Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

RENESAS

μ**SAP77016-B05**

MPEG-4 CELP Speech Codec Middleware

Target Devices

μPD77110 μPD77111 μPD77112 μPD77113 μPD77114 μPD77115

Document No. U14497EJ2V0UM00 (2nd edition) Date Published December 2000 N CP(K)

© NEC Corporation 2000 Printed in Japan

[MEMO]

Patent for MPEG-4 CELP

A number of patents exist for systems related to MPEG-4 CELP.

NEC would request that customers ensure they comply with the relevant rights for these patents. NEC does not accept any responsibility for infringement of any patent rights by the customer.

MS-DOS and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

- The information in this document is current as of October, 2000. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
 agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
 risks of damage to property or injury (including death) to persons arising from defects in NEC
 semiconductor products, customers must incorporate sufficient safety measures in their design, such as
 redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:

"Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.

- "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
- "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
- "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

(Note)

(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for

NEC (as defined above).

M8E 00.4

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- · Device availability
- Ordering information
- Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288

NEC Electronics (Germany) GmbH

Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490

NEC Electronics (UK) Ltd. Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Italiana s.r.l.

Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99 NEC Electronics (Germany) GmbH Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

NEC Electronics (France) S.A. Velizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

NEC Electronics (France) S.A. Madrid Office Madrid, Spain Tel: 91-504-2787 Fax: 91-504-2860

NEC Electronics (Germany) GmbH Scandinavia Office Taeby, Sweden Tel: 08-63 80 820

Fax: 08-63 80 388

NEC Electronics Hong Kong Ltd. Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd. Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd. United Square, Singapore Tel: 65-253-8311 Fax: 65-250-3583

NEC Electronics Taiwan Ltd. Taipei, Taiwan

Tel: 02-2719-2377 Fax: 02-2719-5951

NEC do Brasil S.A.

Electron Devices Division Guarulhos-SP Brasil Tel: 55-11-6462-6810 Fax: 55-11-6462-6829

J00.7

Major Revisions in This Edition

Page	Description
Throughout	Addition of µPD77111, 77112, and 77115.
p.11	Modification of description in 1.2 MPEG-4 CELP Speech Codec
p.12	Modification of 1.3 Product Overview
p.19	Modification of Return value, Function, and Hardware resources in 2.3.2 mpc_InitDec function
p.20	Modification of Hardware resources in 2.3.3 mpc_Enc function
pp.22, 23	Modification of Function and Hardware resources in 2.3.4 mpc_Dec function
p.25	Addition of description to 2.4 Compressed Data Format
p.34	Modification of APPENDIX SAMPLE PROGRAM SOURCE

The mark \star shows major revised points.

PREFACE

Target Readers	This manual is intended systems using the μ PD770	for users who wish to design and develop application 016 Family.
	77111, 77112, 77113, 77	ludes the μPD77015, 77016, 77017, 77018, 77019, 77110, 114, and 77115. This manual, however, only covers the 77113, 77114, and 77115.
Purpose		al is for users to gain an understanding of the middleware designing and developing application systems using the
Organization	This manual consists of the following. CHAPTER 1 INTRODUCTION CHAPTER 2 LIBRARY SPECIFICATIONS CHAPTER 3 INSTALLATION CHAPTER 4 SYSTEM EXAMPLE APPENDIX SAMPLE PROGRAM SOURCE	
How to Read This Manual	It is assumed that the reader of this manual has general knowledge in the fields of electrical engineering, logic circuits, and microcontrollers.	
Conventions	Data significance: Note: Caution: Remark: Number representation:	Higher digits on the left and lower digits on the right Footnote for item marked with Note in the text Information requiring particular attention Supplementary information Binary ×××× or 0b×××× Decimal ×××× Hexadecimal 0x×××

Related Documents

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

Documents Related to Devices

Document Name	Pamphlet	Data Sheet	User's	Manual	Application Note
Part Number			Architecture	Instructions	Basic Software
μ PD77110	U12395E	U12801E	U14623E	U13116E	U11958E
μ PD77111					
μ PD77112					
μ PD77113		U14373E			
μ PD77114					
μ PD77115	_	U14867E	_	_	-

Documents Related to Development Tools

Document Name		Document No.
IE-77016-98, IE-77016-PC User's Manual Hardware		U13044E
IE-77016-CM-LC User's Manual	U14139E	
RX77016 User's Manual	Function	U14397E
	Configuration Tool	U14404E
RX77016 Application Note	HOST API	U14371E

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

CONTENTS

CHAF	PTER 1 INTRODUCTION	11
1.1	Middleware	11
1.2	MPEG-4 CELP Speech Codec	11
1.3	Product Overview	12
	1.3.1 Features	12
	1.3.2 Operating environment	13
	1.3.3 Performance	13
	1.3.4 Directory structure	14
СНА	PTER 2 LIBRARY SPECIFICATIONS	15
2.1	Application Processing Flow	15
2.2	Timing Diagrams	17
2.3	Function Specifications	18
	2.3.1 mpc_InitEnc function	18
	2.3.2 mpc_InitDec function	19
	2.3.3 mpc_Enc function	20
	2.3.4 mpc_Dec function	22
	2.3.5 mpc_GetVersion function	24
2.4	Compressed Data Format	25
	2.4.1 Header	25
	2.4.2 Frame	27
2.5	Relationship Between Bit Rate and Number of Samples	28
СНА	PTER 3 INSTALLATION	30
3.1	Installation Procedure	30
3.2	Sample Creation Procedure	30
3.3	Symbol Naming Regulations	30
СНА	PTER 4 SYSTEM EXAMPLE	31
4.1	Simulation Environment in Which Timing File Used	31
4.2	Operation	31
APPE	NDIX SAMPLE PROGRAM SOURCE	34

