To our customers,

Old Company Name in Catalogs and Other Documents

On April 1!, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

LENESAS

8.

10.

11.

12.

Notice

All information included in this document is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,

especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

USER'S MANUAL

wPD78138

8-BIT SINGLE-CHIP MICROCOMPUTER

«PD78134A
«#PD78136
+PD78138

«PD78P138

Document No. IEU—1324B

(0. D. No. IEU—740C)
Date Published July 1993 P
Printed in Japan

USER'S MANUAL NEC

+PD78138

8-BIT SINGLE-CHIP MICROCOMPUTER

#PD78134A
+#PD78136
#PD78138

+PD78P138

®© NEC Corporation 1991

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

10

11

12

13

14

15

16

17

APPENDIXES

GENERAL ...ttt iieinaneeanoeansoannsnneseaanns 1-1
PIN FUNCTIONS ...ttt iinacasinmaaannneneeens 2-1
CPU FUNCTIONS ..ottt i ittt e e mn e es e 3-1
CLOCK GENERATOR ...t i imve v st tairmn e 4-1
PORT FUNCTIONS ..ttt iiiereatnoaanonnanceunes 5-1
REAL-TIME OUTPUT PORT (RTP)c.-.cv.nenn 6-1
SERTAL INTERFACEttt cnnnn 7-1
SUPER TIMER UNIT cevetvreonniomnnssssnsan 8-1
A/D CONVERTERt iiinriiienrooaaanenn s 9-1
CLOCK OUTPUT (CLO) ... v i iie i e e 10-1
INTERRUPT FUNCTION ...t 11-1
STANDBY FUNCTIONt iennennnnnn 12-1
RESET FUNCTION .. vt ii i iie e ciia e 13-1
EXAMPLE OF APPLICATION - e 14-1
THE UPD78P138 iiii ittt oosna 15-1
INSTRUCTION SET ...t i ittt in et inecaaaannnnas 16-1
DIFFERENCES BETWEEN THE uPD78138 SERIES
AND UPDT8134 .. ittt ittt st s eeas 17-1
.. A-1

@

®

Cautlions on CMOS Devices

Countermeasures agalinst static electricity for all MOSs

Caution:

When handling MOS devices, take care so that
they are not electrostatically charged.

Strong statlic electricity may cause dielectric
breakdown in gates. When transporting or
storing MOS devices, use conductive trays,
magazine cases, shock absorbers, or metal cases
that NEC uses for packaging and shipping. Be
sure to ground MOS devices during assembling.
Do not allow MOS devices to stand on plastic
plates or do not touch pins.

Also handle boards on which M0OS devices are
mounted in the same way.

CMOS-specific handling of unused input pins

Caution:

Hold CMOS devices at a fixed input level.
Unlike bipolar or NMOS devices, if a CMOS
device is operated with no input, an
intermediate-level input may be caused by
noise. This allows current to flow in the
CMOS device, resulting in a malfunction.

Use a pull-up or pull-down resistor to hold a
fixed input level. Since unused pins may
function as output pins at unexpected times,
each unused pin should be separately connected
to the V p ©r GND pin through a resistor.

If handl?ng of unused pins 1s documented,
follow the Instructions in the document.

Statuses of all MOS devices at initialization

Caution:

The initlal status of a MOS device is
unpredictable when power 1s turned on.

Since characteristics of a MOS device are
determined by the amount of ions implanted in
molecules, the initial status cannot he
determined in the manufacture process. NEC
has no responsibility for the output statuses
of pins., input and ocutput settings, and the
contents of registers at power on. However,
NEC assures operation after reset and items
for mode setting if they are defined.

When you turn on a device having a reset
function, be sure to reset the device first.

MAJOR REVISIONS

Page Description

Throughout The uPD78134A and uPD78138 have already been
developed.

P.1-3 The quality grade for the EPROM versions of the
uPD78P138 has been changed from standard to not
applied.

Preface, Caution on the EPROM versions of the uPD78P138

PP.1-1, 1-7,| has been added.

1_9' 15—1

P.1-11 A product has been added to the list in Section
1.7.

Caution on manipulating a port using an
instruction such as a bit manipulation instruction
has been added to:

P.5-9 Section 5.3.2

P.5-21 Section 5.5.2

P.5-32 Section 5.7.2

P.5-38 Section 5.8.2

.8-51, The delay between a CLR1 input signal and a

P.§-53 signal output from the noise eliminator has been
modified.

g:ii:ég to Section 11.4.2 has been added.

P.16-61 to The examples of some Instructions have been

P.16-188 added to Section 16.6.

P.17-1 to Chapter 17 has been added.

P.17-3

g'i:é to Appendix A has been modified.

- ii1 -

PREFACE

Users: This manual 1s for englneers who intend to learn the
capabilities of the uPD78134A, uPD78138, uPD78138, and
uPD78P138 for application program development.

The EPROM versions of the uPD78P138 are not intended
fTor use in mass-produced products; they do not have
reliablility high enough for such purposes. Their
use should be restricted to functional evaluation in

experiment or trial manufacture.

Purpose: The purpose of thils manual is to help users understand
the hardware capabilities of the uPD78134A, uPD78138,
uPD78138, and uPD78P138.

Organization:
This manual includes the following items:
General
Pin functions
CPU functions
Peripheral functions
Interrupt function
Other built-in peripheral functions
Standby function
Reset function
Applicable examples
uPD78P138 (PROM product)

Instruction functions

Guldance:

Before using thilis manual, the user should have a

general knowledge of the electronics, loglcal circuit,

and microcomputer flelds.

To use this manual as a uPD78134A, uPD78136, or
uPD78P138 manual:

Where there 1s no functlonal differénce. only the
uPD78138 is described, and 1ts descriptions are
applicable to the uPD78134A, uPD78136, and
uPD78P138.

To use this manual as a uPD78P138 manual:

In this manual, the description of the PROM is for
both a one-time PROM and EPROM.

To use this manual as a uPD78P138 manual, each
reference to PROM should be understood as a one-
time PROM or EPROM.

To check the detalled functions of an instruction
whose mnemonlc is self-evident:

Look it up in Appendix B, "Instruction Index™ (in
alphabetic corder).

To check an Instruction whose mnemonic is not
self-evident but whose functions are clear:

Check the mnemonic of the instruction in Section
16.1 and check the function of the instruction in
Section 16.6.

To understand the general functions of the
uPD78134A, uPD78136, uPD78138, and uPD78P138:

Read the entire manual Iin the order of the table of
contents. -

For the electrical characteristics of the

uPD78134A,

uPD78136, uPD78138, and uPD78P138:

See the separate Data Sheet.

For application examples of the functions of the

uPD78134A,

uPD78136, uPD78138, and uPD78P138:

See the separate Application Note.

Notation: Data welght:
Active low:
Note:
Caufion:

Remarks:

Numeric value:

Related publications:

Higher digits on the left side
Lower dlgits on the right side
xxx (Pins and signal names are
overscored.)

Explanation of the indicated part of
the text

Information requesting the user's
special attention

Supplementary information

Binary: XXXXB or Xxxx
Decimal: XXXX

Hexadecimal: xxxxH

Product
Publicatid uPD78134A uPD78136 uPD78138 uPD78P138
Pamphlet IF-260
Data sheet IC-8447 IC-8051

User's manual

This manual

Mode register

VCR servo program

summary sheet TEM-552¢
Instruction set IEM-5530
Instruction)
summary sheet TEM-5531
Application note IEA-708

- vi -

CHAPTER 1 GENERAL it ittt i it ieannan 1-1

1.1 Featuresttt iiittnaaniess s aennens 1-2
1.2 ApPlicatlionst e e 1-3
1.3 Ordering Information and Quality
Grade Standard ittt 1-3
.4 Functional Overview0i i, 1-4
.5 Block Dlagramc.iiiiiit ittt e 1-86
.8 Pln Conflguration (Top View)' i erenn. 1-7
1.6.1 Normal operation mode (uPD78134A, uPD78136,
uPD78138, and uPD78P138) v i-7
1.6.2 PROM programming mode (uPD78P138) 1-9
1.7 FuncCtionsttt ittt ettt et can e 1-11
CHAPTER 2 PIN FUNCTIONS P 2-1
2.1 Lists of Pin Functlonsc i, 2-1
2.1.1 Normal operation modeouvviviinennn. 2-1
2.1.2 PROM programming mocde (uPD78P138) 2-5H
2.2 Pin Functionsttt ittt 2-6
2.2.1 Normal cperatlon modec. it nann 2-6
2.2,2 PROM programming mode (uPD78P138) 2-19
2.3 Input/Output Circuits and Connection of
Unused PIns ittt e e et e 2-21
CHAPTER 3 CPU FUNCTIONS ... ittt ittt s et etee s te e eaaeas 3-1
3.1 MemOIY SPACE ..ttt innsoonootaaoasstrronaessnnn 3-1
3.1.1 Internal program MEMOTY SPACE . .. v vt ttmueennnns. 3-6
3.1.2 1Internal data MEemMOTrY SPACE . . v v v v itenenenenenn 3-7
3.1.3 Special functlon register (SFR) space 3-7
3.1.4 Data memory addressing0 iueuern. 3-7
N T =¥ . 1 = ol 3-12
3.2.1 Program counter (PC) i 3-12
3.2.2 Program status word (PSW)0 ... 3-12
3.2.3 Stack pointer (SP) i e e 3-15
3.2.4 General Tregisters it et ie e 3-17

3.2.5
3.3 External Expansion Functions
3.3.1 Bus interface function oot
3.3.2 Memory mapping reglister (MM)
3.3.3 Memory map in external expansion
CHAPTER 4 CLOCK GENERATOR it iiniianernnnnnnn

4.1 Configuration and Functions
4.2 Cautions
4.2.1
4,2.2 When crystal/ceramic oscillation 1is

When an external clock 1s applled

CHAPTER 5 PORT FUNCTIONSttt ie s nrnnseenns
5.1 Functlions and Outline of the Ports
5.2 Port 0 (POO-POT) .. it ittt it s aaan ot snneneess

5.2.1 Hardware configuration,
5.2.2 Setting the I/0 mode and/or control mode
5.2.3 Internal pull-up resistorsccccioa..
5.3 Port 1 (PlO-PlT) ...ttt e enennns
5.3.1 Hardware configuration
5.3.2 Setting the I/0 mode and/or control mode
5.3.3 Internal pull-up resistorcioeeeeenyan
5.4 Port 2 (P20-P27) ittt ittt ittt et e i
5.4.1 Hardware confilguration00,
5.4.2 Setting the I/0 mode and/or control mode
5.4.3 Internal pull-up resistors
5.5 Port 3 (P30-P37) ...ttt i ianniaaaaann
5.5.1 Hardware conflguration
5.5.2 Setting the 1/0 mode and/or control mode
5.5.3 Internal pull-up resistors
5.6 Port 4 (P40-P4T) ...t it intainneiannseas
5.6.1 Hardware conflgurationo
5.6.2 Setting the 1/0 mode and/or control mode
5.6.3 Internal pull-up reslistorsccoi i
5.7 Port 5 (POO-P5T) .. ittt ittt i e e e
5.7.1 Hardware configuration,

- viii -

5 7.2 Setting the I/0 mode and/or control mode 5-32
5.7.3 Internal pull-up resistorscccu0, b-34
5.8 Port 8 (PBO-PBT7) iiei ittt nnannnnaaasanan 5-36
5.8.1 Hardware confilgurationccc. . 5-37
5.8.2 Setting the I/0 mode and/or control mode 5-38
5.8.3 Internal pull-up resistors 000 5-40
5.9 Port 7 (P70, PTLl) ... ittt 5-42
5.9.1 Hardware conflguration oo, 5-42
5.9.2 Setting the I/0 mode and/or control mode 5-43
5.9.3 Internal pull-up resistors00 5-44
CHAPTER 8 REAL-TIME OUTPUT PORT (RTP)c.c..o.. .. 6-1
6.1 Configuration and Functions of RTP 6-1
6.2 Hardware Configurationc.cciciviier . 6-2
6.3 Structure of the Buffer Regilster 6-2
6.4 RTP Control Reglster enenn, 6-4
6.5 RTP Operation it irnetnaranessnas 6-6
CHAPTER 7 SERIAL INTERFACEttt 7-1
T.1 FUunctionsttt it taraaeaneanneensssaan T-1
7.2 Configuratlont taneanans T7-1
7.3 Control Registersttt iennnnannn T-5
7.3.1 Serial interface mode reglster (CSIM) T-5
7.3.2 Serial bus interface control register
7 1 10 T T-6
7.4 Three-wire Serlal I/0 Modeo 7-9
7.4, Baslc operation timing00uiiiiiana. 7-9
7.4.2 When only send operation is enabled 7-11
7.4.3 When only receive operation is enabled 7-13
7.4.4 When send and recelve operations
are enabled e i e 7-14
7.4.5 Action taken when shift operation is not
in phase with the serial clock 7-16
7.5 SBI MoOQe ...ttt ittt ittt tsar s snaenens T7-17
7.5.1 SBI featureso tiivinirrmaaannenansn- 7-17
7.5.2 Serial interface configuration 7-19

- ix -

T.5.4 SBI mode control reglstersciceveeneen. T7-22
7.5.5 Shift register (SI0) it iiiinnneennn, 7-27
7.6 Communication Operation and Signals 7-28
7.6.1 Bus release signal (REL) e ... 7-29
7.6.2 Command signal (CMD)c.cciiiiiiiie..., 7-29
T.B8.3 AdAreSS .ot iit ittt ettt ieanseeras 7-30
T7.6.4 Command dataccoiiiiiiinnonoosannnessns 7-31
7.6.5 Acknowledge signal (ACK) e, 7-32
7.6.6 Busy signal (BUSY) and ready signal
(READY) ..ttt e it et e e it e e 7-33
B T A~ 5 - 1 - T TG 7-33
7.6.8 Communiation operation T-43
7.6.9 Clearing the busy slgnal 7-48
7.6.10 WaKe-up setting operatlionvvvuu.. T7-48
7.6.11 Starting send/recelve operation 7-49
T.T CaAULIONS ... it ittt e sttt onee T-49
CHAPTER 8 SUPER TIMER UNITttt nnnnenn.. 8-1
8.1 Overview of the Super Timer Unit 8-2
8.1.1 Configuratlon of the super timer unit B-2
8.1.2 Functiocnal overview of the timer units, 8-6
8.2 Timer O Unlt i it i e e i e B-9
8.2.1 Configuration of the timer 0 unit 8-9
8.2.2 Event counter (EC) 8-11
8.2.3 Timer 0 (TMO)ttt et e e eeean 8-17
8.2.4 Operating modet e 8-18
8§.2.5 Setting timer O unit control registers 8-22
8.2.6 Examples of using the timer 0 unit 8-29
B.3 Timer 1 Unit ...ttt ittt e iiinans 8-34
8.3.1 Configuration of the timer 1 unit 8-34
8.3.2 Event divider et a e 8-38
8.3.3 Pulse width detection circuit (TM3) 8-38
8.3.4 Configuration of timer 1 (TM1) B-44
8.3.5 Output modes of timer 1 output pins 8-45
8.3.8 Operation of timer 1 i meeennenn. 8-46

8.3.7 Digital noise eliminator oo 8-50

8.3.8 Setting timer 1 unit control reglsters 8-66
8.4 Free Running Counter (FRC) Unit 8-74
8.4.1 Configuration of the free running
counter unit i i i i e 8-74
8.4.2 Capture register 2 (CPT2)vvinn 8-76
8.4.3 Operation of the FRC, 8-79
8.4.4 Setting FRC unit control registers 8-80
8.4.5 Application of the FRC toa VCR 8-82
8.5 Timer 2 Unit it aaaneeeans g8-92
8.5.1 Configuration of the timer 2 unit 8-93
8.5.2 Setting the register to control the timer
2 unito, e e e 8-94
8.6 PWM Output Unito asnnns 8-95
8.6.1 Configuration of the PWM output unit 8-95
8. Operation of the PWM output unit B-98
‘8.6. Setting the register to control PWM
output unit i i i i i i e e 8-102
Registers other than the control register 8-104
.5 Application of the PWM output units 8§-104
CHAPTER 9 A/D CONVERTERttty 9-1
9.1 Functions of A/D Convertercocieeenennenn 9-1
9.2 Hardware Configuration of A/D Converter 9-2
9.3 Control Register for the A/D Converter 9-6
9.4 A/D Converter Operation v 9-9
9.4.1 Baslic operation of A/D converter 9-9
9.4.2 A/D converter operation mode 9-12
9.5 A/D Converter Interrupt Request 9-15
CHAPTER 10 CLOCK OUTPUT (CLO)}ttt 10-1
10.1 Configuration and Functions of CLO 10-1
10.2 CLO Contreol Register i nnns 10-4

- xi -

CHAPTER 11 11-1
11.1 Interrupt Request Sourcesitceeumueanan. 11-2
11.1.1 Nonmaskable interrupt request 11-4
11.1.2 Maskable Interrupt requestccivvvvann 11-4
11.2 External Interrupt Request Funections 11-5
11.2.1 External Interrupt contrcl registers 11-5
11.3 Interrupt Processing Control Reglsters 11-9
11.4 Interrupt Processingccciiiiiiiiinsrna, 11-15
11.4.1 Multiple interrupt processing 11-16
11.4.2 When Interrupt requests and macro
services are temporarlly held 11-18
11.5 Macro Service Functionsot 11-21
11.5.1 Overview of macro services 11-21
11.5.2 Macro service control register 11-22
11.5.3 Macro service modes and
interrupt requests e b e e e e 11-27
11.5.4 Data transfer mode, 11-27
11.5.5 Real-time output port control mode 11-34
11.5.6 Counter modettt sossnnsas 11-58
11.5.7 Data pattern l1dentificatlon mode 11-59
11.5.8 Polnts to be noted i, 11-69
CHAPTER 12 STANDBY FUNCTIONt inninsesansaan 12-1
12.1 Configuration of Standby Function
Control Circuit ittt annnnnas 12-2
12.2 Setting the STOP Mode and Operatlon States
in the STOP Mode @ittt ieentsennnnnns 12-4
12.3 Releasing the STOP Modec.iiiiinns . 12-5
12.3.1 Releasing the STOP mode by NMI input 12-5
12.3.2 Releasing the STOP mode by RESET input 12-6
CHAPTER 13 RESET FUNCTIONccittttieironnrotrnanonnas 13-1
CHAPTER 14 EXAMPLE CF APPLICATIONciv... 14-1

14.1 Example of Application to the Normal-type
Video Cassette Recorder iieienn. 14-1

- xii -

14.3 Using the Super Timer Unit in a VCR

SErVO SYSTEM .. v v v v ettt it nnssasoonrsoeasaannsnsan 14-5
14.3.1 Controlling the drum motor 14-7
14.3.2 Controlling the capstan motor 14-12

14.4 Block Diagram of the Software Digital Servo
System In a VCRttt s 14-17
CHAPTER 15 THE uPD78P138ttt enuneeosanononnseaansns 15-1
15.1 Differences of uPD78P138 from uPD78134A,
uPD78136, and uPD78138 iiiiirannas 15-2
15.1.1 Internal memory size change reglster
(IMS) ittt ittt ettt s i e 15-3
15.2 Programming in the uPD78P138 15-5
15.2.1 Operation modecituiiiaiirireaaan 15-5
15.2.2 Procedure for writing on PROM 15-6
15.2.3 Procedure for reading from PROM 15-9
15.3 Erasure Characteristics Only for
the UPDT8P138BK ...ttt ittt it caanneans 15-10
15.4 Protectlve Film Covering the Erasure Window
Only for the uPD78P138BK i iinn... 15-10
CHAPTER 16 INSTRUCTION SET ¢t iiunnnmennnannnnnnas 16-1
16.1 OperAationsttt nnneonssnsrssasssanssssss 16-1
18.1.1 Legendeueniniintinnnatnen i, 16-1
16.1.2 List of operations ¢ iiiiniinnens 16-5
16.2 Instruction Codesttt iaannnnns 16-21
16.2.1 Lepend vttt meenetentanasissnasnansns 16-21
16.2.2 List of instruction codes 16-24
16.3 Number of Clocks of the Imnstructions 16-35
16.3.1 Legendiiii v eeanionnsiissensnnsnesas 16-35
16.3.2 Numbers of clocks of the instructions 16-37
16.4 Instruction Addressing, 16-49
16.4.1 Relative addressingc it inenns 16-49
16.4.2 Immediate addressingciiivvininnnnn. 16-50
16.4.3 Table indirect addressingcccco... 16-51

- xiti -

16.5 Operand Addressingo tneacenannn 18-52
16.5.1 Register addressing i, 16-52
16.5.2 Immedlate addressing¢ iy 15-53
16.5.3 Short direct addressing e 16-54
16.5.4 Special function reglster

(SFR) addressing it aiian 16-586
16.5.5 Register indirect addressing 16-57
16.5.8 Indexed addressingc.ii e nanaaas 16-59

16.6 Explanation of Instructions 16-61
16.6. 8-bit data transfer instructions 18-81
16.6.2 16-bit data transfer instructions 16-73
16.6.3 8-bit arithmetic/logical instructions 16-76
16.6.4 16-bit arithmetic/logical instructions 16-117
16.6.5 Multiply/divide instructions 16-123
16.6.86 Increment/decrement instructions 16-125
16.6.7 Shift/rotate Instructions 16-127
16.6.8 BCD correction instructions 16-135
16.6.9 Bit manipulation instruetions 16-136
16.6.10 Call return instructions 16-158
16.6.11 Stack manipulation Iinstructions 16-162
16.6.12 Unconditional branch instructions 16-164
16.6.13 Conditional branch instructions 186-166
16.6.14 CPU control instructionsc...0.-- 16-187

CHAPTER 17 DIFFERENCES BETWEEN THE uPD78138 SERIES

AND uPD78134 it it i it e s e e 17-1
APPENDIX A DEVELOPMENT TOOLSttt vnnenns A-1
APPENDIX B INDEX OF INSTRUCTIONSc. ... B-1
APPENDIX C INDEX OF REGISTERS i Cc-1
APPENDIX D INDEX OF REGISTER ABBREVIATIONS D-1

- xiv -

LIST OF FIGURES

Flgure Title Page
2-1 Pin Input/Output Circuits it 2-23
3-1 Memory Map (uPD78134A) i, 3-3
3-2 Memory Map (uPD78136)t ieciennannnnnan 3-4
3-3 Memory Map {(uPD78138 and uPD78P138) 3-5
3-4 Memory Map and Addressing of Data Memory 3-8
3-5 Format of Program Counter (PC), 3-12
3-6 Program Status Word (PSW) Format 3-13
3-7 Stack Pointer (SP) Formatocvnnn 3-16
3-8 Data Saved 1n Stack Memory 3-18
3-9 Data Restored from Stack Memory 3-186
3-10 Format of General Reglsters 0., 3-18
3-11 ReAad TIMINE ..o v v ir it ettt s e ittt st eannseansn 3-28
3-12 Write TimIngttt it innssnnneaaanas 3-29
3-13 Format of Memory Mapping Register (MM) 3-30
3-14 Memory Map in External Expansion (uPD78134A) 3-32
3-15 Memory Map in External Expansion (uPD78136) 3-33
3-16 Memory Map 1n External Expansion

(uPD78138 and uPD78P138)c. i viinens 3-34
- Block Diagram of the Clock Generator 4-1
External Circultry of the Clock Oscillator 4-2
-3 Signal Extraction Polint in External
Clock IRPUL ... ittt ittt mmes sttt s o ennaans 4-3
4-4 Cautions for Resonator Connection Circultry 4-5
4-5 Examples of Wrong Resonator
Connection Clreultryo i, 4-5
- Port Conflguration 5-1
- Block Diagram of Port Oc.. i, 5-4
- Format of the Port 0 Mode Register 5-5

5-12
5-13
5-14

5-17
5-18
5-19

5-21
5-22
5-23
5-24

5-26
5-27

Format 0T Keal-time Output Port Control
Reglster (RTPC) ...ttt e e e e i

Format of the Port 1 Mode Register
Format of the Register for Optional

Pull-up Resistorscoiiii i,
Specification for Pulling Voltage in

Port 1 HIgh ittt ettt

Format of the Register for Optional

Pull-up ResisStOrscuiiiniitotinn . e
Specification for Pulling Voltage in

Port 2 High i e et e e,

Format of the Port 3 Mode Register
Format of the Port 3 Mode Control Register
1 O 3
Format of the Register for Optional

Pull-up Resistorsoo i iunnumunnnuni. .
Specification for Pulling Voltage in

Port 3 High i e,

Port 4 Operation Mode Set by EA and MM
Format of the Reglster for Optional

Pull-up Resistorsc.c.iiiniemennnnnnn.
Specification for Pulling Voltage in

Port 4 High e s i,

Port 5 Operation Mode Set by EA and MM
Format of the Port 5 Mode Register (PM5)
Format of the Register for Optional

Pull-up ReSIStOrsiiiiineni,
Specification for Pulling Voltage in

Port S5 High i i,

- Xvi -

5-28
5-29

5-31
5-32
5-33

7-8
7-9
7-10

Format of the Port & Mode Register 5-39
Format of the Register for Optional

Pull-up ResIStOrst renomereaannnnny 5-40
Specification for Pulling Voltage in

Port 6 High' ittt anannaasseas 5-41
Block Diagram of Port T ... iiiiiennnn 5-42
Format of Port 7 Mode Register (PM7) 5-43
Format of the Register for Optional

Pull-up Resistorsvvriinecinneeaenns 5-44
Specification for Pulling Voltage in

Port 7 High it iii et eananes 5-45
Block Diagram of RTPcc. s 6-2

Structure of Buffer Registers POH and POL 6-3

Format of Real-time Output Port Control

Register (RTPC) e e e e e e 6-5

Timing of RTP Operation vnnn 6-8

Block Diagram of Serlial Interface T-2

Format of Serial Interface Mode Register

0130 8 0 T 7-5

Format of Serial Bus Interface Control

Register (SBIC) ...t iiiiiivnmenenenessrnns 7-8

Example of 3-Wire Serial I1/0

System Configuratlon oo 7-9

Timing of 3-Wire Serial I1/0 Mode 7-10
Example of Connection with 2-Wire Serial

I/0 Device ittt a st 7-11
Example of SBI-Based Serlial

Bus Configuration e, 7-19
Block Diagram of Serlal Interface 7-20
Pin Configuration [7-21
Format of Serial Interface Mode Reglster

(CSIM) ottt ittt e e et e e e e e 7-23
Format of SBIC Registero vnn. T-24

- xvii -

7-13
7-14
7-15
7-16
7-17
7-18
7-19
T7-20
7-21
T-22
7-23
T-24
T-25
T-26
T-27

-3
I

28

Configuration of Shift Reglster and

Peripheral Clrcultryt iir i tr it e
Timing of SBI Transfer ittt mnenneen.
Bus Release Signalcii it eeennnennenns
Command Signalc.i ittt eennrenennnn.
Address e e e
Slave Selectlon Using an Address
Command ittt iinenaenoesnnneenn.
Data ... e e e e e
Acknowledge Signalc it ittt
Busy Signal and Ready Slgnalc.ooeiuv...
Operation of RELT, CMDT, RELD, and CMDD
Operation of ACKT¢ it ittt itnnnaenn.
Operation of ACKEt ittt it i ti i tnnans
Operatlion of ACKD i i it ittt it ettt et e e an s
Operation Oof BSYE ittt it i it ittt e
Address Transfer Operation from Master

Device to Slave Device e
Command Transfer Operatlon from Master

Device to Slave Device iina..
Data Transfer Operation from Master Device

to Slave Device e i,
Data Transfer Operation from Slave Device

to Master Device .. ittt e e s e e e ettt

Configuration of the Super Timer Unit
Configuration of Timer 0, Timer 1, and Free
Running Counter ittt nennnnnnnn
Configuration of the Timer O Unit
Configuration of the Event Counter in the
Internal Pulse Generation Mode
Operation Timing in the Internal Pulse
Generation Mode

(Generation of VCR Head Switching Signal)
Configuration of the Event Counter 1in the
General Event Divider Mode

- xviii -

8-9
8-10

8-11

8-12
8-13
§-14

8-23
8-24
8-25
8-26
8-27

Operation Timing in the General Event

Divider Modec.iii et enentcansnann
Configuration of the Timer O General

output Modettt s
Configuration of the Timer 0 RS Output Mode
Configuration of Timer 0 Delay Pulse Output

5 (o 1« £ = SN0 S T R
Configuration of Timer 0 Delay Pulse Output
MOAE 2 it ittt it nr e et st
Format of Input Control Register (ICR)
Format of Timer Control Register 0 (TMCO)
Format of Timer 0 Qutput Mode Register

(TOMO) & ittt e e e ittt et s s sa s asass oy
Format of Timer 0 Output Control Register

(TOCD) ittt ittt ee it st ses et
Operation Timing of Timer O Delay Pulse

Output Modes 1 and 2iiiirinvvieennsnnn

Generating Head Switching Signals by Using

the Timer 0 Unit i iaaninaesaessan
Timing Example of Head Switching Signals

with the Timer 0 Unit i,
Configuration of the Timer 1 Unit
Configuration of the Timer 1 Clear

Input Section
Configuration of the Pulse Width Detection
Circuit (TM3) ...t ittt bt as e asanssan
Timing of Pulse Width Detection

Circult Operation iiieninernnan
Configuration of the Prescaler
Configuration of the Timer 1 (TM1)
OQutput Modes of PTO1llciiieerrnnnnnnnn
Reference Counter Operation of Timer 1
Programmable Timer Output Operation of

0 40 1 117 = e I
Timer 1 Phase Difference Detection Operation

- xix -

8-33
8-34

8-38
§-39
8-40
§-41

8-43
8-44
8-45
8-46
8-47
8-48
B-49
8-50

Configuration of the CLR1 Input Section

(Digital Noise Eliminator)
Operation of the Digital Noise Eliminator
Vertical Synchronizing Signal Extraction

Using the Digital Nolse Eliminator
COMPSYNC Signal Used for Even/0dd

Field Determination
Example of INTCLR1 Settingc.0iiiviin...
Even/0dd Fleld Determination Using the

Digital Noise Eliminatorc.oeiiieieinennn
Example of CLR1 Input Detection Error Due

to Nolse e e e e
Format of the Event Divider Control Register
(EDVC) it ittt it ittt ittt e et neaaeaennaeenns
Format of External Capture Input Mode

Register 1 (INTM1) e e e e et e e e e
Format of Prescaler Mode Register (PERM3)
Format of Capture Mode Register (CPTM)
Format of Timer Control Register 0 (TMCO)
Format of Timer 1 Output Mode Reglster

(0 1
Format of Timer 1 QOutput Control Register

(L T
Format of Input Control Register (ICR)
Configuration of the Free Running Counter
Configuration of CPT2 (CPT2H, CPT2L)
CPT2L Capture Dataci it innneoeeenn
Example of FRC Count Operationc....
Format of Timer Control Reglster 1 (TMC1)
Format of Capture Mode Register {(CPTM)
Example of Using the FRC in a VCR

(Detecting Drum Motor Speed Error Using

Capture Reglster Z2)ttt eane
Example of Using FRC Capture Registers 0

I3 = 1 I

8-52 Example of Using the FRC and TM1 in Playback
(Operating TM1 as the Internal Phase
Reference Timer)ottt imonennnannnnsns 8-84
8-53 Operation of the FRC and TM1 in Playback B-85
8-54 Example of Using the FRC and TM1l in Recording
(Capturing the FRC Contents on Input of the

Phase Reference Signal)ccoietivntnnnnes 8-87
8-55 Operation of the FRC and TM1 in Recording 8-88
8-586 FRC Capture Operation in Recording (CPTO) 8-91
8-57 Configuration of the Timer 2 Unit 8-93
8-58 Format of Timer Control Register 1 (TMCl) 8-94
§-59 Configuration of the PWM Output Unit 8-95
8-60 Actlive Level Setting for PWM Output 8-98
8-61 Example 1 of PWM Output Timing

(PWM Pulse Width Switching Cycle: 212/fog) ... 8-100
8-62 Example 2 of PWM Output Timing

(PWM Pulse Width Switching Cycle: 28/fox) 8-101
8-63 Format of the PWM Control Register (PWMC) 8-103
9-1 Block Diagram of A/D Converter 9-3
9-2 Example of Connecting Capacitors to A/D

Converter Pins i e, 9-4
9-3 Format of A/D Conversion Mode Register (ADM) ... 9-8
9-4 Basic Operation of A/D Conversion 9-11
9-5 A/D Conversion Started by Hardware 9-11
9-6 Rewriting ADM Contents during A/D Conversion ... 9-12
9-7 Operation Timing in Select Mode 9-13
9-8 Operation Timing in Scan Mode 9-14

10-1 Application Example for the Clock

OQutput Function iiinnnenns 10-1
10-2 Block Diagram of the Clock Output Circuit 10-2
10-3 CLO Pin at Initializationiccev, 10-3
10-4 Format of Clock Output Mode Register (CLOM) 10-5
10-5 Example of Setting the CLOM Register 10-6

- Xxxi -

11-1

11-2

11-3

11-4

11-5
11-6

11-7

11-8

11-9

11-10

11-11

11-12
11-13

11-14
11-15

11-16
11-17

11-18

11-19

11-20

11-21

11-22

Noise Ellmination at an External Interrupt
Request PIn i e e
Format of the External Interrupt Mode

Register O (INTMO) it et it rrteannnn
Format of the External Capture Input Mode
Reglister (INTML) ..ttt it ittt et eetaannn
Format of the Interrupt Request Flag

Reglster (IF0)ttt eeeeneeennns
Format of the Interrupt Mask Register (MKQ)
Format of the Interrupt Service Mode

Reglister (ISMO)t in it it s esnnennenenesss
Format of the Priority Specification Flag
Register (PRO) ittt et inennnens
Interrupt Processing Algorithm
Sequence of Macro Service Processing
Macro Service Control Words
Format of the Macro Service Mode Reglster
{High-order Three Bilts) i enenns.
Format of a Macro Service Mode Register
Setting of a Macro Service Mode Reglster

in the Data Transfer Mode v
Addressing in the Data Transfer Mode
Processing Sequence in the Data

Transfer Mode ¢t iiiinnnnsna.
Example of Data Transferc.ooeiiirinennes
Addressing in the Real-time Output Port

Control Modeiiiiiinmiirennnneeaannnnnns
Processing Sequence in the Real-time Qutput
FPort Control Modeiiiiiiiiinmnnenansan
Example of Setting the Macro Service Mode
Reglster in the Basic Operation Mode
Open-loop Control for the Stepping Motor

via the Realtime OQutput Port0........
Output Timing in the Real-time Output

Port Mode ittt annnnnnn

- xxii1 -

11-23

11-24

11-25

11-286

11-27

11-28

11-29

11-30

11-31
11-32
11-33

11-34
11-35

11-36

1-phase Excltation of a 4-phase

Stepping Motor it e e
1-2 Phase Excitation of a 4-phase

Steppling Motort innnneennna.
Example of Setting the Macro Service Mode
Register for Automatic Addition Contrel Plus
Ring Control

(1-2 Phase Excitation Uniform Motion)
Block Diagram for Automatlic Addition Control
Plus Ring Control

(1-2 Phase Exclitatlon Uniform Motion)
Timing Diagram 1 for Automatic Addition

Control Plus Ring Control

(1-2 Phase Excitation Uniform Motion}
Example of Setting the Macro Service Mode
Register for Automatic Addition Control Plus
Ring Control

(2-phase Excitation at Varying Intervals)
Block Diagram for Automatic Addition Control
Plus Ring Control

(2-phase Excitation at Varying Intervals)
Timing Dlagram 2 for Automatic Addition

Control Plus Ring Control

(2-phase Excitatlon at Varylng Intervals)
Example of Macro Service Operation
Example of a Counter Mode Operation
Addressing in the Data Pattern

Identification Mode ¢ iiiinn
Note on Setting a Data Comparing Area
Example of Setting the Macro Service Mode
Register in the Data Pattern Identification
Mode (with Comparison)iiiiiiiinenan
Example of an Application in the Data

Pattern Identification Mode _

(VCR Index Search Control)

- xxiii -

12-1
12-2

12-3

12-4

13-1
13-2

14-1

14-2
14-3

14-4
14-5
14-6
14-7
14-8
14-9
14-10
15-1

15-2
15-3
15-4

Confilguration of a Standby Function

Control Clrcult ieiiannaa s
Format of the Standby Control Reglster

35 1 = 107 T e
Releasing the STOP Mode by NMI Input

Accepting a Reset Signal oo
Reset AL POWEI =0Tl ... v v vt ettt v v ansnnsnctsoeansons

Example of Application to the Normal-type

Video Cassette Recorderccviviuvnvinsss
Example of Application to the Camcoder
Using the Super Timer Unit in the VCR

Servo S¥Stemttt ininrarantroaaaaeaenaan
Controlling the Drum Motor e e e e e
Drum Speed Controlt eennn
Drum Phase Control it iiiiineeenns
Controlling the Capstan Motor
Capstan Speed Controlcciiiiiiueenn...
Capstan Phase Controlo iiiiienennn,
Block Diagram of the VCR Servo System
Format of the Internal Memory Size Change
Regilster (IMS) ...ttt ittt e ey
PROM Write/Verify Timing Chart
Flowchart of Writing Procedure
PROM Read Timing Chartcoi i,

- xXxiv -

LIST OF TABLES

Table Title Page
1- Maln Differences between the Products 1-1
i- FUNCELIOMS ottt ittt it it e sttt i it v eenaesennas 1-11

- Port 2 Dual-function Pins 2-7
- Port 3 Modesc. it innnnnrtnarainssna 2-12
- Port 6 Operation Modes i, 2-15
- I/0 Circult Type of Each Pin and Connection of
Unused PINS ittt ittt 2-21
3- Memory Areas of Each Product 3-1
- Vector Table f ettt e e e et e 3-6
- ISP Flag Formatc.u e ceneranonnneesan. 3-13
- Specification of a Register Bank 3-14
3-5 Correspondence between Function Names and
Absolute NAMESt ottt e ts st sanassaneeeen- 3-18
- Speclal Function Registers (SFRs) 3-21
- External Expansion Modes and Pin Functions 3-28
- Port FUnNctlons ...ttt tiiinn s ensaasssas 5-2
- Function of Port 0, 5-4
- Functions of Port 1 i nnns 5-7
- Functions of Port 2 i, 5-12
5- Functions of Port 3 it inneaannnn 5-16
- Functions of Port 4 nnons 5-286
- Functions of Port 5, 5-31
- Functions of Port 6 it ieerarnnnss 5-36
5- Functions of Port 7ttt vanasns 5-42
6-1 Ooutput Trigger for Real-time Cutput Port

(When RTPC POMH = POML = 1)0uivuan 6-6

- XXV -

8-4

8-5

8-6
8-7
8-8
§-9
8-10

11-1
11-2
11-3

11-4

11-5
11-86

11-7

11-8
11-9

7-38
7-48
Components of the Super Timer Unit 8-2
Resolution and Maximum Count Time of Each
Timer (at 12 MHz) e e e e 8-8
Resolution and Maximum Count Time of Timer O ... 8-17
Timer 0 Output Pins and Output Modes that
can be Set e, 8-21
TOMO Setting Values and OQutput Modes of
Timer O Outputs ittt 8-21
Resolution of Timer 1 (at 12 MHzZ) 8-45
Digital Nolse Eliminator Specification 8-51
FRC Capture Registers and Capture Triggers 8-74
Resolution of the FRC (at 12 MHz) 8-79
Resolution of Timer 2 (at 12 MHz) 8§-92
Mode Generating INTADivverenrennnnnan g9-2
Conditions for Generating Interrupt Requests
in Different A/D Converter Operating States 9-15
Interrupt Request Processing Modes 11-1
Interrupt Request Sourcesoueveueunn., 11-2

Valid Edges and Control Reglsters of External
Interrupt Pinsttt e 11-6
Flags Corresponding to Each Interrupt

Request Sourcec.i o 11-9

Multiple Interrupt Processingo.... 11-17
Macro Service Modes and Interrupt

Request Sourcesc.iiiiiinemnnnnnnnn.. 11-27
Interrupt Requests Sources in the Data

Transfer Mode and SFRo ..., 11-28
Functions of the Macro Service Pointers 11-34
Macro Service Processing Time i1-68

- XXvi -

11-10

12-1

13-1

14

|
—

15-1

|
b

15

Address Ranges that cannot be Used by the
Macro Service Functloncoor v et iecanennns

Operation States In the STOP Mode

Hardware Statuses after Reset

Timer Functions in the VCR Servo System

Differences of uPD78P138 from uPD78134A,

UuPD7TB136, and UPDT7Bl3B ittt i s sttt e an
Operatlion Mode when Programming on the PRCOM

- Xxvii -

CHAPTER 1 GENERAL

The uPD78138 is an 8-bit single-chip microcomputer. It contains
a high-speed, high-performance 8-bit CPU.

With on-chip peripheral hardware, the uPD78138 can be used in
VCRs and other devices that require digital servo control via the
software.

By mass-storage built-in ROM, the uPD78138 can support system
control on one chip in addition to servo control, thus further
miniaturizing the application set.

The uPD78P138 with the PROM is also provided, which is suited for
evaluation and trial manufacture during system development, early
stage start-up of applicatlons, and short-run and multiple-device
production.

The EPRCOM versions of the uPD78P138 are not Intended for use
in mass-produced products; they do not have reliability high
enough for such purposes. Their use should be restricted to

functional evaluation In experiment or trial manufacture.

Table 1-1 Main Differences between the Products

Product ROM RAM ROM type
uPD78134A 16K bytes 384 bytes
uPD78136 24K bytes Mask ROM
640 bytes
uPD78138
32K bytes
uPD78P138 One-time PROM/EPROM

1

.1

Features

High-speed instruction execution via internal multiplexed
bus: 0.33 us (at 12 MHz)

Built-in super timer unit that best suits VCR servo
control

Speed and phase control of drums, capstans, and motors
Head switch signal output of two channels including
audio and video

Vertical synchronizing signal detection function

Input pulse duty ratio determining function

Built-in two-channel PWM output c¢ircuit that can
specify active levels

Additional functions that improve responsibility of servo

control

Signed multiply instructlion
Variable PWM output carrier frequency (23.4/46.9 kHz)

Built-in real-time output port that can vary output
patterns at any Interval. (Suited for outputting the VCR

head switch and controlling a step motor.)

Powerful 1nterrupt functions providing two service modes
Vector interrupt function
Macro service function (Facilitates automatic data

transfer and AMSS function on VCRs.)

Built-in pull-up resistor eliminating the need for
external resistors

80-pin plastic QFP (14 mm x 20 mm)

1.2 Applications

The uPD78138 applies to servo controlling of VCRs (normal
type and camcorder type), HDDs, FDDs, DATs, and CDPs.

VCR: Video Cassette Recorder
HDD: Hard Disc Drive

FDD: Floppy Disk Drive

DAT: Digital Audio Tape Recorder
CDP: Compact Disc Player

1.3 Ordering Information and Quality Grade Standard

{1) Ordering information

Part number Package On-chip ROM
uPD78134AGF-xxx-3B9 80-pin plastic QFP (14 x 20 mm) Mask ROM
uPD78136GF-xxx-3B9 80-pin plastic QFP (14 x 20 mm) Mask ROM
uPD78138GF-xxx-3B9 80-pin plastic QFP (14 x 20 mm) Mask ROM
uPD78P138GF-3B9 80-pin plastic QFP (14 x 20 mm) One-time PROM
uPD78P138K 80-pin LCC EPROM

Remark: xxx 1s a ROM code.

(2) Quality grade

Part number Package On-chip ROM
uPD78134AGF-xxx-3B9 80-pin plastic QFP (14 x 20 mm) Standard
uPD78136GF-xxx-3B9 80-pin plastic QFP (14 x 20 mm) Standard
uPD78138GF-xxx-3B9 80-pin plastic QFP (14 x 20 mm) Standard
uPD78P138GF-3B9 80-pin plastic QFP {14 x 20 mm) Standard
uPD78P138K 80-pin LCC Not applied

Please refer to "Quality Grade on NEC Semiconductor Devices”
(Document number IEI-1209) published by NEC Corporation to
know the specification of quality grade on the devices and
1ts recommended applications.

1.4 Functional Overview

Item

Function

Number of basic instructions

64

execution time

Minimum instruction

0.33 us (at 12 MHz)

Internal memory

Program memory: 16256 x 8 bits
(mask ROM, uPD78134A)
24576 x 8 bits
(mask ROM, uPD78136)
32768 x 8 bits
(mask ROM, uPD78138)
32768 x B bits
{PROM, uPD78P138)

Data memory: 384 x B bits
{(uPD78134A), 640 x 8 bits

Memory expansion

Externally expandable up to 64K bytes

General reglster

8 bits x 8 x 4 banks (memory mapping)

Instruction set

16-bit addition, subtraction, comparison
Signed multiply instruction (signed 16 bits
X unsigned 8 bits)

Unsigned multiply/divide instruction (16
bits x 8 bits, 16 bits + 8 bits)

Bit manlpulation instruction (transfer,
Boolean operation, set, reset, test)

BCD correction instruction

I/0 line

Super timer unit

66 total Input port: 10
Qutput port: 12

1/0 port: 36

Analog input: 8

Timer: 16 bits x 3
7 bits x 1

Counter: 18 bits x 1
Capture register: 18 bits x 1
16 bits x 4

7 bits x 1

Compare register: 16 bits x 6
7 bits x 1

P¥M output: 12 bits x 2

(variable active level, varliable

carrler frequency (23.4/46.9 kHz))

{to be continued)

(Cont'd)

Item

Functlon

Real-time output port

Timer-connected port output function
4 bits x 2 or 8 bits x 1

Serial interface

Either NEC format serial bus interface (SBI)
or 3-wire serial interface can be selected.

A/D converter

B-bit resolution x 8 1lnputs
Conversion time: 30 us/1 analog input (at
12 MHz)

Interrupt source: 17 (5 external and 12
internal)

Interrupt One of the two service modes can be selected
(macro service/vector interrupt).
Variable 2-level interrupt priority

Standby STOP mode

Pull-up reslistor

44, built-in (Enable/disable bullt-in can be
specified via software.)

2

NMI ~——-] r
INTPO ——o INTERRUPT
INTP] ——] CONTROL .
INTP2 , —N pe N _
—/ -/ (8) ADO- AD?
o) G
SO/SB0 ——ram SERIAL
INTERFACE
S —f (8) AB-AIS
CTIoO — (*1) o
A
CTo —— OM g
Pr—— n
CTIL o
CLRO —] 5
CLR1 — | 3 l—np
PTOO0 —=—— =
TEMPORARY
PTOO) ———o|
REGISTER .
PTO02 =——{ SUPER-TIMER UNIT <:> l —— WH
PTO10 ——o ::::> .
sp
PTON! ——o]
Psw MICRO |——— ASTB
ROM
PWMO ——| BOOLEAN =
PROCESSOR
PWMI ——] :>
< > (‘ N RAM N\
y v (256X 8) —/L_ {/
PoC-PO3 <I REAL TIME W
Po-po7 ¢ OUTPUT PORT] q X2
' , 2 ~— "EE
0
ANIO-ANI?[8 X 3 Vs

AVys—__| A/D CONVERTER <:> RAM (128x8. 384x8){*3) PORT — (v, A2

uPD78134A: 16K x 8 (mask ROM)
uPD78136: 24K x 8 (mask ROM), uPD78138: 32K x 8 (mask ROM),
uPD78P138: 32K x 8 (PROM)

Vpp Is a positive power supply pln for PROM and is only available on the uPD78P138.
uPD78134A: 128 x 8 bits, uPD78136, uPD7T8138, and uPD78P138: 384 x 8 bits

T

S

weldevlq }ooTg

1.6 Pin Configuration (Top View)

uPD78P138)

80-pin

80-pin LCC

plastic QFP (14 x 20 mm)

Normal operation mode (uPD78134A,

—_ o - =

uPD78136,

P34/CLRO
Pas/sl
P36/50/580
P37/SCK
P20/ NMI
. Pai/INTPO
P22/INTPL
P23/INTP2
P24/CTII0
P25/CTI00
P26/CTILL
PI/CLAL
PIO/FTOM
F31/PTO0L
P32/PTO02
P33/PTOIL
PWMO
PWML
P

By
ANIO

AN

ANI2 O——ei

ANIZ O——w

o o =N ;o b

8 ——0 FrO10

Agc1delad”

6de-Jo8E1d8Lad”
6HE-X X X-19BE18LAd”

8dE- x X x-I99e18Lad”

GHE- X X X -IOVPEI8Ldd"

0 P4O/ADO

ANI4 O—— |

ANIS O

ANIG O——w{ ¥

ANIT O

RESET 0—{ I3

Voo O—{ 8
2 o— =
1 o—ey
Vo 0— &
PO O— ¥
POl O——ro B
P02 Ow— B
P03 O—— Y
Po4 O—m
pos Q—r 8
PO O=—- 8

uPD78138,

-0 PAL/ADL
be———0 P4ZFAD2
fo——=0 P43/AD3
fe—=e0 P44/AD4
[e——0 P45/ADS

P46/ AD6

fe—e0 P47/AD7
[e—a0 P30/AB
fet——a{) P51/A9
fe—=0 P52/A10
|t—s-C P53/ALL
f——— P54/A12
[F=—-0 P55/A13
[=—se-0 P56/A4
|=—O P57/A15
=0 PEO
——=-0O P61
—0C P61
l—0 P63
-0 P64/RD
le—0 PES/WR
oo (O} P&
|a—O PET7
l——0 POT

and

in mass-produced products;

enough for such purposes.

The EPROM versions of the uP978P138 are not intended for use

they do not have reliability high
Their use should be restricted to

functional evaluation in experiment or trial manufacture.

POO-PO7:
P10-P17:
P20-P27:
P30-P37:
P40-P47:
P50-P57:
P60-P67:
P70, P71:

PWMO, PWM1:

cLO:
ANIO-ANIT:
AVREF*
AVgg:

X1, X2:
RESET:

Port0

Portl

Port2

Port3

Port4

Portbs

Porté

Port7

Pulse Width
Modulation Qutput
Clock Output
Analog Input
Reference Voltage
Analog Vgg
Crystal

Reset

CT100, CTI10,:
CTI11

CLRO, CLRI1:
PT0O00-PTOO2, :
PTO10, PTO11
NMI:
INTPO-INTP2:
SI:

80:

SBO:

5CK:

ADO-ADT:
A8-A15:

RD:

WR:

ASTB:

EA:

Capture Trigger Input

Timer Clear Input
Programmable Timer Input

Nonmaskable Interrupt
Interrupt From Peripherals
Serial Input

Serial Output

Serial Bus

Serial Clock

Address Data

Address

Read

Write

Address Strobe
External Access

1.6.2 PROM programming mode (uPD78P138)

80-pin plastic QFP (14 x 20 mm)

B0-pin LCC
2 g
[
OT;TTTTOTTTTTTTTIT
1'1731767574737271?059686?6666
o— 1 61 |=——so0p1
L o—— 2 O 63 f=—e0D2
Oo— 3 62 j—=0D3
oO— 4 61 fe—0 4
PROG O0——{ 5 € |—eo0Ds
A O—e] & 59 [+—e-0D6
o—I 7 58 f—e0D7
o— 8 57 |~—o04&8
v Oo——- 9 T'-:U.EU 56 |~——=0L
“lo— 110 e l=) 55 [=—OAl0
o— 11 ’a.?é 84 [~——0 A}
o— 12 EE 53 [=——0 A12
o— 13 22 52 fe—on13
O— 14 i 51 |a—0Al4
Oo—] 15 g N =0
Open o—— 16 @ 49 —o
o—- 17 a8l—o;L
o———o 18 47 ——0
oO— 19 % |l—0
o— 0 45 —oO0 OF
o—21 4 |—oCE
Lo——z‘z 43———o]L
o0—— 23 42 —o0
o] 2 41 |+——0 A7
25 o= s B Q¥

o—H
v O—
o— i

o—H

o—Y
AMO—e— ¥
MO——] B
AN o—W &
AlO— Y
A Ol &
A5 00—l 18
AG O——e] &

v

Cpen O——

o

The EPROM versions of the uPD78P138 are not intended for use
in mass-produced products; they do not have reliability high
enough for such purposes. Their use should be restricted to

functional evaluation in experiment or trial manufacture.

A0-Al4: Address
DO-DT: Data
PROG: Program

Cautions 1. L:

. CE: Chip Enable
OE: Output Enable
VPP’ Program Voltage

Individually connect to a pull-down
reslistor and fix to low level.
Connect to ground.

Must be left open.

1 - 10

1.7 Functions
Table 1-2 Functions
Product uPD78134 s
Item : *
Minimum instruction |. 0.33 us {(at 12 MHz)
execution time
ROM size 16K bytes 24K bytes 32K bytes 32K bytes 16K bytes
{(Mask ROM) | (Mask ROM) { (Mask ROM) {PROM) {Mask ROM)
RAM size J84 bytes 640 bytes 384 bytes
Input: 10
. 58 total Output: 12
I1/0 ports 1/0: 36
. A/D: 8

Real-time cutput
ports

. 8 (Connected to a timer outputting a trigger signal)

. Timers: 16 bits x 3
7 bits x 1
. Counter: 18-bit free running counter x 1
. Capture reglsters: 18 bits x 1
16 bits x 4
Super timer unit 7 bits x 1
. Compare registers: 16 bits x 6
7 bits x 1
. P¥M outputs: 12 bits x 2 channels . PWM outputs:
(carrier frequency: 23.4 kHz/ 12 bits x
46.9 kHz selectable) 2 channels
. MULUW: 16-bit absolute value x . MULUW:
Multiply 8-bit absolute value 16-bit
instructions . MULSW: 16-bit complement x 8-bit absolute
absolute value value x
8-bit
absolute
value

1 - 11

{to be continued)

Product
Itenm

A/D converter

uPD78134

. 8-blt resolution x 8 channels (conversion time: 30 us)

Serial Interface

. Three-wire SIO or SBI mode selectable: 1 channel

Interrupt function

. Internal: 5, external: 12

Evaluation chip

. uPD78P138 (with one-~time PROM and window)

Package

of the pins)

. 80-pin LCC

. 80-pin plastic QFP (14 x 20 mm excluding the dimensions

Vv YNC separation
clrcuit

. Threshold pulse width for

elimination selectable
(5.3 us/12.0 us)

. Threshold

pulse width
for elimina-
tion fixed
(6.7 us)

1 - 12

CHAPTER 2 PIN FUNCTIONS

2.1 Lists of Fln Functions

2.1.1 Normal operation mode

{1) Port pins
Dual-
Pin name | I/0 | function Function
pin
Port 0 (PO):
Can be specified to ocutput or high impedance 8 bits
POO-PO7 0 —_ by 8 bits.
Also function as an 8 bits x 1 or 4 bits x 2 real-
time output port.
Port 1 (P1):
_ — Can be specified to input or output bit by bit.
0-P17 | 1/0
Pl / Can directly drive LED.
Software pull-up resistor (P10-P17) can be built in.
P20 NMI
P21 INTPO
P22 INTP1
P23 INTP2 Port 2 (P2):
I Software pull-up resistor (P22-P27) can be built 1in.
P24 CTI10
P25 CTIO0
P26 CTI11
P27 CLR1
P30 PTO00
Port 3 (P3):
P31 PTO01 P30-P33: I/0 port (Can be specified to input or
I/0 output bit by bit.)
P32 PT002 P34, P35: Input port
P36, P37: 1/0 port
P33 PTO11 Software pull-up resistor (P30-P37) can be built 1in.

{(to be continued)

{Cont'd)

Dual -
Pin name [I1/0 | function Function
pin
P34 I CLRO
Port 3 (P3):
P35 1 SI P30-P33: I/0 port (Can be specified to input or
output bit by bit.)
P3s 1/0 | S0/SBO | P34, P35: Input port
P36, P37: 1/0 port
P37 1/0 SCR Software pull-up resistor (P30-P37) can be built in.
Port 4 (P4):
P40-PAT | 1/0 | ADO-AD7 | Can be specified to input or output 8 bits by 8 bits.
Software pull-up resistor (P40-P47) can be built in.
Port 5 (P5):
P50-P57 |I/0 | A8-A15 | Can be specified to input or output bit by bit.
Software pull-up reslistor (P50-P57) can be bullt in.
P60-P63 0 —
Port 6 (P6):
P64 I1/0 RD P60-P63: Output port
P64-P67: 1I/0 port (Can be specified to input or
P65 1/0 WR output bit by bit.)
Software pull-up resistor (P64-P67) can be built in.
P66, P67 |1/0 —_
Port 7 (P7):
Can be specified to Input or output 2 bits by 2
P70, P71 | 1/0 — bits.

Software pull-up resistor (P70, P71) can be built
in.

(2) Non-port pins

Dual-
Pin name | I/0 | function Function
pin
PWMO, PWM1| O — Super timer unit PWM output
ANIO-ANIT 1 —_ Analog voltage input to A/D converter
AVREF _ Reference voltage input to A/D converter
AVSS — Ground potential of A/D converter

Non-maskable Interrupt regquest Input
NMI I P20 Either rising edge or falling edge can be
selected via mode register (INTMO).

External interrupt request input
INTPD 1 P21 Rising edge, falling edge, or rising and falling
edges can be selected via mode register (INTMO).

INTP1 P22 External Interrupt request Input
I Can select rising edge, falling edge, or rising
INTP2 P23 and falling edges by mode register (INTMO).
SI I P35 Serial data Input (3-wire serial I/0 mode)
S0 I1/0 | P36/SB0 | Serial data output (3-wire serial I/0 mode)
SBO I/0!| P36/SO | Serial data 1nput (SBI mode)
SCK 1/0 P37 Serial clock input/output
CTI0O P25
CTI1O0 I P24 Super timer unit capture trigger input
CTI11l P26
CLRO P34
1 Super timer unit timer clear signal input
CLR1 P27
PT00O _ P30
PTOO1 I1/0 P31 Super timer unit timer output
PT002 P32

(to be continued)

{Cont'd)

Dual-
Pin name | I/0 | function Function
pin
PTO10 0 _—
Super timer unit timer output
PTO11 1/0 P33
ADO-AD7 1/0| P40-P47 Time multiplexing address/data bus for when
external memory is connected
A8-A15 0 P50-p57 | Address output port for when external memory 1s
connected
RD 0 P64 Strobe signal output for reading external memory
¥R 0 P65 Strobe signal output for writing external memory
ASTB 0 CLO Timing signal output that externally latches
address data for accessing external memory
CLO 0 ASTB Clock output
FA I —_ External expansion function control input
X1 I L Crystal connection for system clock signal
oscllilation
Input the externally supplled clock signal to X1
X2 — —_ and input its inverted phase to X2.
RESET I - System reset input
Contains an analog delay nolse reduction circuit.
Vop —_ Positive power supply
Veg — GND potential

2.1.2 PROM programming mode (uPD78P138)

Pin name 1/0 Function
PROG
PROM programming mode setting

RESET I

AC-Al4 Address bus

DO-D7 I1/0 Data bus
CE PROM enable input
OE : Read strobe to PROM
Vpp Write power supply
VoD — Poslitive power'supply
Vgs GND

2.2 Pin Functions

2.2.1 Normal operation mode

(1)

(2)

POO-P0O7 (Port 0): 3-state output

Eight-bit output dedicated pins of port 0 (8-bit
output dedicated port with an output latch). Use the
port 0 mode register (PMO) to specify the output mode
or high impedance status eight bits by eight bits for
these pins.

P0O-PO7 pins function as an 8-bit real-time output
port, which output the contents of the buffer
registers (POL, POH) at any inverval. P00-PO7 pins
can be divided into two groups (P00-P03 and P04-P07),
elther group functions as a 4-bit real-time output
port. Use the real-time output port control register
(RTPC) to specify the function as a normal output
port or real-time output port,

When RESET 1s input, these pins are set to output
high impedance status and the contents of the output
latch becomes 1ndefinite.

P10-P17 (Port 1): Input/output

Eight-bit 1nput/output pins of port 1 (8-bit I/O port
with an output latch). Use the port 1 mode register
(PM1) to specify input or output bit by bit to these
pins.

These pins can handle a large current to directly
drive an LED chip.

When RESET is input, port 1 1s set to the all-bit
input mode (output high impedance) and the contents
of the output latch becomes indefinite.

Port 1 contains a software pull-up resistor. Use bit
1 of the pull-up resistor option regilster (PUO) to
specify buillt-in pull-up resistor.
(3) P20-P27 (Port 2): Input
Eight-bit input pins of port 2 (8-bit input port).
These pins alsc function as varilous control pins.
- These pins can always read pin levels independent of

the other function.

These eight pins employ Schmitt trigger input to
eliminate operational mistakes caused by noise.

- Table 2-1 l1sts the dual-function pins of port 2.

Table 2-1 Port 2 Dual-function Pilns

Port 2! Dual-function pin || Port 2 | Dual-function pin
P20 NMI input P24 CTI10 1input

- P21 INTPO input P25 CTI00 input
P22 INTP1 input P26 CTI11 input
P23 INTP2 1input P27 CLR1 input

Caution: NMI input accepts Interrupt requests
regardless of the interrupt enable/disable
status. See Chapter 11 for detalls.

Port 2 contalins a software pull-up resistor in 1its
six bits P22-P27. Use bit 2 of the pull-up resistor
option register (PUO) to specify a built-in pull-up
resistor,.

Caution: P20 and P21 pins do not contain any
software pull-up resistor.

The functions of the dual-function pins are described
below.

(a) NMI input

External non-maskable interrupt request input
pin. Use the external interrupt mode register
(INTMO) to specify one of the detection modes,
rising edge or falling edge, for this pin.

This pin contains an analog delay noise
reduction circuit.

(b) INTPO input

External interrupt request input pin. Use the
external interrupt mode register (INTMO) to
specify one of the three detection modes, rising
edge, falling edge, or rising and falling edges,
for this pin.

(c) INTP1, INTP2

External Interrupt request input pins. Use the
external interrupt mode register (INTMO) to
specify one of the three detection modes, rising
edge, falling edge, or rising and falling edges,
for these pins.

(d)

(e)

CTIO00 Input

Capture trigger input pln of the super timer
unit.

This pln detects the rising edge and captures
the contents of the free running counter (FRC)
in capture register 2 (CPT2H, CPT2L). (Capture
register 2 consists of 18 bits.)

When timer 0 clear pulse 1s internally
generated, this pin becomes the count clock
pulse Ilnput pin of the event counter (EC), which
1s in the input block of timer O.

CTI10

Capture trigger input pin of the super tilmer
unit. Use the external capture input mode
register (INTM1l) to specify one of the
detection modes, rising edge or rising and
falling edges, for this pin.

Valld edge detection signal is divided into
programmable units by the event divider, which
is in the input bleock of timer 1, and becomes
the capture trigger of capture register 3 (CPT3)
of the free running counter (FRC).

It also becomes capture trigger of the capture
register 2 (CPT12) of timer 1, 1f so specified
in the capture mode register (CPTM}.

(f)

Capture trigger input pin of the super timer
unit.

Use the external capture input mode register
(INTM1) to specify one of the detection
modes, rising edge or falling edge, for this
pin.

It becomes the capture trigger of capture
register 2 (CPT12) of timer 1, 1f so specified
in the capture mode register (CPTM).

(g) CLR1

Timer 1 clear 1nput pin of the super timer unit.

Use the external capture 1nput mode reglster
(INTM1) to specify one of the detection
modes, rising edge or falling edge, for this
pins.

CLR1 pin contains a digital nolse reductiocn
circuit.

This pin clears timer 1 when CLR1 is input.

This pin also functlions as the capture trigger
of capture register 0 (CPTO0) of the free running
counter (FRC) iIf the capture mode register
(CPTM) 1s set.

2 - 10

(4)

P30-P37 (Port 3): P30-P33: 3-state 1input/output
F34, P35: Input
P36, P37: Input/output

Eight-bit input/output pins of port 3 (P30-P33 are a
4-bit I/0 port with an output latch, P34 and P35 are
an input port, and P36 and P37 are an 1/0 port}.

In addition to the function of an 1/0 port, these
plns also function as various control signal pins.

Use the port 3 mode control register (PMC3) to
speclify operation mode of the individual P30-P33,
P36, and P37 pins bit by bit as shown 1in Table 2-2.

Pins P34 and P35 can read pin levels (operate as an
I1/0 port) even though they are fixed to the control
mode.

P34, P35, P36 and P37 pins employ Schmitt trigger

input to eliminate operational mistakes caused by

noise.

When RESET 1s input, these pins are set to the input
port (output high impedance) and the contents of the
output latch become indefinite.

Port 3 contains a software pull-up resistor.

Use bit 3 of pull-up resistor option register (PUO)
to specify built-in pull-up resistor.

2 -11

Table 2-2 Port 3 Modes

(n=0-17)
MC3n | PMC3n = © PMC3n = 1
P3n Port mode Control signal input/output mode
P30 I/0 port PT0O00 output
P31 I/0 port PT001 output
P32 I1/0 port PT002 output
P33 I1/0 port PT010 output
P34 —(*) CLRO input
P35 —(*) SI input
P36 I1/0 port S0/SBO input/output
P37 I/0 port SCK input/output

+ Pins P33 and P34 can read the pin levels (i1nput port

operation) even though they are fixed to the control

slgnal input/output mode.

(a)

Port mode

Use the port 3 mode register (PM3) to specify

input or output bit by bit to pins P30-P33, if
these pins entered the port mode via the PMC3

register.

Pins P34 and P35 can read the pin levels even
though they are fixed to the control signal
input/output mode.

Pins P36 and P37 function as an I/0 port, if

these pins entered the port mode via the PMC3
reglister.

2 - 12

(5)

(b) Control signal input/output mode

(1)

(11)

(111)

(iv)

(v)

PTO0C, PTO01, PTCG0Z2, PTO10

Programmable timer output pins of the
super timer unit.

CLRO

Timer 0 clear signal input pin of the
super timer unit. Both rising and
falling edges are active.

SI

Serial data input pin.

S0/SBO

80 1s a serial data output pin in the
3-wire serial I/0 mode. SBO iIs a serial

bus Input/output pin iIn the SBI mode.

SCK

Serial clock 1nput/output pin.

P40-P47 (Port 4): 3-state lnput/output

Eight-bit input/output pins of port 4 (8-bit I/0 port
with an output latch). Use the memory mapping
register (MM) to specify input or output 8 bits by 8
bits for these pins.

2 - 13

(6)

These bits also function as a time multiplexing
address/data bus (AD0O-AD7) for externally expanded

memory or 1/0.

Remark: See Sectlion 3.3 for detalls of the external
expansion function.

When RESET is input, these pins are set to the input
port (output high impedance) and the contents of the
output latch become indefinite.

Port 4 contains a software pull-up resistor.

Use bit 4 of the pull-up resistor option register
(PUO) to specify a bullt-in pull-up resistor.

P50-P57 (Port 5): 3-state input/output

Eight-bit input/output pins of port 5 (8-bit I/0 port
with an output latch). Use the port 5 mode register
(PM5) to specify input or output bit by bit for these

pins.

These pins also function as an address bus (A8-Al15)
for externally expanded memory or 1/0.

When RESET 1s Input, these pins are set to the input
port (output high impedance) and the contents of the
output latch become indefinite.

Port 5 contains a software pull-up resistor.

Use bit 5 of the pull-up resistor option register
(PUO) to a specify bullt-in pull-up resistor.

2 - 14

(7) P80-PB7T (Port 8): P80-

Eight-bit input/ocutput pins of port 6 (8-bit I/0 port

P64-

with an output latch).

P63: Output port
P67: 3-state input/output

In addition to functioning as a port, these pins
also output control signals as described in Table

2-3.

Use the memory mapping register (MM) to specify

the contrel signal output mode.

When RESET is input, P80-P83 pins are set to output

port and output low level. When RESET is input,

P84-P87 are set to input port (output high impedance).

when RESET 1s 1input,

become XOH.

the contents of the output latch

Table 2-3 Port 8 Operation Modes

Contrel signal

To operate port 6

Pin Port mode
output mode as a control pin
P8O
Pl
Output port S —_
P82
P63
P64 1/0 port RD ocutput Specify EA pin = 0.
Specify external expansion
P85 1/0 port WR output mode in MM2-MMO bit of MM
register.
P68
I/0 port — —
P87

2 - 15

(a) Port mode
P60-P83 pins are output dedicated port.

P64-P67 pins can be specified to input or output
via the port 8 mode register (PM6) bit by bit.

(b) Control signal output mode
(1) RD (Read Strobe)

Strobe signal output pin for reading
external memory. Input low level 1in the
EA pin or use the memory mapping register
(MM) to specify the operation modes.

(11) WR (Write Strobe)

Strobe signal output pin for writing to
external memory. Input low level in the
EA pin or use the memory mapping register
(MM) to specify thils operation mode.

Remark: See Section 3.3 for the RD and WR
operations.

P64-P67 plns contaln a software pull-up
resistor.

Use blt 6 of the pull-up resistor option

register (PUO) to specify built-in pull-up
resistor.

2 - 16

(8)

(9)

(10)

(11)

Cautions 1. P60-P63 pins do not contain a
software pull-up resistor.
2. P60-P83 pins output low level
after reset is released.

P7T0-P71 (Port 7): 3-state input/output

Two-bit input/output pins of port 7 (2-bit I1/0 port
with an output latch).

Use the port 7 mode reglster {(PM7) to specify 1input
or output 2 bits by 2 bits for these pins.

¥When RESET 1s input, port 7 1s set to input port
(output high Impedance) and the contents of the
output latch become Indefinite.

Port 7 contains a software pull-up resistor.

Use bit 7 of the pull-up resistor option register
(PUD) to specify bullt-in pull-up resistor.

PWMO, PWM1l (Pulse Width Modulation Output): Output
PWM pulse output pins from the super timer unit.
PT010 (Programmable Timer Out): Output

Output pin from timer 1 (TM1) of the super timer
unit.

ANIO-ANI7 (Analog Input): Input

Eight analog signal 1nput pins to A/D converter.

2 - 17

(12)

(13)

(14)

(15)

AVREF (Reference Voltage)

Reference voltage input pin of the A/D converter and
power supply pin of the A/D converter.

AVgg (Analog Vgg)

GND pin of the A/D converter.

EA (External Access): Input

The uPD78134A, uPD78138, and uPD78138 have a ROM-
less mode, in which external memory which 1s not on-
chip in the ROM accesses the program memory.

When the EA pin is set to high, the on-chip ROM is
accessed. When the EA pin 1s set to low, the

external memory 1s accessed In the ROMFless mode.

Fix this pin to high to use the on-chip 16K, 24K, or
32K-byte mask ROM.

ASTB/CLO (Address Strobe/Clock Output): Output

Timing signal output pin that externally latches

address data for accessing external memory.

In the single-chip mode, 1.e., external memory 1is
not used, this pin functions as a clock output pin
that supplies clock slignals to external peripheral

LLSTI chips and microcomputers.

2 - 18

2.

2.

2

(16)

(17)

(18)

(18)

PROM

(1)

(2)

X1, X2 (Crystal)

Crystal connection pin for system clock oscillation.
Input the externally suppllied clock signal to X1 and
Input its 1nverted phase to X2.

RESET (Reset): Input

Low level active reset input pin.

VDD

Positive power supply pin.
Vss

Ground voltage pin.
programming mode (uPD78P138)
PROG: Input

Input pin that sets the uPD78P138 1n the PROM
programming mode. When the input voltage of this pin
is at 12.5 V and when RESET input is low, the
uPD78P138 enters the PROM programming mode.

RESET: 1Input
Input pin that sets the uPD78P138 in the PROM
programming mode. When this pin 1s low and when the

input voltage of this pin iIs at 12.5 V, the uPD78P138
enters the PROM programmling mode,

2 - 19

(3)

(4)

(5)

(8)

(7)

(8)

(9)

A0-A14 (Address Bus): Input

Address bus that selects on-chip PROM address
(O000H-T7FFFH) .

DO-D7 (Data Bus): Input/output

Data bus. Programs are written in or read from the
on-chip PROM via thils bus.

CE (Chip Enable): Input

This pin inputs the enable signal from the on-chip
PROM. When this signal 1s active, programs can be
written or read.

OE (Output Enable): Input

This pin inputs the read strobe signal in the on-chip
PROM. When CE = L, activate this signal. The
program (one byte) in the on-chip PROM cell selected
by A0-Al4 1s read on to DO-DT.

Vpp (Programming Power Supply)
Power supply pin for program writing. When VPP =

12.5 Vv, OE = H, and CE = L, programs on DO-D7 are
written 1n the on-chip PROM cell selected by A0-Al4.

o))

Posltive power supply pin.

Vss

Ground voltage pin.

2 - 20

2.3 Input/Output Circuilts and Connection of Unused Pins

Table 2-4 I1I/0 Circuit Type of Each Pin and Connection of
Unused Pins
Pin %;gecircuit Recommended connectlion of unused pins
POO-PO7 4 Open
Input: Connected to VDD via pull-up resistor
P10-P17 5-A Output: Open
P20/NMI
- 2
P21/INTPO
P22/INTP1
P23/INTP2
Connected to VDD

P24/CTI10

2-A
P25/CTI00
P26/CTI11
P27/CLR1
P30/PTO00D
P31/PT001

5-A Input: Connected to VDD via pull-up resistor
P32/PT002 Output: Open
P33/PTO11
P34/CLRO

2-A Connected to Vop
P35/51

(to be continued)

2 - 21

Table 2-4 I1I/0 Circuit Type of Each Pin and Connection of
Unused Pins (Cont'd)

Pin %;gecircuit Recommended connection of unused pins
P36/S0/SB0 10-A
Connected to VDD via pull-up resistor
P37/5CK B-A
P40-P47/AD0-ADT 5-A Input: Connected to VDD via pull-up resistor
P50-P57/AB-A15 Output: Open
P60-P63 3 Open
P84/RD
P85/WR
5-A Input: Connected to Vpp via pull-up resistor

P66, P67 Output: Open
P70, P71
PWYMO, PWM1

3 Open
PTO10
ANIO-ANIT 7 Connected to Vgg
FA 1 _
ASTB/CLO 3 Open
RESET 2 -
AVREFR

- Connected to Vgg

2 - 22

Fig. 2-1 Pin Input/Output Circuilts

Type 1 Type 2-A
vﬂﬂ
P VDD
IN
N P
INC
Type 2
Schmitt trigger input with hysteresis
characteristics
IN O b&

Schmitt trigger Input with hysteresls
characteristics

Type 4

Type 3

data o OuUT

VDD

' ouT
output N

disable

Push-pull output that can output
high impedance (Positive and
negative channels are both off.)

