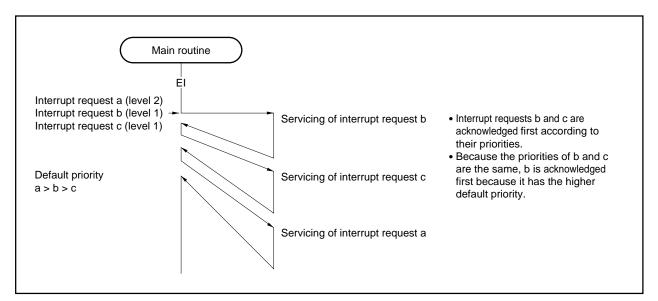
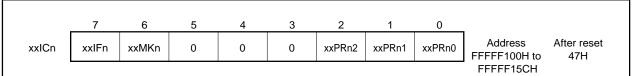



Figure 7-8. Example of Servicing Interrupt Requests Simultaneously Generated

7.3.4 Interrupt control register (xxICn)

An interrupt control register is assigned to each interrupt request (maskable interrupt) and sets the control conditions for each maskable interrupt request.

This register can be read/written in 8- or 1-bit units.

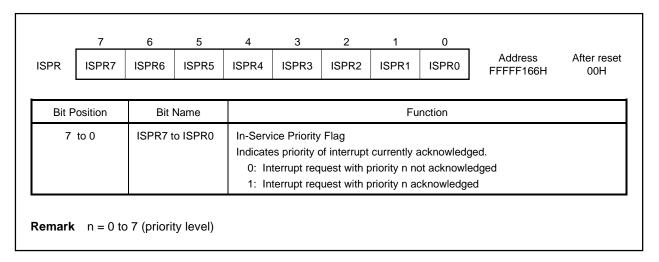
Bit Position	Bit Name				Function	
7	xxIFn	Interrupt Request Flag This is an interrupt request flag. 0: Interrupt request not issued 1: Interrupt request issued The flag xxIFn is reset automatically by the hardware if an interrupt request is received.				
6	xxMKn	Mask Flag This is an interrupt mask flag. 0: Enables interrupt servicing 1: Disables interrupt servicing (pending)				
2 to 0	xxPRn2 to xxPRn0	Priority 8 levels of priority order are specified in each interrupt.				
		xxPRn2	xxPRn1	xxPRn0 0	Interrupt Priority Specification Bit	
		0	0	1	Specifies level 0 (highest). Specifies level 1.	
		0	1	0	Specifies level 1.	
		0	1	1	'	
		1	0	0	Specifies level 3. Specifies level 4.	
		l 	-	-	'	
		1	0	1	Specifies level 5.	
		1	1	0	Specifies level 6.	
		1	1	1	Specifies level 7 (lowest).	

Remark xx: Identification name of each peripheral unit (OV, P10 to P13, CM, CS, SE, SR, ST, AD, DMA)

n: Peripheral unit number (None, or 0 to 3, 10 to 13, 40, 41).

Address and bit of each interrupt control register is as follows:

Table 7-2. Interrupt Control Register Addresses and Bits


Address	Register				В	Sit			
		7	6	5	4	3	2	1	0
FFFFF100H	OVIC10	OVIF10	OVMK10	0	0	0	OVPR102	OVPR101	OVPR100
FFFFF102H	OVIC11	OVIC11	OVMK11	0	0	0	OVPR112	OVPR111	OVPR110
FFFFF104H	OVIC12	OVIF12	OVMK12	0	0	0	OVPR122	OVPR121	OVPR120
FFFFF106H	OVIC13	OVIF13	OVMK13	0	0	0	OVPR132	OVPR131	OVPR130
FFFFF10CH	CMIC40	CMIF40	CMMK40	0	0	0	CMPR402	CMPR401	CMPR400
FFFFF10EH	CMIC41	CMIF41	CMMK41	0	0	0	CMPR412	CMPR411	CMPR410
FFFFF110H	P10IC0	P10IF0	P10MK0	0	0	0	P10PR02	P10PR01	P10PR00
FFFFF112H	P10IC1	P10IF1	P10MK1	0	0	0	P10PR12	P10PR11	P10PR10
FFFFF114H	P10IC2	P10IF2	P10MK2	0	0	0	P10PR22	P10PR21	P10PR20
FFFFF116H	P10IC3	P10IF3	P10MK3	0	0	0	P10PR32	P10PR31	P10PR30
FFFFF118H	P11IC0	P11IF0	P11MK0	0	0	0	P11PR02	P11PR01	P11PR00
FFFFF11AH	P11IC1	P11IF1	P11MK1	0	0	0	P11PR12	P11PR11	P11PR10
FFFFF11CH	P11IC2	P11IF2	P11MK2	0	0	0	P11PR22	P11PR21	P11PR20
FFFFF11EH	P11IC3	P11IF3	P11MK3	0	0	0	P11PR32	P11PR31	P11PR30
FFFFF120H	P12IC0	P12IF0	P12MK0	0	0	0	P12PR02	P12PR01	P12PR00
FFFFF122H	P12IC1	P12IF1	P12MK1	0	0	0	P12PR12	P12PR11	P12PR10
FFFFF124H	P12IC2	P12IF2	P12MK2	0	0	0	P12PR22	P12PR21	P12PR20
FFFFF126H	P12IC3	P12IF3	P12MK3	0	0	0	P12PR32	P12PR31	P12PR30
FFFFF128H	P13IC0	P13IF0	P13MK0	0	0	0	P13PR02	P13PR01	P13PR00
FFFFF12AH	P13IC1	P13IF1	P13MK1	0	0	0	P13PR12	P13PR11	P13PR10
FFFFF12CH	P13IC2	P13IF2	P13MK2	0	0	0	P13PR22	P13PR21	P13PR20
FFFFF12EH	P13IC3	P13IF3	P13MK3	0	0	0	P13PR32	P13PR31	P13PR30
FFFFF140H	DMAIC0	DMAIF0	DMAMK0	0	0	0	DMAPR02	DMAPR01	DMAPR00
FFFFF142H	DMAIC1	DMAIF1	DMAMK1	0	0	0	DMAPR12	DMAPR11	DMAPR10
FFFFF144H	DMAIC2	DMAIF2	DMAMK2	0	0	0	DMAPR22	DMAPR21	DMAPR20
FFFFF146H	DMAIC3	DMAIF3	DMAMK3	0	0	0	DMAPR32	DMAPR31	DMAPR30
FFFFF148H	CSIC0	CSIF0	CSMK0	0	0	0	CSPR02	CSPR01	CSPR00
FFFFF14AH	CSIC1	CSIF1	CSMK1	0	0	0	CSPR12	CSPR11	CSPR10
FFFFF150H	SEIC0	SEIF0	SEMK0	0	0	0	SEPR02	SEPR01	SEPR00
FFFFF152H	SRIC0	SRIF0	SRMK0	0	0	0	SRPR02	SRPR01	SRPR00
FFFFF154H	STIC0	STIF0	STMK0	0	0	0	STPR02	STPR01	STPR00
FFFFF156H	SEIC1	SEIF1	SEMK1	0	0	0	SEPR12	SEPR11	SEPR10
FFFFF158H	SRIC1	SRIF1	SRMK1	0	0	0	SRPR12	SRPR11	SRPR10
FFFFF15AH	STIC1	STIF1	STMK1	0	0	0	STPR12	STPR11	STPR10
FFFFF15CH	ADIC	ADIF	ADMK	0	0	0	ADPR2	ADPR1	ADPR0

7.3.5 In-service priority register (ISPR)

This register holds the priority level of the maskable interrupt currently acknowledged. When an interrupt request is acknowledged, the bit of this register corresponding to the priority level of that interrupt request is set (1) and remains set while the interrupt is serviced.

When the RETI instruction is executed, the bit corresponding to the interrupt request having the highest priority is automatically cleared (0) by hardware. However, it is not cleared (0) when execution is returned from non-maskable interrupt servicing or exception processing.


This register is read-only in 8- or 1-bit units.

7.3.6 Maskable interrupt status flag (ID)

The ID flag is bit 5 of the PSW.

This controls the maskable interrupt's operating state, and stores control information on enabling/disabling acknowledgement of interrupt requests.

7.3.7 Noise elimination

Digital noise elimination circuits are added to each of the INTPn0 to INTPn3, INTP130, TI3, and TCLR10 to TCLR12 pins (n = 10, 11). Using these circuits, these pins' input level is sampled each sampling clock cycle (fsmp). If the same level cannot be detected 3 times consecutively in the sampling results, that input pulse is removed as noise.

The noise elimination time at each pin is shown below.

Pin	Sampling Clock (fsmp)	Noise Elimination Time
TCLR10 to TCLR12	φ	$2 \times \phi$
TI13	φ	to $3 \times \phi$
INTP100 to INTP103, INTP110 to INTP113, INTP130	φ	3 × ψ

Remark ϕ : Internal system clock

Sampling clock (fsme)

Input signal

Max. 3 clocksNote 1

Min. 2 clocksNote 2

Internal signal

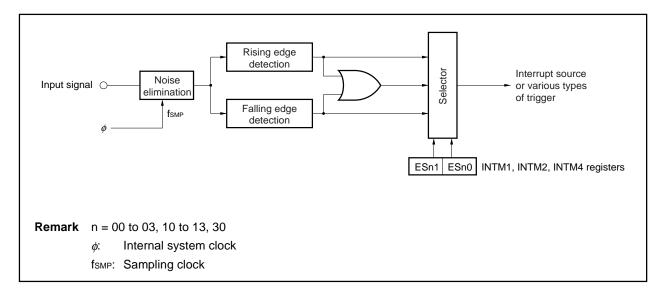
Rising edge detection

Falling edge detection

Notes 1. Pulse width of unrecognizable noise.

2. Pulse width of recognizable signals.

Figure 7-9. Example of Noise Elimination Timing


- Cautions 1. If the input pulse width is between 2 and 3 sampling clocks, whether the input pulse is detected as a valid edge or eliminated as a noise is indefinite.
 - 2. To securely detect the level as a pulse, the same level input of 3 sampling clocks or more is required.
 - 3. When noise is generated in synchronization with a sampling clock, this may not be recognized as noise. In this case, eliminate the noise by attaching a filter to the input pin.

7.3.8 Edge detection function

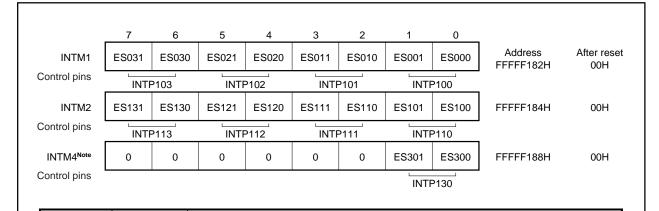
The valid edge of pins INTPn0 to INTPn3 and INTP130 can be selected by program. The valid edge that can be selected is one of the following (n = 10, 11).

- · Rising edge
- · Falling edge
- · Both the rising and falling edges

Edge detected INTPn0 to INTPn3 and INTP130 signals become interrupt factors or capture triggers. The block diagram of the edge detectors for these pins is shown below.

Valid edges are specified in external interrupt mode registers 1, 2, 4 (INTM1, INTM2, INTM4).

(1) External interrupt mode registers 1, 2, 4 (INTM1, INTM2, INTM4)


These are registers that specify the valid edge for external interrupt requests (INTP100 to INTP103, INTP110 to INTP130), by external pins. The correspondence between each register and the external interrupt requests which that register controls is shown below.

INTM1: INTP100 to INTP103INTM2: INTP110 to INTP113

• INTM4: INTP130

The valid edge can be specified independently for each pin, as the rising edge, the falling edge or both the rising and falling edges.

These registers can be read/written in 8- or 1-bit units.

Bit Position	Bit Name	Function				
7 to 0	ESmn1, ESmn0 (m = 3, 1, 0,	Edge Select Specifies the valid edge of the INTP1mn pins.				
	n = 3 to 0)	ESmn1	ESmn0	Operation		
		0	0	Falling edge		
		0	1	Rising edge		
		1	0	RFU (reserved)		
		1	1	Both the rising and falling edges		

Note Be sure to set bits 2 to 7 of INTM4 to 0.

7.4 Software Exception

A software exception is generated when the CPU executes the TRAP instruction, and can be always acknowledged.

7.4.1 Operation

If a software exception occurs, the CPU performs the following processing, and transfers control to the handler routine:

- (1) Saves the restored PC to EIPC.
- (2) Saves the current PSW to EIPSW.
- (3) Writes an exception code to the lower 16 bits (EICC) of ECR (interrupt source).
- (4) Sets the EP and ID bits of the PSW.
- (5) Sets the handler address (00000040H or 00000050H) corresponding to the software exception to the PC, and transfers control.

Figure 7-10 illustrates how a software exception is processed.

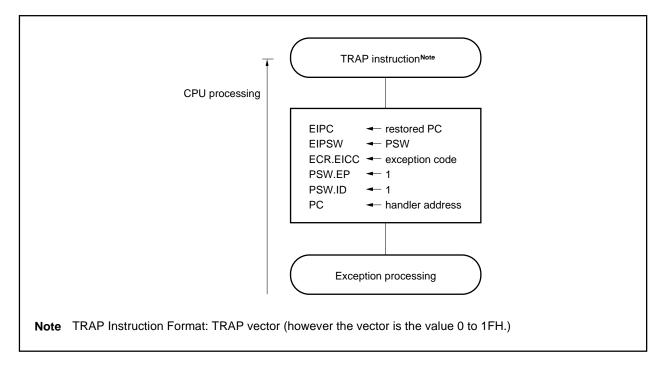
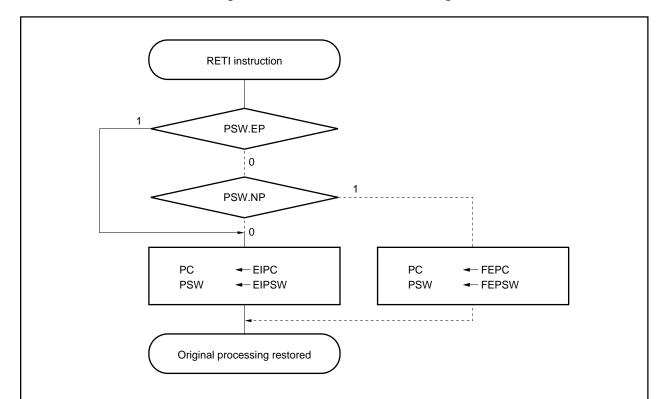


Figure 7-10. Software Exception Processing

The handler address is determined by the TRAP instruction's operand (vector). If the vector is 0 to 0FH, it becomes 00000040H, and if the vector is 10H to 1FH, it becomes 00000050H.

7.4.2 Restore

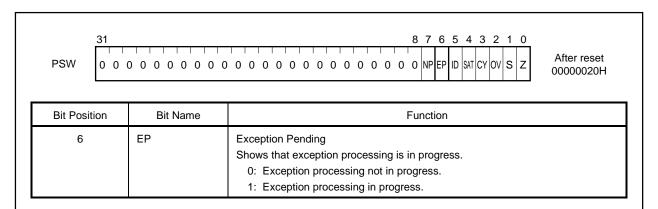

To restore from the software exception processing, the RETI instruction is used.

By executing the RETI instruction, the CPU carries out the following processing and shifts control to the restored PC's address.

- (1) Loads the restored PC and PSW from EIPC and EIPSW because the EP bit of PSW is 1.
- (2) Transfers control to the address of the restored PC and PSW.

Figure 7-11 illustrates the processing of the RETI instruction.

Figure 7-11. RETI Instruction Processing

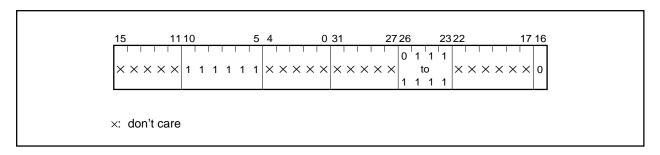


Caution When the PSW.EP bit and the PSW.NP bit are changed by the LDSR instruction during the software exception process, in order to restore the PC and PSW correctly during recovery by the RETI instruction, it is necessary to set PSW.EP back to 1 using the LDSR instruction immediately before the RETI instruction.

Remark The solid line shows the CPU processing flow.

7.4.3 Exception status flag (EP)

The EP flag is a status flag used to indicate that exception processing is in progress. It is set when an exception occurs.


7.5 Exception Trap

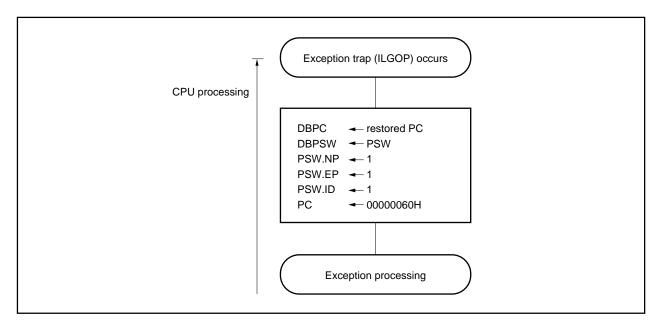
The exception trap is an interrupt that is requested when illegal execution of an instruction takes place. In the V850E/MS2, an illegal op code exception (ILGOP: ILleGal Opcode trap) is considered an exception trap.

An illegal op code exception is generated in the case where the sub op code of the following instruction is an illegal op code when execution of that instruction is attempted.

7.5.1 Illegal op code definition

The illegal op code has a 32-bit long instruction format: bits 10 to 5 are 111111B and bits 26 to 23 are 0111B to 1111B, with bit 16 defined as an optional instruction code, 0B.

Caution Since it is possible to assign this instruction to an illegal op code in the future, it is recommended that it not be used.


7.5.2 Operation

If an exception trap occurs, the CPU performs the following processing, and transfers control to the handler routine:

- (1) Saves the restored PC to DBPC.
- (2) Saves the current PSW to DBPC.
- (3) Sets the NP, EP and ID bits of PSW.
- (4) Sets the handler address (00000060H) corresponding to the exception trap to the PC, and transfers control.

Figure 7-12 illustrates how the exception trap is processed.

Figure 7-12. Exception Trap Processing

7.5.3 Restore

Recovery from an exception trap is not possible. Perform system reset by RESET input.

7.6 Multiple Interrupt Servicing Control

Multiple interrupt servicing control is a process by which the interrupt request currently being serviced can be interrupted during servicing if there is an interrupt request with a higher priority level, and the higher priority interrupt request is acknowledged and serviced first.

If there is an interrupt request with a lower priority level than the interrupt request currently being processed, that interrupt request is held pending.

Maskable interrupt multiple processing control is executed when an interrupt has an enable status (ID = 0). Thus, if multiple interrupts are executed, it is necessary to have an interrupt enable status (ID = 0) even for an interrupt servicing routine.

If a maskable interrupt or a software exception is generated in a maskable interrupt or software exception service program, it is necessary to save EIPC and EIPSW.

This is accomplished by the following procedure.

(1) To acknowledge maskable interrupts in a service program

Service program of maskable interrupt or exception

...

- · EIPC saved to memory or register
- · EIPSW saved to memory or register
- · El instruction (enables interrupt acknowledgement)

...

...

- DI instruction (disables interrupt acknowledgement)
- Saved value restored to EIPSW
- Saved value restored to EIPC
- RETI instruction

← Maskable interrupt acknowledgement

(2) To generate an exception in a service program

Service program of maskable interrupt or exception

•••

- EIPC saved to memory or register
- EIPSW saved to memory or register

...

• TRAP instruction

...

- · Saved value restored to EIPSW
- · Saved value restored to EIPC
- RETI instruction

← Exception such as TRAP instruction acknowledged.

The priority order for multiple interrupt servicing control has 8 levels, from 0 to 7 for each maskable interrupt request (0 is the highest priority), which can be set as desired via software. The priority order level is set with the xxPRn0 to xxPRn2 bits of the interrupt control request register (xxlCn), which is provided for each maskable interrupt request. At system reset time, an interrupt request is masked by the xxMKn bit and the priority order is set to level 7 by the xxPRn0 to xxPRn2 bits.

The priority order of maskable interrupts is as follows.

```
(High) Level 0 > Level 1 > Level 2 > Level 3 > Level 4 > Level 5 > Level 6 > Level 7 (Low)
```

Interrupt servicing that has been suspended as a result of multiple servicing control is resumed after the interrupt servicing of the higher priority has been completed and the RETI instruction has been executed. A pending interrupt request is acknowledged after the current interrupt servicing has been completed and the RETI instruction has been executed.

Caution In the non-maskable interrupt servicing routine (time until the RETI instruction is executed), maskable interrupts are not acknowledged but are held pending.

7.7 Interrupt Latency Time

The following table describes the V850E/MS1 interrupt latency time (from interrupt generation to start of interrupt servicing).

2 system 2 system clocks clocks Interrupt request Instruction 1 ID ΕX MEM WB Instruction 2 IDXIFX INT1 INT2 INT3 INT4 Interrupt acknowledgement operation Instruction (start instruction of ΙF ID EX interrupt servicing routine) Remark INT1 to INT4: Interrupt acknowledgement processing IF×: Invalid instruction fetch IDx: Invalid instruction decode

Figure 7-13. Pipeline Operation at Interrupt Request Acknowledgement (Outline)

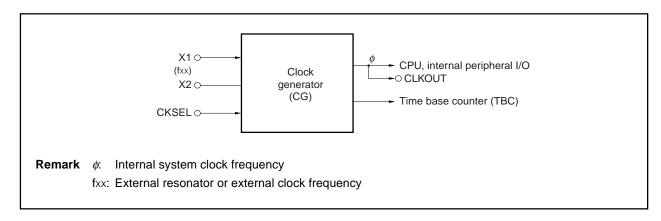
Interru	pt Latency Time (Interna	al System Clock)	Condition
	Internal Interrupt	External Interrupt	
Minimum	4	6	The following cases are exceptions. In IDLE/software STOP mode
Maximum	10	12	External bus is accessed Two or more interrupt request non-sample instructions are executed in succession Access to interrupt control register

7.8 Periods in Which Interrupt Is Not Acknowledged

An interrupt is acknowledged while an instruction is being executed. However, no interrupt will be acknowledged between an interrupt non-sample instruction and the next instruction.

The interrupt request non-sampling instructions are as follows.

- El instruction
- DI instruction
- LDSR reg2, 0x5 instruction (vs. PSW)
- The store instruction for the interrupt control register (xxlCn) and command register (PRCMD)


CHAPTER 8 CLOCK GENERATOR FUNCTIONS

The clock generator (CG) generates and controls the internal system clock (ϕ) which is supplied to each internal unit, of which the CPU is the primary unit.

8.1 Features

- O Multiplier function using a PLL (phase locked loop) synthesizer
- O Clock Source
 - Oscillation by connecting an oscillator: $fxx = \phi/5$
 - External clock: $fxx = 2 \times \phi$, $\phi/5$
- O Power save control
 - HALT mode
 - IDLE mode
 - Software STOP mode
 - · Clock output inhibit function
- O Internal system clock output function

8.2 Configuration

8.3 Input Clock Selection

The clock generator is configured from an oscillator and a PLL synthesizer. If, for example a 6 MHz crystal resonator or ceramic resonator is connected to pins X1 and X2, an internal system clock (ϕ) of 30 MHz can be generated.

Also, an external clock can be input directly to the oscillator. In this case, input a clock signal to the X1 pin only and leave the X2 pin open.

Two types of mode, a PLL mode and a direct mode, are provided as the basic operation modes for the clock generator. Selection of the operation mode is done by the CKSEL pin. The input of this pin latches at reset time.

CKSEL	Operation Mode
0	PLL mode
1	Direct mode

Caution Fix the input level of the CKSEL pin before use. If it is switched during operation, there is a possibility of malfunction occurring.

8.3.1 Direct mode

In the direct mode, an external clock with double the internal system clock's frequency is input. Mainly, the V850E/MS2 is used in application systems where it operates at relatively low frequencies. In consideration of EMI countermeasures, if the external clock frequency (fxx) is 32 MHz (internal system clock (ϕ) = 16 MHz) or greater, the PLL mode is recommended.

Caution In the direct mode, be sure to input an external clock (do not connect an external resonator).

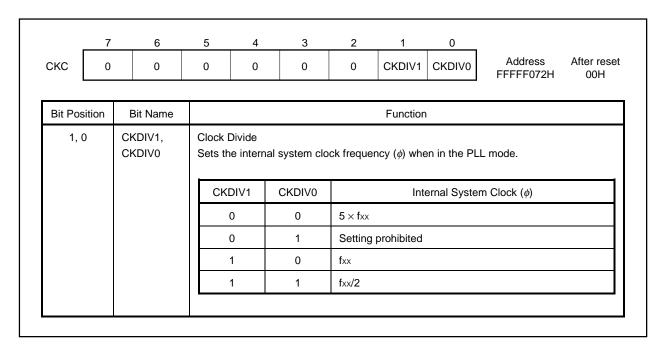
8.3.2 PLL mode

In the PLL mode, by connecting an external resonator or inputting an external clock and multiplying this clock by the PLL synthesizer, an internal system clock (ϕ) is generated.

At reset time, an internal system clock (ϕ) which is 5 times the frequency of the input clock's frequency (fxx) (5 × fxx), is generated.

In the PLL mode, if the clock supply from an external resonator or external clock source stops, the internal system clock (ϕ) continues to operate based on the self-propelled frequency of the clock generator's internal voltage controlled oscillator (VCO). In this case, ϕ = approx. 1 MHz (target). However, do not devise an application method in which you expect to use this self-propelled frequency.

Example Clock used when in the PLL mode


System Clock Frequency (φ) [MHz]	External Resonator/External Clock Frequency (fxx) [MHz]
30.000	6.0000
25.000	5.0000
20.000	4.0000
16.384	3.2768

8.3.3 Clock control register (CKC)

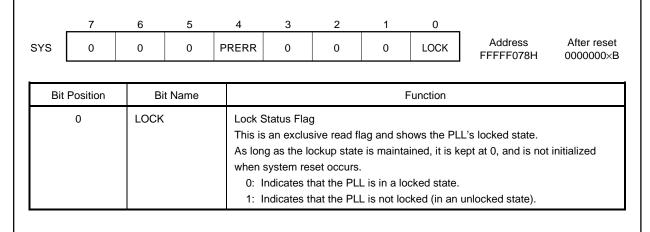
When in the PLL mode, this is an 8-bit register which controls the internal system clock frequency (ϕ), and it can be written to only by a specific combination of instruction sequences so that it cannot be rewritten easily by mistake due to program runaway.

This register can be read/written in 8- or 1-bit units.

Caution When in the direct mode, do not change the setting of this register.

The sequence of setting data to this register is the same as for the power save control register (PSC). However, the restrictions shown in **Remark 2** of **3.4.9 Specific registers** do not apply. For details, refer to **8.5.2 Control registers**.

Example Clock generator setting


Operation Mode	CKSEL Pin	CKC Register		Input Clock (fxx)	Internal System Clock (φ)
		CKDIV1 Bit	CKDIV0 Bit		
Direct mode	High-level input	0	0	16 MHz	8 MHz
PLL mode	Low-level input	0	0	6 MHz	30 MHz
		1	0	6 MHz	6 MHz
		1	1	6 MHz	3 MHz
Other than above	ve	Setting prohibited			

8.4 PLL Lockup

Lockup time (frequency stabilization time) is the amount of time from immediately after the software STOP mode is released after the power is turned on, until the phase locks at the proper frequency and becomes stable. The state until this stabilization occurs is called the unlocked state and the stabilized state is called the locked state.

There is a LOCK flag which reflects the PLL's frequency stabilization state, and a PRERR flag which shows when a protection error occurs, in the system status register (SYS).

This register can be read/written in 8- or 1-bit units.

Remark For an explanation of the PRERR flag, refer to 3.4.9 (2) System status register (SYS).

If the clock stops, the power fails, or some other factor occurs to cause the unlocked state, in control processing which depends on software execution speed such as real-time processing, be sure to begin processing after judging the LOCK flag by software immediately after operation starts, and after waiting for the clock to stabilize again.

On the other hand, for static processing such as setting of internal hardware, or initialization of register data and memory data, it is possible to execute these without waiting for the LOCK flag to be reset.

The relationship between the oscillation stabilization time (the time from when the resonator starts to oscillate until the input waveform stabilizes) when a resonator is used, and the PLL lockup time (the time until the frequency is stabilized) is shown below.

Oscillation stabilization time < PLL lockup time

8.5 Power Saving Control

8.5.1 Outline

The V850E/MS1 standby function comprises the following three modes:

(1) HALT mode

In this mode, the clock generator (oscillator and PLL synthesizer) continues to operate, but the CPU's operation clock stops. Supply of the clock to the other internal peripheral functions is continued. Through intermittent operation by combining with the normal operating mode, the system's total power consumption can be reduced.

The system is switched to the HALT mode via an exclusive instruction (the HALT instruction).

(2) IDLE mode

In this mode, the clock generator (oscillator and PLL synthesizer) continues to operate, but supply of the internal system clock is stopped, which causes the system overall to stop.

When releasing the system from the IDLE mode, it is not necessary to secure the oscillation stabilization time of the oscillator, so it is possible to switch to normal operation at high speed.

The system enters the IDLE mode in accordance with the settings in the PSC register (specific register).

The IDLE mode is positioned midway between the software STOP mode and the HALT mode in relation to clock stabilization time and current consumption and is used for cases where the low current consumption mode is used and where it is desired to eliminate the clock stabilization time after it is released.

(3) Software STOP mode

In this mode, the clock generator (oscillator and PLL synthesizer) is stopped and the system overall is stopped, thus entering an ultra-low power consumption state where only leak current is lost. It is possible to enter the software STOP mode by setting the PSC register (specific register).

(a) When in the PLL Mode

By setting the register by software, you can enter the software STOP mode. At the same time the oscillator stops, the PLL synthesizer's clock output stops. After releasing the software STOP mode, it is necessary to secure oscillation stabilization time for the oscillator for a period of time until the system clock stabilizes. Also, depending on the program, PLL lockup time may be required.

(4) Clock output inhibit mode

Internal system clock output from the CLKOUT pin is prohibited.

The operation of the clock generator in normal operation, and in the HALT, IDLE, and software STOP modes is shown in Table 8-1.

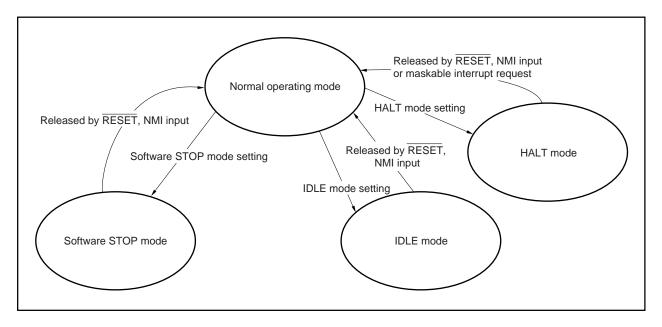
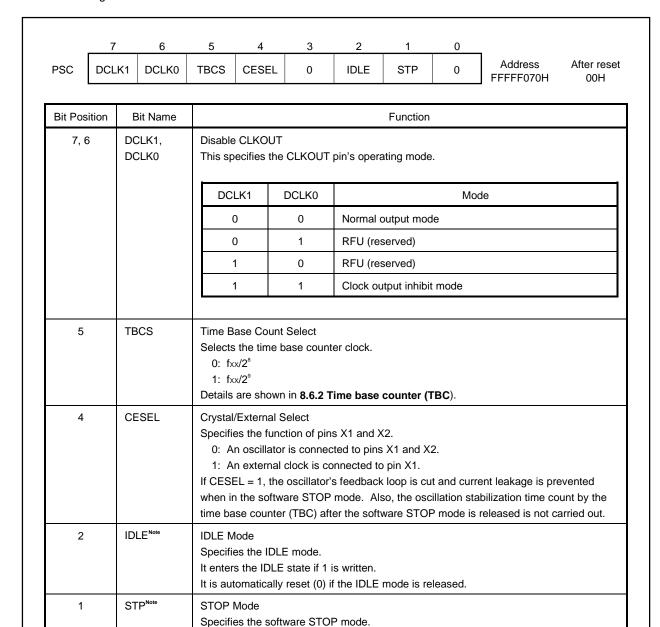

By combining each of the modes and by switching modes according to the required usage, it is possible to realize an effective low power consumption system.

Table 8-1. Clock Generator Operation by Power Save Control

Clo	ck Source	Power Save Mode	Oscillator (OSC)	PLL Synthesizer	Supply of Clock to Internal Peripheral I/O	Supply of Clock to the CPU
PLL mode	Oscillation by	(During normal operation)	0	0	0	0
	resonator	HALT mode	0	0	0	×
		IDLE mode	0	0	×	×
		Software STOP mode	×	×	×	×
	External clock	(During normal operation)	×	0	0	0
		HALT mode	×	0	0	×
		IDLE mode	×	0	×	×
		Software STOP mode	×	×	×	×
Direct mode		(During normal operation)	×	×	0	0
		HALT mode	×	×	0	×
		IDLE mode	×	×	×	×
		Software STOP mode	×	×	×	×

O: Operating ×: Stopped

Figure 8-1. Power Save Mode State Transition Diagram


8.5.2 Control registers

(1) Power save control register (PSC)

This is an 8-bit register that controls the power save mode.

This is one of the specific registers and is active only when accessed by a specific sequence during a write operation. For details, refer to **3.4.9 Specific registers**.

This register can be read/written in 8- or 1-bit units.

Note If the IDLE bit is set at 1 and the STP bit is also set at 1, the system enters the software STOP mode.

It is automatically reset (0) if the software STOP mode is released.

It enters the STOP state if 1 is written.

8.5.3 HALT mode

(1) Setting and operating state

In this mode, the clock generator (oscillator and PLL synthesizer) continues to operate, but the CPU's operation clock stops. Supply of the clock to other internal peripheral I/O functions is continued and their operation continues. By setting the HALT mode during the time when CPU is idle, the system's total power consumption can be reduced.

Switching to the HALT mode is accomplished by executing the HALT instruction.

In the HALT mode, program execution stops, but all the contents of all the registers, internal RAM, and ports are held in the state they were in just before the HALT mode was entered. Also, internal peripheral I/O (other than the ports) that is not dependent on CPU instruction processing continues operation. The state of each hardware unit when in the HALT mode is shown in Table 8-2.

Remark Even after HALT instruction execution, instruction fetch operations continue until the internal instruction prefetch queue becomes full. When the prefetch queue becomes full, it stops in the state shown in Table 8-2.

Table 8-2. Operating States When in HALT Mode

	Function	Operating State
Clock generator		Operating
Internal syste	em clock	Operating
CPU		Stop
Port		Hold
Internal perip	oheral I/O (except ports)	Operating
Internal data		All the CPU's registers, status, data, internal RAM contents and other internal data, etc. are retained in the state they were in before entering the HALT mode.
When in	D0 to D15	Operating
external expansion	A0 to A23	
mode	\overline{RD} , \overline{WE} , \overline{OE} , \overline{BCYST}	
	TWR, TWR, TORD, TOWR	
	CSO, CS3 to CS5	
	RAS3 to RAS5	
	LCAS, UCAS	
	HLDRQ	
	HLDAK	
	WAIT	
CLKOUT		Clock output (when not in clock output inhibit)

(2) Releasing HALT mode

The HALT mode can be released by NMI pin input, an unmasked maskable interrupt request, or a RESET signal input.

(a) Release by NMI pin input, maskable interrupt request

The HALT mode is unconditionally released by NMI pin input or an unmasked maskable interrupt request regardless of the priority. However, if the HALT mode is set in an interrupt servicing routine, the operation will differ as follows:

- (i) If an interrupt request with a priority lower than that of the interrupt request under execution is generated, the HALT mode is released, but the newly generated interrupt request is not acknowledged. The new interrupt request will be kept pending.
- (ii) If an interrupt request with a priority higher (including NMI request) than the interrupt request under execution is generated, the HALT mode is released, and the interrupt request is also acknowledged.

Table 8-3. Operations After HALT Mode Is Released by Interrupt Request

Releasing Source	Interrupt Enable (EI) State Interrupt Disable (DI) State		
NMI request	Branch to handler address		
Maskable interrupt request	Branch to the handler address or execute the next instruction.	Execute the next instruction.	

(b) Release by RESET pin input

This operation is the same as a normal reset operation.

8.5.4 IDLE mode

(1) Settings and operating state

In this mode, the clock generator (oscillator and PLL synthesizer) continues to operate, but supply of the internal system clock is stopped, which causes the system overall to stop.

When releasing the system from the IDLE mode, it is not necessary to secure the oscillation stabilization time of the oscillator, so it is possible to switch to normal operation at high speed.

The IDLE mode is entered by the setting of the PSC register (specific register), set through a store instruction (ST/SST instruction) or a bit operation instruction (SET1/CLR1/NOT1 instruction) (refer to **3.4.9 Specific registers**).

In the IDLE mode, program execution is stopped, but all the contents of all the registers, internal RAM, and ports are held. Operation of the internal peripheral I/O (except the ports) is also stopped.

The state of each hardware unit when in IDLE mode is as shown in Table 8-4.

Table 8-4. Operating States When in IDLE Mode

	Function	Operating State	
Clock generator		Operating	
Internal system clod	:k	Stop	
CPU		Stop	
Port		Hold	
Internal peripheral I	/O (except ports)	Stop	
Internal data		All the CPU's registers, status, data, internal RAM contents and other internal data, etc. are retained in the state they were in before entering the HALT mode.	
When in external	D0 to D15	High-impedance	
expansion mode	A0 to A23		
	RD, WE, OE, BCYST		
	TWR, UWR, IORD, IOWR	High-level output	
	CS0, CS3 to CS5		
	RAS3 to RAS5	Operating	
	LCAS, UCAS		
	HLDRQ	Input (no sampling)	
	HLDAK	High-impedance	
	WAIT	Input (no sampling)	
CLKOUT		Low-level output	

(2) Releasing IDLE mode

The IDLE Mode is released by NMI pin input or RESET pin input.

(a) Release by NMI pin input

This is acknowledged as a NMI request together with a release of the IDLE mode.

However, in cases where setting the system in the IDLE mode is included in the NMI servicing routine, the IDLE mode is released only, and this interrupt is not acknowledged. The interrupt request itself is held pending.

The interrupt servicing that is started when the IDLE mode is released by NMI pin input is treated in the same way as ordinary NMI interrupt servicing in an emergency, etc. (since the NMI interrupt handler's address is unique). Consequently, in cases where it is necessary to distinguish between the two in a program, it is necessary to prepare the software status in advance and set the status before setting the PSC register using the store instruction or a bit operation instruction. By checking this status in NMI interrupt servicing, it is possible to distinguish it from an ordinary NMI.

(b) Release by RESET pin input

This is the same as an ordinary reset operation.

8.5.5 Software STOP mode

(1) Settings and operating state

In this mode, the clock generator (oscillator and PLL synthesizer) is stopped. The system overall is stopped, and it enters an ultra-low power consumption state where only device leakage current is lost.

It is possible to enter the software STOP mode by setting the PSC register (specific register) using a store instruction (ST/SST instruction) or a bit manipulation instruction (SET1/CLR1/NOT1 instruction) in software (refer to **3.4.9 Specific registers**).

In the case of the PLL mode and oscillator connection mode (CESEL bit of the PSC register = 0), it is necessary to secure the oscillation stabilization of the oscillator after releasing the software STOP mode.

