
U
ser’s M

anual

www.renesas.com

RH850G4MH
Virtualization User’s Manual: Hardware

Renesas microcontroller

RH850 Family

Aug. 2023Rev.1.40

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http://www.renesas.com).

32

Cover

© 2023 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of
these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or
other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home
electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system;
undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims
any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is
inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not
limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products
are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury,
injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety
design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging
degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.
(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled

subsidiaries.
(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters Contact Information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)
A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement

tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be

touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on
The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in

a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the level

at which resetting is specified.

3. Input of signal during power-off state
Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements.

Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins
Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated

due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed

high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to power supply or GND via a resistor if there is a possibility

that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications

governing the device.

5. Voltage application waveform at input pin
Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (Max.)

and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level

is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).

6. Prohibition of access to reserved addresses
Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.

7. Power ON/OFF sequence
In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply

after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal

power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing

malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged

separately for each device and according to related specifications governing the device.

Section 1 Virtualization support function.. 8

1.1 Outline of virtualization support function... 8

1.1.1 Virtualization system... 9

1.1.2 Paravirtualization and Partition Function .. 10

1.1.3 Enabling virtualization support function .. 11

1.1.4 Host mode and Guest mode... 11

1.2 Occupied and Shared resources .. 12

1.3 Functional difference based on activation of Virtualization Support Function 13

Section 2 Processor Model .. 14

2.1 CPU Operating Modes.. 14

2.1.1 Definition of CPU Operating Modes ... 15

2.1.2 CPU Operating Mode Transition .. 16

2.1.3 CPU Operating Mode and Privileges.. 18

2.1.4 Halt State by a HALT Instruction .. 23

2.1.5 Temporary Halt State by a SNOOZE instruction .. 23

2.2 Instruction Execution .. 24

2.3 Exceptions and Interrupts ... 26

2.3.1 Types of Exceptions ... 26

2.3.2 Exception Level .. 26

2.4 Coprocessors.. 27

2.4.1 Coprocessor Use Permissions ... 27

2.4.2 Correspondences between Coprocessor Use Permissions and Coprocessors 27

2.4.3 Coprocessor Unusable Exceptions .. 27

2.4.4 System Registers ... 27

2.5 Registers... 28

2.5.1 Program Registers.. 28

2.5.2 System Registers ... 28

2.5.3 Register Updating... 29

2.5.4 Accessing Undefined Registers.. 32

2.5.5 Supervisor Lock Setting.. 32

2.5.6 Change in Register Model .. 32

2.5.7 System Register Multiplexing ... 35

2.6 Data Types ... 37

2.6.1 Data Formats.. 37

2.6.2 Data Representation... 37

2.6.3 Data Alignment ... 37

2.7 Address Space ... 40

2.7.1 Memory Map... 40

2.7.2 Instruction Addressing .. 40

2.7.3 Data Addressing ... 40

2.8 Execution Timing of a Store Instruction .. 41

2.9 Memory Ordering.. 41

Table of Contents

2.10 Acquiring the CPU Number .. 41

2.11 System Protection Identifier (SPID) .. 41

2.12 Timestamp Counter .. 42

2.12.1 How to Operate the Timestamp Counter.. 42

2.13 Performance Measurement Function ... 43

2.14 Debug Target Limitation ... 43

Section 3 Register Set ... 44

3.1 Program Registers.. 44

3.2 Basic System Registers.. 45

3.3 Interrupt Function Registers ... 52

3.3.1 Interrupt Function system Registers... 52

3.4 FPU Function Registers.. 60

3.5 FXU Function Registers.. 61

3.6 MPU Function Registers... 62

3.6.1 MPU Function System Registers.. 62

3.7 Cache Operation Function Registers.. 68

3.7.1 Cache Control Function System Registers... 68

3.8 Count Function Registers ... 70

3.8.1 Count Function System Registers .. 70

3.9 Hardware Function Registers ... 75

3.10 Virtualization support function system registers ... 76

3.11 Host Context Register... 83

3.12 Guest Context Register .. 103

Section 4 Exceptions and Interrupts .. 117

4.1 Outline of Exceptions.. 117

4.1.1 Exception Cause List.. 117

4.1.2 Overview of Exception Causes... 125

4.1.3 Types of Exceptions ... 130

4.1.4 Exception Acknowledgment Conditions and Priority Order .. 132

4.1.5 Interrupt Exception Priority and Priority Masking.. 133

4.1.6 Return and Restoration .. 135

4.1.7 Context switching ... 136

4.1.8 Exception to transition from guest mode to host mode .. 139

4.1.9 Background Interrupts .. 141

4.2 Operation when Acknowledging an Exception ... 144

4.2.1 Special Operations ... 146

4.3 Return from Exception Handling... 148

4.4 Exception Handler Address .. 150

4.4.1 Resets, Exceptions, and Interrupts... 150

4.4.2 System Calls... 159

4.5 Register Bank Function .. 160

4.5.1 Outline of the Register Bank Function.. 160

4.5.2 Automatic Context Saving .. 160

4.5.3 Context Restoration.. 165

4.6 List of Memory Access Exceptions ... 168

Section 5 Memory Management .. 169

5.1 Memory Protection Unit (MPU)... 169

5.1.1 Features ... 169

5.1.2 Protection Area Settings... 170

5.1.3 Precautions for Protection Area Setup ... 171

5.1.4 Access Control ... 173

5.1.5 Violations and Exceptions .. 174

5.1.6 Memory Protection Setting Check Function ... 177

5.1.7 Layered Memory Protection Function... 180

5.1.8 Memory Protection Setting Bank Function ... 184

5.1.9 Memory protection setting High speed save and restore function.................................... 185

5.2 Cache ... 186

5.2.1 Features ... 186

5.2.2 Cache Operation Registers .. 186

5.2.3 Change Cache Use Mode .. 186

5.2.4 Cache Operations Using CACHE Instruction ... 186

5.2.5 Cache Operation by the PREF Instruction ... 186

5.2.6 Cache Index Specification Method ... 186

5.2.7 Execution Privilege of the CACHE/PREF Instruction ... 187

5.2.8 Memory Protection for the CACHE and PREF Instructions.. 188

5.2.9 Example of Using the CACHE Instruction to Manipulate Cache Memory 188

5.2.10 Configuration of Instruction Cache ... 188

5.2.11 Data Buffer Function... 188

Section 6 Coprocessor... 189

6.1 Floating-Point Operation... 189

6.2 Extended Floating-Point Operation... 189

Section 7 Hazard Control... 190

7.1 Synchronization Processing ... 190

7.2 Guaranteeing the Completion of Store Instruction.. 190

7.3 Hazard Management after System Register Update .. 191

7.3.1 Updating the Settings Related to Instruction Fetching ... 192

7.3.2 Updating the Memory Protection Settings of MPU... 192

7.3.3 Updating Interrupt-Related System Registers .. 192

7.3.4 Updating Register Bank Function-Related System Registers .. 192

7.3.5 Reading a System Register by Using an STSR Instruction.. 192

7.3.6 Referencing a System Register by the Subsequent Instruction 192

7.3.7 Use of EIRET and FERET Instructions in Synchronization Process 192

7.3.8 Updating PSW.EBV and EBASE.. 192

7.3.9 Synchronization processing of STM.MP, LDM.MP, STM.GSR, LDM.GSR instructions... 193

7.4 Synchronizing for restricted operating mode transition... 194

Section 8 Reset.. 195

8.1 Status of Registers After Reset .. 195

Section 9 Virtualization of Interrupt .. 196

9.1 Interrupt Binding ... 196

9.2 Notification of an Interrupt Request .. 196

9.3 Restriction on IHVCFG.IHVE Operation ... 197

9.4 Restriction on Operation in Guest Mode with Interrupt Controller INTC1................................... 198

9.5 Restriction on Operating EICn and EEICN Registers... 198

RH850G4MH Virtualization Section 1 Virtualization support function

R01UH0865EJ0140 Rev.1.40 Page 8 of 200
August 31, 2023

Section 1 Virtualization support function

This CPU supports the Virtualization support function.

This section describes the characteristics of virtualization support function usable in this CPU.

1.1 Outline of virtualization support function

By using the virtualization support function of this CPU, it is easy to build a virtual machine with

virtualization software.

CAUTIONS

1. In this document, the software that manages virtual machines is called

virtualization software. It is also referred to as a hypervisor or a virtual machine

monitor (VMM: Virtual Machine Monitor).

2. This document describes the operations in the Virtualization Support Function

enabled state, unless it is explicitly noted as disabled.

RH850G4MH Virtualization Section 1 Virtualization support function

R01UH0865EJ0140 Rev.1.40 Page 9 of 200
August 31, 2023

1.1.1 Virtualization system

Figure 1.1 shows an example of the software operation on this CPU when virtualization support

function is not used (Conventional system) and an example of the software operation on this CPU

when virtual machine is built using this CPU's virtualization support function (Virtualization system).

In a conventional system, management software such as operating system can operate all functions of

CPU. Therefore, when the reliability of the management software is low (incomplete software, low

level of security concerning external purchases, etc.), if the management software performs an illegal

operation, not only the inside of the CPU becomes illegal, an illegal operation also spreads outside the

CPU. As a result, it may be necessary to reset the control system that incorporates the CPU on which

the management software is installed. This will adversely affect the stable operation of the system. As

a result, a low reliability of the management software running on one of the CPUs constituting the

control system reduces the reliability of the entire control system.

In one virtualization system, management software and application software that operates under its

control operate on a virtual machine managed by virtualization software. From the management

software running on the virtual machine, it looks like all the functions of the CPU can be operated like

the conventional system. However, the virtualization software can use the virtualization support

function to impose motion constraints on software running on the virtual machine. If the management

software with low reliability does some illegal operations, the inside of the virtual machine is still in an

incorrect state, but the influence of illegal operation to the outside of the CPU is suppressed by various

constraints given by this virtualization software. Also, because the detected illegal operation is notified

to the virtualization software, the virtualization software can take some actions such as stopping the

management software that performed the illegal operation or restarting it. Resetting the system is

unnecessary even if illegal operation is performed, leading to stable operation of the system. As a

result, the unreliability of the management software running on the virtual machine of one of the CPUs

constituting the control system does not affect the reliability of the entire control system.

In either system, software with high reliability that does not require operation constraints may be

operating independently of management software and virtualization software.

Figure 1.1 Comparison of Conventional system and Virtualization system

Applications

Operating System

RH850 CPU Hardware
(Physical Machine)

Conventional system

Applications

Operating System

Virtualization system

Virtualizing Software

RH850 CPU Hardware
(Physical Machine)

Virtual Machine

High
Reliability
Software High

Reliability
Software

RH850G4MH Virtualization Section 1 Virtualization support function

R01UH0865EJ0140 Rev.1.40 Page 10 of 200
August 31, 2023

In addition, in this CPU, it is also possible to build multiple virtual machines on one CPU. Figure 1.2

shows a case where one virtual machine is built on this CPU and another case where two virtual

machines are built on this CPU.

Multiple virtual machines can be executed in parallel by the virtualization software switching the

context of the virtual machine. In order to easily realize this, the virtualization support function of this

CPU consists of a hardware identifier that can identify up to eight virtual machines, a memory

management function for sharing an address space among multiple virtual machines or for exclusive

use, and a context switching support function.

1.1.2 Paravirtualization and Partition Function

The virtualization system realized using the virtualization support function of this CPU is

paravirtualization. Therefore, in order for the management software running on the conventional

system compatible with this CPU to operate on the virtualization system of this CPU, it may be

necessary to change the software. The necessary changes are out of the scope of this document since

they depend on the CPU function used by the software to be changed and the function of the virtual

machine built by the virtualization software.

To realize paravirtualization (resource separation and sharing), this CPU provides a partition function

as a virtualization support function. The partition function enables a virtualization software

environment without interference between virtual machines to be realized.

The partition function of this CPU imposes hardware-based restrictions on software operating on this

CPU for the use of CPU resources. Virtualization software can use this partition function to realize the

virtual machine as the operating environment of the software under this constraint.

Figure 1.2 Construction of multiple virtual machines

Plural Virtual Machines

Virtualizing Software

RH850 CPU Hardware
(Physical Machine)

Virtual Machine

High
Reliability
Software

Applications

Operating
System

Single Virtual Machine

Virtualizing
Software

RH850 CPU Hardware
(Physical Machine)

Virtual Machine

High
Reliability
Software

Applications

Operating
System

Virtual Machine

Applications

Operating
System

RH850G4MH Virtualization Section 1 Virtualization support function

R01UH0865EJ0140 Rev.1.40 Page 11 of 200
August 31, 2023

1.1.3 Enabling virtualization support function

The virtualization support function of this CPU can be enabled or disabled by system register setting.

When the virtualization support function is disabled, this CPU can be used as a conventional system.

When the virtualization support function is enabled, this CPU can be used as a virtualization system.

For details on enabling and disabling virtualization support function, see Section 2.1, CPU

Operating Modes.

1.1.4 Host mode and Guest mode

When virtualization support function of this CPU is enabled, Host mode and Guest mode can be used

as new CPU operation modes. When virtualization support function is enabled, the CPU is in either

Host mode or Guest mode.

Host mode and Guest mode are defined independently of the supervisor mode and user mode available

in the conventional system. Therefore, there are four combinations of operation modes.

In Host mode, it is possible to operate all CPUs resources including virtualization support function. In

Guest mode, most of the CPUs resources equivalent to the conventional system can be operated, but

the virtualization support function or resources not related to the virtual machine can not be operated.

Also, Host mode can restrict some operations of Guest mode, with the partition function provided by

the virtualization support function. A guest partition is defined as the operating environment of the

software at the Guest mode, constrained by the partition function.

For details of operation modes including Host mode and Guest mode, see Section 2.1, CPU

Operating Modes.

RH850G4MH Virtualization Section 1 Virtualization support function

R01UH0865EJ0140 Rev.1.40 Page 12 of 200
August 31, 2023

1.2 Occupied and Shared resources

The allocation method of each resources is determined by the specification of virtualization software.

This CPU provides separation means to allocate each resource to virtual machines. For general-purpose

registers and other resources for which the CPU has no separation means, it may be necessary to

replace the context at virtual machine switching.

Table 1.1 shows a list of resources of this CPU.

Note 1. For resources inside of CPU, specifications are defined in this document. Resources outside of CPU are
basic resources enumerated as RH850 products, and specifications including mounting feasibility are not
defined in this document. For details, see the hardware manual of the product used.

Note 2. The MPU (memory protection function) can restrict the address space that can be accessed. For details,
see Section 5, Memory Management.

Note 3. Guard mechanism for access restriction may be implemented as specification of product. For details,
including occupied and shared methods, see the hardware manual of the product used.

Note 4. Interrupt channel separation method is implemented as INTC (interrupt controller) specifications. For
details, see the "Interrupts" section in the hardware manual of the product used.

Note 5. Host mode can specify whether to use in Guest mode. For details, see Section 2.4.1, Coprocessor Use
Permissions.

Note 6. Some system registers are multiplexed in Host mode only or in Guest mode only. For details, see Section
2.5.7, System Register Multiplexing.

Table 1.1 Resource list

Resources Location*1 Separation means

Flash memory Outside CPU MPU*2, Guard mechanism*3

Local memory Inside CPU MPU*2, Guard mechanism*3

Cluster memory Outside CPU MPU*2, Guard mechanism*3

Peripheral IO Outside CPU MPU*2, Guard mechanism*3

Interrupt channels Outside CPU MPU*2, Guard mechanism*3, INTC1 function*4

General purpose registers Inside CPU None

Vector registers Inside CPU Whether available or not can be specified*5

System registers Inside CPU Partial multiplexing*6

RH850G4MH Virtualization Section 1 Virtualization support function

R01UH0865EJ0140 Rev.1.40 Page 13 of 200
August 31, 2023

1.3 Functional difference based on activation of Virtualization
Support Function

When the virtualization support function is enabled, there will be some functional differences

compared to the case in which the function is disabled. Table 1.2 shows the details of these

differences.

Note 1. See the RH850G4MH Virtualization User's Manual: Software.

Table 1.2 Functional difference based on activation of virtualization support function

Function Overview Reference

CPU function mode Host mode and Guest mode are available. 2.1

Access authority HV privilege to operate virtualization support function are available. 2.1.3

Access authority of system registers There are the registers which access authority is changed. 2.5.3

Instruction execution authority There are the instructions which execution authority is changed. 5.2.6

How to specify an exception handler
address

There are restrictions on how to use table reference method interrupts in
Host mode. There is a restriction on how to set the base address in Guest
mode.

4.2.1
4.4.1

Exception cause Exceptions for effectively using the partition function can be used. 4.1.2

Exception acceptance condition Conditions for accepting the above exception causes 4.1.1

Nesting memory protection function Memory protection function dedicated to Guest mode that can be changed
only in Host mode can be used.

5.1.7

Virtualization support function system
register

System registers to control virtualization support functions can be used. 3.10

Host Context Register Multiplexed system registers to improve efficiency of the context register
switching when switching between Host mode and Guest mode can be
used.

3.11

Guest Context Register 3.12

Memory protection function System
register

Memory protection function for realizing partition function can be used. 3.6

Virtualization support function instruction Instructions for efficiently realizing virtualization system can be used. *1

RH850G4MH Virtualization Section 2 Processor Model

R01UH0865EJ0140 Rev.1.40 Page 14 of 200
August 31, 2023

Section 2 Processor Model

This CPU adopts a processor model that has basic operation functions, registers, and an exception

management function.

This section describes the unique features of the processor model of this CPU.

2.1 CPU Operating Modes

There are three independent operating modes in this CPU.

The first mode is the virtualization operating mode indicating the use state of the virtualization support

function. The virtualization operating mode has two states: the conventional mode in which the

virtualization support function is disabled and the virtualization mode in which the virtualization

support function is enabled. The virtualization operating mode is indicated by the value of

HVCFG.HVE.

The second mode is the restricted operating mode indicating the operating state of the partition

function. Restricted operating mode has two states: Host mode (HM) and Guest mode (GM). The

restricted operating mode is indicated by the value of PSWH.GM.

The third mode is the authority operating mode indicating the software operating authority. The

authority operating mode has two states: Supervisor mode (SV) and User mode (UM). The authority

operating mode is indicated by the value of PSW.UM.

The restricted operating mode can be enabled only when the virtualization operating mode is

virtualization mode. When the virtualization operating mode is the conventional mode, the function

related to the state of the restricted operating mode can not be used. The authority operating mode can

be enabled regardless of the state of other operating modes. However, detailed software operating

authority is defined by combination with other operating modes. For details, see Section 2.1.3, CPU

Operating Mode and Privileges.

 Conventional mode (HVCFG.HVE = 0): The virtualization support function is disabled.

 Virtualization mode (HVCFG.HVE = 1): The virtualization support function is enabled.

 Host mode (PSWH.GM = 0): Partition function is disabled.

 Guest mode (PSWH.GM = 1): Partition function is enabled.

 Supervisor mode (PSW.UM = 0): Access authority is high; CPU resources can be managed and operated.

 User mode (PSW.UM = 1): Access authority is low, and the use of CPU resources is restricted.

RH850G4MH Virtualization Section 2 Processor Model

R01UH0865EJ0140 Rev.1.40 Page 15 of 200
August 31, 2023

2.1.1 Definition of CPU Operating Modes

2.1.1.1 Virtualization operating mode

See the hardware manual of the product used for the virtualization operating mode after reset release.

(1) Conventional mode

In the conventional mode, the virtualization support function can not be used. The RIE exception

occurs when an instruction of the virtualization support function is about to be executed. The system

registers of the virtualization support function are handled as undefined registers and operations are

impossible. However, the HVCFG register indicating the state of the virtualization operating mode can

be operated.

(2) Virtualization mode

The virtualization mode is a state in which virtualization support function can be used. The function

related to the restricted operating mode is enabled only when the virtualization operating mode is

virtualization mode. The operating restrictions applied to the software operating in virtualization mode

depends on the state of the restricted operating mode and the authority operating mode.

2.1.1.2 Restricted operating mode

The initial mode of restricted operating mode is always Host mode.

(1) Host mode (HM)

In Host mode, the partition function is disabled. At this time, if the authority operating mode is

supervisor mode, the software can operate all CPU resources including virtualization support function.

In addition, it is possible to set an operating restriction that is enabled when changing to Guest mode.

(2) Guest mode (GM)

In Guest mode, the partition function is enabled. Operating restrictions which can not be changed from

software running in Guest mode may be set.

2.1.1.3 Authority operating mode

The authority operating mode after reset release is always Supervisor mode.

(1) Supervisor mode (SV)

In Supervisor mode, the access authority is high and CPU resource can be managed and operated.

Operable CPU resources depend on the state of the virtualization operating mode and restricted

operating mode. For details, see Section 2.1.3, CPU Operating Mode and Privileges. In

addition, it is possible to set an operating restriction that is enabled when changing to user mode.

(2) User mode (UM)

In User mode, the access authority is low and operation of CPU resources is restricted. Operating

restrictions which can not be changed from software operating in User mode may be set. Software

running in User mode can use the instructions and system registers defined as user resources.

RH850G4MH Virtualization Section 2 Processor Model

R01UH0865EJ0140 Rev.1.40 Page 16 of 200
August 31, 2023

2.1.2 CPU Operating Mode Transition

The CPU operating mode changes due to three events.

(1) Change due to Acknowledging an Exception

When an exception to change to Host mode is accepted in Guest mode, restricted operating mode

transits to Host mode. In Guest mode, if an exception which does not change to the Host mode is

accepted, the restricted operating mode will remain in Guest mode. In Host mode, if an exception is

accepted, the restricted operating mode will remain in the Host mode. There is no exception to change

from Host mode to Guest mode. See Section 4.1.1, Exception Cause List for details of exception

to enter Host mode.

When an exception is acknowledged in User mode, the authority operating mode changes to Supervisor

mode. When an exception is acknowledged in Supervisor mode, the authority operating mode remains

in Supervisor mode. When accepting exceptions, the virtualization operating mode does not change.

(2) Change due to a Return Instruction

By executing a return instruction, the value of PSWH is restored according to the value of the

corresponding bit saved in EIPSWH, FEPSWH. Restoring PSWH by a return instruction is only

possible when the restricted operating mode is Host mode. Therefore, only the change from Host mode

to Guest mode is possible for the change of the restricted operating mode by a return instruction.

Also, by executing a return instruction, the value of PSW is restored according to the value of the

corresponding bit saved in EIPSW, FEPSW. Execution of a return instruction is possible when the

software operating authority is HV privilege or SV privilege. This means the authority operating mode

is Supervisor mode. Therefore, it is only possible to change from Supervisor mode to User mode for

the change of authority operating mode by a return instruction.

For details of operating authority, see Section 2.1.3, CPU Operating Mode and Privileges. Note

that the virtualization operating mode does not change by execution of a return instruction.

(3) Change due to a System Register Instruction

The virtualization operating mode changes by directly rewriting HVCFG.HVE by the LDSR

instruction. In the conventional mode, the virtualization operating mode can be changed when the

operating privilege is SV privilege and in the virtualization mode, it can be changed when the operating

privilege is HV privilege. The authority operating mode is changed by directly writing PSW.UM by the

LDSR instruction. On the other hand, the restricted operating mode can not be changed by directly

writing PSWH.GM by the LDSR instruction.

RH850G4MH Virtualization Section 2 Processor Model

R01UH0865EJ0140 Rev.1.40 Page 17 of 200
August 31, 2023

CAUTIONS

1. The state change in the virtualization operating mode has a big influence on the

operation of software. Therefore, although HVCFG.HVE can be changed by the

LDSR instruction, make the change immediately after reset release. Immediately

after reset release is the first process in the reset handler, it indicates the timing

before changing the setting of other system registers and memory access as an

operand. The following operation is not supported: Dynamically changing

HVCFG.HVE after this CPU completes the initialization process in the reset

handler and the virtualization software or application software has started

operating. Note that to change HVCFG.HVE by LDSR instruction, synchronization

processing by SYNCI instruction is necessary. For details, see Section 7.3, Hazard

Management after System Register Update.

2. In the state change of the restricted operating mode, synchronization processing

similar to that of the SYNCM instruction is performed when accepting a cause

exception and when executing a return instruction. As a result, state change is

performed after all load and store operations which were executed before the

state change are completed. For details of synchronization operation, see Section

7.3, Hazard Management after System Register Update.

3. The CPU operating mode cannot be changed in user mode because the higher-

order 31 to 5 bits of the PSW register cannot be overwritten; it can be changed in

supervisor mode. This CPU guarantees that if an LDSR instruction is used to

update the PSW register, the new setting will be reflected when the subsequent

instruction is executed. However, this CPU does not guarantee that the new

setting will be reflected in the memory protection by the MPU for instruction fetch

of the subsequent instruction. Therefore, for changing the higher-order 31 to 5

bits of the PSW register, it is recommended to use a return instruction. For details,

see Section 7.3, Hazard Management after System Register Update.

RH850G4MH Virtualization Section 2 Processor Model

R01UH0865EJ0140 Rev.1.40 Page 18 of 200
August 31, 2023

2.1.3 CPU Operating Mode and Privileges

In this CPU, the usable functions can be restricted according to usage permission settings for specific

resources and the CPU operating mode. The execution of certain instructions and the operation of

certain system registers can only be performed when there is the permission required for it. The

permissions necessary to execute these specific instructions are called “privileges”. If the privilege for

executing instructions or operating system registers is not given, these operations cannot be performed

but an exception occurs.

The four types of authority defined by this CPU are as follows.

CAUTION

HV privilege also includes authority of SV privilege. Therefore, when CPU authority is

HV privilege, software can execute SV privileged instructions and operate system

registers whose access authority is SV privilege. On the other hand, coprocessor use

permissions are independent of HV privilege and SV privilege. Therefore, even if the

CPU authority is HV privilege or SV privilege, you can not use the coprocessor unless

you have coprocessor use permissions.

 Hypervisor (HV) privilege: HV privilege is the privilege required for execution of an instruction whose
execution authority is HV privilege (HV privileged instruction) and operation
of system registers whose access authority is HV privilege

 Supervisor (SV) privilege: SV privilege is the privilege required for execution of an instruction whose
execution authority is SV privilege (SV privileged instruction) and operation
of system registers whose access authority is SV privilege. Execution of HV
privileged instruction and operation of system registers whose access
authority is HV privilege can not be performed when CPU authority is SV
privilege.

 User (UM) authority: UM authority is an authority that enables execution of instructions (user
instructions) whose execution authority is not specially specified, and
operation of system registers whose access authority is UM authority.
Execution of HV privileged instruction or SV privileged instruction or
operation of system registers whose access authority is HV privilege or SV
privilege can not be executed when CPU authority is UM authority.

 Coprocessor use permissions: Permissions necessary to use a coprocessor

RH850G4MH Virtualization Section 2 Processor Model

R01UH0865EJ0140 Rev.1.40 Page 19 of 200
August 31, 2023

Figure 2.1 shows the CPU operating mode transition and CPU authority transition.

Table 2.1 shows the relationship between the CPU operating modes and the authorities of the CPU

defined accordingly.

Note 1. It operates as host mode for the function to be applied according to the state of the restricted operating
mode. It operates as UM authority for functions applied according to CPU authority.

Figure 2.1 Relationship between CPU operating mode and privilege

• In case of FERET, xx is FE
• In case of EIRET, xx is EI

Operating mode for privilege

Operating mode for partition

Operating mode for virtualization

Conventional Mode UM
Authority

Return with xxPSW.UM=1
Exception

SV
Privilege

Exception

LDSR to HVCFG.HVE

Host ModeUM
Authority

Return with xxPSWH.GM=0,
xxPSW.UM=1Exception (Host)

HV
Privilege

Return with xxPSWH.GM=0,
xxPSW.UM=0

Exception (Host)

SV
Privilege

UM
Authority

Return with GMxxPSW.UM=1

Exception (Guest)

Exception(Host)

Exception (Host)

Return with xxPSWH.GM=1,
GMPSW.UM=0

Exception (Guest)Return with GMxxPSW.UM=0

Virtualized Mode

Guest Mode

LDSR to HVCFG.HVE

Return with xxPSW.UM=0

Return with xxPSWH.GM=1,
GMPSW.UM=1

Supervisor Mode User Mode

Table 2.1 Definition of CPU operating mode and CPU authority

CPU operating mode

CPU authorityHVCFG.HVE PSWH.GM PSW.UM

0 — 0 SV privilege

0 — 1 UM authority

1 0 0 HV privilege

1 0 1 UM authority*1

1 1 0 SV privilege

1 1 1 UM authority

RH850G4MH Virtualization Section 2 Processor Model

R01UH0865EJ0140 Rev.1.40 Page 20 of 200
August 31, 2023

CAUTION

HV privilege is enabled only when the virtualization operating mode is virtualization

mode. When the virtualization operating mode is the conventional mode, if an HV

privilege instruction is executed, there are cases where RIE exceptions occur and

cases where the instruction can be executed if the SV privilege is enabled. And when

the virtualization operating mode is the conventional mode, if a system register that

requires HV privilege as the access authority is operated, it may be handled as an

undefined register, or it may be operable if there is SV privilege. For details, see each

instructions and system register specifications.

(1) Hypervisor privilege (HV privilege)

The privilege necessary for operation of the virtualization support function is called hypervisor

privilege (HV privilege). When the restricted operating mode is Host mode and the privilege operating

mode is Supervisor mode, CPU authority is HV privilege. It is a privilege necessary for building and

managing virtual machines and managing CPU resources outside the virtual machine. In HV privilege,

virtualization software is assumed to be executed.

(2) Supervisor Privilege (SV Privilege)

The privilege necessary to perform the operation for important system resources, fatal error processing,

and user-mode program execution management is called the supervisor privilege (SV privilege). This

privilege is available in supervisor mode. The SV privilege is generally necessary to execute

instructions used to perform the operation for important system resources, and these instructions are

sometimes called SV privileged instructions.

In SV privilege, operations of operating system, exception handler, interrupt handler and so on, are

assumed to be executed.

(3) User authority (UM authority)

UM authority is a privilege that can not perform the operation of the virtualization support function and

other important system resources.

It can not execute HV privileged instructions or SV privileged instructions to perform those operations.

In User authority, operation of application software is assumed to be executed.

(4) Coprocessor Use Permissions

Regardless of the CPU operating mode, it is possible to specify whether coprocessors can be used.

The CU2 to CU0 bits in the PSW register are used by a supervisor to specify whether coprocessors can

be used by each program. If the CU 2 to CU0 bits are not set to 1, a coprocessor unusable exception

occurs when the corresponding coprocessor instruction is executed or the system register is accessed.

If no coprocessor is installed, it is not possible to set the corresponding CU bits to 1. The setting of the

CU2 to CU0 bits is valid regardless of the CPU operating mode, and, even if the CPU authority is HV

privilege or SV privilege, if the supervisor accesses coprocessor system registers, they must be allowed

to be used by the setting of CU2-0 bit.

There are restrictions for changing the CU2-0 bit. For details, see Section 2.4.1, Coprocessor Use

Permissions

RH850G4MH Virtualization Section 2 Processor Model

R01UH0865EJ0140 Rev.1.40 Page 21 of 200
August 31, 2023

(5) Operation when there is a Privilege Violation

When a privileged instruction is executed by someone who does not have the required privilege, or

when a system register for which access permission is specified is accessed by someone who does not

have the required permission, a RIE exception, PIE exception or UCPOP exception occurs.

The Table 2.2 shows whether instructions can be executed depends on operating mode and use

permission. The Table 2.3 shows whether system registers can be accessed depends on operating

mode and use permission.

Note: —: 0 or 1

Note 1. Some operations of the CACHE instruction are HV privilege instructions when the virtualization operating
mode is virtualization mode, but are SV privilege instructions when the virtualization operating mode is
conventional mode. When these CACHE instructions are executed in the conventional mode, the RIE
exception does not occur, and the execution authority is judged as the SV privileged instruction. For details,
see Section 5.2.7, Execution Privilege of the CACHE/PREF Instruction.

Note 2. Coprocessor instructions with HV privilege or SV privilege are not defined in this CPU.

Table 2.2 Operation when Execution Permission is Violated

Instruction HVCFG PSWH PSW

Whether Instructions can be Executed
Execution
Permission Classification HVE GM UM CU2 CU1 CU0

HV privilege*1 *2 0 — — — — — Impossible (RIE exception occurs)

1 0 0 — — — Possible

1 0 1 — — — Impossible (PIE exception occurs)

1 1 0 — — — Impossible (PIE exception occurs)

1 1 1 — — — Impossible (PIE exception occurs)

SV privilege *2 — 0 0 — — — Possible

— 0 1 — — — Impossible (PIE exception occurs)

— 1 0 — — — Possible

— 1 1 — — — Impossible (PIE exception occurs)

User Coprocessor 0
instruction

— — — — — 0 Impossible (UCPOP exception occurs)

— — — — — 1 Possible

Coprocessor 1
instruction

— — — — 0 — Impossible (UCPOP exception occurs)

— — — — 1 — Possible

Coprocessor 2
instruction

— — — 0 — — Impossible (UCPOP exception occurs)

— — — 1 — — Possible

Other than above — — — — — — Possible

RH850G4MH Virtualization Section 2 Processor Model

R01UH0865EJ0140 Rev.1.40 Page 22 of 200
August 31, 2023

Note: —: 0 or 1

Note 1. In some system registers, the access authority is HV privilege when the virtualization operating mode is
virtualization mode, but when the virtualization operating mode is conventional mode, the access authority
is SV privilege. When these system registers are operated in the conventional mode, their execution
authority is determined as system registers with access authority of the SV privilege. For details, see
Section 3, Register Set.

Note 2. In this CPU, coprocessor system registers whose access authority is HV privilege are not defined.

Note 3. Operations on some system registers are handled as operations on undefined registers that require the SV
privilege for accessing. For details, see Section 3, Register Set.

Table 2.3 Operation When Access Permission to System Registers is Violated

System Register HVCFG PSWH PSW

Whether Instructions can be Executed
Access
Permission Classification HVE GM UM CU2 CU1 CU0

HV privilege*1 *2 0 — 0 — — — Accessible*3

0 — 1 — — — Inaccessible (PIE exception occurs)*3

1 0 0 — — — Accessible

1 0 1 — — — Inaccessible (PIE exception occurs)

1 1 0 — — — Inaccessible (PIE exception occurs)

1 1 1 — — — Inaccessible (PIE exception occurs)

SV privilege Coprocessor 0
Permission

— — 0 — — 0 Inaccessible (UCPOP exception occurs)

— — 0 — — 1 Accessible

— — 1 — — 0 Inaccessible (UCPOP exception occurs)

— — 1 — — 1 Inaccessible (PIE exception occurs)

Coprocessor 1
Permission

— — 0 — 0 — Inaccessible (UCPOP exception occurs)

— — 0 — 1 — Accessible

— — 1 — 0 — Inaccessible (UCPOP exception occurs)

— — 1 — 1 — Inaccessible (PIE exception occurs)

Coprocessor 2
Permission

— — 0 0 — — Inaccessible (UCPOP exception occurs)

— — 0 1 — — Accessible

— — 1 0 — — Inaccessible (UCPOP exception occurs)

— — 1 1 — — Inaccessible (PIE exception occurs)

Other than above — — 0 — — — Accessible

— — 1 — — — Inaccessible (PIE exception occurs)

UM authority Coprocessor 0
Permission

— — — — — 0 Inaccessible (UCPOP exception occurs)

— — — — — 1 Accessible

Coprocessor 1
Permission

— — — — 0 — Inaccessible (UCPOP exception occurs)

— — — — 1 — Accessible

Coprocessor 2
Permission

— — — 0 — — Inaccessible (UCPOP exception occurs)

— — — 1 — — Accessible

Other than above — — — — — — Accessible

RH850G4MH Virtualization Section 2 Processor Model

R01UH0865EJ0140 Rev.1.40 Page 23 of 200
August 31, 2023

2.1.4 Halt State by a HALT Instruction

See the "CPU" section in the hardware manual of the product used.

2.1.5 Temporary Halt State by a SNOOZE instruction

See the "CPU" section in the hardware manual of the product used.

RH850G4MH Virtualization Section 2 Processor Model

R01UH0865EJ0140 Rev.1.40 Page 24 of 200
August 31, 2023

2.2 Instruction Execution

The instruction execution flow of this CPU is shown below.

Figure 2.2 Instruction Execution Flow

命令の実行開始

Reflect operation results
(register/memory/PC update, etc.)

Exception transition processing
(register/PC update, etc.)

Execute operation

No

No

Yes

Yes (MAE/MDP/FPE/FXE)

Yes (terminating exception)

No (PIE/UCPOP)

Yes (pending exception)

Execution of an instruction starts

Execution of
the next instruction starts

Are the terminating
exception acknowledgment

conditions satisfied?

Is the execution privilege
of the instruction satisfied?

Is it a pending exception?

No

Yes (MIP/SYSERR)

No

Has a resumable
exception occurred during

the execution of
the operation?

Reflect operation results
Exception transition processing

(register/PC update, etc.)

Has a resumable exception
occurred during the acquisition of

the instruction code?

RH850G4MH Virtualization Section 2 Processor Model

R01UH0865EJ0140 Rev.1.40 Page 25 of 200
August 31, 2023

When terminating exceptions can be acknowledged, if an exception is detected during the acquisition

of instruction code, or if the execution privilege of the instruction is not satisfied, an exception occurs

before the instruction is executed. If a resumable exception occurs while the CPU is executing the

operation, it interrupts the execution of the operation and acknowledges the exception. In these cases,

the result of instruction operation is, in principle, not reflected in registers or memory and the CPU

retains its state that is established before executing the instruction.*1

For a pending exception such as a software exception, the exception is acknowledged after the result of

instruction execution has been reflected.

For details of the types of exceptions, refer to Section 2.3, Exceptions and Interrupts.

Note 1. If an exception is acknowledged during the execution of the following instructions, intermediate
results may be applied to memory or general-purpose registers. However, SP/EP is not
updated.

 PREPARE, DISPOSE, PUSHSP, POPSP, STM.MP, LDM.MP, STM.GSR, LDM.GSR

RH850G4MH Virtualization Section 2 Processor Model

R01UH0865EJ0140 Rev.1.40 Page 26 of 200
August 31, 2023

2.3 Exceptions and Interrupts

Exceptions and interrupts are exceptional events that cause the branch from the executing program to
another program. Exceptions and interrupts are triggered by various causes, including interrupts from
peripherals and program errors.
For details, see Section 4, Exceptions and Interrupts.

2.3.1 Types of Exceptions

The exceptions of this CPU are divided into the following three types according to the purpose of the

exceptions.

 Terminating exception

 Resumable exception

 Pending exception

Also, exceptions classified into these types are further classified into the following two according to the

restricted operating mode in which the exception handler is processed.

 Exceptions handled in Host mode

 Exceptions handled in Guest mode

(1) Terminating Exception

See the "CPU" section in the hardware manual of the product used.

(2) Resumable Exception

See the "CPU" section in the hardware manual of the product used.

(3) Pending Exception

See the "CPU" section in the hardware manual of the product used.

(4) Exceptions handled in Host mode

The exception handler is handled in Host mode. There are cases for which the exception cause belongs

to the host mode and cases for which the processing is specified to be performed in Host mode but the

exception causes belong to guest mode. Exceptions that belong to the host mode are the resumable

exceptions which are caused by instructions executed in host mode, the pending exceptions, and the

terminating exceptions which occur regardless of restricted operating mode. Exceptions that are

handled in Host mode although the exception cause belongs to Guest mode are those that occur when

an HVTRAP instruction is executed in guest mode or if MIP, MDP, or SYSERR exception occurs when

transition to the host mode is specified by the corresponding bit in GMCFG.

(5) Exceptions handled in Guest mode

The exception handler is handled in Guest mode. This exception applies to the case for which the

exception cause belongs to Guest mode or to the case in which MIP, MDP, or SYSERR exception

occurs when processing in guest mode is specified by the corresponding bit in GMCFG.

2.3.2 Exception Level

See the "CPU" section in the hardware manual of the product used.

RH850G4MH Virtualization Section 2 Processor Model

R01UH0865EJ0140 Rev.1.40 Page 27 of 200
August 31, 2023

2.4 Coprocessors

In this CPU, single-precision and double-precision floating-point unit (FPU) and extended floating

point operation unit (FXU) are incorporated. Note that these coprocessors may not be available

depending on the specification of the product.

2.4.1 Coprocessor Use Permissions

To execute a coprocessor instruction, permission to use the corresponding coprocessor instruction is

necessary. Coprocessor use permissions are specified by the PSW.CU2 to PSW.CU0 bits, and, if an

attempt is made to execute an instruction for which the corresponding coprocessor use permission is

cleared to 0, a coprocessor unusable exception (UCPOP) occurs.

In the following cases, the values of the PSW.CU2 to CU0 bits are fixed at 0 and cannot be changed.

 Coprocessor functions are not incorporated in the product

 Coprocessor functions are made unavailable according to the functions of the product

 In guest mode, GMCFG.GCU2-0 is cleared (0), making it impossible to change GMPSW.CU2-0.

2.4.2 Correspondences between Coprocessor Use Permissions and
Coprocessors

See the "CPU" section in the hardware manual of the product used.

2.4.3 Coprocessor Unusable Exceptions

See the "CPU" section in the hardware manual of the product used.

2.4.4 System Registers

See the "CPU" section in the hardware manual of the product used.

RH850G4MH Virtualization Section 2 Processor Model

R01UH0865EJ0140 Rev.1.40 Page 28 of 200
August 31, 2023

2.5 Registers

In this CPU, the program registers (general-purpose registers and the program counter PC) and system

registers for controlling the status and storing exception information are defined.

2.5.1 Program Registers

The program registers include general-purpose registers (r0 to r31) and the program counter (PC).

In this CPU, the program registers are shared between Host mode and Guest mode, or between Guest

partition. Therefore, when changing the restricted operating mode or changing Guest partition, proper

replacement of program registers by software is required. For details, see Section 4.1.7, Context

switching.

Note: Access to the registers with UM (user mode) access permission is always allowed.

For details about program registers, see Section 3.1, Program Registers.

2.5.2 System Registers

System registers are placed in dedicated address spaces defined based on two types of address

information: selection ID and register number. Up to 32 selection ID can be defined, and one selection

ID includes up to 32 system registers. Therefore, up to 1024 system registers can be defined in the

address spaces for system registers. Basically this CPU allocates selection ID as shown below:

For details about system registers, see the relevant sections in Section 3, Register Set.

In this CPU, there are system registers that are shared between Host mode and Guest mode, and system

registers that are multiplexed. For details, see Section 4.1.7, Context switching. For multiplexed

system registers, corresponding registers are automatically switched when the restricted operating

mode is changed. On the other hand, when changing Guest partition, it is necessary to properly replace

the registers by the software. For details, see Section 2.5.7, System Register Multiplexing.

Table 2.4 Program Registers

Category Access Permission Name

Program counter UM PC

General-purpose registers UM r0 to r31

Selection ID 0 to 3, 10: Registers related to basic functions

Selection ID 4 and 5: Registers related to the memory management function

Selection ID 9: Guest context registers

Selection ID 11, 14, 15 Registers related to counter function

Selection ID 12, 13: Registers related to this CPU specific hardware functions

Other ID: Reserved for future expansion of CPUs compatible with this CPU

RH850G4MH Virtualization Section 2 Processor Model

R01UH0865EJ0140 Rev.1.40 Page 29 of 200
August 31, 2023

2.5.3 Register Updating

See the "CPU" section in the hardware manual of the product used.

(1) LDSR and STSR

See the "CPU" section in the hardware manual of the product used.

Figure 2.3 Flow of Executing the LDSR and STSR Instructions

Execution of an instruction starts

Are the terminating
except ion acknowledgment

conditions satisfied?

Reflect operation results
(register/memory/
PC update, etc.)

Execution of the next
instruction starts

Exception transition processing
(register/PC update, etc.)

Execute register access
The read result is undefined

or write is ignored

Yes (any exception)

No

Is this an undefined
register? (or is it handled

as undefined?)

No

Execute operation

Is the access permission
CUn, and PSW.CUn = 0?

Yes (UCPOP exception)

No

Is the access permission SV
and PSW.UM = 1?

Yes (PIE exception)

Yes

No

SVLOCK.SVL = 1 and
write access?

Also, is the register subject
to lock?

No

Yes

RH850G4MH Virtualization Section 2 Processor Model

R01UH0865EJ0140 Rev.1.40 Page 30 of 200
August 31, 2023

(2) Changing the access authority of system register

Table 2.5 shows a list of system registers whose access authority is changed according to the state of

the virtualization operating mode.

The setting of these system registers affects CPU operation, but they are not multiplexed. Also, when

the virtualization operating mode is virtualization mode, SV privilege can be acquired on the guest

partition side. Therefore, if these system registers are modified by the management software running

on Guest partition, the virtualization software operating in host mode and the operation of other Guest

partitions are affected. To prevent this, the access authority of these system registers is raised to HV

privilege when the virtualization operating mode is virtualization mode. For multiplexing of the system

registers, see Section 2.5.7, System Register Multiplexing.

Table 2.5 System registers whose access authority is changed according to the state of
the virtualization operating mode (1/2)

Register number
(regID, selID) Name

Access authority

Description

Conventional mode Virtualization mode

Writing Reading Writing Reading

SR21,0 SNZCFG SV SV HV HV

SR17,5 MPBK SV SV HV HV

SR24,5 MPID0 SV SV HV*1 SV*1

SR25,5 MPID1 SV SV HV*1 SV*1

SR26,5 MPID2 SV SV HV*1 SV*1

SR27,5 MPID3 SV SV HV*1 SV*1

SR28,5 MPID4 SV SV HV*1 SV*1

SR29,5 MPID5 SV SV HV*1 SV*1

SR30,5 MPID6 SV SV HV*1 SV*1

SR31,5 MPID7 SV SV HV*1 SV*1

SR0,11 TSCOUNTL SV*2 UM*2 HV*1 UM*2

SR1,11 TSCOUNTH SV*2 UM*2 HV*1 UM*2

SR2,11 TSCTRL SV SV HV HV

*3 *3 SV SV HV HV

SR9, 11 PMGMCTRL SV SV HV HV

SR0,14 PMCTRL0 SV*4 SV*4 HV *4,*5 HV *4,*5

SR1,14 PMCTRL1 SV*4 SV*4 HV *4,*5 HV *4,*5

SR2,14 PMCTRL2 SV*4 SV*4 HV *4,*5 HV *4,*5

SR3,14 PMCTRL3 SV*4 SV*4 HV *4,*5 HV *4,*5

SR4,14 PMCTRL4 SV*4 SV*4 HV *4,*5 HV *4,*5

SR5,14 PMCTRL5 SV*4 SV*4 HV *4,*5 HV *4,*5

SR6,14 PMCTRL6 SV*4 SV*4 HV *4,*5 HV *4,*5

SR7,14 PMCTRL7 SV*4 SV*4 HV *4,*5 HV *4,*5

SR16,14 PMCOUNT0 SV*4 SV*4 HV *4,*5 HV *4,*5

SR17,14 PMCOUNT1 SV*4 SV*4 HV *4,*5 HV *4,*5

SR18,14 PMCOUNT2 SV*4 SV*4 HV *4,*5 HV *4,*5

SR19,14 PMCOUNT3 SV*4 SV*4 HV *4,*5 HV *4,*5

SR20,14 PMCOUNT4 SV*4 SV*4 HV *4,*5 HV *4,*5

SR21,14 PMCOUNT5 SV*4 SV*4 HV *4,*5 HV *4,*5

SR22,14 PMCOUNT6 SV*4 SV*4 HV *4,*5 HV *4,*5

SR23,14 PMCOUNT7 SV*4 SV*4 HV *4,*5 HV *4,*5

RH850G4MH Virtualization Section 2 Processor Model

R01UH0865EJ0140 Rev.1.40 Page 31 of 200
August 31, 2023

Note 1. Reading of these system registers is possible with SV privilege.

Note 2. Reading of these system registers is independent of the state of the virtualization operating mode and is
possible with UM authority. Only writing authority changes.

Note 3. All system registers whose selID is 12 or 13, except LSCFG (regID = 2, selID = 12), L1RCFG (regID = 12,
selID = 13) are applicable.

Note 4. Access authority can be changed to UM by PMUMCTRL setting.

Note 5. Access authority can be changed to SV by PMGMCTRL setting.

