Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

User's Manual

Phase-out/Discontinued

μ**PD78366A**

16-/8-BIT SINGLE-CHIP MICROCONTROLLER

Hardware

μ**PD78363A** μ**PD78365A** μ**PD78366A** μ**PD78368A** μ**PD78P368A**

Document No. U10205EJ3V0UM00 (3rd edition) Date Published August 1997 N

© NEC Corporation 1995 Printed in Japan [MEMO]

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

2 HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

QTOP is a trademark of NEC Corporation.

MS-DOS and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

PC/AT and PC DOS are trademarks of IBM Corporation.

HP9000 series 700 and HP-UX are trademarks of Hewlett-Packard Company.

SPARCstation is a trademark of SPARC International, Inc.

SunOS is a trademark of Sun Microsystems Inc.

NEWS and NEWS-OS are trademarks of Sony Corporation.

TRON stands for The Realtime Operating system Nucleus.

ITRON stands for Industrial TRON.

The export of these products from Japan is regulated by the Japanese government. The export of some or all of these products may be prohibited without governmental license. To export or re-export some or all of these products from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

License not needed:

μPD78365A, 78P368AKL-S

The customer must judge the need for licence: μ PD78363A, 78366A, 78368A, 78P368AGF-3B9

The information in this document is subject to change without notice.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

- Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
- Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
- Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- · Device availability
- Ordering information
- Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.) Santa Clara, California Tel: 800-366-9782 Fax: 800-729-9288

NEC Electronics (Germany) GmbH Duesseldorf, Germany

Tel: 0211-65 03 02 Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.

Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Italiana s.r.1.

Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99 NEC Electronics (Germany) GmbH Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

NEC Electronics (France) S.A. Velizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

NEC Electronics (France) S.A. Spain Office Madrid, Spain Tel: 01-504-2787 Fax: 01-504-2860

NEC Electronics (Germany) GmbH Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388 NEC Electronics Hong Kong Ltd. Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

Phase-out/Discontinued

NEC Electronics Hong Kong Ltd. Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd. United Square, Singapore 1130 Tel: 253-8311 Fax: 250-3583

NEC Electronics Taiwan Ltd. Taipei, Taiwan Tel: 02-719-2377 Fax: 02-719-5951

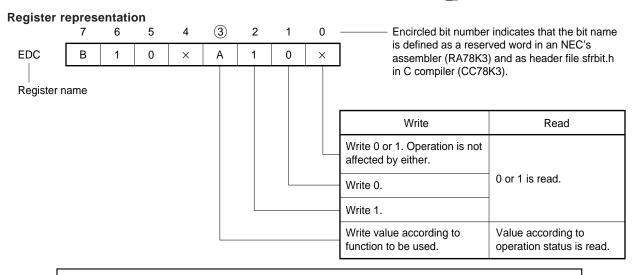
NEC do Brasil S.A. Sao Paulo-SP, Brasil Tel: 011-889-1680 Fax: 011-889-1689

Major Revisions in This Version

Phase-out/Discontinued

Page	Contents
Throughtout	The μ PD78368A has been added as a target device.
	The μ PD78P368AKL-S has been developed.
P.204, 205	CHAPTER 8 A/D CONVERTER
	8.2 A/D Converter Mode Register (ADM)
	The conversion time by setting the FR bit has been changed.
P.274, 275	CHAPTER 10 CLOCKED SERIAL INTERFACE
	10.6.1 SBI data format
	A caution has been added regarding the bus release signal and command signal.

The mark \star shows major revised points.


PREFACE

Users	 application program development. This manual describes the following processor μPD78363A, 78365A, 78366A, 7836 Note In addition to the other products 78362A, and 78P364A. For description of the other products 78362A, and 78P364A. 	
Purpose	The purpose of this manual is to help unde subseries as listed below.	rstand the hardware capabilities of the μ PD78366A
Organization	The μ PD78366A subseries manual is some manual) and Instructions.	eparated into two parts: Hardware (the present
	Hardware	Instructions
	 Pin functions Internal hardware function Interrupts List of instruction set 	 CPU functions Addressing List of instruction set Explanation of each instruction
Read them be	Caution $$	
How to read this manual	Before using this manual, the user should logical circuit, and microcontroller fields.	Ild have a general knowledge of the electronics,
	→ Unless otherwise specified, the μ throughout this manual. When 78P368A, take μ PD78366A for μ F	78365A, 78368A, and 78P368A manual: PD78366A is treated as the representative model you use the μ PD78363A, 78365A, 78368A, or PD78363A, 78365A, 78368A, or 78P368A. e one-time PROM and EPROM models, the term

- To check the details of a register if you know the name of the register: \rightarrow Look it up in APPENDIX C REGISTER INDEX.
- To know the detailed functions:
 - \rightarrow Look it up in APPENDIX D FUNCTION INDEX.
- To know the μ PD78366A subseries instruction function in detail: \rightarrow Refer to the μ PD78365 User's Manual Instruction (U12117E).
- To understand the general functions of the μ PD78366A subseries:
 - $\rightarrow~$ Read the entire manual in the order of the table of contents.

Legend	Data weight	: Higher digits on the left side Lower digits on the right side
	Active low	: xxxx (Pins and signal names are over-scored.)
	Memory map address	: Low-order address on the upper side
		High-order address on the lower side
	Note	: Explanation of the indicated part of the text
	Caution	: Information requesting the user's special attention
	Remark	: Supplementary information
	Numeric value	: Binary: XXXXB or XXXX
		Decimal: XXXX
		Hexadecimal: xxxxH

Never write the combination of codes marked "setting prohibited" in the register chart.

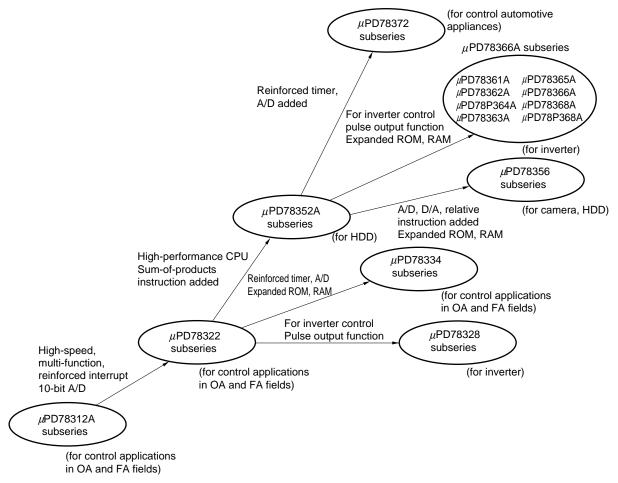
Confusing characters : 0 (zero), O (oh)

: 1 (numeral), I (lowercase of L), I (uppercase of i)

Related Documents

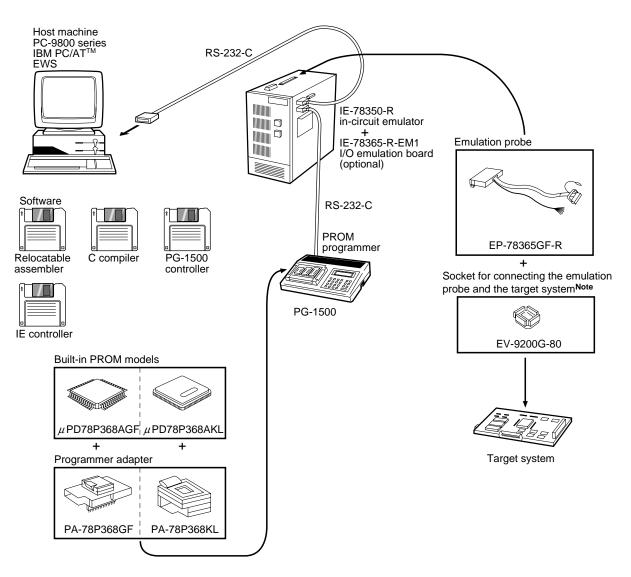
• Documents related to devices

Document Name	Document No.	
	Japanese	English
μPD78362A Data Sheet	U10098J	10098E
μ PD78P364A Data Sheet	U10106J	10106E
μPD78363A, 78365A, 78366A Data Sheet	U11109J	U11109E
μ PD78P368A Data Sheet	U11373J	U11373E
μ PD78362A User's Manual -Hardware	U10745J	U10745E
μ PD78366A User's Manual -Hardware	U10205J	This manual
μ PD78356 User's Manual -Instruction	U12117J	U12117E
μ PD78362A Special Function Register Table	U10210J	-
μ PD78366A Special Function Register Table	U10107J	-
μPD78352A Instruction Set	U11955J	-


· Documents related to development tools

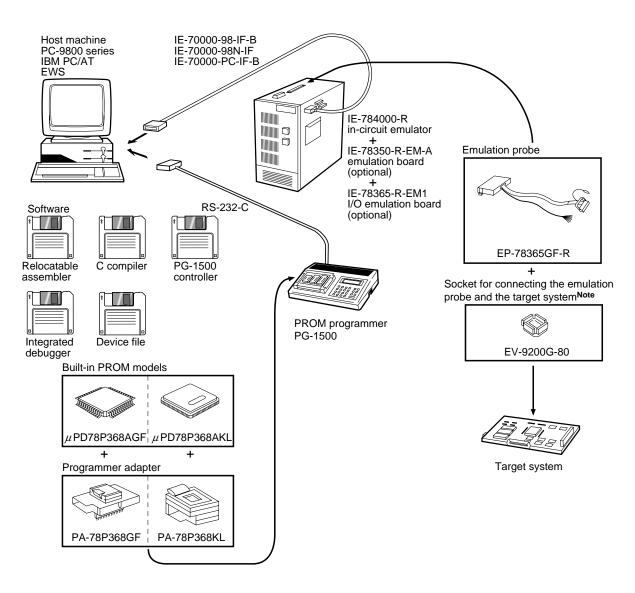
Document Name		Document No.	
		Japanese	English
IE-78350-R User's Manual	Hardware	EEU-754	EEU-1366
	Software	EEU-753	EEU-1376
IE-78365-R-EM1 User's Manual		EEU-924	EEU-1454
EP-78365GF-R User's Manual		EEU-955	EEU-1488

Caution The related documents are subject to change without notice. Be sure to use the latest version for your design work.



78K/III Series Product Development

DEVELOPMENT TOOL CONFIGURATION (WHEN USING IE CONTROLLER)


Note A socket is provided with the emulation probe.

Remarks 1. Host machine and PG-1500 can be directly connected by RS-232-C.

2. 3.5-inch FD represents the distributed media of software in this figure.

DEVELOPMENT TOOL CONFIGURATION (WHEN USING INTEGRATED DEBUGGER)

Note A socket is provided with the emulation probe.

- Remarks 1. Desk top-type PC represents host machine in this figure.
 - 2. 3.5-inch FD represents the distributed media of software in this figure.

TABLE OF CONTENTS

CHAPTE	R 1 GENERAL	1
1.1	Features	2
1.2	Application Fields	3
1.3	Ordering Information	3
1.4	Pin Configuration (Top View)	4
	1.4.1 Normal operation mode	4
	1.4.2 PROM programming mode (μPD78P368A only: MODE0/V _{PP} = H, MODE1 = L)	6
1.5	Block Diagram	8
1.6	Functional Outline	9
1.7	Differences among μ PD78366A Subseries Products	11
1.8	Application Example	12
CHAPTE	R 2 PIN FUNCTIONS	13
2.1	Pin Function List	13
	2.1.1 Normal operation mode	13
	2.1.2 PROM programming mode (μ PD78P368A only: MODE0/V _{PP} = H, MODE1 = L)	16
2.2	Pin Functions	17
	2.2.1 Normal operation mode	17
	2.2.2 PROM programming mode (µPD78P368A only)	25
2.3	I/O Circuits and Processing of Unused Pins	26
CHAPTE	R 3 CPU ARCHITECTURE	29
3.1	Memory Space	29
	3.1.1 Vector table area	34
	3.1.2 CALLT instruction table area	35
	3.1.3 CALLF instruction entry area	35
	3.1.4 Internal RAM area	35
	3.1.5 Special function register area	39
	3.1.6 External memory area	39
3.2	Processor Register	40
	3.2.1 Control register	41
	3.2.2 General-purpose register	47
	3.2.3 Special function register (SFR)	49
3.3	Data Memory Addressing	56
	3.3.1 General-purpose register addressing	59
	3.3.2 Short direct addressing	60
	3.3.3 Special function register (SFR) addressing	60
CHAPTE	R 4 SUMMARY OF BLOCK FUNCTION	61
4.1	Execution Unit	61
4.2	Bus Control Unit	61

		-	am Memory and Data Memory	61
4	.4			62
-	.5		ïme Pulse Unit	62
			ime Output Port	62
			onverter	63
-			Interface	63
-			Output Unit	63
			dog Timer	63
4	.11	Interru	ıpt Controller	63
СНА	PTER	8 5 PO	RT FUNCTIONS	65
5	5.1	Hardw	are Configuration	65
5	5.2	Port F	unctions	75
		5.2.1	Functions and features of I/O ports	76
		5.2.2	I/O mode setting	77
		5.2.3	Control mode setting	79
		5.2.4	Specifying pull-up resistor	86
СНА	PTER	8 6 CL	OCK GENERATOR	89
СНА	PTER	7 RE	AL-TIME PULSE UNIT	93
7	' .1		Configuration	94
-			0	94 94
'		7.2.1	Configuration	94
		7.2.2	Control registers	102
		7.2.3	Operation	110
7		-	1	141
-	-	7.3.1	Configuration	141
		7.3.2	Control registers	142
		7.3.3	Operation	143
7	. 4	Timer	2	144
		7.4.1	Configuration	144
		7.4.2	Control registers	146
		7.4.3	Operation	150
7	.5	Timer	3	156
		7.5.1	Configuration	156
		7.5.2	Control registers	158
		7.5.3	Operation	163
7	.6	Timer	4	171
		7.6.1	Configuration	171
		7.6.2	Control registers	173
		7.6.3	Operation	180
7	.7	Real-T	ime Output Function	195
		7.7.1	Configuration	195
		7.7.2	Control registers	196
		7.7.3	Operation	197

CHAPTE	R 8 A/D CONVERTER	199
0.4		000
8.1	Configuration	200
8.2	A/D Converter Mode Register (ADM)	203
8.3	A/D Conversion Result Register (ADCR)	207
8.4	Operation	209
	8.4.1 Basic operation of A/D converter	209
	8.4.2 Operation mode of A/D converter	213
8.5	How to Read A/D Converter Characteristic Tables	222
CHAPTE	R 9 ASYNCHRONOUS SERIAL INTERFACE	225
9.1	Asynchronous Serial Interface Configuration	226
9.2	Selecting Pins for Serial Communication	228
9.3	Setting Pins for Serial Communication	230
9.4	Data Format Setting	232
9.5	Baud Rate Setting	234
	9.5.1 Baud rate generator configuration	236
	9.5.2 Specific baud rate setting	238
9.6	Transmitting Data	240
9.7	Receiving Data	242
9.8	Transmitting/Receiving Data Using Macro Service	242
9.0 9.9	If Reception Error Occurs	244 246
9.9	I Reception Error Occurs	240
CHAPTE	R 10 CLOCKED SERIAL INTERFACE	249
10.1	Clocked Serial Interface Configuration	250
10.2	Setting Pins for Serial Communication	252
10.3	Baud Rate Setting	254
	10.3.1 Baud rate generator configuration	256
	10.3.2 Specific baud rate setting	258
10.4	Two Operation Modes of Clocked Serial Interface	260
10.5	Three-Wire Serial I/O Mode Setting	262
	10.5.1 Transmission in three-wire serial I/O mode	264
	10.5.2 Reception in three-wire serial I/O mode	266
	10.5.3 Transmission/reception in three-wire serial I/O mode	268
	10.5.4 Corrective action in case shift operation is not synchronized	271
10.6	SBI Mode Setting	272
	10.6.1 SBI data format	274
	10.6.2 Controlling and detecting status of serial bus	280
	10.6.3 Communicating with SBI	286
	10.6.4 Operation only when address is received	290
		200
CHAPTE	R 11 PWM SIGNAL OUTPUT FUNCTION	293
11.1	Configuration	293
11.2	Control Register	295
	11.2.1 PWM control registers (PWMC0, PWMC1)	295

	11.2.2 PWM buffer registers (PWM0, PWM1)	296
	11.2.3 Compare registers (CMP0, CMP1)	296
11.3	Operation	297
CHAPTER	R 12 WATCHDOG TIMER	299
12.1	Configuration	299
12.1	Watchdog Timer Mode Register (WDM)	300
12.3	Watchdog Timer Output Pin	302
12.4	Application Example	302
CHAPTER	R 13 INTERRUPT FUNCTION	303
13.1	Interrupt Requests	305
	13.1.1 Non-maskable interrupt	305
	13.1.2 Maskable interrupt	305
	13.1.3 Software interrupt	305
	13.1.4 Op-code trap interrupt	306
13.2	Interrupt Servicing Mode	306
10.2	13.2.1 Vectored interrupt service	306
	13.2.2 Macro service	306
	13.2.3 Context switching	306
13.3	Control Registers	307
10.0	13.3.1 Interrupt control registers	309
	13.3.2 Interrupt mask flag registers (MK0)	313
	13.3.3 Interrupt mode control register (IMC)	315
	13.3.4 In-service priority register (ISPR)	316
	13.3.5 Program status word (PSW)	317
13.4	Non-Maskable Interrupt Acknowledgment Operation	318
13.5	Maskable Interrupt Acknowledgment Operation	322
10.0	13.5.1 Vectored interrupt	324
	13.5.2 Context switching	324
	13.5.3 Maskable interrupt priority	326
13.6	Software Interrupt Acknowledgment Operation	332
10.0	13.6.1 Software interrupt acknowledgment operation by BRK instruction	332
	13.6.2 Software interrupt (context switching) acknowledgment operation	552
	by BRKCS instruction	332
13.7	Op-Code Trap Interrupt Acknowledgment Operation	335
13.8	Macro Service Function	336
10.0	13.8.1 Outline of macro service	336
	13.8.2 Basic function of macro service	339
	13.8.3 Operation at completion of macro service	341
	13.8.4 Macro service control register	341 342
	13.8.5 Macro service mode	342 344
	13.8.6 Macro service operation	344 344
13.9	·	344
13.9	Cases where Interrupt Request and Macro Service are	254
40.40	Temporarily Held Pending	354
13.10	Instructions whose Execution Is Temporarily Suspended by Interrupts	250
	and Macro Services	356

CHAPTE	R 14 STANDBY FUNCTION	357
14.1	Function Overview	357
14.2	Standby Control Register (STBC)	358
14.3	Operation	360
	14.3.1 HALT mode	360
	14.3.2 STOP mode	363
CHAPTE	R 15 RESET FUNCTION	373
CHAPTE	R 16 BUS INTERFACE FUNCTION	377
46.4	External Device Expension Expetien for UDD702004	077
16.1	External Device Expansion Function for µPD78366A	377
16.2	Access to External Devices by μ PD78365A	383
16.3	Control Registers	384
	16.3.1 Memory expansion mode register	384
	16.3.2 Programmable wait control register	386
CHAPTE	R 17 PROGRAMMING FOR μ PD78P368A	389
47.4	On easting Made	200
17.1	Operating Mode	390
17.2	Procedure for Writing on PROM (Page Program Mode)	391
17.3	Procedure for Writing on PROM (Byte Program Mode)	394
17.4	Procedure for Reading from PROM	397
17.5	Erasure Characteristics (µPD78P368AKL only)	398
17.6	Sticker on Erasure Window (µPD78P368AKL only)	398
17.7	Screening of One-Time PROM Products	398
CHAPTE	R 18 INSTRUCTION SET	399
18.1	Operand Identifier and Description	399
18.2	Legend	402
18.3	Notational Symbols in Flag Operation Field	403
18.4	Differences between μ PD78366A and μ PD78328 in Instruction Set	403
18.5	Operations of Basic Instructions	404
CHAPTE	R 19 INSTRUCTION EXECUTION RATE	421
19.1	Memory Space and Access Speed	421
	19.1.1 Main RAM and peripheral RAM	421
	19.1.2 Memory access	422
19.2	Interrupt Execution Rate	428
19.3	Calculating Number of Execution Clocks	429
		.20
CHAPTE	R 20 CAUTIONS	433
20.1	Cautions for CHAPTER 2 PIN FUNCTIONS	433
20.2	Cautions for CHAPTER 3 CPU ARCHITECTURE	433
	Cautions for CHAPTER 5 PORT FUNCTIONS	434

20.4 Cautions for CHAPTER 6 CLOCK GENERATOR	435
20.5 Cautions for CHAPTER 7 REAL-TIME PULSE UNIT	436
20.6 Cautions for CHAPTER 8 A/D CONVERTER	438
20.7 Cautions for CHAPTER 9 ASYNCHRONOUS SERIAL INTERFACE	439
20.8 Cautions for CHAPTER 10 CLOCKED SERIAL INTERFACE	440
20.9 Cautions for CHAPTER 11 PWM SIGNAL OUTPUT FUNCTION	440
20.10 Cautions for CHAPTER 12 WATCHDOG TIMER	440
20.11 Cautions for CHAPTER 13 INTERRUPT FUNCTION	441
20.12 Cautions for CHAPTER 14 STANDBY FUNCTION	444
20.13 Cautions for CHAPTER 15 RESET FUNCTION	444
20.14 Cautions for CHAPTER 16 BUS INTERFACE FUNCTION	445
20.15 Cautions for CHAPTER 19 INSTRUCTION EXECUTION RATE	445
APPENDIX A DIFFERENCE BETWEEN μ PD78366A AND μ PD78328	447
APPENDIX B TOOLS	451
B.1 Development Tools	451
B.2 Built-In Software	456
APPENDIX C REGISTER INDEX	459
C.1 Register Index (In Alphabetical Order with Respect to Register Name)	459
C.2 Register Index (In Alphabetical Order with Respect to Register Symbol)	462
APPENDIX D FUNCTION INDEX	467
APPENDIX E REVISION HISTORY	475

LIST OF FIGURES (1/6)

Figure No.	Title	Page
2-1	I/O Circuit of Each Pin	27
3-1	Memory Map (µPD78365A, 78366A)	30
3-2	Memory Map (µPD78368A)	31
3-3	Memory Map (µPD78363A)	32
3-4	Memory Map (μPD78P368A)	33
3-5	Register Configuration	40
3-6	Format of Program Status Word	42
3-7	Format of CPU Control Word	46
3-8	Manipulation Bits of General-Purpose Registers	47
3-9	Addressing Space of Data Memory (µPD78365A, 78366A)	56
3-10	Addressing Space of Data Memory (µPD78368A)	57
3-11	Addressing Space of Data Memory (µPD78363A)	58
3-12	Addressing Space of Data Memory (µPD78P368A)	59
5-1	Basic I/O Port Configuration	66
5-2	Port Specified as Output Port	67
5-3	Port Specified as Input Port	68
5-4	When Control Is Specified	69
5-5	Format of Port Read Control Register	72
5-6	Control (output port specified)	73
5-7	Port Configuration	75
5-8	Format of Port 0 Mode Register	77
5-9	Format of Port 1 Mode Register	77
5-10	Format of Port 3 Mode Register	78
5-11	Format of Port 5 Mode Register	78
5-12	Format of Port 8 Mode Register	78
5-13	Format of Port 9 Mode Register	79
5-14	Format of Port 0 Mode Control Register	82
5-15	Format of Port 3 Mode Control Register	83
5-16	Format of Port 8 Mode Control Register	84
5-17	Format of Memory Expansion Mode Register	85
5-18	Format of Pull-Up Resistor Option Register L	87
5-19	Format of Pull-Up Resistor Option Register H	87
6-1	Block Diagram of Clock Generator	89
6-2	External Circuitry of System Clock Oscillation Circuit	90
6-3	Examples of Wrong Resonator Connection Circuitry	91
7-1	Block Diagram of Timer 0 (PWM mode 0 symmetric triangular wave, asymmetric triangular wave)	95
7-2	Block Diagram of Timer 0 (PWM mode 0 toothed wave)	96
7-3	Block Diagram of Timer 0 (PWM mode 1)	97

LIST OF FIGURES (2/6)

Figure No.	Title	Page
7-4	Format of Timer Unit Mode Register 0	103
7-5	Configuration of Output Driver off Function	105
7-6	Format of Timer Control Register 0	106
7-7	Format of Timer Control Register 1	108
7-8	External Interrupt Mode Register 0 Format	109
7-9	Block Diagram of RTP Output Function of TO00-TO05 Pins	111
7-10	Operation Timing in PWM Mode 0 (symmetric triangular wave)	116
7-11	Operation Timing in PWM Mode 0 (symmetric triangular wave, BFCM0x \geq CM03)	117
7-12	Operation Timing in PWM Mode 0 (symmetric triangular wave, BFCM0x = 0000H)	118
7-13	Operation Timing in PWM Mode 0 (asymmetric triangular wave)	123
7-14	Operation Timing in PWM Mode 0 (asymmetric triangular wave, BFCM0x \geq CM03)	124
7-15	Operation Timing in PWM Mode 0 (asymmetric triangular wave, BFCM0X > CM03)	125
7-16	Operation Timing in PWM Mode 0 (asymmetric triangular wave, BFCM0x = 0000H) (1)	126
7-17	Operation Timing in PWM Mode 0 (asymmetric triangular wave, BFCM0x = 0000H) (2)	127
7-18	Operation Timing in PWM Mode 0 (asymmetric triangular wave, BFCM0x = CM03)	128
7-19	Operation Timing in PWM Mode 0 (toothed wave)	132
7-20	Operation Timing in PWM Mode 0 (toothed wave, BFCM0x > CM03)	133
7-21	Operation Timing in PWM Mode 0 (toothed wave, BFCM0x = CM03)	134
7-22	Operation Timing in PWM Mode 0 (toothed wave, BFCM0x = 0000H)	135
7-23	Operation Timing in PWM Mode 1	140
7-24	Block Diagram of Timer 1	141
7-25	Format of Timer Control Register 1	142
7-26	Example of Compare Operation (TM1, interval timer mode)	143
7-27	Block Diagram of Timer 2	144
7-28	Block Diagram of INTP3/INTCC20 Generation	145
7-29	Format of Timer Control Register 2	147
7-30	Format of External Interrupt Mode Register 1	148
7-31	Format of Sampling Control Register 0	149
7-32	Basic Operation of Timer 2 (TM2)	150
7-33	Example of TM2 Capture Operation (free-running operation)	152
7-34	Example of TM2 Capture Operation (interval operation)	152
7-35	Example of TM2 Compare Operation (free-running operation)	153
7-36	Example of TM2 Compare Operation (interval operation)	153
7-37	Block Diagram of Sampling Circuit (TM2)	154
7-38	Sampling Timing Chart (TM2)	154
7-39	Block Diagram of Timer 3	156
7-40	Block Diagram of INTP0/INTCC30 Generation	157
7-41	Format of Timer Control Register 3 (TMC3)	159
7-42	Format of External Interrupt Mode Register 0	160
7-43	Format of External Interrupt Mode Register 1	160
7-44	Format of Sampling Control Register 0	161
7-45	Format of Sampling Control Register 1	162
7-46	Basic Operation of Timer 3 (TM3)	163

LIST OF FIGURES (3/6)

Figure No.	Title	Page
7-47	Example of TM3 Capture Operation (free-running operation)	165
7-48	Example of TM3 Capture Operation (interval operation)	
7-49	Example of TM3 Compare Operation (free-running operation)	167
7-50	Example of TM3 Compare Operation (interval operation)	
7-51	Block Diagram of Sampling Circuit (TM3)	
7-52	Sampling Timing Chart (TM3)	169
7-53	Block Diagram of Timer 4 (general-purpose timer mode)	171
7-54	Block Diagram of Timer 4 (UDC mode)	171
7-55	Format of Timer Unit Mode Register 1	174
7-56	Format of Timer Control Register 4	176
7-57	Basic Operation of Timer 4 (TM4)	180
7-58	TM4 Clear Operation (during up count in UDC mode)	184
7-59	TM4 Clear Operation (during down count in UDC mode)	184
7-60	Internal Clock Operation in UDC Mode	
7-61	Example of Operation in Mode 1 (when valid edge of TIUD pin is rising edge)	187
7-62	Example of Operation in Mode 1 (when valid edge of TIUD pin is rising edge)	187
7-63	Example of Operation in Mode 2 (when valid edge of TIUD pin is rising edge)	188
7-64	Example of Operation in Mode 3 (when valid edge of TIUD pin is rising edge)	189
7-65	Example of Operation in Mode 3 (when valid edge of TIUD pin is rising edge)	190
7-66	Example of Operation in Mode 4	191
7-67	Block Diagram of Timer 4 (PWM output operation)	192
7-68	Example of PWM Output Operation of TO40	
7-69	Block Diagram of Real-Time Output Port	
7-70	Format of Real-Time Output Port Mode Register	196
7-71	Example of Real-Time Output Function Operation (P00 pin)	
8-1	Block Diagram of A/D Converter	200
8-2	Example of Connecting Capacitor to A/D Converter Pin	201
8-3	Format of A/D Converter Mode Register	204
8-4	Word Access to ADCR Register	207
8-5	Byte Access to ADCR Register	208
8-6	A/D Conversion Basic Operation (in select mode, with software trigger)	209
8-7	A/D Conversion Basic Operation (in mixed mode, with external trigger)	210
8-8	Rewriting ADM during A/D Conversion (in scan mode, with software trigger)	211
8-9	A/D Conversion in Select Mode (1-buffer mode)	213
8-10	Example of Operation Timing in Select Mode (1-buffer mode)	214
8-11	A/D Conversion in Select Mode (4-buffer mode)	215
8-12	Example of Operation Timing in Select Mode (in 4-buffer mode)	215
8-13	A/D Conversion in Scan Mode	216
8-14	Example of Operation Timing in Scan Mode	217
8-15	A/D Conversion in Mixed Mode (select processing in 1-buffer mode)	218
8-16	Example of Operation Timing in Mixed Mode (select processing in 1-buffer mode)	
	(software trigger)	219

LIST OF FIGURES (4/6)

Figure No.	Title	Page
8-17	Example of Operation Timing in Mixed Mode (select processing in 1-buffer mode)	
	(external trigger or interrupt trigger)	219
8-18	A/D Conversion Timing in Mixed Mode (select processing in 4-buffer mode)	220
8-19	Example of Operation Timing in Mixed Mode (select processing in 4-buffer mode)	
	(software trigger)	221
8-20	Example of Operation Timing in Mixed Mode (select processing in 4-buffer mode)	
	(external trigger or interrupt trigger)	221
8-21	Total Error	223
8-22	Quantized Error	223
8-23	Zero Scale Error	224
8-24	Full Scale Error	224
8-25	Non-Linearity Error	224
9-1	Block Diagram of Asynchronous Serial Interface	227
9-2	Setting of ASIM Register (pin selection)	229
9-3	Format of Port 3 Mode Control Register	230
9-4	Format of Port 3 Mode Register	231
9-5	Format of Transmit/Receive Data of Asynchronous Serial Interface	232
9-6	Setting of ASIM Register (data format)	233
9-7	Setting of ASIM Register (serial clock)	235
9-8	Block Diagram of Baud Rate Generator	237
9-9	Format of Baud Rate Generator Control Register	237
9-10	Asynchronous Serial Interface Transmission End Interrupt Timing	241
9-11	Asynchronous Serial Interface Reception End Interrupt Timing	242
9-12	Setting of ASIM Register (reception enabled)	243
9-13	UART Transmitting/Receiving Using Macro Service	245
9-14	Reception Error Timing	246
9-15	Format of Asynchronous Serial Interface Status Register	247
10-1	Block Diagram of Clocked Serial Interface	251
10-2	Format of Port 3 Mode Control Register	252
10-3	Format of Port 3 Mode Register	253
10-4	Setting of CSIM Register (serial clock)	255
10-5	Block Diagram of Baud Rate Generator	257
10-6	Format of Baud Rate Generator Control Register	259
10-7	Example of System Configuration in Three-Wire Serial I/O Mode	260
10-8	Example of System Configuration in Serial Bus Interface (SBI) Mode	261
10-9	Timing in Three-Wire Serial I/O Mode	262
10-10	Setting of CSIM Register (three-wire serial I/O mode)	263
10-11	Timing in Three-Wire Serial I/O Mode (transmission)	264
10-12	Setting of CSIM Register (transmission enabled)	265
10-13	Timing in Three-Wire Serial I/O Mode (reception)	266
10-14	Setting of CSIM Register (reception enabled)	267

LIST OF FIGURES (5/6)

Figure No.	Title	Page
10-15	Timing in Three-Wire Serial I/O Mode (transmission/reception)	
10-16	Setting of CSIM Register (transmission/reception enabled)	
10-17	Example of System Configuration of Serial Bus Interface (SBI)	
10-18	Setting of CSIM Register (SBI mode)	
10-19	Bus Release Signal	
10-20	Command Signal	
10-21	Address	
10-22	Command	
10-23	Data	
10-24	Acknowledge Signal	
10-25	Busy Signal and Ready Signal	
10-26	Format of Serial Bus Interface Control Register	
10-27	Operations of RELT, CMDT, RELD, and CMDD	
10-28	Operation of ACKT	
10-29	Operation of ACKE	
10-30	Operation of ACKD	
10-31	Operation of BSYE	
10-32	Setting of CSIM Register (transmission/reception enabled)	
10-33	Address Transfer from Master Device to Slave Device	
10-34	Command Transfer from Master Device to Slave Device	
10-35	Data Transfer from Master Device to Slave Device	
10-36	Data Transfer from Slave Device to Master Device	
10-37	Example of System Configuration of Serial Bus Interface (SBI)	
10-38	Setting of CSIM Register (wake-up function)	
11-1	Block Diagram of PWM Unit	
11-2	Format of PWM Control Register 0	
11-3	Format of PWM Control Register 1	
11-4	Operation of PWM Output Function (high-active setting)	
12-1	Block Diagram of Watchdog Timer	
12-2	Format of Watchdog Timer Mode Register	301
13-1	Format of Interrupt Control Registers	
13-2	Format of Interrupt Mask Flag Register	
13-3	Format of Interrupt Mode Control Register	
13-4	Format of In-service Priority Register	
13-5	Program Status Word (PSWL) Format	
13-6	Non-Maskable Interrupt Request Acknowledgment Operation	
13-7	Interrupt Acknowledgment Service Algorithm	
13-8	Context Switching Operation by Generation of Interrupt Request	
13-9	RETCS Instruction Format	
13-10	Restoration Operation from Interrupt Using Context Switching Function by	-
	RETCS Instruction	

LIST OF FIGURES (6/6)

Figure No.	Title	Page
13-11	Examples of Servicing an Interrupt Request Generated while	
10 11	Another Interrupt is being Serviced	327
13-12	Example of Servicing Interrupt Requests Generated Simultaneously	330
13-13	Differences in Level 3 Interrupt Acknowledgment Operation by Setting IMC Register	331
13-14	Context Switching Operation by Executing BRKCS Instruction	333
13-15	RETCSB Instruction Format	334
13-16	Restoration Operation from Software Interrupt Executed by BRKCS Instruction	
	(Operation of RETCSB Instruction)	335
13-17	Differences between Vectored Interrupt and Macro Service Processing	336
13-18	Sequence Example of Macro Service Processing	339
13-19	Operation at Completion of Macro Service	
13-20	Basic Structure of Macro Service Control Word	
13-21	Format of Macro Service Control Word	343
14-1	Transition Diagram of Standby Modes	357
14-2	STBC Register Write Instruction	358
14-3	Format of Standby Control Register (STBC)	359
14-4	Format of Watchdog Timer Mode Register	365
14-5	Operation after Release of STOP Mode (1)	366
14-6	Operation after Release of STOP Mode (2)	367
14-7	Operation after Release of STOP Mode (3)	368
14-8	Operation after Release of STOP Mode (4)	369
14-9	Releasing STOP Mode by NMI Input (1)	370
14-10	Releasing STOP Mode by NMI Input (2)	371
15-1	Acceptance of RESET Signal	373
15-2	Reset Operation at Power-On	374
16-1	Memory Map in Expansion Mode (µPD78368A)	379
16-2	Memory Map in Expansion Mode (µPD78366A)	380
16-3	Memory Map in Expansion Mode (µPD78363A)	381
16-4	Memory Map in Expansion Mode (µPD78P368A)	382
16-5	Memory Map of μ PD78365A	383
16-6	Format of Memory Expansion Mode Register	385
16-7	Format of Programmable Wait Control Register	387
17-1	Flowchart of Procedure for Writing (page program mode)	392
17-2	Timing Chart of PROM Write and Verify Operation (page program mode)	393
17-3	Flowchart of Write Operation (byte program mode)	395
17-4	Timing Chart of PROM Write and Verify Operation (byte program mode)	396
17-5	PROM Read Timing Chart	397
19-1	Concept of Memory Access in Op-Code Fetch	423
19-2	Concept of Memory Access in Data Access	426

LIST OF TABLES (1/2)

Table No.	Title			
1-1	Differences among μ PD78366A Subseries Products			
2-1	Port Pin Functions	13		
2-2	Functions of Pins Other Than Port Pins	15		
2-3	Functions of Pins Used in PROM Programming Mode	16		
2-4	I/O Type of Each Pin and Recommended Processing	26		
3-1	Vector Table Area	34		
3-2	Operation in Word Access in Internal RAM Area	35		
3-3	General-Purpose Register Configuration	48		
3-4	Special Function Registers	51		
5-1	Read Operation in Control Mode	70		
5-2	Functions and Features of Ports	76		
5-3	Operation of Port 4 and Port 5 (µPD78363A, 78366A, 78368A)	80		
5-4	Operation of Port 9 (μPD78363A, 78366A, 78368A)	81		
7-1	Configuration of RPU	94		
7-2	Operation Modes of Timer 0 (TM0)	98		
7-3	Timing of Transfer from BFCM03 to CM03	107		
7-4	Operation Modes of Timer 0 (TM0)	110		
7-5	List of UDC Mode Operations	183		
7-6	Setting of TMC4 Register (during internal clock operation in UDC mode)	185		
7-7	Up/Down Count Operation Modes	186		
8-1	Example of Conversion Time Set by FR Bit	205		
8-2	A/D Conversion Modes	206		
8-3	Correspondence Between Analog Input and A/D Conversion			
	Result Registers (ADCRs) (select mode, 1-buffer mode)	214		
8-4	Correspondence Between Analog Input and A/D Conversion			
	Result Registers (ADCRs) (select mode, 4-buffer mode)	215		
8-5	Correspondence Between Analog Input Pins and A/D Conversion			
	Result Registers (ADCRs) (scan mode)	216		
8-6	Analog Input in Mixed Mode	218		
8-7	Correspondence Between Analog Input and A/D Conversion			
	Result Registers (ADCRs) (mixed mode: select processing in 1-buffer mode)	218		
8-8	Correspondence Between Analog Input and A/D Conversion			
	Result Registers (ADCRs) (in mixed mode: select processing in 4-buffer mode)	220		
9-1	Typical Baud Rate Settings (asynchronous serial interface)	239		
9-2	Causes of Reception Errors	246		
10-1	Signals in SBI Mode	278		

LIST OF TABLES (2/2)

Table No.	Title		
11-1	PWM Signal Repetition Frequencies	294	
13-1	Interrupt Request Processing Modes	303	
13-2	Interrupt Sources	304	
13-3	Control Registers	307	
13-4	Interrupt Control Register Flags for Interrupt Request Signals	308	
13-5	Multiplexed Interrupt Service	326	
13-6	Interrupts for which Macro Service Is Available	337	
13-7	Classification of Macro Service Modes	344	
13-8	Counter Mode Operation Specification	345	
13-9	Specification of Block Transfer Mode Operation	346	
13-10	Specification of Block Transfer Mode (with a memory pointer) Operation	348	
13-11	List of Instructions that Sometimes do not Acknowledge Interrupt Requests	355	
14-1	Operation States in HALT Mode	360	
14-2	Acceptance of Interrupts Generated during Interrupt Servicing	361	
14-3	Operations after HALT Mode Is Released by an Interrupt Request	362	
14-4	Releasing HALT Mode by a Macro Service Request	362	
14-5	Operation States in STOP Mode	363	
14-6	Release of STOP Mode and Operation after Release	370	
15-1	Hardware Statuses after Reset	375	
16-1	Assigning Functions to Pins (µPD78366A)	377	
16-2	Operation of Port 5 (expansion mode)	377	
16-3	Setting Pin Function (μ PD78365A)	383	
17-1	Pin Functions in Programming Mode	389	
17-2	Operating Modes for PROM Programming	390	
18-1	Operand Identifier and Description	400	
18-2	Absolute Names and Their Corresponding Function Names of 8-bit Register	401	
18-3	Absolute Names and Their Corresponding Function Names of 16-bit Register	401	
18-4	Notational Symbols in Flag Operation Field	403	
19-1	Number of Clocks Required for Op-Code Fetch	422	
19-2	Bus Control Signals to Be Output during Op-Code Fetch	424	
19-3	Number of Clocks Required for Data Access	425	
19-4	Bus Control Signals to Be Output during Data Access		
19-5	Number of saddr Accesses by Instruction	430	

CHAPTER 1 GENERAL

Phase-out/Discontinued

The μ PD78366A subseries is a series of NEC's 78K/III Series 16-/8-bit single-chip microcontrollers equipped with a high-speed, high-performance 16-bit CPU.

The μ PD78366A subseries provides the eight products of μ PD78361A, 78362A, 78P364A, 78363A, 78365A, 78366A, 7836A, 78

The μ PD78366A has a PWM output function with a resolution higher than the existing μ PD78328, so it can provide substantially enhanced performance when used to control an inverter. In addition, the μ PD78366A subseries microcontrollers are provided with sum-of-products instructions and can be used for a wide range of applications, as high-speed, high-performance CPUs.

The μ PD78368A is an extended internal ROM model of the μ PD78366A.

The μ PD78365A is a ROM-less model of the μ PD78366A.

The μ PD78P368A is a model in the μ PD78366A series with expanded memory capacity. It has a one-time PROM or EPROM instead of the internal mask ROM of the μ PD78366A. The one-time PROM can be written only once and is suitable for small-scale production of a small quantity of application systems, or early start of production. Programs can be written to, erased from, or rewritten to the EPROM, making it ideal for system evaluation.

*

1.1 Features

- Internal 16-bit architecture, external 8-bit data bus
- High-speed processing backed up by pipeline control and high-speed operation clock Minimum instruction execution time: 125 ns (internal clock: 16 MHz, external clock: 8 MHz)
- PLL control circuit: External 8 MHz \rightarrow Internal 16 MHz
- 115 instructions ideal for control applications (upward compatible with the μPD78328)
 - 16-bit arithmetic operation instructions
 - Multiplication/division instructions (16 bits \times 16 bits (with sign/without sign), 32 bits \div 16 bits)
 - Sum-of-products instructions (16 bits \times 16 bits + 32 bits)
 - Relative operation instructions
 - String instructions
 - Bit manipulation instructions, etc.
- Real-time pulse unit suitable for inverter control
 - Two timer output modes selectable (set/reset output/buffer output)
 - Can output six phases of PWM signals
 - Dead time timer
 - Output driver off function when an error occurs outside of the microcomputer
 - Up/down counter function
 - 16-bit resolution PWM signal output: 1 channel
- High-speed 10-bit resolution A/D converter: 8 channels
- 8-/9-/10-/12-bit resolution-variable PWM signal output function: 2 channels
- Two channels of independent serial interfaces
 - UART (with pin select function)
 - Clocked serial interface/SBI
- High-speed interrupt controller
 - 4 levels of priority selectable
 - Three interrupt service modes selectable

(vectored interrupt, macro service, context switching)

- Large current ports
 - Port 0 (P00-P07): IoL = 10 mA (up to four pins can be turned on simultaneously)
 - Port 1 (P10-P17): IoL = 10 mA (up to four pins can be turned on simultaneously)
 - Port 8 (P80-P85): IoL = 15 mA (up to three pins can be turned on simultaneously)
- Internal memory: ROM 48K bytes (μPD78368A) 32K bytes (μPD78366A) 24K bytes (μPD78363A) None (μPD78365A)
 - PROM 48K bytes (µPD78P368A)
 - RAM 2K bytes (μPD78365A, 78366A, 78368A, 78P368A) 768 bytes (μPD78363A)

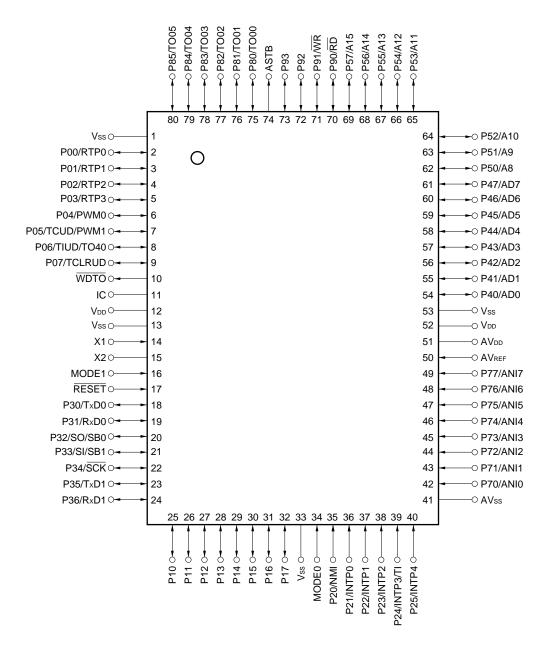
1.2 Application Fields

- Inverter air conditioner
- FA equipment such as robots and automatic machine tools

1.3 Ordering Information

★

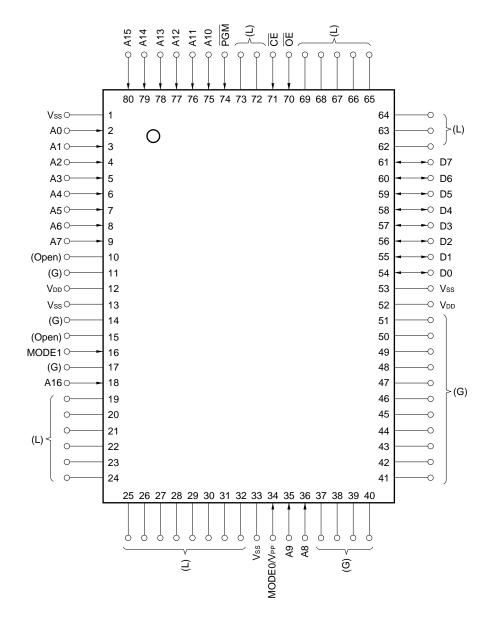
Part Number	Package	Internal ROM
μPD78363AGF-×××-3B9	80-pin plastic QFP (14 $ imes$ 20 mm)	Mask ROM
μPD78365AGF-3B9	80-pin plastic QFP (14 $ imes$ 20 mm)	None
μPD78366AGF-×××-3B9	80-pin plastic QFP (14 $ imes$ 20 mm)	Mask ROM
μPD78368AGF-×××-3B9	80-pin plastic QFP (14 $ imes$ 20 mm)	Mask ROM
μPD78P368AGF-3B9	80-pin plastic QFP (14 $ imes$ 20 mm)	One-time PROM
μ PD78P368AKL-S	80-pin ceramic WQFN	EPROM


Remark ××× indicates a ROM code suffix.

1.4 Pin Configuration (Top View)

1.4.1 Normal operation mode

- 80-pin plastic QFP (14 \times 20 mm)
- ★ μPD78363AGF-xxx-3B9, 78365AGF-3B9, 78366AGF-xxx-3B9, 78368AGF-xxx-3B9, 78P368AGF-3B9
 - 80-pin ceramic WQFN μPD78P368AKL-S

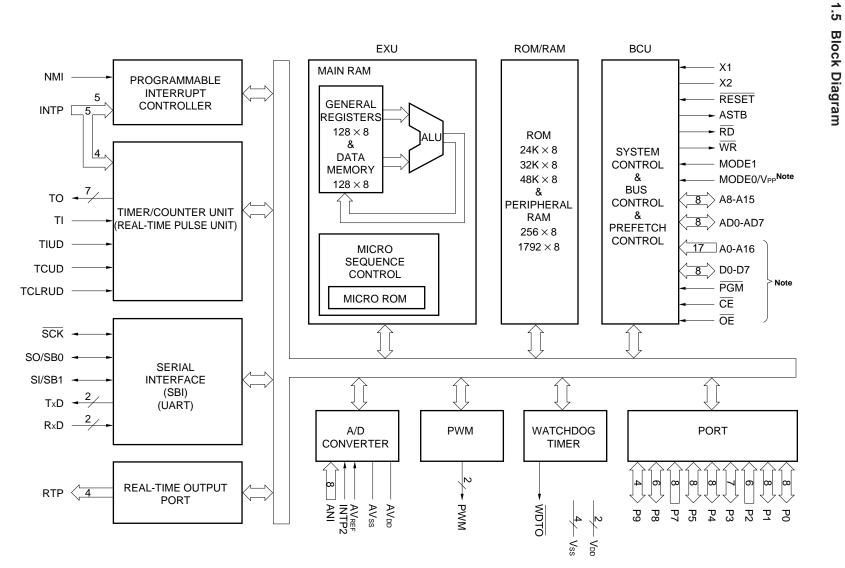

Caution Directly connect the IC pin to the Vss pin.

Remark ××× indicates a ROM code suffix.

A8-A15	:	Address Bus	PWM0, PWM1	:	Pulse Width Modulation Output
AD0-AD7	:	Address/Data Bus	RD	:	Read Strobe
ANIO-ANI7	:	Analog Input	RESET	:	Reset
ASTB	:	Address Strobe	RTP0-RTP3	:	Real-time Port
AVdd	:	Analog Vdd	RxD0, RxD1	:	Receive Data
AVREF	:	Analog Reference Voltage	SB0, SB1	:	Serial Bus
AVss	:	Analog Vss	SCK	:	Serial Clock
IC	:	Internally Connected	SI	:	Serial Input
INTP0-INTP4	:	Interrupt from Peripherals	SO	:	Serial Output
MODE0, MODE1	:	Mode	TCLRUD	:	Timer Clear Up Down Counter
NMI	:	Non-maskable Interrupt	TCUD	:	Timer Control Up Down Counter
P00-P07	:	Port0	ТІ	:	Timer Input
P10-P17	:	Port1	TIUD	:	Timer Input Up Down Counter
P20-P25	:	Port2	TO00-TO05, TO40):	Timer Output
P30-P36	:	Port3	TxD0, TxD1	:	Transmit Data
P40-P47	:	Port4	Vdd	:	Power Supply
P50-P57	:	Port5	Vss	:	Ground
P70-P77	:	Port7	X1, X2	:	Crystal
P80-P85	:	Port8	WDTO	:	Watchdog Timer Output
P90-P93	:	Port9	WR	:	Write Strobe

1.4.2 PROM programming mode (µPD78P368A only: MODE0/VPP = H, MODE1 = L)

- 80-pin plastic QFP (14 \times 20 mm) μ PD78P368AGF-3B9
- **80-pin ceramic WQFN** μPD78P368AKL-S



- Caution (): Processing of pins not used in PROM programming mode.
 - L : Individually connect these pins to Vss via resistor.
 - G : Connect these pins to Vss.

Open : Connect nothing to these pins.

			_
A0-A16	: Address Bus	PGM	: Programming Mode
CE	: Chip Enable	Vdd	: Power Supply
D0-D7	: Data Bus	Vpp	: Programming Power Supply
MODE0, MODE1	: Programming Mode Set	Vss	: Ground
OE	: Output Enable		

Remark Internal ROM and RAM capacities depend on the product.

CHAPTER 1 GENERAL

1.6 Functional Outline

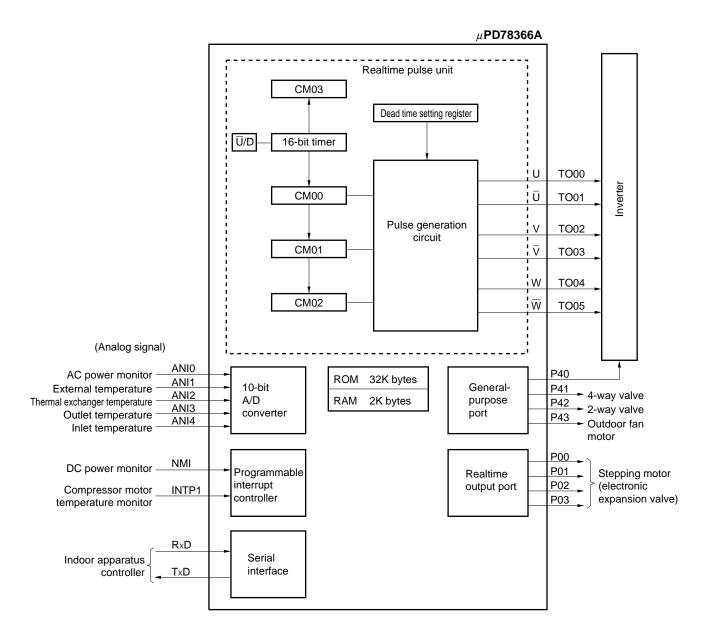
						(1/2	
literen	Part No.	μPD78363A	μPD78365A	μPD78366A	μPD78368A	μPD78P368A	
Item Minimum instructio	<u> </u>	125 no (interne			vocution time 9		
	ROM		125 ns (internal clock: 16 MHz, external clock execution time 8 MHz) 24K bytes – 32K bytes 48K bytes –				
Internal memory	PROM	24R bytes		SZR Dytes	40K Dytes	48K bytes	
	RAM	- 769 bytee	– 2K bytes	_	_	40K Dyles	
Momony space	KAIVI	768 bytes	ernally expandat				
Memory space	agiator	8 bits \times 16 \times 8		jiej			
General-purpose re Basic instructions	egister	115	Daliks				
Instruction set			r/onorotion				
Instruction set		16-bit transfe			a (C hita)		
			/division (16 bits	× 16 bits, 32 bit	S ÷ TO DILS)		
		Bit manipulati	ion				
		String	ista (16 bita v 16	bite 1 22 bite)			
			icts (16 bits $ imes$ 16	0 DITS + 32 DITS)			
	1	Relative oper			4)		
I/O line	Input		are multiplexed	<u> </u>	t)		
	I/O	49	31	49			
Real-time pulse un	lit	• 16-bit timer × 1					
		10-bit dead time timer × 3					
		16-bit compare register × 4					
		Two output modes selectable					
		Mode 0: set/reset output (6 channels)					
		Mode 1: buffer output (6 channels)					
		• 16-bit timer × 1					
		16-bit compare register × 1					
		• 16-bit timer ×					
		16-bit capture	Ū.				
		16-bit capture/compare register × 1					
		• 16-bit timer × 1					
		16-bit capture	-				
		16-bit capture/compare register × 1					
		• 16-bit timer × 1					
		16-bit compare register × 2					
		16-bit resolution PWM output: 1 channel					
Real-time output p	ort	4 (4-bit unit buffer output)					
PWM unit 8-/9-/10-/12-bit resolution variable PWM output: 2 channels							
A/D converter		10-bit resolutio	n: 8 channels				

						(2/2)
	Part No.	μPD78363A	μPD78365A	μPD78366A	μPD78368A	μPD78P368A
Item						
Serial interface		With dedicated baud rate generator				
		UART (with p	UART (with pin select function): 1 channel			
		Clocked serial interface/SBI: 1 channel				
Interrupt function		• External: 6, internal 14 (of which 2 are multiplexed with external sources)				
		• 4 priority leve	ls selectable via	software		
		• 3 interrupt se	rvice modes sele	ectable		
		(vectored inte	errupt, macro ser	vice, context swi	tching)	
Package		• 80-pin plastic	QFP (14 \times 20 m	ım)		
		• 80-pin ceramic WQFN (μPD78P368A only)				
Others		Watchdog timer				
		Standby functions (HALT mode and STOP mode)				
		PLL control c	ircuit			

	ct Name	μPD78361A	μPD78362A	μPD78P364A	μPD78363A	μPD78365A	μPD78366A	μPD78368A	μPD78P368A
Parameter	\geq								
Internal memory	ROM	32K bytes	24K bytes	-	24K bytes	-	32K bytes	48K bytes	-
	PROM	-	-	48K bytes	-	-	-	-	48K bytes
	RAM	2K bytes	768 bytes	2K bytes	768 bytes	2K bytes			
Input/output lines	Input	14 (8 lines also	o serve as analo	g input)					
	I/O	38			49	31	49		
UART pin select f	unction	None			Available	11			
WDTO pin		None			Available				
External device expansion function	ו	None			Available				
ROM-less mode		None			Available	ROM-less product	Available		None
MODE setting		Be sure to set the following: MODE = L	= H	g mode MODE	 Normal operation mode MODE0, 1 = LL ROM-less mode MODE0, 1 = HH 	Be sure to set the following: MODE0, 1 = HH	 Normal oper- MODE0, 1 = ROM-less m = HH 	LL	 Normal operation mode MODE0, 1 = LL Program- ming mode MODE0, 1 = HL
Package With no window With window		64-pin plastic s	shrink DIP (750	mil)	80-pin plastic (QFP (14 × 20 mr	n)		
			-			-	-		80-pin ceramic WQFN

Table 1-1. Differences among μ PD78366A Subseries Products

CHAPTER 1


GENERAL

1.7

1.8 Application Example

To control outdoor apparatus of inverter air conditioner

Phase-out/Discontinued

CHAPTER 2 PIN FUNCTIONS

2.1 Pin Function List

2.1.1 Normal operation mode

(1) Port pins

Pin	I/O	Function	Shared with:
P00-P03	I/O	Port 0.	RTP0-RTP3
P04		8-bit I/O port.	PWM0
P05		Can be set in input or output mode in 1-bit units.	PWM1/TCUD
P06			TO40/TIUD
P07			TCLRUD
P10-P17	I/O	Port 1.	-
		8-bit I/O port.	
		Can be set in input or output mode in 1-bit units.	
P20	Input	Port 2.	NMI
P21		6-bit input port.	INTP0
P22			INTP1
P23			INTP2
P24			INTP3/TI
P25			INTP4
P30	I/O	Port 3.	TxD0
P31		7-bit I/O port.	R×D0
P32		Can be set in input or output mode in 1-bit units.	SO/SB0
P33			SI/SB1
P34			SCK
P35			TxD1
P36			RxD1
P40-P47 ^{Note}	I/O	Port 4.	AD0-AD7
		8-bit I/O port.	
		Can be set in input or output mode in 8-bit units.	
P50-P57 ^{Note}	I/O	Port 5.	A8-A15
		8-bit I/O port.	
		Can be set in input or output mode in 1-bit units.	

Table 2-1. Port Pin Functions (1/2)

Note On the μ PD78365A, these pins do not operate as ports.

Pin	I/O	Function	Shared with:
P70-P77	Input	Port 7.	ANI0-ANI7
		8-bit input port.	
P80-P85	I/O	Port 8.	TO00-TO05
		6-bit I/O port.	
		Can be set in input or output mode in 1-bit units.	
P90 ^{Note}	I/O	Port 9.	RD
P91 ^{Note}		4-bit I/O port.	WR
P92		Can be set in input or output mode in I/O 1-bit units.	_
P93			_

Table 2-1. Port Pin Functions (2/2)

Note On the μ PD78365A, these pins do not operate as ports.

(2) Pins other than port pins

Pin	I/O	Function	Shared with:
RTP0-RTP3	Output	Real-time output port that outputs pulse in synchronization with trigger signal from real-time pulse unit.	P00-P03
NMI	Input	Non-maskable interrupt request input	P20
INTP0	-	External interrupt request input	P21
INTP1			P22
INTP2	-		P23
INTP3	-		P24/TI
INTP4			P25
TI	Input	External count clock input to timer 1	P24/INTP3
TCUD		Count operation select control signal input to up/down counter (timer 4)	P05/PWM1
TIUD	-	External count clock input to up/down counter (timer 4)	P06/TO40
TCLRUD	-	Clear signal input to up/down counter (timer 4)	P07
TO00-TO05	Output	Pulse output from real-time pulse unit	P80-P85
TO40			P06/TIUD
ANI0-ANI7	Input	Analog input to A/D converter	P70-P77
TxD0	Output	Serial data output of asynchronous serial interface	P30
TxD1			P35
RxD0	Input	Serial data input of asynchronous serial interface	P31
RxD1			P36
SCK	I/O	Serial clock I/O of clocked serial interface	P34
SI	Input	Serial data input of clocked serial interface in three-wire mode	P33/SB1
SO	Output	Serial data output of clocked serial interface in three-wire mode	P32/SB0
SB0	I/O	Serial data I/O of clocked serial interface in SBI mode	P32/SO
SB1			P33/SI
PWM0	Output	PWM signal output	P04
PWM1			P05/TCUD
WDTO	Output	Signal output indicating overflow of watchdog timer (occurrence of non-maskable interrupt)	_
AD0-AD7	I/O	Multiplexed address/data bus used when external memory is connected	P40-P47
A8-A15		Address bus used when external memory is connected	P50-P57

Table 2-2. Functions of Pins Other Than Port Pins (1/2)

Pin	I/O	Function	Shared with:
ASTB	Output	Timing signal that externally latches address information output from AD0-AD7 and A8-A15 pins to access external memory	_
RD		Read strobe signal to external memory	P90
WR		Write strobe signal to external memory	P91
MODE0	Input	Control signal input to set operation mode.	-
MODE1		With μ PD78363A, 78366A, 78368A, and 78P368A, MODE0 and MODE1 are Vss. With μ PD78365A, MODE0 and MODE1 are always connected to V _{DD} .	_
RESET	Input	System reset input	-
X1	Input	System clock oscillation crystal connecting pins.	-
X2	-	Input external clock to X1 pin. Leave X2 open.	-
AVREF	Input	A/D converter reference voltage input	_
AVdd	-	A/D converter analog power supply	-
AVss	-	A/D converter GND	-
Vdd	-	Positive power supply	-
Vss	-	GND	-
IC	_	Internally connected. Connect this pin directly to Vss	-

Table 2-2.	Functions of	Pins	Other Than	Port	Pins (2	/2)
------------	--------------	------	-------------------	------	---------	-----

2.1.2 PROM programming mode (μ PD78P368A only: MODE0/V_{PP} = H, MODE1 = L)

Table 2-3. Functions of Pins Used in PROM Programming Mode

Pin	I/O	Function
MODE0/Vpp	Input	PROM programming mode setting/writing power
MODE1		PROM programming mode setting
A0-A16		Address bus
D0-D7	I/O	Data bus
PGM	Input	Program input
CE		PROM enable input
OE		Read strobe to PROM
Vdd	_	Positive power supply
Vss		GND

2.2 Pin Functions

2.2.1 Normal operation mode

(1) P00-P07 (Port 0) ... three-state I/O

These pins form an 8-bit I/O port. They serve as not only a general-purpose I/O port, but also a real-time output port, control signal input pins of the real-time pulse unit, and PWM signal output pins. Port 0 can be set in the following operation modes in 1-bit units by the port 0 mode control register (PMC0) (refer to **5.2 Port Functions**).

(a) Port mode

In this mode, port 0 functions as an 8-bit general-purpose I/O port, and can be set in the input or output mode in 1-bit units by the port 0 mode register (PM0).

(b) Control mode

In this mode, each bit of port 0 serve as a control signal input or output pin, as follows:

(i) RTP0-RTP3

These pins function as a real-time output port.

(ii) PWM0 and PWM1

These pins output the PWM signal.

(iii) TO40

This pin serves as the timer output pin of timer 4 of the real-time pulse unit.

(iv) TIUD

This pin inputs an external count clock to timer 4 of the real-time pulse unit.

(v) TCUD

This pin inputs the count operation select control signal to timer 4 of the real-time pulse unit.

(vi) TCLRUD

This pin inputs a clear signal to timer 4 of the real-time pulse unit.

Caution Each pin is set in the input port mode when the RESET signal has been input (output high impedance). At this time, the contents of the output latch become undefined.

(2) P10-P17 (Port 1) ... three-state I/O

These pins form an 8-bit I/O port that functions as a general-purpose I/O port. This port can be set in the input or output mode in 1-bit units by the port 1 mode register (PM1).

Caution Each pin is set in the input port mode when the RESET signal has been input (output high impedance). At this time, the contents of the output latch become undefined.

(3) P20-P25 (Port 2) ... input

These pins form a 6-bit input port. They also function as external interrupt signal and external count clock input pins.

(a) Port mode

Port 2 is fixed in the control mode. However, the status of each pin can be read by executing a read instruction to port 2.

(b) Control mode

The functions of P20-P25 as control signal pins are as follows:

(i) NMI

Inputs an edge-detected external non-maskable interrupt request.

(ii) INTP0-INTP4

Input an edge-detected, external interrupt request.

(iii) TI

Inputs an external count clock to timer 1 of the real-time pulse unit.

(4) P30-P36 (Port 3) ... three-state I/O

These pins form a 7-bit I/O port. They also function as the I/O pins of the serial interface. Port 3 can be set in the following operation modes in 1-bit units by the port 3 mode control register (PMC3) (refer to **5.2 Port Functions**):

(a) Port mode

In this mode, port 3 functions as a 7-bit general-purpose I/O port, which can be set in the input or output mode in 1-bit units by the port 3 mode register (PM3).

(b) Control mode

In this mode, each bit of port 3 functions as a control signal pin, as follows:

(i) RxD0, RxD1, TxD0, TxD1

Serial data I/O pins of the asynchronous serial interface (UART).

(ii) SO/SB0, SI/SB1

Serial data I/O pins of the clocked serial interface.

(iii) SCK

Serial clock I/O pins of the clocked serial interface.

Caution Each pin is set in the input port mode when the RESET signal has been input (output high impedance). At this time, the contents of the output latch become undefined.

(5) P40-P47 (Port 4) ... three-state I/O

The functions of these pins differ depending on whether it is the μ PD78363A, 78365A, 78366A, 78368A, or 78P368A.

(a) μ PD78365A (MODE0, MODE1 = HH)

Port 4 of the μ PD78365A is fixed in the external memory expansion mode, and always functions as an 8-bit address/data bus (AD0-AD7). It does not have a port function.

(b) μ PD78363A, 78366A, 78368A, and 78P368A (MODE0, MODE1 = LL)

Port 4 of the μ PD78363A, 78366A, 78368A, and 78P368A serves as an 8-bit I/O port. It also functions as an address/data bus.

This port can be set in the following operation modes by the memory expansion mode register (MM) (refer to **CHAPTER 16 BUS INTERFACE FUNCTION**):

(i) Port mode

In this mode, port 4 functions as an 8-bit general-purpose I/O port, which can be set in the input or output mode in 8-bit units by the memory expansion mode register (MM).

(ii) External memory expansion mode

In this mode, port 4 functions as an address/data bus (AD0-AD7) through which the external memory is to be accessed. In this case, the bus is not influenced by the value of the port 4 register.

Caution Each pin is set in the input port mode when the RESET signal has been input (output high impedance) in either of port mode or external memory expansion mode. At this time, the contents of the output latch become undefined.

(6) P50-P57 (Port 5) ... three-state I/O

The functions of these pins differ depending on whether it is the μ PD78363A, 78365A, 78368A, or 78P368A.

(a) μ PD78365A (MODE0, MODE1 = HH)

Port 5 of the μ PD78365A is fixed in the external memory expansion mode, and always functions as an 8-bit address bus (A8-A15). It does not have a port function.

(b) μ PD78363A, 78366A, 78368A, and 78P368A (MODE0, MODE1 = LL)

Port 5 of the μ PD78363A, 78366A, and 78P368A serves as an 8-bit I/O port. It also functions as an address bus.

This port can be set in the following operation modes by the memory expansion mode register (MM) (refer to **CHAPTER 16 BUS INTERFACE FUNCTION**):

(i) Port mode

In this mode, port 5 functions as a 2-/4-/8-bit general-purpose I/O port, which can be set in the input or output mode in 1-bit units by the port 5 mode register (PM5).

(ii) External memory expansion mode

In this mode, port 5 functions as an address bus (A8-A15) (4-, 6-, or 8-bit wide) through which the external memory is to be accessed.

Depending on the size of the external memory to be connected, the width of the port consisting of P50-P57 (i.e., the number of port bits) can be specified, and the excess pins, if any, can be used as general-purpose I/O port pins.

Caution Each pin is set in the input port mode when the RESET signal has been input (output high impedance) in either of port mode or external memory expansion mode. At this time, the contents of the output latch become undefined.

(7) P70-P77 (Port 7) ... input

These pins form an 8-bit input port. They also serve as the analog signal input pins of the A/D converter.

(a) Port mode

Port 7 is fixed in the control mode. The status of each pin can be read by executing a read instruction to port 7.

(b) Control mode

In this mode, port 7 functions as the analog signal input pins of the A/D converter (ANI0-ANI7).

(8) P80-P85 (Port 8) ... three-state I/O

These pins form a 6-bit I/O port. They also serve as the timer output pins of the real-time pulse unit. Port 8 can be set in the following operation modes in 1-bit units by the port 8 mode control register (PMC8) (refer to **5.2 Port Functions**).

(a) Port mode

In this mode, port 8 serves as an 8-bit general-purpose I/O port, which can be set in the input or output mode in 1-bit units by the port 8 mode register (PM8).

(b) Control mode

In this mode, the port 8 pins function as the timer output pins (TO00-TO05) of timer 0 of the real-time pulse unit.

Caution Each pin is set in the input port mode when the RESET signal has been input (output high impedance). At this time, the contents of the output latch become undefined.

(9) P90-P93 (Port 9) ... three-state I/O

The functions of these pins differ depending on whether it is the μ PD78363A, 78365A, 78366A, 78368A, or 78P368A.

(a) μ PD78365A (MODE0, MODE1 = HH)

P90 and P91 of the μ PD78365A are fixed in the external memory expansion mode, and always function as \overline{RD} and \overline{WR} pins. They do not have a port function.

P92 and P93 function as general-purpose I/O port pins, which can be set in the input or output mode by the port 9 mode register (PM9).

(b) μ PD78363A, 78366A, 78368A, and 78P368A (MODE0, MODE1 = LL)

Port 9 of the μ PD78363A, 78366A, 78368A, and 78P368A serves as a 4-bit I/O port. It also outputs control signals to the external memory.

Port 9 can be set in the following operation modes by the memory expansion mode register (MM) and programmable wait control register (PWC) (refer to **CHAPTER 16 BUS INTERFACE FUNCTION**).

(i) Port mode

In this mode, port 9 functions as a 4-bit general-purpose I/O port, which can be set in the input or output mode in 1-bit units by the port 9 mode register (PM9).

(ii) External memory expansion mode (P90 and P91 only)

Only P90 and P91 can be set in this mode to output the following control signals to the external memory:

<1> RD

Read signal output to the external memory.

<2> WR

Write signal output to the external memory.

Caution Each pin is set in the input port mode when the RESET signal has been input (output high impedance) in either of port mode or external memory expansion mode. At this time, the contents of the output latch become undefined.

(10) ASTB (Address Strobe) ... output

This pin outputs a timing signal with which an external memory is to be accessed. It is used to latch an address output from the P40/AD0-P47/AD7 pins externally.

(11) MODE0 and MODE1 (Mode) ... input

These pins input control signals that specify an operation mode. The setting of these pins differs as shown in the table below for the μ PD78363A, 78365A, 78366A, 78368A, and 78P368A. Note that the levels of the MODE0 and MODE1 pins must not be changed during operation.

μPD78365A	μPD78363A, 78366A, 78368A	μPD78P368A
Be sure to set as	Normal operation mode	 Normal operation mode
follows:	MODE0, 1 = LL	MODE0, 1 = LL
MODE0, 1 = HH	 ROM-less mode 	 Programming mode
	MODE0, 1 = HH	MODE0, 1 = HL

Cautions 1. Be sure to connect the MODE0 and MODE1 pins directly to VDD or Vss.

- 2. Do not set the MODE0 and MODE1 pins other than above.
- 3. The μ PD78P368A cannot be set in the ROM-less mode.

(12) RESET (Reset) ... input

This pin inputs a low-active system reset signal.

(13) X1 and X2 (Crystal)

Connect a crystal resonator for system clock oscillation across these pins. To supply an external clock, input the clock to the X1 pin and leave the X2 pin open.

(14) WDTO (Watchdog Timer Output) ... output

This pin outputs a signal that indicates that the watchdog timer has generated a non-maskable interrupt.

(15) AVREF (Analog Reference Voltage) ... input

This pin inputs a reference voltage to the A/D converter.

(16) AVDD (Analog VDD)

This pin is the power supply pin of the A/D converter.

(17) AVss (Analog Vss)

This pin is the GND pin of the A/D converter.

(18) VDD (Power Supply)

Positive power supply pin

(19) Vss (Ground)

Ground potential pin

(20) IC (Internally Connected)

This pin is internally connected and should be directly connected to Vss.

2.2.2 PROM programming mode (µPD78P368A only)

(1) MODE0 and MODE1 ... input

These pins of the μ PD78P368A set the PROM programming mode, which is set when MODE0 = H and MODE1 = L.

(2) A0-A16 (Address Bus) ... input

These pins form an address bus which selects an address of the internal PROM (0000H-BFFFH).

(3) D0-D7 (Data Bus) ... I/O

These pins form a data bus through which the program in the internal PROM is written or read.

(4) **PGM** (Programming Mode) ... input

This pin inputs the operation mode control signal of the internal PROM. When this signal is active, the internal PROM can be written. When this signal is inactive, the internal PROM can be read.

(5) \overline{CE} (Chip Enable) ... input

This pin inputs an internal PROM enable signal. When $\overline{CE} = \overline{OE} = H$, $\overline{PGM} = L$, one page (4 bytes) of a program can be written in 1-byte units. When $\overline{CE} = L$, $\overline{OE} = H$, $\overline{PGM} = L$, 1 byte of program can be written at a time. If \overline{OE} is made low when $\overline{CE} = L$, the contents of the PROM can be read.

(6) \overline{OE} (Output Enable) ... input

This pin inputs a read strobe signal to the internal PROM. If this signal is made active when $\overline{CE} = L$, the contents of PROM addressed by A0-A16 can be read to D0-D7 in 1-byte units.

(7) VPP (Programming Power Supply)

Power supply to write a program. When $\overline{OE} = H$ and $\overline{CE} = L$ while V_{PP} = 12.5 V, the program on D0-D7 can be written to the internal PROM addressed by A0-A16.

(8) VDD (Power Supply)

Positive power supply pin

(9) Vss (Ground)

Ground potential pin

2.3 I/O Circuits and Processing of Unused Pins

Table 2-4 shows the I/O type of a pin with a function, and the recommended processing of the pin when the pin function is not used. Figure 2-1 shows the circuit of each I/O type.

Table 2-4. I/O Type of Each Pin and Recommended Processing

Pin Name	I/O Circuit Type	Recommended Processing of Unused Pins
P00/RTP0-P03/RTP3	5-A	Input: Individually connect to VDD or Vss via resistor
P04/PWM0		Output: Leave unconnected
P05/TCUD/PWM1		
P06/TIUD/TO40		
P07/TCLRUD		
P10-P17		
P20/NMI	2	Connect to Vss
P21/INTP0-P23/INTP2	2-A	_
P24/INTP3/TI		
P25/INTP4		
P30/TxD0	5-A	Input: Individually connect to VDD or Vss via resistor
P31/RxD0		Output: Leave unconnected
P32/SO/SB0	8-A	
P33/SI/SB1		
P34/SCK		
P35/TxD1	5-A	
P36/RxD1		
P40/AD0-P47/AD7		
P50/A8-P57/A15		
P70/ANI0-P77/ANI7	9	Connect to Vss
P80/TO00-P85/TO05	5-A	Input: Individually connect to VDD or or Vss via resistor
P90/RD		Output: Leave unconnected
P91/WR		
P92, P93		
ASTB	5	7
WDTO	19	Connect to Vss
MODE0, MODE1	1	-
RESET	2	1
AVref, AVss	-	Connect to Vss
AVdd		Connect to VDD

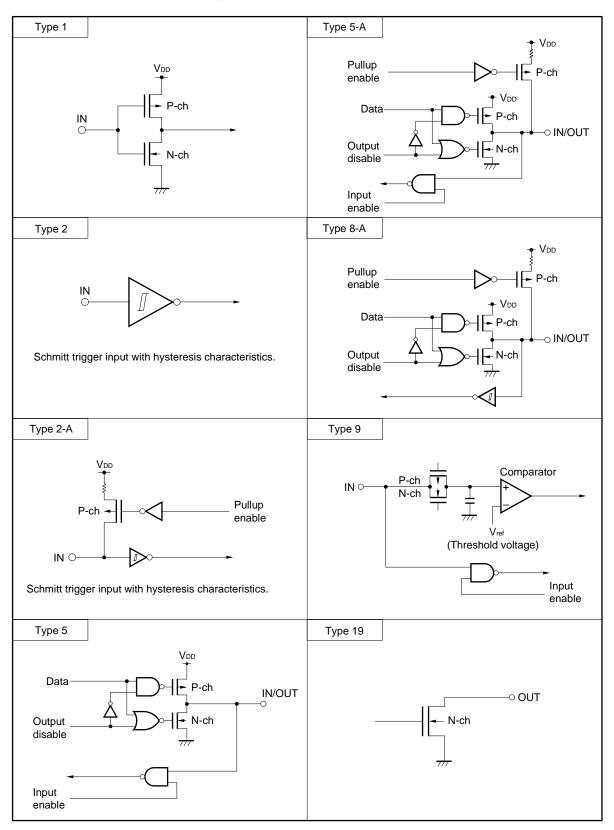


Figure 2-1. I/O Circuit of Each Pin

[MEMO]

CHAPTER 3 CPU ARCHITECTURE

Phase-out/Discontinued

3.1 Memory Space

The μ PD78366A can access memory of up to 64K bytes. The μ PD78366A can also select the internal ROM or an external memory (ROM-less mode) for access by using the MODE0 and 1 pins.

Each device has a different program memory map. Both devices have the same data memory map.

(1) μ PD78365A (MODE0, 1 = HH)

Program memory is mapped into a 63232-byte area at addresses 0000H to F6FFH in the external memory. This area can also be used as data memory.

Data memory is mapped in a 2048-byte area at addresses F700H to FEFFH in the internal RAM. Always set MODE0 and 1 = HH.

(2) μ PD78368A (MODE0, 1 = LL)

Program memory is mapped into a 49152-byte area at addresses 0000H to BFFFH in the internal ROM and a 14080-byte area at addresses C000H to F6FFH in the external memory. The external memory is accessed in the external memory expansion mode. The area mapped in the external memory can also be used as data memory.

Data memory is mapped into a 2048-byte area at addresses F700H to FEFFH in the internal RAM. Usually, set MODE0 and 1 = LL. To set the ROM-less mode, set MODE0 and 1 = HH.

(3) μ PD78366A (MODE0, 1 = LL)

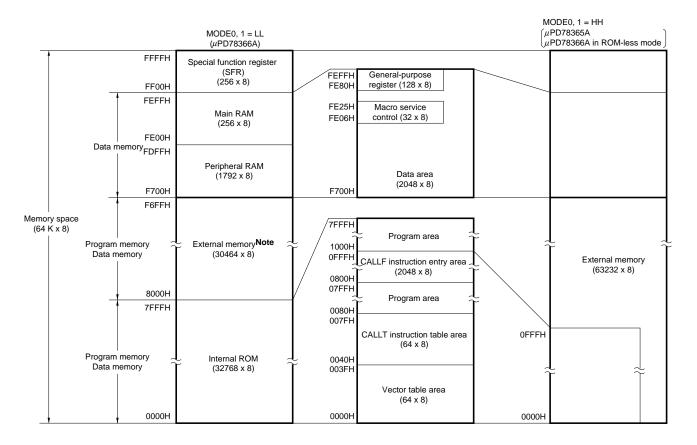
Program memory is mapped into a 32768-byte area at addresses 0000H to 7FFFH in the internal ROM and a 30464-byte area at addresses 8000H to F6FFH in the external memory. The external memory is accessed in the external memory expansion mode. The area mapped in the external memory can also be used as data memory.

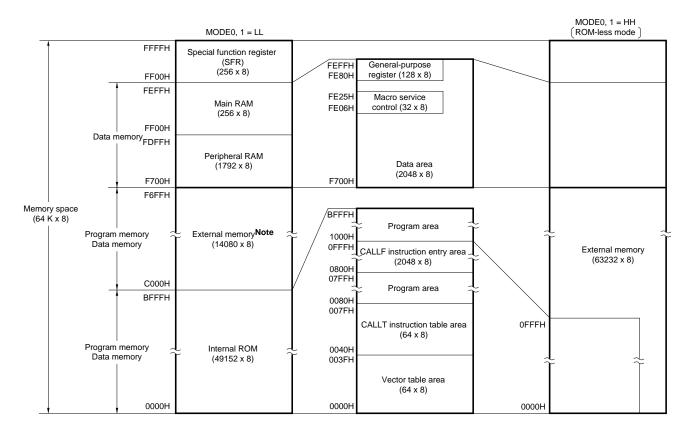
Data memory is mapped into a 2048-byte area at addresses F700H to FEFFH in the internal RAM. Usually, set MODE0 and 1 = LL. To set the ROM-less mode, set MODE0 and 1 = HH.

(4) μ PD78363A (MODE0, 1 = LL)

Program memory is mapped into a 24576-byte area at addresses 0000H to 5FFFH in the internal ROM and a 39936-byte area at addresses 6000H to FBFFH in the external memory. The external memory is accessed in the external memory expansion mode. The area mapped in the external memory can also be used as data memory.

Data memory is mapped into a 768-byte area at addresses FC00H to FEFFH in the internal RAM. Usually, set MODE0 and 1 = LL. To set the ROM-less mode, set MODE0 and 1 = HH.




Figure 3-1. Memory Map (µPD78365A, 78366A)

Note Accessed in external memory expansion mode.

Caution For word access (including stack operations) to the main RAM area (FE00H - FEFFH), the address that specifies the operand must be an even value.

*

Figure 3-2. Memory Map (μ PD78368A)

Note Accessed in external memory expansion mode.

Caution For word access (including stack operations) to the main RAM area (FE00H - FEFFH), the address that specifies the operand must be an even value.

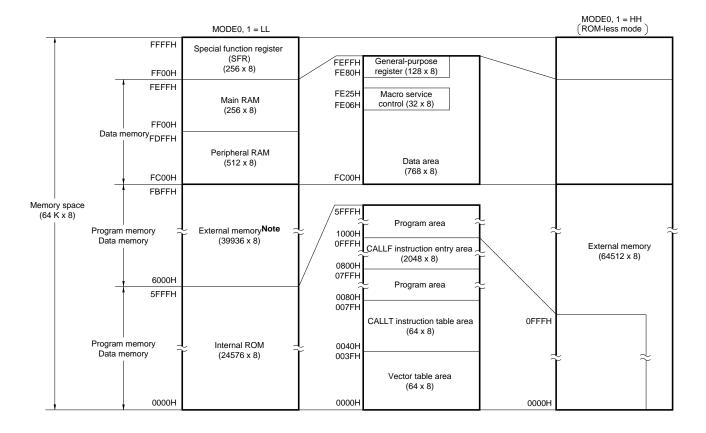
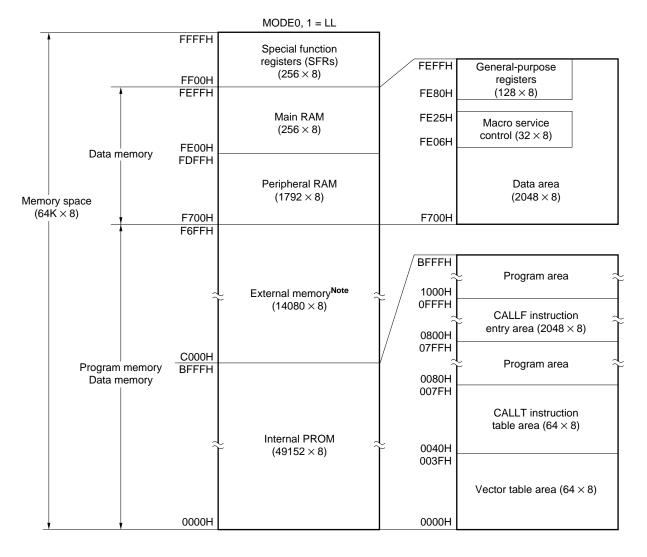


Figure 3-3. Memory Map (µPD78363A)

Note Accessed in external memory expansion mode.

Caution For word access (including stack operations) to the main RAM area (FE00H - FEFFH), the address that specifies the operand must be an even value.


(5) μ PD78P368A (MODE0, 1 = LL)

Program memory is mapped into a 49152-byte area at addresses 0000H to BFFFH in the internal PROM and a 14080-byte area at addresses C000H to F6FFH in the external memory. The external memory is accessed in the external memory expansion mode. The area mapped in the external memory can also be used as data memory.

Data memory is mapped into a 2048-byte area at addresses F700H to FEFFH.

Usually, set MODE0 and 1 = LL. To set the programming mode, set MODE0 and 1 = HL.

Caution The μ PD78P368A cannot be set in the ROM-less mode.

Note Access in the external memory expansion mode

Caution When a word access to the main RAM area (FE00H to FEFFH) (containing stack handling) is executed, addresses specified in operands are limited to even addresses.

3.1.1 Vector table area

Interrupt requests from peripheral hardware, reset inputs, external interrupt requests, and branch addresses interrupted by a break instruction, are stored in the 64-byte area from 0000H to 003FH.

When an interrupt request is issued, the contents of each vector table are set to the program counter (PC) before branching. The contents of the even addresses are set to low-order eight bits of the PC and the contents of the odd addresses are set to the high-order eight bits.

When the TPF bit of the CPU control word (CCW) is set to 1, the external memory area 8002H to 803FH, instead of the area 0002H to 003FH, is used as an interrupt vector table.

Interrupt Source Vector Table Address					
Interrupt Request	Interrupt Source/Unit	TPF = 0	TPF = 1		
RESET	RESET pin input	0000H			
NMI	NMI pin input	0002H	8002H		
INTWDT	Watchdog timer	0004H	8004H		
INTOV3	Real-time pulse unit	0006H	8006H		
INTP0/INTCC30	INTP0 pin input/real-time pulse unit	0008H	8008H		
INTP1	INTP1 pin input	000AH	800AH		
INTP2	INTP2 pin input	000CH	800CH		
INTP3/INTCC20	INTP3 pin input/real-time pulse unit	000EH	800EH		
INTP4	INTP4 pin input	0010H	8010H		
INTTMO	Real-time pulse unit	0012H	8012H		
INTCM03		0014H	8014H		
INTCM10		0016H	8016H		
INTCM40		0018H	8018H		
INTCM41		001AH	801AH		
INTSER	Asynchronous serial interface	001CH	801CH		
INTSR		001EH	801EH		
INTST		0020H	8020H		
INTCSI	Clocked serial interface	0022H	8022H		
INTAD	A/D converter	0024H	8024H		
OP code trap	-	003CH			
BRK instruction	-	003EH			

Table 3-1. Vector Table Area

Thirty-two tables of the address called by a single-byte call instruction (CALLT) can be stored in the 64-byte area from 0040H to 007FH. This area is the CALLT table area.

When the TPF bit of the CPU control word (CCW) is set to 1, an external memory area 8040H to 807FH, instead of the area 0040H to 007FH, is used as a CALLT instruction table.

3.1.3 CALLF instruction entry area

A subroutine can be directly called from the area 0800H to 0FFFH by using a double-byte call instruction (CALLF).

3.1.4 Internal RAM area

2048-byte (768-byte for μ PD78363A) RAM is built into the area F700H to FEFFH (FC00H to FEFFH for μ PD78363A). This area consists of the following two components:

Peripheral RAM : F700H to FDFFH (1792 bytes)μPD78365A, 78366A, 78368A, 78P368A
 FC00H to FDFFH (512 bytes)μPD78363A
 Main RAM : FE00H to FEFFH (256 bytes)

High-speed access to the main RAM is possible. Macro service control words are mapped in the 32-byte area from FE06H to FE25H in the main RAM area. General-purpose registers are mapped in the 128-byte area from FE80H to FEFFH in the main RAM area. The general-purpose registers consist of eight banks.

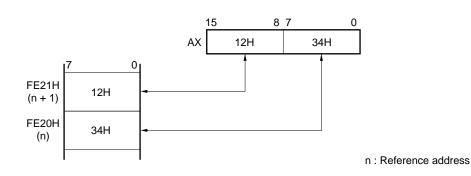
- Cautions 1. When a word access to the main RAM area (FE00H to FEFFH) (containing stack handling) is executed, the access operation varies, depending on whether the reference address is even or odd. (See Table 3-2). Therefore, if an access to an even address and an access to an odd address are mixed, an error is caused. Specify only even reference addresses. (See Examples 1 and 2.) To execute a 16-bit data transfer instruction, specify even addresses in operands. If odd addresses are specified, an error occurs in the assembler package (RA78K3).
 - 2. Do not make a word access across the peripheral RAM area and main RAM area. (See Example 3).

Reference Address (n)	Even	Odd
Access Area		
Main RAM	0	×
Peripheral RAM	0	0

Table 3-2. Operation in Word Access in Internal RAM Area

Remark O: Access to addresses n and n + 1

 $\times\!\!:$ Access to addresses n and n – 1

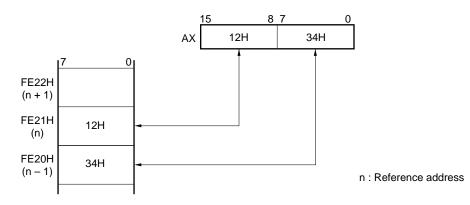

Examples of word access in the internal RAM area are given in Examples 1-5.

Examples 1. To write/read word data into/from an even address (FE20H) in the main RAM area

When word data is written into an even address (address n) in the main RAM area, the low-order eight bits of the word data are written into the even address (address n) and the high-order eight bits are written into the odd address (address n + 1).

When word data is read from an even address (address n) in the main RAM area, it is read from addresses n and n + 1.

MOVW AX, #1234HMOVW 0FE20H, AX; Write word data into FE20HMOVW AX, 0FE20H; Read word data from FE20H

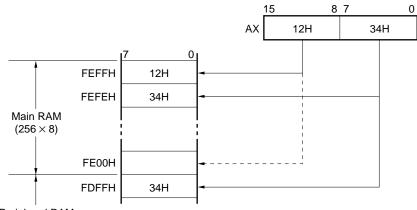


2. To write/read word data into/from an odd address (FE21H) in the main RAM area

When word data is written into an odd address in the main RAM area, the high-order eight bits of the word data are written into the odd address (address n) and the low-order eight bits are written into the even address (address n - 1).

