CN300-SCAPBACKPOCZ Smart Terminal with Supercap by ISL81401 Rev.1.0 Smart Terminal with Supercap by ISL81401 Sep. 21, 2020 ### **Description** The CN300-SCAPBACKPOCZ Smart Terminal with Suercap by ISL81401 board is the application of supercapacitor as backup power supply. The board allows quick evaluation of the ISL81401 Bi-directional operation. It is a cost-effective solution for the low-power, wide input voltage range point-of-load application where both stepping up and stepping down voltage capabilities are required. ### **Specifications** The design specifications of the CN300-SCAPBACKPOCZ Smart Terminal with Supercap by ISL81401 are shown in Table 1. # Parameters Values Input Voltage (J1 VIN) 12V to 40V Output Voltage (J4 VOUT) 12V Reverse output (J3 VIN) 11V Input current (Iin) 3A Output current (Iout) 1.5A **TABLE 1. SPECIFICATIONS** ### **Key Features** - Flexible design - Bi-directional operation - High light-load efficiency in pulse skipping DEM operation - OVP, OTP, and UVP protection - Back biased from output to improve efficiency - Convenient power connection ### **Related Literature** ISL81401 Datasheet ISL88002 Datasheet Figure 1 Top View ### **Functional Description** The CN300-SCAPBACKPOCZ board is the same test board used by Renesas application engineers and IC designers to evaluate the performance of the ISL81401 QFN IC. The board provides an easy and complete evaluation of all the IC and board functions. As shown in Figure 3 on page 3. The DC power is supplied to J1(VIN +) and J2(GND -). The power the load through J3(+) and J2(-). The regulated 12V output on J4 (+) and J5 (-) can supply up to 1.5A to charger the super cap. As shown in Figure 4 on page 3. After the DC power off, super cap start discharge. The J4(+) and J5(-) is converted to power input. The regulated 11V output on J3(+) and J2(-) can supply up to 3A to load. ## **Quick Test Setup** Figure 2 Connection diagram - 1, Connect the power supply to the input terminals VIN (J1) and GND (J2). Connect the load terminal to the output VIN (J3) and GND (J2). Connect the super cap to the output VOUT (J4) and GND (J5). Make sure the setup is correct prior to applying any power or load to the board. Refer to Figure 2. - 2, Adjust the power supply to 12V to 40V and turn it on. The board supplies the load while the super cap is charging. Refer to Figure 3 for the current flow direction. - 3, Verify the load voltage and use oscilloscope to monitor the supercapacitor voltage. Refer to Figure 2. - 4, When the charging voltage of the super cap reaches the set value, the charging ends. Then turn off the power, the board start discharges. Refer to Figure 4 for the current flow direction. - 5, Verify the load voltage and use oscilloscope to monitor the supercapacitor voltage. Refer to Figure 2. Figure 3 Charging current direction Figure 4 Discharging current direction ### **Test Environment** Figure 5 Test Environment ### **Test Example** - Reverse discharge mode: Electronic load set to CC mode(100mA) - Disharging voltage: Vout=VCAP=12V, Vin = 11V - Discharging cut-off:1.2V, discharging time:130.36s, Efficiency: 11*0.2*130.36 / (0.5*2.5*12*12) = 79.66% Figure 6 Discharging in CC Mode(100mA) - Reverse discharge mode: Electronic load set to CC mode(200mA) - Disharging voltage: Vout=VCAP=12V, Vin = 11V - Discharging cut-off:2.6V, discharging time:71.19s, Efficiency: 11*0.2*71.19 / (0.5*2.5*12*12)=87.01% Figure 7 Discharging in CC Mode(200mA) - Reverse discharge mode: Electronic load set to CC mode(500mA) - Disharging voltage: Vout=VCAP=12V, Vin = 11V - Discharging cut-off:3.5V, discharging time:28.197s, Efficiency: 11*0.5*28.197 / (0.5*2.5*12*12) = 86.16% Figure 8 Discharging in CC Mode(500mA) - Reverse discharge mode: Electronic load set to CC mode(1000mA) - Disharging voltage: Vout=VCAP=12V, Vin = 11V - Discharging cut-off:3.5V, discharging time:12.299s, Efficiency: 11*1*12.299 / (0.5*2.5*12*12) = 75.16% Figure 9 Discharging in CC Mode(1000mA) - Reverse discharge mode: Electronic load set to CC mode(1500mA) - Disharging