SR0,15 PMSUBCND0 SV*4 SV*4 HV *4,*5 HV *4,*5

SR1,15 PMSUBCND1 SV*4 SV*4 HV *4,*5 HV *4,*5

SR2,15 PMSUBCND2 SV*4 SV*4 HV *4,*5 HV *4,*5

SR3,15 PMSUBCND3 SV*4 SV*4 HV *4,*5 HV *4,*5

SR4,15 PMSUBCND4 SV*4 SV*4 HV *4,*5 HV *4,*5

SR5,15 PMSUBCND5 SV*4 SV*4 HV *4,*5 HV *4,*5

SR6,15 PMSUBCND6 SV*4 SV*4 HV *4,*5 HV *4,*5

SR7,15 PMSUBCND7 SV*4 SV*4 HV *4,*5 HV *4,*5

Table 2.5 System registers whose access authority is changed according to the state of
the virtualization operating mode (2/2)

Register number
(regID, selID) Name

Access authority

Description

Conventional mode Virtualization mode

Writing Reading Writing Reading

RH850G4MH Virtualization Section 2 Processor Model

R01UH0865EJ0140 Rev.1.40 Page 32 of 200
August 31, 2023

2.5.4 Accessing Undefined Registers

See the "CPU" section in the hardware manual of the product used.

2.5.5 Supervisor Lock Setting

See the "CPU" section in the hardware manual of the product used.

2.5.6 Change in Register Model

When the state of the virtualization operating mode and the virtualization operating mode are the

virtualization mode, the register model to be referenced changes according to the state of the restricted

operating mode. For multiplexing of the system registers, see Section 2.5.7, System Register

Multiplexing.

Note 1. MPU Control Registers also include system registers that have HV privilege as access authority in virtualization mode.

Note 2. Instruction Cache Control Registers also include system registers that have HV privilege as access authority in virtualization
mode.

Note 3. Count Control Registers also include system registers that have HV privilege as access authority in virtualization mode.

Note 4. Other Registers also include system registers that have HV privilege as access authority in virtualization mode.

Figure 2.4 Register model in conventional mode

:

GR0
GR1
GR2

GR31

PC

Program Registers

CTPC
CTPSW
CTBPUser Authority

MCTL

PID

:

WR0
WR1
WR2

WR31

Supervisor Privilege

FXU Registers

FPU Control Registers

FPSR, etc.

FXU Control Registers

FXSR, etc.

Register Bank
Control Registers

RBCR0, etc.

MPU Control Registers

MPCFG, etc.

Interrupt
Control Registers

IMSR, etc.

RBASE

PEID

EIPC
EIPSW

EIIC

FEPC
FEPSW

FEIC
EIWR FEWR

SPID
SPIDLIST

SVLOCK

PSW

EBASE

INTBP

MPM

MEI
MEA

PLMR
INTCFG

BMID

SCCFG
SCBP

Instruction Cache
Control Registers

ICCTRL, etc.

Count Control Registers

PMUMCTRL, etc.
SNZCFG Other Registers

LSCFG, etc.

RH850G4MH Virtualization Section 2 Processor Model

R01UH0865EJ0140 Rev.1.40 Page 33 of 200
August 31, 2023

Note 1. In Host mode, the host context register is selected as the multiplexed system registers indicated by the dotted line. Access to
the system registers indicated by the dotted line is made to the host context registers.

Figure 2.5 Register model in Host mode

:

GR0
GR1
GR2

GR31

PC

Program Registers

CTPC
CTPSW
CTBPUser Authority

MCTL

PID

:

WR0
WR1
WR2

WR31

Supervisor Privilege

FXU Registers

FPU Control Registers

FPSR, etc.
FXU Control Registers

FXSR, etc.

Register Bank
Control Registers

RBCR0, etc.

MPU Control Registers

MPCFG, etc.

Interrupt
Control Registers

IMSR, etc.

Hypervisor Privilege

HVCFG

RBASE

PEID

EIPC
EIPSW

EIIC

FEPC
FEPSW

FEIC
EIWR FEWR

SPID
SPIDLIST

SVLOCK

PSW

EBASE

INTBP

MPM

MEI
MEA

PLMR
INTCFG

BMID

SCCFG
SCBP

Instruction Cache
Control Registers

ICCFG, etc.

HMPEID

HMEIPC
HMEIPSW

HMEIIC

HMFEPC
HMFEPSW

HMFEIC
HMEIWR HMFEWR

HMSPID
HMSPIDLIST

HMSVLOCK

HMPSW

HMEBASE

HMINTBP

HMMPM

HMMEI
HMMEA

HMPLMR
HMINTCFG

GMPEID

GMEIPC
GMEIPSW

GMEIIC

GMFEPC
GMFEPSW

GMFEIC
GMEIWR GMFEWR

GMSPID
GMSPIDLIST

GMSVLOCK

GMPSW

GMEBASE

GMINTBP

GMMPM

GMMEI
GMMEA

GMPLMR
GMINTCFG

MPU Control Registers

MPID0, etc.

GMCFG
HVSB
PSWH

Count Control Registers

TSCTRL, etc.

Count Control Registers

PMUMCTRL, etc.

Host Context Registers Guest Context Registers

EIPSWH
FEPSWH

SNZCFG

Instruction Cache
Control Registers

ICCTRL, etc.

Select

Other Registers

LSCFG, etc.

Other Registers

LSTEST0, etc.

RH850G4MH Virtualization Section 2 Processor Model

R01UH0865EJ0140 Rev.1.40 Page 34 of 200
August 31, 2023

Note 1. In Guest mode, since the CPU can not acquire the HV privilege, it is impossible to access the system registers whose access
authority is HV privilege.

Note 2. In Guest mode, the guest context registers are selected as the multiplexed system registers indicated by the dotted line.
Access to the system registers indicated by the dotted line is made to the corresponding guest context registers. In this case,
the system registers access authority is the access authority to the system registers indicated by the dotted line. But, when
selID = 9 is specified with the LDSR or STSR instruction and the guest context registers are directly accessed, the access
authority is HV privilege.

Figure 2.6 Register model in Guest mode

:

GR0
GR1
GR2

GR31

PC

Program Registers

CTPC
CTPSW
CTBPUser Authority

MCTL

PID

:

WR0
WR1
WR2

WR31

Supervisor Privilege

FXU Registers

FPU Control Registers

FPSR, etc.
FXU Control Registers

FXSR, etc.

Register Bank
Control Registers

RBCR0, etc.

MPU Control Registers

MPCFG, etc.

Interrupt
Control Registers

IMSR, etc.

Hypervisor Privilege

HVCFG

RBASE

PEID

EIPC
EIPSW

EIIC

FEPC
FEPSW

FEIC
EIWR FEWR

SPID
SPIDLIST

SVLOCK

PSW

EBASE

INTBP

MPM

MEI
MEA

PLMR
INTCFG

BMID

SCCFG
SCBP

Instruction Cache
Control Registers

ICCFG, etc.

HMPEID

HMEIPC
HMEIPSW

HMEIIC

HMFEPC
HMFEPSW

HMFEIC
HMEIWR HMFEWR

HMSPID
HMSPIDLIST

HMSVLOCK

HMPSW

HMEBASE

HMINTBP

HMMPM

HMMEI
HMMEA

HMPLMR
HMINTCFG

GMPEID

GMEIPC
GMEIPSW

GMEIIC

GMFEPC
GMFEPSW

GMFEIC
GMEIWR GMFEWR

GMSPID
GMSPIDLIST

GMSVLOCK

GMPSW

GMEBASE

GMINTBP

GMMPM

GMMEI
GMMEA

GMPLMR
GMINTCFG

GMCFG
HVSB
PSWH

Count Control Registers

PMUMCTRL, etc.

Host Context Registers Guest Context Registers

EIPSWH
FEPSWH

MPU Control Registers

MPID0, etc.

Count Control Registers

TSCTRL, etc.SNZCFG

Instruction Cache
Control Registers

ICCTRL, etc.

Other Registers

LSCFG, etc.

Other Registers

LSTEST0, etc.

RH850G4MH Virtualization Section 2 Processor Model

R01UH0865EJ0140 Rev.1.40 Page 35 of 200
August 31, 2023

2.5.7 System Register Multiplexing

In Guest mode, in the case an interrupt (EIINTn) to be processed in Host mode is accepted during

operation, or in the case a memory protection exception occurred while operating in Guest mode but

the exception handler was set to be processed in Host mode by GMCFG, mainly an exception with a

change from Guest mode to Host mode may occur irrespective of the intention of the running software.

In order to efficiently perform these exception acceptance and exception handling, this CPU

incorporates system registers related to exception acceptance and exception handling separately for

Host mode operation and Guest mode operation. This is called System Register Multiplexing. In

System Register Multiplexing, when referring to or updating the original system registers, among the

system registers multiplexed and mounted, the register corresponding to the state of restricted

operating mode is automatically selected by hardware.

Among the system registers multiplexed and mounted, the set of system registers used during Host

mode operation is called the host context register. The set of system registers used during Guest mode

operation is called Guest context register.

The host context registers and guest context registers are used exclusively because they are

automatically selected according to the state of the restricted operating mode.

This selection is not only explicitly done for system register operation by the LDSR instruction and

STSR instruction but is also done for implicit use of system registers for instruction execution,

information storage at the time of exception occurrence and so on; it is done whenever the system

registers are used.

Also, when the restricted operating mode is Host mode, the value of the guest context registers do not

affect the operation of the CPU. When the restricted operating mode is Guest mode, the value of the

host context registers do not affect the operation of the CPU.

Note that, when the restricted operating mode is Host mode, each system register belonging to the

guest context registers, uses the registers number (regID, selID) different from the original system

registers to enable operation by LDSR instruction and STSR instruction. On the other hand, when the

restricted operating mode is Guest mode, operation of each system register belonging to the host

context register is impossible.

When virtualization software switches guest partitions, the guest context registers must be replaced. At

that time, the virtualization software is in Host mode when executing LDSR or STSR instructions and

switching the guest context registers by using the register number for operating the guest context

registers is possible. For details on replacing the guest context register, see Section 4.1.7, Context

switching.

RH850G4MH Virtualization Section 2 Processor Model

R01UH0865EJ0140 Rev.1.40 Page 36 of 200
August 31, 2023

Table 2.6 shows a list of multiplexed system registers.

Note 1. It is the register number for operating the original system registers.

Note 2. When the restricted operating mode is Host mode, it is the register number for operating each system
register belonging to the guest context registers.

Note 3. The original system register and the corresponding host context register use the same resources.

Table 2.6 List of multiplexed system registers

Register number
(regID, selID)*1

Name of original system
register

Name of host context
register*3

Name of guest context
register

Register number
(regID, selID)*2

SR 0, 0 EIPC HMEIPC GMEIPC SR 0, 9

SR 1, 0 EIPSW HMEIPSW GMEIPSW SR 1, 9

SR 2, 0 FEPC HMFEPC GMFEPC SR 2, 9

SR 3, 0 FEPSW HMFEPSW GMFEPSW SR 3, 9

SR 5, 0 PSW HMPSW GMPSW SR 5, 9

SR13, 0 EIIC HMEIIC GMEIIC SR13, 9

SR14, 0 FEIC HMFEIC GMFEIC SR14, 9

SR28, 0 EIWR HMEIWR GMEIWR SR28, 9

SR29, 0 FEWR HMFEWR GMFEWR SR29, 9

SR 0, 1 SPID HMSPID GMSPID SR16, 9

SR 1, 1 SPIDLIST HMSPIDLIST GMSPIDLIST SR17, 9

SR 3, 1 EBASE HMEBASE GMEBASE SR19, 9

SR 4, 1 INTBP HMINTBP GMINTBP SR20, 9

SR 8, 1 SVLOCK HMSVLOCK GMSVLOCK SR24, 9

SR 0, 2 PEID HMPEID GMPEID SR30, 9

SR 6, 2 MEA HMMEA GMMEA SR6, 9

SR 8, 2 MEI HMMEI GMMEI SR8, 9

SR13, 2 INTCFG HMINTCFG GMINTCFG SR21, 9

SR14, 2 PLMR HMPLMR GMPLMR SR22, 9

SR 0, 5 MPM HMMPM GMMPM SR25, 9

RH850G4MH Virtualization Section 2 Processor Model

R01UH0865EJ0140 Rev.1.40 Page 37 of 200
August 31, 2023

2.6 Data Types

2.6.1 Data Formats

See the "CPU" section in the hardware manual of the product used.

2.6.2 Data Representation

See the "CPU" section in the hardware manual of the product used.

2.6.3 Data Alignment

In this CPU, misaligned data allocation is inhibited. When the result of address calculation is a

misaligned address, a misalignment exception (MAE) occurs.

Misaligned access indicates the accesses to the data size with the addresses listed below:

For the double-word format only, a misaligned access exception does not occur when data is placed at

the word boundary but not at the double-word boundary, and data can be normally accessed in double

word.

CAUTIONS

1. The following instructions might possibly cause misaligned access. For details,

see the relevant descriptions in the RH850G4MH User’s Manual: Software.

 LD.H, LD.HU, LD.W, LD.DW

 SLD.H, SLD.HU, SLD.W

 ST.H, ST.W, ST.DW

 SST.H, SST.W

 LDL.HU, LDL.W, STC.H, STC.W, CAXI

 LDV.W, LDV.DW, LDV.QW, STV.W, STV.DW, STV.QW

 LDVZ.H4, STVZ.H4

2. The following instructions do not cause misaligned access, because the address

is rounded according to the instruction specification when a misaligned address

is specified.

 PREPARE, DISPOSE

 PUSHSP, POPSP

 STM.MP, LDM.MP

 STM.GSR, LDM.GSR

 Halfword size: The access to an address that is not at the halfword boundary
(where LSB of the address = 0)

 Word size: The access to an address that is not at the word boundary
(where the lowest two bits of the address = 0).

 Double-word size: The access to an address that is not at the double-word boundary
(where the lowest three bits of the address = 0).

 Quad-word size: The access to an address that is not at the quad-word boundary
(where the lowest four bits of the address = 0)

RH850G4MH Virtualization Section 2 Processor Model

R01UH0865EJ0140 Rev.1.40 Page 38 of 200
August 31, 2023

Note 1. No misalignment exception (MAE) occurs for LD.DW and ST.DW instructions. For details,
see LD.DW and ST.DW in the RH850G4MH User's Manual: Software. An MAE occurs for
other double-word access instructions.

Figure 2.7 Example of Data Placement for Misaligned Access (1/2)

(n+0)H

(n+1)H
 Byte boundary

 Byte boundary

 Byte boundary

Aligned access

(a) Byte Access

(2n+0)H

(2n+1)H

(2n+2)H

(2n+3)H
 Halfword boundary

 Halfword boundary

 Halfword boundary

Aligned access Misaligned access

(b) Halfword Access

(4n+0)H

(4n+1)H

(4n+2)H

(4n+3)H

(4n+4)H
 Word boundary

(4n+5)H

(4n+6)H

(4n+7)H

 Word boundary

 Word boundary

Aligned access Misaligned access

(c) Word Access

(d) Double-word Access

(8n+0)H
(8n+1)H
(8n+2)H
(8n+3)H
(8n+4)H
(8n+5)H
(8n+6)H
(8n+7)H

 Double-word boundary/Word boundary

Aligned access

(8n+8)H
(8n+9)H
(8n+10)H
(8n+11)H
(8n+12)H
(8n+13)H
(8n+14)H
(8n+15)H

Misaligned access

 Double-word boundary/Word boundary

 Word boundary

 Double-word boundary/Word boundary

 Word boundary

Misaligned access
(Word boundary*1)

RH850G4MH Virtualization Section 2 Processor Model

R01UH0865EJ0140 Rev.1.40 Page 39 of 200
August 31, 2023

Figure 2.7 Example of Data Placement for Misaligned Access (2/2)

(e) Quad-word Access

(16n+0)H
(16n+1)H
(16n+2)H
(16n+3)H
(16n+4)H
(16n+5)H
(16n+6)H
(16n+7)H

 Quad-word boundary

Aligned access

(16n+8)H
(16n+9)H

(16n+10)H
(16n+11)H
(16n+12)H
(16n+13)H
(16n+14)H
(16n+15)H

 Quad-word boundary

Misaligned access

(16n+16)H
(16n+17)H
(16n+18)H
(16n+19)H
(16n+20)H
(16n+21)H
(16n+22)H
(16n+23)H
(16n+24)H
(16n+25)H
(16n+26)H
(16n+27)H
(16n+28)H
(16n+29)H
(16n+30)H
(16n+31)H

 Quad-word boundary

RH850G4MH Virtualization Section 2 Processor Model

R01UH0865EJ0140 Rev.1.40 Page 40 of 200
August 31, 2023

2.7 Address Space

See the "CPU" section in the hardware manual of the product used.

2.7.1 Memory Map

See the "CPU" section in the hardware manual of the product used.

2.7.2 Instruction Addressing

See the "CPU" section in the hardware manual of the product used.

2.7.3 Data Addressing

The following methods can be used to access the target registers or memory when executing an

instruction.

If the result of address calculation exceeds the positive maximum value FFFF FFFFH by addition, it is

wrapped around to 0000 0000H. If the result of address calculation falls below the positive minimum

value 0000 0000H by subtraction, it is wrapped around to FFFF FFFFH.

(1) Relative Addressing (PC Relative)

See the "CPU" section in the hardware manual of the product used.

(2) Register Addressing (Register Indirect)

See the "CPU" section in the hardware manual of the product used.

(3) Based Addressing

See the "CPU" section in the hardware manual of the product used.

(4) Bit Addressing

See the "CPU" section in the hardware manual of the product used.

(5) Post Index Increment/Decrement Addressing

See the "CPU" section in the hardware manual of the product used.

(6) Other Addressing

The target memory is accessed using a value specified by an instruction as the operand address. How a

value is specified is explained in [Operation] or [Description] of each instruction.

The SWITCH, CALLT, SYSCALL, PREPARE, DISPOSE, PUSHSP, POPSP, STM.MP, LDM.MP,

STM.GSR, and LDM.GSR are used with this type of addressing.

RH850G4MH Virtualization Section 2 Processor Model

R01UH0865EJ0140 Rev.1.40 Page 41 of 200
August 31, 2023

2.8 Execution Timing of a Store Instruction

See the "CPU" section in the hardware manual of the product used.

2.9 Memory Ordering

This CPU guarantees that memories are accessed in the programmed order. However, in the system that

incorporates multiple bus masters such as the bus system with DMA or multi-core, the order of

accesses to memories needs to be considered. For these cases, see Section 7.1, Synchronization

Processing.

Also in the state change of the restricted operating mode, when accepting of the exception or executing

of the return instruction, synchronization processing similar to the SYNCM instruction is performed.

Therefore, the memory accesses performed in Host mode and memory accesses performed in Guest

mode are not mixed in the bus system. For details, see Section 2.1.2, CPU Operating Mode

Transition and Section 7.1, Synchronization Processing.

2.10 Acquiring the CPU Number

This CPU provides a method for identifying CPUs in a multi-processor system.

In the multi-processor configuration, you can identify which CPU core is running a program by

referencing the PEID register. A unique number within a multi-processor system is assigned to the

PEID register according to the specification of the product.

2.11 System Protection Identifier (SPID)

In this CPU, memory resources and peripheral devices are managed by system protection groups. By

specifying the group to which the program being executed belongs, you can assign accessible memory

resources and peripheral devices to the program.

The program being executed belongs to the group specified by the SPID, and whether the memory

resources and peripheral devices are accessible is decided using the SPID. A value can be set to the

SPID register by the supervisor.

CAUTION

According to the value of the SPID, how operations are assigned to memory resources

and peripheral devices is determined by the specifications of the product.

RH850G4MH Virtualization Section 2 Processor Model

R01UH0865EJ0140 Rev.1.40 Page 42 of 200
August 31, 2023

2.12 Timestamp Counter

This CPU has a 64-bit timestamp counter. It can measure a long period of time, and so can be used to

obtain specific information for time identification.

Since the timestamp counter is allocated to system registers, it can be accessed quickly by using a

LDSR/STSR instruction.

If an overflow occurs during counting operation, no exception will occur.

2.12.1 How to Operate the Timestamp Counter

The value of the timestamp counter is initialized to 0 by a reset. Therefore, if you want to retain the

value of the counter across a reset, then before the reset, save the value of the counter in a memory that

is not initialized by the reset, restore the value to the counter after the reset, and restart counting.

The counter is 64-bit width, so the counter consists of two 32-bit system registers, TSCOUNTL and

TSCOUNTH. Both registers need to be accessed by using LDSR/STSR instructions.

When the counter is not running (the value of the TSCTRL.CEN bit is 0), no special care is needed to

access the two registers.

However, if the counter is running (the value of the TSCTRL.CEN bit is 1), it is not recommended to

update the counter by using LDSR instructions. In this case, the timing of update of the counter is not

guaranteed. It is recommended to update the counter when it is not running.

Also, when reading the value of the counter by using STSR instructions while it is running, it is

recommended to follow the procedure below.

Even if the CPU core is not in operation after the execution of a HALT or SNOOZE instruction, the

timestamp counter continues counting.

TSCNTRD:

 STSR 1, r21, 11 – Read the upper side of the counter

 STSR 0, r20, 11 – Read the lower side of the counter

 STSR 1, r22, 11 – Read again the upper side of the counter

 CMP r21, r22 – Compare the two values read from the upper side of the counter

 BNE TSCNTRD – If they are not identical, a carry has occurred. Read again.

RH850G4MH Virtualization Section 2 Processor Model

R01UH0865EJ0140 Rev.1.40 Page 43 of 200
August 31, 2023

2.13 Performance Measurement Function

This CPU has the performance measurement function. The performance measurement function can

measure the performance of programs executed, the effects of interrupts generated during operation,

etc. by counting the occurrence of the event specified by the PMCTRLn.CND bit.

The system registers used by the performance measurement function can be accessed only in

supervisor mode after a reset. However, it can be accessed in user mode by changing the setting of the

PMUMCTRL register.

The performance measurement function itself works even in user mode regardless of the setting of the

PMUMCTRL register. Even if all performance measurement channels are made inaccessible in user

mode by using the PMUMCTRL register, configuration in supervisor mode allows performance

measurement during operation in user mode.

This CPU has eight channels of system register set for the performance measurement function.

2.14 Debug Target Limitation

Debugger software, which provides a CPU debug function, is assumed to be developed separately from

Host mode management software (hypervisor). Therefore, the DBGEN register is provided as a

function used by a hypervisor to notify debugger software of debug target operating mode limitations

when the virtualization support function is enabled.

While DBGEN register is a system register related to the debugging function, the access authority of

the register is HV privilege and the register can be updated by a hypervisor. The DBGEN register is

assumed to be set to appropriate values by a hypervisor which knows full details of all virtual machines

to operate before a transition to Guest mode and the start of operation of the virtual machines.

To update the DBGEN values, be sure to use the following instruction flow.

The setting change may not be reflected for the SYNCI instruction in the above instruction flow. Do

not set a breakpoint in the SYNCI instruction. The DBGEN setting change is surely reflected in the

instructions following the SYNCI instruction.

SYNCM // Waits for the completion of all previous instructions.

LDSR r20, 0, 3 // Changes the DBGEN setting.

SYNCI // Reflects the DBGEN setting to the instruction fetch side.

RH850G4MH Virtualization Section 3 Register Set

R01UH0865EJ0140 Rev.1.40 Page 44 of 200
August 31, 2023

Section 3 Register Set

This chapter describes the program register and system register mounted on this CPU.

In this section, only changes related to addition of virtualization support function are described. For the

registers whose specifications have not been changed, see the "CPU" section in the hardware manual of

the product used.

Some of the system registers are separately mounted in Host mode operation and Guest mode

operation. This is called System Registers Multiplexing. Among the system registers multiplexed, the

set of system registers used during Host mode operation is called the host context register.

In System Register Multiplexing, when referring to or updating the conventional system registers,

among the system registers multiplexed, the registers corresponding to the state of the restricted

operating mode is automatically selected by the hardware. For details on system registers multiplexing,

see Section 2.5.7, System Register Multiplexing.

In addition, access authority of some registers changes according to the state of virtualization operating

mode.

For details, see Section 2.5.3 (2) Table 2.5, System registers whose access authority is

changed according to the state of the virtualization operating mode.

3.1 Program Registers

See the "CPU" section in the hardware manual of the product used.

RH850G4MH Virtualization Section 3 Register Set

R01UH0865EJ0140 Rev.1.40 Page 45 of 200
August 31, 2023

3.2 Basic System Registers

In this section, the basic system registers whose specifications have been changed are described. For

registers whose specifications have not been changed, see the "CPU" section in the hardware manual of

the product used.

Note 1. The access permission differs depending on the bit. For details, see the "CPU" section in the hardware
manual of the product used.

Table 3.1 Basic System Registers

Register Number
(regID, selID) Symbol Function

Access Authority

HVE = 0 HVE = 1

SR0, 0 EIPC Status save registers when acknowledging EI level exception SV SV

SR1, 0 EIPSW Status save registers when acknowledging EI level exception SV SV

SR2, 0 FEPC Status save registers when acknowledging FE level exception SV SV

SR3, 0 FEPSW Status save registers when acknowledging FE level exception SV SV

SR5, 0 PSW Program status word UM*1 UM*1

SR13, 0 EIIC EI level exception cause SV SV

SR14, 0 FEIC FE level exception cause SV SV

SR16, 0 CTPC CALLT execution status save register UM UM

SR17, 0 CTPSW CALLT execution status save register UM UM

SR20, 0 CTBP CALLT base pointer UM UM

SR21, 0 SNZCFG SNOOZE control register SV HV

SR28, 0 EIWR EI level exception working register SV SV

SR29, 0 FEWR FE level exception working register SV SV

SR0, 1 SPID System protection identifier SV SV

SR1, 1 SPIDLIST List of system protection identifiers that can be specified in SPID SV SV

SR2, 1 RBASE Reset vector base address SV SV

SR3, 1 EBASE Exception handler vector address SV SV

SR4, 1 INTBP Base address of the interrupt handler “address” table SV SV

SR5, 1 MCTL CPU control SV SV

SR6, 1 PID Processor ID SV SV

SR8, 1 SVLOCK Supervisor lock SV SV

SR11, 1 SCCFG SYSCALL operation setting SV SV

SR12, 1 SCBP SYSCALL base pointer SV SV

SR0, 2 PEID Processor element identifier UM UM

SR1, 2 BMID Bus master identifier UM UM

SR6, 2 MEA Memory error address SV SV

SR8, 2 MEI Memory error information SV SV

SR15, 2 RBCR0 Register bank control 0 SV SV

SR16, 2 RBCR1 Register bank control 1 SV SV

SR17, 2 RBNR Register bank number SV SV

SR18, 2 RBIP Register bank initial pointer SV SV

RH850G4MH Virtualization Section 3 Register Set

R01UH0865EJ0140 Rev.1.40 Page 46 of 200
August 31, 2023

(1) EIPC — Status Save Register when Acknowledging EI Level Exception

When an EI level exception is acknowledged, the address of the instruction that was being executed

when the EI level exception occurred, or of the next instruction.

When restricted operating mode is Host mode, HMEIPC is selected.

When restricted operating mode is Guest mode, GMEIPC is selected.

(2) EIPSW — Status Save Register when Acknowledging EI Level Exception

When an EI level exception is acknowledged, the current PSW setting is saved to the HMEIPSW

register.

When restricted operating mode is Host mode, HMEIPSW is selected.

When restricted operating mode is Guest mode, GMEIPSW is selected.

(3) FEPC — Status Save Register when Acknowledging FE Level Exception

When an FE level exception is acknowledged, the address of the instruction that was being executed

when the FE level exception occurred, or of the next instruction.

When restricted operating mode is Host mode, HMFEPC is selected.

When restricted operating mode is Guest mode, GMFEPC is selected.

(4) FEPSW — Status Save Register when Acknowledging FE Level Exception

When an FE level exception is acknowledged, the current PSW setting is saved to the FEPSW register.

When restricted operating mode is Host mode, HMFEPSW is selected.

When restricted operating mode is Guest mode, GMFEPSW is selected.

(5) PSW — Program Status Word

PSW (program status word) is a set of flags that indicate the program status (instruction execution

result) and bits that indicate the operation status of the CPU (flags are bits in the PSW that are

referenced by a condition instruction (Bcond, CMOV, etc.)).

When restricted operating mode is Host mode, HMPSW is selected.

When restricted operating mode is Guest mode, GMPSW is selected.

(6) EIIC — EI Level Exception Cause

The EIIC register retains the cause of any EI level exception that occurs.

When restricted operating mode is Host mode, HMEIIC is selected.

When restricted operating mode is Guest mode, GMEIIC is selected.

(7) FEIC — FE Level Exception Cause

The FEIC register retains the cause of any FE level exception that occurs.

When restricted operating mode is Host mode, HMFEIC is selected.

When restricted operating mode is Guest mode, GMFEIC is selected.

(8) CTPC — Status Save Register when Executing CALLT

When a CALLT instruction is executed, the address of the next instruction after the CALLT instruction

is saved to CTPC.

RH850G4MH Virtualization Section 3 Register Set

R01UH0865EJ0140 Rev.1.40 Page 47 of 200
August 31, 2023

For the CTPC, see the "CPU" section in the hardware manual of the product used.

(9) CTPSW — Status Save Register when Executing CALLT

When a CALLT instruction is executed, some of the PSW (program status word) settings are saved to

CTPSW.

For the CTPSW, see the "CPU" section in the hardware manual of the product used.

(10) CTBP — CALLT Base Pointer

The CTBP register is used to specify table addresses of the CALLT instruction and generate target

addresses.

For the CTBP, see the "CPU" section in the hardware manual of the product used.

(11) SNZCFG — SNOOZE Configuration

The SNZCFG register is used to configure the operation of the SNOOZE instruction.

For the SNZCFG, see the "CPU" section in the hardware manual of the product used.

(12) EIWR — EI Level Exception Working Register

The EIWR register is used as a working register when an EI level exception has occurred.

When restricted operating mode is Host mode, HMEIWR is selected.

When restricted operating mode is Guest mode, GMEIWR is selected.

(13) FEWR — FE Level Exception Working Register

The FEWR register is used as a working register when an FE level exception has occurred.

When restricted operating mode is Host mode, HMFEWR is selected.

When restricted operating mode is Guest mode, GMFEWR is selected.

(14) SPID — System Protection Identifier

The SPID register holds the system protection identifier of the CPU.

When restricted operating mode is Host mode, HMSPID is selected.

When restricted operating mode is Guest mode, GMSPID is selected.

(15) SPIDLIST — Legitimate System Protection Identifier List

The SPIDLIST register contains a list of system protection identifiers that can be set to the SPID

register.

When restricted operating mode is Host mode, HMSPIDLIST is selected.

When restricted operating mode is Guest mode, GMSPIDLIST is selected.

(16) RBASE — Reset Vector Base Address

This register indicates the reset vector address when there is a reset.

For the RBASE, see the "CPU" section in the hardware manual of the product used.

(17) EBASE — Exception Handler Vector Address

This register indicates the exception handler vector address.

When restricted operating mode is Host mode, HMEBASE is selected.

RH850G4MH Virtualization Section 3 Register Set

R01UH0865EJ0140 Rev.1.40 Page 48 of 200
August 31, 2023

When restricted operating mode is Guest mode, GMEBASE is selected.

(18) INTBP — Base Address of the Interrupt Handler Address Table

This register indicates the base address of the table when the table reference method is selected as the

interrupt handler address selection method.

When restricted operating mode is Host mode, HMINTBP is selected.

When restricted operating mode is Guest mode, GMINTBP is selected.

(19) MCTL — Machine Control

The MCTL register is used to control the CPU.

For the MCTL, see the "CPU" section in the hardware manual of the product used.

RH850G4MH Virtualization Section 3 Register Set

R01UH0865EJ0140 Rev.1.40 Page 49 of 200
August 31, 2023

(20) PID — Processor ID

The PID register retains a processor identifier that is unique to the CPU. The PID register is a read-only

register.

CAUTION

The PID register indicates information used to identify the equipped CPU core and CPU

core configuration. Note that not all the CPU functions can be identified. In case of

changing a software behavior based on the PID register information, whether the target

behavior can be identified or not should be noted.

Note 1. For details, see the hardware manual of the product used.

31 0

PID
Value after reset

*1PID

Table 3.2 PID Register Contents

Bit Position Bit Name Function R/W
Value After
Reset

31 to 24 PID Architecture Identifier
This identifier indicates the architecture of the processor.

R *1

23 to 8 Function Identifier
This identifier indicates the functions of the processor.
These bits indicate whether or not functions defined per bit are implemented

0: Not implemented
1: Implemented

R *1

7 to 0 Version Identifier
This identifier indicates the version of the processor.

R *1

Bit 23 Virtualization support function (HV)

Bit 22 to 19 Reserved

Bit 18 Register bank

Bit 17 to 12 Reserved

Bit 11 Extended floating-point operation function

Bit 10 Double-precision floating-point operation function

Bit 9 Single-precision floating-point operation function

Bit 8 Memory protection unit (MPU) function

RH850G4MH Virtualization Section 3 Register Set

R01UH0865EJ0140 Rev.1.40 Page 50 of 200
August 31, 2023

(21) SVLOCK — Supervisor Lock

The SVLOCK register is used to restrict the CPU operation in supervisor mode.

When restricted operating mode is Host mode, HMSVLOCK is selected.

When restricted operating mode is Guest mode, GMSVLOCK is selected.

(22) SCCFG — SYSCALL Operation Setting

This register is used to set operations related to the SYSCALL instruction.

For the SCCFG, see the "CPU" section in the hardware manual of the product used.

(23) SCBP — SYSCALL Base Pointer

The SCBP register is used to specify a table address of the SYSCALL instruction and generate a target

address.

For the SCBP, see the "CPU" section in the hardware manual of the product used.

(24) PEID — Processor Element Identifier

The PEID register indicates the processor element identifier.

When restricted operating mode is Host mode, HMPEID is selected.

When restricted operating mode is Guest mode, GMPEID is selected.

(25) BMID — Bus Master Identifier

The BMID register indicates the bus master identifier.

For the BMID, see the "CPU" section in the hardware manual of the product used.

(26) MEA — Memory Error Address

The MEA register holds the address in which an MAE (misalignment) or MPU violation occurred.

When restricted operating mode is Host mode, HMMEA is selected.

When restricted operating mode is Guest mode, GMMEA is selected.

(27) MEI — Memory Error Information

The MEI register holds the information about the instruction that caused a misalignment exception

(MAE) or memory protection exception (MDP). The information can be used as hint information for

the emulation by software.

When restricted operating mode is Host mode, HMMEI is selected.

When restricted operating mode is Guest mode, GMMEI is selected.

(28) RBCR0 — Register Bank Control 0

The PBCR0 specifies the register bank operation.

When the virtualization support function is enabled and in Host mode (HVCFG.HVE = 1, PSWH.GM

= 0), the settings of this register are disabled and register banks can not be used.

For the RBCR0, see the "CPU" section in the hardware manual of the product used.

(29) RBCR1 — Register Bank Control 1

The RBCR1 register controls the operation of the register bank function.

For the RBCR1, see the "CPU" section in the hardware manual of the product used.

RH850G4MH Virtualization Section 3 Register Set

R01UH0865EJ0140 Rev.1.40 Page 51 of 200
August 31, 2023

(30) RBNR — Register Bank Number

The RBNR register indicates the number of the register bank to be used next.

For the RBNR, see the "CPU" section in the hardware manual of the product used.

(31) RBIP — Register Bank Initial Pointer

The RBIP register indicates the start address of the memory area where the register bank is located.

For the RBIP, see the "CPU" section in the hardware manual of the product used.

RH850G4MH Virtualization Section 3 Register Set

R01UH0865EJ0140 Rev.1.40 Page 52 of 200
August 31, 2023

3.3 Interrupt Function Registers

3.3.1 Interrupt Function system Registers

Among interrupt function system registers and register bank control registers, the registers whose

specifications have been changed from the "CPU" section in the hardware manual of the product used

are described in this section. For registers whose specifications have not been changed, see the "CPU"

section in the hardware manual of the product used.

(1) ISPR — Priority of Interrupt being Serviced

The ISPR register holds the interrupt priority of the EI level interrupt (EIINTn) being processed by the

CPU for each priority. Priority ceiling by interrupt priority is performed when multiplexed interrupts

occur.

For the ISPR, see the "CPU" section in the hardware manual of the product used.

Table 3.3 Interrupt Function System Registers

Register Number
(regID, selID) Symbol Function

Access Authority

HVE = 0 HVE = 1

SR10, 2 ISPR Priority of interrupt being serviced SV SV

SR11, 2 IMSR Interrupt mask status SV SV

SR12, 2 ICSR Interrupt control status SV SV

SR13, 2 INTCFG Interrupt function setting SV SV

SR14, 2 PLMR Interrupt priority masking SV SV

RH850G4MH Virtualization Section 3 Register Set

R01UH0865EJ0140 Rev.1.40 Page 53 of 200
August 31, 2023

(2) IMSR — Interrupt Mask Status

The IMSR register is a register that indicates that interrupts notified to the CPU are masked for

acceptance by the mask function in the CPU. For details of interrupt requests for updating each bit, see

Section 3.3.1 (2), (a) Interrupt request for updating IMSR.

31 13 12 11 10 9 8 7 5 4 3 2 1 0

IMSR

H
F

N
P

H
E

N
P

H
E

ID

H
E

P
L

H
E

E
IM

F
N

P

E
N

P

E
ID

E
P

LM

E
E

IM Value after reset
0000 0000H

0 0

Table 3.4 IMSR Register Contents (1/2)

Bit
Position Bit Name Function R/W

Value After
Reset

31 to 13 — (Reserved for future expansion. Be sure to set to 0.) R 0

12 HFNP In Guest mode, indicates that FEINT exits for which acceptance is masked by
host context PSW.NP.

0: FEINT masked by host context PSW.NP does not exist.
1: FEINT masked by host context PSW.NP exists.

In Host mode or when HVCFG.HVE is cleared (0), the value of HFNP is
always 0.

R 0

11 HENP In Guest mode, indicates that EIINT, BGFEINT, BGEIINT exists for which
acceptance is masked by host context PSW.NP.

0: EIINT, BGFEINT, BGEIINT masked by host context PSW.NP do not exist.
1: EIINT, BGFEINT, BGEIINT masked by host context PSW.NP exist.

In Host mode or when HVCFG.HVE is cleared (0), the value of HENP is
always 0.

R 0

10 HEID In Guest mode, indicates that EIINT, BGFEINT, BGEIINT exists for which
acceptance is masked by host context PSW.ID.

0: EIINT, BGFEINT, BGEIINT masked by host context PSW.ID do not exist.
1: EIINT, BGFEINT, BGEIINT masked by host context PSW.ID exist.

In Host mode or when HVCFG.HVE is cleared (0), the value of HEID is always
0.

R 0

9 HEPLM In Guest mode, indicates that EIINT exists for which acceptance is masked by
host context PLMR.PLM.

0: EIINT masked by host context PLMR.PLM does not exist.
1: EIINT masked by host context PLMR.PLM exists.

In Host mode or when HVCFG.HVE is cleared (0), the value of HEPLM is
always 0.

R 0

8 HEEIM In Guest mode, indicates that ISPR.ISP exists when INTCFG.EPL of the host
context is cleared (0), and EIINT exists for which acceptance is masked by
host context PSW.EIMASK when host context INTCFG.EPL is set (1).

0: ISPR.ISP or EIINT masked by host context PSW.EIMASK does not exist.
1: ISPR.ISP or EIINT masked by host context PSW.EIMASK exists.

In Host mode or when HVCFG.HVE is cleared (0), the value of HEEIM is
always 0.

R 0

7 to 5 — (Reserved for future expansion. Be sure to set to 0.) R 0

4 FNP In Host mode, indicates that FEINT exists for which acceptance is masked by
PSW.NP. In Guest mode, indicates that GMFEINT and BGFEINT exist for
which acceptance is masked by GMPSW.NP.

0: FEINT masked by PSW.NP, and GMFEINT and BGFEINT masked by
GMPSW.NP do not exist.

1: FEINT masked by PSW.NP, and GMFEINT and BGFEINT masked by
GMPSW.NP exist.

R 0

3 ENP In Host mode, indicates that EIINT exists for which acceptance is masked by
PSW.NP. In Guest mode, indicates that GMEIINT and BGEIINT exist for which
acceptance is masked by GMPSW.NP.

0: EIINT masked by PSW.NP, and GMEIINT and BGEIINT masked by
GMPSW.NP do not exist.

1: EIINT masked by PSW.NP, and GMEIINT and BGEIINT masked by
GMPSW.NP exist.

R 0

RH850G4MH Virtualization Section 3 Register Set

R01UH0865EJ0140 Rev.1.40 Page 54 of 200
August 31, 2023

(a) Interrupt request for updating IMSR

Interrupt requests for updating each bit of IMSR are as follows depending on the operating mode.

Note 1. Each interrupt request is requested after acceptance judgment by bind of interrupts. Immediately after the
CPU changes from Guest mode to Host mode, when the request selection on the interrupt controller side
was not immediately changed and the CPU was notified of an interrupt request bound to Guest mode, all
IMSR bits related to that interrupt request are cleared (0).

Note 2. Indicates the CPU operating mode when these interrupts are accepted.

Note 3. BGFEINT is an FE level exception in Guest mode, but as it is an EI level exception in Host mode, the
exception level of the bit to be set differs.

2 EID In Host mode, indicates that EIINT exists for which acceptance is masked by
PSW.ID. In Guest mode, indicates that GMEIINT and BGEIINT exist for which
acceptance is masked by GMPSW.ID.

0: EIINT masked by PSW.ID, and GMEIINT and BGEIINT masked by
GMPSW.ID do not exist.

1: EIINT masked by PSW.ID, and GMEIINT and BGEIINT masked by
GMPSW.ID exist.

R 0

1 EPLM In Host mode, indicates that EIINT exists for which acceptance is masked by
PLMR.PLM. In Guest mode, indicates that GMEIINT and BGEIINT exist for
which acceptance is masked by GMPLMR.PLM.

0: EIINT masked by PLMR.PLM, and GMEIINT and BGEIINT masked by
GMPLMR.PLM do not exist.

1: EIINT masked by PLMR.PLM, and GMEIINT and BGEIINT masked by
GMPLMR.PLM exist.

R 0

0 EEIM The specification of this bit is the same as ICSR.PMEI.
In Host mode, indicates that ISPR.ISP exists when INTCFG.EPL is cleared
(0), and EIINT exists for which acceptance is masked by PSW.EIMASK when
INTCFG.EPL is set (1). In Guest mode, indicates that GMEIINT and BGEIINT
exist for which acceptance is masked by GMPSW.EIMASK.

0: ISPR.ISP or EIINT masked by PSW.EIMASK, and GMEIINT and BGEIINT
masked by GMPSW.EIMASK do not exist.

1: ISPR.ISP or EIINT masked by PSW.EIMASK, and GMEIINT and BGEIINT
masked by GMPSW.EIMASK exist.

R 0

Table 3.4 IMSR Register Contents (2/2)

Bit
Position Bit Name Function R/W

Value After
Reset

Table 3.5 Interrupt request for updating each bit of IMSR*1

Bits of IMSR HVCFG.HVE=0

HVCFG.HVE=1

Host mode*2 Guest mode*2

HFNP Fixed to 0 Fixed to 0 FEINT

HENP Fixed to 0 Fixed to 0 EIINT, BGFEINT*3,
BGEIINT

HEID Fixed to 0 Fixed to 0

HEPLM Fixed to 0 Fixed to 0 EIINT

HEEIM Fixed to 0 Fixed to 0

FNP FEINT FEINT GMFEINT, BGFEINT*3

ENP EIINT EIINT GMEIINT, BGEIINT

EID

EPLM

EEIM

RH850G4MH Virtualization Section 3 Register Set

R01UH0865EJ0140 Rev.1.40 Page 55 of 200
August 31, 2023

(b) Order of updating IMSR

Acceptance conditions are confirmed in the order of ISPR or PSW.EIMASK (selected by

INTCFG.EPL), PLMR, PSW.ID, PSW.NP in the exception bound to the conventional mode or

host mode. In the exception bound to Guest mode, the reception conditions are confirmed in the

order of GMPSW.EIMASK, GMPLMR, GMPSW.ID, GMPSW.NP. Note that when an acceptance

condition is set to a value that masks an interrupt, the interrupt request is masked there, and the

acceptance conditions that are in the subsequent order are not confirmed. Conditions that are not

considered as acceptance conditions depending on the type of exception are not confirmed.

Since EI level interrupt has multiple acceptance conditions, it is set one bit at a time according to

the order of confirmation of reception conditions as follows.

Note 1. When an interrupt is masked under an acceptance condition, it is unmasked in acceptance conditions
confirmed before that condition. The bits corresponding to such unmasked acceptance conditions are
cleared (0).

Note 2. When an interrupt has already been masked with acceptance conditions that is confirmed in the order
before a certain acceptance condition, acceptance is not confirmed under the acceptance conditions
confirmed in the order after the acceptance condition masking the interrupt. Therefore, even if an
acceptance condition for which acceptance is not confirmed is set to the value that masks the interrupt, the
bit corresponding to such acceptance condition is cleared (0).

BGFEINT and BGEIINT are masked by the host context register (PSW) and guest context

register (GMPSW, GMPLMR). When BGFEINT or BGEIINT occurs, each bit of IMSR becomes

the following value for each interrupt acceptance condition setting.

Table 3.6 Bits of IMSR set (1) by EI level interrupt (1/2)

HENP HEID HEPLM HEEIM

HEMP is set (1) 1 0*1 0*1 0*1

HEID is set (1) 0*2 1 0*1 0*1

HEPLM is set (1) 0*2 0*2 1 0*1

HEEIM is set (1) 0*2 0*2 0*2 1

Table 3.7 Bits of IMSR set (1) by EI level interrupt (2/2)

ENP EID EPLM EEIM

ENP is set (1) 1 0*1 0*1 0*1

EID is set (1) 0*2 1 0*1 0*1

EPLM is set (1) 0*2 0*2 1 0*1

EEIM is set (1) 0*2 0*2 0*2 1

Table 3.8 The value of IMSR when BGFEINT is masked

GMPSW.NP PSW.ID PSW.NP FNP HEID HENP

0 0 0 0 0 0

0 0 1 0 0 1

0 1 d/c 0 1 0

1 0 0 1 0 0

1 0 1 1 0 1

1 1 d/c 1 1 0

RH850G4MH Virtualization Section 3 Register Set

R01UH0865EJ0140 Rev.1.40 Page 56 of 200
August 31, 2023

Note 1. 1 when GMPSW.EIMASK satisfies the mask condition or 0 otherwise.

Note 2. 1 when GMPLMR satisfies the mask condition or 0 otherwise.

(3) ICSR — Interrupt Control Status

This register indicates the status of interrupt control inside the CPU.

ICSR can be used only when HVCFG.HVE = 0. When HVCFG.HVE = 1, ICSR is an undefined

register.

For details of ICSR, see the "CPU" section in the hardware manual of the product used.

Table 3.9 The value of IMSR when BGEIINT is masked

GMPSW.EIMASK GMPLMR GMPSW.ID GMPSW.NP PSW.ID PSW.NP EEIM EPLM EID ENP HEID HENP

1*1 d/c d/c d/c d/c d/c 1 0 0 0 0 0

0*1 1*2 d/c d/c d/c d/c 0 1 0 0 0 0

0*1 0*2 1 d/c 0 0 0 0 1 0 0 0

0*1 0*2 1 d/c 0 1 0 0 1 0 0 1

0*1 0*2 1 d/c 1 d/c 0 0 1 0 1 0

0*1 0*2 0 1 0 0 0 0 0 1 0 0

0*1 0*2 0 1 0 1 0 0 0 1 0 1

0*1 0*2 0 1 1 d/c 0 0 0 1 1 0

0*1 0*2 0 0 0 0 0 0 0 0 0 0

0*1 0*2 0 0 0 1 0 0 0 0 0 1

0*1 0*2 0 0 1 d/c 0 0 0 0 1 0

RH850G4MH Virtualization Section 3 Register Set

R01UH0865EJ0140 Rev.1.40 Page 57 of 200
August 31, 2023

(4) INTCFG — Interrupt Function Setting

This register is used to specify settings related to the CPU’s internal interrupt function.

31 22 21 16 15 2 1 0

INTCFG

E
P

L

IS
P

C Value after reset
000F 0000H

0 0 0 0 0 0 0 0 0 0 ULNR 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 3.10 INTCFG Register Contents (1/2)

Bit
Position Bit Name Function R/W

Value After
Reset

31 to 22 — (Reserved for future expansion. Be sure to set to 0.) R 0

21 to 16 ULNR Specifying the maximum value of available register bank numbers.
If the value of the RBNR.BN is bigger than the ULNR, or the value of the
RBNR.BN is 63; and the interrupt (EIINTn) whose register bank function is
enable occurs, the SYSERR exception will occur. Note that the interrupt
(EIINTn) is not accepted and is held.