LIST OF FIGURES

Fig	ure No.	Title	Page
2-1	Application Processing Flow (Encoder)		15
2-2	Application Processing Flow (Decoder)		16
2-3	Encoder Timing Diagram		17
2-4	Decoder Timing Diagram		17
2-5	Header Format		
2-6	Frame Configuration		27

LIST OF TABLES

Table No.	Title	Page
1-1 Supported Functions		
1-3 MIPS Values Required for C	Compression/Decompression Processing	
2-1 Relationship Between Narro	w Band Bit Rate and Number of Samples	
2-2 Relationship Between Wide	Band Bit Rate and Number of Samples	

CHAPTER 1 INTRODUCTION

1.1 Middleware

Middleware is the name given to a group of software that has been tuned so that it draws out the maximum performance of the processor and enables processing that is conventionally performed by hardware to be performed by software. The concept of middleware was introduced with the development of a new high-speed processor, the DSP, in order to facilitate operation of the environments integrated in the system.

By providing appropriate speech codec and image data compression/decompression-type middleware, NEC is offering users the kind of technology essential in the realization of a multimedia system for the μ PD77016 Family, and is continuing its promotion of system development.

The μ SAP77016-B05 is middleware that supplies the functions of speech compression/decompression.

7

1.2 MPEG-4 CELP Speech Codec

The MPEG-4 CELP^{Note 1} speech codec is a CELP speech compression/decompression function standardized as ISO/IEC^{Note 2} 14496-3 (MPEG-4 version 1) Audio Part. In addition, the error robustness and silence compression functions are expanded by ISO/IEC 14496-3/Amd1 (MPEG-4 version 2) Audio Part. This MPEG-4 CELP speech codec employs an algorithm proposed by NEC.

The speech input/output data processed by the MPEG-4 CELP speech codec is 16-bit linear PCM data resulting from sampling an analog input signal at 8 or 16 MHz. If the signal is sampled at 8 kHz (narrow band: NB), 28 types of bit rates, 3.85 to 12.2 Kbps, are supported. If the signal is sampled at 16 kHz (wide band: WB), 30 types of bit rates, 10.9 to 23.8 Kbps, are supported (refer to 2.5 Relationship Between Bit Rate and Number of Samples).

Notes 1. CELP: Code Excited Linear Prediction

2. ISO: International Organization for Standardization IEC: International Electrotechnical Commission

Phase-out/Discontinued

★ 1.3 Product Overview

1.3.1 Features

- (1) Speech input/output data: 16-bit linear PCM data
- (2) Coding/decoding 80 to 320 samples/frame at sampling frequency of 8 or 16 kHz
- (3) 28 types of bit rates (3.85 to 12.2 Kbps) at sampling frequency of 8 kHz or 30 types of bit rates (10.9 to 23.8 Kbps) at 16 kHz
- (4) High-quality speech coding
 - Wide band (16 kHz sampling)
 - Quality equivalent to ITU-T G.729^{Note} at 8 Kbps and sampling frequency of 8 kHz

Note International Telecommunication Union – Telecommunication Standardization Sector

Table 1-1 lists the supported functions.

	Function	Encoder	Decoder	
Version 1	Basic coding function (base layer)	\checkmark	\checkmark	
	Bit rate hierarchy function (Bit Rate Scalable)	×	×	
	Band hierarchy function (Band Width Scalable)	×	×	
	Multi-pulse sound source (Multi Pulse Excitation)	\checkmark	\checkmark	
	Regular pulse sound source (Regular Pulse Excitation) ×			
	Fine rate control	×	×	
	Version 1 compressed data format	\checkmark	\checkmark	
Version 2	Error concealment Note: Bit error	_	\checkmark	
Error concealment ^{Note} : Frame erasure Silence compression		_	\checkmark	
		×	\checkmark	
	Version 2 compressed data format	×	\checkmark	

Table 1-1. Supported Functions

Note Error concealment is a function of version 2, but this middleware allows it to be used with data of version 1.

Caution "Version" in the above figure indicates the version of MPEG-4, not the version of the middleware.

Remark $\sqrt{:}$ Supported, \times : Not supported, -: Not subject to support

1.3.2 Operating environment

(1) Target DSP:

μPD77110, 77111^{Note}, 77112^{Note}, 77113, 77114, 77115^{Note}

Note Applicable when these processors operate only as decoders.

(2) Required memory size:

This middleware can be used as a codec, or separately as an encoder or decoder. Table 1-2 shows the required memory size.