voltage: Vout=VCAP=12V, Vin = 11V - Discharging cut-off:4.25V, discharging time:6.791s, Efficiency: 11*2*4.038 / (0.5*2.5*12*12) = 49.35% Figure 10 Discharging in CC Mode(1500mA) - Reverse discharge mode: Electronic load set to CC mode(2000mA) - Disharging voltage: Vout=VCAP=12V, Vin = 11V - Discharging cut-off:3.5V, discharging time:6.791s, Efficiency: 11*2*6.791 / (0.5*2.5*12*12) = 62.25% Figure 11 Discharging in CC Mode(2000mA) # CN300-SCAPBACKPOCZ Smart Terminal with Supercap by ISL81401 Circuit Schematic Figure 12 Circuit Schematic ### **Bill of Materials** # TABLE 2. BOM List (1/2) | Designator | Mfg Part Number | Qty | Description | Manufacturer | |--|--------------------|-----|--|--------------| | C1 | EKZN101ELL221MK25S | 1 | CAP ALUM 220UF 20% 100V RADIAL | UCC | | C6, C7, C18,
C19, C54, C55 | GCM32EL8EH106KA07L | 6 | Ceramic Chip Capacitor 1206 10uF 50V | MURATA | | C8, C28, C33,
C38, C41, C42 | GCM188R72A103KA37J | 6 | Ceramic Chip Capacitor 0603 10nF 100V | MURATA | | C11, C15, C43,
C60 | GRM1885C1H102JA01D | 4 | Ceramic Chip Capacitor 0603 1nF 50V | MURATA | | C12, C13, C16 | GCM188L81H104KA57D | 3 | Ceramic Chip Capacitor 0603 0.1uF 50V | MURATA | | C14 | GCJ188R71H473KA12D | 1 | Ceramic Chip Capacitor 0603 47nF 50V | Murata | | C17, C31, C32 | GRM21BR61C106KE15L | 3 | Ceramic Chip Capacitor 0805 10uF 16V | MURATA | | C26 | EEE-FN1H221V | 1 | CHIP ALUM CAP 220UF 20% 50V SMD | Panasonic | | C35, C44, C47,
C48, C49, C50,
C51 | | 7 | Ceramic Chip Capacitor 0603 | | | C29, C40 | GCM1885C2A221JA16D | 2 | Ceramic Chip Capacitor 0603 220pF 100V | Murata | | C30, C37 | GRM188R71E474KA12D | 2 | Ceramic Chip Capacitor 0603 0.47uF 25V | MURATA | | C34 | GRM1555C1H821JA01D | 1 | Ceramic Chip Capacitor 0603 820pF 50V | MURATA | | C36 | GCM188L81H333KA55D | 1 | Ceramic Chip Capacitor 0603 33nF 50V | MURATA | | C39 | GCE188R71H223KA01D | 1 | Ceramic Chip Capacitor 0603 22nF 50V | MURATA | | C45 | GCJ188R71H473KA12D | 1 | Ceramic Chip Capacitor 0603 47nF 50V | MURATA | | C56, C57 | GRT188R61H105KE13D | 2 | Ceramic Chip Capacitor 0603 1uF 50V | MURATA | | D1, D2, D5, D6 | DSK26 | 4 | DIODE SCHOTTKY 60V 2A SOD-123FL | MDD | | D4 | SS3P6LHM3 | 1 | Schottky DIODE 60V 3A TO-227A | VISHAY | | J1 | KSE_7795 | 1 | TE KSE_7795 | TE | | J2, J5 | KSE_7795 | 2 | TE KSE_7795 | TE | | J3 | | 1 | High current test terminal Hole 2.5mm | | | J4 | KSE_7795 | 1 | TE KSE_7795 | TE | | L1 | HCP0703-4R7-R | 1 | Power Inductor 4.7uH 10A 7*7 | COOPER | | Q1, Q2, Q3, Q4 | RJK03M5DNS | 4 | MOSFET BEAM2 Series FET, 30V,
HWSON3030-8 | Renesas | | Q5, Q9 | MMSS8050 | 2 | TRANS NPN 25V 1.5A SOT-23 | MCC | | Q6 | MMSS8550-H-TP | 1 | TRANS PNP 25V 1.5A SOT-23 | MCC | | R1 | PE1206FKM470R02Z | 1 | Chip Resistor Thick Film 1206 R020 1% 1/10W | YAGEO | | R2 | RC1206FR-07432KL | 1 | Chip Resistor Thick Film 1206 432K 1% 1/10W | YAGEO | | R3 | RC0603FR-10180KL | 1 | Chip Resistor Thick Film 0603 180K 1% 1/10W | YAGEO | | R4, R15, R22,
R28, R29 | RC0603FR-072R2L | 5 | Chip Resistor Thick Film 0603 2R2 1% 1/10W | YAGEO | | R5, R38 | RC0603FR-075K1L | 2 | Chip Resistor Thick Film 0603 5K1 1% 1/10W | YAGEO | | R6 | PE1206FRM470R005L | 1 | Chip Resistor Thick Film 1206 R005 1% 1/10W | YAGEO | | R7 | RC0603FR-0737K4L | 1 | Chip Resistor Thick Film 0603 37K4 1% 1/10W | YAGEO | | R8, R10, R35,
R37 | RC0603FR-071RL | 4 | Chip Resistor Thick Film 0603 1R 1% 1/10W | YAGEO | | R11, R30, R31,
R32, R33, R47,
R48, R49, R50,
R51, R52, R55,