In the software STOP mode, program execution stops, but all the contents of all the registers, internal RAM, and ports are held in the state they were in just before entering the software STOP mode. Operation of the internal peripheral I/O (except the ports) is also stopped.

The status of each hardware unit during the software STOP mode is as shown in Table 8-5.

Caution In the case of the direct mode (CKSEL pin = 1) or external clock connection mode (CESEL bit of the PSC register = 1), the software STOP mode cannot be used.

Table 8-5. Operating States When in Software STOP Mode

Function		Operating State
Clock generator		Stop
Internal system clock		Stop
CPU		Stop
Port ^{Note}		Hold
Internal peripheral I/O (except ports)		Stop
Internal data ^{Note}		All the CPU's registers, status, data, internal RAM contents, other internal data, etc. are retained in the state they were in before entering the HALT mode.
When in external expansion mode	D0 to D15	High-impedance
	A0 to A23	
	\overline{RD} , \overline{WE} , \overline{OE} , \overline{BCYST}	
	TWR, UWR, TORD, TOWR	High-level output
	CS0, CS3 to CS5	
	RAS3 to RAS5	Operating
	TCAS, UCAS	
	HLDRQ	Input (no sampling)
	HLDAK	High-impedance
	WAIT	Input (no sampling)
CLKOUT		Low-level output

Note If the V_{DD} value is within the operable range.

However, even when it drops below the minimum operable voltage, if the data hold voltage VDDDR is maintained, the contents of internal RAM only are held.

(2) Releasing software STOP mode

The software STOP mode is released by NMI pin input or RESET pin input.

Also, when releasing the software STOP mode in the PLL mode and the oscillator connection mode (CESEL bit of the PSC register = 0), it is necessary to secure oscillation stabilization time for the oscillator.

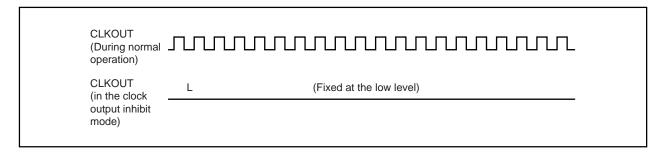
Note that depending on the program, PLL lockup time may also be necessary. For details, refer to **8.4 PLL Lockup**.

(a) Release by NMI pin input

An NMI pin input is acknowledged as an NMI request as well as a release of the software STOP mode. However, if setting in the software STOP mode is included in an NMI servicing routine, the software STOP mode only is released and the interrupt is not acknowledged. The interrupt request itself is held pending.

The interrupt servicing started when the STOP mode is released by an NMI pin input is treated in the same way as ordinary NMI interrupt servicing in an emergency, etc. (since the NMI interrupt handler address is unique). Consequently, in cases where it is necessary to distinguish between the two, it is necessary to prepare the software status in advance and set the status before setting the PSC register using the store instruction or a bit operation instruction. By checking this status in NMI interrupt servicing, it is possible to distinguish it from an ordinary NMI.

(b) Release by RESET pin input


This is the same as an ordinary reset operation.

8.5.6 Clock output inhibit mode

If the DCLK0 bit and DCLK1 bit of the PSC register are set to 1, the system enters the clock output inhibit mode, in which clock output from the CLKOUT pin is disabled.

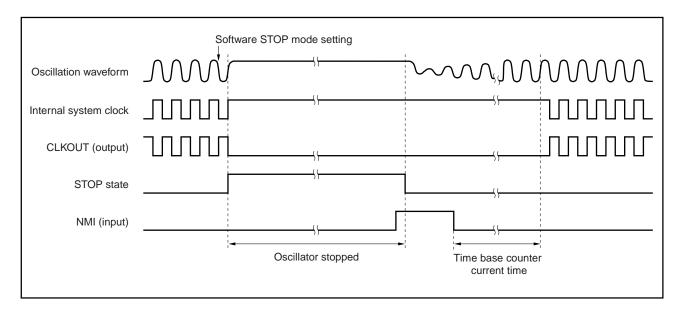
This is most appropriate in systems which access instruction fetches or data from external expansion devices asynchronously.

In this mode, since the CLKOUT signal output's operation is completely stopped, much lower power consumption and suppression of radiation noise from the CLKOUT pin is possible. Also, by combining this mode with the HALT, IDLE, and software STOP mode, more effective power saving becomes possible (refer to **8.5.2 Control registers**).

8.6 Securing Oscillation Stabilization Time

8.6.1 Specifying securing of oscillation stabilization time

There are 2 methods for specifying securing of time for stabilizing the oscillator in the stop mode after releasing the software STOP mode.


(1) If securing time by the internal time base counter (NMI pin input)

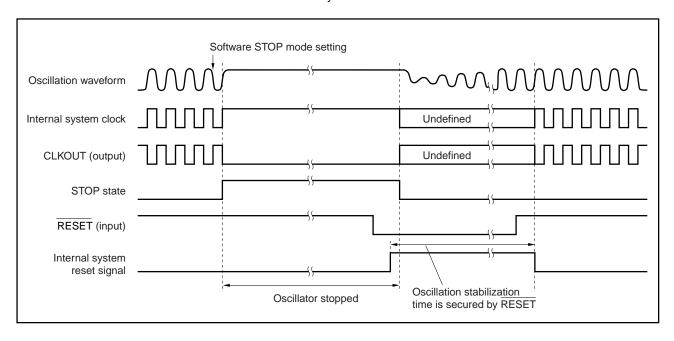
If the active edge of the NMI pin is input, the software STOP mode is released. When the inactive edge is input to the pin, the time base counter (TBC) starts counting, and at that count time, the time until the clock output from the oscillator stabilizes is secured.

Oscillation stabilization time

(Active level width after NMI input active edge detection) + (TBC count time)

After the proper time, start internal system clock output and branch to the NMI interrupt handler address.

The NMI pin should normally be set at the inactive level (for example, so that it changes to high level when the active edge is specified to be falling).


Furthermore, if an operation is executed which sets the system in the STOP mode for a time until an interrupt is received from the CPU from the NMI active edge input timing, the software STOP mode is quickly released. In the case of the PLL mode and the resonator connection mode (CESEL bit of PSC register = 0), program execution starts after the oscillation stabilization time is secured by the time base counter after input of the NMI pin's inactive edge.

(2) If securing time by the signal level width (RESET pin input)

By inputting the falling edge to the RESET pin, the software STOP mode is released.

At the signal low level width input to the pin, enough time is secured until the clock output from the oscillator stabilizes.

After inputting the rising edge to the RESET pin, supply of the internal system clock begins and the system branches to the handler address that was set at system reset time.

8.6.2 Time base counter (TBC)

The time base counter (TBC) is used to secure the oscillation stabilization time of the oscillator when the software STOP mode is released.

• Resonator connection time (PLL Mode, and CESEL bit of the PSC Register = 0)

After releasing the software STOP mode, the oscillation stabilization time is counted by the TBC and after counting is ended, program execution begins.

The TBC count clock is selected by the TBCS bit in the PSC register, and it is possible to set the following count times (refer to 8.5.2 (1) Power save control register (PSC)).

Table 8-6. Example of Count Time ($\phi = 5 \times fxx$)

TBCS Bit	Count Clock	Count Time					
		fxx = 3.2768 MHz	fxx = 5.0000 MHz	$f_{xx} = 6.0000 \text{ MHz}$			
		φ = 16.384 MHz	ϕ = 25.000 MHz	$\phi = 30.000 \text{ MHz}$			
0	fxx/2 ⁸	20.0 ms	13.1 ms	10.9 ms			
1	fxx/2 ⁹	40.0 ms	26.2 ms	21.8 ms			

fxx: External resonator frequency

φ: Internal system clock frequency

CHAPTER 9 TIMER/COUNTER FUNCTION (REAL-TIME PULSE UNIT)

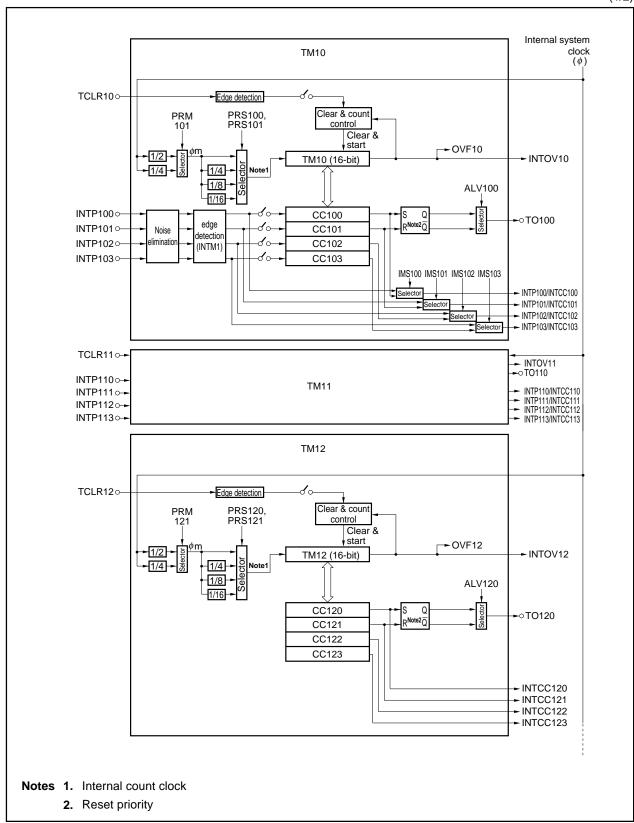
9.1 Features

- O Measures the pulse interval and frequency and outputs a programmable pulse.
 - 16-bit measurements are possible.
 - Pulse multiple states can be generated (interval pulse, one shot pulse)
- O Timer 1
 - 16-bit timer/event counter
 - Count clock sources: 2 types (internal system clock division selection, external pulse input)
 - Capture/compare common registers: 9
 - Capture registers: 7
 - Count clear pins: TCLR10 to TCLR12
 - Interrupt sources: 20 types
 - External pulse outputs: 3
- O Timer 4
 - 16-bit interval timer
 - The count clock is selected from the internal system clock divisions.
 - Compare registers: 2
 - Interrupt sources: 2 types

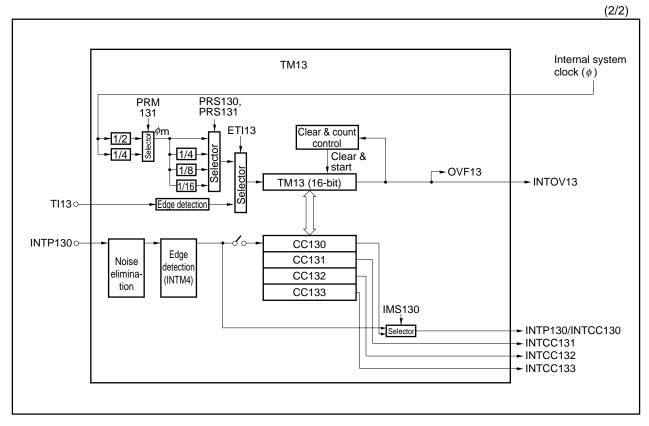
9.2 Basic Configuration

The basic configuration is shown below.

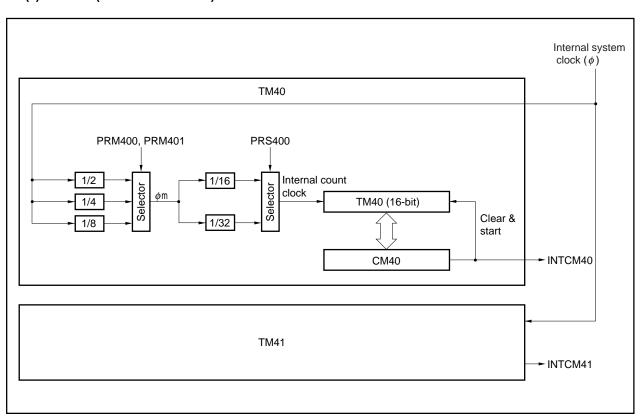
Table 9-1. RPU Configuration List


Timer	Count Clock	Register	Read/Write	Interrupt Signals Generated	Capture Trigger	Timer Output S/R	Other Functions
Timer 1	φ/2	TM10	Read	INTOV10	_	_	External clear
	φ/4	CC100	Read/write	INTCC100	INTP100	TO100 (S)	_
	<i>φ</i> /8 <i>φ</i> /16	CC101	Read/write	INTCC101	INTP101	TO100 (R)	_
	φ/10 φ/32	CC102	Read/write	INTCC102	INTP102	_	_
	φ/64	CC103	Read/write	INTCC103	INTP103	_	_
	TI13 Pin Input	TM11	Read	INTOV11	_		External clear
		CC110	Read/write	INTCC110	INTP110	TO110 (S)	A/D conversion start trigger
		CC111	Read/write	INTCC111	INTP111	TO110 (R)	A/D conversion start trigger
		CC112	Read/write	INTCC112	INTP112		A/D conversion start trigger
		CC113	Read/write	INTCC113	INTP113	_	A/D conversion start trigger
		TM12	Read	INTOV12	_		External clear
		CC120	Read/write	INTCC120	_	TO120 (S)	_
		CC121	Read/write	INTCC121	_	TO120 (R)	_
		CC122	Read/write	INTCC122	_	_	_
		CC123	Read/write	INTCC123	_	_	_
		TM13	Read	INTOV13	_	_	_
		CC130	Read/write	INTCC130	INTP130	_	_
		CC131	Read/write	INTCC131	_	_	_
		CC132	Read/write	INTCC132		_	
		CC133	Read/write	INTCC133	_	_	_
Timer 4	φ/32	TM40	Read	_			
	φ/64	CM40	Read/write	INTCM40		_	
	φ/128 φ/256	TM41	Read			_	_
	φ, 200	CM41	Read/write	INTCM41		_	

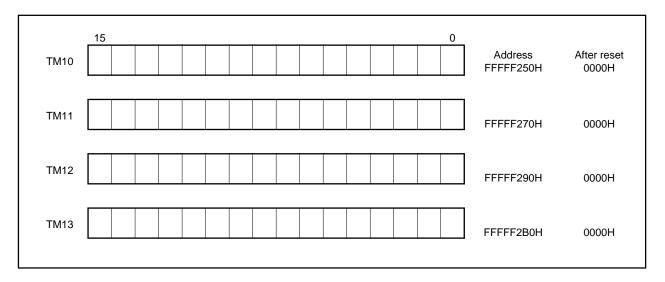
Remark ϕ : Internal system clock


S/R: Set/reset

(1) Timer 1 (16-bit timer/event counter)


(1/2)

(1) Timer 1 (16-bit timer/event counter)


(2) Timer 4 (16-bit interval timer)

9.2.1 Timer 1

(1) Timers 10 to 13 (TM10 to TM13)

TM1n functions as a 16-bit free running timer or as an event counter for an external signal. Mainly, besides period measurement and frequency measurement, it can be used as a pulse output (n = 0 to 3). TM1n is read-only, in 16-bit units.

TM1n carries out count-up operations of the internal count clock or of an external count clock. Starting and stopping of the timer is controlled by the CE1n bit of timer control register 1n (TMC1n).

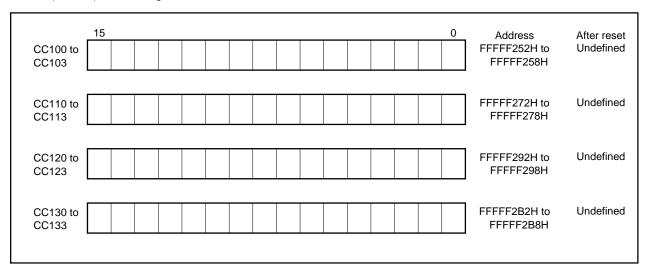
Selection of internal or external count clocks is performed by the TMC1n register.

(a) Selection of an external count clock

TM13 operates as an event counter. The active edge is specified by the timer unit mode register 13 (TUM13) and through input of pin TI13, TM13 is counted up.

(b) Selection of an internal count clock

TM1n operates as a free running timer. The counter clock can be selected from among the divisions performed by the prescaler, $\phi/2$, $\phi/4$, $\phi/8$, $\phi/16$, $\phi/32$, or $\phi/64$, through the TMC1n register.


If the timer overflows, an overflow interrupt can be generated. Also, the timer can be stopped after an overflow through the TUM1n register specification.

The timer can also be cleared and started using the external input TCLR1n. When this is done, the prescaler is cleared at the same time, so the time from TCLR1n input to timer count-up is constant corresponding to the prescaler's dividing ratio. The operation setting is carried out by the TUM1n register.

Caution The count clock cannot be changed during timer operation.

(2) Capture/compare registers 1n0 to 1n3 (CC1n0 to CC1n3) (n = 0 to 3)

The capture/compare registers are 16-bit registers to which TM1n is connected. They can be used as either a capture register or a compare register in accordance with the specification in timer unit mode register 1n (TUM1n). These registers can be read/written in 16-bit units.

(a) Set as a capture register

If set as a capture register, the active edge of the corresponding signals in external interrupts INTP100 to INTP103, INTP110 to INTP113, and INTP130 is detected as a capture trigger. Timer 1n is synchronized with the capture trigger and latches a count value (capture operation). The capture operation is performed out of synch with the count clock. The latched value is held in the capture register until the next capture operation is performed.

If the capture (latch) timing to the capture register and writing to the register in response to an instruction are in contention, the latter has the priority and the capture operation is disregarded.

Also, specification of the active edge of external interrupts (rising, falling, or both edges) can be selected by the external interrupt mode register (INTM1, INTM2, INTM4).

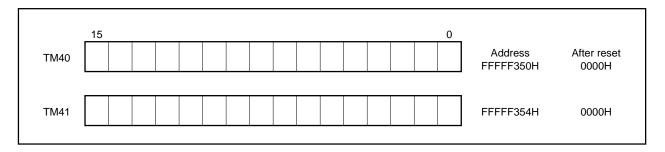
When there is a specification in the capture register, an interrupt is issued when the active edge of INTP100 to INTP103, INTP110 to INTP113, and INTP130 signals is detected. When this is done, an interrupt cannot be issued by INTCC100 to INTCC103, INTCC110 to INTCC113, and INTCC130, which are the compare register's matching signals.

(b) Set as a compare register

If set as a compare register, these registers perform a comparison of the timer and register values at each count clock of the timer, and issue an interrupt if the values match.

The compare registers are provided with a set/reset output function. In synch with matching signal generation, the corresponding timer output (TO1n0: n = 0 to 2) is set or reset.

The interrupt source differs with the function of the register.


If specified a compare register, these registers can be made interrupt signals by selecting, through the specification of the TUM1n (n = 0, 1, 3) register, active edge detection of either the INTCC100 to INTCC103, INTCC110 to INTCC113, and INTCC130 signals, which are the matching signals, or the INTP100 to INTP103, INTP110 to INTP113, and INTP130 signals.

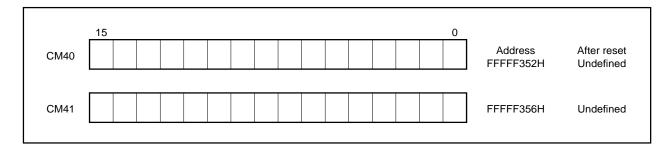
Furthermore, if the INTP100 to INTP103, INTP110 to INTP113, and INTP130 signals are selected, acknowledgement of an external interrupt request and timer output by the compare register's set/reset output function can be carried out in parallel.

9.2.2 Timer 4

(1) Timers 40, 41 (TM40, TM41)

TM4n is a 16-bit timer. It can mainly be used as an interval timer for software (n = 0, 1). TM4n is read-only in 16-bit units.

Starting and stopping of TM4n is controlled by the CE4n bit of timer control register 4n (TMC4n).


The count clock can be selected from $\phi/32$, $\phi/64$, $\phi/128$, or $\phi/256$ divisions of the prescaler via register TMC4n.

Caution Since the timer is cleared at the next count clock after a compare match is issued, when the division ratio is large, even if the timer's value is read immediately after the match interrupt is issued, the timer's value may not be 0.

Also, the count clock cannot be changed during timer operation.

(2) Compare registers 40, 41 (CM40, CM41)

CM4n is a 16-bit register and is connected to TM4n. This register can be read/written in 16-bit units.

This register compares TM4n and CM4n each TM4n count clock and if they match, issues an interrupt (INTCM4n). TM4n is cleared in synchronization with this match.

9.3 Control Registers

(1) Timer unit mode registers 10 to 13 (TUM10 to TUM13)

The TUM1n register is a register which controls the operation of timer 1 and specifies the capture/compare register operation mode (n = 0 to 3).

These registers can be read/written in 16-bit units.

(1/2)

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
TUM10	0	0	OST0	ECLR 10	O ^{Note}	O ^{Note}	CES 101	CES 100	CMS 103	CMS 102	CMS 101	CMS 100	IMS 103	IMS 102	IMS 101	IMS 100	Address FFFFF240H	After reset 0000H
TUM11	0	0	OST1	ECLR 11	0 ^{Note}	O ^{Note}	CES 111	CES 110	CMS 113	CMS 112	CMS 111	CMS 110	IMS 113	IMS 112	IMS 111	IMS 110	FFFFF260H	0000H
TUM12	0	0	OST2	ECLR 12	0 ^{Note}	0 ^{Note}	CES 121	CES 120	CMS 123	CMS 122	CMS 121	CMS 120	IMS 123	l 1	IMS 121	IMS 120	FFFFF280H	0000H
TUM13	0	0	OST3	O ^{Note}	TES 131	TES 130	O ^{Note}	O ^{Note}	CMS 133	CMS 132	CMS 131	CMS 130	IMS 133	IMS 132	IMS 131	IMS 130	FFFFF2A0H	0000H

Bit Position	Bit Name	Function
13	OSTn	Overflow Stop Specifies the timer's operation after overflow. This flag is valid only in TM1n. 0: Timer continues to count up after timer overflow. 1: Timer holds 0000H and is in the stopped state after timer overflow. When this happens, the CE1 bit in the TMC1n register remains at 1. Counting up resumes with the next operation. When ECLR1m = 0: 1 write operation to the CE1n bit. When ECLR1m = 1: Trigger input to the timer clear pin (TCLR1m).
12	ECLR1m	External Input Timer Clear Clearing of the timer is enabled by the TM1m external clear input (TCLR1m). 0: Timer is not cleared by an external input. 1: TM1m is cleared by an external input. Counting up starts after clearing.

Note Be sure to set these bits to 0.

Remark n = 0 to 3m = 0 to 2

226

(2/2)

Bit Position	Bit Name			Function					
11, 10	TES131, TES130	TI13 Edge Se Specifies the		f the external clock input (TI13).					
		TES131	TES130	Active Edge					
		0	0	Falling edge					
		0	1	Rising edge					
		1	0	RFU (reserved)					
		1	1	Both the rising and falling edges					
9, 8	CES1m1, CES1m0		active edge o	f the external clear input (TCLR1m).					
		CES1m1	CES1m0	Active Edge					
		0	0	Falling edge					
		0	1	Rising edge					
		1	0	RFU (reserved)					
		1	1	Both the rising and falling edges					
7 to 4	CMS1nm	Selects the ca 0: Operates specified register: 1: Operates Caution C	Capture/Compare Mode Select Selects the capture/compare register's (CC1n) operation mode. 0: Operates as a capture register. However, the capture operation when it is specified as a capture register is performed only when the CE1x bit of the TMC1x register = 1 (x = 0 to 3). 1: Operates as a compare register. Caution CC120 to CC123 and CC131 to CC133 cannot be used as capture						
3 to 0	IMS1n ^{Note}	Interrupt Mode		use these registers, be sure to set bit 1 of CMS1n to 1.					
3 10 0				ITCC1n as the interrupt source.					
		0: Makes the signal.	ne compare re	egister's matching signal INTCC1n the interrupt request					
		1: It makes	the external	input signal INTP1n the interrupt request signal.					

Note No external signal is input to CC120 to CC123 and CC131 to CC133. To generate an interrupt request signal, therefore, set IMS1n to 0.

Remark n = 00 to 03, 10 to 13, 20 to 23, 30 to 33 m = 0 to 2

Remark If the A/D converter is set in the timer trigger mode, the compare register's match interrupt becomes the A/D conversion start trigger, starting the conversion operation. When this happens, the compare register's match interrupt functions as a compare register match interrupt to the CPU. In order for a compare register match interrupt not to be issued to the CPU, disable interrupts with the interrupt mask bits (P11MK0 to P11MK3) of the interrupt control register (P11IC0 to P11IC3).

(2) Timer control registers 10 to 13 (TMC10 to TMC13)

TMC10 to 13 control the respective operations of TM10 to TM13.

These registers can be read/written in 8- or 1-bit units.

(1/2)

	7	6	5	4	3	2	1	0		
TMC10	CE10	0	0	O ^{Note}	PRS101	PRS100	PRM101	0	Address FFFFF242H	After reset 00H
TMC11	CE11	0	0	O ^{Note}	PRS111	PRS110	PRM111	0	FFFFF262H	00H
TMC12	CE12	0	0	O ^{Note}	PRS121	PRS120	PRM121	0	FFFFF282H	00H
TMC13	CE13	0	0	ETI13	PRS131	PRS130	PRM131	0	FFFFF2A2H	00H

Bit Position	Bit Name	Function
7	CE1n	Count Enable Controls timer operation. 0: The timer is stopped in the 0000H state and does not operate. 1: The timer performs a count operation. However, when the ECLR1n bit of the TUM1n register is 1, the timer does not start counting up until there is a TCLR1n input. When the ECLR1n bit is 0, the operation of setting (1) in the CE1n bit becomes the count start trigger. Thus, after the CE1n bit is set (1) when the ECLR1n bit = 1, the timer will not start even if the ECLR1n bit is made 0.
4	ETI13	External TI13 Input Specifies whether switching of the count clock is external or internal. 0: Specifies the ϕ system (internal). 1: Specifies TI13 (external).

Note Be sure to set these bits to 0.

Caution Do not change the count clock during timer operation.

Remark n = 0 to 3

(2/2)

Bit Position	Bit Name		Function							
3, 2	PRS1n1, PRS1n0	Prescaler Clos Selects the in		lock (ϕ m is the intermediate clock).						
		PRS1n1	PRS1n0	Internal Count Clock						
		0	0	φm						
		0	1	φm/4						
		1	0	φm/8						
		1	1	φm/16						
1	PRM1n1	Prescaler Clor Selects the in 0: $\phi/2$ 1: $\phi/4$		unt clock (ϕ m). (ϕ is the internal system clock).						

Caution Do not change the count clock during timer operation.

Remark n = 0 to 3

(3) Timer control registers 40, 41 (TMC40, TMC41)

TMC40 and TMC41 control the operation of TM40 and TM41, respectively.

These registers can be read/written in 8- or 1-bit units.

	7	6	5	4	3	2	1	0		
TMC40	CE40	0	0	0	0	PRS400	PRM401	PRM400	Address FFFFF342H	After reset 00H
TMC41	CE41	0	0	0	0	PRS410	PRM411	PRM410	FFFFF346H	00H

Bit Position	Bit Name		Function							
7	CE4n	Controls timer 0: The time	Count Enable Controls timer operations. 0: The timer is stopped in the 0000H state and does not operate. 1: The timer performs a count operation.							
2	PRS4n0		,							
1, 0	PRM4n1, PRM4n0	Prescaler Clock Mode Selects the intermediate count clock ((\$\phi\$m)). (\$\phi\$ is the internal system clock).								
			PRM4n1							
		PRM4n1	PRM4n0	φm						
		PRM4n1	PRM4n0	φm φ/2						
			_	,						
		0	0	φ/2						

Caution Do not change the count clock during timer operation.

Remark n = 0, 1

(4) Timer output control registers 10 to 12 (TOC10 to TOC12)

The TOC1n register controls the timer output from the TO1n0 pin (n = 0 to 2).

These registers can be read/written in 8- or 1-bit units.

	7	6	5	4	3	2	1	0		
TOC10	O ^{Note}	O ^{Note}	ENTO100	ALV100	0	0	0	0	Address FFFFF244H	After reset 00H
TOC11	O ^{Note}	O ^{Note}	ENTO110	ALV110	0	0	0	0	FFFFF264H	00H
TOC12	O ^{Note}	O ^{Note}	ENTO120	ALV120	0	0	0	0	FFFFF284H	00H

Bit Position	Bit Name	Function
5	ENTO1n0	Enable TO pin Enables output of each corresponding timer (TO1n0). 0: Timer output is disabled. The reverse phase level (inactive level) of the ALV1n0 bit is output from the TO1n0 pin. Even if a match signal is generated by the corresponding compare register, the level of the TO1n0 pin does not change. 1: Timer output is enabled. If a match signal is generated from the corresponding compare register, the timer's output changes. From the timer that timer output is enabled until match signals are first generated, the reverse phase level (inactive level) of the ALV1n0 bit is output.
4	ALV1n0	Active Level TO pin Specifies the timer output's active level. 0: The active level is the low level. 1: The active level is the high level.

Note Be sure to set these bits to 0.

Remarks 1. The TO1n0 output flip-flop is reset priority.

2. n = 0 to 2

Caution The TO1m0 output is not changed by an external interrupt signal (INTP1m0 to INTP1m3, INTP130). When the TO1m0 signal is used, specify the capture/compare register as the compare register (CMS1m0 to CMS1m3 bit of the TUM1m register = 1) (m = 0, 1).

(5) External interrupt mode registers 1, 2, 4 (INTM1, INTM2, INTM4)

If CC1n0 to CC1n3, CC130 (n = 0, 1) of TM1n are used as a capture register, the active edge of the external interrupt INTP1n0 to INTP1n3 signals is detected as a capture trigger (for details, refer to **CHAPTER 7 INTERRUPT/EXCEPTION PROCESSING FUNCTION**).

(6) Timer overflow status register (TOVS)

This interrupts overflow flags from TM10 to TM13, TM40, and TM41.

The register can be read/written in 8- or 1-bit units.

By setting and resetting the TOVS register through software, polling of overflow occurrences can be accomplished.

TOVS	7 OVF41	6 OVF40	5	0	3 OVF13	2 OVF12	1 OVF11	0 OVF10	Address FFFFF230H	After reset 00H
Bit Position Bit Name			Function							
7, 6, 3	to 0	OVF41, O OVF13 to	•	Overflow Flag This is the overflow flag for TM41, TM40 and TM1n. 0: No overflow is generated. 1: Overflow is generated. Caution Interrupt requests (INTOV1n) for the interrupt controller are						
					generated in synch with an overflow from TM1n, but because interrupt operations and the TOVS register are independent, the overflow flag (OVF1n) from TM1n can be operated by software just like other overflow flags. At this time, the interrupt request flag (OVF1n) corresponding to INTOV1n is not affected.					

operation.

During CPU access interval, transfers to the TOVS register cannot be made. Therefore, even if an overflow is generated during a readout from the TOVS register, the flag's value does not change and it is reflected in the next read

Remark n = 0 to 3

9.4 Timer 1 Operation

9.4.1 Count operation

Timer 1 functions as a 16-bit free-running timer or an event counter for an external signal.

Whether the timer operates as a free-running timer or event counter is specified by timer control register 1n (TMC1n) (n = 0 to 3).

When it is used as a free-running timer, and when the count values of TM1n match with the value of any of the CC1n0 to CC1n3 registers, an interrupt signal is generated, and timer output signal TO1m0 (m = 0 to 2) can be set/reset. In addition, a capture operation that holds the current count value of TM1n and loads it into one of the four registers CC1n0 to CC1n3, is performed in synchronization with the valid edge detected from the corresponding external interrupt request pin as an external trigger. The captured value is retained until the next capture trigger is generated.

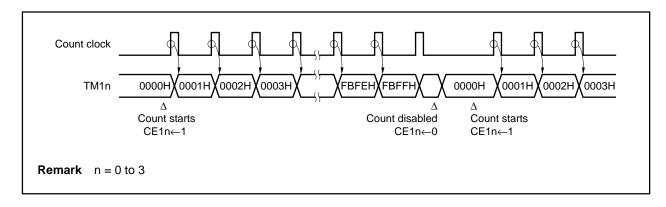


Figure 9-1. Basic Operation of Timer 1

9.4.2 Count clock selection

The count clock input to Timer 13 is either internal or external, and can be selected by the ETI13 bit in the TMC13 register. The count clock input to timers 10, 11, and 12 is internal only.

Caution Do not change the count clock during timer operation.

(1) Internal count clock (ETI1n bit = 0)

An internal count clock can be selected from among 6 possible clock rates, $\phi/2$, $\phi/4$, $\phi/8$, $\phi/16$, $\phi/32$, or $\phi/64$, by the setting of the PRS1n1, PRS1n0, and PRM1n1 bits of the TMC1n register.

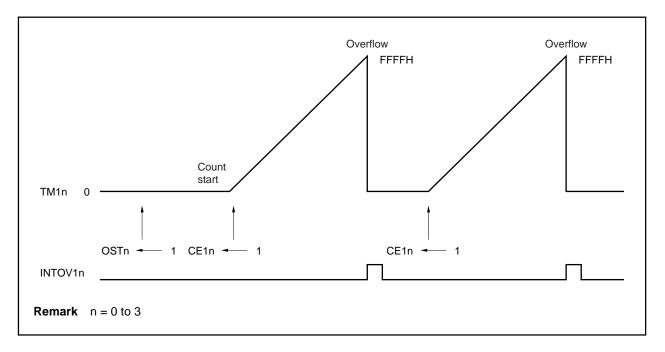
PRS1n1	PRS1n0	PRM1n1	Internal Count Clock
0	0	0	φ/2
0	0	1	φ/4
0	1	0	φ/8
0	1	1	<i>φ</i> /16
1	0	0	<i>φ</i> /16
1	0	1	φ/32
1	1	0	φ/32
1	1	1	φ/64

Remark n = 0 to 3

(2) External count clock (ETI13 bit = 1)

This counts the signals input to the TI13 pin. At this time, Timer 1 can be operated as an event counter. The TI13 active edge can be set by the TES131 and TES130 bits of the TUM13 register.

TES131	TES130	Active Edge
0	0	Rising edge
0	1	Falling edge
1	0	RFU (reserved)
1	1	Both the rising and falling edges


9.4.3 Overflow

When the TM1n register counts the count clock to FFFFH and overflow occurs as a result, a flag is set in the OVF1n bit of the TOVS register and an overflow interrupt (INTOV1n) is generated (n = 0 to 3).

Also, by setting the OSTn bit (1) in the TUM1n register, the timer can be stopped after overflow. If the timer is stopped due to an overflow, the count operation does not resume until the CE1n bit in the TMC1n register is set (1).

Note that even if the CE1n bit is set (1) during a count operation, it has no influence on operation.

9.4.4 Clearing/starting timer by TCLR1n signal input

Timer 1 ordinarily starts a counting operation when the CE1n bit in the TMC1n register is set (1), but TM1n can be cleared and a count operation started by input of the TCLR1n signal (n = 0 to 2).

If the ECLR1n bit of the TUM1n register is set to 1, and the OSTn bit is set to 0, if the active edge is input to the TCLR1n signal after the CE1n bit is set (1), the counting operation starts. Also, if the active edge is input to the TCLR1n signal during operation, the TM1n's value is cleared and the count operation resumes (refer to **Figure 9-3**).

If the ECLR1n bit of the TUM1n register is set to 1, and the OSTn bit is set to 1, the counting operation starts if the active edge is input to the TCLR1n signal after the CE1n bit is set (1). If TM1n overflows, the count operation stops once and it does not resume the count operation until the active edge is input again to the TCLR1n signal. If the active edge of the TCLR1n signal is detected during a counting operation, TM1n is cleared and the count operation continues (refer to **Figure 9-4**). Note that if the CE1n bit is set (1) after an overflow, the count operation does not resume.

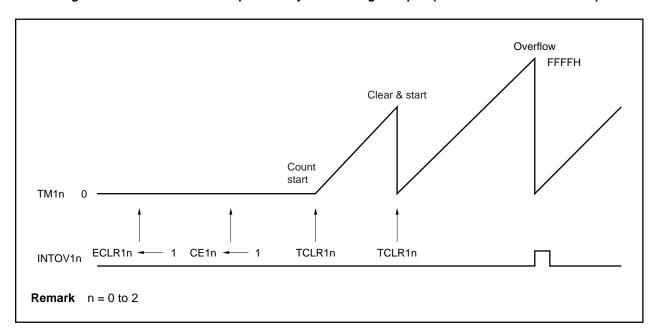


Figure 9-3. Timer Clear/Start Operation by TCLR1n Signal Input (If ECLR1n = 1 and OSTn = 0)

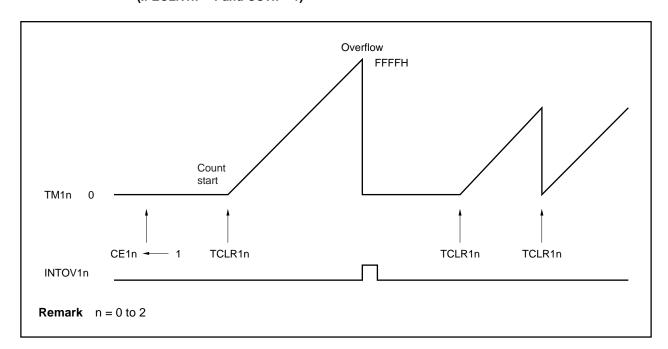


Figure 9-4. Relationship Between Clear/Start by TCLR1n Signal Input and Overflow Operation (If ECLR1n = 1 and OSTn = 1)

9.4.5 Capture operation

In synch with an external trigger, a capture operation is performed in which the TM1n count value is captured and held in the capture register asynchronous to the count clock (n = 0, 1, 3). The active edge detected from external interrupt request input pins INTP1m0 to INTP1m3 (m = 0, 1) and INTP130 is used as the external trigger (capture trigger). In synch with that capture trigger signal, the count value of TM1n, as it is counting, is captured and held in the capture register. The value in the capture register is held until the next capture trigger is generated.

Also, interrupt requests (INTCC1m0 to INTCC1m3, INTCC130) are generated from the INTP1m0 to INTP1m3 and INTP130 signal inputs.

ē	
Capture Register	Capture Trigger Signal
CC1m0	INTP1m0
CC1m1	INTP1m1
CC1m2	INTP1m2
CC1m3	INTP1m3
CC130	INTP130

Table 9-2. Capture Trigger Signals (TM1n) to 16-Bit Capture Registers

Remarks 1. CC1m0 to CC1m3 and CC130 are the capture/compare registers. Which register is used is specified in timer unit mode register 1n (TUM1n).

2.
$$n = 0, 1, 3$$

 $m = 0, 1$

The capture trigger's active edge is set by the external interrupt mode register (INTM1, INTM2, INTM4). If both the rising and falling edges are made capture triggers, the input pulse width from an external source can be measured. Also, if the edge from one side is used as the capture trigger, the input pulse's period can be measured.