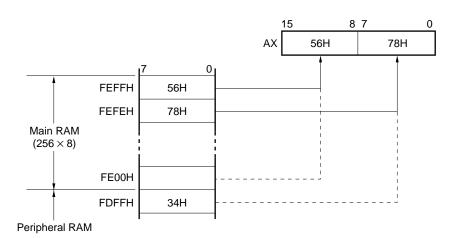
When word data is read from an odd address (address n) in the main RAM area, it is read from addresses n and n - 1.

MOVW AX, #1234H
MOVW DE, #0FE21H
MOVW [DE], AX; Write word data into FE21H
MOVW AX, [DE]; Read word data from FE21H


Example 3. To write/read word data across the peripheral RAM area and main RAM area

If word data is written across the peripheral RAM area and main RAM area, it is written into the 256byte apart address, causing an error to occur.

If word data is read from the end address of the peripheral RAM area (FDFFH), it is read from FEFEH and FEFFH which are 256 bytes apart from FDFFH.

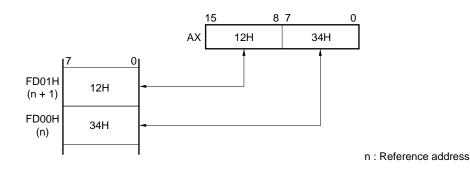

MOVW	AX, #1234H				
MOVW	DE, #0FDFFH				
MOVW	[DE], AX; Write word data into peripheral RAM (FDFFH)				
MOVW	DE, #0FDFFH				
MOVW	AX, [DE]; Read word data from peripheral RAM (FDFFH)				

(Write)

(Read)

Example 4. To write/read word data into/from an even address (FD00H) in the peripheral RAM area When word data is written into an even address in the peripheral RAM area, the low-order eight bits of the word data are written into the even address (address n) and the high-order eight bits are written into the odd address (address n + 1).

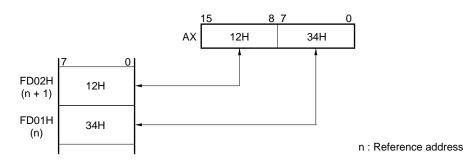
When word data is read from an even address (address n) in the peripheral RAM area, it is read from addresses n and n + 1.


Phase-out/Discontinued

MOVW AX, #1234H

MOVW DE, #0FD00H

MOVW [DE], AX; Write word data into FD00H


MOVW AX, [DE]; Read word data from FD00H

5. To write/read word data into/from an odd address (FD01H) in the peripheral RAM area When word data is written into an odd address in the peripheral RAM area, the low-order eight bits of the word data are written into the odd address (address n) and the high-order eight bits are written into the even address (address n + 1).

When word data is read from an odd address (address n) in the peripheral RAM area, it is read from addresses n and n + 1.

MOVWAX, #1234HMOVWDE, #0FD01HMOVW[DE], AX; Write word data into FD01HMOVWAX, [DE]; Read word data from FD01H

3.1.5 Special function register area

Registers having special functions, such as mode and control registers for the peripheral hardware, are mapped in the area from FF00H to FFFFH.

Caution Unmapped addresses of the special function register cannot be accessed (except the external access area).

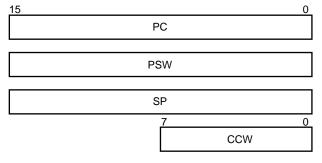
3.1.6 External memory area

The μ PD78366A can expand an external memory (ROM or RAM) step by step in the 30K-byte area (8000H to F6FFH)^{Note}.

The µPD78365A can connect an external memory (ROM or RAM) in the 64K-byte area (0000H to F6FFH).

To access an external memory, the pins P40/AD0 to P47/AD7 (address/data bus), P50/A8 to P57/A15 (address bus), RD, WR, and ASTB are used. An external access area is mapped in the 16-byte area from FFD0H to FFDFH of the special function register (SFR) area. SFR addressing can access an external memory in this area.

Note 40K-byte area (6000H to FBFFH) for μ PD78363A, 14K-byte area (C000H to F6FFH) for μ PD78368A and 78P368A.



3.2 Processor Register

There are three groups of registers: a control register group (consisting of one 8-bit register and three 16-bit registers), a general-purpose register group (consisting of eight banks, each of which consists of sixteen 8-bit registers), and a special function register group (consisting of registers having special functions such as I/O mode registers for the peripheral hardware).

Figure 3-5. Register Configuration

Control register

General-purpose register

7 07 0				
R1	R0			
R3	R2			
R5	R4			
R7	R6			
R9	R8			
R11	R10			
R13	R12			
R15	R14			

Special function register

	7 0	7 0	
	SFR255	SFR254	
	SFR253	SFR252	
	SFR251	SFR250	
	SFR249	SFR248	
ĵ			11
	SFR1	SFR0	

Remark The CCW of the control register group is mapped in the special function register (SFR) area.

3.2.1 Control register

The control register group controls the program sequence, status, and stack memory and modifies operand addressing.

This group consists of an 8-bit register and three 16-bit registers.

(1) Program counter (PC)

The program counter (PC) is a 16-bit register which holds address information of the program to be executed next.

The PC operates as follows:

• In normal operation

Automatically incremented according to the number of bytes of the instruction to be fetched.

• When a branch instruction is executed

The contents of the immediate data or register are set.

Input to the $\overline{\text{RESET}}$ pin sets the data in the reset vector table at 0000H and 0001H in the PC and makes a branch.

(2) Program status word (PSW)

The program status word (PSW) is a 16-bit register consisting of flags set or reset according to the result of executing an instruction.

Read and write operations are performed by the high-order eight bits (PSWH) or low-order eight bits (PSWL). Flags are operated by the bit manipulation instructions.

When an interrupt request is issued and when a BRK instruction is executed, the contents of the PSW is automatically saved in the stack. When an RETI or RETB instruction is executed, the contents are automatically restored.

Input to the RESET pin resets all bits to 0.

Symbol	7	6	5	4	3	2	1	0
PSWH	UF	RBS2	RBS1	RBS0	0	0	0	0
-	7	6	5	4	3	2	1	0
· · · ·		_					-	-
PSWL	S	Z	RSS	AC	IE	P/V	0	CY

Figure 3-6. Format of Program Status Word

ſ	UF	: User flag
	01	. User hag
	RBS0-RBS2	: Register bank selection flags
	S	: Sign flag (MSB of operation result)
	Z	: Zero flag
ł	RSS	: Register set selection flag
	AC	: Auxiliary carry flag
	IE	: Interrupt request enable flag
	P/V	: Parity/overflow flag
l	CY	: Carry flag

The flags are explained below.

(a) User flag (UF)

This flag controls the program. The flag is set or reset on the user program.

(b) Register bank selection flag (RBS0-RBS2)

This 3-bit flag selects one of eight register banks (register bank 0 to register bank 7).

(c) Sign flag (S)

The sign flag indicates that the most significant bit after an arithmetic/logical operation is 1. This flag is set to 1 when the most significant bit after the operation is 1. Otherwise, this flag is reset to 0. This flag can be tested with a conditional branch instruction.

(d) Zero flag (Z)

The zero flag indicates that the result of an arithmetic/logical operation is 0. This flag is set to 1 when the result is 0. Otherwise, this flag is reset to 0. This flag can be tested with a conditional branch instruction.

(e) Register set selection flag (RSS)

This flag specifies general-purpose registers (8 bits each) functioning as X, A, C, and B and generalpurpose register pairs (16 bits each) functioning as AX and BC.

The RSS flag values correspond to function names and absolute names enclosed in parentheses as follows (refer to **Table 3-3. General-Purpose Register Configuration**).

- RSS = 0
 X (R0), A (R1), C (R2), B (R3), AX (RP0), and BC (RP1)
- RSS = 1 X (R4), A (R5), C (R6), B (R7), AX (RP2), and BC (RP3)

To set or reset the RSS flag, be sure to write an RSS directive just before or immediately after the instruction for setting or resetting the RSS flag as shown in the example below:

<Program example>

- To reset the RSS flag (RSS = 0)
 RSS 0 ; RSS directive
 CLR1 PSWL.5
 MOV B, A ; Corresponds to "MOV R3, R1".
- To set the RSS flag (RSS = 1) RSS 1 ; RSS directive SET1 PSWL.5 MOV B, A ; Corresponds to "MOV R7, R5".

Switching the RSS flag between the values has the same effect as using two register sets. Registers and register pairs not specified by the RSS flag can be accessed by writing the absolute names in the program.

(f) Auxiliary carry flag (AC)

The auxiliary carry flag is used for decimal adjustment and indicates that an underflow or overflow has occurred for bit 3.

Phase-out/Discontinued

This flag is set to 1 when the result of executing an arithmetic/logical instruction generates a carry of bit 3 (overflow) or a borrow into bit 3 (underflow). Otherwise, this flag is reset to 0. This flag can be tested with a conditional branch instruction.

(g) Interrupt request enable flag (IE)

This flag enables or disables an interrupt request.

Executing an EI instruction sets this flag to 1. Executing a DI instruction or receiving an interrupt resets this flag to 0.

(h) Parity/overflow flag (P/V)

When an arithmetic/logical instruction is executed, this flag operates as follows. The P/V flag can be tested with a conditional branch instruction.

Parity flag operation

This flag is set to 1 if the number of set bits (set to 1) as the result of executing a logical instruction is an even number. Otherwise, this flag is reset to 0. The parity flag depends on only the low-order eight bits of the logical operation result whether the logical operation is performed in units of 8 or 16 bits.

Overflow flag operation

This flag is set to 1 if the result of executing an arithmetic instruction exceeds the two's complement range. Otherwise, the flag is reset to 0.

For example, the two's complement range for 8-bit arithmetic operation is from 80H (-128) to 7FH (+127). The flag is set to 1 if the result exceeds the range. The flag is reset to 0 if the result is within the range.

Example The overflow flag operates as follows while executing an 8-bit add instruction.

When 78H (+120) is added to 69H (+105), the result is E1H (+225). The P/V flag is then set to 1 because the result exceeds the upper limit of the two's complement range. E1H is represented as -31 in two's complement.

Phase-out/Discontinued

When the following two negative numbers are added, the P/V flag is reset to 0 because the result is within the two's complement range.

FBH (-5) = 1111 1011
+) FOH (-16) = +) 1111 0000
1 1110 1011 = -21 P/V = 0
$$\uparrow$$

C

(i) Carry flag (CY)

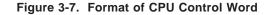
The carry flag indicates that an overflow or underflow has occurred in an arithmetic/logical operation. This flag is set to 1 when an arithmetic/logical operation results in a carry (overflow) or a borrow (underflow) for bit 7. In word operations, this flag is set to 1 when a carry (overflow) or borrow (underflow) occurs for bit 15. Otherwise, this flag is reset to 0.

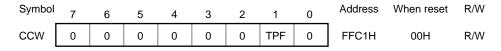
This flag can be tested with a conditional branch instruction. This flag also functions as a bit accumulator when a bit manipulation instruction is executed.

(3) Stack pointer (SP)

The stack pointer (SP) is a 16-bit register which holds the first address of the memory stack area (LIFO format). The SP is manipulated by a dedicated instruction (Stack manipulation instruction).

Phase-out/Discontinued

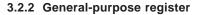

The stack pointer is decremented before data is written (saved) into the stack memory, and is incremented after data is read (restored) from the stack memory.


As input to the RESET pin causes the SP to become undefined, the SP must be set before calling a subroutine.

Caution When a word access to the main RAM area (FE00H to FEFFH) is executed, addresses specified in operands are limited to even addresses.

(4) CPU control word (CCW)

The CPU control word (CCW) is an 8-bit register which consists of flags related to CPU control. The CCW is mapped in the special function register area (FFC1H) and can be controlled by the software. Input to the RESET pin resets all bits to 0.



TPF : Table position flag

The table position flag (TPF) specifies the location of a vector table referenced by a CALLT instruction or interrupt request. The TPF flag switches the vector table location as follows:

- TPF = 0 (reset) 0000H-007FH
- TPF = 1 (set) 8000H-807FH
- Caution The vector tables for the RESET input, BRK instruction, and op-code trap interrupt are fixed to 0000H, 003EH, and 003CH, respectively. They are not affected by the TPF.

The 128-byte general-purpose register group which consists of eight banks is mapped in the specific area (FE80H to FEFFH) of the internal RAM space. Each bank consists of 16 8-bit general-purpose registers.

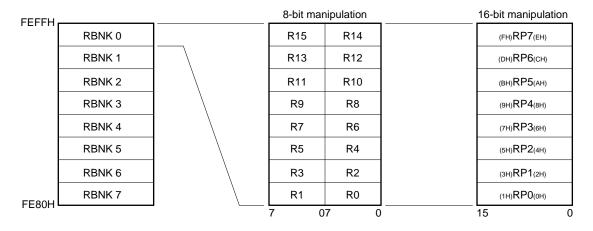


Figure 3-8. Manipulation Bits of General-Purpose Registers

A pair of 8-bit registers can function as eight 16-bit register pairs (RP0-RP7).

A function name listed in Table 3-3, as well as an absolute name, is assigned to each 8-bit register (16 registers). The X register functions as the low-order bits of a 16-bit accumulator. The A register functions as an 8-bit accumulator or the high-order bits of a 16-bit accumulator. The B and C registers function as a counter. The DE, HL, VP, and UP registers, in a pair, function as an address register. The VP register functions as a base register and the UP register functions as a user stack pointer.

The value of the register set selection flag (RSS) in the program status word (PSW) changes the register having a specific function, as shown in Table 3-3.

If the program has been coded with the function names, operating the RSS flag has the same effect as using two sets of registers (X, A, B, C, AX, and BC). A register not specified by the RSS flag can be accessed by writing the absolute name in a program. When the RSS flag is 0, for example, register R4 can be accessed by specifying the absolute name, that is, R4 in the program.

The μ PD78366A can implement two types of addressing: implied addressing and register addressing. Implied addressing is performed as process data addressing by a function name which places much importance on the specific function of each register. Register addressing is performed by an absolute name which aims to create a program which is easy to describe and which performs less data transfer operations, enabling high-speed data processing.

Table 3-3. General-Purpose Register Configuration

(a) Correspondence between absolute names and function names for 8-bit registers

Absolute Name	Functio	n Name
	RSS = 0	RSS = 1
R0	Х	
R1	А	
R2	С	
R3	В	
R4		Х
R5		А
R6		С
R7		В
R8	VPL	VPL
R9	VРн	VРн
R10	UP∟	UP∟
R11	UPн	UPн
R12	E	E
R13	D	D
R14	L	L
R15	Н	Н

(b) Correspondence between absolute names and function names for 16-bit register pairs

Absolute Name	Functio	n Name
	RSS = 0	RSS = 1
RP0	AX	
RP1	BC	
RP2		AX
RP3		BC
RP4	VP	VP
RP5	UP	UP
RP6	DE	DE
RP7	HL	HL

3.2.3 Special function register (SFR)

Unlike the general registers, the special function registers (SFRs) have special functions. The SFRs are assigned to the memory space at addresses FF00H to FFFFH, namely, a 256-byte special function register area.

Short direct addressing is available for a 32-byte area at addresses FF00H to FF1FH. Data in the SFRs assigned to this area can be processed in fewer clock cycles because the word length of the SFRs in the area is less than that of the SFRs in other areas. These assigned SFRs consist of capture register, compare register, and port, and they are frequently accessed.

The 16-byte area at addresses FFD0H to FFDFH is used to access the external storage medium by SFR addressing. Instructions in short word length enable access to external memory or bit manipulation in the external device.

The SFRs can be manipulated by arithmetic/logical instructions, transfer instructions, bit manipulation instructions, or such like in the same way as general-purpose registers. The manipulatable bit units (1, 8, or 16 bit units) vary according to the SFR (refer to **Table 3-4**).

The following describes the methods for specifying the SFRs corresponding to manipulatable bit units:

• Bit manipulation

Specify the abbreviation for the operand (sfr.bit) of a bit manipulation instruction. The SFR can also be addressed.

• 8-bit manipulation

Specify the abbreviation for the operand (sfr) of an 8-bit manipulation instruction. The SFR can also be addressed.

• 16-bit manipulation

Specify the abbreviation for the operand (sfrp) of a 16-bit manipulation instruction. A 16-bit SFR is assigned to a two-byte area at consecutive even and odd addresses. Specify an even address when addressing the SFR.

Table 3-4 lists the special function registers (SFRs). The items in Table 3-4 mean:

Abbreviation	A symbol indicating the address of a on-chip SFR. This can be specified in the operand field of an instruction. Reserved words in the NEC Assembler (RA78K3) are already defined. They can be used as sfr variable by #pragma sfr instruction in the C compiler (CC78K3).
• R/W	Indicates whether data can be read from the special function register and/or data can be written into the register. R/W : Can be read and written. R : Read only ^{Note} . W : Write only.
Manipulatable bit unit	Indicates the unit of bits (1, 8, or 16) when manipulating the special function register (indicated by $_{\bigcirc}$). The SFR which can be manipulated in units of 16 bits can be specified in the sfrp operand. An even address is specified for the address specification. The SFR which can be manipulated bit by bit can be specified by a bit manipulation instruction.
When reset	Indicates the status of each register for the input to the \overline{RESET} pin.

Note Read-only register. The bits of the register can be tested.

Cautions 1. Write 0 or 1 into any SFR bit correctly whenever it is predetermined to be so.

- 2. Do not write data into the register which is only used for data reading. Writing data into such registers may result in an error.
- 3. The SFR area addresses (FF00H to FFFFH) to which a special function register is not assigned cannot be accessed (except the external access area). Accessing these addresses may result in an error.
- 4. When the read data is used as byte data, handle undefined bits before the data is used.
- 5. TOUT and TXS are write-only registers. Do not read from them.
- 6. Bits 0, 1 and 4 of SBIC are write-only bits. If these bits are read, the value read is 0.

Address	Special Function Register	Abbre-	R/W	Manip	ulatable	Bit Unit	When Reset
	(SFR) Name	viation		1	8	16	
FF00H	Port 0	P0	R/W	0	0	-	Undefined
FF01H	Port 1	P1		0	0	_	
FF02H	Port 2	P2	R	_	0	_	
FF03H	Port 3	P3	R/W	0	0	_	
FF04H	Port 4	P4Note		0	0	_	
FF05H	Port 5	P5 ^{Note}		0	0	_	
FF07H	Port 7	P7	R	_	0	_	
FF08H	Port 8	P8	R/W	0	0	_	
FF09H	Port 9	P9		0	0	_	
FF10H	Compare register 00	CM00		-	-	0	
FF11H							
FF12H	Compare register 01	CM01		-	-	0	
FF13H							
FF14H	Compare register 02	CM02		_	_	0	
FF15H							
FF16H	Compare register 03	CM03		_	_	0	
FF17H							
FF18H	Buffer register CM00	BFCM00		_	_	0	
FF19H							
FF1AH	Buffer register CM01	BFCM01		_	_	0	
FF1BH							
FF1CH	Buffer register CM02	BFCM02		_	_	0	
FF1DH							
FF1EH	Timer register 0	TM0	R	_	_	0	0000H
FF1FH							
FF20H	Port 0 mode register	PM0	R/W	0	0	_	FFH
FF21H	Port 1 mode register	PM1		0	0	_]
FF23H	Port 3 mode register	PM3		0	0	_	×111 1111B
FF25H	Port 5 mode register	PM5 ^{Note}	1	0	0	_	FFH
FF28H	Port 8 mode register	PM8	1	0	0	_	××11 1111B
FF29H	Port 9 mode register	PM9	1	0	0	_	×××× 1111B
FF2CH	Reload register	DTIME	R/W	_	_	0	Undefined
FF2DH							

Table 3-4. Special Function Registers (1/5)

Note Not contained in μ PD78365A.

Address	Special Function Register	Abbre-	R/W	Manip	ulatable I	Bit Unit	When Reset
	(SFR) Name	viation		1	8	16	
FF2EH	Timer unit mode register 0	TUM0	R/W	0	0	_	00H
FF2FH	Timer unit mode register 1	TUM1		0	0	_	
FF30H	Compare register 10	CM10		-	_	0	Undefined
FF31H							
FF32H	Timer register 1	TM1	R	-	_	0	0000H
FF33H							
FF34H	Capture/compare register 20	CC20	R/W	_	_	0	Undefined
FF35H							
FF36H	Capture register 20	CT20	R	-	-	0	
FF37H							
FF38H	Timer register 2	TM2		-	_	0	0000H
FF39H							
FF3AH	Buffer register CM03	BFCM03	R/W	-	_	0	Undefined
FF3BH							
FF3CH	External interrupt mode register 0	INTM0		0	0	_	00H
FF3DH	External interrupt mode register 1	INTM1		0	0	_	
FF40H	Port 0 mode control register	PMC0		0	0	_	
FF43H	Port 3 mode control register	PMC3		0	0	_	×000 0000B
FF44H	Pull-up resistor option register L	PUOL		0	0	-	00H
FF45H	Pull-up resistor option register H	PUOH		0	0	-	
FF48H	Port 8 mode control register	PMC8		0	0	-	××00 0000B
FF4EH	Sampling control register 0	SMPC0		0	0	-	00H
FF4FH	Sampling control register 1	SMPC1		0	0	-	
FF50H	Capture/compare register 30	CC30		-	-	0	Undefined
FF51H							
FF52H	Capture register 30	CT30	R	-	-	0	
FF53H							
FF54H	Capture register 31	CT31		_	_	0	
FF55H							
FF56H	Timer register 3	ТМЗ		_	_	0	0000H
FF57H							
FF58H	Compare register 40	CM40	R/W	-	_	0	Undefined
FF59H							
FF5AH	Compare register 41	CM41		-	-	0	1
FF5BH							

Table 3-4. Special Function Registers (2/5)

Address	Special Function Register	Abbre-	R/W	Manip	ulatable I	Bit Unit	When Reset
	(SFR) Name	viation		1	8	16	
FF5CH	Timer register 4	TM4	R	-	-	0	0000H
FF5DH							
FF5EH	Timer control register 4	TMC4	R/W	0	0	_	00H
FF5FH	Timer out register	TOUT	W	_	0	_	××01 0101B
FF60H	Real-time output port register	RTP	R/W	0	0	_	Undefined
FF61H	Real-time output port mode register	RTPM		0	0	_	00H
FF62H	Port read control register	PRDC		0	0	_	
FF68H	A/D converter mode register	ADM		0	0	_	
FF70H	Slave buffer register 0	SBUF0		0	0	_	Undefined
FF71H	Slave buffer register 1	SBUF1		0	0	_	
FF72H	Slave buffer register 2	SBUF2		0	0	_	
FF73H	Slave buffer register 3	SBUF3		0	0	_	
FF74H	Slave buffer register 4	SBUF4		0	0	_	
FF75H	Slave buffer register 5	SBUF5		0	0	_	
FF76H	Master buffer register 0	MBUF0		0	0	_	
FF77H	Master buffer register 1	MBUF1		0	0	_	
FF78H	Master buffer register 2	MBUF2		0	0	_	
FF79H	Master buffer register 3	MBUF3		0	0	_	
FF7AH	Master buffer register 4	MBUF4		0	0	_	
FF7BH	Master buffer register 5	MBUF5		0	0	_	
FF7CH	Timer control register 0	TMC0		0	0	_	00H
FF7DH	Timer control register 1	TMC1		0	0	_	
FF7EH	Timer control register 2	TMC2		0	0	_	
FF7FH	Timer control register 3	ТМС3		0	0	_	
FF80H	Clocked serial interface mode register	CSIM		0	0	_	
FF82H	Serial bus interface control register	SBIC	R/W ^{Note}	0	0	_	
FF84H	Baud rate generator control register	BRGC	R/W	0	0	_	
FF85H	Baud rate generator compare register	BRG		-	0	-	Undefined
FF86H	Serial I/O shift register	SIO		0	0	_	
FF88H	Asynchronous serial interface mode register	ASIM		0	0	-	80H

Table 3-4. Special Function Registers (3/5)

Note Bits 7 and 5 : read/write

Bits 6, 3, and 2 : read only

Bits 4, 1, and 0 : write only

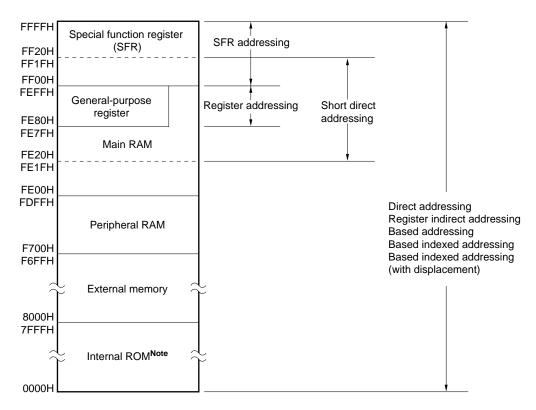
Address	Special Function Register	Abbre-	R/W	Manip	ulatable I	Bit Unit	When Reset
	(SFR) Name	viation		1	8	16	
FF8AH	Asynchronous serial interface status register	ASIS	R	-	0	-	00H
FF8CH	Serial receive buffer : UART	RXB		_	0	-	Undefined
FF8EH	Serial transmit shift register : UART	TXS	W	_	0	-	
FFA0H	PWM control register 0	PWMC0	R/W	0	0	-	00H
FFA1H	PWM control register 1	PWMC1		0	0	-	
FFA2H	PWM register 0L	PWM0L		0	0	-	Undefined
FFA2H	PWM register 0	PWM0		-	-	0	
FFA3H							
FFA4H	PWM register 1L	PWM1L		0	0	-	
FFA4H	PWM register 1	PWM1		_	-	0	
FFA5H							
FFA8H	In-service priority register	ISPR	R	0	0	-	00H
FFAAH	Interrupt mode control register	IMC	R/W	0	0	-	80H
FFACH	Interrupt mask register 0L	MK0L		0	0	-	FFH
FFACH	Interrupt mask register 0	MK0		_	-	0	FFFFH
FFADH							
FFADH	Interrupt mask register 0H	MK0H		0	0	_	FFH
FFB0H	A/D conversion result register 0	ADCR0	R	_	-	0	Undefined
FFB1H							
FFB1H	A/D conversion result register 0H	ADCR0H		_	0	-	
FFB2H	A/D conversion result register 1	ADCR1		_	-	0	
FFB3H							
FFB3H	A/D conversion result register 1H	ADCR1H		_	0	-	
FFB4H	A/D conversion result register 2	ADCR2		_	-	0	
FFB5H							
FFB5H	A/D conversion result register 2H	ADCR2H		_	0	_	
FFB6H	A/D conversion result register 3	ADCR3		_	-	0	
FFB7H							
FFB7H	A/D conversion result register 3H	ADCR3H		_	0	-	
FFB8H	A/D conversion result register 4	ADCR4		_	-	0	
FFB9H							
FFB9H	A/D conversion result register 4H	ADCR4H		_	0	_	
FFBAH	A/D conversion result register 5	ADCR5		-	_	0	
FFBBH							
FFBBH	A/D conversion result register 5H	ADCR5H		_	0	_	

Table 3-4. Special Function Registers (4/5)

Address	Special Function Register	Abbre-	R/W	Manip	ulatable I	Bit Unit	When Reset
	(SFR) Name	viation		1	8	16	
FFBCH	A/D conversion result register 6	ADCR6	R	-	-	0	Undefined
FFBDH							
FFBDH	A/D conversion result register 6H	ADCR6H		_	0	_	
FFBEH	A/D conversion result register 7	ADCR7		-	-	0	
FFBFH							
FFBFH	A/D conversion result register 7H	ADCR7H		_	0	_	
FFC0H	Standby control register	STBC ^{Note 1}	R/W	_	0	_	0000 ×000B
FFC1H	CPU control word	CCW		0	0	-	00H
FFC2H	Watchdog timer mode register	WDM ^{Note 1}		_	0	-	
FFC4H	Memory expansion mode register	ММ		0	0	-	Note 2
FFC6H	Programmable wait control register	PWC		_	_	0	COAAH
FFC7H							
FFD0H to FFDFH	External SFR area	_		0	0	_	Undefined
FFE0H	Interrupt control register (INTOV3)	OVIC3		0	0	_	43H
FFE1H	Interrupt control register (INTP0/INTCC30)	PIC0		0	0	_	
FFE2H	Interrupt control register (INTP1)	PIC1		0	0	_	
FFE3H	Interrupt control register (INTP2)	PIC2		0	0	_	
FFE4H	Interrupt control register (INTP3/INTCC20)	PIC3		0	0	_	
FFE5H	Interrupt control register (INTP4)	PIC4		0	0	_	
FFE6H	Interrupt control register (INTTM0)	TMIC0		0	0	_	
FFE7H	Interrupt control register (INTCM03)	CMIC03		0	0	_	
FFE8H	Interrupt control register (INTCM10)	CMIC10		0	0	_	
FFE9H	Interrupt control register (INTCM40)	CMIC40		0	0	_	
FFEAH	Interrupt control register (INTCM41)	CMIC41		0	0	-	
FFEBH	Interrupt control register (INTSER)	SERIC		0	0	-	
FFECH	Interrupt control register (INTSR)	SRIC		0	0	_	
FFEDH	Interrupt control register (INTST)	STIC		0	0	_	
FFEEH	Interrupt control register (INTCSI)	CSIIC		0	0	_	
FFEFH	Interrupt control register (INTAD)	ADIC		0	0	_	

Table 3-4. Special Function Registers (5/5)

Notes 1. Can be written by a special instruction.


The state of the memory expansion mode register (MM) after a reset depends on the product.
 μPD78363A...60H
 μPD78365A, 78366A...20H
 μPD78368A, 78P368A...00H

3.3 Data Memory Addressing

Various addressing modes are provided for the μ PD78366A to improve memory operability or to enable the use of a high-level language. Special addressing is applicable, in particular, to the space of data memory from F700H to FFFFH (FC00H to FFFFH for μ PD78363A) according to each function of the special function register (SFR) group and general-purpose register group.

Figure 3-9 through 3-12 show the addressing space of data memory.

Note Only the external memory can be used in the ROM-less mode of the μ PD78365A or μ PD78366A.

Caution When a word access to the main RAM area (FE00H to FEFFH) (containing stack manipulation) is executed, addresses specified in operands are limited to even addresses.

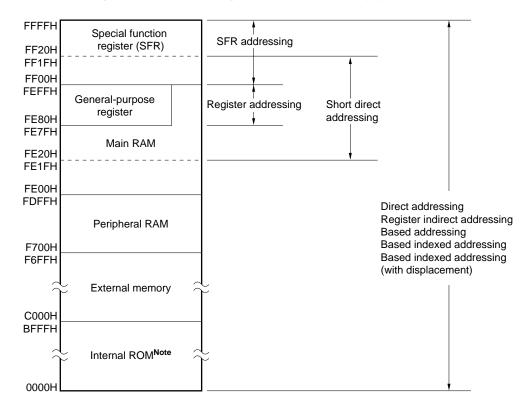


Figure 3-10. Addressing Space of Data Memory (µPD78368A)

Note Only the external memory can be used in the ROM-less mode.

Caution When a word access to the main RAM area (FE00H to FEFFH) (containing stack manipulation) is executed, addresses specified in operands are limited to even addresses.

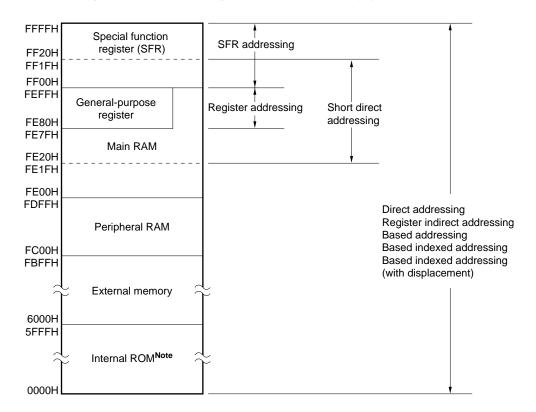


Figure 3-11. Addressing Space of Data Memory (µPD78363A)

- Note Only the external memory can be used in the ROM-less mode.
- Caution When a word access to the main RAM area (FE00H to FEFFH) (containing stack manipulation) is executed, addresses specified in operands are limited to even addresses.

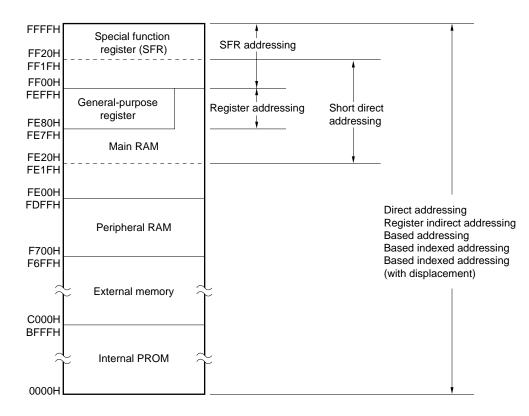


Figure 3-12. Addressing Space of Data Memory (µPD78P368A)

Caution When a word access to the main RAM area (FE00H to FEFFH) (containing stack manipulation) is executed, addresses specified in operands are limited to even addresses.

3.3.1 General-purpose register addressing

(1) Implied addressing

The instruction automatically addresses the register that functions as an accumulator (A or AX) or loop counter (B or C) assigned to the general-register area.

Coding example MULU r

If the value stored in register B is used as a multiplier for a multiply instruction of 8 bits by 8 bits, write the following. The instruction performs multiply operation between the accumulator (register A) and register B and stores the result in the 16-bit accumulator (register AX).

 $\mathsf{MULU} \ \mathsf{B} \ ; \ \mathsf{AX} \leftarrow \mathsf{A} \times \mathsf{B}$

(2) Register addressing

The instruction directly addresses the desired registers.

Coding example ADD r, r

To specify registers D and E storing the target values for the 8-bit add instruction, write the following:

ADD D, E ; $D \leftarrow D + E$

3.3.2 Short direct addressing

This addressing is used for accessing the internal RAM area at addresses FE20H to FEFFH and the SFR area at addresses FF00H to FF1FH. Short direct addressing enables high-speed access to these areas by a short instruction code.

Specify an even address when manipulating 16-bit data.

Coding example ADD A, saddr

If one target value of the 8-bit add instruction is already stored in the location at address FE80H in internal data memory, code the following:

ADD A, 0FE80H ; $A \leftarrow A + (FE80H)$

3.3.3 Special function register (SFR) addressing

This addressing is used for manipulating SFRs mapped in the SFR area at addresses FF00H to FFFFH.

Coding example MOV A, sfr

If a special function register is specified as a transfer source for port 0 in the SFR area, write the following 8-bit transfer instruction:

MOV A, P0 ; $A \leftarrow P0$

CHAPTER 4 SUMMARY OF BLOCK FUNCTION

Phase-out/Discontinued

61

4.1 Execution Unit

The execution unit (EXU) controls address calculation, arithmetic/logical operations, and data transfer by a microprogram.

The EXU contains 256-byte main RAM. Eight register banks are addressed to the main RAM in the EXU.

4.2 Bus Control Unit

The bus control unit (BCU) activates a required bus cycle according to the physical address obtained from the execution unit (EXU). When the EXU does not issue a bus cycle activation request, the BCU generates an address required for prefetching an instruction. The prefetched instruction code is fetched into the instruction queue. The number of bytes held in the instruction queue depends on the area from which the instruction is fetched.

• Fetched from internal memory Note: 5 bytes

• Fetched from external memory: 3 bytes

Note Internal memory: Internal ROM (only in the μ PD78363A, 78366A, 78368A, and 78P368A), peripheral RAM

4.3 Program Memory and Data Memory

The program memory and data memory capacities depend on the product.

The μ PD78363A contains a 24K-byte program memory (ROM) and a 768-byte data memory (RAM). The μ PD78366A contains a 32K-byte program memory (ROM) and a 2048-byte data memory (RAM). The μ PD78368A contains a 48K-byte program memory (ROM) and a 2048-byte data memory (RAM). However, the μ PD78365A does not contain ROM and contains a 2048-byte data memory (RAM) only. The μ PD78P368A contains a 48K-byte program memory (ROM) and a 2048-byte data memory (RAM). The μ PD78P368A contains a 48K-byte program memory (ROM) and a 2048-byte data memory (RAM). The μ PD78P368A contains a 48K-byte program memory (ROM) and a 2048-byte data memory (RAM).

unit (EXU) and 1792-byte (512-byte for μ PD78363A) peripheral RAM.

4.4 Ports

A port has a function as a general-purpose port and a function of control pins as shown in the following table.

Port Name	I/O		Compound Function
Port 0	8-bit I/O	General- purpose	Real-time output port, RPU control signal input, PWM signal output
Port 1	8-bit I/O	port	_
Port 2	6-bit input		External interrupt input, RPU count pulse input
Port 3	7-bit I/O		Serial interface I/O
Port 4	8-bit I/O		Address/data bus (AD0-AD7)
Port 5	8-bit I/O		Address bus (A8-A15)
Port 7	8-bit input		A/D converter analog input
Port 8	6-bit I/O		RPU timer output
Port 9	4-bit I/O		External access control signal output

Remark RPU: real-time pulse unit

4.5 Real-Time Pulse Unit

The real-time pulse unit (RPU) can output a programmable pulse and measure a pulse width and frequency. It also controls the output timing of the real-time output port.

RPU consists of the following hardware.

- 16-bit timer \times 5
- 16-bit compare registers × 7
- 16-bit capture registers × 3
- 16-bit capture/compare register \times 2

4.6 Real-Time Output Port

This port controls the output timing of ports by using a signal sent from the RPU as a trigger, and can output data in 4-bit units. It is multiplexed with port 0 (P00 to P03) and can output four real-time pulses.

In addition, the output of P00 to P03 can be modulated for PWM.

4.7 A/D Converter

This 10-bit A/D converter has eight analog input pins and is of successive approximation type with a high operating speed and resolution.

4.8 Serial Interface

The following two channels of serial interfaces, each independent of the other, are provided. In addition, a baud rate generator that can be commonly used with the two channels is also provided. The clocked serial interface can operate in two operation modes.

- Asynchronous serial interface (UART) (with pin select function)
- Clocked serial interface
 - Serial bus interface mode (SBI mode)
 - Three-wire serial I/O mode

4.9 PWM Output Unit

The μ PD78366A has two PWM signal outputs of 8-/9-/10-/12-bit resolution. By externally connecting a low-pass filter, a PWM output can be used as a digital-to-analog conversion output. The PWM outputs are most suitable, for example, for a control signal for the actuator of a motor.

4.10 Watchdog Timer

The watchdog timer is a free-running counter with a nonmaskable interrupt function designed to prevent crashes or deadlocks. A program error can be detected when a watchdog timer overflow interrupt (INTWDT) is generated or when the watchdog timer output pin (\overline{WDTO}) goes low. By connecting this output to the \overline{RESET} pin, abnormal application system operation caused by a program error can be prevented.

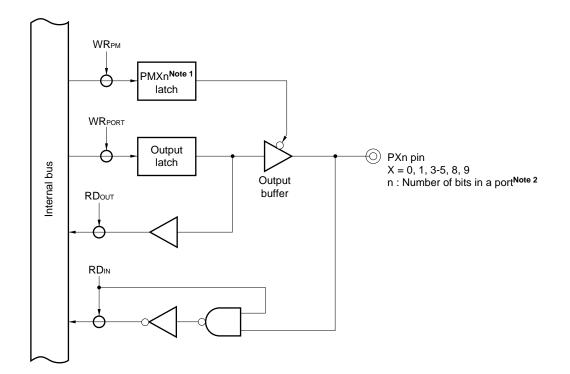
4.11 Interrupt Controller

The interrupt controller processes various interrupt requests (NMI and INTP0 to INTP4) issued from peripheral hardware and external device with the vectored interrupt, macro service, or context switching. The interrupt controller also allows programmable specification of the 4-level interrupt priority by software.

[MEMO]

CHAPTER 5 PORT FUNCTIONS

Phase-out/Discontinued


5.1 Hardware Configuration

As shown in Figure 5-1, three-state bidirectional ports are basically used for the ports of the μ PD78366A. (Ports 2 and 7 are used only for input).

A RESET input signal sets each bit of a port mode register to 1, specifying the port as an input port. All the port lines go into a high-impedance state. The contents of the output latch become undefined by a RESET input signal. When using the port as an output port, set data in the output latch before specifying the port as an output port.

Caution In the μ PD78365A, μ PD78363A, 78366A, and 78368A in the ROM-less mode, ports 4, 5, and 9 (lower 2 bits) do not function as ports. For details, refer to 5.2 Port Functions.

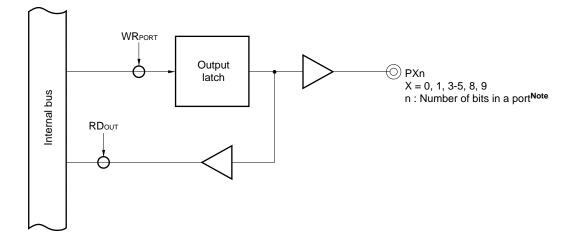
Figure 5-1. Basic I/O Port Configuration

Notes 1. PMXn latch: Bit n in the port mode register PMX (X = 0, 1, 3, 5, 8, 9)

When X = 0, 1, 4, 5, n = 0 to 7
When X = 3, n = 0 to 6
When X = 8, n = 0 to 5
When X = 9, n = 0 to 3

Remarks 1. Ports 2 and 7 are input ports.

2. Port 4 can be set in input or output mode by memory expansion mode register (MM).


(1) When a port is specified as an output port

The output latch is enabled, and an transfer instruction can transfer data between the output latch and accumulator.

The contents of the output latch can be set or reset bit by bit. Data once written to the output latch are held until another instruction is executed to operate the port.

When a port specified as an output port is read using an instruction such as a transfer instruction, the contents of the output latch are read.

Figure 5-2. Port Specified as Output Port

Note When X = 0, 1, 4, 5, n = 0 to 7 When X = 3, n = 0 to 6 When X = 8, n = 0 to 5 When X = 9, n = 0 to 3

(2) When a port is specified as an input port

The levels of the port pins can be loaded into the accumulator with a transfer instruction. Even when the port is specified as an input port, writing to the output latch is possible. Data transferred from the accumulator with a transfer instruction are all stored in the output latch, regardless of whether the port is specified as an input port or output port.

Phase-out/Discontinued

However, the data is not output to the port pins because the output buffer for the bits have become highimpedance. (When the bits specified as an input are switched to an output port, the contents of the output latch are output to the port pins).

The contents of the output latch of the bits specified as an input port cannot be loaded into the accumulator (refer to **Figure 5-3**).

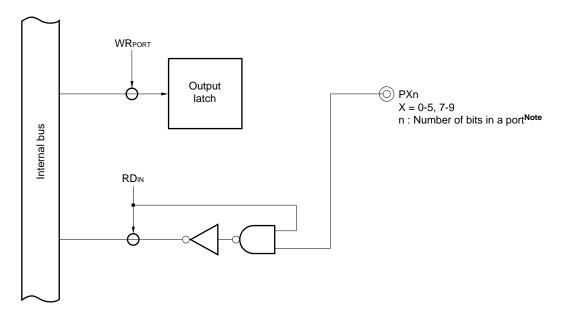
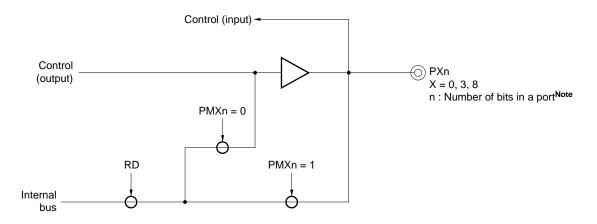


Figure 5-3. Port Specified as Input Port

Note When X = 0, 1, 4, 5, 7, n = 0 to 7 When X = 2, 8, n = 0 to 5 When X = 3, n = 0 to 6 When X = 9, n = 0 to 3



(3) When a port is specified as a control signal input or output

Ports 0, 3, and 8 can be used to input or output control signals on a bit-by-bit basis by setting the desired bit(s) of the corresponding port mode control register (PMC0, PMC3, or PMC8) to 1. In this case, the setting of the port mode register (PM0, PM3, or PM8) has no effect.

When a pin or pins are used for a control signal, the state of the control signal can be checked by executing a port read instruction.

Note When X = 0, n = 0 to 7 When X = 3, n = 0 to 6 When X = 8, n = 0 to 5

(a) When port outputs control signals

The pin state of a control signal can be read by executing a port read instruction when the desired bit of the port mode register is set to 1.

The state of an internal control signal can be read by executing a port read instruction when the desired bit of the port mode register is reset to 0.

(b) When port inputs control signals

The pin status of a control signal can be read by executing a port read instruction only when the corresponding bit of the port mode register is set to 1.

When the desired bit of the port mode register is reset to 0, if a port read instruction is executed, 0 is always read.

Caution The pins functioning as input pins in the control mode may operate erroneously if the corresponding bits of the port mode control register are rewritten during the operation. Therefore, write into the port mode control register when the system is initialized, etc. Do not rewrite the bits dynamically during the operation.

Pin Name	Control Function (I/O)	PMXn	Read Operation
P00-P03	RTP0-RTP3 (O)	1	Pin status
		0	Internal control signal
P04	PWM0 (O)	1	Pin status
		0	Internal control signal
P05	CMD = 0 : PWM1 (O)	1	Pin status
		0	Internal control signal
	CMD = 1 : TCUD (I)	1	Pin status
		0	Internal control signal (PWM1 signal)
P06	CMD = 0 : TO40 (O)	1	Pin status
		0	Internal control signal
	CMD = 1 : TIUD (I)	1	Pin status
		0	Internal control signal (TO40 signal)
P07	CMD = 0 : "0" (O)	1	Pin status (fixed to "0")
		0	Internal control signal (fixed to "0")
	07 CMD = 0 : "0" (O) CMD = 1 : TCLRUD (I)	1	Pin status
		0	Internal control signal (fixed to "0")
P30	SPS = 0 : TxD0 (O)	1	Pin status
		0	Internal control signal
	SPS = 1 : "1" (O)	1	Pin status (fixed to "1")
		0	Internal control signal (fixed to "1")
P31	SPS = 0 : RxD1 (I)	1	Pin status
		0	Internal control signal (fixed to "0")
	SPS = 1 : "Hi-Z"	1	Pin status (high impedance)
		0	Internal control signal (fixed to "0")
P32	MOD1 = 1, MOD2 = 0 : SB0 (I/O)	1	Pin status
		0	Internal control signal
	MOD1 = MOD2 = 1 : "Hi-z"	1	Pin status (high impedance)
		0	Internal control signal
	MOD1 = 0, MOD2 = × : SO (O)	1	Pin status
		0	Internal control signal

Table 5-1. Read Operation in Control Mode (1/2)

Remarks 1. PMXn : port mode register (X = 0 or 3, n: number of bits of port)

2. CMD : bit 7 of TUM1 register SPS : bit 1 of ASIM register

MOD1: bit 3 of CSIM register MOD2: bit 4 of CSIM register

3. ×: don't care

Pin Name	Control Function (I/O)	PMXn	Read Operation
P33	MOD1 = 1, MOD2 = 0 : "Hi-Z"	1	Pin status (high impedance)
		0	Internal control signal
	MOD1 = MOD2 = 1 : SB1 (I/O)	1	Pin status
		0	Internal control signal
	MOD1 = 0, MOD2 = × : SI (I)	1	Pin status
		0	Internal control signal
P34	SCK (I/O)	1	Pin status
		0	Internal control signal
P35	SPS = 0 : "1" (O)	1	Pin status (fixed to "1")
		0	Internal control signal (fixed to "1")
	SPS = 1 : TxD1 (O)	1	Pin status
		0	Internal control signal
P36	SPS = 0 : "Hi-Z"	1	Pin status (high impedance)
		0	Internal control signal (fixed to "0")
	SPS = 1 : RxD1 (I)	1	Pin status
		0	Internal control signal (fixed to "0")
P80-P85	TO00-TO05 (O)	1	Pin status
		0	Internal control signal

Table 5-1. Read Operation in Control Mode (2/2)

Remarks 1. PMXn : port mode register (X = 3 or 8, n: number of bits of port)

2. MOD1 : bit 3 of CSIM register

MOD2 : bit 4 of CSIM register

SPS : bit 1 of ASIM register

3. ×: don't care

(4) Port output data check function

The μ PD78366A has a function that enables pin state to be read in the port output mode so that application system reliability can be improved (pin access mode). With this function, output data and actual pin state can be checked as required. If a mismatch is found, an action such as replacement with another system can be taken.

Phase-out/Discontinued

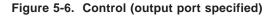
Before pin state can be read, bit 0 of the port read control register (PRDC) must be set to 1. A RESET input signal sets register PRDC to 00H.

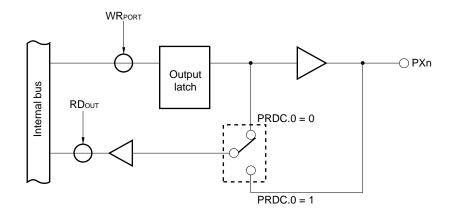
Symbol	7	6	5	4	3	2	1	0	A	ddress	When reset	R/W	
PRDC	0	0	0	0	0	0	0	PRDC0	F	F62H	00H	R/W	
									PRDC0		Operation	mode	
									PRDC0 0	Normal	•	mode	

Figure 5-5. Format of Port Read Control Register

Caution Bits 7 to 1 of the PRDC register are fixed to "0" by hardware. Even if "1" is written to them, they remain "0".

Example A sample program is given below which checks output data to port 0 (P0), port 1 (P1), and port 3 (P3) by using the pin access mode.


TEST	DI		; Disables interrupt.
	MOV	A,#5AH	; Test data = 5AH
	MOV	P0,A	; Sets 5AH in output latch.
	MOV	P1,A	
	MOV	P3,A	
	SET1	PRDC.0	; Sets pin access mode (sets PRDC).
	CMP	A,P0	; Compares pin level with output latch contents.
	BNE	\$ERR0	; Performs error processing if mismatch occurs.
	CMP	A,P1	
	BNE	\$ERR1	
	CMP	A,P3	
	BNE	\$ERR3	
	CLR1	PRDC.0	; Normal mode (resets PRDC)
	EI		; Enables interrupt.


- Cautions 1. In the pin access mode (PRDC0 = 1), no bit manipulation instruction for a port operates normally. After a port check is completed, be sure to reset the mode to the normal mode (PRDC0 = 0).
 - 2. If an interrupt occurs in the pin access mode, a bit manipulation instruction may be executed in the same mode. This will cause an error. Before starting a check, be sure to set the DI state.

- In addition, do not use macro services that manipulate ports.
- 3. Non-maskable interrupts are unavoidable. So, the following provisions should be made in the program as required:
 - The non-maskable interrupt routine is to perform no port manipulation.
 - The level of PRDC.0 is to be saved at the start of the non-maskable interrupt routine, then is restored when control is returned.
- 4. The pin access mode is a function to access the pin status of an output port. If a pin set in the input port mode (PMXn = 1) is read in the pin access mode (PRDC0 = 1), "0" is read regardless of the input level.

When PRDC.0 is set to 1, the switch enclosed in dotted lines in the figure on the next page is connected to the pin and the pin state is read. If a bit manipulation instruction is executed in this state, the pin state is read and a bit operation is executed. This may adversely affect the contents of the output latch.

When PRDC.0 is reset to 0, the system enters the normal mode.

In addition, instructions (CHKL, CHKLA) dedicated to frequent port state checking are available. By EXCLUSIVE ORing, these instructions compare the pin state with the contents of the output latch (in the port mode) or the pin state with the level of the internal control output signal (in the control mode).

Example A sample program is given below which checks pin state and the contents of an output latch using instructions CHKL and CHKLA.

TEST:	SET1 CHKL BNE	P0.3 P0 \$ERR1	; Sets bit 3 of port 0.; Checks port 0.; Branches to error processing (ERR1) if mismatch with output latch contents occurs.
ERR1:	CHKLA BT BT	P0 A.7,\$BIT07 A.6,\$BIT06	
	BT BR	A.1,\$BIT01 \$BIT00	; Bit 1? ; Bit 0 is incorrect if all above bits are correct.

- Cautions 1. Use the CHKL and CHKLA instructions only when the PRDC0 bit of the PRDC register is set to 0 (normal mode).
 - 2. In the case of those input/output port pins that are set in the input port mode, the results of the CHKL or CHKLA instructions always match regardless of the setting of the port/control mode. In the case of the dedicated input port, because it is not provided with an output latch, the input pin level is read when the CHKL or CHKLA instruction is executed. Therefore, the CHKL or CHKLA instruction is actually invalid for the dedicated input port and these instructions should not be used.
 - 3. If the CHKL or CHKLA instruction is executed with port 4 set to the input port mode or expansion mode, a mismatch may be generated (a mismatch is generated if the pin level changes during execution of the CHKL or CHKLA instruction). Therefore, while port 4 is set to the input port mode or expansion mode, do not execute these instructions.
 - 4. Set control output pins to the input mode before executing the CHKL or CHKLA instruction to check the output level of the pin of a port where control and port output pins are used together. (The output level of a control pin cannot be checked with the CHKL or CHKLA instruction because the output level varies asynchronously).

5.2 Port Functions

The μ PD78366A is provided with the ports shown in Figure 5-7 and can perform various control operations.

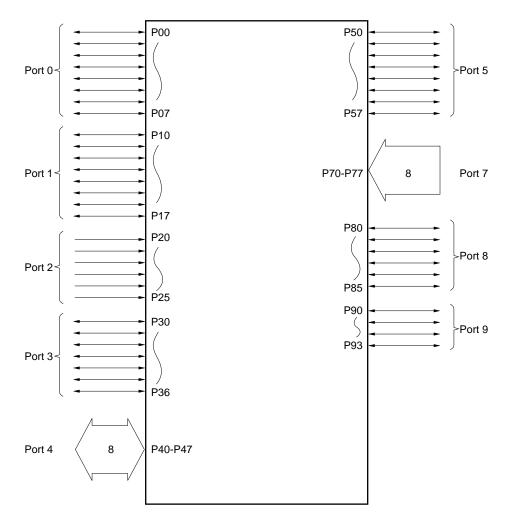


Figure 5-7. Port Configuration

5.2.1 Functions and features of I/O ports

Table 5-2 lists the I/O ports. These ports function not only as I/O ports but also as I/O pins of the internal hardware.

Port Name	Port Function	Compound Function					
Port 0	8-bit I/O port. Can be set in input or output mode in 1-bit units	Inputs control signals of real- time output port (RTP) and real- time pulse unit (RPU), and outputs PWM signal in control					
		mode					
Port 1	8-bit I/O port.	_					
	Can be set in input or output mode in 1-bit units						
Port 2	6-bit input port	Inputs external interrupt and count pulse input to real-time pulse unit (RPU)(fixed in control mode)					
Port 3	7-bit I/O port.	I/O of serial interface (UART, CSI) in control mode					
	Can be set in input or output mode in 1-bit units						
Port 4	8-bit I/O port.	Address/data bus (AD0-AD7) when memory is expanded					
	Can be set in input or output mode in 8-bit units						
Port 5	8-bit I/O port.	Address bus (A8-A15) when memory is expanded					
	Can be set in input or output mode in 1-bit units						
Port 7	8-bit input port	Analog input of A/D converter (fixed in control mode)					
Port 8	6-bit I/O port.	Timer output of real-time pulse unit (RPU) in control mode					
	Can be set in input or output mode in 1-bit units						
Port 9	4-bit I/O port.	Outputs control signals when memory is expanded					
	Can be set in input or output mode in 1-bit units						

Table 5-2. Functions and Features of Ports

5.2.2 I/O mode setting

(1) Port n (n = 0, 1, 3, 5, 8, 9)

The I/O mode of each port is set bit by bit with a port mode register (PM) (refer to **Figures 5-8** to **5-13**). Each pin of a port functions as an input or output port, depending on the setting of the corresponding bit in the PM register. It is an input port when the bit is one, and an output port when the bit is zero. The contents of each PM register are specified by an 8-bit manipulation instruction.

(2) Ports 2 and 7

Ports 2 and 7 function only as input ports. These ports have no port mode register.

(3) Port 4

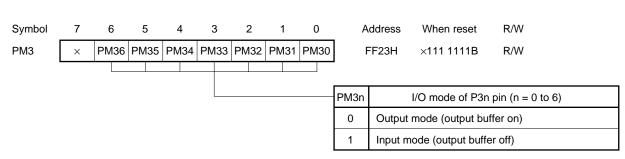
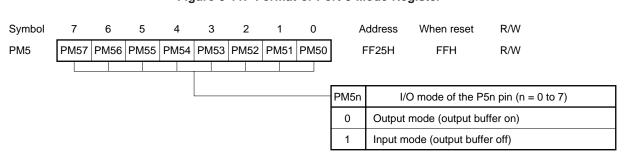
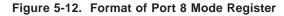
The I/O mode of port 4 only is set with memory expansion mode register (MM) in units of eight bits (refer to **Figure 5-17**).

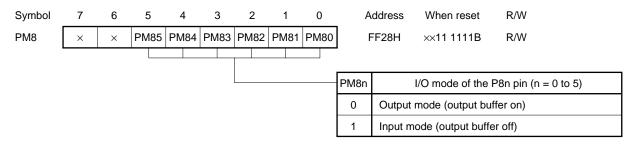
Register MM is set with a bit or 8-bit manipulation instruction.

Figures 5-8 to 5-13 show the format of each port mode instruction register.

Figure 5-8. Format of Port 0 Mode Register

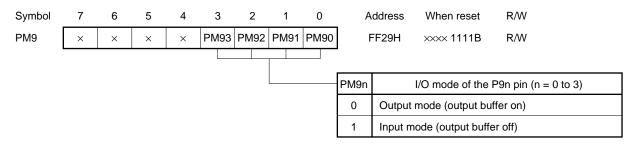
Figure 5-9. Format of Port 1 Mode Register


Figure 5-10. Format of Port 3 Mode Register

Remark ×: don't care

Figure 5-11. Format of Port 5 Mode Register



Remark ×: don't care

Figure 5-13. Format of Port 9 Mode Register

Remark ×: don't care

5.2.3 Control mode setting

(1) Port n (n = 0, 3, 8)

The control mode of each port is set with the corresponding port mode control register (PMC) bit by bit (refer to **Figures 5-14** to **5-16**).

Each pin of a port functions as a control pin when the corresponding bit of the PMC register is set to 1. In this case, the previous states of the port and the set value in the PM register have no effect. The PMC register is set with an 8-bit manipulation instruction.

(2) Ports 2 and 7

The pins of ports 2 and 7 are always set in the control mode. These ports has no port mode control register. The pin state of each port can be read by executing a port read instruction.

(3) Ports 4 and 5

(a) µPD78363A, 78366A, and 78368A

The control mode is set according to the contents of the memory expansion mode (MM) register (refer to **Figure 5-17**). As shown in Table 5-3, the operations of ports 4 and 5 depend on the expansion mode of the MM register. When the MM register is in the expansion mode, port 4 functions as an address/data bus and some bits of port 5 function as address bus.

Phase-out/Discontinued

When data is written or verified with the μ PD78P368A (in the PROM programming mode), port 4 functions as I/O port for the data.

The contents of the MM register are specified by a bit manipulation instruction or an 8-bit manipulation instruction.

Setting of MM register		Operation of port 4	Operation of port 5							
		P40 - P47	P50	P51	P52	P53	P54	P55	P56	P57
Port mode (single-chip mode)		Input port	General-purpose I/O port							
		Output port								
Expansion	256-byte expansion	Address/data bus								
mode	4K-byte expansion		A8	A9	A10	A11	General-purpose I/O port) port
	16K-byte expansion						A12	A13	General-pur- pose I/O port	
	Full expansion ^{Note}								A14	A15

Table 5-3. Operation of Port 4 and Port 5 (µPD78363A, 78366A, 78368A)

Note 32K-byte expansion in case of μ PD78363A

Remark An (n = 8 to 15): Address bus

(b) *µ*PD78365A

Ports 4 and 5 operate as follows. Each pin of the ports does not function as a port pin.

- Port 4: Address/data bus (AD0 to AD7)
- Port 5: Address bus (A8 to A15)

The same applies when the μ PD78363A, 78366A, and 78368A are used in the ROM-less mode (MODE0, 1 = HH).

(4) Port 9

The control mode is set according to the statuses of the MODE0 and 1 pins and the contents of the memory expansion mode (MM) register.

(a) μ PD78363A, 78366A, and 78368A

Port 9 operates as shown in Table 5-4.

When the MM register is in the expansion mode, P90 functions as the $\overline{\text{RD}}$ pin and P91 functions as the $\overline{\text{WR}}$ pin. When the μ PD78363A, 78366A, and 78368A are set in the ROM-less mode (MODE0, 1 = HH), P90 and P91 always function as $\overline{\text{RD}}$ and $\overline{\text{WR}}$, respectively. In this case, the setting of the MM0-MM2 bits is invalid.

MOI	DE0	MODE1	Setting of MM Register	Port 9 Operation	
			MM0-MM2	P90	P91
L		L	Port mode	General-purpose port	
			Expansion mode	RD	WR
н		Н	_	RD	WR

Table 5-4. Operation of Port 9 (µPD78363A, 78366A, 78368A)

(b) μ**PD78365A**

The P90 and P91 pins always function as the \overline{RD} and \overline{WR} pins. Fix both the MODE0 and MODE1 pins to the high level.

The setting of the lower 3 bits (MM0-MM2) of the MM register is invalid.

Symbol 7 6 5 4 3 2 1 0 Address When reset R/W PMC0 PMC07 PMC06 PMC05 PMC04 PMC03 PMC02 PMC01 PMC00 FF40H 00H R/W PMC0n Specifies control mode of P0n pin (n = 0 to 3) I/O port mode 0 1 Real-time output port mode PMC04 Specifies control mode of P04 pins 0 I/O port mode PWM0 output mode 1 PMC05 Specifies control mode of P05 pin 0 I/O port mode 1 PWM1 output mode/TCUD input mode PMC06 Specifies control mode of P06 pin 0 I/O port mode 1 TO40 output mode/TIUD input mode PMC07 Specifies control mode of P07 pin 0 I/O port mode

1

Output fixed to "0 "/TCLRUD input mode

Figure 5-14. Format of Port 0 Mode Control Register

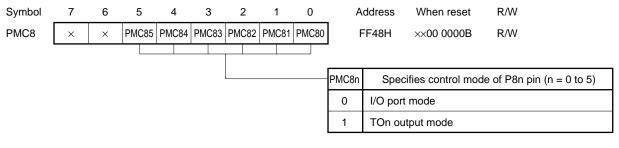

Symbol	7	6	5	4	3	2	1	0	Ad	dress	When reset	R/W
PMC3	×	PMC36	PMC35	PMC34	PMC33	PMC32	PMC3	1 PMC30	FF	=43H	×000 0000B	R/W
										1		
									PMC30		•	I mode of P30 pin
									0	I/O po	rt mode	
									1	TxD0 (output mode	
									PMC31		Specifies contro	I mode of P31 pin
									0	I/O po	rt mode	
									1	RxD0	input mode	
									PMC32		Specifies contro	I mode of P32 pin
									0	I/O po	rt mode	
									1	SB0 I/	O mode/SO outp	ut mode
									PMC33		Specifies contro	l mode of P33 pin
									0	I/O po	rt mode	
									1	SB1 I/	O mode/SI input	mode
									PMC34		Specifies contro	l mode of P34 pin
									0	I/O po	rt mode	
									1	SCK I/	O mode	
									PMC35		Specifies control	ol mode of P35 pin
									0	I/O po	rt mode	
									1	TxD1 o	output mode	
									PMC36		Specifies contro	ol mode of P36 pin
									0	I/O po	rt mode	
									1	RxD1	input mode	

Figure 5-15. Format of Port 3 Mode Control Register

Remark ×: don't care

Figure 5-16. Format of Port 8 Mode Control Register

Remark ×: don't care

Symbol	7	6	5	4	3	2	1	0	,	Addres	s \	Nhen re	eset	R/W	
MM	0	MM6	MM5	0	0	MM2	MM1	MM0		FFC4H	1	Note	1	R/W	
									MM2	MM1	MM0	Specifie	s operatio	on mode of P40-P47, P50-P57	
									0	0	0	Port mode	Single- chip	P40-P47: Input port P50-P57: Port mode	
									0	0	1	mode	mode	P40-P47: Output port P50-P57: Port mode	
									0	1	0		Setting prohibited		
									0	1	1		256 bytes	P40-P47: Expansion mode P50-P57: Port mode	
									1	0	0	Expan- sion mode	4K bytes	P40-P47, P50-P53: Expansion mode P54-P57: Port mode	
									1	0	1		16K bytes	P40-P47, P50-P55: Expansion mode P56, P57: Port mode	
									1	1	0		Set	ting prohibited	
									1	1	1	Expan- sion mode	Full expan- sion mode	P40-P47, P50-P57: Expansion mode	
									μPD	78P36	8A on	ly			
									мм6	MM5	Spec	ifies intern	al memor	y capacity of μ PD78P368A ^{Note 2}	
										CIVIIVI	Inte	ernal RC	OM size	Internal RAM size	
									0	0		48K by	rtes		
									0	1				2K bytes	
									1	0		32K by	ies	1K bytes	
									1	1		24K by	tes	768 bytes	

Figure 5-17. Format of Memory Expansion Mode Register

Notes 1. The value of the MM register after a reset depends on the product.

μPD78363A•••60H

μPD78365A, 78366A--20H

μPD78368A, 78P368A•••00H

2. A function to change the capacity of the internal memory of the μ PD78P368A. With the μ PD78363A, 78365A, 78366A, and 78368A, the internal memory is fixed to the status after reset.

Cautions 1. Bits 3, 4, and 7 of the MM register are fixed to 0 by hardware. Even if 1 is written to them, they remain 0.

2. Do not write the setting prohibited combination of codes.

5.2.4 Specifying pull-up resistor

The μ PD78366A is provided with pull-up resistors that can be internally connected to each pin of ports 0-5, 8, and 9 through software (except P20 pin).

(1) Ports 0, 1, 3, and 8

Connection of the pull-up resistor to each pins can be specified by pull-up resistor option registers (PUOL and PUOH), port mode register (PM), and port mode control register (PMC).

When the PMC register is "0" (port mode), set the PUOL and PUOH registers to "1" and the corresponding PM register to "1" (input port mode). The pin set in the input port mode will be connected to an internal pull-up resistor.

The pin set to "1" by the PMC register (control mode) is not connected to the internal pull-up resistor, regardless of the specification of the PUOL, PUOH, and PM registers.

(2) Port 2

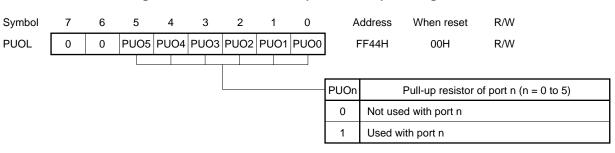
When the PUO2 bit of the PUOL register is set to "1", all the five pins of the port (P21-P25) are connected to an internal pull-up resistor (Cannot be specified bit-wise).

Caution The P20/NMI pin does not contain a pull-up resistor on hardware. Therefore, even if PUO2 is set to 1, no internal pull-up resistor is set in the P20/NMI pin.

(3) Port 4

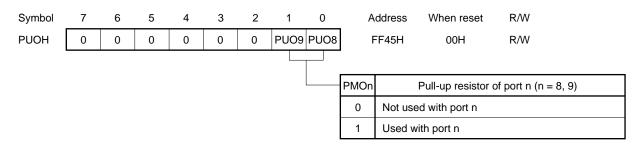
If the PUO4 bit of the PUOL register is set to "1" when port 4 is set in the input mode by the memory expansion mode register (MM), all the eight pins of the port (P40-P47) are connected to an internal pull-up resistor (Cannot be specified bit-wise).

(4) Port 5


If the PUO5 bit of the PUOL register is set to "1" when port 5 is set in the input mode by the memory expansion mode register (MM) and port 5 mode register (PM5), the internal pull-up resistor becomes valid.

(5) Port 9

If the PUO9 bit of the PUOH register is set to "1" when port 9 is set in the input mode by the memory expansion mode register (MM) and port 9 mode register (PM9), the internal pull-up resistor becomes valid.


The internal pull-up resistors of ports 4, 5 and 9 are invalid regardless of the specification by the PM register and PUO bit, when the expansion mode is set by the MM register.

Caution When emulating the μPD78366A with the IE-78350-R, the internal pull-up resistors of ports 1, 4, 5, and 9 are invalid, even if the PUO1, PUO4, PUO5, and PUO9 bits of the PUOL and PUOH registers are set to "1". To use the pull-up resistor, set the corresponding bit to "1", and then connect an external pull-up resistor, in order to share software between the IE-78350-R and μPD78366A.

Caution Bits 7 and 6 of the PUOL register and bits 7 to 2 of the PUOH register are fixed to 0 by hardware. Even if 1 is written to them they remain 0.

Remark To enter the STOP mode, 00H should be set in the PUOL/PUOH register to reduce consumption current.

[MEMO]

CHAPTER 6 CLOCK GENERATOR

Phase-out/Discontinued

The clock generator generates and controls an internal system clock (CLK) supplied to the CPU.

An internal system clock of the maximum frequency of 16 MHz (fcLk) is generated when an 8-MHz crystal resonator is connected across the X1 and X2 pins of the μ PD78366A.

The clock generator is configured as shown in Figure 6-1.

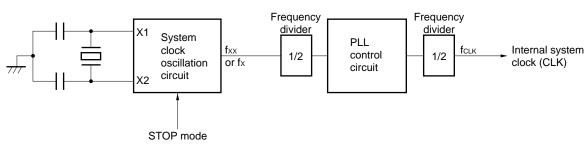
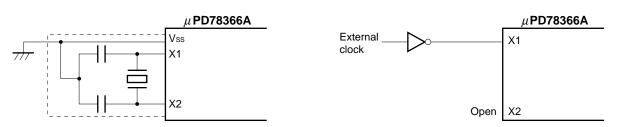


Figure 6-1. Block Diagram of Clock Generator

Remarks 1. fxx : Crystal resonator frequency

- 2. fx : External clock frequency
- 3. fclk : Internal system clock frequency

The system clock oscillation circuit generates a clock signal with a crystal resonator. The system clock oscillation circuit stops oscillation when it is set to the standby mode (STOP mode). (refer to **CHAPTER 14 STANDBY FUNCTION**).

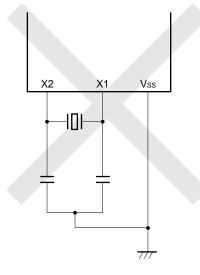

An external clock can be also applied. In this case, a clock signal is to be applied to the X1 pin. Leave the X2 pin open.

Caution To use the external clock, do not set the STOP mode.

Figure 6-2. External Circuitry of System Clock Oscillation Circuit

(a) Crystal oscillation

(b) External clock


Cautions 1. When using a system clock oscillation circuit, wire the portion enclosed by the dotted line in Figure 6-2 as follows to prevent adverse influence from wiring capacitance:

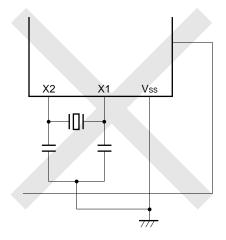
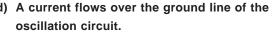
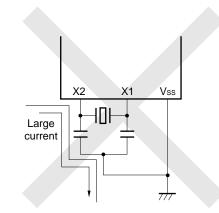
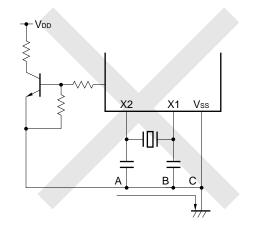

- Keep the wiring length as short as possible.
- Do not cross the wiring with any other signal lines. Do not route the wiring in the vicinity of line through which a high alternating current flows.
- Always keep the ground potential for the capacitor in the oscillation circuit at the same potential as Vss. Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not extract any signal from the oscillation circuit.
- 2. Make sure that a load such as wiring capacitance is not connected to the X2 pin when inputting an external clock.

Figure 6-3 shows examples of wrong resonator connection circuitry.

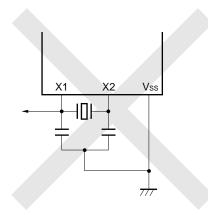

Figure 6-3. Examples of Wrong Resonator Connection Circuitry

- (a) Connection circuit wiring is too long.
- (b) There is another signal line crossing.





(c) A high varying current flows near a signal line. (d) A current flows over the ground line of the



(The potentials of points A, B, and C change).

(e) A signal is extracted.

[MEMO]

CHAPTER 7 REAL-TIME PULSE UNIT

Phase-out/Discontinued

The real-time pulse unit (RPU) is used to measure pulse intervals or frequency, or to output programmable pulses (six channels of PWM control signals).

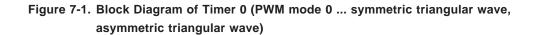
The RPU consists of five 16-bit timers: timers 0 through 4. One of these timers is provided with a 10-bit dead time timer and is suitable for inverter control application. In addition, a function to turn off output through software or external interrupt is also provided.

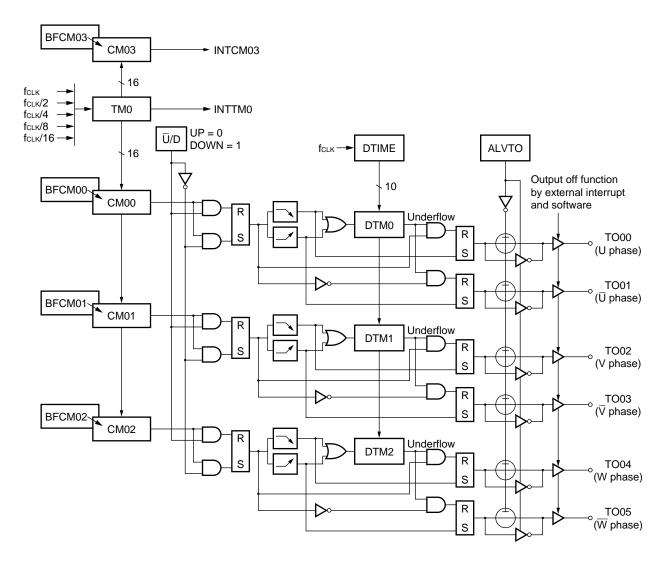
Each timer has the following features:

- Timer 0 ... Controls the PWM cycle of TO00 through TO05 output pins. Also operates as a generalpurpose interval timer. The following five operating modes are available for timer 0.
 - General-purpose interval timer mode
 - PWM mode 0 (symmetric triangular wave)
 - PWM mode 0 (asymmetric triangular wave)
 - PWM mode 0 (toothed wave)
 - PWM mode 1
- Timer 1 ... Operates as a general-purpose interval timer.
- Timers 2 & 3 ... Provided with a programmable input sampling circuit that rejects noise superimposed on the input signal, and a capture function.
- Timer 4 ... Operates as a general-purpose timer or an up-down counter. When used as a general-purpose timer, controls the PWM cycle of the TO40 output pin. The following two operating modes are available for timer 4.
 - General-purpose timer mode
 - Up/down counter mode (UDC mode)

7.1 RPU Configuration

Table 7-1 shows the configuration of the RPU.


Table 7-1.	Configuration of RPU
------------	----------------------


	Timer Register	Register	Compare	Capture	Timer	Timer
$ \rangle$			Register	Trigger	Output	Clear
			Coincidence			
			Interrupt			
	16-bit timer (TM0)	16-bit compare register (CM00)	-	-	6	INTCM03
Timer		16-bit compare register (CM01)	-			
0		16-bit compare register (CM02)	-			
		16-bit compare register (CM03)	INTCM03			
Timer 1	16-bit timer (TM1)	16-bit compare register (CM10)	INTCM10	_	_	INTCM10
Timer	16-bit timer (TM2)	16-bit capture/compare register (CC20)	INTCC20	INTP3	-	INTCC20
2		16-bit capture register (CT20)	-			
	16-bit timer (TM3)	16-bit capture/compare register (CC30)	INTCC30	INTP0	_	INTCC30
Timer		16-bit capture register (CT30)	-	INTP1		
3		16-bit capture register (CT31)	-	INTP4		
Timer	16-bit timer (TM4)	16-bit compare register (CM40)	INTCM40	_	1	TCLRUD
4		16-bit compare register (CM41)	INTCM41			INTCM40

7.2 Timer 0

7.2.1 Configuration

Timer 0 consists of a 16-bit timer 0 (TM0) and four 16-bit compare registers (CM00-CM03). Figures 7-1 through 7-3 show the block diagrams of timer 0.

TM0	: Timer register	DTM0-DTM2 : Dead time timers
CM00-CM03	: Compare registers	ALVT0 : Bit 2 of TUM0 register
BFCM00-BFCM	103: Buffer registers	U/D : Bit 3 of TMC0 register
DTIME	: Reload register	

Remark fclk: internal system clock

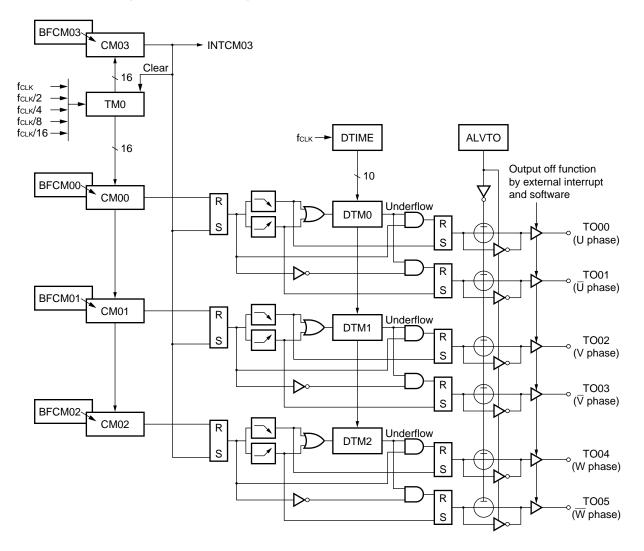


Figure 7-2. Block Diagram of Timer 0 (PWM mode 0 ... toothed wave)

TM0	: Timer register	
CM00-CM03	: Compare registers	
BFCM00-BFCM03	: Buffer registers	
DTIME	: Reload register	
DTM0-DTM2	: Dead time timers	
ALVT0	: Bit 2 of TUM0 regis	ter

Remark fcLK: internal system clock

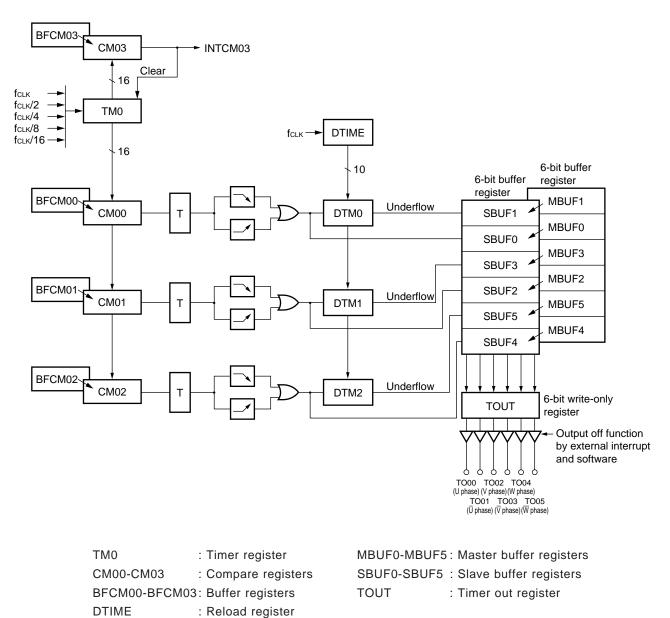


Figure 7-3. Block Diagram of Timer 0 (PWM mode 1)

Remark fclk: internal system clock

: Dead time timers

DTM0-DTM2

(1) 16-bit timer 0 (TM0)

TM0 is a 16-bit up/down timer and operates as an up timer. Its cycle is controlled by a compare register (CM03). TM0 can operate in the five operation modes as shown in Table 7-2. These operation modes can be selected by timer unit mode register 0 (TUM0).

Operation Mode	Count Operation	Timer Clear	$BFCM0n \rightarrow CM0n$ Transfer Timing
General-purpose interval timer	Up	INTCM03	_
PWM mode 0 (symmetric triangular wave)	Up/down	_	INTTMO
PWM mode 0 (asymmetric triangular wave)	Up/down	_	INTTM0 INTCM03
PWM mode 0 (toothed wave)	Up	INTCM03	INTCM03
PWM mode 1	Up	INTCM03	INTCM03

Table 7-2. Operation Modes of Timer 0 (TM0)

Remark n = 0-2

TM0 can be cleared by an interrupt that occurs when the current value of the timer coincides (INTCM03) with the value of the compare register (CM03) (in the general-purpose interval timer mode, PWM mode 0 (toothed wave), and PWM mode 1).

TM0 is a register that can be read only by a 16-bit manipulation instruction.

All the bits of TM0 are cleared to 0 by the RESET input.

(2) 10-bit dead time timers 0-2 (DTM0-DTM2)

DTM0-DTM2 are 10-bit down timers that generate dead time suitable for inverter control application. These timers operate as one-shot timers.

Phase-out/Discontinued

Counting by a dead time timer is enabled or disabled by the CED bit of timer control register 1 (TMC1), and cannot be controlled (i.e., started or stopped) through software. The dead time timer starts and stops counting hardware-wise.

The dead time timer starts counting down when the value of the reload register (DTIME) is reloaded to it in synchronization with the compare coincidence timing of CM00 to CM02:

When the value of a dead time timer changes from 000H to 3FFH, the dead time timer generates an underflow signal, and the timer stops holding the value 3FFH.

If the value of a dead time timer coincides with the value of the corresponding compare register before the underflow of the dead time timer takes place, the value of DTIME is reloaded to the dead time timer again, and the timer starts down counting.

The count clock of the dead time timer is fixed to fcLK, and the dead time width is (Set value of DTIME + 1) \times fcLK.

If TM0 operates in the PWM mode 0 with the dead time timer disabled from counting, a True Bar signal without dead time is output to TO00 and TO01, TO02 and TO03, and TO04 and TO05.

DTM0 to DTM2 cannot be read/written (and cannot be controlled by software).

DTM0 to DTM2 are initialized to 3FFH by the RESET input.

(3) 10-bit reload register (DTIME)

DTIME is a 10-bit register that is commonly used to set the values of the three dead time timers (DTM0-DTM2). However, a value is reloaded from DTIME to each dead time timer independently.

DTIME can be read/written by a 16-bit manipulation instruction. The low-order 10 bits of DTIME are valid data and the high-order 6 bits are fixed to "0" by hardware.

RESET input makes DTIME undefined.

(4) 16-bit compare registers 00-02 (CM00-CM02)

CM00-CM02 are 16-bit compare registers that always compare their own values with the value of TM0. If the value of a compare register coincides with the value of TM0, the compare register outputs a trigger signal, and changes the content of the flip-flop connected to the register.

Phase-out/Discontinued

Each of CM00-CM02 is provided with a buffer register (BFCM00-BFCM02), so that the contents of the buffer can be transferred to the corresponding compare register at any time.

CM00 to CM02 can be read/written by a 16-bit manipulation instruction. RESET input makes them undefined. Writing is performed as follows by setting the CMWE bit of timer control register 0 (TMC0).

- CMWE = 0: When a write instruction is executed, values of the buffer registers (BFCM00 to BFCM02) corresponding to the respective compare registers are transferred to the compare registers.
- CMWE = 1: Data can be written directly to the compare registers by a write instruction.

For reading, data can be read directly irrespective of the TMC0 register setting.

(5) 16-bit compare register 03 (CM03)

CM03 is a 16-bit register and performs compare operations together with TM0. When a coincidence is detected, it generates an interrupt signal (INTCM03). CM03 controls the count higher limit value of TM0, and if the values coincides, it switches the up/down of TM0 or clears the timers with the next count clock. Furthermore, CM03 is provided with a buffer register (BFCM03) and transfers the buffer contents to CM03 with arbitrary timing. Transfer enable/disable is controlled by the B3TR bit of the TMC0 register. CM03 can be read/written by a 16-bit manipulation instruction. RESET input makes it undefined.

(6) 16-bit buffer registers CM00-CM02 (BFCM00-BFCM02)

BFCM00-BFCM02 are 16-bit registers each of which transfers data to the corresponding compare register (CM00-CM02) when an interrupt signal (INTCM03/INTTM0) is generated. BFCM00 to BFCM02 can be read/written by a 16-bit manipulation instruction. RESET input makes them undefined.

(7) 16-bit buffer register CM03 (BFCM03)

BFCM03 is a 16-bit register and it transfers data to the compare registers with arbitrary timing. Transfer enable/ disable is controlled by the B3TR bit of the TMC0 register.

(8) 6-bit master buffer registers 0-5 (MBUF0-MBUF5)

MBUF0 to MBUF5 are 6-bit registers to which a value is set when an interrupt signal (INTCM03) is generated. Timing to transfer data from an MBUF to the corresponding SBUF is controlled by INTCM03.

MBUF0 to MBUF5 can be read/written by a bit manipulation instruction or 8-bit manipulation instruction. The low-order 6 bits of MBUF0 to MBUF5 are valid data and the high-order 2 bits are fixed to "0" by hardware. RESET input makes them undefined.

This buffer register is used in PWM mode 1.

MBUF0 is also used for the RTP output in the general-purpose interval timer mode.

(9) 6-bit slave buffer registers 0-5 (SBUF0-SBUF5)

SBUF0 to SBUF5 are 6-bit registers that output data to the TOUT register in synchronization with the output timing determined taking the dead time into consideration by coincidence of CM00-CM02 compare values. The timing at which the contents of an MBUF are transferred to the corresponding SBUF is controlled by INTCM03.

SBUF0 to SBUF5 can be read/written by a bit manipulation instruction or 8-bit manipulation instruction. The low-order 6 bits of SBUF0 to SBUF5 are valid data and the high-order 2 bits are fixed to "0" by hardware. RESET input makes them undefined.

This buffer register is used in PWM mode 1.

SBUF0 is also used for the RTP output in the general-purpose interval timer mode.

(10) 6-bit timer out register (TOUT)

TOUT is a 6-bit register that can be written by an 8-bit manipulation instruction. It is an output latch that can be used only when TM0 is in the following modes.

- <1> General-purpose interval timer mode
- <2> PWM mode 1

When TM0 is in any mode other than the above, writing is disabled by hardware and it is not possible to write to it even by executing a write instruction.

The TOUT data is output directly to port 8 (P80 to P85). Therefore, if port 8 is read with bits PM8.0 to PM8.5 of the port 8 mode register (PM8) set to "0" (output port), it is possible to read the output data of TOUT. If port 8 is read with bits PM8.0 to PM8.5 set to "1" (input port), the pin statuses are read.

Since the high-order 2 bits of TOUT have no latch to retain data by hardware, they are undefined. When port 8 is read, the high-order 2 bits become undefined in the same way.

Caution The condition under which the TOUT data is output to port 8 is that port 8 is in control mode (TO00 to TO05 outputs) and that TM0 is in the general-purpose interval timer mode or PWM mode 1. Otherwise, the TOUT data is not output to port 8 and therefore it is not possible to read the TOUT contents.

7.2.2 Control registers

(1) Timer unit mode register 0 (TUM0)

Timer unit mode register 0 (TUM0) is an 8-bit register that specifies the operation modes of TM0, and controls the output of TO00 to TO05.

TUM0 can be read or written by a bit manipulation instruction or an 8-bit manipulation instruction. This register is cleared to 00H by the $\overrightarrow{\text{RESET}}$ input.

Symbol	7	6	5	4 3	2	1	0		Ad	dress Whe	en reset	R/W	
TUM0	RMOD	TMOD02	TMOD01 TM		E ALVTO T	ODIS1 TO	DIS0		FF	2EH	00H	R/W	
								•					
								ТОГ	DIS0	Control	s output of	ТО00-ТО0	5 by NMI
								()	Does not sto	p output		
									1	Stops output	(ТО00-ТО0	5 in high-im	pedance state)
								TOL	DIS1	Controls of	output of T	000-TO05	via software
								()	Does not sto	p output		
									1	Stops output	(ТО00-ТО0	5 in high-im	pedance state)
								AL۱	/ТО	Specifies ac	ctive level o	of TO00-TO	05 pin output
								()	Low level			
									1	High level			
								ICI	ИE	Controls tra latch by IN		BUF0 conte	ents to output
								()	Disables			
									1	Enables (sim to SBUF0)	ultaneous	data transfe	er from MBUF0
										,			
				RMO	TMOD02	TMOD01	тмс	D00		Operation mode	Count operation	Timer clear	BFCM0n
				×	0	×	>	<		neral-purpose rval timer	Up	INTCM03	_
				0	1	0	C)	(syr	M mode 0 nmetric ngular wave)	Up/down	-	INTTMO
				0	1	0	1	1	(asy	M mode 0 /mmetric ngular wave)	Up/down	-	INTTM0 INTCM03
				0	1	1	>	<		M mode 0 thed wave)	Up	INTCM03	INTCM03
				1	1	×	>	<	PW	M mode 1	Up	INTCM03	INTCM03

Figure 7-4. Format of Timer Unit Mode Register 0

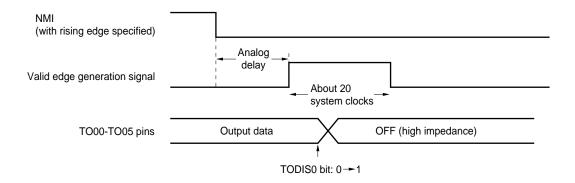
- Cautions 1. The specification of the ALVTO bit is valid only for the pins set to the control mode (TO00 to TO05) by the PMC8 register when TM0 is in PWM mode 0 (symmetrical triangular wave, asymmetrical triangular wave, toothed wave).
 - The ICME bit is valid only when TM0 is in the general-purpose interval timer mode (TMOD02 = 0).
 - 3. It is prohibited to change bits RMOD, TMOD02 through TMOD00 and ALVTO during operation of TM0 (CE0 = 1) and DTM0 to DTM2 (CED = 1).

Remarks 1. n = 0-2

2. \times : don't care

[Output driver off function]

When an external error occurs, the μ PD78366A can turn off the output pin (TO00-TO05) driver.

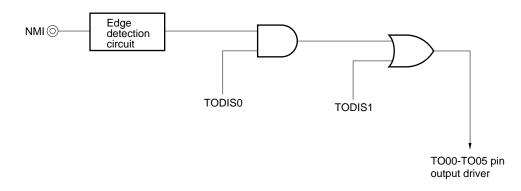

The function can be executed under the control of the TODIS0, TODIS1 bit of the TUM0 register, as described below:

<1> External interrupt (NMI) (TODIS0 = 1)

When an interrupt active edge specified at the NMI pin occurs, the TO00-TO05 pin driver can be turned off. The NMI pin active edge can be specified in the external interrupt mode register 0 (INTM0). Even if a NMI pin edge detection pulse goes off, the TO00-TO05 pin driver remains off. To restore the operation, change the TODIS0 bit from 1 to 0.

