

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

SM78K Series Ver. 2.30 or Later
System Simulator

External Part User Open Interface Specifications

User’s Manual

Target Devices
78K/0 Series
78K/0S Series
78K/IV Series

Printed in Japan

Document No. U15802EJ1V0UM00 (1st edition)
Date Published February 2002 N CP(K)

© 2002

User’s Manual U15802EJ1V0UM2

[MEMO]

User’s Manual U15802EJ1V0UM 3

Pentium is a trademark of Intel Corporation.

Windows, Windows NT, and MS-DOS are either registered trademarks or trademarks of Microsoft Corporation

in the United States and/or other countries.

PC/AT is a trademark of International Business Machines Corporation.

User’s Manual U15802EJ1V0UM4

M8E 00. 4

The information in this document is current as of October, 2001. The information is subject to
change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or
data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all
products and/or types are available in every country. Please check with an NEC sales representative
for availability and additional information.
No part of this document may be copied or reproduced in any form or by any means without prior
written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of
third parties by or arising from the use of NEC semiconductor products listed in this document or any other
liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
patents, copyrights or other intellectual property rights of NEC or others.
Descriptions of circuits, software and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these
circuits, software and information in the design of customer's equipment shall be done under the full
responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
parties arising from the use of these circuits, software and information.
While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
risks of damage to property or injury (including death) to persons arising from defects in NEC
semiconductor products, customers must incorporate sufficient safety measures in their design, such as
redundancy, fire-containment, and anti-failure features.
NEC semiconductor products are classified into the following three quality grades:
"Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products
developed based on a customer-designated "quality assurance program" for a specific application. The
recommended applications of a semiconductor product depend on its quality grade, as indicated below.
Customers must check the quality grade of each semiconductor product before using it in a particular
application.
 "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio

and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots

"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)

"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's
data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not
intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness
to support a given application.
(Note)
(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for

NEC (as defined above).

•

•

•

•

•

•

User’s Manual U15802EJ1V0UM 5

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC
product in your application, pIease contact the NEC office in your country to obtain a list of authorized
representatives and distributors. They will verify:

• Device availability

• Ordering information

• Product release schedule

• Availability of related technical literature

• Development environment specifications (for example, specifications for third-party tools and
 components, host computers, power plugs, AC supply voltages, and so forth)

• Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary
from country to country.

NEC Electronics Inc. (U.S.)
Santa Clara, California
Tel: 408-588-6000
 800-366-9782
Fax: 408-588-6130
 800-729-9288

NEC Electronics Hong Kong Ltd.
Hong Kong
Tel: 2886-9318
Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.
Novena Square, Singapore
Tel: 253-8311
Fax: 250-3583

NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-2719-2377
Fax: 02-2719-5951

NEC do Brasil S.A.
Electron Devices Division
Guarulhos-SP, Brasil
Tel: 11-6462-6810
Fax: 11-6462-6829

J01.12

NEC Electronics (Europe) GmbH
Duesseldorf, Germany
Tel: 0211-65 03 01
Fax: 0211-65 03 327

• Branch The Netherlands
Eindhoven, The Netherlands
Tel: 040-244 58 45
Fax: 040-244 45 80

• Branch Sweden
Taeby, Sweden
Tel: 08-63 80 820
Fax: 08-63 80 388

NEC Electronics (UK) Ltd.
Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290

NEC Electronics Italiana S.R.L.
Milano, Italy
Tel: 02-66 75 41
Fax: 02-66 75 42 99

NEC Electronics (France) S.A.
Vélizy-Villacoublay, France
Tel: 01-3067-58-00
Fax: 01-3067-58-99

NEC Electronics (France) S.A.
Representación en España
Madrid, Spain
Tel: 091-504-27-87
Fax: 091-504-28-60

User’s Manual U15802EJ1V0UM6

INTRODUCTION

Target Readers The contents described in this manual use the Windows™ 95/Windows 98/Windows

2000/Windows NT™ 32-bit application program format and this manual is therefore

intended for users who have experience creating Windows 95/Windows 98/Windows

2000/Windows NT 32-bit application programs.

Purpose The purpose of this manual is to describe the interface specifications to enable users to

create custom settings for standard external parts that cannot otherwise be used for the

SM78K System Simulator. The functions, programming rules, and programming steps

that users need to create programs for customized parts are described in this manual.

Organization This manual is broadly divided into the following sections.

• General

• Download

• Programming

• Function reference

• Operations during CPU reset

• Programming examples

• Error messages

How to Use This Manual It is assumed that readers of this manual have general knowledge of microcomputers

and the C programming language. Readers will need to have a basic knowledge of how

to create Windows 95/Windows 98/Windows 2000/Windows NT 32-bit application

programs.

To find details of functions that can be used to create programs for customized parts:

→ See CHAPTER 4 FUNCTION REFERENCE.

To understand the meanings and causes of messages:

→ See APPENDIX A ERROR MESSAGES.

Target Products The “SM78K” described in this manual represents the following products.

Product Name Supporting Series

SM78K0 8-bit single-ship microcontroller 78K/0 Series (except for small-scale general-purpose

products)

SM78K0S 8-bit single-chip microcontroller 78K/0S Series (small-scale general-purpose

products)

SM78K4 16-bit single-chip microcontroller 78K/IV Series

Also, the description “78KX” in this manual should be replaced as follows according to the system simulator used.

User’s Manual U15802EJ1V0UM 7

System Simulator Used Description in This Manual Actual Name

SM78K0 78KX 78K0

SM78K0S 78KX 78K0S

SM78K4 78KX 78K4

Example Replace “SU78KX.DLL” as follows.

For 78K0: SU78K0.DLL

For 78K0S: SU78K0S.DLL

For 78K4: SU78K4.DLL

Conventions Data significance: Higher digits on the left and lower digits on the right

Note: Footnote for item marked with Note in the text

Caution: Information requiring particular attention

Remark: Supplementary information

Numerical representation: Binary … XXXX or XXXXB

Decimal ... XXXX

Hexadecimal … 0xXXXX

Prefix indicating the power of 2 (address space, memory capacity):

K (Kilo): 210 = 1024

M (Mega): 220 = 10242

User’s Manual U15802EJ1V0UM8

Related Documents Refer to the documents listed below when using this manual.

The related documents indicated in this publication may include preliminary versions.

However, preliminary versions are not marked as such.

Documents related to 78K Series development tools (user’s manuals)

Document Name Document No.

Operation U14871ECC78K0S C Compiler Ver. 2.30 or Later

Language U14872E

Operation U14297ECC78K0 C Compiler Ver. 3.30 or Later

Language U14298E

Operation U15557ECC78K4 C Compiler Ver. 2.20 or Later

Language U15556E

Operation U14876E

Language U14877E

RA78K0S Assembler Package

Structured Assembly Language U11623E

Operation U14445E

Language U14446E

RA78K0 Assembler Package

Structured Assembly Language U11789E

Operation U15254E

Language U15255E

RA78K4 Assembler Package

Structured Assembler Preprocessor U11743E

SM78K Series System Simulator Ver. 2.30 or Later Operation (Windows Based) U15373E

SM78K Series System Simulator Ver. 2.30 or Later External Part User Open Interface

Specifications

This manual

ID78K Series Integrated Debugger Ver. 2.30 or Later Operation (Windows Based) U15185E

Fundamental U11537ERX78K0 Real-Time OS

Installation U11536E

Fundamental U10603ERX78K4 Real-Time OS

Installation U10604E

Project Manager Ver. 3.12 or Later (Windows Based) U14610E

User’s Manual U15802EJ1V0UM 9

CONTENTS

CHAPTER 1 GENERAL ...13

1.1 General Description of External Part User Open Interface Specifications13
1.2 General Description of User Custom Parts..13

1.2.1 Types of customization ..13

1.2.2 User-created files...13

1.2.3 Positioning of user-customized parts ...14

1.3 Environment ..15
1.3.1 Development environment ...15

1.3.2 Operating environment ..15

1.4 Cautions When Transferring External Parts Created by SM78K Series Ver. 1.42 or
Earlier to Ver. 2.30 or Later ..15
1.4.1 Change of sources..15

1.4.2 Change of make environment ...15

CHAPTER 2 DOWNLOAD ...16

2.1 Download ...17
2.2 Unload ..17

CHAPTER 3 PROGRAMMING...18

3.1 Programming Configuration and Processing Flow...18
3.1.1 Customization via Parts window ..18

3.1.2 Customization via user window..19

3.2 Steps in Creation of Customized Parts...21
3.2.1 Customization via Parts window ..21

3.2.2 Customization via user window..21

3.3 Basic Rules..23
3.3.1 User functions ..23

3.3.2 External variables ..23

3.3.3 Function names ...23

3.3.4 Active high/low...23

3.3.5 Pin names..24

3.3.6 Include file, Source file...24

3.4 Module Definition (DEF) File ..24
3.4.1 EXPORTS declaration ...24

CHAPTER 4 FUNCTION REFERENCE ..25

4.1 Customization via Parts window...25
4.2 Customization via User Window ...51

CHAPTER 5 OPERATIONS DURING CPU RESET ...81

5.1 Parts Customized via Parts Window...81

User’s Manual U15802EJ1V0UM10

5.2 Parts Customized via User Window ..81

CHAPTER 6 PROGRAMMING EXAMPLES ...82

6.1 Example of Parts Customized via Parts Window...83
6.1.1 Description of samples...83

6.1.2 Source examples ...84

<1> Target program...84

<2> Custom part source file UPsw00.c..85

<3> Definition file UPsw00.def...87

<4> Make file UPsw00.mak ...88

6.2 Example of Parts Customized via User Window..92
6.2.1 Description of samples...92

6.2.2 Source examples ...93

<1> Target program...93

<2> Custom part source file UOport.c..94

<3> Definition file UOport.def...101

<4> Make file UOport.mak ...102

APPENDIX A ERROR MESSAGES ..106

A.1 Error Processing ...106
A.2 Error and Warning Messages...106

User’s Manual U15802EJ1V0UM 11

LIST OF FIGURES

Figure No. Title Page

1-1 Configuration Diagram of 78KX Series Simulator ..14

2-1 SM78KX Simulator Parts Window..16
2-2 Open Dialog Box ..17

3-1 Programming Configuration and Processing Flow for Customization via Parts Window18
3-2 Programming Configuration and Processing Flow for Customization via User Window........................20
3-3 Creation Flow ...22

4-1 Push Buttons ..26
4-2 Toggle Buttons ...27
4-3 Group Select Buttons ...29
4-4 Bitmap Images for Inactive LED (Left) and Active LED (Right)..32
4-5 Pictures for Inactive LED (Left) and Active LED (Right)...32
4-6 LED Function Set Per Port ...34
4-7 Matrix LED Function...36
4-8 Active LED (Left) and Inactive LED (Right) ..37
4-9 Stepper Motor...39
4-10 Vertical Scroll Bar Analog Input..41

6-1 Example of Parts Customized via Parts Window ...83
6-2 Example of Parts Customized via User Window..92

User’s Manual U15802EJ1V0UM12

LIST OF TABLES

Table No. Title Page

4-1 Customization Functions Used in Parts Window.. 25
4-2 Customization Functions Used in User Window... 51

5-1 Parts Customized via Parts Window During CPU Reset .. 81

A-1 Error Messages .. 107
A-2 Warning Messages... 108

User’s Manual U15802EJ1V0UM 13

CHAPTER 1 GENERAL

1.1 General Description of External Part User Open Interface Specifications

In addition to simulating the operations of the actual target system, the SM78KX can simulate the operations of a

dummy target system.

Standard external parts are provided with the SM78KX for building a dummy target system. Setup dialog boxes are

also provided for each external part to enable easier implementation of standard external parts.

In addition, parts that cannot be set up using a setup dialog box for standard external parts still can be

implemented via user programming as user-specified external parts.

The external part user open interface specifications include the function specifications for the SM78KX's interface,

which the user needs to create programs for customized parts.

1.2 General Description of User-Customized Parts

1.2.1 Types of customization

Parts can be customized by the user's programming in the following two ways.

(1) Customization via Parts window

Parts can be customized using the customization function that facilitates the creation of parts by simply giving

the relevant pins and action information as parameters.

Based on information that is called within a user's function, the corresponding part is pasted into the Parts

window and all of the related simulation processing is executed.

(2) Customization via user window

Users can customize parts with functions that can be used to create parts and windows.

The handle notification function for a user window can be used to enable processing of windows and input from

user parts, and the simulation call function can be used to perform output display processing to user parts.

1.2.2 User-created files

User-customized parts are implemented by user-created programs based on the specifications described in this

manual. These user-created programs end up as DLL files.

The DLL files for user-customized parts are loaded into the external parts GUI block before simulation processing

is executed.

CHAPTER 1 GENERAL

User’s Manual U15802EJ1V0UM14

1.2.3 Positioning of user-customized parts

Figure 1-1. Configuration Diagram of 78KX Series Simulator

Debugger block

User-customized external
parts block (DLL file)

External parts
block

External parts user
open interface block

External parts GUI block

Instruction simulation block, peripheral simulation block, peripheral GUI block

Simulator block

Input from user

Debugger block Any directive from the user that causes any function to be executed by the simulator is

called a command. The debugger block provides an environment in which the user can

enter such commands via the keyboard or the mouse.

Peripheral GUI block This block provides a setup environment that enables the user to easily set the desired

input information to a port via a window.

DLL DLL stands for "Dynamic Link Library." DLLs are Windows modules that contain

executable code and data that can be accessed by functions within Windows

applications or other DLLs.

External parts GUI block This block enables external part operations to be performed via a window.

External parts block This is part of the external parts GUI block, and is used to control standard external

parts.

User-customized external parts block This is part of the external parts GUI block, and is used for user-created external parts.

External parts user open interface

block

This is part of the external parts GUI block, and is used as an interface between the

external parts block and the user-customized external parts block.

CHAPTER 1 GENERAL

User’s Manual U15802EJ1V0UM 15

1.3 Environment

1.3.1 Development environment

The following describes the development environment under which users write programs according to this manual's

specifications in order to create DLL files.

Hardware environment: NEC PC-9821/PC98-NX Series, IBM PC/AT™ compatible

(CPU: Pentium™ 120 MHz or above is recommended)

Software environment: Windows 95/Windows 98/Windows 2000/Windows NT 4.0

Microsoft Visual C++ V5.00 or later

1.3.2 Operating environment

The operating environment of the simulator that loads and operates user-created files is described below.