Memory	Туре	Size (Words)	Encoder [Words]	Decoder [Words]
Instruction memory	-	14.6 K	8.0 K	8.0 K
X memory	RAM (Work) (Static)	Encoder: 3 K / Decoder: 1.5 K 3.2 K	3.0 K 2.7 K	1.5 K 0.6 K
	ROM	5.5 K	2.4 K	5.0 K
Y memory	RAM (Work) (Static)	Encoder: 4.7 K / Decoder: 0.7 K 2.5 K	4.7 K 2.5 K	0.7 K 0.1 K
	ROM	13.1 K	10.1 K	9.3 K

 Table 1-2.
 Required Memory Size

(3) Software tools (Windows[™] version):

DSP tools

- WB77016 (workbench assembler)
- HSM77016 (high-speed simulator)
- IE77016 (debugger)

1.3.3 Performance

[Condition] DSP: µPD77016 Family (33 MIPS @ 33 MHz operation)

[The MIPS values required to execute the processing of 1 frame in real time]

Table 1-3.	MIPS Va	alues Required fo	r Compression/D	ecompression	Processing
------------	---------	-------------------	-----------------	--------------	------------

Bit Rate	Compression Time	Decompression Time	Total
[bps]	[MIPS]	(Postprocessing Filter	(Postprocessing
		On) [MIPS]	Filter On) [MIPS]
4650 (NB)	16.5	2.5	19.0
5500 (NB)	17.5	2.6	20.1
7300 (NB)	19.5	2.6	22.1
10700 (NB)	20.8	3.3	24.1
12200 (NB)	22.3	3.5	25.8
14300 (NB)	52.5	9.1	61.6
17000 (NB)	55.3	9.3	64.6
21100 (NB)	58.2	12.3	70.5
23800 (NB)	60.8	12.5	73.3

1.3.4 Directory structure

The contents of the packages are shown below.

 <pre> <library></library></pre>		mpc_110b.lib: Library for the μ PD77110 and 77115 (BE mode)
		mpc_110f.lib: Library for the μ PD77110 and 77115 (FE mode)
		mpc_11xb.lib: Library for the μ PD77111, 77112, 77113, and 77114 (BE mode)
		mpc_11xf.lib: Library for the μ PD77111, 77112, 77113, and 77114 (FE mode)
<smp><mpc></mpc></smp>		mpc_enc.h: Header file for encoder
	<u> </u>	mpc_dec.h: Header file for decoder
	<u> </u>	sample.prj: Sample project file
	<u> </u>	sample.asm: Sample source file
	<u> </u>	sample.tmg: Sample timing file
		input.dat: Input data for sample program
		out.dat: Expected output data for sample program
readme.txt: Expla	nation of	each file

Each directory is outlined below.

(1) library

Stores the library files.

Two types of libraries, for BE (Bit Error) mode and FE (Frame Erasure) mode, are available depending on the differences in the concealment processing of the decoder, and either of them is selected when the middleware is embedded into a system. They cannot be selected during reception.

• BE (Bit Error) mode

This mode is used if the system can receive error frame information.

The past frame data and part of the current frame data are used for decoding processing in this mode.

• FE (Frame Erasure) mode

This mode is used if the system can receive no error frame information.

In this mode, decoding processing is performed by using only the past frame data.

(2) <smp>--<mpc>

Stores the source files of the sample program, and the header files. A timing file, to be described later, is also available.

CHAPTER 2 LIBRARY SPECIFICATIONS

MPEG-4 CELP provides the following 5 functions.

Function Name	Function
mpc_InitEnc	Encode processing initialization
mpc_InitDec	Decode processing initialization
mpc_Enc	Encode processing
mpc_Dec	Decode processing
mpc_GetVersion	Version information acquisition

2.1 Application Processing Flow

Examples of application processing using the MPEG-4 CELP speech codec are shown in Figures 2-1 and 2-2 below.

Figure 2-1. Application Processing Flow (Encoder)

The speech data I/O processing is dependent on the target system's hardware, so make sure the design accords with the target system.

2.2 Timing Diagrams

Figure 2-3. Encoder Timing Diagram

- <1> Sampling frequency: 8 or 16 kHz, Precision: 16 bits; A/D converted to 1 frame of PCM data
- <2> Buffering via the user application
- <3> 1 frame of sample data is compressed
- <4> 1 frame of compressed data is saved. The user can use the rest of the time for processing another application.

Figure 2-4. Decoder Timing Diagram

- <1> 1 frame of compressed data is read and passed to decompression processing
- <2> 1 frame of compressed data is decompressed into 1 frame of sample data

- <3> The decompressed speech data is buffered. The user can use the rest of the time for processing another application.
- <4> Sampling frequency: 8 or 16 kHz, Precision: 16 bits; 1 frame of PCM data is D/A converted

2.3 Function Specifications

2.3.1 mpc_InitEnc function

Classification	MPEG-4 CELP encoder initialization processing		
Function name	mpc_InitEnc		
Summary of function	Makes the parameter settings and initializes the RAM area used by the MPEG-4 CELP encoder.		
Format	call mpc_InitEnc		
Arguments	*mpc_E_ANA_BUFF_SADR:x Output data buffer start address (X memory)		
	*mpc_E_RATE_NUM:	 Bit rate setting. Sets the 28 types/30 types of bit rates in the No. column in the tables in 2.5 Relationship Between Bit Rate and Number of Samples. Sets the MPE configuration of the header. 	
	*mpc_E_WB:x	Sets the sampling frequency. 0: NB/1: WB set in the sample rate mode of the header.	
	R6	Start address of the X memory work area	
	R5	Start address of the Y memory work area	
Return value	*mpc_E_PCM_NUM:x	Number of samples per frame	
	*mpc_E_ANA_BITS:x	Number of compressed data bits in 1 frame	
• Function	Makes the parameter settings necessary for the MPEG-4 CELP encoder, initializes the calculation area, and outputs the header to the top of the buffer specified by mpc_E_ANA_BUFF_SADR. (11 bits with MSB first). The bit rate cannot be changed after the initialization processing. For details of the memory size required for the work area, refer to the value of the RAM (Work) in 1.3.2 (2) Required memory size . The encoded data can be output in version 1 only. It cannot be output in version 2.		
Registers used	R0, R1, R2, R3, R4, R	5, R6, R7, DP0, DP1, DP2, DP3, DP4, DP5, DN0, DN1	
Hardware resources			
The hardware resource	s for this function are as	follows.	
Maximum stack leve	el: 3		
Maximum loop stacl			
Maximum number o	•	00	
Maximum number o	of cycles: 2	700	