When the HVCFG.HVE bit is set (1), updating of this bit is possible but
register bank can not be used, so the value of this bit does not affect the
operation of the CPU.

R/W 0FH

15 to 2 — (Reserved for future expansion. Be sure to set to 0.) R 0

1 EPL For the interrupt (EIINTn), specify whether to enable interrupt priority level
extension function.

0: Interrupt priority level extension function is disabled
1: Interrupt priority level extension function is enabled

The following is the overview of interrupt operation by setting this bit.
For details, see Section 4.1.5, Interrupt Exception Priority and Priority
Masking , Section 4.4, Exception Handler Address, Section 4.5, Register
Bank Function.

R/W 0

Interrupt function

Value of EPL

0 1

Number of interrupt
priority level

16 64

M
a

sk
 F

u
n

ct
io

n

ISPR Function is enabled Function is disabled

PSW.EIMASK Function is disabled Function is enabled

PLMR Function is enabled

PSW.NP Function is enabled

PSW.ID Function is enabled

INTCFG.ISPC Settings can be changed Fixed 0

ICSR.PMEI Function is enabled

IMSR Function is enabled

H
a

n
dl

e
r

g
e

ne
ra

tio
n Direct vector

method
Each vector can be used
by each priority.

Each vector can be used
by priority 0 to 14. The
priority 15 vector is shared
with the priority 15 or
greater.

Table reference
method

Available

Register bank The usage can be set by
each priority.

Priority 0 to 14 can be
individually set.
The priority 15 setting is
shared with the priority 15
or greater.

RH850G4MH Virtualization Section 3 Register Set

R01UH0865EJ0140 Rev.1.40 Page 58 of 200
August 31, 2023

0 ISPC This bit changes how the ISPR register is written.
0: The ISPR register is automatically updated. Updates triggered by the

program (via execution of LDSR instruction) are ignored.
1: The ISPR register is not automatically updated. Updates triggered by the

program (via execution of LDSR instruction) are performed.

If this bit is cleared to 0, the bits of the ISPR register are automatically set to 1
when an interrupt (EIINTn) is acknowledged, and cleared to 0 when the EIRET
instruction is executed. In this case, the bits are not updated by an LDSR
instruction executed by the program. If this bit is set to 1, the bits of the ISPR
register are not updated by the acknowledgement of an interrupt (EIINTn) or
by execution of the EIRET instruction. In this case, the bits can be updated by
an LDSR instruction executed by the program.
In normal cases, the ISPC bit should be cleared. When performing
software-based priority control, however, set this bit (1).
For details, see (2), Interrupt Priority Mask in Section 4.1.5, Interrupt
Exception Priority and Priority Masking.

R/W 0

Table 3.10 INTCFG Register Contents (2/2)

Bit
Position Bit Name Function R/W

Value After
Reset

RH850G4MH Virtualization Section 3 Register Set

R01UH0865EJ0140 Rev.1.40 Page 59 of 200
August 31, 2023

(5) PLMR — Interrupt Priority Level Mask

This register masks the interrupts (EIINTn) whose priority level is not higher than the level specified

by these bits.

When restricted operating mode is Host mode, HMPLMR is selected.

When restricted operating mode is Guest mode, GMPLMR is selected.

Note 1. Even if INTCFG.EPL is cleared (0), it is possible to receive an interrupt (EIINTn) with priority 16 or less from
the interrupt controller. Even if INTCFG.EPL is cleared (0), PLMR will not be automatically reduced to 4 bits,
and PLMR always masks interrupts for interrupt priority level of up to 64 level.

31 6 5 0

PLMR
Value after reset

0000 0010H
0 PLM

Table 3.11 PLMR Register Contents

Bit
Position Bit Name Function R/W

Value After
Reset

31 to 6 — (Reserved for future expansion. Be sure to set to 0.) R 0

5 to 0 PLM These bits are used to mask the interrupts (EIINTn) whose priority level is not
higher than the level specified by these bits.
When an interrupt (EIINTn) is masked by this register, it is not accepted.

The correspondence between the value of the PLM bit and the highest priority
of interrupts to be masked is shown below.

Since the highest priority level of an interrupt that is defined for this CPU is 0, if
0 is specified in the PLM bit, all interrupts (EIINTn) are masked by this register.
Since the lowest interrupt priority level defined by this CPU is 63, the interrupts
(EIINTn) with the interrupt priority of 63 are always masked.
Regardless of INTCFG.EPL setting, the interrupt mask by PLMR is done by
the value of the PLM bit and the value of the interrupt priority notified from the
interrupt controller*1.
If the value of PLMR is altered by the LDSR instruction, the new PLMR value
is reflected in the instructions following that LDSR instruction.

R/W 10H

Value of PLM Bit Highest Priority of Interrupts to be Masked

0 Priority 0 (All priorities are not acceptable)

1 Priority 1 (Only priority 0 is acceptable)

:

14 Priority 14 (Only priorities 13 or higher are acceptable)

15 Priority 15 (Only priorities 14 or higher are acceptable)

:

62 Priority 62 (Only priorities 61 or higher are acceptable)

63 Priority 63 (Only priorities 62 or higher are acceptable)

RH850G4MH Virtualization Section 3 Register Set

R01UH0865EJ0140 Rev.1.40 Page 60 of 200
August 31, 2023

3.4 FPU Function Registers

See the "CPU" section in the hardware manual of the product used.

RH850G4MH Virtualization Section 3 Register Set

R01UH0865EJ0140 Rev.1.40 Page 61 of 200
August 31, 2023

3.5 FXU Function Registers

See the "CPU" section in the hardware manual of the product used.

RH850G4MH Virtualization Section 3 Register Set

R01UH0865EJ0140 Rev.1.40 Page 62 of 200
August 31, 2023

3.6 MPU Function Registers

3.6.1 MPU Function System Registers

Among the system registers of the memory protection function, this section describes the registers

whose specifications have been changed from the "CPU" section in the hardware manual of the product

used. For registers whose specifications have not been changed, see the "CPU" section in the hardware

manual of the product used.

Note 1. Reading is possible with SV privilege.

Table 3.12 MPU Function System Registers

Register Number
(regID, selID) Symbol Function

Access Authority

HVE = 0 HVE = 1

SR0, 5 MPM Memory protection operation mode setting SV SV

SR2, 5 MPCFG MPU configuration SV HV*1

SR8, 5 MCA Memory protection setting check address SV SV

SR9, 5 MCS Memory protection setting check size SV SV

SR10, 5 MCC Memory protection setting check command SV SV

SR11, 5 MCR Memory protection setting check result SV SV

SR12, 5 MCI Memory protection setting check SPID SV SV

SR16, 5 MPIDX Index of memory protection setting registers to be
accessed

SV SV

SR17, 5 MPBK MPU Bank Setting SV HV

SR20, 5 MPLA Protection area minimum address SV SV

SR21, 5 MPUA Protection area maximum address SV SV

SR22, 5 MPAT Protection area attribute SV SV

SR24, 5 MPID0 SPID which can access protection area SV HV*1

SR25, 5 MPID1 SPID which can access protection area SV HV*1

SR26, 5 MPID2 SPID which can access protection area SV HV*1

SR27, 5 MPID3 SPID which can access protection area SV HV*1

SR28, 5 MPID4 SPID which can access protection area SV HV*1

SR29, 5 MPID5 SPID which can access protection area SV HV*1

SR30, 5 MPID6 SPID which can access protection area SV HV*1

SR31, 5 MPID7 SPID which can access protection area SV HV*1

RH850G4MH Virtualization Section 3 Register Set

R01UH0865EJ0140 Rev.1.40 Page 63 of 200
August 31, 2023

(1) MPM — Memory Protection Operation Mode

The memory protection operation mode register is used to define the basic operation mode of the

memory protection function.

When restricted operating mode is Host mode, HMMPM is selected.

When restricted operating mode is Guest mode, GMMPM is selected.

(2) MPCFG — MPU Configuration

This register holds the information about the configuration of the MPU.

Note 1. The MPU bank is the name when the number of MPU entries indicated by the NMPUE are handled as one
pair. If two banks are equipped, the number of MPU entries twice as large as the value indicated by the
NMPUE are equipped. However, each MPU bank is used exclusively. Only the MPU bank indicated by the
MPBK register is used for memory protection. Therefore, even if multiple banks are equipped, the maximum
number of the MPU entries that can be used simultaneously for memory protection is up to the value
indicated by the NMPUE.

Note 2. The value of this bit is changed according to the hardware manual of the product used. In this CPU it is fixed
to 0.

31 25 24 23 22 21 20 19 16 15 13 8 7 5 4 0

Value after reset
UndefinedMPCFG 0 0 0 0 0 0 0 *1 0 0 NBK ARCH 0 0 HBE 0 0 0 NMPUE

Note 1. Undefined

Table 3.13 MPCFG Register Contents

Bit
Position Bit Name Function R/W

Value After
Reset

31 to 25 — (Reserved for future expansion. Be sure to set to 0.) R 0

24 — (Reserved for future expansion. Be sure to set to 0.) R Undefined

23, 22 — (Reserved for future expansion. Be sure to set to 0.) R 0

21, 20 NBK Indicates the "number of banks - 1" of the MPU bank *1 equipped in this
CPU.
Since the MPU bank of this CPU is equipped with one bank, 0 is read.

R 0*2

19 to 16 ARCH These bits indicate the version of the MPU architecture specifications.
1: MPU specification corresponding to RH850 version 2.0
2 : MPU specification corresponding to RH850 version 2.1

Values other than the above are reservations for the future. These bits are
not read out by the CPU corresponding to the RH850v2 architecture.

R 2

15, 14 — (Reserved for future expansion. Be sure to set to 0.) R 0

13 to 8 HBE Indicates the first entry number of the host management entry.
As a result, the entry from 0 to "HBE - 1" is the guest management entry,
and the entry from HBE to NMPUE is the host management entry.
Note that when the value of HBE is 0, it indicates that no guest
management entry is set. And when the value of HBE is NMPUE+1, it
indicates that no host management entry is set.
When HVCFG.HVE = 0, this bit has no specific function and automatically
cleared (0).

R/W 0

7 to 5 — (Reserved for future expansion. Be sure to set to 0.) R 0

4 to 0 NMPUE These bits indicate the “number of entries -1” of MPU entries implemented
in this CPU. A value of 31 is read since this CPU incorporates 32 MPU
entries.

R 31

RH850G4MH Virtualization Section 3 Register Set

R01UH0865EJ0140 Rev.1.40 Page 64 of 200
August 31, 2023

(3) MCA — Memory Protection Setting Check Address

This register is used to specify the base address of the area for which a memory protection setting

check is to be performed.

For details of MCA, see the "CPU" section in the hardware manual of the product used.

(4) MCS — Memory Protection Setting Check Size

This register is used to specify the size of the area for which a memory protection setting check is to be

performed.

For details of MCS, see the "CPU" section in the hardware manual of the product used.

(5) MCC — Memory Protection Setting Check Command

This command register is used to start a memory protection setting check.

Note 1. Even if CPU operating mode is Host mode or Guest mode, the check result of the memory protection setting
for the current operating mode is stored in the MCR register.

31 0

Value after reset

0000 0000H
MCC MCC31 to MCC0

Table 3.14 MCC Register Contents

Bit
Position Bit Name Function R/W

Value After
Reset

31 to 0 MCC31 to
MCC0

When any value is written to the MCC register, a memory protection setting
check starts. By setting up the MCA / MCS register and then writing to the
MCC register, results are stored in MCR*1. Because the check is started by
any written value, a check can be started by using r0 as the source register
without using any unnecessary registers.
Note that, for the check, the results are applied according to each area setting
regardless of the state of the PSW.UM bit.
This check is performed for the MPU bank memory protection setting indicated
by MPBK.
When the MCC register is read, value 0000 0000H is always returned.

R/W 0

RH850G4MH Virtualization Section 3 Register Set

R01UH0865EJ0140 Rev.1.40 Page 65 of 200
August 31, 2023

(6) MCR — Memory Protection Setting Check Result

This register is used to store the results of a memory protection setting check.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

MCR 0 0 HSXE HSW
E

HSRE HUXE HUW
E

HURE 0 0 GSXE GSW
E

GSRE GUXE GUW
E

GURE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value after reset
Undefined0 0 0 0 0 0 0 OV 0 0 SXE SWE SRE UXE UWE URE

Table 3.15 MCR Register Contents (1/2)

Bit
Position Bit Name Function R/W

Value After
Reset

31, 30 — (Reserved for future expansion. Be sure to set to 0.) R 0

29 HSXE When the specified area is within one of the protected areas of the host
management entry and the protected area is supervisor execution enable, 1 is
stored. Otherwise, 0 is stored. When HVCFG.HVE is cleared (0), 0 is always
stored.

R/W Undefined

28 HSWE When the specified area is within one of the protected areas of the host
management entry and the protected area is supervisor write enable, 1 is
stored. Otherwise, 0 is stored. When HVCFG.HVE is cleared (0), 0 is always
stored.

R/W Undefined

27 HSRE When the specified area is within one of the protected areas of the host
management entry and the protected area is supervisor read enable, 1 is
stored. Otherwise, 0 is stored. When HVCFG.HVE is cleared (0), 0 is always
stored.

R/W Undefined

26 HUXE When the specified area is within one of the protected areas of the host
management entry and the protected area is user execution enable, 1 is
stored. Otherwise, 0 is stored. When HVCFG.HVE is cleared (0), 0 is always
stored.

R/W Undefined

25 HUWE When the specified area is within one of the protected areas of the host
management entry and the protected area is user write enable, 1 is stored.
Otherwise, 0 is stored. When HVCFG.HVE is cleared (0), 0 is always stored.

R/W Undefined

24 HURE When the specified area is within one of the protected areas of the host
management entry and the protected area is user read enable, 1 is stored.
Otherwise, 0 is stored. When HVCFG.HVE is cleared (0), 0 is always stored.

R/W Undefined

23, 22 — (Reserved for future expansion. Be sure to set to 0.) R 0

21 GSXE When the specified area is within one of the protected areas of the guest
management entry and the protected area is supervisor execution enable, 1 is
stored. Otherwise, 0 is stored. When HVCFG.HVE is cleared (0), 0 is always
stored.

R/W Undefined

20 GSWE When the specified area is within one of the protected areas of the guest
management entry and the protected area is supervisor write enable, 1 is
stored. Otherwise, 0 is stored. When HVCFG.HVE is cleared (0), 0 is always
stored.

R/W Undefined

19 GSRE When the specified area is within one of the protected areas of the guest
management entry and the protected area is supervisor read enable, 1 is
stored. Otherwise, 0 is stored. When HVCFG.HVE is cleared (0), 0 is always
stored.

R/W Undefined

18 GUXE When the specified area is within one of the protected areas of the guest
management entry and the protected area is user execution enable, 1 is
stored. Otherwise, 0 is stored. When HVCFG.HVE is cleared (0), 0 is always
stored.

R/W Undefined

RH850G4MH Virtualization Section 3 Register Set

R01UH0865EJ0140 Rev.1.40 Page 66 of 200
August 31, 2023

17 GUWE When the specified area is within one of the protected areas of the guest
management entry and the protected area is user write enable, 1 is stored.
Otherwise, 0 is stored. When HVCFG.HVE is cleared (0), 0 is always stored.

R/W Undefined

16 GURE When the specified area is within one of the protected areas of the guest
management entry and the protected area is user write enable, 1 is stored.
Otherwise, 0 is stored. When HVCFG.HVE is cleared (0), 0 is always stored.

R/W Undefined

15 to 9 — (Reserved for future expansion. Be sure to set to 0.) R 0

8 OV If the specified area includes 0000 0000H or 7FFF FFFFH, 1 is stored in this
bit. In other cases, 0 is stored in this bit.

R/W Undefined

7, 6 — (Reserved for future expansion. Be sure to set to 0.) R 0

5 SXE When the specified area is within one of the protected areas and the protected
area is supervisor execution enable, 1 is stored. Otherwise, 0 is stored.
When HVCFG.HVE is cleared (0), 0 is always stored. When HVCFG.HVE = 1
and SXE is 1, both HSXE and GSXE are 1. When SXE is 0, either HSXE or
GSXE or both are 0.

R/W Undefined

4 SWE When the specified area is within one of the protected areas and the protected
area is supervisor write enable, 1 is stored. Otherwise, 0 is stored.
When HVCFG.HVE is cleared (0), 0 is always stored. When HVCFG.HVE = 1
and SWE is 1, both HSWE and GSWE are 1. When SWE is 0, either HSWE or
GSWE or both are 0.

R/W Undefined

3 SRE When the specified area is within one of the protected areas and the protected
area is supervisor read enable, 1 is stored. Otherwise, 0 is stored.
When HVCFG.HVE = 1 and SRE is 1, both HSRE and GSRE are 1. When
SRE is 0, either HSRE or GSRE or both are 0.

R/W Undefined

2 UXE When the specified area is within one of the protected areas and the protected
area is use execution enable, 1 is stored. Otherwise, 0 is stored.
When HVCFG.HVE = 1 and UXE is 1, both HUXE and GUXE are 1. When
UXE is 0, either HUXE or GUXE or both are 0.

R/W Undefined

1 UWE When the specified area is within one of the protected areas and the
protected area is user write enable, 1 is stored. Otherwise, 0 is stored.

When HVCFG.HVE = 1 and UWE is 1, both HUWE and GUWE are 1. When
UWE is 0, either HUWE or GUWE or both are 0.

R/W Undefined

0 URE When the specified area is within one of the protected areas and the
protected area is user read enable, 1 is stored. Otherwise, 0 is stored.

When HVCFG.HVE = 1 and URE is 1, both HURE and GURE are 1. When
URE is 0, either HURE or GURE or both are 0.

R/W Undefined

Table 3.15 MCR Register Contents (2/2)

Bit
Position Bit Name Function R/W

Value After
Reset

RH850G4MH Virtualization Section 3 Register Set

R01UH0865EJ0140 Rev.1.40 Page 67 of 200
August 31, 2023

(7) MCI — Memory Protection Setting Check SPID

This register is used to specify the SPID for which a memory protection settings check is to be

performed.

For details of MCI, see the "CPU" section in the hardware manual of the product used.

(8) MPIDX — Index of Memory Protection Setting Registers to be Accessed

This register is used to specify the index of memory protection setting registers to be accessed.

For details of MPIDX, see the "CPU" section in the hardware manual of the product used.

(9) MPBK — MPU Bank Setting

The MPBK register selects the MPU bank.

For details of MPBK, see the "CPU" section in the hardware manual of the product used.

(10) MPLA — Protection Area Minimum Address

This register indicates the minimum address of a protection area.

For details of MPLA, see the "CPU" section in the hardware manual of the product used.

(11) MPUA — Protection Area Maximum Address

This register indicates the maximum address of a protection area.

For details of MPUA, see the "CPU" section in the hardware manual of the product used.

(12) MPAT — Protection Area Attribute

This register indicates the attribute of a protection area.

For details of MPAT, see the "CPU" section in the hardware manual of the product used.

(13) MPIDn —SPID which can Access Protection Area

This register specifies the SPID which can access protection area.

For details of MPIDn, see the "CPU" section in the hardware manual of the product used.

RH850G4MH Virtualization Section 3 Register Set

R01UH0865EJ0140 Rev.1.40 Page 68 of 200
August 31, 2023

3.7 Cache Operation Function Registers

3.7.1 Cache Control Function System Registers

Cache control function system registers are read from or written to by using the LDSR and STSR

instructions and specifying the system register number, which is made up of a register number and

selection ID.

Note 1. Reading is possible with SV privilege.

(1) ICTAGL — Instruction Cache Tag Lo Access

This register is used by the CIST/CILD instruction in relation to the instruction cache. During

execution of the CIST instruction, values that are stored to the tag RAM for the instruction cache are

stored. During execution of the CILD instruction, values read from the tag RAM for the instruction

cache are stored.

For details of ICTAGL, see the "CPU" section in the hardware manual of the product used.

(2) ICTAGH — Instruction Cache Tag Hi Access

This register is used by the CIST/CILD instruction in relation to the instruction cache. During

execution of the CIST instruction, values that are stored to the tag RAM for the instruction cache are

stored. During execution of the CILD instruction, values read from the tag RAM for the instruction

cache are stored.

For details of ICTAGH, see the "CPU" section in the hardware manual of the product used.

(3) ICDATL — Instruction Cache Data Lo Access

This register is used by the CIST/CILD instruction in relation to the instruction cache. During

execution of the CIST instruction, values that are stored to the data RAM for the instruction cache are

stored. During execution of the CILD instruction, values read from the data RAM for the instruction

cache are stored.

For details of ICDATL, see the "CPU" section in the hardware manual of the product used.

Table 3.16 Cache Control Function System Registers

Register Number
(regID, selID) Symbol Function

Access Authority

HVE = 0 HVE = 1

SR16, 4 ICTAGL Instruction cache tag Lo access SV HV

SR17, 4 ICTAGH Instruction cache tag Hi access SV HV

SR18, 4 ICDATL Instruction cache data Lo access SV HV

SR19, 4 ICDATH Instruction cache data Hi access SV HV

SR24, 4 ICCTRL Instruction cache control SV HV*1

SR26, 4 ICCFG Instruction cache configuration SV SV

SR28, 4 ICERR Instruction cache error SV SV

RH850G4MH Virtualization Section 3 Register Set

R01UH0865EJ0140 Rev.1.40 Page 69 of 200
August 31, 2023

(4) ICDATH — Instruction Cache Data Hi Access

This register is used by the CIST/CILD instruction in relation to the instruction cache. During

execution of the CIST instruction, values that are stored to the data RAM for the instruction cache are

stored. During execution of the CILD instruction, values read from the data RAM for the instruction

cache are stored.

For details of ICDATH, see the "CPU" section in the hardware manual of the product used.

(5) ICCTRL — Instruction Cache Control

This register is used to control the instruction cache.

For details of ICCTRL, see the "CPU" section in the hardware manual of the product used.

(6) ICCFG — Instruction Cache Configuration

This register indicates the instruction cache configuration.

For details of ICCFG, see the "CPU" section in the hardware manual of the product used.

(7) ICERR — Instruction Cache Error

This register is used to store cache error information for the instruction cache.

For details of ICERR, see the "CPU" section in the hardware manual of the product used.

RH850G4MH Virtualization Section 3 Register Set

R01UH0865EJ0140 Rev.1.40 Page 70 of 200
August 31, 2023

3.8 Count Function Registers

3.8.1 Count Function System Registers

Count function system registers are read from or written to by using the LDSR and STSR instructions

and specifying the system register number, which is made up of a register number and selection ID.

Note 1. The access authority may be different depending on the value of HVCFG.HVE.

Note 2. By setting PMUMCTRL register, access with user authority is enabled.

Note 3. By setting the PMGMCTRL register, access in guest mode is enabled.

Note 4. Regardless of whether the virtualization support function is enabled or disabled, reading can be done with
UM authority. Only writing authority changes.

Table 3.17 Count Function System Registers

Register Number
(regID, selID) Symbol Function

Access Authority*1

HVE = 0 HVE = 1

SR0, 11 TSCOUNTL Timestamp count L register SV*4 HV*4

SR1, 11 TSCOUNTH Timestamp count H register SV*4 HV*4

SR2, 11 TSCTRL Timestamp count control register SV HV

SR8, 11 PMUMCTRL Performance counter User mode control register SV SV

SR9, 11 PMGMCTRL Performance counter Guest mode control register SV HV

SR0, 14 PMCTRL0 Performance count control 0 register SV*2 HV*2*3

SR1, 14 PMCTRL1 Performance count control 1 register SV*2 HV*2*3

SR2, 14 PMCTRL2 Performance count control 2 register SV*2 HV*2*3

SR3, 14 PMCTRL3 Performance count control 3 register SV*2 HV*2*3

SR4, 14 PMCTRL4 Performance count control 4 register SV*2 HV*2*3

SR5, 14 PMCTRL5 Performance count control 5 register SV*2 HV*2*3

SR6, 14 PMCTRL6 Performance count control 6 register SV*2 HV*2*3

SR7, 14 PMCTRL7 Performance count control 7 register SV*2 HV*2*3

SR16, 14 PMCOUNT0 Performance count 0 register SV*2 HV*2*3

SR17, 14 PMCOUNT1 Performance count 1 register SV*2 HV*2*3

SR18, 14 PMCOUNT2 Performance count 2 register SV*2 HV*2*3

SR19, 14 PMCOUNT3 Performance count 3 register SV*2 HV*2*3

SR20, 14 PMCOUNT4 Performance count 4 register SV*2 HV*2*3

SR21, 14 PMCOUNT5 Performance count 5 register SV*2 HV*2*3

SR22, 14 PMCOUNT6 Performance count 6 register SV*2 HV*2*3

SR23, 14 PMCOUNT7 Performance count 7 register SV*2 HV*2*3

SR0, 15 PMSUBCND0 Performance count subcondition 0 register SV*2 HV*2*3

SR1, 15 PMSUBCND1 Performance count subcondition 1 register SV*2 HV*2*3

SR2, 15 PMSUBCND2 Performance count subcondition 2 register SV*2 HV*2*3

SR3, 15 PMSUBCND3 Performance count subcondition 3 register SV*2 HV*2*3

SR4, 15 PMSUBCND4 Performance count subcondition 4 register SV*2 HV*2*3

SR5, 15 PMSUBCND5 Performance count subcondition 5 register SV*2 HV*2*3

SR6, 15 PMSUBCND6 Performance count subcondition 6 register SV*2 HV*2*3

SR7, 15 PMSUBCND7 Performance count subcondition 7 register SV*2 HV*2*3

RH850G4MH Virtualization Section 3 Register Set

R01UH0865EJ0140 Rev.1.40 Page 71 of 200
August 31, 2023

(1) TSCOUNTL — Timestamp Count L

This register constitutes the time stamp counter.

For details of TSCOUNTL, see the "CPU" section in the hardware manual of the product used.

(2) TSCOUNTH — Timestamp Count H

This register constitutes the time stamp counter.

For details of TSCOUNTH, see the "CPU" section in the hardware manual of the product used.

(3) TSCTRL — Timestamp Count Control

This register constitutes the time stamp counter.

For details of TSCTRL, see the "CPU" section in the hardware manual of the product used.

(4) PMUMCTRL — Performance Counter User Mode Control

In User mode, this register specifies whether or not access to system registers of the performance

measurement function is available.

For details of PMUMCTRL, see the "CPU" section in the hardware manual of the product used.

(5) PMGMCTRL — Performance Counter Guest Mode Control

When HVCFG.HVE is set (1), this register specifies whether or not access to the system registers of

the performance measurement function in Guest mode is available. For each channel of the

performance measurement function, specify whether the corresponding system registers can be

accessible.

Accessing these system registers when access in Guest mode is disabled causes the PIE exception.

When HVCFG.HVE is cleared (0), this register is treated as an undefined register.

31 8 7 6 5 4 3 2 1 0

P
M

G
E

7

P
M

G
E

6

P
M

G
E

5

P
M

G
E

4

P
M

G
E

3

P
M

G
E

2

P
M

G
E

1

P
M

G
E

0

Value after reset
0000 0000H

PMGMCTRL 0

Table 3.18 PMGMCTRL Register Contents

Bit
Position Bit Name Function R/W

Value After
Reset

31 to 8 — (Reserved for future expansion. Be sure to set to 0.) R 0

7 to 0 PMGEn
n = 7 to 0

Specify whether PMCOUNTn register, PMCTRLn register and PMSUBCNDn
register can be accessed in Guest mode.

0: Access to PMCOUNTn/PMCTRLn/PMSUBCNDn in guest mode is
disabled.

1: Access to PMCOUNTn/PMCTRLn/PMSUBCNDn in guest mode is
enabled.

R/W 0

RH850G4MH Virtualization Section 3 Register Set

R01UH0865EJ0140 Rev.1.40 Page 72 of 200
August 31, 2023

(6) PMCTRLn — Performance Count Control

This register controls the counting operation of the PMCOUNTn register. This CPU has 8 channels (n

= 0 to 7) of performance count control registers.

31 25 24 23 22 21 20 19 18 17 16 15 8 7 2 1 0

H
E

G
E
7

G
E
6

G
E
5

G
E
4

G
E
3

G
E
2

G
E
1

G
E
0

O
V
F

C
E
N

Value after reset
0000 0000H

PMCTRLn 0 0 0 0 0 0 0 CND 0 0 0 0 0 0

Table 3.19 PMCTRLn Register Contents (1/2)

Bit
Position Bit Name Function R/W

Value After
Reset

31 to 25 — (Reserved for future expansion. Be sure to set to 0.) R 0

24 HE In Host mode, indicates whether or not counting is possible.
0: In Host mode, it does not count even if an event occurs.
1: In Host mode, it counts when event occurs.

When HVCFG.HVE is cleared (0), this bit is reserved. Be sure to set to 0.

R/W 0

23 GE7 In Guest mode, indicates whether or not counting is possible when PSWH.GPID = 7.
0: In Guest mode, it does not count even if an event occurs when PSWH.GPID = 7.
1: In Guest mode, it counts if an event occurs when PSWH.GPID = 7.

When HVCFG.HVE is cleared (0), this bit is reserved. Be sure to set to 0.

R/W 0

22 GE6 In Guest mode, indicates whether or not counting is possible when PSWH.GPID = 6.
0: In Guest mode, it does not count even if an event occurs when PSWH.GPID = 6.
1: In Guest mode, it counts if an event occurs when PSWH.GPID = 6.

When HVCFG.HVE is cleared (0), this bit is reserved. Be sure to set to 0.

R/W 0

21 GE5 In Guest mode, indicates whether or not counting is possible when PSWH.GPID = 5.
0: In Guest mode, it does not count even if an event occurs when PSWH.GPID = 5.
1: In Guest mode, it counts if an event occurs when PSWH.GPID = 5.

When HVCFG.HVE is cleared (0), this bit is reserved. Be sure to set to 0.

R/W 0

20 GE4 In Guest mode, indicates whether or not counting is possible when PSWH.GPID = 4.
0: In Guest mode, it does not count even if an event occurs when PSWH.GPID = 4.
1: In Guest mode, it counts if an event occurs when PSWH.GPID = 4.

When HVCFG.HVE is cleared (0), this bit is reserved. Be sure to set to 0.

R/W 0

19 GE3 In Guest mode, indicates whether or not counting is possible when PSWH.GPID = 3.
0: In Guest mode, it does not count even if an event occurs when PSWH.GPID = 3.
1: In Guest mode, it counts if an event occurs when PSWH.GPID = 3.

When HVCFG.HVE is cleared (0), this bit is reserved. Be sure to set to 0.

R/W 0

18 GE2 In Guest mode, indicates whether or not counting is possible when PSWH.GPID = 2.
0: In Guest mode, it does not count even if an event occurs when PSWH.GPID = 2.
1: In Guest mode, it counts if an event occurs when PSWH.GPID = 2.

When HVCFG.HVE is cleared (0), this bit is reserved. Be sure to set to 0.

R/W 0

17 GE1 In Guest mode, indicates whether or not counting is possible when PSWH.GPID = 1.
0: In Guest mode, it does not count even if an event occurs when PSWH.GPID = 1.
1: In Guest mode, it counts if an event occurs when PSWH.GPID = 1.

When HVCFG.HVE is cleared (0), this bit is reserved. Be sure to set to 0.

R/W 0

16 GE0 In Guest mode, indicates whether or not counting is possible when PSWH.GPID = 0.
0: In Guest mode, it does not count even if an event occurs when PSWH.GPID = 0.
1: In Guest mode, it counts if an event occurs when PSWH.GPID = 0.

When HVCFG.HVE is cleared (0), this bit is reserved. Be sure to set to 0.

R/W 0

RH850G4MH Virtualization Section 3 Register Set

R01UH0865EJ0140 Rev.1.40 Page 73 of 200
August 31, 2023

Note 1. The notes described in the "CPU" section in the hardware manual of the product used. are applied as they
are. And when an instruction which causes a transition from Guest mode to Host mode is executed, the
CPU changes to Host mode, but this event is counted according to the operating mode at the time the
instruction is executed. Therefore, if PSWH.GPID count setting when those instructions are executed in
Guest mode is set to count enabled, this event is counted. Even if counting is enabled in Host mode, if the
CPU is in Guest mode and PSWH.GPID count setting at that time is not set to count enabled, even if these
instructions are executed, this event is not counted. When counting is enabled in Host mode and these
instructions are executed in Host mode, this event is counted.

Note 2. The notes described in the "CPU" section in the hardware manual of the product used. are applied as they

15 to 8 CND The following events have descriptions that are different from the "CPU" section in
the hardware manual of the product used. For other events, see the "CPU" section in
the hardware manual of the product used.

R/W 0

7 to 2 — (Reserved for future expansion. Be sure to set to 0.) R 0

1 OVF This bit serves as the overflow flag. R/W 0

0 CEN This bit enables or disables the count operation of the PMCOUNTn register.
0: Disables count operation.
1: Enables count operation.

R/W 0

Table 3.19 PMCTRLn Register Contents (2/2)

Bit
Position Bit Name Function R/W

Value After
Reset

Number Details of Event
Speculative
Operation

10H Number of executions of all instructions*1 *2 None

18H Number of instructions that cause branch*2 None

20H Counts the number of times EI level interrupts are accepted. But it is not
counted by accepting BGFEINT and BGEIINT.
When counting in Host mode, counts the number of times EIINT is
accepted.
When counting in Guest mode, counts the number of times GMEIINT is
accepted.

None

21H Counts the number of times FE level interrupts are accepted. But it is
not counted by accepting BGFEINT and BGEIINT.
When counting in Host mode, counts the number of times FEINT is
accepted. When counting in Guest mode, counts the number of times
GMFEINT is accepted.

None

22H Counts the number of times terminating type exceptions are accepted.
Note that there are exceptions where the count object changes
depending on the CPU operating mode.
When counting in Host mode, FEINT and EIINT, BGFEINT and
BGEIINT, SYSERR of terminating type that occurred during Host mode,
and GMCFG.GSYSE in guest mode, when these was set (1), counts
the number of times of acceptance of the terminating type SYSERR
that occurred.
These are not counted even if counting is enabled in Guest mode.
When counting in Guest mode, when GMFEINT and GMEIINT,
GMCFG.GSYSE is cleared (0) in Guest mode, in this case counts the
number of times of accepting the terminating type SYSERR that
occurred. These are not counted even if counting is enabled in Host
mode.

None

23H Counts the number of times resumable type exception and completion
type exception are accepted*3. Note that there are exceptions where
the count object changes depending on the CPU operating mode.
When counting in Host mode, when GMCFG.HMP or GMCFG.GMP is
set (1), in this case count memory protection error exception that
occurred. And in this case these are not counted even if counting is
enabled in Guest mode.
When counting in Guest mode, when GMCFG.HMP or GMCFG.GMP
is cleared (0), in this case count memory protection error exception that
occurred. And in this case these are not counted even if counting is
enabled in Host mode.

None

24H Number of times where Guest mode of the GPID specified by
PMCTRLn.GE 0-PMCTRLn.GE7 was terminated by BGFEINT or
BGEIINT.

None

25H Number of times BGFEINT or BGEIINT bound to the GPID
specified by PMCTRLn.GE 0-PMCTRLn.GE7 occurred.

None

28H Number of clock cycles during which no interrupt is processed*4. None

29H Number of clock cycles during which no interrupt is processed and
interrupts are disabled*5.

None

RH850G4MH Virtualization Section 3 Register Set

R01UH0865EJ0140 Rev.1.40 Page 74 of 200
August 31, 2023

are. And when the return instruction for transitioning from Host mode to Guest mode is executed, when
counting is enabled in Host mode, this event is counted. Even if counting of the value set to PSWH.GPID
is enabled after changing to Guest mode, if counting in Host mode is not enabled, this event is not counted
by execution of the return instruction to change to Guest mode.

Note 3. When an instruction which causes a transition from Guest mode to Host mode is executed, when counting
is enabled in Host mode, this event is counted. When these instructions are executed, even if counting is
enabled in Guest mode, this event is not counted.

Note 4. When the INTCFG.EPL bit is cleared (0), the period during which the value of ISPR.ISP is 0000h is counted.
Therefore, even if the INTCFG.EPL bit is cleared (0), if the INTCFG.ISPC bit is set (1) and ISPR.ISP is not
automatically updated, this event is not measured correctly. And even if the INTCFG.EPL bit and the
INTCFG.ISPC bit are both cleared (0), when an interrupt request with a priority lower than 16 is accepted
and ISPR.ISP is not set (1), also this event is not measured correctly. When the INTCFG.EPL bit is set (1),
the period during which the value of PSW.EIMASK is FFH is counted.

Note 5. For the definition of the period during which interrupt processing is not in progress, the value of CND is the
same as 28H. In addition, as the period of interrupt disable, the period during which the PSW.ID bit is set (1)
is counted. Interrupt disable setting by PSW.NP bit and PLMR register is not counted as a period of interrupt
disabled.

(7) PMCOUNTn — Performance Count

In the performance measurement function, this register counts the number of occurrences of various

events specified by the PMCTRLn register.

For details of PMCOUNTn, see the "CPU" section in the hardware manual of the product used.

(8) PMSUBCNDn — Performance Count Sub condition

This register specifies the subcondition to be used according to the setting of PMCTRLn.CND.

For details of PMSUBCNDn, see the "CPU" section in the hardware manual of the product used.

RH850G4MH Virtualization Section 3 Register Set

R01UH0865EJ0140 Rev.1.40 Page 75 of 200
August 31, 2023

3.9 Hardware Function Registers

See the "CPU" section in the hardware manual of the product used.

RH850G4MH Virtualization Section 3 Register Set

R01UH0865EJ0140 Rev.1.40 Page 76 of 200
August 31, 2023

3.10 Virtualization support function system registers

Virtualization support function system registers are the system registers for controlling the

virtualization support function. There are newly added system registers which realize the virtualization

support function and the system registers whose specifications have been changed. Reading and

writing to virtualization support function system registers are performed by specifying the system

registers number consisting of register number and selection identifier by LDSR instruction and STSR

instruction. Some registers are treated as an undefined register when HVE = 0. The initial value of such

a register after reset release with HVE = 0 is not guaranteed. When HVE is changed from 0 to 1, write

an appropriate value to the register.

Note 1. The access authority may be different depending on the value of HVCFG.HVE.

Note 2. In Host mode, reading with SV privilege or UM authority is possible. In Guest mode, only reading with SV
privilege or UM authority is possible. In Guest mode, writing is disabled.

Table 3.20 List of virtualization support function system registers

Register Number
(regID, selID) Name Function

Access Authority*1

HVE = 0 HVE = 1

SR16, 1 HVCFG Setting virtualization support function SV HV

SR17, 1 GMCFG Setting Guest mode operation SV HV

SR15, 0 PSWH Program status extended words SV HV*2

SR18, 0 EIPSWH PSWH saving register when EI level exception is
accepted

SV HV

SR19, 0 FEPSWH PSWH saving register when FE level exception is
accepted

SV HV

SR20, 1 HVSB Information notification register to Guest mode SV HV*2

SR0, 3 DBGEN Control of debugging with Host mode software SV HV

RH850G4MH Virtualization Section 3 Register Set

R01UH0865EJ0140 Rev.1.40 Page 77 of 200
August 31, 2023

(1) HVCFG

This register controls the CPU virtualization support function.

Note 1. For details, see the hardware manual of the product used.

Note 2. Although the value of this bit can be changed by software, the value of this bit greatly affects CPU operation
such as state management, access authority judgment, interrupt handling and so on. Therefore, when the
value of this bit needs to be changed from the initial value, the change must be made before the settings of
other functions are changed, at the beginning of the CPU initialization process after releasing reset. Do not
change the value of this bit during user program operation.

31 0

HVCFG H
V
E

Value after reset
*10 0

Table 3.21 HVCFG Register Contents

Bit Position Bit Name Description R/W
Value After
Reset

31 to 1 — (Reserved for future expansion. Be sure to set to 0.) R 0

0 HVE Enables or disables the virtualization support function. *2

0: Virtualization support function is disabled
1: Virtualization support function is enabled

When this bit is cleared (0), virtualization support function can not be used.
And depending on the setting of this bit, the execution authority of the
instruction and the access authority of the system registers may change. For
details, see Section 1, Virtualization support function. When PID.HV is
cleared (0) and the virtualization support function is not implemented, this bit
is always cleared (0) and can not be set (1).

R/W *1

RH850G4MH Virtualization Section 3 Register Set

R01UH0865EJ0140 Rev.1.40 Page 78 of 200
August 31, 2023

(2) GMCFG

This register sets the operating mode of Guest mode. This register is enabled when HVCFG.HVE is set

(1). The setting of this register affects only the operation in Guest mode. Setting of this register has no

effect on operation in Host mode. When HVCFG.HVE is cleared (0), this register is treated as an

undefined register. In that case, the value of this register is not automatically cleared (0), but the setting

value does not affect the operation of the CPU.

31 19 18 17 16 15 5 4 3 2 1 0

GMCFG

G
C

U
2

G
C

U
1

G
C

U
0

G
S

Y
S

E H
M
P

G
M
P

Value after reset
0000 0000H

0 0

Table 3.22 GMCFG Register Contents (1/2)

Bit Position Bit Name Description R/W
Value After
Reset

31 to 19 — (Reserved for future expansion. Be sure to set to 0.) R 0

18 GCU2 Specifies whether GMPSW.CU2 can be changed.
0: GMPSW.CU2 can not be changed.
1: GMPSW.CU2 can be changed.

However, this bit is a reserved function for the future CPUs compatible with
this CPU. The value of this bit cannot be changed. In this CPU, the value of
GMPSW.CU2 is fixed to (0).

R 0

17 GCU1 Specify availability of changing GMPSW.CU1.
0: GMPSW.CU1 can not be changed. (CU1 is automatically cleared (0).)
1: GMPSW.CU1 can be changed.

When this bit is set (1) and while GMPSW.CU1 is set (1), if this bit is cleared
(0), the value of GMPSW.CU1 is cleared (0). When this bit is cleared (0),
since GMPSW.CU1 is always cleared (0), extended floating point arithmetic
function (FXU) can not be used at all in Guest mode.

R/W 0

16 GCU0 Specify availability of changing GMPSW.CU0.
0: GMPSW.CU0 can not be changed. (CU0 is automatically cleared (0).)
1: GMPSW.CU0 can be changed.

When this bit is set (1) and while GMPSW.CU0 is set (1), if this bit is cleared
(0), the value of GMPSW.CU0 is cleared (0). When this bit is cleared (0),
since GMPSW.CU0 is always cleared (0), floating point arithmetic function
(FPU) can not be used at all in Guest mode.

R/W 0

15 to 5 — (Reserved for future expansion. Be sure to set to 0.) R 0

4 GSYSE Specifies the operating mode of the SYSERR exception handler when the
SYSERR exception occurs in Guest mode.

0: Operation in Guest mode
1: Operation in Host mode

If this bit is set (1), when the SYSERR exception occurs, the PSWH.GM bit is
automatically cleared (0), and the mode changes to Host mode.

R/W 0

3, 2 — (Reserved for future expansion. Be sure to set to 0.) R 0

1 HMP Specifies the operating mode of the exception handler when the guest
management entry is accessible but the host management entry is not
accessible and the MPU exception occurs.

0: Operation in Guest mode
1: Operation in Host mode

If this bit is set (1), when the target MPU exception occurs, the PSWH.GM bit
is automatically cleared (0), and the mode changes to Host mode.

R/W 0

RH850G4MH Virtualization Section 3 Register Set

R01UH0865EJ0140 Rev.1.40 Page 79 of 200
August 31, 2023

(3) PSWH

When HVCFG.HVE is set (1), it becomes an extended register on the higher bit side of PSW (program

status word).

The value of this register can not be changed with LDSR instruction. This register is updated by

executing exception return instructions (EIRET, FERET, DBRET).

When HVCFG.HVE is cleared (0), this register is treated as an undefined register.

0 GMP Specifies the operating mode of the exception handler if an access is not
available in the guest management entry and the MPU exception occurs.

0: Operation in Guest mode
1: Operation in Host mode

If this bit is set (1), when the target MPU exception occurs, the PSWH.GM bit
is automatically cleared (0), and the mode changes to Host mode.

R/W 0

Table 3.22 GMCFG Register Contents (2/2)

Bit Position Bit Name Description R/W
Value After
Reset

31 30 11 10 8 7 0

PSWH G
M

Value after reset
0000 0000H

0 GPID 0 0 0 0 0 0 0 0

Table 3.23 PSWH Register Contents

Bit Position Bit Name Description R/W
Value After
Reset

31 GM Indicates the CPU operating mode when HVCFG.HVE is set (1).
0: Host mode
1: Guest mode

The value of this bit can not be changed with the LDSR instruction. The
value of this bit is cleared (0) by the occurrence of an exception that changes
from Guest mode to Host mode. And the value of this bit is set (1) by
execution of a return instruction that causes the change from Host mode to
Guest mode.

Note that when HVCFG.HVE is cleared (0), the value of this bit automatically
becomes 0.

R 0

30 to 11 — (Reserved for future expansion. Be sure to set to 0.) R 0

10 to 8 GPID When HVCFG.HVE is set (1), it indicates Guest mode partition ID.

Note that when HVCFG.HVE is cleared (0), the value of this bit automatically
becomes 0.

R 0

7 to 0 — (Reserved for future expansion. Be sure to set to 0.) R 0

RH850G4MH Virtualization Section 3 Register Set

R01UH0865EJ0140 Rev.1.40 Page 80 of 200
August 31, 2023

(4) EIPSWH

When HVCFG.HVE is set (1), accepting EI level exception saves the contents of PSWH at that time.

And when the EIRET instruction is executed in Host mode, the value of this register is transferred to

PSWH. But when the EIRET instruction is executed in Guest mode, the value of this register is not

transferred to PSWH.

When HVCFG.HVE is cleared (0), this register is treated as an undefined register. In this case, the

value of this register is not automatically cleared (0). And even if the EIRET instruction is executed,

the value of this register is not transferred to PSWH.

(5) FEPSWH

When HVCFG.HVE is set (1), accepting FE level exception saves the contents of PSWH at that time.

And when the FERET instruction is executed in Host mode, the value of this register is transferred to

PSWH. But when the FERET instruction is executed in Guest mode, the value of this register is not

transferred to PSWH.

When HVCFG.HVE is cleared (0), this register is treated as an undefined register. In this case, the

value of this register is not automatically cleared (0). And even if the FERET instruction is executed,

the value of this register is not transferred to PSWH.

31 30 11 10 8 7 0

EIPSWH G
M

Value after reset
0000 0000H

0 GPID 0 0 0 0 0 0 0 0

Table 3.24 EIPSWH Register Contents

Bit Position Bit Name Description R/W
Value After
Reset

31 GM When EI level exception is accepted, the PSWH.GM bit is saved.
While this bit is set (1) in Host mode, if the EIRET instruction is executed, it
changes to Guest mode after returning.

R/W 0

30 to 11 — (Reserved for future expansion. Be sure to set to 0.) R 0

10 to 8 GPID When EI level exception is accepted, the PSWH.GPID is saved. R/W 0

7 to 0 — (Reserved for future expansion. Be sure to set to 0.) R 0

31 30 11 10 8 7 0

FEPSWH G
M

Value after reset
0000 0000H

0 GPID 0 0 0 0 0 0 0 0

Table 3.25 FEPSWH Register Contents

Bit Position Bit Name Description R/W
Value After
Reset

31 GM When FE level exception is accepted, the PSWH.GM bit is saved.

While this bit is set (1) in Host mode, if the FERET instruction is executed, it
changes to Guest mode after returning.

R/W 0

30 to 11 — (Reserved for future expansion. Be sure to set to 0.) R 0

10 to 8 GPID When FE level exception is accepted, the PSWH.GPID is saved. R/W 0

7 to 0 — (Reserved for future expansion. Be sure to set to 0.) R 0

RH850G4MH Virtualization Section 3 Register Set

R01UH0865EJ0140 Rev.1.40 Page 81 of 200
August 31, 2023

(6) HVSB

When HVCFG.HVE is set (1), this register notifies information to Guest mode. Host mode

management software can use this register to notify any information such as software state of Host

mode.

This register is used only for notification of information on software. And the hardware behavior will

not change depending on the value set in this register. In Guest mode, it only can be read.

When HVCFG.HVE is cleared (0), this register is treated as an undefined register.