R56, R57 | DNP | 14 | DNP | | ### TABLE 3. BOM List (2/2) | Designator | Mfg Part Number | Qty | Description | Manufacturer | |---|------------------|-----|---|--------------| | R17 | RC1206FR-07154KL | 1 | Chip Resistor Thick Film 1206154K 1% 1/10W | YAGEO | | R20, R23 | RC0603FR-070RL | 2 | Chip Resistor Thick Film 0603 0R 1% 1/10W | YAGEO | | R21 | RC0603FR-0712KL | 1 | Chip Resistor Thick Film 0603 12K 1% 1/10W | YAGEO | | R25 | RC0603FR-07169KL | 1 | Chip Resistor Thick Film 0603 169K 1% 1/10W | YAGEO | | R26 | RC0603FR-132K7L | 1 | Chip Resistor Thick Film 0603 2K7 1% 1/10W | YAGEO | | R59, R83 | RC0603FR-07100KL | 2 | Chip Resistor Thick Film 0603 100K 1% 1/10W | YAGEO | | R36, R43, R54 | RC0603FR-0710KL | 3 | Chip Resistor Thick Film 0603 10K 1% 1/10W | YAGEO | | R39 | RC0603FR-0756KL | 1 | Chip Resistor Thick Film 0603 56K 1% 1/10W | YAGEO | | R42 | RC0603FR-0715KL | 1 | Chip Resistor Thick Film 0603 15K 1% 1/10W | YAGEO | | R44 | RC0603FR-073K48L | 1 | Chip Resistor Thick Film 0603 3K48 1% 1/10W | YAGEO | | R45 | RC1206FR-0748K7L | 1 | Chip Resistor Thick Film 1206 48K7 1% 1/10W | | | R53, R58, R84 | RC0603FR-071KL | 3 | Chip Resistor Thick Film 0603 1K 1% 1/10W | YAGEO | | R82, | RC0603FR-07140KL | 1 | Chip Resistor Thick Film 0603 140K 1% 1/10W | YAGEO | | R81 | RC0603FR-0720KL | 1 | Chip Resistor Thick Film 0603 20K 1% 1/10W | YAGEO | | TP4 | DNP | 1 | DNP | | | TP7 | DNP | 1 | DNP | | | TP14, TP15,
TP16, TP17,
TP18, TP19,
TP20, TP21,
TP22, TP23,
TP24, TP25 | DNP | 12 | DNP | Keystone | | U1 | ISL81401FRZ | 1 | 40V Bidirectional 4- Switch Synchronous Buck-
Boost Controller | Renesas | | U2 | ISL88002EI31Z | 1 | Ultra-Low Power 3 Ld Voltage Supervisors in SC-70 and SOT-23 Packages | Renesas | # **Board Layout** Figure 13 Silkscreen TOP Figure 14 Top Layer Figure 15 2nd Layer Figure 16 3nd Layer Figure 17 Bottom Layer # **Revision History** | Desc |
 | | |------|------|--| | Rev. | Date | Page | Summary | |------|---------------|------|----------------------| | 0.1 | Sep. 21, 2020 | _ | First edition issued | | | | | | | | | | | # General Precautions in the Handling of Micro processing Unit and Microcontroller Unit Products The following usage notes are applicable to all Micro processing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products. ### 1. Precaution against Electrostatic Discharge (ESD) A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices. ### 2. Processing at power-on The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the level at which resetting is specified. ### 3. Input of signal during power-off state Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation. ### 4. Handling of unused pins Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced near the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. ### 5. Clock signals After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable. ### 6. Voltage application waveform at input pin Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (Max.) and V_{IH} (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (Max.) and V_{IH} (Min.). ### 7. Prohibition of access to reserved addresses Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed. ### 8. Differences between products Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a micro processing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product. ### **Notice** - 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information. - 2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples. - 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others - 4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering. - 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc. - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc. Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document. - 6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges. - 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you. - 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations. - 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions. - 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document. - 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics. - 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products. - (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries. - (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics. (Rev.4.0-1 November 2017) ### Corporate Headquarters TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com ### **Trademarks** Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners. # **Contact information** For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/.