Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

RENESAS

User's Manual

Phase-out/Discontinued

μ**PD98404**

(NEASCOT-P30[™])

ADVANCED ATM SONET FRAMER

Document No. S11821EJ5V0UM00 (5th edition) Date Published January 2003 NS CP(K)

© NEC Electronics Corporation 1996 Printed in Japan

Phase-out/Discontinue

① PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

② HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Phase-out/Discontinued

NEASCOT-P30, NEASCOT-S40C, and NEASCOT-X15 are trademarks of NEC Electronics Corporation.

- The information in this document is current as of January, 2003. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".

The "Specific" quality grade applies only to NEC Electronics products developed based on a customerdesignated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.

- "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
- "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
- "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).

MAJOR REVISIONS IN THIS EDITION

Page	Contents				
p.15	CHAPTER 1 GENERAL 1.3 System Configuration Example Change of device used in the figure.				
	CHAPTER 2 PIN FUNCTION 2.2.1 PMD interface				
p.22	Addition of description to PMDALM pin. 2.2.6 Power supply and ground				
p.27	Change of description to pins.				
	CHAPTER 3 FUNCTIONAL OUTLINE				
p.52	Addition of description to Table 3-10.				
p.55	Addition of Caution 2 to Table 3-13.				
	CHAPTER 4 INTERFACES				
p.63	Change of description in Table 4-2 .				
p.73	Addition of description to 4.2.1 (1).				
p.74	Change of Figure 4-18.				
	CHAPTER 7 BOARD LAYOUT				
p.150	Change of description in Table 7-1.				
	CHAPTER 8 CONSTRAINTS				
p.156	Addition of 8.2.3 Abnormal operation in ALP mode.				
p.157	Addition of 8.2.4 Fixed receiver circuit status in RPLP mode.				

The mark \star shows major revised points.

PREFACE

Phase-out/Discontinued

Readers of this manual	This manual is intended for user engineers who wish to design and develop an application system using the μ PD98404.
Purpose	This manual introduces the hardware functions of the μ PD98404 in the following organization.
Organization	This manual consists of the following chapters.
	 General Pin function Functional outline Interfaces Registers JTAG boundary scan Board layout Constraints
How to Read This Manual	It is assumed that the readers of this manual have a general knowledge of electricity, logic circuits, and microcomputers.
	For the overall functions of the μ PD98404
	\rightarrow Read this manual in the order of Table of Contents.
	For the electrical characteristics of the μ PD98404 \rightarrow Refer to the Data Sheet separately available.
	The data bit string of SONET/SDH is transmitted by the μ PD98404 via the PMD interface, starting from the MSB. In this manual, the bits in the overhead of the SONET/SDH framer are referred to using the following two types of bit names:
	(1) First bit through eighth bit These bit names are mainly used to indicate a bit string in the overhead byte in the SONET/SDH frame and indicate in the order in which the bits are output from the PMD interface.

(2) D7 bit through D0 bit

These bit names are mainly used to indicate the bits of an internal register of the μ PD98404 and are equivalent to the D7 through D0 pins of the external management interface.

Phase-out/Discontinued

• Indication of bits in internal register

Transmission sequence from	PMD interface
----------------------------	---------------

		1st bit	2nd bit	3rd bit	4th bit	5th bit	6th bit	7th bit	8th bit		
	Register										
		D7	D6	D5	D4	D3	D2	D1	D0		
Conventions	[Data significance :			Left: high-order digit, Right: low-order digit						
	ļ	Address of r	nemorv ma	ар: Тор:Н	: xxx_B (_B after pin or signal name) : Top: High-order, bottom: low-order						
	1	Note		: Explan	: Explanation of items marked with Note in the text						
	Caution :		: Importa	Important information							
	F	Remark		: Supple	: Supplement						
	1	Numeric not	ation	: Binary	Binary XXXX or XXXXB						
				Decima	Decimal number XXXX						
				Hexad	ecimal num	nber ×××	×H				
Related documents	S	Some of the specified he	e related de re.	d documents listed below are preliminary versions but are not so							

- Brochure : S11631E
- Data sheet: S11822E

Phase-out/Discontinued

TABLE OF CONTENTS

CHAPTE	R 1 GENERAL	13						
	Fastures	10						
1.1	Features							
1.2	Ordering information							
1.3	System Configuration Example							
1.4	Diver Diagranii							
1.5								
CHAPTE	R 2 PIN FUNCTION							
2.1	Pin Configuration							
2.2	Pin Function	21						
	2.2.1 PMD interface	21						
	2.2.2 ATM layer interface	24						
	2.2.3 Management interface	25						
	2.2.4 JTAG boundary scan	26						
	2.2.5 Internal test pin	27						
	2.2.6 Power supply and ground	27						
2.3	Processing of Unused Pins							
CHAPTE	R 3 FUNCTIONAL OUTLINE	29						
3.1	Recention Function	34						
3.3	OAM Information Control Function							
0.0	3.3.1 Transmission OAM control	41						
	3.3.2 Reception OAM Control	45						
3.4	Frame Overhead Insert/Drop Function							
3.5	Alarm Beport Pins (PHYALM[2:0], PMDALM)							
3.6	Pseudo Error Frame Transmission Function							
3.7	Register Function							
3.8	Loopback Function							
CHAPTE	R 4 INTERFACES	57						
4.1	ATM Layer Interface	57						
	4.1.1 Signals	57						
	4.1.2 Mode	59						
	4.1.3 Single PHY octet level handshake mode	60						
	4.1.4 Single PHY cell level handshake mode	63						
	4.1.5 Multi-PHY mode (TCLV/RCLV 3-state)	67						
4.2	PMD Interface	73						
	4.2.1 Serial interface mode	73						
	4.2.2 Parallel interface mode	78						
4.3	Management Interface	79						

Phase-out/Discontinued

	4.3.1	Read operation	
	4.3.2	Write operation	
	4.3.3	Interrupt processing	
СНАРТЕ	R 5 I	REGISTERS	
5.1	Regis	ster Map	
5.2	Regis	ster Function	
CHAPTE	R6.	JTAG BOUNDARY SCAN	
6.1	Featu	ires	
6.2	Intern	nal Configuration of Boundary Scan Circuit	
	6.2.1	Instruction register	
	6.2.2	TAP (Test Access Port) controller	
	6.2.3	Bypass register	
	6.2.4	Boundary scan register	
6.3	Pin F	unction	
	6.3.1	JCK (JTAG Clock) pin	
	6.3.2	JMS (JTAG Mode Select) pin	
	6.3.3	JDI (JTAG Data Input) pin	
	6.3.4	JDO (JTAG Data Output) pin	
	6.3.5	JRST_B (JTAG Reset) pin	
6.4	Opera	ation Description	
	6.4.1	TAP controller	
	6.4.2	TAP controller state	
6.5	TAP (Controller Operation	
6.6	Initial	izing TAP Controller	
6.7	Instru	iction Register	
	6.7.1	BYPASS instruction	
	6.7.2	EXTEST instruction	
	6.7.3	SAMPLE/PRELOAD Instruction	
	6.7.4	Boundary scan data bit definition	
CHAPTE	R7 I	BOARD LAYOUT	150
CHAPTE	R 8 (CONSTRAINTS	
R 1	Cone	traints	152
8.2	Desci	ription	
0.2	8.2 1	Clearing error of performance counter	152
	822	Output error of BCI AV signal in BCASEL = 1 mode	153
	8.2.3	Abnormal operation in ALP mode	156
	8.2.4	Fixed receiver circuit status in RPLP mode	
			• ·

LIST OF FIGURES (1/2)

Figure N	o. Title				
3-1	Structure of ATM Cell (user-network interface (UNI))	29			
3-2	Outline of Frame Format	29			
3-3	Outline of µPD98404's Frame Transmission Function	31			
3-4	Vacant Cell Format Inserted by μPD98404	31			
3-5	Cutting of uDD00404/a System Decention Superior	32			
3-6	Outline of µPD98404's Frame Reception Function	34			
3-7	Pointer Status Transition	36			
3-8	Cell Synchronization Status Transition	37			
3-9	HEC Check Status Transition in Cell Synchronization Status	38			
3-10	Counter-Related Registers (Example: HEC error counter)	49			
3-11	Overnead Byte with Insert/Drop Register	50			
3-12	Loopback Function	56			
4-1	Single PHY and Multi-PHY Modes	59			
4-2	Transmission Timing of Octet Level Handshake (1)	60			
4-3	Transmission Timing of Octet Level Handshake (2)	61			
4-4	Octet Level Handshake Reception Timing (two-state operation)	61			
4-5	Octet Level Handshake Reception Timing (three-state operation)	62			
4-6	Cell Level Handshake Transmission Timing	64			
4-7	Cell Level Handshake Reception Timing (two-state operation)	64			
4-8	Cell Level Handshake Reception Timing (three-state operation)	65			
4-9	RCLAV Changing Timing	66			
4-10	Transmission Timing of Multi-PHY	68			
4-11	End and Cell Transmission and Re-transmission	68			
4-12	Stopping Cell Transmission	69			
4-13	Example of Reception Timing in Multi-PHY Mode (1)	70			
4-14	Example of Reception Timing in Multi-PHY Mode (2)	71			
4-15	Example of Transmitting Two Cells in Succession from the Same μ PD98404 (1)	71			
4-16	Example of Transmitting Two Cells in Succession from the Same μ PD98404 (2)	72			
4-17	Example of ATM Layer Device Stopping Transfer	72			
4-18	Example of Connection in Serial Interface Mode (with internal PLL used)	74			
4-19	Outline of PMD Layer Block	77			
4-20	Example of Connection in Serial Interface Mode (with external PLL used)	78			
4-21	Management Interface	80			
4-22	Read Operation	81			
4-23	Write Operation	83			
4-24	Differences in Operation of Interrupt Cause Register Bit and PHINT_B due to Interrupt Mode	85			
4-25	Relationship between Interrupt Cause Registers	86			

LIST OF FIGURES (2/2)

6-1	Block Diagram of Boundary Scan Circuit	138
6-2	State Transition of TAP Controller	140
6-3	Operation Timing in Controller State	141
6-4	Operation of Test Logic (instruction scan)	146
6-5	Operation of Test Logic (data scan)	147
7-1	Example of Capacitor Insertion	150
7-2	Board Layout Image	151
8-1	Timing of Change in RCLAV	154
8-2	Problem of RCLAV (1) (if the number of cells in receive FIFO increases from 0 to 2)	154
8-3	Problem of RCLAV (2) (if the number of cells in receive FIFO increases from 3 to 0)	154
8-4	ALP Mode and TPLP Mode	156
8-5	RPLP Mode	158

LIST OF TABLES

Table No.	Title	Page
3-1	Synchronization Pattern	. 35
3-2	OCD Bit	. 37
3-3	HEC Error Correction Mode	. 39
3-4	Example When CLP Bit Is Used	. 40
3-5	Transmitting Alarm	. 41
3-6	Alarm and Failure List	. 45
3-7	Performance Cause Register (PCR register)	. 47
3-8	Counters	. 48
3-9	PHYALM Pin Report Contents	. 51
3-10	PMDALM Pin Function	. 52
3-11	Pseudo Error Frame	. 53
3-12	Registers of µPD98404	. 54
3-13	Loopback Function	. 55
4-1	Mode of ATM Layer Interface	. 59
4-2	Selecting Timing Mode of Changing TCLAV Signal	. 63
4-3	Selecting Changing Timing Mode of RCLAV Signal	. 66
4-4	PMD Interface Mode	. 73
4-5	Management Interface Mode	. 79
4-6	Mode Select Condition When MSEL Pin Is Low	. 79
4-7	Setting/Resetting Condition of Each Bit of Interrupt Cause Registers	. 87
5-1	ATM Layer Interface Modes Selected by Combination of CSEL and HSEL Bits and UMPSEL Pin	. 95
6-1	Operation in Each Controller State	. 145
7-1	Power and Ground Pins of μ PD98404	. 150

CHAPTER 1 GENERAL

Phase-out/Discontinued

The μ PD98404 NEASCOT-P30TM is one of ATM-LAN LSIs and is intended for use in ATM adapter boards, ATM hubs, and ATM switches to connect an personal computer or an workstation to an ATM network. This LSI provides the functions of the TC sublayer of the SONET/SDH-base physical layer of the ATM protocol specified by ATM Forum UNI3.1 Recommendation.

Its main functions include a transmission function to map an ATM cell passed from an ATM layer to the payload of 155 Mbps SONET STS-3c/SDH STM-1 frame and transmit the circuit side to the PMD (Physical Media Dependent) sublayer of the physical layer, and a reception function to separate the overhead and ATM cell from the data string received from the circuit side and transmit the ATM cell to the ATM layer device. In addition, the μ PD98404 also has a clock recovery function to extract sync clock for reception of receive data from the bit stream, and a clock synthesis function to generate a clock for transmission.

1.1 Features

- Clock recovery function/clock synthesis function
- Supplies function of TC sublayer of ATM protocol physical layer
- Supports 155 Mbps SONET STS-3c frame/SDH STM-1 frame formats
- Conforms to ATM Forum UTOPIA interface Level2 V1.0 (June 1995), and supports three modes for the interface with the ATM layer device.
 - · Single PHY octet level handshake
 - · Single PHY cell level handshake
 - · Multi-PHY mode
- Selectable drop/pass length for unassigned cells
- · Supports internal PMD layer return and ATM layer return loopback functions
- Supports two types of PMD interfaces: serial and parallel
 - · 155.52 Mbps serial interface
 - 19.44 MHz parallel interface
- Overhead information writing/reading registers SOH (Section Overhead): J0 byte, Z0 (first and second) byte, F1 byte LOH (Line Overhead) : K1 byte, K2 byte POH (Pass Overhead) : F2 byte, C2 byte, H4 byte
- Supports pseudo transmission test function for each errors
- Supports JTAG boundary scan test (IEEE 1149.1)
- CMOS technology
- +3.3 V single power source
- Many OAM (Operation And Maintenance) functions

Transmission side	Reception side				
Transmission of various types of alarm signals	Detection of alarm and error signals				
Automatic return transmission on occurrence	LOS (Loss Of Signal)				
Line RDI, Path RDI	OOF (Out Of Frame)				
Line REI, Path REI	LOF (Loss Of Frame)				
Transmission on command	LOP (Loss Of Pointer)				
Line AIS, Path AIS	OCD (Out of Cell Delineation)				
Pseudo error generation frame transmission function	LOC (Loss Of Cell delineation)				
LOS generation frame	Line RDI, Path RDI				
OOF, LOF generation frame	Line AIS, Path AIS				
LOP generation frame	 Detection and indication of cause of quality 				
OCD, LCD generation frame	degradation				
B1 error generation frame	B1 error, B2 error, B3 error, Line REI, Path REI				
B2 error generation frame	Counters counting number of times of error generation				
B3 error generation frame	B1 byte error counter (16-bit width)				
	B2 byte error counter (20-bit width)				
	B3 byte error counter (16-bit width)				
	Line REI error counter (20-bit width)				
	Path REI error counter (16-bit width)				
	Reception side Frequency Justification processing				
	counter (12-bit width)				
	HEC error dropped cell counter (20-bit width)				
	FIFO overflow dropped cell counter (20-bit width)				
	Valid cell counter (20-bit width)				
1.0 Oudeview Information					

1.2 Ordering Information

Part Number µPD98404GJ-KEU Package 144-pin plastic QFP (fine pitch) (20 × 20)

1.3 System Configuration Example

An example of a system using the μ PD98404 is shown below.

 \star

ATM adapter card application

Hub (terminal side) application

16

CHAPTER 1 GENERAL

Phase-out/Discontinued

1.4

1.5 Pin Configuration

User's Manual S11821EJ5V0UM

Phase-out/Discontinued

CHAPTER 2 PIN FUNCTION

2.1 Pin Configuration

• 144-pin plastic QFP (fine pitch) (20 × 20) (Top View)

Pin Assignment

Number	Pin Name	Number	Pin Name	Number	Pin Name	Number	Pin Name
1	VDD	37	GND	73	VDD	109	GND
2	JCK	38	GND-SP	74	RxFP	110	GND
3	JDO	39	VDD-TPE	75	RCL	111	TDIO
4	JDI	40	TFKT	76	PMDALM	112	TDI1
5	JMS	41	TFKC	77	MSEL	113	TDI2
6	JRST_B	42	GND-TPE	78	MADD0	114	TDI3
7	TEST0	43	тсот	79	MADD1	115	TDI4
8	TEST1	44	TCOC	80	MADD2	116	TDI5
9	TEST2	45	VDD-TPE	81	MADD3	117	TDI6
10	PHYALM0	46	GND-TPE	82	MADD4	118	TDI7
11	PHYALM1	47	TDOT	83	MADD5	119	VDD
12	PHYALM2	48	TDOC	84	MADD6	120	TCLK
13	TFSS	49	VDD-TPE	85	UMPSEL	121	TENBL_B
14	TxFP	50	GND-RPE	86	GND	122	TSOC
15	TCL	51	RCIT	87	MD0	123	FULL_B/TCLAV
16	GND	52	RCIC	88	MD1	124	GND
17	TPD0	53	VDD-RPE	89	MD2	125	EMPTY_B/RCLAV
18	TPD1	54	RDIT	90	MD3	126	RSOC
19	TPD2	55	RDIC	91	MD4	127	RENBL_B
20	TPD3	56	GND-RPE	92	MD5	128	RCLK
21	TPD4	57	GND-CR	93	MD6	129	VDD
22	TPD5	58	VDD-CR	94	MD7	130	RDO0
23	TPD6	59	RPC	95	VDD	131	RDO1
24	TPD7	60	VDD	96	CS_B	132	RDO2
25	TPC	61	RPD0	97	DS_B/RD_B	133	RDO3
26	TFC	62	RPD1	98	R/W_B/WR_B	134	RDO4
27	VDD	63	RPD2	99	ACK_B/RDY_B	135	RDO5
28	REFCLK	64	RPD3	100	PHINT_B	136	RDO6
29	GND-CS	65	RPD4	101	RESET_B	137	RDO7
30	GND-CS	66	RPD5	102	GND	138	RADD0
31	AIN1	67	RPD6	103	TADD0	139	RADD1
32	VDD-CS	68	RPD7	104	TADD1	140	RADD2
33	VDD-CS	69	PSEL0	105	TADD2	141	RADD3
34	GND-CS	70	PSEL1	106	TADD3	142	RADD4
35	VDD-SP	71	GND	107	TADD4	143	GND
36	VDD	72	GND	108	VDD	144	GND

ACK_B	:	Read/write Cycle Receive	RDY_B	:	Ready Signal
		Acknowledge	REFCLK	:	System Clock
AIN1	:	External Filter Connection	RENBL_B	:	Receive Data Enable
CS	:	Chip Select	RESET_B	:	System Reset
DS_B	:	Data Strobe	RPC	:	Receive Parallel Data Clock
EMPTY_B	:	Output Buffer Empty	RPD0-RPD7	:	Receive Parallel Data
FULL_B	:	Buffer Full	RSOC	:	Receive Start Address of ATM Cell
GND	:	Ground	RxFP	:	Receive Frame Pulse
GND-RPE	:	Ground for Receive PECL buffer	R/W_B	:	Read/write Control
GND-CR	:	Ground for Clock Recovery Circuit	TADD0-TADD4	:	Transmit PHY Device Address
GND-CS	:	Ground for Clock Synthesis	TCL	:	Internal Transmit System Clock
GND-SP	:	Ground for Serial/Parallel Circuit	TCLAV	:	Transmit Cell Available
GND-TPE	:	Ground for Transmit PECL buffer	TCLK	:	Transmit Data Transferring Clock
JCK	:	JTAG Clock	TCOC	:	Transmit Clock Output Complement
JDI	:	JTAG Data Input	тсот	:	Transmit Clock Output True
JDO	:	JTAG Data Output	TDI0-TDI7	:	Transmit Data Input from the ATM Layer
JMS	:	JTAG Mode Select	TDOC	:	Transmit Data Output Complement
JRST_B	:	JTAG Reset	TDOT	:	Transmit Data Output True
MADD0-MADD6	:	Management Interface Address Bus	TENBL_B	:	Transmit Data Enable
MD0-MD7	:	Management Interface Data Bus	TEST0-TEST2	:	Test Mode Pin
MSEL	:	Management Interface Mode Select	TFC	:	Transmit Reference Clock
PHINT_B	:	Physical Interrupt	TFKC	:	Transmit Reference Clock Complement
PHYALM0-	:	PHY Alarm Detection	TFKT	:	Transmit Reference Clock True
PHYALM2			TFSS	:	Transmit Frame Set Signal
PMDALM	:	PMD Device Alarm	TPC	:	Transmit Parallel Data Clock
PSEL0, PSEL1	:	PMD Mode Select	TPD0-TPD7	:	Transmit Parallel Data
RADD0-RADD4	:	Receive PHY Device Address	TSOC	:	Transmit Start Address of ATM Cell
RCIC	:	Receive Clock Input Complement	TxFP	:	Transmit Frame Pulse
RCIT	:	Receive Clock Input True	UMPSEL	:	UTOPIA Multi-PHY Mode Select
RCL	:	Internal Receive System Clock	VDD	:	Supply Voltage for Logic Circuit
RCLAV	:	Receive Cell Available	VDD_RPE	:	Voltage Supply for Receive PECL buffer
RCLK	:	Receive Data Transferring Clock	VDD-CR	:	Voltage Supply for Clock Recovery Circuit
RD_B	:	Read Select	VDD-CS	:	Voltage Supply for Clock Synthesis
RDIC	:	Receive Data Input Complement	VDD-SP	:	Voltage Supply for Serial/Parallel Circuit
RDIT	:	Receive Data Input True	VDD_TPE	:	Voltage Supply for Transmit PECL buffer
RDO0-RDO7	:	Receive Data Output	WR_B	:	Write Select

2.2 Pin Function

2.2.1 PMD interface (1/3)

Pin Name	Pin No.	I/O Level	I/O	Function
RDIT	54	P-ECL True (+)	Ι	Receive serial data input pins. The input data is sampled with the recovered clock from the internal
RDIC	55	P-ECL Complement (–)	Ι	clock recovery PLL when PSEL[1:0] = "00". When PSEL[1:0] = "01", the data is sampled with the clock input to RCIT/RCIC.
RCIT	51	P-ECL True (+)	I	Receive serial clock input pins (155.52 MHz). When PSEL[1:0] = "01", these pins are used as the receive clock.
RCIC	52	P-ECL Complement (–)	Ι	
TDOT	47	P-ECL True (+)	0	Transmit serial data output pins. Data is output from these pins in synchronization with the rising of serial
TDOC	48	P-ECL Complement (–)	0	clock TCOT.
тсот	43	P-ECL True (+)	0	Transmit serial clock output pins (155.52 MHz). The clock generated by the internal synthesizer PLL is output as the transmit clock when PSEL[1:0] = "00". When PSEL[1:0] = "01", the clock input to TFKT/TFKC is output.
тсос	44	P-ECL Complement (–)	0	the receive clock for output. Even in such a case, this pin outputs the clock of the internal synthesizer or the clock input to the TFKT/TFKC pin in accordance with the setting of the PSEL[1:0] pins. It does not output the receive recovery clock.
TFKT	40	P-ECL True (+)	Ι	Transmit serial clock input pins (155.52 MHz). When PSEL[1:0] = "01", these pins are used as the transmit clock.
TFKC	41	P-ECL Complement (–)	I	
RPD0- RPD7	61-68	TTL	Ι	Receive parallel data input pins. These pins input receive data when PSEL[1:0] = "1X". The data input to these pins is sampled in synchronization with the rising of receive parallel clock RPC.
RPC	59	TTL	I	Receive parallel clock input pin (19.44 MHz). In the parallel mode when PSEL[1:0] = "1X", this pin is used to input a clock (19.44 MHz) synchronized with a receive data.
TPD0-TPD7	17-24	TTL	0	Transmit parallel data output pins. In the parallel mode when PSEL[1:0] = "1X", transmit data is output from these pins in synchronization with the rising of PC.
TPC	25	TTL	0	Transmit parallel clock output pin. When PSEL[1:0] = "1X", the clock (19.44 MHz) input to TFC is output.
TFC	26	TTL	I	Transmit parallel clock input pin. In the parallel mode when PSEL[1:0] = "1X", this pin is used to input the transmit clock (19.44 MHz). If the TxCL bits [1:0] of the MDR1 register are set to 10 in the serial mode with PSEL[1:0] = "00", input the 19.44 MHz source clock of the internal clock synthesizer PLL.

2.2.1 PMD interface (2/3)

Pin Name	Pin No.	I/O Level	I/O	Function
REFCLK	28	TTL	I	Reference clock input. Inputs the system clock (19.44 MHz) to the internal clock recovery/synthesizer. Always input this clock.
PSEL0, PSEL1	69, 70	TTL	I	 PMD interface mode select input. Selects the mode of the PMD layer interface. PSEL[1:0] = 00: Serial mode. The clock generated by the internal clock recovery & synthesizer PLL is used for transmission/reception. 01: Serial mode. An external clock is input to RCIT/RCIC TFKT/TFKC for transmission/reception. 1x: Parallel mode. The clock input to RPC & TFC is used.
AIN1	31	Analog	I/O	Pin for connecting a loop filter for internal synthesizer PLL. Leave open.
PMDALM	76	TTL	I	PMD layer alarm signal input. The signal level of this pin is reflected in a state bit in an internal register, and a change in that bit can be used as an interrupt source. Input the state signal of a peripheral device to this pin. Input to this pin can be added as a condition of detecting the LOS error according to the setting of the PMD bit of the IACM register. For details, refer to 3.5 Alarm Report Pins (PHYALM[2:0], PMDALM) .
PHYALM0- PHYALM2	10-12	TTL	0	PHY layer alarm detection signal output. These signals report the detection of the internally monitored errors (PMDALM, CMDARM, LOS, OOF, LOF, LOP, OCD, LCD, Line AIS, Path AIS, Line RDI, Path RDI). One error or two or more errors ORed can be output to one of these pins. The errors to be reported can be selected by using the internal AMPR, AMR1, and AMR2 registers. For details on use, refer to 3.5 Alarm Report Pins (PHYALM[2:0], PMDALM) in <i>μ</i> PD98404 User's Manual (S11821E) .
RxFP	74	TTL	0	Reception-side frame pulse output pin (8 kHz). Outputs a pulse signal with a width of one clock cycle in synchronization with the RCL clock.
TxFP	14	TTL	0	Transmission-side frame pulse output pin (8 kHz). Outputs a pulse signal with a width of one clock cycle in synchronization with the TCL clock.
TFSS	13	TTL	I	Transmit frame output disable signal input. When this signal goes high, output of the transmit frame is stopped; when it goes low, transmission is started from the beginning of the frame. The μ PD98404 samples this signal at the rising of the TCL clock. Transmission frame output is resumed after the TCL clock has risen for the 9th time after the rising edge at which the high level of this signal was last detected.
RCL	75	TTL	0	Reception side internal system clock output (19.44 MHz). This pin outputs the receive clock divided by eight. The source receive clock differs depending on the mode selected (clock generated by the internal clock recovery or clock supplied from the RCIT/RCIC or RFC pin). Clock output from this pin is stopped while the device is being reset.

 \star

2.2.1 PMD interface (3/3)

Pin Name	Pin No.	I/O Level	I/O	Function
TCL	15	TTL	0	Transmission side internal system clock output (19.44 MHz). This pin outputs the transmit clock divided by eight. The source transmit clock differs depending on the mode selected (clock generated by the internal synthesizer or clock supplied from the TCIT/TCIC or TFC pin). Clock output from this pin is stopped while the device is being reset.