Hardware environment: NEC PC-9821/PC98-NX Series, IBM PC/AT compatible

(CPU: Pentium 120 MHz or above is recommended)

Software environment: Windows 95/Windows 98/Windows 2000/Windows NT 4.0

1.4 Cautions When Transferring External Parts Created for SM78K Series Ver. 1.42 or Earlier to
Ver. 2.30 or Later

To use the external parts created for the Ver. 1.42 or earlier versions of the SM78K Series in the Ver. 2.30 or later,

part of the external part source needs to be modified and the external part recreated.

Here, the modified parts are described.

1.4.1 Change of source

C source is modified as follows.

• Change the file to be included from uparts.h to uparts32.h.

uparts32.h is in .\smp78kx\sm78kx under the SM78K installation directory (e.g. c:\nectools32).

• Use DIIMain() instead of the LibMain() or WEP() functions.

1.4.2 Change of make environment

A new Win32 make environment needs to be created. When creating a make environment in VC++, note the

following two points.

(1) Add the uparts32.cpp file to the project.

uparts32.cpp is in .\smp78kx\sm78kx under the SM78K installation directory (e.g. c:\nectools32).

(2) Set the single-byte alignment of structure members.

User’s Manual U15802EJ1V0UM16

CHAPTER 2 DOWNLOAD

This chapter describes the steps for downloading to the simulator user-customized parts that are created as

described in Chapters 3 and 4.

Before user-customized external parts (DLL files) can be actually used, they must be loaded into the simulator.

To remove loaded user-customized external parts (DLL files), unload them from the simulator.

Use the Parts window to load and unload user-customized external parts (DLL files).

Figure 2-1. SM78KX Simulator Parts Window

CHAPTER 2 DOWNLOAD

User’s Manual U15802EJ1V0UM 17

2.1 Download

Operation steps

(1) In the Parts window, select [Customize] → [Load] from the menu bar to open the Open dialog box.

Figure 2-2. Open Dialog Box

(2) In the Open dialog box, select a customized external part DLL file, then click the <Open> button. The specified

DLL file is then loaded into the simulator. Once this has been done, the part created by the customization

function in the Parts window is pasted in the Parts window. If the part was customized via a user window, it is

displayed in a user window.

(a) Up to six user-customized external part DLLs can be loaded into the simulator.

(b) A user-customized external part DLL file that is downloaded to the simulator remains valid even after the

Parts window is closed. The next time the Parts window is opened, the same DLL file will be automatically

downloaded.

(c) The name of the loaded user-customized external part DLL file is added to the pull-down menu under the

[Customize] menu of the Parts window.

(d) The user-customized external part that is displayed in the Parts window can be relocated. However, the

information about the relocation cannot be saved. After relocation, if either of the following sets of

operations have been performed, the location of each part is neither saved nor completed. Therefore, be

sure to locate each part again.

 If the status is saved to a project file (xxxx.prj) or to a file to which display information for the Parts

window is to be saved (xxxx.pnl), and then these files are read

 If the Parts window is closed while customized external part DLL information remains loaded, and then

the Parts window is opened again

2.2 Unload

Operation steps

(1) Select [Customize] → [Unload] from the menu bar in the Parts window.

(2) This unloads (removes) all of the customized external part DLLs that are currently loaded in the simulator.

Parts that have been created by the Parts window's customization function are deleted from the Parts window.

Also, if there are any programs that have been customized via a user window, the user window is closed.

User’s Manual U15802EJ1V0UM18

CHAPTER 3 PROGRAMMING

3.1 Programming Configuration and Processing Flow

This chapter describes the basic programming used for customization via the Parts window and customization via a

user window.

3.1.1 Customization via Parts window

Configuration

The configuration includes user functions that are called only once after the DllMain function (required to create

DLL files) and the DLL files have been loaded.

Function references described in Chapter 4 must be included either in user functions or in functions subordinate

to user functions.

Processing flow

The simulator's external parts block is used to create parts based on the specified function's part information and

performs all simulation related to parts associated with the simulator's external parts block.

Figure 3-1 shows the relationship between user-created DLL files and external parts in the simulator, as well as

the configuration of functions.

Figure 3-1. Programming Configuration and Processing Flow for Customization via Parts Window

Called once after
UPusr.dll is loaded

External parts block

External parts user
open I/F block

#include<Windows.h>
#include"uparts32.h"

DllMain(.....){
 :
}

Uparts_usr(){
 UpPushBtm(...);
 UpMtxLed(....);
 :
}

UPusr.c

User-customized file

CHAPTER 3 PROGRAMMING

User’s Manual U15802EJ1V0UM 19

3.1.2 Customization via user window

Configuration

The configuration includes the DllMain function (required to create DLL files), the created window's callback

functions, user functions, and simulation call functions that are called at a set interval during simulations.

User functions and their subordinate functions are used to report simulation call functions and the motor pin

names. The creation of parts and programming of I/O actions are done using the user-created window's callback

functions and simulation call functions.

Processing flow

Simulation of customized parts is performed as the simulator works with the external parts block using functions

that capture and set I/O information on pins and ports. The pin output information also can be redrawn (or

otherwise processed) by calling simulation call functions from the external parts block.

Figure 3-2 shows the relationship between DLL files customized via a user-created window and external parts in

the simulator, as well as the configuration of functions.

CHAPTER 3 PROGRAMMING

User’s Manual U15802EJ1V0UM20

Figure 3-2. Programming Configuration and Processing Flow for Customization via User Window

External part user open I/F is called

Called by external part

User window's
callback function

Called once after
UOusrwin.dll is loaded

Called once each time a
simulation is executed

External parts block

External parts
user open I/F block

#include<Windows.h>
#include "uparts32.h"

unsigned long psw_reg;

DllMain(.....){

 RegisterClass();

}

WindProc(HWND hwnd,.....){
 switch(msg){
 case WM_COMMON:
 switch(wParam){
 case IDM_BTM1:
 UpSetPin("p21",1,50);
 :
 }
 case WM_DESTROY:
 UpCloseUserWnd(hwnd);
 :
 }
}

Uparts_usrwin(){
 int i;
 hwnd=CreateWindow(.......);
 UpSetUserWnd(hwnd);
 UpCallFuncName("Update_usrwin");
 UpResetFuncName("Upsur_reset");
 UpSaveProjName("UpSave_usrproj");
 UpLoadProjName("UpLoad_usrproj");
 i=UplnitPin("p21",HIGH);
 :
}

Update_usrwin(unsigned long simtime){
 val=UpGetPin("p32");
 :
}

Upusr_reset(){
 :
}

UpSave_usrproj(char FAR *filename){
 WritePrivateProfileString("User Window",.....,filename);
 :
}

UpLoad_usrproj(char FAR *filename){
 GetPrivateProfileString("User DLL Window",.....,"filename);
 :
}

UOusrwin.c

User-customized file

Called when CPU
reset occurs

Called when reading from
project file

Called when saving to
project file

CHAPTER 3 PROGRAMMING

User’s Manual U15802EJ1V0UM 21

3.2 Steps in Creation of Customized Parts

3.2.1 Customization via Parts window

1. Program the external parts to be customized when creating a DLL file using Windows programming methods.

Be sure to include the file "uparts32.h" in this programming and add “uparts32.cpp” to the project.

2. Use Windows programming methods to create a module definition (DEF) fileNote, a make file, and, if necessary,

a resource file, then compile to create a user-created DLL file.

 When compiling, specify the option (/Zp1) for single-byte alignment of structure members.

 Specify "UP" as the first two characters in the name of the created DLL file.

 To operate the DLL file in an environment in which Microsoft Visual C++ is not installed, create the DLL file

using the released version.

3. Enter the user-created DLL file name in the place for specifying the simulator's external parts customization

files (See 2.1 Download).

4. In addition to the standard parts that are already displayed in the Parts window, the user-created customized

parts are displayed.

5. Set the Parts window to location mode and locate the parts.

6. Select [Save As...] from the [File] menu of the Parts window and save the current status so that there will not

be any need to load the user-created DLL files when performing the next simulation.

3.2.2 Customization via user window

1. Program the external parts to be customized when creating a DLL file using Windows programming methods.

Be sure to include the file "uparts32.h" in this programming and add “uparts32.cpp” to the project.

2. Use Windows programming methods to create a module definition (DEF) fileNote, a make file, and, if necessary,

a resource file, then compile to create a user-created DLL file.

 When compiling, specify the option (/Zp1) for single-byte alignment of structure members.

 Specify "UO" as the first two characters in the name of the created DLL file.

 To operate the DLL file in an environment in which Microsoft Visual C++ is not installed, create the DLL file

using the released version.

3. Enter the user-created DLL file name in the place for specifying the simulator's external parts customization

files (See 2.1 Download).

4. The window created by the user and the corresponding customized parts are displayed.

Note See 3.4 Module Definition (DEF) File.

CHAPTER 3 PROGRAMMING

User’s Manual U15802EJ1V0UM22

Figure 3-3. Creation Flow

Load

usr.def uparts32.husr.c

UPusr.dll
UOusr.dll

External parts
block

Compile

uparts32.cpp

CHAPTER 3 PROGRAMMING

User’s Manual U15802EJ1V0UM 23

3.3 Basic Rules

The basic rules for user programming of customized parts are described below.

3.3.1 User functions

User functions are main functions that are described by users.

(1) When a user-created DLL file is loaded to the simulator, it becomes a function that is called by the simulator.

(2) The function references described in Chapter 4 must be contained in user functions or functions that are

subordinate to user functions.

(3) User function names are function names in which the name of the user-created DLL file minus the first two

characters is added to "UParts_".

(4) The first two characters of the user-created DLL file name are fixed.

(a) Customization via Parts window

Always use "UP" as the first two characters of the user-created DLL file name.

Example: UPusr.dll → UParts_usr()

(b) Customization via user window

Always use "UO" as the first two characters of the user-created DLL file name.

Example: UOusr.dll → UParts_usr()

(5) Use void type with no parameters for user functions.

(6) Enter an EXPORTS declarationNote in the module definition file for user functions.

Note See 3.4.1 EXPORTS declaration.

3.3.2 External variables

When using external variables, always add "UP" to the start.

Example: int UPglobal

3.3.3 Function names

Function names are the names that are given to user-created external parts.

If a function name need not be specified as the part name, enter a NULL string as the parameter of the function

used to create the part.

3.3.4 Active high/low

The "active high/low" designation specifies the relation between a pin's value and its active state (when a part

connected to a pin is operating). If the function used to create a part includes a parameter for specifying "active

high/low," specify one of the following macros (the macros "HIGH" and "LOW" are defined in uparts32.h).

Operation using 1 (high): HIGH

Operation using 0 (low): LOW

CHAPTER 3 PROGRAMMING

User’s Manual U15802EJ1V0UM24

3.3.5 Pin names

Some of the parameters in functions used to create parts are for specifying pin names or port names. In such

cases, each pin name or port name is specified as a character string, and its name should be as described in the

target device's user's manual. Specifications are not case sensitive.

3.3.6 Include file, Source file

The include file “uparts32.h” and source file “uparts32.cpp” that are used for user customization are bundled in the

SM78K product package. Include uparts32.h and link uparts32.cpp.

uparts32.h and uparts32.cpp are in . \smp78kx\sm78kx under the SM78K installation directory (e.g. c:\nectools32).

 uparts32.h contains descriptions of macro definitions for active high/low status, and IMPORTS declarations for

functions described in CHAPTER 4 FUNCTION REFERENCE.

 When compiling, be sure to set the include path in the directory where the file "uparts32.h" is located.

3.4 Module Definition (DEF) File

A module definition (DEF) file must be created to include the EXPORTS declaration, as described in the module

definition file for Windows programming.

The IMPORTS declaration is already included in the file "Uparts32.h" and therefore does not need to be

considered.

3.4.1 EXPORTS declaration

Be sure to enter an EXPORTS declaration for user functions and simulation call functions.

EXPORTS declarations must be entered for functions used to read or save project files, for reset functions, and

some other functions.

Example: EXPORTS UParts_usrwin

UPdata_usrwin

User’s Manual U15802EJ1V0UM 25

CHAPTER 4 FUNCTION REFERENCE

4.1 Customization via Parts window

The functions that can be pasted into the Parts window to perform all simulation processing by simply calling within

the user functions are listed below.

These functions can be used to easily create parts simply by specifying pins and action information as parameters.

Note, however, that even if the user has created a window, all parts that are created by this function are still pasted

in the Parts window.

Table 4-1. Customization Functions Used in Parts Window

Function Name Prototype Page

Push-button function UpPushBtm(pname, actype, btmname) 26

Toggle button function UpTglBtm(pname, actype, btmname) 27

Group select button (exclusive push-button)

function

UpSelectBtm(gname, pnames, pnum, actype, btmnames) 28

Hold time setup function UpSetPBtmtime(time) 30

LED function UpLed(pname, actype, ledname, pictype) 31

LED function set per port UpPortLed(portname, actype, ledname, pictype) 33

Matrix LED function UpMtxLed(pnames1, pnames2, pnum1, pnum2, actype1, actype2) 35

DC motor function UpDcMtr(pname, actype, mtrname) 37

Stepper motor function UpStpingMtr(pnames, num, actype, reiji, step) 38

Vertical scroll bar analog input function UpScaleInterAD(pname, adname) 40

Reference voltage value setup function UpSetAVref(avref) 42

Bitmap setup function for button UpSetBtmBmp(actbmp, nactbmp) 43

Bitmap setup function for LED UpSetLedBmp(actbmp, nactbmp) 44

Bitmap setup function for DC motor UpSetMtrBmp(actbmp, nactbmp) 45

LED picture setup function UpSetLedPic(type, color) 46

Serial pin data input function UpSerial_data(serpname, data, count, first, bitnum) 47

Window title function UpPanelTitleName(title) 48

Bitmap display function UpSetUsrBmp(bmpname) 49

Character string display function UpWriteString(string) 50

CHAPTER 4 FUNCTION REFERENCE

User’s Manual U15802EJ1V0UM26

Push button function

void UpPushBtm(pname, actype, btmname)

char *pname; /* Pin name */

int actype; /* Active high/low */

char *btmname; /* Function name */

[Function]

This function creates one push button. A push button is a button icon that sets and holds the input status for a

specified hold time only after the button has been clicked. The hold time is set using the hold time setup function

UpSetPBtmtime().

The time set in UpSetPBtmtime described before this function is assumed as the hold time. If a hold time is not

set, the default value of 0.5 ms is used.

[Parameters]

pname Specifies the pin name as a character string.

actype Specifies a value to be input using a push button. Specify HIGH to enter a "1" (high value) or

LOW to enter a "0" (low value).

btmname Specifies the name of the push button function. Since this function name is displayed on the

button, the character string is limited to 16 single-byte characters.