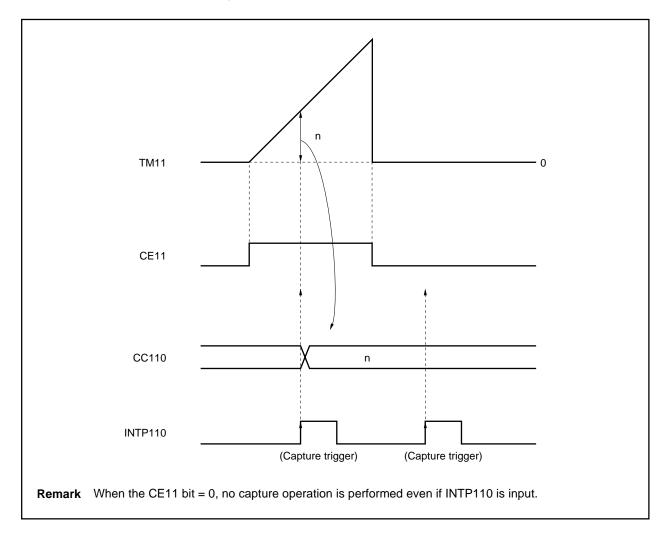


Figure 9-5. Example of Capture Operation

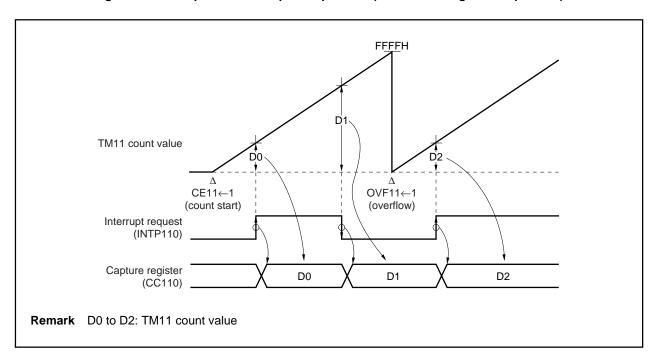
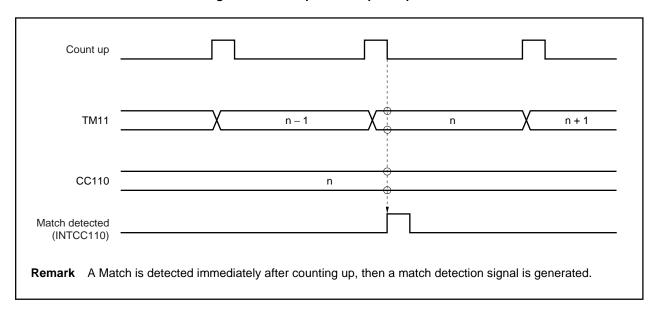


Figure 9-6. Example of TM11 Capture Operation (When Both Edges Are Specified)

9.4.6 Compare operation

Compare operations in which the value set in the compare register is compared with the TM1n count value are performed (n = 0 to 3).

If the TM1n count value matches the value that has been previously set in the compare register, a match signal is sent to the output control circuit (refer to **Figure 9-7**). The timer output pins (TO100, TO110, TO120) are changed by the match signal and simultaneously issue interrupt request signals.


Table 9-3. Interrupt Request Signals (TM1n) from 16-Bit Compare Registers

Compare Register	Interrupt Request Signal
CC1n0	INTCC1n0
CC1n1	INTCC1n1
CC1n2	INTCC1n2
CC1n3	INTCC1n3

Remarks 1. CC1x0 to CC1x3 and CC130 (x = 0, 1) are capture/compare registers. Which register will be used is specified by the timer unit mode register 1m (TUM1m).

2. n = 0 to 3m = 0, 1, 3

Figure 9-7. Example of Compare Operation

Timer 1 has 3 timer output pins (TO1n0).

The TM1n count value and the CC1n0 value are compared and if they match, the output level of the TO1n0 pin is set. Also, the TM1n count value and the CC1n1 value are compared, and if they match, the TO1n0 pin's output level is reset.

The output level of pin TO1n0 can also be specified by the TOC1n register (n = 0 to 2).

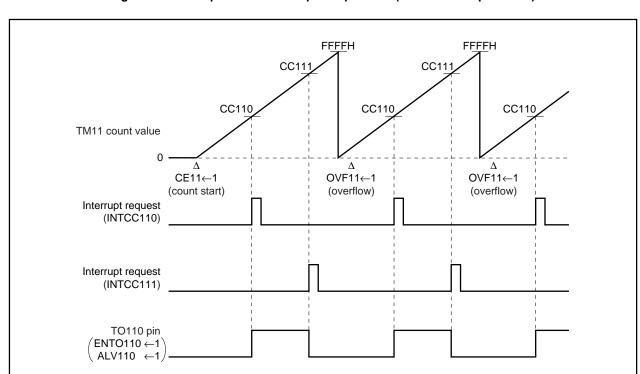


Figure 9-8. Example of TM11 Compare Operation (Set/Reset Output Mode)

9.5 Timer 4 Operation

9.5.1 Count operation

Timer 4 functions as a 16-bit interval timer. Setting of its operation is specified in timer control register 4n (TMC4n) (n = 0, 1).

In a timer 4 count operation, the internal count clock (ϕ /32 to ϕ /256) specified by the PRS4n0, PRM4n1, and PRM4n0 bits of the TMC4n register is counted up.

If the count results in TM4n match the value in CM4n, TM4n is cleared. At the same time, a matching interrupt (INTCM4n) is generated.

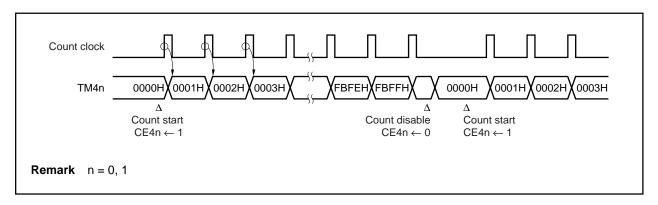


Figure 9-9. Basic Operation of Timer 4

9.5.2 Count clock selection

Using the setting of the TMC4n register's PRS4n0, PRM4n1, and PRM4n0 bits, one of four possible internal count clocks, $\phi/32$, $\phi/64$, $\phi/128$ or $\phi/256$, can be selected (n = 0, 1).

Caution Do not change the count clock during timer operation.

PRS4n0	PRM4n1	PRM4n0	Internal Count Clock	
0	0	0	φ/32	
0	0	1	φ/64	
0	1	0	φ/128	
0	1	1	RFU (reserved)	
1	0	0	φ/64	
1	0	1	φ/128	
1	1	0	φ/256	
1	1	1	RFU (reserved)	

Remark n = 0, 1

9.5.3 Overflow

If the TM4n overflows as a result of counting the internal count clock, the OVF4n bit of the TOVS register is set (1) (n = 0, 1).

9.5.4 Compare operation

In Timer 4, a compare operation which compares the value set in the compare register (CM4n) with the TM4n count value is performed (n = 0, 1).

If values are found to match in the compare operation, an interrupt (INTCM4n) is issued. By issuing an interrupt, TM4n is cleared (0) with the following timing (refer to **Figure 9-10 (a)**). Through this function, Timer 4 is used as an interval timer.

CM4n can also be set to 0. In this case, if TM4n overflows and becomes 0, a value match is detected and INTCM4n is issued. Using the following count timing, the TM4n value is cleared (0), but with this match, INTCM4n is not issued (refer to **Figure 9-10 (b)**).

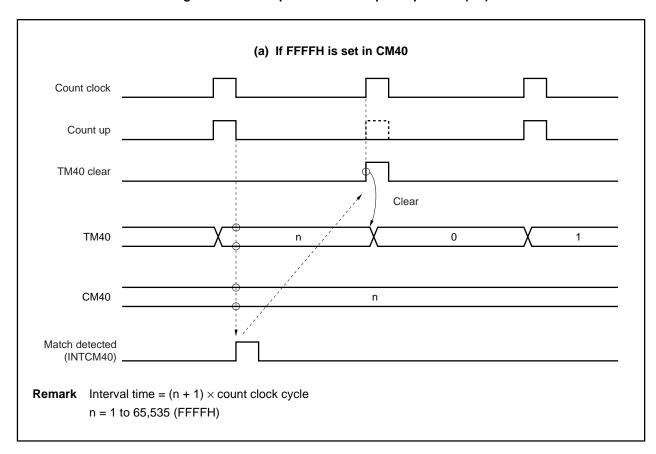


Figure 9-10. Example of TM40 Compare Operation (1/2)

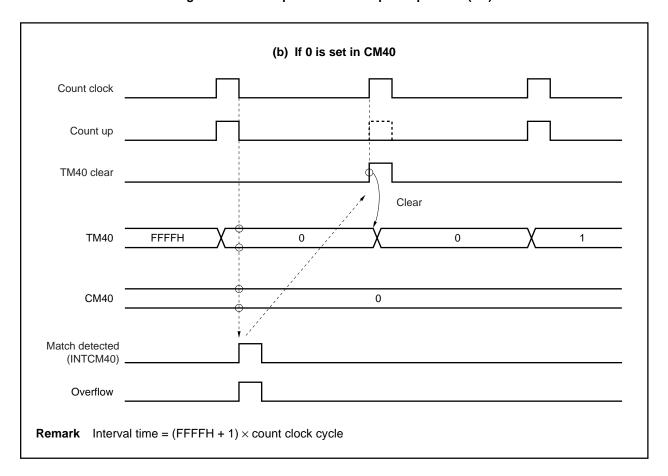


Figure 9-10. Example of TM40 Compare Operation (2/2)

9.6 Application Example

(1) Operation as an interval timer (Timer 4)

In this example, timer 4 is used as an interval timer that repeatedly issues an interrupt at intervals specified by the count time preset in the compare register (CM4n) (n = 0, 1).

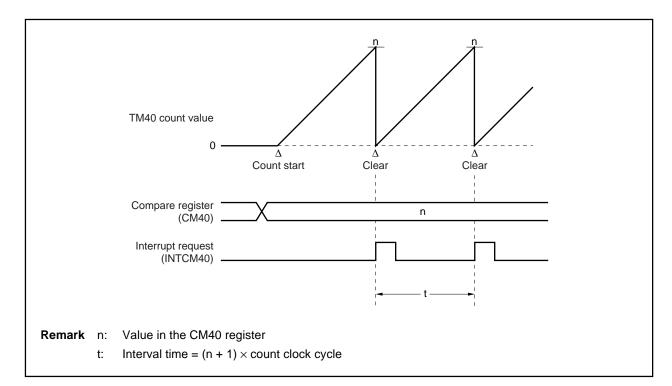
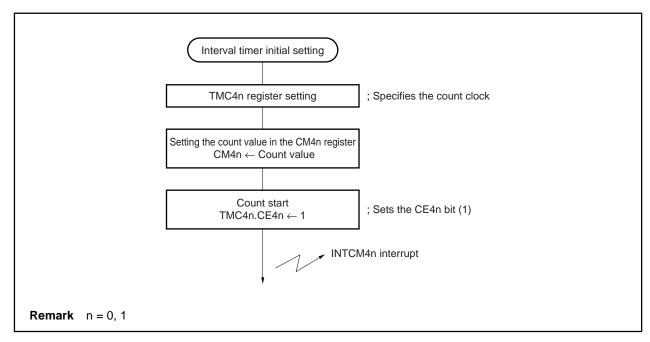



Figure 9-11. Example of Timing in Interval Timer Operation

(2) Operation for pulse width measurement (Timer 1)

In measuring the pulse width, timer 1 is used.

Here, an example is given of measurement of high level or low level width of an external pulse input to the INTP112 pin.

As shown in Figure 9-13, in synch with the active edge (specified as both the rising edge and falling edge) of the INTP112 pin's input, the value of the counting timer 1 (TM11) is fetched to and held in the capture/compare register (CC112).

The pulse width is calculated by determining the difference between the count value of TM11 captured in the CC112 register through active edge detection the nth time and the count value (Dn - 1) captured through active edge detection the (n - 1)th time, then multiplying this value by the count clock.

FFFFH D3 D1 TM11 count value D0 Capture Capture Capture Capture External pulse input (INTP112) Capture/compare register D0 D1 D2 D3 (CC112) t1 t2 t3 $t1 = (D1 - D0) \times count clock cycle$ $t2 = \{(10000H - D1) + D2\} \times count clock cycle$ $t3 = (D3 - D2) \times count clock cycle$ Remark D0 to D3: TM11 count values

Figure 9-13. Example of Pulse Measurement Timing

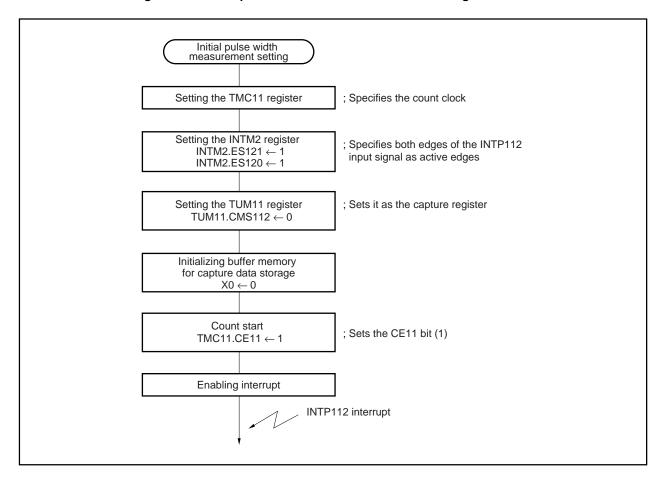
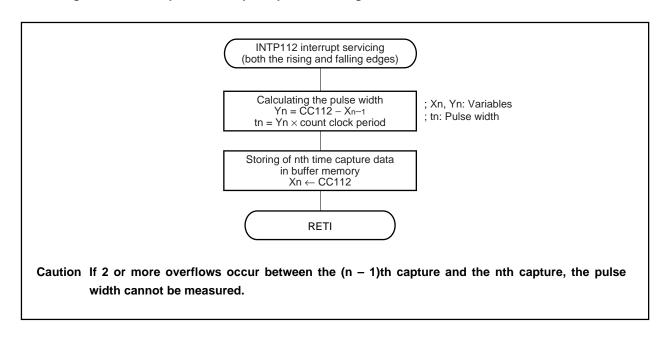



Figure 9-14. Example of Pulse Width Measurement Setting Procedure

Figure 9-15. Example of Interrupt Request Servicing Routine Which Calculates the Pulse Width

(3) Operation as a PWM output (Timer 1)

Through a combination of timer 1 and the timer output function, the desired rectangular wave can be output to the timer output pin (TO1n0) and used as a PWM output (n = 0 to 2).

Here an example is shown using the capture/compare registers CC100 and CC101.

In this case, a PWM signal with 16-bit precision can be output from the TO100 pin. The timing is shown in Figure 9-16.

If used as a 16-bit timer, the PWM output's rise timing set in the capture/compare register (CC100) is determined as shown in Figure 9-16, and the fall timing is determined by the value set in the capture/compare register (CC101).

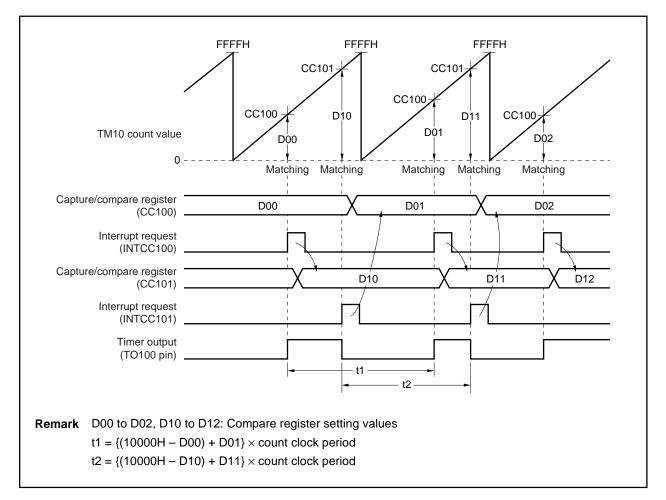
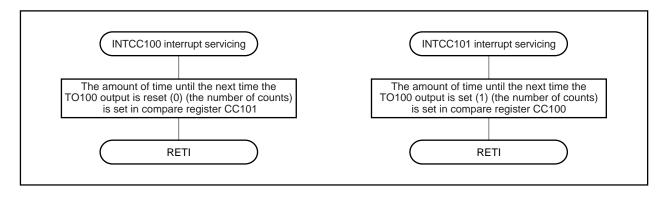



Figure 9-16. Example of PWM Output Timing

PWM output initial setting Setting the TOC10 register Specifies the active level (high level) TOC10.ENTO100 ← 1 and enables timer output $\mathsf{TOC10.ALV100} \leftarrow \mathsf{1}$ Setting the TUM10 register Specifies the operation of the CC100 and CC101 registers TUM10.CMS100 ← 1 TUM10.CMS101 ← 1 (specifies compare operation) Through the PMC0 register, the P00 pin is designated as the timer output pin TO100 PMC0.PMC00 ← 1 Setting of the TMC10 register ; Specifies the TM10's count clock Setting of the count value in the CC100 register $\text{CC100} \leftarrow \text{D00}$ Setting of the count value in the CC101 register CC101 ← D10 Count start ; Sets the CE10 bit (1) TMC10.CE10 ← 1 **Enabling interrupt** / INTCC100 interrupt INTCC101 interrupt

Figure 9-17. Example of PWM Output Setting Procedure

Figure 9-18. Example of Interrupt Request Servicing Routine for Rewriting Compare Value

(4) Operation for frequency measurement (Timer 1)

Timer 1 can measure the frequency of an external pulse's input to pins INTP1m0 to INTP1m3 and INTP130 (m = 0, 1).

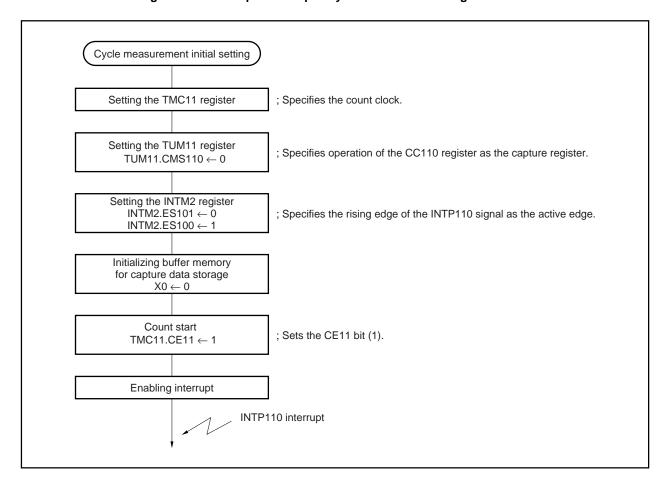
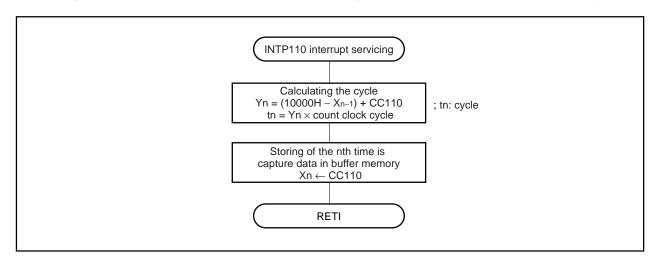
Here, an example is shown where timer 1 and the capture/compare register CC110 are combined to measure the frequency of an external pulse input to the INTP110 pin with 16-bit precision.

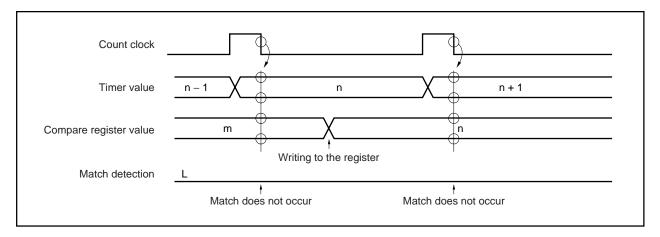
The active edge of the INTP110 input signal is specified to be the rising edge by the INTM2 register.

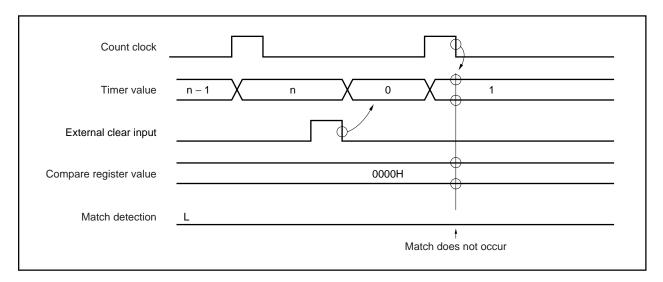
The frequency is calculated by determining the difference between the TM11 count value (Dn) captured in the CC110 register from the nth rising edge, and the count value (Dn-1) captured from the rising edge the (n-1)th time, then multiplying this value by the count clock.

Figure 9-19. Example of Frequency Measurement Timing

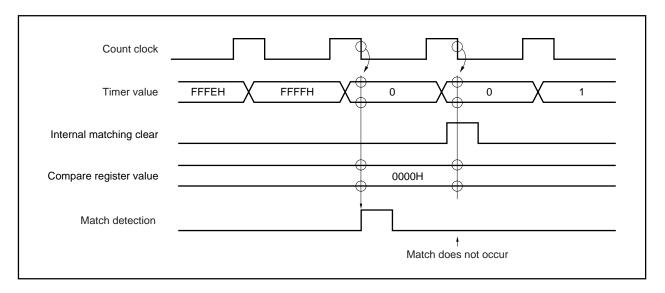
Figure 9-20. Example of Frequency Measurement Setting Procedure

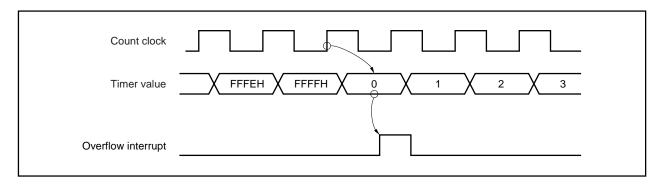




Figure 9-21. Example of Interrupt Request Servicing Routine Which Calculates the Frequency


9.7 Precaution

Match detection by the compare register is always performed immediately after timer count up. In the following cases, a match does not occur.


(1) When rewriting the compare register (TM10 to TM13, TM40, TM41)


(2) During external clear (TM10 to TM12)

(3) When the timer is cleared (TM40, TM41)

Remark When operating timer 1 as the free-running timer, the timer's value becomes 0 when timer overflow occurs.

[MEMO]

CHAPTER 10 SERIAL INTERFACE FUNCTION

10.1 Features

Two types of serial interfaces with 4 transmit/receive channels are provided as the serial interface function, and up to 2 channels can be used simultaneously.

The following two types of interface configuration are provided.

(1) Asynchronous serial interface (UART0, UART1): 2 channels

(2) Clocked serial interface (CSI0, CSI1): 2 channels

UART0 and UART1 use the method of transmitting and receiving 1 byte of serial data following the start bit, and full duplex communication is possible.

CSI0 and CSI1 carry out data transfer with 3 types of signal lines, a serial clock (SCK0, SCK1), serial input (SI0, SI1), and serial output (SO0, SO1) (3-wire serial I/O).

Caution UART0 and CSI0, and UART1 and CSI1 share the same pins, the use of which is specified with the ASIM00 and ASIM10 registers.

10.2 Asynchronous Serial Interfaces 0, 1 (UART0, UART1)

10.2.1 Features

O Transfer rate 150 bps to 153,600 bps (using the exclusive baud rate generator when the internal system clock is 30 MHz)

Maximum 3.75 Mbps (using the $\phi/2$ clock when the internal system clock is 30 MHz)

- O Full duplex communication On-chip receive buffer (RXBn)
- O 2-pin configuration TXDn: Transmit data output pin

RXDn: Receive data input pin

- O Receive error detection functions
 - · Parity error
 - Framing error
 - Overrun error
- O Interrupt sources: 3 types
 - Receive error interrupt (INTSERn)
 - Reception complete interrupt (INTSRn)
 - Transmission complete interrupt (INTSTn)
- O The character length of transmit/receive data is specified by the ASIMn0 and ASIMn1 registers.
- O Character length 7, 8 bits

9 bits (when adding an expansion bit)

- O Parity function: odd, even, 0, none
- O Transmission stop bit: 1, 2 bits
- O On-chip dedicated baud rate generator
- O Serial clock (SCKn) output function

10.2.2 Configuration

UARTn is controlled by the asynchronous serial interface mode registers (ASIMn0, ASIMn1) and the asynchronous serial interface status registers (ASISn) (n = 0, 1). Receive data is held in the receive buffer (RXBn) and transmit data is written in the transmit shift registers (TXSn).

The asynchronous serial interface is configured as shown in Figure 10-1.

(1) Asynchronous serial interface mode registers (ASIM00, ASIM01, ASIM10, ASIM11)

The ASIMn0 and ASIMn1 registers are 8-bit registers that specify asynchronous serial interface operations.

(2) Asynchronous serial interface status registers (ASIS0, ASIS1)

The ASISn registers are registers of flags that show the contents of errors when a receive error occurs and transmission status flags. Each receive error flag is set (1) when a receive error occurs and is cleared (0) by reading of data from the receive buffer (RXBn) or reception of the next new data (if there is an error in the next data, that error flag will not be cleared (0) but left set (1)).

The transmit status flag is set (1) when transmission starts and is cleared (0) when transmission ends.

(3) Receive control parity check

Receive operations are controlled according to the contents set in the ASIMn0 and ASIMn1 registers. Also, errors such as parity errors are checked during receive operations. If an error is detected, a value corresponding to the error content is set in the ASISn register.

(4) Receive shift register

This is a shift register that converts serial data input to the RXDn pin to parallel data. When 1 byte of data is received, the receive data is transferred to the receive buffer.

This register cannot be directly manipulated.

(5) Receive buffers (RXB0, RXB0L, RXB1, RXB1L)

RXBn are 9-bit buffer registers that hold receive data, and when 7 or 8-bit character data is received, a 0 is stored in the higher bits.

During 16-bit access of these registers, specify RXB0 and RXB1, and during lower 8-bit access, specify RXB0L and RXB1L.

In the receive enabled state, 1 frame of receive data is transmitted to the receive buffer from the receive shift register in synchronization with the termination of shift-in processing.

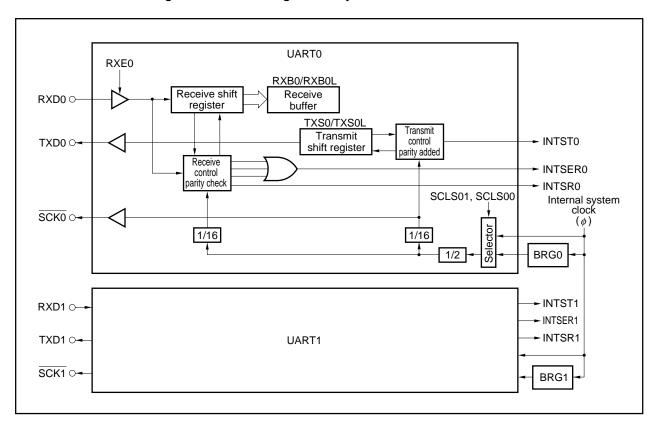
Also, a reception complete interrupt request (INTSRn) is generated when data is transmitted to the receive buffer.

(6) Transmit shift register (TXS0, TXS0L, TXS1, TXS1L)

TXSn are 9-bit shift registers for transmit processing. Writing of data to these registers starts a transmit operation.

A transmission complete interrupt request (INTSTn) is generated in synchronization with termination of transmission of 1 frame, which includes TXSn data.

During 16-bit access of these registers, specify TXS0 and TXS1, and during lower 8-bit access, specify TXS0L and TXS1L.


(7) Adding transmit control parity

In accordance with the contents set in the ASIMn0 and ASIMn1 registers, start bits, parity bits, stop bits, etc. are added to the data written to the TXSn or TXSnL register, and transmit operation control is carried out.

(8) Selector

This selects the serial clock source.

Figure 10-1. Block Diagram of Asynchronous Serial Interface

10.2.3 Control registers

(1) Asynchronous serial interface mode registers 00, 01, 10, 11 (ASIM00, ASIM01, ASIM10, ASIM11)

These registers specify the UART0 and UART1 transfer mode.

These registers can be read/written in 8- or 1-bit units.

(1/3)

	7	6	5	4	3	2	1	0		
ASIM00	TXE0	RXE0	PS01	PS00	CL0	SL0	SCLS01	SCLS00	Address FFFFF0C0H	After reset 80H
ASIM10	TXE1	RXE1	PS11	PS10	CL1	SL1	SCLS11	SCLS10	FFFF0D0H	80H

Bit Position	Bit Name			Function					
7, 6	TXEn, RXEn	Transmit/Rece Specifies the t	=	reception enable status/disable status.					
		TXEn	RXEn	Operation					
		0	0	Transmission/reception disabled (CSIn selected)					
		0	0 1 Reception enabled						
		1	0	Transmission enabled					
		1	1	Transmission/reception enabled					
		receive buffer receive buffer While in the resynchronization received, the color Also, the received transmission to	contents are being perform exception enabor with detect contents of the potion complet to the receive as disabled an	, the receive shift register does not detect the start bit. The held without shift-in processing or transmit processing to the ned. Iled state, the receive shift operation is started in ion of the start bit and after 1 frame of data has been e receive shift register are transmitted to the receive buffer. e interrupt (INTSRn) is generated in synchronization with buffer. The TXDn pin becomes high impedance when d a high level is output if it is not transmitting when					

(2/3)

Bit Position	Bit Name			Function				
5, 4	PSn1, PSn0	Parity Select Specifies the p	parity bit leng	th.				
		PSn1	PSn0	Operation				
		0	0	No parity, expansion bit operation				
		0	1	Specifies 0 parity Transmission side → Transmits with parity bit at 0. Reception side → Does not generate parity errors during receiving.				
		1	0	Specifies odd parity.				
		1	1	Specifies even parity.				
		Odd parity		ren parity, with the number of bits in the transmit data and				
		During rece	iving, if the n	d so that it is an odd number. umber of bits in the receive data and parity bit which are 1 number, a parity error is generated.				
			·	parity bit is cleared (0) regardless of the transmit data.				
		During reception, since no parity bit check is performed, no parity error is generated.						
		 No parity No parity bit is added to transmit data. During reception, data are received as having no parity bit. Since there is no parity bit, parity errors are not generated. Expansion bit operations can be specified with the EBSn bit in the ASIMn1 register. 						
3	CLn	Character Length Specifies the character length of 1 frame. 0: 7 bits 1: 8 bits						

(3/3)

Bit Position	Bit Name	Function						
2	SLn							
1, 0	SCLSn1, SCLSn0	Serial Clock S Specifies the						
		SCLSn1	SCLSn0			Serial Clock		
		0	0	Baud ra	te generator o	utput		
		0	1	φ/2 (×16	sampling rate)		
		1	0	φ/2 (×8	sampling rate)			
		1	1	φ/2 (×4	sampling rate)			
		Internal	Sampling		×16 (01)	×8 (10)	×4 (11)	
		System Clor	ΣΚ (Ψ)	_	937.5 K	1,875 K	3,750 K	
		25 MHz			781 K	1,562 K	3,125 K	
		20 MHz			625 K	1,250 K	2,500 K	
		16 MHz			500 K	1,000 K	2,000 K	
		12.5 MHz			390 K	781 K	1,562 K	
		10 MHz			312 K	625 K	1,250 K	
		8 MHz			250 K	500 K	1,000 K	
		5 MHz			156 K	312 K	625 K	
		• If SCLSn1, The baud ra	SCLSn0 = 00 ate generator the baud rate	output is s	elected as the	1 and SCLSn0 b serial clock sour Dedicated Baud		

Caution UARTn operation is not guaranteed if this register is changed during UARTn transmission or reception. Furthermore, if this register is changed during UARTn transmission or reception, a transmission complete interrupt (INTSTn) is generated during transmission, and a reception complete interrupt (INTSRn) is generated during reception.

	7	6	5	4	3	2	1	0		
ASIM01	0	0	0	0	0	0	0	EBS0	Address FFFFF0C2H	After reset 00H
ASIM11	0	0	0	0	0	0	0	EBS1	FFFFF0D2H	00H

Bit Position	Bit Name	Function
0	EBSn	Extended Bit Select Specifies transmit/receive data expansion bit operation when no parity operation is specified (PSn1, PSn0 = 00). 0: Expansion bit operation disabled. 1: Expansion bit operation enabled. When expansion bit is specified, 1 data bit is added to the highest bit of 8-bit transmit/receive data, and communications by 9-bit data are enabled. Expansion bit operation is enabled only in the case where no parity operations have been specified in the ASIMn0 register. If 0 parity, or even/odd parity operation is specified, the EBSn bit specification is made invalid and the expansion bit adding operation is not performed.

Caution UARTn operation when this register has been changed during UARTn transmission/ reception is not guaranteed.

(2) Asynchronous serial interface status registers 0, 1 (ASIS0, ASIS1)

These registers are configured with 3-bit error flags (PEn, FEn, OVEn), which show the error status when UARTn reception is terminated, and a transmit status flag (SOTn) (n = 0,1).

The status flag that shows a receive error always shows the state of the error that occurred most recently. That is, if the same error occurred several times before reading of receive data, this flag would hold the status of the error that occurred most recently.

If a receive error occurs, after reading the ASISn register, read the receive buffer (RXBn or RXBnL) and clear the error flag.

These are read-only registers in 8- or 1-bit units.

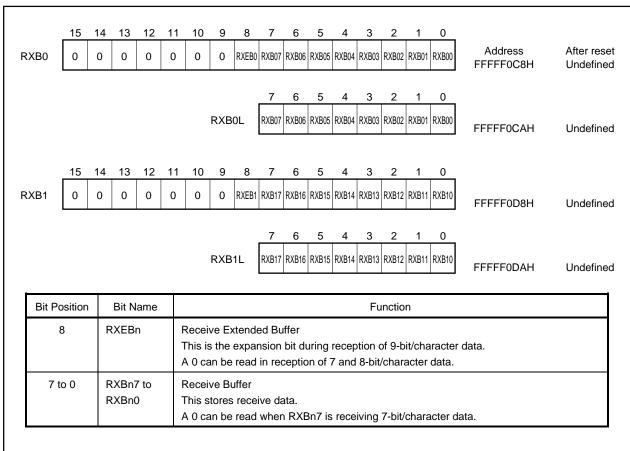
	7	6	5	4	3	2	1	0		
ASIS0	SOT0	0	0	0	0	PE0	FE0	OVE0	Address FFFFF0C4H	After reset 00H
					ı		ı			
ASIS1	SOT1	0	0	0	0	PE1	FE1	OVE1	FFFFF0D4H	00H

Bit Position	Bit Name	Function
7	SOTn	Status Of Transmission This is a status flag that shows the transmission operation's state. Set (1): Transmission start timing (writing to the TXSn or TXSnL register) Clear (0): Transmission end timing (generation of the INTSTn interrupt) When about to start serial data transmission, use this as a means of judging whether writing to the transmit shift register is enabled or not.
2	PEn	Parity Error This is a status flag that shows a parity error. Set (1): When transmit parity and receive parity do not match. Clear (0): Data are read from the receive buffer and processed.
1	FEn	Framing Error This is a status flag that shows a framing error. Set (1): When a stop bit was not detected. Clear (0): Data are read from the receive buffer and processed.
0	OVEn	Overrun Error This is a status flag that shows an overrun error. Set (1): When UARTn has finished the next receiving processing before fetching receive data from the receive buffer. Clear (0): Data are read from the receive buffer and processed. Furthermore, due to the configuration where 1 frame at a tie is received, then the contents of the receive shift register are transmitted to the receive buffer, when an overrun error has occurred, the next receive data is written over the data existing in the receive buffer, and the previous receive data is discarded.

(3) Receive buffers 0, 0L, 1, 1L (RXB0, RXB0L, RXB1, RXB1L)

RXBn are 9-bit buffer registers that hold receive data, with a 0 stored in the higher bits when 7 or 8-bit character data is received (n = 0, 1).

During 16-bit access of these registers, specify RXB0 and RXB1, and during lower 8-bit access, specify RXB0L and RXB1L.


While in the reception enabled state, receive data is transmitted from the receive shift register to the receive buffer in synchronization with the end of shift-in processing of 1 frame.

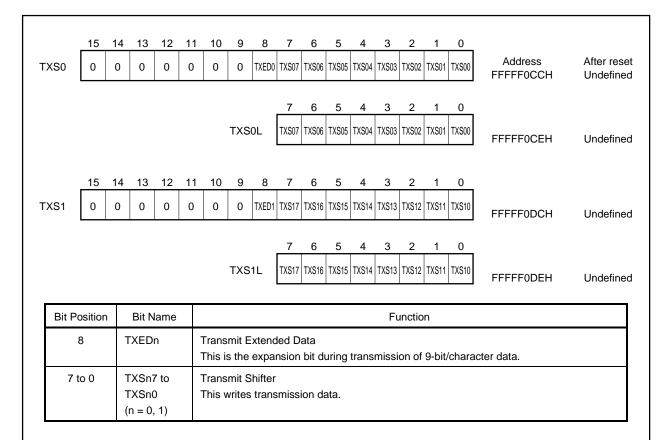
Also, a reception complete interrupt request (INTSRn) is generated by transfer of receive data to the receive buffer.

In the reception disabled state, transmission of receive data to the receive buffer is not performed even if shiftin processing of 1 frame is completed, and the contents of the receive buffer are held.

Also, a reception complete interrupt request is not generated.

RXB0 and RXB1 are read-only registers in 16-bit units, and RXB0L and RXB1L are read-only registers in 8- or 1-bit units.

(4) Transmit shift registers 0, 0L, 1, 1L (TXS0, TXS0L, TXS1, TXS1L)


TXSn are 9-bit shift registers for transmission processing and when transmission is enabled, transmission operations are started (n = 0, 1) by writing of data to these registers.

When transmission is disabled, the values are disregarded even if writing is performed.

A transmission complete interrupt request (INTSTn) is generated in synchronization with the end of transmission of 1 frame including TXS data.

During 16-bit access of these registers, specify TXS0 and TXS1, and during lower 8-bit access, specify TXS0L and TXS1L.

TXS0 and TXS1 are write-only registers in 16-bit units, and TXS0L and TXS1L are write-only registers in 8-bit units.

- Cautions 1. UARTn does not have a transmit buffer, so there is no interrupt request at the end of transmission (to the buffer), and an interrupt request (INTSTn) is generated in synchronization with the end of transmission of 1 frame of data.
 - 2. If the UARTn registers are changed during transmission, UARTn operation is not guaranteed.

10.2.4 Interrupt request

UARTn generates the following three types of interrupt requests (n = 0, 1).

- Receive error interrupt (INTSERn)
- Reception complete interrupt (INTSRn)
- Transmission complete interrupt (INTSTn)

The priority order of these three interrupts is, from high to low: receive error interrupt, reception complete interrupt, transmission complete interrupt.

Table 10-1. Default Priority of Interrupt

Interrupt	Priority
Receive error	1
Reception complete	2
Transmission complete	3

(1) Receive error interrupt (INTSERn)

In the reception enabled state, a receive error interrupt is generated by ORing the three receive errors. In the reception disabled state, no receive error interrupt is generated.

(2) Reception completion interrupt (INTSRn)

In the reception enabled state, a reception complete interrupt is generated when data is shifted into the receive shift register and transferred to the receive buffer.

This reception complete interrupt request is also generated when a receive error has occurred, but the receive error interrupt has a higher servicing priority.