(to be continued)

2 - 23

Type 5-A

Type 8-A

VDD
pullup
enable
data
IN/OUT IN/OUT
output
disable
input
enable
Type 7T Type 10-A
VDD
. pullup
| Comparator enable
P | ; |
IN O N | i I l * data
| % open IN/OUT

drain

output

disable

VI(I

(Threshold voltage)

24

-1

CHAPTER 3 CPU FUNCTIONS

Memory Space

The uPD78138 allows access to a memory space of up to 64K
bytes. Figures 3-1 to 3-3 show the memory space. Program
memory 1is mapped differently according to the microcomputer
products uPD78134A, uPD78136, uPDTBlSS: and uPD78P138 and
the state of the external access pin (EA).

(1) EA = high
Program memory is mapped in internal ROM and exXternal

memory. The sizes of the memory areas differ depending
on the products.

External memory l1s accessed in the external memory
expansion mode. The external memory area can also be

used as data memory.

Data memory is mapped in the internal RAM. The sizes

of the memory areas differ depending on the products.

Table 3-1 Memory Areas of Each Product

Product Internal ROM External memory Internal RAM

uPD78134A | 16384 bytes 48512 bytes 384 bytes
(0000H-3FFFH) {4000H-FD7FH) {(FDS8OH-FEFFH)
uPD78136 24576 bytes 40064 bytes
{0000K-5FFFH) (6000H-FCTFRH) 640 bytes

(FCBOH-FEFFH)
uPD78138 32768 bytes 31872 bytes

uPD78P138 | (0000H-7FFFH) (8000H-FC7FH)

(2)

EA = low (ROM-less mode)

All program memory is mapped in external memory in the
ROM-less mode. This area can also be used as data
memory .

Data memory 1s mapped in the internal RAM.
In the ROM-less mode, the memory areas are assigned to

the same locations in the uPD78134A, uPD78136,
uPD78138, and uPD78P138.

Fig. 3-1 Memory Map (uPD78134A)

ER = L (ROM-less mode}

Memory space {64 x 8)

FFFFH| -’
Froo| . FEFFH [
I FEEOH stor {32 x
. - Macroraervice::
© E FECOH L contiol-(32 .3
=}
a] Data area
I {384 x 8)
FDACH |- FDBOH
o 3FFFH\[
% = Program area N
=2 3 (#) <~ b~ 1 =
29 External memory -T . iy External memory =
ol {48512 x 8) OFFFH {64898 x 8)
be o l CALLF instructlon
o 8 o entry area -
(2048 x 8)
l 0800H
I = Program area o
o 007FH
B CALLT instruction OFFFH
o] table area :
- (64 x 8) 4]
= 0010 T T
2o
o Program area
0023H Vector table area
QO00H (36 x B) 0000H

Accessed in the external memory expansion mode

Remark:

indicates an internal memory area.

Fig. 3-2 Memory Map (uPD78138)

EX = L (ROM-less mode)

FFFFH-
FFOOH| FEFFH | -~General-purpos
r FEEOH ‘.a,-'"rﬂll&gh&{-}ﬂ?
. -Macfaservic
o § FEcon |- contreli{32 % 8
S8 : Data area
1 {640 x 8)
FDBOH | - FDBOH
; [
> 2 3FFFU
- [~}
@0 En 4L Program area L
B o oy ey iy
g s 2 T External memory'®! ‘ = External memory 5
e £ {40064 x 8) OFFFH [{64640 x 8)
w e | CALLF instructfon
> - = entry area oy
& {2048 x 8)
z \ 0800H
l IFFFR [= Program area -+
" l 0OYFH
] CALLT instruction OFFFH
B »
RS table area
e g {64 x 8) i 1
E.o‘. = 00410H =
ol Program area
\ CO23H Vector table area
OOBOH Q000K (36 x 8) 00COH

T

Accessed In the external memory expansion mode

Remark:

indicates an internal memory area.

Fig. 3-3 Memory Map (uPD78138 and uPD78P138)

EX=H

EX = L (ROM-less mode)

Memory space (64K x 8)

FFFFH|- R
+ . - Bpeclal function
reglater (SFR)

FFOOH (356, x 8

. -General-purpose. .
screglatér (32 %

- Macrosservice
s E’ eontrgl (82°x
23 Data area

1 (640 x 8)

FDAOH FDBOH

E 3FFTH
g > L Jd Program area e
g I5 :__‘ (" ‘_L g J |
as External memory = 1‘ - External memory =
cE (31872 x 8) QFFFH (64640 x 8)
2
oom
[y =

:
Y

CALLF instruction
entry area
{2048 x 8)

IFFFH T -+
- CO7FH
5 CALLT instruction OFFFU
E E table area
a E ~ (64 x 8) L
pe _‘ ' 0010H T
& =
[
-9 Program area
\ 0023H Vector table area
0O00H {36 x 8) 0O00H

Program area

1Y

Accessed in the external memory expansion mode

Remark: indicates an internal memory area.

3.

1

.1

Internal program memory space

An area from 0000H to 3FFFH (16K bytes: uPD78134A)., from
0000H to 5FFFH (24K bytes: uPD78136}, or from 0000H to
7FFFH (32K bytes: uPD78138 and uPD78P138) 1is assigned to
internal program memory (internal ROM). This area holds
programs and table data, and it 1s usually addressed by
the program counter (PC).

The internal program memory space is assigned to the

following areas:
{l1) Vector table area

A 22-byte area from 0000H to 0015H holds program
start addresses used when branches are caused by
RESET input and interrupt requests. The lower eight
bits of a 16-bit program start address are stored at
an even address and the higher eight bits are stored

at an odd address.

Table 3-2 Vector Table

Vector table address Interrupt request
0000H Reset (RESET input)
0002H NMI
0004H INTPO
0006H INTCPT3
0008H INTCPT2
000AH INTCR12
000CH INTCROO
000EH INTCLR1
O0010H INTCR10
0012H INTCRO1
0014H INTCROZ
00186H INTCR11
0018H INTCPT10
O01AH INTTM
001CH INTCSI
001EH INTTB
0020H INTP1/INTAD
0022H INTP2

N

1.

1.

(2) CALLT instruction table area

A 64-byte area from 0040H to OO07FH holds subroutine
entry addresses for a 1-byte call instruction
(CALLT).

(3) CALLF instruction entry area

Locations from 0800H to OFFFH can be addressed for a
direct subroutine call with a 2-byte call instruction
(CALLF) .

Internal data memory space

An area from FD80H to FEFFH for the uPD78134A or an area
from FC80H to FEFFH for the uPD78136, uPD78138, and
uPD78P138 is assigned to 640 bytes of general-purpose
static RAM. In 32 bytes from FEEOH to FEFFH in that area
four banks of general registers are mapped, and 1n another
32-byte area from FECOH to FEDFH in the area, macro

service channels are mapped.

Data memory can also be used as stack memory.

Special function register (SFR) space

The special function registers (SFRs) for the on-chip
peripheral hardware are mapped in an area from FFOOH to
FFFFH. Locations in which no SFR is mapped cannot be
accessed. (See Section 3.2.5.)

Data memory addressing

Figure 3-4 shows the memory map of data memory space and

SFR space and the applied addressling scheme.

SFR addressing

FFIFH
- |FrooH
;. A FEFFH
o Reglster addressing
_| FEEOH] Short direct
addressing
Register Iindirect
addressing
(ID].lE]i[E*])
1
(%3) Register indirect addressing

([HL], [HL+],{DE], [DE+])
Indexed addressing

Stack 1ndirect addressing
Direct addressing

External memory o

\(

#1 If EA is low, external memory is mapped.

#2 Do not place the stack pointer in the SFR area
or, if EA is high, in the ROM area.

+3 FDB0OH for the uPD78134A; FCB80H for the uPD78138,
uPD78138, and uPD78P138

indicates internal memory.

(1)

(2)

Register addressing

With thls addressing scheme, a general register
mapped into a particular location in data memory is
addressed. The addressed general register is 1in the
reglster bank specified by the RBS0O and RBS1 flags in
the PSW.

Coding example: XCH A.,r
When specifying the C register in r,
code the following:

XCH A.C
Short direct addressing

The short direct addressing scheme applies to an area
from FE20H to FEFFH in the internal data memory space
and an area from FFOOH to FF1FH in the SFR space.

In accessing 16-bit data, 2 bytes of data specified
with even-odd consecutive addresses are accessed
régardless of whether the address specification data
is odd or even.

Coding example: ADDC saddr.,A
When address FES50H is specified in
saddr, code the following:

ADDC OFESO0H,A

(3) SFR addressing

The SFR addressing scheme applies to the special
function registers (SFRs) mapped in the SFR area from
FFOOH to FFFFH.

Coding example: MOV A,sfr
When the SIO register is specifiled
in sfr, code the following:

MOV A,SIO
(4) Reglster indirect addressing

The register indirect addressing scheme addresses a
data mémory location indirectly through the contents
of the register coded in an operand. The specifiled
register 1s 1n the register bank specified by the
RBSO and RBS1 flags in the PSW,

Reglister indirect addressing with the HL reglister
palir or the DE register pair can address any location
in the entlire space including internal ROM.

Only the MOV instruction can automatically increment
the contents of the register or the reglster pair by
one after the instruction 1s executed.

Coding example: SUB A,{[r4]
When the E register is specified in

r4, code the following:

SUB A,[E]

3 - 10

(5)

(6)

Indexed addressing

The indexed addressing scheme uses the result of
adding the 16-bit immediate data coded in an operand
and the contents of the 8-bit register coded in
another operand. The specified 8-bit register is in
the register bank specified by the RBS0 and RBS1
flags 1n the PSW.

Any location 1n the entire space 1Including internal
ROM can be addressed.

Coding example: MOV A,word[rl]
When FEACOH 1s specified in word and
the B register 1s specified in ril,
code the following:

MOV A,OFEAOH[B]
Stack Indirect addressing

With the stack Iindirect addressing scheme, the
64K-byte stack area can be addressed indirectly
according to the stack pointer (SP) content.

This addressing scheme applies when the PUSH or POP
Instruction is executed, when save or restore 1s
performed in Interrupt handling., or when & subroutine
call or a return from that subroutine 1s performed.

Coding example: PUSH rp
When the DE reglster pair is
speclfied in rp, code the
following:

PUSH DE

3 - 11

3.2 Reglsters

PC

Program counter (PC)

The program counter 1s a 16-bit binary counter to hold
address information of the instruction to be executed
next. Usually, the program counter 1s automatically
incremented according to the number of bytes of the
instruction to be fetched. When a branch instruction is
executed, immediate data or the contents of a register are
set in the PC.

RESET input causes the data at 0000H in the internal ROM
to be loaded into the lower elght bits of PC, and the data

at 0001H to be loaded into the higher eight bits.

Fig. 3-5 Format of Program Counter (PC)

15 14 13 12 1 10 S 8 7 6 5 4 3 2 1 O

PC15{PC14|PC13(PC12{PC11|PC10|PCS |PCB|PCT|PC6 [PC5 [PC4 {PC3 |PC2{PC1|PCO

3.2.2 Program status word (PSW)

The program status word 1s an 8-blt register consisting of
flags set or reset according to the result of executing an
instruction. All the eight bits can be read from or
written into the PSW at a time, and a partlicular flag can
also be operated on with a bit manipulation instruction.
The PSW contents are saved 1n a stack when an interrupt
request is generated or when the PUSH PSW instruction 1is
executed, and it 1s restored by the RETI or POP PSW
instruction.

RESET input clears all the flags, setting the PSW to
02H.

3 - 12

PSW | IE Z RBS1 | AC | RBSO | 0O ISP CY

Caution: Be sure to write 0 in bit 2.

(1)

(2}

Carry flag (CY)

The carry flag retains an overflow or underflow that
may be generated at the execution of an addition or
subtraction instruction. It also retains a value
shifted out as a result of executing a shift rotate
instruction. When a bit manipulation instruction is

eXecuted, it can function as a bit accumulator.

Interrupt priority status flag (ISP)

The Interrupt priority status flag controls the
priority of maskable wvector interrupts that can be
accepted currently. See Table 3-3.

When a maskable vector interrupt is accepted, the
contents of the prilority specification flag (PRO) of
that interrupt are stored. For the priority
speclfication flag, see Chapter 11.

Table 3-3 ISP Flag Format

ISP | Maskable vector interrupt that can be accepted

0 Interrupt with its priority specification flag
set to 0 (high-priority interrupt)

1 Interrupt can be accepted regardless of the

contents of the priority specification flag

3 - 13

(3)

(4)

(5)

Register bank selection flags (RBSO and RBS1)

Two bits of register bank selection flags select one
of the four register banks.

Table 3-4 Specification of a Register Bank

RBS1 | RBSO | Specified register bank
0 0 Register bank 0
0 1 Register bank 1
1 0 Register bank 2
1 1 Register bank 3

Auxiliary carry flag (AC)

When a carry out of bit 3 or a borrow from bit 3 is
produced as a result of an arithmetic/logical
operation, the auxiliary carry flag 1s set to 1.
Otherwise, it is reset to 0. The flag is used when
the BCD correction Iinstruction 1s executed.

Zero flag (Z)
The zero flag is set when the arithmetic/logical

operation result is zero. Otherwise, this flag is
reset.

3 - 14

(6) Interrupt request enable flag (IE)

The Interrupt request enable flag controls the CPU to
enable or disable an interrupt request. If the flag
1s 0, the DI state is entered, disabling any
interrupt reguest other than nonmaskable interrupts.
If the flag is 1, the EI state 1s entered, enabling
an Iinterrupt request according to the corresponding
interrupt mask flag.

The interrupt request enable flag 1s set to 1 by
executing the EI Iinstruction, and 1t is reset to 0 by
executing the DI Instruction or after an interrupt is

accepted.
Stack polnter (SP)

The stack pointer 1s a 16-~bit register to hold the
start address of the stack area (LIFO form).

Stack memory can be placed at any location in the data

(Note).

memory area It can also be placed In external

memory.
The SP content 1s predecremented when stack memory is
written to (save operation), and 1s postincremented when
stack memory 1s read from (restoration).

SP can be accessed with special instructions.

Note: . FD8OH to FEFFH for the uPD78134A

FC80H to FEFFH for the uPD78136, uPD78138, and
uPD78P138

3 - 15

15 14 13 i2 11 10 9 8 7 6 5 4 3 2 1 0
SP |SP15|SP14|SP13!SP12|SP11|SP10|SP9|SP8 |SPT7|SP6 |SP5{SP4 |SP3|SP2{SP1|SPO
Caution: RESET input makes the SP content undefined.
Before calling a subroutine, be sure to
initialize SP with an initialization program.
Fig. 3-8 Data Saved in Stack Memory
PUSH CALL, CALLF, and CALLT Interrupt
Instruction instructions
Stack Stack Stack
-2 | Lower nalf of sP-2 PC7-PCO sP-3 PC7-PCO
SP-1 TEEiEter Dot sP-1 PC15-PC8 SP=2 ©C15-PC3
SP = SP = SP—1 oSW
T
Sp =
Fig. 3-9 Data Restored from Stack Memory
POP instruction RET instruction RET1 instruction
Stack Stack Stack
S Tt ot P PC7-PCO s = PC7-PCO
sP+1 Upper nalf of SP+1 PC15-PC8 SP+1 PC15-PC8
SP+2 SP+2 SP+2 o5W
1
SP+3

3 - 16

.2,

General registers

General reglsters are mapped in data memory locations from
FEEOH to FEFFH. Eight registers X, A, C, B, E, D, L, and
H, each conslsting of elight blts, are grouped into one
bank. There are four banks of registers in total.

The register bank valid for 1lnstruction executlion depends
on the setting of the register bank selection flags (RBSO
and RBS1)} in PSW.

The elght bits of each general register are manipulated at
one time. Palirs of 8-bit registers (AX, BC, DE, and HL)
can also be manipulated in 16-bit units.

Function names X, A, C, B, E, D, L, H, AX, BC, DE, and HL
are assigned to the Individual registers to i1dentify their
particular functions. Also, the reglsters can be coded
with absolute names (RO to R7, RPO to RP3). In the
uPD78138, function names and absolute names correspond on

a one-to-one baslis. See Table 3-5.

The general reglister area can be addressed for access as
normal data memory regardless of whether the registers are
mapped there.

With the four register banks, uPD78138 programs can be

coded so that different reglster banks are used between
normal processing and interrupt processing for efficiency.

3 -~ 17

Table 3-

5 Correspondence between Function Names and

Absolute Names

Function name | Absolute name Function name | Absolute name
X RO L RE
A R1 H R7
C R2 AX RPO
B R3 BC RP1
E R4 DE RP2
D R5 HL RP3

Fig. 3-10 Format of General Registers
8-bit processing 16-bit processing
FEEOH [., |« |~~~ TtyTTTT

A - X con -W AX oM
B o C Reglster bank 3 BC L
D o E can (RBS1, RBSO = 11) DE cou
H EJH L €6H | Ly HL E6H
A eom X L8m AX [
B e c €M | Reglster bank 2 BC EA
D com E rcn {RBS1, RBSO = 10) DE kom
H EFH L EEH | Y. HL EEH
A F1H x FCH Ax FOH
B s C Register bank 1 BC F2u
D .. E , | (RBS1, RBSO = 01) DE N
H FIH L F6H | i HL F6H
A FoH x FAH Ax L L
B FEH c FAH Regléter.bank 0 BC L

D E (RBS1L, RBSO = 00} DE
FDH FCH fCH
FEFFH H FeW L rew |y L HL FEH

18

2.

Speclal function registers (SFRs)

Special function registers are assigned speclal functions,
such as the mode register and control register of the on-
chip peripheral hardware, and are mapped in the 256-byte
space from FFOOH to FFFFH.

The 32-byte area from FFQ00H to FF1FH can be accessed by
short direct addressing. So SFRs which are accessed
frequently, such as a timer compare register, capture
register, and ports, can be mapped in that area, allowing

short-word data processing with fewer clock pulses.

SFRs can be manipulated in various ways with

arithmetic/logical instructions, move Instructions, and

bit manipulation instructions.

Caution: Addresses not assigned SFRs cannot be accessed.
Access to such an address may cause normal

operation to fail.

Table 3-8 1lists the special functlion registers (SFRs).
The items in Table 3-6 mean:

Abbreviation

A symbol indicating the address of an included SFR. It
can be coded in the operand field of an instruction.

3 - 19

R/W

Indicates whether SFR can be read from and/or written
to.

R/W: Can be read from and written to.

R: Can be read from.

w: Can be written to.

Manipulation bit unit

Indicates the number of bits in SFR that can be
manipulated at one time. An SFR which allows 16-bit
manipulation can be coded in the sfrp operand. For

address specificatlion, an even address 1s specified.

An SFR which allows bit-based manipulation can be coded
in a bit manipulation instruction.

At resetting

Indicates a register state immediately after RESET
input.

3 - 20

Table 3-8 Speclal Functlion Reglsters (SFRs)

Manipulation
Address | Speclal function Abbreviation | R/W | blit unit At resetting
register (SFR) name
1 8 16
FFOOH Port 0 PO 0 0
R/W -
FFO1H Port 1 P1 0 0
FFrO2H Port 2 P2 R) 0
- Undefined
FFO3H Port 3 P3 0 0
FFO4H Port 4 P4 0 0
FFO5H Port 5 P5) 0
FFO6H Port 6 P6 0 o] xxxx0000
FFOTH Port 7 P7 0 0
FFO8H 16-bit timer 0 - -
compare register 0 CROO o
FFO9H - -
FFOAH 16-bit timer O R/W[-} -
compare register 1 CRO1 0
FFOBH - -
FFOCH 16-bit timer 0 - -
compare register 2 | CRO2 o | Undefined
FFODH - -
FFOEH 16-blt timer 1 - -
compare register 0 CR10 0
FFOFH - -
FF10H 16-bit timer 1 - -
compare register 1 CR11 0
FF11H - -
FF12H 16-bit timer 1 - -
capture register 2 CR12 R o
FF13H - -

3 - 21

{to be continued)

Table 3-8 Special Function Registers (SFRs)

{Cont’'d)

Manipulation
Address | Speclial function Abbreviation | R/W | bit unit At resetting
register (SFR) name
1 B |18
FF14H 16-bit FRC - -
capture reglster CPTO 0
FF15H - -
FF16H 16-bit FRC - -
capture reglster CPT1 o
FF17H - -
Undefined
FF18H 18-bit FRC R - -
capture register CPT2H 0
FF19H - -
FF1AH 16-bit FRC - -
capture reglister 3 | CPT3 0
FF1BH - -
FF1CH 18-bit FRC CPT2L o] o - | xx000000
capture register 2
FF1DH Prescaler mode PRM3 o| o - | 0xxxx000
register
FFIEH | 16-bit timer 2 RAEL | -
compare register CR20 o) Undefined
FF1FH - -
FF20H | Port 0 mode PMO -lo | -
register
FF21H Port 1 mode PM1 - o -
register
FFH
FF23H Port 3 mode PM3 -) -
register
W
FF25H Port 5 mode PM5 - 0 -
register
FF2€EH Port 6 mode PM6 - 0 - FOH
register :
FF27H Port 7 mode PM7 - 0 - FFH
register

3 - 22

{(to be contlnued)

Table 3-8 Specilal Function Registers (SFRs) (Cont'd)

Manipulation
Address | Special function Abbreviation | R/W | bit unit At resetting
reglster (SFR) name
1 8 16
FF30H 16-bit timer - -
register 0 TMO o
FF31H - -
Undefined for
FF32H 16-bit timer - - 16 clock
register 1 TM1 0 | pulses
FF33H - -
R
FF34H 16-bit free running - | - Cleared to 0
counter FRC 0 after the
FF35H - - 17th clock
pulse
FF36H 16-bit timer - -
register 2 ™2 0
FF3TH _ - -
FF38H Timer control TMCO W - 0 0xx00000
register 0 :
FF39H Timer control TMC1 R/W - 0 0O0H
register 1
FF3AH Capture mode CPTM W - 0 - xxxxx000
register
FF3DH T-bit timer TM3 R - 0 - OOH
register 3
FF3EH 7-bit timer 3 CR30 R/W - 0 - x1111111
compare register
FF3FH T-bit timer 3 CPT30 R - o - Undefined
capture register
FF40H Register for PUO 0 0 - 00H
optional pull-up
resistor
FF43H Port 3 mode control | PMC3 R/W| o} o - 30H
register
FF4AH Port 0 buffer POL 0 0 - Undefined
register :

(to be continued)

3 - 23

Table 3-6 Special Function Registers (SFRs) (Cont'd)
Manipulation

Address | Speclal function Abbreviation | R/W | bit unit At resetting

register (SFR) name
1 8 16

FF4BH Port 0 buffer POH 0 0 - Undefined
register

FFACH | Real-time output RTPC RAW| o] o | - |ooH
port control
register

FF50H Input control ICR - 0 - 0x0x0xxx
register

FF53H Event divider EDVC - 0 - Indefined
control register

W

FF54H Event counter ECC1 - 0 - xx111111
compare register 1

FF55H Event counter ECCO - 0 - xx111111
compare register 0

FF56H Event counter EC R -) - xx000000

FF58H Timer 0 output mode | TOMO - 0 - xx0000600
register

FF59H Timer 0 output TOCO W - 0 - xx000000
control register

FF5AH Timer 1 output mode | TOM1 - 0 - xxxx0000
register

FF5BH Timer 1 output TOC1 R/W - 0 - XXxx0000
control reglster (=)

FF68H A/D conversion mode | ADM R/W| o] o - | 00H
register

FFEAH A/D conversion ADCR R - 0 - Undefined
result register

FF70H P¥M control PWMC R/W| o] o - | O5H
reglster

Only bit 0 of TOC1l can be read.

3 - 24

{to be continued)

Table 3-6 Special Function Registers (SFRs) (Cont'd)

Manipulation
Address | Special function Abbreviation | R/W | bit unit At resetting
register (SFR) name
1 8 16
FF72H PWMO modulo - -
register PWMOQ 0
FF73H - -
L] Undefined
FF74H P¥M1 modulo - -
register P¥M1 0
FF75H - -
FF7FH Clock output mode CLOM R/W 0 0 - 00H
register
FF80OH Serial interface CSIM R/W 0 0 - 00H
mode register
FF82H Serial bus SBIC 0 0 - 00H
interface control
register
FF86H Serial shift SI10 R/W - 0 - Undefined
reglster
FFCOH Standby control STBC - 0 - QO0H
register
FFC4H Memory mapping MM - 0 - 20H
register
W
FFCFH Internal memory IMS - 0 - FDH
size swi c?
reglster *
FFEOH Interrupt request IFOL 0 0 Q0H
flag register IF0 0
FFE1H IFOH 0 0 OO0H
R/W
FFE4H Interrupt mask MKOL 0 0 FFH
register MKO 0
FFE5SH MXOH 0 0 FFH

(to be continued)

The internal memory size switch register (IMS) is included only in the

uPD7BP138.

It is not included in the uPD78134A, uPD78136, or uPD7813S.

So in the uPD78134A, uPD78136, and uPD78138, address FFCFH must not be
accessed.

3 - 25

Table 3-6 Special Function Reglsters (SFRs) (Cont’'d)
Manipulation
Address | Speclal function Abbreviation | R/W | bit unit At resetting
register (SFR) name
18 (16
FFESH Priority specifica- | PROL 0 0 FFH
tion flag register PRO 0
FFESH PROH 0} o0 FFH
FFECH Interrupt service ISMOL 0 0 OO0H
mode register ISMO | R/W o
FFEDH ISMOH 0 0 00H
FFF4H External interrupt INTMO of o 50H
mode register
FFF5H External capture INTM1 0 0 0000xx01
Input mode register
o: Allowed

3 - 26

Not allowed

3.3 External Expansion Functions

The uPD78138 allows up to 64K bytes of program memory, data
memory, or I/0 to added externally.

Bus interface function

The external expansion 1s made by using the bus interface
functions such as address and data buses (ADO to AD7, AS8
to Al5), and read, write and address strobe signals (RD,
WR, and ASTB). Figures 3-11 and 3-12 show the basic bus

interface timing.

Except ASTB, the bus interface pins are also used as port
pins. The lower address part/data bus pins (ADO to AD7)
also function as port 4 (P40 to P47), the address upper
part bus pins (A8 to A15} function as port 5 (P50 to P57),
and the RD and WR pins function as port 6 (P84 and P65).
These pins function as the bus interface by specifying an
exXxternal expansion mode in the memory mapping register
(MM) and external access pin (EA). Table 3-7 lists the
external expansion modes of the uPD78138 and the pin
Tunctions.

3 - 27

Table 3-7 External Expansion Modes and Pin Functions

External expansion mode | P40-P47 | PS0-P57 | P64 | P65

Single-chip mode Port 4 Port 6
Port 5

256-byte expansion mode

48K-byte expansion mode

ADO-AD7 | AB-A15 RG |¥R
64K-byte expansion mode
{ROM-less mode)

Fig. 3-11 Read Timing

{#)

oLk _/—___/—__/—_/_
A8-AlS5
(output) x Upper address ><

i- OWET Hi-Z -
aD0-AD7 - 2/ aoietss oot vz pata (trput) oeees Wz
foutput}

pstomant) N\ e

RD{output) \ /

* fCLK: System clock frequency

3 - 28

.3,

Fig. 3-12 Write Timing

AB-A15

X Upper address

"

ADO-AD? _Hi'Z / Lower JHz Data
(output) address
ASTB loutpi/_\

M

‘\j

WH{output)

* fopx:

Caution:

\ /

System c¢lock frequency

An external device cannot be mapped in the
internal RAM area (FC80H to FEFFH) and the SFR
area (FFOOH to FFFFH) so that they overlap.

If the overlapped space is manipulated, and
internal RAM and SFRs are automatically subject
to manipulation. Although an address signal and
the ASTB signal are output, the RD and WR
signals are not output. That is, these signal

lines remain high.

Memory mapplng register {(MM)

The memory mapping register (MM) is an 8-bit register to

control the external expansion function. The register

specifies the bus interface function, the number of waits,

and the instruction fetch cycle. Figure 3-13 is the

format of the memory mapping register.

3 - 29

Fig. 3-13 Format of Memory Mapplng Register (MM)
T 6 5 4 3 2 1 0 Address When reset R/W
IFCH; 0 |Pw21|PW20(0 |MM2 |MM1 |MMO FFC4H 20H)
— | I
N
FA || MM2 | MM1 | MMO Mode P40-P47 P50-P57 | P65 |P64
0 0 0 Single-chip Port | Input Port
mode mode mode
0 0 1 Output Port {#1)
mode
256-byte (#1)
1 0 1 1 expan-
sion
External — |
1 1 1 expan- (#2) ADO-AD7 WR |RD
sion
mode
A8-Al5
64K-byte
0 X X X expan-
sion
EA: External access pin
PW21 | PW20 Specification of the number of waits for external
mEmMory access
0 0 0
0 1 1
1 0 2
1 1 Not to be set
IFCH | Internal fetch cycle control
o |Same instruction execution cycle as external ROM fetch
cycle
1 High-speed internal fetch operation (Instruction is
executed faster than external ROM fetch.)
#1 I/0 is specified by port mode registers.
#2 J2K-byte expansion (uPD78138 and uPD78P138)

40K-byte expansion (uPD78136)
48K-byte expansion (uPD78134A)

3 - 30

Cautions 1. When a reset occurs, IFCH (bit 7 of MM) is
set to 0, and CPU processing becomes slower
than Internal fetch operation. ¥For access to
internal ROM, set IFCH to 1 to speed up CPU

processing.

2. After the reset state 1s released, the IFCH
bit can be set only once. If the setting of
this bit 1s changed more than once, the
system maj malfunction.

3. Be sure to write 0 in MM bit 6.

3.3.3 Memory map in external expansion

Filgures 3-14 to 3-16 are memory maps when external
expansion 1s done.

When an external area 1s addressed in the 256-byte
expansion mode, the lower eight bits of the address (A0 to
AB) are output. Thus, 258 bytes 1n the external area can
be accessed.

In the 64K-byte expansion mode (ROM-less mode), an
internal ROM area ls not accessed.

Data in internal RAM and speclal function regilisters (SFRs)
is not fetched as instructions. This means that a program
cannot be stored In these areas. Programs must be stored
in an area from 0000H to FD7FH for the uPD78134A and from
0000H to FC7FH for the uPD78136, uPD78138, and uPD78P138.

3 - 31

Fig. 3-14 Memory Map in External Expansion (uPD78134A)

Ze

EX pin = K EA pin = H EX pin = H EX pin = L
(ROM-1ess mode)
FFFFH Spectal func- Speclal func- Special func- Special func-
tion register tion reglster tlon register tion reglster
FFOOH (SFR) {SFR) (SFR) (SFR)
FEFFH
Internal RAM Internal RAM Internal RAM Internal RAM
(384 x 8) (384 x 8) (384 x 8) (384 x 8)
FDSCH
I]] I
I I I I
I | I !
I | | I
I \ I I | -
ot A A External ‘memory :
¥ addressed T * o (256 x 8) u- 4 i
I ! I I :
I I I I
I I I I
I | ! I
| | I |
I I ! I
4000H
JFFFH
AL Internal ROM .| Internal ROM | A Internal ROM | A A
(16384 x B) T T (16384 x B) T T (16384 x 8) T T T
COO0H
Single-chlp mode 256-byte expansion mode 48K-byte expansion mode 64K-byte expansion mode

Remark: External expansion area

Fig. 3-15

Memory Map in External Expansion (uPD78136)

FX pin = H EX pin = 1l EX pin = H ER pin = L
{ROM-less mode)
FFEFH Special func- Special func- Speclal func- Special func-
tion register tion register tion reglster tion reglster
FFOOH (SFR) (SFR) {SFR) (SFR)
FEFFH
Internal RAM Internal RAM Internal RAM Internal RAM
{640 x B) (640 x 8) {640 x 8) (640 x 8)
FDBOH
] | I I
I I | I
I | I I
2 | ! I ! :
I : ..
e J, Not j. —L J. External memory ~Breornal
L o= 2 ES 4 Memory . A
o | addressed | | | (256 % 8) (64840 x 8)
I] I I
I I | |
| I I I
I | I I
I | I |
5000H
5FFFH
.. Internal ROM _|_ i Internal ROM | . Internal ROM |}
T (24576 x 8) T T (24576 x 8) T T {24576 x B) T
00COH
Single-chip mode 256-byte expansion mode 40K-byte expansion mode 64K-byte expanslon mode
Remark: [__] External expansion area

Fig. 3-16 Memory Map in External Expansion (uPD78138 and uPD78P138)

EX pin = H

FFFFH
FFOOH

Special func-
tion reglster
(SFR)

FEFFH

FDBOH

Internal RAM
(640 x 8)

ve

8000H

I I
! I
I I
! I
I Not |
addressed *
I
I
I
I
]
|

|
!
I
I
I
I

TFFFH

COCOH

L Internal ROM |,
[~ {32768 x 8) T

)1

EX pin = 1

Special func-
tion register
(SFR)

Internal RAM
(640 x 8)

I
I
[
I
I
A
I
|
I
I
I
I

_ Internal ROM |
~ (32768 x 8)]

)1

External mémo

{256.2.8) -

ry

EX pin = H

Special func-
tlon register
{SFR)

Internal RAM
(640 x 8)

. Interna) ROM |}
T (32768 x 8) T

EX pin = L
{ROM-1less mode)

Special func-
tion register
{SFR)

Internal RAM
(640 x 8)

J
W

b}]
W

Single-chlip mode

Remark:

256-byte expansion mode

(] External expansion area

J2K-byte expansion mode

64K-byte expansion mode

CHAPTER 4 CLOCK GENERATOR

Configuration and Functions
The clock generator generates and controls an internal
system clock signal (CLK) supplied to the CPU. Figure

4-1 is the configuration of the clock generator.

Fig. 4-1 Block Diagram of the Clock Generator

X1 Frequency
F—T——C*—— divider
=5 Clock lee 07 Ly 12 feon Internal system
T w osclllator _ clock (CLK)
STOP mode
Remarks: fxx: Crystal or ceramic oscillator frequency
fX: External clock frequency

fCLK: Internal system clock frequency
(1/2 fxx or 1/2 fx)

The clock oscillator oscillates a clock signal with a
crystal or ceramic resonator connected to the X1 and X2
pins. When the standby mode (STOP) is set, the clock
oscillator stops oscillation. {See Chapter 12.)

The clock oscillator can also accept external clock signal
input. To do this, apply the cleck signal to the X1 pin,
and apply the inverted signal to the X2 pin.

The frequency divider divides the clock oscillator output
(fyx when a crystal or ceramic resonator is used, or fx
when an external clock is used) by two to produce an
internal system clock signal (CLK).

Fig. 4-2 External Circuitry of the Clock Oscillator

(a) With a crystal or (b) With an external
ceramlc resonator clock
uPD78138 uPD7IB8138

X2 L X2

74HCO04, etc.

Y
0

Remark: Choosing between a crystal resonator and a ceramic
oscillator

In general, crystal resonators produce stable
frequencies{ So crystal resonators are suitable
for high-precision time control (for example, for
clock or frequency measurement use). Ceramic
resonators produce less stable frequencies than
crystal resonators. But ceramic resonators start
oscillation in a shorter time, are more compact,
and are less costly. So ceramic resonators are
useful for normal applications {(requiring less
precise time control). In additicon, ceramic
resonators containing a capacitor are available
for a reduced part count and mounting space.

4.2 Cautions

The user must exerclise caution with the clock generator as

descrlbed below.

4.2.1 When an external clock is applied

(1)

(2)

(3)

(4)

When applylng an external clock, never use the STOP
mode. Otherwise, a destruction may occur, or the

reliability may deteriorate.

When applying an external clock, apply, to the X2
pin, the inverted signal of the signal applied to the
X1 pin. Otherwise, malfunctioning due to noise may

occur more frequently.

When applying an external clock, use an HCMOS or a
device having an equivalent drive capability.

Never extract signals from the X1 or X2 pin. When X1
and X2 signal output is required, use point a in

Figure 4-3.

Fig. 4-3 Signal Extraction Point in External Clock Input

(5)

«PD78138
a
—*—{:>C X1

X2

Minimize the wiring from the X1 pin to the X2 pin

through the inverter.

4.2.2 When crystal/ceramic oscillation is used

(1) Since the generator is a high-frequency analog
circuit, the user must be careful in handling. In
particular, the user must observe the following:

Minimize the wiring.

Never cause the wires to cross other signal lines
or run near a line over which a high current
flows.

Ground the capacitor of the generator so that the
grounding point i1s always at the same potential
as the VSS pin. Never connect the capacitor to a
ground pattern carrying a high current.

Never extract a signal from the generator circuit.

The subsystem clock generator 1s a low-amplification
circuit for reduced current consumptlion. This means
that the subsystem clock generator is more sensitive
to nolse than the main system clock generator. When
the subsystem clock circuitry 1is used, it must be
wired carefully.

If normal and stable oscillation is not provided, the
microcomputer cannot operate normally in a stable
manner. When the user needs a high-precision
oscillator frequency, it is recommended that the user

consult with an oscillator supplier.

Fig. 4-4 Cautions for Resonator Connection Clrcuitry

xPD78138

Cautions 1. Place the oscillator circuit as close as
possible to the X1 and X2 pins.

2. Never run other signal lines in the shaded

area ([HR) .
Fig. 4-5 Examples of Wrong Resonator Connection Circuitry

(a) Connection circuit {b) There is another

wiring is too long. signal line crossing.

4PD78138 ?
X2 '

4PD78138

T

(¢} A high varying (d) A current flows over
current flows near the ground line of the
a signal line. generator circuit.
(The potentials of
points A, B, and C

«PD78138 change.)

X1 X2 V.

Large nr—i.

current

Voo

«PD78138

(e} A signal is extracted.

4PD78138

(2)

At the time of power-on or return from the STOP mode,
some walting time is required before a stable
osclllation can be obtained. In general, when a
crystal resonator 1s used, several milliseconds are
required. When a ceramic resonator is used, several

hundreds of microseconds are required.

The two factors described below determine a time
required for stable oscillation. Allow a sufficilent

time.

(1) RESET input at power-on (reset period)

C) RESET input (reset period), (time period during
which the NMI signal is active + automatically
used timer), or automatically used timer at
return from the STOP mode

CHAPTER 5 PORT FUNCTIONS

.1 Functions and Outline of the Ports

The uPD78138 is provided with the ports shown in Figure 5-1,
which allow a wide variety of control capabilities.

Table 5-1 indicates the functions of the ports. The use of
internal pull-up resistors can be specified by software.

Fig. 5-1 Port Configuration

ort 0 8 POO-PO7
P <::}:::: P40-P47 B8 Port 4
.
-~ PI0
—_—] P |em—)
Port 1¢ .| D
———
-—] ————— »Port 5
, ~——— P17 .
P37 f——m—m—m—
5
Port 2 P20-P27
P60-PG3 3
Pt |~— . pPort 6
[(————]P20 Cl- .
- . PaT f—
L — -]
Port 34 33
\I‘J> P34, P35 P70, P71 K 2 >y Port 7
-~ —1P36
{ ~——— P37

Table 5-1 Port Functions

Port

Pin

1/0

Function

Port

POO-POT

Output

8-bit output port
Specifiable in units of 8 bits for output or
high-impedance
Also functions as a real-time output port of
one 8-bit channel or two 4-blt channels.

Port

P10-P17

1/0

8-bit 1/0 port

. Specifiable for input or output bit by bit.
Can directly drive an LED.
The use of the pull-up resistors can be
specified by software for the pins in the Input
mode at one time.

Port

P20, P21

P22-P27

Input

8-blt input port

. Also functions as external interrupt pins and
trigger pins.
The use of the pull-up reslistors can be
specified by software for pins P22 to P27
(six pins) at one time.

Port

P30-P33

1/0

P34, P35

Input

P36, P37

1/0

8-bit 1/0 port

. Also functions as control pins.
Allows input or output to be
specified bit by bit for P30-P33, P36, and P37
The use of the pull-up resistors can be
speciflied by software for the pins in the input
mode at one tlme.

Port

P40-P47

1/0

8-bit I/0 port

. Also functions as a time-multiplexing address
/data bus for external expansion.
Specifiable for input or output in units of 8
bits.
The use of the pull-up resistors can be
specified by software for the eight pins at one
time.

Port

P50-P57

1/0

8-bit I/0 port
Address bus for external expansion
Specifiable for input or output bit by bit
The use of the pull-up resistors can be
specified by software for the pins in the Input
mode at one time.

(to be continued)

Table 5-1 Port Functions (Cont'd)
Port Pin I1/0 Function
8-bit I/0 port
P60-P63 | Output Also functions as RD and WR, control signal
plns for external expansion.
Port 6 Allows input or output to be specified bit by
bit for P64-P67.
The use of the pull-up reslstors can be
P64-P67 | 1/0 specified by software for the pins in the input
mode at one time.
2-bit 1/0 port
. Allows input or output to be specified in units
t 7] P70, P71 | 1/0 of 2 bits.

—_ Por / The use of the pull-up resistors can be
specified by software for the two pins at one
time.

Cautlon: Port 4 can contaln a pull-up resistor both 1n the

input and output modes. Port 3 can contain a

pull-up resistor in the 1nput and control modes.

The other ports can contain a pull-up resistor

only in the 1nput mode.

.2 Port 0 (P0OO-POT)

Port 0 is an 8-bit output port.
output buffer and places it in the high-impedance state.

Port 0 also functions as a real-time output port.

Chapter 6.)

The port turns off the

Table 5-2 shows the function of port 0.

Table 5-2 Function of Port 0

{See

Pin | Port function ﬁiso usable Non-port function

POO Output Real-time Also functions as an 8-bit
to output port 0 | real-time output port or two
PO7 4-bit real-time output port.

5.2.1 Hardware configuration

Figure 5-2 shows the hardware configuration of port 0.

Fig. 5-2 Block Diagram of Port 0

POML

(POMR)

(" 7 WRue. Real-tlme output port control register

Port 0 mode repglster

Trigger

—>—

l PMOn

= {PMOm)
'§ Buffer
- w}:u register
[+ POI
& ~ (POH
Q m)
‘é RDFQL
"

ot

WRNIOUI

Output
latch

POn

(POm)

Sclector

POn
(POm)
n=0123
m=4,567

5.2.2 B8Setting the I/0 mode and/or control mode

The I1/0 mode of port O is set by the port 0 mode register
(PMO) as shown in Figure 5-3. PMO is set with an 8-bit
data transfer instruction. So PMO cannot be manipulated

or read on a bit-by-bit baslis.

Fig. 5-3 Format of the Port 0 Mode Register

7 6 b 4 13 2 1 0 Address VWhen reset R/W
PMO PMOT | PMO6 | PMOS | PMO4 | PMO3 | PMO2 | PMO1 | PMOO FF20H . FFH W
I I T T I [I —T

PMO POn pin I/0 specification (n = 0-7)

00H Output mode {output buffer on)

FFH High—impedance (output buffer off)

Other
than Not to be set
above

When port 0 1s to be used as a real-time output port, bits
POML and POMH of the real-time output port control
‘register (RTPC) must be set to 1.

Setting POML and POMH turns on the output buffer of each
pin, regardless of the content of PMO, allowing the buffer

content to be output on the pin.

RTPC is an 8-bit register and is written to with 8-bit or

bit manipulation instructions.

Fig. 5-4 Format of Real-time Output Port Control
Register (RTPC)

7 6 5 4 3 2 1 0 Address When reset R/W

RTPC | BYTE | O 0 POMH | EXTR | O 0 POML FF4CH OOH R/W

L— POML | Specification of POL function

0 Port mode

1 Real-time output port mode

EXTR Data transfer from buffer register
to output latch by INTPO

0 Disabled

Enabled BYTE=0: Transfers POL

1 only.

BYTE=1: Transfers POL
and POH.

POMH | Specification of POH function

0 | Port mode

1 Real-time output port mode

BYTE ggﬁiation mode of real-time output

0 4-bil separate real-time output
port

1 8-bit real-time output port

Caution: Be sure to write a 0 in bits 1, 2, 5, and 8.
5.2.3 Internal pull-up resistors

Port 0 is not provided with internal pull-up resistors.

Each bit of the port can be

Port 1 (P10-P17)

Port 1 i1s an 8-bit 1/0 port.

specified independently as 1input or output.

Port 1 is capable of high-current driving, and so It 1s
sultable for driving an LED.

Port 1 iIs provided with software-controlled pull-up
reslistors. The resistors can be used only in the input
mode.

Table 5-3 shows the functions of port 1.

Table 5-3 Functions of Port 1

Pin | Port function 2;59 usable Non-port function
P10

to I1/0 - -

P17

5.

3.

1

Internal bus

Hardware configuration

Figure 5-5 shows the hardware configuration of port 1.

Fig. 5-5 Block Diagram of Port 1

Register for optional
pull-up resistor

3

h]
=
o

Q—
|
|

n‘:

PUOL 7 s

o]
[w}

»
<
o

O

Port 1 mode register)O IEEE P

3
i

O~—

PM1In

Wh., Qutput latch

&

L Pln V

RDrsour Output buffer

S

& D
N

RDPN-

|

b o]

OPln

n=0-7

PM1

Setting the I/0 mode and/or control mode

The 1/0 mode 1s set for each pin of port 1 by port 1 mode
register (PM1) as shown in Figure 5-8.

PM1 is set with an B8-bilt data transfer instruction.
PM1 cannot be manipulated or read on a blt-by-bit basis.

7 6 5 4 3 2 1 0 Address When reset R/W
PM17 | PM16 | PM15 | PM14 | PM13 | PM12 | PM11 | PMi10 FF21H FFH
L I I ! l I |
PM1n | P1n pin I/0 specification {(n = 0-T7)
0 Qutput mode {(output buffer on)
1 Input mode (output buffer off)
Caution: A bit manipulation Instruction manipulates a

bit,
When a bit manipulation instruction is used for

a port including both 1nput and output pins, the
contents of the output latches for the pins that

Fig. 5-6 Format of.the Port 1 Mode Reglster

So

W

but it accesses a port in units of 8 bits.

are in the input mode become undefined

(excluding the manipulated pins).

Take care

particularly when there is a pin used by

switching between input and output,

This

applies also when a port 1s manipulated with

other instructions.

5.3.3 Internal pull-up reslistor

Port 1 is provided with optional internal pull-up
resistors. When pull-up resistors are needed, using these
internal pull-up resistors, instead of mounting separate
pull-up resistors, reduces the number of components for

smaller mounting space.

The use of pull-up resistors is specified with the
followlng two resistors:

Bit 1 (PUO1) of the register for optional pull-up
resisters (PUO)
Port 1 mode register (PM1)

The use of a pull-up resistor can be specified for the
pins that are placed in the input mode at one time.

If PUOL is set to 1, the pull-up resistors for the pins
that are placed in the input mode by PM1 are used.

Fig. 5-7 Format of the Register. for Optional Pull-up Resistors

7 6 5 4 3 2 1 0 Address When reset R/W

PUO | PUOT | PUO6 | PUOS | PUO4 | PUOS | PUO2 | PUOL | O FF40H 00H R/W
| l | I I | [|

PUO1 | Use of pull-up resistors in port 1

0 Pull-up resistors are not used in port 1.

1 Pull-up resistors are used in port 1.

Remark: When the STOP mode is entered, it is advisable to
set PUC to O00H to reduce current consumption.

5 - 10

If PUO1l is 1, and if PUQl is associated with port 1, a
pull-up resistor is made available to bits In the port
which are specifled as inputs by the port 1 mode register
(PM1) for that port.

Filg. 5-8 Specification for Pulling Voltage
in Port 1 High

' | Voo
]]
1]
s b :

u I
] 1
' I
: —0) Pio
- ==]
1 1
:______'r © P

3 8 o

= A r

. = - ©) r12

“ p - . *

5 = ' : :

- = [I A .

I‘E — l—": 1
: —O) P16
cee ‘
! ' © P17

(PUO) []
PUO! 8 =)
i i Port mode
L~ register (PM1)

5 - 11

.4 Port 2 (P20-P27)
Port 2 is an 8-bit port for input only. The pins of the port
also function as external interrupt and trigger pins. {See
Chapters 8 and 11.) P22 to P27 can contain software-
controlled pull-up resistors.

Table 5-4 1lists the functions of port 2.

Table 5-4 Functions of Port 2

pin | Fort Also usable Non-port function
function as

P20 NMI Nonmaskable Interrupt request
input pin

P21 INTPO Cancels the external interrupt
input/HALT mode.

P22 INTP1 Cancels the external interrupt
input/HALT mode.

P23 INTP2 Cancels the external interrupt

Input input/HALT mcde.

P24 CTI1lO0 FRC CPT3 capture trigger input

P25 CTI0O0 FRC CPT2 capture trigger I1input

P26 CTI1l TM1 CR12 capture trigger input

P27 CLR1 FRC CPTO caﬁture trigger input

5 - 12

5.4.1 Hardware configuration

Figure 5-9 shows the hardware configuration of port 2.

Fig. 5-9 Block Diagram of Port 2

N
RD,,
_..l,_qq_qc o v
(n=01}
g Edge
a Interrupt —— detectlion
—_ circuit :
] Register for
5 WR,,, optional pull-up
2 resistors y
oo
-
© PUOZ
RD,
A :
H%:
Ag_« i_q . . —o P2m
Tdge | (m=2-7)
Interrupt —detectlon
N controls clirecult-

5.4.2 Setting the I/0 mode and/or control mode

Port 2 is an input port. So there is no register to set

the 1lnput mode.

The port is always ready for control signal input.
The signal to be input must be determined with an internal

control register in hardware components.

Fig.

PUO

Internal pull-up resistors

Port 2 is provided with pull-up resistors. When pull-up
resistors are needed, using these Internal pull-up
resistors, instead of mounting separate pull-up resistors,
reduces the number of components for smaller mounting

space.

The use of the.pull—up resistors for the six pins P22 to
P27 is specified by PUO2 of the register for optional
pull-up resistors (PUO) at one time. (The resistors
cannot be specified on a bit-by-bit basis.)

Note that P20 and P21 do not contain a pull-up resistor.

5-10 Format of the Register for Optional Pull-up Resistors

T 6 5 4 3 2 1 0 Address When reset R/W

PLGOT | PUO6 | PUOS | PUO4 | PUO3 | PUOZ | PUOL| O FF40H 0CH R/W

PUO2 | Use ‘of pull—up_resistors in port 2

0 Pull-up resistors are not used in port 2.

1 Pull-up resistors are used for P22-P27.

Remark: When the STOP mode is entered, it is advisable to
set PUO to O00H to reduce current consumption.

5 - 14

Port 2 can be connected to VDD with pull-up resistors just
according to the specification iIn the PUO register.
The use of pull-up resistors can be set for all bits at a

time.

Flg. 5-11 Specification for Pulling Voltage
in Port 2 High

] 1
3 1
] 1
1 1
] 1
N : :
:I :
] 1
1 1
] 1
(] 1
; : © P22
L
! —(Q) P23
o 1 " t----
g L8} - =" :
)) 1 . C
— -g D eemw
o VY
= . - . -
L) o e . . .
[«F] g‘ . - .
£ 2 e
— — — 1
: —Q) P26
L
: —©) rz

YI=T

Register for optional
pull-up resistors (PUQ)

Cautions 1. A pull-up resistor is not provided for P20
and P21.

2. Because P22 to P27 are not pulled high
immediately after reset, some dual functions
of these pins may set associated interrupt
request flags. So clear the interrupt
request flags after the use of pull-up
resistors is specified with an initiallzation

routine.

S5 - 15

.5 Port 3 (P30-P37)

Port 3 1s an 8-bit special I/0 port. P30 to P33, P36, and
P37 can be used as an I/0 port bit by bit, and P34 and P35
can be used as a port for input only.

P30 to P33 also function as timer output plins, P34 functlons
as clear signal 1Input for timer 0, and P35 to P37 function

as the plns for serial interface 0.

Port 3 1s provided with software-controlled pull-up

resistors.
Table 5-5 1lists the functions of port 3.

Table 5-5 Functions of Port 3

pin | Port Also usable Non-port function
funection as
P30 PTO00O Super timer unit TMO output pin
(Matching of TM0O and CROO)
P31 PTOO1 Super timer unit TMO output pin
(Matching of TMO and CRO1)
I/0
P32 PT0O02 Super timer unlt TMO output pin
{Matching of TMO and CR02)
P33 PTO11 Super timer unit TM1 output pin
{Matching of TM1 and CR11)
P34 CLRO Super tlmer unit TMO c¢lear input
Input
P35 51 Serial Interface data input pin
(3-wire serial I/0)
P36 S0/SBO Serial interface data output
rin (3-wilre serial 1I/0)/serial
1/0 interface data I/0 pin (SBI)
P37 SCK Serial Interface clock 1/0 pin

5 - 186

5.5.1 Hardware configuration

Figure 5-12 shows the hardware configuration of port 3.

Fig. 5-12 Block Diagram of Port 3

(a) P30 to P33

=
E:]

"o
[\ ’L ' Veo
= PUO3
T ~
-~ P
wﬂ--!
\}} PM3n
WR,.c
“ {LJ PMC3n
g RDpucs
o N
£ =PI ——
B WR" output 1 P3
= “_‘f) 11
o]
,-L Qutput | (n=0-3)
~ latch Output
Rj:w buffer
Nt
HDIII
Y

5 - 17

(b)

Internal bus

P34, P35

PUOC3

RDps

! :] C_l u
s | Inp t]/ﬂ

CLRO

VDD

/

SIo
——, lnput-]

QO P34

A

Input buffer
with hysteresis
characteristlcs

5 - 18

—Q P35

Internal bus

Reglster for

WRpyo optional pull-up
‘L resistors
© PUO3
RPruo
&
Port 3
“TIT' mode register
& o fp——T——
Whrues iD— OUTPUT DISABLE
(L PMC36
HDPIIC! VDD
A4
SBO
output—| .
WR Output .S00 E UE »
* latch output Q
3 B
o P36 « P36
) >
SBI mode
RDysour OUTPUT
| DISABLE
o 1
~J
SBO ._'G———mcas
input

b T

5 - 19

Internal bus

Register for
optional pull-up

WHpyo registors
‘ . PUO3
HDL’UO
Nt
Port 3
'“TI?' node register
& PM37 1
WRP’LHCS
PMC37
~ External
ADpucy SCRO
1
é: SCRO .
output ‘output a2
WR,s latch 8
o
& P37 (73
R‘DP.IDl.II'
o 1
~
SCRO
EDeym input

5 -

—é——oﬂ{_]_

20

/A

Voo

P37

PM3

Setting the I/0 mode and/or control mode

The I/O mode can be set for each pin of port 3 with the
port 3 mode register (PM3) as shown in Figure 5-13.

PM3 is set with an 8-bit data transfer instruction. (So
PM3 cannot be manipulated or read on a bit-by-bit basis.)

Fig. 5-13 Format of the Port 3 Mode Register

T 6 5 4 3 2 1 0 Address When reset R/W
PM37 | PM36 | 1 1 PM33 { PM32 | PM31 | PM30 FF23H FFH L]
I I I | | |

PM3n | P3n pin mode (n = 0-3, 6, T)

0 Qutput mode {output buffer on)

1 Input mode (output buffer off)

P30 to P33 also function as timer ocutput pins, P34
functions as clear signal input for timer 0, and P35 to
P37 function as the pins for serilal interface 0.

The control modes of these dual-function pins are selected
by the port 3 mode control register (PMC3).

5 - 21

Fig. 5-14 Format of the Port 3 Mode Control Reglster (PMC3)

PMC3

5 4 3 2 1 0 Address When reset R/W

PMC37| PMC36

1 1 |PMC33{PMC32{PMC31|PMC30 FF43H 30H R/W

[|
l

PMC3n | P3n pin control mode specification
{n = 0-3)

0 1/0 port mode

1 PTO output mode (output buffer on)

PMC36 | P36 pin control mode specification

0 Input port mode

1 S00/SB0 1/0 mode

Caution:

PMC37 | P37 pin control mode specification

0 Input port mode

1 SCK output mode
(Output buffer turned on by internal
SCK specification)

A bit manipulation instruction manipulates a
bit, but it accesses a port in units of 8 bits.
When a bit manipulation instruction is used for
a port including both input and output pins, the
contents of the output latches for the pins that
are in the input mode become undefined
(excluding the manlpulated pins). Take care
particularly when there 1s a pin used by
swltching between input and output. This
applies also when a port is manipulated with

other instructions.

5 - 22

.5.

Internal pull-up resistors

Port 3 is provided with internal pull-up resistors. When
pull-up resistors are needed, using these internal pull-up
resistors, Instead of mounting separate pull-up resistors,
reduces the number of components for smaller mounting

space.

The use of pull-up resistors is specifled with the
following two resistors:

Bit 3 (PUO3) of the register for optional pull-up
resistors (PUO)
Port 3 mode register (PM3)

The use of a pull-up resistor can be speciflied for the
pins that are placed i1n the input mode at one time.

If PUQ3 1s set to 1, the pull-up resistors for the pins
that are placed in the 1nput mode by PM3 are used.

Even when the control mode is specified for a pin, the
specification of & pull-up resistor is allowed for that
pin. When a pin 1s in the control mode and 1t is not to
be connected to a pull-up resistor, the corresponding bit
of PM3 must be set to 0 (output mode).

S5 - 23

Fig. 5-15 Format of the Reglster for Optional Pull-up Resistors

7 6 5 4 3 2 1 0 Address When reset R/W
PUO PUOT | PUOG | PUOS | PUO4 | PUO3 | PUOZ |PUOL | O FF40H 00H R/W

PUOn | Use of pull-up resistors in port 3

0 Pull-up resistors are not used in port 3.

1 Pull-up resistors are used in port 3.

Remark: When the STOP mode is entered, it is advisable

to set PUO to 00OH to reduce current consumption.

If PUO3 1s 1, and if PUO3 1s associated with port 3, a
pull-up resistor is made available to bits in the port
which are specifled as inputs by the port 3 mode register
(PM3) for that port:

5 - 24

Fig. 5-16 Specification for Pulling Voltage 1in Port 3 High

’\1

Internal bus

______ ©) P30
i]
i E © p3i
= iU
g T
b= ___ (©) P32
'D . [] *
— - - L]
= M a
(=N
= e .
= — !
. ©) v
*E_____‘:r © a7
(PUO) []
8 PUO3 8 :D—

K

Port mode
reglster (PM3)

Cautions 1.

Even in the control mode, pull-up resistors
are made avallable to port 3. To prevent the
use of pull-up resistors for control 1inputs
or outputs, set the assoclated bits in PM3 to
0 (output port).

In the port mode, P34 and P35 are always used
in the input mode, so specifylng the use of
pull-up resistors with the PUO register makes
the pull-up registers for P34 and P35
avallable.

5 - 25

Port 4 (P40-P47)

.8
Port 4 1s an 8-bit I/0 port. Input or ocutput can be
specified in B8-bit units.
This port also functions as the address/data bus (ADO to
AD7) when external memory or 1/0 is connected.
Port 4 is provided with software-controlled pull-up
resistors.
Table 5-6 lists the functions of port 4.
Table 5-8 Functions of Port 4
pin | Fort Also usable Non-port function
function | as
P40 ADO
P41 AD1
P42 AD2
Time multiplexing address/data
P43 AD3 bus at external expansion
1/0
P44 AD4 Lower address: AO0-A7
Data : DO-D7
P45 ADS
P46 ADS
Pa7 ADT

5 - 26

5.6.1 Hardware configuration

Figure 5-17 shows the hardware configuration of port 4.

Fig. 5-17 Block Diagram of Port 4

»
<
o

PUOH E>c } P

L)
<
o

O~-BO— 3

z

R, Qutput 1atéh

Pan

@~

waQur

g

Internal data bus
=]
|w]

() Pan

(h=017

AY

(
(

I/0 control circuit

Internal address

bus

(

5.6.2 Setting the I/0 mode and/or control mode

The I/0 mode of port 4, either the port mode or
address/data bus mode, is selected by the external access

pin (EA) and memory mapping register (MM), as shown in
Figure 5-18.

5 - 27

Fig. 5-18 Port 4 Operation Mode Set by EA and MM

7 6 5 4 3 2 1 0 Address When reset R/W
IFCH| 0 PW21 | PW20 | © MM2 [MM1 | MMO FF4CH 20H W
FA pin MMz | MM1 | MMO Port 4 operation mode
0 0 0 |Port operation { Input port
(P40-P47)
0 0 1 Output port
1
0 1 1 256-byte
expansion
Address/data
1 1 1 | bus operation (»1)
(ADO-ADT)
64K-byte
0 X X X expansion
(#2)

*1 32K-byte expansion (uPD78138 and uPD78P138)
40K-byte expansion (uPD78136)
48K-byte expansion (uPD78134A)

#2 ROM-less mode

Remark: EA: External access pin

MM: Memory mapping register

5 - 28

Fig.

PUO

Internal pull-up resistors

Port 4 is provided with internal pull-up resistors. When
pull-up resistors are needed, using these internal pull-up
resistors, instead of mounting separate pull-up resistors,
reduces the number of components for smaller mounting

space.

The use of internal pull-up resistors is specified by PUO4
of the register for optional pull-up resistors (PUO) for
the eight bits at one time. (Bit-wlse specification is
not permitted.)

The pull-up resistors can be connected toc port 4
regardless of the I/0 mode.

5-19 Format of the Register for Optional Pull-up Resistors

7 6 5 4 3 2 1 0] Address When reset R/W

PUOT | PUOS | PUOS | PUO4 | PUO3 | PUO2 [PUOL | O FF40H OOH R/W

PUO4 | Use of pull-up resistors in port 4

0 Pull-up resistors are not used in port 4.

1 Pull-up resistors are used in port 4.

Remark: When the STOP mode is entered, it is advisable to
set PUO to 00H to reduce current consumption.

5 - 29

Port 4 can be connected to Vpp with pull-up resistors just
according to the specification in the PUO register. The
use of pull-up resistors can be set for all bits at a
time.

Fig. 5-20 Specification for Pulling Voltage in Port 4 Hifch

i
1
1
1
i
L]
L}
____4]
1
1
1 1
] 1
' v © P
T :
. :___"‘: © ra
= o Sy !
=y 1 @
G 1]
— S |
@
= . - .
o s
) =4
‘E’ E T !
f +— !
-: — PG
T -]
— 1
- —© pu

PUCH ?

Reglster for optional
pull-up resistors (PUO)

PN

Caution: Pull-up resistors can be used for port 4
regardless of whether the port is in the input
output mode,

5 - 30

.7 Port 5 (P50-P57)

Port 5 is an 8-bit I/0 port. Input/output can be specified
for each bit of port 5.

The port also functlons as the address bus (A8 to Al5) when

external memory or 1/0 1s connected.

Port 5 is provided with software-controlled pull-up
reslistors.

Table 5-7 shows the functions of port 5.

Table 5-7 Functions of Port 5

pin | Port Also usable Non-port functilon
function as
P50 A8
P51 A9
P52 Al0
Time multiplexing address
P53 All bus at external expanslon
I/0 -
P54 Al2 Higher address: A8-Al15
P55 Al3
P56 Al4
Ps7 Al5

5 - 31

5.7.1 Hardware configuration

Figure 5-21 shows the hardware configuration of port 5,

Fig. 5-21 Block Diagram of Port 5

r\/ wnruo

é PUCS | p
R'Doun]
5 MMO—! ﬁ

w

=

2 s J |

g

ol

3 ’\I} PMSn

—~

=

b WR,, Output latch

= B

= = PSn { Ps5n
’Ll!nul‘ (n = 0' 1._.".‘.”
o

s?
I/0 control circuit

Internal addres

bus

d

5.7.2 Setting the I1/0 mode and/or control mode
The I/0 mode of port 5, elther the port mode or address/
data bus mode, is selected by the external access pin (EA)

and memory mapping register (MM), as shown in Flgure 5-22.

Input/output for the port is specified bit by bit by the
port 5 mode register as shown in Figure 5-23.

5 - 32

Fig. 5-22 Port 5 Operation Mode Set by EA and MM

T 6 5 4 3 2 1 0 Address When reset R/W
MM {IFCH]| O PW21 | PW20 0 MM2 { MM1 | MMO FFC4H 20H W
FA pin MM2 | MM1 | MMO Port 5 operation mode
0 0 X Port operation | I/0 is
{(P50-P57) specified
0 1 1 by PM5.
1
1 1 1 (#1)
Address bus
operation = f------------
_ (A8-A15) 64K-byte
0 X X X expansion
(#2)

#1 32K-byte expansion (uPD78138, uPD78P138)
40K-byte expansion (uPD78136)
48K-byte expansion (uPD78134A)

«2 ROM-less mode

Remark: External access pin

E
MM: Memory mapping register

Fig. 5-23 Format of the Port 5 Mode Register (PM5)

7 6 5 4 3 2 1 0 Address When reéet R/W
PM5 PM57 { PM56 | PM55 | PM54 | PM53 | PM52 | PM51 | PMS0 FF25H FFH W
[I | l N] l |

PM5n | P5n pin I/0 specification (n = 0-7)

0 Output mode ({(output buffer on)

1 Input mode (output buffer off)

5 - 33

.7,

Caution: A bit manipulation instruction manipulates a
bit, but it accesses a port in units of 8 bits.
When a bit manipulation instruction is used for
a port including both input and output pins, the
contents of the output latches for the pins that
are in the input mode become undefined
(excluding the manipulated pins). Take care
particularly when there 1s a pin used by
switching between Input and output. This
applies also when a port is manipulated with
other instructions.

Internal pull-up resistors

Port 5 is provided with internal pull-up resistors. When
pull-up resistors are needed, using these internal pull-up
resistors, instead of mounting separate pull-up resistors,
reduces the number of components for smaller mounting

space.

The use of the internal pull-up resistors 1s specified
with the following two resistors:

Bit 5 (PUOS5) of the register for optional pull-up
resistors (PUD)

Port 5 mode register (PM5)

The use of pull-up resistors can be specified for each pin
of port 5.

If PUOS is set to 1, the pull-up resistors for the plins
that are placed in the input mode by PM5 are used.

5 - 34

Fig. 5-24 Format of the Reglster for Optional Pull-up Resistors

T [5 4 3 2 1 0 Address When reset R/W

PUO PUO7 | PUO6 | PUOS | PUO4 | PUO3 | PUO2 [PUOL | O FF40H 00H R/W

PUOS | Use of pull-up resistors in port 5

0 Pull-up resistors are not used in port 5.

1 Pull-up resistors are used In port 5.

Remark: When the STOP mode is entered, 1t is advisable to

set PUO to OOH to reduce current consumption.

If PUOS is 1, and 1if PUOS is assoclated with port 5, a
pull-up resistor is made avallable to bits in the port
which are specified as inputs by the port 5 mode register
(PM5) for that port.

— Fig. 5-25 Specification for Pulling Voltage in Port 5
High

Internal bus

Input buffer
-
©

(| v QL -
7~ §

Port mode
reglister (PM5)

5 - 35

5.8

Port 6 (P60-P67)

Port 6 consists of an output port on its four low-order bits
(P60 to P83) and an I/0 port on its four high-order bits
(P64 to P67). For the I/0 port, input or output can be
specified on a bit-by-bit basis,

Bits 4 and 5 (P64 and P65) of port 6 also function as RD and
WR control outputs, respectively, when external memory or

I/0 1s connected.

For the four high-order bits of port 6, software-controlled
pull-up resistors can be used.

Table 5~-8 shows the functions of port 6.

Table 5-8 Functions of Port 8

Pin

Port Also usable

Non-port funct
function as P lon

P60

P61

P62

PE3

Qutput - -

P64

P65

PE6

PeT

RD Strobe signal output for external memory read

¥R Strobe signal output for external memory write
1/0

S - 36

5.8.1 Hardware configuration
Figure 5-26 shows the hardware configuratlon of port 6.
Fig. 5-26 Block Diagram of Port 6

(a) P60 to P83

WR,,

n=0=3

(?_Internal b?ﬁ{?

(b) P64 and P65

Vﬂﬂ
/\/ wn!un
é PUOCSE 1
B]
&)
P
5 D——F
i " PMB4
~ {PM65)
ﬁ —
3 External ex-
e pansion mode
.3 RD (WR) signal .
E Wh,, OQutput latch % o6a
8 1 P64 2 v (p8S)
A4 -]
[PeouT
& <
RDPIII
| —]
& oG]
,-\./

5 - 37

(c) Pes, P87

f"‘_‘ W'R'“ oD
é} PUOS
’LRDruo
o b—————{ P
WRFII
w
2 é PM6m
=
g Wj\"
3 va P6m > O Pbm
A ADpsour m=6,7
& 1
Rl)l”“ N
" N—

5.8.2 Setting the I/0 mode and/or control mode

The operation mode of bits 4 and 5 (P64 and P65) of port
6, elther the port mode or external memory control mode,
is selected by the external access pin (EA) and memory

mappling register (MM).

The input or output mode is set for each of the four
high-order bits of port 6 by the port 6 mode register
(PM8), as shown in Flgure 5-28. PM6 1s set with an 8-bit
data transfer instruction. (So PM6é cannot be manipulated
or read on a bit-by-bit basis.)

5 - 38

Fig. 5-27 P64 and P65 Operation Modes Set by EA and MM

T 6 5 4 3 2 1 0 Address V¥When reset R/W
MM | IFCH| O PW21 | PW20 0 ‘MM2 | MM1 | MMO FFC4H 20H W
EA pin MMz | MM1 | MMO P64 P65
X 0 X Port operation
(1/0 is specified by PM6.)
1
X 1 X
RD ¥R
0 X X X

Remark: External access piln

EA
MM: Memory mapplng register

Fig. 5-28 Format of the Port 6 Mode Register

7 6 5 4 3 2 1 0 Address When reset R/W
PM6 PM67 | PM66 | PM65 | PM64 0 0 0 0 FF26H FOH W
I l I]

PM6n | P6n pin I/0 specification (n = 4-7)

0 Output mode (output buffer on)

1 Input mode (output buffer off)

Caution: A bit manipulation instruction manipulates a
bit, but 1t accesses a port in units of 8 bits.
When a bit manipulation instruction is used for
a port 1including both input and output pins, the
contents of the output latches for the pins that
are in the input mode become undeflined
(excluding the manipulated pins). Take care
particularly when there is a pin used by
switchlng between input and output. This
applies also when a port 1s manipulated with
other iInstructions.

5 - 39

Fig.

PUO

Internal pull-up resistors

The four high-order bits (P64 to P67) of port 6 are
provided with internal pull-up resistors. When pull-up

resistors are needed,

reslstors,

using these internal pull-up
instead of mounting separate pull-up resistors,

reduces the number of components for smaller mounting

space.

The use of the Internal pull-up resistors is set with the

following two registers:

Bit 6 (PUO6) of the register for optional pull-up
resistors (PUOQ)
Port 6 mode register (PMS)

The use of a pull-up resistor can be specified for the

pins that are placed in the input mode at one time.

If PUOB is set to 1,

the pull-up resistors for the pins

that are placed in the input mode by PM6 are used.

5-29 Format of the Register for Optional Pull-up Resistors

2 1 0 Address When reset R/W

PUGZ [PUOL | O FF40H O0OH R/W

7 6 5 4 3
PUOT | PUO6 | PUQS | PUO4 | PUQ3
PUOG
(n = 4-7)
0
1
Remark:

Use of the pull-up resistor for P6n pin

Pull-up resistors are not used in port 6.

Pull-up resistors are used in port 6.

When the STOP mode is entered, it is advisable to
set PUO to O00H to reduce current consumption.

5 - 40

If PUQS is 1, and if PUDOS is associated with port 6, a
pull-up resistor 1s made available to bits in the port
which are specified as inputs by the port 6 mode register
(PM&6) for that port. '

Fig. 5-30 Specification for Pulling Voltage 1n Port 6 High

1 1
1 1
' :
o
1 1
1 1
—— O) ps4
3 [H
A | e | '
2] = [I Q) Pes
S 2\ 0 LT)
= o o !
|)
= | N = B e O
= = gmm—-——)
=~ L | —)
3 ! ' © rer
=~ I (R A A [B B .
—
(PUO} 1_-'——
(e [2D

K

Caution: Pull-up resistors are not contained for the
four low-order bits (P60 to P63) 1n port 6.

Port mode
register (PM6)

5 - 41

5.9 Port 7 (P70, P71)

Port 7 is a 2-bit I/0 port. Input/ocutput can be specified
for two bits of port 7.

Port 7 1s provided with software-controlled pull-up

resistors.
Table 5-9 shows the functions of port 7.

Table 5-9 Functions of Port 7

Pin gg;gtion 2%50 usable Non-port function
P70

1/0 - ' -
P71

5.9.1 Hardware confliguration
Figure 5-31 shows the hardware configuratlion of port 7.

Fig. 5-31 Block Dliagram of Port 7

!;v“
PUCT

<

[—E= -

=
&

O~

HD'UD

P

=
B3]

-
13
-

PM71

]
P}

OP?n

n=0,1

\

»
-
o
=
-

[

A

A AL
i

Internal bus
C%—@(}*-i O~

PN

— 5

5 - 42

.9.