[Return value]

None

[Example]

UpSetPBtmtime(50);

UpPushBtm("p20",HIGH,"START");

UpPushBtm("p20",LOW,"STOP");

Figure 4-1. Push Buttons

CHAPTER 4 FUNCTION REFERENCE

User’s Manual U15802EJ1V0UM 27

Toggle button function

void UpTglBtm(pname, actype, btmname)

char *pname; /* Pin name */

int actype; /* Active high/low */

char *btmname; /* Function name */

[Function]

This function creates one toggle button. When clicked, a toggle button sets and holds the input status until the

same button is clicked again.

This button's initial mode is inactive. The first time this button is clicked, the value specified by the parameter

actype is input.

[Parameters]

pname Specifies the pin name as a character string.

actype Specifies a value to be input using the toggle button. Specify HIGH to enter a "1" (high value)

or LOW to enter a "0" (low value).

btmname Specifies the name of the toggle button function. Since this function name is displayed on the

button, the character string is limited to 16 single-byte characters.

[Return value]

None

[Example]

UpTglBtm("p22",HIGH,"START");

UpTglBtm("p23",LOW,"STOP");

Figure 4-2. Toggle Buttons

CHAPTER 4 FUNCTION REFERENCE

User’s Manual U15802EJ1V0UM28

Group select button (exclusive push button) function

void UpSelectBtm(gname, pnames, pnum, actype, btmnames)

char *gname; /* Group name */

char **pnames; /* Pin name */

int pnum; /* Number of buttons */

int actype; /* Active high/low */

char **btmnames; /* Function name */

[Function]

Several buttons can be grouped together as exclusive buttons. Clicking one of the group of buttons enclosed in a

frame enters an active value for the clicked button only.

The entered value remains in effect until another button is clicked. In other words, there can be only one active

button at a time within the button group.

[Parameters]

gname Specifies the name assigned to the group. This group name is shown at the top of the group

select buttons.

pnames Specifies pin names (character strings) for each button.

pnum Specifies the number of buttons.

actype Specifies the value entered by clicking a group select button. Specify HIGH to enter a "1"

(high value) or LOW to enter a "0" (low value). The active status for all group buttons is the

same.

btmnames Specifies the names assigned to individual buttons. Since this function name is displayed on

the button, the character string is limited to 10 single-byte characters.

[Return value]

None

CHAPTER 4 FUNCTION REFERENCE

User’s Manual U15802EJ1V0UM 29

[Example]

static char *sizePin[4] = {"p30","p31","p32","p33"};

static char *sizeName[4] = {"B5","A4","B4","A3"};

UpSelectBtm("Size", sizePin, 4, HIGH, sizeName);

Figure 4-3. Group Select Buttons

CHAPTER 4 FUNCTION REFERENCE

User’s Manual U15802EJ1V0UM30

Hold time setup function

void UpSetPBtmtime(time)

char *time; /* Hold time */

[Function]

This function specifies the hold time for a push button.

[Parameter]

time Sets a hold time character string. The unit for this setting is ms (milliseconds).

The range of settings is 0.001 to 999 ms.

[Return value]

None

[Example]

UpSetPBtmtime("0.2");

CHAPTER 4 FUNCTION REFERENCE

User’s Manual U15802EJ1V0UM 31

LED function

void UpLed(pname, actype, ledname, pictype)

char *pname; /* Pin name */

int actype; /* Active high/low */

char *ledname; /* Function name */

char pictype; /* Picture type */

[Function]

This function creates one LED.

When the specified pin's status is active, an active bitmap (or color picture) is displayed. When the pin's status is

inactive, an inactive bitmap (or colorless picture) is displayed.

[Parameters]

pname Specifies the pin name as a character string.

actype Specifies the value to be displayed on the LED. Specify HIGH for active high or LOW for

active low.

ledname Specifies the LED's function name. This function name is shown on the LED. There is no

limit on the number of characters.

pictype Specifies the type of picture (or bitmap image) used in the LED display.

If 1: The default bitmap type is a light bulb-type bitmap image. However, any bitmap

specified by the UpSetLedBmp() function is displayed instead of the default bitmap.

If 0: The default picture type is a rectangular picture. Any picture specified by the

UpSetLedPic() function is displayed instead of the default picture.

[Return value]

None

CHAPTER 4 FUNCTION REFERENCE

User’s Manual U15802EJ1V0UM32

[Example]

UpLed("p40",LOW,"Reserved",1);

UpLed("p21",HIGH,"Power",1);

Figure 4-4. Bitmap Images for Inactive LED (Left) and Active LED (Right)

UpLed("p41",LOW,"L",0);

UpLed("p22",HIGH,"H",0);

Figure 4-5. Pictures for Inactive LED (Left) and Active LED (Right)

CHAPTER 4 FUNCTION REFERENCE

User’s Manual U15802EJ1V0UM 33

LED function set per port

void UpPortLed(portname, actype, ledname, pictype)

char *portname; /* Port name */

unsigned char actype; /* Active high/low */

char *ledname; /* Function name */

char pictype; /* Picture type */

[Function]

This function creates a set of LEDs corresponding to pins assigned to a particular port (eight LEDs make one set).

An active bitmap (or color picture) is displayed for each pin that is active and an inactive bitmap (or colorless

picture) is displayed for each pin that is inactive.

[Parameters]

portname Specifies the port name as a character string.

actype Specifies the value for displaying an active bitmap. Specify "1" if a value of "1" (high) is active

or specify "0" if a value of "0" (low) is active.

The 8-bit data that sets the status of eight LEDs is specified bitwise. Values are specified

bitwise for 8 bits, starting from the port's lowest pin as the LSB.

Example

When p30 and p31 are active low for port 3's LED and all other pins are active high set

the lower 2 bits of actype to 0:

UpPortLed("p3", 0xfc, "Number", 1);

ledname Specifies a name to be assigned to an LED. This function name is shown below the bitmap.

There is no limit on the number of characters.

pictype Specifies the picture type used in the LED display. "1" specifies bitmap and "0" specifies a

rectangular picture.

[Return value]

None

CHAPTER 4 FUNCTION REFERENCE

User’s Manual U15802EJ1V0UM34

[Example]

UpPortLed("p3",0xfc,"Number",1);

Figure 4-6. LED Function Set Per Port

Left pin name
is not shown.

CHAPTER 4 FUNCTION REFERENCE

User’s Manual U15802EJ1V0UM 35

Matrix LED function

void UpMtxLed(pnames1, pnames2, pnum1, pnum2, actype1, actype2)

char **pnames1; /* Output 1 pin names */

char **pnames2; /* Output 2 pin names */

int pnum1; /* Output 1 pin number */

int pnum2; /* Output 2 pin number */

int actype1; /* Active high/low for output 1*/

int actype2; /* Active high/low for output 2*/

[Function]

This function creates an LED on a matrix. When any intersection is active on the matrix of the output 1 and output

2 pins, a matrix LED showing the active bitmap is created (the active bitmap is fixed and cannot be specified).

[Parameters]

pnames1 Specifies the output 1 pin names (character strings) for all output 1 pins only.

pnames2 Specifies the output 2 pin names (character strings) for all output 2 pins only.

pnum1 Specifies the number of output 1 pins.

pnum2 Specifies the number of output 2 pins.

actype1 Specifies the value for displaying output 1. Specify HIGH for active high status or LOW for

active low status. The active status for output 1 is the same for all output 1 pins.

actype2 Specifies the value for displaying output 2. Specify "HIGH" for active high status or "LOW" for

active low status. The active status for output 2 is the same for all output 2 pins.

[Return value]

None

CHAPTER 4 FUNCTION REFERENCE

User’s Manual U15802EJ1V0UM36

[Example]

static char *out1[4] = {"p30","p31","p32","p33"};

static char *out2[4] = {"p24","p25","p26","p27"};

UpMtxLed(out1, out2, 4, 4, HIGH, HIGH);

Figure 4-7. Matrix LED Function

Pin names are not shown

CHAPTER 4 FUNCTION REFERENCE

User’s Manual U15802EJ1V0UM 37

DC motor function

void UpDcMtr(pname, actype, mtrname)

char *pname; /* Pin name */

int actype; /* Active high/low */

char *mtrname; /* Function name */

[Function]

This function creates a DC motor icon. An active bitmap is displayed when the specified pin becomes active, and

an inactive bitmap is displayed when the specified pin is inactive.

This function also displays the total active time that has elapsed since the start of a simulation. The displayed time

is based on the main system clock. When a reset occurs or when the elapsed time value exceeds a 10-digit

decimal value, the displayed time is cleared to zero.

[Parameters]

pname Specifies the pin name as a character string.

actype Specifies the status when the motor is displayed as active. Specify HIGH for active high

status or LOW for active low status.

mtrname Specifies the DC motor function's name. This function name is shown under the motor icon.

There is no limit on the number of characters.

[Return value]

None

[Example]

UpDcMtr("p41",HIGH,"Motor");

Figure 4-8. Active LED (Left) and Inactive LED (Right)

CHAPTER 4 FUNCTION REFERENCE

User’s Manual U15802EJ1V0UM38

Stepper motor function

void UpStpingMtr(pnames,num,actype,,reiji,step)

char **pnames; /* Pin names */

int num; /* Number of pins per channel */

int actype; /* Active high/low */

char reiji; /* Excitation method */

short step; /* Minimum step angle */

[Function]

This function creates a stepper motor that is operated via several pins.

The motor is displayed according to its direction of rotation, with the rotation speed and step angles.

[Parameters]

pname Specifies pin names (character strings) for all pins.

num Specifies the number of pins per channel (4 or 8).

actype Specifies the status when the motor is displayed as active. Specify HIGH for active high

status or LOW for active low status. The active status is the same for all pins.

reiji Specifies the excitation method. Set "0" for single phase or "1" for single/dual phase.

step Specifies an integer fraction of 360 as the minimum step angle.

[Return value]

None

[Remarks]

Once operation of this function is started, the first value other than zero that is output to a connected pin is taken as

the initial value. At that point, the stepper motor is shown as stopped (not rotating).

CHAPTER 4 FUNCTION REFERENCE

User’s Manual U15802EJ1V0UM 39

[Example]

char *mtrpin[4] = {"p00","p01","p02","p03"};

UpStpingMtr(mtrpin, 4,HIGH,1,10);

Figure 4-9. Stepper Motor

mark and red motor means positive rotation

Green motor means stopped

mark and yellow motor means negative rotation

Number of positive revolutions

Number of negative revolutions

Rotation angle

CHAPTER 4 FUNCTION REFERENCE

User’s Manual U15802EJ1V0UM40

Vertical scroll bar analog input function

void UpScaleInterAD(pname, adname)

char *pname; /* Pin name */

char *adname; /* Function name */

[Function]

This function creates an analog input part for a vertical scroll bar.

Move the scroll box and right-click the mouse over the scroll bar to enable input of analog data. Input values are

used to create a part that is shown in red.

[Parameters]

pname Specifies the name of an analog input pin as a character string.

adname Specifies the function name of the scroll-bar-type input part. This function name is displayed

above the scroll-bar-type input part and there is no limit on the number of characters.

[Return value]

None

[Remarks]

The scroll bar's operating range is determined either by settings made via the reference voltage value setup

function UpSetAVref() or by the reference voltage value settings made via the Standard Level Gauge Pin Setting

dialog boxNote. If neither of these settings have been made, the default value of 5.0 V is used.

Note See CHAPTER 6 WINDOW REFERENCE in the SM78K Series System Simulator Ver.2.30 or later

Operation (Windows Based) (U15373E).

CHAPTER 4 FUNCTION REFERENCE

User’s Manual U15802EJ1V0UM 41

[Example]

UpScaleInterAD("ani1","Voltage");

Figure 4-10. Vertical Scroll Bar Analog Input

CHAPTER 4 FUNCTION REFERENCE

User’s Manual U15802EJ1V0UM42

Reference voltage value setup function

void UpSetAVref(avref)

char *avref; /* Reference voltage value */

[Function]

This function sets the reference voltage value for the A/D converter.

This reference voltage value is used to determine the operating range for an analog input part.

Any setting that is within the range for the operating power supply voltage (see the user's manual of each device)

can be set.

Values can be set to the first decimal place, with subsequent decimal places rounded off.

[Parameter]

avref Specifies the reference voltage value as a character string.

[Return value]

None

[Remarks]

If this function or the standard setting is not set, the analog input part will operate using the default voltage value of

5.0 V.

[Example]

UpSetAVref("3.5");

CHAPTER 4 FUNCTION REFERENCE

User’s Manual U15802EJ1V0UM 43

Bitmap setup function for button

void UpSetBtmBmp(actbmp,nactbmp)

char *actbmp; /* Active bitmap name character string */

char *nactbmp; /* Inactive bitmap name character string */

[Function]

This function sets the bitmap for a button. The button display can be changed by entering this function immediately

before the target button's function. The same bitmap will be displayed until it is set again by this function. The

bitmap file should be stored in the same directory as the simulator or its name should be specified with the full

path.

[Parameters]

actbmp Specifies a character string for the bitmap file name displayed when active.

nactbmp Specifies a character string for the bitmap file name displayed when inactive.

[Return value]

None

[Remarks]

If a button function is described without describing this function first, the standard button's bitmap is displayed (see

the image shown in Figure 4-1). The button name is not shown when setting this function.

[Example]

UpSetBtmBmp("on.bmp","off.bmp");

UpPushBtm("p21",LOW,"START");

CHAPTER 4 FUNCTION REFERENCE

User’s Manual U15802EJ1V0UM44

Bitmap setup function for LED

void UpSetLedBmp(actbmp,nactbmp)

char *actbmp; /* Active bitmap name character string */

char *nactbmp; /* Inactive bitmap name character string */

[Function]

This function sets the bitmap for an LED. The LED display can be changed by entering this function immediately

before the target LED's function. This function is valid only if the bitmap has been specified by an LED function.

The same bitmap will be displayed until it is set again by this function. The bitmap file should be stored in the same

directory as the simulator or its name should be specified with the full path.

[Parameters]

actbmp Specifies a character string for the bitmap file name displayed when active.

nactbmp Specifies a character string for the bitmap file name displayed when inactive.

[Return value]

None

[Remarks]

If an LED function is described without describing this function first, the standard LED's bitmap is displayed (see

the image shown in Figure 4-4).

[Example]

UpSetLedBmp("lighton.bmp","lightoff.bmp");

UpLed("p31",HIGH,"Power",1);

CHAPTER 4 FUNCTION REFERENCE

User’s Manual U15802EJ1V0UM 45

Bitmap setup function for DC motor

void UpSetMtrBmp(actbmp,nactbmp)

char *actbmp; /* Active bitmap name character string */

char *nactbmp; /* Inactive bitmap name character string */

[Function]

This function sets the bitmap for a DC motor. The DC motor display can be changed by entering this function

immediately before the target DC motor's function. The same bitmap will be displayed until it is set again by this

function. The bitmap file should be stored in the same directory as the simulator or its name should be specified

with the full path.