Caution After the valid edge of NMI has been generated, the valid edge generation signal is retained for the duration of about 20 system clocks. If the TODIS0 bit is changed from "0" to "1" during this period, the TO00 through TO05 pins are set to OFF by the NMI that has been already generated.

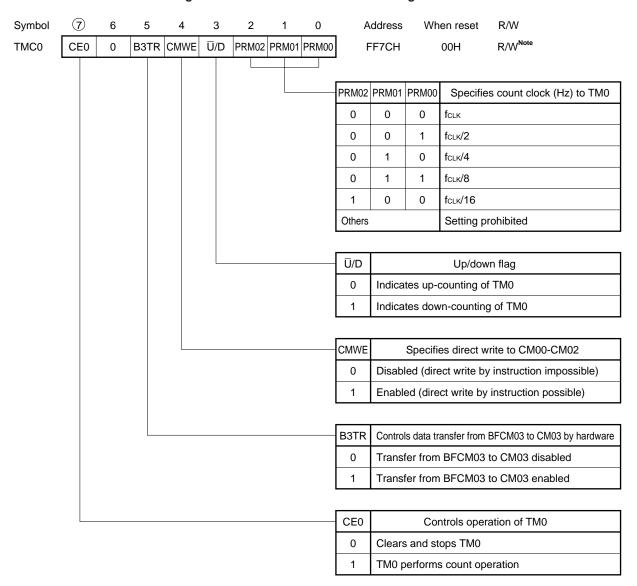
It is recommended that the TODIS0 bit be manipulated in the NMI routine except when the system is initialized.



Remark Execution branches to the NMI routine after the valid edge generation signal has changed from "1" to "0".

<2> Software control (TODIS1 = 1)

The TO00-TO05 pin driver can be turned off under software control regardless of the NMI pin.


Figure 7-5. Configuration of Output Driver off Function

(2) Timer control register 0 (TMC0)

Timer control register 0 (TMC0) is an 8-bit register that controls the operation of TM0, CM00 to CM03. This register can be read or written by a bit manipulation instruction or an 8-bit manipulation instruction. TMC0 is cleared to 00H by the RESET input.

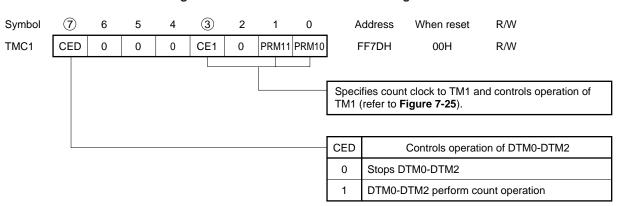
Figure 7-6. Format of Timer Control Register 0

Note The \overline{U}/D bit is a read-only bit.

Remark fclk: internal system clock

- Cautions 1. Bit 6 of the TMC0 register is fixed to "0" by hardware. Even if "1" is written, it remains "0".
 It is prohibited to change bits B3TR and PRM02 through PRM00 during operation of TM0 (CE0
 - = 1)
 - 3. If CE0 is set to 0 (TM0 stops), \overline{U}/D flag is cleared to 0.

Table 7-3. Timing of Transfer from BFCM03 to CM03	Table 7-3.	Timing of	Transfer	from	BFCM03	to CM03
---	------------	-----------	----------	------	--------	---------


B3TR	TM0 Operating Mode	Timing of Transfer from BFCM03 to CM03
0	All modes	Not transferred
1	General-purpose interval timer	Not transferred
	PWM mode 0 (symmetric triangular wave)	INTTMO
	PWM mode 0 (asymmetric triangular wave)	INTTMO
	PWM mode 0 (toothed wave)	INTCM03
	PWM mode 1	INTCM03

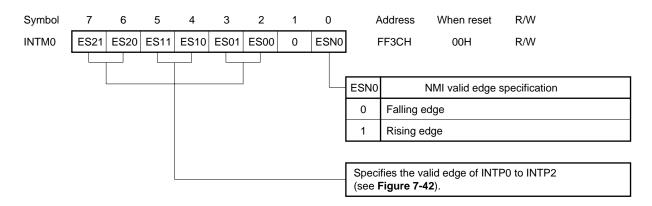
Caution CM03 can be read/written directly.

(3) Timer control register 1 (TMC1)

Timer control register 1 (TMC1) is an 8-bit register that controls the operations of TM1 and DTM0-DTM2. This register can be read or written by a bit manipulation instruction or an 8-bit manipulation instruction. TMC1 is cleared to 00H by the RESET input.

Figure 7-7. Format of Timer Control Register 1

- Cautions 1. The CED bit is common to the three dead time timers (DTM0-DTM2).
 - 2. Bits 6 to 4 and 2 of the TMC1 register are fixed to "0" by hardware. Even if "1" is written, they remain "0".
 - 3. It is prohibited to change the CED bit during the operation of TM0 (CE0 = 1)


When TM0 is operated in PWM mode 0 with CED = 0 (dead time timer stopped), true bar signals with no dead time are output to TO00 and TO01, TO02 and TO03, and TO04 and TO05.

(4) External interrupt mode register 0 (INTM0)

External interrupt mode register 0 (INTM0) is an 8-bit register for specifying the valid edge of NMI and INTP0 to INTP2.

The INTM0 register can be read/written by a bit manipulation instruction or 8-bit manipulation instruction. RESET input sets it to 00H.

Figure 7-8. External Interrupt Mode Register 0 Format

Caution Bit 1 of the INTMO register is fixed to "0" by hardware. Even if "1" is written, it remains "0".

7.2.3 Operation

(1) Basic operation

Timer 0 (TM0) is a 16-bit interval timer that operates as an up/down or up timer. The cycle is controlled by a compare register (CM03).

All the bits of TM0 are cleared to 0 by the RESET input and the timer stops counting.

Counting is enabled or disabled by the CE0 bit of timer control register 0 (TMC0). When the CE0 bit is set to 1 through software, the timer starts counting; when the bit is reset to 0, TM0 is cleared and stops counting. When the value set in advance to the compare register (CM03) coincides with the current count value of TM0, a coincidence interrupt (INTCM03) occurs, and TM0 is cleared.

Five internal clocks can be selected by the TMC0 register as the count clock to TM0.

When TM0 is used as an up/down timer, and when TM0 = 0000H as a result of the down-count operation, an underflow interrupt (INTTM0) occurs.

TM0 can operate in the following five operation modes which are selected by timer unit mode register (TUM0):

• General-purpose interval timer

• PWM mode 0 _____ triangular wave modulation (symmetric triangular wave control)

- triangular wave modulation (asymmetric triangular wave control)

- toothed wave modulation control

• PWM mode 1

	TUM0 F	Register		Operation Mode	Count Operation	Timer Clear	$BFCM0n\toCM0n$
RMOD	TMOD02	TMOD01	TMOD00				Transfer Timing
×	0	×	×	General-purpose interval timer	Up	INTCM03	-
0	1	0	0	PWM mode 0 (symmetric triangular wave)	Up/down	_	INTTMO
0	1	0	1	PWM mode 0 (asymmetric triangular wave)	Up/down	_	INTTM0 INTCM03
0	1	1	×	PWM mode 0 (toothed wave)	Up	INTCM03	INTCM03
1	1	×	×	PWM mode 1	Up	INTCM03	INTCM03

Table 7-4. Operation Modes of Timer 0 (TM0)

Remarks 1. n = 0-2

2. \times : don't care

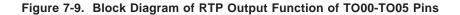
Each operation mode of TM0 is described on the following pages:

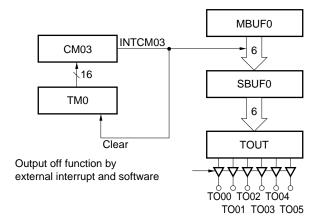
(2) General-purpose interval timer mode

If TM0 is set to the general-purpose interval timer mode, TM0 and CM03 always perform comparison operations and whenever they detect a coincidence, they generate an interrupt signal (INTCM03). The result of a compare coincidence is retained by hardware and TM0 is cleared (0000H) with the next count clock after the coincidence. Furthermore, when the next count clock is input, TM0 is counted up to 0001H.

Phase-out/Discontinued

Interval cycle = (value of CM03 +1) × TM0 count clock rate


If TM0 is set to this mode, it is possible to operate pins TO00 to TO05 as a real-time output port (RTP).


[Setting procedure]

- <1> Set pins P80 to P85 to the control mode (TO00 to TO05 outputs) (PMC80 to PMC85 = 1) by the port 8 mode control register (PMC8).
- <2> Set the TMOD02 bit of the TUM0 register to "0" to set to the general-purpose interval timer mode. Furthermore, put "1" in the ICME bit to enable the RTP output operation. If it is desired to stop pins TO00 to TO05 output in the event of abnormality, also set bits TODIS1 and TODIS0.
- <3> Specify the TM0 count clock by bits PRM02 to PRM00 of the TMC0 register.
- <4> When the CE0 bit of the TMC0 register is set (1) TM0 starts counting and data is output from pins TO00 to TO05 as RTP.

[Operation]

The data placed in MBUF0 by INTCM03 is transferred to TOUT via SBUF0. The TOUT data is output to pins TO00 to TO05 unmodified. Therefore, the output pattern is set in MBUF0.

Caution Setting of CM03 = 0000H is prohibited.

(3) PWM mode 0 ... Triangular wave modulation (symmetric waveform control)

[Setting procedure]

- (a) Set pins P80 to P85 to the control mode (TO00 to TO05 outputs) by the port 8 mode control register (PMC8)
 (bits PMC80 to PMC85 = 1).
- (b) Set PWM mode 0 (symmetric triangular wave) by bits RMOD and TMOD00 to TMOD02 of the TUM0 register. Furthermore, set the active level of pins TO00 to TO05 by the ALVTO bit of the TUM0 register.
- (c) Set the count clock of TM0 by bits PRM02 to PRM00 of the TMC0 register, and set the manipulation for writing to CM00 to CM02 by the CMWE bit. Furthermore, set the transfer operation from BFCM03 to CM03 by the B3TR bit.
- (d) Set the initial values.
 - (i) Put the half-cycle width of the 1st PWM cycle in CM03.
 - PWM cycle = CM03 value × 2 × TM0 clock rate (The clock rate of TM0 is set by the TMC0 register.)
 - (ii) Put the half-cycle width of the 2nd PWM cycle in BFCM03.
 (Setting is not necessary because BFCM03 is not used when B3TR of the TMC0 register = 0)
 - (iii) Put the dead time width in DTIME.
 - Dead time width = (DTIME + 1) × TcLK TcLK: System clock rate
 - (iv) Put the set/reset timing of the F/F used in the 1st cycle in CM00 to CM02.
 - Direct writing of CMWE of the TMC0 register = 0 to CM00 to CM02 is disabled.
 If an instruction for writing to CM00 to CM02 is executed, data in BFCM00 to BFCM02 is transferred to CM00 to CM02. Use the following procedure for setting.
 - <1> Write values of CM00 to CM02 used in the 1st cycle to BFCM00 to BFCM02.
 - <2> If an instruction for writing to CM00 to CM02 is executed, the values of BFCM00 to BFCM02 set in <1> are transferred to CM00 to CM02.
 - Direct writing of CMWE of the TMC0 register = 1 to CM00 to CM02 is enabled.
 - (v) Set the set/reset timing ot the F/F used in the 2nd cycle in BFCM00 to BFCM02.

- (e) Set (1) the CED bit of the TMC1 register to enable operation of the dead time timer. If it is desired not to take the dead time, set CED = 0.
- (f) Setting (1) the CE0 bit of the TMC0 register starts the counting of TM0, and a 6-channel PWM signal is output from pins TO00 to TO05.If direct writing to CM00 to CM02 is not performed by an instruction during the operation, reset (0) the

Caution Setting of CM03 = 0000H is prohibited.

CMWE bit of the TMC0 register before starting the timer.

In this mode, TM0 executes up/down count operation, and if TM0 = 0000H as a result of counting down, an underflow interrupt (INTTM0) occurs.

Phase-out/Discontinued

Switching from up count to down count is performed by a coincidence between TM0 and CM03 (INTCM03), while switching from down count to up count is performed by INTTM0.

The PWM cycle in this mode is (CM03 value $\times 2 \times TM0$ clock rate). The data setting in CM03 varies as follows depending on the setting of the B3TR bit of the TMC0 register.

- B3TR = 0: No transfer from BFCM03 to CM03 is performed. Execute operations by the software processing started by INTTM0 and directly place the cycle data in CM03.
- B3TR = 1: The BFCM03 data is automatically transferred by the hardware to CM03 by INTTM0. Then, execute operations by the software processing started by INTTM0 and put the data in the next cycle in BFCM03.

Data settings in CM00 to CM02 that control the PWM duty width is explained below.

Concerning data settings in CM00 to CM02, when INTTM0 occurs, the hardware automatically transfers the values of BFCM00-BFCM02 to CM00-CM02. In addition, software processing is started and an arithmetic operation is executed, and the set/reset timing of F/F used for the next cycle is set to BFCM00-BFCM02. When CMWE of the TMC0 register = 0, direct writing to CM00 to CM02 is not possible. If CMWE = 1, direct writing is possible. However, data transfer from BFCM00 through BFCM02 to CM00 through CM02 by INTTM0 is performed irrespective of the setting of the CMWE bit.

The PWM cycle and PWM duty width are set in the above procedure.

The set/reset condition of the F/F that changes with a coincidence in CM00 to CM02 is as follows.

- Set : Coincidence of TM0 with CM00-CM02 when TM0 counts up
- Reset : Coincidence of TM0 with CM00-CM02 when TM0 counts down

In this mode, F/F is set and reset at the same timing (symmetric control).

The value of DTIME is loaded to the corresponding dead time timer (DTM0-DTM2) in synchronization with the set/reset timing of F/F, and the dead time timer starts counting down. DTM0-DTM2 count down to 000H and stop when they count down further to 3FFH.

DTM0-DTM2 can automatically generate a width (dead time) at which the active levels of the positive (TO00, TO02, TO04) phase and negative phase (TO01, TO03, TO05) do not overlap.

In this way, the software processing is started by an interrupt (INTTM0) that occurs once during PWM cycle (one cycle) after initial setting has been performed, and by setting PWM cycle and PWM duty width used for the next cycle, the PWM waveform can be output to the TO00-TO05 pins with a dead time width taken into consideration.

[Output waveform width in respect to set value]

- PWM cycle = CM03 \times 2 \times TTM0
- Dead time width $T_{DTM} = (DTIME + 1) \times T_{CLK}$
- Active width of positive phase (TO00, TO02, TO04 pins)
 = {(CM03 CM0Xup) + (CM03 CM0Xdown)} × TTM0 TDTM
- Active width of negative phase (TO01, TO03, TO05 pins)
- = $(CM0X_{down} + CM0X_{up}) \times T_{TM0} T_{DTM}$
- In this mode, CM0X_{up} = CM0X_{down} (however, in the same PWM cycle).
 CM0X_{up} and CM0X_{down} in the negative phase calculation expression is generated by another PWM cycle. Therefore, CM0X_{up} ≠ CM0X_{down}.

Тсік	: system clock rate
Ттмо	: input clock rate of TM0
CM0Xup	: set values of CM00-CM02 when TM0 counts up
CM0X _{down}	: set values of CM00-CM02 when TM0 counts down

The TO00-TO05 pins are set in the input port mode and go into a high-impedance state on reset. When these pins are set in the control mode later, they output the following levels until TM0 is started:

•	TO00,	TO02,	TO04	High level when they are low active
				Low level when they are high active
•	TO01,	TO03,	тоо5	Low level when they are low active
				High level when they are high active

The active level is set by the ALVTO bit of the TUM0 register. The default is low active.

Caution If values are set such that the active width of the positive phase or negative phase becomes "0" or "minus" according to the above expressions, pins TO00 to TO05 output a waveform with "0" active width and fixed at the inactive level.

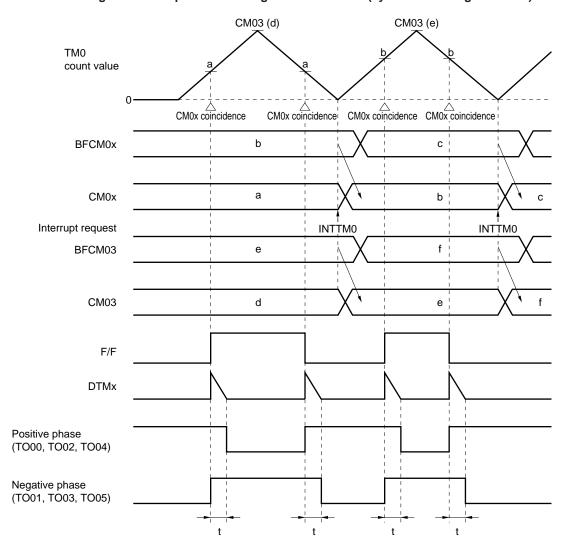


Figure 7-10. Operation Timing in PWM Mode 0 (symmetric triangular wave)

- **Remarks 1.** The above figure is the timing chart when the transfer operation from BFCM03 to CM03 is enabled with B3TR of the TMC0 register = 1. When B3TR = 0, no transfer is performed and the up/down cycle of TM0 is set by directly writing to CM03.
 - **2.** x = 0-2
 - **3.** t: dead time = (DTIME + 1) × TCLK (TCLK: system clock rate)
 - 4. Not to take the dead time, clear the CED bit of the TMC1 register to 0.
 - 5. The above figure shows an active low case.

An example of operation timing related to the set values of CM00-CM02 (BFCM00-BFCM02) is shown next.

(a) When CM0x (BFCM0x) \geq CM03 is set

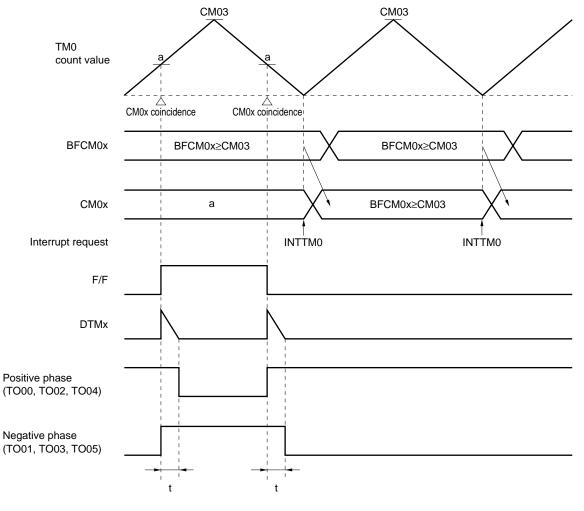


Figure 7-11. Operation Timing in PWM Mode 0 (symmetric triangular wave, BFCM0x ≥ CM03)

Remarks 1. x = 0-2

- **2.** t: dead time = (DTIME + 1) \times TCLK
 - (TCLK: system clock rate)
- 3. The above figure shows an active low case.

If a value greater than that of CM03 is set to BFCM0x, the positive-phase pins (TO00, TO02, TO04) continue outputting high level, and the negative-phase pins (TO01, TO03, TO05) continue outputting low level. This feature is effective for outputting a low-level or high-level width exceeding the PWM cycle in an application such as inverter control. When CM0x = CM03, coincidence between TM0 and CM0x is detected when TM0 counts down. Therefore, F/F remains reset and is not set.

The above explanation applies to an active low case. In an active high case, the levels of positive and negative phases are merely inverted and other operations remain the same.

(b) When CM0x (BFCM0x) = 0000H is set

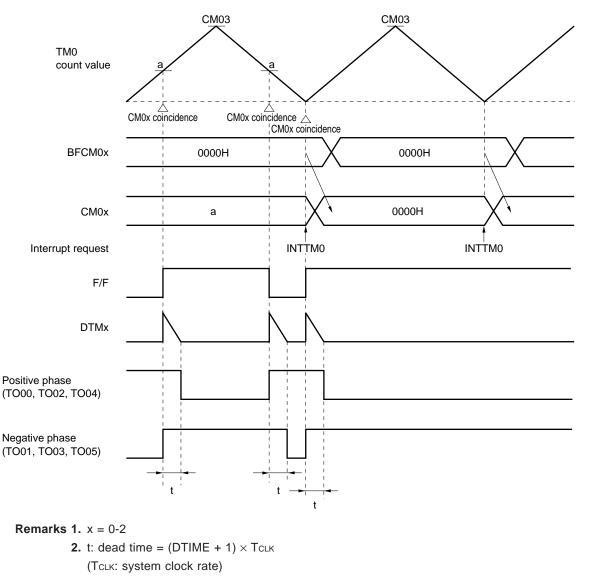


Figure 7-12. Operation Timing in PWM Mode 0 (symmetric triangular wave, BFCM0x = 0000H)

3. The above figure shows an active low case.

Since coincidence of TM0 = CM0x = 0000H is detected when TM0 counts up, F/F is only set and is not reset. When the value setting is 0000H, the F/F is also changed in the cycle in which data is transferred from BFCM0x to CM0x in the same way as for value settings other than 0000H.

(4) PWM mode 0 ... triangular wave modulation (asymmetric wave control)

[Setting procedure]

- (a) Set pins P80 to P85 to the control mode (TO00 to TO05 outputs) by the port 8 mode control register (PMC8) (bits PMC80 to PMC85 = 1).
- (b) Set PWM mode 0 (asymmetric triangular wave) by bits RMOD and TMOD00 to TMOD02 of the TUM0 register. Furthermore, set the active level of pins TO00 to TO05 by the ALVTO bit of the TUM0 register.
- (c) Set the count clock of TM0 by bits PRM02 to PRM00 of the TMC0 register, and set the manipulation for writing to CM00 to CM02 by the CMWE bit. Furthermore, set the transfer operation from BFCM03 to CM03 by the B3TR bit.
- (d) Set the initial values.
 - (i) Put the half-cycle width of the 1st PWM cycle in CM03.
 - PWM cycle = CM03 value × 2 × TM0 clock rate (The clock rate of TM0 is set by the TMC0 register.)
 - (ii) Put the half-cycle width of the 2nd PWM cycle in BFCM03.(Setting is not necessary because BFCM03 is not used when B3TR of the TMC0 register = 0)
 - (iii) Put the dead time width in DTIME.
 - Dead time width = (DTIME + 1) × TcLk TcLk: System clock rate
 - (iv) Put the set timing of the F/F used in the 1st cycle in CM00 to CM02.
 - Direct writing of CMWE of the TMC0 register = 0 to CM00 to CM02 is disabled.
 If an instruction for writing to CM00 to CM02 is executed, data in BFCM00 to BFCM02 is transferred to CM00 to CM02. Use the following procedure for setting.
 - <1> Write the values of CM00 to CM02 used in the 1st cycle to BFCM00 to BFCM02.
 - <2> If an instruction for writing to CM00 to CM02 is executed, the values of BFCM00 to BFCM02 set in <1> are transferred to CM00 to CM02.
 - Direct writing of CMWE of the TMC0 register to CM00 to CM02 is enabled.
 - (v) Put the reset timing of the F/F used in the 1st cycle in BFCM00 to BFCM02.

(e) Set (1) the CED bit of the TMC1 register to enable the dead time timer operation. If it is desirable not to take the dead time, set CED = 0.

Phase-out/Discontinued

(f) Setting (1) the CE0 bit of the TMC0 register starts the counting of TM0, and a 6-channel PWM signal is output from pins TO00 to TO05.

If direct writing to CM00 to CM02 is not performed by an instruction during the operation, reset (0) the CMWE bit of the TMC0 register before starting the timer.

Caution Setting of CM03 = 0000H is prohibited.

[Operation]

In this mode, TM0 executes up/down count operation, and if TM0 = 0000H as a result of counting down, an underflow interrupt (INTTM0) occurs.

Phase-out/Discontinued

Switching from up count to down count is performed by a coincidence between TM0 and CM03 (INTCM03), while switching from down count to up count is performed by INTTM0.

The PWM cycle in this mode is (CM03 value $\times 2 \times$ TM0 clock rate). Data setting in CM03 varies as follows depending on the setting of the B3TR bit of the TMC0 register.

- B3TR = 0: No transfer from BFCM03 to CM03 is performed. Execute operations by the software processing started by INTTM0 and directly set the cycle data in CM03.
- B3TR = 1: The BFCM03 data is automatically transferred by the hardware to CM03 by INTTM0. Then, execute operations by the software processing started by INTTM0 and put the data in the next cycle in BFCM03.

Data settings in CM00 to CM02, which control the PWM duty width, are explained below.

Concerning data settings in CM00 to CM02 when INTTM0 and INTCM03 (interrupt occurs when TM0 and CM03 coincide) occur, the hardware automatically transfers the values of BFCM00-BFCM02 to CM00-CM02. In addition, software processing is started and an arithmetic operation is executed, and the set/reset timing of F/F used after half a cycle is set to BFCM00-BFCM02.

When CMWE of the TMC0 register = 0, direct writing to CM00 to CM02 is not possible. If CMWE = 1, direct writing is possible. However, data transfer from BFCM00 through BFCM02 to CM00 through CM02 by INTTM0 and INTCM03 is performed irrespective of the setting of the CMWE bit.

The PWM cycle and PWM duty width are set in the above procedure.

The set/reset condition of the F/F that changes with a coincidence in CM00 to CM02 is as follows.

- Set : Coincidence of TM0 with CM00-CM02 when TM0 counts up
- Reset : Coincidence of TM0 with CM00-CM02 when TM0 counts down

The value of DTIME is loaded to the corresponding dead time timer (DTM0-DTM2) in synchronization with the set/reset timing of F/F, and the dead time timer starts counting down. DTM0-DTM2 count down to 000H and stop when they count down further to 3FFH.

DTM0-DTM2 can automatically generate a width (dead time) at which the active levels of the positive (TO00, TO02, TO04) phase and negative phase (TO01, TO03, TO05) do not overlap.

In this way, the software processing is started by two interrupts (INTTM0 and INTCM03) that occur during PWM cycle (one cycle) after initial setting has been performed, and by setting PWM cycle and PWM duty width used for half cycle later, the PWM waveform can be output to the TO00-TO05 pins with a dead time width taken into consideration.

The difference between the symmetric wave control mode and this asymmetric wave control mode is that in the symmetric wave control mode, INTTM0 (occurs once in PWM cycle) is used as an interrupt that transfers BFCM00-BFCM02 to CM00-CM02 and starts the software, while INTTM0 and INTCM03 (occur two times in PWM cycle = once during half a cycle) are used in this mode.

Phase-out/Discontinued

[Output waveform width in respect to set value]

- PWM cycle = CM03 \times 2 \times TTM0
- Dead time width TDTM = (DTIME + 1) × TCLK
- Active width of positive phase (TO00, TO02, TO04 pins)
 = {(CM03 CM0Xup) + (CM03 CM0Xdown)} × TTM0 TDTM
- Active width of negative phase (TO01, TO03, TO05 pins)
 = (CM0X_{down} + CM0X_{up}) × T_{TM0} T_{DTM}

 TCLK
 : system clock rate

 TTM0
 : input clock rate of TM0

 CM0Xup
 : set values of CM00-CM02 when TM0 counts up

 CM0Xdown
 : set values of CM00-CM02 when TM0 counts down

The TO00-TO05 pins are set in the input port mode and go into a high-impedance state on reset. When these pins are set in the control mode later, they output the following levels until TM0 is started:

- TO00, TO02, TO04 ... High level when they are low active Low level when they are high active
- TO01, TO03, TO05 ... Low level when they are low active High level when they are high active

The active level is set by the ALVTO bit of the TUM0 register. The default is low active.

Caution If values are set such that the active width of the positive phase or negative phase becomes "0" or "minus" according to the above expressions, pins TO00 to TO05 output a waveform with "0" active width and fixed at the inactive level.

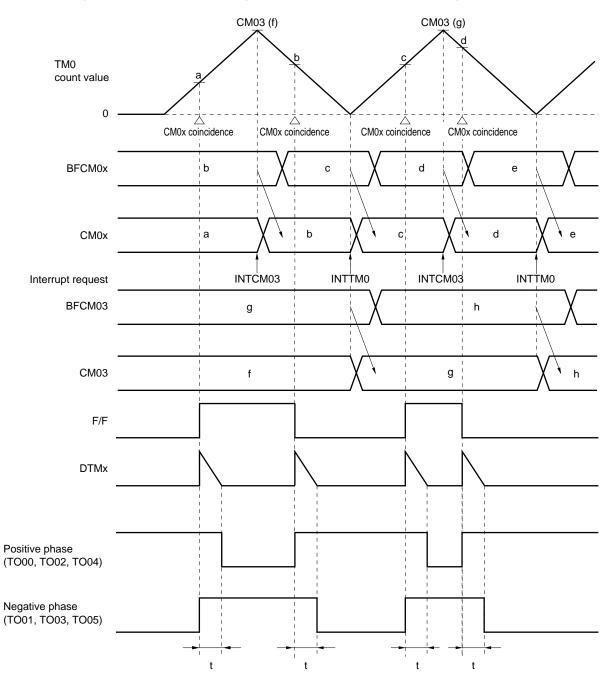
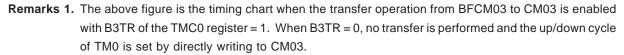



Figure 7-13. Operation Timing in PWM Mode 0 (asymmetric triangular wave)

- **2.** x = 0-2
- 3. t: dead time = (DTIME + 1) × TcLk (TcLk: system clock rate)
- 4. Not to take the dead time, clear the CED bit of the TMC1 register to 0.
- 5. The above figure shows an active low case.

(a) When BFCM0x \geq CM03 is set via software started by INTCM03

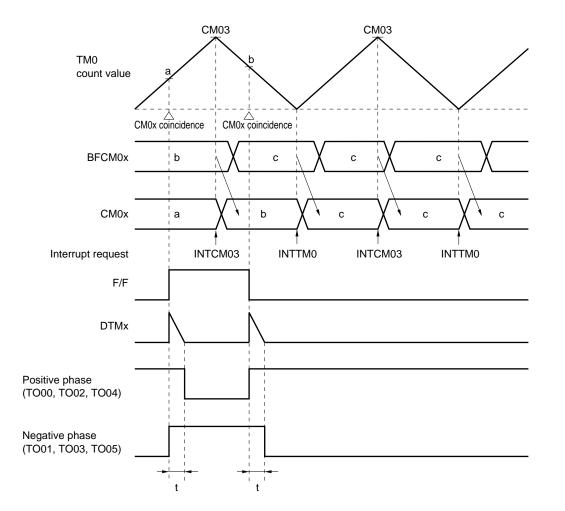


Figure 7-14. Operation Timing in PWM Mode 0 (asymmetric triangular wave, BFCM0x \geq CM03)

Remarks 1. x = 0-2

2. $c \ge CM03$

- 3. t: dead time = (DTIME + 1) × TCLK (TCLK: system clock rate)
- 4. The above figure shows an active low case.

If a value greater than that of CM03 is set to BFCM0x, the positive-phase pins (TO00, TO02, TO04) continue outputting high level, and the negative-phase pins (TO01, TO03, TO05) continue outputting low level. This feature is effective for outputting a low-level or high-level width exceeding the PWM cycle in an application such as inverter control.

When CM0x = CM03, coincidence between TM0 and CM0x is detected when TM0 counts down. Therefore, F/ F remains reset and is not set.

The above explanation applies to an active low case. In an active high case, the levels of positive and negative phases are merely inverted and other operations remain the same.

(b) When BFCM0x > CM03 is set via software processing started by INTTM0

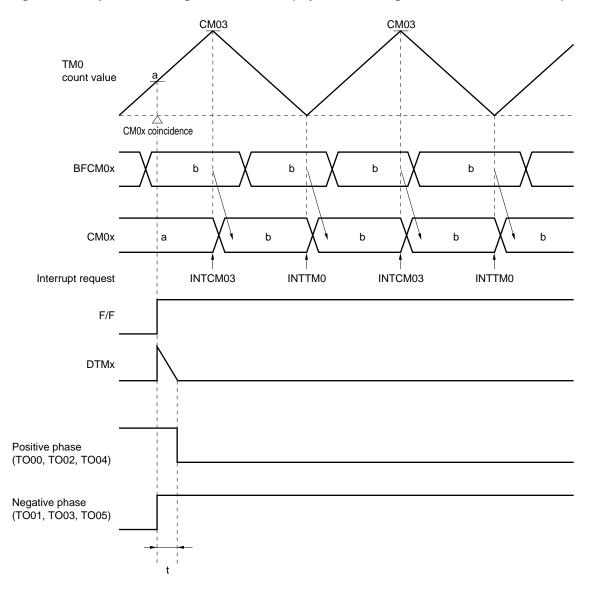


Figure 7-15. Operation Timing in PWM Mode 0 (asymmetric triangular wave, BFCM0x > CM03)

Remarks 1. x = 0-2

2. b > CM03

- 3. t: dead time = (DTIME + 1) × TCLK (TCLK: system clock rate)
- 4. The above figure shows an active low case.

If a value greater than that of CM03 is set to BFCM0×, the positive-phase pins (TO00, TO02, TO04) continue outputting high level, and the negative-phase pins (TO01, TO03, TO05) continue outputting low level. This feature is effective for outputting a low-level or high-level width exceeding the PWM cycle in an application such as inverter control.

The above explanation applies to an active low case. In an active high case, the levels of positive and negative phases are merely inverted and other operations remain the same.

(c) When BFCM0x = 0000H is set via software processing started by INTCM03

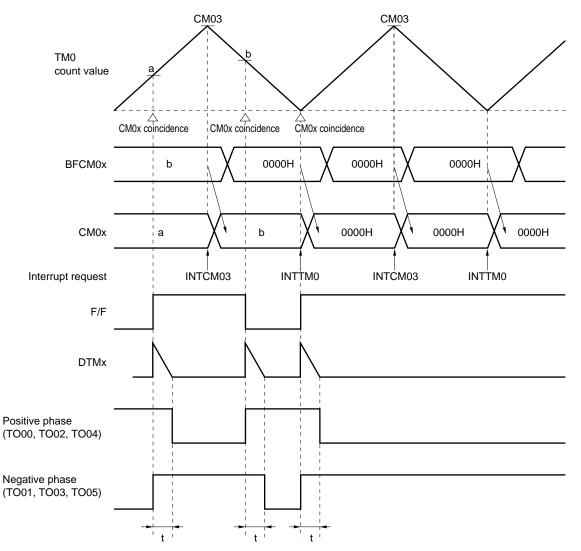


Figure 7-16. Operation Timing in PWM Mode 0 (asymmetric triangular wave, BFCM0x = 0000H) (1)

Remarks 1. x = 0-2

2. t: dead time = (DTIME + 1) × TCLK (TCLK: system clock rate)

3. The above figure shows an active low case.

Since coincidence of TM0 = CM0x = 0000H is detected when TM0 counts up, F/F is only set and is not reset. Furthermore, a coincidence is detected and the F/F is set in the cycle in which 0000H is transferred to CM0x by INTTM0.

(d) When BFCM0x = 0000H is set via software processing started by INTTM0

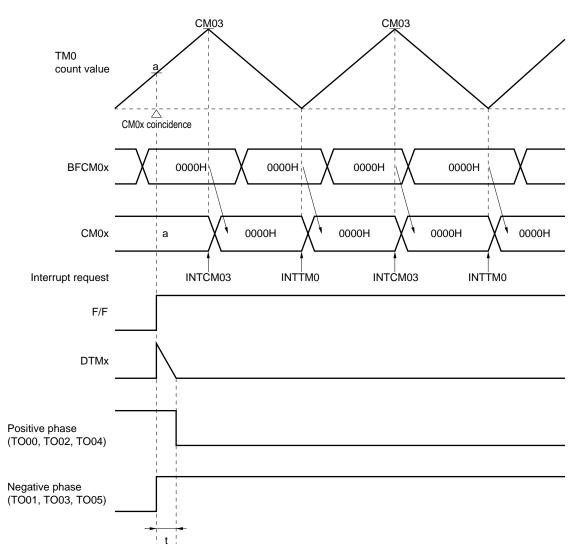


Figure 7-17. Operation Timing in PWM Mode 0 (asymmetric triangular wave, BFCM0x = 0000H) (2)

Remarks 1. x = 0-2

- 2. t: dead time = (DTIME + 1) × TCLK (TCLK: system clock rate)
- 3. The above figure shows an active low case.

Since coincidence of TM0 = CM0x = 0000H is detected when TM0 counts up, F/F is only set and is not reset. Therefore, the positive-phase pins (TO00, TO02, TO04) output low level, and the negative-phase pins (TO01, TO03, TO05) continue outputting high level.

The above explanation applies to an active low case. In an active high case, the levels of positive and negative phases are merely inverted and other operations remain the same.

(e) When BFCM0x = CM03 is set via software processing started by INTTM0

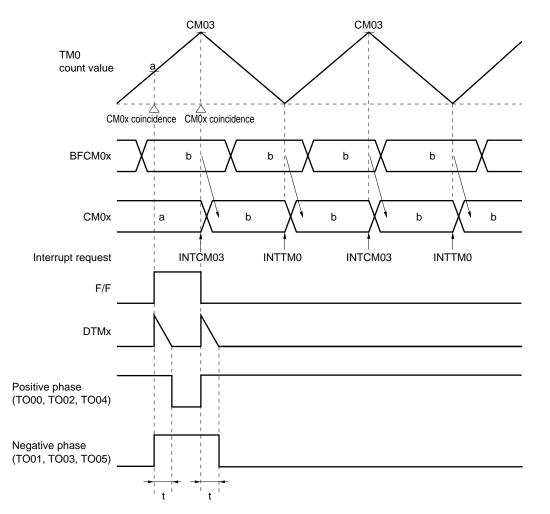


Figure 7-18. Operation Timing in PWM Mode 0 (asymmetric triangular wave, BFCM0x = CM03)

Remarks 1. x = 0-2

2. b = CM03

- 3. t: dead time = (DTIME + 1) × TCLK (TCLK: system clock rate)
- 4. The above figure shows an active low case.

When BFCM0x = CM03, coincidence between TM0 and CM0x is detected when TM0 counts down. Therefore, F/F remains reset and is not set. Consequently, the positive-phase pins (TO00, TO02, TO04) output high level, and the negative-phase pins (TO01, TO03, TO05) continue outputting low level. The coincidence with TM0 when CM0x = CM03 is performed in the cycle in which data is transferred from BFCM0x to CM0x by INTCM03.

The above explanation applies to an active low case. In an active high case, the levels of positive and negative phases are merely inverted and other operations remain the same.

(5) PWM mode 0 ... toothed wave modulation

[Setting procedure]

- (a) Set pins P80 to P85 to the control mode (TO00 to TO05 outputs) by the port 8 mode control register (PMC8) (bits PMC80 to PMC85 = 1).
- (b) Set PWM mode 0 (toothed wave) by bits RMOD and TMOD00 to TMOD02 of the TUM0 register. Furthermore, set the active level of pins TO00 to TO05 by the ALVTO bit of the TUM0 register.
- (c) Set the count clock of TM0 by bits PRM02 to PRM00 of the TMC0 register, and set the manipulation for writing to CM00 to CM02 by the CMWE bit. Furthermore, set the transfer operation from BFCM03 to CM03 by the B3TR bit.
- (d) Set the initial values.
 - (i) Put the half-cycle width of the 1st PWM cycle in CM03.
 - PWM cycle = CM03 value × 2 × TM0 clock rate (The clock rate of TM0 is set by the TMC0 register.)
 - Put the half-cycle width of the 2nd PWM cycle in BFCM03. (Setting is not necessary because BFCM03 is not used when B3TR of the TMC0 register = 0)
 - (iii) Put the dead time width in DTIME.

• Dead time width = (DTIME + 1) × TCLK

TCLK: System clock rate

- (iv) Put the set/reset timing of the F/F used in the 2nd cycle in BFCM00 to BFCM02.
- Caution The status of F/F does not change during the first cycle even if CM00-CM02 coincide. Therefore, the positive-phase pins (TO00, TO02, TO04) remain inactive level and the negative-phase pins (TO01, TO03, TO05) remain active level. The PWM wave can be output from the second cycle. The active level is set by the ALVTO bit of the TUM0 register.
- (e) Set (1) the CED bit of the TMC1 register to enable operation of the dead time timer. If it is desirable not to take the dead time, set CED = 0.
- (f) Setting (1) the CE0 bit of the TMC0 register starts the counting of TM0, and a 6-channel PWM signal is also output from pins TO00 to TO05.
 If direct writing to CM00 to CM02 is not performed by an instruction during the operation, reset (0) the CMWE bit of the TMC0 register before starting the timer.

Caution Setting of CM03 = 0000H is prohibited.

[Operation]

In this mode, TM0 performs up count operation and if it coincides with CM03, it generates coincidence interrupt INTCM03 and clears TM0.

The PWM cycle in this mode is "(CM03 value + 1) \times TM0 clock rate". Data setting in CM03 varies as follows depending on the setting of the B3TR bit of the TMC0 register.

- B3TR = 0: No transfer from BFCM03 to CM03 is performed. Execute operations by the software processing started by INTCM03 and directly set the cycle data in CM03.
- B3TR = 1 : The BFCM03 data is automatically transferred by the hardware to CM03 by INTCM03. Then, execute operations by the software processing started by INTCM03 and set the data in the next cycle in BFCM03.

Data settings in CM00 to CM02, which control the PWM duty width, are explained below.

Concerning data settings in CM00 to CM02, the values of BFCM00 to BFCM02 are automatically transferred by the hardware to CM00 to CM02 by INTCM03. Then, execute operations by the software processing started by INTCM03 and put the reset timing of the F/F in the next cycle in BFCM00 to BFCM02.

When CMWE of the TMC0 register = 0, direct writing to CM00 to CM02 is not possible. If CMWE = 1, direct writing is possible. However, data transfer from BFCM00 through BFCM02 to CM00 through CM02 by INTCM03 is performed irrespective of the setting of the CMWE bit.

The PWM cycle and PWM duty width are set in the above procedure.

The set/reset condition of the F/F that changes with a coincidence in CM00 to CM02 is as follows.

- Set : Detection of coincidence between TM0 and CM03
- Reset : Detection of coincidence between TM0 and CM00 to CM02

The value of DTIME is loaded to the corresponding dead time timer (DTM0-DTM2) in synchronization with the set/reset timing of F/F, and the dead time timer starts counting down. DTM0-DTM2 count down to 000H and stop when they count down further to 3FFH. DTM0-DTM2 can automatically generate a width (dead time) at which the active levels of the positive (TO00, TO02, TO04) phase and negative phase (TO01, TO03, TO05) do not overlap.

In this way, the software processing is started by an interrupt (INTCM03) that occurs once during PWM cycle (one cycle) after initial setting has been performed, and by setting the PWM cycle and PWM duty width used for the next cycle later to the PWM waveform can be output to the TO00-TO05 pins with a dead time width taken into consideration.

[Output waveform width in respect to set value]

- PWM cycle = (CM03+1) × Ттмо
- Dead time width $T_{DTM} = (DTIME + 1) \times T_{CLK}$
- Active width of positive phase (TO00, TO02, TO04 pins) = $(CM0X + 1) \times T_{TM0} T_{DTM}$
- Active width of negative phase (TO01, TO03, TO05 pins) = (CM03 CM0X) × TTM0 TDTM

TCLK : system clock rate

- TTM0 : input clock rate of TM0
- CM0X : set values of CM00-CM02

The TO00-TO05 pins are set in the input port mode and go into a high-impedance state on reset. When these pins are set in the control mode later, they output the following levels until TM0 is started:

- TO00, TO02, TO04 ... High level when they are low active
 Low level when they are high active
- TO01, TO03, TO05 ... Low level when they are low active
 High level when they are high active

The active level is set by the ALVTO bit of the TUM0 register. The default is low active.

Caution If values are set such that the active width of the positive phase or negative phase becomes "0" or "minus" according to the above expressions, pins TO00 to TO05 output a waveform with "0" active width and fixed at the inactive level.

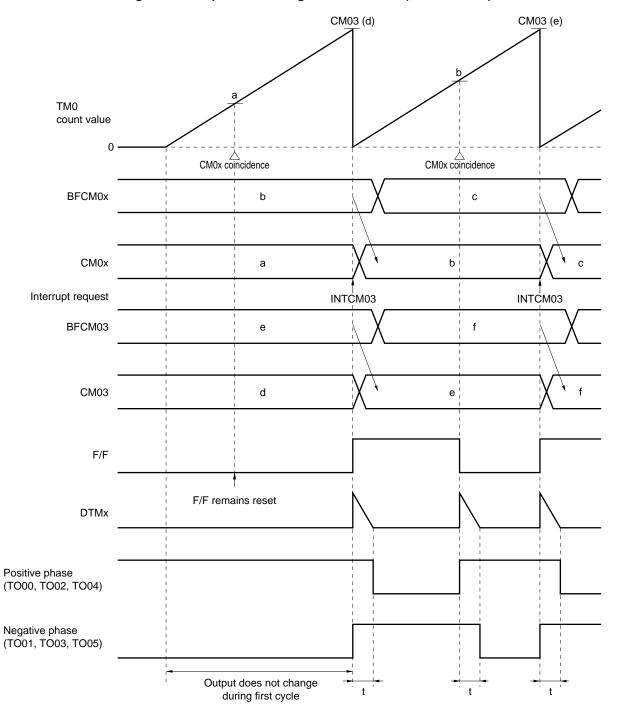


Figure 7-19. Operation Timing in PWM Mode 0 (toothed wave)

Remarks 1. x = 0-2

- 2. t: dead time = (DTIME + 1) × TCLK (TCLK: system clock rate)
- 3. Not to take the dead time, clear the CED bit of the TMC1 register to 0.
- 4. The above figure shows an active low case.

Since F/F is reset when TM0 coincides with CM0x, the output level does not change during the first cycle of TM0.

(a) When BFCM0x > CM03 is set

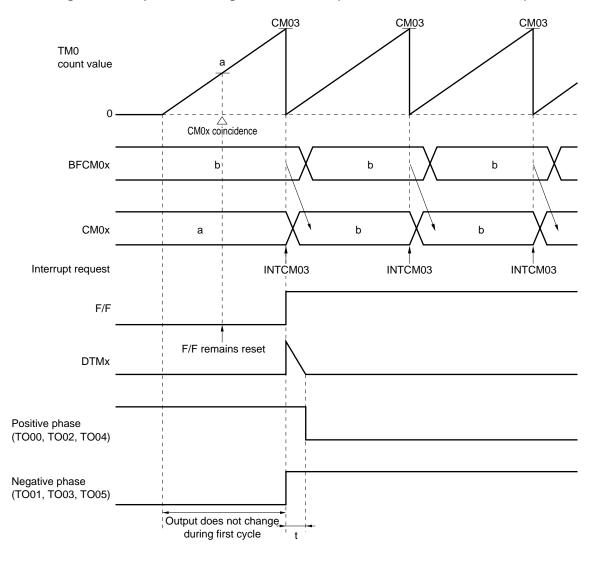


Figure 7-20. Operation Timing in PWM Mode 0 (toothed wave, BFCM0x > CM03)

Remarks 1. x = 0-2

2. b > CM03

3. t: dead time = (DTIME + 1) × TCLK (TCLK: system clock rate)

4. The above figure shows an active low case.

If a value greater than that of CM03 is set to BFCM0x, the positive-phase pins (TO00, TO02, TO04) continue outputting low level, and the negative-phase pins (TO01, TO03, TO05) continue outputting high level. Because TM0 and CM0x do not coincide, F/F is not reset. This feature is effective for outputting a low-level or high-level width exceeding the PWM cycle in an application such as inverter control.

The above explanation applies to an active low case. In an active high case, the levels of positive and negative phases are merely inverted and other operations remain the same.

(b) When BFCM0x = CM03 is set

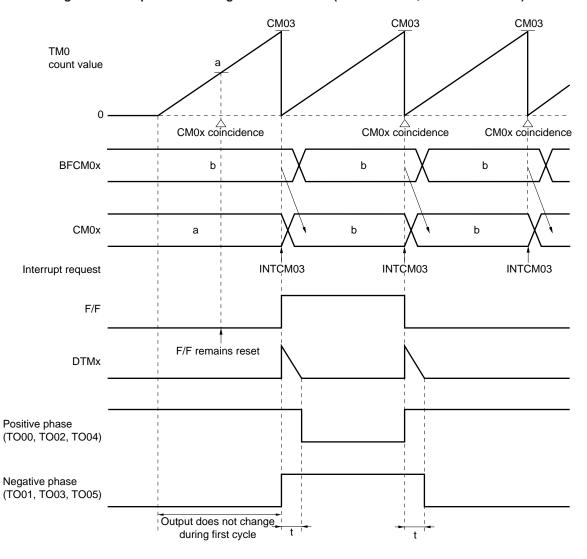


Figure 7-21. Operation Timing in PWM Mode 0 (toothed wave, BFCM0x = CM03)

Remarks 1. x = 0-2

2. b > CM03

3. t: dead time = (DTIME + 1) × TCLK (TCLK: system clock rate)

4. The above figure shows an active low case.

If INTCM03, coincidence signal between TM0 and CM03, contends with coincidence between TM0 and CM0x, resetting F/F takes precedence. Therefore, F/F is not set after CM0x (= CM03) has coincided with TM0.

(c) When BFCM0x = 0000H is set

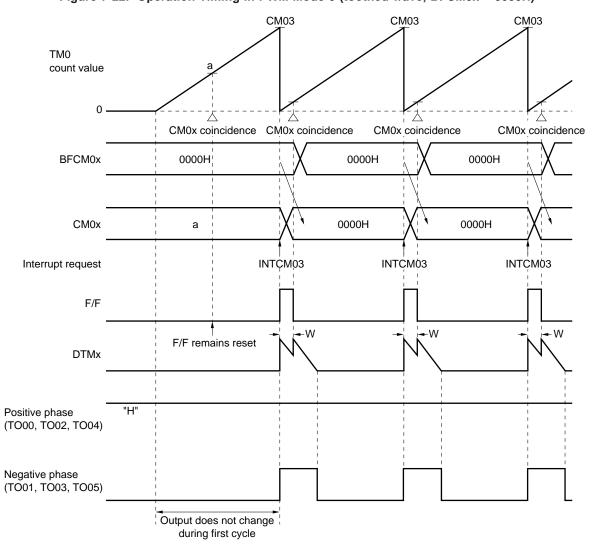


Figure 7-22. Operation Timing in PWM Mode 0 (toothed wave, BFCM0x = 0000H)

Remarks 1. x = 0 to 2

- 2. The above figure shows an active low case.
- 3. W: Width from CM03 coincidence to CM0x coincidence (timer count clock)

When CM0x = 0000H is set, the output waveform varies depending on the TM0 count clock rate and the DTIME set value. If the result of calculating both according to the expression for the active width is "0" or minus, the output will be a waveform without the active width (on the positive phase side) as shown in the figure above. If the result of the active width calculation is positive, the active width is output according to the result.

(6) PWM mode 1 (buffer mode)

[Setting procedure]

- (a) Set pins P80 to P85 to the control mode (TO00 to TO05 outputs) by the port 8 mode control register (PMC8)
 (bits PMC80 to PMC85 = 1).
- (b) Set PWM mode 1 by bits RMOD and TMOD00 to TMOD02 of the TUM0 register. Furthermore, setting of the active level by the ALVTO bit of the TUM0 register is not necessary because this setting has no effect in PWM mode 1.
- (c) Set the count clock of TM0 by bits PRM02 to PRM00 of the TMC0 register, and set the manipulation for writing to CM00 to CM02 by the CMWE bit. Furthermore, set the transfer operation from BFCM03 to CM03 by the B3TR bit.
- (d) Set the initial values.
 - (i) Put the half-cycle width of the 1st PWM cycle in CM03.
 - PWM cycle = CM03 value × 2 × TM0 clock rate (The clock rate of TM0 is set by the TMC0 register.)
 - (ii) Put the half-cycle width of the 2nd PWM cycle in BFCM03.(Setting is not necessary because BFCM03 is not used when B3TR of the TMC0 register = 0)
 - (iii) Put the dead time width in DTIME.
 - Dead time width = (DTIME + 1) \times TCLK
 - TCLK: System clock rate
 - (iv) Put the set timing of the F/F used in the 1st cycle in CM00 to CM02.
 - Direct writing of CMWE of the TMC0 register = 0 to CM00 to CM02 is disabled. If an instruction for writing to CM00 to CM02 is executed, data in BFCM00 to BFCM02 is transferred to CM00 to CM02. Use the following procedure for setting.
 - <1> Write the values of CM00 to CM02 used in the 1st cycle to BFCM00 to BFCM02. <2> If an instruction for writing to CM00 to CM02 is executed, the values of BFCM00 to BFCM02 set in <1> are transferred to CM00 to CM02.
 - Direct writing of CMWE of the TMC0 register = 1 to CM00 to CM02 is enabled.
 - (v) Put the reset timing of the F/F used in the 2nd cycle in BFCM00 to BFCM02.
 - (vi) Put the output data of pins TO00 to TO05 used in the 1st cycle in SBUF0 to SBUF5.
 - (vii) Put the output data of pins TO00 to TO05 used in the 2nd cycle in MBUF0 to MBUF5.

- (e) Set (1) the CED bit of the TMC1 register to enable the operation of dead time timer. If it is desired not to take the dead time, set CED = 0.
- (f) Setting (1) the CE0 bit of the TMC0 register starts the counting of TM0, and a 6-channel PWM signal is output from pins TO00 to TO05.

If direct writing to CM00 to CM02 is not performed by an instruction during the operation, reset (0) the CMWE bit of the TMC0 register before starting the timer.

Cautions 1. Setting of CM03 = 0000H is prohibited.

2. SBUF0 to SBUF5 and MBUF0 to MBUF5 are 8-bit access registers. However, only the low-order 6 bits are output to TO00 to TO05. The high-order 2 bits are ignored (fixed at "0" by hardware).

[Operation]

In this mode, TM0 up counts and if it coincides with CM03, it generates coincidence interrupt INTCM03 and clears TM0.

Data setting in CM03, which controls the TM0 cycle, varies as follows depending on the setting of the B3TR bit of the TMC0 register.

- B3TR = 0 : No transfer from BFCM03 to CM03 is performed. Execute operations by the software processing started by INTCM03 and directly set the cycle data in CM03.
- B3TR = 1 : The BFCM03 data is automatically transferred by the hardware to CM03 by INTCM03. Then, execute operations by the software processing started by INTCM03 and set the data in the next cycle in BFCM03.

Setting of the PWM output timing (CM00 to CM02) and the output data (SBUF0 to SBUF5) is explained below. Concerning data settings in CM00 to CM02, the values of BFCM00 to BFCM02 are automatically transferred by the hardware to CM00 to CM02 by INTCM03 and the values of MBUF0 to MBUF5 are transferred to SBUF0 to SBUF5. Then, perform the software processing started by INTCM03 to execute operations and set the set/ reset timing of the F/F in the next cycle in BFCM00 to BFCM02, and put the output data in the next cycle in MBUF0 to MBUF5.

When CMWE of the TMC0 register = 0, direct writing to CM00 to CM02 is not possible. If CMWE = 1, direct writing is possible. However, data transfer from BFCM00 through BFCM02 to CM00 through CM02 by INTCM03 is performed irrespective of the setting of the CMWE bit.

The PWM cycle, PWM output timing and output data are set in the above procedure.

The set/reset condition of the F/F is detection of a coincidence between TM0 and CM00 to CM02.

The value of DTIME is loaded to the corresponding dead time timer (DTM0-DTM2) in synchronization with the set/reset timing of F/F, and the dead time timer starts counting down. DTM0-DTM2 count down to 000H and stop when they count down further to 3FFH. DTM0-DTM2 can automatically generate a width (dead time) at which the active levels of the positive (TO00, TO02, TO04) phase and negative phase (TO01, TO03, TO05) do not overlap.

The data of SBUF0-SBUF5 are automatically transferred to the output register (TOUT) in synchronization with the operations of DTM0-DTM2. Data in TOUT is output to TO00 to TO05 pins as is.

- DTM0 starts ... SBUF0 is transferred to TOUT
- DTM0 underflows ... SBUF1 is transferred to TOUT
- DTM1 starts ... SBUF2 is transferred to TOUT
- DTM1 underflows ... SBUF3 is transferred to TOUT
- DTM2 starts ... SBUF4 is transferred to TOUT
- DTM2 underflows ... SBUF5 is transferred to TOUT

Furthermore, TOUT is a write-only register and it is possible to directly write to it to change the output data. In this way, the software processing is started by an interrupt (INTCM03) that occurs once during PWM cycle (one cycle) after initial setting has been performed, and by setting the TM0 cycle to be used next, PWM output timing, and output data, the PWM waveform can be output to the TO00-TO05 pins with a dead time width taken into consideration.

Phase-out/Discontinued

[Output waveform width in respect to set value]

To prevent contention among several data when the buffer contents are output and when coincidence is detected simultaneously by two or more compare registers, the following priority is set by the hardware. If data contention occurs, the data with the lower priority is invalid and not output.

SBUF1 > SBUF0 > SBUF3 > SBUF2 > SBUF5 > SBUF4

The TO00-TO05 pins are set in the input port mode and go into a high-impedance state on reset. When these pins are set in the control mode later, they output the following levels until TM0 is started:

- TO00, TO02, TO04 ... high level
- TO01, TO03, TO05 ... low level

Then if data is written in TOUT before starting TM0, the written data is output (TOUT can also be written during the operation of TM0 and can directly change the output data).

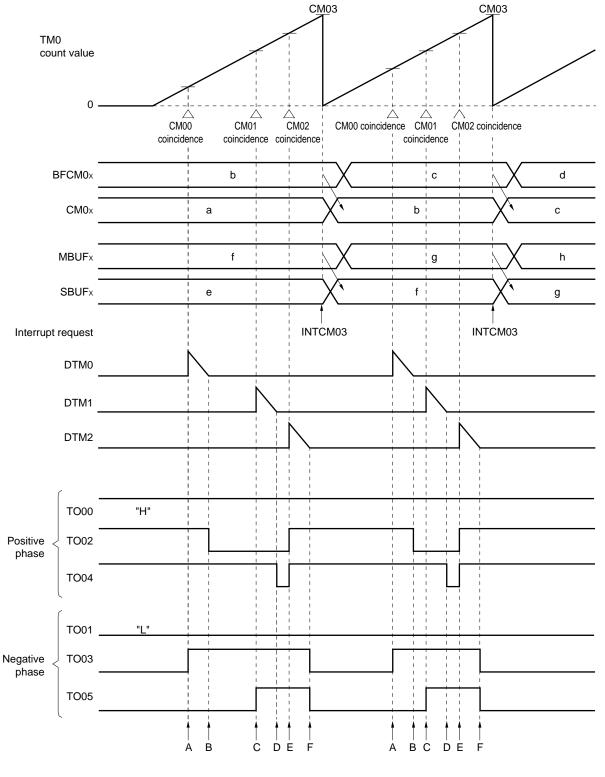
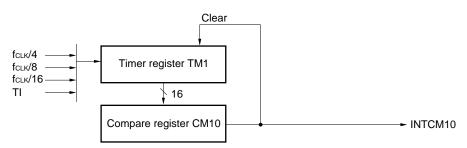


Figure 7-23. Operation Timing in PWM Mode 1

Remarks 1. A: SBUF0 B: SBUF1 C: SBUF2

D: SBUF3 E: SBUF4 F: SBUF5


2. The above figure shows an active low case.

7.3 Timer 1

7.3.1 Configuration

Timer 1 consists of a 16-bit timer 1 (TM1) and a 16-bit compare register (CM10). Figure 7-24 shows the block diagram of timer 1.

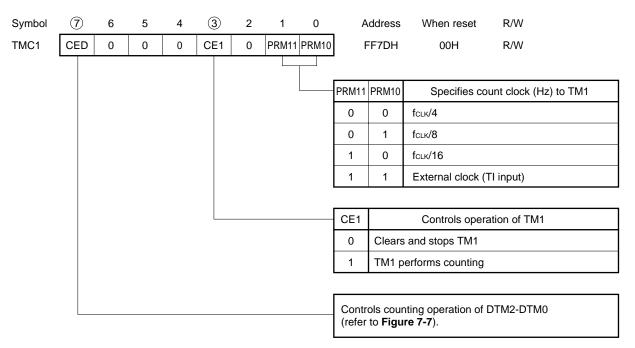
Remark fclk: internal system clock

(1) 16-bit timer 1 (TM1)

TM1 is a 16-bit interval timer and counts the internal clock and the external events input from the TI pin. TM1 is cleared by the next count clock which coincides with the value of the compare register (CM10). All the bits of TM1 are cleared to 0 by the $\overrightarrow{\text{RESET}}$ input.

(2) 16-bit compare register 10 (CM10)

CM10 is a 16-bit register that always compares its value with the value of TM1. When the two values coincide, CM10 generates an interrupt signal (INTCM10). When the value of CM10 and the count value of TM1 coincide, TM1 is cleared by the next count clock.


The value of CM10 becomes undefined when the $\overline{\text{RESET}}$ signal is input.

7.3.2 Control registers

(1) Timer control register 1 (TMC1)

Timer control register 1 (TMC1) is an 8-bit register that controls the operations of TM1 and DTM0-DTM2. This register can be read or written by a bit manipulation instruction or an 8-bit manipulation instruction. TMC1 is cleared to 00H by the RESET input.

Figure 7-25. Format of Timer Control Register 1

- Cautions 1. Bits 6 to 4 and 2 of the TMC1 register are fixed to "0" by hardware. Even if "1" is written, they remain "0".
 - 2. It is prohibited to change the PRM11 and PRM10 bits during the operation of TM1 (CE1 = 1).

Remark folk: internal system clock

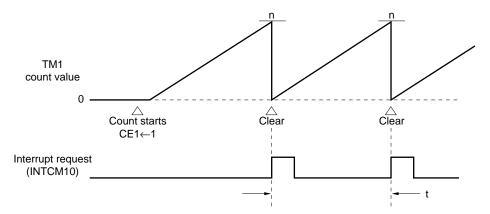
7.3.3 Operation

(1) Basic operation

Timer 1 (TM1) is a 16-bit interval timer/counter.

All the bits of TM1 are cleared to 0 by the RESET input and the timer stops counting.

Counting is enabled or disabled by the CE1 bit of timer control register 1 (TMC1). When the CE1 bit is set to 1 through software, the timer starts counting; when the bit is reset to 0, TM1 is cleared and stops counting. When the value set in advance to the compare register (CM10) coincides with the current count value of TM1, a coincidence interrupt (INTCM10) occurs, and TM1 is cleared.


Three internal clocks or external clock input (TI) can be selected by the TMC1 register as the count clock to TM1.

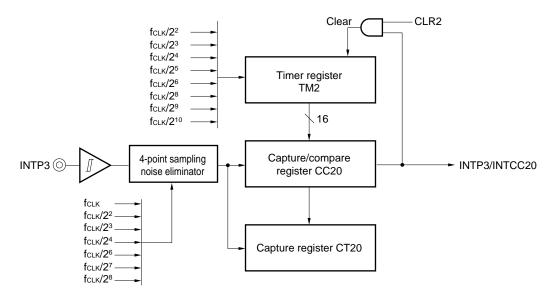
(2) Compare operation

A compare operation is performed that always compares the value of the compare register (CM10) with the count value of timer 1 (TM1).

If the value set in advance to CM10 coincides with the count value of TM1, the interrupt signal INTCM10 is generated, and TM1 is cleared to 0 by the next count clock input. With this feature, TM1 can be used as an interval timer that counts the count clock cycle of the value set to CM10.

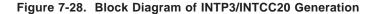
Remark n: value of CM10 register

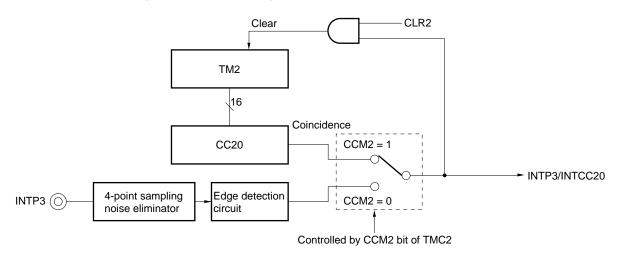
t : interval time = $(n + 1) \times \text{count clock cycle}$


7.4 Timer 2

7.4.1 Configuration

Timer 2 consists of a 16-bit timer 2 (TM2), a 16-bit capture /compare register (CC20), and a 16-bit capture register (CT20).


Furthermore, a programmable input sampling circuit is added to the interrupt pin (INTP3) and it can eliminate interrupt signal noise.


Figure 7-27 shows the block diagram of timer 2.

Remark fclk: internal system clock

Remark When CC20 is used as a compare register (CCM2 = 1), it is not possible to use INTP3 as an external interrupt pin.

(1) 16-bit timer 2 (TM2)

TM2 functions as a 16-bit free running timer or interval timer, and counts the internal clock. When TM2 serves as an interval timer, TM2 is cleared when the capture/compare register (CC20) generates an interrupt (INTP3/INTCC20) as a result of coincidence of its value with the value of the timer. All the bits of TM2 are cleared to 0 by the $\overrightarrow{\text{RESET}}$ input.

(2) 16-bit capture/compare register 20 (CC20)

CC20 is a 16-bit register that latches the value of TM2 when it detects the valid edge of the corresponding interrupt request signal (INTP3) (capture operation).

This register also operates as a compare register that always compares its value with the value of TM2 (compare operation). When the two values coincide, CC20 generates an interrupt (INTCC20), and TM2 is cleared.

The value of CC20 becomes undefined when the RESET signal is input.

(3) 16-bit capture register 20 (CT20)

CT20 is a 16-bit register that latches the value of TM2 when it detects the valid edge of the corresponding interrupt request signal (INTP3) (capture operation).

The value of CT20 becomes undefined when the RESET signal is input.

7.4.2 Control registers

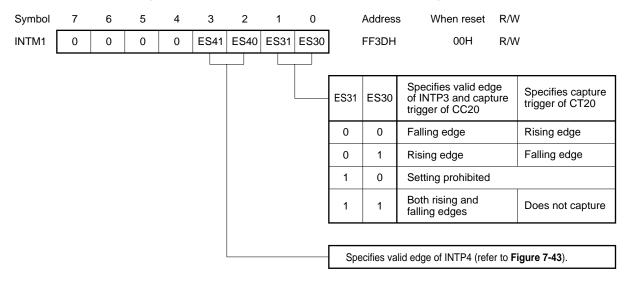
(1) Timer control register 2 (TMC2)

Timer control register 2 (TMC2) is an 8-bit timer that controls the operation of TM2 and CC20. This register can be read or written by a bit manipulation instruction or an 8-bit manipulation instruction. TMC2 is cleared to 00H by the RESET input.

Symbol	$\overline{\mathcal{O}}$	6	5	4	3	2	1	0		Addres	ress Wh		eset R/	/W	
TMC2	CE2	0	0	CCM2	CLR2	PRM22	PRM21	PRM20]	FF7EH	001		H R/	/W	
									1						
									PRM22	PRM21	PRM20	Specifies count clock (Hz) to TM2			
									0	0	0	fclk/2 ²			
									0	0	1	fclk/2 ³			
									0	1	0	fclk/24			
									0	1	1	1 fclк/2 ⁵			
									1	0	0	fclĸ/2 [€]	5		
									1	0	1	3			
									1	1	0	fclк/2 ⁹)		
									1	1	1	fclk/2 ¹⁰			
									COMO		R2 Mode of TM2 TM2		2 and CC	20	Clear operation of TM2
										CLR2			CC20)	
									0	0	Free r	unning	Capture	;	Not cleared
									0	1 Interval		al	Capture		Cleared by capture interrupt of CC20
									1	0	Free running				Not cleared
									1	1	Interval		Compar	e	Cleared by coincidence interrupt between CC20 & TM2
									CE2	Controls operation of TM2					
									0	Clears and stops TM2					
	1 TM2 performs counting														

Figure 7-29. Format of Timer Control Register 2

- Cautions 1. INTP3 cannot be used as an external interrupt pin when CC20 is used as a compare register (CCM2 = 1).
 - 2. On hardware, the CC20 incorporates the compare register and capture register separately. Either of the two can be selected by setting the TMC2 register. Writing is only possible to the compare register. Reading is possible from the register which is selected.
 - 3. Bits 6 and 5 of the TMC2 register are fixed to "0" by hardware. Even if "1" is written, they remain "0".
 - 4. It is prohibited to change the CCM2, CLR2 and PRM22 to PRM20 bits during the operation of TM2 (CE2 = 1).


Remark fclk: internal system clock

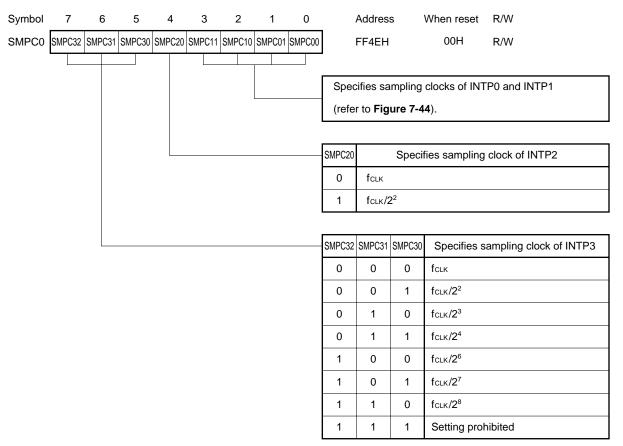
(2) External interrupt mode register 1 (INTM1)

External interrupt mode register 1 (INTM1) is an 8-bit register that specifies the valid edges of INTP3 and INTP4, and the capture triggers of CC20 and CT20.

This register can be read or written by a bit manipulation instruction or an 8-bit manipulation instruction. INTM1 is cleared to 00H by the $\overline{\text{RESET}}$ input.

Figure 7-30. Format of External Interrupt Mode Register 1

Caution Bits 7 to 4 of the INTM1 register are fixed to "0" by hardware. Even if "1" is written, they remain "0".



(3) Sampling control register 0 (SMPC0)

Sampling control register 0 (SMPC0) is an 8-bit register that specifies the sampling clocks of INTP0, INTP1, and INTP3.

The sampling circuit performs 4-point sampling with the specified sampling clock, and if the results at the 4 points are at the same level, that level is fetched.

This register can be read or written by a bit manipulation instruction or an 8-bit manipulation instruction. SMPC0 is cleared to 00H by the $\overline{\text{RESET}}$ input.

Figure 7-31. Format of Sampling Control Register 0

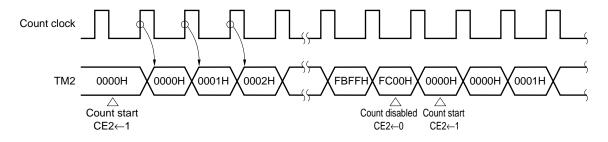
Remark fclk: internal system clock

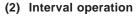
7.4.3 Operation

(1) Basic operation

Timer 2 (TM2) operates as a 16-bit free-running timer or interval timer.

Enable/disable of the count operation is controlled by the CE2 bit of timer control register 2 (TMC2). The count clock for TM2 can be selected from among 8 kinds of internal clock by the TMC2 register.


After the CE2 bit is set (1), TM2 becomes $0000H \rightarrow 0000H$ by the initial count clock input and becomes 0001H by the 2nd count clock input.


Even if CE2 is set (1) again with CE2 = 1 during the operation of TM2, the count operation continues and the timer is not cleared.

If CE2 = 0 is set, the count operation stops with TM2 = 0000H.

RESET input clears (0) all bits of TM2 and stops the count operation.

Figure 7-32. Basic Operation of Timer 2 (TM2)

If TM2 is operated as an interval timer, set it by the CCM2 and CLR2 bits of the TMC2 register. There are two triggers that clear TM2 as follows and they are differentiated by the setting of the CCM2 and CLR2 bits.

Phase-out/Discontinued

(a) INTCC20 (CCM2 = 1, CLR2 = 1)

INTCC20 is an interrupt generated when CC20 is in the compare mode. TM2 and CC20 always perform compare operations and if they detect a coincidence they generate interrupt signal INTCC20. The result of a compare coincidence is retained by hardware and TM2 is cleared (0000H) with the next count clock after the coincidence. Furthermore, when the next count clock is input TM2 is counted up to 0001H.

Interval cycle = $(CC20 \text{ value } + 1) \times TM2 \text{ count clock rate}$

(b) INTP3 (CCM2 = 0, CLR2 = 1)

If TM2 is set to interval operation while CC20 is in the capture mode, TM2 is cleared (0000H) by the valid edge of external interrupt pin INTP3.

The clear timing is the point when valid edge of INTP3 is detected. TM2 counts up to 0001H with the next count clock after the coincidence.

Caution INTCC20 and INTP3 share the interrupt vector table.

(3) Free-running operation (CCM2 = 0/1, CLR2 = 0)

TM2 performs a full count from 0000H to FFFFH. After overflow, TM2 is cleared (0000H) with the next count clock and continues counting thereafter.

Free-running cycle = $65536 \times TM2$ count clock rate

(4) Summary of capture/compare operation

Capture/compare operation is controlled by the CCM2 and CLR2 bits of the TMC2 register.

```
<1> CCM2 = 0, CLR2 = 0 (TM2 ... free-running timer, CC20 ... capture)
```

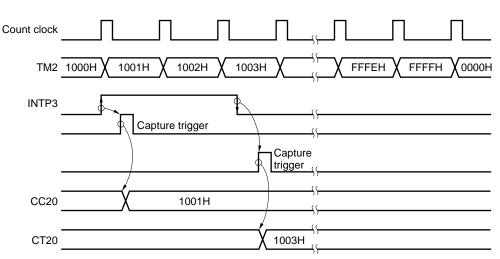
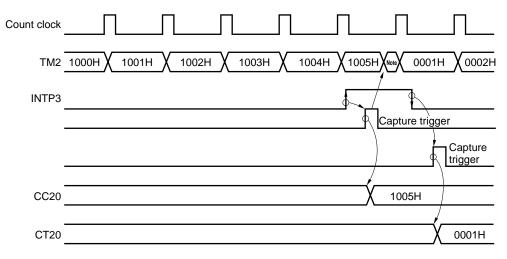
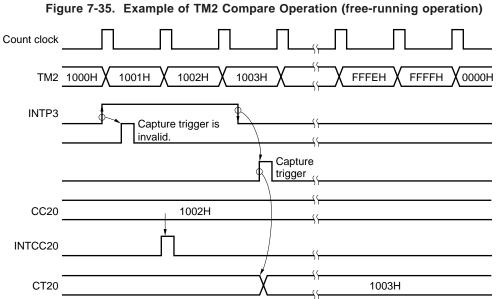



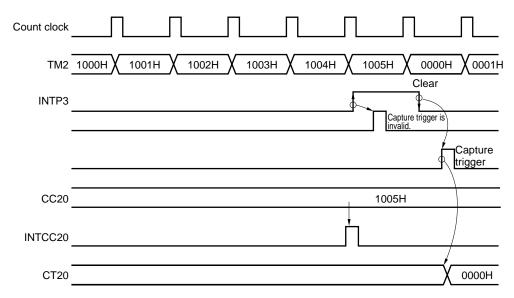
Figure 7-33. Example of TM2 Capture Operation (free-running operation)

Remark The INTP3 (CC20) valid edge is set as the rising edge.


Figure 7-34. Example of TM2 Capture Operation (interval operation)

Note 0000H

Remark The INTP3 (CC20) valid edge is set as the rising edge.



Remark The INTP3 (CC20) valid edge is set as the rising edge.

<4> CCM2 = 1, CLR2 = 1 (TM2 ... interval timer, CC20 ... compare)

Figure 7-36. Example of TM2 Compare Operation (interval operation)

Remark The INTP3 (CC20) valid edge is set as the rising edge.

(5) Operation of sampling circuit

The sampling circuit of the μ PD78366A performs 4-point sampling with the timing specified by the SMPC0 register. If the results are at the same level four consecutive times, that level is fetched inside.

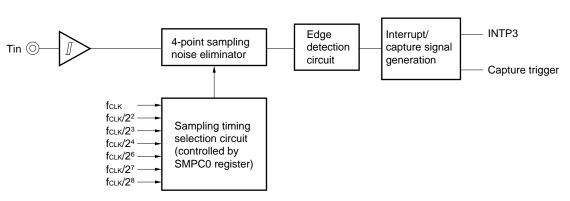
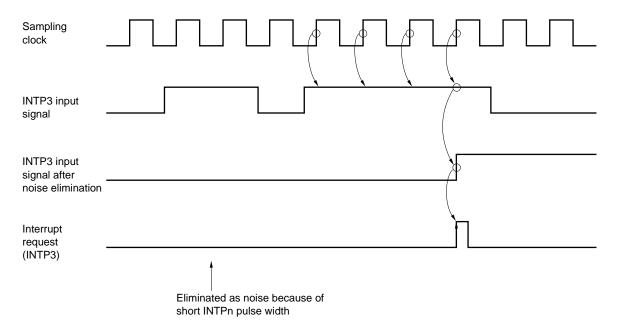



Figure 7-37. Block Diagram of Sampling Circuit (TM2)

Remark fclk: Internal system clock

Figure 7-38. Sampling Timing Chart (TM2)

Judgment of valid signals by the 4-point sampling is carried out with the following timing.

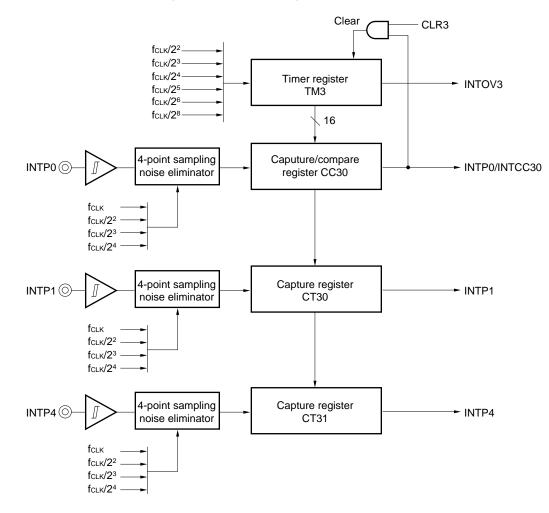
<1> Tin \leq (3 \times Tsmp)... Eliminated as noise<2> (3 \times Tsmp) < Tin < (4 \times Tsmp)... Eliminated as noise or passed as valid signals depending on the timing<3> Tin \geq (4 \times Tsmp)... Passed as valid signals

Tin : Input signal width of INTP3 pin

Tsmp: Sampling timing

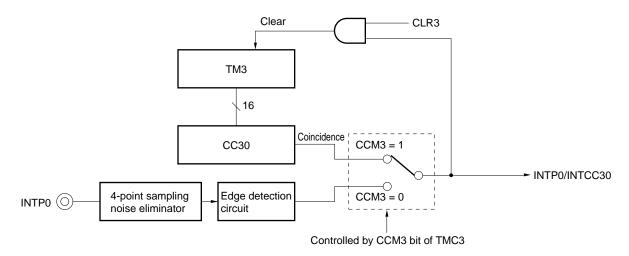
Therefore, it is necessary to input a signal of 4 × Tsmp in width for the input signal to pass as a valid signal.

7.5 Timer 3


7.5.1 Configuration

Timer 3 consists of a 16-bit timer 3 (TM3), a 16-bit capture /compare register (CC30), and two 16-bit capture registers (CT30 and CT31).

Each interrupt pin (INTP0, INTP1 and INTP4) is provided with a programmable input sampling circuit, and eliminates interrupt signal noise.


Figure 7-39 shows the block diagram of timer 3.

Remark fclk: internal system clock

Figure 7-40. Block Diagram of INTP0/INTCC30 Generation

Remark When CC30 is used as a compare register (CCM3 = 1), it is not possible to use INTP0 as an external interrupt pin.

(1) 16-bit timer 3 (TM3)

TM3 functions as a 16-bit free running timer or interval timer, and counts the internal clock. When TM3 serves as an interval timer, TM3 is cleared when the capture/compare register (CC30) generates an interrupt (INTP0/INTCC30) as a result of coincidence of its value with the value of the timer. All the bits of TM3 are cleared to 0 by the $\overrightarrow{\text{RESET}}$ input.

(2) 16-bit capture/compare register 30 (CC30)

CC30 is a 16-bit register that latches the value of TM3 when it detects the valid edge of the corresponding interrupt request signal (INTP0) (capture operation).

This register also operates as a compare register that always ompares its value with the value of TM3 (compare operation). When the two values coincide, CC30 generates an interrupt (INTCC30), and TM3 is cleared. The value of CC30 becomes undefined when the RESET signal is input.

(3) 16-bit capture registers 30 and 31 (CT30 and CT31)

CT30 and CT31 are 16-bit registers that latch the value of TM3 when they detect the valid edge of the corresponding interrupt request signal (INTP1, INTP4) (capture operation).

The values of CT30 and CT31 become undefined when the RESET signal is input.

7.5.2 Control registers

(1) Timer control register 3 (TMC3)

Timer control register 3 (TMC3) is an 8-bit register that controls the operation of TM3 and CC30. This register can be read or written by a bit manipulation instruction or an 8-bit manipulation instruction. TMC3 is cleared to 00H by the RESET input.

Symbol	7	6	5	4	3	2	1	0		Addres	S	When re	eset R	/W	
TMC3	CE3	0	0	CCM3	CLR3	PRM32	PRM31	PRM30		FF7FH		00H	R	/W	
									PRM32	PRM31	PRM30	Spec	ifies cou	int cl	ock (Hz) to TM3
									0	0	0	fclк/2 ²			
									0	0	1	fclк/2 ³			
									0	1	0	fclк/2 ⁴			
									0	1	1	fc∟ĸ/2⁵			
									1	0	0	fclк/2 ⁶	i		
									1	0	1	fclк/2 ⁸			
									1	1	0	Cotting	Setting prohibited		
									1	1	1	Setting			
									CCM3	CLR3	Mode of T		M2 CC30	0	Clear operation
									CCIVIS	CLK3	TN	13	CC30	0	of TM3
									0	0	Free r	unning	Capture	e	Not cleared
									0	1	Interv	al	Capture	9	Cleared by capture interrupt of CC30
									1	0	Free running				Not cleared
									1	1	Interv	al	Compa	re	Cleared by coincidence interrupt between CC30 & TM3
									CE3		Con	trols op	eration o	of TN	13
									0	Clea	rs and s	stops TN	//3		

Figure 7-41. Format of Timer Control Register 3 (TMC3)

Cautions 1. INTP0 cannot be used as an external interrupt pin when CC30 is used as a compare register (CCM3 = 1).

1

TM3 performs counting

- 2. In the hardware, the CC30 incorporates the compare register and capture register separately. Either of the two can be selected by the setting of the TMC3 register. Writing is only possible to the compare register. Reading is possible from the register which is selected.
- 3. Bits 6 and 5 of the TMC3 register are fixed to "0" by hardware. Even if "1" is written, they remain "0".
- 4. It is prohibited to change the CCM3, CLR3 and PRM32 to PRM30 bits during the operation of TM3 (CE3 = 1).

Remark fclk: internal system clock

(2) External interrupt mode registers (INTM0, INTM1)

External interrupt mode register 0 (INTM0) is an 8-bit register that specifies the valid edges of NMI and INTP0-INTP2.

External interrupt mode register 1 (INTM1) is an 8-bit register that specifies the valid edges of INTP3 and INTP4.

These registers can be read or written by a bit manipulation instruction or an 8-bit manipulation instruction. When the RESET signal is input, INTM0 and INTM1 are cleared to 00H.

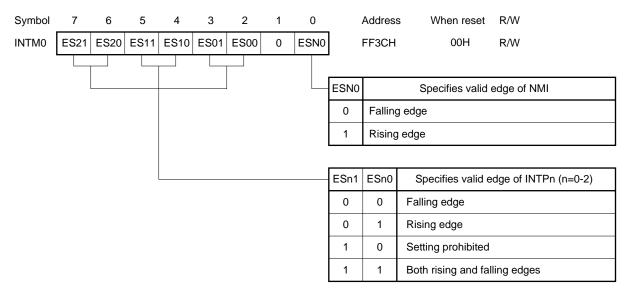
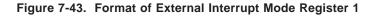
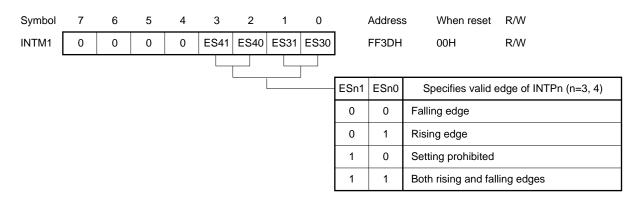
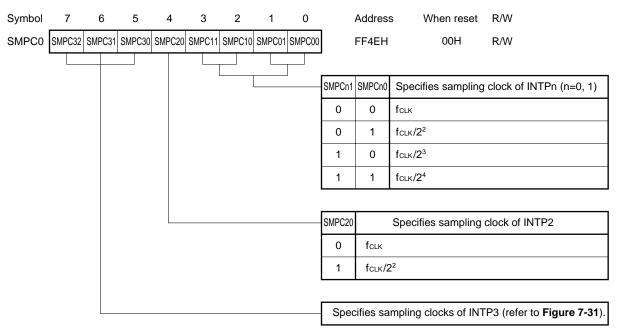




Figure 7-42. Format of External Interrupt Mode Register 0


Caution Bit 1 of the INTM0 register and bits 7 to 4 of the INTM1 register are fixed to "0" by hardware. Even if "1" is written, they remain "0".

(3) Sampling control registers (SMPC0 and SMPC1)

Sampling control register 0 (SMPC0) is an 8-bit register that specifies the sampling clocks of INTP0-INTP3. Sampling control register 1 (SMPC1) is an 8-bit register that specifies the sampling clock of INTP4. The sampling circuit performs 4-point sampling with the specified sampling clock and if the results are at the same level four times, that level is fetched.

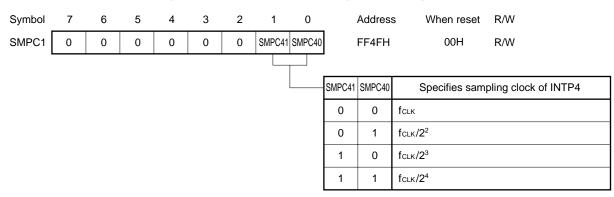

These registers can be read or written by a bit manipulation instruction or an 8-bit manipulation instruction. SMPC0 and SMPC1 are cleared to 00H by the $\overrightarrow{\mathsf{RESET}}$ input.

Figure 7-44. Format of Sampling Control Register 0

Remark fclk: internal system clock

Figure 7-45. Format of Sampling Control Register 1

Caution Bits 7 to 2 of the SMPC1 register are fixed to "0". Even if "1" is written, they remain "0".

Remark fclk: internal system clock

7.5.3 Operation

(1) Basic operation

Timer 3 (TM3) operates as a 16-bit free-running timer or interval timer.

Counting is enabled or disabled by the CE3 bit of timer control register 3 (TMC3). Six internal clocks can be selected by the TMC3 register as the count clock to TM3.

After setting (1) the CE3 bit, TM3 becomes 0000H to 0000H on the first count clock input, and to 0001H on the second count clock input.

If the CE3 is set (1) again with CE3 = 1, during TM3 operation, TM3 continues counting and is not cleared. When CE3 = 0, TM3 = 0000H stops count operation.

All the bits of TM3 are cleared to 0 by the RESET input and the timer stops counting.

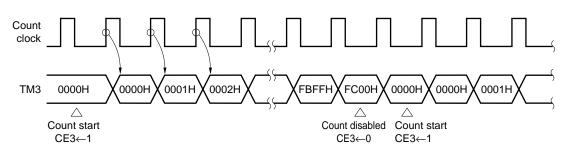


Figure 7-46. Basic Operation of Timer 3 (TM3)

(2) Interval operation

If TM3 is operated as an interval timer, set it by the CCM3 and CLR3 bits of the TMC3 register. There are two triggers that clear TM3 as follows and they are differentiated by the setting of the CCM3 and CLR3 bits.

(a) INTCC30 (CCM3 = 1, CLR3 = 1)

INTCC30 is an interrupt generated when CC30 is in the compare mode. TM3 and CC30 always perform compare operations and if they detect a coincidence they generate interrupt signal INTCC30. The result of a compare coincidence is retained by hardware and TM3 is cleared (0000H) with the next count clock after the coincidence. Furthermore, when the next count clock is input TM3 is counted up to 0001H.

Interval cycle = (CC30 value + 1) × TM3 count clock rate

(b) INTP0 (CCM3 = 0, CLR3 = 1)

If TM3 is set to interval operation while CC30 is in the capture mode, TM3 is cleared (0000H) by the valid edge of external interrupt pin INTP0.

The clear timing is the point when the valid edge of INTP0 is detected. TM3 counts up to 0001H with the next count clock after the coincidence.

Caution INTCC30 and INTP0 share the interrupt vector table.

(3) Free-running operation (CCM3 = 0/1, CLR3 = 0)

TM3 performs a full count from 0000H to FFFFH, and generate an overflow interrupt INTOV3. After overflow, TM3 is cleared (0000H) with the next count clock and continues counting thereafter.

Free-running cycle = $65536 \times TM3$ count clock rate

(4) Summary of capture/compare operation

Capture/compare operation is controlled by the CCM3 and CLR3 bits of the TMC3 register.