(7) DBGEN

When HVCFG.HVE is set (1), this register controls event detection with breakpoint setting. Although

this register is a system register related to the debugging function, it can be accessed using the LDSR

and STSR instructions without debugging authority.

When HVCFG.HVE is cleared (0), this register is treated as an undefined register. In this case, the

setting of this register is not automatically cleared (0) and the value of this register does not affect event

detection with breakpoint setting.

31 0

HVSB Value after reset
UndefinedHVSB31-0

Table 3.26 HVSB Register Contents

Bit Position Bit Name Description R/W
Value After
Reset

31 to 0 HVSB Notifies any information to Guest mode. R/W Undefined

31 9 8 7 6 5 4 3 2 1 0

DBGEN H
E

G
E
7

G
E
6

G
E
5

G
E
4

G
E
3

G
E
2

G
E
1

G
E
0

Value after reset
*10 0

Table 3.27 DBGEN Register Contents (1/2)

Bit Position Bit Name Description R/W
Value After
Reset

31 to 9 — (Reserved for future expansion. Be sure to set to 0.) R 0

8 HE In Host mode, indicates whether or not event detection is allowed.
0: In Host mode, event detection is not allowed.
1: In Host mode, event detection is allowed.

R/W *1

7 GE7 In Guest mode, indicates whether or not event detection is allowed when
PSWH.GPID = 7.

0: When GPID = 7, event detection is not allowed.
1: When GPID = 7, event detection is allowed.

R/W *1

6 GE6 In Guest mode, indicates whether or not event detection is allowed when
PSWH.GPID = 6.

0: When GPID = 6, event detection is not allowed.
1: When GPID = 6, event detection is allowed.

R/W *1

5 GE5 In Guest mode, indicates whether or not event detection is allowed when
PSWH.GPID = 5.

0: When GPID = 5, event detection is not allowed.
1: When GPID = 5, event detection is allowed.

R/W *1

RH850G4MH Virtualization Section 3 Register Set

R01UH0865EJ0140 Rev.1.40 Page 82 of 200
August 31, 2023

Note 1. For details, see the hardware manual of the product used.

4 GE4 In Guest mode, indicates whether or not event detection is allowed when
PSWH.GPID = 4.

0: When GPID = 4, event detection is not allowed.
1: When GPID = 4, event detection is allowed.

R/W *1

3 GE3 In Guest mode, indicates whether or not event detection is allowed when
PSWH.GPID = 3.

0: When GPID = 3, event detection is not allowed.
1: When GPID = 3, event detection is allowed.

R/W *1

2 GE2 In Guest mode, indicates whether or not event detection is allowed when
PSWH.GPID = 2.

0: When GPID = 2, event detection is not allowed.
1: When GPID = 2, event detection is allowed.

R/W *1

1 GE1 In Guest mode, indicates whether or not event detection is allowed when
PSWH.GPID = 1.

0: When GPID = 1, event detection is not allowed.
1: When GPID = 1, event detection is allowed.

R/W *1

0 GE0 In Guest mode, indicates whether or not event detection is allowed when
PSWH.GPID = 0.

0: When GPID = 0, event detection is not allowed.
1: When GPID = 0, event detection is allowed.

R/W *1

Table 3.27 DBGEN Register Contents (2/2)

Bit Position Bit Name Description R/W
Value After
Reset

RH850G4MH Virtualization Section 3 Register Set

R01UH0865EJ0140 Rev.1.40 Page 83 of 200
August 31, 2023

3.11 Host Context Register

The host context registers are the system registers for Host mode that is multiplexed with the guest

context to realize virtualization support function. For details, see Section 2.5.7, System Register

Multiplexing.

The access authority when accessing the host context registers is the same as that of the system register

of the original function definition when HVCFG.HVE is set (1). For details of the access authority, see

Section 3.2, Basic System Registers, Section 3.3, Interrupt Function Registers, and

Section 3.6, MPU Function Registers.

Note that the host context registers are enabled only when HVCFG.HVE is set (1). When

HVCFG.HVE is cleared (0), the system registers are not multiplexed and become the register model in

the conventional mode. For details of the change of register model accompanying virtualization, see

Section 2.5.6, Change in Register Model.

RH850G4MH Virtualization Section 3 Register Set

R01UH0865EJ0140 Rev.1.40 Page 84 of 200
August 31, 2023

(1) HMEIPC

When EI level exception handled in Host mode is acknowledged, the address of the instruction that was

being executed when the EI level exception occurred, or of the next instruction, is saved to the

HMEIPC register (see Section 4.1.3, Types of Exceptions).

Because there is only one pair of EI level exception status save registers, when processing multiple

exceptions, the contents of these registers must be saved by a program.

Be sure to set an even-numbered address to the HMEIPC register. An odd-numbered address must not

be specified.

31 0

HMEIPC Value after reset
UndefinedEIPC31 to EIPC0

Table 3.28 HMEIPC Register Contents

Bit Position Bit Name Description R/W
Value After
Reset

31 to 1 EIPC31 to
EIPC1

These bits indicate the PC saved when an EI level exception is
acknowledged.

R/W Undefined

0 EIPC0 This bit indicates the PC saved when an EI level exception is acknowledged.
Always set this bit to 0. Even if it is set to 1, the value transferred to the PC
when the EIRET instruction is executed is 0.

R/W Undefined

RH850G4MH Virtualization Section 3 Register Set

R01UH0865EJ0140 Rev.1.40 Page 85 of 200
August 31, 2023

(2) HMEIPSW — Status Save Register when Acknowledging EI Level Exception

When EI level exception handled in Host mode is acknowledged, the current PSW setting is saved to

the HMEIPSW register.

Because there is only one pair of EI level exception status save registers, when processing multiple

exceptions, the contents of these registers must be saved by a program.

Note 1. Only if HMINTCFG.EPL is set to 1, the value other than 0 can be set in this field. If INTCFG.EPL is cleared
to 0, the value of this field becomes 0. Note that If HMINTCFG.EPL is cleared to 0 when the value of this
field is other than 0, the value of this field becomes 0.

Note 2. CU2 is reserved for future CPUs that are to be made compatible with this CPU. It is always set to 0 in this
CPU.

31 30 29 25 20 19 18 16 15 14 12 11 9 8 7 6 5 4 3 2 1 0

HMEIPSW U
M

E
B
V

N
P

E
P

I
D

S
A
T

C
Y

O
V

Value after reset
0000 0020H

0 0 0 0 0 EIMASK 0 CU2 to
CU0

0 0 0 0 0 0 0 S Z

Table 3.29 HMEIPSW Register Contents

Bit Position Bit Name Description R/W
Value after
Reset

31 — (Reserved for future expansion. Be sure to set to 0.) R 0

30 UM This bit stores the HMPSW.UM bit setting when an EI level exception is
acknowledged.

R/W 0

29 to 26 — (Reserved for future expansion. Be sure to set to 0.) R 0

25 to 20 EIMASK These bits store the HMPSW.EIMASK bit setting when an EI level exception
is acknowledged*1.

R/W 0

19 — (Reserved for future expansion. Be sure to set to 0.) R 0

18 to 16 CU2 to CU0 These bits store the HMPSW.CU2-0 field setting when an EI level exception
is acknowledged*2.

R/W 0

15 EBV This bit stores the HMPSW.EBV bit setting when an EI level exception is
acknowledged.

R/W 0

14 to 8 — (Reserved for future expansion. Be sure to set to 0.) R 0

7 NP This bit stores the HMPSW.NP bit setting when an EI level exception is
acknowledged.

R/W 0

6 EP This bit stores the HMPSW.EP bit setting when an EI level exception is
acknowledged.

R/W 0

5 ID This bit stores the HMPSW.ID bit setting when an EI level exception is
acknowledged.

R/W 1

4 SAT This bit stores the HMPSW.SAT bit setting when an EI level exception is
acknowledged.

R/W 0

3 CY This bit stores the HMPSW.CY bit setting when an EI level exception is
acknowledged.

R/W 0

2 OV This bit stores the HMPSW.OV bit setting when an EI level exception is
acknowledged.

R/W 0

1 S This bit stores the HMPSW.S bit setting when an EI level exception is
acknowledged.

R/W 0

0 Z This bit stores the HMPSW.Z bit setting when an EI level exception is
acknowledged.

R/W 0

RH850G4MH Virtualization Section 3 Register Set

R01UH0865EJ0140 Rev.1.40 Page 86 of 200
August 31, 2023

(3) HMFEPC

When FE level exception handled in Host mode is acknowledged, the address of the instruction that

was being executed when the FE level exception occurred, or of the next instruction, is saved to the

HMFEPC register (see Section 4.1.3, Types of Exceptions).

Because there is only one pair of FE level exception status save registers, when processing multiple

exceptions, the contents of these registers must be saved by a program.

Be sure to set an even-numbered address to the HMFEPC register. An odd-numbered address must not

be specified.

Note 1. When a reset occurs, among the instructions that completed execution before the reset occurred the value
of the program counter of the instruction that was executed last is saved. If there is no execution completed
instruction before the reset occurs, the value after reset is undefined. There is no information that identifies
whether the value after reset is the value of the program counter of the execution completed instruction or
undefined.

31 0

HMFEPC Value after reset
Undefined*1FEPC31 to FEPC0

Table 3.30 HMFEPC Register Contents

Bit Position Bit Name Description R/W
Value After
Reset

31 to 1 FEPC31 to
FEPC1

These bits indicate the PC saved when an FE level exception is
acknowledged.

R/W Undefined*1

0 FEPC0 This bit indicates the PC saved when an FE level exception is
acknowledged.
Always set this bit to 0. Even if it is set to 1, the value transferred to the PC
when the FERET instruction is executed is 0.

R/W Undefined*1

RH850G4MH Virtualization Section 3 Register Set

R01UH0865EJ0140 Rev.1.40 Page 87 of 200
August 31, 2023

(4) HMFEPSW

When FE level exception handled in Host mode is accepted, the current PSW setting is saved to the

HMFEPSW register.

Because there is only one pair of FE level exception status save registers, when processing multiple

exceptions, the contents of these registers must be saved by a program.

Note 1. Only if HMINTCFG.EPL is set to 1, the value other than 0 can be set in this field. If HMINTCFG.EPL is
cleared to 0, the value of this field becomes 0. Note that If HMINTCFG.EPL is cleared to 0 when the value
of this field is other than 0, the value of this field becomes 0.

Note 2. CU2 is reserved for future CPUs that are to be made compatible with this CPU. It is always set to 0 in this
CPU.

31 30 29 25 20 19 18 16 15 14 8 7 6 5 4 3 2 1 0

UM
E
B
V

N
P

E
P

I
D

S
A
T

C
Y

O
V

S Z
Value after reset

0000 0020H

HMFEPSW 0 0 0 0 0 EIMASK 0 CU2 to
CU0

0 0 0 0 0 0 0

Table 3.31 HMFEPSW Register Contents

Bit Position Bit Name Description R/W
Value After
Reset

31 — (Reserved for future expansion. Be sure to set to 0.) R 0

30 UM This bit stores the HMPSW.UM bit setting when an FE level exception is
acknowledged.

R/W 0

29 to 26 — (Reserved for future expansion. Be sure to set to 0.) R 0

25 to 20 EIMASK These bits store the HMPSW.EIMASK field setting when an FE level
exception is acknowledged*1.

R/W 0

19 — (Reserved for future expansion. Be sure to set to 0.) R 0

18 to 16 CU2 to CU0 These bits store the HMPSW.CU2-0 field setting when an FE level exception
is acknowledged*2.

R/W 0

15 EBV This bit stores the HMPSW.EBV bit setting when an FE level exception is
acknowledged.

R/W 0

14 to 8 — (Reserved for future expansion. Be sure to set to 0.) R 0

7 NP This bit stores the HMPSW.NP bit setting when an FE level exception is
acknowledged.

R/W 0

6 EP This bit stores the HMPSW.EP bit setting when an FE level exception is
acknowledged.

R/W 0

5 ID This bit stores the HMPSW.ID bit setting when an FE level exception is
acknowledged.

R/W 1

4 SAT This bit stores the HMPSW.SAT bit setting when an FE level exception is
acknowledged.

R/W 0

3 CY This bit stores the HMPSW.CY bit setting when an FE level exception is
acknowledged.

R/W 0

2 OV This bit stores the HMPSW.OV bit setting when an FE level exception is
acknowledged.

R/W 0

1 S This bit stores the HMPSW.S bit setting when an FE level exception is
acknowledged.

R/W 0

0 Z This bit stores the HMPSW.Z bit setting when an FE level exception is
acknowledged.

R/W 0

RH850G4MH Virtualization Section 3 Register Set

R01UH0865EJ0140 Rev.1.40 Page 88 of 200
August 31, 2023

(5) HMPSW

The HMPSW register is PSW (Program Status Word) used for Host mode.

PSW (program status word) is a set of flags that indicate the program status (instruction execution

result) and bits that indicate the operation status of the CPU (flags are bits in the PSW that are

referenced by a condition instruction (Bcond, CMOV, etc.)).

CAUTIONS

1. When the LDSR instruction is used to change the contents of this register, the

changed contents become valid from the subsequent instruction. For details, see

Section 7.3, Hazard Management after System Register Update.

2. The access permission for the PSW register differs depending on the bit. All bits

can be read, but some bits can only be written under certain conditions. See Table

3.32 for the access permission for each bit.

Note 1. The access permission for the whole HMPSW register is UM, so the PIE exception does not occur even if
the register is written by using an LDSR instruction when HMPSW.UM is 1. In this case, writing is ignored.

Table 3.32 Access Permission for HMPSW Register

Bit

Access Permission when Reading Access Permission when Writing

HVE = 0 HVE = 1 HVE = 0 HVE = 1

30 UM UM UM SV*1 SV*1

25 to 20 EIMASK SV*1 SV*1

18 to 16 CU2-0 SV*1 SV*1

15 EBV SV*1 SV*1

7 NP SV*1 SV*1

6 EP SV*1 SV*1

5 ID SV*1 SV*1

4 SAT UM UM

3 CY UM UM

2 OV UM UM

1 S UM UM

0 Z UM UM

RH850G4MH Virtualization Section 3 Register Set

R01UH0865EJ0140 Rev.1.40 Page 89 of 200
August 31, 2023

31 30 29 26 25 20 19 18 16 15 14 8 7 6 5 4 3 2 1 0

HMPSW U
M

E
B
V

N
P

E
P

I
D

S
A
T

C
Y

O
V

Value after reset
0000 0020H

0 0 0 0 0 EIMASK 0 CU2 to
CU0

0 0 0 0 0 0 0 S Z

Table 3.33 HMPSW Register Contents (1/2)

Bit Position Bit Name Description R/W
Value after
Reset

31 — (Reserved for future expansion. Be sure to set to 0.) R 0

30 UM This bit indicates that the CPU is in user mode (in UM mode).
0: Supervisor mode
1: User mode

R/W 0

29 to 26 — (Reserved for future expansion. Be sure to set to 0.) R 0

25 to 20 EIMASK This field indicates the interrupt priority that becomes the boundary
between enabling and disabling an acknowledgement of an interrupt
(EIINTn). For an interrupt (EIINTn) with higher priority than the value set in
this field, the acknowledgement is enabled. For an interrupt (EIINTn) with
priority less than or equal to the value set in this field, the
acknowledgement is disabled.

0: Interrupt acceptance of all priority levels is disabled.
1: Interrupt acceptance of priority level 1 or lower is disabled.

(0 is enabled)
2: Interrupt acceptance of priority level 2 or lower is disabled.

(1 or more are enabled)
 …
62: Interrupt acceptance of priority level 62 or lower is disabled.

(61 or higher is enabled)
63: Interrupt acceptance of priority level 63 or lower is disabled.

(62 or more are enabled)

Only if the HMINTCFG.EPL is set to 1, interrupt acknowledgment control is
performed by the value of this field. If the HMINTCFG.EPL is cleared to 0,
interrupt acknowledgment control by the value of this field is not
performed*1.

If the HMINTCFG.EPL is set to 1 and an interrupt (EIINTn) is acknowledged,
the interrupt priority is saved in this field as part of HMPSW change due to
acknowledgment of interrupt (EIINTn).

The interrupt (EIINTn) with a priority of 63 is always disabled.
However, the CPU halt state due to HALT or SNOOZE is released by an
interrupt (EIINTn) with priority 63.

R/W 0

19 — (Reserved for future expansion. Be sure to set to 0.) R 0

18 to 16 CU2 to CU0 These bits indicate the coprocessor use permissions. When the bit
corresponding to the coprocessor is 0, a coprocessor unusable exception
occurs if an instruction for the coprocessor is executed or a coprocessor
resource (system register) is accessed.

Bit 18 (CU2): Fixed to 0*2.
Bit 17 (CU1): FXU
Bit 16 (CU0): FPU

CU2 to CU0 are fixed to 0 in the devices that do not have corresponding
coprocessors.

R/W 000

15 EBV This bit indicates the reset vector and exception vector operation. See
Section 3.2 (16), RBASE — Reset Vector Base Address and Section 3.2
(17), EBASE — Exception Handler Vector Address.

R/W 0

14 to 8 — (Reserved for future expansion. Be sure to set to 0.) R 0

RH850G4MH Virtualization Section 3 Register Set

R01UH0865EJ0140 Rev.1.40 Page 90 of 200
August 31, 2023

Note 1. Only if HMINTCFG.EPL is set to 1, the value other than 0 can be set in this field. If HMINTCFG.EPL is
cleared to 0, the value of this field becomes 0. If HMINTCFG.EPL is cleared to 0, since the interrupt
acknowledgment controlled by the value of this field is not performed, even if the value of this field is 0, if
another interrupt acknowledgment condition is satisfied, an interrupt (EIINTn) can be acknowledged. Note
that If HMINTCFG.EPL is cleared to 0 when the value of this field is other than 0, the value of this field
becomes 0.

Note 2. The coprocessor use permission CU2 is reserved for future CPUs that are to be made compatible with this
CPU.

Note 3. Saturation processing is applied to the operation result in accordance with the contents of the OV and S
flags. The SAT flag is set (1) only when the OV flag is set (1) in the saturation arithmetic operation.

7 NP This bit disables the acknowledgement of FE level exception. When an FE
level exception is acknowledged, this bit is set to 1 to disable the
acknowledgement of EI level and FE level exceptions. As for the exceptions
for which the NP bit disables the acknowledgment, see Table 4.1,
Exception Cause List.

0: The acknowledgement of FE level exception is enabled.
1: The acknowledgement of FE level exception is disabled.

R/W 0

6 EP This bit indicates that an exception other than an interrupt is being serviced.
It is set to 1 when the corresponding exception occurs. This bit does not
affect acknowledging an exception request even when it is set to 1.

0: An exception other than an interrupt is not being serviced.
1: An exception other than an interrupt is being serviced.

R/W 0

5 ID This bit disables the acknowledgement of EI level exception. When an EI
level or FE level exception is acknowledged, this bit is set to 1 to disable the
acknowledgement of EI level exception. As for the exceptions for which the
ID bit disables the acknowledgment, see Table 4.1, Exception Cause List
This bit is also used to disable EI level exceptions from being acknowledged
as a critical section while an ordinary program or interrupt is being serviced.
It is set to 1 when the DI instruction is executed, and cleared to 0 when the EI
instruction is executed.
The change of the ID bit by the EI or ID instruction will be enabled from the
next instruction.

0: The acknowledgement of EI level exception is enabled.
1: The acknowledgement of EI level exception is disabled.

R/W 1

4 SAT*3 This bit indicates that a saturation arithmetic operation instruction resulted in
overflow and saturation processing is applied to the result. This is a
cumulative flag, that is, it is set (1) once a saturation occurs and not cleared
(0) by subsequent instructions with unsaturated results. This bit is cleared by
the LDSR instruction. Note that execution of an arithmetic operation
instruction neither sets nor clears this flag.

0: The result was not saturated
1: The result was saturated

R/W 0

3 CY This bit indicates whether a carry or borrow has occurred in the operation
result.

0: Carry and borrow have not occurred.
1: Carry or borrow has occurred.

R/W 0

2 OV*3 This bit indicates whether or not an overflow has occurred during an
operation.

0: Overflow has not occurred.
1: Overflow has occurred.

R/W 0

1 S*3 This bit indicates whether or not the result of an operation is negative.
0: Result of operation is positive or 0.
1: Result of operation is negative.

R/W 0

0 Z This bit indicates whether or not the result of an operation is 0.
0: Result of operation is not 0.
1: Result of operation is 0.

R/W 0

Table 3.33 HMPSW Register Contents (2/2)

Bit Position Bit Name Description R/W
Value after
Reset

RH850G4MH Virtualization Section 3 Register Set

R01UH0865EJ0140 Rev.1.40 Page 91 of 200
August 31, 2023

(6) HMEIIC

When an EI-level exception handled in Host mode occurs, the HMEIIC register stores the cause of the

exception. The value retained in this register is an exception code corresponding to a specific exception

cause (see Table 4.1, Exception Cause List).

(7) HMFEIC

When a FE-level exception handled in Host mode occurs, the HMFEIC register stores the cause of the

exception. The value retained in this register is an exception code corresponding to a specific exception

cause (see Table 4.1, Exception Cause List).

(8) HMEIWR

The HMEIWR register is the working register for when EI level exception occurred in Host mode.

31 0

HMEIIC Value after reset
0000 0000H

EIIC31 to EIIC0

Table 3.34 HMEIIC Register Contents

Bit Position Bit Name Description R/W
Value After
Reset

31 to 0 EIIC31 to
EIIC0

These bits store the exception cause code when an EI level exception
occurs. The EIIC15-0 field stores the exception cause codes shown in Table
4.1. The EIIC31-16 field stores detailed exception cause codes defined
individually for each exception. If there is no particular definition, these bits
are set to 0.

R/W 0

31 0

HMFEIC Value after reset
0000 0000H

FEIC31 to FEIC0

Table 3.35 HMEIIC Register Contents

Bit Position Bit Name Description R/W
Value After
Reset

31 to 0 FEIC31 to
FEIC0

These bits store the exception cause code when an FE level exception
occurs. The FEIC15-0 field stores the exception cause codes shown in
Table 4.1. The FEIC31-16 field stores detailed exception cause codes
defined individually for each exception. If there is no particular definition,
these bits are set to 0.

R/W 0

31 0

HMEIWR Value after reset
UndefinedEIWR31 to EIWR0

Table 3.36 EIWR Register Contents

Bit Position Bit Name Description R/W
Value After
Reset

31 to 0 EIWR31 to
EIWR0

These bits constitute a working register that can be used for any purpose
during the processing of an EI level exception. Use this register for purposes
such as storing the values of general-purpose registers.

R/W Undefined

RH850G4MH Virtualization Section 3 Register Set

R01UH0865EJ0140 Rev.1.40 Page 92 of 200
August 31, 2023

(9) HMFEWR

The HMFEWR register is the working register for when FE level exception occurred in Host mode.

(10) HMSPID

The HMSPID register is a register that indicates the system protection number of CPU used in Host

mode.

Note 1. For details, see the hardware manual of the product used.

31 0

HMFEWR Value after reset
UndefinedFEWR31 to FEWR0

Table 3.37 HMFEWR Register Contents

Bit Position Bit Name Description R/W
Value After
Reset

31 to 0 FEWR31 to
FEWR0

These bits constitute a working register that can be used for any purpose
during the processing of an FE level exception. Use this register for
purposes such as storing the values of general-purpose registers.

R/W Undefined

31 5 4 0

HMSPID Value after
reset*10 SPID

Table 3.38 HMSPID Register Contents

Bit Position Bit Name Description R/W
Value After
Reset

31 to 5 — (Reserved for future expansion. Be sure to set to 0.) R 0

4 to 0 SPID These bits indicate the system protection identifier.
The system protection identifier is a variable ID that is used for access
protection in a product which consists of two or more bus masters including
this CPU. For its uses and constraints on its value, see the hardware manual
of the product used.
Within this CPU, the SPID is used to check for area matching by the MPU. It
allows the system specifications defined for the product to be reflected in the
MPUʼs protection feature. The settable system protection identifiers are
given by the HMSPIDLIST register. If an attempt is made to set an illegal
system protection identifier, the HMSPID register is not updated and retains
the original value.

R/W *1

RH850G4MH Virtualization Section 3 Register Set

R01UH0865EJ0140 Rev.1.40 Page 93 of 200
August 31, 2023

(11) HMSPIDLIST

In Host mode, the HMSPIDLIST register contains a list of system protection identifiers that can be set

to the HMSPID register.

The bits corresponding to the settable system protection identifiers are set to 1. The bits corresponding

to illegal system protection identifiers are cleared to 0. These values are set outside the CPU as system

specifications and cannot be altered by this CPU.

Note 1. For details, see the hardware manual of the product used.

31 0

HMSPIDLIST Value after reset
*1SL31 to SL0

Table 3.39 HMSPIDLIST Register Contents

Bit Position Bit Name Description R/W
Value After
Reset

31 SL31 This bit indicates whether or not 31 can be set as a system protection identifier. R *1

30 SL30 This bit indicates whether or not 30 can be set as a system protection identifier. R *1

29 SL29 This bit indicates whether or not 29 can be set as a system protection identifier. R *1

28 SL28 This bit indicates whether or not 28 can be set as a system protection identifier. R *1

27 SL27 This bit indicates whether or not 27 can be set as a system protection identifier. R *1

26 SL26 This bit indicates whether or not 26 can be set as a system protection identifier. R *1

25 SL25 This bit indicates whether or not 25 can be set as a system protection identifier. R *1

24 SL24 This bit indicates whether or not 24 can be set as a system protection identifier. R *1

23 SL23 This bit indicates whether or not 23 can be set as a system protection identifier. R *1

22 SL22 This bit indicates whether or not 22 can be set as a system protection identifier. R *1

21 SL21 This bit indicates whether or not 21 can be set as a system protection identifier. R *1

20 SL20 This bit indicates whether or not 20 can be set as a system protection identifier. R *1

19 SL19 This bit indicates whether or not 19 can be set as a system protection identifier. R *1

18 SL18 This bit indicates whether or not 18 can be set as a system protection identifier. R *1

17 SL17 This bit indicates whether or not 17 can be set as a system protection identifier. R *1

16 SL16 This bit indicates whether or not 16 can be set as a system protection identifier. R *1

15 SL15 This bit indicates whether or not 15 can be set as a system protection identifier. R *1

14 SL14 This bit indicates whether or not 14 can be set as a system protection identifier. R *1

13 SL13 This bit indicates whether or not 13 can be set as a system protection identifier. R *1

12 SL12 This bit indicates whether or not 12 can be set as a system protection identifier. R *1

11 SL11 This bit indicates whether or not 11 can be set as a system protection identifier. R *1

10 SL10 This bit indicates whether or not 10 can be set as a system protection identifier. R *1

9 SL9 This bit indicates whether or not 9 can be set as a system protection identifier. R *1

8 SL8 This bit indicates whether or not 8 can be set as a system protection identifier. R *1

7 SL7 This bit indicates whether or not 7 can be set as a system protection identifier. R *1

6 SL6 This bit indicates whether or not 6 can be set as a system protection identifier. R *1

5 SL5 This bit indicates whether or not 5 can be set as a system protection identifier. R *1

4 SL4 This bit indicates whether or not 4 can be set as a system protection identifier. R *1

3 SL3 This bit indicates whether or not 3 can be set as a system protection identifier. R *1

2 SL2 This bit indicates whether or not 2 can be set as a system protection identifier. R *1

1 SL1 This bit indicates whether or not 1 can be set as a system protection identifier. R *1

0 SL0 This bit indicates whether or not 0 can be set as a system protection identifier. R *1

RH850G4MH Virtualization Section 3 Register Set

R01UH0865EJ0140 Rev.1.40 Page 94 of 200
August 31, 2023

(12) HMEBASE

In Host mode, the HMEBASE register indicates the vector address of the exception handler. The

settings of this register are valid when the HMPSW.EBV bit is 1.

(13) HMINTBP

In Host mode, the HMINTBP register indicates the base address of the table when the table reference

method is selected as the interrupt handler address selection method.

31 9 8 1 0

HMEBASE D
V

R
IN

T Value after reset
UndefinedEBASE31 to EBASE9 0 0 0 0 0 0 0

Table 3.40 HMEBASE Register Contents

Bit Position Bit Name Description R/W
Value After
Reset

31 to 9 EBASE31 to
EBASE9

The address of the exception handler routine is changed to the address
calculated by adding the offset address of each exception to the base
address specified in this register.
The EBASE8 to EBASE0 bits are implicitly set to 0.

R/W Undefined

8 to 2 — (Reserved for future expansion. Be sure to set to 0.) R 0

1 DV When the DV bit is set, the exception handler address for interrupt is
determined by using the direct vector method. For details, see Section 4.4.1
(2), Table Reference Method.

R/W Undefined

0 RINT When the RINT bit is set, the exception handler address for interrupt
processing is reduced. See Section 4.4.1 (1), Direct Vector Method.

R/W Undefined

31 9 8 0

HMINTBP Value after reset
Undefined INTBP31 to INTBP9 0 0 0 0 0 0 0 0 0

Table 3.41 HMINTBP Register Contents

Bit Position Bit Name Description R/W
Value After
Reset

31 to 9 INTBP31 to
INTBP9

These bits indicate the base pointer address for an interrupt when the table
reference method is used.
The value indicated by these bits is the first address in the table used to
determine the exception handler when the interrupt specified by the table
reference method (EIINTn) is acknowledged.
The INTBP8 to INTBP0 bits are not assigned as names because these bits
are always 0.

R/W Undefined

8 to 0 — (Reserved for future expansion. Be sure to set to 0.) R 0

RH850G4MH Virtualization Section 3 Register Set

R01UH0865EJ0140 Rev.1.40 Page 95 of 200
August 31, 2023

(14) HMINTCFG

In Host mode, the HMINTCFG register is used to specify settings related to the CPU’s internal

interrupt function.

31 22 21 16 15 2 1 0

HMINTCFG

E
P

L

IS
P

C Value after reset
Undefined0 0 0 0 0 0 0 0 0 0 ULNR 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 3.42 HMINTCFG Register Contents (1/2)

Bit Position Bit Name Description R/W
Value After
Reset

31 to 22 — (Reserved for future expansion. Be sure to set to 0.) R 0

21 to 16 ULNR Specifies the maximum value of available register bank numbers.
If the value of the RBNR.BN is bigger than the ULNR, or the value of the
RBNR.BN is 63, when the interrupt (EIINTn) using the register bank function
occurs, the SYSERR exception will occur. Note that the interrupt (EIINTn) is
not accepted and is put on hold.

R/W 0FH

15 to 2 — (Reserved for future expansion. Be sure to set to 0.) R 0

1 EPL For the interrupt (EIINTn), specifies whether to enable interrupt priority level
extension function.

0: Interrupt priority level extension function is disabled
1: Interrupt priority level extension function is enabled

The following is the overview of interrupt operation by setting this bit.
For details, see Section 4.1.5, Interrupt Exception Priority and Priority
Masking, Section 4.4, Exception Handler Address, Section 4.5, Register
Bank Function.

R/W 0

Interrupt function

Value of EPL

0 1

Number of interrupt
priority level

16 64

M
a

sk
 F

u
n

ct
io

n

ISPR Function is enabled Function is disabled

PSW.EIMASK Function is disabled Function is enabled

PLMR Function is enabled

PSW.NP Function is enabled

PSW.ID Function is enabled

INTCFG.ISPC Settings can be changed Fixed 0

ICSR.PMEI Function is enabled

IMSR Function is enabled

H
a

n
dl

e
r

g
e

ne
ra

tio
n Direct vector

method
Each vector can be used
by each priority.

Each vector can be used
by priority 0 to 14. The
priority 15 vector is shared
with the priority 15 or
greater.

Table reference
method

Available

Register bank Availability can be set by
each priority.

Priority 0 to 14 can be
individually set.
The priority 15 setting is
shared with the priority 15
or greater.

RH850G4MH Virtualization Section 3 Register Set

R01UH0865EJ0140 Rev.1.40 Page 96 of 200
August 31, 2023

0 ISPC This bit changes how the ISPR register is written.
0: The ISPR register is automatically updated. Updates triggered by the

program (via execution of LDSR instruction) are ignored.
1: The ISPR register is not automatically updated. Updates triggered by the

program (via execution of LDSR instruction) are performed.

If this bit is cleared to 0, the bits of the ISPR register are automatically set to
1 when an interrupt (EIINTn) is acknowledged, and cleared to 0 when the
EIRET instruction is executed. In this case, the bits are not updated by an
LDSR instruction executed by the program. If this bit is set to 1, the bits of
the ISPR register are not updated by the acknowledgement of an interrupt
(EIINTn) or by execution of the EIRET instruction. In this case, the bits can
be updated by an LDSR instruction executed by the program.
In normal cases, the ISPC bit should be cleared. When performing software-
based priority control, however, set this bit (1).
For details, see Section 4.1.5 (2), Interrupt Priority Mask.

R/W 0

Table 3.42 HMINTCFG Register Contents (2/2)

Bit Position Bit Name Description R/W
Value After
Reset

RH850G4MH Virtualization Section 3 Register Set

R01UH0865EJ0140 Rev.1.40 Page 97 of 200
August 31, 2023

(15) HMPLMR

In Host mode, the HMPLMR register masks the interrupts (EIINTn) whose priority level is not higher

than the level specified by these bits.

Note 1. Even if INTCFG.EPL is cleared (0), it is possible to receive an interrupt (EIINTn) with priority 16 or less from
the interrupt controller. Even if INTCFG.EPL is cleared (0), PLMR will not be automatically reduced to 4 bits,
and PLMR always masks interrupts for interrupt priority level of up to 64 level.

31 5 0

HMPLMR
Value after reset

0000 0010H
0 PLM

Table 3.43 HMPLMR Register Contents

Bit
Position Bit Name Description R/W

Value After
Reset

31 to 6 — (Reserved for future expansion. Be sure to set to 0.) R 0

5 to 0 PLM These bits are used to mask the interrupts (EIINTn) whose priority level is not
higher than the level specified by these bits.
When an interrupt (EIINTn) is masked by this register, it is not accepted.

The correspondence between the value of the PLM bit and the highest priority
of interrupts to be masked is shown below.

Since the highest priority level of an interrupt that is defined for this CPU is 0, if
0 is specified in the PLM bit, all interrupts (EIINTn) are masked by this register.
Since the lowest interrupt priority level defined by this CPU is 63, the interrupts
(EIINTn) with the interrupt priority of 63 are always masked.
Regardless of INTCFG.EPL setting, the interrupt mask by PLMR is done by
the value of the PLM bit and the value of the interrupt priority notified from the
interrupt controller*1.
If the value of PLMR is altered by the LDSR instruction, the new PLMR value
is reflected in the instructions following that LDSR instruction.

R/W 10H

Value of PLM Bit Highest Priority of Interrupts to be Masked

0 Priority 0 (All priorities are not acceptable)

1 Priority 1 (Only priority 0 is acceptable)

:

14 Priority 14 (Only priorities 13 or higher are acceptable)

15 Priority 15 (Only priorities 14 or higher are acceptable)

:

62 Priority 62 (Only priorities 61 or higher are acceptable)

63 Priority 63 (Only priorities 62 or higher are acceptable)

RH850G4MH Virtualization Section 3 Register Set

R01UH0865EJ0140 Rev.1.40 Page 98 of 200
August 31, 2023

(16) HMSVLOCK

In Host mode, the HMSVLOCK register is used to restrict the CPU operation in supervisor mode.

Note 1. The target system registers are those registers that are associated with memory accessing. This register
prevents these registers from being rewritten carelessly and unintentional memory access from being
performed outside the CPU.

(17) HMMEA

The HMMEA register is MEA used for Host mode.

31 1 0

HMSVLOCK S
V
L

Value after reset
0000 0000H

0 0

Table 3.44 HMSVLOCK Register Contents

Bit Position Bit Name Description R/W
Value After
Reset

31 to 1 — (Reserved for future expansion. Be sure to set to 0.) R 0

0 SVL This bit specifies whether to restrict the CPU operation in supervisor mode.
0: Does not restrict the CPU operation in supervisor mode.
1: Restrict the CPU operation in supervisor mode.

If the SVL bit is set to 1, the following system registers*1

cannot be updated even when the CPU is in supervisor mode:
HMSPID, HMMPM, MPLA, MPUA, MPAT, MPIDn, MPBK

For details, see Section 2.5.5, Supervisor Lock Setting.

R/W 0

31 0

HMMEA Value after reset
UndefinedMEA

Table 3.45 HMMEA Register Contents

Bit Position Bit Name Description R/W
Value After
Reset

31 to 0 MEA These bits holds the address in which an MAE (misalignment) or MPU
violation occurred.

R/W Undefined

RH850G4MH Virtualization Section 3 Register Set

R01UH0865EJ0140 Rev.1.40 Page 99 of 200
August 31, 2023

(18) HMMEI

In Host mode, the HMMEI register holds the information about the instruction that caused a

misalignment exception (MAE) or memory protection exception (MDP). The information can be used

as hint information for the emulation by software.

Note 1. Even if the data is divided and access is made several times due to the specifications of the hardware, the
original data type indicated by the instruction is stored.

31 28 27 21 20 16 15 12 11 9 8 7 6 5 1 0

HMMEI R
W

Value after reset
UndefinedLEN 0 0 0 0 0 0 0 REG 0 0 0 0 DS U 0 0 ITYPE

Table 3.46 HMMEI Register Contents

Bit Position Bit Name Description R/W
Value After
Reset

31 to 28 LEN These bits indicate the code size of the instruction that caused the exception.
0: Non-instruction factor
2: 16 bits
4: 32 bits
6: 48 bits
8:64 bits

Values other than those listed above are reserved for future use and never
stored here.
For details, see Table 3.47.

R/W Undefined

27 to 21 — (Reserved for future expansion. Be sure to set to 0.) R 0

20 to 16 REG These bits indicate the source register number or destination register
number of the instruction that caused the exception.
For details, see Table 3.47.

R/W Undefined

15 to 12 — (Reserved for future expansion. Be sure to set to 0.) R 0

11 to 9 DS These bits indicate the data type of the instruction that caused the
exception*1.

0: Byte (8 bits)
1: Halfword (16 bits)
2: Word (32 bits)
3: Double-word (64 bits)
4: Quad-word (128 bits)

Values other than those listed above are reserved for future use and never
stored here.
For details, see Table 3.47.

R/W Undefined

8 U This bit indicates the sign extension method of the instruction that caused
the exception.

0: Signed
1: Unsigned

For details, see Table 3.47.

R/W Undefined

7 to 6 — (Reserved for future expansion. Be sure to set to 0.) R 0

5 to 1 ITYPE These bits indicate the instruction that caused the exception.
For details, see Table 3.47.

R/W Undefined

0 RW This bit indicates whether the operation performed by the instruction that
caused the exception is a read (Load-memory) or a write (Store-memory).

0: Read (Load-memory)
1: Write (Store-memory)

For details, see Table 3.47.

R/W Undefined

RH850G4MH Virtualization Section 3 Register Set

R01UH0865EJ0140 Rev.1.40 Page 100 of 200
August 31, 2023

Table 3.47 Instructions Causing Exceptions and Values of HMMEI Register (1/2)

Instruction LEN REG DS U RW ITYPE

SLD.B 2 (16 bits) dst 0 (Byte) 0 (Signed) 0 (Read) 00000B

SLD.BU 2 (16 bits) dst 0 (Byte) 1 (Unsigned) 0 (Read) 00000B

SLD.H 2 (16 bits) dst 1 (Half-word) 0 (Signed) 0 (Read) 00000B

SLD.HU 2 (16 bits) dst 1 (Half-word) 1 (Unsigned) 0 (Read) 00000B

SLD.W 2 (16 bits) dst 2 (Word) 0 (Signed) 0 (Read) 00000B

SST.B 2 (16 bits) src 0 (Byte) 0 (Signed) 1 (Write) 00000B

SST.H 2 (16 bits) src 1 (Half-word) 0 (Signed) 1 (Write) 00000B

SST.W 2 (16 bits) src 2 (Word) 0 (Signed) 1 (Write) 00000B

LD.B (disp16) 4 (32 bits) dst 0 (Byte) 0 (Signed) 0 (Read) 00001B

LD.BU (disp16) 4 (32 bits) dst 0 (Byte) 1 (Unsigned) 0 (Read) 00001B

LD.H (disp16) 4 (32 bits) dst 1 (Half-word) 0 (Signed) 0 (Read) 00001B

LD.HU (disp16) 4 (32 bits) dst 1 (Half-word) 1 (Unsigned) 0 (Read) 00001B

LD.W (disp16) 4 (32 bits) dst 2 (Word) 0 (Signed) 0 (Read) 00001B

ST.B (disp16) 4 (32 bits) src 0 (Byte) 0 (Signed) 1 (Write) 00001B

ST.H (disp16) 4 (32 bits) src 1 (Half-word) 0 (Signed) 1 (Write) 00001B

ST.W (disp16) 4 (32 bits) src 2 (Word) 0 (Signed) 1 (Write) 00001B

LD.B (disp23) 6 (48 bits) dst 0 (Byte) 0 (Signed) 0 (Read) 00010B

LD.BU (disp23) 6 (48 bits) dst 0 (Byte) 1 (Unsigned) 0 (Read) 00010B

LD.H (disp23) 6 (48 bits) dst 1 (Half-word) 0 (Signed) 0 (Read) 00010B

LD.HU (disp23) 6 (48 bits) dst 1 (Half-word) 1 (Unsigned) 0 (Read) 00010B

LD.W (disp23) 6 (48 bits) dst 2 (Word) 0 (Signed) 0 (Read) 00010 B

LD.DW (disp23) 6 (48 bits) dst 3 (Double-word) 0 (Signed) 0 (Read) 00010 B

ST.B (disp23) 6 (48 bits) src 0 (Byte) 0 (Signed) 1 (Write) 00010B

ST.H (disp23) 6 (48 bits) src 1 (Half-word) 0 (Signed) 1 (Write) 00010B

ST.W (disp23) 6 (48 bits) src 2 (Word) 0 (Signed) 1 (Write) 00010 B

ST.DW (disp23) 6 (48 bits) src 3 (Double-word) 0 (Signed) 1 (Write) 00010B

LD.B (+) 4 (32 bits) dst 0 (Byte) 0 (Signed) 0 (Read) 00100B

LD.BU (+) 4 (32 bits) dst 0 (Byte) 1 (Unsigned) 0 (Read) 00100B

LD.H (+) 4 (32 bits) dst 1 (Half-word) 0 (Signed) 0 (Read) 00100B

LD.HU (+) 4 (32 bits) dst 1 (Half-word) 1 (Unsigned) 0 (Read) 00100 B

LD.W (+) 4 (32 bits) dst 2 (Word) 0 (Signed) 0 (Read) 00100B

ST.B (+) 4 (32 bits) src 0 (Byte) 0 (Signed) 1 (Write) 00100B

ST.H (+) 4 (32 bits) src 1 (Half-word) 0 (Signed) 1 (Write) 00100B

ST.W (+) 4 (32 bits) src 2 (Word) 0 (Signed) 1 (Write) 00100B

LD.B (−) 4 (32 bits) dst 0 (Byte) 0 (Signed) 0 (Read) 00101B

LD.BU (−) 4 (32 bits) dst 0 (Byte) 1 (Unsigned) 0 (Read) 00101B

LD.H (−) 4 (32 bits) dst 1 (Half-word) 0 (Signed) 0 (Read) 00101B

LD.HU (−) 4 (32 bits) dst 1 (Half-word) 1 (Unsigned) 0 (Read) 00101B

LD.W (−) 4 (32 bits) dst 2 (Word) 0 (Signed) 0 (Read) 00101 B

ST.B (−) 4 (32 bits) src 0 (Byte) 0 (Signed) 1 (Write) 00101B

ST.H (−) 4 (32 bits) src 1 (Half-word) 0 (Signed) 1 (Write) 00101B

ST.W (−) 4 (32 bits) src 2 (Word) 0 (Signed) 1 (Write) 00101B

LDL.BU 4 (32 bits) dst 0 (Byte) 1 (Unsigned) 0 (Read) 00111B

LDL.HU 4 (32 bits) dst 1 (Half-word) 1 (Unsigned) 0 (Read) 00111B

RH850G4MH Virtualization Section 3 Register Set

R01UH0865EJ0140 Rev.1.40 Page 101 of 200
August 31, 2023

Note: dst: Destination register number; src: Source register number

Note 1. Specific to this CPU.

Note 2. This exception occurs when the instruction executes a read access.

Note 3. When the destination is r3, 0 is stored.

Note 4. When an exception occurs during a table reference that is triggered by an interrupt for which the table
reference method is selected,

Note 5. In instruction format (1), “4 (32 bits)” is set.

Note 6. In instruction format (2), the value is selected as follows according to the value of the ff field in the instruction
code:
 ff = 00B: 4 (32 bits)
 ff = 01B: 6 (48 bits)
 ff = 10B: 6 (48 bits)
 ff = 11B: 8 (64 bits)

LDL.W 4 (32 bits) dst 2 (Word) 0 (Signed) 0 (Read) 00111B

STC.B 4 (32 bits) src 0 (Byte) 0 (Signed) 1 (Write) 00111B

STC.H 4 (32 bits) src 1 (Half-word) 0 (Signed) 1 (Write) 00111B

STC.W 4 (32 bits) src 2 (Word) 0 (Signed) 1 (Write) 00111B

CAXI 4 (32 bits) dst*1 2 (Word)*1 0 (Signed)*1 0 (Read)*2 01000B

SET1 4 (32 bits) 0*1 0 (Byte)*1 0 (Signed)*1 0 (Read)*2 01001B

CLR1 4 (32 bits) 0*1 0 (Byte)*1 0 (Signed)*1 0 (Read)*2 01001B

NOT1 4 (32 bits) 0*1 0 (Byte)*1 0 (Signed)*1 0 (Read)*2 01001B

TST1 4 (32 bits) 0*1 0 (Byte)*1 0 (Signed)*1 0 (Read) 01001B

PREPARE *5,*6 src*1 2 (Word)*1 0 (Signed)*1 1 (Write) 01100B

DISPOSE 4 (32 bits) dst*1 2 (Word)*1 0 (Signed)*1 0 (Read) 01100B

PUSHSP 4 (32 bits) src*1 2 (Word)*1 0 (Signed)*1 1 (Write) 01101B

POPSP 4 (32 bits) dst*1,*3 2 (Word)*1 0 (Signed)*1 0 (Read) 01101B

STM.GSR 4 (32 bits) 0*1 2 (Word)*1 0 (Signed)*1 1 (Write) 01110B

LDM.GSR 4 (32 bits) 0*1 2 (Word)*1 0 (Signed)*1 0 (Read) 01110B

STM.MP 4 (32 bits) 0*1 2 (Word)*1 0 (Signed)*1 1 (Write) 01111B

LDM.MP 4 (32 bits) 0*1 2 (Word)*1 0 (Signed)*1 0 (Read) 01111B

SWITCH 2 (16 bits) 0*1 1 (Half-word)*1 0 (Signed)*1 0 (Read) 10000B

CALLT 2 (16 bits) 0*1 1 (Half-word)*1 1 (Unsigned)*1 0 (Read) 10001B

SYSCALL 4 (32 bits) 0*1 2 (Word)*1 0 (Signed)*1 0 (Read) 10010B

CACHE 4 (32 bits) 0*1 0 (Byte)*1 0 (Signed)*1 0 (Read) 10100B

Interrupt
(table reference method)*4

0 (Non-instruction) 0*1 2 (Word)*1 0 (Signed)*1 0 (Read) 10101B

Save onto register bank 0 (Non-instruction) 0*1 2 (Word)*1 0 (Signed)*1 1 (Write) 10110B

RESBANK 4 (32 bits) 0*1 2 (Word)*1 0 (Signed)*1 0 (Read) 10110B

LDV.W (disp16) 6 (48 bits) dst 2 (Word) 0 (Signed) 0 (Read) 11101B

LDV.DW (disp16) 6 (48 bits) dst 3 (Double-word) 0 (Signed) 0 (Read) 11101B

LDV.QW (disp16) 6 (48 bits) dst 4 (Quad-word) 0 (Signed) 0 (Read) 11101B

STV.W (disp16) 6 (48 bits) src 2 (Word) 0 (Signed) 1 (Write) 11101 B

STV.DW (disp16) 6 (48 bits) src 3 (Double-word) 0 (Signed) 1 (Write) 11101B

STV.QW (disp16) 6 (48 bits) src 4 (Quad-word) 0 (Signed) 1 (Write) 11101B

LDVZ.H4 (disp16) 6 (48 bits) dst 3 (Double-word) 0 (Signed) 0 (Read) 11111B

STVZ.H4 (disp16) 6 (48 bits) src 3 (Double-word) 0 (Signed) 1 (Write) 11111B

Table 3.47 Instructions Causing Exceptions and Values of HMMEI Register (2/2)

Instruction LEN REG DS U RW ITYPE

RH850G4MH Virtualization Section 3 Register Set

R01UH0865EJ0140 Rev.1.40 Page 102 of 200
August 31, 2023

(19) HMMPM

The HMMPM register is a register that determines the MPU operation state in Host mode.