*

- Caution Between when the mpc_InitEnc function was called and the end of compression processing, the RAM area must not be destroyed. If the RAM area is destroyed, operation is not guaranteed.
- 2.3.2 mpc_InitDec function

 \star

 \star

 \star

Classification	MPEG-4 CELP decoder initialization processing	
Function name	mpc_InitDec	
Summary of function	Makes the parameter settings and initializes the RAM area used by the MPEG-4 CELP decoder.	
Format	call mpc_InitDec	
Arguments	*mpc_D_ANA_BUFF_SADR:x *mpc_D_PF_FLAG:x R6 R5	Input data buffer start address (X memory) Post-processing filter flag. 0: OFF/1: ON Work area X memory start address Work area Y memory start address
• Return value	*mpc_D_PCM_NUM:x *mpc_D_ANA_BITS:x	Number of samples per frame Number of CelpBaseFrame bits among compressed data in 1 frame (this is the same as the number of compressed bits in 1 frame if silence compression is not used.)
• Function	Analyses the compressed data by the header, sets the parameters required for the MPEG-4 CELP decoder, and initializes the calculation area. The header is input to the top of the buffer specified by mpc_D_ANA_BUFF_SADR. (11 bits with MSB first in version 1, and 12 bits with MSB first in version 2). Whether the speech data output is passed through a post-processing filter is determined by mpc_D_PF_FLAG. The post-processing filter is a filter configured on the output side of the decoder to improve the sound quality of the decoded speech signals. Refer to 2.4.1 Header for the format of the header. For details of the memory size required for the work area, refer to the value of the RAM (Work) in 1.3.2 Operating environment .	
Registers used	R0, R1, R2, R3, R4, R5, R6, R7, I	DP0, DP1, DP2, DP4, DP5, DN0
Hardware resources		

The hardware resources for this function are as follows.Maximum stack level:3Maximum loop stack level:1Maximum number of repeats:50

Maximum number of cycles:

User's Manual U14497EJ2V0UM

800

Caution Between when the mpc_InitDec function was called and the end of decompression processing, the RAM area must not be destroyed. If the RAM area is destroyed, operation is not guaranteed.

2.3.3 mpc_Enc function

- Classification MPEG-4 CELP encoder processing
- Function name mpc_Enc
- Summary of function Compresses 1 frame of specified speech data.
- Format call mpc_Enc
- Arguments *mpc_E_PCM_BUFF_SADR:x Input data buffer start address (X memory) *mpc_E_ANA_BUFF_SADR:x Output data buffer start address (X memory)
- Return value
 None
- Function Performs data compression processing for speech specified by mpc E PCM BUFF SADR and writes and returns this data to the compressed data buffer specified by mpc_E_ANA_BUFF_SADR. If the final word of the compressed data frame is less than 1 word, this data is word-aligned by outputting it after filling the remainder with 0s. The number of samples input in 1 frame is determined by the bit rate, and is assigned by mpc_E_PCM_NUM, which is the return value of the encoder initialization processing, mpc_InitEnc.

The size of the compressed data output is also determined by the bit rate. Neither the bit rate nor NB/WB can be changed.

The compressed data is a stream of bit units.

• Registers used R0, R1, R2, R3, R4, R5, R6, R7, DP0, DP1, DP2, DP3, DP4, DP5, DP6, DP7, DN0, DN1, DN2, DN3, DN4, DN5, DN6, DN7, DMX, DMY

• Hardware resources

 \star

The hardware resources for this function are as follows.

Maximum stack level:	6
Maximum loop stack level:	4
Maximum number of repeats:	340
Maximum MIPS value:	60.8

Phase-out/Discontinued

2.3.4 mpc_Dec function

Classification MPEG-4 CELP decoder processing

None

- Function name mpc_Dec
- Summary of function Decompresses 1 frame of the specified compressed speech data.
- Format call mpc_Dec
- Arguments
 *mpc_D_ANA_BUFF_SADR:x
 Input data buffer start address (X memory)
 *mpc_D_PCM_BUFF_SADR:x
 Output data buffer start address (X memory)
 *mpc_D_ERR_FLAG:x
 Recover processing flag. 0: OFF/1: ON
- Return value
- s
- Function

Performs decompression processing for compressed data specified by mpc_D_ANA_BUFF_SADR and writes and returns this data to the speech data buffer specified by mpc_D_PCM_BUFF_SADR. When the mpc_D_ERR_FLAG is on, that frame is regarded to have an error, and recovery is performed by error concealment processing using the data of the previous frame.

A frame error must be detected by the calling system.

Recovery processing is performed in two modes, BE (Bit Error) mode and FE (Frame Erasure) mode, and is determined depending on the library to be embedded (refer to **1.2 MPEG-4 CELP Speech Codec** and **1.3.4 Directory structure**).

If the final word of the compressed data frame is less than 1 word, the valid data is input starting from the MSB.