<1> CCM3 = 0, CLR3 = 0 (TM3 ... free-running timer, CC30 ... capture)

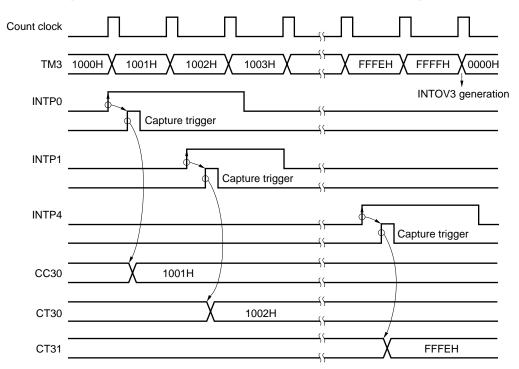
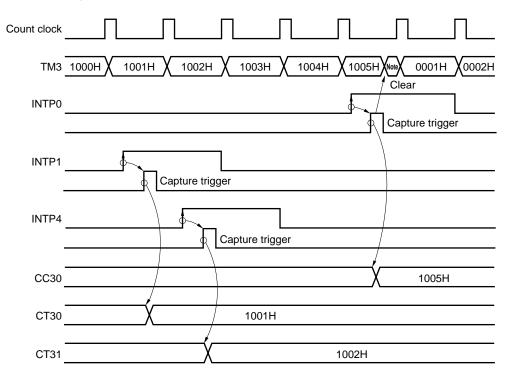
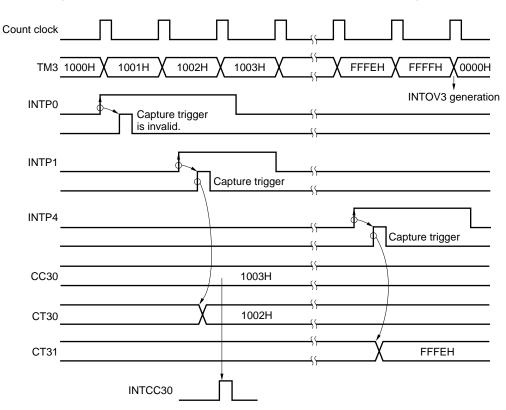



Figure 7-47. Example of TM3 Capture Operation (free-running operation)

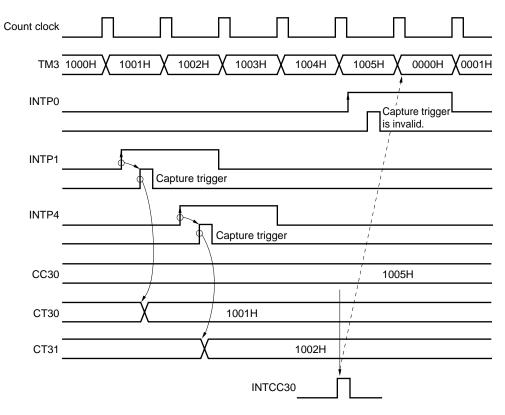
Remark The INTP0, INTP1 and INTP4 valid edges are set as the rising edges.

<2> CCM3 = 0, CLR3 = 1 (TM3 ... interval timer, CC30 ... capture)


Figure 7-48. Example of TM3 Capture Operation (interval operation)

Note 0000H

Remark The INTP0, INTP1 and INTP4 valid edges are set as the rising edges.



Remark The INTP0, INTP1 and INTP4 valid edges are set as the rising edges.

<4> CCM3 = 1, CLR3 = 1 (TM3 ... interval timer, CC30 ... compare)

Figure 7-50. Example of TM3 Compare Operation (interval operation)

Remark The INTP0, INTP1 and INTP4 valid edges are set as the rising edges.

(5) Operation of sampling circuit

The sampling circuit of the μ PD78366A performs 4-point sampling with the timing specified by the SMPC0 and SMPC1 registers. If the results are at the same level four consecutive times, that level is fetched inside.

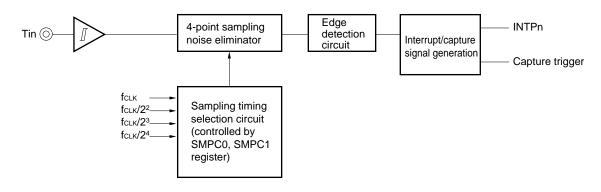
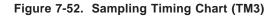
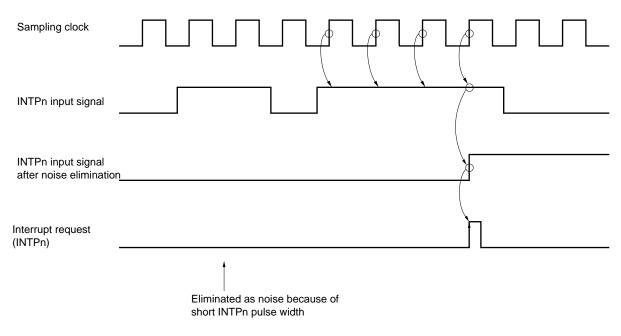




Figure 7-51. Block Diagram of Sampling Circuit (TM3)

Remarks 1. fcLK: Internal system clock

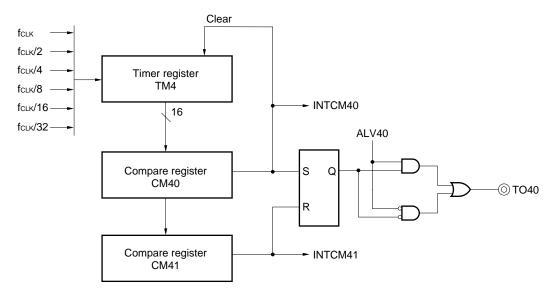
2. INTPn (n = 0, 1, 4)

Remark INTPn (n = 0, 1, 4)

Judgment of valid signals by the 4-point sampling is carried out with the following timing.

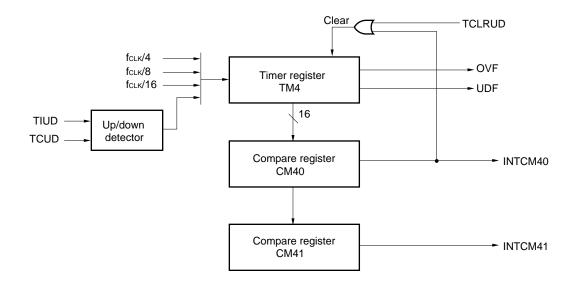
 $\begin{array}{ll} <1> \mbox{ Tin} \leq (3\times \mbox{ Tsmp}) & \dots \mbox{ Eliminated as noise} \\ <2> (3\times \mbox{ Tsmp}) < \mbox{ Tin} < (4\times \mbox{ Tsmp}) & \dots \mbox{ Eliminated as noise or passed as valid signals depending on the timing} \\ <3> \mbox{ Tin} \geq (4\times \mbox{ Tsmp}) & \dots \mbox{ Passed as valid signals} \end{array}$

Tin : Input signal width of INTPn pin (n = 0, 1, 4) Tsmp : Sampling timing


Therefore, it is necessary to input a signal of 4 × Tsmp in width for the input signal to pass as a valid signal.

7.6 Timer 4

7.6.1 Configuration


Timer 4 consists of a 16-bit timer 4 (TM4) and two 16-bit compare registers (CM40 and CM41). Figures 7-53 and 7-54 show the block diagrams of timer 4.

Remark fclk: internal system clock

(1) 16-bit timer 4 (TM4)

TM4 has the following two operation modes:

(a) General-purpose timer mode

In this mode, timer 4 operates as a 16-bit interval timer, free running timer, or PWM output timer, and counts the internal clock.

When TM4 operates as an interval timer, TM4 is cleared on the next count clock after the coincidence between the timer value and the value of a compare register (CM40).

All the bits of TM4 are cleared to 0 when the RESET signal is input.

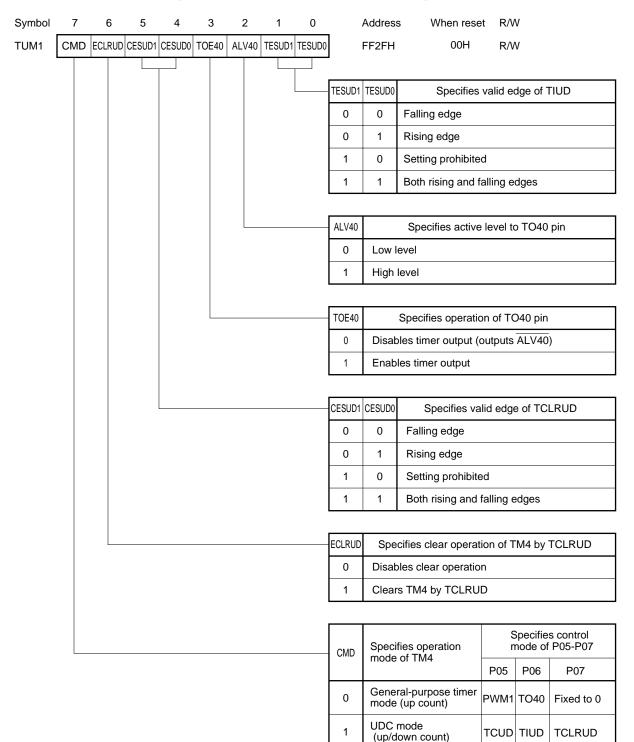
(b) Up/down counter mode (UDC mode)

In this mode, timer 4 operates as a 16-bit up/down counter, and counts the internal or external clock. TM4 is cleared on the next count clock after the coincidence between the timer value and the value of a compare register (CM40), or when an external clear signal (TCLRUD) is input. All the bits of TM4 are cleared to 0 when the $\overline{\text{RESET}}$ signal is input.

(2) 16-bit compare registers (CM40 and CM41)

CM40 and CM41 are 16-bit registers that always compare their values with the value of TM4. When the value of a compare register coincides with the value of TM4, a coincidence interrupt signal (INTCM40 or INTCM41) is generated.

The values of CM40 and CM41 become undefined when the RESET signal is input.



7.6.2 Control registers

(1) Timer unit mode register 1 (TUM1)

Timer unit mode register 1 (TUM1) is an 8-bit register that specifies the operation mode of TM4, controls the functions of the P05-P07 pins when they are in the control mode, controls the operation of the timer output pin (TO40), and controls the external triggers (TCLRUD and TIUD).

This register can be read or written by a bit manipulation instruction or an 8-bit manipulation instruction. It is cleared to 00H when the $\overline{\text{RESET}}$ signal is input.

Figure 7-55. Format of Timer Unit Mode Register 1

- Cautions 1. Bits 0, 1, and 4-6 are valid only when CMD = 1. Bits 2 and 3 are valid only when CMD = 0.
 - 2. If TM4 is set in mode 4 (specified by TMC4 register), specifying the valid edge of the TIUD pin is invalid (TESUD0 and TESUD1 bits).
 - It is prohibited to change any bit of the TUM1 register during the operation of TM4 (CE4 = 1).

(2) Timer control register 4 (TMC4)

Timer control register 4 (TMC4) is an 8-bit register that controls the operation of TM4. This register can be read or written by a bit manipulation instruction or an 8-bit manipulation instruction. TMC4 is cleared to 00H by the RESET input.

Symbol	7	6		5	4	3	2		1 0		Addres	S	When reset	R/W	
TMC4	CE4	ENM	1D U	DF	OVF	Ū/D	Ī/E	PR	M41 PRM40		FF5EH		00H	R/W	
•										•					
													CMD=0	CN	ID=1
										Ī/E	PRM41	PRM40	Count clock	Count clock	Up/down count
										0	0	0	fс∟к	fс∟к/4	
										0	0	1	fclк/2	fськ/8	Specified
										0	1	0	fськ/4	fclк/16	by U/D bit
										0	1	1	fськ/8	TCLK/TO	
										1	0	0	fclк/ 16		Mode 1
										1	0	1		TIUD	Mode 2
										1	1	0	fclк/ 32	(external clock)	Mode 3
										1	1	1			Mode 4
											_				
										Ū/D	S	pecifies	up/down cou	unt operation	of TM4
										0	Up c	ount op	eration		
										1	Dow	n count	operation		
										OVF			Overflow flag	of TM4	
										0	Over	flow do	es not occur		
										1	Over	flow oc	curs		
										UDF		U	nderflow flag	of TM4	
										0	Unde	erflow d	oes not occu	r	
										1	Unde	erflow o	ccurs		
										ENMD	Controls clear operation		peration of T	V I4	
												CMD	= 0	CM	ID = 1
										0	Disab	oled			
										1	Enab	led			
										CE4		Co	ontrols operat	tion of TM4	
										0	TM4	is clear	ed and stopp	ed	

Figure 7-56. Format of Timer Control Register 4

- Cautions 1. The \overline{U}/D bit is valid only when CMD = 1.
 - 2. It is prohibited to change any bit of ENMD, \overline{U}/D , \overline{I}/E , PRM41 and PRM40 during the operation of TM4 (CE4 = 1).

1

TM4 performs count operation

Remark fclk: internal system clock

Each bit of the TMC4 register is described below.

(a) CE4 bit (bit 7)

This bit controls the operation of TM4 as follows:

- When CE4 \leftarrow 0: TM4 stops and does not operate.
- When CE4 ← 1: TM4 performs count operation.

(b) ENMD bit (bit 6)

This bit controls the clear operation of TM4.

- When ENMD ← 0: Disabled TM4 does not perform clear operation.
 When CMD = 0 and ENMD = 0, TM4 performs free running operation.
- When ENMD \leftarrow 1: Enabled

In General-Purpose Timer Mode (CMD = 0)	In UDC Mode (CMD = 1)
TM4 is cleared when TM4 coincides with CM40 (interval operation).	Setting prohibited

(c) UDF bit (bit 5)

This is the underflow flag of TM4, which is cleared on system reset or software reset.

- When UDF \leftarrow 0: TM4 does not underflow.
- When UDF \leftarrow 1: TM4 underflows.

(d) OVF bit (bit 4)

This is the overflow flag of TM4, which is cleared on system reset or software reset.

- When $OVF \leftarrow 0$: TM4 does not overflow.
- When OVF \leftarrow 1: TM4 overflows.

(e) \overline{U}/D bit (bit 3)

This bit specifies the up or down operation of TM4 when TM4 counts the internal clock. When TM4 counts the external clock, the up or down count operation of TM4 can be read through this bit.

This bit is cleared by combination of system reset, resetting of the CE4 bit, software reset, and TIUD and TCUD when the external clock is counted.

- When $\overline{U}/D \leftarrow 0$: TM4 counts up.
- When $\overline{U}/D \leftarrow 1$: TM4 counts down.

Cautions 1. When CMD = 0,

 \rightarrow The U/D bit is fixed to "0" by hardware. Even if "1" is written, it remains "0". If this bit is read, the value read is always "0".

Phase-out/Discontinued

When CMD = 1 and the internal clock is selected,

 $\rightarrow\,$ The U/D bit is write-enabled. If a read operation is applied to it, the written value is read.

When CMD = 1 and the external clock is selected,

- \rightarrow Writing to the U/D bit is not possible by hardware. If a read operation is applied to it, the up/down status of TM4 is read.
- 2. While TM4 is stopped (CE4 = 0), even if "1" is written to the \overline{U}/D bit, it remains "0" and it is not possible to rewrite it (see 7.6.3 (3) (b) Internal clock operation in UDC mode).

(f) I/E bit (bit 2)

This bit specifies the count clock of TM4.

<1> In general-purpose timer mode (CMD = 0)

The count clock is fixed to the internal clock in this mode. The clock rate of TM4 is specified by the \bar{I}/E , PRM41, and PRM40 bits.

<2> In UDC mode (CMD = 1)

- When $\overline{I}/E \leftarrow 0$: internal clock
- When $\overline{I/E} \leftarrow 1$: external clock (TIUD)

(g) PRM41 and PRM40 bits (bits 1 and 0)

These bits specify the up or down count operation mode when the clock rate of the internal clock or the external clock is input.

Ī/E	PRM41	PRM40	CMD = 0	CI	MD = 1
			Count Clock	Count Clock	Up/Down Count
0	0	0	fclĸ	fс∟к/4	Specified by
0	0	1	fclk/2	fс∟к/8	Ū/D bit
0	1	0	fс∟к/4	fclk/16	
0	1	1	fс∟к/8		
1	0	0	fclк/16	TIUD	Mode 1
1	0	1	fclк/32	(external	Mode 2
1	1	0		clock)	Mode 3
1	1	1			Mode 4

Operation modes of TM4 when external clock is input

Operation Mode	Operation of TM4
Mode 1	Counts down when TCUD = H. Counts up when TCUD = L.
Mode 2	Counts up when valid edge of TIUD input is detected. Counts down when rising edge of TCUD input is detected.
Mode 3	Automatic selection of TCUD input level when valid edge of TIUD input is detected.
Mode 4	Automatic selection when both edges of TIUD input and both edges of TCUD input are detected.

Caution When TM4 is set in mode 4, specification of the valid edge of the TIUD pin (specified by timer unit mode register 1 (TUM1)) is invalid.

7.6.3 Operation

(1) Basic operation

Timer 4 (TM4) has the following two operation modes:

(a) General-purpose timer mode

In this mode, timer 4 operates as a 16-bit interval timer, free running timer, or PWM output timer, and counts the internal clock.

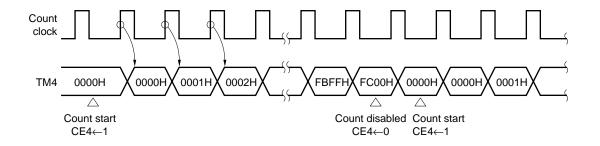
Six internal clocks can be selected as the count clock to TM4 by TMC4 register.

(b) Up/down counter mode (UDC mode)

In this mode, timer 4 operates as a 16-bit up/down counter.

As the count clock to TM4, three internal clocks or external clock input (TIUD) can be selected by TMC4 register.

TM4 can be cleared by external clear input (TCLRUD).


After the CE4 bit is set (1), TM4 becomes $0000H \rightarrow 0000H$ by the initial count clock input and becomes 0001H by the 2nd count clock input. If TM4 is started to down count (UDC mode only), TM4 becomes $0000H \rightarrow 0000H$ by the 1st count clock input and FFFFH by the 2nd count clock input.

Even if CE4 is set (1) again with CE4 = 1 during the operation of TM4, the count operation continues and the timer is not cleared.

If CE4 = 0 is set, the count operation stops with TM4 = 0000H.

RESET input clears (0) all bits of TM4 and stops the count operation.

(2) General-purpose timer mode

If TM4 is to be operated in the general-purpose timer mode, set the CMD bit of the TUM1 register = 0. In this mode, TM4 operates as a 16-bit interval timer, free-running timer and PWM output timer. The count clock for TM4 can be selected from among 6 kinds of internal clock by the TMC4 register.

(a) Interval operation

TM4 and CC40 always perform compare operations and if they detect a coincidence they generate interrupt signal INTCM40. The result of a compare coincidence is retained by the hardware and TM4 is cleared (0000H) with the next count clock after the coincidence. Furthermore, when the next count clock is input TM4 counts up to 0001H.

Interval cycle = $(CC40 \text{ value } + 1) \times TM4 \text{ count clock rate}$

(b) Free-running operation

TM4 performs a full count from 0000H to FFFFH. After TM4 sets an overflow flag (OVF) and clears the timer, it continues counting.

Free-running cycle = $65536 \times TM4$ count clock rate

(3) UDC mode

(a) Basic operation of UDC mode

[Setting procedure]

<1> When TM4 is to be operated with an external clock (modes 1 to 4), set pins P05 to P07 to the control mode by the port 0 mode control register (PMC0).

Also in the case of internal clock operation, if external clear (TCLRUD) is to be used, set only P07 to the control mode.

- <2> Set (1) the CMD bit of the TUM1 register to set TM4 to the UDC mode. With this setting, the control pins specified in <1> become the function pins (TCUD, TIUD and TCLRUD) used in the UDC mode.
- <3> Specify the following using the TUM1 register.
 - ECLRUD bit : Enable/disable of TM4 clear by valid edge of TCLRUD pin
 - CESUD1 and 0 bits : Specification of valid edge of TCLRUD pin
 - TESUD1 and 0 bits : Specification of valid edge of TIUD pin
- <4> Specify the following using the TMC4 register.
 - ENMD bit : Be sure to set "0".
 - U/D bit : Specifies TM4 operation only when timer is operated with internal clock in UDC mode.
 - Ī/E bit : Selects either internal or external count clock of TM4.
 - PRM41-40 bits : Specifies TM4 count clock and operating mode.
- <5> Finally, when the CE4 bit of the TMC4 register is set (1), TM4 starts operating.

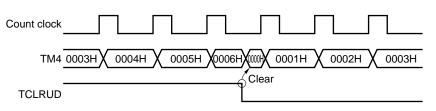
[Operation by mode]

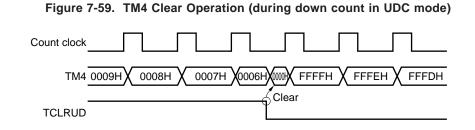
When TM4 is to be operated in the UDC mode, set CMD of the TUM1 register = 1. UDC mode operations can be summarized as follows.

TMC4 Register			Operating	TM4 Operation	TM4 Clear	Operation
Ī/E	PRM41	PRM40	Mode		CM40	TCLRUD
					Coincidence	
0	×	×	Internal clock	Up/down setting by $\overline{\rm U}/{\rm D}$ bit		Enabled:
1	0	0	Mode 1	When TCUD = H, down count		ECLRUD = 1
				When TCUD = L, up count		
1	0	1	Mode 2	Up count by detection of valid	Disabled:	Disabled:
				edge of TIUD input	ENMD = 0	ECLRUD = 0
				Down count by detection of TCUD		
				input rising edge		
1	1	0	Mode 3	Automatic judgment by TCUD		
				input level when valid edge of		
				TIUD input is detected		
1	1	1	Mode 4	Automatic judgment by detection		
				of both edges of TIUD input and		
				both edges of TCUD input		

Table 7-5. List of UDC Mode Operations

Caution Setting ENMD = 1 is prohibited in the UDC mode.


Remarks 1. ENMD bit : Bit 6 of TMC4 register2. ECLRUD bit: Bit 6 of TUM1 register


[External clear (TCLRUD) operation]

The TCLRUD signal is a timer clear signal that is valid only when TM4 is in the UDC mode (with internal clock and external clock). The valid edge of the TCLRUD pin is specified by the CESUD1 and CESUD0 bits of the TUM1 register, and when the valid edge is detected TM4 is cleared.

Remark The valid edge of TCLRUD is set as the falling edge.

Remark The valid edge of TCLRUD is set as the falling edge.

(b) Internal clock operation in UDC mode

When TM4 is to be operated with an internal clock, set it by the I/E, PRM41 and PRM40 bits of the TMC4 register.

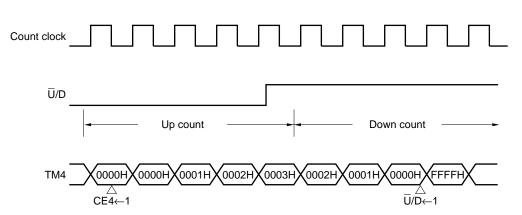
Ī/E	PRM41	PRM40	Count Clock
0	0	0	fclк/4
0	0	1	fс∟к/8
0	1	0	fc∟к/16
0	1	1	

Table 7-6. Setting of TMC4 Register (during internal clock operation in UDC mode)

If internal clock operation in the UDC mode is specified, up/down operation is specified by the \overline{U}/D bit of the TMC4 register. Resetting (0) the \overline{U}/D bit starts up count and setting (1) it starts down count.

Caution While TM4 is halted (CE4 = 0), even if "1" is written in the \overline{U}/D bit it remains "0" and it is not possible to rewrite it. If it is desired to let TM4 perform a down operation from the beginning, set (1) the CE4 bit and \overline{U}/D bit in the TMC4 register by the MOV instruction simultaneously.

<Example of correct program>


MOV TUM1, #80H ; Sets TM4 to UDC mode. MOV TMC4, #88H ; CE4 = 1, $\overline{I}/E = 0$, $\overline{U}/D = 1$

In the following program, TM4 performs an up operation from the beginning.

<Example of wrong program>

MOV TUM1, #80H ; Sets TM4 to UDC mode. MOV TMC4, #08H ; $\overline{I}/E = 0$, $\overline{U}/D = 1$ (TM4 performs down operation with an internal clock.) $\leftarrow <1>$ SET1 TMC4.7 ; CE4 = 1 (TM4 start) $\leftarrow <2>$

<1> Because CE4 = 0 at this time, \overline{U}/D = 0 remains unchanged and can not be rewritten.<2> With \overline{U}/D = 0 TM4 starts an up operation.

Figure 7-60. Internal Clock Operation in UDC Mode

(c) External clock operation in UDC mode

When the external clock is used as the count clock to timer 4 (TM4), the up/down count operation of TM4 can be executed in a mode specified by an external count clock input pin (TIUD) and count operation select signal input pin (TCUD). The following four modes can be selected by the PRM41 and PRM40 bits of timer control register 4 (TMC4):

TMC4 Register			Mode	Operation of TM4
Ī/E	PRM41	PRM40		
1	0	0	1	Counts down when TCUD = H. Counts up when TCUD = L.
1	0	1	2	Counts up when valid edge of TIUD input is detected. Counts down when rising edge of TCUD input is detected.
1	1	0	3	Automatic selection of TCUD input level when valid edge of TIUD input is detected.
1	1	1	4	Automatic selection when both edges of TIUD input and both edges of TCUD input are detected.

Table 7-7	Un/Down	Count	Operation	Modes	
	Op/Down	oount	operation	Modes	

Caution When TM4 is set in mode 4, specification of the valid edge of the TIUD pin (specified by timer unit mode register 1 (TUM1)) is invalid.

(i) Mode 1 (PRM41 = 0, PRM40 = 0)

In this mode, TM4 counts down the external count clock input (TIUD pin) while the TCUD pin is high, and counts up while the TCUD pin is low.

When the rising edge of the TIUD pin is specified as the valid edge (by the TUM1 register), the operation of TM4 is as shown in Figure 7-61.

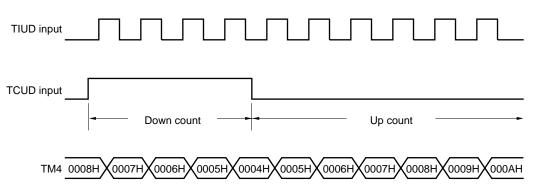
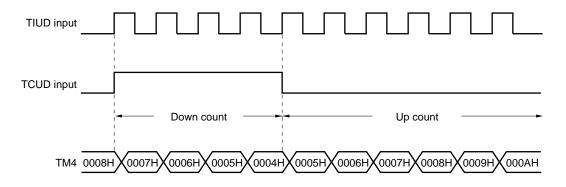



Figure 7-61. Example of Operation in Mode 1 (when valid edge of TIUD pin is rising edge)

If TIUD and TCUD change simultaneously, the operation is as follows.

Figure 7-62. Example of Operation in Mode 1 (when valid edge of TIUD pin is rising edge)

(ii) Mode 2 (PRM41 = 0, PRM40 = 1)

In mode 2, TM4 counts up the valid edge input to the TIUD pin (specified by the timer unit mode register 1 (TUM1)) and counts down the rising edge of the TCUD pin.

If the count clock is simultaneously input to the TIUD and TCUD pins, TM4 does not perform counting, but retains the value immediately before.

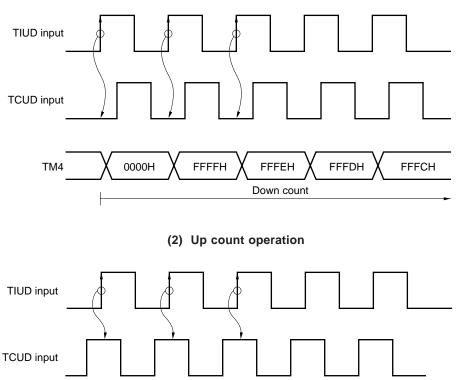
Figure 7-63. shows the operation of timer 4 (TM4) when the rising edge of the TIUD pin is specified as the valid edge.

TIUD input					
CUD input	f				
	Up count	Retained	Down count	Retained	-
TM4 0000⊢ Count sta CE4←		0003HX0003	знХооо2нХооо1н	I	

(iii) Mode 3 (PRM41 = 1, PRM40 = 0)

Mode 3 is the most effective when two signals 90 degrees out of phase, such as those output by the shaft encoder of a servo motor, are input to the TIUD and TCUD pins as the count clocks. Timer 4 (TM4) detects the relative leading or lagging between these two signals, and automatically selects the up or down count operation.

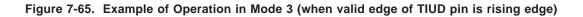
Phase-out/Discontinued

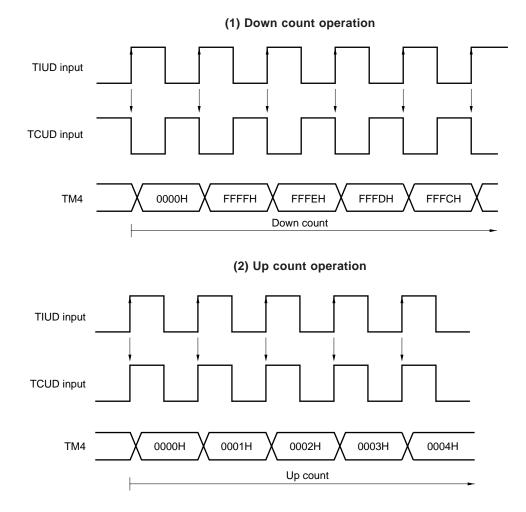

When the two signals 90 degrees out of phase are input to the TIUD and TCUD pins, the level of the TCUD pin is sampled when the valid edge is input to the TIUD pin.

If the TCUD pin level sampled at the valid edge input to the TIUD pin is low, TM4 counts down when the valid edge is input to the TIUD pin.


If the TCUD pin level sampled at the valid edge input to the TIUD pin is high, TM4 counts up when the valid edge is input to the TIUD pin.

Figure 7-64 shows the operation of TM4 when the rising edge of the TIUD pin is specified as the valid edge.


Figure 7-64. Example of Operation in Mode 3 (when valid edge of TIUD pin is rising edge)



(1) Down count operation

If TIUD and TCUD change simultaneously, the operation is as follows.

(iv) Mode 4 (PRM41 = 1, PRM40 = 1)

Mode 4, like mode 3, is effective when two signals 90 degrees out of phase, such as those output by the shaft encoder of a servo motor, are input to the TIUD and TCUD pins as the count clocks. When the two signals 90 degrees out of phase are input to the TIUD and TCUD pins, TM4 automatically selects up or down operation in the timing as shown in Figure 7-66, and executes counting.

Phase-out/Discontinue

In mode 4, counting is executed at both the rising and falling edges of the two signals input to the TIUD and TCUD pins. Therefore, timer 4 (TM4) counts four times per cycle of an input signal (x4 count).

Cautions 1. The valid edge of the TIUD pin specified by timer unit mode register 1 (TUM1) is invalid when TM4 is in mode 4.

2. If the TIUD pin edge and TCUD pin edge are input simultaneously in mode 4, TM4 continues counting while keeping the same up/down operation immediately before the input.

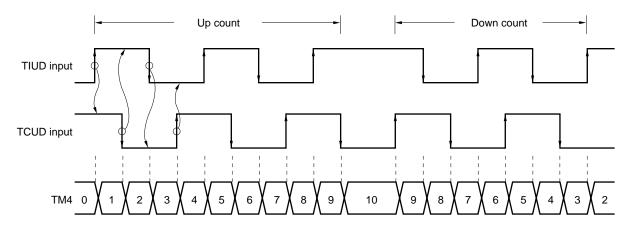
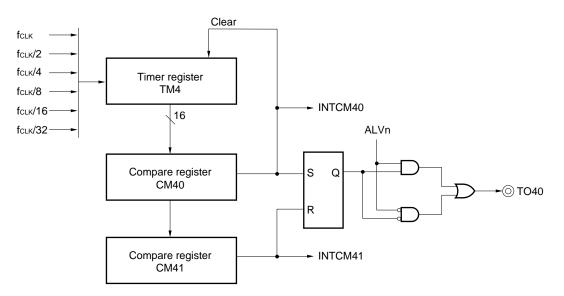


Figure 7-66. Example of Operation in Mode 4

Remark The count value of TM4 is represented in decimal.

(4) PWM output operation


The real-time pulse unit (RPU) is provided with a 16-bit cycle programmable PWM output function that can change the duty factor of an active level in a specific cycle.

Phase-out/Discontinued

When TM4 is set in the general-purpose timer mode by timer unit mode register 1 (TUM1), the TO40 pin can be used for the PWM output operation.

The resolution is 16 bits, and as many as six internal clocks can be selected as the count clock. Figure 7-67 shows the block diagram of timer 4 when it performs the PWM output operation.

(a) Setting procedure

The PWM output operation is executed in the following sequence:

<1> Set the P06 pin in the control mode by using the port 0 mode control register (PMC0) (PMC06 = 1).

Phase-out/Discontinued

- <2> Clear the CMD bit of the TUM1 register to "0" (TM4 is set in the general-purpose timer mode, and the P06 pin serves as the TO40 output pin).
- <3> Set the TOE40 bit of the TUM1 register to 1 to enable the output operation of TO40. Also set the active level of TO40 by using the ALV40 bit.
- <4> Set the operation of TM4 by using the ENMD bit of the timer control register 4 (TMC4) (ENMD = 1), and set the count clock of TM4 with the I/E, PRM41, and PRM40 bits.
- <5> When the CE4 bit of the TMC4 register is set to 1, TM4 starts counting, and the PWM signal is output from the TO40 pin.

(b) Operation

CM40 is a compare register that sets the cycle of TO40. If CM40 coincides with TM4, it generates interrupt signal INTCM40. The result of the compare coincidence is retained by the hardware and TM4 is cleared with the next count clock after the coincidence.

CM41 is a compare register that sets the duty factor of the TO40 output. Set the duty factor necessary for each cycle.

When software processing is started by cycle interrupt INTCM40 or interrupt INTCM41 that is generated from CM41, and when the values of CM40 and CM41 are set through software, the PWM output waveform can be efficiently generated from TO40.

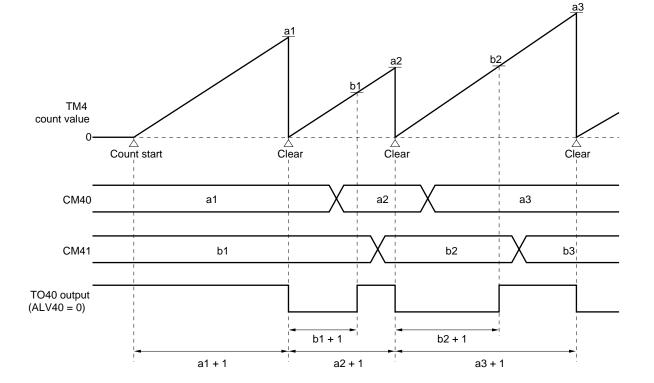


Figure 7-68. Example of PWM Output Operation of TO40

Remark If CM40 = CM41 is set, a reset takes precedence, and therefore TO40 outputs the inactive level.

7.7 Real-Time Output Function

The real-time output function is used to output the contents of the real-time output port register (RTP) to P00-P03 in units of 4 bits, in synchronization with the trigger signal from the real-time pulse unit (RPU). With this function, pulses can be synchronously output from two or more channels.

In addition, the output of P00 to P03 can be modulated for PWM.

7.7.1 Configuration

The real-time output port is multiplexed with port 0 (P0). To control the output status, the following two registers are provided:

- Real-time output port mode register (RTPM)
- Real-time output port register (RTP)

The real-time output is changed by the trigger signal specified by the RTRG1 and RTRG0 bits of the RTPM register. As the trigger signal, the signal output by RPU or a software trigger can be selected.

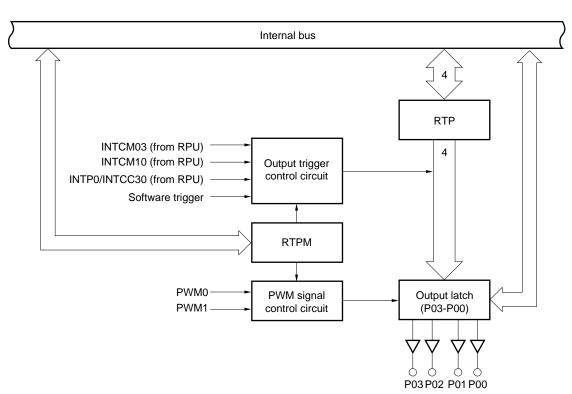
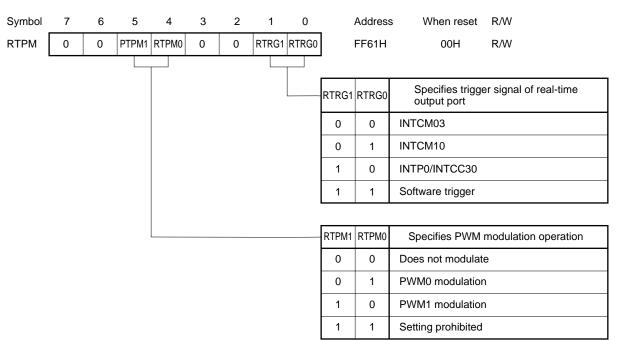


Figure 7-69. Block Diagram of Real-Time Output Port


Caution The RTP register is an 8-bit access register. When the RTP register is read, the data set in the RTP register is placed in the lower 4 bits. The higher 4 bits are fixed to "0" by hardware, and therefore "0" is read.

7.7.2 Control registers

(1) Real-time output port mode register (RTPM)

This is an 8-bit register that specifies the operation mode of the real-time output port. This register can be read or written by a bit manipulation instruction or an 8-bit manipulation instruction. When the $\overrightarrow{\mathsf{RESET}}$ signal is input, RTPM is cleared to 00H.

Figure 7-70. Format of Real-Time Output Port Mode Register

Caution Bits 7, 6, 3 and 2 of the RTPM register are fixed to "0" by hardware. Even if "1" is written to them, they remain "0".

(2) Real-time output port register (RTP)

This is an 8-bit register that stores the data output from the real-time output port.

The data written to this register is output to the pin connected to it according to the specification of the realtime output port mode register (RTPM).

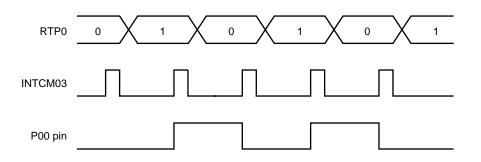
If the signal output by the real-time pulse unit (RPU) is specified as the output trigger of the real-time output port, the data written to the RTP register is output to the pin in synchronization with a trigger signal. If the software trigger is specified as the trigger signal, the data written to the RTP register is output to the pin as is.

The RTP register can be read or written by a bit manipulation or 8-bit manipulation instruction.

The contents of this register become undefined when the $\overline{\text{RESET}}$ signal is input.

Caution The higher 4 bits of the RTP register have no latch circuit and are fixed to "0". Therefore, even if "1" is written to the higher 4 bits, they remain "0".

7.7.3 Operation


The value of the real-time output port register (RTP) is set by software. The trigger signal that is used to output the contents of the RTP register to P00-P03 can be selected from three types of interrupts by the real-time output port mode register (RTPM).

To change the pin level directly, write "1" to the RTRG1 and RTRG0 bits of the RTPM register through software. The contents of the RTP register will be directly output to P00-P03.

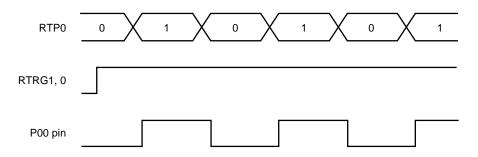
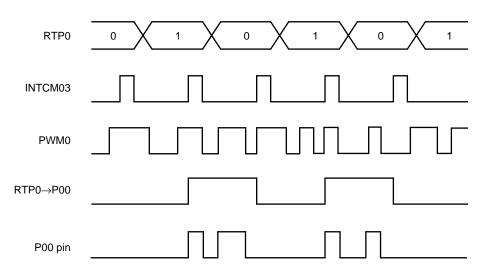

When P00-P03 are in the control mode (when the real-time output function is specified), the output pattern of each pin can be modulated for PWM. When PWM modulation is performed, the signal transferred from the RTP register to the output latch is ANDed with the PWM signal (PWM0 or PWM1), and the result of this ANDing is output to the P00-P03 pins.

Figure 7-71. Example of Real-Time Output Function Operation (P00 pin)


(a) RTRG1 = RTRG0 = 0 (trigger signal: INTCM03), RTPM1 = RTPM0 = 0 (no PWM modulation)



(b) RTRG1 = RTRG0 = 1 (software trigger), RTPM1 = RTPM0 = 0 (no modulation)

(c) RTRG1 = RTRG0 = 0 (trigger signal: INTCM03), RTPM1 = 0 RTPM0 = 1 (PWM0 modulation)

CHAPTER 8 A/D CONVERTER

Phase-out/Discontinued

The μ PD78366A is provided with a high-speed, high-resolution 10-bit analog-to-digital (A/D) converter, which has eight analog input pins (ANI0-ANI7) through which analog signals are input, and a 10-bit A/D conversion result register (ADCR) which stores the conversion results.

This A/D converter is a successive approximation type, and operates in the following three modes. The operation modes are selected by using the A/D converter mode register (ADM) through software, so that A/D conversion suitable for the application system can be carried out.

Select mode

In this mode, the A/D converter converts data input from one analog input line.

Scan mode

In this mode, two or more sets of analog input data are sequentially converted.

• Mixed mode

Processing in the select and scan modes is executed in combination.

In each mode, the conversion results are stored in the ADCR register each time A/D conversion is executed. When conversion has been completed, an A/D conversion end interrupt (INTAD) occurs, which starts a macro service that executes automatic data transfer, etc.

8.1 Configuration

The configuration of the A/D converter is as shown in Figure 8-1.

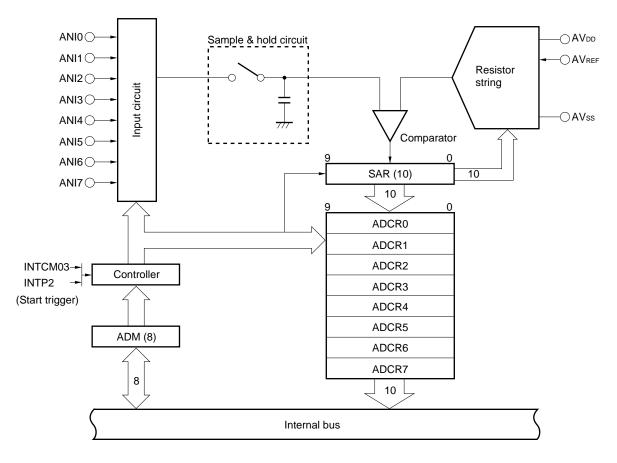
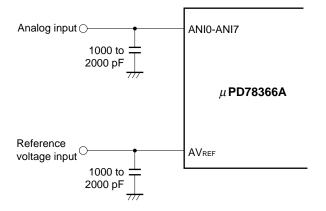



Figure 8-1. Block Diagram of A/D Converter

Cautions 1. Connect capacitors to the analog input pins (ANI0-ANI7) and reference voltage input pin (AVREF) to prevent malfunctioning due to noise.

2. Do not apply a voltage exceeding the range of AVss to AVDD to the pin used as the A/D converter input pin.

(1) Input circuit

The input circuit selects an analog input line in accordance with an operation mode specified by the A/D converter mode register (ADM) and sends the signal input from the selected analog line to the sample and hold function.

(2) Sample and hold circuit

The sample and hold circuit samples the analog input signals sent from the input circuit one by one, and sends them to the comparator. If A/D conversion is in progress at this time, the analog input signal is retained.

(3) Comparator

The comparator compares the voltage of the analog input signal with the output voltage of the D/A converter.

(4) Resistor string

The resistor string generates a voltage that matches the voltage of the input analog signal. The output voltage of the resistor string is controlled by the SAR register.

(5) SAR (Successive Approximation Register)

The SAR register is a 10-bit register that controls the output value of the resistor string to compare the voltage of the input analog signal.

When A/D conversion has been completed, the contents of the SAR register at that time (conversion result) are stored in the A/D conversion result register (ADCR). After specified A/D conversion has been completed, an A/D conversion end interrupt (INTAD) occurs.

(6) Controller

The controller selects an analog input signal in accordance with the mode specified by the ADM register, generates the operation timing of the sample and hold function, and controls the conversion trigger.

(7) ANIO-ANI7 pins

These pins are eight channels of analog input pins of the A/D converter which input analog signals to be converted into digital signals.

Caution Do not apply a voltage exceeding that specified to the ANI0-ANI7 pins. If a voltage higher than V_{DD} or lower than V_{SS} (even if the voltage is within the range of the absolute maximum ratings) is input, the conversion value of that channel is undefined and may influence the conversion values of other channels.

(8) AVREF pin

This pin inputs a reference voltage to the A/D converter. Based on the voltage applied across the AVREF and AVss pins, the signal input to ANI0-ANI7 is converted into a digital signal.

(9) AVss pin

This is the ground pin of the A/D converter. Input the Vss level to this pin.

(10) AVDD pin

Input the VDD level to this pin.

8.2 A/D Converter Mode Register (ADM)

The A/D converter mode register (ADM) is an 8-bit register that controls the operation of the A/D converter.

This register can be read or written by a bit manipulation instruction or an 8-bit manipulation instruction. If data is written to the ADM register while conversion is in progress, conversion is initialized and started from the beginning. The ADM register is initialized to 00H when the RESET signal is input.

Figure 8-3 shows the format of the ADM register.

Symbol	7	6	5	4	3	2	1		0		Addres	s	When res	et R/	W	
ADM	AM2	AM1	AM0	FR	IS	ANIS2	2 AN	IS1 A	NIS0		FF68H		00H	R/	W	
I																
													Se	election	of an	alog input
							L			ANIS2	ANIS1	ANISO	Select	mode		Scan mode
										0	0	0	AN	110		ANI0
										0	0	1	AN	111		ANI0-ANI1
										0	1	0	AN	112		ANI0-ANI2
										0	1	1	AN	113		ANI0-ANI3
										1	0	0	AN	114		ANI0-ANI4
										1	0	1	AN	115		ANI0-ANI5
										1	1	0	AN	116		ANIO-ANI6
										1	1	1	AN	117		ANIO-ANI7
									ĺ		6	nocifios	interrupt	cianal i	n miv	od modo
										IS) (ii	nterrupt	input ope	eration)		eu mode
										0	INTF	2				
										1	INTC	CM03				
										FR		Se	elects con	version	time	
										0	208 (clocks (when fclk	> 12.5	MHz)	
										1	169 (clocks (when fclk	≤ 12.5	MHz)	
										AM2	AM1	AM0	Spec	ifies A/E) con	version mode
										0	0	0		Softw	are	1-buffer mode
										0	0	1	Mixed	trigge	r	4-buffer mode
										0	1	0	mode	Interru	upt	1-buffer mode
										0	1	1		input		4-buffer mode
										1	0	0	Scan m	ode		
										1	0	1	Setting	prohibit	ed	
										1	1	0	Select r	nodo		1-buffer mode
										1	1	1	Select	noue		4-buffer mode

Figure 8-3. Format of A/D Converter Mode Register

Remarks 1. fclk: internal system clock

- 2. Software trigger is to start A/D conversion by using data written to the ADM register as a trigger.
- 3. In the select and scan modes, A/D conversion is started only by the software trigger.

 \star

Each bit of the ADM register has the following function:

(1) ANIS2-ANIS0 bits (bits 2-0)

These bits select an analog input signal (ANI0-ANI7) to be converted into a digital signal.

(2) IS bit (bit 3)

This bit selects an A/D conversion start trigger (INTP2 or INTCM03) when the mixed mode (interrupt input operation) is specified by the AM2-AM0 bits.

The software trigger operation in the mixed mode, and the operation of the scan and select modes are not influenced by the IS bit.

(3) FR bit (bit 4)

★

This bit controls the A/D conversion time.

The FR bit is set (to 1) by an instruction when the internal system clock fcLk \leq 12.5 MHz. The FR bit performs control so that the A/D conversion time is not significantly changed even if the operating frequency of the μ PD78366A is changed.

The time required for one conversion, which is determined by the internal system clock (fcLk) and the FR bit, is expressed as follows:

• When FR = 0, conversion time = $\frac{208}{f_{CLK}}$ (µs)

• When FR = 1, conversion time = $\frac{169}{f_{CLK}}$ (µs)

Table 8-1. Example of Conversion Time Set by FR Bit

Internal system clock fcLK (MHz)	16	12.5
Oscillation frequency fxx, external clock fx (MHz)	8	6.25
FR bit	0	1
Conversion time (µs)	13.0	13.5

(4) AM2-AM0 bits (bits 7-5)

These bits select an operation mode of the A/D converter.

The A/D converter of the μ PD78366A can operate in three modes. In addition, the result of the A/D conversion can be buffered in two modes: 1-buffer and 4-buffer modes. For details of the A/D conversion modes, refer to **8.4 Operation**.

Conversion Mode	Buffer Mode	Conversion Start Trigger
Mixed mode	1-buffer mode	Software trigger/interrupt input
	4-buffer mode	(INTP2/INTCM03)
Scan mode	1-buffer mode	Software trigger
Select mode	1-buffer mode	
	4-buffer mode	

Table 8-2. A/D Conversion Modes

- Caution The A/D converter of the μ PD78366A cannot stop conversion. When data is written to the ADM register, therefore, the converter continues to operate in the specified mode, until the contents of the ADM register are changed.
- Remark The start trigger of the A/D conversion is a signal that makes the operation mode set by the ADM register valid, and starts A/D conversion. For details, refer to 8.4 Operation.

8.3 A/D Conversion Result Register (ADCR)

The μ PD78366A is provided with eight 10-bit A/D conversion result registers (ADCRs) to store the results of A/D conversion.

Each ADCR register can be read independently of the others by a 16-bit manipulation instruction or 8-bit manipulation instruction.

The result of conversion can be read from an ADCR register in the following two ways:

(1) Word access (execution of 16-bit manipulation instruction)

The lower 10 bits of the read word data are valid.

The higher 6 bits are always "0" when they are read.

Figure 8-4 illustrates word access to an ADCR register.

Figure 8-4. Word Access to ADCR Register

Simbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	R/W
ADCRn	0	0	0	0	0	0	AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2	AD1	AD0	R

(n = 0-7)

Symbol	Address	When Reset
ADCR0	FFB0H	Undefined
ADCR1	FFB2H	
ADCR2	FFB4H	
ADCR3	FFB6H	
ADCR4	FFB8H	
ADCR5	FFBAH	
ADCR6	FFBCH	
ADCR7	FFBEH	

Remark AD0-AD9: A/D conversion result

(2) Byte access (execution of 8-bit manipulation instruction)

The higher 8 bits of the A/D conversion result, which is 10-bit data, are read. Figure 8-5 illustrates byte access to an ADCR register.

Figure 8-5. Byte Access to ADCR Register

Symbol	7	6	5	4	3	2	1	0	R/W	
ADCRnH	AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2	R	
(n = 0-7)	(n = 0-7)									
Symbo	I	А	ddres	ss		When Reset				
ADCR0	Ŧ	F	FB1	Η	Und	define	d			
ADCR1	Ŧ	F	FB3I	4						
ADCR2	+	F	FB5I	H						
ADCR3	Η	F	FB7I	Η						
ADCR4	Η	F	FB9I	Η						
ADCR5	ADCR5H			Н						
ADCR6	ADCR6H			FFBDH						
ADCR7	-	F	FBFI	Η						

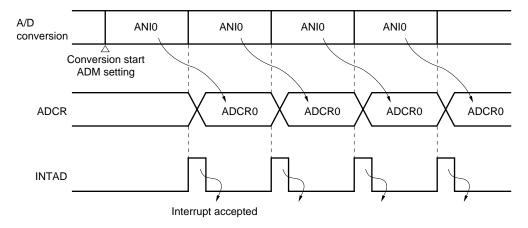
Remark AD2-AD9: A/D conversion result (higher 8 bits of 10 bits)

8.4 Operation

8.4.1 Basic operation of A/D converter

A/D conversion is carried out in the following sequence:

- (1) Analog input signal and operation mode are selected by the A/D converter mode register (ADM). If a software trigger is specified and when data is written to the ADM register, A/D conversion is started.
- (2) The voltage generated by the resistor string is compared with the analog input voltage by the comparator for each 1 bit of the SAR register.
- (3) When all 10 bits have been compared, the A/D conversion result remains in the SAR register. This result is transferred to the A/D conversion result register (ACDR) and is latched. At the same time, an A/D conversion end interrupt (INTAD) occurs (refer to Figure 8-6).


Caution Do not apply a voltage exceeding the range of AVss to AVDD to the pin used as the input pin of the A/D converter.

Operation of the A/D converter is started by one of the three conversion start triggers (software trigger, INTP2, or INTCM03) (the conversion mode set by the ADM register is made valid).

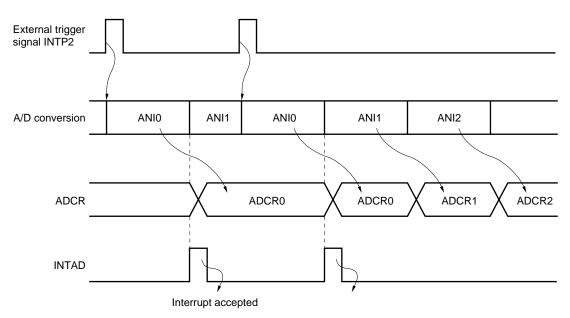
(a) Software trigger

When data is written to the ADM register, A/D conversion is started. A/D conversion can be synchronized by this trigger through software.

This trigger can be used in all the A/D conversion modes (select, scan, and mixed modes).

Figure 8-6. A/D Conversion Basic Operation (in select mode, with software trigger)

(b) External trigger (INTP2, INTCM03)


When the valid edge is input to external interrupt pin INTP2, or when INTCM03 that indicates coincidence between TM0 and CM03 of the real-time pulse unit (RPU) occurs, A/D conversion is started. This trigger can only be used in the mixed mode.

Phase-out/Discontinued

Each time the valid edge is input to INTP2 or INTCM03 occurs, the SAR register is initialized, and A/D conversion is started.

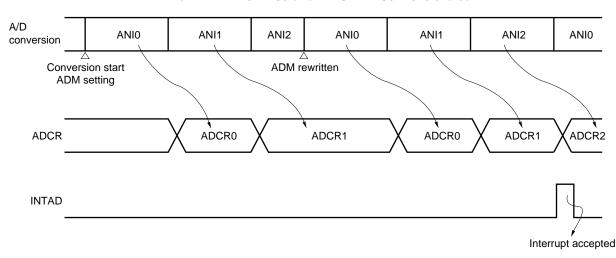

Which of INTP2 or INTCM03 is to be made valid can be specified by the IS bit of the ADM register.

Figure 8-7. A/D Conversion Basic Operation (in mixed mode, with external trigger)

If data is written to the ADM register while A/D conversion is in progress, conversion is initialized and started from the beginning.

Figure 8-8. Rewriting ADM during A/D Conversion (in scan mode, with software trigger)

When AM2-AM0 = 100 and ANIS2-ANIS0 = 010 are set.

Caution When performing branch processing directly using the values resulting from the A/D conversion, if a program is created that branches only when the conversion result reaches a specific value, the conversion result may not reach that specific value due to the effect of a conversion error and the program may not be able to branch to the prescribed routine. Therefore, create a program that will branch when the conversion result is within the overall error range.

The following is an example of a program that performs specific processing when an analog input voltage input to the ANI0 pin is 1/2 AVREF.

<Bad example>

CMPW BNE	ADCR0, #01FFF \$UNMATCH	1
	·) · .	<1> Processing when A/D conversion result is 1FFH

UNMATCH:

•	
	<2> Processing when A/D conversion result is other than 1FFH

Program cannot branch to perform processing <1> if conversion result does not become 1FFH due to conversion error.

<Good example>

•

CMPW BGT CMPW BLT	ADCR0, #0201H \$UNMATCH ADCR0, #01FCH \$UNMATCH
	 <1> Processing when A/D conversion result is 1FCH-201H
UNMATCH:	

<2>	Processing when A/D conversion result is outside the above-mentioned
	range

If the conversion result is within the range of 1FCH-201H, processing continues, assuming that an analog voltage of 1/2 AVREF has been input.

8.4.2 Operation mode of A/D converter

The following three modes can be selected as the operation modes of the A/D converter. They are selected by the A/D converter mode register (ADM). A/D conversion is started when data is written to the ADM register (software trigger), and continues until the contents of the ADM register are changed.

- Select mode
- Scan mode
- Mixed mode

(1) Select mode

In this mode, one analog input signal (ANIn: n = 0.7) specified by the ADM register is converted into a digital signal. The result of the conversion is stored in the A/D conversion result register (ADCRn: n = 0.7) corresponding to the analog input signal.

The following two buffer modes can be selected depending on how the conversion result is stored:

- 1-buffer mode
- 4-buffer mode

(a) 1-buffer mode

In this mode, one analog input signal is converted once into a digital signal, which is then stored in an A/D conversion result register (refer to **Table 8-3**). The analog input signal and the A/D conversion result register correspond to each other on a one-to-one basis.

An A/D conversion end interrupt (INTAD) occurs each time conversion has been completed, to indicate the end of the conversion. In this mode, A/D conversion continues even after that.

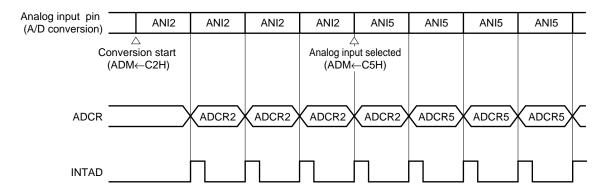
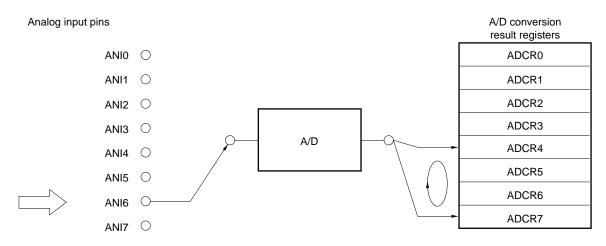

Figure 8-9. A/D Conversion in Select Mode (1-buffer mode)

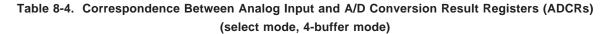
Table 8-3. Correspondence Between Analog Input and A/D Conversion Result Registers (ADCRs) (select mode, 1-buffer mode)

Analog Input	ADCR
ANI0	ADCR0
ANI1	ADCR1
ANI2	ADCR2
ANI3	ADCR3
ANI4	ADCR4
ANI5	ADCR5
ANI6	ADCR6
ANI7	ADCR7

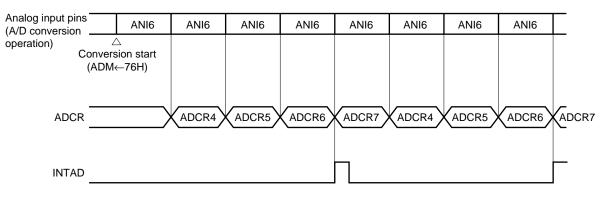
Figure 8-10. Example of Operation Timing in Select Mode (1-buffer mode)

(b) 4-buffer mode


In this mode, one analog input signal is converted four times to a digital signal. The resultant four digital signals are stored in four A/D conversion result registers (ADCR0-ADCR3 or ADCR4-ADCR7) (refer to **Table 8-4**).


When the conversion has been executed four times, an A/D conversion end interrupt (INTAD) occurs, to indicate the end of the conversion. In this mode, A/D conversion continues even after that.

This mode is suitable for applications where the average of the A/D conversion results needs to be obtained.


Figure 8-11. A/D Conversion in Select Mode (4-buffer mode)

Analog Input	ADCR
	ADOIN
ANIO	ADCR0
ANI1	to
ANI2	ADCR3
ANI3	
ANI4	ADCR4
ANI5	to
ANI6	ADCR7
ANI7	

Figure 8-12. Example of Operation Timing in Select Mode (in 4-buffer mode)

(2) Scan mode

In this mode, two or more analog input signals specified by the ADM register are sequentially converted into digital signals. Each digital signal is stored in an A/D conversion result register corresponding to the analog input signal (refer to **Table 8-5**). Conversion is started when data is written to the ADM register (software trigger). The end of the conversion can be detected by an A/D conversion end interrupt (INTAD) that occurs when the specified analog input signals have been completely converted (i.e., scanned). In this mode, A/D conversion is repeated by scan operation.

This mode is suitable for applications where two or more analog input signals always need to be monitored.

Figure 8-13. A/D Conversion in Scan Mode

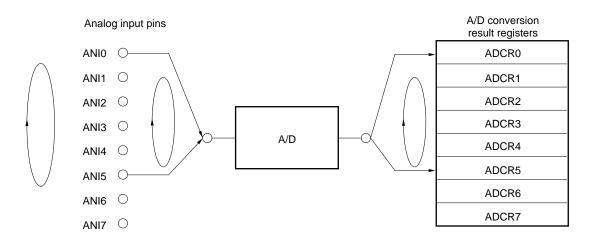


 Table 8-5.
 Correspondence Between Analog Input Pins

 and A/D Conversion Result Registers (ADCRs)
 (scan mode)

Analog Input	ADCR
ANI0	ADCR0
ANI1	ADCR1
ANI2	ADCR2
ANI3	ADCR3
ANI4	ADCR4
ANI5	ADCR5
ANI6	ADCR6
ANI7	ADCR7

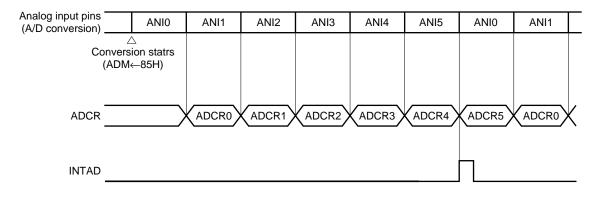


Figure 8-14. Example of Operation Timing in Scan Mode

(3) Mixed mode

This mode is a combination of the select and scan modes.

A/D conversion in the mixed mode can be started by the following three triggers. These triggers are used to start A/D conversion in the select mode (select processing). A/D conversion in the scan mode (scan processing) is then executed.

- Software trigger : Writing data to ADM register
- External trigger : Input of valid edge to INTP2 pin (valid edge is specified by INTM0 register)
- Interrupt trigger from RPU : Interrupt INTCM03 that occurs when TM0 and CM03 coincide

To use the software trigger, select processing is first executed when data is written to the ADM register, followed by scan processing.

When the external trigger or interrupt trigger is used, scan processing is executed first when data is written to the ADM register, and select processing is executed when the external trigger or interrupt trigger is input. When select processing is completed, scan processing is continued.

An A/D conversion end interrupt (INTAD) occurs when select processing has been completed. A/D conversion by scan processing continues until a new trigger is input. If a new trigger is input, select processing is executed again, and when it is completed, scan processing executed before the new trigger was input is resumed. A/D conversion in the mixed mode can be executed in two buffer modes, depending on how the result of select processing is stored: 1-buffer mode or 4-buffer mode.

The analog input signals to be scanned are determined by the buffer mode and the analog input signal selected for processing.

Select Processing		Scan Processing
Buffer Mode	Selection of Analog Input	
1-buffer mode	One of ANI0-ANI7 selected	ANI0-ANI7 scanned
4-buffer mode	One of ANI0-ANI3 selected	ANI4-ANI7 scanned
	One of ANI4-ANI7 selected	ANI0-ANI3 scanned


Table 8-6. Analog Input in Mixed Mode

(a) Select processing in 1-buffer mode

In the select mode, one analog input signal is specified and converted. In the scan mode, all the analog input signals are sequentially converted. After that, A/D conversion (scan processing) is repeatedly executed.

The result of the conversion is stored in the A/D conversion result register corresponding to the analog input signal, as shown in Table 8-7.

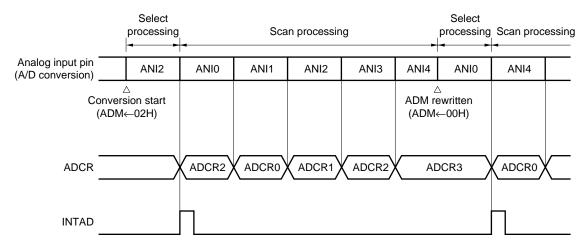


Table 8-7.	7. Correspondence Between Analog Input and A/D Conversion Result Registers (ADCRs)	
	(mixed mode: select processing in 1-buffer mode)	

Analog Input	ADCR		
	Select Mode	Scan Mode	
ANI0	ADCR0	Stores result of conversion of all	
ANI1	ADCR1	analog inputs (ANI0-ANI7) to ADCR0-	
ANI2	ADCR2	ADCR7	
ANI3	ADCR3		
ANI4	ADCR4		
ANI5	ADCR5		
ANI6	ADCR6		
ANI7	ADCR7		

Figure 8-16. Example of Operation Timing in Mixed Mode (select processing in 1-buffer mode) (software trigger)

Caution To execute select processing by software trigger and start scan processing again, A/D conversion before software trigger was input is resumed.

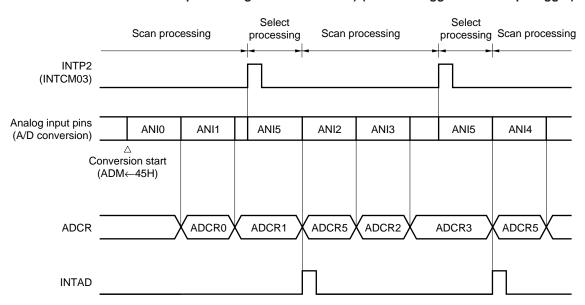
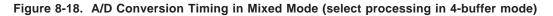
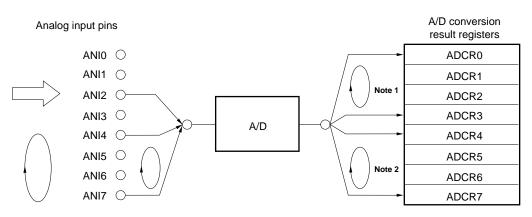


Figure 8-17. Example of Operation Timing in Mixed Mode (select processing in 1-buffer mode) (external trigger or interrupt trigger)

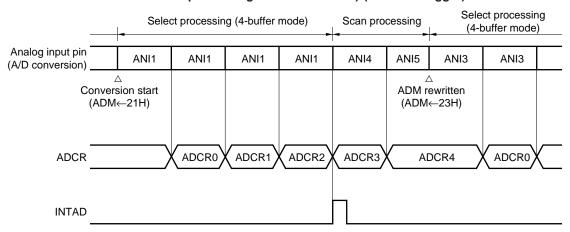

Caution To execute select processing by external trigger or interrupt trigger and to start scan processing again, A/D conversion before external trigger or interrupt trigger was input is resumed.


(b) Select processing in 4-buffer mode

In the select mode, one analog input signal is specified and converted to a digital signal. The resultant digital signal is stored in four A/D conversion result registers (ADCRs) corresponding to the analog input signal. In the scan mode, four analog input signals excluding the analog signal processed in the select mode (e.g., when ANI2 is selected for select processing, ANI4-ANI7 are processed in the scan mode) are sequentially converted. After that, scan processing is repeated.

Phase-out/Discontinued

The conversion results are stored in the ADCR registers corresponding to the analog input signals, as shown in Table 8-8.



- Notes 1. Select processing (4-buffer mode)
 - 2. Scan processing

Table 8-8. Correspondence Between Analog Input and A/D Conversion Result Registers (ADCRs) (in mixed mode: select processing in 4-buffer mode)

Analog Input	ADCR		
	Select Processing	Scan Processing	
ANI0	Stores conversion result of	$ANIn \to ADCRn$	
ANI1	specified analog input to	(n = 4-7)	
ANI2	ADCR0-ADCR3		
ANI3			
ANI4	Stores conversion result of	$ANIn \to ADCRn$	
ANI5	specified analog input to	(n = 0-3)	
ANI6	ADCR4-ADCR7		
ANI7			

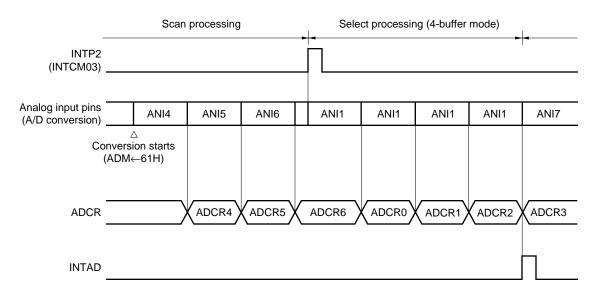


Figure 8-19. Example of Operation Timing in Mixed Mode (select processing in 4-buffer mode) (software trigger)

Caution To execute select processing by software trigger and start scan processing again, A/D conversion before software trigger was input is resumed.

Figure 8-20. Example of Operation Timing in Mixed Mode (select processing in 4-buffer mode) (external trigger or interrupt trigger)

Caution To execute select processing by external trigger or interrupt trigger and to start scan processing again, A/D conversion before external trigger or interrupt trigger was input is resumed.

8.5 How to Read A/D Converter Characteristic Tables

This section describes the technical terms peculiar to the A/D converter.

(1) Resolution

Minimum analog input voltage that can be identified. The ratio of 1 digital output bit to an analog input voltage is said to be 1LSB (Least Significant Bit). The ratio of the full scale to 1LSB is expressed in %FSR (Full Scale Range).

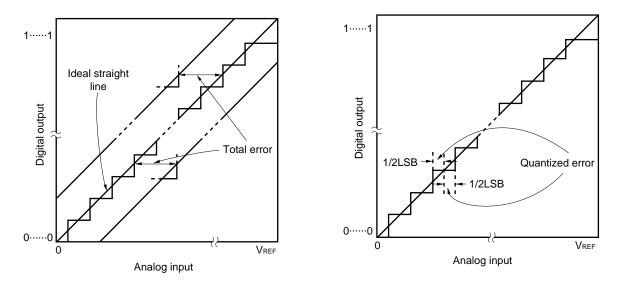
Where the resolution is 10 bits,

 $1LSB = 1/2^{10} = 1/1024$ = 0.098%FSR

The accuracy is independent of the resolution and is determined by the total error.

(2) Total error

Maximum difference between actually measured and theoretical values. Total error of a zero scale error, full scale error, non-linearity error, and combination of these errors. Note that the total error set forth in the characteristic table does not include the quantized error.


(3) Quantized error

An error of $\pm 1/2$ LSB that inevitably occurs when an analog value is converted into a digital value. Since an A/D converter converts an analog voltage in the range of $\pm 1/2$ LSB into the same digital code, a quantized error is unavoidable.

This error is not included in the total error, zero scale error, full scale error, and non-linearity error set forth in the characteristic table.

Figure 8-21. Total Error

Figure 8-22. Quantized Error

(4) Zero scale error

This is the difference between the actually measured value of an analog input voltage and the theoretical value (1/2LSB) when the digital output changes from 0....000 to 0....001. If the measured value is greater than the theoretical value, it is the difference between the actually measured value of the analog input voltage and the theoretical value (3/2LSB) when the digital output changes from 0....001 to 0....010.

(5) Full scale error

This is the difference between the actually measured value of an analog input voltage and the theoretical value (full scale - 3/2LSB) when the digital output changes from 1 110 to 1 111.

(6) Non-linearity error

This is the degree to which the conversion characteristics shift from the ideal straight line. It indicates the maximum difference between the measured value and the ideal straight line where the zero scale error and full scale error are 0.

Figure 8-24. Full Scale Error

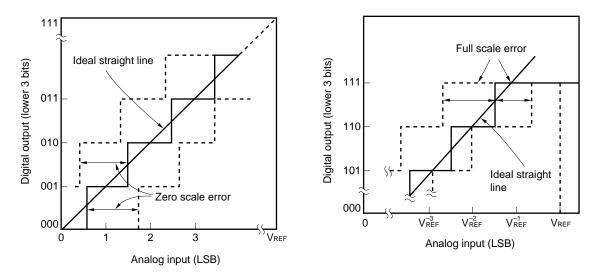
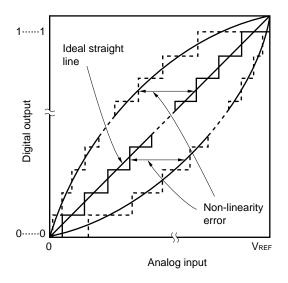



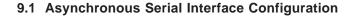
Figure 8-25. Non-Linearity Error

(7) Conversion time

Time required from when an analog input voltage is given until the digital output is obtained. The conversion time set forth in the characteristics table includes the sampling time.

(8) Sampling time

Time during which an analog switch is ON to load an analog voltage to the sample and hold function.


CHAPTER 9 ASYNCHRONOUS SERIAL INTERFACE

The μ PD78366A is provided with a UART (Universal Asynchronous Receiver Transmitter) asynchronous serial interface. This interface transmits or receives 1-byte serial data following a start bit and can perform full duplex operation. A baud rate generator is also provided, so that communication can be established in a wide range of baud rates.

With the μ PD78366A, two sets of transmission/reception pins can be selected by software.

The asynchronous serial interface is independent of the clocked serial interface.

Remark Unless otherwise specified, this chapter describes the TxD0 and TxD1, and RxD0 and RxD1 pins as TxD and RxD pins, respectively.

The asynchronous serial interface is controlled by the asynchronous serial interface mode register (ASIM) and asynchronous serial interface status register (ASIS). Receive data is stored in the receive buffer (RXB), and transmit data is written to the transmit shift register (TXS).

The asynchronous serial interface is configured as shown in Figure 9-1.

(1) Asynchronous serial interface mode register (ASIM)

The ASIM register is an 8-bit register that specifies the operation of the asynchronous serial interface. This register can be read or written by an 8-bit manipulation instruction or a bit manipulation instruction. It is initialized to 80H when the $\overrightarrow{\mathsf{RESET}}$ signal is input.

(2) Asynchronous serial interface status register (ASIS)

The ASIS register is a collection of flags that identify the nature of an error in case a reception error occurs. Each flag is set to 1 when a reception error occurs, and is reset to 0 when data is read from the receive buffer (RXB) or when a new, subsequent error is received (if an error occurs in the next data, the corresponding error flag is set).

This register can only be read by an 8-bit manipulation instruction. It is initialized to 00H when the $\overrightarrow{\mathsf{RESET}}$ signal is input.

(3) Reception control parity checking unit

Reception is controlled in accordance with the contents written to the ASIM register. Whether an error, such as a parity error, has occurred is also checked during reception. If an error is detected, a value corresponding to the error is written to he ASIS register.

(4) Receive shift register

This register converts the serial data input to the RxD pin into parallel data. When 1 byte of data is received, it is transferred to the receive buffer.

This register cannot be manipulated directly from the CPU.

(5) Receive buffer (RXB)

This register holds the receive data. Each time 1 byte of data is received, it is transferred from the shift register. When the data length is set to 7 bits, the receive data is transferred to bits 0 to 6 of the RXB, and the MSB of the RXB is always "0".

This register can only be read by an 8-bit manipulation instruction. Its contents are undefined when the RESET signal is input.

(6) Transmit shift register (TXS)

This register sets the data to be transmitted. Data written to the TXS register is transmitted as serial data. When the data length is set to 7 bits, bits 0 to 6 of the data written to the TXS are treated as transmit data. When data is written to the TXS register, transmission is started. Do not write to the TXS register while transmission is in progress.

Data can only be written to this register by an 8-bit manipulation instruction. The contents of the TXS register are undefined when the $\overrightarrow{\text{RESET}}$ signal is input.

(7) Transmission control parity appending unit

Transmission is controlled by automatically appending a start bit, parity bit and stop bit to the data written to the TXS register, in accordance with the contents written to the ASIM register.

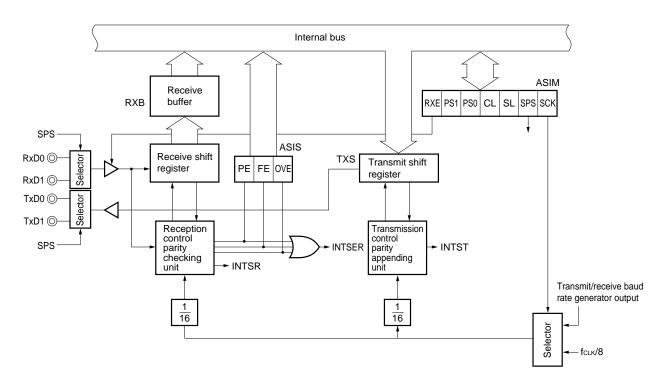


Figure 9-1. Block Diagram of Asynchronous Serial Interface

9.2 Selecting Pins for Serial Communication

The asynchronous serial interface selects the pins used for serial communication through software.

Selecting pins for serial communication

The asynchronous serial interface selects the pins used for serial communication (TxD0 and RxD0, or TxD1 and RxD1 pins) through software. Selection is made by using the SPS bit of the asynchronous serial interface mode register (ASIM), and the two sets of pins can be used by means of time-division multiplexing.

(a) To use TxD0 and RxD0 pins

To select the TxD0 and RxD0 pins for serial communication, reset the SPS bit of the ASIM register to 0. At this time, the levels of the TxD1 and RxD1 pins not used for serial communication are as follows:

- TxD1 ... High level
- RxD1 ... High impedance

(b) To use TxD1 and RxD1 pins

To select the TxD1 and RxD1 pins for serial communication, set the SPS bit of the ASIM register to 1. At this time, the levels of the TxD0 and RxD0 pins not used for serial communication are as follows:

- TxD0 ... High level
- RxD0 ... High impedance

Symbol	7	6	5	4	3	2	1	0	A	ddress	When reset	R/W
ASIM	1	RXE	PS1	PS0	CL	SL	SPS	SCK	6	F88H	80H	R/W
									•			
									scк		Specifies se	rial clock
									0	Interr	nal baud rate gener	ator output
									1	Interr	nal clock fclk/8	
									SPS		Selects UA	RT pins
									0	TxD0	and RxD0 pins	
									1	TxD1	and RxD1 pins	
									SL	Sp	pecifies stop bit of t	ransmit/receive data
									0	1 bit		
									1	2 bits		
									CL	С	harater length of tr	ansmit/receive data
									0	7 bits		
									1	8 bits		
									PS1	PS0	Specifies par	ity bit of transmit data
									0	0	No parity	
									0	1	Transmission = 0 Reception = No p	
									1	0	Odd parity	
									1	1	Even parity	
									RXE		Enables or disa	bles reception
									0	Disat	oles reception	
									1	Enab	les recption	

Figure 9-2. Setting of ASIM Register (pin selection)

Remark fclk: internal system clock

9.3 Setting Pins for Serial Communication

Since the RxD and TxD pins are multiplexed with general-purpose port pins, they must be set in the control mode before communication is started.

(1) Setting pins for serial communication

The asynchronous serial interface uses the TxD0 (or TxD1) pin for transmission and the RxD0 (or RxD1) pin for reception. These pins, however, are multiplexed with general-purpose port pins P30 (P35) and P31 (P36), respectively. Therefore, before starting communication, each pin must be set in the control mode by using the port 3 mode control register (PMC3).

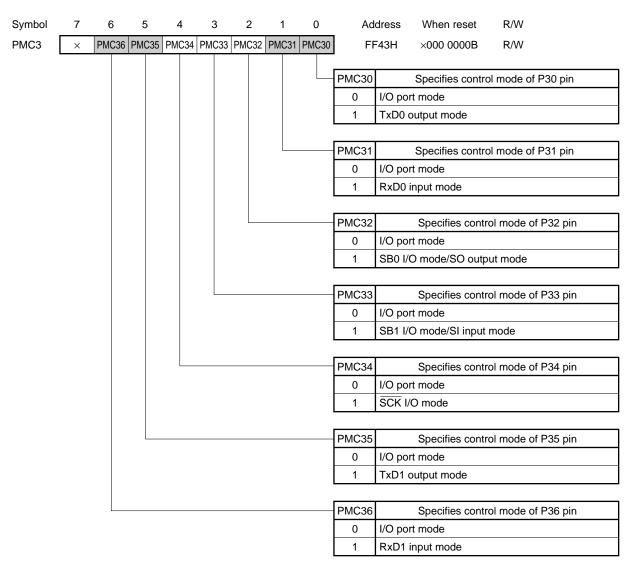


Figure 9-3. Format of Port 3 Mode Control Register

Remark ×: don't care

(2) Reading pin level

When port 3 (P3) is set in the control mode by the port 3 mode control register (PMC3), the following statuses can be read when an instruction that reads port 3 (P3) is executed:

(a) TxD0/P30 pin (or TxD1/P35 pin)


- When bit 0 (or bit 5) of the port 3 mode register (PM3) is set to 1, the level of the TxD pin can be read.
- When bit 0 (or bit 5) of the port 3 mode register (PM3) is reset to 0, the level of the internal transmit data can be read.

(b) RxD0/P31 pin (or RxD1/P36 pin)

• When bit 1 (or bit 6) of the port 3 mode register (PM3) is set to 1, the level of the RxD pin can be read.

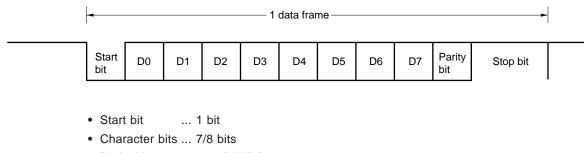
By reading the pin level, contention of the TxD pin can be checked.

The levels of the TxD and RxD pins do not change even if data is written to port 3 (P3) (data is written to the output buffer of port 3).

Figure 9-4. Format of Port 3 Mode Register

Remark ×: don't care

9.4 Data Format Setting

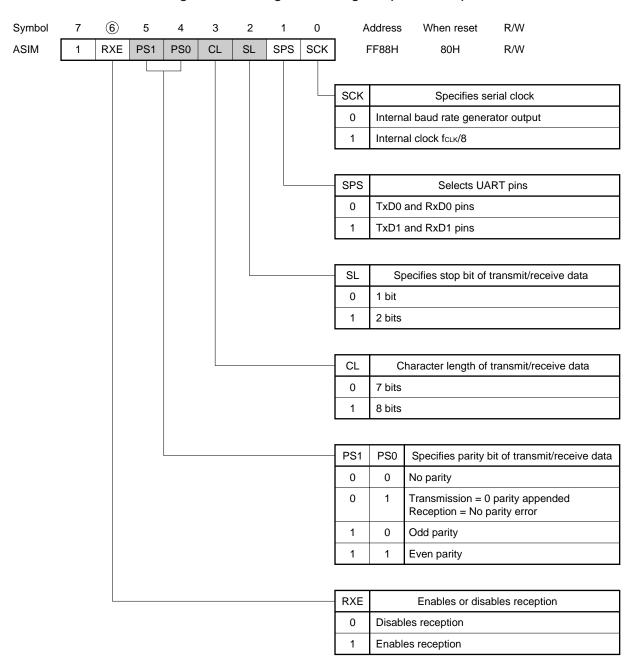

The character bit length, parity, and stop bit length are specified by the asynchronous serial interface mode register (ASIM).

(1) Setting data format

Figure 9-5 shows the format of the transmit/receive data. One data frame consists of a start bit, character bits, parity bit, and stop bit(s).

The character bit length, parity, and stop bit length of one data frame are specified by the asynchronous serial interface mode register (ASIM) (refer to **Figure 9-6**).

Figure 9-5. Format of Transmit/Receive Data of Asynchronous Serial Interface



- Parity bit ... even/odd/0/none
- Stop bit ... 1/2 bits

(2) 0 parity is effective for starting up system

The asynchronous serial interface of the μ PD78366A is provided with a "0 parity" function as a special transmit/ receive data format.

When "0 parity" is selected, "0" is unconditionally appended to the transmit data when serial data is transmitted. Serial data is received regardless of the status of the parity bit appended to it, and a parity error does not occur. The "0 parity" function is useful for executing serial communication when the data format is not determined such as when power is applied to the system.

Figure 9-6. Setting of ASIM Register (data format)

Remark fclk: internal system clock

9.5 Baud Rate Setting

The output of the baud rate generator or internal clock fcLk/8 can be selected as the serial clock. When the baud rate generator output is selected, communication can be carried out at the specified baud rate, regardless of the operating frequency.

(1) Baud rate = serial clock/16

The asynchronous serial interface samples the level of the RxD pin with the serial clock specified by the asynchronous serial interface mode register (ASIM) divided by 16.

(2) Selecting serial clock

The serial clock is selected by using the SCK bit of the asynchronous serial interface mode register (ASIM) (refer to **Figure 9-7**).

When internal system clock $f_{CLK}/8$ is selected, the baud rate is $f_{CLK}/128$. Therefore, when the internal system clock is 16 MHz, the baud rate is 125 Kbps.

Remark The baud rate generator is shared with the clocked serial interface (refer to 10.3 Setting Baud Rate).

Symbol	7	6	5	4	3	2	1	0	А	ddress	When reset	R/W
ASIM	1	RXE	PS1	PS0	CL	SL	SPS	SCK	F	F88H	80H	R/W
									SCK		Specifies se	rial clock
									0	Interr	al baud rate generation	ator output
									1	Interr	al clock fclk/8	
									SPS		Selects UAF	RT pins
									0	TxD0	and RxD0 pins	
									1	TxD1	and RxD1 pins	
									SL	Sp	pecifies stop bit of the	ransmit/receive data
									0	1 bit		
									1	2 bits		
									CL	С	haracter length of t	ransmit/receive data
									0	7 bits		
									1	8 bits		
									PS1	PS0	Specifies parity b	it of transmit/receive data
									0	0	No parity	
									0	1	Transmission = 0 Reception = No pa	parity appended arity error
									1	0	Odd parity	
									1	1	Even parity	
									RXE		Enables or disat	bles reception
									0	Disat	les reception	
									1	Enab	les reception	

Figure 9-7. Setting of ASIM Register (serial clock)

Remark fclk: internal system clock

9.5.1 Baud rate generator configuration

The baud rate generator is controlled by the baud rate generator control register (BRGC) and 8-bit compare register (BRG).

The baud rate generator is configured as shown in Figure 9-8.

(1) Baud rate generator control register (BRGC)

This 8-bit register is used to select the count clock for the 8-bit timer (TMBRG) and control operation of the baud rate generator.

It can be read or written by an 8-bit manipulation instruction or a bit manipulation instruction.

The contents of this register are initialized to 00H when the RESET signal is input.

The format of the BRGC register is shown in Figure 9-9.

(2) Prescaler

The prescaler divides the internal clock (fcLk/2) according to the setting of the BRGC register and generates count clocks.

(3) 8-bit timer (TMBRG)

This 8-bit timer counts the count clock generated by the prescaler.

When a coincidence signal is generated by the 8-bit compare register (BRG), the timer is cleared to 0 by the next count clock.

This timer is started or stopped by the BRGC register.

TMBRG cannot be handled directly from the CPU.

(4) 8-bit baud rate generator compare register (BRG)

This register always compares its value with the contents of the 8-bit timer (TMBRG). When the value written to the register coincides with the value of the timer, the register generates a coincidence signal, which clears the timer to 0.

A signal obtained by dividing this coincidence signal by two is output by the baud rate generator. This register can be read or written by an 8-bit manipulation instruction.

Its contents are undefined when the $\overline{\text{DECET}}$ signal is input

Its contents are undefined when the $\overline{\text{RESET}}$ signal is input.

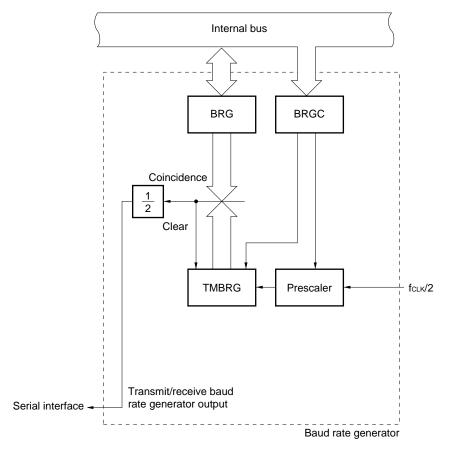
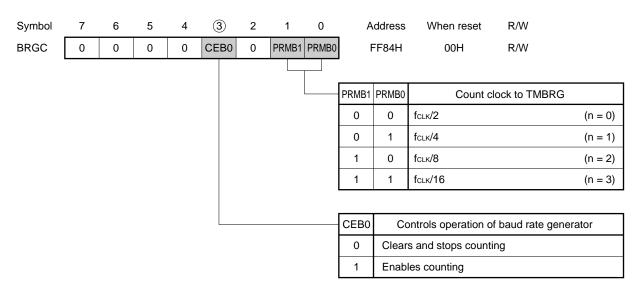



Figure 9-8. Block Diagram of Baud Rate Generator

Figure 9-9. Format of Baud Rate Generator Control Register

2. n in the PRMB1 and PRMB0 descriptions indicates the set values of bits 1 and 0 of the BRGC register, which are used to calculate the baud rate.

9.5.2 Specific baud rate setting

A specified serial clock can be generated by setting the baud rate generator control register (BRGC) and 8-bit compare register (BRG).

(1) Baud rate = serial clock/16

The asynchronous serial interface samples the level of the RxD pin with the serial clock specified by the asynchronous serial interface mode register (ASIM) divided by 16.

(2) Setting a desired baud rate

The baud rate can be calculated by the following expression. Set the value of the BRG register and the count clock of the 8-bit timer (TMBRG) so that the desired baud rate can be obtained, and start operation of the baud rate generator.

Calculating baud rate

Baud rate (bps) =
$$\frac{f_{CLK}}{2^n} \times \frac{1}{(m+1)} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{16}$$

where,

- fclk: internal system clock (External oscillation frequency fxx \times 2)
- m : set value of BRG register
- n : value corresponding to set value of BRGC register, prescaler value

Table 9-1 shows some typical baud rate settings.

(3) Baud rate error

The asynchronous serial interface samples the level of the RxD pin in synchronization with the start bit. Therefore, if the baud rate error between transmission and reception is greater than the value calculated by the following expression, data including the start and stop bits is shifted more than 0.5 bit, and communication cannot be carried out normally.

Maximum permissible error = $\frac{0.5 \text{ bit}}{1 \text{ data frame length}} = \frac{0.5 \text{ bit}}{12 \text{ bits max.}} = 4.1 \%$

External Oscillation Frequency fxx (MHz)		8.000		6.250			6.144				5.000		4.9165		
Internal System Clock fc∟κ (MHz)		16.000		12.500			12.288			10.000			9.833		
Baud Rate	BRGC	BRG	Error	BRGC	BRG	Error	BRGC	BRG	BRG Error		BRG	Error	BRGC	BRG	Error
(bps)	(n)	(m)	(%)	(n)	(m)	(%)	(n)	(m)	(%)	(n)	(m)	(%)	(n)	(m)	(%)
110	_	_	_	3	221	0.02	3	217	0.08	3	177	0.25	3	174	0.26
150	3	207	0.16	3	162	0.15	3	159	0	3	129	0.16	3	127	0
300	2	207	0.16	2	162	0.15	2	159	0	2	129	0.16	2	127	0
600	1	207	0.16	1	162	0.15	1	159	0	1	129	0.16	1	127	0
1200	0	207	0.16	0	162	0.15	0	159	0	0	129	0.16	0	127	0
2400	0	103	0.16	0	80	0.47	0	79	0	0	64	0.16	0	63	0
4800	0	51	0.16	0	40	0.76	0	39	0	0	32	1.36	0	31	0
9600	0	25	0.16	0	19	1.73	0	19	0	0	15	1.73	0	15	0
19200	0	12	0.16	0	9	1.73	0	9	0	0	7	1.73	0	7	0
38400	0	6	7.0 ^{Note}	0	4	1.73	0	4	0	0	3	1.73	0	3	0

Table 9-1. Typical Baud Rate Settings (asynchronous serial interface)

Note Must not be used because error is too much.