2.2.2 ATM layer interface (1/2)

Pin Name	Pin No.	I/O Level	I/O	Function
RDO0- RDO7	130-137	TTL	O (2-/3-state)	Receive data output pins. These pins form an 8-bit data bus to output receive data to an ATM layer device. Data is output in synchronization with the rising of the RCLK clock. These pins operate in 2-state or 3-state mode in accordance with the UTOPIA interface mode.
RCLK	128	TTL	I	Receive clock input pin. Inputs a clock for receive data transfer. A clock of up to 40 MHz is input.
RSOC	126	TTL	O (2-/3-state)	Receive cell start position signal output pin. Outputs a signal that indicates the position of the first byte of a receive cell. This pin operates in 2-state or 3-state mode in accordance with the UTOPIA interface mode.
RENBL_B	127	TTL	I	Receive enable signal input pin. Inputs a signal that indicates that the ATM layer is ready to accept receive data.
EMPTY_B/ RCLAV	125	TTL	O (2-/3-state)	Receive FIFO data transfer disable signal output or receive FIFO cell data transfer enable output pin. This pin operates in two ways depending on the selected mode of the UTOPIA interface. EMPTY_B indicates that no byte of receive data to be transferred to the ATM layer exists in the receive FIFO. RCLAV indicates that 1 or more bytes to be transferred to the ATM layer exist in the receive FIFO.
RADD0- RADD4	138-142	TTL	I	Reception-side PHY address input pins. These pins input an address to select a PHY layer device in the multi- PHY mode.
TDI0-TDI7	111-118	TTL	I	Transmit data input pins. These pins form an 8-bit data bus that inputs the transmit data. Data is input in synchronization with the rising of the TCLK clock.
TCLK	120	TTL	I	 Transmit clock input pin. Inputs a clock for transmit data transfer. A clock of 20 to 40 MHz is input. Caution The μPD98404 also uses this clock as the system clock of the management interface block. Therefore, always input a clock of 20 MHz or higher.
TSOC	122	TTL	I	Transmit cell start position output pin. This pin inputs a signal that indicates the position of the first byte of a transmit cell input to the μ PD98404.
TENBL_B	121	TTL	I	Transmit enable input pin. Inputs a signal that indicates that an ATM layer device outputs valid transmit data to TDI0 through TDI7.

2.2.2 ATM layer interface (2/2)

Pin Name	Pin No.	I/O Level	I/O	Function
FULL_B/ TCLAV	123	ττι	O (2-/3-state)	Transmit FIFO data transfer disable signal output or transmit FIFO cell data transfer enable output pin. This pin operates in two modes depending on the mode of the UTOPIA interface. FULL_B indicates that there is no vacant area available in the transmit FIFO that receives data transferred from the ATM layer. TCLAV indicates that one cell or more of vacant area is available in the transmit FIFO to store the data transferred.
TADD0- TADD4	103-107	TTL	I	Transmission-side PHY address input pin. Inputs an address to select a PHY layer device in the multi-PHY mode.
UMPSEL	85	TTL	I	Multi-PHY mode select signal input. High : Multi-PHY mode. When a high level is input to this pin, the multi-PHY mode is selected. Low : Single PHY mode.

2.2.3 Management interface (1/2)

Pin Name	Pin No.	I/O Level	I/O	Function
MSEL	77	TTL	I	 Management interface mode select signal input pin. The mode of the management interface changes depending on the input level to this pin. MSEL=: Selects <rd_b, rdy_b="" wr_b,=""> as pin function.</rd_b,> Selects <ds_b, ack_b="" r="" w_b,=""> as pin function.</ds_b,>
MADD0- MADD6	78-84	TTL	I	Address input pins. These pins form an address bus that inputs the addresses of the internal registers of the $\mu PD98404.$
MD0-MD7	87-94	TTL	I/O (3-state)	8-bit data bus. This data bus reads or writes the data of the internal registers of the μ PD98404.
CS_B	96	TTL	I	Chip select signal input pin. When this pin goes low, access to the internal registers is enabled.
DS_B/ RD_B	97	TTL	I	Data strobe signal input or read signal input pin. This pin has two functions: DS_B and RD_B. The function to be used depends on the mode selected by the MSEL pin. MSEL = 0: Data strobe signal DS_B MSEL = 1: RD_B that selects a read access.

2.2.3 Management interface (2/2)

Pin Name	Pin No.	I/O Level	I/O	Function
R/W_B/ WR_B	98	TTL	Ι	Read/write signal input or write signal input pin. This pin has two functions: R/W_B and WR_B. The function to be used depends on the mode selected by the MSEL pin. MSEL = 0: Read/write control signal R/W_B, as follows: R/W_B=: High level: Read cycle Low level : Write cycle MSEL = 1: WR_B that selects write access to the internal registers.
ACK_B/ RDY_B	99	TTL	O (3-state)	Data acknowledge signal output or ready signal output. This pin has two functions: ACK_B and RDY_B. The function to be used depends on the mode selected by the MSEL pin. MSEL = 0: Data strobe signal ACK_B MSEL = 1: Read access select signal RDY_B
PHINT_B	100	TTL	0	Interface interrupt signal output pin. This reports to the host that an interrupt has been generated by making it low active.
RESET_B	101	πι	Ι	System reset signal input pin. Initializes the μ PD98404. Input a low-level pulse at least 1 μ s wide. Particularly on power application, this pulse width must be maintained after the level of the supply voltage has reached 90% of the rated value. When the RESET_B signal is input, the following clock must be input in accordance with the mode of the PMD interface. In serial mode : TCLK/RCLK clock In parallel mode : All TCLK/RCLK and TFC/RPC clocks

2.2.4 JTAG boundary scan

Pin Name	Pin No.	I/O Level	I/O	Function
JDI	4	TTL	I	Boundary scan data input. Ground this pin when not used.
JDO	3	TTL	O (3-state)	Boundary scan data output. Open this pin when not used.
JCK	2	TTL	I	Boundary scan clock input. Ground this pin when not used.
JMS	5	TTL	Ι	Boundary scan mode select signal input. Ground this pin when not used.
JRST_B	6	TTL	I	Boundary scan reset signal input. Ground this pin when not used.

Remark Processing of JTAG boundary scan pins not used (during normal operation)

The reason that the JRST_B pin is grounded when it is not used (during normal operation) is to better prevent malfunctioning of the JTAG logic. The JTAG pin may be also processed in either of the following ways:

 Reset the JTAG logic without using the JRST_B pin Reset the JTAG logic by using the JMS and JCK pins and keep it in the reset status (the JRST_B pin is pulled up).

Fix the JMS pin to 1 (pull up) and input 5 clock cycles or more to the JCK pin.

• Reset the JTAG logic by using the JRST_B pin

Input a low pulse of the same width as RESET_B of the μ PD98404 to the JRST_B pin. If both the JMS and JRST_B pins are pulled up and kept high, the JTAG logic is not released from the reset status. Therefore, the normal operation is not affected. Fix the input level of the JDI and JCK pins by pulling them down or up.

2.2.5 Internal test pin

Pin Name	Pin No.	I/O Level	I/O	Function
TEST0- TEST2	7-9	TTL	I	These pins are used to test the μPD98404. Usually, ground all these pins. TEST[2:0] = "000" : Normal operation TEST[2:0] = Other than "000": Test mode

2.2.6 Power supply and ground

Pin Name	Pin No.	I/O	Function
VDD	1, 27, 36, 60, 73, 95, 108, 119, 129	—	General-purpose logic power supply (+3.3 V \pm 0.15 V) and ground.
GND	16, 37, 71, 72, 86, 102, 109, 110, 124, 143, 144		
VDD-TPE	39, 45, 49	_	Output PECL I/O power supply (+3.3 V \pm 0.15 V) and ground.
GND-TPE	42, 46		noise on this power supply pin affects the jitter characteristics. Prevent noise by using a filter.
VDD-RPE	53	—	Input PECL I/O power supply (+3.3 V± 0.15 V) and ground.
GND-RPE	50, 56		Noise on this power supply pin affects the jitter characteristics. Prevent noise by using a filter.
VDD-SP	35	_	Serial/parallel block power supply (+3.3 V \pm 0.15 V) and ground.
GND-SP	38		noise on this power supply pin affects the jitter characteristics. Prevent noise by using a filter.
VDD-CS	32, 33	—	Clock synthesizer PLL block power supply (+3.3 V \pm 0.15 V) and
GND-CS	29, 30, 34		ground. Noise on this power supply pin affects the jitter characteristics. Prevent noise by using a filter.
VDD-CR	58	—	Clock recovery PLL block power supply (+3.3 V \pm 0.15 V) and ground.
GND-CR	57	_	noise on this power supply pin affects the jitter characteristics. Prevent noise by using a filter.

2.3 Processing of Unused Pins

Pin	Processing of Unused Pins
Each input pin at level other than P-ECL	Connect to ground (parallel input pin in serial mode) RPD0 through RPD7, RPC, TFC (Multi-PHY pins in single PHY mode) TADD0 to TADD4, RADD0 through RADD4 (others) TFSS (essential)
Each input pin at P-ECL level	Pull up True(+) pins (TFKT, RCIT, RDIT) to 3.3 V. Connect Complement(–) pins (TFKC, RCIC, RDIC) to ground.
Output pin	Leave open. (Parallel input pins in serial mode) TPD0 to TPD7 TPC (others) TxFP, RxFP, TCL, RCL
Output pin at P-ECL level	Leave open. TDOT, TDOC, TCOT, TCOC
AIN1	Leave Open. Because noise on this pin affects the characteristics of the internal PLL, do not wire a clock line in the vicinity.

CHAPTER 3 FUNCTIONAL OUTLINE

The major functions of the μ PD98404 are to insert an ATM cell received from the ATM layer into a 155 Mbps SONET STS-3c/SDH STM-1 frame and output the cell to the circuit, or to receive the ATM cell from a receive SONET/SDH frame and output the cell to the ATM layer.

Figure 3-1 outlines the formats of an ATM cell (user-network interface) and a STS-3c frame.

Figure 3-1. Structure of ATM Cell (user-network interface (UNI))

GFC: Generic Flow Control, PTI: Payload Type Identifier VPI: Virtual Path Identifier, CLP: Cell Priority VCI: Virtual Channel Identifier, HEC: Header Error Control

Phase-out/Discontinued

Figure 3-2. Outline of Frame Format (2/2)

Path Overhead (POH)

) (

: Transmitter side default value (H)

Byte area automatically inserted/verified by μ PD98404

: Byte area that can be read or written by register access

Byte area some bits of which can be changed by register write.

(Only SS bit of H1 byte can be rewritten.)

(Bits 1 through 5 of K2 byte can be rewritten.)

Byte area that cannot be read or written Unused byte area. Insert 00H to this area.

A1, A2: Framing J0 : Section trace Z0 : Spare : BIP-8 B1 E1 : Order wire F1 : User channel D1-D3: Data communication channel Z2 H1, H2: Pointer

: Pointer action

B2	:	BIP-24
	•	

K1

S1

Z1

M1

E2

: Protection switching channel B3

- K2 : Section alarm indication
- D4-D12: Data communication channel G1
 - : Synchronization status

: Spare

- : Spare
- : Error indication
- : Order wire

: Path trace

J1

C2

F2

- : Path BIP-8
- : Signal label
- : Error indication, path status
- : Path user channel
- H4 : Position indicator
- Z3-Z5: Spare

H3

3.1 Transmission Function

The transmission function of the μ PD98404 inserts an ATM cell received from an ATM layer device into a SONET STS-3c/SDH STM-1 frame, and outputs the cell to the PMD interface. This section explains the frame transmission function of the μ PD98404 mainly based on the flow of processing.

On power application, the μ PD98404 starts operation in the mode determined by the default value of each mode register, and transmits STS-3c frames until the setting of the mode register is changed. At this time, the μ PD98404 inserts idle cells (vacant cells) in the frames until it receives an ATM cell from an ATM layer device.

The μ PD98404 processes transmit data in the following sequence:

(1) Cell data reception from ATM layer device

The μ PD98404 receives 53 byte length cell data from an ATM layer device via the ATM layer interface and stores the data in the transmit FIFO. The transmit FIFO has a capacity of about 7 cells (384 bytes) and has a buffer function to adjust the rate between the ATM layer and PMD.

If there is a period during which no cell data is sent from the ATM layer and if the transmit data in the FIFO is 1 cell or less, vacant cell is inserted in the frame. The vacant cell to be inserted is in the idle cell format in the default mode. However, its format can be changed to the unassigned cell format by setting the idlenb bit of the mode register 2 (MDR2). Figure 3-3 shows these formats. For the details of the ATM layer interface, refer to **4.1 ATM Layer Interface**.

	Header: 5 bytes				Payload: 48 bytes					
	1	2	3	4	5	1	2		47	48
Idle cell	00H	00H	00H	01H	52H	6AH	6AH		6AH	6AH
Unassigned cell	00H	00H	00H	00H	55H	00H	00H		00H	00H

Remark If cells in the idle cell or unassigned cell format are input to the ATM layer interface at the transmitter side of the μ PD98404, the μ PD98404 handles them in the same manner as normal valid data, maps them to a frame and outputs the frame to the circuit side. It does not internally discard the cells.

(2) Generation of HEC

CRC operation is performed on the high-order 4 bytes of the 5 bytes of the header of an ATM cell. The value resulting from the operation plus "55H" is overwritten to the fifth byte position of the ATM header to carry out HEC (Header Error Check).

Polynomial G (X) = $X^{8} + X^{2} + X + 1$

Remark The μPD98404 does not check the content of the fifth byte (position of HEC) from the beginning of the cell data input from the ATM layer device, or does not internally use the content. Because the value of the calculated HEC is overwritten to this byte area, the ATM layer device must insert a dummy byte such as ""00H" into this area.

(3) Scramble of ATM cell

The data of an ATM is scrambled by using the following polynomial. The range of scramble is limited to the payload of the ATM cell.

Polynomial G (X) = $X^{43} + 1$

The user can select a scramble stop mode for the purpose of testing. The scramble stop mode is set by the CSCRM bit of mode register 3 (MDR3).

(4) Generation of frame

SONET frame format is generated by multiplexing the overhead information on successive ATM cells. The μ PD98404 generates H1, H2, H3, K2, Z2, G1, A1, and A2 bytes as frame overhead information, links these bytes with the payload. For the format of the frame, refer to **Figure 3-2. Outline of Frame Format**.

(a) AU pointer and generation of byte information

The transmit frame sent out by the μ PD98404 does not change the position of POH (Path Overhead). Nor is the position of the J1 byte changed. Therefore, the pointer value to be assigned to the H1 and H2 bytes is always 20AH = "1000001010", and NDF is fixed to "0110" (disable). The SS bits, which are the fifth and sixth bits of the H1 byte, are "00" as default assumption. These bits can be changed by setting the SS bit table of the MDR1 register.

Because the transmitter side does not request Frequency Justification (stuff operation), no data is stored in the H3 bytes that are used as de-stuff bytes.

Figure 3-5. Format of AU Pointer (H1 through H3 bytes)

Phase-out/Discontinued

Remark	NDF :	New Data Flag. Enable or disable command when the pointer value is changed. The μ PD98404 does not change the pointer value (disable).
	SS bit :	Indicates the type of the virtual container. Insert the bit stored in the SS
		table of MDR1. The default value is "00".
	Pointer :	Indicates the position of the first byte J1 of POH and indicates Frequency
		Justification (stuff operation).
		I (Increment bit) : Positive Justification (positive stuff) operation request
		D (Decrement bit) : Negative Justification (negative stuff) operation request
	Concatenation indication :	Indicates concatenation

Concatenation indication : Indicates concatenation.

H1 through H3 Bytes of Transmit Frame

	H1 Byte	H2 Byte	H3 Byte
1st	0110 <u>SS</u> 10	0000 1010	0000 0000
2nd	1001 <u>SS</u> 11	1111 1111	1111 1111
3rd	1001 <u>SS</u> 11	1111 1111	1111 1111

Insert registers are available for bytes J0, Z0, F1, K1, K2, F2, C2, and H4 of the byte information of the overhead. Any value can be stored and transmitted by setting the insert register. The μ PD98404 transmits the default value unless changed.

(b) Transmit BIP generation

The µPD98404 performs a BIP (Bit Interleaved Parity) operation on the transmit data, and inserts the result of the operation to the positions equivalent to the B1, B2, and B3 bytes of the next transmit overhead data. For details, refer to 3.3.1 (2) Functions related to monitoring circuit quality on transmission side.

(5) Scramble of frame

The frame to be transmitted is scrambled with the polynomial below. The entire range of the STS-3c/SDH STM-1 frame, except the 9 bytes from the beginning "A1 (1), A1 (2), A1 (3), A2 (1), A2 (2), A2 (3), C1 (1), C1 (2), C1 (3)", is scrambled.

Polynomial G (X) = $1 + X^6 + X^7$

The user can select a scramble stop mode for the purpose of testing. The scramble stop mode is selected by the FSCRM bit of mode register 3 (MDR3).

(6) Output from PMD interface

The PMD interface converts data into an 8-bit parallel string or serial data string for output. The user can select the serial or parallel interface mode and the use of the transmit clock synthesizer PLL by using the PSEL[1:0] pins.

For the details of the PMD interface, refer to 4.2 PMD Interface.

3.2 Reception Function

The reception function of the μ PD98404 extracts an ATM cell from the frame received from the PMD interface, and outputs cell to an ATM layer device by outputting it to the ATM interface.

Figure 3-6. Outline of μ PD98404's Frame Reception Function

After power application, the μ PD98404 immediately starts receiving a frame in the default operation mode. This section explains the reception function of the μ PD98404 mainly based on the flow of processing. The μ PD98404 processes receive data in the following sequence:

(1) Frame reception

The μ PD98404 receives the data stream of the frame from the PMD interface. In the serial interface mode, the μ PD98404 samples the data signal input to the RDIC/RDIT pin with the receive clock generated by the internal clock recovery or the clock synchronized with the data input to the RCIC/RCIT pin.

In the parallel interface mode, the μ PD98404 samples the data signals input to the RPD0 through RPD7 pins with the synchronization clock input to the RPC pin. The serial or parallel interface mode and the use of the receive clock recovery PLL is selected by using the PSEL[1:0] pins.

For the details of the PMD interface, refer to 4.2 PMD Interface.

(2) Synchronization of receive frame

The μ PD98404 monitors the bit string of the receive data if frame synchronization is not established. If the synchronization pattern of bytes A1 and A2 (6 bytes) is detected in a bit string, the bit string at the position of bytes A1 and A2 of the next frame is checked. If the bit string in bytes A1 and A2 has the same synchronization pattern, the frame synchronization (In frame) status is established.

Frame Synchronization Byte			
A1	11110110 (F6H)		
A2	00101000 (28H)		

Table 3-1. Synchronization Pattern

Even in the frame synchronization status, the μ PD98404 always monitors the A1 and A2 byte positions (6 bytes) of the receive frame. If four or more frames having a pattern different from the patterns of the A1 and A2 bytes are received at the positions of the A1 and A2 bytes in succession, the μ PD98404 enters the frame non-synchronization (Out of Frame) status.

If the OOF status continues for 3 ms, the LOF (Loss Of Frame) status takes place. LOF is cleared if frame synchronization status continues for 3 ms.

(3) Descramble of receive frame

After synchronization has been established, the received frame is descrambled with the polynomial shown below. The entire range of the frame, except the 9 bytes from the beginning, "A1 (1), A1 (2), A1 (3), A2 (1), A2 (2), A2 (3), C1 (1), C1 (2), C1 (3)" is descrambled.

Polynomial G (X) = $1 + X^6 + X^7$

The user can select a descramble stop mode for the purpose of testing. The descramble stop mode is selected by the FSCRM bit of mode register 3 (MDR3).

(4) Pointer processing

Frame descramble detects the pointer that indicates the first J1 byte address in the received data string to extract the payload area, and updates the pointer each time a frame has been received.

If the pointer cannot be updated, the LOP (Loss Of Pointer) status occurs. Path AIS is also detected from the H1 and H2 bytes of SOH.

Figure 3-7. Pointer Status Transition

Normal status : The received pointer is normal and reception is performed normally. Path-AIS status : An error occurred in an upstream unit or transmission path, and reception is not performed normally.

LOP status : The received pointer value is abnormal and reception is not performed normally.

	Transition	Condition
а	Normal \rightarrow Normal	NDF Disable + Same valid pointer three times in a row
b		NDF Enable + Valid pointer
С		Positive justification/negative justification
d	$Normal \to LOP$	Eight pointers other than valid pointer in a row
е		Eight NDF Enables in a row
f	Normal \rightarrow Path-AIS	H1 and H2 bytes are all "1" three times in a row.
g	$LOP \to Normal$	NDF Disable + Same valid pointer three times in a row
h	$LOP \to Path\text{-}AIS$	H1 and H2 bytes are all "1" three times in a row.
i	$Path\text{-}AIS\toNormal$	NDF Disable + Same valid pointer three times in a row
j		NDF Enable + Valid pointer
k	Path-AIS \rightarrow LOP	H1 and H2 bytes are not all "1" and eight pointer values in a row that do not satisfy the above conditions i and j.

(5) Reception Frequency Justification (stuff operation)

Frequency Justification (stuff operation) is detected and the following operation is performed if three or more bits of the I/D bits (5 bits) are inverted during pointer processing (refer to **Figure 3-5 Format of AU Pointer (H1 through H3 bytes**).

Positive Justification (positive stuff) :	The byte at pointer address 0 is not received as payload data if it is
	detected that three or more bits of I bits are inverted.
Negative Justification (negative stuff) :	The H3 byte area is received as payload data if it is detected that three
	bits or more of the D bits are inverted.

(6) Cell synchronization

The boundary of cells is detected to extract an ATM cell from the area excluding the overhead in the frame. The status in which the boundary is correctly detected and the cell can be extracted is called cell synchronization status. The cell boundary is detected by HEC (header error check) processing included in the header of a cell as shown in the status transition in Figure 3-8. The number of protection stages is 7 forward and 6 backward.

Figure 3-8. Cell Synchronization Status Transition

- In the hunting status, whether an HEC error has occurred is checked. Once HEC has been satisfied and HEC without an error has been detected, the preceding synchronization status is established.
- In the preceding synchronization status, reception is repeated until HEC without an error is detected six times in a row. If an HEC error is detected, the hunting status is set again.
- In the cell synchronization status, it is judged that cell synchronization is no longer established if a HEC error is detected seven times in a row, and the hunting status is set again.
- Whether cell synchronization is established or not is indicated by the OCD (Out of Cell Delineation) bit of the ACR register.

Table 3-2. OCD Bit

Status	OCD Bit
HUNT/PRESYNC status	1
SYNC status	0

 If the OCD status lasts for 4 ms, the LCD (Loss of Cell Delineation) status occurs. LCD is cleared if the cell synchronization status lasts for 4 ms.

(7) HEC error detection/correction

HEC errors are detected and corrected while cell synchronization is established.

- An error of only 1 bit is corrected in the correction mode and then the detection mode is set.
- HEC errors are continuously monitored in the correction mode. If errors are detected seven times, the status is changed from the cell synchronization status to the hunting status.
- Cell header error control differs depending on the setting of the HECENB and CORENB bits of mode register 3 (MDR3).

With the μ PD98404, the HEC check processing in the cell synchronization status can be changed as follows by using the HECENB and CORENB bits of the MDR3 register.

HECENB	CORENB	Current Mode	Event	Processing	New Mode
Co		Correction mode	No error	_	Correction mode
			1-bit error detection	Error correction	Detection mode
	0		Multiple bit error detection	Cell dropped	Detection mode
		Detection mode	No error		Correction mode
			1-bit error detection	Cell dropped	Detection mode
0			Multiple bit error detection	Cell dropped	Detection mode
		Correction mode	No error		Correction mode
			1-bit error detection	Cell dropped	Detection mode
	1		Multiple bit error detection	Cell dropped	Detection mode
		Detection mode	No error	_	Correction mode
			1-bit error detection	Cell dropped	Detection mode
			Multiple bit error detection	Cell dropped	Detection mode
		Correction mode	No error	_	Correction mode
			1-bit error detection	—	Detection mode
1	x		Multiple bit error detection	—	Detection mode
		Detection mode	No error		Correction mode
			1-bit error detection		Detection mode
			Multiple bit error detection	_	Detection mode

Table 3-3. HEC Error Correction Mode

(8) Descramble of ATM cell

In the cell synchronization status, the data of the ATM cell is descrambled by the following polynomial. The range of descramble is limited to the payload of the ATM cell.

Polynomial G (X) = $X^{43} + 1$

The user can select a descramble stop mode for the purpose of testing. The descramble stop mode is selected by the CSCRM bit of mode register 3 (MDR3).

(9) Dropping idle cell (vacant cell)

The μ PD98404 drops an ATM cell whose high-order 4 bytes are "00 00 00 01H" as an idle cell.

(10) Unassigned cell dropping mode

After power application, the μ PD98404 passes an unassigned cell, as default operation, with the high-order 4 bytes of its ATM header being "00 00 00 00H" to the ATM layer as a valid cell when it has received such a cell. The μ PD98404 also has a mode in which this unassigned cell is dropped if received. To use the μ PD98404 in the unassigned cell dropping mode, set the CLP bit of both DCHPR and DCHPMR registers.

(a) Functions of DCHPR and DCHPMR registers

The CLP field of a receive cell with VPI/VCI fields all at 0 is compared with the contents of the DCHPR register. If this field coincides with the register contents, the cell is dropped. DCHPMR is a register that masks a bit to be compared. If the CLP bit of this register is set to "1", the field of the receive cell is not compared with the CLP bit of DCHPR.

\star

Table 3-4. Example When CLP Bit Is Used

DCHPR	DCHPMR	Cells Dropped
01	00	Drops idle cells (default mode)
00	00	Drops unassigned cells
00	01	Drops idle cells and unassigned cells

(11) Output of ATM cell from ATM layer interface

★ The ATM cell is stored to a receive FIFO with a capacity of about 4 cells (256 bytes) to adjust the rate with the ATM layer interface. The ATM cell is always output to an ATM layer device via the ATM layer interface. For the details of the ATM layer interface, refer to 4.1 ATM Layer Interface.

3.3 OAM Information Control Function

The μ PD98404 has an OAM (Operation And Maintenance) function to maintain and monitor the network. This section explains the OAM functions supported by the μ PD98404.

3.3.1 Transmission OAM control

(1) Transmitting alarm

Alarm is written to a specific overhead area of the transmit frame and transmitted.

Table 3-5.	Transmitting	Alarm
------------	--------------	-------

Alarm	Transmission Method	
Line AIS/Path AIS	Transmitted/cleared by command	
Line RDI Path RDI	 Transmitted/cleared by command Automatically transmitted by occurrence of internal problem (automatic transmission can be masked) 	
Line REI/Path REI	Automatically generated and transmitted internally	

(a) Transmitting Line AIS (Line Alarm Indication Signal)

Line AIS is a line alarm indication signal that detects a failure in the upstream and sends an alarm to the downstream during relaying.

The μ PD98404 changes the sixth through eighth bits of the K2 byte of the transmit frame to "111" and sets the bits in all the areas of POH and payload (before scramble) to "1" for transmission if the LAIS bit of command register 1 (CMR1) is set to 1. Whether Line AIS is transmitted or cleared is determined by the user.

Transmission overhead: K2 byte (6th through 8th bits) = 111 and areas of POH and payload = 1Transmission/clearing condition:Transmission or clearing is controlled by the host by setting the LAIS bit of
the command register 1 (CMR1).

(b) Transmitting Path AIS (Path Alarm Indication Signal)

Path AIS is a path far-end reception failure information that is reported to the downstream when a failure is detected in the upstream and alarm is issued during relaying.

The μ PD98404 changes all the bits of the overhead H1, H2, and H3 bytes of the transmit frame to "1" and all the bits in the SPE area (before scramble) to "1" for transmission if the PAIS bit of command register 1 (CMR1) is set to 1.