[Parameters]

actbmp Specifies a character string for the bitmap file name displayed when active.

nactbmp Specifies a character string for the bitmap file name displayed when inactive.

[Return value]

None

[Remarks]

If a DC motor function is described without describing this function first, the standard DC motor's bitmap is

displayed (see the image shown in Figure 4-8).

[Example]

UpSetMtrBmp("trun.bmp","stop.bmp");

UpDcMtr("p32",HIGH,"Motor");

CHAPTER 4 FUNCTION REFERENCE

User’s Manual U15802EJ1V0UM46

LED picture setup function

void UpSetLedPic(type,color)

char type; /* Picture type */

char color; /* Picture fill color when active */

[Function]

This function sets the type of picture and fill color (when active) to be used in an LED display. The LED display can

be changed by entering this function immediately before the target LED's function. This function is valid only if a

picture has been specified by an LED function. The same picture will be displayed until it is set again by this

function.

[Parameters]

type Specifies the type of picture (macro is defined in uparts32.h).

Macro PIC_RECT: Rectangle

Macro PIC_ELL: Ellipse

color Specifies fill color when active (macro is defined in uparts32.h).

Macro PIC_RED: Red

Macro PIC_YELLOW: Yellow

Macro PIC_GREEN: Green

[Return value]

None

[Example]

UpSetLedPic(PIC_RECT,PIC_GREEN);

UpLed("p32",HIGH,"Test",0);

CHAPTER 4 FUNCTION REFERENCE

User’s Manual U15802EJ1V0UM 47

Serial pin data input function

void UpSerial_data(serpname,data,count,first,bitnum)

char *serpname; /* Serial pin name character string */

unsigned short *data; /* Pointer to data array */

unsigned short count; /* Number of data arrays */

char first; /* First bit (MSB or LSB)*/

char bitnum; /* Number of bits in transfer data */

[Function]

This function sets values in order starting from the specified first data bit, using the number of bits in the data

transferred to the serial pin as one unit.

[Parameters]

serpname Specifies the character string for the name of the serial data input pin.

data Specifies a pointer to an array in which the value set to the serial data input pin has been

stored in units consisting of the number of transfer data bits.

count Specifies the number of arrays in which values set to the serial data input pin have been

stored in units consisting of the number of transfer data bits.

first Specifies whether data equivalent to the number of bits in the transfer data will be set

sequentially with the MSB first or the LSB first. Specify "1" to set sequentially with the MSB

first and specify "0" to set sequentially with the LSB first.

bitnum Specifies the number of bits in the transfer data.

When using UART (Universal Asynchronous Receiver/Transmitter), the start bit, parity bit,

and stop bit are included in the data and data bit count.

[Return value]

None

[Example]

To set 8-bit data sequentially from LSB first to serial pin SER1:

unsigned short data[3] = {0xff, 0xa0, 0x3b};

UpSerial_data("SER1",data,3,0,8);

The data is input to SER1 as shown below.

← 111111110000010111011100

CHAPTER 4 FUNCTION REFERENCE

User’s Manual U15802EJ1V0UM48

Window title function

void UpPanelTitleName(title)

char *title; /* Title name */

[Function]

This function displays a name in the title bar of the Parts window.

[Parameter]

title Specifies the character string for the name to be displayed in the title bar of the Parts window.

[Return value]

None

[Example]

UpPanelTitleName("System for printer");

CHAPTER 4 FUNCTION REFERENCE

User’s Manual U15802EJ1V0UM 49

Bitmap display function

void UpSetUsrBmp(bmpname)

char *bmpname; /* Bitmap file name */

[Function]

This function displays a bitmap that is always displayed, unrelated to simulations.

The bitmap is displayed to the right of the part that is at the bottom right in the set of currently displayed parts. If

there is not enough room in the window to display the bitmap to the right of the bottom right part, it is displayed

below the bottom right part.

[Parameter]

bmpname Specifies a character string as the bitmap file name. Bitmap file names should be specified

using the file names in the same directory as the simulator or with the full path.

[Return value]

None

[Example]

UpSetUsrBmp("printer.bmp");

CHAPTER 4 FUNCTION REFERENCE

User’s Manual U15802EJ1V0UM50

Character string display function

void UpWriteString(string)

char *string; /* Character string to be displayed */

[Function]

This function displays a character string.

The character string is displayed to the right of the part that is at the bottom right in the set of currently displayed

parts. If there is not enough room in the window to display the character string to the right of the bottom right part,

it is displayed below the bottom right part.

[Parameter]

string Specifies the character string to be displayed. There is no limit on the number of characters.

[Return value]

None

[Example]

UpWriteString("Power");

CHAPTER 4 FUNCTION REFERENCE

User’s Manual U15802EJ1V0UM 51

4.2 Customization via User Window

The following functions are provided to enable the user to freely customize user-created windows and parts. The

handle notification function for user windows can be used to enable processing of windows and input from user parts,

and the simulation call function can be used to perform output display processing to user parts.

Table 4-2. Customization Functions Used in User Window

Function Name Prototype Page

Window handle notification function UpSetUserWnd(hUwnd) 52

Window close function UpCloseUserWnd(hwnd) 53

Simulation call function UpCallFuncName(fname) 54

Motor pin notification function UpInitMtrPin(pname,actype) 55

Stepper motor notification function UpInitStpingMtr(pname, num, actype, reiji, step) 56

Pin active value notification function UpInitPin(pname, actype) 57

Port active value notification function UpInitPort(portname, actype) 58

AD input pin notification function UpInitAD(pname) 59

Project file read function name notification function UpLoadProjName(funcname) 60

Project file save function name notification function UpSaveProjName(funcname) 61

Reset function name notification function UpResetFuncName(funcname) 62

Pin value capture function UpGetPin(pname, val) 63

Port data capture function UpGetPort(portname, data) 64

DA output pin value capture function UpGetDA(pname, val) 65

Memory area data capture function UpGetMem(addr, data) 66

DC motor active time clear function UpClrMtrAcClk(pname) 67

Stepper motor information capture function UpGetStpingMtr(pnames, num, posrev, negrev, angle) 68

Control register data capture function UpGetReg (type) 69

Value setting function for pins UpSetPin(pname, val, time) 70

Data setting function for ports UpSetPort(portname, data, time) 71

Value setting function for AD input pin UpSetAD(pname, val) 72

Data setting function for memory area UpSetMem(addr, data) 73

Active time notification function for motor UpGetMtrAcClk(pname, val, actime) 74

Data setting function for control register UpSetReg (type, data) 75

Time conversion notification for one main system

clock pulse

UpSimtimeSec(void) 76

Function for transmitting packets from HOST using

USB function

UpSetUSBPack(total, total_bit, data) 77

Function for receiving packets from Function using

USB function

UpGetUSBPack(total, data) 78

Function for transmitting signals from HOST using

USB function

UpSetUSBSig(sig) 79

Function for receiving signals from Function using

USB function

UpGetUSBSig(sig) 80

CHAPTER 4 FUNCTION REFERENCE

User’s Manual U15802EJ1V0UM52

Window handle notification function

void UpSetUserWnd(hUwnd)

HANDLE hUwnd; /* Handle of user window */

[Function]

This function notifies the simulator of a user-created window handle.

The user should describe this function immediately after creating a window.

[Parameter]

hUwnd Handle of a user-created window

[Return value]

None

[Example]

HWND hwnd;

hwnd = CreateWindow(........);

UpSetUserWnd(hwnd);

CHAPTER 4 FUNCTION REFERENCE

User’s Manual U15802EJ1V0UM 53

Window close function

void UpCloseUserWnd(hwnd)

HWND hwnd; /* Handle of window to be closed */

[Function]

This function notifies the simulator that a user-created window is being closed.

This function is described with the user-created window callback function's message WM_DESTROY.

[Parameter]

hwnd Handle of user-created window to be closed

[Return value]

None

[Example]

WM_DESTROY:

:

:

UpCloseUserWnd(hwnd);

CHAPTER 4 FUNCTION REFERENCE

User’s Manual U15802EJ1V0UM54

Simulation call function

void UpCallFuncName(fname)

char *fname; /* Simulation call function name */

[Function]

This function reports the name of the function that is called from the simulator at a specified intervalNote during

simulation.

This function must be described within the user function UParts_xxx().

Note This function is called once per command execution.

[Parameter]

fname Specifies the name of the function called from the simulator.

[Return value]

None

[Remarks]

The simulation call function should be specified as follows in the function specifications.

The simulation's execution time is received via an unsigned long type parameter.

The simulation's execution time is time that has elapsed since the previous function call, and its measurement unit

is the main system clock.

Be sure to enter an EXPORTS declaration (see 3.4.1 EXPORTS declaration) in a module definition file for the

simulation call function.

void FAR PASCAL Update_usrwin(unsigned long simtime)

[Example]

UpCallFuncName("Update_usrwin");

CHAPTER 4 FUNCTION REFERENCE

User’s Manual U15802EJ1V0UM 55

Motor pin notification function

void UpInitMtrPin(pname,actype)

char *pname; /* Pin name */

int actype; /* Active high/low */

[Function]

This function reports the pin name specified for the motor to capture the motor value and active time via the active

time notification function for motor.

When using the motor pin, this function must be described within the user function UParts_xxx().

When not using the motor pin, there is no need to describe this function.

[Parameters]

pname Specifies a character string as the pin name connected to the motor.

actype Specifies that the motor is in active mode. Specify HIGH for active high status or LOW for

active low status.

[Return value]

None

[Remarks]

Unless notification is already included in the user function, even if the information is captured by the active time

notification function for motor UpGetMtrAcClk() during a simulation, the captured value is not guaranteed.

[Example]

UpInitMtrPin("p41",HIGH)

CHAPTER 4 FUNCTION REFERENCE

User’s Manual U15802EJ1V0UM56

Stepper motor notification function

int UpInitStpingMtr(pnames,num,actype,reiji,step)

char **pnames; /* Pin name */

int num; /* Number of pins per channel */

int actype; /* Active high/low */

char reiji; /* Excitation method */

short step; /* Minimum step angle */

[Function]

This function connects a stepper motor that is operated via several pins to the specified pin.

When using the stepper motor, this function must be described within the user function UParts_xxx(). When not

using the stepper motor, there is no need to describe this function.

[Parameters]

pnames Specifies pin names (character strings) for all pins.

num Specifies the number of pins per channel (4 or 8).

actype Specifies the status when the motor is displayed as active. Specify HIGH for active high

status or LOW for active low status. The active status is the same for all pins.

reiji Specifies the excitation method. Set "0" for single phase or "1" for single/dual phase.

step Specifies an integer fraction of 360 as the minimum step angle.

[Return value]

If set correctly: 1

If not set correctly: 0

[Example]

char *mtrpin[4] = {"p00","p01","p02","p03"};

UpInitStpingMtr(mtrpin, 4,HIGH,1,10);

CHAPTER 4 FUNCTION REFERENCE

User’s Manual U15802EJ1V0UM 57

Pin active value notification function

int UpInitPin(pname,actype)

char *pname; /* Pin name */

int actype; /* Active value of pin */

[Function]

This function sets the active mode value for one pin.

When there is a value to be input for a pin, this function must be described within the user function UParts_xxx().

When there is no value to be input for a pin, there is no need to describe this function.

[Parameters]

pname Specifies the pin name as a character string.

actype Specifies the active value of a pin. Specify HIGH for active high status or LOW for active low

status.

[Return value]

If pin's active value was set correctly: 1

If pin's active value was not set correctly: 0

[Example]

When set to operate when the pin P46 is active high (when the input value = 1):

int ret;

ret=UpInitPin(“P46”,HIGH);

CHAPTER 4 FUNCTION REFERENCE

User’s Manual U15802EJ1V0UM58

Port active value notification function

int UpInitPort(portname,actype)

char *portname; /* Port name */

unsigned char actype; /* Active value of port */

[Function]

This function sets the active mode value for one port.

When there is a value to be input for a port, this function must be described within the user function UParts_xxx().

When there is no value to be input for a port, there is no need to describe this function.

[Parameters]

portname Specifies the port name as a character string.

actype Specifies the active value for each pin of a port.

Specify "1" for port pins that have active high status or "0" for port pins that have active low

status.

Values are specified bitwise for 8 bits, starting from the port's lowest pin as the LSB.

[Return value]

If port's active value was set correctly: 1

If port's active value was not set correctly: 0

[Example]

When port 4's pins P40 and P41 are set as active high and pins P42 to P47 are set as active low:

int ret;

ret=UpInitPort(“P4”,0x03);

When port 2's pin P27 only is set as active high and pins P20 to P26 are set as active low:

int ret;

ret=UpInitPort(“P2”,0x80);

CHAPTER 4 FUNCTION REFERENCE

User’s Manual U15802EJ1V0UM 59

AD input pin notification function

int UpInitAD(pname)

char *pname; /* AD input pin name */

[Function]

This function notifies the simulator of the AD input pin used to input a value from the user open interface function.

If UpSetAD() includes a value to be input to the AD input pin, this function must be described within the user

function UParts_xxx(). When the user open interface function does not include a value to be input to the AD input

pin, there is no need to describe this function.

[Parameter]

pname Specifies the AD input pin name as a character string.

[Return value]

Normal end: 1

Abnormal end: 0 (if the AD input pin does not exist in a device used in the current simulation)

[Example]

UpInitAD(“ANI0");

CHAPTER 4 FUNCTION REFERENCE

User’s Manual U15802EJ1V0UM60

Project file read function name notification function

void UpLoadProjName(funcname)

char *funcname; /* Project file read function name */

[Function]

When the simulator's project file is being read, this function reports the name of the function that simultaneously

reads the information in the user window from the project file.

This function must be described within the user function UParts_xxx().

[Parameter]

funcname Specifies the name of the function that reads the project file that has been called from the

simulator.

[Return value]

None

[Remarks]

The project file read function's specifications are as follows.

 The project file name character string is received via the char FAR* type parameter.

 User window information is also read from the file named by the project file name that was received via the

parameter. At that time, select either the GetPrivateProfileString or GetPrivateProfileInt function for the library

used in the read operation.

 The section name used by the user is "User DLL Window".

 An EXPORTS declaration is required in a module definition file for the project file read function.

void FAR PASCAL UpLoad_usrproj(char FAR *filename)

[Example]

UpLoadProjName(“UpLoad_usrproj”);

CHAPTER 4 FUNCTION REFERENCE

User’s Manual U15802EJ1V0UM 61

Project file save function name notification function

void UpSaveProjName(funcname)

char *funcname; /* Project file save function name */

[Function]

When the simulator's project file is being saved, this function reports the name of the function that simultaneously

saves the information in the user window to the project file.