BRG : set value of baud rate generator compare register (BRG)

Remark BRGC: bits 0, 1 (PRMB0, PRMB1) of baud rate generator control register (BRGC)

9.6 Transmitting Data

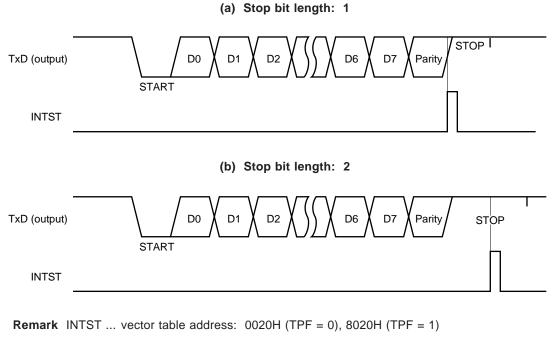
Transmission is started when data is written to the transmit shift register (TXS). The next data is written to the TXS register by the transmission end interrupt (INTST).

(1) Transmitting data

The asynchronous serial interface of the μ PD78366A is always enabled to transmit, and transmission is started when transmit data is written to the transmit shift register (TXS). Start, parity, and stop bits are automatically appended to the transmit data.

When transmission is started, the data in the TXS register is shifted out. When the TXS register becomes empty as a result, a transmission end interrupt (INTST) occurs.

Transmission is aborted unless the data to be transmitted next is written to the TXS register.


(2) Writing transmit data to TXS register

When transmission has been completed once, the communication rate drops, unless the next transmit data is immediately written to the TXS register.

To write transmit data to the TXS register, use of the block transfer mode (BLKTRS) of the macro service is recommended, because the macro service is started as soon as the transmission end interrupt (INTST) occurs, regardless of the priority, thus improving the communication rate.

- Cautions 1. Usually, a transmission end interrupt (INTST) occurs when the transmit shift register (TXS) becomes empty. However, a transmission end interrupt (INTST) does not occur if the transmit shift register (TXS) becomes empty because of RESET input.
 - 2. Data written to the TXS register while transmission is in progress and before INTST occurs is invalid.

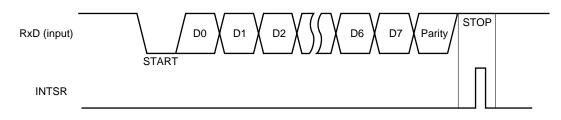
macro service control word address: FE20H

Caution Usually, a transmission end interrupt (INTST) occurs when the transmit shift register (TXS) becomes empty. However, a transmission end interrupt does not occur if the transmit shift register becomes empty because of RESET input.

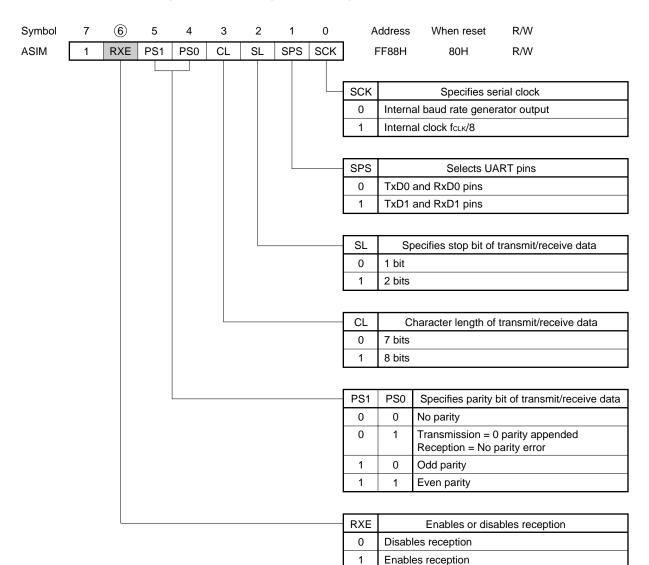
9.7 Receiving Data

When reception is enabled, sampling of the RxD pin is started. When a start bit is detected, data reception begins. Each time one frame of data has been received, a reception end interrupt (INTSR) occurs. Usually, this interrupt transfers the receive data from the receive buffer (RXB) to memory.

(1) Receiving data


Reception is enabled by setting the RXE bit of the asynchronous serial interface mode register (ASIM) to 1. When reception is enabled, the RxD pin input is sampled with the serial clock specified by the ASIM register. When the RxD pin goes low, the 1/16 counter starts counting. When it counts eight times, a start timing signal for data sampling is output. If the RxD pin is found to be low as a result of sampling the pin again with this start timing signal, the low level is recognized as a start bit. The 1/16 counter is then initialized, counting started and the data sampled. When character data, parity bit, and 1 stop bit are detected after the start bit, reception of one frame of data is completed.

When one frame of data has been received, the data in the receive shift register is transferred to the receive buffer (RXB), and the reception end interrupt (INTSR) occurs.


Even if an error occurs, the receive data that has caused the error is transferred to the receive buffer (RXB), and the reception end interrupt (INTSR) and reception error interrupt (INTSER) occur simultaneously.

If the RXE bit is reset to 0 during reception, reception is stopped immediately. At this time, the contents of the receive buffer (RXB) and the asynchronous serial interface status register (ASIS) remain unchanged, and the reception end interrupt (INTSR) and reception error interrupt (INTSER) do not occur.

Figure 9-11. Asynchronous Serial Interface Reception End Interrupt Timing

Remark INTSR ... vector table address: 001EH (TPF = 0), 801EH (TPF = 1) macro service control word address: FE1EH

Figure 9-12. Setting of ASIM Register (reception enabled)

Caution Bit 7 of the ASIM register is fixed to "1" by hardware. Even if "0" is written, they remain "1".

Remark fclk: internal system clock

(2) Transferring receive buffer (RXB) contents to memory

An overrun error occurs unless the contents of the receive buffer (RXB) are read before the next data is received. To transfer the receive data to memory, use of the block transfer mode (BLKTRS) of the macro service is recommended, because the macro service is started as soon as the reception end interrupt (INTSR) occurs, regardless of the priority, so that the contents of the receive buffer (RXB) can always be transferred before the next data is received.

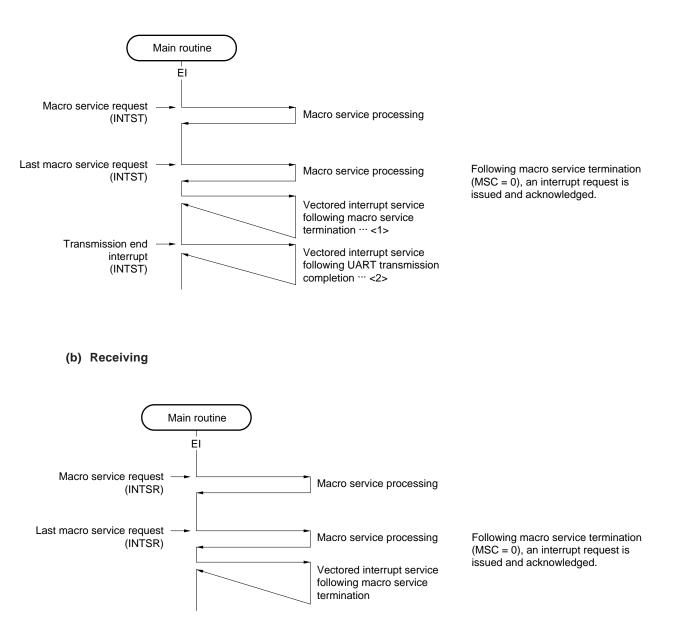
Caution Be sure to read the receive buffer (RXB) even when a reception error occurs. Unless the RXB register is read, an overrun error occurs when the next data is received, and the reception error status persists.

9.8 Transmitting/Receiving Data Using Macro Service

When transmitting data using a macro service, a vectored interrupt request is issued twice. However, during reception, a vectored interrupt request is issued only once.

• Transmitting/receiving data using a macro service

Data transmission is begun by writing data to the transmit shift register (TXS). If this is performed with a macro service, data is written to TXS and transmitted only the specified number of times. After the end of transmission, a transmission end interrupt (INTST) is issued, and the next data writing macro service is executed. When the last data is written to TXS, the macro service terminates (MSC = 0), and a vectored interrupt request is issued (refer to **Figure 9-13**, <1>).


Then, when data transmission is terminated (transmission of 1 frame is completed), INTST is newly issued and a vectored interrupt request is issued again (refer to **Figure 9-13**, <2>).

Therefore, when activating a macro service with INTST as described above, a vectored interrupt may be issued twice by the same vectored interrupt request (in this case, INTST).

On the other hand, during reception, a vectored interrupt request is never issued twice the way it is during transmission. In the case of reception, the reception end interrupt (INTSR) issued when reception is terminated causes execution of the macro service transferring the received data to memory, and therefore, a vectored interrupt request is issued only once upon termination of the macro service.

Figure 9-13. UART Transmitting/Receiving Using Macro Service

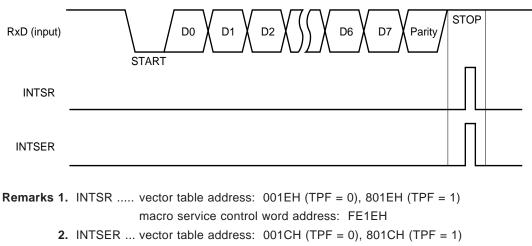
(a) Transmitting

9.9 If Reception Error Occurs

If a reception error occurs, the nature of the error can be identified by reading the asynchronous serial interface status register (ASIS).

• There are three types of reception errors.

Three types of errors can occur during reception: parity error, framing error, and overrun error. If an error is detected during reception, the error flag in the ASIS register is set. At the same time, the reception error interrupt (INTSER) occurs. Table 9-2 lists the causes of the errors.


Which error has occurred during reception can be checked by reading the contents of the ASIS register during reception error interrupt service (INTSER) (refer to **Figure 9-15**).

The contents of the ASIS register are reset to 0 when the contents of the receive buffer (RXB) are read or when the next data is received (if an error occurs in the next data, the corresponding error flag is set).

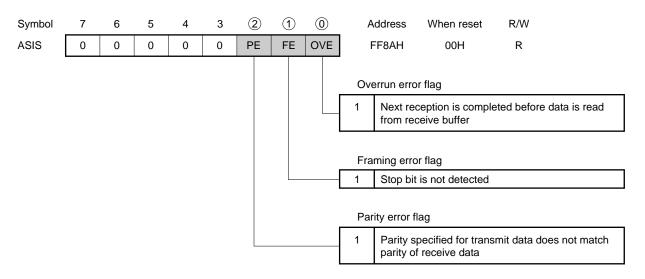

Reception Error	Cause							
Parity error	Parity specified during transmission does not match parity of receive data							
Framing error	Stop bit is not detected							
Overrun error	Next data is received before data is read from receive buffer							

Table 9-2. Causes of Reception Errors

Figure 9-14. Reception Error Timing

macro service control word address: FE1CH

Figure 9-15. Format of Asynchronous Serial Interface Status Register

Cautions 1. The contents of the ASIS register are reset to 0 when the contents of the receive buffer (RXB) are read or when the next data is received. To identify an error, be sure to read the ASIS register before reading the receive buffer (RXB).

If the received data is transferred to memory using a macro service, the receive buffer (RXB) is read during the reception of serial data, and therefore the ASIS register is reset (0). Thus, it is not possible to know more than the fact that an error has occurred. Be sure to check if there is no problem concerning this point before using the register. An error can be detected when the reception error interrupt request flag (SERIF) is set (1) or by acknowledgment of a reception error interrupt (INTSER).

- 2. Be sure to read the receive buffer (RXB) even if a reception error has occurred. Otherwise, an overrun error occurs when the next data is received, and the reception error status persists.
- 3. Bits 7-3 of the ASIS register is fixed to "0" by hardware. Even if "1" is written, they remain "0".

CHAPTER 10 CLOCKED SERIAL INTERFACE

The μPD78366A is provided with two clocked serial interface operation mode: three-wire serial I/O mode and serial bus interface (SBI) mode. Therefore, the microcomputer can be flexibly used for various applications. The clocked serial interface is independent of the asynchronous serial interface.

10.1 Clocked Serial Interface Configuration

The clocked serial interface is controlled by the clocked serial interface mode register (CSIM) and serial bus interface control register (SBIC). The transmit/receive data can be read from or written to the SIO register.

(1) Clocked serial interface mode register (CSIM)

The CSIM register is an 8-bit register that specifies the operation of the clocked serial interface. This register can be read or written by an 8-bit manipulation instruction or a bit manipulation instruction. It is initialized to 00H when the RESET signal is input.

(2) Serial bus interface control register (SBIC)

This is an 8-bit register consisting of bits that control the status of the serial bus, and bits that indicate the various statuses of the data input from the serial bus. It can be used only in the SBI mode and cannot be manipulated in the three-wire serial I/O mode.

To manipulate this register, an 8-bit manipulation or a bit manipulation instruction is used. Some bits of this register can be read/written, and some are read-only or write-only bits. If a write-only bit is read, "0" is read. The contents of the SBIC register are initialized to 00H when the RESET signal is input.

The detection flags ACKD, CMDD, and RELD are cleared when transmission/reception is disabled (by clearing both the CTXE and CRXE bits of the CSIM register to 0).

(3) Shift register (SIO)

The shift register (SIO) is an 8-bit register that converts serial data to parallel data, or vice versa, and is used for both transmission and reception.

Data is shifted in (during reception) or out (during transmission) from the MSB or LSB. Actual transmission is controlled by reading or writing data from or to the SIO register. This register can be read or written by an 8-bit manipulation instruction. Its contents are undefined when the RESET signal is input.

(4) SO latch

The SO latch holds the output level of the SO/SB0 pin. It can be directly controlled by software in the serial bus interface (SBI) mode.

(5) Serial clock selector

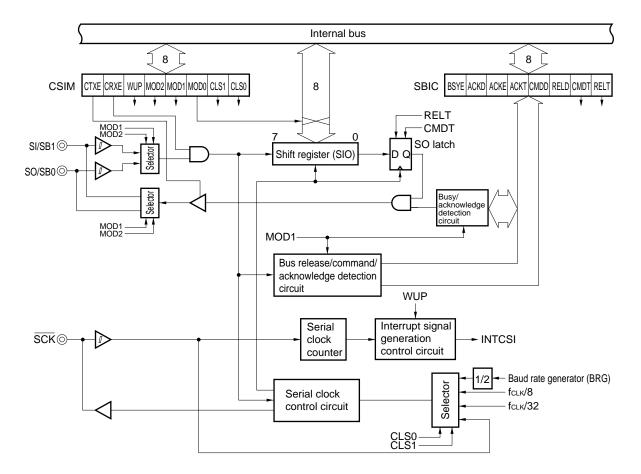
This selects the serial clock to be used.

(6) Serial clock control circuit

This circuit controls supply of the serial clock to the shift register. It also controls the clock to be output to the \overline{SCK} pin when the internal clock is used.

Phase-out/Discontinued

(7) Serial clock counter


This counter counts the serial clock output or input during transmission/reception, and checks whether 8-bit data has been transmitted or received.

(8) Interrupt signal generation control circuit

This circuit controls whether an interrupt request is generated when eight serial clocks are counted by the serial clock counter. The interrupt request is generated in the three-wire serial I/O mode when the serial clock counter has counted eight clocks, and when a given condition is satisfied in the SBI mode.

(9) Busy/acknowledge detection circuit and bus release/command/acknowledge detection circuit

These circuits output and detect various control signals in the SBI mode and do not operate in the three-wire serial I/O mode.

Figure 10-1. Block Diagram of Clocked Serial Interface

10.2 Setting Pins for Serial Communication

Since the SO/SB0, SI/SB1, and SCK pins are multiplexed with general-purpose port pins, they must be set in the control mode before communication is executed.

(1) Setting pins for serial communication

The clocked serial interface uses the SO/SB0, SI/SB1, and SCK pins. These pins, however, are multiplexed with P32, P33, and P34 of a general-purpose port, respectively. Therefore, they must be set in the control mode by using the port 3 mode control register (PMC3) before starting communication.

Symbol	7	6	5	4	3	2	1	0	Ad	dress When reset R/W
PMC3	×	PMC3	6 PMC35	PMC34	PMC33	PMC32	PMC	31 PMC30	FF	F43H ×000 0000B R/W
									PMC30	Specifies control mode of P30 pin
									0	I/O port mode
									1	TxD0 output mode
							L		PMC31	Specifies control mode of P31 pin
									0	I/O port mode
									1	RxD0 input mode
									PMC32	Specifies control mode of P32 pin
									0	I/O port mode
									1	SB0 I/O mode/SO output mode
									PMC33	Specifies control mode of P33 pin
									0	I/O port mode
									1	SB1 I/O mode/SI input mode
									PMC34	Specifies control mode of P34 pin
									0	I/O port mode
									1	SCK I/O mode
									PMC35	Specifies control mode of P35 pin
									0	I/O port mode
									1	TxD1 output mode
		L							PMC36	Specifies control mode of P36 pin
									0	I/O port mode
									1	RxD1 input mode
									-	

Figure 10-2. Format of Port 3 Mode Control Register

Remark ×: don't care

(2) Reading pin level

When port 3 (P3) is set in the control mode by the port 3 mode control register (PMC3), the following statuses can be read when an instruction that reads port 3 (P3) is executed:

Phase-out/Discontinued

(a) When the corresponding bit of the port 3 mode register (PM3) is set to 1


• Each pin level can be read.

(b) When the corresponding bit of the port 3 mode register (PM3) is reset to 0

• The level of an internal signal is read.

By reading the pin level, contention of the serial bus can be checked.

The level of each pin does not change even if data is written to port 3 (P3) (the data is written to the output buffer of port 3).

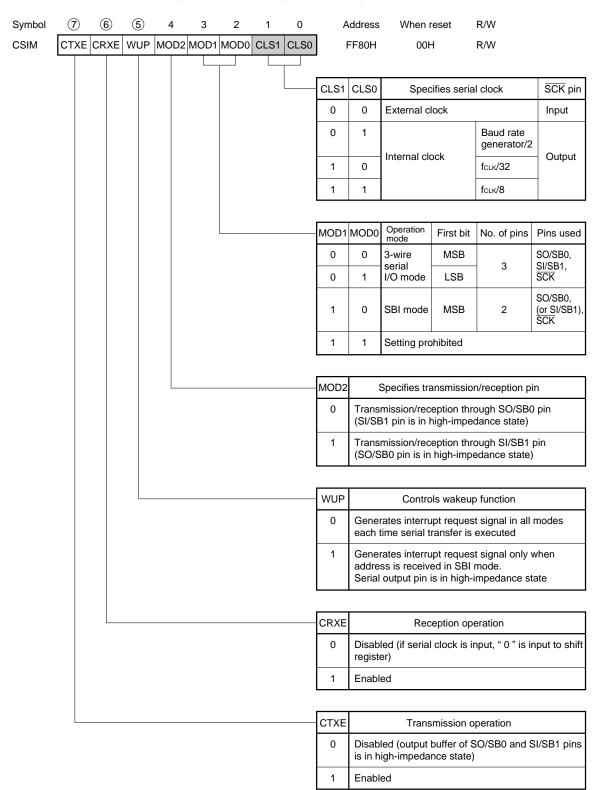
Figure 10-3. Format of Port 3 Mode Register

Remark ×: don't care

10.3 Baud Rate Setting

The output of the baud rate generator, internal clocks fcLk/8, and fcLk/32, or external clock can be selected as the serial clock. When the baud rate generator output is selected, communication can be carried out at a specified baud rate, regardless of the operating frequency.

(1) Baud rate = serial clock


The clocked serial interface samples the receive data at the rising edge of the serial clock. Therefore, the serial clock serves as the baud rate as is.

(2) Selecting serial clock

The serial clock is selected by the CLS1 and CLS0 bits of the clocked serial interface mode register (CSIM). When the external clock is selected, the $\overline{\text{SCK}}$ pin is used as an input pin, through which the serial clock is input from the device with which the μ PD78366A communicates.

If $f_{CLK}/8$ is selected when the internal system clock is 16 MHz, the communication rate is 2 Mbps. When $f_{CLK}/32$ is selected, the communication rate is 500 Kbps.

Remark The baud rate generator is shared with the asynchronous serial interface (refer to **9.5 Baud Rate Setting**).

Figure 10-4. Setting of CSIM Register (serial clock)

Remark fclk: internal system clock

Caution Selection of the serial clock is made asynchronously with the serial clock. Therefore, if the serial clock is changed during communication, a serial clock with an undefined width may be output. Do not change the serial clock during communication.

10.3.1 Baud rate generator configuration

The baud rate generator is controlled by the baud rate generator control register (BRGC) and 8-bit compare register (BRG).

The baud rate generator is configured as shown in Figure 10-5.

(1) Baud rate generator control register (BRGC)

This 8-bit register is used to select the count clock for the 8-bit timer (TMBRG) and control operation of the baud rate generator.

It can be read or written by an 8-bit manipulation instruction or a bit manipulation instruction.

The contents of this register are initialized to 00H when the RESET signal is input.

The format of the BRGC register is shown in Figure 10-6.

(2) Prescaler

The prescaler divides the internal clock (fcLk/2) according to the setting of the BRGC register and generates count clocks.

(3) 8-bit timer (TMBRG)

This 8-bit timer counts the count clocks generated by the prescaler.

When a coincidence signal is generated by the 8-bit compare register (BRG), the timer is cleared to 0 by the next count clock.

This timer is started or stopped by the BRGC register.

TMBRG cannot be handled directly from the CPU.

(4) 8-bit baud rate generator compare register (BRG)

This register always compares its value with the contents of the 8-bit timer (TMBRG). When the value written to the register coincides with the value of the timer, the register generates a coincidence signal, which clears the timer to 0.

A signal obtained by dividing this coincidence signal by two is output by the baud rate generator. This register can be read or written by an 8-bit manipulation instruction.

Its contents are undefined when the RESET signal is input.

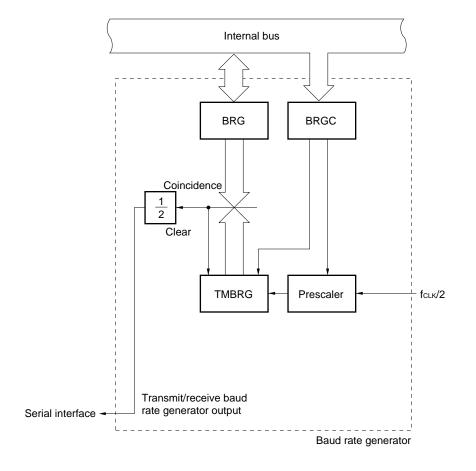


Figure 10-5. Block Diagram of Baud Rate Generator

10.3.2 Specific baud rate setting

A specified serial clock can be generated by setting the baud rate generator control register (BRGC) and 8-bit compare register (BRG).

(1) Baud rate = serial clock

The clocked serial interface samples the receive data at the rising edge of the serial clock. Therefore, the serial clock serves as the baud rate as is.

(2) Setting a desired baud rate

The baud rate can be calculated by the following expression. Set the value of the BRG register and the count clock of the 8-bit timer (TMBRG) so that the desired baud rate can be obtained, then start baud rate generator operation.

Calculating baud rate

Baud rate (bps) =
$$\frac{f_{CLK}}{2^n} \times \frac{1}{(m+1)} \times \frac{1}{2} \times \frac{1}{2}$$

where,

fclk: internal system clock (External oscillation frequency fxx \times 2)

m : set value of BRG register

n : value corresponding to set value of BRGC register, prescaler value

Symbol 7 6 5 4 3 2 1 0 Address When reset R/W BRGC PRMB1 PRMB0 0 0 CEB0 0 FF84H R/W 0 0 00H PRMB1 PRMB0 Count clock to TMBRG 0 0 fclk/2 (n = 0) 0 1 fclk/4 (n = 1) (n = 2) 1 0 fclk/8 1 1 fclk16 (n = 3)CEB0 Controls operation of baud rate generator 0 Clears and stops counting Enables counting 1

Figure 10-6. Format of Baud Rate Generator Control Register

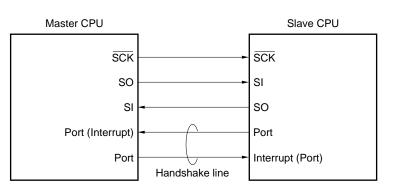
Remarks 1. fcLK: internal system clock

2. n in the PRMB1 and PRMB0 descriptions indicates the set values of bits 1 and 0 of the BRGC register, which are used to calculate the baud rate.

10.4 Two Operation Modes of Clocked Serial Interface

The three-wire serial I/O mode is effective for communicating with a device containing a conventional clocked serial interface.

The SBI mode is NEC's original communication mode which enables the μ PD78366A to communicate with two or more devices by using two signal lines.


The clocked serial interface of the μ PD78366A can operate in the following two modes:

(1) Three-wire serial I/O mode

In this mode, three signal lines are used to transfer 8-bit data: serial clock (\overline{SCK}), serial input (SI), and serial output (SO) lines. This mode is effective for communicating with devices containing a conventional clocked serial interface, such as peripheral I/Os and display controllers.

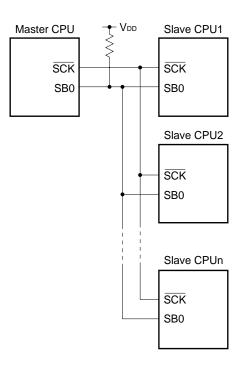
To connect two or more devices, handshake lines are necessary.

(Three-wire serial I/O - Three-wire serial I/O)

(2) Serial bus interface mode (SBI mode)

In this mode, two signal lines, serial clock (SCK) and serial data bus (SB0 or SB1), are used to communicate with two or more devices.

Phase-out/Discontinued


This mode conforms to NEC's serial bus format.

In the SBI mode, an "address" which is used to select the target device to communicate, a "command" which gives a direction to the target device, and actual "data" can be output to the serial data bus.

Therefore, handshake lines, which are necessary for connecting two or more devices with the conventional clocked serial interface, are not necessary. Consequently, the I/O ports can be effectively used and software overheads reduced.

In the SBI mode, the serial data bus pin (SB0 or SB1) serves as an open-drain output pin; therefore, the serial data bus line is wired-ORed. For this reason, a pull-up resistor must be connected to the serial data bus line.

Figure 10-8. Example of System Configuration in Serial Bus Interface (SBI) Mode

10.5 Three-Wire Serial I/O Mode Setting

The three-wire serial I/O mode is set by the clocked serial interface mode register (CSIM). Since the MSB or LSB can be selected as the first bit for communication, communication can be established with various devices.

(1) Setting three-wire serial I/O mode

The three-wire serial I/O mode is set by using the MOD1 and MOD0 bits of the clocked serial interface mode register (CSIM) (refer to **Figure 10-10**). Because the MSB or LSB can be selected as the first bit, the μ PD78366A can communicate with various devices in this mode.

(2) Operation timing in three-wire serial I/O mode

In the three-wire serial I/O mode, data is transmitted or received in 8-bit units. Each bit of data is transmitted or received in synchronization with the serial clock, with the MSB or LSB first (specified by the CSIM register). The transmit data is output in synchronization with the falling edge of \overline{SCK} . The receive data is sampled at the rising edge of \overline{SCK} . In addition, interrupt request INTCSI occurs at the eighth rising edge of \overline{SCK} . When the internal clock is used as \overline{SCK} , output of \overline{SCK} is stopped at the eighth rising edge and \overline{SCK} remains high until transmission or reception of the next data is started.

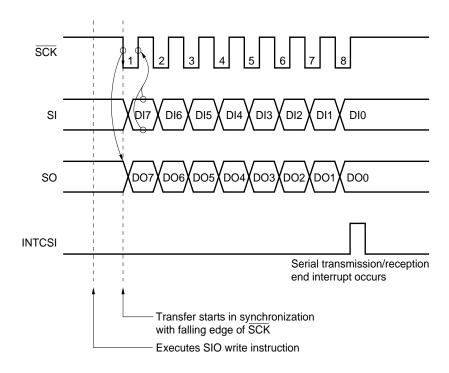


Figure 10-9. Timing in Three-Wire Serial I/O Mode

Symbol (7)(6) (5) 4 3 2 0 Address When reset R/W 1 CSIM CTXE CRXE WUP MOD2 MOD1 MOD0 CLS1 CLS0 FF80H 00H R/W CLS1 CLS0 SCK pin Specifies serial clock 0 0 External clock Input 0 1 Baud rate generator/2 Internal clock Output 1 0 fclk/32 1 1 fci k/8 Operation MOD1 MOD0 First bit No. of pins Pins used mode 0 0 3-wire MSB SO/SB0, serial 3 SI/SB1, SCK 0 1 I/O mode LSB SO/SB0, (or SI/SB1), SCK 2 SBI mode MSB 1 0 Setting prohibited 1 1 MOD2 Specifies transmission/reception pin 0 Transmission/reception through SO/SB0 pin (SI/SB1 pin is in high-impedance state) Transmission/reception through SI/SB1 pin 1 (SO/SB0 pin is in high-impedance state) WUP Controls wakeup function 0 Generates interrupt request signal in all modes each time serial transfer is executed 1 Generates interrupt request signal only when address is received in SBI mode. Serial output pin is in high-impedance state CRXE Reception operation 0 Disabled (if serial clock is input, "0" is input to shift register) 1 Enabled СТХЕ Transmission operation Disabled (output buffer of SO/SB0 and SI/SB1 pins 0

Figure 10-10. Setting of CSIM Register (three-wire serial I/O mode)

Remarks 1. fclk: internal system clock

2. The setting of the MOD2 bit is valid only in the SBI mode. This setting is invalid in the 3-wire serial I/O mode.

1

Enabled

is in high-impedance state)

10.5.1 Transmission in three-wire serial I/O mode

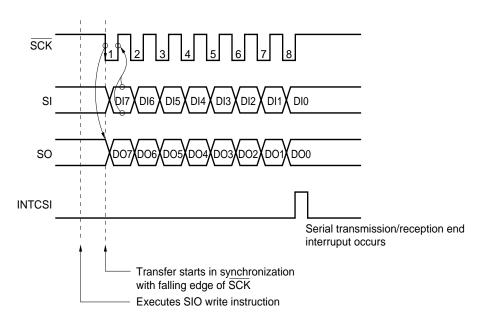
When data is written to the SIO register after transmission is enabled by the clocked serial interface mode register (CSIM), transmission is started.

(1) Starting transmission

To start transmission, set the CTXE bit of the clocked serial interface mode register (CSIM) (reset the CRXE bit to "0"), and write the transmit data to the shift register (SIO). The block transfer mode (BLKTRS) of the macro service is useful for writing the transmit data to the SIO register.

When the CTXE bit is reset to 0, the SO pin enters the output high-impedance state.

(2) Transmitting data in synchronization with serial clock


(a) When internal clock is selected as serial clock

When transmission is started, the serial clock is output from the \overline{SCK} pin, and data is sequentially output from SIO to the SO pin in synchronization with the falling edge of the serial clock.

(b) When external clock is selected as serial clock

When transmission is started, data is sequentially output from SIO to the SO pin in synchronization with the falling edge of the serial clock input to the \overline{SCK} immediately after transmission has been started. When transmission is not started, shift operation is not performed even if the serial clock is input to the \overline{SCK} pin, and the output level of the SO pin remains unchanged.

Symbol	7	6	(5)	4	3	2	1	0	A	Address	When r	eset	R/W	
CSIM	CTXE	CRXE	WUF	P MOI	D2 MOD1	MOD0	CLS1	CLS0		FF80H	00F	ł	R/W	
									CLS1	CLS0	Spec	ifies seria	I clock	SCK pin
									0	0	External c	lock		Input
									0	1	Internal cl	ock	Baud rate generator/2	– Output
									1	0	internal ci	UCK	fclк/32	Output
									1	1			fc∟к/8	
									MOD1	MOD0	Operation mode	First bit	No. of pins	Pins used
									0	0	3-wire serial I/O mode	MSB LSB	- 3	SO/SB0, SI/SB1, SCK
									1	0	SBI mode	MSB	2	SO/SB0, (or SI/SB1), SCK
									1	1	Setting pro	hibited		
										-				
				L					MOD2		-		n/reception p	
									0				ough SO/SB(dance state)) pin
									1				ough SI/SB1 edance state	
									WUP			ls wakeup		
									0		rates interru time serial ti		t signal in all executed	modes
									1	addre	ss is receive	ed in SBI	t signal only mode. impedance s	
									CRXE		Rec	eption op	eration	
									0		led (if serial		nput, " 0 " is i	nput to shift
									1	Enabl	ed			
									СТХЕ		Trans	mission o	neration]
									0	Disab		buffer of S	SO/SB0 and S	SI/SB1 pins
											-91 impeda	100 31010)		

Figure 10-12. Setting of CSIM Register (transmission enabled)

10.5.2 Reception in three-wire serial I/O mode

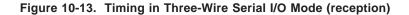
When reception is enabled by the clocked serial interface mode register (CSIM) (when CTXE = 0) or when the contents of the SIO register are read with reception enabled, reception is started.

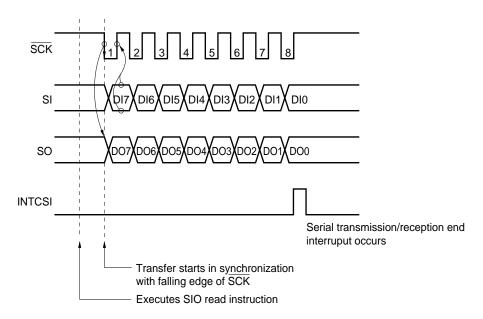
(1) Starting reception

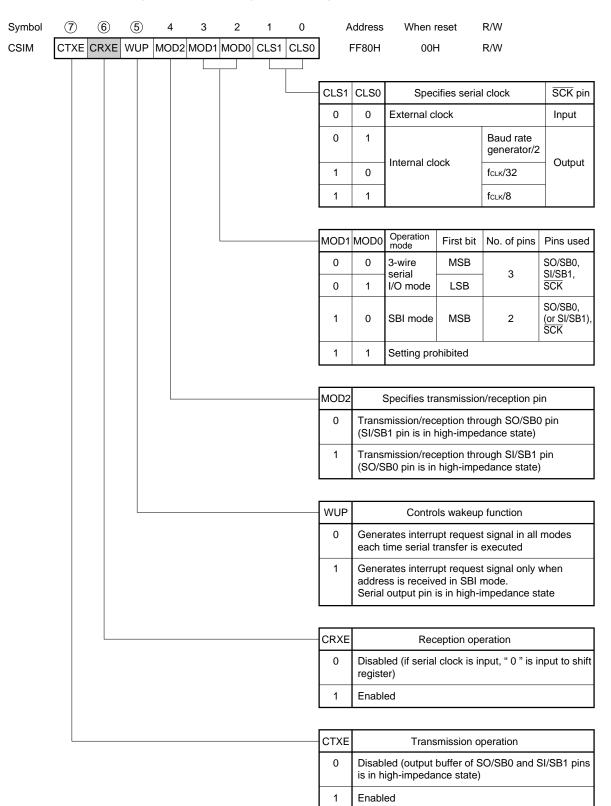
Reception can be started in the following two ways:

- <1> By changing the CRXE bit from 0 (reception disable state) to 1 (reception enable state) when the CTXE bit of the CSIM register is 0; or
- <2> By reading receive data from the shift register (SIO) when the CRXE bit of the CSIM register is 1 (reception enable state).

The block transfer mode of the macro service (BLKTRS) is useful for reading receive data from the shift register (SIO). Reception is not started even when "1" is written to the CRXE bit of the CSIM register which has already been set to 1. Reception is not started when CTXE bit is "1", even if the CRXE bit setting is set to 1 from 0.


(2) Receiving data in synchronization with serial clock


(a) When internal clock is selected as serial clock


When reception is started, the serial clock is output from the SCK pin, and the data of the SI pin is sequentially loaded to SIO in synchronization with the rising edge of the serial clock.

(b) When external clock is selected as serial clock

When reception is started, the data of the SI pin is sequentially loaded to SIO in synchronization with the rising edge of the serial clock input to the \overline{SCK} pin immediately after reception has been started. If reception is not started, shift operation is not performed even if the serial clock is input to the \overline{SCK} pin.

Figure 10-14. Setting of CSIM Register (reception enabled)

Remark fclk: internal system clock

10.5.3 Transmission/reception in three-wire serial I/O mode

When both transmission and reception are enabled by the clocked serial interface mode register (CSIM), transmission and reception can be performed simultaneously.

(1) Starting transmission/reception

Transmission and reception can be performed simultaneously when both the CTXE and CRXE bits of the clocked serial interface mode register (CSIM) are set to 1 (transmission/reception operation).

Transmission/reception can be started by writing transmit data to the shift register (SIO) when both the CTXE and CRXE bits of the CSIM register are 1 (transmission/reception enabled)

Transmission/reception operation is not started even if "1" is written to the CRXE bit of the CSIM register which has already been set to 1.

(2) Transmitting/receiving data in synchronization with serial clock

(a) When internal clock is selected as serial clock

When transmission/reception is started, the serial clock is output from the \overline{SCK} pin, and data is sequentially output from SIO to the SO pin in synchronization with the falling edge of the serial clock. In addition, the data of the SI pin is sequentially loaded to SIO in synchronization with the rising edge of the serial clock.

(b) When external clock is selected as serial clock

When transmission/reception is started, data is sequentially output from SIO to the SO pin in synchronization with the falling edge of the serial clock input to the \overline{SCK} immediately after transmission/reception has been started. The data of the SI pin is sequentially loaded to SIO in synchronization with the rising edge of the serial clock. When transmission/reception is not started, shift operation is not performed even if the serial clock is input to the \overline{SCK} pin, and the output level of the SO pin remains unchanged.

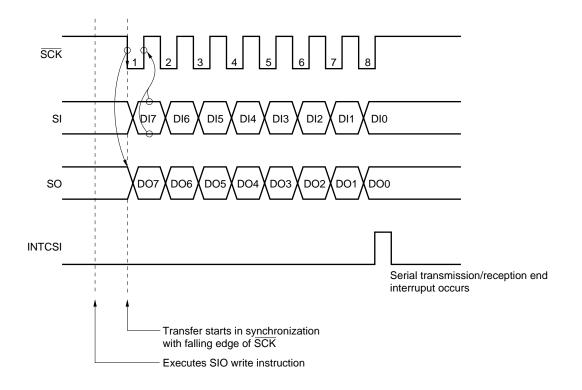


Figure 10-15. Timing in Three-Wire Serial I/O Mode (transmission/reception)

Remark INTCSI ... vector table address: 0022H (TPF = 0), 8022H (TPF = 1) macro service control word address: FE22H

Figure 10-16. Setting of CSIM Register (transmission/reception enabled)

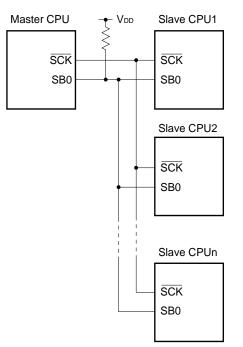
Symbol	7	6	5	4	3	2	1	0		Address	When r	eset	R/W	
CSIM	CTXE	CRXE	WUP	MO	D2 MOD1	MOD0	CLS1	CLS0]	FF80H	00H	ł	R/W	
									-					
									CLS1	CLS0	Spec	ifies seria	l clock	SCK pin
									0	0	External cl	ock		Input
									0	1		!-	Baud rate generator/2	
									1	0	Internal clo	JCK	fclк/32	- Output
									1	1			fс∟к/8	
									MOD	1 MOD0	Operation mode	First bit	No. of pins	Pins used
									0	0	3-wire serial I/O mode	MSB LSB	- 3	SO/SB0, SI/SB1, SCK
									1	0	SBI mode	MSB	2	SO/SB0, (or SI/SB1), SCK
									1	1	Setting pro	hibited		
										-				
				l					MOD	2	Specifies tra	ansmissio	n/reception pi	in
									0				ough SO/SB0 dance state)) pin
									1				ough SI/SB1 edance state)	
										-				
									WUF	,	Contro	ls wakeup	o function	
									0		rates interru time serial t		t signal in all executed	modes
									1	addre	ss is receive	ed in SBI	t signal only v mode. impedance st	
									CRXE	=	Rec	eption ope	eration	
									0		led (if serial		nput, " 0 " is ir	nput to shift
									1	Enabl				
	L								СТХЕ			mission o	-	
									0		led (output igh-impeda		SO/SB0 and S	5I/SB1 pins
									1	Enabl	ed			

10.5.4 Corrective action in case shift operation is not synchronized

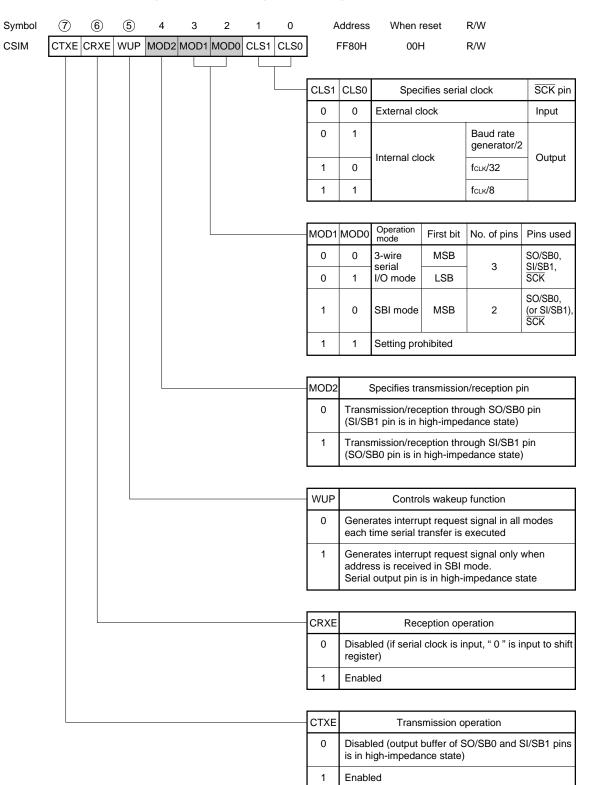
If the shift operation is not synchronized with the serial clock, synchronization is restored by disabling both transmission and reception.

• Corrective action if shift operation is not synchronized with serial clock

When the external clock is selected as the serial clock, the number of serial clocks may not correctly match the shift operation due to noise. In this case, disable both transmission and reception (by resetting the CTXE and CRXE bits to 0). This initializes the serial clock counter, so that when transmission or reception is enabled the next time, the serial clock input first is treated as the first clock, which is used to restore synchronization between the shift operation and the serial clock.


10.6 SBI Mode Setting

The SBI mode is effective for reducing the number of ports used and lowering software overheads because a serial bus can be configured with two signal lines, \overline{SCK} and SB0 (SB1).


· Setting SBI mode

The SBI mode is set by the MOD2, MOD1, and MOD0 bits of the clocked serial interface mode register (CSIM). Since SB0 or SB1 can be selected as a serial data I/O pin, two serial buses can be configured.

- Cautions 1. In the SBI mode, the serial data bus pin (SB0 or SB1) serves as an open-drain output pin. Therefore, the serial data bus line is wired-ORed. For this reason, a pull-up resistor must be connected to the serial data bus line.
 - 2. To exchange a master with a slave, switching between the input and output modes of SCK is asynchronously performed by the master and slave. Therefore, a pull-up resistor must also be connected to SCK.

Figure 10-18. Setting of CSIM Register (SBI mode)

Remarks 1. fcLK: internal system clock

2. The setting of the MOD2 bit is valid only in the SBI mode. This setting is invalid in the 3-wire serial I/O mode.

10.6.1 SBI data format

SBI defines various control signals by using a combination of two signal lines: serial clock SCK and serial data bus SB0 (or SB1).

(1) Control signals used with SBI

SBI defines the following eight signals by using a combination of two signal lines, SCK and SB0 (or SB1):

<1> Bus release signal (REL)

This signal is output by the master to inform a slave that the master is to transmit an address to the slave. The slave is provided with hardware that detects the bus release signal.

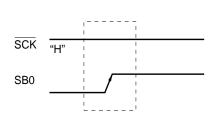
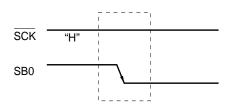



Figure 10-19. Bus Release Signal

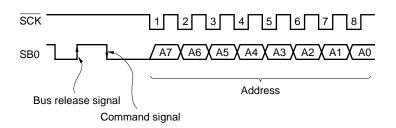
Caution The transition of the SB0 (SB1) line (transition from low to high) while the SCK line is high is recognized as a bus release signal. If the timing of changes on the bus shifts due to the influence of board capacitance, etc., a bus release signal may be detected even while data is being transmitted. Exercise care when routing the wiring.

<2> Command signal (CMD)

This signal is output by the master to inform a slave that the master is to transmit an address or command. The slave is provided with hardware that detects the command.

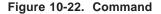
Figure 10-20. Command Signal

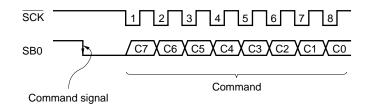
★


Caution The transition of the SB0 (SB1) line (transition from high to low) while the SCK line is high is recognized as a command signal. If the timing of changes on the bus shifts due to the influence of board capacitance, etc., a command signal may be detected even while data is being transmitted. Exercise care when routing the wiring.

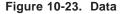
Phase-out/Discontinue

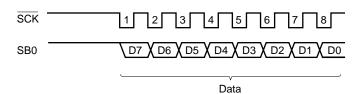
<3> Address


This 8-bit data follows the bus release and command signals. It is output by the master to select a slave. The slave compares the address it has received with its own address through software. If the two addresses coincide, the slave performs processing necessary for establishing communication.



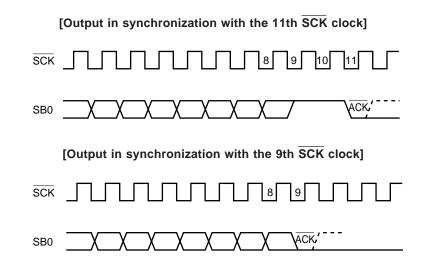
<4> Command


This 8-bit data is output by the master after the command signal. In this case, the bus release signal is not output. How a command is used can be determined arbitrarily.



<5> Data

This 8-bit data is output by the master without the bus release and command signals.

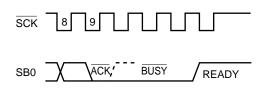

1

<6> Acknowledge signal (ACK)

This signal is used to acknowledge reception of data transmitted between the transmission and reception sides. The master is provided with hardware that detects the acknowledge signal. If the acknowledge signal is not returned, reception is checked not to have been correctly carried out.

Phase-out/Discontinued

Figure 10-24. Acknowledge Signal


<7> Busy signal (BUSY)

This signal is output by a slave to indicate that the slave is preparing for data transmission or reception. The master continues outputting the serial clock while the slave is outputting the busy signal, and cannot start the next transmission.

<8> Ready signal (READY)

This signal is output by a slave to inform the master that the slave is now ready for transmitting or receiving data.

(2) Configuration of one data frame of SBI

One data frame of the serial data of SBI is configured as follows:

(REL) + (CMD) + 8-bit data + $\overline{ACK} + (\overline{BUSY})$

Table 10-1. Signals in SBI Mode (1/2)

Signal Name	Output Device	Definition	Timing Chart	Output Condition	Influence on Flag	Meaning of Signal
Bus release signal (REL)	Master	Rising edge of SB0 when SCK = 1	SB0	Setting of RELT	Sets RELD Clears CMDD	End of series of trans- mission to selected slave
Command signal (CMD)	Master	Falling edge of SB0 when SCK = 1	SCK "H" SB0	Setting of CMDT	Sets CMDD	i) Address is transmitted after output of RELii) REL not output. Command is transmitted
Acknowledge signal (ACK)	Slave	Low-level signal output to SB0 during 1-clock period of SCK after serial clock is received	(Sync busy output)	ACKE = 1 Setting of ACKT	Sets ACKD	End of reception
Busy signal (BUSY)	Slave	[Sync busy signal] Low-level signal output to SB0 following acknowledge signal	SB0 D0 READY	• BSYE = 1	_	Serial reception disabled during processing
Ready signal (READY)	Slave	High-level signal output to SB0 before start or after end after end of serial transfer		 BSYE = 0 Execution of data write instruction to SIO (transfer start command) 	_	Serial reception enabled

Signal Name	Output Device	Definition	Timing Chart	Output Condition	Influence on Flag	Meaning of Signal
Serial clock (SCK)	Master	Sync clock to output ad- dress, command, data, ACK, and sync BUSY. Address, command, or data is trans- ferred when first eight clocks are output.		Execution of in- struction to write data to SIO when CTXE = 1 (serial transmission start direction) ^{Note 3}	Setting of CSIIF ^{Note 1} (rising edge of 8th clock) Note 2	Timing of signal output to serial data bus
Address (A0-A7)	Master	8-bit data transferred in synchronization with SCK after output of REL and CMD signals.		-	Note 2	Address of slave device on serial bus
Command (D0-D7)	Master	8-bit data transferred in synchronization with SCK after output of only CMD signal. REL signal is not output.	SCК1_2Ґไӡ∏8 SB0Х_Х_Х СMD		None	Direction message to slave device
Data (D0-D7)	Master/ slave	8-bit data transferred in synchronization with \overline{SCK} . Both REL and CMD signals are not output.	<u>вск</u> <u>1</u> 2 ⁷⁷ 7 <u>8</u> sbo <u>XXX</u>		None	Actual data processed by slave or master

Notes 1. An interrupt request flag corresponding to serial transmission/reception interrupt (INTCSI).

2. CSIIF is always set at the rising edge of the eighth clock of $\overline{\text{SCK}}$ when WUP = 0.

CSIIF is set only when an address is received when WUP = 1.

3. In **BUSY** status, transmission is not started until READY status is set.

10.6.2 Controlling and detecting status of serial bus

The status of the serial bus can be controlled and detected by using the serial bus interface control register (SBIC).

• Controlling and detecting status of serial bus

SBI has a serial bus interface control register (SBIC) that detects and controls the status of the serial bus. The SBIC register is an 8-bit register consisting of bits that control the status of the serial bus, and flags that indicate various statuses of the data input from the serial bus.

This register can be read or written by an 8-bit manipulation instruction or a bit manipulation instruction. However, some bits are read-only or write-only. If a write-only bit is read, "0" is read.

The contents of the SBIC register are initialized to 00H when the RESET signal is input.

Figure 10-26 shows the format of the SBIC register.

The operations of the respective bits are illustrated in Figures 10-27 through 10-31.

Note that, throughout this section, SB0 is used as the serial data I/O pin. Operation is exactly the same even when SB1 is selected.

W 0 Does not output 0 Does not output 1 Outputs CMDT W Controls trigger output of command signal (CMI 0 0 Does not output 1 Outputs RELD R Detects bus release signal (REL) 0 Does not detect 1 Detects (serial bus goes high while SCK is high) CMDD R Detects command signal (CMD) 0 Does not detect 1 Detects (serial bus goes low while SCK is high) ACKT W Controls trigger output of acknowledge signal (ACK) 0 Does not output 1 Outputs	RELT Controls trigger output of bus release signal (REL) W 0 Does not output 1 Outputs CMDT Controls trigger output of command signal (CMD 0 Does not output 1 Outputs RELD Detects bus release signal (REL) R Detects bus release signal (REL) R Detects (serial bus goes high while SCK is high) CMDD Detects (serial bus goes low while SCK is high) CMDD R Detects (serial bus goes low while SCK is high) R Detects (serial bus goes low while SCK is high) ACKT Controls trigger output of acknowledge signal (ĀC 0 Does not output 1 Dutputs ACKE Controls trigger output of acknowledge signal (ĀCK) 0 Does not output 1 Outputs ACKE Controls automatic output of acknowledge signal (ACK) 0 Disables 1 Enables 1 Enables 1 Detects 0 Does not detect 1 Detects </th <th>Symbol</th> <th>7</th> <th>6</th> <th>(5)</th> <th>(4</th> <th>) 3</th> <th></th> <th></th> <th>1 0</th> <th>А</th> <th>ddress When reset</th>	Symbol	7	6	(5)	(4) 3			1 0	А	ddress When reset
W Controls trigger output of bus release signal (RE 0 Does not output 1 Outputs CMDT W Controls trigger output of command signal (CMI 0 Does not output 1 Outputs R Detects bus release signal (REL) 0 Does not output 1 Outputs R Detects bus release signal (REL) 0 Does not detect 1 Detects (serial bus goes high while SCK is high) CMDD R Detects (serial bus goes low while SCK is high) 0 Does not detect 1 Detects (serial bus goes low while SCK is high) 0 Does not output 1 Detects (serial bus goes low while SCK is high) 0 Does not output 1 Outputs ACKT RW Controls trigger output of acknowledge signal (ĀCK) 0 Disables 1 Enables 1 Enables 1 Enables 1 Detects acknowledge signal (ĀCK) 0 Does not detect	Controls trigger output of bus release signal (REL 0 Does not output 1 Outputs CMDT W Controls trigger output of command signal (CMD 0 Does not output 1 Outputs RELD 0 Does not output 1 Outputs RELD 0 Does not detect 1 Detects (serial bus goes high while SCK is high) CMDD R Detects (serial bus goes low while SCK is high) 0 Does not detect 1 Detects (serial bus goes low while SCK is high) ACKT 0 Does not output 1 Outputs ACKT 0 Does not output 1 Outputs ACKE 0 Does not output 1 Outputs ACKE 0 Does not output 1 Outputs ACKE 0 Does not output 1 Outputs ACKE 0 Does not output 1 Detects acknowledge signal (ACK) 0 Disables 1 Enables ACKD 0 Does not detect 1 Detects acknowledge signal (ACK) 0 Disables 1 Detects BSYE Controls automatic output of synchronization bus Signal (BUSY) 0 Disables	SBIC	BSYE	ACKD	ACKE	ACI		DD RE	LD CN	IDT RELT	F	FF82H 00H
1 Outputs CMDT W Controls trigger output of command signal (CMI 0 0 Does not output 1 Outputs RELD R Detects bus release signal (REL) 0 Does not detect 1 Detects (serial bus goes high while SCK is high) CMDD R Detects command signal (CMD) 0 Does not detect 1 Detects (serial bus goes low while SCK is high) 0 Does not output 1 Detects (serial bus goes low while SCK is high) 0 Does not output 1 Detects (serial bus goes low while SCK is high) ACKT W Controls trigger output of acknowledge signal (ĀK 0 Does not output 1 Outputs ACKE Controls automatic output of acknowledge signal (ĀK 0 Disables 1 Enables 1 Enables 1 Detects acknowledge signal (ĀCK) 0 Does not detect	1 Outputs CMDT W Controls trigger output of command signal (CMD 0 0 Does not output 1 Outputs RELD R Detects bus release signal (REL) 0 Does not detect 1 Detects (serial bus goes high while SCK is high) CMDD R Detects (serial bus goes low while SCK is high) CMDD R Detects (serial bus goes low while SCK is high) ACKT W Controls trigger output of acknowledge signal (ACK) 0 Does not output 1 Outputs ACKE RWW Controls automatic output of acknowledge signal (ACK) 0 Disables 1 Enables 1 Detects ACKD Detects 0 Disables 1 Enables 1 Detects 0 Does not detect 1 Detects 0 Disables 1 Enables 0 Desend detect 1 Detects BSYE Controls automatic output of synchronization bus signal (BUSY) 0											Controls trigger output of bus release signal (REL)
1 Outputs CMDT W Controls trigger output of command signal (CMI 0 0 Does not output 1 Outputs RELD R Detects bus release signal (REL) 0 Does not detect 1 Detects (serial bus goes high while SCK is high) CMDD R Detects command signal (CMD) 0 Does not detect 1 Detects (serial bus goes low while SCK is high) 0 Does not output 1 Detects (serial bus goes low while SCK is high) 0 Does not output 1 Detects (serial bus goes low while SCK is high) ACKT W Controls trigger output of acknowledge signal (ĀK 0 Does not output 1 Outputs ACKE Controls automatic output of acknowledge signal (ĀK) 0 Disables 1 Enables 1 Enables 1 Detects acknowledge signal (ĀCK) 0 Does not detect	1 Outputs CMDT W Controls trigger output of command signal (CMD 0 0 Does not output 1 Outputs RELD R Detects bus release signal (REL) 0 Does not detect 1 Detects (serial bus goes high while SCK is high) CMDD R Detects (serial bus goes low while SCK is high) CMDD R Detects (serial bus goes low while SCK is high) ACKT W Controls trigger output of acknowledge signal (ACK) 0 Does not output 1 Outputs ACKE RWW Controls automatic output of acknowledge signal (ACK) 0 Disables 1 Enables 1 Detects ACKD Detects 0 Disables 1 Enables 1 Detects 0 Does not detect 1 Detects 0 Disables 1 Enables 0 Desend detect 1 Detects BSYE Controls automatic output of synchronization bus signal (BUSY) 0										0	Does not output
CMDT W Controls trigger output of command signal (CMI 0 Does not output 1 Outputs R Detects bus release signal (REL) 0 Does not detect 1 Detects (serial bus goes high while SCK is high) CMDD R Detects command signal (CMD) 0 Does not detect 1 Detects (serial bus goes low while SCK is high) CMDD R Detects (serial bus goes low while SCK is high) ACKT Controls trigger output of acknowledge signal (ACK) 0 Does not output 1 Outputs ACKE Controls automatic output of acknowledge signal (ACK) 0 Disables 1 Enables 1 Enables 1 Enables 1 Detects acknowledge signal (ACK) 0 Does not detect	CMDT W Controls trigger output of command signal (CMD 0 Does not output 1 Outputs RELD R Detects bus release signal (REL) 0 Does not detect 1 Detects (serial bus goes high while SCK is high) CMDD R Detects command signal (CMD) 0 Does not detect 1 Detects (serial bus goes low while SCK is high) CMDD R Detects (serial bus goes low while SCK is high) ACKT Controls trigger output of acknowledge signal (AC 0 Does not output 1 Detects (serial bus goes low while SCK is high) ACKT Controls trigger output of acknowledge signal (AC 0 Does not output 1 Outputs ACKE Controls automatic output of acknowledge signal (AC 0 Disables 1 Enables 1 Enables 1 Detects acknowledge signal (ACK) 0 Does not detect 1 Detects 8SYE Controls automatic output of synchronization bus signal (BUSY) 0 Disables										1	
Controls trigger output of command signal (CMI 0 Does not output 1 Outputs RELD Detects bus release signal (REL) 0 Does not detect 1 Detects (serial bus goes high while SCK is high) CMDD R 0 Does not detect 1 Detects (serial bus goes low while SCK is high) 0 Does not detect 1 Detects (serial bus goes low while SCK is high) ACKT Controls trigger output of acknowledge signal (ACK) 0 Does not output 1 Outputs ACKE Controls automatic output of acknowledge signal (ACK) 0 Disables 1 Enables 1 Enables 1 Enables 1 Detects acknowledge signal (ACK) 0 Disables 1 Enables	W Controls trigger output of command signal (CMD 0 Does not output 1 Outputs RELD Detects bus release signal (REL) 0 Does not detect 1 Detects (serial bus goes high while SCK is high) CMDD Detects command signal (CMD) 0 Does not detect 1 Detects command signal (CMD) 0 Does not detect 1 Detects (serial bus goes low while SCK is high) 0 Does not detect 1 Detects (serial bus goes low while SCK is high) ACKT Controls trigger output of acknowledge signal (AC 0 Does not output 1 Outputs ACKE Controls automatic output of acknowledge signal (AC 0 Disables 1 Enables 1 Enables 1 Detects acknowledge signal (ACK) 0 Does not detect 1 Detects 1 Detects 0 Does not detect 1 Detects 0 Does not detect <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>L</td><td></td></td<>										L	
0 Does not output 1 Outputs RELD Detects bus release signal (REL) 0 Does not detect 1 Detects (serial bus goes high while SCK is high) CMDD Detects command signal (CMD) 0 Does not detect 1 Detects (serial bus goes low while SCK is high) 0 Does not detect 1 Detects (serial bus goes low while SCK is high) 0 Does not detect 1 Detects (serial bus goes low while SCK is high) ACKT Controls trigger output of acknowledge signal (ĀK 0 Does not output 1 Outputs ACKE Controls automatic output of acknowledge signal (ĀK) 0 Disables 1 Enables 1 Enables 1 Enables ACKD Detects acknowledge signal (ĀCK)	0 Does not output 1 Outputs R Detects bus release signal (REL) 0 Does not detect 1 Detects (serial bus goes high while SCK is high) CMDD R CMDD Detects command signal (CMD) 0 Does not detect 1 Detects (serial bus goes low while SCK is high) 1 Detects (serial bus goes low while SCK is high) ACKT Controls trigger output of acknowledge signal (AC 0 Does not output 1 Outputs ACKE Controls automatic output of acknowledge signal (ACK) 0 Does not output 1 Outputs ACKE Controls automatic output of acknowledge signal (ACK) 0 Disables 1 Enables ACKD Detects acknowledge signal (ACK) 0 Does not detect 1 Detects BSYE Controls automatic output of synchronization bus signal (BUSY) 0 Disables											Controls trigger output of command signal (CMD)
1 Outputs RELD Detects bus release signal (REL) 0 Does not detect 1 Detects (serial bus goes high while SCK is high) CMDD Detects command signal (CMD) 0 Does not detect 1 Detects (serial bus goes low while SCK is high) 0 Does not detect 1 Detects (serial bus goes low while SCK is high) 0 Does not detect 1 Detects (serial bus goes low while SCK is high) ACKT Controls trigger output of acknowledge signal (ĀK 0 Does not output 1 Outputs ACKE Controls automatic output of acknowledge signal (ĀK) 0 Disables 1 Enables 1 Enables 1 Enables ACKD Detects acknowledge signal (ĀCK)	1 Outputs RELD Detects bus release signal (REL) 0 Does not detect 1 Detects (serial bus goes high while SCK is high) 1 Detects command signal (CMD) R Detects command signal (CMD) R Detects command signal (CMD) R Detects (serial bus goes low while SCK is high) 1 Detects (serial bus goes low while SCK is high) ACKT Controls trigger output of acknowledge signal (AC 0 Does not output 1 Outputs ACKE Controls automatic output of acknowledge signal (ACK) 0 Disables 1 Enables ACKD Detects acknowledge signal (ACK) 0 Disables 1 Detects acknowledge signal (ACK) 0 Does not detect 1 Detects BSYE Controls automatic output of synchronization bus signal (BUSY) 0 Disables											
RELD Detects bus release signal (REL) 0 Does not detect 1 Detects (serial bus goes high while SCK is high) CMDD Detects command signal (CMD) 0 Does not detect 1 Detects (serial bus goes low while SCK is high) 0 Does not detect 1 Detects (serial bus goes low while SCK is high) ACKT Controls trigger output of acknowledge signal (ĀCK) 0 Does not output 1 Outputs ACKE Controls automatic output of acknowledge signal (ĀCK) 0 Disables 1 Enables 1 Enables	RELD Detects bus release signal (REL) 0 Does not detect 1 Detects (serial bus goes high while SCK is high) CMDD Detects command signal (CMD) 0 Does not detect 1 Detects (serial bus goes low while SCK is high) 0 Does not detect 1 Detects (serial bus goes low while SCK is high) 0 Does not detect 1 Detects (serial bus goes low while SCK is high) ACKE Controls trigger output of acknowledge signal (AC 0 Does not output 1 Outputs ACKE Controls automatic output of acknowledge signal (ACK) 0 Disables 1 Enables 1 Enables 1 Enables 1 Enables 1 Detects 0 Does not detect 1 Detects 8SYE Controls automatic output of synchronization bus signal (BUSY) 0 Disables											
R Detects bus release signal (REL) 0 Does not detect 1 Detects (serial bus goes high while SCK is high) R Detects command signal (CMD) 0 Does not detect 1 Detects (serial bus goes low while SCK is high) 0 Does not detect 1 Detects (serial bus goes low while SCK is high) 0 Does not detect 1 Detects (serial bus goes low while SCK is high) ACKT Controls trigger output of acknowledge signal (ĀCK) 0 Does not output 1 Outputs ACKE Controls automatic output of acknowledge signal (ĀCK) 0 Disables 1 Enables 1 Enables 1 Detects acknowledge signal (ĀCK) 0 Does not detect	R Detects bus release signal (REL) 0 Does not detect 1 Detects (serial bus goes high while SCK is high) CMDD R 0 Does not detect 1 Detects (serial bus goes low while SCK is high) 0 Does not detect 1 Detects (serial bus goes low while SCK is high) ACKT Controls trigger output of acknowledge signal (AC 0 Does not output 1 Outputs ACKE Controls automatic output of acknowledge signal R/W (ACK) 0 Disables 1 Enables ACKD R Detects acknowledge signal (ACK) 0 Disables 1 Enables ACKD R BSYE Controls automatic output of synchronization bus signal (BUSY) 0 Disables											Oulpuis
R Detects bus release signal (REL) 0 Does not detect 1 Detects (serial bus goes high while SCK is high) R Detects command signal (CMD) 0 Does not detect 1 Detects (serial bus goes low while SCK is high) 0 Does not detect 1 Detects (serial bus goes low while SCK is high) 0 Does not detect 1 Detects (serial bus goes low while SCK is high) ACKT Controls trigger output of acknowledge signal (ĀCK) 0 Does not output 1 Outputs ACKE Controls automatic output of acknowledge signal (ĀCK) 0 Disables 1 Enables 1 Enables 1 Detects acknowledge signal (ĀCK) 0 Does not detect	R Detects bus release signal (REL) 0 Does not detect 1 Detects (serial bus goes high while SCK is high) CMDD R 0 Does not detect 1 Detects (serial bus goes low while SCK is high) 0 Does not detect 1 Detects (serial bus goes low while SCK is high) ACKT Controls trigger output of acknowledge signal (AC 0 Does not output 1 Outputs ACKE Controls automatic output of acknowledge signal R/W (ACK) 0 Disables 1 Enables ACKD R Detects acknowledge signal (ACK) 0 Disables 1 Enables ACKD R BSYE Controls automatic output of synchronization bus signal (BUSY) 0 Disables											
0 Does not detect 1 Detects (serial bus goes high while SCK is high) CMDD R 0 Does not detect 1 Detects (serial bus goes low while SCK is high) 0 Does not detect 1 Detects (serial bus goes low while SCK is high) 0 Does not detect 1 Detects (serial bus goes low while SCK is high) ACKT Controls trigger output of acknowledge signal (ĀCK) 0 Does not output 1 Outputs ACKE Controls automatic output of acknowledge signal (ĀCK) 0 Disables 1 Enables 1 Enables 0 Does not detect	0 Does not detect 1 Detects (serial bus goes high while SCK is high) 0 Detects command signal (CMD) 0 Does not detect 1 Detects (serial bus goes low while SCK is high) 0 Does not detect 1 Detects (serial bus goes low while SCK is high) 0 Does not detect 1 Detects (serial bus goes low while SCK is high) 0 Does not output of acknowledge signal (AC 0 Does not output 1 Outputs ACKE Controls automatic output of acknowledge signal (ACK) 0 Disables 1 Enables ACKD Detects acknowledge signal (ACK) 0 Does not detect 1 Detects 0 Does not detect 1 Detects 0 Does not detect 1 Detects 1 Detects 0 Does not detect 1 Detects 0 Does not detect 1 Detects 0 Disables <td></td> <td>Detects bus release signal (REL)</td>											Detects bus release signal (REL)
1 Detects (serial bus goes high while SCK is high) CMDD R Detects command signal (CMD) 0 Does not detect 1 Detects (serial bus goes low while SCK is high) ACKT W Controls trigger output of acknowledge signal (ĀCK) 0 Does not output 1 Outputs ACKE R/W Controls automatic output of acknowledge signal (ACK) 0 Disables 1 Enables 1 Enables 1 Enables ACKD Detects acknowledge signal (ACK) 0 Disables 1 Enables	1 Detects (serial bus goes high while SCK is high) CMDD Detects command signal (CMD) 0 Does not detect 1 Detects (serial bus goes low while SCK is high) 0 Does not detect 1 Detects (serial bus goes low while SCK is high) 0 Does not detect 1 Detects (serial bus goes low while SCK is high) ACKT Controls trigger output of acknowledge signal (ĀC 0 Does not output 1 Outputs ACKE Controls automatic output of acknowledge signal (ĀCK) 0 Disables 1 Enables ACKD Detects acknowledge signal (ĀCK) 0 Does not detect 1 Detects acknowledge signal (ĀCK) 0 Does not detect 1 Detects BSYE Controls automatic output of synchronization bus signal (BUSY) 0 Disables											
CMDD R Detects command signal (CMD) 0 Does not detect 1 Detects (serial bus goes low while SCK is high) ACKT W Controls trigger output of acknowledge signal (ACK) 0 Does not output 1 Outputs ACKE RW Controls automatic output of acknowledge signal (ACK) 0 Disables 1 Enables 1 Enables ACKD R Detects acknowledge signal (ACK) 0 Does not detect	CMDD Detects command signal (CMD) 0 Does not detect 1 Detects (serial bus goes low while SCK is high) ACKT Controls trigger output of acknowledge signal (AC 0 Does not output 1 Outputs ACKE Controls automatic output of acknowledge signal R/W (ACK) 0 Does not output 1 Outputs ACKE Controls automatic output of acknowledge signal R/W (ACK) 0 Disables 1 Enables 1 Enables ACKD Detects acknowledge signal (ACK) 0 Does not detect 1 Detects BSYE Controls automatic output of synchronization bus signal (BUSY) 0 Disables											
R Detects command signal (CMD) 0 Does not detect 1 Detects (serial bus goes low while SCK is high) ACKT Controls trigger output of acknowledge signal (ĀC 0 Does not output 1 Outputs ACKE Controls automatic output of acknowledge signal (ĀCK) 0 Disables 1 Enables ACKD Detects acknowledge signal (ĀCK) 0 Does not detect	R Detects command signal (CMD) 0 Does not detect 1 Detects (serial bus goes low while SCK is high) ACKT Controls trigger output of acknowledge signal (AC 0 Does not output 1 Outputs ACKE Controls automatic output of acknowledge signal R/W (ACK) 0 Disables 1 Enables 1 Enables ACKD Detects acknowledge signal (ACK) 0 Disables 1 Enables ACKD Detects acknowledge signal (ACK) R Detects acknowledge signal (ACK) 0 Disables 1 Enables ACKD Detects acknowledge signal (ACK) 0 Does not detect 1 Detects BSYE Controls automatic output of synchronization bus signal (BUSY) 0 Disables										1	Detects (serial bus goes high while SCK is high)
R Detects command signal (CMD) 0 Does not detect 1 Detects (serial bus goes low while SCK is high) ACKT Controls trigger output of acknowledge signal (ĀC 0 Does not output 1 Outputs ACKE Controls automatic output of acknowledge signal (ĀCK) 0 Disables 1 Enables ACKD Detects acknowledge signal (ĀCK) 0 Does not detect	R Detects command signal (CMD) 0 Does not detect 1 Detects (serial bus goes low while SCK is high) ACKT Controls trigger output of acknowledge signal (AC 0 Does not output 1 Outputs ACKE Controls automatic output of acknowledge signal R/W (ACK) 0 Disables 1 Enables 1 Enables ACKD Detects acknowledge signal (ACK) 0 Disables 1 Enables ACKD Detects acknowledge signal (ACK) R Detects acknowledge signal (ACK) 0 Disables 1 Enables ACKD Detects acknowledge signal (ACK) 0 Does not detect 1 Detects BSYE Controls automatic output of synchronization bus signal (BUSY) 0 Disables											
0 Does not detect 1 Detects (serial bus goes low while SCK is high) ACKT Controls trigger output of acknowledge signal (ĀC 0 Does not output 1 Outputs ACKE Controls automatic output of acknowledge signal (ĀCK) 0 Disables 1 Enables ACKD Detects acknowledge signal (ĀCK) 0 Does not detect	0 Does not detect 1 Detects (serial bus goes low while SCK is high) ACKT Controls trigger output of acknowledge signal (AC 0 Does not output 1 Outputs ACKE Controls automatic output of acknowledge signal R/W (ACK) 0 Disables 1 Enables 1 Enables ACKD Detects acknowledge signal (ACK) 0 Disables 1 Enables ACKD Detects acknowledge signal (ACK) 0 Does not detect 1 Detects acknowledge signal (ACK) 0 Does not detect 1 Detects BSYE Controls automatic output of synchronization bus signal (BUSY) 0 Disables						_					Detects command signal (CMD)
1 Detects (serial bus goes low while SCK is high) ACKT Controls trigger output of acknowledge signal (ĀC 0 Does not output 1 Outputs ACKE Controls automatic output of acknowledge signal R/W (ACK) 0 Disables 1 Enables ACKD Detects acknowledge signal (ACK) 0 Disables 1 Enables	1 Detects (serial bus goes low while SCK is high) ACKT Controls trigger output of acknowledge signal (AC 0 Does not output 1 Outputs ACKE Controls automatic output of acknowledge signal R/W (ACK) 0 Disables 1 Enables ACKD Detects acknowledge signal (ACK) 0 Does not detect 1 Detects ACKD R BSYE Controls automatic output of synchronization bus signal (BUSY) 0 Disables											
ACKT Controls trigger output of acknowledge signal (Ā W 0 Does not output 1 Outputs ACKE Controls automatic output of acknowledge signal (ĀCK) R/W (ACK) 0 Disables 1 Enables ACKD Detects acknowledge signal (ĀCK) 0 Does not detect	ACKT W Controls trigger output of acknowledge signal (AC 0 Does not output 1 Outputs ACKE R/W Controls automatic output of acknowledge signal R/W 0 Disables 1 Enables 1 Enables ACKD R Detects acknowledge signal (ACK) 0 Does not detect 1 Detects BSYE R/W Controls automatic output of synchronization bus signal (BUSY) 0 Disables											
W Controls trigger output of acknowledge signal (ACK) 0 Does not output 1 Outputs ACKE Controls automatic output of acknowledge signal R/W (ACK) 0 Disables 1 Enables ACKD Detects acknowledge signal (ACK) 0 Does not detect	W Controls trigger output of acknowledge signal (AC 0 Does not output 1 Outputs ACKE Controls automatic output of acknowledge signal R/W (ACK) 0 Disables 1 Enables 1 Enables ACKD Detects acknowledge signal (ACK) 0 Disables 1 Enables ACKD Detects acknowledge signal (ACK) 0 Does not detect 1 Detects BSYE Controls automatic output of synchronization bus signal (BUSY) 0 Disables										1	Detects (serial bus goes low while SCK is high)
W Controls trigger output of acknowledge signal (ACK) 0 Does not output 1 Outputs ACKE Controls automatic output of acknowledge signal R/W (ACK) 0 Disables 1 Enables ACKD Detects acknowledge signal (ACK) 0 Does not detect	W Controls trigger output of acknowledge signal (AC 0 Does not output 1 Outputs ACKE Controls automatic output of acknowledge signal R/W (ACK) 0 Disables 1 Enables 1 Enables ACKD Detects acknowledge signal (ACK) 0 Disables 1 Enables ACKD Detects acknowledge signal (ACK) 0 Does not detect 1 Detects BSYE Controls automatic output of synchronization bus signal (BUSY) 0 Disables											
1 Outputs ACKE Controls automatic output of acknowledge signal R/W (ACK) 0 Disables 1 Enables ACKD Detects acknowledge signal (ACK) 0 Does not detect	1 Outputs ACKE Controls automatic output of acknowledge signal R/W (ACK) 0 Disables 1 Enables ACKD Detects acknowledge signal (ACK) R Detects acknowledge signal (ACK) 0 Does not detect 1 Detects BSYE Controls automatic output of synchronization bus signal (BUSY) 0 Disables					L						Controls trigger output of acknowledge signal (ACK
ACKE Controls automatic output of acknowledge signal (ACK) 0 Disables 1 Enables ACKD Detects acknowledge signal (ACK) 0 Does not detect	ACKE Controls automatic output of acknowledge signal R/W (ACK) 0 Disables 1 Enables ACKD Detects acknowledge signal (ACK) R Detects acknowledge signal (ACK) 0 Does not detect 1 Detects BSYE Controls automatic output of synchronization bus signal (BUSY) 0 Disables										0	Does not output
R/W (ACK) 0 Disables 1 Enables ACKD Detects acknowledge signal (ACK) 0 Does not detect	R/W (ACK) 0 Disables 1 Enables ACKD Detects acknowledge signal (ACK) R 0 Does not detect 1 1 Detects BSYE Controls automatic output of synchronization bus signal (BUSY) 0 Disables										1	Outputs
R/W (ACK) 0 Disables 1 Enables ACKD Detects acknowledge signal (ACK) 0 Does not detect	R/W (ACK) 0 Disables 1 Enables ACKD Detects acknowledge signal (ACK) R 0 Does not detect 1 1 Detects BSYE Controls automatic output of synchronization bus signal (BUSY) 0 Disables											
R/W (ACK) 0 Disables 1 Enables ACKD Detects acknowledge signal (ACK) R 0 Does not detect	R/W (ACK) 0 Disables 1 Enables ACKD Detects acknowledge signal (ACK) R Detects acknowledge signal (ACK) 0 Does not detect 1 Detects BSYE Controls automatic output of synchronization bus signal (BUSY) 0 Disables										ACKE	Controls automatic output of acknowledge signal
1 Enables ACKD Detects acknowledge signal (ACK) R 0 0 Does not detect	1 Enables ACKD Detects acknowledge signal (ACK) R Detects acknowledge signal (ACK) 0 Does not detect 1 Detects BSYE Controls automatic output of synchronization bus signal (BUSY) 0 Disables										R/W	
ACKD R Detects acknowledge signal (ACK) 0 Does not detect	ACKD R Detects acknowledge signal (ACK) 0 Does not detect 1 Detects BSYE R/W Signal (BUSY) 0 Disables										0	Disables
R Detects acknowledge signal (ACK) 0 Does not detect	R Detects acknowledge signal (ACK) 0 Does not detect 1 Detects BSYE Controls automatic output of synchronization bus signal (BUSY) 0 Disables										1	Enables
R Detects acknowledge signal (ACK) 0 Does not detect	R Detects acknowledge signal (ACK) 0 Does not detect 1 Detects BSYE Controls automatic output of synchronization bus signal (BUSY) 0 Disables											
R 0 Does not detect	R 0 Does not detect 1 Detects BSYE Controls automatic output of synchronization bus signal (BUSY) 0 Disables										ACKD	
0 Does not detect	0 Does not detect 1 Detects BSYE Controls automatic output of synchronization bus signal (BUSY) 0 Disables										R	Detects acknowledge signal (ACK)
	1 Detects BSYE Controls automatic output of synchronization bus signal (BUSY) 0 Disables											Does not detect
	BSYE Controls automatic output of synchronization bus R/W signal (BUSY) 0 Disables											
	R/W signal (BUSY) 0 Disables										L	1
BSYE Controls automatic output of aurobranization but	R/W signal (BUSY) 0 Disables										BSYF	Controls automatic output of synchronization husy
	0 Disables											signal (BUSY)
											1	Enables

Figure 10-26. Format of Serial Bus Interface Control Register

Remark R/W: read/write

R : read only

W : write only

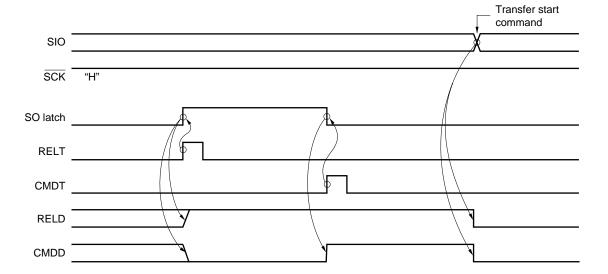
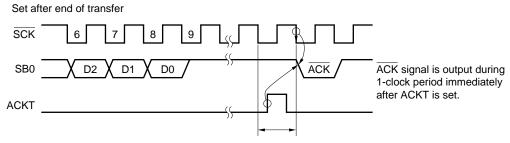
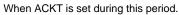
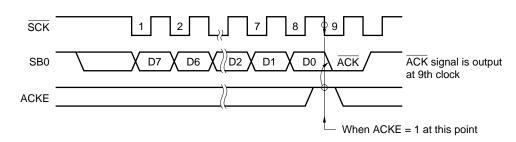
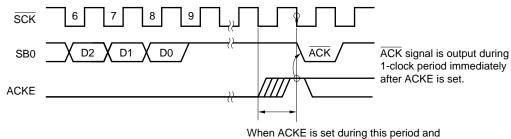




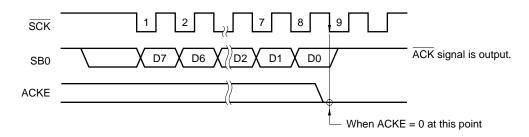
Figure 10-27. Operations of RELT, CMDT, RELD, and CMDD

Caution Do not manipulate the RELT and CMDT bits during transmission or reception.


Figure 10-28. Operation of ACKT



a. When ACKE = 1 during transfer



b. When ACKE is set immediately after end of transfer

ACKE = 1 at falling edge of next \overline{SCK}

c. When ACKE = 0 at end of transfer

d. When period of ACKE = 1 is short

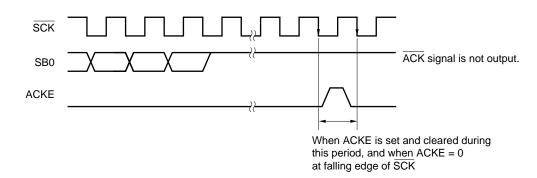
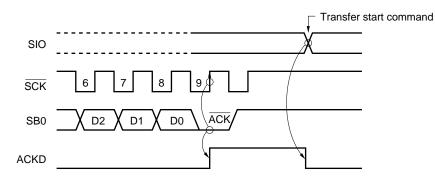
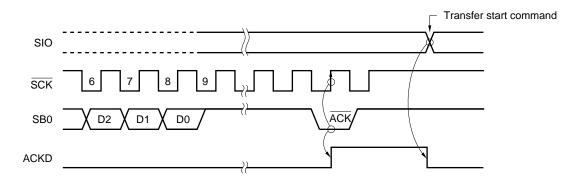
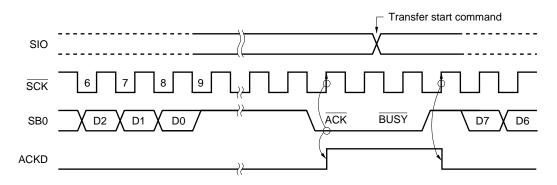
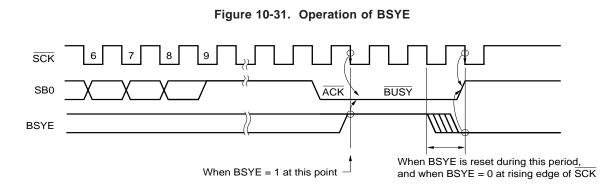




Figure 10-30. Operation of ACKD


a. When $\overline{\text{ACK}}$ signal is output at 9th clock of $\overline{\text{SCK}}$



b. When \overline{ACK} signal is output after 9th clock of \overline{SCK}

c. Clearing timing when transfer start command is issued during BUSY

10.6.3 Communicating with SBI

Transmit data is written to the shift register (SIO) and transmission/reception is performed after the serial bus has been controlled by the serial bus interface control register (SBIC).

Although the SB0 pin is used in the following description, operation is exactly the same even when the SB1 pin is selected.

(1) Starting transmission

When the transmit data is written to the shift register (SIO) with the CTXE bit of the clocked serial interface mode register (CSIM) set to 1, transmission is started.

The contents of the SIO register are shifted in synchronization with the falling edge of the serial clock (SCK), and output from the SB0 pin with the MSB first. After the transmit data has been transmitted, "0" is written to the SIO register, and interrupt request INTCSI occurs.

(2) Starting reception

Reception can be started in the following two ways:

- <1> By setting the CRXE bit of the CSIM register from 0 to 1, thereby enabling reception when CTXE bit is "0"
- <2> By reading the receive data from the SIO register when the CRXE bit of the CSIM register is set to 1 to enable reception

Reception is not started even if "1" is written to the CRXE bit of the CSIM register which has already been set to "1". Reception is not started when CTXE bit is "1", even if the CRXE bit setting is set to 1 from 0. The 8-bit data input to the SB0 pin is latched to the SIO register with the MSB first, at the rising edge of the serial clock (SCK), and interrupt request INTCSI occurs. When using the wakeup function, interrupt request INTCSI is generated only when an address is received.

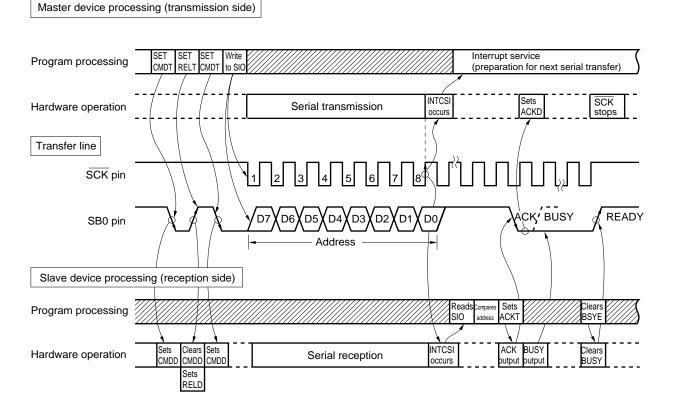
(3) Starting transmission/reception

Transmission/reception is started when the transmit data is written to the SIO register with both the CTXE and CRXE bits of the CSIM register set to "1".

The data on the serial bus is input to the SIO register as is. By comparing the transmit data written to the SIO register with the data input from the serial bus, bus contention can be checked.

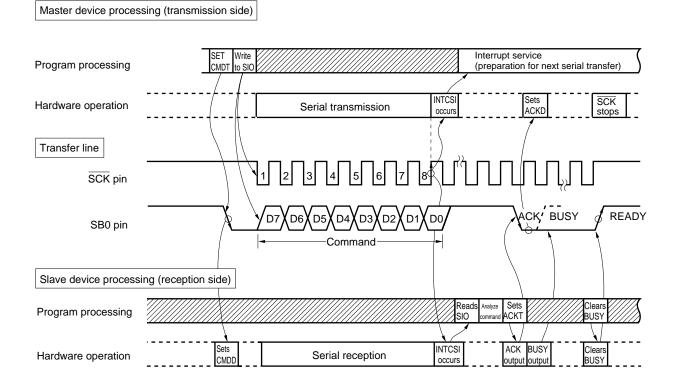
Remark INTCSI ... vector table address: 0022H (TPF = 0), 8022H (TPF = 1) macro service control word address: FE22H

Caution Be sure to specify a pin and serial clock before setting the CTXE and CRXE bits in the SBI mode.


Symbol	$\overline{\mathcal{O}}$	6	(5)	4	3	2	1	0	Ą	ddress	When r	eset	R/W	
CSIM	CTXE	CRXE	WUP	MOD2	2 MOD1	MOD0	CLS1	CLS0	'	FF80H	00H	ł	R/W	
									-					
									CLS1	CLS0	Spec	ifies seria	l clock	SCK pin
									0	0	External cl	ock		Input
									0	1			Baud rate generator/2	
									1	0	Internal	clock	fclк/32	Output
									1	1			fс∟к/8	
									MOD1	MOD0	Operation mode	First bit	No. of pins	Pins used
									0	0	3-wire serial	MSB	- 3	SO/SB0, SI/SB1,
									0	1	I/O mode	LSB	3	SCK
									1	0	SBI mode	MSB	2	SO/SB0, (or SI/SB1), SCK
									1	1	Setting pro	hibited		
									MOD2		Specifies tra	Insmissio	n/reception pi	n
									0				ough SO/SB0 dance state)) pin
									1				ough SI/SB1 edance state)	
									WUP		Contro	ls wakeup	o function	
									0		rates interru time serial ti		t signal in all executed	modes
									1	addre	ss is receive	ed in SBI	t signal only v mode. mpedance st	
									CRXE		Rec	eption op	eration	
									0	Disab regist		clock is ir	nput, " 0 " is ir	nput to shift
									1	Enabl	ed			
									СТХЕ		Trans	mission o	peration	
									0	Disab		ouffer of S	SO/SB0 and S	SI/SB1 pins

Enabled

1


Figure 10-32. Setting of CSIM Register (transmission/reception enabled)

Remark fclk: internal system clock

Figure 10-33. Address Transfer from Master Device to Slave Device

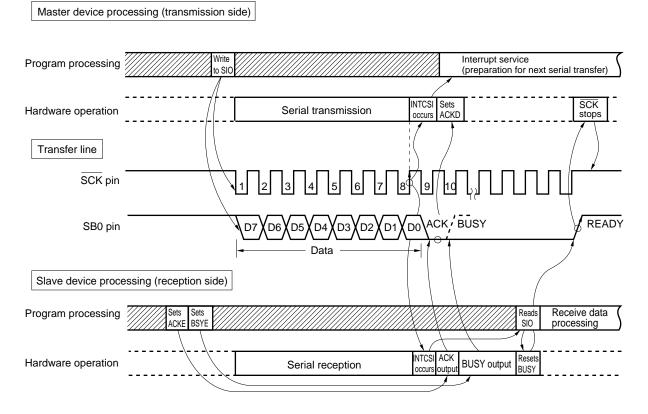
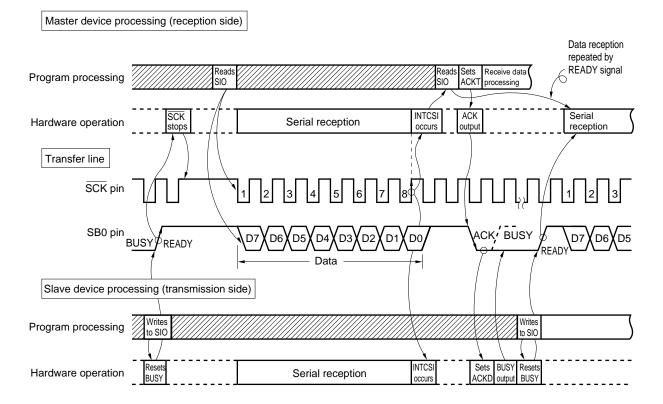



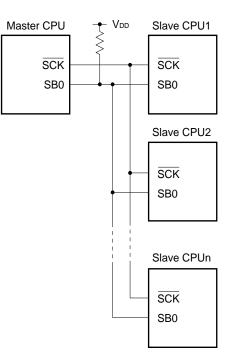
Figure 10-35. Data Transfer from Master Device to Slave Device

Figure 10-36. Data Transfer from Slave Device to Master Device

10.6.4 Operation only when address is received

The processing efficiency of the slave CPU can be enhanced by using the wake-up function that is effected only when an address is received.

• Processing efficiency of slave CPU is enhanced by wake-up function


In the SBI mode, a wake-up function that generates interrupt request INTCSI only when an address has been received can be used.