PM7

Setting the 1/0 mode and/or control mode

The I/0 mode 1s set for two bits of port 7 by port 7 mode
register (PM7) as shown in Figure 5-32.

PM7 1s set with an 8-bit data transfer instruction. So
PM7 cannot be manipulated or read on a bit-by-bit basis.

Fig. 5-32 Format of Port 7 Mode Register (PM7)

6 5 4 3 2 1 0 Address When reset R/W

- - - - - | PMTY| - FF2T7H FFH L]

PM71 Specificayion of I/0 for P70
and P71 pins

0 Output mode (output buffer
available)

1 Input mode (output buffer not
available)

Caution: Either 00H or FFH must be written to port 7 mode
register (PM7).

Put P70 and P71 in the input mode
PM7 <« OOH
Put P70 and P71 in the output mode
) PM7 <— FFH

5 - 43

Fig.

PUO

Internal pull-up resistors

Port 7 is provided with internal pull-up resistors.

When

pull-up resistors are needed, using these internal pull-up

resistors, instead of mounting separate pull-up resistors,

reduces the number of components for smaller mounting

space.

The use of the internal pull-up resistors is set with the

following two registers:

Bit 7 (PUO7) of the register for optional pulli-up
resistors (PUD)
Port 7 mode register (PMT7)

The use of a pull-up resistor can be specified for two
bits of port 6.

If PUO6 is set to 1, the pull-up resistors for the pins

that are placed in the input mode by PM7 are used.

5-33 Format of the Register for Optional Pull-up Resistors

7 6 5 4 3 2 1 0 Address When reset R/W
PUOT | PUO6 | PUOS | PUC4 | PUOS | PUO2 | PUOL | O FF40H 00H R/W
PUOT | Use of the pull-up resistor for P7n pin
(n =0, 1)
0 Pull-up resistors are not used in port 7.
1 Pull-up resistors are used in port 7.
Remark: When the STOP mode is entered, it is advisable to

set PUO to O0OH to reduce current consumption.

5 - 44

If PUO7T is 1, and if PUO7 is associated with port 7, a
pull-up resistor is made available to bits in the port
which are specified as inputs by the port 7 mode register
{PM7) for that port.

Fig. 5-34 Specification for Pulling Voltage in Port 7 High

1 t Vg
]]
| :
[l 1
' :
—— © rr0
— ! —© m
uw P A
= <]
L L
S
— =
[1+] L
=
| =] =2
<3} =
- Qy
= =
- —
(PUO) [:
8 PUOT 1
< 4} > Port mode
_ L~ register (PMT)

Caution: Port 7 is two-bit wide, consisting of P70 and
P71.

S - 45

CHAPTER 6 REAL-TIME OUTPUT PORT (RTP)

Configuration and Functions of RTP

As shown in Figure 6-1, the real-time output port consists
of port 0 and buffer registers POH and POL, and other

hardware.

Upon generation of a timer interrupt or external interrupt,
data stored in the buffer register is transferred to the
hardware output latch for output. This function 1s referred
to as a real-time output function. A port used for this
function is referred to as the real-time output port (RTP).

RTP of the uPD78138 is an 8-bit real-time output port.
Real-time output data that can be handled may be in one of
the following forms. The mode, either the real-time output
port mode or port mode, is selected in 4-bit units.

Two 4-bit-wide channels
One 8-bit-wide channel

The following triggers cause the buffer register contents to
be transferred to the output latch:

INTCRO1l: Signal issued when the contents of 16-bit timer
0 and compare reglister CRO1 match

INTCR02: Signal issued when the contents of 16-bit timer
0 and compare register CR0O2Z match

INTPO: Valid edge input to the P21/INTPO pin

6.2

Hardware Configuration

Figure 6-1 shows the hardware configuration of RTP.

Fig. 86-1 Block Diagram of RTP

Internal bus 2
.1II[]:::I j:z:[
Real-time output port Buffer Eegister
control register POH X POL
1 ' 8
INTPO ——— 4 s
i e g 8 =
INTCRO2 —= r S
Output latch (PO} K

Rttiacss

Structure of the Buffer Register

As shown in Figure 6-2, buffer registers POH and POL are
mapped in separate locations in the SFR area. If the real-
time output function is specified for two 4-bit-wide
channels, buffer registers POH and POL are loaded with data
independently of each other. If the real-time output
function is specified for one 8-bit-wide channel, 8-bit data
can be loaded in both buffer registers POH and POL by
performing write operation with only one of the registers
specified.

Fig. 6-2 Structure of Buffer Registers POH and POL

4 high-order 4 low-order
bits bits

——— — — i ———

FF4AH POL

FF4BH POH

Example of setting data in the buffer reglsters
For two 4-bit-wide channels

MOV POL, #05H ; Sets the POL register to 0101B.
MOV POH, #0OCOH: Sets the POH register to 1100B.

For one 8-blit-wlde channel

MOV PQOL, #O0CS5H; Sets the POL register to 0101B, and

the POH reglster to 1100B.
or,
MOV POH, #O0OCS5H

Caution: When POL 1s read, the POH contents are also read
for the four high-order bits.
When POH is read, the POL contents are also read
for the four high-order bits.

RTP Control Register

The real-time output port is controlled by the real-time
output port control reglister (RTPC). RTPC is an 8-bit
register and is read from or written to with 8-bit or bit
manipulation instructions.

Figure 6-3 shows the format of RTPC. RESET input sets the
RTPC register to OOH.

Fig. 6-3 Format of Real-time Output Port Control
Register (RTPC)

T 6 5 4 3 2 1 0 Address When reset R/W

RTPC | BYTE | O 0 POMH | EXTR| O 0 POML FF4CH 00H R/W

L— POML | Specification of POL function

0 Port mode

1 Real-time output port mode

— EXTR | Data transfer from buffer register
to output latch by INTPO

0 Disabled

Enabled BYTE=0: Transfers POL

1 only.

BYTE=1: Transfers POL
and POH.

POMH | Specification of POH function

0 Port mode

1 Real-time output port mode

BYTE Opezation mode of real-time output
por

0 4-bit separate real-time output
port

1 8-bit real-time output port

Caution: Be sure tc write a ¢ in bits 1, 2, 5, and 6.

Table 6-1 Output Trigger for Real-time Output Port
(When RTPC POMH = POML = 1)

RTPC Number of real-time Output trigger
t
BYTE | EXTR | CWtPUt blts POH POL
0 INTCRO1 | INTCRO2
Four bits
1 INTCRO1 | INTCROZ or INTPO
0 INTCRO2
Eight bits
1 INTCROZ or INTPO

RTP Operation

If the real-time output port function is specified for port
0, the contents of buffer registers POH and POL are fed into
the output latch in synchronization with the occurrence of
one of the trigger conditions listed in Table 6-1, then they
are output on the pins in port 0.

For example, the signals issued when the contents of 18-bit
timer 0 (TMO) and compare registers CR01 and CR0O2 match are
selected as the output trigger sources (INTCRO1 and
INTCROZ2). Then, the output data on the pins in port 0 can
change to the buffer register contents at an interval set in

a selected compare register.

Using the real-time output port function with the macro
service function enables the output data on the output pins
In port 0 to change at given intervals. See Chapter 11 for
information on the macro service.

Figure 6-4 gives an example of the operation timing of the
real-time output port. The higher four bits of data on P04
to P07 in port O are rewritten, triggered by an interrupt
(INTCRO1) generated when the contents of 16-bit timer 0 and
compare register CRO1 match, and the lower four bits of data
on P00 to P03 in port 0 are rewritten, triggered by an
interrupt (INTCRO2) generated when the contents of 16-bit
timer 0 and compare register CROZ match.

B
&
3
I

m
I
S o B N

F- = 1 - -—{.
|

||||| al_llzi _———

- — - — — 4 —) ——_——

R el . B LI Ty S Y —

Fig. 6-4 Timing of RTP Operation

|
t
start [Li
1
|
|
|
1
|
|
|
t
|
|
1
I
!
|
|
}
|
|
|
|
!
!
}
|
|

FaY
Timer

DOl

—

o

m.

—_— o w o = s =

2= mp c - & &

(= D3 D3P i QL
- mrSTr.S = L =
— EH U e o L =)
=1} @ o Q 3 e Gy ol o
1 B8 = o + o = Q@ G BD =t
[T-] [= sV =2 7] 3
— e — O o == I o

D02 X D03
o3

Buffer register contents are rewritten by software

processing or macro service.

A

CHAPTER 7 SERIAL INTERFACE

7.1 Functlions

Serial interface of the uPD78138 has two operation modes.

(1)

(2)

Three-wire serial I/0 mode (starting from MSB)

The 3-wire serial I/0 mode uses three lines for 8-bit
data transfer: serial clock (SCK) and serial buses
(SO and SI). This mode is applicable when the
uPD78138 is connected to a peripheral 1/0 device or
display controller containing a conventional clock

synchronous serial Interface.
Serial bus interface (SBI) mode (starting from MSR)

The serial bus mode enables communication with more
than one device by using two lines including the
serial clock (SCK) and serial data bus (SBO).

The serial bus interface mode conforms to the NEC

serial bus format.

In the SBI mode, an address for selecting a device
subject to serial communication, commands issued to
that device, and actual data can be output onto the
serial data bus. So the serial bus interface mode
requires no lines for handshaking that used to he
needed when more than one device is connected using a
conventional clock synchronous serial interface. This
helps efficient use of the 1/0 ports.

7.2 Configuration

The configuration of serial interface is shown below.

Fig. 7-1

Block Diagram of Serial Interface

Internal bus

i

Linf
CSIM saIC
RESET CTXE I CRXE | wup IMODI l CLS1] LSO 8 RELT ICMDTI RELD | CMDD | ACKT ACKD | BSYE P—R
SET
CLEAR
|ﬁ J S0 latch
P35/31 O Ej gllléft register I P
P36/50/SB0 —ll\Lg, % L
“ } Eusy/
11 ‘e acknowledge
~dJ \ output
N-ch open-drain ' circujt
cutput enabled)
Bus release/command/
ncknowledge detection
elreceit
Interrupt
P37/STX O Ez:>- Serlal clock signal |—= INTCSI
counter generator
[fen/B
Serial clock MPX len/32

control circult

f

CLS1 CLS0

CLsSO
CLS1

9

(1)

(2)

(3)

(4)

Shift register (S10)}

Shift register (SIO) converts 8-bit serial data to 8-
bit parallel data, or vice versa. This register can
be used for both send and receive operations.

Data is shifted in (received) and shifted out (sent)
from the MSB side. Actual send/receive operation is
controlled by writing to or reading from SIO.

This register can be read from or written to with an
8-bit manipulation instruction. The RESET signal
causes this register to be undefined.

S0 latch

The S0 latch holds the output level of the SO/SBO pin.
In the serial bus interface (SBI) mcde, this latch can
be directly controlled by software.

Serial clock selector

The serial clock selector selects a serial clock to be
used.

Serial clock counter
The serial clock counter counts the serial clock to be

output or input during send/receive operation, and

checks whether 8-bit data has been sent or received.

(5)

(8)

(7)

Interrupt signal generator

The interrupt signal generator controls whether to
generate an Interrupt request when the serial clock
counter counts eight serial clock pulses. The
interrupt signal generator generates an Iinterrupt
request when eight serial clock pulses are counted in
the 3-wire serial 1/0 mode or when conditions are
satisfled in the SBI mode.

Serial clock contrel circult

The serial clock control circuit controls the serial
clock to be supplied to shift register. This circuit
also controls the clock to be output on the SCK pin

when the internal clock 1s used.

Busy/acknowledge output circuit and bus release/
command/écknowledge detection circuit

The busy/acknowledge output circuit and bus
release/command/acknowledge detection circuit output
and detect various control signals in the SBI mode.
These circuits do not operate in the 3-wire serial I/0
mode.

7.3 Control Reglisters

7.3.1

Fig.

cSIM

Serial interface mode register (CSIM)

The CSIM register 1s an 8-bit register used to specify a

serial interface operation mode,

function, and so forth.

serial clock, wake-up

The CSIM register can be read from or written to with an

8-bit manipulation instruction or bit manipulation

instruction. Figure 7-2 shows the format of the register.

7-2 Format of Serial Interface Mode Register (CSIM)

7 6 5 4 3 2 1 0 Address When reset R/W
CTXE | CRXE | WUP 0 MOD1 0 CLS1 | CLSC FFBOH 00H R/YW
L L_rJ
[- . Master/slave
CLS1 |CLSD | Serial clock selectlon| STK pin selection 1n
SBI mode
0 0 " External clock Input Slave
0 1 Setting prohibited
1 0 Internal fCLK/32 Output Master
clock
L—# WUP | MOD1 Operatlion mcde Control over wake-up function
0 0 3-wire serlal 1/0 mode | ganarates interrupt request
0 1 for each seriel transfer.
SBI mode
1 1 Generates interrupt request
only upon address receptlon.
CRXE Recelve operation
0 Disabled
1 Enabled
CTXE Send operatlion
0 Disabled
1 Enabled

3.

Caution: Do not change the state from CTXE = 0 and CRXE =
1 to CTXE = 1 and CRXE = 0 or from CTXE = 1 and
CRXE = 0 to CTXE = 0 and CRXE = 1 using a single
operation. If that 1s attempted, the serial
clock counter malfunctions to terminate the
first communication after the change before 8
bits are transferred. Use the following two
instructions to perform the above change:

Example: To change the state from CTXE = 1 and CRXE = 0
to CTXE = 0 and CRXE = 1

CLR1 CTXE
SET1 CRXE

Serial bus interface control register (SBIC)

The SBIC register 1s an 8-bit register consisting of bits
that control the serial bus state and bits that indicate
the states of 1input data sent from the serial bus. The
reglister can be used only in the SBI mode; it cannot not
be manipulated in the 3-wire serial I/0 mode.

The reglster can be manipulated with an 8-bit manipulation
instruction or bit manipulation instruction. Table 7-1
indicates allowable read and/or write operation for each
bit. When the register is read, 0's are read from the
write-only bits. Figure 7-3 shows the format.

The RESET signal sets the register to OO0OH.

The ACKD, CMDD, and RELD flags are cleared when send/
recelve operation is disabled (CTXE = CRXE = 0).

SBIC

Table 7-1

Read/Write Operation of SBIC Register

7 6 5 4 3 2 1 0
BSYE ACKD ACKE ACKT CMDD RELD CMDT RELT
R/W R R/W W R R w W

Remark: R/W: Read and write
R: Read only
Write only

W:

Fig. 7-3 Format of Serial Bus Interface Control Register {SBIC)

When
7 B S 4 3 2 1 0 Address reset R/W
SBIC BSYE | ACKD| ACKE | ACKT | CMDD | RELD | CMDT [RELT FF82H 00H R/¥

RELT | Bus relesse signal (REL)
trigger output control

0 Kot output

1 Qutput

CMDT | Command signal (CMD)
trigger cutput control

0 Not output

1 Output

RELD | Bus release signal (REL}
detection

0 ¥ot detected

1 Detected

CMDD | Command signal (CMD)
detection

¢} Not detected

1 Detected

ACKT | Acknowledge signal (ACK})
trigger output control

0 Not output

1 Output

ACKE | Automatic acknowledge
signal (ACK) output

0 Disabled

1 Enebled

ACKD | Acknowledge signal (ACK)
detection

] Not detected

1 Detected

BSYE | Automatic synchronous
busy signal (BUXY) output]

¢ Disabled

1 Enahled

.4.

Three-wire Serial I1/0 Mode

| The 3-wire serial I/0 mode is used for communication with a
device containing a conventional clock synchronous serial

interface.

Basically, three lines including serial clock (SCK), serial
data output (S0)., and serial data input (SI) are used for

communication. When multiple devices are connected,

additional lines for handshaking are required.

Fig. 7-4 Example of 3-Wire Serial I/0

«PD78138

System Configuration

3-wire serial I/0 -<—> 3-wire serial I/0
Master CPU Slave CPU
&Cx 5CX
S0 i
Sl 50
Port {Interrupt) = (f\ (e1} Port
Port \w4 interrupt (Pcrt)

#1 Handshaking line

In the 3-wire serial I/0 mode,
by block, with each block consisting of 8 blts.
of data 1s transferred bit by bit starting with the MSB in
phase with the serial clock.

1 Basic operation timing

data is transferred block
A block

Send data is output on a falling edge of SCK.

Receive data is sampled on a rising edge of SCK.

An Interrupt request (INTCSI) is generated on the elghth
rising edge of SCK.

If the internal clock is used for SCK,

CK output is

stopped on the eighth rising edge of SCK; SCK remains
high until the next data send or receive operation is

started.

Figure 7-5 shows the timing of the 3-wire serial I/0 mode.

Fig.

grg(*)

Sl
{input)

50
{output)

7-5 Timing of 3-Wire Serial I/0 Mode

\ Di7 I Di6 1 DIs X Di4 X Di3) Di2 DII)(DIO

\

x[KST XEKDG EXDS)(D()4 [XD3><D()2>(P()! DOO

INTCSI

|

In the 3-wire serial I/0 mode,

L_____ Trensfer started on falling

edge of T5CR

Instruction for writing to SIO

1s executed.

as a CMOS push-pull output.

T - 10

Transfer completion
interrupt generated

Mester CPU:
Slave CPU:

the SO pin is

Output
Input

configured

Remark: For connection with a 2-wire serial I/0 device,
connect a buffer to the SO pin as shown 1n Flgure
7-6. In Flgure 7-6, the buffer inverts the
output level. Accordingly, to SIO, write the
invert of desired data to be output.

Fig. 7-6 Example of Connection with 2-Wire Serial I/0 Device

wPD78138 2-wire serial
I1/0 device
5K SCX
sl , gSio
50

When only send operation is enabled

Send operation is performed when the CTXE bit of the clock
synchronous serial Interface mode register (CSIM) 1s set
to 1. Send operation 1s started by writing to shift
register (SI0) when the CTXE bit is set to 1.

When the CTXE bit 1is cleared to 0, the SO pin goes into
the high-1mpedance state.

7 - 11

(1) When the internal clock is selected as the serial
clock

When send operation 1s started, the serial clock is
output on the SCK pin. At the same time, data from
8I0 1s sequentially output on the SO pin on a falling
edge of the serial clock. In addition, the signal on
the SI pin 1s shifted into SIO on a rising edge of
the serial clock.

It takes up to one clock of 3CK from the start of
send operation to the first falling edge of SCK.

When sending is inhibited (the CTXE bit 1s reset to
0) during send operation, the SCK clock output is
stopped at the next rising edge and the send
operation is stopped. The interrupt request (INTCSI)
does not occur. The output impedance of the SO pin
becomes high and the contents of the SI0 register
become undefined. -

(2) When an external clock is selected as the serial
clock

After send operation 1s started, data from SIO is
sequentially output on the SO pin on a falling edge
of the serial clock applied to the SCK pin. At the
same time, the signal on the SI pin is shifted into
510 on a rising edge of the signal applied to the
SCK. 1If the serial clock is applied to the SCK pin
when send operation 1s not started yvet, shift
operation 1s not performed, and the output level on
the SO pin does not change.

T - 12

When sending is inhibited (the CTXE bit 1s reset to
0) during send operation, the send operation 1is
stopped and subsequent SCK inputs are ignored. The
interrupt request (INTCSI) does not occur. The
output impedance of the SO pin becomes high and the
contents of the SIO register'become undefined.

7.4.3 When only recelve operation 1s enabled

Receive operation 1s performed when the CRXE bit of the
CSIM register is set to 1. Receive operation is started
by changing the setting of the CRXE blt from 0 to 1 or by
reading SIO.

(1)

When the internal clock 1s selected as the serial
clock

When receive operation 1s started, the serial clock

1s output on the SCK pin, and data on the SI pin is

sequentially loaded into SIO on a rising edge of the
serial clock. '

It takes up to one clock of S5CK from the start of
recelve operation to the first falling edge of SCK.

When reception 1s inhibited (the CRXE blt is reset to
0) durlng receive operation, the SCK clock output 1s
stopped at the next rising edge and the recelve
operatlon is stopped. The interrupt request

{INTCSI) does not occur. The contents of the SIO
register become undefined.

T - 13

(2) When an external clock is selected as the serial
clock

After receive operation is started, data on the SI
pin 1s sequentially loaded into SIO on a rising edge
of the serlal clock applied to the SCK pin. If the
serial clock is applied to the SCK pin when receive
operatlion 1s not started yet, shift operation is not
performed.

When reception is inhibited (the CRXE bit is reset to
0) during receive operation, the receive operation is
stopped and subsequent SCK inputs are ilgnored. The
interrupt request (INTCSI) does not occur. The

contents of SIO reglister become undefined.

7.4.4 When send and receive operations are enabled

When both the CTXE and CRXE bits of the CSIM register are
set to 1, send operation and receive operation (send/
recelve operation) can be performed at the same time.
Send/receive operation 1s started by setting the CRXE bit
from 0 to 1 or by writing to SIO when the CTXE bit is set
to 1.

When send/receive operation is started for the first time,
the CRXE bit is always set from 0 to 1. This means that
send/receive operation starts immediately, and can output
undefined data. So before enabling send/receive
operation, write the first send data to SIO when both send
and recelve operations are disabled (the CTXE bit and CRXE
bit are reset to 0).

When send/recelve operation is disabled (CTXE = 0, CRXE
= 0), the SO pin goes into the high-impedance state.

T - 14

(1)

(2)

When the internal c¢lock is selected as the serlal
clock

When send/recelive operation is started, the serial
clock 1s output on the SCK pin. At the same time,
data from SI0 is sequentlially output on the SO pin on
a falling edge of the serial clock. In addition,
data on the SI pin 1s sequentially shifted into SIO
on a rising edge of the serial clock.

It takes up to one clock of SCK from the start of

send/recelve operatlon to the first falling edge of
SCK.

When sending or reception is inhibited during send/
recelve operation, only the inhibited operation 1s
stopped. When only sending is inhibited, the output
impedance of the SO pin becomes high. When only
reception is inhibited, the contents of the SIO
register become undefined.

When sending and reception are inhibited at the same
time, the SCK clock'output 1s stopped at the next
rising edge and the send and receive operations are
stopped. The contents of the SIO reglster become
undefined and the interrupt request (INTCSI) does not
occur. The output impedance of the SO pin becomes
high.

When an external clock is selected as the serial
clock

After send/recelve operation 1s started, data from
SI0 1s sequentially output on the SO pin on a falling
edge of the serial clock applied to the SCK pin. At
the same time, data on the SI pin 1s sequentially
shifted into SIO on a rising edge of the signal.

7 ~ 15

7.

4.

If the serial clock 1s applied to the SCK pin when
send/receive operation is not started yet, shift
operation is not performed, and the output level of
the SO pln does not change.

When sending or reception 1s inhibited durlng send/
receilve operation, only the inhibited operation is
stopped. When only sending is inhibited, the output
impedance of the SO pin becomes high. When only the
reception 1s inhibited, the contents of the SIO
register become undefined.

When sending and reception are inhiblited at the same
time, the send and receive operations are stopped and
subsequent SCK inputs are ignored. The contents of
the SIO register become undefined and the interrupt
request (INTCSI) does not occur. The output
impedance of the SO pin becomes high.

Action taken when shift operation is not in phase with
the serial clock

If an external clock 1s selected for the serial clock,
noilse, for example, can cause a mismatch between the
number of serlal clock pulses and shift operation. In
such a case, the serial clock counter is initialized by
disabling both send operatlon and receive operation (by
resetting the CTXE bit and CRXE bit to 0). So the serial
clock pulse that is first applied after the next send or
receive operation is enabled can be used as the first
clock pulse to restore the synchronization of shift
operation with the serilal clock.

7 - 186

7.

5.

1

SBI Mode

The serial bus interface (SBI) 1s a high-speed serial
Interface that conforms to the NEC serial bus format.

To allow communication with multiple devices on a single-
master, high-speed serial bus using two signal lines, the
SBI has a bus configuration function added to the clock
synchronous serial I/0 method. So the SBI can reduce ports
and wires on boards when multiple microcomputers and
peripheral ICs are used to confilgure a serial bus.

For informatlon about the SBI functions, also refer to
"Serial Bus Interface (SBI) User's Manual (IEM-5040)."

SBI features

Conventional serlal I/0 methods provide only data transfer
functions. Therefore, when a serial bus is configured
connecting multiple devices, many ports and wires are

required to identify chip select signals, commands, and
data, and to detect busy states. If an attempt 1s made to
control these jobs by software, an increased software load
results.

The SBI method can configure a serial bus with two signal
lines: serial clock SCK and serial data bus SBO. For
this reason, the number of ports on a microcomputer can be
reduced, and wiring on a circuit board can be simplified.
The SBI functions are described below.

(1) Address/command/data identification function

Serlal data is classified into three types:
address, command, and data.

T - 17

(2)

(3)

(4)

(5)

Address-based chip select function
The master selects a slave chip by address transfer.
Wake-up function

A slave can easlly check address reception (for chip
select identification) with the wake-up function.
This function can be set or reset by software.

If the wake-up function is set, serlal reception
interrupt (INTCSI) 1s generated only when the slave
recelves 1ts address.

S0, in communication with multiple devices, a CPU
other than a selected slave can operate independently

of serial communication.

Acknowiedge signal (ACK) control function

The acknowledge signal used to confirm the reception
of serial data can be controlled.

Busy slgnal (BUSY) control function

The busy silgnal used to post the busy state of a

slave can be controlled.

Figure 7-7 shows an example of serlial bus configuration
that contalins peripheral ICs and CPUs with an SBI-based
serlial 1nterface.

In the SBI mode, the serial data bus pin SBO is configured
as an open-drain output, So the serial data bus line is

placed in the wired OR state. A pull-up resistor 1is

requlired for the serial data bus line.

7 - 18

Fig. 7-7 Example of SBI-Based Serial Bus Configuration

+ VDD
«PD78138 T
Serial data bus
SB80 SBO Slave CPU
Master CPU Serial clock S
SCX SCK Address 1
SBO Slave CPU
SCK Address 2
SBO Slave IC
SCK Address 3
:r ==

SBO Slave IC
SCK Address N

Caution: To switch between the master and slave, a
pull-up resistor is required also for the
serial clock line (SCK) because SCK
input/output switching is performed between

the master and slave asynchronously.
7.5.2 Serial interface configuration

Figure 7-8 shows the block diagram of serial interface
channel 0.

T - 19

02

Block Diagram of Serial Interface

Fig. 7-8
S Internal bus S
jE@I 1/8
CSIM SBIC
R
ET—a cTae CRXE WUP MOD! CLS1 CLS0 RELY CMDT RELD | CMDD | ACKT [ACKE | ACKD BSYE
SET I
CLEAR I
PIS/SI O f'i\/‘L _LT] ShIft reglster b o] SO Laten
510
el E
P36/S0/5B0 O r
fﬂ/ 0 } Busy/
_—‘j/'l 1] acknowledge
_“\\J 3 output
N-ch open-drain elrcuit
output enabled 1
Bus relcase/command/
acknowledge dctectlont
clrcult [
Interrupt
P37/STR 5”1:1 clock signal |— = INTCSI
counter generator
[fen/8
L_] Serlal clock = leun/32
control circult MPX
CLS1 CLSO

CLso
CLS1

The serial clock pin (SCK) and serial data bus pin (SBO)
are configured as described below.

(1) SCK: Pin for serial clock I/0

Master: CMOS, push-pull output
Slave: Schmitt input

(2) SBO: Pin usable for both serial data input and
output

For both the master and slave, the output is
configured as an N-ch open drain output, and
the input is configured as a Schmitt input.

The serial data bus line output is configured as an N-ch
open-drain output, so it requires an external pull-up
resistor.

Fig. 7-9 Pin Configuration

Slave device
Master device I

xPD78138 |

5CK LT L % {Clock output)

Clock output g Clock input
Serial clock

{Clock Input}

¥-ch oper-draln SBO ; RL 5BO N-ch open-drain
ra
v oy

o R Serlal data bus — 55

7 - 21

.5.

.5.

Address match detection method

In the SBI mode, communication starts when the master

selects a particular slave device by outpufting an

address.

A slave detects an address match by software. In the

wake-up state (WUP = 1), a slave generates a serial

transfer completion interrupt request only when its

address 1s received.

In match address recelve processing by software, the wake-

up state is released (WUP -« 0), then a preparation is

made to receive subsequent commands and data.

SBI mode control registers

(1)

Clock synchronous serial interface mode register
(CSIMO)

The CSIM register is an 8-bit register used to
specify a serial interface operation mode, serial
clock, wake-up function, and so forth.

Flgure 7-10 shows the format of the CSIM register.

The CSIM register can be read from or written to with
an 8-bit manipulation instruction or bit manipulation
instruction. The register has a read/write attribute

bit by bit.

The RESET signal sets the CSIM register to OOH.

T - 22

T 6 5 4 3 2 1 0 Address When reset R/W
~ CSIM | CTXE [CRXE|WUP | 0 |moDi| O |cCLS1 |CLSO FFBOH OOH R/¥W
|___JI_'__I
[- Master/s)ave
CLS1 | CLSO |Serial clock selection | SCK pin selection in
SBI mode
0 0 External clock Input Slave
0 1 Setting prohibited
1 0 internal fopg/32 Qutput Master
lock
1 1 cloc foix/®
'— WUP | MOD1 Operation mode Control over wake-up functlon
— 0 0 d-wire serlal 1/0 mode | gaperates interrupt request
0 1 for each serial transfer.
SBI mode
1 1 Generates interrupt request
only upon address reception.
CRXE Recelve operatlion
0 Disabled
- 1 Enabled
CTXE Send operation
0 Disabled
1 Enabled
— Caution: Do not change the state from CTXE = 0 and CRXE =
1 to CTXE = 1 and CRXE = 0 or from CTXE = 1 and
CRXE = 0 to CTXE = 0 and CRXE = 1 using a single
operation. If that is attempted, the serial

clock counter malfunctions to terminate the
first communication after the change before 8
bits are transferred. Use the Tollowing two

instructions to perform the above change:

23

SBIC

Example: = 1 and CRXE = 0
to CTXE = 0 and CRXE =1
CLR1 CTXE
SET1 CRXE

(2) Serial bus interface control register (SBIC)

The SBIC register 1s an 8-blt register consisting of
bits that control the serial bus state and flags that
Indicate the states of 1nput data sent from the
serlal bus.

The register can be read from or written to with an
8-bit manipulation instruction or blt manipulation
instruction. The allowable read and/or write
operation depends on each bit. Filigure 7-11 shows the
format.

The RESET signal sets -the register to QOH.

Flg. 7-11 Format of SBIC Register (1/3)

6 5 4 3 2 1 0 Address When reset R/W

BSYE

ACKD | ACKE | ACKT | CMDD | RELD | CMDT | RELT | FFB82H O00H R/W

Bus release trigger bit (W)

RELT

Bus release signal (REL) trigger output control bit. Setting the RELT
bit sets the SO latch to 1, then the RELT bit is automatically cleared

to 0.

7T - 24

Command trigger blt (W)

CMDT
to 0.

Command signal (CMD) trigger output control bit.
clears the S0 latch to 0, then the CMDT bit is automatically cleared

Setting the CMDT bit

Fig. T7-11

Bus release detection flag (R)

Format of SBIC Register (2/3)

(RELD = 0)

Conditions for belng cleared

Conditlions for belng set
(RELD = 1)

execution
RESET signal 1nput
CTXE = CRXE = 0

RELD |(@) Transfer start instructlon

Detection of the bus release
signal (REL)

Command detection flag (R)

(CMDD = 0)

Conditions for belng cleared .

Conditlions for belng set
{CMDD = 1}

executlion

signal (REL)

(3) RESET signal input
(4) CTXE = CRXE = 0

(1) Transfer start instruction

cMDD (@) Detection of the bus release

Detectlon of the command signal
{CMDD)

Acknowledge trigger bit (W)

phase with the next SCK.
is automatically cleared.
ACKT

transfer.

When the ACKT bit 1s set after completion of transfer, ATK is output in
After the ATUK signal 1s output, the ACKT bit
Caution: (I) Never set this bit to 1 before completion of serial

ACKT cannot be cleared by software.
Set ACKE to 0 before setting ACKT.

7 - 25

Fig. 7-11 Format of SBIC Register (3/3)

Acknowledge enable bit (R/W)

0 | Disables automatic output of the acknowledge signal.

Before transfer completion
ACKE

Outputs ACK in phase with the ninth
SCK pulse.

After transfer completion

OQutputs ACK in phase with 5CK
immediately affer set instruction
execution.

Acknowledge detection flag (R)

Conditions for being cleared
(ACKD = 0)

Conditions for belng set
(ACKD = 1)

Start of transfer

RESET signal input

CTXE = CRXE = 0

Detection of bus release (In
slave mode only)

ACKD

CEISS)

Detection of the acknowledge
signal (ACK)

Busy enable bit (R/W)

(@ Disables automatic output of the busy signal.

0 |® Stops busy signal output on a falling edge of 5CK immediately
after clear instruction execution.

BSYE
1 | Outputs the busy signal on a falling edge of SCK after the
acknowledge signal.
Remark: (R): Read only

{W): Write only
{(R/W): Read and write

T - 28

.5

.5 Shift reglister (SIO)

The SIO register 1s a shift register for parallel-serial

conversion.

Data written into SIQO is output onto the serial data bus,
and data is loaded into SI0O from the serial data bus.
Figure 7-12 shows the configuration of shift register and
its peripheral circuitry.

Fig. 7-12 ConfTiguration of Shift Reglister and Peripheral
Circuitry

Wired OR connection

——
REIT
§ S_ Internal bus ‘g
CMDT
—_— 8
SET CLR
. Shift register (S0) 50 latch
I T T T T T
P REREEE .
L L
| o
——d
1
I —
T H L BUSY/ACK
~— ! Shift clock
L—'h——-"— N-ch open-draln ecutput

In the SBI data bus configuration, an input pin is used
also as an output pin. The output pin is configured as an
N-ch open-drain output, and has a wired OR configuration
with an external pull-up resistor. So a device attempting
to receive data must load FFH Into shift register (SI0O) or
disable send operation.

T - 27

.8 Communication Operation and Signals

This section explains the formats of serial data, and the

functions of signals used.

Serial data transferred in the SBI mode is classified into
three types: address, data, and command. Serial data makes

up one frame according to the following format:

(Bus release signal) + (command signal) + 8-bit data + ACK + (BUSY)

Figure 7-13 shows the transfer timing of addresses, data,

and commands.

Fig. 7-13 Timing of SBI Transfer

Address transfer

BUSY

0 8 E 0 G

Bus release signal

Commend transfer Command signal

SCK |||||||||||||||||9|||||||||

Data transfer

p? A K'_—- READY
E200 60 6 0 U 0 €O - . B

7 - 28

7.6.

7.6.

The bus release signal and command signal are output by the
master, and BUSY is output by a slave. ACK can be output by
either the master or a slave. (The master or a slave that
receives 8-bit data usually outputs ACK.)

The serial clock is output by the master for a pericd of
time from the start of 8-bit data transfer to the clearing
of BUSY.

1 Bus release signal (REL)
The bus release signal is the SBO line signal going low
to high when the SCK 1line is high (the serial clock is not

output). The bus release signal 1s output by the master.

Fig. 7-14 Bus Release Signal

r—
SCK H'i i
| i
5B0 | f - |
L

The bus release signal indicates that the master is to
send an address to slaves. The slaves contain hardware to

detect the bus release signal.

2 Command signal (CMD)

The command signal is the SBO line signal going from high
to low when the SCK line is high (the serial clock is not
output). The command signal is output by the master.

7 - 29

.6.

The slaves contain hardware to detect the command signal.

Address

An address is 8-bit data and 1s output by the master to
the connected slaves to select a particular slave.

Fig. 7-16 Address

SCK 1 2 3] |4 5 6 7 8

SBO | E I [a7 Y 26 X A5 Y A4 Y a3 X A2 Y AL A0
J - Address

Bus release signal

Command signal

Eight-bit data after the bus release signal and command
signal is defined as an address. A slave detects this
condition by hardware, and checks whether the 8-bit data
matches the number assigned to the slave (slave address)
by hardware or software. If the 8-bit data matches the
slave address, that slave is selected. The selected slave
continues to communicate with the master until
disconnection is directed by the master.

7 - 30

Fig. 7-17 Slave Selection Using an Address

— Master

Address of slave 2
1s transferred.

7.8.4 Command data

The master sends commands to the slave selected by

=

Slave 1

Not selected

Slave 2

Selected

Slave 3

Not selected

sending an address.

Slave 4

Not selected

The master also transfers data

to and from the slave.

Fig. 7-18 Command
- 5CK 1 20 13l 14l 1s[1s] |72] |8
SBO A 3 G) 5 53 G)
Command signal Command
Fig. 7-19 Data
- SCK 1 2[]2 4 s 16 71 e
SBO D7 X D6 Y D5 Y D4 X D3 X D2 X DI X DO

Eight-bit data after the command signal is defined as

a command.

signal is defined as data.

data can be arbitrarily determined according to

-

"

Eight-bit data with no preceding command

—

Data

communication specifications.

7

31

The usage of commands and

7.6.5 Acknowledge signal (AC

-~

The acknowledge signal confirms the reception of data

transferred hetween a sender and receiver.

Fig. 7-20 Acknowledge Signal

[When output in phase with the eleventh clock of SCK]

s XOOOOOOTT

[When output in phase with the ninth clock of SCK]

SIS D G O 65 6 G0

The acknowledge signal 1s a one-shot pulse output on a
falling edpge of SCK after 8-bit data transfer.
This signal may be synchronized with any clock of SCK.

The sender checks if the receiver returns the acknowledge
signal after 8-bit data transfer. If the acknowledge
signal is not returned after a specified period of time,

the sender can assume that the reception failed.

T - 32

6.

.6.

Busy slignal (BUSY) and ready signal (READY)

A slave uses the busy signal to inform the master that the

slave is not ready yet for data transfer.

A slave uses the ready signal to inform the master that

the slave 1s ready for data transfer.

Flg. 7-21 Busy Signal and Ready Signal

— T
—= =
530 x \E Kll BUSY ’ READY

In the SBI mode, a slave pulls the SB0O line low to inform
the master that the slave is busy.

The busy signal is output after the acknowledge signal
output by the master or slave. The busy signal is set or
cleared on a falling edge of SCK. When the busy signal is
cleared, the master automatically stops serial clock (SCK)

output.

The master can restart transfer when the busy signal is

cleared and the ready signal is set.
Signals
Figures 7-22 through 7-26 show the various signals

generated in the SBI mode, and SBIC flag operation. Table
7-2 1lists the signals used in the SBI mode.

7 - 33

Fig. 7-22 Operation of RELT, CMDT, RELD, and CMDD

f-Transrer start direction

§10

A

/

SCK

SBO

=

R

CMDT

|
A
\

\

\‘L

CMDD

rave
[

\

SCK

SBO

ACKT

Fig. 7-23 Operation of ACKT

6 1 8 9

i
=i = — ACK signal is output
:X D2X D1 X Do /) durlng first clock

perlod immediately
after setting.

P
b

31
L

¥hen set during
this period

Caution: Do not set ACKT before transfer completicon.

7 - 34

Fig. 7-24 Operation of ACKE

(a) When ACKE = 1 at time of transfer completion

SCK | lI I 2| |P 7 8 9

S ACE signal Is output
SBo D7 m(D2 X DI A DO A ACK / during ninth clock
‘ period
e b
ACKE [(

AT

— ¥hen ACKE = 1 at this point

(b) When ACKE 1s set after transfer completion

SCK a7agl|||Q|||

0
1l — AR signal is output
S80 X b2 X o1 X o [ACK during first clock
C period {mmedlately
after setting.
acxe N7\

¥hen ACKE is set durlng this
period, and ACKE = 1 on next
falling edge of 5CK

{(c) When ACKE = 0 at time of transfer completion

$BO \ hor XD 'mXDo

ACKE]

) w £

ATK signal 1s not output.

e

— ¥hen ACK = 0 at this point

(d) When ACKE = 1 period is too sheort

= LU L e
3
580 x D2 X Dlx Do / o ATK signal Is not output.

ACKE

i
W

¥hen ACKE ls set and cleared
during this perlod, and ACKE = 0
on falling edge of STK

7 - 35

1g. 7-25 Operation of ACKD

{(a) When ACK signal 1s output during ninth SCK clock

Transfer start
r direction

e X
H Transfer start

5CK * | | [
SBO \\ D7 X Ds
ACKD

(b) When ACK signal 1s output after ninth SCK

Transter start
i direction

so ZTTTTTTTT T) - '8
H Trensfer start

SCK s] 7] |s{ |9
JL —_—
sso X p2X oiY po/ M ACK _ \ D7 X D6
ACKD N

i

{(c) Clear timing when start of transfer 1s directed during BUSY

Transfer start
r direction

S e— L X -

5CK & 7 2} 9

ACKD) g q“

7 - 36

5CK 6

w0 X0 XoiX/ 1—1—3 EJ/_'_
BSYE (2 j‘f \

When BSYE is reset
fhen BSYE « 1 at this point during this period,
and BSYE « 0 on
falling edge of SCK

)
o]
w

7 - 37

8€ - L

Table 7-2 Various Signals Used in SBI Mode (1/5)

Signal | Output Definition Timing chart Condition Flag Meaning of
name device for output operation signal
Bus Master Rising edge . RELT is . RELD is Indicates that
release of SBO _ set. set. CMD signal will
signal when 3CK = 1 ScK “HT . CMDD is | follow this
(REL) SBO ___—H*___f——————"' cleared. | signal, and send
' data is address.
Command | Master Falling edge . CMDT is . CMDD is (1) Send data
signal of SBO set. set. after REL
(CMD) when SCK = 1 signal
= output is
SCK "HT address.
“———————1_________ (2) Send data
S0 with no REL
signal pre-
ceding 1s

command.

6 - L

Table 7-2 Various Signals Used in SBI Mode (2/5)
Signal Output Definition Timing chart Condition Flag Meaning of
name device for output operation signal
Ac- Master/| Low-level ACKE = 1 . ACKD is Completion of
knowl- slave signal ACKT set. receive
edge output on is operation
signal 5B0 during set.
(ACK) one SCK — 0 __I&I_l_J___
clock peri- SCR _—}'I_}RI—J_—
od after e BUSY
serial re- s D\ Sl{ —) READY
ceive op- —] Y
eration is SBa ﬁ@; ACK | READY
S
completed
Busy Slave Low-level BSYE = 1 Indicates that
signal signal processing is
(BUSY) output on in progress, so
5B0 after - serial send/
acknowl - receive opera-
edge signal tion 1is
impossible.

oy - L

Table 7-2 Various Signals Used in SBI Mocde

(3/5)

Signal
name

Output
device

Definition

Timing chart

Condition
for output

Flag
operation

Meaning of
signal

Ready
signal
{READY)

Slave

High-level
signal
output on
SBO before
or after
serial
transfer

BUSY

$BO T:El\ﬁaﬂTJIL 1

f READY

A1

s mf K| Ve

BSYE = O
Data

write to
SI0 when
CTXE = 1
(serial
transfer
start di-
rection)
42

@) Execution
of in-
struction
to read
data from
SI0 when
CTXE = 0
and CRXE
=1

(@ CRXE bit
going
from
0tol

Indicates that
serial send/
recelve opera-
is possible.

Table 7-2 Various Signals Used in SBI Mode (4/5)

- L

Signal | Output Definition Timing chart Condition Flag Meaning of
name device for output operation signal
Serlal Master | Sync clock (:) Execution |CSIIF is set| Timing of signal
clock for output- of in- (on eighth output on serial
{SCK) ting ad- struction |rising data bus
dress/com- to write edge of
mand/data, ‘ data to clock) («1)
ACK signal, | =% “_llj—lij{ 1l 1of o .S10 when
sync BUSY 1 CTXE = 1
slgnal, etc. [X X T (serial
Address/com- 580 ::x———J{:] ‘ transfer
mand/data ' start
are trans- direction)
ferred dur- (#2)
Ing first
8 clock
periods.
Address | Master | 8-bit data (2 Execu- Address value of]
(AT-A0) transferred tion of slave device on
in phase R —_______L_f—l_fﬁl_J_l_J-T_ instruc- serial bus
with 3CK SCK : 2 z 8 . tion to
after REL ' read data
signal and SBO wm from SIO
CMD signal , REL CMD when CTXE
are output = (0 and

CRXE = 1

er - L

Table 7-2 Various Signals Used in SBI Mode

(5/5)

Signal
name

Output
device

Definition

Timing chart

Condition
for output

Flag
operation

Meaning of
signal

Command
{C7-C0)

Master

B-bit data
transferred
in phase
with BCK
after only
CMD signal
is output,
with REL
signal not
output

SCK

(:) CRXE bit
going from
0to1l

Data
(D7-D0)

Master/
slave

8-bit data
transferred
in phase
with SCR, .
with REL and
CMD signals
not output

S5CK

SBO

X

Direction and
message to slave
device

Data processed
by slave or
master

#1 When WUP
WYhen WUP

an address

*2 In data send/receive operation, transfer
the state is changed from the BUSY state

0,

CSIIF 1s always set on the
1, CSIIF is set on the eighth
1s received.

eighth rising edge of SCK
rising edge of SCK only when

operation is started after
to the READY state.

.6.

Communication operation

In the SBI mode, the master selects a deslred slave device
from multiple slave devices by outputting the address of

the desired slave onto the serial bus.
After selecting a slave device subject to communication,
the master and slave device exchange commands and data

with each other to perform serial communication.

Figures 7-27 through 7-30 show the timing charts of data

communication operations.

T - 43

Fig. 7-27 Address Transfer Operation from Master Device to Slave Device

Master device processing

{sender)
Program
processing
llardware
operation
Transfer
line
STK pin
-1
|
=N
S SBO pin
Slave device
processing
{rccelver)
Program
processing
Hardware
processing

Set | Set | Set grite
CHDT | RELT | CHDT| 7

///////////////////,/, s orertton for et

e —— — —- T ste
Serial send erate r iE;D scxp
operation INTCSI

af Is] |s] |2 a‘
A'IXASX ASX Ad A3 Al
Address

ACK r-

\\\] BUSY

// // s //////////////V/ szl el

—

Gen- tput Clear
Set | Set Clearl output Outp
! erate
CMDD | cpT |CHDD | Serlal recelve operation e ATR|BUSY | BOSY |
Set
RELD

Remark: Thls timing ls based on the following conditions:
The master is allowed to perform send operation
only.

The slave 1s allowed to perform recelve
operation only. ACKE = 0 and BSYE = 1

Fig.

Master device processing

{sender)
Program
processing
Hardware
operation
Transfer
line
STK pin
~J
1
S SBO pin
[9;]
Slave device
processing
{recelver)
Program
processing
llardware
operation

7-28

Command Transfer Operation from Master Device to Slave Device

Set
CMDT

Write
SI0

Interrupt handling

{preparation for

next serial transfer)

— . — —

— — — dr—

/////////////////?

Serial send operation

Gen-
erate
INTCSI

Set
ACKD

Comzand

Stop
5Tk

SI0

Read [Analyze| Set
command] ACKT

e — ———

7/////\////////////////4@

\/

Set
CMDD

Serial recelve operation

Gen-
erate
INTCSI

Qutput
ACK

Output
EUSYI

Clear

Remark:

This timing is based on the following conditions:

The master is allowed to perform send operation

only.

The slave 1s allowed to perform recelve

operation only.

ACKE = 0 and BSYE = 1

Fig.

Master device
‘processing (sender}

Program processing

Hardware
operation
Transfer
line
STK pin
~3
' SBO pin
=N
[0}

Slave device processing
(receiver)

Program processing

lHardware
operation

7-29 Data Transfer Operation from Master Device to Slave Device

7 e

YA

Interrupt handling
{preparation for next serial transfer)

[

Serlal send operation

Gen- -
erate
INTCS1

Set
ACKD

Stop

1 2 3 4 5 6 7 8
\\D'Fx DGxDSXDi!XDSXDZYDIXDO AEKI' BUSY
! Data : /

//////////////////////////////< /S‘I’Sd i’.éf}-r 7///3\%7 L
————— - "‘\e““ “ Toutputjoutpur Jcrear] T 7
________ Serial receive operatlon erate R |BSY | L d

Remark: This timing 1s based on the following conditiocns:

The master 1s allowed to perform send opecration

only.

The slave is allowed to perform recelve

operation only. ACKE

= ¢ and DSYE

1

Fig. 7-30 Data Transfer Operation from Slave Device to Master Device
Master device processing
(sender)
Program Read Read | Set
processing i;%ﬁ;;;i:i;%;%;% SIO . //) //f: SI0 ACKT Receive data processing
A i
Hard Gen- . \
o::rzgign gé;? Serlal send operation :;:gl géﬁput Serial aend operatlion
Transfer
line
SCK pin 1 2 3
~1 ————
1 SBO pin BUSY [READY \D?X D6 X Dsm D2 XD] X Do / _‘:\CKI’ BUSY AFAD‘\ D? X D6 X DS
f: | Data - /
Slave device processing
{recejver)
Program 7 '{5“'-‘- // / / Write to
processing ‘A SI0 /SIO /
Hardware - \Clir _____ >’ _—-—§et Outjput(izlear T T T
operation BEY | Serial send operatlion . :;#:;1 ACKD UUSY |BUSY

Remark:

This timing is based on the followlng conditions:

The master is allowed to perform send operstion

only.

ACKE

The slave 15 allowed to perform receive
BSYE = 1t

operation only.

7.6.9 Clearing the busy signal

The condition for clearing the busy signal depends on

whether send and/or recelve operation 1s enabled. This

takes hilgh-speed transfer operation using an SBI macro

service into consideration. Table 7-3 indicates the
conditions for clearing BUSY.

Table 7-3 Conditlions for Clearing BUSY

Send/recelive

enabled or disabled BUSY clearing condition
CTXE CRXE
0 0 None
0 1 BSYE <— 0 or SIO read access
1 0 (

BSYE < 0 or SIO write access'®!

1 1

#» If the next operation 1s a receive operation, FFH 1is
to be written to SIo.

7.6.10 Wake-up setting operation

If WUP is set to 1 during busy state, the wake-up state
is set immedlately after the ready state 1s entered.

In the wake-up state, the interrupt (INTCSI) occurs only
when an address i1s received, and the acknowledge signal
(ACK) 1s not detected.

7 - 48

7.6.11

Starting send/receive operation

Send/recelve operation 1s started in the same way as for
clearing the busy signal. Even when the start of send/
recelve operation is indicated, the start 1s held while
the slave device is outputting the busy (BUSY) signal.
The operation is started when the busy signal 1s cleared.

7.7 Cautions

(1)

(2)

(3)

To swlteh between the master and slave, a pull-up
resistor 1s required also for the serial clock line
(SCK) because SCK Input/output switching 1s performed
between the master and slave asynchronously.

Do not set ACKT before transfer operation 1s completed.

Do not change the state from CTXE = 0 and CRXE = 1 to
CTXE 1 and CRXE 0 or from CTXE = 1 and CRXE = 0 to
CTXE 0 and CRXE 1 using a single operation. If
that is attempted, the serial clock counter mal-

functions to terminate the first communication after
the change before 8 bits are transferred. Use the
following two instructions to perform the above change:

Example: To change the state from CTXE = 1l and CRXE =
0 to CTXE =0 and CRXE = 1

CLR1 CTXE
SET1 CRXE

7 - 48

CHAPTER 8 SUPER TIMER UNIT

The uPD78138 contains a super timer unit to facllitate digital

servo control by software. The super timer unit consists of an
18-bit counter, three 16-bit timers, and two PWM output channels
with a 12-bit resolution. With these timer units, various pulse
signals can be output, and various pulse widths can be measured.

The uPD78138 allows the user to select either 23.4- or 46.9-kHz
carrler frequency for PWM output. Selecting 46.9-kHz carrier
frequency improves the response time in servo control because a
small value can be specified as the time constant for the
external low-pass filter for carrier elimination.

The super timer unit of the uPD78138 has many functions that
facilitate VCR servo control.

8.

8.

1 Overview of the Super Timer Unit

1.1 Configuration of the super timer unit

Table 8-1 indicates the basic components of the super

timer unit of the uPD78138.

Table 8-1 Components of the Super Timer Unit
Unit name Timer/counter Register Remarks
Timer 0O 16-bit timer x 1 16-bit compare register x 3 Contains an
(TMO) auxiliary 6-bit
counter,
Free 18-bit counter x 1 16-bit capture register x 3 Contains a
running (FRC) 18-bit capture register x 1 | digital noise
counter eliminator.
Timer 1 16-bit timer x 1 16-bit compare register x 2 Contains an
{TM1) 16-bit capture register x 1 auxiliary
6-bit
counter.
T-bit count 7-bit compare register x 1 Pulse width
register x 1 7-bit capture register x 1 detection
(TM3) function
Timer 2 16-bit timer x 1 16-bit compare register x 1
(TM2)
PWM 12-bit counter x 2 16-bit modulo register x 2 Selectable
output {PWMO, PWM1) (with 12 bits used) active level
of output
Selectable
carrier
frequency

Figure 8-1 shows the configuration of the super timer

unit.

The most significant feature of the super timer unit of

the uPD78138 includes timer 0 (TMO),

counter (FRC), and timer 1 (TM1).

the free running

Figure 8-2 shows the configuration of these timer units.
The timer units facilitate VCR index search, DC motor

control, and servo control using software.

Fig. 8-1

CLRO O

(Clear)

6-bit event

Configuration of the Super Timer

{Clear)

counter
(EC)

16-bit timer 0

{TMO)

. Compare
reglster x 3

Unit

© PTOQ0

< PTOOI

© PTOO2

ClAl O——

Digital

noise
eliminator

CTIO ©——

6-bit event
divider

18-bit free

running counter

{FRC)

. Capture re-
gister x 4

{ INTCRoC)

INTCROI

INTCRQ2

INTTB

{ INTCPT1)

INTCPT2

—(INTCPT3)

© FTOI10

(EDVC)

CTil11 O—

7-bit timer

3 (TM3}
. Compare
reglster |

x1

. Capture
register
x1

(Clear)

16-bit timer 1

(TM1)

. Compare re-
gister x 2

. Capture re-
glster x 1

INTCLR1

{ INTCRIO)

O PTOILL
INTCRI1}

16-bit timer 2
(TMZ2)
Compare re-
glster x 1

—{ INTCR12)

(A1)

PWM output
unit (PWMO)
12-bit

resolution

~—~{ INTTM)

L o PWMI

O PWMO

Fig. B-2

CLRO 0—

Configuration of Timer 0, Timer 1,

and Free Running Counter

5]
D—{ |
Write Oxxx xxxiB to, TN —{ 8
[} Ist (7]
ompare reglster § CLHO é.—..__._.] @
g . L= | .
cToo I g fern/ 16 Clear [_(+3) }y—orrom
. Natch I (#3) o0 PTOOL
0 Match { INTCRO2)
&
feun/8 i Match
[o G HH—ormon
Digital
5 nof]
amo—{p>-{ 3 eliainator L —‘? —(wteR)
SN) , =
EN g [FRC l*_fc'-“/4
CLR}| ' i Capture {}
CPTO
Capture
CPT = INTCPT!
Capture [}
crr2 INTCPT2
o ——(wicrn)
- cPm
(-]
e : — oo -
o - 3 ——0 PTOI0
L Clear (+3)
)| e[_mi —(Cierio)
g . INTCR11
a2 > Match
cnno—~{@>—— o a CRID !
= Match
B Clear CRI1 = (#3}) |——orroI
| © M3 ovrare CR12 (ntcr1z)
—F——F>
pveanang I CK #1 Compare register: ECCO or ECC1
oo Mteh C1L *2 CPT2 is an 18-bit capture register.
Capture, ——— | FF CPT1, and CPT3 are 16-bit capture registers.
Pulse width #3 Qutput control circuit

detection clircuit

Internal bus

CPTO,

8.1.2 Functional overview of the timer units

(1)

(2)

(3)

Timer 0 (TMO0O) unit: 16-bit timer

Timer O 1s a timer unit suitable for pulse output
timing control. By using an external input signal,
TMO enables the timing of pulse output to be delayed
by programming. Three channels of pulse output are
available, and can be used, for example, for VCR
sound and video head switching signals.

Timer 1 (TM1) unit: 16-bit timer

Timer 1 is a timer unit for generating a reference
signal for internal processing. Timer 1 can be used
for various applications such as pulse output and
reference signal generation using external trigger
input. Timer 1 also allows programmable delay pulse
output as with timer 0. Timer 1 contains timer 3
(TM3}, which is a 7-bift timer. Timer 3 can be used
for external pulse width detection and period
measurement.

Free running counter (FRC) unit: 18-bit counter

The free running counter can be used for external
pulse period measurement. This unit contains four
capture registers, s¢ that period measurements can be
performed for four triggers in parallel. Since an
18-bit counter is used for this unit, a high-
precision phase and speed detection is possible for a
VCR drum rotating at high speed.

(4)

(5)

Timer 2 (TM2) unit: 16-bit timer

Timer 2 is a general 16-bit timer unit. When the
contents of the compare register match the contents
of timer 2, timer 2 is automatically cleared, and
functions as an interval timer to initiate an
interrupt at the same time.

PWM output (PWMO, PWM1) unit: 12-bit PWM

This unit is a pulse width modulation (PWM) output
unit with a 12-bit resolution, and contains two
channels. An active level, high or low, can be
selected for each channel independently. This unit
is most suitable for DC motor speed control.

Table 8-2 Resolution and Maximum Count Time of Each Timer

(at 12 MHz)

Input clock

Maximum count

Unit name Resolution
frequency time
Timer 0 375 kHz (fCLK/IB) 2.87 us 175 ms
Timer 1 750 kHz (fCLK/B) 1.33 us 87 ms
Free running | For CPT2L: 166 ns
counter 6 MHz (fCLK)
43.7 ms
For CPTO, CPT1, 686 ns
CPT2H, and CPT3:
1.5 MHz (fCLK/4)
Timer 2 375 kHz (fCLK/IG) 2.87 us 175 ms
Timer 3 187.50 kHz (fCLK/32) 5.33 us 0.68 ns
46.88 kHz (fCLK/128) 21.3 us 2.73 ms
11.72 kHz (fCLK/512) 85.3 us 10.9 ms
2.93 kHz (fCLK/2048) 341.3 us 43.7 ms
External input pulse | Depends on External

(fCLKIZ at maximum)

external
input pulse

input pulse
X 128

8.2 Timer 0 Unit
8.2.1 Conflguration of the timer 0 unit
Figure 8-3 shows the configuration of the timer 0 unit.

The timer 0 unit consists of a 6-bit event counter (EC)
and 186-bit timer 0 (TMO).

(1) Six-bit event counter (EC)

This counter generates a timer 0 clear pulse signal
from signals applied to the CLRO and CTIOO pins, and
- also divides a pulse signal applied to the CTIOO pin.

(2) Sixteen-bit timer 0 (TMO)

This timer consists of one 16-bit timer and three
compare registers (CRO0O, CROl, CRO2Z).

This timer has a programmable delay pulse output
function, which delays, by some amount, a pulse
signal applled to the CLRO pin or a pulse signal
internally generated by the event counter.

In an application to a VCR, for example, the timer O unit
is used to generate a head switching signal from drum FG
and PG signals.

0T

Flg. 8-3 Configuration of the Timer 0 Unit

cmoo;—{ﬁ>>

r

Selector

RESET
3 i Clear

Frite Oxxx xxxxB
to compare
reglster{'l)

cna:o———[:>»~

Selector

Y

4

or| [Selector

i EC (6)
ECC1 (6)
Match
ECCO (6) -
Match
CPT2 CPTI
Capture Capture
trigger trigeer

(To free running counter)

#1 Compare register:
#2 QOutput control circuit

ECCO or ECC1

Internal bus

INTCROO

-
o
[T}
=2
[V]
.
gt oo o
. {=2) — PTOOI
NS ‘;\,l’ I
C t | PTO02
Oj;::;;or Mateh Co:;j:;jor Match Comparator Match] (=2} O
CROD (16) CRO1 (16) CRO2 (16)

1

(=

(

Internal bus

8.2.2 Event counter (EC)

The event counter (EC) internally generates pulses from
signals applied to the CLRO and CTI0O pins.

The event counter consists of one 6-bit counter, two 6-bit
compare reglsters, and one flip-flop for operation
control.

The event counter operates in one of two modes:
Internal pulse generation mode
General event divider mode

—_ (1) Internal pulse generation mode

Fig. 8-4 Configuration of the Event Counter in the Internal
Pulse Generation Mode

Write Oxxx xxxxB
to ECCO or ECCL
RESET

Clear

CTioo 0—{:>»—J'—- EC
{DFG)

Count Match
clock ECC1 5 Q Timer 0 clear
pulse slgnal
- Match CPT1 capture
ECcco R trigger

Flip-flop for
pperation control

The internal pulse generation mode is used to
generate an internal pulse signal from signals
applied to the CLRO and CTIOO pins.

8 - 11

A CLRO pln input signal clears the 6~bilt event
counter, and the 6-bit counter counts up with a CTIO0D
pin 1nput signal.

When the value set in ECCl matches the value of the
EC, the flip-flop for operation control is set. When
the value set in ECCO matches the value of the EC,
the flip-flop is reset.

This mode is used to generate a pulse signal that is
set or reset according to the value set in ECC1l or
ECCO at a CLRO pin input cycle. In an application to
a VCR, for example, this mcde is especlally useful in
internally generating a head switching signal from a
drum PG signal and drum FG signal.

As an example, we consider the generation of a head
switching signal with a 50% duty cycle from a drum
motor with 24 FG signals (motor that generates 24 FG
signals in one rotation). Figure 8-5 shows the
operation timing. To generate, as a head switching
slgnal, a pulse signal that is set with the fourth FG
signal pulse and is reset with the 16th FG signal
after a drum PG signal is applied, 03H is to be
loaded 1nto ECC1 and OEH into ECCO.

8§ - 12

£T

CLRO input
{Drum PG
signal)

CTI0O0 input
(Drum FG
slgnal)

6-bit event
counter{EC)
count value

Timer 0 clear
pulse signal

Fig. 8-5 Operation Timing in the Internal Pulse Generation Mode
(Generation of VCR Head Switching Signal)

Clear

LUHUUUL

Clear
‘|I'NI=’{II’{IH'NIH"II"Ii"IH"II"II}‘E'NI:'N|I|M|E”‘Hi”'!'”ll’“':'”.l'”ll"IE'HI=,N|='NI%’WEE"II"II"I”‘IH"II'

8

8

Set

Clear

(2) General event divider mode

Fig. 8-6 Configuration of the Event Counter in the General
Event Divider Mode

to ECCO and ECCL

Write Oxxx xxxxB
RESET

Clear

CTIoo o-[:>—-j EC

Count Match
clock ECCI T Qpr——— Timer 0 clear pulse

slgnal CPT1 capture

ECCO

Flip-flop for
operatflon control

In the general event divider mode, the event counter
is used as a general event divider to divide a CTIO0O
pin iInput pulse signal. In this case, the flip-flop
operates as a T flip flop that inverts output each
time the value of the EC matches the value of ECCL.

Figure B-7 shows the operation timing of the general
event divider mode when ECC1 holds 03H.

Cautions 1. In either the internal pulse generation
mode or general event divider mode, the
6-bit event counter (EC) is cleared when
0xxx xxxxB (data with 0 in the highest-
order bit) is written into ECC1l and
ECCO.

When 1xxx xxxxB (data with 1 in the
highest-order bhit) is written into ECC1
and ECC0O, the event counter is not

cleared and counting is continued.

Cautions 2.

When the same value 1s set in ECCl1 and
ECCO, EC may match ECC1l and ECCO at the
same time. If this occurs, the flip-
flop output is reset. (Reset with
higher priority)

If a 0 is set in ECC1 in the general
event divider mode, the timer 0 clear

pulse signal is not output.

Changing bit 5 (ECMOD bit) of the input
control register (ICR) does not affect
the flip-flop controlling operation.

For example, after the operation mode of
the event counter is changed from the
internal pulse generation mode to the
general event divider mode while the
flip-flop is set, the flip-flop remains
set.

Fig. 8-7 Operation Timing in the General Event Divider Mode

mﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂgﬂﬂ

2 CCCCC z\ ccccc 2 llllllll

=3 €3 0 €3 5 £ 6 €3 £3 &3 65 €5 63 03 €

) RRRRR > ? >
Set Re's eeeeeee

.3 Timer 0 (TMO)

Timer 0 is a read-only 16-bit counter, and is cleared to
O0C00H on a rising or falling edge of a timer 0 clear pulse
signal.

By using bit 7 of the input control register, the user can
determine whether a CLRO pin input signal or a pulse
signal internally generated with the event counter (EC) is
to be used as a timer 0 clear pulse.

The count clock of the timer can be selected from two
types, fCLK/S and fCLK/ls.

Table 8-3 indicates the resolution and maxlimum count time
of timer 0 when fCLK = 6 MHz.

Table 8-3 Resolution and Maximum Count Time of Timer 0

Input clock Resolution Maximum count time

375 kHz (fpy/16) 2.67 us 175 ms

Caution: TMO is undefined for 16 clock pulses
(1 clock = 1 internal system clock: feopg) after
reset release. Start TMO on the 17th clock
pulse or later.

8 - 17

.2,

Fig.

Operating mode

Four modes can be used for the timer 0 cutput pins.

The modes include the general output mode, RS mode,

pulse output mode 1,

and delay pulse output mode 2.

delay

Timer

0 output mode register {TOMO) is used to set the output

mode for the timer 0 output pins (see Figure 8-14).

(1)

B-8

General output mode

Confilguration of the Timer 0 General Output Mode

CROn

Match

In this mode,

—O FTOOn

(n=0.1, 2}

the level of an output pln is inverted

based on toggle operation each time the value of

timer 0 matches the value set in the compare

register.

18

(2) RS output mode

Fig. 8-9 Configuration of the Timer 0 RS Output Mode

CRO1

Match

CRO2

Match

S Qp——©0 PTOO01

R Qr—————o0 PTOM

The RS output mode can be used only for PT001 and

PT002.

The RS mode cannot be set for the PTO00 pin. A PTOO1
output signal is set to 1 when the value of TMO

matches the value set 1n CRO1.
is reset when the value of TMO matches the value set

in CROZ2.

A PT0OO01 output signal

On PT002, the inverted signal of a PTO01 output
signal is output.

(3) Delay pulse output mode 1

Fig. 8-10 Configuration of Timer 0 Delay Pulse Output Mode 1

{Timer 0 clear

puise signal)

Do

CROn

CK

Match

—Q PTOOn

(n=01)

This mode latches and outputs the level of a timer 0

clear pulse signal at the time when the value of
timer 0 matches the value set in CR0OO or CRO1.

8

19

This mode can be set for PTO00 and PTOO1.
This mode cannot be set for PTOO0Z.
(4) Delay pulse output mode 2
Fig. 8-11 Configuration of Timer 0 Delay Pulse Qutput Mode 2

{Timer 0 clear
pulse signal) 0

JL———D QF—0 PTCOn
Cx

Match

CROn

(n=0,1)

This mode latches and outputs the inverted signal of
a timer O clear pulse signal at the time when the
value of timer 0 matches the value set in CR0OO or
CRO1.

This mode can be set for PTO00 and PTOO1.

This mode cannot be set for PT002.

Table 8-4 indicates the relationships between the

timer 0 output pins and output modes that can be set.

8 - 20

Table 8-4 Timer 0 Output Pins and Output Modes that can be Set
Qutput pin mode PTO00 | PTO01 | PTQO2
General output mode 0 0 o
RS output mode X o 0
Delay pulse output mode 1 0 0 X
Delay pulse output mode 2) 0 b ¢

o: Can be set
X: Cannot be set

Table 8-5 indicates the correspondence between TOMO
setting values and output modes of PTOOn (n = 0, 1, 2).

Table 8-5 TOMO Setting Values and Output Modes of
Timer O Outputs
TOMO
setting PT000 PT0O01 PTQ02
value .
General output General output General output
xx000000 mode mode mode
xx010110 Delay pulse RS output mode RS output mode
7 output mode 1 (Q output) (Q output)
xx010111 Delay pulse RS output mode RS output mode
output mode 2 (Q output) (Q output)
xx010100 | General output RS output mode RS output mode
mode {Q output) (Q output)
xx001010 Delay pulse Delay pulse General output
output mode 1 output mode 1 mode
xx001011 Delay pulse Delay pulse General output
output mode 2 output mode 1 mode
xx001110 | Delay pulse Delay pulse General output
output mode 1 output mode 2 mode
xx001111 Delay pulse Delay pulse General output
output mode 2 output mode 2 mode

8 - 21

2.

Setting timer 0 unit control registers

The operatlion of the timer ¢ unit can be controlled by the
followlng registers:

ICR: Input control register (for control of the event
counter and clear pulse)
TMCO: Timer 0 control reglster (for control of timer 0

operation)

TOMO: Timer 0 output mode register (for control of the
PTOONn output mode)

TOCO: Timer 0 output control register (for PTOOn output
control)

The followlng figures show the formats of the registers.

8 - 22

ICR

Filg. 8-12 Format of Input Control Register (ICR)

T 6 5 4 3 1 0 Address When reset R/W
SEL | . EC } Vv [SEL - - FFSOH 0x0xOxxx W
CLRO MOD |SYNCS|CLR1
SEL Selection of an INTCLR1
CLR1 interrupt source
0 Vertical synchronizing signal
input mode
1 Composite synchronizing signal
input mode
v Selection of a Vsyn
SYNCS | separation pulse w18th
0 Eliminates pulses of less than
5.3 us (32/fCLK).
1 Eliminates pulses of less than
12.0 us (72/fCLK)-
ECMOD Specification of the operating
mode of the event counter
0 General event divider mode
1 Internal pulse generation mode
SEL Selection of a timer 0 clear
CLRO pulse
0 CLRO pin input (Bypasses the
6-bit event counter.)
1 Pulse generated internally by
the event counter (EC)
Caution: Rewriting SELCLRO (bit 7 of ICR) may cause an

INTCPT1 interrupt request. Clear the interrupt

request flag using the instruction after

rewriting.

8

23

TMCO

Flg. B8-13 Format of Timer Control Register ¢ (TMCO)

7 6 5 4 3 2 1 0 ° Address When reset R/W
EN EN
Cs1 - - CsS0 | 0 0 FF38H 0xx00000 L
CLR1 CLRO
|]
— ENCLRO { TMO clear signal enable bit
0 Prevents TMO from being cleared by masking
a TMO clear pulse (free running mode).
1 Clears TMO by a clear pulse.
Cso TMO count control
Q Clears TMO and stops counting.
1 Counts.
ENCLR]1 | TM1 clear signal enable bit
0 Prevents TM1 from being cleared by masking
CLR1 input.
1 Clears TM1 by CLR1 input.
CS1 Control of TM1 counting
0 Clears TM1 and stops counting.
1 Counts.

8§ - 24

Fig. 8-14 Format of Timer 0 Output Mode Reglister (TOMO)

T 6 5 4 3 2 1 0 Address When reset R/W

_ | - [o®)(MOD|MOD|MOD|MOD [MOD | ppssy xx000000 W
TOMO 020 (011|010} 001 |000

N N D

MOD | MOD
|| PTOO tput mode (n = 0-2
Onl | OnO 1l outpu ()

0 0 General output mode

0 1 RS output mode

1 0 Delay pulse output mode 1

-— 1 1 Delay pulse output mode 2

+ PTO02 cannot be set to delay pulse ocutput modes 1
and 2. PTO002 can be set only to the general
output mode and RS mode.

Cautions 1. TOMO can -only be written to in 8-bit
units. No bilit manipulations and read

operations are allowed.

2. Writing data to the timer 0 output mode
register (TOMO) places the output pins
of timer 0 (PTO00, PT0O1, and PT002) in
the following state:

(1) When a pin is used in the general

output mode
The pin state as set in the timer 0

output control register (TOCO)
appears.

8 - 25

(3)

When a pin 1s used in the RS output

mode

The Q output of the RS flip-flop
goes low, and the §Q output goes
high (reset).

When a pin 1s used in the delay
pulse output mode 1 or 2

The Q output of the D flip-flop
goes low (reset).

8 - 28

Fig. 8-15 Format of Timer 0 Output Control Register (TOCO)

7 6 5 4 3 2 1 0 Adress When reset R/W

TOCO - - |ENTO002| ALV2 [ENT0O1| ALV1 [ENTOOO| ALVO FF59H xx000000 W

_’J

Control PTO02. Control PT001. Control PTCOO.
L |
]

ENTOOn | Timer output enable/disable specification

0 Disable (always inactive level)

1 Enable

ALVn Specification of an active level for the
timer 0 output pin

0 Active low

1 Active high

Cautions 1. The register TOCO can only be written
to, and allow only 8-bit manipulations.
No bit manipulations and read operations

are allowed.

2. Writing data to the timer 0 output
control register (TOCO) places the
output pins of timer 0 (PTOO00, PTOO1,
and PTC02) in the following state:

8 - 27

(2)

When the bit that enables or
disables timer 0 output {ENTOOn) is
changed from 0 to 1

Immediately after a 1 is set in the
bit, an inactive level is output on
the pin. The output level 1is
inverted by a match signal which is
issued when the timer 0 contents
match the compare reglster
contents.

When the bit that controls the
active level of the timer 0 output
pin (ALVOn) 1s changed from 0 to 1

or vice versa

The active level of the output pin
changes as soon as ALVOn is
rewritten regardless whether timer

0 1s operating or not.