This function must be described within the user function UParts_xxx().

[Parameter]

funcname Specifies the name of the function that saves the project file that has been called from the

simulator.

[Return value]

None

[Remarks]

The project file save function's specifications are as follows.

 The project file name character string is received via the char FAR* type parameter.

 User window information is also written to the file named by the project file name that was received via the

parameter. At that time, select the WritePrivateProfileString function for the library used in the write operation.

 The section name used by the user is "User DLL Window".

 An EXPORTS declaration is required in a module definition file for the project file save function.

void FAR PASCAL UpSave_usrproj(char FAR *filename)

[Example]

UpSaveProjName(“UpSave_usrproj”);

CHAPTER 4 FUNCTION REFERENCE

User’s Manual U15802EJ1V0UM62

Reset function name notification function

void UpResetFuncName(funcname)

char *funcname; /* Reset function name */

[Function]

When a CPU reset is called by the simulator, this function reports the function name that is used for the user

window's reset processing.

This function must be described within the user function UParts_xxx().

[Parameter]

funcname Specifies the name of the reset function called by the simulator.

[Return value]

None

[Remarks]

The reset function's specifications are as follows.

 It is a VOID type function since it has no parameters.

 An EXPORTS declaration is required in a module definition file for the reset function.

Void FAR PASCAL Upreset_usrwin(VOID)

[Example]

UpResetFunName(“Upreset_usrwin”);

CHAPTER 4 FUNCTION REFERENCE

User’s Manual U15802EJ1V0UM 63

Pin value capture function

int UpGetPin(pname,val)

char *pname; /* Pin name */

char *val; /* Pointer to area where pin value is stored */

[Function]

This function captures the value for one pin.

[Parameters]

pname Specifies the pin name as a character string.

val Specifies a pointer to the area where the pin value is stored.

[Return value]

If pin value was successfully captured: 1

If pin value was not successfully capturedNote: 0

Note "0" is also returned if the pin value is undefined.

[Example]

char val;

int ret;

ret = UpGetPin(“p46",&val);

CHAPTER 4 FUNCTION REFERENCE

User’s Manual U15802EJ1V0UM64

Port data capture function

int UpGetPort(portname, data)

char *portname; /* Port name */

unsigned char *data; /* Pointer to area where port data is stored */

[Function]

This function captures port data.

[Parameters]

portname Specifies the port name as a character string.

data Specifies a pointer to the area where the port data is stored.

[Return value]

If port data was successfully captured: 1

If port data was not successfully capturedNote: 0

Note "0" is also returned if the port values include any undefined values.

[Example]

unsigned char data;

int ret;

ret = UpGetPort(“p4",&data);

CHAPTER 4 FUNCTION REFERENCE

User’s Manual U15802EJ1V0UM 65

DA output pin value capture function

int UpGetDA(pname,val)

char *pname; /* DA output pin name */

unsigned short *val; /* DA output value */

[Function]

This function sets the value of the DA output pin.

[Parameters]

pname Specifies the DA output pin name as a character string.

val Specifies a pointer to the area where the value of the DA output pin is stored.

[Return value]

Normal end: 1

Abnormal endNote: 0

Note "0" is also returned if the value of the DA output pin is undefined.

[Example]

unsigned short daval;

UpGetDA(“ANO0",&daval);

CHAPTER 4 FUNCTION REFERENCE

User’s Manual U15802EJ1V0UM66

Memory area data capture function

int UpGetMem(addr,data)

unsigned long addr; /* Address */

unsigned char *data; /* Data storage area */

[Function]

This function captures the data in the memory area.

[Parameters]

addr Specifies an address in the memory area to be captured.

data Specifies the data storage area.

[Return value]

If data was successfully captured: 1

If data was not successfully captured: 0

[Example]

unsigned char data;

int ret;

ret = UpGetMem(0xffe000,&data);

CHAPTER 4 FUNCTION REFERENCE

User’s Manual U15802EJ1V0UM 67

DC motor active time clear function

VOID UpClrMtrAcClk(pname)

char *pname; /* Pin name */

[Function]

This function zero-clears the active time of the specified motor-connected pin.

[Parameter]

pname Specifies the motor-connected pin name as a character string.

[Return value]

None

[Remarks]

When using this function, call the motor pin notification function UpInitMtrPin() from within a user function so that

the pin name is reported in advance.

[Example]

UpClrMtrAcClk(“p41");

CHAPTER 4 FUNCTION REFERENCE

User’s Manual U15802EJ1V0UM68

Stepper motor information capture function

int UpGetStpingMtr(pnames,num,posrev,negrev,angle)

char **pnames; /* Pin names */

int num; /* Number of pins per channel (specify 4 or 8)*/

unsigned long *posrev; /* Area for storing the number of positive revolutions */

unsigned long *negrev; /* Area for storing the number of negative revolutions */

unsigned long *angle; /* Area for storing angle */

[Function]

This function captures the number of positive/negative revolutions and current angle of the stepper motor that is

connected to the pin names previously reported by the stepper motor notification function UpInitStpingMtr.

[Parameters]

pnames Specifies pin names (character strings) for all pins.

num Specifies the number of pins per channel (4 or 8).

posrev Specifies the area where the number of positive revolutions is stored.

negrev Specifies the area where the number of negative revolutions is stored.

angle Specifies the area where the angle is stored.

[Return value]

If successfully captured: 1

If not successfully captured: 0

[Example]

char *mtrpin[4] = {"p00","p01","p02","p03"};

unsigned long posrev;

unsigned long negrev;

unsigned long angle;

UpInitStpingMtr(mtrpin, 4,HIGH,1,10);

:

UpGetStpingMtr(mtrpin,4,&posrev,&negrev,&angle);

CHAPTER 4 FUNCTION REFERENCE

User’s Manual U15802EJ1V0UM 69

Control register data capture function

unsigned long UpGetReg (type)

unsigned char type; /* Value to identify control register */

[Function]

This function captures data of the control register (PSW, PC, or SP).

[Parameter]

type Specifies the identification value of the control register to which data need to be set.

Specify using a macro.

PSW → Macro REG_PSW

PC → Macro REG_PC

SP → Macro REG_SP

[Return value]

Values of the specified control register.

When the PC is specified, the return value is the address of the next instruction executed.

When the PSW or SP is specified, it is the result of the current instruction execution.

[Example]

unsigned long psw-val;

psw-val = UpGetReg (REG_PSW);

CHAPTER 4 FUNCTION REFERENCE

User’s Manual U15802EJ1V0UM70

Value setting function for pins

void UpSetPin(pname,val,time)

char *pname; /* Pin name */

char val; /* Active value */

unsigned long time; /* Hold time */

[Function]

This function sets a pin value.

[Parameters]

pname Specifies the pin name as a character string.

val Sets value when pin is active.

time Sets a time for holding data. The time measurement unit is the main system clock.

[Return value]

None

[Remarks]

When using this function, call the pin active value notification function UpInitPin() from within a user function so that

the pin name is reported in advance. If the pin active value that is reported by UpInitPin was set as macro HIGH,

setting "1" as the active value for this UpSetPin function sets the pin to active mode. Similarly, if the pin active

value that is reported by UpInitPin was set as macro LOW, setting "0" as the active value for this UpSetPin function

sets the pin to active mode. If "0" is set for the hold time, the active value is held.

[Example]

If UpInitPin("p31",HIGH) is described and the pin P31 is reported as active high, the description shown below sets

the active high input to be held for 50 pulses of the main system clock.

char val; val = 1;

UpSetPin(“p31”,val,50L);

CHAPTER 4 FUNCTION REFERENCE

User’s Manual U15802EJ1V0UM 71

Data setting function for ports

void UpSetPort(portname,data,time)

char *portname; /* Port name */

unsigned char data; /* Data */

unsigned long time; /* Hold time */

[Function]

This function sets the data in port units.

[Parameters]

portname Specifies the port name as a character string.

data Specifies values set to the port.

time Sets a time for holding data. The time measurement unit is the main system clock.

[Return value]

None

[Remarks]

When using this function, call the port active value notification function UpInitPort() from within a user function so

that the pin names are reported in advance. If the active value of the port's pins reported by UpInitPort was set as

active high, "1" is set bitwise, and if it was set as active low, "0" is set bitwise. If pins belonging to this port are set

to active mode by this UpSetPort function, the data's bit values for the corresponding pins should be the same as

the bit values corresponding to the pins whose active values were set by UpSetPort.

If "0" is set for the hold time, the active value is held.

[Example]

If UpInitPort("p4",0x03) is described and port P4's pins P40 and P41 are reported as active high while pins P42 to

P47 are reported as active low, the description shown below sets port P4's pins P40, P42, and P43 to active mode

and holds the active mode for 50 pulses of the main system clock.

unsigned char data;

data = 0xf1;

UpSetPort(“p4",data,50L);

CHAPTER 4 FUNCTION REFERENCE

User’s Manual U15802EJ1V0UM72

Value setting function for AD input pin

int UpSetAD(pname,val)

char *pname; /* AD input pin name */

unsigned short val; /* AD input value */

[Function]

This function sets the value of the AD input pin.

[Parameters]

pname Specifies AD input pin name as a character string.

val Sets value to be input to AD input pin.

[Return value]

Normal end: 1

Abnormal endNote: 0

Note "0" is returned if the AD input pin does not exist in a device used in the current simulation.

[Remarks]

When using this function, the AD input pin connection notification function UpInitAD() must be called from within a

user function so that the AD input pin name is reported in advance.

[Example]

unsigned short adval;

adval = 10;

UpSetAD(“ANI0",adval);

CHAPTER 4 FUNCTION REFERENCE

User’s Manual U15802EJ1V0UM 73

Data setting function for memory area

int UpSetMem(addr,data)

unsigned long addr; /* Address */

unsigned char data; /* Data */

[Function]

This function sets data in a memory area.

[Parameters]

addr Specifies an address in the target memory area.

data Specifies data.

[Return value]

If value is set correctly: 1

If value is not set correctly: 0

[Example]

int ret;

ret = UpSetMem(0xffe300, 0x72);

CHAPTER 4 FUNCTION REFERENCE

User’s Manual U15802EJ1V0UM74

Active time notification function for motor

int UpGetMtrAcClk(pname, val, actime)

char *pname; /* Pin name */

char *val; /* Value */

unsigned long *actime; /* Active time */

[Function]

This function captures the active time of the pin specified for a motor.

This function is valid only for pins connected to a motor part that has already been created using the motor pin

notification function UpInitMtrPin().

The active time is the total time that has elapsed since the start of a simulation. When a reset occurs or when the

elapsed time value exceeds a 10-digit decimal value, the active time is cleared to zero.

The active time is measured in pulses of the main system clock.

[Parameters]

pname Specifies the motor-connected pin name as a character string.

val Sets the value of the pin.

actime Uses a two-dimensional array to represent the active time as the total time that has elapsed

since the start of a simulation.

actime[1]×0x100000000+actime[0]

Example: actime[1] = 0x390; actime[0] = 0x10052688;

Total time = 0x39010052688 main system clock

[Return value]

If set pin was a pin set by DC motor function: 0

If set pin was not a pin set by DC motor function: −1

[Remarks]

When using this function, call the motor pin notification function UpInitMtrPin() from within a user function so that

the pin name is reported in advance.

[Example]

char val;

unsigned long actime[2];

UpGetMtrAcClk("p41",&val,actime);

wsprintf(timebuf,"Rotation time = #%lx%08lx \n",actime[1],actime[0]);

TextOut(hdc,240,320,timebuf,sizeof(timebuf));

CHAPTER 4 FUNCTION REFERENCE

User’s Manual U15802EJ1V0UM 75

Data setting function for control register

void UpGetReg (type, data)

unsigned char type; /* Value to identify control register */

unsigned long data; /* Data */

[Function]

This function sets data to the control register (PSW, PC, or SP).

[Parameters]

type Specifies the identification value of the control register to which data needs to be set.

Specify using a macro.

PSW → Macro REG_PSW

PC → Macro REG_PC

SP → Macro REG_SP

data Specifies the data to be set to the specified control register.

Note that parts that exceed the register size are omitted.

[Return value]

None

[Remarks]

The control register data set by this function is set at the end of the first simulation. Therefore, if the control register

value is rewritten during the simulation of the first instruction (when simulation is performed several times by the

instruction) using this function, the control register value may change depending on the rest of the simulation

results. To set data per instruction simulation, data of the control register needs to be rewritten at the timing when

the PC value obtained by the user using the UpGetReg function is changed.

[Example]

UpSetReg(REG_PSW, 0x2);

CHAPTER 4 FUNCTION REFERENCE

User’s Manual U15802EJ1V0UM76

Time conversion notification for one main system clock pulse

unsigned long UpSimtimeSec(void)

[Function]

This function converts one pulse of the main system clock to a nanosecond value.

[Parameter]

None

[Return value]

The nanosecond value converted from one pulse of the main system clock is returned.

[Example]

unsigned long simtime;

simtime = UpSimtimeSec();

CHAPTER 4 FUNCTION REFERENCE

User’s Manual U15802EJ1V0UM 77

Function for transmitting packets from HOST using USB function

BOOL UpSetUSBPack(total,total_bit,data)

unsigned char total; /* Number of data arrays */

unsigned char total_bit; /* Number of bits in transmit data */

unsigned char *data; /* Pointer to packet data array */

[Function]

This function uses the USB function to set packet transmission information from the HOST.

[Parameters]

total Specifies the number of packet data arrays.

total_bit Specifies the total number of bits in the data to be transmitted.

data Specifies a pointer to the packet data array to be transmitted.

[Return value]

Normal end: 1

Abnormal end: 0

[Remarks]

This function is supported only for devices that include a USB function.

CHAPTER 4 FUNCTION REFERENCE

User’s Manual U15802EJ1V0UM78

Function for receiving packets from Function using USB function

void UpGetUSBPack(total,data)

unsigned char total; /* Number of data arrays */

unsigned char **data; /* Pointer to packet data array */

[Function]

This function uses the USB function to receive packet data from Function.

[Parameters]

total Specifies the number of packet data arrays.

data Specifies a pointer to the packet data array to be transmitted.

[Return value]

None

[Remarks]

This function is supported only for devices that include a USB function.

CHAPTER 4 FUNCTION REFERENCE

User’s Manual U15802EJ1V0UM 79

Function for transmitting signals from HOST using USB function

void UpSetUSBSig(sig)

unsigned char sig; /* Transmit signal ID */

[Function]

This function uses the USB function to transmit a signal from the HOST.

[Parameter]

sig Specifies the transmit signal ID.

0: USBreset

1: Resume

[Return value]

None

[Remarks]

This function is supported only for devices that include a USB function.