When the serial interface is configured as shown in Figure 10-37, and when data is transmitted/received with a certain slave CPU, the other slave CPUs can operate independently of serial communication. If the wake-up function is not used, the interrupt occurs each time data is received, and therefore, all the slave CPUs are influenced each time serial communication is executed. The wake-up function can therefore be used to enhance the efficiency of the slave CPUs.

When a slave CPU receives an address, it compares it with its own address during service of the INTCSI interrupt that has occurred. If the two addresses coincide, the wake-up function is cleared, and the next data is received. If the addresses do not coincide, the wake-up status continues.

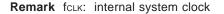

Remark INTCSI ... vector table address: 0022H (TPF = 0), 8022H (TPF = 1) macro service control word address: FE22H

Figure 10-37. Example of System Configuration of Serial Bus Interface (SBI)

Symbol (6) (5) 0 Address When reset R/W $\overline{(7)}$ 4 3 2 1 WUP MOD2 MOD1 MOD0 CLS1 CLS0 CSIM CTXE CRXE FF80H 00H R/W CLS1 CLS0 SCK pin Specifies serial clock 0 0 External clock Input Baud rate 0 1 generator/2 Internal clock Output 1 0 fclк/32 1 1 fclk/8 Operation mode MOD1 MOD0 First bit No. of pins Pins used 0 0 3-wire MSB SO/SB0, serial 3 SI/SB1, I/O mode LSB SCK 0 1 SO/SB0, (or SI/SB1), SCK 1 0 SBI mode MSB 2 1 1 Setting prohibited MOD2 Specifies transmission/reception pin 0 Transmission/reception through SO/SB0 pin (SI/SB1 pin is in high-impedance state) 1 Transmission/reception through SI/SB1 pin (SO/SB0 pin is in high-impedance state) WUP Controls wakeup function 0 Generates interrupt request signal in all modes each time serial transfer is executed Generates interrupt request signal only when 1 address is received in SBI mode. Serial output pin is in high-impedance state CRXE Reception operation Disabled (if serial clock is input, "0" is input to shift 0 register) 1 Enabled CTXE Transmission operation 0 Disabled (output buffer of SO/SB0 and SI/SB1 pins is in high-impedance state) 1 Enabled

Figure 10-38. Setting of CSIM Register (wake-up function)

CHAPTER 11 PWM SIGNAL OUTPUT FUNCTION

Phase-out/Discontinued

11.1 Configuration

The μ PD78366A has two PWM signal outputs of variable resolution of 8-/9-/10-/12-bit and one 16-bit resolution PWM signal output.

The 16-bit resolution PWM signal output, which is a multifunctional timer output (TO40), is described in CHAPTER

7 REAL-TIME PULSE UNIT. Chapter 11 describes PWM dedicated functions PWM0 and PWM1.

By externally connecting a low-pass filter, a PWM output can be used as a digital-to-analog conversion output. The PWM outputs are most suitable, for example, as a control signal for the actuator of a motor.

Figure 11-1 shows the block diagram of the PWM Unit. Table 11-1 lists PWM signal output repetition frequencies.

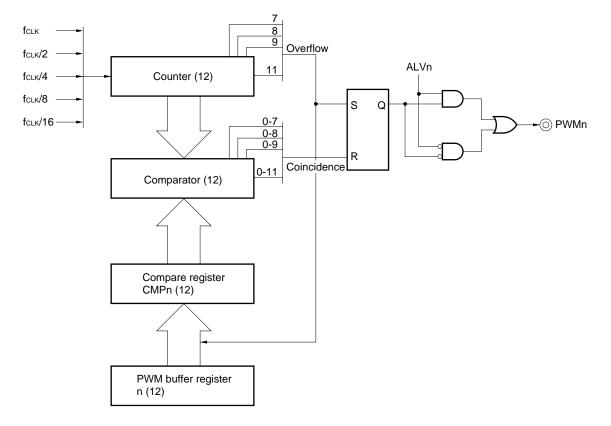


Figure 11-1. Block Diagram of PWM Unit

Remark n = 0, 1

Counter		Repetition Frequency								
Bit Length	Count Clock	fclk = 1	12.5 MHz	fclk =	= 16.0 MHz					
8 bits	fclĸ	48.83 kHz	20.48 μs	62.50 kHz	16.0 <i>μ</i> s					
	fclк/2	24.41 kHz	40.96 μs	31.25 kHz	32.0 μs					
	fclк/4	12.21 kHz	81.92 μs	15.63 kHz	64.0 μs					
	fclк/8	6.10 kHz	163.84 μs	7.81 kHz	128.0 μs					
	fclк/16	3.05 kHz	327.68 μs	3.91 kHz	256.0 μs					
9 bits	fclĸ	24.41 kHz	40.96 μs	31.25 kHz	32.0 μs					
	fclк/2	12.21 kHz	81.92 μs	15.63 kHz	64.0 μs					
	fclк/4	6.10 kHz	163.84 <i>μ</i> s	7.81 kHz	128.0 μs					
	fclк/8	3.05 kHz	327.68 μs	3.91 kHz	256.0 μs					
	fclк/16	1.53 kHz	655.36 μs	1.95 kHz	512.0 μs					
10 bits	fclk	12.21 kHz	81.92 μs	15.63 kHz	64.0 μs					
	fclк/2	6.10 kHz	163.84 <i>μ</i> s	7.81 kHz	128.0 μs					
	fclк/4	3.05 kHz	327.68 μs	3.91 kHz	256.0 μs					
	fclк/8	1.53 kHz	655.36 μs	1.95 kHz	512.0 μs					
	fclк/16	763 Hz	1.31 ms	977 Hz	1.02 ms					
12 bits	fclk	3.05 kHz	327.68 μs	3.91 kHz	256.0 μs					
	fclк/2	1.53 kHz	655.36 μs	1.95 kHz	512.0 μs					
	fclк/4	763 Hz	1.31 ms	977 Hz	1.02 ms					
	fclк/8	381 Hz	2.62 ms	488 Hz	2.05 ms					
	fc∟к/16	191 Hz	5.24 ms	244 Hz	4.1 ms					

Table 11-1. PWM Signal Repetition Frequencies

Remark fclk: internal system clock

11.2 Control Register

11.2.1 PWM control registers (PWMC0, PWMC1)

The PWM control registers control PWM output. Figures 11-2 and 11-3 show the formats of the PWMC0 and PWMC1 registers.

When a RESET signal is input, the PWMC0 and PWMC1 registers are initialized to 00H.

Figure 11-2. Format of PWM Control Register 0

Symbol	\bigcirc	6	5	4	3	2	1	0	Addre	ss W	hen reset	R/W	
PWMC0	PWME1	ALV1	PRM11	PRM10	PWME0	ALV0	PRM01	PRM00	FFA0	н	00H	R/W	
•									1				
						<u> </u> 			PRMn1	PRMn0	Bit length of $(n = 0, 1)$	f counter and CMP register n	
									0	0	8 bits		
									0	1	9 bits		
									1	0	10 bits		
									1	1	12 bits		
								•					
					<u> </u>				ALVn	Specifie (n = 0,		l of PWMn signal output	
									0	Low lev	/el		
									1	High le	vel		
								-					
									PWMEn	Control $(n = 0,$		f PWMn signal output	
									0	Stopped (PWM output becomes ALV and remains und			
								ļ	1	Enable	d (PWM outp	ut changes)	

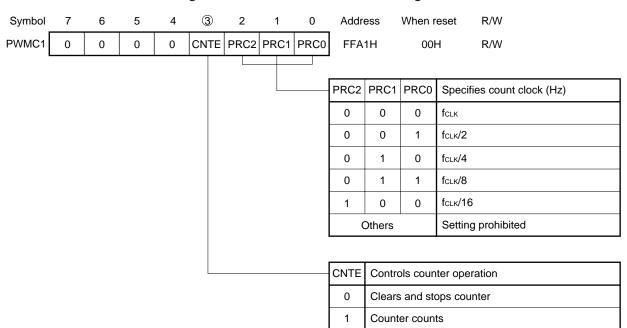


Figure 11-3. Format of PWM Control Register 1

Cautions 1. To output PWM signal, be sure to set CNTE bit to 1.

- 2. The PWMC1 register is a control register common to PWM0 and PWM1.
- 3. Bits 4 to 7 of the PWMC1 register are fixed to "0" by hardware. Even if "1" is written to them, they remain "0".

Remark fcLK: Internal system clock

11.2.2 PWM buffer registers (PWM0, PWM1)

The PWM0 and PWM1 registers are 12-bit registers that set the data for controlling the active signal width of PWM output. Data can be read from or written into the registers in byte or word units by an instruction.

When an overflow occurs in the counter for PWM output control, the contents of the PWM0 or PWM1 register are sent to compare register CMP0 or CMP1.

Comparison operation between the counter and the PWM0/PWM1 register is performed on bits 0-11 regardless of how the PRM00, 01/PRM10, 11 bits are specified. Therefore, if the bit length of the counter, CMP0/CMP1 register is specified as 10 bits or less, write "0" into the high-order bits.

When RESET is input, the PWM buffer register becomes undefined.

- Cautions 1. A byte access/bit access can be made to the low-order part of the PWM0/PWM1 register, but cannot be made to the high-order part.
 - 2. Bits 12 to 15 of the PWM0/PWM1 registers are fixed to "0" by hardware. Even if "1" is written to them, they remain "0".

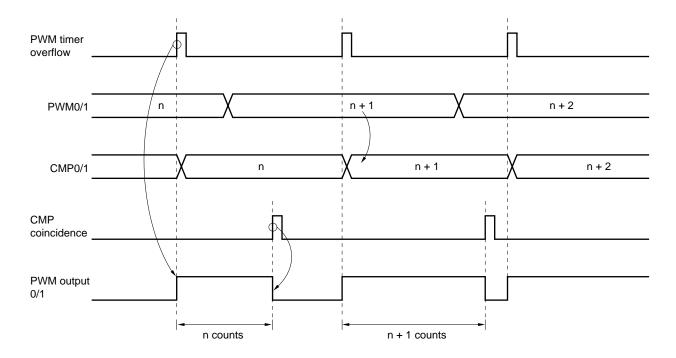
11.2.3 Compare registers (CMP0, CMP1)

The CMP0 and CMP1 compare registers are 12-bit registers used to detect coincidence between the values of the register and counter for PWM output control.

The registers cannot be directly manipulated by an instruction.

11.3 Operation

The PWM output function is used in the following procedure:


- The PWM output signal period is specified by bits PRM00, 01/PRM10, 11 of the PRMC0 register and bits PRC0-PRC2 of the PWMC1 register.
- Next, set the control data which has the same active width as that of the PWM output to the PWM0/PWM1 register.
- Next, set the CNTE bit of the PWMC1 register to 1.
- Finally, set the PWME0/PWME1 bit of the PWMC0 register to 1.

After these steps are completed, a PWM signal is output from port P04 or P05. The active signal width of PWM output can be changed by rewriting the contents of the PWM0 or PWM1 register.

The PWM output function sends the contents of the PWM0 or PWM1 register to the CMP0 or CMP1 register when the counter for PWM output control overflows. The PWM output signal goes inactive when the contents of the CMP0 or CMP1 register coincide with the value of the counter for PWM output control. The PWM output signal goes active when the counter for PWM output control overflows.

If PWME0 = 0/PWME1 = 0 is set and the PWM operation is halted, the PWM output reaches the inactive level immediately.

Figure 11-4. Operation of PWM Output Function (high-active setting) (1/2)

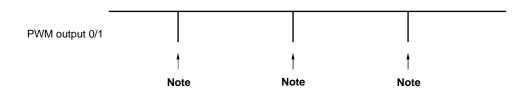

(1) Normal operation

Figure 11-4. Operation of PWM Output Function (high-active setting) (2/2)

(2) When PWM0/PWM1 = 00H

PWM output 0/1 "L"

(3) When PWM0/PWM1 = 0FH

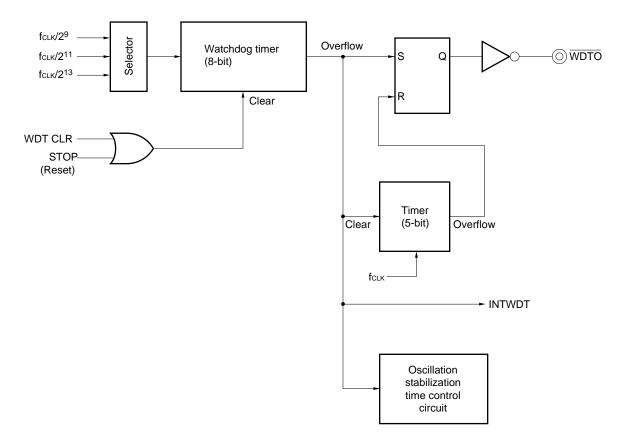
Note 1 count clock width of PWM counter

CHAPTER 12 WATCHDOG TIMER

Phase-out/Discontinued

12.1 Configuration

The watchdog timer prevents crashes or deadlocks.


If no watchdog timer interrupt occurs, the program or system is running normally. Each module of a program must have an instruction to clear the watchdog timer and to start counting.

If the instruction to clear the watchdog timer is not executed within a specified time period, an overflow occurs in the watchdog timer and a watchdog timer interrupt (INTWDT) is generated. At the same time, the \overline{WDTO} pin goes low to indicate that an error has occurred in the program.

The watchdog timer can also be used to guarantee a time required for the oscillator to perform stable operation when the STOP mode is released (refer to **14.3.2 STOP mode**). If the watchdog timer is used as a timer for the oscillation stabilization time, it does not overflow due to a program or system abnormality, and therefore no low-level output of INTWDT and \overline{WDTO} is generated.

Figure 12-1 shows a block diagram of the watchdog timer.

12.2 Watchdog Timer Mode Register (WDM)

The watchdog timer mode (WDM) register is an 8-bit register which controls the operation of the watchdog timer.

Data can be written into the WDM register only by a special instruction. This prevents the contents of the WDM register from being rewritten accidentally if the program crashes. The specialized instruction is MOV WDM, #byte instruction, consisting of special codes (4 bytes). Data is written only when the op-codes of bytes 3 and 4 complement each other.

Unless the op-codes of bytes 3 and 4 complement each other, data is not written and an op-code trap interrupt occurs. The address of the instruction causing the trap is saved in the stack area. When an RETB instruction is executed, the program can be restarted from the address of the instruction causing the trap.

If the RETB instruction is executed before a hardware error or other cause of the op-code trap is eliminated, the program enters an infinite loop.

If the watchdog timer is started after a system reset signal (RESET input) is entered, the contents of the WDM register cannot be rewritten. Only the system reset signal can stop the watchdog timer. The watchdog timer can be cleared at any time by a special instruction.

The contents of the WDM register can be read at any time by a data transfer instruction.

When a RESET signal is input, the WDM register is initialized to 00H.

Figure 12-2 shows the format of the WDM register.

Symbol	7	6	5	4	3	2	1	0	Addr	ess	When reset	R/W	
WDM	RUN	0	0	PRC	0	WDI2	WDI1	0	FFC2H		00H	R/W	
L													
									WDI2	WDI1	Count	Overflow	time (ms)
									VVDI2	WDN	clock	fclk = 12.5 MHz	fclк = 16.0 MHz
									0	0	fськ/2 ⁹	10.5	8.2
									0	1	fськ/2 ¹¹	41.9	32.8
									1	0	fськ/2 ¹³	167.8	131.1
									1	1	Setting prohib	bited	
									Remar	k fclk	internal syster	n clock frequen	су
									PRC	Specif	ies priority of wa	atchdog timer inte	errupt request
									0	Watch	ndog timer inter	rupt < NMI inter	rupt request
									1	Watch	ndog timer inter	rupt > NMI inter	rupt request
									RUN	Speci	fies operation o	f watchdog time	er
									0	Stops	watchdog time	r	
									1	Clears	s and starts wat	tchdog timer	

Figure 12-2. Format of Watchdog Timer Mode Register

Cautions 1. Data can be written into the WDM register only by a dedicated instruction (MOV WDM, #byte).

- 2. Set the priority of interrupt requests at the time of initialization of the application system such as initialization of the stack pointer, and do not dynamically change it in execution of the program.
- 3. The RUN bit cannot be reset to 0 by software.
- 4. The count clock is not reset even when the watchdog timer is cleared by setting the RUN bit to 1.
- If a watchdog timer interrupt and NMI interrupt are generated simultaneously when PRC = 1 (INTWDT > NMI), execute the watchdog timer interrupt service routine after executing the first 1 instruction of the NMI interrupt service routine.

Therefore, when used with PRC = 1 setting, use an NOP instruction as the first instruction of the NMI interrupt service routine.

- 6. Bits 6, 5 and 0 of the WDM register are fixed to "0" by hardware. Even if "1" is written to them, they remain "0".
- 7. Be sure to write 0 to bit 3 of the WDM register.

12.3 Watchdog Timer Output Pin

The watchdog timer output pin (WDTO) is an output circuit of open-drain type and can report a system error to the outside without software intervention. When the watchdog timer overflows, the watchdog timer output goes low for a period of 32 system clocks.

As the RESET pin can be directly connected, the watchdog timer output pin outputs a low-level signal for a period of 32 clocks even when a system reset occurs.

The initial status of the watchdog timer output pin after a system reset is the inactive level (high-level, open).

- Cautions 1. Immediately after the power is turned on, the watchdog timer output pin may go low for a period of up to 32 clocks.
 - 2. If the watchdog timer is operating as a timer for the oscillation stabilization time after release of the STOP mode, the WDTO pin remains at the inactive level even if an overflow occurs.

12.4 Application Example

At an early stage in program development, a program is designed without the watchdog timer. After rough debugging is completed, the program is debugged with the watchdog timer.

The watchdog timer must be set in the mode of short overflow time if the response time after a system error is critical.

When the watchdog timer is not required, it can be used for nonmaskable time base interrupt.

CHAPTER 13 INTERRUPT FUNCTION

The μ PD78366A is provided with the following three modes for interrupt request processing (see **Table 13-1**). These three processing modes can arbitrarily be set by a program. However, regarding selection of interrupt service by a macro service, selection is possible only for the interrupt request sources preparing the macro service processing mode shown in Table 13-2. Furthermore, context switching cannot be selected in the case of non-maskable interrupts and operation code trap interrupts.

Interrupt Request Processing Mode	Processing Source	Contents of PC and PSW	Processing Mode
Vectored interrupt	Software	Performs operation of save/restore to stack.	Branches to address specified by vector table and executes interrupt service routine.
Context switching		Performs operation of save/restore to fixed area in register bank.	Automatically switches to register bank specified by vector table, branches to address specified by fixed area in regis- ter bank, and executes interrupt service routine.
Macro service	Hardware (firmware)	Retained	Executes preset processing such as data transfer from/to memory and I/O.

Table 13-1. Interrupt Request Processing Modes

Furthermore, for maskable vectored interrupts, it is possible to easily perform multiplexed processing control with 4 levels of priority.

Table 13-2. Interrupt Sources

Interrupt	Default			Interrupt Source		Macro	Macro Service	Vector Table Address	
Request Type	uest Priority Interrupt		Interrupt Request Flag	Source	Unit Requesting Interrupt	Service	Control Word Address	TPF = 0	TPF = 1
Software	-		_	Op-code trap	_	Not	-	003CH	
				Execution of BRK instruction		provided		003EH	
Non-		NMI	-	Input to NMI pin	External			0002H	8002H
maskable		INTWDT	-	Watchdog timer overflow	WDT			0004H	8004H
Maskable	0	INTOV3	OVIF3	Timer 3 overflow	RPU	Provided	FE06H	0006H	8006H
	1	INTP0/INTCC30	PIF0	INTP0 pin input/CC30 coincidence signal	External/RPU		FE08H	0008H	8008H
	2	INTP1	PIF1	INTP1 pin input	External		FE0AH	000AH	800AH
	3	INTP2	PIF2	INTP2 pin input			FE0CH	000CH	800CH
	4	INTP3/INTCC20	PIF3	INTP3 pin input/CC20 coincidence signal	External/RPU		FE0EH	000EH	800EH
	5	INTP4	PIF4	INTP4 pin input	External		FE10H	0010H	8010H
	6	INTTM0	TMIF0	Timer 0 underflow	RPU	-	FE12H	0012H	8012H
	7	INTCM03	CMIF03	CM03 coincidence signal			FE14H	0014H	8014H
	8	INTCM10	CMIF10	CM10 coincidence signal			FE16H	0016H	8016H
	9	INTCM40	CMIF40	CM40 coincidence signal			FE18H	0018H	8018H
	10	INTCM41	CMIF41	CM41 coincidence signal			FE1AH	001AH	801AH
	11	INTSER	SERIF	Serial reception error	UART		FE1CH	001CH	801CH
	12	INTSR	SRIF	Serial reception end				001EH	801EH
	13	INTST	STIF	Serial transmission end			FE20H	0020H	8020H
	14	INTCSI	CSIIF	Serial transmission/reception end	CSI		FE22H	0022H	8022H
	15	INTAD	ADIF	A/D conversion end	A/D converter		FE24H	0024H	8024H
Reset	-	RESET	_	RESET pin input	_	Not provided	-	0000H	

Remark Default priority: priority fixed by hardware

13.1 Interrupt Requests

Interrupt requests for the μ PD78366A can be classified into the following four types.

- Non-maskable interrupt
- Maskable interrupt
- · Software interrupt
- Op-code trap interrupt

Details of each interrupt are given below.

13.1.1 Non-maskable interrupt

A non-maskable interrupt is generated by the NMI pin input or watchdog timer.

A non-maskable interrupt can be acknowledged unconditionally^{Note} even in the interrupt disabled state. It is not subject to priority control and is given the highest priority over all other interrupts.

Note Except when the non-maskable interrupt is being serviced and when another non-maskable interrupt with higher priority is being executed.

13.1.2 Maskable interrupt

A maskable interrupt is subject to mask control by interrupt mask flag setting. Furthermore, acknowledgment enable/disable can be specified for all maskable interrupts by the IE flag of PSW.

A maskable interrupt can be acknowledged not only by a normal vectored interrupt but also by context switching or a macro service (see **Table 13-2**).

For maskable interrupts, priority is given as shown in Table 13-2 when multiple interrupt requests with the same priority are generated simultaneously (default priority). Furthermore, it is possible to classify interrupt priority into a group of four levels to control multiplexed processing. However, macro services are acknowledged irrespective of priority control or the IE flag.

13.1.3 Software interrupt

A software interrupt includes a BRK instruction that generates a vectored interrupt and a BRKCS instruction that performs context switching.

A software interrupt can be acknowledged even in the interrupt disabled state. This interrupt is not subject to interrupt priority control.

13.1.4 Op-code trap interrupt

An op-code trap interrupt request is generated when the writing to the watchdog timer mode register (WDM) and standby control register (STBC) has not been carried out normally (see **12.2 Watchdog Timer Mode Register (WDM)** and **14.2 Standby Control Register (STBC)**).

An op-code trap interrupt can also be acknowledged in the DI state. This is not subject to interrupt priority control.

13.2 Interrupt Servicing Mode

The μ PD78366A services interrupts in the following three modes:

- · Vectored interrupt service
- · Macro service
- Context switching

13.2.1 Vectored interrupt service

When an interrupt is accepted, the contents of the program counter (PC) and program status word (PSW) are automatically saved to the stack memory, and execution branches to an address indicated by the data stored in the vector table, and an interrupt service routine is executed.

To return from the interrupt service routine, use the RETI instruction.

13.2.2 Macro service

When an interrupt is accepted, execution of the CPU is temporarily stopped, and data is transferred by hardware. Because macro service is executed without the CPU, the CPU statuses such as PC and PSW need not to be saved or restored. Therefore, the service time of the CPU can be substantially improved (refer to **13.8 Macro Service Function**).

13.2.3 Context switching

When an interrupt is accepted, a specific register bank is selected by hardware, and execution branches to a vector address which has been set in advance in a register bank. At the same time, the current contents of the PC and PSW are saved to the register bank (refer to **13.5.2 Context switching** and **13.6.2 Software interrupt (context switching) acknowledgement operation by BRKCS instruction**).

Remark Context means the registers of the CPU that can be accessed from a program that is executed. These registers include the general registers, PC, PSW, and SP (stack pointer).

13.3 Control Registers

Responses to interrupts in the μ PD78366A are controlled according to the interrupt requests. Table 13-3 lists the control registers.

Register Name	Symbol	Function
Interrupt control registers	OVIC3	Registers that record occurrence of each interrupt, control mask,
	PIC0	specify vectored interrupt service or macro service processing,
	PIC1	enable/disable context switching, and specify priority
	PIC2	
	PIC3	
	PIC4	
	TMIC0	
	CMIC03	
	CMIC10	
	CMIC40	
	CMIC41	
	SERIC	
	SRIC	
	STIC	
	CSIIC	
	ADIC	
Interrupt mask flag	MK0	Control masking of maskable interrupt. Associated with mask control
registers		flag of interrupt control registers. Can be accessed in byte or word
		units.
In-service priority register	ISPR	Records priority of interrupt request currently accepted.
Interrupt mode control register	IMC	Controls nesting of maskable interrupt specified to have lowest priority level (level 3).

Table 13-3. Control Registers

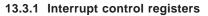

A control register is assigned to each interrupt source. The flags of each register are used to specify various types of controls which are determined by the bit positions in the register.

Table 13-4 lists the flags in the interrupt control registers for the interrupt request signals.

Table 13-4. Interrupt Control Register Flags for Interrupt Request Signals

Default	Interrupt	Interrupt Control Register											
Priority			Interrupt Mask Flag	Macro Service Enable Flag	Priority Spec- ification Flag	Context Switching Flag							
0	INTOV3	OVIF3	OVMK3	OVISM3	OVPR30 OVPR31	OVCSE3							
1	INTP0/INTCC30	PIF0	PMK0	PISM0	PPR00 PPR01	PCSE0							
2	INTP1	PIF1	PMK1	PISM1	PPR10 PPR11	PCSE1							
3	INTP2	PIF2	PMK2	PISM2	PPR20 PPR21	PCSE2							
4	INTP3/INTCC20	PIF3	PMK3	PISM3	PPR30 PPR31	PCSE3							
5	INTP4	PIF4	PMK4 PISM4		PPR40 PPR41	PCSE4							
6	INTTMO	TMIF0	TMMK0	TMISM0	TMPR00 TMPR01	TMCSE0							
7	INTCM03	CMIF03	CMMK03	MMK03 CMISM03		CMCSE03							
8	INTCM10	CMIF10	CMMK10	CMISM10	CMPR100 CMPR101	CMCSE10							
9	INTCM40	CMIF40	CMMK40	CMISM40	CMPR400 CMPR401	CMCSE40							
10	INTCM41	CMIF41	CMMK41	CMISM41	CMPR410 CMPR411	CMCSE41							
11	INTSER	SERIF	SERMK	SERISM	SERPR0 SERPR1	SERCSE							
12	INTSR	SRIF	SRMK	SRISM	SRPR0 SRPR1	SRCSE							
13	INTST	STIF	STMK	STISM	STPR0 STPR1	STCSE							
14	INTCSI	CSIIF	CSIMK	CSIISM	CSIPR0 CSIPR1	CSICSE							
15	INTAD	ADIF	ADMK	ADISM	ADPR0 ADPR1	ADCSE							

The interrupt control registers are assigned to different interrupt sources. Each register is used to control priority and masking for its associated interrupt source. Figure 13-1 shows the format of the interrupt control registers.

(1) Priority specification flags (XXPR1, XXPR0)

The priority specification flags specify the priority of the associated interrupt source for the 16 maskable interrupts.

Four priority levels can be specified. More than one interrupt source can have the same priority level. Maskable interrupt sources with level 0 have the highest priority.

If more than one interrupt request is generated and the interrupt sources have the same priority level, the requests are accepted according to the default priority.

The flags are set or reset bit by bit by software.

RESET input sets all bits to 1.

(2) Context switching enable flag (××CSE)

The context switching enable flag specifies whether to respond to a maskable interrupt request with context switching.

The context switching function selects the previously specified register bank on a hardware basis, makes a branch to the vector address stored in the register bank, and also saves the contents of the current program counter (PC) and program status word (PSW) in the register bank.

Context switching can start interrupt service at a higher speed than normal vectored interrupt service. Context switching is therefore appropriate for real-time service.

The flag is set or reset bit by bit by software.

RESET input sets all bits to 0.

(3) Macro service enable flag (××ISM)

The macro service enable flag specifies whether to respond to the associated interrupt request with vectored interrupt service or macro service processing.

If macro service processing is selected, when macro service terminates (when the macro service counter overflows) and a vectored interrupt is generated, the flag is automatically reset to 0 by hardware (vectored interrupt service).

The flag can be set or reset bit by bit by software.

RESET sets all bits to 0.

(4) Interrupt mask flag (××MK)

The interrupt mask flag enables or disables vectored interrupt service or macro service processing for the associated interrupt request.

The interrupt mask flag is not changed by the activation of interrupt service. The contents of the interrupt mask flag and the contents of the interrupt mask flag register are the same (refer to **13.3.2** Interrupt mask flag registers (MK0)).

As the macro service request is subject to mask control, the macro service request can also be masked by this flag.

This flag can be set or reset by software.

RESET input sets all bits to 1.

Selected interrupt service mode is determined by setting the interrupt mask flag (××MK) and macro service enable flag (××ISM) in combination.

××MK	××ISM	Interrupt Service Mode					
0	0	Vectored interrupt					
0	1	Vectored interrupt after macro service processing					
1	×	Maskable interrupt request is not acknowledged					

(5) Interrupt request flag (××IF)

The interrupt request flag is set to 1 when the associated interrupt request is generated. When the interrupt is accepted, the flag is automatically reset to 0 by hardware.

This flag can be set or reset by software.

RESET input sets all bits to 0.

Symbol	7	6	5	4	3	2	1	0	1	Address	When reset	R/W	
OVIC3	OVIF3	OVMK3	OVISM3	OVCSE3	0	0	OVPR31	OVPR30	F F	FFE0H	43H	R/W	
PIC0	PIF0	PMK0	PISM0	PCSE0	0	0	PPR01	PPR00] •	FFE1H	43H	R/W	
PIC1	PIF1	PMK1	PISM1	PCSE1	0	0	PPR11	PPR10] •	FFE2H	43H	R/W	
PIC2	PIF2	PMK2	PISM2	PCSE2	0	0	PPR21	PPR20] F	FFE3H	43H	R/W	
PIC3	PIF3	PMK3	PISM3	PCSE3	0	0	PPR31	PPR30] F	FFE4H	43H	R/W	
PIC4	PIF4	PMK4	PISM4	PCSE4	0	0	PPR41	PPR40] •	FFE5H	43H	R/W	
TMIC0	TMIF0	ТММК0	TMISM0	TMCSE0	0	0	TMPR01	TMPR00] •	FFE6H	43H	R/W	
CMIC03	CMIF03	СММК03	CMISM03	CMCSE03	0	0	CMPR031	CMPR030] •	FE7H	43H	R/W	
										××PR0	Specifies priority		
									0	0	Priority 0 (highes		
									0	1	Priority 1		
									1	0	Priority 2		
									1	1	Priority 3		
											-		
									××CSE	Contex	t switching enable	e flag	
									0	Service	ed by vectored inte	errupt	
									1	Service	ed by context swite	ching	
								1					
									××ISM	Macro	service enable fla	g	
									0	Service	ed by vectored inte	errupt	
									1	Service	ed by macro servio	ce	
									××МК	Enable	s/disables interru	ot request	
									0	Enable	Enables interrupt service		
									1	Disable	es interrupt service	e	
								1					
									××IF	Interru	ot request flag		
									0			request signal is not generated.	
									1	Interrupt	request signal is gene	rated and interrupt is requested.	

Figure 13-1. Format of Interrupt Control Registers (1/2)

Caution Bits 3 and 2 of the interrupt control register are fixed to "0" by hardware. Even if "1" is written to them, they remain "0".

Symbol	\bigcirc	6	5	4	3	2	1	0	. 4	Address	When reset	R/W
CMIC10	CMIF10	CMMK 10	CMISM 10	CMCS 10	E 0	0	CMPR 101	CMPR 100	'	FFE8H	43H	R/W
CMIC40	CMIF40	CMMK 40	CMISM 40	CMCS 40	E 0	0	CMPR 401	CMPR 400	'	FFE9H	43H	R/W
CMIC41	CMIF41	CMMK 41	CMISM 41	CMCSE	41 0	0	CMPR 411	CMPR 410] F	FEAH	43H	R/W
SERIC	SERIF	SERMK	SERISM	SERCS	SE 0	0	SERPR1	SERPRO] F	FEBH	43H	R/W
SRIC	SRIF	SRMK	SRISM	SRCS	E 0	0	SRPR1	SRPR0	1	FECH	43H	R/W
STIC	STIF	STMK	STISM	STCS	E 0	0	STPR1	STPR0] F	FEDH	43H	R/W
CSIIC	CSIIF	CSIMK	CSIISM	CSICS	E 0	0	CSIPR1	CSIPR0	1	FEEH	43H	R/W
ADIC	ADIF	ADMK	ADISM	ADCSI	E 0	0	ADPR1	ADPR0		FFEFH	43H	R/W
									××PR1	××PR0		
									0	0	Priority 0 (highes	st)
									0	1	Priority 1	
									1	0	Priority 2	
									1	1	Priority 3	
									××CSE	Contex	t switching enable	e flag
									0	Service	ed by vectored int	errupt
									1	Service	ed by context swit	ching
								I				
									××ISM	Macro	service enable fla	g
									0	Service	ed by vectored int	errupt
									1	Service	ed by macro servi	ce
									××MK	Enable	s/disables interru	pt request
									0	Enable	s interrupt service)
									1	Disable	es interrupt servic	e
								I		•		
									∞IF	Interru	ot request flag	
									0	No interr	upt request. Interrupt	request signal is not generated.
									1	Interrupt	request signal is gene	erated and interrupt is requested.

Figure 13-1. Format of Interrupt Control Registers (2/2)

Caution Bits 3 and 2 of the interrupt control register are fixed to "0" by hardware. Even if "1" is written to them, they remain "0".

The interrupt mask flag register (MK0) is comprised of interrupt mask flags corresponding to 16 types of maskable interrupt requests.

The MK0 register is a 16-bit register and can be manipulated not only in 16-bit units but also in 8-bit units as MK0L and MK0H. In addition, each bit of the MK0 register can be manipulated in 1-bit units by a bit manipulation instruction. Each interrupt mask flag controls enable/disable of the corresponding interrupt request.

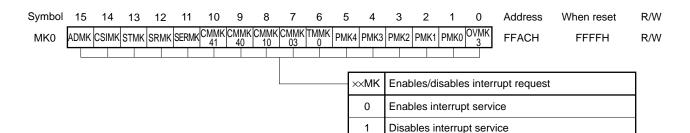
When an interrupt mask flag is set (1), acknowledgment of the corresponding interrupt request is disabled.

When an interrupt mask flag is reset (0), acknowledgment of the corresponding interrupt request is enabled as a vectored interrupt or macro service.

Each interrupt mask flag in the MK0 register is the same as the interrupt mask flag in the interrupt control register. The MK0 register is provided to perform mask-related control for all interrupts at a time.

RESET input sets each interrupt mask flag to "1" disabling all maskable interrupts.

The interrupt mask flag register format is shown in Figure 13-2.


Figure 13-2. Format of Interrupt Mask Flag Register (1/2)

(Byte access)

Symbol	7	6	5	4	3	2	1	0	A	ddress	When reset	R/W
MK0L	CMMK03	TMMK0	PMK4	PMK3	PMK2	PMK1	PMK0	OVMK3	F	FACH	FFH	R/W
МКОН	ADMK	CSIMK	STMK	SRMK	SERMK	CMMK41	CMMK40	CMMK10	F	FADH	FFH	R/W
									××MK	Enables/	disables interrup	ot request
									0	Enables	interrupt service	
									1	Disables	interrupt service	9

Figure 13-2. Format of Interrupt Mask Flag Register (2/2)

(Word access)

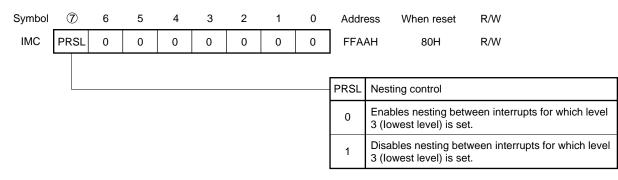
Bit Position Bit Name Interrupt Request Source Bit 0 OVMK3 Overflow of timer 3 (INTOV3) Bit 1 PMK0 INTP0 pin input/CC30 capture signal (INTP0) Coincidence of CC30 (INTCC30) Bit 2 PMK1 INTP1 pin input/CT30 capture signal (INTP1) Bit 3 PMK2 INTP2 pin input (INTP2) Bit 4 PMK3 INTP3 pin input/CC20 capture signal (INTP3) Coincidence of CC20 (INTCC20) Bit 5 PMK4 INTP4 pin input/CT31 capture signal (INTP4) Bit 6 TMMK0 Underflow of timer 0 (INTTM0) Bit 7 CMMK03 Coincidence of CM03 (INTCM03) Bit 8 CMMK10 Coincidence of CM10 (INTCM10) Bit 9 CMMK40 Coincidence of CM40 (INTCM40) CMMK41 Bit 10 Coincidence of CM41 (INTCM41) Bit 11 SERMK Serial error interrupt (INTSER) Bit 12 SRMK Serial reception end interrupt (INTSR) Bit 13 STMK Serial transmission end interrupt (INTST) Bit 14 CSIMK Serial transmission/reception end interrupt (INTCSI) Bit 15 ADMK A/D conversion end interrupt (INTAD)

Relations between each bit and interrupt source

13.3.3 Interrupt mode control register (IMC)

The interrupt mode control register (IMC) has a PRSL flag. The PRSL flag enables or disables nesting of maskable interrupts for which the lowest priority (level 3) is specified.

Interrupts having the same level if the level is 0, 1, or 2 cannot be nested regardless of the setting of the IMC register.


To manipulate the IMC register, enter the interrupt disable status (DI status) to prevent an error.

The register can be set or reset by software.

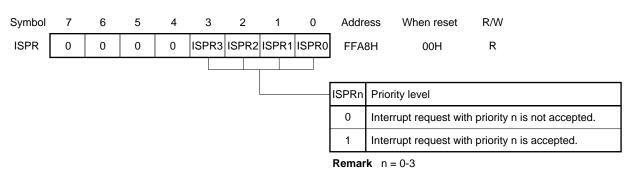
RESET input sets the PRSL flag to 1.

Figure 13-3 shows the format of the IMC register.

Figure 13-3. Format of Interrupt Mode Control Register

Caution Bits 6 to 0 of the IMC register are fixed to 0 by hardware. Even if "1" is written to them, they remain "0".

13.3.4 In-service priority register (ISPR)


The in-service priority register (ISPR) holds the priority level of the interrupt request being serviced. When the interrupt request is accepted, the bit corresponding to the priority level for the request is set to 1, and the level is held during service.

When the RETI or RETCS instruction is executed, the bit for an interrupt request with the highest priority among the bits that are set to 1 in the ISPR register is reset to 0 automatically by hardware.

The ISPR register contents are not changed by the execution of the RETB or RETCSB instruction.

RESET input sets the register to 00H.

Figure 13-4 shows the format of the ISPR register.

Figure 13-4. Format of In-service Priority Register

- Cautions 1. The ISPR register can be accessed for read only. Write to the register may cause an error.
 - 2. Bits 7 to 4 of the ISPR register are fixed to "0" by hardware. Even if "1" is written to them, they remain "0".

PSW is a register to retain the execution result of an instruction and the current state of interrupt requests. The IE flag that sets enable/disable of a maskable interrupt is mapped onto the lower 8 bits of PSW (PSWL).

PSWL can not only be read/written in 8-bit units but also can be manipulated by a bit manipulation instruction or a dedicated instruction (EI, DI).

When a vectored interrupt is acknowledged or the BRK instruction is executed, it is saved to the stack and the IE flag is reset (0). It is also saved to the stack by the PUSH PSW instruction. It is restored from the stack by the RETI, RETB or POP PSW instruction.

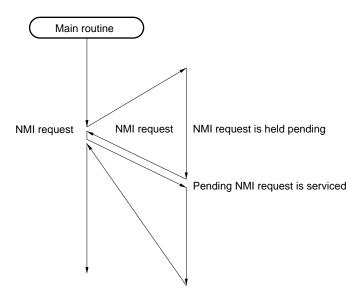
When the context switching or BRKCS instruction is executed, it is saved to a fixed area of the register bank and the IE flag is reset (0). It is restored from the fixed area in the register bank by the RETCS or RETCSB instructions.

A request for a non-maskable interrupt or macro service is acknowledged irrespective of the IE flag. In the case of a macro service, the IE flag contents are unchanged.

RESET input sets PSWL to 00H.

Figure 13-5. Program Status Word (PSWL) Format

13.4 Non-Maskable Interrupt Acknowledgment Operation


A non-maskable interrupt is acknowledged even in the interrupt disable state. A non-maskable interrupt is always acknowledged except when the non-maskable interrupt or a non-maskable interrupt with higher priority is being serviced.

The priority among non-maskable interrupts is set by the PRC bit of the watchdog timer mode register (WDM) (see **12.2 Watchdog Timer Mode Register (WDM)**).

A non-maskable interrupt request is acknowledged immediately except for the states described in **13.9 Cases** where Interrupt Request and Macro Service Are Temporarily Held Pending. After a non-maskable interrupt request is acknowledged, PSW and PC are saved to the stack in that order, the IE flag of PSW is reset (0), the vector table contents are loaded to PC, and a branch is made.

When a non-maskable interrupt is being serviced, a request for the same non-maskable interrupt as that being serviced or a request for a non-maskable interrupt with priority lower than that being serviced is held pending. The pending non-maskable interrupt is acknowledged after the service of the non-maskable interrupt is completed (after execution of the RETI instruction). However, if the same non-maskable interrupt request is generated twice or more while a non-maskable interrupt is being serviced, only one non-maskable interrupt is acknowledged after completion of the non-maskable interrupt service.

- Figure 13-6. Non-Maskable Interrupt Request Acknowledgment Operation (1/2)
- (a) When a new NMI request is generated while NMI interrupt is being serviced

(b) When watchdog timer interrupt request is generated while NMI interrupt is being serviced (when watchdog timer interrupt has higher priority (PRC bit of WDM register = 1))

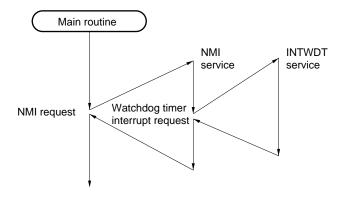





Figure 13-6. Non-Maskable Interrupt Request Acknowledgment Operation (2/2)

(c) When watchdog timer interrupt request is generated while NMI interrupt is being serviced (when NMI interrupt has higher priority (PRC bit of WDM register = 0))

(d) When two additional NMI requests are generated while NMI interrupt is being serviced

- Cautions 1. A macro service request is acknowledged and processed even in a non-maskable interrupt service routine. If it is desirable not to execute a macro service in the non-maskable interrupt service routine, manipulate the interrupt mask flag register during the non-maskable interrupt service routine to prevent any macro service from being generated.
 - 2. Be sure to use the RETI instruction for restoring from the non-maskable interrupt. Acknowledgment of subsequent interrupts otherwise would not be carried out normally by other instructions.

3. A non-maskable interrupt always is acknowledged except when another non-maskable interrupt is being serviced (unless a non-maskable interrupt request with higher priority is generated while a non-maskable interrupt with lower priority is being serviced) and except for a certain period after execution of a specific instruction shown in 13.9. Therefore, a nonmaskable interrupt is also acknowledged when the stack pointer value is undefined, especially after release of a reset. In this case, depending on the stack pointer value, the program counter (PC) or program status word (PSW) may be written to the address where writing to the special function register is disabled (see Table 3-4 in 3.2.3 Special function register (SFR)). This will cause the CPU to deadlock, or an unexpected signal to be output from the pin or PC or PSW to be written to the address where no RAM is mounted, in which case the program cannot return normally from the non-maskable interrupt service routine to the main routine and it goes into an inadvertent loop.

Therefore, be sure to program as follows after release of RESET.

CSEG AT 0 STRT

DW

STRT:

MOVW SP, #imm16

13.5 Maskable Interrupt Acknowledgment Operation

Acknowledgment of a maskable interrupt is enabled when the interrupt request flag is set (1) and the mask flag for the interrupt is reset (0). When servicing is carried out by a macro service, a maskable interrupt is acknowledged immediately and serviced by the macro service. In the case of a vectored interrupt or context switching, a maskable interrupt is acknowledged if interrupts are enabled (when the IE flag is set (1)) and if the interrupt priority is acknowledgeable-priority.

If multiple maskable interrupt requests are generated simultaneously, the one with high priority specified by the priority specification flag is acknowledged first, followed by others in the order of priority. If the same priority is specified to multiple maskable interrupts, acknowledgment of interrupt requests accords to the default priority.

The pending interrupts are acknowledged when acknowledgment capability is enabled.

The interrupt acknowledgment algorithm is shown in Figure 13-7.

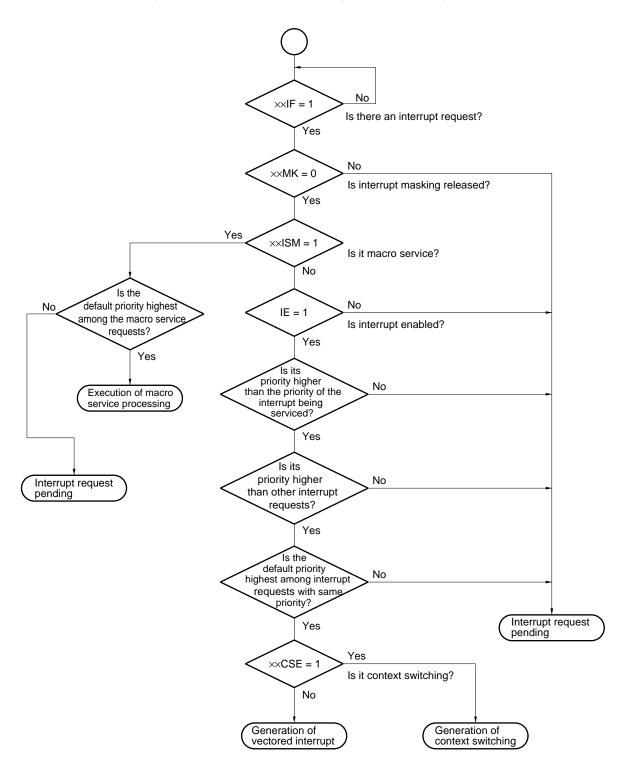
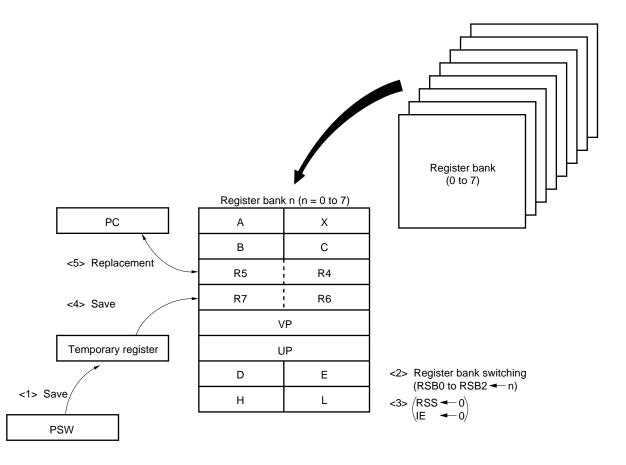


Figure 13-7. Interrupt Acknowledgment Service Algorithm

13.5.1 Vectored interrupt

If a maskable interrupt request by a vectored interrupt is acknowledged, PSW and PC are saved to the stack in that order, the IE flag is reset (0) (interrupt disabled state), and the bit of the ISPR register corresponding to the priority of the acknowledged interrupt is set (1). Furthermore, data in the vector table specified for each interrupt request is loaded to PC and a branch is made. The restoration from the vectored interrupt is carried out by the RETI instruction.


Caution If a maskable interrupt is acknowledged by a vectored interrupt, be sure to restore the program by the RETI instruction. Operation of subsequent interrupts otherwise would not be carried out normally by other instructions.

13.5.2 Context switching

Setting (1) the context switching enable flag of the interrupt control register (see **Table 13-4** and **Figure 13-1**) enables the context switching function to start.

If an interrupt request that is not masked in the EI state and whose context switching function is enabled is generated, a register bank specified by the lower 3 bits of the lower address (even address) among the corresponding vector table addresses is selected.

The vector address that has been stored beforehand in the selected register bank is transferred to PC and simultaneously the contents of PC and PSW at that time are saved to the register bank and a branch is made to the interrupt service routine.

Restoration from an interrupt using the context switching function is performed by executing the RETCS instruction or RETCSB instruction.

By executing the RETCS instruction the contents of the R4 and R5 registers and the contents of the R6 and R7 registers in the selected register bank are transferred to PC and PSW, respectively at this time. And at the same time, the 16-bit immediate data specified by the 2nd and 3rd op-codes of the RETCS instruction is stored in the R4 and R5 registers in the register bank.

Therefore, if the same register bank is selected again by the context switching function, the 16-bit immediate data specified by the 2nd and 3rd op-codes of the RETCS instruction becomes the branch address.

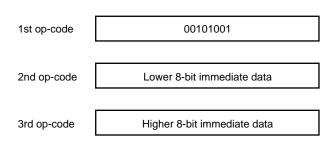
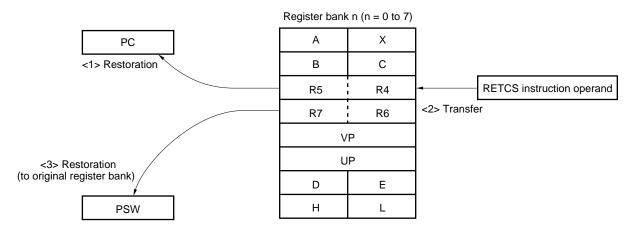



Figure 13-9. RETCS Instruction Format

When returning from the branch processing by executing the RETCS instruction, the bit set (1) in the in-service priority register (ISPR) which corresponds to the highest priority is reset (0).

Caution Be sure to use the RETCS instruction for returning from the interrupt by context switching. Operation of subsequent interrupts otherwise would not be carried out normally by other instructions.

Figure 13-10. Restoration Operation from Interrupt Using Context Switching Function by RETCS Instruction

The μ PD78366A handles multiplexed interrupt service by acknowledging an interrupt while servicing another interrupt. Multiplexed interrupt can be controlled by priority.

Priority control includes control by the default priority as well as programmable priority control by setting the priority specification flag. In priority control by the default priority, if multiple interrupts are generated simultaneously, interrupts are serviced according to the priority assigned to each interrupt request beforehand (default priority) (see **Table 13-2**). In programmable priority control, interrupt requests are classified into four levels by setting the priority specification flag. The interrupt requests to which multiplexed interrupt service is applicable are shown in Table 13-5.

When an interrupt is acknowledged, the IE flag is automatically reset (0). Therefore, when using multiplexed interrupt service, execute the EI instruction in the interrupt service routine, etc., to set (1) the IE flag so as to set the interrupt enabled state.

Priority of Interrupt being Acknowledged	ISPR Value	IE Flag of PSW	PRSL Flag of IMC Register	Acknowledgeable Maskable Interrupt
No interrupt being	00000000	0	×	All macro services only
acknowledged		1	×	All maskable interrupts only
3	00001000	0	×	All macro services only
		1	0	All maskable interrupts only
		1	1	 All macro services Maskable interrupts with priority specified to 0, 1 and 2
2	0 0 0 0 × 1 0 0	0	×	All macro services only
		1	×	 All macro services Maskable interrupts with priority specified to 0 and 1
1	0 0 0 0 ×× 1 0	0	×	All macro services only
		1	×	 All macro services Maskable interrupts with priority specified to 0
0	0 0 0 0 ××× 1	×	×	All macro services only

Table 13-5. Multiplexed Interrupt Service

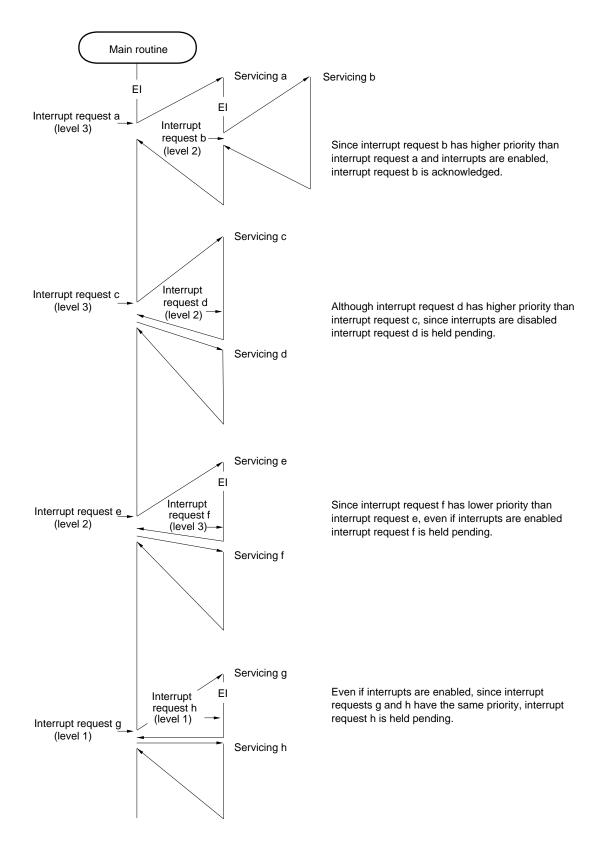
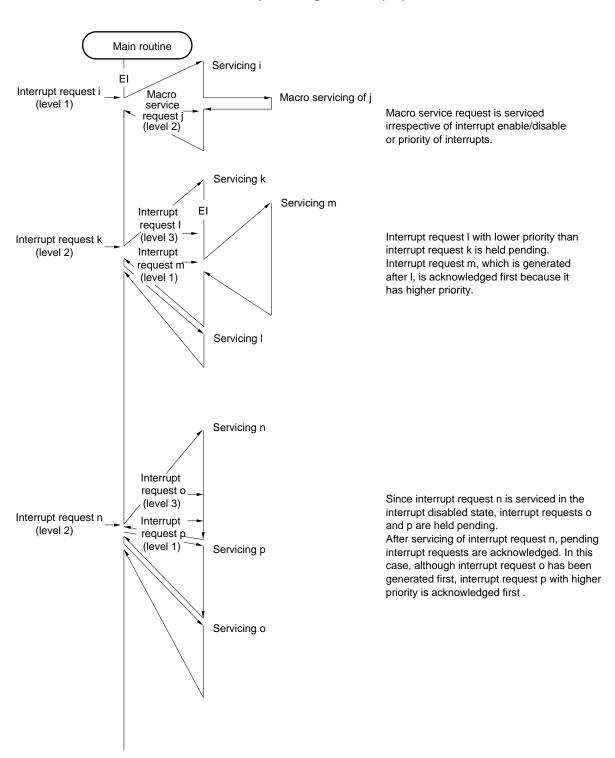
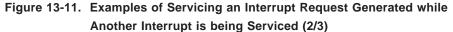
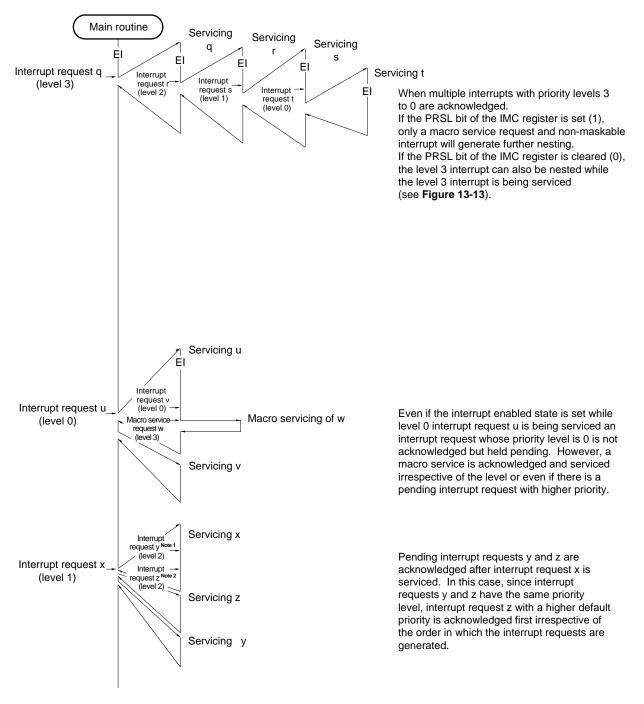
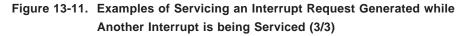
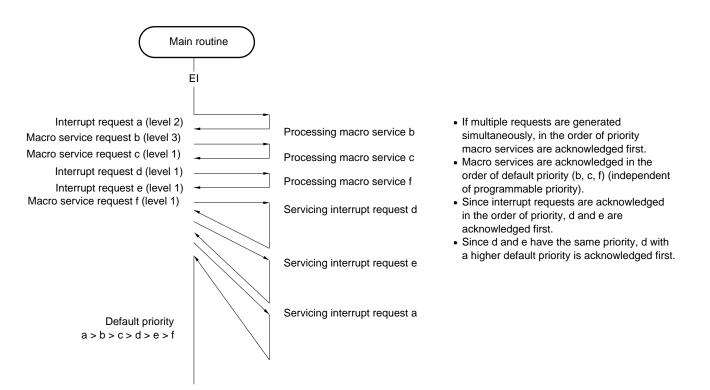
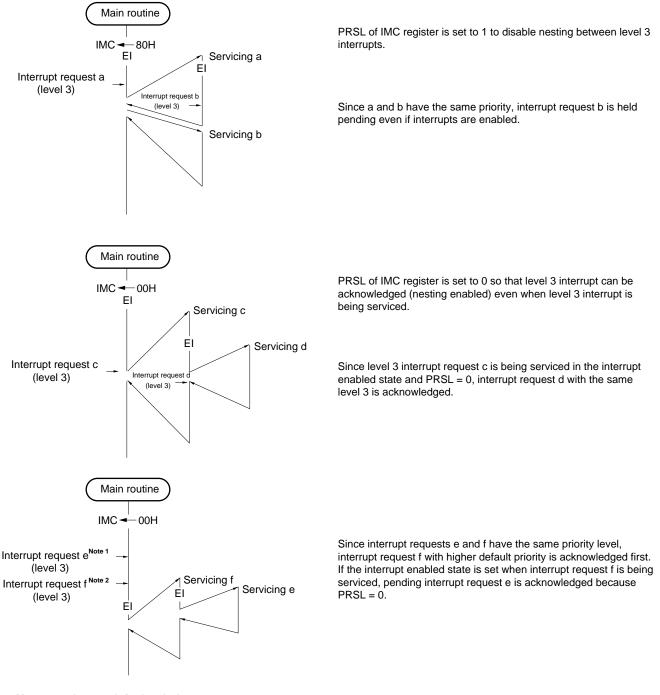






Figure 13-11. Examples of Servicing an Interrupt Request Generated while Another Interrupt is being Serviced (1/3)



- Notes 1. Lower default priority
 - 2. Higher default priority
- Remarks 1. a to z in the figures are fictitious names to distinguish interrupt requests and macro service requests.
 - 2. Higher/lower default priority attributes in the figures represent relative priority levels between two interrupt requests.



Remark a to f in the figure are fictitious names to distinguish interrupt requests and macro services.

Figure 13-13. Differences in Level 3 Interrupt Acknowledgment Operation by Setting IMC Register

- Notes 1. Lower default priority
 - 2. Higher default priority

Remarks 1. a to z in the figure are fictitious names to distinguish interrupt requests.

2. Higher/lower default priority levels in the figure represent relative priority levels between two interrupt requests.

13.6 Software Interrupt Acknowledgment Operation

Software interrupts are acknowledged by executing the BRK and BRKCS instructions. Software interrupts cannot be disabled.

13.6.1 Software interrupt acknowledgment operation by BRK instruction

When the BRK instruction is executed, PSW and PC are saved to the stack in that order, the IE flag is reset (0), the contents of the vector table (003EH, 003FH) are loaded to PC, and a branch is made.

To return from a software interrupt by the BRK instruction, the RETB instruction is used.

Caution Do not use the RETI instruction to return from a software interrupt executed by the BRK instruction.

13.6.2 Software interrupt (context switching) acknowledgment operation by BRKCS instruction

Executing the BRKCS instruction can activate the context switching function.

The register bank following context switching is specified by the lower 3 bits of immediate data (N_2 to N_0) of the 2nd op-code of the BRKCS instruction.

When the BRKCS instruction is executed, the program branches to the vector address stored beforehand in this register bank and saves the contents of PC and PSW at that time to the register bank.

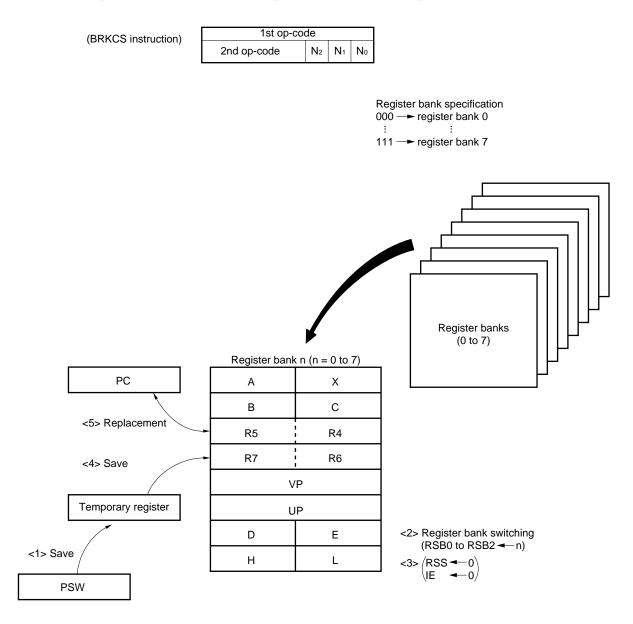


Figure 13-14. Context Switching Operation by Executing BRKCS Instruction

Restoration from the software interrupt executed by the BRKCS instruction is performed by executing the RETCSB instruction.

By executing the RETCSB instruction, the contents of the R4 and R5 registers and those of the R6 and R7 registers in the register bank selected at this time are transferred to PC and PSW, respectively. At the same time, the 16bit immediate data specified by the 3rd and 4th op-codes of the RETCSB instruction are stored in the R4 and R5 registers in the register bank.

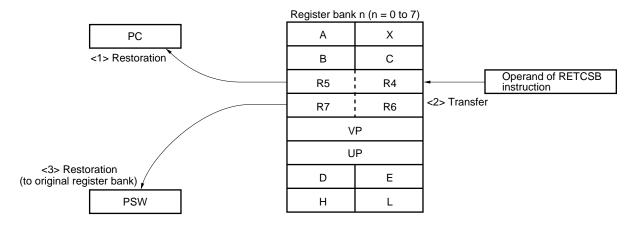

Therefore, if the same register bank is selected again by the context switching function, the 16-bit immediate data specified by the 3rd and 4th op-codes of the RETCSB instruction become the branch address.

Figure 13-15. RETCSB Instruction Format

1st op-code	00001001
2nd op-code	11100000
3rd op-code	Lower 8-bit immediate data
4th op-code	Higher 8-bit immediate data

Caution If the context switching function is activated by executing the BRKCS instruction, resetting (0) of the ISPR register bits by execution of the RETCS instruction may destroy the interrupt nesting control.

Be sure to use the RETCSB instruction to restore from the service activated by the BRKCS instruction.

Figure 13-16. Restoration Operation from Software Interrupt Executed by BRKCS Instruction (Operation of RETCSB Instruction)

13.7 Op-Code Trap Interrupt Acknowledgment Operation

An op-code trap interrupt is generated when the data obtained by inverting all bits of the 3rd byte of the operands of MOV STBC, #byte instruction, and MOV WDM, #byte instruction, does not match with the 4th byte of the operands. An op-code trap interrupt cannot be disabled.

When an op-code trap interrupt is generated, PSW and the lead address of the instruction in which the error occurred are saved to the stack, the IE flag is reset (0), the value of the vector table is loaded to PC, and a branch is made.

Since the address saved to the stack is the lead address of the instruction in which the error occurred, simply executing the RETB instruction at the end of the op-code trap interrupt service routine may not prevent the generation of another op-code trap interrupt.

13.8 Macro Service Function

13.8.1 Outline of macro service

Macro service is an interrupt service method. In a normal interrupt, the program counter (PC) and program status word (PSW) are saved and the lead address of the interrupt service program is loaded to PC. A macro service performs processing (mainly data transfer) differing from this processing. Therefore, it can respond to interrupt requests faster. Furthermore, it can perform transfer processing faster than a program, thus shortening the servicing time.

Also, since it generates a vectored interrupt after servicing a specified number of times, vectored interrupt also can be simplified.

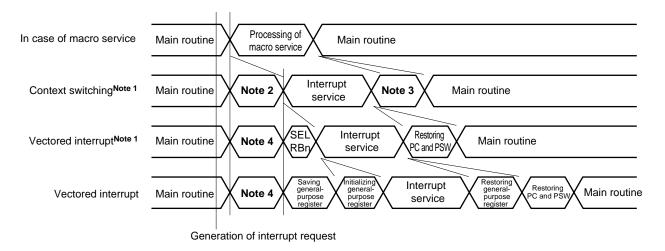


Figure 13-17. Differences between Vectored Interrupt and Macro Service Processing

- Notes 1. When register bank switching is used and the initial value has been preset in the register
 - 2. Switching register bank and saving PC and PSW by context switching
 - 3. Restoring register bank, PC and PSW by context switching
 - 4. Saving PC and PSW to stack, loading vector address to PC

Default Priority	Interrupt Request	Interrupt Generation Source	Generation Unit	Macro Service Control Word Address
0	INTOV3	Timer 3 overflow	RPU	FE06H
1	INTP0/INTCC30	INTP0 pin input/CC30 match signal	External/RPU	FE08H
2	INTP1	INTP1 pin input	External	FE0AH
3	INTP2	INTP2 pin input		FE0CH
4	INTP3/INTCC20	INTP3 pin input/CC20 match signal	External/RPU	FE0EH
5	INTP4	INTP4 pin input	External	FE10H
6	INTTM0	Timer 0 underflow	RPU	FE12H
7	INTCM03	CM03 match signal		FE14H
8	INTCM10	CM10 match signal		FE16H
9	INTCM40	CM40 match signal	FE18H	
10	INTCM41	CM41 match signal		FE1AH
11	INTSER	Generation of serial reception error	Asynchronous	FE1CH
12	INTSR	Serial reception end	serial interface FE1EH FE20H	
13	INTST	Serial transmission end		
14	INTCSI	Serial transmission/reception end Clocked serial interface		FE22H
15	INTAD	A/D conversion end	A/D converter	FE24H

Remark The default priority is a fixed value. It indicates priority when multiple macro service requests are generated simultaneously.

The macro service operation includes the following five modes.

(1) Counter mode: EVTCNT

Every time an interrupt request is generated, the macro service counter (MSC) is incremented (+1) or decremented (-1) and a vectored interrupt request is generated as MSC becomes 00H. This mode can be used to scale the number of interrupt request occurrences, etc.

(2) Block transfer mode: BLKTRS

Every time an interrupt request is generated, 1-byte or 1-word data is transferred between the special function register (SFR) specified by the SFR pointer (SFRP) and the buffer, and when the specified number of data transfers is performed, a vectored interrupt request is generated.

The buffer for the transfer is limited to the main RAM of FE00H to FEFFH.

As this mode has a simple specification method, it is used for small-capacity, high-speed data transfer.

(3) Block transfer mode (with memory pointer): BLKTRS-P

As is the case with the block transfer mode, every time an interrupt request is generated, 1-byte or 1-word data is transferred between the SFR specified by SFRP and the buffer, and when the specified number of data transfers is performed, a vectored interrupt request is generated.

The buffer for the transfer is specified by the memory pointer (MEM.PTR) (memory is an entire space of 64K bytes).

This is a general-purpose type of block transfer mode, and is used for large-volume transfers.

(4) Data difference mode: DTADIF

Every time an interrupt request is generated, the difference between the current value of SFR specified by SFRP and the "immediately preceding value" stored in memory is written to the buffer, and this current value is set as the "immediately preceding value".

When the specified number of data transfers is performed, a vectored interrupt request is generated. The buffer for the transfer is limited to the main RAM of FE00H to FEFFH.

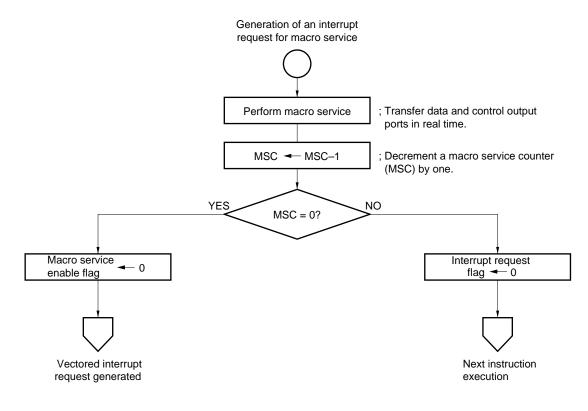
This mode is used to measure the cycle and the pulse width of input pulses by the capture register.

(5) Data difference mode (with memory pointer): DTADIF-P

As is the case with the data difference mode, every time an interrupt request is generated, the difference between the current value of SFR specified by SFRP and the "immediately preceding value" stored in memory is written to the buffer and this current value is set as the "immediately preceding value".

When the specified number of data transfers is performed, a vectored interrupt request is generated.

The buffer for the transfer is specified by the memory pointer (MEM.PTR) (memory is an entire space of 64K bytes).


This is a general-purpose type of data difference mode and is used for large-volume data.

The macro service function is used to transfer data on a hardware basis between the special function register area and memory space in response to an interrupt request.

When a macro service request is generated, the CPU temporarily stops program execution, and one- or two-byte data is transferred automatically between special function registers (SFRs) and memory. When data transfer ends, the interrupt request flag is reset to 0, then the CPU restarts program execution. After data transfer is performed as many times as the value set in the macro service counter (MSC), a vectored interrupt request is generated.

Unlike other interrupt service that is accompanied by the activation of an interrupt service program, macro service is performed automatically. This means that macro service does not require a series of the operations of making a branch to an interrupt service routine, saving and restoring register contents, and returning from the interrupt service routine. It is therefore possible to improve the CPU service time and to reduce the number of program steps.

During macro service, the general-purpose registers and instruction queue in the CPU hold the data present immediately before macro service is activated.

Interrupt requests for which macro service is specified are not influenced by the status of the IE flag in the program status word (PSW). Macro service can be performed even in the interrupt disable status or while the interrupt service program is being executed. Macro service is disabled only when the corresponding bit of the interrupt mask flag register (MK0) is set to 1.

If more than one macro service request is present, the service order is determined by the default priority. Instruction execution is suspended until all of these macro service requests are serviced.

The μ PD78366A supports macro service for all included interrupt requests.

Macro service performs the following two basic operations:

- Data transfer from memory to a special function register (SFR)
- · Data transfer from a special function register (SFR) to memory

13.8.3 Operation at completion of macro service

A macro service performs processing the number of times specified during execution of other programs. When processing is performed the specified number of times (when the macro service counter (MSC) becomes 0), the macro service is completed.

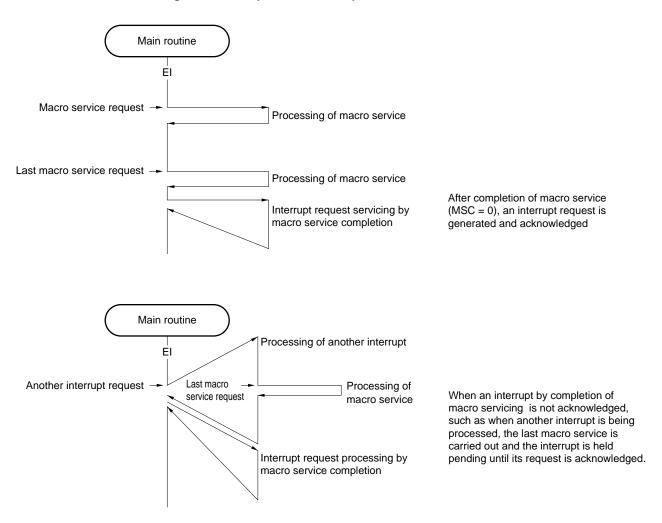
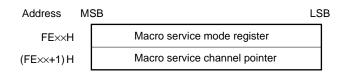


Figure 13-19. Operation at Completion of Macro Service

Caution If data is transmitted by UART, using the macro service, a vectored interrupt request is generated two times (refer to 9.8 Transmitting/Receiving Data Using Macro Service).


13.8.4 Macro service control register

(1) Macro service control word

A macro service control word is made up of a macro service mode register which controls the macro service function and a macro service channel pointer. These control words are located in addresses FE06H to FE25H in the main RAM area (refer to **Figure 13-21**).

Figure 13-20 shows the basic structure of a macro service control word.

Figure 13-20. Basic Structure of Macro Service Control Word

The macro service mode register sets the macro service processing mode, and the macro service channel pointer specifies the address of a macro service channel.

Before macro service can be performed, values must be loaded into the macro service mode register and channel pointer corresponding to the interrupt request for which macro service processing can be specified.

Address		Source
FE06H	Mode register	
FE07H	Channel pointer	} INTOV3
FE08H	Mode register	
FE09H	Channel pointer	} INTP0/INTCC30
FE0AH	Mode register	
FE0BH	Channel pointer	f INTP1
FE0CH	Mode register	
FE0DH	Channel pointer	} INTP2
FE0EH	Mode register	INTP3/INTCC20
FE0FH	Channel pointer	
FE10H	Mode register	INTP4
FE11H	Channel pointer	$\int IINTP4$
FE12H	Mode register	} INTTMO
FE13H	Channel pointer	
FE14H	Mode register	
FE15H	Channel pointer	
FE16H	Mode register	INTCM10
FE17H	Channel pointer	J INTCM10
FE18H	Mode register	INTCM40
FE19H	Channel pointer	
FE1AH	Mode register	INTCM41
FE1BH	Channel pointer	
FE1CH	Mode register	INTSER
FE1DH	Channel pointer	f INTSER
FE1EH	Mode register	
FE1FH	Channel pointer	
FE20H	Mode register	
FE21H	Channel pointer	
FE22H	Mode register	
FE23H	Channel pointer	
FE24H	Mode register	
FE25H	Channel pointer	} INTAD

Figure 13-21. Format of Macro Service Control Word

(2) Macro service mode register

The macro service mode registers are 8-bit registers that specify macro service operation. They are mapped as part of the macro service control words in the main RAM area (refer to **Figure 13-20**).

13.8.5 Macro service mode

Operation of the macro service is specified by setting a macro service mode register. The macro service mode is determined by the low-order six bits of the macro service mode register. The modes are classified into two groups: Group 0 and group 1.

- Group 0: Control word only; no channel provided
- Group 1: Control word and channel

The high-order two bits of the macro service mode register function as a subcommand (refer to Table 13-7).

13.8.6 Macro service operation

There are five modes of macro service operation.

Table 13-7. Classification of Macro Service Modes

Group	Macro Service Mode Register	Function	
Group 0	CC000001	Counter mode	EVTCNT
Group 1	CC010011	Block transfer mode	BLKTRS
	CC010100	Block transfer mode (with memory pointer)	BLKTRS-P
	10011001	Data difference mode	DTADIF
	10011010	Data difference mode (with memory pointer)	DTADIF-P

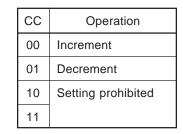
C in the most significant bit (MSB) of a macro service mode register indicates the length of the data to be operated on except for EVTCNT.

- C = 0: Byte data
- C = 1: Word data

For BLKTRS and BLKTRS-P, byte buffer representation is always used. If word specification is made, byte buffers must be replaced by word buffers.

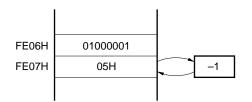
Caution Word buffers must be placed at even addresses.

(1) Counter mode: EVTCNT


[Macro service control word]

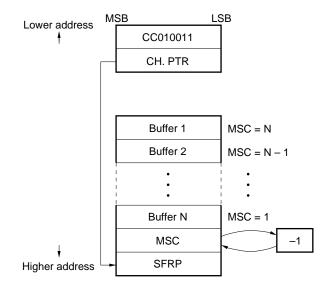
MSB			В
Lower address	CC000001		
Higher address	MSC		

[Operation]


Every time the macro service is generated, the macro service counter (MSC) is incremented or decremented by one. When the MSC reaches 00H (overflow), a vectored interrupt request is generated.

In the counter mode, the macro service function operates as a counter to divide the number of interrupt requests.

Example Dividing the number of INTOV3 interrupt requests by five using macro service


[Application]

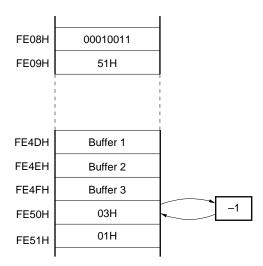
Event counter, or measurement of the number of capture times

(2) Block transfer mode: BLKTRS

[Macro service control word]

[Operation]

The channel pointer (CH.PTR) specifies the SFR pointer (SFRP). A buffer is addressed by the channel pointer (CH.PTR) and macro service counter (MSC).

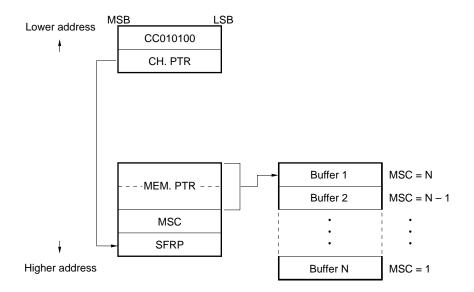

Data is transferred between the SFR pointed to by the SFRP and buffers. Data transfer starts from buffer 1.

Every time transfer terminates, the MSC is decremented by one. When the MSC reaches 0, a vectored interrupt request is generated.

Table 13-9.	Specification	of Block Transfer	Mode Operation
-------------	---------------	-------------------	----------------

CC	Operation	Transferred Data	Buffer Address
00	$Buffer \gets SFR$	Byte	(CH.PTR content) – (MSC content) – 1
01	$SFR \gets buffer$		
10	$Buffer \gets SFR$	Word	(CH.PTR content) – (MSC content \times 2) – 1
11	$SFR \gets buffer$		

Example Transferring the contents of port 1 (FF01H) to buffers in response to the INTP0 interrupt request


[Application]

This mode can be used to transmit/receive data with serial interface.

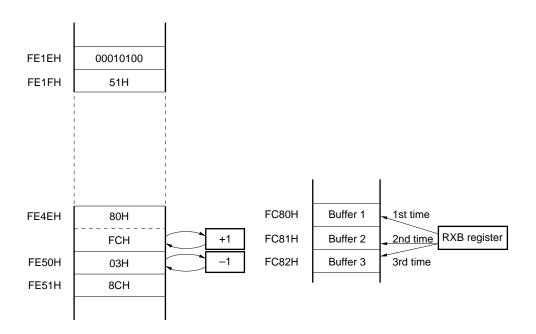
Caution Word buffers must be placed at even addresses.

(3) Block transfer mode (with a memory pointer): BLKTRS-P

[Macro service control word]

[Operation]

The channel pointer (CH.PTR) specifies the SFR pointer (SFRP). Data is transferred between the SFR pointed to by the SFRP and the buffer addressed by MEM.PTR. Data transfer starts from buffer 1. When byte data transfer terminates, the MEM.PTR is incremented by one. When word data transfer terminates, the MEM.PTR is incremented by two.


Every time transfer terminates, the macro service counter (MSC) is decremented by one. When the MSC reaches 0, a vectored interrupt request is generated.

СС	Operation	Transferred Data
00	$Buffer \gets SFR$	Byte
01	$SFR \gets buffer$	Byte
10	$Buffer \gets SFR$	Word
11	$SFR \gets buffer$	Word

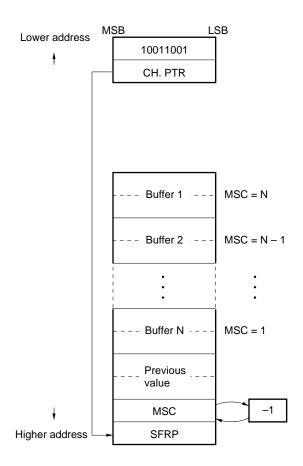
Table 13-10.	Specification of Block	Transfer Mode (with a	a memory pointer) Operation
--------------	------------------------	-----------------------	-----------------------------

Example Transferring the contents of serial receive buffer RXB (FF8CH) to buffer in response to INTSR interrupt request

Phase-out/Discontinued

[Application]

This mode can be used to transmit/receive data with serial interface.


Cautions 1. Word buffers must be placed at even addresses.

2. MEM.PTR must be placed at an even address.

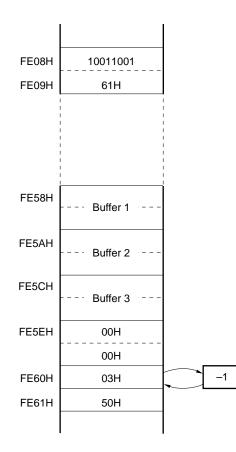
(4) Data difference mode: DTADIF

[Macro service control word]

[Operation]

The channel pointer (CH.PTR) specifies the SFR pointer (SFRP). A buffer is addressed by the channel pointer (CH.PTR) and macro service counter (MSC).

The difference between the current value of the SFR (especially capture register) pointed to by the SFRP and the previous value is written to the buffer. The current value of the SFR is then regarded as the new "previous value." Data write starts from buffer 1.


Every time data is written, the MSC is decremented by one. When the MSC reaches 0, a vectored interrupt request is generated.

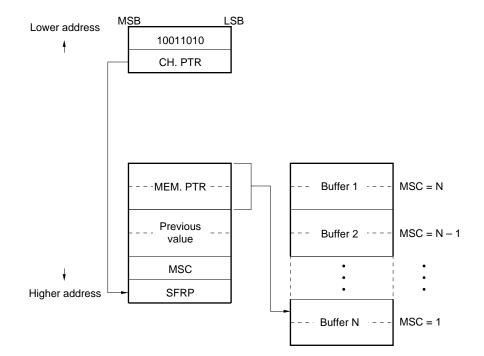
The buffer address is obtained as follows:

(Buffer address) = (value of CH.PTR) – (value of MSC \times 2) – 3

Example The difference between the current value and previous value of capture/compare register CC30 (FF50H) is written into a buffer with the INTP0 input signal used as the trigger signal. The period of the INTP0 input signal is then measured using the difference by the vectored interrupt service routine.

Phase-out/Discontinued

[Application]


This mode can be used to measure periods or pulse widths using a capture register.

Cautions 1. Don't set 00H in the MSC.

- 2. Buffers must be placed at even addresses.
- 3. The "previous value" must be initialized to dummy data in advance.
- 4. The SFRP can specify 16-bit SFRs only.

(5) Data difference mode (with a memory pointer): DTADIF-P

[Macro service control word]

[Operation]

The channel pointer (CH.PTR) specifies the SFR pointer (SFRP). A buffer is addressed by the MEM.PTR and macro service counter (MSC).

The difference between the current value of the SFR (especially capture register) specified by the SFRP and the previous value is written to the buffer. The current value of the SFR is then regarded as the new "previous value." Data write starts from buffer 1.

Every time data is written, the MSC is decremented by one. When the MSC reaches 0, a vectored interrupt request is generated.

The MEM.PTR remains unchanged.

The buffer address is obtained as follows:

(Buffer address) = (value of MEM.PTR) – (value of MSC \times 2) + 2

[Application]

This mode is used to measure periods and pulse widths using a capture register.

Cautions 1. Don't set 00H in the MSC.

- 2. Buffers must be placed at even addresses.
- 3. The MEM.PTR must be placed at an even address.
- 4. The "previous value" must be initialized to dummy data in advance.
- 5. The SFRP can specify 16-bit SFRs only.

13.9 Cases where Interrupt Request and Macro Service are Temporarily Held Pending

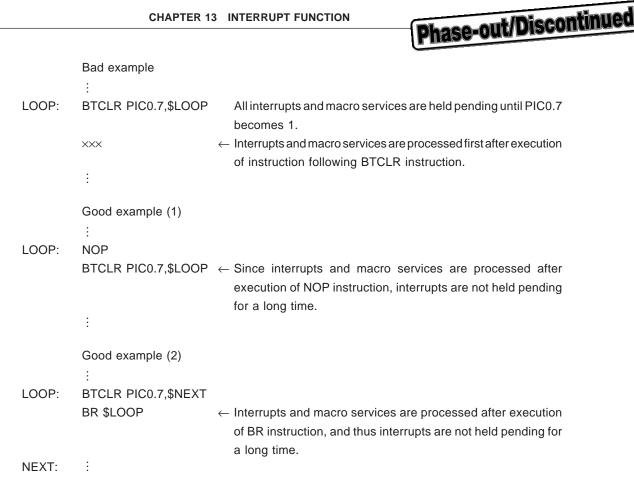
(1) Instructions that do not acknowledge interrupt requests

When the following instructions are executed, acknowledgment of interrupts and processing of macro services are temporarily held pending. However, software interrupts are not held pending.

MOV1	PSWL.bit, CY	RETB	
MOV1	PSWH.bit, CY	RETI	
SET1	PSWL.bit	RETCS	!addr16
CLR1	PSWL.bit	RETCSB	!addr16
NOT1	PSWL.bit	POP	PSW
BFSET	PSWL.bit, \$addr16	POPU	post
BFSET	PSWH.bit, \$addr16	EI	
BTCLR	PSWL.bit, \$addr16	DI	
BTCLR	PSWH.bit, \$addr16		
BRK			
BRKCS	RBn		

(2) Instructions that sometimes do not acknowledge interrupt requests

The instructions shown in Table 13-11 are mainly instructions that perform writing to various control registers (INTCreg) for interrupt service. When these instructions are executed, acknowledgment of interrupts and processing of macro services may be temporarily held pending depending on the CPU condition.


Remark INTCreg: Registers MK0H, MK0L, ISPR, IMC and interrupt control registers (OVIC3, PIC0 to PIC4, TMIC0, CMIC03, CMIC10, CMIC40, CMIC41, SERIC, SRIC, STIC, CSIIC, ADIC)

Instruction Group	Mnemonic	Operand	Condition
8-bit data transfer	MOV	INTCreg, #byte	
		INTCreg, A	
		mem, A	When mem is set to INTCreg address
		[saddrp], A	When saddrp is set to INTCreg address
		!addr16, A	When addr16 is set to INTCreg address
		PSWL, #byte	
		PSWH, #byte	
		PSWL, A	
		PSWH, A	
	ХСН	A, mem	When mem is set to INTCreg address
		A, [saddrp]	When saddrp is set to INTCreg address
16-bit data transfer	MOVW	INTCreg, #word	
		INTCreg, AX	
		!INTCreg, rp1	
		mem, AX	When mem is set to INTCreg address
	XCHW	AX, INTCreg	
		AX, mem	When mem is set to INTCreg address
8-bit operation	ALU	INTCreg, #byte	ALU: ADD, ADDC, SUB, SUBC, AND, OR, XOR
		mem, A	When mem is set to INTCreg address ALU: ADD, ADDC, SUB, SUBC, AND, OR, XOR
16-bit operation	ALUW	INTCreg, #word	ALUW: ADDW, SUBW
Bit manipulation	MOV1	INTCreg. bit, CY	
	BIT	INTCreg. bit	BIT: SET1, CLR1, NOT1
Stack manipulation	POP	INTCreg	
Conditional branch	BTCLR BFSET	INTCreg. bit, \$addr16 INTCreg. bit, \$addr16	
String	STRING	[DE+], A [DE–], A [DE+], [HL+] [DE–], [HL–]	When INTCreg address is set to destination (DE register) STRING: MOVM, MOVBK, XCHM, XCHBK, CMPME, CMPBKE, CMPMNE, CMPBKNE, CMPMC, CMPBKC, CMPMNC, CMPBKNC

Table 13-11. List of Instructions that Sometimes do not Acknowledge Interrupt Requests

Caution 1. When executing polling to the interrupt-related registers by using the BTCLR instruction, etc., ensure that the branch destination of the BTCLR instruction, etc. is not the instruction itself. If a program that branches to the instruction itself is written, all interrupts and macro services will be held pending until a condition is established under which the program does not branch by that instruction.

Caution 2. When a group of the above-mentioned instructions is consecutively used for the same reason and interrupts and macro services you should not hold pending for a long time, insert an NOP instruction, etc. during the interim to create timing for interrupts or macro services to be acknowledged.

13.10 Instructions whose Execution Is Temporarily Suspended by Interrupts and Macro Services

Execution of the following instructions is temporarily suspended by an acknowledgeable interrupt request or macro service request in order to acknowledge it. The suspended instructions are restarted after completion of the interrupt service or the macro service.

<Instructions suspended temporarily> MOVM, XCHM, MOVBK, XCHBK CMPME, CMPMNE, CMPMC, CMPMNC CMPBKE, CMPBKNE, CMPBKC, CMPBKNC SACW

CHAPTER 14 STANDBY FUNCTION

Phase-out/Discontinued

14.1 Function Overview

The μ PD78366A has a standby function to reduce power consumption of the system. With the standby function, two modes are available:

- HALT mode: In this mode, the CPU operation clock is stopped. Intermittent operation, when combined with the normal operation mode, can reduce overall system power consumption.
- STOP mode: In this mode, the oscillator is stopped to stop the entire system. Since only leakage currents may flow in this mode, system power consumption can be minimized.

Each mode is set by software.

Figure 14-1 is the transition diagram of the standby modes (STOP and HALT modes).

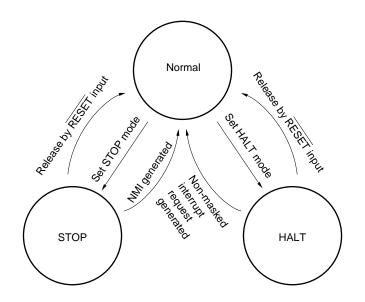
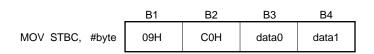


Figure 14-1. Transition Diagram of Standby Modes



14.2 Standby Control Register (STBC)

The standby control register (STBC) is an 8-bit register which controls the standby mode.

