

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

µPD78356
16-bit Singlechip Microcontrollers

Instructions

µPD78352A Subseries
µPD78356 Subseries
µPD78366A Subseries
µPD78372 Subseries

Document No. U12117EJ2V0UM00 (2nd edition)
(O.D.No. IEU-1395)
Date Published May 1997 N

1994

User’s Manual

Printed in Japan
©

[MEMO]

QTOP is a trademark of NEC Corporation.

MS-DOS and Windows are either registered trademarks or trademarks of Microsoft Corporation

in the United States and/or other countries.

PC/AT and PC DOS are trademarks of International Business Machines Corporation.

SPARCstation is a trademark of SPARC International, Inc.

SunOS is a trademark of Sun Microsystems, Inc.

HP9000 series 700 and HP-UX are trademarks of Hewlett-Packard Company.

NEWS and NEWS-OS are trademarks of Sony Corporation.

TRON is an abbreviation of The Realtime Operating system Nucleus.

ITRON is an abbreviation of Industrial TRON.

NOTES FOR CMOS DEVICES

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and

ultimately degrade the device operation. Steps must be taken to stop generation of static electricity

as much as possible, and quickly dissipate it once, when it has occurred. Environmental control

must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using

insulators that easily build static electricity. Semiconductor devices must be stored and transported

in an anti-static container, static shielding bag or conductive material. All test and measurement

tools including work bench and floor should be grounded. The operator should be grounded using

wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need

to be taken for PW boards with semiconductor devices on it.

2 HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided

to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence

causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels

of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused

pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of

being an output pin. All handling related to the unused pins must be judged device by device and

related specifications governing the devices.

3 STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS

does not define the initial operation status of the device. Immediately after the power source is

turned ON, the devices with reset function have not yet been initialized. Hence, power-on does

not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the

reset signal is received. Reset operation must be executed immediately after power-on for devices

having reset function.

The export of these products from Japan is regulated by the Japanese government. The export of some or all of these
products may be prohibited without governmental license. To export or re-export some or all of these products from a
country other than Japan may also be prohibited without a license from that country. Please call an NEC sales
representative.

The information in this document is subject to change without notice.
No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property
rights of third parties by or arising from use of a device described herein or any other liability arising from use
of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other
intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or
property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety
measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a
customer designated “quality assurance program“ for a specific application. The recommended applications of
a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device
before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment,
audio and visual equipment, home electronic appliances, machine tools, personal electronic
equipment and industrial robots

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)

Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books.
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,
they should contact an NEC sales representative in advance.
Anti-radioactive design is not implemented in this product.

M7 96.5

Major Revisions In This Edition

Page Description

Throughout Adding the following products

µPD78356(A), 78P356(A), 78361A, 78362A, 78P364A, 78363A, 78365A,

78366A, 78368A, 78P368A, 78372(A), 78372(A1), 78372(A2), 78P372(A),

78P372(A1), 78P372(A2)

Deleting the following products

µPD78355A, 78356A, 78P356A, 78362, 78P364, 78365, 78366, 78P368,

78370, 78372, 78P372

Changing the status of the following products from developing to

completed

µPD78355, 78356, 78P356

p.329, 336, 341, 346 Adding the description of the debugging tools at the use of integrated

debugger in APPENDIX A TOOLS .

p.348 Adding Section A.6 Embedded Software

p.357 Adding APPENDIX D REVISION HISTORY

The mark shows major revised points.

[MEMO]

PREFACE

Readers This manual is intended for engineers of users who understand the functions of the 78K/III

Series products and design application systems using the 78K/III Series.

The 78K/III Series covered in the manual includes the following productsNote 1 :

• µPD78352A Subseries : µPD78350, 78350A, 78352A, 78P352

• µPD78356 Subseries : µPD78355, 78356, 78P356, 78356(A), 78P356(A)

• µPD78366A Subseries : µPD78361A, 78362A, 78P364A, 78363A, 78365A,

78366A, 78368A, 78P368A

• µPD78372 SubseriesNote 2 : µPD78372(A), 78372(A1), 78372(A2), 78P372(A),

78P372(A1), 78P372(A2)

Notes 1. In addition to these products, the 78K/III Series provides the µPD78312A, 78322,

78328, and 78334 Subseries products. For details of each subseries, refer to their

individual User’s Manuals.

2. Other than the above members, the µPD78372 Subseries provides the µPD78P372KL-

S of EPROM version which can be used only for experiment of function evaluation.

However, this document explains the µPD78P372(A) as a representative product as

long as no special differences exist.

Purpose The purpose of the manual is for the user to understand the instruction functions of the 78K/

III Series products.

Organization The manual consists of the following main parts:

• General description

• Target product list

• CPU architecture

• Addressing

• Instruction set list

• Description of instructions

• Cautions on use

 Cautions on use

Cautions regarding the use of the 78K/III Series instructions are collected in CHAPTER 7 CAUTIONS

ON USE. Be sure to read this chapter.

Ask NEC or an NEC agent’s salesperson for the latest information on the products.

The manual assumes that the reader has general knowledge of electricity, logical circuits, and

microcomputers.

• If the products are the same in function

→ This manual describes the µPD78356 as a typical product. To use this manual for other

products, replace the µPD78356 with the appropriate product names in reading.

• If the products differ in function

→ Functional differences are discussed for each product.

• To look up the instruction function in detail when you know the mnemonic of the

instruction

→ Use APPENDIX B and APPENDIX C INSTRUCTION INDEX.

• To look up an instruction when you do not know its mnemonic, but know the rough

function

→ Look up the mnemonic of the instruction in CHAPTER 5 INSTRUCTION SET LIST , then

the instruction function in CHAPTER 6 EXPLANATION OF INSTRUCTIONS .

• To understand the instruction functions of the 78K/III Series products in a general

way

→ Read the manual in the sequence of the table of contents.

• To learn the hardware functions of the 78K/III Series products

→ Refer to the following user’s manuals:

• µPD78352A User’s Manual (IEU-781)

• µPD78356 User’s Manual (U10669E)

• µPD78362A User’s Manual (U10745E)

• µPD78366A User’s Manual (U10205E)

• µPD78372 User’s Manual (U10642E)

Legend Data representation weight : High-order and low-order digits are indicated from

left to right.

Active low representation : ××× (pin or signal name is overlined)

Memory map address : Low-order part at upper stage, high-order part at

lower stage

Note : Explanation of (Note) in the text

Caution : Refers to contents that warrant special attention

Remark : Supplementary explanation to the text

Number representation : Binary number ... ××××B or ××××
Decimal number ... ××××
Hexadecimal number ... ××××H

How to read

this manual

Related documents The related documents indicated in this publication may include preliminary version. However,

preliminary version are not marked as such.

• Common Documents

Document Name
Document No.

Japanese English

µPD78356 User’s Manual, Instruction U12117J IEU-1395

78K/III Series Application Note, Software Fundamental U12118J IEA-1272

78K/III Series Application Note, Floating Point operation Programming U12119J IEA-1291

µPD78352A Instruction Set U11955J –

• Individual Documents

µPD78352A Subseries

Document Name
Document No.

Japanese English

µPD78352A Product Letter IF-6335 IF-2036

µPD78350 Data Sheet IC-8279 IC-2845

µPD78350A, 78352A Data Sheet IC-8823 IC-3391

µPD78P352 Data Sheet IC-8423 IC-2957

µPD78352A User’s Manual Hardware IEU-781 IEU-1327

µPD78352A Special Function Register Table IEM-5540 IEM-1215

µPD78356 Subseries

Document Name
Document No.

Japanese English

µPD78356 Product Letter IF-6298 –

µPD78355, 78356 Data Sheet U10155J U10155E

µPD78P356 Data Sheet U10325J U10325E

µPD78356(A) Data Sheet U11148J U11148E

µPD78P356(A) Data Sheet U11149J U11149E

µPD78356 User’s Manual, Hardware U10669J U10669E

µPD78356 Special Function Register Table IEM-5576 IEM-1214

Caution The contents of the documents listed above are subject to change without

prior notice to user’s. Be sure to use the latest edition when starting design.

µPD78366A Subseries

Document Name
Document No.

Japanese English

µPD78362A Data Sheet U10098J U10098E

µPD78P364A Data Sheet U10106J U10106E

µPD78363A, 78365A, 78366A Data Sheet U11109J U11109E

µPD78P368A Data Sheet U11373J U11373E

µPD78362A User’s Manual, Hardware U10745J U10745E

µPD78366A User’s Manual, Hardware U10205J U10205E

µPD78362A Special Function Register Table U10210J –

µPD78366A Special Function Register Table U10107J –

µPD78372 Subseries

Document Name
Document No.

Japanese English

µPD78372 Product letter IF-6351 –

µPD78370(A), 78372(A) Data Sheet U10789J U10789E

µPD78P372(A) Data Sheet U12029J U12029E

µPD78372 User’s Manual, Hardware U10642J U10642E

µPD78372 Special Function Register Table U10631J U10631E

Caution The contents of the documents listed above are subject to change without

prior notice to user’s. Be sure to use the latest edition when starting design.

– i –

CONTENTS

CHAPTER 1 GENERAL DESCRIPTION ... 1
1.1 78K/III Series Product Development ... 2
1.2 µPD78352A Subseries Products Overview .. 3

1.2.1 Features .. 3

1.2.2 Application fields ... 3

1.2.3 Ordering information and quality grade ... 3

1.2.4 Function outline .. 4

1.2.5 Block diagram ... 5

1.3 Outline of µPD78356 Subseries Products .. 6
1.3.1 Features .. 6

1.3.2 Application fields ... 6

1.3.3 Ordering information and quality grade ... 7

1.3.4 Function outline .. 8

1.3.5 Block diagram ... 10

1.4 µPD78366 Subseries Products Overview ... 11
1.4.1 Features .. 11

1.4.2 Application fields ... 11

1.4.3 Ordering information and quality grade ... 12

1.4.4 Function outline (µPD78361A, 78362A, 78P364A) .. 13

1.4.5 Function outline (µPD78363A, 78365A, 78366A, 78368A, 78P368A) 15

1.4.6 Block diagram (µPD78361A, 78362A, 78P364A) ... 17

1.4.7 Block diagram (µPD78363A, 78365A, 78366A, 78368A, 78P368A) 18

1.5 µPD78372 Subseries Products Overview ... 19
1.5.1 Features .. 19

1.5.2 Application fields ... 19

1.5.3 Ordering information and quality grade ... 20

1.5.4 Function outline .. 21

1.5.5 Block diagram ... 22

CHAPTER 2 TARGET PRODUCT LIST ... 23

CHAPTER 3 CPU ARCHITECTURE ... 29
3.1 Memory Space .. 29

3.1.1 Vector table area .. 33

3.1.2 CALLT instruction table area ... 34

3.1.3 CALLF instruction entry area ... 34

3.1.4 Internal RAM area .. 34

3.1.5 Special function register area .. 39

3.1.6 External memory area .. 39

3.2 Processor Registers .. 40
3.2.1 Control registers ... 41

3.2.2 General-purpose registers.. 45

3.2.3 Special function registers (SFRs) .. 47

– ii –

3.3 Data Memory Addressing ... 48
3.3.1 General-purpose register addressing .. 48

3.3.2 Short direct addressing .. 49

3.3.3 Special function register (SFR) addressing .. 49

3.4 Interrupt Function .. 50
3.4.1 Interrupt request types ... 51

3.4.2 Interrupt processing modes.. 53

3.4.3 Macro service function ... 54

3.4.4 Context switching function ... 55

3.4.5 Interrupt execution rates .. 56

3.4.6 Control registers ... 57

CHAPTER 4 ADDRESSING .. 59
4.1 Instruction Addressing ... 59

4.1.1 Relative addressing .. 59

4.1.2 Immediate addressing .. 60

4.1.3 Table indirect addressing ... 61

4.1.4 Register addressing .. 61

4.1.5 Register indirect addressing .. 62

4.2 Operand Addressing ... 63
4.2.1 Register addressing .. 63

4.2.2 Immediate addressing .. 64

4.2.3 Direct addressing .. 65

4.2.4 Short direct addressing .. 65

4.2.5 Special function register (SFR) addressing .. 67

4.2.6 Short direct memory indirect addressing ... 68

4.2.7 Register indirect addressing .. 69

4.2.8 Based addressing ... 70

4.2.9 Indexed addressing .. 71

4.2.10 Based indexed addressing ... 72

CHAPTER 5 INSTRUCTION SET LIST .. 73
5.1 List of Operations .. 73

5.1.1 Operand identifier and description ... 73

5.1.2 Legend .. 75

5.1.3 Notational symbols in flag operation field ... 76

5.1.4 Instruction set differences among 78K/III Series products ... 77

5.1.5 Operations of basic instructions .. 78

5.2 Instruction Codes .. 93
5.2.1 Symbols of instruction codes ... 93

5.2.2 Instruction codes in various memory addressing modes ... 96

5.2.3 List of instruction codes ... 97

5.3 Number of Clocks of the Instructions .. 113
5.3.1 Description of clock columns ... 113

5.3.2 Numbers of clocks .. 115

– iii –

CHAPTER 6 EXPLANATION OF INSTRUCTIONS ... 137
6.1 8-Bit Data Transfer Instructions .. 139
6.2 16-Bit Data Transfer Instructions .. 142
6.3 8-Bit Operation Instructions ... 145
6.4 16-Bit Operation Instructions ... 156
6.5 Multiplication and Division Instructions .. 160
6.6 Signed Multiplication Instruction .. 165
6.7 Multiplication and Accumulation Instruction .. 167
6.8 Multiplication and Accumulation Instruction With Saturation Function 170
6.9 Correlation Operation Instruction ... 173
6.10 Table Shift Instruction ... 176
6.11 Increment and Decrement Instructions .. 178
6.12 Shift and Rotate Instructions ... 183
6.13 BCD Adjustment Instruction .. 194
6.14 Data Conversion Instruction .. 197
6.15 Bit Manipulation Instructions ... 199
6.16 Call and Return Instructions .. 207
6.17 Stack Handling Instructions ... 215
6.18 Special Instructions ... 223
6.19 Unconditional Branch Instruction ... 226
6.20 Conditional Branch Instructions ... 228
6.21 Context Switching Instructions ... 248
6.22 String Instructions ... 252
6.23 CPU Control Instructions .. 273

CHAPTER 7 CAUTIONS ON USE
7.1 Cautions on CHAPTER 3 CPU ARCHITECTURE .. 283
7.2 Cautions on CHAPTER 5 INSTRUCTION SET LIST ... 284
7.3 Cautions on CHAPTER 6 EXPLANATION OF INSTRUCTIONS 284

APPENDIX A TOOLS .. 285
A.1 78K/III Series Common Tools ... 285
A.2 µPD78352A Subseries Tools .. 286
A.3 µPD78356 Subseries Tools ... 292
A.4 µPD78366A Subseries Tools .. 298
A.5 µPD78372 Subseries Tools ... 303
A.6 Embedded Software .. 308

APPENDIX B INSTRUCTION INDEX (MNEMONICS BY FUNCTION) ... 311

APPENDIX C INSTRUCTION INDEX (MNEMONICS BY ALPHABETICAL ORDER) 313

APPENDIX D REVISION HISTORY .. 315

– iv –

LIST OF FIGURES

Figure No. Title Page

1-1 Configurations of 78K Series and 78K/III Series .. 1

3-1 Memory Map ... 30

3-2 Register Configuration ... 40

3-3 Format of Program Status Word (PSW) ... 41

3-4 Format of CPU Control Word .. 44

3-5 Process Bits of General-Purpose Registers ... 45

3-6 Data Memory Addressing .. 48

3-7 Handling Interrupt Requests .. 50

3-8 Process Flow of Maskable Interrupt .. 52

3-9 Macro Service Process Sequence Example ... 54

3-10 Context Switching Operation when an Interrupt Request Occurs 55

4-1 Relative Addressing ... 59

4-2 Immediate Addressing ... 60

4-3 Table Indirect Addressing .. 61

4-4 Register Addressing ... 61

4-5 Register Indirect Addressing ... 62

4-6 Short Direct Addressing ... 66

4-7 Special Function Register Addressing .. 67

4-8 Short Direct Memory Indirect Addressing ... 68

5-1 8-bit Data that Specifies the Register Pair which Performs Stack

Operations .. 94

– v –

LIST OF TABLE

Table No. Title Page

3-1 Vector Table Area .. 33

3-2 Internal RAM Area List ... 35

3-3 Word Access Operation in Internal RAM Area ... 35

3-4 External Memory Area List .. 39

3-5 Configuration of General-Purpose Registers .. 46

3-6 Interrupt Requests and Processing Modes... 50

3-7 Control Register List (µPD78352A Subseries) ... 57

3-8 Control Register List (µPD78356 Subseries) .. 57

3-9 Control Register List (µPD78366A Subseries) ... 57

3-10 Control Register List (µPD78372 Subseries) .. 57

5-1 Operand Identifier and Description ... 73

5-2 Absolute Names and Their Corresponding Function Names of an 8-bit Register 74

5-3 Absolute Names and Their Corresponding Function Names of a 16-bit Register 74

5-4 Notational Symbols in Flag Operation Field ... 76

5-5 Instruction Set Differences among 78K/III Series Products ... 77

5-6 mod and mem Codes in the Instruction Code Field ... 96

5-7 Instruction Execution Cycles ... 132

– vi –

[MEMO]

1

CHAPTER 1 GENERAL DESCRIPTION

CHAPTER 1 GENERAL DESCRIPTION

The 78K Series consists of six series as shown in Figure 1-1.

The 78K/III Series, which is one of the six series, provides products each containing a 16-bit CPU.

The on-chip CPU is a high-function CPU which has an instruction set and a high-speed interrupt controller

appropriate for control application and comprises a memory space of a maximum of 64K bytes.

The 78K/III Series comprises eight subseries: µPD78312A, 78322, 78328, 78334, 78352A, 78356, 78366A, and

78372, from which the user can select the most appropriate subseries according to the application.

This manual covers only the four subseries of µPD78352A, 78356, 78366A, and 78372, which differ only in

peripheral hardware and have the same CPU. Therefore, they have a common instruction set except that the

µPD78352A Subseries does not have a multiply and accumulate instruction with a saturation function or a correlation

operation instruction.

Figure 1-1. Configurations of 78K Series and 78K/III Series

78K/0 Series

78K/I Series

78K/II Series

78K/III Series

78K/IV Series

78K Series

µ

8-bit single chip
microcontrollers

16-bit single chip
microcontrollers

PD78312A Subseries

µ PD78322 Subseries

µ PD78328 Subseries

µ PD78334 Subseries

µ PD78352A Subseries

µ PD78356 Subseries

µ PD78366A Subseries

µ PD78372 Subseries

78K/0S Series

2

C
H

A
P

T
E

R
 1 G

E
N

E
R

A
L D

E
S

C
R

IP
T

IO
N

1.1 78K
/III S

eries P
roduct D

evelopm
ent

PD78372 Subseriesµ (for control in car electronics)

PD78366 Subseriesµ

(for inverter)

Timer
enhancement
A/D addition For inverter control

Pulse output function
ROM, RAM expansion

PD78356 Subseriesµ

(for camera, HDD)

PD78352A Subseriesµ A/D, D/A, correlation
instruction addition
ROM, RAM expansion

High performance CPU
Multiply and accumulate

instruction addition

(for HDD)

Timer, A/D
enhancement

ROM, RAM expansion

PD78334 Subseriesµ

(for control in OA, FA field)

PD78328 Subseriesµ

(for inverter)

For inverter control
Pulse output function

PD78322 Subseriesµ

(for control in OA, FA field)

High-speed, multifunction,
interrupt enhancement

 10-bit A/D

PD78312A Subseriesµ

(for control in OA, FA field)

3

CHAPTER 1 GENERAL DESCRIPTION

1.2 µPD78352A Subseries Products Overview

Applicable products: µPD78350, 78350A, 78352A, 78P352

1.2.1 Features

Internal 16-bit architecture, external 8-bit data bus

Pipeline control system and high-speed operation clock for high-speed processing

Minimum instruction execution time: 160 ns (internal clock: 12.5 MHz, external clock: 25 MHz)

 ...µPD78350

125 ns (internal clock: 16 MHz, external clock: 32 MHz)

...µPD78350A, 78352A, 78P352

Instruction set of 113 types of instructions appropriate for control application

Bus cycle wait control can be performed externally (except for µPD78350)

8-bit resolution PWM signal output function: Two channels

Internal high-speed interrupt controller

Internal memory: 32-Kbyte ROM (µPD78352A)

None (µPD78350, 78350A)

32-Kbyte PROM (µPD78P352)

640-byte RAM

1.2.2 Application fields

Office automation (OA) field such as HDD and FDD

Factory automation (FA) field

1.2.3 Ordering information and quality grade

(1) Ordering information

 Part number Package Internal ROM

µPD78350GC-3BE 64-pin plastic QFP (14 × 14 mm) None

 (resin thickness 2.7 mm)

µPD78350AG-22 64-pin plastic QFP (14 × 14 mm) None

(resin thickness 1.5 mm)

µPD78352AG-×××-22 64-pin plastic QFP (14 × 14 mm) Mask ROM

(resin thickness 1.5 mm)

µPD78P352G-22 64-pin plastic QFP (14 × 14 mm) One-time PROM

(resin thickness 1.5 mm)

µPD78P352KK-SNote 64-pin ceramic WQFN EPROM

 Note Under development

 Remark ××× is a ROM code number.

(2) Quality grade

Standard

Please refer to "Quality Grades on NEC Semiconductor Devices" (Document No. C11531E) published by
NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

4

CHAPTER 1 GENERAL DESCRIPTION

1.2.4 Function outline

Part number
µPD78350 µPD78350A µPD78352A µPD78P352

Parameter

Minimum instruction 160 ns

execution time internal clock:

12.5 MHz, external

clock: 25.0 MHz

Internal memory ROM – 32 Kbytes –

PROM – – 32 Kbytes

RAM 640 bytes

Memory space 64 Kbytes (external expansion is enabled)

General-purpose registers 8 bits × 16 registers × 8 banks

No. of basic instructions 113

Instruction set • 16-bit transfer and operations

• Multiplication and division (16 bits × 16 bits, 32 bits ÷ 16 bits)

• Bit manipulation

• String

• Multiply and accumulate (16 bits × 16 bits + 32 bits)

Input/output lines Input 6

I/O 24 44

Capture/timer unit • 16-bit timer × 1

16-bit capture register × 2

• 16-bit timer × 1

16-bit compare register × 1

• 16-bit timer × 1

16-bit compare register × 1

PWM unit 8-bit resolution PWM output: Two channels

Interrupt function • External: 5, internal: 4

• Four priority levels can be specified by software

• One of three interrupt service modes can be selected

(vectored interrupt, macro service, or context switching)

External wait pin None External bus cycle wait control is enabled

Packages Without window 64-pin plastic QFP

(14 × 14 mm)
64-pin plastic QFP (14 × 14 mm) (resin thickness 1.5 mm)

(resin thickness

2.7 mm)

With window – 64-pin ceramic WQFNNote

Others • Watchdog timer is contained

• Standby function (HALT mode, STOP mode)

Note Under development

125 ns
internal clock: 16 MHz,

external clock: 32 MHz

5

C
H

A
P

T
E

R
 1 G

E
N

E
R

A
L D

E
S

C
R

IP
T

IO
N

1.2.5 B
lock diagram

Notes 1. Internal ROM capacity depends on versions.

2. µPD78350 does not have the WAIT pin.

3. In PROM programming mode of µPD78P352.

(P20)NMI

(P21)INTP0
(P22)INTP1
(P23)INTP2
(P24)INTP3

PROGRAMMABLE
INTERRUPT
CONTROLLER

CAPTURE UNIT

TIMER UNIT(P25)TI

PWM UNIT

(P30)PWM0

(P31)PWM1

WDTWDTO

EXU

MAIN RAM

GENERAL
REGISTERS

128 × 8
&

DATA
MEMORY

128 × 8

ALU

MICRO
SEQUENCE
CONTROL

MICRO ROM

PORT

P
00-P

07

P
10-P

17

P
20-P

25

P
30-P

37

P
40-P

47

P
50-P

57

P
90-P

93

V
D

D
2

V
S

S

2

CLKOUT

X1
X2
RESET

WAITNote 2

MODE1
MODE0/VPP

Note 3

ASTB
RD(P90)
WR(P91)

A0-A16

AD0-AD7(P40-P47)

A8-A15(P50-P57)

D0-D7

PGM
CE
OE

ROMNote 1

&
PERIPHERAL

RAM
384 × 8

SYSTEM
CONTROL

&
BUS

CONTROL
&

PREFETCH
CONTROL

BCU

Note 3

6

CHAPTER 1 GENERAL DESCRIPTION

1.3 Outline of µPD78356 Subseries Products

Applicable products: µPD78355, 78356, 78P356, 78355A, 78356A, 78P356A

1.3.1 Features

Internal 16-bit architecture, external 16-bit or 8-bit data bus

Pipeline control system and high-speed operation clock for high-speed processing

Minimum instruction execution time: 125 ns (internal clock: 16 MHz, external clock: 32 MHz)

...µPD78355, 78356, 78P356

160 ns (internal clock: 12.5 MHz, external clock: 25 MHz)

...µPD78356(A), 78P356(A)

Instruction set of 115 types of instructions appropriate for control application

Real-time pulse unit provided with various timer/counters

Ultra high-speed 10-bit resolution A/D converter: 8 channels

A/D conversion time: About 2 µs at 32-MHz operation for µPD78355, 78356, and 78P356

About 2 µs at 25-MHz operation for µPD78356(A), 78P356(A)

8-bit resolution D/A converter: Two channels

8-, 10-, 12-bit resolution variable PWM signal output function: Two channels

Three independent channels of serial interface (containing dedicated baud rate generator)

Internal high-speed interrupt controller

Internal ECC circuit (µPD78P356 and 78P356(A))

Internal PROM contents can be made highly reliable

Internal memory: 48-Kbyte ROM (µPD78356, 78356(A))

None (µPD78355)

48-Kbyte PROM (µPD78P356, 78P356(A))

2-Kbyte RAM

1.3.2 Application fields

• Standard

For high-speed servo control of HDD, FDD, etc.

For auto focus control of camcorder, single-lens reflex camera, etc.

For motor control in factory automation (FA) field

• Special

For car electronics controller

7

CHAPTER 1 GENERAL DESCRIPTION

1.3.3 Ordering information and quality grade

(1) µPD78355, 78356, 78P356

• Ordering information

 Part number Package Internal ROM

µPD78355GC-7EA 100-pin plastic QFP (14 × 14 mm) None

µPD78355GD-5BB 120-pin plastic QFP (28 × 28 mm) None

µPD78356GC-×××-7EA 100-pin plastic QFP (14 × 14 mm) Mask ROM

µPD78356GD-×××-5BB 120-pin plastic QFP (28 × 28 mm) Mask ROM

µPD78P356GC-7EA 100-pin plastic QFP (14 × 14 mm) One-time PROM

µPD78P356GD-5BB 120-pin plastic QFP (28 × 28 mm) One-time PROM

µPD78P356KP-S 120-pin ceramic WQFN EPROM

Remark ××× is a ROM code number.

• Quality grade

Standard

(2) µPD78356(A), 78P356(A)

• Ordering information

 Part number Package Internal ROM

µPD78356GD(A)-×××-5BB 120-pin plastic QFP (28 × 28 mm) Mask ROM

µPD78P356GD(A)-5BB 120-pin plastic QFP (28 × 28 mm) One-time PROM

Remark ××× is a ROM code number.

• Quality grade

Special

Please refer to "Quality Grades on NEC Semiconductor Devices" (Document No. C11531E) published by
NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

Please refer to "Quality Grades on NEC Semiconductor Devices" (Document No. C11531E) published by
NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

8

CHAPTER 1 GENERAL DESCRIPTION

1.3.4 Function outline

(1/2)

Part number
µPD78355 µPD78356 µPD78P356 µPD78356(A) µPD78P356(A)

Parameter

Minimum instruction
125 ns

internal clock: 16 MHz,
160 ns

internal clock: 12.5 MHz

execution time external clock: 32 MHz external clock: 25 MHz

Internal memory ROM – 48 Kbytes – 48 Kbytes –

PROM – – 48 Kbytes – 48 Kbytes

RAM 2 Kbytes

Memory space 64 Kbytes (external expansion is enabled)

General-purpose registers 8 bits × 16 registers × 8 banks

No. of basic instructions 115

Instruction set • 16-bit transfer and operations

• Multiplication and division (16 bits × 16 bits, 32 bits ÷ 16 bits)

• Bit manipulation

• String

• Multiply and accumulate (16 bits × 16 bits + 32 bits)

• Correlation operation

Input/output lines Input 9 (eight lines are also used for analog input)

I/O 48 67

Real-time pulse unit • 16-bit timer × 1

16-bit compare register × 4

16-bit capture/compare register × 3

timer output × 6

• 16-bit timer × 1

16-bit compare register × 2

timer output × 2

• 16-bit timer × 1

16-bit compare register × 2

timer output × 2

• 16-bit timer × 1

16-bit capture/compare register × 2

• 10-bit timer × 1

10-bit compare register × 1

• 16-bit up/down counter × 1

16-bit compare register × 2

Real-time output port Pulse output associated with real-time pulse unit: Eight

PWM unit 8-, 10-, 12-bit resolution variable PWM output: Two channels

A/D converter 10-bit resolution, eight channels

D/A converter 8-bit resolution, two channels

Serial interface With dedicated baud rate generator

UART: One channel

Clocked serial interface/SBI: One channel

Clocked serial interface (with pin change function): One channel

Interrupt function • External: 6, internal: 25 (five are also used for external interrupts)

• Four priority levels can be specified by software

• One of three interrupt service modes can be selected (vectored interrupt, macro service, or

context switching)

9

CHAPTER 1 GENERAL DESCRIPTION

(2/2)

Part number
µPD78355 µPD78356 µPD78P356 µPD78356(A) µPD78P356(A)

Parameter

Bus sizing function 8-bit or 16-bit external data bus width can be selected

ECC circuit None Available None Available

Operating power supply
5 V ± 10 %

voltage

Packages Without window • 100-pin plastic QFP (14 × 14 mm) • 120-pin plastic QFP (28 × 28 mm)

• 120-pin plastic QFP (28 × 28 mm)

With window
–

120-pin ceramic
–

WQFN

Others • Watchdog timer is contained

• Standby function (HALT mode, STOP mode)

10

C
H

A
P

T
E

R
 1 G

E
N

E
R

A
L D

E
S

C
R

IP
T

IO
N

1.3.5 B
lock diagram

Notes 1. Internal ROM capacity depends on versions.

2. Only µPD78P356 and µPD78P356(A) contain the ECC circuit.

3. In PROM programming mode of µPD78P356 and 78P356(A).

NMI PROGRAMMABLE
INTERRUPT
CONTROLLER

EXU

MAIN RAM

GENERAL
REGISTERS

128 × 8
&

DATA
MEMORY

128 × 8

ALU

MICRO
SEQUENCE
CONTROL

MICRO ROM

PWM

V
S

S

4

CLKOUT
X1
X2
RESET

WAIT
MODE1
MODE0/VPP

Note 3

RD
LWR
HWR

A0-A16

AD0-AD7

AD8-AD15

D0-D7

PGM
CE
OE

1792 × 8

SYSTEM
CONTROL

&
BUS

CONTROL
&

PREFETCH
CONTROL

PERIPHERAL
RAM BCU

 ROMNote 1

ECCNote 2

17

8

8

8

ASTB

P
0

8

P
1

8

P
2

8

P
3

8

P
4

8

P
5

8

P
7

8

P
8

8

P
9

4

P
10

8

A
V

R
E

F

W
D

T
O

WATCHDOG
TIMER

P
W

M
D/A

CONVERTER

A
D

T
R

G

A/D
CONVERTER

A
N

I
8

A
V

R
E

F

A
V

S
S

A
V

D
D

A
N

O
2

V
D

D
4

PORT

TCLR

INTP 5

TO
10

4

TI
2

TIUD

TCUD

TIMER/COUNTER UNIT
(REALTIME PULSE UNIT)

SERIAL
INTERFACE

(SBI)
(UART)

SCK
3

SO
2

SO/SB0

SI
2

SI/SB1

TxD

RxD

RTP 8 REALTIME OUTPUT
PORT

4 2 2

Note 3

11

CHAPTER 1 GENERAL DESCRIPTION

1.4 µPD78366 Subseries Products Overview

Applicable products: µPD78361A, 78362A, 78P364A, 78363A, 78365A, 78366A, 78368A, 78P368A

1.4.1 Features

Internal 16-bit architecture, external 8-bit data bus

Pipeline control system and high-speed operation clock for high-speed processing

Minimum instruction execution time: 125 ns (internal clock: 16 MHz, external clock: 8 MHz)

Internal PLL control circuit (external 8 MHz → internal 16 MHz)

Instruction set of 115 types of instructions appropriate for control application

Real-time pulse unit appropriate for inverter control of 10-bit resolution A/D converter: Eight channels

8-, 9-, 10-, 12-bit resolution variable PWM signal output function: Two channels

Two independent channels of serial interface (containing dedicated baud rate generator)

Internal high-speed interrupt controller

Internal memory: 24-Kbyte ROM (µPD78362A, 78363A)

32-Kbyte ROM (µPD78361A, 78366A)

48-Kbyte ROM (µPD78368A)

None (µPD78365A)

48-Kbyte PROM (µPD78P364A, 78P368A)

768-byte RAM (µPD78362A, 78363A)

2-Kbyte RAM (µPD78361A, 78365A, 78366A, 78368A, 78P364A, 78P368A)

1.4.2 Application fields

Inverter air conditioners

Factory automation (FA) field of robots, automatic machine tools, etc.

12

CHAPTER 1 GENERAL DESCRIPTION

1.4.3 Ordering information and quality grade

(1) Ordering information

 Part number Package Internal ROM

µPD78361ACW-×××Note 64-pin plastic shrink DIP (750 mil) Mask ROM

µPD78362ACW-××× 64-pin plastic shrink DIP (750 mil) Mask ROM

µPD78P364ACW 64-pin plastic shrink DIP (750 mil) One-time PROM

µPD78363AGF-×××-3B9 80-pin plastic QFP (14 × 20 mm) Mask ROM

µPD78365AGF-3B9 80-pin plastic QFP (14 × 20 mm) None

µPD78366AGF-×××-3B9 80-pin plastic QFP (14 × 20 mm) Mask ROM

µPD78368AGF-×××-3B9Note 80-pin plastic QFP (14 × 20 mm) Mask ROM

µPD78P368AGF-3B9 80-pin plastic QFP (14 × 20 mm) One-time PROM

µPD78P368AKL-S 80-pin ceramic WQFN EPROM

Note Under development

Remark ××× is a ROM code number.

(2) Quality grade

Standard

Please refer to "Quality Grades on NEC Semiconductor Devices" (Document No. C11531E) published by
NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

13

CHAPTER 1 GENERAL DESCRIPTION

1.4.4 Function outline (µPD78361A, 78362A, 78P364A)

(1/2)

Part number
µPD78361ANote µPD78362A µPD78P364A

Parameter

Minimum instruction 125 ns (internal clock: 16 MHz, external clock: 8 MHz)

Internal memory ROM 32 Kbytes 24 Kbytes –

PROM – – 48 Kbytes

RAM 2 Kbytes 768 bytes 2 Kbytes

ROMless mode None

Memory space 64 Kbytes (external expansion disabled)

General-purpose register 8 bits × 16 registers × 8 banks

No. of basic instructions 115

Instruction set • 16-bit transfer and operations

• Multiplication and division (16 bits × 16 bits, 32 bits ÷ 16 bits)

• Bit manipulation

• String

• Multiply and accumulate (16 bits × 16 bits + 32 bits)

• Correlation operation

Input/output lines Input 14 (eight alternate analog input included)

I/O 38

Real-time pulse unit • 16-bit timer × 1

10-bit dead time timer × 3

16-bit compare register × 4

Two output modes selectable;
mode 0: 6-channel set/reset output

mode 1: 6-channel buffer output

• 16-bit timer × 1

16-bit compare register × 1

• 16-bit timer × 1

16-bit capture register × 1

16-bit capture/compare register × 1

• 16-bit timer × 1

16-bit capture register × 2

16-bit capture/compare register × 1

• 16-bit timer × 1

16-bit compare register × 2

16-bit resolution PWM output: 1 channel

Real-time output port 4 (buffer output in 4-bit units)

PWM unit 8-, 9-, 10-, 12-bit resolution variable PWM output: 2 channels

A/D converter 8-channel 10-bit resolution

Serial interface With dedicated baud rate generator

1 UART

1 clocked synchronous serial interface/SBI

Note Under development

14

CHAPTER 1 GENERAL DESCRIPTION

(2/2)

Part number
µPD78361ANote µPD78362A µPD78P364A

Parameter

Interrupt function • External: 6, internal: 14 (Two alternate external)

• Four priority levels can be specified by software

• One of three interrupt service modes can be selected (vectored interrupt, macro service, or

context switching)

Package 64-pin plastic shrink DIP (750 mil)

Others • Watchdog timer incorporated

• Standby function (HALT mode, STOP mode)

• PLL control circuit incorporated

Note Under development

15

CHAPTER 1 GENERAL DESCRIPTION

1.4.5 Function outline (µPD78363A, 78365A, 78366A, 78368A, 78P368A)

(1/2)

Part number
µPD78363A µPD78365A µPD78366A µPD78368ANote µPD78P368A

Parameter

Minimum instruction
125 ns (internal clock: 16 MHz, external clock: 8 MHz)

execution time

Internal memory ROM 24 Kbytes – 32 Kbytes 48 Kbytes –

PROM – – – – 48 Kbytes

RAM 768 bytes 2 Kbytes

ROMless mode Available ROMless product Available None

Memory space 64 Kbytes (external expansion is enabled)

General-purpose registers 8 bits × 16 registers × 8 banks

No. of basic instructions 115

Instruction set • 16-bit transfer and operations

• Multiplication and division (16 bits × 16 bits, 32 bits ÷ 16 bits)

• Bit manipulation

• String

• Multiply and accumulate (16 bits × 16 bits + 32 bits)

• Correlation operation

Input/output lines Input 14 (eight lines are also used for analog input)

I/O 49 31 49

Real-time pulse unit • 16-bit timer × 1

10-bit dead time timer × 3

16-bit compare register × 4

One of two output modes can be selected
Mode 0 Set/reset output: Six channels

Mode 1 Buffer output: Six channels

• 16-bit timer × 1

16-bit compare register × 1

• 16-bit timer × 1

16-bit capture register × 1

16-bit capture/compare register × 1

• 16-bit timer × 1

16-bit capture register × 2

16-bit capture/compare register x 1

• 16-bit timer × 1

16-bit compare register × 2

16-bit resolution PWM output: One channel

Real-time output port Four (buffer output in 4-bit units)

PWM unit 8-, 9-, 10-, 12-bit resolution variable PWM output: Two channels

A/D converter 10-bit resolution, eight channels

Serial interface With dedicated baud rate generator

UART (with pin change function): One channel

Clocked synchronous serial interface/SBI: One channel

Note Under development

16

CHAPTER 1 GENERAL DESCRIPTION

(2/2)

Part number
µPD78363A µPD78365A µPD78366A µPD78368ANote µPD78P368A

Parameter

Interrupt function • External: 6, internal: 14 (two are also used for external interrupts)

• Four priority levels can be specified by software

• One of three interrupt service modes can be selected

(vectored interrupt, macro service, or context switching)

Packages Without window 80-pin plastic QFP (14 × 20 mm)

With window
–

80-pin ceramic

WQFN

Others • Watchdog timer is contained

• Standby function (HALT mode, STOP mode)

• PLL control circuit is contained

Note Under development

17

C
H

A
P

T
E

R
 1 G

E
N

E
R

A
L D

E
S

C
R

IP
T

IO
N

1.4.6 B
lock diagram

 (
µP

D
78361A

, 78362A
, 78P

364A
)

Notes 1. Capacity internal ROM and RAM depends on versions.

2. In PROM programming mode of µPD78P364(A).

NMI PROGRAMMABLE
INTERRUPT
CONTROLLER

EXU

MAIN RAM

GENERAL
REGISTERS

128 × 8
&

DATA
MEMORY

128 × 8

ALU

MICRO
SEQUENCE
CONTROL

MICRO ROM

PWM

V
S

S

3

X1
X2
RESET
MODE/VPP

Note 2

A0-A16

D0-D7

PGM
CE
OE

SYSTEM
CONTROL

&
BUS

CONTROL
&

PREFETCH
CONTROL

BCU

17

8

P
0

8

P
2

6

P
3

5

P
4

8

P
5

8

P
7

8

P
8

6

P
9

3

WATCHDOG
TIMER

P
W

M

IN
T

P
2

A/D
CONVERTER

A
N

I
8

A
V

R
E

F

A
V

S
S

A
V

D
D

V
D

D
2

PORT

TI

INTP 5

TO
7

TIUD

TCUD

TIMER/COUNTER UNIT
(REALTIME PULSE UNIT)

RTP 4 REALTIME OUTPUT
PORT

ROMNote 1

&
PERIPHERAL

RAMNote 1

2

5

4

SERIAL
INTERFACE

(SBI)
(UART)

TCLRUD

SCK

SO/SB0

SI/SB1

TxD

RxD

Note 2

18

C
H

A
P

T
E

R
 1 G

E
N

E
R

A
L D

E
S

C
R

IP
T

IO
N

1.4.7 B
lock diagram

 (
µP

D
78363A

, 78365A
, 78366A

, 78368A
, 78P

368A
)

Notes 1. Capacity of internal ROM and RAM depends on versions.

2. In PROM programming mode of µPD78P368A.

NMI
PROGRAMMABLE
INTERRUPT
CONTROLLER

EXU

MAIN RAM

GENERAL
REGISTERS

128 × 8
&

DATA
MEMORY

128 × 8

ALU

MICRO
SEQUENCE
CONTROL

MICRO ROM

PWM

V
S

S

4

X1
X2
RESET

MODE1
MODE0/VPP

Note 2

RD
WR

A0-A16

AD0-AD7

A8-A15

D0-D7

PGM
CE
OE

SYSTEM
CONTROL

&
BUS

CONTROL
&

PREFETCH
CONTROL

BCU

17

8

8

8

ASTB

P
0

8

P
1

8

P
2

6

P
3

7

P
4

8

P
5

8

P
7

8

P
8

6

P
9

4

W
D

T
O

WATCHDOG
TIMER

P
W

M

IN
T

P
2

A/D
CONVERTER

A
N

I
8

A
V

R
E

F

A
V

S
S

A
V

D
D

V
D

D
2

PORT

TI

INTP 5

TO
7

TIUD

TCUD

TCLRUD

TIMER/COUNTER UNIT
(REALTIME PULSE UNIT)

SERIAL
INTERFACE

(SBI)
(UART)

SCK

SO/SB0

SI/SB1

TxD

RxD

RTP 4 REALTIME OUTPUT
PORT

ROMNote 1

&
PERIPHERAL

RAM

2
2

2

4

5

Note 2

19

CHAPTER 1 GENERAL DESCRIPTION

1.5 µPD78372 Subseries Products Overview

Applicable products: µPD78372(A), (A1), (A2), 78P372(A), (A1), (A2)

1.5.1 Features

Internal 16-bit architecture, external 16-bit or 8-bit data bus

Pipeline control system and high-speed operation clock for high-speed processing

Minimum instruction execution time: 160 ns (internal clock: 12.5 MHz, external clock: 25 MHz)

for µPD78372(A) and 78P372(A)

200 ns (internal clock: 10 MHz external clock: 20 MHz)

for µPD78372(A1), 78372(A2), 78P372(A1), 78P372(A2)

Real-time pulse unit that can output a maximum of 10 timer outputs

10-bit resolution A/D converter: 16 channels

Two independent channels of serial interface (containing dedicated baud rate generator)

Internal high-speed interrupt controller

Internal ECC correction circuit (µPD78P372(A), (A1), (A2))

Internal ROM contents can be made highly reliable

Internal memory: 24-Kbyte ROM (µPD78372(A), (A1), (A2))

24-Kbyte PROM (µPD78P372(A), (A1), (A2))

768-byte RAM

Supporting QTOPTM microcontroller

Remark QTOP microcontroller is a microcontroller with one-time PROM totally supported by NEC's writing

service (writing, marking, screening, and inspection).

1.5.2 Application fields

For car electronics controller

20

CHAPTER 1 GENERAL DESCRIPTION

1.5.3 Ordering information and quality grade

(1) Ordering information

 Part number Package Internal ROM

µPD78372GC(A)-×××-3B9 80-pin plastic QFP (14 × 14 mm) Mask ROM

µPD78372GC(A1)-×××-3B9 80-pin plastic QFP (14 × 14 mm) Mask ROM

µPD78372GC(A2)-×××-3B9 80-pin plastic QFP (14 × 14 mm) Mask ROM

µPD78372GF(A)-×××-3B9 80-pin plastic QFP (14 × 20 mm) Mask ROM

µPD78372GF(A1)-×××-3B9 80-pin plastic QFP (14 × 20 mm) Mask ROM

µPD78372GF(A2)-×××-3B9 80-pin plastic QFP (14 × 20 mm) Mask ROM

µPD78P372GC(A)-3B9 80-pin plastic QFP (14 × 14 mm) One-time PROM

µPD78P372GC(A)-×××-3B9 80-pin plastic QFP (14 × 14 mm) One-time PROM (QTOP microcontroller)

µPD78P372GC(A1)-3B9 80-pin plastic QFP (14 × 14 mm) One-time PROM

µPD78P372GC(A1)-×××-3B9 80-pin plastic QFP (14 × 14 mm) One-time PROM (QTOP microcontroller)

µPD78P372GC(A2)-3B9 80-pin plastic QFP (14 × 14 mm) One-time PROM

µPD78P372GC(A2)-×××-3B9 80-pin plastic QFP (14 × 14 mm) One-time PROM (QTOP microcontroller)

µPD78P372GF(A)-3B9 80-pin plastic QFP (14 × 20 mm) One-time PROM

µPD78P372GF(A)-×××-3B9 80-pin plastic QFP (14 × 20 mm) One-time PROM (QTOP microcontroller)

µPD78P372GF(A1)-3B9 80-pin plastic QFP (14 × 20 mm) One-time PROM

µPD78P372GF(A1)-×××-3B9 80-pin plastic QFP (14 × 20 mm) One-time PROM (QTOP microcontroller)

µPD78P372GF(A2)-3B9 80-pin plastic QFP (14 × 20 mm) One-time PROM

µPD78P372GF(A2)-×××-3B9 80-pin plastic QFP (14 × 20 mm) One-time PROM (QTOP microcontroller)

µPD78P372KL-S 80-pin ceramic WQFN EPROM

Remark ××× is a ROM code number.

(2) Quality grade

Special

Caution No quality grades apply to the µPD78P372KL-S. Use this product only for the function

evaluation.

Please refer to "Quality Grades on NEC Semiconductor Devices" (Document No. C11531E) published by
NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

21

CHAPTER 1 GENERAL DESCRIPTION

1.5.4 Function outline

Part number
µPD78372(A), (A1), (A2) µPD78P372(A), (A1), (A2)

Parameter

Minimum instruction 160 ns (internal clock: 12.5 MHz, external clock: 25 MHz)

execution time for µPD78372(A) and 78P372(A)

200 ns (internal clock: 10 MHz, external clock: 20 MHz)

for µPD78372(A1), (A2) and 78P372(A1), (A2)

Internal memory ROM 24 Kbytes –

PROM – 24 Kbytes

RAM 768 bytes

Memory space 64 Kbytes (external expansion is enabled)

General-purpose registers 8 bits × 16 registers × 8 banks

No. of basic instructions 115

Instruction set • 16-bit transfer and operations

• Multiplication and division (16 bits × 16 bits, 32 bits ÷ 16 bits)

• Bit manipulation

• String

• Multiply and accumulate (16 bits × 16 bits + 32 bits)

• Correlation operation

Input/output lines Input 17 (16 lines are also used for analog input)

I/O 43

Real-time pulse unit • 18/16-bit timer counter × 1

18/16-bit capture/compare register × 6

timer output × 6

• 16-bit timer/event counter × 1

16-bit compare register × 4

timer output × 4

A/D converter 10-bit resolution, 16 channels

Serial interface With dedicated baud rate generator

UART: One channel

Clocked serial interface: One channel

Interrupt function • External: 11, internal: 18 (six are also used for external interrupts)

• Four priority levels can be specified by software

• One of three interrupt service modes can be selected

(vectored interrupt, macro service, or context switching)

Bus sizing function 8-bit or 16-bit external data bus width can be selected

ECC circuit None Contained

Packages Without window • 80-pin plastic QFP (14 × 14 mm)

• 80-pin plastic QFP (14 × 20 mm)

With window – 80-pin ceramic WQFNNote

Others • Watchdog timer is contained

• Standby function (HALT mode, STOP mode, standby function invalidation mode)

Note This is the µPD78P372KL-S which can be used as only function evaluation.

22

C
H

A
P

T
E

R
 1 G

E
N

E
R

A
L D

E
S

C
R

IP
T

IO
N

Notes 1. µPD78P372(A), (A1), (A2) contains 24-Kbyte PROM.

2. Only µPD78P372(A), (A1), (A2) contains the ECC circuit.

3. In PROM programming mode of µPD78P372(A), (A1), (A2).

1.5.5 B
lock diagram

NMI PROGRAMMABLE
INTERRUPT
CONTROLLER

EXU

MAIN RAM

GENERAL
REGISTERS

128 × 8
&

DATA
MEMORY

128 × 8

ALU

MICRO
SEQUENCE
CONTROL

MICRO ROM

V
S

S

3

512 × 8

SYSTEM
CONTROL

&
BUS

CONTROL
&

PREFETCH
CONTROL

PERIPHERAL
RAM BCU

24 K × 8

 ROMNote 1

ECCNote 2

P
0

4

P
1

8

P
21-P

26
6

P
3

6

P
4

8

P
5

8

P
7

8

P
8

8

P
9

3

W
D

T
O

WATCHDOG
TIMER

IN
T

P
4

A/D
CONVERTER

A
N

I
16

A
V

R
E

F

A
V

S
S

A
V

D
D

V
D

D
2

PORT

TO

INTP 6

10

TI

TIMER/COUNTER UNIT
(REALTIME PULSE UNIT)

SERIAL
INTERFACE

(UART)
(CSI)

SCK
2

SO

SI

TxD

RxD

CLKOUT
X1
X2
RESET

WAIT

MODE1
MODE0/VPP

Note 3

RD
LWR
HWR

A0-A16

AD0-AD7

AD8-AD15

D0-D7

PGM
CE
OE

17

8

8

8

ASTB

MODE2

Note 3

P
20

23

CHAPTER 2 TARGET PRODUCT LIST

CHAPTER 2 TARGET PRODUCT LIST

This chapter lists the functions of the target products.

For details, refer to the appropriate user’s manual.