The size of the compressed data input and the number of samples output in 1 frame is determined by the bit rate. The bit rate cannot be changed.

If silence compression is used, the size of the compressed data input varies depending upon the frame.

The compressed data is a stream of bit units.

Output data (speech data)

• Registers used R0, R1, R2, R3, R4, R5, R6, R7, DP0, DP1, DP2, DP3 DP4, DP5, DP6, DP7 DN0, DN1, DN2, DN3, DN4, DN5, DN6, DN7, DMX, DMY

• Hardware resources

*

The hardware resources for this function are as follows.

Maximum stack level:	7
Maximum loop stack level:	3
Maximum number of repeats:	400
Maximum MIPS value:	12.5 (with no error code)

2.3.5 mpc_GetVersion function

- Classification
 Version information acquisition
- Function name mpc_GetVersion
- Summary of function Returns the version of the library.
- Format
 call mpc_GetVersion
- Arguments
 None
- Return Value
 R0H
 Major version number
 R0L
 Minor version number
- Function Returns the version number of the MPEG-4 CELP speech codec library as a 32-bit value. When R0 = 0x00'0x0001'0x0100: Version: V1.01
- Registers used
 R0

• Hardware resources

The hardware resources for this function are as follows.

Maximum stack level:	1
Maximum loop stack level:	0
Maximum number of repeats:	0
Maximum number of cycles:	6

2.4 Compressed Data Format

The MPEG-4 CELP speech codec has two types of compressed data formats: version 1 and version 2. With this middleware, the encoder outputs compressed data of version 1. The decoder can read compressed data of both versions 1 and 2.

Version 1: Conforms to MPEG-4 CELP object Version 2: Conforms to MPEG-4 ER-CELP object

2.4.1 Header

With version 1, the header size is 11 bits (BWS = OFF) or 13 bits (BWS = ON), and the header configuration is as shown in Figure 2-5 (a). With version 2, the header size is 12 bits (BWS = OFF) or 14 bits (BWS = ON), and the header configuration is as shown in Figure 2-5 (b).

(a) Version 1

(b) Version 2

- Sample rate mode: Determines the sampling frequency of MPEG-4 CELP. 8 kHz (narrow band): 0, 16 kHz (wide band): 1
- (2) Silence compression (provided in version 2 only): Specifies silence compression.Off: 0, on: 1
- (3) MPE configuration: Determines the compression bit rate of MPEG-4 CELP. (28 types/30 types)
- (4) Number of enhancement layers: Not supported in this middleware (always 0).
- (5) BWS mode: Not supported in this middleware (always 0).
- (6) BWS configuration: Not supported in this middleware (this bit does not exist).

2.4.2 Frame

Figure 2-6. Frame Configuration

(a) With version 1 or version 2 when Silence Compression = OFF

CelpBaseFrame
Note

(b) With version 2 when Silence Compression = ON

TX_flag	CelpBaseFrame	
2 bits	Note	
If TX_flag = 2 (the first bit is 1 and second bit is	0)
TX_flag	LPC	RMS
2 bits	15bits (NB) or 32 bits (WB)	6 bits
If TX_flag = 3 (the first bit is 1 and second bit is	1)
TX_flag RM	//S	
2 bits 6 b	its	
If TX_flag = 0 (t	he first bit is 0 and second bit is 0)
TX_flag		
2 bits 0 bit		

- **Note** The bit length of the CelpBaseFrame differs depending upon the bit rate and can be calculated by the following expression (refer to **2.5 Relationship Between Bit Rate and Number of Samples**):
 - For Narrow Band Compressed bit rate (X) × Number of samples per frame (L) ÷ 8000
 For Wide Dand
 - For Wide Band
 Compressed bit rate (X) × Number of samples per frame (L) ÷ 16000

The bit length can be obtained by the return value "mpc_E_ANA_BITS:x" of the mpc_InitEnc function or the return value "mpc_D_ANA_BITS:x" of the mpc_InitDec function.

2.5 Relationship Between Bit Rate and Number of Samples

The relationship between the number of samples and the 28 types of compression bit rates for the narrow band (8 kHz sampling) and 30 types of compression bit rates for the wide band (16 kHz sampling) is shown in the tables below.

No.	Compression Bit Rate (bps): X	Number of Samples per Frame: L
0	3850	320
1	4250	320
2	4650	320
3	4900	240
4	5200	240
5	5500	240
6	5700	160
7	6000	160
8	6300	160
9	6600	160
10	6900	160
11	7100	160
12	7300	160
13	7700	160
14	8300	160
15	8700	160
16	9100	160
17	9500	160
18	9900	160
19	10300	160
20	10500	160
21	10700	160
22	11000	80
23	11400	80
24	11800	80
25	12000	80
26	12200	80
27	6200	240

Table 2-1. Relationship Between Narrow Band Bit Rate and Number of Samples

hase-out/Discontinued	J

No.	Compression Bit Rate (bps): X	Number of Samples per Frame: L
0	10900	320
1	11500	320
2	12100	320
3	12700	320
4	13300	320
5	13900	320
6	14300	320
7	Reserve	_
8	14700	320
9	15900	320
10	17100	320
11	17900	320
12	18700	320
13	19500	320
14	20300	320
15	21100	320
16	13600	160
17	14200	160
18	14800	160
19	15400	160
20	16000	160
21	16600	160
22	17000	160
23	Reserve	_
24	17400	160
25	18600	160
26	19800	160
27	20600	160
28	21400	160
29	22200	160
30	23000	160
31	23800	160

Table 2-2. Relationship Between Wide Band Bit Rate and Number of Samples

CHAPTER 3 INSTALLATION

Phase-out/Discontinued

3.1 Installation Procedure

The MPEG-4 CELP speech codec middleware is supplied on a 3.5-inch floppy disk (1.44 MB). The procedure for installing the μ SAP77016-B05 in the host machine is outlined below.