8 - 28

8§.2.68 Examples of using the timer O unit

(1)

Timer 0 delay pulse output modes

The uPD78138 allows the setting of a delay amount for
delay pulse output modes 1 and 2 with a program.

In delay pulse output mode 1, the level of a timer O
clear pulse signal is latched and output using a
match between the value of timer 0 and CRO0 or CRO1
as a trigger.

In delay pulse output mode 1, maximum delay amount

is half of the timer 0 clear pulse signal pariod, and
can be expressed using the phase angle as 0 g < 180
(degrees).

On the other hand, in delay pulse output mode 2, the
inverted signal of a timer 0 clear pulse signal is
latched using a match -between the value of timer O
and CRO0O or CRO1 as a trigger.

In delay pulse output mode 2, delay amount 7 of timer
0 output can be expressed using the phase angle as
180 £ T < 380 (degrees).

So when the timer 0 output pins (PT000, PT001) are
used fro VCR head switching signals, for example,
delay amount can be changed within the range

0 s T < 380 (degrees) by using delay pulse output
mode 1 or 2.

Figure 8-16 shows the timing of these modes.

8 - 29

Fig. 8-16 Operation Timing of Timer 0 Delay Pulse Output Modes

1 and 2

(a) Configuration of timer O delay pulse output modes

{Timer 0 clear

Selector

pulse signal)

{Mode 1)

et

{Mode 2)

CROn

Match

(9.9

——————O PTOOn

(n=0,1)

(b) Operation timing

{Timer 0 clear
pulse signal)

{Inverted signal
of timer 0 clear
pulee signal)

CROn
patch slgnal

Delay pulse
output mode 1
(FTOCN)

Delay pulse
output mede 2
(PTOON)

(n=0, 1)

-

P
|Delay amount
10 £T < 360 (degrees)

|

Delay emount T
1B0 £ T < 360 (degrees}

T

30

(2)

Generating VCR head switching signal

An application of timer O is shown in Figures 8-17
and 8-18.

In the application, the timer 0 unit is used to
generate VCR head switching signals.

The drum motor used 1s assumed to output an FG signal

on which 24 pulses are issued every motor rotation.

The CLRO input pin receives the FG signal from the
drum motor, and the CTIOO0 input pin receives the FG
signal from the drum motor. By setting ECC of the
event counter (EC) to 03H and ECCO to OEH, a timer O
clear pulse signal with duty cycle of 50% can be
generated so that the signal goes high on the fourth
FG signal pulse after the drum PG signal is input,
and the signal goes low on the 16th FG signal pulse.

A digital value equivalent to the delay dl1 of the
head switching signal output on the PT000 pin is set
in the timer © compare register (CROO) beforehand.

Also, a digital value equivalent to the delay dZ2
of the head switching signal output on the PTOOL pin
is set in CRO1.

As a result, two pulse signals with different delays
can appear on the PT000 and PTO01 output pins.

The relationships between the digital values set in

the compare registers and delay amounts dl and d2

can be expressed as follows:

8 - 31

tdl = (value set in CROO) X 16/fCLK [s]
1d2 = (value set in CRO1) x IB/fCLK [s1]

(fCLK = 6 MHz when the internal system clock is used,

or 12 MHz when an external clock is used)

Flg. 8-17 Generating Head Switching Signals by Using

the Timer 0 Unit

FG

uPD78138

.
)
T

CLRO

8 - 32

PTCCO

FTOO]

F———— Video head
switching
signal

Voice head
switching
signal

Fig. 8-18 Timing Example of Head Switching Signals with the
Timer 0 Unit

CLRO input
pin (drum
PG signal)

CTIO0 1nput
pin {drum
FG signal)

Timer 0
clear pulse
signal

count
value

™0

PTO00 output
pln (video
head switch)

a]

0l23

I

L

HTAITIN

5

[T

0123

1

5

[

{Clear)

{Clear)

PTO01 output
pin (volce
head switch)

d2

(Clear)

{Clear)

\r

dl,

1d2:

Value set
in CRO1

Yalue sel
in CROO

Delays of the head switching signals

8 -

33

8.3 Timer 1 Unlt

Configuration of the timer 1 unit

Figures 8-19 and 8-20 show the configuration of the timer
1 unit.

The timer 1 unit consists of a 6-bit event divider, pulse
width detection circuit (TM3), and 16-bit timer (TM1).

(1) Six-bit event divider

The 6-bit event divider is used to divide a CTI10
Input pulse signal.

In an application to a VCR, for example, a capstan FG
(CFG) signal 1s applied to the CTI10 input pin. When
a high CFG signal frequency is used for high-speed
search, the divider can divide the CFG frequency.

(2) Pulse width detection circuit (TM3)

The pulse width detection circuit consists of a
clircuit for outputting a CR12 capture trigger signal
upon detection of a valid edge on the CTI1l1 input pin
and timer 3 (TM3), which is a 7-bit timer for
determining the pulse width of a pulse signal applied
to the CTI11 input pin.

In an application to a VCR, for example, these
circuits are used as described below.

A playback control signal (PBCTL signal) is applied

to the CTI1l1 input pin, and CR12 captures capstan

phase information for capstan phase control.

8 - 34

(3)

On the other hand, the pulse width detection circuit
determines the duty cycle of a PBCTL signal.

For example, the pulse width detecticn circuilt
enables a VHS index search system (VISS) signal to be
detected by hardware.

Sixteen-bit timer 1 (TM1)

Sixteen-bit timer 1 (TM1l) operates as an interval
timer for generating INTCR10 interrupts at regular
intervals, and also operates as a reference counter

that functions in phase with an external event.

This timer has two pulse output pins; one pin is used
for output synchronized with the TM1l clear timing,
and the other pin is used for programmable pulse
output. '

8 - 35

g€

CTito

c11no—[bk-

T

Selector

—

PTO00 pin output

{from timer 0)

Match

={ INTCRIO)

Qutput con-

trol circuit

—COQPTCI1

{ INTCRIl)

‘ Timer 1 clear Input :
: section (Figure 8-20) '
H T™L CPTO H
: clear capture :
. slgnal _ trigger @
2 Internal bus e
1 =
E 6-blt counter
% CR10 (1G) cnil (16)
1 i
Edge o
detetlon Match __J
clreult Comparator Nateh Comparator
lBlt 4 Bit 1
-——
INTM1 (8) : EDVC (6)
| S
if ifi
L Internal bus 2 —‘-D {Clear) i

'L_I—"

Edge detectlon

circuit

(=)

I..i ™3 (7) l

(Clear)

DO

CK

CiRag ()
=1 CPT30(7) [Match
Capture

Internal bus

CPT3

capture
trigeger
{to FRC)

——--0 PTO10

[een/8 —=— T™™L (16)
=
2 Capture
U —— —
[T}
2
i 9
ol
1
Bit 2 CRI2 (16)
CPIM (8)

7

16

L

Internal bus

~{ INTCR12)

Frequency-divided fCLK or valid CTI10 edge

(see Figure 8-23)

LE

Fig. 8-20 Configuration of the Timer 1 Clear Input Section

ICR r ster
I VSYNCS | LCR 1ot
SEL ICR reglster
!
l_ cn/B CLR1 | bit 3

et

leO——{::>——-

Dlgital
- noise ' _[- * &
38 elininator 8
5 g
2 I
LDO_.J 3 I @
ES INTML register
ciny | bit 6 :] CPTO
‘é L~ capture trigeer
] {to FRC}
(72]
Capture trlgger TRGS0! CPTM reglster
(frOl timer 1) TREGSOO bits 1, Q
EN
ClR]

TM1 clear signal
{to tlmer 1)

Pulses with a width in either of the following ranges are
removed as noise. Either range is selected according to the
setting of bit 4 of the ICR register.

(B/fCLK) X 4 or less

(8/fCLK) x 9 or less

.3.

3.

In an application to a VCR, for example, timer 1 can be
used as described below.

In the playback mode, timer 1 is used as a reference
counter for generating interrupts at regular intervals.

In the recording mode, timer 1 is used to generate a phase
reference signal synchronized with an external vertical
synchronlzing signal (Vsync)'

Timer 1 1s also used for capstan phase control and for
generating a recording control signal (RECCTL signal).

Event divider

The event divider is a 6-bit event divider that can divide
a pulse signal applied to the CTI10 pin according to the
value held in the event divider control register (EDVC).
When data is written into EDVC, the 8-bit counter for
dividing a CTI10 input signal is cleared, and the signal
Is divided by the value set in EDVC.

An edge detection mode for a CTI10 input signal is
specified using bit 1 of the external capture input mode
register (INTM1).

Pulse width detection circuit (TM3)

The pulse width detectlion circuit detects the duty ratio
of a pulse signal applied to the CTI11l input pin.

8 - 38

The pulse width detection circuit consists of the
following hardware:

7-bit timer counter (TM3)
7-bit compare register (CR30)
7-bit capture register (CPT30)
Control flip-flop (CTL F/F)

Figure 8-25 shows the configuration of the pulse width
detection circuit.

(1) Operation of the pulse width detection circuit

~ The pulse width detection circult operates in one of
the two modes described below.

(a) General timer operatlion

Upon valid edge input to CTI1ll, the count wvalue

- of timer 3 (TM3) -1s captured in the capture
register CPT30. Then TM3 is cleared to zero and
count operatlon is restarted.

At the same time, an INTCR12 interrupt request
is generated. '

(b) Pulse width detection operation
As in general timer operation, the count value
of TM3 is captured in CPT30 upon valid edge

input to CTI1l1. This count value corresponds to
one input pulse period.

8 - 39

Then the value corresponding to an input pulse
width detection point is loaded into the compare
register CR30. When a match signal between TM3
and CR30 occurs, the CTI1l1l pin level is latched
in the control flip-flop. Thils value can be
checked by reading bit 7 of prescaler mode
reglster 3 (PRM3). This function enables the
duty ratio of a pulse signal applied to the
CTI1l pin to bhe detected.

If the period of an input pulse signal changes
in duty ratio detection, a pulse width detection
point 1s determined using the value in CPT30.

In detecting a pulse signal with a 50% duty
ratio, for example, half of the value of CPT30
1s loaded into CR30. In this case, the value of
CPT30 1ndicates the pulse width one period
before the pulse applied to the CTI11l pin.
Figure 8-22 shows the timing.

8 - 40

Fig. 8-21 Configuration of the Pulse Width Detection Circuit
(TM3)

\ T
L} <7

INTM1 &) 7
{pLt 4)
T
¢l J— 2 | capture
— L]
2 CPT30 (7} INTCR12
a
[
< e {To CR12
;- capture
(Clear) trigger)
Prescaler ™3 {7} Control flip-flep
{CTL F/F)
Count
clock 7
Latch

- ; - D Q
‘ cK T
a
Comparator ____J_—_’

Match

PRM3 {8} CR30 (7)

IeT 1T
\ (

8 - 41

Fig. 8-22 Timing of Pulse Width Detection Circuit Operation

{High level} {Low level)
CTI11 pin input -
(PBCTL signal)
Pulse | Pulse period 2 =

period 1{.—"

Capture

|
[| capture -
! Capture _ _ _ _ . _ [Cear

Pulse __ __ _ H-——————
period ””/”,i

Pulse
width
detection —
polnt

TM3 count value

\\\“Pulse period 1

Value of CPT30

\"Pulse periecd 2 X

INTCR12
Interrupt

L

M

Value of CR30 Value of pulse width detection point

Comparator/CR30
match signal

:1
e

CTL F/F output

(2) Prescaler

The count clock of the 7-bit timer (TM3) in the pulse
width detection circult can be set to one of five
different values by using the prescaler. Figure 8-23
shows the configuration of the prescaler.

Fig. 8-23 Configuration of the Prescaler

feun/32

fea/128

fewe/512

feun/2048

HEES

Valid CTILO0
edge 1nput

Bits 0, 1, and 2

PEM3

The prescaler allows the count clock of the 7-bit
timer (TM3) to be set to one of five values: fyx/32,
Torg/128, fopg/512, forg/2048, and valid edge input
to CTI1O0.

Prescaler mode register 3 (PRM3) 1s used for count
clock specification.

8 - 43

8.3.4 Configuration of timer 1 (TM1)

Figure 8-24 shows the confilguration of timer 1 of the

uPD78138.

Fig. 8-24 Configuration of Timer 1 (TM1)

Free running counter {FRC)
CPTO capture trigger (Figure 8-44)

PTOOO

T QF—0 PTIOIQ

~{ INTCR10)

— Output
control P————Q PTON

CLR1 pin
input edge
Clear
f../8 — TM1
Match
CR10
Match
CR11
CTI10 or CTI11 Capture P
pin Input edge

circuit
{ INTCR11)

Timer 1 has two timer output pins.

{ INTCRI2)

PT010 is a T flip-flop that inverts output when a match

slgnal between TM1 and CR10 occurs.

PTO11 has two modes: the general output mode and delay
Pulse output mode. Figure 8-25 shows the output modes.

In the general output mode, PTO11 functions as a T flip-
flop that inverts output when a match signal between TM1

and CR11 occurs.

3.

In the delay pulse output mode, the output state of PTO00
can be output on the PT010 pin after it 1s delayed by an
arbitrary amount with respect to the internal reference

signal.

Table 8-6 indicates the resolution and maximum count time
of TM1 when fCLK = B MHz (at 12 MHz).

Table 8-6 Resolution of Timer 1 (at 12 MHz)

Input clock Resolution Maximum count time

750 kHz (fCLK/B) 1.33 us 87.4 ms

Caution: TM1 1is undefined for 16 clock pulses (16/fCLK)
after reset release. Start TM1 count operation

at the 17th clock pulse or later.
‘Output modes of timer 1 output pins
Timer 1 has two timer outpﬁt pins. The output modes are
classified Iinto the general output mode and delay pulse
output mode.

Fig. 8-25 Output Modes of PTO1l1l

(a) General output mode

T™1 (18)
J\l TF/F
Match
CR11 (16) T Q—0 PTOll

{ INTCR11)

(to be continued)

8 - 45

Fig. 8-25 Output Modes of PTO1l1l (Cont'd)

{b) Delay pulse output mode

PTOO0 pin level

™1 (16}

U D QpPD—©0 PTOIl
CX

Match 1
CR11 (16} { INTCR11)

Caution: Only the general output mode can be set for
the PT010 pin, which cannot be used in the
delay pulse output mode.

8.3.6 Operation of timer 1
(1) Operation as a reference counter (CR10 function) .
(a) When CLR1 input is not used
The value corresponding to some interval 1s to
be loaded into the CR10 register beforehand.

With this setting, when a match signal between

TM1 and CR10Q occurs, TM1 is cleared and INTCR10
interrupts occur at regular 1ntervals,

Figure B-26(a) shows the timing of this
operation.

B - 46

(b) When CLR1 input 1is used

— Each time an external event signal is applied to
the CLR1 pin, TM1 is cleared. Timer 1 always
operates as a reference counter synchronized
with an external event.

Apply an event signal to the CLR1 pin at regular
intervals, and set the CR10 register to the same
value as this interval period. Then 1f no event
signal is applied to the CLR1 pin for a cause,
the reference counter (TM1l) is internally
cleared automatically to correct the internal

- reference signal.

Figure 8-26(b) shows the timing of thls
operation.

Flg. 8-26 Reference Counter QOperation of Timer 1

(a) When CLR1 input is not used

Value of Match
CR10 -

TM1 count
value

O__

INTCRI0 INTCRIO INTCR10

(to be continued)

8 - 47

Fig. 8-26 Reference Counter Operation of Timer 1 (Cont'd)

(b) When CLR1 input is used

/Event slgnal missing
1

L]
CLR1 input L !__r
I
valweof _ _ ' _ _ _ _ _ ' __ e L _ _ _
CR10 Match
TM1 count

value

INTCLR1 INTCR10 INTCLR}

(2) Programmable pulse output (CR11 function)

The level of the PTQ00 pin delayed by an arbitrary
amount with respect to the internal reference signal
can be output on the PT010 pin.

Figure 8-27 shows the timing of this operation.

The relationship between a value set in CR11 and

delay amount is:

Delay amount = (wvalue set in CR11) x 8/fcrk
feik: Internal system clock

8 - 48

™1 count

value

PT000
output

PTO10
output

(3)

K

Value of

/_crill

o

|

T -
| P
|

|

|

I !

_
Delay amount = (value set in CR11) x S/fCLK

Phase difference detection (CR12 function)

A delay amount of external event signal occurrence on
the CTI10 or CTI1ll pin with respect to the internal
reference signal can be detected.

When an event signal 1s applied to the CTI10 or CTI1l
pin, the count value of TM1 1s captured in the CR12
register. So this capture value exactly matches a

delay amount with respect to the reference signal.
Figure 8-28 shows the timing of this operation.

The relationship between a capture value in CR12 and
delay amount is:

Delay amount = {(capture value in CR12) x 8/fqrk
fCLK: Internal system clock

8 - 48

.3.

Fig. 8-28

CR12
capture trigger

Timer 1 Phase Difference Detection Operation

/]

TM1
count value _ _

Capture

__
Phase difference = (value in CR12) x B/fCLK

Digital noise eliminator

The uPD78138 contains a digital noise eliminator in the
CLR1 1input section. The digital nolse eliminator
generates a capturé 0 trigger signal for the free running

counter, timer 1 clear signal, and INTCLR1 interrupt
signal.

Figure 8-29 shows the configuration of the CLR1 input
section.

{1) Operation of the digital noise eliminator

The digital noise eliminator samples an input signal
at intervals of fCLK/B-

The noise elimination pulse width can be selected
from two types: 4 samples and 9 samples. Bit 4 of

the input control register (ICR) 1s used for this
selection.

8 - 50

If the pin has the same level consecutively for the
time corresponding to the noise elimination pulse
width, the level iIs assumed to be valid, and the
level is output at the next sampling timing.

A signal output from the digital noise eliminator
after nolse removal lags a CLR1 Input signal. This

delay amount d 1s expressed as shown 1n Table B8-7.

The digital noise eliminator allows a CLR1 pin input
edge to be specifled. Bilt 6 of the external capture
input mode register (INTM1l) is used for this
specification.

Table 8-7 Digital Nolse Eliminator Specification

Bit 4 of | Width of the pulse | Width of the pulse Dela

ICR to be eliminated that 1s passed Y
0 5.3 us 6.7 us or more 5.3 us < 7d < 6.7 us
1 12.0 us 13.3 us or more 12.0 us g vd < 13.3 us

One of two INTCLR1 interrupt occurrence sources can
be selected for the digital noise elliminator.

The INTCLR1 1nterrupt occurrence source 1s specifiled
using bit 3 of the input control register (ICR).

Clearing bit 3 of the ICR to 0 selects the rising
edge of the pulse passed through the digital nolse
eliminator as an INTCLR1 interrupt occurrence source

(vertical synchronizing signal Iinput mode).

8 - 51

O d

Setting bit 3 of the ICR to 1 selects the rising edge
of the signal obtained by ORing the signal passed
through the digital noise eliminator with the signal
that 1s not yet passed through the eliminator as an
INTCLR1 interrupt occurrence source (composite
synchronizing signal input mode).

8 - 52

8

€S

Fig. 8-29 Configuration of the CLR1 Input Section (Digital Nolse Eliminator)

ICR register
VSYNCS | 1y 4?5}

sel. | ICR register
——— /B CLRI| bit 3
(v\'ﬁ()
_ Digital J L
I L noise ' J— .
INTCLR1
(COMPSYNC) L 2 =
.4 So—t @ _r)

or
_L____'— INTM1 reglster : Free running counter (FRC}
— bit & CLAl (COMPSYNC} CPTO capture trigeer
(Figure 8-49)

v
I i I Il ” | _ TML clear slgnal
(Flgure 8-19)

&0

svnc)

Pulses with a width Iin either of the following ranges are
removed as noise. Either range is selected according to the
setting of bit 4 of the ICR reglster.

(B/fCLK) X 4 or less
(S/fCLK) X 9 or less

Fig. 8-30

CLR1 input signal .

Sampling clock

Output sfter
nolse removal

CLR1 input siganl

. Sampling clock

Output after
nolse removal

Operation of the Digital Noise Eliminator

|

(1) Rising Edge Detection
s
}
!
!
] Il] '
1|2 |3 5
{
!) (lOJ\
|
l
[
| J
!
! i
] b 1
| I
|
I J
{ . I
(2) Falling Edge Detection

]

|
|
|
|
|
l
}
|
I
|
I
|
|
|
|
|

b
I

54

(2)

Application of the digital noise eliminator to a VCR

Two application examples are described below. One

example extracts a vertical synchronizing signal

(VSYI]C

) from a VCR composite synchronizing signal

(COMPSYNC). In the other example, the digital noise

eliminator 1s used for even/odd field determination.

(a)

Vertical synchronizing signal (Vsync) extraction

From a COMPSYNC signal, a Vsync signal can be
extracted only by passing the COMPSYNC signal
through the digital noise eliminator. As shown
in Figure 8-31, a NTSC COMPSYNC signal consists
of a horizontal synchronizing signal (Hsync)'
vertical synchronizing signal (Vsync: including
serrated pulses), and equalizing pulses. When
such a COMPSYNC signal is applied to the digital
noise eliminator, the Hsync signal, equalizing
pulses, and serrated pulses are removed, and

only Vsync signal output can be cbtained.

One of 32/f¢pk and 72/fcpx can be specified as
the noise elimination pulse width for the
uPD78138.

In this case, a Vsync signal output from the
digital nolse eliminator lags the VSync signal
in the applied COMPSYNC signal by up to 40/fCLK
(6.7 us at 12 MHz) or up to 80/fcrk (13.3 us

at 12 MHz).
If 32/fqpk is selected, a Vgync signal with less

delay can be obtained. 72/fqgig should be

selected when the radio reception is poor.

8 - 55

9% - 8

Fig. 8-31 Vertical Synchronizing Signal Extraction Using

the Digital Noilse Eliminator

Vertical Lizi
izi i zin .
Horizontal Eﬁf?iéz?gﬁ) E{nﬁgio?éﬁ;ng gﬂ;:es (35) Horlzontgl
- synchronizing: P i] : synchronizing
g - ignal
signal — Serrated pulses 1€ ‘
Composite ' 'l

(COMPSYNC
signal)

Time

e e | [1 UUM””””_” L

(Unit: H)

Cutput from
digital
noise
eliminator

IH
(63.55 usec)

I
t
2

Remarks 1.

NTSC-based pulse widths
ty (pulse width of horizontal synchronizing signal): 4.8 us (0.075 H)

tp (equalizing pulse width): 2.5 us (0.04 H)

tc (serrated pulse width): 4.4 us (0.07 H)

*d (delay due to digital sampling): Max. 6.7 us or
' 13.3 us

The unit of time H is the horizontal synchronizing signal period.

(b)

Even/odd field determination

The position of the sixth equalizing pulse of

a COMPSYNC signal can be used for even/odd field
determination (Figure 8-32). This determination
uses the digital nolse eliminator and the CLR1
pin interrupt INTCLR1.

For the INTCLR1 interrupt, an input signal
detection edge can be selected with the external
capture input mode reglster (INTM1), and an
interrupt source can be selected with the input

control reglster (ICR).
Figures 8-33(a) to (c) show examples of setting.

An INTCLR1 interrupt source can be selected as
described below.

Applying a COMPSYNC signal to the CLR1
pin (used for Figures 8-33(a) and (b))

In Figure 8-33(a), an INTCLR1l interrupt is
generated on a rising edge of vsync extracted
from the COMPSYNC signal.

In Figure 8-33(b), an INTCLR1l interrupt is
generated on a rising edge of VSync with only
serrated pulses removed from the COMPSYNC
signal or on a rising edge of equallizing
pulses.

8§ - 57

Applying a Véync signal to the CLR1 pin (used
for Figure 8-33(c))

In Figure 8-33(c), an INTCLR1 interrupt is
generated on a falling edge of VsynC'

COMPSYNC Signal Used for Even/0dd Field Determination

(a) 0dd field

Vertical Horizontal
Equalizing synchronizing Equalizing synchronizing
pulses | signal | pulse j sigmal
! I i
1 2 3 4 5 6
| 6H | 1# |

| I [

(b) Even field

Vertical) Horizontal
Equalizing synchronlzing Equalizing synchronizing
pulses | signal N pulse | slgnal

|

TH

-

|

8 - 58

6S

(a)
CLR1 [
Composite

synchrenizing signal
(COMPSYNC slgnal}

(b)

CLR1
O_____‘E>___.

Fig. 8-33 Example of INTCLR1 Setting

Selector

Diglital
noise
elialnator

An INTCLR1 interrupt occurs

Selector on a rislng edge of a vertlical

INTM1
reglster
bit 6

Selector

Digial
nolse
eliminator

>

T—

synchronizing signal.

INTCLR? /J/
_I—_l__

ICR

register
bit 3

Selector

\

=] [

An INTCLR1 Interrupt occurs on
a rising edge of equalizing
pulses and on & rising edge of
a vertical synchronizing signal.

it

INTCLRI

(to be continued)

09

(Cont'd)
(c)

An INTCLR1 interrupt cccurs
on a rlaing edge of the
Selector inverted signal of a vertical

Diglital synchronlzling signal.
noise ' II——.
eliminator

| | o EZ> I -/ INTCLR!
Vene - L - L
{Vgyne slenal)

Selector

Even/odd field determination is performed by
applying a COMPSYNC signal to CLR1. So, an
INTCLR1 interrupt source is selected in Figures
8-33(a) and (b).

The procedure for even/odd fleld determination
is explained below.

C) An INTCLR1 interrupt source is set as shown
in Figure 8-33(a).

Example:

Set INTM1 bit 6 to 1:
Specifies a CLR1 rising edge.

Reset ICR bit 3 to O:
Specifies the vertical synchronizing

signal mode.

This setting removes the equalizing pulses
preceding VsynC'

() An INTCLR1 interrupt is generated on a
rising edge of VSynC' At the same time,
the contents of the free running counter
(FRC) are loaded into capture register 0
(CPT0) at edge input to CLR1. Then the
contents of CPTQ are stored in memory by
using the INTCLR1 interrupt service
routine. Let N1 be the contents.

() An INTCLR1 interrupt source is set as shown
in Figure 8-33(b).

8 - 61

Example:

Set ICR bit 3 to 1:
Specifles the composite synchronizing
signal mode.

This setting generates an INTCLR1 Interrupt
on each rislng edge of the equalizing
pulses and vertical synchronizing signal.

The sixth equalizing pulse can be detected
by counting INTCLR1 occurrences. This
count operation can be facilitated using
the count mode of the macro service. (See
Section 11.5.6 1n Chapter 11.) This count
mode starts vectored interrupt handling
only when a specified number of interrupts

have occurred.

The contents of CPTO at the time the sixth
equalizing pulse is detected in (:) are
read. This processing is performed as
vectored interrupt handling. Let N2 be the
read contents of CPTO.

As shown in Figure 8-32, the position of
the sixth equalizing pulse differs between
the even field and odd field. When one
period of the horizontal synchronizing
signal is 1 H, the sixth equalizing pulse
for the even field is placed at 6.5 H after
a rising edge of the vertical synchronizing
signal. On the other hand, the sixth
equalizing pulse for the odd field is
placed at 6.0 H.

8 - 62

@m@@mﬁm@mﬁﬂm@@
e contents (N1) of CPTO loaded in (]
indicate a rising edge of the vertical
synchronizing signal. On the other hand,
the contents (N2) of CPTO read in ()
indicate the position of the sixth

equalizing pulse. Thls means that even/odd

field determination can be performed by
finding the difference between N1 and N2
and checking whether the difference 1s an
integral multiple of H (one horizontal
synchronizing signal period).

Remarks 1. See Figure 8-37 for the format of
INTM1, and Figure 8-43 for the
format of ICR.

2. See Section 8.4.3 for the operation
of CPTO of the FRC.

Figure 8-34 illustrates the description above.

In this example, even/odd field determination 1is
performed using the sixth equalizing pulse of a
vertical synchronizing signal. However, a
COMPSYNC signal actually applied often contalns
noise, so that equalizing pulses may not be
detected. If equalizing pulses cannot be
counted normally, the difference between the
contents of CPTO0 at the time of horizontal
synchronizing signal input and the contents of
CPTO at the time of a rising edge of a vertical
synchronizing signal is found. By checking
whether the difference is an integral multiple
of the period of the horizontal synchronizing
signal, even/odd field determination can be
performed.

8 - 63

Flg. 8-34

Compasite synchro-
nizing signal In
odd fleld

Composite synchro-
nizing signal in
even field

INTCLR1 interrupt
source selection

INTCLR1 occurrence
in odd field

INTCLR1 occurrence
in even field

Macro service
setting

Count value of free
running counter {FRC)

Remark:

Even/0dd Field Determination

Eliminator

Vertiecal synchro-
nlzing signal

Using the Digital Noise

]

Vertical synchro-
nizing signal

1t]

Foe— o

Vertical synchro-
nlzing signal mode

Composlte synchronizing
signal mode

/—\

Vectored
interrupt
handling
Capturing
contents
of FRC
Into CPTO

{INTCLR1 occurrence
count calculated
with macro service)

.

—_——— O ——

_____-____D__*’/"q\\\\\thd//’—*\h—m

None

Counter mode”

|
|
|
|
|

1

. Macro service mode setting
INTCLR1 interrupt request
source awitching
Drum phase control systenm

processing

|
|
!
|
|
|
|
!
|
|
!
|
|

Difference
of 0.5 H

do]
SRREREERE

FRC value of

odd fleld

(N2) FRC value of
even field
(N2}
N2-N1 = 65H

7

1H:

apture FRC value
nto CPTO (N1)

One horizontal synchronizing signal period

64

Caution: If a narrow noise appears on a CLR1
input signal in phase with the
sampling timing as shown in Filgure
8-35, the digital noise eliminator
malfunctions. In practice, the
detection of a rising edge of the CLRI1
input signal may lag the correct
detection timing.

Fig. 8-35 Example of CLR1 Input Detection Error Due to Noise

Nolge
CLR1 1input
signal
_Sampling clock [ll l2 {3]4 }ls IG l J\\
(fCLK/B) 1 {2 3 4
\

~

Qutput after
nolse removal

Delay due
to nolise

Correct detec-
tion timing

—-—r——— -

Actual detectlion
timing

8 - B85

L3,

Setting timer 1 unit control registers

The operation of the timer 1 unit can be controlled by the

following registers:

EDVC:

INTM1:

PRM3:

CPTM:

TMCO :

TOM1:

TOC1:

ICR:

Event divider control register (for event divider
control)

External capture input mode register 1 (for
specifying an external input edge)

Prescaler mode reglster (for control of a TM3
prescaler)

Capture mode register (for specifying a CR12
capture trigger)

Timer 0 control register (for control of Timer 1
operation)

Timer 1 output mode register (for control of the
PT01n output mode)

Timer 1 output control register (for PTOln ocutput
control)

Input control register (for contrcl of the digital
noise eliminator).

The following figures show the formats of the registers.

8 - 66

Fig. 8-36 Format of the Event Divider Control Register (EDVC)

7 6 5 4 3 2 1 0 Address When reset R/W
EDVC | — | —— | EDV5| EDV4| EDV3| EDV2| EDV1| EDVO FF53H Not defined W
[[l I | |
1
Specification
EDVS | EDV4 | EDV3 | EDV2 | EDV1 | EDVO | for dividing

CTI10 input

0 0 0 0 0 0 Not to be set
Through output

0 |0 |0 30 O 1 | No dividing

0 0 0 0 1 0 rDivided by 2

1 1 1 1 1 0 Divided by 82

1 1 1 1 1 1 Divided by 63

8 - 67

Fig. 8-37 Format of External Capture Input Mode Register 1

INTM1

{ INTM1)

7 6 5 4 3 2 1 0 Address When reset R/W
0 |5 | o lEsu| - | - [Bs10| 1 FFF5H 0000xx01 R/W
]

ES10 Specification of a CTI10 input
detection edge
0 |Rising edge
1 [|Either the rising or falling edge
ES11 Specification of CTI1l input
detection edge
0 Falling edge
1 Rising edge
ES |Specificatlon of valid CLR1 input
CLR1 |edge
0 |Falling edge
1 Rising edge
Caution: Changing the setting in bit 8 of the external

capture input mode register (INTM1) may cause an
INTCLR1 interrupt request.

8 - 68

Fig. 8-38 Format of Prescaler Mode Register (PRM3)

7 6 5 4 3 2 1 0 Address When reset R/W
PRM3 |FFLVL 0 0 0 - PRM32 i PRM31 | PRM30 FF1DH 0xxxx000 R/W
1 : 1]

Specification of
PRM32 | PRM31 |PRM30 |prescaler output
frequency (at 12 MHz)

0 0 0 |forg/32 (187.5 kHz)
0 0 1 Jfeorp/128 (46.875 kHz)
0 1 0 |forg/512 (11.719 kHz)
0 1 1 |fp /2048 (2.9297 KkHz)
1 0 0 Valid CTI10 edge in-
put (external clock)
gﬁze;bgegn Not to be set

Fiag for storing the output level
of the flip-flop for control of
the pulse width detection
clrcuit.

FFLVL

8 - 69

CPTM

Fig. 8-39 Format of Capture Mode Register (CPTM)

6 5 4 3 2 1

0 Address FWhen reset R/W

TRGS |TRGS |TRGS
- - - - 12 01 00 FF3AH xXxxxx000 W
] | I
TRGS |TRGS [Specification of a CPTO capture
01 | 00 |trigger
0 0 |Match signal between TM1 and CR10
0 1 {CLR1 ipput edge detection signal
1 0 |Not to be set
Signal obtained by ORing the
1 1 match signal between TM1 and CR10
with the CLR1 input edge
detection signal
TRGS |Specification of a CR12 capture
12 ltrigger
0 |CTI11 input edge detection signal
1 [CTI10 input division signal

8 - 70

Fig. 8-40 Format of Timer Control Register 0 (TMCO)

7 6 5 4 3 2 1 0 Address When reset R/W
EN EN
TMCO | CS1 - = |ciRr1 CSO 0 0 CLRO FF38H 0xx00000 w

|
- {ENCLRO|TMO clear signal enable bit

Prevents TMO from being cleared
0 by masking a TMO clear pulse
{free running mode).

1 Clears TMO using a clear pulse.

CSO TMO count operation control

0 Clears TMO and stops counting.

1 Counts.

ENCLR1 |TM1 clear signal enable bit

Prevents TM1 from being cleared by
masking CLR1 input.

1 Clears TM1 by CLR1 input.

CS1 Control of TM1 counting

0 Clears TM1 and stops counting.

1 Counts.

8 - 171

Fig. 8-41 Format of Timer 1 Output Mode Register (TOM1)

7 6 5 4 3 2 1 0 Address When reset R/W
MOD | MOD
TOM1 - - - - 111 110 0 0 FF5AH xxxx0000 v

| E—
l—[_—1 Fixed to 0 (PT010 is

always set to general
output mode.)

MOD | MOD |PTO11 output mode
111 | 110 |specification
0 0 |General output mode
0 1 |Not to be set
1 0 Delay pulse output mode 1
1 1 [Not to be set

Fig. 8-42 Format of Timer 1 OQutput Control Reglister (TOQOC1)

7 6 5 4 3 2 1 0 Address When reset R/W
ENTO | ALV |ENTO | ALV
TOC1 - - - - 1 11 10 10 FF5BH xxxx0000 R/W

' |

ALV lSetting of active level of timer
1ln {1 output pin

0 Active low

1 Active high

ENTO |Control of timer 1 output enable/
11n disable

Disable (with output always set
at inactive level)

1 Enable

8 - 72

ICR

Fig. 8-43 Format of Input Control Register (ICR)

7 6 S 4 3 2 1 0 Address When reset R/W
SEL EC Vv SEL _ _ _
CLRO MOD |SYNCS|CLRL FFSOH 0x0x0xxx ¥
SFL |Selection of an INTCLR1 interrupt
CLR1 |source
0 Vertical synchronizing signal input
mode '
1 Composite synchronizing signal
input mode
V |Selectlon of a VSync separation
SYNCS |pulse width
0 Eliminates pulses of less than
1 Eliminates pulses of less than
12.0 us (72/fCLK)'
ECMOD Specification of the operating mode
of the event counter
0 |General event divider mode
1 Internal pulse generation mode
SEL lgelection of a timer 0 cl 1
CLRO ion of a timer ear pulse
0 CLRO pin input (Bypasses the 6-bit
event counter.)
1 Pulse generated Iinternally by the
event counter (EC)

8 - 73

8.4 Free Running Counter (FRC) Unit

8.4.1 Configuration of the free running counter unit

As shown in Figure 8-44, the free running counter unit
consists of an 18-bit free running counter (FRC), an
18-bit capture register (CPT2), and three 16-bit capture
registers (CPTO, CPT1, CPT3).

The free runnling counter captures the count value of the
FRC into a capture register upon occurrence of a capture
trigger. By comparing each captured value, the occurrence
cycle of capture triggers that occur periodically can be
measured. There are four capture registers, so occurrence
cycle measurements can be made for four types of capture
triggers 1In parallel.

Table 8-8 lists the capture registers and thelr respective
capture triggers.

Table 8-8 FRC Capture Reglsters and Capture Triggers

Capture Capture trigger Interrupt
register request

Detection signal of CLR1 input rising or falling edge| INTCLR1

CPTO Match signal between TM1 and CR10 INTCR10

Occurrence of elther of the above two triggers INTCLR1
or INTCR10
CPT1 Detection signal of both timer 0 clear pulse INTCPT1
rising edge and falling edge
CPT2 Detection signal of CTI00 input rising edge INTCPT2
(CPT2H, CPT2L)
CPT3 Divided signal of CTI10 input edge detection signal INTCPT3

Caution: A CPTO capture trigger 1s specified using bits 0
and 1 of the capture mode register (CPTM)
(Figure 8-49).

8 - 74

Fig. 8-44 Configuration of the Free Running Counter

Internal bus S

7

17

CPT2H (16) CPT3 (16)
CPTZL
(2} .
CPT2 capture Cepture Capture (:223:::::)
trigger e - INTCPT2
CPT3 capture _ Capturi 3 @
trigger
TMC1 bits 2 and 1]L“
Qver- s
f—— T’
ovz | ove =227 FRC {16) “
(2) -"_'"[cu
Bit
10 - —{ NTTB)
. Capture
e "¢ — : e
Capture
“\/ \/
From CLR1 CPT0 (16) CPT1 (16}
input pin K
o | 16 16 15
g <kv/7
From &
timer 1 S Internal bus S
TRGSO1 CPTM reglister

TRGS02

bits 0 and 1

The FRC is an 18-bit counter that counts up with clock

input.

The FRC consists of two counters: one is a 16-bit counter
that counts up with a fCLK/4 clock, and the other is a
2-bit counter that counts up with foyk-

4.

2-bit counter that counts up with fork.

Four capture registers are provided for the FRC. Among
these registers, CPTO, CPT1, and CPT3 are 16-bit .capture
reglsters, and CPT2 is an 18-bit capture register.

Capture register 2 {CPTZ2)

The 18-bit capture register (CPT2) consists of two
reglisters: CPT2H and CPT2L.

The CPT2H reglister 1s a 16-bit register that holds the
higher 16-bit count value of the 18-bit FRC. The CPTZ2L
register is an 8-blt register that holds the lower 2-bit
data of the 18-blt FRC. The lower 2-bit data of the FRC
is held in the two high-order bits of the CPTZ2L reglster,
and zero is held In the six low-order bits of the CPT2L
reglster.

Flgure 8-45 shows the configuration of CPT2 (CPT2H, CPT2L)
of the FRC.

Figure 8-46 shows how data 1s held in CPTZ2L.
An example of FRC count operation is shown in Flgure 8-47.

When fCLK = 6 MHz, the 16 high-order bits of the FRC count
with a count clock of for /4 (= 1.5 MHz).

The higher bit of the two low-order bits counts with
ferx/2 (= 3 MHz or 333 ns), and the lower bit counts with
frik (= 6 MHz or 167 ns).

When a rising edge 1s applied to the CTIOO pin according
to the timing shown in Figure 8-47, the count value (N) of
the 16 high-order bits is held 1in CPT2H, and OlOOOOOOB is
held in CPT2L.

8 - 76

Flg. 8-45 Configuration of CPTZ2 (CPT2H, CPT2L)

o o[>

To tlmer 0 event

counter (EC)

FRC[(16+2) bits]

Capture 1
l <
- olo
- - e
CPT2H CPT2L
(16 bits) (2 bits)
Fig. 8-46 CPT2L Capture Data
6 5 4 3 2 1]
0 0 0 0 0 0

CPT2L

——

Lower 2-bit data of FRC

8 - 77

Fig. 8-47 Example of F

CTI00
pin Input

Count value
of lower 2
bits of FRC

Count value

higher 16 bits

of FRC

RC Count Operation

Capture
trigger

LYK

(AL

N-1 x , N

|
r
X N+

[:
\ [
\
\ !
\ /
15 . v / 0
v
CPT2H N
!
i
|
74 0
CPT2L 1!0 olofolo|o|o
L.v_-/

Count value of lower 2 bits of FRC

8.4.3 Operation of the FRC

Table 8-% indicates the resolution and maximum count time
of the FRC when fCLK = 6 MHz (at 12 MHz).

Table 8-9 Resolution of the FRC (at 12 MHz)

Input clock Resolution

Maximum
count time

167 ns when CPT2L is used

6 MHz (fopg) 43.7 ms

8687 ns when CPTO0, CPT1, CPT2H, and
CPFT3 are used

The FRC can be started by setting bit 3 of TMC1l to 1.

Bits 1 and 2 (OVF1, OVF2) of TMCl1l are the overflow flag of
the FRC. Bit 1 (0OVF1l) l1s set for the first overflow.

For any additional overflows, bit 2 (OVF2) 1s set. OVF1
and OVF2 cannot he cleared by wrlting zero, but can be
cleared by reading TMCLl.

The FRC has a function of generating a timer base
interrupt (INTTB).

When bit 10 of the FRC 1s set to 1, the FRC generates an
interrupt in a perlodic manner.

Caution: The FRC 1s undefined for 16 clock pulses
(16/fCLK) after reset release. Start FRC count

operation at the 17th clock pulse or later.

A capture trigger for the CPTO register of the FRC can be
speclfled using the capture mode register (CPTM).

8 - 79

8.4.4 Setting FRC unit control registers

The operation of the FRC can be controlled using the
following reglsters:

TMC1: Timer control register 1 (for control of FRC

operation)

CPTM: Capture mode register (for selection of capture

sources)

Filg. 8-48 Format of Timer Control Register 1 (TMC1)

7 6 5 4 3 2 1 0 Address When reset R/W
TMC1 | CS2 0 0 0 |CSFRC[OVF2 [QVF1 0 FF39H 00H R/W
e
QVF2 VOVFl FRC overflow flag
0 0 |No overflows occurred.
0 1 |One overflow occurred.

More than one overflow
occurred.

CSFRC[FRC count control

Clears FRC and stops counting.
(No time base interrupt occurs.)

Counts. (A time base interrupt
occurs.)

€S2 |Timer 2 count operation control

0 Clears timer 2 and stops counting.

1 Counts.

Remark: Bits 7 and 3 of TMC1l are used only for write
operation, and bits 2 and 1 are used only for

read operation.

8 - 80

CPTM

Fig. 8-49 Format of Capture Mode Register (CPTM)

6 5 4 3 2

1 0 Address W¥hen reset R/W

TRGS |TRGS |[TRGS
12 01 00

FF3AH xxxxx000 W

|_]_T

TRGS
01

TRGS |[Specification of a CPTO capture
00 |trigger

0 |Match signal between TM1 and CR10

1 CIR1 input edge detection signal

0 Not to be set

Signal obtained by ORing the
match signal between TM1 and CR10
with the CLR1 input edge
detection signal

TRGS
12

Specification of a CR12 capture trigger

CTI1l1 input edge detection signal

CTI10 input division signal

8 - 81

8.4.5 Application of the FRC to a VCR

(1)

Application to a drum speed- control system

The drum rotation speed control system of a VCR servo
system requires highest-precision control. For this
control system, the high-precision 18-bit FRC of the
uPD78138 and the assoclated 18-bit capture register
CPT2 (CPT2H and CPTZ2L) can be used.

Specifically, a drum FG (DFG) signal is applied to
the CTI00 pin, and a rising edge of this signal is
used as a capture trigger to load the count value of
the FRC into CPT2 (CPT2H, CPT2L) as shown in Figure
8-50. The value 1n CPT2 represents the rotation
speed of the drum, and this value is used for drum
speed control.

Fig. B-50 Example of Using the FRC in a VCR

DFG

(Drum FG signal)

(Detecting Drum Motor Speed Error Using
Capture Register 2)

16-bit 2-bit
counter counter
- . A
".—l l4
FRC cus!

—
'cu

L

&
®

Drum motor

Capture [
*@?——{§>ﬁ—-_r CPT2
CTIo0

CPT2H CPT2L
“ - v

18-bit data

8 - B2

(2)

Drum phase control system

For a VCR drum head switching signal and drum phase
control, capture register 0 (CPT0O) allowing selection
from three types of capture triggers is used. Figure
8-51 shows the FRC CPTO capture trigger
ponfiguration. Drum phase control uses a head
switching signal as a capture trigger to load the
count value of the FRC into capture register 1
(CPT1), and uses a phase reference signal or vertical
synchronizing slgnal (Vsync) as a capture trigger to
load the count value of the FRC into capture register
0 (CPTO). Then the difference between the value of
CPT1 and the value of CPTO is checked for drum phase

control.

In this case, the method of control for playback
slightly differs from that for recording.

Fig. 8-51 Example of Using FRC Capture Register 0 (CPTO)

(General

CLR1 input ed!g purpose) FRC
(Vsync siensl) (Record-| 5
ing)] Capture ﬁ:\\\J’,J;'
X
QU
/7]

{Pleyback)

CPTO

Timer 1 CR10 match signal
(phase reference signal)

8§ - 83

(a) Playback

Timer 1 is used as the-reference counter, and a
match signal of the compare register (CR10) is
used as the phase reference signal. This phase
reference signal is used as a capture trigger to
load the value of the FRC into CPTO.

Figure 8-52 gives an example of using the FRC
and TM1 in playback.

Figure 8-53 shows how the FRC and TM1 operate in
playback.

Fig. 8-52 Example of Using the FRC and TM1 in Playback
(Operating TM1 as the Internal Phase Reference

Timer)
FRC
Capture
CPTOQO
{Clear)
-
T M1

Operating as a

reference timer
for generating a]

phase reference
CR1GO0 *{ INTCR10)

slgnal in playback

8 - 84

Fig. 8-53 Operation of the FRC and TM1l in Playback

~Matches CR10 —Matches CR10
(Clear) (Clear)
TM1
count
value
INTCR10
occurs
INTCR10 /V/
ERC oCCuUrs
Captured
count ‘ X
value in CPTO
Captured
in CPTO

8 - 85

(b) Recording

In recording, the disjunction of a vertical
synchronizing (Vsync) signal applied to the CLR1
pin and a phase reference signal generated from
CR10 of timer 1 is used as a capture trigger.

If only a Vv signal is used as a capture

sync
trigger, abnormal phase control may result due
to Vsync lost by noise. The method of using

such a disjJunction ensures normal phase control.

In this case, the period of the V signal

sync
must be the same as the period of the phase

reference signal. This setting ensures normal
phase control 1f the Vsync

cause; in this case, the phase reference signal

slgnal is lost for a
can take place of the VSync signal.

Figure 8-54 gives an example of using the FRC
and TM1 in recording.

Figure 8-55 shows how the FRC and TM1l operate in

recording.

8§ - 886

LR

CLR1

{Composite syn-
chronizing signal)

Input of phase
reference signal

Fig. 8-54 Example of Using the FRC and TM1 in Recording
(Capturing the FRC Contents on Input of the Phase

Reference Signal)

Selector

» Digital nolise eliminator

z i‘
iga ,j

- INTCLR!)

FRC

!

Capture

CPTO

S S

Clear

Timer 1 functions as r
a buffer oscillator

T M1

that can capture the
FRC contents properly |/
even If there is a

[l

missing pulse on the
phase reference signal.

CRI1O

Match

-~ INTCRI0 }

88 - 8

Fig. 8-55 Operation of the FRC and TM1 in Recording

An input edge

_ is missing. _
CLR1 (Voo J _l H J
syn
input) yoe t .
L
Cleared on Cleared when Cleared on
CLR1 edge matching CR10 CLR1 edge
input input
TM1 count
value
INTCLRI
INTCR10
Captured in CPTO
(captured on CLR1
edge input)
INTCLRL
Captured in CPTO
R {captured when
Sagugount matching CR10)
Captured in CPTO
(captured on CLR1
edge input)

Cautlion:

Neotes on capturing the FRC value

during recording

When attempting phase control as shown
in Flgure 8-54, the FRC count wvalue
captured in CPTO on the rising edge of
a vertical synchronizing signal

(Vsync
rising edge of an equalizing pulse
that follow V

) must be saved before the

sync is input.
That is, the contents of CPTO must be
saved within 200 us after the rising

edge of V is input.

sync
This must be done because of the
following reason.

When a composlte synchronizing signal
is applied to the CLR1 pin and a Vsync
signal is extracted in a digital noise
eliminator incorporated in the
uPD78138 for phase control, the count
value of the FRC is captured on the
rising edge of an equalizing pulse
signal as well as on the rising edge
of vsynC'
value captured on the rising edge of

However, only the count

VSync is used for phase control.
Therefore, to perform phase control
correctly, the value of CPTO must be
saved before the rising edge of the

equalizing pulse is input.

Time taken from the rising edge of
Vsync to the rising edge of the
equalizing pulse 1s as follows:

Pulse width of vertical
synchronizing signal (Vsync): 3
(H: Horizontal synchronizing

signal period; 1 H = 63.55 us)

Rise time of equalizing pulse after

vertical synchronizing signal:
0.5 H

Maximum delay time (vd) of digital

nolse eliminator: 13.3 us

Time taken from rising edge of Vsync
to rising edge of equalizing pulse
= (3 + 0.5) x 63.55 - 13.3

% 209 us

8 - 90

Fig. 8-56 FRC Capture Operation in Recording (CPTO0)

L 3H
|

RL tH

1H

Rising edge of the
0.5H l equalizing pulse

Composite syn-
chronizing signal
{ COMPSYNC)
—I '——-rd

Il

after the vertical
synchronizing signal

Wﬂﬂﬂ

7d ——

Vertical syn- _I
chronizing signal
{separated from
COMPSYNC}

(3.5H-1d) =209 prs

FRC count
value

3::12"'e CPTO {not used for

phase control)

—— = CPTO (not used for
phase contrel)

CPT0 (used for phase control)

Remark: +wd: Delay arising from digital sampling. 13.3 us at

maximum (when operating at 12 MHz)

H: Horizontal synchronizing signal period

1 H = 63.55 us

91

8.5 Timer 2 Unit

The timer 2 unit consists of a 16-bit counter (TM2), 16-bit
compare register (CR20), and 16-bit comparator, as shown in
Figure 8-586.

TM2 is a 16-bit binary up-counter, and is incremented by one
each time a counter clock (fok/16) pulse is applied.

When the value of TM2 matches the value of CR20, TM2 is
cleared to QCOOH, and a timér interrupt (INTTM) occurs at the

same time.

S0 the timer functions as an interval timer whose interval
is determined by the CR20 register.

The count operation of TM2 is controlled by bit 7 (CS2) of
timer control register 1 (TMC1l). TMC1l is an 8-bit reglister
that allows both read and write operations, but does not
allow bit manipulations. A RESET input signal sets TMC1 to
OOH (Figure 8-58).

Table 8-10 indicates the interval time of the timer when
fCLK = 6 MHz.

Table 8-10 Resolution of Timer 2 (at 12 MHz)

Input clock Resolution Full-count interval
o “ (CR20 = FFFFH is set.)

375 kHz (fopk/16) 2.67 us 174.8 ms

TM2 allows only read operation, and CR20 allows both read
and write operations. TMZ2 and CR20 allow access on a 16-bit
basis only.

A RESET input signal makes CR20 undefined, and clears TM2

when 16 clock pulses have elapsed after reset release.

8 - 92

Caution: TM2 is undefined for 16 clock pulses (16/fCLK)
after reset release. Start TM2 timer operation at
the 17th clock pulse or later.

8.5.1 Confilguration of the timer 2 unit

Figure 8-57 shows the configuration of the timer 2 unit.

Fig. 8-57 Configuration of the Timer 2 Unit

) Internal bus 2

PN 1&[

16 16-bit compare
register (CR20)

T™C 1
bit 7 16
Match

16-bit comparatoer { INTTM)

i

/16 _—D— 16-bit counter (TM2)

Clear

8.5.2

T™C1

Setting the register to control the timer 2 unit

Operation of the timer 2 unit can be controlled by timer
control register 1 (TMC1).

Fig. 8-58 Format of Timer Control Register 1 (TMC1)

7 6 5 4 3 2 1 0 Address When reset R/W
Cs2 0 0 0 CSFRC OVF2 {OVF1 0 FF38H 00H R/W
e
OVF2 |OVF1 |FRC overflow flag
0 0 [No overflow occurred.
0 1 |One overflow occurred.

More than one overflow
occurred.

CSFRC|Controls counting of the FRC.

Clears and stops counting.
0 (Does not generate a time base
interrupt.)

Counts. (Generates a time base
interrupt.)

€S2 |Controls counting of timer 2.

0 ([Clears and stops counting.

1 Counts.

8§ - 94

8.

8

6

.6,

(449

03C

PWM Qutput Unit

The uPD78138 contains two 12-bit pulse width modulation

(PWM) output circuits. The PWM output unit allows the user
to select either the 23.4- or 46.29-kHz carrier frequency for

It also allows selection between active high or

PWM ocutput.
active low for the active level of a PWM output pulse signal.

In addition, the PWM output port can be used as a general

output port.

1 Configuration of the PWM cutput unit

Figure 8-59 shows the configuration of the PWM output unit.

Fig. 8-59 Configuration of the PWM Output Unit

{(n=0, 1)

Internal bus 44}5

i
()
L PWMC

o N —_
To selector

Reload Reload

Reload _
From PWMC control
~.

PWiin
151

i 8 2
-t
o _ _ - P¥M pulse
L by 8-blt down-counter generator Output PWMn
—~ 2 —— 1 control
__________ cireuit

4-blt counter

From PWMC ——{Selector

o

|
fe /236 1 /128

(493 (293

(From FRC)

* See Section 8.6.4.
Remark: fpeyg = Toge/2

8.6.2 Operation of the PWM output unit

(1) PWM pulse output enable/disable

The PWM output unit allows the user to select either
23.4- or 46.9-kHz carrier frequency (PWM pulse
repetition Interval) for PWM output (at 12 MHzZ).

The PWM pulse width is determined by the contents of
the PWM modulo register (PWMO, PWM1).

When a PWM pulse signal is to be output, data must be
set in the PWM modulo registers, then the ENO and EN1
bits of the PWMC register must be set to 1.

With these settings, PWM pulses with the active level
specified by ALVO and ALV1 of the PWMC register are
output on the PWM output pins.

When the ENO and EN1 bits of the PWMC register are
cleared to 0, the PWM output unit immediately stops
PWM output operation; and the inactive level appears
on the PWM output pins.

Caution: The PWM output control circuit operates
with a clock signal supplied from the free
running counter (FRC). So PWM output
operation cannot be performed when the FRC
1s not in operation. The FRC performs
count operation when bit 3 of timer control
register 1 (TMC1l) is set to 1 (Figure
8-48).

8 - 98

(2)

Active level specification for a PWM pulse signal

The ALVO and ALV1 bits of the PWMC register specify
the active level of PWM pulse signals output on the

PWM output pins.

When ALV0O and ALV1 are set to 1, an active high pulse
signal is output. When these bits are reset to 0, an

active low pulse signal is output.

When the settings of ALVO and ALVl are changed, the
PWM active level immediately changes. Figure 8-60
shows the active level setting of PWM output and pin

state.

In Figure 8-60(a), the setting of ALVn (n = 0, 1) is
changed when the ENn (n = 0, 1) of PWMC is reset to
0, and PWM ocutput is disabled. When PWM output is
disabled, the inactive level appears on the PWM pulse
output pins. So by rewriting ALVn (n = 0, 1), the
PWMn pin (n = 0, 1) can be used as a general output
port.

In Figure 8-60(b), the setting of ALVn (n = 0, 1} is
changed when the ENn (n = 0, 1) of the PWMC register
is set to 1, and PWM output 1is enabled.

Fig. 8-80 Active Level Setting for PWM Qutput

When PWM pulse output is disabled (ENn = 0: n = 0, 1)

ALVn (Active high) CX\ (Actlive low)
PWMn /

T

(Rewriting ALVn bit)

When PWM pulse output 1s enabled (ENn = 1: n = 0, 1)

ALVn (Active high) c\\ (Active low)

- U UL LT L

T

(Rewriting ALVn bit)
(3) Specification of a PWM pulse width switchling cycle

PWM output 1s started and the pulse width is changed
every 16 PWM pulse cycles (212/PWM operating
frequency) or for each PWM pulse cycle (28/PWM
operating frequency). A PWM pulse width switching
cycle can be specified with the SYNn bit (n = 0, 1)
of the PWMC register.

8 - S8

When the SYNn bit (n = 0, 1) is reset to 0, pulse
width switching 1s performed every 16 PWM pulse
cycles (212/PWM operating frequency). This means
that up to 212 clock pulses (342 us when PWM
operating frequency = 12 MHz) are required before
pulses with the width corresponding to the data
loaded into the PWM modulo register are output.

Figure 8-61 shows an example of PWM output timing.

On the other hand, when the SYNn bit (n = 0, 1) is
set to 1, pulse width switching is performed for each
pulse cycle (28/PWM operating frequency). In this
case, up to 28 clock pulses (42 us when PWM operating
frequency = 12 MHz) are required before pulses with
the width corresponding to the data loaded into the

PWM modulo register are output.

However, when 28/PWM operating frequency is specified
as a pulse width switching cycle (that is, when the
SYNn bit is set to 1), note that a pulse width
resolution from elght bits to 12 bits is obtained.
This resolution is inferior to a resolution obtained
when 212/PWM operating frequency is specified.

Figure 8-62 shows an example of PWM output timing

when a switching cycle of 28/PWM operating frequency
is specified.

8 - 99

Fig. 8-61 Example 1

of PWM Output Timing (PWM Pulse Width

Switching Cycle: 212/fCLK)

16 PWM 16 P¥M i
pulse pulse ——m—
cycles cycles
1
output
outp L Ll o oy
1 | 1
Contents of ; I 1
ontents o :] :
PWM modulo n X m
register A A
Enable Rewrite modulo
F¥M output register
PWM pulse width PR¥M pulse width PWM pulse width
switching timing switching timling switching timing

Remarks 1.

Pulse width switching is performed every
16 PWM pulse cycles,.

The PWM pulse resolution is 12-bit.

8 - 100

Fig. 8-62 Example 2 of PWM Output Timing (PWM Pulse Width
Switching Cycle: 28/fCLK)

One PWM
pulse cycle

e v e

PWM
output ” ” | l I | l
pin —l'—_L—JM “ ﬂ l_! I-!] ' 1 '
| 1 i 1 | i 1 | | I 1 {]
Contents of ! | I [[1 i | | | |\ 1 I
on n 1 1 1 1 1] 1 1 1 1 1 1
PW¥M modulo n X ! X m X \ o
register A A A A \
Enable Rewrite Rewrite Rewrite
PWM modulo modulo modulo
output reglster reglster register PWM pulse
- width switch-
— Ing timing

Remarks 1. Pulse width switching 1s performed for
each PWM pulse cycle.

2. The PWM pulse resolution is from 8-bit to O
12-bit within 16 PWM pulse cycles after

the PWM modulo register is rewritten.

3. The value n, m, or 1 represents the con-
tents of the PWM modulo register.

(4) PWM pulse width

The PWM pulse width 1s determined by the 12-bit data
from bit 15 to bit 4 of a PWM modulo register.

§ - 101

If the high-order eight bits of the PWM modulo
register (bits 15 to 8) shows 00H, no PWM pulse

signal is output regardless-of the value set in the
low-order four bits (bits 7 to 4). Be sure to set the
PWM modulo register to a value not less than 0100H.
The duty cycle of the PWM output with a particular
pulse width 1s expressed by the following:

Duty cycle for a pulse width (%) = ((value in PWM
modulo register bits 15 to 4) + 1)/212 x 100

where,

the value of PWM modulo register bits 15 to 4 » 010H

Caution: The PWM output control circult operates
with a clock signal supplied from the free
running counter (FRC). So PWM pulse output
operation 1s not performed when the FRC is
not in operation.
Setting bit 3 of the timer control register
1 (TMC1l) to 1 causes the FRC to start
counting.

8.6.3 Setting the register to control PWM output unit

Operation of the PWM output units can be controlled by the
following register:

PWMC: PWM control register, which controls operation of
FWMO and PWM1

The format of the register is shown below.

8 - 102

P¥MC

Fig. 8-63 Format of the PWM Control Register (PWMC)

7 6 5 3 2 0 . Address W¥When reset R/W
SYN1|CLS1|SYNO|CLSO|EN1 |ALV1|ENO | ALVO FF70H 0SH R/W
[[
in =10, 1)
ALVD Setting of PWM output active level on
P¥Mn pin
0 Active low
1 Active high
ENn | Control over PWM output on PWMn pin
0 Disables output, with pin level set to
lnactive level.
1 Enables PWM output.
CLSn | Selection of PWM operating frequency
0 f (carrier frequency: 23.4 kHz)(')
CLK
1 f (carrier frequency: 46.9 khz)(*)
0SC
+ ¥hen operating at 12 MHz
SYNn Specification of PWM pulse width
switching cycle
0 Switches width every 16 PWM pulse cycles
12
(27%/fcry) -
1 Switches width for each PWM pulse cycle
8
(2%/fork?-
Remark: fOSC: External oscillator frequency
fCLK: Internal system clock (fCLK = fosc/z)

8 - 103

.6.

6.

Registers other than the control register

PWM modulo registers (PWMO, PWM1)

The PWMO and PWMl registers are 16-bit regilisters that
determine the pulse width of a PWM pulse signal. Data can
be set using a 16-bit data transfer instruction.

The registers are write-only registers, and do not allow

read operation.

Bits 15 to 4 of the PWMO and PWM1l registers determine a
12-bit PWM pulse width (12-bit resolution). Bits 3 to 0
are ignored; PWM output is not affected when 1 or 0 is
written to these bits.

A RESET input signal makes the contents of the modulo
registers undefined, so data must be set using the
initialization program before PWM output is enabled.
Application of the PWM output units

Application of the PWM output units to a VCR

Since PWMO and PWM1l feature high-speed, high-resolution
PWM output, they are suitable where real-time processing

and high precision are critical.

In a VCR unit, PWMO and PWM1 can be used for driving a
drum motor and capstan motor.

8§ - 104

CHAPTER 9 A/D CONVERTER

Functions of A/D Converter

The uPD78138 contalns a built-in analog-to-digital (A/D)
converter with eight multiplexed analog inputs (ANIO to
ANIT).

Analog-to-digital converslion 1s done by successive
approximation. The converted result is stored in the 8-bit
A/D conversion result register (ADCR). Fast and very
accurate conversion 1s enabled (conversion reguires only

30 us when the system operates at 12 MHz).

A/D conversion 1s started 1In one of the following modes:

0 Hardware start: Conversion is started by trigger input
(INTP1).

o Software start: Conversion is started by setting an
appropriate bit in the A/D conversion
mode register (ADM).

After started, conversion 1s done in one of the following

modes:

0 Scan mode: Selects analog inputs sequentially for
converslion, and obtains digital data
converted from analog inputs on the all

pins.

0 Select mode: Converts analog input on a particular pin

continuously.

The above modes and the stop of conversion are specified
with ADM.

When a converted result is transferred to ADCR, interrupt
request INTAD is generated (except the select mode when
conversion 1s started in the software start mode). Macro
service can therefore transfer converted results to memory
successively.

Table 9-1 Mode Generating INTAD

Mode Scan mode Select mode

Start

Hardware start | Generated | Generated

Software start | Generated | Not generated

9.2 Hardware Configuration of A/D Converter

Figure 9-1 shows the configuration of the A/D converter.

ANIO O————
AN O——
ANI2 O———
AN O——
ANM O——
ANIS O——]
ANIE O——-—

AN O— o

Fig. 9-1

Block Diagram of A/D Converter

Serles resistor

Voltage comparator

P22/INTP1 O-———f

Sample-and-hold
3 circult
-+ [-
[f .
X ! '
@ ' :
1
E : o No——
=y 1
g ! IR
— 1 .
! 1
) 9;:
.
Successive
approximatlion
register {SAR)
Edge de- Conversion L
tection trigger TomTral
clrcult olroult ---
INTP1

Trigger
enable

INTAD

Tap selector

A/D eonversion

mode register (ADM}

NS

Interrupt
request

A/D converslon
result register
{ADCR)

Internal

bus

Cautions 1.

Connect capacltors to analog input pins
(ANIO to ANI7) and reference voltage input
pin (AVREF) to prevent miss-operation due to

noise.

Be careful not to apply voltage exceeding
the range from AVgg to AVggp to the ANIO to
ANI7 pins during A/D conversion or when
these pins are not used. When it is
possible that a nolse with a voltage above
AVREF or below AVSS is applied, clamp the
Pins with diodes with low V.

Flg. 9-2 Example of Connecting Capacitors to
A/D Converter Pins

<

oo uPD78138

Analog
input

AN10-AN14

100-500pF

Reference
voltage input

Avll!

|

(1) Input circuit

The Input circult selects an analog input as

specified in the A/D conversion mode register (ADM),

and sends the analog input to the sample-and-hold

circuit according to the current operation mode.

(2)

(3)

(4)

(5)

Sample-and-hold circult

The sample-and-hold circuit samples each of analog
inputs sent successively, and holds the analog input
being converted to a digital form.

Voltage comparator

The voltage comparator compares the analeog input
wlith the voltage at a voltage tap in the series
resistor string.

Series resistor string

The series resistor string generates voltage
steps for converting analog input into a digital
form.

The serles reslstor string 1s connected between

the reference voltage pin (AVREF) and GND pin (AVSS)
for the A/D converter. The string consists of 255
equlivalent resistors and two resistors having a
half of the resistance of the 255 resistors so that
256 voltage levels can- be produced in equivalent
steps between the two pins.

One of the voltage taps in the serles resistor
string is selected by the tap decoder controlled by
SAR.

Successlve approximation register (SAR)

SAR is an 8-hit register to accept a result of
comparing the voltage at a voltage tap in the series
resistor string with the voltage of the analog input
bit-wise from the most significant bit (MSB).

When comparison results are set down to the least
significant bit (LSB) of SAR, A/D conversion is
terminated, and the conversion result in SAR is
transferred to the A/D conversion result register
(ADCR) and held there. At the same time, an A/D
conversion termination interrupt request (INTAD) is
generated from SAR.

(6) Edge detection circuit

The edge detection circuit detects a valid edge in
the input on the interrupt request input pin
(INTP1), then generates an external interrupt
request signal (INTPl) and an external trigger for
A/D conversion.

The valid edge of the INTP1 pin input is specified
by the external interrupt mode register 0 (INTMO).
(See Figure 11-11.) The external trigger is enabled
or disabled by the ADM register. (See Section 9.3.)

Control Register for the A/D Converter

The A/D converter is controlled by the A/D conversion mode
register (ADM).

The ADM register is an 8-bit register that controls the
operation of the A/D converter.

Elght-bit manipulation instructions and bit manipulation
instructions can be used to read from or write to the

register. Figure 9-3 shows the format of the ADM register.

Bit 0 (MS) controls the operation mode.

Bits 1, 2, and 3 (ANISO, ANIS1, and ANIS2) select analog
input to be converted Into digital form.

Bit 6 (TRG) enables A/D conversion to be synchronized with
an external signal. If the CS bit is 1, setting the TRG bit
initiallizes converslion operation every tlme a valid edge is
received on the INTPl1l pin as an external trigger. Resetting
the TRG bit to 0 leaves conversion continuing until it is
terminated regardless of the INTP1 pin input.

Bit 7 (CS) controls A/D conversion. If the CS bit is set to
1, conversion starts, and if the bit is reset to 0, entire
conversion operation is stopped even when conversion is
belng in progress. 1In this case, requests for ADCR register
update and INTAD interrupt are not generated.

RESET input sets the ADM register to OOH.

ADM

7 6 5 4 3 2 1 0 Address When reset R/W
CS{TRG| © FR {ANIS2[ANIS1|ANISO| MS FF68H 00H R/W
] L | I |
_ |
[—— ANIS2|ANIS1|ANISO| MS | Specification of A/D conversion mode

0 0 0 0 Scan ANIO input.
0 0 1 0 Scan ANIO and ANI1 inputs.
0 1 0 0 Scan ANIO-ANI2 inputs.
0 1 1 0 | Scan Scan ANIO-ANI3 inputs.
1 0 0 0 mode Scan ANIO-ANI4 inputs.
1 0 1 0 Scan ANIQ-ANIS inputs.
1 1 0 0 Scan ANIO-ANI6 inputs.
1 1 1 0 Scan ANIO-ANI7 inputs.
0 0 0 1 Select ANIO input.
0 0 1 1 Select ANI1 1input.
0 1 0 1 Select ANI2 input.
0 1 1 1 | Select | Select ANI3 input.
1 0 0 1 mode Select ANI4 Input.
1 0 1 1 Select ANI5 input.
1 1 0 1 Select ANI6 input.
1 1 1 1 Select ANIT7 input.

FR Conversion speed control

0 180 states When oscillator frequency > 8 MHz

1 120 states When oscillator frequency < 8 MHz

TRG External pin trigger control

0 External trigger disabled

1 External trigger enabled

Cs A/D conversion control

0 Stop A/D conversion.

1 Start A/D conversion.

S - 8

9.4 A/D Converter Operation

9.

4.

1

Basic operation of A/D converter

Analog-to-digital conversion is performed in the following

procedure:

(1)

(2)

(3)

(4)

(5)

(6)

Select an analog input and specify an operation mode

with the A/D conversion mode register (ADM).

Set bit 7 (CS) in the ADM register to 1 to start A/D

conversion.

As converslon starts, the most slgnificant bit in SAR
(bit 7) 1is automatically set to 1.

As bit 7 in SAR is set, the tap decoder selects a
voltage tap 1n the series resistor string so that the
voltage level is (1/2)-AVREF.

The voltage comparator compares the voltage at the
tap in the series resistor string with the voltage of
analog input. If the voltage of the analog input is
higher than (1/2) AVggpp, the MSB of SAR is left set.
If the voltage 1s less than (1/2) AVREF > the MSB is
reset.

Next, bit 6 in SAR 1s automatically set to 1,
proceeding to the next comparison. One of the
following voltage taps in the series resistor string
is selected according to the value set in bit 7:

Bit 7
Bit 7

The voltage comparator compares the voltage at the
selected voltage tap with the voltage of the analog
input. Bit 6 in SAR 1s set depending on the result
of comparison as follows:

Analog input voltage z Voltage tap:

Bit 6 is set to 1.

Analog input voltage < Voltage tap:

Bit 6 1s set to 0.

(7) Comparison continues 1n the same way down to the
least-significant bit (bit 0) (called the binary
search method).

(8) When comparison 1s terminated for the eight bits, SAR
has held a valid result in digital form. This value
1s transferred to the ADCR register and latched in
it.

At the same time, an A/D conversion end interrupt
request (INTAD) 1s generated. INTAD must be
processed as a vectored interrupt or macro service.
(See Figure 9-4.)

Caution: Be careful not to apply voltage exceeding
the range from AVgg - 0.3 to AVgpp + 0.3 to
the ANIO to ANI7 pins during A/D conversion
or when they are not used.

The start of A/D conversion can be synchronized with an
external signal. When the CS bit is set to 1 after bit &
(TRG) 1in the ADM register is set to 1 by software, an
external signal ready state 1s entered. Every time a
valld edge 1s applied to the INTP1 pin, initialization is
performed, and A/D conversion starts, (See Figure 9—5.)
A/D conversion continues until the CS bit 1s reset to 0 by
software.

g - 10

When the ADM register 1s written to during A/D conversion,
the conversion operation is initiallzed and started from

the beginning. (See Filgure 9-6.)

RESET input makes the ADCR register contents

indefinite.

Fig. 9-4 Basic Operation of A/D Conversion

A/D '
conversion AN? ANI) ANI2 ANI3

Start conversion™. d) '
Cs=1 ! ! ;]

Accept interrupt

Fig. 9-5 A/D Conversion Started by Hardware

External trigger

signal INTP1
A/D
ANIO
conversion \ ANI1 APiIO AP\I!] AN\I2

ADCR +«-=========-= X \ ANIO X }N]O X }N“ X \
INTAD H—) ’-q;) F—) -‘:?

Accept interrupt

9 - 11

9.

4.

Fig. 9-6 Rewriting ADM Contents during A/D Conversion

A/D
’ ANI
conversion Awo ANIT ANI2 ANIO ANI2
: - n
Start conversion Rewrite ADM
CS~1

i R >< \
ADCR oo i>< ANIO :Klg, ANI1 ANIO \
INTAD | |) ’l) ‘ |> [11
7 7 I

7

Accept interrupt

A/D converter operation mode

The A/D converter operates in either the scan mode or
select mode. The mode is selected by bit 0 (MS} in the
A/D conversion mode register (ADM). The selected mode

continues until the ADM register contents are rewritten.
(1) Select mode

One analog input is specified with bits 1 to 3 (ANIO
to ANI2) in the ADM register for starting A/D
conversion. The conversion result is stored in the

A/D conversion result register (ADCR).