24

CHAPTER 2 TARGET PRODUCT LIST

(1/5)

Subseries name µPD78352A

Part number
µPD78350 µPD78350A µPD78352A µPD78P352

Parameter

No. of basic functions 113

Minimum instruction 160 ns

execution time internal clock:

12.5 MHz, external

clock: 25.0 MHz

Internal memory ROM – 32K bytes –

PROM – – 32K bytes

RAM 640 bytes

Memory space Programs, data: 64 Kbytes

Memory expansion function External space of a maximum of 64 Kbytes can be expanded

General-purpose registers 8 bits × 16 registers × 8 banks

Input/output lines Total 30 50

Input 6

I/O 24 44

Capture/timer unit • 16-bit timer × 3

Auxiliary • 16-bit compare register × 2

registers • 16-bit capture register × 2

Pulse output None

PWM unit 8-bit resolution PWM output × 2

Watchdog timer Contained

Interrupt function External: 5, internal: 4

Standby function HALT mode, STOP mode

Packages Without window 64-pin plastic QFP

(14 × 14 mm)
64-pin plastic QFP (14 × 14 mm) (resin thickness 1.5 mm)

(resin thickness

2.7 mm)

With window – 64-pin ceramic WQFNNote

Note Under development

125 ns
internal clock: 16 MHz,

external clock: 32 MHz

25

CHAPTER 2 TARGET PRODUCT LIST

(2/5)

Subseries name µPD78356

Part number
µPD78355 µPD78356 µPD78P356 µPD78356(A) µPD78P356(A)

Parameter

No. of basic functions 115

Minimum instruction
125 ns

internal clock: 16 MHz,
160 ns

internal clock: 12.5 MHz

execution time external clock: 32 MHz external clock: 25 MHz

Internal memory ROM – 48 Kbytes – 48 Kbytes –

PROM – – 48 Kbytes – 48 Kbytes

RAM 2 Kbytes

Memory space Programs, data: 64 Kbytes

Memory expansion function External space of a maximum of 64 Kbytes can be expanded

General-purpose registers 8 bits × 16 registers × 8 banks

Input/output lines Total 57 76

Input 9 (eight lines are also used for analog input)

I/O 48 67

Real-time pulse unit • 16-bit timer × 5

• 10-bit timer × 1

Auxiliary • 16-bit compare register × 10

registers • 10-bit compare register × 1

• 16-bit capture/compare register × 5

Pulse output 10

Real-time output port 8

PWM unit 8-, 10-, 12-bit resolution variable PWM output × 2

A/D converter 10-bit resolution × 8

D/A converter 8-bit resolution × 2

Serial interface • With dedicated baud rate generator

• UART × 1

• CSI (3-wire serial I/O, SBI) × 1

• CSI (3-wire serial I/O) (with pin change function) × 1

Watchdog timer Contained

Interrupt sources External: 6, internal: 25 (five are also used for external interrupts)

Standby function HALT mode, STOP mode

Bus sizing function 8-bit or 16-bit external data bus width can be selected

ECC circuit None Available None Available

Operating power supply
5 V ± 10 %

voltage

Packages Without window 100-pin plastic QFP (14 × 14 mm) 120-pin plastic QFP

120-pin plastic QFP (28 × 28 mm) (28 × 28 mm)

With window
–

120-pin ceramic
–

WQFN

26

CHAPTER 2 TARGET PRODUCT LIST

(3/5)

Subseries name µPD78366A

Part number
µPD78361ANote µPD78362A µPD78P364A

Parameter

No. of basic functions 115

Minimum instruction
125 ns (internal clock: 16 MHz, external clock: 8 MHz at operation)

execution time

Internal memory ROM 32 Kbytes 24 Kbytes –

PROM – – 48 Kbytes

RAM 2 Kbytes 768 bytes 2 Kbytes

ROMless mode None

Memory space Programs, data: 64 Kbytes

Memory expansion function None

General-purpose register 8 bits × 16 registers × 8 banks

Input/output lines Total 52

Input 14 (8 alternate analog input)

I/O 38

Real-time pulse unit • 16-bit timer × 5

• 10-bit timer × 3

Auxiliary • 16-bit compare register × 7

registers • 16-bit capture register × 3

• 16-bit capture/compare registers × 2

Pulse output 7

Real-time output port 4

PWM unit 8-, 9-, 10-, 12-bit resolution variable PWM output × 2

A/D converter 10-bit resolution × 8

Serial interface • With dedicated baud rate generator

• UART × 1

• CSI (3-wire serial I/O, SBI) × 1

Watchdog timer Available

Interrupt sources External: 6, internal: 14 (alternate external: 2)

Standby function HALT mode, STOP mode

PLL control circuit Available (external 8 MHz to internal 16 MHz)

Package 64-pin plastic shrink DIP (750 mil)

Note Under development

27

CHAPTER 2 TARGET PRODUCT LIST

(4/5)

Subseries name µPD78366A

Part number
µPD78363A µPD78365A µPD78366A µPD78368ANote µPD78P368A

Parameter

No. of basic functions 115

Minimum instruction
125 ns (internal clock: 16 MHz, external clock: 8 MHz)

execution time

Internal memory ROM 24 Kbytes – 32 Kbytes 48 Kbytes –

PROM – – – – 48 Kbytes

RAM 768 bytes 2 Kbytes

ROMless mode Available ROMless product Available None

Memory space Programs, data: 64 Kbytes

Memory expansion function External space of a maximum of 64 Kbytes can be expanded

General-purpose registers 8 bits × 16 registers × 8 banks

Input/output lines Total 63 45 63

Input 14 (eight lines are also used for analog input)

I/O 49 31 49

Real-time pulse unit • 16-bit timer × 5

• 10-bit timer × 3

Auxiliary • 16-bit compare register × 7

registers • 16-bit capture register × 3

• 16-bit capture/compare register × 2

Pulse output 7

Real-time output port 4

PWM unit 8-, 9-, 10-, 12-bit resolution variable PWM output × 2

A/D converter 10-bit resolution × 8

Serial interface • With dedicated baud rate generator

• UART (with pin change function) × 1

• CSI (3-wire serial I/O, SBI) × 1

Watchdog timer Available

Interrupt sources External: 6, internal: 14 (two are also used for external interrupts)

Standby function HALT mode, STOP mode

PLL control circuit Available (external 8 MHz → internal 16 MHz)

Packages Without window 80-pin plastic QFP (14 × 20 mm)

With window
–

80-pin ceramic

WQFN

Note Under development

28

CHAPTER 2 TARGET PRODUCT LIST

(5/5)

Subseries name µPD78372

Part number µPD78372(A), (A1), (A2) µPD78P372(A), (A1), (A2)
Parameter

No. of basic functions 115

Minimum instruction • 160 ns (internal clock: 12.5 MHz, external clock: 25 MHz)

execution time for µPD78372(A) and 78P372(A)

• 200 ns (internal clock: 10 MHz, external clock: 20 MHz)

for µPD78372(A1), (A2) and 78P372(A1), (A2)

Internal memory ROM 24 Kbytes –

PROM – 24 Kbytes

RAM 768 bytes

Memory space Programs, data: 64 Kbytes

Memory expansion function External space of a maximum of 64 Kbytes can be expanded

General-purpose registers 8 bits × 16 registers × 8 banks

Input/output lines Total 60

Input 17 (16 lines are also used for analog input)

I/O 43

Real-time pulse unit • 18/16-bit timer × 1

• 16-bit timer × 1

Auxiliary • 18/16-bit capture/compare register × 6

registers • 16-bit compare register × 4

Pulse output 10

A/D converter 10-bit resolution × 16

Serial interface • With dedicated baud rate generator

• UART × 1

• CSI (3-wire serial I/O) × 1

Watchdog timer Available

Interrupt sources External: 11, internal: 18 (six are also used for external interrupts)

Standby function HALT mode, STOP mode, standby function invalidation mode

Bus sizing function 8-bit or 16-bit external data bus width can be selected

ECC circuit None Available

Packages Without window • 80-pin plastic QFP (14 × 14 mm)

• 80-pin plastic QFP (14 × 20 mm)

With window – 80-pin ceramic WQFNNote

Note This is the µPD78P372KL-S which can be used as only function evaluation.

29

CHAPTER 3 CPU ARCHITECTURE

CHAPTER 3 CPU ARCHITECTURE

3.1 Memory Space

The µPD78356 can access a memory space of a maximum of 64 Kbytes. However, memory mapping varies from

one product to another depending on the on-chip memory capacity and the pin state. For details on the address area

of the memory map, refer to the appropriate user’s manual.

30

C
H

A
P

T
E

R
 3 C

P
U

 A
R

C
H

IT
E

C
T

U
R

E

Figure 3-1. Memory Map

Notes 1. Access in external memory expansion mode (except for µPD78361A, 78362A, and 78P364A).

2. The µPD78361A, 78362A, 78P364A, 78P368A does not provide the ROMless mode.

Caution To make a word access to the main RAM area (FE00H-FEFFH) (containing stack handling), only even addresses can be specifi ed in operands.

Special function register
(SFR)

(256 × 8)

Main RAM
(256 × 8)

Peripheral RAM

External memoryNote 1

Internal ROM

FFFFH

FF00H

FEFFH

xxxxH

FE00H

FDFFH

yyyyH

0000H

Data
memory

Program memory
 Data memory

Program memory
 Data memory

Memory space
(64K × 8)

ROM version product

General purpose
register (128 × 8)

 Macro service
control

Data area

Program area

FEFFH

FE80H

xxxxH

0080H

0000H

External memory

0FFFH

0000H

CALLF instruction
entry area
(2048 × 8)

Program area

CALLT instruction
table area
(64 × 8)

Vector table area
(64 × 8)

007FH

0040H

003FH

0800H

07FFH

1000H

0FFFH

yyyyH

• ROMless product
• ROMless mode of ROM version productNote 2

31

CHAPTER 3 CPU ARCHITECTURE

(1) Memory space of µPD78352A Subseries

Part number
Program memory Data memory

Internal ROM External memoryNote Internal RAM

µPD78350

µPD78350A

(MODE0, 1=HL) –
64640 bytes

µPD78352A
(0000H-FC7FH)

640 bytes

(MODE0, 1=HL) (FC80H-FEFFH)

µPD78352A
32768 bytes 31872 bytes

µPD78P352
(0000H-7FFFH) (8000H-FC7FH)

(MODE0, 1=LL)

Note Access in external memory expansion mode.

(2) Memory space of µPD78356 Subseries

Part number
Program memory Data memory

Internal ROM External memoryNote Internal RAM

µPD78355

(MODE0, 1=HL/HH)

µPD78356

µPD78356(A) – 63232 bytes

(MODE0, 1=HL/HH) (0000H-F6FFH)

µPD78P356
2048 bytes

µPD78P356(A)
(F700H-FEFFH)

(MODE0, 1=HH)

µPD78356

µPD78P356
49152 bytes 14080 bytes

µPD78356(A)
(0000H-BFFFH) (C000H-F6FFH)

µPD78P356(A)

(MODE0, 1=LL)

Note Access in external memory expansion mode.

Remark The µPD78356 Subseries enables the user to change the internal memory capacity by setting

a memory expansion register (MM). (See the following table.)

MM6 MM5 Internal ROM MM3 Internal RAM

0 0 49152 bytes (0000H-BFFFH) 0 2048 bytes (F700H-FEFFH)

0 1 32768 bytes (0000H-7FFFH) 1 1024 bytes (FB00H-FEFFH)

1 0 24576 bytes (0000H-5FFFH)

1 1 16384 bytes (0000H-3FFFH)

32

CHAPTER 3 CPU ARCHITECTURE

(3) Memory space of µPD78366 Subseries

Part number
Program memory Data memory

Internal ROM External memoryNote 1 Internal RAM

µPD78361ANote 2 32768 bytes 2048 bytes

(MODE=L) (0000H-7FFFH) (F700H-FEFFH)

µPD78362ANote 2 24576 bytes
–

768 bytes

(MODE=L) (0000H-5FFFH) (FC00H-FEFFH)

µPD78P364ANote 2 49152 bytes 2048 byte

(MODE=L) (0000H-BFFFH) (F700H-FEFFH)

µPD78363A 64512 bytes 768 bytes

(MODE0, 1=HH) (0000H-FBFFH) (FC00H-FEFFH)

µPD78365A

(MODE0, 1=HH)
–

µPD78366A 63232 bytes 2048 bytes

(MODE0, 1=HH) (0000H-F6FFH) (F700H-FEFFH)

µPD78368A

(MODE0, 1=HH)

µPD78363A 24576 bytes 39936 bytes 768 bytes

(MODE0, 1=LL) (0000H-5FFFH) (6000H-FBFFH) (FC00H-FEFFH)

µPD78366A 32768 bytes 30464 bytes

(MODE0, 1=LL) (0000H-7FFFH) (8000H-F6FFH)

µPD78368A 2048 bytes

(MODE0, 1=LL) 49152 bytes 14080 bytes (F700H-FEFFH)

µPD78P368ANote 2 (0000H-BFFFH) (C000H-F6FFH)

(MODE0, 1=LL)

Notes 1. Access in external memory expansion mode (except for µPD78361A, 78362A, and 78P364A).

2. The µPD78361A, 78362A, 78P364A, 78P368A does not provide the ROMless mode.

Remark The µPD78P364A and 78P368A Subseries enables the user to change the internal memory

capacity by setting a memory expansion register (MM). (See the following table.)

MM6 MM5 Internal ROM Internal RAM

0 0 49152 bytes (0000H-BFFFH)
2048 bytes (F700H-FEFFH)

0 1
32768 bytes (0000H-7FFFH)

1 0 1024 bytes (FB00H-FEFFH)

1 1 24576 bytes (0000H-5FFFH) 768 bytes (FC00H-FEFFH)

33

CHAPTER 3 CPU ARCHITECTURE

(4) Memory space of µPD78372 Subseries

Part number
Program memory Data memory

Internal ROM External memoryNote Internal RAM

µPD78372(A), (A1), (A2)

(MODE0, 1=HL/HH)
– 64512 bytes

µPD78P372(A), (A1), (A2) (0000H-FBFFH)
768 bytes

(MODE0, 1=HH)
(FC00H-FEFFH)

µPD78372(A), (A1), (A2)
24576 bytes 39936 bytes

µPD78P372(A), (A1), (A2)
(0000H-5FFFH) (6000H-FBFFH)

(MODE0, 1=LL)

Note Access in external memory expansion mode.

3.1.1 Vector table area

Interrupt branch addresses according to peripheral hardware interrupt requests, reset input, external interrupt

requests, and break instructions are stored in the 64-byte area of 0000H-003FH.

When an interrupt request occurs, the corresponding vector table contents are set in the program counter (PC)

for causing the program flow to branch. At this time, the contents of the even address are set in the low-order eight

bits of the program counter and the contents of the odd address in the high-order eight bits.

If the TPF bit of a CPU control word (CCW) is set to 1, the 8002H-803FH area can be used as the vector table

area in place of 0002H-003FH.

Caution The µPD78361A, 78362A, and 78P364A do not contain the CPU control word.

Table 3-1. Vector Table Area

Vector table address
Interrupt source

TPF=0 TPF=1

0000H RESET pin input

0002H 8002H NMI pin input

0004H 8004H Watchdog timer

0006H 8006H

•

• Vary from one product to another

•

003AH 803AH

003CH OPE code trap

003EH BRK instruction

34

CHAPTER 3 CPU ARCHITECTURE

3.1.2 CALLT instruction table area

Call addresses of 1-byte call instruction (CALLT) can be stored as 32 table entries in the 64-byte area of 0040H-

007FH.

If the TPF bit of the CPU control word (CCW) is set to 1, the 8040H-807FH area can be used as the CALLT instruction

table in place of 0040H-007FH.

Caution The µPD78361A, 78362A, and 78P364A do not contain the CPU control word.

3.1.3 CALLF instruction entry area

In the 0800H-0FFFH area, a direct subroutine call can be made by a 2-byte call instruction (CALLF).

3.1.4 Internal RAM area

The internal RAM area of the µPD78356 consists of the following two areas:

Peripheral RAM: Addresses vary from one product to another

• Internal RAM area

Main RAM : FE00H-FEFFH (256 bytes)

The main RAM area can be accessed at high speed. A group of general-purpose registers consisting of eight

register banks and macro service control words for controlling the macro service function are mapped in the main

RAM area.

• General-purpose register group: FE80H-FEFFH (128 bytes)

• Macro service control words: Addresses vary from one product to another

35

CHAPTER 3 CPU ARCHITECTURE

Table 3-2. Internal RAM Area List

Part number Internal RAM Peripheral RAM Main RAM

µPD78350

µPD78350A 640 bytes 384 bytes

µPD78352A (FC80H-FEFFH) (FC80H-FDFFH)

µPD78P352

µPD78355

µPD78356 2048 bytes 1792 bytes

µPD78P356 (F700H-FEFFH) (F700H-FDFFH)

µPD78356(A)

µPD78P356(A)

µPD78362A 768 bytes 512 bytes 256 bytes

µPD78363A (FC00H-FEFFH) (FC00H-FDFFH) (FE00H-FEFFH)

µPD78361A

µPD78P364A

µPD78365A 2048 bytes 1792 bytes

µPD78366A (F700H-FEFFH) (F700H-FDFFH)

µPD78368A

µPD78P368A

µPD78372(A), (A1), (A2) 768 bytes 512 bytes

µPD78P372(A), (A1), (A2) (FC00H-FEFFH) (FC00H-FDFFH)

Cautions 1. To make a word access to the main RAM area (FE00H-FEFFH) (containing stack handling),

the access operation varies depending on whether the reference address is even or odd. (See

Table 3-3.) Therefore, if an access to an even address and an access to an odd address are

mixed, an error occurs. Set only even reference addresses. (See Examples 1 and 2.)

To execute a 16-bit data transfer instruction, specify even addresses in the operands. If an

odd address is specified, an error occurs in the assembler package (RA78K3).

2. Do not make a word access across the peripheral RAM area and the main RAM area. (See

Example 3.)

Table 3-3. Word Access Operation in Internal RAM Area

Reference address (n)
Even Odd

Access area

Main RAM ×

Peripheral RAM

Remark : Addresses n and n+1 are accessed

× : Addresses n and n–1 are accessed

Word access examples in the internal RAM area are given in Examples 1 to 5.

36

CHAPTER 3 CPU ARCHITECTURE

Example 1: To write/read word data into/from even address (FE20H) in main RAM area

When word data is written into an even address (n) in the main RAM area, the low-order eight bits

of the word data are written into the even address n and the high-order eight bits are written into the

odd address n+1.

When word data is read from an even address (n) in the main RAM area, word data is read from

addresses n and n+1.

MOVW AX, #1234H

MOVW 0FE20H, AX ; Write word data into FE20H

MOVW AX, 0FE20H ; Read word data from FE20H

n: Reference address

2: To write/read word data into/from odd address (FE21H) in main RAM area

When word data is written into an odd address (n) in the main RAM area, the high-order eight bits

of the word data are written into the odd address n and the low-order eight bits are written into the

even address n-1.

When word data is read from an odd address (n) in the main RAM area, word data is read from

addresses n and n-1.

MOVW AX, #1234H

MOVW DE, #0FE21H

MOVW [DE], AX ; Write word data into FE21H

MOVW AX, [DE] ; Read word data from FE21H

n: Reference address

7 0

12HFE21H
(n+1)

34HFE20H
(n)

12HAX

15 8

34H

7 0

7 0

FE22H
(n+1)

12HFE21H
(n)

12HAX

15 8

34H

7 0

34HFE20H
(n–1)

37

CHAPTER 3 CPU ARCHITECTURE

3: To write/read word data across peripheral RAM area and main RAM area

When word data is written across the peripheral RAM area and the main RAM area, the data will

be written into the address 256 bytes distant, causing an error to occur.

When word data is read from the end address of the peripheral RAM (FDFFH), word data will be read

from FEFEH and FEFFH 256 bytes distant.

MOVW AX, #1234H

MOVW DE, #0FDFFH

MOVW [DE], AX ; Write word data into peripheral RAM (FDFFH)
...

MOVW DE, #0FDFFH

MOVW AX, [DE] ; Read word data from peripheral RAM (FDFFH)

To write data:

To read data:

7 0

12HFEFFH

34H

12HAX

15 8

34H

7 0

FEFFH

FE00H

34HFDFFH

Main RAM
(256 × 8)

Peripheral RAM

7 0

56HFEFFH

78H

56HAX

15 8

78H

7 0

FEFEH

FE00H

34HFDFFH

Main RAM
(256 × 8)

Peripheral RAM

38

CHAPTER 3 CPU ARCHITECTURE

4: To write/read word data into/from even address (FD00H) in peripheral RAM area

When word data is written into an even address (n) in the peripheral RAM area, the low-order eight

bits of the word data are written into the even address n and the high-order eight bits are written into

the odd address n+1.

When word data is read from an even address (n) in the peripheral RAM area, word data is read from

addresses n and n+1.

MOVW AX, #1234H

MOVW DE, #0FD00H

MOVW [DE], AX ; Write word data into FD00H

MOVW AX, [DE] ; Read word data from FD00H

n: Reference address

5: To write/read word data into/from odd address (FD01H) in peripheral RAM area

When word data is written into an odd address (n) in the peripheral RAM area, the low-order eight

bits of the word data are written into the odd address n and the high-order eight bits are written into

the even address n+1.

When word data is read from an odd address (n) in the peripheral RAM area, word data is read from

addresses n and n+1.

MOVW AX, #1234H

MOVW DE, #0FD01H

MOVW [DE], AX ; Write word data into FD01H

MOVW AX, [DE] ; Read word data from FD01H

n: Reference address

7 0

12HFD01H
(n+1)

34HFD00H
(n)

12HAX

15 8

34H

7 0

7 0

12HFD02H
(n+1)

34HFD01H
(n)

12HAX

15 8

34H

7 0

39

CHAPTER 3 CPU ARCHITECTURE

3.1.5 Special function register area

A group of registers to which special functions are assigned, such as peripheral hardware mode registers and

control registers, are mapped in the FF00H-FFFFH area.

Cautions 1. Do not access addresses in which the special function registers are not mapped (except for

external SFR area).

2. The µPD78361A, 78362A, and 78P364A do not contain external SFR area.

3.1.6 External memory area

The external memory area is a memory area that can be accessed by setting the memory expansion mode register

(MM).

External devices (data memory, program memory, peripheral devices) can be connected to the external memory

area of the µPD78356.

Caution The µPD78361A, 78362A, and 78P364A do not contain the external memory area.

Table 3-4. External Memory Area List

Part number External memory area

µPD78350Note 64640 bytes

µPD78350ANote (0000H-FC7FH)

µPD78352A 31872 bytes

µPD78P352 (8000H-FC7FH)

µPD78355Note 63232 bytes

(0000H-F6FFH)

µPD78356

µPD78P356 14080 bytes

µPD78356(A) (C000H-F6FFH)

µPD78P356(A)

µPD78363A
39936 bytes

(6000H-FBFFH)

µPD78365ANote 63232 bytes

(0000H-F6FFH)

µPD78366A
30464 bytes

(8000H-F6FFH)

µPD78368A 14080 bytes

µPD78P368A (C000H-F6FFH)

µPD78372(A), (A1), (A2) 39936 bytes

µPD78P372(A), (A1), (A2) (6000H-FBFFH)

Note ROMless product

40

CHAPTER 3 CPU ARCHITECTURE

3.2 Processor Registers

The processor registers comprise three groups of registers: Control registers consisting of an 8-bit register and

three 16-bit registers, general purpose registers consisting of eight banks each consisting of sixteen 8-bit registers,

and special function registers to which special functions are assigned, such as I/O mode register of peripheral

hardware.

Figure 3-2. Register Configuration

Remark The control register CCW is mapped in a special function register (SFR) area.

PC

15 0

PSW

SP

0

CCW

7

R0R1

R2R3

R4R5

R6R7

R8R9

R10R11

R12R13

R14R15

7 007

Control registers

General-purpose registers

Special function registers

SFR254SFR255

7 007

SFR252SFR253

SFR250SFR251

SFR248SFR249

SFR0SFR1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

41

CHAPTER 3 CPU ARCHITECTURE

3.2.1 Control registers

The control registers have dedicated functions such as control of a program sequence, the status, and the stack

memory and operand addressing modification.

The control registers consist of three 16-bit registers and one 8-bit register.

(1) Program counter (PC)

The program counter (PC) is a 16-bit register which holds address information of the next program to be executed.

The PC operation is as follows:

• at normal operation

PC is incremented automatically according to the number of bytes of fetched instruction;

• when a branch instruction is executed immediate data or register contents are set in the PC.

When RESET is input, the reset vector data at addresses 0000H and 0001H is set in the PC for branching.

(2) Program status word (PSW)

The program status word (PSW) is a 16-bit register which consists of flags set or reset according to the instruction

execution result.

The PSW can be read/written in units of the high-order eight bits (PSWH) and the low-order eight bits (PSWL).

Each of the flags can be handled by executing a bit manipulation instruction.

When an interrupt request occurs or a BRK instruction is executed, the PSW contents are automatically saved

in a given stack and when a RETI or RETB instruction is executed, automatically restored.

When RESET is input, all bits of the PSW are reset to 0.

Figure 3-3. Format of Program Status Word (PSW)

The flags are described below:

(a) User flag (UF)

The user flag (UF) can be set or reset in a user program for program control.

UF

7

RBS2

6

RBS1

5

RBS0

4

0

3

0

2

0

1

0

0

PSWH

Symbol

S

7

Z

6

RSS

5

AC

4

IE

3

P/V

2

0

1

CY

0

PSWL

UF

RBS0-RBS2

S

Z

RSS

AC

IE

P/V

CY

User flag

Register bank selection flag

Sign flag (MSB of operation result)

Zero flag

Register set selection flag

Auxiliary carry flag

Interrupt request enable flag

Parity/overflow flag

Carry flag

:

:

:

:

:

:

:

:

:

42

CHAPTER 3 CPU ARCHITECTURE

(b) Register bank selection flag (RBS0-RBS2)

The register bank selection flag consists of three bits to select one of eight register banks (register banks

0-7).

(c) Sign flag (S)

The sign flag (S) is a flag for storing the MSB which is set to 1 as a result of operation.

When the MSB is 1 as a result of operation, the S flag is set to 1; when 0, it is reset to 0.

The S flag can be tested by executing a conditional branch instruction.

(d) Zero flag (Z)

The zero flag (Z) is a flag for storing the operation result which is 0.

When the operation result is 0, the Z flag is set to 1; otherwise, it is reset to 0.

The Z flag can be tested by executing a conditional branch instruction.

(e) Register set selection flag (RSS)

The register set selection flag (RSS) is a flag for specifying 8-bit general-purpose registers functioning as

X, A, C, and B registers and 16-bit general-purpose register pairs functioning as AX and BC.

The function names and the absolute names (names enclosed in parentheses) are related to each other

according to specification of the RSS flag as follows: (See Table 3-5. Configuration of General-Purpose

Registers .)

• When RSS=0

X (R0), A (R1), C (R2), B (R3), AX (RP0), BC (RP1)

• When RSS=1

X (R4), A (R5), C (R6), B (R7), AX (RP2), BC (RP3)

To set or reset the RSS flag, be sure to describe an RSS pseudo instruction just before or after the set or

reset instruction. (See below.)

<Program examples>

• To set RSS=0

RSS 0 ; RSS pseudo instruction

CLR1 PSWL.5

MOV B, A ; This description is equivalent to “MOV R3, R1”

• To set RSS=1

RSS 1 ; RSS pseudo instruction

SET1 PSWL.5

MOV B, A ; This description is equivalent to “MOV R7, R5”

A similar effect to having two register sets can be produced. Registers or register pairs not specified with

the RSS flag can be accessed by describing their absolute names.

(f) Auxiliary carry flag (AC)

The auxiliary carry flag (AC) is a flag used for decimal adjustment for storing an underflow into bit 3 or an

overflow out of bit 3.

When a carry is generated out of bit 3 as a result of operation (overflow) or a borrow is generated into bit

3 (underflow), the AC flag is set to 1; otherwise, it is reset to 0.

The AC flag can be tested by executing a conditional branch instruction.

43

CHAPTER 3 CPU ARCHITECTURE

(g) Interrupt request enable flag (IE)

The interrupt request enable flag (IE) is a flag indicating whether interrupt requests are enabled or disabled.

When an EI instruction is executed, the IE flag is set to 1; when a DI instruction is executed or an interrupt

is acknowledged, it is reset to 0.

(h) Parity/overflow flag (P/V)

The P/V flag operates as a parity flag or overflow flag according to execution of a logical or arithmetic

operation instruction, as described below.

The P/V flag state can be tested by executing a conditional branch instruction.

• Parity flag operation

When the number of bits set to 1 is even as a result of execution of a logical operation instruction, the

P/V flag is set to 1; when odd, it is reset to 0.

However, only the low-order eight bits of the operation result are effective for the parity flag regardless

of 16-bit or 8-bit operations.

• Overflow flag operation

Only when the execution result of an arithmetic operation instruction exceeds the numeric value range

represented by two’s complements, the P/V flag is set to 1; otherwise, it is reset to 0.

For example, the two’s complement range is 80H (–128) to 7FH (+127) in 8-bit arithmetic operations,

and if the operation result becomes outside the range, the P/V flag is set to 1; otherwise, it is reset

to 0.

Example: The overflow flag operation when an 8-bit addition instruction is executed is shown below:

When 78H (+120) and 69H (+105) are added, the operation result becomes E1H (+225),

exceeding the upper limit of two’s complements. Thus, the P/V flag is set to 1. The two’s

complement representation of E1H is –31.

78H (+120) = 0111 1000

+ 69H (+105) = + 0110 1001

0 1110 0001 = –31 P/V=1

↑
C

When the following two negative numbers are added, the operation result is within the two’s

complement range. Thus, the P/V flag is reset to 0.

FBH (–5) = 1111 1011

+ F0H (–16) = + 1111 0000

1 1110 1011 = –21 P/V=0

↑
C

44

CHAPTER 3 CPU ARCHITECTURE

(i) Carry flag (CY)

The carry flag (CY) is a flag for storing an overflow or underflow of the operation instruction execution result.

When an operation instruction generates a carry out of bit 7 (overflow) or a borrow into bit 7 (underflow),

the CY flag is set to 1. In word operation, when a carry is generated out of bit 15 (overflow) or a borrow

is generated into bit 15 (underflow), the CY flag is set to 1; otherwise, it is reset to 0.

The CY flag can be tested by executing a conditional branch instruction. When a bit manipulation instruction

is executed, the CY flag serves as a 1-bit accumulator.

(3) Stack pointer (SP)

The stack pointer (SP) is a 16-bit register which holds the top address of a stack area (LIFO) of memory.

The SP is handled by executing dedicated instructions (stack handling instructions).

The SP is decremented before write (save) operation into the stack memory; it is incremented after read (restore)

operation from the stack memory.

When RESET is input, the SP becomes undefined. Be sure to set the SP before executing a subroutine call,

etc.

Caution To make a word access to the main RAM area (FE00H-FEFFH), only even addresses can be

specified in operands.

(4) CPU control word (CCW)

The CPU control word (CCW) is an 8-bit register which consists of CPU control flags.

The CCW is mapped in the special function register area (FFC1H) and can be controlled by software.

When RESET is input, all bits of the CCW are reset to 0.

Figure 3-4. Format of CPU Control Word

The table position flag (TPF) is a flag indicating the locations of a vector table referenced when a CALLT instruction

or an interrupt request is executed. The vector table locations are changed according to specification of the TPF

flag as follows:

• TPF=0 (reset)

0000H-007FH

• TPF=1 (set)

8000H-807FH

Cautions 1. Vector table entries for RESET input, BRK instruction, and OPE code trap interrupt are fixed

to 0000H, 003EH, and 003CH respectively, and not affected by the TPF.

2. The µPD78361A, 78362A, and 78P364A do not contain the CPU control word.

0

7

0

6

0

5

0

4

0

3

0

2

TPF

1

0

0

CCW

Symbol Address When reset R/W

FFC1H 00H R/W

TPF: Table position flag

45

CHAPTER 3 CPU ARCHITECTURE

3.2.2 General-purpose registers

The general-purpose registers are eight 128-byte register banks mapped in a specific area of internal RAM space

(FE80H-FEFFH), each register bank consisting of sixteen 8-bit registers.

Figure 3-5. Process Bits of General-Purpose Registers

8-bit registers can also be paired as eight 16-bit register pairs (RP0-RP7).

In addition to the absolute names, the function names can be used to describe the sixteen 8-bit registers, as listed

in Table 3-5. The X register serves as the low-order part of a 16-bit accumulator; the A register serves as an 8-bit

accumulator or the high-order part of the 16-bit accumulator; the B and C registers serve as a counter; and DE, HL,

VP, and UP register pairs serve as address registers. Particularly, the VP register pair has a function as a base register

and the UP register pair has a function as a user stack pointer.

The registers having a unique function change according to the value of the register set selection flag (RSS) in

the program status word (PSW), as listed in Table 3-5.

Therefore, when the function names are used to describe a program, a similar effect to having two register sets

(X, A, B, C, AX, BC) can be produced by handling the RSS flag. Registers not specified with the RSS flag, for example,

R4 register when RSS=0, can be accessed by describing the absolute names (in the example, R4).

The µPD78356 enables implied addressing using the function names attaching importance to the unique function

of each register and register addressing using the absolute names for high-speed processing with less data transfer

count and preparing highly descriptive programs as process data addressing.

RBNK 0

RBNK 1

RBNK 2

RBNK 3

RBNK 4

RBNK 5

RBNK 6

RBNK 7

FEFFH

FE80H

R15

R13

R11

R 9

R 7

R 5

R 3

R 1

R14

R12

R10

R 8

R 6

R 4

R 2

R 0

7 07 0

8-bit operation

(FH)RP7(EH)

(DH)RP6(CH)

(BH)RP5(AH)

(9H)RP4(8H)

(7H)RP3(6H)

(5H)RP2(4H)

(3H)RP1(2H)

(1H)RP0(0H)

16-bit operation

15 0

46

CHAPTER 3 CPU ARCHITECTURE

Table 3-5. Configuration of General-Purpose Registers

(a) Correspondence between absolute and function names of 8-bit registers

Absolute name
Function name

RSS=0 RSS=1

R0 X

R1 A

R2 C

R3 B

R4 X

R5 A

R6 C

R7 B

R8 VPL VPL

R9 VPH VPH

R10 UPL UPL

R11 UPH UPH

R12 E E

R13 D D

R14 L L

R15 H H

(b) Correspondence between absolute and function names of 16-bit register pairs

Absolute name
Function name

RSS=0 RSS=1

RP0 AX

RP1 BC

RP2 AX

RP3 BC

RP4 VP VP

RP5 UP UP

RP6 DE DE

RP7 HL HL

47

CHAPTER 3 CPU ARCHITECTURE

3.2.3 Special function registers (SFRs)

Unlike the general-purpose registers, the special function registers (SFRs) have special functions. The SFRs are

allocated to FF00H-FFFFH memory space (256-byte special function register area).

Short direct addressing can be applied to the 32 byte area FF00H-FF1FH. Therefore, the SFRs allocated to the

area can be processed with the shorter word length and a fewer number of clocks than the SFRs allocated to another

area. The frequently accessed SFRs, such as capture registers, compare registers, and ports, are allocated to the

32-byte area.

For the 16-byte area FFD0H-FFDFH, an access to the external is made by SFR addressing. Therefore, an access

to the external memory and bit manipulation of external devices can be performed with instructions having short word

length.

The SFRs can be handled as the general-purpose registers by executing instructions such as operation, transfer,

and bit manipulation instructions. Bit units in which the SFRs can be handled (1, 8, 16 bits) vary depending on the

SFR.

48

CHAPTER 3 CPU ARCHITECTURE

3.3 Data Memory Addressing

The µPD78356 provides various addressing modes considering operability of memory and high-level languages.

Particularly in the data memory area, proper addressing modes can be used conforming to the functions of the

special function registers (SFRs), general-purpose registers, etc.

Figure 3-6 shows the data memory addressing modes.

For details of the addressing modes, see 4.2 Operand Addressing .

Figure 3-6. Data Memory Addressing

Notes 1. The addresses vary depending on the product.

2. Since the µPD78361A, 78362A, and 78P364A do not contain the external memory expansion function,

the area cannot be used.

3. External memory in the ROMless mode.

Caution To make a word access to the main RAM area (FE00H-FEFFH) (containing stack handling), only

even addresses can be specified in operands.

3.3.1 General-purpose register addressing

(1) Implied addressing

In the implied addressing, the registers functioning as the accumulators (A, AX) and loop counters (B, C) in the

general-purpose register area are addressed automatically by instructions.

Special function registers
(SFRs)

Main RAM

Peripheral RAM

External memoryNote 2

Internal ROM (ROM
version product)Note 3

External memory
(ROMless product)

FFFFH

FF1FH
FF00H

Note 1

FE20H

Note 1

0000H

Direct addressing
Register indirect addressing
Based addressing
Based indexed addressing
Based indexed addressing
(with displacement)

FE80H

General-purpose
registers

SFR addressing

Register addressing Short direct addressing
FEFFH

49

CHAPTER 3 CPU ARCHITECTURE

Description example MULU r

Assuming that the multiplier is the value stored in the B register in an 8-bit × 8-bit

multiplication instruction, describe the following.

When the instruction is executed, data in the accumulator (A register) is multiplied by

data in the 16-bit accumulator (AX register) and the result is stored in the 16-bit

accumulator (AX register).

MULU B ; AX ← A × B

(2) Register addressing

In the register addressing, the register to be used is addressed directly in an instruction.

Description example ADD r, r

To specify D and E registers as registers to store addition instruction operand values

in an 8-bit addition instruction, describe the following:

ADD D, E ; D ← D + E

3.3.2 Short direct addressing

The short direct addressing is addressing to access addresses FE20H-FEFFH in the internal RAM space and

addresses FF00H-FF1FH in the SFR space. The short direct addressing enables the areas to be accessed with short

operation codes at high speed.

To handle 16-bit data, specify even addresses.

Description example ADD A, saddr

When one of addition instruction operand values is stored at address FE80H in the

internal data memory space in an 8-bit addition instruction, describe the following:

ADD A, 0FE80H ; A ← A + (FE80H)

3.3.3 Special function register (SFR) addressing

The special function register (SFR) addressing is used to handle the special function registers (SFRs) mapped

in the SFR area (FF00H-FFFFH).

Description example MOV A, sfr

To specify port 0 in the SFR area for the special function register used as the source

in an 8-bit transfer instruction, describe the following:

MOV A, P0 ; A ← P0

50

CHAPTER 3 CPU ARCHITECTURE

3.4 Interrupt Function

The µPD78356 handles interrupt requests occurring from on-chip peripheral hardware and the external in the three

processing modes shown in Figure 3-7.

Figure 3-7. Handling Interrupt Requests

The interrupt requests are classified into the following four types. Table 3-6 lists the relationships among the

interrupt requests and the processing modes.

• Nonmaskable interrupt requests

• Maskable interrupt requests

• Software interrupt requests

• OPE code trap interrupt requests

Table 3-6. Interrupt Requests and Processing Modes

Processing mode Vectored interrupt Macro service Context switching

Interrupt request processing

Nonmaskable interrupt – –

Maskable interrupt

Software interrupt –

OPE code trap interrupt – –

Caution The µPD78356 enters the complete interrupt disable state during execution of a write access

instruction to an interrupt control register (see 3.4.6) or program status word (PSW). In the state,

nonmaskable interrupt requests and macro service requests are not acknowledged and kept

pending.

Interrupt request Handled in vectored interrupt mode

Handled in context switching mode

Handled in macro service mode

51

CHAPTER 3 CPU ARCHITECTURE

3.4.1 Interrupt request types

The interrupt requests are classified into the following four types:

• Nonmaskable interrupt

• Maskable interrupt

• Software interrupt

• OPE code trap interrupt

The interrupt requests are described below:

(1) Nonmaskable interrupts

The nonmaskable interrupts are nonmaskable interrupt requests whose acknowledge cannot be disabled.

The interrupts can always be acknowledged. This means that they are unconditionally acknowledged even in

the DI (disable interrupt) state. Vectored interrupt processing can be performed for the nonmaskable interrupts.

The nonmaskable interrupt sources are the following two:

• NMI pin input (NMI)

• Watchdog timer output (WDT)

Unlike maskable interrupts, programmable priority level control is not applied to the nonmaskable interrupts.

However, the priority levels between the interrupt requests caused by NMI pin input (NMI) and watchdog timer

output (WDT) can be specified in a watchdog timer mode register (WDM).

To return from the NMI or WDT interrupt, use a RETI instruction.

(2) Maskable interrupts

The maskable interrupts are interrupt requests whose acknowledge can be masked by setting the control register.

Since they are interrupts occurring from peripheral hardware, their interrupt sources vary depending on the

product. For the maskable interrupts, the processing mode can be selected among the following three:

• Vectored interrupt processing

• Macro service

• Context switching

When more than one maskable interrupt occurs at the same time, their priority levels are determined according

to the default priority levels. Apart from the default priority levels, four interrupt priority levels can be set by setting

the interrupt control register (programmable priority level control).

When an interrupt request is acknowledged, the DI state is entered, disabling the subsequent maskable interrupt

requests.

When an EI instruction is executed in an interrupt service routine, the EI state is entered, enabling an interrupt

request having the higher priority level than that of the current interrupt request being acknowledged (specified

in the interrupt control register).

Interrupts having the same priority level cannot be nested. However, if the PRSL bit of an interrupt mode control

register (IMC) is set to 0, an interrupt request having the same interrupt level is enabled only at the lowest level

(level 3).

The macro service is acknowledged even in the DI state independently of the priority level.

52

CHAPTER 3 CPU ARCHITECTURE

Figure 3-8. Process Flow of Maskable Interrupt

(3) Software interrupts

The software interrupt is an interrupt request occurring when a CPU break instruction is executed, and can always

be acknowledged. Vectored interrupt processing can be performed for the software interrupt.

The following two instructions cause a software interrupt to occur:

• BRK instruction : Branch to the address indicated by the contents of memory addresses 003EH, 003FH.

• BRKCS instruction : Branch by context switching processing. Switch to the register bank specified in the

instruction.

If the instructions are executed in the DI state, the corresponding interrupts occur. Control of interrupt priority

level specification is not applied to the interrupts.

When a BRK instruction is executed, unconditionally the vector table contents are set in the PC for causing the

program flow to branch.

By executing a new BRK instruction in the interrupt service routine of a BRK instruction, its own routine can be

nested.

If an EI instruction is executed in the interrupt service routine of a BRK instruction, the EI state is entered and

a maskable interrupt request can be acknowledged.

Pending

Maskable interrupt request

Mask

NO

YES

Macro service processing

Macro service

NO

YES

Vectored interrupt, context switching
processing pending

EI or DI

EI

DI

Context switching processing

Context switching

NO

YES

Vectored interrupt processing

53

CHAPTER 3 CPU ARCHITECTURE

(4) OPE code trap interrupts

The OPE code trap interrupt request occurs when a write into a watchdog timer mode register (WDM) or a standby

control register (STBC) is not normally executed.

Write instructions into the WDM register and the STBC register consist of special operation codes. A write is

enabled only when operation codes at the three and fourth bytes of the instruction are complementary to each

other. If they are not complementary to each other, an OPE code trap interrupt is generated.

3.4.2 Interrupt processing modes

The following three interrupt processing modes can be used:

• Vectored interrupt processing

• Macro service

• Context switching

(1) Vectored interrupt processing

When an interrupt is acknowledged, automatically the program counter (PC) and the program status word (PSW)

are saved in a stack memory and the program flow branches to the address indicated by the data stored in the

vector table for executing the interrupt service routine.

To return from the interrupt service routine, use a RETI instruction.

(2) Macro service

When an interrupt is acknowledged, execution of the CPU is temporarily stopped and data is transferred by the

hardware. Since the macro service is executed without intervention of the CPU, the CPU status of the PC PSW,

etc., need not be saved or restored.

Therefore, the macro service has a large effect on improvement of the CPU service time.

(3) Context switching

When an interrupt is acknowledged, a predetermined register bank is selected by the hardware and the program

flow branches to the vector address preset in the register bank. At the same time, the current PC and PSW are

saved in the register bank.

Remark The context refers to the CPU registers that can be accessed from the current program being executed.

The registers include the general purpose registers, PC, PSW, and SP (stack pointer).

54

CHAPTER 3 CPU ARCHITECTURE

3.4.3 Macro service function

The macro service function is a function for transferring data between the special function register area and the

memory space by the hardware when an interrupt request occurs.

When a macro service request occurs, the CPU temporarily stops program execution and 1/2-byte data transfer

is automatically executed between the special function register (SFR) area and the memory. When the data transfer

is completed, the interrupt request flag is reset to 0 and the CPU restarts program execution.

Further, data transfer is executed as many times as the count set in the macro service counter (MSC), then a

vectored interrupt request is generated.

Figure 3-9. Macro Service Process Sequence Example

Unlike other interrupt processing, macro service function processing is automatically performed without starting

any interrupt service program, thus does not involve a sequence of steps of branch to an interrupt service routine,

saving/restoring register, and return from the interrupt service routine. Therefore, the CPU service time can be

improved and the number of program steps can be reduced.

; decrement macro service counter (MSC) by one

Interrupt request occurrence
involving macro service processing

Execute macro
service processing

; transfer data

MSC ← MSC–1

MSC=0?

××ISM ← 0

YES

Occurrence of vectored interrupt request Execution of the next instruction

Interrupt request flag ← 0

NO

55

CHAPTER 3 CPU ARCHITECTURE

3.4.4 Context switching function

When an interrupt request occurs or a BRKCS instruction is executed, a predetermined register bank is selected

by the hardware. At the same time as the program flow branches to the vector address prestored in the register bank,

the current program counter (PC) and program status word (PSW) contents are stacked in the register bank.

To return from the service routine, use a RETCS instruction (if the function is started by the BRKCS instruction,

RETCSB instruction).

Figure 3-10. Context Switching Operation when an Interrupt Request Occurs

A X

B C

R5 R4

R7 R6

VP

UP

D E

H L

PC

Register bank n (n=0-7)

<5> Exchange

<4> Save

Temporary register

PSW

<1> Save

Register bank
(0-7)

<2> Register bank switching
 (RSB0-RSB2 ← n)
<3> RSS ← 0
 IE ← 0

56

CHAPTER 3 CPU ARCHITECTURE

3.4.5 Interrupt execution rates

The interrupt execution rates are listed below.

However, the priority level determination time is not contained. Since the priority level is determined every two

clocks, the determination time changes in the range of 0 to two clocks depending on the interrupt occurrence timing.

n denotes the number of wait states specified in a programmable wait control register (PWC).

Caution In the three subseries of µPD78356, 78366A, and 78372, the number of clocks at the normal fetch

is the same as that at the high-speed fetch. See the column “Normal fetch” in the interrupt

execution rate lists given below.

(1) Vectored interrupt processing

Stack
No. of clocks

Normal fetch High-speed fetch

Main RAM 21+2n

Peripheral RAM 25+2n/33+2nNote 27+2n/37+2nNote

External memory 33+6n 37+2n

Note Even address/odd address

(2) Context switching processing

(a) Normal fetch: 17+2n

(b) High-speed fetch: 19

(3) Macro service processing

No. of clocks

Macro service Normal fetch High-speed fetch

Byte operation Word operation Byte operation Word operation

EVTCNT 12 12

BLKTRS mem → SFR 18 19 18 19

BLKTRS SFR → mem 17 18 17 18

BLKTRS-P mem → SFR (IRAM) 20 21 20 21

(PRAM) 22 23/27Note 23 24/29Note

(EMEM) 22+n 27+2n 28 29

BLKTRS-P SFR → mem (IRAM) 20 21 20 21

(PRAM) 22 23/27Note 23 24/29Note

(EMEM) 22+n 27+2n 28 29

DTADIF – 22 – 22

DTADIF-P (IRAM) 26 26

(PRAM) – 28/32Note – 29/34Note

(EMEM) 32+2n 34

Note Even address/odd address

57

CHAPTER 3 CPU ARCHITECTURE

3.4.6 Control registers

78K/III series interrupt processing is controlled for each interrupt request with control registers in which interrupt

processing is specified. Tables 3-7 to 3-10 list the control registers for each subseries.

Table 3-7. Control Register List (µPD78352A Subseries)

Register name Symbols

Interrupt control registers OVIC, PIC0, PIC1, CMIC10, CMIC20, PIC2, PIC3

Interrupt mask flag register MKL

In-service priority register ISPR

Interrupt mode control register IMC

Table 3-8. Control Register List (µPD78356 Subseries)

Register name Symbols

Interrupt control registers OIC0, OVIC3, PIC0, PIC1, PIC2, PIC3, PIC4, CMIC00, CMIC01, CMIC02,

CMIC03, CMIC10, CMIC11, CMIC20, CMIC21, CMIC40, CMICUD0,

CMICUD1, SERIC, SRIC, STIC, CSIIC0, CSIIC1, ADIC

Interrupt mask flag register MK0, MK1, MK0H, MK0L, MK1L

In-service priority register ISPR

Interrupt mode control register IMC

Table 3-9. Control Register List (µPD78366A Subseries)

Register name Symbols

Interrupt control registers OVIC3, PIC0, PIC1, PIC2, PIC3, PIC4, TMIC0, CMIC03, CMIC10, CMIC40,

CMIC41, SERIC, SRIC, STIC, CSIIC, ADIC

Interrupt mask flag register MK0, MK0H, MK0L

In-service priority register ISPR

Interrupt mode control register IMC

Table 3-10. Control Register List (µPD78372 Subseries)

Register name Symbols

Interrupt control registers OVIC0, OVIC1, PLIC0, PHIC0, PLIC1, PHIC1, PLIC2, PHIC2, PLIC3,

PHIC3, PIC4, PIC5, CMIC10, CMIC11, CMIC12, CMIC13, SERIC, SRIC,

STIC, CSIIC, ADIC

Interrupt mask flag register MK0, MK1, MK0H, MK0L, MK1L

In-service priority register ISPR

Interrupt mode control register IMC

58

CHAPTER 3 CPU ARCHITECTURE

[MEMO]

59

CHAPTER 4 ADDRESSING

CHAPTER 4 ADDRESSING

4.1 Instruction Addressing

The instruction address is automatically determined by the program counter (PC) contents and is automatically

incremented according to the number of bytes of the fetched instruction (by one for one byte) each time one instruction

is executed. However, when a branch instruction is executed, branch destination address information is set in the

PC for branching by the addressing as listed below.

The flowing five instruction addressing modes can be used:

• Relative addressing

• Immediate addressing

• Table indirect addressing

• Register addressing

• Register indirect addressing

The addressing modes are described.

4.1.1 Relative addressing

The value resulting from adding 8-bit immediate data of operation code (displacement value: jdisp) to the top

address of the following instruction is set in the program counter (PC) for branching. The displacement value is handled

as signed two’s complement data (from –128 to +127) and bit 7 is used as a sign bit.

The relative addressing is used to execute a BR $addr16 instruction or conditional branch instruction.

Figure 4-1. Relative Addressing

PC + b

15 0

...b is the number of bytes of the instruction

+

X

15 0

S

8 7 6

jdisp

15 0

PC

When S=0, all bits of X are 0

When S=1, all bits of X are 1

60

CHAPTER 4 ADDRESSING

4.1.2 Immediate addressing

Immediate data in an instruction is transferred to the program counter (PC) for branching.

The immediate addressing is used to execute a CALL !addr16, BR !addr16, or CALLF !addr11 instruction.

When the CALLF !addr11 instruction is executed, a branch is taken to a fixed area whose high-order 5-bit address

part is determined.

Figure 4-2. Immediate Addressing

CALL or BR

7 0

Low Addr.

High Addr.

PC

15 8 7 0

CALLF

7 0

faL

PC

15 8 7 0

3 2

faH

11 10

00001

61

CHAPTER 4 ADDRESSING

4.1.3 Table indirect addressing

The contents of the table in a specific location addressed by the immediate data of the low-order five bits of operation

code are transferred to the program counter (PC) for branching.

The table indirect addressing is used to execute a CALLT [addr5] instruction.

Figure 4-3. Table Indirect Addressing

4.1.4 Register addressing

The contents of the register pair (RP0-RP7) specified by an instruction are transferred to the program counter (PC)

for branching.

The register addressing is used to execute a BR rp1 or CALL rp1 instruction.

Figure 4-4. Register Addressing

Memory

Low Addr.

High Addr.

PC

15 8 7 0

Effective address

Effective address + 1

Effective address =

8 7 6 515 14 1 0

0 0 0 0 0 0 0 01 ta 0

TPF

Operation code

05 47

1 1 1 ta

rp1

7 0 7 0

PC

15 8 7 0

62

CHAPTER 4 ADDRESSING

4.1.5 Register indirect addressing

The continuous 2-byte data in the memory addressed by the contents of the register pair (RP0-RP7) specified by

an instruction are transferred to the program counter (PC) for branching.

The register indirect addressing is used to execute a BR [rp1] or CALL [rp1] instruction.

Figure 4-5. Register Indirect Addressing

rp1

7 0 7 0

Effective address =

15 8 7 0

Memory

Low Addr.

High Addr.

PC

15 8 7 0

Effective address

Effective address + 1

63

CHAPTER 4 ADDRESSING

4.2 Operand Addressing

The following ten modes can be used for addressing registers and memories on which operations are to be

performed when instructions are executed:

• Register addressing

• Immediate addressing

• Direct addressing

• Short direct addressing

• Special function register (SFR) addressing

• Short direct memory indirect addressing

• Register indirect addressing

• Based addressing

• Indexed addressing

• Based indexed addressing

These addressing modes are described below.

4.2.1 Register addressing

In the register addressing, the general-purpose register specified in the register set selection flag (RSS) in the

register bank specified in the register bank selection flag bits (RBS0-RBS2) and the register specification code (Rn,

Pn, Qn) in an instruction is used as an operand for accessing.

The register addressing is used to execute instructions having the operand identifiers listed below. To specify

an 8-bit register, three bits in an operation code are used to specify one of eight registers or four bits are used to

specify one of 16 registers. To specify a 16-bit register pair, three bits in an operation code are used to specify one

of eight register pairs.

Identifier Description

r R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15

r1 R0, R1, R2, R3, R4, R5, R6, R7

r2 C, B

rp RP0, RP1, RP2, RP3, RP4, RP5, RP6, RP7

rp1 RP0, RP1, RP2, RP3, RP4, RP5, RP6, RP7

rp2 DE, HL, VP, UP

As r, r1, rp, and rp1, function names (X, A, C, B, E, D, L, H, AX, BC, DE, HL, VP, and UP) can be described in

addition to the absolute names (R0-R15 and RP0-RP7).

The function names corresponding to the absolute names are as listed in Tables 5-2 and 5-3.

64

CHAPTER 4 ADDRESSING

Example 1: MOV A, r1

Operation code 1 1 0 1 0 R2R1R0

To select the R2 register as r1, describe the following: (The R2 register becomes the C register when

RSS=0.)

MOV A, R2

The following operation code is generated corresponding to the instruction:

Operation code 1 1 0 1 0 0 1 0

2: INCW rp2

Operation code 0 1 0 0 0 1 S1S0

To select the DE register pair as rp2, describe the following:

INCW DE

The following operation code is generated corresponding to the instruction:

Operation code 0 1 0 0 0 1 1 0

4.2.2 Immediate addressing

In the immediate addressing, 8-bit or 16-bit data is contained in an operation code.

The immediate addressing is used to execute instructions having the operand identifiers listed below.

Identifier Description

byte label, numeric value of up to eight bits word,

word label, numeric value of up to 16 bits

Example: ADD A, #byte

Operation code 1 0 1 0 1 0 0 0

Data

To take 77H as byte, describe the following:

ADD A, #77H

The following operation code is generated corresponding to the instruction:

Operation code 1 0 1 0 1 0 0 0

0 1 1 1 0 1 1 1

65

CHAPTER 4 ADDRESSING

4.2.3 Direct addressing

In the direct addressing, immediate data in an instruction addresses the memory on which an operation is to be

performed as operand address.