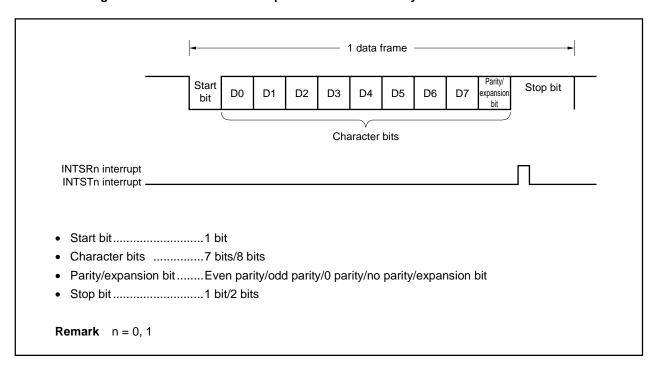
In the reception disabled state, no reception complete interrupt is generated.

(3) Transmission completion interrupt (INTSTn)

As this UARTn has no transmit buffer, a transmission complete interrupt is generated when one frame of transmit data containing a 7-, 8-, or 9-bit character is shifted out of the transmit shift register.

A transmission complete interrupt is output at the start of transmission of the last bit of transmit data.

10.2.5 Operation


(1) Data format

Transmission and reception of full duplex serial data are performed.

As shown in Figure 10-2, 1 data frame consists of a start bit, character bits, a parity bit, and a stop bit as the format of transmit/receive data.

Specification of the character bit length within 1 data frame, parity selection and specification of the stop bit length are performed by the asynchronous serial interface mode register (ASIMn0, ASIMn1) (n = 0, 1).

Figure 10-2. Transmission/Reception Data Format of Asynchronous Serial Interface

(2) Transmission

Transmission starts when data is written to the transmit shift register (TXSn or TXSnL). With the transmission complete interrupt (INTSTn) servicing routine, the next data is written to the TXSn or TXSnL register (n = 0, 1).

(a) Transmit enable state

This is set with the TXEn bit of the ASIMn0 register.

TXEn = 1: Transmit enabled state

TXEn = 0: Transmit disabled state

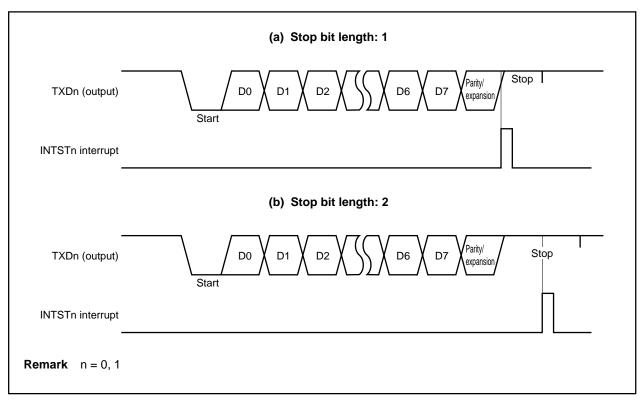
However, when setting the transmit enabled state, be sure to set both the CTXEn and CRXEn bits of the clocked serial interface mode register (CSIMn) of the channel in use to 0.

Note that since UARTn does not have CTS (transmit enabled signal) input pins, when the opposite party wants to confirm the reception enabled state, use a port.

(b) Starting a transmit operation

In the transmit enabled state, if data is written to the transmit shift register (TXSn or TXSnL), the transmit operation starts. Transmit data is transmitted from the start bit to the LSB header. A start bit, parity/expansion bit and stop bit are added automatically.

In the transmit disabled state, data is not written to the transmit shift register. Even if writing is done, the values are disregarded.


(c) Transmission interrupt request

If the transmit shift register (TXSn or TXSnL) becomes empty, a transmission complete interrupt request (INTSTn) is generated.

If the next transmit data is not written to the TXSn or TXSnL register, the transmit operation is interrupted. After 1 transmission is ended, the transmission rate drops if the next transmit data is not written to the TXSn or TSXnL register immediately.

- Cautions 1. Normally, when the transmit shift register (TXSn or TXSnL) has become empty, a transmission complete interrupt (INTSTn) is generated. However, when RESET is input, if the transmit shift register (TXSn or TXSnL) has become empty, a transmission complete interrupt (INTSTn) is not generated.
 - 2. During a transmit operation before INTSTn generation, even if data is written to the TXSn or TXSnL register, the written data is invalid.

Figure 10-3. Asynchronous Serial Interface Transmission Completion Interrupt Timing

(3) Reception

If reception is enabled, sampling of the RXDn pin is started and if a start bit is detected, data reception begins. When 1 frame of data reception is completed, the reception complete interrupt (INTSRn) is generated. Normally, with this interrupt servicing, receive data is transmitted from the receive buffer (RXBn or RXBnL) to memory (n = 0, 1).

(a) Receive enabled state

Reception is enabled when the RXEn bit of the ASIMn0 register is set to 1.

RXEn = 1: Receive enabled state RXEn = 0: Receive disabled state

However, when reception is enabled, be sure to set both the CTXEn and CRXEn bits of the clocked serial interface mode register (CSIMn) of the channel in use to 0.

In the receive disabled state, the reception hardware stands by in the initial state.

At this time, no reception complete interrupts or reception error interrupts are generated, and the contents of the receive buffer are retained.

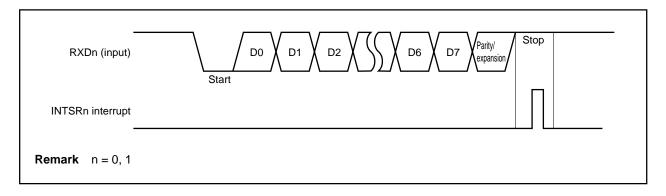
(b) Start of receive operation

The receive operation is started by detection of the start bit.

The RXDn pin is sampled using the serial clock from the baud rate generator (BRGn). When an RXDn pin low level is detected, the RXDn pin is sampled again after 8 serial clock cycles. If it is low this is recognized as a start bit, the receive operation is started and the RXDn pin input is subsequently sampled at intervals of 16 serial clock cycles.

If the RXDn pin input is found to be high when sampled again 8 serial clock cycles after an RXDn pin low level is detected, this low level is not recognized as a start bit, the operation is stopped by initializing the serial clock counter for sample timing generation, and the unit waits for the next low-level input.

(c) Reception complete interrupt request


When RXEn = 1, after one frame of data has been received, the receive data in the shift register is transferred to RXBn and RXBnL a reception complete interrupt request (INTSRn) is generated.

Also, even if an error occurs, the receive data where the error occurred is transmitted to the receive buffer (RXBn or RXBnL) and a reception complete interrupt (INTSRn) and receive error interrupt (INTSERn) are generated simultaneously.

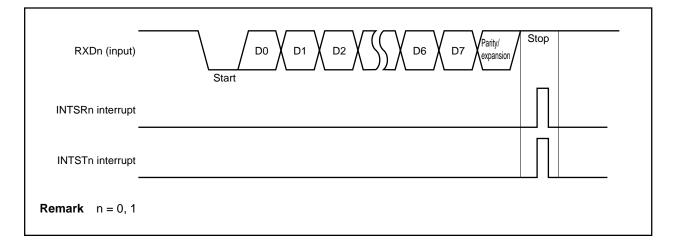
Furthermore, if the RXEn bit is reset (0) during a receive operation, the receive operation is stopped immediately. At this time, the contents of the receive buffer (RXBn or RXBnL) and the asynchronous serial interface status register (ASISn) do not change and the reception complete interrupt (INTSRn) and receive error interrupt (INTSERn) are not generated.

When RXEn = 0 and reception is disabled, a reception complete interrupt request is not generated.

Figure 10-4. Asynchronous Serial Interface Reception Complete Interrupt Timing

(d) Receive error flag

In synchronization with the receive operation, three types of error flags, the parity error flag, framing error flag, and overrun error flag, are affected.


A receive error interrupt request is generated by ORing these three error flags.

By reading out the contents of the ASISn register in the receive error interrupt (INTSERn), which error occurred during reception can be detected.

As for the contents of the ASISn register, either the receive buffer (RXBn or RXBnL) are read or it is reset (0) by reception of the next data (if there is an error in the next receive data, that error flag is set).

Receiving Error	Cause
Parity error	The parity specification during transmission does not match with the parity of the receive data.
Framing error	A stop bit was not detected.
Overrun error	Reception of the next data was completed before data was read from the receive buffer.

Figure 10-5. Receive Error Timing

10.3 Clocked Serial Interfaces 0, 1 (CSI0, CSI1)

10.3.1 Features

- O High transfer rate Max. 7.5 Mbps (when the internal system clock is operating at 30 MHz)
- O Half-duplex communications
- O Character length: 8 bits
- O It is possible to switch MSB first or LSB first for data.
- O Either external serial clock input or internal serial clock output can be selected.
- O 3-wire type SOn: Serial data output

SIn: Serial data input

SCKn: Serial clock input/output

- O Interrupt source 1 type
 - Transmission/reception complete interrupt (INTCSIn)

Remark n = 0, 1

10.3.2 Configuration

CSIn are controlled by the clocked serial interface mode registers (CSIMn). Transmission/reception data can be read from and written to the SIOn registers (n = 0, 1).

(1) Clocked serial interface mode registers (CSIM0, CSIM1)

The CSIMn registers are 8-bit registers that specify CSIn operations.

(2) Serial I/O shift registers (SIO0, SIO1)

The SIOn registers are 8-bit registers that convert serial data to parallel data. SIOn is used for both transmission and reception.

Data is shifted in (received) or shifted out (transmitted) either from the MSB side or the LSB side.

Actual transmitting/receiving operations are controlled by reading from or writing to SIOn.

(3) Selector

This selects the serial clock to be used.

(4) Serial clock controller

This performs control of supply to the serial clock shift register. Also, when the internal clock is used, it controls the clock that outputs to the \overline{SCKn} pin.

(5) Serial clock counter

Counts the serial clock that outputs, or is input during transmit/receive operations, and determines if 8-bit data were transmitted or received.

(6) Interrupt control circuit

This circuit controls whether or not an interrupt request is generated when the serial clock counter counts 8 clocks.

CSI0 CTXE0 Internal system clock SO0 ○- (ϕ) CRXE0 SO Latch Serial I/O shift CLS00, CLS01 SIO O D register (SIO0) 1/2 Selector 1/4 SCK0 ○ Serial clock controller BRG0 Interrupt Serial clock counter ► INTCSI0 controller 1/2 SO1 O-1/4 SI1 O CSI1 BRG1 SCK1 ○-► INTCSI1

Figure 10-6. Block Diagram of Clocked Serial Interface

10.3.3 Control registers

(1) Clocked serial interface mode registers 0, 1 (CSIM0, CSIM1)

These registers specify the basic operation mode of CSI0 and CSI1.

These registers can be read/written in 8- or 1-bit units (however, for bit 5, only reading is possible).

(1/2)

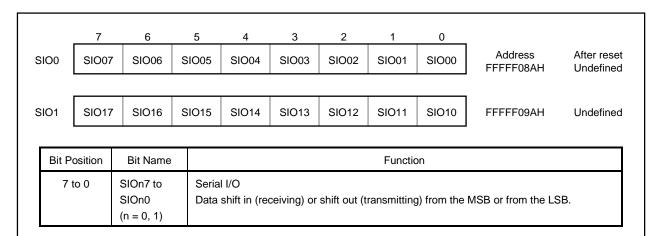
	7	6	5	4	3	2	1	0		
CSIM0	CTXE0	CRXE0	CSOT0	0	0	MOD0	CLS01	CLS00	Address FFFFF088H	After reset 00H
CSIM1	CTXE1	CRXE1	CSOT1	0	0	MOD1	CLS11	CLS10	FFFFF098H	00H

Bit Position	Bit Name	Function
7	CTXEn	CSI Transmit Enable Specifies the transmit enabled state/disabled state. 0: Transmission disabled state 1: Transmission enabled state When CTXEn = 0, the impedance of both the SOn and SIn pins becomes high.
6	CRXEn	CSI Receive Enable Specifies the receive enabled/disabled state. 0: Reception disabled state 1: Reception enabled state When transmission is enabled (CTXEn = 1) and reception is disabled, if a serial clock is being input, 0 is input to the shift register. If reception is disabled (CRXEn = 0) while receiving data, the SIOn register's contents become undefined.
5	CSOTn	CSI Status Of Transmission Shows that a transmit operation is in progress. Set (1): Transmit in progress (writing to the SIOn register) Clear (0): Transmit end timing (INTCSIn generated) If set in the transmission enabled state (CTXEn = 1), when the attempt is made to start serial data transmission, this is used as a means of judging whether or not writing to serial I/O shift register n (SIOn) is enabled.
2	MODn	Mode Specifies the operating mode. 0: MSB first 1: LSB first

(2/2)

Bit Position	Bit Name	Function								
1, 0	CLSn1, CLSn0		Clock Source Specifies the serial clock.							
		CLSn1	CLSn1 CLSn0 Serial Clock Specification SCK Pin							
		0	0	External clock Input						
		0	1	Internal clock	Output					
		1	0	φ/4 ^{Note 2} Output						
		1	1	φ/2 ^{Note 2} Output						
		 Notes 1. Refer to 10.4 Dedicated Baud Rate Generators 0, 1 (BRG0, BRG1) concerning setting of the BPRMn register. 2. φ/4 and φ/2 are divider signals (φ: Internal system clock). 								

- Cautions 1. When setting the CLSn1 and CLSn0 bits, do so in the transmission/reception disabled (CTXEn bit = CRXEn bit = 0) state. If the CLSn1 and CLSn0 bits are set in a state other than transmission/reception disabled, subsequent operation may not be normal.
 - 2. If the values set in bits 0 to 2 of these registers are changed while CSIn is transmitting or receiving, the operation of CSIn is not guaranteed.


(2) Serial I/O shift registers 0, 1 (SIO0, SIO1)

These registers convert 8-bit serial data to 8-bit parallel data and convert 8-bit parallel data to 8-bit serial data.

The actual transmit/receive operation is controlled by reading from or writing to the SIOn registers.

Shift operation is performed when CTXEn = 1 or CRXEn = 1.

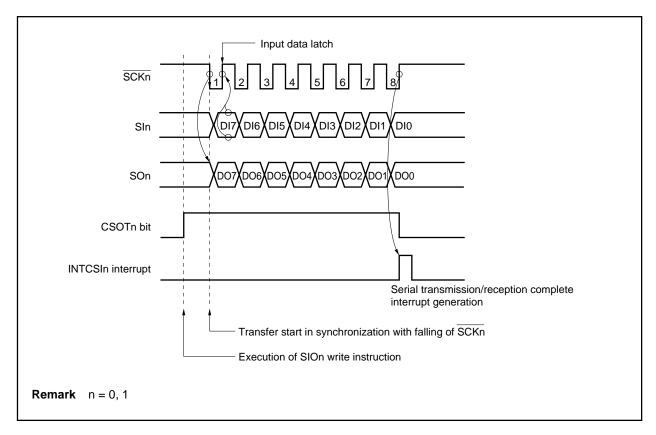
These registers can be read/written in 8- or 1-bit units.

Caution CSIn operation is not guaranteed if this register is changed during CSIn operation.

10.3.4 Basic operation

(1) Transfer format

CSIn transmits/receives data with three lines: one clock line and two data lines (n = 0, 1).


A serial transfer starts when an instruction that writes transfer data to the SIOn register is executed.

In the case of transmission, data is output from the SOn pin at each falling edge of SCKn.

In the case of reception, data is latched through the SIn pin at each rising edge of SCKn.

SCKn stops when the serial clock counter overflows (at the rising edge of the 8th count), and SCKn remains high until the next data transmission or reception is started. At the same time, a transmission/reception complete interrupt (INTCSIn) is generated.

Caution Even if CTXEn bit is changed from 0 to 1 after the transmit data is written to the SIOnL registers, serial transfer will not begin.

(2) Transmission/reception enabled

CSIn each have only one 8-bit shift register and do not have any buffers, so basically, they conduct transmission and reception simultaneously (n = 0, 1).

(a) Transmission/reception enable conditions

Setting of the CSIn transmission and reception enable conditions is accomplished by the CTXEn and CRXEn bits of the CSIMn registers.

However, it is necessary to set TXE0 bit = RXE0 bit = 0 in the ASIM00 register in the case of CSI0 and to set TXE1 bit = RXE1 bit = 0 in the ASIM10 register in the case of CSI1.

CTXEn	CRXEn	Transmit/Receive Operation
0	0	Transmission/reception disabled
0	1	Reception enabled
1	0	Transmission enabled
1	1	Transmission/reception enabled

Remark n = 0, 1

- **Remarks** 1. If the CTXEn bit = 0, CSIn becomes as follows.
 - CSI0, CSI1: The serial output becomes high impedance or UARTn output (TXDn).
 - CSI2, CSI3: The serial output becomes high impedance. If the CTXEn bit = 1, the shift register data is output.
 - **2.** If the CRXEn bit = 0, the shift register input becomes 0. If the CRXEn bit = 1, the serial input is input to the shift register.
 - 3. In order to receive transmit data itself and check if a bus conflict is occurring, set CTXEn bit = CRXEn bit = 1.

(3) Starting transmit/receive operations

Transmit or receive operations are started by reading/writing the SIOn registers. Transmission/reception start control is carried out by setting the CTXEn and CRXEn bits of the CSIMn registers as shown below (n = 0, 1).

CTXEn	CRXEn	Start Condition
0	0	Doesn't start
0	1	Reads the SIOn register
1	0	Writes to the SIOn register
1	1	Writes to the SIOn register
0	0 → 1	Rewrites the CRXEn bit

Remark n = 0, 1

When the CTXEn bit is 0, the SIOn register is read/write, and even if it is set (1) afterward, transfer does not

Also, when the CTXEn bit is 0, if the CRXEn bit is changed from 0 to 1, the serial clock is generated and receive operation starts.

10.3.5 Transmission by CSI0, CSI1

After changing the settings to enable transmission by clocked serial interface mode register n (CSIMn), writing to the SIOn registers starts the transmit operation (n = 0, 1).

(1) Starting the transmit operation

Starting the transmit operation is accomplished by setting the CTXEn bit of clocked serial interface mode register n (CSIMn) (setting the CRXEn bit to 0), and writing transmit data to shift register n (SIOn). Note that when the CTXEn bit = 0, the impedance of the SOn pin becomes high.

(2) Transmitting data in synchronization with the serial clock

(a) If the internal clock is selected as the serial clock

When transmission is started, the serial clock is output from the SCKn pin and at the same time, data from the SIOn register is output sequentially to the SOn pin in synchronization with the fall of the serial clock.

(b) If an external clock is selected as the serial clock

When transmission is started, data from the SIOn register is output sequentially to the SOn pin in synchronization with the fall of the serial clock input to the \overline{SCKn} pin after transmission starts. When transmission is not started, the shift operation is not performed even if the serial clock is input to the \overline{SCKn} pin and the SOn pin's output level does not change.

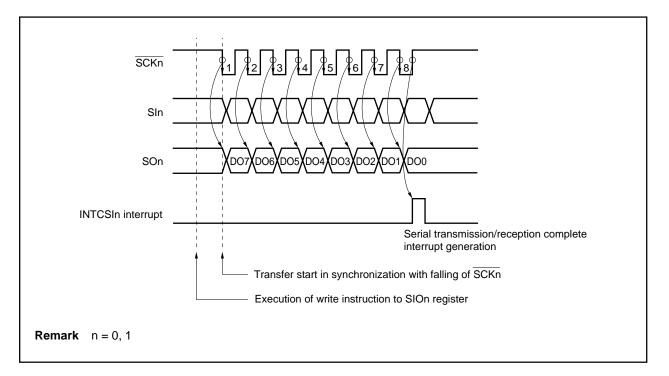


Figure 10-7. Timing of 3-Wire Serial I/O Mode (Transmission)

10.3.6 Reception by CSI0, CSI1

When the reception disabled setting is changed to reception enabled for clocked serial interface mode register n (CSIMn), and data is read from the SIOn register in the reception enabled state, a receive operation is started (n = 0, 1).

(1) Starting the receive operation

The following 2 methods can be used to start receive operations.

- <1> If the CRXEn bit of the CSIMn register is changed from the reception disabled state (0) to the reception enabled state (1)
- <2> If the CRXEn bit of the CSIMn register reads receive data from shift register n (SIOn) when in the reception enabled state (1)

When the CRXEn bit of the CSIMn register is set (1), even if 1 is written again, a receive operation is not started. Note that when the CRXEn bit = 0, the shift register input becomes 0.

(2) Receiving data in synchronization with the serial clock

(a) If the internal clock is selected as the serial clock

When reception is started, the serial clock is output from the SCKn pin and at the same time, data from the SIn pin is fetched sequentially to the SIOn register in synchronization with the rise of the serial clock.

(b) If an external clock is selected as the serial clock

When reception is started, data from the SIn pin is fetched sequentially to the SIOn register in synchronization with the rise of the serial clock input to the \overline{SCKn} pin after reception starts. When reception has not started, the shift operation is not performed even if the serial clock is input to the \overline{SCKn} pin.

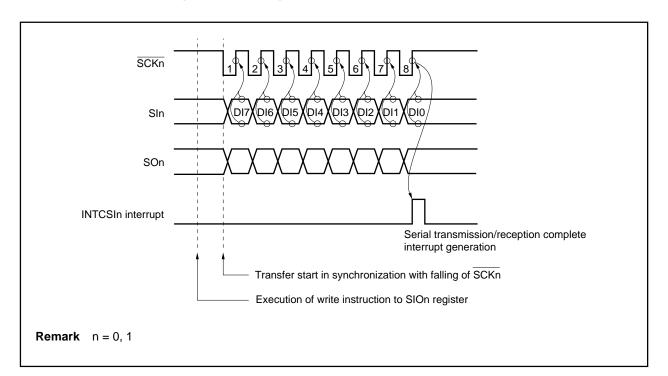


Figure 10-8. Timing of 3-Wire Serial I/O Mode (Reception)

10.3.7 Transmission and reception by CSI0, CSI1

If both transmission and reception by clocked serial interface mode register n (CSIMn) are enabled, transmit and receive operations can be carried out simultaneously (n = 0, 1).

(1) Starting transmit and receive operations

When both the CTXEn bit and CRXEn bit of clocked serial interface mode register n (CSIMn) are set (1), both transmit operations and receive operations can be performed simultaneously (transmit/receive operations). Transmit and receive operations are started when both the CTXEn and CRXEn bits of the CSIMn register are set to 1, enabling transmission and reception and when transmit data is written to shift register n (SIOn). If the CRXEn bit of the CSIMn register is 1, even if data is written again, a transmit/receive operation is not started.

(2) Transmitting data in synchronization with the serial clock

(a) If the internal clock is selected as the serial clock

When transmission/reception is started, the serial clock is output from the $\overline{\text{SCKn}}$ pin and at the same time, data from the SIOn register is output sequentially to the SOn pin in synchronization with the fall of the serial clock. Also, data from the SIn pin is fetched sequentially to the SIOn register in synchronization with the rise of the serial clock.

(b) If an external clock is selected as the serial clock

When transmission/reception is started, data from the SIOn register is output sequentially to the SOn pin in synchronization with the fall of the serial clock input to the \overline{SCKn} pin after transmission/reception starts. Also, data from the SIn pin is fetched sequentially to the SIOn register in synchronization with the rise of the serial clock. When transmission/reception is not started, even if the serial clock is input to the \overline{SCKn} pin, shift operations are not performed and the output level of the SOn pin does not change.

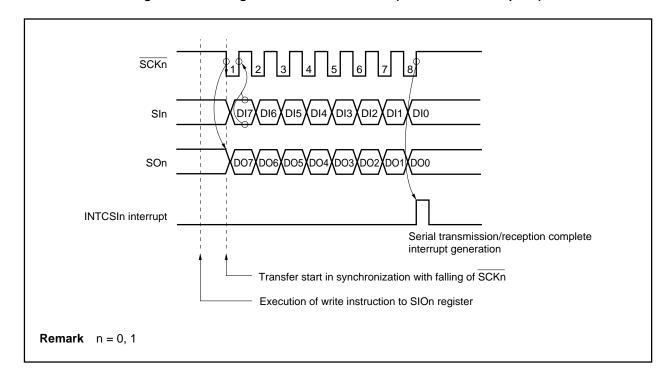


Figure 10-9. Timing of 3-Wire Serial I/O Mode (Transmission/Reception)

10.3.8 Example of system configuration

Using 3 signal lines, the serial clock (\overline{SCKn}), serial input (SIn) and serial output (SOn), transfer of 8-bit data is carried out. This is effective in cases where connections are made to peripheral I/O with the old type of clocked serial interface built in, or with a display controller, etc. (n = 0, 1).

If connecting to multiple devices, a line for handshake is necessary.

Since either the MSB or the LSB can be selected as the communication's header bit, it is possible to communicate with various types of device.

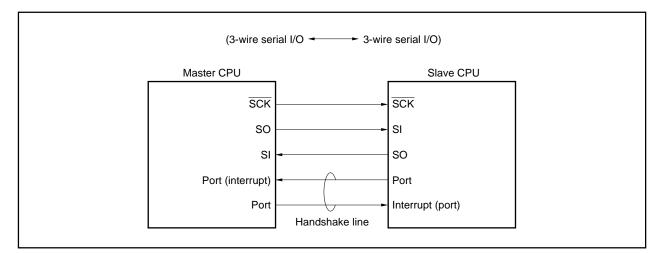


Figure 10-10. Example of CSI System Configuration

10.4 Dedicated Baud Rate Generators 0, 1 (BRG0, BRG1)

10.4.1 Configuration and function

A dedicated baud rate generator output or the internal system clock (ϕ) can be selected for the serial interface serial clock for each channel.

The serial clock source is specified with the ASIM00 and ASIM10 registers for UART0 and UART1, and with the CSIM0, CSIM1 registers for CSI0, CSI1.

If the dedicated baud rate generator output is specified, BRG0 and BRG1 are selected as the clock source.

Since 1 serial clock is used in common for 1 channel of transmission and reception, the baud rate is the same for both transmission and for reception.

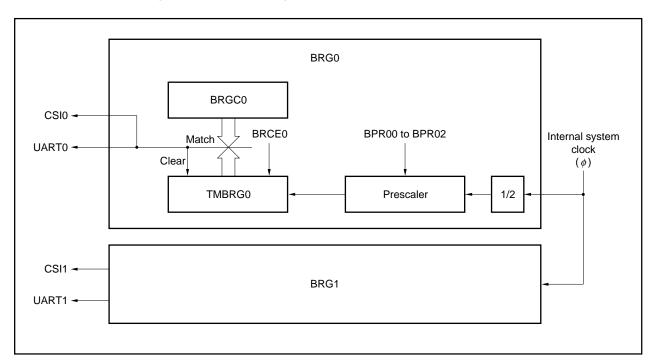


Figure 10-11. Block Diagram of Dedicated Baud Rate Generator

(1) Dedicated baud rate generators 0, 1 (BRG0, BRG1)

Dedicated baud rate generator BRGn (n = 0, 1) consists of a dedicated 8-bit timer (TMBRGn) which generates the transmission/reception shift clock plus a compare register (BRGCn) and prescaler.

(a) Input clock

Internal system clock (ϕ) is input to the BRGn.

(b) Value set to BRGn

(i) UARTO, UART1

When the dedicated baud rate generator is specified as the serial source clock with the UART0, UART1, a sampling rate of \times 16 is used, and therefore the baud rate is given by the following expression.

Baud rate =
$$\frac{\phi}{2 \times j \times 2^k \times 16 \times 2}$$
 [bps]

- φ Internal system clock frequency [Hz]
- j: Timer count value = BRGCn register setting value ($1 \le j \le 256^{Note}$)
- k: Prescaler setting value = BPRMn register setting value (k = 0, 1, 2, 3, 4)

Note The j = 256 setting results in writing 0 to the BRGCn register.

(ii) CSI0, CSI1

If BRG0 and BRG1 are specified as the serial clock source in CSI0 and CSI1, the actual baud rate is expressed by the following formula.

Baud rate =
$$\frac{\phi}{2 \times j \times 2^k \times 2}$$
 [bps]

- φ: Internal system clock frequency [Hz]
- j: Timer count value = BRGCn register setting value ($1 \le j \le 256^{Note}$)
- k: Prescaler setting value = BPRMn register setting value (k = 0, 1, 2, 3, 4)

Note The j = 256 setting results in writing 0 to the BRGCn register.

BRGn setting values when representative clock frequencies are used are shown below.

Table 10-2. Baud Rate Generator Setup Values

Baud R	ate [bps]	bps] $\phi = 30 \text{ MHz}$ $\phi = 25 \text{ MHz}$		ИHz	φ = 16 MHz			φ = 12.5 MHz					
UART0, UART1	CSI0, CSI1	BPR	BRG	Error	BPR	BRG	Error	BPR	BRG	Error	BPR	BRG	Error
110	1,760	_	_	_	4	222	0.02%	4	142	0.03%	3	222	0.02%
150	2,400	4	195	0.16%	4	163	0.15%	3	208	0.16%	3	163	0.15%
300	4,800	3	195	0.16%	3	163	0.15%	2	208	0.16%	2	163	0.15%
600	9,600	2	195	0.16%	2	163	0.15%	1	208	0.16%	1	163	0.15%
1,200	19,200	1	195	0.16%	1	163	0.15%	0	208	0.16%	0	163	0.15%
2,400	38,400	0	195	0.16%	0	163	0.15%	0	104	0.16%	0	81	0.47%
4,800	768,00	0	98	0.35%	0	81	0.47%	0	52	0.16%	0	41	0.76%
9,600	153,600	0	49	0.35%	0	41	0.76%	0	26	0.16%	0	20	1.73%
10,400	166,400	0	45	0.16%	0	38	1.16%	0	24	0.16%	0	19	1.16%
19,200	307,200	0	24	1.73 %	0	20	1.73%	0	13	0.16%	0	10	1.73%
38,400	614,400	0	12	1.73%	0	10	1.73%	0	7	6.99% ^{Note}	0	5	1.73%
76,800	1,228,800	0	6	1.73%	0	5	1.73%	_	_	_	0	3	15.2% ^{Note}
153,600	2,457,600	0	3	1.73%	0	2	27.2% ^{Note}	_	_	_	_	_	_

Baud Ra	ate [bps]	φ = 20 MHz			φ =	= 14.764	MHz	φ = 12.288 MHz		
UART0, UART1	CSI0, CSI1	BPR	BRG	Error	BPR	BRG	Error	BPR	BRG	Error
110	1,760	4	178	0.25%	4	131	0.07%	3	218	0.08%
150	2,400	4	130	0.16%	3	192	0.0%	3	160	0.0%
300	4,800	3	130	0.16%	2	192	0.0%	2	160	0.0%
600	9,600	2	130	0.16%	1	192	0.0%	1	160	0.0%
1,200	19,200	1	130	0.16%	0	192	0.0%	0	160	0.0%
2,400	38,400	0	130	0.16%	0	96	0.0%	0	80	0.0%
4,800	76,800	0	65	0.16%	0	48	0.0%	0	40	0.0%
9,600	153,600	0	33	1.36%	0	24	0.0%	0	20	0.0%
10,400	166,400	0	30	0.16%	0	22	0.7%	0	18	2.6%
19,200	307,200	0	16	1.73%	0	12	0.0%	0	10	0.0%
38,400	614,400	0	8	1.73%	0	6	0.0%	0	5	0.0%
76,800	1,228,800	0	4	1.73%	0	3	0.0%	0	3	16.7% ^{Note}
153,600	2,457,600	0	2	1.73%	0	2	25.0% ^{Note}	_	_	_

Note Cannot be used because the error is too great.

Remark BPR: Prescaler setting value (Set in the BPRMn register (n = 0, 1))

BRG: Timer count value (Set in the BRGCn register (n = 0, 1))

φ: Internal system clock frequency

(c) Baud rate error

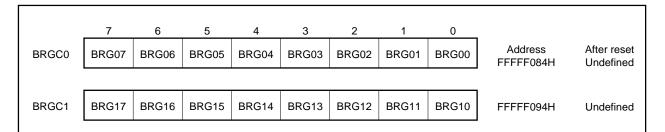
The baud rate generator error is calculated as follows:

Error [%] =
$$\left(\frac{\text{Actual baud rate (baud rate with error)}}{\text{Desired baud rate (normal baud rate)}} - 1\right) \times 100$$

Example:
$$(9,520/9,600 - 1) \times 100 = -0.833$$
 [%]

$$(5,000/4,800 - 1) \times 100 = +4.167$$
 [%]

(2) Allowable error range of baud rate


The allowable error range depends on the number of bits of one frame.

The basic limit is $\pm 5\%$ of baud rate error and $\pm 4.5\%$ of sample timing with an accuracy of 16 bits. However, the practical limit should be $\pm 2.3\%$ of baud rate error, assuming that both the transmission and reception sides contain an error.

10.4.2 Baud rate generator compare registers 0, 1 (BRGC0, BRGC1)

These are 8-bit compare registers used to set the timer count value for the BRG0 and BRG1.

These registers can be read/written in 8- or 1-bit units.

Caution Do not change the values in the BRGCn (n = 0, 1) register by software during a transmit/receive operation, because writing this register causes the internal timer (TMBRGn) to be cleared.

10.4.3 Baud rate generator prescaler mode registers 0, 1 (BPRM0, BPRM1)

These registers control BRG0, BRG1 timer count operations and select the count clock.

These registers can be read/written in 8- or 1-bit units.

	7	6	5	4	3	2	1	0		
BPRM0	BRCE0	0	0	0	0	BPR02	BPR01	BPR00	Address FFFFF086H	After reset 00H
					ı					
BPRM1	BRCE1	0	0	0	0	BPR12	BPR11	BPR10	FFFFF096H	00H

Bit Position	Bit Name				Function						
7	BRCEn	Baud Rate Generator Count Enable Controls the BRGn count operations. 0: Stops count operations in the cleared state. 1: Enables the count operation.									
2 to 0	BPRn2 to BPRn0	Baud Rate Generator Prescaler Specifies the count clock input to the internal timer (TMBRGn).									
		BPRn2	BPRn1	BPRn0	Count Clock						
		0	0	0	$\phi/2 \ (m=0)$						
		0	0 0 1 $\phi/4$ (m = 1)								
		0 1 0 φ/8 (m = 2)									
		0 1 1 $\phi/16 \text{ (m = 3)}$									
		1	1 don't care don't care $\phi/32$ (m = 4)								
		m: Prescale	m: Prescaler setting value φ: Internal system clock frequency								

Caution Do not change the count clock during a transmit/receive operation.

CHAPTER 11 A/D CONVERTER

11.1 Features

- O Analog input: 4 channels
- O 10-bit A/D converter
- O On-chip A/D conversion result register (ADCR0 to ADCR3)

10 bits \times 4

O A/D conversion trigger mode

A/D trigger mode

Timer trigger mode

O Successive approximation method

11.2 Configuration

The A/D converter of the V850E/MS1 adopts the successive approximation method, and uses the A/D converter mode registers (ADM0, ADM1), and ADCRn register to perform A/D conversion operations (n = 0 to 3).

(1) Input circuit

Selects the analog input (ANI0 to ANI3) according to the mode set to the ADM0 and ADM1 registers and sends the input to the sample and hold register.

(2) Sample and hold circuit

The sample and hold circuit samples each of the analog input signals sequentially sent from the input circuit, and sends the sample to the voltage comparator. This circuit also holds the sampled analog input signal voltage during A/D conversion.

(3) Voltage comparator

The voltage comparator compares the analog input signal with the output voltage of the series resistor string.

(4) Series resistor string

The series resistor string is used to generate voltages to match analog inputs.

The series resistor string is connected between the reference voltage pin (AV_{REF}) for the A/D converter and the GND pin (AV_{SS}) for the A/D converter. To make 1,024 equal voltage steps between these 2 pins, it is configured from 1,023 equal resistors and 2 resistors with 1/2 of the resistance value.

The voltage tap of the series resistor string is selected by a tap selector controlled by a successive approximation register (SAR).

(5) Successive approximation register (SAR)

The SAR is a 10-bit register in which is set series resistor string voltage tap data, which have values that match analog input voltage values, 1 bit at a time beginning with the most significant bit (MSB).

If the data is set in the SAR all the way to the least significant bit (LSB) (A/D conversion completed), the contents of that SAR (conversion results) are held in the A/D conversion results register (ADCRn).

(6) A/D conversion results register (ADCRn)

The ADCR is a 10-bit register that holds A/D conversion results. Each time A/D conversion is completed, conversion results are loaded from the successive approximation register (SAR).

RESET input makes its contents undefined.

(7) Controller

Selects the analog input, generates the sample and hold circuit operation timing, and controls the conversion trigger according to the mode set to the ADM0 and ADM1 registers.

(8) ANI0 to ANI3 pins

4-channel analog input pin for the A/D converter. Inputs the analog signal to be A/D converted.

Caution Make sure that the voltages input to ANI0 through ANI3 do not exceed the rated values. If a voltage higher than V_{DD} or lower than Vss (even within the range of the absolute maximum ratings) is input to a channel, the conversion value of the channel is undefined, and the conversion values of the other channels may also be affected.

(9) AVREF pin

Pin for inputting the reference voltage of the A/D converter. Converts signals input to the ANIn pin to digital signals based on the voltage applied between AVREF and AVss.

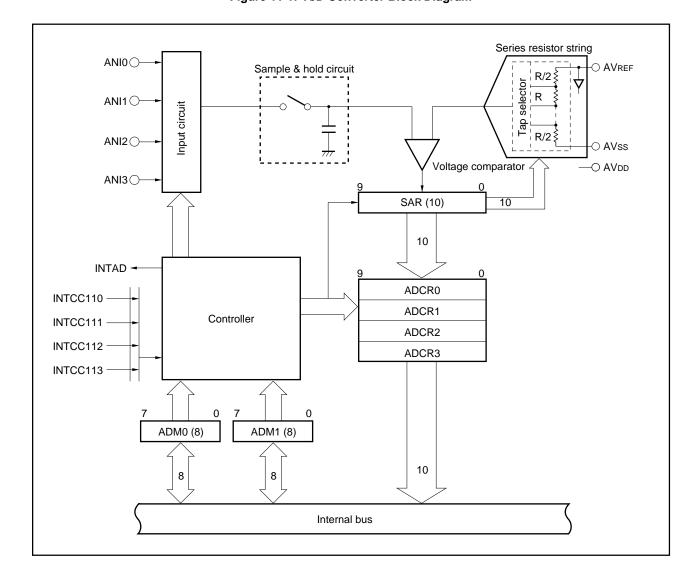


Figure 11-1. A/D Converter Block Diagram

Cautions 1. When noise is generated from the analog input pins (ANI0 to ANI3) and the reference voltage input pin (AVREF), it may cause an illegal conversion result.

In order to avoid this illegal conversion result influencing the system, software processing is required.

An example of the necessary software processing is as follows.

- Use the average value of the A/D conversion results after obtaining several A/D conversion results.
- When an exceptional conversion result is obtained after performing A/D conversion several times consecutively, omit it and use the rest of the conversion results.
- When an A/D conversion result that indicates a system malfunction is obtained, be sure to recheck the abnormal generation before performing malfunction processing.
- 2. Make sure not to append the voltage that extends the value between AVss to AVREF to the pins used as A/D converter input pins.