If bit 6 (TRG) in the ADM register is set to enable
external trigger, an A/D conversion end interrupt
request (INTAD) is generated.

Fig. 9-7 Operation Timing in Select Mode

(a) When the TRG bit is set to 0

A/D -
conversion ANI3 ANI3 ANI3 ANI3 ANI3 ANI3
Start converslon
CS-—
ANISZ-O-—OH
ADCR x ANI3 X ANI3 I ANI3 ’ ANI3 I ANI3 I
(b) When the TRG bit is set to 1
INTP 1 r| —I —I
Inﬁlalize Initlalize Inftlalize
) : :
A/D . .
conversion ANIO ANIO ANID - ANID ANiICQ ANIO ANID
A A A A A
Start conversion\ End End End End End
conversion conversiony conversion converslon converslion

C5—1
MS—1
ANIS2-0—000

ADCR ANIO

INTAD

!
]

ANiIO I ANIO

—
)

(2) Scan mode
The scan mode converts the inputs on the analog input

pins specified by bits 1 to 3 (ANISO to ANISZ2) in the
A/D conversion mode register (ADM) sequentially.

9 - 13

For example, if ANIS2 to ANISO in the ADM register 1is
001, ANIO and ANI1 are scanned repeatedly from ANIO
to ANI1 to ANIO to ANI1l... In the scan mode, every
time an 1nput has been converted, the converted value
1s stored in the ADCR register, and an A/D conversion
end interrupt request (INTAD) is generated.

Fig. 9-8 Operation Timing in Scan Mode

(a) When the TRG bit is set to 0

A/D ANIO ANIL ANIO ANII ANIO ANIL
converslon
A A A A
Start conversion| End con- End con- End con- End con-
Cs5—1 version version version
(e o) : .
ANIS2-0—001

1

1
] [}
1 1
1 1
1)

1
]
1
t
1
:
ADCR —————— - X amo X ANIL X AN X ANIIXANIO X
i 3 i
1

INTAD [_1 [_] [—] [_1 [_]
{b) When the TRG bhit is set to 1

o] 1NN

A/D ANIQ ANI1 ANIZ | ANIO ANIO ANl ANIO
conversion
A A A A
Start converslon\ End con- End End End
CS5—1 version conversion converslion conversion
(MS5—0 1
ANIS2-0—010/

1
i
1 1
1 t
1 r
I 1
1 1
ADCR —————== x ANIO X ANI x ANIO !
1
]

.5 A/D Converter Interrupt Request

The A/D converter generates an A/D conversion end interrupt
request (INTAD) every time A/D conversion is terminated,

except in the select mode.

The control flags associated with INTAD also function as
control flags assocliated with external interrupt request
INTP1. The timing of generating an interrupt request,
therefore, differs according to the A/D converter operation
state specified by the ADM register, as listed in Table 9-2.

Interrupt service caused by INTAD is controlled with
interrupt control registers in the same way as for INTP1.
For details, see Chapter 11.

Table 9-2 Conditions for Generating Interrupt Requests
in Different A/D Converter Operating States

Interrupt- Mask | Interrupt Interrupt
A/D converter request flag | reguest request
flag condition

Valid edge
In stopped state INTP1 input on INTP1
pin

When A/D
Scan mode INTAD conversion is
terminated

PIF1 PMK1

Valid edge
Select mode INTP1 input on INTP1
pin

A/D conversion When A/D
started by hardware INTAD conversion is
terminated

Caution:

Handling of an A/D converter 1interrupt request
(INTAD)

An A/D converter Interrupt request is generated
with a period of approximately 30 us when the
system operates at 12 MHz. In an application
where motor digltal servo control 1s done by
software, mask the INTAD associated with the
current operation. Otherwise, an INTAD may
frequently occur during operation with the servo
system, which adversely affects the servo
characteristics.

10.

Fig.

CHAPTER 10 CLOCK OQUTPUT (CLO)
Configuration and Functions of CLO

A square wave with a 50% duty cycle can be output on the
ASTB/CLO pin to clock a peripheral device or another
microcomputer. The clock output mode register (CLOM)
determines whether clock output is enabled or disabled, and

sets the frequency.
The frequency is set so that the dividing ratio is fCLK/n
where n is 2, 4, 8, or 16. (fCLK = fosc/z' fosc denotes

the oscillating frequency of the resonator.)

10-1 Application Example for the Clock Output Function

xPD78138 pPDT503
LCD
Systen * oo
cLo cL1 N
5CK 5CK —
sl 50
50 sl

When clock output 1s disabled, the CLO pin 1s used as
a l-bit-wide output port.

10 - 1

ELK

lee/2
feuf4

lew/8

Fig. 10-2 Block Diagram of the Clock Output Circuit

(#)
CLOM v i o o |cLE| o o | Fsl| Fs0

172

Selector
Output
control
clrecult

L

Selector

‘?—o ASTB/CLO

RESET
(Address latch signal)
3 2 1 0
MM S MM2 | MM1 | MMO
[_ <<] o

% See Tlgure 10-4 for the format.

Remark: fCLK: Internal system clock

Filgure 10-2 shows the configuration of the clock output

clrcuit.

The clock output pin (CLO pin) also functions as the
address latch strobe pin (ASTB pin) for the external
expansion mode. The c¢lock output function, therefore, 1is

avallable only in the single-chip mode.

10 - 2

To use the clock output function, make the external
access pin (FA) low, and clear bits 1 and 2 (MM1
and MM2) in the memory mapping register (MM) to O.

The clock output function is not avallable in the external

expansion mode.
Section 3.3.
when clock ocutput is disabled.

For details on the MM register,
The CLO pin can be used as output port P60

see

(The output value is

specified by bit 7 of the CLOM reglster.)

Cautions 1.

Flg.

CLE bit

There 1s no operation mode to make the
ASTB/CLO pin 1n the high impedance state.
This pin becomes high impedance only during
reset. After reset 1s released, a low signal
Figure 10-3 shows the
state of the CLO pin when initialization 1s

performed.

appears on the pin.

In the STOP mode, do not use the c¢lock output
Be sure to set CLE to 0 in this
(CLE:- Bit 4 of the clock output mode
register (CLCOM))

function.

mode.

10-3 CLO Pin at Initialization

»

Mode reglister setting

o) |

ASTB/CLO Indefinlte}— ———————————— 1 § l] I

10 - 3

10.

CLO Control Reglster

The clock output mode reglster (CLOM) controls clock
output. Filgure 10-4 shows the format of CLOM. CLOM is an
8-bilt register that -can be read from or written to with
8-bit manipulation instructions and bilit manipulation
instructions. To use CLO as a bit port, the high or low
output must be specified with bit 7 (LV) in CLOM,

RESET input sets CLOM to OOH.

10 - 4

CLOM

Fig. 10-4 Format of Clock Output Mode Register (CLOM)
7 6 5 4 2 1 0 Address When reset R/W
LV 0 0 CLE 0 FSs1 FSO FFTFH 00H R/W
Specification of clock
FS1 FSO output frequency (when
operated at 12 MHz)
0 1 fCLK/4 (1.5 MHz)
1 (] fCLK/B (750 KkHz)
Remark: fCLK: Internal system clock
CLE | Clock output on CLO pin
0 Disabled. Output level is
specified by LV bit.
1 Enabled. Output frequency is
specifled by FS1 and FSO bits.
LV CLO pin output level control
(when CLE = 0)
0 Low level output
1 High level output

10 - 5

Fig. 10-5 Example of Setting the CLOM Register

q
LV blt > \\\ (
- P
{4 I

FS1 and
FS0 bits

A
) °/? 8
Ny = ST

Caution: The LV, FS1, and FSO bits must be rewritten
while the clock output is disabied (CLE = 0).

Remark: Manipulation on the LV or CLE bit does not cause
spike noise on the CLO pin.

10 - 6

CHAPTER 11 INTERRUPT FUNCTION

The uPD78138 has two 1nterrupt request processing modes. Table
11-1 lists the two modes. The program can optionally set these
two modes. In the macro service mode, however, interrupts can be
handled only for the interrupt request sources having the macro
service processing mode. Table 11-2 lists these Interrupt
request sources.

Table 11-1 Interrupt Request Processing Modes

Interrupt request Processed b Contents of Processing mode

processing mode y PC and PSW &

Vectored interrupt Software With save A branch to any service
and return program is made and the
operations interrupt 1s executed

there.

Macro service ' Hardware Held Processing set beforehand,

(Firmware) such as memory I/0 data
transfer, is performed.

11 - 1

11.1 Interrupt Request Sources
The uPD78138 has 17 interrupt request scources (see Table
5-2). An interrupt vector table is assigned to each
source.
Table 11-2 Interrupt Request Sources
Interrupt Default Interrupt source Macro Vector
request priority service table
type Name Interrupt processing | address
trigger mode
Non- - NMI Pin input edge - 0002H
maskable detection
Maskable 0 INTPO Pin input edge Yes 0004H
detection
1 INTCPT3 EDVC output 0006H
signal (CPT3
register
capture)
2 INTCPT2 CTI00 pin input 0008H
edge detection
(CPT2 register
capture)
3 INTCR12 CTI11 pin input 000AH
edge detection,
EDVC output
signal (CPT12
register
capture)
4 INTCROO TMO-CROO match 000CH
signal
5 INTCLR1 CLR1 pin input 000EH
edge detection
6 INTCR10O TM1-CR10 match 0010H
signal

11 - 2

{to be continued)

Table 11-2 Interrupt Request Sources {Cont'd)
Interrupt Default Interrupt source Macro Vector
request priority service table
type Name Interrupt processing | address
trigger mode
Maskable 7 INTCRO1 TMO-CROL match Yes 0012H
signal
8 INTCRO2 TMO-CR0O2 match 0014H
silgnal
9 INTCR11 TM1-CR11 match 0016H
slgnal
10 INTCPT1 Pin input edge 0018H
detection, EC
output signal
(CPT1 register
capture)
11 INTTM TM2-CR20 match 001AH
signal
i2 INTCSI Serial transfer 001CH
end
13 INTTB Time base from 001EH
FRC
14 INTP1/INTAD | Pin input edge 0020H
detection, A/D
conversion end
15 INTP2 Pin input edge 0022H
detection
EDVC: Event divider compare register
EC: Event counter
TMO/1: 16-bit timers 0 and 1
CRxx: Compare register (xx = 00, 01, 02, 10, 11, 20)
CPTxx: Capture reglster (xx = 1, 2, 3, 12)
FRC: 18-bit free running counter

Remarks 1.

An INTP1 interrupt is also used as an INTAD

Interrupt (A/D conversion end interrupt).

11 - 3

11.1.1

11.1.2

Remarks 2. The default priority indicates the priority
used when two or more interrupts occur

simultaneously.

Nonmaskable interrupt request

Nonmaskable Interrupt requests are accepted
unconditlonally even in the 1nterrupt disable (DI) state.
Such requests are not subject to interrupt priority
control, that is, they have the highest priority of all
interrupts. Multiprocessing by a nonmaskable Interrupt
request, however, can be accepted only when bit 0 (NMIS)
of the 1nterrupt status register (IST) is reset to 0.

Nonmaskable Interrupt requests are made by input to pin
NMI. When a valld edge specified in bit 0 (ESNMI) of the
external interrupt mode register 0 (INTMO) 1s detected
during input of a request to pin NMI, an interrupt
request 1s 1issued.

Maskable interrupt request

Maskable interrupt requests are subjJect to mask control
according to the setting of the interrupt mask register
(MKO) .

When two or more maskable interrupt requests are issued
at a time, the maskable interrupt request having the
highest default priority is processed first. See Table
11-2 for the default pricorities of maskable interrupt
requests. Setting the prilority specification flag
reglster (PRO) can divide Interrupt priorities into two
groups, a higher priority group and lower priority group.
However, macro services can be accepted irrespective of

priority control.

11 - 4

11.2 External Interrupt Request Functions

An external interrupt request 1s issued when a valid edge
specified by the external interrupt mode register (INTMO)
or external capture lnput mode register (INTM1) is
detected during input to pin NMI, INTPO to INTPZ2, CTIOO,
or CTI11.

The NMI input pin has an internal noise eliminator with an
analog delay feature. Input signals having insufficient

duration are eliminated as noise. (See Figure 11-1.)

Pins INTPO to INTP2, CTIO00, and CTI11 have a Schmitt
trigger with hysteresls characteristics.

Fig. 11-1 Noise Elimination at an External Interrupt Request Pin

1
1
NMI 1nput 1
{RIsing edge ——|, L— :

specification) 1 :, }..___..:
— Analog Analog,
delay delay A

This is This {s accepted
eliminated as an KMI interrupt.
as nolse.

11.2.1 External interrupt control registers
For each external interrupt pin, a valid edge can be

specified in the external interrupt mode register
(INTMO) or external capture input mode register (INTM1l).

11 - 5

Table 11-3 Valid Edges and Control Reglisters of External
Interrupt Pins

External interrupt pin Valid edge Control register
NMI . Rising edge
Falllng edge
INTPO . Rising edge
Falling edge
Rising and INTMO

falling edges

INTP1 Rising edge

INTP2 Falling edge

CTIOO . Rising edge only -
CTI1l1 . Rising edge INTM1

Falling edge

(1) External interrupt mode register (INTMO)

INTMO 1is an 8-bit register which specifies a valid
edge on pins NMI and INTPO to INTPZ.

Eight-bit manipulation instructions and bit

manipulation instructions are used to read data from
INTMO and write data into INTMO.

11 - B

——

INTMO

Fig.

11-2 Format of the External Interrupt
Mode Reglster 0 {INTMO)

7 5 3 2 1 0 Address When reset R/W
ES2 ES1 ES01|ES00| 0 Nﬁ? FFF4H 508 R/¥W
|
ES | NMI pin input detection edge
NMI | specification
0 Falling edge
1 Rising edge
ESO1 | ES00 INTPO pin input detection edge
specification
O 0 Falling edge
0 1 Rising edge
1 0 Use prohibited
1 1 Rising and falling edges
ES1 INTP1 pin input detection edge
specification
0 | Rising edge
1 Rising and falling edges
ES2 INTP2 pin input detection edge
specification
0 Rising edge
1 Rising and falling edges
11 - 7

INTM1

(2) External capture input mode register (INTMl)

INTM1 is an 8-bit register which specifies a valid

edge on pins CTI10, CTI1ll,

and CLR1. Only pin CTI11

has the external interrupt function.

Eight-bit manipulation instructions and bit

manipulation Instructions are used to read data from
INTM1 and write data into INTMI1.

Fig. 11-3 Format of the External Capture Input
Mode Register (INTM1)

7 6 5 4 3 2 1 0

ES
0 0 }{ES511 ES10| 1
CLR1

Address When reset R/W

FFFSH 0000xx01 R/W

ES10

CTI10 pin input detection edge
specification

Rising edge

Rising and falling edges

ES11

CTI11 pin input detection edge
specification

Falling edge

Rising edge

ES
CLR1

CLR1 pin input detection edge
specification

Falling edge

Rising edge

11 - 8

11.3 Interrupt Processing Control Registers

The following four registers control Interrupt processing.

Interrupt request flag register (IF0)
Interrupt mask register (MKO)
Interrupt service mode register (ISMQ)
Priority specification register (PRO)

The above four registers are all 16-bit read/write
registers. These registers can be manipulated in 8- or
16-bit units. A bit manipulation instruction is used to
set or reset the bit of these registers. Figures 11-4
through 11-7 show the formats of each of the four

registers.

Table 11-4 l1lists the names of the interrupt request flag,
interrupt mask flag, iInterrupt service mode flag, and
priority specification flag corresponding to each interrupt

request source.

Table 11-4 Flags Corresponding to Each Interrupt Requesi Source

Interrupt Interrupt Interrupt Interrupt Priority
request request mask flag service specification
source flag mode flag flag

_INTPO PIFO PMKO PISMO PPRO
INTCPT3 CPIF3 CPMK3 CPISM3 CPPR3
INTCPT2 CPIF2 CPMK2 CPIsSM2 CPPR2
INTCR12 CRIF12 CRMK12 CRISM12 CRPR12
INTCROO CRIFOQO CRMKOO CRISMOO CRPROO
INTCLR1 CLIF1 CLMK1 CLISM1 CLPR1
INTCR10 CRIF10 CRMK10 CRISM10 CRPR10O

(to be continued)

11 - 9

Table 11-4 Flags Corresponding to Each Interrupt Request Source
(Cont’'d)
Interrupt Interrupt Interrupt Interrupt Priority
request - request mask flag service specification
source flag mode flag flag
INTCRO1 CRIFO01 CRMKO1 CRISMO1 CRPRO1
INTCRO2 CRIFO2 CRMKO2 CRISMO2 CRPRO2
INTCR11 CRIF11 CRMK11 CRISMI11 CRPR11
INTCPT1 CPIF1 CPMK1 CPISM1 CPPR1
INTTM TMIF TMMK TMISM TMPR
INTCSI CSIIF CSIMK CSIISM CSIPR
INTTB TBIF TBMK TBISM TBPR
INTEL/ PIF1 PMK1 PISM1 PPR1
INTP2 PIF2 PMK2 PISM2 PPR2

(1)

(2)

Interrupt request flag register (IFO0)

The interrupt request flag reglster is a 16-bit
reglster consisting of the interrupt request flags.

Each 1Interrupt request flag 1is set toc 1 when
corresponding Interrupt request 1s 1ssued. 1In this
way, vectored interrupt processing 1s accepted.

Performing macro service processing clears IF0 to 0.
Input of a RESET signal resets IF0 to 0000H.
Interrupt mask reglister (MKO)

The Iinterrupt mask register is a 16-bit register
consisting of the Interrupt mask flags. Each interrupt
mask flag controls enabling/disabling of a

corresponding interrupt request.

11 - 10

(3)

(4}

Input of a RESET signal resets MKO to FFFFH, disabling

all maskable 1nterrupts.
Interrupt service mode register (ISMO)

The interrupt service mode register 1s a 16-bit
register consisting of the interrupt service mode
flags. When an interrupt service mode flag 1s set to
0, a corresponding interrupt request is processed by a
vectored Interrupt. When an interrupt service mode
flag 1s set to 1, a corresponding interrupt request is
processed by a macro service. After a macro service
request is processed a specified number of times, the
flag is cleared to 0.

Input of a RESET signal resets ISMO to 0O00O0H,
specifying processing by a vectored interrupt.

Priority specification flag register (PRO)

The prliority specification flag register is a 16-bit
register consisting of the priority specification flags
for accepting an Iinterrupt. PRO is used to control
multiple interrupt processing.

Either the higher priority group and lower priority
group can be set. When the priority specification flag
is set to 0, the corresponding interrupt request is
asslgned to the higher priority group. When the
priority specification flag is set to 1, the
corresponding interrupt request is assigned to the

lower priority group.

11 - 11

When a vectored interrupt having lower priority is
being processed in the EI state, multiple vectored
interrupts having lower of higher priority can be
accepted. When a vectored interrupt having higher
priority is being processed in the EI state, only
multiple vectored interrupts having higher priority can
be accepted. However, macro services are accepted

irrespective of the priority specification.

Input of a RESET signal resets PRO to FFFFH and all
interrupt requests are assigned to the lower priority
group.

Fig. 11-4 Format of the Interrupt Request Flag Register (IFQ)

IFOL

IFOH

7 6 5 4 3 2 1 0 Address When reset R/W
CRIFO1|CRIF10|CLIF1|CRIFOO|CRIF12|CPIF2 CPIF3 PIF0 | FFEOH 00H R/W
PIF2 PIF1 TBIF |CSIIF |TMIF CPIF1ICRIF11 |CRIF02 FFE1H 00H R/W

] '

Interrupt request flag

0 No interrupt request is issued.

1 An Interrupt request is issued.

11 - 12

MKOL

MKOH

Fig.

ISMOL

1SNOH

Fig. 11-5 Format of the Interrupt Mask Register (MKO)

¥hen
7 6 5 4 3 2 1 0 Address reset R/W
bRMKOl CRMK10|CLMK1 | CRMKOO [CRMK12 |CPMK2 | CPMK3| PMKO FFE4H FFH R/W
PMK2 | PMK1 |TBMK |[CSIMK | TMMK |CPMK1 |CRMK11|CRMKO2 FFESH FFH R/W
1

[

Interrupt request mask flag

0

Interrupt processing is allowed.

1

Interrupt processing is held.

11-6 Format of the Interrupt Service Mode Register (ISMO)

When
7 6 5 4 2 1 0 Address reset R/VW
CRISMO1 |CRISMIO|CLISML (CRISMOOD|CRISML2|CPISMZ|CPISMI [PISNO FFECH 00H R/¥
PISKZ2 | PISML |TBISM |CSIISM | TMISM |CPISM1|CPISM1)1|CRISMO2| FFEDH 00H R/W

— 1

Interrupt service mode flag

0

Processed by a vectored interrupt

1

Processed by a macro service

11 - 13

Fig. 11-7 Format of the Priority Specification Flag Register (PRO)

When
7 6 5 4 3 2 1 0 Address reset R/W
PROL | CRPRO1 |CRPR10 |CLPR1|CRPROO |CRPR12| CPPR2 (CPPR3 | PPRO FFE8H FFH R/¥

PROH | PPR2 | PPR1 | TBPR| CSIPR{ TMPR |CPPR11 |CRPR11 |CRPROZ2 FFE9H FFH R/W
—

[Priority specification flag

0 | Higher priority level

1 Lower priority level

11 - 14

11.4

Interrupt Processing

Figure 11-8 shows the interrupt processing algorithm.

Fig. 11-8

Interrupt Processing Algorithm

NO XXIF=11

YES (An interrupt request is lssued.)

(Interrupt request he@

YES

Gnterrupt request hela

Macro service
processing

NO (DI}

Gnterrupt request held

YES [Higher priority)

Is there an
Interrupt having

a higher priority
smong Interrupts
with xxPR set to 07

- <

YES

b xpﬂ>

RO (Lower prlorlty)

1s there an Interrupt
having a higher
priorlty?

G_nr.errupt request hel@

Mecro service)
processing

NO (DD

Vectored lnterrupt

processing

@terrupt request he19

YES (EI)
NO
SPp=17
YES

@terrupt request held

Yectored lnr.errupt)
processing

11 - 15

11.4.1

Multiple Interrupt processing

The uPD78138 can perform miltiple interrupt processing,
which means another interrupt can be accepted during
processing of an interrupt. Multiple interrupts are
controlled according to the default priorities or
programmable priorities.

Default priority control processes multiple interrupts
which occur simultaneously according to the priorities
which have been assigned tc the interrupts (default
priorities). See Table 11-2 for the default priorities.
Programmable priority control divides interrupt requests
into two groups, higher priority group and lower priority
group, according to the setting of the corresponding bit
of the priority specificatlon flag register (PRO). Table
11-5 lists the interrupt requests which can be accepted
whille another interrupt 1s beling processed.

11 - 16

Table 11-5 Multiple Interrupt Processing

Interrupting Interrupted request (destination)
request (source)
Interrupt having DI . Nonmaskable 1interrupts
lower programmable . Maskable interrupts by macro
priority service processing
EI('l) . Nonmaskable interrupts
All maskable interrupts
Interrupt having DI . Nonmaskable interrupts
higher programmable . Maskable interrupts by macro
priority service processing
EI(*l) . Nonmaskable interrupts
Maskable Interrupts having a
higher programmable priority
NonmasKkable DI . Nonmaskable interrupts('z)
interrupts Maskable interrupts by macro
service processing
gri+*l) . Nonmaskable interrupts(*?2)
All maskable Interrupts
#]1 The DI state is automatically enabled immediately
after an interrupt request has been accepted.
To set the EI state, execute an EI instruction.
#«2 Bit 0 (NMIS)} of the interrupt status register (IST) is

set to 1 during acceptance of a nonmaskable interrupt.
If the NMIS bit is set to 1, another nonmaskable
interrupt does not occur. To enable multiple
nonmaskable interrupt processing, the NMIS flag must

have been reset to 0.

11 - 17

11.4.2

When Iinterrupt requests and macro services are
temporarily held

When one of the following instructions is issued,
reception of all maskable interrupts and processing of
macro services are temporarily held until execution of
the next instruction 1s complete.

EI

DI

RETI

POP PSW

MOV PSW, A

MOV PSW, #byte

Bit manipulation instructions for the PSW

(Excluding BT PSW.bit, $addrl6é, BF PSW.bit, $addrilé,
SET1 CY, CLR1 CY, and NOT1 CY)

Manipulation instructions for each of registers MKOL,
MKOH, and MK1L '
Manipulation instructions for each of reglisters IFOL,
IFOH, and IF1L

Manipulation instructions for each of registers PROL,
PROH. and PR1L
"Manipulation instructions for each of registers ISMOL,
ISMOH, and ISM1L

Cautions 1. When a register related to Interrupts such
as IFxx is polled using an instruction such
as BF, do not specify the instruction as its
branch destination. ¥For such a program, all
interrupts and macro services are held until
the condition under which no branch is
caused 1s satisfied.

11 - 18

Examples 1.

Incorrect specification

LOOP: BF IFOH.3, SLOOP;

XXX ;

All interrupts and
macro services are
held until bit 3 at
address IFOH is set
to 1. Interrupts
and macro services
are processed after
execution of the
Instruction
following the BT
instruction.

Example 1 of correct specification

LOOP: NOP :
BF IFO0H.3, 8$LOOP;

11 - 19

Interrupts and
macro services are
not held long
because they are
processed after
execution of the
NOP instruction.

Examples 3.

Cautions 2.

Example 2 of correct specification

: : Interrupts and
LOOP: BT IFOH.3, $NEXT; macro services are
BR $LOOP ; not held long
NEXT: ; because they are
i processed after
; execution of the BR
i Instruction.

Remark: It 1s useful to use the BTCLR
instruction instead of the BT
instruction because the BTCLR
Instruction automatically clears
the flag.

When the above instructiocons are requlired to
be executed consecutively, interrupts and
macro services are held for a long time.

To prevent this, Insert NOP and other
instructions so that Interrupts and macro

services can be processed.

11 - 20

11.5 Macro Service Functions

The interrupt processing function of the uPD78138 consists
of a built-in vectored interrupt function and macro service
function.

11.5.1 Overview of macro services

The macro service functlon executes a specific service
set by the firmware when an interrupt request is 1lssued.
The mode register sets thls service and the hardware
processes this service. Since this function is not
performed via the CPU, the statuses (SP and PSW) of the
CPU need not be saved and returned each time an interrupt
occurs. Thus, CPU service time 1s lumproved.

There are 16 maskable Interrupt requests which can
process a macro service. (See Table 11-2.)

The following macro services are provided.

Data transfer mode

Real-time output port control mode
Counter mode

Data pattern identification mode

The processing of a macro service is specified according
to the algorithm shown in Figure 11-8 and the macro
service is processed according to the sequence shown 1in
Figure 11-9.

11 - 21

Macro service processing can be accepted irrespective of
the interrupt state (DI or EI). To disable macro service
processing, set the mask flag of the interrupt mask
register (MKO) to 1. Note that macro service processing
can be accepted during execution of a vectored interrupt
processing program.

Fig. 11-9 Sequence of Macro Service Processing

When an interrupt request which can specify macro service
processing occurs

¢

Macro service processing : Data transfer mode or real-time
is Perforleti ocutput port control mode
. _ : The macro service counter (MSC)
MSC—MsC-1 1s decremented.

YES “E%I’:" NO
Interrupt

X XISM--0 request flag 0
A vectored Interrupt The next instruction
request 1s 1ssued. 1s executed.

11.5.2 Macro service control register
(1) Macro service control word
The uPD78138 macro service function is controlled

with the macro service mode registers and the macro
service channel pointers.

A macro service mode register sets the macro service
processing mode and a macro service channel pointer
sets the address of a macro service channel.

11 - 22

Each combination of a macro service mode register
and a macro service channel pointer at addresses

FECOH to FEDFH of the internal RAM 1s mapped as a
macro service control word for each macro service.

Figure 11-10 shows the macro service control words.

The address of a macro service control word is
determined corresponding to each interrupt which can

process a macro service.

The macro service mode registers and the macro
service channel pointers must be set before a macro

service is processed.
Remark: A macro service channel is a data memory

location accessed by macro service

processing.

11 - 23

Fig.

11-10 Macro Service Control Words

FEDFH
FEDEH
FEDDH
FEDCH
FEDBH
FEDAH
FED9H
FED8H
FEDTH
FED6H
FEDSH
FED4H
FED3H
FED2H
FED1H
FEDOH
FECFH
FECEH
FECDH
FECCH
FECBH
FECAH
FECS9H
FECBH
FECTH
FEC6H
FEC5H
FEC4H
FEC3H
FECZH
FEC1dH
FECOH

General register

Channel polnter

Mode register

Channel pointer

Mode register

Channel pointer

Mode register

Channel pointer

Mode register

Channel pointer

Mode register

Channel pointer

Mode register

Channel pointer

Mode reglster

Channel pointer

Mode register

Channel pointer

Mode register

Channel pointer

Mode register

Channel pointer

Mode register

Channel pointer

Mode register

Channel pointer

Mode register

Channel pointer

Mode register

Channel pointer

Mode register

Channel pointer

Mode register

11 - 24

WWWWWWWWWWWWWWWW

INTCPT3

INTCPT2

INTCR12

INTCROO

INTCLR1

INTCPT1

INTCSI

INTCRO1

INTCRO2

INTP1/INTAD

INTTER

INTPO

INTCR10

INTCR11

INTTM

INTP2

(2)

Macro service mode register

A macro service mode reglster 1s an 8-bit register

which specifies a macro service operation.

A macro service mode register, which is a part of a
macro service control word, contains set values on
the Iinternal RAM. (See Figure 11-10.)

The high-order three bits (bits 5 to 7) of a macro
service mode register specify the operation mode and
the low-order four bits (bits 0 to 3) specify the
processing method in each operation mode.

Figures 11-11 and 11-12 show the format of a macro

service mode register.

Fig. 11-11 Format of the Macro Service Mode Reglster

(High-order Three Bits)

7 6 5 4 38 2 1 0
CH2 |CH1 |CHO | O {MOD3|MOD2|MOD1|MODO
| I L1 1 |

L = Selecting a macro service
processing method
(See Figure 11-12.)

CH2 | CH1 | CHO | Selecting a macro service operation mode

0 1 0 Data transfer mode

Real-time output port control mode
1 1 0 (The timer macro service pointer is
held after transfer.)

Real-time output port control mode
1 1 1 (The timer macro service pointer (low
order) is incremented after transfer.)

1 0 0 Counter mode

0 0 0 | Data pattern identification mode

11 - 25

TE

9z

Fig. 11-12 Format of a Macro Service Mode Register

7 [S 3 2 1 0
CH2 |CH1 |CHC MOD3| MOD2| MOD1| MODO
I |]]
0 ... The timer macro service polnter is
cHo [held after transfer. 1} 0
1 ... The timer macro service plnter (low
order) Is [ncremented after transfer.
CH1 1 1 0 0
MOD3 | MOD2 | MOD1
0 0 0 ¢} Data transfer from
memory to SFR
0 0 0 1 Data transfer from
SFR to memory
1 0 0 0 ‘Four low-order Shift only
Data bits POO-P0O3 Date pattern
transfer ident[fi-

1 0 0 1 only Four high-order | Counter mode | cation mode | With
¥ithout bits P04-PO7 comparison
ring

1 0 1 o control Four low-order

¥ith bits P0OO-PO3
Macro automatlic

1 0 1 1 service addltion | Four high-order

for bits P04-PO7
real-

1 1 0 0 time Four low-order

output Data blts POO-PO3
port transfer

1 1 0 1 control only Four hlgh-order
¥ith bits PO4-PO7
ring

1 1 1 0 control Four low-order

With bits POD-P03
autopatlc

1 1 1 1 addition | Four high-order

bits P04-PO7

11.5.3 Macro service modes and interrupt requests

The macro service mode depends upon the type of interrupt

request source.

Table 11-6 lists the correspondence

between the macro service modes and interrupt request

sources.

Table 11-6 Macro Service Modes and Interrupt Request Sources

Macro servlice mode

Interrupt request source which can
process the corresponding macro service

Data transfer mode

INTCSX, INTAD

Real-time output port
control mode

INTCRO1, INTCROZ

Counter mode

Al)l maskable interrupt requests

Data pattern
identification mode

INTCR1Z"

11.5.4 Data transfer mode

(1) Overview of function

In the data transfer mode, data is transferred

between the internal memory location and the special
function register (SFR).

Table 11-7 lists the interrupt request sources which

can process a macro service in the data transfer

mode and the source/destination SFR.

11 - 27

Table 11-7 Interrupt Requests Sources Iin the Data Transfer Mode
and SFR

Interrupt request sources

o] e/destination SFR
in the data transfer mode Source/

INTAD ADCR reglister

INTCSI SI0 register

In the data transfer mode, data can be transferred
from memory to the SFR or vice versa.

The four low-order bits (bits 0 to 3) of a macro
service mode register set the transfer directilon.

Figure 11-13 shows the setting of a macro service
mode register 1n the data transfer mode.

Fig. 11-13 Setting of a Macro Service Mode Register
in the Data Transfer Mode

CH2 [CH1 | CHO | O | MOD3| MOD2{MOD1|MODO| Macro service operaticn

0 0 0 0 Data transfer from memory to SFR

0 0 0 1 Data transfer from SFR to memory

Figure 11-14 shows the addressing in the data
transfer mode.

A comblnation of a macro service channel pointer and
the macro service counter specifies the buffer

address of the source or destination internal RAM
(FEOOH to FEFFH).

11 - 28

The value set on the macro service counter indicates
the number of macro services. Each time a byte of
data 1s transferred, the value on the macro service
counter 1s decremented by one. When the value on
the macro service counter is 0, a vectored Ilnterrupt

oCccurs.

In the data transfer mode, only the ADCR or SIO
reglster 1s used as a source/destination SFR.

Figure 11-15 shows the processing sequence in the
data transfer mode.

Caution: The macro service counter (MSC) 1s
decremented for each macro service. When
MSC is 0, a vectored interrupt occurs. To
process a macro service again after this,
set MSC again.

11 - 29

Fig. 11-14 Addressing in the Data Transfer Mode

High-order|
address

Channel polnter
Macro service

control words

‘Mode register

JL
\

Macro service
counter (MSC)

Macro service

MSC =1 buffer 1
Macro service
MSC =2 buffer 2
== - ¥ (ADCR register or
SI10 register)
Macro service -
MSC =g SFR
Low-order buffer n
address

S Internal bus S

Address of a macro service buffer (eight low-order

bits) = Contents of a channel pointer minus contents

of the macro service counter

11 - 30

Fig. 11-15 Processing Sequence in the Data Transfer Mode

Macro service
request
acceptance

Read the contents of a macro
service mode reglster

Others

Data transfer mode To another macro

service processing

Read the contents of a
channel pointer (m)

Read-the contents of MSC (n)

Calculate the buffer address
(low-order elght bits), m - n

After the contents of SFR are
read, transfer the data to a
specified buffer

=q-1

MSC =071
YES
A vectored lnterrupt request The interrupt request flag
15 1ssued 1s reset

G C = O

11 - 31

(2) Example

Fligure 11-16 shows an example of transferring data
recelved from the synchronous serial interface to a
buffer area in the internal RAM.

The macro service channel polnter of INTCSI is
mapped at FED3H. The value set to this channel
pointer indicates the low-order 8-bit address of the
macro service counter (MSC). The high-order 8-bit
address 1s fixed to FEH.

The memory locatlon indicated by the address set on
MSC 1s allocated as a buffer area in the low-order
bits of the MSC address.

When a macro service request 1s issued from the
serial interface, the contents of the shift register
(510) are stored in the memory location indicated by
the MSC address minus the MSC contents. After that,
the data set on MSC is decremented.

The contents of the shift register are sequentially
stored in the buffer register from the lowest-order
address. When data in the shift register is stored
the number of times set on MSC, that is, when MSC Is
0, a vectored interrupt request 1s issued.

After a vectored Iinterrupt occurs, set again MSC,
which remains 0, with the interrupt service program.

11 - 32

(1)

Fig. 11-16 Example of Data Transfer

Initial state

(when the first interrupt occurs)

FED3H _ - 34H Channel polnter
FED2H,z"’ 01000001 Mode register (Data transfer mode: SFR - memory)
/7
F T T
FE34H 04H Macro service counter
FE33H xxH Data 4
FE32H xxH Data 3 e i
FE31H xxH Data 2 | L
—_—— 4 510 55H
FE30H xxH “ Data 1
(2) When the first macro service 1s completed
FED3H _~34H Channel pointer
FED2H,—"’ 01000001 Mode register (Data transfer mode: SFR - memory)
// o ¥
/
FE34H 03H Macro service counter
FE33H xxH Data 4
FE32H xxH Data 3
FE31H xxH Data 2 |
P SI0 55H
FE30H 55H Data 1
(3) When the macro services are completed
FED3H ’_.34H Channel pointer
FEDZH,v" 01000001 Mode register (Data transfer mode: SFR - memory)
/l A A
FT g
FE34H 00H Macro service counter
FE33H 53H Data 4 INTCST
OCCUTS.
FE32H 3sH Data 3
FE31H 13H Data 2
SI10 53H
FE30H 55H Data 1

11 - 33

11.5.5 Real-time output port control mode

(1)

Overview of function

In the real-time output port control mode, data
output to the real-time output port and the output
timing can be controlled easily.

An interrupt request (INTCRO1l or INTCR0Z2) issued
from 16-bit timer 0 (TMO) controls the real-time
output port.

There are two macro service pointers in this mode:
the timer macro service pointer and the data macro
service pointer. The timer macro service pointer
indicates the output timing data area in the B4K-
byte memory space and the data macro service polnter
Indicates the oufput data area. Table 11-8B lists

these macro service pointers.

Table 11-8 Functions of the Macro Service Pointers

Macro service pointer Area pointed to Destination SFR

For timer (MPTH, MPTL)|Output timing data area | CR01, CRODZ2

For data (MPDH, MPDL) |QOutput data area POL, POH

Figure 11-17 shows the addressing in the real-time

output port control mode.
The output data area stores data to be output to the

buffer register (POL and POH) of the real-time
output port.

11 - 34

Fig. 11-17

The output timing data area stores the value for the
data output cycle. The data 1s sequentially
transferred to the compare register (CRO1 or CR0O2)
of 16-bit timer O.

Addressing in the Real-time Output Port Control Mode

64K-byte memory
space

Channel pointer
SFR

Mode reglster

A Output timing =
data area

"

Timer macro service pointer
High order [MPTH]

Timer macro service pointer
Low order [MPTL]

R

Data macro service ﬁbinter
High order [MPDL]

Data macro serviece polnter | ’ P== Qutput data area =
Low order [MPDL|

clolle

Macro service counter
[M5C] I\

\ Modulo register(*
\ {+)
Y Ring counter

The modulo register and ring counter are built in to

provide ring control.

In the mode not subject to ring control, the modulo
register and ring counter are not bullt in.

The modulo register is used for the ring counter,
that 1s, when the ring counter is 0, the contents of
the modulo register are reloaded.

11 - 35

Remark: See {(b) and (c) of (2} in this section for
details of ring control.

The data macro service pointer (MPDL and MPDH) 1is
used as a polnter to the output data area. The
timer macro service polnter (MPTL and MPTH) is used
as a pointer to the output timing data area.

In the real-time output port control mode, the
following operations can be selected by a macro
service mode register.

C) Ring control

Ring control is valid when fixed data patterns
are output to the real-time output port
repeatedly.

C) Output timing data transfer or automatic
addition

The timing at which data is output to the real-
time output port is controlled with the compare
reglster (CRO1 or CROZ) of timer 0. The data in
the compare register is transferred from memory.
Alternatively, the contents of memory are added

to the contents of the compare register.

() Hold or 1increment by the timer macro service
pointer (MPT)

The source address (pointed to by MPT) for the
timing at which data is output to the real-time
output port can be held or incremented according
to the specification after a macro service is
processed.

11 - 38

In an application where data is output to the

real-time output port at fixed intervals, MPT
hold 1s selected.

High order (POH) and low order (POL) of the

buffer register

The destination of the data output to the real-
time output port 1is selected.

The data macro service polnter (MPD) i1s Incremented

by one each time a macro service is processed. The

macro service mode register specifies whether the

timer macrc service polnter (MPT) 1Is incremented or
the data for that pointer 1s held. When
incrementing 1s selected, MPT 1s incremented by two.

After a macro service 1s processed, the macro

service counter (MSC) 1s decremented by one. When

MSC 1is 0, a vectored Iinterrupt occurs.

Figure 11-18 shows the processing sequence in the

real-time output port control mode.

Cautions 1.

When MPD and MPT are incremented, only
the eight low-order bits are incremented
in macro service processing. (The elght
high-order bits remain unchanged.)

That is, even if 1FFFH is set, the

result of Incrementing is not 2000H, but
1FOO0OH. To increment the eight high-order
bits, set them again with a vectored
interrupt.

11 - 37

Cautions 2.

Since ocutput data in macro service
processing I1s single-byte data, the data
macro service pointer is incremented by
one. However, since output timing data
is two-byte data, the timer macro
service pointer 1s incremented by two.

11 - 38

Fig.

Real-time output
port control mode

NO

Control Mode

Macro service
request
acceptance

Read the contents of a macro
service mode register

11-18 Processing Sequence in the Real-time Output Port

Others

Type of chinnel?

Read a mewory locatlon
addressed by MPT

Tranafer data to the compare
reglster or automatlc additlion

MPTL 15 held or incremented

Read a memory location
addressed by MPD

I

Transter data to the
buffer reglster

MPDL 1s incremented

YES

Ring counter is decremented

NO

0?

To ancther macro
service processing

: The next output timing is set.

: The next output pattern 1s set.

Ring counter =

i YES

MSC is decremented

NO
MSC =0
YES

A vectored Interrupt
request Is lssued

39

The Interrupt request
flag Is reset

|

(2)

Example

(a)

Example 1n the basic operation mode

In the real-time output port control mode,
normally updated data is transferred from the
two data areas which have been set in the 64K-
byte space to the buffer register (POL and POH)
of the real-time output function and the
compare register {CR01) of 16-bit timer 0
(TMO) .

This can directly control the patterns output
to the real-time oﬁtput port and the output
interval and simplify control of the open-loop
for the stepping motor.

Figure 11-20 shows an example of open-loop
control for the stepping motor 1n the basic
operation mode. . Figure 11-21 shows the timing
at which data is output to the real-time output
port In the example of Figure 11-20. In this
example, the four low-order bits (P00 to P03)
of the real-time output port are used to drive
the stepping motor. The output interval timing
1s set when the value of 16-bit timer 0 (TMO)
and the compare register (CR0O1) match.

Flgure 11-19 shows an example of setting the
macro service mode register in this example.

11 - 40

Fig. 11-18 Example of Setting the Macro Service Mode Register in
the Basic Operation Mode

CH2

CH1

CHO

0 |MOD3

MOD2

MOD1

MODO

Macro service processing

MPT increment, without ring control,
data transfer only (P0O0O-P03)

11 - 41

Fig.

Output
timing
area

Output
data
area

11-20 Open-loop Control for the Stepplng Motor via the
Realtime Output Port
Macro service control words
64K-byte (internal RAM)
Nemory Bpace
|
I |
| .
(BOOBH T4H : Channel pointer CF
T4L 1 Mode register
T3H :
TaL | == =
{
12 rec
MPTH{High order
Tl {Hig B0 - IHHHII
/TIHY MPTL{Low order) 04 |~
| BooeH AT/ MPDH(H1gh order)oo | .
(BOO3H /[D4 MPDL(Low order) 00 [
D3 MSC M| T
< \ N
\ D
S ERECN TN
\
——‘ﬁ\\\ Internal bus
Real-time output
_——_J_1_t _port ___
[|
1 |
1 |
Compare reglster | Buffer register {
CRO1 | [POL) |
1 |
i PO I
| !
| 5 L &P
~._~~ w1 | T ! & P!
- PO2
Match /\Real—tlle | 2 © o
| oy
output trigger, = ©)
macro service | © l
activation : :
M o o o e e v W v v v e wm - —— o'
16-bit timer 0
{TMO)
Stepplng motor
11 - 42 -~

Fig. 11-21 Output Timing in the Real-time QOutput Port Mode

| [
PO3 | 1
| I | 1 | I | 1 |
| | I T |
P2 | | | I |
| |] | I,
| 1 [1 1 1 1 1 I t
| T 1
POl | | | 1
| | | |
1 | T |
3 | t i +—
i | | [{
I | | | i
Poo | t { } |
OQutput timing —I —I —|
INTCRO1
Tl
T2
T3
— T4

Figure 11-22 shows the timing dlagram for data

transfer control timer 0.

After changing the output data patterns (P00 to
P03) to D1 to D4, set the macro service counter

(MSC) to 04H to cause a vectored interrupt.

When timer 0 (TMQO) and the compare register
(CR01) match, the 16-bit data in a memory
location addressed by the timer macro service
pointer (MPT) is read and transferred to CRO1.
After this, MPTL is incremented by two.

Next, the B-blt data stored in a memory
location addressed by the data macro service
pointer (MPD) is transferred to the buffer
register (POL) of the real-time output port and
MPDL is incremented by one.

Finally, MSC is decremented by one and it is

determined whether a vectored interrupt occurs.

11 - 43

5
DS

11 - 44

Data Transfer Control Timing

Fig. 11-22

Tl
D1

Count value
INTCRO1
CRO1

™0

Timer interrupt

Compare register

Buffer register
FOL

PO3

(b) Overview of automatic addition control and ring

control

(1)

(11)

Automatic addition control

In the basic operation, the value of the
output timing data stored in the 64K-byte
space is transferred to the compare
register of timer 0. However, under
automatic addition control, the output
timing data (AJt) specified by the macro
service pointer (MPT) is added to the
contents of the compare register and the
result of addition is written back into

the compare reglster.

Use of automatic addition control
eliminates the need to calculate the set
value of the compare register in the

program every time.
Ring control

The method for controlling the stepping
motor depends upon the configuration of
the stepping motor and the phase
excitation method (l-phase or 2-phase
excitation).

Figure 11-23 shows an example of the
timing at which a 4-phase stepping motor
is driven by l-phase excitation. Figure
11-24 shows an example of the timing at
which the 4-phase stepping motor is driven
by 1-2 phase excltation.

11 - 45

For 1-phase excitation, a cycle consists
of four patterns of output data. For 1-2
phase excltation, a cycle consists of
elight patterns of output data.

Under ring control, a fixed cycle of
output data patterns is repeated 1in the
ring format and is output sequentially.
Thus, the data ROM area can be reduced.
When the result of decrementing the ring
counter is 0, the macro service counter
{MSC) is decremented by one (see Figure

11-18).

When MSC is 0 under ring control, an
interrupt request is also issued.

Fig. 11-23 1-phase Excitation of a 4-phase Stepping Moteor

©,2,0,9,0,2,0

Phase A

Phase B

Phase C

- | - -

One cycle

b (Four —

E patterns})

11 - 48

Fig. 11-24 1-2 Phase Exclitation of a 4-phase Stepplng Motor
®, 0,@0,0,9®,0 ® 9,0 1 © Q0,07 @,06
t t | { | | T i [
[I I I I } I [‘
Phase A L i | 1 I Lo ;
— I I T T T T ! 1 U
| I [1 I 1 I I I i 1 ! I
! [1 I f I f 1 I I I | !
| | 1 1 | i l 1 | [
Phase B I | ! | I |] ! I |
| I I I | ! | I I !
I i | ! I I [! | I | |
[I | ' ' [I ' | !] [[
! | I | I t | ! I I | I |
i | ! I I T | I | !
Phase C ' ! [(I] } ! ! '
' ' ' : I : ' ! : !
' ' I | i | I
} ' ' ' ' } ! ‘ I | I | |
S T : ! : I ‘ : ! I | 1
I ! [|
Phase D : | | | : | | i i |
| e i ! | et
! ! ! : : 1 ! l I | I | {
One CYC:LE e A | 1

(c)

(Elght patterns)) '

Examples of using automatic addition control

and ring control together

Using addition control and ring control
together efficiently controls the uniform
motion, acceleration, and deceleration of the

stepping motor.

Figure 11-26 shows the block diagram when
controlling the uniform motion of the stepping
motor driven by 1-2 phase excitation.

The output interval for the uniform motion 1s
constant, that 1s, a fixed value is always
added to the compare register (CRO1l) of timer
0. The timer macro service pointer (MPTH and
MPTL) is therefore held and the address
indicated by MPT stores the digital value (At)
to be added to CRO1 under automatic addition
control.

11 - 47

1-2 phase excitation performs ring control,
regarding eight patterns, D0 to D7, as a cycle.
The ring counter and the modulo register
therefore stores 07H.

When the value of timer 0 (TM0O) and the compare
register (CR0O1) match, the data macro service
pointer (MPD) is incremented. After eight
patterns of data are output, MPD returns to the
address where the first data (D0) is stored,
then the eight patterns are output repeatedly.
Thus, the fixed data patterns are output in the
ring format.

The modulo register 1s used to reload the
initial value when the ring counter contents

are 0.

Figure 11-27 shows the timing diagram when
controlling the uniform motion of the stepping
motor driven by 1-2 phase excltation.

For uniform motion control, set the mode in
which the timer macro service pointer (MPT) is

held.

Figure 11-25 shows an example of setting the
macro service mode register in this case.

11 - 48

Fig. 11-25 Example of Setting the Macro Service Mode Register
for Automatic Addition Control Plus Ring Control
- (1-2 Phase Excitation Uniform Motion)
CH2 | CH1 [CHO MOD3 |MOD2 |MOD1 | MODO Macro service processing
| MPT hold, ring control, automatic
1 1 0 ’
1 ! 0 ! addition (P00-P03)

Figure 11-29 shows the block diagram when
controlling the stepping motor driven by 2-
phase excitation at varying output intervals.

Since the output timing varies in thils case,
the digital value to be added automatically to
the compare register (CR0O1) also changes. The
values to be added are stored as 16-bit data
(At1 to At9) in a memory location addressed by

the timer macro service pointer (MPT).
Two phase excitation performs ring control,

regarding four output data patterns, DO to D3,

as a cycle.

11 - 48

Fig. 11-26 Block Diagram for Automatic Addition Control
Plus Ring Control (1-2 Phase Excitation Uniform
Motlion)

64K-byte memory space

/-\
(BIO1H) a
{B10CH) a

JL
W

(BOOTH) D?
DI
(BOCOH) Do
~§_______,—"—ﬂ- ™~
16 I ¢ Y8

NS
Addition

~—

Macro service control words

(FED1H)

Channel @

pointer

Mode reglister CEH

{FE20H)

Compare

register
CRO1

L0

Buffer
register
(POL)

INTCRO1

i

Match slgnal

16-blt timer
0 (TMO)

MPTH BlH
MPTL OOH
MPDH BOH
MPDL O0H
Modulo o7H
register
Ring O7H
counter
MSC FFH

= PCO

Q

bl

A POl

]

-

a PO2

oo

(=39

P03

hold

=

To the stepping motor

Fig. 11-27 Timing Diagram 1 for Automatic Addition
Control Plus Ring Control
(1-2 Phase Excitation Uniform Motion)

Count value
on TMO

0

INTCRO1

Compare register
CRO1

Buffer reglster

POL
| | | ! | | |
| i | ! | | |
+ 1 |] | i +
|] 1 | | 1
Poo | | 1 | { 1 I
|] T i T | | [
| | | I | | | 1 ! |
| [| | | | | l | |
T] 1 | | | ' 1
PO1 | | | i | ! |
| | | 1 | I |
| | | [i | |
| | ! | | | i | | i
| | | I] | | [
| | | |] | | i
PO2 | | |] | | | I
] { [I 1 [1)
! | [| | | | | | i
| | i | | | I | | |
| |] I ! L I |
| | | | | | I |
Po3 | | ! 1 | ! | |
4 4 T } | ! } t
| | [| | | | | | i
1 1 1 [}] [}] 1 { I

Caution: Set the mode in which MPT is held.

11 - 51

The ring counter therefore stores 03H.

Figure 11-30 shows the timing diagram when
controlling the stepplng motor driven by 2-
phase excitation at varying output intervals.

Figure 11-28 shows an example of setting the
macro service mode register in this case.

Fig. 11-28 Example of Setting the Macro Service Mode Register
for Automatic Addition Control Plus Ring Control
(2-phase Excitation at Varying Intervals)

CH2 |CH1 |CHO 0 MOD3 |MOD2 |MOD1 |[MODO Macro service processing

MPT increment, ring control
1 1 1 0 1 1 1 0 ' ’
automatic additlon (PO0O-PO03)

11 - 52

Fig. 11-29 Block Diagram for Automatic Addition Control
Plus Ring Control (2-phase Excitation at Varying

Intervals)

64K-byte memory space Macro service control words

—~—~———

(B11H) | 4tH

(811oH) |4
. N\
' AN
: O (FED1H)
N Channel
A2H : \ pelnter 204
2oL Mode register
. 1
(B101H) | &IH '
1
1
(B10OH) | 4UL
MPTH({High order)B1H {FE20H)
MPTL (Low order) H [=[+2]
_~
MPDH{High order)BOH
(Boo7H) | D3 MPDL (Low order) 00H |Z_[+1 |
Modulo
D2 reglster 03H
Ring ——
Dl counter 03H --/E
{BOOOH) Do MSC FFH |~
/_-_""--. w
16
ra 184 B 1
\ Addition /
Compare Buffer
register register -
CRO1 {POL)]
= PO B
s N
INTCROL = POl S
Match signal 5 o
. & POz Q
3& @
-
16-bit timer Po3 o
[

0 (TMO)

TO=

3]
T

:

A
I3 S 0 3,000 € €3

18
T?7 +48

7X
1
!

T7=
T6 + A

- —— r— =

T3=
T2+ A3

;<

Ti=
Tl + A2

B

Ring Control (2-phase Excitation at Varying

Fig. 11-30 Timing Diagram 2 for Automatic Addition Control Plus

— -A
) ﬂm
-
S
4 A< —— —-
o 8
= 8 B
=~ q @
@ o
3 o3 g 5 =2 9« = o
ot B EE 5 3 g £ £ 2
- o o c W
5F v B = -
~N-] = @ by
[-3 M .
1] I
a9 &8
o= Yy —f
8a a8
S5 m >

Set the mode in which MPT 1s incremented.
11 - 54

Caution:

Fig. 11-31 Example of Macro Service Operation

(1) Initial state (when the first interrupt occurs)

FECFH 34H Channel pointer
FECEH 11101000 Mode register (Real-time output port control mode)
(Without ring control. Data transfer
o~ & only.)
FE34H 10H Higher byte in the timer macro service pointer
FE33H 48H Lower byte in the timer macro service pointer
FE32H 10H Higher byte in the data macro service pointer
FE31H 3DH Lower byte in the data macro service pointer
FE30H 04H Macro service counter
104FH OSH Higher byte in the output timing data @
104EH TEH Lower byte in the output timing data (@
104DH 41H Higher byte in the output timing data (@)
104CH 28H Lower byte in the ocutput timing data (@)
104BH 3AH Higher byte in the output timing data (2
104AH 5CH Lower byte in the output timing data (2)
1049H 10H Higher byte in the output timing data (D
1048H 4AH Lower byte in the output timing data (I) -=
A ¥ i
1040H 00000001 output data (@ 1:
103FH 00000000 output datza (@ }
103EH | 00000010 output data (@ l
103DH 00000011 output data D--1 1:
,,,,, - |
00000001 POL Timer 0 1'
Trigger /’,J
Match -7
00000001 PO (port 0) 097EH CRO2

11 - 55

(2) When the first macro service 1s completed

FECFH 34H Channel pointer
FECEH 11101000 Mode register (Real-time output port control mode)
(Without ring control. Data transfer

+ 5 only.)
FE34H 10H Higher byte in the timer macro service pointer
FE33H 4AH Lower byte in the timer macro service pointer
FE32H 10H Higher byte in the data macro service pointer
FE31H 3EH Lower byte In the data macro service pointer
FE30H 03H Macro service counter

= =3
104FH 09H Higher byte in the cutput tlming data @
104EH TEH Lower byte in the output timing data (@
104DH 41H Higher byte in the output timing data ()
104CH 28H Lower byte in the output timing data @
104BH 3AH Highef byte in the output timing data C)
104AH 5CH Lower byte in the output timing data (@
1049H 10H Higher byte in.the output timing data
1048H 4AH Lower byte in the output timing data (D]____‘

2> o
1040H 00000001 Output data (@)
103FH 00000000 Output data (@
103EH 00000010 Output data (@)
103DH 00000011 ‘w

00000011 POL Timer O
Trigger
N Matchi\/Z
00000001 PO (port 0) 104AH CRO2

11 - 56

(3) When the macro services are completed

FECFH 34K Channel pointer
FECEH 11101000 Mode register (Real-time output port control mode)
(Without ring control. Data transfer

7 2 only.)
FE34H 10H Higher byte in the timer macro service polnter
FE33H 50H Lower byte in the timer macro service polnter
FE32H 10H Higher byte in the data macro service pointer
FE31H 414 Lower byte in the data macro service polnter
FE30H 00H Macro service counter

A & |
104FH 09H Higher byte in the output timing data @
104EH TEH Lower byte in the output timing data (@)]
104DH 41H Higher byte in the output timing data (®
104CH 281 Lower byte in the output timing data (@
104BH 3AH Higher byte in the output timing data (2)
104AH SCH Lower byte in the output timing data @
1049H 10H Higher byte in.the output timing data (O
1048H 4AH Lower byte in the output timing data (O

s =
1040H 00000001 Output data (@)-—
103FH 00000000 Output data (@)
103EH 00000010 Output data (2
103DH 00000011 output data @

"#’ﬂ,,——~”"’—’f‘ NTCRO2
00000001 POL Timer 0 /AJ/
Vector
Trigger sccurs.
Match
00000000 PO (port 0) 097EH CRO2

11 - 57

11.5.6 Counter mode

In the counter mode, a macro service Is processed for all
maskable Iinterrupt requests.

A macro service channel pointer corresponding to each
macro service request is used as the macro service
counter (MSC).

When a macro servlice request 1s issued, the data set on
MSC is decremented by one. When the value on MSC 1s 0,
that 1s, a macro service request 1s l1ssued the number of
times set on MSC, a vectored interrupt occurs. After a
vectored interrupt occurs, MSC remalns 0. Use the
interrupt service program to set MSC again. A macro
service in this mode functions as the counter which
frequency-divides the number of 1nterrupt requests
issued.

Figure 11-32 shows an example in which a macro service
frequency-divides the number of INTCPT3 interrupt

requests Issued by 3.

Fig. 11-32 Example of a Counter Mode Operation

Macro service control words

(High-order address) | -—_—hﬁ‘\\‘ﬁ_______,,z

Channel —
(FEDFH) pointer M=o [T 2 [-1]
Mode
(FEDEH) register(mH)

(Low-order address) | -——‘H\\\\\\a_____‘,fff

11 - 58

11.5.7 Data pattern identification mode

(1)

Overview of function

In the data pattern identification mode, the data
output from the control flip flop (CTL F/F) which 1s
built in the pulse width measurement circuit (timer
3) of the super-timer unit 1s sequentially shifted
to the right then stored in the buffer set in the
RAM area.

The pulse width measurement circult (see Figure
8-21) measures the duty of a pulse input to pin
CTI11l. When the measured duty 1ls greater than the
set value, 1 is latched in CTL F/F. When the
measured duty is smaller than the set value, O 1s
latched in CTL F/F. Storing this data string
sequentially in RAM, for example, enables an 1lndex
search signal of a VCR to be detected.

Figure 11-33 shows the addressing in the data
pattern identification mode. Since this macro
service is valid only for INTCR12 interrupt
requests, a channel pointer 1s set to FEDBH and a
mode reglster is set to FEDAH.

The channel pointer specifles the address of the
buffer byte count specification register. This
register specifies the number of bytes for data to
be stored. A buffer area is allocated for this
number of bytes.

The data output from CTL F/F 1s stored in blt 7 of
prescaler mode register 3 (PRM3). Thils data 1is
sequentially shifted to the right then stored in a
buffer area.

11 - 59

The macro service counter (MSC) 1s decremented each
time a bit of data 1s stored in a buffer area.

Fig. 11-33 Addressing in the Data Pattern Identification Mode

Internal RAM
High-order address t ”‘——_—_‘\\\\\\H____,af
— Channel pointer (FEDBH)
Mode reglster {FEDAH)
Bit 7 of the prescaler Internal RAM or
mode reglster (PRM) N 64-byte memory epace
= o
FF /X/
L L_- Buffer byte count
specification
register
Buffer area Data comparing
(Right-shift input fixed) area
N Macro service
— counter (MSC)
Pointer to a data
comparing area
High order [MPCH] /\/
Polnter to a date
comparlng area
Low order [MPCL}

z”—“‘\\\‘_’/,

Low-order addressl

A vectored interrupt normally occurs when one of the
followlng conditions is satisfiled.

(M When the contents of the macro service counter
(MSC) are 0 '

{(When an INTCR12 interrupt request 1s i1ssued the
number times set on MSC)

Fig.

() When the data stored 1n a buffer area and the
data In a data comparing area match (The data
comparing area is set separately from the buffer

area.)

A vectored interrupt occurs when one of the above
two conditions is satisfied according to the setting
of the macro service mode register or when only
condition @ is satisfied.

The data to be compared with the data stored in a
buffer area is set in the address indicated by the

pointer to a data comparing area (MPC) .

The data comparing area may be specified 1n an

internal RAM space or a program space in memory.
Cautions 1. A data comparing area cannot be set in
the area whose high-order B8-blt address

varies. (See Figure 11-34.)

11-34 Note on Setting a Data Comparing Area

1110H COH
[~ Data com- — I [Data com-
110FH | paring area __| OF | FFH paring area

110EH OFFEH
The high-order
addresses change.
O (Can be set.) X (Cannot be set.)

2. The time required to process a macro
service in the data pattern
identification mode depends upon the
number of set buffer bytes.

11 - 81

(2)

The buffer byte count specification
register can store only a value of 31H
or less.

Cautions 3. To store the value of CTL F/F in a
buffer area, the shift direction is
fixed to the right.

Example

Figure 11-36 shows an example of an applicatlion in
the data pattern identification mode. In this
example, the data pattern ldentification mode
function 1s used for controlling the index search
function of a VCR.

Pin CTI11 receives playback control (PBCTL) signals
from a VCR. The pulse width detection circuit,
which is built in the timer 1 (TM1) input part of
the super-timer unit, judges the duty of an input
control signal.

When digital data 0 or 1 1s coded according to the
duty of a playback control signal Just as a
VISS/VASS signal of a VHS VCR, the data coded by the
pulse width detection circuit is decoded then right-
shifted into a buffer area.

In an example of Flgure 11-36, three bytes of data
(01H, 23H, and 45H) are input to buffer areas. When
the values Iin the buffer areas and the values set in
the corresponding data comparing areas match, a

vectored Interrupt occurs.

11 - 62

Since three bytes of data are input, three bytes of
buffer area are allocated. The buffer byte count
specification register is therefore set to 03H.

When three bytes (24 bits) of data are stored, a
value of greater than 18H is set to the macro
service counter (MSC).

In this example, 1SH 1s set.

When three bytes of data are stored by this setting,
the data in the buffer areas are compared with the
data in data comparing areas. If a match is found
as a result of comparlson, a vectored interrupt

occcurs.

IT a match is not found because of noise, MSC 1s set
to 0 by input of the 25th bit data and a vectored
Interrupt occurs.

In this example, the macro service mode register 1s
set as follows.

Fig. 11-35 Example of Setting the Macro Service Mode

Register in the Data Pattern Identification Mocde
(wlith Comparison)

T 6 5 4 3 2 1 0
CH2 | CH1 | CHO 0 |MOD3|MOD2|MOD1IMODD| Macro service processing
1 0 0 0 1 0 0 1 Data pattern identification mode,

with comparison

11 - 63

e e e o

Flg. 11-36 Example of an Application in the Data Pattern
Identification Mode (VCR Index Search Control)

(1)

Initial state (when a value 1s latched in FFLVL)

FEDBH 26H
FEDAH 10001001
FE26H 03H
FE25H W 11111111
l__-.-'J
FE24H 11111111
FE23H 11111111
FE22H FFH
FE21H 10H
FE20H 50H
1050H 00000000
104FH 00000000
104EH 00000000
FFLVL

————— 0

Channel pointer

Mode register (data pattern identification mode with
comparison)

Buffer byte count specification register

Buffer area

Buffer area

Buffer area

Macro service counter

Higher byte in the pointer to the data comparing area

Lower byte in the polnter to the data comparing area
Data comparing area

Data comparing area

Data comparing area

11 - 64

When the first macro service 1s completed

L4]

(2)
—_ FEDBH 26H
FEDAH 10001001
¥ 7
FE26H 034
FEZSH/,I' 01111111
FE24H 11111111
FE23H 11111111
FE22H FEH
FE21H _ 10H
. FE20H 50H
T .
1050H 00000000
104FH 00000000
104EH 00000000
- FFLVL
0

Channel pointer

Mode register (data pattern identification mode with
comparlison)

Buffer byte count specification register

Buffer area

Buffer area

Buffer area

Macro service counter

Higher byte in the pointer to the data comparing area

Lower byte in the polnter to the data comparing area
Data comparing area

Data comparing area

Data comparing area

11 - 85

(3) When the contents of the buffer area and data
comparing area match (VISS detected)

FEDBH 26H Channel pointer
FEDAH 10001001 Mode register (data pattern identification mode with
comparison)
] Tr
FE26H 03H Buffer byte count specification register
FE25H/,4' 00000000 Buffer area
INTCR12
FE24H 00000000 Buffer area oCcCcurs.
FE23H 00000000 Buffer area
Match

FE22H xxH Macro service counter
FE21H 10H Higher byte in the pointer

to the data comparing area
FE20H 50H Lower byte In the polinter

to the data comparing area
1050H 00000000 Data comparing area
104FH 00000000 Data comparing area
104EH 00000000 Data comparing area

FFLVL
0

11 - 66

(3)

Number of clocks required for macro service
processing

The number of clocks required for macro service
processing depends upon the type of macro service
processing. (See Table 11-9.)

Table 11-9 lists the number of clocks when the
memory expansion mode register (MM) is set to
1000xxxxB and an instruction 1s executed in an
Internal ROM.

11 - 87

Table 11-9 Macro Service Processing Time

Number of
R 0 1
Type of macro service processing clocks
Data transfer Memory to SFR 19
mode SFR to memory 20
Real-time | Without Data transfer | Four low-order bits (POL) 50
output ring only
port control Four high-order bits (POH) 51
control
macro With auto- Four low-order bits (POL) 57
matic
addition Four high-order bits (POH) 58
With ring | Data transfer | Four low-order bits (POL) 55
control only
(#1) Four high-order bits (POH) 58
¥ith auto- Four low-order bits (POL) 62
matic :
addition Four high-order bits (POH) 63
Counter mode 10
Data pattern Shift only 20 + 6n('2)
identification
mode (Shift) + (Comparison) 32 + 12n

*1 When the ring counter is 0 for ring control, filve
clocks are added to the corresponding values in the

table.

*2 n 1ndicates the value set by the buffer byte count

specification register.

11 - 68

11.5.8 Points to be noted

Table 11-10 1ists the ranges of addresses that cannot be
used by the macro service function.

Table 11-10 Address Ranges that cannot be Used by the

Macro Service Function

Condition Description
Limit on use of The macro service channel must not
addresses for the Unconditional be set within the range of FEDOH to
macro service FEDFH.
channel
~ Single-chip mode There is no limit on the available

addresses for external expansion.

Limit on use of

addresses when 256-byte expansion | External expansion addresses OAH
the external mode | and OCH must not be used ".
expansion
function is used External memory | External expansion address FFOAH
expansion mode and FFOCH must not be used *.
—_ ROM-1ess mode

#+ For applications that use the macro service, do not use the
above addresses as external addresses in any part of a
program.

11 - 69

CHAPTER 12 STANDBY FUNCTION

The uPD78138 has a STOP mode as a standby functlon to reduce
power consumption of the system. In this mode, the oscillator 1is
stopped to stop the entire system. Data can be held at very low
power consumption in which only a leakage current flows.

The STOP mode is set when the STOP flag (STP) is set to 1 by
software. The STOP mode is released by a nonmaskable Interrupt
(NMI) or reset (RESET) input. Figure 12-1 shows standby status
transition.

Fig. 12-1 Standby Status Transition

NMI input

Set STP.

Normal
opera-
tion

STOP
node

RESET input

12 -1

12.1 Configuration of Standby Function Control Circuit

Figure 12-2 shows the configuration of a standby function

control circult.

Fig. 12-2 Configuration of a Standby Function Control Circuit

fﬁzernal
system clock
Frequency
- divider ()
—1 Systenm _
L clock [fax ox ron”
= it 1/2 16-bit timer for flow:
Tator * I feun stabllizing oscillation
ICleaf

Oscillatlon
18 stopped.
STP bit'
Q s set signal
() —
STP F/F2
Q s

H>°J[:> STP F/F1

NMI interrupt
request

NMI © I
Al

Edge - -
detection

circult Bit 0
INTMD

Selec-
tor

8 Internal bus e

RESET © E>x%—

Remark: INTMO indicates an external interrupt mode reglister

(see Figure 11-2).

12 - 2

(1) Standby control register (STBC)

The STBC register is an 8-bit reglster which controls
the standby mode. The contents of the STBC reglster
can be read and written. They can, however, be written
only by a dedicated instruction (MOV STBC, #byte).
Figure 12-3 shows the format of the STBC reglster.

The STBC register will be reset to O00H by RESET input.

Fig. 12-3 Format of the Standby Control Register (STBC)

5 4 3 2 1 0 Address When reset R/W
- STBC otolo|lo|o!} o |STP|lO FFCOH 00H R/W

STOP mode specification bit

The STOP mode is set when 1 is
written in this bit. The bit is
automatically reset (0) when the
STOP mode 1s released.

12 - 3

12.2 Setting the STOP Mode and Operation States 1n the STOP Mode

The STOP mode is set by setting the STP bit in the STBC
register to 1.

Eight-bit data can be written in the STBC register only by
a dedicated instruction. The MOV STBC, #02H instruction
must be therefore specified to set the STOP mode.

Table 12-1 Operation States in the STOP Mode

Clock oscillator

Stopped

Internal system clock | Stopped

CPU

Stopped

1/0 line

The status before setting the STOP mode is retajned.

Each internal block

Stopped

Data retention

All internal data such as the CPU status and the
contents of the RAM are retained.

Cautions 1.

When the STOP mode is set, pin‘Xl is internally
connected to Vgg (GND potential) to prevent
leak at the clock oscillator. The STOP mode
must not therefore be set in the system using
an external clock.

The STOP mode must not be set while the A/D

converter is operating.

12 - 4

12.3 Releasing the STOP Mode

12.3.1

The STOP mode can be released by NMI or RESET input.

Releasing the STOP mode by NMI input

The oscillator restarts when the edge specified in the
external interrupt mode register (INTMO) 1is detected in
NMI input. When the NMI input level reaches the original
level, the 16-bit counter for stabilizing oscillation
starts counting. When the counter overflows, generation
of the internal system clock is started. The system is
therefore in the wait state during the high or low level
width after detecting the NMI input edge and counter
overflow time. This waiting time allows the oscillation
to stabilize (see Figure 12-4).

After the STOP mode is released, the system branches to

the NMI interrupt service program.

Fig. 12-4 Releasing the STOP Mode by NMI Input

)|

] ! '
et [N L U UL
|
! 1 I > :
ax UL L
| I ‘
| 3 i E
STP F/F « | '
| ! —
| /I !
STP F/F2 @ : g :l _—
_ 1 (I
| l '
!] !
NM1 input] | 31 |
(with the | l ! " !
rising edge | | I !
specifledl ! The oscillator ! r' The period i
stops. counted by
the timer for
stabllizing

oscillation

12 - 5

12.3.2 Releasing the STOP mode by RESET Input

When RESET input is changed from high to low, the system
is put 1n the reset state and the oscillator restarts.

Releasing the STOP mode by RESET input is different from
doing by NMI input. The system does not enter the wait
state by the counter for stabllizing oscillation. When
the terminal level is changed from low to high, the
system starts instruction execution even if the
osclllator operates unstable. The low level width must
be used enough to reserve time for stabilizing
oscillation.

The contents of data memory are retained as they were

before setting the STOP mode in the different way from
normal reset operation.

12 - 6

CHAPTER 13 RESET FUNCTION

When input to pin RESET becomes low, the system is reset and
each hardware component 1s put in the status shown in Table 13-1.

When input to pin KESET becomes high, the reset status is
released. The contents at address 0000H in a reset vector table
are then set in bits 7 to 0 in the program counter (PC) and the
contents of bits 7 to 0 at address 0001H are set in bits 15 to 8
in the PC. The branch is taken in this way and program
execution starts at the branch destination address. Reset start

is possible at any address.
Initialize the contents of registers in the program as required.

A noise eliminator using analog delay 1ls provided for the RESET
input pin to prevent miss-operation due to nolse (Figure 13-1).

For the reset operation at power-on, reserve time for the
oscillation to stabllize from power-on to releasing the reset

signal as shown in Filgure 13-2.

Fig. 13-1 Accepting a Reset Signal

Executes an

1
|
!
1
1
i
1
! instruction at
|

1
1
'
[}
) (N 1.
| : | 1 Sets the reset branch
Analog Analog | Analog ! contents of address.
delay -delay ! delay ; reset vector
' ' tsble In PC
Removes P 7Y (Initlallzes
as holse. Accepts Releases PC.)
reset. reset.