The direct addressing is used to execute instructions having the operand identifier listed below.

Identifier Description

 addr16 label, numeric value of up to 16 bits

Example: MOV A, !addr16

Operation code 0 0 0 0 1 0 0 1

1 1 1 1 0 0 0 0

Low Addr.

High Addr.

To take FE00H as addr16, describe the following:

MOV A, !0FE00H

The following operation code is generated corresponding to the instruction:

Operation code 0 0 0 0 1 0 0 1

1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 0

4.2.4 Short direct addressing

In the short direct addressing, 8-bit immediate data in an instruction directly addresses the fixed memory space

on which an operation is to be performed.

The short direct addressing is applied to the 256-byte space of FE20H-FF1FH. The internal RAM (short direct

memory) is mapped in FE20H-FEFFH and the special function registers (SFRs) are mapped in FF00H-FF1FH.

Bit 8 of an effective address is set to 0 when 8-bit immediate data is 20H-FFH or 1 when the data is 00H-1FH.

66

CHAPTER 4 ADDRESSING

Figure 4-6. Short Direct Addressing

The short direct addressing is used to execute instructions containing saddr or saddrp as an operand.

When an instruction containing saddrp is executed, 2-byte data in the memory location addressed by the effective

address and the following memory location (data at even-odd addresses where the least significant bit of the effective

address is ignored) is accessed.

Identifier Description

saddr label, numeric value ranging from FE20H to FF1FH

saddrp label, numeric value ranging from FE20H to FF1EH (even)

Example: MOV saddr, saddr

Operation code 0 0 1 1 1 0 0 0

Saddr-offset

Saddr-offset

To take FE30H as the first operand saddr and FE50H as the second operand saddr, describe the

following:

MOV 0FE20H, 0FE50H

The following operation code is generated corresponding to the instruction:

Operation code 0 0 1 1 1 0 0 0

0 0 1 0 0 0 0 0

0 1 1 0 0 0 0 0

8

OP code

Saddr-offset

Effective address

15 0

7 0

1 1 1 1 1 1 1

9 7 6 5 4

Short direct memory

67

CHAPTER 4 ADDRESSING

4.2.5 Special function register (SFR) addressing

In the special function register (SFR) addressing, 8-bit immediate data in an operation instruction addresses a

memory-mapped special function register (SFR).

The space in which the SFRs are mapped to which the SFR addressing is applied is the 256-byte space of FF00H-

FFFFH. However, the SFRs mapped in FF00H-FF1FH are accessed not only in the SFR addressing mode, but also

in the short direct addressing mode.

Remark With the assembler package manufactured by NEC (RA78K3), the short direct addressing is used

automatically (forcibly) for instructions for the SFRs mapped in FF00H-FF1FH.

Figure 4-7. Special Function Register Addressing

Identifier Description

sfr Symbol of special function register

sfrp Symbol of special function register where 16-bit operation can be performed

Example: MOV sfr, A

Operation code 0 0 0 1 0 0 1 0

Sfr-offset

To specify PM0 as sfr, describe the following:

MOV PM0, A

The following operation code is generated corresponding to the instruction:

Operation code 0 0 0 1 0 0 1 0

0 0 1 0 0 0 0 0

8

OP code

Saddr-offset

Effective address

15 0

7 0

1 1 1 1 1 1 1

7

1

SFR

68

CHAPTER 4 ADDRESSING

4.2.6 Short direct memory indirect addressing

In the short direct memory indirect addressing, the contents of the contiguous 2-byte short direct memory area

addressed by 8-bit immediate data in an instruction address the memory on which an operation is to be performed

as operand address.

The short direct memory indirect addressing is used to execute instructions having [saddrp] as operands.

Figure 4-8. Short Direct Memory Indirect Addressing

Identifier Description

 [saddrp] [label, numeric value ranging from FE20H to FF1F (even)]

Example: XCH A, [saddrp]

Operation code 0 0 1 0 0 0 1 1

Saddr-offset

To take FEA0H as saddrp, describe the following:

XCH A, [0FEA0H]

The following operation code is generated corresponding to the instruction:

Operation code 0 0 1 0 0 0 1 1

1 0 1 0 0 0 0 0

8

Low Addr.

High Addr.

Effective address

15 0

7 0

7 Memory

OP code

Saddr-offset

7 0

Short direct memory

Short direct addressing

69

CHAPTER 4 ADDRESSING

4.2.7 Register indirect addressing

In the register indirect addressing, the contents of the register pair specified in the register set selection flag (RSS)

in the register bank specified in the register bank selection flag bits (RBS1-RBS2) and the register pair specification

code in an instruction address the memory on which an operation is to be performed as operand address.

The register indirect addressing is used to execute instructions having the following operand identifiers:

Identifier Description

 mem [DE], [HL], [DE+], [HL+], [DE–], [HL–], [VP], [UP]

 [rp1] [RP0], [RP1], [RP2], [RP3], [RP4], [RP5], [RP6], [RP7]

The register indirect addressing with the register pair DE or HL enables the register pair contents to be incremented

or decremented by one for the next addressing after addressing the memory.

To use this function, describe [DE+], [HL+], [DE–], or [HL–] in the operand field mem.

Example 1: MOV A, mem

Operation code • When [DE], [HL], [DE+], [HL+], [DE-], or [HL–] in register indirect mode is

described as mem

0 1 0 1 1 mem

• When the instruction is described in register indirect mode other than the

above

0 0 0 1 0 1 1 0

0 mem 0 0 0 0

To specify [DE] as mem, describe the following:

MOV A, [DE]

The following operation code is generated corresponding to the instruction:

Operation code 0 1 0 1 1 1 0 0

2: ROR4 [rp1]

Operation code 0 0 0 0 0 1 0 1

1 0 0 0 1 Q2Q1Q0

To select RP0 as rp1, describe the following:

ROR4 [RP0]

The following operation code is generated corresponding to the instruction:

Operation code 0 0 0 0 0 1 0 1

1 0 0 0 1 0 0 0

70

CHAPTER 4 ADDRESSING

3: ADD A, mem

Operation code (in register indirect mode)

0 0 0 1 0 1 1 0

0 mem 1 0 0 0

To specify [HL+] as mem, describe the following:

ADD A, [HL+]

The following operation code is generated corresponding to the instruction:

Operation code 0 0 0 1 0 1 1 0

0 0 0 1 1 0 0 0

4.2.8 Based addressing

In the based addressing, the sum of the contents of the 16-bit register or register pair (DE, SP, HL, UP, or VP)

specified in the register set selection flag (RSS) in the register bank specified in the register bank selection flag bits

(RBS0-RBS2) and the addressing code (mem) in an instruction and 8-bit immediate data specified as operand

addresses the memory on which an operation is to be performed as operand address.

The based addressing is used to execute instructions having the following operand identifier:

Identifier Description

 mem [DE+byte], [SP+byte], [HL+byte], [UP+byte], [VP+byte]

Example: AND A, mem

Operation code 0 0 0 0 0 1 1 0

0 mem 1 1 0 0

offset

To select based addressing of the sum of register pair VP and immediate data 10H as mem, describe

the following:

AND A, [VP+10H]

The following operation code is generated corresponding to the instruction:

Operation code 0 0 0 0 0 1 1 0

0 1 0 0 1 1 0 0

0 0 0 1 0 0 0 0

71

CHAPTER 4 ADDRESSING

4.2.9 Indexed addressing

In the based addressing, the sum of the contents of the 8-bit register or 16-bit register pair (A, B, DE, or HL) specified

in the register set selection flag (RSS) in the register bank specified in the register bank selection flag bits (RBS0-

RBS2) and the addressing code (mem) in an instruction and 16-bit immediate data specified as operand addresses

the memory on which an operation is to be performed as operand address.

The based addressing is used to execute instructions having the following operand identifier:

Identifier Description

 mem word[DE], word[A], word[HL], word[B]

Example: ADDC A, mem

Operation code 0 0 0 0 1 0 1 0

0 mem 1 0 0 1

Low Offset

High Offset

To select indexed addressing of the sum of register pair DE and immediate data 4010H as mem,

describe the following:

ADDC A, 4010H[DE]

The following operation code is generated corresponding to the instruction:

Operation code 0 0 0 0 1 0 1 0

0 0 0 0 1 0 0 1

0 0 0 1 0 0 0 0

0 1 0 0 0 0 0 0

72

CHAPTER 4 ADDRESSING

4.2.10 Based indexed addressing

In the based indexed addressing, the sum of the contents of the 16-bit register (DE, HL, or VP) specified in the

register set selection flag (RSS) in the register bank specified in the register bank selection flag bits (RBS0-RBS2)

and the addressing code (mem) in an instruction and the contents of 8-bit or 16-bit register (A, B, DE, or HL) addresses

the memory on which an operation is to be performed as operand address.

The based addressing is used to execute instructions having the following operand identifier:

Identifier Description

 mem [DE+A], [HL+A], [DE+B], [HL+B], [VP+DE], [VP+HL]

Example: OR A, mem

Operation code 0 0 0 1 0 1 1 1

0 mem 1 0 0 1

To select based indexed addressing of the sum of register pair HL and register B as mem, describe

the following:

SUBC A, [HL+B]

The following operation code is generated corresponding to the instruction:

Operation code 0 0 0 1 0 1 1 1

0 0 1 1 1 0 1 1

73

CHAPTER 5 INSTRUCTION SET LIST

CHAPTER 5 INSTRUCTION SET LIST

This chapter describes the µPD78356 instruction repertoire.

5.1 List of Operations

5.1.1 Operand identifier and description

Operands are coded in the operand field of each instruction as listed in the description column of Table 20-1. For

details of the operand format, refer to the relevant assembler specifications. When several coding forms are

presented, any one of them is selected. Uppercase letters and the symbols, +, –, #, $, !, and [], are keywords and

must be written as they are.

For immediate data, an appropriate numeric or label must be written. The symbols #, $, !, and [] must not be omitted

when describing labels.

Table 5-1. Operand Identifier and Description

Identifier Description

r R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15

r1 R0, R1, R2, R3, R4, R5, R6, R7

r2 C, B

rp RP0, RP1, RP2, RP3, RP4, RP5, RP6, RP7

rp1 RP0, RP1, RP2, RP3, RP4, RP5, RP6, RP7

rp2 DE, HL, VP, UP

sfr Special function register name

sfrp Special function register name

post RP0, RP1, RP2, RP3, RP4, RP5/PSW, RP6, RP7

(Can be coded more than once. However, RP5 can only be used in a PUSH or POP instruction and PSW

can only be used in a PUSHU or POPU instruction.)

mem [DE], [HL], [DE+], [HL+], [DE–], [HL–], [VP], [UP] : Register indirect mode

[DE+A], [HL+A], [DE+B], [HL+B], [VP+DE], [VP+HL] : Based indexed mode

[DE+byte], [HL+byte], [VP+byte], [UP+byte], [SP+byte] : Based mode

word[A], word[B], word[DE], word[HL] : Indexed mode

saddr FE20H-FF1FH Immediate data or label

saddrp FE20H-FE1EH Immediate data (bit 0 = 0, however) or label (for 16-bit manipulation)

$addr16 0000H-FDFFH Immediate data or label : Relative addressing

!addr16 0000H-FDFFH Immediate data or label : Immediate addressing

(Data at an address up to FFFFH can be coded in an MOV instruction. Data at an address from FE00H to

FEFFH can be coded in an MOVTBLW instruction.)

addr11 800H-FFFH Immediate data or label

addr5 40H-7EH Immediate data (bit 0 = 0, however)Note or label

word 16-bit immediate data or label

byte 8-bit immediate data or label

bit 3-bit immediate data or label

n 3-bit immediate data (0 to 7)

Note Do not attempt to access word data at an odd-numbered address (bit 0 = 1).
Remarks 1. The same register name can be specified in rp and rp1, but different codes are generated. (See 5.2

Instruction Codes .)
2. Immediate addressing is effective for entire address spaces. Relative addressing is effective for the

locations within a displacement range of –128 to +127 from the starting address of the next instruction.

74

CHAPTER 5 INSTRUCTION SET LIST

The 8-bit registers (r, r1) and 16-bit register pairs (rp, rp1, post) can be represented by either absolute names (R0-

R15, RP0-RP7) or function names. Table 5-2 lists the absolute names and corresponding function names of an 8-

bit register. Table 5-3 lists those of a 16-bit register.

Table 5-2. Absolute Names and Their Corresponding Function Names of an 8-bit Register

Function name Function name
Absolute name Absolute name

RSS=0 RSS=1 RSS=0 RSS=1

R0 X R8 VPL VPL

R1 A R9 VPH VPH

R2 C R10 UPL UPL

R3 B R11 UPH UPH

R4 X R12 E E

R5 A R13 D D

R6 C R14 L L

R7 B R15 H H

Table 5-3. Absolute Names and Their Corresponding Function Names of a 16-bit Register

Function name
Absolute name

RSS=0 RSS=1

RP0 AX

RP1 BC

RP2 AX

RP3 BC

RP4 VP VP

RP5 UP UP

RP6 DE DE

RP7 HL HL

RSS stands for the register set selection flag (bit 5 of PSW). Setting or resetting RSS switches function names

for correspondence with an absolute name.

75

CHAPTER 5 INSTRUCTION SET LIST

5.1.2 Legend

A : A register; 8-bit accumulator

X : X register

B : B register

C : C register

D : D register

E : E register

H : H register

L : L register

R0-R15 : Register 0 to register 15 (absolute name)

AX : Register pair (AX); 16-bit accumulator

BC : Register pair (BC)

DE : Register pair (DE)

HL : Register pair (HL)

RP0-RP7 : Register pair 0 to register pair 7 (absolute name)

PC : Program counter

SP : Stack pointer

UP : User stack pointer

PSW : Program status word

CY : Carry flag

AC : Auxiliary carry flag

Z : Zero flag

P/V : Parity/overflow flag

S : Sign flag

TPF : Table position flag

RBS : Register bank selecting flag

RSS : Register set selecting flag

IE : Interrupt request enable flag

STBC : Standby control register

WDM : Watchdog timer mode register

jdisp8 : Signed 8-bit data (displacement value: –128 to +127)

() : Contents at an address enclosed in parentheses or at an address indicated in a register indicated in

parentheses. (+) and (–) indicate that an address or the contents of a register indicated in parentheses

are incremented and decremented by one after execution of the instruction, respectively.

(()) : Contents at an address indicated by the contents at an address indicated in parentheses (()).

xxH : Hexadecimal number

xH, xL : High-order 8 bits and low-order 8 bits of 16-bit register

76

CHAPTER 5 INSTRUCTION SET LIST

5.1.3 Notational symbols in flag operation field

Table 5-4. Notational Symbols in Flag Operation Field

Symbol Explanation

(Blank) No change

0 Cleared to zero.

1 Set to 1.

x Set or reset according to the result.

P P/V flag operates as a parity flag.

V P/V flag operates as an overflow flag.

R Saved value are restored.

77

CHAPTER 5 INSTRUCTION SET LIST

5.1.4 Instruction set differences among 78K/III Series products

Table 5-5. Instruction Set Differences among 78K/III Series Products

 Subseries name µPD78356 µPD78322

µPD78366A µPD78352A µPD78328 µPD78312A

µPD78372 µPD78334

Parameter Typical product µPD78356 µPD78352A µPD78322 µPD78312A

No. of basic instructions 115 113 111 104

Instruction set Addition of the Addition of the Addition of a large

following instructions following instruction number of

to µPD78322. to µPD78322 instructions to

• Sum-of-products • Sum-of-products µPD78312A

instruction instruction

• Table shift • Table shift

instruction instruction
—

• Sum-of-products

instruction with

saturation function

• Correlation

instruction

78

CHAPTER 5 INSTRUCTION SET LIST

5.1.5 Operations of basic instructions

(1) 8-bit data transfer instructions: MOV, XCH

Flag
Mnemonic Operand Byte Operation

S Z AC P/V CY

r1,#byte 2 r1←byte

saddr,#byte 3 (saddr)←byte

sfrNote,#byte 3 sfr←byte

r,r1 2 r←r1

A,r1 1 A←r1

A,saddr 2 A←(saddr)

saddr,A 2 (saddr)←A

saddr,saddr 3 (saddr)←(saddr)

A,sfr 2 A←sfr

sfr,A 2 sfr←A

MOV
A,mem 1-4 A←(mem)

mem,A 1-4 (mem)←A

a,[saddrp] 2 A←((saddrp))

[saddrp],A 2 ((saddrp))←A

A,!addr16 4 A←(addr16)

!addr16,A 4 (addr16)←A

PSWL,#byte 3 PSWL←byte × × × × ×

PSWH,#byte 3 PSWH←byte

PSWL,A 2 PSWL←A × × × × ×

PSWH,A 2 PSWH←A

A,PSWL 2 A←PSWL

A,PSWH 2 A←PSWH

A,r1 1 A↔r1

r,r1 2 r↔r1

A,mem 2-4 A↔(mem)

XCH A,saddr 2 A↔(saddr)

A,sfr 3 A↔sfr

A,[saddrp] 2 A↔((saddrp))

saddr,saddr 3 (saddr)↔(saddr)

Note If STBC or WDM is coded in sfr, a different instruction having the different byte count is generated.

79

CHAPTER 5 INSTRUCTION SET LIST

(2) 16-bit data transfer instructions: MOVW, XCHW

Flag
Mnemonic Operand Byte Operation

S Z AC P/V CY

rp1,#word 3 rp1←word

saddrp,#word 4 (saddrp)←word

sfrp,#word 4 sfrp←word

rp,rp1 2 rp←rp1

AX,saddrp 2 AX←(saddrp)

saddrp,AX 2 (saddrp)←AX

MOVW saddrp,saddrp 3 (saddrp)←(saddrp)

AX,sfrp 2 AX←sfrp

sfrp,AX 2 sfrp←AX

rp1,!addr16 4 rp1←(addr16)

!addr16,rp1 4 (addr16)←rp1

AX,mem 2-4 AX←(mem)

mem,AX 2-4 (mem)←AX

AX,saddrp 2 AX↔(saddrp)

AX,sfrp 3 AX↔sfrp

XCHW saddrp,saddrp 3 (saddrp)↔(saddrp)

rp,rp1 2 rp↔rp1

AX,mem 2-4 AX↔(mem)

80

CHAPTER 5 INSTRUCTION SET LIST

(3) 8-bit arithmetic/logical instructions: ADD, ADDC, SUB, SUBC, AND, OR, XOR, CMP

Flag
Mnemonic Operand Byte Operation

S Z AC P/V CY

A,#byte 2 A,CY←A+byte × × × V ×

saddr,#byte 3 (saddr),CY←(saddr)+byte × × × V ×

sfr,#byte 4 sfr,CY←sfr+byte × × × V ×

r,r1 2 r,CY←r+r1 × × × V ×

ADD A,saddr 2 A,CY←A+(saddr) × × × V ×

A,sfr 3 A,CY←A+sfr × × × V ×

saddr,saddr 3 (saddr),CY←(saddr)+(saddr) × × × V ×

A,mem 2-4 A,CY←A+(mem) × × × V ×

mem,A 2-4 (mem),CY←(mem)+A × × × V ×

A,#byte 2 A,CY←A+byte+CY × × × V ×

saddr,#byte 3 (saddr),CY←(saddr)+byte+CY × × × V ×

sfr,#byte 4 sfr,CY←sfr+byte+CY × × × V ×

r,r1 2 r,CY←r+r1+CY × × × V ×

ADDC A,saddr 2 A,CY←A+(saddr)+CY × × × V ×

A,sfr 3 A,CY←A+sfr+CY × × × V ×

saddr,saddr 3 (saddr),CY←(saddr)+(saddr)+CY × × × V ×

A,mem 2-4 A,CY←A+(mem)+CY × × × V ×

mem,A 2-4 (mem),CY←(mem)+A+CY × × × V ×

A,#byte 2 A,CY←A–byte × × × V ×

saddr,#byte 3 (saddr),CY←(saddr)–byte × × × V ×

sfr,#byte 4 sfr,CY←sfr–byte × × × V ×

r,r1 2 r,CY←r–r1 × × × V ×

SUB A,saddr 2 A,CY←A–(saddr) × × × V ×

A,sfr 3 A,CY←A–sfr × × × V ×

saddr,saddr 3 (saddr),CY←(saddr)–(saddr) × × × V ×

A,mem 2-4 A,CY←A–(mem) × × × V ×

mem,A 2-4 (mem),CY←(mem)–A × × × V ×

A,#byte 2 A,CY←A–byte–CY × × × V ×

saddr,#byte 3 (saddr),CY←(saddr)–byte–CY × × × V ×

sfr,#byte 4 sfr,CY←sfr–byte–CY × × × V ×

SUBC r,r1 2 r,CY←r–r1–CY × × × V ×

A,saddr 2 A,CY←A–(saddr)–CY × × × V ×

A,sfr 3 A,CY←A–sfr–CY × × × V ×

saddr,saddr 3 (saddr),CY←(saddr)–(saddr)–CY × × × V ×

81

CHAPTER 5 INSTRUCTION SET LIST

Flag
Mnemonic Operand Byte Operation

S Z AC P/V CY

SUBC
A,mem 2-4 A,CY←A–(mem)–CY × × × V ×

mem,A 2-4 (mem),CY←(mem)–A–CY × × × V ×

A,#byte 2 A←A byte × × P

saddr,#byte 3 (saddr)←(saddr) byte × × P

sfr,#byte 4 sfr←sfr byte × × P

r,r1 2 r←r r1 × × P

AND A,saddr 2 A←A (saddr) × × P

A,sfr 3 A←A sfr × × P

saddr,saddr 3 (saddr)←(saddr) (saddr) × × P

A,mem 2-4 A←A (mem) × × P

mem,A 2-4 (mem)←(mem) A × × P

A,#byte 2 A←A V byte × × P

saddr,#byte 3 (saddr)←(saddr) V byte × × P

sfr,#byte 4 sfr←sfr V byte × × P

r,r1 2 r←r V r1 × × P

OR A,saddr 2 A←A V (saddr) × × P

A,sfr 3 A←A V sfr × × P

saddr,saddr 3 (saddr)←(saddr) V (saddr) × × P

A,mem 2-4 A←A V (mem) × × P

mem,A 2-4 (mem)←(mem) V A × × P

A,#byte 2 A←A V byte × × P

saddr,#byte 3 (saddr)←(saddr) V byte × × P

sfr,#byte 4 sfr←sfr V byte × × P

r,r1 2 r←r V r1 × × P

XOR A,saddr 2 A←A V (saddr) × × P

A,sfr 3 A←A V sfr × × P

saddr,saddr 3 (saddr)←(saddr) V (saddr) × × P

A,mem 2-4 A←A V (mem) × × P

mem,A 2-4 (mem)←(mem) V A × × P

A,#byte 2 A–byte × × × V ×

saddr,#byte 3 (saddr)–byte × × × V ×

sfr,#byte 4 sfr–byte × × × V ×

r,r1 2 r–r1 × × × V ×

CMP A,saddr 2 A–(saddr) × × × V ×

A,sfr 3 A–sfr × × × V ×

saddr,saddr 3 (saddr)–(saddr) × × × V ×

A,mem 2-4 A–(mem) × × × V ×

mem,A 2-4 (mem)–A × × × V ×

V

V

V

V

V

V

V

V

V

82

CHAPTER 5 INSTRUCTION SET LIST

(4) 16-bit arithmetic/logical instructions: ADDW, SUBW, CMPW

Flag
Mnemonic Operand Byte Operation

S Z AC P/V CY

AX,#word 3 AX,CY←AX+word × × × V ×

saddrp,#word 4 (saddrp),CY←(saddrp)+word × × × V ×

sfrp,#word 5 sfrp,CY←sfrp+word × × × V ×

ADDW rp,rp1 2 rp,CY←rp+rp1 × × × V ×

AX,saddrp 2 AX,CY←AX+(saddrp) × × × V ×

AX,sfrp 3 AX,CY←AX+sfrp × × × V ×

saddrp,saddrp 3 (saddrp),CY←(saddrp)+(saddrp) × × × V ×

AX,#word 3 AX,CY←AX–word × × × V ×

saddrp,#word 4 (saddrp),CY←(saddrp)–word × × × V ×

sfrp,#word 5 sfrp,CY←sfrp–word × × × V ×

SUBW rp,rp1 2 rp,CY←rp–rp1 × × × V ×

AX,saddrp 2 AX,CY←AX–(saddrp) × × × V ×

AX,sfrp 3 AX,CY←AX–sfrp × × × V ×

saddrp,saddrp 3 (saddrp),CY←(saddrp)–(saddrp) × × × V ×

AX,#word 3 AX–word × × × V ×

saddrp,#word 4 (saddrp)–word × × × V ×

sfrp,#word 5 sfrp–word × × × V ×

CMPW rp,rp1 2 rp–rp1 × × × V ×

AX,saddrp 2 AX–(saddrp) × × × V ×

AX,sfrp 3 AX–sfrp × × × V ×

saddrp,saddrp 3 (saddrp)–(saddrp) × × × V ×

(5) Multiply/divide instructions: MULU, DIVUW, MULUW, DIVUX

Flag
Mnemonic Operand Byte Operation

S Z AC P/V CY

MULU r1 2 AX←Axr1

DIVUW r1 2 AX(quotient),r1(remainder)←AX÷r1

MULUW rp1 2 AX(high-order 16 bits), rp1 (low-order 16 bits)←AXxrp1

DIVUX rp1 2 AXDE(quotient), rp1(remainder)←AXDE÷rp1

83

CHAPTER 5 INSTRUCTION SET LIST

(6) Signed multiply instruction: MULW

Flag
Mnemonic Operand Byte Operation

S Z AC P/V CY

MULW rp1 2 AX(high-order 16 bits), rp1(low-order 16 bits)←AXxrp1

(7) Sum-of-products instruction: MACW

Flag
Mnemonic Operand Byte Operation

S Z AC P/V CY

AXDE←(B)×(C)+AXDE

MACW n 3 B←B+2, C←C+2, n←n–1 × × × V ×
End if n=0 or P/V=1

(8) Sum-of-products instruction with saturation function: MACSW

Flag
Mnemonic Operand Byte Operation

S Z AC P/V CY

AXDE←(B)×(C)+AXDE

B←B+2, C←C+2, n←n–1

MACSW n 3 if overflow (P/V=1) then AXDE←7FFFFFFFH × × × V ×
if underflow (P/V=1) then AXDE←80000000H

end if n=0 or P/V=1

Remark The µPD78352A Subseries does not provide the sum-of-products instruction with saturation function.

(9) Correlation instruction: SACW

Flag
Mnemonic Operand Byte Operation

S Z AC P/V CY

AX←AX+I(DE)–(HL)I

SACW [DE+], [HL+] 4 DE←DE+2, HL←HL+2, C←C–1 × × × V ×
end if C=0 or CY=1

Remark The µPD78352A Subseries does not provide the correlation instruction.

(10) Table shift instruction: MOVTBLW

Flag
Mnemonic Operand Byte Operation

S Z AC P/V CY

MOVTBLW !addr16,n 4
(addr16+2)←(addr16), n←n–1

addr16←addr16–2, End if n=0

Remark The addressing range of the table shift instruction is FE00H to FEFFH.

84

CHAPTER 5 INSTRUCTION SET LIST

(11) Increment/decrement instructions: INC, DEC, INCW, DECW

Flag
Mnemonic Operand Byte Operation

S Z AC P/V CY

r1 1 r1←r1+1 × × × V
INC

saddr 2 (saddr)←(saddr)+1 × × × V

r1 1 r1←r1–1 × × × V
DEC

saddr 2 (saddr)←(saddr)–1 × × × V

rp2 1 rp2←rp2+1
INCW

saddrp 3 (saddrp)←(saddrp)+1

rp2 1 rp2←rp2–1
DECW

saddrp 3 (saddrp)←(saddrp)–1

(12) Shift/rotate instructions: ROR, ROL, RORC, ROLC, SHR, SHL, SHRW, SHLW, ROR4, ROL4

Flag
Mnemonic Operand Byte Operation

S Z AC P/V CY

ROR r1,n 2 (CY, r17←r10, r1m–1←r1m) × n times (n=0–7) P ×

ROL r1,n 2 (CY, r10←r17, r1m+1←r1m) × n times (n=0-7) P ×

RORC r1,n 2 (CY←r10, r17←CY, r1m–1←r1m) × n times (n=0–7) P ×

ROLC r1,n 2 (CY←r17, r10←CY, r1m+1←r1m) × n times (n=0–7) P ×

SHR r1,n 2 (CY←r10, r17←0, r1m–1←r1m) × n times (n=0–7) × × 0 P ×

SHL r1,n 2 (CY←r17, r10←0, r1m+1←r1m) × n times (n=0–7) × × 0 P ×

SHRW rp1,n 2 (CY←rp10, rp115←0, rp1m–1←rp1m) × n times (n=0–7) × × 0 P ×

SHLW rp1,n 2 (CY←rp115,rp10←0, rp1m+1←rp1m) × n times (n=0–7) × × 0 P ×

ROR4 [rp1] 2 A3–0←(rp1)3–0, (rp1)7–4←A3–0, (rp1)3–0←(rp1)7–4

ROL4 [rp1] 2 A3–0←(rp1)7–4, (rp1)3–0←A3–0, (rp1)7–4←(rp1)3–0

Remark n indicates the number of shifts or rotations.

(13) BCD correction instructions: ADJBA, ADJBS

Flag
Mnemonic Operand Byte Operation

S Z AC P/V CY

ADJBA
2 Decimal adjust accumulator × × × P ×

ADJBS

85

CHAPTER 5 INSTRUCTION SET LIST

(14) Data conversion instruction: CVTBW

Flag
Mnemonic Operand Byte Operation

S Z AC P/V CY

CVTBW 1
When A7=0, X←A, A←00H

When A7=1, X←A, A←FFH

(15) Bit manipulation instructions: MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1

Flag
Mnemonic Operand Byte Operation

S Z AC P/V CY

CY,saddr.bit 3 CY←(saddr.bit) ×

CY,sfr.bit 3 CY←sfr.bit ×

CY,A.bit 2 CY←A.bit ×

CY,X.bit 2 CY←X.bit ×

CY,PSWH.bit 2 CY←PSWH.bit ×

MOV1
CY,PSWL.bit 2 CY←PSWL.bit ×

saddr.bit,CY 3 (saddr.bit)←CY

sfr.bit,CY 3 sfr.bit←CY

A.bit,CY 2 A.bit←CY

X.bit,CY 2 X.bit←CY

PSWH.bit,CY 2 PSWH.bit←CY

PSWL.bit, CY 2 PSWL.bit←CY

CY,saddr.bit 3 CY←CY (saddr.bit) ×

CY,/saddr.bit 3 CY←CY (saddr.bit) ×

CY,sfr.bit 3 CY←CY sfr.bit ×

CY,/sfr.bit 3 CY←CY sfr.bit ×

CY,A.bit 2 CY←CY A.bit ×

AND1
CY,/A.bit 2 CY←CY A.bit ×

CY,X.bit 2 CY←CY X.bit ×

CY,/X.bit 2 CY←CY X.bit ×

CY,PSWH.bit 2 CY←CY PSWH.bit ×

CY,/PSWH.bit 2 CY←CY PSWH.bit ×

CY,PSWL.bit 2 CY←CY PSWL.bit ×

CY,/PSWL.bit 2 CY←CY PSWL.bit ×

CY,saddr.bit 3 CY←CY V (saddr.bit) ×

OR1 CY,/saddr.bit 3 CY←CY V (saddr.bit) ×

CY,sfr.bit 3 CY←CY V sfr.bit ×

V

V

V

V

V

V

V

V

V

V

V

V

86

CHAPTER 5 INSTRUCTION SET LIST

Flag
Mnemonic Operand Byte Operation

S Z AC P/V CY

CY,/sfr.bit 3 CY←CY V sfr.bit ×

CY,A.bit 2 CY←CY V A.bit ×

CY,/A.bit 2 CY←CY V A.bit ×

CY,X.bit 2 CY←CY V X.bit ×

OR1 CY,/X.bit 2 CY←CY V X.bit ×

CY,PSWH.bit 2 CY←CY V PSWH.bit ×

CY,/PSWH.bit 2 CY←CY V PSWH.bit ×

CY,PSWL.bit 2 CY←CY V PSWL.bit ×

CY,/PSWL.bit 2 CY←CY V PSWL.bit ×

CY,saddr.bit 3 CY←CY V (saddr.bit) ×

CY,sfr.bit 3 CY←CY V sfr.bit ×

XOR1
CY,A.bit 2 CY←CY V A.bit ×

CY,X.bit 2 CY←CY V X.bit ×

CY,PSWH.bit 2 CY←CY V PSWH.bit ×

CY,PSWL.bit 2 CY←CY V PSWL.bit ×

saddr.bit 2 (saddr.bit)←1

sfr.bit 3 sfr.bit←1

A.bit 2 A.bit←1

SET1 X.bit 2 X.bit←1

PSWH.bit 2 PSWH.bit←1

PSWL.bit 2 PSWL.bit←1 × × × × ×

CY 1 CY←1 1

saddr.bit 2 (saddr.bit)←0

sfr.bit 3 sfr.bit←0

A.bit 2 A.bit←0

CLR1 X.bit 2 X.bit←0

PSWH.bit 2 PSWH.bit←0

PSWL.bit 2 PSWL.bit←0 × × × × ×

CY 1 CY←0 0

saddr.bit 3 (saddr.bit)←(saddr.bit)

sfr.bit 3 sfr.bit←sfr.bit

A.bit 2 A.bit←A.bit

NOT1 X.bit 2 X.bit←X.bit

PSWH.bit 2 PSWH.bit←PSWH.bit

PSWL.bit 2 PSWL.bit←PSWL.bit × × × × ×

CY 1 CY←CY ×

87

CHAPTER 5 INSTRUCTION SET LIST

(16) Call/return instructions: CALL, CALLF, CALLT, BRK, RET, RETB, RETI

Flag
Mnemonic Operand Byte Operation

S Z AC P/V CY

!addr16 3 (SP–1)←(PC+3)H, (SP–2)←(PC+3)L, PC←addr16, SP←SP–2

rp1 2
(SP–1)←(PC+2)H, (SP–2)←(PC+2)L,PCH←rp1H, PCL←rp1L,

CALL SP←SP–2

[rp1] 2
(SP–1)←(PC+2)H, (SP–2)←(PC+2)L, PCH←(rp1+1), PCL←(rp1),

SP←SP–2

CALLF !addr11 2
(SP–1)←(PC+2)H, (SP–2)←(PC+2)L, PC15–11←00001,

PC10–0←addr11, SP←SP–2

(SP–1)←(PC+1)H, (SP–2)←(PC+1)L,

CALLT [addr5] 1 PCH←(TPF, 000000001, addr5+1),

PCL←(TPF, 000000001, addr5), SP←SP–2

(SP–1)←PSWH, (SP–2)←PSWL, (SP–3)←(PC+1)H,

BRK 1 (SP–4)←(PC+1)L, PCL←(003EH), PCH←(003FH), SP←SP–4,

IE←0

RET 1 PCL←(SP), PCH←(SP+1), SP←SP+2

RETB 1
PCL←(SP), PCH←(SP+1), PSWL←(SP+2), PSWH←(SP+3),

R R R R R
SP←SP+4

RETI 1
PCL←(SP), PCH←(SP+1), PSWL←(SP+2), PSWH←(SP+3),

R R R R R
SP←SP+4, ISPRn←0Note

Note A RETI instruction resets (0) the bit corresponding to the interrupt request with the highest priority among bits

(n = 0 to 3) set (1) in an ISPR register.

88

CHAPTER 5 INSTRUCTION SET LIST

(17) Stack manipulation instructions: PUSH, PUSHU, POP, POPU, MOVW, INCW, DECW

Flag
Mnemonic Operand Byte Operation

S Z AC P/V CY

sfrp 3 (SP–1)←sfrH, (SP–2)←sfrL, SP←SP–2

PUSH post 2 {(SP–1)←postH, (SP–2)←postL, SP←SP–2} × n times

PSW 1 (SP–1)←PSWH, (SP–2)←PSWL, SP←SP–2

PUSHU post 2 {(UP–1)←postH, (UP–2)←postL, UP←UP–2} × n times

sfrp 3 sfrL←(SP), sfrH←(SP+1), SP←SP+2

POP post 2 {postL←(SP), postH←(SP+1), SP←SP+2} × n times

PSW 1 PSWL←(SP), PSWH←(SP+1), SP←SP+2 R R R R R

POPU post 2 {postL←(UP), postH←(UP+1), UP←UP+2} × n times

SP,#word 4 SP←word

MOVW SP,AX 2 SP←AX

AX,SP 2 AX←SP

INCW SP 2 SP←SP+1

DECW SP 2 SP←SP–1

Remark n indicates the number of registers specified in post.

(18) Special instructions: CHKL, CHKLA

Flag
Mnemonic Operand Byte Operation

S Z AC P/V CY

CHKL sfr 3 (Pin level) V (Signal level before output buffer) × × P

CHKLA sfr 3 A←{(Pin level) V (Signal level before output buffer)} × × P

(19) Unconditional branch instruction: BR

Flag
Mnemonic Operand Byte Operation

S Z AC P/V CY

!addr16 3 PC←addr16

BR
rp1 2 PCH←rp1H, PCL←rp1L

[rp1] 2 PCH←(rp1+1), PCL←(rp1)

$addr16 2 PC←PC+2+jdisp8

89

CHAPTER 5 INSTRUCTION SET LIST

(20) Conditional branch instructions: BC, BL, BNC, BNL, BZ, BE, BNZ, BNE, BV, BPE, BNV, BPO, BN, BP,

BGT, BGE, BLT, BLE, BH, BNH, BT, BF, BTCLR, BFSET, DBNZ

Flag
Mnemonic Operand Byte Operation

S Z AC P/V CY

BC
$addr16 2 PC←PC+2+jdisp8 if CY=1

BL

BNC
$addr16 2 PC←PC+2+jdisp8 if CY=0

BNL

BZ
$addr16 2 PC←PC+2+jdisp8 if Z=1

BE

BNZ
$addr16 2 PC←PC+2+jdisp8 if Z=0

BNE

BV
$addr16 2 PC←PC+2+jdisp8 if P/V=1

BPE

BNV
$addr16 2 PC←PC+2+jdisp8 if P/V=0

BPO

BN $addr16 2 PC←PC+2+jdisp8 if S=1

BP $addr16 2 PC←PC+2+jdisp8 if S=0

BGT $addr16 3 PC←PC+3+jdisp8 if (P/V V S) V Z=0

BGE $addr16 3 PC←PC+3+jdisp8 if P/V V S=0

BLT $addr16 3 PC←PC+3+jdisp8 if P/V V S=1

BLE $addr16 3 PC←PC+3+jdisp8 if (P/V V S) V Z=1

BH $addr16 3 PC←PC+3+jdisp8 if Z V CY=0

BNH $addr16 3 PC←PC+3+jdisp8 if Z V CY=1

saddr.bit,$addr16 3 PC←PC+3+jdisp8 if (saddr.bit)=1

sfr.bit,$addr16 4 PC←PC+4+jdisp8 if sfr.bit=1

BT
A.bit,$addr16 3 PC←PC+3+jdisp8 if A.bit=1

X.bit,$addr16 3 PC←PC+3+jdisp8 if X.bit=1

PSWH.bit,$addr16 3 PC←PC+3+jdisp8 if PSWH.bit=1

PSWL.bit,$addr16 3 PC←PC+3+jdisp8 if PSWL.bit=1

saddr.bit,$addr16 4 PC←PC+4+jdisp8 if (saddr.bit)=0

sfr.bit,$addr16 4 PC←PC+4+jdisp8 if sfr.bit=0

BF
A.bit,$addr16 3 PC←PC+3+jdisp8 if A.bit=0

X.bit,$addr16 3 PC←PC+3+jdisp8 if X.bit=0

PSWH.bit,$addr16 3 PC←PC+3+jdisp8 if PSWH.bit=0

PSWL.bit,$addr16 3 PC←PC+3+jdisp8 if PSWL.bit=0

90

CHAPTER 5 INSTRUCTION SET LIST

Flag
Mnemonic Operand Byte Operation

S Z AC P/V CY

saddr.bit,$addr16 4 PC←PC+4+jdisp8 if (saddr.bit)=1 then reset (saddr.bit)

sfr.bit,$addr16 4 PC←PC+4+jdisp8 if sfr.bit=1 then reset sfr.bit

A.bit,$addr16 3 PC←PC+3+jdisp8 if A.bit=1 then reset A.bit
 BTCLR

X.bit,$addr16 3 PC←PC+3+jdisp8 if X.bit=1 then reset X.bit

PSWH.bit,$addr16 3 PC←PC+3+jdisp8 if PSWH.bit=1 then reset PSWH.bit

PSWL.bit,$addr16 3 PC←PC+3+jdisp8 if PSWL.bit=1 then reset PSWL.bit × × × × ×

saddr.bit,$addr16 4 PC←PC+4+jdisp8 if (saddr.bit)=0 then set (saddr.bit)

sfr.bit,$addr16 4 PC←PC+4+jdisp8 if sfr.bit=0 then set sfr.bit

A.bit,$addr16 3 PC←PC+3+jdisp8 if A.bit=0 then set A.bit
BFSET

X.bit,$addr16 3 PC←PC+3+jdisp8 if X.bit=0 then set X.bit

PSWH.bit,$addr16 3 PC←PC+3+jdisp8 if PSWH.bit=0 then set PSWH.bit

PSWL.bit,$addr16 3 PC←PC+3+jdisp8 if PSWL.bit=0 then set PSWL.bit × × × × ×

r2,$addr16 2 r2←r2–1, then PC←PC+2+jdisp8 if r2≠0
DBNZ

saddr,$addr16 3 (saddr)←(saddr)–1, then PC←PC+3+jdisp8 if (saddr)≠0

(21) Context switching instructions: BRKCS, RETCS, RETCSB

Flag
Mnemonic Operand Byte Operation

S Z AC P/V CY

BRKCS RBn 2
RBS2–0←n, PCH↔R5, PCL↔R4, R7←PSWH, R6←PSWL,

RSS←0, IE←0

RETCS !addr16 3
PCH←R5, PCL←R4, R5←addr16H, R4←addr16L, PSWH←R7,

R R R R R
PSWL←R6

RETCSB !addr16 4
PCH←R5, PCL←R4, R5←addr16H, R4←addr16L, PSWH←R7,

R R R R R
PSWL←R6

91

CHAPTER 5 INSTRUCTION SET LIST

(22) String instructions: MOVM, MOVBK, XCHM, XCHBK, CMPME, CMPBKE, CMPMNE, CMPBKNE, CMPMC,

CMPBKC, CMPMNC, CMPBKNC

Flag
Mnemonic Operand Byte Operation

S Z AC P/V CY

[DE+],A 2 (DE+)←A, C←C–1, End if C=0
MOVM

[DE–],A 2 (DE–)←A, C←C–1, End if C=0

[DE+],[HL+] 2 (DE+)←(HL+), C←C–1, End if C=0
MOVBK

[DE–],[HL–] 2 (DE–)←(HL–), C←C–1, End if C=0

[DE+],A 2 (DE+)↔A, C←C–1, End if C=0
XCHM

[DE–],A 2 (DE–)↔A, C←C–1, End if C=0

[DE+],[HL+] 2 (DE+)↔(HL+), C←C–1, End if C=0
XCHBK

[DE–],[HL–] 2 (DE–)↔(HL–), C←C–1, End if C=0

[DE+],A 2 (DE+)–A, C←C–1, End if C=0 or Z=0
CMPME × × × V ×

[DE–],A 2 (DE–)–A, C←C–1, End if C=0 or Z=0

[DE+],[HL+] 2 (DE+)–(HL+), C←C–1, End if C=0 or Z=0
CMPBKE × × × V ×

[DE–],[HL–] 2 (DE–)–(HL–), C←C–1, End if C=0 or Z=0

[DE+],A 2 (DE+)–A, C←C–1, End if C=0 or Z=1
CMPMNE × × × V ×

[DE–],A 2 (DE–)–A, C←C–1, End if C=0 or Z=1

[DE+],[HL+] 2 (DE+)–(HL+), C←C–1, End if C=0 or Z=1
CMPBKNE × × × V ×

[DE–],[HL–] 2 (DE–)–(HL–), C←C–1, End if C=0 or Z=1

[DE+],A 2 (DE+)–A, C←C–1, End if C=0 or CY=0
CMPMC × × × V ×

[DE–],A 2 (DE–)–A, C←C–1, End if C=0 or CY=0

[DE+],[HL+] 2 (DE+)–(HL+), C←C–1, End if C=0 or CY=0
CMPBKC × × × V ×

[DE–],[HL–] 2 (DE–)–(HL–), C←C–1, End if C=0 or CY=0

[DE+],A 2 (DE+)–A, C←C–1, End if C=0 or CY=1
CMPMNC × × × V ×

[DE–],A 2 (DE–)–A, C←C–1, End if C=0 or CY=1

[DE+],[HL+] 2 (DE+)–(HL+), C←C–1, End if C=0 or CY=1
CMPBKNC × × × V ×

[DE–],[HL–] 2 (DE–)–(HL–), C←C–1, End if C=0 or CY=1

92

CHAPTER 5 INSTRUCTION SET LIST

(23) CPU control instructions: MOV, SWRS, SEL, NOP, EI, DI

Flag
Mnemonic Operand Byte Operation

S Z AC P/V CY

STBC,#byte 4 STBC←byteNote

MOV
WDM,#byte 4 WDM←byteNote

SWRS 1 RSS←RSS

RBn 2 RBS2–0←n, RSS←0
SEL

RBn,ALT 2 RBS2–0←n, RSS←1

NOP 1 No Operation

EI 1 IE←1 (Enable Interrupt)

DI 1 IE←0 (Disable Interrupt)

Note An op-code trap interrupt occurs if an invalid op-code is specified in an STBC or WDM register manipulation

instruction.

Trap operation: (SP–1)←PSWH, (SP–2)←PSWL, (SP–3)←(PC–4)H, (SP–4)←(PC–4)L, PCL←(003CH),

PCH←(003DH), SP←SP–4, IE←0

93

CHAPTER 5 INSTRUCTION SET LIST

5.2 Instruction Codes

5.2.1 Symbols of instruction codes

r,r1 r2

R3 R2 R1 R0 reg C0 reg

0 0 0 0 R0 0 C

0 0 0 1 R1 1 B

0 0 1 0 R2

0 0 1 1 R3

0 1 0 0 R4

0 1 0 1 R5

0 1 1 0 R6

0 1 1 1 R7

1 0 0 0 R8

1 0 0 1 R9

1 0 1 0 R10

1 0 1 1 R11

1 1 0 0 R12

1 1 0 1 R13

1 1 1 0 R14

1 1 1 1 R15

rp rp1 rp2

P2 P1 P0 reg-pair Q2 Q1 Q0 reg-pair S1 S0 reg-pair

0 0 0 RP0 0 0 0 RP0 0 0 VP

0 0 1 RP1 0 0 1 RP4 0 1 UP

0 1 0 RP2 0 1 0 RP1 1 0 DE

0 1 1 RP3 0 1 1 RP5 1 1 HL

1 0 0 RP4 1 0 0 RP2

1 0 1 RP5 1 0 1 RP6

1 1 0 RP6 1 1 0 RP3

1 1 1 RP7 1 1 1 RP7

Bn : Immediate data for the bit operand

Nn : Immediate data for the n operand

Data : 8-bit immediate data for the byte operand

Low/high byte : 16-bit immediate data for the word operand

Saddr-offset : Offset data for eight low-order bits of 16-bit address for the saddr operand

Sfr-offset : Offset data for eight low-order bits of 16-bit address of special function register (sfr)

Low/high offset : 8-/16-bit offset data for memory addressing in based/indexed mode

Low/high Addr. : 16-bit immediate data for the addr16 operand

jdisp : Signed 2’s complement data (8 bits) indicating the relative address displacement from the

starting address of the next instruction to the branch address

fa : 11 low-order bits of immediate data for the addr11 operand

ta : Five low-order bits of immediate data for ‘addr5 × 1/2’

Post byte : 8-bit data that specifies the register pair which performs stack operations

A register pair is assigned to each bit and is specified according to the contents (0/1). (See

Figure 5-1 .)

r1

r

94

CHAPTER 5 INSTRUCTION SET LIST

Figure 5-1. 8-bit Data that Specifies the Register Pair which Performs Stack Operations

0 Save/restore operations are not performed with stack memory.

1 Save/restore operations are performed with stack memory.

Note RP5 (UP) is set for the PUSH and POP instructions and PSW is set for the PUSHU and POPU instructions.

Cautions 1. If registers are specified as both the source and destination in the operand field (such as ‘r,

r1’ in the MOV instruction and ‘saddr, saddr’ in the ADD instruction), or saddr or saddrp is

specified as both the source and destination in the operand field, the instruction code is as

follows:

• If registers are specified as both the source and destination, the destination specification

code comes first and the source specification comes next. (This is the same as for register

pairs.)

Example:

• For saddr and saddrp, the first 1-byte data is the offset data that specifies a source and the

next 1-byte data is the offset data that specifies a destination.

Example:

Saddr-offset

Source saddr

Saddr-offset

Destination saddr

bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0

RP0 (when RSS = 0, AX)

RP1 (when RSS = 0, BC)

RP2 (when RSS = 1, AX)

RP3 (when RSS = 1, BC)

RP4 (VP)

RP5 (UP) / PSWNote

RP6 (DE)

RP7 (HL)

Corresponding register pair

Post byte

R3 R2 R1 R0 0 R2 R1 R0

Destination register

Source register

95

CHAPTER 5 INSTRUCTION SET LIST

Cautions 2. When the special function register (SFR) mapped at addresses FF00H to FF1FH is specified

for operand sfr or sfrp, short direct addressing is applied instead of SFR addressing, and the

instruction code whose operand is saddr or saddrp is issued.

Example:

AND A, P5

Instruction code 10011100 00000101

AND A, PM5

Instruction code 00000001 10011100 00100101

In this example, the instruction code of instruction AND A, P5 for short direct addressing is

shorter than that for SFR addressing.

96

CHAPTER 5 INSTRUCTION SET LIST

5.2.2 Instruction codes in various memory addressing modes

mod and mem codes in the instruction code field are determined according to the contents of mem in the operand

field as shown in Table 5-6.

Table 5-6. mod and mem Codes in the Instruction Code Field

mod 1 0110 1 0111 0 0110 0 1010

mem Register indirect mode Based indexed mode Based mode Indexed mode

0 0 0 [DE+]Note [DE+A] [DE+byte] word [DE]

0 0 1 [HL+]Note [HL+A] [SP+byte] word [A]

0 1 0 [DE–]Note [DE+B] [HL+byte] word [HL]

0 1 1 [HL–]Note [HL+B] [UP+byte] word [B]

1 0 0 [DE]Note [VP+DE] [VP+byte] –

1 0 1 [HL]Note [VP+HL] – –

1 1 0 [VP] – – –

1 1 1 [UP] – – –

Note If these codes are specified in mem for an MOV instruction, a dedicated 1-byte instruction is generated.

Remark If the based mode or indexed mode is specified in mem, 8- or 16-bit offset data for the byte or word

operand is added to the third or the subsequent bytes.

97

CHAPTER 5 INSTRUCTION SET LIST

5.2.3 List of instruction codes

(1) 8-bit data transfer instructions: MOV, XCH

Instruction code

Mnemonic Operand B1 B2 B3

B4 B5

r1,#byte 1 0 1 1 1 R2 R1 R0 ← Data →

saddr,#byte 0 0 1 1 1 0 1 0 ← Saddr-offset → ← Data →

sfr,#byte 0 0 1 0 1 0 1 1 ← Sfr-offset → ← Data →

r,r1 0 0 1 0 0 1 0 0 R3 R2 R1 R0 0 R2 R1 R0

A,r1 1 1 0 1 0 R2 R1 R0

A,saddr 0 0 1 0 0 0 0 0 ← Saddr-offset →

saddr,A 0 0 1 0 0 0 1 0 ← Saddr-offset →

saddr,saddr 0 0 1 1 1 0 0 0 ← Saddr-offset → ← Saddr-offset →

A,sfr 0 0 0 1 0 0 0 0 ← Sfr-offset →

sfr,A 0 0 0 1 0 0 1 0 ← Sfr-offset →

 Note 0 1 0 1 1 mem

A,mem 0 0 0 mod 0 mem 0 0 0 0 ← Low offset →

← High offset →

 Note 0 1 0 1 0 mem
MOV

mem,A 0 0 0 mod 1 mem 0 0 0 0 ← Low offset →

← High offset →

A,[saddrp] 0 0 0 1 1 0 0 0 ← Saddr-offset →

[saddrp],A 0 0 0 1 1 0 0 1 ← Saddr-offset →

0 0 0 0 1 0 0 1 1 1 1 1 0 0 0 0 ← Low Addr. →
A,!addr16

← High Addr. →

0 0 0 0 1 0 0 1 1 1 1 1 0 0 0 1 ← Low Addr. →
!addr16,A

← High Addr. →

PSWL,#byte 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1 0 ← Data →

PSWH,#byte 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 ← Data →

PSWL,A 0 0 0 1 0 0 1 0 1 1 1 1 1 1 1 0

PSWH,A 0 0 0 1 0 0 1 0 1 1 1 1 1 1 1 1

A,PSWL 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 0

A,PSWH 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1

Note This one-bite code is generated by coding [DE], [HL], [DE+], [DE–], [HL+], or [HL–] in mem.