Transmission overhead: H1 through H3 bytes = all "1" & SPE bit area = all "1"Transmission/clearing condition:Transmission/clearing is controlled by the host by setting the PAIS bit of
command register 1 (CMR1).

Line RDI is a signal that reports detection of a line receive failure (LOS, LOF, or Line AIS) to a unit in the upstream. The μ PD98404 sets the sixth through eight bits of overhead K2 byte of the transmit frame to "110" for transmission if the LRDI bit of command register 1 (CMR1) is set to 1. It also automatically transmits these bits when an internal problem (occurrence of LOS, LOF, or Line AIS) is detected. This automatic transmission due to occurrence of an internal problem can be masked by the IACM register.

Phase-out/Discontinued

Transmission overhead :	K2	byte (6th through 8th bits) = 110
Transmission/clearing condition:	•	Setting by command register
	•	Automatic transmission/clearing by occurrence of the following internal
		actions (can be masked by command register)
		Detection/clearing of LOF
		Detection/clearing of LOS
		Detection/clearing of Line AIS

Caution If the μ PD98404 is used in the mode in which the PSEL[1:0] pins = 01 (serial mode in which the externally supplied RCIT/RCIC and TFKT/TFKC clocks are used as transmit/receive clocks), the μ PD98404 does not automatically transmit Line-RDI even if LOS, LOF, or Line-AIS is detected at the receiver circuit side, unless the receive clock is input to the RCIT/RCIC pin. This is because the automatic transmitter circuit of Line-RDI needs part of the receive clock. Therefore, be sure to input the receive clock when using the Line-RDI automatic detection function in the mode in which the PSEL[1:0] pins = 01.

(d) Transmitting Path RDI (Path Remote Detect Indication)

Path RDI is a signal that reports detection of a path receive failure (LOS, LOF, Line AIS, LOP, LCD, or Path AIS) to a unit in the upstream. The μ PD98404 sets the fifth bit of the overhead G1 byte of the transmit frame to "1" for transmission if the PRDI bit of the command register 1 (CMR1) is set to 1. It also automatically transmits this bit if an internal problem (occurrence of LOS, LOF, Line AIS, LOP, LCD, or Path AIS) is detected. This automatic transmission due to occurrence of an internal problem can be masked by the IACM register.

Transmission overhead :	G1	byte (5th bit) = 1	
Transmission/clearing condition:	•	Setting by command register	
	•	Automatic transmission/clearing by	v occurrence of the following internal
		actions (can be masked)	
		Detection/clearing of LOF	Detection/clearing of LCD
		Detection/clearing of LOS	Detection/clearing of Line AIS
		Detection/clearing of LOP	Detection/clearing of Path AIS

(2) Functions related to monitoring circuit quality on transmission side

(a) Bit Interleaved Parity (BIP)

B1 byte (Section BIP-8):

BIP-8 operation is performed on all the frame data (data after scramble) except the first line of SOH (Section Overhead) of the transmit frame, BIP-8 operation is performed on a specific area, and the result of the operation is inserted in the B1 byte of the transmit frame and transmitted.

B2 byte (Line BIP-24):

BIP-24 operation is performed on all frame data (data before scramble) except the first, second, and third lines of SOH one frame before, and the result of the operation is inserted to the B2 byte of the next transmit frame and transmitted.

B3 byte (Path BIP-8):

BIP-8 operation is performed on all the payload data (data before scramble), and the result of the operation is inserted to the B3 byte of POH (Path Overhead) of the next transmit frame and transmitted.

. BIP operation range B3: BIP-8 operation result of preceding frame

(b) Detecting Line REI (Line Remote Error Indication)

Whether Line BIP-24 error has occurred is reported to a unit in the upstream. When the μ PD98404 detects a B2 error in the receive frame, it automatically stores the number of errors in the M1 byte (fourth through eighth bits) of the transmit frame and transmits the byte.

(c) Transmitting Path REI (Path Remote Error Indication)

Whether Path BIP-8 error occurs is reported to a unit in the upstream.

When the μ PD98404 detects a B3 error in the receive frame, it automatically stores the number of errors to the G1 byte (first through fourth bits) of the transmit frame and transmits the byte.

3.3.2 Reception OAM Control

(1) Detection of alarm and failure

The μ PD98404 sets the corresponding bit of the internal interrupt cause register if any of the following alarms or failures is detected, to report the occurrence of the alarm or failure to cause the host via an interrupt signal. The host can identify the alarm or failure that has occurred by reading the corresponding interrupt cause register. Each interrupt cause can be masked or unmasked. Detection of an alarm or failure can be reported cause using three PHYALM (2 through 0) output pins. Which alarm or failure is output to each PHYALM pin is specified by the AMPR, AMP1, and AMR2 registers.

Table 3-6. Alarm and Failure List (1/2)

PMD (PMD Layer Device) Alarm
Indicates that PMDALM pin goes high. Detection : Detects high level of the PMDALM pin Clear : Detects that PMDALM pin goes back low
LOS (Loss Of Signal)
 Receive signal lost status Detection : If a pattern of all 0s or all 1s is received for about 80 μs continuously or if the PMDALM pin goes high when the PMD bit of the IACM register = 0 Clear : If LOS condition is not detected for 125 μs or if the PMDALM pin goes low when the PMD bit of the IACM register = 0
OOF (Out Of Frame)
Frame non-synchronization Detection : If frame synchronization pattern (A1, A2) error of receive data is detected in four successive frames Clear : If frame synchronization pattern is detected in two successive frames
LOF (Loss Of Frame)
Loss of Frame Detection : If OOF status lasts for 3 ms Clear : If not OOF status lasts for 3 ms
LOP (Loss Of Pointer)
Pointer error detection Detection : Refer to 3.2 (4) Pointer processing. Clear : Refer to 3.2 (4) Pointer processing. If OOF is detected, LOP status is forcibly set.
OCD (Out of Cell Delineation)
Cell non-synchronization Detection : If cells having header in which error is detected as result of HEC check are received seven times continuously. OCD status is forcibly set if OOF, LOP, or PATH-AIS is detected. Clear : If cells having valid header are detected seven times continuously
LCD (Loss of Cell Delineation)
Cell non-synchronization detection Detection : If OCD status lasts for 4 ms Clear : If cell synchronization status lasts for 4 ms
Line AIS (Line Alarm Indication Signal)
Line alarm indication signal. Detects occurrence of Line AIS in unit of transmission source (upstream). Detection : If frames with overhead K2 byte (6th through 8th bits) being "111" are received five times continuously Clear : If frames with overhead K2 byte (6th through 8th bits) not being "111" are received five times continuously

Table 3-6. Alarm and Failure List (2/2)

Path AIS (Path Alarm Indication Signal)
Path alarm indication signal. Detects occurrence of Path AIS in unit of transmission source (upstream). Detection : Refer to 3.2 (4) Pointer processing. Clear : Refer to 3.2 (4) Pointer processing.
Line RDI (Line Remote Defect Indication)
Line remote reception failure information. Indicates detection of line reception failure (LOS, LOF, or Line AIS) in unit of transmission destination (downstream). Detection : If frames with overhead K2 byte (6th through 8th bits) being "110" are received five times continuously Clear : If frames with overhead K2 byte (6th through 8th bits) being other than "110" are received five times continuously
Path RDI (Path Remote Defect Indication)
Path remote reception failure information. Indicates detection of path reception failure (LOS, LOF, Line AIS, LOP, LCD, or Path AIS) in unit of transmission destination (downstream). Detection : If frames with 5th bit of overhead G1 byte being "1" are received five times continuously Clear : If frames with 5th bit of overhead G1 byte being "0" are received five times continuously
OOL (Out Of Link)
 Indicates whether the receive clock recovery PLL has correctly locked on to the receive data stream, and whether it is the expected clock signal. Detection : When the difference between the clock signal input to the REFCLK pin and the clock signal generated by the recovery PLL divided by eight is greater than 244 ppm. Clear : When the difference between the clock signal input to the REFCLK pin and the clock signal generated by the recovery PLL divided by eight is within 244 ppm.

(2) Reporting degradation of reception side circuit quality (performance monitor)

The μ PD98404 sets the corresponding bit of the internal interrupt cause register and reports to the host using an interrupt signal if it detects degradation of the circuit quality. The host can identify the cause of degradation of the circuit quality by reading the interrupt cause register. Each interrupts cause can be masked or unmasked.

Table 3-7. Performance Cause Register (PCR register)

B1 error detection

Detects section layer BIP-8 error in receive data. BIP-8 operation is performed on all frame data (data after scramble) except first line of SOH one frame before, result of this operation is verified against result of Section BIP-8 operation performed at transmission source (upstream) and stored to B1 byte of current frame, and B1 error is checked.

B2 error detection

Detects line layer BIP-24 error in receive data. BIP-24 operation is performed on all frame data (data before scramble) except first, second, and third lines of SOH one frame before, result of this operation is verified against result of Line BIP-24 operation performed at transmission source (upstream) and stored to B2 byte of current fame, and B2 error is checked.

B3 error detection

Detects path layer BIP-8 error in receive data. BIP-8 operation is performed on all payload data (data before scramble) one frame before, result of this operation is verified against result of Path BIP-8 operation performed at transmission source (upstream) and stored to B3 byte of current frame, and B3 error is checked.

Line REI detection (Line Remote Error Indication)

Line far end block error information. Detects Line BIP-24 errors in unit at transmission destination (downstream).

Detection : Line REI is detected if 4th through 8th bits of receive M1 byte are 01 to 18 (H)

Clear : Line REI is cleared if 4th through 8th bits of receive M1 byte are 00 (H)

Path REI detection (Path Remote Error Indication)

Path far end block error information. Detects Path BIP-8 errors in unit at transmission destination (downstream).

Detection : Path REI is detected if 1st through 4th bits of receive G1 byte are 1 to 8 (H)

Clear : Path REI is cleared if 1st through 4th bits of receive G1 byte are 0 (H)

Occurrence of Frequency Justification

Detects occurrence of Frequency Justification

(3) Monitoring circuit quality using count register

The μ PD98404 counts the number of faults that degrade the circuit quality, the number of times receive Frequency Justification has occurred, and the number of cells dropped due to occurrence of an HEC error with counters, in order to monitor the circuit quality. The host can obtain the value of these counters by reading the registers.

Counter Name	Count Contents	Number of Counter Bits
B1 error counter	Number of times B1 error has been detected	16
B2 error counter	Number of times B2 error has been detected	20
B3 error counter	Number of times B3 error has been detected	16
Line-REI counter	Total number of errors received by Line REI	20
Path-REI counter	Total number of errors received by Path REI	16
FJ counter	Number of Frequency Justification operations	12
HEC counter	Total number of cells dropped by HEC processing	20
FIFO full counter	Total number of cells dropped due to FIFO overflow	20
Idle cell counter	Total number of received idle cells (cells dropped by setting of DCHPR and DCHPMR registers)	20
Information cell counter	Total number of valid cells transferred to ATM layer device (including cell with HEC error corrected)	20

Table 3-8. Counters

The counter functions are implemented by the following registers. These registers are provided to each of the above counters.

- Counter : Counter that counts the internal events. When the count value reaches "F(H)", the corresponding bits of the PCOCR1 and PCOCR2 registers are set, and detection of an overflow is reported. The count value of the counter returns to 0 and the counter continues counting up.
- Load registers : If the SMP bit of the PCSR register is set to "1" by the host, the current count values of all the counters are stored to the corresponding load registers. The contents of this register are retained until the SMP bit is set to 1 next time.
- Window register: This is an 8-bit register used by the host to read the contents of the load registers. To obtain a load register value 12 or 16 bits wide, the value of the load register is output in 8-bit units, in the order of the low-order 8 bits, high-order 8-bits, the low-order 8-bits, high-order 8-bits, and so on, each time the host reads the window register. Therefore, the host reads the window register two times. Which of the low-order or high-order 8 bits are output when the host reads the wind register next time is indicated by the corresponding bits of the PCPR1 and PCPR2 registers. To read a load register 20 bits wide, the host reads the window register three times to read the low-order, middle-order, and high-order bits in that order.

Phase-out/Discontinue

 Window register: HECCT
 HECC[1:0]=10
 HECC[1:0]=01
 HECC[1:0]=00

 Load register: HECCNTR
 23 19
 16
 15
 8
 7
 0

 Load register: HECCNTR
 0

Figure 3-10. Counter-Related Registers (Example: HEC error counter)

The following counter-related functions are also available.

<1> Clearing all counters [PCR bit of CMR2 register (01H) = 1]

All the counters can be cleared to 0 by setting the PCR bit of the command register 2 (CMR2) to "1". The PCR bit is automatically returned to 0 after the counters have been cleared.

<2> Clearing in counter units [PCIR1 register (1CH), PCIR2 register (1DH)]

Only a counter that has been set can be cleared to 0 by setting the corresponding bit in the PICR1 and PICR2 registers to "1". The set bit is automatically returned to 0 after the counter has been cleared to 0.

<3> Loading all counters [PCSR register (1BH)]

All the counter values are stored in the corresponding load register by setting the SMP bit of the PCSR register to "1". The SMP bit is automatically returned to 0 after the operation has been completed. At this time, the values in all counters are cleared.

<4> Stopping unused counters [PCFR1 register (1EH), PCFR2 register (1FH)]

To reduce the power consumption, the counters not in use are stopped. When the bit of the PCFR1 and PCFR2 registers corresponding to the unused counter is set to 1, the counter is stopped. When the corresponding bit of the RCFR1 or RCFR2 register is set to 1, the counter stops functioning. All the counters are stopped by default. Once a counter has been started and then stopped, the counter holds the current value.

<5> Reporting occurrence of overflow in each counter [PCOCR1 register (20H), PCOCR2 register (21H)]

When all the count values have passed "F", the μ PD98404 reports detection of an overflow by setting the corresponding bit of the PCOCR1 and PCOCR2 registers and asserting interrupt signal PHINT_B active. The interrupt can be masked for each bit.

< <counter stopping<="" th=""><th>conditions>></th></counter>	conditions>>
---	--------------

Counter	Stopping Condition
B1, B2, B3, Line REI, Path REI, and FJ counters	Counting up of these counters is forcibly stopped while the LOS, LOF, LOP, Line AIS, or Path AIS error is detected.
HEC, FIFO full, idle cell, and information cell counters	Counting up of these counters is forcibly stopped while the LOS, LOF, LOP, Line AIS, Path AIS, or LCD error is detected.

Caution The counter functions are constrained. For details, refer to CHAPTER 8 CONSTRAINTS.

3.4 Frame Overhead Insert/Drop Function

The μ PD98404 has an insert/drop register in the byte area of the following frame overhead and can transmit any value to the transmit frame or read a value stored to the receive frame.

		Transmission Default value		
SOH	J0 byte	01 (H)		
Section Overhead	1st Z0 byte	02 (H)		
	2nd Z0 byte	03 (H)		
	F1 byte	00 (H)		
LOH	K1 byte	00 (H)		
Line Overhead	K2 byte	00 (H)		
РОН	F2 byte	00 (H)		
Path Overhead	C2 byte	13 (H)		
	H4 byte	00 (H)		

Figure 3-11. Overhead Byte with Insert/Drop Register

Insert register

The host stores and transmits the value it has written to the insert register in the corresponding overhead byte area of the transmit frame for transmission. Unless the host change the value, the default value of the insert register is transmitted.

Because bits 6 through 8 of the K2 byte are used to transfer Line-RDI, the value of the insert register is ignored.

• Drop register

The contents of the overhead of a receive frame are stored in the corresponding drop register, and are updated each time a frame has been received. The host can learn the value of the overhead byte of the receive frame by reading each drop register.

In the LOP or P-AIS status, the register of POH is not updated. If frame non-synchronization (OOF) takes place, all the registers are not updated.

3.5 Alarm Report Pins (PHYALM[2:0], PMDALM)

The μ PD98404 has output pins PHYALM [2:0] that output signals reporting that the host has detected an alarm or error to the peripheral device. The user can select one or more alarms or errors to be output to one PHYALM pin from those listed in Table 3-9. This selection is done by using three registers: AMPR, AMR1, and AMR2.

First, specify which of the PHYALM0 through PHYALM2 pins is to be set, using the AMPR register. Next, specify masking or unmasking of the bit corresponding to each type of alarm and error using the AMR1 and AMR2 registers. Repeat these operations three times to set the three pins: PHYALM0 through PHYALM2.

Table 3-9. PHYALM Pin Report Contents

Reported Item	PHYALM Output Timing	
Bit setting of the register is reflected.	PHYALM pin goes high when the host writes 1 to the ARM bit of the command register 1 (CMR1).	
Input level of the PMDALM pin is reflected as is.	The PHYALM pin goes high when it has been detected that the external PMDALM input pin has gone high.	
Detection of alarms or errors is reported. (LOS, OOF, LOF, LOP, OCD, LCD, Line AIS, Path AIS, Line RDI, Path RDI)	The PHYALM pin goes high when an alarm or error has been detected and is kept high until the cause of the alarm or error is removed.	

<< Example of using PHYALM pins>>

Example 1: To output a high level from the PHYALM1 pin when the µPD98404 has detected LOS or LOF

- <1> Write '01H' to the AMPR register (24H): Selects the PHYALM1 pin.
- <2> Write 'DEH' to the AMR1 register (25H): Unmasks LOS and LOF.
- <3> Write 'FFH' to the AMR2 register (26H): Default (no unmasking)

If two or more sources are unmasked, they are ORed for output.

- Example 2: To output a high level from the PHYALM0 pin when the software has set the ARM bit of the CMR1 register to 1.
 - <1> Write '00H' to the AMPR register (24H): Selects the PHYALMO pin.
 - <2> Write '7FH' to the AMR1 register (25H): Unmasks the CMD bit.
 - <3> Write 'FFH' to the AMR2 register (26H): Default (no unmasking)

The μ PD98404 also has external input port PMDALM pin. The function of this pin differs depending on the setting of the PMD bit of the IACM register. Table 3-10 shows the functions of the PMD bit and PMDALM pin.

Table 3-10. PMDALM Pin Function

	PMD Bit: IACM Register Function of PMDALM Pin		
	1 (Default)	The input level of this pin is reflected by the PMD bit of the PICR register and is used as a general-purpose input port. It is not included in the LOS detection condition.	
	0	The input level of this pin is reflected by the PMD bit of the PICR register and can be also used as an interrupt cause. A change in this input level is also included in the LOS detection condition. When the input level is high, LOS is detected. A LOS output by an optical module is connected to this input.	
*		Low: normal High: LOS is detected	

3.6 Pseudo Error Frame Transmission Function

The μ PD98404 has a function to generate internally and transmit a pseudo error frame as shown in Table 3-11. This function is effective for testing the system and can be executed by setting command register 3 (CMR3).

Error	Generation of Pseudo Error
LOS frame generation	Fixes transmit data to 00H
OOF/LOF frame generation	Fixes A1 and A2 bytes to 00H
LOP frame generation	Fixes H1, H2, and H3 bytes to FFH, FEH, and FFH
OCD, LCD frame generation	Inverts LSB bit of HEC field
Generation of B1 error	Inverts and transmits LSB bit of B1 byte
Generation of B2 error	Inverts and transmits LSB bit of B2 byte
Generation of B3 error	Inverts and transmits LSB bit of B3 byte
Generation of Line REI	Inverts and transmits LSB bit of M1 byte (4th through 8th bits)
Generation of Path REI	Inverts and transmits LSB bit of G1 byte (1st through 4th bits)

Table 3-11. Pseudo Error Frame

3.7 Register Function

The μ PD98404 has many registers that can be accessed by the host via management interface. The host sets the operation mode of the μ PD98404, transmits alarm signals, and services interrupts by accessing these registers. The registers of the μ PD98404 can be broadly divided as follows by classification of function.

Table 3-12.	Registers of	µPD98404
-------------	--------------	----------

Classification	Functional Outline	Register Name
Command-related	Set commands such as those transmitting error frame	CMR1, CMR2, CMR3
Mode setting-related	Select mode	MDR1, MDR2, MDR3
Interrupt-related	Status registers indicating interrupt causes and mask registers masking each interrupt	PICR, PIMR, ACR, ACMR, PCR, PCMR, IACMR
Counter-related	Store values of performance counters	B1ECT, B2ECT, B3ECT, LRECT, PRECT, FJCT, HECCT, FULCT, IDLCT, INFCT, PCPR1, PCPR2, PCSR, PCIR1, PCIR2, PCFR1, PCFR2, PCOCR1, PCOCR2, PCOMR1, PCOMR2
PHYALM pin output signal setting	Select information to be output to PHYALM pins	AMPR, AMR1, AMR2
Drop cell	Determine cells other than idle cell to be dropped	DCHPR, DCHPMR
PHY ID	Used in multi-PHY mode. Sets address of this LSI	PHYIDR
Insert/drop	Insert registers that insert value to overhead of transmit frame and drop registers that store value from overhead of transmit frame	J0R, Z01R, Z02R, F1R, K1R, K2R, C2R, F2R, H4R, J0T, Z01T, Z02T, F1T, K1T, K2T, F2T, C2T, F2T, H4T

For the details of each register, refer to CHAPTER 5 REGISTERS.

3.8 Loopback Function

The μ PD98404 has loopback modes in which transmit/receive data is internally returned for the purpose of testing. The following three loopback modes are available. These modes are set by the LP (1, 0) bits of mode register 2 (MDR2).

LP[1:0]	Mode
00	Normal mode
01	PMD layer loopback <1> : RPLP mode Returns data input from reception side of PMD layer interface with serial/parallel converter and outputs data from transmission side of PMD layer interface. At this time, however, the clock is not returned. The clock output from TCOT/TCOC pin is the transmit PLL generation clock or the transmit clock input from TFKT/TFKC pin. Received data is also output from ATM layer interface. In the RPLP mode, the register that indicates the circuit status, such as the PICR register, indicates the input status of the receiver circuit.
10	PMD layer loopback <2> : TPLP mode Proceeds internal processing on transmit cell data received from ATM layer interface up to PMD side, returns data at PMD layer side and outputs it from reception side of ATM layer. At this time, received cell is also output from transmission side of PMD layer interface. In the TPLP mode, the register that indicates the circuit status, such as the PICR register, indicates the status of the transmit data that has been looped back.
11	ATM layer loopback : ALP mode Returns transmit ATM cell received from ATM layer interface as return receive ATM cell by using internal FIFO of μ PD98404. At this time, received data is also output from PMD layer interface as transmit data. In the ALP mode, the register that indicates the circuit status, such as the PICR register, becomes undefined and does not indicate the status of the receiver circuit.

Table 3-13. Loopback Function

- Cautions 1. In the RPLP loop back mode (LP[1:0] = 01), the data output from the TDOT/TDOC pin is latched and output at the clock of the receive clock recovery PLL. In the meantime, the TCOT/TCOC pin outputs the clock of the internal synthesizer or the clock input to the TFKT/TFKC pin, regardless of the above mode, in accordance with the setting of the PSEL[1:0] pins. Note that the TCOT/TCOC pin does not loop back and output the receive clock and that the data output by TDOT/TDOC and the clock output by TCOT/TCOC are not in synchronization.
 - Loopback cannot be executed even if the TPLP mode or ALP mode is set if a mode that uses the external clock (PSEL[1:0] = 01) is selected and if the transmit clock is not input to the TFKT/TFKC pin.

Figure 3-12. Loopback Function

CHAPTER 4 INTERFACES

4.1 ATM Layer Interface

The ATM layer interface transfers transmit/receive data to a device of the high-order ATM layer. The interface between the μ PD98404 and ATM layer conforms to UTOPIA Level2 version 1.0 June '95 Standard.

4.1.1 Signals

(1)) Transmission interface				
	TCLK :	A clock of 20 to 40 MHz supplied from the ATM layer. All the operations of the transmission interface related to data transfer are executed in synchronization with this clock.			
	TADD[4:0] :	5-bit address signal used by the ATM layer to select one μ PD98404 in multi-PHY configuration where two or more μ PD98404s are connected to one ATM layer device.			
	TDI[7:0] :	Data signals used by the ATM layer to drive transmit cell data to the μ PD98404. TDI7 is the MSB and TDI0 is the LSB.			
	TSOC :	Signal indicating the start position of cell data. This signal is output by the ATM layer in synchronization with the first byte of a cell.			
	TENBL_B :	Signal indicating that the ATM layer is outputting valid data onto TDI[7:0] in the current clock cycle.			
FULL_B/TCLAV		Signal used by the μ PD98404 to report the status of the transmit FIFO to the ATM layer. Which of FULL_B and TCLAV is used depends on the mode. FULL_B is used for octet level handshake of a single PHY, and becomes active (low level) if a vacant area of 4 bytes or more is not available in the transmit FIFO. This signal functions as TCLAV in the case of cell handshake and becomes active (high level) if a cell has a vacant area of one cell or more. The size of the vacant cell area to be reported can be selected from 1 cell or 2 cells. In the multi-PHY configuration, this signal is used as TCLAV and operates in the same manner as in the case of cell handshake. However, only the μ PD98404 with the address set to the PHYID register coinciding with the address given by the ATM layer onto TADD[4:0] drives TCLAV at the clock next to the output address.			

Phase-out/Discontinued

(2) Reception interface

The signal lines used for the reception interface are defined below.

- RCLK : A clock of up to 40 MHz supplied from the ATM layer. All the operations of the reception interface related to data transfer are executed in synchronization with this clock.
- RADD[4:0] : These signals are not used in the single PHY configuration. In the multi-PHY configuration, these signals are used as a 5-bit address signal used by the ATM layer to select one μ PD98404. The address is set to the PHYID register of the μ PD98404. The same address is used for transmission and reception. The address must not be set to 31 (1FH).
- RDO[7:0] : These are data signals used by the μ PD98404 to transfer receive data to the ATM layer. RDO7 is the MSB, and RDO0 is the LSB. Two-state or three-state operation is selectable.
- RSOC : This signal indicates the start position of cell data, and is output by the μPD98404 in synchronization with the first byte of a cell. A two-state or three-state operation is selected depending on the mode.
- RENBL_B : This signal is used by the ATM layer to enable data output by the μ PD98404.
- EMPTY_B/RCLAV : This signal is used by the µPD98404 to report the status of the receive FIFO to the ATM layer. In the octet level handshake mode of single PHY configuration, this signal functions as EMPTY_B and becomes active (low level) if no valid data exists in the receive FIFO. In the cell level handshake mode, this signal functions as RCLAV, and becomes active (high level) if one cell or more of valid data exists in the receive FIFO. The timing to change RCLAV can be changed to report whether valid cell to be transferred next exists during cell transfer.

In the multi-PHY configuration, this signal functions as RCLAV in the same manner as in the cell level handshake mode. However, only the μ PD98404 selected by the address on the RADD[4:0] signals is driven by the clock next to the output address.

4.1.2 Mode

The μ PD98404 supports the modes listed in Table 4-1.

Mada	Mode Name	Operation at Reception Side	MDR1 Register		UMPSEL
wode			CSEL	HSEL	Pin Input
1	Single PHY octet level handshake	RDO[7:0]&RSOC 2-state operation	0	0	L
2		RDO[7:0]&RSOC 3-state operation	0	1	
3	Single PHY	RDO[7:0]&RSOC 2-state operation	1	0	
4	cell level handshake	RDO[7:0]&RSOC 3-state operation	1	1	
5	Multi-PHY	RDO[7:0]&RSOC&RCLAV 3-state	x	x	Н

Table 4-1. Mode of ATM Layer Interface

"Single PHY" is a mode in which an ATM layer device and a μ PD98404 are connected on a one-to-one basis. "Multi-PHY" is a mode in which two or more μ PD98404s are connected to one ATM layer device and one of the μ PD98404s is selected by using a 5-bit address line. The single PHY or multi-PHY mode is selected by using the UMPSEL pin. When a high level is input to this pin, the multi-PHY mode is selected regardless of the setting of the MDR1 register.