11.3 Control Registers

(1) A/D converter mode register 0 (ADM0)

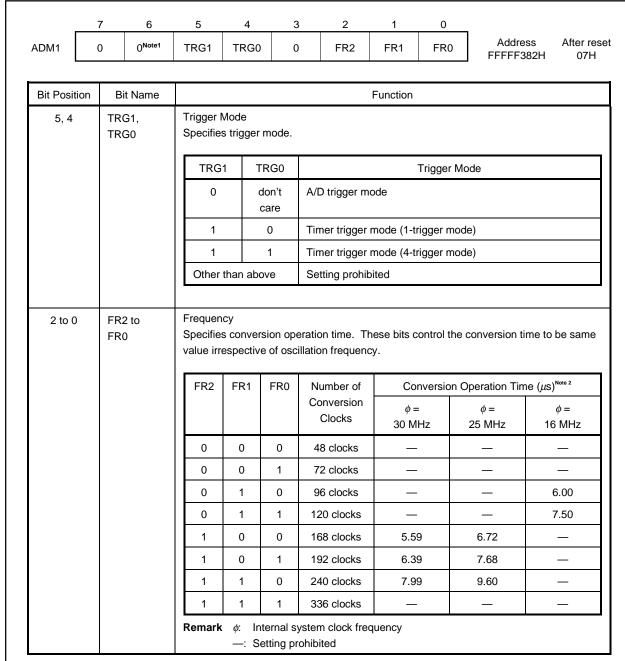
The ADM0 register is an 8-bit register that executes the selection of the analog input pin, specification of operation mode, and conversion operations.

This register can be read/written in 8- or 1-bit units, However, when the data is written to the ADM0 register during A/D conversion operations, the conversion operation is initialized and conversion is executed from the beginning. Bit 6 cannot be written and writing executed is ignored.

(1/2)6 5 3 2 1 0 After reset Address O^{Note 1} ANIS1 ADM0 CE CS BS MS 0 ANIS0 FFFFF380H 00H

Bit Position	Bit Name				Function		
7	CE	Enables or 0: Disab	Convert Enable Enables or disables A/D conversion operation. 0: Disabled 1: Enabled				
6	CS	Indicates t 0: Stops	Converter Status Indicates the status of A/D converter. This bit is read only. 0: Stops 1: Operates				
5	BS	Specifies to 0: 1-buff	Buffer Select Specifies buffer mode in the select mode. 0: 1-buffer mode 1: 4-buffer mode				
4	MS	Mode Select Specifies operation mode of A/D converter. 0: Scan mode 1: Select mode					
1, 0	ANIS1, ANIS0	Analog Inp Specifies a		ct nput pin to A/D c	convert.		
		ANIS1	ANIS0	Select	Mode	Scan	Mode
				A/D Trigger Mode	Timer Trigger Mode	A/D Trigger Mode	Timer Trigger Mode ^{Note 2}
		0	0	ANI0	ANI0	ANI0	1
		0	1	ANI1	ANI1	ANI0, ANI1	2
		1	0	ANI2	ANI2	ANI0 to ANI2	3
		1	1	ANI3	ANI3	ANI0 to ANI3	4

(2/2)


- **Notes 1.** Be sure to set this bit to 0.
 - 2. In the timer trigger mode (4-trigger mode) during the scan mode, because the scanning sequence of the ANI0 to ANI3 pins is specified by the sequence in which the match signals are generated from the compare register, the number of trigger inputs should be specified instead of a certain analog input pin.
 - Cautions 1. When the CE bit is 1 in the timer trigger mode, the trigger signal standby state is set. To clear the CE bit, write 0 or reset.

 In the A/D trigger mode, the conversion trigger is set by writing 1 to the CE bit. After the operation, when the mode is changed to the timer trigger mode without clearing the CE bit, the trigger input standby state is set immediately after the change.
 - 2. It takes 3 clocks for CS bit to become 1 after A/D conversion starts.

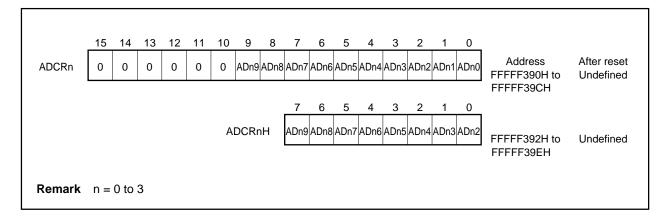
(2) A/D converter mode register 1 (ADM1)

The ADM1 register is an 8-bit register that specifies the conversion operation time and trigger mode.

This register can be read/written in 8- or 1-bit units. However, when the data is written to the ADM1 register during an A/D conversion operation, the conversion operation is initialized and conversion is executed from the beginning again.

Notes 1. Be sure to set this bit to 0.

2. Figures under Conversion Operation Time are target values.


(3) A/D conversion result registers (ADCR0 to ADCR3, ADCR0H to ADCR3H)

The ADCRn register is a 10-bit register holding the A/D conversion results. It is provided with four 10-bit registers (n = 0 to 3).

This register is read-only, in 16- or 8-bit units.

During 16-bit access to this register, the ADCRn register is specified, and during higher 8-bit access, the ADCRnH register is specified.

When reading the 10-bit data of A/D conversion results from the ADCRn register, only the lower 10 bits are valid and the higher 6 bits are always read as 0.

The correspondence between each analog input pin and the ADCRn register (except the 4-buffer mode) is shown below.

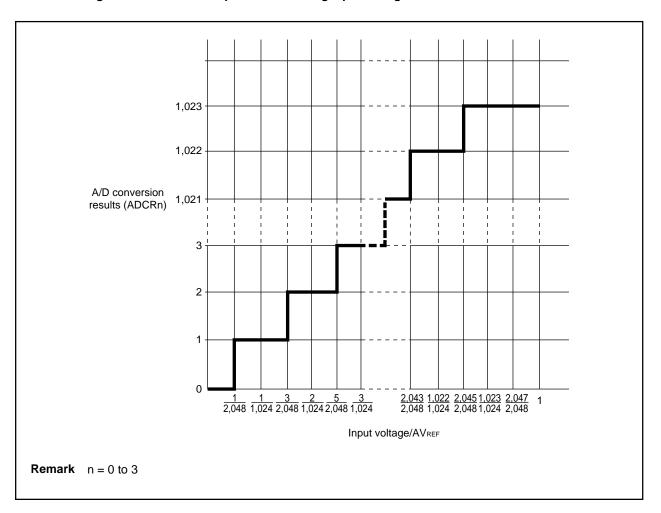
Analog Input Pin	ADCRn Register
ANI0	ADCR0, ADCR0H
ANI1	ADCR1, ADCR1H
ANI2	ADCR2, ADCR2H
ANI3	ADCR3, ADCR3H

The analog voltages input to the analog input pins (ANI0 to ANI3) and the result of the A/D conversion (contents of the A/D conversion result register (ADCRn)) are related as follows:

ADCR = INT
$$\left(\frac{V_{IN}}{AV_{REF}} \times 1024 + 0.5\right)$$

Or,

$$(\mathsf{ADCR} - 0.5) \ \times \ \frac{\mathsf{AV}_{\mathsf{REF}}}{\mathsf{1024}} \ \leq \mathsf{Vin} < (\mathsf{ADCR} + 0.5) \times \ \frac{\mathsf{AV}_{\mathsf{REF}}}{\mathsf{1024}}$$


INT (): Function that returns integer of value in ()

Vin: Analog input voltage AVREF: AVREF pin voltage

ADCR: Value of the A/D conversion result register (ADCRn)

Figure 11-2 shows the relationship between the analog input voltage and the A/D conversion results.

Figure 11-2. Relationship Between Analog Input Voltage and A/D Conversion Results

11.4 A/D Converter Operation

11.4.1 Basic operation of A/D converter

A/D conversion is executed in the following order.

- (1) The selection of the analog input and specification of the operation mode, trigger mode, etc. should be set in the ADM0 and ADM1 registers^{Note 1}.
 - When the CE bit of the ADM0 register is set (1), A/D conversion starts in the A/D trigger mode. In the timer trigger mode, the trigger standby state^{Note 2} is set.
- (2) The voltage generated from the voltage tap of the series resistor string and analog input are compared by the comparator.
- (3) When the comparison of the 10 bits ends, the conversion results are stored in the ADCRn register. When A/D conversion is performed for the specified number of times, the A/D conversion end interrupt (INTAD) is generated (n = 0 to 3).
- **Notes 1.** When the ADM0 and ADM1 registers are changed during an A/D conversion operation, the A/D conversion operation before the change is stopped and the conversion results are not stored in the ADCRn register.
 - 2. In the timer trigger mode, if the CE bit of the ADM0 register is set to 1, the mode changes to the trigger standby state. The A/D conversion operation is started by the trigger signal, and the trigger standby state is returned when the A/D conversion operation ends.

11.4.2 Operation mode and trigger mode

The A/D converter can specify various conversion operations by specifying the operation mode and trigger mode. The operation mode and trigger mode are set by the ADM0 and ADM1 registers.

The following shows the relationship between the operation mode and trigger mode.

Trigger Mode		Operation Mode		Setting Value		Analog Input
					ADM1 register	
A/D trigger		Select	1 buffer	xx0100xxB	000x0xxxB	ANI0 to ANI3
			4 buffers	xx1100xxB	000x0xxxB	
		Scan		xxx000xxB	000x0xxxB	
Timer trigger	1 trigger	Select	1 buffer	xx0100xxB	00100xxxB	
			4 buffers	xx1100xxB	00100xxxB	
		Scan		xxx000xxB	00100xxxB	
	4 triggers	Select	1 buffer	xx0100xxB	00110xxxB	
			4 buffers	xx1100xxB	00110xxxB	
		Scan		xxx000xxB	00110xxxB	

(1) Trigger mode

There are two types of trigger modes that serve as the start timing of the A/D conversion processing: A/D trigger mode and timer trigger mode. The timer trigger mode consists of the 1-trigger mode and 4-trigger mode as the sub-trigger mode. These trigger modes are set by the ADM1 register.

(a) A/D trigger mode

Generates the conversion timing of the analog input for the ANI0 to ANI3 pins inside the A/D converter unit.

(b) Timer trigger mode

Specifies the conversion timing of the analog input set for the ANI0 to ANI3 pins using the values set to the TM11 compare register.

This register creates the analog input conversion timing by generating the match interrupts of the four capture/compare registers (CC110 to CC113) connected to the 16-bit TM11.

There are two types of sub-trigger modes: 1-trigger mode and 4-trigger mode.

• 1-trigger mode

Mode that uses one match interrupt from timer 11 as the A/D conversion start timing.

• 4-trigger mode

Mode that uses four match interrupts from timer 11 as the A/D conversion start timing.

(2) Operation mode

There are two types of operation modes that set the ANI0 to ANI3 pins: select mode and scan mode. The select mode has sub-modes including the 1-buffer mode and 4-buffer mode. These modes are set by the ADM0 register.

(a) Select mode

One analog input specified by the ADM0 register is A/D converted. The conversion results are stored in the ADCRn register corresponding to the analog input (ANIn). For this mode, the 1-buffer mode and 4-buffer mode are provided for storing the A/D conversion results (n = 0 to 3).

• 1-buffer mode

One analog input specified by the ADM0 register is A/D converted. The conversion results are stored in the ADCRn register corresponding to the analog input (ANIn). The ANIn and ADCRn registers correspond one to one, and an A/D conversion end interrupt (INTAD) is generated each time one A/D conversion ends.

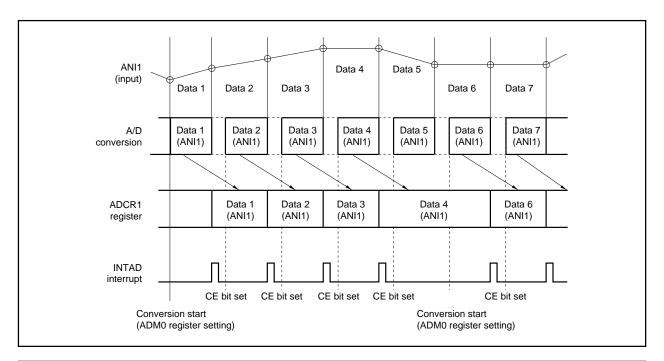
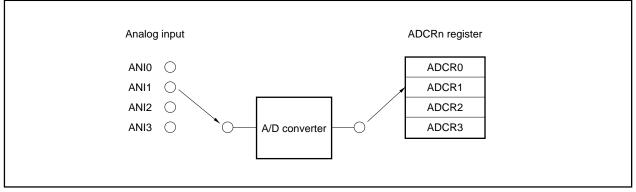



Figure 11-3. Select Mode Operation Timing: 1-Buffer Mode (ANI1)

• 4-buffer mode

One analog input is A/D converted four times and the results are stored in the ADCR0 to ADCR3 registers. The A/D conversion end interrupt (INTAD) is generated when the four A/D conversions end.

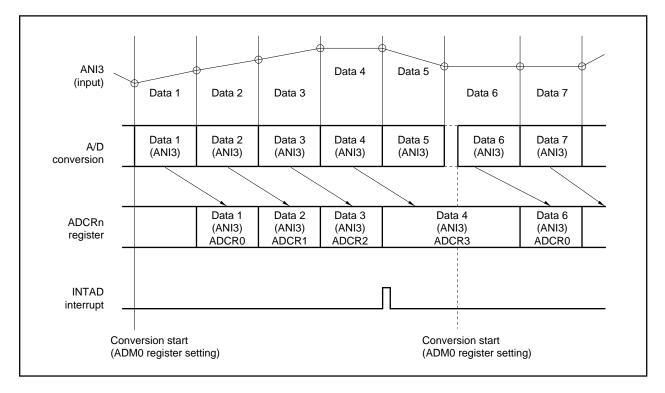
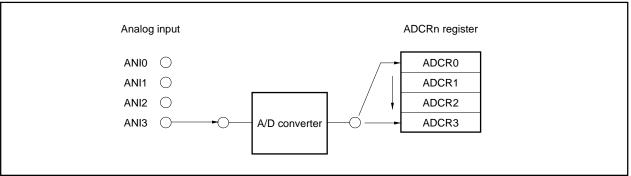



Figure 11-4. Select Mode Operation Timing: 4-Buffer Mode (ANI3)

(b) Scan mode

Selects the analog inputs specified by the ADM0 register sequentially from the ANI0 pin, and A/D conversion is executed. The A/D conversion results are stored in the ADCRn register corresponding to the analog input (n = 0 to 3). When the conversion of the specified analog input ends, the INTAD interrupt is generated.

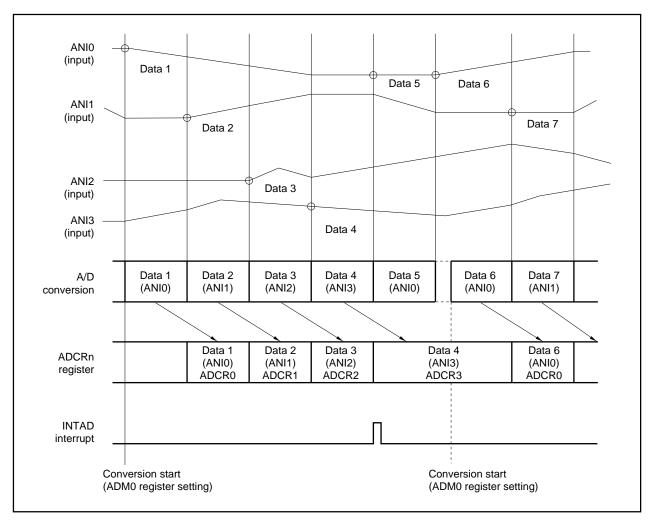
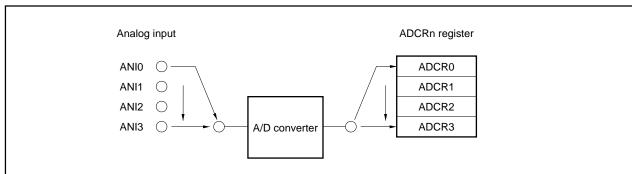



Figure 11-5. Scan Mode Operation Timing: 4-Channel Scan (ANI0 to ANI3)

11.5 Operation in A/D Trigger Mode

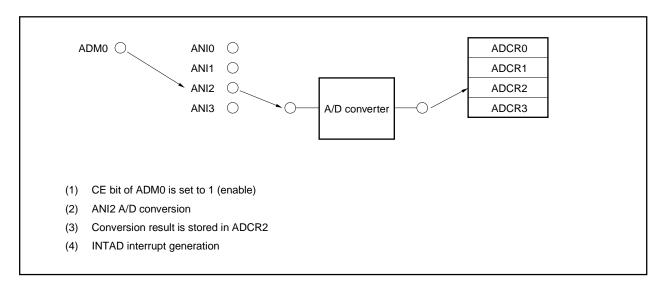
When the CE bit of the ADM0 register is set to 1, A/D conversion starts.

11.5.1 Select mode operations

The analog input specified by the ADM0 register is A/D converted. The conversion results are stored in the ADCRn register corresponding to the analog input. For the select mode, the 1-buffer mode and 4-buffer mode are supported according to the storing method of the A/D conversion results (n = 0 to 3).

(1) 1-buffer mode (A/D trigger select: 1-buffer)

One analog input is A/D converted once. The conversion results are stored in one ADCRn register. The analog input and ADCRn register correspond one to one.


Each time an A/D conversion is executed, an INTAD interrupt is generated and the AD conversion terminates.

Analog Input	A/D Conversion Results Register	
ANIn	ADCRn	(n = 0 to

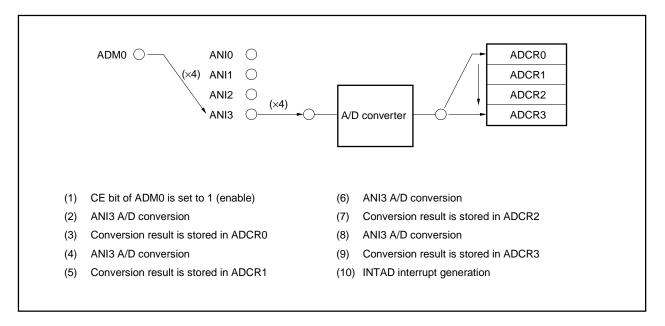
If 1 is written to the CE bit of the ADM0 register, A/D conversion can be restarted. This is most appropriate for applications in which the results of each first time A/D conversion are read.

3)

Figure 11-6. Example of 1-Buffer Mode (A/D Trigger Select 1-Buffer) Operation

(2) 4-buffer mode (A/D trigger select: 4-buffer)

One analog input is A/D converted four times and the results are stored in the four ADCR0 to ADCR3 registers. When four A/D conversions end, an INTAD interrupt is generated and A/D conversion terminates.


Analog Input	A/D Conversion Result Register	
ANIn	ADCR0	
ANIn	ADCR1	
ANIn	ADCR2	
ANIn	ADCR3	(

(n = 0 to 3)

If 1 is written in the CE bit of the ADM0 register, A/D conversion can be restarted.

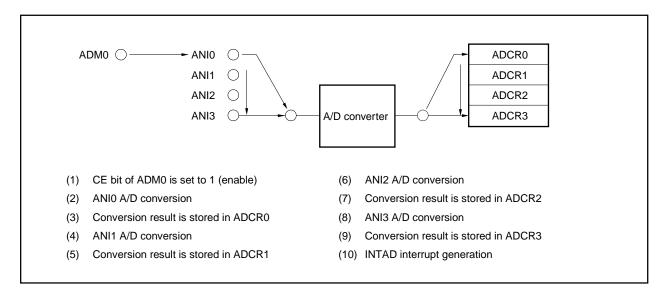
This is most appropriate for applications that determine the average A/D conversion results.

Figure 11-7. Example of 4-Buffer Mode (A/D Trigger Select 4-Buffer) Operation

11.5.2 Scan mode operations

The analog inputs specified by the ADM0 register are selected sequentially from the ANI0 pin, and A/D conversion is executed. The A/D conversion results are stored in the ADCRn register corresponding to the analog input (n = 0 to 3).

When the conversion of all the specified analog input ends, the INTAD interrupt is generated, and A/D conversion terminates.


Analog Input	A/D Conversion Result Register	
ANIn	ADCR0	
1	1	
ANIn ^{Note}	ADCRn	(n = 0 to 3)

Note Set in the ANIS0 to ANIS2 bits of the ADM0 register.

If 1 is written in the CE bit of the ADM0 register, A/D conversion can be restarted.

This is most appropriate for applications that are constantly monitoring multiple analog inputs.

Figure 11-8. Example of Scan Mode (A/D Trigger Scan) Operation

11.6 Operation in Timer Trigger Mode

The A/D converter is the match interrupt signal of the TM11 compare register, and can set conversion timings to a maximum of four channel analog inputs (ANI0 to ANI3).

TM11 and four capture/compare registers (CC110 to CC113) are used for the timer for specifying the analog conversion trigger.

The following two modes are provided according to the value set in the TUM11 register.

(1) 1-shot mode

To use the 1-shot mode, the OST bit of the TUM11 register should be set to 1 (1-shot mode).

When the A/D conversion period is longer than the TM11 period, the TM11 generates an overflow, holds 0000H, and stops. Thereafter, TM11 does not output the match interrupt signal (A/D conversion trigger) of the compare register, and the A/D converter also enters the A/D conversion standby state. The TM11 count operation restarts when the valid edge of the TCLR11 pin input is detected or when 1 is written to the CE11 bit of the TMC11 register.

(2) Loop mode

To use the loop mode, the OST bit of the TUM11 register should be set to 0 (normal mode).

When the TM11 generates an overflow, the TM11 starts counting from 0000H again, and the match interrupt signal (A/D conversion trigger) of the compare register is repeatedly output and A/D conversion is also repeated.

11.6.1 Select mode operations

One analog input (ANI0 to ANI3) specified by the ADM0 register is A/D converted. The conversion results are stored in the ADCRn register corresponding to the analog input. For the select mode, the 1-buffer mode and 4-buffer mode are provided according to the storing method of the A/D conversion results (n = 0 to 3).

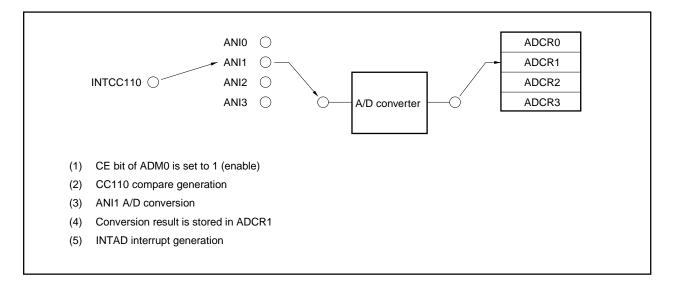
(1) 1-buffer mode operations (Timer trigger select: 1-buffer)

One analog input is A/D converted once and the conversion results are stored in one ADCRn register.

There are two modes in 1-buffer modes, the 1-trigger mode and 4-trigger mode, according to the number of triggers.

(a) 1-trigger mode (Timer trigger select: 1-buffer, 1-trigger)

One analog input is A/D converted once using the trigger of the match interrupt signal (INTCC110) and the results are stored in one ADCRn register.


An INTAD interrupt is generated for each A/D conversion and A/D conversion terminates.

Trigger	Analog Input	A/D Conversion Result Register	
INTCC110 interrupt	ANIn	ADCRn	(n = 0 to 3)

When the TM11 is set to the 1-shot mode, A/D conversion ends after one conversion. To restart A/D conversion, input the valid edge to the TCLR11 pin or write 1 to the CE11 bit of the TMC11 register.

When set to the loop mode, unless the CE bit of the ADM0 register is set to 0, A/D conversion is repeated each time the match interrupt is generated.

Figure 11-9. Example of 1-Trigger Mode (Timer Trigger Select 1-Buffer 1-Trigger) Operation

(b) 4-trigger mode (Timer trigger select: 1-buffer, 4-trigger)

One analog input is A/D converted four times using four match interrupt signals (INTCC110 to INTCC113) as triggers and the results are stored in one ADCRn register. The INTAD interrupt is generated with each A/D conversion, and the CS bit of the ADM0 register is reset (0). The results of one A/D conversion are held by the ADCRn register until the next A/D conversion ends. Perform transmission of the conversion results to the memory and other operations using the INTAD interrupt after each A/D conversion ends.

Trigger	Analog Input	A/D Conversion Result Register
INTCC110 interrupt	ANIn	ADCRn
INTCC111 interrupt	ANIn	ADCRn
INTCC112 interrupt	ANIn	ADCRn
INTCC113 interrupt	ANIn	ADCRn

(n = 0 to 3)

When the TM11 is set to the 1-shot mode, A/D conversion ends after four conversions. To restart A/D conversion, input the valid edge to the TCLR11 pin or write 1 to the CE11 bit of the TMC11 register to restart the TM11. When the first match interrupt after TM11 is restarted is generated, the CS bit is set (1) and A/D conversion is started.

When set to the loop mode, unless the CE bit of the ADM0 register is set to 0, A/D conversion is repeated each time the match interrupt is generated.

The match interrupts (INTCC110 to INTCC113) can be generated in any order. The same trigger, even when it enters several times consecutively, is accepted as a trigger each time.

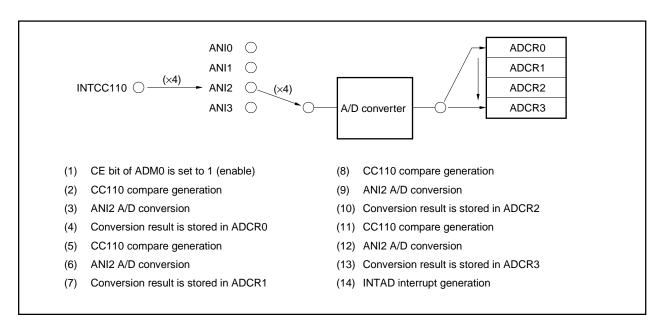
Figure 11-10. Example of 4-Trigger Mode (Timer Trigger Select 1-Buffer 4-Trigger) Operation

(2) 4-buffer mode operations (Timer trigger select: 4-buffer)

One analog input is A/D converted four times, and the results are stored in the ADCR0 to ADCR3 registers. There are two 4-buffer modes, 1-trigger mode and 4-trigger mode, according to the number of triggers. This mode is suitable for applications that calculate the average of the A/D conversion result.

(a) 1-trigger mode

One analog input is A/D converted four times using the match interrupt signal (INTCC110) as a trigger, and the results are stored in the ADCR0 to ADCR3 registers.


An INTAD interrupt is generated when the four A/D conversions end and A/D conversion terminates.

Trigger	Analog Input	A/D Conversion Result Register
INTCC110 interrupt	ANIn	ADCR0
INTCC110 interrupt	ANIn	ADCR1
INTCC110 interrupt	ANIn	ADCR2
INTCC110 interrupt	ANIn	ADCR3

(n = 0 to 3)

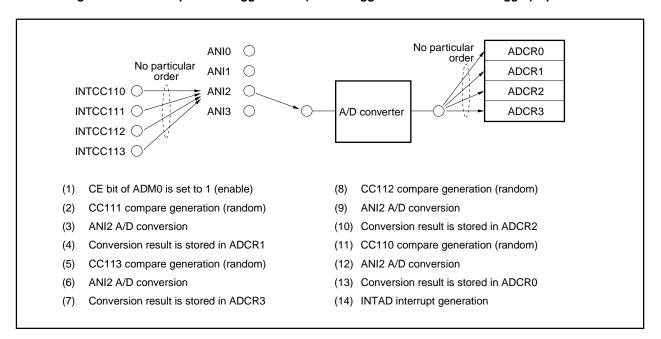
When the TM11 is set to the 1-shot mode, and less than four match interrupts are generated, if the CE bit is set to 0, the INTAD interrupt is not generated and the standby state is set.

Figure 11-11. Example of 1-Trigger Mode (Timer Trigger Select 4-Buffer 1-Trigger) Operation

(b) 4-trigger mode

One analog input is A/D converted four times using four match interrupt signals (INTCC110 to INTCC113) as triggers and the results are stored in four ADCRn registers. The INTAD interrupt is generated when the four A/D conversions end, the CS bit is reset (0), and A/D conversion terminates.

Trigger	Analog Input	A/D Conversion Result Register
INTCC110 interrupt	ANIn	ADCR0
INTCC111 interrupt	ANIn	ADCR1
INTCC112 interrupt	ANIn	ADCR2
INTCC113 interrupt	ANIn	ADCR3


(n = 0 to 3)

When the TM11 is set to the 1-shot mode, A/D conversion ends after four conversions. To restart A/D conversion, input the valid edge to the TCLR11 pin or write 1 to the CE11 bit of the TMC11 register to restart the TM11. When the first match interrupt after TM11 is restarted is generated, the CS bit is set (1) and A/D conversion is started.

When set to the loop mode, unless the CE bit is set to 0, A/D conversion is repeated each time the match interrupt is generated.

Whichever the order of occurrence of match interrupts (INTCC110 to INTCC113), there is no problem, and the conversion results are stored in the ADCRn register corresponding to the input trigger. Also, even in cases where the same trigger is input continuously, it is received as a trigger.

Figure 11-12. Example of 4-Trigger Mode (Timer Trigger Select 4-Buffer 4-Trigger) Operation

11.6.2 Scan mode operations

The analog inputs specified by the ADM0 register are selected sequentially from the ANI0 pin and A/D converted for the specified number of times using the match interrupt signal as a trigger.

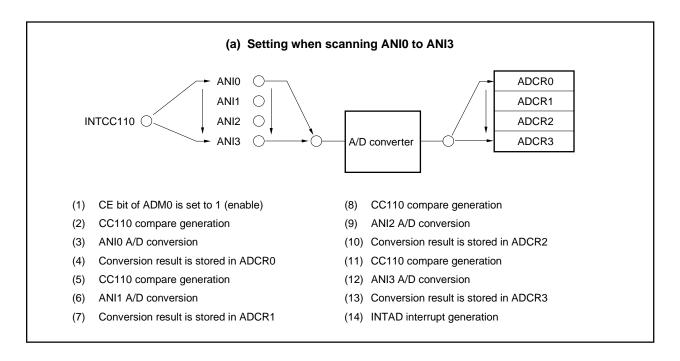
When the set number of A/D conversions ends, the INTAD interrupt is generated and A/D conversion ends.

There are two scan modes, 1-trigger mode and 4-trigger mode, according to the number of triggers.

This is most appropriate for applications that are constantly monitoring multiple analog inputs.

(1) 1-trigger mode (Timer trigger scan: 1-trigger)

The analog inputs are A/D converted for the specified number of times using the match interrupt signal (INTCC110) as a trigger.


The analog input and ADCRn register correspond one to one.

When all the A/D conversions specified have ended, the INTAD interrupt is generated and A/D conversion ends.

Trigger	Analog Input	A/D Conversion Result Register
INTCC110 interrupt	ANI0	ADCR0
INTCC110 interrupt	ANI1	ADCR1
INTCC110 interrupt	ANI2	ADCR2
INTCC110 interrupt	ANI3	ADCR3

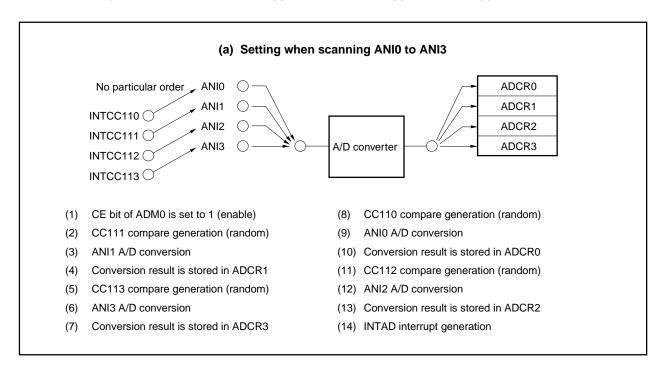
When the match interrupt is generated after all the specified A/D conversions end, A/D conversion is restarted. When the TM11 is set to the 1-shot mode, and less than a specified number of match interrupts are generated, if the CE bit is set to 0, the INTAD interrupt is not generated and the standby state is set.

Figure 11-13. Example of 1-Trigger Mode (Timer Trigger Scan 1-Trigger) Operation

(2) 4-trigger mode

The analog inputs are A/D converted for the number of times specified using the match interrupt signal (INTCC110 to INTCC113) as a trigger.

The analog input and ADCRn register correspond one to one.


When all the A/D conversions specified have ended, the INTAD interrupt is generated and A/D conversion ends.

Trigger	Analog Input	A/D Conversion Result Register
INTCC110 interrupt	ANI0	ADCR0
INTCC111 interrupt	ANI1	ADCR1
INTCC112 interrupt	ANI2	ADCR2
INTCC113 interrupt	ANI3	ADCR3

To restart conversion when TM11 is set to the 1-shot mode, restart TM11. If set to the loop mode and the CE bit is 1, A/D conversion is restarted when a match interrupt is generated after conversion ends.

The match interrupt can be generated in any order. However, because the trigger signal and the analog input correspond one to one, the scanning sequence is determined according to the order in which the match signals of the compare register are generated.

Figure 11-14. Example of 4-Trigger Mode (Timer Trigger Scan 4-Trigger) Operation

11.7 Operating Precautions

11.7.1 Stopping conversion operation

When 0 is written to the CE bit of the ADM0 register during a conversion operation, the conversion operation stops and the conversion results are not stored in the ADCRn register (n = 0 to 3).

11.7.2 Timer trigger interval

Set the interval (input time interval) of the trigger in the timer trigger mode longer than the conversion time specified by the FR2 to FR0 bits of the ADM1 register.

(1) When interval = 0

When several triggers are input simultaneously, the analog input with the smaller ANIn pin number is converted. The other trigger signals input simultaneously are ignored, and the number of trigger inputs is not counted. Therefore, the generation of interrupts and storage of results in the ADCRn register will become abnormal (n = 0 to 3).

(2) When 0 < interval ≤ conversion operation time

When the timer trigger is input during a conversion operation, the conversion operation stops and the conversion starts according to the last timer trigger input.

When a conversion operation stops, the conversion results are not stored in the ADCRn register. However, the number of trigger inputs is counted, and when the interrupt is generated, the value at which conversion ended is stored in the ADCRn register.

11.7.3 Operation of standby mode

(1) HALT mode

The A/D conversion operation continues. When released by the NMI input, the ADM0 and ADM1 registers and ADCRn register hold the value (n = 0 to 3).

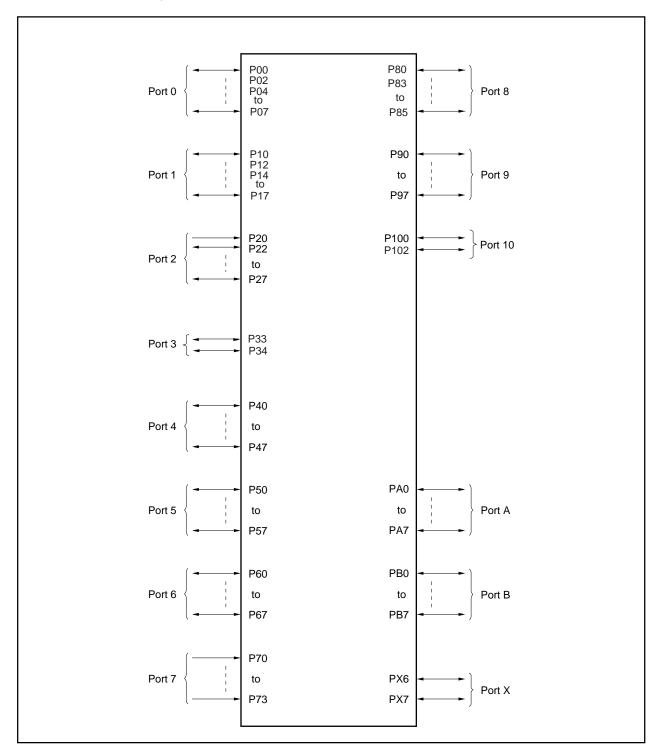
(2) IDLE mode, STOP mode

As clock supply to the A/D converter is stopped, no conversion operations are performed. When these modes are released using the NMI input, the ADM0 and ADM1 registers and the ADCRn register hold the value. However, when the IDLE and software STOP modes are set during a conversion operation, the conversion operation stops. At this time, if released using the NMI input, the conversion operation results written to the ADCRn register will become undefined.

In the IDLE and software STOP modes, operation of the comparator is also stopped to reduce the power consumption, and to further reduce current consumption, set the voltage of the AVREF to Vss.

11.7.4 Compare match interrupt when in timer trigger mode

The compare register's match interrupt becomes an A/D conversion start trigger and starts the conversion operation. When this happens, the compare register's match interrupt functions even if it is a compare register match interrupt directed to the CPU. In order to prevent match interrupts from the compare register being directed to the CPU, disable interrupts by the interrupt mask bits (P11MK0 to P11MK3) of the interrupt control register (P11IC0 to P11IC3).


CHAPTER 12 PORT FUNCTIONS

12.1 Features

- Number of ports Input-only ports 5
 I/O ports 76
- Function alternately as the I/O pins of other peripheral functions.
- It is possible to specify input and output in bit units.

12.2 Port Configuration

The V850E/MS2 incorporates a total of 123 I/O ports (including 9 input-only ports) named ports 0 through 12, and A, B and X. The port configuration is shown below.

(1) Function of each port

The port functions of the V850E/MS2 are shown below.

8/1-bit operations are possible on all ports, allowing various kinds of control to be performed. In addition to their port functions, these pins also function as internal peripheral I/O input/output pins in the control mode.

Port Name	Pin Name	Port Function	Function in Control Mode	Block Type ^{Note}
Port 0	P00, P04 to P07	6-bit I/O	Input/output of real-time pulse unit (RPU) External interrupt input DMA control (DMAC) input	A, B, M
Port 1	P10, P12, P14 to P17	6-bit I/O	Input/output of real-time pulse unit (RPU) External interrupt input DMA control (DMAC) output	A, B, K
Port 2	P20, P22 to P27	1-bit input, 6-bit I/O	NMI input Serial interface (UART0/CSI0, UART1/CSI1) input/output	C, D, I, Q
Port 3	P33, P34	2-bit I/O	Input of real-time pulse unit (RPU) External interrupt input	В
Port 4	P40 to P47	8-bit I/O	External data bus (D0 to D7)	E
Port 5	P50 to P57	8-bit I/O	External data bus (D8 to D15)	E
Port 6	P60 to P67	8-bit I/O	External address bus (A16 to A23)	F
Port 7	P70 to P73	4-bit input	A/D converter (ADC) analog input	G
Port 8	P80, P83 to P85	4-bit I/O	External bus interface control signal output	O, P
Port 9	P90 to P97	8-bit I/O	External bus interface control signal input/output	H, O
Port 10	P100, P102	2-bit I/O	Input/output of real-time pulse unit (RPU)	A, B
Port A	PA0 to PA7	8-bit I/O	External address bus (A0 to A7)	F
Port B	PB0 to PB7	8-bit I/O	External address bus (A8 to A15)	F
Port X	PX6, PX7	2-bit I/O	Wait insertion signal input Internal system clock output	A, D

Note Refer to 12.2 (3) Block diagram of port.

Caution When switching to the control mode, be sure to set ports that operate as output pins, or as input/output pins in the control mode, by the following procedure.

- <1> Set the inactive level for the signal output in the control mode in the relevant bits of port n (Pn) (n = 0 to 6, 8 to 10, A, B, X).
- <2> Switch to the control mode from the port n mode control register (PMCn).