98

CHAPTER 5 INSTRUCTION SET LIST

Instruction code

Mnemonic Operand B1 B2 B3

B4 B5

A,r1 1 1 0 1 1 R2 R1 R0

r,r1 0 0 1 0 0 1 0 1 R3 R2 R1 R0 0 R2 R1 R0

0 0 0 mod 0 mem 0 1 0 0 ← Low offset →
A,mem

← High offset →
XCH

A,saddr 0 0 1 0 0 0 0 1 ← Saddr-offset →

A,sfr 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 ← Sfr-offset →

A,[saddrp] 0 0 1 0 0 0 1 1 ← Saddr-offset →

saddr,saddr 0 0 1 1 1 0 0 1 ← Saddr-offset → ← Saddr-offset →

(2) 16-bit data transfer instructions: MOVW, XCHW

Instruction code

Mnemonic Operand B1 B2 B3

B4 B5

rp1,#word 0 1 1 0 0 Q2 Q1 Q0 ← Low byte → ← High byte →

0 0 0 0 1 1 0 0 ← Saddr-offset → ← Low byte →
saddrp,#word

← High byte →

0 0 0 0 1 0 1 1 ← Sfr-offset → ← Low byte →
sfrp,#word

← High byte →

rp,rp1 0 0 1 0 0 1 0 0 P2 P1 P0 0 1 Q2 Q1 Q0

AX,saddrp 0 0 0 1 1 1 0 0 ← Saddr-offset →

saddrp,AX 0 0 0 1 1 0 1 0 ← Saddr-offset →

saddrp,saddrp 0 0 1 1 1 1 0 0 ← Saddr-offset → ← Saddr-offset →

MOVW AX,sfrp 0 0 0 1 0 0 0 1 ← Sfr-offset →

sfrp,AX 0 0 0 1 0 0 1 1 ← Sfr-offset →

0 0 0 0 1 0 0 1 1 0 0 0 0 Q2 Q1 Q0 ← Low Addr. →
rp1,!addr16

← High-Addr. →

0 0 0 0 1 0 0 1 1 0 0 1 0 Q2 Q1 Q0 ← Low Addr. →
!addr16,rp1

← High-Addr. →

0 0 0 mod 0 mem 0 0 0 1 ← Low offset →
AX,mem

← High offset →

0 0 0 mod 1 mem 0 0 0 1 ← Low offset →
mem,AX

← High offset →

99

CHAPTER 5 INSTRUCTION SET LIST

Instruction code

Mnemonic Operand B1 B2 B3

B4 B5

AX,saddrp 0 0 0 1 1 0 1 1 ← Saddr-offset →

AX,sfrp 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1 ← Sfr-offset →

saddrp,saddrp 0 0 1 0 1 0 1 0 ← Saddr-offset → ← Saddr-offset →
XCHW

rp,rp1 0 0 1 0 0 1 0 1 P2 P1 P0 0 1 Q2 Q1 Q0

0 0 0 mod 0 mem 0 1 0 1 ← Low offset →
AX,mem

← High offset →

(3) 8-bit arithmetic/logical instructions: ADD, ADDC, SUB, SUBC, AND, OR, XOR, CMP

Instruction code

Mnemonic Operand B1 B2 B3

B4 B5

A,#byte 1 0 1 0 1 0 0 0 ← Data →

saddr,#byte 0 1 1 0 1 0 0 0 ← Saddr-offset → ← Data →

0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 ← Sfr-offset →
sfr,#byte

← Data →

r,r1 1 0 0 0 1 0 0 0 R3 R2 R1 R0 0 R2 R1 R0

A,saddr 1 0 0 1 1 0 0 0 ← Saddr-offset →
ADD

A,sfr 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 ← Sfr-offset →

saddr,saddr 0 1 1 1 1 0 0 0 ← Saddr-offset → ← Saddr-offset →

0 0 0 mod 0 mem 1 0 0 0 ← Low offset →
A,mem

← High offset →

0 0 0 mod 1 mem 1 0 0 0 ← Low offset →
mem,A

← High offset →

A,#byte 1 0 1 0 1 0 0 1 ← Data →

saddr,#byte 0 1 1 0 1 0 0 1 ← Saddr-offset → ← Data →

0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 1 ← Sfr-offset →
sfr,#byte

← Data →

r,r1 1 0 0 0 1 0 0 1 R3 R2 R1 R0 0 R2 R1 R0

A,saddr 1 0 0 1 1 0 0 1 ← Saddr-offset →
ADDC

A,sfr 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 ← Sfr-offset →

saddr, saddr 0 1 1 1 1 0 0 1 ← Saddr-offset → ← Saddr-offset →

0 0 0 mod 0 mem 1 0 0 1 ← Low offset →
A,mem

← High offset →

0 0 0 mod 1 mem 1 0 0 1 ← Low offset →
mem,A

← High offset →

100

CHAPTER 5 INSTRUCTION SET LIST

Instruction code

Mnemonic Operand B1 B2 B3

B4 B5

A,#byte 1 0 1 0 1 0 1 0 ← Data →

saddr,#byte 0 1 1 0 1 0 1 0 ← Saddr-offset → ← Data →

0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 0 ← Sfr-offset →
sfr,#byte

← Data →

r,r1 1 0 0 0 1 0 1 0 R3 R2 R1 R0 0 R2 R1 R0

A,saddr 1 0 0 1 1 0 1 0 ← Saddr-offset →
SUB

A,sfr 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 0 ← Sfr-offset →

saddr,saddr 0 1 1 1 1 0 1 0 ← Saddr-offset → ← Saddr-offset →

0 0 0 mod 0 mem 1 0 1 0 ← Low offset →
A,mem

← High offset →

0 0 0 mod 1 mem 1 0 1 0 ← Low offset →
mem,A

← High offset →

A,#byte 1 0 1 0 1 0 1 1 ← Data →

saddr,#byte 0 1 1 0 1 0 1 1 ← Saddr-offset → ← Data →

0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 1 ← Sfr-offset →
sfr,#byte

← Data →

r,r1 1 0 0 0 1 0 1 1 R3 R2 R1 R0 0 R2 R1 R0

A,saddr 1 0 0 1 1 0 1 1 ← Saddr-offset →
SUBC

A,sfr 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 ← Sfr-offset →

saddr,saddr 0 1 1 1 1 0 1 1 ← Saddr-offset → ← Saddr-offset →

0 0 0 mod 0 mem 1 0 1 1 ← Low offset →
A,mem

← High offset →

0 0 0 mod 1 mem 1 0 1 1 ← Low offset →
mem,A

← High offset →

A,#byte 1 0 1 0 1 1 0 0 ← Data →

saddr,#byte 0 1 1 0 1 1 0 0 ← Saddr-offset → ← Data →

0 0 0 0 0 0 0 1 0 1 1 0 1 1 0 0 ← Sfr-offset →
sfr,#byte

← Data →
AND

r,r1 1 0 0 0 1 1 0 0 R3 R2 R1 R0 0 R2 R1 R0

A,saddr 1 0 0 1 1 1 0 0 ← Saddr-offset →

A,sfr 0 0 0 0 0 0 0 1 1 0 0 1 1 1 0 0 ← Sfr-offset →

saddr,saddr 0 1 1 1 1 1 0 0 ← Saddr-offset → ← Saddr-offset →

101

CHAPTER 5 INSTRUCTION SET LIST

Instruction code

Mnemonic Operand B1 B2 B3

B4 B5

0 0 0 mod 0 mem 1 1 0 0 ← Low offset →
A,mem

← High offset →
AND

0 0 0 mod 1 mem 1 1 0 0 ← Low offset →
mem,A

← High offset →

A,#byte 1 0 1 0 1 1 1 0 ← Data →

saddr,#byte 0 1 1 0 1 1 1 0 ← Saddr-offset → ← Data →

0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 0 ← Sfr-offset →
sfr,#byte

← Data →

r,r1 1 0 0 0 1 1 1 0 R3 R2 R1 R0 0 R2 R1 R0

A,saddr 1 0 0 1 1 1 1 0 ← saddr-offset →
OR

A,sfr 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 0 ← Sfr-offset →

saddr,saddr 0 1 1 1 1 1 1 0 ← Saddr-offset → ← Saddr-offset →

0 0 0 mod 0 mem 1 1 1 0 ← Low offset →
A,mem

← High offset →

0 0 0 mod 1 mem 1 1 1 0 ← Low offset →
mem,A

← High offset →

A,#byte 1 0 1 0 1 1 0 1 ← Data →

saddr,#byte 0 1 1 0 1 1 0 1 ← Saddr-offset → ← Data →

0 0 0 0 0 0 0 1 0 1 1 0 1 1 0 1 ← Sfr-offset →
sfr,#byte

← Data →

r,r1 1 0 0 0 1 1 0 1 R3 R2 R1 R0 0 R2 R1 R0

A,saddr 1 0 0 1 1 1 0 1 ← Saddr-offset →
XOR

A,sfr 0 0 0 0 0 0 0 1 1 0 0 1 1 1 0 1 ← Sfr-offset →

saddr,saddr 0 1 1 1 1 1 0 1 ← Saddr-offset → ← Saddr-offset →

0 0 0 mod 0 mem 1 1 0 1 ← Low offset →
A,mem

← High offset →

0 0 0 mod 1 mem 1 1 0 1 ← Low offset →
mem,A

← High offset →

A,#byte 1 0 1 0 1 1 1 1 ← Data →

saddr,#byte 0 1 1 0 1 1 1 1 ← Saddr-offset → ← Data →

CMP 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 1 ← Sfr-offset →
sfr,#byte

← Data →

r,r1 1 0 0 0 1 1 1 1 R3 R2 R1 R0 0 R2 R1 R0

102

CHAPTER 5 INSTRUCTION SET LIST

Instruction code

Mnemonic Operand B1 B2 B3

B4 B5

A,saddr 1 0 0 1 1 1 1 1 ← Saddr-offset →

A,sfr 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 1 ← Sfr-offset →

saddr,saddr 0 1 1 1 1 1 1 1 ← Saddr-offset → ← Saddr-offset →

CMP 0 0 0 mod 0 mem 1 1 1 1 ← Low offset →
A,mem

← High offset →

0 0 0 mod 1 mem 1 1 1 1 ← Low offset →
mem,A

← High offset →

(4) 16-bit arithmetic/logical instructions: ADDW, SUBW, CMPW

Instruction code

Mnemonic Operand B1 B2 B3

B4 B5

AX,#word 0 0 1 0 1 1 0 1 ← Low byte → ← High byte →

0 0 0 0 1 1 0 1 ← Saddr-offset → ← Low byte →
saddrp,#word

← High byte →

0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 ← Sfr-offset →
sfrp,#word

ADDW ← Low byte → ← High byte →

rp,rp1 1 0 0 0 1 0 0 0 P2 P1 P0 0 1 Q2 Q1 Q0

AX,saddrp 0 0 0 1 1 1 0 1 ← Saddr-offset →

AX,sfrp 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 ← Sfr-offset →

saddrp,saddrp 0 0 1 1 1 1 0 1 ← Saddr-offset → ← Saddr-offset →

AX,#word 0 0 1 0 1 1 1 0 ← Low byte → ← High byte →

0 0 0 0 1 1 1 0 ← Saddr-offset → ← Low byte →
saddrp,#word

← High byte →

0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 ← Sfr-offset →
sfrp,#word

SUBW ← Low byte → ← High byte →

rp,rp1 1 0 0 0 1 0 1 0 P2 P1 P0 0 1 Q2 Q1 Q0

AX,saddrp 0 0 0 1 1 1 1 0 ← Saddr-offset →

AX,sfrp 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 ← Sfr-offset →

saddrp,saddrp 0 0 1 1 1 1 1 0 ← Saddr-offset → ← Saddr-offset →

AX,#word 0 0 1 0 1 1 1 1 ← Low byte → ← High byte →

CMPW 0 0 0 0 1 1 1 1 ← Saddr-offset → ← Low byte →
saddrp,#word

← High byte →

103

CHAPTER 5 INSTRUCTION SET LIST

Instruction code

Mnemonic Operand B1 B2 B3

B4 B5

0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 ← Sfr-offset →
sfrp,#word

← Low byte → ← High byte →

rp,rp1 1 0 0 0 1 1 1 1 P2 P1 P0 0 1 Q2 Q1 Q0

CMPW
AX,saddrp 0 0 0 1 1 1 1 1 ← Saddr-offset →

AX,sfrp 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 1 ← Sfr-offset →

saddrp,saddrp 0 0 1 1 1 1 1 1 ← Saddr-offset → ← Saddr-offset →

(5) Multiply/divide instructions: MULU, DIVUW, MULUW, DIVUX

Instruction code

Mnemonic Operand B1 B2 B3

B4 B5

MULU r1 0 0 0 0 0 1 0 1 0 0 0 0 1 R2 R1 R0

DIVUW r1 0 0 0 0 0 1 0 1 0 0 0 1 1 R2 R1 R0

MULUW rp1 0 0 0 0 0 1 0 1 0 0 1 0 1 Q2 Q1 Q0

DIVUX rp1 0 0 0 0 0 1 0 1 1 1 1 0 1 Q2 Q1 Q0

(6) Signed multiply instruction: MULW

Instruction code

Mnemonic Operand B1 B2 B3

B4 B5

MULW rp1 0 0 0 0 0 1 0 1 0 0 1 1 1 Q2 Q1 Q0

(7) Sum-of-products instruction: MACW

Instruction code

Mnemonic Operand B1 B2 B3

B4 B5

MACW n 0 0 0 0 0 1 1 1 1 0 0 0 0 1 0 1 N7N6N5N4N3N2N1N0

104

CHAPTER 5 INSTRUCTION SET LIST

(8) Sum-of-products instruction with saturation function: MACSW

Instruction code
Mnemonic Operand

B1 B2 B3

MACSW n 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 1 Note

Note Number of products to be added (n times)

Remark The µPD78352A Subseries does not provide this sum-of-products instruction with saturation function.

(9) Correlation instruction: SACW

Instruction code

Mnemonic Operand B1 B2 B3

B4 B5 B6

0 0 0 0 1 0 0 1 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 1
SACW [DE+],[HL+]

0 1 0 0 0 1 1 0

Remark The µPD78352A subseries does not provide the correlation instruction.

(10) Table shift instruction: MOVTBLW

Instruction code

Mnemonic Operand B1 B2 B3

B4 B5

0 0 0 0 1 0 0 1 1 0 1 0 0 0 0 0 ← Low byte →
MOVTBLW !addr16,n

N7 N6 N5 N4 N3 N2 N1 N0

(11) Increment/decrement instructions: INC, DEC, INCW, DECW

Instruction code

Mnemonic Operand B1 B2 B3

B4 B5

r1 1 1 0 0 0 R2 R1 R0

INC
saddr 0 0 1 0 0 1 1 0 ← Saddr-offset →

r1 1 1 0 0 1 R2 R1 R0

DEC
saddr 0 0 1 0 0 1 1 1 ← Saddr-offset →

rp2 0 1 0 0 0 1 S1 S0

INCW
saddrp 0 0 0 0 0 1 1 1 1 1 1 0 1 0 0 0 ← Saddr-offset →

rp2 0 1 0 0 1 1 S1 S0

DECW
saddrp 0 0 0 0 0 1 1 1 1 1 1 0 1 0 0 1 ← Saddr-offset →

105

CHAPTER 5 INSTRUCTION SET LIST

(12) Shift/rotate instructions: ROR, ROL, RORC, ROLC, SHR, SHL, SHRW, SHLW, ROR4, ROL4

Instruction code

Mnemonic Operand B1 B2 B3

B4 B5

ROR r1,n 0 0 1 1 0 0 0 0 0 1 N2 N1 N0 R2 R1 R0

ROL r1,n 0 0 1 1 0 0 0 1 0 1 N2 N1 N0 R2 R1 R0

RORC r1,n 0 0 1 1 0 0 0 0 0 0 N2 N1 N0 R2 R1 R0

ROLC r1,n 0 0 1 1 0 0 0 1 0 0 N2 N1 N0 R2 R1 R0

SHR r1,n 0 0 1 1 0 0 0 0 1 0 N2 N1 N0 R2 R1 R0

SHL r1,n 0 0 1 1 0 0 0 1 1 0 N2 N1 N0 R2 R1 R0

SHRW rp1,n 0 0 1 1 0 0 0 0 1 1 N2 N1 N0 Q2 Q1 Q0

SHLW rp1,n 0 0 1 1 0 0 0 1 1 1 N2 N1 N0 Q2 Q1 Q0

ROR4 [rp1] 0 0 0 0 0 1 0 1 1 0 0 0 1 Q2 Q1 Q0

ROL4 [rp1] 0 0 0 0 0 1 0 1 1 0 0 1 1 Q2 Q1 Q0

(13) BCD correction instructions: ADJBA, ADJBS

Instruction code

Mnemonic Operand B1 B2 B3

B4 B5

ADJBA 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 0

ADJBS 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1

(14) Data conversion instruction: CVTBW

Instruction code

Mnemonic Operand B1 B2 B3

B4 B5

CVTBW 0 0 0 0 0 1 0 0

(15) Bit manipulation instructions: MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1

Instruction code

Mnemonic Operand B1 B2 B3

B4 B5

CY,saddr.bit 0 0 0 0 1 0 0 0 0 0 0 0 0 B2 B1 B0 ← Saddr-offset →

MOV1 CY,sfr.bit 0 0 0 0 1 0 0 0 0 0 0 0 1 B2 B1 B0 ← Sfr-offset →

CY,A.bit 0 0 0 0 0 0 1 1 0 0 0 0 1 B2 B1 B0

106

CHAPTER 5 INSTRUCTION SET LIST

Instruction code

Mnemonic Operand B1 B2 B3

B4 B5

CY,X.bit 0 0 0 0 0 0 1 1 0 0 0 0 0 B2 B1 B0

CY,PSWH.bit 0 0 0 0 0 0 1 0 0 0 0 0 1 B2 B1 B0

CY,PSWL.bit 0 0 0 0 0 0 1 0 0 0 0 0 0 B2 B1 B0

saddr.bit,CY 0 0 0 0 1 0 0 0 0 0 0 1 0 B2 B1 B0 ← Saddr-offset →

MOV1 sfr.bit,CY 0 0 0 0 1 0 0 0 0 0 0 1 1 B2 B1 B0 ← Sfr-offset →

A.bit,CY 0 0 0 0 0 0 1 1 0 0 0 1 1 B2 B1 B0

X.bit,CY 0 0 0 0 0 0 1 1 0 0 0 1 0 B2 B1 B0

PSWH.bit,CY 0 0 0 0 0 0 1 0 0 0 0 1 1 B2 B1 B0

PSWL.bit,CY 0 0 0 0 0 0 1 0 0 0 0 1 0 B2 B1 B0

CY,saddr.bit 0 0 0 0 1 0 0 0 0 0 1 0 0 B2 B1 B0 ← Saddr-offset →

CY,/saddr.bit 0 0 0 0 1 0 0 0 0 0 1 1 0 B2 B1 B0 ← Saddr-offset →

CY,sfr.bit 0 0 0 0 1 0 0 0 0 0 1 0 1 B2 B1 B0 ← Sfr-offset →

CY,/sfr.bit 0 0 0 0 1 0 0 0 0 0 1 1 1 B2 B1 B0 ← Sfr-offset →

CY,A.bit 0 0 0 0 0 0 1 1 0 0 1 0 1 B2 B1 B0

CY,/A.bit 0 0 0 0 0 0 1 1 0 0 1 1 1 B2 B1 B0

AND1
CY,X.bit 0 0 0 0 0 0 1 1 0 0 1 0 0 B2 B1 B0

CY,/X.bit 0 0 0 0 0 0 1 1 0 0 1 1 0 B2 B1 B0

CY,PSWH.bit 0 0 0 0 0 0 1 0 0 0 1 0 1 B2 B1 B0

CY,/PSWH.bit 0 0 0 0 0 0 1 0 0 0 1 1 1 B2 B1 B0

CY,PSWL.bit 0 0 0 0 0 0 1 0 0 0 1 0 0 B2 B1 B0

CY,/PSWL.bit 0 0 0 0 0 0 1 0 0 0 1 1 0 B2 B1 B0

CY,saddr.bit 0 0 0 0 1 0 0 0 0 1 0 0 0 B2 B1 B0 ← Saddr-offset →

CY,/saddr.bit 0 0 0 0 1 0 0 0 0 1 0 1 0 B2 B1 B0 ← Saddr-offset →

CY,sfr.bit 0 0 0 0 1 0 0 0 0 1 0 0 1 B2 B1 B0 ← Sfr-offset →

CY,/sfr.bit 0 0 0 0 1 0 0 0 0 1 0 1 1 B2 B1 B0 ← Sfr-offset →

CY,A.bit 0 0 0 0 0 0 1 1 0 1 0 0 1 B2 B1 B0

CY,/A.bit 0 0 0 0 0 0 1 1 0 1 0 1 1 B2 B1 B0

OR1
CY,X.bit 0 0 0 0 0 0 1 1 0 1 0 0 0 B2 B1 B0

CY,/X.bit 0 0 0 0 0 0 1 1 0 1 0 1 0 B2 B1 B0

CY,PSWH.bit 0 0 0 0 0 0 1 0 0 1 0 0 1 B2 B1 B0

CY,/PSWH.bit 0 0 0 0 0 0 1 0 0 1 0 1 1 B2 B1 B0

CY,PSWL.bit 0 0 0 0 0 0 1 0 0 1 0 0 0 B2 B1 B0

CY,/PSWL.bit 0 0 0 0 0 0 1 0 0 1 0 1 0 B2 B1 B0

107

CHAPTER 5 INSTRUCTION SET LIST

Instruction code

Mnemonic Operand B1 B2 B3

B4 B5

CY,saddr.bit 0 0 0 0 1 0 0 0 0 1 1 0 0 B2 B1 B0 ← Saddr-offset →

CY,sfr.bit 0 0 0 0 1 0 0 0 0 1 1 0 1 B2 B1 B0 ← Sfr-offset →

CY,A.bit 0 0 0 0 0 0 1 1 0 1 1 0 1 B2 B1 B0

XOR1
CY,X.bit 0 0 0 0 0 0 1 1 0 1 1 0 0 B2 B1 B0

CY,PSWH.bit 0 0 0 0 0 0 1 0 0 1 1 0 1 B2 B1 B0

CY,PSWL.bit 0 0 0 0 0 0 1 0 0 1 1 0 0 B2 B1 B0

saddr.bit 1 0 1 1 0 B2 B1 B0 ← Saddr-offset →

sfr.bit 0 0 0 0 1 0 0 0 1 0 0 0 1 B2 B1 B0 ← Sfr-offset →

A.bit 0 0 0 0 0 0 1 1 1 0 0 0 1 B2 B1 B0

SET1 X.bit 0 0 0 0 0 0 1 1 1 0 0 0 0 B2 B1 B0

PSWH.bit 0 0 0 0 0 0 1 0 1 0 0 0 1 B2 B1 B0

PSWL.bit 0 0 0 0 0 0 1 0 1 0 0 0 0 B2 B1 B0

CY 0 1 0 0 0 0 0 1

saddr.bit 1 0 1 0 0 B2 B1 B0 ← Saddr-offset →

sfr.bit 0 0 0 0 1 0 0 0 1 0 0 1 1 B2 B1 B0 ← Sfr-offset →

A.bit 0 0 0 0 0 0 1 1 1 0 0 1 1 B2 B1 B0

CLR1 X.bit 0 0 0 0 0 0 1 1 1 0 0 1 0 B2 B1 B0

PSWH.bit 0 0 0 0 0 0 1 0 1 0 0 1 1 B2 B1 B0

PSWL.bit 0 0 0 0 0 0 1 0 1 0 0 1 0 B2 B1 B0

CY 0 1 0 0 0 0 0 0

saddr.bit 0 0 0 0 1 0 0 0 0 1 1 1 0 B2 B1 B0 ← Saddr-offset →

sfr.bit 0 0 0 0 1 0 0 0 0 1 1 1 1 B2 B1 B0 ← Sfr-offset →

A.bit 0 0 0 0 0 0 1 1 0 1 1 1 1 B2 B1 B0

NOT1 X.bit 0 0 0 0 0 0 1 1 0 1 1 1 0 B2 B1 B0

PSWH.bit 0 0 0 0 0 0 1 0 0 1 1 1 1 B2 B1 B0

PSWL.bit 0 0 0 0 0 0 1 0 0 1 1 1 0 B2 B1 B0

CY 0 1 0 0 0 0 1 0

108

CHAPTER 5 INSTRUCTION SET LIST

(16) Call/return instructions: CALL, CALLF, CALLT, BRK, RET, RETB, RETI

Instruction code

Mnemonic Operand B1 B2 B3

B4 B5

!addr16 0 0 1 0 1 0 0 0 ← Low Addr. → ← High-Addr. →

CALL rp1 0 0 0 0 0 1 0 1 0 1 0 1 1 Q2 Q1 Q0

[rp1] 0 0 0 0 0 1 0 1 0 1 1 1 1 Q2 Q1 Q0

CALLF !addr11 1 0 0 1 0 ← fa →

CALLT [addr5] 1 1 1 ← ta →

BRK 0 1 0 1 1 1 1 0

RET 0 1 0 1 0 1 1 0

RETB 0 1 0 1 1 1 1 1

RETI 0 1 0 1 0 1 1 1

(17) Stack manipulation instructions: PUSH, PUSHU, POP, POPU, MOVW, INCW, DECW

Instruction code

Mnemonic Operand B1 B2 B3

B4 B5

sfrp 0 0 0 0 0 1 1 1 1 1 0 1 1 0 0 1 ← Sfr-offset →

PUSH post 0 0 1 1 0 1 0 1 ← Post byte →

PSW 0 1 0 0 1 0 0 1

PUSHU post 0 0 1 1 0 1 1 1 ← Post byte →

sfrp 0 0 0 0 0 1 1 1 1 1 0 1 1 0 0 0 ← Sfr-offset →

POP post 0 0 1 1 0 1 0 0 ← Post byte →

PSW 0 1 0 0 1 0 0 0

POPU post 0 0 1 1 0 1 1 0 ← Post byte →

0 0 0 0 1 0 1 1 1 1 1 1 1 1 0 0 ← Low-byte →
SP,#word

← High byte →
MOVW

SP,AX 0 0 0 1 0 0 1 1 1 1 1 1 1 1 0 0

AX,SP 0 0 0 1 0 0 0 1 1 1 1 1 1 1 0 0

INCW SP 0 0 0 0 0 1 0 1 1 1 0 0 1 0 0 0

DECW SP 0 0 0 0 0 1 0 1 1 1 0 0 1 0 0 1

109

CHAPTER 5 INSTRUCTION SET LIST

(18) Special instructions: CHKL, CHKLA

Instruction code

Mnemonic Operand B1 B2 B3

B4 B5

CHKL sfr 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 0 ← Sfr-offset →

CHKLA sfr 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 1 ← Sfr-offset →

(19) Unconditional branch instruction: BR

Instruction code

Mnemonic Operand B1 B2 B3

B4 B5

!addr16 0 0 1 0 1 1 0 0 ← Low Addr. → ← High Addr. →

rp1 0 0 0 0 0 1 0 1 0 1 0 0 1 Q2 Q1 Q0

BR
[rp1] 0 0 0 0 0 1 0 1 0 1 1 0 1 Q2 Q1 Q0

$addr16 0 0 0 1 0 1 0 0 ← jdisp →

(20) Conditional branch instructions: BC, BL, BNC, BNL, BZ, BE, BNZ, BNE, BV, BPE, BNV, BPO, BN, BP,

BGT, BGE, BLT, BLE, BH, BNH, BT, BF, BTCLR, BFSET, DBNZ

Instruction code

Mnemonic Operand B1 B2 B3

B4 B5

BR
$addr16 1 0 0 0 0 0 1 1 ← jdisp →

BL

BNC
$addr16 1 0 0 0 0 0 1 0 ← jdisp →

BNL

BZ
$addr16 1 0 0 0 0 0 0 1 ← jdisp →

BE

BNZ
$addr16 1 0 0 0 0 0 0 0 ← jdisp →

BNE

BV
$addr16 1 0 0 0 0 1 0 1 ← jdisp →

BPE

BNV
$addr16 1 0 0 0 0 1 0 0 ← jdisp →

BPO

BN $addr16 1 0 0 0 0 1 1 1 ← jdisp →

BP $addr16 1 0 0 0 0 1 1 0 ← jdisp →

110

CHAPTER 5 INSTRUCTION SET LIST

Instruction code

Mnemonic Operand B1 B2 B3

B4 B5

BGT $addr16 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1 1 ← jdisp →

BGE $addr16 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 1 ← jdisp →

BLT $addr16 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 ← jdisp →

BLE $addr16 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1 0 ← jdisp →

BH $addr16 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 ← jdisp →

BNH $addr16 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 ← jdisp →

saddr.bit,$addr16 0 1 1 1 0 B2 B1 B0 ← Saddr-offset → ← jdisp →

0 0 0 0 1 0 0 0 1 0 1 1 1 B2 B1 B0 ← Sfr-offset →
sfr.bit,$addr16

← jdisp →

BT A.bit,$addr16 0 0 0 0 0 0 1 1 1 0 1 1 1 B2 B1 B0 ← jdisp →

X.bit,$addr16 0 0 0 0 0 0 1 1 1 0 1 1 0 B2 B1 B0 ← jdisp →

PSWH.bit,$addr16 0 0 0 0 0 0 1 0 1 0 1 1 1 B2 B1 B0 ← jdisp →

PSWL.bit,$addr16 0 0 0 0 0 0 1 0 1 0 1 1 0 B2 B1 B0 ← jdisp →

0 0 0 0 1 0 0 0 1 0 1 0 0 B2 B1 B0 ← Saddr-offset →
saddr.bit,$addr16

← jdisp →

0 0 0 0 1 0 0 0 1 0 1 0 1 B2 B1 B0 ← Sfr-offset →
sfr.bit,$addr16

← jdisp →
BF

A.bit,$addr16 0 0 0 0 0 0 1 1 1 0 1 0 1 B2 B1 B0 ← jdisp →

x.bit,$addr16 0 0 0 0 0 0 1 1 1 0 1 0 0 B2 B1 B0 ← jdisp →

PSWH.bit,$addr16 0 0 0 0 0 0 1 0 1 0 1 0 1 B2 B1 B0 ← jdisp →

PSWL.bit,$addr16 0 0 0 0 0 0 1 0 1 0 1 0 0 B2 B1 B0 ← jdisp →

0 0 0 0 1 0 0 0 1 1 0 1 0 B2 B1 B0 ← Saddr-offset →
saddr.bit,$addr16

← jdisp →

0 0 0 0 1 0 0 0 1 1 0 1 1 B2 B1 B0 ← Sfr-offset →
sfr.bit,$addr16

← jdisp →
BTCLR

A.bit,$addr16 0 0 0 0 0 0 1 1 1 1 0 1 1 B2 B1 B0 ← jdisp →

X.bit,$addr16 0 0 0 0 0 0 1 1 1 1 0 1 0 B2 B1 B0 ← jdisp →

PSWH.bit,$addr16 0 0 0 0 0 0 1 0 1 1 0 1 1 B2 B1 B0 ← jdisp →

PSWL.bit,$addr16 0 0 0 0 0 0 1 0 1 1 0 1 0 B2 B1 B0 ← jdisp →

0 0 0 0 1 0 0 0 1 1 0 0 0 B2 B1 B0 ← Saddr-offset →
saddr.bit,$addr16

← jdisp →
BFSET

0 0 0 0 1 0 0 0 1 1 0 0 1 B2 B1 B0 ← Sfr-offset →
sfr.bit,$addr16

← jdisp →

111

CHAPTER 5 INSTRUCTION SET LIST

Instruction code

Mnemonic Operand B1 B2 B3

B4 B5

A.bit,$addr16 0 0 0 0 0 0 1 1 1 1 0 0 1 B2 B1 B0 ← jdisp →

X.bit,$addr16 0 0 0 0 0 0 1 1 1 1 0 0 0 B2 B1 B0 ← jdisp →
BFSET

PSWH.bit,$addr16 0 0 0 0 0 0 1 0 1 1 0 0 1 B2 B1 B0 ← jdisp →

PSWL.bit,$addr16 0 0 0 0 0 0 1 0 1 1 0 0 0 B2 B1 B0 ← jdisp →

r2,$addr16 0 0 1 1 0 0 1 C0 ← jdisp →
DBNZ

saddr,$addr16 0 0 1 1 1 0 1 1 ← Saddr-offset → ← jdisp →

(21) Context switching instructions: BRKCS, RETCS, RETCSB

Instruction code

Mnemonic Operand B1 B2 B3

B4 B5

BRKCS RBn 0 0 0 0 0 1 0 1 1 1 0 1 1 N2 N1 N0

RETCS !addr16 0 0 1 0 1 0 0 1 ← Low Addr. → ← High Addr. →

0 0 0 0 1 0 0 1 1 1 1 0 0 0 0 0 ← Low Addr. →
RETCSB !addr16

← High Addr. →

(22) String instructions: MOVM, MOVBK, XCHM, XCHBK, CMPME, CMPBKE, CMPMNE, CMPBKNE, CMPMC,

CMPBKC, CMPMNC, CMPBKNC

Instruction code

Mnemonic Operand B1 B2 B3

B4 B5

[DE+],A 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0
MOVM

[DE–],A 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0 0

[DE+],[HL+] 0 0 0 1 0 1 0 1 0 0 1 0 0 0 0 0
MOVBK

[DE–],[HL–] 0 0 0 1 0 1 0 1 0 0 1 1 0 0 0 0

[DE+],A 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1
XCHM

[DE–],A 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0 1

[DE+],[HL+] 0 0 0 1 0 1 0 1 0 0 1 0 0 0 0 1
XCHBK

[DE–],[HL–] 0 0 0 1 0 1 0 1 0 0 1 1 0 0 0 1

[DE+],A 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 0
CMPME

[DE–],A 0 0 0 1 0 1 0 1 0 0 0 1 0 1 0 0

[DE+],[HL+] 0 0 0 1 0 1 0 1 0 0 1 0 0 1 0 0
CMPBKE

[DE–],[HL–] 0 0 0 1 0 1 0 1 0 0 1 1 0 1 0 0

112

CHAPTER 5 INSTRUCTION SET LIST

Instruction code

Mnemonic Operand B1 B2 B3

B4 B5

[DE+],A 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 1
CMPMNE

[DE–],A 0 0 0 1 0 1 0 1 0 0 0 1 0 1 0 1

[DE+],[HL+] 0 0 0 1 0 1 0 1 0 0 1 0 0 1 0 1
CMPBKNE

[DE–],[HL–] 0 0 0 1 0 1 0 1 0 0 1 1 0 1 0 1

[DE+],A 0 0 0 1 0 1 0 1 0 0 0 0 0 1 1 1
CMPMC

[DE–],A 0 0 0 1 0 1 0 1 0 0 0 1 0 1 1 1

[DE+],[HL+] 0 0 0 1 0 1 0 1 0 0 1 0 0 1 1 1
CMPBKC

[DE–],[HL–] 0 0 0 1 0 1 0 1 0 0 1 1 0 1 1 1

[DE+],A 0 0 0 1 0 1 0 1 0 0 0 0 0 1 1 0
CMPMNC

[DE–],A 0 0 0 1 0 1 0 1 0 0 0 1 0 1 1 0

[DE+],[HL+] 0 0 0 1 0 1 0 1 0 0 1 0 0 1 1 0
CMPBKNC

[DE–],[HL–] 0 0 0 1 0 1 0 1 0 0 1 1 0 1 1 0

(23) CPU control instructions: MOV, SWRS, SEL, NOP, EI, DI

Instruction code

Mnemonic Operand B1 B2 B3

B4 B5

0 0 0 0 1 0 0 1 1 1 0 0 0 0 0 0 ← Data →
STBC,#byte

← Data →
MOV

0 0 0 0 1 0 0 1 1 1 0 0 0 0 1 0 ← Data →
WDM,#byte

← Data →

SWRS 0 1 0 0 0 0 1 1

RBn 0 0 0 0 0 1 0 1 1 0 1 0 1 N2 N1 N0

SEL
RBn,ALT 0 0 0 0 0 1 0 1 1 0 1 1 1 N2 N1 N0

NOP 0 0 0 0 0 0 0 0

EI 0 1 0 0 1 0 1 1

DI 0 1 0 0 1 0 1 0

113

CHAPTER 5 INSTRUCTION SET LIST

5.3 Number of Clocks of the Instructions

5.3.1 Description of clock columns

Caution The following series products use the same number of clock cycles for normal fetch and high-

speed fetch. See the “Normal fetch” column in the clock cycle list.

µPD78356 Subseries, 78366 Subseries, 78372 Subseries

(1) Conditions of the number of clocks for instruction execution

The following conditions are required for calculating the number of clocks for instruction execution in Section

5.3.2.

(a) Sufficient instruction codes are always stored in an instruction queue. When the EXU requires instruction

codes, it can immediately read the instruction codes from the queue.

(b) The stack pointer indicates an address from FE00H to FEFFH on main RAM.

(c) The addresses represented by mem, !addr16, [saddrp], [DE+], [DE–], [HL+], [HL–], and [rp1] indicate FE00H

to FEFFH on main RAM.

(d) Only the number of clocks for microprogram execution in the EXU is counted (excluding the time required

for the procedure from clearing the instruction queue to reading the instruction codes of the branch destination

if a branch is taken while an instruction such as BR, CALL, RET, BRK, or RETI is issued or during interrupt

handling).

The number of clocks for instruction execution is calculated under the above conditions. When an actual program

is executed, the number of clocks may therefore become greater than that shown in Section 5.3.2. The following

items describe the reason.

(a) When instruction codes are read from the instruction queue

If no instruction codes are stored in the instruction queue when the EXU tries to read them, the EXU waits

till they are stored in the instruction queue. In particular, when processing branches, the EXU always enters

the wait state because the instruction queue becomes empty till the instruction codes of the branch

destination are read after the instruction queue is cleared.

(b) When data is referenced from memory other than main RAM

<1> When data is read

The EXU waits till the BCU starts the bus cycle and stops reading data.

<2> When data is written

If the EXU issues a request to the BCU for writing data, it can immediately execute the next instruction.

Because the BCU cannot accept any other request from the EXU for processing while it writes data,

however, the EXU waits. In this state, it cannot reference data in memory other than main RAM or in

SFR, or perform branch processing till the BCU finishes writing data.

In particular, if the instruction queue is empty, it cannot be determined when the bus cycle for writing

is started because fetching instruction codes has priority over writing on the external memory or the

peripheral RAM. Therefore, it cannot be determined when the EXU waits because the timing

corresponds with write processing.

114

CHAPTER 5 INSTRUCTION SET LIST

<3> Concurrence of referencing data in memory other than main RAM and branch processing while fetching

instruction codes.

If the BCU executes the bus cycle of fetching instruction codes while the EXU issues a request to the

BCU for referencing data in memory other than main RAM and performing branch processing, the BCU

does not accept the request till it ends the bus cycle of fetching the instruction codes. In this case, the

EXU enters the wait state.

(2) Dividing the clock column into the following columns

The instructions differ in the number of clocks according to the memory area to be accessed or to which a branch

is taken by the individual instructions.

• Internal ROM:

When the instruction is fetched from internal ROM

• IRAM:

When the internal dual-port RAM (0FE00H to 0FEFFH) is accessed

• PRAM:

When the area of internal RAM other than IRAM is accessed

• SFR:

When the special function register is accessed

• EMEM: When the external memory is accessed

(3) n in a clock column indicates the following:

• Shift/rotate instructions:

Number of bits the data is shifted

• Stack manipulation instructions:

Number of registers whose contents are saved or returned

• String instructions:

Number of times the instruction is executed till it exits from the loop after the condition is satisfied

• Sum-of-products instructions, sum-of-products instructions with saturation function, correlation instruc-

tions, table shift instructions:

Number of multiplication and accumulation terms or number of shift terms.

(4) w in a clock column indicates the following:

• Wait count specified in the PWC register

(5) / in a clock column indicates the following:

• Or. For example, a/b indicates a or b.

115

CHAPTER 5 INSTRUCTION SET LIST

5

-

10

7

11

10

5.3.2 Numbers of clocks

(1) 8-bit data transfer instructions: MOV, XCH

Mnemonic

Clocks

Normal fetch
Operand Byte

r1, #byte

saddr, #byte

sfrNote, #byte

r, r1

A, r1

A, saddr

saddr, A

saddr, saddr

A, sfr

sfr, A

A, mem

mem, A

A, [saddrp]

[saddrp], A

A, !addr16

!addr16, A

PSWL, #byte

PSWH, #byte

PSWL, A

PSWH, A

A, PSWL

A, PSWH

A, r1

r, r1

A, mem

A, saddr

A, sfr

A, [saddrp]

saddr, saddr

2

3

3

2

1

2

2

3

2

2

1-4

1-4

2

2

4

4

3

3

2

2

2

2

1

2

2-4

2

3

2

3

Internal
ROM

PRAM EMEM

-

7

6

8

7

6

IRAM

7

7

6

SFR

7

2

3

-

3

2

4

-

-

-

Internal
ROM

PRAM EMEM

-

7

6

8

7

6

IRAM

7

7

6

SFR

7

2

3

-

3

2

4

-

-

High-speed fetch

See Table 5-7 (1/5) for details.

11

8

8

9

10+w

7

6

8

7

9

8

10

9

9+w

8+w

10+w

9+w

13

12

10

9

- -

67

7

7

-

- --

See Table 5-7 (2/5) for details.

-4- -4 -----

5

-

10

7

-
13

14

18

15

16

-

-

14

16

-

- -
14

-

13

14

18

15

-

14

14+2w

-

XCH

Note If STBC or WDM is coded in sfr, a different instruction having the different byte and clock counts is generated.

MOV

13

12

10

9

10

9

11

10

7

6

8

7

- -

-

- -

--

-

-

2 2

116

CHAPTER 5 INSTRUCTION SET LIST

-

-

7

6

8

7

6

3

4

-

2

3

2

4

3

4

-

2

3

2

4

(2) 16-bit data transfer instructions: MOVW, XCHW

Mnemonic

Clocks

Normal fetch
Operand Byte

rp1, #word

saddrp, #word

sfrp, #word

rp, rp1

AX, saddrp

saddrp, AX

saddrp, saddrp

AX, sfrp

sfrp, AX

AX, mem

mem, AX

AX, saddrp

AX, sfrp

saddrp, saddrp

rp, rp1

AX, mem

3

4

4

2

2

2

3

2

2

2-4

2-4

2

3

3

2

2-4

Internal
ROM

PRAM EMEMIRAM SFR

8

Internal
ROM

PRAM EMEM

-

-

7

6

8

7

6

IRAM SFR

8

High-speed fetch

-

- - - -

-

-

4

rp1, !addr16

MOVW

See Tables 5-7 (2/5) and 5-7 (3/5) for details.

4 11/16 8 11/16 10 11/16 10/14 8 10/14 10
10+w

/14+2w

!addr16, rp1 - 7 10/15 9 10/15 - 7 9/13 9
9+w

/13+2w

5

-

7

4

5

-

7

4

13

14

15

-

- - - - - -

13

14

15

-

XCHW

-

See Table 5-7 (3/5) for details.

117

CHAPTER 5 INSTRUCTION SET LIST

-

12

13

-

7

8

9

-

12

13

-

7

8

9

2

4

-

-

5

-

12

13

-

7

8

9

2

4

-

-

5

(3) 8-bit arithmetic/logical instructions: ADD, ADDC, SUB, SUBC, AND, OR, XOR, CMP

Mnemonic

Clocks

Normal fetch
Operand Byte

A, #byte

saddr, #byte

sfr, #byte

r, r1

A, saddr

A, sfr

saddr, saddr

A, mem

mem, A

A, #byte

saddr, #byte

sfr, #byte

r, r1

A, saddr

A, sfr

saddr, saddr

A, mem

mem, A

A, #byte

saddr, #byte

sfr, #byte

r, r1

A, saddr

A, sfr

saddr, saddr

A, mem

mem, A

A, #byte

saddr, #byte

sfr, #byte

r, r1

A, saddr

A, sfr

saddr, saddr

A, mem

mem, A

2

3

4

2

2

3

3

2-4

2-4

2

3

4

2

2

3

3

2-4

2-4

2

3

4

2

2

3

3

2-4

2-4

2

3

4

2

2

3

3

2-4

2-4

Internal
ROM

PRAM EMEMIRAM SFR

3

-

Internal
ROM

PRAM EMEMIRAM

13

8

-

SFR

High-speed fetch

ADD

-
3

-

-

-
- -

See Table 5-7 (4/5) for details.

13

8

-

2

4

-

-

5

2

4

-

-

5

-

12

13

-

7

8

9

3
-

-

12

13

-

7

8

9

-

13

8

-

-

-
-

3 -

13

8

-

-

-

See Table 5-7 (4/5) for details.

2

4

-

-

5

2

4

-

-

5

-

12

13

-

7

8

9

3

-

12

13

-

7

8

9

-

13

8

-

-

-
-

3 -

13

8

-

-

-
-

ADDC

SUB

See Table 5-7 (4/5) for details.

-

2

4

-

-

5

2

4

-

-

5

-

12

13

-

7

8

9

3
-

13

8

-

-

-
-

3 -

13

8

-

-

-

See Table 5-7 (4/5) for details.

SUBC

-

118

CHAPTER 5 INSTRUCTION SET LIST

-

8

9

-

7

8

9

-

12

13

-

7

8

9

2

4

-

-

5

-

12

13

-

7

8

9

2

4

-

-

5

Mnemonic

Clocks

Normal fetch
Operand Byte

A, #byte

saddr, #byte

sfr, #byte

r, r1

A, saddr

A, sfr

saddr, saddr

A, mem

mem, A

A, #byte

saddr, #byte

sfr, #byte

r, r1

A, saddr

A, sfr

saddr, saddr

A, mem

mem, A

A, #byte

saddr, #byte

sfr, #byte

r, r1

A, saddr

A, sfr

saddr, saddr

A, mem

mem, A

A, #byte

saddr, #byte

sfr, #byte

r, r1

A, saddr

A, sfr

saddr, saddr

A, mem

mem, A

2

3

4

2

2

3

3

2-4

2-4

2

3

4

2

2

3

3

2-4

2-4

2

3

4

2

2

3

3

2-4

2-4

2

3

4

2

2

3

3

2-4

2-4

Internal
ROM

PRAM EMEMIRAM SFR

3

-

Internal
ROM

PRAM EMEMIRAM

13

8

-

SFR

High-speed fetch

AND

-
3

-

-

-
- -

See Table 5-7 (4/5) for details.

13

8

-

2

4

-

-

5

2

4

-

-

5

-

12

13

-

7

8

9

3
-

-

12

13

-

7

8

9

-

13

8

-

-

-
-

3 -

13

8

-

-

-

See Table 5-7 (4/5) for details.

2

4

-

-

5

2

4

-

-

5

-

12

13

-

7

8

9

3

-

12

13

-

7

8

9

-

13

8

-

-

-
-

3 -

13

8

-

-

-
-

OR

XOR

See Table 5-7 (4/5) for details.

-

2

4

-

-

5

2

4

-

-

5

-

8

9

-

7

8

9

3
-

9

8

-

-

-
-

3 -

9

8

-

-

-

See Tables 5-7 (4/5) and 5-7 (5/5) for details.

CMP

-

119

CHAPTER 5 INSTRUCTION SET LIST

-

13

14

-

7

8

9

3

5

-

-

5

-

13

14

-

7

8

9

3

5

-

-

5

(4) 16-bit arithmetic/logical instructions: ADDW, SUBW, CMPW

Mnemonic

Clocks

Normal fetchOperand Byte

AX, #word

saddrp, #word

sfrp, #word

rp, rp1

AX, saddrp

AX, sfrp

saddrp, saddrp

AX, #word

saddrp, #word

sfrp, #word

rp, rp1

AX, saddrp

AX, sfrp

saddrp, saddrp

AX, #word

saddrp, #word

sfrp, #word

rp, rp1

AX, saddrp

AX, sfrp

saddrp, saddrp

3

4

5

2

2

3

3

3

4

5

2

2

3

3

3

4

5

2

2

3

3

3

High-speed fetch

-
3

- - -ADDW --

-

13

14

-

7

8

9

3

5

-

-

5

-

13

14

-

7

8

9

3

5

-

-

5

33
- - - --

-

9

10

-

7

8

9

3

5

-

-

5

-

9

10

-

7

8

9

3

5

-

-

5

33
- - - --

-

-CMPW

SUBW

Internal
ROM

PRAM EMEMIRAM SFRInternal
ROM

PRAM EMEMIRAM SFR

120

CHAPTER 5 INSTRUCTION SET LIST

-

-

-

-

(5) Multiply/divide instructions: MULU, DIVUW, MULUW, DIVUX

r1

r1

rp1

rp1

2

2

2

2

MULU

DIVUW

MULUW

DIVUX

-

-

-

-

11

23

15

43

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

11

23

15

43

-

-

-

-

-

-

-

-

(6) Signed multiply instruction: MULW

Byte

rp1 2MULW - 14 - - - - 14 - - -

(7) Sum-of-products instruction: MACW

n 3MACW - - - - - - - -5+21n

(2+21n)

5+21n

(2+21n)

Remark The clock count enclosed in parentheses applies when execution of the instruction is forcibly stopped

due to an overflow.

(8) Sum-of-products instruction with saturation function: MACSW

Remarks 1. If instruction execution is forced to be stopped when an overflow or underflow occurs, the number

of clock cycles enclosed in parentheses is applicable.

2. The µPD78352A Subseries does not provide the sum-of-products instruction with saturation

function.

Mnemonic Operand Byte
IRAM PRAMInternal

ROM
EMEMSFR

- - - -3MACSW n

Clocks

5+21n

(7+21n)

Mnemonic

Clocks

Normal fetch
Operand Byte

High-speed fetch

Internal
ROM

PRAM EMEMIRAM SFRInternal
ROM

PRAM EMEMIRAM SFR

Mnemonic

Clocks

Normal fetchOperand
High-speed fetch

Internal
ROM

PRAM EMEMIRAM SFRInternal
ROM

PRAM EMEMIRAM SFR

Mnemonic

Clocks

Normal fetchOperand Byte
High-speed fetch

Internal
ROM

PRAM EMEMIRAM SFRInternal
ROM

PRAM EMEMIRAM SFR

121

CHAPTER 5 INSTRUCTION SET LIST

(9) Correlation instruction: SACW

Mnemonic Operand Byte
IRAM PRAMInternal

ROM
EMEMSFR

Clocks

4+(27+4w)n 4+(27+4w)n 4+(27+4w)n 4+(27+4w)n 4+(27+4w)n4SACW [DE+], [HL+]

Remark The µPD78352A Subseries does not provide the correlation instruction.