(20) HMPEID

The HMPEID register is a register that indicates the processor element number in Host mode.

Note 1. The processor element identifier of the CPU which is defined by the product specification is read. Writing to
these bits is not possible. For details of the value after reset of HMPEID register, see the hardware manual
of the product used.

31 3 2 1 0

G
M

P
E

S
V

P

M
P

E Value after reset
0000 0000H

HMMPM 0

Table 3.48 HMMPM Register Contents

Bit
Position Bit Name Description R/W

Value After
Reset

31 to 3 — (Reserved for future expansion. Be sure to set to 0.) R 0

2 GMPE It is disabled in Host mode because it is a function for Guest mode.
In Host mode, this bit can not be set.

R 0

1 SVP In SV mode (HMPSW.UM = 0) in Host mode, enables or disables the
memory protection function by host management entry.

0: Memory protection function is disabled in SV mode.
1: Memory protection function is enabled in SV mode.

However, in order for the memory protection function in SV mode to be
enabled, the MPE bit must be set (1).

R/W 0

0 MPE Enables or disables the memory protection function by host management
entry in Host mode.

0: Memory protection setting is disabled in Host mode.
1: Memory protection setting is enabled in Host mode.

When setting the value of this bit to 1, be sure to set at least one host
management entry.

R/W 0

31 5 4 0

HMPEID Value after reset
*10 PEID

Table 3.49 HMPEID Register Contents

Bit Position Bit Name Description R/W
Value After
Reset

31 to 5 — (Reserved for future expansion. Be sure to set to 0.) R 0

4 to 0 PEID These bits indicate the processor element identifier. R *1

RH850G4MH Virtualization Section 3 Register Set

R01UH0865EJ0140 Rev.1.40 Page 103 of 200
August 31, 2023

3.12 Guest Context Register

The guest context registers are the system registers used for Guest mode and multiplexed with the host

context to realize the virtualization support function. For details, see Section 2.5.7, System

Register Multiplexing.

Table 3.50 shows the access authority for directly accessing the guest context. In this case, 9 is

specified as the selection identifier (selID). In this way all become HV privilege, so the guest context

can not be directly accessed in Guest mode. In Guest mode, the access authority when accessing the

system register of the conventional function definition corresponding to the guest context is the access

authority originally defined in each system registers.

Note that the guest context registers are enabled only when HVCFG.HVE is set (1). When

HVCFG.HVE is cleared (0), it is treated as an undefined register. The initial values of these registers

are not guaranteed after reset release with HVE = 0. When HVE is changed from 0 to 1, write an

appropriate value to each of these registers.

Table 3.50 List of Guest Context Register

Register Number
(regID, selID) Name Function

Access authority

HVE = 0 HVE = 1

SR0, 9 GMEIPC EIPC register used for Guest mode SV HV

SR1, 9 GMEIPSW EIPSW register used for Guest mode SV HV

SR2, 9 GMFEPC FEPC register used for Guest mode SV HV

SR3, 9 GMFEPSW FEPSW register used for Guest mode SV HV

SR5, 9 GMPSW PSW register used for Guest mode SV HV

SR6, 9 GMMEA MEA register used for Guest mode SV HV

SR8, 9 GMMEI MEI register used for Guest mode SV HV

SR13, 9 GMEIIC EIIC register used for Guest mode SV HV

SR14, 9 GMFEIC FEIC register used for Guest mode SV HV

SR16, 9 GMSPID SPID register used for Guest mode SV HV

SR17, 9 GMSPIDLIST SPIDLIST register used for Guest mode SV HV

SR19, 9 GMEBASE EBASE register used for Guest mode SV HV

SR20, 9 GMINTBP INTBP register used for Guest mode SV HV

SR21, 9 GMINTCFG INTCFG register used for Guest mode SV HV

SR22, 9 GMPLMR PLMR register used for Guest mode SV HV

SR24, 9 GMSVLOCK SVLOCK register used for Guest mode SV HV

SR25, 9 GMMPM MPM register used for Guest mode SV HV

SR28, 9 GMEIWR EIWR register used for Guest mode SV HV

SR29 9 GMFEWR FEWR register used for Guest mode SV HV

SR30, 9 GMPEID PEID register used for Guest mode SV HV

RH850G4MH Virtualization Section 3 Register Set

R01UH0865EJ0140 Rev.1.40 Page 104 of 200
August 31, 2023

(1) GMEIPC

When EI level exception handled in Guest mode is accepted, the address of the instruction that was

executing when the EI level exception occurred or the address of the next instruction are saved.

(2) GMEIPSW

When EI level exception handled in Guest mode is accepted, the contents of PSW at that time are

saved.

31 0

GMEIPC Value after reset
UndefinedEIPC31 to EIPC0

Table 3.51 GMEIPC Register Contents

Bit Position Bit Name Description R/W
Value After
Reset

31 to 1 EIPC31 to
EIPC1

These bits Indicate the returning PC when EI level exception is accepted. R/W Undefined

0 EIPC0 This bit Indicates the returning PC when EI level exception is accepted.
Always set this bit to 0. Even if it is set to 1, the value transferred to the PC
when the EIRET instruction is executed is 0.

R/W Undefined

31 30 29 26 25 20 19 18 16 15 14 8 7 6 5 4 3 2 1 0

GMEIPSW U
M

E
B
V

N
P

E
P

I
D

S
A
T

C
V

O
V

Value after reset
0000 0020H

0 0 0 0 0 EIMASK 0 CU2 to
CU0

0 0 0 0 0 0 0 S Z

Table 3.52 GMEIPSW Register Contents (1/2)

Bit Position Bit Name Description R/W
Value After
Reset

31 — (Reserved for future expansion. Be sure to set to 0.) R 0

30 UM This bit stores the GMPSW.UM bit setting when an EI level exception is
acknowledged.

R/W 0

29 to 26 — (Reserved for future expansion. Be sure to set to 0.) R 0

25 to 20 EIMASK These bits store the GMPSW.EIMASK bits setting when an EI level
exception is acknowledged.*1

R/W 0

19 — (Reserved for future expansion. Be sure to set to 0.) R 0

18 to 16 CU2 to CU0 These bits store the GMPSW.CU2-0 bits setting when an EI level exception
is acknowledged.*2

R/W 0

15 EBV This bit stores the GMPSW.EBV bit setting when an EI level exception is
acknowledged.

R/W 0

14 to 8 — (Reserved for future expansion. Be sure to set to 0.) R 0

7 NP This bit stores the GMPSW.NP bit setting when an EI level exception is
acknowledged.

R/W 0

6 EP This bit stores the GMPSW.EP bit setting when an EI level exception is
acknowledged.

R/W 0

5 ID This bit stores the GMPSW.ID bit setting when an EI level exception is
acknowledged.

R/W 1

4 SAT This bit stores the GMPSW.SAT bit setting when an EI level exception is
acknowledged.

R/W 0

3 CY This bit stores the GMPSW.CY bit setting when an EI level exception is
acknowledged.

R/W 0

RH850G4MH Virtualization Section 3 Register Set

R01UH0865EJ0140 Rev.1.40 Page 105 of 200
August 31, 2023

Note 1. Only if GMINTCFG.EPL is set (1), the value other than 0 can be set in this field. And if GMINTCFG.EPL is
cleared (0), the value of this field becomes 0. Note that if GMINTCFG.EPL is cleared (0) when the value of
this field is other than 0, the value of this field becomes 0.

Note 2. The CU2-0 field is a reservation function for future CPUs compatible with this CPU in the future. This field
is fixed to 0 in this CPU.

(3) GMFEPC

When FE level exception handled in Guest mode is accepted, the address of the instruction that was

executing when the FE level exception occurred or the address of the next instruction are saved.

2 OV This bit stores the GMPSW.OV bit setting when an EI level exception is
acknowledged.

R/W 0

1 S This bit stores the GMPSW.S bit setting when an EI level exception is
acknowledged.

R/W 0

0 Z This bit stores the GMPSW.Z bit setting when an EI level exception is
acknowledged.

R/W 0

Table 3.52 GMEIPSW Register Contents (2/2)

Bit Position Bit Name Description R/W
Value After
Reset

31 0

GMFEPC Value after reset
UndefinedFEPC31 to FEPC0

Table 3.53 GMFEPC Register Contents

Bit Position Bit Name Description R/W
Value After
Reset

31 to 1 FEPC31 to
FEPC1

These bits Indicate the returning PC when FE level exception is accepted. R/W Undefined

0 FEPC0 This bit Indicates the returning PC when FE level exception is accepted.
Always set this bit to 0. Even if it is set to 1, the value transferred to the PC
when the FERET instruction is executed is 0.

R/W Undefined

RH850G4MH Virtualization Section 3 Register Set

R01UH0865EJ0140 Rev.1.40 Page 106 of 200
August 31, 2023

(4) GMFEPSW

When FE level exception handled in Guest mode is accepted, the contents of PSW at that time are

saved.

Note 1. Only if GMINTCFG.EPL is set (1), the value other than 0 can be set in this field. And if GMINTCFG.EPL is
cleared (0), the value of this field becomes 0. Note that if GMINTCFG.EPL is cleared (0) when the value of
this field is other than 0, the value of this field becomes 0.

Note 2. The CU2-0 field is a reservation function for future CPUs compatible with this CPU in the future. This field
is fixed to 0 in this CPU.

31 30 29 26 25 20 19 18 16 15 14 8 7 6 5 4 3 2 1 0

GMFEPSW U
M

E
B
V

N
P

E
P

I
D

S
A
T

C
V

O
V

Value after reset
0000 0020H

0 0 0 0 0 EIMASK 0 CU2 to
CU0

0 0 0 0 0 0 0 S Z

Table 3.54 GMFEPSW Register Contents

Bit Position Bit Name Description R/W
Value After
Reset

31 — (Reserved for future expansion. Be sure to set to 0.) R 0

30 UM This bit stores the GMPSW.UM bit setting when an FE level exception is
acknowledged.

R/W 0

29 to 26 — (Reserved for future expansion. Be sure to set to 0.) R 0

25 to 20 EIMASK These bits store the GMPSW.EIMASK bits setting when an FE level
exception is acknowledged.*1

R/W 0

19 — (Reserved for future expansion. Be sure to set to 0.) R 0

18 to 16 CU2 to CU0 These bits store the GMPSW.CU2-0 bits setting when an FE level exception
is acknowledged.*2

R/W 0

15 EBV This bit stores the GMPSW.EBV bit setting when an FE level exception is
acknowledged.

R/W 0

14 to 8 — (Reserved for future expansion. Be sure to set to 0.) R 0

7 NP This bit stores the GMPSW.NP bit setting when an FE level exception is
acknowledged.

R/W 0

6 EP This bit stores the GMPSW.EP bit setting when an FE level exception is
acknowledged.

R/W 0

5 ID This bit stores the GMPSW.ID bit setting when an FE level exception is
acknowledged.

R/W 1

4 SAT This bit stores the GMPSW.SAT bit setting when an FE level exception is
acknowledged.

R/W 0

3 CY This bit stores the GMPSW.CY bit setting when an FE level exception is
acknowledged.

R/W 0

2 OV This bit stores the GMPSW.OV bit setting when an FE level exception is
acknowledged.

R/W 0

1 S This bit stores the GMPSW.S bit setting when an FE level exception is
acknowledged.

R/W 0

0 Z This bit stores the GMPSW.Z bit setting when an FE level exception is
acknowledged.

R/W 0

RH850G4MH Virtualization Section 3 Register Set

R01UH0865EJ0140 Rev.1.40 Page 107 of 200
August 31, 2023

(5) GMPSW

The GMPSW register is PSW (Program Status Word) used for Guest mode.

31 30 29 26 25 20 19 18 16 15 14 8 7 6 5 4 3 2 1 0

GMPSW U
M

E
B
V

N
P

E
P

I
D

S
A
T

C
V

O
V

Value after reset
0000 8020H

0 0 0 0 0 EIMASK 0 CU2 to
CU0

0 0 0 0 0 0 0 S Z

Table 3.55 GMPSW Register Contents (1/2)

Bit Position Bit Name Description R/W
Value After
Reset

31 — (Reserved for future expansion. Be sure to set to 0.) R 0

30 UM This bit indicates that the CPU is in user mode (in UM mode).
0: Supervisor mode
1: User mode

R/W 0

29 to 26 — (Reserved for future expansion. Be sure to set to 0.) R 0

25 to 20 EIMASK This field indicates the interrupt priority that becomes the boundary between
enabling and disabling an acknowledgement of an interrupt (EIINTn). For an
interrupt (EIINTn) with higher priority than the value set in this field, the
acknowledgement is enabled. For an interrupt (EIINTn) with priority less than
or equal to the value set in this field, the acknowledgement is disabled.

0: Interrupt acknowledgment of all priorities is disabled.
1: Interrupt acknowledgment of priority 1 or lower is disabled (0 is enabled)
2: Interrupt acknowledgment of priority 2 or lower is disabled (1 or more are

enabled)
 ...
62: Interrupt acknowledgment of priority 62 or lower is disabled (61 or

higher is enabled)
63: Interrupt acknowledgment of priority 63 or lower is disabled (62 or more

are enabled)

Only if the GMINTCFG.EPL is set to 1, interrupt acknowledgment control is
performed by the value of this field. If the GMINTCFG.EPL is cleared to 0,
interrupt acknowledgment control by the value of this field is not
performed*1.

If the GMINTCFG.EPL is set to 1 and an interrupt (EIINTn) is acknowledged,
the interrupt priority is saved in this field as part of PSW change due to
acknowledgment of interrupt (EIINTn).

The interrupt (EIINTn) with a priority of 63 is always disabled. However, the
CPU halt state due to HALT or SNOOZE is also released by an interrupt
(EIINTn) with priority 63.

R/W 0

19 — (Reserved for future expansion. Be sure to set to 0.) R 0

18 to 16 CU2 to CU0 These bits indicate the coprocessor use permissions. When the bit
corresponding to the coprocessor is 0, a coprocessor unusable exception
occurs if an instruction for the coprocessor is executed or a coprocessor
resource (system register) is accessed.

Bit 18 (CU2): Fixed to 0*2.
Bit 17 (CU1): FXU
Bit 16 (CU0): FPU

CU2 to CU0 are fixed to 0 in the devices that do not have corresponding
coprocessors.

R/W 000

15 EBV This bit is always set (1) in Guest mode and can not be cleared (0). R 1

14 to 8 — (Reserved for future expansion. Be sure to set to 0.) R 0

RH850G4MH Virtualization Section 3 Register Set

R01UH0865EJ0140 Rev.1.40 Page 108 of 200
August 31, 2023

Note 1. Only if GMINTCFG.EPL is set to 1, the value other than 0 can be set in this field. If GMINTCFG.EPL is
cleared to 0, the value of this field becomes 0. If GMINTCFG.EPL is cleared to 0, since the interrupt
acknowledgment controlled by the value of this field is not performed, even if the value of this field is 0, if
another interrupt acknowledgement condition is satisfied, an interrupt (EIINTn) can be acknowledged. Note
that If GMINTCFG.EPL is cleared to 0 when the value of this field is other than 0, the value of this field
becomes 0.

Note 2. The coprocessor use permission CU2 is reserved for future CPUs that are to be made compatible with this
CPU.

Note 3. Saturation processing is applied to the operation result in accordance with the contents of the OV and S
flags. The SAT flag is set (1) only when the OV flag is set (1) in the saturation arithmetic operation.

7 NP This bit disables the acknowledgement of FE level exception. When an FE
level exception is acknowledged, this bit is set to 1 to disable the
acknowledgement of EI level and FE level exceptions. As for the exceptions
for which the NP bit disables the acknowledgment, see Table 4.1,
Exception Cause List.

0: The acknowledgement of FE level exception is enabled.
1: The acknowledgement of FE level exception is disabled.

R/W 0

6 EP This bit indicates that an exception other than an interrupt is being serviced.
It is set to 1 when the corresponding exception occurs. This bit does not
affect acknowledging an exception request even when it is set to 1.

0: An exception other than an interrupt is not being serviced.
1: An exception other than an interrupt is being serviced.

R/W 0

5 ID This bit disables the acknowledgement of EI level exception. When an EI
level or FE level exception is acknowledged, this bit is set to 1 to disable the
acknowledgement of EI level exception. As for the exceptions for which the
ID bit disables the acknowledgment, see Table 4.1, Exception Cause List
This bit is also used to disable the acknowledgement of EI level exceptions
as a critical section while an ordinary program or interrupt is being serviced.
It is set to 1 when the DI instruction is executed, and cleared to 0 when the EI
instruction is executed.
The change of the ID bit by the EI or ID instruction will be enabled from the
next instruction.

0: The acknowledgement of EI level exception is enabled.
1: The acknowledgement of EI level exception is disabled.

R/W 1

4 SAT*3 This bit indicates that a saturation arithmetic operation instruction resulted in
overflow and saturation processing is applied to the result. This is a
cumulative flag, that is, it is set (1) once a saturation occurs and not cleared
(0) by subsequent instructions with unsaturated results. This bit is cleared by
the LDSR instruction. Note that execution of an arithmetic operation
instruction neither sets nor clears this flag.

0: The result was not saturated
1: The result was saturated

R/W 0

3 CY This bit indicates whether a carry or borrow has occurred in the operation
result.

0: Carry and borrow have not occurred.
1: Carry or borrow has occurred.

R/W 0

2 OV*3 This bit indicates whether or not an overflow has occurred during an
operation.

0: Overflow has not occurred.
1: Overflow has occurred.

R/W 0

1 S*3 This bit indicates whether or not the result of an operation is negative.
0: Result of operation is positive or 0.
1: Result of operation is negative.

R/W 0

0 Z This bit indicates whether or not the result of an operation is 0.
0: Result of operation is not 0.
1: Result of operation is 0.

R/W 0

Table 3.55 GMPSW Register Contents (2/2)

Bit Position Bit Name Description R/W
Value After
Reset

RH850G4MH Virtualization Section 3 Register Set

R01UH0865EJ0140 Rev.1.40 Page 109 of 200
August 31, 2023

(6) GMEIIC

When EI level exception handled in Guest mode is accepted, the cause of the exception is saved. The

values held by the GMEIIC register are the exception cause code corresponding to each exception

cause.

(7) GMFEIC

When FE level exception handled in Guest mode is accepted, the cause of the exception is saved. The

values held by the GMFEIC register are the exception cause code corresponding to each exception

cause.

(8) GMEIWR

The GMEIWR register is the working register for when EI level exception occurred in Guest mode.

31 0

GMEIIC Value after reset
0000 0000H

EIIC31 to EIIC0

Table 3.56 GMEIIC Register Contents

Bit Position Bit Name Description R/W
Value After
Reset

31 to 0 EIIC31 to
EIIC0

When EI level exception is accepted, the exception cause code is saved.
In EIIC15 to 0, the exception cause code shown in Table 4.1 is saved.
In EIIC31 to 16, detailed exception cause code defined for each exception is
saved. When the function related to the exception is not defined in particular,
0 is set.

R/W 0000 0000H

31 0

GMFEIC Value after reset
0000 0000H

FEIC31 to FEIC0

Table 3.57 GMFEIC Register Contents

Bit Position Bit Name Description R/W
Value After
Reset

31 to 0 FEIC31 to
FEIC0

When FE level exception is accepted, the exception cause code is saved.
In FEIC15 to 0, the exception cause code shown in Table 4.1 is saved.
In FEIC31 to 16, detailed exception cause code defined for each exception is
saved. When the function related to the exception is not defined in particular,
0 is set.

R/W 0000 0000H

31 0

GMEIWR Value after reset
UndefinedEIWR31 to EIWR0

Table 3.58 GMEIWR Register Contents

Bit Position Bit Name Description R/W
Value After
Reset

31 to 0 EIWR31 to
EIWR0

This register is an arbitrarily available working register which is used during
EI level exception handling and it can be used for temporary saving of
general purpose registers.

R/W Undefined

RH850G4MH Virtualization Section 3 Register Set

R01UH0865EJ0140 Rev.1.40 Page 110 of 200
August 31, 2023

(9) GMFEWR

The GMFEWR register is the working register for when FE level exception occurred in Guest mode.

(10) GMSPID

The GMSPID register is a register that indicates the system protection number of CPU used in Guest

mode.

Note 1. For details, see the hardware manual of the product used.

Note 2. Even if SVLOCK.SVL is set (1), updating is possible. However, when updating to SPID when GMSPID is
mapped to SPID by changing to Guest mode, the update limitation by SVLOCK.SVL applies.

Note 3. Any update by the LDSR instruction or the LDM.GSR instruction is restricted by the value of the SPIDLIST
register. Updating the GMSPID register is not limited by the GMSPIDLIST register. When the CPU operating
mode is Guest mode and the GMSPID register mapped to the SPID register is operated by the LDSR
instruction, it is restricted by the GMSPIDLIST register mapped to the SPIDLIST register. However, this is
the actual operation of the register, and the architecture specification does not change because SPID
register update is restricted by SPIDLIST register.

31 0

GMFEWR Value after reset
UndefinedFEWR31 to FEWR0

Table 3.59 GMFEWR Register Contents

Bit Position Bit Name Description R/W
Value After
Reset

31 to 0 FEWR31 to
FEWR0

This register is an arbitrarily available working register to be used during FE
level exception handling and it can be used for temporary saving of general
purpose registers.

R/W Undefined

31 5 4 0

GMSPID Value after reset
Note0 SPID

Table 3.60 GMSPID Register Contents

Bit Position Bit Name Description R/W
Value After
Reset

31 to 5 — (Reserved for future expansion. Be sure to set to 0.) R 0

4 to 0 SPID This field indicates the system protection number used in Guest mode.
The system protection number is a variable ID used for access protection
etc. in products composed of multiple bus masters including this CPU. See
the specifications of the product for actual usage, restrictions on setting
values and so on.
In the scope of this CPU, it is used for area matching of the MPU. And it is
possible to reflect the system specification defined in the product to the MPU
protection function. In addition the system protection number that can be set
is given by the SPIDLIST register.*3 Note that when attempting to write a
system protection number which can not be set, the value of the GMSPID
register is not updated, the original value is kept.

R/W*2 *1

RH850G4MH Virtualization Section 3 Register Set

R01UH0865EJ0140 Rev.1.40 Page 111 of 200
August 31, 2023

(11) GMSPIDLIST

This register is mapped to the SPIDLIST register when CPU operating mode is Guest mode. In that

case, this register shows the list of system protection numbers that can be set in the SPID register.

When the system protection number is available for setting, the corresponding bit is set (1). And when

the system protection number is not available for setting, the corresponding bit is cleared (0). The

GMSPIDLIST register does not directly restrict the update of the GMSPID register.

The value of the GMSPIDLIST can be set in Host mode, but can not be set in Guest mode. And when

setting the value of the GMSPIDLIST in Host mode, only the bits of the GMSPIDLIST corresponding

to the bit set (1) by the SPIDLIST can be set (1). As a result, the values that can be set for the GMSPID

are limited by the SPIDLIST from the outside of the CPU as the system specification, and furthermore,

they are the values restricted by the GMSPIDLIST by the hypervisor operating in Host mode.

Note 1. For details, see the hardware manual of the product used.

(12) GMEBASE

This register indicates the method of specifying the handler address of the exceptions or interrupts.

Since GMPSW.EBV is always set (1) in Guest mode, the handler address is always specified by the

GMEBASE.

31 0

GMSPIDLIST Value after reset
*1SL31 to SL0

Table 3.61 GMSPIDLIST Register Contents

Bit Position Bit Name Description R/W
Value After
Reset

31 to 0 SL31 to SL0 This field indicates whether the number corresponding to bit n (n = 0 - 31)
can be set to the GMSPID.

Bit n=0: Setting n to the GMSPID is not possible
Bit n=1: Setting n to the GMSPID is possible

R/W Undefined*1

31 9 8 1 0

GMEBASE D
V

R
IN

T Value after reset
UndefinedEBASE31 to EBASE9 0 0 0 0 0 0 0

Table 3.62 GMEBASE Register Contents

Bit Position Bit Name Description R/W
Value After
Reset

31 to 9 EBASE31 to
EBASE9

This field specifies the base address of the handler address. The handler
address is the address obtained by adding the exception and interrupt offset
address to this base address.
EBASE8-0 implicitly uses 0.

R/W Undefined

8 to 2 — (Reserved for future expansion. Be sure to set to 0.) R 0

1 DV This bit indicates the method of selecting the EIINT interrupt handler
address.

0: Follow the specification method accompanying the EIINT request
1: Not follow the specification method accompanying EIINT request,

always follow the vector method

R/W Undefined

0 RINT This bit specifies reduction of handler address when handler address of
EIINT interrupt is the vector method.

0: Not reduce handler address
1: Reduce handler address

R/W Undefined

RH850G4MH Virtualization Section 3 Register Set

R01UH0865EJ0140 Rev.1.40 Page 112 of 200
August 31, 2023

(13) GMINTBP

This register is the register that indicates the table base address when table reference method is selected

as the EIINT interrupt handler address selection method.

(14) GMINTCFG

This register indicates settings related to the interrupt function.

31 9 8 0

GMINTBP Value after
Undefined INTBP31 to INTBP9 0 0 0 0 0 0 0 0 0

Table 3.63 GMINTBP Register Contents

Bit Position Bit Name Description R/W
Value After
Reset

31 to 9 INTBP31 to
INTBP9

This field indicates the base address of the EIINT interrupt table reference
method. It becomes the first address of the table.
INTBP8-0 implicitly uses 0.

R/W Undefined

8 to 0 — (Reserved for future expansion. Be sure to set to 0.) R 0

31 22 21 16 15 2 1 0

GMINTCFG

E
P

L

IS
P

C Value after reset
000F 0002H

0 0 0 0 0 0 0 0 0 0 ULNR 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 3.64 GMINTCFG Register Contents

Bit Position Bit Name Description R/W
Value After
Reset

31 to 22 — (Reserved for future expansion. Be sure to set to 0.) R Undefined

21 to 16 ULNR This field specifies the maximum value of the available register bank
number.

If the interrupt using the register bank occurs when the value of RBNR.BN is
larger than the ULNR or when the value of the RBNR.BN is 63, the interrupt
is not accepted but held, and the SYSERR exception occurs.

R/W 0FH

15 to 2 — (Reserved for future expansion. Be sure to set to 0.) R 0

1 EPL This bit sets the interrupt priority level extension function.
0: Interrupt priority extension is disabled.
1: Interrupt priority extension is enabled.

In guest mode, the interrupt priority expansion is always enabled.

R 1

0 ISPC This bit sets the method of changing the write to the ISPR register.
0: The ISPR is updated automatically.
1: The ISPR is not updated automatically.

However, in Guest mode, the interrupt priority extension is always enabled,
so interrupt control by the ISPR register is not performed. The value of this
bit is always cleared (0).

R 0

RH850G4MH Virtualization Section 3 Register Set

R01UH0865EJ0140 Rev.1.40 Page 113 of 200
August 31, 2023

(15) GMPLMR

This register inhibits the EIINT interrupt acceptance below the specified interrupt priority level.

(16) GMSVLOCK

This register suppresses the operating authority in the supervisor mode.

Note 1. The target system registers are the registers related to memory access. The GMSVLOCK register prevents
these system registers from being unexpectedly rewritten and unintended memory accesses to be made
outside the CPU.

31 6 5 0

GMPLMR
Value after reset

0000 003FH
0 PLM

Table 3.65 GMPLMR Register Contents

Bit
Position Bit Name Description R/W

Value After
Reset

31 to 6 — (Reserved for future expansion. Be sure to set to 0.) R 0

5 to 0 PLM This field prohibits the EIINT interrupt acceptance below the set interrupt
priority level.

Setting PLMR to 0 prohibits acceptance of all priority EIINT interrupts. This
has the same effect as setting the PSW.ID (1).
Note that acceptance of the EIINT interrupt with priority 63 is always
prohibited, regardless of the setting value of PLMR.

R/W 3FH

PLM Priority to prohibit acceptance

0 Prohibit accepting all priorities

1 Priority 1 or less (Only 0 can be accepted)

:

62 Priority 62 or less (61 or more is possible)

63 Priority 63 or less (62 or more is possible)

31 1 0

GMSVLOCK S
V
L

Value after reset
0000 0000H

0 0

Table 3.66 GMSVLOCK Register Contents

Bit Position Bit Name Description R/W
Value After
Reset

31 to 1 — (Reserved for future expansion. Be sure to set to 0.) R 0

0 SVL This bit specifies suppression of the operating authority in the supervisor
mode.

0: Operating authority in the supervisor mode is not suppressed
1: Operating authority in the supervisor mode is suppressed

When the SVL bit is set (1), the following system registers *1 will not be
updated even in the supervisor mode.
GMSPID, GMMPM, MPLA, MPUA, MPAT, MPIDn, MPBK

R/W 0

RH850G4MH Virtualization Section 3 Register Set

R01UH0865EJ0140 Rev.1.40 Page 114 of 200
August 31, 2023

(17) GMMEA

This register is the MEA register for Guest mode.

(18) GMMEI

This register is the MEI register for Guest mode.

Note 1. Even when the access is divided by hardware, the data type indicated by the instruction is saved.

The instruction that caused the exception and the value of the GMMEI register are the same as the

specification of the HMMEI. For details, see Section 3.11 (18), HMMEI.

31 0

GMMEA Value after reset
UndefinedMEA

Table 3.67 GMMEA Register Contents

Bit Position Bit Name Description R/W
Value After
Reset

31 to 0 MEA When the MAE and MDP violation occur, the address at that time is saved. R/W Undefined

31 28 27 21 20 16 15 12 11 9 8 7 6 5 1 0

GMMEI R
W

Value after reset
UndefinedLEN 0 0 0 0 0 0 0 REG 0 0 0 0 DS U 0 0 ITYPE

Table 3.68 GMMEI Register Contents

Bit Position Bit Name Description R/W
Value After
Reset

31 to 28 LEN This field indicates the instruction code size of the instruction that caused the
exception.

R/W Undefined

27 to 21 — (Reserved for future expansion. Be sure to set to 0.) R 0

20 to 16 REG This field indicates the source register number or the destination register
number of the instruction that caused the exception.

R/W Undefined

15 to 12 — (Reserved for future expansion. Be sure to set to 0.) R 0

11 to 9 DS This field indicates the data type of the instruction that caused the
exception*1.

R/W Undefined

8 U This bit indicates the sign extension method of the instruction that caused
the exception.

R/W Undefined

7, 6 — (Reserved for future expansion. Be sure to set to 0.) R 0

5 to 1 ITYPE This field indicates the instruction that caused the exception. R/W Undefined

0 RW This bit indicates the operation of the instruction that caused the exception. R/W Undefined

RH850G4MH Virtualization Section 3 Register Set

R01UH0865EJ0140 Rev.1.40 Page 115 of 200
August 31, 2023

(19) GMMPM

This register determines the MPU operating state in Guest mode.

Note 1. It can be updated even if SVLOCK.SVL is set (1). However, when the GMMPM is mapped to the MPM after
changing to Guest mode and it updates as the MPM, the update limitation by the SVLOCK.SVL is effective.

31 3 2 1 0

G
M

P
E

S
V

P

M
P

E Value after reset
0000 0000H

GMMPM 0

Table 3.69 GMMPM Register Contents

Bit
Position Bit Name Description R/W

Value After
Reset

31 to 3 — (Reserved for future expansion. Be sure to set to 0.) R 0

2 GMPE This bit enables memory protection by the host management entry in
Guest mode.

0: In Guest mode memory protection setting by the host management
entry is disabled.

1: In Guest mode memory protection setting by the host management
entry is enabled.

When memory protection by the host management entry in Guest mode is
disabled, only the setting of the guest management entry is used to
determine memory protection. Note that changing of GMPE is not possible
in Guest mode.

R/W 0

1 SVP This bit specifies whether to enable or disable the memory protection
function by the guest management entry in the SV mode (PSW.UM = 0) in
Guest mode.

0: Memory protection is disabled in SV mode.
1: Memory protection is enabled in SV mode.

R/W*1 0

0 MPE This bit specifies whether to enable or disable the memory protection
function by the guest management entry in Guest mode.

0: Memory protection function by the guest management entry is
disabled in Guest mode.

1: Memory protection function by the guest management entry is
enabled in Guest mode.

When setting the value of this bit to 1, be sure to set at least one guest
management entry.
When memory protection by the guest management entry in Guest mode
is disabled, only the setting of the host management entry is used to
determine memory protection. When changing to Guest mode and
mapping to MPM, MPM and MPE can be updated in Guest mode.

R/W*1 0

RH850G4MH Virtualization Section 3 Register Set

R01UH0865EJ0140 Rev.1.40 Page 116 of 200
August 31, 2023

(20) GMPEID

This register indicates the processor element number. And this register is not subject to save and return

by the STM.GSR or the LDM.GSR instruction.

Note 1. For details, see the hardware manual of the product used.

31 5 4 0

GMPEID Value after reset
*10 PEID

Table 3.70 GMPEID Register Contents

Bit Position Bit Name Description R/W
Value After
Reset

31 to 5 — (Reserved for future expansion. Be sure to set to 0.) R 0

4 to 0 PEID This field indicates the processor element number.

The value of this field is rewritable. When the virtual processor element
number is set in Host mode, its virtual processor element number is read
from the PEID register in Guest mode.
However, the virtual processor element number set in this register is not
used for processing outside the CPU. When the function that the processor
element number is used outside the CPU is implemented, in the function
external to the CPU, whatever the value of this register is, the processor
element number specified by the product specification which was given as
an initial value to this register is always used.
When this register is accessed as the PEID in Guest mode, this register is
not updated by writing to PEID.

R/W *1

RH850G4MH Virtualization Section 4 Exceptions and Interrupts

R01UH0865EJ0140 Rev.1.40 Page 117 of 200
August 31, 2023

Section 4 Exceptions and Interrupts

An exception is a particular event that forces branching of operation from the current program to

another program.

The program at the branch destination of a given exception is called an “exception handler”.

CAUTION

This CPU handles interrupts as types of exception.

4.1 Outline of Exceptions

This section describes the elements that assign properties to exceptions, and shows how exceptions

work.

4.1.1 Exception Cause List

This CPU supports the following exceptions.

R01UH0865EJ0140 Rev.1.40 Page 118 of 200
August 31, 2023

RH850G4MH Virtualization Section 4 Exceptions and Interrupts

N
ot

e
1.

F
o

r
de

ta
ils

, s
ee

 S
ec

ti
o

n
 4

.1
.3

, T
y

p
es

 o
f

E
xc

ep
ti

o
n

s.

N
ot

e
2.

T
h

e
ac

kn
ow

le
dg

m
en

t p
rio

rit
y

fo
r

ex
ce

p
tio

ns
 is

 c
he

ck
e

d
by

 th
e

pr
io

rit
y

le
ve

l,
an

d
th

en
 p

ri
o

rit
y.

 A
 s

m
al

le
r

va
lu

e
ha

s
a

hi
gh

er
 p

ri
or

ity
. F

or
 d

et
ai

ls
, s

ee
 S

ec
ti

o
n

 4
.1

.4
,

E
xc

ep
ti

o
n

 A
ck

n
o

w
le

d
g

m
en

t
C

o
n

d
it

io
n

s
an

d
 P

ri
o

ri
ty

 O
rd

er
.

N
ot

e
3.

T
h

e
ca

se
 in

 w
hi

ch
 a

n
M

D
P

 e
xc

ep
tio

n
oc

cu
rs

 d
ur

in
g

th
e

 p
ro

ce
ss

in
g

(t
ab

le
 re

ad
 o

r a
ut

om
at

ic
 c

on
te

xt
 s

a
vi

ng
 o

nt
o

a
re

g
is

te
r b

an
k)

 w
hi

ch
 is

 p
er

fo
rm

ed
 a

fte
r a

 ta
bl

e
re

fe
re

n
ce

Ta
b

le
 4

.1
E

xc
ep

ti
o

n
 C

au
se

 L
is

t

E
x

ce
p

ti
o

n
N

a
m

e
S

o
u

rc
e

Ty
p

e
*1

R
e

tu
rn

/
R

e
st

o
ra

ti
o

n

P
ri

o
ri

ty
 O

rd
er

*2

R
e

st
ri

ct
ed

 o
p

er
at

in
g

 m
o

d
e

w
h

en
 t

h
e

ex
c

ep
ti

o
n

o

cc
u

rr
ed

*5

R
es

tr
ic

te
d

 o
p

er
at

in
g

 m
o

d
e

w
h

en
 e

x
ce

p
ti

o
n

 h
an

d
lin

g
 i

s
d

o
n

e*5
P

ri
o

ri
ty

L

ev
el

P
ri

o
ri

ty

R
E

S
E

T
R

e
se

t
R

e
se

t
in

pu
t

Te
rm

in
at

in
g

—
1

—
O

pe
ra

tin
g

 m
od

e
 in

d
ep

en
d

en
t

H
os

t
m

o
de

M
D

P
M

em
or

y
pr

ot
ec

tio
n

ex
ce

pt
io

n
(a

cc
es

s
p

riv
ile

g
e)

M
e

m
o

ry
 p

ro
te

ct
io

n
 v

io
la

tio
n

 d
u

e
 to

 a
n

 in
te

rr
u

pt
 u

si
n

g
 th

e
ta

b
le

re

fe
re

n
ce

 m
e

th
o

d
Te

rm
in

at
in

g
Y

es
2*3

—
*8

*8

F
E

N
M

I
F

E
N

M
I

in
te

rr
u

p
t

In
te

rr
u

pt
 in

pu
t t

e
rm

in
a

l
Te

rm
in

at
in

g
N

o
3

1
O

pe
ra

tin
g

 m
od

e
 in

d
ep

en
d

en
t

H
os

t
m

o
de

F
E

IN
T

F
E

IN
T

 in
te

rr
u

p
t

In
te

rr
u

pt
 in

pu
t t

e
rm

in
a

l
Te

rm
in

at
in

g
Y

es
3

2
O

pe
ra

tin
g

 m
od

e
 in

d
ep

en
d

en
t

H
os

t
m

o
de

E
II

N
T

0
-2

0
4

7
U

se
r

in
te

rr
u

p
t

In
te

rr
u

pt
 in

pu
t t

e
rm

in
a

l
Te

rm
in

at
in

g
Y

es
4

*4
O

pe
ra

tin
g

 m
od

e
 in

d
ep

en
d

en
t

H
os

t
m

o
de

B
G

F
E

IN
T

B
G

F
E

IN
T

 e
xc

ep
tio

n
B

ac
kg

ro
un

d
sp

ec
ifi

ca
tio

n
 o

f G
M

F
E

IN
T

 in
te

rr
u

p
t

Te
rm

in
at

in
g

Y
es

5
1

G
ue

st
 m

od
e

H
os

t
m

o
de

B
G

E
IIN

T
B

G
E

II
N

T
 e

xc
ep

tio
n

B
ac

kg
ro

un
d

sp
ec

ifi
ca

tio
n

of
 G

M
E

IN
T

 in
te

rr
up

t
Te

rm
in

at
in

g
Y

es
5

2
G

ue
st

 m
od

e
H

os
t

m
o

de

G
M

F
E

IN
T

G
M

F
E

IN
T

 in
te

rr
up

t
In

te
rr

u
pt

 in
pu

t t
er

m
in

a
l

Te
rm

in
at

in
g

Y
es

6
1

G
ue

st
 m

od
e

G
u

es
t

m
o

de

S
Y

S
E

R
R

S
ys

te
m

 e
rr

o
r

E
rr

o
r

du
e

to
 c

on
te

xt
 s

av
in

g
to

 th
e

re
gi

st
e

r
ba

nk
Te

rm
in

at
in

g
 N

o
*6

6
2

G

ue
st

 m
od

e
*9

G
M

E
II

N
T

U
se

r
in

te
rr

u
p

t
In

te
rr

u
pt

 in
pu

t t
e

rm
in

a
l

Te
rm

in
at

in
g

Y
es

7
—

G
ue

st
 m

od
e

G
u

es
t

m
o

de

M
IP

M
em

or
y

pr
ot

ec
tio

n
ex

ce
pt

io
n

(e
xe

cu
tio

n

p
riv

ile
g

e)
M

e
m

o
ry

 p
ro

te
ct

io
n

 v
io

la
tio

n
 d

u
e

 to
 in

st
ru

ct
io

n
 fe

tc
hi

ng
R

e
su

m
a

b
le

Y
es

8
1

*8
*8

S
Y

S
E

R
R

S
ys

te
m

 e
rr

o
r

E
rr

o
r

du
e

 to
 in

st
ru

ct
io

n
fe

tc
hi

ng
R

es
um

ab
le

N
o

*6
8

2
H

os
t m

od
e

H
os

t
m

od
e

G
ue

st
 m

od
e

*9

U
C

P
O

P
C

op
ro

ce
ss

or
 u

nu
sa

bl
e

ex
ce

pt
io

n
E

xe
cu

tio
n

 o
f

a
co

pr
oc

es
so

r
in

st
ru

ct
io

n/
ac

ce
ss

 p
er

m
is

si
on

vi

o
la

tio
n

R
e

su
m

a
b

le
Y

es
8

3
O

pe
ra

tin
g

 m
od

e
 in

d
ep

en
d

en
t

S
a

m
e

m
od

e
a

s
w

h
e

n
it

oc
cu

rr
e

d

R
IE

R
es

er
ve

d
in

st
ru

ct
io

n
ex

ce
pt

io
n

E
xe

cu
tio

n
 o

f
a

re
se

rv
ed

 in
st

ru
ct

io
n

R
e

su
m

a
b

le
Y

es
8

4
O

pe
ra

tin
g

 m
od

e
 in

d
ep

en
d

en
t

S
a

m
e

m
od

e
a

s
w

h
e

n
it

oc
cu

rr
ed

P
IE

P
riv

ile
ge

 in
st

ru
ct

io
n

ex
ce

pt
io

n
E

xe
cu

tio
n

 o
f

a
pr

iv
ile

g
ed

 in
st

ru
ct

io
n/

ac
ce

ss
 p

e
rm

is
si

on

vi
o

la
tio

n
R

e
su

m
a

b
le

Y
es

8
5

O
pe

ra
tin

g
 m

od
e

 in
d

ep
en

d
en

t
S

a
m

e
m

od
e

a
s

w
h

e
n

it
oc

cu
rr

e
d

S
Y

S
E

R
R

S
ys

te
m

 e
rr

o
r

E
rr

o
r

pr
io

r
to

 c
on

te
xt

 r
e

st
o

ra
tio

n
 fr

om
 th

e
re

g
is

te
r

b
an

k
R

e
su

m
a

b
le

N
o

*6
8

6
G

ue
st

 m
od

e*1
0

*9

M
A

E
M

is
a

lig
nm

en
t e

xc
e

pt
io

n
M

is
a

lig
n

ed
 a

cc
es

s
oc

cu
rr

en
ce

R
es

um
ab

le
Y

es
9

*7
O

pe
ra

tin
g

 m
od

e
 in

d
ep

en
d

en
t

S
a

m
e

m
od

e
a

s
w

h
e

n
it

oc
cu

rr
e

d

M
D

P
M

em
or

y
pr

ot
ec

tio
n

ex
ce

pt
io

n
(a

cc
es

s
p

riv
ile

g
e)

M
e

m
o

ry
 p

ro
te

ct
io

n
 v

io
la

tio
n

 d
u

e
 to

 o
p

er
a

n
d

a
cc

e
ss

R
e

su
m

a
b

le
Y

es
9

*8
*8

F
P

E
F

P
U

 e
xc

e
pt

io
n

(p
re

ci
se

)
E

xe
cu

tio
n

 o
f

an
 F

P
U

 in
st

ru
ct

io
n

R
e

su
m

a
b

le
Y

es
9

O
pe

ra
tin

g
 m

od
e

 in
d

ep
en

d
en

t
S

a
m

e
m

od
e

a
s

w
h

e
n

it
oc

cu
rr

e
d

F
X

E
F

X
U

 e
xc

e
pt

io
n

(p
re

ci
se

)
E

xe
cu

tio
n

 o
f

an
 F

X
U

 in
st

ru
ct

io
n

R
e

su
m

a
b

le
Y

es
9

O
pe

ra
tin

g
 m

od
e

 in
d

ep
en

d
en

t
S

a
m

e
m

od
e

a
s

w
h

e
n

it
oc

cu
rr

e
d

H
V

T
R

A
P

H
yp

er
vi

so
r

tr
a

p
E

xe
cu

tio
n

 o
f

H
V

T
R

A
P

 in
st

ru
ct

io
n

P
en

di
n

g
Y

es
9

O
pe

ra
tin

g
 m

od
e

 in
d

ep
en

d
en

t
H

os
t

m
o

de

S
Y

S
C

A
L

L
S

ys
te

m
 c

a
ll

E
xe

cu
tio

n
 o

f
th

e
 S

Y
S

C
A

L
L

in
st

ru
ct

io
n

P
en

di
n

g
Y

es
9

O
pe

ra
tin

g
 m

od
e

 in
d

ep
en

d
en

t
S

a
m

e
m

od
e

a
s

w
h

e
n

it
oc

cu
rr

e
d

F
E

T
R

A
P

F
E

 le
ve

l t
ra

p
E

xe
cu

tio
n

 o
f

th
e

 F
E

T
R

A
P

 in
st

ru
ct

io
n

P
en

di
n

g
Y

es
9

O
pe

ra
tin

g
 m

od
e

 in
d

ep
en

d
en

t
S

a
m

e
m

od
e

a
s

w
h

e
n

it
oc

cu
rr

e
d

T
R

A
P

0
E

I l
e

ve
l t

ra
p

 0
E

xe
cu

tio
n

 o
f

th
e

 T
R

A
P

 in
st

ru
ct

io
n

P
en

di
n

g
Y

es
9

O
pe

ra
tin

g
 m

od
e

 in
d

ep
en

d
en

t
S

a
m

e
m

od
e

a
s

w
h

e
n

it
oc

cu
rr

e
d

T
R

A
P

1
E

I l
e

ve
l t

ra
p

 1
E

xe
cu

tio
n

 o
f

th
e

 T
R

A
P

 in
st

ru
ct

io
n

P
en

di
n

g
Y

es
9

O
pe

ra
tin

g
 m

od
e

 in
d

ep
en

d
en

t
S

a
m

e
m

od
e

a
s

w
h

e
n

it
oc

cu
rr

e
d

R01UH0865EJ0140 Rev.1.40 Page 119 of 200
August 31, 2023

RH850G4MH Virtualization Section 4 Exceptions and Interrupts
m

et
ho

d
in

te
rr

up
t (

E
IIN

T
n)

 is
 s

el
ec

te
d

as
 th

e
re

su
lt

of
 p

rio
rit

y
de

te
rm

in
a

tio
n.

 T
he

 o
cc

ur
re

nc
e

o
f t

hi
s

ty
pe

 o
f e

xc
ep

tio
ns

 ta
ke

s
pr

ec
ed

en
ce

 o
ve

r
th

at
 o

f t
he

 te
rm

in
a

tin
g-

ty
p

e
ex

ce
p

tio
ns

 e
xc

e
pt

 th
e

re
se

t.
F

or
 d

et
ai

ls
,

se
e

S
ec

ti
o

n
 4

.1
.2

, O
ve

rv
ie

w
 o

f
E

xc
ep

ti
o

n
 C

au
s

es
.

N
ot

e
4.

E
IIN

T
0

to
 2

04
7

ar
e

se
le

ct
ed

 a
cc

o
rd

in
g

to
 th

e
 c

ha
nn

el
. F

or
 d

et
ai

ls
,

se
e

S
ec

ti
o

n
 4

.1
.5

, I
n

te
rr

u
p

t
E

xc
ep

ti
o

n
 P

ri
o

ri
ty

 a
n

d
 P

ri
o

ri
ty

 M
as

ki
n

g
.

N
ot

e
5.