Figure 4-1. Single PHY and Multi-PHY Modes

Single PHY configuration (UMPSEL = L)

4.1.3 Single PHY octet level handshake mode

Octet level handshake is a mode in which the transfer of transmit/receive cell data with the ATM layer device is controlled in 1-byte units. The FULL_B/TCLAV and EMPTY_B/RCLAV signals that report the status of the transmit/receive FIFO function as FULL_B and EMPTY_B, respectively, and report the status of the FIFO to the ATM layer device in 1-byte units.

(1) Transmit interface

The μ PD98404 has a transmit FIFO in the ATM layer interface block at the transmitter side. This FIFO can store 384 bytes (about 7 cells). Write cell data on TDI[7:0] to this FIFO in the following procedure:

In the clock cycle in which TENBL_B is active (low level), the μ PD98404 recognizes the data on TDI[7:0] as valid. If TENBL_B has gone low after reset, the μ PD98404 first checks TSOC. If it has detected that TSOC is high, the μ PD98404 writes the TDI[7:0] data in that clock cycle to the transmit FIFO as the first byte of a cell. Starting from this byte, the μ PD98404 writes the data of up to 53rd byte as one cell of data. After it has written the 53 bytes, the μ PD98404 checks TSOC again and waits for the first byte of a cell. After the μ PD98404 has written 53 bytes, it ignores the data of the 54th byte and those that follow and writes nothing to the transmit FIFO until TSOC goes high the next time, even if a low level is kept input to TEBL_B to indicate that the data on TDI[7:0] is valid.

If a high level is input to TSOC after writing data has been started from the first byte and before the 53rd byte is written, the data so far written to the transmit FIFO is discarded as a short cell that runs short of 53 bytes and is not output to the circuit side. In this case, counting data is started again starting from the cycle in which TSOC is high.

If the vacant area of the transmit FIFO is 4 bytes or less, the μ PD98404 asserts the FULL_B signal active (low level). The ATM layer device must stop transmitting valid data by deasserting TENBL_B inactive (high level) within 4 clock cycles after the device has detected that FULL_B went low. If FULL_B has been asserted active, it is deasserted inactive when the transmit FIFO has a vacancy of 8 bytes or more.

The high-end ATM layer device can stop outputting data while it is transferring cell data, by deasserting TENBL_B (high level). In the cycle in which TENBL_B is high, the μ PD98404 ignores the data on TDI[7:0] as invalid, and does not count these data into 53 bytes. The μ PD98404 resumes counting after TENBL_B has gone low.

Figure 4-2. Transmission Timing of Octet Level Handshake (1)

Phase-out/Discontinued

(2) Reception interface

The reception interface in the single PHY octet level handshake mode changes the operation of the RDO[7:0] and RSOC signals between the two-state and three-state operation, depending on whether mode 1 or 2 is selected by the HSEL bit of the MDR1 register.

(a) Two-state reception interface in single PHY octet level mode

The μ PD98404 stores the cell data it receives from a circuit in a receive FIFO having a capacity of 256 bytes (about 4 cells), and transfers this data to the ATM layer device in synchronization with the RCLK clock. If valid data exists in the receive FIFO, it is reported to the ATM layer device by deasserting the EMPTY_B signal inactive (high level) (Edge 1 in the figure below). If the ATM layer device is ready to receive the data, it asserts RENBL_B active (low level) (Edge 2). The μ PD98404 outputs data onto RDO[7:0] at the rising edge of the clock after the rising edge of RCLK at which RENBL_B has been asserted active (Edge 3). When the receive FIFO no longer has valid data, the RDO[7:0] output is undefined (Edge 5) by asserting EMPTY_B active. While the first byte of the cell header is output to RDO[7:0], RSOC is active (high level). When it is detected that the RENBL_B signal is deasserted inactive, data output is undefined (Edge 10).

Remark If the μ PD98404 deasserts RENBL_B inactive (high level) at the clock at which the 48th bytes of the payload is output, and if the first byte of the next cell is already in the receive FIFO, the μ PD98404 asserts the RSOC signal active (high level) for the next cell, even if RENBL_B is inactive. This happens regardless of the 2-state or 3-state operation.

Phase-out/Discontinued

(b) Three-state reception interface in single PHY octet level mode

When it is detected that RENBL_B is deasserted inactive, receive data RDO[7:0] and cell header RSOC signal go into a high-impedance state (Edges 10 and 11 in the figure below). While RENBL_B is active (low level), the μ PD98404 releases RDO[7:0] and RSOC from the high-impedance state and drives them even if it does not have cell data to output. Other than that, the operation is the same as that in mode 1.

Figure 4-5. Octet Level Handshake Reception Timing (three-state operation)

4.1.4 Single PHY cell level handshake mode

The cell level handshake mode is used to control transfer of transmit/receive cell data with the ATM layer device in cell units. The FULL_B/TCLAV and EMPTY_B/RCLAV signals that report the status of the transmit/receive FIFO respectively function as TCLAV and RCLAV signals, and report the status of the FIFO to the ATM layer device in cell units.

(1) Transmission interface

*

The μ PD98404 asserts TCLAV active (high level) to inform the ATM layer device that it is ready to receive cells if there is a vacancy of one cell or more in the transmit FIFO (Edge 1 in Figure 4-6). When the ATM layer device detects that TCLAV has gone high, it asserts TENBL_B active (low level) and outputs data to TDI[7:0] (Edge 2). The μ PD98404 writes the data on TDI[7:0] to the transmit FIFO in the clock cycles (edges 3 through 55) in which TENBL_B is low. In the cycles in which TEBL_B is inactive (high level), it does not write the data to the transmit FIFO (edges 56 through 58). In the cycles in which TSOC is high, the data on TDI is recognized as the first byte of a cell. While a cell is transferred, TCLAV goes high (active) if the next cell can be received; it goes low (inactive) if the next cell cannot be received.

The timing of changing TCLAV can be selected from the modes listed in Table 4-2, depending on the setting of the TCASEL[1:0] bits of the mode register 3 (MDR3).

TCASEL [1:0]	TCLAV Signal Changing Timing
00 (default)	After the byte five clocks before the tail of a cell (44th byte of the payload data) is transmitted while a cell is being transferred (Edge 50 in Figure 4-5), TCLAV is kept active if the transmit FIFO has a vacancy to store one cell in addition to the cell currently being received; TCLAV is deasserted inactive if the transmit FIFO has no vacancy. TCLAV is always active immediately before the data of the 44th byte of the payload data is transmitted. After TCLAV is deasserted inactive, the next cell cannot be transferred.
01	An operation same as the above is performed if the transmit FIFO has a vacancy of "two cells" instead of "one cell". After TCLAV is deasserted inactive, <u>one more cell can be received</u> .
10	TCLAV is asserted active if the transmit FIFO has a vacancy of one cell or more in addition to the storage area of the transmit cell currently received when the third byte (H3) of the cell data is transmitted (Edge 5 in Figure 4-5) while a cell is being transferred; TCLAV is deasserted inactive if the FIFO does not have a vacancy of <u>one cell</u> or more.
11	An operation same as the above is performed if the transmit FIFO has a vacancy of "two cells" instead of "one cell". After TCLAV is deasserted inactive, <u>one more cell can be received</u> .

Table 4-2. Selecting Timing Mode of Changing TCLAV Signal

Caution Select a mode by using TCASEL[1:0] only in the cell level handshake mode (CSEL bit = 1). In the octet level handshake mode (CSEL bit = 0), make sure that TCASEL[1:0] = 00 (default).

Phase-out/Discontinued

Figure 4-6. Cell Level Handshake Transmission Timing

(2) Reception interface

In the single PHY cell level handshake mode, the two-state or three-state operation of RDO[7:0] and RSOC signal is selected by setting the HESEL bit of the MDR1 register and thereby changing the mode between 3 and 4.

(a) Two-state reception interface of single PHY cell level

If the receive FIFO has one cell or more of valid data, the μ PD98404 asserts RCLAV active (high level) to inform the ATM layer device (Edge 5 in **Figure 4-7**). When the ATM layer device detects the high level of RCLAV, it asserts RENBL_B active (low level) if it can receive the cell (Edge 6). The μ PD98404 outputs the data to RDO[7:0] at the rising edge of the clock after the rising edge of RCLK at which RENBL_B becomes active. While the first byte of the cell is output, RSOC is also asserted active (high level) (Edge 7). If it is detected that RENBL_B has been deasserted inactive (high level) while the cell is being transferred, data output is undefined (Edge 60).

Remark If the μ PD98404 deasserts RENBL_B inactive (high level) at the clock at which the 48th byte of the payload is output, and if the first byte of the next cell is already in the receive FIFO, the μ PD98404 asserts the RSOC signal active (high level) for the next cell, even if RENBL_B is inactive. This happens regardless of the 2-state or 3-state operation.

Phase-out/Discontinued

(b) Three-state reception interface of single PHY cell level

When it is detected that RENBL_B has been deasserted inactive, receive data RDO[7:0] and RSOC go into a high-impedance state. Other than that, the operation is performed in the same manner as in mode 3.

Figure 4-8. Cell Level Handshake Reception Timing (three-state operation)

During the default operation of cell level handshake in modes 3 and 4, RCLAV remains active, once it has been asserted active, up to the cycle in which the 48th byte of the payload data is output. The level of RCLAV is changed, depending on the status of the receive FIFO, in the clock cycle next to the one in which the 48th byte of the payload data is output. The timing to change RCLAV can be selected from the modes shown in Table 4-3 by setting the RCASEL bit of the mode register 3 (MDR3).

RCASEL	Changing Timing of Signal RCLAV
0 (default)	RCLAV is asserted active (high level) if the receive FIFO has one cell or more of valid data at the clock after the one at which the last byte of the cell (48th byte of the payload data) is output; it is deasserted inactive (low level) if the FIFO has no data. While the receive cell data is being output, RCLAV is always active.
1	RCLAV is asserted active if the receive FIFO has one cell or more of data in addition to the receive data currently output after the clock at which the second byte (H2) of the header of the receive cell data is being output; it is deasserted active if the FIFO has no data.

Table 4-3. Selecting Changing Timing Mode of RCLAV Signal

Cautions 1. There are limitations on the RCASEL = 1 mode. For details, refer to CHAPTER 8 CONSTRAINTS.
2. Select a mode by using the RCASEL bit only in the case of cell level handshake (CSEL bit = 1). In the case of octet level handshake, make sure that RCASEL = 0 (default).

Figure 4-9. RCLAV Changing Timing

4.1.5 Multi-PHY mode (TCLV/RCLV 3-state)

(1) Transmission interface

In the multi-PHY mode, the ATM layer device gives in advance specific addresses to the μ PD98404s to be connected. Each of these addresses is stored in the PHYID register (address: 29H) of the corresponding μ PD98404 via the management interface, and at the same time, the enable bit (EN bit of MSB) is set to 1. In this way, the μ PD98404 checks the signal on TADD[4:0].

The ATM layer device sequentially outputs the addresses of the μ PD98404s connected to TADD[4:0], and checks TCLAV and polls the status of each transmit FIFO. Each μ PD98404 checks whether its address (value set in the PHYID register) coincides with the signal on TADD[4:0]. If they coincide, the μ PD98404 drives the TCLAV signal in the clock cycle after the one in which the address was output. The TCALV signal goes high if the ATM layer is ready to receive a cell; it goes low if it is not. The signal goes into a high-impedance state if the addresses do not coincide.

The ATM layer device selects one of the μ PD98404s ready to receive a cell, outputs the address of the selected μ PD98404 to TADD while TENBL_B is inactive (high level), and then asserts TENBL_B active (low level). The μ PD98404 whose address coincides with the address output to TADD[4:0] in the cycle preceding that in which TENBL_B is asserted active is selected. This selected status starts from the cycle following the cycle in which the address of the μ PD98404 was output to TADD[4:0] and TENBL_B went low (active), and is cleared in the cycle in which TENBL_B is asserted active again. The ATM layer device starts transferring cell data after it has selected the μ PD98404, and performs polling again.

Figure 4-10 is an example showing the cycles required for the ATM layer device to start polling and to complete cell transfer. In this example, four μ PD98404s with addresses (N), (N + 1), (N + 2), and (N + 3), respectively, are connected. The ATM layer device performs polling by repeatedly outputting these four addresses. One cycle of 1F(H) is inserted in between the valid addresses on TADD[4:0]. Address 1F(H) is used as an address value that is not equivalent to any of the addresses of the μ PD98404s. A μ PD98404 drives TCLAV in the cycle next to the one in which 1F(H) is output next after the valid address has been output. In the example, μ PD98404 of (N + 3) and μ PD98404 of (N) that is transferring a cell are ready to receive the next cell. While a cell is being transferred, TCLAV becomes valid at the 44th byte or later in the default mode (MDR3 register TCASEL = 00). Before that, TCLAV remains high. Therefore, TCLAV = H at Edge 7 in the figure below means that TCLAV simply remains high, but TCALV = H at Edge 15 indicates that the μ PD98404 of address (N) is ready to receive the next cell.

In this example, (N + 3) is selected. This address is output to TADD[4:0] while TENBL_B is inactive (high) at Edges 15 and 16, and the μ PD98404 assigned this address is selected when TENBL_B is asserted active again. After that, cell transfer is started, and the ATM layer device immediately starts polling.

Figure 4-10. Transmission Timing of Multi-PHY

Figure 4-11 shows an example where cell transfer is stopped because none of the μ PD98404s can receive a new cell. Polling goes on during the period of several clocks in which cell transfer is stopped. During this period, TDI[7:0] and TSOC go into a high-impedance state, and the TENBL signal remains inactive (high level). In this example, the μ PD98404 of (N + 3) is ready to receive a cell. The ATM layer device learns that this μ PD98404 is ready to receive a cell by means of polling, outputs address (N + 3) again to select this μ PD98404 before asserting TENBL_B active (low level) (Edge 16 in the figure).

Figure 4-11. End and Cell Transmission and Re-transmission

Phase-out/Discontinue

Figure 4-12 shows an example in which data transfer is stopped while the ATM layer device is transferring a cell because data was not prepared in time. In this example, transfer is stopped during the period of three clock cycles. During this period, TENBL_B is deasserted inactive, and TDI and TSOC go into a high-impedance state. Even during this period, polling can go on. To resume data transfer, the address of the μ PD98404 previously selected is output to TADD[4:0] to select the μ PD98404 again.

Figure 4-12. Stopping Cell Transmission

(2) Reception interface

The ATM layer device sequentially outputs the addresses of the connected μ PD98404s to RADD[4:0], checks RCLAV, and polls the status of the receive FIFO of each μ PD98404. The address used at the reception side is the value in the PHYID register, i.e., the same address as the transmission side. The address in the PHYID register is used in the same manner at both the transmission and reception sides. The μ PD98404 whose address coincides with the signal on RADD[4:0] drives RCLAV in the clock cycle after the one in which the address was output. If the ATM layer device has a cell to output, RCLAV is asserted active (high level); if not, it is deasserted inactive (low level). If the address does not coincide, RCLAV goes into a high-impedance state.

The ATM layer device selects one of the μ PD98404s that have returned the high level of RCLAV, outputs the address of the selected μ PD98404 to RADD[4:0] while RENBL_B is inactive (high level), and then deasserts RENBL_B active (low level). The μ PD98404 whose address coincides with the signal on RADD[4:0] in the cycle preceding the one in which RENBL_B is asserted active is selected.

The selected μ PD98404 starts transferring cell data to the ATM layer device. When transfer of the cell is started, the ATM layer device starts polling again. The selected status of the μ PD98404 is cleared in the cycle in which RENBL_B is deasserted inactive (high level).

Phase-out/Discontinued

Figure 4-13 shows an example of cycles in which a μ PD98404 is polled and cell transfer is completed. In this example, four μ PD98404s with addresses (N), (N + 1), (N + 2), and (N + 3), respectively, are connected. Polling performed while the cell of the μ PD98404 of address (N) is being transferred indicates that the μ PD98404 of address (N + 3) has a cell to be transferred, and that (N + 3) is selected. This μ PD98404 is selected at the rising edge (Edge 16) of RCLK. Immediately after transferring a cell to (N + 3) is started, the ATM layer devices resumes polling.

During polling, the μ PD98404 having address (N) returns the high level of RCLAV. This is because RCLAV is always kept high while receive data is output if the timing of making RCLAV valid is set in the default mode (RCASEL bit of MDR3 register = 0), and does not mean that the μ PD98404 has more valid cells.

Phase-out/Discontinued

Figure 4-14 shows a case where no other μ PD98404s have valid data to be transferred when transfer of one cell from a μ PD98404 has been completed. Because no μ PD98404 can be selected, the ATM layer device keeps RENBL_B active (low level). Although the μ PD98404 of (N) remains selected, the ATM layer device deasserts RENBL_B inactive (high level) because no cell is output. The ATM layer device continues polling. As a result, it detects that the μ PD98404 of (N + 3) has a cell to be transferred and therefore, outputs address (N + 3) to select the μ PD98404 again.

Figure 4-15 shows a case in which a valid cell to be transferred is found after an interval of one clock cycle, although the selected μ PD98404 of address (N) has completed transferring a cell. Because RENBL_B is active at Edge 9, the μ PD98404 of address (N) asserts the RSOC signal active (high level) and starts outputting cell data. The ATM layer device has deasserted RENBL_B inactive, but selects the μ PD98404 of address (N) again for reception.

Phase-out/Discontinued

Figure 4-16 shows an example where the same μ PD98404 successively transmits two cells. Because the other μ PD98404s do not return an active level (high level) of RCLAV when the μ PD98404 of address (N) completes cell transmission, the ATM layer device continues selecting the μ PD98404 of address (N) and keeps RENBL_B active (low level). In this example, two cells are transmitted in succession because the μ PD98404 of address (N) has another valid cell. The ATM layer device recognizes that another cell is transmitted when RSOC goes high.

Figure 4-16. Example of Transmitting Two Cells in Succession from the Same μ PD98404 (2)

Figure 4-17 shows an example where the ATM layer devices stops cell transfer from the μ PD98404 of address (N + 2) for the duration of three clock cycles. Before asserting RENBL_B active again, the ATM layer device outputs the address of the μ PD98404 whose data transfer has been stopped, to select that μ PD98404 again.

4.2 PMD Interface

The PMD interface is used to connect transceiver/receivers on circuit side. The PMD interface of the μ PD98404 supports three modes as shown in Table 4-4. These modes are selected by using the PSEL[1:0] input pins.

PSEL [1:0]	Mode
00	Serial mode using internal clock recovery/synthesizer (default)
01	Serial mode using RCIT/RCIC, TFKT/TFKC clocks supplied from external devices
1X	Parallel interface using RPC/TFC pin input clock

Table 4-4. PMD Interface Mode

4.2.1 Serial interface mode

The serial interface mode is used in two ways: by using the clock generated by the internal clock recovery/synthesizer as the transmit/receive clock and by using the clock supplied to the RCIT/RCIC or TFKT/TFKC pin from an external source.

(1) Mode using internal clock recovery/synthesizer function (PSEL[1:0] = 00)

The internal clock recovery and synthesizer functions are enabled when the PSEL[1:0] pin is "00". At this time, the RCIT/RCIC and TFKT/TFKC pins for transmits/receive clock input are not used. Transmit/receive data are input/output via PECL level interface. Terminate TDOT/TDOC at the transmitter side at VDD-2V and 50 Ω . Figure 4-18 shows an example of connecting an optical module as a transceiver/receiver, by using the internal clock recovery/synthesizer function.

When the μ PD98404 and an optical module are AC-coupled as shown in Figure 4-18 (bottom), and if optical input is not supplied to the optical module and successive 0s are input to RDIT/RDIC as data, the potential levels of RDIT and RDIC have no difference. Consequently, the μ PD98404 cannot recognize the receive data as successive 0s, and cannot detect LOS. In this case, connect the optical input cut signal output pin of the optical module to the PMDALM pin of the μ PD98404 to detect LOS. By clearing the PMD bit of the IACM register, the μ PD98404 adds a change of the input level of the PMDALM pin as a condition of detecting LOS (PMDALM pin Low: Normal, High: LOS detection).

Figure 4-18. Example of Connection in Serial Interface Mode (with internal PLL used)

Receive clock recovery PLL function

The internal clock recovery PLL unit extracts a receive clock from the receive data string input to the RDIT/RDIC pin.

The μ PD98404 has an OOL (Out of Link) detection circuit that checks to see if the receive clock recovery PLL is correctly locked onto the receive data string and extracts the clock as expected. This circuit compares the clock generated by PLL and divided by eight with the frequency of the clock input to the REFCLK pin. If the difference between the two clock frequencies exceeds 244 ppm, the OOL detection circuit judges that the receive clock recovery PLL is not locked as expected (OOL status). If the difference is within 244 ppm, the OOL status is cleared. The OOL status is reflected on the bits by the PICR register and can be used as an interrupt cause.

To prevent the receiver circuit from operating with an unstable clock in the OOL status, the receive clock that is used by the receiver circuit as a source clock can be automatically changed to the clock generated by the transmit synthesizer. When the OOL status is cleared, the receiver clock is used as the receive clock again. This function is enabled by default. It can be disabled by setting the oolenb bit of the mode register 2 (MDR2) to 1.

Immediately after power application, the receive clock recovery PLL starts extracting the clock, but it enters the OOL status because data synchronization cannot be established immediately. When a correct data string is input to RDIT/RDIC, it takes the OOL detection circuit about 0.6 s to judge whether the frequency difference between the recovered clock and REFCLK clock is within 244 ppm. The OOL status is cleared, therefore, after 0.6 s, and the recovery clock is supplied to the receiver circuit.

If the oolenb bit is disabled, however, and if receive data is correctly input in the OOL status, the receive clock recovery PLL is synchronized within 1 ms.

Caution If a circuit signal loss (LOS) error occurs, the receive PLL enters the free-run status. Consequently, the frequency shifts from that of REFCLK, resulting in the OOL status. If the oolenb bit of the mode register 2 (MDR2) is 0 at this time, the clock generated by the transmit synthesizer PLL is automatically switched to the receive clock. If this happens, the OOL detection circuit compares the clock of the transmit synthesizer PLL with REFCLK. As a result, the OOL status is cleared and the recovery clock is switched to the receive clock again. While LOS is detected, the OOL status takes place and is cleared repeatedly. If interrupt servicing mode 2 is selected, note that the OOL bit of the interrupt cause register (PICR) is repeatedly set and reset in accordance with this operation. Disable automatic selection by setting oolenb to 1.

The receive clock can be forcibly switched to the clock generated by the transmit synthesizer PLL by using the RxCL bit of the mode register 2 (MDR2), as follows:

Setting of RxCL Bit	Receive Clock
1	Clock generated by transmit synthesizer PLL
0	Clock extracted by receive clock recovery PLL

• Transmit PLL function

The internal synthesizer generates a clock of 155.52 MHz based on the 19.44 MHz clock input to the REFCLK pin. The clock to be input to the synthesizer can be selected as follows by using TxCL[1:0] of the mode register 1 (MDR1).

Mode	TxCL[1:0]	Synthesizer Reference Clock
1	00	Clock input to REFCLK pin (default)
2	10	Clock input to TFC pin
3	X1	Clock of receive clock recovery PLL is used as clock at transmission side as is.

- Cautions 1. When the clock extracted by the receive clock recovery PLL is used as the transmit clock in mode 3, be sure to set the oolenb bit of the mode register 2 to 1 so that the clock extracted by the clock recovery PLL is always supplied as the receive clock.
 - 2. The data output from the TDOT/TDOC pin when the TxCL[1:0] bits of the MDR1 register = X1 is latched at the clock of the receive clock recovery PLL. In the meantime, the TCOT/TCOC pin outputs the clock of the internal synthesizer or clock input to the TFKT/TFKC pin in accordance with the setting of the PSEL[1:0] pins. If the clock of the receiver side is used as the source clock of transmit data, the data output by TDOT/TDOC and the clock output by TCOT/TCOC are not in synchronization.
 - 3. The TFC inputs the transmit clock for the parallel interface in the parallel mode (PSEL[1:0] pins = 1X). However, it inputs the source clock for the internal clock synthesizer if the TxCL[1:0] bits of the MDR1 register = 10 in the serial mode in which the internal clock synthesizer is used (PSEL[1:0] pins = 00).

Figure 4-19. Outline of PMD Layer Block

Selector B: MDR1 Register Selector C: MDR2 Register

RxCL

(2) To use RCIT/RCIC, TFKT/TFKC clock input

When the PSEL[1:0] pins are "01", the internal clock recovery/synthesizer function is disabled, and the 155.52 MHz clock input to the RCIT/RCIC or TFKT/TFKC pin is used as the transmit/receive clock. The μ PD98404 outputs the transmit data from the TDOT/TDOC pin in synchronization with the clock input to the TFKT/TFKC pin. The receive data input to the RDIT/RDIC pin is sampled with the clock input by an external clock recovery device to the RDIT/RDIC pin.

Moreover, the clock input to the RCIT/RCIC pin can be selected as the transmit clock by setting the TxCL[1:0] bits of the mode register to "11". At this time, the TFKT/TFKC pin is not used.

: 3.3 V-to-5 V conversion. Refer to the portion enclosed by the dotted line in Figure 4-18.

4.2.2 Parallel interface mode

The 8-bit parallel interface mode is set when the PSEL[1:0] pins are "1X".

The μ PD98404 outputs parallel transmit data from the TPD0 through TPD7 pins in synchronization with the 19.44 MHz clock input to the TFC pin, and loads the receive data input to the RPD0 through RPD7 pins in synchronization with the clock input to RPC pin. A 19.44 MHz clock in synchronization with the receive data extracted by a clock recovery LSI is input to the RPC pin.

The TPC pin usually outputs the transmit clock input to the TFC pin. In the PMD layer loopback mode 2, however, the clock input to the RPC pin is output.

4.3 Management Interface

The management interface is an interface with the bus of the host processor to control the μ PD98404. The μ PD98404 supports three modes of this interface as shown in Table 4-5. Whether MSEL0 or MSEL1 mode is used is determined by the input status of the MSEL pin at hardware reset.

When the MSEL pin is low, two modes can be selected: the normal MSEL0 mode and S15 mode in which NEC's SAR chip μ PD98401A (NEASCOT-S15) is connected. These two modes are automatically selected when the μ PD98404 checks the timing of the CS_B and DSB signals during the first read or write operation on power application. The conditions under which the MSEL or S15 mode is set are shown in Table 4-6.

Table 4-5. Management Interface Mode

MSEL0 mode	RD_B, WR_B, ACK_B style (Motorola compatible mode)
MSEL1 mode	DS_B, R/W_B, RDY_B style (Intel compatible mode)
S15 mode	Mode to connect NEC SAR LSI μPD98401A (NEASCOT-S15) . CS_B, DS_B, R/W_B are used.

Table 4-6. Mode Select Condition When MSEL Pin Is Low

Initial Operation	MSEL Mode Setting Condition	S15 Mode Setting Condition
Read	MSEL mode is identified if low pulse is input to DS_B until 9 clock cycles elapse after CS_B has gone low.	S15 mode is identified if low pulse is input to DS_B after 11 clock cycles have elapsed after CS_B fell.
Write	MSEL mode is identified if low pulse is input to DS_B while CS_B is low.	S15 mode is identified if DS_B retains high while CS_B is low.

- Cautions 1. If the first operation is a read operation and if it is detected that DSB has gone low at the 10th clock cycle after CS_B fell, it is unclear whether the μ PD98404 is subsequently set in the MSEL or S15 mode.
 - 2. Allow a recovery time of "4 x TCLK" clock cycle or longer (from DS_B↑ to DS↓) between one register access and the next access.
 - 3. If the device is reset in software by setting the CMR2 register, do not read or write all the registers for at least the duration of "20 x TCLK clock cycle" from the write cycle in which the device has been reset. This is because the registers may not be correctly read or written.