13 - 1

Fig. 13-2 Reset at Power-on

Voo 5
:
5 !
[i
— ! T .
= ! a 5
L..ﬂ:ﬁ,‘,ﬁ?:i‘t’?m I E : Executes an instruction
I time : Analog ! Sets the contents 1 at reset branch address.
| ' delay | of reset vector !
! table In PC.
A (Initlializes PC.)
Releases
resat.
Table 13-1 Hardware Statuses after Reset
Hardware Status after reset
Program counter (PC} The contents of a reset vector
' table (0000H, 0001H) are set.
Stack pointer (SP) Undefined
Program status word {PSW) 02H
Data memory
Built-in Undefined!*’
RAM General registers (X, A, C, B, E,
D, L, and H)
POO-POT High impedance (output buffer
off)
P20-P27, and P34-P37 Input
I/0 line '
P10-P17, P30-P33, P40-P47, Input (output buffer off)
P50-P57, P64-P67, P70, and P71
P60-P63 Low-level output

(to be continued)

+ Retains the value before setting the STOP mode when the STOP
mode is released by RESET input.

13 - 2

Table 13-1 Hardware Statuses after Reset (Cont'd)

Hardware Status after reset

Qutput Ports 0, 1, 3, 4, 5, and 7 Undefined
latch

Port 6 xxxx0000
Port mode | PMO, PM1, PM3, PMS5, PM7 FFH
register

PM& FOH
Port 3 mode control register (PMC3) 30H
Memory mapping reglster (MM) 20H
Register for optlonal pull-up resistor (PUO) O00H

Super
timer
unit

Counters (TMO, TM1, FRC, and TM2)

Up to 16 clocks after releasing
the reset signal: Undefined 17
clocks or more after releasing

the reset signal: Zero clear
Compare reglsters (CR0O0, CRO1,
CRD2, CR10, CR11, CR20)
Undefined
Capture registers (CR12, CPTO,
| CPT1, CPT2H, CPT2L, CPT3)

Timer control reglster 0 (TMCO) 0xx00000
Timer control register 1 (TMC1) 00H
Capture mode register (CPTM) xxxxx000
Input control register (ICR) 0x000xxx
External capture input mode 0000xx01
register (INTM1)

EC xx000000
Event counters (CTIGO
input section) ECCO xx111111

ECC1 xx111111
Event divider control
register (CTI10 input EDVC Undefined
section)

13 - 3

{to be continued)

Table 13-1 Hardware Statuses after Reset (Cont'd)

Hardware Status after reset
™3 00H
Pulse width detection PRM3 0xxxx000
circult (CTI11 input
section) CR30 x1111111
CPT30 Undefined
Timer output mode TOMO xx000000
Super reglster
timer TOM1 xxxx0000
unit
Timer output control TOCO xx000000
register
TOC1 Xxxxx0000
PT010 output (PTO010) High-level output
P¥M outputs (PWMO and PWM1) Low-level output
P¥M control register (PWMC) 05H
P¥M modulo registers (PWMO and Undefined
PWM1)
Port 0 buffer registers (POL and Undefined
Real-time | POH)
output
port Real-time output port control O0H
register (RTPC)
Mode register (ADM} 00H
A/D
converter | A/D conversion result Undefined
reglister (ADCR)
Mode reglster (CSIM) 00H
Serial
interface Shift register (5I0) Undefined
Serial bus control reglster (SBIC) 00H

13 - 4

(to be continued)

Table 13-1 Hardware Statuses after Reset (Cont'd)

Hardware

Status after reset

Interrupt request flag registers

(IFOQH) 00H
(IFOL) 00H
Interrupt mask registers (MKOH) FFH
(MKOL) FFH

Interrupt priority speclification
Interrupt | flag reglsters {PROH) FFH
{PROL) FFH

Interrupt service mode registers
(ISMOH) O0H
(ISMOL) 00H

External interrupt mode reglsters

(INTMO) 50H
Standby control register (STBC) 00H
Clock output mode register (CLOM) 00H

ASTB/CLO output

Low-level output

)

Internal memory size change register (1ms) (*

FDR

The IMS is available only with the uPD78P138. The uPD78134A,

uPD78136, and uPD78138 do not have itT.

13 - 5

14.

CHAPTER 14 EXAMPLE OF APPLICATION

Example of Application to the Normal-type Video Cassette
Recorder

Figure 14-1 shows a block diagram of a normal-type video
cassette recorder.

In this example, the uPD78138 1s used for system control

and digital servo control, and the uPD75216A is used for
controlling a timer, key entry, and FIP display.

14 - 1

PT

fa—" o

Head switching

|

Pover detec-
tion clrcuit

Fig. 14-1 Example of Application to the Normal-type Video
Cassette Recorder
Electronic
tuner
brG N xPD78138 «PD78216A
op L~ ,PCIA CTICO . s
51 et
& [PCt5L 0t % S :> AP
| 5TK 76 4
Drua g
motor o A PWMO
=
= ey i
PC1490
1.1.5 L7 ,pcds) ete ctio .
Capst 'E; Key matrlx
-Lapstan
Botor E@j—_ -E < {—I—‘W‘r— PWMIL INTPO
L2 | ;; |
RECCTL ¥ :
CTL head | 7B |pBCTL PTon Peo 5 -
’ D— CTi11 2 Sensor Reel motor
P61 & M
LPC4S74 IIW— ANI3
COMPSYNC 7 ' OCKITE INTP2 =
Audi Head switch (video) el INTP1
udio; *- . Jlead switch (video Posltlion
\rldeo)s-f"i“e' Head switch (volce) PTCO0 P62 5 _—:@
Peeudo V ! z
seudo I
st From S e m ()=
processing
clreult ANI2
‘mil—— ANI4 ANIL
ead &witch|
Mode delay v
display < P10-17 oo
LED }
v _3
Condensation 5
Sensor -
ANIO 4, xy MM a—l

slgnal (voice)

Loading motor

14.

Example of Application to the Camcoder

Figure 14-2 shows a block diagram of a camcoder.

In this example, the uPD78138 is used for system control
and digital servo control, and the uPD75308 is used for

controlling LCD display, key entry, and on-screen display
(0SD) .

14 - 3

PT

LCD

ﬁ

»PD78308

Key
matrix

} Reel motor

Loading motor

Filg. 14-2 Example of Application to the Camcoder
ﬂ"$ «PD78138
> CTIO0
(dj > CLRO SBO
’_3- pPC451 (761 4
o—: o
| =1,PC358 L
u‘*i % cTio RESET
[,PC451]
1k %
= <l W PWML INTPO
(=1
—1 pcass
PE0D
Control | g pcasa | FTen 5
head I'I> oni ..E {e1)
Pl a
Tracking }
adjustlent:i ANI3 INTP1 <
COMPSYNC - N
lead swi
mato, | tehIng slgnal INTP2 f+—————
Video “Tlead swltching slgmal | PTOX P62 ks
volce PTOOL g
Pseudo Yoype P63 -
Signal PTOO2 a
processing
circuit AN
Hlead switch- ANI2
Ing delay ANI4 !
adjustment ——
Mode Voo
display < P10-17
LED T
Condensation Via
sensor ”
A ANIO NMI

1 %2
kll]l—i 12MHz
T_;”_]'

»1 Tape end sensor
#2 Position detecticn
#3 Power detectfon circuit

14.3 Using the Super Timer Unit in a VCR Servo System

The example given in this section assumes a VHS-format,
normal-type hi-fi VCR.

Figure 14-3 gives an example of using the super timer unit

in a VCR servo system.

Table 14-1 1ists the functions of timers in the VCR servo

system.

Table 14-1 Timer Functions in the VCR Servo System

Timer name

Function

Timer 0 Generating video and voice head
switching signals
Generating a pseudo vertical
synchronlzing signal

Timer 1 30-Hz reference timer in playback

mode

Generating a recording control signal
in recording mode

Capstan phase control

Detecting an Index signal (VISS/VASS)

Free running counter

Drum speed control
Drum phase control
Capstan speed control

Timer 2

Timer for masklng vertical
synchronizing signal input interrupts

PWM output unit

PWMO: For driving the drum motor
PWM1: For driving the capstan motor

14 - 5

VI

Fig.

14-3 Using the Super Timer Unit in the VCR Servo System

CLRy ©

Drum PG
signal

{Note 1)

INTCROO

CTIco o—@—@'}

(+11) |

—o 70 i]

—o F100 (57 voree]
—o 7o [(a2]

{brum phase control
interrupt]

[HSW-N capture Interrupt}
[Drum speed control interrupt)
[Capstan speed control interrupt]

—0 PTO10

~{ INTCR10 } [Reference counter)

INTCR!1) [RECCTL Interrupt)

{INTCRI2

[Capstan phase control
interrup]

pron [RECCTL]
QNTCRI2)

DFG
brum FG (s11)
slgnal Match
fo/8 (HSW-N) {=5)
Match
! (+6) —l;
e s (G

CLR1 T § (ToiT) INTCLR1

COMP Separatlon [3 P "

ISYNC of vertical N ‘:D (FRC leve/4 (1.5MH2)
Compostte Tynchinn::- LA m_ ‘ lc,pture 17 :'_ o (6 MHz)
synchronlzing ne sien 3 Capt | CPTO/ V. REF
signal G——UCa ’:’u:; CPTU/HSW-N | vers 57> CINTCRT)

Cﬂp‘“re
s CPT3/CFG INTCPTa
CTIIO
] Clear g HOTI
Capstan FG EDVC Lew/B {+9)
signal {750 kHD) Match
CTI11Q (+10) Match
@ CRI11/RECCTL —=|_[211)
CRI12/G%

Playback Capture s

control

slgnal

#1 Dlgital noise eliminator .

#2 6-bjit counter Mol AT { v mens Notes 1. Wrlte Oxxxx xxxB to ECCO or ECCL.

*3 TMO/HS® counter Pulse width 2, CPT2 {s an 18-bit capture register, and CPTO,
+4 CROO/HSY delay 1 detection clrcult CPT1, and CPT3 are 16-bit capture registers.
85 CRO1/HSW delay 2 VISSIV

6 CRO2/pseudo V 5S/VASS

#T For recording detection

#8 For pleyback

+3 TMI/REF counter

#10 CR10/REF, buffer-
411 Output control clrcult
212 Pseudo VSYNC

14.3.1

Controlling the drum motor

The CPT0, CPT1l, and CPT2 registers in the free running
counter unit and the CR10 register in the timer 1 unit
are used for controlling the drum motor.

The DFG signal and DPG signal from the drum motor are
input signals. The COMPSYNC signal 1s the reference
signal.

The FRC value 1s stored In the CPTZ2 reglster at the
rising edge of the DFG signal from the drum motor.
At the same time, the drum control interrupt (INTCPTZ)

occurs.

The INTCPTZ2 interrupt routine calculates the speed of the
drum motor by subtracting the previocus captured value
from the current captured value.

The error 1s calculated from the speed of the drum motor
calculated above and the target value of the speed.

Epy = (Npr(n) - NDpF(n-1)) - NDFL
= 4Npp - NprL
Epy: Error of the drum motor speed
NDF(n): Current captured value of the CPT2Z2
NDF(n—l): Previous captured value of the CPT2
NpFL: Target value (speed when the drum motor
stably rotates)
ANDF: Current speed of the drum motor
EDP‘ Drum phase error

14 - 7

Drum phase control for playback synchronlizes the phases of
the head switching signal (mentioned later) and the
reference signal.

The reference signal 1s generated by the reference timer
which consists of timer 1 and compare reglster CR0O1 and
clears 1tself.

For VCR, the perliod of the reference signal is the same
as the TV broadcast frame frequency.

Epp = {captured value by the internal reference signal) -
(captured value by the phase signal) - (target value of
rhase control)

= (CPTO value) - (CPT1 value) - (target value)

Drum phase control for recording synchronizes the phases
of the rotation of the drum speed and the external
reference signal (vertical synchronizing signal).

Epp = (captured value by the reference signal) -
{(captured value by the phase signal) - (target value of
phase control)

= (CPTO value) - (CPT1 value) - (target value)

14 - 8

PT

Flg. 14-4 Controlling the Drum Motor

CLRO O— [|
(DPG) lil
Clear

cnoe EC
g 0=]

ECCL —1S5
ECCO

l...|

S~

CPTO/Y yyuREF
-~ CPT1/HSW-N Drum phase control interrupt
CPT2/DFG Drum speed control interrupt

[Selector|

Playback Recordlhg

“\j} } Clear
CLR1l O Vgywt separatfon .

(COMPSYNC) elrenlt I o]

~~

CR10/REF bhuffer

Remark:

2]+ Registers not used in the control

FRC count value

Npfin-1)

14 - 10

n+l

NoF(n+1)

Fig. 14-6 Drum Phase Control

For playback

(a)

H5W-N

Video HSW

SNTRA JUNOD TWL SNT®A JUNOD YA

For recording

(b)

HSW-N

Video HSW

UVsyye U
missing
Match with CR10

SNTRA JUN02 THL

ummu> Junod ¥4

14 - 11

14.3.2

Controlling the capstan motor

The CPT3 reglister in the free running counter unit and
the CR10 and CR12 registers in the timer 1 unit are used
for controlling the capstan motor.

The CFG signal from the capstan motor and the PBCTL
signal (for playback) are input signals. The COMPSYNC
signal (for recording) is the reference signal.

The FRC value 1s stored in the CPT3 register at the
rising edge of the CFG signal from the capstan motor.
At the same time, the capstan control interrupt (INTCPT3)

occurs.

The INTCPT3 interrupt routine calculates the speed of the
capstan motor by subtracting the previous captured value
from the current captured value.

The error 1s calculated from the speed of the capstan
motor calculated above and the target value of the speed.

Ecy = (Ncp(n) - NerF(n-1)) - NerL

= ANcg - Negp
ECV: Error of the capstan motor speed
NCF(n): Current captured value of the CPT3
NCF(n-l): Previous captured value of the CPT3
NCFL’ Target value (speed when the capstan

motor stably rotates)

ANcg: Current speed of the capstan motor
ECP: Capstan phase error

14 - 12

Capstan phase control for playback synchronizes the

phases of the head switching signal and the PBCTL signal.

¥hen the phase of the drum motor is controlled, the
phases of the head switching signal and TM1 are already
synchronized. The value captured by PBCTL has
information on the capstan motor phase.

(captured value by the PBCTL) - (target value of

Ecp
phase control)

(CP12 value) - (target value)

There 1s no specified absolute phase referred to as an
external signal in capstan phase control for recording.

The target phase can be arbitrarily set.

(captured value by the CFG divider signal) -
(target value of phase control)
(CP12 value) - (target value)

Ecp

14 - 13

14

v1

Fig. 14-7 Controlling the Capstan Motor

7-blt counter

cmio o
{CFG)

CLRl O—

Vsyne separation
eclreult

(COMPSYNC)

EDVC —

{ FRC

= =

cPTIO

CPTY .

CPT2

CPT3/CFG |——— Capstan speed control interrupt

ENCLRI
Recordlnt‘

tor

|Selec

PlnybnckJ_

Ccnll o—
(PBCTL)

‘ Clear

™I

< >

CR10/REF buffer |—

CRI12/CAPPHASE —— = Capstan phase control interrupt
(Macro service control mode is used for
recording)

Remark:[__]: Registers not used in the control

FRC count value

Ncrin-n

14 - 15

Fig. 14-9 Capstan Phase Control

(a) For playback

| | [I |
Video HSW [| | | [
J
E / Target
g value
£) 1
5 !
] ' Captures 7 Captures
E i CR12. 'CR12
1

Paan. l 4, |————

(b) For recording

CrG

1917 15 13 11 9 7 5 3 1 19 17 15 13 1 9 7 5 3 1
18 16 14 12 10 8 6 4 2 O 18 16 14 12 10 8 6 4 2 O

l [N (SN N O O A A 1' N AN NN 4,
PP s bbby ol b I

]

|

I

|

|

HE A e
P i og it [A A

1
Captures! Captures CR12. Captures
CR12. (Target velue) CR12.

i

TM1 count value

7 : Macro service

=
o
=
£
2
=

t: Vectored interrupt

14 - 16

14.

Block Diagram of the Software Digital Servo System 1n a VCR

Figure 14-4 shows a& block diagram of the software digital
servo system in a VCR.

In the diagram, part enclosed by a dotted line is software
processing performed by the uPD78138.

14 - 17

1

81

Flg. . 14-10 Block Dlagram of the VCR Servo System

(Processing Enclosed by a Dotted Line is Performed by
the uPD78138)

DPG amplifier ‘,af’/

DPG

‘\\\\\
DFG amplifier J,/”’

DFG

&

T e

RECCTL
head

'l

HSW
generation («1) K
Blas [PiM -
addition conver-
slon
RECCTL | | Digital | |
generation (+2) filter k
""""""" \
(
F‘\\ 1 Digital
I —— g a ——
L”,f’ l (22) filter K
PBCTL | Blas PN
amplifier | addition[| COMVer-
I sion
I
! (=1) K
1
I
|
1

b o o o ke e A i AR A A b M A s At e A A A iAs A A s ——

pe
—vav:E——[:>——~— Driver ——*(::)'y Drum
motor

motor

COMP SYNC

amplifier

CFG

#1 Speed error detection
«2 Phase error detection

CHAPTER 15 THE uPD78P138

The uPD78P138 1s an 8-bit single-chip microcomputer produced by
replacing the on-chip mask ROM in the uPD78138 with a PROM.

The uPD78P138 not only makes evaluation and trial manufacture
during system development easler, but also enables early stage
start-up of applications, and short-run and multiple-device
production.

The EPROM versions of the uPD78P138 are not intended for use
in mass-produced products; they do not have reliablility high
enough for such purposes. Their use should be restricted to
functional evaluation in experiment or trilal manufacture.

15 - 1

15.1 Differences of uPD78P138 from uPD78134A, uPD78136, and
uPD78138
The uPD78P138 is produced by replacing the mask ROM in the
uPD78134A, uPD781356, and uPD78138 with a PRCM on which data
can be written. Table 15-1 shows the differences between
these products.
Table 15-1 Differences of uPD78P138 from uPD78134A, uPD78136,
and uPD78138
Item uPD78P138 uPD78134A uPD78136 uPD78138
Program PROM Mask ROM Mask ROM Mask ROM
memory 32768 bytes 16384 bytes 24576 bytes 32768 bytes
{ROM)
Data memory '
(RAM) 640 bytes 384 bytes 640 bytes
i:ﬁﬁizaiize Provided
{See Flgure Not provided
change
15-1.)
register
(IMS)
Pin In the uPD78P138, the functions to read/write the PROM are
connection added to the pins.

15 - 2

15.1.1

Internal memory size change register (IMS)

The internal memory size change register (IMS) specifies
the effective area of the memory (ROM and RAM) in the
uPD78P138. .

The IMS is set when| the uPD78P138 is used to evaluate a
product whose ROM or RAM is smaller than that of the
uPD78P138. Using this function eliminates bugs generated
by an overflow of the ROM or RAM from application
programs. For reference, the sizes of the ROM and RAM

for each product are listed below.

Product On-chip ROM On-chip RAM
uPD78P138 32768 bytes (PROM) 640 bytes
uPD78138 32768 bytes (mask ROM) 640 bytes
uPD78136 24576 bytes (mask ROM) 840 bytes
uPD78134A 16384 bytes (mask ROM) 384 bytes

Data can be written 1nto the IMS by an 8-bit manipulation
instruction, but cannot be read from the IMS.

When the system 1s reset, the IMS is initialized to FDH,
and enters the mode in which the ROM is set at 32768

bytes and the RAM at 640 bytes.

Flgure 15-1 shows the format of the IMS.

15 - 3

IMS

Flg. 15-1 Fo

rmat of the Internal Memory Size Change

Reglister (IMS)
7 8 5 4 3 2 1 0 Address When reset R/W
ROM3 [ROM2 | ROM1 | ROMO | RAM3 | RAMZ | RAM1 | RAMO FFCFH FDH W
Internal RAM size
RAM3 [RAM2 [RAM1 | RAMO change
1 1 0 1 640 bytes
0 1 1 1 384 bytes

Caution: No values other than above
shall be set.

Cautions 1.

ROM3 | ROM2 | ROM1 | ROMO Igtemal ROM size

change
1 1 1 1 32768 bytes
1 1 1 0 24576 bytes
0 1 0 1 16384 bytes

Caution: No values other than above
shall be set.

Do not use the IMS when the uPD78P138 1s used
to evaluate the uPD78138, because the
internal ROM and RAM of the uPD78138 are of
the same size as the uPD78P138.

When porting an application program which
uses the IMS reglister of the uPD78P138 to a
product having mask ROM, such as the
uPD78134A, uPD78138, or uPD78138, be sure to
remove the Instructions that manipulate the
IMS register. This has to be done because
products having mask ROM do not contalin the
IMS register.

15 - 4

15.2 Programming in the uPD78P138

The programmable memory in the uPD78P138 1s 32768 x 8 bits
of electrically writable PROM. Use pins PROG and RESET to
set a PROM programming mode when programming on the PROM.

The uPD78P138 provides programming characteristics compatible
wlith the uPD27C256A.

15.2.1 Operation mode
The uPD78P138 changes to a program write/verify mode when
+6 V is applied to pln Vpp and +12.5 V to pin Vpp. This
mode varies to each operation mode shown in Table 15-2

depending on the setting of pins CE and OE.

If the read mode is set in the uPD78F138, the contents of
FROM can be read.

Table 15-2 Operation Mode when Programming on the PROM

Pin RFSET -
Program write L H Data input
Program verify H L |+12.5 V|46 V Data output
Program inhibit H H High impedance
+12.5 V L

Read L L Data output
Output disable L. H +5 Vv +5 V High impedance
Standby H L/H High impedance

Caution: Do not set both CE and OE to L when Vpp is set
to +12.5 V and VDD to +6 V.

15 - 5

15.2.2 Procedure for writing on PROM

Phast

The followlng 1s a procedure for writing on PROM. Data

can be written at high speed.

(1)

(2)

(3)

(4)

(5)

(8)

(7)

(8)

(9)

(10)

Always set the RESET pin to low. Apply +12.5 V to the
PROG piln. Handle other unused pins as shown 1n
Section 1.8.2.

Apply +6 V to the Vpp pin and +12.5 V to the VPP
pin.

Set an initial address.
Input write data.

Input a 1 ms program pulse (active low) to the CE
pin.

Verify mode: 1If data is written, go to step (8);
otherwise, repeats steps (4) to (6).
If no data is written yet after it is
repeated 25 times, go to step (7).

Assume the device to be defective and stop write

operation.

Input write data and a program pulse of number of
times steps (4) to (6) were repeated: X) x 3 ms
(additional writing).

Increment the address.

Repeat steps (4) to (9) until the address exceeds
the last address.

15 - 6

Flgure 15-2 1s a timing chart of these steps (2} to (8).

Fig. 15-2 PROM Write/Verify Timing Chart

Repeats X tlmes.

N

A
p
Additional

|—i Write ————Ib Verify ————w write *’
Iz
¥

AO-Al4 X Address input X

{4

P

Hi-Z Hi-Z Data Hi-Z Hi Z
LO-D7 _— Data Input —_———- output =(F Data Ipput Jm—————

+12.5v 5

¢
F

~
—

/S

Lot
P~y

3_
OF input \

Cautions 1. Apply Vop before VPP and diconnect Vop after

VPP -
2. Set Vpp including overshoot so that it is less
than +13 V.

15 - 7

Fig. 15-3 Flowchart of Writing Procedure

(1} (Start of writing)

1

(2) ApPply power voltage
(3 Set initial address
(4) Input write data

(5) Input pregram pulse

¥riting disabled

(less than 25 times) ¥riting disabled (25th)

Verlfy mode

Writing. gn.abled

(8) Perform additional X: Number of repeated
writing (3X ms pulse) write operations
{9) Increment address

s lest address

Last address

> last address N

< End of writing) C Defective device)

15 - 8

15.2.3 Procedure for reading from PROM

The contents of PROM can be read out to the external data
bus (DO to D7) in the following steps:

(1) Always set the RESET pin to low. Apply +12.5 V to
the PROG pin. Handle other unused pins as shown 1in
Section 1.6.2,.

(2) Apply +5 V to the VDD and Vpp rins.

(3) Input the address of data to be read into the A0 to
Al4 pins.

(4) Read mode
{5) Output the data on the DO to D7 pins.
Figure 15-4 is a timing chart of these steps (2) to (5).

Fig. 15-4 PROM Read Timing Chart

AD-Al4 X Address lnput X
& \ /
= \ /

DO-D7 < Data output Fr——————

15 - 9

15.

15.

Erasure Characterlstics Only for the uPD78P138K

The programmed data of the uPD78P138K can be erased by
exposure to light with a wavelength less than approx.
400 nm (all of the EPROM data are set to FFH).

To erase the contents of program memory in the uPD78P138K,
expose the erasure window to ultraviolet light with the
wavelength of 254 nm. The amount of light required to
completely erase the contents of program memory is a
minimum of 15 W-s/cm? (intensity of ultraviolet light x
eraslng time). It takes about 15 to 20 minutes to expose

the erasure window to a 12000-~uW/cm2

ultraviolet lamp. It
may, however, take more time due to the fallen performance
of this ultraviolet lamp, dirt on the package window, or
suchlike. Note that the uPD78P138K should be placed less
than 2.5 cm from the ultraviolet lamp during erasure. In
addition, if a filter is attached to the ultraviolet lamp,

remove the fillter before erasure.

Protective Film Covering the Erasure Window Only for the
uPD78P138K

The erasure window must be covered with a protective film
when not erasing the contents of EPROM. This is to prevent
the contents of memory from being erased erroneously by
exposure to light other than the EPROM-contents erasing
lamp. This 1s also to prevent any malfunction of the
internal circuits other than the EPROM due to the light.

15 - 10

CHAPTER 16 INSTRUCTION SET

16.1 Operations

16.1.1 Legend

(1)

Operand notation and coding format

Operands are coded in the coperand field of each
instruction as listed in the coding column of the
table below. For details of the operand format,
refer to the relevant assembler specifications.
When several coding forms are presented, any one of
them 1s selected. Uppercase letters and the
symbols, +, #, !, $, /, and [], are Kkeywords and
must be written as they are. These symbols have
the following meanings.

Auto 1ncrement
#1 Immediate data
' Address by immediate addressing
$: Address by relative addressing
/: Bit inversion '
[]: Indirect addressing

For immedliate data, an appropriate numeric or label

must be written. The symbols +, #, !, &, /, and []
must not be omitted when describing labels.

16 - 1

Notation Coding

r,r' X(RO), A(R1), C(R2), B(R3), E(R4), D(R5), L(R6), H(RT)

rl A, B

r2 B, C

r3 D, E, E+

rd D, E

rp,rp’ AX(RRO), BC{(RP1), DE(RP2), HL{RP3)

sfr Special functlon register abbreviation

sfrp Special function register abbreviation (16-bit manipulation
reglster)

saddr FE20H-FF1FH Immediate data or label

saddrp FE20H-FF1EH Immedliate data (bit 0 = 0, however) or label

(for 16-bit manipulation)

taddrls | O000H-FFFFH Immediate data or label: Immediate addressing

$addr1s | OO00H-FFFFH Immediate data or label: Relatlve addressing

addrii 800H-FFFH Iamedliate data or label

addr5 40H-TEH Iumediate data {bit 0 = 0, however) or label

word 16-bit immediate data or label

byte 8-bit Immediate data or label

bit 3-bit immediate data or label

n 3-bit immedlate data (0 to 7)

RBn RBO-RB3

Remarks 1. Absolute names (RO to R7 and RPO te RP3) can be

specifled inr, r', rp, and rp', as well as
functlional names (X, A, C, B, E, D, L, H, AX, BC,
DE, and HL).

2. Immediate addressing 1s effective for entire

address spaces. Relative addressing 1s effective
for the lccations within a displacement range of
-128 to +127 from the starting address of the next
instruction.

16 - 2

(2)

Ko m g G w K e

RO-R7
AX:

BC:

DE:

HL:
RPO-RP3:

PC:
SP:
PSW:
CY:
AC:
Z:

RBSO-RBS1:

IE:
STBC:
jdisps:

xxH:

XH, XLI

Register

Register

Register

A
X
B
Register C
Register D
Register E
Register H
L

Register

Register 0 to register 7 (absolute name)

(AX); 16 bit accumulator
(BC)
(DE)
(HL)

Register palr 0 to register pair 3

Register palir
Register pair
Register pair

Register pair

(absclute name)

Program counter

Stack pointer

Program status word

Carry flag

Auxiliary carry flag

Zero flag

Register bank select flag

Interrupt request enable flag
Standby control register

8-bit signed data (displacement:

-128 to +127)

Contents at an address enclosed In
parentheses or at an address Indicated
in a register enclosed in parentheses
Hexadecimal number

Eight high-order bits and eight

low-order bits of 16-bit register pair

186 - 3

(3)

(4)

Numeric symbols in clock field

One clock c¢ycle of an instruction is equilvalent to a

clock cycle of the internal system clock; l/fCLK.
(See Chapter 4.)

The number of clocks varies according to whether the
instruction 1s located 1n the internal ROM or 1n the

external memory,

or according to the memory area to

be accessed. See Section 16.3 for details.

The digit in the clock field is the number of clocks
when the instruction is fetched from the internal

ROM.
Notational symbols in flag operation field
Symbol Explanation
(Blank) | No change
0 Cleared to zero.
1 Set to 1.
X Set or reset according to the result.
R Saved values are restored.

16 - 4

16.1.2 List of operations

- Flag
i?z:rggt Mnemonic Operand Byte | Clock Operation
Z AC CY
r,#byte 2 2 r < byte
saddr, #byte 3 3/5 (saddr) <« byte
sfr,#byte (*1) 3 5 sfr <« byte
r,r' 2 2 r «<r’
AT 1 2 A<T1r
8-bit MOV A,saddr 2 2/4 | A <« (saddr)
data
transfer saddr,A 2 3/5 (saddr) < A
A,sfr 2 4 A <« sfr
sfr,A 2 5 sfr «— A
A, [r3)(*2) 1 5 | A < (FEOOH+r3)
r3=00H-FFH
(ra],a{*2) 1 5 | (FEOOH+r3) < A
r3=00H-FFH

*]

2

{(to be continued)

If STBC 1s written 1in sfr, a different dedicated
instruction having the different byte and clock
counts is generated. (See CPU control instructions.)

If E+ 1s written 1n r3, the contents of register E

are incremented by 1 after instruction execution,
and the number of clocks 1s 8.

16 - 5

{Cont'd)

- Flag
%Eg:r:gt Mnemonic Operand Byte | Clock Operation
Z AC CY
A, [HL) 1 5-7 |A <« (HL)
[HL],A 1 5/7 (HL) < A
A, [HL+) 1 8-10 {A <« (HL),
HL < HL+1
[HL+1,A 1 8/10 | (HL) = A,
HL -« HL+1
A, [DE] 1 5-7 | A <« (DE)
[DE]} ., A 1 5/7 (DE) <« A
MOV A, [DE+] 1 8-10 | A - (DE),
DE <« DE+1
[DE+].,A 1 8/10 | (DE) <« A,
DE <« DE+1
A, taddrls 4 6-8 A <« laddrié
8-bit 'addrl6,A 4 . 6/8 laddrle < A
data
transfer A,word[r1]} 4 7-9 | A < (word+rl)
word[rl],A 4 7/9 | (word+rl) < A
PSW, #byte 3 5 PSW <« byte X X X
PS¥W,A 2 5 PSW «— A X X X
A,PSY 2 4 A < PSW
A.r 1 4 A=<=>r
A,saddr 2 4/8 | A <« (saddr)
A,sfr 3 10 A < sfr
XCH A, [r4] 1 9 A <> (FEOOH+r4)
rd4=00H-FFH
A, [HL] 2 9/13 | A <= (HL)
4, [DE] 2 9/13 | A <— (DE)
A,word[rl] 4 9/13 | A <> (word+rl)

16 - 6

{to be continued)

(Cont'd)

- Flag
i?i;rzgt Mnemonic Operand Byte | Clock Operation
Z AC CY
rp,#word 3 3 rp <« word
saddrp, #word 4 4/8 {saddrp) <= word
sfrp, #word 4 8 sfrp <« wofd
16-bit
data rp,rp’ 2 4 rp <« rp'
transfer | MOVW
AX,saddrp 2 6/10 }| AX <« (saddrp)
saddrp,AX 2 5/9 (saddrp) < AX
AX,sfrp 2 10 AX <« sfrp
sfrp,AX 2 9 sfrp <« AX
A, #byte 2 2 A,CY <« A+byte X X X
saddr, #byte 3 4/8 (saddr),CY < X X X
_ {saddr)+byte
sfr,#byte 4 10 sfr,CY <« sfr+ X X X
byte
r,r' 2 3 r,CY < r+r’ X X X
8-bit
arith- A,saddr 2 3/5 | A,CY «— A+(saddr) [x x X
metic/ ADD
logical A,sfr 3 7 A,CY < A+sfr X X X
A,CY <« A+
A,[r4] 2 7 (FEOOH+1r4) X X X
r4=00H-FFH
A, [HL] 2 8-10 { A,CY <« A+(HL) X X X
A, [DE] 2 8-10 | A,CY <« A+(DE) X X X
A,word[rl] 4 8-10 | A,CY <« A+ X X X
(word+rl)

16 - 7

(to be continued)

(Cont’'ad)

- Flag
%?g;r:gt Mnemonlic Operand Byte | Clock Operation
AC CY
A,#byte 2 2 A,CY <« A+byte+CY X X
saddr, #byte 3 4/8 (saddr),CY <« X x
{saddr)+byte+CY
sfr,#byte 4 10 sfr,CY <« sfr+ X x
byte+CY
r,.r' 2 3 r.CY <« r+r'+CY X X
A,saddr 2 3/5 | A,CY «— A+(saddr) X X
ADDC +CY
A,sfr 3 7 A,CY <« A+sfr+CY X X
A, [rd] 2 7 A,CY <« A+(FEOOH+ X X
T4)+CY r4=00H-FFH
A, [HL] 2 8-10 | A,CY <« A+(HL)+CY X x
. A, [DE] 2 8-10 | A,CY < A+(DE)+CY X X
-bit
arith- A,word[rl] 4 8-10 { A,CY <« A+ X X
metic- (word+rl)+CY
logical
A, #byte 2 2 A,CY <« A+tbyte X X
saddr, #byte 3 4/8 (saddr),CY <« X X
(saddr)+byte
sfr,#byte 4 10 sfr,CY <«sfr+byte X X
r,r' 2 3 r,CY < r+r'’ X X
SUB A,saddr 2 3/5 | A,CY «— A-(saddr) X X
A,sfr 3 7 A,CY <« A-sfr £ X
A,[rd] 2 T A,CY < A-(FEQOOH+ X X
r4) r4=00H-FFH
A,[HL] 2 8-10 [A,CY <« A-(HL) X X
A, [DE) 2 8-10 | A,CY =« A-(DE) X X
A,word[rl] 4 8-10 |(A,CY <« A- X x
{word+rl) '

16 - 8

(to be continued)

(Cont'd)

- Flag
%?E;rggt Mnemonic Operand Byte | Clock Operation
Z AC CY
A,#byte 2 2 A,CY < A-byte- X X X
CY
saddr, #byte 3 4i/8 (saddr),CY <« X X X
{saddr)-byte-CY
sfr, #byte 4 10 sfr,CY <« sfr- E X x
byte-CY
r.r' 2 3 r,CY < r-r'-CY I X X
A,saddr 2 3/5 | A,CY «— X X X
SUBC , A-(saddr)-CY
A,sfr 3. 7 A CY «— A-sfr-CY b S X
A,[r4] 2 7 A CY < A-(FEOOH+ | x x x
r4)-CY r4=00H-FFH
A, [HL] 2 8-10 |A,CY <— A-(HL}-CY |x x x
8-bit A, [DE] 2 8-10 |A,CY =—— A-(DE)-CY |x x X
arith-
metic/ A,word[ri] 4 8-10 [A,CY <« aA- X X X
logical {word+rl)-CY
A,#byte 2 2 A <« A Abyte X
saddr,#byte 3 4/8 {saddr) -« X
(saddr) » byte
sfr,#byte 4 10 sfr sfr A byte X
r,r' 2 3 r < rar’ X
AND
A,saddr 2 3/5 | A < A~ (saddr) X
A,sfr 3 7 A <« A asfr X
A, [r4] 2 T A < A~ (FEOOH+ X
rd4) r4=00H-FFH
A, [RHL] 2 8-10 |A = A~ (HL) X
A, {DE] 2 B-10 |A < A~ (DE) X
A,word([rl] 4 B-10 [A <« A A (word+rl) | x

16

(to be continued)

(Cont'd)

Instruc- . . Flag
Mnemonic Operand Byte | Clock Operation
tion set
Z AC CY
A,#byte 2 2 A < Avbyte X
saddr,#byte 3 4/8 (saddr) = X
(saddr) v byte
sfr,#byte 4 10 sfr < sfr vbyte | x
r,r' 2 3 r<rvr' X
A,saddr 2 3/5 | A <« Av (saddr) X
OR
A,sfr 3 7 A <« Avsfr X
A, lr4] 2 7 A < A v (FEQOH+ X
r4) r4=00H-FFH
A, [HL] 2 8-10 {A < A v (HL) X
A, [DE] 2 8-10] A -« A v (DE) X
8-bit
arith- A,word[rl] 4 8-10 | A <— A v (word+rl) | x
metic/ '
logical A,#byte 2 2 A <« A~Dbyte X
saddr,sbyte 3 4/8 (saddr) < X
(saddr) « byte
sfr,¥byte 4 10 sfr < sfr~byte | x
r,r' 2 3 r < rw~r' X
A,saddr 2 3/5 | A <« A+~ (saddr) X
XOR
A,sfr 3 7 A «— Avsfr X
A,[rd} 2 7 A <« A~ (FEOOH+ X
r4) r4=00H-FFH
A, [HL] 2 8§-10 |A = A~ (HL) X
A,[DE] 2 B-10 |A «— A~ (DE) X
A,word{rl] 4 8-10 | A «— A~ {word+rl) | x

16

(to be continued)

{Cont'd)
Flag
t -
igznr::t Mnemonic Operand Byte | Clock Operation
Z AC CY
A, #byte 2 2 A-byte X X x
saddr, #byte 3 3/5 {saddr)-byte X X X
sfr,#byte 4 T sfr-byte X X X
r,r' 2 a r-r' X x X
8-bit
arith- A,saddr 2 3/5 | A-(saddr) X X X
metic/ CMP
logical A,sfr 3 7 A-sfr X X X
A,[r4] 2 7 A-(FEOQH+r4) X X X
r4=00H-FFH
A, [HL] 2 8-10 | A-(HL) X X X
A, [DE] 2 8-10 | A-(DE) X X X
A,word[rl] 4 8-10 | A-(word+rl) X X x
AX, #word 3 4 AX,CY <« AXs+word X X X
AX,rp 2 6 AX,CY <« AX+rp X X X
ADDW AX,CY «— AX+
AX,saddrp 2 7/11 | (saddrp+1) X X X
16-bit {saddrp)
arith-
metic/ AX,sfrp 3 13 AX,CY «— AX+sfrp [x x x
logical
AX, #word 3 4 AX,CY <—— AX-word |x x X
AX.Tp 2 6 AX,CY «— AX-rp X X X
SUBW AX,CY «— AX-
AX,saddrp 2 7/11 | (saddrp+1) X X x
(saddrp)
AX,sfrp 3 13 AX,CY <« AX-sfrp |x x x

lé - 11

{to be continued)

{Cont'd)

_ Flag
igiﬁrggt Mnemonic Operand Byte | Clock Operation
Z AC CY
AX, #word a 3 AX-word I X X
16-bit]
arith- AX,TD 2 5 AX-rp | x x X
metic/ | CMPW :
logical AX,saddrp 2 6/10 | AX-(saddrp) X X X
AX,sfrp 3 12 AX-sfrp ix X X
AX(16 high-order
bits), rl1(8 low-
muLsw | r(*) 2 | 47 |order bits) < |
AX(signed 16 !
bits} x ri(abso-
lute 8 bits)
Multi-
ply/ AX(16 high-order
divide | MULUW r(*) 2 47 |bits), r(8 low-
‘ order bits) <«
AX xr ;
AX(quotient), |
DIVUW r(*) 2 74 r(remainder) <
AX + 1
r 1 2 r <— r+l X X
INC
saddr 2 3/7 {saddr) - X X
) (saddr)+1
Incre-
ment/ r 1 2 r «— r-1 X X
decre- DEC :
ment saddr 2 3/7 | (saddr) < PXX
(saddr)-1
INCW rp 1 3 rp < rp+l
DECW rp 1 3 rp < rp-1

{to be continued)

* Except for the registers A and X.

16 - 12

{Cont'd)

Instruc- Flag

tion set Mnemonic Operand Byte | Clock Operation

Z AC CY

(CY,r7 < Iy,
ROR r,n 2 3+2n I'p-1 < rm) in X
n=0-7

(CY,rg < rq,
ROL r,n 2 3+2n |rp, < Ip) xn X
n=0-7

(CY < ro.r7+CY.
RORC T,n 2 3+2n rp-1 < T Y xn X
n=0-7

m

(CY <~ Xq.Tg <
ROLC r,n 2 3+2n CY.rm+% <~ rp) X X
n n=0-7

[CY <« rg.ry <
SHR r,n 2 3+2n | 0,Trp_ < 1) X x 0 x
n n=0-7

Shift/ (CY < rq.ry <
rotate SHL r,n 2 3+2n 1 0,rp, < rp) x x 0 x
n n=0-7

(CY <= rpg,
SHRW rp,n 2 3+3n IPyg < O,rpm_l x 0 X
< Ipp) X1
n=0-7

{CY -« IPy5.
SHLW rp,n 2 3+3n | rpy <« 0.IPppyy x 0 x
<= Ipp) X N
n=0G-7

Aq_o < (FE0O+
rd)4_g. (FE0O+
ROR4 [r4] 2 22 rd)y_4 < Ag_g.
(FE0O+r4),_o <
(FE0O+r4),_4

r4)7_4. (FEOO+
ROL4 (r4) 2 23 rd)s.o < As_g.
(FEOO+rd);_ 4 <
(FE00+r4)3_0

{to be continued)

i6 - 13

(Cont’'ad)

Flag
nstruc-
iion set Mnemonic Operand Byte | Clock Operation
Z AC CY
Decimal Adjust
ADJBA 1 3 Accumulator after | x x X
BCD Addition
correc-
tion Decimal Adjust
ADJBS 1 3 Accumulator after | x x X
Subtract
CY,saddr.bit 3 5/7 CY < (saddr.bit) X
CY.sfr.bit 3 7 CY «— sfr.bit X
CY, A.bit 2 5 CY «— A.bit X
CY,X.bit 2 5 CY «— X.bit X
CY,PSW.bit 2 5 CY - PSW.hit X
MOV1 '
saddr.bit,CY 3 8/12 | (saddr.bit) -« CY
sfr.bit,CY 3 12 sfr.bit «— CY
A.bit,CY 2 8 A.bit -— CY
Bit X.bit,CY 2 8 X.bit «— CY
manipu-
lation PS¥.bit,CY 2 7 PSW.bit < CY X x
CY,saddr.bit J 5/7 CY -« CY~ X
(saddr.hit)
CY,/saddr.bit 3 5/7 CY <« CYa X
(saddr.bit)
CY,sfr.bit 3 7 CY < CYAsfr.bit X
AND1
CY,/sfr.bit 3 7 CY <« CYASsfr.bit X
CY.A.bit 2 5 CY «— CYAA.bit : X
CY,/A.bit 2 5 CY < CY~A.BbitT X
CY.X.bit 2 5 CY «— CY~ X.bit X

{to be continued)

(Cont'd)

. Flag
Instruc-
tion set Mnemonic Operand Byte | Clock Operation
Z AC CY
CY,/X.bit 2 5 CY < CYAX.bit X
AND1 CY,PSW.bit 2 5 CY - CY~ PSW.bit X
CY,/PS¥.bit 2 5 CY «— CY~ PSW.bit X
CY,saddr.bit 3 5/7 CY «— CYv X
{saddr.bit)
CY,/saddr.bit 3 5/7 CY <« CYv X
(saddr.bit)
CY,sfr.bit 3 7 CY < CY vsfr.bit X
CY,/sfr.bit -3 7 CY < CY vsfr.bit X
CY,A.bit 2 5 CY «— CYv A.bit X
Bit OR1 :
manipu- CY,/A.bit 2 5 CY < CY v A.bit X
lation
CY,.X.bit 2 . 5 CY <« CYv X.bit X
CY,/X.bit 2 5 CY «— CYv X.bit X
CY,PSW.bit 2 5 CY < CY vPSW.bit X
CY,/PS¥W.bit 2 5 Y — CY v PSW.bit X
CY,saddr.bit 3 5/7 CY «— CY ~ X
{(saddr.bit)
CY,sfr.bit 3 7 CY «— CY-~sfr.bit X
X0R1 CY,A.bit 2 5 CY «— CY~A.bit X
CY,X.bit 2 5 CY «— CY-+X.bit X
CY,PS¥.bit 2 5 CY <« CY-~PSW.bit X

16 - 15

(to be continued)

(Cont'd)

Flag
truc-
%Tinrset Mnemonic Operand Byte | Clock Operation
72 AC CY
saddr.bit 2 3/7 {saddr.bit) =« 1
sfr.bit 3 10 sfr.bit <« 1
SET1 A.blt 2 6 A.blt =— 1
X.bit 2 6 X.bit «— 1
PSW.bit 2 5 |PSW.bit <« 1 X x X
saddr.bit 2 3/7 (saddr.bit) = 0O
sfr.bit 3 10 sfr.bit <« 0
CLR1 A.bit 2 6 A.blt < 0
Bit X.hit 2 6 X.bit =— 0
manipu-
lation PSW.bit . 2 5 PSW.bit < 1 X X X
saddr.bit 3 6/10 | (saddr.bit) <«
(saddr.bit)
sfr.bit 3 10 sfr.bit -«
sir.bit
NOT1 A.bit 2 6 A.blt <— A.BIT
X.bit 2 6 X.bit <« X.bit
PSW.bit 2 5 PSW.bit -« X x X
PSW.bit
SET1 CY 1 2 CY <= 1 1
CLR1 CY 1 2 CY — 0 0
NOT1 cY 1 2 CY « TY X

(to be continued)

16 - 186

(Cont’'d)

Instruc-
tion set

Flag

Mnemonic Operand Byte | Clock Operation
Z AC CY

Ccall/
return

(SP-1)(SP-2) <
laddr16 3 11/15 | PC+3,PC <!addrl6
SP < SP-2

CALL
(5P-1) (S5P-2) =
rp 2 12-16 | PC+2,PC =— 1D
SP «— SP-2

(SP-1) (8P-2) <

PC+2,PCqo 14 <01,
CALLF taddril 2 |11/15 PClOOE%éddl‘ll-

SP <« 5P-2

(SP-1){SP-2) <
PC+1,PCH -«
CALLT [addr5] 1 14/18 (addr5+l).PCL -
{addr5s),

SP <« SP-2

RET 1 |10/14 [Pcy < (SPs1),
SP <« SP+2

PC; < (SP),
RET1 1 15/21 | PCy < (SP+1}, R R R
PSW < (SP+2},
SP <« SP+3

Stack
manipu-
lation

(SP-1) <« rpy.
rp 1 B/12 | (SP-2) <« Py,
SP -« SP-2

PUSH

PSW 1 S/7 (SP-1) <« PSW,
SP « SP-1

rp;, < (SP),
rp 1 11/15 | rpy (SP+1},
SP <« SP+2
POP

PS¥W 1 6/8 | PSW <« (SP), R R R
SP <« SP+1

Remark:

{(to be continued)

When high-order 8 bits (SP8-5P15) are changed in the
call return or the stuck manipulation instructions, the

number of clocks is incremented by one or two.

16 - 17

{Cont'd)

- Flag
%g:ﬁr:gt Mnemonic Operand Byte | Clock Operation
Z AC CY
SP, #word 4 8 SP «— word
Stack
manipu- MOVW SP,AX 2 9 SP <— AX
lation
AX,SP 2 10 A¥X <« SP
taddrle 3 5 PC < l!addrlé
Uncondi-
tional BR TP 2 6 PCH < Ipy.
branch PCL < Ipp,
$addrié 2 4 PC <« PC+2+jdisp8
BC PC < PC+2+jdisp8
$addris 2 4(2) | if CY=1
BL
BNC : PC <« PC+2+jdisp8
$addris 2 4(2) |1f CY=0
BNL
BZ PC <« PC+2+jdisp8
Condi- $addrisé 2 4(2) | if Z=1
tional BE
b h
ranc BNZ PC <« PC+2+jdisp8
$addrls 2 4(2) |if Z=0
BNE
saddr.bit, 3 7(5) |PC <« PC+3+jdisp8
$addris 1f (saddr.bit)=1
BT sfr.bit,%addrils 4 9(7) | PC <« PC+4+jdisp8
if sfr.bit=1
A.bit,$%addrlé 3 7(5) | PC <« PC+3+jdisp8
if A.bit=1
(to be continued)
Remark: Values in parentheses in the clock field of the

conditional branch instruction indicate the number of

clocks when no branch was taken.

186

{Cont'd)

Flag
t - <
%?znrzgt Mnemonic Operand Byte | Clock Operation
Z AC CY
X.bit,K%addrlé 3 7(5) | PC <— PC+3+jdisp8
if X.bit=1
BT
PSW.bit,$addrlé 3 7(5) | PC = PC+3+jdisp8
if PSW.bit=1
saddr.bit, 4 7(5) | PC < PC+4+jdisp8
$addris if (saddr.bit)=0
sfr.bit,%addrl6 | 4 9(7) | PC «— PC+4+3jdsip8
if sfr.bit=0
BF A.bit,$addrl6 3 T(5) | PC < PC+3+jdsip8
1f A.bit=0
X.bit,$addri6 | 3 7(5) | PC < PC+3+3disp8
if X.bit=0
Condi- PSW.bit,$addri6 | 3 7(5) | PC < PC+3+jdisp8
tional ‘ if PSW.bit=0
branch
PC <« PC+4+jdisp8
saddr.bit, 4 9(5) | if (saddr.bit)=1
$addrile then reset
{saddr.bit)
PC < PC+4+3jdisp8
sfr.bit, 4 13(7) | if sfr.bit=1
$addrilé then reset
sfr.bit
BTCLR PC <« PC+3+jdisp8
A.bit,$addrlé6 3 9(5) [if A.bit=1
then reset A.bit
PC <« PC+3+jdisp8
X.bit,%addrls 3 9(5) |if X.bit=1
then reset X.bit
PSW.bit, PC <« PC+3+jdisp8
$addrile 3 B(5) | if PSW.bit=1 then| x x X
reset PSW.bit
(to be continued)
Remark: Values in parentheses in the clock field of the

conditional branch instruction indicate the number of
clocks when no branch was taken.

18 - 19

{Cont'd)

Flag
struc-
I? Mnemonic Operand Byte | Clock Operation
tion set
Z AC CY
r2 <« r2-1, then
r2,%addris 2 5(3) | PC < PC+2+jdisp8
Condi- if r2xo
tional DBNZ
branch saddr < saddr-1,
saddr, $addri18 3 6{4) | then PC <«
PC+3+Jdisp8
if saddri0
Mov STBC, #byte 4 9 STBC <= byte
SEL RBn 2 2 RBS1-0 «— n
n=0-3
CPU NOP 1 2 No Operation
control
EI 1 2 IE < 1(Enable
' Interrupt)
DI 1 2 IE <« 0{(Disable
Interrupt)
Remark: Values in parentheses in the clock field of the

conditional branch instruction indicate the number of

clocks when no branch was taken.

16 - 20

16.2 Instruction Codes

16.2.1 Legend

(1) Symbecls of instruction codes

r, r' rl r2
R2 Rl RO R5 reg RO reg
reg
R R R 0 A 0 C
6 5 4 1 B 1 B
0 0 0 RO| X
0 0 1 R1| A
0 1 0 R2| C r3 rd
0 1 1 R3 B
1 0 1 R5| D
1 1 0 R6 L 0 0 E Rg | TEE
1 1 1 RT| H 0 1 E+
1 0 D R4
rp, rp' 0 E
1| D

P2 Pl reg-pair

Pg Pg

0 0 |RPO| AX

0 1 |RP1| BC

1 0 RP2 DE

1 1 |[RP3| HL
Bn: Immediate data for the bit operand
N,: Immediate data for the n operand

Data: 8-bit immediate data for the byte operand

Low/High Byte:
16-bit immediate data for the word operand

16 - 21

Saddr-offset:
Offset data for elght low-order bits of
16-bit address for the saddr operand

Sfr-offset:
Offset data for eight low-order blits of
16-bilt address of special function register

(sfr)

Low/High Offset:
16-bit offset data for the word operand in

indirect addressing

Low/High Addr.:
16-blt immediate data for the addrl6 operand

jdisp: Signed 2's complement data (8 bits)
Indicating the relative address displacement
from the starting address of the instruction
next to the branch address

fa: 11 low-order bits of immediate data for the
addrll operand

ta: Five low-order bits of ilmmediate data for
(addr5 x 1/2)

Caution: If registers or reglster palrs are
specified as both the first and second
operands in the operand field, the
instruction code is as follows.

16 - 22

In a register specification byte, four
high-order bits are used for the first
operand specification code, and four low-
order bits are used for the second operand

specification code.

Example: MOV r,r°'

Instruction Code

00100100| |0RgRs Ry ORyRy Ry

If register B 1Is speclifled as the first
operand and register C as the second
operand, the following instruction must be
written:

MOV B,C
Then, the Instructlon code is as follows:

Instruction Code

00100100 00110010
—mar’ _v_/.

L— Reglster C
specification
code

Register B
specification
code

16 - 23

16.2.2 List of instruction codes

Instruction code

Instruc-
tion set | Mnemonle Operand
Bl B2 B3 B4
r,#byte 1011 1Ry Ry Rp| < Data -
saddr,#byte |0 011 10 1 0 |« Saddr-offset —| Data
sfr,#byte 0010 10 1 1 | = Sfr-offset —| Data
r,r' 0010 01 O 0 |ORgRgRy ORyRy Ry
Ar 1101 0RyRyRy
A,saddr 0010 00 0 0 | «— Saddr-offset —
saddr,A 00610 00 1 ¢ { -« Saddr-offset —
A,sfr 0001 00 0 O (= Sfr-offset -
sfr,A 0001 _0 0 1 0 |« Sfr-offset -
A, [r3) 0111 11 Ry Ry
[r3],A 0111 10 Ry Ry
A, [HL] 0101 11 0 1
[HL].A 0101 01 0 1
8-bit -
data A, [HL+] 0101 10 0 1
transfer | MOV
[HL+],A 0101 00 0 12
A, [DE] 0101 11 00
[DE],A 0101 01 0 O
A, [DE+] 0101 10 0 0
[DE+],A 0101 00 0 O
A, laddrls 0000 10 0 1 11 1 1 00 0 0 Low High
. Addr. Addr.
taddrls, A 0000 10 0 1 11 11 co 0 1 Low High
Addr. Addr.
A,word{rl1] D000 10 1 0 00 R5 1 00 0 O Low High
Offset | Offset
word[rl],.A 0000 10 1 0 10 Rs 1 00 0 0 Low High
Offset | Offset
PS¥, #byte 6010 10 1 1 11 1 1 11 1 0 -Data
PSW, A 0001 00 1 011 1 1 11 1 0
A, PSW 0001 00 0 O 11 1 1 11 1 0

(to be contlinued)

16 - 24

(Cont'd)

Instruction code

i?::rzsg Mnemonic Operand
: Bl B2 B3 B4
AT 1
A, saddr 0 Saddr-offset —
A, sfr 0 001 O 00 1 | Sfr-
Cffset
8-bit
data XCH A,[r4] 1
transfer
A, {HL] 0 010 1 01 0
A, [DE] 0 010 0 01 0
A,word{rl] 1 00Rg1 01 0 | Low High
Offset | Offset
rp,#word 0 Low Byte — | High
Brte
saddrp, rword ‘1 Seddr-offset — | Low High
Byte Byte
sfrp,#word 1 Sfr-offset — | Low High
16-bit Brte Byte
data MOVW
transfer rp,rp’ 0 P 0 1P, P 0
AX,saddrp 1 Saddr-offset —
saddrp,AX 1 Saddr-offset —
AX,sfrp 0 Sfr-offset —
sfrp,AX 0 Sfr-offset —
A,rbyte 1 Data —
saddr,#byte 1 Saddr-offset —| Data
sfr,#byte 0 1 ¢ 160 0 | 5fr- Data
Offset
r,r' 1 Rs R4 0 R2 Rl Ro
8-bit A,saddr 1 Saddr-offset —
arith- ADD
metic/ A,sfr V] 0 1 10 0 | Sfr-
loglcal of fset
A,[r4] 0 1 R4 10 0 0
A, [HL] 0 01 10 ¢ O
A, [DE) 0 0 0 10 0 0
A,word[rl] 1 Ry 1 10 0 0 | Low High
Offset | Offset

{(to be continued)

(Cont'd)

Instruc- Instruction code
tion set Mnemonlic Operand
' Bl B2 ‘ B3 B4
A,#byte 1010 10 0 1 |« Data -
saddr,#byte |0 110 10 0 1 { -« Saddr-offset —| Data
sfr,#byte 0000 00 0 1101 1 0 10 0 1 |Sfr- Data
offset
A,saddr 1001 10 0 1)<« Saddr-offset —
ADDC
A,sfr 0000 OO O 1110 0 1 10 0 1 |&fr-
offset
A.[r4) 6001 061 1 0|0t 1 R 10 0 1
A, [HL] 0001 01 1 0O 01 0 1 10 0 1
A, IDE] 0001 p 11 0101 0 0 10 01
A,word[rl] 0o000C 10 1 000 Rg 1 10 0 1 | Low Righ
Offset| Offset
A,#byte 1010 10 1 0 -~ Data -
8-bit saddr,#byte |0 110 10 1 0 | «— Saddr-offset —| Data
arith- -
metic/ sfr,#byte o000 00 O 101 1 0 10 1 0 |Sfr- Data
logical offset
r,r' 1000 10 1 010 Rg R5 Ry 0 Ry Ry Ry
A,saddr 1001 10 1 0 |+« Saddr-offset —
SuB
A.sfr o000 00 O 1|10 0 1 10 1 0 |Sfr-
of fset
A, [rd] 0001 01 1 0|01 1 Ry 10 1 0
A, [HL] 0001 01 1 0)JOo1 01 10 1 0
A, [DE] 0001 01 1 0O 01 0 O 10 1 0
A.word[rl] 0000 10 1 000 Rgl 10 1 0 |Low High
Offset| Offset
A, fbyte 1010 10 1 1 | « Date -
saddr,sbyte | 0110 10 1 1 | <« Saddr-offset —| Data
SUBC sfr,#byte 0000 0O O 1 c1 1 0 106 11 Sfr- Data
offset
r,r' 1000 10 1 170 Rg Rs Ry O Ry Ry Ry
A.saddr 1001 10 1 1 |-« Saddr-offset —

(to be continued)

16 - 26

(Cont'd)

Instruction code

%gz;rgg; Mnemonic Operand
B1 B2 B3 B4
A,sfr 0 00 0 10 01 10 1 1 |Sfr-
: offset
A, [rd} 1 01 1 01 1 Ry 10 1 1
SUBC A, [4L) 1 01 1 01 01 10 1 1
A, [DE] 1 011 01 0 0 10 1 1
A,word[rl) 0 10 1 00 Rgl 10 1 1 |Low High
Offset| Offset
A,#byte 0 11 0 “~— Data -
saddr, #byte 0 11 0 <« Saddr-offset ->| Data
sfr.#byte 0 00 O 01 1 0 11 0 0 Sfr- Data
offset
A, saddr 1 11 0 « Saddr-offset —
AND
A,sfr 0 00 O 10 01 11 0 O [Sfr-
offset
8-bit
arith- A,[r4] 1 01 1 01 1 Rg, 11 0 0
metic/
logical A.[HL] 1 01 1 01 01 11 0 0
A, [DE] 1 01 1 010 O 11 0 0
A,word(rl]) 0 10 1 00 R5 1 11 0 0O Low High
Offset| Offset
A,zbyte 0 11 1 - Data -
saddr.#byte 0 11 1 <« Saddr-offset — | Data
sfr,#byte 0 00 O 01 1 0 11 1 0O Sfr- Data
offset
A,saddr 1 11 1 <« Saddr-offset —
OR A.sfr 0 00 O 10 01 11 1 0 |Sfr-
offset
A, [rd] 1 01 1 01 1 R4 11 1 0
A, [HL] 1 01 1 01 01 11 1 0
4, [DE] 1 01 1 61 00 11 1 0
A,word(ri1} 0 10 1 00 RS 1 11 1 ¢ Low High
Offset| Offset

16

27

{to be contlnued)

{Cont'd)

Instruc-

Instruction code

Mnemonic Operand
t
tion se BY B2 B3 B4
A,#byte 0 11 0 -« Data -
saddr, #byte 0 11 0 <~ Saddr-offset —| Data
sfr,£byte 0 o0 O 01 1 ¢ 11 0 1 |S&fr- Data
offset
r,r' 0 11 0 0 Rg Rg Ry 0 Ry Ry Ry
A,saddr 1 11 0 «- Saddr-offset —
XOR
A,sfr 0 00 0 10 0 1 11 0 1 |sfr-
offset
A, [r4] 1 01 1 01 1 Ry 11 0 1
A, [HL] 1 01 1 01 0 1 11 0 1
A, [DE] T 01 1 01 0 0 11 0 1
8-bit A,word([rl) 0 10 1 00 R;1 11 0 1 |Low High
arith- Offset | Offset
metic/
logical A, #byte 0 11 1 - Data -
saddr, fbyte 0 11 1 <« Saddr-offset —| Data
sfr,ibyte 0 00 O 011 0 11 1 1 |Ssfr- Data
offset
A, saddr 1 11 1 <« Saddr-offset —
CcMp
A, sfr 0 00 O 10 0 1 11 1 1 Sfr-
of fset
A, [rd] 1 01 1 01 1 R4 11 1 1
A, [HL] 1 01 1 01 ¢ 1 11 11
A, [DE] 1 01 1 01 0 0O 11 1 1
A.word([r1) ¢ 10 1 00 Rg 1 11 11 low High
Offset | Offset
AX,#word 0 11 0 -~ Low Byte = | High
Byte
16-bit
arith- AX,rp 0 10 0 00 0 0 1P,P;0
metlc/ ADDYW
logical AX,saddrp 1 11 0 <« Saddr-offset —
AX,sfrp 0 00 O 00 0 1 11 01 5fr-
offset
{to be continued)
16 - 28

(Cont'd)

Instruc- Instruction code
tion set Mnemonic Operand
Bl B2 B3 B4
AX, #word 0010 11 1 0 |« Low Byte — | High
Byte
AX,rp 1000 101 0|00 0O 0O 1P,P; 0
SUBW
AX,saddrp 0001 131 1 0 |= Saddr-offset —
16-bit AX,sfrp pooo 00 o 1|00 0 1 11 1 O |5fr-
arith- offset
metic/
logical AX, #word 0010 11 1 1 |~ Low Byte — | High
Byte
AX.rp 1000 131 1 1)00 0 0 1P;P 0
CMPW
AX,saddrp 0001 11 1 1 (<« Saddr-offset —
AX,sfrp o000 OO O 1 (00 O 1 11 1 1 |[Sfr-
offset
MULSW r 0000 01 0 1 00 1 1 0 R2 Rl RO
Multi- ‘
ply/ MULUW T 0000 01 0 1|00 0 0 ©RgRyRy
divide
DIVUW r go0o00 01 0 1 00 0 1 1 R2 Rl RO
r 1100 0RyRyRy
INC
saddr 0010 01 1 0 | <« saddr-offset —
Incre-
ment/ T 1100 1Ry Ry Ry
decre- DEC
ment saddr 60010 01 1 1 |« saddr-offset —
INCW rp 0100 01 Py Py
DECW rp 0100 11 Py Py
ROR r,n co011 00 0 O 01 N2 Nl NO R2 Rl RO
ROL r,n 00 0 1 |01NyRN; NgRyRy Ry
Shift/ ROLC r,n 00 0 1 |00NyN;, ©NgRyRyRy
rotate
SilR r,n 00 0 0 |10NyN; NgRgRy Ry
SHL r,n 00 0 1 |10Ny,5 NgRyRyRy
SHRW rp.n 00 0 0 | 11N, Nl Ng Pp Py O

{to be continued)

16 - 29

(Cont'd}

Instruc- Instruction code
tion set | Mnemonic Operand
Bl B2 B3 B4
SHLW Ip,n 011 00 0 11K, K NgPyPy O
Shitt/
rotate ROR4 {r4] 0000 01 0 100 0 1 0R1
ROL4 (r4] 0000 01 O 100 1 1 0 Ry 1
ADJBA 0000 11 1
BCD
correc- -
tion ADJBS 0000 11 1
CY,saddr.bit |O QOO0 10 O 000 0 0 By By By|Saddr-
offset
CY.sfr-blt 10 0 1 B2 Bl Bo Sfr-
offset
CY,A.bit 00 1 1 B, By By
CY,X.bit 00 1 0 By By By
CY,PSW.bit 00 1 0 By By By
MOVl
saddr.bit,CY 10 © 000 1 0 By By By|Saddr-
offset
sfr.bit,CY 10 0 1 B, By BySfr-
offset
A.bit,CY 00 1 1 By By By
Bit X.bit,CY 00 1 0 By By By
manlipu-
lation PSW.bit,CY 00 1 0 By By By
CY,saddr.bit| 0000 10 0 001 0O 0 B, By By|Saddr-
offset
CY|/Saddr- 001 1 0 B2 Bl Bo Saddr-
bit offset
CY.Sfr.bit 001 0 1 B2 Bl Bo Sfr-
offset
AND1
CY,/sfr.bit 001 1 1 By By ByySfr-
offset
CY,A.bit 00 1 001 0 1 B2 Bl BO
CY,/A.blt 001 1 1 By By By
CY,X.bit 001 0 0 By By By
CY,/X.bit 001 1 0 By B B
(to be continued)
16 - 30

(Cont'd)

Instruction code

truc-
i?zn set Mnemonic Operand
Bl B2 B3 B4
CY,PS¥.bit 0000 00 1 0 |001 O 0 By Bl By
AND1
CY,/PS¥W,bit 00 1 0 001 1 0 By By BO
CY,seddr.bit |0 O0CQO0O 10 0 002120 O 0 By By By Saddr-
offset
CY,/saddr. 010 1 0 By By Bg|Saddr-
bit of fset
CY,sfr.bit 010 0 1 B, By Bp|Sfr-
offset
CcY,/sfr.bit 010 1 1 B, By By|Sfr-
offset
OR1
CY, A.blt 00 1 11010 0 1 B, By By
CY,/A.bit 010 1 1 By By By
CY.X.bit 010 0 0 By By By
CY,/X.bit 010 1 0 B, By By
Bit CY,PSW.bit 00 ¥ 0|OL10 O 0 By By By
manipu-
lation CY,/PSW.bit 00.1 0|0D10 1 0 By By By
CY,saddr.bit|0O0OCO 10 0 01011 O 0 By By BgiSaddr-
offset
CY,sfr.bit 10 0 O 1 B, By By|Sfr-
offset
XOR1
CY.A.bit 00 1 1 1 B, By By
CY,X.bit 00 1 1 0 B, By By
CY,PSH.bit 00 1 0 0 By By By
saddr.blt 1011 0 82 Bl BO -— Saddr-coffset -
sfr.bit 0000 10 0 0]100Q O 1 B, By By|Sfr-
offset
SET1
A.bit 00 11 1 - By B By
X.bit 00 1 1 0 By B; By
PSK.bit 00 1 ¢ 0 By B) By
{to be continued}
16 - 31

{Cont'd)

Instruc-
tion set

Mnemonic

Operand

Instruction code

Bit
manlipu-
lation

CLR1

saddr.bit

sfr.bit

A.bit

1.bit

PS¥.bit

NOT1

saddr.bit

sfr.bit

A.bit

X.bit

PSW.bit

SET1

CY

CLR1

cY

NOT1

CY

Call/
return

CALL

1addrlé

rp

CALLF

laddril

CALLT

[addr5)

RET

RETI

Stack
manipu-
lation

PUSH

rp

PSW

POP

rp

PSW

MOVH

SP,#word

SP,AX

AX,SP

B3 B4
<+ Saddr-offset —
1001 1 By By By|str-
offset
1 By By By
0 By By By
0 B, B; B
0111 0 By By By Saddr-
offset
BRI e
1 By By By
0 B; By B
0 By By By
-— Low Addr. -> | High
Addr.
0101 1Py P 0
fa -
1111 11 0 0 Low High
Byte Byte
1111 11 0 0O
1111 11 0 0

(to be continued)

{Cont'd)

Instruction code

igz;rgg; Mnemonic Operand
Bl B2 B3 B4
taddrié 0010 11 0 0 | = Low Addr. — | Kigh
Uncondi- Addr.
tional BR
branch rp 0000 01 0 1 |0101 1P, P; 0
$addris 0001 01 0 0 |- jaisp —
BC
$addris 1000 00 1 1 |« jdisp -
BL
BNC
: $addrié 00 1 0 |« jdisp . =
BNL
B2
$addrié 00 0 1 | <« jdisp -
BE
BNZ
$addrie 00 0 0 | - Jdisp -
BNE
saddr.bit, 0111 0By By By < Saddr-offset —-| jdisp
$addrlé
sfr.bit, 0000 10 0 0 |1011 1 By By By | Sfr- Jdisp
Condi- $addrlé offset
tional
branch A.blt, 00 1 1 1 By By By | ddisp
BT $addrié
X.bit, oo 1 1 0 B, By By | jdisp
$addris
PSW.bit, 00 1 0 0 By By By | Jdisp
$addrilé
saddr.bit, 0000 10 0 0 [1010 0 By By By | Saddr- [jdisp
$addrié offset
sfr.bit, 10 0 0 1 By By By | Sfr- jdisp
$addrls offset
A.bit, 00 1 1 1 B, By By | Jjdisp
BF $addrilé -
X.bit, 00 1 1 0 By By By | Jdisp
$addris '
PS¥.bit, 00 1 0 0 By By By | Jdisp
$addrl6
(to be continued)
16 - 33

{Cont'd)

Instruction code

t -
%?ﬁnrggt Mnemonic Operand
Bl B2 B3 B4
saddr.bit, 0000 10 © 01101 0 B, By Bg | Saddr-| jdisp
$addri1s offset
sfr.bit, 10 0 ¢ 1 By By By | Sfr- jdisp
$addris offset
A.bit, 00 1t 1 1 By By By | Jdisp
BTCLR $addrisé
Condi-
tional X.bit, co0 1 1 0 B, Bl BO jdisp
branch $addrié
PSKW.bILL, 00 1 0 0 B, By By | jdisp
$addrle
r2,$addrls 0011 00 1 Ry| = jdisp —
DBNZ
saddr, 0011 10 1 1 |+ Saddr-offset —-| jdisp
$addrié6
Mov STBC, #byte 0000 10 0 1 (1100 00 0 0O Data Data
SEL RBn 0000 01 0 1 (1010 10 Ny Np
CPU
control NOP 0000 OO0 0O O
EI 0100 10 -1 1
DI 0100 10 1 O
18 - 34

16.3 Number of Clocks of the Instructions

186.3.1 Legend

(1) Number of clocks according to the different memory
spaces

The number of clocks of the instructions varies
according to the memory area where the instruction
to be executed 1s located or where data 1s read from
or written into.

Memory areas are classified as follows:

(1) Instruction fetch (memory in which the
instruction 1is located)

Fetch from
Internal ROM: Values in these columns
- indicate the number of clocks
when a program in the internal
ROM is executed with MM
register IFCH = 1 (high-speed
fetch).

Fetch from

External ROM: Values 1in these columns
indicate the number of clocks
when a program is executed 1in
the external programmable

memory.

16 - 35

(ii) Access memory (where data is read from or
written into)

JROM: Internal program memory

IRAM: Area FEOOH-FEFFH of the internal RAM
PRAM: Area FC8OH-FDFFH of the internal RAM
SFR: Special function reglster

EMEM: External memory

(2) Numeric symbols in clock field

One clock cycle of an instruction is equivalent to a
clock cycle of the 1nternal system clock: 1/fCLK'
(See Chapter 4.)

(i) n in the clock field of the shift/rotate
instruction indicates the number of bits to
be shifted.

(11) The value in parentheses in the clock field
of the conditional branch instruction
indicates the number of clocks when no branch

was taken.

(iii) Values in parentheses in the clock fields of
the call/return and stack manipulation
instructions are the numbers of clocks
requlred to change the high-order elight bits
of the stack pointer.

(iv) Blank filelds indicate the memory areas which

cannot be accessed.

16 - 36

16.3.2 Numbers of c¢locks of the Instructlons

the next page.