(1) Set the floppy disk in the floppy disk drive and copy the files to the directory where tools from ATAIR are used (e.g. C:\DSPTools). The following is an example of when files are copied from the A drive to the C drive.

A:\>xcopy /s *.* c:\DSPTools <CR>

(2) Confirm that the files have been copied. Refer to 1.3.4 Directory structure for details on the directories.

A:\>dir c:\DSPTools <CR>

3.2 Sample Creation Procedure

The sample program is stored in the sample directory of the supplied medium. With the sample program, it is possible to simulate the external I/O of speech and compressed data by using a timing file to be described later (in **CHAPTER 4 SYSTEM EXAMPLE**) on the SM77016 ATAIR simulator.

The following is an explanation of how to build the MPEG-4 CELP speech codec middleware sample program.

- (1) Start up the WB77016 (workbench).
- (2) Open the sample.prj project.
 Example Specify sample.prj from Open Project on the Project menu.
- (3) Execute Build and confirm that sample.Ink has been created.

Example The sample.Ink file is generated by selecting Build All from the Make menu.

- (4) Start up the SM77016 (simulator)
- (5) Open sample.lnkExample Specify sample.lnk by clicking Open on the File menu.
- (6) Open the timing file sample.tmg.Example Specify sample.tmg by clicking Open on the File menu.

3.3 Symbol Naming Regulations

The section names used in this library are shown below.

Classification	Regulation
Function name, variable name	mpc_xxxx
Macro, constant name	MPC_XXXX
Section name	MPC_XXXX (Two underscores at the start)

CHAPTER 4 SYSTEM EXAMPLE

4.1 Simulation Environment in Which Timing File Used

An example in which the speech codec compression/decompression processing simulator and a timing file are used is shown below. Speech data is input, and then output frame by frame after each frame has undergone compression/decompression processing.

Software environment:

- High-speed simulator: HSM77016
- Sample program: sample.Ink (created in 3.2 Sample Creation Procedure)
- Timing file: sample.tmg

4.2 Operation

- (1) Start up the HSM77016 (high-speed simulator)
- (2) Open sample.lnk, which was created in 3.2 Sample Creation Procedure.
 Example Specify sample.lnk by clicking Open on the File menu.
- (3) Open the timing file sample.tmg.
 Example Specify sample.tmg by clicking Open on the File menu.
- (4) Make the wait settings.

Example Set waits in the DWTR/IWTR registers in the setting windows opened by clicking Periphery Register on the Window menu.

(5) Execute with Run.

The timing file sample.tmg is described below.

The high-speed simulator (HSM77016) provides a function for simulating external I/O using a timing file.

(a) Data file input (16-bit data)

Data is input from a file via the host interface. An example of the description format is shown below.

• Preparation

open input "input.dat"	; Input file specification (encode data)
input format hex	; Input file format specification

• Input processing (16-bit data)

wait cond pin hwe == 0 wait cond pin hcs == 1	; Waiting until the host can write to HDT(in). ; Waiting until the chip select signal becomes inactive.
set pin hcs = 0 ; (A)	; Input starts when the chip select signal becomes active.
set port ha = 0	; The lower 8 bits of the HDT register are selected.
set pin hwr = 0	; The host write strobe is activated.
input data set port hd = data&0xFF wait 100ns	; Data values are input from the data file and are assigned as "data". ; The 8-bit "data" is input from the HD port. ; Waiting until the data is transferred.

set pin hwr = 1 wait 5ns ; (B)	; Input ends when hwr becomes inactive. ; delay
;The processing from (A) to (B) is	repeated for higher 8 bits.
set port ha = 1	; The higher 8 bits of the HDT register are selected.
wait 5ns	; delay
set pin hwr = 0	; start output
set port hd = (data>>8)&0xFF	; input high byte to host port
wait 100ns	; access duration
set pin hwr = 1	; end input
set pin hcs = 1	; Input ends when the chip select signal becomes inactive.

• Termination

Т

close input	; The data file is closed.	

(b) Data file output (16-bit data)

Preparation

open output "out.dat"	; Output file specification (encode data)
output format HIDEBASE unsigned hex	; Output file format specification

• Output processing (16-bit data)

wait cond pin hre == 0	; Waiting until the host can read from HDT(out).		
wait cond pin hcs == 1	; Waiting until the chip select signal becomes inactive.		
set pin hcs = 0	; Output starts when the chip select signal becomes active.		
; (A)	, Output starts when the chip select signal becomes active.		
set port ha = 0	; The lower 8 bits of the HDT register are selected.		
set pin hrd = 0	; The host read strobe is activated.		
wait 50ns	· coccess duration		
	; access duration		
set lowbyte = port hd&0xff	; 8 bits are read out from the HD port and are assigned as "lowbyte".		
set pin hrd = 1	; Output ends when hrd becomes inactive.		
wait 5ns	; delay		
; (B)			
;The processing from (A) to (B) is repeated for higher 8 bits.			
set port ha = 1 ; The higher 8 bits of the HDT register are selected.			
wait 5ns	; delay		
set pin hrd = 0	; start output		
wait 50ns	; access duration		
output ((port hd&0xFF)<<8) lowbyte; output word data to file			
set pin hrd = 1	; end output		
set pin hcs = 1	; Output ends when the chip select signal becomes inactive.		