CHAPTER 4 FUNCTION REFERENCE

User’s Manual U15802EJ1V0UM80

Function for receiving signals from Function using USB function

void UpGetUSBSig(sig)

unsigned char *sig; /* Receive signal ID */

[Function]

This function uses the USB function to receive a signal from Function.

[Parameter]

sig Specifies the receive signal ID.

0: USBreset

1: Resume

[Return value]

None

[Remarks]

This function is supported only for devices that include a USB function.

User’s Manual U15802EJ1V0UM 81

CHAPTER 5 OPERATIONS DURING CPU RESET

This chapter describes the operations of customized parts when a CPU reset is triggered by the simulator

debugger.

5.1 Parts Customized via Parts Window

The parts for functions that are specified for customization via the Parts window are listed below.

Table 5-1. Parts Customized via Parts Window During CPU Reset

Part Name Status

Push button All are set to inactive mode.

Toggle button All are set to inactive mode.

Group select button All are set to non-pressed mode.

LED All are set to inactive mode.

LED set per port All are set to inactive mode.

Matrix LED All are set to OFF mode.

DC motor All are set to inactive mode and total active time is set to 0.

Stepping motor All are set to inactive mode and the number of positive revolutions, the number of negative

revolutions, and rotation angle are all set to 0.

Vertical scroll bar analog input Input value is set to 0 and scroll bar's scroll button is set to the bottom edge.

Serial pin data input Returns to start of data.

5.2 Parts Customized via User Window

When a CPU reset has been triggered by the simulator debugger, if the function name has already been reported

by the reset function name notification function UpResetFuncName(), the user window's reset processing function is

performed.

User’s Manual U15802EJ1V0UM82

CHAPTER 6 PROGRAMMING EXAMPLES

This chapter presents some examples of customized parts.

Among the sources cited below:

<1> refers to the target program.

Programs are compiled and linked using the CC78K Series to create load module files (xxxx.lmf).

<2> and subsequent sources refer to files that are required when creating customized parts.

This manual specifies that Visual C++ is used to create dynamic link libraries (xxxx.DLL).

When compiling, be sure to specify the /Zp1 option. (/Zp1 option: Sets single-byte alignment of structure

members)

Select [C/C++] from [Setting] on the [Project] menu bar and set “1 byte” for the “Structure alignment” in

“Category” → “Code Generation”.

Remark If using the SM78K Series V2.30 or a later version, be sure to create 32-bit dynamic link libraries.

CHAPTER 6 PROGRAMMING EXAMPLES

User’s Manual U15802EJ1V0UM 83

6.1 Example of Parts Customized via Parts Window

6.1.1 Description of samples

The items displayed in the Parts window include eight LEDs and eight switches, of which two (P50 and P51) are

push buttons, two (P52 and P53) are toggle buttons, and four (P54, P55, P56, and P57) are select buttons. When a

switch is set ON or OFF, its corresponding LED is also set ON or OFF.

An example is shown below.

Figure 6-1. Example of Parts Customized via Parts Window

Port 5: Input mode (switch)

 PD703002

P60 to P67 P6

P50 to P57 P5

Processing of sample1.cParts window

P5: Bit0

P6: Bit0

P5: Bit3

P6: Bit3

P5: Bit1

P6: Bit1

P5: Bit2

P6: Bit2

P5: Bit6

P6: Bit6

P5: Bit7

P6: Bit7

P5: Bit4

P6: Bit4

P5: Bit5

P6: Bit5

Port 6: Output mode (LED) µ

CHAPTER 6 PROGRAMMING EXAMPLES

User’s Manual U15802EJ1V0UM84

6.1.2 Source examples

<1> Target program

(1/1) SAMPLE1.C

#pragma sfr

void main()

{

MM = 0xB0;

PM5 = 0xFF;

PM6 = 0;

P6 = 0;

while(1)

{

P6 = P5;

}

}

CHAPTER 6 PROGRAMMING EXAMPLES

User’s Manual U15802EJ1V0UM 85

<2> Custom part source file UPsw00.c

(1/2) UPsw00.c

/*

 * User Open I/F Sample Program (UPsw00.c)

 *

 * P50 (I) : Switch 0 P60 (O) : LED 0

 * P51 (I) : Switch 1 P61 (O) : LED 1

 * P52 (I) : Switch 2 P62 (O) : LED 2

 * P53 (I) : Switch 3 P63 (O) : LED 3

 * P54 (I) : Switch 4 P64 (O) : LED 4

 * P55 (I) : Switch 5 P65 (O) : LED 5

 * P56 (I) : Switch 6 P66 (O) : LED 6

 * P57 (I) : Switch 7 P67 (O) : LED 7

 */

#include <Windows.h>

#include <string.h>

typedef unsigned char UCHAR;

typedef unsigned short USHORT;

typedef unsigned long ULONG;

 #include "uparts32.h"

BOOL APIENTRY DllMain(HANDLE, DWORD, LPVOID);

void FAR PASCAL UParts_sw00(void);

/**/

/* DLL Main */

/**/

BOOL APIENTRY DllMain(HANDLE hModele, DWORD ul_reason_for_call, LPVOID lpReserved)

 {

 return(TRUE);

 }

CHAPTER 6 PROGRAMMING EXAMPLES

User’s Manual U15802EJ1V0UM86

 (2/2) UPsw00.c

/**/

/* UParts_sw00(void) */

/**/

void FAR PASCAL

UParts_sw00(void)

{

 static char *pin[4] = { "P54", "P55", "P56", "P57" };

 static char *name[4] = { "S Bit4", "S Bit5", "S Bit6", "S Bit7" };

 UpSetPBtmtime("3.0");

 UpLed("P60", HIGH, "Bit0", 1);

 UpLed("P61", HIGH, "Bit1", 1);

 UpLed("P62", HIGH, "Bit2", 1);

 UpLed("P63", HIGH, "Bit3", 1);

 UpLed("P64", HIGH, "Bit4", 1);

 UpLed("P65", HIGH, "Bit5", 1);

 UpLed("P66", HIGH, "Bit6", 1);

 UpLed("P67", HIGH, "Bit7", 1);

 UpPushBtm("P50", HIGH, "P Bit0");

 UpPushBtm("P51", HIGH, "P Bit1");

 UpTglBtm("P52", HIGH, "T Bit2");

 UpTglBtm("P53", HIGH, "T Bit3");

 UpSelectBtm("Select", pin, 4, HIGH, name);

}

/* UPsw00.c */

CHAPTER 6 PROGRAMMING EXAMPLES

User’s Manual U15802EJ1V0UM 87

<3> Definition file UPsw00.def

(1/1) UPsw00.def

LIBRARY UPSW00

DESCRIPTION 'User Open I/F Panel sw00'

CODE PRELOAD MOVEABLE DISCARDABLE
DATA PRELOAD SINGLE

HEAPSIZE 3072

EXPORTS
UParts_sw00 @2

CHAPTER 6 PROGRAMMING EXAMPLES

User’s Manual U15802EJ1V0UM88

<4> Make file UPsw00.mak

(1/4) UPsw00.mak

Microsoft Developer Studio Generated NMAKE File, Based on UOport.dsp
!IF "$(CFG)" == ""
CFG=UOport - Win32 Release
!MESSAGE Configuration not specified. Set default upsw00 - Win32 Debug.
!ENDIF
!IF "$(CFG)" != "UOport - Win32 Release" && "$(CFG)" != "upsw00 - Win32 Debug"
!MESSAGE Specified build mode “$ (CFG)” is not correct.
!MESSAGE Configuration can be specified during execution of NMAKE.
!MESSAGE Defines command-line macro setting. Example:
!MESSAGE
!MESSAGE NMAKE /f "upsw00.mak" CFG="upsw00 - Win32 Debug"
!MESSAGE
!MESSAGE Selectable build modes:
!MESSAGE
!MESSAGE “upsw00 - Win32 Release” (for “Win32 (x86) Dynamic-Link Library”)
!MESSAGE “upsw00 - Win32 Debug” (for “Win32 (x86) Dynamic-Link Library”)
!MESSAGE
!ERROR Invalid configuration was specified.
!ENDIF
!IF "$(OS)" == "Windows_NT"
NULL=
!ELSE
NULL=nul
!ENDIF
CPP=cl.exe
MTL=midl.exe
RSC=rc.exe
!IF "$(CFG)" == "upsw00 - Win32 Release"
OUTDIR=.\Release
INTDIR=.\Release
Begin Custom Macros
OutDir=.\Release
End Custom Macros
ALL : "$(OUTDIR)\upsw00.dll"

CHAPTER 6 PROGRAMMING EXAMPLES

User’s Manual U15802EJ1V0UM 89

(2/4) UPsw00.mak

CLEAN :
-@erase "$(INTDIR)\Upsw00.obj"
-@erase "$(INTDIR)\vc60.idb"
-@erase "$(OUTDIR)\upsw00.dll"
-@erase "$(OUTDIR)\upsw00.exp"
-@erase "$(OUTDIR)\upsw00.lib"

"$(OUTDIR)" :
 if not exist "$(OUTDIR)/$(NULL)" mkdir "$(OUTDIR)"
CPP_PROJ=/nologo /Zp1 /MT /W3 /GX /O2 /D "WIN32" /D "NDEBUG" /D "_WINDOWS" /D
"_MBCS" /D "_USRDLL" /D "UPSW00_EXPORTS" /Fp"$(INTDIR)\upsw00.pch" /YX
/Fo"$(INTDIR)\\" /Fd"$(INTDIR)\\" /FD /c
MTL_PROJ=/nologo /D "NDEBUG" /mktyplib203 /win32
BSC32=bscmake.exe
BSC32_FLAGS=/nologo /o"$(OUTDIR)\upsw00.bsc"
BSC32_SBRS= \

LINK32=link.exe
LINK32_FLAGS=kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib
advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib
/nologo /dll /incremental:no /pdb:"$(OUTDIR)\upsw00.pdb" /machine:I386
/def:".\Upsw00.def" /out:"$(OUTDIR)\upsw00.dll" /implib:"$(OUTDIR)\upsw00.lib"
DEF_FILE= \

".\Upsw00.def"
LINK32_OBJS= \

"$(INTDIR)\Upsw00.obj" \
".\sik032.lib"

"$(OUTDIR)\upsw00.dll" : "$(OUTDIR)" $(DEF_FILE) $(LINK32_OBJS)
 $(LINK32) @<<
 $(LINK32_FLAGS) $(LINK32_OBJS)
<<
!ELSEIF "$(CFG)" == "upsw00 - Win32 Debug"
OUTDIR=.\Debug
INTDIR=.\Debug
Begin Custom Macros
OutDir=.\Debug
End Custom Macros
ALL : "$(OUTDIR)\upsw00.dll"

CHAPTER 6 PROGRAMMING EXAMPLES

User’s Manual U15802EJ1V0UM90

(3/4) UPsw00.mak

CLEAN :
-@erase "$(INTDIR)\Upsw00.obj"
-@erase "$(INTDIR)\vc60.idb"
-@erase "$(INTDIR)\vc60.pdb"
-@erase "$(OUTDIR)\upsw00.dll"
-@erase "$(OUTDIR)\upsw00.exp"
-@erase "$(OUTDIR)\upsw00.ilk"
-@erase "$(OUTDIR)\upsw00.lib"
-@erase "$(OUTDIR)\upsw00.pdb"

"$(OUTDIR)" :
 if not exist "$(OUTDIR)/$(NULL)" mkdir "$(OUTDIR)"
CPP_PROJ=/nologo /Gz /Zp1 /MTd /W3 /Gm /GX /Zi /Od /D "WIN32" /D "_DEBUG" /D
"_WINDOWS" /D "_MBCS" /D "_USRDLL" /D "UPSW00_EXPORTS" /Fp"$(INTDIR)\upsw00.pch" /YX
/Fo"$(INTDIR)\\" /Fd"$(INTDIR)\\" /FD /c
MTL_PROJ=/nologo /D "_DEBUG" /mktyplib203 /win32
BSC32=bscmake.exe
BSC32_FLAGS=/nologo /o"$(OUTDIR)\upsw00.bsc"
BSC32_SBRS= \

LINK32=link.exe
LINK32_FLAGS=kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib
advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib
/nologo /dll /incremental:yes /pdb:"$(OUTDIR)\upsw00.pdb" /debug /machine:I386
/def:".\Upsw00.def" /out:"$(OUTDIR)\upsw00.dll" /implib:"$(OUTDIR)\upsw00.lib"
/pdbtype:sept
DEF_FILE= \

".\Upsw00.def"
LINK32_OBJS= \

"$(INTDIR)\Upsw00.obj" \
".\sik032.lib"

"$(OUTDIR)\upsw00.dll" : "$(OUTDIR)" $(DEF_FILE) $(LINK32_OBJS)
 $(LINK32) @<<
 $(LINK32_FLAGS) $(LINK32_OBJS)
<<
!ENDIF
.c{$(INTDIR)}.obj::
 $(CPP) @<<
 $(CPP_PROJ) $<
<<

CHAPTER 6 PROGRAMMING EXAMPLES

User’s Manual U15802EJ1V0UM 91

(4/4) UPsw00.mak

.cpp{$(INTDIR)}.obj::
 $(CPP) @<<
 $(CPP_PROJ) $<
<<
.cxx{$(INTDIR)}.obj::
 $(CPP) @<<
 $(CPP_PROJ) $<
<<
.c{$(INTDIR)}.sbr::
 $(CPP) @<<
 $(CPP_PROJ) $<
<<
.cpp{$(INTDIR)}.sbr::
 $(CPP) @<<
 $(CPP_PROJ) $<
<<
.cxx{$(INTDIR)}.sbr::
 $(CPP) @<<
 $(CPP_PROJ) $<
<<
!IF "$(NO_EXTERNAL_DEPS)" != "1"
!IF EXISTS("upsw00.dep")
!INCLUDE "upsw00.dep"
!ELSE
!MESSAGE Warning: cannot find "upsw00.dep"
!ENDIF
!ENDIF
!IF "$(CFG)" == "upsw00 - Win32 Release" || "$(CFG)" == "upsw00 - Win32 Debug"
SOURCE=.\Upsw00.c
"$(INTDIR)\Upsw00.obj" : $(SOURCE) "$(INTDIR)"
!ENDIF

CHAPTER 6 PROGRAMMING EXAMPLES

User’s Manual U15802EJ1V0UM92

6.2 Example of Parts Customized via User Window

6.2.1 Description of samples

The items displayed in the user custom window include a part that sets a value to port 5 and a part that captures

values from port 6.

Pressing the PORT 5 button in the user custom window causes the value input to port 5 to be incremented by 1.