T
h

e
re

st
ric

te
d

op
er

at
in

g
m

od
e

w
he

n
an

 e
xc

ep
tio

n
oc

cu
rr

ed
 a

n
d

th
e

re
st

ric
te

d
op

er
at

in
g

 m
od

e
w

hi
ch

 h
an

dl
es

 th
at

 e
xc

ep
tio

n
ar

e
sh

o
w

n.
 H

an
d

lin
g

of
 a

n
ex

ce
pt

io
n

th
at

oc

cu
rr

ed
 in

 g
ue

st
 m

od
e

m
ay

 b
e

 p
er

fo
rm

ed
 a

fte
r

tr
an

si
tio

n
to

 h
os

t m
od

e.
 T

he
 fa

ct
 th

at
 th

e
ex

ce
pt

io
n

oc
cu

rr
en

ce
 d

oe
s

no
t d

ep
en

d
o

n
th

e
op

er
a

tin
g

m
od

e
sh

ow
s

th
at

 th
e

ex
ce

p
tio

n
o

cc
ur

s
in

 b
ot

h
ho

st
 m

od
e

an
d

gu
es

t m
od

e
an

d
ca

n
be

 a
cc

ep
te

d
if

th
e

ac
kn

ow
le

dg
m

en
t

co
nd

iti
on

s
is

 s
at

is
fie

d.

N
ot

e
6.

It
is

 im
po

ss
ib

le
 to

 r
e

tu
rn

/r
es

to
re

 to
 th

e
o

rig
in

al
 p

ro
g

ra
m

 w
h

er
e

th
e

S
Y

S
E

R
R

 e
xc

ep
tio

n
oc

cu
rr

ed
. H

ow
ev

er
, i

f,
 fo

r
ex

am
pl

e
, a

 S
Y

S
E

R
R

 e
xc

e
pt

io
n

o
cc

ur
s

du
rin

g
th

e
ex

ec
u

tio
n

of
 a

n
ap

pl
ic

at
io

n
pr

og
ra

m
, m

an
ag

e
m

en
t s

of
tw

a
re

 s
uc

h
as

 a
n

op
er

at
in

g
 s

ys
te

m
 a

s
an

 e
xc

ep
tio

n
ha

nd
le

r
pr

oc
es

si
ng

 c
an

 m
a

ke
 th

e
ex

ec
ut

io
n

of
 th

at
 a

pp
lic

at
io

n

pr
o

gr
am

 s
to

p,
 in

iti
at

e
a

so
ftw

ar
e

re
se

t,
o

r
ex

ec
u

te
 o

th
er

 a
pp

lic
at

io
n

 p
ro

gr
am

. A
ls

o,
 a

s
sh

ow
n

in
 T

ab
le

 4
.3

, i
f a

 S
Y

S
E

R
R

 e
xc

ep
tio

n
oc

cu
rs

 in
 g

ue
st

 m
od

e
an

d
G

M
C

F
G

.G
S

Y
S

E
 is

 s
e

t (
1)

, t
he

 e
xc

ep
tio

n
ha

nd
le

r
is

 p
ro

ce
ss

e
d

in
 h

os
t m

od
e.

 T
he

re
fo

re
, i

t i
s

po
ss

ib
le

 to
 m

ak
e

th
e

vi
rt

ua
l m

ac
hi

ne
 th

at
 c

a
us

ed
 th

e
S

Y
S

E
R

R
 e

xc
ep

tio
n

by

th
e

vi
rt

ua
liz

at
io

n
so

ftw
ar

e
 s

to
p,

 in
iti

a
te

 a
 s

o
ftw

ar
e

re
se

t o
n

th
e

vi
rt

ua
l m

ac
hi

ne
,

or
 m

ak
e

ot
he

r
vi

rt
ua

l m
ac

hi
ne

's
 o

pe
ra

tio
n

st
ar

t.

N
ot

e
7.

S
in

ce
 it

 o
cc

ur
s

ex
cl

u
si

ve
ly

, t
he

re
 is

 n
o

pr
io

rit
y

di
ffe

re
nc

e
w

ith
in

 th
e

sa
m

e
pr

io
rit

y
le

ve
l.

N
ot

e
8.

F
o

r
an

y
ca

us
e

o
f m

em
or

y
pr

ot
e

ct
io

n
vi

ol
at

io
n,

 th
e

re
st

ric
te

d
op

er
at

in
g

m
od

e
at

 e
xc

ep
tio

n
ha

nd
lin

g
is

 d
et

er
m

in
ed

 b
y

th
e

co
n

di
tio

n
sh

ow
n

by
 T

ab
le

 4
.2

.

N
ot

e
9.

F
o

r
an

y
ca

us
e

in
 g

ue
st

 m
od

e,
 th

e
re

st
ric

te
d

op
er

at
in

g
m

od
e

at
 e

xc
e

pt
io

n
h

an
dl

in
g

is
 d

et
er

m
in

ed
 b

y
th

e
co

nd
iti

on
 s

ho
w

n
by

 T
ab

le
 4

.3
.

N
ot

e
10

.
T

h
e

re
gi

st
er

 b
an

k
fu

nc
tio

n
an

d
R

E
S

B
A

N
K

 in
st

ru
ct

io
n

ca
nn

ot
 b

e
us

ed
 in

 h
os

t m
od

e
. T

he
re

fo
re

, w
he

n
th

e
re

st
ric

te
d

o
pe

ra
tin

g
m

od
e

is
 th

e
ho

st
 m

od
e,

 a
 S

Y
S

E
R

R
 e

xc
ep

tio
n

do

es
 n

ot
 o

cc
ur

 p
ri

or
 to

 c
on

te
xt

 r
es

to
ra

tio
n

fr
om

 th
e

re
gi

st
er

 b
an

k.
 F

or
 d

e
ta

ils
, s

ee
 S

ec
ti

o
n

 4
.5

.3
, C

o
n

te
xt

 R
es

to
ra

ti
o

n
.

R01UH0865EJ0140 Rev.1.40 Page 120 of 200
August 31, 2023

RH850G4MH Virtualization Section 4 Exceptions and Interrupts

N
ot

e
1.

A
m

on
g

th
e

ca
us

es
 (

in
st

ru
ct

io
n

fe
tc

h,
 o

p
er

an
d

ac
ce

ss
)

th
at

 m
ak

e
a

m
em

or
y

pr
ot

ec
tio

n
vi

ol
at

io
n

 e
xc

ep
tio

n
oc

cu
r,

th
e

ca
se

 th
at

 th
e

 r
es

tr
ic

te
d

op
er

at
in

g
m

od
e

to
 w

hi
ch

 th
e

ex
ce

p
tio

n
oc

cu
rr

en
ce

 c
au

se
 b

e
lo

ng
s

an
d

th
e

re
st

ric
te

d
op

er
at

in
g

m
od

e
at

 th
e

tim
e

of
 e

xc
ep

tio
n

o
cc

ur
re

nc
e

 a
re

 d
iff

er
e

nt
 is

 o
nl

y
w

he
n

th
e

in
te

rr
u

pt
 (E

IIN
T

n
) t

ha
t g

en
er

at
es

in

te
rr

up
t h

an
dl

er
 a

d
dr

es
s

b
y

ta
bl

e
re

fe
re

nc
e

m
et

ho
d

 to
 b

e
ge

ne
ra

te
d

oc
cu

rs
 in

 g
ue

st
 m

o
de

 a
nd

 a
 m

em
or

y
pr

ot
ec

tio
n

vi
ol

at
io

n
 is

 d
et

ec
te

d
in

 th
e

ta
bl

e
re

ad
.

N
ot

e
2.

F
o

r
d

et
ai

ls
 o

f t
he

 d
iff

er
en

ce
 in

 v
io

la
tio

n
de

te
ct

io
n

de
pe

nd
in

g
on

 th
e

ty
p

e
of

 M
P

U
 e

nt
ry

 a
nd

 th
e

st
a

te
 o

f r
es

tr
ic

te
d

op
er

at
in

g
m

o
de

 s
ee

 S
e

ct
io

n
 5

.1
, M

em
o

ry
 P

ro
te

ct
io

n

U
n

it
 (

M
P

U
).

N
ot

e
3.

If
an

 in
te

rr
u

pt
 (E

IIN
T

n)
 fo

r g
en

e
ra

tin
g

an
 in

te
rr

up
t h

a
nd

le
r a

dd
re

ss
 b

y
th

e
ta

bl
e

re
fe

re
nc

e
m

e
th

od
 o

cc
ur

re
d

in
 th

e
gu

es
t m

od
e

, b
ut

 a
 m

e
m

or
y

p
ro

te
ct

io
n

vi
ol

at
io

n
is

 d
et

ec
te

d
in

 th
e

ta
b

le
 r

ea
d

, t
he

 h
os

t m
od

e
is

 e
nt

er
e

d
an

d
th

e
 M

D
P

 e
xc

ep
tio

n
ha

nd
le

r
is

 p
ro

ce
ss

ed
. A

ls
o,

 w
h

e
n

an
 in

te
rr

up
t (

G
M

E
IIN

T
n

)
th

at
 g

en
er

at
e

s
an

 in
te

rr
up

t h
an

dl
er

 a
dd

re
ss

by

 th
e

ta
bl

e
re

fe
re

nc
e

m
et

ho
d

oc
cu

rr
e

d
in

 th
e

 g
ue

st
 m

od
e,

 a
nd

 a
 m

e
m

or
y

vi
ol

at
io

n
of

 th
e

ta
bl

e
 r

ea
d

in
 h

os
t m

an
ag

em
en

t e
nt

ry
 is

 d
et

ec
te

d
w

he
n

G
M

C
F

G
.H

M
P

 b
it

is
 s

et

(1
),

 th
e

ho
st

 m
od

e
is

 e
nt

er
e

d
an

d
th

e
M

D
P

 e
xc

e
pt

io
n

ha
nd

le
r

is
 p

ro
ce

ss
ed

. W
he

n
M

D
P

 e
xc

ep
tio

n
(t

er
m

in
at

in
g

ty
pe

)
oc

cu
rs

 u
nd

er
 th

es
e

tw
o

co
nd

iti
on

s,
 F

E
P

S
W

H
.G

M

is
 s

et
 (

1)
 in

 e
ith

er
 c

as
e

an
d

00
9D

H
 is

 s
to

re
d

in
 th

e
lo

w
er

-o
rd

er
 1

6
bi

ts
 o

f H
M

F
E

IC
. T

he
re

fo
re

, w
ith

 o
nl

y
th

es
e

re
gi

st
er

 v
al

u
es

, i
t i

s
no

t p
os

si
bl

e
to

 d
is

tin
gu

is
h

 w
he

th
er

 M
D

P

ex
ce

p
tio

n
(t

er
m

in
at

in
g

ty
pe

)
oc

cu
rr

e
d

in
 h

os
t m

od
e

or
 g

ue
st

 m
od

e
 in

te
rr

up
t.

it
is

 n
ec

es
sa

ry
 to

 id
en

tif
y

fr
om

 th
e

vi
ol

at
io

n
ad

dr
es

s
st

or
ed

 in
 th

e
M

E
A

.

Ta
b

le
 4

.2
R

el
at

io
n

sh
ip

 b
et

w
ee

n
 t

h
e

o
cc

u
rr

en
ce

 c
o

n
d

it
io

n
 o

f
m

em
o

ry
 p

ro
te

ct
io

n
 v

io
la

ti
o

n
 e

xc
ep

ti
o

n
 (

M
IP

, M
D

P
)

an
d

 r
es

tr
ic

te
d

 o
p

er
at

in
g

m

o
d

e
at

 e
xc

ep
ti

o
n

 h
an

d
lin

g

R
es

tr
ic

te
d

 o
p

er
at

in
g

 m
o

d
e

w
h

en
 t

h
e

ex
ce

p
ti

o
n

o

cc
u

rr
e

d

O
cc

u
rr

en
c

e
co

n
d

it
io

n

R
e

st
ri

ct
ed

 o
p

er
at

in
g

 m
o

d
e

 a
t

ex
ce

p
ti

o
n

h

an
d

lin
g

R
es

tr
ic

te
d

 o
p

er
a

ti
n

g
 m

o
d

e
to

 w
h

ic
h

th

e
ex

ce
p

ti
o

n
 o

c
cu

rr
en

ce
 c

au
se

b

el
o

n
g

s*
1

M
P

U
 e

n
tr

y
fo

r
w

h
ic

h
 a

 v
io

la
ti

o
n

 is

d
et

ec
te

d
*2

G
M

C
F

G

H
os

t m
od

e
H

os
t m

od
e

H
o

st
 m

an
a

ge
m

en
t e

nt
ry

—
H

o
st

 m
od

e

G
u

es
t m

od
e

H
os

t m
od

e
H

o
st

 m
an

a
ge

m
en

t e
nt

ry
—

H
o

st
 m

od
e

*3

G
ue

st
 m

od
e

H
o

st
 m

an
a

ge
m

en
t e

nt
ry

H
M

P
 =

 1
H

o
st

 m
od

e
*3

H
M

P
 =

 0
G

ue
st

 m
od

e

G
ue

st
 m

an
ag

em
en

t e
nt

ry
G

M
P

 =
 1

H
o

st
 m

od
e

G
M

P
 =

 0
G

ue
st

 m
od

e

Ta
b

le
 4

.3
R

el
at

io
n

sh
ip

 b
et

w
ee

n
 o

cc
u

rr
en

ce
 c

o
n

d
it

io
n

 o
f

sy
st

em
 e

rr
o

r
o

cc
u

rr
in

g
 in

 g
u

es
t

m
o

d
e

an
d

 r
es

tr
ic

te
d

 o
p

er
at

in
g

 m
o

d
e

at

ex
ce

p
ti

o
n

 h
an

d
lin

g

S
y

s
te

m
 e

rr
o

r

O
c

cu
rr

en
ce

 c
o

n
d

it
io

n

R
es

tr
ic

te
d

 o
p

er
at

in
g

 m
o

d
e

at
 e

xc
ep

ti
o

n
 h

an
d

li
n

g
G

M
C

F
G

E
rr

o
r

d
ue

 t
o

 c
o

n
te

xt
 s

a
vi

n
g

 to
 t

h
e

re
g

is
te

r
ba

n
k

E
rr

o
r

d
ue

 t
o

 in
st

ru
ct

io
n

 fe
tc

h
in

g
E

rr
o

r
p

rio
r

to
 c

o
n

te
xt

 r
es

to
ra

tio
n

 f
ro

m
 t

h
e

 r
e

gi
st

e
r

ba
n

k

G
S

Y
S

E
 =

 1
H

o
st

 m
od

e

G
S

Y
S

E
 =

 0
G

u
e

st
 m

o
d

e

R01UH0865EJ0140 Rev.1.40 Page 121 of 200
August 31, 2023

RH850G4MH Virtualization Section 4 Exceptions and Interrupts

N
o

te
:

 x
: N

ot
 a

n
ac

kn
ow

le
dg

m
en

t c
on

d
iti

on

Ta
b

le
 4

.4
E

xc
ep

ti
o

n
 A

ck
n

o
w

le
d

g
m

en
t

C
o

n
d

it
io

n
*1

E
x

c
ep

ti
o

n
Ty

p
e

C
h

e
ck

 t
h

e
g

u
e

s
t

p
a

rt
it

io
n

H
o

s
t

c
o

n
te

xt
 r

e
g

is
te

r

G
u

e
s

t
c

o
n

te
x

t
re

g
is

te
r

H
M

IN
T

C
F

G
.E

P
L

0
1

P
S

W
H

IS
P

R
H

M
P

S
W

H
M

P
L

M
R

H
M

P
S

W
G

M
P

S
W

G
M

P
L

M
R

G
M

P
S

W

G
M

G
P

ID
IS

P
E

IM
A

S
K

P
L

M
ID

N
P

E
IM

A
S

K
P

L
M

ID
N

P

R
E

S
E

T
Te

rm
in

a
tin

g
x

x
x

x
x

x
x

x
x

x
x

M
D

P
Te

rm
in

a
tin

g
x

x
x

x
x

x
x

x
x

x
x

F
E

N
M

I
Te

rm
in

a
tin

g
x

x
x

x
x

x
x

x
x

x
x

F
E

IN
T

Te
rm

in
a

tin
g

x
x

x
x

x
x

0
x

x
x

x

E
IIN

T
0

-2
0

4
7

Te
rm

in
a

tin
g

x
x

E
n

a
b

le
d

E
n

ab
le

d
E

n
a

b
le

d
0

0
x

x
x

x

B
G

F
E

IN
T

Te
rm

in
a

tin
g

1
x

x
x

x
0

0
x

x
x

0

B
G

E
II

N
T

Te
rm

in
a

tin
g

1
x

x
x

x
0

0
E

n
a

b
le

d
E

n
a

b
le

d
0

0

G
M

F
E

IN
T

Te
rm

in
a

tin
g

1
M

a
tc

h
x

x
x

x
x

x
x

x
0

S
Y

S
E

R
R

*2
Te

rm
in

a
tin

g
x

x
x

x
x

x
0

x
x

x
x

S
Y

S
E

R
R

*3
Te

rm
in

a
tin

g
x

x
x

x
x

x
x

x
x

x
0

G
M

E
IIN

T
Te

rm
in

a
tin

g
1

M
a

tc
h

x
x

x
x

x
E

n
a

b
le

d
E

n
a

b
le

d
0

0

M
IP

R
e

su
m

a
bl

e
x

x
x

x
x

x
x

x
x

x
x

S
Y

S
E

R
R

*4
R

e
su

m
a

bl
e

x
x

x
x

x
x

x
x

x
x

x

U
C

P
O

P
R

e
su

m
a

bl
e

x
x

x
x

x
x

x
x

x
x

x

R
IE

R
e

su
m

a
bl

e
x

x
x

x
x

x
x

x
x

x
x

P
IE

R
e

su
m

a
bl

e
x

x
x

x
x

x
x

x
x

x
x

S
Y

S
E

R
R

*5
R

e
su

m
a

bl
e

x
x

x
x

x
x

x
x

x
x

x

M
A

E
R

e
su

m
a

bl
e

x
x

x
x

x
x

x
x

x
x

x

M
D

P
R

e
su

m
a

bl
e

x
x

x
x

x
x

x
x

x
x

x

F
P

E
R

e
su

m
a

bl
e

x
x

x
x

x
x

x
x

x
x

x

F
X

E
R

e
su

m
a

bl
e

x
x

x
x

x
x

x
x

x
x

x

H
V

T
R

A
P

P
en

d
in

g
x

x
x

x
x

x
x

x
x

x
x

S
Y

S
C

A
L

L
P

en
d

in
g

x
x

x
x

x
x

x
x

x
x

x

F
E

T
R

A
P

P
en

d
in

g
x

x
x

x
x

x
x

x
x

x
x

T
R

A
P

0
P

en
d

in
g

x
x

x
x

x
x

x
x

x
x

x

T
R

A
P

1
P

en
d

in
g

x
x

x
x

x
x

x
x

x
x

x

R01UH0865EJ0140 Rev.1.40 Page 122 of 200
August 31, 2023

RH850G4MH Virtualization Section 4 Exceptions and Interrupts
N

ot
e

1.
F

o
r

th
e

 e
xc

ep
tio

n
ac

kn
ow

le
dg

m
en

t c
on

di
tio

n,
 th

e
re

la
tio

ns
hi

p
be

tw
ee

n
th

e
ex

ce
pt

io
n

ca
us

e
an

d
th

e
gu

es
t p

ar
tit

io
n

is
 fi

rs
t c

on
fir

m
ed

. I
f i

t i
s

an
 e

xc
ep

tio
n

fo
r

ho
st

 m
o

de
,

th
e

st
at

e
of

 th
e

cu
rr

en
t

gu
es

t
pa

rt
iti

on
 d

oe
s

no
t a

ffe
ct

 e
xc

ep
tio

n
ac

kn
ow

le
dg

m
en

t,
an

d
ex

ce
pt

io
n

 a
ck

no
w

le
dg

m
en

t
co

nd
iti

on
 w

ill
 b

e
co

nf
irm

ed
 b

y
th

e
or

de
r

o
f I

S
P

R
 o

r
H

M
P

S
W

.E
IM

A
S

K
 (

se
le

ct
ed

 b
y

H
M

IN
T

C
F

G
.E

P
L)

, H
M

P
L

M
R

, H
M

P
S

W
.I

D
, H

M
P

S
W

.N
P.

 In
 e

xc
ep

tio
ns

 f
or

 g
ue

st
 m

od
e,

 t
he

 s
ta

te
 o

f t
he

 c
ur

re
nt

 g
ue

st
 p

ar
tit

io
n

m
ay

 a
ffe

ct

ex
ce

p
tio

n
a

cc
ep

ta
nc

e.
 T

he
re

 a
re

 e
xc

ep
tio

ns
 f

or
 w

hi
ch

 th
e

ac
kn

o
w

le
d

gm
en

t c
on

di
tio

n
is

 th
at

 th
e

re
st

ric
te

d
op

e
ra

tin
g

m
od

e
is

 t
he

 g
ue

st
 m

od
e

an
d

o
th

er
 e

xc
ep

tio
n

s
fo

r
w

hi
ch

, i
n

a
dd

iti
on

 to
 th

is
 a

ck
no

w
le

dg
m

e
nt

 c
on

di
tio

n,
 th

e
g

ue
st

 p
ar

tit
io

n
ID

 s
p

ec
ifi

ed
 b

y
th

e
ex

ce
pt

io
n

ca
us

e
si

de
 a

nd
 th

e
cu

rr
e

nt
 g

ue
st

 p
ar

tit
io

n
ID

 (
P

S
W

H
.G

P
ID

)
m

us
t

m
at

ch
. W

he
n

th
e

ex
ce

pt
io

n
fo

r
gu

es
t m

o
de

 c
a

n
 a

ck
no

w
le

dg
e

th
e

st
at

e
of

 th
e

cu
rr

en
t g

ue
st

 p
ar

tit
io

n,
 th

e
ex

ce
pt

io
n

ac
kn

ow
le

dg
m

e
nt

 c
on

di
tio

n
w

ill
 b

e
co

nf
irm

ed
 in

 th
e

or
d

er
 o

f G
M

P
S

W
.E

IM
A

S
K

, G
M

P
LM

R
, G

M
P

S
W

.I
D

, G
M

P
S

W
.N

P.

If
an

 e
xc

ep
tio

n
is

 m
as

ke
d

un
de

r
a

 c
er

ta
in

 a
ck

no
w

le
dg

m
en

t
co

nd
iti

on
, t

he
 a

ck
no

w
le

dg
m

en
t

co
nd

iti
on

s
th

at
 a

re
 in

 th
e

su
bs

eq
ue

nt
 o

rd
er

 a
re

 n
ot

 c
on

fir
m

ed
. A

dd
iti

on
a

lly
,

de
pe

nd
in

g
on

 th
e

ty
pe

 o
f e

xc
ep

tio
n,

 t
he

 c
o

nd
iti

on
s

w
hi

ch
 d

o
 n

ot
 b

ec
om

e
ac

kn
ow

le
dg

m
en

t c
on

di
tio

ns
 a

re
 n

ot
 c

on
fir

m
ed

.

N
ot

e
2.

T
h

e
ca

se
 in

 w
hi

ch
 th

e
re

st
ric

te
d

op
er

at
in

g
m

od
e

at
 e

xc
e

pt
io

n
o

cc
ur

re
nc

e
is

 g
ue

st
 m

od
e

an
d

 th
e

re
st

ric
te

d
op

er
at

in
g

 m
od

e
at

 e
xc

e
pt

io
n

ha
nd

lin
g

is
 h

os
t

m
od

e.

N
ot

e
3.

T
h

e
ca

se
 in

 w
hi

ch
 th

e
re

st
ric

te
d

op
er

at
in

g
m

od
e

at
 e

xc
e

pt
io

n
o

cc
ur

re
nc

e
is

 g
ue

st
 m

od
e

an
d

 th
e

re
st

ric
te

d
op

er
at

in
g

 m
od

e
at

 e
xc

e
pt

io
n

ha
nd

lin
g

is
 g

ue
st

 m
od

e.

N
ot

e
4.

T
h

e
ac

kn
ow

le
dg

m
en

t c
on

di
tio

n
of

 th
e

S
Y

S
E

R
R

 e
xc

e
pt

io
n

du
e

to
 th

e
in

st
ru

ct
io

n
fe

tc
h

is
 u

nc
on

di
tio

na
l,

an
d

 it
 is

 ir
re

le
va

nt
 to

 th
e

st
at

e
 o

f t
he

 r
es

tr
ic

te
d

op
er

at
in

g
m

od
e

at

th
e

ex
ce

pt
io

n
oc

cu
rr

en
ce

 a
nd

 a
t e

xc
ep

tio
n

ha
nd

lin
g

.

N
ot

e
5.

T
h

e
ac

kn
ow

le
dg

m
en

t c
o

nd
iti

on
 o

f t
he

 S
Y

S
E

R
R

 e
xc

e
pt

io
n

pr
io

r t
o

co
nt

ex
t r

es
to

ra
tio

n
fr

om
 th

e
re

gi
st

e
r b

an
k

is
 u

nc
on

di
tio

n
al

, a
nd

 it
 is

 ir
re

le
va

nt
 to

 th
e

st
at

e
of

 th
e

re
st

ric
te

d
op

er
at

in
g

 m
od

e
at

 th
e

e
xc

ep
tio

n
oc

cu
rr

en
ce

 a
nd

 a
t

ex
ce

pt
io

n
ha

nd
lin

g.

R01UH0865EJ0140 Rev.1.40 Page 123 of 200
August 31, 2023

RH850G4MH Virtualization Section 4 Exceptions and Interrupts
Ta

b
le

 4
.5

R
es

o
u

rc
e

u
p

d
at

e
b

y
ex

ce
p

ti
o

n
 a

cc
ep

ta
n

ce
 (

1/
2)

E
xc

e
p

ti
o

n

R
e

s
tr

ic
te

d

o
p

er
at

in
g

m

o
d

e

w
h

e
n

e

x
ce

p
ti

o
n

h

an
d

li
n

g

is
 d

o
n

e
*1

S
a

ve
d

R
e

s
o

u
rc

e

E
x

c
e

p
ti

o
n

C

a
u

se
C

o
d

e
*2

H
o

s
t

c
o

n
te

xt
 r

e
g

is
te

r

G
u

es
t

c
o

n
te

x
t

re
g

is
te

r

IN
T

C
F

G
.E

P
L

0
1

P
S

W
H

IS
P

R
H

M
P

S
W

IS
P

R
H

M
P

S
W

G
M

P
S

W

G
M

IS
P

E
IM

A
S

K
IS

P
E

IM
A

S
K

U
M

ID
N

P
E

P
E

B
V

E
IM

A
S

K
U

M
ID

N
P

E
P

E
B

V

R
E

S
E

T
*3

H
os

t
H

M
F

E
N

on
e

0
0

0
0

0
H

0
0

H
0

0
0

0 H
0

0
H

0
1

0
0

0
0

0 H
0

1
0

0
0

M
D

P
H

o
st

H
M

F
E

*4
0

s
s

s
s

0
1

1
1

s
s

s
s

s
s

s

G
ue

st
G

M
F

E
*4

s
s

s
s

s
s

s
s

s
s

s
0

1
1

1
s

F
E

N
M

I
H

o
st

H
M

F
E

E
0

H
0

s
s

s
s

0
1

1
0

s
s

s
s

s
s

s

F
E

IN
T

H
o

st
H

M
F

E
F

0
H

-F
F

H
*5

0
s

s
s

s
0

1
1

0
s

s
s

s
s

s
s

S
Y

S
E

R
R

H
o

st
H

M
F

E
*6

0
s

s
s

s
0

1
1

1
s

s
s

s
s

s
s

E
IIN

T
0-

2
0

4
7

H
o

st
H

M
E

I
10

0
0

H
-1

7
F

F
H

*5
0

*8
s

s
*9

0
1

s
0

s
s

s
s

s
s

s

B
G

F
E

IN
T

H
o

st
H

M
E

I
D

8
00

H
-D

8
0

F
H

*5
0

s
s

s
s

0
1

s
1

s
s

s
s

s
s

s

B
G

E
II

N
T

H
o

st
H

M
E

I
D

0
00

H
-D

7
F

F
H

*5
0

s
s

s
s

0
1

s
1

s
s

s
s

s
s

s

G
M

F
E

IN
T

G
ue

st
G

M
F

E
F

0
H

-F
F

H
*5

s
s

s
s

s
s

s
s

s
s

s
0

1
1

0
s

S
Y

S
E

R
R

H
o

st
H

M
F

E
*6

0
s

s
s

s
0

1
1

1
s

s
s

s
s

s
s

G
ue

st
G

M
F

E
*6

s
s

s
s

s
s

s
s

s
s

s
0

1
1

1
s

G
M

E
II

N
T

G
ue

st
G

M
E

I
10

0
0

H
-1

7
F

F
H

*5
s

s
s

s
s

s
s

s
s

s
*9

0
*10

s
0

s

M
IP

H
o

st
H

M
F

E
*4

0
s

s
s

s
0

1
1

1
s

s
s

s
s

s
s

G
ue

st
G

M
F

E
*4

s
s

s
s

s
s

s
s

s
s

s
0

1
1

1
s

S
Y

S
E

R
R

H
o

st
H

M
F

E
*6

0
s

s
s

s
0

1
1

1
s

s
s

s
s

s
s

G
ue

st
G

M
F

E
*6

s
s

s
s

s
s

s
s

s
s

s
0

1
1

1
s

U
C

P
O

P
H

o
st

H
M

F
E

80
H

-8
2

H
*7

s
s

s
s

s
0

1
1

1
s

s
s

s
s

s
s

G
ue

st
G

M
F

E
80

H
-8

2
H

*7
s

s
s

s
s

s
s

s
s

s
s

0
1

1
1

s

R
IE

H
os

t
H

M
F

E
60

H
s

s
s

s
s

0
1

1
1

s
s

s
s

s
s

s

G
ue

st
G

M
F

E
60

H
s

s
s

s
s

s
s

s
s

s
s

0
1

1
1

s

P
IE

H
o

st
H

M
F

E
A

0
H

s
s

s
s

s
0

1
1

1
s

s
s

s
s

s
s

G
ue

st
G

M
F

E
A

0
H

s
s

s
s

s
s

s
s

s
s

s
0

1
1

1
s

S
Y

S
E

R
R

H

o
st

H
M

F
E

*6
0

s
s

s
s

0
1

1
1

s
s

s
s

s
s

s

G
ue

st
G

M
F

E
*6

s
s

s
s

s
s

s
s

s
s

s
0

1
1

1
s

M
A

E
H

o
st

H
M

F
E

C
0

H
s

s
s

s
s

0
1

1
1

s
s

s
s

s
s

s

G
ue

st
G

M
F

E
C

0
H

s
s

s
s

s
s

s
s

s
s

s
0

1
1

1
s

R01UH0865EJ0140 Rev.1.40 Page 124 of 200
August 31, 2023

RH850G4MH Virtualization Section 4 Exceptions and Interrupts

N
o

te
:

s:
 R

et
ai

ne
d

N
ot

e
1.

T
h

er
e

ar
e

ca
se

s
in

 w
hi

ch
 th

e
 r

es
tr

ic
te

d
 o

pe
ra

tin
g

m
od

e
 a

t t
he

 ti
m

e
an

 e
xc

e
pt

io
n

oc
cu

rs
 a

nd
 a

t
th

e
tim

e
 o

f e
xc

ep
tio

n
ha

n
d

lin
g

ar
e

di
ffe

re
nt

. F
or

 d
et

ai
ls

, s
ee

 T
a

b
le

 4
.1

,
E

xc
ep

ti
o

n
 C

au
se

 L
is

t

N
ot

e
2.

R
ep

re
se

nt
s

lo
w

er
-o

rd
er

 1
6

bi
ts

 o
f t

he
 e

xc
ep

tio
n

 c
au

se
 c

od
e.

 T
h

e
hi

gh
er

-o
rd

er
 1

6
bi

ts
 o

f t
he

 e
xc

ep
tio

n
ca

us
e

co
de

 a
re

 lo
a

de
d

 w
ith

 a
 d

et
ai

l c
o

de
 w

hi
ch

 is
 d

ef
in

e
d

fo
r

ea
ch

ex

ce
p

tio
n.

 T
he

 c
od

e
is

 0
00

0 H
 u

nl
es

s
it

is
 s

pe
ci

fic
al

ly
 d

es
cr

ib
ed

 in
 th

e
in

di
vi

du
al

 fu
nc

tio
na

l d
es

cr
ip

tio
ns

.

N
ot

e
3.

W
he

n
a

re
se

t
oc

cu
rs

, t
he

 s
ys

te
m

 r
eg

is
te

rs
 a

re
 in

iti
al

iz
ed

,
bu

t
on

ly
 F

E
P

C
 p

er
fo

rm
s

a
sp

ec
ia

l o
pe

ra
tio

n
of

 s
to

rin
g

th
e

P
C

 o
f

th
e

la
st

 in
st

ru
ct

io
n

 w
hi

ch
 h

as
 c

om
pl

et
ed

 ju
st

be

fo
re

.

N
ot

e
4.

T
h

e
va

lu
e

de
pe

nd
s

on
 th

e
ty

p
e

of
 m

em
or

y
pr

ot
ec

tio
n

vi
o

la
tio

n
an

d
th

e
ty

pe
 o

f M
P

U
 e

nt
ry

 fo
r

w
hi

ch
 a

 m
em

o
ry

 p
ro

te
ct

io
n

vi
ol

at
io

n
 w

as
 d

et
ec

te
d.

 F
or

 d
et

ai
ls

, s
ee

 S
ec

ti
o

n

4.
1.

2,
 O

ve
rv

ie
w

 o
f

E
xc

ep
ti

o
n

 C
au

se
s

.

N
ot

e
5.

W
ith

 th
es

e
 e

xc
ep

tio
n

ca
us

e
s,

 th
e

 v
a

lu
es

 w
ith

in
 th

e
sp

e
ci

fie
d

ra
ng

e
a

re
 s

to
re

d
a

s
ex

ce
pt

io
n

ca
us

e
co

de
. T

he
se

 v
al

ue
s

co
rr

es
po

nd
 to

 th
e

 c
ha

nn
el

 n
u

m
be

r
of

 e
a

ch

ex
ce

p
tio

n
ca

us
e.

N
ot

e
6.

T
h

e
va

lu
e

de
p

en
ds

 o
n

th
e

oc
cu

rr
en

ce
 c

au
se

 o
f s

ys
te

m
 e

rr
or

. F
or

 d
et

ai
ls

, s
ee

 S
ec

ti
o

n
 4

.1
.2

, O
ve

rv
ie

w
 o

f
E

xc
ep

ti
o

n
 C

au
se

s
.

N
ot

e
7.

80
H

-8
2 H

 c
or

re
sp

on
d

to
 t

he
 c

o
pr

oc
es

so
r

us
e

p
e

rm
is

si
on

s
(C

U
0-

C
U

2)
, r

es
pe

ct
iv

el
y.

N
ot

e
8.

T
h

e
bi

t c
or

re
sp

on
di

ng
 to

 th
e

pr
io

rit
y

of
 th

e
ac

kn
ow

le
dg

ed
 in

te
rr

up
t (

E
IIN

T
n

)
is

 s
et

 (
1)

.

N
ot

e
9.

T
h

e
pr

io
rit

y
of

 th
e

ac
kn

o
w

le
d

ge
d

in
te

rr
u

pt
 (

E
IIN

T
n)

 is
 s

to
re

d.

N
ot

e
10

.
T

he
re

 a
re

 c
as

es
 in

 w
hi

ch
 th

e
P

S
W

.ID
 b

it
is

 s
et

 to
 0

 fo
r i

nt
er

ru
pt

s
of

 ta
bl

e
re

fe
re

nc
e

m
et

ho
d

in
 w

hi
ch

 th
e

re
gi

st
er

 b
an

k
is

 u
se

d.
 F

or
 d

et
ai

ls
, s

ee
 S

ec
ti

o
n

 4
.5

.2
, A

u
to

m
at

ic
 C

o
n

te
xt

 S
av

in
g

.

M
D

P
H

o
st

H
M

F
E

*4
0

s
s

s
s

0
1

1
1

s
s

s
s

s
s

s

G
ue

st
G

M
F

E
*4

s
s

s
s

s
s

s
s

s
s

s
0

1
1

1
s

F
P

E
H

o
st

H
M

E
I

71
H

s
s

s
s

s
0

1
s

1
s

s
s

s
s

s
s

G
ue

st
G

M
E

I
71

H
s

s
s

s
s

s
s

s
s

s
s

0
1

s
1

s

F
X

E
H

o
st

H
M

E
I

75
H

s
s

s
s

s
0

1
s

1
s

s
s

s
s

s
s

G
ue

st
G

M
E

I
75

H
s

s
s

s
s

s
s

s
s

s
s

0
1

s
1

s

H
V

T
R

A
P

H
o

st
H

M
E

I
F

0
00

H
-F

0
1

F
H

0
s

s
s

s
0

1
s

1
s

s
s

s
s

s
s

S
Y

S
C

A
L

L
H

o
st

H
M

E
I

80
0

0
H

-8
0

F
F

H
s

s
s

s
s

0
1

s
1

s
s

s
s

s
s

s

G
ue

st
G

M
E

I
80

0
0

H
-8

0
F

F
H

s
s

s
s

s
s

s
s

s
s

s
0

1
s

1
s

F
E

T
R

A
P

H
o

st
H

M
F

E
31

H
-3

F
H

s
s

s
s

s
0

1
1

1
s

s
s

s
s

s
s

G
ue

st
G

M
F

E
31

H
-3

F
H

s
s

s
s

s
s

s
s

s
s

s
0

1
1

1
s

T
R

A
P

0
H

o
st

H
M

E
I

40
H

-4
F

H
s

s
s

s
s

0
1

s
1

s
s

s
s

s
s

s

G
ue

st
G

M
E

I
40

H
-4

F
H

s
s

s
s

s
s

s
s

s
s

s
0

1
s

1
s

T
R

A
P

1
H

o
st

H
M

E
I

50
H

-5
F

H
s

s
s

s
s

0
1

s
1

s
s

s
s

s
s

s

G
ue

st
G

M
E

I
50

H
-5

F
H

s
s

s
s

s
s

s
s

s
s

s
0

1
s

1
s

Ta
b

le
 4

.5
R

es
o

u
rc

e
u

p
d

at
e

b
y

ex
ce

p
ti

o
n

 a
cc

ep
ta

n
ce

 (
2/

2)

E
xc

e
p

ti
o

n

R
e

s
tr

ic
te

d

o
p

er
at

in
g

m

o
d

e

w
h

e
n

e

x
ce

p
ti

o
n

h

an
d

li
n

g

is
 d

o
n

e
*1

S
a

ve
d

R
e

s
o

u
rc

e

E
x

c
e

p
ti

o
n

C

a
u

se
C

o
d

e
*2

H
o

s
t

c
o

n
te

xt
 r

e
g

is
te

r

G
u

es
t

c
o

n
te

x
t

re
g

is
te

r

IN
T

C
F

G
.E

P
L

0
1

P
S

W
H

IS
P

R
H

M
P

S
W

IS
P

R
H

M
P

S
W

G
M

P
S

W

G
M

IS
P

E
IM

A
S

K
IS

P
E

IM
A

S
K

U
M

ID
N

P
E

P
E

B
V

E
IM

A
S

K
U

M
ID

N
P

E
P

E
B

V

RH850G4MH Virtualization Section 4 Exceptions and Interrupts

R01UH0865EJ0140 Rev.1.40 Page 125 of 200
August 31, 2023

4.1.2 Overview of Exception Causes

The following is an overview of the exception causes handled by the CPU.

(1) RESET

For details, see the “CPU” section in the hardware manual of the product used.

(2) FENMI, FEINT, and EIINT

These are the interrupts for host mode among the interrupts generated by interrupt signals from the

interrupt controller to activate a certain program. The interrupt handlers are handled in host mode. For

details about the interrupt function, see Section 3.3, Interrupt Function Registers and the

hardware manual of the product used.

(3) GMFEINT, GMEIINT

These are the interrupts for guest mode among the interrupts generated by interrupt signals from the

interrupt controller to activate a certain program. Along with the interrupt request, the guest partition

ID for which the interrupt request should be processed is also notified. For an interrupt to be

acknowledged, the restricted operating mode is guest mode and the value of the current guest partition

ID (PSWH.GPID) must match the value of the guest partition ID notified from the interrupt controller .

For details about interrupt function, see Section 3.3, Interrupt Function Registers and the

hardware manual of the product used.

(4) BGFEINT, BGEIINT

These are the background interrupts for guest mode among the interrupts generated by interrupt signals

from the interrupt controller to activate a certain program. The causes of the background interrupts are

the interrupt causes (GMFEINT, GMEIINTn) for guest mode. They occur when the specific condition

is satisfied at the interrupt controller side and the value of the guest partition ID to be processed by the

interrupt managed by the interrupt controller and the value of the current guest partition ID

(PSWH.GPID) are different from each other. When the background interrupt is acknowledged in guest

mode, the restricted operating mode is transitioned to host mode and is handled as an EI level

exception. For details about background interrupt, see Section 4.1.9, Background Interrupts. For

details about the interrupt controller, see the hardware manual of the product used.

Table 4.6 shows the exception cause codes that are loaded in the HMEIIC when acknowledging

background interrupt

RH850G4MH Virtualization Section 4 Exceptions and Interrupts

R01UH0865EJ0140 Rev.1.40 Page 126 of 200
August 31, 2023

Note 1. The other bits are padded with 0.

Table 4.6 Exception cause code of background interrupt

Background
Interrupt HMEIIC bit*1 Stored content

BGFEINT [18:16] The guest partition ID in which the generation cause GMFEINT is to be
processed.

[15:8] D8H

[3:0] Interrupt channel number of generation cause GMFEINT.

BGEIINT [18:16] The guest partition ID in which the generation cause GMEIINT is to be
processed.

[15:12] DH

[11] 0B

[10:0] Interrupt channel number of generation cause GMEIINT.

RH850G4MH Virtualization Section 4 Exceptions and Interrupts

R01UH0865EJ0140 Rev.1.40 Page 127 of 200
August 31, 2023

(5) SYSERR

This is a system error exception.

An error occurring during automatic context saving using the register bank function is notified as a

terminating-type SYSERR exception. In this case, as with the case of acknowledging an interrupt, the

PC of the instruction that is interrupted when the exception occurred is loaded in the FEPC and the

PSW at that time in the FEPSW, respectively. An error occurring during the restoration of the context

with the RESBANK instruction is notified as a resumable-type SYSERR exception. In this case, the

PC of the RESBANK instruction is loaded in the FEPC and the PSW at that time in the FEPSW,

respectively.

An error that occurs at an instruction fetch access is notified as a resumable-type SYSERR exception.

In this case, the PC of the instruction to be fetched is loaded in the FEPC and the PSW at that time in

the FEPSW, respectively.

Table 4.7 lists the exception cause codes that are loaded in the lower-order 16 bits of the FEIC register

when SYSERR exceptions occur. The higher-order 16 bits of the exception cause code are padded with

0s.

Note 1. For details, see the hardware manual of the product used.

Note 2. When an ECC or parity error is found in fetching from the instruction cache, it is handled as a cache miss
so a SYSERR exception does not occur.

All the causes that generate a SYSERR exception for this CPU are listed in Table 4.7. An error that is

detected externally to the CPU does not generate a SYSERR exception.

Table 4.7 Lower-order 16 Bits of the Exception Cause Codes Associated with the
SYSERR Exception

Exception Cause Code Cause

11H A response error occurred in a bus slave at the time of instruction fetching.*1

13H An error within the scope of safety functions, such as an ECC error or parity
error, occurred at the time of instruction fetching.*1,*2

1CH An error occurred when automatically saving context to the register bank.

1DH An error occurred at the time of context restoration from the register bank
(during the execution of the RESBANK instruction).

RH850G4MH Virtualization Section 4 Exceptions and Interrupts

R01UH0865EJ0140 Rev.1.40 Page 128 of 200
August 31, 2023

(6) FPE

For details, see the “CPU” section in the hardware manual of the product used.

(7) FXE

For details, see the “CPU” section in the hardware manual of the product used.

(8) MIP and MDP

These are exceptions that occur when the MPU detects a violation. Detecting an exception is performed

when the address at which the instruction will access the memory is calculated. For details, see

Section 5.1, Memory Protection Unit (MPU).

There are cases in which an MDP exception is detected during a table read or automatic context saving

onto the register bank when a table reference method interrupt (EIINTn) is selected as the result of

determining the priority level of the terminating-type exception. In such a case, the execution of the

instruction is interrupted and an MDP exception (terminating-type) is generated as with an ordinary

interrupt. At this time, if the MDP exception is handled in the host mode, the PC of the interrupted

instruction is saved to HMFEPC, and the HMPSW before interrupt acceptance is saved to HMFEPSW.

When an MDP exception is handled in guest mode, the PC of the interrupted instruction is saved to

GMFEPC, and the GMPSW before interrupt acceptance is saved to GMFEPSW, respectively. For the

table reference method, see Section 4.4, Exception Handler Address.

Table 4.8 lists the exception cause codes that are loaded in the lower-order 16 bits of the FEIC register

when memory protection violation exceptions (MIP, MDP) occur.

Note 1. After considering the setting of all MPU entries, it indicates whether access to the target memory access is
enabled or disabled.

Note 2. When the memory protection violation is detected in the table read of an interrupt (EIINTn, GMEIINTn) using
the table reference method

Note 3. Since memory access is enabled, no memory protection violation exception occurs.

Note 4. In host mode, the values of host management entry is “disabled" and guest management entry is “enabled".

(9) RIE

For details, see the “CPU” section in the hardware manual of the product used.

Table 4.8 Lower-order 16 Bits of the Exception Cause Codes Associated with the
Memory Protection Exception

Access setting*1 Type of memory protection violation exceptions

Host
management
entry

Guest
management
entry MIP

MDP
(operand access)

MDP
(table read*2)

Enabled Enabled Does not occur*3 Does not occur*3 Does not occur*3

Enabled Disabled 90H 91H 95H

Disabled*4 Enabled*4 98H 99H 9DH

Disabled Disabled 90H 91H 95H

RH850G4MH Virtualization Section 4 Exceptions and Interrupts

R01UH0865EJ0140 Rev.1.40 Page 129 of 200
August 31, 2023

(10) PIE

For details, see the “CPU” section in the hardware manual of the product used.

(11) UCPOP

For details, see the “CPU” section in the hardware manual of the product used.

(12) MAE

For details, see the “CPU” section in the hardware manual of the product used.

(13) TRAP, FETRAP, and SYSCALL

For details, see the “CPU” section in the hardware manual of the product used.

(14) HVTRAP

These are exceptions that occur according to the result of HVTRAP instruction execution. When the

HVTRAP instruction is executed in guest mode, the restricted operating mode is transitioned to host

mode and is handled as an EI level exception. For details, see the RH850G4MH Virtualization User's

Manual: Software.

RH850G4MH Virtualization Section 4 Exceptions and Interrupts

R01UH0865EJ0140 Rev.1.40 Page 130 of 200
August 31, 2023

4.1.3 Types of Exceptions

This CPU divides exceptions into the following three types according how they are executed.

 Terminating exceptions

 Resumable exceptions

 Pending exceptions

Also, exceptions classified into these types are further classified into the following two according to the

restricted operating mode, in which the exception handler is processed respectively.

 Exception handled in host mode

 Exception handled in guest mode

(1) Terminating Exceptions

For details, see the “CPU” section in the hardware manual of the product used.

CAUTIONS

1. For details, see the “CPU” section in the hardware manual of the product used.

2. A terminating exception may be accepted during the execution of an instruction

that performs multiple memory accesses. In this case, although the execution of

the instruction is terminated, the result of memory accesses that have been

already completed are not canceled. For example, memory is updated by the

PREPARE instruction and the general-purpose registers are updated by the

DISPOSE instruction. However, it is guaranteed that the PC and SP retain the

original values required to re-execute the instruction. For details, see the

RH850G4MH User’s Manual: Software. The relevant instructions are listed below.

– PREPARE, DISPOSE, PUSHSP, POPSP, RESBANK, STM.MP, LDM.MP,

STM.GSR, LDM.GSR

(2) Resumable Exceptions

For details, see the “CPU” section in the hardware manual of the product used.

(3) Pending Exceptions

For details, see the “CPU” section in the hardware manual of the product used.