Figure 4-21. Management Interface

4.3.1 Read operation

The host starts a read operation by driving an address onto MADD[6:0] and asserting CS_B and RD_B or DS_B active (low level). In response, the μ PD98404 drives RDY_B (ACK_B) low and outputs the requested data to MD[7:0] within a specific time. The host acknowledges that RDY_B (ACK_B) has gone low, deasserts RD_B (DS_B) high, and reads the data on MD[7:0]. If the μ PD98404 is not selected by CS_B, it makes RDY_B (ACK_B) and MD[7:0] go into a high-impedance state. In the MSEL1 mode, a read cycle is recognized when RD_B is asserted low while WR_B is high. In the MSEL0 mode, a read cycle is recognized when RW_B is deasserted high while DS_B is low. Figure 4-22 shows the read timing in each mode.

Remark The time from when DS_B (RD_B) has gone low until the μPD98404 asserts ACK_B (RDY_B) low differs depending on the register to be accessed, but it is "4 x TCLK clock cycle" at maximum. To read any register without using ACK_B (RDY_B), make sure that the pulse width of RS_B (RD_B) is at least "4 x TCLK clock cycle".

Phase-out/Discontinued

Hi-Z

Hi-Z

Figure 4-22. Read Operation

• MSEL0 mode (Motorola compatible)

Invalid

Data

MD0-MD7

RD_B

WR_B

RDY_B

Hi-Z

Hi-Z

٠

4.3.2 Write operation

The host starts a write cycle by driving an address onto MADD[6:0], outputting the data to MD[7:0], and asserting CS_B and WR_B or DS_B low. In response, the μ PD98404 informs the host that it is ready for reading data, by asserting RDY_B (ACK_B) low. The host acknowledges that RDY_B (ACK_B) is low and deasserts WR_B (DS_B) high. The μ PD98404 reads the data on MD[7:0] at the rising edge of WR_B(DS_B). If it is not selected by CS_B, RDY_B (ACK_B) goes into a high-impedance state. In the MSEL1 mode, the μ PD98404 recognizes a write cycle when WR_B is asserted low while RD_B is high. In the MSEL0 mode, it recognizes a write cycle when RW_B is asserted low while RD_B is high. Figure 4-23 shows the write timing.

Remark The time from when DS_B (WR_B) has gone low until the μPD98404 asserts ACK_B (RDY_B) low differs depending on the register to be accessed, but it is "4 x TCLK clock cycle" at maximum. To write any register without using ACK_B (RDY_B), make sure that the pulse width of RS_B (WR_B) is at least "4 x TCLK clock cycle".

Phase-out/Discontinued

Figure 4-23. Write Operation

• MSEL0 mode (Motorola compatible)

Phase-out/Discontinued

4.3.3 Interrupt processing

The μ PD98404 has an interrupt output pin PHINT_B. By using this pin, the μ PD98404 reports detection of an error and occurrence of a counter overflow to the host.

The PHINT_B becomes active if one of the bits of the PHY interrupt cause register (PICR) is set to "1". When the host detects that PHINT_B has become active, it first reads the PICR register and identifies the interrupt cause. If the cause is PCO, ALM, or PFM, the host also reads the corresponding PCOCR, ACR, and PCR registers to check the cause of the interrupt.

Figure 4-25 shows the relationship of the registers to the interrupt cause. The user can mask each interrupt cause. Resetting the bit status of the interrupt cause register and the operation of the PHINT_B are performed in three modes when the host reads the PHY interrupt cause register. These modes are selected by using the RCM [1:0] bits of the mode register 2 (MDR2).

(1) Selecting interrupt servicing mode (MDR2: RCM[1:0])

Interrupt servicing mode 1 (MDR2: RCM[1:0] = "00")

If an interrupt is generated and one of the bits of the PICR register is set, PHINT_B becomes active. Even if the cause of the event no longer exists, the bit status of the register is maintained until the host reads the register, and the PHINT_B remains active. If the host reads the register when the cause of the interrupt no longer exists, the bit of the interrupt cause register is reset to 0 and the PHINT_B becomes inactive.

In the example in Figure 4-24, the LOS bit of the PICR register is set and the PHINT_B becomes active because LOS is detected. The host reads the PICR register once. However, the LOS status still persists at this time, the LOS bit of the PICR register is not cleared, and the PHINT_B does not become inactive, either. Although a recovery is later made from the LOS status and the cause of the interrupt no longer exists, the current statuses of the LOS bit and PHINT_B are maintained because the host read the register under reset condition. When the host reads the register the second time, the LOS status no longer exists. Consequently, the register bit is reset and the PHINT_B becomes inactive at the same time.

Interrupt servicing mode 2 (MDR2: RCM[1:0] = "01")

The bit of the interrupt cause register is reset and the PHINT_B becomes inactive only when an event that causes an interrupt is detected or recovered. Even if the host reads the PHY interrupt cause register, the bit of the register is not reset as long as the event continues, and the PHINT_B does not become inactive, either.

Interrupt servicing mode 3 (MDR2: RCM[1:0] = "1X")

The bit of the interrupt cause register is reset and the PHINT_B becomes inactive only if the event that causes an interrupt no longer exists or if the host reads the cause register. Even if the event continues, the bit of the register is reset and the PHINT_B becomes inactive if the host reads the register.

- Cautions 1. The bits of the register are cleared if the event of the source disappears in interrupt modes 2 and 3, so the bits may have been already cleared when the host reads the register.
 - 2. Each cause bit may be set due to reception of an undefined frame immediately after power application to the μ PD98404. After power application, therefore, clear all the interrupt cause registers to 0 by using the ICR bit of the command register 2 (CMR2).

Figure 4-24. Differences in Operation of Interrupt Cause Register Bit and PHINT_B due to Interrupt Mode

Reset condition

Mode 1 : Register read by the host when interrupt cause no longer exists

Mode 2 : Interrupt cause no longer exists

Mode 3 : Interrupt cause no longer exists or register read by host

Figure 4-25. Relationship between Interrupt Cause Registers

PHY Interrupt Cause Register (PICR)	Interrupt Cause Detail Register	Mask Register
 PHINT_B becomes active if one of the bits or register is set to "1". When the bit of this register is cleared and w PHINT_B becomes inactive differs dependin interrupt mode selected. An interrupt mode is selected by the RCM[1: the mode register 2 (MCR2). When the PCO, ALM, and PFM bits are set, checks the cause of the interrupt by reading corresponding interrupt cause detail register 	of this /hen ig on the :0] bits of the host the	 In interrupt modes 1 and 3, the PCO, ALM, and PFM bits of the PICR register are reset by reading the respective interrupt cause detail registers. 	The user can mask the occurrence of an interrupt from each interrupt cause by using the mask register.
PICR register			
OOL PMD LOS LOF ALM PFM PC	O RFO		PIMR register
		PCO = 1: Occurrence of counter overflow	DOOMD4 register
		PCOCR1 register	PCOMR1 register
		PCOCR2 register	PCOMR2 register
		 When at least one of the bits of both the registers is set to "1", the PCO bit of the PICR register is set. 	
		PFM = 1: Occurrence of circuit quality degradation	
		PCR register	PCMR register
		 If at least one bit of this register is set to "1", the PFM bit of the PICR register is set. 	
		ALM = 1:	
		ACR register	ACMR register
		 If at least one bit of this register is set to "1", the ALM bit of the PICR register is set. 	
The bits of a and PCOCR register 2 (C	all the intern 2) can be fo :MR2) to 1	upt cause-related registers (PICR, A prcibly cleared to 0 by setting the ICI	CR, PCR, PCOCR1, R bit of the command

	B 11 M		Resetting Condition						
Register Name	Bit Name	Setting Condition	RCM[1:0] bit = 00	RCM[1:0] bit = 01	RCM[1:0] bit = 1x				
PICR	OOL	Occurrence of each	Reading of this	Interrupt no longer	Reading of this				
	PMD	interrupt	register (on	exists	register				
	LOF		cause no longer						
	LOS		exists)						
	ALM	When one of bits of ACR register is set	All bits of ACR register are cleared to 0.						
	PCO	When one of bits of PCOCR1 and PCOCR2 registers is set	All the bits of PCOCR1 and PCOCR2 registers are cleared to 0.						
	PFM	When one of bits of PCR register is set	All bits of PCR register are cleared to 0.						
	RFO	When receive buffer overrun occurs	Reading of this register only						
PCOCR1	B1EC	When count value	Cleared to 0 by reading of this register						
	B2EC	passes all "FF"							
	B3EC								
	LREC								
PCOCR2	HECC	When count value	Cleared to 0 by reading of this register						
	FULC	passes all "FF"							
	IDLC								
	INFC								
ACR	OOF	Occurrence of each	Reading of this	Interrupt no longer	Reading of this				
	LOP	interrupt	register (on	exists.	register				
	OCD		interrupt no longer						
	LCD		exists)						
	LAIS								
	PAIS								
	LRDI								
	PRDI								
PCR	FJ	Occurrence of each	Reading of this	Interrupt no longer	Reading of this				
	B1E	interrupt	register (on	exists. register					
	B2E		interrupt no longer						
	B3E		exists)						
	LREI								
	PREI								

Table 4-7. Setting/Resetting Condition of Each Bit of Interrupt Cause Registers

Remark Even if the ICR bit of the CMR register is set to 1, the bits of all the interrupt cause registers are reset.

CHAPTER 5 REGISTERS

Phase-out/Discontinued

This chapter explains in detail the register map of the internal registers and the function of each register. The default value of each register is the value set after reset.

5.1 Register Map

No.	Address	Name	Function	R/W	Number of Bits	Default Value			
(1)	00H	CMR1	Command register 1. Sets transmission of alarm frame.	R/W	5	00H			
(2)	01H	CMR2	Command register 2. Sets initialization of register.	R/W	4	00H			
(3)	02H	CMR3	Command register 3. Sets transmission of pseudo error frame.	R/W	4	00H			
(4)	03H	MDR1	Mode register 1. Sets interface mode. R/W 8						
(5)	04H	MDR2	Mode register 2. Sets interrupt loopback mode.	R/W	6	00H			
(6)	05H	MDR3	Mode register 3. Sets scramble mode and TCLAV mode.	R/W	7	00H			
(7)	06H	PICR	Indicates interrupt cause.	R	7	00H			
(8)	07H	PIMR	Masks interrupt cause.	R/W	7	FFH			
(9)	08H	ACR	Indicates circuit failure interrupt cause detail.	R	8	00H			
(10)	09H	ACMR	Masks circuit failure interrupt cause.	R/W	8	FFH			
(11)	0AH	PCR	Indicates performance monitoring interrupt cause detail.	R	6	00H			
(12)	0BH	PCMR	Masks performance monitoring interrupt cause detail.	R/W	6	FFH			
(13)	0CH	IACM	Masks automatic transmission of Path/Line RDI.	R/W	3	FFH			
(14)	0DH	B1ECT	B1 error counter	R	8	00H			
(15)	0EH	B2ECT	B2 error counter	R	8	00H			
(16)	0FH	B3ECT	B3 error counter	R	8	00H			
(17)	10H	LRECT	Line-REI counter	R	8	00H			
(18)	11H	PRECT	Path-REI counter	R	8	00H			
(19)	12H	FJCT	Frequency Justification counter	R	8	00H			
(20)	13H	HECCT	Dropped cell counter in case of HEC error	R	8	00H			
(21)	14H	FULCT	Dropped cell counter in case of FIFO full	R	8	00H			
(22)	15H	IDLCT	Receive idle cell counter	R	8	00H			
(23)	16H	INFCT	Reads receive valid cell counter	R	8	00H			
(24)	19H	PCPR1	Indicates read byte position of counter.	R/W	8	00H			
(25)	1AH	PCPR2	Indicates read byte position of counter.	R/W	8	00H			
(26)	1BH	PCSR	Sets sample timing of counter to load register.	R/W	1	00H			
(27)	1CH	PCIR1	Sets initialization of counters (B1EC, B2EC, B3EC, LREC, PREC, FJC)	R/W	6	00H			
(28)	1DH	PCIR2	Sets initialization of counters (HECC, FULC, IDLC, INFC)	R/W	4	00H			
(29)	1EH	PCFR1	Disables counters (B1EC, B2EC, B3EC, LREC, PREC, FJC).	R/W	6	FFH			
(30)	1FH	PCFR2	Disables counters (HECC, FULC, IDLC, INFC).	R/W	4	FFH			

No.	Address	Name	Function	R/W	Number of Bits	Default Value
(31)	20H	PCOCR1	Indicates cause of counter overflow.	R	6	00H
(32)	21H	PCOCR2	Indicates cause of counter overflow.	R	4	00H
(33)	22H	PCOMR1	Masks interrupt due to counter overflow.	R/W	6	FFH
(34)	23H	PCOMR2	Masks interrupt due to counter overflow.	R/W	4	FFH
(35)	24H	AMPR	Selects PHYALM pin to be set.	R/W	2	00H
(36)	25H	AMR1	Masks alarm to be output from PHYARM pin.	R/W	8	FFH
(37)	26H	AMR2	Masks alarm to be output from PHYARM pin.	R/W	4	FFH
(38)	27H	DCHPR	Sets drop cell header pattern.	R/W	1	01H
(39)	28H	DCHPMR	Masks drop cell header pattern.	R/W	1	00H
(40)	29H	PHYIDR	Sets PHY ID address when multi-PHY mode is used.	R/W	5	01H
(41)	2AH	JOR	Stores J0 byte of receive frame.	R	8	00H
(42)	2BH	Z01	Stores 1st Z0 byte of receive frame.	R	8	00H
(43)	2CH	Z02	Stores 2nd Z0 byte of receive frame.	R	8	00H
(44)	2DH	F1R	Stores F1 byte of receive frame.	R	8	00H
(45)	2EH	K1R	Stores K1 byte of receive frame.	R	8	00H
(46)	2FH	K2R	Stores K2 byte of receive frame.	R	8	00H
(47)	30H	C2R	Stores C2 byte of receive frame.	R	8	00H
(48)	31H	F2R	Stores F2 byte of receive frame.	R	8	00H
(49)	32H	H4R	Stores H4 byte of receive frame.	R	8	00H
(50)	33H	JOT	Sets J0 byte of transmit frame.	R/W	8	01H
(51)	34H	Z01T	Sets 1st Z0 byte of transmit frame.	R/W	8	02H
(52)	35H	Z02T	Sets 2nd Z0 byte of transmit frame.	R/W	8	03H
(53)	36H	F1T	Sets F1 byte of transmit frame.	R/W	8	00H
(54)	37H	K1T	Sets K1 byte of transmit frame.	R/W	8	00H
(55)	38H	K2T	Sets K2 byte of transmit frame.	R/W	5	00H
(56)	39H	C2T	Sets C2 byte of transmit frame.	R/W	8	13H
(57)	ЗАН	F2T	Sets F2 byte of transmit frame.	R/W	8	00H
(58)	3BH	H4T	Sets H4 byte of transmit frame.	R/W	8	00H
(59)	3CH- 3EH		Reserved area (read/write prohibited)			
(60)	3FH	VERR	Stores version name of LSI.	R	8	00H
(61)	40H- 7FH		Reserved area (read/write prohibited)			

[Caution]

The data bit string of the SONET/SDH frame the μ PD98404 transmits from the PMD interface is sequentially transmitted starting from the MSB. Note that the names of the bits in the byte in the overhead of the SONET/SDH frame are described in two ways in this manual, as follows:

(1) First through eighth bits

These bits are mainly used to indicate the bit string of the overhead byte in the SONET/SDH frame and are in the sequence in which they are output from the PMD interface.

(2) D7 through D0 bits

These bits are mainly used to indicate the bits in the internal registers of the μ PD98404 and correspond to the D7 through D0 pins of the external management interface.

· Expressing bits in internal registers

5.2 Register Function

(1) Command register (CMR1)

This register sets transmission of alarm signals such as Line AIS, Path AIS, Line RDI, and Path RDI. It also sets the PHYALM pin output.

Register name	D7	D6	D5	D4	D3	D2	D1	D0	Address	Default	R/W
CMR1	0	0	0	ARM	LAIS	PAIS	LRDI	PRDI	00H	00H	R/W

Field		Function	Default Value
D4: ARM	Sets	the output level of the PHYALM[2:0] pins not masked by the AMR1/2 registers.	0
	1	Outputs high level to PHYALM[2:0] pins.	
	0	Does not set PHYALM output.	
D3: LAIS	Sets	Line AIS transmission.	0
	1	Transmits Line AIS transmission. Sets K2 (bits 6 through 8) of transmit frame to "111" and changes all bits of transmit frame to 1 before scrambling POH and payload block.	
	0	Does not set Line AIS.	
D2: PAIS	Sets	0	
	1	Transmits Path AIS transmission. Sets all bits of H1 through H3 of transmit frame to "1" and changes all bits in payload area of transmit frame to 1.	
	0	Does not set Path AIS.	
D1: LRDI	Sets	Line RDI transmission.	0
	1	Transmits Line RDI transmission. Changes K2 byte (bits 6 through 8) of transmit frame to "110".	
	0	Does not set Line RDI.	
D0: PRDI	Sets	Path RDI transmission.	0
	1	Transmits Path RDI transmission. Changes bit 5 of G1 byte of transmit frame to "1".	
	0	Does not set Path RDI.	

Remarks 1. If Line AIS and Line RDI are set in the same frame, Line AIS takes precedence.

2. When this register is read, the high-order 3 bits are always "0". Nothing can be written to these bits.

(2) Command register 2 (CMR2)

This register initializes the registers of the μ PD98404.

Register name	D7	D6	D5	D4	D3	D2	D1	D0	Address	Default	R/W
CMR2	0	0	0	0	ALL	ICR	PCR	ALR	01H	00H	R/W

Field		Function	Default Value
D3: ALL	Soft	ware reset of LSI	0
	1	Executes software reset. Initializes all internal states of this LSI.	
	0	Does not execute software reset.	
D2: ICR	Initia	lizes all interrupt cause registers.	0
	1	Initializes all interrupt cause registers (PICR, ACR, PCR, and PCOCR) and the mask register (PIMR, ACMR, PCMP, PCOMR).	
	0	Does not initialize interrupt cause registers.	
D1: PCR	Initia	lizes all performance counters.	0
	1	Initializes all performance counters and registers related to performance counters.	
	0	Does not initialize performance counters and registers related to performance counters.	
D0: ALR	Initia	lizes all registers.	0
	1	Initializes all registers of LSI to default values.	
	0	Does not initialize registers.	

Caution If the device is reset via software by setting this register, do not read or write all the registers for the duration of at least "20 x TCLK clock cycle (tcvtk)" from that write cycle. Otherwise, the registers may not be read or written correctly.

Remarks 1. All bits are automatically cleared to "0" after they have been initialized.

2. When this register is read, the high-order 4 bits are always "0". Nothing can be written to these bits.

(3) Command register 3 (CMR3)

This register transmits a frame including an alarm signal or error report. This function allows the user to forcibly transmit a pseudo frame including an error report. This register is useful for testing.

Register name	D7	D6	D5	D4	D3	D2	D1	D0	Address	Default	R/W
CMR3	0	0	0	0	CM3	CM2	CM1	CM0	02H	00H	R/W

Field	Function	Default Value
D3-D0: CM3-CM0	Transmits pseudo error frame including alarm or error	 All 0
	CM3-CM0 Transmit frame	
	0000 Transmits normal frame.	
	0001 Transmits LOS frame.	
	0010 Transmits OOF frame.	
	0011 Transmits LOF frame.	
	0100 Transmits LOP frame.	
	0101 Transmits OCD frame.	
	0110 Transmits LCD frame.	
	0111 Transmits B1 error frame.	
	1000 Transmits B2 error frame.	
	1001 Transmits B3 error frame.	
	1010 Transmits Line REI frame.	
	1011 Transmits Path REI frame.	
	Others Transmits normal frame.	

Remark When this register is read, the high-order 4 bits are always "0". Nothing can be written to these bits.

(4) Mode register 1 (MDR1)

This register sets the mode of the line interface or UTOPIA interface.

Register name	D7	D6	D5	D4	D3	D2	D1	D0	Address	Default	R/W
MDR1	0	SS1	SS0	TxCL1	TxCL0	0	CSEL	HSEL	03H	00H	R/W

Field					F	unction						Default Value
D6, D5: SS1, SS0	Sets	SS bit coo	le of 1st	o 3rd H1	bytes o	f overhea	ld of tran	smit fram	ie.			00
	-							1		1	-	
			B7	B6	B5	B4	B3	B2	B1	B0		
		1st H1	0	1	1	0	SS1	SS0	1	0		
		2nd H1	H1 1 0 0 1 SS1 SS0 1 1									
		3rd H1	1	0	0	1	SS1	SS0	1	1		
D4, D3:	Sele	cts referen	ts reference clock used by transmit synthesizer as source clock.									
TxCL1, TxCL0												
		TxC	TxCL[1:0] Mode									
			00 Uses REFCLK pin input as reference clock of transmit synthesizer PLL.									
			10 Uses TFC pin input as reference clock of transmit synthesizer PLL.									
			X1 Uses recovery clock of receive clock recovery PLL as transmit clock as is.									
D1: CSEL	Sele	cts mode o	of ATM la	yer inter	face whe	n UMPS	EL pin =	L (single	PHY).			0
	1	Selects of	cell level	handsha	ke mode							
	0	Selects of	octet leve	l handsh	ake moo	le.						
D0: HSEL	Uses	s recovery	clock of I	eceive c	lock reco	overy PLI	as trans	smit clock	cas is.			0
	1	Selects 3	3-state m	ode for F	RDO & R	SOC out	put.					
	0	Selects 2	2-state m	ode for F	RDO & R	SOC out	put.					

Remark When this register is read, bits D7 and D2 are always "0". Nothing can be written to these bits.

Table 5-1. ATM Layer Interface Modes Selected by Combination of CSEL and HSEL Bits and UMPSEL Pin

D1, D0	UMPSEL Pin	Mode
00	0	Single PHY; octet level handshake; RDI [7:0] & RSOC 2-state (default)
01		Single PHY; octet level handshake; RDI [7:0] & RSOC 3-state
10		Single PHY; cell level handshake; RDO [7:0] & RSOC 2-state
11		Single PHY; cell level handshake; RDO [7:0] & RSOC 3-state
ХХ	1	Multi-PHY; RDO [7:0], RSOC, RCLAV & TCLAV 3-state

(5) Mode register 2 (MDR2)

This register selects the mode of the μ PD98404.

Register name	D7	D6	D5	D4	D3	D2	D1	D0	Address	Default	R/W
MDR2	0	oolenb	idlenb	LP1	LP0	RxCL	RCM1	RCM0	04H	00H	R/W

Field			Function		Default Value					
D6: oolenb	Disa	ble receive clock aut	omatic selection in OOL status.		0					
	1	Transmit clock is n	ot automatically switched to receive clock even in OOL statu	JS.						
	0	Transmit clock is a PLL is unlocked (C	utomatically switched to receive clock if receive clock recovOL status).	very						
D5: idenb	Sele	cts format of vacant	cell.		0					
	1	Inserts unassigned	rts unassigned cell as vacant cell.							
	0	Inserts idle cell as	serts idle cell as vacant cell.							
D4: LP1 D3: LP0	Sets	loopback mode			00					
		LP[1:0]	Mode							
		00	Sets normal mode							
		01	RPLP mode Sets loopback from PMD side input to PMD side output via serial/parallel converter circuit							
		10	TPLP mode Sets loopback from ATM side input to ATM side output via serial/parallel converter circuit							
		11	ATMLP mode Sets loopback from ATM side input to ATM side output via receive FIFO and transmit FIFO							
D2: RxCL	Sele	cts source clock of re	eceive clock recovery PLL circuit		0					
	1	Selects source of PLL as receive clo	receive clock. Uses clock generated by transmit synthes ck.	sizer						
	0	Uses clock extract	ed by receive clock recovery PLL as receive clock.							

Caution The oolenb bit disables the function automatically to select the source of the receive clock. Set this bit to 1 (refer to Caution in • Receive clock recovery PLL function in 4.2.1 (1)).

	Function									
Selects interrupt mode	00									
RCM [1:0] Mode										
00	Selects interrupt mode 1. Bits of interrupt cause register and PHINT_B signal are retained until they are read by host. Even if cause condition disappears, status bit is retained.									
01	Selects interrupt mode 2. Even if host reads PHY interrupt cause register, bit is not reset and PHINT_B signal does not become inactive. Status is retained until cause disappears.									
1X	Selects interrupt mode 3. When host reads interrupt cause register, register bits are reset even if cause condition is still valid, and PHINT_B signal becomes inactive.									
	Selects interrupt mode RCM [1:0] 00 01 1X	Function Selects interrupt mode RCM [1:0] Mode 00 Selects interrupt mode 1. Bits of interrupt cause register and PHINT_B signal are retained until they are read by host. Even if cause condition disappears, status bit is retained. 01 Selects interrupt mode 2. Even if host reads PHY interrupt cause register, bit is not reset and PHINT_B signal does not become inactive. Status is retained until cause disappears. 1X Selects interrupt mode 3. When host reads interrupt cause register, register bits are reset even if cause condition is still valid, and PHINT_B signal becomes inactive.								

Remark When this register is read, the most significant bit is always "0". Nothing can be written to this bit.

(6) Mode register 3 (MDR3)

This register is used to select the mode of the μ PD98404.

Register name	D7	D6	D5	D4	D3	D2	D1	D0	Address	Default	R/W
MDR3	INTENB	FSCRM	CSCRM	HECENB	CORENB	RCASEL	TCASEL1	TCASEL0	05H	00H	R/W

Field		Function	Default Value
D7: INTENB	Sele	cts cell synchronization status transition.	0
	1	Cell does not enter hunting status if circuit fault (OOF, LOP, P-AIS) becomes active.	
	0	Cell is forcibly set in hunting status and then OCD status if circuit fault (OOF, LOP, P-AIS) becomes active.	
D6: FSCRM	Sele	cts frame scramble/descramble mode.	0
	1	Does not execute frame scramble/descramble.	
	0	Executes frame scramble/descramble.	
D5: CSCRM	Sele	cts cell scramble/descramble mode.	0
	1	Does not execute cell scramble/descramble.	
	0	Executes cell scramble/descramble.	
D4: HECENB	Sele	cts HEC error cell drop mode.	0
	1	Does not drop cell in which HEC error is detected.	
	0	Drops cell in which HEC error is detected.	
D3: CORENB	Sele	cts HEC error correction mode.	0
	1	Does not correct 1-bit HEC error. Cell in which 1-bit HEC error is detected is dropped.	
	0	Corrects 1-bit HEC error.	
D2: RCASEL	Sele	cts operation mode of RCLAV signal of UTOPIA interface.	0
	1	Indicates whether there is 1 cell of valid data at the next clock after the one that outputs second byte (header second byte) of receive cell data.	
	0	Indicates whether there is 1 cell of valid data at the next clock after the one that outputs last byte of receive cell data (48th byte of payload).	

Caution There are limitations on the RCASEL = 1 mode. For details, refer to CHAPTER 8 CONSTRAINTS.

Field		Function									
D1: TCASEL1	Selects o	operation mode o	of TCLAV signal of UTOPIA interface.		00						
DU: TCASELU											
		TCASEL[1:0]	TCLAV asserting/deasserting timing								
		00	Reports whether one more cell of data can be received by asserting TCLAV active four cycles before transfer of cell data currently being received is completed.								
		01	Indicates whether two more cell data can be accepted 4 cycles before transfer of currently accepted cell is completed.								
		10	Reports whether one more cell of data can be received by asserting TCLAV active after H3 byte of the cell data currently being received.								
		11	Indicates whether two more cell data can be accepted 1 cycle before transfer of currently accepted cell is completed.								
	Caution	Select a mod mode (CSEL make sure th	de by using TCASEL[1:0] only in the cell level hands bit = 1). In the octet level handshake mode (CSEL bit at TCASEL[1:0] = 00 (default).	hake = 0),							

(7) PHY interrupt cause register (PICR)

This register indicates the cause of an interrupt request (output from the PHINT_B pin).