• Termination

close input

; The data file is closed.

*/

*/

APPENDIX SAMPLE PROGRAM SOURCE

```
/*-----*/
/* File Information
                                                        */
/*-----*/
/* Name : sample.asm for Timing File
                                                        */
/* Type : SPX Assembler Code
/* Version : 2.00a
                                                        */
/* Date : 2000.06.21
/* CPU
                                                        */
        : uPD7701x
/* Compiler: Atair uPD77016 Workbench
                                                        */
/* About : encoder function module
                                                        */
/*-----*/
/* Copyright (C) NEC Corporation 1998,1999
                                                        */
/* NEC CONFIDENTIAL AND PROPRIETARY
                                                        */
/* All rights reserved by NEC Corporation.
                                                        */
/* Use of copyright notice does not evidence publication
                                                        */
/*-----*/
#include "mpc enc.h"
#include "mpc dec.h"
#define STACK_SIZE_E 0x1500
#define STACK_SIZE D
                    0x700
#define HST 0x3807
#define HDT 0x3806
#define HDO 0x3806
#define START_ADDRESS 0x200
#define VECTR ADDRESS 0x210
#define BEGIN_ADDRESS 0x240
#define WB_FLAG 1
                                 /* 0:NB / 1:WB */
#define RATE_NUMBER 6
#define FRAME_SIZE 320
                                 /* bit rate number */
                                 /* PCM frame size */
#define POSTFILTER FLAG 1
                                 /* PostFilter 0:off/1:on */
#define VERSION
                                  /* Bitstream version */
                1
%DEFINE( read host(reg))
(
  r0l=*HST:x;
  r0=r0 & 0x1;
  if(r0 != 0) jmp $-2;
  r@reg = *HDT:x;
)
%DEFINE( write host(reg))
(
  r0l=*HST:x;
  r0=r0 & 0x2;
  if(r0 != 0) jmp $-2;
  *HDT:x=r@reg;
)
%DEFINE( VECTOR DEF)
```

*

```
(
  nop;
   reti;
   nop;
   nop;
)
        */
/*----
USER DATA XRAMSEG
 InputData:
   ds 320;
 CodeData:
  ds 30;
 OutputData:
   ds 320;
USER FREE X xramseg
 _USER_Free_X_Area_D:
  ds STACK SIZE D;
 _USER_Free_X_Area_E:
  ds STACK_SIZE_E;
USER_FREE_Y yramseg
 _USER_Free_Y_Area D:
  ds STACK_SIZE_D;
 _USER_Free_Y_Area_E:
  ds STACK_SIZE_E;
/*-----*/
/* Function Name : main
                                                             */
/*-----*/
/* others: r_
              [*, , , , , , , *] dmx,dmy [, ]
                                                       */
     dp_ [*, , , , , , ] loops/stacks
dn_ [, , , , , , ] cycles ???
/*
                                         [1/0]
                                                       */
/*
                                                             */
/*-----
                         ----*/
Startup imseg at START ADDRESS
   jmp main;
Vector imseg at VECTR_ADDRESS
;0x210 INT1
   % VECTOR DEF;
;0x214 INT2
   % VECTOR DEF;
;0x218 INT3
   % VECTOR DEF;
;0x21c INT4
   % VECTOR DEF;
;0x220 Serial Input 1
   % VECTOR DEF;
;0x224 Serial Output 1
   % VECTOR DEF;
;0x228 Serial Input 2
   % VECTOR DEF;
```