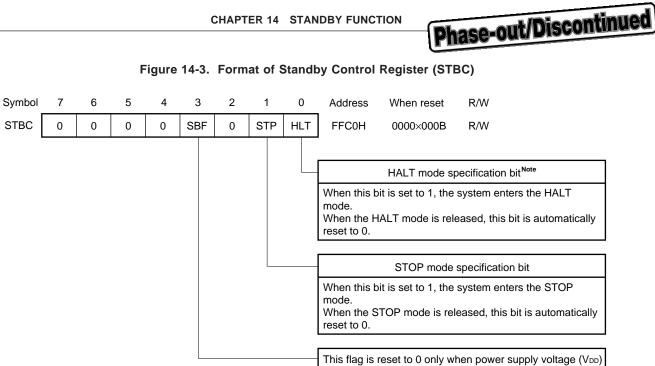
As the contents of the STBC register can only be changed by a dedicated instruction, it will not be changed by a program crash. The dedicated instruction MOV STBC, #byte is shown below.

Figure 14-2. STBC Register Write Instruction

This instruction has a data check function to prevent the application system stopping unintentionally by a program crash. Data can be written in the STBC register only when the last two bytes of the instruction are the complement of each other, i.e., when $\overline{data0} = data1$.

If they are not complementary, the STBC register is not written to and an op-code trap interrupt occurs. In this case, the address of the instruction which causes the trap is saved in the stack area as return address. Therefore, the program can be restarted from the return address by checking the trap address or executing the RETB instruction. (refer to **13.1.4 Op-code trap interrupt**, **13.7 Op-Code Trap Interrupt Acknowledgment Operation**)

However, if the cause of an op-code trap cannot be removed due to a hardware error, the RETB instruction may cause an infinite loop.


The SBF bit of the STBC register is a standby flag. It is used to determine whether to release the STOP mode by the RESET input. This bit is reset to 0 only when the supply voltage (VDD) is supplied (power-on reset). It cannot be reset by software. It is not affected simply by supplying the RESET signal.

The contents of the STBC register can be read by the data transfer instruction at any time.

RESET input sets the STBC register to 0000×000B.

Figure 14-3 shows the format of the STBC register.

Caution After the SBF flag is read, set it to 1. Software can then discriminate a power-on reset from release of the STOP or HALT mode.

- is supplied being increased from 0 V.
- **Note** If the HALT mode is released by macro service activation, this bit is reset to 0 when a vectored interrupt request is issued at the end of the macro service.

Caution Do not set the STP bit of the standby control register (STBC) to 1 when using the external clock.

14.3 Operation

14.3.1 HALT mode

(1) Setting the HALT mode and operation states in the HALT mode

In the HALT mode, the CPU clock is stopped.

The total power consumption of the system can be reduced by setting the system to the HALT mode during CPU dead time. The system is put in the HALT state by setting the HLT bit in the STBC register to 1. In the HALT mode, the CPU clock and program execution are stopped. Nevertheless, the contents of all registers and internal RAM immediately before the HALT mode is set are retained. On-chip peripheral hardware can operate. Hardware functions enter the states shown in Table 14-1.

Caution If the interrupt request flag (\times ×IF) is set to 1 and the interrupt is not masked (\times ×MK = 0), the system does not enter the HALT mode. When macro service processing (\times ×ISM = 1) is performed, the system enters the HALT mode after the macro service terminates.

Function		Operation State	
Clock generator		Operating	
Internal system clock			
CPU		Stopped	
I/O line		Retained	
On-chip peripheral hardware		Operating	
Internal data		Internal data such as the CPU status, data, and contents of the internal RAM is retained as it was before setting the HALT mode.	
When external devices are expanded	AD0-AD7	High-impedance	
	A8-A15		
	ASTB	0	
	RD	1	
	WR		

Table 14-1. Operation States in HALT Mode

(2) Releasing the HALT mode

The HALT mode can be released by a non-maskable interrupt request, non-masked maskable interrupt request, non-masked macro service request, or **RESET** input.

(a) Releasing the HALT mode by an interrupt request

The HALT mode is released by a non-maskable interrupt request, a maskable interrupt request which is not masked, or macro service request, regardless of the priority of the request. If the HALT mode is set by the interrupt service routine, however, the following operation takes place (refer to **Table 14-2**).

- (i) When an interrupt request, having higher priority than the interrupt request being serviced, is issued, the HALT mode is released, and this new interrupt request is accepted. Such interrupt requests include a non-maskable interrupt request. When the PRSL bit of an interrupt mode control register (IMC) is set to 0, however, the system only accepts multiple interrupt requests having the lowest priority.
- (ii) When an interrupt request, having the same priority as or lower priority than the interrupt request being serviced, is issued, the HALT mode is only released. In this case, the new interrupt request is not accepted, and the next instruction is executed. The interrupt request is retained.

Priority of Interrupt Service	Priority and State of Generated Interrupts	
Routines in HALT Mode	Accepted	Retained
0	-	0-3
1	0	1-3
2	0, 1	2, 3
3	0-2, 3 (PRSL = 0)	3 (PRSL = 1)

Table 14-2. Acceptance of Interrupts Generated during Interrupt Servicing

Table 14-3. Operations after HALT Mode Is Released by an Interrupt Request

Releasing Request	EI State	DI State
Non-maskable interrupt	Branches to the vector address.	
Maskable interrupt	Branches to the vector address or executes the next instruction.	Executes the next instruction.

Table 14-4. Releasing HALT Mode by a Macro Service Request

Conditions for Vectored	HALT Mode	Operations after Releasing HALT Mode	
Interrupt at End of Macro Service		EI State	DI State
Satisfied	Released	Branches to vector address or executes next instruction. ^{Note}	Executes next instruction
Not satisfied	System returns to HALT mode.	-	-

Note If the HALT mode is set by an interrupt service routine then an interrupt request which is not masked and has higher priority is generated, processing branches to the vector address.

(b) Releasing the HALT mode by $\overline{\text{RESET}}$ input

Same as the normal reset operation except that data in the internal RAM before setting the HALT mode is retained.

14.3.2 STOP mode

(1) Setting the STOP mode and operation states in the STOP mode

In the STOP mode, the oscillator is stopped.

Power consumption can be substantially reduced when the entire application system stops. The system is placed in the STOP state by setting the STP bit in the STBC register to 1.

In the STOP mode, generation of the internal clock is stopped when the oscillator stops operating. At the same time, the watchdog timer for reserving the oscillation stabilization time is automatically cleared by the hardware. Although program execution is stopped, the contents of all registers and internal RAM immediately before the STOP mode is set are retained. Hardware functions enter the states shown in Table 14-5.

Function		Operation State
Clock generator		Stopped
Internal system clock		
СРИ		
I/O line		Retained when VDD is within the operable range
On-chip peripheral hardware		Stopped
Internal data		Internal data such as the CPU status, data, and contents of the internal RAM is retained as it was before setting the STOP mode when VDD is within the operating range ^{Note} .
When external devices are expanded	AD0-AD7	High-impedance
	A8-A15	
	ASTB	0
	RD	1
	WR	

Table 14-5. Operation States in STOP Mode

Note Only the contents of internal RAM are retained by keeping the data retention voltage when V_{DD} is lower than the minimum operable voltage.

(2) Releasing the STOP mode

The STOP mode can be released by NMI or RESET input.

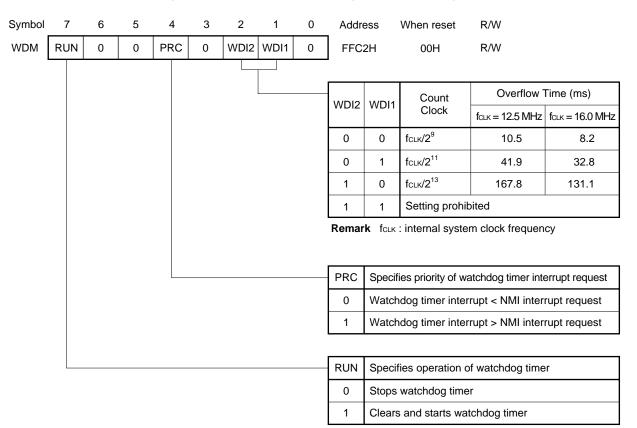
The operation after release of the STOP mode depends on the source of the STOP mode release and the condition under which the STOP mode was set.

(a) Releasing the STOP mode by NMI input

The oscillator restarts when a valid edge is applied to the NMI input. While the NMI input is active, the watchdog timer remains cleared and does not start counting. When the NMI input level returns to the inactive level, the watchdog timer starts counting. When the watchdog timer overflows, generation of the internal system clock is started.

Therefore, the μ PD78366A is in the wait state during the following period:

(Active level duration after detecting a valid edge in NMI input)


(Watchdog timer overflow time)

The overflow time for the watchdog timer is specified using the WDM register.

The operation after release of the STOP mode depends on the condition under which the STOP mode was set and the priority of watchdog timer interrupt requests and NMI interrupt requests.

Priority is specified for a watchdog timer input interrupt or NMI interrupt using the WDM register (refer to **Figure 14-4**).

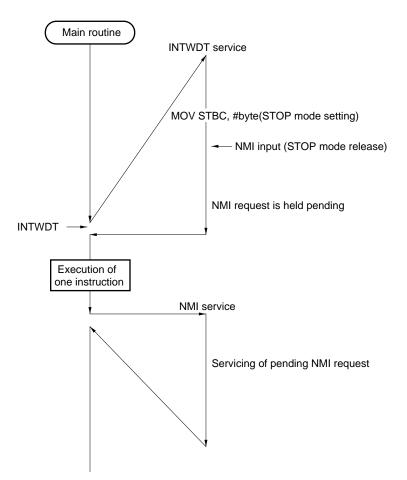
Figure 14-4. Format of Watchdog Timer Mode Register

- Cautions 1. Data can be written into the WDM register only by a dedicated instruction (MOV WDM, #byte).
 - 2. The priority of interrupt requests should be set at initialization of the application system, such as initialization of the stack pointer, and should not be dynamically changed during execution of the program.
 - 3. Once it is set to 1, the RUN bit cannot be reset to 0 by software.
 - 4. The count clock is not reset even when the watchdog timer is cleared by setting the RUN bit to 1.

5. If a watchdog timer interrupt and NMI interrupt are generated simultaneously with PRC
 = 1 (INTWDT > NMI), after the first 1 instruction of the NMI interrupt service routine is executed, the watchdog timer interrupt service routine is executed.

Therefore, when used with PRC = 1 setting, the first instruction of the NMI interrupt service routine should be an NOP instruction.

- 6. Bits 6, 5 and 0 of the WDM register are fixed to "0" by hardware. Even if "1" is written to them, they remain "0".
- 7. Be sure to write 0 to bit 3 of the WDM register.


(i) When set to STOP mode in watchdog timer interrupt service routine

<1> When priority is watchdog timer interrupt request > NMI interrupt request (PRC bit of WDM register = 1)

After the STOP mode is released by NMI input, the program starts execution of the instruction following the instruction by which the STOP mode was set (NMI interrupt request is held pending).

When the RETI instruction is executed during the watchdog timer interrupt service routine, the program restores from the watchdog timer interrupt service routine. Then, if one instruction is executed, the program branches to the NMI interrupt service routine.

Figure 14-5. Operation after Release of STOP Mode (1)

<2> When priority is watchdog timer interrupt request < NMI interrupt request (PRC bit of WDM register = 0)</p>

After the STOP mode is released by NMI input, the program branches to the NMI interrupt service routine immediately.

Phase-out/Discontinued

In the NMI interrupt service routine, if the RETI instruction is executed, the program returns to the instruction immediately following that by which the STOP mode was set in the watchdog timer interrupt service routine.

Then, if the RETI instruction is executed, the program restores from the watchdog timer interrupt service routine.

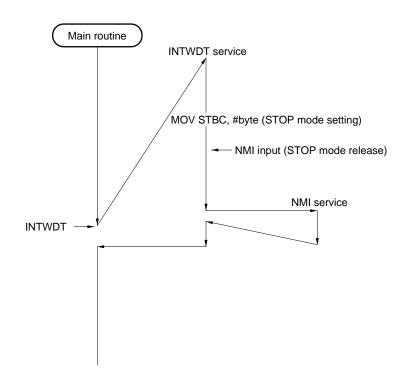
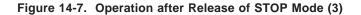
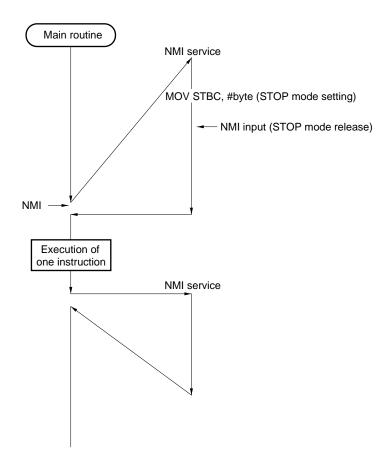


Figure 14-6. Operation after Release of STOP Mode (2)

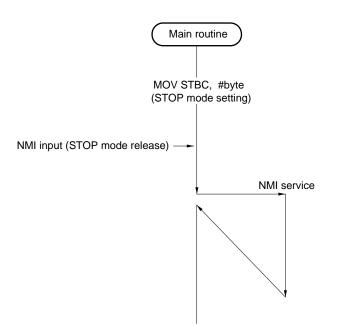



(ii) When set to STOP mode in NMI interrupt service routine

After the STOP mode is released by NMI input, the program starts execution of the instruction following that by which the STOP mode was set.

When the RETI instruction is executed during the NMI interrupt service routine, the program restores from the NMI interrupt service routine.

Then, if one instruction is executed, the program branches to the NMI interrupt service routine again.



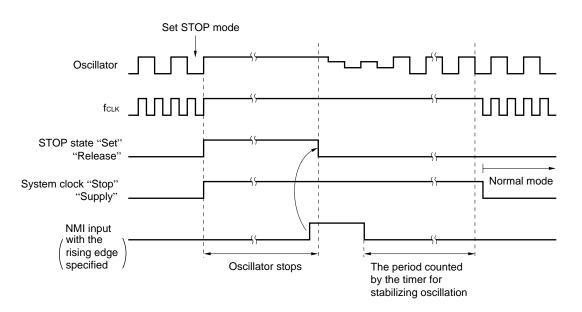
(iii) When set to STOP mode other than during non-maskable interrupt service routine

After the STOP mode is released by NMI input, the program immediately branches to the NMI interrupt service routine.

When the RETI instruction is executed during the NMI interrupt service routine, the program restores to the instruction following that by which the STOP mode was set.

Release Source	Condition when STOP Mode was Set	PRC ^{Note}	Operation after Release
RESET input	-	×	Starts operation from reset address.
NMI input	INTWDT routine	1	Starts execution of instruction following MOV STBC, #byte instruction (NMI interrupt request is held pending). After completion of watchdog timer interrupt service that set STOP mode, NMI interrupt request is acknowledged (see Figure 14-5).
		0	Acknowledges NMI interrupt request (see Figure 14-6).
	NMI routine	×	Starts execution of instruction following MOV STBC, #byte instruction (NMI interrupt request is held pending). After completion of NMI interrupt service that set STOP mode, NMI interrupt request is acknowledged again (see Figure 14-7).
	Other than non-maskable interrupt routine	×	Acknowledges NMI interrupt request (see Figure 14-8).

Table 14-6. Release of STOP Mode and Operation after Release


Note Priority specification flag in watchdog timer mode register (WDM)

PRC = 1 ... Watchdog timer interrupt request > NMI interrupt request

PRC = 0 ... Watchdog timer interrupt request < NMI interrupt request

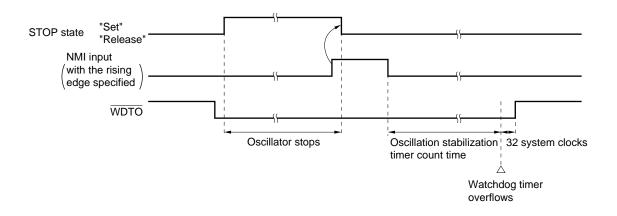

 $PRC = \times \dots$ don't care

Figure 14-9. Releasing STOP Mode by NMI Input (1)

If INTWDT occurs immediately before the STOP mode is set, and the STOP mode is set with the WDTO pin low, the STOP mode is released by NMI input as shown in Figure 14-10.

(b) Releasing by RESET input

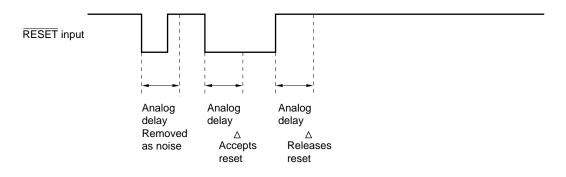
The oscillator restarts at the same time RESET input level is changed from high to low to put the system in the reset state.

Apply the $\overline{\text{RESET}}$ active period for the oscillation stabilization time. When $\overline{\text{RESET}}$ goes high, operation starts from the address stored in the reset vector.

372

Phase-out/Discontinued

CHAPTER 15 RESET FUNCTION


Phase-out/Discontinued

When the signal applied to the RESET pin is low, the system is reset, and each hardware component is placed in the status indicated in Table 15-1.

When the signal applied to the RESET input port goes high, the reset status is released, and program execution starts. The contents of registers must be initialized in the program as required. In particular, the number of cycles specified in the programmable wait control register (PWC) must be changed as required. After resetting, the initial setting in the PWC register is effective: Three wait cycles are added to the bus cycle, and the fetch cycle mode is normal (refer to Figure 16-7. Format of Programmable Wait Control Register).

The RESET pin contains a noise eliminator based on analog delays to prevent abnormal operation due to noise.

- Cautions 1. When RESET is active, all pins except WDTO, AVREF, AVDD, AVSS, VDD, VSS, X1, and X2 go into the high-impedance state.
 - 2. When RAM is expanded externally, attach a pull-up resistor to the P90/RD pin and P91/WR pin. Otherwise, these pins may go into the high-impedance state, and the contents of the external RAM may be lost. Or signal collision on the address/data bus may damage the input/ output circuit.

Figure 15-1. Acceptance of RESET Signal

In reset operation at power-on, a time for stabilized operation between power-on to reset acceptance is required as shown in Figure 15-2.

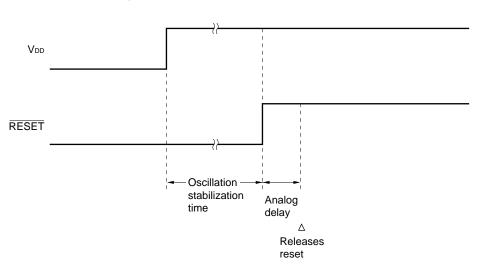


Figure 15-2. Reset Operation at Power-On

		Ha	Irdware	Status after Reset		
Control register	register Program counte			Contents of reset vector table (0000H, 0001H) are set		
	Stack pointer (SP)		Undefined ^{Note}		
	Program status	word (PSW)	0000H		
	CPU control wo	ord (CC	W)	00H		
Internal RAM	Data memory			Undefined ^{Note}		
	General-purpos	e regis	ter (R0-R15)			
Port	Output latch (P	0, P1, I	P3-P5, P8, P9)	Undefined		
	Mode register	(PM0	, PM1, PM5)	FFH		
		(PM3))	×111 1111B		
		(PM8))	××11 1111B		
		(PM9))	xxxx 1111B		
	Mode control re	00H				
	(PMC3)		×000 0000B			
			(PMC8)	××00 0000B		
	Pull-up resistor	option	00H			
	Port read contr	ol regis	ter (PRDC)			
Real-time output	Real-time output	ut port i	register (RTP)	Undefined		
port (RTP)	Real-time output	ut port i	mode register (RTPM)	00H		
Real-time pulse	Timer register (Timer register (TM0-TM4)				
unit (RPU)	Timer unit mod					
	Timer control re					
	Compare regist	er (CM	00-CM03, CM10, CM40, CM41)	Undefined		
	Capture registe	r (CT2	D, CT30, CT31)			
	Capture/compa	re regis	ster (CC20, CC30)			
	Reload register	Reload register (DTIME)				
	Buffer register					
	Timer out regis	ter (TO	UT)	××01 0101B		
	Sampling contr	ol regis	ter (SMPC0, SMPC1)	00H		
A/D converter	A/D converter r	00H				
	A/D conversion	result	register (ADCR0-ADCR7, ADCR0H-ADCR7H)	Undefined		

Table 15-1. Hardware Statuses after Reset (1/2)

Note When STOP mode is released by RESET input, the value immediately before the STOP mode is set is retained.

	Hardware)	Status after Reset
Serial interface	Asynchronous serial interface	e mode register (ASIM)	80H
	Asynchronous serial interface	e status register (ASIS)	00H
	Clocked serial interface mode	e register (CSIM)	
	Serial bus interface control re	egister (SBIC)	
	Serial I/O shift register (SIO)		Undefined
	Serial receive buffer (RXB)		
	Serial transmit shift register (TXS)	
	Baud rate generator compare	e register (BRG)	
	Baud rate generator control r	00H	
PWM output	PWM control register (PWMC	C0, PWMC1)	00H
function	PWM buffer register (PWM0,	PWM0L, PWM1, PWM1L)	Undefined
Watchdog timer	Watchdog timer mode registe	00H	
Interrupt function	External interrupt mode regis	ter (INTM0, INTM1)	00H
	Interrupt mode control registe	er (IMC)	80H
	Interrupt mask flag register	(MKOL, MKOH)	FFH
		(MK0)	FFFFH
	Interrupt control register (OV CM STI	43H	
	In-service priority register (ISPR)		
External expansion	Memory expansion mode reg	ister (MM)	Note
function	Programmable wait control re	egister (PWC)	COAAH
CPU control	Standby control register (STE	3C)	0000 × 000B

Table 15-1. Hardware Statuses after Reset (2/2)

Note The condition of the MM register differs after a reset depending on the product.

μPD78363A ... 60H μPD78365A, 78366A ... 20H μPD78368A, 78P368A ... 00H

CHAPTER 16 BUS INTERFACE FUNCTION

The bus interface function is to control external memory (ROM, RAM) and I/O devices.

16.1 External Device Expansion Function for µPD78366A

For the μ PD78366A, external devices (data memory, program memory, and peripheral devices) can be expanded in the external memory area (8000H-F6FFH)^{Note}.

When an external device is connected, port 4 (P40 to P47) is used as the multiplexed address/data bus (AD0 to AD7) and port 5 (P50 to P57) is used as the address bus (A8 to A15) by setting the memory expansion mode register (MM). The \overline{RD} , \overline{WR} , and ASTB signals are used to access the external device.

Table 16-1 lists the pins used for access to an external device and indicates how to assign functions to the pins.

 Note
 μPD78363A
 : Address 6000H to FBFFH

 μPD78368A, 78P368A :
 Address C000H to F6FFH

Table 16-1. Assigning Functions to Pins (µPD78366A)

Memory Expansion Mode Register	Pin Function					
MM0-MM2	P40-P47 P50-P57 P90					
Port mode	General-purpose port					
Expansion mode	AD0-AD7 Set to A8-A15 according to the expanded memory size		RD	WR		

The number of port 5 pins which operate as the address bus can be changed according to the size of memory expanded externally. Pins not used as the address bus can be used as general-purpose I/O ports (refer to **Table 16-2**).

Table 16-2.	Operation	of Port 5	6 (expansion	mode)
-------------	-----------	-----------	--------------	-------

P50	P51	P52	P53	P54	P55	P56	P57	External address space
General-purpose I/O ports								Within 256 bytes
A8	A9	A10	A11					Within 4K bytes
				A12	A12 A13			Within 16K bytes
						A14	A15	Full expansion mode ^{Note}

Note 32K bytes or fewer in case of the μ PD78363A

When an external device reference instruction is executed in the 256-, 4K-, or 16K-byte expansion mode, the system operates as follows. Figures 16-1 through 16-4 show the memory maps for expansion mode.

(1) 256-byte expansion mode

Masks the high-order 8 bits of the 16 external reference address bits and outputs 00H-FFH as address information from pins AD0-AD7.

(2) 4K-byte expansion mode

Masks the high-order 4 bits among 16 external reference address bits and outputs 000H-FFFH as address information from pins A8-A11 and AD0-AD7.

(3) 16K-byte expansion mode

Masks the high-order 2 bits of the 16 external reference address bits and output 0000H-3FFFH as address information from pins A8-A13 and AD0-AD7.

As described above, the 8, 4, and 2 high-order bits of the 16-bit address are masked in the 256-, 4K-, and 16Kbyte expansion modes, respectively.

External extension is basically carried out for the area starting from the address following internal ROM to the address preceding internal RAM. However, if the μ PD78363A (internal ROM: 24K bytes) is set to the 16K-byte expansion mode, note that the program counter (PC) differs from the address actually output from pins A13 to A8 and AD7 to AD0 as follows.

PC	A13 to A8, AD7 to AD0
6000H	2000H
÷	÷
7FFFH	3FFFH
8000H	0000H
÷	:
9FFFH	1FFFH

If the external ROM addresses are used as consecutive addresses, set the external ROM area to addresses 4000H to 7FFFH. In this case, since the internal ROM and external ROM addresses are not consecutive addresses, it is necessary to use a jump instruction to move the program between each area. The same applies if the external ROM area is set to addresses 8000H to BFFFH.

					Ex	pansion mo	de		
	Single-chip mode (Not expanded)		256-byte expansion		4K-byte expansion		16K-byte expansion		Full expansion
FFFFH FF00H	SFR area		SFR area		SFR area		SFR area		SFR area
FEFFH F700H F6FFH	Internal RAM		Internal RAM		Internal RAM		Internal RAM		Internal RAM
ĉ		FFH 00H	External device (256)	FFFH 000H	External device (4K)	3FFFH 0000H	External device (16K)	î	External device (Full expansion)
C000H BFFFH 2 0000H	· Internal ROM →	 ĵ	- Internal ROM آ	 2	✓ Internal ROM		 ۲ Internal ROM	 î	ົInternal ROM ີ

★ Figure 16-1. Memory Map in Expansion Mode (µPD78368A)

Figure 16-2. Memory Map in Expansion Mode (μ PD78366A)

						de	
	Single-chip mode (Not expanded)	256-byte expansion		4K-byte expansion		16K-byte expansion	Full
FFFFH FF00H	SFR area	SFR area		SFR area		SFR area	SFR area
EFFH 700H 6FFH	Internal RAM	Internal RAM		Internal RAM		Internal RAM	Internal RAM
آ 8000H		FFH 00H External device (256)	FFFH 000H	External device (4K)	3FFFH 0000H	External device (16K)	External device (Full expansion)
7FFFH ೧ 0000H	FInternal ROM	ີ Internal ROM ີ	÷	ິ Internal ROM ີ	y 2) Internal ROM	∫ ິ Internal ROM

Expansion mode

Phase-out/Discontinued

					Exp	pansion mo	de	
	Single-chip mode (Not expanded)		256-byte expansion		4K-byte expansion		16K-byte expansion	32K-byte expansion
FFFFH FF00H	SFR area		SFR area		SFR area		SFR area	SFR area
FEFFH FC00H FBFFH	Internal RAM		Internal RAM		Internal RAM		Internal RAM	Internal RAM
6000H 5FFFH	َ ب Internal ROM کَ	FFH 00H	External device (256)	FFFH 000H	External device (4K)	3FFFH 0000H	External device (16K)	External device (32K) ~
0000H		Î						

Figure 16-3. Memory Map in Expansion Mode (µPD78363A)

Single-chip mode 256-byte 4K-byte 16K-byte Full expansion (Not expanded) expansion expansion expansion FFFFH SFR area SFR area SFR area SFR area SFR area FF00H FEFFH Internal RAM Internal RAM Internal RAM Internal RAM Internal RAM F700H F6FFH 3FFFH FFH External device (256) FFFH 00H External External device device (4K) External (16K) 000H device (Full expansion) 0000H C000H BFFFH ☆Internal PROM 추 ኛ Internal PROM ኛ ᅷ Internal PROM주 ີ Internal PROM ີ ት Internal PROM ት

Figure 16-4. Memory Map in Expansion Mode (µPD78P368A)

Expansion mode

Caution The internal memory (ROM, RAM) capacity of the µPD78P368A can be changed by setting the memory expansion mode register (MM) (see Figure 16-5. Format of Memory Expansion Mode Register).

Phase-out/Discontinued

0000H

The µPD78365A does not contain ROM. External devices (data memory, program memory, and peripheral devices) can be expanded in the area (0000H-F6FFH) other than internal RAM.

When an external device is connected, port 4 (P40-P47) is used as the multiplexed address/data bus (AD0-AD7), and port 5 (P50-P57) is used as the address bus (A8-A15). To access the external device, RD, WR, and ASTB signals are used.

Be sure to fix both the MODE0 and MODE1 pins to the high level.

In the μ PD78365A, specification in the MM0 to MM2 bits of the memory expansion mode register (MM) is invalidated, and ports 4 and 5 always function as AD0-AD7 and A8-A15 pins.

Unlike the μ PD78366A, the memory of the μ PD78365 cannot be expanded in steps.

Table 16-3 shows the pins used to access an external device, and how to set the function of each pin.

MODEO	MODE0 MODE1	Pin Function					
NODEO		P40-P47	P50-P57	P90	P91		
Н	Н	AD0-AD7	A8-A15	RD	\overline{WR}		

Table 16-3. Setting Pin Function (µPD78365A)

Figure 16-5.	Memory	Map of	μ ΡD78365A
--------------	--------	--------	-------------------

FFFFH FF00H	SFR area
FEFFH F700H F6FFH	Internal RAM
	External device
0000H	

16.3 Control Registers

16.3.1 Memory expansion mode register

The memory expansion mode register (MM) is an 8-bit register which controls the address bus, address/data bus, and signals such as \overline{RD} and \overline{WR} when memory or I/O is externally expanded.

The bits MM0 to MM2 are valid only when MODE0, 1 = LL and used to specify the functions of pins of Port 4 and Port 5.

When the expansion mode is specified using bits MM0 to MM2, pins P90 and P91 function as the \overline{RD} and \overline{WR} pins automatically.

The MM register value after RESET input depends on the product as follows.

- μPD78363A ... 60H
- μPD78365A, 78366A ... 20H
- μPD78368A, 78P368A ... 00H

Figure16-6 shows the format of the MM register.

1K bytes

768 bytes

Symbol	7	6	5	4	3	2	1	0	Add	ress	Whe	en reset	R/V	V		
MM	0	MM6	MM5	0	0	MM2	MM1	MM0	FFC	24H	N	lote 1	R/V	V		
									MM2	MM1	MM0	Opera P50-P	tion mod 57 pins	les of the P40-P47 and		
									0	0	0	Port	Single	P40-47 : Input port P50-57 : Port mode		
									0	0	1	mode	chip mode	P40-47 : Output port P50-57 : Port mode		
									0	1	0	Setting	g prohibit	ed		
									0	1	1		256 bytes	P40-47 : Expansion mode P50-57 : Port mode		
									1	0	0	Expansion mode	4K bytes	P40-47 : P50-53 : Expansion mode P54-57 : Port mode		
									1	0	1		16K bytes	P40-47 : P50-55 : Expansion mode P56-57 : Port mode		
									1	1	1 0		Setting prohibited			
									1	1	1	Expansion mode	Full Expansion	P40-47, P50-57 : Expansion mode		
									μ PD 7	'8P368	3A onl	у				
									MM6	MM5	Specifies in µPD78P368		iternal m 8A ^{Note 2}	emory capacity of the		
												ernal RC	OM size	Internal RAM size		
									0	0	48k	48K bytes		— 2K bytes		
									0	1	324	C bytes				

Figure 16-6. Format of Memory Expansion Mode Register

Notes 1. The MM register value after reset depends on the product.

μPD78363A ... 60H μPD78365A, 78366A ... 20H μPD78368A, 78P368A ... 00H

2. Function to change the internal memory capacity of the μ PD78P368A. With the μ PD78363A, 78365A, 78366A, 78366A, it is fixed at the state on reset.

1

1

0

1

24K bytes

- Cautions 1. Bits 3, 4, and 7 of the MM register are fixed to "0" by hardware. Even if "1" is written to them, they remain "0".
 - 2. Invalid combinations are specified as "Setting prohibited" in Figure 16-5. Never write these combinations.

16.3.2 Programmable wait control register

The programmable wait control register (PWC) is a 16-bit register for programmable wait control to the bus cycle (internal^{Note} and external memory access) generated by the μ PD78366A. This register enables low-speed memory and peripheral devices to be connected externally.

The PWC register cannot be accessed in 8-bit mode. Use a 16-bit data transfer instruction to access the PWC register.

Figure 16-7 shows the format of the PWC register.

- Note The internal memory refers to the internal ROM area (only for the μ PD78363A, 78366A, 78368A, and 78P368A)
- Cautions 1. The number of cycles shown in Figure 16-7 is when no address wait cycle is appended. If an address wait cycle is appended, one cycle must be added.
 - 2. Instruction fetch from and data access to the peripheral RAM area (F700H-FDFFH, FC00H-FDFFH for μ PD78363A) are enabled, but wait specification by setting the PWC register is invalid. The peripheral RAM area operates with a 16-bit bus. Instruction fetch becomes high-speed fetch.
 - 3. Instructions cannot be fetched from the main RAM area (FE00H-FEFFH). Wait specification by setting the PWC register when data is accessed is invalid. The main RAM area is accessed in a 16-bit units. (For bus cycles, special two bus cycles are started.)
 - 4. To make a word access to the main RAM area (containing stack handling), only even addresses can be specified in operands.
 - 5. The internal ROM area operates with 16-bit bus regardless how the PWC register is set. Wait specification can be set in the PWC register.
 - 6. To access external memory, do not specify high-speed fetch.
 - 7. External SFR area (FFD0H-FFDFH) wait specification is set in the PWC7 and PWC6 bits.

ymbol 15 14 13 12 11 10 9 8			Address			2/W	
			FFC6H		COAAH R	2/W	
				m	umber of clocks emory space (0	specified for th 000H-3FFFH)	е
		PWC1	PWC0	Wait cycle	Data access cycle	Fetch cycle mode	Fetch cycle
		0	0	0	3		3
		0	1	1	4	Normal fetch	4
		1	0	2	5		5
		1	1	0	3	High-speed fetch	2
				m	umber of clocks emory space (4		e
		PWC3	PWC2	Wait cycle	Data access cycle	Fetch cycle mode	Fetch cycle
		0	0	0	3		3
		0	1	1	4	Normal fetch	4
		1	0	2	5		5
		1	1	0	3	High-speed fetch	2
					umber of clocks emory space (8	specified for th 000H-BFFFH)	e
		PWC5	PWC4	Wait cycle	Data access cycle	Fetch cycle mode	Fetch cycle
		0	0	0	3		3
		0	1	1	4	Normal fetch	4
		1	0	2	5		5
		1	1	0	3	High-speed fetch	2
		PWC7	PWC6	Numb space Wait	er of clocks spe (C000H-F6FFF Data access	cified for the me I, FFD0H-FFDF Fetch	emory H) Fetch
				cycle	cycle	cycle mode	cycle
		0	0	0	3	Normal	3
		0	1 0	1 2	4	fetch	4
		1	1	2	3	High-speed fetch	5 2
				A	ddress wait con	trol	1
		AW0	Addro	(v	alid address : 0	000H-7FFFH)	
		1			is added.		
		AW1			it control	FH, FFD0H-FF	
		0	,		is not added.		
		1	Addre	ss wait	is added.		

Figure 16-7. Format of Programmable Wait Control Register

- Cautions 1. To access the internal memory in the high-speed fetch mode, set 0 in the AW0 and AW1 bits of the PWC register.
 - 2. Bits 8-13 of the PWC register are fixed to "0" by hardware. Even if "1" is written to them, they remain "0".

[MEMO]

CHAPTER 17 PROGRAMMING FOR μ PD78P368A

The μ PD78P368A contains an electrically writable PROM of 49152 \times 8 bits.

Use the MODE0/VPP, and MODE1 pins to set the μ PD78P368A to the PROM programming mode when programming on the PROM.

The μ PD78P368A provides programming characteristics which are compatible with the μ PD27C1001A.

Function	Normal Operating Mode	Programming Mode
Address input	P00-P07, P21, P20, P80-P85, P30	A0-A16
Data input	P40-P47	D0-D7
Program pulse	ASTB	PGM
Chip enable	P91	CE
Output enable	P90	OE
Program voltage	MODE0/Vpp	
Mode control	MODE1	

Table 17-1. Pin Functions in Programming Mode

When the MODE0/VPP pin is set to H, and the MODE1 pin is set to L, the μ PD78P368A enters the programming write/verify mode. This mode varies to each operating mode shown in Table 17-2 according to how to set the \overline{CE} , \overline{OE} , and \overline{PGM} pins.

Setting the μ PD78P368A to the read mode enables it to read the contents of PROM. Process the unused pins by referring to **1.4 Pin Configuration (Top View)**.

Mode	MODE1	CE	ŌĒ	PGM	VPP/MODE0	Vdd	D0-D7
Page data latch	L	Н	L	Н	+12.5 V	+6.5 V	Data input
Page program		Н	Н	L			High impedance
Byte program		L	н	L			Data input
Program verify		L	L	Н			Data output
Program inhibit		×	L	L			High impedance
		×	Н	Н			
Read		L	L	Н	+5 V	+5 V	Data output
Output disable]	L	н	×			High impedance
Standby		Н	×	×			High impedance

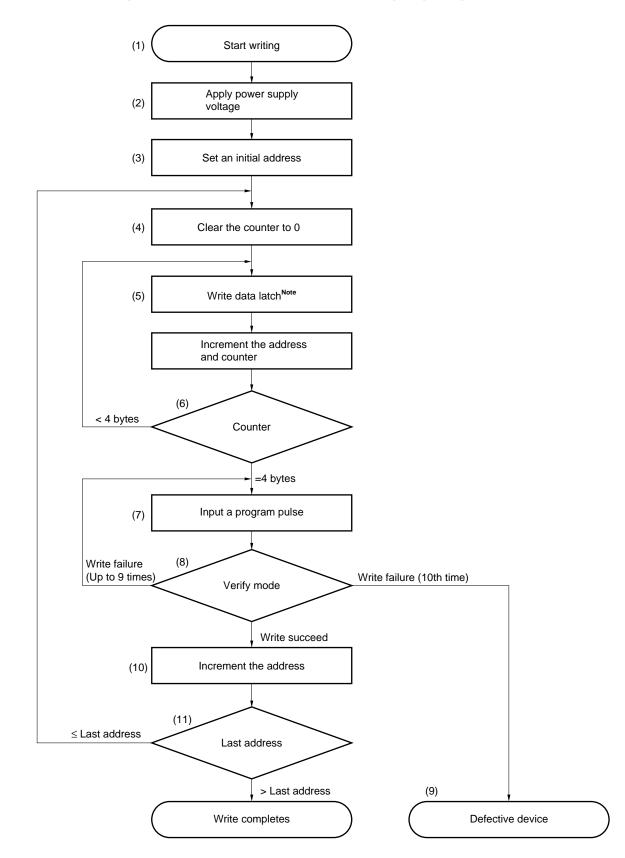
Table 17-2.	Operating	Modes for	PROM	Programming
-------------	-----------	-----------	------	-------------

Remark \times indicates L or H.

17.2 Procedure for Writing on PROM (Page Program Mode)

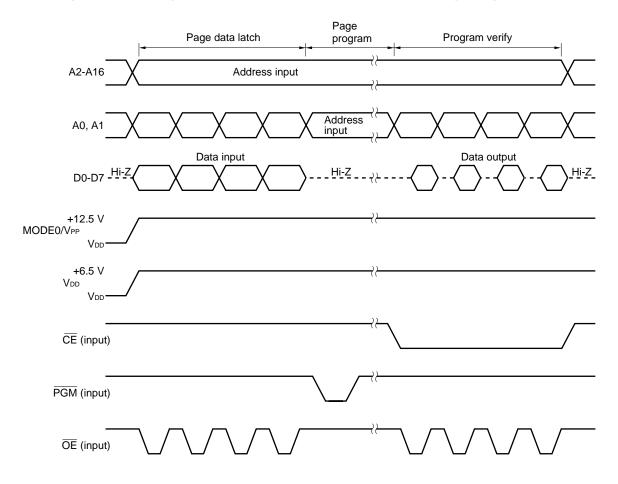
The following is a procedure for writing on PROM (refer to Figure 17-1).

In the page program mode, data is written in units of pages (four bytes). When write data completes midway of a page, latch FFH after the data so that the data fits into pages.


- Always set each pin as follows: MODE0/VPP = H, MODE1 = L. Process unused pins by referring to 1.4 Pin Configuration (Top View).
- (2) Apply +6.5 V to the V_DD pin and +12.5 V to the MODE0/V_PP pin.
- (3) Input an initial address to the A0 to A16 pins.
- (4) Clear the page counter.
- (5) Data latch mode. Input write data to the D0 to D7 pins and input an active-low pulse to the \overline{OE} pin. Increment the address and the page counter.
- (6) Repeat step (5) for a page (four bytes).
- (7) Input a 0.1 ms program pulse (active low) to the \overline{PGM} pin.
- (8) Verify mode. Checks if data has been written in PROM.

Apply a low level to the \overline{CE} pin, input an active-low pulse to the \overline{OE} pin, and then read the write data from the D0 to D7 pins. Repeat this for a page (four bytes). When verification completes, apply a high level to the \overline{CE} pin.

- If data has been written, go to step (10).
- If not, repeat steps (7) and (8). If no data is written yet after the steps have been repeated 10 times, go to step (9).
- (9) Assume the device to be defective and stop write operation.
- (10) Increment the address.
- (11) Repeat steps (4) to (10) until the address exceeds the last address.


Figure 17-2 is a timing chart of these steps (2) to (9).

Note When write data completes midway of a page, latch FFH after the data so that the data fits into pages.

17.3 Procedure for Writing on PROM (Byte Program Mode)

The procedure for writing data into PROM is as follows (refer to Figure 17-3).

- Always set each pin as follows: MODE0/VPP = H, and MODE1 = L. Connect unused pins by referring to 1.4 Pin Configuration (Top View).
- (2) Apply +6.5 V to the VDD pin and +12.5 V to the MODE0/VPP pin. Input a low level to the \overline{CE} pin.
- (3) Input an initial address to the A0 to A16 pins.
- (4) Input write data to the D0 to D7 pins.
- (5) Input a program pulse (active low) which has a period of 0.1 ms to the \overline{PGM} pin.
- (6) Verify mode. Check that data has been written in PROM.

Input an active-low pulse to the \overline{OE} pin and read the written data from the D0 to D7 pins.

- When data has been written, go to step (8).
- If not, repeat steps (4) to (6). If no data is written after the steps are repeated ten times, go to step (7).
- (7) Assume the device to be defective and stop write operation.
- (8) Increment the address.
- (9) Repeat steps (4) to (8) until the address exceeds the last address.

Figure 17-4 is a timing chart of steps (2) to (7) above.

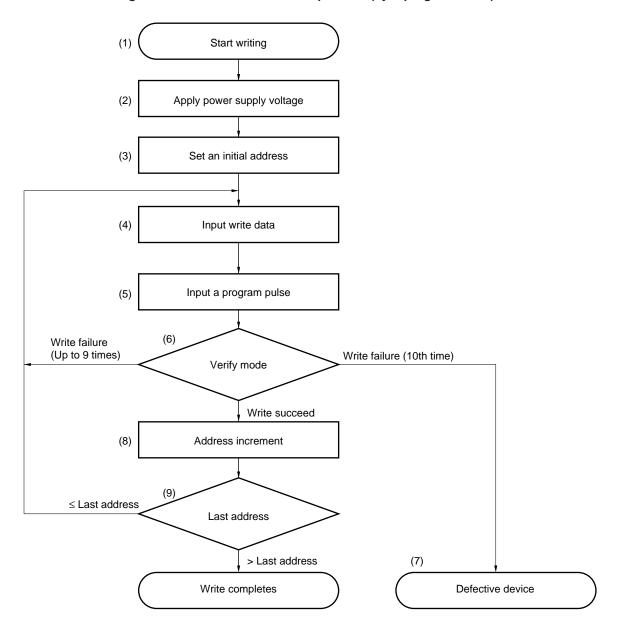
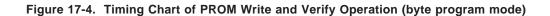
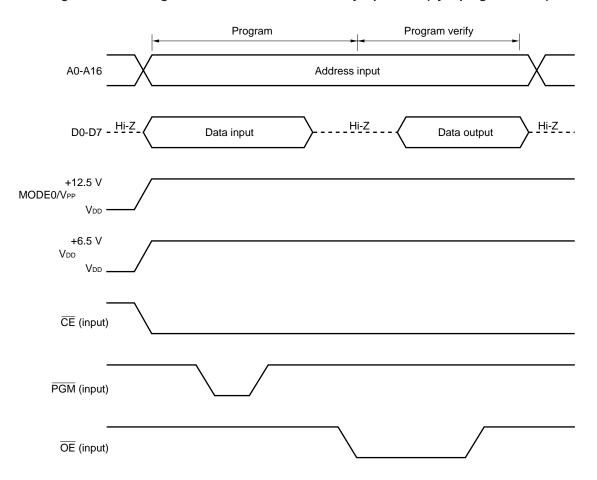
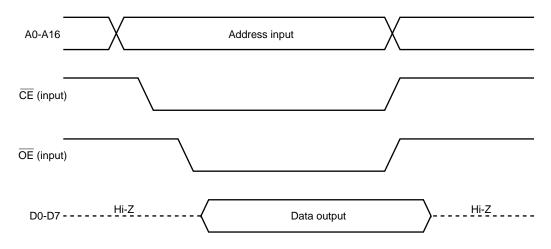




Figure 17-3. Flowchart of Write Operation (byte program mode)



17.4 Procedure for Reading from PROM

The contents of PROM can be read out to the external data bus (D0 to D7) in the following steps:

- (1) Always set the MODE0/VPP pin to H, and the MODE1 pin to L. Handle other unused pins by referring to **1.4 Pin Configuration (Top View)**.
- (2) Apply +5 V to the VDD and MODE0/VPP pins.
- (3) Input the address of data to be read into the A0 to A16 pins.
- (4) Read mode ($\overline{CE} = L$, $\overline{OE} = L$)
- (5) Output the data on the D0 to D7 pins.

Figure 17-5 is a timing chart of these steps (2) to (5).

Figure 17-5. PROM Read Timing Chart

17.5 Erasure Characteristics (μPD78P368AKL only)

The μ PD78P368AKL allows the data written to the program memory to be erased (FFH) and new data to be rewritten.

To erase the data, expose the erasure window of the program memory to a light having a wavelength of shorter than 400 nm. Usually, ultraviolet ray with a wavelength of 254 nm is used. The quantity of light necessary for erasing the data completely is as follows:

- Ultraviolet ray intensity \times erasure time: 15 W \cdot s/cm² min.
- Erasure time: 15 to 20 minutes (with an ultraviolet lamp of 12,000 μW/cm². Note, however, the erasure time is extended depending on the performances of the ultraviolet lamp used, and dirt collecting on the erasure window.)

To erase the data, locate the ultraviolet lamp within 2.5 cm from the erasure window. If a filter is attached to the ultraviolet lamp, remove the filter.

17.6 Sticker on Erasure Window (µPD78P368AKL only)

If the erasure window of the μ PD78P368AKL is exposed to sun light or the light of a fluorescent lamp for a long time, the data of the EPROM may be erased, or the internal circuit may malfunction. To prevent this, usually attach a protection sticker to the erasure window.

The package product with EPROM erasure window is supplied with a protection sticker whose quality is guaranteed by NEC.

17.7 Screening of One-Time PROM Products

The one-time PROM product (μ PD78P368AGF-3B9) cannot be completely tested by NEC for shipment because of its structure. It is therefore recommended that screening is conducted by verifying the PROM after the PROM has been stored under the following conditions:

Storage Temperature	Storage Time
125 °C	24 hours

NEC provides a one-time PROM writing, marking, screening, and verification service under the name of QTOPTM Microcontrollers. For details, consult our salesperson.

CHAPTER 18 INSTRUCTION SET

Phase-out/Discontinued

This chapter describes each instruction operation of the μ PD78366A.

For details of the operation, the operation code and clock cycles, refer to the μ PD78356 User's Manual-Instruction (U12117E).

18.1 Operand Identifier and Format

Operands are written in the operand field of each instruction as listed in the column of Table 18-1. For details of the operand format, refer to the relevant assembler specifications. When several formats are presented, any one of them can be selected. Uppercase letters and the symbols, +, -, #, \$, !, and [], are keywords and must be written as they are.

For immediate data, an appropriate numeric or label must be written. The symbols #, \$, !, and [] must not be omitted when writing labels.

Table 18-1. Operand Identifier and Format

Identifier	Format							
r r1 r2	R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15 R0, R1, R2, R3, R4, R5, R6, R7 C, B							
rp rp1 rp2	RP0, RP1, RP2, RP3, RP4, RP5, RP6, RP7 RP0, RP1, RP2, RP3, RP4, RP5, RP6, RP7 DE, HL, VP, UP							
sfr sfrp	Special function register name (refer to Table 3-4). Special function register name (16-bit manipulation register. Refer to Table 3-4).							
post	RP0, RP1, RP2, RP3, RP4, RP5/PSW, RP6, RP7 (Can be used more than once. However, RP5 can only be used in a PUSH or POP instruction and PSW can only be used in a PUSHU or POPU instruction.)							
mem	 [DE], [HL], [DE+], [HL+], [DE-], [HL-], [VP], [UP]: Register indirect mode [DE + A], [HL + A], [DE + B], [HL + B], [VP + DE], [VP + HL]: Based indexed mode [DE + byte], [HL + byte], [VP + byte], [UP + byte], [SP + byte]: Based mode word [A], word [B], word [DE], word [HL]: Indexed mode 							
saddr saddrp	FE20H-FF1FH Immediate data or label FE20H-FF1EH Immediate data (bit 0 = 0) or label (for 16-bit manipulation)							
\$addr16 !addr16 addr11 addr5	0000H-FDFFH Immediate data or label: Relative addressing 0000H-FDFFH Immediate data or label: Immediate addressing (Data at an address up to FFFFH can be used in an MOV instruction. Data at an address from FE00H to FEFFH can be used in an MOVTBLW instruction.) 800H-FFFH Immediate data or label 40H-7EH Immediate data (bit 0 = 0) ^{Note} or label							
word byte bit	40H-7EH Immediate data (bit 0 = 0).000 of label 16-bit immediate data or label 3-bit immediate data or label 3-bit immediate data (0 to 7)							

Note Do not attempt to access word data at an odd-numbered address (bit 0 = 1).

Remarks 1. The same register name can be specified in rp and rp1, but different codes are generated.

2. Immediate addressing is effective for entire address spaces. Relative addressing is effective for the locations within a displacement range of -128 to +127 from the starting address of the next instruction.

The 8-bit registers (r, r1) and 16-bit register pairs (rp, rp1, post) can be represented by either absolute names (R0-R15, RP0-RP7) or function names. Table 18-2 and Table 18-3 list the absolute names and corresponding function names.

Absolute Name	Functio	n Name	Absolute Name	Function Name		
Absolute Name	RSS = 0	RSS = 1	Absolute Name	RSS = 0	RSS = 1	
R0	Х		R8	VPL	VPL	
R1	А		R9	VРн	VРн	
R2	С		R10	UP∟	UP∟	
R3	В		R11	UРн	UРн	
R4		Х	R12	E	E	
R5		A	R13	D	D	
R6		С	R14	L	L	
R7		В	R15	Н	Н	

 Table 18-2.
 Absolute Names and Their Corresponding Function Names of 8-bit Register

Absolute Name	Function Name				
Absolute Name	RSS = 0	RSS = 1			
RP0	AX				
RP1	BC				
RP2		AX			
RP3		BC			
RP4	VP	VP			
RP5	UP	UP			
RP6	DE	DE			
RP7	HL	HL			

RSS stands for the register set selection flag (bit 5 of PSW). Setting or resetting RSS switches function names for correspondence with an absolute name.

18.2 Legend

А	:	A register; 8-bit accumulator
Х	:	X register
В	:	B register
С	:	C register
D	:	D register
E	:	E register
Н	:	H register
L	:	L register
R0-R15	:	Register 0 to register 15 (absolute name)
AX	:	Register pair (AX); 16 bit accumulator
BC	:	Register pair (BC)
DE	:	Register pair (DE)
HL	:	Register pair (HL)
RP0-RP7	:	Register pair 0 to register pair 7 (absolute name)
PC	:	Program counter
SP	:	Stack pointer
UP	:	User stack pointer
PSW	:	Program status word
CY	:	Carry flag
AC	:	Auxiliary carry flag
Z	:	Zero flag
P/V	:	Parity/overflow flag
S	:	Sign flag
TPF	:	Table position flag
RBS	:	Register bank selecting flag
RSS	:	Register set selecting flag
IE	:	Interrupt request enable flag
STBC	:	Standby control register
WDM	:	Watchdog timer mode register
jdisp8	:	Signed 8-bit data (displacement value: -128 to +127)
()	:	Contents at an address enclosed in parentheses or at an address indicated in a register indicated
		in parentheses. (+) and (-) indicate that an address or the contents of a register indicated in
		parentheses are incremented and decremented by one after execution of the instruction, respectively.
(())	:	Contents at an address indicated by the contents at an address indicated in parentheses (()).
××Н	:	Hexadecimal number
imesH, $ imes$ L	:	High-order 8 bits and low-order 8 bits of 16-bit register

18.3 Notational Symbols in Flag Operation Field

Symbol	Explanation
(Blank)	No change
0	Cleared to zero.
1	Set to 1.
×	Set or clear according to the result.
Р	P/V flag operates as a parity flag.
V	P/V flag operates as an overflow flag.
R	Saved values are restored.

 Table 18-4.
 Notational Symbols in Flag Operation Field

18.4 Differences between μ PD78366A and μ PD78328 in Instruction Set

The instruction set of the μ PD78366A has the following four additional instructions which are not provided to the μ PD78328. The other instructions are the same as those of the μ PD78328.

- Sum-of-products instruction
- Sum-of-products instruction with saturation function
- Relative operation instruction
- Table shift instruction

18.5 Operations of Basic Instructions

(1) 8-bit data transfer instructions: MOV, XCH

Mnemonic	Operand	Byte	Operation	Flag				
winemonic				S	Ζ	AC	P/V	CY
ΜΟΥ	r1, #byte	2	$r1 \leftarrow byte$					
	saddr, #byte	3	$(saddr) \leftarrow byte$					
	sfr ^{Note} , #byte	3	$sfr \leftarrow byte$					
	r, r1	2	$r \leftarrow r1$					
	A, r1	1	$A \leftarrow r1$					
	A, saddr	2	$A \leftarrow (saddr)$					
	saddr, A	2	$(saddr) \leftarrow A$					
	saddr, saddr	3	$(saddr) \leftarrow (saddr)$					
	A, sfr	2	$A \leftarrow sfr$					
	sfr, A	2	$sfr \leftarrow A$					
	A, mem	1-4	$A \leftarrow (mem)$					
	mem, A	1-4	$(mem) \gets A$					
	A, [saddrp]	2	$A \leftarrow ((saddrp))$					
	[saddrp], A	2	$((saddrp)) \leftarrow A$					
	A, !addr16	4	$A \leftarrow (addr16)$					
	!addr16, A	4	$(addr16) \leftarrow A$					
	PSWL, #byte	3	$PSW_{L} \leftarrow byte$	×	×	×	×	×
	PSWH, #byte	3	$PSW_{H} \leftarrow byte$					
	PSWL, A	2	$PSW_L \gets A$	×	×	×	×	×
	PSWH, A	2	$PSW_H \gets A$					
	A, PSWL	2	$A \leftarrow PSW_L$					
	A, PSWH	2	$A \leftarrow PSW_H$					
ХСН	A, r1	1	$A \leftrightarrow r1$					
	r, r1	2	$r \leftrightarrow r1$					
	A, mem	2-4	$A \leftrightarrow (mem)$					
	A, saddr	2	$A \leftrightarrow (saddr)$					
	A, sfr	3	$A \leftrightarrow sfr$					
	A, [saddrp]	2	$A \leftrightarrow ((saddrp))$					
	saddr, saddr	3	$(saddr) \leftrightarrow (saddr)$					

Note If STBC or WDM is coded in sfr, a different instruction having the different byte count is generated.

(2) 16-bit data transfer instructions: MOVW, XCHW

Mnemonic	Operand	Bute	Operation			Flag	
Minemonic	Operand	Byte	Operation	S	Ζ	AC P/V C	СҮ
MOVW	rp1, #word	3	$rp1 \leftarrow word$				
	saddrp, #word	4	$(saddrp) \leftarrow word$				
	sfrp, #word	4	$sfrp \leftarrow word$				
	rp, rp1	2	$rp \leftarrow rp1$				
	AX, saddrp	2	$AX \leftarrow (saddrp)$				
	saddrp, AX	2	$(saddrp) \leftarrow AX$				
	saddrp, saddrp	3	$(saddrp) \leftarrow (saddrp)$				
	AX, sfrp	2	$AX \leftarrow sfrp$				
	sfrp, AX	2	$sfrp \leftarrow AX$				
	rp1, !addr16	4	$rp1 \leftarrow (addr16)$				
	!addr16, rp1	4	$(addr16) \leftarrow rp1$				
	AX, mem	2-4	$AX \leftarrow (mem)$				
	mem, AX	2-4	$(mem) \gets AX$				
хснw	AX, saddrp	2	$AX \leftrightarrow (saddrp)$				
	AX, sfrp	3	$AX \leftrightarrow sfrp$				
	saddrp, saddrp	3	$(saddrp) \leftrightarrow (saddrp)$				
	rp, rp1	2	$rp \leftrightarrow rp1$				
	AX, mem	2-4	$AX \leftrightarrow (mem)$				

(3) 8-bit arithmetic/logical instructions: ADD, ADDC, SUB, SUBC, AND, OR, XOR, CMP

(1/2)

Mnemonic	Operand	Byte	Operation	Flag							
WITEITIONIC	Operand	Буге	Operation	S	Ζ	AC	; P/\	V CY			
ADD	A, #byte	2	A, $CY \leftarrow A + byte$	×	×	×	V	×			
	saddr, #byte	3	(saddr), CY \leftarrow (saddr) + byte	×	×	×	V	×			
	sfr, #byte	4	sfr, CY \leftarrow sfr + byte	×	×	×	V	×			
	r, r1	2	$r,CY \gets r + r1$	×	×	×	V	×			
	A, saddr	2	A, $CY \leftarrow A + (saddr)$	×	×	×	V	×			
	A, sfr	3	A, CY \leftarrow A + sfr	×	×	×	V	×			
	saddr, saddr	3	(saddr), CY \leftarrow (saddr) + (saddr)	×	×	×	V	×			
	A, mem	2-4	A, CY \leftarrow A + (mem)	×	×	×	V	×			
	mem, A	2-4	(mem), CY \leftarrow (mem) + A	×	×	×	V	×			
ADDC	A, #byte	2	A, CY \leftarrow A + byte + CY	×	×	×	V	×			
	saddr, #byte	3	(saddr), CY \leftarrow (saddr) + byte + CY	×	×	×	V	×			
	sfr, #byte	4	sfr, CY \leftarrow sfr + byte + CY	×	×	×	V	×			
	r, r1	2	$r, CY \leftarrow r + r1 + CY$	×	×	×	V	×			
	A, saddr	2	$A,CY \leftarrow A + (saddr) + CY$	×	×	×	V	×			
	A, sfr	3	$A,CY \gets A + sfr + CY$	×	×	×	V	×			
	saddr, saddr	3	(saddr), CY \leftarrow (saddr) + (saddr) + CY	×	×	×	V	×			
	A, mem	2-4	A, $CY \leftarrow A + (mem) + CY$	×	×	×	V	×			
	mem, A	2-4	(mem), $CY \leftarrow (mem) + A + CY$	×	×	×	V	×			
SUB	A, #byte	2	A, CY \leftarrow A – byte	×	×	×	V	×			
	saddr, #byte	3	(saddr), CY \leftarrow (saddr) – byte	×	×	×	V	×			
	sfr, #byte	4	$sfr, CY \leftarrow sfr - byte$	×	×	×	V	×			
	r, r1	2	$r, CY \leftarrow r - r1$	×	×	×	V	×			
	A, saddr	2	A, CY \leftarrow A – (saddr)	×	×	×	V	×			
	A, sfr	3	A, CY \leftarrow A – sfr	×	×	×	V	×			
	saddr, saddr	3	(saddr), CY \leftarrow (saddr) – (saddr)	×	×	×	V	×			
	A, mem	2-4	A, CY \leftarrow A – (mem)	×	×	×	V	×			
	mem, A	2-4	(mem), CY \leftarrow (mem) – A	×	×	×	V	×			
SUBC	A, #byte	2	A, $CY \leftarrow A - byte - CY$	×	×	×	V	×			
	saddr, #byte	3	(saddr), CY \leftarrow (saddr) – byte – CY	×	×	×	V	×			
	sfr, #byte	4	sfr, CY \leftarrow sfr – byte – CY	×	×	×	V	>			
	r, r1	2	$r, CY \leftarrow r - r1 - CY$	×	×	×	V	>			
	A, saddr	2	A, $CY \leftarrow A - (saddr) - CY$	×	×	×	V	>			
	A, sfr	3	A, $CY \leftarrow A - sfr - CY$	×	×	×	V	>			
	saddr, saddr	3	(saddr), $CY \leftarrow (saddr) - (saddr) - CY$	×	×	×	V	>			
	A, mem	2-4	A, CY \leftarrow A – (mem) – CY	×	×	×					
	mem, A	2-4	(mem), $CY \leftarrow (mem) - A - CY$	×	×	×	V	>			

(2/2)

Mnemonic	Operand	Byte	Operation			Flag	
Whetherhold	operand	Byte		S	Ζ	AC F	P/V C
AND	A, #byte	2	$A \leftarrow A \land byte$	×	×		Р
	saddr, #byte	3	$(saddr) \leftarrow (saddr) \land byte$	×	×		Р
	sfr, #byte	4	$sfr \leftarrow sfr \land byte$	×	×		Р
	r, r1	2	$r \leftarrow r \land r1$	×	×		Р
	A, saddr	2	$A \leftarrow A \ \land \ (saddr)$	×	×		Р
	A, sfr	3	$A \leftarrow A \ \land \ sfr$	×	×		Р
	saddr, saddr	3	$(saddr) \leftarrow (saddr) \ \land \ (saddr)$	×	×		Р
	A, mem	2-4	$A \leftarrow A \ \land \ (mem)$	×	×		Р
	mem, A	2-4	$(mem) \gets (mem) \ \land \ A$	×	×		Р
OR	A, #byte	2	$A \leftarrow A \lor byte$	×	×		Р
	saddr, #byte	3	$(saddr) \leftarrow (saddr) \lor byte$	×	×		Р
	sfr, #byte	4	$sfr \leftarrow sfr \lor byte$	×	×		Р
	r, r1	2	$r \leftarrow r \lor r1$	×	×		Ρ
-	A, saddr	2	$A \leftarrow A \lor (saddr)$	×	×		Р
	A, sfr	3	$A \leftarrow A \lor sfr$	×	×		Ρ
	saddr, saddr	3	$(saddr) \leftarrow (saddr) \lor (saddr)$	×	×		Ρ
	A, mem	2-4	$A \leftarrow A \lor (mem)$	×	×		Ρ
	mem, A	2-4	$(mem) \gets (mem) \lor A$	×	×		Р
XOR	A, #byte	2	$A \leftarrow A \forall byte$	×	×		Ρ
	saddr, #byte	3	$(saddr) \leftarrow (saddr) \ \forall \ byte$	×	×		Р
	sfr, #byte	4	$sfr \leftarrow sfr \ \forall \ byte$	×	×		Р
	r, r1	2	$r \leftarrow r \forall r1$	×	×		Р
	A, saddr	2	$A \leftarrow A \ \forall \ (saddr)$	×	×		Р
	A, sfr	3	$A \leftarrow A \ \forall \ sfr$	×	×		Р
	saddr, saddr	3	$(saddr) \leftarrow (saddr) \ \forall \ (saddr)$	×	×		Р
	A, mem	2-4	$A \leftarrow A \forall$ (mem)	×	×		Р
	mem, A	2-4	$(mem) \gets (mem) \ \forall \ A$	×	×		Р
СМР	A, #byte	2	A – byte	×	×	×	V ×
	saddr, #byte	3	(saddr) - byte	×	×	×	V ×
	sfr, #byte	4	sfr – byte	×	×	×	V ×
	r, r1	2	r – r1	×	×	×	V >
	A, saddr	2	A – (saddr)	×	×	×	V ×
	A, sfr	3	A – sfr	×	×	×	V >
	saddr, saddr	3	(saddr) – (saddr)	×	×	×	V >
	A, mem	2-4	A – (mem)	×	×	×	
	mem, A	2-4	(mem) – A	×	×		

Mnemonic	Operand	Duto	Operation	Flag					
Minemonic	Operand	Byte	Operation	S	Ζ	AC	P/V	CY	
ADDW	AX, #word	3	AX, CY \leftarrow AX + word	×	×	×	V	×	
	saddrp, #word	4	(saddrp), CY \leftarrow (saddrp) + word	×	×	×	V	×	
	sfrp, #word	5	sfrp, CY \leftarrow sfrp + word	×	×	×	V	×	
	rp, rp1	2	$rp, CY \leftarrow rp + rp1$	×	×	×	V	×	
	AX, saddrp	2	AX, CY \leftarrow AX + (saddrp)	×	×	×	V	×	
	AX, sfrp	3	$AX,CY \leftarrow AX + sfrp$	×	×	×	V	×	
	saddrp, saddrp	3	$(saddrp),CY \leftarrow (saddrp) + (saddrp)$	×	×	×	V	×	
SUBW	AX, #word	3	$AX,CY \leftarrow AX - word$	×	×	×	V	×	
	saddrp, #word	4	$(saddrp),CY \leftarrow (saddrp) - word$	×	×	×	V	×	
	sfrp, #word	5	sfrp, CY \leftarrow sfrp – word	×	×	×	V	×	
	rp, rp1	2	$rp, CY \leftarrow rp - rp1$	×	×	×	V	×	
	AX, saddrp	2	AX, CY \leftarrow AX – (saddrp)	×	×	×	V	×	
	AX, sfrp	3	$AX,CY \leftarrow AX - sfrp$	×	×	×	V	×	
	saddrp, saddrp	3	$(saddrp),CY \leftarrow (saddrp) - (saddrp)$	×	×	×	V	×	
CMPW	AX, #word	3	AX – word	×	×	×	V	×	
	saddrp, #word	4	(saddrp) - word	×	×	×	V	×	
	sfrp, #word	5	sfrp – word	×	×	×	V	×	
	rp, rp1	2	rp – rp1	×	×	×	V	×	
	AX, saddrp	2	AX – (saddrp)	×	×	×	V	×	
	AX, sfrp	3	AX – sfrp	×	×	×	V	×	
	saddrp, saddrp	3	(saddrp) – (saddrp)	×	×	×	V	×	

(4) 16-bit arithmetic/logical instructions: ADDW, SUBW, CMPW

(5) Multiply/divide instructions: MULU, DIVUW, MULUW, DIVUX

Mnemonic	Operand	Duto	Operation			Flag
winemonic	Operand	Byte	Operation	S	Ζ	AC P/V CY
MULU	r1	2	$AX \leftarrow A \times r1$			
DIVUW	r1	2	AX (quotient), r1 (remainder) \leftarrow AX \div r1			
MULUW	rp1	2	AX (high-order 16 bits), rp1 (low-order 16 bits) \leftarrow AX \times rp1			
DIVUX	rp1	2	AXDE (quotient), rp1 (remainder) \leftarrow AXDE \div rp1			

(6) Signed multiply instruction: MULW

Mnemonic	Operand	Puto	Operation	Flag
winemonic	Operand Byte Operation S	S Z AC P/V CY		
MULW	rp1	2	AX (high-order 16 bits), rp1 (low-order 16 bits) \leftarrow AX \times rp1	

(7) Sum-of-products instruction: MACW

Mnemonic	Operand	Byte	Operation			g		
whemonic	Operand	Буге	Operation	S	Ζ	AC	P/V	CY
MACW	n	3	$AXDE \leftarrow (B) \times (C) + AXDE$	×	×	×	V	×
			$B \leftarrow B + 2, C \leftarrow C + 2, n \leftarrow n - 1$					
			End if $n = 0$ or $P/V = 1$					

(8) Sum-of-products instruction with saturation function: MACSW

Maamania	Operand Byte Operation	Flag							
Mnemonic		Буге	Operation	S	Ζ	AC	P/V	СҮ	
MACSW	n	3	$AXDE \leftarrow (B) \times (C) + AXDE$	×	×	×	V	×	
			$B \leftarrow B + 2, C \leftarrow C + 2, n \leftarrow n - 1$						
			if overflow $(P/V = 1)$ then						
			$AXDE \leftarrow 7FFFFFFH$						
			if underflow $(P/V = 1)$ then						
			AXDE ← 80000000H						
			end if $n = 0$ or $P/V = 1$						

(9) Relative operation instruction: SACW

Mnemonic	Operand	Byte	Operation		Flag				
winemonic		S	Ζ	AC) P/V	/ CY			
SACW	[DE+], [HL+]	4	$\begin{array}{l} AX \leftarrow AX + \mid (DE) - (HL) \mid \\ DE \leftarrow DE + 2, \ HL \leftarrow HL + 2, \ C \leftarrow C - 1 \\ end \ if \ C = 0 \ or \ CY = 1 \end{array}$	×	×	×	V	×	

(10) Table shift instruction: MOVTBLW

Mnemonic	Operand	Puto	Operation		Flag
winemonic	Operand	Byte	Operation	S	Z AC P/V CY
MOVTBLW	!addr16, n	4	$(addr16 + 2) \leftarrow (addr16), n \leftarrow n - 1$ addr16 ← addr16 - 2, End if n = 0		

Remark The addressing range of the table shift instruction is FE00H to FEFFH.

Mnemonic	Operand	Byte	Operation		J		
winemonic	Operand	Dyte	Operation	S	Ζ	AC	P/V CY
INC	r1	1	r1 ← r1 + 1	×	×	×	V
	saddr	2	$(saddr) \leftarrow (saddr) + 1$	×	×	×	V
DEC	r1	1	$r1 \leftarrow r1 - 1$	×	×	×	V
	saddr	2	$(saddr) \leftarrow (saddr) - 1$	×	×	×	V
INCW	rp2	1	$rp2 \leftarrow rp2 + 1$				
	saddrp	3	$(saddrp) \leftarrow (saddrp) + 1$				
DECW	rp2	1	$rp2 \leftarrow rp2 - 1$				
	saddrp	3	$(saddr) \leftarrow (saddrp) - 1$				

(11) Increment/decrement instructions: INC, DEC, INCW, DECW

(12) Shift/rotate instructions: ROR, ROL, RORC, ROLC, SHR, SHL, SHRW, SHLW, ROR4, ROL4

ROL RORC ROLC SHR	Operand	Puto	Operation				Flag		
winemonic	Operand	Byte	Operation		S	Ζ	AC	P/V	CY
ROR	r1, n	2	(CY, r17 \leftarrow r10, r1m - 1 \leftarrow r1m) \times n times	n = 0-7				Ρ	×
ROL	r1, n	2	(CY, r1o \leftarrow r17, r1m + 1 \leftarrow r1m) \times n times	n = 0-7				Ρ	×
RORC	r1, n	2	(CY \leftarrow r1o, r17 \leftarrow CY, r1m - 1 \leftarrow r1m) \times n times	n = 0-7				Ρ	×
ROLC	r1, n	2	(CY \leftarrow r17, r10 \leftarrow CY, r1m + 1 \leftarrow r1m) \times n times	n = 0-7				Ρ	×
SHR	r1, n	2	(CY \leftarrow r1o, r17 \leftarrow 0, r1m - 1 \leftarrow r1m) \times n times	n = 0-7	×	×	0	Ρ	×
SHL	r1, n	2	(CY \leftarrow r17, r10 \leftarrow 0, r1m + 1 \leftarrow r1m) \times n times	n = 0-7	×	×	0	Ρ	×
SHRW	rp1, n	2	(CY \leftarrow rp10, rp115 \leftarrow 0, rp1m - 1 \leftarrow rp1m) \times n times	n = 0-7	×	×	0	Ρ	×
SHLW	rp1, n	2	(CY \leftarrow rp115, rp10 \leftarrow 0, rp1m + 1 \leftarrow rp1m) \times n times	n = 0-7	×	×	0	Ρ	×
ROR4	[rp1]	2	$A_{3-0} \leftarrow (rp1)_{3-0}, (rp1)_{7-4} \leftarrow A_{3-0}, (rp1)_{3-0} \leftarrow (rp1)_{7-4}$						
ROL4	[rp1]	2	$A_{3-0} \leftarrow (rp1)_{7-4}, (rp1)_{3-0} \leftarrow A_{3-0},$ $(rp1)_{7-4} \leftarrow (rp1)_{3-0}$						

Remark n indicates the number of shifts or rotations.

(13) BCD adjustment instructions: ADJBA, ADJBS

Mnemonic	Operand	Byte	Operation			Flag	l	
Minemonic	Operand	Буге	Operation	S	Ζ	AC	P/V	CY
ADJBA		2	Decimal Adjust Accumulator	×	×	×	Ρ	×
ADJBS								

(14) Data conversion instruction: CVTBW

Maamania	Operand	Dute	Operation			Flag
Mnemonic	Operand	Byte	Operation	S	Ζ	AC P/V CY
CVTBW		1	When $A_7 = 0, X \leftarrow A, A \leftarrow 00H$			
			When $A_7 = 1, X \leftarrow A, A \leftarrow FFH$			

(15) Bit manipulation instructions: MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1

|--|

Mnemonic	Operand	Byte	Operation	Flag			
	Operatio	Dyte	Operation	S	Ζ	AC F	P/V C
MOV1	CY, saddr.bit	3	$CY \gets (saddr.bit)$				×
	CY, sfr.bit	3	$CY \leftarrow sfr.bit$				×
	CY, A.bit	2	$CY \leftarrow A.bit$				×
	CY, X.bit	2	$CY \leftarrow X.bit$			-	×
	CY, PSWH.bit	2	$CY \gets PSW_{H}.bit$				×
	CY, PSWL.bit	2	$CY \gets PSW_{L}.bit$				×
	saddr.bit, CY	3	$(saddr.bit) \leftarrow CY$				
	sfr.bit, CY	3	$sfr.bit \gets CY$				
	A.bit, CY	2	$A.bit \gets CY$				
	X.bit, CY	2	$X.bit \gets CY$				
	PSWH.bit, CY	2	$PSW_{H}.bit \gets CY$				
	PSWL.bit, CY	2	$PSW_{L}.bit \gets CY$				
AND1	CY, saddr.bit	3	$CY \leftarrow CY \land (saddr.bit)$				×
	CY, /saddr.bit	3	$CY \leftarrow CY \land (\overline{saddr.bit})$				×
	CY, sfr.bit	3	$CY \gets CY \land sfr.bit$				×
	CY, /sfr.bit	3	$CY \leftarrow CY \land \overline{sfr.bit}$				×
	CY, A.bit	2	$CY \leftarrow CY \land A.bit$				×
	CY, /A.bit	2	$CY \leftarrow CY \land \overline{A.bit}$				×
	CY, X.bit	2	$CY \leftarrow CY \land X.bit$				×
	CY, /X.bit	2	$CY \leftarrow CY \land \overline{X.bit}$				×
	CY, PSWH.bit	2	$CY \gets CY \land PSW_{H}.bit$				×
	CY, /PSWH.bit	2	$CY \leftarrow CY \land \overline{PSW_{H}.bit}$				×
	CY, PSWL.bit	2	$CY \leftarrow CY \land PSW_{L}.bit$				×
	CY, /PSWL.bit	2	$CY \leftarrow CY \land \overline{PSW_L.bit}$				×
OR1	CY, saddr.bit	3	$CY \leftarrow CY \lor$ (saddr.bit)			-	×
	CY, /saddr.bit	3	$CY \leftarrow CY \lor (\overline{saddr.bit})$				×
	CY, sfr.bit	3	$CY \leftarrow CY \lor sfr.bit$				×
	CY, /sfr.bit	3	$CY \leftarrow CY \lor \overline{sfr.bit}$				×
	CY, A.bit	2	$CY \leftarrow CY \lor A.bit$				×
	CY, /A.bit	2	$CY \leftarrow CY \lor \overline{A.bit}$				×
	CY, X.bit	2	$CY \leftarrow CY \lor X.bit$			-	×
	CY, /X.bit	2	$CY \leftarrow CY \lor \overline{X.bit}$				×
	CY, PSWH.bit	2	$CY \gets CY \lor PSW_{H}.bit$				×
	CY, /PSWH.bit	2	$CY \leftarrow CY \lor \overline{PSW_{H.bit}}$				×
	CY, PSWL.bit	2	$CY \gets CY \lor PSW_{L}bit$				×
	CY, /PSWL.bit	2	$CY \leftarrow CY \lor \overline{PSW_{L}.bit}$	1			×

(2/2)

Mnemonic	Operand	Puto	Operation			Fla	g	
whemonic	Operand	Byte	Operation	S	Ζ	AC	; P/V	CY
XOR1	CY, saddr.bit	3	$CY \leftarrow CY \ \forall \ (saddr.bit)$					×
	CY, sfr.bit	3	$CY \leftarrow CY \forall sfr.bit$					×
	CY, A.bit	2	$CY \leftarrow CY \ \forall \ A.bit$					×
	CY, X.bit	2	$CY \leftarrow CY \ \forall \ X.bit$					×
	CY, PSWH.bit	2	$CY \gets CY \ \forall \ PSW_{H}.bit$					×
	CY, PSWL.bit	2	$CY \gets CY \ \forall \ PSW_{L}.bit$					×
SET1	saddr.bit	2	(saddr.bit) $\leftarrow 1$					
	sfr.bit	3	sfr.bit \leftarrow 1					
	A.bit	2	A.bit $\leftarrow 1$					
	X.bit	2	X.bit $\leftarrow 1$					
	PSWH.bit	2	PSW⊦.bit ← 1					
	PSWL.bit	2	PSW∟.bit ← 1	×	×	×	×	×
	CY	1	CY ← 1					1
CLR1	saddr.bit	2	$(saddr.bit) \leftarrow 0$					
	sfr.bit	3	sfr.bit $\leftarrow 0$					
	A.bit	2	A.bit $\leftarrow 0$					
	X.bit	2	X.bit $\leftarrow 0$					
	PSWH.bit	2	PSW⊢.bit ← 0					
	PSWL.bit	2	$PSW_{L}.bit \leftarrow 0$	×	×	×	×	×
	СҮ	1	$CY \leftarrow 0$					0
NOT1	saddr.bit	3	$(saddr.bit) \leftarrow (\overline{saddr.bit})$					
	sfr.bit	3	$sfr.bit \leftarrow \overline{sfr.bit}$					
	A.bit	2	A.bit $\leftarrow \overline{A.bit}$					
	X.bit	2	$X.bit \leftarrow \overline{X.bit}$					
	PSWH.bit	2	PSW⊦.bit ← PSW⊦.bit					
	PSWL.bit	2	$PSW_{L}.bit \leftarrow \overline{PSW_{L}.bit}$	×	×	×	×	×
	CY	1	$CY \leftarrow \overline{CY}$					×

Mnemonic	Operand	Byte	Operation			Flag	-lag		
WITEITIONIC	Operand	Byte	Operation	S	Ζ	AC	P/V	СҮ	
CALL	!addr16	3	$(SP - 1) \leftarrow (PC + 3)_{H}, (SP - 2) \leftarrow (PC + 3)_{L},$ PC \leftarrow addr16, SP \leftarrow SP - 2						
	rp1	2	$(SP - 1) \leftarrow (PC + 2)$ H, $(SP - 2) \leftarrow (PC + 2)$ L, PCH \leftarrow rp1H, PCL \leftarrow rp1L, SP \leftarrow SP - 2						
	[rp1]	2	$(SP - 1) \leftarrow (PC + 2)_{H}, (SP - 2) \leftarrow (PC + 2)_{L},$ $PC_{H} \leftarrow (rp1 + 1), PC_{L} \leftarrow (rp1), SP \leftarrow SP - 2$						
CALLF	!addr11	2	$(SP - 1) \leftarrow (PC + 2)_{H}, (SP - 2) \leftarrow (PC + 2)_{L},$ $PC_{15-11} \leftarrow 00001, PC_{10-0} \leftarrow addr11, SP \leftarrow SP - 2$						
CALLT	[addr5]	1	$(SP - 1) \leftarrow (PC + 1)_{H}, (SP - 2) \leftarrow (PC + 1)_{L},$ $PC_{H} \leftarrow (TPF, 00000000, addr5 + 1),$ $PC_{L} \leftarrow (TPF, 00000000, addr5), SP \leftarrow SP - 2$						
BRK		1	$\begin{split} (SP-1) &\leftarrow PSW_{H}, (SP-2) \leftarrow PSW_{L}, \\ (SP-3) &\leftarrow (PC+1)_{H}, (SP-4) \leftarrow (PC+1)_{L}, \\ PC_{L} &\leftarrow (003EH), PC_{H} \leftarrow (003FH), \\ SP &\leftarrow SP-4, IE \leftarrow 0 \end{split}$						
RET		1	$PC_{L} \leftarrow (SP), PC_{H} \leftarrow (SP+1), SP \leftarrow SP+2$						
RETB		1	$\begin{array}{l} PC_{L} \leftarrow (SP), PC_{H} \leftarrow (SP+1), PSW_{L} \leftarrow (SP+2), \\ PSW_{H} \leftarrow (SP-3), SP \leftarrow SP+4 \end{array}$	R	R	R	R	R	
RETI		1	$\begin{array}{l} PC_{L} \leftarrow (SP), PC_{H} \leftarrow (SP+1), PSW_{L} \leftarrow (SP+2), \\ PSW_{H} \leftarrow (SP+3), SP \leftarrow SP+4, ISPRn \leftarrow 0^{\textbf{Note}} \end{array}$	R	R	R	R	R	

Note When using the RETI instruction, reset (0) the interrupt request corresponding bit that has the highest priority among the bits (n = 0 to 3) set (1) in the ISPR register.

Magazza	Oranged	Dute	Operation			Flag		
Mnemonic	Operand	Byte	Operation	S	Ζ	AC	P/V	СҮ
PUSH	sfrp	3	$(SP - 1) \leftarrow sfr_H, (SP - 2) \leftarrow sfr_L, SP \leftarrow SP - 2$					
	post	2	$\{(SP-1) \leftarrow post_{H}, (SP-2) \leftarrow post_{L}, SP \leftarrow SP-2\} \times n \text{ times}$					
	PSW	1	$(SP-1) \gets PSW_{H},(SP-2) \gets PSW_{L},SP \gets SP-2$					
PUSHU	post	2	$\{(UP-1) \leftarrow post_{H}, (UP-2) \leftarrow post_{L}, UP \leftarrow UP-2\} \times n \text{ times}$					
POP	sfrp	3	$sfr_{L} \leftarrow (SP), sfr_{H} \leftarrow (SP + 1), SP \leftarrow SP+2$					
	post	2	$\{\text{post}_{L} \leftarrow (\text{SP}), \text{post}_{H} \leftarrow (\text{SP + 1}), \text{SP} \leftarrow \text{SP + 2}\} \times n \text{times}$					
	PSW	1	$PSW_{L} \gets (SP), PSW_{H} \gets (SP+1), SP \gets SP+2$	R	R	R	R	R
POPU	post	2	{postL \leftarrow (UP), postH \leftarrow (UP + 1), UP \leftarrow UP + 2} × n times					
MOVW	SP, #word	4	$SP \leftarrow word$					
	SP, AX	2	$SP \leftarrow AX$					
	AX, SP	2	$AX \leftarrow SP$					
INCW	SP	2	$SP \leftarrow SP + 1$					
DECW	SP	2	$SP \leftarrow SP - 1$					

(17) Stack manipulation instructions: PUSH, PUSHU, POP, POPU, MOVW, INCW, DECW

Remark n indicates the number of registers specified in post.

(18) Special instructions: CHKL, CHKLA

Mnemonic	Operand	Puto	Operation		Flag		
	Operand	Byte	Operation	S	Z AC P/V CY		
CHKL	sfr	3	(Pin level) \forall (Signal level before output buffer)	×	×	Р	
CHKLA	sfr	3	$A \leftarrow \{(Pin \ level) \ \forall \ (Signal \ level \ before \ output \ buffer)\}$	×	×	Р	

(19) Unconditional branch instruction: BR

Mnemonic	Operand	Dute	Operation		Flag	
whemonic	Operand	Byte	Operation	S	Ζ	AC P/V CY
BR	!addr16	3	$PC \leftarrow addr16$			
	rp1	2	$PC_{H} \gets rp1_{H}, PC_{L} \gets rp1_{L}$			
	[rp1]	2	$PC_{H} \gets (rp1 + 1), PC_{L} \gets (rp1)$			
	\$addr16	2	$PC \leftarrow PC + 2 + jdisp8$			

(20) Conditional branch instructions: BC, BL, BNC, BNL, BZ, BE, BNZ, BNE, BV, BPE, BNV, BPO, BN, BP, BGT, BGE, BLT, BLE, BH, BNH, BT, BF, BTCLR, BFSET,

DBNZ

(1/2)

Mnemonic	Operand	Byte	Operation			Flag
Winemonic	Operand	Dyte	Operation	S	Ζ	AC P/V CY
BC	\$addr16	2	$PC \leftarrow PC + 2 + jdisp8$ if $CY = 1$			
BL						
BNC	\$addr16	2	$PC \leftarrow PC + 2 + jdisp8$ if $CY = 0$			
BNL						
BZ	\$addr16	2	$PC \leftarrow PC + 2 + jdisp8$ if Z = 1			
BE						
BNZ	\$addr16	2	$PC \leftarrow PC + 2 + jdisp8$ if $Z = 0$			
BNE						
BV	\$addr16	2	$PC \leftarrow PC + 2 + jdisp8$ if $P/V = 1$			
BPE						
BNV	\$addr16	2	$PC \leftarrow PC + 2 + jdisp8$ if $P/V = 0$			
BPO						
BN	\$addr16	2	$PC \leftarrow PC + 2 + jdisp8$ if $S = 1$			
BP	\$addr16	2	$PC \leftarrow PC + 2 + jdisp8$ if $S = 0$			
BGT	\$addr16	3	$PC \leftarrow PC + 3 + jdisp8 \text{ if } (P/V \ \forall \ S) \ \lor \ Z = 0$			
BGE	\$addr16	3	$PC \leftarrow PC + 3 + jdisp8 \text{ if } P/V \ \forall S = 0$			
BLT	\$addr16	3	$PC \leftarrow PC + 3 + jdisp8 \text{ if } P/V \ \forall S = 1$			
BLE	\$addr16	3	$PC \leftarrow PC + 3 + jdisp8 \text{ if } (P/V \ \forall \ S) \ \lor \ Z = 1$			
BH	\$addr16	3	$PC \gets PC + 3 + jdisp8 \text{ if } Z \lor CY = 0$			
BNH	\$addr16	3	$PC \gets PC + 3 + jdisp8 \text{ if } Z \lor CY = 1$			
вт	saddr.bit, \$addr16	3	$PC \leftarrow PC + 3 + jdisp8$ if (saddr.bit) = 1			
	sfr.bit, \$addr16	4	$PC \leftarrow PC + 4 + jdisp8$ if sfr.bit = 1			
	A.bit, \$addr16	3	$PC \leftarrow PC + 3 + jdisp8$ if A.bit = 1			
	X.bit, \$addr16	3	$PC \leftarrow PC + 3 + jdisp8$ if X.bit = 1			
	PSWH.bit, \$addr16	3	$PC \leftarrow PC + 3 + jdisp8$ if $PSW_{H.bit} = 1$			
	PSWL.bit, \$addr16	3	$PC \leftarrow PC + 3 + jdisp8$ if $PSW_L.bit = 1$			
BF	saddr.bit, \$addr16	4	$PC \leftarrow PC + 4 + jdisp8$ if (saddr.bit) = 0			
	sfr.bit, \$addr16	4	$PC \leftarrow PC + 4 + jdisp8$ if sfr.bit = 0			
	A.bit, \$addr16	3	$PC \leftarrow PC + 3 + jdisp8$ if A.bit = 0			
	X.bit, \$addr16	3	$PC \leftarrow PC + 3 + jdisp8$ if X.bit = 0			
	PSWH.bit, \$addr16	3	$PC \leftarrow PC + 3 + jdisp8$ if $PSW_{H}.bit = 0$			
	PSWL.bit, \$addr16	3	$PC \leftarrow PC + 3 + jdisp8$ if PSW_L .bit = 0			

(2/2)

Manager	Onerread	Dute	Que ensities			Flag		
Mnemonic	Operand	Byte	Operation	S	Ζ	AC	P/V	СҮ
BTCLR	saddr.bit, \$addr16	4	$PC \leftarrow PC + 4 + jdisp8$ if (saddr.bit) = 1 then reset (saddr.bit)					
	sfr.bit, \$addr16	4	$PC \leftarrow PC + 4 + jdisp8$ if sfr.bit = 1 then reset sfr.bit					
	A.bit, \$addr16	3	$PC \leftarrow PC + 3 + jdisp8 \text{ if A.bit} = 1$ then reset A.bit					
	X.bit, \$addr16	3	$PC \leftarrow PC + 3 + jdisp8 \text{ if } X.bit = 1$ then reset X.bit					
	PSWH.bit, \$addr16	3	$PC \leftarrow PC + 3 + jdisp8 \text{ if } PSW_H.bit = 1$ then reset PSW_H.bit					
	PSWL.bit, \$addr16	3	$PC \leftarrow PC + 3 + jdisp8 \text{ if } PSW_{L}bit = 1$ then reset $PSW_{L}bit$	×	×	×	×	×
BFSET	saddr.bit, \$addr16	4	$PC \leftarrow PC + 4 + jdisp8$ if (saddr.bit) = 0 then set (saddr.bit)					
	sfr.bit, \$addr16	4	$PC \leftarrow PC + 4 + jdisp8$ if sfr.bit = 0 then set sfr.bit					
	A.bit, \$addr16	3	$PC \leftarrow PC + 3 + jdisp8 \text{ if } A.bit = 0$ then set A.bit					
	X.bit, \$addr16	3	$PC \leftarrow PC + 3 + jdisp8 \text{ if } X.bit = 0$ then set X.bit					
	PSWH.bit, \$addr16	3	$PC \leftarrow PC + 3 + jdisp8 \text{ if } PSW_{H}.bit = 0$ then set PSW_H.bit					
	PSWL.bit, \$addr16	3	$PC \leftarrow PC + 3 + jdisp8 \text{ if } PSW_{L}bit = 0$ then set $PSW_{L}bit$	×	×	×	×	×
DBNZ	r2, \$addr16	2	$r2 \leftarrow r2 - 1$, then PC \leftarrow PC + 2 + jdisp8 if $r2 \neq 0$					
	saddr, \$addr16	3	$(saddr) \leftarrow (saddr) - 1$ then PC ← PC + 3 + jdisp8 if $(saddr) \neq 0$					

(21) Context switching instructions: BRKCS, RETCS, RETCSB

Mnemonic Operand		Byte	Operation		Flag			
WITEHTOTIC	Operand	Dyte	Operation		Ζ	AC	P/V	СҮ
BRKCS	RBn	2	$\begin{array}{l} RBS2-0 \leftarrow n, PCH \leftrightarrow R5, PCL \leftrightarrow R4, R7 \leftarrow PSW_{H}, \\ R6 \leftarrow PSW_{L}, RSS \leftarrow 0, IE \leftarrow 0 \end{array}$					
RETCS	!addr16	3	$\begin{array}{l} PC_{H} \leftarrow R5, PC_{L} \leftarrow R4, \\ R5 \leftarrow addr16_{H}, R4 \leftarrow addr16_{L}, \\ PSW_{H} \leftarrow R7, PSW_{L} \leftarrow R6 \end{array}$	R	R	R	R	R
RETCSB	!addr16	4	$\begin{array}{l} PC_{H} \leftarrow R5, PC_{L} \leftarrow R4, \\ R5 \leftarrow addr16_{H}, R4 \leftarrow addr16_{L}, \\ PSW_{H} \leftarrow R7, PSW_{L} \leftarrow R6 \end{array}$	R	R	R	R	R

(22) String instructions: MOVM, MOVBK, XCHM, XCHBK, CMPME, CMPBKE, CMPMNE, CMPBKNE, CMPBKNE,

Mnomonic	Mnemonic Operand		Operation			Flag		
WITEITIONIC	Operand	Byte	Operation		Ζ	AC	P/V	CY
MOVM	[DE+], A	2	$(DE+) \leftarrow A, C \leftarrow C - 1$, End if $C = 0$					
	[DE–], A	2	$(DE-) \leftarrow A, C \leftarrow C - 1$, End if $C = 0$					
MOVBK	[DE+], [HL+]	2	$(DE+) \leftarrow (HL+), C \leftarrow C - 1, End if C = 0$					
	[DE–], [HL–]	2	(DE–) \leftarrow (HL–), C \leftarrow C – 1, End if C = 0					
ХСНМ	[DE+], A	2	(DE+) \leftrightarrow A, C \leftarrow C – 1, End if C = 0					
	[DE–], A	2	(DE–) \leftrightarrow A, C \leftarrow C – 1, End if C = 0					
ХСНВК	[DE+], [HL+]	2	(DE+) \leftrightarrow (HL+), C \leftarrow C – 1, End if C = 0					
	[DE–], [HL–]	2	(DE–) \leftrightarrow (HL–), C \leftarrow C – 1, End if C = 0					
CMPME	[DE+], A	2	(DE+) – A, C \leftarrow C – 1, End if C = 0 or Z = 0	×	×	×	V	×
	[DE–], A	2	(DE–) – A, C \leftarrow C – 1, End if C = 0 or Z = 0	×	×	×	V	×
CMPBKE	[DE+], [HL+]	2	(DE+) – (HL+), C \leftarrow C – 1, End if C = 0 or Z = 0	×	×	×	V	×
	[DE–], [HL–]	2	(DE–) – (HL–), C \leftarrow C – 1, End if C = 0 or Z = 0	×	×	×	V	×
CMPMNE	[DE+], A	2	(DE+) – A, C \leftarrow C – 1, End if C = 0 or Z = 1	×	×	×	V	×
	[DE–], A	2	(DE–) – A, C \leftarrow C – 1, End if C = 0 or Z = 1	×	×	×	V	×
CMPBKNE	[DE+], [HL+]	2	(DE+) – (HL+), C \leftarrow C – 1, End if C = 0 or Z = 1	×	×	×	V	×
	[DE–], [HL–]	2	(DE–) – (HL–), C \leftarrow C – 1, End if C = 0 or Z = 1	×	×	×	V	×
СМРМС	[DE+], A	2	(DE+) – A, C \leftarrow C – 1, End if C = 0 or CY = 0	×	×	×	V	×
	[DE–], A	2	(DE–) – A, C \leftarrow C – 1, End if C = 0 or CY = 0	×	×	×	V	×
СМРВКС	[DE+], [HL+]	2	(DE+) – (HL+), C \leftarrow C – 1, End if C = 0 or CY = 0	×	×	×	V	×
	[DE–], [HL–]	2	(DE–) – (HL–), C \leftarrow C – 1, End if C = 0 or CY = 0	×	×	×	V	×
CMPMNC	[DE+], A	2	(DE+) – A, C \leftarrow C – 1, End if C = 0 or CY = 1	×	×	×	V	×
	[DE–], A	2	(DE–) – A, C \leftarrow C – 1, End if C = 0 or CY = 1	×	×	×	V	×
CMPBKNC	[DE+], [HL+]	2	(DE+) – (HL+), C \leftarrow C – 1, End if C = 0 or CY = 1	×	×	×	V	×
	[DE–], [HL–]	2	(DE–) – (HL–), C \leftarrow C – 1, End if C = 0 or CY = 1	×	×	Х	V	×

(23) CPU control instructions: MOV, SWRS, SEL, NOP, EI, DI

Mnemonic	Operand	Puto	Operation			Flag
winemonic	Operand	Byte			Ζ	AC P/V CY
MOV	STBC, #byte	4	$STBC \gets byte^{\mathbf{Note}}$			
	WDM, #byte	4	$WDM \gets byte^{Note}$			
SWRS		1	$RSS \leftarrow \overline{RSS}$			
SEL	RBn	2	$RBS2-0 \gets n,RSS \gets 0$			
	RBn, ALT	2	$RBS2 - 0 \leftarrow n, RSS \leftarrow 1$			
NOP		1	No operation			
EI		1	$IE \leftarrow 1$ (Enable interrupt)			
DI		1	$IE \leftarrow 0$ (Disable interrupt)			

Note An op-code trap interrupt occurs if an invalid op-code is specified in an STBC or WDM register manipulation instruction.