Register name	D7	D6	D5	D4	D3	D2	D1	D0	Address	Default	R/W
PICR	OOL	PMD	LOS	LOF	ALM	PFM	PCO	RFO	06H	00H	R

Field		Function	Default Value
D7: OOL	Indic	ates status of receive clock recovery PLL.	0
	1	Indicates that recovery PLL is not correctly extracting the clock.	
	0	Indicates that recovery PLL is correctly extracting the clock.	
D6: PMD	Statu	us of PMDALM pin input.	0
	1	Indicates that PMDALM pin input is high.	
	0	Indicates that PMDALM pin input is low.	
D5: LOS	Indic	ates LOS (Loss Of Signal) status.	0
	1	Indicates that LOS has occurred.	
	0	Indicates that LOS does not occur.	
D4: LOF	Indic	ates LOF (Loss Of Frame) status.	0
	1	Indicates that LOF has occurred.	
	0	Indicates that LOF does not occur.	
D3: ALM	Indic	ates ACR register status.	0
	1	Indicates that circuit failure (OOF, LOP, OCD, LCD, Line AIS, Path AIS, Line RDI, Path RDI) of ACR register has occurred.	
	0	Indicates that circuit failure of ACR register has not occurred.	
D2: PFM	Indic	ates status of PCR register.	0
	1	Indicates that detailed performance interrupt (Frequency justification, B1E, B2E, B3E, Line REI, Path REI) indicated by PCR has been detected.	
	0	Indicates that detailed performance interrupt indicated by PCR has not been detected	
D1: PCO	Statu	us of performance counters.	0
	1	Indicates that overflow has occurred in performance counters.	
	0	Indicates that overflow has not occurred in performance counters.	
D0: RFO	Indic	ates overflow of receive FIFO.	0
	1	Indicates that overflow has occurred in receive FIFO.	
	0	Indicates that overflow has not occurred in receive FIFO.	

Remarks 1. If even one of the bits of this register not masked by the PIMR register is set to "1", PHINT_B is asserted active.

2. The operations of the OOL, PMD, LOF, and LOS bits of this register differ depending on the setting of the mode register 2 (MDR2) (RCM1 and RCM0 bits).

(8) PHY interrupt mask register (PIMR)

This register masks each interrupt cause of PICR (06H).

Register name	D7	D6	D5	D4	D3	D2	D1	D0	Address	Default	R/W
PIMR	OOL	PMD	LOS	LOF	ALM	PFM	PCO	RFO	07H	FFH	R/W

Field		Function	Default Value
D7: OOL	Mas	ks or unmasks interrupt request on occurrence of OOL.	1
	1	Masks interrupt on occurrence of OOL.	
	0	Does not mask interrupt on occurrence of OOL.	
D6: PMD	Mas	ks/unmasks interrupt request due to occurrence of PMD alarm.	1
	1	Masks interrupt request due to change in PMDALM pin input.	
	0	Does not mask interrupt request due to change in PMDALM pin input.	
D5: LOS	Mas	ks/unmasks interrupt request due to occurrence of LOS.	1
	1	Masks interrupt request due to occurrence of LOS.	
	0	Does not mask interrupt request due to occurrence of LOS.	
D4: LOF	Mas	ks/unmasks interrupt request due to occurrence of LOF.	1
	1	Masks interrupt request due to occurrence of LOF.	
	0	Does not mask interrupt request due to occurrence of LOF.	
D3: ALM	Mas	ks/unmasks interrupt request due to occurrence of circuit failure.	1
	1	Masks interrupt request due to circuit failure (OOF, LOP, OCD, LCD, Line AIS, Path AIS, Line RDI, Path RDI) indicated by ACR register (Address: 08H).	
	0	Masks interrupt request due to circuit failure indicated by ACR (Alarm Cause Register, Address: 08H).	
D2: PFM	Mas	ks/unmasks interrupt request due to occurrence of detailed performance interrupt.	1
	1	Masks interrupt request due to detailed performance interrupt (B1EC, B2EC, B3EC, LREC, PREC, FJC, HECC, FULC, IDLC, INFC) indicted by PCR register (Address: 0AH).	
	0	Does not mask interrupt request due to detailed performance interrupt indicated by PCR.	
D1: PCO	Mas	ks/unmasks interrupt request due to occurrence of overflow in performance counter.	1
	1	Masks interrupt request due to occurrence of overflow in performance counter.	
	0	Does not mask interrupt request due to occurrence of overflow in performance counter.	
D0: RFO	Mas	ks/unmasks interrupt request due to occurrence of overflow in receive FIFO.	1
	1	Masks interrupt request due to occurrence of overflow in receive FIFO.	
	0	Does not mask interrupt request due to occurrence of overflow in receive FIFO.	

(9) Alarm cause register (ACR)

This register indicates a circuit failure.

Register name	D7	D6	D5	D4	D3	D2	D1	D0	Address	Default	R/W
ACR	OOF	LOP	OCD	LCD	LAIS	PAIS	LRDI	PRDI	08H	00H	R

Field		Function	Default Value
D7: OOF	Statu	us of OOF (Out Of Frame).	0
	1	Indicates that OOF has occurred.	
	0	Indicates that OOF has not occurred.	
D6: LOP	Statu	us of LOP (Loss Of Pointer).	0
	1	Indicates that LOP has occurred.	
	0	Indicates that LOP has not occurred.	
D5: OCD	Indic	ates OCD (Out of Cell Delineation).	0
	1	Indicates that OCD has occurred.	
	0	Indicates that OCD has not occurred.	
D4: LCD	Statu	us of LCD (Loss of Cell Delineation).	0
	1	Indicates that LCD has occurred.	
	0	Indicates that LCD has not occurred.	
D3: LAIS	Statu	us of Line AIS.	0
	1	Indicates that Line AIS has occurred.	
	0	Indicates that Line AIS has not occurred.	
D2: PAIS	Statu	us of Path AIS.	0
	1	Indicates that Path AIS has occurred.	
	0	Indicates that Path AIS has not occurred.	
D1: LRDI	Statu	us of Line RDI.	0
	1	Indicates that Line RDI has occurred.	
	0	Indicates that Line RDI has not occurred.	
D0: PRDI	Statu	us of Path RDI.	0
	1	Indicates that Path RDI has occurred.	
	0	Indicates that Path RDI has not occurred.	

- Caution The LOP bit is not cleared when the status of the pointer changes from LOP to AIS. To identify LOP in software, include clearing of the P-AIS bit to 0 into the condition (refer to Figure 3-7 Pointer Status Transition).
- **Remarks 1.** If even one of the bits of this register not masked by the ACMR register is set to "1", PICR (address: 06H) ALM bit is set to 1. Even if a bit masked by the ACMR register is set, the ALM bit is not set to 1.
 - 2. The operation of this register is controlled by mode register 2 (MDR2) (bits RCM1 and RCM0).

(10) Alarm cause mask register (ACMR)

This register can mask the circuit failure causes of ACR (Address: 08H). When they are masked, the ALM bit of PICR (Address: 06H) is not set.

Register name	D7	D6	D5	D4	D3	D2	D1	D0	Address	Default	R/W
ACMR	OOF	LOP	OCD	LCD	LAIS	PAIS	LRDI	PRDI	09H	FFH	R/W

Field		Function	Default Value
D7: OOF	Mas	ks report on detection of OOF (Out Of Frame).	1
	1	Masks report on occurrence of OOF.	
	0	Does not mask report on occurrence of OOF.	
D6: LOP	Mas	ks report on detection of LOP (Loss Of Pointer).	1
	1	Masks report on occurrence of LOP.	
	0	Does not mask report on occurrence of LOP.	
D5: OCD	Mas	ks report on detection of OCD (Out of Cell Delineation).	1
	1	Masks report on occurrence of OCD.	
	0	Does not mask report on occurrence of OCD.	
D4: LCD	Mas	ks report on detection of LCD (Loss of Cell Delineation).	1
	1	Masks report on occurrence of LCD.	
	0	Does not mask report on occurrence of LCD.	
D3: LAIS	Mas	ks report on detection of Line AIS.	1
	1	Masks report on occurrence of Line AIS.	
	0	Does not mask report on occurrence of Line AIS.	
D2: PAIS	Mas	ks report on detection of Path AIS.	1
	1	Masks report on occurrence of Path AIS.	
	0	Does not mask report on occurrence of Path AIS.	
D1: LRDI	Mas	ks report on detection of Line RDI.	1
	1	Masks report on occurrence of Line RDI.	
	0	Does not mask report on occurrence of Line RDI.	
D0: PRDI	Mas	ks report on detection of Path RDI.	1
	1	Masks report on occurrence of Path RDI.	
	0	Does not mask report on occurrence of Path RDI.	

(11) Performance cause register (PCR)

This register indicates causes of performance interrupt.

Register name	D7	D6	D5	D4	D3	D2	D1	D0	Address	Default	R/W
PCR	0	0	FJ	B1E	B2E	B3E	LREI	RREI	0AH	00H	R

Field		Function	Default Value
D5: FJ	Statu	us of JF (Frequency Justification).	0
	1	Indicates that FJ has occurred.	
	0	Indicates that FJ has not occurred.	
D4: B1E	Statu	us of B1 error.	0
	1	Indicates that B1 error has occurred.	
	0	Indicates that B1 error has not occurred.	
D3: B2E	Statu	us of B2 error.	0
	1	Indicates that B2 error has occurred.	
	0	Indicates that B2 error has not occurred.	
D2: B3E	Statu	us of B3 error.	0
	1	Indicates that B3 error has occurred.	
	0	Indicates that B3 error has not occurred.	
D1: LREI	Statu	us of Line REI.	0
	1	Indicates that Line REI has occurred.	
	0	Indicates that Line REI has not occurred.	
D0: PREI	Statu	us of Path REI.	0
	1	Indicates that Path REI has occurred.	
	0	Indicates that Path REI has not occurred.	

Remarks 1. When this register is read, the high-order 2 bits are always "0". Nothing can be written to these bits.

- Even if one of the bits of this register not masked by the PCMR register is set to "1", PICR (address: 06H) PFM bit is set to 1. Even if a bit masked by the PCMR register is set to 1, the PFM bit is not set to 1.
- 3. The operation of this register is controlled by mode register 2 (MDR2) (bits RCM1 and RCM0).

(12) Performance cause mask register (PCMR)

This register can mask the causes of performance interrupt of PCR (Address: 0A). When they are masked, the PFM bit of PICR (Address: 06H) is not set.

Register name	D7	D6	D5	D4	D3	D2	D1	D0	Address	Default	R/W
PCMR	1	1	FJ	B1E	B2E	B3E	LREI	PREI	0BH	FFH	R/W

Field		Function	Default Value
D5: FJ	Mas	ks report on occurrence of FJ (Frequency Justification).	1
	1	Masks report on occurrence of FJ.	
	0	Does not mask report on occurrence of FJ.	
D4: B1E	Mas	ks report on occurrence of B1 error.	1
	1	Masks report on occurrence of B1 error.	
	0	Does not mask report on occurrence of B1 error.	
D3: B2E	Mas	ks report on occurrence of B2 error.	1
	1	Masks report on occurrence of B2 error.	
	0	Does not mask report on occurrence of B2 error.	
D2: B3E	Mas	ks report on occurrence of B3 error.	1
	1	Masks report on occurrence of B3 error.	
	0	Does not mask report on occurrence of B3 error.	
D1: LREI	Mas	ks report on occurrence of Line REI.	1
	1	Masks report on occurrence of Line REI.	
	0	Does not mask report on occurrence of Line REI.	
D0: PREI	Mas	ks report on occurrence of Path REI.	1
	1	Masks report on occurrence of Path REI.	
	0	Does not mask report on occurrence of Path REI.	

Remark When this register is read, the high-order 2 bits are always "1". Nothing can be written to these bits.

(13) Internal alarm cause mask register (IACM)

This register can mask transmission of an alarm frame that is automatically generated internally.

Register name	D7	D6	D5	D4	D3	D2	D1	D0	Address	Default	R/W
IACM	1	1	1	1	1	PMD	LRDI	PRDI	0CH	FFH	R/W

Field		Default Value					
D2: PMD	Mas	Masks "PMDALM".					
	1	Only the input level of the PMDALM pin is reflected on the PMD bit of the PICR register. This is not included in the condition for detecting LOS.					
	0	The input level of this pin is included in the condition for detecting LOS. The input level of this pin is reflected on the PMD bit of the PICR register. If it is high, LOS is detected. This field is set when the optical input cutoff signal output by an optical module is input.					
D1: LRDI	Mas	ks automatic transmission of Line RDI.	1				
	1	Masks transmission of Line RDI automatically generated internally.					
	0	Does not mask transmission of Line RDI automatically generated internally.					
D0: PRDI	Mas	ks automatic transmission of Path RDI.	1				
	1	Masks transmission of Path RDI automatically generated internally.					
	0	Does not mask transmission of Path RDI automatically generated internally.					

Remark When this register is read, the high-order 5 bits are always "1". Nothing can be written to these bits.

(14) B1 error count register (B1ECT)

This register is a window register that is used to read the value of the 16-bit B1ECNTR register in 8-bit units. When this register read, the low-order 8 bits of B1ECNTR [7:0] are read first, and then the high-order 8 bits of B1ECNTR [15:8] are read. Whether the low-order or high-order 8 bits of B1ECNTR are read when this register is read next time is indicated by the B1EC bit of the PCPR1 register (address: 19H). The default value of the B1EC bit of the PCPR1 register has been read, the B1EC bit automatically changes from 0 to 1 and then back to 0 again.

The B1ECNTR register is a load register that samples (stores) the value of the B1 error counter. When the SMP bit of the PCSR register (1BH) is set to 1, the value of the B1E counter is stored to the B1ECNTR register This value indicates the total of the number of B1 errors that have occurred after the contents of the B1E counter have been previously sampled. The value stored to the B1ECNTR register is retained until the B1E counter is sampled again.

The contents of the B1E counter are cleared to 0 each time the counter has been sampled. The counter is also cleared when 1 is written to the B1EC bit of the PCIR1 (1CH) register.

When the value of the counter reaches all "F", an overflow is detected and the B1EC bit of PCOCR1 (20H) is set to 1. In addition, the PCO bit of the PICR (06H) register is set to 1, causing an interrupt. Even after an overflow occurs, the B1E counter continues counting up.

(15) B2 error count register (B2ECT)

This register is a window register that is used to read the value of the 20-bit B2ECNTR register in three parts of 8 bits each. When this register read, the low-order 8 bits of B2ECNTR [7:0] are read first, the middle-order 8 bits of B2ECNTR [15:8], and then the high-order 4 bits of B2ECNTR [19:15] are read. Whether the low-order or middle-order 8 bits or high-order 4 bits of B2ECNTR are read when this register is read next time is indicated by the B2EC1 and B2EC0 bits of the PCPR1 register (address: 19H). The default values of these bits are 00. Each time the B2ECT register has been read, these bits automatically change from 00 to 01, from 01 to 10, from 10 to 00, and so on.

The B2ECNTR register is a load register that samples (stores) the value of the B2 error counter. When the SMP bit of the PCSR register (1BH) is set to 1, the value of the B2E counter is stored to the B2ECNTR register. This value indicates the total of the number of B2 errors that have occurred after the contents of the B2E counter have been previously sampled. The value stored to the B2ECNTR register is retained until the B2E counter is sampled again.

The contents of the B2E counter are cleared to 0 each time the counter has been sampled. The counter is also cleared when 1 is written to the B2EC bit of the PCIR1 (1CH) register.

When the value of the counter reaches all "F", an overflow is detected and the B2EC bit of PCOCR1 (20H) is set to 1. In addition, the PCO bit of the PICR (06H) register is set to 1, causing an interrupt. Even after an overflow occurs, the B2E counter continues counting up.

(16) B3 error count register (B3ECT)

This register is a window register that is used to read the value of the 16-bit B3ECNTR register in 8-bit units. When this register read, the low-order 8 bits of B3ECNTR [7:0] are read first, and then the high-order 8 bits of B3ECNTR [15:8] are read. Whether the low-order or high-order 8 bits of B3ECNTR are read when this register is read next time is indicated by the B3EC bit of the PCPR1 register (address: 19H). The default value of the B3EC bit of the PCPR1 register has been read, the B3EC bit automatically changes from 0 to 1 and then back to 0 again.

The B3ECNTR register is a load register that samples (stores) the value of the B3 error counter. When the SMP bit of the PCSR register (1BH) is set to 1, the value of the B3E counter is stored to the B3ECNTR register This value indicates the total of the number of B3 errors that have occurred after the contents of the B3E counter have been previously sampled. The value stored to the B3ECNTR register is retained until the B3E counter is sampled again.

The contents of the B3E counter are cleared to 0 each time the counter has been sampled. The counter is also cleared when 1 is written to the B3EC bit of the PCIR1 (1CH) register.

When the value of the counter reaches all "F", an overflow is detected and the B3EC bit of PCOCR1 (20H) is set to 1. In addition, the PCO bit of the PICR (06H) register is set to 1, causing an interrupt. Even after an overflow occurs, the B3E counter continues counting up.

(17) Line REI error count register (LRECT)

This register is a window register that is used to read the value of the 20-bit LRECNTR register in three parts of 8 bits each. When this register read, the low-order 8 bits of LRECNTR [7:0] are read first, the middle-order 8 bits of LRECNTR [15:8], and then the high-order 4 bits of LRECNTR [19:15] are read. Whether the low-order or middle-order 8 bits or high-order 4 bits of LRECNTR are read when this register is read next time is indicated by the LREC1 and LREC0 bits of the PCPR1 register (address: 19H). The default value of these bits are 0. Each time the LRECT register has been read, this bit automatically change from 00 to 01, from 01 to 10, from 10 to 00, and so on.

The LRECNTR register is a load register that samples (stores) the value of the Line-REI counter. When the SMP bit of the PCSR register (1BH) is set to 1, the value of the Line-REI counter is stored to the LRECNTR register. This value indicates the total of the number of Line-REIs that have occurred after the contents of the Line-REI counter have been previously sampled. The value stored to the RECNTR register is retained until the Line-REI counter is sampled again.

The contents of the Line-REI counter are cleared to 0 each time the counter has been sampled. The counter is also cleared when 1 is written to the LREC bit of the PCIR1 (1CH) register.

When the value of the counter reaches all "F", an overflow is detected and the LREC bit of PCOCR1 (20H) is set to 1. In addition, the PCO bit of the PICR (06H) register is set to 1, causing an interrupt. Even after an overflow occurs, the Line-REI counter continues counting up.

(18) Path REI error count register (PRECT)

This register is a window register that is used to read the value of the 16-bit PRECNTR register in 8-bit units. When this register read, the low-order 8 bits of PRECNTR [7:0] are read first, and then the high-order 4 bits of PRECNTR [15:8] are read. Whether the low-order 8 bits or high-order 4 bits of PRECNTR are read when this register is read next time is indicated by the PREC bit of the PCPR1 register (address: 19H). The default value of this bit is 0. Each time the PRECT register has been read, these bits automatically change from 0 to 1 and then back to 0 again.

The PRECNTR register is a load register that samples (stores) the value of the Path-REI counter. When the SMP bit of the PCSR register (1BH) is set to 1, the value of the Path-REI counter is stored to the PRECNTR register. This value indicates the total of the number of Path-REIs that have occurred after the contents of the Path-REI counter have been previously sampled. The value stored to the PRECNTR register is retained until the Path-REI counter is sampled again.

The contents of the Path-REI counter are cleared to 0 each time the counter has been sampled. The counter is also cleared when 1 is written to the PFBC bit of the PCIR1 (1CH) register.

When the value of the counter reaches all "F", an overflow is detected and the PREC bit of PCOCR1 (20H) is set to 1. In addition, the PCO bit of the PICR (06H) register is set to 1, causing an interrupt. Even after an overflow occurs, the Path-REI counter continues counting up.

(19) Frequency Justification count register (FJCT)

This register is a window register that is used to read the value of the 12-bit FJCNTR register in two parts of 8 bits and 4 bits. When this register read, the low-order 8 bits of FJCNTR [7:0] are read first, and then the high-order 4 bits of FJCNTR [11:8] are read. Whether the low-order 8 bits or high-order 4 bits of FJCNTR are read when this register is read next time is indicated by the FJC bit of the PCPR1 register (address: 19H). The default value of this bit is 0. Each time the FJCT register has been read, these bits automatically change from 0 to 1 and then back to 0 again.

The FJCNTR register is a load register that samples (stores) the value of the FJ counter. When the SMP bit of the PCSR register (1BH) is set to 1, the value of the FJ counter is stored to the FJCNTR register. This value indicates the total of the number of Frequency Justification operations that have occurred after the contents of the FJ counter have been previously sampled. The value stored to the FJCNTR register is retained until the FJ counter is sampled again.

The contents of the FJ counter are cleared to 0 each time the counter has been sampled. The counter is also cleared when 1 is written to the FJC bit of the PCIR1 (1CH) register.

When the value of the counter reaches all "F", an overflow is detected and the FJC bit of PCOCR1 (20H) is set to 1. In addition, the PCO bit of the PICR (06H) register is set to 1, causing an interrupt. Even after an overflow occurs, the FJ counter continues counting up.

(20) HEC error count register (HECCT)

This register is a window register that is used to read the value of the 20-bit HECCNTR register in three parts of 8 bits each. When this register read, the low-order 8 bits of HECCNTR [7:0] are read first, the middle-order 8 bits of HECCNTR [15:8], and then the high-order 4 bits of HECCNTR [19:15] are read. Whether the low-order or middle-order 8 bits or high-order 4 bits of HECCNTR are read when this register is read next time is indicated by the HECC1 and HECC0 bits of the PCPR2 register (address: 1AH). The default values of these bits are 00. Each time the HECCT register has been read, these bits automatically change from 00 to 01, from 01 to 10, from 10 to 00, and so on.

The HECCNTR register is a load register that samples (stores) the value of the HEC counter. When the SMP bit of the PCSR register (1BH) is set to 1, the value of the HEC counter is stored to the HECCNTR register. This value indicates the total of the number of cells that have been dropped due to occurrence of a HEC error after the contents of the HEC counter have been previously sampled. The value stored to the HECCNTR register is retained until the HEC counter is sampled again.

The contents of the HEC counter are cleared to 0 each time the counter has been sampled. The counter is also cleared when 1 is written to the HECC bit of the PCIR2 (1DH) register.

When the value of the counter reaches all "F", an overflow is detected and the HECC bit of PCOCR2 (21H) is set to 1. In addition, the PCO bit of the PICR (06H) register is set to 1, causing an interrupt. Even after an overflow occurs, the HEC counter continues counting up.

(21) FIFO full count register (FULCT)

This register is a window register that is used to read the value of the 20-bit FULCNTR register in three parts of 8 bits each. When this register read, the low-order 8 bits of FULCNTR [7:0] are read first, the middle-order 8 bits of FULCNTR [15:8], and then the high-order 4 bits of FULCNTR [19:15] are read. Whether the low-order or middle-order 8 bits or high-order 4 bits of FULCNTR are read when this register is read next time is indicated by the FULC1 and FULC0 bits of the PCPR2 register (address: 1AH). The default values of these bits are 00. Each time the FULCT register has been read, these bits automatically change from 00 to 01, from 01 to 10, from 10 to 00, and so on.

The FULCNTR register is a load register that samples (stores) the value of the FIFO full counter. When the SMP bit of the PCSR register (1BH) is set to 1, the value of the FIFO full counter is stored to the FULCNTR register. This value indicates the total of the number of cells that have been dropped because the FIFO is full after the contents of the FIFO full counter have been previously sampled. The value stored to the FULCNTR register is retained until the FIFO full counter is sampled again.

The contents of the FIFO full counter are cleared to 0 each time the counter has been sampled. The counter is also cleared when 1 is written to the FULC bit of the PCIR2 (1DH) register.

When the value of the counter reaches all "F", an overflow is detected and the FULC bit of PCOCR2 (21H) is set to 1. In addition, the PCO bit of the PICR (06H) register is set to 1, causing an interrupt. Even after an overflow occurs, the FIFO full counter continues counting up.

(22) Idle cell (vacant cell) count register (IDLCT)

This register is a window register that is used to read the value of the 20-bit IDLCNTR register in three parts of 8 bits each. When this register read, the low-order 8 bits of IDLCNTR [7:0] are read first, the middle-order 8 bits of IDLCNTR [15:8], and then the high-order 4 bits of IDLCNTR [19:15] are read. Whether the low-order or middle-order 8 bits or high-order 4 bits of HECCNTR are read when this register is read next time is indicated by the IDLC1 and IDLC0 bits of the PCPR2 register (address: 1AH). The default values of these bits are 00. Each time the IDLCT register has been read, these bits automatically change from 00 to 01, from 01 to 10, from 10 to 00, and so on.

The IDLCNTR register is a load register that samples (stores) the value of the idle cell counter.

When the SMP bit of the PCSR register (1BH) is set to 1, the value of the idle cell counter is stored to the IDLCNTR register. This value indicates the total of the number of idle cells that have been received after the contents of the idle cell counter have been previously sampled. The value stored to the IDLCNTR register is retained until the idle cell counter is sampled again.

The contents of the idle cell counter are cleared to 0 each time the counter has been sampled. The counter is also cleared when 1 is written to the IDLC bit of the PCIR2 (1DH) register.

When the value of the counter reaches all "F", an overflow is detected and the IDLC bit of PCOCR2 (21H) is set to 1. In addition, the PCO bit of the PICR (06H) register is set to 1, causing an interrupt. Even after an overflow occurs, the idle cell counter continues counting up.

(23) Information cell count register (INFCT)

This register is a window register that is used to read the value of the 20-bit INFCNTR register in three parts of 8 bits each. When this register read, the low-order 8 bits of INFCNTR [7:0] are read first, the middle-order 8 bits of INFCNTR [15:8], and then the high-order 4 bits of INFCNTR [19:15] are read. Whether the low-order or middle-order 8 bits or high-order 4 bits of INFCNTR are read when this register is read next time is indicated by the INFC1 and INFC0 bits of the PCPR2 register (address: 1AH). The default values of these bits are 00. Each time the INFCT register has been read, these bits automatically change from 00 to 01, from 01 to 10, from 10 to 00, and so on.

The INFCNTR register is a load register that samples (stores) the value of the information cell counter. When the SMP bit of the PCSR register (1BH) is set to 1, the value of the information cell counter is stored to the INFCNTR register. This value indicates the total of the number of valid cells (cells transferred to the ATM layer device) that have been received after the contents of the information cell counter have been previously sampled. The value stored to the INFCNTR register is retained until the information cell counter is sampled again.

The contents of the information cell counter are cleared to 0 each time the counter has been sampled. The counter is also cleared when 1 is written to the INFC bit of the PCIR2 (1DH) register.

When the value of the counter reaches all "F", an overflow is detected and the INFC bit of PCOCR2 (21H) is set to 1. In addition, the PCO bit of the PICR (06H) register is set to 1, causing an interrupt. Even after an overflow occurs, the information cell counter continues counting up.

(24) Performance counter point register 1 (PCPR1)

This register indicates which byte of a load register corresponding to each wind register is to be read next.