(10) Table shift instruction: MOVTBLW

Clocks

Normal fetch

!addr16, n 4

High-speed fetch

Internal
ROM

PRAM EMEMIRAM SFRInternal
ROM

PRAM EMEMIRAM SFR

- 2+5n - - - - 2+5n - - -MOVTBLW

Mnemonic Operand Byte

122

CHAPTER 5 INSTRUCTION SET LIST

-

-

-

-

-

-

-

-

15+2w

15+2w

2

3

2

3

2

4

2

4

-

11

-

11

-

12

-

12

-

-

-

-

(11) Increment/decrement instructions: INC, DEC, INCW, DECW

r1

saddr

r1

saddr

rp2

saddrp

rp2

saddrp

1

2

1

2

1

3

1

3

2

3

2

3

2

4

2

4

-

11

-

11

-

12

-

12

INC

DEC

INCW

DECW

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

(12) Shift/rotate instructions: ROR, ROL, RORC, ROLC, SHR, SHL, SHRW, SHLW, ROR4, ROL4

r1, n

r1, n

r1, n

r1, n

r1, n

r1, n

rp1, n

rp1, n

[rp1]

[rp1]

2

2

2

2

2

2

2

2

2

2

ROR

ROL

RORC

ROLC

SHR

SHL

SHRW

SHLW

ROR4

ROL4

-

-

-

-

-

-

-

-

-

-

5+n

5+n

5+n

5+n

5+n

5+n

5+n

5+n

11

11

-

-

-

-

-

-

-

-

17

17

-

-

-

-

-

-

-

-

15

15

-

-

-

-

-

-

-

-

17

17

-

-

-

-

-

-

-

-

-

-

5+n

5+n

5+n

5+n

5+n

5+n

5+n

5+n

11

11

-

-

-

-

-

-

-

-

15

15

-

-

-

-

-

-

-

-

15

15

-

-

(13) BCD correction instructions: ADJBA, ADJBS

2

2

ADJBA

ADJBS

-

-

4

4

-

-

-

-

-

-

-

-

4

4

-

-

-

-

Mnemonic

Clocks

Normal fetch
Operand Byte

High-speed fetch

Internal
ROM

PRAM EMEMIRAM SFRInternal
ROM

PRAM EMEMIRAM SFR

Mnemonic

Clocks

Normal fetchOperand Byte
High-speed fetch

Internal
ROM

PRAM EMEMIRAM SFRInternal
ROM

PRAM EMEMIRAM SFR

Mnemonic

Clocks

Normal fetch
Operand Byte

High-speed fetch

Internal
ROM

PRAM EMEMIRAM SFRInternal
ROM

PRAM EMEMIRAM SFR

123

CHAPTER 5 INSTRUCTION SET LIST

(14) Data conversion instruction: CVTBW

1CVTBW - 3 - - - - 3 - - -

Mnemonic

Clocks

Normal fetchOperand Byte
High-speed fetch

Internal
ROM

PRAM EMEMIRAM SFRInternal
ROM

PRAM EMEMIRAM SFR

124

CHAPTER 5 INSTRUCTION SET LIST

-

10
10

-

5

13

-

-

10

6

-

5

-

7

8

10

-

5

13

-

CY, saddr.bit

CY, sfr.bit

CY, A.bit

CY, X.bit

CY, PSWH.bit

CY, PSWL.bit

saddr.bit, CY

sfr.bit, CY

A.bit, CY

X.bit, CY

PSWH.bit, CY

PSWL.bit, CY

CY, saddr.bit

CY, /saddr.bit

CY, sfr.bit

CY, /sfr.bit

CY, A.bit

CY, /A.bit

CY, X.bit

CY, /X.bit

CY, PSWH.bit

CY, /PSWH.bit

CY, PSWL.bit

CY, /PSWL.bit

CY, saddr.bit

CY, /saddr.bit

CY, sfr.bit

CY, /sfr.bit

CY, A.bit

CY, /A.bit

CY, X.bit

CY, /X.bit

CY, PSWH.bit

CY, /PSWH.bit

CY, PSWL.bit

CY, /PSWL.bit

6

-

5

-

(15) Bit manipulation instructions: MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1

3

3

2

2

2

2

3

3

2

2

2

2

3

3

3

3

2

2

2

2

2

2

2

2

3

3

3

3

2

2

2

2

2

2

2

2

MOV1

5

-

6

-

- -

7

8

13

-

-

6

-

5

-

5

-

6

-

- -

13

-

-

- -

10

-

5

-

10

-

-

10

-

5

6

-

5

-

-

10

-

-

OR1

6

-

5

-

- -

10

-

5

-

10

-

6

-

5

-

- -

10

-

5

-

10

-

AND1

Mnemonic

Clocks

Normal fetchOperand Byte
High-speed fetch

Internal
ROM

PRAM EMEMIRAM SFRInternal
ROM

PRAM EMEMIRAM SFR

125

CHAPTER 5 INSTRUCTION SET LIST

-

10

12

13

6

7

2

6

7

2

5

-

12

13

6

7

2

6

-

4

-

-

4

-

-

5

-

-

10

-

5

CY, saddr.bit

CY, sfr.bit

CY, A.bit

CY, X.bit

CY, PSWH.bit

CY, PSWL.bit

saddr.bit

sfr.bit

A.bit

X.bit

PSWH.bit

PSWL.bit

CY

saddr.bit

sfr.bit

A.bit

X.bit

PSWH.bit

PSWL.bit

CY

saddr.bit

sfr.bit

A.bit

X.bit

PSWH.bit

PSWL.bit

CY

3

3

2

2

2

2

2

3

2

2

2

2

1

2

3

2

2

2

2

1

3

3

2

2

2

2

1

5

-

5

13

10

-

5

6

-

5

-

-

10

- -

-

- -

-

SET1 -

-12

13

6

7

2

-
5

-

13

-

-12

13

6

7

2

-

4

-

- -

CLR1

NOT1

5

13

-
-

-

-
5

-

13

-
-

-

-

4

-

- -

5

13

-

-

6

7

2

-
5

-

13

-
-

-

-

- -

XOR1

13 13

Mnemonic

Clocks

Normal fetch
Operand Byte

High-speed fetch

Internal
ROM

PRAM EMEMIRAM SFRInternal
ROM

PRAM EMEMIRAM SFR

- -

-

126

CHAPTER 5 INSTRUCTION SET LIST

11

3+5n

5

5+5n

13

3+6n

6

7+6n

8

6

7

4

4

15+2w/19+3w

16+2w/20+3w

21+3w/29+5w

15+2w/19+3w

20+3w/28+5w

28+4w/40+7w

13+2w/17+3w

19+2w/27+5w

(16) Call/return instructions: CALL, CALLF, CALLT, BRK, RET, RETB, RETI

Clocks

Normal fetchHigh-speed fetch

!addr16

rp1

[rp1]

!addr11

[addr5]

3

2

2

2

1

1

1

1

1

CALL

CALLF

CALLT

BRK

RET

RETB

RETI

Mnemonic Operand Byte

Internal ROM PRAM EMEM

17/22

18/23

24/34

17/22

23/33

32/47

15/20

22/32

EMEM

15+2w/19+3w

16+2w/20+3w

21+3w/29+5w

15+2w/19+3w

20+3w/28+5w

28+4w/40+7w

13+2w/17+3w

19+2w/27+5w

Internal ROM PRAM

15/19

16/20

21/29

15/19

-

-

13/17

19/27

(17) Stack manipulation instructions: PUSH, PUSHU, POP, POPU, MOVW, INCW, DECW

Clocks

Normal fetchHigh-speed fetch

sfrp

post

PSW

post

sfrp

post

PSW

post

SP, #word

SP, AX

AX, SP

SP

SP

3

2

1

2

3

2

1

2

4

2

2

2

2

Mnemonic Operand Byte

Internal ROM

11

3+5n

5

5+5n

13

3+6n

6

7+6n

9

7

8

4

4

PRAM EMEM EMEMInternal ROM PRAM

PUSH

PUSHU

POP

POPU

MOVW

INCW

DECW

11

3+5n

5

5+5n

13

3+6n

6

7+6n

9

7

8

4

4

11

3+5n

5

5+5n

13

3+6n

6

7+6n

9

7

8

4

4

11

3+5n

5

5+5n

13

3+6n

6

7+6n

8

6

7

4

4

11

3+5n

5

5+5n

13

3+6n

6

7+6n

8

6

7

4

4

17/22

18/23

24/34

17/22

-

-

15/20

22/32

17/22

18/23

24/34

17/22

23/33

32/47

15/20

22/32

127

CHAPTER 5 INSTRUCTION SET LIST

9+w

9+w

13+w

9+w

14

14

(18) Special instructions: CHKL, CHKLA

Clocks

Normal fetchHigh-speed fetch

CHKL

CHKLA

Mnemonic Operand Byte

sfr

sfr

3

3

14

14

(19) Unconditional branch instruction: BR

Clocks

Normal fetchHigh-speed fetch

!addr16

rp1

[rp1]

$addr16

3

2

2

2

Mnemonic Operand Byte

Internal ROM

10

10

14

10

PRAM EMEM EMEMInternal ROM PRAM

10

10

14

10

10

10

14

10

9+w

9+w

13+w

9+w

BR

9

9

13

9

128

CHAPTER 5 INSTRUCTION SET LIST

9+w

9+w

10+w

10+w

10+w

10+w

10+w

10+w

12+w

17+w

13+w

17+w

9+w

9+w

9+w

9+w

9+w

9+w

(20) Conditional branch instructions: BC, BL, BNC, BNL, BZ, BE, BNZ, BNE, BV, BPE, BNV, BPO, BN, BP,

BGT, BGE, BLT, BLE, BH, BNH, BT, BF, BTCLR, BFSET, DBNZ

Internal
ROM

High-speed fetch Normal fetch

EMEMPRAM

Clocks

Branch

No
branch

Mnemonic Operand Byte

BC

BL

BNC

BNL

BZ

BE

BNZ

BNE

BV

BPE

BNV

BPO

BN

BP

BGT

BGE

BLT

BLE

BH

BNH

BT

BF

Internal
ROM

EMEMPRAM

$addr16

$addr16

$addr16

$addr16

$addr16

$addr16

2

2

2

2

2

2

3

3

3

3

3

3

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

9+w

9+w

9+w

9+w

9+w

9+w

9

9

9

9

9

9

$addr16

$addr16

$addr16

$addr16

$addr16

$addr16

$addr16

$addr16

saddr.bit, $addr16

sfr.bit, $addr16

A.bit, $addr16

X.bit, $addr16

PSWH.bit, $addr16

PSWL.bit, $addr16

saddr.bit, $addr16

sfr.bit, $addr16

A.bit, $addr16

X.bit, $addr16

PSWH.bit, $addr16

PSWL.bit, $addr16

10

10

11

11

11

11

11

11

13

18

14

18

10

10

11

11

11

11

11

11

13

18

14

18

3

3

4

4

4

4

4

4

6

11

7

11

2

2

3

3

3

3

3

3

3

4

3

3

3

3

4

4

3

3

3

3

10

10

11

11

11

11

11

11

13

18

14

18

9+w

9+w

10+w

10+w

10+w

10+w

10+w

10+w

12+w

17+w

13+w

17+w

9

9

10

10

10

10

10

10

12

17

13

17

6 13 13 13 12+w 12 12+w

6 13 13 13 12+w 12 12+w

129

CHAPTER 5 INSTRUCTION SET LIST

12+w

10+w

11+w

7

15

7

15

4

5

16

24

16

15

16

24

16

15

12

13

16

24

16

15

16

24

16

15

12

13

16

24

16

15

16

24

16

15

12

13

4

4

3

3

3

3

4

4

3

3

3

3

2

3

Internal
ROM

High-speed fetch Normal fetch

EMEMPRAM

Clocks

Branch

No
branch

Mnemonic Operand Byte

Internal
ROM

EMEMPRAM

BTCLR

BFSET

DBNZ

15

6

15 15

6

15 15 15

15+w

23+w

15+w

14+w

15+w

23+w

15+w

14+w

11+w

12+w

14+w

14+w

15

23

15

14

15

23

15

14

11

12

14

14

15+w

23+w

15+w

14+w

15+w

23+w

15+w

14+w

11+w

12+w

14+w

14+w

(21) Context switching instructions: BRKCS, RETCS, RETCSB

Clocks

Normal fetchHigh-speed fetch

RBn

!addr16

!addr16

2

3

4

Mnemonic Operand Byte

Internal ROM

13

11

12

PRAM EMEM Internal ROM

13

11

12

13

11

12

12+w

10+w

11+w

EMEMPRAM

12

10

11

BRKCS

RETCS

RETCSB

saddr.bit, $addr16

sfr.bit, $addr16

A.bit, $addr16

X.bit, $addr16

PSWH.bit, $addr16

PSWL.bit, $addr16

saddr.bit, $addr16

sfr.bit, $addr16

A.bit, $addr16

X.bit, $addr16

PSWH.bit, $addr16

PSWL.bit, $addr16

r2, $addr16

saddr, $addr16

130

CHAPTER 5 INSTRUCTION SET LIST

2+(10+

w)n

2+(17+

2w)n

2+(16+

2w)n

2+(29+

4w)n

2+(12+

w)n

2+(19+

2w)n

2+(12+

w)n

2+(19+

2w)n

2+(12+

w)n

2+(19+

2w)n

2+(12+

w)n

2+(19+

2w)n

(22) String instructions: MOVM, MOVBK, XCHM, XCHBK, CMPME, CMPBKE, CMPMNE, CMPBKNE, CMPMC,

CMPBKC, CMPMNC, CMPBKNC

[DE+], A

[DE–], A

[DE+], [HL+]

[DE–], [HL–]

[DE+], A

[DE–], A

[DE+], [HL+]

[DE–], [HL–]

[DE+], A

[DE–], A

[DE+], [HL+]

[DE–], [HL–]

[DE+], A

[DE–], A

[DE+], [HL+]

[DE–], [HL–]

[DE+], A

[DE–], A

[DE+], [HL+]

[DE–], [HL–]

[DE+], A

[DE–], A

[DE+], [HL+]

[DE–], [HL–]

Mnemonic

Clocks

Normal fetch
Operand Byte

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

High-speed fetch

Internal
ROM

PRAM EMEMIRAM SFRInternal
ROM

PRAM EMEMIRAM SFR

MOVM

MOVBK

XCHM

XCHBK

CMPME

CMPBKE

CMPMNE

CMPBKNE

CMPMC

CMPBKC

CMPMNC

CMPBKNC

2+11n

2+19n

2+18n

2+33n

2+13n

2+21n

2+13n

2+21n

2+13n

2+21n

2+13n

2+21n

2+8n

2+13n

2+12n

2+21n

2+10n

2+15n

2+10n

2+15n

2+10n

2+15n

2+10n

2+15n

2+11n

2+19n

2+18n

2+33n

2+13n

2+21n

2+13n

2+21n

2+13n

2+21n

2+13n

2+21n

2+10n

2+17n

2+16n

2+29n

2+12n

2+19n

2+12n

2+19n

2+12n

2+19n

2+12n

2+19n

2+11n

2+19n

2+18n

2+33n

2+13n

2+21n

2+13n

2+21n

2+13n

2+21n

2+13n

2+21n

2+(10+

w)n

2+(17+

2w)n

2+(16+

2w)n

2+(29+

4w)n

2+(12+

w)n

2+(19+

2w)n

2+(12+

w)n

2+(19+

2w)n

2+(12+

w)n

2+(19+

2w)n

2+(12+

w)n

2+(19+

2w)n

2+8n

2+13n

2+12n

2+21n

2+10n

2+15n

2+10n

2+15n

2+10n

2+15n

2+10n

2+15n

2+10n

2+17n

2+16n

2+29n

2+12n

2+19n

2+12n

2+19n

2+12n

2+19n

2+12n

2+19n

2+10n

2+17n

2+16n

2+29n

2+12n

2+19n

2+12n

2+19n

2+12n

2+19n

2+12n

2+19n

131

CHAPTER 5 INSTRUCTION SET LIST

13

13

2

3

3

2

2

2

(23) CPU control instructions: MOV, SWRS, SEL, NOP, EI, DI

Mnemonic Operand Byte

STBC, #byte

WDM, #byte

RBn

RBn, ALT

MOV

SWRS

SEL

NOP

EI

DI

4

4

1

2

2

1

1

1

Clocks

132

CHAPTER 5 INSTRUCTION SET LIST

Table 5-7. Instruction Execution Cycles (1/5)

Clocks

Mnemonic Operand
High-speed fetch Normal fetch

EMEMIRAM PRAM SFR
Internal

ROM

Instruction

set
Byte

A, [DE]
A, [HL]

A, [DE+]
A, [HL+]
A, [DE–]
A, [HL–]

A, [VP]
A, [UP]

A, [DE+A]
A, [HL+A]
A, [DE+B]
A, [HL+B]
A, [VP+DE]
A, [VP+HL]

A, [DE+byte]
A, [HL+byte]
A, [VP+byte]
A, [UP+byte]

A, [SP+byte]

A, word [A]
A, word [B]
A, word [DE]
A, word [HL]

[DE], A
[HL], A

[DE+], A
[HL+], A
[DE–], A
[HL–], A

[VP], A
[UP], A

[DE+A], A
[HL+A], A
[DE+B], A
[HL+B], A
[VP+DE], A
[VP+HL], A

[DE+byte], A
[HL+byte], A
[VP+byte], A
[UP+byte], A

[SP+byte], A

word [A], A
word [B], A

word [DE], A
word [HL], A

EMEMIRAM PRAM SFR
Internal

ROM

1 9 6 9 8 9 8+W 6 8 8 8+W

1 10 7 10 9 10 9+W 7 9 9 9+W

2 11 8 11 10 11 10+W 8 10 10 10+W

8-bit data

transfer MOV

3 11 8 11 10 11 10+W 8 10 10 10+W

3 12 9 12 11 12 11+W 9 11 11 11+W

4 12 9 12 11 12 11+W 9 11 11 11+W

1 - 5 8 7 8 - 5 7 7 7+W

1 - 6 9 8 9 - 6 8 8 8+W

2 - 7 10 9 10 - 7 9 9 9+W

2 - 8 11 10 11 - 8 10 10 10+W

3 - 8 11 10 11 - 8 10 10 10+W

3 - 9 12 11 12 - 9 11 11 11+W

4 - 9 12 11 12 - 9 11 11 11+W

4 - 8 11 10 11 - 8 10 10 10+W

Remark w is the wait count specified in the PWC register.

2 10 7 10 9 10 9+W 7 9 9 9+W

133

CHAPTER 5 INSTRUCTION SET LIST

Table 5-7. Instruction Execution Cycles (2/5)

Clocks

Mnemonic Operand

EMEMIRAM PRAM SFR
Internal

ROM

Instruction

set
Byte

A, [DE]
A, [HL]

A, [DE+]
A, [HL+]
A, [DE–]
A, [HL–]

A, [VP]
A, [UP]

A, [DE+A]
A, [HL+A]
A, [DE+B]
A, [HL+B]
A, [VP+DE]
A, [VP+HL]

A, [DE+byte]
A, [HL+byte]
A, [VP+byte]
A, [UP+byte]

A, [SP+byte]

A, word [A]
A, word [B]
A, word [DE]
A, word [HL]

AX, [DE]
AX, [HL]

AX, [DE+]
AX, [HL+]
AX, [DE–]
AX, [HL–]

AX, [VP]
AX, [UP]

AX, [DE+A]
AX, [HL+A]
AX, [DE+B]
AX, [HL+B]
AX, [VP+DE]
AX, [VP+HL]

AX, [DE+byte]
AX, [HL+byte]
AX, [VP+byte]
AX, [UP+byte]

AX, [SP+byte]

AX, word [A]
AX, word [B]
AX, word [DE]
AX, word [HL]

EMEMIRAM PRAM SFR
Internal

ROM

2 - 12 18 16 18 - 12 16 16 16+2W

2 - 13 19 17 19 - 13 17 17 17+2WXCH

2 - 14 20 18 20 - 14 18 18 18+2W

2 - 12 18 16 18 - 12 16 16 16+2W

3 - 13 19 17 19 - 13 17 17 17+2W

3 - 14 20 18 20 - 14 18 18 18+2W

4 - 13 19 17 19 - 13 17 17 17+2W

2 15 7 15 9 15 13+2W 7 13 9 13+2W

2 17 9 17 11 17 15+2W 9 15 11 15+2W

2 15 7 15 9 15 13+2W 7 13 9 13+2W

2 16 8 16 10 16 14+2W 8 14 10 14+2W

3 16 8 16 10 16 14+2W 8 14 10 14+2W

3 17 9 17 11 17 15+2W 9 15 11 15+2W

4 17 9 17 11 17 15+2W 9 15 11 15+2W

MOVW

Remark w is the wait count specified in the PWC register.

Normal fetchHigh-speed fetch

16-bit data

transfer

134

CHAPTER 5 INSTRUCTION SET LIST

Table 5-7. Instruction Execution Cycles (3/5)

Clocks

Mnemonic Operand
High-speed fetch Normal fetch

EMEMIRAM PRAM SFR
Internal

ROM

Instruction

set
Byte

[DE], AX
[HL], AX

[DE+], AX
[HL+], AX
[DE–], AX
[HL–], AX

[VP], AX
[UP], AX

[DE+A], AX
[HL+A], AX
[DE+B], AX
[HL+B], AX
[VP+DE], AX
[VP+HL], AX

[DE+byte], AX
[HL+byte], AX
[VP+byte], AX
[UP+byte], AX

[SP+byte], AX

word [A], AX
word [B], AX

word [DE], AX
word [HL], AX

AX, [DE]
AX, [HL]

AX, [DE+]
AX, [HL+]
AX, [DE–]
AX, [HL–]

AX, [VP]
AX, [UP]

AX, [DE+A]
AX, [HL+A]
AX, [DE+B]
AX, [HL+B]
AX, [VP+DE]
AX, [VP+HL]

AX, [DE+byte]
AX, [HL+byte]
AX, [VP+byte]
AX, [UP+byte]

AX, [SP+byte]

AX, word [A]
AX, word [B]
AX, word [DE]
AX, word [HL]

EMEMIRAM PRAM SFR
Internal

ROM

2 - 7 15 9 15 - 7 13 9 13+2W

2 - 8 16 10 16 - 8 14 10 14+2W

Remark w is the wait count specified in the PWC register.

MOVW

2 - 9 17 11 17 - 9 15 11 15+2W

2 - 7 15 9 15 - 7 13 9 13+2W

3 - 8 16 10 16 - 8 14 10 14+2W

3 - 9 17 11 17 - 9 15 11 15+2W

4 - 9 17 11 17 - 9 15 11 15+2W

4 - 8 16 10 16 - 8 4 10 14+2W

2 - 14 30 18 30 - 14 26 18 26+4W

XCHW

2 - 12 28 16 28 - 12 24 16 24+4W

2 - 12 28 16 28 - 12 24 16 24+4W

2 - 13 29 17 29 - 13 25 17 25+4W

3 - 13 29 17 29 - 13 25 17 25+4W

3 - 14 30 18 30 - 14 26 18 26+4W

4 - 13 29 17 29 - 13 25 17 25+4W

16-bit data

transfer

135

CHAPTER 5 INSTRUCTION SET LIST

Table 5-7. Instruction Execution Cycles (4/5)

Clocks

Mnemonic Operand
High-speed fetch Normal fetch

EMEMIRAM PRAM SFR
Internal

ROM

Instruction

set
Byte

A, [DE]
A, [HL]

A, [DE+]
A, [HL+]
A, [DE–]
A, [HL–]

A, [VP]
A, [UP]

A, [DE+A]
A, [HL+A]
A, [DE+B]
A, [HL+B]
A, [VP+DE]
A, [VP+HL]

A, [DE+byte]
A, [HL+byte]
A, [VP+byte]
A, [UP+byte]

A, [SP+byte]

A, word [A]
A, word [B]
A, word [DE]
A, word [HL]

[DE], A
[HL], A
[DE+], A
[HL+], A
[DE–], A
[HL–], A
[VP], A
[UP], A

[DE+A], A
[HL+A], A
[DE+B], A
[HL+B], A
[VP+DE], A
[VP+HL], A

[DE+byte], A
[HL+byte], A
[VP+byte], A
[UP+byte], A

[SP+byte], A

word [A], A
word [B], A

word [DE], AX
word [HL], AX

EMEMIRAM PRAM SFR
Internal

ROM

2 11 8 11 10 11 10+w 8 10 10 10+W

ADD

ADDC

SUB

SUBC

AND

OR

XOR

CMP

2 12 9 12 11 12 11+w 9 11 11 11+W

2 11 8 11 10 11 10+w 8 10 10 10+W

2 12 9 12 11 12 11+w 9 11 11 11+W

3 12 9 12 11 12 11+w 9 11 11 11+W

3 13 10 13 12 13 12+w 10 12 12 12+2W

4 13 10 13 12 13 12+w 10 12 12 12+W

2 - 10 16 14 16 - 10 14 14 14+2W

2 - 11 17 15 17 - 11 15 15 15+2W

3 - 11 17 15 17 - 11 15 15 15+2W

3 - 12 18 16 18 - 12 16 16 16+2W

4 - 12 18 16 18 - 12 16 16 16+2W

4 - 11 17 15 17 - 11 15 15 15+2W

Remark w is the wait count specified in the PWC register.

ADD

ADDC

SUB

SUBC

AND

OR

XOR

8-bit

arithmetic/

logical

136

CHAPTER 5 INSTRUCTION SET LIST

Table 5-7. Instruction Execution Cycles (5/5)

Clocks

Mnemonic Operand
High-speed fetch

EMEMIRAM PRAM SFR
Internal

ROM

Instruction

set
Byte

[DE], A
[HL], A
[DE+], A
[HL+], A
[DE–], A
[HL–], A
[VP], A
[UP], A

[DE+A], A
[HL+A], A
[DE+B], A
[HL+B], A
[VP+DE], A
[VP+HL], A

[DE+byte], A
[HL+byte], A
[VP+byte], A
[UP+byte], A

[SP+byte], A

word [A], A
word [B], A

word [DE], AX
word [HL], AX

EMEMIRAM PRAM SFR
Internal

ROM

2 11 8 11 10 11 10+w 8 10 10 10+w

2 12 9 12 11 12 11+w 9 11 11 11+w

3 12 9 12 11 12 11+w 9 11 11 11+w

3 13 10 13 12 13 12+w 10 12 12 12+w

4 13 10 13 12 13 12+w 10 12 12 12+w

4 12 9 12 11 12 11+w 9 11 11 11+W

8-bit

arithmetic/

logical
CMP

Normal fetch

Remark w is the wait count specified in the PWC register.

137

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

This chapter explains the µPD78356 instructions.

Operands are collected for each instruction mnemonic for explanation.

See CHAPTER 5 INSTRUCTION SET LIST for the number of bytes, the operation code, and the number of clocks

of each instruction.

138

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Description example

Move

Transfer byte data

[Instruction format] MOV dst, src : Shows the basic description format of the instruction.

[Operation] dst ← src : Shows the operation of the instruction with symbols.

[Operands] : Shows the operands that can be used with the instruction. See CHAPTER 5

INSTRUCTION SET LIST for the description of the symbols of the operands.

 Mnemonic Operands Mnemonic Operands

MOV r1, #byte MOV mem, A

saddr, #byte A, [saddrp]

A, saddr PSWL, #byte

sfr, A A, PSWL

A, mem A, PSWH

[Flags] : Shows the operation of flags changed as the instruction is executed.

Operation symbols of the flags are listed in legend.

S Z AC P/V CY

Legend

Symbol Description

(blank) No change

0 Clear to 0

1 Set to 1

× Set or clear according to the result

P P/V flag operates as parity flag

V P/V flag operates as overflow flag

R Previously saved value is restored

[Explanation] : Explains the operation of the instruction in detail.

• MOV moves the contents of the source operand (src) specified in the second operand to the destination

operand (dst) specified in the first operand.

[Description example]

MOV A, #4DH ; Transfer 4DH to A register

Full name

Meaning of instruction

MOV

Mnemonic

139

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

6.1 8-Bit Data Transfer Instructions

The following 8-bit data transfer instructions can be used:

MOV ... 140

XCH ... 141

140

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Exchange

Exchange byte data

[Instruction format] MOV dst, src

[Operation] dst ← src

[Operands]

 Mnemonic Operands (dst, src) Mnemonic Operands (dst, src)

XCH r1, #byte MOV mem, A

saddr, #byte A, [saddrp]

sfr, #byte [saddrp], A

r, r1 A, !addr16

A, r1 !addr16, A

A, saddr PSWL, #byte

saddr, A PSWH, #byte

saddr, saddr PSWL, A

A, sfr PSWH, A

sfr, A A, PSWL

A, mem A, PSWH

byte=00H-FFH

addr16=0000H-FFFFH

saddr=FE20H-FF1FH

saddrp=FE20H-FF1EH (limited to even addresses)

[Flags]

For PSWL, #byte and PSWL, A operands Other than left

S Z AC P/V CY S Z AC P/V CY

× × × × ×

[Explanation]

• MOV moves the contents of the source operand (src) specified in the second operand to the destination

operand (dst) specified in the first operand.

• No interrupts are acknowledged between a write access instruction to an interrupt function control register

(see 3.4.6 Control registers) or PSW and its following instruction.

Caution If STBC or WDM is described as sfr, a dedicated operation code different from the instruction

is generated. (See 6.23 CPU Control Instructions.)

[Description example]

MOV A, #4DH ; Transfer 4DH to A register

MOV

141

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Exchange

Exchange byte data

[Instruction format] XCH dst, src

[Operation] dst ↔ src

[Operands]

 Mnemonic Operands (dst, src)

XCH A, r1

r, r1

A, mem

A, saddr

A, sfr

A, [saddrp]

saddr, saddr

saddr=FE20H-FF1FH

saddrp=FE20H-FF1EH (limited to even addresses)

[Flags]

S Z AC P/V CY

[Explanation]

• XCH exchanges the contents of the first and second operands.

• No interrupts are acknowledged between a write access instruction to an interrupt function control register

(see 3.4.6 Control registers) and its following instruction.

[Description example]

XCH D, B ; Exchange the contents of B and D registers.

XCH

142

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

6.2 16-Bit Data Transfer Instructions

The following 16-bit data transfer instructions can be used:

MOVW ... 143

XCHW ... 144

143

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Move Word

Transfer word data

[Instruction format] MOVW dst, src

[Operation] dst ← src

[Operands]

 Mnemonic Operands (dst, src) Mnemonic Operands (dst, src)

MOVW rp1, #word MOVW AX, sfrp

saddrp, #word sfrp, AX

sfrp, #word rp1, !addr16

rp, rp1 !addr16, rp1

AX, saddrp AX, mem

saddrp, AX mem, AX

saddrp, saddrp

word = 0000H-FFFFH

saddrp = FE20H-FF1EH (limited to even addresses)

mem = 0000H-FDFFH (any address in the range can be specified)

mem = FE00H-FFFFH (limited to even addresses)

addr16 = 0000H-FDFFH (any address in the range can be specified)

addr16 = FE00H-FFFFH (limited to even addresses)

[Flags]

S Z AC P/V CY

[Explanation]

• MOVW moves the contents of the source operand (src) specified in the second operand to the destination

operand (dst) specified in the first operand.

• No interrupts are acknowledged between a write access instruction to an interrupt function control register

(see 3.4.6 Control registers) and its following instruction.

[Description example]

MOVW AX, [HL] ; Transfer contents of memory addressed by HL register contents to AX register

MOVW

144

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Exchange Word

Exchange word data

[Instruction format] XCHW dst, src

[Operation] dst ↔ src

[Operands]

 Mnemonic Operands (dst, src)

XCHW AX, saddrp

AX, sfrp

saddrp, saddrp

rp, rp1

AX, mem

saddrp = FE20H-FF1EH (limited to even addresses)

mem = 0000H-FDFFH (any address in the range can be specified)

mem = FE00H-FFFFH (limited to even addresses)

[Flags]

S Z AC P/V CY

[Explanation]

• XCHW exchanges the contents of the first and second operands.

• No interrupts are acknowledged between a write access instruction to an interrupt function control register

(see 3.4.6 Control registers) and its following instruction.

[Description example]

XCHW AX, mem ; Exchange the contents of AX register and the contents of memory addressed by memory

addressing.

XCHW

145

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

6.3 8-Bit Operation Instructions

The following 8-bit operation instructions can be used:

ADD ... 146

ADDC ... 147

SUB ... 149

SUBC ... 150

AND ... 152

OR ... 153

XOR ... 154

CMP ... 155

146

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Add

Add byte data

[Instruction format] ADD dst, src

[Operation] dst, CY ← dst+src

[Operands]

 Mnemonic Operands (dst, src)

ADD A, #byte

saddr, #byte

sfr, #byte

r, r1

A, saddr

A, sfr

saddr, saddr

A, mem

mem, A

byte = 00H-FFH

saddr = FE20H-FF1FH

[Flags]

S Z AC P/V CY

× × × V ×

[Explanation]

• ADD adds the destination operand (dst) specified in the first operand and the source operand (src) specified

in the second operand and stores the result in the CY flag and the destination operand (dst).

• When bit 7 of dst is set to 1 as a result of the addition, the S flag is set to 1; otherwise, cleared to 0.

• When dst becomes 0 as a result of the addition, the Z flag is set to 1; otherwise, cleared to 0.

• If the addition instruction generates a carry into bit 4 out of bit 3, the AC flag is set to 1; otherwise, cleared

to 0.

• If the addition instruction generates a carry into bit 7 out of bit 6 and does not generate a carry out of bit

7 (when an overflow occurs by operation in the two’s complement format) or if the addition instruction does

not generate a carry into bit 7 out of bit 6 and generates a carry out of bit 7 (when an underflow occurs by

operation in the two’s complement format), the P/V flag is set to 1; otherwise, cleared to 0.

• If the addition instruction generates a carry out of bit 7, the CY flag is set to 1; otherwise, cleared to 0.

• No interrupts are acknowledged between a write access instruction to an interrupt function control register

(see 3.4.6 Control registers) and its following instruction.

[Description example]

ADD A, #56H ; Add A register contents and 56H and store the result in A register.

ADD

147

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Add with Carry

Add byte data with carry

[Instruction format] ADDC dst, src

[Operation] dst, CY ← dst+src+CY

[Operands]

 Mnemonic Operands (dst, src)

ADDC A, #byte

saddr, #byte

sfr, #byte

r, r1

A, saddr

A, sfr

saddr, saddr

A, mem

mem, A

byte = 00H-FFH

saddr = FE20H-FF1FH

[Flags]

S Z AC P/V CY

× × × V ×

[Explanation]

• ADDC adds the destination operand (dst) specified in the first operand, the source operand (src) specified

in the second operand, and the CY flag together and stores the result in and the destination operand (dst)

and the CY flag. The CY flag is added to the least significant bit. The instruction is used mainly to add a

number of bytes.

• When bit 7 of dst is set to 1 as a result of the addition, the S flag is set to 1; otherwise, cleared to 0.

• When dst becomes 0 as a result of the addition, the Z flag is set to 1; otherwise, cleared to 0.

• If the addition instruction generates a carry into bit 4 out of bit 3, the AC flag is set to 1; otherwise, cleared

to 0.

• If the addition instruction generates a carry into bit 7 out of bit 6 and does not generate a carry out of bit

7 (when an overflow occurs by operation in the two’s complement format) or if the addition instruction does

not generate a carry into bit 7 out of bit 6 and generates a carry out of bit 7 (when an underflow occurs by

operation in the two’s complement format), the P/V flag is set to 1; otherwise, cleared to 0.

• If the addition instruction generates a carry out of bit 7, the CY flag is set to 1; otherwise, cleared to 0.

• No interrupts are acknowledged between a write access instruction to an interrupt function control register

(see 3.4.6 Control registers) and its following instruction.

ADDC

148

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

[Description example]

ADDC A, 1234H[B] ; Add contents of A register and address (1234H + (B register)) and CY flag and store the

result in A register.

149

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Subtract

Subtract byte data

[Instruction format] SUB dst, src

[Operation] dst, CY ← dst–src

[Operands]

 Mnemonic Operands (dst, src)

SUB A, #byte

saddr, #byte

sfr, #byte

r, r1

A, saddr

A, sfr

saddr, saddr

A, mem

mem, A

byte = 00H-FFH

saddr = FE20H-FF1FH

[Flags]

S Z AC P/V CY

× × × V ×

[Explanation]

• SUB subtracts the source operand (src) specified in the second operand from the destination operand (dst)

specified in the first operand and stores the result in the destination operand (dst) and the CY flag.

• If the same contents are specified in the source operand (src) and the destination operand (dst), the

destination operand (dst) can be cleared to 0.

• When bit 7 of dst is set to 1 as a result of the subtraction, the S flag is set to 1; otherwise, cleared to 0.

• When dst is 0 as a result of the subtraction, the Z flag is set to 1; otherwise, cleared to 0.

• If the subtraction instruction generates a borrow into bit 3 out of bit 4, the AC flag is set to 1; otherwise, cleared

to 0.

• If the subtraction instruction generates a borrow into bit 7 out of bit 6 and does not generate a borrow in bit

7 (when an underflow occurs by operation in the two’s complement format) or if the subtraction instruction

does not generate a borrow into bit 7 out of bit 6 and generates a borrow in bit 7 (when an overflow occurs

by operation in the two’s complement format), the P/V flag is set to 1; otherwise, cleared to 0.

• If the subtraction instruction generates a borrow in bit 7, the CY flag is set to 1; otherwise, cleared to 0.

• No interrupts are acknowledged between a write access instruction to an interrupt function control register

(see 3.4.6 Control registers) and its following instruction.

[Description example]

SUB D, C ; Subtract C register from D register and store the result in D register.

SUB

150

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Subtract with Carry

Subtract byte data with carry

[Instruction format] SUBC dst, src

[Operation] dst, CY ← dst–src–CY

[Operands]

 Mnemonic Operands (dst, src)

SUBC A, #byte

saddr, #byte

sfr, #byte

r, r1

A, saddr

A, sfr

saddr, saddr

A, mem

mem, A

byte = 00H-FFH

saddr = FE20H-FF1FH

[Flags]

S Z AC P/V CY

× × × V ×

[Explanation]

• SUBC subtracts the source operand (src) specified in the second operand and the CY flag from the

destination operand (dst) specified in the first operand and stores the result in the destination operand (dst)

and the CY flag. The CY flag is subtracted from the least significant bit. The instruction is used mainly to

subtract a number of bytes.

• When bit 7 of dst is set to 1 as a result of the subtraction, the S flag is set to 1; otherwise, cleared to 0.

• When dst is 0 as a result of the subtraction, the Z flag is set to 1; otherwise, cleared to 0.

• If the subtraction instruction generates a borrow into bit 3 out of bit 4, the AC flag is set to 1; otherwise, cleared

to 0.

• If the subtraction instruction generates a borrow into bit 7 out of bit 6 and does not generate a borrow in bit

7 (when an underflow occurs by operation in the two’s complement format) or if the subtraction instruction

does not generate a borrow into bit 7 out of bit 6 and generates a borrow in bit 7 (when an overflow occurs

by operation in the two’s complement format), the P/V flag is set to 1; otherwise, cleared to 0.

• If the subtraction instruction generates a borrow in bit 7, the CY flag is set to 1; otherwise, cleared to 0.

• No interrupts are acknowledged between a write access instruction to an interrupt function control register

(see 3.4.6 Control registers) and its following instruction.

SUBC

151

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

[Description example]

SUBC A, [DE+] ; Subtract contents of address (DE register) and CY flag from A register and store the result

in A register and after the subtraction, increment DE register.

152

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

And

AND byte data

[Instruction format] AND dst, src

[Operation] dst ← dst src

[Operands]

 Mnemonic Operands (dst, src)

AND A, #byte

saddr, #byte

sfr, #byte

r, r1

A, saddr

A, sfr

saddr, saddr

A, mem

mem, A

byte = 00H-FFH

saddr = FE20H-FF1FH

[Flags]

S Z AC P/V CY

× × P

[Explanation]

• AND ANDs the destination operand (dst) specified in the first operand and the source operand (src) specified

in the second operand for each bit and stores the result in the destination operand (dst).

• When bit 7 of dst is set to 1 as a result of the ANDing, the S flag is set to 1; otherwise, cleared to 0.

• When all bits are 0 as a result of the ANDing, the Z flag is set to 1; otherwise, cleared to 0.

• When the number of bits set to 1 in dst is even as a result of the ANDing, the P/V flag is set to 1; otherwise,

cleared to 0.

• No interrupts are acknowledged between a write access instruction to an interrupt function control register

(see 3.4.6 Control registers) and its following instruction.

[Description example]

AND SADG, #11011100B ; AND contents of SADG address that can be accessed by short direct addressing

and bit string 11011100B for each bit and store the result in SADG.

AND

153

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Or

OR byte data

[Instruction format] OR dst, src

[Operation] dst ← dst src

[Operands]

 Mnemonic Operands (dst, src)

OR A, #byte

saddr, #byte

sfr, #byte

r, r1

A, saddr

A, sfr

saddr, saddr

A, mem

mem, A

byte = 00H-FFH

saddr = FE20H-FF1FH

[Flags]

S Z AC P/V CY

× × P

[Explanation]

• OR ORs the destination operand (dst) specified in the first operand and the source operand (src) specified

in the second operand for each bit and stores the result in the destination operand (dst).

• When bit 7 of dst is set to 1 as a result of the ORing, the S flag is set to 1; otherwise, cleared to 0.

• When all bits are 0 as a result of the ORing, the Z flag is set to 1; otherwise, cleared to 0.

• When the number of bits set to 1 in dst is even as a result of the ORing, the P/V flag is set to 1; otherwise,

cleared to 0.

• No interrupts are acknowledged between a write access instruction to an interrupt function control register

(see 3.4.6 Control registers) and its following instruction.

[Description example]

OR A, FE98H ; OR A register contents and FE98H for each bit and store the result in A register.

OR

154

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Exclusive Or

Exclusive-OR byte data

[Instruction format] XOR dst, src

[Operation] dst ← dst src

[Operands]

 Mnemonic Operands (dst, src)

XOR A, #byte

saddr, #byte

sfr, #byte

r, r1

A, saddr

A, sfr

saddr, saddr

A, mem

mem, A

byte = 00H-FFH

saddr = FE20H-FF1FH

[Flags]

S Z AC P/V CY

× × P

[Explanation]

• XOR exclusive-ORs the destination operand (dst) specified in the first operand and the source operand (src)

specified in the second operand for each bit and stores the result in the destination operand (dst).

• If #0FFH is specified in the source operand (src) of the instruction, all bits of the destination operand (dst)

can be negated.

• When bit 7 of dst is set to 1 as a result of the exclusive-ORing, the S flag is set to 1; otherwise, cleared to

0.

• When all bits are 0 as a result of the exclusive-ORing, the Z flag is set to 1; otherwise, cleared to 0.

• When the number of bits set to 1 in dst is even as a result of the exclusive-ORing, the P/V flag is set to 1;

otherwise, cleared to 0.

• No interrupts are acknowledged between a write access instruction to an interrupt function control register

(see 3.4.6 Control registers) and its following instruction.

[Description example]

XOR A, #0FFH ; Exclusive-OR A register contents and 0FFH for each bit and store the result in A register.

XOR

155

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Compare

Compare byte data

[Instruction format] CMP dst, src

[Operation] dst–src

[Operands]

 Mnemonic Operands (dst, src)

CMP A, #byte

saddr, #byte

sfr, #byte

r, r1

A, saddr

A, sfr

saddr, saddr

A, mem

mem, A

byte = 00H-FFH

saddr = FE20H-FF1FH

[Flags]

S Z AC P/V CY

× × × V ×

[Explanation]

• CMP subtracts the source operand (src) specified in the second operand from the destination operand (dst)

specified in the first operand and stores the result nowhere and changes the S, Z, AC, P/V, CY flags only.

• When bit 7 is set to 1 as a result of the subtraction, the S flag is set to 1; otherwise, cleared to 0.

• When the subtraction result is 0, the Z flag is set to 1; otherwise, cleared to 0.

• If the subtraction instruction generates a borrow into bit 3 out of bit 4, the AC flag is set to 1; otherwise, cleared

to 0.

• If the instruction generates a borrow in bit 7 and does not generate a borrow in bit 6 (when an underflow

occurs by operation in the two’s complement format) or if the instruction does not generate a borrow in bit

7 and generates a borrow in bit 6 (when an overflow occurs by operation in the two’s complement format),

the P/V flag is set to 1; otherwise, cleared to 0.

• If the subtraction instruction generates a borrow in bit 7, the CY flag is set to 1; otherwise, cleared to 0.

[Description example]

CMP 0FE38H, 0FED0H ; Subtract contents of address FE38H from contents of address FED0H and change

flags only (compare contents of address FE38H with contents of address FED0H)

CMP

156

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

6.4 16-Bit Operation Instructions

The following 16-bit operation instructions can be used:

ADDW ... 157

SUBW ... 158

CMPW ... 159

157

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Add Word

Add word data

[Instruction format] ADDW dst, src

[Operation] dst, CY → dst+src

[Operands]

 Mnemonic Operands (dst, src)

ADDW AX, #word

saddrp, #word

sfrp, #word

rp, rp1

AX, saddrp

AX, sfrp

saddrp, saddrp

word = 0000H-FFFFH

saddrp = FE20H-FF1EH (limited to even addresses)

[Flags]

S Z AC P/V CY

× × × V ×

[Explanation]

• ADDW adds the destination operand (dst) specified in the first operand and the source operand (src) specified

in the second operand and stores the result in the CY flag and the destination operand (dst).

• When bit 15 of dst is set to 1 as a result of the addition, the S flag is set to 1; otherwise, cleared to 0.

• When dst becomes 0 as a result of the addition, the Z flag is set to 1; otherwise, cleared to 0.

• The AC flag becomes undefined as a result of the addition.

• If the addition instruction generates a carry into bit 15 out of bit 14 and does not generate a carry out of bit

15 (when an overflow occurs by operation in the two’s complement format) or if the addition instruction does

not generate a carry into bit 15 out of bit 14 and generates a carry out of bit 15 (when an underflow occurs

by operation in the two’s complement format), the P/V flag is set to 1; otherwise, cleared to 0.

• If the addition instruction generates a carry out of bit 15, the CY flag is set to 1; otherwise, cleared to 0.

• No interrupts are acknowledged between a write access instruction to an interrupt function control register

(see 3.4.6 Control registers) and its following instruction.

[Description example]

ADDW AX, #0ABCDH ; Add AX register contents and ABCDH and store the result in AX register.

ADDW

158

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Subtract Word

Subtract word data

[Instruction format] SUBW dst, src

[Operation] dst, CY ← dst–src

[Operands]

 Mnemonic Operands (dst, src)

SUBW AX, #word

saddrp, #word

sfrp, #word

rp, rp1

AX, saddrp

AX, sfrp

saddrp, saddrp

word = 0000H-FFFFH

saddrp = FE20H-FF1EH (limited to even addresses)

[Flags]

S Z AC P/V CY

× × × V ×

[Explanation]

• SUBW subtracts the source operand (src) specified in the second operand from the destination operand (dst)

specified in the first operand and stores the result in the destination operand (dst) and the CY flag.

• If the same contents are specified in the source operand (src) and the destination operand (dst), the

destination operand (dst) can be cleared to 0.

• When bit 15 of dst is set to 1 as a result of the subtraction, the S flag is set to 1; otherwise, cleared to 0.

• When dst is 0 as a result of the subtraction, the Z flag is set to 1; otherwise, cleared to 0.

• The AC flag becomes undefined as a result of the subtraction.

• If the subtraction instruction generates a borrow into bit 15 out of bit 14 and does not generate a borrow in

bit 15 (when an underflow occurs by operation in the two’s complement format) or if the subtraction instruction

does not generate a borrow into bit 15 out of bit 14 and generates a borrow in bit 15 (when an overflow occurs

by operation in the two’s complement format), the P/V flag is set to 1; otherwise, cleared to 0.

• If the subtraction instruction generates a borrow in bit 15, the CY flag is set to 1; otherwise, cleared to 0.

• No interrupts are acknowledged between a write access instruction to an interrupt function control register

(see 3.4.6 Control registers) and its following instruction.

[Description example]

SUBW AX, BC ; Subtract BC register contents from AX register contents and store the result in AX register.

SUBW

159

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Compare Word

Compare word data

[Instruction format] CMPW dst, src

[Operation] dst–src

[Operands]

 Mnemonic Operands (dst, src)

CMPW AX, #word

saddrp, #word

sfrp, #word

rp, rp1

AX, saddrp

AX, sfrp

saddrp, saddrp

word = 0000H-FFFFH

saddrp = FE20H-FF1EH (limited to even addresses)

[Flags]

S Z AC P/V CY

× × × V ×

[Explanation]

• CMPW subtracts the source operand (src) specified in the second operand from the destination operand

(dst) specified in the first operand and stores the result nowhere and changes the Z, AC, CY flags only.

• When bit 15 is set to 1 as a result of the subtraction, the S flag is set to 1; otherwise, cleared to 0.

• When the subtraction result is 0, the Z flag is set to 1; otherwise, cleared to 0.

• The AC flag becomes undefined as a result of the subtraction.

• If the subtraction instruction generates a borrow into bit 15 out of bit 14 and does not generate a borrow in

bit 15 (when an underflow occurs by operation in the two’s complement format) or if the subtraction instruction

does not generate a borrow into bit 15 out of bit 14 and generates a borrow in bit 15 (when an overflow occurs

by operation in the two’s complement format), the P/V flag is set to 1; otherwise, cleared to 0.

• If the subtraction instruction generates a borrow in bit 15, the CY flag is set to 1; otherwise, cleared to 0.

[Description example]

CMPW AX, SADG ; Subtract word data at SADG address that can be accessed by short direct addressing from

AX register contents and change flags only (compare AX register contents with word data

at SADG address)

CMPW

160

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

6.5 Multiplication and Division Instructions

The following multiplication and division instructions can be used:

MULU ... 161

DIVUW ... 162

MULUW ... 163

DIVUX ... 164

161

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Multiply Unsigned byte

Multiply unsigned byte data

[Instruction format] MULU src

[Operation] AX ← A × src

[Operands]

 Mnemonic Operands (src)

MULU r1

[Flags]

S Z AC P/V CY

[Explanation]

• MULU multiplies the A register contents by the data in the source operand (src) as unsigned data and stores

the result in the AX register.

[Description example]

MULU B ; Multiply A register contents by B register contents and store the result in AX register.

MULU

162

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Divide Unsigned Word

Divide unsigned word data

[Instruction format] DIVUW dst

[Operation] AX (quotient), dst (remainder) ← AX ÷ dst

[Operands]

 Mnemonic Operands (src)

DIVUW r1

[Flags]

S Z AC P/V CY

[Explanation]

• DIVUW divides the AX register contents by the destination operand (dst) contents and stores the quotient

in the AX register and the remainder in the destination operand (dst).

The division is executed by handling the AX register and destination operand (dst) contents as unsigned

data.

• When the AX register contents are divided by 0 (dst=0),

• AX (quotient) = FFFFH

• dst (remainder) = original X register value

[Description example]

DIVUW C ; Divide AX register contents by C register contents and store the quotient in AX register and the

remainder in C register.

DIVUW

163

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Multiply Unsigned Word

Multiply unsigned word data

[Instruction format] MULUW src

[Operation] AX (high order), src (low order) ← AX × src

[Operands]

 Mnemonic Operands (src)

MULUW rp1

[Flags]

S Z AC P/V CY

[Explanation]

• MULUW multiplies the AX register contents by the data in the source operand (src) as unsigned data and

stores the high-order 16 bits of the result in the AX register and the low-order 16 bits in the source operand.

[Description example]

MULUW HL ; Multiply AX register contents by HL register contents and store the result in AX and HL registers.

MULUW

164

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Divide Unsigned Word Expansion Word

Divide unsigned double word data

[Instruction format] DIVUX dst

[Operation] AXDE (quotient), dst (remainder) ← AXDE ÷ dst

[Operands]

 Mnemonic Operands (dst)

DIVUX rp1

[Flags]

S Z AC P/V CY

[Explanation]

• DIVUX divides 32-bit data consisting of the AX register contents as the high-order 16 bits and the DE register

contents as the low-order 16 bits by the destination operand (dst) contents and stores the high-order 16 bits

of the quotient in the AX register and the low-order 16 bits in the DE register and the remainder in the

destination operand (dst).

The division is executed by handling the 32-bit data contained in the AX and DE registers and the destination

operand (dst) contents as unsigned data.

• When the 32-bit data is divided by 0 (dst=0),

• AXDE (quotient) = FFFFFFFFH

• dst (remainder) = original DE register value

[Description example]

DIVUX BC ; Divide AXDE register contents by BC register contents and store the high-order 16 bits of the

quotient in AX register and the low-order 16 bits in DE register and the remainder in BC register.

DIVUX

165

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

6.6 Signed Multiplication Instruction

The following signed multiplication instruction can be used:

MULW ... 166

166

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Multiply Word

Multiply signed word data

[Instruction format] MULW src

[Operation] AX (high order), src (low order) ← AX × src

[Operands]

 Mnemonic Operands (src)

MULW rp1

[Flags]

S Z AC P/V CY

[Explanation]

• MULW multiplies the AX register contents by the data in the source operand (src) as signed data and stores

the high-order 16 bits of the result in the AX register and the low-order 16 bits in the source operand.

[Description example]

MULW HL ; Multiply AX register contents by HL register contents and store the result in AX and HL registers.

MULW

167

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

6.7 Multiplication and Accumulation Instruction

The following multiplication and accumulation instruction can be used:

MACW ... 168

168

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Multiply and Accumulate Word

Multiply and accumulate word data

[Instruction format] MACW byte

[Operation] AXDE ← (B) × (C) + AXDE, B ← B+2, C ← C+2, byte ← byte–1

End if (byte = 0 or P/V = 1)

[Operands]

 Mnemonic Operands

MACW byte

[Flags]

S Z AC P/V CY

× × × V ×

[Explanation]

• MACW multiplies the contents of the 2-byte area addressed by the B register contents by the contents of

the 2-byte area addressed by the C register contents as signed data and adds the result and the AXDE register

contents in binary notation.

• After storing the addition result, MACW adds 2 to the B register and the C register.

• MACW repeats the operations as many times as the 8-bit immediate data described in the operand.

• If an overflow or underflow occurs as a result of the binary addition, the AXDE register value becomes

undefined. The B and C registers hold the values just before the overflow occurs.

• The area addressed in the MACW instruction is limited to addresses FE00H-FEFFH. The low-order one byte

of the address is specified in the B register and C register.

Addresses FE80H-FEFFH are also used as general-purpose register area.

• Interrupts or macro service is not accepted during execution of the MACW instruction.

• The MACW instruction does not automatically clear the AXDE register pair value. Clear the value by a

program if necessary.

• As a result of the operations, the S, Z, AC, and CY flags become undefined.

• When an overflow or underflow occurs, the P/V flag is set to 1; otherwise, cleared to 0.

[Description example]

MACW 5 ; Executes multiplication and accumulation operation five times.

MACW

169

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

MACW

AXDE ← AXDE+
(data addressed by B register contents) ×
(data addressed by C register contents)

Does overflow or
underflow occur?

B ← B + 2
C ← C + 2

byte ← byte – 1

No

byte = 0?

Yes

END

Yes

No

170

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

6.8 Multiplication and Accumulation Instruction With Saturation Function

The following multiplication and accumulation instruction with saturation function can be used:

MACSW ... 171

Caution The µPD78352A Subseries does not contain the multiplication and accumulation instruction

with saturation function.