When "Port 5 Value = 0x7f", the value is cleared to 0.

This input value from port 5 is output to port 6. The display of "Port 6 Value = XXXX" is updated to the current

value when the PORT 6 button in the user custom window is clicked.

An example is shown below.

Figure 6-2. Example of Parts Customized via User Window

Value input

Value incremented by 1 is
 input when PORT 5
 button is pressed

Output value is displayed
when PORT 6 button is
pressed

 PD78054

PORT 5

PORT 6

Port 5 Value = XXX

Port 6 Value = XXX

Port 5

Port 6

Processing using UOport.cUser-created window

µ

Value output

CHAPTER 6 PROGRAMMING EXAMPLES

User’s Manual U15802EJ1V0UM 93

6.2.2 Source examples

<1> Target program

(1/1) SAMPLE2.C

#pragma sfr

void main()
{

MM = 0xB0;
PM5 = 0xFF;
PM6 = 0;
P6 = 0;

while(1)
{

P6 = P5;
}

}

CHAPTER 6 PROGRAMMING EXAMPLES

User’s Manual U15802EJ1V0UM94

<2> Custom part source file UOport.c

(1/7) UOport.c

/*
 * User Open I/F Sample Program (UOport.c)
 */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

typedef unsigned char UCHAR;
typedef unsigned short USHORT;
typedef unsigned long ULONG;

#include <Windows.h>
#include "uparts32.h"

#define IDM_PAST 0x1111
#define IDM_NEWWIN 0x1112
#define BTN_WIDTH 70
#define BTN_HIGHT 25
#define IDD_PIN_BUTTON 0x10

void FAR PASCAL UParts_port(void);
LONG FAR PASCAL UParts_portWndProc(HWND, unsigned, WPARAM, LPARAM);
void FAR PASCAL UParts_portCall(ULONG);
void FAR PASCAL UParts_portReset(void);
void FAR PASCAL UParts_portLoadProj(char FAR *);
void FAR PASCAL UParts_portSaveProj(char FAR *);

/* Window point */
#define UParts_portWIDTH 300
#define UParts_portHEIGHT 100

/* Title Strings */
#define STR_UP_TITLE "User Open I/F Panel port"

/* Window Class Name */
const BYTE cnUParts_port[] = "UParts_portWin";

CHAPTER 6 PROGRAMMING EXAMPLES

User’s Manual U15802EJ1V0UM 95

(2/7) UOport.c

HANDLE hInst;
HWND hUParts_portWnd;
HWND btm_hwnd[2];
char *strbuf[2] = {"PORT5","PORT6"};
char port5val = 0;
char port6val = 0;
char UParts_Veiw_str[7];
char UParts_Rect_str[23];

/**/
/* DLL Main */
/**/

BOOL APIENTRY DllMain(HANDLE hModele, DWORD ul_reason_for_call, LPVOID lpReserved)
{
 WNDCLASS wndclass;

 switch(ul_reason_for_call){
 case DLL_PROCESS_ATTACH:
 hInst = hModele;
 wndclass.lpszClassName = (LPSTR)cnUParts_port;
 wndclass.hInstance = hInst;
 wndclass.lpfnWndProc = (WNDPROC)UParts_portWndProc;
 wndclass.hCursor = NULL;
 wndclass.hIcon = NULL;
 wndclass.lpszMenuName = NULL;
 wndclass.hbrBackground = (HBRUSH)(COLOR_WINDOW + 1);
 wndclass.style = CS_HREDRAW | CS_VREDRAW;
 wndclass.cbClsExtra = 0;
 wndclass.cbWndExtra = DLGWINDOWEXTRA;

 RegisterClass(&wndclass);

 break;
 case DLL_THREAD_ATTACH:

 break;
 case DLL_THREAD_DETACH:
 break;
 case DLL_PROCESS_DETACH:

 break;

CHAPTER 6 PROGRAMMING EXAMPLES

User’s Manual U15802EJ1V0UM96

(3/7) UOport.c

}

 return(TRUE);
}
/**/
/* UParts_port(void) */
/**/
void FAR PASCAL UParts_port(void)
{
 if(!hUParts_portWnd){

hUParts_portWnd = CreateWindow((LPSTR)cnUParts_port,/* Class name */
STR_UP_TITLE, /* Title. */
WS_OVERLAPPEDWINDOW | WS_BORDER | WS_VISIBLE, /* Style bits. */
CW_USEDEFAULT, /* x - default. */
CW_USEDEFAULT, /* y - default. */
UParts_portWIDTH, /* cx - default.*/
UParts_portHEIGHT, /* cy - default.*/
NULL, /* No parent. */
NULL, /* Class memu. */
hInst, /* Creator */
NULL); /* Params. */

 }
 if(hUParts_portWnd){

UpSetUserWnd(hUParts_portWnd);
ShowWindow(hUParts_portWnd, SW_SHOW);
UpCallFuncName("UParts_portCall");
UpResetFuncName("UParts_portReset");
UpLoadProjName("UParts_portLoadProj");
UpSaveProjName("UParts_portSaveProj");
UpInitPort("P5", 0xFF);

 }
 return;
}

CHAPTER 6 PROGRAMMING EXAMPLES

User’s Manual U15802EJ1V0UM 97

(4/7) UOport.c

/**/
/* UParts_portWndProc(HWND, unsigned WPARAM, LPARAM) */
/**/
LONG PASCAL FAR UParts_portWndProc(HWND hWnd, unsigned iMessage, WPARAM wParam,
LPARAM lParam)
{
 HDC hDC;
 PAINTSTRUCT ps;
 RECT wRect;
 int i;
 char strval[20];
 long wx,wy;
 switch(iMessage){
 case WM_CREATE:

for(i = 0; i < 2; i++){
 btm_hwnd[i] = CreateWindow((LPSTR)"button",strbuf[i],
 WS_CHILD|BS_PUSHBUTTON|WS_VISIBLE|WS_TABSTOP,
 10,10+30*i,
 BTN_WIDTH,BTN_HIGHT,
 hWnd,(HMENU)(IDD_PIN_BUTTON+i),hInst,NULL);

}
return(FALSE);

 case WM_COMMAND:
switch(wParam){

 case IDD_PIN_BUTTON:
 if(port5val < 0x7f)

 port5val++;
 else

 port5val = 0;
 UpSetPort("P5", port5val, 0);

 InvalidateRect(hWnd, NULL, TRUE);
 UpdateWindow(hWnd);
 break;
 case IDD_PIN_BUTTON + 1:
 UpGetPort("P6", &port6val);
 InvalidateRect(hWnd, NULL, TRUE);
 UpdateWindow(hWnd);
 break;
}

CHAPTER 6 PROGRAMMING EXAMPLES

User’s Manual U15802EJ1V0UM98

(5/7) UOport.c

 return(FALSE);
 case WM_PAINT:

hDC = BeginPaint(hWnd, &ps);
wsprintf(strval, "Port5 Value=%#2X\0", port5val);
TextOut(hDC, BTN_WIDTH + 40, 15, strval, lstrlen(strval));
wsprintf(strval, "Port6 Value=%#2X\0", port6val);
TextOut(hDC, BTN_WIDTH + 40, 45, strval, lstrlen(strval));
EndPaint(hWnd, &ps);
return(FALSE);

 case WM_SYSCOLORCHANGE:
InvalidateRect(hWnd, NULL, TRUE);
break;

 case WM_MOVE:
GetWindowRect(hWnd, &wRect);
wx = wRect.right - wRect.left;
wy = wRect.bottom - wRect.top;
if((wx != 36) && (wy != 36)) {

wsprintf(UParts_Rect_str, "%d, %d, %d, %d",
wRect.left, wRect.top, wx, wy);

}
InvalidateRect(hWnd, NULL, TRUE);
break;

 case WM_SIZE:
if(wParam == SIZEICONIC) {

lstrcpy(UParts_Veiw_str, "Icon");
} else {

GetWindowRect(hWnd, &wRect);
lstrcpy(UParts_Veiw_str, "Normal");
wsprintf(UParts_Rect_str, "%d, %d, %d, %d",

wRect.left,
wRect.top,
wRect.right - wRect.left,
wRect.bottom - wRect.top);

}
break;

 case WM_DESTROY:
UpCloseUserWnd(hWnd);

 default:
return DefWindowProc(hWnd, iMessage, wParam, lParam);

 }

CHAPTER 6 PROGRAMMING EXAMPLES

User’s Manual U15802EJ1V0UM 99

(6/7) UOport.c

return 0L;
}
/**/
/* UParts_portCall(ULONG) */
/**/
void FAR PASCAL
UParts_portCall(ULONG time)
{

return;
}
/**/
/* UParts_portReset(void) */
/**/
void FAR PASCAL
UParts_portReset(void)
{
 port5val = 0;
 port6val = 0;
 InvalidateRect(hUParts_portWnd, NULL, TRUE);
}
/**/
/* UParts_portLoadProj(char FAR *) */
/**/
void FAR PASCAL
UParts_portLoadProj(char FAR *fname)
{
 char *next;
 WORD x, y, wx, wy;
 GetPrivateProfileString("UOport", "Window",

"Hide", UParts_Veiw_str, 7, fname);
 if(!lstrcmp(UParts_Veiw_str, "Icon")) { /* "Icon" mode */

ShowWindow(hUParts_portWnd, SW_SHOWMINNOACTIVE);
 } else { /* "Normal" mode */

GetPrivateProfileString("UOport", "Geometry",
"0, 0, 0, 0", UParts_Rect_str, 23, fname);

if(lstrcmp(UParts_Rect_str, "0, 0, 0, 0")) {
 next = strtok(UParts_Rect_str, ",");
 x = (WORD)strtoul(next, NULL, 10);
 next = strtok(NULL, ",");
 y = (WORD)strtoul(next, NULL, 10);
 next = strtok(NULL, ",");

CHAPTER 6 PROGRAMMING EXAMPLES

User’s Manual U15802EJ1V0UM100

(7/7) UOport.c

 wx = (WORD)strtoul(next, NULL, 10);
 next = strtok(NULL, "");
 wy = (WORD)strtoul(next, NULL, 10);
 MoveWindow(hUParts_portWnd, x, y, wx, wy, TRUE);
}
ShowWindow(hUParts_portWnd, SW_SHOWNORMAL);

 }
}
/**/
/* UParts_portSaveProj(char FAR *) */
/**/
void FAR PASCAL
UParts_portSaveProj(char FAR *fname)
{
 WritePrivateProfileString("UOport", "Window", UParts_Veiw_str, fname);
 WritePrivateProfileString("UOport", "Geometry", UParts_Rect_str, fname);
}
/* UOport.c */

CHAPTER 6 PROGRAMMING EXAMPLES

User’s Manual U15802EJ1V0UM 101

<3> Definition file UOport.def

(1/1) UOport.def

LIBRARY UOPORT

DESCRIPTION 'User Open I/F Panel port'

HEAPSIZE 4096

EXPORTS
UParts_port
UParts_portWndProc
UParts_portCall
UParts_portReset
UParts_portLoadProj
UParts_portSaveProj

CHAPTER 6 PROGRAMMING EXAMPLES

User’s Manual U15802EJ1V0UM102

<4> Make file UOport.mak

(1/4) UOport.mak

Microsoft Developer Studio Generated NMAKE File, Based on uoadda00.dsp

!IF "$(CFG)" == ""

CFG=uoadda00 - Win32 Debug

!MESSAGE Configuration not specified. Set default uoadda00 – Win32 Debug.

!ENDIF

!IF "$(CFG)" != "uoadda00 - Win32 Release" && "$(CFG)" != "uoadda00 - Win32 Debug"

!MESSAGE Specified build mode "$(CFG)" is not correct.
!MESSAGE Configuration can be specified during execution of NMAKE.

!MESSAGE Defines command-line macro setting. Example:

!MESSAGE

!MESSAGE NMAKE /f "uoadda00.mak" CFG="uoadda00 - Win32 Debug"

!MESSAGE

!MESSAGE Selectable build modes:

!MESSAGE

!MESSAGE "uoadda00 – Win32 Release" (for "Win32 (x86) Dynamic-Link Library")

!MESSAGE "uoadda00 – Win32 Debug" (for "Win32 (x86) Dynamic-Link Library")

!MESSAGE

!ERROR Invalid configuration was specified.

!ENDIF

!IF "$(OS)" == "Windows_NT"

NULL=

!ELSE

NULL=nul

!ENDIF

CPP=cl.exe

MTL=midl.exe

RSC=rc.exe

!IF "$(CFG)" == "uoadda00 - Win32 Release"

OutDir=.\Release

INTDIR=.\Release

Begin Custom Macros

OUTDIR=.\Release

End Custom Macros

ALL : "$(OUTDIR)\UOport.dll"

CHAPTER 6 PROGRAMMING EXAMPLES

User’s Manual U15802EJ1V0UM 103

(2/4) UOport.mak

CLEAN :
-@erase "$(INTDIR)\Uoport.obj"
-@erase "$(INTDIR)\vc60.idb"
-@erase "$(OUTDIR)\UOport.dll"
-@erase "$(OUTDIR)\UOport.exp"
-@erase "$(OUTDIR)\UOport.lib"

"$(OUTDIR)" :
 if not exist "$(OUTDIR)/$(NULL)" mkdir "$(OUTDIR)"
CPP_PROJ=/nologo /Zp1 /MT /W3 /GX /O2 /D "WIN32" /D "NDEBUG" /D "_WINDOWS" /D
"_MBCS" /D "_USRDLL" /D "UOPORT_EXPORTS" /Fp"$(INTDIR)\UOport.pch" /YX
/Fo"$(INTDIR)\\" /Fd"$(INTDIR)\\" /FD /c
MTL_PROJ=/nologo /D "NDEBUG" /mktyplib203 /win32
BSC32=bscmake.exe
BSC32_FLAGS=/nologo /o"$(OUTDIR)\UOport.bsc"
BSC32_SBRS= \

LINK32=link.exe
LINK32_FLAGS=kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib
advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib
/nologo /dll /incremental:no /pdb:"$(OUTDIR)\UOport.pdb" /machine:I386
/def:".\Uoport.def" /out:"$(OUTDIR)\UOport.dll" /implib:"$(OUTDIR)\UOport.lib"
DEF_FILE= \

".\Uoport.def"
LINK32_OBJS= \

"$(INTDIR)\Uoport.obj" \
".\sik032.lib"

"$(OUTDIR)\UOport.dll" : "$(OUTDIR)" $(DEF_FILE) $(LINK32_OBJS)
 $(LINK32) @<<
 $(LINK32_FLAGS) $(LINK32_OBJS)
<<
!ELSEIF "$(CFG)" == "UOport - Win32 Debug"
OUTDIR=.\Debug
INTDIR=.\Debug
Begin Custom Macros
OutDir=.\Debug
End Custom Macros
ALL : "$(OUTDIR)\UOport.dll"