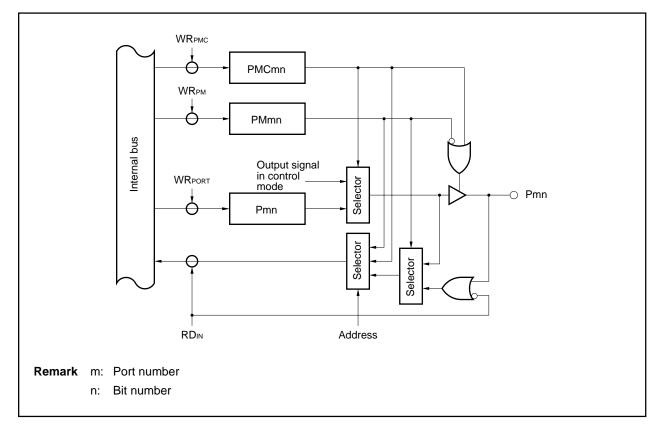
If <1> above is not performed, when switching from the port mode to the control mode, the contents of port n (Pn) will be output instantaneously.

(2) Function when each port's pins are reset and register which sets the port/control mode

(1/2)

Port	Pin Name	Pin Function After Reset		Register Which
Name		ROM-less Mode 0	ROM-less Mode 1	Sets the Mode
Port 0	P00/TO100	P00 (input mode)		PMC0
	P02/TCLR10	P02 (input mode)		
	P04/INTP100/DMARQ0	P04 (input mode)		PMC0, PCS0 ^{Note}
	P05/INTP101/DMARQ1	P05 (input mode)		
	P06/INTP102/DMARQ2	P06 (input mode)		
	P07/INTP103/DMARQ3	P07 (input mode)		
Port 1	P10/TO110	P10 (input mode)		PMC1
	P12/TCLR11	P12 (input mode)		
	P14/INTP110/DMAAK0	P14 (input mode)	PMC1, PCS1 ^{Note}	
	P15/INTP111/DMAAK1	P15 (input mode)		
	P16/INTP112/DMAAK2	P16 (input mode)		
	P17/INTP113/DMAAK3	P17 (input mode)		
Port 2	P20/NMI	NMI		_
	P22/TXD0/SO0	P22 (input mode)		PMC2, ASIM00
	P23/RXD0/SI0	P23 (input mode)		
	P24/SCK0	P24 (input mode)		PMC2 ^{Note}
	P25/TXD1/SO1	P25 (input mode)		PMC2, ASIM10
	P26/RXD1/SI1	P26 (input mode)	ode)	
	P27/SCK1	P27 (input mode)		PMC2 ^{Note}
Port 3	P33/TI13	P33 (input mode)		PMC3
	P34/INTP130	P34 (input mode)		
Port 4	P40/D0 to P47/D7	D0 to D7		ММ
Port 5	P50/D8 to P57/D15	D8 to D15	P50 to P57 (input mode)	ММ
Port 6	P60/A16 to P67/A23	A16 to A23		ММ
Port 7	P70/ANI0 to P73/ANI3	P70/ANI0 to P73/ANI3		_
Port 8	P80/CS0	CS0		PMC8
	P83/CS3/RAS3	CS3/RAS3		
	P84/CS4/RAS4/IOWR	CS4/RAS4		PMC8, PCS8 ^{Note}
	P85/CS5/RAS5/IORD	CS5/RAS5		

Note Selects the pin function when in the control mode.


(2/2)

Port Name	Pin Name	Pin Function After Reset		Register Which
		ROM-less Mode 0	ROM-less Mode 1	Sets the Mode
Port 9	P90/LCAS/LWR	LCAS/LWR	PMC9	
	P91/UCAS/UWR	UCAS/UWR		
	P92/RD	RD		
	P93/WE	WE		
	P94/BCYST	BCYST	PMC9	
	P95/OE	OE OE	PMC9	
	P96/HLDAK	HLDAK		
	P97/HLDRQ	HLDRQ		
Port 10	P100/TO120	P100 (input mode)		PMC10
	P102/TCLR12	P102 (input mode)		
Port A	PA0/A0 to PA7/A7	A0 to A7		MM
Port B	PB0/A8 to PB7/A15	A8 to A15		MM
Port X	PX6/WAIT	WAIT	PMCX	
	PX7/CLKOUT	CLKOUT		

Note Selects the pin function when in the control mode.

(3) Block diagram of port

Figure 12-1. Type A Block Diagram

 $\mathsf{WR}_{\mathsf{PMC}}$ PMCmn WRPM PMmn Internal bus WR_{PORT} O Pmn Pmn Selector Selector Address **RD**IN Input signal in control mode Noise elimination edge detection Remark m: Port number n: Bit number

Figure 12-2. Type B Block Diagram

WRPMC SCKx output enable signal **PMCmn** WR_{PM} PMmn Internal bus Output signal in control mode — WRPORT Selector O Pmn Pmn Selector Selector Address RDIN Input signal in control mode Remark mn: 24, 27 0 (when mn = 24), 1 (when mn = 27) x:

Figure 12-3. Type C Block Diagram

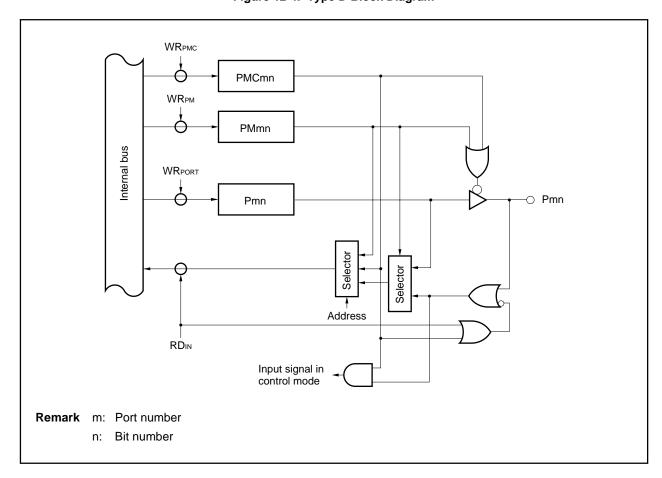


Figure 12-4. Type D Block Diagram

MODE0, MODE2 MM0 to MM3 I/O controller WRPM PMmn Internal bus Output signal in control mode WRPORT Selector → Pmn Pmn Selector Selector Address **RDIN** Input signal in control mode Remark m: Port number n: Bit number

Figure 12-5. Type E Block Diagram

MODE0, MODE2 MM0 to MM3 I/O controller WR_{PM} PMmn Internal bus Output signal in control mode WRPORT Selector O Pmn Pmn Selector Selector Address RDIN Remark m: Port number n: Bit number

Figure 12-6. Type F Block Diagram

MODEO, MODE2 MM0 to MM3

I/O controller

WRPM

WRPM

Pmn

Pmn

Address

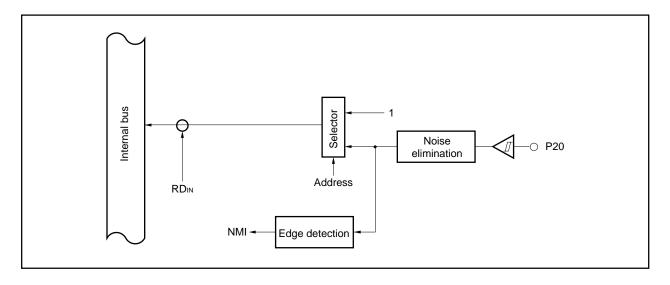

P97

Figure 12-8. Type H Block Diagram

Figure 12-9. Type I Block Diagram

Input signal in control mode

RDIN

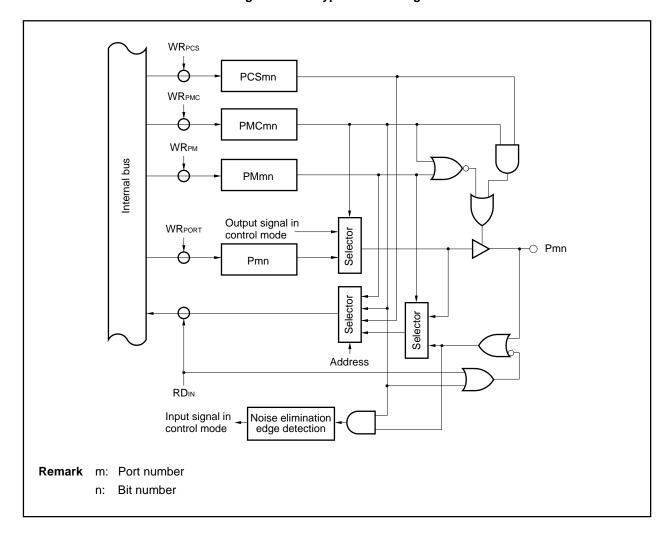


Figure 12-10. Type K Block Diagram

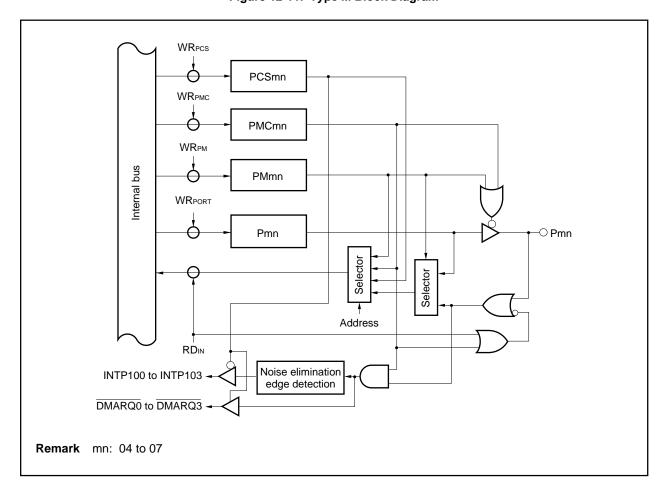


Figure 12-11. Type M Block Diagram

MODE0, MODE2 MM0 to MM3 WRPMC PMCmn I/O controller WR_{PM} PMmn Internal bus Output signal in control mode WRPORT Selector O Pmn Pmn Selector Selector Address **RDIN** Remark m: Port number n: Bit number

Figure 12-12. Type O Block Diagram

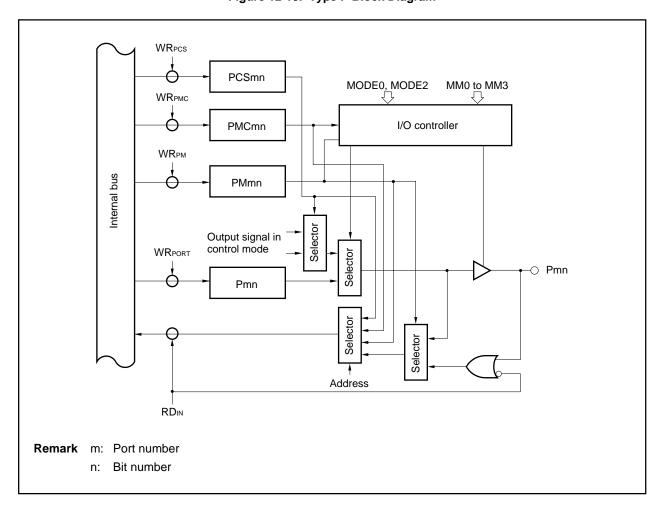


Figure 12-13. Type P Block Diagram

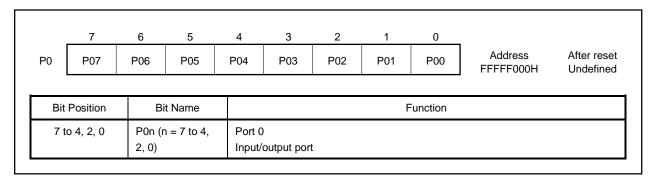

 WR_{PMC} Serial output enable signal PMCmn WR_{PM} PMmn Internal bus Output signal in control mode — WRPORT Selector -⊚ Pmn Pmn Selector Selector Address **RD**IN Remark m: Port number n: Bit number

Figure 12-14. Type Q Block Diagram

12.3 Port Pin Functions

12.3.1 Port 0

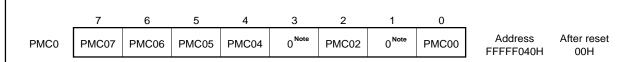
Port 0 is a 6-bit input/output port that can be set to input or output in 1-bit units.

In addition to their function as port pins, the port 0 pins can also operate as real-time pulse unit (RPU) inputs/outputs, external interrupt request inputs, and DMA request inputs in the control mode.

(1) Operation in control mode

	Port	Control Mode	Remark	Block Type
Port 0	P00	TO100	Real-time pulse unit (RPU) output	А
	P02	TCLR10	Real-time pulse unit (RPU) input	В
	P04 to P07	INTP100/DMARQ0 to INTP103/DMARQ3	External interrupt request input/DMA request input	М

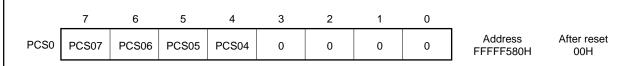
(2) Input/output mode/control mode setting


Port 0 input/output mode setting is performed by means of the port 0 mode register (PM0), and control mode setting is performed by means of the port 0 mode control register (PMC0) and port/control select register 0 (PCS0).

(a) Port 0 mode register (PM0)

(b) Port 0 mode control register (PMC0)

This register can be read/written in 8- or 1-bit units.

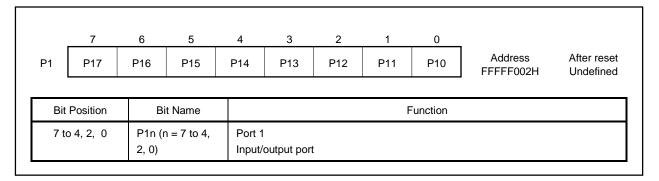


Bit Position	Bit Name	Function
7 to 4	PMC0n (n = 7 to 4)	Port Mode Control Specifies the operation mode of pin P0n. Sets in combination with the PCS0 register. 0: Input/output port mode 1: External interrupt request (INTP103 to INTP100) input mode/DMA request (DMARQ3 to DMARQ0) input mode
2	PMC02	Port Mode Control Sets operation mode of P02 pin. 0: Input/output port mode 1: TCLR10 input mode
0	PMC00	Port Mode Control Sets operation mode of P00 pin. 0: Input/output port mode 1: TO100 output mode

Note Be sure to set these bits to 0.

(c) Port/control select register 0 (PCS0)

This register can be read/written in 8- or 1-bit units. However, bits 3 to 0 are fixed at 0, so even if 1 is written, it is disregarded.



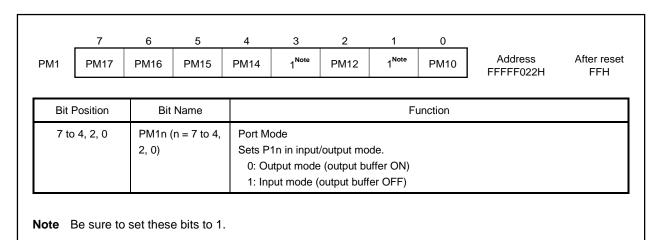
Bit Position	Bit Name	Function
7	PCS07	Port Control Select Specifies the operating mode when pin P07 is in the control mode. 0: INTP103 input mode 1: DMARQ3 input mode
6	PCS06	Port Control Select Specifies the operating mode when pin P06 is in the control mode. 0: INTP102 input mode 1: DMARQ2 Input mode
5	PCS05	Port Control Select Specifies the operating mode when pin P05 is in the control mode. 0: INTP101 input mode 1: DMARQ1 input mode
4	PCS04	Port Control Select Specifies the operating mode when pin P04 is in the control mode. 0: INTP100 input mode 1: DMARQ0 input mode

Caution When the port mode is specified by the PMC0 register, the settings of this register are ignored.

12.3.2 Port 1

Port 1 is a 6-bit input/output port that can be set to input or output in 1-bit units.

In addition to their function as port pins, the port 1 pins can also operate as real-time pulse unit (RPU) inputs/outputs, external interrupt request inputs, and DMA acknowledge outputs in the control mode.


(1) Operation in control mode

	Port	Control Mode	Remark	Block Type
Port 1	P10	TO110	Real-time pulse unit (RPU) output	A
	P12	TCLR11	Real-time pulse unit (RPU) input	В
	P14 to P17	INTP110/DMAAK0 to INTP113/DMAAK3	External interrupt input/DMA acknowledge output	К

(2) Input/output mode/control mode setting

Port 1 input/output mode setting is performed by means of the port 1 mode register (PM1), and control mode setting is performed by means of the port 1 mode control register (PMC1) and port/control select register 1 (PCS1).

(a) Port 1 mode register (PM1)

(b) Port 1 mode control register (PMC1)

This register can be read/written in 8- or 1-bit units.

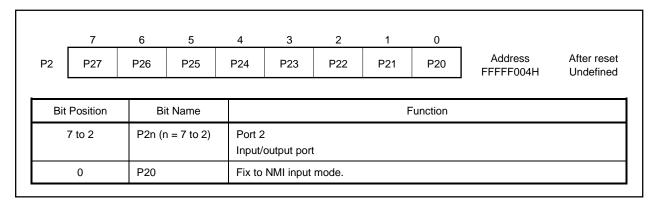
	7	6	5	4	3	2	1	0		
PMC1	PMC17	PMC16	PMC15	PMC14	O ^{Note}	PMC12	0 ^{Note}	PMC10	Address FFFFF042H	After reset 00H

Bit Position	Bit Name	Function
7 to 4	PMC1n (n = 7 to 4)	Port Mode Control Sets operation mode of P1n pin. Set in combination with PCS1. 0: Input/output port mode 1: External interrupt request (INTP113 to INTP110) input mode/ DMA acknowledge (DMAAK3 to DMAAK0) output mode
2	PMC12	Port Mode Control Sets operation mode of P12 pin. 0: Input/output port mode 1: TCLR11 input mode
0	PMC10	Port Mode Control Sets operation mode of P10 pin. 0: Input/output port mode 1: TO110 output mode

Note Be sure to set these bits to 0.

(c) Port/control select register 1 (PCS1)

This register can be read/written in 8- or 1-bit units. However, bits 3 to 0 are fixed at 0, so even if 1 is written, it is disregarded.

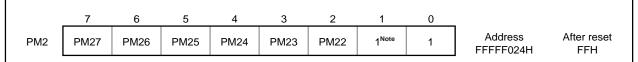

	7	6	5	4	3	2	1	0		
PCS1	PCS17	PCS16	PCS15	PCS14	0	0	0	0	Address FFFFF582H	After reset 00H

Bit Position	Bit Name	Function
7	PCS17	Port Control Select Specifies the operating mode when pin P17 is in the control mode. 0: INTP113 input mode 1: DMAAK3 output mode
6	PCS16	Port Control Select Specifies the operating mode when pin P16 is in the control mode. 0: INTP112 input mode 1: DMAAK2 output mode
5	PCS15	Port Control Select Specifies the operating mode when pin P15 is in the control mode. 0: INTP111 input mode 1: DMAAK1 output mode
4	PCS14	Port Control Select Specifies the operating mode when pin P14 is in the control mode. 0: INTP110 input mode 1: DMAAKO output mode

Caution When the port mode is specified by the PMC1 register, the settings of this register are ignored.

12.3.3 Port 2

Port 2 is a 7-bit input/output port that can be set to input or output in 1-bit units. However, P20 always operates as an NMI input if the edge is input.


In addition to their function as port pins, the port 2 pins can also operate as serial interface (UART0/CSI0, UART1/CSI1) inputs/outputs in the control mode.

	Port	Control Mode	Remark	Block Type
Port 2	P20	NMI	Non-maskable interrupt request input	Ι
	P22	TXD0/SO0	Input/output for serial interface	Q
	P23	RXD0/SI0	(UART0/CSI0, UART1/CSI1)	D
	P24	SCK0		С
	P25	TXD1/SO1		Q
	P26	RXD1/SI1		D
	P27	SCK1		С

Port 2 input/output mode setting is performed by means of the port 2 mode register (PM2), and control mode setting is performed by means of the port 2 mode control register (PMC2). Pin P20 is fixed to NMI input mode.

(a) Port 2 mode register (PM2)

This register can be read/written in 8- or 1-bit units. However, bit 0 is fixed at 1 by hardware, so writing 0 to this bit is ignored.

Bit Position	Bit Name	Function
7 to 2	PM2n (n = 7 to 2)	Port Mode Sets P2n in input/output mode. 0: Output mode (output buffer ON) 1: Input mode (output buffer OFF)

Note Be sure to set these bits to 1.

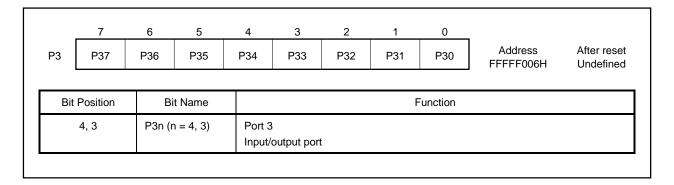
Caution When the serial interface is used, use the following bits in the state when they are set to 1 (initial value).

When UART0 is used: PM22 When UART1 is used: PM25

When CSI0 is used: PM24 to PM22 When CSI1 is used: PM27 to PM25

(b) Port 2 mode control register (PMC2)

This register can be read/written in 8- or 1-bit units. However, bit 0 is fixed to 1 by hardware, so writing 0 to this bit is ignored. Bit 1 is fixed to 0, so writing 1 to this bit is ignored.

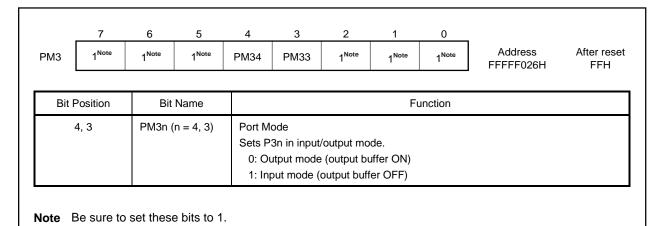

	7	6	5	4	3	2	1	0		
PMC2	PMC27	PMC26	PMC25	PMC24	PMC23	PMC22	0	1	Address FFFFF044H	After reset 01H

Bit Position	Bit Name	Function
7	PMC27	Port Mode Control Sets operation mode of P27 pin. 0: Input/output port mode 1: SCK1 input/output mode
6	PMC26	Port Mode Control Sets operation mode of P26 pin. 0: Input/output port mode 1: RXD1/SI1 input mode
5	PMC25	Port Mode Control Sets operation mode of P25 pin. 0: Input/output port mode 1: TXD1/SO1 output mode
4	PMC24	Port Mode Control Sets operation mode of P24 pin. 0: Input/output port mode 1: SCK0 input/output mode
3	PMC23	Port Mode Control Sets operation mode of P23 pin. 0: Input/output port mode 1: RXD0/SI0 input mode
2	PMC22	Port Mode Control Sets operation mode of P22 pin. 0: Input/output port mode 1: TXD0/SO0 output mode

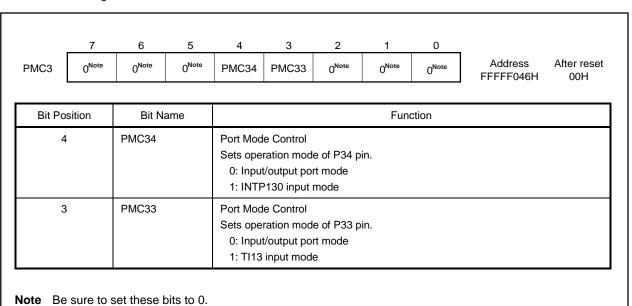
Remark UART0 and CSI0, and UART1 and CSI1 share the same pins respectively. Either one of these is selected according to the ASIM00 and ASIM10 registers (refer to **10.2.3 Control registers**).

12.3.4 Port 3

Port 3 is a 2-bit input/output port that can be set to input or output in 1-bit units.

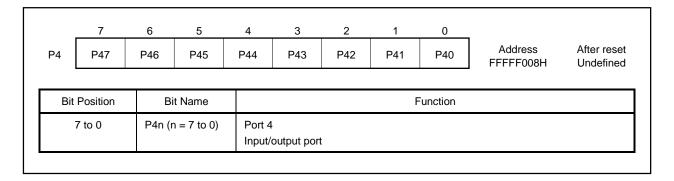

In addition to their function as port pins, the port 3 pins can also operate as the input/output signals of the real-time pulse unit (RPU), the input signals of external interrupt, and the input/output lines of the serial interface (CSI2) when in the control mode.

	Port	Control Mode	Remark	Block Type
Port 3	P33	TI13	Real-time pulse unit (RPU) input	В
	P34	INTP130	External interrupt input	


Port 3 input/output mode setting is performed by means of the port 3 mode register (PM3), and control mode setting is performed by means of the port 3 mode control register (PMC3) and port/control select register 3 (PCS3).

(a) Port 3 mode register (PM3)

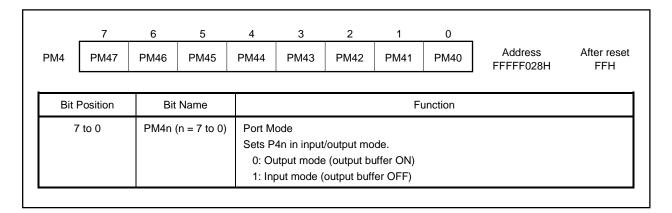
This register can be read/written in 8- or 1-bit units.



(b) Port 3 mode control register (PMC3)

12.3.5 Port 4

Port 4 is an 8-bit input/output port that can be set to input or output in 1-bit units.


In addition to their function as port pins, the port 4 pins can also operate in the control mode (external expansion mode) as a data bus used when memory is expanded externally.

	Port	Control Mode	Remark	Block Type
Port 4	P40 to P47	D0 to D7	Data bus in memory expansion	Е

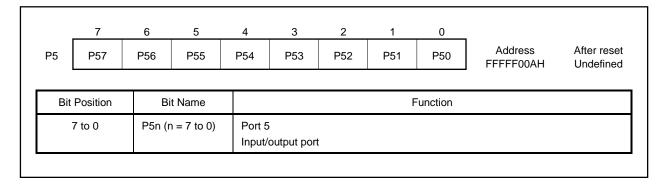
Port 4 input/output mode setting is performed by means of the port 4 mode register (PM4), and control mode (external expansion mode) setting is performed by means of the mode specification pins (MODE0, MODE2) and the memory expansion mode register (MM: refer to **3.4.6 (1)**).

(a) Port 4 mode register (PM4)

This register can be read/written in 8- or 1-bit units.

(b) Operation mode of port 4

	Bit of MM	1 Register		Operation Mode							
ММЗ	MM2	MM1	MMO	P40	P41	P42	P43	P44	P45	P46	P47
don't	0	0	0	Port (P40 to P47)							
care	0	0	1								
	0	1	0								
	0	1	1								
	1	0	0			ı	Data bus (E	00 to D7)			
	1	0	1								
	1	1	0								
	1	1	1								

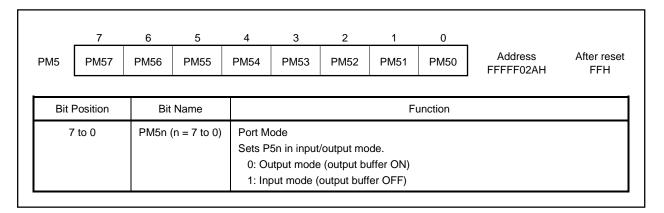

For the details of mode selection by the MODE0 and MODE2 pins, refer to **3.3.2 Operating mode specification**.

The MM0 to MM3 bits are initialized to 111× at system reset, enabling the external expansion mode. External expansion can be disabled by programming the MM0 to MM3 bits and setting the port mode. If MM0 to MM3 are set to 000×, the subsequent external instruction cannot be fetched.

Remark x: don't care

12.3.6 Port 5

Port 5 is an 8-bit input/output port that can be set to input or output in 1-bit units.


In addition to their function as port pins, the port 5 pins can also operate in the control mode (external expansion mode) as a data bus used when memory is expanded externally.

	Port	Control Mode	Remark	Block Type	
Port 5	P50 to P57	D8 to D15	Data bus in memory expansion	Е	

Port 5 input/output mode setting is performed by means of the port 5 mode register (PM5), and control mode (external expansion mode) setting is performed by means of the mode specification pins (MODE0, MODE2) and the memory expansion mode register (MM: refer to **3.4.6 (1)**).

(a) Port 5 mode register (PM5)

This register can be read/written in 8- or 1-bit units.

(b) Operation mode of port 5

	Bit of MM Register				Operation Mode						
ММЗ	MM2	MM1	MMO	P50 P51 P52 P53 P54 P55 P56 P57						P57	
0	0	0	0				Port (P50	to P57)			
0	0	0	1								
0	0	1	0								
0	0	1	1								
0	1	0	0				Data bus (D	8 to D15)			
0	1	0	1								
0	1	1	0								
0	1	1	1								
1	don't care)		Port (50 to P57)							


For the details of mode selection by the MODE0 and MODE2 pins, refer to **3.3.2 Operating mode specification**.

The MM0 to MM3 bits are initialized to 1110 at system reset, enabling the external expansion mode. External expansion can be disabled by programming the MM0 to MM3 bits and setting the port mode. If MM0 to MM3 are set to $\times\times$ 1 or 0000, the subsequent external instruction cannot be fetched.

Remark ×: don't care

12.3.7 Port 6

Port 6 is an 8-bit input/output port that can be set to input or output in 1-bit units.

In addition to their function as port pins, the port 6 pins can also operate in the control mode (external expansion mode) as an address bus used when memory is expanded externally.

	Port	Control Mode	Remark	Block Type
Port 6	P60 to P67	A16 to A23	Address bus in memory expansion	F

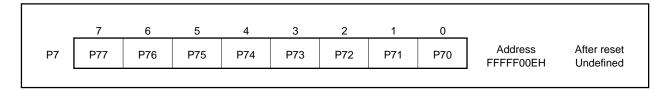
Port 6 input/output mode setting is performed by means of the port 6 mode register (PM6), and control mode (external expansion mode) setting is performed by means of the mode specification pins (MODE0, MODE2) and the memory expansion mode register (MM: refer to **3.4.6 (1)**).

(a) Port 6 mode register (PM6)

This register can be read/written in 8- or 1-bit units.

(b) Operation mode of port 6

	Bit of MM Register				Operation Mode							
ММЗ	MM2	MM1	MMO	P60	P61	P62	P63	P64	P65	P66	P67	
don't	0	0	0									
care	0	0	1		Post (P00 to P07)							
	0	1	0	Port (P60 to P67)								
	0	1	1									
	1	0	0	A16	A17	P62	P63	P64	P65	P66	P67	
	1	0	1			A18	A19					
	1	1	0					A20	A21			
	1	1	1							A22	A23	

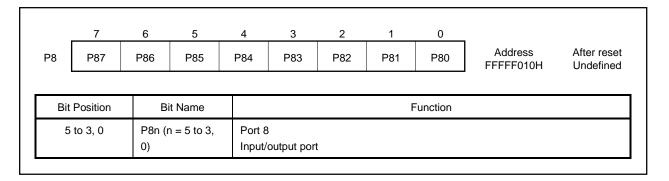

For the details of mode selection by the MODE0 and MODE2 pins, refer to **3.3.2 Operating mode specification**.

The MM0 to MM3 bits are initialized to $111\times$ at system reset, enabling the external expansion mode. External expansion can be disabled by programming the MM0 to MM3 bits and setting the port mode.

Remark ×: don't care

12.3.8 Port 7

Port 7 is a 4-bit input only port and all pins of port 7 are fixed in the input mode.

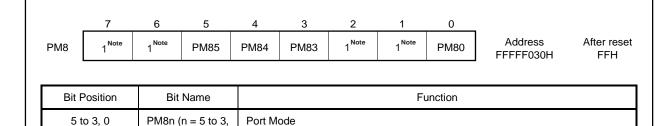

In addition to their function as port pins, the port 7 pins can also operate as analog inputs for A/D converter.

This port is used also as the analog input pins (ANI0 to ANI3), but the port and analog input pins cannot be switched. By reading the port, the state of each pin can be read.

	Port	Control Mode	Remark	Block Type
Port 7	P70 to P73	ANI0 to ANI3	Analog input for A/D converter	G

12.3.9 Port 8

Port 8 is a 5-bit input/output port that can be set to input or output in 1-bit units.

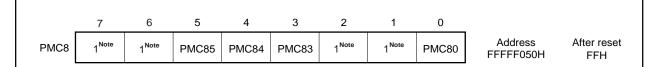

In addition to their function as port pins, in the control mode, the port 8 pins operate as chip select signal outputs, row address strobe signal outputs for DRAM, and read/write strobe signal outputs for external I/O.

	Port	Control Mode	Remark	Block Type	
Port 8	P80	CS0	Chip select signal output Row address signal output	0	
	P83	CS3/RAS3	Chip select signal output Row address signal output		
	P84	CS4/RAS4/IOWR	Chip select signal output Row address signal output Write strobe signal output	Р	
	P85	CS5/RAS5/IORD	Chip select signal output Row address signal output Read strobe signal output		

Port 8 input/output mode setting is performed by means of the port 8 mode register (PM8), and control mode (external expansion mode) setting is performed by means of the mode specification pins (MODE0, MODE2) and the port 8 mode control register (PMC8).

(a) Port 8 mode register (PM8)

This register can be read/written in 8- or 1-bit units.



Sets P8n pin in input/output mode.
0: Output mode (output buffer ON)
1: Input mode (output buffer OFF)

Note Be sure to set these bits to 1.

(b) Port 8 mode control register (PMC8)

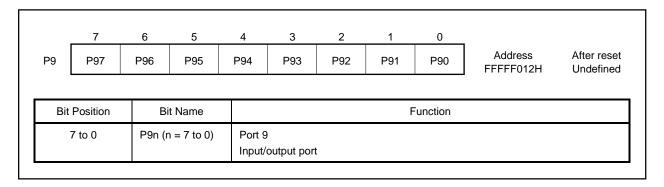
This register can be read/written in 8- or 1-bit units.

Bit Position	Bit Name	Function
5	PMC85	Port Mode Control Sets operation mode of P85 pin. Set in combination with PCS8. 0: Input/output port mode 1: CS5/RAS5 output mode/IORD output mode
4	PMC84	Port Mode Control Sets operation mode of P84 pin. Set in combination with PCS8. 0: Input/output port mode 1: CS4/RAS4 output mode/IOWR output mode
3	PMC83	Port Mode Control Sets operation mode of P83 pin. 0: Input/output port mode 1: CS3/RAS3 output mode
0	PMC80	Port Mode Control Sets operation mode of P80 pin. 0: Input/output port mode 1: CSO output mode

Note Be sure to set these bits to 1.

(c) Port/control select register 8 (PCS8)

This register can be read/written in 8- or 1-bit units. However, all the bits except for bits 5 and 4 are fixed at 0, so even if 1 is written, it is disregarded.


	7	6	5	4	3	2	1	0		
PCS8	0	0	PCS85	PCS84	0	0	0	0	Address FFFFF590H	After reset 00H

Bit Position	Bit Name	Function
5	PCS85	Port Control Select Specifies the operating mode when pin P85 is in the control mode. 0: CS5/RAS5 output mode 1: IORD output mode
4	PCS84	Port Control Select Specifies the operating mode when pin P84 is in the control mode. 0: CS4/RAS4 output mode 1: IOWR output mode

Caution When the port mode is specified by the PMC8 register, the settings of this register are ignored.

12.3.10 Port 9

Port 9 is an 8-bit input/output port that can be set to input or output in 1-bit units.

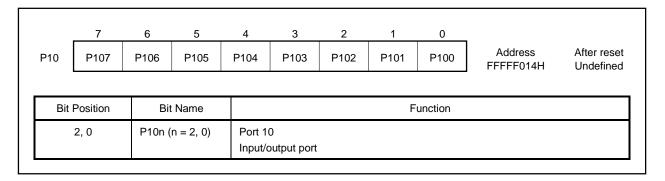
In addition to their function as port pins, the port 9 pins can also operate in the control mode (external expansion mode) as control signal outputs and bus hold control signal output used when memory is expanded externally.

	Port	Control Mode	Remark	Block Type
Port 9	P90	LWR/LCAS	Control signal output in memory	0
	P91	ŪWR/ŪCAS	expansion	
	P92	RD		
	P93	WE		
	P94 BCYST			
	P95	ŌĒ		
	P96 HLDAK		Bus hold acknowledge signal output	
	P97	HLDRQ	Bus hold request signal input	Н

Port 9 input/output mode setting is performed by means of the port 9 mode register (PM9), and control mode (external expansion mode) setting is performed by means of the mode specification pins (MODE0, MODE2) and the port 9 mode control register (PMC9).

(a) Port 9 mode register (PM9)

	7	6	5	4	3	2	1	0		
PM9	PM97	PM96	PM95	PM94	PM93	PM92	PM91	PM90	Address FFFFF032H	After reset FFH
Bit Position Bit Name Function										
7	' to 0	PM9n ((n = 7 to 0)	Sets P 0: Ou	9n pin in ir utput mode	nput/output (output bu	uffer ON)			


(b) Port 9 mode control register (PMC9)

	7	6	5	4	3	2	1	0		
PMC9	PMC97	PMC96	PMC95	PMC94	PMC93	PCM92	PMC91	PMC90	Address FFFFF052H	After reset FFH

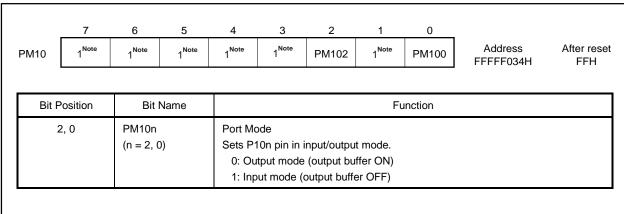
Bit Position	Bit Name	Function
7	PMC97	Port Mode Control Sets operation mode of P97 pin. 0: Input/output port mode 1: HLDRQ input mode
6	PMC96	Port Mode Control Sets operation mode of P96 pin. 0: Input/output port mode 1: HLDAK output mode
5	PMC95	Port Mode Control Sets operation mode of P95 pin. 0: Input/output port mode 1: OE output mode
4	PMC94	Port Mode Control Sets operation mode of P94 pin. 0: Input/output port mode 1: BCYST output mode
3	PMC93	Port Mode Control Sets operation mode of P93 pin. 0: Input/output port mode 1: WE output mode
2	PMC92	Port Mode Control Sets operation mode of P92 pin. 0: Input/output port mode 1: RD output mode
1	PMC91	Port Mode Control Sets operation mode of P91 pin. 0: Input/output port mode 1: UWR/UCAS output mode
0	PMC90	Port Mode Control Sets operation mode of P90 pin. 0: Input/output port mode 1: LWR/LCAS output mode

12.3.11 Port 10

Port 10 is an 8-bit input/output port that can be set to input or output in 1-bit units.

In addition to their function as port pins, the port 10 pins can also operate as real-time pulse unit (RPU) inputs/outputs and external interrupt inputs in the control mode.

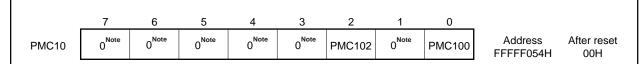
(1) Operation in control mode


	Port Control Mode		Remark	Block Type		
Port 10	P100	TO120	Real-time pulse unit (RPU) output	A		
	P102	TCLR12	Real-time pulse unit (RPU) input	В		

(2) Input/output mode/control mode setting

Port 10 input/output mode setting is performed by means of the port 10 mode register (PM10), and control mode setting is performed by means of the port 10 mode control register (PMC10) and port/control select register 10 (PCS10).