;0x22c Serial Output 2 %_VECTOR_DEF; ;0x230 Host Input %_VECTOR_DEF; ;0x234 Host Output % VECTOR DEF; main imseg at BEGIN_ADDRESS _main: clr(r0);_Init_Int; /* Initialize interrupt */ call /* ----- */ /* clear memory */ /* ----- */ clr(r0); clr(r1);clr(r2);r0l=_USER_Free_X_Area_E; r1l=_USER_Free_Y_Area_E; r2l=STACK SIZE E; call _Zero_Mem; clr(r0);clr(r1);clr(r2);r0l=_USER_Free_X_Area_D; rll= USER Free Y Area D; r2l=STACK SIZE D; call _Zero_Mem; /* ----- */ /* ----- */ /* ----- */ /* Setting for Encoder */ /* ----- */ r7l = CodeData; *mpc E ANA BUFF SADR:x = r71; r7l = RATE NUMBER; *mpc E RATE NUM:x = r71; r7l=WB FLAG; *mpc_E_WB:x=r71; clr(r6); clr(r5);r6l= USER Free X Area E; r5l=_USER_Free_Y_Area_E; call mpc InitEnc; /* For Encoder Function */ /* ----- */ /* Setting for Decoder */ /* ----- */ r7l= CodeData; *mpc_D_ANA_BUFF_SADR:x = r71; r7l = POSTFILTER FLAG; *mpc D PF FLAG:x=r7l; r71 = VERSION;

```
Phase-out/Discontinued
```

```
*mpc D VER:x=r71;
  clr(r6);
  clr(r5);
  r6l=_USER_Free_X_Area_D;
  r5l=_USER_Free_Y_Area_D;
  call mpc InitDec;
  /* ----- */
  /* Begin Main Loop */
  /* ----- */
main loop:
     /* ----- */
     /* Read Input Data */
     /* ----- */
     r0l=InputData;
     call __Read_Code_Data;
     /* ----- */
     /* Encode one Frame */
     /* ----- */
     r7l = InputData;
     *mpc_E_PCM_BUFF_SADR:x = r71;
     call mpc_Enc;
     /* ----- */
     /* Decode one Frame */
     /* ----- */
     r71 = OutputData;
     *mpc D PCM BUFF SADR:x = r71;
     clr(r0);
     *mpc D ERR FLAG:x = r01;
     call mpc Dec;
     /* ----- */
     /* Write Output Data */
     /* ----- */
     r0l=OutputData;
     r1l=*mpc D PCM NUM:x;
     call Write Code Data;
     jmp main loop;
/*-----*/
/* Function Name : Init Int
                                                */
/* disable internal interrupt HO,HI
                                                */
/*-----*/
/* others: r_ [*, , , , , , , ] dmx,dmy [, ]
                                                */
      dp_
            [,,,,,,,] loops/stacks [0/0]
                                                */
/*
       dn_
             [,,,,,,,] cycles ???
/*
                                                      */
/*-----
               */
 Init Int:
  r0l=sr;
  r0=r0 | 0x0300;
  sr=r0l;
  r01=0x0001;
  *HST:x=r0l;
```

```
ret;
```

```
/*-----*/
/* Function Name : _Write_Code_Data
                                              */
/* [argv]
                                              */
/* r01:Write Data Ponter : Xmem
                                              */
/*
   r11:Number of Write Data
                                                   */
/*-----*/
/* others: r_ [*,*, , , , , , , *] dmx,dmy [, ]
                                              */
/*
   dp
           [*, , , , , , , ] loops/stacks [1/0]
                                              */
/*
           [,,,,,,,] cycles ???
                                                   */
       dn
_Write_Code_Data:
  dp0=r01;
  if(r1 == 0) jmp _end_Write_Code_Data;
  r7l=*dp0++;
  loop r1l{
    %_write_host(71);
    r7l=*dp0++;
    nop;
  };
 _end_Write_Code_Data:
  r0l=*HST:x;
  r0=r0 & 0x2;
  if(r0 != 0) jmp $-2;
  ret;
/*-----*/
/* Function Name : Read Code Data
                                              */
                                              */
/* [argv]
                                              */
/*
  r01:Read Data Ponter : Xmem
/* [ret]
                                              */
/*-----*/
/* others: r_ [*, , , , , , , ] dmx,dmy [, ]
                                              */
    dp_
/*
           [*, , , , , , , ] loops/stacks [1/0]
                                             */
/*
      dn_ [,,,,,,,] cycles ???
                                                   */
/*-----
                     */
 _Read_Code Data:
  dp0=r01;
  r0l=FRAME SIZE;
  loop r0l{
    %_read_host(0);
    *dp0++=r0h;
    nop;
  };
  ret;
/*-----*/
/* Function Name : Zero Mem
                                              */
/* clear memory
                                                   */
/* [arqv]
                                              */
/*
                                                   */
  r01:Start Address : Xmem
   r11:Start Address : Ymem
/*
                                                   */
   r2l:Size
/*
                                                   */
/* [ret]
                                              */
/*
   r0:0 :Error !=0:OK
                                              */
```

```
/*-----*/
/* others: r_ [*,*, , , , , , ] dmx,dmy [, ]
                                                                   */

        /*
        dp_
        [*, , , ,*, , , ]
        loops/stacks
        [1/0]

        /*
        dn_
        [ , , , , , , , ]
        cycles
        ???

                                                                   */
                                                                          */
/*----
                      */
 _Zero_Mem:
  dp0=r01;
   dp4=r11;
   clr(r1);
   clr(r0);
   rep r21;
      *dp0++=r01 *dp4++=r11;
   ret;
```

END

Facsimile Message

FAX

Although NEC has taken all possible steps to ensure that the documentation supplied to our customers is complete, bug free and up-to-date, we readily accept that errors may occur. Despite all the care and precautions we've taken, you may encounter problems in the documentation. Please complete this form whenever you'd like to report errors or suggest improvements to us.

Address

From:

Name

Tel.

Company

Thank you for your kind support.

North America NEC Electronics Inc. Corporate Communications Dept. Fax: 1-800-729-9288 1-408-588-6130	Hong Kong, Philippines, Oceania NEC Electronics Hong Kong Ltd. Fax: +852-2886-9022/9044	Asian Nations except Philippines NEC Electronics Singapore Pte. Ltd. Fax: +65-250-3583
Europe NEC Electronics (Europe) GmbH Technical Documentation Dept. Fax: +49-211-6503-274	Korea NEC Electronics Hong Kong Ltd. Seoul Branch Fax: 02-528-4411	Japan NEC Semiconductor Technical Hotline Fax: 044-435-9608
South America NEC do Brasil S.A. Fax: +55-11-6462-6829	Taiwan NEC Electronics Taiwan Ltd. Fax: 02-2719-5951	

I would like to report the following error/make the following suggestion:

Document title: ___

Document number: _____

_____ Page number: __

If possible, please fax the referenced page or drawing.

Document Rating	Excellent	Good	Acceptable	Poor
Clarity				
Technical Accuracy				
Organization				