 $\begin{array}{ll} \text{Trap operation:} & (\text{SP}-1) \leftarrow \text{PSW}\text{H}, \ (\text{SP}-2) \leftarrow \text{PSW}\text{L}, \\ & (\text{SP}-3) \leftarrow (\text{PC}-4)\text{H}, \ (\text{SP}-4) \leftarrow (\text{PC}-4)\text{L}, \\ & \text{PC}\text{L} \leftarrow (003\text{CH}), \ \text{PC}\text{H} \leftarrow (003\text{DH}), \\ & \text{SP} \leftarrow \text{SP}-4, \ \text{IE} \leftarrow 0 \end{array}$

CHAPTER 19 INSTRUCTION EXECUTION RATE

19.1 Memory Space and Access Speed

19.1.1 Main RAM and peripheral RAM

The μ PD78366A has 2048-byte internal RAM^{Note 1} in the area between F700H and FEFFH. The internal RAM is divided into two large groups, main RAM and peripheral RAM, according to the access speed.

Main RAM is in the execution unit (EXU) and allows access at the highest speed.

- Main RAM (FE00H to FEFFH)
 1 clock per word
- Peripheral RAM (F700H to FDFFH)^{Note 2}: 3 + n clocks per word (When a word access to even addresses is executed.)

Notes 1. FC00H to FEFFH (768 bytes) in case of µPD78363A

2. FC00H to FDFFH in case of µPD78363A

Caution When a word access to the main RAM area (FE00H to FEFFH) (containing stack handling) is executed, addresses specified in operands are limited to even addresses.

Remark n is the number of wait cycles set by the programmable wait control register (PWC).

19.1.2 Memory access

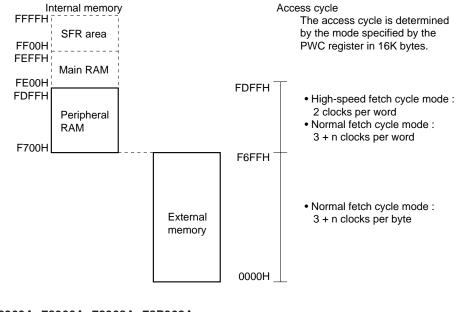
(1) Op-code fetch

(a) Access range

The μ PD78366A allows op-code fetch in the area between 0000H and FDFFH (refer to **Figure 19-1**). Op-code fetch is not allowed in the area between FE00H and FFFFH.

(b) Number of clocks required for access

The number of clocks required for op-code fetch can be specified by the PWC register in units of 16K bytes. The number of clocks depends on the area to be accessed. Only an area in internal memory can be specified in the high-speed fetch cycle mode.


Area to Be	Accessed	Access Cycle		
Peripheral RAM	Normal fetch	3 + n clocks per word		
	High-speed fetch 2 clocks per word			
External memory		3 + n clocks per byte		
Internal ROM ^{Note}	Normal fetch	3 + n clocks per word		
	High-speed fetch	2 clocks per word		

Note µPD78363A, 78366A and 78P368A only

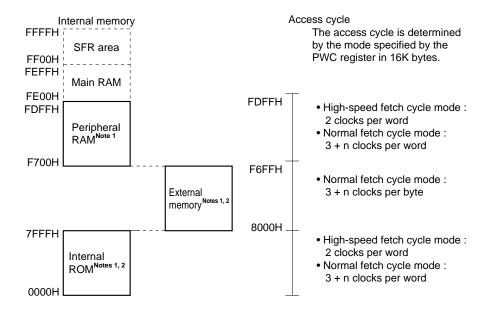

- **Remark** n is the wait count specified by the PWC register.
- Caution The PWC register specifies the mode of an area, irrespective of whether the area is in internal memory or external memory. After reset, the whole space is set in the normal fetch cycle mode.

Figure 19-1. Concept of Memory Access in Op-Code Fetch

(1) µPD78365A

(2) µPD78363A, 78366A, 78368A, 78P368A

- **Notes 1.** The following addresses are used in the case of the μPD78363A. Peripheral RAM (FC00H to FDFFH), external memory (6000H to FBFFH), internal ROM (0000H to 5FFFH)
 - 2. The following addresses are used in the case of the μ PD78368 and 78P368A. External memory (C000H to F6FFH), internal ROM (0000H to BFFFH)

Remark n is the wait count specified by the PWC register.

(c) Bus control signals (ASTB, \overline{RD} , and \overline{WR}) to be output during memory access

The μ PD78366A outputs bus control signals ASTB, \overline{RD} , and \overline{WR} during op-code fetch. Bus control signals to be output depend on areas to be accessed (refer to **Table 19-2**).

Table 19-2. Bus Control Signals to Be Output during Op-Code Fetch

(1) μ**PD78365A**

Area to Be Accessed		Address	ASTB	RD	WR
Peripheral RAM	Normal fetch	F700H-FDFFH	0	-	-
	High-speed fetch		_Note	-	_
External memory		0000H-F6FFH	0	0	-

Note The μ PD78365A outputs the ASTB signal only when the BR instruction is fetched.

Remark O: indicates that the signal is output.

-: indicates that the signal is not output (inactive-level signal output).

(2) µPD78363A, 78366A, 78368A, 78P368A

Area to Be Accessed		Address	ASTB	\overline{RD}	WR
Peripheral RAM	Normal fetch	F700H-FDFFH ^{Note 1}	0	—	_
	High-speed fetch		_Note 3	_	-
External memory		8000H-F6FFH ^{Notes 1, 2}	0	0	-
Internal ROM	Normal fetch	0000H-7FFFH ^{Notes 1, 2}	0	_	_
	High-speed fetch		_Note 3	_	_

Notes 1. The following addresses are used in the case of the μ PD78363A.

Peripheral RAM (FC00H to FDFFH), external memory (6000H to FBFFH), internal ROM (0000H to 5FFFH)

- **2.** The following addresses are used in the case of the μ PD78368A and 78P368A. External memory (C000H to F6FFH), internal ROM (0000H to BFFFH)
- 3. The ASTB signal is output only in the case of the BR instruction.

 $\ensuremath{\textit{Remark}}$ $\bigcirc:$ indicates that the signal is output.

-: indicates that the signal is not output (inactive-level signal output).

(2) Data access

While instructions such as MOV A,[HL] and SUB [DE+], A are being executed, data is read from or written into memory.

Phase-out/Discontinued

(a) Access range

The μ PD78366A allows data access to the whole 64K-byte range. In the address range between FE00H and FFFFH, access to internal memory has precedence. In the 16-byte external SFR area between FFD0H and FFDFH, however, external memory is accessed (refer to **Figure 19-2.**).

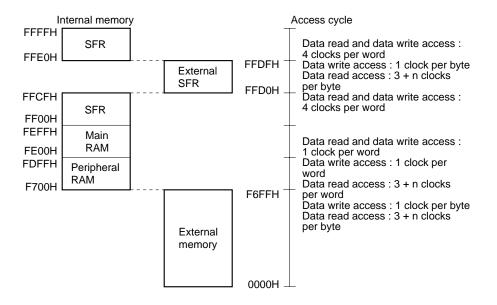
(b) Number of clocks required for access

The number of clocks required for data access depends on the area to be accessed.

Area to Be Accessed	Address	Read Access	Write Access
Main RAM	FE00H-FEFFH	1 clock per word	1 clock per word
SFR	FF00H-FFFFH	4 clocks per word	4 clocks per word
Internal ROM ^{Note 1}	0000H-7FFFH ^{Notes 2, 3}	3 + n clocks per word	-
Peripheral RAM	F700H-FDFFH ^{Note 2}		1 clock per word ^{Note 4}
External SFR	FFD0H-FFDFH	3 + n clocks per byte	1 clock per byte ^{Note 4}
External memory	_		

Table 19-3. Number of Clocks Required for Data Access

Remark n is the wait count specified by the PWC register.


Notes 1. µPD78363A, 78366A, 78368A and 78P368A only

- 2. In case of the µPD78363A, internal ROM (0000H to 5FFFH), peripheral RAM (FC00H to FDFFH).
- 3. In case of the μ PD78368A and 78P368A, internal ROM (0000H to BFFFH).
- 4. One clock is required to execute data write access to peripheral RAM, external SFR or external memory, in which only the address and data are passed to the bus control unit (BCU). However, the bus is occupied for the same time period as in data read access (3 + n clocks). When data access to this area is executed continuously after data write access, more clocks than indicated in the table may be required.

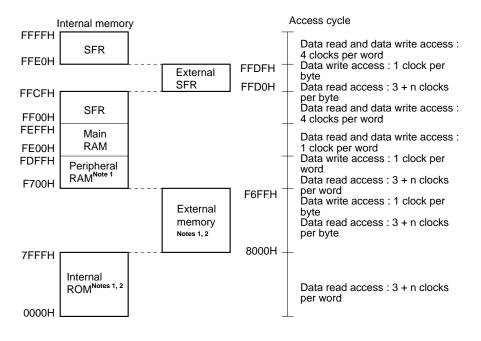

Write access		Read access	6				
Write access instruction	Instruction A	Instruction B		Read access instruction		Instruction A	Instruction B
Address and data			Address	, 1 1 1 1	Data		
BCU			BCU				

Figure 19-2. Concept of Memory Access in Data Access

(1) µPD78365A

(2) µPD78363A, 78366A, 78368A, 78P368A

- Notes 1. The following addresses are used in the case of the μPD78363A. Peripheral RAM (FC00H to FDFFH), external memory (6000H to FBFFH), internal ROM (0000H to 5FFFH)
 - **2.** The following addresses are used in the case of the μ PD78368A and 78P368A. External memory (C000H to F6FFH), internal ROM (0000H to BFFFH)

Remark n is the wait count specified by the PWC register.

(c) Bus control signals (ASTB, \overline{RD} , and \overline{WR}) to be output during memory access

The μ PD78366A outputs bus control signals ASTB, \overline{RD} , and \overline{WR} during data access. Bus control signals to be output depend on areas to be accessed (refer to **Table 19-4**).

Phase-out/Discontinued

Table 19-4. Bus Control Signals to Be Output during Data Access

Area to Be Accessed	Address	ASTB	RD	WR
SFR	FFE0H-FFFFH FF00H-FFCFH	_	-	-
External SFR	FFD0H-FFDFH	0	0	0
Main RAM	FE00H-FEFFH	_	-	-
Peripheral RAM	F700H-FDFFH	0	_	-
External memory	0000H-F6FFH	0	0	0

(1) μ**PD78365A**

Remark O: indicates that the signal is output.

-: indicates that the signal is not output (inactive-level signal output).

(2) µPD78363A, 78366A, 78368A, 78P368A

Area to Be Accessed	Address	ASTB	RD	WR
SFR	FFE0H-FFFFH	-	_	-
	FF00H-FFCFH			
External SFR	FFD0H-FFDFH	0	0	0
Main RAM	FE00H-FEFFH	_	-	Ι
Peripheral RAM	F700H-FDFFH ^{Note 1}	0	_	-
External memory	8000H-F6FFH ^{Notes 1, 2}	0	0	0
Internal ROM	0000H-7FFFH ^{Notes 1, 2}	0	_	_

Notes 1. The following addresses are used in the case of the μPD78363A. Peripheral RAM (FC00H to FDFFH), external memory (6000H to FBFFH), internal ROM (0000H to 5FFFH)

2. The following addresses are used in the case of the μ PD78368A and 78P368A. External memory (C000H to F6FFH), internal ROM (0000H to BFFFH)

Remark O: indicates that the signal is output.

-: indicates that the signal is not output (inactive-level signal output).

19.2 Interrupt Execution Rate

The following tables list interrupt execution rates. The time required to determine the priority is ignored in the tables. The priority is determined every two clocks. The time required to determine the priority ranges from zero to two clocks, depending on when the interrupt occurs.

n is the wait count specified by the PWC register.

(1) Vectored interrupt service

Stack	Number of Clocks
Main RAM (FE00H-FEFFH)	21 + 2n
Peripheral RAM (F700H-FDFFH) ^{Note 1}	25 + 2n/33 + 2n ^{Note 2}
External memory	33 + 6n

Notes 1. In case of μ PD78363A, FC00H to FDFFH

2. Even address/odd address

(2) Context switching processing

Number of clocks: 17 + 2n clocks

(3) Macro service processing

Macro Service		Number of Clocks			
		Byte Operation	Word Operation		
EVTCNT		12			
$BLKTRS\;mem\toSFR$		18	19		
$BLKTRS\;SFR\tomem$		17	18		
$BLKTRS\text{-}P \text{ mem} \to SFR$	(IRAM)	20	21		
	(PRAM)	22	23/27 ^{Note}		
	(EMEM)	22 + n	27 + 2n		
$BLKTRS\text{-}P\;SFR\tomem$	(IRAM)	20	21		
	(PRAM)	22	23/27 ^{Note}		
	(EMEM)	22 + n	27 + 2n		
DTADIF		-	22		
DTADIF-P	(IRAM)	_	26		
	(PRAM)		28/32 ^{Note}		
	(EMEM)		32 + 2n		

Note Even address/odd address

19.3 Calculating Number of Execution Clocks

This section describes the procedure for calculating the number of instruction execution clocks.

(1) Calculating number of basic clocks

- (a) When a program is held in internal ROM or peripheral RAM (F700H to FDFFH) in the high-speed fetch mode
 - $\rightarrow\,$ The total number of clocks is the number of basic clocks.
- (b) When a program is usually held in external memory in the normal fetch mode
 - $\rightarrow\,$ The larger value of the following two is taken as the number of basic clocks:
 - Total number of clocks
 - Total number of bytes of executed instruction \times (3 + n)
 - n is the wait count specified by the PWC register.

When the high-speed fetch mode is not specified, the number of basic clocks is calculated according to procedure (b) above even if the program is in internal ROM or peripheral RAM.

Example of calculation µPD78366A (Internal clock of 16 MHz, wait 0, main RAM specified by [HL])

		Number of bytes	Number of clocks
MOV	A, [HL]	1	6
ADD	А, В	2	3
MOV	[HL], A	1	5
		4	14

The time to execute this program is calculated as follows:

(a) When the program is held in internal ROM

Number of execution clocks: 14 14 \times 0.0625 μ s = 0.875 μ s

(b) When the program is held in external memory

Number of execution clocks: $4 \times 3 = 12 < 14$ Taking the number of execution clocks as 14, the calculation shown in (a) above is performed. The calculated execution time is 0.875 μ s.

(2) Adding a correction factor to the number of basic clocks

(a) Accessing the SFR area (FF00H to FF1FH) by an instruction having saddr or saddrp as an operand

 $\rightarrow~$ Each time an access is made four clocks are added.

Table 19-5. Number of saddr Accesses by Instruction (1/2)

	Instruction	Number of Accesses
MOV	saddr, #byte	1
	A, saddr	
	saddr, A	
	saddr, saddr	1/2 ^{Note 2}
	A, [saddrp]	1
	[saddrp], A	
ХСН	A, saddr	2
	A, [saddrp]	1
	saddr, saddr	2/4Note 2
MOVW	saddrp, #word	1
	AX, saddrp	
	saddrp, AX	
	saddrp, saddrp	1/2 ^{Note 2}
XCHW	AX, saddrp	2
	saddrp, saddrp	2/4 ^{Note 2}
ALUNote 1	saddr, #byte	2
	A, saddr	1
	saddr-D, saddr-S	1/2/3Note 3
СМР	saddr, #byte	1
	A, saddr	
	saddr, saddr	1/2 ^{Note 2}

Notes 1. ALU: ADD, ADDC, SUB, SUBC, AND, OR, XOR

- 2. When either or both are in the SFR area
- 3. When only the source (saddr-S), only the destination (saddr-D), or both are in the SFR area

	Instruction	Number of Accesses
ADDW, SUBW	saddrp, #word	2
	AX, saddrp	1
	saddrp-D, saddrp-S	1/2/3 ^{Note 1}
CMPW	saddrp, #word	1
	AX, saddrp	
	saddrp-D, saddrp-S	1/2 ^{Note 2}
INC, DEC	saddr	2
INCW, DECW	saddrp	2
MOV1	CY, saddr.bit	1
	saddr.bit, CY	2
AND1, OR1	CY, saddr.bit	1
	CY, /saddr.bit	
XOR1	CY, saddr.bit	1
SET1, CLR1, NOT1	saddr.bit	2
BT, BF	saddr.bit, \$addr16	1
BTCLR, BFSET	saddr.bit, \$addr16	2
DBNZ	saddr.bit, \$addr16	2

Table 19-5.	Number o	f saddr	Accesses	by	Instruction	(2/2)
-------------	----------	---------	----------	----	-------------	-------

- Notes 1. When only the source (saddr-S), only the destination (saddr-D), or both are in the SFR area2. When either or both are in the SFR area
 - (b) To access the following SFR area by an instruction having operand sfr or sfrp Correction value = number of clocks increased per access × access count

Accessed SFR	No. of Clocks Increased per Access		
Accessed SFR	At Read	At Write	
MM	n/0 ^{Note}		
PWC	0/1 ^{Note}		

Note At normal fetch/high-speed fetch

Remark n is the wait count specified by the PWC register.

(c) Branch instruction and CALL instruction

A branch or CALL instruction clears the instruction queue. Before the instruction following the branch instruction is executed, the additional clocks shown below are required:

In the high-speed fetch mode: 7 to 8 clocks In the normal fetch mode : 7 to 10 + n clocks

The number of clocks to be added depends on when op-code fetch is executed and varies in the range shown above.

CHAPTER 20 CAUTIONS

Phase-out/Discontinued

This chapter collects the cautions described in each chapter. Read this chapter before developing application products. The number enclosed in parentheses represents the page on which the caution is initially described.

20.1 Cautions for CHAPTER 2 PIN FUNCTIONS

- (1) When the RESET signal is input, pins P00-P07 (port 0), P10-P17 (port 1), P30-P36 (port 3), and P80-P85 (port 8) are set to the input mode (output high impedance). The contents of the output latch becomes indefinite. (p.17-19, 22)
- (2) When the RESET signal is input, pins P40-P47 (port 4), P50-P57 (port 5), and P90-P93 (port 9) are set to the input mode (output high impedance) in either of port mode or external memory expansion mode. The contents of the output latch becomes indefinite. (p.20, 21, 23)
- (3) Connect the MODE0 and MODE1 pins directly to VDD or Vss. (p.23)
- (4) The μ PD78P368A cannot be set in the ROM-less mode. (p.23)

20.2 Cautions for CHAPTER 3 CPU ARCHITECTURE

- (1) The μ PD78P368A cannot be set in the ROM-less mode. (p.33)
- (2) When a word access to the main RAM area (FE00H to FEFFH) (containing stack handling) is executed, addresses specified in operands are limited to even addresses. (p.30-33, 46, 56-59)
- (3) When a word access to the main RAM area (FE00H-FEFFH) (containing stack handling) is executed, the access operation varies, depending on whether the reference address is even or odd. Therefore, if an access to an even address and an access to an odd address are mixed, an error is caused. Specify only even reference addresses. To execute a 16-bit data transfer instruction, specify even addresses in operands. If odd addresses are specified, an error occurs in the assembler package (RAM78K3). (p.35)
- (4) Do not make a word access across the peripheral RAM area and main RAM area. (p.35)
- (5) Unmapped addresses of the special function register cannot be accessed (except the external access area).
 (p.39)
- (6) The vector tables for the RESET input, BRK instruction, and op-code trap interrupt are fixed to 0000H, 003EH, and 003CH, respectively. They are not affected by the TPF. (p.46)
- (7) Write 0 or 1 into any bit of the special function register (SFR) correctly whenever it is predetermined to be so. (p.50)
- (8) Do not write data into the register which is only used for data reading. Writing data into such registers may result in an error. (p.50)

- Phase-out/Discontinued
- (9) The SFR area addresses (FF00H to FFFFH) to which a special function register is not assigned cannot be accessed (except the external access area). Accessing these addresses may result in an error. (p.50)
- (10) When the read data is used as byte data, take care of the undefined bit before use. (p.50)
- (11) The timer out register (TOUT), serial transmission shift register (TXS) are write-only registers. Do not read from them. (p.50)
- (12) Bits 0, 1 and 4 of the serial bus interface control register (SBIC) are write-only bits. If these bits are read, the value read is 0. (p.50)

20.3 Cautions for CHAPTER 5 PORT FUNCTIONS

- (1) In the μ PD78365A and in the ROM-less mode of μ PD78363A, 78366A, and 78368A, ports 4, 5, and 9 (lower 2 bits) do not function as ports. (p.65)
- (2) The pins functioning as input pins in the control mode may operate erroneously if the corresponding bits of the port mode register are rewritten during the operation. Therefore, write into the port mode register when the system is initialized, etc. Do not dynamically rewrite the bits during operation. (p.69)
- (3) Bits 7 to 1 of the port read control register (PRDC) are fixed to "0" by hardware. Even if "1" is written to them, they remain "0". (p.72)
- (4) If the PRDC register is in the pin access mode (PRDC0 = 1), no bit manipulation instruction for a port operates normally. After a port check is completed, be sure to reset the mode to the normal mode (PRDC0 = 0). (p.73)
- (5) If an interrupt occurs when the PRDC register is in the pin access mode, a bit manipulation instruction may be executed in the same mode. This will cause an error. Before starting a check, be sure to set the DI state. In addition, do not use macro services that manipulate ports. (p.73)
- (6) Non-maskable interrupts are unavoidable if the PRDC register is in the pin access mode. So, the following provisions should be made in the program as required: (p.73)
 - The non-maskable interrupt routine is to perform no port manipulation.
 - The level of PRDC.0 is to be saved at the start of the nonmaskable interrupt routine, then is restored when control is returned.
- (7) The pin access mode is a function to access the pin status of an output port. If a pin set in the input port mode (PMXn = 1) is read in the pin access mode (PRDC0 = 1), "0" is read regardless of the input level. (p.73)
- (8) Use the CHKL and CHKLA instructions only when the PRDC0 bit of the PRDC register is set to 0 (normal mode).
 (p.74)
- (9) In the case of those input/output port pins that are set to the input port mode, the results of the CHKL or CHKLA instructions always match no matter whether they are set in the port mode or control mode. In the case of the dedicated input port, because it is not provided with output latch, the input pin level is read when the CHKL or CHKLA instruction is executed. Thus, the CHKL or CHKLA instruction is actually invalid for the dedicated input port and these instructions should not be used. (p.74)

- (10) If the CHKL or CHKLA instruction is executed with port 4 set to the input port mode or extended mode, a mismatch may be generated (a mismatch is generated if the pin level changes in execution of the CHKL or CHKLA instruction). Therefore, while port 4 is set to the input port mode or extended mode, do not execute these instructions. (p.74)
- (11) Set control output pins to the input mode before executing the CHKL or CHKLA instruction to check the output level of the pin of a port where control and port output pins are used together. (The output level of a control pin cannot be checked with the CHKL or CHKLA instruction because the output level varies asynchronously.) (p.74)
- (12) Bits 3, 4 and 7 of the memory expansion mode register (MM) are fixed to "0" by hardware. Even if "1" is written to them, they remain "0". (p.85)
- (13) Invalid combinations are specified as "Setting prohibited" in format of MM register. Never write these combinations. (p.85)
- (14) The P20/NMI pin does not contain a pull-up resistor on hardware. Therefore, even if PUO2 is set to 1, no internal pull-up resistor is contained in the P20/NMI pin. (p.86)
- (15) To emulate the μ PD78366A with the IE-78350-R, the internal pull-up resistors of ports 1, 4, 5, and 9 are invalid even if the PUO1, PUO4, PUO5, and PUO9 bits of the pull-up resistor option register (PUOL, PUOH) registers are set to "1". To use the pull-up resistor, set the corresponding bit to "1" to share the software between the IE-78350-R and μ PD78366A, and connect an external pull-up resistor. (p.87)
- (16) Bits 7 and 6 of the PUOL register and bits 7 to 2 of the PUOH register are fixed to "0" by hardware. Even if "1" is written to them, they remain "0". (p.87)

20.4 Cautions for CHAPTER 6 CLOCK GENERATOR

- (1) When using an external clock, do not set the STOP mode. (p.89)
- (2) When using a system clock oscillation circuit, wire as follows to prevent adverse influence from wiring capacitance: (p.90)
 - Keep the wiring length as short as possible.
 - Do not cross the wiring with any other signal lines. Do not route the wiring in the vicinity of line through which a high alternating current flows.
 - Always keep the ground potential for the capacitor in the oscillation circuit at the same potential as Vss. Do not ground the capacitor to a ground pattern through which a high current flows.
 - Do not extract any signal from the oscillation circuit.
- (3) Make sure that a load such as wiring capacitance is not connected to the X2 pin when inputting an external clock. (p.90)

20.5 Cautions for CHAPTER 7 REAL-TIME PULSE UNIT

- (1) Data of the timer out register (TOUT) is output to port 8 if port 8 is in control mode (TO00 to TO05 outputs) and TM0 is in the general-purpose interval timer mode or PWM mode 1. Otherwise, the TOUT data is not output to port 8 and it is therefore impossible to read the TOUT contents. (p.101)
- (2) Specification of the ALVTO bit of timer unit mode register 0 (TUM0) is only valid for pins set to the control mode (TO00 to TO05) by the port 8 mode control register (PMC8), and when TM0 is in PWM mode 0 (symmetrical triangular wave, asymmetrical triangular wave, toothed wave). (p.104)
- (3) Specification of the ICME bit of the TUM0 register is only valid when TM0 is in the general-purpose interval timer mode (TMOD02 = 0). (p.104)
- (4) It is prohibited to change bits RMOD, TMOD02 to TMOD00 and ALVTO of the TUM0 register during the operation of TM0 (CE0 = 1) and DTM0 to DTM2 (CED = 1). (p.104)
- (5) After the valid edge of NMI has been generated, the valid edge generation signal is retained for the duration of about 20 system clocks. If the TODIS0 bit is changed from "0" to "1" during this period, the TO00 through TO05 pins are set to OFF by the NMI that has been already generated. It is recommended that the TODIS0 bit be manipulated in the NMI routine except when the system is initialized. (p.105)
- (6) Bit 6 of the timer control register 0 (TMC0) is fixed to "0" by hardware. Even if "1" is written, it remains "0". (p.107)
- (7) It is prohibited to change bits B3TR, PRM02 to PRM00 of the TMC0 register during the operation of TM0 (CE0 = 1). (p.107)
- (8) If CE0 is set to 0 (TM0 stop), the U/D flag is cleared to 0 (p.107).
- (9) The CED bit of the timer control register 1 (TMC1) controls the three dead time timers (DTM0-DTM2). (p.108)
- (10) Bits 6 to 4 and 2 of the TMC1 register are fixed to "0" by hardware. Even if "1" is written, they remain "0".
 (p.108, 142)
- (11) It is prohibited to change the CED bit of the TMC1 register during the operation of TM0 (CE0 = 1). (p.108)
- (12) Bit 1 of the INTM0 register is fixed to "0" by hardware. Even if "1" is written, it remains "0". (p.109 160)
- (13) Setting of CM03 = 0000H is prohibited. (p.111, 113, 120, 129, 137)
- (14) If such values are set that the active width of positive phase or negative phase becomes "0" or "minus" according to the above calculation methods, pins TO00 to TO05 output a waveform with "0" active width and fixed at the inactive level. (p.115, 122, 131)

- Phase-out/Discontinued (15) When timer 0 is in PWM mode 0 (toothed modulation), in the 1st cycle, even if CM00 to CM02 match, F/F does not change. Therefore, the positive phase (TO00, TO02 and TO04) of the output remains at the
- inactive level and the negative phase (TO01, TO03 and TO05) remains at the active level. The PWM waveform can be output from the 2nd cycle. The active level is set by the ALVTO bit of the TUM0 register. (p.129)
- (16) SBUF0 to SBUF5 and MBUF0 to MBUF5 are 8-bit access registers. However, only the lower 6 bits are output to TO00 to TO05. The higher 2 bits are ignored (fixed to "0" by hardware). (p.137)
- (17) It is prohibited to change the PRM11 and PRM10 bits of the TMC1 register during the operation of TM1 (CE1 = 1). (p.142)
- (18) To use CC20 as a compare register (CCM2 = 1), INTP3 cannot be used as an external interrupt pin. (p.147)
- (19) The CC20 incorporates the compare register and capture register separately on hardware. Either of the two can be selected by setting timer control register 2 (TMC2). Writing is only possible to the compare register. Reading of contents is possible from either register which is selected. (p.147)
- (20) Bits 6 and 5 of the TMC2 register are fixed to "0" by hardware. Even if "1" is written, they remain "0". (p.147)
- (21) It is prohibited to change the CCM2, CLR2 and PRM22 to PRM20 bits of the TMC2 register during the operation of TM2 (CE2 = 1). (p.147)
- (22) Bits 7 to 4 of the INTM1 register are fixed to "0" by hardware. Even if "1" is written, they remain "0". (p.148, 160)
- (23) INTCC20 and INTP3 share the interrupt vector table. (p.151)
- (24) To use CC30 as a compare register (CCM3 = 1), INTP0 cannot be used as an external interrupt pin. (p.159)
- (25) The CC30 incorporates the compare register and capture register separately on hardware. Either of the two can be selected by the setting of timer control register 3 (TMC3). Writing is only possible to the compare register. Reading of contents is possible from either register which is selected. (p.159)
- (26) Bits 6 and 5 of the TMC3 register are fixed to "0" by hardware. Even if "1" is written, they remain "0". (p.159)
- (27) It is prohibited to change the CCM3, CLR3 and PRM32 to PRM30 bits of the TMC3 register during the operation of TM3 (CE3 = 1). (p.159)
- (28) Bits 7 to 2 of the SMPC1 register are fixed to "0" by hardware. Even if "1" is written, they remain "0". (p.162)
- (29) INTCC30 and INTPO share the interrupt vector table. (p.164)
- (30) The specification by the bits 0, 1, and 4-6 of the timer unit mode register 1 (TUM1) are valid only when CMD = 1. The specification of the bits 2 and 3 are valid only when CMD = 0. (p.174)
- (31) If the operation of TM4 is set in mode 4 (specified by the TMC4 register), the specification (made by the TUM1 register) of the valid edge of the TIUD pin is invalid. (p.174, 179, 186, 191)

- (32) It is prohibited to change each bit of the TUM1 register during the operation of TM4 (CE4 = 1). (p.174)
- (33) The specification of the \overline{U}/D bit of timer control register 4 (TMC4) is valid only when CMD = 1. (p.176)
- (34) It is prohibited to change the ENMD, U/D, I/E, PRM41 and PRM40 bits of timer control register 4 (TMC4) during the operation of TM4 (CE4 = 1). (p.176)
- (35) The TMC4 register's manipulation of the U/D bit varies depending on the setting of the CMD bit of the TUM1 register as follows. (p.178)

When CMD = 0,

- → The U/D bit is fixed to "0" by hardware. Even if "1" is written, it remains "0". If this bit is read, the value read is always "0".
- When CMD = 1 and the internal clock is selected,
- \rightarrow The U/D bit is write-enabled. If reading operation is applied to it, the written value is read.
- When CMD = 1 and the external clock is selected,
 - → Writing to the U/D bit is not possible by hardware. If reading operation is applied to it, the up/down status of TM4 is read.
- (36) While TM4 is stopped (CE4 = 0), even if "1" is written to the \overline{U}/D bit, it remains "0" as it is not possible to rewrite it. If it is desirable to allow TM4 perform down operation from the beginning, simultaneously set (1) the CE4 bit and \overline{U}/D bit of the TMC4 register by the MOV instruction. (p.178, 185)
- (37) Setting ENMD = 1 is prohibited in the UDC mode. (p.183)
- (38) If the TIUD pin edge and TCUD pin edge are input simultaneously in mode 4 of TM4, TM4 continues counting while maintaining the same up/down operation immediately before the input. (p.191)
- (39) The real-time output port register (RTP) is an 8-bit access register. When the RTP register is read, the data set in the RTP register is placed in the lower 4 bits. The higher 4 bits are fixed to "0" by hardware, and therefore "0" is read. (p.195)
- (40) Bits 7, 6, 3 and 2 of the real-time output port mode register (RTPM) are fixed to "0" by hardware. Even if "1" is written to them, they remain "0". (p.196)
- (41) The higher 4 bits of the RTP register have no latch circuit and are fixed to "0". Therefore, even if "1" is written to the higher 4 bits, they remain "0". (p.197)

20.6 Cautions for CHAPTER 8 A/D CONVERTER

- (1) Connect a capacitor to the analog input pins (ANI0-ANI7) and reference voltage input pin (AVREF) to prevent malfunctioning due to noise. (p.201)
- (2) Do not apply a voltage exceeding the range of AVss to AVDD to the pins used as the input pins of the A/D converter. (p.201, 209)
- (3) Observe the ratings of the voltage input to ANI0-ANI7. If a voltage exceeding VDD or falling below Vss (even if the voltage is in the range of the absolute maximum ratings) is input to these pins, the conversion value of the channel is undefined. In addition, the conversion value of the other channels may also be affected. (p.202)

- Phase-out/Discontinued
- (4) The A/D converter of the μPD78366A cannot stop conversion. Therefore, when data has been set to the ADM register, conversion operation continues in the set operation mode, until the contents of the ADM register are rewritten. (p.206)
- (5) When performing branch processing directly using the values resulting from the A/D conversion, if a program is created that branches only when the conversion result reaches a specific value, the conversion result may not reach that specific value due to the effect of a conversion error and the program may not be able to branch according to the prescribed routine. Therefore, create a program that will branch when the conversion result is within the range of the overall error. (p.212)
- (6) To execute the select operation by using the software trigger, and to start A/D conversion in the scan mode again, the A/D conversion executed before the software trigger was input is resumed. (p.219, 221)
- (7) To execute the select operation by using the external trigger or interrupt trigger and to start A/D conversion in the scan mode again, the A/D conversion executed before the external trigger or interrupt trigger was input is resumed. (p.219, 221)

20.7 Cautions for CHAPTER 9 ASYNCHRONOUS SERIAL INTERFACE

- (1) Bit 7 of the asynchronous serial interface mode register (ASIM) is fixed to "1" by hardware. Even if "0" is written to it, it remains "1". (p.229, 233, 235, 243)
- (2) Usually, the transmission end interrupt (INTST) occurs when the transmit shift register (TXS) becomes empty. However, the interrupt does not occur even if the transmission shift register becomes empty due to the RESET input. (p.240, 241)
- (3) Data written to the TXS register is invalid while a transmission operation is in progress, until INTST is generated. (p.240)
- (4) Be sure to read the receive buffer (RXB) even when a reception error has occurred. Otherwise, an overrun error occurs when the next data is received, and the reception error status persists. (p.243, 247)
- (5) The contents of the asynchronous serial interface status register (ASIS) are reset (to 0) when the receive buffer (RXB) is read or when the next data is received. To identify the nature of the error, be sure to read the ASIS register before reading the receive buffer (RXB). If the received data is transferred to memory using a macro service, the reception buffer (RXB) is read during

the reception of serial data, and therefore the ASIS register is reset (0). Thus, it is not possible to know more than the fact that an error has occurred. Be sure to check if there is no problem concerning this point before using the register.

An error can be detected when the reception error interrupt request flag (SERIF) is set (1) or by acknowledgment of a reception error interrupt (INTSER). (p.247)

(6) Bits 7 to 3 of the ASIS register are fixed to "0" by hardware. Even if "1" is written to them, they remain "0". (p.247)

20.8 Cautions for CHAPTER 10 CLOCKED SERIAL INTERFACE

- Selection of a serial clock is performed in asynchronous with the serial clock. If the serial clock is changed while communication is in progress, a serial clock of undefined width may be output. Do not change the serial clock during communication. (p.255)
- (2) Since the serial data bus pin (SB0 or SB1) serves as an open-drain output pin in the SBI mode, the serial data bus line is wired-ORed. Therefore, a pull-up resistor must be connected to the serial data bus line. (p.272)
- (3) To exchange the master with a slave in the SBI mode, the input mode and output mode of SCK of the master and slave is switched asynchronously. Therefore, a pull-up resistor must also be connected to SCK. (p.272)
- (4) The transition of the SB0 (SB1) line (transition from low to high or high to low) while the SCK line is high in the SBI mode is recognized as a bus release signal or a command signal. If the timing of changes on the bus shifts due to the influence of board capacitance, etc., a bus release signal (or a command signal) may be detected even while data is being transmitted. Exercise care when routing the wiring. (p.274)
- (5) Do not manipulate the RELT and CMDT bits of the serial bus interface control register (SBIC) during transmission/reception. (p.282)
- (6) Be sure to specify a pin and serial clock before setting the CTXE and CRXE bits in the SBI mode. (p.286)

20.9 Cautions for CHAPTER 11 PWM SIGNAL OUTPUT FUNCTION

- (1) To output PWM signal, be sure to set CNTE bit of PWM control register 1 (PWMC1) to 1. (p.296)
- (2) The PWMC1 register is a control register common to PWM0 and PWM1. (p.296)
- (3) Bits 4 to 7 of the PWMC1 register are fixed to "0" by hardware. Even if "1" is written to them, they remain "0". (p.296)
- (4) A byte access/bit access can be made to the low-order part of the PWM0/PWM1 register, but cannot be made to the high-order part. (p.296)
- (5) Bits 12 to 15 of the PWM0/PWM1 registers are fixed to "0" by hardware. Even if "1" is written to them, they remain "0". (p.296)

20.10 Cautions for CHAPTER 12 WATCHDOG TIMER

- (1) Data can be written into the watchdog timer mode register (WDM) only by a dedicated instruction (MOV WDM, #byte). (p.301)
- (2) Set the priority of interrupt requests by the WDM register at the time of initialization of the application system such as initialization of the stack pointer, and do not dynamically change it in execution of the program. (p.301)
- (3) Once it is set (1), the RUN bit of the WDM register cannot be reset to 0 by software. (p.301)
- (4) The count clock is not reset even when the watchdog timer is cleared by setting the RUN bit of the WDM register to 1. (p.301)

- Phase-out/Discontinued
- (5) If a watchdog timer interrupt and NMI interrupt are generated simultaneously when PRC = 1 (INTWDT > NMI), execute the watchdog timer interrupt service routine after executing the first 1 instruction of the NMI interrupt service routine. Therefore, when used with the PRC = 1 setting, use an NOP instruction as the first instruction of the NMI interrupt service routine. (p.301)
- (6) Bits 6, 5 and 0 of the WDM register are fixed to "0" by hardware. Even if "1" is written to them, they remain "0". (p.301)
- (7) Be sure to write 0 to bit 3 of the WDM register. (p.301)
- (8) Immediately after the power is turned on, the watchdog timer output pin (WDTO) may go low for a period of up to 32 clocks. (p.302)
- (9) If the watchdog timer is operating as a timer for the oscillation stabilization time after release of the STOP mode, the WDTO pin remains at the inactive level even if an overflow occurs. (p.302)

20.11 Cautions for CHAPTER 13 INTERRUPT FUNCTION

- (1) Bits 3 and 2 of the interrupt control register are fixed to "0" by hardware. Even if "1" is written to them, they remain "0". (p.311, 312)
- (2) Bits 6 to 0 of the interrupt mode control register (IMC) are fixed to "0" by hardware. Even if "1" is written to them, they remain "0". (p.315)
- (3) The in-service priority register (ISPR) is a read-only register. Writing to it may cause misoperation. (p.316)
- (4) Bits 7 to 4 of the ISPR register are fixed to "0" by hardware. Even if "1" is written to them, they remain "0".
 (p.316)
- (5) A macro service request is acknowledged and serviced even in a non-maskable interrupt service routine. If it is desirable not to execute a macro service in the non-maskable interrupt service routine, manipulate the mask flag register during the non-maskable interrupt service routine to prevent any macro service from being generated. (p.321)
- (6) Be sure to use the RETI instruction for restoring from the non-maskable interrupt. Acknowledgment of subsequent interrupts otherwise would not be normally carried out by other instructions. (p.321)

Phase-out/Discontinued

(7) A non-maskable interrupt always is acknowledged except when another non-maskable interrupt is being serviced (unless a non-maskable interrupt request with higher priority is generated while a non-maskable interrupt with lower priority is being serviced) and except for a certain period after execution of a specific instruction shown in 13.9. Therefore, a non-maskable interrupt is also acknowledged when the stack pointer value is undefined, especially after release of a reset, etc. In this case, depending on the stack pointer value, the program counter (PC) or program status word (PSW) may be written to the address where writing to the special function register is disabled (refer to **Table 3-4** in **3.2.3 Special function register (SFR)**). This will cause the CPU to deadlock, or an unexpected signal to be output from the pin or PC or PSW to be written to the address where no RAM is mounted, in which case the program cannot return normally from the non-maskable interrupt service routine to the main routine and it goes into an inadvertent loop. Therefore, be sure to program as follows after release of RESET. (p.321)

CSEG AT 0 DW STRT STRT: MOVW SP, #imm16

- (8) If a maskable interrupt is acknowledged by a vectored interrupt, be sure to restore the program by the RETI instruction. Operation of subsequent interrupts otherwise would not be normally carried out by other instructions. (p.324)
- (9) Be sure to use the RETCS instruction for returning from the interrupt by context switching. Operation of subsequent interrupts otherwise would not be normally carried out by other instructions. (p.325)
- (10) Do not use the RETI instruction to restore from a software interrupt executed by the BRK instruction. (p.332)
- (11) If the context switching function is activated by executing the BRKCS instruction, resetting (0) the ISPR register bits while the RETCS instruction may destroy the interrupt nesting control.
 Be sure to use the RETCSB instruction to restore from the processing activated by the BRKCS instruction. (p.334)
- (12) If data is transmitted by UART, using the macro service, a vectored interrupt request is generated two times (p.341).
- (13) Word buffers must be placed at even addresses in the block transfer mode. (p.347)
- (14) Word buffers must be placed at even addresses in the block transfer mode (with a memory pointer). (p.349)
- (15) MEM.PTR must be placed at an even address in the block transfer mode (with a memory pointer). (p.349)
- (16) Don't set 00H in the MSC in the data difference mode. (p.351)
- (17) Buffers must be placed at even addresses in the data difference mode. (p.351)
- (18) The "previous value" must be initialized to dummy data in advance in the data difference mode. (p.351)
- (19) The SFRP can specify 16-bit SFRs only in the data difference mode. (p.351)

- (20) Don't set 00H in the MSC in the data difference mode (with a memory pointer). (p.353)
- (21) Buffers must be placed at even addresses in the data difference mode (with a memory pointer). (p.353)
- (22) The MEM.PTR must be placed at an even address in the data difference mode (with a memory pointer). (p.353)
- (23) The "previous value" must be initialized to dummy data in advance in the data difference mode (with a memory pointer). (p.353)
- (24) The SFRP can specify only 16-bit SFRs in the data difference mode (with a memory pointer). (p.353)
- (25) When executing polling to the interrupt-related registers by using the BTCLR instruction, etc., ensure that the branch destination of the BTCLR instruction, etc. is not the instruction itself. If a program that branches to the instruction itself is written, all interrupts and macro services are held pending until a condition is established under which the program does not branch by execution of that instruction. (p.355)

	Bad example		
	:		
LOOP:	BTCLR PIC0.7, \$LOOP		All interrupts and macro services are held pending until PIC0.7 becomes 1.
	XXX	\leftarrow	Interrupts and macro services are serviced first after execution of the instruction following the BTCLR instruction.
	:		
	Good example (1)		
	:		
LOOP:	NOP		
	BTCLR PIC0.7, \$LOOP	\leftarrow	Since interrupts and macro services are serviced after execution
	:		of NOP instruction, interrupts are not held pending for a long time.
	:		
	Good example (2)		
	:		
LOOP:	BTCLR PIC0.7, \$NEXT		
	BR \$LOOP	\leftarrow	Since interrupts and macro services are serviced after execution
			of BR instruction, and therefore interrupts are not held pending for
			a long time.
NEXT:	:		

(26) When a group of the above instructions is consecutively used for the same reason as (25) and when interrupts and macro services should not be held pending for a long time, insert an NOP instruction, etc. in the interim to create timing for interrupts or macro services to be acknowledged. (p.356)

20.12 Cautions for CHAPTER 14 STANDBY FUNCTION

- (1) After the SBF flag in the standby control register (STBC) is read, set it to 1. Software can then discriminate a power-on reset from release of the STOP or HALT mode. (p.358)
- (2) To use the external clock, do not set the STP bit of the standby control register (STBC) to 1. (p.359)
- (3) If the interrupt request flag (××IF) is set to 1 and the interrupt is not masked (××MK = 0), the system does not enter the HALT mode. When macro service processing (××ISM = 1) is performed, the system enters the HALT mode after the macro service terminates. (p.360)
- (4) Data can be written into the watchdog timer mode register (WDM) only by a dedicated instruction (MOV WDM, #byte). (p.365)
- (5) The priority of interrupt requests should be set by the WDM register at initialization of the application system such as initialization of the stack pointer, and should not be dynamically changed during execution of the program. (p.365)
- (6) Once it is set to 1, the RUN bit of the WDM register cannot be reset to 0 by software. (p.365)
- (7) The count clock is not reset even when the watchdog timer is cleared by setting the RUN bit of the WDM register to 1. (p.365)
- (8) If a watchdog timer interrupt and NMI interrupt are generated simultaneously with PRC = 1 (INTWDT > NMI), after the first 1 instruction of the NMI interrupt service routine is executed, the watchdog timer interrupt service routine is executed. Therefore, when used with PRC = 1, the first instruction of the NMI interrupt service routine should be an NOP instruction. (p.365)
- (9) Bits 6, 5 and 0 of the WDM register are fixed to "0" by hardware. Even if "1" is written to them, they remain "0". (p.365)
- (10) Be sure to write 0 to bit 3 of the WDM register. (p.365)

20.13 Cautions for CHAPTER 15 RESET FUNCTION

- (1) When RESET is active, all pins except WDTO, AVREF, AVDD, AVSS, VDD, VSS, X1, and X2 go into the highimpedance state. (p.373)
- (2) When memory is expanded externally with RAM, attach pull-up resistors to the P90/RD pin and P91/WR pin. If these pins may go into the high-impedance state, the contents of the external RAM may be lost. Or signal collision on the address/data bus may damage the input/output circuit. (p.373)

20.14 Cautions for CHAPTER 16 BUS INTERFACE FUNCTION

- The internal memory (ROM, RAM) capacity of the μPD78P368A can be changed by setting the memory expansion mode register (MM). (p.382)
- (2) Bits 3, 4 and 7 of the MM register are fixed to "0" by hardware. Even if "1" is written to them, they remain "0". (p.385)
- (3) Invalid combinations are specified as "Setting prohibited" in format of MM register. Never write these combinations. (p.385)
- (4) The number of cycles shown in Figure 16-6 is when no address wait cycle is appended. If an address wait cycle is appended, one cycle must be added. (p.386)
- (5) Instruction fetch from and data access to the peripheral RAM area (F700H-FDFFH, in case of the μPD78363A FC00H-FDFFH) are enabled, but wait specification by setting the PWC register is invalid. The peripheral RAM area operates with a 16-bit bus. Instruction fetch becomes high-speed fetch. (p.386)
- (6) Instructions cannot be fetched from the main RAM area (FE00H-FEFFH). Wait specification by setting the PWC register when data is accessed is invalid. The main RAM area is accessed in a 16-bit units. (For bus cycles, special two bus cycles are started.) (p.386)
- (7) To make a word access to the main RAM area (containing stack handling), only even addresses can be specified in operands. (p.386)
- (8) The internal ROM area operates with 16-bit bus regardless how the PWC register is set. Wait specification can be set in the PWC register. (p.386)
- (9) To access external memory, do not specify high-speed fetch. (p.386)
- (10) External SFR area (FFD0H-FFDFH) wait specification is set in the PWC7 and PWC6 bits. (p.386)
- (11) To access the internal memory in the high-speed fetch mode, set 0 in the AW0 and AW1 bits of the PWC register. (p.387)
- (12) Bits 8-13 of the PWC register are fixed to "0" by hardware. Even if "1" is written to them, they remain "0". (p.387)

20.15 Cautions for CHAPTER 19 INSTRUCTION EXECUTION RATE

- (1) When a word access to the main RAM area (FE00H to FEFFH) (containing stack handling) is executed, addresses specified in operands are limited to even addresses. (p.421)
- (2) The PWC register specifies the mode of an area, irrespective of whether the area is in internal memory or external memory. After reset, the whole space is set in the normal fetch cycle mode. (p.422)

APPENDIX A DIFFERENCE BETWEEN μ PD78366A AND μ PD78328

The following table shows the differences between the μ PD78366A subseries (μ PD78363A, 78365A, 78366A, 78368A, and 78P368A) and the μ PD78328 subseries (μ PD78327, 78328, 78P328):

Function List (1/2)

Parameter	Part Number	μPD78363A	μPD78365A	μPD78366A	μPD78368A	μPD78P368A		
Minimum instruction execution time		125 ns (internal	125 ns (internal clock: 16 MHz, external clock: 8 MHz)					
Internal memory	ROM	24K bytes	-	32K bytes	48K bytes	-		
	PROM	_	-	_	_	48K bytes		
	RAM	768K bytes	2K bytes			·		
Memory space		64K bytes (exte	rnally expandable	9)				
General-purpose regi	isters	8-bit $ imes$ 16 $ imes$ 8 bit	anks					
Basic instructions		115						
Instruction set		 16-bit transfer/operation Multiplication/division (16 bits × 16 bits, 32 bits ÷ 16 bits) Bit manipulation String Sum-of-products operation (16 bits × 16 bits + 32 bits) Relative operation 						
I/O line	Input	49	14 (8 multiplexe	d with analog inp	uts)			
	I/O	49	31	49				
		 16-bit compare register × 7 16-bit capture register × 3 16-bit capture/compare register × 2 Two output modes selectable Mode 0 set/reset output: 6 channels Mode 1 buffer output: 6 channels 16-bit resolution PWM output: 1 channel 						
Real-time output port		4 (buffer output in 4-bit units)						
PWM unit		8-/9-/10-/12-bit resolution variable PWM output: 2 channels						
A/D converter		10-bit resolution, 8 channels						
Serial interface		With dedicated baud rate generator UART (with pin select function): 1 channel Clock-synchronized serial interface/SBI: 1 channel						
Interrupt function		 External: 6, internal: 14 (2 multiplexed with external sources) Four priority levels selectable via software Three service modes selectable (vectored interrupt/macro service/context switching) 						
Test				-				
PLL control circuit		Available (External 8 MHz \rightarrow Internal 16 MHz)						
Package	w/o window	80-pin plastic Q	FP (14 × 20 mm)					
	w/window			_		80-pin cerami WQFN		
Others		Watchdog timer incorporatedStandby function (HALT mode, STOP mode)						

Function List (2/2)

Parameter	Part Number	μPD78327	μPD78328	μPD78P328			
Minimum instruction execution time		250 ns (internal clock: 8 M	250 ns (internal clock: 8 MHz, external clock: 16 MHz)				
Internal memory	ROM	_	16K bytes	-			
	PROM	_	_	16K bytes			
	RAM	512 bytes					
Memory space		64K bytes (externally expa	ndable)				
General-purpose reg	isters	8-bit $ imes$ 16 $ imes$ 8 banks					
Basic instructions		111					
Instruction set		 16-bit transfer/operation Multiplication/division (16) Bit manipulation String 	 Multiplication/division (16 bits × 16 bits, 32 bits ÷ 16 bits) Bit manipulation 				
I/O line	Input	11 (8 multiplexed with anal	og inputs)				
	I/O	23 41					
		 16-bit compare register × 14 16-bit capture/compare register × 1 Two output modes selectable Mode 0 set/reset output: 6 channels, toggle output: 1 channel Mode 1 buffer output: 8 channels 					
Real-time output port	:	4/8 (buffer output in 4-/8-bit units)					
PWM unit		8-bit resolution PWM output: 1 channel					
A/D converter		10-bit resolution, 8 channels					
Serial interface		With dedicated baud rate generator UART: 1 channel Clocked serial interface/SBI: 1 channel					
Interrupt function		 External: 4, internal: 17 Three priority levels selectable via software Three service modes selectable (vectored interrupt/macro service/context switching) 					
Test		Internal: 1					
PLL control circuit		None					
Package	w/o window	 64-pin plastic shrink DIP 64-pin plastic QFP (14 × 					
	w/window		-	64-pin ceramic shrink DIP with window			
Others		Watchdog timerStandby function (HALT mode, STOP mode)					

APPENDIX B TOOLS

B.1 Development Tools

The following tools are provided for developing a system that uses the μ PD78366A:

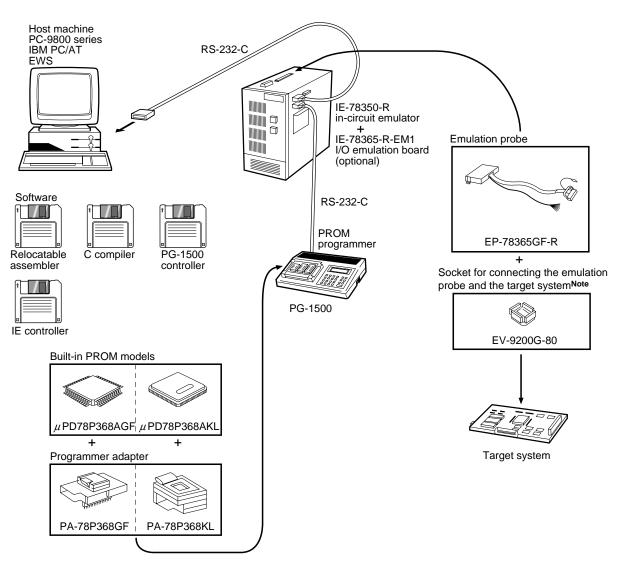
Language Processor

78K/III series relocatable assembler (RA78K3)	Relocatable assembler that can be commonly used with 78K/III series. Provided with macro function, this assembler enhances development efficiency. Structured assembler that explicitly describes program control structure is also supplied to improve program productivity and maintainability.				
	Host machine	-	- 1	Part number	
		OS	Distributed media	(Product name)	
	PC-9800 series	MS-DOS TM	3.5"2HD	μS5A13RA78K3	
			5"2HD	μS5A10RA78K3	
	IBM PC/AT and its	PC DOS [™]	3.5"2HC	μS7B13RA78K3	
	compatibles		5"2HC	μS7B10RA78K3	
	HP9000 series 700 TM	HP-UX TM	DAT	μS3P16RA78K3	
	SPARC station TM	SunOS™	Cartridge tape	μS3K15RA78K3	
	NEWS TM	NEWS-OS [™]	(QIC-24)	μS3R15RA78K3	
78K/III series C compiler (CC78K3)		nverts program written oller. When using this ary.			
	Host machine			Part number	
		OS	Distributed media	(Product name)	
	PC-9800 series	MS-DOS	3.5"2HD	μS5A13CC78K3	
			5"2HD	μS5A10CC78K3	
	IBM PC/AT and its	PC DOS	3.5"2HC	μS7B13CC78K3	
	compatibles		5"2HC	μS7B10CC78K3	
	HP9000 series 700	HP-UX	DAT	μS3P16CC78K3	
	SPARCstation	SunOS	Cartridge tape	μS3K15CC78K3	
	NEWS	NEWS-OS	(QIC-24)	μS3R15CC78K3	

Remark The operation of the relocatable assembler and C compiler are guaranteed with the above host machines and OSs only.

Phase-out/Discontinued


Hardware	PG-1500	PROM programmer that can program single-chip microcontroller with PROM in standalone mode or under control of host machine when connected with supplied accessory board and optional programmer adapter. It can also program representative PROMs including 256K-bit models and 4M-bit models.						
	PA-78P368GF PA-78P368KL	PROM programmer adapter to write program to μPD78P368A on general-purpose PROM programmer such as PG-1500. PA-78P368GF for μPD78P368AGF PA-78P368KL for μPD78P368AKL						
Software	PG-1500 controller	Connects PG-1500 to host machine with serial and parallel interfaces and controls PG-1500 on host machine.						
		Host machine			Part number			
				OS	Distributed media	(Product name)		
		PC-9800 series	MS-DOS	3.5"2HD	μS5A13PG1500			
				5"2HD	μS5A10PG1500			
		IBM PC/AT and its	PC DOS	3.5"2HD	μS7B13PG1500			
		compatibles		5"2HC	μS7B10PG1500			


Debugging Tools (When using IE controller)

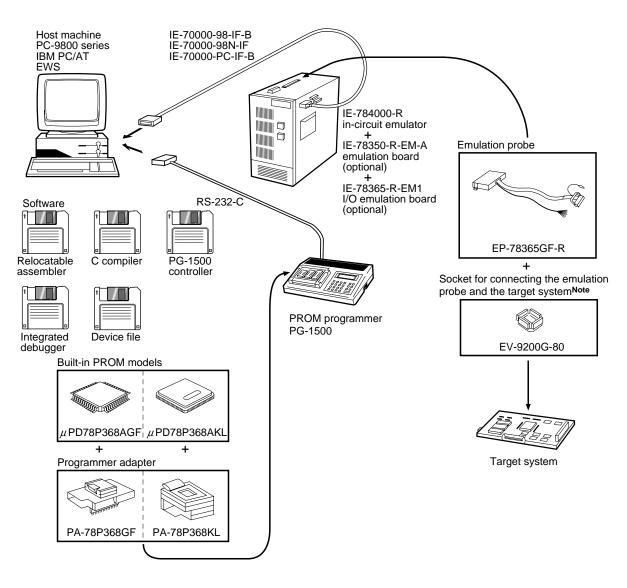
Hardware	 iE-78350-R iE-78365-R-EM1 iE-78365GF-R EV-9200G-80 		In-circuit emulator connected to host system to develop and debug application system.					
			I/O emulation board to emulate peripheral functions of μ PD78366A such as I/O ports.					
			Emulation probe that connects IE-78350-R to target system. One conversion socket, EV-9200G-80, that is used to connect target system is supplied.					
Software	ftware IE-78350-R control program (IE controller)		Program that controls IE-78350-R on host machine. Can execute commands automatically, to enhance debugging efficiency.					
			Host machine		Part number			
					OS	Distributed media	(Product name)	
			PC-9800 series	MS-DOS	3.5"2HD	μS5A13IE78365A		
					5"2HD	μS5A10IE78365A		
			IBM PC/AT and its	PC DOS	3.5"2HC	μS7B13IE78365A		
			compatibles		5"2HC	μS7B10IE78365A		

Remark The operation of PG-1500 controller and IE controller are guaranteed with the above host machine and OS only.

Phase-out/Discontinued

Note The socket is supplied with the emulation probe.

Remarks 1. The PG-1500 can be directly connected to the host machine via the RS-232-C interface.2. In this figure 3.5-inch FD represents distributed media of software.


Debugging Tools (When using integrated debugger)

Hardware	IE-784000-R		at can be used for dev debugging with host ma							
	IE-78350-R-EM-A	Emulation board to po output ports	Emulation board to perform emulation of peripheral functions such as target device input/ output ports							
	IE-78365-R-EM1	I/O emulation board to output ports	I/O emulation board to perform emulation of peripheral functions such as tal output ports							
	EP78365GF-R	Emulation probe to co	onnect IE-784000-R to t	arget system. It come	es with one conversion					
	EV-9200G-80	socket EV-9200G-80	socket EV-9200G-80 used for connection with target system.							
	IE-70000-98-IF-B	Interface adapter used when PC-9800 series (except notebook personal computer) is used as host machine								
	IE-70000-98N-IF	Interface adapter and cable used when PC-9800 series notebook personal computer is used as host machine								
	IE-70000-PC-IF-B	Interface adapter used when IBM PC/AT is used as host machine								
	IE-78000-R-SV3	Interface adapter and cable used when EWS is used as host machine								
Software	(ID78K3)	structured assembly	ce-program level debug language, and assembl mation simultaneously b e.	y language. With its o	capability of displaying					
		Host machine	Part number							
			OS	Distributed media	(Product name)					
		PC-9800 series	MS-DOS+Windows TM	3.5"2HD	μSAA13ID78K3					
				5"2HD	μSAA10ID78K3					
		IBM PC/AT and its	PC DOS+Windows	3.5"2HC	μSAB13ID78K3					
		compatibles (Japa- nese Windows)		5"2HC	μSAB10ID78K3					
		IBM PC/AT and its		3.5"2HC	μSBB13ID78K3					
		compatibles (English Windows)		5"2HC	μSBB10ID78K3					
	Device file (DF78365)	File that contains device-specific information. Used in combination with assembler (RA78K3), C compiler (CC78K3) and integrated debugger (ID78K3).								
	(DF70303)									
	(DF76303)	Host machine			Part number					
	(DF78363)		OS	Distributed media	Part number (Product name)					
	(DF78363)									
	(DF78363)	Host machine	OS	Distributed media	(Product name)					
	(DF78363)	Host machine	OS	Distributed media 3.5"2HD	(Product name) μS5A13DF78365					

Remark Operation of the integrated debugger and device file is guaranteed only on the host machines and operating systems quoted above.

Phase-out/Discontinued

Configuration of development tools (When using integrated debugger)

Note A socket is provided with the emulation probe.

Remarks 1. Desk top-type PC represents host machine in this figure.

2. 3.5-inch FD represents the distributed media of software in this figure.

B.2 Built-In Software

The following built-in software is provided for efficient program development and maintenance.

Real-time Operation System

Real-time OS (RX78K/III) ^{Note}	The RX78K/III is intended to provide a multitask environment for a control field where real- time operation is required. The CPU idle time can be assigned to other processing for performance improvement of the entire system. The RX78K/III provides system call conforming to the μ ITRON specifications. The RX78K/III package provides a tool (configurator) to create information tables and RX78K/III nucleus.					
	Host machine			Part number		
		OS	Distributed media	(Product name)		
	PC-9800 series	MS-DOS	3.5"2HD	Undetermined		
			5"2HD	Undetermined		
	IBM PC/AT and its	PC DOS	3.5"2HC	Undetermined		
	compatibles		5"2HC	Undetermined		

Note Under development

- Caution To purchase the real time operation system, enter on purchase application form and make a written agreement for use before purchasing it.
- **Remark** The RA78K/III assembler package (option) is required to use the RX78K3 Real-time operation system.

Fuzzy Inference Development Support System

Fuzzy knowledge data preparation tool	A program which supports editing and simulation of fuzzy knowledge data (fuzzy rules and membership functions).					
	Host machine	Host machine				
		OS	Distributed media	(Product name)		
	PC-9800 series	MS-DOS	3.5"2HD	μS5A13FE9000		
			5"2HD	μS5A10FE9000		
	IBM PC/AT and its	PC DOS+Windows	3.5"2HC	μS7B13FE9200		
	compatibles		5"2HC	μS7B10FE9200		
Translator (FT78K3) ^{Note}		A program which converts fuzzy knowledge data prepared with the fuzzy knowledge data prepared wi				
	Host machine			Part number		
		OS	Distributed media	(Product name)		
	PC-9800 series	MS-DOS	3.5"2HD	μS5A13FT78K3		
			5"2HD	μS5A10FT78K3		
	IBM PC/AT and its	PC DOS	3.5"2HC	μS7B13FT78K3		
	compatibles		5"2HC	μS7B10FT78K3		
Fuzzy inference module (FI78K/III) ^{Note}	A program which executes fuzzy inference. It is linked with the fuzzy knowledge data converted by the translator, thereby executing fuzzy inference.					
	Host machine	Part number				
		OS	Distributed media	(Product name)		
	PC-9800 series	MS-DOS	3.5"2HD	μS5A13FI78K3		
			5"2HD	μS5A10FI78K3		
	IBM PC/AT and its	PC DOS	3.5"2HC	μS7B13FI78K3		
	compatibles		5"2HC	μS7B10FI78K3		
Fuzzy inference debugger (FD78K/III)	Support software for with in-circuit emulat	at the hardware level				
	Host machine			Part number		
		OS	Distributed media	(Product name)		
	PC-9800 series	MS-DOS	3.5"2HD	μS5A13FD78K3		
			5"2HD	μS5A10FD78K3		
	IBM PC/AT and its	PC DOS	3.5"2HC	μS7B13FD78K3		
	compatibles		5"2HC	μS7B10FD78K3		

Note Under development

[MEMO]

Phase-out/Discontinued

APPENDIX C REGISTER INDEX

C.1 Register Index (In Alphabetical Order with Respect to Register Name)

[A]

A/D conversion result register: ADCR ... 207A/D converter mode register: ADM ... 203Asynchronous serial interface mode register: ASIM ... 226Asynchronous serial interface status register: ASIS ... 226

[B]

Baud rate generator compare register: BRG ... 236, 256 Baud rate generator control register: BRGC ... 236, 256 Buffer register CM00-CM03: BFCM00-BFCM03 ... 100

[C]

Capture register 20: CT20 ... 145 Capture register 30: CT30 ... 157 Capture register 31: CT31 ... 157 Capture/compare register 20: CC20 ... 145 Capture/compare register 30: CC30 ... 157 Clocked serial interface mode register: CSIM ... 250 Compare register 00: CM00 ... 100 Compare register 01: CM01 ... 100 Compare register 02: CM02 ... 100 Compare register 03: CM03 ... 100 Compare register 10: CM10 ... 141 Compare register 40: CM40 ... 172 Compare register 41: CM41 ... 172 CPU control word: CCW ... 46

[E]

External interrupt mode register 0: INTM0 ... 109, 160 External interrupt mode register 1: INTM1 ... 148, 160

[I]

In-service priority register: ISPR ... 307, 316 Interrupt control register (INTAD): ADIC ... 307, 309 Interrupt mask flag register: MK0L, MK0H ... 307, 313 Interrupt mode control register: IMC ... 307, 315

[M]

Master buffer register: MBUF0-MBUF5 ... 101 Memory expansion mode register: MM ... 85, 384

[P]

Port 0: P0 ... 76 Port 0 mode control register: PMC0 ... 82 Port 0 mode register: PM0 ... 77 Port 1: P1 ... 76 Port 1 mode register: PM1 ... 77 Port 2: P2 ... 76 Port 3: P3 ... 76 Port 3 mode control register: PMC3 ... 83, 230, 252 Port 3 mode register: PM3 ... 78, 231, 253 Port 4: P4 ... 76 Port 5: P5 ... 76 Port 5 mode register: PM5 ... 78 Port 7: P7 ... 76 Port 8: P8 ... 76 Port 8 mode register: PM8 ... 78 Port 8 mode control register: PMC8 ... 84 Port 9: P9 ... 76 Port 9 mode register: PM9 ... 79 Port read control register: PRDC ... 72 Programmable wait control register: PWC ... 386 Pull-up resistor option register H: PUOH ... 87 Pull-up resistor option register L: PUOL ... 87 PWM buffer register: PWM0, PWM1 ... 296 PWM control register 0: PWMC0 ... 295 PWM control register 1: PWMC1 ... 296

[R]

Real-time output port mode register: RTPM ... 196 Real-time output port register: RTP ... 197 Receive buffer: RXB ... 227 Reload register: DTIME ... 99

[S]

Sampling control register 0: SMPC0 ... 149, 161 Sampling control register 1: SMPC1 ... 162 Serial bus interface control register: SBIC ... 250 Shift register: SIO ... 250 Slave buffer register: SBUF0-SBUF5 ... 101 Standby control register: STBC ... 358

[T]

Timer 0: TM0 ... 98 Timer 1: TM1 ... 141 Timer 2: TM2 ... 145 Timer 3: TM3 ... 157 Timer 4: TM4 ... 172 Timer control register 0: TMC0 ... 106 Timer control register 1: TMC1 ... 108, 142 Timer control register 2: TMC2 ... 146 Timer control register 3: TMC3 ... 158 Timer control register 4: TMC4 ... 175 Timer out register: TOUT ... 101 Timer unit mode register 0: TUM0 ... 102 Timer unit mode register 1: TUM1 ... 173 Transmit shift register: TXS ... 227

[W]

Watchdog timer mode register: WDM ... 300, 365

Phase-out/Discontinued

C.2 Register Index (In Alphabetical Order with Respect to Register Symbol)

[A]

ADCR0	:	A/D conversion result register 0 207
ADCR1	:	A/D conversion result register 1 207
ADCR2	:	A/D conversion result register 2 207
ADCR3	:	A/D conversion result register 3 207
ADCR4	:	A/D conversion result register 4 207
ADCR5	:	A/D conversion result register 5 207
ADCR6	:	A/D conversion result register 6 207
ADCR7	:	A/D conversion result register 7 207
ADCR0H	:	A/D conversion result register 0H 208
ADCR1H	:	A/D conversion result register 1H 208
ADCR2H	:	A/D conversion result register 2H 208
ADCR3H	:	A/D conversion result register 3H 208
ADCR4H	:	A/D conversion result register 4H 208
ADCR5H	:	A/D conversion result register 5H 208
ADCR6H	:	A/D conversion result register 6H 208
ADCR7H	:	A/D conversion result register 7H 208
ADIC	:	Interrupt control register (INTAD) 307, 312
ADM	:	A/D converter mode register 203
ASIM	:	Asynchronous serial interface mode register 226
ASIS	:	Asynchronous serial interface status register 226

[B]

BFCM00 :	Buffer register CM00 100
BFCM01 :	Buffer register CM01 100
BFCM02 :	Buffer register CM02 100
BFCM03 :	Buffer register CM03 100
BRG :	Baud rate generator compare register 236, 256
BRGC :	Baud rate generator control register 236, 256

[C]

CC20		Capture/compare register 20 145
	•	1 1 5
CC30	:	Capture/compare register 30 157
CCW	:	CPU control word 46
CM00	:	Compare register 00 100
CM01	:	Compare register 01 100
CM02	:	Compare register 02 100
CM03	:	Compare register 03 100
CM10	:	Compare register 10 141
CM40	:	Compare register 40 172
CM41	:	Compare register 41 172
CMIC03	:	Interrupt control register (INTCM03) 307, 311
CMIC10	:	Interrupt control register (INTCM10) 307, 312

CMIC40	:	Interrupt control register (INTCM40) 307, 312
CMIC41	:	Interrupt control register (INTCM41) 307, 312
CSIIC	:	Interrupt control register (INTCSI) 307, 312
CSIM	:	Clocked serial interface mode register 250
CT20	:	Capture register 20 145
CT30	:	Capture register 30 157
CT31	:	Capture register 31 157

[D]

DTIME : Reload register ... 99

[I]

IMC	:	Interrupt mode control register 307, 315
INTM0	:	External interrupt mode register 0 109, 160
INTM1	:	External interrupt mode register 1 148, 160
ISPR	:	In-service priority register 307, 316

[M]

MBUF0	:	Master buffer register 0 101
MBUF1	:	Master buffer register 1 101
MBUF2	:	Master buffer register 2 101
MBUF3	:	Master buffer register 3 101
MBUF4	:	Master buffer register 4 101
MBUF5	:	Master buffer register 5 101
MK0H	:	Interrupt mask flag register 307, 313
MK0L	:	Interrupt mask flag register 307, 313
MM	:	Memory expansion mode register 85, 384

[0]

OVIC3 : Interrupt control register (INTOV3) ... 307, 311

[P]

PIC0	:	Interrupt control register (INTP0/INTCC30) 307, 311
PIC1	:	Interrupt control register (INTP1) 307, 311
PIC2	:	Interrupt control register (INTP2) 307, 311
PIC3	:	Interrupt control register (INTP3/INTCC20) 307, 311
PIC4	:	Interrupt control register (INTP4) 307, 311
PM0	:	Port 0 mode register 77
PM1	:	Port 1 mode register 77
PM3	:	Port 3 mode register 78, 231, 253
PM5	:	Port 5 mode register 78
PM8	:	Port 8 mode register 78
PM9	:	Port 9 mode register 79

PMC0	:	Port 0 mode control register 82			
PMC3	:	Port 3 mode control register 83, 230, 252			
PMC8	:	Port 8 mode control register 84			
PRDC	:	Port read control register 72			
PUOH	:	Pull-up resistor option register H 87			
PUOL	:	Pull-up resistor option register L 87			
PWC	:	Programmable wait control register 386			
PWM0	:	PWM buffer register 0 296			
PWM1	:	PWM buffer register 1 296			
PWMC0	:	PWM control register 0 295			
PWMC1	:	PWM control register 1 296			

[R]

RTP	:	Real-time output port register 197
RTPM	:	Real-time output port mode register 196
RXB	:	Receive buffer 227

[S]

SBIC	:	Serial bus interface control register 250			
SBUF0	:	Slave buffer register 0 101			
SBUF1	:	Slave buffer register 1 101			
SBUF2	:	Slave buffer register 2 101			
SBUF3	:	Slave buffer register 3 101			
SBUF4	:	Slave buffer register 4 101			
SBUF5	:	Slave buffer register 5 101			
SERIC	:	Interrupt control register (INTSER) 307, 312			
SIO	:	Shift registe 250			
SMPC0	:	Sampling control register 0 149, 161			
SMPC1	:	Sampling control register 1 162			
SRIC	:	Interrupt control register (INTSR) 307, 312			
STBC	:	Standby control register 358			
STIC	:	Interrupt control register (INTST) 307, 312			

[T]

TM0	:	Timer 0 98
TM1	:	Timer 1 141
TM2	:	Timer 2 145
TM3	:	Timer 3 157
TM4	:	Timer 4 172
TMC0	:	Timer control register 0 106
TMC1	:	Timer control register 1 108, 142
TMC2	:	Timer control register 2 146
TMC3	:	Timer control register 3 158
TMC4	:	Timer control register 4 175
TMIC0	:	Interrupt control register (INTTM0) 307, 311

TOUT : Timer out register ... 101

TUM0 : Timer unit mode register 0 ... 102

TUM1 : Timer unit mode register 1 ... 173

TXS : Transmit shift register ... 227

[W]

WDM : Watchdog timer mode register ... 300, 365

[MEMO]

APPENDIX D FUNCTION INDEX

 $\mu \text{PD78366A}$ operation mode setting ... 11, 23

[A]

Acknowledgement of interrupt Maskable interrupt ... 322 Non-maskable interrupt ... 318 Op-code trap interrupt ... 335 Software interrupt ... 332

Address wait control ... 387

Addressing

Based addressing ... 56, 57, 58, 59 Based indexed addressing ... 56, 57, 58, 59 Direct addressing ... 56, 57, 58, 59 Implied addressing ... 47, 59 Register addressing ... 47, 56, 57, 58, 59 Register indirect addressing ... 56, 57, 58, 59 Short direct addressing ... 49, 57, 58, 59, 60 Special function register (SFR) addressing ... 49, 56, 57, 58, 59, 60

[B]

Basic operation of A/D converter ... 209

Baud rate setting Asynchronous serial interface ... 234, 238 Clocked serial interface ... 254, 258

Bus cycle wait control ... 387

[C]

Calculating the number of instruction execution clocks ... 429

Capture operation Timer 2 (TM2) ... 152 Timer 3 (TM3) ... 165

Clear operation control Timer 0 (TM0) ... 103 Timer 2 (TM2) ... 147 Timer 3 (TM3) ... 159

Timer 4 (TM4) ... 176 Timer 4 (TM4) (Clear operation by TCLRUD) ... 174

Compare operation

Timer 1 (TM1) ... 143 Timer 2 (TM2) ... 152 Timer 3 (TM3) ... 165 Timer 4 (TM4) ... 172

Context switching Activates _____ ... 324, 332 Returns from _____ ... 325, 334 Specifies ____ handling ... 309

Controlling and detecting status of serial bus ... 280

[D]

Data access ... 425 Data transfer control from BFCM03 to CM03 ... 106

[E]

External device expansion ... 377, 383

[F]

```
Free running operation
Timer 2 (TM2) ... 151
Timer 3 (TM3) ... 164
Timer 4 (TM4) ... 181
```

[H]

HALT mode Releasing ____ ... 361 Setting ____ ... 360

[I]

Interrupt Holding the priority level ... 316 Nesting ... 326 Nesting control ... 315 Returning from non-maskable interrupt ... 321 Specifying interrupt request enable/disable ... 310, 313, 314 Specifying priority of maskable interrupt ... 309, 326 Specifying priority of non-maskable interrupt ... 301, 318, 365

Interval operation

Timer 0 (TM0) ... 111 Timer 1 (TM1) ... 143 Timer 2 (TM2) ... 151 Timer 3 (TM3) ... 164 Timer 4 (TM4) ... 181

[M]

Macro service Counter mode operation specification ... 345 Mode setting ... 342 Specification of block transfer mode operation ... 346 Specification of block transfer mode (with a memory pointer) operation ... 348 Specification of processing ... 309 Specifying channel address ... 342 Terminating operation ... 341

[0]

Operation control Baud rate generator (BRG) ... 237, 259 Counter for PWM output control ... 296 Dead time timers (DTM0-DTM2) ... 108 PWM modulation ... 196 PWM output ... 295 Timer 0 (TM0) ... 106 Timer 1 (TM1) ... 142 Timer 2 (TM2) ... 147 Timer 3 (TM3) ... 159 Timer 4 (TM4) ... 176 Watchdog timer (WDT) ... 301, 365 Operation of sampling circuit Timer 2 (TM2) ... 154 Timer 3 (TM3) ... 169 Op-code fetch ... 422 Output driver off function ... 105 NMI control ... 103 Software control ... 103

[P]

Port output data checking ... 72

Processing of unused pins ... 26

PROM

Procedure for reading ... 397 Procedure for writing (Byte program mode) ... 394 Procedure for writing (Page program mode) ... 391 Specification of operation mode for programming ... 25, 390 Specification of programming mode ... 25, 389

PWM output operation PWM0, PWM1 ... 297 Timer 4 (TM4) ... 192

[R]

Reading of A/D conversion result ... 207, 208

Real-time output ... 195

Reception

Asynchronous serial interface ... 242 Detect error ... 246 SBI mode ... 286 Three-wire serial I/O mode ... 266

Reset

Release ____ ... 373 System reset ... 373

[S]

Selecting A/D conversion time ... 204

Selecting pins for serial communication Asynchronous serial interface ... 230 Clocked serial interface ... 252

Selecting serial clock Asynchronous serial interface ... 234 Clocked serial interface ... 254

Selection of analog input ... 204

Setting serial data format ... 232

Phase-out/Discontinued

Specifying active level of output pin PWM0 and PWM1 pins ... 295 TO00-TO05 pins ... 103 TO40 pin ... 174 Specifying capture trigger Capture/compare register 20 (CC20) ... 148 Capture register 20 (CT20) ... 148 Specifying control mode of pins P00-P07 pins ... 82 P05-P07 pins ... 174 P30-P36 pins ... 83, 230, 252 P40-P47, P50-P57 pins ... 80, 85, 385 P80-P85 pins ... 84 P90,P91 pins ... 81 Specifying count clock PWM output control counter ... 296 Timer 0 (TM0) ... 106 Timer 1 (TM1) ... 142 Timer 2 (TM2) ... 147 Timer 3 (TM3) ... 159 Timer 4 (TM4) ... 176 TMBRG ... 237, 259 Watchdog timer (WDT) ... 301, 365 Specifying counter bits for PWM output control ... 295 Specifying general-purpose register ... 43, 47 Specifying internal memory capacity ... 85, 385 Specifying I/O mode of pin P00-P07 pins ... 77 P10-P17 pins ... 77 P30-P36 pins ... 78, 231, 253 P50-P57 pins ... 78 P80-P85 pins ... 78 P90-P93 pins ... 79 Specifying operation mode A/D converter ... 204 Capture/compare register 20 (CC20) ... 147 Capture/compare register 30 (CC30) ... 159 Clocked serial interface ... 263, 273 SBI mode ... 273 Timer 0 (TM0) ... 103

Timer 2 (TM2) ... 147 Timer 3 (TM3) ... 159 Timer 4 (TM4) ... 174 Specifying operation of output pin TO40 Pin ... 174 Specifying pull-up resistor ... 86 Specifying sampling clock Timer 2 (TM2) ... 149 Timer 3 (TM3) ... 161, 162 Specifying trigger signal A/D converter (mixed mode) ... 204 Real-time output port ... 196 Specifying up/down count operation ... 176 Specifying valid edge of external signal INTP0-INTP2 ... 160 INTP3 ... 148, 160 INTP4 ... 160 NMI ... 109, 160 TCLRUD ... 174 TIUD ... 174 Stack pointer (SP) ... 46 STOP mode STOP mode releasing ... 364 STOP mode setting ... 363 Switching pins for serial communication Asynchronous serial interface ... 228 [T] Timer 0 (TM0) operation General-purpose interval timer mode (RTP output) ... 111 PWM mode 0 (asymmetric triangular wave modulation) ... 119 PWM mode 0 (symmetric triangular wave modulation) ... 112 PWM mode 0 (toothed wave modulation) ... 129

Timer 4 (TM4) operation General-purpose timer mode ... 181 UDC mode (external clock operation) ... 186 UDC mode (internal clock operation) ... 185

PWM mode 1 (buffer output) ... 136

Timer basic operation

Timer 0 (TM0) ... 110 Timer 1 (TM1) ... 143 Timer 2 (TM2) ... 150 Timer 3 (TM3) ... 163 Timer 4 (TM4) ... 180

Transmission

Asynchronous serial interface ... 240 SBI mode ... 286 Three-wire serial I/O mode ... 264

Transmission/reception SBI mode ... 286 Three-wire serial I/O mode ... 268

[V]

Vectored interrupt Returning from the interrupt service ... 306, 324 Specifying interrupt service ... 309, 310

[W]

Wake-up function ... 290

Write by dedicated instruction Standby control register (STBC) ... 358 Watchdog timer mode register (WDM) ... 300

Write specification to CM00 to CM02 ... 106

[MEMO]

APPENDIX E REVISION HISTORY

Version	Major Revision from the Previous Version	Applied to:	
2nd	The μ PD78363A, 78365A, 78366A, and 78P368A have been developed.	Throughout	
	3.2.3 Special function register (SFR)Table 3-4 Special Function RegistersBit manupilation instruction possible has been changed to impossible in the itemManipulatable Bit Unit of P2, P7, ASIS.	CHAPTER 3 CPU ARCHITECTURE	
	5.1 Hardware Configuration Table 5-1. Read Operation in Control Mode has been added.	CHAPTER 5 PORT FUNCTION	
	Setting preset operation of timer 4 has been disabled because timer 4 may misoperate if underflow of TM4 and rewriting CM40, or timer clear operation by TCLRUD are in contention in the preset operation mode.	CHAPTER 7 REAL-TIME PULSE UNIT	
	The formula of baud rate has been changed in 9.5.2 Specific baud rate setting .	CHAPTER 9 ASYNCHRONOUS SERIAL INTERFACE	
	9.8 Transmitting/receiving Data Using Macro Service has been added.		
	The formula of baud rate has been changed in 10.3.2 Specific baud rate setting .	CHAPTER 10 CLOCKED SERIAL INTERFACE	
3rd	The μ PD78368A has been added as a target device. The μ PD78P368AKL-S has been developed.	Throught	
	8.2 A/D Converter Made Register (ADM)	CHAPTER 8	
	The conversion time by setting the FR bit has been changed.	A/D CONVERTER	
	10.6.1 SBI data format A caution has been added regarding the bus release signal and command signal.	CHAPTER 10 CLOCKED SERIAL INTERFACE	

[MEMO]

Facsimile	Message	Although NEC has taken all possible steps to ensure that the documentation supplied to our customers is complete, bug free and up-to-date, we readily accept that errors may occur. Despite all the care and			
Name		precautions we've taken, you may encounterproblems in the documentation. Please complete this form whenever			
Company		you'd like to report errors or suggest improvements to us.			
Tel.	FAX				
Address		Thank you for your kind support.			
North America NEC Electronics Inc. Corporate Communications Dept. Fax: 1-800-729-9288 1-408-588-6130	Hong Kong, Philippines, Oceania NEC Electronics Hong Kong Ltd. Fax: +852-2886-9022/9044	Asian Nations except Philippines NEC Electronics Singapore Pte. Ltd. Fax: +65-250-3583			
Europe NEC Electronics (Europe) GmbH Technical Documentation Dept. Fax: +49-211-6503-274	Korea NEC Electronics Hong Kong Ltd. Seoul Branch Fax: 02-528-4411	Japan NEC Corporation Semiconductor Solution Engineering Division Technical Information Support Dept. Fax: 044-548-7900			
South America NEC do Brasil S.A.	Taiwan NEC Electronics Taiwan Ltd.	Tax. 077-070-7000			

I would like to report the following error/make the following suggestion:

Fax: 02-719-5951

Document title:

Document	number:
----------	---------

Fax: +55-11-889-1689

_____ Page number: _____

If possible, please fax the referenced page or drawing.

Document Rating	Excellent	Good	Acceptable	Poor
Clarity				
Technical Accuracy				
Organization				

Phase-out/Discontinued