171

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Multiply and Accumulate with Saturation Word

Multiply and accumulate with saturation function

[Instruction format] MACSW byte

[Operation] AXDE ← (B) × (C) + AXDE, B ← B+2, C ← C+2, byte ← byte–1

if byte=0 then End, if P/V=1, then if overflow AXDE ← 7FFFFFFFH,

end, if underflow AXDE ← 80000000H, end

[Operands]

 Mnemonic Operands ($addr16)

MACSW byte

[Flags]

S Z AC P/V CY

× × × V ×

[Explanation]

• MACSW multiplies the contents of the 2-byte area addressed by the B register contents by the contents of

the 2-byte area addressed by the C register contents as signed data and adds the result and the AXDE register

contents in binary notation.

• After storing the addition result, MACSW adds 2 to the B register and the C register.

• MACSW repeats the operations as many times as the 8-bit immediate data described in the operand.

• If an overflow occurs as a result of the binary addition, the AXDE register is set to 7FFFFFFFH. If an underflow

occurs, the P/V flag is set to 1 and the AXDE register contains 80000000H. The B and C registers hold the

values just before the overflow or underflow occurs.

• The area addressed in the MACSW instruction is limited to addresses FE00H-FEFFH. The low-order one

byte of the address is specified in the B register and C register.

Addresses FE80H-FEFFH are also used as general-purpose register area.

• Interrupts or macro service is not accepted during execution of the MACSW instruction.

• The MACSW instruction does not automatically clear the AXDE register pair value. Clear the value by a

program if necessary.

• As a result of the operations, the S, Z, AC, and CY flags become undefined.

• When an overflow or underflow occurs, the P/V flag is set to 1; otherwise, cleared to 0.

[Description example]

MACSW 6 ; Executes multiplication and accumulation operation with saturation function six times.

MACSW

172

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

MACSW

AXDE ← AXDE+
(data addressed by B register contents) ×
(data addressed by C register contents)

Does overflow or
underflow occur?

B ← B + 2
C ← C + 2

byte ← byte – 1

No

byte = 0?

Yes

END

Yes

No

Overflow?

No

Yes

AXDE ← 7FFFFFFFH AXDE ← 80000000H

173

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

6.9 Correlation Operation Instruction

The following correlation operation instruction can be used:

SACW ... 174

Caution The µPD78352A Subseries does not contain the correlation operation instruction.

174

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Subtract, Absolute and Accumulate Word

Correlation operation

[Instruction format] SACW [DE+], [HL+]

[Operation] AX ← | (DE)–(HL) | +AX, DE ← DE+2, HL ← HL+2, C ← C–1,

End if (C=0 or CY=1)

[Operands]

 Mnemonic Operands ($addr16)

SACW [DE+], [HL+]

[Flags]

S Z AC P/V CY

× × × V ×

[Explanation]

• SACW subtracts 16-bit data addressed by the HL register contents from 16-bit data addressed by the DE

register contents and adds the absolute value of the result and the AX register contents and stores the result

in the AX register.

• Whenever the operation is performed, two is added to the DE register and the HL register and one is

subtracted from the C register.

• The steps are repeated until the C register is set to 0 or until a carry is generated out of bit 16 as a result

of the addition.

• If a carry is generated out of bit 16 as a result of the addition and the repetitive operation is stopped, the

DE register and HL register hold the values just before the carry is generated.

• If an interrupt or macro service request that can be acknowledged occurs during execution of the SACW

instruction, processing of the interrupt or macro service is performed before a sequence of the operations.

When the interrupt is acknowledged, the value of the program counter (PC) saved in a given stack is the

top address of the SACW instruction. Therefore, when control is returned from the interrupt, execution of

the interrupted SACW instruction can be continued.

• If a carry is generated out of bit 16 as a result of the last addition, the CY flag is set to 1; otherwise, cleared

to 0.

• The S, Z, AC, and P/V flag contents become undefined.

• The SACW instruction does not automatically clear the AX register contents. Clear the contents by a program

if necessary.

[Description example]

SACW [DE+], [HL+] ; Execute SACW instruction.

SACW

175

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

SACW

AX ← AX +  (DE) – (HL) 

C = 0

Yes

END
Does interrupt or

macro service request that can be
acknowledged occur?

Yes

No

DE ← DE + 2
HL ← HL + 2

C ← C – 1

Adjust PC value so that the
instruction can be resumed

To interrupt or macro
service processing

No

176

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

6.10 Table Shift Instruction

The following table shift instruction can be used:

MOVTBLW ... 177

177

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Move Table Word

Transfer table word

[Instruction format] MOVTBLW !addr16, byte

[Operation] (addr16+2) ← (addr16), addr16 ← addr16–2, byte ← byte–1, End if byte=0

[Operands]

 Mnemonic Operands

MOVTBLW !addr16, byte

[Flags]

S Z AC P/V CY

[Explanation]

• MOVTBLW transfers the contents of the memory addressed by the 16-bit immediate data specified in the

first operand to the location indicated by adding 2 to the memory address, then subtracts 2 from addr16.

The operation is repeated as many times as the 8-bit immediate data described in the second operand.

• The MOVTBLW instruction is used to shift a data table used with the MACW or MACSW instruction.

• Describe the address of the least significant data of the data to be transferred in the first operand !addr16

with a label or numeric value directly.

• The area addressed in the MOVTBLW instruction is limited to addresses FE00H-FEFFH. The low-order one

byte of the address is specified in the first operand !addr16. Addresses FE80H-FEFFH are also used as

general-purpose register area.

• Interrupts or macro service is not accepted during execution of the MOVTBLW instruction.

[Description example]

MOVTBLW !0FE60H, 5 ; Transfer data at FE54H-FE60H to FE56H-FE62H

MOVTBLW

178

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

6.11 Increment and Decrement Instructions

The following increment and decrement instructions can be used:

INC ... 179

DEC ... 180

INCW ... 181

DECW ... 182

179

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Increment

Increment byte data

[Instruction format] INC dst

[Operation] dst ← dst+1

[Operands]

 Mnemonic Operands (dst)

INC r1

saddr

saddr=FE20H-FF1FH

[Flags]

S Z AC P/V CY

× × × V

[Explanation]

• INC increments the destination operand (dst) contents by one.

• If the increment result is 0, the Z flag is set to 1;otherwise, cleared to 0.

• If the INC instruction generates a carry into bit 4 out of bit 3, the AC flag is set to 1; otherwise, cleared to

0.

• Since the INC instruction is frequently used to increment the counter of repetitive processing and the indexed

addressing offset register, the CY flag contents are not changed (because the CY flag contents are held at

operation on a number of bytes).

• When bit 7 of dst is set to 1 as a result of the increment, the S flag is set to 1; otherwise, cleared to 0.

• If the INC instruction generates a carry into bit 7 out of bit 6 and does not generate a carry out of bit 7 (when

an overflow occurs by operation in the two’s complement format) or if the INC instruction does not generate

a carry into bit 7 out of bit 6 and generates a carry out of bit 7 (when an underflow occurs by operation in

the two’s complement format), the P/V flag is set to 1; otherwise, cleared to 0.

[Description example]

INC B ; Increment B register

INC

180

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Decrement

Decrement byte data

[Instruction format] DEC dst

[Operation] dst ← dst–1

[Operands]

 Mnemonic Operands (dst)

DEC r1

saddr

saddr=FE20H-FF1FH

[Flags]

S Z AC P/V CY

× × × V

[Explanation]

• DEC decrements the destination operand (dst) contents by one.

• If the decrement result is 0, the Z flag is set to 1; otherwise, cleared to 0.

• If the DEC instruction generates a carry into bit 3 out of bit 4, the AC flag is set to 1; otherwise, cleared to

0.

• Since the DEC instruction is frequently used to decrement the counter of repetitive processing and the

indexed addressing offset register, the CY flag contents are not changed (because the CY flag contents are

held at operation on a number of bytes).

• When bit 7 of dst is set to 1 as a result of the decrement, the S flag is set to 1; otherwise, cleared to 0.

• If the DEC instruction generates a borrow into bit 7 out of bit 6 and does not generate a borrow in bit 7 (when

an underflow occurs by operation in the two’s complement format), the P/V flag is set to 1; otherwise, cleared

to 0.

• To hold the S, Z, AC, and P/V flags unchanged when dst is the B register, C register, or saddr, a DBNZ

instruction can be used.

[Description example]

DEC SAD1 ; Decrement the contents of SAD1 address that can be accessed by short direct addressing

DEC

181

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Increment Word

Increment word data

[Instruction format] INCW dst

[Operation] dst ← dst+1

[Operands]

 Mnemonic Operands (dst)

INCW rp2

saddrp

saddrp=FE20H-FF1EH (limited to even addresses)

[Flags]

S Z AC P/V CY

[Explanation]

• INCW increments the destination operand (dst) contents by one.

• Since the INCW instruction is frequently used to increment the registers used in addressing using registers,

the S, Z, AC, P/V, and CY flags are not changed.

[Description example]

INCW HL ; Increment HL register

INCW

182

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Decrement Word

Decrement word data

[Instruction format] DECW dst

[Operation] dst ← dst–1

[Operands]

 Mnemonic Operands (dst)

DECW rp2

saddrp

saddrp=FE20H-FF1EH (limited to even addresses)

[Flags]

S Z AC P/V CY

[Explanation]

• DECW decrements the destination operand (dst) contents by one.

• Since the DECW instruction is frequently used to decrement the registers used in addressing using registers,

the S, Z, AC, P/V, and CY flags are not changed.

[Description example]

DECW DE ; Decrement DE register

DECW

183

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

6.12 Shift and Rotate Instructions

The following shift and rotate instructions can be used:

ROR ... 184

ROL ... 185

RORC ... 186

ROLC ... 187

SHR ... 188

SHL ... 189

SHRW ... 190

SHLW ... 191

ROR4 ... 192

ROL4 ... 193

184

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Rotate Right

Rotate byte data right

[Instruction format] ROR dst, cnt

[Operation] (CY, dst 7 ← dst 0, dst m–1 ← dst m) × cnt cnt=0–7

[Operands]

 Mnemonic Operands (dst, cnt)

ROR r1, n

[Flags]

S Z AC P/V CY

P ×

[Explanation]

• ROR rotates the contents of the destination operand (dst) specified in the first operand right as many times

as cnt specified in the second operand.

• The LSB (bit 0) contents are rotated to the MSB (bit 7) and also transferred to the CY flag at the same time.

• If 0 is specified in the second operand (cnt), no operation is performed. (The S, Z, AC, P/V, and CY flags

remain unchanged.)

• If the number of bits set to 1 in dst is even as a result of the rotating right, the P/V flag is set to 1; otherwise,

cleared to 0.

• The S, Z, and AC flags remain unchanged regardless of the rotating result.

[Description example]

ROR R5, 4 ; Rotate R5 register contents right four bits

ROR

CY 7 0

185

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Rotate Left

Rotate byte data left

[Instruction format] ROL dst, cnt

[Operation] (CY, dst 0 ← dst 7, dst m+1 ← dst m) × cnt cnt=0–7

[Operands]

 Mnemonic Operands (dst, cnt)

ROL r1, n

[Flags]

S Z AC P/V CY

P ×

[Explanation]

• ROL rotates the contents of the destination operand (dst) specified in the first operand left as many times

as cnt specified in the second operand.

• The MSB (bit 7) contents are rotated to the LSB (bit 0) and also transferred to the CY flag at the same time.

• If 0 is specified in the second operand (cnt), no operation is performed. (The S, Z, AC, P/V, and CY flags

remain unchanged.)

• If the number of bits set to 1 in dst is even as a result of the rotating left, the P/V flag is set to 1; otherwise,

cleared to 0.

• The S, Z, and AC flags remain unchanged regardless of the rotating result.

[Description example]

ROL R7, 2 ; Rotate R7 register contents left two bits

ROL

CY 7 0

186

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Rotate Right with Carry

Rotate byte data right with carry

[Instruction format] RORC dst, cnt

[Operation] (CY ← dst 0, dst 7 ← CY, dst m–1 ← dst m) × cnt cnt=0–7

[Operands]

 Mnemonic Operands (dst, cnt)

RORC r1, n

[Flags]

S Z AC P/V CY

P ×

[Explanation]

• RORC rotates the contents of the destination operand (dst) specified in the first operand right with the CY

flag as many times as cnt specified in the second operand.

• If 0 is specified in the second operand (cnt), no operation is performed. (The S, Z, AC, P/V, and CY flags

remain unchanged.)

• If the number of bits set to 1 in dst is even as a result of the rotating right, the P/V flag is set to 1; otherwise,

cleared to 0.

• The S, Z, and AC flags remain unchanged regardless of the rotating result.

[Description example]

RORC B, 1 ; Rotate B register contents with CY flag right one bit

RORC

CY 7 0

187

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Rotate Left with Carry

Rotate byte data left with carry

[Instruction format] ROLC dst, cnt

[Operation] (CY ← dst 7, dst 0 ← CY, dst m+1 ← dst m) × cnt cnt=0–7

[Operands]

 Mnemonic Operands (dst, cnt)

ROLC r1, n

[Flags]

S Z AC P/V CY

P ×

[Explanation]

• ROLC rotates the contents of the destination operand (dst) specified in the first operand left with the CY flag

as many times as cnt specified in the second operand.

• If 0 is specified in the second operand (cnt), no operation is performed. (The S, Z, AC, P/V, and CY flags

remain unchanged.)

• To rotate left one bit only, if ADDC r, r1 is used, the execution time can be shortened.

• If the number of bits set to 1 in dst is even as a result of the rotating left, the P/V flag is set to 1; otherwise,

cleared to 0.

• The S, Z, and AC flags remain unchanged regardless of the rotating result.

[Description example]

 ROLC R7, 3 ; Rotate R7 register contents with CY flag left three bits

ROLC

CY 7 0

188

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Shift Right (Logical)

Shift byte data right logically

[Instruction format] SHR dst, cnt

[Operation] (CY ← dst 0, dst 7 ← 0, dst m–1 ← dst m) × cnt cnt=0–7

[Operands]

 Mnemonic Operands (dst, cnt)

SHR r1, n

[Flags]

S Z AC P/V CY

× × 0 P ×

[Explanation]

• SHR shifts the contents of the destination operand (dst) specified in the first operand right as many times

as cnt specified in the second operand.

• Whenever the contents are shifted one bit, 0 is shifted in the MSB (bit 7).

• When 1 or more is specified as cnt, the S flag is cleared to 0.

• If the shifting result is 0, the Z flag is set to 1; otherwise, cleared to 0.

• The AC flag is always set to 0 regardless of the shifting result.

• If the number of bits set to 1 in dst is even as a result of the shifting, the P/V flag is set to 1; otherwise, cleared

to 0.

• The last data shifted out from the LSB (bit 0) as a result of the shifting is set in the CY flag.

• If 0 is specified as cnt, no operation is performed. (The S, Z, AC, P/V, and CY flags remain unchanged.)

• Execution of this instruction generates the same result as dividing the destination operand (dst) as unsigned

data by 2cnt.

[Description example]

 SHR X, 2 ; Shift X register contents right two bits

SHR

CY 7 0

0

189

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Shift Left (Logical)

Shift byte data left logically

[Instruction format] SHL dst, cnt

[Operation] (CY ← dst 7, dst 0 ← 0, dst m+1 ← dst m) × cnt cnt=0–7

[Operands]

 Mnemonic Operands (dst, cnt)

SHL r1, n

[Flags]

S Z AC P/V CY

× × 0 P ×

[Explanation]

• SHL shifts the contents of the destination operand (dst) specified in the first operand left as many times as

cnt specified in the second operand.

• Whenever the contents are shifted one bit, 0 is shifted in the LSB (bit 0).

• When bit 7 of dst is 1 as a result of the shifting, the S flag is set to 1; otherwise, cleared to 0.

• If the shifting result is 0, the Z flag is set to 1; otherwise, cleared to 0.

• The AC flag is always set to 0 regardless of the shifting result.

• If the number of bits set to 1 in dst is even as a result of the shifting, the P/V flag is set to 1; otherwise, cleared

to 0.

• The last data shifted out from the LSB (bit 0) as a result of the shifting is set in the CY flag.

• If 0 is specified as cnt, no operation is performed. (The S, Z, AC, P/V, and CY flags remain unchanged.)

• To shift left one bit only, if the ADD r, r1 instruction is used, the execution time can be shortened.

• Execution of the instruction generates the same result as multiplying the destination operand (dst) by 2cnt

(when the multiplication result is eight bits or less).

[Description example]

 SHL B, 1 ; Shift B register contents left one bit

SHL

CY 7 0

0

190

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Shift Right (Logical) Word

Shift word data right logically

[Instruction format] SHRW dst, cnt

[Operation] (CY ← dst 0, dst 15 ← 0, dst m–1 ← dst m) × cnt cnt=0–7

[Operands]

 Mnemonic Operands (dst, cnt)

SHRW rp1, n

[Flags]

S Z AC P/V CY

× × 0 P ×

[Explanation]

• SHRW shifts the contents of the destination operand (dst) specified in the first operand right as many times

as cnt specified in the second operand.

• Whenever the contents are shifted one bit, 0 is shifted in the MSB (bit 7).

• When 1 or more is specified as cnt, the S flag is cleared to 0.

• If the shifting result is 0, the Z flag is set to 1; otherwise, cleared to 0.

• The AC flag is always set to 0 regardless of the shifting result.

• If the number of bits set to 1 of the low-order eight bits in dst is even as a result of the shifting, the P/V flag

is set to 1; otherwise, cleared to 0.

• The last data shifted out from the LSB (bit 0) as a result of the shifting is set in the CY flag.

• If 0 is specified as cnt, no operation is performed. (The S, Z, AC, P/V, and CY flags remain unchanged.)

• Execution of this instruction generates the same result as dividing the destination operand (dst) as unsigned

data by 2cnt.

[Description example]

 SHRW AX, 3 ; Shift AX register contents right three bits (divide AX register contents by 8)

SHRW

CY 15 0

0

191

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Shift Left (Logical) Word

Shift word data left logically

[Instruction format] SHLW dst, cnt

[Operation] (CY ← dst 15, dst 0 ← 0, dst m+1 ← dst m) × cnt cnt=0–7

[Operands]

 Mnemonic Operands (dst, cnt)

SHLW rp1, n

[Flags]

S Z AC P/V CY

× × 0 P ×

[Explanation]

• SHLW shifts the contents of the destination operand (dst) specified in the first operand left as many times

as cnt specified in the second operand.

• Whenever the contents are shifted one bit, 0 is shifted in the LSB (bit 0).

• When bit 15 of dst is 1 as a result of the shifting, the S flag is set to 1; otherwise, cleared to 0.

• If the shifting result is 0, the Z flag is set to 1; otherwise, cleared to 0.

• The AC flag is always set to 0 regardless of the shifting result.

• If the number of bits set to 1 of the low-order eight bits in dst is even as a result of the shifting, the P/V flag

is set to 1; otherwise, cleared to 0.

• The last data shifted out from the LSB (bit 0) as a result of the shifting is set in the CY flag.

• If 0 is specified as cnt, no operation is performed. (The S, Z, AC, P/V, and CY flags remain unchanged.)

[Description example]

 SHLW DE, 1 ; Shift DE register contents left one bit

SHLW

CY 15 0

0

192

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Rotate Right Digit

Rotate right digits

[Instruction format] ROR4 dst

[Operation] A 3–0 ← (dst) 3–0, (dst) 7–4 ← A3–0, (dst) 3–0 ← (dst) 7–4

[Operands]

 Mnemonic Operands (dst)

ROR4 [rp1]

[Flags]

S Z AC P/V CY

[Explanation]

• ROR4 rotates the low-order four bits of the A register and the 2-digit data (4-bit data) in the destination

operand (dst) right.

The high-order four bits of the A register do not change.

[Description example]

ROR4 [HL] ; Rotate the low-order four bits of A register and the contents of memory addressed by HL register

contents right.

 A (HL)

7 4 3 0 7 4 3 0

Before execution 1010 0011 1100 0101

After execution 1010 0101 0011 1100

ROR4

7 4

A

3 0 7 4

dst

3 0

193

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Rotate Left Digit

Rotate left digits

[Instruction format] ROL4 dst

[Operation] A 3–0 ← (dst) 7–4, (dst) 3–0 ← A3–0, (dst) 7–4 ← (dst) 3–0

[Operands]

 Mnemonic Operands (dst)

ROL4 [rp1]

[Flags]

S Z AC P/V CY

[Explanation]

• ROL4 rotates the low-order four bits of the A register and the 2-digit data (4-bit data) in the destination operand

(dst) left.

The high-order four bits of the A register do not change.

[Description example]

ROL4 [DE] ; Rotate the low-order four bits of A register and the contents of memory addressed by DE register

contents left.

 A (DE)

7 4 3 0 7 4 3 0

Before execution 0001 0010 0100 1000

After execution 0001 0100 1000 0010

ROL4

7 4

A

3 0 7 4

dst

3 0

194

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

6.13 BCD Adjustment Instruction

The following BCD adjustment instructions can be used:

ADJBA ... 195

ADJBS ... 196

195

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Decimal Adjust Register for Addition

Make decimal adjustment of addition result

[Instruction format] ADJBA

[Operation] Decimal Adjust Accumulator for Addition

[Operands] None

[Flags]

S Z AC P/V CY

× × × P ×

[Explanation]

• ADJBA makes decimal adjustment of the A register, CY flag, and AC flag from the contents of the A register,

CY flag, and AC flag. The ADJBA instruction is effective only when the addition result is stored in the A register

after data in the BCD (binary decimal coded) format is added. The adjustment method is as listed below:

 Condition Operation

A3–0≤9 A7–4≤9 and CY=0 A←A, CY←0, AC←0

AC=0 A7–4≥10 or CY=1 A←A+01100000B, CY←1, AC←0

A3–0≥10 A7–4<9 and CY=0 A←A+00000110B, CY←0, AC←1

AC=0 A7–4≥9 or CY=1 A←A+01100110B, CY←1, AC←1

A7–4≤9 and CY=0 A←A+00000110B, CY←0, AC←1

A7–4≥10 or CY=1 A←A+01100110B, CY←1, AC←1

• If the A register contains 0 as a result of the adjustment, the Z flag is set to 1; otherwise, cleared to 0.

• When the number of bits set to 1 in the A register is even as a result of the adjustment, the P/V flag is set

to 1; otherwise, cleared to 0.

• When bit 7 of the A register is 1 as a result of the adjustment, the S flag is set to 1; otherwise, cleared to

0.

[Description example]

ADJBA ; Make decimal adjustment of A register contents.

ADJBA

AC=1

196

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Decimal Adjust Register for Subtraction

Make decimal adjustment of subtraction result

[Instruction format] ADJBS

[Operation] Decimal Adjust Accumulator for Subtraction

[Operands] None

[Flags]

S Z AC P/V CY

× × × P ×

[Explanation]

• ADJBS makes decimal adjustment of the A register, CY flag, and AC flag from the contents of the A register,

CY flag, and AC flag. The ADJBS instruction is effective only when the subtraction result is stored in the

A register after data in the BCD (binary decimal coded) format is subtracted. The adjustment method is as

listed below:

 Condition Operation

CY=0 A←A, CY←0, AC←0

CY=1 A←A–01100000B, CY←1, AC←0

CY=0 A←A–00000110B, CY←0, AC←1

CY=1 A←A–01100110B, CY←1, AC←1

• If the A register contains 0 as a result of the adjustment, the Z flag is set to 1; otherwise, cleared to 0.

• When the number of bits set to 1 in the A register is even as a result of the adjustment, the P/V flag is set

to 1; otherwise, cleared to 0.

• When bit 7 of the A register is 1 as a result of the adjustment, the S flag is set to 1; otherwise, cleared to

0.

[Description example]

ADJBS ; Make decimal adjustment of A register contents.

ADJBS

AC=0

AC=1

197

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

6.14 Data Conversion Instruction

The following data conversion instruction can be used:

CVTBW ... 198

198

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Convert Byte to Word

Convert byte data into word data

[Instruction format] CVTBW

[Operation] When A 7=0, X ← A, A ← 00H

When A 7=1, X ← A, A ← FFH

[Operands] None

[Flags]

S Z AC P/V CY

[Explanation]

• CVTBW expands signed 8-bit data in the A register to signed 16-bit data in the AX register.

• When this instruction is executed, the S, Z, AC, P/V, and CY flags remain unchanged.

[Description example]

CVTBW ; Expand signed 8-bit data in the A register to signed 16-bit data and store the result in the AX register

CVTBW

199

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

6.15 Bit Manipulation Instructions

The following bit manipulation instructions can be used:

MOV1 ... 200

AND1 ... 201

OR1 ... 202

XOR1 ... 203

SET1 ... 204

CLR1 ... 205

NOT1 ... 206

200

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Move Single Bit

Transfer 1-bit data

[Instruction format] MOV1 dst, src

[Operation] dst ← src

[Operands]

 Mnemonic Operands (dst, src) Mnemonic Operands (dst, src)

MOV1 CY, saddr.bit MOV1 saddr.bit, CY

CY, sfr.bit sfr.bit, CY

CY, A.bit A.bit, CY

CY, X.bit X.bit, CY

CY, PSWH.bit PSWH.bit, CY

CY, PSWL.bit PSWL.bit, CY

saddr=FE20H-FF1FH

bit=0-7

[Flags]

When dst is CY Other than left

S Z AC P/V CY S Z AC P/V CY

×

[Explanation]

• MOV1 moves the bit data of the source operand (src) specified in the second operand to the destination

operand (dst) specified in the first operand.

• If the destination operand (dst) is CY, only the corresponding flags change.

• No interrupts are acknowledged between a write access instruction to an interrupt function control register

(see 3.4.6 Control registers) or PSW and its following instruction.

[Description example]

MOV1 P3.4, CY ; Transfer CY flag contents to bit 4 of port 3

MOV1

201

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

And Single Bit

AND 1-bit data

[Instruction format] AND1 dst, src AND1 dst, /src

[Operation] dst ← dst src dst ← dst src

[Operands]

 Mnemonic Operands (dst, src) Mnemonic Operands (dst, src)

AND1 CY, saddr.bit AND1 CY, X.bit

CY, /saddr.bit CY, /X.bit

CY, sfr.bit CY, PSWH.bit

CY, /sfr.bit CY, /PSWH.bit

CY, A.bit CY, PSWL.bit

CY, /A.bit CY, /PSWL.bit

saddr=FE20H-FF1FH

bit=0-7

[Flags]

S Z AC P/V CY

×

[Explanation]

• AND1 ANDs the destination operand (dst) specified in the first operand and the bit data of the source operand

(src) specified in the second operand and stores the result in the destination operand (dst).

• If “/” is prefixed to the second operand, the source operand (src) is negated and the destination operand

(dst) is ANDed with the result.

• The operation result is stored in the CY flag because it is the destination operand (dst).

[Description example]

AND1 CY, SADR.3 ; AND bit 3 of SADR address that can be accessed by short direct addressing and CY flag

and store the result in CY flag.

AND1 CY, /PSW.6 ; Negate bit 6 of PSW (Z flag) and AND CY flag with the result and store the result in CY

flag.

AND1

202

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Or Single Bit

OR 1-bit data

[Instruction format] OR1 dst, src OR1 dst, /src

[Operation] dst ← dst src dst ← dst src

[Operands]

 Mnemonic Operands (dst, src) Mnemonic Operands (dst, src)

OR1 CY, saddr.bit OR1 CY, X.bit

CY, /saddr.bit CY, /X.bit

CY, sfr.bit CY, PSWH.bit

CY, /sfr.bit CY, /PSWH.bit

CY, A.bit CY, PSWL.bit

CY, /A.bit CY, /PSWL.bit

saddr=FE20H-FF1FH

bit=0-7

[Flags]

S Z AC P/V CY

×

[Explanation]

• OR1 ORs the destination operand (dst) specified in the first operand and the bit data of the source operand

(src) specified in the second operand and stores the result in the destination operand (dst).

• If “/” is prefixed to the second operand, the source operand (src) is negated and the destination operand

(dst) is ORed with the result.

• The operation result is stored in the CY flag because it is the destination operand (dst).

[Description example]

OR1 CY, A.5 ; OR bit 5 of A register and CY flag and store the result in CY flag.

OR1 CY, /X.0 ; Negate bit 0 of X register and OR CY flag with the result and store the result in CY flag.

OR1

203

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Exclusive Or Single Bit

Exclusive-OR 1-bit data

[Instruction format] XOR1 dst, src

[Operation] dst ← dst src

[Operands]

 Mnemonic Operands (dst, src)

XOR1 CY, saddr.bit

CY, sfr.bit

CY, A.bit

CY, X.bit

CY, PSWH.bit

CY, PSWL.bit

saddr=FE20H-FF1FH

bit=0-7

[Flags]

S Z AC P/V CY

×

[Explanation]

• XOR1 exclusive-ORs the destination operand (dst) specified in the first operand and the bit data of the source

operand (src) specified in the second operand and stores the result in the destination operand (dst).

• The operation result is stored in the CY flag because it is the destination operand (dst).

[Description example]

XOR1 CY, A.7 ; Exclusive-OR bit 7 of A register and CY flag and store the result in CY flag.

XOR1

204

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Set Single Bit (Carry Flag)

Set 1-bit data

[Instruction format] SET1 dst

[Operation] dst ← 1

[Operands]

 Mnemonic Operands (dst, src)

SET1 saddr.bit

sfr.bit

A.bit

X.bit

PSWH.bit

PSWL.bit

CY

saddr=FE20H-FF1FH

bit=0-7

[Flags]

When dst is PSWL.bit When dst is CY

S Z AC P/V CY S Z AC P/V CY

× × × × × 1

Other than above

S Z AC P/V CY

[Explanation]

• SET1 sets the destination operand (dst) to 1.

• If the destination operand (dst) is CY or PSWL.bit, only the corresponding flags are set to 1.

• No interrupts are acknowledged between a write access instruction to an interrupt function control register

(see 3.4.6 Control registers) or PSW and its following instruction.

[Description example]

SET1 BITSYM ; Set contents of bit allocated in area that can be accessed by short direct addressing to 1

SET1

205

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Clear Single Bit (Carry Flag)

Clear 1-bit data

[Instruction format] CLR1 dst

[Operation] dst ← 0

[Operands]

 Mnemonic Operands (dst, src)

CLR1 saddr.bit

sfr.bit

A.bit

X.bit

PSWH.bit

PSWL.bit

CY

saddr=FE20H-FF1FH

bit=0-7

[Flags]

When dst is PSWL.bit When dst is CY

S Z AC P/V CY S Z AC P/V CY

× × × × × 0

Other than above

S Z AC P/V CY

[Explanation]

• CLR1 clears the destination operand (dst) to 0.

• If the destination operand (dst) is CY or PSWL.bit, only the corresponding flags are cleared to 0.

• No interrupts are acknowledged between a write access instruction to an interrupt function control register

(see 3.4.6 Control registers) or PSW and its following instruction.

[Description example]

CLR1 A.7 ; Clear bit 7 of A register to 0

CLR1

206

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Not Single Bit (Carry Flag)

Negate 1-bit data

[Instruction format] NOT1 dst

[Operation] dst ← dst

[Operands]

 Mnemonic Operands (dst, src)

NOT1 saddr.bit

sfr.bit

A.bit

X.bit

PSWH.bit

PSWL.bit

CY

saddr=FE20H-FF1FH

bit=0-7

[Flags]

When dst is PSWL.bit When dst is CY

S Z AC P/V CY S Z AC P/V CY

× × × × × ×

Other than above

S Z AC P/V CY

[Explanation]

• NOT1 negates the bit specified in the destination operand (dst) and stores the result in the destination

operand (dst).

• If the destination operand (dst) is CY or PSWL.bit, only the corresponding flags change.

• No interrupts are acknowledged between a write access instruction to an interrupt function control register

(see 3.4.6 Control registers) or PSW and its following instruction.

[Description example]

NOT1 A.2 ; Invert bit 2 of A register

NOT1

207

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

6.16 Call and Return Instructions

The following call and return instructions can be used:

CALL ... 237

CALLF ... 238

CALLT ... 239

BRK ... 240

RET ... 241

RETB ... 242

RETI ... 243

208

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Call

Call subroutine (16-bit direct or register indirect specification)

[Instruction format] CALL target

[Operation] (SP–1) ← (PC+n)H,

(SP–2) ← (PC+n)L,

SP ← SP–2,

PC ← target

n: Number of bytes of instruction

[Operands]

 Mnemonic Operand (target)

CALL !addr16

rp1

[rp1]

addr16=0000H-FDFFH

[Flags]

S Z AC P/V CY

[Explanation]

• CALL calls the subroutine at the location addressed by the specified 16-bit absolute address or register direct

or indirect addressing.

• The top address of the next instruction (PC+n) is saved in a given stack and branches to the address specified

in the target operand (target).

Caution Instructions cannot be fetched from addresses FE00H-FFFFH. Do not describe any of the

addresses in addr16.

[Description example]

CALL !3059H ; Call subroutine at 3059H

CALL

209

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Call Flag

Call subroutine (11-bit direct specification)

[Instruction format] CALLF target

[Operation] (SP–1) ← (PC+2)H,

(SP–2) ← (PC+2)L,

SP ← SP–2,

PC ← target

[Operands]

 Mnemonic Operand (target)

CALLF !addr11

addr11=0800H-0FFFH

[Flags]

S Z AC P/V CY

[Explanation]

• CALLF can call subroutines only at addresses 0800H-0FFFH.

• The top address of the next instruction (PC+2) is saved in a given stack and branches to the address specified

in the target operand (target) in the range of 0800H to 0FFFH.

• Specify only the low-order 11 bits of the address. (The high-order five bits are fixed to 00001B.)

• If subroutines are placed at addresses 0800H-0FFFH and the CALLF instruction is used, the program size

can be compressed.

[Description example]

CALLF !0C2AH ; Call subroutine at 0C2AH

CALLF

210

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Call Table

Call subroutine (reference call table)

[Instruction format] CALLT [addr5]

[Operation] (SP–1) ← (PC+1)H,

(SP–2) ← (PC+1)L,

SP ← SP–2,

PCH ← (TPF, 000000001, addr5+1)

PCL ← (TPF, 000000001, addr5)

[Operands]

 Mnemonic Operand ([addr5])

CALLT [addr5]

addr5=40H-7EH

[Flags]

S Z AC P/V CY

[Explanation]

• CALLT calls a given subroutine by referencing the call table.

• The top address of the next instruction (PC+1) is saved in a given stack and branches to the address indicated

by the word data in the specified call table entry. (Bits 14-6 of the call table address are fixed to 000000001B

and the least significant bit is fixed to 0. Specify bits 5-1 in addr5.)

• The branch destination address table can be placed in the external memory area (8040H-807EH) by setting

the TPF flag to 1.

[Description example]

CALLT [60H] ; Call subroutine at address indicated by word data at addresses 0060H and 0061H

CALLT

211

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Break

Software vectored interrupt

[Instruction format] BRK

[Operation] (SP–1) ← PSWH

(SP–2) ← PSWL

(SP–3) ← (SP+1)H

(SP–4) ← (SP+1)L

IE ← 0,

SP ← SP–4,

PCH ← (003FH),

PCL ← (003EH)

[Operands]

 None

[Flags]

S Z AC P/V CY

[Explanation]

• BRK is a software interrupt instruction.

• PSW and the address of the next instruction (PC+1) are saved in a given stack, then the IE flag is cleared

to 0 and branches to the address indicated by the word data at the vector address (003EH). As the IE flag

is cleared to 0, maskable vector interrupts can not be made afterward.

• To return from the software vector interrupt caused by the BRK instruction, use a RETB instruction.

[Description example]

BRK

BRK

212

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Return

Return from subroutine

[Instruction format] RET

[Operation] PC L ← (SP),

PCH ← (SP+1),

SP ← SP+2

[Operands]

 None

[Flags]

S Z AC P/V CY

[Explanation]

• RET is a return instruction from the subroutine called by the CALL, CALLF, or CALLT instruction.

• The data saved in the stack is restored in the PC and control is returned from the subroutine.

RET

213

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Return from Break

Return from software vectored interrupt

[Instruction format] RETB

[Operation] PC L ← (SP),

PCH ← (SP+1),

PSWL ← (SP+2),

PSWH ← (SP+3),

SP ← SP+4

[Operands]

 None

[Flags]

S Z AC P/V CY

R R R R R

[Explanation]

• RETB is a return instruction from the software interrupt caused by a BRK instruction or an OPE code trap.

• The PC and PSW saved in the stack are restored and control is returned from the interrupt service routine.

• The RETB instruction cannot be used to return from a BRKCS instruction or a hardware interrupt.

Caution To return from the interrupt service routine accompanying the BRK instruction or OPE code

trap, be sure to use the RETB instruction. If the RETI instruction is used, the interrupt control

circuit does not operate normally.

RETB

214

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Return from Interrupt

Return from hardware vectored interrupt

[Instruction format] RETI

[Operation] PC L ← (SP),

PCH ← (SP+1),

PSWL ← (SP+2),

PSWH ← (SP+3),

SP ← SP+4

Clear the MSB of bits set to 1 in ISPR to 0

[Operands]

 None

[Flags]

S Z AC P/V CY

R R R R R

[Explanation]

• RETI is a return instruction from a vectored interrupt.

• The data saved in the stack is restored in the PC and PSW and the most significant flag bit of the flags set

to 1 in the ISPR register is cleared to 0, then control is returned from the interrupt service routine.

• The RETI instruction cannot be used to return from a software interrupt caused by a BRK or BRKCS

instruction or an OPE code trap or an interrupt using context switching.

Caution To return from the interrupt service routine accompanying the BRK instruction or OPE code

trap, do not use the RETI instruction.

RETI

215

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

6.17 Stack Handling Instructions

The following stack handling instructions can be used:

PUSH ... 216

PUSHU ... 217

POP ... 218

POPU ... 219

MOVW SP, src ... 220

MOVW AX, SP ... 220

INCW SP ... 221

DECW SP ... 222

216

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Push

Push

[Instruction format] PUSH src

[Operation] When src is sfrp or PSW

(SP–1) ← src H,

(SP–2) ← src L,

SP ← SP–2

When src is post

{(SP–1) ← post H, (SP–2) ← post L, SP ← SP–2} × n

(n is the number of register pairs described as post)

[Operands]

 Mnemonic Operand (src)

PUSH sfrp

PSW

post

[Flags]

S Z AC P/V CY

[Explanation]

• PUSH saves the data in the register specified in the source operand (src) in a given stack.

• If post is specified as the source operand, any combination of the following registers can be saved in the

stack by the instruction:

RP0, RP1, RP2, RP3, RP4, RP5, RP6, RP7

The saving is performed from the right to left registers in order.

• After the data in the register specified in the source operand (src), the stack pointer (SP) is decremented

by the number of bytes of the saved data.

[Description example]

PUSH AX, BC, RP2, RP3 ; Save the contents of AX, BC, RP2, and RP3 registers in stack

PUSH

217

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Push to User Stack

Push register to user stack

[Instruction format] PUSHU src

[Operation] {(UP–1) ← post H, (UP–2) ← post L, UP ← UP–2} × n

(n is the number of register pairs described as post)

[Operands]

 Mnemonic Operand (src)

PUSHU post

[Flags]

S Z AC P/V CY

[Explanation]

• PUSHU saves the contents of the 16-bit register pair specified in the source operand (src) in the memory

addressed by the user stack pointer (UP), then decrements the UP.

• Any desired combination of the following registers can be described in post as the source operand:

RP0, RP1, RP2, RP3, RP4, RP5, RP6, RP7

The saving is performed from the right to left registers in order.

[Description example]

PUSHU BC, PSW ; Save the contents of BC register and PSW in stack

PUSHU

218

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Pop

Pop

[Instruction format] POP dst

[Operation] When dst is sfrp or PSW

dst L ← (SP),

dst H ← (SP+1),

SP ← SP+2

When dst is post

{post L ← (SP), post H ← (SP+1), SP ← SP+2} × n

(n is the number of register pairs described as post)

[Operands]

 Mnemonic Operand (dst)

POP sfrp

PSW

post

[Flags]

When dst is PSW Others

S Z AC P/V CY S Z AC P/V CY

R R R R R

[Explanation]

• POP restores the data saved in the stack in the register specified in the destination operand (dst).

• If PSW is specified in the destination operand (dst), the flag contents are replaced with the data saved in

the stack.

• If post is specified as the destination operand (dst), the data saved in the stack can be restored in any

combination of the following registers by one POP instruction:

RP0, RP1, RP2, RP3, RP4, RP5, RP6, RP7

The restoring is performed from the left to right registers in order.

• After the data saved in the stack is restored in the register specified in the destination operand (dst), the

stack pointer (SP) is incremented by the number of bytes of the restored data.

• No interrupts are acknowledged between a write access instruction to an interrupt function control register

(see 3.4.6 Control registers) or PSW and its following instruction.

[Description example]

POP AX ; Restore data saved in stack in AX register

POP

219

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Pop from User Stack

Pop register from user stack

[Instruction format] POPU dst

[Operation] {post L ← (UP), post H ← (UP+1), UP ← UP+2} × n

(n is the number of register pairs described as post)

[Operands]

 Mnemonic Operand (dst)

POPU post

[Flags]

S Z AC P/V CY

[Explanation]

• POPU restores the contents of the memory (stack) addressed by the user stack pointer (UP) in the register

pair specified in the destination operand (dst), then increments the UP.

• Any desired combination of the following registers can be described in post as the destination operand (dst):

RP0, RP1, RP2, RP3, RP4, RP5, RP6, RP7

The restoring is performed from the left to right registers in order.

[Description example]

POPU AX, BC ; Restore data saved in stack in AX and BC registers

POPU

220

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Move Word

Transfer data to and from stack pointer

[Instruction format] MOVW dst, src

[Operation] dst ← src

[Operands]

 Mnemonic Operands (dst, src)

MOVW SP, #word

SP, AX

AX, SP

word = 0000H-FDFFH (any addresses in the range can be specified)

word = FE00H-FEFFH (limited to even addresses)

[Flags]

S Z AC P/V CY

[Explanation]

• MOVW is an instruction for handling the contents of the stack pointer (SP).

• MOVW stores the source operand (src) specified in the second operand in the destination operand (dst)

specified in the first operand.

• To store any of addresses FE00H-FEFFH in the SP, only even address in the range can be specified.

[Description example]

MOVW SP, #0FE1EH ; Store FE1EH in stack pointer

MOVW SP, src
MOVW AX, SP

221

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Increment Word

Increment stack pointer

[Instruction format] INCW SP

[Operation] SP ← SP+1

[Operands] None

[Flags]

S Z AC P/V CY

[Explanation]

• INCW is an instruction for adding one to the SP (stack pointer) contents.

• If an interrupt is acknowledged when the address stored in the SP is an odd address in the range of FE00H-

FEFFH, an error may be caused. Therefore, be sure to store an even address in the SP.

[Description example]

INCW SP

INCW SP

222

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Decrement Word

Decrement stack pointer

[Instruction format] DECW SP

[Operation] SP ← SP–1

[Operands] None

[Flags]

S Z AC P/V CY

[Explanation]

• DECW is an instruction for subtracting one from the SP (stack pointer) contents.

• If an interrupt is acknowledged when the address stored in the SP is an odd address in the range of FE00H-

FEFFH, an error may be caused. Therefore, be sure to store an even address in the SP.

[Description example]

DECW SP

DECW SP

223

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

6.18 Special Instructions

The following special instructions can be used:

CHKL ... 223

CHKLA ... 225

224

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Check Level

Check pin for ouput level

[Instruction format] CHKL sfr

[Operation] (pin level) (output latch)

[Operands]

 Mnemonic Operand

CHKL sfr

[Flags]

S Z AC P/V CY

× × P

[Explanation]

• CHKL exclusive-ORs the pin level of the specified output pin and the signal level at the preceding stage of

the output buffer.

• If bit 7 is set to 1 as a result of the exclusive-ORing, the S flag is set to 1; if bit 7 is cleared to 0, the S flag

is cleared to 0.

• If all bits are 0 as a result of the exclusive-ORing, the Z flag is set to 1; if not all bits are 0, the Z flag is cleared

to 0.

• If the number of bits set to 1 in the data is even as a result of the exclusive-ORing, the P/V flag is set to 1;

if odd, the P/V flag is cleared to 0.

• The CHKL instruction is an instruction for detecting an abnormal condition caused for some reason in which

the pin level of the output pin differs from the signal level at the preceding stage of the output buffer. At the

normal operation, the Z flag is always set to 1.

• To execute the CHKL instruction, the PRDC0 bit of the port read control register (PRDC) must be cleared

to 0. If the PRDC0 bit is set to 1, no abnormal condition can be detected.

• To execute this instruction for a port containing a pin used as control output, be sure to specify the input

mode as the input/output mode as a port for the pin used as control output. If the input/output mode as a

port for the pin used as control output is set to the output mode, the normal operation may be erroneously

judged abnormal condition.

• The operation of the pin for which the input/output mode as a port is specified as the input mode is always

judged normal by this instruction.

[Description example]

CHKL, P0

BNZ $ERROR ; Check whether or not the pin level of port 0 matches the signal level at the preceding stage

of the output buffer. If they do not match, branch to address ERROR.

CHKL

225

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Check Level and Transfer to Register

Check pin for ouput level and transfer result to register

[Instruction format] CHKLA sfr

[Operation] A ← (pin level) (output latch)

[Operands]

 Mnemonic Operand

CHKLA sfr

[Flags]

S Z AC P/V CY

× × P

[Explanation]

• CHKLA exclusive-ORs the pin level of the specified output pin and the signal level at the preceding stage

of the output buffer and stores the result in the A register.

• If bit 7 is set to 1 as a result of the exclusive-ORing, the S flag is set to 1; if bit 7 is cleared to 0, the S flag

is cleared to 0.

• If all bits are 0 as a result of the exclusive-ORing, the Z flag is set to 1; if not all bits are 0, the Z flag is cleared

to 0.

• If the number of bits set to 1 in the data is even as a result of the exclusive-ORing, the P/V flag is set to 1;

if odd, the P/V flag is cleared to 0.

• The CHKLA instruction is an instruction for detecting an abnormal condition caused for some reason in which

the pin level of the output pin differs from the signal level at the preceding stage of the output buffer. At the

normal operation, the Z flag is always set to 1.

• To execute this CHKLA instruction, the PRDC0 bit of the port read control register (PRDC) must be cleared

to 0. If the PRDC0 bit is set to 1, no abnormal condition can be detected.

• To execute this instruction for a port containing a pin used as control output, be sure to specify the input

mode as the input/output mode as a port for the pin used as control output. If the input/output mode as a

port for the pin used as control output is set to the output mode, the normal operation may be erroneously

judged abnormal condition.

• The operation of the pin for which the input/output mode as a port is specified as the input mode is always

judged normal by this instruction.

[Description example]

CHKLA, P0 ; Check whether or not the pin level of port 0 matches the signal level at the preceding stage of

the output buffer and store the result in A register.

CHKLA

226

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

6.19 Unconditional Branch Instruction

The following unconditional branch instruction can be used:

BR ... 227

227

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Branch

Unconditional branch

[Instruction format] BR target

[Operation] PC ← target

[Operands]

 Mnemonic Operand (target)

BR !addr16

rp1

[rp1]

$addr16

When target is !addr16, addr16=0000H-FDFFH

When target is $addr16, addr16=(PC–126)-(PC+129)

[Flags]

S Z AC P/V CY

[Explanation]

• BR is an instruction for causing control or program flow to branch unconditionally.

• BR transfers the data in the target address operand (target) to the PC for branching.

Caution Instructions cannot be fetched from addresses FE00H-FFFFH. Do not describe any address

in the range in addr16 or rp1 or the memory addressed by rp1.

[Description example]

BR DE ; Branch to the address indicated by the DE register contents.

BR

228

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

6.20 Conditional Branch Instructions

The following conditional branch instructions can be used:

BC ... 229

BL ... 229

BNC ... 230

BNL ... 230

BZ ... 231

BE ... 231

BNZ ... 232

BNE ... 232

BV ... 233

BPE ... 233

BNV ... 234

BPO ... 234

BN ... 235

BP ... 236

BGT ... 237

BGE ... 238

BLT ... 239

BLE ... 240

BH ... 241

BNH ... 242

BT ... 243

BF ... 244

BTCLR ... 245

BFSET ... 246

DBNZ ... 247

229

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Branch if Carry/Less than

Conditional branch according to carry flag (CY=1)

[Instruction format] BC $addr16

BL $addr16

[Operation] PC ← PC+2+jdisp8 if CY=1

[Operands]

 Mnemonic Operand ($addr16)

BC

BL

addr16=(PC–126)-(PC+129)

[Flags]

S Z AC P/V CY

[Explanation]

• When CY=1, a branch is taken to the address specified in the operand.

When CY=0, no operation is performed and the next instruction is executed.

• The BC and BL instructions are the same in operation.

The instructions are used as follows:

• BC instruction: To check whether or not a carry occurs after execution of an addition instruction or a

shift or rotate instruction.

To determine the bit manipulation result.

• BL instruction: To check whether or not a borrow occurs after execution of a subtraction instruction.

To check to see if the first operand of comparison instruction is less than the second

operand after execution of comparison instruction for unsigned data.

[Description example]

BC $300H ; Branch to 0300H if CY=1.

However, assume that the top address of the BC instruction is at addresses 027FH-037EH.

BC
BL

$addr16

230

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Branch if Not Carry/Less than

Conditional branch according to carry flag (CY=0)

[Instruction format] BNC $addr16

BNL $addr16

[Operation] PC ← PC+2+jdisp8 if CY=0

[Operands]

 Mnemonic Operand ($addr16)

BNC

BNL

addr16=(PC–126)-(PC+129)

[Flags]

S Z AC P/V CY

[Explanation]

• When CY=0, a branch is taken to the address specified in the operand.

When CY=1, no operation is performed and the next instruction is executed.

• The BNC and BNL instructions are the same in operation. The instructions are used as follows:

• BNC instruction: To check whether or not a carry occurs after execution of an addition instruction or a

shift or rotate instruction.

To determine the bit manipulation result.

• BNL instruction: To check whether or not a borrow occurs after execution of a subtraction instruction.

To check to see if the first operand of comparison instruction is not less than the second

operand after execution of comparison instruction for unsigned data.

[Description example]

CMP A, B ; Compare A register contents with B register contents in size

BNL $1500H ; Branch to 1500H if the A register contents are not less than the B register contents.

However, assume that the top address of the BNL instruction is at addresses 147FH-157EH.

BNC
BNL

$addr16

231

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Branch if Zero/Equal

Conditional branch according to zero flag (Z=1)

[Instruction format] BZ $addr16

BE $addr16

[Operation] PC ← PC+2+jdisp8 if Z=1

[Operands]

 Mnemonic Operand ($addr16)

BZ

BE

addr16=(PC–126)-(PC+129)

[Flags]

S Z AC P/V CY

[Explanation]

• When Z=1, a branch is taken to the address specified in the operand.

When Z=0, no operation is performed and the next instruction is executed.

• The BZ and BE instructions are the same in operation.

The instructions are used as follows:

• BZ instruction : To check whether or not the execution result of an addition, subtraction, increment or

decrement, 8-bit logical operation, or shift or rotate instruction is 0.

• BE instruction : To check to see if a match is found after execution of a comparison instruction.

• When data in two’s complement format is added, if –80H and –80H are added at 8-bit data addition or if

–8000H and –8000H are added at 16-bit data addition, Z is set to 1. To determine whether or not it is 0 from

the addition result of data in two’s complement format, previously check the overflow flag for overflow.

[Description example]

DEC B

BZ $3C5H ; Branch to 03C5H if B register contains 0.

However, assume that the top address of the BZ instruction is at addresses 0344H-0443H.

BZ
BE

$addr16

232

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Branch if Not Zero/Not Equal

Conditional branch according to zero flag (Z=0)

[Instruction format] BNZ $addr16

BNE $addr16

[Operation] PC ← PC+2+jdisp8 if Z=0

[Operands]

 Mnemonic Operand ($addr16)

BNZ

BNE

addr16=(PC–126)-(PC+129)

[Flags]

S Z AC P/V CY

[Explanation]

• When Z=0, a branch is taken to the address specified in the operand.

When Z=1, no operation is performed and the next instruction is executed.

• The BNZ and BNE instructions are the same in operation. The instructions are used as follows:

• BNZ instruction : To check whether or not the execution result of an addition, subtraction, increment or

decrement, 8-bit logical operation, or shift or rotate instruction is 0.

• BNE instruction : To check to see if a match is found after execution of a comparison instruction.

• When data in two’s complement format is added, if –80H and –80H are added at 8-bit data addition or if

–8000H and –8000H are added at 16-bit data addition, Z is set to 1. To determine whether or not it is 0 from

the addition result of data in two’s complement format, previously check the overflow flag for overflow.

[Description example]

CMP A, #55H

BNE $0A39H ; Branch to 0A39H if A register does not contain 055H.

However, assume that the top address of the BNE instruction is at addresses 09B8H-0AB7H.

BNZ
BNE

$addr16

233

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Branch if Overflow/Branch if Parity Even

Conditional branch according to parity/overflow flag (P/V=1)

[Instruction format] BV $addr16

BPE $addr16

[Operation] PC ← PC+2+jdisp8 if P/V=1

[Operands]

 Mnemonic Operand ($addr16)

BV

BPE

addr16=(PC–126)-(PC+129)

[Flags]

S Z AC P/V CY

[Explanation]

• When P/V=1, a branch is taken to the address specified in the operand.

When P/V=0, no operation is performed and the next instruction is executed.

• The BV and BPE instructions are the same in operation.

The instructions are used as follows:

• BV instruction : To check that the result overflows or underflows after operation on data in two’s

complement format.

• BPE instruction : To check that parity of the execution result of an instruction such as a logical operation

instruction or a shift or rotate instruction is even.