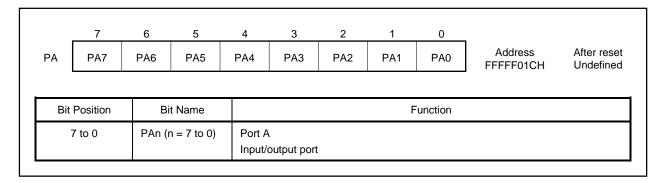
(a) Port 10 mode register (PM10)


This register can be read/written in 8- or 1-bit units.

Note Be sure to set these bits to 1.

(b) Port 10 mode control register (PMC10)

This register can be read/written in 8- or 1-bit units.



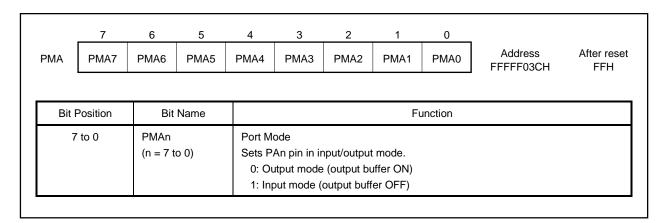
Bit Position	Bit Name	Function
2	PMC102	Port Mode Control Sets operation mode of P102 pin. 0: Input/output port mode 1: TCLR12 input mode
0	PMC100	Port Mode Control Sets operation mode of P100 pin. 0: Input/output port mode 1: TO120 output mode

Note Be sure to set these bits to 0.

12.3.12 Port A

Port A is an 8-bit input/output port that can be set to input or output in 1-bit units.

In addition to their function as port pins, the port A pins can also operate in the control mode (external expansion mode) as an address bus used when memory is expanded externally.


(1) Operation in control mode

	Port Control		Remark	Block Type
Port A	PA0 to PA7	A0 to A7	Address bus in memory expansion	F

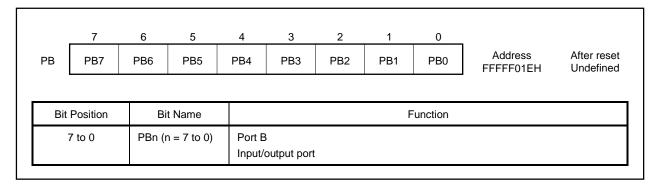
(2) Input/output mode/control mode setting

Port A input/output mode setting is performed by means of the port A mode register (PMA), and control mode (external expansion mode) setting is performed by means of the mode specification pins (MODE0, MODE2) and the memory expansion mode register (MM: refer to **3.4.6 (1)**).

(a) Port A mode register (PMA)

(b) Operation mode of port A

	Bit of MM Register				Operation Mode									
ММЗ	MM2	MM1	MMO	PA0 PA1 PA2 PA3 PA4 PA5 PA6 PA7										
don't	0	0	0	Port (PA0 to PA7)										
care	0	0	1											
	0	1	0											
	0	1	1											
	1	0	0		Address bus (A0 to A7)									
	1	0	1											
	1	1	0											
	1	1	1											


For the details of mode selection by the MODE0 and MODE2 pins, refer to **3.3.2 Operating mode specification**.

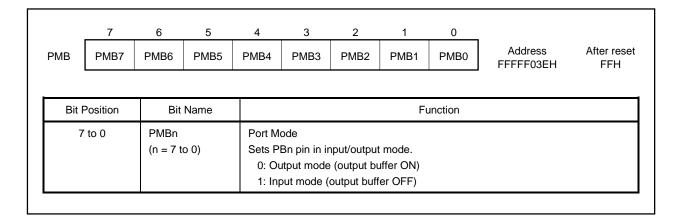
The MM0 to MM3 bits are initialized to $111\times$ at system reset, enabling the external address output mode. If MM0 to MM3 are set to $000\times$ by the program, the port mode can be changed to, but the subsequent external instruction cannot be fetched from data bus.

Remark x: don't care

12.3.13 Port B

Port B is an 8-bit input/output port that can be set to input or output in 1-bit units.

In addition to their function as port pins, the port B pins can also operate in the control mode (external expansion mode) as an address bus used when memory is expanded externally.


(1) Operation in control mode

	Port	Control Mode	Remark	Block Type	
Port B	PB0 to PB7	A8 to A15	Address bus in memory expansion	F	

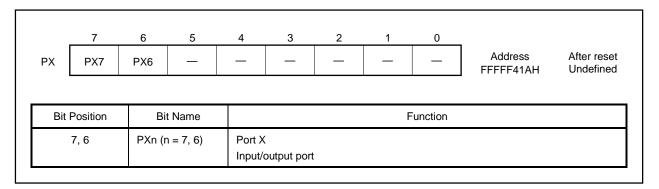
(2) Input/output mode/control mode setting

Port B input/output mode setting is performed by means of the port B mode register (PMB), and control mode (external expansion mode) setting is performed by means of the mode specification pins (MODE0, MODE2) and the memory expansion mode register (MM: refer to **3.4.6 (1)**).

(a) Port B mode register (PMB)

(b) Operation mode of port B

Bit of MM Register			Operation Mode								
ММЗ	MM2	MM1	MMO	PB0	PB1	PB2	PB3	PB4	PB5	PB6	PB7
don't	0	0	0				Port (PB0	to PB7)			
care	0	0	1	A8	A9	A10	A11	PB4	PB5	PB6	PB7
	0	1	0					A12	A13		
	0	1	1							A14	A15
	1	0	0								
	1	0	1								
	1	1	0								
	1	1	1								


For the details of mode selection by the MODE0 and MODE2 pins, refer to **3.3.2 Operating mode specification**.

The MM0 to MM3 bits are initialized to 111× at system reset, enabling the external address output mode. If MM0 to MM3 are set to 000× by the program, the port mode can be changed to, but the subsequent external instruction cannot be fetched from data bus. Also, if MM0 to MM3 are set to 100x or 010x, the subsequent external address output from port B is disabled.

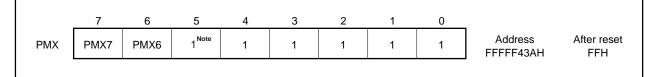
Remark ×: don't care

12.3.14 Port X

Port X is a 2-bit input/output port that can be set to input or output in 1-bit units.

In addition to their function as port pins, the port X pins can also operate as wait control input and internal system clock output in the control mode. Lower 6 bits of port X are always undefined in the case of 8-bit access.

(1) Operation in control mode


	Port	Control Mode	Remark	Block Type	
Port X	PX6	WAIT	Wait control input	D	
	PX7	CLKOUT	Internal system clock output	А	

(2) Input/output mode/control mode setting

Port X input/output mode setting is performed by means of the port X mode register (PMX), and control mode setting is performed by means of the port X mode control register (PMCX).

(a) Port X mode register (PMX)

This register is write-only, in 8-bit units. However, the lower 6 bits are fixed at 1 by hardware, so even if 0 is written, it is disregarded.

Bit Position	Bit Name	Function
7, 6	PMXn (n = 7, 6)	Port Mode Sets PXn pin in input/output mode. 0: Output mode (output buffer ON) 1: Input mode (output buffer OFF)

Note Be sure to set this bit to 1.

Caution Do not change the port mode using a bit manipulation instruction (CLR1, NOT1, SET1, TST1).

(b) Port X mode control register (PMCX)

This register is write-only, in 8-bit units. However, the lower 5 bits are fixed at 0 by hardware, so even if 1 is written, it is disregarded.

	7	6	5	4	3	2	1	0		
PMCX	PMCX7	PMCX6	1 ^{Note}	0	0	0	0	0	Address FFFFF45AH	After reset E0H

Bit Position	Bit Name	Function
7	PMCX7	Port Mode Control Sets operation mode of PX7 pin. 0: Input/output port mode 1: CLKOUT output mode
6	PMCX6	Port Mode Control Sets operation mode of PX6 pin. 0: Input/output port mode 1: WAIT input mode

Note Be sure to set this bit to 1.

Caution Do not change the operation mode using a bit manipulation instruction (CLR1, NOT1, SET1, TST1).

CHAPTER 13 RESET FUNCTIONS

When a low-level signal is input to the RESET pin, a system reset is effected and the hardware is initialized.

When the RESET signal level changes from low to high, the reset state is released and program execution is started. Register contents must be initialized as required in the program.

13.1 Features

The reset pin ($\overline{\text{RESET}}$) incorporates a noise eliminator which uses analog delay (\cong 60 ns) to prevent malfunction due to noise.

13.2 Pin Functions

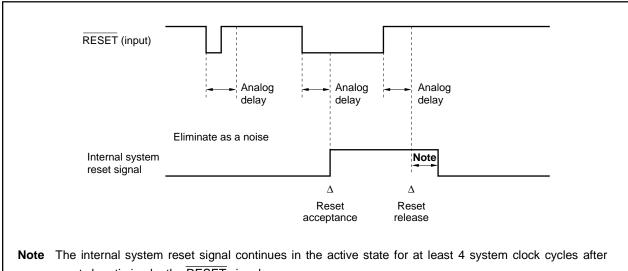
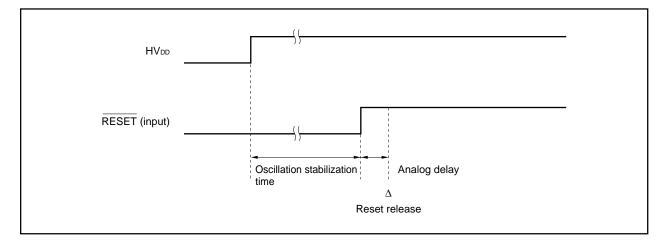

During a system reset, most pins (all but the CLKOUT, RESET, X2, HVDD, VDD, VSS, CVDD, CVSS, AVDD, AVSS, and AVREF pins) enter the high impedance state. Therefore, when memory is connected externally, a pull-up or pull-down resistor must be connected to the specified pins of ports 4, 5, 6, 8, 9, A, B, and X. If no resister is connected there, memory contents may be lost when these pins enter high impedance state. For the same reason, the output pins of the internal peripheral I/O functions and output ports should be handled in the same manner.

Table 13-1 shows the operating state of each output pin and each input/output pin during reset.

Table 13-1. Operating State of Each Pin During Reset

	Pin Name	Pin State		
		When in ROM-less Mode 0	When in ROM-less Mode 1	
RAS3 to RAS5,	A23, CS0, CS3 to CS5, LCAS, LWR, UCAS, BCYST, OE, HLDAK	High-impedance		
D8 to D15		High-impedance	(Port mode)	
WAIT, HLDRQ		(Input)		
CLKOUT		Operating		
Port pin	Ports 0 to 3, 10	(Input)		
	Ports 4, 6, 8, 9, A, B, X	(Control mode)		
	Port 5	(Control mode)	(Input)	


(1) Receiving the reset signal

reset clear timing by the RESET signal.

(2) Reset during power on

In the reset operation during power on (when the power is turned on), in accordance with the low-level width of the RESET signal, it is necessary to secure an oscillation stabilization time of 10 ms or greater from power rise to the reception of the reset.

13.3 Initialization

The initial values of the CPU, internal RAM and internal peripheral I/O after reset are shown in Table 13-2. Initialize the contents of each register as necessary during program operation. Particularly, the registers shown below are related to system settings, so set them as necessary.

- O Power save control register (PSC): Sets the functions of pins X1 and X2, the operation of the CLKOUT pin, etc.
- O Data wait control register (DWC): Sets the number of data wait states.

Table 13-2. Initial Values of CPU, Internal RAM, and Internal Peripheral I/O After Reset (1/2)

li	nternal Hardware	Register Name	Initial Value After Reset
CPU	Program registers	General-purpose register (r0)	00000000H
		General-purpose registers (r1 to r31)	Undefined
		Program counter (PC)	00000000H
	System registers	Status saving register during interrupt (EIPC, EIPSW)	Undefined
		Status saving register during NMI (FEPC, FEPSW)	Undefined
		Interrupt control register (ECR)	00000000H
		Program status word (PSW)	00000020H
		Status saving register during CALLT execution (CTPC, CTPSW)	Undefined
		Status saving register during exception trap (DBPC, DBPSW)	Undefined
		CALLT base pointer (CTBP)	Undefined
Internal	RAM	_	Undefined
Internal	peripheral I/O	Command register (PRCMD)	Undefined
	Bus control	Data wait control register (DWC1)	FFFFH
	functions	Data wait control register (DWC2)	FFH
		Bus cycle control register (BCC)	5555H
		Bus cycle type configuration register (BCT)	0000H
		Bus size configuration register (BSC)	5555H/0000H
	Memory control	DRAM configuration registers (DRC0 to DRC3)	3FC1H
	functions	DRAM type configuration register (DTC)	0000H
		Page ROM configuration register (PRC)	E0H
		Refresh control registers (RFC0 to RFC3)	0000H
		Refresh wait control register (RWC)	00H
	DMA functions	Control registers (DADC0 to DADC3)	0000H
		Source address registers (DSA0H to DSA3H, DSA0L to DSA3L)	Undefined
		Channel control registers (DCHC0 to DCHC3)	00H
		Destination address registers (DDA0H to DDA3H, DDA0L to DDA3L)	Undefined
		Trigger factor registers (DTFR0 to DTFR3)	00H
		Byte count registers (DBC0 to DBC3)	Undefined
		Fly-by transfer data wait control register (FDW)	00H
		DMA disable status register (DDIS)	00H
		DMA restart register (DRST)	00H
	Interrupt/exception	In-service priority register (ISPR)	00H
	control functions	External interrupt mode registers (INTM0 to INTM2, INTM4)	00H
		Interrupt control registers (OVIC10 to OVIC13, CMIC40, CMIC41, P10IC0 to P10IC3, P11IC0 to P11IC3, P12IC0 to P12IC3, P13IC0 to P13IC3, DMAIC0 to DMAIC3, CSIC0, CSIC1, SEIC0, STIC0, SRIC0, SRIC1, SEIC1, STIC1, ADIC)	47H

Table 13-2. Initial Values of CPU, Internal RAM, and Internal Peripheral I/O After Reset (2/2)

Int	ternal Hardware	Register Name	Initial Value After Reset
Internal	Clock generator	System status register (SYS)	0000000×B
peri-	functions	Clock control register (CKC)	00H
pheral I/O		Power save control register (PSC)	00H
	Timer/counter functions	Capture/compare registers (CC100 to CC103, CC110 to CC113, CC120 to CC123, CC130 to CC133)	Undefined
		Compare registers (CM40, CM41)	Undefined
		Timer overflow status register (TOVS)	00H
		Timer control register (TMC10 to TMC13, TMC40, TMC41)	00H
		Timer unit mode register (TUM10 to TUM13)	0000H
		Timers (TM10 to TM13, TM40, TM41)	0000H
		Timer output control registers (TOC10 to TOC13)	00H
	Serial interface functions	Asynchronous serial interface status registers (ASIS0, ASIS1)	00H
		Asynchronous serial interface mode registers (ASIM00, ASIM10)	80H
		Asynchronous serial interface mode registers (ASIM01, ASIM11)	00H
		Receive buffers (RXB0, RXB1, RXB0L, RXB1L)	Undefined
		Transmit shift registers (TXS0, TXS1, TXS0L, TXS1L)	Undefined
		Clocked serial interface mode registers (CSIM0, CSIM1)	00H
		Serial I/O shift registers (SIO0, SIO1)	Undefined
		Baud rate generator compare registers (BRGC0, BRGC1)	Undefined
		Baud rate generator prescaler mode registers (BPRM0, BPRM1)	00H
	A/D converters	Mode register (ADM0)	00H
		Mode register (ADM1)	07H
		A/D conversion result registers (ADCR0 to ADCR3, ADCR0H to ADCR3H)	Undefined
	Port functions	Ports (P0 to P10, PA, PB, PX)	Undefined
		Port/control select registers (PCS0, PCS1, PCS8)	00H
		Mode registers (PM0 to PM10, PMA, PMB, PMX)	FFH
		Mode control registers (PMC0, PMC1, PMC3, PMC10)	00H
		Mode control register (PMC2)	01H
		Mode control registers (PMC8, PCM9)	FFH
		Mode control register (PMCX)	E0H
		Memory expansion mode register (MM)	07H/0FH

Caution "Undefined" in the above table is undefined during power-on reset, or undefined as a result of data destruction when RESET↓ is input and the data writing timing has been synchronized. For other RESET↓s, data is held in the same state it was in before the RESET↓ operation.

APPENDIX A CAUTIONS

A.1 Restriction on Repeated Execution of sld Instruction

The data that should be loaded may not be transferred correctly to the register when sld instructions accessing external memory are repeatedly executed, and interrupt processing is executed.

A.1.1 Details of malfunction

This malfunction occurs when the following conditions are met:

The instruction sequence (1) to (4) is executed, and at (4) the sld instruction is executed repeatedly. The malfunction occurs when an interrupt occurs during the execution of the second sld instruction.

When the malfunction occurs, the data loaded by the sld instruction immediately before the interrupt is incorrectly written to the register.

- (1) Id instruction or sld instruction
- (2) One or more of any instruction other than the ld or mul instruction
- (3) One or more instructions that write to a register (refer to **Table A-1**)
- (4) sld instructions (repeated execution of sld instructions where data is loaded from external memory.) sld instruction ← Interrupt occurs. sld instruction .

This malfunction does not occur unless the sequence (1) to (4) is executed. Cases where this malfunction does not occur are shown below:

- The sld instructions in (4) load from internal memory
- The instructions in (4) are load instructions other than sld
- The repeated sld instructions are separated by a branch instruction (such as a jr instruction or a reti instruction)
- An ep (element pointer) setting occurs immediately before the repeated sld instructions
- A nop instruction is executed immediately before the repeated sld instructions
- Interrupts are disabled before executing the sequence (1) to (4).

This error occurs when the following pipeline status occurs.

Example of instruction Status of pipeline (i) ΙF ID EX WB resource waiting WB <1> Id. w mem, 6 mem WB r7,r25 IF <2> mov WB 0x01,r7 IF ID ΕX <3> mov (ii) <4> sld.w 0x30[ep],r14 ID WB resource waiting WB mem (iii) (vi) Bug occurs IF ID <5> sld.w 0x40[ep],r15 mem PC saved <6> Interrupt servicing

Figure A-1. Malfunction When Executing sld Instructions

- (i) To improve performance with the V850E/MS2, the pipelining of other instructions goes ahead regardless of the dst (destination register) waiting for resources in instruction <1>, and consequently the WB of instructions <2> and <3> are executed before the WB of instruction <1>.
- (ii) The EX stage of instruction <4> is omitted and mem access is executed because address calculation resources are available in the ID stage.
- (iii) Execution of mem access cannot be stopped even if an interrupt is received in the ID stage of instruction <5>, so a dummy access is performed.
- (iv) The PC is saved, and so on, due to the interrupt processing. Since this uses WB resources, the WB of instruction <1> is delayed even more.
- (v) The WB of instruction <4> is made to wait one clock cycle because otherwise it would conflict with the WB of instruction <1>.
- (vi) The data written in the WB stage of instruction <4> is the result of the dummy cycle of the mem stage of instruction <5>, because reading cannot be masked due to the dummy cycle in instruction <5>, and an incorrect write to r14 is performed, causing the malfunction.

Table A-1. Instructions That Write to a Register Immediately Before the sld Instructions

Mnemonic	Operand	Mnemonic	Operand
mov	R, r	movea	imm16, R, r
not	R, r	movhi	imm16, R, r
divh	R, r	satsubi	imm16, R, r
satsubr	R, r	mov	Imm32, R
satsub	R, r	ori	imm16, R, r
satadd	R, r	xori	imm16, R, r
zxb	R	andi	imm16, R, r
sxb	R	setf	cccc, r
zxh	R	ldsr	R, sr
sxh	R	stsr	SR, r
or	R, r	shr	R, r
xor	R, r	sar	R, r
and	R, r	shl	R, r
subr	R, r	sasf	cccc, r
sub	R, r	divh	R, r, w
add	R, r	divhu	R, r, w
mov	imm5, r	div	R, r, w
satadd	imm5, r	divu	R, r, w
add	imm5, r	cmov	imm5, r, m
shr	imm5, r	cmov	R, r, w
sar	imm5, r	bsw	r, w
shl	imm5, r	bsh	r, w
addi	imm16, R, r	hsw	r, w

A.1.2 Countermeasures

(1) Assembler

This malfunction can be avoided by using any of the following countermeasures.

- Change the first sld instruction to an ld instruction when repeated sld instructions are used. This malfunction will not occur if all the sld instructions are changed to ld instructions.
- Set ep immediately before the first sld instruction when repeated sld instructions are used.
- Insert a nop instruction immediately before the first sld instruction when repeated sld instructions are used.

(2) NEC Compiler

The NEC compiler does not output the instruction sequence that causes this malfunction. Therefore, it is not necessary to take any countermeasures.

(3) GHS^{Note} Compiler

This malfunction can be avoided using the following two countermeasures so that the compiler does not output repeated sld instructions.

• Specify the following option at compilation:

-Z1412

• Avoid using a TDA (Tiny Data Area) function pragma.

Note Green Hills Software[™], Inc.

APPENDIX B REGISTER INDEX

(1/6)

Register Symbol	Register Name	Unit	Page
ADCR0	A/D conversion result register 0	ADC	293
ADCR0H	A/D conversion result register 0H	ADC	293
ADCR1	A/D conversion result register 1	ADC	293
ADCR1H	A/D conversion result register 1H	ADC	293
ADCR2	A/D conversion result register 2	ADC	293
ADCR2H	A/D conversion result register 2H	ADC	293
ADCR3	A/D conversion result register 3	ADC	293
ADCR3H	A/D conversion result register 3H	ADC	293
ADIC	Interrupt control register	INTC	189
ADM0	A/D converter mode register 0	ADC	290
ADM1	A/D converter mode register 1	ADC	292
ASIM00	Asynchronous serial interface mode register 00	UART0	259
ASIM01	Asynchronous serial interface mode register 01	UART0	259
ASIM10	Asynchronous serial interface mode register 10	UART1	259
ASIM11	Asynchronous serial interface mode register 11	UART1	259
ASIS0	Asynchronous serial interface status register 0	UART0	263
ASIS1	Asynchronous serial interface status register 1	UART1	263
BCC	Bus cycle control register	BCU	91
ВСТ	Bus cycle type configuration register	BCU	79
BPRM0	Baud rate generator prescaler mode register 0	BRG0	286
BPRM1	Baud rate generator prescaler mode register 1	BRG1	286
BRGC0	Baud rate generator compare register 0	BRG0	285
BRGC1	Baud rate generator compare register 1	BRG1	285
BSC	Bus size configuration register	BCU	82
CC100	Capture/compare register 100	RPU	224
CC101	Capture/compare register 101	RPU	224
CC102	Capture/compare register 102	RPU	224
CC103	Capture/compare register 103	RPU	224
CC110	Capture/compare register 110	RPU	224
CC111	Capture/compare register 111	RPU	224
CC112	Capture/compare register 112	RPU	224
CC113	Capture/compare register 113	RPU	224
CC120	Capture/compare register 120	RPU	224
CC121	Capture/compare register 121	RPU	224
CC122	Capture/compare register 122	RPU	224
CC123	Capture/compare register 123	RPU	224

(2/6)

Register Symbol	Register Name	Unit	Page
CC130	Capture/compare register 130	RPU	224
CC131	Capture/compare register 131	RPU	224
CC132	Capture/compare register 132	RPU	224
CC133	Capture/compare register 133	RPU	224
CKC	Clock control register	CG	205
CM40	Compare register 40	RPU	225
CM41	Compare register 41	RPU	225
CMIC40	Interrupt control register	INTC	189
CMIC41	Interrupt control register	INTC	189
CSIC0	Interrupt control register	INTC	189
CSIC1	Interrupt control register	INTC	189
CSIM0	Clocked serial interface mode register 0	CSI0	273
CSIM1	Clocked serial interface mode register 1	CSI1	273
СТВР	CALLT base pointer	CPU	52
CTPC	Status saving register during CALLT execution	CPU	52
CTPSW	Status saving register during CALLT execution	CPU	52
DADC0	DMA addressing control register 0	DMAC	142
DADC1	DMA addressing control register 1	DMAC	142
DADC2	DMA addressing control register 2	DMAC	142
DADC3	DMA addressing control register 3	DMAC	142
DBC0	DMA byte count register 0	DMAC	141
DBC1	DMA byte count register 1	DMAC	141
DBC2	DMA byte count register 2	DMAC	141
DBC3	DMA byte count register 3	DMAC	141
DBPC	Status saving register during exception trap	CPU	52
DBPSW	Status saving register during exception trap	CPU	52
DCHC0	DMA channel control register 0	DMAC	144
DCHC1	DMA channel control register 1	DMAC	144
DCHC2	DMA channel control register 2	DMAC	144
DCHC3	DMA channel control register 3	DMAC	144
DDA0H	DMA destination address register 0H	DMAC	139
DDA0L	DMA destination address register 0L	DMAC	140
DDA1H	DMA destination address register 1H	DMAC	139
DDA1L	DMA destination address register 1L	DMAC	140
DDA2H	DMA destination address register 2H	DMAC	139
DDA2L	DMA destination address register 2L	DMAC	140
DDA3H	DMA destination address register 3H	DMAC	139
DDA3L	DMA destination address register 3L	DMAC	140
DDIS	DMA disable status register	BCU	147

(3/6)

Register Symbol	Register Name	Unit	Page
DMAIC0	Interrupt control register	INTC	189
DMAIC1	Interrupt control register	INTC	189
DMAIC2	Interrupt control register	INTC	189
DMAIC3	Interrupt control register	INTC	189
DRC0	DRAM configuration register 0	BCU	113
DRC1	DRAM configuration register 1	BCU	113
DRC2	DRAM configuration register 2	BCU	113
DRC3	DRAM configuration register 3	BCU	113
DRST	DMA restart register	BCU	147
DSA0H	DMA source address register 0H	DMAC	137
DSA0L	DMA source address register 0L	DMAC	138
DSA1H	DMA source address register 1H	DMAC	137
DSA1L	DMA source address register 1L	DMAC	138
DSA2H	DMA source address register 2H	DMAC	137
DSA2L	DMA source address register 2L	DMAC	138
DSA3H	DMA source address register 3H	DMAC	137
DSA3L	DMA source address register 3L	DMAC	138
DTC	DRAM type configuration register	BCU	116
DTFR0	DMA trigger factor register 0	DMAC	145
DTFR1	DMA trigger factor register 1	DMAC	145
DTFR2	DMA trigger factor register 2	DMAC	145
DTFR3	DMA trigger factor register 3	DMAC	145
DWC1	Data wait control register 1	BCU	87
DWC2	Data wait control register 2	BCU	87
ECR	Interrupt source register	CPU	52
EIPC	Status saving register during interrupt	CPU	52
EIPSW	Status saving register during interrupt	CPU	52
FDW	Flyby transfer data wait control register	BCU	148
FEPC	Status saving register during NMI	CPU	52
FEPSW	Status saving register during NMI	CPU	52
INTM0	External interrupt mode register 0	INTC	181
INTM1	External interrupt mode register 1	INTC	193
INTM2	External interrupt mode register 2	INTC	193
INTM4	External interrupt mode register 4	INTC	193
ISPR	In-service priority register	INTC	191
MM	Memory expansion mode register	Port	63
OVIC10	Interrupt control register	INTC	189
OVIC11	Interrupt control register	INTC	189
OVIC12	Interrupt control register	INTC	189

(4/6)

Register Symbol	Register Name	Unit	Page
OVIC13	Interrupt control register	INTC	189
P0	Port 0	Port	328
P1	Port 1	Port	331
P2	Port 2	Port	334
P3	Port 3	Port	337
P4	Port 4	Port	339
P5	Port 5	Port	341
P6	Port 6	Port	343
P7	Port 7	Port	345
P8	Port 8	Port	346
P9	Port 9	Port	350
P10	Port 10	Port	353
P10IC0	Interrupt control register	INTC	189
P10IC1	Interrupt control register	INTC	189
P10IC2	Interrupt control register	INTC	189
P10IC3	Interrupt control register	INTC	189
P11IC0	Interrupt control register	INTC	189
P11IC1	Interrupt control register	INTC	189
P11IC2	Interrupt control register	INTC	189
P11IC3	Interrupt control register	INTC	189
P12IC0	Interrupt control register	INTC	189
P12IC1	Interrupt control register	INTC	189
P12IC2	Interrupt control register	INTC	189
P12IC3	Interrupt control register	INTC	189
P13IC0	Interrupt control register	INTC	189
P13IC1	Interrupt control register	INTC	189
P13IC2	Interrupt control register	INTC	189
P13IC3	Interrupt control register	INTC	189
PA	Port A	Port	355
РВ	Port B	Port	357
PC	Program counter	CPU	51
PCS0	Port/control select register 0	Port	330
PCS1	Port/control select register 1	Port	333
PCS8	Port/control select register 8	Port	349
PM0	Port 0 mode register	Port	328
PM1	Port 1 mode register	Port	331
PM2	Port 2 mode register	Port	335
PM3	Port 3 mode register	Port	338
PM4	Port 4 mode register	Port	340

(5/6)

Register Symbol	Register Name	Unit	Page
PM5	Port 5 mode register	Port	342
PM6	Port 6 mode register	Port	344
PM8	Port 8 mode register	Port	347
PM9	Port 9 mode register	Port	351
PM10	Port 10 mode register	Port	353
PMA	Port A mode register	Port	355
PMB	Port B mode register	Port	357
PMC0	Port 0 mode control register	Port	329
PMC1	Port 1 mode control register	Port	332
PMC2	Port 2 mode control register	Port	336
PMC3	Port 3 mode control register	Port	338
PMC8	Port 8 mode control register	Port	348
PMC9	Port 9 mode control register	Port	352
PMC10	Port 10 mode control register	Port	354
PMCX	Port X mode control register	Port	360
PMX	Port X mode register	Port	359
PRC	Page ROM configuration register	BCU	108
PRCMD	Command register	CPU	74
PSC	Power save control register	CPU	209
PSW	Program status word	CPU	53
PX	Port X	Port	359
r0 to r31	General-purpose register	CPU	51
RFC0	Refresh control register 0	BCU	127
RFC1	Refresh control register 1	BCU	127
RFC2	Refresh control register 2	BCU	127
RFC3	Refresh control register 3	BCU	127
RWC	Refresh wait control register	BCU	130
RXB0	Receive buffer 0 (9 bits)	UART0	264
RXB0L	Receive buffer 0L (Lower order 8 bits)	UART0	264
RXB1	Receive buffer 1 (9 bits)	UART1	264
RXB1L	Receive buffer 1L (Lower order 8 bits)	UART1	264
SEIC0	Interrupt control register	INTC	189
SEIC1	Interrupt control register	INTC	189
SIO0	Serial I/O shift register 0	CSI0	275
SIO1	Serial I/O shift register 1	CSI1	275
SRIC0	Interrupt control register	INTC	189
SRIC1	Interrupt control register	INTC	189
STIC0	Interrupt control register	INTC	189
STIC1	Interrupt control register	INTC	189

(6/6)

Register Symbol	Register Name	Unit	Page
SYS	System status register	CPU	75
TM10	Timer 10	RPU	223
TM11	Timer 11	RPU	223
TM12	Timer 12	RPU	223
TM13	Timer 13	RPU	223
TM40	Timer 40	RPU	225
TM41	Timer 41	RPU	225
TMC10	Timer control register 10	RPU	228
TMC11	Timer control register 11	RPU	228
TMC12	Timer control register 12	RPU	228
TMC13	Timer control register 13	RPU	228
TMC40	Timer control register 40	RPU	230
TMC41	Timer control register 41	RPU	230
TOC10	Timer output control register 10	RPU	231
TOC11	Timer output control register 11	RPU	231
TOC12	Timer output control register 12	RPU	231
TOVS	Timer overflow status register	RPU	232
TUM10	Timer unit mode register 10	RPU	226
TUM11	Timer unit mode register 11	RPU	226
TUM12	Timer unit mode register 12	RPU	226
TUM13	Timer unit mode register 13	RPU	226
TXS0	Transmit shift register 0 (9 bits)	UART0	265
TXS0L	Transmit shift register 0L (Lower order 8 bits)	UART0	265
TXS1	Transmit shift register 1 (9 bits)	UART1	265
TXS1L	Transmit shift register 1L (Lower order 8 bits)	UART1	265

APPENDIX C INSTRUCTION SET LIST

C.1 General Examples

(1) Register symbols used to describe operands

Register Symbol	Explanation
reg1	General-purpose registers (r0 to r31): Used as source registers.
reg2	General-purpose registers (r0 to r31): Used mainly as destination registers.
reg3	General-purpose registers (r0 to r31): Used mainly to store the remainders of division results and the higher 3 bits of multiplication results.
immX	X bit immediate
dispX	X bit displacement
regID	System register number
bit#3	3-bit data for specifying the bit number
ер	Element pointer (r30)
cccc	4-bit data which show the conditions code
vector	5-bit data which specify the trap vector (00H to 1FH)
listX	X item register list

(2) Register symbols used to describe op codes

Register Symbol	Explanation
R	1-bit data of a code which specifies reg1 or regID
r	1-bit data of the code which specifies reg2
w	1-bit data of the code which specifies reg3
d	1-bit displacement data
i	1-bit immediate data
cccc	4-bit data which show the conditions code
bbb	3-bit data for specifying the bit number
L	1-bit data which specifies a register list

(3) Register symbols used in operation (1/2)

Register Symbol	Explanation
←	Input for
GR[]	General-purpose register
SR[]	System register
zero-extend (n)	Expand n with zeros until word length.
sign-extend (n)	Expand n with signs until word length.
load-memory (a, b)	Read data from address a until size b.
store-memory (a, b, c)	Write data b in address a to size c.
load-memory-bit (a, b)	Read bit b of address a.

(3) Register symbols used in operation (2/2)

Register Symbol	Explanation
store-memory-bit (a, b, c)	Write bit b of address a to c.
saturated (n)	Execute saturated processing of n (n is a 2's complement). If, as a result of calculations, n ≥ 7FFFFFFH, let it be 7FFFFFFH. n ≤ 80000000H, let it be 80000000H.
result	Reflects the results in a flag.
Byte	Byte (8 bits)
Half-word	Half word (16 bits)
Word	Word (32 bits)
+	Addition
-	Subtraction
II	Bit concatenation
×	Multiplication
÷	Division
%	Remainder from division results
AND	Logical product
OR	Logical sum
XOR	Exclusive OR
NOT	Logical negation
logically shift left by	Logical shift left
logically shift right by	Logical shift right
arithmetically shift right by	Arithmetic shift right

(4) Register symbols used in an execution clock

Register Symbol	Explanation
i : issue	If executing another instruction immediately after executing the first instruction.
r : repeat	If repeating execution of the same instruction immediately after executing the first instruction.
I : latency	If referring to the results of instruction execution immediately after execution using another instruction.

(5) Register symbols used in flag operations

Identifier	Explanation
(Blank)	No change
0	Clear to 0
Х	Set or cleared in accordance with the results.
R	Previously saved values are restored.