(4) Exception handled in host mode

Exception handler is processed in host mode. There are cases for which the exception cause belongs to

the host mode and cases for which the designated processing is performed in host mode but the

exception causes belong to guest mode. At exceptions belongs to the host mode, instruction was

executed in host mode, pending exception, and terminating exception which occurs regardless of

restricted operating mode are corresponding. Although the exception cause belongs to the guest mode,

for exceptions handled in the host mode include HVTRAP instruction executed in guest mode. This is

RH850G4MH Virtualization Section 4 Exceptions and Interrupts

R01UH0865EJ0140 Rev.1.40 Page 131 of 200
August 31, 2023

the case when the transition to the host mode was specified by the corresponding bit of GMCFG at the

time MIP, MDP, SYSERR exceptions occur.

(5) Exception handled in guest mode

The exception handler is processed in guest mode. This exception is applied to the case for which the

exception cause belongs to Guest mode or to the case in which MIP, MDP, or SYSERR exception

occurs when handling in guest mode is specified by the corresponding bit in GMCFG.

RH850G4MH Virtualization Section 4 Exceptions and Interrupts

R01UH0865EJ0140 Rev.1.40 Page 132 of 200
August 31, 2023

4.1.4 Exception Acknowledgment Conditions and Priority Order

For details, see the “CPU” section in the hardware manual of the product used.

For detailed descriptions, see the “CPU” section in the hardware manual of the product used.
Additionally, only when the CPU acknowledged BGFEINT or BGEIINT, this CPU does not return
acceptance response to the requesting module. Interrupt requests that became cause of background
interrupts are retained on the interrupt controller side. Therefore, an interrupt request as GMFEINT or
GMEIINT is triggered if the mode transitions to guest mode of the guest partition ID in which the
interrupt request is to be processed.

Note 1. See Table 4.1, Exception Cause List

Figure 4.1 Exception Acknowledgment Conditions and Priority Order

Exception
request

Exception
request

Exception
request

Exception
request

Priority x

Priority y

Priority level n

.

Mask function defined
for each function

Mask function defined
for each function

Mask by
acknowledgment

condition*1

Mask by
acknowledgment

condition*1

Priority 1

Selection by
priority*1

Priority level 1

Selection by
priority level*1

(Priority 1)

Exception
acknowledged

Mask function defined
for each function

Mask function defined
for each function

Mask by
acknowledgment

condition*1

Mask by
acknowledgment

condition*1

Priority 1

Selection by
priority*1

.

. . .

. . .

. . .

. . .

.
.

RH850G4MH Virtualization Section 4 Exceptions and Interrupts

R01UH0865EJ0140 Rev.1.40 Page 133 of 200
August 31, 2023

4.1.5 Interrupt Exception Priority and Priority Masking

An interrupt (EIINTn, GMEIINTn) can be masked for each exception priority or interrupt priority by

setting registers. This function allows more flexible software structure and an interrupt ceiling with no

maintenance.

Figure 4.2 shows an overview of the functions of interrupt exception priority and priority masking.

(1) Interrupt Priority

This CPU supports below shown priority levels for interrupts (EIINTn) :

Maximum 16 priority level : HMINTCFG.EPL is cleared to 0

Maximum 64 priority level : HMINTCFG.EPL is set to 1

The priority of the interrupt (GMEIINTn) acknowledgeable by this CPU is 64 levels at maximum

because the interrupt priority level extension function is always enabled in the guest mode

(GMINTCFG.EPL is always set (1)) .

For the details on the procedure to set interrupt priority in interrupt controller, see the hardware manual

of the product used.

Note 1. For details about the interrupt controller, see the hardware manual of the product used.

Note 2. EIINTn which is masked by each masking function can be checked by each bit of IMSR or ICSR.PMEI.

Figure 4.2 Interrupt Exception Priority and Priority Masking

Interrupt request (EIINTn)

Request flag

Interrupt request 0

Mask

Priority
judgment

Setting for each channel

Request flag

Interrupt request n

Mask

Setting for each channel

Interrupt
Controller *1

mask

mask

Request flag

Interrupt request 2047
(Max. Number)

Mask

Setting for each channel

mask

Mask by
ISPR

*2

Mask by
HMPLMR

*2

To exception priority order
judgment if not masked.

Mask by
HMPSW.
EIMASK

*2

0

1

INTCFG.EPL

Mask by
HMPSW

*2

The stop status caused by HALT is released.
The pause status caused by SNOOZE is released.

Mask by
GMPLMR

*2

To exception priority order
judgment if not masked.

Mask by
GMPSW.
EIMASK

*2

Mask by
GMPSW

*2

The stop status caused by HALT is released.
The pause status caused by SNOOZE is released.

Interrupt request (GMEIINTn)

RH850G4MH Virtualization Section 4 Exceptions and Interrupts

R01UH0865EJ0140 Rev.1.40 Page 134 of 200
August 31, 2023

(a) When an Interrupt which is less than or equal to priority level 16 occurs (when

HMINTCFG.EPL is cleared 0)

The function for acknowledgment of interrupt (EIINTn) works in a limited way. Interrupt can be

masked by ISPR and HMPLMR. If either one of bit for ISPR is set to 1, all interrupts (EIINTn) for

which the priority level is less than or equal to 16 is masked. HMPLMR always works as specified

regardless the setting of HMINTCFG.EPL. On the other hand, the priority information of

acknowledged interrupt is not saved in ISPR and PSW.EIMASK.

As mentioned above, its use is not recommended because the priority information is not handled

by CPU even if the acknowledge of interrupt (EIINTn) is possible.

(b) Constraints for interrupts with priority level 16 to 62

Regardless the setting of HMINTCFG.EPL, below shown constraints are applied for interrupts

(EIINTn, GMEIINTn) with priority level 16 to 62.

– When the priority of the acknowledged interrupt (EIINTn) is 16 to 62 and the exception

handler address is generated by the direct vector address method, the offset address is 1F0H

that is the same as for interrupt with priority level 15. Thus, the same exception handler

address is used for all interrupts with a priority level of less than or equal to 15. Refer to

Section 4.4, Exception Handler Address for more details

– When the priority of the acknowledged interrupt (GMEIINTn) is 16 to 62 in guest mode, the

availability of register bank is specified by RBCR0[15] that is the same with the interrupt

which is less than equal 15 priority level. For all interrupts (EIINTn) with a priority level of

less than or equal to 15, availability of register bank cannot be specified for each priority

level. Refer to Section 4.5.2, Automatic Context Saving.

Additionally, in host mode, the register bank function cannot be used when an interrupt

(EIINTn) is acknowledged regardless of the value of RBCR0.BE.

– When the priority of the acknowledged interrupt (GMEIINTn) is 16 to 62 in guest mode, the

value of the PSW.ID bit after saving to the register bank is specified by RBCR1.NC[15]

which is the same as for priority 15. All interrupts (GMEIINTn) which is less than equal 15

priority level can not be specified its availability by each priority level. Refer to Section

4.5.2 (2), Suppressing the Update of the GMPSW.ID Bit.

Additionally, in host mode, the register bank function cannot be used when an interrupt

(EIINTn) is acknowledged regardless of the value of RBCR0.BE.

(c) Constraint for interrupt with priority level 63

If HMINTCFG.EPL is cleared to 0 (= Interrupt priority level extension function is disabled), the

interrupt (EIINTn) for which the priority level is 63 (lowest priority level) must be masked by

HMPLMR. If HMINTCFG.EPL is set to 1 (= Interrupt priority level extension function is

enabled), the interrupt (EIINTn) for which priority level is 63 (lowest priority level) must be

masked by HMPSW.EIMASK, GMPSW.EIMASK. As mentioned above, interrupt (EIINTn,

GMEIINTn) with priority level 63 is not acknowledged regardless of HMINTCFG.EPL. But both

stop status caused by HALT and SNOOZE instruction can be released by occurrence of interrupt

with priority level 63 (EIINTn, GMEIINTn).

RH850G4MH Virtualization Section 4 Exceptions and Interrupts

R01UH0865EJ0140 Rev.1.40 Page 135 of 200
August 31, 2023

(2) Interrupt Priority Mask

If interrupt priority level extension function is disabled (HMINTCFG.EPL is cleared to 0), interrupt

(EIINTn) acknowledgment is judged by ISPR and PLMR. If interrupt priority level extension function

in host mode is enabled (HMINTCFG.EPL is set to 1), interrupt (EIINTn) acknowledgment is judged

by HMPSW.EIMASK and HMPLMR. In the guest mode, the interrupt priority level extension function

is always enabled (GMINTCFG.EPL is always set (1)), and for the interrupt (GMEIINTn), the

acknowledgment is judged by GMPSW.EIMASK and GMPLMR.

(a) ISPR

Interrupt acknowledgment judged by ISPR is only done when interrupt priority level extension

function is disabled. In other words, ISPR can be used only when the restricted operating mode is

host mode.

For the ISPR register, the bit corresponding to the priority is set to 1 when the hardware

acknowledges an interrupt, and interrupts with the same or lower priority are masked. When the

EIRET instruction corresponding to the interrupt is executed, the corresponding bit of the ISPR

register is cleared to 0 to clear the mask.

This automatic interrupt ceiling makes multiple interrupts servicing easy without using software

control.

The function of the HMINTCFG register allows you to disable automatic update of the ISPR

register upon acknowledgment of and return from an interrupt. To perform interrupt ceiling

control by using software without using the function of the ISPR register, set the ISPC bit in the

HMINTCFG register to 1, clear the ISPR register, and then control the ceiling value with software

by using the HMPLMR register.

(b) HMPSW.EIMASK, GMPSW.EIMASK

Interrupt acknowledge judged by HMPSW.EIMASK and GMPSW.EIMASK are only done when

interrupt priority level extension function is enabled.

HMPSW.EIMASK, GMPSW.EIMASK mask the interrupt (EIINTn, GMEIINTn) which has an

equal or lower priority than the set value. When CPU acknowledges an interrupt (EIINTn,

GMEIINTn), its priority is stored to them. When EIRET or FERET instruction is executed, the

value of EIPSW.EIMASK or FEPSW.EIMASK is stored to them. PSW.EIMASK can be changed

by LDSR instruction.

(c) HMPLMR, GMPLMR

HMPLMR, GMPLMR mask the interrupt (EIINTn, GMEIINTn) which has which has an equal or

lower priority than the set value.

The HMPLMR, GMPLMR registers allows you to mask specific interrupt priorities with

software. Use them to raise the priority level of the interrupt ceiling temporarily in a program. The

mask setting specified by the ISPR register or HMPSW.EIMASK, GMPSW.EIMASK and the

mask setting of HMPLMR, GMPLMR might overlap, and an interrupt is masked if it is masked

with one of them. Normally, use the HMPLMR, GMPLMR registers to raise the ceiling value

from the ceiling value of the ISPR register or HMPSW.EIMASK, GMPSW.EIMASK.

4.1.6 Return and Restoration

For details, see the “CPU” section in the hardware manual of the product used.

RH850G4MH Virtualization Section 4 Exceptions and Interrupts

R01UH0865EJ0140 Rev.1.40 Page 136 of 200
August 31, 2023

4.1.7 Context switching

To save the current program sequence when an exception occurs, appropriately save the following

resources according to the function definitions. There are resources that are automatically saved by

hardware and resources that need to be saved by software.

 Program counter (PC)

 Program status word (HMPSW, GMPSW)

 Exception cause code (HMEIIC, HMFEIC, GMEIIC, GMFEIC)

 Work system register (HMEIWR, HMFEWR, GMEIWR, GMFEWR)

The resource to be used as the saving destination is determined according to the exception type. Saved

resource determination is described below.

For exceptions that use the register bank function, specific resources are automatically saved. For

details, see Section 4.5, Register Bank Function.

(1) Context Saving

When exception is acknowledged, the pending bits (HMPSW.ID, NP and GMPSW.ID, NP bits) are

automatically set. New exceptions with certain acknowledgment conditions might not be

acknowledged, based on these pending bits.

To enable multiple exception handling which makes exceptions of the same level acceptable again, the

return registers and certain information about the corresponding exception causes must be saved, such

as to a stack. This information that must be saved is called the “context”.

In principle, it is necessary to make sure that no exceptions of the same level can occur before saving

the context.

The working system registers that can be used in the work of saving contexts and those for which the

values are saved to enable the handling of multiple exceptions as required are referred to as the basic

context registers.

These basic context registers are provided for each exception level. For this reason, it is possible to

precisely return from the current exception since its context will not be overwritten when an exception

of a different level occurs before saving the current context.

About an exception level, see Section 2.3.2, Exception Level.

(2) Context Save and Restore Instructions

Table 4.10 shows the list of save and return instructions. When using the save instructions, context

can be saved to memory at once by a single instruction. When using the restore instruction, context can

be restored from memory at once by a single instruction. Context save/return can be performed in a

shorter time with a smaller code size, if context save/return instruction is used, as compared with

execution of a combination of multiple instructions.

Table 4.9 Basic Context Registers

Exception Level

Basic Context Registers

Host context register Guest context register

EI level HMEIPC, HMEIPSW, HMEIIC, HMEIWR GMEIPC, GMEIPSW, GMEIIC, GMEIWR

FE level HMFEPC, HMFEPSW, HMFEIC, HMFEWR GMFEPC, GMFEPSW, GMFEIC, GMFEWR

RH850G4MH Virtualization Section 4 Exceptions and Interrupts

R01UH0865EJ0140 Rev.1.40 Page 137 of 200
August 31, 2023

Note 1. PUSHSP and POPSP instructions differ from the STM.GSR, LDM.GSR instructions, etc. in the method of
generating the access destination address. Therefore, when multiple instructions are required for address
generation, it is preferable to use the necessary number of ST.W, LD.W instructions rather than save/return
general-purpose registers using the PUSHSP and POPSP instructions; context save/return can be
performed in a shorter time.
In comparison of code sizes, PUSHSP and POPSP instructions are somewhat smaller than multiple ST.W,
LD.W instructions when context can be saved/returned with 1 instruction. However, when an additional
address generation instruction is required, the number of instructions is added to the PUSHSP and POPSP
instructions, so that compared with the case where multiple ST.W and LD.W instructions are used,
superiority or inferiority varies depending on the number of general-purpose registers to be saved/returned.

Note 2. The MPU setting entry consists of one set of three system registers: MPLA, MPUA, and MPAT. Therefore,
when one entry is specified as a target to be processed by the STM.MP, LDM.MP instruction, three system
registers are saved/returned.

Table 4.10 Context save/return instruction by resource.

Resource
Save
instruction

Return
instruction Specification Method for Operation Target

General-purpose registers PUSHSP*1 POPSP*1 Specify start and end numbers for consecutive register numbers.

MPU setting entry STM.MP LDM.MP Specify start and end numbers for consecutive entry numbers. *2

Specific System Register STM.GSR LDM.GSR For details, see Table 4.11.

RH850G4MH Virtualization Section 4 Exceptions and Interrupts

R01UH0865EJ0140 Rev.1.40 Page 138 of 200
August 31, 2023

Note 1. Processing starts from No. 1 in the save/return order.

Note 2. When the target system register is saved / restored, the value obtained by adding the address offset to the
value of the base address register becomes the memory address to be accessed.

Note 3. When the STM.GSR, LDM.GSR instruction is executed, all these system registers are saved and restored.

Note 4. GMPEID is not an operation target of the STM.GSR, LDM.GSR instruction.

Table 4.11 List of operation target system registers of STM.GSR, LDM.GSR instruction

Save/Return Order*1 Address offset*2 selID regID Registers Name*3, *4

1 00H 0 6 FPSR

2 04H 0 7 FPEPC

3 08H 0 16 CTPC

4 0CH 0 17 CTPSW

5 10H 0 20 CTBP

6 14H 1 5 MCTL

7 18H 1 11 SCCFG

8 1CH 1 12 SCBP

9 20H 2 15 RBCR0

10 24H 2 16 RBCR1

11 28H 2 17 RBNR

12 2CH 2 18 RBIP

13 30H 5 8 MCA

14 34H 5 9 MCS

15 38H 5 11 MCR

16 3CH 5 12 MCI

17 40H 5 16 MPIDX

18 44H 9 0 GMEIPC

19 48H 9 1 GMEIPSW

20 4CH 9 2 GMFEPC

21 50H 9 3 GMFEPSW

22 54H 9 5 GMPSW

23 58H 9 6 GMMEA

24 5CH 9 8 GMMEI

25 60H 9 13 GMEIIC

26 64H 9 14 GMFEIC

27 68H 9 16 GMSPID

28 6CH 9 17 GMSPIDLIST

29 70H 9 19 GMEBASE

30 74H 9 20 GMINTBP

31 78H 9 21 GMINTCFG

32 7CH 9 22 GMPLMR

33 80H 9 24 GMSVLOCK

34 84H 9 25 GMMPM

35 88H 9 28 GMEIWR

36 8CH 9 29 GMFEWR

RH850G4MH Virtualization Section 4 Exceptions and Interrupts

R01UH0865EJ0140 Rev.1.40 Page 139 of 200
August 31, 2023

4.1.8 Exception to transition from guest mode to host mode

As shown in Table 4.1, Table 4.2, Table 4.3, there are exceptions and conditions that do not change

the restricted operating mode at exception occurrence and exception handling, but there are exceptions

and conditions which cause the transition of restricted operating mode to host mode even if the

restricted operating mode is guest mode at exception occurrence.

For exception in which restricted operating mode does not change from guest mode at exception

occurrence and exception handling, the exception handling is performed within the guest partition that

caused the exception. This means that exceptions that occur within a virtual machine are handled inside

the virtual machine.

On the other hand, when the restricted operating mode at exception occurrence is guest mode, if the

restricted operating mode at exception handling is host mode, the exception can be categorized into

two. The first type requests the virtualization software running in host mode to perform processing that

can not be handled in the guest mode like the HVTRAP instruction. The second is an exception for the

host mode, which is independent of guest mode operation.

When an exception for which the restricted operating mode at exception handling is host mode is

acknowledged, PSWH.GM indicating the restricted operating mode and PSWH.GPID indicating the

guest partition are saved to FEPSWH or EIPSWH, depending on the level of the exception that

occurred. The transition of the restricted operating mode from the guest mode to the host mode with the

exception acknowledgment can be judged by referring to the value of FEPSWH.GM or EIPSWH.GM

depending on the exception level. If these values are not changed by an exception handler, when a

return instruction is executed at the end of exception handling, it is possible to return to the restricted

operating mode at the time the exception occurred. When the restricted operating mode at the time of

exception occurrence is guest mode, it is possible to return to the guest partition at the time the

exception occurred.

The details of the system register update contents at the time of exception acknowledgement are

summarized in the Table 4.5, Table 4.12 and Figure 4.3 show the relationship between the system

register name updated with exception acknowledgment and the restricted operating mode at exception

occurrence and exception handling.

When the restricted operating mode at exception occurrence is guest mode and the restricted operating

mode at exception handling is host mode, the update of the system register is performed against the

host context register.

RH850G4MH Virtualization Section 4 Exceptions and Interrupts

R01UH0865EJ0140 Rev.1.40 Page 140 of 200
August 31, 2023

Note 1. When the restricted operating mode at exception occurrence is guest mode and the restricted operating
mode at exception handling is host mode, HMPSW.ID, NP are updated. Therefore, HMPSW before the
exception acceptance must be saved. When returning from exception handling, since HMPSW is restored
as it is before the acceptance of exception, exception can be accepted again.

Additionally, there is no exception by which the restricted operating mode transits from host mode to

guest mode.

In the state transition of the restricted operating mode, the same synchronization processing as the

SYNCM instruction is performed at the time of reception of the cause exception and execution of the

return instruction. Consequently, all the load and store processing that were executed before the state

transition are completed, and state transition is performed with the completion of detection of SYSERR

(terminating type) accompanying operand access. For details about synchronization processing see

Section 7.4, Synchronizing for restricted operating mode transition.

Table 4.12 Relationship between system registers updated by exception
acknowledgment and states of restricted operating mode at exception
occurrence and exception handling

Restricted
operating mode
at exception
occurrence

Restricted
operating mode
at exception
handling

Exception
Level

PC save
location

PSWH save
location

HMPSW
save
location

GMPSW
save
location

Exception
cause save
location

Host mode Host mode FE HMFEPC FEPSWH HMFEPSW — HMFEIC

EI HMEIPC EIPSWH HMEIPSW — HMEIIC

Guest mode Host mode FE HMFEPC FEPSWH HMFEPSW*1 — HMFEIC

EI HMEIPC EIPSWH HMEIPSW*1 — HMEIIC

Guest mode Guest mode FE GMFEPC — — GMFEPSW GMFEIC

EI GMEIPC — — GMEIPSW GMEIIC

Figure 4.3 Relationship between system registers updated by exception
acceptance and state of restricted operating mode during exception
handling

GFEPC

FEPSWH HMFEPSW

GMFEIC

GEIPC GMEIIC

PC PSWH HMPSW Cause

FE Level Exception
⇔ FERET Instruction

EI Level Exception
⇔ EIRET Instruction

GMFEPSW

GMEIPSW

GMPSW

HMFEPC

HMEIPC EIPSWH HMEIPSW

HMFEIC

HMEIIC

FE Level Exception
⇔ FERET Instruction

EI Level Exception
⇔ EIRET Instruction

Host
Mode

Guest
Mode

RH850G4MH Virtualization Section 4 Exceptions and Interrupts

R01UH0865EJ0140 Rev.1.40 Page 141 of 200
August 31, 2023

4.1.9 Background Interrupts

(1) Overview of Background Interrupt

For guest mode interrupts (GMFEINT, GMEIINTn), the guest partition ID for which these should be

handled is specified. One of the acknowledgment conditions for these interrupts is that the value of this

specified guest partition ID matches the value of the CPU's guest partition ID (PSWH.GPID).

Even when restricted operating mode is guest mode, if the guest partition IDs do not match, the

interrupt for the guest mode (GMFEINT, GMEIINTn) will not occur. The background interrupt is a

process to generate interrupt for that guest partition even if such guest partition IDs do not match.

If the interrupt (GMFEINT, GMEIINTn) cause for the guest mode has been generated by the interrupt

controller, but the value of the guest partition ID assigned in these interrupts does not match the value

of the CPU's guest partition ID (PSWH.GPID), the interrupt controller changes the interrupt for the

guest mode to the background interrupt if the specific condition separately defined by the interrupt

controller is satisfied. If GMFEINT is the cause, BGFEINT is generated, and if GMEIINT is the cause,

BGEIINT is generated. For details about generation of background interrupt, see the interrupt

controller section in the hardware manual of the product used.

When the background interrupt is acknowledged in guest mode, the restricted operating mode

transitions to host mode and is handled as an EI level exception. In addition, if a background interrupt

is acknowledged, the cause of the interrupt (GMFEINT, GMEIINTn) for the guest mode, which is the

cause of the generation, will not be cleared.

Because the interrupt controller generates the background interrupt, the restricted operating mode and

guest partition ID in CPU may be changed during processing by the interrupt controller. Table 4.13

indicates the relationship between acceptance of the background interrupt, the values of the guest

partition ID assigned to the interrupt (GMFEINT, GMEIINTn) that is the cause of the background

interrupt, the value of the guest partition ID in CPU and the restricted operating mode when the

background interrupt occurs.

(2) Examples of Using Background Interrupts and Notes

Even if a background interrupt is acknowledged, unlike the acknowledgement of an interrupt

(GMFEINT, GMEIINTn) for guest mode, which is the cause of the generating the background

interrupt, an EI level exception handler handled in host mode is executed. This document describes an

example of using background interrupts.

Figure 4.4 shows an example of interrupt handling by background interrupt.

Table 4.13 Relationship between the restricted operating mode and
acknowledgment of background interrupt

State when background interrupt occurs

Acknowledgment of background interruptRestricted operating mode The guest partition ID

host mode — Background interrupt is not acknowledged

guest mode mismatch If another condition is satisfied, the background interrupt is
acknowledged.

match The background interrupt is not acknowledged.

RH850G4MH Virtualization Section 4 Exceptions and Interrupts

R01UH0865EJ0140 Rev.1.40 Page 142 of 200
August 31, 2023

If the virtualization software does not make a transition to the guest partition that should process the

interrupt which is the cause of generating the background interrupt in <2> and makes the transition to

<1> By acknowledgment of the background interrupt, the restricted operating mode transitions to host mode.

<2> When a background interrupt occurs, it means that an interrupt request has been issued for a guest
partition different from the guest partition that had been running until that time. In this CPU, by
acknowledging background interrupt, it does not directly transition to the guest partition where the interrupt
that is the cause of that generation should be processed, but processing is first passed to the exception
handler of host mode. Therefore, even if a background interrupt is acknowledged, it can be left to the
judgment of the virtualization software whether or not to transition to the guest partition to process the
interrupt, which is the cause of that generation. For example, it is possible to decide whether guest
partitions can be transitioned based on the number of acknowledgments of background interrupts in a
certain period of time, the execution time of guest partitions to be transitioned, and so forth.
Once the virtualization software decides to transition to the guest partition to handle the interrupt which is
the cause of generating the background interrupt, the context is switched from the guest partition that has
been operating until then to the next guest partition. For details about context switching, see 4.1.7, Context
switching.

<3> The CPU transitions to the guest partition that should process the interrupt that is the cause of generating
the background interrupt. In accordance with this, the interrupt controller generates interrupts (GMFEINT,
GMEIINTn) that is the cause of the generating background interrupts.

<4> The interrupt that are no longer background interrupt (GMFEINT, GMEIINTn) is acknowledged. However,
whether this interrupt can be acknowledged depends on the state of the interrupt acknowledgment
condition. If this interrupt is not acknowledged and the execution time of the guest partition specified by the
virtualization software has expired and the transition to another guest partition is made, this interrupt
(GMFEINT, GMEIINTn) may generate a background interrupt again.

<5> Interrupt handling is performed within the guest partition.

<6> At the termination of the interrupt handling, the control is passed to the virtualization software by the
HVTRAP instruction. However, the interrupt handler can not directly recognize that the interrupt handling
was performed via the background interrupt. For details about how to provide such process, see Section
4.1.9 (3), Application example of HVSB with background interrupt.

<7> The virtualization software schedules the next guest partition to run. This example shows an example of
transitioning to a guest partition whose execution was interrupted by a background interrupt.

<8> The guest partition that was interrupted by the background interrupt is re-executed.

Figure 4.4 Example of Interrupt handling by background interrupt

Host ModeGuest Mode

Virtualizing SoftwareGuest Partition0 Guest Partition1

<1> BGEIINT asserted
Transition to Host Mode

<2> Guest partition switching<3> Transition to
Guest Partition1

<4> Accepting
EIINT

<5> Interruption
Service Routine

<6> Return to Host Mode
HVTRAP

<7> Guest partition switching

<8> Resume Guest Partition0

RH850G4MH Virtualization Section 4 Exceptions and Interrupts

R01UH0865EJ0140 Rev.1.40 Page 143 of 200
August 31, 2023

the guest partition where the execution was interrupted by the background interrupt, or if transition is

made to another guest partition even though the interrupts are not acknowledged in <4>, a background

interrupt will be generated again due to the same interrupt cause.

In order to prevent frequent occurrence of such background interrupts, as shown in <2>, the number of

occurrences of background interrupts is managed, and if it exceeds a certain number, it is necessary to

operate the interrupt controller to disable the background interrupt.

Also note that the following behavior may occur if BGFEINT and BGEIINT are used in different guest

partitions at the same time.

 BGEIINT occurs after the transition to the guest partition at <2>, where the interrupt that

generates BGFEINT should be processed.

 BGFEINT occurs after the transition to the guest partition at <2>, where the interrupt that

generates BGEIINT should be processed.

In this case, neither GMEIINT nor GMFEIINT can be acknowledged in any guest partitions.

In order to prevent such a behavior, be sure to disable occurrence of BGEIINT by operating the

interrupt controller at <2> before the transition to the guest mode when using BGFEINT and BGEIINT

in different guest partitions at the same time.

(3) Application example of HVSB with background interrupt

The HVSB can be written with HV authority and can only be read by SV authority or UM authority.

Virtualization software can use HVSB to convey information to software operating in guest mode.

For example, there is no direct method to recognize the guest partition that started the operation due to

acknowledgment of the background interrupt, whether it is due to a background interrupt or another

normal scheduling. It is possible for the virtualization software to recognize the state even in the guest

partition by writing the value for identifying the state in the HVSB and then transitioning to the guest

partition. Consequently, after acknowledging an interrupt which is the cause of generating background

interrupt, HVSB is checked at the time of returning, and if it is a transition by background interrupt, the

control is returned to the virtualization software by HVTRAP instruction without executing a return

instruction.

Note that this is just an example of operation. How the software interface between virtualization

software and software operating in guest mode is defined and how the HVSB is applied depends on the

specification of virtualization software.

RH850G4MH Virtualization Section 4 Exceptions and Interrupts

R01UH0865EJ0140 Rev.1.40 Page 144 of 200
August 31, 2023

4.2 Operation when Acknowledging an Exception

Check whether each exception that is reported during instruction execution is acknowledged according

to the priority. The procedure for exception-specific acknowledgment operation is shown below.

Note 1. For details, see Section 4.4, Exception Handler Address.

Note 2. For the values to be updated, see Table 4.1, Exception Cause List.

Note 3. For details on register banks, see Section 4.5, Register Bank Function.

Figure 4.5 shows the steps <1> to <4>.

<1> Check whether the acknowledgment conditions are satisfied and whether exceptions are acknowledged
according to their priority.

<2> Calculate the exception handler address according to the current HMPSW, GMPSW values*1

<3> For FE level exceptions which occur in the host mode or the guest mode and is handled in the host mode,
the following processing is performed.

 Saving the PC to HMFEPC

 Saving the HMPSW to HMFEPSW

 Saving the PSWH to FEPSWH

 Storing the exception cause code in HMFEIC

 Updating the HMPSW*2

 Storing the exception handler address calculated in (2) in the PC, and then passing control to the
exception handler.

<4> For EI level exceptions which occur in the host mode or guest mode and is handled in the host mode, the
following processing is performed.

 Saving the PC to HMEIPC

 Saving the HMPSW to HMEIPSW

 Saving the HPSW to EIPSWH

 Storing the exception cause code in HMEIIC

 Updating the HMPSW*2

 Storing the exception handler address calculated in (2) in the PC, and then passing control to the
exception handler.

<5> For FE level exceptions which occur in the guest mode and is handled in the guest mode, the following
processing is performed.

 Saving the PC to GMFEPC

 Saving the GMPSW to GMFEPSW

 Storing the exception cause code in GMFEIC

 Updating the GMPSW*2

 Store the exception handler address calculated in (2) in the PC, and then pass control to the exception
handler.

<6> For EI level exceptions which occur in the guest mode and is processed in the guest mode, the following
processing is performed.

 Saving the PC to GMEIPC

 Saving the GMPSW to GMEIPSW

 Storing the exception cause code in GMEIIC

 Updating the GMPSW*2

 Storing the exception handler address calculated in (2) in the PC, and then passing control to the
exception handler.

 When the exception is an interrupt that uses the register bank, save the context automatically*3.

RH850G4MH Virtualization Section 4 Exceptions and Interrupts

R01UH0865EJ0140 Rev.1.40 Page 145 of 200
August 31, 2023

Figure 4.5 Operation When Acknowledging an Exception

Is the condition for
accepting exception met?

Is this exception
the highest priority?

An exception occurs

Yes

Yes

No

No

Is this an FE level
exception?

HMFEPC <- PC
HMFEPSW <- HMPSW
HMFEIC <- Exception

cause code
Update HMPSW

HMEIPC <- PC
HMEIPSW <- HMPSW
HMEIIC <- Exception

cause code
Update HMPSW

Exception handlingPending exception handling

Calculate the exception
handler address

PC <- Exception handler address

Yes

No

GMFEPC <- PC
GMFEPSW <- GMPSW
GMFEIC <- Exception

cause code
Update GMPSW

GMEIPC <- PC
GMEIPSW <- GMPSW
GMEIIC <- Exception

cause code
Update GMPSW

Is this an FE level
exception?

Yes

No

Calculate the exception
handler address

Is this exception
the highest priority?

Yes

No

Is the condition for
accepting exception met?

Yes

No

Is this exception handled
in host mode?

Yes

No

RH850G4MH Virtualization Section 4 Exceptions and Interrupts

R01UH0865EJ0140 Rev.1.40 Page 146 of 200
August 31, 2023

4.2.1 Special Operations

(1) EP Bit of PSW Register

If an interrupt is acknowledged, the PSW.EP bit is cleared to 0. If an exception other than an interrupt is

acknowledged, the PSW.EP bit is set to 1.

The operation of the CPU when executing the EIRET and FERET instructions depends on the state of

the EP bit. If the EP bit is cleared to 0, the CPU notifies the external interrupt controller of the

termination of the exception handling routine. This function is necessary to properly control the request

flag in the interrupt controller and other resources upon return from the interrupt. When the EP bit is

cleared to 0, and the EIRET instruction is executed, the bit with the highest priority (0 is the highest)

among the bits set to 1 in ISPR.ISP15 to ISPR.ISP0 is cleared to 0.

To return from an interrupt, be sure to execute the return instruction with the EP bit cleared to 0.

(2) Coprocessor Unusable Exception

For coprocessor unusable exceptions, the opcodes that cause the exception depend on the status of the
CU bit of the PSW register.
When a coprocessor is not included in the product or it is not usable, if an attempt is made to execute a
coprocessor instruction corresponding to the coprocessor, a coprocessor unusable exception (UCPOP)
immediately occurs. If an LDSR or STSR instruction attempts to access a system register of the
coprocessor, a coprocessor unusable exception (UCPOP) immediately occurs too.
For details, see Section 2.4.3, Coprocessor Unusable Exceptions.

(3) Reserved Instruction Exception

If an opcode that is reserved for future function extension and for which no instruction is defined is

executed, a reserved instruction exception (RIE) occurs.

The opcode that always generates a reserved instruction exception is defined as the RIE instruction.

(4) Reset

Reset is performed in the same way as exception handling, but it is not regarded as EI level exception

or FE level exception. The reset operation is the same as that of an exception without acknowledgment

conditions, but the value of each register is changed to the value after reset. In addition, returning to the

original program from the reset is not possible.

All exceptions that have occurred at the same time as CPU initialization are canceled and not

acknowledged even after CPU initialization.

For details, see Section 8, Reset.

(5) The register bank function is unusable in host mode

With the interrupt (EIINTn) handled in host mode, the register bank function is unusable. Even if the

interrupt request (EIINTn) with the priority corresponding to the bit set to 1 of RBCR0.BE is

acknowledged, the register bank function is unusable. Table 4.14 shows whether the register bank

function can be used when an interrupt with priority i (EIINTn, GMEIINTn) is acknowledged.

RH850G4MH Virtualization Section 4 Exceptions and Interrupts

R01UH0865EJ0140 Rev.1.40 Page 147 of 200
August 31, 2023

Table 4.14 Whether the register bank function can be used when an interrupt (EIINTn,
GMEIINTn) with priority(i) is acknowledged

The restricted operating mode in which
interrupts are handled RBCR0.BE[i]

Whether the register bank function
can be used

Host mode 0 Unusable

1 Unusable

Guest mode 0 Unusable

1 Usable

RH850G4MH Virtualization Section 4 Exceptions and Interrupts

R01UH0865EJ0140 Rev.1.40 Page 148 of 200
August 31, 2023

4.3 Return from Exception Handling

To return from exception handling, execute the return instruction (EIRET or FERET) corresponding to

the relevant exception level.

When a context has been saved, such as to a stack, the context must be restored before executing the

return instruction. When execution is returned from an unrestorable exception, the status before the

exception occurred in the original program cannot be restored. Consequently, the execution result

might differ from that when the exception does not occur.

The EIRET instruction is used to return from EI level exception handling and the FERET instruction is

used to return from FE level exception handling.

When the EIRET or FERET instruction is executed, the CPU performs the following processing and

then passes control to the return PC address.

Figure 4.6 shows the flow for returning from exception handling using the EIRET or FERET

instruction.

<1> If the PSWH.GM is set to 0, the host context register is used, and if the PSWH.GM is set to 1, the guest
context register is used to judge processing.

<2> If the PSWH.GM bit is set to 0 and the HMPSW.EP bit is set to 0, the CPU notifies the interrupt controller of
the termination of the exception routine.
If the PSWH.GM bit is set to 1 and the GMPSW.EP bit is set to 0, the CPU notifies the interrupt controller of
the termination of the exception routine.

<3> When the EIRET instruction is executed while PSWH.GM = 0, if PSW.EP = 0 and INTCFG.ISPC = 0, the
CPU updates the ISPR register. When the EIRET instruction is executed while PSWH.GM = 1 or when the
FERET instruction is executed, the CPU does not update the ISPR register.

<4> When the EIRET instruction is executed while PSWH.GM = 0, the value set to the return PC, HMPSW, and
PSWH are loaded from the HMEIPC, HMEIPSW, and EIPSWH registers, respectively.
When the EIRET instruction is executed while PSWH.GM = 1, the value set to the return PC and GMPSW
are loaded from the GMEIPC and GMEIPSW registers, respectively.
When the FERET instruction is executed while PSWH.GM = 0, the value set to the return PC, HMPSW,
and PSWH are loaded from the HMFEPC, HMFEPSW, and FEPSWH registers, respectively.
When the FERET instruction is executed while PSWH.GM = 1, the value set to the return PC and GMPSW
are loaded from the GMFEPC and GMFEPSW registers, respectively.

<5> Transit to the taken PC address.

RH850G4MH Virtualization Section 4 Exceptions and Interrupts

R01UH0865EJ0140 Rev.1.40 Page 149 of 200
August 31, 2023

Figure 4.6 Return Instruction-Based Exception Return Flow

EIRET instruction

PC - HMEIPC
HMPSW <
 PSWH <- EIPSWH

- HMEIPSW

Execute the return destination
instruction

HMPSW.EP=0?

Yes

No

Update the ISPR register

INTCFG.ISPC=0?

Yes

PC <- HMFEPC
HMPSW <- HMFEPSW

Execute the return destination
instruction

HMPSW.EP=0?

Yes

No

Notify termination of exception
Routine (Interrupt controller)

Notify termination of exception
Routine (Interrupt controller)

No

INTCFG.EPL=0?

Yes

No

PC <- GMEIPC
GMPSW <- GMEIPSW

GMPSW.EP=0?

Yes

No

Notify termination of exception
Routine (Interrupt controller)

PC <- GMFEPC
GMPSW <- GMFEPSW

GMPSW.EP=0?

Yes

No

Notify termination of exception
Routine (Interrupt controller)

PSWH.GM=0?

Yes

No

FERET instruction

PSWH.GM=0?

Yes

No

<

PSWH <- FEPSWH

RH850G4MH Virtualization Section 4 Exceptions and Interrupts

R01UH0865EJ0140 Rev.1.40 Page 150 of 200
August 31, 2023

4.4 Exception Handler Address

For this CPU, the exception handler address used for execution during reset input, exception

acknowledgment, or interrupt acknowledgment can be changed according to the settings.

4.4.1 Resets, Exceptions, and Interrupts

For resets and exceptions handled in the host mode, the exception handler address is determined by

using the direct vector method, in which the reference point of the exception handler address can be

changed by using the HMPSW.EBV bit, RBASE register, and HMEBASE register. For exception

handled in guest mode, the reference point of the exception handler address is changed by the

GMEBASE register. Since the reference point of the exception handler address can be set

independently for the host mode and guest mode, the exception handler address unique to the guest

partition can be used.

For interrupts, the direct vector method and table reference method can be specified. If the table

reference method is selected, execution can branch to the address indicated by the exception handler

table allocated in the memory.

(1) Direct Vector Method

For the exception handled in host mode, this CPU use the results of adding offset address in Table

4.15, Selection of Base Register/Offset Address to the base address indicated by the RBASE

register or HMEBASE register as the exception handler address. For CPU exceptions handled in guest

mode, this CPU uses the GMEBASE register as the base address.

For the exception handled in host mode, whether to use the RBASE register or the HMEBASE register

as the base address is selected according to the HMPSW.EBV. If the HMPSW.EBV bit is set to 1, the

value of the HMEBASE register is used as the base address If the bit is cleared to 0, the value of the

RBASE register is used as the base address For exceptions handled in guest mode, since the

GMPSW.EBV bit is always set to 1, the value of the GMEBASE register is used as the base address.

However, reset input always refers to the RBASE register.

In addition, user interrupts (EIINTn, GMEIINTn) refer to the RINT bit of the selected base register,

and reduce the offset address according to the value of the bit. If the RBASE.RINT bit,

HMEBASE.RINT bit or GMEBASE.RINT bit is set to 1, all user interrupts are handled using an offset

address of 100H. If the bit is cleared to 0, the offset address is determined according to Table 4.15,

Selection of Base Register/Offset Address.

Figure 4.7 shows the flow of selecting the method of generating a handler address, Figure 4.8 shows

the flow of generating a handler address for the Direct Vector Method.

RH850G4MH Virtualization Section 4 Exceptions and Interrupts

R01UH0865EJ0140 Rev.1.40 Page 151 of 200
August 31, 2023

Figure 4.7 The Flow of Selecting the Method of Generating a Handler Address

HMPSW.EBV=1？

Yes

No

Interrupt controller
specified table reference

method?

RBASE.DV=1？

HMEBASE.DV=1？

EIINTn satisfied
acceptance conditions

Direct vector method Table reference method

Yes

No

No

No

Yes

Yes

See Figure 4.10 for the flow
of table reference method

See Figure 4.8 for the flow
of direct vector method

Exception handled
in Guest mode?

Yes

No
GMEBASE.DV=1？

Yes

No

RH850G4MH Virtualization Section 4 Exceptions and Interrupts

R01UH0865EJ0140 Rev.1.40 Page 152 of 200
August 31, 2023

Note 1. The following are performed at this point:
acceptance response to the interrupt controller, and
update of HMEIPC, HMEIPSW, HMEIIC and HMPSW.EIMASK or ISPR, or
update of GMEIPC, GMEIPSW, GMEIIC and GMPSW.EIMASK

Figure 4.8 The flow of Selecting the Method of Generating a Handler Address

Yes

Direct vector method

Perform Interrupt (EIINTn,
GMEIINTn)acceptance

processing*1

HMPSW.EBV=1？

Use RBASE Use HMEBASE

Generate handler address

using interrupt priority

Yes

No

RBASE.RINT=1?

Generate handler address in
handler reduced mode

HMEBASE.RINT=1?
YesNo

No

Start address generation

Exception handled
in Guest mode?

No

Use GMEBASE

Yes

GMEBASE.RINT=1?
Yes

No

RH850G4MH Virtualization Section 4 Exceptions and Interrupts

R01UH0865EJ0140 Rev.1.40 Page 153 of 200
August 31, 2023

Note 1. INTPRx is the same as EIINTn (priority x) in Table 4.15.

Figure 4.9 Example of using the Direct Vector Method in exception handled in Host
Mode

INTPR15
INTPR14

INTPR15
INTPR14

(Empty)
SYSERR

INTPR15
INTPR14

RBASE=EBASE

:

RBASE

:

EBASE

ecaps sserddAecaps sserddA

:

(1) Example of use when RBASE = EBASE (2) Example of use when RBASE ≠ EBASE

RESET
SYSERR
(Empty)
FETRAP

RESET
SYSERR

FETRAP
(Empty)

FETRAP
(Empty)

RH850G4MH Virtualization Section 4 Exceptions and Interrupts

R01UH0865EJ0140 Rev.1.40 Page 154 of 200
August 31, 2023

The table below shows how base register is selected and offset address for each exception. The value of

the HMPSW, GMPSW register used to determine the exception handler address is the value after being

updated due to the acknowledgment of an exception.

Note 1. Since it is an exception generated to update HMPSW.EBV to 0, it is not used.

Note 2. Since it is an exception generated to update PSWH.GM to 0, it is not used

Note 3. This case is processed in guest mode by setting of the corresponding bit of GMCFG. If these exceptions
are handled in host mode, the handler address is determined by HMPSW.EBV and RBASE or HMEBASE.

Note 4. Interrupt (EIINTn, GMEIINTn) whose priority level is less than or equal to 16 uses the same offset address
as the interrupt (EIINTn, GMEIINTn) with priority level 15. Since the same interrupt handler is used, software
process is necessary for recognition of interrupt factor. By this constraint, the increasing of memory area

Table 4.15 Selection of Base Register/Offset Address

Exception Cause

Base Register Selection Offset Address Selection

Exception handled
 in Host Mode

Exception
handled in Guest
Mode

RINT = 0 RINT = 1HMPSW.EBV = 0 HMPSW.EBV = 1 GMPSW.EBV=1

RESET RBASE None*1 None*2 000H 000H

SYSERR HMEBASE GMEBASE*3 010H 010H

HVTRAP None*2 020H 020H

FETRAP GMEBASE 030H 030H

TRAP0 040H 040H

TRAP1 050H 050H

RIE 060H 060H

FPE/FXE 070H 070H

UCPOP 080H 080H

MIP/MDP GMEBASE*3 090H 090H

PIE GMEBASE 0A0H 0A0H

(R.F.U.) 0B0H 0B0H

MAE 0C0H 0C0H

BGFEINT/BGEIINT None*2 0D0H 0D0H

FENMI None*2 0E0H 0E0H

FEINT/GMFEINT GMEBASE 0F0H 0F0H

EIINTn, GMEIINTn (priority 0) 100H 100H

EIINTn, GMEIINTn (priority 1) 110H

EIINTn, GMEIINTn (priority 2) 120H

EIINTn, GMEIINTn (priority 3) 130H

EIINTn, GMEIINTn (priority 4) 140H

EIINTn, GMEIINTn (priority 5) 150H

EIINTn, GMEIINTn (priority 6) 160H

EIINTn, GMEIINTn (priority 7) 170H

EIINTn, GMEIINTn (priority 8) 180H

EIINTn, GMEIINTn (priority 9) 190H

EIINTn, GMEIINTn (priority 10) 1A0H

EIINTn, GMEIINTn (priority 11) 1B0H

EIINTn, GMEIINTn (priority 12) 1C0H

EIINTn, GMEIINTn (priority 13) 1D0H

EIINTn, GMEIINTn (priority 14) 1E0H

EIINTn, GMEIINTn (priority 15 or less*4) 1F0H

RH850G4MH Virtualization Section 4 Exceptions and Interrupts

R01UH0865EJ0140 Rev.1.40 Page 155 of 200
August 31, 2023

which is used for interrupt handler by direct vector method can be avoided even if interrupt priority level
extension function is enabled.

The user interrupt offset address reduction function is used to reduce the memory size required by the

exception handler for specific operating modes of the system. The main purpose of this is to minimize

the amount of memory consumed in operating modes that use only the minimum functionality, for

example, during system maintenance and diagnosis.

(2) Table Reference Method

In the direct vector method, there is one user-interrupt exception handler for each interrupt priority, and

user-interrupts with the same priority branch to the same interrupt handler, but some users might want

to use code areas that differ from the start time for each interrupt handler.

This CPU defines a table reference method to accommodate to such uses.

Figure 4.10 shows the flow of generating a handler address for the table reference method.

RH850G4MH Virtualization Section 4 Exceptions and Interrupts

R01UH0865EJ0140 Rev.1.40 Page 156 of 200
August 31, 2023

Figure 4.10 Flow of Generating a Handler Address of Table Reference Method (1/2)

Start table read*2

MDP exception
detected?

MDP exception
detected?

Start saving context to
register bank

Context saving completed?

Complete table read
(Get exception handler address)

Table reference method

No

No

Yes

Yes

Yes

Perform Interrupts (EIINTn,
GMEIINTn)

acceptance processing*5

Perform MDP exception
acceptance processing

Save context to
register bank?

Start table read*2

MDP exception
detected?*3

No

Yes

No

Yes

No

The register bank number
satisfy the condition?*1

Yes

Interrupt acceptance
established

Terminating-type SYSERR
exception occurred due to

overflow*4

Perform SYSERR exception
acceptance processing

No

MDP exception occurred*4

(EIINTn acceptance aborted)

Exception handled
in Guest mode?

Yes

No

RH850G4MH Virtualization Section 4 Exceptions and Interrupts

R01UH0865EJ0140 Rev.1.40 Page 157 of 200
August 31, 2023

CAUTIONS

1. For details about the interrupt channel settings, see the hardware manual of the

product used.

2. There are cases in which a memory protection exception (MDP) occurs while

reading word data from the exception handler address read position depending

on the memory protection settings. In such a case, the acceptance of the interrupt

is temporarily cancelled. Since no acceptance response is returned to the

interrupt controller, the interrupt request is held pending and becomes acceptable

again when execution is returned from the memory protection exception handling.

3. If a memory protection exception occurs during a word data read from the

exception handler address read position, the PC of the instruction that is

interrupted by the interrupt is saved in the HMFEPC or GMFEPC. Since the

acceptance of the interrupt is cancelled, the value of the HMPSW or GMPSW

established when the interrupt occurred (which should have been saved in the

HMEIPSW or GMEIPSW) is saved in the HMFEPSW or GMFEPSW.