[Description example]

OR A, #055H ; OR A register contents and 055H for each bit

BPE $841EH ; Branch to 841EH if parity is even as a result of the ORing.

However, assume that the top address of the instruction is at addresses 839DH-849CH.

BV
BPE

$addr16

234

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Branch if No Overflow/Branch if Parity Odd

Conditional branch according to parity/overflow flag (P/V=0)

[Instruction format] BNV $addr16

BPO $addr16

[Operation] PC ← PC+2+jdisp8 if P/V=0

[Operands]

 Mnemonic Operand ($addr16)

BNV

BPO

addr16=(PC–126)-(PC+129)

[Flags]

S Z AC P/V CY

[Explanation]

• When P/V=0, a branch is taken to the address specified in the operand.

When P/V=1, no operation is performed and the next instruction is executed.

• The BNV and BPO instructions are the same in operation. The instructions are used as follows:

• BNV instruction : To check that the result does not overflow or underflow after operation on data in two’s

complement format.

• BPO instruction : To check that parity of the execution result of an instruction such as a logical operation

instruction or a shift or rotate instruction is odd.

[Description example]

ADD B, C ; Add B and C register contents (data in two’s complement format)

BNV $560H ; Branch to 560H if no overflow occurs in the addition result.

However, assume that the top address of the BNV instruction is at addresses 04DFH-05DEH.

BNV
BPO

$addr16

235

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Branch if Negative

Conditional branch according to sign flag (S=1)

[Instruction format] BN $addr16

[Operation] PC ← PC+2+jdisp8 if S=1

[Operands]

 Mnemonic Operand ($addr16)

BN $addr16

addr16=(PC–126)-(PC+129)

[Flags]

S Z AC P/V CY

[Explanation]

• When S=1, a branch is taken to the address specified in the operand.

When S=0, no operation is performed and the next instruction is executed.

• The BN instruction is used to check that the result is negative after operation on data in two’s complement

format. However, if the operation result overflows or underflows, normal determination cannot be made.

(Before using the BN instruction, execute a BV or BNV instruction to check that no overflow or underflow

occurs, or use a BLT instruction.)

[Description example]

BN $TARGET ; Branch to address TARGET if the operation result is negative

BN

236

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Branch if Positive

Conditional branch according to sign flag (S=0)

[Instruction format] BP $addr16

[Operation] PC ← PC+2+jdisp8 if S=0

[Operands]

 Mnemonic Operand ($addr16)

BP $addr16

addr16=(PC–126)-(PC+129)

[Flags]

S Z AC P/V CY

[Explanation]

• When S=0, a branch is taken to the address specified in the operand.

When S=1, no operation is performed and the next instruction is executed.

• The BP instruction is used to check that the result is positive (containing 0) after operation on data in two's

complement format. However, if the operation result overflows or underflows, normal determination cannot

be made. (Before using the BP instruction, execute a BV or BNV instruction to check that no overflow or

underflow occurs, or use a BGE instruction.)

[Description example]

BV $OVER ; Branch to address OVER if the operation result overflows or underflows.

BP $TARGET ; Branch to address TARGET if the operation result is positive (containing 0).

However, assume that the TARGET address is in the range of –126 to +129 addresses of the

top address of the BP instruction.

BP

237

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Branch if Greater than/Equal

Conditional branch according to numeric values (greater than)

[Instruction format] BGT $addr16

[Operation] PC ← PC+3+jdisp8 if (P/V S) Z=0

[Operands]

 Mnemonic Operand ($addr16)

BGT $addr16

addr16=(PC–125)-(PC+130)

[Flags]

S Z AC P/V CY

[Explanation]

• When (P/V S) Z=0, a branch is taken to the address specified in the operand.

When (P/V S) Z=1, no operation is performed and the next instruction is executed.

• This instruction is used to determine the numeric value size relationship between data in two’s complement

format or check that the operation result is greater than 0. To determine the relationship, a check is made

to see if the first operand of the CMP instruction executed immediately preceding the BGT instruction is

greater than the second operand. The BGT instruction is also used to check that the operation result is greater

than 0 containing an overflow.

[Description example]

CMP A, B

BGT $2FEDH ; Branch to address 2FEDH if A register contents are greater than B register contents.

However, assume that the top address of the BGT instruction is at addresses 2F6BH-306DH.

BGT

238

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Branch if Greater than/Equal

Conditional branch according to numeric values (greater than or equal to)

[Instruction format] BGE $addr16

[Operation] PC ← PC+3+jdisp8 if P/V S=0

[Operands]

 Mnemonic Operand ($addr16)

BGE $addr16

addr16=(PC–125)-(PC+130)

[Flags]

S Z AC P/V CY

[Explanation]

• When P/V S=0, a branch is taken to the address specified in the operand.

When P/V S=1, no operation is performed and the next instruction is executed.

• This instruction is used to determine the numeric value size relationship between data in two’s complement

format or check that the operation result is 0 or positive. To determine the relationship, a check is made

to see if the first operand of the CMP instruction executed immediately preceding the BGE instruction is equal

to or greater than the second operand. The BGE instruction is also used to check that the operation result

is equal to or greater than 0 containing an overflow.

[Description example]

ADDW AX, BC

BGE $3456H ; Branch to address 3456H if the execution result of the immediately preceding addition

instruction is 0 or more.

However, assume that the top address of the BGE instruction is at addresses 33D4H-34D3H.

BGE

239

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Branch if Less than

Conditional branch according to numeric values (less than)

[Instruction format] BLT $addr16

[Operation] PC ← PC+3+jdisp8 if P/V S=1

[Operands]

 Mnemonic Operand ($addr16)

BLT $addr16

addr16=(PC–125)-(PC+130)

[Flags]

S Z AC P/V CY

[Explanation]

• When P/V S=1, a branch is taken to the address specified in the operand.

When P/V S=0, no operation is performed and the next instruction is executed.

• This instruction is used to determine the numeric value size relationship between data in two’s complement

format or check that the operation result is negative.

To determine the relationship, a check is made to see if the first operand of the CMP instruction executed

immediately preceding the BLT instruction is less than the second operand. The BLT instruction is also used

to check that the operation result is negative containing an underflow.

[Description example]

CMPW AX, #3456H

BLT $8123H ; Branch to address 8123H if AX register contents are less than 3456H.

However, assume that the top address of the BLT instruction is at addresses 80A1H-81A0H.

BLT

240

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Branch if Less than/Equal

Conditional branch according to numeric values (less than or equal to)

[Instruction format] BLE $addr16

[Operation] PC ← PC+3+jdisp8 if (P/V S) Z=1

[Operands]

 Mnemonic Operand ($addr16)

BLE $addr16

addr16=(PC–125)-(PC+130)

[Flags]

S Z AC P/V CY

[Explanation]

• When (P/V S) Z=1, a branch is taken to the address specified in the operand.

When (P/V S) Z=0, no operation is performed and the next instruction is executed.

• This instruction is used to determine the numeric value size relationship between data in two’s complement

format or check that the operation result is negative containing 0. To determine the relationship, a check

is made to see if the first operand of the CMP instruction executed immediately preceding the BLE instruction

is equal to or less than the second operand. The BLE instruction is also used to check that the operation

result is negative containing an underflow.

[Description example]

SUB H, A

BLE $89ABH ; Branch to address 89ABH if the execution result of the immediately preceding subtraction

instruction is 0 or less containing an underflow.

However, assume that the top address of the BLE instruction is at addresses 8929H-89ABH.

BLE

241

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Branch if Higher than

Conditional branch according to numeric values (greater than)

[Instruction format] BH $addr16

[Operation] PC ← PC+3+jdisp8 if Z CY=0

[Operands]

 Mnemonic Operand ($addr16)

BH $addr16

addr16=(PC–125)-(PC+130)

[Flags]

S Z AC P/V CY

[Explanation]

• When Z CY=0, a branch is taken to the address specified in the operand.

When Z CY=1, no operation is performed and the next instruction is executed.

• This instruction is used to determine the numeric value size relationship between unsigned data. A check

is made to see if the first operand of the CMP instruction executed immediately preceding the BH instruction

is greater than the second operand.

[Description example]

CMP B, C

BH $356H ; Branch to address 356H if B register contents are greater than C register contents.

However, assume that the top address of the BH instruction is at addresses 2D4H-3D3H.

BH

242

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Branch if Not Higher than

Conditional branch according to numeric values (not greater than)

[Instruction format] BNH $addr16

[Operation] PC ← PC+3+jdisp8 if Z CY=1

[Operands]

 Mnemonic Operand ($addr16)

BNH $addr16

addr16=(PC–125)-(PC+130)

[Flags]

S Z AC P/V CY

[Explanation]

• When Z CY=1, a branch is taken to the address specified in the operand.

When Z CY=0, no operation is performed and the next instruction is executed.

• This instruction is used to determine the numeric value size relationship between unsigned data. A check

is made to see if the first operand of the CMP instruction executed immediately preceding the BNH instruction

is not greater than (equal to or less than) the second operand.

[Description example]

CMPW AX, #8921H

BNH $TARGET ; Branch to address TARGET if AX register contents are not greater than (equal to or less than)

8921H.

However, assume that the top address of the BNH instruction is at address that can branch

to the TARGET address.

BNH

243

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Branch if True

Conditional branch according to bit test (byte data bit=1)

[Instruction format] BT bit, $addr16

[Operation] PC ← PC+b+jdisp8 if bit=1

[Operands]

 Mnemonic Operands (bit, $addr16) b (No. of bytes)

BT saddr. bit, $addr16 3

sfr. bit, $addr16 4

A. bit, $addr16 3

X. bit, $addr16 3

PSWH. bit, $addr16 3

PSWL. bit, $addr16 3

When b=3, addr16=(PC–125)-(PC+130)

When b=4, addr16=(PC–124)-(PC+131)

saddr=FE20H-FF1FH

bit=0-7

[Flags]

S Z AC P/V CY

[Explanation]

• When the contents of the first operand (bit) are set to 1, a branch is taken to the address specified in the

second operand ($addr16).

When the contents of the first operand (bit) are not set to 1, no operation is performed and the next instruction

is executed.

[Description example]

BT 0FE47H.3, $55CH ; Branch to address 055CH if bit 3 of address FE47H is 1.

However, assume that the top address of the BT instruction is at addresses 04D9H-

05D8H.

BT

244

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Branch if False

Conditional branch according to bit test (byte data bit=0)

[Instruction format] BF bit, $addr16

[Operation] PC ← PC+b+jdisp8 if bit=0

[Operands]

 Mnemonic Operands (bit, $addr16) b (No. of bytes)

BF saddr. bit, $addr16 4

sfr. bit, $addr16 4

A. bit, $addr16 3

X. bit, $addr16 3

PSWH. bit, $addr16 3

PSWL. bit, $addr16 3

When b=3, addr16=(PC–125)-(PC+130)

When b=4, addr16=(PC–124)-(PC+131)

saddr=FE20H-FF1FH

bit=0-7

[Flags]

S Z AC P/V CY

[Explanation]

• When the contents of the first operand (bit) are cleared to 0, a branch is taken to the address specified in

the second operand ($addr16).

When the contents of the first operand (bit) are not cleared to 0, no operation is performed and the next

instruction is executed.

[Description example]

BF A.2, $1549H ; Branch to address 1549H if bit 2 of A register is 0.

However, assume that the top address of the BF instruction is at addresses 14C6H-15C5H.

BF

245

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Branch if True and Clear

Conditional branch and clear according to bit test (byte data bit=1)

[Instruction format] BTCLR bit, $addr16

[Operation] PC ← PC+b+jdisp8 if bit=1, then bit ← 0

[Operands]

 Mnemonic Operands (bit, $addr16) b (No. of bytes)

BTCLR saddr. bit, $addr16 4

sfr. bit, $addr16 4

A. bit, $addr16 3

X. bit, $addr16 3

PSWH. bit, $addr16 3

PSWL. bit, $addr16 3

When b=3, addr16=(PC–125)-(PC+130)

When b=4, addr16=(PC–124)-(PC+131)

saddr=FE20H-FF1FH bit=0-7

[Flags]

When bit is PSWL.bit Other than left

S Z AC P/V CY S Z AC P/V CY

× × × × ×

[Explanation]

• When the contents of the first operand (bit) are set to 1, the contents of the first operand (bit) are cleared

to 0 and a branch is taken to the address specified in the second operand.

When the contents of the first operand (bit) are not set to 1, no operation is performed and the next instruction

is executed.

• If the first operand (bit) is PSWL.bit, the corresponding flag contents are cleared to 0.

[Description example]

BTCLR PSWL.0, $356H ; Clear CY flag to 0 and branch to address 0356H if bit 0 of PSWL (CY flag) is 1.

However, assume that the top address of the BTCLR instruction is at addresses

02D4H-03D3H.

BTCLR

246

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Branch if False and Set

Conditional branch and set according to bit test (byte data bit=0)

[Instruction format] BFSET bit, $addr16

[Operation] PC ← PC+b+jdisp8 if bit=0, then bit ← 1

[Operands]

 Mnemonic Operands (bit, $addr16) b (No. of bytes)

BFSET saddr. bit, $addr16 4

sfr. bit, $addr16 4

A. bit, $addr16 3

X. bit, $addr16 3

PSWH. bit, $addr16 3

PSWL. bit, $addr16 3

When b=3, addr16=(PC–125)-(PC+130)

When b=4, addr16=(PC–124)-(PC+131)

saddr=FE20H-FF1FH bit=0-7

[Flags]

When bit is PSWL.bit Other than left

S Z AC P/V CY S Z AC P/V CY

× × × × ×

[Explanation]

• When the contents of the first operand (bit) are cleared to 0, the contents of the first operand (bit) are set

to 1 and a branch is taken to the address specified in the second operand.

When the contents of the first operand (bit) are set to 1, no operation is performed and the next instruction

is executed.

• If the first operand (bit) is PSWL.bit, the corresponding flag contents are set to 1.

[Description example]

BFSET A.6 $3FE1H ; Set bit 6 of A register to 1 and branch to address 3FE1H if bit 6 of A register is 0.

However, assume that the top address of the BFSET instruction is at addresses 3F5FH-

405EH.

BFSET

247

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Decrement and Branch if Not Zero

Conditional loop (dst ≠ 0)

[Instruction format] DBNZ dst, $addr16

[Operation] dst ← dst–1,

then PC ← PC+b+jdisp8 if dst ≠0

[Operands]

 Mnemonic Operands (dst, $addr16) b (No. of bytes)

DBNZ r2, $addr16 2

saddr, $addr16 3

When b=2, addr16=(PC–126)-(PC+129)

When b=3, addr16=(PC–126)-(PC+130)

saddr=FE20H-FF1FH

[Flags]

S Z AC P/V CY

[Explanation]

• DBNZ subtracts 1 from the contents of the destination operand (dst) specified in the first operand and stores

the result in the destination operand (dst).

• If the result of subtracting 1 from the destination operand (dst) is not 0, a branch is taken to the address

specified in the second operand.

If the result of subtracting 1 from the destination operand (dst) is 0, no operation is performed and the next

instruction is executed.

• The flags do not change.

[Description example]

DBNZ B, $1215H ; Decrement B register contents and if the result is not 0, branch to address 1215H.

However, assume that the top address of the DBNZ instruction is at addresses 1194H-

1293H.

DBNZ

248

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

6.21 Context Switching Instructions

The following context switching instructions can be used:

BRKCS ... 249

RETCS ... 250

RETCSB ... 251

249

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Break Context Switch

Switch software context

[Instruction format] BRKCS RBn

[Operation] RBS2-0 ← n,

PCH ↔ R5, PCL ↔ R4,

R7 ← PSWH, R6 ← PSWL,

RSS ← 0,

IE ← 0 (n=0–7)

[Operands]

 Mnemonic Operand

BRKCS RBn

[Flags]

S Z AC P/V CY

[Explanation]

• BRKCS is a software interrupt instruction.

• Register bank n described in the operand is selected and the contents of the 8-bit registers R5 and R4 in

the register bank and the contents of the program counter (PC) are exchanged. The contents of the program

status word (PSW) are saved in the 8-bit registers R7 and R6 and control branches to the address set in

the R5 and R4 registers. Then, the RSS and IE flags are cleared to 0.

• To return from the software interrupt caused by the BRKCS instruction, use a RETCSB instruction.

• Do not change the contents of R7, R6, R5, R4 in the software interrupt program started by the BRKCS

instruction. To use R7, R6, R5, R4, once save the register contents in a given stack, etc., and restore them

to the original values before execution of the RETCSB instruction.

[Description example]

BRKCS RB3 ; Select register bank 3 and execute instruction at address indicated by R5 and R4 in the register

bank.

BRKCS

250

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Return from Context Switch

Return from hardware context switching

[Instruction format] RETCS

[Operation] PC H ← R5, PCL ← R4,

R5 ← addr16 H, R4 ← addr16 L,

PSWH ← R7, PSWL ← R6

Clear the most significant one of bits set to 1 in ISPR to 0

[Operands]

 Mnemonic Operand

RETCS !addr16

addr16=0000H-FDFFH

[Flags]

S Z AC P/V CY

R R R R R

[Explanation]

• The contents of 8-bit registers R7, R6, R5, and R4 in the register bank specified when the RETCS instruction

is executed are transferred to the program status word (PSW) and the program counter (PC) and control

is returned to the address set in R5 and R4. Then, the 16-bit immediate data specified in the operand is

transferred to R5 and R4.

• The RETCS instruction is effective for context switching accompanying interrupt request occurrence and is

used for returning from the context switching branch. addr16 described in the operand becomes the branch

destination address when the same register bank is specified again by the context switching function.

• The RETCS instruction cannot be used for returning from a software interrupt caused by a BRK instruction,

BRKCS instruction, or OPE code trap or returning from a vectored interrupt.

• Before execution of the RETCS instruction, the R7, R6, R5, and R4 registers must be set to the same values

as just after the interrupt was acknowledged.

Cautions 1. Instructions cannot be fetched from addresses FE00H-FFFFH. Do not describe any of

the addresses in addr16.

2. To return from the branch taken by the BRKCS instruction, do not use the RETCS

instruction.

[Description example]

RETCS !3456H ; Return from interrupt caused by context switching and set the address when the next interrupt

will be acknowledged to 3456H.

RETCS

251

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Return from Context Switch Break

Return from software context switching

[Instruction format] RETCSB

[Operation] PC H ← R5, PCL ← R4,

R5 ← addr16 H, R4 ← addr16 L,

PSWH ← R7, PSWL ← R6

[Operands]

 Mnemonic Operand

RETCSB !addr16

addr16=0000H-FDFFH

[Flags]

S Z AC P/V CY

R R R R R

[Explanation]

• The contents of 8-bit registers R7, R6, R5, and R4 in the register bank specified when the RETCSB instruction

is executed are transferred to the program status word (PSW) and the program counter (PC). Then, control

is returned to the address set in R5 and R4.

• The RETCSB instruction is effective for context switching caused by a BRKCS instruction and is used for

returning from the context switching branch. addr16 described in the operand becomes the branch

destination address when the same register bank is specified again by the context switching function.

• The RETCSB instruction cannot be used for returning from a software interrupt caused by a BRK instruction

or OPE code trap or a hardware interrupt.

• Before execution of the RETCSB instruction, the R7, R6, R5, and R4 registers must be set to the same values

as just after the interrupt was acknowledged.

Caution To return from the interrupt service routine started by a BRKCS instruction, be sure to use

the RETCSB instruction. If the RETCS instruction is used, the interrupt control circuit does

not operate normally.

[Description example]

RETCSB !0ABCDH ; Return from interrupt caused by BRKCS instruction

RETCSB

252

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

6.22 String Instructions

The following string instructions can be used:

MOVM ... 253

MOVBK ... 254

XCHM ... 255

XCHBK ... 256

CMPME ... 257

CMPBKE ... 259

CMPMNE ... 261

CMPBKNE ... 263

CMPMC ... 265

CMPBKC ... 267

CMPMNC ... 269

CMPBKNC ... 271

253

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Move Multiple Byte

Block transfer of fixed byte data

[Instruction format] MOVM [DE+], A

MOVM [DE–], A

[Operation] (DE) ← A, DE ← DE+1, C ← C–1 End if C=0

(DE) ← A, DE ← DE–1, C ← C–1 End if C=0

[Operands]

 Mnemonic Operands

MOVM [DE+], A

[DE–], A

[Flags]

S Z AC P/V CY

[Explanation]

• MOVM transfers the A register contents to the memory addressed by the DE register contents and increments

or decrements the DE register contents, then decrements the C register contents and repeats these steps

until the C register is set to 0.

• If an interrupt or macro service request that can be acknowledged occurs during execution of the MOVM

instruction, the instruction execution is interrupted and the interrupt or macro service is acknowledged.

When the interrupt is acknowledged, if the return address saved in the stack or R5 and R4 and the contents

of the DE and C registers used in the MOVM instruction execution are not changed by the interrupt service

program, the interrupted MOVM instruction execution is resumed when control is returned from the interrupt.

When the macro service is acknowledged, the MOVM instruction execution is resumed after completion of

the macro service.

• The MOVM instruction is mainly used for initializing a given area of memory to a specific value.

[Description example]

MOV C, #00H ; C ← 00H

MOV A, #00H ; A ← 00H

MOVW DE, #0FE00H ; DE ← FE00H

MOVM [DE+], A ; Clear RAM area FE00H-FEFFH to 0.

MOVM

254

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Move Block Byte

Block transfer of byte data

[Instruction format] MOVBK [DE+], [HL+]

MOVBK [DE–], [HL–]

[Operation] (DE) ← (HL), DE ← DE+1, HL ← HL+1, C ← C–1 End if C=0

(DE) ← (HL), DE ← DE–1, HL ← HL–1, C ← C–1 End if C=0

[Operands]

 Mnemonic Operands

MOVBK [DE+], [HL+]

[DE–], [HL–]

[Flags]

S Z AC P/V CY

[Explanation]

• MOVBK transfers the contents of the memory addressed by the HL register contents to the memory

addressed by the DE register contents and increments or decrements the DE and HL register contents, then

decrements the C register contents and repeats these steps until the C register is set to 0.

• If an interrupt or macro service request that can be acknowledged occurs during execution of the MOVBK

instruction, the instruction execution is interrupted and the interrupt or macro service is acknowledged.

When the interrupt is acknowledged, if the return address saved in the stack or R5 and R4 and the contents

of the DE, HL, and C registers used in the MOVBK instruction execution are not changed by the interrupt

service program, the interrupted MOVBK instruction execution is resumed when control is returned from the

interrupt. When the macro service is acknowledged, the MOVBK instruction execution is resumed after

completion of the macro service.

• If the source data area overlaps the destination data area,

• when the lowest address of the source area is smaller than the highest address of the destination area,

the initial values of the DE and HL registers are set to their respective lowest addresses and MOVBK

[DE+], [HL+] is used.

• when the highest address of the source area is greater than the lowest address of the destination area,

the initial values of the DE and HL registers are set to their respective highest addresses and MOVBK

[DE–], [HL–] is used.

[Description example]

MOV C, #10H ; C ← 10H

MOVW DE, #3000H ; DE ← 3000H

MOVW HL, #5000H ; HL ← 5000H

MOVBK [DE+], [HL+] ; Transfer contents of memory area 5000H-500FH to memory area 3000H-300FH

MOVBK

255

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Exchange Multiple Byte

Block exchange of fixed byte data

[Instruction format] XCHM [DE+], A

XCHM [DE–], A

[Operation] (DE) ↔ A, DE ← DE+1, C ← C–1 End if C=0

(DE) ↔ A, DE ← DE–1, C ← C–1 End if C=0

[Operands]

 Mnemonic Operands

XCHM [DE+], A

[DE–], A

[Flags]

S Z AC P/V CY

[Explanation]

• XCHM exchanges the A register contents and the memory addressed by the DE register contents and

increments or decrements the DE register contents, then decrements the C register contents and repeats

these steps until the C register is set to 0.

• If an interrupt or macro service request that can be acknowledged occurs during execution of the XCHM

instruction, the instruction execution is interrupted and the interrupt or macro service is acknowledged.

When the interrupt is acknowledged, if the return address saved in the stack or R5 and R4 and the contents

of the DE and C registers used in the XCHM instruction execution are not changed by the interrupt service

program, the interrupted XCHM instruction execution is resumed when control is returned from the interrupt.

When the macro service is acknowledged, the XCHM instruction execution is resumed after completion of

the macro service.

• The XCHM instruction is mainly used for moving data in memory one byte. To move data to the higher address

side, use XCHM [DE+], A or to move data to the lower address side, use XCHM [DE–], A. To move data

two bytes or more, use a MOVBK instruction.

[Description example]

MOV C, #10H ; C ← 10H

MOV A, #00H ; A ← 00H

MOVW DE, #3050H ; DE ← 3050H

XCHM [DE+], A ; Shift contents of memory area 3050H-305FH each byte to one later address (address

3050H contents are set to 0).

XCHM

256

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Exchange Block Byte

Block exchange of byte data

[Instruction format] XCHBK [DE+], [HL+]

XCHBK [DE–], [HL–]

[Operation] (DE) ↔ (HL), DE ← DE+1, HL ← HL+1, C ← C–1 End if C=0

(DE) ↔ (HL), DE ← DE–1, HL ← HL–1, C ← C–1 End if C=0

[Operands]

 Mnemonic Operands

XCHBK [DE+], [HL+]

[DE–], [HL–]

[Flags]

S Z AC P/V CY

[Explanation]

• XCHBK exchanges the contents of the memory addressed by the HL register contents and the memory

addressed by the DE register contents and increments or decrements the DE and HL register contents, then

decrements the C register contents and repeats these steps until the C register is set to 0.

• If an interrupt or macro service request that can be acknowledged occurs during execution of the XCHBK

instruction, the instruction execution is interrupted and the interrupt or macro service is acknowledged.

When the interrupt is acknowledged, if the return address saved in the stack or R5 and R4 and the contents

of the DE, HL, and C registers used in the XCHBK instruction execution are not changed by the interrupt

service program, the interrupted XCHBK instruction execution is resumed when control is returned from the

interrupt. When the macro service is acknowledged, the XCHBK instruction execution is resumed after

completion of the macro service.

• If the source data area overlaps the destination data area,

• when the lowest address of the source area is smaller than the highest address of the destination area,

the initial values of the DE and HL registers are set to their respective lowest addresses and XCHBK

[DE+], [HL+] is used.

• when the highest address of the source area is greater than the lowest address of the destination area,

the initial values of the DE and HL registers are set to their respective highest addresses and XCHBK

[DE–], [HL–] is used.

[Description example]

MOV C, #20H

MOVW DE, #0FE00H

MOVW HL, #0FE70H

XCHBK [DE+], [HL+] ; Exchange 20H-byte data starting at address FE00H and data starting at address FE70H

XCHBK

257

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Compare Multiple Equal Byte

Block comparison with fixed byte data (match detection)

[Instruction format] CMPME [DE+], A

CMPME [DE–], A

[Operation] (DE)–A, DE ← DE+1, C ← C–1 End if C=0 or Z=0

(DE)–A, DE ← DE–1, C ← C–1 End if C=0 or Z=0

[Operands]

 Mnemonic Operands

CMPME [DE+], A

[DE–], A

[Flags]

S Z AC P/V CY

× × × V ×

[Explanation]

• CMPME compares the A register contents with the memory addressed by the DE register contents,

increments or decrements the DE register contents, and decrements the C register contents. CMPME

repeats these steps until a mismatch is found between them as a result of the comparison or the C register

is set to 0.

• When the instruction is executed, the A register contents and the contents of the memory addressed by the

DE register contents do not change.

• If an interrupt or macro service request that can be acknowledged occurs during execution of the CMPME

instruction, the instruction execution is interrupted and the interrupt or macro service is acknowledged.

When the interrupt is acknowledged, if the return address saved in the stack or R5 and R4 and the contents

of the DE and C registers used in the CMPME instruction execution are not changed by the interrupt service

program, the interrupted CMPME instruction execution is resumed when control is returned from the interrupt.

When the macro service is acknowledged, the CMPME instruction execution is resumed after completion

of the macro service.

• The S, Z, AC, P/V, and CY flags change according to the last comparison (subtraction) executed by the

CMPME instruction.

• When bit 7 is set to 1 as a result of the subtraction, the S flag is set to 1; otherwise, cleared to 0.

• When the subtraction result is 0, the Z flag is set to 1; otherwise, cleared to 0.

• If the subtraction operation generates a borrow into bit 3 out of bit 4, the AC flag is set to 1; otherwise, cleared

to 0.

• If the subtraction operation generates a borrow in bit 6 and does not generate a borrow in bit 7 (when an

underflow occurs by operation in the two’s complement format) or if the subtraction instruction does not

generate a borrow in bit 6 and generates a borrow in bit 7 (when an overflow occurs by operation in the two’s

complement format), the P/V flag is set to 1; otherwise, cleared to 0.

• If the subtraction operation generates a borrow in bit 7, the CY flag is set to 1; otherwise, cleared to 0.

CMPME

258

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

[Description example]

MOV C, #20H

MOVW DE, #0FE00H

MOV A, #00H

CMPME [DE+], A ; Indicate whether or not 20H-byte data starting at address FE00H is all 00H

BNZ $JMP ; Branch to address JMP if data that is not 00H is found

259

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Compare Block Equal Byte

Block comparison with byte data (match detection)

[Instruction format] CMPBKE [DE+], [HL+]

CMPBKE [DE–], [HL–]

[Operation] (DE)–(HL), DE ← DE+1, HL ← HL+1, C ← C–1

End if C=0 or Z=0

(DE)–(HL), DE ← DE–1, HL ← HL–1, C ← C–1

End if C=0 or Z=0

[Operands]

 Mnemonic Operands

CMPBKE [DE+], [HL+]

[DE–], [HL–]

[Flags]

S Z AC P/V CY

× × × V ×

[Explanation]

• CMPBKE compares the contents of the memory addressed by the HL register contents with the contents

of the memory addressed by the DE register contents, increments or decrements the DE and HL register

contents, and decrements the C register contents. CMPBKE repeats these steps until a mismatch is found

between them as a result of the comparison or the C register is set to 0.

• When the instruction is executed, the contents of the memory areas addressed by the DE and HL register

contents do not change.

• If an interrupt or macro service request that can be acknowledged occurs during execution of the CMPBKE

instruction, the instruction execution is interrupted and the interrupt or macro service is acknowledged.

When the interrupt is acknowledged, if the return address saved in the stack or R5 and R4 and the contents

of the DE, HL, and C registers used in the CMPBKE instruction execution are not changed by the interrupt

service program, the interrupted CMPBKE instruction execution is resumed when control is returned from

the interrupt. When the macro service is acknowledged, the CMPBKE instruction execution is resumed after

completion of the macro service.

• The S, Z, AC, P/V, and CY flags change according to the last comparison (subtraction) executed by the

CMPBKE instruction.

• When bit 7 is set to 1 as a result of the subtraction, the S flag is set to 1; otherwise, cleared to 0.

• When the subtraction result is 0, the Z flag is set to 1; otherwise, cleared to 0.

• If the subtraction operation generates a borrow into bit 3 out of bit 4, the AC flag is set to 1; otherwise, cleared

to 0.

• If the subtraction operation generates a borrow in bit 6 and does not generate a borrow in bit 7 (when an

underflow occurs by operation in the two’s complement format) or if the subtraction instruction does not

generate a borrow in bit 6 and generates a borrow in bit 7 (when an overflow occurs by operation in the two’s

complement format), the P/V flag is set to 1; otherwise, cleared to 0.

• If the subtraction operation generates a borrow in bit 7, the CY flag is set to 1; otherwise, cleared to 0.

CMPBKE

260

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

[Description example]

MOV C, #20H

MOVW DE, #0FE00H

MOVW HL, #0FE70H

CMPBKE [DE+], [HL+]

BNE $DIFF ; Compare 20H-byte data starting at address FE00H with data starting at address

FE70H and branch to address DIFF if different data is found.

261

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Compare Multiple Not Equal Byte

Block comparison with fixed byte data (mismatch detection)

[Instruction format] CMPMNE [DE+], A

CMPMNE [DE–], A

[Operation] (DE)–A, DE ← DE+1, C ← C–1 End if C=0 or Z=1

(DE)–A, DE ← DE–1, C ← C–1 End if C=0 or Z=1

[Operands]

 Mnemonic Operands

CMPMNE [DE+], A

[DE–], A

[Flags]

S Z AC P/V CY

× × × V ×

[Explanation]

• CMPMNE compares the A register contents with the memory addressed by the DE register contents,

increments or decrements the DE register contents, and decrements the C register contents. CMPMNE

repeats these steps until a match is found between them as a result of the comparison or the C register is

set to 0.

• When the instruction is executed, the A register contents and the contents of the memory addressed by the

DE register contents do not change.

• If an interrupt or macro service request that can be acknowledged occurs during execution of the CMPMNE

instruction, the instruction execution is interrupted and the interrupt or macro service is acknowledged.

When the interrupt is acknowledged, if the return address saved in the stack or R5 and R4 and the contents

of the DE and C registers used in the CMPMNE instruction execution are not changed by the interrupt service

program, the interrupted CMPMNE instruction execution is resumed when control is returned from the

interrupt.

When the macro service is acknowledged, the CMPMNE instruction execution is resumed after completion

of the macro service.

• The S, Z, AC, P/V, and CY flags change according to the last comparison (subtraction) executed by the

CMPMNE instruction.

• When bit 7 is set to 1 as a result of the subtraction, the S flag is set to 1; otherwise, cleared to 0.

• When the subtraction result is 0, the Z flag is set to 1; otherwise, cleared to 0.

• If the subtraction operation generates a borrow into bit 3 out of bit 4, the AC flag is set to 1; otherwise, cleared

to 0.

• If the subtraction operation generates a borrow in bit 6 and does not generate a borrow in bit 7 (when an

underflow occurs by operation in the two’s complement format) or if the subtraction instruction does not

generate a borrow in bit 6 and generates a borrow in bit 7 (when an overflow occurs by operation in the two’s

complement format), the P/V flag is set to 1; otherwise, cleared to 0.

• If the subtraction operation generates a borrow in bit 7, the CY flag is set to 1; otherwise, cleared to 0.

CMPMNE

262

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

[Description example]

MOV C, #00H ; C ← 00H

MOVW DE, #3000H ; DE ← 3000H

CMPMNE [DE+], A

BZ $IMP ; Branch to address indicated by label IMP if the same value as the A register contents

exists at 3000H-30FFH

263

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Compare Block Not Equal Byte

Block comparison with byte data (mismatch detection)

[Instruction format] CMPBKNE [DE+], [HL+]

CMPBKNE [DE–], [HL–]

[Operation] (DE)–(HL), DE ← DE+1, HL ← HL+1, C ← C–1

End if C=0 or Z=1

(DE)–(HL), DE ← DE–1, HL ← HL–1, C ← C–1

End if C=0 or Z=1

[Operands]

 Mnemonic Operands

CMPBKNE [DE+], [HL+]

[DE–], [HL–]

[Flags]

S Z AC P/V CY

× × × V ×

[Explanation]

• CMPBKNE compares the contents of the memory addressed by the HL register contents with the contents

of the memory addressed by the DE register contents, increments or decrements the DE and HL register

contents, and decrements the C register contents. CMPBKNE repeats these steps until a match is found

between them as a result of the comparison or the C register is set to 0.

• When the instruction is executed, the contents of the memory areas addressed by the DE and HL register

contents do not change.

• If an interrupt or macro service request that can be acknowledged occurs during execution of the CMPBKNE

instruction, the instruction execution is interrupted and the interrupt or macro service is acknowledged.

When the interrupt is acknowledged, if the return address saved in the stack or R5 and R4 and the contents

of the DE, HL, and C registers used in the CMPBKNE instruction execution are not changed by the interrupt

service program, the interrupted CMPBKNE instruction execution is resumed when control is returned from

the interrupt. When the macro service is acknowledged, the CMPBKNE instruction execution is resumed

after completion of the macro service.

• The S, Z, AC, P/V, and CY flags change according to the last comparison (subtraction) executed by the

CMPBKNE instruction.

• When bit 7 is set to 1 as a result of the subtraction, the S flag is set to 1; otherwise, cleared to 0.

• When the subtraction result is 0, the Z flag is set to 1; otherwise, cleared to 0.

• If the subtraction operation generates a borrow into bit 3 out of bit 4, the AC flag is set to 1; otherwise, cleared

to 0.

• If the subtraction operation generates a borrow in bit 6 and does not generate a borrow in bit 7 (when an

underflow occurs by operation in the two’s complement format) or if the subtraction instruction does not

generate a borrow in bit 6 and generates a borrow in bit 7 (when an overflow occurs by operation in the two’s

complement format), the P/V flag is set to 1; otherwise, cleared to 0.

• If the subtraction operation generates a borrow in bit 7, the CY flag is set to 1; otherwise, cleared to 0.

CMPBKNE

264

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

[Description example]

MOV C, #5H

MOVW DE, #0FE00H

MOVW HL, #0FE70H

CMPBKNE [DE+], [HL+]

BE $FIND ; Compare 5-byte data starting at address FE00H with data starting at address FE70H

and branch to address FIND if match data is found.

265

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Compare Multiple Carry Byte

Block comparison with fixed byte data (value size comparison)

[Instruction format] CMPMC [DE+], A

CMPMC [DE–], A

[Operation] (DE)–A, DE ← DE+1, C ← C–1 End if C=0 or CY=0

(DE)–A, DE ← DE–1, C ← C–1 End if C=0 or CY=0

[Operands]

 Mnemonic Operands

CMPMC [DE+], A

[DE–], A

[Flags]

S Z AC P/V CY

× × × V ×

[Explanation]

• CMPMC compares the A register contents with the memory addressed by the DE register contents,

increments or decrements the DE register contents, and decrements the C register contents. CMPMC

repeats these steps until the contents of the memory addressed by the DE register contents become equal

to or greater than the A register contents as a result of the comparison or the C register is set to 0.

• When the instruction is executed, the A register contents and the contents of the memory addressed by the

DE register contents do not change.

• If an interrupt or macro service request that can be acknowledged occurs during execution of the CMPMC

instruction, the instruction execution is interrupted and the interrupt or macro service is acknowledged.

When the interrupt is acknowledged, if the return address saved in the stack or R5 and R4 and the contents

of the DE and C registers used in the CMPMC instruction execution are not changed by the interrupt service

program, the interrupted CMPMC instruction execution is resumed when control is returned from the

interrupt.

When the macro service is acknowledged, the CMPMC instruction execution is resumed after completion

of the macro service.

• The S, Z, AC, P/V, and CY flags change according to the last comparison (subtraction) executed by the

CMPMC instruction.

• When bit 7 is set to 1 as a result of the subtraction, the S flag is set to 1; otherwise, cleared to 0.

• When the subtraction result is 0, the Z flag is set to 1; otherwise, cleared to 0.

• If the subtraction operation generates a borrow into bit 3 out of bit 4, the AC flag is set to 1; otherwise, cleared

to 0.

• If the subtraction operation generates a borrow in bit 6 and does not generate a borrow in bit 7 (when an

underflow occurs by operation in the two’s complement format) or if the subtraction instruction does not

generate a borrow in bit 6 and generates a borrow in bit 7 (when an overflow occurs by operation in the two’s

complement format), the P/V flag is set to 1; otherwise, cleared to 0.

• If the subtraction operation generates a borrow in bit 7, the CY flag is set to 1; otherwise, cleared to 0.

CMPMC

266

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

[Description example]

MOV C, #10H

MOV A, #80H

MOVW DE, #0FE00H

CMPMC [DE+], A

BNC $BIG ; Branch to address BIG if data of 80H or greater is contained in 10H-byte data starting

at address FE00H

267

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Compare Block Carry Byte

Block comparison with byte data (value size comparison)

[Instruction format] CMPBKC [DE+], [HL+]

CMPBKC [DE–], [HL–]

[Operation] (DE)–(HL), DE ← DE+1, HL ← HL+1, C ← C–1

End if C=0 or CY=0

(DE)–(HL), DE ← DE–1, HL ← HL–1, C ← C–1

End if C=0 or CY=0

[Operands]

 Mnemonic Operands

CMPBKC [DE+], [HL+]

[DE–], [HL–]

[Flags]

S Z AC P/V CY

× × × V ×

[Explanation]

• CMPBKC compares the contents of the memory addressed by the HL register contents with the contents

of the memory addressed by the DE register contents, increments or decrements the DE and HL register

contents, and decrements the C register contents. CMPBKC repeats these steps until the contents of the

memory addressed by the DE register become equal to or greater than the contents of the memory addressed

by the HL register as a result of the comparison or the C register is set to 0.

• When the instruction is executed, the contents of the memory areas addressed by the DE and HL register

contents do not change.

• If an interrupt or macro service request that can be acknowledged occurs during execution of the CMPBKC

instruction, the instruction execution is interrupted and the interrupt or macro service is acknowledged.

When the interrupt is acknowledged, if the return address saved in the stack or R5 and R4 and the contents

of the DE, HL, and C registers used in the CMPBKC instruction execution are not changed by the interrupt

service program, the interrupted CMPBKC instruction execution is resumed when control is returned from

the interrupt. When the macro service is acknowledged, the CMPBKC instruction execution is resumed after

completion of the macro service.

• The S, Z, AC, P/V, and CY flags change according to the last comparison (subtraction) executed by the

CMPBKC instruction.

• When bit 7 is set to 1 as a result of the subtraction, the S flag is set to 1; otherwise, cleared to 0.

• When the subtraction result is 0, the Z flag is set to 1; otherwise, cleared to 0.

• If the subtraction operation generates a borrow into bit 3 out of bit 4, the AC flag is set to 1; otherwise, cleared

to 0.

• If the subtraction operation generates a borrow in bit 6 and does not generate a borrow in bit 7 (when an

underflow occurs by operation in the two’s complement format) or if the subtraction instruction does not

generate a borrow in bit 6 and generates a borrow in bit 7 (when an overflow occurs by operation in the two’s

complement format), the P/V flag is set to 1; otherwise, cleared to 0.

CMPBKC

268

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

• If the subtraction operation generates a borrow in bit 7, the CY flag is set to 1; otherwise, cleared to 0.

[Description example]

MOV C, #3H

MOVW DE, #0FE00H

MOVW HL, #0FE70H

CMPBKC [DE+], [HL+]

BNC $BIG ; Compare 3-byte data starting at address FE00H with 3-byte data starting at address

FE70H and branch to address BIG if the former 3-byte data is equal to or greater than

the latter 3-byte data

269

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Compare Multiple Not Carry Byte

Block comparison with fixed byte data (value size comparison)

[Instruction format] CMPMNC [DE+], A

CMPMNC [DE–], A

[Operation] (DE)–A, DE ← DE+1, C ← C–1 End if C=0 or CY=1

(DE)–A, DE ← DE–1, C ← C–1 End if C=0 or CY=1

[Operands]

 Mnemonic Operands

CMPMNC [DE+], A

[DE–], A

[Flags]

S Z AC P/V CY

× × × V ×

[Explanation]

• CMPMNC compares the A register contents with the memory addressed by the DE register contents,

increments or decrements the DE register contents, and decrements the C register contents. CMPMNC

repeats these steps until the A register contents become greater than the contents of the memory addressed

by the DE register contents as a result of the comparison or the C register is set to 0.

• When the instruction is executed, the A register contents and the contents of the memory addressed by the

DE register contents do not change.

• If an interrupt or macro service request that can be acknowledged occurs during execution of the CMPMNC

instruction, the instruction execution is interrupted and the interrupt or macro service is acknowledged.

When the interrupt is acknowledged, if the return address saved in the stack or R5 and R4 and the contents

of the DE and C registers used in the CMPMNC instruction execution are not changed by the interrupt service

program, the interrupted CMPMNC instruction execution is resumed when control is returned from the

interrupt.

When the macro service is acknowledged, the CMPMNC instruction execution is resumed after completion

of the macro service.

• The S, Z, AC, P/V, and CY flags change according to the last comparison (subtraction) executed by the

CMPMNC instruction.

• When bit 7 is set to 1 as a result of the subtraction, the S flag is set to 1; otherwise, cleared to 0.

• When the subtraction result is 0, the Z flag is set to 1; otherwise, cleared to 0.

• If the subtraction operation generates a borrow into bit 3 out of bit 4, the AC flag is set to 1; otherwise, cleared

to 0.

• If the subtraction operation generates a borrow in bit 6 and does not generate a borrow in bit 7 (when an

underflow occurs by operation in the two’s complement format) or if the subtraction instruction does not

generate a borrow in bit 6 and generates a borrow in bit 7 (when an overflow occurs by operation in the two’s

complement format), the P/V flag is set to 1; otherwise, cleared to 0.

• If the subtraction operation generates a borrow in bit 7, the CY flag is set to 1; otherwise, cleared to 0.

CMPMNC

270

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

[Description example]

MOV C, #00H ; C ← 00H

MOVW DE, #8000H ; DE ← 8000H

CMPMNC [DE+], A

BC $JMP ; Branch to address indicated by label JMP if a value greater than the A register contents

exists at 8000H-80FFH

271

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Compare Block Not Carry Byte

Block comparison with byte data (value size comparison)

[Instruction format] CMPBKNC [DE+], [HL+]

CMPBKNC [DE–], [HL–]

[Operation] (DE)–(HL), DE ← DE+1, HL ← HL+1, C ← C–1

End if C=0 or CY=1

(DE)–(HL), DE ← DE–1, HL ← HL–1, C ← C–1

End if C=0 or CY=1

[Operands]

 Mnemonic Operands

CMPBKNC [DE+], [HL+]

[DE–], [HL–]

[Flags]

S Z AC P/V CY

× × × V ×

[Explanation]

• CMPBKNC compares the contents of the memory addressed by the HL register contents with the contents

of the memory addressed by the DE register contents, increments or decrements the DE and HL register

contents, and decrements the C register contents. CMPBKNC repeats these steps until the contents of the

memory addressed by the HL register become greater than the contents of the memory addressed by the

DE register as a result of the comparison or the C register is set to 0.

• When the instruction is executed, the contents of the memory areas addressed by the DE and HL register

contents do not change.

• If an interrupt or macro service request that can be acknowledged occurs during execution of the CMPBKNC

instruction, the instruction execution is interrupted and the interrupt or macro service is acknowledged.

When the interrupt is acknowledged, if the return address saved in the stack or R5 and R4 and the contents

of the DE, HL, and C registers used in the CMPBKNC instruction execution are not changed by the interrupt

service program, the interrupted CMPBKNC instruction execution is resumed when control is returned from

the interrupt. When the macro service is acknowledged, the CMPBKNC instruction execution is resumed

after completion of the macro service.

• The S, Z, AC, P/V, and CY flags change according to the last comparison (subtraction) executed by the

CMPBKNC instruction.

• When bit 7 is set to 1 as a result of the subtraction, the S flag is set to 1; otherwise, cleared to 0.

• When the subtraction result is 0, the Z flag is set to 1; otherwise, cleared to 0.

• If the subtraction operation generates a borrow into bit 3 out of bit 4, the AC flag is set to 1; otherwise, cleared

to 0.

• If the subtraction operation generates a borrow in bit 6 and does not generate a borrow in bit 7 (when an

underflow occurs by operation in the two’s complement format) or if the subtraction instruction does not

generate a borrow in bit 6 and generates a borrow in bit 7 (when an overflow occurs by operation in the two’s

complement format), the P/V flag is set to 1; otherwise, cleared to 0.

CMPBKNC

272

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

• If the subtraction operation generates a borrow in bit 7, the CY flag is set to 1; otherwise, cleared to 0.

[Description example]

MOV C, #4H

MOVW DE, #0FE00H

MOVW HL, #0FE70H

CMPBKNC [DE–], [HL–]

BC $LITTLE ; Compare 4-byte data starting at address FE00H with data starting at address FE70H

and branch to address LITTLE if the former 4-byte data is less than the latter data

273

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

6.23 CPU Control Instructions

The following CPU control instructions can be used:

MOV STBC, #byte ... 274

MOV WDM, #byte ... 275

SWRS ... 276

SEL RBn ... 277

SEL RBn, ALT ... 278

NOP ... 279

EI ... 280

DI ... 281

274

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Move

Set standby mode

[Instruction format] MOV STBC, #byte

[Operation] STBC ← byte

[Operands]

 Mnemonic Operands

MOV STBC, #byte

byte = 00H-FFH

[Flags]

S Z AC P/V CY

[Explanation]

• MOV STBC, #byte, which is a dedicated write instruction into the standby control register (STBC), writes

the immediate data specified in the second operand into the STBC register. Data can be written into the

STBC register only by executing the instruction.

• The instruction takes a special format. In the operation code of the instruction, in addition to immediate data

to be written, data resulting from negating the value of the immediate data must be provided. (See below.)

(It is automatically generated by the NEC assembler (RA78K3).)

• Format of operation code

0 0 0 0 1 0 0 1

1 1 0 0 0 0 0 0

← byte →

← byte →

• The CPU checks the immediate data to be written and the data provided by negating the immediate data,

and only when they are correct, writes the data; if they are not correct, the CPU does not write the data and

generates an OPE code trap interrupt.

[Description example]

MOV STBC, #2 ; Write 2 into STBC register (set STOP mode)

MOV STBC, #byte

275

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Move

Set watchdog timer

[Instruction format] MOV WDM, #byte

[Operation] WDM ← byte

[Operands]

 Mnemonic Operand

MOV WDM, #byte

byte = 00H-FFH

[Flags]

S Z AC P/V CY

[Explanation]

• MOV WDM, #byte, which is a dedicated write instruction into the watchdog timer mode register (WDM), writes

the immediate data specified in the second operand into the STBC register. Data can be written into the

WDM register only by executing the instruction.

• The instruction takes a special format. In the operation code of the instruction, in addition to immediate data

to be written, data resulting from negating the value of the immediate data must be provided. (See below.)

(It is automatically generated by the NEC assembler (RA78K3).)

• Format of operation code

0 0 0 0 1 0 0 1

1 1 0 0 0 0 1 0

← byte →

← byte →

• The CPU checks the immediate data to be written and the data provided by negating the immediate data,

and only when they are correct, writes the data; if they are not correct, the CPU does not write the data and

generates an OPE code trap interrupt.

[Description example]

MOV WDM, #0C0H ; Write 0C0H into WDM register

MOV WDM, #byte

276

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Switch Register Set

Switch register bit

[Instruction format] SWRS

[Operation] RSS ← RSS

[Operands] None

[Flags]

S Z AC P/V CY

[Explanation]

• SWRS inverts the register set selection flag (RSS) contents.

SWRS

277

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Select Register Bank

Select register bank

[Instruction format] SEL RBn

[Operation] RBS2-0 ← n, RSS ← 0 (n=0-7)

[Operands]

 Mnemonic Operand (RBn)

SEL RBn

[Flags]

S Z AC P/V CY

[Explanation]

• SEL RBn selects the register bank specified in the operand (RBn) as a new register bank used with the

instructions following the SEL RBn instruction.

• RBn ranges from RB0 to RB7.

[Description example]

SEL RB2 ; Select register bank 2 as a new register bank used with the instructions following SEL RBn

SEL RBn

278

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Select Register Bank

Select register bank

[Instruction format] SEL RBn, ALT

[Operation] RBS2-0 ← n, RSS ← 1 (n=0-7)

[Operands]

 Mnemonic Operand

SEL RBn, ALT

[Flags]

S Z AC P/V CY

[Explanation]

• SEL RBn, ALT selects the register bank specified in the operand (RBn) as a new register bank used with

the instructions following the SEL RBn instruction and further sets the register set selection flag (RSS) to

1.

• RBn ranges from RB0 to RB7.

SEL RBn, ALT

279

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

No Operation

No Operation

[Instruction format] NOP

[Operation] No Operation

[Operands] None

[Flags]

S Z AC P/V CY

[Explanation]

• NOP performs no operation and consumes two clocks.

NOP

280

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Enable interrupt

Enable interrupt

[Instruction format] EI

[Operation] IE ← 1 (Enable interrupt)

[Operands] None

[Flags]

S Z AC P/V CY

[Explanation]

• EI enables a maskable interrupt to be acknowledged (sets the interrupt request enable flag (IE) to 1).

• No interrupts or macro services are acknowledged between the EI instruction and its following one instruction.

• It is possible not to acknowledge a vectored interrupt by another source even if the instruction is executed.

For details, refer to “User’s Manual: Hardware” of each product.

EI

281

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

Disable interrupt

Disable interrupt

[Instruction format] DI

[Operation] IE ← 0 (Disable interrupt)

[Operands] None

[Flags]

S Z AC P/V CY

[Explanation]

• DI disables acknowledgement of a maskable interrupt by a vectored interrupt (clears the interrupt request

enable flag (IE) to 0).

• No interrupts or macro services are acknowledged between the DI instruction and its following one

instruction.

• For details of interrupt processing, refer to “User’s Manual: Hardware” of each product.

DI

282

CHAPTER 6 EXPLANATION OF INSTRUCTIONS

[MEMO]

283

CHAPTER 7 CAUTIONS ON USE

CHAPTER 7 CAUTIONS ON USE

This chapter collects cautions given in the preceding chapters. Use the chapter when designing application

products. The pages enclosed in parentheses indicate the pages on which the caution is given.