16

- 37

Clocks
Instruc-
tion Mnemonic Operand Byte Fetch from internal ROM Fetch from external ROM
set IROM | IRAM | PRAM | SFR | EMEM | IROM | IRAM | PRAM | SFR | EMEM
T.#byte 2 2 6
saddr,#byte 3 3 5 9 9
str,#bytel*l) 3 5 9
r,r’ 2 2 6
At 1 2 3
A.saddr 2 2 4 6 6
saddr , A 2 3 5 6 8
A,sfr 2 4]
sfr,A 2 5 6
A [r31(*2) 1 5(6) 6(7)
(ra),al*2} 1 5(6) 6(7)
A, [HL] 1 8 5 T 7 7 T 6 8 8 8
8-bit [HL].A 1 5 T 7 7 & B8 B8 8
data
transfer | MOV A, [HL+] 1 8 8 10 10 10 10 9 11 11| 11
[HL+], A 1 8 10 10 10 9 11 11 11
A.[DE) 1 6 5 7 7 7 7 6 8 8 8
[DE] ., A 1 5 7 7 7 6 8 8 8
A, (DE+] 1 9 8 10 10 10 10 9 11 11 11
[DE+],A 1 8 10 10} 10 9 11 11| 11
A, laddrlé 4 7 6 8 8 8 15 14 16 16
taddrl6, A 4 & 8 8 8 14 16 17
A,wordlrl) 4 8 T 9 g 9 15 14 16 16| 16
word{rl], A 4 7 9 9 9 14 16 16 | 18
PSW,A 2 S 6
A, PSK 2 4 6
PS¥,#byte 3 5 9
{to be continued)
Remark: The ltems marked an asterisk are explained on

{Cont'd)

Clocks
Instruc-
tion Mnemcnic Operand Byte Fetch from internal ROM Fetch from external ROM
set
IROM | IRAM | PRAM | SFR | EMEM | IROM | IRAM | PRAM | SFR | EMEM
A.r 1 4 4
A,saddr 2 4 8 6 10
A,sfr 3 10 13
8-bit 3]
data XCH +3
.(rd 1 9
transfer A.[ra) 10(9)
A, [HL] 2 i 13 13 13 12 16 16 16
A.|[DE} 2 .9 13 13| 13 12 16 16| 18
A,word[r1] 4 9 13 13| 13 16 20 20| 20

{to be continued)

#1 If STBC is written in sfr, a different dedicated

Instruction having the different byte and clock

counts is generated.

(See CPU control instructions.)

#2 If E+ is written in r3,

are incremented by 1 after instruction execution,

the number i1s changed to the values enclosed in
parentheses.

the contents of register E

=3 10 clocks for the uPD781386,
the IE-78130-R.

18 -

38

uPD78138,

uPD78P138,

and

and

{Cont'd)

Clocks
Instruc-
tion Mnemonic Operand Fetch from internal ROM Fetch from external ROM
set
IRAM | PRAM | SFR | EMEM | IROM | IRAM | PRAM | SFR | EMEM
rp.»word 3 9
saddrp, #word 4 8 12 12
sfrp,#word 8 12
16-bit rp.rp" 4 &
data MOVW
trans- AX,saddrp [10 8 12
fer
saddrp,AX 5] 1 12
AX.sfrp 10 12
sfrp.AX 9 12
A.#byte 2 3
saddr.#byte 4 8 9 11
sfr.4byte 10 14
r,r' 3 7
ADD A,saddr a 5 6 7
A,sfr 7 10
A, [rd} 1 11
A, {HL] 8 10 10 10 13 12 14 14 14
B-bit A, [DE] 8 10 1¢ 10 13 12 14 14 14
arith-
netic/ A,word[ri) 8 10 10 10 14 15 17 17 17
loglcal
A,#byte 2 [
saddr,#byte 4 8 9 11
sfr.#byte 10 14
r,.r' 3 7
ADDC
A,saddr 3 5 6 7
A,sfr 7 10
A.[rd) 7 11
A, [HL) 8 10 10 10 13 12 14 14 14

39

{to be contlnued)

(Cont'd}

Clocks
Instruc-
tion Mneronic Operand Byte Fetch from internal ROM Fetch from external ROM
et IROM | IRAM { PRAM | SFR | EMEM ; IROM | IRAM | PRAM | SFR | EMEM
A, [DE] 2 9 8 10 10| 10 13 12 14 4| 14
ADDC
A,word[rl) 4 9 8 10 10{ 10 14 15 17 171 17
A, #byte 2 2 &
saddr,xbyte 3 4 8 9 il
sfr,#byte 4 10 14
r.r’ 2 3 7
SUB A,saddr 2 3 5 & T
A, sfr 3 7 10
A.[r4) 2 7 11
A, [HL] 2 9 - 8 10 10} 10 13 12 14 14 14
A, [DE) 2 9 8 10 10 10 13 12 14 14 14
A,word[rl] q 9 g | 1o 10| 10 | 14 15 17 | 17| 17
8-bit
arith- A, kbyte 2 2 6
metic/
loglcal saddr, ¥byte k) 4 8 9 11
sfr,#byte 4 10 14
r,r’ 2 3 7
sUDnc A,saddr 2 3 5 [7
A, sfr 3 7 10
A, [r4} 2 7 11
A. [HL} 2 5 B 10 10| 10 13 12 14 4] 14
A,[DE] 2 9 8 10 10| 10 13 12 14 14| 14
A,word[rl] 4 9 8 10 10| 10 14 15 17 17 17
A, #byte 2 2 6
AND saddr,#byte 3 4 8 9 11
sfr,#byte 4 10 14
(to be contlnued)
16 40

{Cont'd)

Clocks
Instruc-
:::n Mnemonic Operand Byte Fetch from internal ROM Fetch from external ROM
IROM | IRAM | PRAM | SFR | EMEM | IROM | IRAM | PRAM | SFR | EMEM
r.r' 2 3 7
A,saddr 2 3 5] T
A.sfr 3 7 10
AND A,[rd] 2 T 11
A, [HL] 2 9 8 10 10| 10 13 12 14 14 14
A, [DE] 2 9 8 | 10| 10| 10 | 18 | 12 14 | 14| 14
A,word(r1] 4 g 8 10 10 10 14 15 17 171 17
A, Fbyte 2 2 6
saddr, dbyte 3 4 8 9 11
sfr,7byte 4 10 14
r,r' 2 3 7
OR A,saddr 2 3 5 & 7
8-bit A, sfr 3 7 10
arith-
metic/ A.[r4] 2 7 11
logical
A, [HL] 2 9 8 10 10| 10 13 12 14 14 14
A, [DE] 2 9 8 10 10| 10 13 12 14 14| 14
A,word[rl] 4 9 8 10 10| 10 14 15 17 17| 17
A, 7byte 2 2 6
saddr,#byte 3 4 8 9 11
sfr,zbyte 4 10 14
r,t' 2 3 7
XOR A, saddr 2 3 5 6 T
A,sfr 3 7 10
A,[r4] 2 T 11
A, [HL] 2 9 8 10 10| 10 13 12 14 14 14

16 - 41

{tc be contlnued)

{(Cont'd)

Clocks
Instruc-
tion Mnemonie Operand Byte Fetch from internal ROM Fetch from external ROM
set
IROM | IRAM | PRAM | SFR | EMEM | IROM | IRAM | PRAM | SFR | EMEM
A, [DE] 2] 8 10 10 10 13 12 14 14 14
XO0R
A,word([rl) 4 9 8 10 10 10 14 15 17 17 17
A,#byte 2 2 6
saddr, #byte 3 3 5 9 11
8-bit sfr,#byte 4 7 14
arith-
metic/ r,.r’ 2 3 7
logical
CMP A, saddr 2 3 5 6 i
A,sfr 3 T 10
A, [r4] 2 7 11
A, [HL) 2 9 8 10 10| 10 13 12 14 14| 14
A, {DE] 2 9 B 10 10 10 13 12 14 14 14
A,word([rl) 4 9 8 10 10| 10 14 15 17 17| 17
AX,#word 3 4 9
AX,rp 2 6 8
ADDW
AX,saddrp 2 7 11 9 13
AX,sfrp 3 13 16
16-bit AX,#word 3 4 9
arith-
petlc/ AX,rp 2 [8
logical | SUBW
AX,saddrp 2 7 11 9 13
AX,sfrp 3 13 16
AX,#word 3 3 9
AX,rp 2 5 7
cMew
AX,saddrp 2 6 10 8 12
AX,sfrp 3 12 15
{to be continued)
16 - 42

{Cont'd)

Clochs
Instruc-
tion Mnemonic Operand Byte Fetch from lnternal ROM Fetch from external ROM
set
IROM | IRAM| PRAM | SFR| EMEM | IROM | IRAM PRAM | SFR | EMEM
. MULSH ri®) 2 47 49
Multi- =)
ply/ MULUW rt* 2 47 49
divide
DIVUY r(*) 2 74 76
r 1 2 3
INC
saddr 2 3 7 [T
Incre-
ment/ r 1 2 3
decre- DEC
ment saddr 2 3 T 6 i
INCY rp 1 3 3
DECW rp 1 3 3
ROR r.n 2 3+2n 5+2n
ROL r.n 2 3+2n 5+2n
RORC r,n 2 3+2n 5+2n
ROLC r,n 2 3+2n 5+2n
SHR r.,n 2 3+2n 5+2n
Shift/
rotate SHL r,n 2 3+2n 5+2n
SHR¥W rp.n 2 3+3n 5+3n
SILY rp.n 2 3+3n 5+3n
ROR4 {rd] 2 22 24
ROL4 [rd) 2 23 25
ADJBA 1 3 3
BCD
correc-
tlon ADJBS 1 3 3
CY,saddr.bit 3 5 7 9 9
Bit
manipu- | MOV1 CY,sfr.bit a T 9
lation
CY,A.blt 2 5 7

#» Except for the register A or X.

16

- 43

{to be continued)

{Cont’'d)

Clocks
Instruc-
tlon Mnemonic Operend Byte Fetch from internal ROM Fetch from external ROM
et IROM | IRAM | PRAM | SFR | EMEM | IROM | IRAM | PRAM | SFR | EMEM
CY.X.bit 2 5 7
CY,PSK.bit 2 5 7
saddr.blt,CY 3 8 12 12 14
Mov1 sfr.bit,CY 3 12 14
A.bit,CY 2 8 10
X.bit,.CY 2 8 10
PS¥.bit,CY 2 7 9
CY,saddr.bit 3 5 7 9 11
CY,/saddr.bit 3 5 7 9 11
CY,sfr.bit 3 7 11
CY,/sfr.bit 3 7 11
Bit CY.A.bit 2 5 7
manipu- | AND1
lation CY,/A.bit 2 5 7
CY.X.bit 2 5 i
CY,/X.bit 2) 7
CY.PS¥W.bit 2 S 7
CY,/PSW.blt 2 S 7
CY,saddr.bit 3 5 7 9 11
CY./saddr.bit 3 5 7 8 11
CY,sfr.bit 3 7 11
CY,/sfr.blit 3 7 11
OR1 CY.A.blt 2 5 7
CY,/A.blit 2 5 7
CY,X.bit 2 5 7
CY,/X.bit 2 5 7
CY,PSW.bit 2 5 T
CY,/PSW.blt 2 5 7
{to be continued)
16 - 44

{Cont'd}

Clocks
Instruc-
tion Mnemonic Operand Byte Fetch from internal ROM Fetch from external ROM
et IROM | IRAM | PRAM | SFR | EMEM | YROM | TRAM | PRAM | SFR | EMEM
CY,saddr.bit 3 5 7 9 11
CY,sfr.bit¢ a T 11
XOR1 CY,A.bit 2 5 7
CY.X.bit 2 5 7
CY,PS¥W.bit 2 5 T
saddr.bit 2 3 7] 11
sfr.bit 3 10 14
SET1 A.bit 2 g 8
X.bit 2 6 8
PSW.bit 2 5 T
Bit saddr.bit 2 3 7 6 11
manipu-
latien sfr.bit 3 10 14
CLR1 A.bit 2 6 8
X.bit 2 6 8
PSW.bit 2 5 ki
saddr.bit 3 6 10 10 14
sfr.bit 3 10 14
NOT1 A.bit 2 6 8
X.bit 2 6 8
PS¥W.bit 2 5 7
SET1 CY 1 2 3
CLR1 CY 1 2 3
NOT1 CcY 1 2 3

16 - 45

Clocks
Instruc-
tion Mnemonic | Operand Byte | SP Fetch from Fetch from
set internal ROM external ROM
IROM—>IROM|IROM—EMEM | EMEM-»IROM | EMEM—IROM
IRAM 11{12) 15(16) 17{18)
laddrlé 3 | PRAM | 15(16) 19(20} 21(22)
EMEM 15(16} 19(20) 21(22)
CALL
IRAM 12{13) 13(14) 15(16)
rp 2 | PRAM 16(17) 17(18) 19(20)
EMEM 16(17) 17(18) 15(20)
IRAM 11(12}) 12(13) 14(15)
CALLF taddrll 2 | PRAM 15(16) 16{(17) 18(19)
Call/ EMEM 15(186) 16(17) 18(19)
{ return
IRAM 14(15) 14(15) 20(21)
CALLT faddrs] 1 | PRAM 18(19) 18 24(25)
EMEM 18(19) 18 24(25)
IRAM 10(11) 10(11) 11{12)
RET 1 | PRAM 14{15) 14(15) 15(186)
EMEM 14(15) 14(15) 15{(16)
" IRAM 15(16) 15(18) 15(16)
RET1 1 | PRAM 21(22) 21(22) 21{22)
EMEN 21(22) 21(22) 21(22)
Clock
Instruc- -
tion Mnemonle | Operand |Byte Fetch from Internal ROM Fetch from external ROM
set
ITROM | IRAM | PRAM SFR| EMEM |IROM|IRAM PRAM SFR |EMEM
PSW 1 5(7) T7(9) 7{9) 5(7) | 7(9) 7(9)
PUSH
rp 1 8(9) [12{13) 12(13) 8{9) |12(13) 12(13)
PSY 1 [8 8 [8 8
Stack POP
manipu- rp 1 11(12}| 15(16) 1516} 11{12)[15(18) 15(186)
lation
SP,#word| 4 8 12
MOVW SP,AX 2 9 11
AX,SP 2 10 12

16 - 486

Clocks
mtruet | emontc operand Byte | Fetch from internal ROM | Fetch from external ROM
set No INT—>INT | INT—EXT | No EXT—>INT | EXT—>EXT
branch branch
) taddrié 3 5 g 11
Uncondi-
tional ER Tp 2 6 8 10
branch
$addrle 2 4 7 g
BC 2 2 4 6 i 9
$addrie
BL 2 2 4 [7 9
BNC 2 2 4 6 7 9
$addrle
BHL 2 2 4 6 7 g
BZ 2 2 4 6 i 9
%addrlé
BE 2 2 4] T 8
BNZ 2 2 4 6 7 9
$addrls
BNE 2 2 4 6 7 9
saddr,bit,Saddrls | 3 5 7 9 12
sfr.bit,saddrie 4 7 9 13 16
BT A.bit,Saddrlé 3 5 7 9 12
Condi-
tional X.bit,$addrls 3 5 T 9 12
branch
PS¥.bit,$addris 3 5 7 9 12
saddr.bit, $addrié 4 5 T 12 15
sfr.bit,Saddrlé 4 7 9 13 16
BF A.bit,Saddrl6 3 5 7 g 12
X.bit,$addris K] 5 7 9 12
PSW.blt,$%addrlé 3 5 7 9 12
saddr.bit,%addr1é 4 5 9 12 15
sfr.bit,$addris 4 7 13 13 18
BTCLR A.bit,Saddrlé 3 5 9 9 12
X.bit,Saddrlé 3 5 9 9 12
PS¥.blt,Saddrlé K] 5 8 g 12
r2,%addrl6 2 3 5 6 9
DBNZ
saddr, Saddrls 3 4 [g 12
16 - 47

Instrue- Clocks
tion Mnemonlic | Operand Byte
set Fetch from Fetch from
Internal ROM external ROM
NOP 1 2 3
EI i 2 3
CPU DI 1 2 3
control
SEL RBn 2 2 6
MOV STBC, #byte 4 9 15

16 - 48

16.4

16.4.1

Instruction Addressing

The instruction address is determined by the program
counter (PC) contents. Normally, whenever one instruction
is executed, the PC 1s automatically incremented according
to the number of the bytes of the fetched instruction
(increment by one per byte). When an instruction involving
a branch is executed, branch address information is loaded
into the PC according to the addressing described below and
a branch is taken.

Relative addressing

The result of adding the low-order 8-bit immediate data
of a given instruction code (displacement: jdisp) to the
top address of the next instruction is loaded into the
program counter (PC) and a branch is taken. The
displacement is handled as signed two's complement data
(-128 to +127) and bit 7 becomes a sign bit.

This is performed when the BR $addri6 instruction or the
conditional branch instruction is executed.

PC+b ...b indlcates the number
of bytes of the lnstructlon.
15 876 0
X]
idisp
15 0

PC

¥hen S = 0, all bits in X are Os.
¥hen S = 1, all bits iIn X are ls.

16 - 49

16.4.2

Immediate addressing

The immediate data in the instruction 1s loaded into the
PC and a branch is taken.

This is performed when the CALL !addri6, BR !addrils, or
CALLF !addrll instruction 1s executed.

For the CALLF !addrll instruction, a branch is taken to
the fixed area whose five high-order bits contain a
specific address,

7 0
CALL or BR
Low Addr.
High Addr,
15 { 8 7 ‘ 0
PC
7 3 2 o
CALLF faH
faL
15 10 g8 7 0
pc| 00001

16 - 50

16.4.3

16.4.4

Table indirect addressing

The contents (branch address) of the table in the
specific location addressed by the immediate data in
five low-order bits in the instruction code are loaded
into the PC and a branch is taken.

This 1s performed when the CALLT[addr5] instruction is
executed.

7 5 4 0

Instruction code| 111 ta

15 8 765 1 0
Effective address = 0DO0O0OOO0O [\ ta

Memory (table)

Effective address Low Addr.

Effective addrese High Addr.
incremented by 1

PC[

Reglister addressing

The contents of the register palr (RP3 to RP0) specified
by the instruction are loaded into the PC and a branch is
taken.

This 1s performed when the BR rp, or CALL rp instruction
is executed.

o |]

PC I |

16 - 51

16.5 Operand Addressing

The addressing modes of registers and memory to be operated
on in Instruction execution are described below:

16.5.1 Register addressing

The general reglster to be specified is addressed as an
operand by the contents of the register specification
code such as Rn or Pn in an instruction in the reglster
bank specified by the register bank selection flag (RBS1
and RBSO).

The register addressing is made when an instruction
having any of the following operand identifiers is
executed. When an 8-bit register 1s addressed, eight
signals are specified with three bits in the instruction
code. When a 16-bit register is addressed, four signals
are specified with two bits in the instruction code.

Identifier Description
r,r' X(RO), A(R1), C(R2), B(R3), E(R4), D(R5),
L(R6), H(RT7)
ri A, B
r2 B, C
r3 D, E, E+
r4 D, E

rp,rp’ AX(RP0O), BC(RP1l), DE(RP2), HL(RP3)

Functional names (X, A, C, B, E, D, L, H, AX, BC, DE, and
HL) can be specified in r, r', rp, and rp', as well as
absolute names (RO to R7 and RPO to RP3). The function

names correspond to the absolute names as shown 1in Table
3-4.

16 - 52

16.5.2

Example 1: MOV A,r

Instruction code 1 1 ¢ 1 0 R2 Rl RO

To speclfy register C in r, enter the following:
MOV A,C
The instruction code is as follows:

Instruction code 1 1 0 1 0 0 1 0

Example 2: INCW rp

Instruction code 0 1 0 0O o 1 Pl PO

To speclfy reglister palr DE In rp, enter the following:
INCW DE
The Instruction code is as follows:

Instruction code 0O 1 0 0 0 1 1 ¢

Immediate addressing

The 8-bit data or 16-bit data to be operated on is
contained in a given instruction code.

The 1mmedlate addressing is made when an instruction
having one of the following operand identifiers is

executed:

Identifier Description
byte Label, numeric value of up to 8 bits
word Label, numeric value of up to 16 bits

16 - 53

16.5.3

Example: ADD A, #byte

Instruction code 1 0 1 ¢ 1 0 0 0

Data

To specify 77H in byte, enter the following:
ADD A, #7TH
The instruction code is as follows:

Instruction code 1 0 1 0 l1 ¢ 0 0

Short direct addressing

The memory location to be operated on in fixed space 1s
directly addressed by the 8-bit immediate data in a given
instruction.

This addressing is applied to 256-byte space from FE20H
to FF1FH. The internal RAM (short direct memory) is
mapped from FE20H to FEFFH and the special function
register (SFR) 1s mapped from FFOOH to FF1FH.

Bit 8 of an effective address is set to 0 when 8-bit

immediate data is 20H to FFH. Or, the bit is set to 1
when the immediate data is O00H to 1FH.

16 - 54

OP code

Saddr-offset
l Short direct memory

18 9 87654 0
Effective address | 1111111

This addressing 1s performed when an instruction having
one of the saddr or saddrp operands 1s executed. The
2-byte data in the memory locations addressed by the
effective address and by the next address (data at an
even-odd address palr where the lowest bit of an
effective address 1s lgnored) are accessed by an
instruction having saddrp.

Identifier Description
saddr Label, numeric value of FE20H to FF1FH
saddrp Label, even numeric value of FEZ20H to FF1EH

Example: MOV saddr, #byte

Instruction code 0 0 1 1 1 0 1 0

Saddr-offset

Data

To specify FE20H in saddr of the first operand and 50H in
byte of the second operand, enter the followiling:
MOV OFE20H, #50H

16 - 55

16.5.4

Instruction code 0O 0 1 1 1 ¢ 1 o

Special function register (SFR) addressing

The special function register (SFR) mapped into a memory
location Is addressed by the 8-bit immediate data in an
instructioen.

The space into which the SFR to be addressed is mapped is
a 256-byte space from FFOOH to FFFFH. The SFR mapped
into FFOOH-FF1FH 1s not accessed by SFR addressing, but
accessed by short direct addressing.

7 0
OP code
Sir ofiset —
15 87 0 SFR
Effective address 11ty
Identifier Description
sfr Speclal function register name
sfrp 16-bit manipulation special function

reglster name

16 - 58

16.5.5

Example: MOV sfr, A

Instruction code o 0 0 1 0O 0 1 0

Sfr-offset

To specify PMO in sfr, enter the following:
MOV PMO, A
The instruction code is as follows:

Instruction code 0O 0 0 1 o 0 1 0

Register indirect addressing

The memory location to be operated on 1s addressed by
the contents of the 8-bit register and register pair HL
indicated by the register specification code in an
instruction in the register bank specified by the
register bank select flag (RBS1-RBS0) as an operand

address.

This addressing is made when an instruction having any of
the following operand identifiers 1s executed:

Identifiler Description
[r3] ~ [D), [El, [E+)
[r4] [D], [EI]

[HL) [HL]

Register indirect addressing using register E pfovides
the function of incrementing the contents of register E
by one to prepare for next addressing.

16 - 57

[E+] must be specified in the operand field in this case.

Example 1: MOV A, [r3]

Instruction code 0 1 1 1 1 1 Rl Ry

To specify [E+] in {r3], enter the following:
MOV A, [E+]
The instruction code is as follows:

Instruction code 0 1 1 1 1 1 0 1

Example 2: ROR4 [r4]

Instruction code 0O 0 0o O ¢ 1 0 1

1 0 00 1 0 Ry1

To specify register E in r4, enter the following:
ROR4 [E]
The instruction code 1s as follows:

Instruction code 0O ¢ 0 0 0 1 0 1

Example 3: ADD A, [r4]

Instruction code O 0 0 1 0O 1 1 ¢

16 - 58

16.5.6

To specify [D] in [r4], enter the following:
ADD A, [D]
The instruction code 1s as follows:

Instruction code 0O 0 0 1 0O 1 1 0

Indexed addressing

The memory location to be operated on is addressed by
the sum of the contents of the 8-bit reglster (A, B),.
indicated by the addressing specification bit (Rg) in a
given instruction in the register bank specified by the
reglster bank selection flag (RBS1 - RBSO), and a 16-bit
immediate data in operand as an operand address.

This addressing 1s made when an instruction having any of
the following operand ldentifiers is executed:

Identifier Description

word [rl1] word [A], word [B]

Example: ADDC A, word [rl]

Instruction code 0O 0 0 O 1 0 1 0

Low Offset

High Offset

16 - 59

To specify indexed addressing by the sum of the contents
of register B and 1F10H, enter the following:

ADDC A, 1F10H [B]
The instruction code is as follows:

Instructlion code 0O 0 0 O l1 0 1 0

16 - 80

16.6 Explanation of Instructlons
16.6.1 8-bit data transfer 1nstructions
MOV r, #%#byte

Function: r < byte byte=00H-FFH
Transfers the 8-bit immediate data
specified in the second operand to the
8-blt register specified in the first
operand.

Flag operation: No change

Example: MOV A, #4DH: Sets 4DH in register A.

MOV saddr, #byte

Function: (saddr) < byte saddr=FE20H-FF1FH
byte=00H-FFH
Transfers the 8-bit immediate data
specified in the second operand to the
short direct memory addressed in the
first operand.
Enter the address or label of the short
direct memory in saddr of the first
‘operand.
Flag operation: No change
Example: MOV OFE40H, #40H: Stores 40H at
address FE40H.

MOV sfr, #byte

Function: sfr <« byte byte=00H-FFH
Transfers the 8-bit immediate data
speclfled in the second operand to the
special function register (sfr)
specified in the first operand.

16 - 61

Caution:

Flag operation:
Example:

MOV r, r'

Function:

Flag operation:
Example:

MOV A, r

Function:

Flag operation:
Example:

MOV A, saddr

Function:

If STBC is specified in sfr, the

dedicated instruction code which is

different from that of this instruction

1s generated (see Section 16.5.14).

No change

MOV PMS5, #0H: Specifies port 5 as an
output port.

r <« r'

Transfers the contents of the 8-bit
reglster specified in the second
operand to the 8-bit register specified
in the first operand.

No change

SELL RBO: Specifies bank 0.

MOV H, A: Transfers the contents of
register A to register H.

A< r

Transfers the contents of the 8-bit
register specified in the second
operand to register A.

No change

None

A <« (saddr) saddr=FE20H-FF1FH
Transfers the contents of the short
direct memory addressed in the second
operand to register A.

16 - 82

Flag operation:

Example:

MOV saddr, A

Function:

Flag operation:

Example:

MOV A, sfr

Function:

Flag operation:

Example:

Enter the address or label of the short
direct memory in saddr of the second
operand.

No change

MOV A, OFE40H: Transfers the contents
at address FE40H to
register A 1In the

specified bank.

(saddr) = A saddr=FE20H-FF1FH
Transfers the contents of register A to
the short direct memory specified in the
first operand.

Enter the address or label of the short
direct memory in saddr of the first
operand.

No change

SEL RB2:

MOV A, X .
MOV OFE60H, A

Specifies bank 2.
Transfers the contents
of register X to the
memory location at
address FEB0H.

A <« sfr

Transfers the contents of the speclal
function reglster specified in the
second operand to register A.

No change
MOV A, SIO: Transfers serial receive
data to register A in the

current register bank.

16 - 63

Function:

Flag operation:
Example:

MOV A, [r3]

Function:

Flag operation:
Example:

sfr «— A

Transfers the contents of register A to
the special function register specified
In the firstloperand.

No change

MOV P1, A: Set the contents of register

A in port 1 output latch.
MOV PM1, #00H: Set port 1 to the output
enable mode.

A <« (FEOOH+r3) r3=00H-FFH
Transfers the contents of the memory
addressed in fhe second operand to
register A. The address of the memory
to be accessed is fixed to FEH in elght
high-order bits, and the contents of
the 8-bit register entered in the
second operand are specified as the
address in eight low-order bits.

The value in range of 00H to FFH must
be set in the 8-bit register.

If E+ is specified in r3, the contents
of register E are automatically
incremented by one after data transfer.
No change

MOV E, #60H: E <— 80H

MOV A, [E+]: A < (FEB0H), E <« E+1

16 - 64

MOV [r3], A

Function:

Flag operation:

Example:

MOV A, [HL]

Function:

Flag operation:

Example:

mov [HL], A

Function:

(FEQOH+r3) =— A r3=00H-FFH
Transfers the contents of register A to
the memory addressed in the first
operand. The address of the memory to
be accessed is fixed to FEH in eight
high-order bits, and the contents of
the 8-bit register entered in the first
operand are specified as the address in
eight low-order bits.

The value in range of 00H to FFH must
be set in the 8-bit register.

If E+ is specified in r3, the contents
of register E are automatically
incremented by one after data transfer.
No change‘

None

A <« (HL)

Transfers the contents of the memory
addressed by the contents of register
palr HL to register A.

This instruction enables table data to
be read from the internal ROM.

No change

None

(HL) = A

Transfers the contents of register A to
the memory addressed by the contents of
register pair HL.

16 - 65

Flag operation:
Example:
MOV A, [HL+]

Function:

Flag operation:

Example:

MOV [HL+]1, A

Function:

Flag operation:

Example:
MOV A, [DE]

Function:

No change

None
A <« (HL)},
HL = HL+1

Transfers the contents of the memory
addressed by the contents of register
palr HL to the contents of register A.
The contents of register pair HL are
then automatically incremented by one.
This instruction enables table data to
be read from the internal ROM.

No change

None

(HL) =— A,

HL -=— HL+1

Transfers the contents of register A to
the memory addressed by the contents of
register pair HL.

The contents of register pair HL are then
automatically incremented by one.

No change

None

A <« (DE),

Transfers the contents of the memory
addressed by the contents of register
pair DE to the contents of register A.

16 - 66

Flag operation:

Example:

MOV [DE], A

Function:

Flag operation:

Example:
MOV A, [DE+]

Function:

Flag operation:

Example:

MOV [DE+], A

Function:

This instruction enables table data to
be read from the internal ROM.

No change

None

(DE) <« A,

Transfers the contents of register A to
the memory addressed by the contents of
register palr DE.

No change

None
A -« (DE),
DE <« DE+1

Transfers the contents of the memory
addressed by the contents of register
pair DE to the contents of register A.
The contents of reglster pair DE are
then automatically incremented by one.
This instruction enables table data to
be read from the internal ROM.

No change

None
(DE) = A,
DE <= DE+1

Transfers the contents of register A to
the memory addressed by the contents of
register pair DE.

i6 - 87

Flag operation:

Example:
MOV A, '!addrilé

Function:

Flag operation:

Example:

MOV l!addrle, A

Function:

Flag operation:

Example:

The contents of register pair DE are
then automatically incremented by one.
No change

None

A <« (addrils)

Transfers the contents of the memory
specified in the second operand to the
contents of register A.

Enter 16-bit immediate data (addrl8) in
the second operand.

No change

MOV A, !0500H: Transfers the contents
of the area at address

0500H to register A.

(addrl1g) <« A

Transfers the contents of register A to
the memory specified in the first
operand.

Enter 16-bit immediate data
the first operand.

(addri1s) in

No change
None

16 - 68

MOV A, word [r1]

Function:

Flag operation:
Example:

MOV word [rl], A

Function:

Flag operation:
Example:

MOV PSW, #byte

Function:

A <« (word+rl)

Transfers the contents of the memory
specified in the second operand to
register A. The address of the memory
to be accessed 1s specified as the
value of the sum of 16-bit immediate
data entered in the second operand and
the contents of the 8-bit register.
This instructlon enables table data to
be read from the internal ROM.

No change

MOV B, #08H: B <« 08H

MOV A, OFES50H[B]: A <— (FE50H+08H)

(word+rl) <= A

Transfers the contents of reglster A to
the memory specified in the first
operand. The address of the memory to
be accessed 1s specified as the value
of the sum of 16-bit immediate data
entered in the first operand and the
contents of the 8-bit register.

No change

None

PSW <« byte byte=00H-FFH
Transfers the 8-bit immediate data
specified in the second operand to PSW.

16 - 69

Flag operation: T T

VA AC CY
X X X
Example: None
MOV PSW, A
Function: PSW «— A
Transfers the contents of register A to
PSW. '
Flag operation: T T
YA AC CYy
X X X
Example: None
MOV A, PSW
Function: A — PSW
Transfers the contents of PSW to
register A.
Flag operation: No change
Example: MOV A, PSW
XCH A, r
Function: A<«—>r

Exchanges the contents between register
A and the 8-bit register specified in
the second operand.

Flag operation: No change

Example: None

16 - 70

XCH A, saddr

Function:

Flag operation:

Example:

XCH A, sfr

Function:

Flag operation:

Example:

XCH A, [r4]

Function:

A < (saddr) saddr=FE20H-FF1FH

Exchanges the contents between register

A and the short direct memory addressed

in the second operand.

Enter the address or label of the short

direct memory in saddr of the second

operand.

No change

XCH A, OFEBCH: Exchanges the contents
between register A and
the area at address
FEBCH.

A <> sfr

Exchanges the contents between register

A and the speclial function register

specified in the second operand.

No change

XCH A, SI0: Exchanges the contents
between register A and

the serial shift register.

A <> (+r4) r4=00H-FFH
Exchanges the contents between register
A and the memory addressed in the-
second operand. The address of the
memory to be accessed 1s fixed to FEH
in eight high-order bits, and the
contents of the 8-bit register entered
in the second operand are specified as
the address 1n eight low-order bits.

16 - 71

Flag operation:

Example:
XCH A, [HL}

Function:

Flag operation:

Example:
XCH A, [DE]

Function:

Flag operation:

Example:

XCH A, word [ri]

Function:

Flag operation:
Example:

The value in range of O00OH to FFH must
be set in the 8-bit register.

No change

None

A <> (HL)

Exchanges the contents between register
A and the memory addressed by the
contents of reglster pailr HL.

No change
None
A <« (DE)

Exchanges the contents between register
A and the memory addressed by the
contents of register pair HL.

No change

None

A < word [rl]

Exchanges the contents between register
A and the memory addressed 1in the second
operand. The address of the memory to
be accessed is specified as the value of
the sum of 16-bit immediate data entered
in the second operand and the contents
of the 8-bit register.

No change

None

18 - 72

16.6.2

16-blt data transfer 1nstructions

MOVW rp, #word

Function:

Flag operation:
Example:

rp <— word word=0000H-FFFFH

Transfers the 16-bit immediate data

specified In the second operand to the

16-bit register pair specified in the

first operand.

No change

MOVW RPO, #0AAS55H: Transfers AASSH to
register pair AX.

MOVW saddrp, #word

Function:

Flag operation:
Example:

(saddrp) =< word saddrp=FE20H-FF1EH

word=0000H~FFFFH
Transfers the 16-bit immediate data
specified In the second operand to the
2-byte area in the short direct memory
addressed in the first operand. Enter
the address or label of the short
direct memory in saddrp of the first
operand. Only an even address is
effective, however.
No change
MOVW OFES8OH, #0000H: Transfers 0000OH to
the area at
addresses FEB1H
and FEB0OH.

16 - 73

O

MOVW sfrp, #word

Function:

Flag operation:

Example:

MOVW rp, rp'

Function:

Flag operation:
Example:

MOVW AX, saddrp

Function:

Flag operation:
Example:

sfrp <« word word=0000H-FFFFH

Transfers the 16-bit immediate data

specified in the second operand to the

16-bit speclal function register

specified 1n the first operand.

No change

MOVW PWMO, #OFFOOH: Sets FFOOH in
register PWMO.

rp <« rp’

Transfers the contents of the 18-bit
register palr specified in the second
operand to the 16-bit register pair
specified 1n the first operand.

No change
None
AX <— (saddrp) saddrp=FE20H-FF1EH

Transfers the contents of the 2-byte
area 1n the short direct memory
addressed in the second operand to
register pair AX.

Enter the address or label of the short
direct memory in saddrp of the second
operand. Only an even address is
effective, however.

No change

MOVW AX, OFEBOH:

Transfers the contents at addresses
FE81H and FEBOH to register pair AX.

16 - 74

MOVW saddrp, AX

Function:

Flag operation:
Example:
MOVW AX, sfrp

Function:

Flag operation:

Example:

MOVW sfrp, AX

Function:

Flag operation:
Example:

(saddrp)} <« AX
Transfers the contents of register pair
AX to the 2-byte area in the short
direct memory addressed in the first

operand.

Enter the address or label of the short
direct memory in saddrp of the first
operand. Only an even address 1s
effective, however.
No change

None

AX <« sfrp

Transfers the contents of the 16-bit
special function register specified in
the second operand to register pair AX.
No change
MOVW AX, CPTO: Transfers the contents
of register CPTO to

register palr AX.

sfrp -=— AX

Transfers the contents of register pair
AX to the 186-blt special function
reglster speclified In the first
operand.

No change

None

16 - 75

saddrp=FE20H-FF1EH

16.6.3 8-blt arithmetic/logical instructions
ADD A, #byte

Function: A, CY <« A+byte byte=00H-FFH
Adds the B-bit immediate data specifiled
in the second operand in binary to the
contents of register A. The carry flag
is set when a carry has resulted from
this addition. The carry flag is reset
when a carry has not resulted from the

addition.

Flag operation: 7 T

Z AC CYy

X X X
Example: ADD A, #40H: Adds 40H to the contents

of register A in binary.

ADD saddr, #byte
Function: (saddr), CY = (saddr)+byte

saddr=FE20H-FF1FH

byte=00H-FFH
Adds the 8-bit immediate data specified
in the second operand in binary to the
contents of the short direct memory
addressed by the first operand. The
carry flag is set when a carry has
resulted from this.addition. The carry
flag is reset when a carry has not
resulted from the addition.
Enter the address or label of the short
direct memory in saddr of the first

operand.

16 - 76

Flag operation:

Example:

ADD sfr, #byte

Functlon:

Flag operation:

Example:

ADD r, '

Function:

ADD OFESOH, #B80H: Adds 80H to the
contents of the area
at address FE8S8CH 1n

binary.

sfr, CY <« sfr+byte byte=00H-FFH
Adds the 8-bit immediate data specified
in the second operand in binary to the
contents of the special function
register specified in the first operand.
The carry flag is set when a carry has
resulted from this addition. The carry
flag is reset when a carry has not
resulted from the addition.

1 T

Z AC CY

X X X

ADD P8, #1H: Adds the contents of port
6 output latch and 1H In
binary and set the result
in the output latch.

r, CY =— r+r'
Adds the contents of the register
speclfied In the second operand in

binary to the contents of the register

specified in the first operand.

The carry flag 1s set when a carry has
resulted from this addition.

16 - 77

Flag operation:

Example:

ADD A, saddr

Function:

Flag operation:

Example:

ADD A, sfr

Function:

The carry flag is reset when a carry has
not resulted from the addition.

T T
4 AC CY
X X X
None
A, CY =« A+(saddr) saddr=FE20H-FF1FH

Adds the contents of the short direct
memory addressed in the second operand
to the contents of register A. The
carry flag Is set when a carry has
resulted from this addition. The carry
flag 1s reset when a carry has not
resulted from the addition.

Enter the address or label of the short
direct memory in saddr of the second

operand.
T T
Z AC CY
b ¢ X X
None

A, CY <« A+sfr

Adds the contents of the special
function register specified in the
second operand in binary to the contents
of register A.

The carry flag is set when a carry has
resulted from this addition. The carry
flag 1s reset when a carry has not
resulted from the addition.

16 - 78

Flag operation: T T

Z AC CY
X X X
Example: None
ADD A, [r4]
Function: A, CY <« A+(FEOOH+r4) r4=00H-FFH

Adds the contents of the memory
addressed in the second operand in
binary to the contents of register A.
The high-order eight bits of the address
of the memory to be accessed are always
FEH. The low-order eight bits are
specified by the contents of the 8-bit
register specified in the second
operand.
The carry flag is set when a carry has
resulted from this addition. The carry
flag is reset when a carry has not
resulted from the addition.
The value in the range from 00H to FFH
must ‘-be set in the 8-bit register.

Flag operation: T T

Z AC CcY
X X X
Example: MOV E, #45H: E <« 45H
ADD A, [E]: A, CY <« A+(FE45H)

16 - 79

ADD A, [HL]

Function:

Flag operation:

Example:

ADD A, [DE}]

Function:

Flag operation:

Example:

A, CY <« A+(HL)
Adds the contents of the memory

addressed by the register pair HL in
binary to the contents of register A.
The carry flag is set when a carry has
resulted from this addition. The carry
flag is reset when a carry has not
resulted from the addition.

Z AC CY
X X X
None

A, CY < A+(DE)

Adds the contents of the memory
addressed by the contents of register
palr DE in binary to the contents of
register A. The carry flag is set when
a carry has resulted from this addition.
The carry flag is reset when a carry has

not resulted from the addition.

4 AC CY
X X X
None

16 - 80

ADD A, word [r1]

Function:

Flag operation:

Example:

ADDC A, #byte

Function:

Flag operation:

Example:

A, CY «— A+word[rl]
Adds the contents of the memory

addressed in the second operand in
binary to the contents of register A.
The carry flag is set when a carry has
resulted from this addition. The carry
flag 1s reset when a carry has not
resulted from the addition.

The address of the memory to be accessed
i1s specified as the value of the sum of
186-bit immediate data entered in the
second operand and the contents of the

8-bit register.

T 1

Z - AC CY
X X X
None

A, CY «— A+byte+CY byte=00H-FFH
Adds the 8-bit immediate data specified
in the second operand including the
carry flag to the contents of register
A, in binary. The carry flag is set
when a carry has resulted from this
addition.
a carry has not resulted from the

addition.

The carry flag is reset when

Z AC CY
X X X
None

ADDC saddr, #byte

Functlon:

Flag operation:

Example:

ADDC sfr, #byte

Function:

Flag operation:

Example:

{saddr), CY =« (saddr)+byte+CY
saddr=FE20H-FF1FH
byte=00H-FFH

Adds the 8-bit immediate data specified

in the second operand including the

carry flag to the contents of the short
direct memory addressed by the first

operand. The carry flag 1s set when a

carry has resulted from this addition.

The carry flag 1s reset when a carry has

not resulted from the addition.

Enter the address or label of the short

direct memory in saddr of the first

operand.
] T
Z AC CY
X X X
None
sfr, CY <« sfr+byte+CY byte=00H-FFH

Adds the contents of the 8-bit immediate
data specified in the second operand
inecluding the carry flag in binary to
the contents of the speclal function
register specified in the first operand.
The carry flag is set when a carry has
resulted from this addition. The carry
flag 1s reset when a carry has not
resulted from the addition.

I T

Z AC CY
X X X
None

16 - 82

Function:

Flag operation:

Example:

ADDC A, saddr

Function:

Flag operation:

Example:

r, CY «— r+r'+CY
Adds the contents of the 8-bit register
specified Iin the second operand

including the carry flag to the contents
of the B-blt register specifled in the
first operand, in binary. The carry
flag 1s set when a carry has resulted
from thlis addition. The carry flag 1s
reset when a carry has not resulted from
the addition.

Z AC CY
X X X
None

A, CY «— A+(saddr)+CY saddr=FE20H-FF1FH
Adds the contents of the short direct
memory addressed by the second operand
including the carry flag to the contents
of register A in binary. The carry flag
1s set when a carry has resulted from
this addition. The carry flag is reset
when a carry has not resulted from the
addition.

Enter the address or label of the short
direct memory in saddr of the second

operand.
T 1
Z AC CY
X b ¢ X
None

16 - 83

ADDC A, sfr

Function: A, CY =— A+sfr+CY
Adds the contents of the special
functlion register specified in the
second operand including the carry flag
to reglster A 1n binary. The carry flag
is set when a carry has resulted from
this addition. The carry flag is reset
when a carry has not resulted from the

addition.
Flag operation: T T
Z AC CY
X X X
Example: None
ADDC A, [r4]
Function: A, CY «— A+(FEOOH+r4)+CY r4=00H-FFH

Adds the contents of the memory
addressed by the second operand
including the carry flag in binary to
the contents of register A. The high-
order eight bits of the address of the
memory to be accessed are always FEH.
The low-order eight bits are specified
by the contents of the 8-bit register
specified In the second operand. The
carry flag is set when a carry has
resulted from this addition. The carry
flag 1s reset when a carry has not
resulted from the addition.

The value in the range from 00H to FFH
must be set in the 8-bit register.

16 - 384

Flag operation:

Example:

ADDC A, [HL]

Function:

Flag operation:

Example:

ADDC A, [DE]

Funetion:

Flag operation:

Z AC CY
X X X
None

A, CY < A+(HL)+CY

Adds the contents of the memory
addressed by the contents of reglster
pair HL iIncluding the carry flag in
binary to the contents of register A.
The carry flag 1s set when a carry has
resulted from this addition. The carry
flag 1s reset when a carry has not
resulted from the addition.

T T

Z AC CY
X X X
None

A, CY «— A+(DE)+CY

Adds the contents of the memory
addressed by the contents of register
pair DE including the carry flag in
binary to the contents of register A.
The carry flag is set when a carry has
resulted from this addition. The carry
flag 1s reset when a carry has not
resulted from the addition.

T T

z AC CY

X X X

16 - 85

Example:

ADDC A, word [ri1]

Function:

Flag operation:

Example:

SUB A, #byte

Function:

A, CY <« A+word[rl]+CY

Adds the contents of the memory
addressed by the second operand
including the carry flag in binary to
the contents of register A. The carry
flag 1s set when a carry has resulted
from this addition. The carry flag is
reset when a carry has not resulted from
the addition.

The address of the memory to be accessed
1s speciflied as the value of the sum of
16-bit immediate data entered in the
second operand and the contents of the
8-bit register.

Z AC CY

X X X

ADDC A, 1234H[B}:

Adds the contents of the area at address
1234H + (the contents of register B)
Including the CY flag to the contents of
register A and stores the result in
reglister A.

A, CY «— A-byte byte=00H-FFH
Subtracts the 8-bit immediate data
specified 1n the second operand from the
contents of register A. The carry flag
Is set when a borrow has resulted from
this subtraction.

16 - 86

Flag operation:

Example:

SUB saddr, #byte

Function:

Flag operation:

Example:

The carry flag 1s reset when a borrow

has not resulted from the subtraction.

I] T

Z AC CY

X X X

SUB A, #40H: Subtracts 40H from the
contents of register A in

binary.

(saddr), CY <« (saddr)-byte
saddr=FE20H-~FF1FH
byte=00H-FFH

Subtracts the 8-bit immediate data

specified i1n the second operand from the

contents of the short direct memory
addressed by the first operand. The
carry flag 1s set when a borrow has
resulted from this subtraction. The
carry flag 1s reset when a borrow has
not resulted from the subtraction.

Enter the address or label of the short

direct memory 1in saddr of the first

operand.
1 T
Z AC CYy
X X b

SUB OFE8SOH, #80H: Subtracts 80H from
the contents of the
area at address FESOH
in binary.

16 - 87

SUB sfr, #byte

Function:

Flag operation:

Example:

SUBr, r’

Function:

Flag operation:

Example:

sfr, CY <« sfr-byte byte=00H-FFH
Subtracts the 8-bit immediate data
specifled in the second operand from the
contents of the special function
register specified in the first operand.
The carry flag is set when a borrow has
resulted from this subtraction. The
carry flag iIs reset when a borrow has
not resulted from the subtraction.

I T

Z AC CY

X X X

SUB PO, #1H: Subtracts 1H from the
contents of the port 0
output latch 1n binary and
sets the result in the
port 0 output latch.

r, CY < r-r'

Subtracts the contents of the 8-bit
register specified in the second operand
from the contents of the 8-bit register
speclfied in the first operand. The
carry flag 1s set when a borrow has
resulted from this subtraction. The
carry flag 1s reset when a borrow haé
not resulted from the subtraction.

T T

zZ AC CY
X X X
None

16 - 88

SUB A, saddr

Function:

Flag operation:

Example:

SUB A, sfr

Function:

Flag operation:

Example:

A, CY < A-(saddr) saddr=FE20H-FF1FH
Subtracts the contents of the short
direct memory addressed by the second
operand from the contents of register A.
The carry flag 1s set when a borrow has
resulted from this subtraction. The
carry flag 1s reset when a borrow has
not resulted from the subtraction.

Enter the address cor the label of the
short direct memory in saddr of the

second operand.

T T

y AC CY
X X X
None

A, CY <« A-sfr

Subtracts the contents of the special
function register specified in the
second operand from the contents of
reglster A. The carry flag is set when
a borrow has fesulted from this
subtraction. The carry flag is reset

when a borrow has not resulted from the

subtraction.
T T
Z AC CY
X X X
None

16 - 89

SUB A, [r4]

Function:

Flag operation:

Example:

SUB A, [HL]

Function:

Flag operation:

Example:

A, CY «— A-(FEOOH+r4) r4=00H-FFH
Subtracts the contents of the memory
addressed by the second operand from the
contents of register A. The eight high-
order bits of the address of the memory
to be accessed are always FEH. The
eight low-order bits are specified by
the contents of the 8-bit register
specified in the second operand. The
carry flag is set when a borrow has
resulted from this subtraction. The
carry flag 1s reset when a borrow has
not resulted from the subtraction.

The value in the range of QOOH to FFH
must be set in the 8-bit register.

T I

Z AC CY
X X X
None

A, CY <« A-(HL)

Subtracts the contents of the memory
addressed by the contents of register
pair HL from the contents of register A.
The carry flag 1s set when a borrow has
resulted from this subtraction. The
carry flag is reset when a borrow has

not resulted from the subtraction.

Z AC CY
X X X
None

16 - 80

SUB A, [DE]

Function:

Flag operation:

Example:

SUB A, word[rl]

Function:

Flag operation:

Example:

A, CY «— A-(DE)
‘Subtracts the contents of the memory

addressed by the contents of register
palr DE from the contents of register A.
The carry flag is set when a carry has
resulted from this subtraction. The
carry flag 1s reset when a carry has not
resulted from the subtraction.

T T

Zz AC CY
X X X
None

A, CY «— A-word[rl]

Subtracts the contents of the memory
addressed by the second operand from the
contents of register A.

The carry flag is set when a carry has
resulted from this subtraction. The
carry flag 1s reset when a carry has not
resulted from the subtraction.

The address of the memory to be accessed
is specified as the value of the sum of
16-bit immediate data entered in the
second operand and the contents of the
8-bit register.

yA AC CY
X X X
MOV B, #08H: B <« 0B8H
SUB A, OFE50H[B]: A, CY <« A-(FES50H+
08H)

16 - 91

SUBC A, wbyte

Function:

Flag operation:

Example:

SUBC saddr, #byte

Function:

Flag operation:

Example:

A, CY «— A-byte-CY byte=00H-FFH
Subtracts the 8-bit immediate data
specified in the second operand
Including the carry flag from the
contents of register A. The carry flag
1s set when a borrow has resulted from
this subtraction. The carry flag is
reset when a borrow has not resulted

from the subtraction.

Z AC CY
X X X
None

(saddr), CY = (saddr)-byte-CY
saddr=FE20H-FF1FH
byte=00H-FFH

Subtracts the 8-bit immediate data

specified in the second operand

including the carry flag from the
contents of the short direct memory
addressed by the first operand. The
carry flag 1s set when a borrow has
resulted from this subtraction. The
carry flag is reset when a borrow has
not resulted from the subtraction.

Enter the address or label of the short

direct memory in saddr of the first

operand.
T T
Z AC CY
X X X
None

SUBC sfr, #byte

Function: sfr, CY <« sfr-byte-CY byte=00H-FFH
Subtracts the 8-bit immediate data
specified in the second operand
including the carry flag from the
contents of the special function
register specified in the first operand.
The carry flag 1s set when a borrow has
resulted from thils subtraction. The
carry flag 1Is reset when a borrow has
not resulted from the subtraction.

Flag operation: T T
Y/ AC cY
X X X
Example: None
SUBC r, r'
Function: r, CY «— r-r'-CY

Subtracts the contents of the 8-bit
register specifled in the second operand
including the carry flag from the
contents of the 8-bilt register specified
in the first operand. The carry flag is
set when a borrow has resulted from this
subtraction. The carry flag is reset
when a borrow has not resulted from the

subtraction.
Flag operation: T T
Z AC CY
X X X
Example: None

16 - 93

SUBC A, saddr

Function: A, CY =— A-(saddr)-CY saddr=FE20H-FF1FH
Subtracts the contents of the short
direct memory addressed by the second
operand Including the carry flag from
the contents of register A. The carry
flag 1s set when a borrow has resulted
from this subtraction. The carry flag
is reset when a borrow has not resulted
from the subtraction.

Enter the address or label of the short
direct memory 1n saddr of the second

operand.
Flag operation: T T
: Z AC CY
X X X
Example: None
SUBC A, sfr
Function: A, CY «— A-sfr-CY

Subtracts the contents of the special
function register specified in the
second operand from the contents of
register A. The carry flag is set when
a borrow has resulted from this
subtraction. The carry flag is reset
when a borrow has not resulted from the

subtraction.
Flag operation: T T
Z AC CY
X X X
Example: None

16 - 94

SUBC A, [r4]

Function: A, CY <« A-(FEOOH+r4)-CY r4=00H-FFH
Subtracts the contents of the memory
addressed by the second operand
including the carry flag from the
contents of register A. The eight high-
order bits of the address of the memory
to be accessed are always FEH. The
eight low-order bits are specified by
the contents of the 8-bit register
specified in the second operand. The
carry flag is set when a borrow has
resulted from this subtraction. The
carry flag is reset when a borrow has
not resulted from the subtraction.

The value in the range of 00H to FFH
must be set in the 8-bit register.

Flag operation: T T

Z AC cy
X X X
Example: None
SUBC A, [HL)
Function: A, CY <« A-(HL)-CY

Subtracts the contents of the memory
addressed by the contents of register
pair HL including the carry flag from
the contents of register A. The'carry
flag i1s set when a borrow has resulted
from this subtraction. The carry flag
is reset when a borrow has not resulted
from the subtraction.

16 - 95

Flag operation:

Example:

SUBC A, [DE]

Function:

Flag operation:

Example:

SUBC A, word{rl]

Function:

Z AC CY
X X X
None

A, CY «— A-(DE)-CY

Subtracts the contents of the memory
addressed by the contents of register
pair DE including the carry flag from
the contents of register A. The carry
flag 1s set when a borrow has resulted
from this subtraction. The carry flag -
is reset when a borrow has not resulted

from the subtraction.

T |

z AC CY
X X X
SUBC A, [DE]: 0

Subtracts the contents of the area at
the address 1ndicated by the contents of
register pair DE including the carry
flag from the contents of register A and
stores the result in register A.

A, CY <« A-word[r1]-CY

Subtracts the contents of the memory.
addressed by the second operand
including the carry flag from the
contents of register A. The carry flag
is set when a borrow has resulted from
this subtraction. The carry flag is
reset when a borrow has not resulted
from the subtraction.

16 - 96

Flag operation:

Example:

AND A, #byte

Function:

Flag operation:

Example:

AND saddr,

Function:

#byte

The address of the memory to be accessed
is specified as the value of the sum of
16-bit immedlate data entered in the
second operand and the contents of the
8-bit register.

Z AC CY
X X X
None
A <« A Abyte byte=00H-FFH

ANDs the contents of reglister A and the
8-bit immediate data specifled in the
second operand and sets the result in
register A.

I T

YA AC CY

X

AND A, #O0FFH: ANDs the contents of
reglster A and FFH.

(saddr} <— (saddr) A byte
saddr=FE20H-FF1FH
byte=00H-FFH

ANDs the contents of the short direct

memory addressed by the first operand

and the 8-bit immediate data specified

In the second operand, and sets the

result in the short direct memory

addressed by the first operand,

Enter the address or label of the short

direct memory in saddr of the first

operand.

16 - 97

Flag operation:

Example:

AND sfr, #byte

Function:

Flag operation:

Example:

AND r, r'

Function:

z AC CcY

AND OFE40H, #OFOH:

Resets only the four low-order bits of
the contents of the area at address
FE40H. (The four high-order bits do
not change.)

sfr <« sfr A byte byte=00H-FFH

ANDs the contents of the specilal
function register specified in the first
operand and the 8-bit immediate data
specified in the second operand, and
sets the result in the special function
register specified in the first operand.

I T

Z AC CcY

X

AND P86, #O0OFH:

Resets only the four high-order bits in
the port 6 output latch. (The low-order
four blts do not change.)

r «— rar’ .
ANDs the contents of the 8-blt reglster
specified in the first operand and the
8-bit reglster speciflied in the second
operand, and sets the result in the
B-bit reglister specifled in the first

operand.

16 - 98

Flag operation:

Example:

AND A, saddr

Funection:

Flag operation:

Example:

AND A, sfr

Function:

Flag operation:

Example:

Z AC CY

None

A <« A A (saddr) saddr=FE20H-FF1FH
ANDs the contents of reglster A and the
short direct memory specified in the
second operand, and sets the result in
register A.

Enter the address or label of the short
direct memory Iin saddr of the second
operand.

YA AC CY

X

None

A <« A asfr

ANDs the contents of register A and the
speclal functlon register specified in
the second operand, and sets the result
in register A.

I T

Z AC CY

X

None

186 - 99

AND A, [r4]

Function:

Flag operation:

Example:
AND A, [HL]

Function:

Flag operation:

Example:

A < A A{FEOOH+r4)
ANDs the contents of register A and the

r4=00H-FFH

memory addressed by the second operand,
and sets the result in register A. The
eight high-order bits of the address of
the memory to be accessed are always FEH
and the eight low-order bits are
specified by the contents of the 8-bit
register specified in the second operand.
The value in the range of 00H to FFH
must be set in the 8-bit register.

3 T

Z AC CcY

None

A < A~ (HL)

ANDs the contents of register A and the
memory addressed by the contents of
register palr HL, and sets the result in

register A.

I T

Z AC CY

X

None

16 - 100

AND A, [DE]

Function:

Flag operation:

Example:

AND A, word [r1]

Function:

Flag operation:

Example:

OR A, #byte

Function:

A =— A A~ (DE)
ANDs the contents of register A and the

memory addressed by the contents of
register palr DE, and sets the result in

register A.

T T

Z AC CY

X

None

A <« Asrwordfri]

ANDs the contents of register A and the
memory addressed by the second operand,
and sets the result in register A.

The address of the memory to be accessed
is specified as the value of the sum of
186-bit immediate data entered in the
second operand and the contents of the
8-bit register.

Z AC CY

X

None

A < A vbyte byte=00H-FFH

ORs the contents of register A and the
8-bit immediate data specified in the
second operand, and sets the result in

register A.

16 - 101

Flag operation:

Example:

OR saddr, #byte

Function:

Flag operation:

Example:

OR sfr, #byte

Function:

OR A, #0FH: Outputs 1 from the four
low-order blts of register
A. {The four high-order
bits do not change.)

(saddr) <« (saddr) v byte
saddr=FE20H~-FF1FH
byte=00H-FFH

ORs the contents of the short direct

memory addressed by the first operand

and the 8-bit immediate data specified
in the second operand, and sets the
resultlin the short direct memory
specified 1n the first operand.

Enter the address or label of the short

direct memory 1n saddr of the first

operand.
T T
Z AC cY
X
None
sfr «— sfr vbyte byte=00H-FFH

ORs the contents of the special function
register specified in the first operand
and the B-blt immediate data specifled
in the second operand, and sets the
result Iin the special functlion register
specified in the first operand.

16 - 102

Flag operation:

Example:

Function:

Flag operation:

Example:

OR A, saddr

Function;

Flag operation:

Z AC CY
X
OR Pl, #FOH ' OQutputs 1 from the four

MOV PM1, #O0O0OH high order bits of port
1. (The four low-order
bits do not change.)

r < rvr'

ORs the contents of the 8-bit register
specified in the first operand and the
8-bit reglister specified in the second
operand, and sets the result in the 8-
blt register specified in the first
operand.

Z AC CY
X
None
A <« A v (saddr) saddr=FE20H-FF1FH

ORs the contents of register A and the
short direct memory addressed by the
second operand, and sets the result in
the register A, _

Enter the address or label of the short
direct memory In saddr of the second

operand.

Z AC CY

X

16 - 103

Example:

OR A, sfr

Function:

Flag operation:

Example:

OR A, [r4]

Function:

Flag operation:

Example:

OR A, OFE98H:
ORs the contents of register A and the

contents of the area at address FE98H
bit by bit and stores the result in
reglster A.

A < A vsfr

ORs the contents of register A and the

special functlon reglster specified in

the second operand, and sets the result
in register A,

Z AC CY
X
None
A = A v (FEOOH+r4) r=00H-FFH

ORs the contents of register A and the
memory addressed by the second operand,
and sets the result in register A. The
eight high-order bits of the address of
the memory to be accessed are always FEH
and the elght low-order bits are
specified by the contents of the 8-bit
reglster specified in the second operand.
The value in the range of 00H to FFH
must be set in the 8-bit register.

1 T

Z AC 100 4

X

None

16 - 104

OR A, [HL]

Function:

Flag operation:

Example:

OR A, [DE]

Function:

Flag coperation:

Example:

OR A, word [rl]

Funetion:

A = A v (HL)
ORs the contents of reglister A and the

memory addressed by the contents of
reglster pair HL, and sets the results

in register A.

T T

Z AC CY

X

ORs the contents at
address FEDOH and the
contents of register A.

MOVW HL, #FEDOH,
OR A, [HL]

A~ Av (DE)
ORs the contents
memory addressed by the contents of

of register A and the

register palr DE, and sets the results

In register A.

I T

Z AC CY

X

None

A < A vword([ril]

ORs the contents of register A and the
memory addressed by the second operand,
and sets the result in register A.

The address of the memory to be accessed
1s specified as the value of the sum of
16-bit immediate data entered in the
second operand and the contents of the
8-bit register.

16 - 105

Flag operation: T T

YA AC CY
X
Example: None
XOR A, #byte
Function: A < A~byte byte=00H-FFH

Exclusive ORs the contents of register A
and the 8-bit immediate data specified
in the second operand, and sets the

result in register A.

Flag operation: T T
Z AC CY

X

Example: XOR A, #0FFH: Inverts the contents of
register A.

X0OR saddr, #byte

Function: ({saddr) <« (saddr) « byte
saddr=FE20H-FF1FH
byte=00H-FFH

Exclusive ORs the contents of the short
direct memory addressed by the first
operand and the 8-bit immediate data
specified in the second operand, and
sets the result in the short direct
memory addressed by the first operand.
Enter the address or label of the short
direct memory in saddr of the first

operand.

Flag operation: T T
yA AC CY

X

16 - 106

Example:

XOR sfr, #byte

Function:

Flag operation:

Example:

XOR r, r'

— Function:

Flag operation:

Example:

sfr <« sfr+ byte byte=00H-FFH
Exclusive ORs the contents of the
special function register specifiled in
the first operand and the 8-bit
immediate data specified In the second
operand, and sets the result in the
special function register.

T I

Z AC Cy

X

XOR P1, #0FFH: Inverts the contents of
the port 1 output latch.

r < rsr'

Exclusive ORs the contents of the 8-bit
register specified in the first operand
and the 8-blt register specified in the
second operand, and sets the result in
the 8-bit register specified in the
first operand.

Z AC CcY

X

None

16 - 107

XOR A, saddr

Function:

Flag operation:

Example:

XOR A, sfr

Function:

Flag operation:

Example:

A <« A~ (saddr) saddr=FE20H-FF1FH
Exclusive ORs the contents of register A
and the short direct memory addressed by
the second operand, and sets the result
in register A.

Enter the address or label of the short
direct memory in saddr of the second

operand.
1 T
z AC CY
X
XOR A, OFE50H: [

Exclusive ORs the contents of register A
and the contents of the area at address
FES50H bit by bit and stores the result
in register A.

A <« A ~sir

Exclusive ORs the contents of register A
and the special function reglster
specified in the second operand, and
sets the result in reglister A.

T T

Z AC CY

X

None

16 - 108

XOR A, [r4]

Function:

Flag operation:

Example:

XOR A, [HL]

Function:

Flag operation:

Example:

A < A~ (FEOOH+r4) r4=00H-FFH
Exclusive ORs the contents of register A
and the memory addressed by the second
operand, and sets the result in register
A. The eight high-order bits of the
address of the memory to be accessed are
always FEH and the eight low-order bits
are specified by the contents of the
8-bit register specified in the second
operand.

The value in the range of 00H to FFH
must be set in the 8-bit register.

Z - AC CY

X

None

A «— A~ (HL)

Exclusive ORs the contents of register A
and the memory addressed by the contents
of register pair HL, and sets the result
in register A.

Z AC CY

X

None

16 - 109

XOR A, [DE]

Function:

Flag operation:

Example:

XOR A, word [ri1]

Function:

Flag operation:

Example:

A <«— A~ (DE)
Exclusive ORs the contents of register A

and the memory addressed by the contents
of reglster pair DE, and sets the result
in register A.

YA AC CY

X

None

A,CY «<— A~word[rl]

Exclusive ORs the contents of register A
and the memory addressed by the second
operand, and sets the result in register
A.

The address of the memory to be accessed
is specified as the value of the sum of
16-bit immediate data entered in the
second operand and the contents of the
8-blt register.

I a1l

Z AC CY

None

16 - 110

CMP A, #byte

Function:

Flag operation:

Example:

CMP saddr,

Function:

#byvte

A - byte byte=00H-FFH
Subtracts the 8-bit immediate data
specified iIn the second operand from the
contents of register A. The carry flag
is set when a borrow has resulted from
this subtraction. The carry flag is
reset when a borrow has not resulted
from the subtraction.

The contents of register A do not change
after 1Instruction execution.

1 T

Z AC CY

X X X

CMP A, #10H: Compares the contents of
register A with 10H.

(saddr) - byte saddr=FE20H-FF1FH
byte=00H-FFH
Subtracts the 8-bit immediate data
specified In the second operand from the
contents of the short direct memory
addressed by the first operand. The
carry flag 1s set when a borrow has
resulted from this subtraction. The
carry Tlag Is reset when a borrow has
not resulted from the subtraction.
The contents of the short direct memory
do not change after instruction
execution.
Enter the address or label of the short
direct memory in saddr of the first

operand.

16 - 111

Flag operation:

Example:
CMP sfr, #byte

Function:

Flag operation:

Example:

CMP r, r'

Function.:

Z AC CYy
X X X
None
sfr - byte byte=00H-FFH

Subtracts the 8-bit immediate data
specified in the second operand from the
contents of the special function
register specified in the first operand.
The carry flag is set when a borrow has
resulted from this subtraction. The
carry flag is reset when a borrow has
not resulted from the subtraction.

The contents of the special function
register do not change after instruction

eXecution.
1 T
Z AC CY
X b4 X
None

r, CY «— r-r’

Subtracts the contents of the 8-bit
register specified in the second operand
from the contents of the 8-bit register
specified in the first operand. The
carry flag is set when a borrow has
resulted from this subtraction. The
carry flag 1s reset when a borrow has
not resulted from the subtraction.

The contents of the 8-bit register do
not change after instruction execution.

16 - 112

Flag operation:

Example:

CMP A, saddr

Function:

Flag operation:

Example:

VA AC CY
X X X
None
A - (saddr) saddr=FE20H-FF1FH

Subtracts the contents of the short
direct memory addressed by the second
operand from the the contents of
reglister A. The carry flag is set when
a borrow has resulted from this
subtraction. The carry flag is reset
when a borrow has not resulted from the
subtraction.

The contents of register A and the short
direct memory do not change after
instruction execution.

Enter the address or label of the short

direct memory in saddr of the second

operand.
T T
Z AC CY
X X X

CMP A, #OFEDOH: Compares the contents
of reglster A with the
contents of the area at
FEDOH.

16 - 113

CMP A,

Function: A - sfr
Subtracts the contents of the special
function register specified in the
second operand from the contents of
register A. The carry flag is set when
a borrow has resulted from thils
subtraction. The carry flag 1s reset
when a borrow has not resulted from the
subtraction.
The contents of register A and the
special functlon register do not change

after instruction execution.

Flag operation: T T

Z AC cY
X X X
Example: None
CMP A, [r4]
Function: A - (FEQOH+r4) r4=00H-FFH

Subtracts the confents of the memory
addressed In the second operand from the
contents of register A. The eight high-
order bits of the address of the memory
to be accessed are always FEH and the
eight low-order bits are specified by
the contents of the 8-bit register
specified in the second operand. The
carry flag 1s set when a borrow has
resulted from this subtraction. The
carry flag is reset when a borrow has
not resulted from the subtraction.

The value in the range of 00H to FFH
must be set in the 8-bit register.

16 - 114

The contents of register A and the
memory do not change after instruction

execution.
Flag operation: T T
Z AC CY
X X X
Example: None
CMP A, [HL]
Funection: A - (HL)

Subtracts the contents of the memory
addressed by the contents of register
pair HL from the contents of register A.
The carry flag is set when a borrow has
resulted from this subtraction. The
carry fTlag is reset when a borrow has not
resulted from the subtraction.

The contents of register A and the

memory do not change after instruction

execution.
Flag operation: T T
Z AC CY
X X X
Example: None
CMP A, (DE]
Function: A - (DE)

Subtracts the contents of the memory
addressed by the contents of register
pair DE from the contents of register A.
The carry flag is set when a borrow has
resulted from this subtraction. The
carry flag is reset when a carry has not

resulted from the subtraction.

16 - 115

Flag operation:

Example:

CMP A, word [rl]

Function:

Flag operation:

Example:

The contents of register A do not change
after instruction executilon.

T T

Z AC CY
X X X
None

A - word[rl]

Subtracts the contents of the memory
addressed by the second operand from the
contents of register A.

The carry flag i1s set when a borrow has
resulted from this subtraction. The
carry flag is reset when a carry has not
resulted from the subtraction.

The contents of register A do not change
after Iinstruction execution.

The address of the memory to be accessed
1s specifled as the value of the sum of
16-bit immediate data entered in the
second operand and the contents of the
8-bit register.

Y AC CY
X x‘ X
None

16 - 116

16.6.4 16-bit arithmetic/logical instructions

ADDW AX, #word

Function:

Flag operation:

Example:

ADDW AX, rp

Function:

Flag operation:

Example:

AX, CY =— AX+word word=0000H-FFFFH
Adds the 16-bit immediate data specified
in the second operand to the contents of
register pair AX, 1n binary. The carry
flag i1s set when a carry has resulted
from this addition. The carry flag 1s
reset when a carry has not resulted from
the addition.

Z AC CY

X X X

ADDW AX, #0ABCDH:

Adds ABCDH to the contents of register
palr AX in binary and stores the result
in register palr AX.

AX, CY < AX+rp

Adds the contents of the 16-bit reglster
pair specified in the second operand to
the contents of register pair AX, in
binary. The carry flag 1s set when a
carry has resulted from this addition.
The carry flag is reset when a carry has
not resulted from the addition.

A AC CY
X X X
None

16 - 117

ADDW AX, saddrp

Function:

Flag operation:

Example:

ADDW AX, sfrp

Function:

Flag operation:

Example:

AX, CY «— AX+(saddrp) saddrp=FE20H-FF1EH
Adds the contents of the 2-byte area in
the short direct memory addressed by the
second operand to the contents of
register pair AX, in binary. The carry
flag i1s set when a carry has resulted
from this addition. The carry flag is
reset when a carry has not resulted from
the addition.

Enter the address or label of the short
direct memory in saddrp of the second
operand. Only an even address must be
entered, however.

I T

Y/ AC CY
X X X
None

AX, CY =« AX+sfrp

Adds the contents of the 16-bit special
function register specified in the
second operand to the contents of
register pair AX, in binary. The carry
flag 1s set when a carry has resulted
from thls addition. The carry flag is
reset when a carry has not resulted from
the addition.

Z AC CY
X X X
None

16 - 118

SUBW AX, #word

Function:

Flag operation:

Example:

SUBW AX, rp

Function:

Flag operation:

Example:

AX, CY <« AX-word word=0000H-FFFFH
Subtracts the 16-bit immediate data
specified in the second operand from the
contents of register pair AX. The carry
flag is set when a borrow has resulted
from thils subtraction. The carry flag
is reset when a borrow has not resulted

from the subtraction.

1 T

Z AC CY
X X X
None

AX, CY <« AX-rp

Subtracts the contents of the 1l6-bit
register pair specified in the second
operand from the contents of register
palr AX. The carry flag is set when a
borrow has resulted from this
subtraction. The carry flag 1s reset

when a borrow has not resulted from the

subtraction.
1 I
Z AC CY
X X X
None

16 - 119

SUBW AX, saddrp

Function: AX, CY <« AX-(saddrp) saddrp=FEZ20H-FF1EH
Subtracts the contents of the two-byte
area in the short direct memory
addressed by the second operand from the
contents of register palr AX. The carry
flag is set when a borrow has resulted
from thils subtraction. The carry flag
is reset when a borrow has not resulted
from the subtraction.

Enter the address or label of the short
direct memory 1n saddrp of the second
operand. Only an even address must be
entered, however.

Flag operation: p— T

Z AC CY
X X X
Example: None
SUBW AX, sfrp
Function: AX, CY =« AX-sfrp

Subtracts the contents of the 16-bit
special funcetion register specified 1In
the second operand from the contents of
register pair AX.

The carry flag 1s set when a borrow has
resulted from this subtraction. The
carry flag is reset when a borrow has
not resulted from the subtraction.

Flag operation: T T
z AC Cy

X X X

16 - 120

Example:

CMPW AX, #word

Function:

Flag operatlon:

Example:

CMPW AX, rp

Function:

SUBW AX, CRO1:
Subtracts the contents of register CRO1
from the contents of register pair AX in

binary and stores the result in register
palr AX.

AX - word word=0000H-FFFFH
Subtracts the contents of the 16-bit
immediate data specified in the second
operand from register pair AX. The
carry flag 1s set when a borrow has
rgsulted from this subtraction. The
carry flag 1s reset when a borrow has
not resulted from the subtraction.

The contents of register pair AX do not

change after instruction execution.

Z AC CY
X X X
None
AX - rp

Subtracts the contents of the 16-bit
register palr specified in the second
operand from the contents of register
pair AX. The carry flag is set when a
borrow has resulted from this
subtraction. The carry flag is reset
when a borrow has not resulted from the
subtraction.

16 - 121

Flag operation:

Example:

CMPW AX, saddrp

Function:

Flag operation:

Example:

The contents of the register pairs
speclified in the first and second
operands do not change after instruction

execution.
1 T
Z AC CY
X X X
None
AX - (saddrp) saddrp=FE20H-FF1EH

Subtracts the contents of the short
direct memory addressed by the second
operand from the contents of register
palr AX. The carry flag is set when a
borrow has resulted from this
subtraction. The carry flag 1s reset
when a borrow has not resulted from the
subtraction.