CHAPTER 6 PROGRAMMING EXAMPLES

User’s Manual U15802EJ1V0UM104

(3/4) UOport.mak

CLEAN :
-@erase "$(INTDIR)\Uoport.obj"
-@erase "$(INTDIR)\vc60.idb"
-@erase "$(INTDIR)\vc60.pdb"
-@erase "$(OUTDIR)\UOport.dll"
-@erase "$(OUTDIR)\UOport.exp"
-@erase "$(OUTDIR)\UOport.ilk"
-@erase "$(OUTDIR)\UOport.lib"
-@erase "$(OUTDIR)\UOport.pdb"

"$(OUTDIR)" :
 if not exist "$(OUTDIR)/$(NULL)" mkdir "$(OUTDIR)"
CPP_PROJ=/nologo /Zp1 /MTd /W3 /Gm /GX /ZI /Od /D "WIN32" /D "_DEBUG" /D "_WINDOWS"
/D "_MBCS" /D "_USRDLL" /D "UOPORT_EXPORTS" /Fp"$(INTDIR)\UOport.pch" /YX
/Fo"$(INTDIR)\\" /Fd"$(INTDIR)\\" /FD /GZ /c
MTL_PROJ=/nologo /D "_DEBUG" /mktyplib203 /win32
BSC32=bscmake.exe
BSC32_FLAGS=/nologo /o"$(OUTDIR)\UOport.bsc"
BSC32_SBRS= \

LINK32=link.exe
LINK32_FLAGS=kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib
advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib
/nologo /dll /incremental:yes /pdb:"$(OUTDIR)\UOport.pdb" /debug /machine:I386
/def:".\Uoport.def" /out:"$(OUTDIR)\UOport.dll" /implib:"$(OUTDIR)\UOport.lib"
/pdbtype:sept
DEF_FILE= \

".\Uoport.def"
LINK32_OBJS= \

"$(INTDIR)\Uoport.obj" \
".\sik032.lib"

"$(OUTDIR)\UOport.dll" : "$(OUTDIR)" $(DEF_FILE) $(LINK32_OBJS)
 $(LINK32) @<<
 $(LINK32_FLAGS) $(LINK32_OBJS)
<<
!ENDIF
.c{$(INTDIR)}.obj::
 $(CPP) @<<
 $(CPP_PROJ) $<
<<

CHAPTER 6 PROGRAMMING EXAMPLES

User’s Manual U15802EJ1V0UM 105

(4/4) UOport.mak

.cpp{$(INTDIR)}.obj::
 $(CPP) @<<
 $(CPP_PROJ) $<
<<
.cxx{$(INTDIR)}.obj::
 $(CPP) @<<
 $(CPP_PROJ) $<
<<
.c{$(INTDIR)}.sbr::
 $(CPP) @<<
 $(CPP_PROJ) $<
<<
.cpp{$(INTDIR)}.sbr::
 $(CPP) @<<
 $(CPP_PROJ) $<
<<
.cxx{$(INTDIR)}.sbr::
 $(CPP) @<<
 $(CPP_PROJ) $<
<<
!IF "$(NO_EXTERNAL_DEPS)" != "1"
!IF EXISTS("UOport.dep")
!INCLUDE "UOport.dep"
!ELSE
!MESSAGE Warning: cannot find "UOport.dep"
!ENDIF
!ENDIF
!IF "$(CFG)" == "UOport - Win32 Release" || "$(CFG)" == "UOport - Win32 Debug"
SOURCE=.\Uoport.c
"$(INTDIR)\Uoport.obj" : $(SOURCE) "$(INTDIR)"
!ENDIF

User’s Manual U15802EJ1V0UM106

APPENDIX A ERROR MESSAGES

A.1 Error Processing

(a) If the specified pin name is not among the products that can be simulated, the Error Message dialog box

appears to report an error message.

(b) If the read DLL file is a combination of user panel custom functions and Parts custom functions, a dialog box

appears with a warning message when the first function to be read does not belong to the DLL file in

accordance with the DLL file name.

(c) If an error occurs when a user-created custom DLL is read, the part that caused the error is not created.

(d) If an error or warning occurs even once for the user panel custom functions UpGetPin(), UpGetPort(),

UpGetMem(), UpClrMtrAcClk(), or UpGetStpingMtr(), error values may be returned or the function may not

operate correctly when subsequently used. Therefore, if an error or warning occurs, revise the source code,

create the DLL file again, and reload to avoid such problems.

A.2 Error and Warning Messages

Error messages and warning messages that may occur during execution of a function are listed below. The

abbreviated function names listed below are used to refer to the function names for which the error occurred.

Stepper motor functions UpStpingMtr(), UpSetStpingMtr(), UpGetStpingMtr()

LED picture setup function UpSetLedPic()

LED functions UpLed(), UpPortLed()

Matrix LED function UpMtxLed()

Serial pin data input function UpSerial_data()

Port value setup/capture functions UpPortLed(), UpGetPort(), UpSetPort()

Hold time setup function UpSetPBtmtime()

Vertical scroll bar analog input function UpScaleInterAD()

Reference voltage value setup function UpSetAVref()

Function name notification functions UpCallFuncName(), UpLoadProjName(),

UpSaveProjName(), UpResetFuncName()

Bitmap setup functions UpSetBtmBmp(), UpSetLedBmp(),

UpSetMtrBmp()

Button functions UpPushBtm(), UpTglBmp(), UpSelectBtm()

Register-related functions UpGetReg(), UpSetReg ()

APPENDIX A ERROR MESSAGES

User’s Manual U15802EJ1V0UM 107

Table A-1. Error Messages (1/2)

No. Window Name Message Cause User Action

E1 All functions that include a

pin name parameter

Specified pin does not

exist.

Specified pin does not

exist.

Specify a pin name that

exists in the target device.

E2 All functions that include a

pin name parameter

Pin name was specified

using double-byte

characters.

Specified pin name is

entered using double-byte

characters.

Use only single-byte

characters to specify pin

names.

E3 All functions that include an

active high/low parameter

Active high/low setting is

neither HIGH nor LOW.

Specified active high/low

setting is neither HIGH nor

LOW.

Specify either HIGH or

LOW for the active high/low

setting.

E4 Stepper motor functions

that include a number-of-

channels parameter

The number of channels is

neither 4 nor 8.

Specified number of

channels is neither 4 nor 8.

Specify either 4 or 8 as the

number of channels

(according to the number of

pins).

E5 Stepper motor functions

that include an excitation

parameter

Excitation value is neither 0

nor 1.

Specified excitation value is

neither 0 nor 1.

Specify either 0 or 1 as the

excitation value (according

to the excitation method).

E6 Stepper motor functions

that include a minimum

step angle parameter

Minimum step angle is not

a fraction of 360.

Specified minimum step

angle is not a fraction of

360.

Specify an integer that is a

fraction of 360 as the

minimum step angle.

E7 LED picture setup function Picture type is neither

PIC_RECT nor PIC_ELL.

Specified picture type

parameter is neither

PIC_RECT nor PIC_ELL.

Specify either PIC_RECT

or PIC_ELL as the picture

type.

E8 LED picture setup function Color type is neither

PIC_RED nor

PIC_YELLOW nor

PIC_GREEN.

Specified color type

parameter is neither

PIC_RED nor

PIC_YELLOW nor

PIC_GREEN.

Specify PIC_RED,

PIC_YELLOW, or

PIC_GREEN as the color

type.

E9 LED functions that include

a picture type parameter

Displayed picture type

specification is neither 0

nor 1.

Specified picture type value

is neither 0 nor 1.

Specify either 0 or 1 as the

picture type parameter.

E10 Serial pin data input

function

The first bit specification for

serial input is neither MSB

(1) nor LSB (0).

Value specified as the first

bit parameter is neither 0

nor 1.

Specify either 0 or 1 as the

first bit parameter.

E11 Matrix LED function Output 1 active high/low

setting is neither HIGH nor

LOW.

Specified value for output 1

active high/low parameter

is neither HIGH nor LOW.

Specify either HIGH or

LOW as the output 1 active

high/low parameter.

E12 Matrix LED function Output 2 active high/low

setting is neither HIGH nor

LOW.

Specified value for output 2

active high/low parameter

is neither HIGH nor LOW.

Specify either HIGH or

LOW as the output 2 active

high/low parameter.

E13 Port value setup/capture

functions

Port name was specified

using double-byte

characters.

Specified port name

parameter was entered

using double-byte

characters.

Use only single-byte

characters to specify port

name parameter.

E14 Port value setup/capture

functions

Specified port does not

exist.

Specified parameter for

port name does not exist.

Specify a port name that

exists in the target device.

APPENDIX A ERROR MESSAGES

User’s Manual U15802EJ1V0UM108

Table A-1. Error Messages (2/2)

No. Window Name Message Cause User Action

E15 Hold time setup function Hold time is invalid. Specified hold time is out of

range or is not a number.

Specify a hold time within

the range of 0.001 to 999

ms.

E16 Vertical scroll bar analog

input function

Specified pin is not an

analog input pin.

Non-analog pin name was

specified.

Specify an analog pin.

E17 Reference voltage value

setup function

AVREF is not within the

operating power supply

voltage range.

AVREF is not within the

operating power supply

voltage range.

Set a value that is within

the operating power supply

voltage range.

E18 All functions that include a

pointer type parameter

Parameter is a NULL

pointer.

An invalid parameter was

specified for the function.

Specify the correct pointer.

E19 All functions described in

section 4.1

Function XXXX cannot be

specified in UOxxx.dll.

This function was specified

in UOxxx.dll.

Use UPxxx.dll.

E20 All functions described in

section 4.2

Function XXXX cannot be

specified in UPxxx.dll.

This function was specified

in UPxxx.dll.

Use UOxxx.dll.

E21 Functions requiring

advance notification

function

No advance notification of

function XXXX

Required notification

function was not called.

Call the required

notification function in

advance.

E22 Register-related functions Type of control register is

neither REG_PC, nor REG-

PSW, nor REG-SP.

Register other than a

control register is specified.

Do not specify register

other than control register

E23 Bitmap setup functions Specified bitmap file is

invalid.

Access to specified file or

area allocation failed.

Specify a correct file, or

remove other applications

to allocate memory.

E24 Button functions Specified pin has already

been specified.

Attempted to specify

previously specified pin.

Do not specify a previously

specified pin.

E25 All functions Area cannot be allocated. Memory cannot be

allocated.

Remove other applications

to allocate memory.

Table A-2. Warning Messages

No. Window Name Message Cause User Action

W1 Reference voltage value

setup function

No AVREF setting. Is 5.0 V

(default setting) OK?

" " was specified as the

reference voltage value

character string.

Specify a character string

as the values to be set to

the reference voltage value

character string.

W2 Hold time setup function No hold time setting. Is 0.5

ms (default setting) OK?

" " was specified as the

hold time character string.

Specify a character string

as the values to be set to

the hold time character

string.

Although NEC has taken all possible steps
to ensure that the documentation supplied
to our customers is complete, bug free
and up-to-date, we readily accept that
errors may occur. Despite all the care and
precautions we've taken, you may
encounter problems in the documentation.
Please complete this form whenever
you'd like to report errors or suggest
improvements to us.

Hong Kong, Philippines, Oceania
NEC Electronics Hong Kong Ltd.
Fax: +852-2886-9022/9044

Korea
NEC Electronics Hong Kong Ltd.
Seoul Branch
Fax: +82-2-528-4411

Taiwan
NEC Electronics Taiwan Ltd.
Fax: +886-2-2719-5951

Address

North America
NEC Electronics Inc.
Corporate Communications Dept.
Fax: +1-800-729-9288

+1-408-588-6130

Europe
NEC Electronics (Europe) GmbH
Market Communication Dept.
Fax: +49-211-6503-274

South America
NEC do Brasil S.A.
Fax: +55-11-6462-6829

Asian Nations except Philippines
NEC Electronics Singapore Pte. Ltd.
Fax: +65-250-3583

Japan
NEC Semiconductor Technical Hotline
Fax: +81- 44-435-9608

I would like to report the following error/make the following suggestion:

Document title:

Document number: Page number:

Thank you for your kind support.

If possible, please fax the referenced page or drawing.

Excellent Good Acceptable PoorDocument Rating

Clarity

Technical Accuracy

Organization

CS 01.11

Name

Company

From:

Tel. FAX

Facsimile Message

	COVER
	INTRODUCTION
	CHAPTER 1 GENERAL
	1.1 General Description of External Part User Open Interface Specifications
	1.2 General Description of User-Customized Parts
	1.2.1 Types of customization
	1.2.2 User-created files
	1.2.3 Positioning of user-customized parts

	1.3 Environment
	1.3.1 Development environment
	1.3.2 Operating environment

	1.4 Cautions When Transferring External Parts Created for SM78K Series Ver. 1.42 or Earlier to Ver. 2.30 or Later
	1.4.1 Change of source
	1.4.2 Change of make environment

	CHAPTER 2 DOWNLOAD
	2.1 Download
	2.2 Unload

	CHAPTER 3 PROGRAMMING
	3.1 Programming Configuration and Processing Flow
	3.1.1 Customization via Parts window
	3.1.2 Customization via user window

	3.2 Steps in Creation of Customized Parts
	3.2.1 Customization via Parts window
	3.2.2 Customization via user window

	3.3 Basic Rules
	3.3.1 User functions
	3.3.2 External variables
	3.3.3 Function names
	3.3.4 Active high/low
	3.3.5 Pin names
	3.3.6 Include file, Source file

	3.4 Module Definition (DEF) File
	3.4.1 EXPORTS declaration

	CHAPTER 4 FUNCTION REFERENCE
	4.1 Customization via Parts window
	4.2 Customization via User Window

	CHAPTER 5 OPERATIONS DURING CPU RESET
	5.1 Parts Customized via Parts Window
	5.2 Parts Customized via User Window

	CHAPTER 6 PROGRAMMING EXAMPLES
	6.1 Example of Parts Customized via Parts Window
	6.1.1 Description of samples
	6.1.2 Source examples
	<1> Target program
	<2> Custom part source file UPsw00.c
	<3> Definition file UPsw00.def
	<4> Make file UPsw00.mak

	6.2 Example of Parts Customized via User Window
	6.2.1 Description of samples
	6.2.2 Source examples
	<1> Target program
	<2> Custom part source file UOport.c
	<3> Definition file UOport.def
	<4> Make file UOport.mak

	APPENDIX A ERROR MESSAGES
	A.1 Error Processing
	A.2 Error and Warning Messages