Register name	D7	D6	D5	D4	D3	D2	D1	D0	Address	Default	R/W
PCPR1	B1EC	B2EC1	B2EC0	B3EC	LREC1	LREC0	PREC	FJC	19H	00H	R/W

Field			Default Value						
D7: B1EC	Indic	ates which bits of B1	error counter are to be read next.	0					
	1	High-order 8 bits [1							
	0	Low-order 8 bits [7:	0] of 16-bit counter are read next.						
D6: B2EC1	Indic	ates which bits of B2	error counter are to be read next.	00					
D5: B2EC0									
		B2EC [1:0]	Bits to be read next						
		00	Low-order 8 bits [7:0]						
		01	Middle-order 8 bits [15:8]						
		10	High-order 4 bits [19:16]						
D4: B3EC	Indic	0							
	1	High-order 8 bits [1							
	0	0 Low-order 8 bits [7:0] of 16-bit counter are read next.							
D3: LREC1	Indic	ates which bits of Lin	e-REI counter are to be read next.	00					
D2: LREC0									
		00	Low-order 8 bits [7:0]						
		01	Middle-order 8 bits [15:8]						
		10	High-order 4 bits [19:16]						
D1: PREC	Indic	ates which bits of Pa	th-REI counter are to be read next.	0					
	1	High-order 8 bits [1	5:8] of 16-bit counter are read next.						
	0	Low-order 8 bits [7:	0] of 16-bit counter are read next.						
D0: FJC	Indic	0							
	1	High-order 4 bits [1	1:8] of 12-bit counter are read next.						
	0	Low-order 8 bits [7:	0] of 12-bit counter are read next.						

(25) Performance counter point register 2 (PCPR2)

This register indicates which byte of a load register corresponding to each window register is to be read next.

Register name	D7	D6	D5	D4	D3	D2	D1	D0	Address	Default	R/W
PCPR2	HECC1	HECC0	FULC1	FULC0	IDLC1	IDLC0	INFC1	INFC0	1AH	00H	R/W

Field			Function		Default Value
D7: HECC1	Indicates which bit	s of HE	C error counter are to be read next.		00
D6: HECCO		•			
	HECC [1:0]	Bits to be read next		
	00		Low-order 8 bits [7:0]		
	01		Middle-order 8 bits [15:8]		
	10		High-order 4 bits [19:16]		
D5: FULC1	Indicates which bit	s of FIF	O full counter are to be read next.		00
D4. FOLCO				1	
	FULC [1	1:0]	Bits to be read next		
	00		Low-order 8 bits [7:0]		
	01		Middle-order 8 bits [15:8]		
	10		High-order 4 bits [19:16]		
D3: IDLC1	Indicates which bit	s of idle	e cell counter are to be read next.		00
D2: IDLC0					
	IDLC [1	:0]	Bits to be read next		
	00		Low-order 8 bits [7:0]		
	01		Middle-order 8 bits [15:8]		
	10		High-order 4 bits [19:16]		
D1: INFC1	Indicates which bits	s of info	ormation cell counter are to be read next.		00
D0: INFC0					
	INFC [1	:0]	Bits to be read next		
	00		Low-order 8 bits [7:0]		
	01		Middle-order 8 bits [15:8]		
	10		High-order 4 bits [19:16]		
				-	

(26) Performance counter sample register (PCSR)

This register sets the performance counter sample timing. When the SMP bit of this register is set to 1, the current values of all the counters are stored to the corresponding load registers, and the count values are cleared to 0. R/W Register name D7 D6 D5 D4 D3 D2 D1 D0 Address Default PCSR 0 0 0 0 0 0 0 SMP 1BH 00H R/W

Field		Function	Default Value
D0: SMP	Sam	ples count value.	0
	1	Stores contents of all counters to corresponding load registers. At this time, all counters are initialized.	
	0	Does not store counters to the load register.	

- **Remarks 1.** When the SMP bit is set to 1, it is automatically cleared to 0 after the sampling operation has been completed.
 - 2. When this register is read, the high-order 7 bits are always "0". Nothing can be written to these bits.

(27) Performance counter initialization register 1 (PCIR1)

This register initializes each performance counter. Although the value of the counter is cleared to 0, the value stored to the corresponding load register is not cleared.

Register name	D7	D6	D5	D4	D3	D2	D1	D0	Address	Default	R/W
PCIR1	0	0	B1EC	B2EC	B3EC	LREC	PREC	FJC	1CH	00H	R/W

Field		Function	Default Value
D5: B1EC	Initia	lizes B1 error counter.	0
	1	Value of B1 error counter is cleared to 0.	
	0	Counter value is not cleared.	
D4: B2EC	Initia	lizes B2 error counter.	0
	1	Value of B2 error counter is cleared to 0.	
	0	Counter value is not cleared.	
D3: B3EC	Initia	lizes B3 error counter.	0
	1	Value of B3 error counter is cleared to 0.	
	0	Counter value is not cleared.	
D2: LREC	Initia	lizes Line-REI counter.	0
	1	Value of Line-REI counter is cleared to 0.	
	0	Counter value is not cleared.	
D1: PREC	Initia	lizes Path-REI counter.	0
	1	Value of Path-REI counter is cleared to 0.	
	0	Counter value is not cleared.	
D0: FJC	Initia	lizes FJ counter.	0
	1	Value of FJ counter is cleared to 0.	
	0	Counter value is not cleared.	

Remarks 1. Each bit of this register is automatically cleared to "0" after initialization.

2. When this register is read, the high-order 2 bits are always 0. Nothing can be written to these bits.

(28) Performance counter initialization register 2 (PCIR2)

This register initializes each performance counter. Although the value of the counter is cleared to 0, the value stored to the corresponding load register is not cleared.

Register name	D7	D6	D5	D4	D3	D2	D1	D0	Address	Default	R/W
PCIR2	0	0	0	0	HECC	FULC	IDLC	INFC	1DH	00H	R/W

Field		Function							
D3: HECC	Initia	Initializes HEC counter value.							
	1	1 Value of HEC counter is cleared to 0.							
	0	Counter value is not cleared.							
D2: FULC	Initia	lizes FIFO full counter value.	0						
	1	Value of FIFO full counter is cleared to 0.							
	0	Counter value is not cleared.							
D1: IDLC	Initia	lizes idle cell counter value.	0						
	1	Value of idle cell counter is cleared to 0.							
	0	Counter value is not cleared.							
D0: INFC	Initia	lizes information cell counter value.	0						
	1	Value of information cell counter is cleared to 0.							
	0	Counter value is not cleared.	ſ						

Remarks 1. Each bit of this register is automatically cleared to "0" after initialization.

2. When this register is read, the high-order 4 bits are always 0. Nothing can be written to these bits.

(29) Performance counter stop register 1 (PCFR1)

This register stops the count operation of counters which are not in use. All the counters are stopped at initial status after power application.

Register name	D7	D6	D5	D4	D3	D2	D1	D0	Address	Default	R/W
PCFR1	1	1	B1EC	B2EC	B3EC	LREC	PREC	FJC	1EH	FFH	R/W

Field		Function	Default Value
D5: B1EC	Stop	s B1 error counter.	1
	1	B1 error counter does not operate.	
	0	B1 error counter operates.	
D4: B2EC	Stop	s B2 error counter.	1
	1	B2 error counter does not operate.	
	0	B2 error counter operates.	
D3: B3EC	Stop	s B3 error counter.	1
	1	B3 error counter does not operate.	
	0	B3 error counter operates.	
D2: LREC	Stop	s Line-REI counter.	1
	1	Line-REI counter does not operate.	
	0	Line-REI counter operates.	
D1: PREC	Stop	s Path-REI counter.	1
	1	Path-REI counter does not operate.	
	0	Path-REI counter operates.	
D0: FJC	Stop	s FJ counter.	1
	1	FJ counter does not operate.	
	0	FJ counter operates.	

Remark When this register is read, the high-order 2 bits are always "1". Nothing can be written to these bits.

(30) Performance counter stop register 2 (PCFR2)

This register stops the count operation of counters which are not in use. All the counters are sopped at initial status after power application.

Register name	D7	D6	D5	D4	D3	D2	D1	D0	Address	Default	R/W
PCFR2	1	1	1	1	HECC	FULC	IDLC	INFC	1FH	FFH	R/W

Field		Function						
D3: HECC	Stop	Stops HEC counter.						
	1	HEC counter does not operate.						
	0	HEC counter operates.						
D2: FULC	Stop	s FJ counter.	1					
	1	FIFO full counter does not operate.						
	0	FIFO full counter operates.						
D1: IDLC	Stop	s idle cell counter.	1					
	1	Idle cell counter does not operate.						
	0	Idle cell counter operates.						
D0: INFC	Stop	s information cell counter.	1					
	1	Information cell counter does not operate.						
	0	Information cell counter operates.						

Remark When this register is read, the high-order 4 bits are always "1". Nothing can be written to these bits.

(31) Performance counter overflow cause register 1 (PCOCR1)

This register indicates the cause of an overflow in a performance counter.

Register name	D7	D6	D5	D4	D3	D2	D1	D0	Address	Default	R/W
PCOCR1	0	0	B1EC	B2EC	B3EC	LREC	PREC	FJC	20H	00H	R

Field		Function	Default Value
D5: B1EC	Indic	0	
	1	Indicates that overflow has occurred in B1 error counter.	
	0	Indicates that overflow has not occurred in B1 error counter.	
D4: B2EC	Indic	ates occurrence of overflow in B2 error counter.	0
	1	Indicates that overflow has occurred in B2 error counter.	
	0	Indicates that overflow has not occurred in B2 error counter.	
D3: B3EC	Indic	ates occurrence of overflow in B3 error counter.	0
	1	Indicates that overflow has occurred in B3 error counter.	
	0	Indicates that overflow has not occurred in B3 error counter.	
D2: LREC	Indic	ates occurrence of overflow in Line-REI counter.	0
	1	Indicates that overflow has occurred in Line-REI counter.	
	0	Indicates that overflow has not occurred in Line REI counter.	
D1: PREC	Indic	ates occurrence of overflow in Path-REI counter.	0
	1	Indicates that overflow has occurred in Path-REI counter.	
	0	Indicates that overflow has not occurred in Path-REI counter.	
D0: FJC	Indic	ates occurrence of overflow in FJ counter.	0
	1	Indicates that overflow has occurred in FJ counter.	
	0	Indicates that overflow has not occurred in FJ counter.	

Remarks 1. When this register is read, the high-order 2 bits are always "0". Nothing can be written to these bits.

- 2. If even one of the bits of this register not masked by the PCOMR1 register is set to 1, the PCO bit of PICR (address: 06H) is set to "1".
- **3.** This register is cleared when it is read.

(32) Performance counter overflow cause register 2 (PCOCR2)

This register indicates the cause of an overflow in a performance counter.

Register name	D7	D6	D5	D4	D3	D2	D1	D0	Address	Default	R/W
PCOCR2	0	0	0	0	HECC	FULC	IDLC	INFC	21H	00H	R

Field		Function	Default Value				
D3: HECC	Indic	Indicates occurrence of overflow in HEC counter.					
	1	Indicates that overflow has occurred in HEC counter.					
	0	Indicates that overflow has not occurred in HEC counter.					
D2: FULC	Indic	ates occurrence of overflow in FIFO full counter.	0				
	1	Indicates that overflow has occurred in FIFO full counter.					
	0	Indicates that overflow has not occurred in FIFO full counter.					
D1: IDLC	Indic	ates occurrence of overflow in idle cell counter.	0				
	1	Indicates that overflow has occurred in idle cell counter.					
	0	Indicates that overflow has not occurred in idle cell counter.					
D0: INFC	Indic	ates occurrence of overflow in information cell counter.	0				
	1	Indicates that overflow has occurred in information cell counter.					
	0	Indicates that overflow has not occurred in information cell counter.					

Remarks 1. When this register is read, the high-order 4 bits are always "0". Nothing can be written to these bits.

- 2. If even one of the bits of this register not masked by the PCOMR2 register is set to 1, the PCO bit of PICR (address: 06H) is set to "1".
- 3. This register is cleared when it is read.

(33) Performance counter overflow mask register 1 (PCOMR1)

This register masks the overflow cause of PCOCR1 (address: 20H). If an overflow cause is masked, the PCO bit of PICR (address: 06H) is not set.

Register name	D7	D6	D5	D4	D3	D2	D1	D0	Address	Default	R/W
PCOMR1	1	1	B1EC	B2EC	B3EC	LREC	PREC	FJC	22H	FFH	R/W

Field		Function	Default Value
D5: B1EC	Mas	1	
	1	Masks occurrence of overflow in B1 error counter.	
	0	Does not mask occurrence of overflow in B1 error counter.	
D4: B2EC	Mas	ks occurrence of B2 error counter overflow.	1
	1	Masks occurrence of overflow in B2 error counter.	
	0	Does not mask occurrence of overflow in B2 error counter.	
D3: B3EC	Mas	ks occurrence of B3 error counter overflow.	1
	1	Masks occurrence of overflow in B3 error counter.	
	0	Does not mask occurrence of overflow in B3 error counter.	
D2: LREC	Mas	ks occurrence of Line-REI counter overflow.	1
	1	Masks occurrence of overflow in Line-REI counter.	
	0	Does not mask occurrence of overflow in Line-REI counter.	
D1: PREC	Mas	ks occurrence of Path-REI counter overflow.	1
	1	Masks occurrence of overflow in Path-REI counter.	
	0	Does not mask occurrence of overflow in Path-REI counter.	
D0: FJC	Mas	ks occurrence of FJ counter overflow.	1
	1	Masks occurrence of overflow in FJ counter.	
	0	Does not mask occurrence of overflow in FJ counter.	

Remark When this register is read, the high-order 2 bits are always 1. Nothing can be written to these bits.

(34) Performance counter overflow mask register 2 (PCOMR2)

This register masks the overflow cause of PCOCR1 (address: 20H). If an overflow cause is masked, the PCO bit of PICR (address: 06H) is not set.

Register name	D7	D6	D5	D4	D3	D2	D1	D0	Address	Default	R/W
PCOMR2	1	1	1	1	HECC	FULC	IDLC	INFC	23H	FFH	R/W

Field		Function	Default Value				
D3: HECC	Mas	Masks occurrence of HEC counter overflow.					
	1	Masks occurrence of overflow in HEC counter.					
	0	Does not mask occurrence of overflow in HEC counter.					
D2: FULC	Mas	ks occurrence of FIFO full counter overflow.	1				
	1	Masks occurrence of overflow in FIFO full counter.					
	0	Does not mask occurrence of overflow in FIFO full counter.					
D1: IDLC	Mas	ks occurrence of idle cell counter overflow.	1				
	1	Masks occurrence of overflow in idle cell counter.					
	0	Does not mask occurrence of overflow in idle cell counter.					
D0: INFC	Mas	ks occurrence of information cell counter overflow.	1				
	1	Masks occurrence of overflow in information cell counter.					
	0	Does not mask occurrence of overflow in information cell counter.	ſ				

Remark When this register is read, the high-order 4 bits are always 1. Nothing can be written to these bits.

(35) Alarm output pin setting register (AMPR)

This register selects which of the three PHYALM[2:0] pins is to be set when setting AMR1 and AMR0 registers to select which of the alarm signal is to be output from the PHYALM pin.

Register name	D7	D6	D5	D4	D3	D2	D1	D0	Address	Default	R/W
AMPR	0	0	0	0	0	0	AMP1	AMP0	24H	00H	R/W

Field		Function Default Value							
D1: AMP1 D0: AMP0	Specif	ies which of PHYAI	M[2:0] pins is to be set by setting AMR1 and AMR0 register.	ers.	00				
		AMP [1:0]							
		00							
		01	01 PHYALM1 output pin mode is set.						
		1X							

Remark When this register is read, the high-order 6 bits are always "0". Nothing can be written to these bits.

(36) Output alarm mask register 1 (AMR1)

This register selects an alarm or error signal (CMR, PMD, LOS, OOF, LOF, LOP, OCD, or LCD) to be output from the PHYALM pin specified by the AMPR register. When the alarm or error set to "1" by this register is detected, the output signal of the PHYALM pin is made high until the condition disappears.

Register name	D7	D6	D5	D4	D3	D2	D1	D0	Address	Default	R/W
AMR1	CMD	PMD	LOS	OOF	LOF	LOP	OCD	LCD	25H	FFH	R/W

Field		Function	Default Value
D7: CMD	Spec pin s	cifies whether ARM bit of command register is set is reported from PHYALM output specified by AMPR register.	1
	1	Does not report that ARM bit is set.	Ī
	0	Reports by making PHY output high when ARM bit is set.	
D6: PMD	Spec by A	cifies whether to report that PMDALM pin input goes high from PHYALM pin specified MPR register.	1
	1	Does not report that PMDALM pin input goes high.	Ī
	0	Reports by making PHYAML pin high when PMDALM pin goes high.	
D5: LOS	Spec regis	cifies whether to report that LOS is detected from PHYALM pin specified by AMPR ster.	1
	1	Does not report even if LOS is detected.	
	0	Makes PHYALM pin output high when LOS is detected.	
D4: OOF	Spec regis	cifies whether to report that OOF is detected from PHYALM pin specified by AMPR ster.	1
	1	Does not report even if OOF is detected.	Ī
	0	Makes PHYALM pin output high when OOF is detected.	
D3: LOF	Spec regis	cifies whether to report that LOF is detected from PHYALM pin specified by AMPR ster.	1
	1	Does not report even if LOF is detected.	
	0	Makes PHYALM pin output high when LOF is detected.	
D2: LOP	Spec regis	cifies whether to report that LOP is detected from PHYALM pin specified by AMPR ster.	1
	1	Does not report even if LOP is detected.	
	0	Makes PHYALM pin output high when LOP is detected.	
D1: OCD	Spec regis	cifies whether to report that OCD is detected from PHYALM pin specified by AMPR ster.	1
	1	Does not report even if OCD is detected.	
	0	Makes PHYALM pin output high when OCD is detected.	
D0: LCD	Spec regis	cifies whether to report that LCD is detected from PHYALM pin specified by AMPR ster.	1
	1	Does not report even if LCD is detected.	ļ
	0	Makes PHYALM pin output high when LCD is detected.	

(37) Output alarm mask register 2 (AMR2)

This register selects an alarm or error signal (Line AIS, Path AIS, Line RDI, or Path RDI) to be output from the PHYALM pin specified by the AMPR register. When the alarm or error set to "1" by this register is detected, the output signal of the PHYALM pin is made high until the condition disappears.

Register name	D7	D6	D5	D4	D3	D2	D1	D0	Address	Default	R/W
AMR2	1	1	1	1	LAIS	PAIS	LRDI	PRDI	26H	FFH	R/W

Field		Function	Default Value
D3: LAIS	Spec regis	cifies whether to report that Line AIS is detected from PHYALM pin specified by AMPR ster.	1
	1	Does not report even if Line AIS is detected.	
	0	Makes PHYALM pin output high when Line AIS is detected.	
D2: PAIS	Spec regis	cifies whether to report that Path AIS is detected from PHYALM pin specified by AMPR ster.	1
	1	Does not report even if Path AIS is detected.	
	0	Makes PHYALM pin output high when Path AIS is detected.	
D1: LRDI	Spec AMF	cifies whether to report that Line RDI is detected from PHYALM pin specified by PR register.	1
	1	Does not report even if Line RDI is detected.	
	0	Makes PHYALM pin output high when Line RDI is detected.	
D0: PRDI	Spec regis	cifies whether to report that Path RDI is detected from PHYALM pin specified by AMPR ster.	1
	1	Does not report even if Path RDI is detected.	
	0	Makes PHYALM pin output high when Path RDI is detected.	

Remark When this register is read, the high-order 4 bits are always "1". Nothing can be written to these bits.

(38) Drop cell header pattern register (DCHPR)

This register specifies the cell to be dropped. Whether only idle cells, or both idle cells and unassigned cells are dropped can be selected.

Register name	D7	D6	D5	D4	D3	D2	D1	D0	Address	Default	R/W
DCHPR	GFC3	GFC2	GFC1	GFC0	PTI2	PTI1	PTI0	CLP	27H	01H	R/W

Field	Function	Default Value
D7:GFC3 D6:GFC2 D5:GFC1 D4:GFC0 D3:PTI2 D2:PTI1 D1:PTI0 D0:CLP	The μ PD98404 checks the pattern of the cell header before it stores the extracted receive cell in the receive FIFO. In the case of a cell with VPI/VCI field being all 0, the other header fields are compared with the set value of this register. If a header field coincides with the setting of this register, the cell is not stored in the receive FIFO but is discarded. However, the bits masked by the DCHPMR register are not compared.	01

(39) Drop cell header pattern mask register (DCHPMR)

This register specifies whether the CLP field of the receive cell header is compared with the CLP bit of the DCHPR register or ignored (masked) when the cell to be dropped is determined.

Register name	D7	D6	D5	D4	D3	D2	D1	D0	Address	Default	R/W
DCHPMR	GFC3	GFC2	GFC1	GFC0	PTI2	PTI1	PTI0	CLP	28H	00H	R/W

Field	Function	Default Value
D7:GFC3 D6:GFC2 D5:GFC1 D4:GFC0 D3:PT12 D2:PT11 D1:PT10 D0:CLP	If a bit of this register is set, the corresponding bit of the DCHPR register, and the field corresponding to each bit of the receive cell with the VPI/VCI field being all 0 are not compared. Only the bits to which 0 is written is compared.	0

★

Example of Setting DCHPR/DCHPMR Register

DCHPR	DCHPMR	Discarded Cell
01	00	Idle cell (default)
00	00	Unassigned cell
00	01	Idle cell and unassigned cell

(40) PHY ID register (PHYIDR)

This register selects the PHY ID address to be given to the μ PD98404 in the multi-PHY mode, and enables or disables giving the address to the μ PD98404.

Register name	D7	D6	D5	D4	D3	D2	D1	D0	Address	Default	R/W
PHYIDR	EN	0	0	PHA4	PHA3	PHA2	PHA1	PHA0	29H	01H	R/W

Field		Function	Default Value						
D7: EN	Enat mult	Enables address check on TADD[4:0] and RADD[4:0] on the ATM layer interface in the multi-PHY mode (UMPSEL pin = high).							
	1	Enables address check.							
	0	Disables address check.							
D4-D0: PHA4-PHA0	Sets TAD	Sets address to be given to μ PD98404. If address set by this field is output to FADD[4:0] and RADD[4:0], μ PD98404 is selected.							

Remark When this register is read, the high-order 3 bits are "0". Nothing can be written to these bits.

(41) JOR data register (JOR) This is an 8-bit register that stores the J0 byte of the reception side SOH (Section Overhead). R/W Register name D7 D6 D5 D4 D3 D2 D1 D0 Address Default J0R 2AH 00H R (42) Z01R data register (Z01R) This is an 8-bit register that stores the first Z0 byte of the reception side SOH. Register name D7 D6 D5 D4 D3 D2 D1 D0 Address Default R/W Z01R 2BH 00H R (43) Z02R data register (Z02R) This is an 8-bit register that stores the second Z0 byte of the reception side SOH. Register name D7 D6 D5 D4 D3 D2 D1 D0 Address Default R/W Z02R 2CH 00H R (44) F1R data register (F1R) This is an 8-bit register that stores the F1 byte data of the reception side SOH. Register name D7 D6 D5 D4 D3 D2 D1 D0 Address Default R/W F1R 2DH 00H R (45) K1R data register (K1R) This is an 8-bit register that stores the K1 byte data of the reception side LOH (Line Overhead). Register name D7 D6 D5 D4 D3 D2 D1 D0 Address Default R/W K1R 2EH 00H R

(46) K2R data register (K2R)

This is an 8-bit register that stores the K2 byte data of the reception side LOH.

Register name	D7	D6	D5	D4	D3	D2	D1	D0	Address	Default	R/W
K2R									2FH	00H	R
									•		
(47) C2R data	register	(C2R)									
This is an 8	B-bit regis	ter that st	ores the	C2 byte d	ata of the	reception	n side PC	OH (Path	Overhead)		
5	57	Da	55	54	Da	Da	D.	Da			D 444
Register name	D7	D6	D5	D4	D3	D2	D1	D0	Address	Default	R/W
C2R									30H	00H	R
(48) F2R data	register ((F2R)			- 4 6 4						
i nis is an 8	s-bit regis	ter that st	ores the	F2 byte d	ata of the	reception	n side PC	H.			
Register name	D7	D6	D5	D4	D3	D2	D1	D0	Address	Default	R/W
F2B									31H	00H	в
(49) H4R data	register	(H4R)									
This is an 8	B-bit regis	ter that st	ores the	H4 byte d	ata of the	reception	n side PC)H.			
	U			2							
Register name	D7	D6	D5	D4	D3	D2	D1	D0	Address	Default	R/W
H4R									32H	00H	R
									•		
(50) J0T data i	register (JOT)									
This is an 8	B-bit regis	ter that st	ores the	J0 byte of	the trans	mission s	side SOH				
Desister	D7	DC	Dr	D4	DO	DO	D1	Da	A status a s	Defeuilt	
Register hame	Di	Do	D5	D4	D3	D2		DU	Address	Delault	
JOT									33H	01H	R/W

(51) Z01T data register (Z01T)

This is an 8-bit register that stores the first Z0 byte of the transmission side SOH.

Register name	D7	D6	D5	D4	D3	D2	D1	D0	Address	Default	R/W	
Z01T									34H	02H	R/W	
									_			
(52) Z02T data	(52) Z02T data register (Z02T)											
This is an 8-bit register that stores the second Z0 byte of the transmission side SOH.												

Register name	D7	D6	D5	D4	D3	D2	D1	D0	Address	Default	R/W
Z02T									35H	03H	R/W

(53) F1T data register (F1T)

This is an 8-bit register that stores the F1 data of the transmission side SOH.

Register name	D7	D6	D5	D4	D3	D2	D1	D0	Address	Default	R/W
F1T									36H	00H	R/W

(54) K1T data register (K1T)

This is an 8-bit register that stores the K1 data of the transmission side LOH.

Register name	D7	D6	D5	D4	D3	D2	D1	D0	Address	Default	R/W
K1T									37H	00H	R/W

(55) K2T data register (K2T)

This 5-bit register sets the high-order 5 bits of the KA2 byte of the transmission side LOH.

Because the low-order 3 bits of the K2 byte are used to transmit Line AIS and Line RDI, the low-order 3 bits set in this register are ignored.

Register name	D7	D6	D5	D4	D3	D2	D1	D0	Address	Default	R/W
K2T						Х	Х	Х	38H	00H	R/W

(56) C2T data register (C2T)

This is an 8-bit register that stores the C2 byte of the transmission side POH.

Register name	D7	D6	D5	D4	D3	D2	D1	D0	Address	Default	R/W
C2T									39H	00H	R/W

(57) F2T data register (F2T)

This is an 8-bit register that stores the F2 byte of the transmission side POH.

Register name	D7	D6	D5	D4	D3	D2	D1	D0	Address	Default	R/W
F2T									ЗАН	00H	R/W

(58) H4T data register (H4T)

This is an 8-bit register that stores the H4 byte of the transmission side POH.

Register name	D7	D6	D5	D4	D3	D2	D1	D0	Address	Default	R/W
H4T									3BH	00H	R/W

(59) Reserved area

- Address: 3CH through 3EH
- Do not read or write this area.

(60) Version register (VERR)

This register stores the version name of this LSI.

Register name	D7	D6	D5	D4	D3	D2	D1	D0	Address	Default	R/W
VERR	0	0	0	0	0	0	0	0	3FH	00H	R

(61) Reserved area

- Address: 40H through 7FH
- Do not read or write this area.

CHAPTER 6 JTAG BOUNDARY SCAN

The μ PD98404 has a JTAG boundary scan circuit.