(6) Condition codes

Condition Name (cond)	Condition Code (cccc)	Condition Formula	Explanation
V	0 0 0 0	OV = 1	Overflow
NV	1 0 0 0	OV = 0	No overflow
C/L	0 0 0 1	CY = 1	Carry Lower (Less than)
NC/NL	1 0 0 1	CY = 0	No carry Not lower (Greater than or equal)
Z/E	0 0 1 0	Z = 1	Zero Equal
NZ/NE	1 0 1 0	Z = 0	Not zero Not equal
NH	0 0 1 1	(CY or Z) = 1	Not higher (Less than or equal)
Н	1 0 1 1	(CY or Z) = 0	Higher (Greater than)
N	0 1 0 0	S = 1	Negative
Р	1 1 0 0	S = 0	Positive
Т	0 1 0 1	_	Always (Unconditional)
SA	1 1 0 1	SAT = 1	Saturated
LT	0 1 1 0	(S xor OV) = 1	Less than signed
GE	1 1 1 0	(S xor OV) = 0	Greater than or equal signed
LE	0 1 1 1	((S xor OV) or Z) = 1	Less than or equal signed
GT	1 1 1 1	((S xor OV) or Z) = 0	Greater than signed

C.2 Instruction Set (in Alphabetical Order)

(1/6)

Mnemonic	Operand	Op Code	Operation		Ex	ecut	ion			Flags		1/6)
					_	Clocl	k L					
ADD	rog1 rog2	**************************************	CD[rog2], CD[rog2], CD[rog4]		1 1	r 1	1	CY	OV	S		SAT
ADD	reg1,reg2	rrrr001110RRRRR	GR[reg2]←GR[reg2]+GR[reg1]			1		×	×	×	×	
4001	imm5,reg2	rrrr010010iiii	GR[reg2]←GR[reg2]+sign-extend(in		1	1	1	×	×	×	×	
ADDI	imm16,reg1,reg2	rrrrr110000RRRRR	GR[reg2]←GR[reg1]+sign-extend(in	mm16)	1	1	1	×	×	×	×	
AND	reg1,reg2	rrrrr001010RRRRR	GR[reg2]←GR[reg2]AND GR[reg1]		1	1	1		0	×	×	
ANDI	imm16,reg1,reg2	rrrrr110110RRRRR	GR[reg2]←GR[reg1]AND zero-exte	nd(imm16)	1	1	1		0	0	×	
		1111111111111111		T								
Bcond	disp9	ddddd1011dddcccc	if conditions are satisfied	When conditions	2	2	2					
		Note 1	then PC←PC+sign-extend(disp9)	are satisfied		Note 2						
				When conditions are not satisfied	1	1	1					
BSH	reg2,reg3	rrrr11111100000	GR[reg3]←GR[reg2] (23 : 16) II GR	[reg2] (31 : 24) II	1	1	1	×	0	×	×	
		wwww01101000010	GR[reg2] (7 : 0) GR[reg2] (15 : 8)									
BSW	reg2,reg3	rrrr11111100000	GR[reg3]←GR[reg2] (7 : 0) GR[re	g2] (15 : 8) II GR	1	1	1	×	0	×	×	
		wwww01101000000	[reg2] (23 : 16) GR[reg2] (31 : 24)	1								
CALLT	imm6	0000001000iiiiii	CTPC←PC+2(return PC)		4	4	4					
			CTPSW←PSW									
			adr←CTBP+zero-extend(imm6 logic	ally shift left by 1)								
			PC←CTBP+zero-extend(Load-memo	ory(adr,Half-word))								
CLR1	bit#3, disp16[reg1]	10bbb111110RRRRR	adr←GR[reg1]+sign-extend(disp16)	3	3	3				×	
		dddddddddddddd	Z flag←Not(Load-memory-bit(adr,b	oit#3))	Note 3	Note 3	Note 3					
			Store-memory-bit(adr,bit#3,0)									
	reg2,[reg1]	rrrrr1111111RRRRR	adr←GR[reg1]		3	3	3				×	
		0000000011100100	Z flag←Not(Load-memory-bit(adr,r	reg2))	Note 3	Note 3	Note 3					
			Store-memory-bit(adr,reg2,0)									
CMOV	cccc,imm5,reg2,reg3	rrrrr111111iiii	if conditions are satisfied		1	1	1					
		wwwww011000ccc0	then GR[reg3]←sign-extended(imm	15)								
			else GR[reg3]←GR[reg2]									
	cccc,reg1,reg2,reg3	rrrrr1111111RRRRR	if conditions are satisfied		1	1	1					
		wwwww011001cccc0	then GR[reg3]←GR[reg1]									
			else GR[reg3]←GR[reg2]									
CMP	reg1,reg2	rrrrr001111RRRRR	result←GR[reg2]–GR[reg1]		1	1	1	×	×	×	×	
	imm5,reg2	rrrrr010011iiiii	result←GR[reg2]–sign-extend(imm5)		1	1	1	×	×	×	×	
CTRET		0000011111100000	PC←CTPC		3	3	3	R	R	R	R	R
		0000000101000100	PSW←CTPSW									
DI		0000011111100000	PSW.ID←1		1	1	1					
		0000000101100000										

(2/6)

	l			1							2/6
Mnemonic	Operand	Op Code	Operation	Execution				6			
					Clock		0)/	0) (_	_	047
DICDOCE	incom 5 lint40	0000044004::::		i N. 4	T N. 4	l N. 4	CY	OV	S	Z	SAT
DISPOSE	imm5,list12	0000011001iiiiL	sp sp sp+zero-extend(imm5 logically shift left by 2)		N+1 Note4						
		LLLLLLLLLL00000	GR[reg in list12]←Load-memory(sp,Word)								
			sp←sp+4								
	immE light 2 [ro ad]	0000044004::::	repeat 2 steps above until all regs in list12 is loaded	N. O	N.O	N+3					
	imm5,list12,[reg1]	0000011001iiiiL	sp←sp+zero-extend(imm5 logically shift left by 2)		Note4						
		LLLLLLLLLRRRRR Note 5	GR[reg in list12]←Load-memory(sp,Word)								
		Note 5	spc-sp+4								
			repeat 2 steps above until all regs in list12 is loaded								
DIV			PC←GR[reg1]	25	25	٥٥					
DIV	reg1,reg2,reg3	rrrrr1111111RRRRR	GR[reg2] ← GR[reg2] ÷ GR[reg1]	35	35	35		×	×	×	
50.41		wwwww01011000000	GR[reg3]←GR[reg2]%GR[reg1]	-							
DIVH	reg1,reg2	rrrrr000010RRRRR	GR[reg2]←GR[reg2]÷GR[reg1] ^{Note 6}	35	35	35		×	×	×	
	reg1,reg2,reg3	rrrrr1111111RRRRR	GR[reg2]←GR[reg2]÷GR[reg1] ^{Note 6}	35	35	35		×	×	×	
		wwww01010000000	GR[reg3]←GR[reg2]%GR[reg1]								
DIVHU	reg1,reg2,reg3	rrrrr111111RRRRR	GR[reg2]←GR[reg2]÷GR[reg1] ^{Note 6}	34	34	34		×	×	×	
		wwww01010000010	GR[reg3]←GR[reg2]%GR[reg1]								
DIVU	reg1,reg2,reg3	rrrrr1111111RRRRR	GR[reg2]←GR[reg2]÷GR[reg1]	34	34	34		×	×	×	
		wwwww01011000010	GR[reg3]←GR[reg2]%GR[reg1]								
EI		1000011111100000	PSW.ID←0	1	1	1					
		0000000101100000									
HALT		0000011111100000	Stop	1	1	1					
		0000000100100000									
HSW	reg2,reg3	rrrr11111100000	GR[reg3]←GR[reg2](15 : 0) GR[reg2] (31 : 16)	1	1	1	×	0	×	×	
		wwww01101000100									
JARL	disp22,reg2	rrrrr11110dddddd	GR[reg2]←PC+4	2	2	2					
		ddddddddddddd0	PC←PC+sign-extend(disp22)								
		Note 7									
JMP	[reg1]	00000000011RRRRR	PC←GR[reg1]	3	3	3					
JR	disp22	0000011110dddddd	PC←PC+sign-extend(disp22)	2	2	2					
		dddddddddddd0									
		Note 7									
LD.B	disp16[reg1],reg2	rrrrr111000RRRRR	adr←GR[reg1]+sign-extend(disp16)	1	1	n					
		ddddddddddddd	GR[reg2]←sign-extend(Load-memory(adr,Byte))			Note 9					
LD.BU	disp16[reg1],reg2	rrrrr11110bRRRRR	adr←GR[reg1]+sign-extend(disp16)	1	1	n					
		dddddddddddddd1	GR[reg2]—zero-extend(Load-memory(adr,Byte))								
		Notes 8, 10				Note11					
LD.H	disp16[reg1],reg2	rrrr111001RRRRR	adr←GR[reg1]+sign-extend(disp16)	1	1	n					
		ddddddddddddd0	GR[reg2]←sign-extend(Load-memory(adr,Half-								
		Note 8	word))			Note 9					

(3/6)

Mnemonic	Operand	Op Code	Operation			ecut	ion		ı	Flags	,	3/6)
					(Cloc	k					
					i	r	Ι	CY	OV	S	Z	SAT
LD.HU	disp16[reg1],reg2	rrrrr111111RRRRR	adr←GR[reg1]+sign-extend(disp1	6)	1	1	n					
		dddddddddddddd1	GR[reg2]←zero-extend(Load-men	nory(adr,Half-								
		Note 8	word))				Note11					
LD.W	disp16[reg1],reg2	rrrrr111001RRRRR	adr←GR[reg1]+sign-exend(disp16	i)	1	1	n					
		dddddddddddddd1	GR[reg2]←Load-memory(adr,Wor	d)								
		Note 8		Т			Note 9					
LDSR	reg2,regID	rrrrr1111111RRRRR	SR[regID]←GR[reg2]	Other than	1	1	1					
		000000000100000		regID=PSW								
		Note 12		regID=PSW				×	×	×	×	×
MOV	reg1,reg2	rrrrr000000RRRRR	GR[reg2]←GR[reg1]		1	1	1					
	imm5,reg2	rrrrr010000iiiii	GR[reg2]←sign-extend(imm5)		1	1	1					
	imm32,reg1	00000110001RRRRR	GR[reg1]←imm32		2	2	2					
MOVEA	imm16,reg1,reg2	rrrrr110001RRRRR	GR[reg2]←GR[reg1]+sign-extend(imm16)	1	1	1					
MOVHI	imm16,reg1,reg2	rrrrr110010RRRRR	GR[reg2]←GR[reg1]+(imm16 II 0 ¹⁶)	1	1	1					
MUL	reg1,reg2,reg3	rrrrr1111111RRRRR	GR[reg3] II GR[reg2]←GR[reg2]xG	GR[reg1]	1	2	2					
		wwww01000100000				Note14						
	imm9,reg2,reg3	rrrrr111111iiii	GR[reg3] II GR[reg2]←GR[reg2]xs	-	1	2	2					
		wwww01001IIII00		Note 13		Note14						
MULH	reg1,reg2	rrrrr000111RRRRR	GR[reg2]←GR[reg2] ^{Note 6} xGR[reg1]		1	1	2					
	imm5,reg2	rrrrr010111iiii	GR[reg2]←GR[reg2] ^{Note 6} xsign-exte	nd(imm5)	1	1	2					
MULHI	imm16,reg1,reg2	rrrrr110111RRRRR	GR[reg2]←GR[reg1] ^{Note 6} ximm16		1	1	2					
MULU	reg1,reg2,reg3		GR[reg3] II GR[reg2]←GR[reg2]xG	GR[reg1]	1	2	2					
		wwww01000100010				Note 14						
	imm9,reg2,reg3	rrrrr111111iiii	GR[reg3] II GR[reg2]←GR[reg2]xz	, ,	1	2	2					
		wwwww01001IIII10	Note 13		1	Note 14						
NOP		00000000000000000	, , ,			1	1					
NOT	reg1,reg2	rrrrr000001RRRRR	GR[reg2]←NOT(GR[reg1])		1	1	1		0	×	×	
NOT1	bit#3,disp16[reg1]	01bbb111110RRRRR	adr←GR[reg1]+sign-extend(disp10	,	3	3	3				×	
		ddddddddddddd	Z flag←Not(Load-memory-bit(adr,l	bit#3))	Note 3	Note 3	Note 3					
	_		Store-memory-bit(adr,bit#3,Z flag)									
	reg2,[reg1]	rrrrr1111111RRRRR	adr←GR[reg1]	2))	3	3	3				×	
		0000000011100010	Z flag←Not(Load-memory-bit(adr,	reg2))	Note 3	Note 3	Note 3					
			Store-memory-bit(adr,reg2,Z flag)									
OR	reg1,reg2	rrrrr001000RRRRR	GR[reg2]←GR[reg2]OR GR[reg1]		1	1	1		0	×	X	

(4/6)

							ı			(4/6
Mnemonic	Operand	Op Code	Operation		ecut Clocl				Flags	5	ı
				i	r	1	CY	OV	S	Z	SAT
ORI	imm16,reg1,reg2	rrrrr110100RRRRR	GR[reg2]←GR[reg1]OR zero-extend(imm16)	1	1	1		0	×	×	
PREPARE	list12,imm5	0000011110iiiiL	Store-memory(sp-4,GR[reg in list12],Word)	N+1	N+1	N+1					
		LLLLLLLLLL00001	sp←sp–4	Note 4	Note 4	Note 4					
			repeat 1 step above until all regs in list12 is stored sp←sp-zero-extend(imm5)								
	list12,imm5,	0000011110iiiiL	Store-memory(sp-4,GR[reg in list12],Word)	N+2	N+2	N+2					
	sp/imm ^{Note 15}	LLLLLLLLLLff011	sp←sp–4	Note 4	Note 4	Note 4					
		imm16/imm32	repeat 1 step above until all regs in list12 is stored	Note17	Note17	Note17					
			sp←sp-zero-extend(imm5)								
		Note 16	ep←sp/imm								
RETI		0000011111100000	if PSW.EP=1	3	3	3	R	R	R	R	R
		0000000101000000	then PC ←EIPC								
			PSW ←EIPSW								
			else if PSW.NP=1								
			then PC ←FEPC								
			PSW ←FEPSW								
			else PC ←EIPC								
			PSW ←EIPSW								
SAR	reg1,reg2	rrrrr1111111RRRRR	GR[reg2]←GR[reg2]arithmetically shift right	1	1	1	×	0	×	×	
		000000010100000	by GR[reg1]								
	imm5,reg2	rrrr010101iiii	GR[reg2]←GR[reg2]arithmetically shift right by zero-extend (imm5)	1	1	1	×	0	×	×	
SASF	cccc,reg2	rrrrr11111110cccc	if conditions are satisfied	1	1	1					
		0000001000000000	then GR[reg2]←(GR[reg2]Logically shift left by 1)								
			OR 00000001H								
			else GR[reg2]←(GR[reg2]Logically shift left by 1)								
			OR 00000000H								
SATADD	reg1,reg2	rrrrr000110RRRRR	GR[reg2]←saturated(GR[reg2]+GR[reg1])	1	1	1	×	×	×	×	×
	imm5,reg2	rrrrr010001iiiii	GR[reg2]←saturated(GR[reg2]+sign-extend(imm5)	1	1	1	×	×	×	×	×
SATSUB	reg1,reg2	rrrrr000101RRRRR	GR[reg2]←saturated(GR[reg2]–GR[reg1])	1	1	1	×	×	×	×	×
SATSUBI	imm16,reg1,reg2	rrrrr110011RRRRR	GR[reg2]←saturated(GR[reg1]–sign-extend(imm16)	1	1	1	×	×	×	×	×
		11111111111111111									
SATSUBR	reg1,reg2	rrrrr000100RRRRR	GR[reg2]←saturated(GR[reg1]–GR[reg2])	1	1	1	×	×	×	×	×
SETF	cccc,reg2	rrrrr1111110cccc	If conditions are satisfied	1	1	1					
		00000000000000000	then GR[reg2]←00000001H								
			else GR[reg2]←00000000H								

(5/6)

Mnemonic	Operand	Op Code	Operation	F۷	ecut	ion			Flags		5/6)
Willemonic	Operand	Op Code	•		Clock				lays	•	
				i	r	ı	CY	ov	s	Z	SAT
SET1	bit#3,disp16[reg1]	00bbb111110RRRRR	adr←GR[reg1]+sign-extend(disp16)	3	3	3				×	
		ddddddddddddd	Z flag←Not (Load-memory-bit(adr,bit#3))	Note 3	Note 3	Note 3					
			Store-memory-bit(adr,bit#3,1)								
	reg2,[reg1]	rrrrr1111111RRRRR	adr←GR[reg1]	3	3	3				×	
		0000000011100000	Z flag←Not(Load-memory-bit(adr,reg2))	Note 3	Note 3	Note 3					
			Store-memory-bit(adr,reg2,1)								
SHL	reg1,reg2	rrrrr111111RRRRR	GR[reg2]←GR[reg2] logically shift left by GR[reg1]	1	1	1	×	0	×	×	
		0000000011000000									
	imm5,reg2	rrrrr010110iiii	GR[reg2]←GR[reg2] logically shift left	1	1	1	×	0	×	×	
			by zero-extend(imm5)								
SHR	reg1,reg2	rrrrr1111111RRRRR	GR[reg2]←GR[reg2] logically shift right by GR[reg1]	1	1	1	×	0	×	×	
		000000010000000									
	imm5,reg2	rrrrr010100iiiii	GR[reg2]←GR[reg2] logically shift right	1	1	1	×	0	×	×	
			by zero-extend(imm5)								
SLD.B	disp7[ep],reg2	rrrrr0110ddddddd	adr←ep+zero-extend(disp7)	1	1	n					
			GR[reg2]←sign-extend(Load-memory(adr,Byte))			Note 9					
SLD.BU	disp4[ep],reg2	rrrrr0000110dddd	adr←ep+zero-extend(disp4)	1	1	n					
	Note 18		GR[reg2]←zero-extend(Load-memory(adr,Byte))			Note 9					
SLD.H	disp8[ep],reg2	rrrrr1000ddddddd	adr←ep+zero-extend(disp8)	1	1	n					
		Note 19	GR[reg2]—sign-extend(Load-memory(adr,Halfword))			Note 9					
SLD.HU	disp5[ep],reg2	rrrrr0000111dddd	adr←ep+zero-extend(disp5)	1	1	n					
	Notes 18, 20		GR[reg2]←zero-extend(Load-memory(adr,Half-word))			Note 9					
SLD.W	disp8[ep],reg2	rrrr1010dddddd0	adr←ep+zero-extend(disp8)	1	1	n					
		Note 21	GR[reg2]←Load-memory(adr,Word)			Note 9					
SST.B	reg2,disp7[ep]	rrrr0111ddddddd	adr←ep+zero-extend(disp7)	1	1	1					
			Store-memory(adr,GR[reg2],Byte)								
SST.H	reg2,disp8[ep]	rrrrr1001ddddddd	adr←ep+zero-extend(disp8)	1	1	1					
		Note 19	Store-memory(adr,GR[reg2],Half-word)								
SST.W	reg2,disp8[ep]	rrrrr1010dddddd1	adr←ep+zero-extend(disp8)	1	1	1					
		Note 21	Store-memory(adr,GR[reg2],Word)								
ST.B	reg2,disp16[reg1]	rrrrr111010RRRRR	adr←GR[reg1]+sign-extend(disp16)	1	1	1					
		ddddddddddddd	Store-memory(adr,GR[reg2],Byte)								
ST.H	reg2,disp16[reg1]	rrrrr111011RRRRR	adr←GR[reg1]+sign-extend(disp16)	1	1	1					
		ddddddddddddd0	Store-memory (adr,GR[reg2], Half-word)								
		Note 8									
ST.W	reg2,disp16[reg1]	rrrr111011RRRRR	adr←GR[reg1]+sign-extend(disp16)	1	1	1					
		dddddddddddddd1	Store-memory (adr,GR[reg2], Word)								
		Note 8									
STSR	regID,reg2	rrrrr111111RRRRR	GR[reg2]←SR[regID]	1	1	1					
		0000000001000000									

(6/6)

Mnemonic	Operand	Op Code	Operation		ecuti Clock			F	lags	;	
				i	r	ı	CY	OV	s	Z	SAT
SUB	reg1,reg2	rrrrr001101RRRRR	GR[reg2]←GR[reg2]–GR[reg1]	1	1	1	×	×	×	×	
SUBR	reg1,reg2	rrrrr001100RRRRR	GR[reg2]—GR[reg1]—GR[reg2]	1	1	1	×	×	×	×	
SWITCH	reg1	00000000010RRRRR	adr←(PC+2) + (GR [reg1] logically shift left by 1)	5	5	5					
			PC←(PC+2) + (sign-extend								
			(Load-memory (adr,Half-word)))								
			logically shift left by 1								
SXB	reg1	00000000101RRRRR	GR[reg1]←sign-extend	1	1	1					
			(GR[reg1] (7:0))								
SXH	reg1	00000000111RRRRR	GR[reg1]←sign-extend	1	1	1					
			(GR[reg1] (15:0))								
TRAP	vector	00000111111iiii	EIPC ←PC+4 (Return PC)	3	3	3					
		0000000100000000	EIPSW ←PSW								
			ECR.EICC ←Interrupt Code								
			PSW.EP ←1								
			PSW.ID ←1								
			PC \leftarrow 00000040H (when vector is 00H to 0FH)								
			00000050H (when vector is 10H to 1FH)								
TST	reg1,reg2	rrrrr001011RRRRR	result←GR[reg2] AND GR[reg1]	1	1	1		0	×	×	
TST1	bit#3,disp16[reg1]	11bbb111110RRRRR	adr←GR[reg1]+sign-extend(disp16)	3	3	3				×	
		ddddddddddddd	Z flag←Not (Load-memory-bit (adr,bit#3))	Note 3	Note 3	Note 3					
	reg2, [reg1]	rrrrr1111111RRRRR	adr←GR[reg1]	3	3	3				×	
		0000000011100110	Z flag←Not (Load-memory-bit (adr,reg2))	Note 3	Note 3	Note 3					
XOR	reg1,reg2	rrrrr001001RRRRR	GR[reg2]←GR[reg2] XOR GR[reg1]		1	1		0	×	×	
XORI	imm16,reg1,reg2	rrrrr110101RRRRR	GR[reg2]←GR[reg1] XOR zero-extend (imm16)	1	1	1		0	×	×	
		1111111111111111									
ZXB	reg1	00000000100RRRRR	GR[reg1]←zero-extend (GR[reg1] (7 : 0))	1	1	1					
ZXH	reg1	00000000110RRRRR	GR[reg1]←zero-extend (GR[reg1] (15 : 0))	1	1	1					

Notes 1. dddddddd: Higher 8 bits of disp9.

- 2. 3 clocks if the final instruction includes PSW write access.
- 3. If there is no wait state (3 + the number of read access wait states).
- **4.** N is the total number of list 12 read registers. (According to the number of wait states. Also, if there are no wait states, N is the number of list 12 registers.)
- 5. RRRRR: other than 00000.
- 6. The lower halfword data only are valid.
- 7. dddddddddddddddddd: The higher 21 bits of disp22.
- 8. dddddddddddddd: The higher 15 bits of disp16.
- 9. According to the number of wait states (1 if there are no wait states).
- 10. b: bit 0 of disp16.
- 11. According to the number of wait states (2 if there are no wait states).

Notes 12. In this instruction, for convenience of mnemonic description, the source register is made reg2, but the reg1 field is used in the op code. Therefore, the meaning of register specification in the mnemonic description and in the op code differs from other instructions.

rrrr = regID specification

RRRR = reg2 specification

13. iiiii: Lower 5 bits of imm9.

IIII: Lower 4 bits of imm9.

- **14.** In the case of r = w (the lower 32 bits of the results are not written in the register) or w = r0 (the higher 32 bits of the results are not written in the register), 1.
- 15. sp/imm: specified by bits 19 and 20 of the sub op code.
- **16.** ff = 00: Load sp in ep.
 - 01: Load sign expanded 16-bit immediate data (bits 47 to 32) in ep.
 - 10: Load 16-bit logically left shifted 16-bit immediate data (bits 47 to 32) in ep.
 - 11: Load 32-bit immediate data (bits 63 to 32) in ep.
- 17. If imm = imm32, N + 3 blocks.
- 18. rrrrr: Other than 00000.
- 19. ddddddd: Higher 7 bits of disp8.
- 20. dddd: Higher 4 bits of disp5.
- 21. dddddd: Higher 6 bits of disp8.

[A]		BCYST	42
A/D conversion result registers	293	Block diagram of port	316
A/D converter	287	Block transfer mode	154
A/D converter mode register 0	290	Boundary of memory area	168
A/D converter mode register 1		Boundary operation conditions	96
A/D trigger mode	296	BPRM0, BPRM1	286
A0 to A7	43	BPRn0, BPRn2 (n = 0, 1)	286
A8 to A15	44	BRCE0, BRCE1	286
A16 to A23	39	BRG0, BRG1	283
ADn0 to ADn9 (n = 0 to 3)	293	BRGC0, BRGC1	285
ADCR0 to ADCR3	293	BRGn0 to BRGn7 (n = 0, 1)	285
ADCR0H to ADCR3H	293	BS	290
Address multiplex function	112	BSC	82
Address space	55	BSn0, BSn1 (n = 0 to 7)	82
ADIC	189	BTn0, BTn1 (n = 0 to 7)	79
ADIF	189	Bus access	81
ADM0	290	Bus arbitration for CPU	171
ADM1	292	Bus control function	77
ADMK	189	Bus control pins	77
ADPR0 to ADPR2	189	Bus cycle control register	91
ALV1n0 (n = 0 to 2)	231	Bus cycle type configuration register	79
ANI0 to ANI3	40	Bus cycle type control function	79
ANIS0, ANIS1	290	Bus cycles in which the wait function is valid	89
Applications	22	Bus hold function	93
ASIM00, ASIM01, ASIM10, ASIM11	259	Bus hold timing	95
ASIS0, ASIS1	263	Bus priority order	96
Assembler-reserved register	51	Bus size configuration register	82
Asynchronous serial interfaces 0, 1	256	Bus sizing function	82
Asynchronous serial interface mode		Bus width	83
registers 00, 01, 10, 11	259	Byte access	83
Asynchronous serial interface status			
registers 0, 1	263	[C]	
AV _{DD}	45	CALLT base pointer	52
AVREF	45	Capture/compare registers 1n0 to 1n3	
AVss	45	(n = 0 to 3)	224
		Capture operation (timer 1)	237
[B]		CBR refresh timing	151
Basic operation of A/D converter	295	CBR self-refresh timing	153
Baud rate generator compare registers 0, 1.	285	CC1n0 to CC1n3 (n = 0 to 3)	244
Baud rate generator prescaler mode		CE	290
registers 0, 1	286	CE10 to CE13	228
BC0 to BC15	141	CE40, CE41	230
BCC	91	CES1m0, CES1m1 (n = 0 to 2)	227
BCn0, BCn1 (n = 0 to 7)	91	CESEL	209
BCT	79	CG	203

CH0 to CH3	147	CTPC	52
CKC	205	CTPSW	52
CKDIV0, CKDIV1	205	CTXE0, CTXE1	.273
CKSEL	44	CV _{DD}	45
CL0, CL1	259	CVss	45
Clearing/starting timer (timer1)	236	CY	53
CLKOUT	44		
Clock control register	205 [[D]	
Clock generator	203	D0 to D7	38
Clock generator functions	203	D8 to D15	39
Clock output inhibit mode	215	DA0 to DA15	.140
Clock selection	204	DA16 to DA25	.139
Clocked serial interfaces 0, 1	271	DAC0n, DAC1n (n = 0 to 3)	.114
Clocked serial interface mode registers 0, 1	273	DAD0, DAD1	.143
Clocks of DMA transfer	168	DADC0 to DADC3	.142
CLSn0, CLSn1 (n = 0, 1)	261	Data wait control registers 1, 2	87
CM40, CM41	225	DAW0n, DAW1n (n = 0 to 3)	.112
CMIC40, CMIC41	189	DBC0 to DBC3	.141
CMIF40, CMIF41	189	DBPC	52
CMMK40, CMMK41	189	DBPSW	52
CMPR40n, CMPR41n (n = 0 to 2)	189	DCHC0 to DCHC3	.144
CMS1n0 to CMS1n3 (n = 0, 3)	227	DCLK0, DCLK1	.209
Command register	74	DCm0, DCm1 (m = 0 to 7)	.116
Compare operation (timer 1)	240	DDA0 to DDA3	.139
Compare operation (timer 4)	243	DDIS	.147
Compare registers 40, 41	225	Dedicated baud rate generators 0, 1	.282
Control register (CG)	209	Direct mode	.204
Control register (DMAC)	137	DMA addressing control registers 0 to 3	.142
Control register (RPU)	226	DMA bus states	.149
Count clock selection (timer 1)	234	DMA byte count registers 0 to 3	.141
Count clock selection (timer 4)	242	DMA channel control registers 0 to 3	.144
Count operation (timer 1)	233	DMA channel priorities	.164
Count operation (timer 4)	242	DMA controller	.135
CPC0n, CPC1n (n = 0 to 3)	114	DMA destination address registers 0 to 3	.139
CPU address space	55	DMA disable status register	.147
CPU function	49	DMA functions	.135
CPU register set	50	DMA restart register	.147
CRXE0, CRXE1	273	DMA source address registers 0 to 3	.137
CS	290	DMA transfer start factors	.165
CS0, CS3 to CS5	40	DMA trigger factor registers 0 to 3	.145
CSI0, CSI1	271	DMAAK0 to DMAAK3	37
CSIC0, CSIC1	189	DMAC	.135
CSIF0, CSIF1	189	DMAC bus cycle state transition diagram	.152
CSIM0, CSIM1	273	DMAIC0 to DMAIC3	.189
CSMK0, CSMK1	189	DMAIF0 to DMAIF3	.189
CSOT0, CSOT1	273	DMAMK0 to DMAMK3	.189
CSPRmn (m = 0, 1, n = 0 to 2)	189	DMAPRmn to DMAPRmn (m = 0 to 3, n = 0 to 2)	.189
CTBP	52	DMARQ0 to DMARQ3	35

DRAM access	117	FEPSW	52
DRAM access during DMA flyby transfer	125	Flyby transfer	159
DRAM connections	111	Flyby transfer data wait control register	148
DRAM controller	110	FR2 to FR0	292
DRAM configuration registers 0 to 3	113	Frequency measurement	250
DRAM type configuration register	116		
DRC0 to DRC3	113	[G]	
DRST	147	General-purpose registers	51
DS	142	Global pointer	51
DSA0 to DSA3	137		
DTC	116	[H]	
DTFR0 to DTFR3	145	Halfword access	84
DWC1, DWC2	87	HALT mode	207
DWn0 to DWn2 (n = 0 to 7)	87	High-speed page DRAM access timing	117
		HLDAK	42
[E]		HLDRQ	42
EBS0, EBS1	262	HV _{DD}	45
Edge detection function	181, 193		
ECLR10 to ECLR12	226	[1]	
ECR	52	ID	53
EDO DRAM access timing	121	IDLE	209
EICC	52	IDLE mode	212
EIPC	52	Idle state insertion function	91
EIPSW	52	Idle state insertion timing	92
Element pointer	51	IFCn5 to IFCn0 (n = 0 to 3)	145
EN0 to EN3	144	Illegal op code definition	198
ENTO1n0 (n = 0 to 2)	231	Image	56
EP	53	IMS1n0 to IMS1n3 (n = 0 to 3)	227
ESmn0, ESmn1 (m = 0 to 3, n = 0 to 3)	194	In-service priority register	
ESN0	181	Initialization	362
ETI13	228	INIT0 to INIT3	144
Example of DRAM refresh interval	129	INTC	173
Example of interval factor settings	129	Internal block diagram	25
Exception trap	198	Internal peripheral I/O area	61
External bus cycle during DMA transfer	163	Internal peripheral I/O interface	81
External expansion mode	63	Internal RAM area	61
External interrupt mode registers 1 to 2, 4	181, 193	Interrupt control register	189
External I/O interface	99	Interrupt latency time	202
External memory area	62	Interrupt stack pointer	
External ROM interface	99	Interrupt source register	52
External wait function	88	Interrupting DMA transfer	166
		Interrupt/exception processing function	173
[F]		Interrupt/exception table	
FDW	148	Interval timer	
FDW0 to FDW7	148	INTM0	
FE0, FE1	263	INTM1, INTM2, INTM4	193, 232
FECC		INTP100 to INTP103	
FEPC		INTP110 to INTP113	

INTP130	38	Ordering information	22
INTSER0, INTSER1	226	OST0 to OST2	226
INTSR0, INTSR1	226	OV	53
INTST0, INTST1	226	OVE0, OVE1	263
IORD	41	Overflow (timer 1)	235
ĪOWR	41	Overflow (timer 4)	242
ISPR	191	OVFn (n = 10 to 13, 40, 41)	232
ISPR0 to ISPR7	191	OVIC10 to OVIC13	189
		OVIF10 to OVIF13	189
[L]		OVMK10 to OVMK13	189
TCAS	41	OVPR1mn (m = 0 to 3, n = 0 to 2)	189
Link pointer	51		
LOCK	206	[P]	
WR	41	P0	328
		P00, P02, P04 to P07	35, 328
[M]		P1	331
MA5 to MA3	106	P10	353
Maskable interrupts	182	P100, P102	43, 353
Maskable interrupt status flag	191	P10, P12, P14 to P17	36, 331
Maximum response time to DMA request	168	P10IC0 to P10IC3	189
Memory access control function		P10IF0 to P10IF3	189
Memory block function	78	P10MK0 to P10MK3	189
Memory expansion mode register	63	P10PRmn (m = 0 to 3, n = 0 to 2)	189
Memory map	58	P11IC0 to P11IC3	189
MM	63	P11IF0 to P11IF3	189
MM3 to MM0	64	P11MK0 to P11MK3	189
MOD0, MOD1	273	P11PRmn (m = 0 to 3, n = 0 to 2)	189
MODE0, MODE2	44	P12IC0 to P12IC3	189
MS	290	P12IF0 to P12IF3	189
Multiple interrupt servicing control	200	P12MK0 to P12MK3	189
		P12PRmn (m = 0 to 3, n = 0 to 2)	189
[N]		P13IC0 to P13IC3	189
Next address setting function	164	P13IF0 to P13IF3	189
NMI	37	P13MK0 to P13MK3	189
Noise elimination	181, 192	P13PRmn (m = 0 to 3, n = 0 to 2)	189
Non-maskable interrupt	177	P2	334
Normal operation mode	54	P20, P22 to P27	37, 334
NP	53	P3	337
Number of access clocks	81	P33, P34	38, 337
		P4	339
[0]		P40 to P47	38, 339
- <u>-</u> OE	42	P5	341
One time single transfer with DMARQ0 to		P50 to P57	39, 341
DMARQ3	170	P6	
On-page/off-page judgment		P60 to P67	
Operation in A/D trigger mode		P7	345
Operation in timer trigger mode		P70 to P73	
Operation modes		P8	346

P80, P83 to P85	40, 346	PM9	351
P9	350	PM90 to PM97	351
P90 to P97	41, 350	PMA	355
PA	355	PMA0 to PMA7	355
PA0 to PA7	43, 355	PMB	357
PAE	108	PMB0 to PMB7	357
PAE0n, PAE1n (n = 0 to 3)	113	PMC0	329
Page ROM access		PMC00, PMC02, PMC04 to PMC07	329
Page ROM configuration register	108	PMC1	332
Page ROM controller	104	PMC10 (register)	354
PB		PMC10, PMC12, PMC14 to PMC17 (bit)	
PB0 to PB7		PMC100, PMC102	
PC	51	PMC2	
PCS0	_	PMC22 to PMC27	
PCS04 to PCS07		PMC3	
PCS1		PMC33, PMC34	
PCS14 to PCS17		PMC8	
PCS8		PMC80, PMC83 to PMC85	
PCS84, PCS85		PMC9	
PE0, PE1		PMC90 to PMC97	
Periods in which interrupt is not acknowled		PMCX	
Peripheral I/O registers		PMCX6, PMCX7	
Pin configuration		PMX	
•		PMX6, PMX7	
Pin functions			
Pin I/O circuit		Port/control select register 0	
Pin I/O circuit types		Port/control select register 1	
Pin name		Port/control select register 8	
Pin status		Port 0	
PLL lockup		Port 1	
PLL mode		Port 2	
PM0		Port 3	
PM00, PM02, PM04 to PM07		Port 4	
PM1		Port 5	
PM10 (register)		Port 6	
PM100, PM102		Port 7	
PM10, PM12, PM14 to PM17 (bit)	331	Port 8	346
PM2		Port 9	350
PM22 to PM27	335	Port 10	353
PM3	338	Port A	355
PM33, PM34	338	Port B	357
PM4	340	Port X	359
PM40 to PM47	340	Port functions	311
PM5	342	Port 0 mode control register	329
PM50 to PM57	342	Port 1 mode control register	332
PM6	344	Port 2 mode control register	336
PM60 to PM67	344	Port 3 mode control register	338
PM8	347	Port 8 mode control register	348
PM80, PM83 to PM85	347	Port 9 mode control register	352

Port 10 mode control register	354	Receive buffers 0, 0L, 1, 1L	264
Port X mode control register	360	Receive error interrupt	266
Port 0 mode register	328	Reception completion interrupt	266
Port 1 mode register	331	Recommended connection of unused pins	46
Port 2 mode register	335	Refresh control function	127
Port 3 mode register	338	Refresh control registers 0 to 3	127
Port 4 mode register	340	Refresh timing	131
Port 5 mode register	342	Refresh wait control register	130
Port 6 mode register	344	REG0 to REG7	74
Port 8 mode register	347	Relationship between analog input voltage a	and
Port 9 mode register	351	A/D conversion results	294
Port 10 mode register	353	Relationship between programmable wait ar	nd
Port A mode register	355	external wait	88
Port B mode register	357	REN0 to REN3 (DRST register)	147
Port X mode register	359	RENn (RFCn register) (n = 0 to 3)	128
Power saving control	207	RESET	45
Power save control register	209	Reset functions	361
PRC	108	RFC0 to RFC3	127
PRCMD	74	RHC0n, RHC1n (n = 0 to 3)	114
Precaution (A/D converter)	310	RHD0 to RHD3	114
Precaution (DMA)	171	RIn0 to RIn5 (n = 0 to 3)	128
Precaution (RPU)	252	ROMC	104
PRERR	75	ROM-less modes 0, 1	63
Priorities of maskable interrupts	185	RPC0n, RPC1n (n = 0 to 3)	113
PRM1n1 (n = 0 to 3)	229	RRW0, RRW1	130
PRM4n0, PRM4n1 (n = 0, 1)	230	RWC	130
Program counter	51	RXB0, RXB0L, RXB1, RXB1L	264
Program register set	51	RXBn0 to RXBn7 (n = 0, 1)	264
Program status word	53	RXD0, RXD1	37
Programmable wait function	87	RXE0, RXE1	259
PRS1n0, PRS1n1 (n = 0 to 3)	234	RXEB0, RXEB1	264
PRS400, PRS410	230		
PRW0 to PRW2	108	[S]	
PS00, PS01, PS10, PS11	259	S	53
PSC	209	SA0 to SA15	138
PSW	53	SA16 to SA25	137
PWM output	248	SAD0, SAD1	142
PX	359	SAT	53
PX6, PX7	44, 359	Scan mode	302
Pulse width measurement	246	SCK0, SCK1	37
		SCLS00, SCLS01, SCLS10, SCLS11	259
[R]		Securing oscillation stabilization time	216
r0 to r31	51	SEIC0, SEIC1	189
RAS3 to RAS5	40	SEIF0, SEIF1	189
RCCn0, RCCn1 (n = 0 to 3)	128	Select mode	304
RCW0 to RCW2	130	Self-refresh functions	132
RD	42	SEMK0, SEMK1	189
Real-time pulse unit	219	SEPR0n, SEPR1n (n = 0 to 2)	189

Serial I/O shift registers 0, 1	275	Timer control registers 10 to 13	228
Serial interface function	255	Timer control registers 40, 41	230
SI0, SI1	37	Timer output control registers 10 to 12	231
Single-step transfer mode	154	Timer overflow status register	232
Single transfer mode	153	Timer trigger mode	296
SIO0, SIO1	275	Timer unit mode registers 10 to 13	226
SIOn0 to SIOn7 (n = 0, 1)	275	Timer 1	223
SL0, SL1	259	Timer 1 operation	233
SO0, SO1	37	Timer 4	225
Software exception	195	Timer 4 operation	242
Software STOP mode	207	Timers 10 to 13	223
SOT0, SOT1	263	Timers 40, 41	225
Specific registers	73	Timer/counter function	219
SRAM interface	99	TM0, TM1	143
SRAM connections	99	TM10 to TM13	223
SRIC0, SRIC1	189	TM40, TM41	225
SRIF0, SRIF1	189	TMC10 to TMC13	228
SRMK0, SRMK1	189	TMC40, TMC41	230
SRPR0n, SRPR1n (n = 0 to 2)	189	TO100	36
SRW2 to SRW0	130	TO110	37
Stack pointer	51	TO120	43
Status saving register during CALLT execution .	52	TOC10 to TOC12	231
Status saving register during exception trap	52	TOVS	232
Status saving register during interrupt	52	Transfer mode	153
Status saving register during NMI		Transfer objects	163
STG0 to STG3	144	Transfer of misalign data	
STIC0, STIC1	189	Transfer types	
STIF0, STIF1		Transmission completion interrupt	266
STMK0, STMK1	189	Transmit shift registers 0, 0L, 1, 1L	265
STP	209	TRG0, TRG1	292
STPR0n, STPR1n (n = 0 to 2)		Trigger mode	
SYS		TTYP	
System register set	52	TUM10 to TUM13	226
System status register	75	Two-cycle transfer	
		TXD0, TXD1	37
[T]		TXE0, TXE1	
TBC	_	TXED0, TXED1	
TBCS		TXS0, TXS0L, TXS1, TXS1L	
TC0 to TC3	144	TXSn7 to TXSn0 (n = 0, 1)	265
TCLR10	36		
TCLR11	37	[U]	
TCLR12	43	UART0, UART1	256
TDIR	_	UCAS	
Terminating DMA transfer		ŪWR	41
TES130, TES131			
Text pointer		[V]	
TI13		V _{DD}	
Time base counter	218	Vss	45

[w]	
WAIT	44
Wait function	87
WE	42
Word access	84
Wrap-around	57
[X] X1, X2	45
[Z]	
Z	53
Zero register	51

Facsimile Message Although NEC has taken all possible steps to ensure that the documentation supplied to our customers is complete, bug free

Organization

Froi	m:			to our customers is and up-to-date, we errors may occur. De	readily accept spite all the care	tha and
Name	е			precautions we've encounterproblems in Please complete the	nthe documenta nis form when	ation eve
Com	pany			you'd like to report improvements to us.		iges ⁻
Tel.		FAX				
Addre	ess					
				Thank you for yo	our kind supp	ort.
NEC Corp	th America Electronics Inc. Forate Communications Dept. 1-800-729-9288 1-408-588-6130	NEC Electronics I Fax: +852-2886-	• •	Asian Nations except F NEC Electronics Singapor Fax: +65-250-3583		
Tech	Electronics (Europe) GmbH nnical Documentation Dept. +49-211-6503-274	Korea NEC Electronics I Seoul Branch Fax: 02-528-441		Japan NEC Semiconductor Tec Fax: 044-435-9608	chnical Hotline	
NEC	th America c do Brasil S.A. +55-11-6462-6829	Taiwan NEC Electronics Fax: 02-2719-59				
l woı	ald like to report the follo	wing error/make	the following s	uggestion:		
	·		•	aggeonem.		
Docu	ıment title:					
Docu	ıment number:			Page number: _		
If pos	ssible, please fax the ref	erenced page o	r drawing.			
	Document Rating	Excellent	Good	Acceptable	Poor	
	Clarity					
	Technical Accuracy	1.1	 	 		