The contents of register pair AX and the
short direct memory do not change after
instruction execution.

Enter the address or label of the short
direct memory in saddrp of the second
operand. Only an even address must be

specified, however.

Z AC 103 ¢

X X X

CMPW AX, OFE43H:

Compares the contents of register pair
AX with the contents of the area at
address FE43H.

16 - 122

16.6.5

CMPW AX, sfrp

Function:

Flag operation:

Example:

AX - sfrp
Subtracts the contents of the 16-bit
speclal function reglster specified in

the second operand from register pair
AX. The carry flag Is set when a borrow
has resulted from this subtraction. The
carry flag 1s reset when a borrow has
not resulted from the subtraction.

The contents of register palr AX and the
16-bit special function register
specified 1n the second operand do not
change after instruction execution.

T T

Z : AC CY
X p.¢ X
None

Multiply/divide instructions

MULSW r

Function:

Flag operation:

Example:

AX, T «— AX X r

Multiplies the contents of register pair
AX (signed 16-bit data) by the contents
of the 8-bit register specified in the
operand (absolute 8-bit data), and sets
the 16 high-order bits (signed) of the
result in register pair AX and the 8
low-order bits of the result in the
B-bit register specified in the operand.
Specify an 8-bit register other than
registers A and X in r.

No change

None

16 - 123

MULUW r

Function: AX, r «— AX X r
Multiplles the contents of register pair
AX (absolute 16-bit data) by the
contents of the 8-bit register specified
in the operand (absolute 8-bit data),
and sets the 16 high-order bits of the
result in register palr AX and the 8
low-order bits of the result in the
8-bit reglster specifled in the operand.

Flag operation: No change

Example: MOV B, #45H: B -=— 45H

MULUW B: AX, B «— AX x 45H
DIVUW r
Function: AX, r =— AX + r

Divides the contents of register pair AX
(absolute 16-bit data) by the contents
of the 8-bit register specified in the
operand (absclute 8-bit data), and sets
the quotient 1n register pair AX and the
remainder in the register specified in
the operand.

Flag operation: No change

Example: MOV E, #15H: E =— 15H
DIVUW E: AX, E «— AX + 15H

16 - 124

16.6.6

Increment/decrement instructions

INC r

Function:

Flag operation:

Example:

INC saddr

Function:

Flag operation:

Example:

DEC r

Function:

r <r + 1
Increases the contents of the 8-bit
register specified in the operand by

one.

i ' AC CY

X X

INC B: Increases the contents of

register B by one.

{saddr) <— (saddr)+1 saddr=FE20H-FF1FH
Increases the contents of the short
direct memory addressed by the operand
by one.

Enter the address or label of the short
direct memory in saddr of the operand.

1 T

Z AC 103 4

X X

INC TB1: Increases the contents of the
short direct memory of label
TB1 by one.

r < r -1
Decreases the contents of the B8-bit
register specified Iin the operand by

one.

16 - 125

Flag operation:

Example:

DEC saddr

Function:

Flag operation:

Example:

INCW rp

Function:

Flag operation:

Example:

DECW rp

Function:

Flag operation:

Example:

z AC CcYy
X X
DEC A: Decreases the contents of

register A by one.

(saddr) < (saddr)-1 saddr=FE20H-FF1FH
Decreases the contents of the short
direct memory addressed by the operand
by one.

Enter the address or label of the short
direct memory in saddr of the operand.

T {

Z AC CY
X b 4
None

rp «<— rp + 1

Increases the contents of the 16-bit
register palr specifled in the operand
by one.

No change

INCW DE: DE = DE + 1

rp < rp - 1

Decreases the contents of the 16-bit
register pair specified iIn the operand
by one.

No change

DECW HL: HL = HL - 1

16 - 126

16.6.7

Shift/rotate instructions

ROR r, n

Function:

Flag operation:

Example:

ROL r, n

Function:

(CY, rqy <= rg, 'y < rp) x n n=0-7

l“ CY

Rotates the contents of the 8-bit
register specified in the first operand

right the number of bits specified by
the 3-bit immediate data specified in
the second operand. The contents of the
LSB in the 8-bit register are both
transferred to the MSB and set in the
carry flag. When n = 0, these
operations are not performed.

2 AC Cy

X

ROR C, 4: Rotates the contents of
register C right four bits.

(CY, rg <= rq, rp,; < rp) X1 n=0-7

CY —l

16 - 127

Flag operation:

Example:

RORC r, n

Function:

Flag operation:

Example:

Rotates the contents of the 8-bit
register specified in the first operand
left the number of bits specified by the
3-bit immediate data specifled 1in the
second operand. The contents of the MSB
in the 8-bit register are both
transferred to the LSB and set 1n the
carry flag. When n = 0, these
operations are not performed.

Z AC CY

X

ROL L, 2: Rotates the contents of
reglister L left two bits.

(CY =— rg, rq < CY, Fm-1 < rm) XxXn
n=0-7

=]

Rotates the contents of the B-bit
register specified in the first operand
including the carry flag right the
number of bits specified by the 3-bit
immediate data specified in the second

operand.

Z AC cY

X

RORC B, 1: Rotates the contents of
register B including the CY
flag right one bit.

16 - 128

Function:

Flag operation:

= |

Rotates the contents of the 8-bit

register speclfied in the first operand
including the carry flag left the number
of bits specified by the 3-bit immediate
data specified in the second operand.

T T

Z AC CY
X
Example: ROLC A, 3: Rotates the contents of
register A 1ncluding the CY
flag left three bits.
SHR r, n
Function: (CY = rg, rp < 0, rp_q < rm) Xn n=0-7

Shifts the contents of the 8-bit
register specified In the first operand
right the number of bits specified by
the 3-bit Iimmediate data specified in
the second operand. The contents of the
LSB in the 8-bilt register are shifted
into the carry flag and the MSB is set
to 0. When n = 0, these operations are

not performed.

16 - 129

Flag operation: T T

Z AC CY
X 0 X
Example: SHR A, 1: Divides the contents of

reglister A by two. (The

remainder 1s set in the CY.)
SHL r, n

Function: (CY <~ rq, ry <= 0, rp,q < rp) xn
n=0-7

cY p-—0

Shifts the contents of the 8-bit
reglister specified in the first operand
left the number of bits specified by the
3-bit immediate data specified in the
second operand. The contents of the MSB
in the 8-blt reglster are shifted into
the carry flag and the LSB is set to 0.

When n = 0, these operations are not

performed.
Flag operation: T]
Z AC CY
X 0 X
Example: SHL L, 3: Shifts the contents of

register L left three bit
positions. The contents'of
bit 5 before shifted are set
in the carry flag.

16 - 130

Function:

Flag operation:

Example:

(CY < rpg. rpyg < O, rPpp_ 1 < rPy) X D
n=0-7

15 0

Shifts the contents of the 16-bit
register palr specifled in the first
operand right the number of bits
specified by the 3-bit immediate data
specified in the second operand. The
contents of the LSB in the 16-bit

register pair are shifted into the carry

flag and the MSB is set to 0. When

n = 0, these operations are not

performed.
T T
Z AC CY
X 0 X

SHRW AX, 3: Divides the contents of
register pair AX by 8.

16 - 131

SHLW rp, n

Function:

Flag operation:

Example:

ROR4 [r4]

Function:

(CY = r'Pyg. I'Pg < o, Pp+1 < I'Pm) X n
n=0-7

15 0
CY | o

Shifts the contents of the 16-bit
register palr specified in the first
operand left the number of bits
speciflied by the 3-bit immediate data
specified in the second operand. The
contents of the MSB in the 16-bit
register palr are shifted intoc the carry
flag and the LSB is set to 0. When

n = 0, these operations are not

performed.
T 1
A AC CY
X 0 X

SHLW AX, 1: Multiplies the contents of
reglster AX by two.

A3_0 -~ (FEO0H+I4)3_0|

(FEO0H+F4)7_4 - A3~0-

(FEOOH+r4)3_0 <— (FEOOH+r4),_,
r4=00H-FFH

7 4 3 o] 7 4 3 0
Unchanged (FEOOH +14)

16 - 132

Flag operation:
Example:

Before execution

After execution

ROL4 [r4]

Function:

Rotates the contents of the four low-

order bits In register A and the four

high-order bits and four low-order bits

of the memory addressed by the operand

right in units of four bits. The eight

high-order bilts of the address of the

memory to be accessed are always FEH,

and the eight low-order bits are

specified by the contents of the 8-bit

reglister specified in the operand.

The value in range of 00H to FFH must be

set in the 8-bit register.

Execution of this instruction have no

effect on the four high-order bits in

register A.

No change

ROR4 [E]: Rotates the contents of

' register A and memory at
address FEOOH + (the contents
of register E) right.

A (FEOOH+E)
7 4 3 0 7 4 3 0
6oo0OO0O|l0OO0C1O 010110011

0000|0011 0001|0101

Ag_g < (FEOOH+r4),_,,

(FEOOH+I’4)3_O - A3_0 '

(FEOOH+r4)7_, < (FEOOH+r4)4_g,
r4=00H-FFH

7 4 3 0 7 4 3 0

A Unchanged (FEQOH+r4)

16 -~ 133

Rotates the contents of the four low-

order bits in register A and the four

high-order bits and four low-order bits

of the memory addressed by the operand

left in units of four bits. The eight

high-order bits of the address of the

memory to be accessed are always FEH,

and the eight low-order bits are

specified by the contents of the 8-bit

register specified in the operand.

The value in range of 00H to FFH must be

set In the 8-bit register.

Execution of this instruction have no

effect on the four high-order bits in

reglster A.

Flag operation: No change
Example: ROL4 [E]): Rotates the contents of

register A and memory at
address FEOOH + (the contents
of register E) left.

A (FEOOH+E)
7 4 3 0 7 4 3 0
Before execution {0 0 0 1 |0 0 1 0 0100|1000
After execution 000110100 LoOoOO0O|0DO0O1O

16 - 134

16.6.8 BCD correction instructions

ADJBA
Function: Judges the contents of register A, the
carry flag (CY), and the auxiliary
carry flag (AC) and makes decimal
correction as shown In the following
table. This instruction does not have
an effect until decimal (BCD) data are
added.
Condition Operation
A3_0§9 A7_4§9andCY=0 A <«— A
AC = 0 A7_4 2 10 or CY = 1 | A < A + 01100000B
A3_o 2 10 |A7_4, <9 and CY = 0 | A <~ A + 00000110B
AC = 0 A7_4 2 9 or CY =1 A< A + 01100110B
A7_4 < 9 and CY = 0 A< A + 00000110B
AC =1
A7_4 2 10 or CY = 1 A< A + 01100110B
Flag operation: T T
Z AC CYy
X X X

Example: MOV A, #88H
ADD A, #79H: A=01H, CY=1, and AC=1
A <— A+66H, A=67H, and CY=1

88 + 79 = 167
10001000 88H

ADD +)01111001 79H
00000001 O1H
Lo

CY AC
ADJBA
+)01100110 66H
01100111 67H

16 - 135

ADJBS

Function: Judges the contents of register A, the
carry flag (CY), and the auxiliary
carry flag (AC) and makes decimal
correction as shown in the following
table. This instruction does not have
an effect until subtraction between
decimal (BCD) data 1s performed.

Condition Operation
CY = 0 A <= A
AC = 0
Cy = 1 A <« A - 01100000B
CYy =0 A <= A - 00000110B
AC = 1
CY = 1 A = A - 01100110B
Flag operation: T T
z AC CY
X X X
Example: None
16.6.9 Bit manipulation instructions
MOVl CY, saddr.bit
Function: CY <« (saddr.bit) saddr=FE20H-FF1FH

bit=0-7
Transfers the contents of the short
direct memory bit addressed by the
second operand to the carry flag.
Enter the address or label of the short
direct memory bit in saddr.bit of the
operand.

16 - 136

Flag operation:

Example:

MOVl CY, sfr.bit

Function:

Flag operation:

Example:

MOVl CY, A.bit

Function:

Flag operation:

Example:

Z AC CY
X
None
CY «— sfr.bit bilt=0-7

Transfers the contents of the bit
addressed by the 3-bit Immediate data in
the special functlion reglster specified

in the second operand to the carry flag.

T 1

Z AC CY
X
None
CY -«— A.bit bit=0-7

Transfers the contents of the bit
addressed by the 3-bit immediate data in
register A specified 1n the second
operand to the carry flag.

I I

Y/ AC CY

X

None

16 - 137

MOVl CY, X.bit

Function: CY «— X.bit bit=0-7
Transfers the contents of the bit
addressed by the 3-bit immediate data in
reglster X specified in the second

operand.
Flag operation: T T
Y AC CY
X
Example: None
MOVl CY, PSW.bit
Function: CY «— PSW.bit bit=0-7

Transfers the contents of the bit
addressed by the 3-bit immediate data in
the program status word (PSW) specified
in the second operand to the carry flag.

Flag operation: T T
Z AC CY
X
Example: None
MOVl saddr.bit, CY
Function: (saddr.bit) <« CY saddr=FE20H-FF1FH

bit=0-7

Transfers the contents of the carry flag
to the short direct memory bit addressed
by the first operand.
Enter the address or label of the short
direct memory bit in saddr.bit of the
operand.

Flag operation: No change

Example: None

16 - 138

MOVl sfr.bit,

Function:

CY

Flag operation:

Example:

MOVl A.bit, CY

Function:

Flag operation:

Example:
MOV1 X.bilt, CY

Function:

Flag operation:

Example:

sfr.bit «— CY bit=0~7

Transfers the contents of the carry flag
to the bit addressed by the 3-bit
immediate data in the special function
register specified in the first operand.
No change
MOVl P3.3, CY: Transfers the contents
of the CY flag to bit 3

of port 3.

A.bit «— CY bit=0-7

Transfers the contents of the carry flag
to the bit addressed by the 3-bit
immediate data in register A specified
in the first operand.

No change

None

X.bit «— CY bit=0-7

Transfers the contents of the carry flag
to the bits addressed by the 3-bit
immediate data in register X specified
in the first operand.

No change

None

16 - 139

MOV1 PSW.bit, CY

Function:

Flag operation:
Example:

PSW.bilt <« CY bit=0-7

Transfers the contents of the carry flag
to the bit addressed by the 3-bit
Immediate data in the program status
word (PSW) specified in the first
operand.

No change

None

AND1 CY, saddr.bit

Function:

Flag operation:

Example:

CY «— CY ~ (saddr.bit) saddr=FE20H-FF1FH
bit=0-7

ANDs the contents of the short direct

memory bit addressed by the second

operand and the carry flag, and sets the

result in the carry flag.

Enter the address or label of the short

direct memory bit in saddr.bit of the

operand.

z AC CcY

AND1 CY, OFE7FH.3:

ANDs the contents of bilt 3 at address
FETFH and the CY flag and stores the
result in the CY flag.

16 - 140

AND1 CY, /saddr.bit

Function:

Flag operation:

Example:

AND1 CY, sfr.bit

Function:

Flag operation:

Example:

CY < CY » (saddr.bIt) saddr=FE20H-FF1FH
bl1t=0-7

ANDs the contents of the inverted short

direct memory bit addressed by the

second operand and the carry flag, and

sets the result in the carry flag.

Enter the address or label of the short

direct memory bit in saddr.bit of the

operand.

Z AC CY
X
None
CY «— CY »sfr.bit bit=0-7

ANDs the contents of the bit addressed
by the 3-bilt immediate data in the

speclal function register specified in
the second operand and the carry flag,
and sets the result in the carry flag.

T T

Z AC CY

X

None

16 - 141

AND1 CY, /sfr.bit

Function:

Flag operation:

Example:

AND1 CY, A.bit

Function:

Flag operation:

Example:

AND1 CY, /A.bit

Function:

CY «— CY A sfr.bit bit=0-7

ANDs the contents of the 1nverted bit
addressed by the 3-bit immedlate data in
the special function register specifled
in the second operand, and sets the
result in the carry flag.

Z AC CY
X
None
CY «—— CY ~AA.bit bit=0-7

ANDs the contents of the bit addressed
by the 3-bit immediate data in register
A specified in the second operand and
the carry flag, and sets the result in
the carry flag.

I L

yA AC CY
X
None
CY — CYA A BIT bit=0-7

ANDs the contents of the inverted bit
addressed by the 3-blt immediate data 1n
reglister A specified In the second
operand and the carry flag, and sets the
result 1n the carry flag.

16 - 142

Flag operation:

Exanple:
AND1 CY, X.bit

Function:

Flag operation:

Example:
AND1 CY, /X.bit

Function:

Flag operation:

Example:

Z AC CY
X
None
CY «— CY»X.bit bit=0-7

ANDs the contents of the bit addressed
by the immediate data in register X
specified 1In the second operand and the
carry flag, and sets the result in the

carry flag.
T I
z AC CY
X
None
CY «— CYA~X.bit bit=0-7

ANDs the contents of the inverted bit
addressed by the 3-bit 1mmediate data in
reglster X specified in the second
operand and the carry flag, and sets the
result in the carry flag.

Z AC CY

X

None

16 - 143

AND1 CY, PSW.bit

Function: CY < CY APSW.bit bit=0-7
ANDs the contents of the bilt addressed
by the 3-bilt immediate data 1n the
program status word (PSW) specified in
the second operand and the carry flag.
and sets the result in the carry flag.

Flag operation: T T

7 AC CcY
X
Example: None
AND1 CY, /PSW.bit
Function: CY <« CY A PSW.bIT bit=0-7

ANDs the contents of the inverted bit
addressed by the 3-bit 1mmediate data in
the program status word (PSW) specified
in the second operand and the carry
flag, and sets the result in the carry

flag.
Flag operation: T T
z AC CYy
X
Example: AND1 CY, /PSW.6:

ANDs the value obtalned by inverting
bit 6 (Z flag) 1in the PSW and the
contents of the CY flag and stores the
result in the CY flag.

16 - 144

OR1 CY, saddr.bit

Function:

Flag operation:

Example:

CY <« CY v (saddr.bit) saddr=FE20H-FF1FH
bit=0-7

ORs the contents of the short direct

memory bit addressed by the second

operand and the carry flag, and sets the

result in the carry flag.

Enter the address or label of the short

direct memory blt iIn saddr.bit of the

operand.
1 T
Z AC cy
X
None

OR1 CY, /saddr.bit

Function:

Flag operation:

Example:

CY <« CY v (saddr.bit) saddr=FE20H-FF1FH
bit=0-7

ORs the contents of the inverted short

direct memory bit addressed by the

second operand and the carry flag, and

sets the result in the carry flag.

Enter the address or label of the short

direct memory bit in saddr.bit of the

operand.

Z AC CY

None

16 - 145

OR1 CY, sfr.bit

Function:

Flag operation:

Example:

OR1 CY, /sfr.bit

Function:

Flag operation:

Example:

CY «— CY vsfr.bit bit=0-7

ORs the contents of the bit addressed by
the 3-bit immediate data in the special
function register specified in the
second operand and the carry flag, and
sets the result in the carry flag.

T T

Z AC CcY

X

OR1 CY, P2.5:

ORs the contents of bit 5 of port 2 and
the CY flag and stores the result in the
CY flag.

CY «— CYv sfr.bit bit=0-7

ORs the contents of the inverted bit
addressed by the 3-bit immediate data in
the special function register specified
in the second cperand and the carry
flag, and sets the result in the carry
flag.

Z AC cY

None

16 - 146

OR1 CY, A.bit

Function:

Flag operation:

Example:

OR1 CY, /A.bit

Function:

Flag operation:

Example:

OR1 CY, X.bit

Function:

CY «— CYv A.bit bit=0-7

ORs the contents of the bit addressed by
the 3-bit immediate data 1ln register A
specifled in the second operand and the
carry flag, and sets the result in the

carry flag.
1 1
y/ AC CcY
X
None
CY «— CY vA.bit bit=0-7

ORs the contents of the inverted bit
addressed by the 3-bilt immediate data in
register A speclfied in the second
operand and the carry flag, and sets the
result in the carry flag.

z AC CY
X
None
CY «— CYvX.bit bit=0-7

ORs the contents of the bit addressed by
the 3-bit immediate data in register X
specified in the second operand and the
carry flag, and sets the result in the
carry flag.

16 - 147

Flag operation:

Example:

OR1 CY, /X.bit

Function:

Flag operation:

Example:

OR1 CY, PSW.bit

Function:

Flag operatlion:

Example:

Z AC CY
X
None
CY «— CY v X.bit bit=0-7

ORs the contents of the inverted bit
addressed by the 3-bit immediate data in
register X speciflied 1n the second
operand and the carry flag, and sets the

result in the carry flag.

T T

Z AC CY

X

OR1 CY, /X.0: ORs the value obtained by
inverting bit 0 in
register X and the
contents of the CY flag
and stores the result in
the CY flag.

CY «— CY v PSW.bit bit=0-7

ORs the contents of the blt addressed by
the 3-bit immediate data In the program
status word (PSW) specified iIn the
second operand and the carry flag, and
sets the result in the carry flag.

T I

Z AC CY

X

None

16 - 148

OR1 CY, /PSW.bit

Function:

Flag operation:

Example:

CY «<— CYv PSW.bit bit=0-7

ORs the contents of the inverted bit
addressed by the 3-bit immediate data in
the program status word (PSW) specified
in the second operand and the carry
flag, and sets the result in the carry
flag.

Z AC CY

None

XOR1 CY, saddr.bit

Funetion:

Flag operation:

Example:

CY «— CY + (saddr.bit) saddr=FE20H-FF1FH
bit=0-7

Exclusive ORs the contents of the short

direct memory bit addressed by the

second operand and the carry flag, and

sets the result in the carry flag.

Enter the address or label of the short

direct memory bit in saddr.bit of the

operand.

2 AC CY

None

16 - 149

XOR1 CY, sfr.bit

Function:

Flag operation:

Example:

X0OR1 CY, A.bit

Function:

Flag operation:

Example:

CY «<— CYvsfr.bit bit=0-7

Exclusive ORs the contents of the bit
addressed by the 3-bit lmmediate data in
the special function register specified
in the second operand, and sets the
result in the carry flag.

Z AC CY
X
None
CY <— CY A.bit bit=0-7

Exclusive ORs the contents of the bit
addressed by the 3-bit Immediate data in
register A speclified In the second
operand and the carry flag, and sets the
contents in the carry flag.

T T

Z AC cY

X

XOR1 CY, A.7: Exclusive ORs the
contents of bit 7 in
register A and the CY
flag and stores the
result in the CY flag.

16 - 150

XOR1 CY, X.bit

Function:

Flag operation:

Example:

XOR1 CY, PsSW.bit

Function:

Flag operation:

Example:

SET1 saddr.bit

Function:

CY «— CYy+X.bit bit=0-7

Exclusive ORs the contents of the bit
addressed by the 3-bit immediate data in
register X specified in the second
operand and the carry flag, and sets the
contents in the carry flag.

T T
2 AC cY
X
None
CY <— CY~ PSW.bit bit=0-7

Exclusive ORs the contents of the bit
addressed by the 3-bit immediate data in
the program status word (PSW) specified
in the second operand, and sets the
result in the carry flag.

1 T

Z AC CYy
X
None
(saddr.bit) =— 1 saddr=FE20H-FF1FH

bit=0-7
Sets the short direct memory bit
addressed by the operand to 1.
Enter the address or label of the short
direct memory bit in saddr.bit of the

operand.

16 - 151

Flag operation:

Example:

SET1 sfr.bit

Function:

Flag operation:

Example:

SET1 A.bit

Function:

Flag operation:

Example:

SET1 X.bit

Function:

Flag operation:

Example:

No change

None

sfr.bit -« 1 bit=0-7

Sets the bit addressed by the 3-bit
immediate data in the special function
reglster specified in the operand to 1.

No change

SET1 ADM.7 Sets bit 7 in the A/D
conversion mode register
to 1. (Starts A/D
conversion.)

A.blt «— 1 bit=0-7

Sets the bit addressed by the 3-bit
immediate data in regilster A of the
operand to 1.

No change

None

X.bit «— 1 bit=0-7

Sets the bit addressed by the 3-bit
immediate data in register X of the
operand to 1.

No change

None

16 - 152

SET1 PSW.bit

Funection:

Flag operation:

Example:

CLR1 saddr.bit

Funetion:

Flag operation:

Example:

CLR1 sfr.bit

Function:

Flag operation:

Example:

bit=0-7

PSW.bit «— 1
Sets the bit addressed by the 3-bit
immediate data in the program status word
(PSW) specifled in the operand to 1.

The flag addressed by the operand is set
to 1.

None

saddr=FE20H-FF1FH
bit=0-7
Clears the short direct memory bit

(saddr.bit) «— 0

addressed by the operand to 0.

Enter the address or label of the short
direct memory in saddr.bit of the
operand.

No change

None

sfr.bit «— 0 bit=0-7

Clears the bit addressed by the 3-bit
immediate data in the special function
reglster specified in the operand to 0.
No change
CLR1 ADM.7: Clears bit 7 in the A/D
conversion mode register to

0. (Stops A/D conversion.)

16 - 153

CLR1 A.bit

Function: A.bit «— 0 bit=0-7
Clears the bit addressed by the 3-bit
immedliate data in register A specified
in the operand to 0.

Flag operation: No change

Example: None
CLR1 X.bit
Function: X.bit =— 0 bit=0-7

Clears the bit addressed by the 3-bit
immediate data In register X specified
in the operand to 0.

Flag operation: No change

Example: None

CLR1 PSW.bit

Function: PSW.bit =« 0 bit=0-7
Clears the blt addressed by the 3-bit
immedliate data In the program status
word (PSW) specified in the operand to 0.

Flag operation: The flag addressed by the operand 1s
cleared to 0.

Example: None

16 - 154

NOT1 saddr.bit

Function:

Flag operation:

Example:

NOT1 sfr.bit

Function:

Flag operation:

Example:

NOT1 A.bit

Function:

Flag operation:

Example:

(saddr.bit) <« (saddr.bit)
saddr=FE20H-FF1FH
bit=0-7

Inverts the contents of the short direct

memory blt addressed by the operand.

Enter the address or label of the short

direct memory in saddr.blt of the

operand.

No change

NOT1 OFE35H.0: Inverts the contents of

bit 0 at address FE35H.

sfr.bit <« sfr.bit bit=0-7

Inverts the contents of the 3-bit
immediate data in the special function
register specified in the operand.

No change

None

A.blt <« ABIt bit=0-7

Inverts the contents of the bit
addressed by the 3-bit immediate data in
register A specified in the operand.

No change

None

16 - 155

NOT1 X.bit

Function:

Flag operation:

Examnple:

NOT1 PSW.bit

Function:

Flag operation:

Example:

SET1 CY

Function:

Flag operation:

Example:

X.bit «— X bIt
Inverts the contents of the bit
addressed by the 3-bit Immediate data in
register X specified in the operand.

bit=0-7

No change

None

PSW.bit «— PSW.bIt bit=0-7

Inverts the contents of the bit
addressed by the 3-blt immediate data in
the program status word (PSW) specified
in the operand.

The contents of the flag addressed by
the operand are inverted.

None

CY «— 1
Sets the carry flag to 1.

Z AC CY

1

None

16 - 156

CLR1 CY

Function: CY «— O
Clears the carry flag to 0.

Flag operation: T T

Z AC CY
0
Example: None
NOT1 CY
Function: CY «— CY

Inverts the contents of the carry flag.

Flag operation: T T
Z AC CY

X

Example: None

18 - 157

16.6.10 Call return instructions

CALL !'addrlé

Function:

Flag operation:

Example:

CALL rp

Function:

Flag operation:

Example:

(SP-1) <« (PC+3)y, (SP-2) <« (PC+3)(,
PC < addrl6, SP <« SP-2
addr16=0000H-FFFFH
Saves the first address (return address)
of the nekt instruction in the memory
(stack) addressed by a stack polinter
(SP), decreascs the contents of the SP,
and causes a branch to the address
indicated by the 16-bit immediate data
specified in the operand.
No change
CALL !3059H: - Calls the subroutine
having 3058H as its first
address.

(SP-1) <= (PC+2)y, (SP-2) <« (PC+2);,
PC <« rp, SP <« SP-2

Saves the first address (return
address} of the next instruction in the
memory (stack) addressed by a stack
pointer (SP), decreases the contents of
the SP, sets the contents of the 16-bit
register palr in the program counter
(PC), then causes a branch to the
address indicated by the PC.

No change

None

16 - 158

CALLF !addril

Function:

Flag operation:

Example:

(SP-1) < (PC+2)y, (SP-2) < (PC+2).
Pclz_ll — 01, Pclo_o «— fa, SP <« SP-2
addrl11=0800H-0FFFH

7 32 0
or fa,
fa,
1211 10 8 7 o]
PC | 01

Saves the first address (return
address) of the next instruction in the
memory (stack) addressed by a stack
pointer (SP), decreases the contents of
the SP, and causes a branch to the
address addressed with the effective
address which consists of 11-bit
immediate data fa in the instruction
code.

The call range is limited to addresses
0800H to OFFFH. Enter a branch address
in addrll of the operand directly with
a label or numeric value, considering
an entry address range.

No change

None

16 - 159

CALLT [addr5]

Function: (SP-1) =« (PC+1)H. (SP-2) =— (PC+1)L.
PCH -« (0000000001, ta, 1),
PCL <« (0000000001, ta, 0), SP =« SP-2

addr5=40H-7EH

12 8765 10
Effective address < 10 Q0 0 0 0|0 1 ta C
7 0
Effective address Low Addr.

Menory (branch

Effective address High Addr. address table)

incremented by one

12 87 0

PC

Saves the first address (return
address) of the next instruction in the
memory (stack) addressed by a stack
pointer (SP), decreases the contents of
the SP, sets the contents of the memory
(branch address table) addressed with
the effective address which consists of
the 5-bit immediate data ta in the
instruction code 1n the program counter
(PC)., and causes a branch to the
address Indicated by the memory
contents.

The branch address table must be placed
at addresses 0040H to 007FH. Enter the
address of the branch address table in
addr5 of the operand directly with a

label or numeric value.

16 - 160

Flag operation:

Example:

RET

Function:

- Flag operation:

Example:

RETI

Function:

Flag operation:

Example:

No change

CALL [TBL1]: Causes a branch to the
address indicated by the
contents of the table
specified by label TBL1.

PC; < (SP), PCy < (SP+1), SP < SP+2
Restores the contents of the memory
(stack) addressed by a stack pointer to
the program counter (PC) and increases
the contents of the SP.

No change

None

PC; <« (SP), PCy < (SP+1),

PSW <« (SP+2), SP =<— SP+3

Restores the contents of the memory
(stack) addressed by a stack pointer
(SP) to the program counter (PC) and
program status word (PSW) and increases
the contents of the SP.

This instruction is used durlng return

from an interrupt handling routine.

I 1

z AC CY
R R R
None

16 - 161

16.6.11

Stack manipulation instructions

PUSH rp

Function:

Flag operation:

Example:

PUSH PSW

Function:

Flag operation:

Example:

POP rp

Function:

Flag operation:

(8P-1) <« rpy, (SP-2) <« rpf,

SP «- SP-2

Saves the contents of the 16-bit

register palr specified in the operand

to memory (stack) and decreases the

contents of the SP.

No change

PUSH AX: Saves the contents of
register palr AX onto the

stack.

(SP-1) <« PSW, SP <« SP-1

Saves the contents of the program
status word (PSW) in the memory (stack)
addressed by a stack pointer (SP) and
decreases the contents of the SP.

No change

None

rp;, <= (SP), rpg < (SP+1), SP < SP+2
Restores the contents of the memory
(stack) addressed by a stack polinter
(SP) to the 16-bit register pair
specified in the operand and increases
the contents of the SP.

No change

16 - 162

Example: POP AX: Restores the contents of the
stack addressed by a stack
pointer to reglster palr AX.

POP PSW

Function: PSW <- (SP), SP <«— SP+1
Restores the contents of the memory
(stack) addressed by a stack pointer
(SP) to the program status word {PSW)
and decreases the contents of the SP.

Flag operation: T T

Z AC CY
R R R
Example: None
MOVW SP, #word
Function: SP <« word word=0000H-FFFFH

Transfers the 16-bilt immediate data
specified in the second operand to a
stack pointer (SP).
Flag operation: No change
Example: MOVW SP, #OFE1FH: Stores FE1FH in a
stack pointer.

MOVW SP, AX

Function: SP <« AX
Transfers the contents of register pair
AX to a stack pointer (SP).

Flag operation: No change

Example: None

16 - 1863

Function: AX -«— SP
Transfers the contents of a stack
pointer (SP) to reglster pair AX.

Flag operation: No change
Example: None

186.6.12 Unconditional branch Iinstructions

BR !addrilé

Function: PC <« addrils addr16=0000H-FFFFH
Transfers the 16-bit immediate data
specified in the operand to the program
counter (PC) and causes a branch to the
address indicated by the PC.

A branch can be taken to address 0000H
to FFFFH in memory.

Flag operation: No change

Example: BR BLK3: Causes a branch to the
address indicated by label
BLK3.

BR rp

Function: PCH < rpPy. PCL < rpy,

Transfers the contents of the 18-bit
resister palr specified in the operand
to the program counter (PC) and causes
a branch to the address indicated by
the PC.
A branch can be taken to address 0000H
to FFFFH in memory.

Flag operation: No change

16 - 164

Caution:

Example:

BR $addr16

Function:

Flag operation:
Example:

Do not speclfy address FD80OH to FFFFH
in rp because an instruction cannot be
fetched at the address in the range.

None

PC <« PC+2+]jdisp8

addr16={PC-126) to (PC+129)
Transfers the value obtalned by adding
8-bit displacement value jdisp in the
second byte of an instruction code to
the first address of the next
instruction and causes a branch to the
address indicated by the PC.
jdisp is treated as signed two's
complement data (-128 to +127) and bit
7 1s used as a sign bit.
Enter a branch address in addrlé of the
operand directly with a label or
numeric value, considering the branch
range.
No change

None

16 - 165

16.6.13 Conditional branch instructions

BC $addrilsé
BL $addrls

Function:

Flag operation:

Example:

PC «— PC+2+jdisp8 if CY=1
addrl16=(PC-126) to (PC+129)
Transfers the value obtalned by adding
B8-bit displacement value jdisp 1n the
second byte of an Instruction code to
the first address of the next
instruction to the program counter (PC)
when a carry flag 1s 1 and causes a
branch to the address indicated by the
PC.
jdisp 1s treated as signed two's
complement data (-128 to +127) and bit

7 1s used as a sign bit.

Enter a branch address in addrl16 of the

operand directly with a label or

numerlc value, considering the branch

range.

No change

BC $300H: Causes a branch to address
0300H when CY=1.
(The branch destination
address must be between the
first address of the next
instruction -~ 128 and the
address + 127.)

16 - 166

BNC %$addrie
BNL $addrils

Function:

Flag operation:
Example:

PC <« PC+2+Jdisp8 if CY=0
addr16=(PC-126) to (PC+129)
Transfers the value obtalned by adding
8-bit displacement value Jjdisp In the
second byte of an instruction code to
the first address of the next
instruction to the program counter (PC)
when a carry flag is 0 and causes a
branch to the address indicated by the
PC.
jdisp is treated as signed two's
complement data (-128 to +127) and
bit 7 is used as a sign bit.
Enter a branch address in addrlé of the
operand directly with a label or
numeric value, consldering the branch
range.
No change
CMP A, B
BNC $1500H: Causes a branch to address
1500H when the contents of
register A are larger than
the contents of register
B. (The branch
destination address must
be between the first
address of the next
instruction - 128 and the
address + 127.)

16 - 187

BZ %addrlé6
BE $addrlé

Function:

Flag operation:

Example:

PC <« PC+2+jdisp8 if Z=1
addr16=(PC-126) to (PC+129)
Transfers the value obtalned by adding
8-bit displacement value jdisp in the
second byte of an instruction code to
the first address of the next
instruction to the program counter (PC)
when a zero flag is 1 and causes a
branch to the address indicated by the
PC.
jdisp is treated as signed two's
complement data (-128 to +127) and
bit 7 is used as a sign bit.
Enter a branch address in addrl6 of the
operand directly with a label or
numeric value, consldering the branch
range.
No change
DEC OFE80H. Cause a branch to the
BZ $JMP address indicated by label
JMP when the contents of
the memory addressed
by FE80H go to 0 after
they are decremented by
one. (The branch
destination shall be
within the range (-128 to
+127) from the first
address.)

16 - 168

BNZ $addrils
BNE $addrlé

Function:

Flag operation:
Example:

PC <« PC+2+Jjdisp8 1f Z=0
addrl6=(PC-126) to (PC+129)
Transfers the value obtained by adding
8-bit displacement value jdisp In the
second byte of an instruction code to
the first address of the next
instruction to the program counter (PC)
when a zero flag 1s 0 and causes a
branch to the address indicated by the
PC.
Jjdisp is treated as signed two's
complement data (-128 to +127) and bit
7 18 used as a sign bit.
Enter a branch address in addrl6 of the

operand directly with a label or

numeric value, consldering the branch
range.

No change

None

16 - 169

BT saddr.bit, $addrileé

Function: PC <« PC+3+)Jdisp8 1f (saddr.bit)=1
addrl16=(PC-125) to (PC+130)
saddr=FE20H-FF1FH
bit=0-7

Transfers the value obtained by adding
8-bit displacement value Jjdisp in the
third byte of an instruction code to
the first address of the next
instruction to the program counter when
the bit of the short direct memory
addressed by the first operand is 1,
and causes a branch to the address
indicated by the PC.

Jdisp 1s treated as signed two's
complement data (-128 to +127) and bit
T 1s used as a sign bit.

Enter the address or label of the short
direct memory bit in saddr.bit of the
first operand and enter a branch
address in addrlé of the second operand
directly with a label or numeric value,
considering the branch range.

Flag operation: No change

Example: None

16 - 170

BT sfr.bit, $addrie

Function:

Flag operation:
Example:

PC «— PC+4+jdisp8 1f sfr.bit=1
addri6=(PC-124) to (PC+131)
bit=0-7

Transfers the value obtained by adding

8-bit displacement value Jjdisp 1in the

fourth byte in an Ilnstruction code to
the first address of the next
instruction to the program counter (PC)
when the bit addressed by the 3-bit
immediate data in the special function
register specified 1n the first operand
is 1, and causes a branch to the
address indicated by the PC.

jdisp 1s treated as signed two's

complement data (-128 to +127) and bit

7 is used as a sign bit.

Enter a branch address in addrlé of the

second operand directly with a label or

numeric value, consldering the branch
range.

No change

None

16 - 171

BT A.bit, $addril6

Function:

PC <« PC+3+]jdisp8 1f A.bit=1
addri6=(PC-125) to (PC+130)
bit=0-7

Transfers the value obtalned by adding

8-blt displacement value Jdisp 1In the

third byte In an instruction code to
the first address of the next
instruction to the program counter (PC)
when the blt addressed by the 3-bit

Immediate data in register A specified

In the first operand is 1, and causes a

branch to the address indicated by the

PC.

Jdisp is treated as signed two's

complement data (-128 to +127) and bit

7 1s used as a sign bit.

Flag operation:
Example:

Enter a branch address in addrlé of the

operand directly with a label or

numeric value, considering the branch

range.

No change

BT A.3, 8JMP1: Causes a branch to the
address Iindicated by
label JMP1 when bit 3
in register A is 1.

16 - 172

BT X.bit, $addrle

Function:

Flag operation:
Example:

PC <— PC+3+jdisp8 If X.bit=1
addr16=(PC~125) to (PC+130)
bit=0-7

Transfers the value obtained by adding

8-bit displacement value jdisp in the

third byte in an instruction code to
the first address of the next
instruction to the program counter (PC)
when the bit addressed by the 3-bit
immediate data In register X specified

in the first operand is 1, and causes a

branch to the address indicated by the

PC.

jdisp is treated as signed two's

complement data (-128 to +127) and bit

7 is used as a sign bit.

Enter a branch address in addrl6é of the

operand directly with a label or

numeric value, considering the branch
range.

No change

None

16 - 173

BT PSW.blt, $addrle

Function:

Flag operation:
Example:

PC <« PC+3+jdisp8 1f PSW.bit=1
addrl16=(PC-125) to (PC+130)
bit=0-7

Transfers the value obtalned by adding

B-bit displacement value jdisp in the

third byte in an instruction code to

the first address of the next
instruction to the program counter (PC)
when the bit addressed by the 3-bit
immediate data in the program status
word (PSW) specified in the first
operand is 1, and causes a branch to
the address indicated by the PC.

Jdisp 1s treated as signed two's

complement data (-128 to +127) and

bit 7 1s used as a sign bit.

Enter a branch address in addri6 of the

operand directly with a label or

numerlc value, considering the branch
range.

No change

None

16 - 174

BF saddr.bit, $addrlés

Function:

Flag operation:

Example:

PC <« PC+4+Jdisp8 i1f (saddr.bit)=0
addr16=(PC-124) to (PC+131)
saddr=FE20H-FF1FH
bit=0-7

Transfers the value obtained by adding

8-bit displacement value jdisp 1n the

fourth byte in an instruction code to
the first address of the next
instructlon to the program counter (PC)
when the short direct memory bit

addressed by the first operand is 0,

and causes a branch to the address

indicated by the PC.

jdisp 1s treated as signed two's

complement data (-128 to +127) and bit

7 1s used as a sign bit.

Enter the address or label of the short

direct memory bit in saddr.bit of the

first operand and enter a branch
address in addrli6é of the second operand
directly with a label or numeric value,
considering the branch range.

No change

None

16 - 175

BF sfr.bit, $addrls

Function:

Flag operation:

Example:

PC <« PC+4+Jdisp8 I1f sfr.bit=0
addr16=(PC-124) to (PC+131)
bit=0-7

Transfers the value obtalned by adding

8-bit displacement value jdisp in the

fourth byte of an Instruction code to
the first address of the next
instruction to the program counter (PC)
when the bit addressed by the 3-bit
immediate data in the special function
reglster specified in the first operand
is 0, and causes a branch to the
address indicated by the PC.

Jdisp 1s treated as signed two's

complement data (-128 to +127) and

bit 7 i1s used as a sign bit.

Enter a branch address in addrilé of the

operand directly with a label or

numeric value, considering the branch
range.

No change

BF P2.2, $1549H: Causes a branch to

address 1549H when
bit 2 of port 2 is 0.
(The branch
destination address
must be between the
first address of the
next instruction -
128 and the address
+127.)

16 - 176

BF A.bit, $addrilé

Function:

Flag operation:
Example:

PC <« PC+3+]Jdisp8 if A.bit=0
addrile=(PC-125) to (PC+130)
bit=0-7

Transfers the value obtained by adding

8-bit displacement value Jdisp in the

third byte of an instruction code to
the first address of the next

Instruction to the program counter (PC)

when the bit addressed by the 3-bit

immediate data in reglister A specified

In the first operand 1s 0, and causes a

branch to the address Indicated by the

PC.

Jdisp is treated as signed two's

complement data (-128 to +127) and

bit 7 1Is used as a slgn bit.

Enter a branch address in addrl6 of the

operand directly with a label or

numeric value, considering the branch
range.

No change

None

16 - 177

BF X.blt, %$addrile

Function:

Flag operation:
Example:

PC <« PC+3+jdisp8 If X.bit=0
addrl6=(PC-125) to (PC+130)
bit=0-7

Transfers the value obtained by adding

8-blt displacement value jdisp in the

third byte 1in an instructlion code to
the first address of the next
instruction to the program counter (PC)
when the bit addressed by the 3-bit
immediate data 1in reglister X specified

in the first operand Is 0, and causes a

branch to the address indicated by the

PC.

Jdisp is treated as signed two's

complement data (-128 to +127) and

bit 7 1s used as a sign bit.

Enter a branch address in addrl6 of the

operand directly with a label or

numerlic value, consldering the branch
range.

No change

None

16 - 178

BF PSW.bit, $addrié

Function:

Flag operation:
Example:

PC <« PC+3+jdisp8 1f PSW.bit=0
addr16=(PC-125) to (PC+130)
bit=0-7

Transfers the value obtained by adding

B-bit displacement value Jjdisp in the

third byte of an instruction code to

the first address of the next
instruction to the program counter (PC)
when the bit addressed by the 3-bit
immediate data in the program status
word (PSW) specified In the first
operand is 0, and causes a branch to
the address Iindicated by the PC.

jdisp 1is treated as signed two's

complement data (-128 to +127) and bit

7 1s used as a sign bit.

Enter a branch address in addrl6é of the

operand directly with a label or

numeric value, considering the branch
range.

No change

None

16 - 179

BTCLR saddr.bit, $addrils

Function: PC < PC+4+Jjdisp8 1f (saddr.bit)=1
then clear
addr16=(PC-124) to (PC+131)
saddr=FE20H-FF1FH
bit=0-7
Transfers the value obtalned by adding
8-bit displacement wvalue jdisp in the
fourth byte of an Instruction code to
the first address of the next
instruction to the program counter (PC)
when the short direct memory bit
addressed by the first operand is 1,
causes a branch to the address
indicated by the PC and clears the bit
to 0.
jdisp 1s treated as signed two's
complement data (-128 to +127) and bit
7 is used as a sign bit.
Enter the address or label of the short
direct memory bit in saddr.bit of the
first operand and enter a branch
address In addrlé of the second operand
directly with a label or numeric value,
consldering the branch range.
Flag operation: No change
Example: None

16 - 180

BTCLR sfr.bit,

Function:

Flag operation:

Example:

$addrile

PC <« PC+4+Jdisp8 1f sfr.bit=1
then clear

addrl6=(PC-124}) to (PC+131)

bit=0-7
Transfers the value obtained by adding
8-blt displacement value jdisp in the
fourth byte of an instructlion code to
the first address of the next
instruction to the program counter (PC)
when the bit addressed by the 3-bit
immedliate data in the special function
register specified in the first operand
1s 1, causes a branch to the address
indicated by the PC, and clears the bit
to 0.
Jdisp is treated as signed two's
complement data (-128 to +127) and bit
7 1s used as a slign bit.
Enter a branch address in addrlé of the
operand directly with a label or
numeric value, considering the branch
range.
No change

None

16 - 181

BTCLR A.bit, $addrilé

Function:

Flag operation:
Example:

PC <« PC+3+]Jdisp8 if A.bit=1 then clear
addr16=(PC-125) to (PC+130)
bit=0-7

Transfers the value obtained by adding

8-bit displacement value jdisp in the

third byte of an instruction code to
the first address of the next
instruction to the program counter (PC)
when the bit addressed by the 3-bit
immediate data in register A specified

in the first operand is 1, causes a

branch to the address 1ndicated by the

PC, and clears the bit to 0.

Jdisp 1s treated as signed two's

complement data (-128 to +127) and bit

7 1s used as a sign bit.

Enter a branch address in addrl6é of the

operand directly with a label or

numeric value, considering the branch
range.

No change

None

16 - 182

BTCLR X.bit, S$addrle

Function:

Flag operation:

Example:

PC <« PC+3+jdisp8 1f X.bilt=1 then clear
addrl16=(PC-125) to (PC+130)
bit=0-7

Transfers the value obtalned by adding

8-bit displacement value jdisp in the

third byte of an instruction code to
the first address of the next
instruction to the program counter (PC)
when the blt addressed by the 3-bit
immediate data in register X specified

in the first operand is 1, causes a

branch to the address indicated by the

PC, and clears the bit to 0.

Jdisp is treated as signed two's

complement data (-128 to +127) and bit

7 1s used as a sign bit.

Enter a branch address in addrlé of the

operand directly with a label or

numeric value, consldering the branch
range. '

No change

None

16 - 183

BTCLR PSW.bilt,

Function:

Flag operation:

Example:

f$addris

PC <« PC+3+jdisp8 if PSW.bit=1 then
clear

addr16=(PC-125) to (PC+130)

bit=0-7
Transfers the value obtalned by adding
8-bit displacement jdisp In the third
byte of an instruction code to the
first address of the next iInstructlon
to the program counter (PC) when the
bit addressed by the 3-bit Ilmmediate
data in the program status word
specified iIn the first operand is 1,
causes a branch to the address
indicated by the PC, and clears the bit
to 0.
jdisp 1s treated as signed two's
complement data (-128 to +127) and bit
7 1s used as a sign bit.
Enter a branch address 1n addrl6é of the
operand directly with a label or
numerlc value, considering the branch
range.
If the specified flag is 1, it is
reset. .
BTCLR PSW.6, S$0OF6EH:
Resets flag Z 1f the flag i1s 1 and

causes a branch to address FBEH.

16 - 184

DBNZ r2, $addris

Function:

Flag operation:

Example:

r2 <« r2-1, then PC <« PC+2+jdisp8
if r2=0
addr16=(PC-126) to (PC+129)
Transfers the value obtalined by adding
B-bit displacement value jdisp in the
second byte of an instruction to the
first address of the next instruction
to the program counter (PC) if the
result is not 0 after decreasing the
contents of the 8-bit register
specified in the flrst operand, and
causes a branch to the address
indicated by the PC.
jdisp 1s treated as signed two's
complement data (-128 to +127) and bit
7 is used as a sign bit.
Enter a branch address In addrlé of the
operand directly with a label or
numeric value, considering the branch
range.
No change
DBNZ B, $1215H: Causes a branch to
address 1215H when the
result is not 0 after
decreasing the
contents of reglster
B. (The branch
destination address
must be between the
first address of the
next instruction - 128
and the address +
127.)

16 - 185

DBNZ saddr, $addrlé

Function:

Flag operation:

Example:

{(saddr) - (saddr)-1,
then PC <« PC+3+jdispB if (saddr) = 0
addr16=(PC-125) to (PC+130)
saddr=FE20H-FF1FH
Transfers the value obtained by adding
8-bit displacement value jdisp in the
third byte of an instruction code to
the first address of the next
instruction to the program counter (PC)
if the result is not 0 after decreasing
the contents of the short direct memory
addressed by the first operand, and
causes a branch to the address
indicated by the PC.
jdisp 1is treated as signed two's
complement data (-128 to +127) and bit
7 is used as a sign bit.
Enter a branch address in addrlé of the
operand directly with a label or
numeric value, considering the branch
range.
No change

None

16 - 186

16.6.14

CPU control instructions

MOV STBC, #byte

Function:

Flag operation:
Example:

SEL RBn

Function:

Flag operation:
Example:

NOP

Function:
Flag operation:
Example:

STBC <— byte byte=00H~FFH

‘Sets the 8-blt immedlate data specified

in the second operand 1n the standby
control register (STBC).

This Instruection is an instruction code
specific to setting the STBC register.
No change

MOV STBC, #02H: Sets the STOP mode.

RBS1 and RBSO <=— n n=0-3

Sets 2-bit immediate data Ny_ in the
fegister bank selection flags (RBS1 and
RBS0) and selects the register bank
specified In the operand.

No change
SEL RB2: Selects register bank 2 as
the register bank to be used
for the next and subsequent

Instructions.

Uses two clocks without doing anything.
No change

None

186 - 187

EI

Function:

Flag operation:

Example:

DI

Function:

Flag operation:

Example:

IE — 1
Sets an Interrupt request enable flag

(IE) to 1. Each Iinterrupt request
control register controls whether a
maskable interrupt is received.

No change

None

IJE -— 0

Clears an Iinterrupt request enable flag
(IE) to 0. Reception of all maskable
interrupts are disabled. A macro
service request 1s not, however,
disabled.

No change

None

16 - 188

CHAPTER 17 DIFFERENCES BETWEEN THE uPD78138
SERIES AND uPD78134

The differences between the uPD78138 series (uPD78134A, uPD78138,

uPD78138, and uPD78P138) and uPD78134 are as follows:
(D ROM/RAM size
Ttem uPD78134 uPD78134A uPD78136 uPD78138 uPD78P138
ROM 16K bytes 24K bytes 32K bytes 32K bytes
(Mask ROM) (Mask ROM) (Mask ROM) (PROM)
RAM 384 bytes 640 bytes

Added instructions

The following 15 instructions are added in the uPD78138

series.

Signed multiply instruction: MULSW r
8-bit data transfer instruction: MOV A, [HL+]
MOV [HL+}, A
MOV A, [DE]
MOV [DE], A
MOV A, [DE+]
MOV [DE+], A
MOV A, !addrlse
MOV !addrile, A
XCH A, [HL]
XCH A, [DE]
XCH A, word[ril]
8-bilt arithmetic/logical instruction: ALU A, [DE]
ALU A, word[rl]
Call instruction: CALL rp

17 - 1

@

®

Remark:

A: Reglister A

rp: AX, BC, DE, or HL

r: A, X, B, C, b, E, H, or L

rl: A or B

word: 16-bit immediate data or label
'addrl16: O0O0OOH-FFFFH immedlate data or label
HL: Reglister pair

DE: Register pailr

ALU: Generic for all the mnemonics of the

8-bilt arithmetic/logical instructions
(ADD, ADDC, SUB, SUBC, AND, OR, XOR, CMP)

Operatlion when a value 1s written In an event counter
compare register (ECCO or ECC1)

uPD78134: Clears the event counter (EC).
uPD78138 serles: Clears the event counter (EC) when
OxxxxxxxB 1is written.
Does not clear the event counter (EC)

when 1xxxxxxxB 1s written.

Threshold width for pulse elimination for the diglital noise
eliminator

uPD78134: 40/fCLK fixed.
uPD78138 series: 32/fp g or 72/fy g selectable

PWM carrier frequency

.uPD78134: 23.4 kHz fixed.
.UPD78138 serles: 23.4 kHz or 46.9 kHz selectable

17 - 2

Restriction 1s lifted for the real-time output port control

mode in macro service

In the uPD78138 series, the restriction that the output
timing data must be stored in ROM in the real-time output
port control mode In macro service 1n the uPD78134 1is
lifted.

Remark: Refer to the following manuals for the details of
the uPD78134.
uPD78134 Data Sheet (IC-7839)
uPD78134 User's Manual (IEU-668)

17 - 3

APPENDIX A DEVELOPMENT TOOLS

The following development tools are readily available for
development of systems using the uPD78138.

[Hardware]

1E-78130-R(*)

The IE-78130-R is an in-circuit emulator for the uPD78138.

This emulator is connected to the host machine when debugging
is performed. Symbolic debugging is enabled and object files
can be transferred between the emulator and the host machine,
thus enabling effective debugging results.

The IE-78130-R contalns two channels of the R$-232-C serijal
interfaces so that it can alsc be connected to PROM programmer
PG-1500. The emulator also contains a Centronies interface so
that object and symbol files can be downloaded at a high speed.

EP-78130GF-R

Emulation probe for the uPD78138.
One EV-9200G-80 (80-pin conversion socket) is attached. This
socket facilitates user system development.

Socket to be mounted on the PC board for the user systenm,
produced for an 80-pin plastic QFP (14 x 20 mm excluding the

V-9200G-80

E dimensions of the pins). This socket is used together with the
EP-78130GF-R.

EV-9900 Jig for removing the uPD78P138K from the EV-9200G-80.
A PROM programmer with which programs can be written into
single-chip microcomputers containing a PROM in standalone mode

PG-1500 or by remote control from a host machine, when connected with

the accessory board and optional programmer adapter.
This PROM programmer can also be used to write programs into
commonly used 256K- to 4M-bit PROMs.

PA-T78P13BGF
PA-T8P138K

PROM programmer adapters for the uPD78P138 to be used together
with a PROM programmer such as the PG-1500.

The IE-78130-R purchased before Jan. 1980 can be updated to
emulate the uPD78134A, uPD78136, uPD78138, and uPD78P138A.
Consult an NEC service personnel for details.

‘[Software]

This relocatable program can be used for all T8K/I serles
emulators. With 1ts macro functions, it allows the user to
improve program development efficiency. A structured-
programming assembler is also provided, which enables explicit
description of program control structures. This assembler
could improve productivity in program production and
maintenance.
RATBH/I
relocatable
assembler
Host machine Distribution Part number
0S
medla
Ns-pos™TH 3.5-inch 2HD | uSSA13RATSK1
PC-9800 serles {(Ver.3.10 to
Ver.5.00A(*))| 5-inch 2HD uS5A10RA7T8K1
™
PC DOS _
IBM PC serles (Ver.3.1) S5-inch 2HC uS7B1ORATBK1
This program allows the user to control the IE-78130-R from
the host machine.
JE-78130-R :
control Host machine 0 Distribution Part number
program medla
(IE con-
troller) MS-DOS 3.5-inch 2HD { uS5A13IE78130
PC-9800 series (Ver.3.10 to
Ver.5.00A(*))| 5-inch 2HD uS5410IE78130
PC DOS _
IBM PC serles (Ver.3.1) 5-1nch 2HC uS7B10IET8130
This program enables the host machine to control the PG-1500
under the serial intrerface and parallel Interface.
Host machine 0 Distribution Part number
PG-1500 medla
controller
MS-DOS 3.5-inch 2HD | uS5A13PG1500
PC-9800 series (Ver.3.10 to
Ver.5.00A(*))| 5-inch 2HD uS5A10PG1500
PC DOS i
IBM PC series (Ver.3.1) 5-inch 2HC uS7B10PG1500

+ In version 5.

Remark:

00/5.00A,

the task swapping function is disabled.

IE controller and assembler operations are guaranteed

only on the host machine and by the 0S mentioned above.

Configuration of Development Tools

In-clrcuit emulator

Emulation probe
Host machine iE ig“; RS-232-C
PC 9800 serles rolen, - [E-78130 R | IE-78130GF-R
(symbolic debug- o Centronics
glng posslible) 0
User
T system
|
| - _
PROM | Rs-232-C
programmer *
O on-chlp one-time
0 PG-1500 FROM
Relocg;nble PA-T8P138GF «PD78P138GF
assembler
PA-T8P138K pPDTBPlSBK

+ EV-9200G-80

APPENDIX B

INDEX OF INSTRUCTIONS

Instruction Page Instruction Page

ADD A, saddr 16-78 | BC $addris 16-166
ADD A, sfr 16-78 | BE $addris 16-168
ADD A, #byte 16-76 | BF A.bit, $addris 16-177
ADD A, [DE] 16-80 | BF PSW.bit, $addris 16-179
ADD A, [HL] 16-80 | BF saddr.bit, $addrl6| 16-175
ADD A, [r4] 16-79 | BF sfr.bit, $addrié 16-176
ADD A, word [r1] 16-81 | BF X.bit, $addrie 16-178
ADD r, r’ 16-77 | BL $addrle 16-166
ADD saddr, #byte 16-76 BKC $addri6 16-167
ADD sfr, #byte 16-77 | BRE $addri6 16-169
ADDC A, saddr 16-83 | BNL $addri6 16-167
ADDC A, sfr 16-84 | BNZ Saddrl6 16-169
ADDC A, #byte 16-81 BR Irp 16-164
ADDC A, [DE] 16-85 | BR 'addrilé 16-164
ADDC A, [HL] 16-85 | BR $addr16 16-165
ADDC A, ([r4] 16-84 | BT A.bit, $addrilé 16-172
ADDC A, word {[ri] 16-86 | BT PSW.bit, %$addrilé 16-174
ADDC r, 1’ 16-83 | BT saddr.bit, $addrl6| 16-170
ADDC saddr, #byte 16-82 | BT sfr.bit, $addris 16-171
ADDC sfr, #byte 16-82 | BT X.bit, $addris 16-173
ADDW AX, rp 16-117 | BTCLR A.bit, $addris 16-182
ADDW AX, saddrp 16-118 | BTCLR PSW.bit, $addrlé 16-184
ADDW AX, sfrp 16-118 { BTCLR saddr.bit, $addri6| 16-180
ADDW AX, #word 16-117 | BTCLR sfr.bit, $addrié 16-181
ADJBA 16-135 : BTCLR X.bit, $addris 16-183
ADJBS 16-136 | BZ $addrle 16-168
AND A, saddr 16-99 CALL taddrié 16-158
AND A, sfr 16-99 CALL rp 16-158
AND A, #byte 16-97 | CALLF !addrll 16-159
AND A, [DE] 16-101 | CALLT [addr5] 16-160
AND A, [HL] 16-100 | CLR1 A.bit 16-154
AND A, [r4] 16-100 | CLR1 CY 16-157
AND A, word [ri] 16-101 | CLR1 PSW.bit 16-154
AND saddr, #byte 16-97 CLR1 saddr.bit 16-153
AKD sfr, #byte 16-98 | CLR1 sfr.bit 16-153
AND r, r' 16-98 CLR1 X.bit 16-154
AND1 CY, A.bit 16-142 | CMP A, saddr 16-113
AND1 CY, PSW.bit 16-144 | CMP A, sfr 16-114
AND1 CY, saddr.bit 16-140 | CMP A, #byte 16-111
AND1 CY, sfr.bit 16-141 | CMP A, [DE] 16-115
AND1 CY, X.bit 16-143 | CMP A, [HL} 16-115
AND1 CY, /A.bit 16-142 | CMP A, [rd] 16-114
AND1 CY, /PSW.bit 16-144 | CMP A, word [ri1] 16-116
AND1 CY, /saddr.bit 16-141 | CMP r, r' 16-112
AND1 CY, /sfr.bit 16-142 | CMP saddr, #byte 16-111
AND1 CY, /X.bit 16-143 | CMP sfr, #byte 16-112

(to be continued)

B 1

{Cont'd)

Instruction Page Instruction Page

CMP¥ AX, rp 16-121 {MOVW saddrp, AX 16-75
CMP¥ AX, saddrp 16-122 [MOVK saddrp, #word 16-73
CMPW AX, sfrp 16-123 {MOVW sfrp, AX 16-75
CMP¥ AX, #word 16-121 | MOVW . sfrp, #word 16-74
DBNZ r2, $addrls 16-185 | MOVW SP, AX 16-163
DBNZ saddr, $%$addrlé 16-186 {MOVW SP, #word 16-163
DEC r 16-125 |MOV1 A.bit, CY 16-139
DEC saddr 16-126 | MOVl CY, A.bit 16-137
DEC¥ rp 16-126 | MOV1 CY, PSW.bit 16-138
DI 16-188 [MOV1 CY, saddr.bit 16-136
DIVUW r 16-124 | MOV1 CY, sfr.bit 16-137
El 16-188 |MOV1 CY, X.bit 16-138
INC r 16-125 | MOV1 PSW.bit, CY 16-140
INC saddr 16-125 |MOV1 saddr.bit, CY 16-138
INCW rp 16-126 | MOV1 sfr.bit, CY 16-139
MOV A, PSW 16-70 | MOVl X.bit, CY 16-139
MOV A, T 16-62 |MULSW r 16-123
MoV A, saddr 16-62 |MULUW r 16-124
MoV A, sfr 16-63 | NOP ' 16-187
MOV A, word [ri) 16-69 | NOT1 A.bit 16-155
MOV A, [DE] 16-66 | NOT1L CY 16-157
MOV A, [DE+] 16-67 |NOT1 PSW.bit 16-156
MoV A, [HL] 16-65 | NOT1 saddr.bit 16-155
MOV A, [HL+] 16-66 |NOT1 sfr.bit 16-155
MoV A, [r3] 16-64 | NOT1 X.bit 16-156
MOV A, !addrlsé 16-68 OR A, saddr 16-103
MOV PSW, A 16-70 | OR A, sfr 16-104
MOV PSW, #byte 16-69 | OR A, #byte 16-101
MOV r, r' 16-62 |OR A, [DE] 16-105
MOV r, #byte 16-61 |[OR A, [HL] 16-105
MOV saddr, A 16-63 | OR A, [r4] 16-104
MOV saddr, #byte 16-61 |OR A, word [ri1] 16-105
MOV sfr, A 16-64 | OR r, r’ 16-103
MOV sfr, #byte 16-61 |OR saddr, #byte 16-102
MOV STBC, #byte 16-187 | OR sfr, #byte 16-102
MOV word [rl], A 16-69 |OR1 CY, A.bit 16-147
MOV [DE], A 16-67 | OR1 CY, PSW.bit 16-148
MoV [DE+], A 16-67 | OR1 CY, saddr.bit 16-145
MOV [HL]), A 16-65 | OR1 CY, sfr.bit 16-146
MOV [HL+}, A 16-66 OR1 CY, X.bit 16-147
MoV [r3], A 16-65 | OR1 CY, /A.bit 16-147
MOV laddris, A 16-68 |OR1l CY, /PSW, bit 16-149
MOVW AX, saddrp 16-74 |OR1 CY, /saddr.bit 16-145
MOVW AX, sfrp 16-75 |[OR1 CY, /sfr.bit 16-146
MOVW AX, SP 16-164 | OR1 CY, /X.bit 16-148
MOVW rp, rp' 16-74 |PUSH PSW 16-162
MOVW rp, #word 16-73 |PUSH rp 16-162
{to be continued)

B 2

(Cont'd)

Instruction Page Instruction Page
POP PSW 16-163 | SUBC A, [DE]} 16-96
POP Ip 16-162 | SUBC A, [HL] 16-95
RET 16-161 | SUBC A, [r4]) 16-95
RETI 16-161 | SUBC A, word [rl] 16-96
ROL r, n 16-127 |SUBC . r, r' 16-93
ROLC r, n 16-129 | SUBC saddr, #byte 16-92
ROL4 [r4] 16-133 | SUBC sfr, #byte 16-93
ROR r, n 16-127 | SUB¥ AX, rp 16-119
RORC r, n 16-128 | SUBW AX, saddrp 16-120
ROR4 [r4] 16-132 | SUBW AX, sfrp 16-120
SEL RBn 16-187 | SUBW AX, #word 16-119
SET1 A.bit 16-152 | XCH A, 1 16-70
SET1 CY 16-156 | XCH A, saddr 16-71
SET1 PSW.bit 16-153 | XCH A, sfr 16-T1
SET1 saddr.bit 16-151 | XCH A, [DE] 16-72
SET1 sfr.bit 16-152 | XCH A, [HL] 16-72
SET1 X.bit 16-152 | XCH A, [r4] 16-71
SHL r, n 16-130 | XCH A, word [ri] 16-72
SHLW rp, n 16-132 | XOR A, saddr 16-108
SHR r, n 16-129 | XOR A, sfr 16-108
SHRW rp, n 16-131 | XOR A, #byte 16-106
SUB A, saddr 16-89 | XOR A, [DE] 16-110
SUB A, sfr 16-89 [XOR A, [HL] 16-109
SUB A, #byte 16-86 | XOR A, [r4] 16-109
SUB A, [(DE] 16-91 | XOR A, word [ril] 16-110
SUB A, [HL] 16-90 | XOR r, r' 16-107
SUB A, [r4] 16-90 | XOR saddr, #byte 16-106
SUB A, word [rl] 16-91 | XOR sfr, #byte 16-107
SUB r, r’ 16-88 | XOR1 CY, A.bit 16-150
SUB saddr, #byte 16-87 | X0R1 CY, PSW.bit 16-151
suB sfr, #byte 16-88 | XOR1 CY, saddr.bit 16-149
SUBC A, saddr 16-94 { XOR1 CY, sfr.bit 16-150
SUBC A, sfr 16-94 | XOR1 CY, X.bit 16-151
SUBC A, #byte 16-92

B 3

APPENDIX C 1INDEX OF REGISTERS

[A]

A/D conversion mode register (ADM) 9-8

A/D conversion result register (ADCR) 9-1

(C]

capture mode register (CPTM)c...... 8-70, 8-81
clock output mode register (CLOM) 10-5

[E]
18-bit FRC capture register 2

(CPT2H, CPT2L) .. vttt ittt i 8-74, 8-77
18-bit free running counter (FRC) 8-2, 8-6, 8-74
event counter compare register 0 (ECCO) 8-14
event counter compare reglster 1 (ECC1l) 8-14
event counter (EC) an 8-11, 8-14
event divider control register (EDVC} 8-67
external capture input mode register

(INTML) .ttt it ittt et a e 8-68, 11-8
external interrupt mode reglster (INTMO) 11-7
(L]
input control register (ICR), 8-23, 8-73
internal memory size change register (IMS) ... 15-4
interrupt mask register (MKO) 11-10, 11-13
interrupt request flag register (IF0) 11-10, 11-12
interrupt service mode register (ISMO) 11-11, 11-13
[M]
macro service mode register00 ..., 11-25, 11-26
memory mapping register {(MM) 3-30, 5-27

5-33, 5-39

[P]

port 0 (POO-POT)

port 0 buffer reglster (POH, POL)
port 0 mode register (PMO)
port 1 (P1O=P17) ...ttt ninnneeasaass
port 1 mode register (PM1)
pOrt 2 (P20-P27) +\veveeennnaneennn. T
port 3 (P30-P37) ...ttt ittt iaaiiieanas
port 3 mode control register (PMC3)
port 3 mode register (PM3)
port 4 (P40-PA4T) ..ttt ittty
port 5 (P50-P5ET) ...ttt
port 5 mode register (PMS),
port 8 (PBO-PBT) ... iivereii it ciianonnn
port 6 mode register (PM8)
port 7 (P7TO,P71) ... ee e

port 7 mode register (PM7)
prescaler mode register 3 (PRM3)
priority specification flag register (PRO)

PWM control register (PWMC)
PWMO modulo register (PWMO)c.....
PWM1 modulo register (PWM1l)

[R])
real-time output port control reglster

(RTPC) & ittt it ittt s e ae e i s s s aaeanes -
register for optional pull-up resistor

(BUD) v e e e e e e e e e e e

[S]
serial bus interface control register

0023 2 1 103
serial shift register (SI0O),
7-bit timer 3 capture register (CPT30)

1i-11,
8-103

8-2, 8-7,

i1-14

8-95

8-2, B-7, 8-95

5-10,
5-29,
5-44

5-14,
5-35,

5-24,
5-40,

16-bit
16-bit
16-blt
16-bit
16~bit
l16-bit
16-bit
16-bit
16-bit
16-bit
16-bit

16-bit

16-bit

FRC capture register 3 (CPT3)

timer O
timer
timer
timer
timer

timer

R S S S B =

timer
timer

timer

timer reglster 2 (TM2)

compare
compare
compare
capture
compare
compare
compare

register 0 (TMO)

register 1 (TM1)

reglister
reglster

reglister

reglster

reglister
reglster
register

standby control register (STBC)

0 (CROO)
1 (CRO1)
(CR0O2)
(CR12)

synchronous serlial interface mode register

(CSIM

[T]
timer
timer
timer
timer
timer
timer

output
output
output

= = O O

output

control register (TOCO)
mode register (TOMO)
control register (TOC1)
mode reglster (TOM1)

control register 0 (TMCO)
control register 1 (TMC1)

8-24,
8-80,

8-71
8-94

APPENDIX D 1INDEX OF REGISTER ABBREVIATIONS

[A] [1]
ADCR .. .vvvnnnn. 9-1 ICR v vvvennnn 8-23, 8-73
ADM 9-8 IFO vvveennnenns 11-10,11-12
IMS v eeeevinenn. 15-4
[C] INTMO . vvennn.. 11-7
CLOM 10-5 INTML . ovvvnnnn. 8-68, 11-8
CPTMovnn.. 8-70, B8-81 ISMO . vvvvvnnnn. 11-11, 11-13
CPTO «'vvvvnnnn, 8-74
CPT1 ..vivinnn.. 8-74 (M]
CPT2H 8-74, 8-T7 MKO ©.vvvinnnnn. 11-10, 11-13
CPT2L . .vvvvvnnn 8-74, 8-7T MM .o 3-30, 5-28
CPT3 «vvvvnnennn 8-74 5-33, 5-39
CPT30 8-39
CROO ..vvvrvnnn. 8-9 [P]
CROL «vvvvnrnnnn 8-9 PO vvveenennnnn. 5-4
CROZ2 ..vvrnnn. 8-9 53 H 5-7
CR1O «''vvvvnnn. 8-36, 8-44 P2 i, 5-12
CRIL .vvvvvnnnn. 8-36, 8-44 P3 ot 5-16
CR12vnvvnn.. 8-36, 8-44 P4 e 5-26
CR20 8-92 P5 vt 5-31
CR30ov.. 8-39 PB veviiennn 5-36
CSIMovvn.n. 7-5, 7-23 o 5-42
POH....'vvvennn. 6-2
[E] POL....ovvuurnn. 6-2
EC tieiean 8-11, 8-14 PMO. . oot ieveenn. 5-5
ECCO ..ovvvvnnnn 8-14 PML. . vieineennn. 5-9
ECCL +vvvvvnnn.. 8-14 PM3 . oiininnn. 5-21
EDVCovn... 8-87 PM5 ... 5-33
PMB ..o vvnnnn. 5-39
[F] PM7 5-43
FRC . .ovvvnnn.. 8-2, 8-6 PMC3 5-22
8-74 PRO .. .uuvinnn.. 11-11, 11-14
PRM3 8-69

5-24, 5-29,
5-35, 5-40,

5-44

PWMC ©vvevn... 8-103

PWMO &« vvrenn.. g-2, 8-7,
8-95

PWML o« oo, 8-2, 8-7,
g-95

[R]

RTPC «vvoeeenn.. 5-8, 6-5

[S]

SBIC . vvvvnnnn.. 7-8

SIO «ovnn.. 7-3

STBC .'v'vvenn... 12-3

[T]

TMO o oeeeeeenn. 8-2, 8-6,
8-9, 8-17

TML oo, 8-2, 8-6,
8-35, 8-44

TM2 v, g-2, 8-7,
8-92

TM3 oo 8-2, 8-34,
8-39

TMCO o, 8-24, 8-7T1

TMCL oeeeeennn.. 8-80, 8-94

TOCO ©oeeeenrnn.. 8-27

TOCL «ovvvvnnn.. 8-72

TOMO ©voeennen.. 8-25

TOML ©veerennn. 8-72