6.1 Features

- Conforms to IEEE1149.1 JTAG Boundary Scan Standard.
- Three registers dedicated to boundary scan
 - · Instruction register
 - Bypass register
 - · Boundary scan register
- Three instructions supported
 - · BYPASS instruction
 - · EXTEST instruction
 - · SAMPLE/PRELOAD instruction
- Five pins dedicated to boundary scan
 - · JCK (JTAG Clock)
 - · JMS (JTAG Mode Select)
 - · JDI (JTAG Data Input)
 - · JDO (JTAG Data Output)
 - · JRST_B (JTAG Reset)

6.2 Internal Configuration of Boundary Scan Circuit

Figure 6-1 shows the block diagram of the internal JTAG boundary scan circuit of the μ PD98404.

6.2.1 Instruction register

The instruction register consists of a 2-bit shift register and writes instruction data from the JDI pin. The register and instruction are selected by this instruction data.

6.2.2 TAP (Test Access Port) controller

The TAP controller changes operating state by latching the signal of the JMS pin at the rising edge of the clock input to the JCK pin.

6.2.3 Bypass register

The bypass register consists of a 1-bit shift register connected between the JDI and JDO pins when the TAP controller is in Shift-DR state. If this register is selected while the TAP controller is in Shift-DR state, data is shifted to the JDO pin at the rising edge of the clock input to the JCK pin.

When this register is selected, the operation of the JTAG boundary circuit does not influence on the operation of the μ PD98404.

6.2.4 Boundary scan register

The boundary scan register is located between an external pin of the μ PD98404 and internal logic circuit. When this register is selected, data is latched or loaded by the instruction of the TAP controller.

If this register is selected while the TAP controller is in Shift-DR state, data is output to the JDO pin starting from the LSB at the falling edge of the clock input to the JCK pin.

6.3 Pin Function

6.3.1 JCK (JTAG Clock) pin

The JCK pin is used to supply a clock signal to the JTAG boundary scan circuit (such as the bypass register, instruction register, and TAP controller. This clock signal is isolated so as not to be supplied to the other internal circuits of the μ PD98404.

6.3.2 JMS (JTAG Mode Select) pin

Input to the JMS signal is latched at the rising edge of the clock input to the JCK pin and defines the operation of the TAP controller.

6.3.3 JDI (JTAG Data Input) pin

The JDI pin is an input pin that inputs data to the JTAG boundary scan circuit register.

6.3.4 JDO (JTAG Data Output) pin

The JDO pin is an output pin that outputs data from the JTAG boundary scan circuit. This pin changes its output at the falling edge of the clock input to the JCK pin. This pin is a three-state output pin and is controlled by the TAP controller.

6.3.5 JRST_B (JTAG Reset) pin

This pin asynchronously initializes the TAP controller. This reset signal sets the μ PD98404 in the normal operation mode and the boundary register in non-operation state.

6.4 Operation Description

6.4.1 TAP controller

The TAP controller is a circuit having 16 states synchronized with changes of the JMS and JCK pins. Its operation is specified by IEEE Standard 1149.1.

6.4.2 TAP controller state

Figure 6-2 shows the state transition of the TAP controller. The state of the TAP controller is determined depending on the state of the JMS pin signal input at the rising edge of the clock input to the JCK pin. The operations of the instruction register, boundary scan register, and bypass register change at the rising or falling edge of the clock input to the JCK pin. (Refer to **Figure 6-3**).

Figure 6-2. State Transition of TAP Controller

- **Remarks 1.** "H" and "L" of the arrows indicating state transition in the above figure indicate the state of the JMS pin at the rising edge of the clock input to the JCK pin.
 - 2. Numbers in () in the above figure correspond to the explanation below.

Phase-out/Discontinued

(1) Test-Logic-Reset

The boundary scan circuit performs no operation on the μ PD98404. Therefore, it does not affect the system logic of the μ PD98404. This is because the bypass instruction is stored to the instruction register and executed on initialization. The TAP controller enters the Test-Logic-Reset state if the JMS pin holds the high level for the duration of at least five rising edges of the JCK pin signal, regardless of the current state of the controller. The TAP controller holds this state for the duration in which the JMS pin signal high.

If the TAP controller must be in the Test-Logic-Reset state, the controller returns to the original Test-Logic-Reset state even if a low-level signal is input once to the JMS pin by mistake (due to, for example, the influence of the external interface), if the JMS pin signal holds its high level status for the duration of three rising edges of the JCK pin signal.

The operation of the test logic does not hinder the logic operation of the µPD98404 due to the above error.

When the TAP controller exits from the Test-Logic-Reset state, the controller enters the Run-Test/Idle state. In this state, no operation is performed because the current instruction is set by the operation of the bypass register. The logic operation of the JTAG boundary scan circuit is inactive even in the Select-DR-Scan and Select-IR-Scan states.

(2) Run-Test/Idle

The TAP controller is in this state during scan operation (in Select-DR-Scan or Select-IR-Scan state). Once the controller has entered this state and if the JMS pin signal holds the low level, the controller remains in this state. The controller enters the Select-DR-Scan state if the JMS pin signal holds high level at one rising edge of the JCK pin signal.

All the test data registers (boundary register and bypass register) selected by the current instruction hold the previous status (Idle). While the TAP controller is in this state, the instruction does not change.

(3) Select-DR-Scan

This is a temporary boundary scan state. The boundary scan register and bypass register selected by the current instruction hold the previous state.

If the JMS signal is held low at the rising edge of the JCK pin signal while the TAP controller is in this state, the controller enters the Capture-DR state, and scan sequence to the selected registers is started.

If the JMS signal is held high at the rising edge of the JCK pin signal, the TAP controller enters the Select-IR-Scan state. While the controller is in this state, the instruction does not change.

Phase-out/Discontinued

This is a temporary boundary scan state. The boundary scan register and bypass register selected by the current instruction hold the previous state.

If the JMS signal is held low at the rising edge of the JCK pin signal while the TAP controller is in this state, the controller enters the Capture-IR state, and scan sequence to the selected registers is started.

If the JMS signal is held high at the rising edge of the JCK pin signal, the TAP controller enters the Test-Logic-Reset state. While the controller is in this state, the instruction does not change.

(5) Capture-DR

In this controller state, data is loaded to the boundary scan register selected by the current instruction in parallel at the rising edge of the JCK pin signal (in this case, data is input from the input pin of each device to the corresponding boundary scan register). While the TAP controller is in this state, the instruction does not change. If the TAP controller is in this state at the rising edge of the JCK pin signal, the controller enters the following state:

- · If the JMS pin signal is held high: Exit1-DR state
- · If the JMS pin signal is held low : Shift-DR state

(6) Shift-DR

In this controller state, JDI and JDO are connected (at either of the boundary scan register of bypass register) by the current instruction. The shift data is shifted one state at a time toward the serial output direction at each rising edge of the JCK pin signal.

The boundary scan register or bypass register selected by the current instruction holds the previous status without change if the controller is not on the serial bus (not in the Shift-DR state). While the controller is in this state, the instruction does not change.

If the TAP controller is in this state at the rising edge of the JCK pin signal, the controller enters the following state:

- If the JMS pin signal is held high: Exit1-DR state
- · If the JMS pin signal is held low : Shift-DR state

(7) Exit1-DR

This is a temporary controller state. If the JMS pin signal is held high at the rising edge of the JCK pin signal with the TAP controller in this state, the controller enters the Update-DR state. This ends the scan process.

If the JMS pin signal is held low at the rising edge of the JCK pin signal, the TAP controller enters the Pause-DR state.

Both the bypass register and boundary scan register selected by the current instruction hold the previous status without change. While the TAP controller is in this state, the instruction does not change.

(8) Pause-DR

In this controller state, shifting between JDI and JDO connected by either the bypass register or boundary scan register is temporarily stopped. These registers selected by the current instruction hold the previous state without change.

The TAP controller remains in this state while the JMS pin signal is low. If the JMS pin signal is held high at the rising edge of the JCK pin signal, the TAP controller enters the Exit2-DR state. While the TAP controller is in this state, the instruction does not change.

This is a temporary controller state. If the JMS pin signal is held high at the rising edge of the JCK pin signal with the TAP controller in this state, the controller enters the Update-DR state. This ends the scan process.

If the JMS pin signal is held low at the rising edge of the JCK pin signal, the TAP controller enters the Shift-DR state.

Both the bypass register and boundary scan register selected by the current instruction hold the previous status without change. While the TAP controller is in this state, the instruction does not change.

(10) Update-DR

The boundary scan register has a parallel output latch to prevent changes in parallel output (while shifted to the shift register path concatenated) by certain instructions (for example, EXTEST instruction).

In the Update-DR controller state, data is latched from the shift register to the parallel output latch of this register at the falling edge of the JCK pin signal.

The data retained latched to the parallel output latch changes depending on this controller state (the data does not change with the other controller states).

The previous states of all the shift register of the boundary scan register selected by the current instruction are retained.

While the TAP controller is in this state, the instruction does not change.

If the JMS pin signal is held high at the rising edge of the JCK pin signal with the TAP controller in this state, the controller enters the Select-DR-Scan state.

If the JMS signal is held low at the rising edge of the JCK signal, the TAP controller enters the Run-Test/Idle state.

(11) Capture-IR

In this controller state, the shift register loads the pattern of a fixed logic value [01 (binary)] to the instruction register at the rising edge of the JCK pin signal.

The previous states of both the bypass register and boundary scan register selected by the current instruction are retained without change.

While the TAP controller is in this state, the instruction does not change.

If the JMS pin signal is held high at the rising edge of the JCK pin signal while the controller is in this state, the controller enters the Exit1-IR state.

If the JMS pin signal is held low at the rising edge of the JCK pin signal, the TAP controller enters the Shift-IR state.

(12) Shift-IR

In this controller state, JDI and JDO are connected by the shift register in the instruction register. The shift data is shift one state toward the serial output direction at each rising edge of the JCK pin signal.

The boundary scan register or bypass register selected by the current instruction holds the previous state without change.

While the TAP controller is in this state, the instruction does not change.

If the JMS pin signal is held high at the rising edge of the JCK pin signal with the TAP controller in this state, the controller enters the Exit1-IR state. If the JMS pin signal is held low, the controller remains the Shift-IR state.

This is a temporary controller state. If the JMS pin signal is held high at the rising edge of the JCK pin signal, the TAP controller enters the Update-IR state. This ends the scan process.

If the JMS pin signal is held low at the rising edge of the JCK pin, the TAP controller enters the Pause-IR state. Both the bypass register and boundary scan register selected by the current instruction retain their states without change.

While the TAP controller is in this state, the instruction does not change.

(14) Pause-IR

In this controller state, shift of the instruction register is temporarily stopped. The bypass register and boundary scan register selected by the current instruction hold the previous state without change.

While the TAP controller is in this state, the instruction does not change. The instruction register holds the current state.

While the JMS pin signal is low, the TAP controller remains in this state. If the JMS pin signal is held high at the rising edge of the JCK pin signal, the TAP controller enters the Exit2-IR state.

(15) Exit2-IR

This is a temporary controller state. If the JMS pin signal is held high at the rising edge of the JCK pin signal, the TAP controller enters the Update-IR state. This ends the scan process.

If the JMS pin signal is held low at the rising edge of the JCK pin, the TAP controller enters the Shift-IR state.

Both the bypass register and boundary scan register selected by the current instruction retain their states without change.

While the TAP controller is in this state, or while the instruction register holds the current state, the instruction does not change.

(16) Update-IR

In this controller state, the instruction shifted to the instruction register is latched to the parallel output latch from the shift register path at the falling edge of the JCK pin signal. Once a new instruction has been latched, it is used as the current instruction.

The bypass register or boundary scan register selected by the current instruction holds the previous state.

If the JMS pin signal is held high at the rising edge of the JCK pin signal while the TAP controller is in this state, the TAP controller enters the Select-DR-Scan state.

If the JMS pin signal is held low at the rising edge of the JCK pin signal, the TAP controller enters the Run-Test/Idle state.

The Pause-DR controller state in (8) and Pause-IR controller state in (14) temporarily stop shifting of data in the boundary scan register or instruction register.

6.5 **TAP Controller Operation**

The TAP controller operates as follows.

The state of the controller is changed by either of (1) and (2) below.

- (1) Rising edge of JCK pin signal
- (2) JRST_B pin input

The TAP controller generates signals that control the operations of the bypass register, boundary scan register, and instruction register defined by the IEEE1149.1 JTAG Boundary Scan Standard (refer to **Figures 6-4** and **6-5**).

The JDO pin output buffer and the peripheral circuit that selects a register whose contents are to be output to the JDO pin are controlled as shown in Table 6-1. The JDO pin defined in this table changes at the falling edge of the JCK pin signal after it has entered each state.

Controller State	Selected Register to Be Driven to JDO Pin	JDO Pin Driver	
Test-Logic-Reset	Undefined	High impedance	
Run-Test/Idle			
Select-DR-Scan			
Select-IR-Scan			
Capture-IR			
Shift-IR	Instruction register	Active	
Exit1-IR	Undefined	High impedance	
Pause-IR			
Exit2-IR			
Update-IR			
Capture-DR			
Shift-DR	Data register (boundary scan register, bypass register)	Active	
Exit1-DR	Undefined	High impedance	
Pause-DR			
Exit2-DR			
Update-DR			

Table 6-1. Operation in Each Controller State

Note TDR (Test Data Register): Boundary scan register and bypass register

Remark . Don't care or undefined

Remark Don't care or undefined

6.6 Initializing TAP Controller

The TAP controller is initialized as follows:

- (1) The TAP controller is not initialized by the operation of system input such as system reset.
- (2) The TAP controller enters the Test-Logic-Reset controller state at the fifth rising edge of the JCK pin signal (while the JMS pin signal is held high).
- (3) The TAP controller asynchronously enters the Test-Logic-Reset state when the JRST_B signal is input.

6.7 Instruction Register

This register is defined as follows (refer to 6.2 Internal Configuration of Boundary Scan Circuit).

- The instruction shifted and input to the instruction register is latched so that it changes only in the Update-IR and Test-Logic-Reset controller states.
- (2) Data is not inverted since it has been serially input to the instruction register until it is serially output.
- (3) A fixed binary pattern data "01" (with LSB (Least Significant Bit) being "1") is loaded to this register cell in the Capture-IR controller state.
- (4) A fixed binary pattern data "01" (with LSB (Least Significant Bit) being "1") is loaded to this register cell in the Test-Logic-Reset controller state.
- (5) While this register is read, data is output from the JDO pin, starting from the LSB to the MSB, at each falling edge of the JCK pin signal.

The JTAG boundary scan circuit of the μ PD98404 can support only the following two instructions depending on the data set to the instruction register.

- BYPASS instruction
- EXTEST instruction
- SAMPLE/PRELOAD instruction

Instruction Register		Currented Instruction		
D1	D0	Supported Instruction		
0	0	EXTEST instruction		
0	1	SAMPLE/PRELOAD instruction		
1	0	Unused (BYPASS instruction)		
1	1	BYPASS instruction		

This instruction is specified by instruction data "11". This instruction is used to select only the bypass register (to access between the JDI and JDO pins serially) in the Shift-DR controller state.

While this instruction is selected, the operation of the JTAG boundary scan circuit does not affect the operation of the μ PD98404.

This bypass instruction is selected while the TAP controller is in the Test-Logic-Reset state.

6.7.2 EXTEST instruction

This instruction is specified by instruction data "00". In the Shift-DR controller state, this instruction is used to select the boundary scan register of serial access between the JDI and JDO instructions.

• While this instruction is selected:

The states of all the signals driven from the system output pins are completely defined by the data shifted to the boundary scan register. In the Update-DR controller state, the states of all the signals are changed only by the falling edge of the JCK pin signal.

The states of all the signals input from the system input pins are loaded to the boundary scan register at the rising edge of the JCK pin signal while the TAP controller is in the Capture-DR state.

6.7.3 SAMPLE/PRELOAD Instruction

This instruction is specified by setting "01" as the instruction data. This instruction executes the SAMPLE function and PRELOAD function in one instruction.

6.7.4 Boundary scan data bit definition

In response to customer requests, NEC Electronics has made available the BSDL (Boundary Scan Description Language) reference file for the µPD98404. To obtain this file, contact an NEC Electronics sales representative.

CHAPTER 7 BOARD LAYOUT

Phase-out/Discontinued

Because the μ PD98404 has an internal PLL circuit that is susceptible to noise, consideration must be given when designing the layout of the power supply and ground on the board so that the PLL circuit is not affected by noise as for as possible.

The power supply and ground pins of the μ PD98404 can be classified into the six types shown in Table 7-1 by the block to which the power is supplied. The power on <2> through <6>, and not logic supply <1>, is supplied to the internal PLL block and high-speed operation circuit block, and the noise superimposed on this power supply affects the jitter output and immunity of the PLL. It is necessary to take measures against the noise from signal lines.

	Pin Name	Pin No.	I/O	Function		
<1>	VDD	1, 27, 36, 60, 73, 95, 108, 119, 129		General logic power supply (+3.3 V \pm 0.15 V) and ground		
	GND	16, 37, 71, 72, 86, 102, 109, 110, 124, 143, 144	-			
<2>	VDD-TPE	39, 45, 49	-	Power supply (+3.3 V \pm 0.15 V) and ground for output		
	GND-TPE	42, 46	_	PECL I/O		
<3>	VDD-RPE	53	-	Power supply (+3.3 V \pm 0.15 V) and ground for input		
	GND-RPE	50, 56	_	PECL I/O		
<4>	VDD-SP	35	-	Power supply (+3.3 V \pm 0.15 V) and ground for serial parallel block		
	GND-SP	38	_			
<5>	VDD-CS	32, 33	-	Power supply (+3.3 V \pm 0.15 V) and ground for clock		
	GND-CS	29, 30, 34	-	synthesizer PLL block		
<6>	VDD-CR	58	-	Power supply (+3.3 V \pm 0.15 V) and ground for close recovery PLL block		
	GND-CR	57	_			

Table 7-1. Power and Ground Pins of μ PD98404

(1) Inserting capacitor

Connect a pass capacitor to each power supply pin. In particular, connect a 10 μ F capacitor and a 0.1 μ F capacitor pair to the power supply pins <2> through <6>. Locate the 0.1 μ F capacitors as close to the pins as possible. Closely connecting two or more capacitors in parallel to the pins is an effective countermeasure against noise.

(2) Separating power planes

Separate the planes from the power supply to the power supply pins of the μ PD98404 by using a splitter to prevent noise from the power supply affecting the power supply pins. However, make sure that the area of each power plane is as large as possible to prevent the impedance of each plane from increasing as a result of dividing the plane into small groups.

In particular, because the power consumption of the PECL I/O block to which the VDD-TPE pin <2> supplies power is high, the area of the plane including this block must be accordingly large.

Figure 7-2. Board Layout Image

(3) Interface at circuit side

Locate the μ PD98404 and transceiver as closely as possible and keep the transmit/receive data lines of TDOT/TDOC and RDIT/RDIC as short as possible.

CHAPTER 8 CONSTRAINTS

Phase-out/Discontinued

Two constraints apply to the μ PD98404. Make sure you thoroughly understand these constraints when using the μ PD98404.

8.1 Constraints

- (1) Abnormal clearing of performance counter
- (2) Abnormal output of RCLAV signal in RCASEL = 1 mode
- (3) Abnormal operation in ALP mode
- (4) Fixed receiver circuit status in RPLP mode

8.2 Description

8.2.1 Clearing error of performance counter

(1) Description

If the counter is sampled by setting the SMP bit of the PCSR register to 1 or cleared by the PCIR1 or PCIR2 register when the counter is stopped (under condition 2 to be described below), the counter may not be correctly cleared to 0. The counter value sampled by the software should be the total value of time from the previous sampling to the current sampling. If sampling is executed while the counter is stopped such as because LOS has been detected, the sampled counter value is valid. However, the counter value sampled next is invalid because the counter continues totaling without being cleared.

This problem occurs in all the 10 counters of the μ PD98404 (B1 error, B2 error, B3 error, Line-REI, Path-REI, FJ, HEC, FIFO full, idle cell, and information cell counters).

(a) Stopping condition of counter

- <1> Stop command by using PCFR1 and PCFR2 registers
- <2> Stopping counter due to occurrence of LOS, LOF, LOP, LAIS, PAIS, or LCD status

(b) Clearing condition of counter

<1>	SMP bit of PCSR register = 1 (sampling of all counters)	:	Prohibited
<2>	Clear command by using PCIR1 and PCIR2 registers (clearing each counter)	:	Prohibited
<3>	PCR bit of CMR2 register = 1 (resetting all counters)	:	OK

(2) Countermeasures

Of the above three methods of clearing the counter, B-3 (resetting all counters by setting the PCR bit of the CMR2 register to 1) can be executed without problem even while the counter is stopped. When a counter is sampled or cleared, the counter must be cleared to 0 by using this command. Resetting all the counters by setting the PCR bit of the CMR2 register resets all the registers related to the counters. If this is executed, the PCFR1 and PCFR2 registers are set to the default value, all the counters are stopped, and the contents of the load register are also cleared. After execution of reset, it takes the circuit 20 cycles of TCLK clock to recover from the reset status. During this time, do not access the registers related to the counter.

(a) Example of countermeasures against counter sampling

- <1> Release the stop on the counter by using the PCFR1 and PCFR2 registers (starting counting).
- <2> Sample the counter by setting the SMP bit of the PCSR register to 1.
- <3> Read the counter value from the load register.
- <4> Issue a set command by setting the PCR bit of the CMR2 register to 1.
 - All the counters stop because the value of the PCFR1 and PCFR2 registers are returned to the default value.
- <5> Wait for the duration of TCLK clock cycle x 20.
- <6> Release the stop on the counter by using the PCFR1 and PCFR2 registers (resuming counting).

8.2.2 Output error of RCLAV signal in RCASEL = 1 mode

(1) Description

The RCLAV signal does not operate as specified when the RCASEL bit of the MDR3 register is 1. The RCLAV signal should go high when one cell of data has been stored in the receive FIFO. In the mode in which the RCASEL bit = 1, however, the RCLAV signal does not go high unless data of two cells have been stored in the receive FIFO. When the receive FIFO no longer has data to transfer, the RCLAV signal does not go low as soon as the second byte of the cell being transferred has been output. Instead, the RCLAV signal goes low when one cell remains in the receive FIFO.

Because of this problem, the high-end ATM layer device cannot enable output of one cell data in the receive FIFO of the μ PD98404 by using the RENBL_B signal. Consequently, one cell always remains in the receive FIFO of the μ PD98404,

This problem occurs only in the cell handshake mode of RCASEL = 1, and does not occur in the mode of RCASEL = 0 (default mode).

Figure 8-1. Timing of Change in RCLAV

Figure 8-2. Problem of RCLAV (1) (if the number of cells in receive FIFO increases from 0 to 2)

Figure 8-3. Problem of RCLAV (2) (if the number of cells in receive FIFO increases from 3 to 0)

(2) Countermeasures

- (a) Do not use the mode in which the RCASEL bit of the MDR3 register is 1.
- (b) To avoid the state where only one cell remains in the receive FIFO, input received idle cells and unassigned cells to the receive FIFO.

The idle cells and unassigned cells pass the receive FIFO and can be output to the UTOPIA interface side by setting the DCHPR and DCHPMR registers as follows:

DCHPR register (address 27H) : FFH DCHPMR register (address 28H) : 00H

Because the idle cells and unassigned cells that are supposed to be discarded by the μ PD98404 are output to the UTOPIA interface, the ATM layer device must discard these cells. In addition, because the μ PD98404 always outputs cells at the full rate of 149.76 Mbps, the number of connectable μ PD98404s is limited if two or more μ PD98404s are connected to one UTOPIA interface.

<<Supplement>>

By using the EMPTY_B/RCLAV signal of the UTOPIA interface, the μ PD98404 notifies the status of the receive FIFO to the high-end ATM layer device. In the octet level handshake mode (UMPSEL pin = low level, CSEL bit of MDR1 register = 0), this signal functions as EMPTY_B signal and goes high if one byte or more of valid data exists in the receive FIFO. In the cell level handshake mode (UMPSEL pin = low or high, CSEL bit of MDR1 register = 1), the EMPTY_B/RCLAV signal functions as RCLAV and goes high if one cell or more of valid data exists in the receive FIFO. In the cell handshake mode, the RCLAV signal changes in the following two modes. These modes can be selected by using the RCASEL bit of the MDR3 register. Note that the problem mentioned above occurs when RCASEL = 1.

- RCASEL = 0: The RCLAV signal is kept high up to the end of the cell being transferred, and RCLAV signal is changed to indicate whether a cell to be transferred next exists, in the clock cycle following the end of the first cell.
- RCASEL = 1: The RCLAV signal is changed to indicate whether data to be transferred next exists in a cycle following the second byte of the cell being transferred.

★ 8.2.3 Abnormal operation in ALP mode

(1) Description

When the μ PD98404 is set in the ALP mode, the cell data output to the ALM layer side may be damaged (the data output to the PMD layer side is not damaged).

The ALP mode is used to loopback cell data from the transmit FIFO to the receive FIFO. When data is looped back in this mode, the data synchronized with the transmitter circuit clock (TCL) is re-synchronized with the receiver circuit clock (RCL). The data may be damaged due to a defect in the circuit that changes the synchronization clock.

This abnormal operation occurs if the timing relationship between the clock and data violates the setup/hold time when the phase delay of the data changes due to the operating temperature, voltage, or production variation.

The probability that an abnormal operation occurs in the ALP mode is theoretically 1/8 because the TCL and RCL clocks (19.44 MHz) and both the source clocks (155.52 MHz) are in a 1-to-8 relationship.

Once this abnormal operation has occurred, the damaged data continues to be output until the ALP mode is cleared or the LSI is reset.

(2) Countermeasures

Do not use the ALP mode. Use the TPLP mode. The TPLP mode returns the cell data input from the ATM layer interface at the block on the serial side, and outputs the data to the ATM layer side as a receive cell.

Figure 8-4. ALP Mode and TPLP Mode

8.2.4 Fixed receiver circuit status in RPLP mode

(1) Description

When the μ PD98404 operates in the RPLP mode, the status bit that should be set, or read and cleared in accordance with changes in the status of the receiver circuit is fixed to the status in which the RPLP mode was set.

The RPLP mode is used to loopback serial data received from the circuit side to the serial output at the transmission side before the serial-to-parallel converter.

The fixed-status abnormality occurs in the LOS (Loss Of Signal) and LOF (Loss Of Frame) bits of the PICR register, and the LCD (Loss of Cell Delineation) bit of the ACR register. The status bits other than the LOS, LOF, and LCD bits indicate the input status of the receiver circuit. The actual data that is looped back has no problem.

<Example of phenomenon>

- If an error frame is input during normal operation, the μ PD98404 sets the LOF bit to 1.

- After setting the μ PD98404 in the RPLP mode, input of normal frame is switched.
- If the PICR register is read after the time in which the clearing condition of LOF is satisfied has elapsed, the LOF bit should be cleared to 0. In the RPLP mode, however, it remains set to 1 no matter how many times it is read. The data to be looped back is the normal frame input to the reception side.

This phenomenon occurs only in the RPLP mode. In the normal mode, the LOS, LOF, and LCD bits are updated according to the status of the receiver circuit.

(2) Countermeasures

This phenomenon occurs because clock distribution to the circuit that controls detection/clearing of the LOS, LOF, and LCD statuses stops when the path of data and clock is switched inside the LSI to output receive data to the transmission side. To update indication of the LOS, LOF, and LCD statuses in the RPLP mode, the clock mode must be changed as follows when the RPLP mode is set.

MDR1 register [D3] (TxCL0) = 1 MDR2 register [D6] (oolenb) = 1

Set these bits to 1 when setting the RPLP mode and clear them to 0 when clearing the mode. This mode switching is not necessary in principle, but should be evaluated as a countermeasure.

If the oolenb bit is set to 1 as the initial setting, it does not have to be set and cleared (refer to 5.2 (5) Mode register 2 (MDR2), 4.2.1 (1) • Receive clock recovery PLL function).

Figure 8-5. RPLP Mode