7.1 Cautions on CHAPTER 3 CPU ARCHITECTURE

(1) To make a word access to the main RAM area (FE00H-FEFFH) (containing stack handling), only even addresses

can be specified in operands. (p.30, 44, 48)

(2) The µPD78361A, 78362A, and 78P364A do not contain the CPU control word. (p.33, 34, 44)

(3) To make a word access to the main RAM area (FE00H-FEFFH) (containing stack handling), the access operation

varies depending on whether the reference address is even or odd. Therefore, if an access to an even address

and an access to an odd address are mixed, an error is caused to occur. Set only even reference addresses.

To execute a 16-bit data transfer instruction, specify even addresses in the operands. If an odd address is

specified, an error occurs in the assembler package (RA78K3). (p.35)

(4) Do not make a word access across the peripheral RAM area and the main RAM area. (p.35)

(5) Do not access addresses in which the special function registers are not mapped (except for external SFR area).

(p.39)

(6) The µPD78361A, 78362A, and 78P364A do not contain external SFR area. (p.39)

(7) The µPD78361A, 78362A, and 78P364A do not contain external memory area. (p.39)

(8) Vector table entries for RESET input, BRK instruction, and OPE code trap interrupt are fixed to 0000H, 003EH,

and 003CH respectively, and not affected by the TPF. (p.44)

(9) The µPD78356 enters the complete interrupt disable state during execution of a write access instruction to an

interrupt control register or program status word (PSW). In this state, nonmaskable interrupt requests and macro

service requests are not acknowledged and pending. (p.50)

284

CHAPTER 7 CAUTIONS ON USE

7.2 Cautions on CHAPTER 5 INSTRUCTION SET LIST

(1) When both the source and destination in the operand field are registers or saddr, saddrp as in MOV r, r1 or ADD

saddr, saddr, the codes are as follows: (p.94)

• when both are registers (or register pairs), the destination specification code precedes the source

specification code;

• when both are saddr, saddrp, offset data with the preceding 1-byte data specifying the source and the

following 1-byte data specifying the destination.

(2) If a special function register (SFR) mapped in FF00H-FF1FH is described as operand sfr, sfrp, short direct

addressing rather than SFR addressing is applied and operation code of an instruction having an operand saddr,

saddrp is generated. (p.95)

(3) The following series products are the same in the number of clocks at normal fetch and at high-speed fetch. See

the column “Normal fetch” in the clock list. (p.113)

µPD78356 Subseries, 78366 Subseries, 78372 Subseries

7.3 Cautions on CHAPTER 6 EXPLANATION OF INSTRUCTIONS

(1) If STBC or WDM is described as sfr to execute the MOV sfr, #byte instruction, a dedicated operation code different

from the instruction is generated. (p.140)

(2) The µPD78352A Subseries does not contain the multiplication and accumulation instruction with saturation

function. (p.170)

(3) The µPD78352A Subseries does not contain the correlation operation instruction. (p.173)

(4) To return from the interrupt service routine accompanying the BRK instruction or OPE code trap, be sure to use

the RETB instruction. If the RETI instruction is used, the interrupt control circuit does not operate normally. (p.213)

(5) To return from the interrupt service routine started by a BRKCS instruction, be sure to use the RETCSB instruction.

If the RETCS instruction is used, the interrupt control circuit does not operate normally. (p.251)

285

APPENDIX A TOOLS

APPENDIX A TOOLS

A.1 78K/III Series Common Tools

Language processors

78K/III Series RA78K/III is a relocatable assembler common to the 78K/III Series. Since it contains the

relocatable assembler macro function, the development efficiency can be improved. A structured assembler,

(RA78K3) which enables you to explicitly describe a program control structure, is also attached for

improving program productivity and maintenance.

Host machine
Ordering code

OS Distributed media (product name)

PC-9800 Series MS-DOSTM
3.5-inch 2HD µS5A13RA78K3

5-inch 2HD µS5A10RA78K3

IBM PC/ATTM

PC DOSTM
3.5-inch 2HC µS7B13RA78K3

and it’s compatibles 5-inch 2HD µS7B10RA78K3

HP9000 Series 700TM HP-UXTM DAT µS3P16RA78K3

SPARCstationTM SunOSTM

CGMT (QIC-24)
µS3K15RA78K3

NEWSTM NEWS-OSTM µS3R15RA78K3

78K/III Series CC78K/III is a C compiler common to the 78K/III Series. It is a program which converts

C compiler programs written in C language into object codes that can be executed by microcon-

(CC78K3) trollers. To use the compiler, the 78K/III Series relocatable assembler (RA78K3) is

required.

Host machine
Ordering code

OS Distributed media (product name)

PC-9800 Series MS-DOSTM
3.5-inch 2HD µS5A13CC78K3

5-inch 2HD µS5A10CC78K3

IBM PC/AT
PC DOS

3.5-inch 2HC µS7B13CC78K3

and it’s compatibles 5-inch 2HC µS7B10CC78K3

HP9000 Series 700 HP-UX DAT µS3P16CC78K3

SPARCstation SunOS
CGMT (QIC-24)

µS3K15CC78K3

NEWS NEWS-OS µS3R15CC78K3

Remark The operation of the relocatable assembler and C compiler is guaranteed only on the host machines

under the operating systems listed above.

286

APPENDIX A TOOLS

A.2 µPD78352A Subseries Tools

PROM write tools

PG-1500 PG-1500 is a PROM programmer which enables you to program single chip microcom-

puters containing PROM by stand-alone or host machine operation by connecting an

attached board and optional programmer adapter to PG-1500. It also enables you to

Hardware
program typical PROM devices of 256K bits to 1M bits.

PA-78P352G PROM program adapters required to program the µPD78P352 on a general-purpose

PA-78P352KK PROM programmer such as the PG-1500.

PA-78P352G for µPD78P352G

PA-78P352KK for µPD78P352KK

PG-1500 controller PG-1500 and a host machine are connected by a serial or parallel interface for controlling

the PG-1500 on the host machine.

Host machine
Ordering code

OS Distributed media (product name)
Software

PC-9800 Series MS-DOS
3.5-inch 2HD µS5A13PG1500

5-inch 2HD µS5A10PG1500

IBM PC/AT
PC DOS

3.5-inch 2HD µS7B13PG1500

and it’s compatibles 5-inch 2HC µS7B10PG1500

Remark The operation of the PG-1500 controller is guaranteed only on the host machines under the operating

systems listed above.

287

APPENDIX A TOOLS

Debugging tools (When using the IE controller)

IE-78350-R IE-78350-R is an in-circuit emulator that can be used to develop and debug application

systems. For debugging, connect a host machine to the in-circuit emulator.

IE-78350-R-EM1 IE-78350-R-EM1 is an I/O emulation board to emulate peripheral functions of input/

Hardware
output ports, etc., of the µPD78352A Subseries.

EP-78240GC-R Emulation probe for 64-pin QFP of the µPD78352A Subseries. Use the emulation probe

to connect IE-78350-R and target system.

One piece of conversion socket EV-9200GC-64 used for connection to the target system

EV-9200GC-64 is attached.

IE-78350-R control Program to control IE-78350-R on a host machine. Automatic execution of commands,

program etc., is enabled for more efficient debugging.

(IE controller)
Host machine

Ordering code

OS Distributed media (product name)
Software

PC-9800 Series MS-DOS
3.5-inch 2HD µS5A13IE8350

5-inch 2HD µS5A10IE78350

IBM PC/AT
PC DOS

3.5-inch 2HC µS7B13IE78350

and it’s compatibles 5-inch 2HC µS7B10IE78350

Remark The operation of the IE controller is guaranteed only on the host machines under the operating systems

listed above.

288

A
P

P
E

N
D

IX
 A

 T
O

O
LS

D
evelopm

ent tool configuration (W
hen using the IE

 controller)

Note The conversion socket is attached to the emulation probe.

Remarks 1. The host machine and PG-1500 can also be connected directly by RS-232-C for use.

2. Medium supplying software is represented by 3.5-inch floppy diskette in this figure.

PROM version product

Programmer adapter
+ +

PD78P352G PD78P352KK

PA-78P352G PA-78P352KK

PG-1500

RS-232-C

RS-232-C

IE-78350-R
in-circuit emulator
 +
IE-78350-R-EM1
I/O emulation board
(optional)

PROM programmer

Emulation probe

Conversion socket for connecting
emulation probe and target systemNote

Target system

+

EP-78240GC-R

EV-9200GC-64

µ µ

Software

Relocatable
assembler

C Compiler PG-1500
controller

IE controller

Host machine
PC-9800 Series,
IBM PC/AT,
EWS

289

APPENDIX A TOOLS

Debugging Tools (When using integrated debuggers)

IE-784000-R IE-78400-R is an in-circuit emulator that can be used to develop and debug application

systems. For debugging, connect a host machine to the in-circuit emulator.

IE-78350-R-EM-A IE-78355-R-EM-A is an emulation board to emulate peripheral functions such as

input/output ports on the target device.

IE-78350-R-EM1 IE-78350-R-EM1 is an I/O emulation board to emulate peripheral functions such as

input/output ports on the target device.

Hardware EP-78240GC-R Emulation probe for connecting IE-784000-R to the target system. One conversion

EV-9200GC-64 socket EV-9200GC-64 is attached to connect the EP-78350-R-EM1 to the target system.

IE-70000-98-IF-B Interface adapter and cable to use the PC-9800 series (except for a notebook computer)

as a host machine.

IE-70000-98N-IF Interface adapter and cable to use a notebook of the PC-9800 series as a host machine.

IE-70000-PC-IF-B Interface adapter and cable to use the IBM PC/AT computer as a host machine.

IE-78000-R-SV3 Interface board to use the EWS machine as a host machine.

Integrated debugger Program to control the in-circuit emulator for the 78K/III Series. This debugger is used

(ID78K3) combined with the device file (DF78350).

ID78K3 can debug the program at the source program level in the C language,

structured assembly language, or assembly language. In addition, ID78K3 can divide

the screen of the host machine and display a plenty of information at one time. This

enables an efficient debugging.

Host machine
Ordering code

OS Distributed media (Product name)

MS-DOS
PC-9800 Series + 3.5-inch 2HD µSAA13ID78K3

WindowsTM

IBM PC/AT
and it’s compatibles

PC DOS
µSAB13ID78K3

Software (Windows Japanese version)
+ 3.5-inch 2HC

IBM PC/AT Windows
and it’s compatibles µSBB13ID78K3
(Windows English version)

Device file This file contains the device-specific information. Use this file with the combination of

(DF78350) Assembler (RA78K3) and C Compiler (CC78K3).

Host machine
Ordering code

OS Distributed media (Product name)

PC-9800 Series MS-DOS
3.5-inch 2HD µS5A13DF78350

5-inch 2HD µS5A10DF78350

IBM PC/AT
PC DOS

3.5-inch 2HC µS7B13DF78350

and it compatibles 5-inch 2HC µS7B10DF78350

Remark The operation of the integrated debugger and device file is guaranteed only on the host machines under

the operating systems listed above.

290

A
P

P
E

N
D

IX
 A

 T
O

O
LS

D
evelopm

ent tool configuration (W
hen using the integrated debugger)

Note The conversion socket is attached to the emulation probe

Remarks 1. Host machine is represented by desktop personal computer.

2. Medium supplying software is represented by 3.5-inch floppy diskette in this figure.

Host machine
PC-9800 Series,
IBM PC/AT,
EWS

IE-70000-98-IF-B
IE-70000-98N-IF
IE-70000-PC-IF-B

Software

Relocatable
assembler

C Compiler PG-1500
controller

Integrated
debugger

Device file

PROM version product

Programmer adapter

PD78P352Gµ PD78P352KKµ

PA-78P352G PA-78P352KK

+ +

RS-232-C

PROM programmer
PG-1500

IE-784000-R
in-circuit emulator
 +
IE-78350-R-EM-A
emulation board
(optional)
 +
IE-78350-R-EM1
I/O emulation board
(optional)

Emulation probe

EP-78240GC-R

+
Conversion socket for connecting
emulation probe and target systemNote

EV-9200GC-64

Target system

291

APPENDIX A TOOLS

Evaluation Tools

The following evaluation tools (evaluation boards) are provided to evaluate the function of the µPD78352A

Subseries. The evaluation board enables you to easily evaluate the µPD78352A Subseries function. However,

application systems (application programs) cannot be developed by using the evaluation board. For this purpose,

development tools are required.

Caution EB-78350-98/PC is not a µPD78352A Subseries application system development tool.

Ordering code

(product name)
Host machine Function

The function of the µPD78352A Subseries can be easily evaluated by

connecting the evaluation tool to a host machine. Since the command

system of the products is compliant with the IE-78350-R command system,

easy movement to application system development process by IE-78350-R

can be made.

EB-78350-98 PC-9800 Series

EB-78350-PC IBM PC/AT

292

APPENDIX A TOOLS

A.3 µPD78356 Subseries Tools

PROM write tools

PG-1500 PG-1500 is a PROM programmer which enables you to program single chip microcom-

puters containing PROM by stand-alone or host machine operation by connecting an

attached board and optional programmer adapter to PG-1500. It also enables you to

program typical PROM devices of 256K bits to 4M bits.
Hardware

PA-78P356GC PROM program adapters required to program the µPD78P356 on a general-purpose

PA-78P356GD PROM programmer such as the PG-1500.

PA-78P356KP PA-78P356GC for µPD78P356GC

PA-78P356GD for µPD78P356GD

PA-78P356KP for µPD78P356KP

PG-1500 controller PG-1500 and a host machine are connected by a serial or parallel interface for control-

ling the PG-1500 on the host machine.

Host machine
Ordering code

Software OS Distributed media (product name)

PC-9800 Series MS-DOS
3.5-inch 2HD µS5A13PG1500

5-inch 2HD µS5A10PG1500

IBM PC/AT
PC DOS

3.5-inch 2HD µS7B13PG1500

and it’s compatibles 5-inch 2HC µS7B10PG1500

Remark The operation of the PG-1500 controller is guaranteed only on the host machines under the operating

systems listed above.

293

APPENDIX A TOOLS

Debugging tools (When using the IE controller)

IE-78350-R IE-78350-R is an in-circuit emulator that can be used to develop and debug application

systems. For debugging, connect a host machine to the in-circuit emulator.

IE-78355-R-EM1 IE-78355-R-EM1 is an I/O emulation board to emulate peripheral functions of input/output

ports, etc., of the µPD78356 Subseries.

EP-78355GC-R Emulation probe for 100-pin QFP of the µPD78356 Subseries. Use the emulation probe

to connect IE-78350-R and target system.

One piece of conversion socket TGC-100SDW used for connection to the target system
Hardware TGC-100SDW is attached.

EP-78355GD-R Emulation probe for 120-pin QFP of the µPD78356 Subseries. Use the emulation probe

to connect IE-78350-R and target system.

One piece of conversion socket EV-9200GD-120 used for connection to the target
EV-9200GD-120 system is attached.

EV-9501GC-100 By connecting to a 100-pin QFP conversion adapter EV-9501GC-100 (optional), 100-pin

+ QFP of the µPD78356 Subseries can also be developed. However, to connect to the

TGC-100SDW target system, use a conversion adapter TGC-100SDW (optional).

IE-78350-R control Program to control IE-78350-R on a host machine. Automatic execution of commands,

program etc., is enabled for more efficient debugging.

(IE controller)
Host machine

Ordering code

Software OS Distributed media (product name)

PC-9800 Series MS-DOS
3.5-inch 2HD µS5A13IE78355

5-inch 2HD µS5A10IE78355

IBM PC/AT
PC DOS

3.5-inch 2HC µS7B13IE78355

and it’s compatibles 5-inch 2HC µS7B10IE78355

Remarks 1. A conversion adapter TGC-100SDW is manufactured by TOKYO ELETECH Corporation. Consult

your local NEC representative when you order.

2. The operation of the IE controller is guaranteed only on the host machines under the operating

systems listed above.

294

APPENDIX A TOOLS

Development tool connection list

Conversion socket/

conversion adapter
Emulation probe/

EPROM product
In-circuit emulator

EP-78355GC-R

EP-78355GD-R

µPD78P356KP

(120-pin WQFN)

Conversion adapter

IE-78350-R
+

IE-78355-R-EM1

–

–

TGC-100SDW

Development tool

Target device

GC package

(100-pin QFP)

IE-78350-R
+

IE-78355-R-EM1GD package

(120-pin QFP)
µPD78P356KP

(120-pin WQFN)

EV-9501GC-100

EP-78355GD-R

EV-9200GD-120–

–

295

A
P

P
E

N
D

IX
 A

 T
O

O
LS

D
evelopm

ent tool configuration (W
hen using the integrated debugger)

Remarks 1. Host machine and PG-1500 can be directly connected by RS-232-C

2. Medium supplying software is represented by 3.5-inch floppy diskette in this figure.

Host machine
PC-9800 Series,
IBM PC/AT,
EWS

RS-232-C

Software

Relocatable
assembler

C Compiler PG-1500
controller

IE controller

PROM version product

Programmer adapter

PD78P356GCµ PD78P356KPµ

PA-78P356GC PA-78P356KP

+ +

PG-1500

IE-78350-R
in-circuit emulator
 +
IE-78355-R-EM1
I/O emulation board
(optional)

Emulation probe

EP-78355GD-R

+

Conversion socket or conversion adapter for connecting
emulation probe or target systemNote

EV-9200GD-120

Target system

PD78P356GDµ

PA-78P356GD

+

+

EP-78355GC-R

TGC-100SDW

EV-9501GC-100+TGC-100SDW

RS-232-C

PROM programmer

296

APPENDIX A TOOLS

Debugging Tools (When using integrated debuggers)

IE-784000-R IE-784000-R is an in-circuit emulator that can be used to develop and debug application

systems. For debugging, connect a host machine to the in-circuit emulator.

IE-78350-R-EM-A IE-78350-R-EM-A is an I/O emulation board to emulate peripheral functions such as

input/output ports on the target device.

IE-78355-R-EM1 IE-78355R-EM1 is an I/O emulation board to emulate peripheral functions such as

input/output ports on the target device.

EP-78355GC-R Emulation probe for 100-pin QFP to connect IE-784000-R to the target system. One

conversion socket TGC-100SDW is attached to connect the EP-78355-GC-R to the

TGC-100SDW target system.

Hardware EP-78355GD-R Emulation probe for 120-pin QFP to connect the µPD78356 Subseries to the target

EV-9200GD-120 system. One conversion socket EV-9200GD-120 is attached to connect the EP-78355-

EV-9501GC-100 GD-R to the target system. In addition, connecting to a 100-pin QFP conversion adapter

+ EV-9501GC-100 (optional) enables the development of 100-pin QFP of the µPD78356.

TGC-100SDW Use the conversion adapter TGC-100SDW (optional) to connect the target system.

IE-70000-98-IF-B Interface adapter to use the PC-9800 series (except for a notebook computer) as a host

machine.

IE-70000-98N-IF Interface adapter and cable to use a notebook of the PC-9800 series as a host machine.

IE-70000-PC-IF-B Interface adapter to use the IBM PC/AT computer as a host machine.

IE-78000-R-SV3 Interface adapter and cable to use the EWS machine as a host machine.

Integrated debugger Program to control the in-circuit emulator for the 78K/III Series. This debugger is used

(ID78K3) combined with the device file (DF78355).

ID78K3 can debug the program at the source program level in the C language, struc-

tured assembly language, or assembly language. In addition, ID78K3 can divide the

screen of the host machine and display a plenty of information at one time. This

enables an efficient debugging.

Host machine
Ordering code

OS Distributed media (Product name)

PC-9800 Series MS-DOS + Windows 3.5-inch 2HD µSAA13ID78K3

IBM PC/AT
and its compatibles µSAB13ID78K3

Software
(Windows Japanese version)

PC DOS + Windows 3.5-inch 2HC
IBM PC/AT
and its compatibles µSBB13ID78K3
(Windows English version)

Devices file This file contains the device-specific information. Use this file with the combination of

(DF78355) Assembler (RA78K3) and C Compiler (CC78K3).

Host machine
Ordering code

OS Distributed media (Product name)

PC-9800 Series MS-DOS
3.5-inch 2HD µS5A13DF78355

5-inch 2HD µS5A10DF78355

IBM PC/AT
PC DOS

3.5-inch 2HC µS7B13DF78355

and it compatibles 5-inch 2HC µS7B10DF78355

Remarks 1. A conversion adapter TGC-100SDW is manufactured by TOKYO ELETECH Corporation.

2. The operation of the integrated debugger and device file is guaranteed only on the host machines

under the operating systems listed above.

297

A
P

P
E

N
D

IX
 A

 T
O

O
LS

D
evelopm

ent tool configuration (W
hen using the integrated debugger)

Remarks 1. Host machine is represented by desktop personal computer.

2. Medium supplying software is represented by 3.5-inch floppy diskette in this figure.

RS-232-C

Host machine
PC-9800 Series,
IBM PC/AT,
EWS

Software

Relocatable
assembler

C Compiler PG-1500
controller

PROM version product

Programmer adapter

PD78P356GCµ PD78P356KPµ

PA-78P356GC PA-78P356KP

+ +

IE-784000-R
in-circuit emulator
 +
IE-78350-R-EM-A
emulation board
(optional)
 +
IE-78355-R-EM1
I/O emulation board
(optional)

Emulation probe

EP-78355GD-R

+

Conversion socket or conversion adapter for connecting
emulation probe and target systemNote

EV-9200GD-120

Target system

PD78P356GDµ

PA-78P356GD

+

+

EP-78355GC-R

TGC-100SDW

EV-9501GC-100+TGC-100SDW

PROM programmer
PG-1500

Integrated
debugger

Device file

IE-70000-98-IF-B
IE-70000-98N-IF
IE-70000-PC-IF-B

298

APPENDIX A TOOLS

A.4 µPD78366A Subseries Tools

PROM write tools

PG-1500 PG-1500 is a PROM programmer which enables you to program single chip microcom-

puters containing PROM by stand-alone or host machine operation by connecting an

attached board and optional programmer adapter to PG-1500. It also enables you to

program typical PROM devices of 256K bits to 4M bits.
Hardware

PA-78P364CW PROM program adapters required to program the µPD78P364A, 78P368A on a general-

PA-78P368GF purpose PROM programmer such as the PG-1500.

PA-78P368KL PA-78P364CW for µPD78P364ACW

PA-78P368GF for µPD78P368AGF

PA-78P368KL for µPD78P368AKL

PG-1500 controller PG-1500 and a host machine are connected by a serial or parallel interface for control-

ling the PG-1500 on the host machine.

Host machine
Ordering code

OS Distributed media (product name)
Software

PC-9800 Series MS-DOS
3.5-inch 2HD µS5A13PG1500

5-inch 2HD µS5A10PG1500

IBM PC/AT
PC DOS

3.5-inch 2HD µS7B13PG1500

and it’s compatibles 5-inch 2HC µS7B10PG1500

Remark The operation of the PG-1500 controller is guaranteed only on the host machines under the operating

systems listed above.

299

APPENDIX A TOOLS

Debugging tools (When using the IE controller)

IE-78350-R IE-78350-R is an in-circuit emulator that can be used to develop and debug application

systems. For debugging, connect a host machine to the in-circuit emulator.

IE-78365-R-EM1 IE-78365-R-EM1 is an I/O emulation board to emulate peripheral functions of input/output

ports, etc., of the µPD78366A Subseries.

Hardware EP-78327CW-R Emulation probe for 64-pin shrink DIP of the µPD78366A Subseries. Use the emulation

probe to connect IE-78350-R and target system.

EP-78365GF-R Emulation probe for 80-pin QFP of the µPD78366A Subseries. Use the emulation probe

to connect IE-78350-R and target system.

One piece of conversion socket EV-9200G-80 used for connection to the target system

EV-9200G-80 is attached.

IE-78350-R control Program to control IE-78350-R on a host machine. Automatic execution of commands,

program etc., is enabled for more efficient debugging.

(IE controller)
Host machine

Ordering code

OS Distributed media (product name)
Software

PC-9800 Series MS-DOS
3.5-inch 2HD µS5A13IE78365A

5-inch 2HD µS5A10IE78365A

IBM PC/AT
PC DOS

3.5-inch 2HC µS7B13IE78365A

and it’s compatibles 5-inch 2HC µS7B10IE78365A

Remark The operation of the IE controller is guaranteed only on the host machines under the operating systems

listed above.

300

A
P

P
E

N
D

IX
 A

 T
O

O
LS

D
evelopm

ent tool configuration (W
hen using the IE

 controller)

Note The EV-9200G-80 is attached to the emulation probe. Use the socket for SDIP which is sold on the market.

Remarks 1. The host machine and PG-1500 can also be connected directly by RS-232-C for use.

2. Medium supplying software is represented by 3.5-inch floppy diskette in this figure.

PROM version product

Programmer adapter
+ +

PA-78P368GF PA-78P368KL

PG-1500

RS-232-C

RS-232-C
IE-78350-R
in-circuit emulator
 +
IE-78365-R-EM1
I/O emulation board
(optional)

PROM
programmer

Emulation probe

Socket for connecting
emulation probe and target systemNote

Target system

+

EP-78365GF-R

EV-9200G-80

PD78P368AKL PD78P364ACWµ µPD78P368AGFµ
+

PA-78P364CW

EP-78327CW-R

+

SDIP Socket

Software

Relocatable
assembler

C compiler PG-1500
controller

IE controller

Host machine
PC-9800 series,
IBM PC/AT,
EWS

301

APPENDIX A TOOLS

Debugging Tools (When using integrated debuggers)

IE-784000-R IE-784000-R is an in-circuit emulator that can be used to develop and debug application

systems. For debugging, connect a host machine to the in-circuit emulator.

IE-78350-R-EM-A IE-78350-R-EM-A is an I/O emulation board to emulate peripheral functions such as input/

output ports on the target device.

IE-78365-R-EM1 IE-78365R-EM1 is an I/O emulation board to emulate peripheral functions such as input/

output ports on the target device.

EP-78327CW-R Emulation probe for 64-pin shrink DIP to connect IE-78400-R to the target system.

Hardware EP-78365GF-R Emulation probe for 80-pin QFP to connect IE-784000-R to the target system.

One conversion socket EV-9200G-80 is attached to connect the EP-78365GF-R to the

EV-9200G-80 target system.

IE-70000-98-IF-B Interface adapter to use the PC-9800 series (except for a notebook computer) as a host

machine.

IE-70000-98N-IF Interface adapter and cable to use a notebook of the PC-9800 series as a host machine.

IE-70000-PC-IF-B Interface adapter to use the IBM PC/AT computer as a host machine.

IE-78000-R-SV3 Interface adapter and cable to use the EWS machine as a host machine.

Integrated debugger Program to control the in-circuit emulator for the 78K/III Series. This debugger is used

(ID78K3) combined with the device file (DF78365).

ID78K3 can debug the program at the source program level in the C language, struc-

tured assembly language, or assembly language. In addition, ID78K3 can divide the

screen of the host machine and display a plenty of information at one time. This

enables an efficient debugging.

Host machine
Ordering code

OS Distributed media (Product name)

MS-DOS
PC-9800 Series + 3.5-inch 2HD µSAA13ID78K3

Windows

IBM PC/AT
and its compatibles

PC DOS
µSAB13ID78K3

Software (Windows Japanese version)
+ 3.5-inch 2HC

IBM PC/AT Windows
and its compatibles µSBB13ID78K3
(Windows English version)

Devices file This file contains the device-specific information. Use this file with the combination of

(DF78365) Assembler (RA78K3) and C Compiler (CC78K3).

Host machine
Ordering code

OS Distributed media (Product name)

PC-9800 Series MS-DOS
3.5-inch 2HD µS5A13DF78365

5-inch 2HD µS5A10DF78365

IBM PC/AT
PC DOS

3.5-inch 2HC µS7B13DF78365

and it compatibles 5-inch 2HC µS7B10DF78365

Remark The operation of the integrated debugger and device file is guaranteed only on the host machines under

the operating systems listed above.

302

A
P

P
E

N
D

IX
 A

 T
O

O
LS

D
evelopm

ent tool configuration (W
hen using the integrated debugger)

Note EV-9200G-80 is attached to the emulation probe. Use the socket for SDIP which is sold on the market.

Remarks 1. Host machine is represented by desktop personal computer.

2. Medium supplying software is represented by 3.5-inch floppy diskette in this figure.

RS-232-C

Host machine
PC-9800 Series,
IBM PC/AT,
EWS

Software

Relocatable
assembler

C Compiler PG-1500
controller

PROM version product

Programmer adapter

PD78P368AGFµ PD78P364ACWµ

PA-78P368GF PA-78P364CW

+ +

IE-784000-R
in-circuit emulator
 +
IE-78350-R-EM-A
emulation board
(optional)
 +
IE-78365-R-EM1
I/O emulation board
(optional)

Emulation probe

EP-78365GF-R

+

Socket for connecting emulation probe and target systemNote

EV-9200G-80

Target system

PD78P368AKLµ

PA-78P368KL

+

+

EP-78327CW-R

Socket for SDIP

PROM programmer
PG-1500

Integrated
debugger

Device file

IE-70000-98-IF-B
IE-70000-98N-IF
IE-70000-PC-IF-B

303

APPENDIX A TOOLS

A.5 µPD78372 Subseries Tools

PROM write tools

PG-1500 PG-1500 is a PROM programmer which enables you to program single chip microcom-

puters containing PROM by stand-alone or host machine operation by connecting an

attached board and optional programmer adapter to PG-1500. It also enables you to

program typical PROM devices of 256K bits to 4M bits.
Hardware

PA-78P372GC PROM program adapters required to program the µPD78P372(A) on a general-purpose

PA-78P372GF PROM programmer such as the PG-1500.

PA-78P372KL PA-78P372GC for µPD78P372GC(A)

PA-78P372GF for µPD78P372GF(A)

PA-78P372KL for µPD78P372KL

PG-1500 controller PG-1500 and a host machine are connected by a serial or parallel interface for control-

ling the PG-1500 on the host machine.

Host machine
Ordering code

OS Distributed media (product name)
Software

PC-9800 Series MS-DOS
3.5-inch 2HD µS5A13PG1500

5-inch 2HD µS5A10PG1500

IBM PC/AT
PC DOS

3.5-inch 2HD µS7B13PG1500

and it’s compatibles 5-inch 2HC µS7B10PG1500

Remark The operation of the PG-1500 controller is guaranteed only on the host machines under the operating

systems listed above.

304

APPENDIX A TOOLS

Debugging tools (When using the IE controller)

IE-78350-R IE-78350-R is an in-circuit emulator that can be used to develop and debug application

systems. For debugging, connect a host machine to the in-circuit emulator.

IIE-78370-R-EM1 IE-78370-R-EM1 is an I/O emulation board to emulate peripheral functions of input/output

ports, etc., of the µPD78372 Subseries.

EP-78370GC-R Emulation probe for 80-pin QFP (14 × 14 mm) of the µPD78372 Subseries. Use the

Hardware emulation probe to connect IE-78350-R to the target system.

One piece of conversion socket EV-9200GC-80 used for connection to the target system

EV-9200GC-80 is attached.

EP-78365GF-R Emulation probe for 80-pin QFP (14 × 20 mm) of the µPD78372 Subseries. Use the

emulation probe to connect IE-78350-R to the target system.

One piece of conversion socket EV-9200G-80 used for connection to the target system

EV-9200G-80 is attached.

IE-78350-R control Program to control IE-78350-R on a host machine. Automatic execution of commands,

program etc., is enabled for more efficient debugging.

(IE controller)
Host machine

Ordering code

OS Distributed media (product name)
Software

PC-9800 Series MS-DOS
3.5-inch 2HD µS5A13IE78370

5-inch 2HD µS5A10IE78370

IBM PC/AT
PC DOS

3.5-inch 2HC µS7B13IE78370

and it’s compatibles 5-inch 2HC µS7B10IE78370

Remark The operation of the IE controller is guaranteed only on the host machines under the operating systems

listed above.

305

A
P

P
E

N
D

IX
 A

 T
O

O
LS

Note The conversion socket is attached to the emulation probe.

Remarks 1. Host machine and PG-1500 can also be directly connected by RS-232-C.

2. Medium supplying software is represented by 3.5-inch floppy diskette in this figure.

D
evelopm

ent tool configuration (W
hen using the IE

 controller)

Host machine
PC-9800 Series,
IBM PC/AT,
EWS

RS-232-C

Software

Relocatable
assembler

C Compiler PG-1500
controller

IE controller

PROM version product

Programmer adapter

PD78P372GC(A)µ PD78P372KLµ

PA-78P372GC PA-78P372KL

+ +

PG-1500

IE-78350-R
in-circuit emulator
 +
IE-78370-R-EM1
I/O emulation board
(optional)

PD78P372GF(A)µ

PA-78P372GF

+

RS-232-C

PROM programmer

Emulation probe

EP-78370GC-R
EP-78365GF-R

+
Conversion socket for connecting
emulation probe and target systemNote

EV-9200GC-80
EV-9200G-80

Target system

306

APPENDIX A TOOLS

Debugging Tools (When using integrated debuggers)

IE-784000-R IE-784000-R is an in-circuit emulator that can be used to develop and debug application

systems. For debugging, connect a host machine to the in-circuit emulator.

IE-78350-R-EM-A IE-78350-R-EM-A is an I/O emulation board to emulate peripheral functions such as input/

output ports on the target device.

IE-78370-R-EM1 IE-78370R-EM1 is an I/O emulation board to emulate peripheral functions such as input/

output ports on the target device.

EP-78370GC-R Emulation probe for connecting IE-784000-R to the target system. One conversion socket

Hardware EV-9200GC-80 EV-9200GC-80 is attached to connect the EP-78370GC-R to the target system.

EP-78365GF-R Emulation probe for connecting IE-784000-R to the target system. One conversion socket

EV-9200G-80 EV-9200G-80 is attached to connect the EP-78365GF-R to the target system.

IE-70000-98-IF-B Interface adapter to use the PC-9800 series (except for a notebook computer) as a host

machine.

IE-70000-98N-IF Interface adapter and cable to use a notebook of the PC-9800 series as a host machine.

IE-70000-PC-IF-B Interface adapter to use the IBM PC/AT computer as a host machine.

IE-78000-R-SV3 Interface adapter and cable to use the EWS machine as a host machine.

Integrated debugger Program to control the in-circuit emulator for the 78K/III Series. This debugger is used

(ID78K3) combined with the device file (DF78370).

ID78K3 can debug the program at the source program level in the C language, structured

assembly language, or assembly language. In addition, ID78K3 can divide the screen of

the host machine and display a plenty of information at one time. This enables an efficient

debugging.

Host machine
Ordering code

OS Distributed media (Product name)

MS-DOS
PC-9800 Series + 3.5-inch 2HD µSAA13ID78K3

Windows

IBM PC/AT
and its compatibles

PC DOS
µSAB13ID78K3

Software (Windows Japanese version)
+ 3.5-inch 2HC

IBM PC/AT Windows
and its compatibles µSBB13ID78K3
(Windows English version)

Devices file This file contains the device-specific information. Use this file with the combination of

(DF78370) Assembler (RA78K3) and C Compiler (CC78K3).

Host machine
Ordering code

OS Distributed media (Product name)

PC-9800 Series MS-DOS
3.5-inch 2HD µS5A13DF78370

5-inch 2HD µS5A10DF78370

IBM PC/AT
PC DOS

3.5-inch 2HC µS7B13DF78370

and it compatibles 5-inch 2HC µS7B10DF78370

Remark The operation of the integrated debugger and device file is guaranteed only on the host machines under

the operating systems listed above.

307

A
P

P
E

N
D

IX
 A

 T
O

O
LS

D
evelopm

ent tool configuration (W
hen using the integrated debugger)

Note EV-9200G-80 is attached to the emulation probe.

Remarks 1 . Host machine is represented by desktop personal computer.

2. Medium supplying software is represented by 3.5-inch floppy diskette in this figure.

Host machine
PC-9800 Series,
IBM PC/AT,
EWS

Software

Relocatable
assembler

C Compiler PG-1500
controller

Integrated
debugger

PROM version product

Programmer adapter

PD78P372GC(A)µ PD78P372KLµ

PA-78P372GC PA-78P372KL

+ +

IE-784000-R
in-circuit emulator
 +
IE-78350-R-EM-A
emulation board
(optional)
 +
IE-78370-R-EM1
I/O emulation board
(optional)

PD78P372GF(A)µ

PA-78P372GF

+

RS-232-C

PROM programmer
PG-1500

Emulation probe

EP-78370GC-R
EP-78365GF-R

+
Conversion socket for connecting
emulation probe and target systemNote

EV-9200GC-80
EV-9200G-80

Target system

IE-70000-98-IF-B
IE-70000-98N-IF
IE-70000-PC-IF-B

Device file

308

APPENDIX A TOOLS

A.6 Embedded Software

The following embedded software is available to perform the more efficient development or maintenance of the

application program.

Real-time OS

Real-time OS The RX78K/III is intended to realize multi-task environments in areas where real-time

(RX78K/III)Note features are required. This OS can improve the performance of the entire system by

allocating the idle time of the CPU to the other processing.

The RX78K/III supplies the system call conforming to the µITRON specifications.

RX78K/III package provides a tool (configurator) that is used to create the nucleus of

the RX78K/III and several information tables.

Host machine
Ordering code

OS Distributed media (Product name)

PC-9800 Series MS-DOS
3.5-inch 2HD Undefined

5-inch 2HD Undefined

IBM PC/AT
PC DOS

3.5-inch 2HC Undefined

and its compatibles 5-inch 2HC Undefined

Note Under development

Caution When purchasing the RX78K/III, fill out the necessary forms and conclude a contract with NEC.

Remark RX78K/III Real-time OS requires the RA78K3 assembler package (sold separately).

309

APPENDIX A TOOLS

Fuzzy Inference Development Support System

Fuzzy knowledge data creation tool This program supports input of fuzzy knowledge data (fuzzy rule and membership

(FE9000, FE9200) function), editing (edit), and evaluation (simulation).

Host machine
Ordering code

OS Distributed media (Product name)

PC-9800 Series MS-DOS
3.5-inch 2HD µS5A13FE9000

5-inch 2HD µS5A10FE9000

IBM PC/AT PC DOS 3.5-inch 2HC µS7B13FE9200

and its compatibles Windows 5-inch 2HC µS7B10FE9200

Translator This program converts fuzzy knowledge data obtained by using fuzzy knowledge data

(FT78K3)Note preparation tool to RA78K3 assembler source program.

Host machine
Ordering code

OS Distributed media (Product name)

PC-9800 Series MS-DOS
3.5-inch 2HD µS5A13FT78K3

5-inch 2HD µS5A10FT78K3

IBM PC/AT
PC DOS

3.5-inch 2HC µS7B13FT78K3

and its compatibles 5-inch 2HC µS7B10FT78K3

Fuzzy inference module This program executes fuzzy inference by linking fuzzy knowledge data converted by

(FI78K/III)Note translator.

Host machine
Ordering code

OS Distributed media (Product name)

PC-9800 Series MS-DOS
3.5-inch 2HD µS5A13FI78K3

5-inch 2HD µS5A10FI78K3

IBM PC/AT
PC DOS

3.5-inch 2HC µS7B13FI78K3

and its compatibles 5-inch 2HC µS7B10FI78K3

Fuzzy inference debugger This software supports evaluating and adjusting fuzzy knowledge data at hardware

(FD78K/III) level by using in-circuit emulator.

Host machine
Ordering code

OS Distributed media (Product name)

PC-9800 Series MS-DOS
3.5-inch 2HD µS5A13FD78K3

5-inch 2HD µS5A10FD78K3

IBM PC/AT
PC DOS

3.5-inch 2HC µS7B13FD78K3

and its compatibles 5-inch 2HC µS7B10FD78K3

Note Under development

+

310

APPENDIX A TOOLS

[MEMO]

311

APPENDIX B INSTRUCTION INDEX (MNEMONICS BY FUNCTION)

APPENDIX B INSTRUCTION INDEX (MNEMONICS BY FUNCTION)

• 8-bit data transfer instructions

MOV ... 140

XCH ... 141

• 16-bit data transfer instructions

MOVW ... 143

XCHW ... 144

• 8-bit operation instructions

ADD ... 146

ADDC ... 147

SUB ... 149

SUBC ... 150

AND ... 152

OR ... 153

XOR ... 154

CMP ... 155

• 16-bit operation instructions

ADDW ... 157

SUBW ... 158

CMPW ... 159

• Multiplication and division instructions

MULU ... 161

DIVUW ... 162

MULUW ... 163

DIVUX ... 164

• Signed multiplication instruction

MULW ... 166

• Multiplication and accumulation instruction

MACW ... 168

• Multiplication and accumulation instruction with

saturation function

MACSW ... 171

• Correlation operation instruction

SACW ... 174

• Table shift instruction

MOVTBLW ... 177

• Increment and decrement instructions

INC ... 179

DEC ... 180

INCW ... 181

DECW ... 182

• Shift and rotate instructions

ROR ... 184

ROL ... 185

RORC ... 186

ROLC ... 187

SHR ... 188

SHL ... 189

SHRW ... 190

SHLW ... 191

ROR4 ... 192

ROL4 ... 193

• BCD adjustment instructions

ADJBA ... 195

ADJBS ... 196

• Data conversion instruction

CVTBW ... 198

• Bit manipulation instructions

MOV1 ... 200

AND1 ... 201

OR1 ... 202

XOR1 ... 203

SET1 ... 204

CLR1 ... 205

NOT1 ... 206

• Call and return instructions

CALL ... 237

CALLF ... 238

CALLT ... 239

BRK ... 240

RET ... 241

RETB ... 242

RETI ... 243

312

APPENDIX B INSTRUCTION INDEX (MNEMONICS BY FUNCTION)

• Stack handling instructions

PUSH ... 216

PUSHU ... 217

POP ... 218

POPU ... 219

MOVW SP, src ... 220

MOVW AX, SP ... 220

INCW SP ... 221

DECW SP ... 222

• Special functions

CHKL ... 223

CHKLA ... 225

• Unconditional branch instructions

BR ... 227

• Conditional branch instructions

BC ... 229

BL ... 229

BNC ... 230

BNL ... 230

BZ ... 231

BE ... 231

BNZ ... 232

BNE ... 232

BV ... 233

BPE ... 233

BNV ... 234

BPO ... 234

BN ... 235

BP ... 236

BGT ... 237

BGE ... 238

BLT ... 239

BLE ... 240

BH ... 241

BNH ... 242

BT ... 243

BF ... 244

BTCLR ... 245

BFSET ... 246

DBNZ ... 247

• Context switching instructions

BRKCS ... 249

RETCS ... 250

RETCSB ... 251

• String instructions

MOVM ... 253

MOVBK ... 254

XCHM ... 255

XCHBK ... 256

CMPME ... 257

CMPBKE ... 259

CMPMNE ... 261

CMPBKNE ... 263

CMPMC ... 265

CMPBKC ... 267

CMPMNC ... 269

CMPBKNC ... 271

• CPU control instructions

MOV STBC, #byte ... 274

MOV WDM, #byte ... 275

SWRS ... 276

SEL RBn ... 277

SEL RBn, ALT ... 278

NOP ... 279

EI ... 280

DI ... 281

313

APPENDIX C INSTRUCTION INDEX (MNEMONICS BY ALPHABETICAL ORDER)

APPENDIX C INSTRUCTION INDEX (MNEMONICS BY ALPHABETICAL ORDER)

[A]

ADD ... 146

ADDC ... 147

ADDW ... 157

ADJBA ... 195

ADJBS ... 196

AND ... 152

AND1 ... 201

[B]

BC ... 229

BE ... 231

BF ... 244

BFSET ... 246

BGE ... 238

BGT ... 237

BH ... 241

BL ... 229

BLE ... 240

BLT ... 239

BN ... 235

BNC ... 230

BNE ... 232

BNH ... 242

BNL ... 230

BNV ... 234

BNZ ... 232

BP ... 236

BPE ... 233

BPO ... 234

BR ... 227

BRK ... 240

BRKCS ... 249

BT ... 243

BTCLR ... 245

BV ... 233

BZ ... 231

[C]

CALL ... 237

CALLF ... 238

CALLT ... 239

CHKL ... 223

CHKLA ... 225

CLR1 ... 205

CMP ... 155

CMPBKC ... 267

CMPBKE ... 259

CMPBKNC ... 271

CMPBKNE ... 263

CMPMC ... 265

CMPME ... 257

CMPMNC ... 269

CMPMNE ... 261

CMPW ... 159

CVTBW ... 198

[D]

DBNZ ... 247

DEC ... 180

DECW ... 182

DECW SP ... 222

DI ... 281

DIVUW ... 162

DIVUX ... 164

[E]

EI ... 280

[I]

INC ... 179

INCW ... 181

INCW SP ... 221

[M]

MACSW ... 171

MACW ... 168

MOV ... 140

MOV STBC, #byte ... 274

MOV WDM, #byte ... 275

MOV1 ... 200

MOVBK ... 254

MOVM ... 253

MOVTBLW ... 177

MOVW ... 143

MOVW AX, SP ... 220

MOVW SP, src ... 220

314

APPENDIX C INSTRUCTION INDEX (MNEMONICS BY ALPHABETICAL ORDER)

MULU ... 161

MULUW ... 163

MULW ... 166

[N]

NOP ... 279

NOT1 ... 206

[O]

OR ... 153

OR1 ... 202

[P]

POP ... 218

POPU ... 219

PUSH ... 216

PUSHU ... 217

[R]

RET ... 241

RETB ... 242

RETCS ... 250

RETCSB ... 251

RETI ... 243

ROL ... 185

ROL4 ... 193

ROLC ... 187

ROR ... 184

ROR4 ... 192

RORC ... 186

[S]

SACW ... 174

SEL RBn ... 277

SEL RBn, ALT ... 278

SET1 ... 204

SHL ... 189

SHLW ... 191

SHR ... 188

SHRW ... 190

SUB ... 149

SUBC ... 150

SUBW ... 158

SWRS ... 276

[X]

XCH ... 141

XCHBK ... 256

XCHM ... 255

XCHW ... 144

XOR ... 154

XOR1 ... 203

315

APPENDIX D REVISION HISTORY

APPENDIX D REVISION HISTORY

The following table shows the revision history. The chapters appearing in the revised-chapter column indicate those

of the corresponding edition.

Version Major revisions from previous version Range

Second Adding the following products Throughout

µPD78356(A), 78P356(A), 78361A, 78362A, 78P364A, 78363A, 78365A, 78366A,

78368A, 78P368A, 78372(A), 78372(A1), 78372(A2), 78P372(A), 78P372(A1),

78P372(A2)

Deleting the following products

µPD78355A, 78356A, 78P356A, 78362, 78P364, 78365, 78366, 78P368, 78370,

78372, 78P372

Changing the status of the following products from developing to completed

µPD78355, 78356, 78P356

Adding the description about the debugging tools when using the integrated APPENDIX A TOOLS

debugger

Adding Section A.6 Embedded Software

316

APPENDIX D REVISION HISTORY

[MEMO]

Although NEC has taken all possible steps
to ensure that the documentation supplied
to our customers is complete, bug free
and up-to-date, we readily accept that
errors may occur. Despite all the care and
precautions we've taken, you may
encounter problems in the documentation.
Please complete this form whenever
you'd like to report errors or suggest
improvements to us.

Hong Kong, Philippines, Oceania
NEC Electronics Hong Kong Ltd.
Fax: +852-2886-9022/9044

Korea
NEC Electronics Hong Kong Ltd.
Seoul Branch
Fax: 02-528-4411

Taiwan
NEC Electronics Taiwan Ltd.
Fax: 02-719-5951

Address

North America
NEC Electronics Inc.
Corporate Communications Dept.
Fax: 1-800-729-9288

1-408-588-6130

Europe
NEC Electronics (Europe) GmbH
Technical Documentation Dept.
Fax: +49-211-6503-274

South America
NEC do Brasil S.A.
Fax: +55-11-889-1689

Asian Nations except Philippines
NEC Electronics Singapore Pte. Ltd.
Fax: +65-250-3583

Japan
NEC Corporation
Semiconductor Solution Engineering Division
Technical Information Support Dept.
Fax: 044-548-7900

I would like to report the following error/make the following suggestion:

Document title:

Document number: Page number:

Thank you for your kind support.

If possible, please fax the referenced page or drawing.

Excellent Good Acceptable PoorDocument Rating

Clarity

Technical Accuracy

Organization

CS 96.8

Name

Company

From:

Tel. FAX

Facsimile Message

	COVER
	Major Revisions In This Edition
	PREFACE
	CHAPTER 1 GENERAL DESCRIPTION
	1.1 78K/III Series Product Development
	1.2 uPD78352A Subseries Products Overview
	1.2.1 Features
	1.2.2 Application fields
	1.2.3 Ordering information and quality grade
	1.2.4 Function outline
	1.2.5 Block diagram

	1.3 Outline of uPD78356 Subseries Products
	1.3.1 Features
	1.3.2 Application fields
	1.3.3 Ordering information and quality grade
	1.3.4 Function outline
	1.3.5 Block diagram

	1.4 uPD78366 Subseries Products Overview
	1.4.1 Features
	1.4.2 Application fields
	1.4.3 Ordering information and quality grade
	1.4.4 Function outline (uPD78361A, 78362A, 78P364A)
	1.4.5 Function outline (uPD78363A, 78365A, 78366A, 78368A, 78P368A)
	1.4.6 Block diagram (uPD78361A, 78362A, 78P364A)
	1.4.7 Block diagram (uPD78363A, 78365A, 78366A, 78368A, 78P368A)

	1.5 uPD78372 Subseries Products Overview
	1.5.1 Features
	1.5.2 Application fields
	1.5.3 Ordering information and quality grade
	1.5.4 Function outline
	1.5.5 Block diagram

	CHAPTER 2 TARGET PRODUCT LIST
	CHAPTER 3 CPU ARCHITECTURE
	3.1 Memory Space
	3.1.1 Vector table area
	3.1.2 CALLT instruction table area
	3.1.3 CALLF instruction entry area
	3.1.4 Internal RAM area
	3.1.5 Special function register area
	3.1.6 External memory area

	3.2 Processor Registers
	3.2.1 Control registers
	3.2.2 General-purpose registers
	3.2.3 Special function registers (SFRs)

	3.3 Data Memory Addressing
	3.3.1 General-purpose register addressing
	3.3.2 Short direct addressing
	3.3.3 Special function register (SFR) addressing

	3.4 Interrupt Function
	3.4.1 Interrupt request types
	3.4.2 Interrupt processing modes
	3.4.3 Macro service function
	3.4.4 Context switching function
	3.4.5 Interrupt execution rates
	3.4.6 Control registers

	CHAPTER 4 ADDRESSING
	4.1 Instruction Addressing
	4.1.1 Relative addressing
	4.1.2 Immediate addressing
	4.1.3 Table indirect addressing
	4.1.4 Register addressing
	4.1.5 Register indirect addressing

	4.2 Operand Addressing
	4.2.1 Register addressing
	4.2.2 Immediate addressing
	4.2.3 Direct addressing
	4.2.4 Short direct addressing
	4.2.5 Special function register (SFR) addressing
	4.2.6 Short direct memory indirect addressing
	4.2.7 Register indirect addressing
	4.2.8 Based addressing
	4.2.9 Indexed addressing
	4.2.10 Based indexed addressing

	CHAPTER 5 INSTRUCTION SET LIST
	5.1 List of Operations
	5.1.1 Operand identifier and description
	5.1.2 Legend
	5.1.3 Notational symbols in flag operation field
	5.1.4 Instruction set differences among 78K/III Series products
	5.1.5 Operations of basic instructions

	5.2 Instruction Codes
	5.2.1 Symbols of instruction codes
	5.2.2 Instruction codes in various memory addressing modes
	5.2.3 List of instruction codes

	5.3 Number of Clocks of the Instructions
	5.3.1 Description of clock columns
	5.3.2 Numbers of clocks

	CHAPTER 6 EXPLANATION OF INSTRUCTIONS
	6.1 8-Bit Data Transfer Instructions
	6.2 16-Bit Data Transfer Instructions
	6.3 8-Bit Operation Instructions
	6.4 16-Bit Operation Instructions
	6.5 Multiplication and Division Instructions
	6.6 Signed Multiplication Instruction
	6.7 Multiplication and Accumulation Instruction
	6.8 Multiplication and Accumulation Instruction With Saturation Function
	6.9 Correlation Operation Instruction
	6.10 Table Shift Instruction
	6.11 Increment and Decrement Instructions
	6.12 Shift and Rotate Instructions
	6.13 BCD Adjustment Instruction
	6.14 Data Conversion Instruction
	6.15 Bit Manipulation Instructions
	6.16 Call and Return Instructions
	6.17 Stack Handling Instructions
	6.18 Special Instructions
	6.19 Unconditional Branch Instruction
	6.20 Conditional Branch Instructions
	6.21 Context Switching Instructions
	6.22 String Instructions
	6.23 CPU Control Instructions

	CHAPTER 7 CAUTIONS ON USE
	7.1 Cautions on CHAPTER 3 CPU ARCHITECTURE
	7.2 Cautions on CHAPTER 5 INSTRUCTION SET LIST
	7.3 Cautions on CHAPTER 6 EXPLANATION OF INSTRUCTIONS

	APPENDIX A TOOLS
	A.1 78K/III Series Common Tools
	A.2 uPD78352A Subseries Tools
	A.3 uPD78356 Subseries Tools
	A.4 uPD78366A Subseries Tools
	A.5 uPD78372 Subseries Tools
	A.6 Embedded Software

	APPENDIX B INSTRUCTION INDEX (MNEMONICS BY FUNCTION)
	APPENDIX C INSTRUCTION INDEX (MNEMONICS BY ALPHABETICAL ORDER)
	APPENDIX D REVISION HISTORY