Note 1. For automatic context saving onto the register bank, the operation condition judgment is necessary. For details, see Figure
4.12.

Note 2. The PC of the instruction interrupted by the interrupt and the value of the PSW at that time are saved to the HMEIPC and the
HMEIPSW or GMEIPC and GMEIPSW respectively.

Note 3. Detection of an MDP exception is performed every time an individual context is saved. An MDP exception occurs when an
MDP violation is detected when saving an individual context rather than after all context saving is completed.

Note 4. The PC of the instruction interrupted by the interrupt and the value of the PSW at that time are saved to the HMFEPC and the
HMFEPSW or GMFEPC or GMFEPSW respectively. These values are the same as the values saved to the HMEIPC and the
HMEIPSW or GMEIPC and GMEIPSW at the timing of Note 2. Therefore, when returning from the exception handler, it is
possible to return exactly to the interrupted instruction. In addition, because no acceptance response has been reported to
the interrupt controller, unless the interrupt request is canceled in the exception handler, the interrupt request will remain held
and interrupt acceptance processing will start again.

Note 5. Notification of the acceptance to the interrupt controller and the update of the HMEIIC and HMPSW.EIMASK or ISPR, or
GMEIIC and GMPSW.EIMASK are performed at this timing.

Figure 4.10 Flow of Generating a Handler Address of Table Reference Method (2/2)

<1> In any of the following cases, the exception handler address is determined by using the direct vector
method.

 When the interrupt channel setting is not the table reference method

 When in interrupts handled in host mode, HMPSW.EBV = 0 and RBASE.DV = 1

 When in interrupts handled in host mode, HMPSW.EBV = 1 and HMEBASE.DV = 1

 When In interrupts handled in guest mode, GMEBASE.DV = 1

<2> In cases other than <1>, the table read position is calculated.
Exception handler address read position handled in host mode
 HMINTBP register + channel number × 4 bytes
Exception handler address read position handled in guest mode
 GMINTBP register + channel number × 4 bytes

<3> Word data is read starting at the exception handler address read position calculated in <2>.

<4> Word data read in <3> is used as the exception handler address.

<5> The acceptance of the interrupt is confirmed at the point when the exception handler address is obtained.
In addition to the exception acceptance processing shown in Figure 4.5, Operation When
Acknowledging an Exception, the CPU returns an acceptance response to the interrupt controller and
updates the ISPR or HMPSW.EIMASK or GMPSW.EIMASK.

RH850G4MH Virtualization Section 4 Exceptions and Interrupts

R01UH0865EJ0140 Rev.1.40 Page 158 of 200
August 31, 2023

Exception handler address read positions corresponding to interrupt channels and the placement of the

interrupt handler address table in memory are shown below. Since the interrupt handler address table

can be set independently for the host mode and guest mode, the interrupt handler address unique to the

guest partition can be used.

For details about the exception handler address selection method settings for each interrupt channel,

see the hardware manual of the product used.

Table 4.16 Exception Handler Address Read Position

Type

Exception Handler Address Read Position

Interrupt handled in host mode Interrupt handled in guest mode

EIINT, GMEIINT interrupt channel 0 HMINTBP + 0 × 4 GMINTBP + 0 × 4

EIINT, GMEIINT interrupt channel 1 HMINTBP + 1 × 4 GMINTBP + 1 × 4

 : : :

EIINT, GMEIINT interrupt channel
2046

HMINTBP + 2046 × 4 GMINTBP + 2046 × 4

EIINT, GMEIINT interrupt channel
2047

HMINTBP + 2047 × 4 GMINTBP + 2047 × 4

Figure 4.11 Image when using Table Reference Method in interrupts handled in host
mode

Handler INT1

RESET

SYSERR

INTPR15

INTPR14

:

Handler INT0

RBASE = EBASE

Address space

INTBP
INT3 INT2 INT1 INT0

INT7 INT6 INT5 INT4

INT511
INT507

INT510 INT509 INT508
INT506 INT505 INT504

Reference the absolute

address in the table, and

then branch to the handler.

(Empty)

FETRAP

If not using the table is specified

(for each channel), branch to the

fixed address handler according

to the interrupt priority level.

:

:

RH850G4MH Virtualization Section 4 Exceptions and Interrupts

R01UH0865EJ0140 Rev.1.40 Page 159 of 200
August 31, 2023

4.4.2 System Calls

For details, see the “CPU” section in the hardware manual of the product used.

RH850G4MH Virtualization Section 4 Exceptions and Interrupts

R01UH0865EJ0140 Rev.1.40 Page 160 of 200
August 31, 2023

4.5 Register Bank Function

This CPU provides the register bank function that automatically saves the context when it accepts an

interrupts (GMEIINTn). Since the saving of the context proceeds in parallel with the interrupt

acceptance processing, this function enables the CPU to make high-speed interrupt response.

4.5.1 Outline of the Register Bank Function

The register bank function that this CPU provides has the following features:

 Automatically saves the context upon acceptance of an interrupt (GMEIINTn) *1meeting certain

conditions (see Section 4.5.2, Automatic Context Saving).

 The destination of the context saving is not dedicated memory but an area of ordinary memory

installed in this CPU (specified by the RBIP register). The context to be saved can be selected

from two groups (specified by the RBCR0.MD bit).

 Supports a maximum of 64 levels of multiple interrupts (the RBNR.BN bits indicate the number

of accepted interrupts).

 The context is restored from the register bank by executing the RESBANK instruction (no

automatic restoration function).

Note 1. In host mode, the register bank function cannot be used when an interrupt(EIINTn) is acknowledged.

4.5.2 Automatic Context Saving

Automatic context saving is carried out when the following conditions are satisfied for an interrupt

request (GMEIINTn) notified:

 Table reference method is specified for the interrupt request*1.

 The use of the register bank is specified by the RBCR0.BE[i] bit which is associated with the

priority (i) of the interrupt request*2 (the automatic context saving onto the register bank is

enabled).

 The RBNR.BN bits have a value no greater than the value of GMINTCFG.ULNR*3 (check the

number of the register banks in use).

Note 1. See the hardware manual of the product used for the procedure to specify the table reference method.

Note 2. Availability of context auto saving for all interrupts (EIINTn) whose priority level is less than or equal to 16
is specified by RBCR0.BE[15].

Note 3. If the value of RBNR.BN is bigger than GMINTCFG.ULNR or the value of RBNR.BN is 63, the context auto
saving is not done. In this case, SYSERR exception whose exception cause code (lower 16bits) is 1CH is
issued.

Automatic context saving is not carried out if the table reference method is not specified for the

interrupt request (GMEIINTn) or the use of the register bank is not specified by the RBCR0.BE[i] bit

associated with the interrupt priority (i).

In addition, no automatic context saving is carried out if the value of the RBNR.BN bits are greater

than GMINTCFG.ULNR, or if the value of RBNR.BN is 63. In such a case, it is assumed that an

unexpected interrupt acceptance processing is being performed and a terminating-type SYSERR

exception is notified for error processing.

RH850G4MH Virtualization Section 4 Exceptions and Interrupts

R01UH0865EJ0140 Rev.1.40 Page 161 of 200
August 31, 2023

Figure 4.12 shows the flow of checking the conditions for automatic context saving.

Note 1. For details of operations other than the condition judgment, see Figure 4.7 and Figure 4.10.

Figure 4.12 Flow of Checking the Conditions for Automatic Context Saving

Interrupt occurred

Acceptance conditions
satisfied?

RBCR0.BE[i] = 1?

Table read

No

Yes

Do not accept interrupt

An interrupt handled
 in guest mode ?

RBNR.BN≤
GMINTCFG.UNLR ?

Enable automatic
context saving

onto register bank

Save context onto
register bank

Interrupt acceptance
completed

Yes

Yes

Yes

Register bank overflow
Disable automatic

context saving
onto register bank

No

No

No

Table read

Interrupt acceptance
completed

Terminating-type SYSERR
exception occurred

Direct vector method

Interrupt acceptance
completed

i = Interrupt priority

Yes
RBNR.BN=63?

No

Table reference method?

Yes

No

RH850G4MH Virtualization Section 4 Exceptions and Interrupts

R01UH0865EJ0140 Rev.1.40 Page 162 of 200
August 31, 2023

(1) Automatic Context Saving

Shown below is the processing of automatic context saving onto the register bank.

1. Calculate the start address of register bank n on which the context is to be saved based on the

value of the register bank initial pointer (RBIP) and the value (n) of the BN bits of the register

bank number register (RBNR) established upon acceptance of the interrupt. The size

(BANK_SIZE) of the register bank differs depending on the save mode that is selected.

 Start address:

 RBIP – n × BANK_SIZE

 BANK_SIZE:

 Save mode 0: 60H

 Save mode 1: 90H

2. Save the target registers onto the register bank n specified by the RBNR.BN bits according to the

save mode specified by the RBCR0.MD bit*1. Table 4.17 shows a list of the registers to save,

their addresses, and save order.

3. Increment the value of the RBNR.BN bits by 1. This terminates the register bank saving

processing*2 and initiates the execution of the interrupt handler*3.

Note 1. MDP exceptions (terminating-type) might be caused by memory accesses made during the
register bank saving processing. The other types of interrupts and exceptions cannot be
accepted.

Note 2. The saving of the registers into the memory area specified as the register bank may not be
completed. To ensure the completion of register saving, this CPU can employ a procedure
similar to the one with the ordinary store instruction. For details, see Section 7.2,

Guaranteeing the Completion of Store Instruction.

Note 3. Exceptions of higher priorities can be accepted after the saving onto the register bank is
finished.

Figure 4.13 Processing of Automatic Context Saving

Bank 0

Bank 1

Bank 2

...

Bank n – 1

Bank n

...

Bank 62

Bank 63

RBIP

RBIP – n  BANK_SIZE

RBIP – 64  BANK_SIZE

Save

Registers to save
(Common to all mode)

PC

GMPSW

GMEIIC

FPSR

Additional registers to
save (Save mode 1)

r1

:

r19

r30

r20

:

r29

r31

(2)

BN

+1(3)

(1)

RH850G4MH Virtualization Section 4 Exceptions and Interrupts

R01UH0865EJ0140 Rev.1.40 Page 163 of 200
August 31, 2023

Note 1. Register saving and restoration start sequentially at sequence number 1.

Note 2. The target registers to be saved in save mode 0 (RBCR0.MD = 0) are the registers up to r30 with a save
sequence number of 24.

Note 3. The restoration sequence numbers shown on the left side are for save mode 0 and those shown on the right
side are for save mode 1.

Note 4. In save mode 0, the next bank (n + 1) starts from this address.

Note 5. In save mode 1, no register is saved in this address. This address is not used.

Note 6. In save mode 1, the next bank (n + 1) starts from this address.

Table 4.17 List of Registers to Save, Addresses, Save Order, and Restore Order

Addresses Save mode 0 Save mode 1 Save Order Restore Order

RBIP − n × BANK_SIZE (MD = 0) (MD = 1) *1, *2 *1, *3

−04H PC PC 1 24 / 35

−08H GMPSW GMPSW 2 23 / 34

−0CH GMEIIC GMEIIC 3 22 / 33

−10H FPSR FPSR 4 21 / 32

−14H r1 r1 5 20 / 31

−18H r2 r2 6 19 / 30

−1CH r3 r3 7 18 / 29

−20H r4 r4 8 17 / 28

−24H r5 r5 9 16 / 27

−28H r6 r6 10 15 / 26

−2CH r7 r7 11 14 / 25

−30H r8 r8 12 13 / 24

−34H r9 r9 13 12 / 23

−38H r10 r10 14 11 / 22

−3CH r11 r11 15 10 / 21

−40H r12 r12 16 9 / 20

−44H r13 r13 17 8 / 19

−48H r14 r14 18 7 / 18

−4CH r15 r15 19 6 / 17

−50H r16 r16 20 5 / 16

−54H r17 r17 21 4 / 15

−58H r18 r18 22 3 / 14

−5CH r19 r19 23 2 / 13

−60H r30 r20 24 1 / 12

−64H
*4 r21 25 11

−68H r22 26 10

−6C H r23 27 9

−70H r24 28 8

−74H r25 29 7

−78H r26 30 6

−7CH r27 31 5

−80H r28 32 4

−84H r29 33 3

−88H r30 34 2

−8CH r31 35 1

−90H
*5

−94H
*6

RH850G4MH Virtualization Section 4 Exceptions and Interrupts

R01UH0865EJ0140 Rev.1.40 Page 164 of 200
August 31, 2023

(2) Suppressing the Update of the GMPSW.ID Bit

When an interrupt (GMEIINTn) is accepted in the normal state, the GMPSW.ID bit is set to 1 and

interrupts of the same EI level cannot be accepted unless the acceptance of interrupts is enabled

explicitly with the EI instruction.

For interrupts that make use of the register bank (satisfying the automatic context saving conditions),

on the other hand, by clearing the RBCR1.NC[i] bit associated with the interrupt priority (i) to 0, the

GMPSW.ID bit keeps its value 0 without being set to 1 when an interrupt is accepted. This makes it

possible to accept interrupts of higher priorities without software intervention after the end of

automatic context saving. Since necessary registers are automatically saved, the CPU can return to the

original interrupt handling precisely.

NOTE

All interrupts (EIINTn) whose priority level is less than or equal to 16 is specified by the value

of PSW.ID bit after interrupt acknowledge defined by RBCR1.NC[15].

RH850G4MH Virtualization Section 4 Exceptions and Interrupts

R01UH0865EJ0140 Rev.1.40 Page 165 of 200
August 31, 2023

4.5.3 Context Restoration

The context automatically saved onto the register bank needs to be restored before returning from the

interrupt handling to the original program. Although the context saving onto the register bank is

automatically done, its restoration needs to be accomplished explicitly by software executing the

RESBANK instruction.

(1) Conditions for Executing the RESBANK Instruction

The RESBANK instruction must be executed to restore the context from the register bank. The

RESBANK instruction is a supervisor-privileged instruction. A PIE exception will occur if it is

executed in user mode.

A resumable-type SYSERR exception will occur if the RESBANK instruction is executed when the

value of the RBNR.BN bits are 0. 0 in the RBNR.BN bits means that no context has automatically been

saved onto the register bank. Accordingly, an invalid value will be restored if the RESBANK

instruction is executed in such case.

The above-mentioned operating conditions are summarized in Figure 4.14.

Additionally, that register bank functions can not be used for interrupts handled in host mode, but the

RESBANK instruction can be executed while the restricted operating mode is host mode. However, in

this case, the context saved in the register bank by an interrupt handled in guest mode is restored as the

context for host mode. Since such a usage is not assumed, do not execute the RESBANK instruction in

host mode.

Note 1. The process for detecting MIP and other exceptions that are not caused directly by the RESBANK
instruction is omitted.

Figure 4.14 Flow of Checking the Conditions for Executing the RESBANK
Instruction

RESBANK instruction

PSW.UM = 0?

RBNR.BN > 0?

Yes

Yes

No

Start executing
RESBANK instruction

Resumable SYSERR
exception occurred

PIE exception
occurred*1

No

RH850G4MH Virtualization Section 4 Exceptions and Interrupts

R01UH0865EJ0140 Rev.1.40 Page 166 of 200
August 31, 2023

(2) Context Restoration

The figure below shows the processing of the RESBANK instruction for restoring the context from the

register bank.

1. Calculate the start address of register bank n-1 from which the context is to be restored based on

the value of the register bank initial pointer (RBIP) and the value (n) of the BN bits of the register

bank number register (RBNR) established upon acceptance of the interrupt. Unlike in the case of

saving the context, the start address to be referenced when restoring the context is the lower-limit

side of the register bank addresses. The size (BANK_SIZE) of the register bank differs depending

on the save mode that is selected.

 Start address:

 RBIP – n × BANK_SIZE

 BANK_SIZE:

 Save mode 0: 60H

 Save mode 1: 90H

2. Restore the context from the register bank n-1 in the target registers according to the save mode

specified by the RBCR0.MD bit*1. Table 4.17 shows a list of the registers to restore, their

addresses, and restore order.

3. Decrement the value of the RBNR.BN bits by 1*2. This terminates the register bank restoration

processing and completes the execution of the RESBANK instruction*3.

Note 1. The CPU can accept terminating-type exceptions while restoring the context from the register
bank. MDP exceptions (resumable-type) might be caused by memory accesses made during
the register bank restoration processing.

Note 2. When the CPU accepts an exception before the value of RBNR.BN is updated, it stops the
execution of the RESBANK instruction even if the restoration of all registers is not yet

Figure 4.15 Processing of Context Restoration

Bank 0

Bank 1

Bank 2

...

Bank n – 1

Bank n

...

Bank 62

Bank 63

RBIP

RBIP – n  BANK_SIZE

RBIP – 64  BANK_SIZE

Restore

Registers to save
(Common to all modes)

GMEIPC

GMEIPSW

GMEIIC

GMFPSR

Additional registers to
save (Save mode 1)

r1

:

r19

r30

r20

:

r29

r31

(2)

BN

–1 (3)

(1)

RH850G4MH Virtualization Section 4 Exceptions and Interrupts

R01UH0865EJ0140 Rev.1.40 Page 167 of 200
August 31, 2023

completed. In this case, though there are some registers for which restoration has been
completed, the CPU cannot know which registers have been restored. Since the return PC of
the exception is the PC of this RESBANK instruction, the CPU can re-execute precisely the
RESBANK instruction if none of the resources related to the RESBANK instruction are altered
during the exception handling.

Note 3. After the RESBANK instruction is executed, execute the EIRET instruction to return from the
interrupt handler.

RH850G4MH Virtualization Section 4 Exceptions and Interrupts

R01UH0865EJ0140 Rev.1.40 Page 168 of 200
August 31, 2023

4.6 List of Memory Access Exceptions

Table 4.18 shows a list of instructions and exceptions that make memory accesses and the exceptions

that can be detected. Exceptions identified by the symbol "" are detected for instructions and

exceptions that access memory. Exceptions identified by the symbol "×" are not detected.

Note 1. When a violation is detected during the execution of the PREF instruction, no MDP exception is generated
but the memory access is suppressed. Read access is not performed.

Note 2. Both of table read accesses due to table reference method interrupts and write accesses for automatically
saving the context onto the register bank occur independently of the execution of an instruction. This CPU
handles any MDP exception that is caused by these accesses as a terminating-type exception. The
exception cause code of this MDP exception differs from that of resumable-type MDP exceptions. For
details see Table 4.1.

Table 4.18 List of Memory Access Exceptions

Instruction/Exception MAE MDP Instruction/Exception MAE MDP

SLD.B ×  PREPARE × 

SLD.BU ×  DISPOSE × 

SLD.H   PUSHSP × 

SLD.HU   POPSP × 

SLD.W   STM.MP × 

SST.B ×  LDM.MP × 

SST.H   STM.GSR × 

SST.W   LDM.GSR × 

LD.B ×  SWITCH × 

LD.BU ×  CALLT × 

LD.H   SYSCALL × 

LD.HU   LDV.W  

LD.W   LDV.DW  

LD.DW   LDV.QW  

ST.B ×  STV.W  

ST.H   STV.DW  

ST.W   STV.QW  

ST.DW   LDVZ.H4  

LDL.BU ×  STVZ.H4  

LDL.HU   CACHE (CHBII) × 

LDL.W   CACHE (CIBII) × ×

STC.B ×  CACHE (CFALI) × 

STC.H   CACHE (CISTI) × ×

STC.W   CACHE (CILDI) × ×

CAXI   CACHE (other commands) × ×

SET1 ×  PREF (PREFI) × ×*1

CLR1 ×  PREF (other commands) × ×

NOT1 ×  Table reference type EIINTn × *2

TST1 ×  Register bank saving
processing

× *2

RESBANK × 

RH850G4MH Virtualization Section 5 Memory Management

R01UH0865EJ0140 Rev.1.40 Page 169 of 200
August 31, 2023

Section 5 Memory Management

This CPU provides the following functions for managing memory.

 Memory protection unit (MPU)

 Instruction cache function

5.1 Memory Protection Unit (MPU)

Memory protection functions are provided in an MPU (memory protection unit) to maintain a smooth

system by detecting and preventing unauthorized use of system resources by unreliable programs,

runaway events, etc. In the virtualization mode, the following three functions are extended to the

memory protection function.

 Layered Memory Protection Function

 Memory Protection Setting Bank Function

 Memory Protection Setting High Speed Save and Return Function

5.1.1 Features

(1) Memory Access Control

See the "CPU" section in the hardware manual of the product used.

(2) Access Management for Each CPU Operation Mode

See the "CPU" section in the hardware manual of the product used.

(3) Protection with the System Protection Identifier (SPID)

See the "CPU" section in the hardware manual of the product used.

(4) Protection per Restricted Operating Mode

In the virtualization mode, memory access control corresponding to the restricted operating mode is

provided. For details, see 5.1.7, Layered Memory Protection Function.

RH850G4MH Virtualization Section 5 Memory Management

R01UH0865EJ0140 Rev.1.40 Page 170 of 200
August 31, 2023

5.1.2 Protection Area Settings

(1) Protection Area Settings

See the "CPU" section in the hardware manual of the product used.

(2) Separation of memory protection setting entry

Each setting entry of the memory protection function is classified into the following two based on the

value set in the MPCFG.HBE.

 Host management entry The entry that can be set only in Host mode.

Assuming that the hypervisor specifies the access permission area to

the virtual machine.

 Guest management entry The entry that can be set also in Guest mode.

Assuming that the software of the virtual machine itself specifies the

access permission area.

The MPU entry configured as host management entry can not be written in Guest mode. The operation

when the host management entry is specified with the MPIDX register is as follows.

Note 1. Ignore write operations. The PIE exception does not occur.

Table 5.1 Partition of the MPU entry

Value of the MPCFG.HBE Guest management entry Host management entry

0 None All entries

0 < HBE ≤ MPCFG.NMPUE 0 ≤ Entry number < HBE HBE ≤ Entry number ≤
MPCFG.NMPUE

MPCFG.NMPUE < HBE All entries None

Table 5.2 Accessibility of the MPU entry

Entry Type

Host mode Guest mode

Read Write Read Write

Guest management entry Available Available Available Available

Host management entry Available Available Available Unavailable *1

Figure 5.1 Separation of MPU entries

MPU entries

MPLA, MPUA, MPAT

MPCFG.HBE

31 (MPCFG.NMPUE)

0

Guest management
entries

Host management
entries

RH850G4MH Virtualization Section 5 Memory Management

R01UH0865EJ0140 Rev.1.40 Page 171 of 200
August 31, 2023

5.1.3 Precautions for Protection Area Setup

(1) Crossing Protection Area Boundaries

See the "CPU" section in the hardware manual of the product used.

(2) Invalid Protection Area Settings

See the "CPU" section in the hardware manual of the product used.

(3) Lower- and Upper-Limit Addresses Referenced during Protection Violation Checks

See the "CPU" section in the hardware manual of the product used.

(4) Memory Access Spanning Contiguous Protection Areas

See the "CPU" section in the hardware manual of the product used.

(5) Memory Access which Spans Over Address 0000 0000H

See the "CPU" section in the hardware manual of the product used.

(6) Memory access that crosses the host management entry violation area and the guest
management violation area

Since the minimum unit of memory protection setting is the word size, if one time memory access size

is bigger than the word size, it may cross different memory protection settings. And in the memory

access in Guest mode, if the area where the host management entry detects the violation and the area

where the violation is detected by the guest management entry are near each other, the exception cause

detected when one time memory access crosses the area depends on the memory access method.

In the instruction fetch with the instruction length of 48 bits or 64 bits, the exception cause code

corresponding to the management entry that detected the memory protection violation against the

address on the lower side (close to 0) is stored in the FEIC. For example, for the instruction of 64 bit

length, when the host management entry detects the memory protection violation on its lower side

(access is permitted in the guest management entry) and the guest management entry detects the

memory protection violation on its upper side, it is determined that the violation has been detected in

the host management entry and 98H is stored in the lower 16 bits of the exception cause code.

With the memory access instruction whose memory access size is 64 bits or 128 bits, access

destinations are not the word size and are judged collectively as the one area. Therefore, even if the

area where the violation is detected by the host management entry and the area where the violation is

detected by the guest management entry do not overlap, if it is included in one area of 64 bits or 128

bits, the same judgment as in Table 5.3 is made and it is detected as the violation in the guest

management entry. For example, when the 64-bit memory access instruction (LD.DW, ST.DW, etc.)

accesses the area where the lower 32 bits are detected as violation in the host management entry and

the upper 32 bits are detected as violation in the guest management entry, it is judged that the violation

is detected in the guest management entry, and 91H is stored in the lower 16 bits of the exception cause

code.

RH850G4MH Virtualization Section 5 Memory Management

R01UH0865EJ0140 Rev.1.40 Page 172 of 200
August 31, 2023

For instructions that make multiple memory accesses, there are instructions that automatically add

addresses and instructions that automatically subtract addresses, but in both cases, the exception cause

code corresponding to the management entry that first detected the memory protection violation is

stored in FEIC. For example, the PUSHSP is the instruction which store the general purpose registers

in memory by ascending order of numbers while subtracting addresses by 4 bytes at a time. When the

PUSHSP is executed, if the host management entry detects the memory protection violation with r5

memory access and the guest management entry detects the memory protection violation with r6

memory access (this is the lower side as the address), it is judged that the MDP is detected in the host

management entry, and 99H is stored in the lower 16 bits of the exception cause code.

The reason why the violation detection operation differs depending on the memory access method as

described above is as follows.

 The instruction length is unknown unless the instruction code is fetched, but if the memory

protection violation is detected, the correct instruction code may not be fetched. Therefore, the

instruction length can not be considered for judgment of the memory protection violation and it is

only possible to check whether memory protection violation can be detected sequentially from the

lower order side of the address.

 With the instructions that access 64-bit or 128-bit data, unlike instruction fetch, the size of the

memory access is determined by the instruction code. On the other hand, when a part of the access

target causes memory protection violation, if the instruction execution is completed as it is, a part

of the memory access can not be performed. Therefore, when a part of the access target causes

memory protection violation, an exception occurs as in the case that all of the access target causes

memory protection violation.

 The instructions that access multiple memories will access a larger memory area when summed,

but each memory access size is the word size.

RH850G4MH Virtualization Section 5 Memory Management

R01UH0865EJ0140 Rev.1.40 Page 173 of 200
August 31, 2023

5.1.4 Access Control

See the "CPU" section in the hardware manual of the product used.

RH850G4MH Virtualization Section 5 Memory Management

R01UH0865EJ0140 Rev.1.40 Page 174 of 200
August 31, 2023

5.1.5 Violations and Exceptions

In this CPU, violations are detected during instruction fetch access or operand access according to the

protection area settings, and an exception is generated.

 Execution protection violation (during instruction fetch access)

 Data protection violation (during operand access)

(1) Execution Protection Violation (MIP Exception)

See the "CPU" section in the hardware manual of the product used.

(2) Data Protection Violation (MDP Exception)

See the "CPU" section in the hardware manual of the product used.

(3) Exception Cause Code and Exception Address

When an execution protection violation or data protection violation has been detected, the exception

cause code is determined as shown in Table 5.3, Table 5.5, and Table 5.6. The determined exception

cause code is set to the FEIC register.

The MEA register is used to store either the PC of the instruction that detected the execution protection

violation or the access address used when the data protection violation occurred. The MEA register is

shared by MIP and MDP exceptions since these exceptions do not occur simultaneously. Also, when a

data protection violation occurs, the information of the instruction or event that caused the violation is

stored in the MEI register.

(a) MPU exception cause code (lower 16 bits) in Guest mode

In the MPU violation exception of Guest mode, the exception cause differs depending on which

management entry the violation occurred. When access is denied by both the host management

entry and the guest management entry, the cause code in case of denial in the guest management

entry is stored.

Table 5.3 shows the lower 16 bits of the exception cause code that is obtained when the setting of

the host management entry and the guest management entry are available and unavailable for

access.

The transition destination mode at exception occurrence can be selected according to the detected level

by setting of the GMCFG register. When both the management entries are unavailable, the transition

destination is determined according to the setting of the GMCFG.GMP.

Table 5.3 MPU exception cause code (lower 16 bits) in Guest mode

Access setting of
the host
management entry

Access setting of
the guest
management entry

MIP
(Instruction fetch)

MDP
(Operand access)

MDP
(Table reference
interrupt)

Available Available It does not occur. It does not occur. It does not occur.

Available Unavailable 90H 91H 95H

Unavailable Available 98H 99H 9DH

Unavailable Unavailable 90H 91H 95H

RH850G4MH Virtualization Section 5 Memory Management

R01UH0865EJ0140 Rev.1.40 Page 175 of 200
August 31, 2023

(b) MPU exception cause code (lower 16 bits) in Host mode

In the MPU violation exception of Host mode, the lower 16 bits of the exception cause codes are

the values shown in Table 5.5.

Table 5.4 MPU exception detection transition destination mode in Guest mode

Violation entry GMCFG.GMP GMCFG.HMP Transition destination

Guest management entry 0 x Guest mode

1 x Host mode

Host management entry x 0 Guest mode

x 1 Host mode

Table 5.5 MPU exception cause code (lower 16 bits) in Host mode

Access setting of the host
management entry

MIP
(Instruction fetch)

MDP
(Operand access)

MDP
(Table reference interrupt)

Available It does not occur. It does not occur. It does not occur.

Unavailable 98H 99H 9DH

RH850G4MH Virtualization Section 5 Memory Management

R01UH0865EJ0140 Rev.1.40 Page 176 of 200
August 31, 2023

(c) MPU exception cause code (upper 16 bits)

There is no difference between the guest management entry and the host management entry on the

upper 16 bit side of the cause code. Table 5.6 shows the upper 16 bits of the exception cause

codes.

Note 1. When the read violation occurs in the instruction including the read operation, the SR or UR bit is set (1).

Note 2. When the write violation occurs in the instruction including the write operation, the SW or UW bit is set (1).

Note 3. When the instruction causing the violation contains read-modify-write operation (SET1, NOT1, CLR1,
CAXI), it is set (1).

Note 4. When the instruction causing the violation performs block transfer (PREPARE, DISPOSE, PUSHSP,
POPSP), it is set (1).

Note 5. When the instruction that caused the violation makes the misaligned access, it is set (1). Misaligned access
is applicable when the LD.DW or ST.DW accesses the word boundary address.

Note 6. In Guest mode, when MPU violation is detected in both the host management entry and the guest
management entry, only the violation detection result in the guest management entry is stored and the
violation detection result in the host management entry is not stored. Even if the MPU violation is detected
only in the guest management entry, the violation detection result in the guest management entry is stored
in these bits. And when the MPU violation is detected only in the host management entry, the violation
detection result in the host management entry is stored in these bits. In addition, in Host mode, since the
MPU violation is detected only in the host management entry, the violation detection result in the host
management entry is stored in these bits.

Note: UR: A violation is detected during read operation in user mode (PSW.UM = 1).
UW: A violation is detected during write operation in user mode (PSW.UM = 1).
UX: A violation is detected when the instruction executed in user mode (PSW.UM = 1).
SR: A violation is detected during read operation in supervisor mode (PSW.UM = 0).
SW: A violation is detected during write operation in supervisor mode (PSW.UM = 0).
SX: A violation is detected when the instruction executed in supervisor mode (PSW.UM = 0).

Table 5.6 MPU exception Cause Code (upper 16 bits) of Memory Protection Violation

Exception
Operation Mode at
Violation

Bit Number and Bit Name

31-25 24 23 22 21 20 19 18 17 16 15-0

— MS BL RMW SX*6 SW*6 SR*6 UX*6 UW*6 UR*6 —

MIP User mode 0 0 0 0 0 0 0 1 0 0

Supervisor mode 0 0 0 0 1 0 0 0 0 0

MDP User mode 0 *5 *4 *3 0 0 0 0 *2 *1

Supervisor mode 0 0 *2 *1 0 0 0

RH850G4MH Virtualization Section 5 Memory Management

R01UH0865EJ0140 Rev.1.40 Page 177 of 200
August 31, 2023

5.1.6 Memory Protection Setting Check Function

For the programs, such as OS, that provide services, this CPU provides a memory protection setting

check function to enable implementation of a service protection function that checks in advance

whether or not the address area to be used for the requested operations is within an area that is

accessible by the source that requested the service. By using this function, when verifying the validity

of the user-supplied parameters for a system service, the OS can complete the verification in a shorter

time than by repeating reading and checking the area settings by software. In the virtualization mode,

the memory protection check function can be used in both Host mode and Guest mode. The check

results for each operating mode are stored.

(1) Check Details

See the "CPU" section in the hardware manual of the product used.

(2) Checking Procedure

See the "CPU" section in the hardware manual of the product used.

(3) Sample Code

See the "CPU" section in the hardware manual of the product used.

(4) Method of Calculating Address Areas

See the "CPU" section in the hardware manual of the product used.

(5) Checking Results of the Memory Protection Setting Checking Function

The check results are updated according to the following table.

The following abbreviations are used in the table. Each bit of X, W, R becomes 0 or 1 depending on the

protection setting. If 0 or 1 is described for the abbreviation type, it means that, under that condition, all

three bits of X, W, R become either 0 or 1 as described.

SV mode : Supervisor mode (PSW.UM=0)

UM mode : User mode (PSW.UM=1)

HS*E Check result for SV mode in the host management entry of MCR

HSXE, HSWE, HSRE

HU*E Check result for UM mode in the host management entry of MCR

HUXE, HUWE, HURE

GS*E Check result for SV mode in the guest management entry of MCR

GSXE, GSWE, GSRE

GU*E Check result for UM mode in the guest management entry of MCR

GUXE, GUWE, GURE

RH850G4MH Virtualization Section 5 Memory Management

R01UH0865EJ0140 Rev.1.40 Page 178 of 200
August 31, 2023

S*E Final check result for SV mode of MCR SXE, SWE, SRE

U*E Final check result for UM mode of MCR UXE, UWE, URE

Note 1. In Guest mode and when the MPM.GMPE = 0, the memory protection by the host management entry is not
performed, so the values of the HS * E and HU * E are always 1.

Note 2. The check results of the guest management entry are reflected in each bit of X, W, R. However, when all
MPU entries are the host management entries, the value of each bit of X, W, R will be 0.

Note 1. The check results of the host management entry are reflected in each bit of X, W, R. However, if all MPU
entries are the guest management entries, the value of each bit of X, W, R will be 0.

Note 2. The check results of the guest management entry are reflected in each bit of X, W, R. However, if all MPU
entries are the host management entries, the value of each bit of X, W, R will be 0.

Note 3. The value obtained by combining both the check results of the host management entry and the check results
of the guest management entry are reflected in each bit of X, W, R. They become 1 when both the
corresponding bit values of both entries are 1. They become 0 when one of the values is 0.

Table 5.7 Memory protection check result when the MPM.GMPE = 0 in Guest mode

MPM (GMMPM)

Address OV HS*E*1 HU*E*1 GS*E GU*E S*E U*EMPE SVP

0 - - 0 1 1 1 1 1 1

1 0 It crosses 00000000H
or 7FFFFFFFH

1 1 1 1 0 1 0

It does not cross
boundary.

0 1 1 1 *2 1 *2

1 It crosses 00000000H
or 7FFFFFFFH

1 1 1 0 0 0 0

It does not cross
boundary.

0 1 1 *2 *2 *2 *2

Table 5.8 Memory protection check results when the MPM.GMPE = 1 in Guest mode

MPM (GMMPM)

Address OV HS*E HU*E GS*E GU*E S*E U*EMPE SVP

0 - It crosses 00000000H
or 7FFFFFFFH

1 0 0 1 1 0 0

It does not cross
boundary.

0 *1 *1 1 1 *3 *3

1 0 It crosses 00000000H
or 7FFFFFFFH

1 0 0 1 0 0 0

It does not cross
boundary.

0 *1 *1 1 *2 *3 *3

1 It crosses 00000000H
or 7FFFFFFFH

1 0 0 0 0 0 0

It does not cross
boundary.

0 *1 *1 *2 *2 *3 *3

RH850G4MH Virtualization Section 5 Memory Management

R01UH0865EJ0140 Rev.1.40 Page 179 of 200
August 31, 2023

Note 1. In Host mode, the memory management by the guest management entry is not performed, so the values of
the GS * E and GU * E are always 1.

Note 2. The check results of the host management entry are reflected in each bit of X, W, R. However, when all MPU
entries are the guest management entries, the value of each bit of X, W, R will be 0.

Table 5.9 Memory protection check results in Host mode

MPM (GMMPM)

Address OV HS*E HU*E GS*E*1 GU*E*1 S*E U*EMPE SVP

0 - - 0 1 1 1 1 1 1

1 0 It crosses 00000000H
or 7FFFFFFFH

1 1 0 1 1 1 0

It does not cross
boundary.

0 1 *2 1 1 1 *2

1 It crosses 00000000H
or 7FFFFFFFH

1 0 0 1 1 0 0

It does not cross
boundary.

0 *2 *2 1 1 *2 *2

RH850G4MH Virtualization Section 5 Memory Management

R01UH0865EJ0140 Rev.1.40 Page 180 of 200
August 31, 2023

5.1.7 Layered Memory Protection Function

In the virtualization mode, the layered memory protection function can be used in Guest mode.

In the layered memory protection function, the memory protection setting is set to two types of entries.

They are the memory protection entry (the host management entry) that can be set only in Host mode

and the memory protection entry (the guest management entry) that can be set also in Guest mode.

And the memory access in Guest mode is only available when both the memory protection entries are

set to access enabled. When one of the protection settings is set to access disabled, the memory

protection violation and the exception occur.

This CPU is assumed to manage the guest mode memory access in two layers, the host mode

management software (Hypervisor) and the guest mode management software (Operating System etc.).

For example, the usage which in the host management entry the entire memory area usable by the

virtual machine is set by the Hypervisor, and the usage which in the guest management entry the

memory area in which the application software operating in each virtual machine can be used is set by

the Operating System, are supported. As a result, even when the memory management setting by the

management software in Guest mode is unsuitable and access to the memory area for which access

from the virtual machine is disabled is enabled in the guest management entry, the memory access to

that area can be denied by the memory protection setting of the host management entry. As a result, it is

possible to prevent abnormal operation of a virtual machine from influencing the Host mode and other

virtual machines.

In addition, memory protection functions (such as access guard function on the slave side) not defined

by this CPU exist on the bus, and protection by them may be effective. For details, see the hardware

manual of the product used.

Figure 5.2 Virtualization memory protection

CPU memory access
(Instruction / Data)

Memory Protection Setting
by Guest (e.g. Operating system)

Memory Protection Setting
by Host (e.g. Hypervisor)

Memory / Bus system

Protected
by Guest setting

Protected
by Host setting

Success

RH850G4MH Virtualization Section 5 Memory Management

R01UH0865EJ0140 Rev.1.40 Page 181 of 200
August 31, 2023

(1) Memory protection in Guest mode

Memory access in Guest mode is permitted when the target address is enabled in both entries according

to the following judgment flowchart.

Since it is not possible to manipulate the value of the MPIDn register in Guest mode, it is necessary to

set the MPU entry based on the value set in Host mode.

Figure 5.3 Memory protection judgment in Guest mode

Memory access

Memory access
is permitted

Host management
entries violation

Guest management
entries violation

Check guest management
entries

Mismatch or
permission violation?

Mismatch or
permission violation?

N

N

MPM.GMPE
clear(0)?

N

Y

Y

Check host management
entries

RH850G4MH Virtualization Section 5 Memory Management

R01UH0865EJ0140 Rev.1.40 Page 182 of 200
August 31, 2023

(a) Check guest management entries

The memory protection setting of the MPU entry classified as the guest management entry is used

to determine whether memory access is enabled or not. Except for the conditions listed below, the

method of judging whether memory access is enabled or not is the same as in the case where the

hierarchical memory protection function is disabled in the conventional mode. For details, see

Section 5.1.2(1), Protection Area Settings .

– The entry used for the determination is limited to the guest management entry.

(b) Check host management entries

The memory protection setting of the MPU entry classified as the host management entry is used

to determine whether memory access is enabled or not. Except the conditions listed below, the

method of judging whether memory access is enabled or not is the same as in the case which the

layered memory protection function is disabled in the conventional mode. For details, see

Section 5.1.2(1), Protection Area Settings .

– The entry used for the determination is limited to the host management entry.

– Whether memory protection is enabled or disabled is specified, not by the MPM.MPE but by

the MPM.GMPE.

– When the MPM.GMPE is set (1), memory protection is always performed even in SV mode.

(2) Memory protection in Host mode

Memory access in Host mode is permitted when the target address is enabled in the host management

entry according to the following judgment flowchart.

Figure 5.4 Memory protection judgment in Host mode

Memory access

Memory access
is permitted

Host management
entries violation

Check host management
entries

Mismatch or
permission violation?

N

Y

RH850G4MH Virtualization Section 5 Memory Management

R01UH0865EJ0140 Rev.1.40 Page 183 of 200
August 31, 2023

(a) Check host management entries

The memory protection setting of the MPU entry classified as the host management entry is used

to determine whether memory access is enabled or not. Except for the conditions listed below, the

method of judging whether memory access is enabled or not is the same as in the case for which

the layered memory protection function is disabled in the conventional mode. For details, see

Section 5.1.2 (1), Protection Area Settings.

– The entry used for the determination is limited to the host management entry.

And the following is different from memory protection by the host management entry in Guest

mode. Both of these are the same operation as memory protection in the conventional mode.

– Whether memory protection is enabled or disabled is specified, not by the MPM.GMPE but

by the MPM.MPE.

– Validity or invalidity of memory protection in SV mode is performed by the MPM.SVP.

RH850G4MH Virtualization Section 5 Memory Management

R01UH0865EJ0140 Rev.1.40 Page 184 of 200
August 31, 2023

5.1.8 Memory Protection Setting Bank Function

This CPU has maximum of 2 banks of MPU protection setting entries. The MPU bank is specified by

the MPBK register. The number of the MPU banks is indicated by the MPCFG.NBK in the system

register.

For the operation using each MPU entry below, the MPU bank specified by the MPBK register is used.

The value of the protection setting entry of the MPU bank that is not specified by the MPBK has no

effect on CPU operation.

 Protection information to perform memory access when MPM.MPE = 1 and MPM.GMPE = 1

 Access by LDSR/STSR instruction (MPAT, MPUA, MPLA specified by MPIDX)

 Memory protection check function

 MPU entry save/restore instructions (STM.MP/LDM.MP)

In the MPU bank, since the entry itself is provided as hardware which is banked, it is possible to switch

the MPU bank quickly only by changing the bank specification with the MPBK register. This makes it

possible to shorten the switch of the MPU context in the time required for virtual machine context

switch.

However, since the number of MPU banks is limited, it is necessary for the specification designer of

the system to decide the appropriate allocation. In addition, when operating more virtual machines than

the number of the MPU banks, it is necessary to save and restore to memory by software in the same

way as other system registers.

Figure 5.5 MPU Bank changing function

MPU entries with 2 banks

MPCFG.NBK

Bank

31 (MPCFG.NMPUE)

0

MPU entries
Bank 0

Memory protection
(Instruction Fetch / Data access)

Memory protection setting check

MPU entry access via system register

MPU context save / restore

MPBK

Bank select

RH850G4MH Virtualization Section 5 Memory Management

R01UH0865EJ0140 Rev.1.40 Page 185 of 200
August 31, 2023

(1) Notes on Bank Switching

Since the value of the MPIDn register does not change at the time of switching the MPU bank, it is

necessary to ensure that there is no inconsistency between the MPIDn assignment setting of the MPAT

register and the setting of the MPIDn register.

For example, it is not necessary to manipulate the MPIDn register, especially when the setting of the

MPIDn register expected by each entry before and after the switching of the MPU bank is the same.

On the other hand, when the setting of the MPIDn register that each entry expects differs before and

after switching the MPU bank, unintended memory protection settings will be applied after switching

the MPU bank as it is. Therefore, in such a case, the MPIDn register must also be treated as a virtual

machine context, and processing such as saving and restoring must be performed when changing the

MPU bank.

5.1.9 Memory protection setting High speed save and restore function

Apart from the MPU bank, dedicated instructions for high speed saving and restore of the MPU entry

can be used.

 STM.MP: Store Multiple MPU entries to memory

 LDM.MP: Load Multiple MPU entries from memory

These instructions save and restore the entries of the MPU bank indicated by the MPBK register to

memory. For saving and restoring, all entries in the bank are targeted. Entries of the MPU bank that the

MPBK register does not indicate are not operated at all.

(1) MPU entry restore instruction in Guest mode

When the STM.MP instruction is executed in Guest mode, the host management entry is also saved.

Also, when the LDM.MP instruction is executed, the memory area corresponding to the host

management entry is read, but the host management entry is not updated. At this time, the read data is

discarded as it is. Even in memory access for the host management entry, when the protection violation

or the bus error etc. are detected, the exception corresponding to them will be generated.

(2) Notes on executing the MPU entry save and restore instruction

Execute the MPU entry restore instruction (LDM.MP) by checking that memory access is possible with

setting of memory protection invalid or restoring. Since memory protection setting switches during

execution of the LDM.MP instruction, it may cause unintended operation.

RH850G4MH Virtualization Section 5 Memory Management

R01UH0865EJ0140 Rev.1.40 Page 186 of 200
August 31, 2023

5.2 Cache

This section describes the function to control the cache memory that is installed in this CPU.

In normal operation, the cache memory is used implicitly in instruction fetching by the CPU. However,

if the setting is to be changed or the state of the cache memory is directly manipulated by the CACHE

instruction, consistency with the normal operation of CPU must be maintained. In many cases, the

hardware makes adjustments so that inconsistencies between the normal operation of the CPU and the

manipulation of the cache do not arise. However, to make sure that the results of cache manipulation

are the intended state, take care that the manipulation does not affect the implicit operation.

For a detailed description of the cache memory that is installed in the individual products, see the

hardware manual of the product used.

5.2.1 Features

See the "CPU" section in the hardware manual of the product used.

5.2.2 Cache Operation Registers

See the "CPU" section in the hardware manual of the product used.

5.2.3 Change Cache Use Mode

See the "CPU" section in the hardware manual of the product used.

5.2.4 Cache Operations Using CACHE Instruction

See the "CPU" section in the hardware manual of the product used.

5.2.5 Cache Operation by the PREF Instruction

See the "CPU" section in the hardware manual of the product used.

5.2.6 Cache Index Specification Method

See the "CPU" section in the hardware manual of the product used.

RH850G4MH Virtualization Section 5 Memory Management

R01UH0865EJ0140 Rev.1.40 Page 187 of 200
August 31, 2023

5.2.7 Execution Privilege of the CACHE/PREF Instruction

Because the CACHE instruction directly manipulates the contents of the cache memory, privileges are

specified according to the type of operation. When the CACHE instruction is executed without the

privilege required for the CACHE operation, a privilege instruction exception (PIE) occurs.

On the other hand, the PREF instruction provides information for speculative execution, so it can be

executed in any mode.

The privileges required by the different operations performed by the CACHE instruction are shown

below.

(a) Operations allowed with the user authority

Among address specification method operations, operations without a cache lock (CHBI) can be

executed in any operation mode.

(b) Operations requiring the supervisor privilege

When the virtualization operating mode is the conventional mode, among address specification method

operations, operations with a cache lock (CFAL) require the supervisor privilege.

In addition, index (CIBII, CISTI, CILDI) specification method operations also require the supervisor

privilege.

(c) Operations requiring the Hypervisor privileges

When the virtualization operating mode is the virtualization mode, the Hypervisor privilege is required

for operations with cache lock (CFAL) and operations with index specification method (CIBII, CISTI,

CILDI) among the operations of the addressing method.

Table 5.10 Relationship between the state of virtualization operating mode and
execution authority of CACHE and PREF instruction

Instruction Address/Index

Instruction execution authority

Remarks
Conventional
mode

Virtualization
mode

CHBII Address UM UM

CIBII Index SV HV When these operations are executed with the SV
privilege in virtualization mode, the cache data used
by Host mode and software which is running on
other guest partitions can be changed. Therefore,
the execution authority in virtualization mode is
changed to HV privilege.

CFALI Address SV HV

CISTI Index SV HV

CILDI Index SV HV

PREF Address UM UM

RH850G4MH Virtualization Section 5 Memory Management

R01UH0865EJ0140 Rev.1.40 Page 188 of 200
August 31, 2023

5.2.8 Memory Protection for the CACHE and PREF Instructions

See the "CPU" section in the hardware manual of the product used.

5.2.9 Example of Using the CACHE Instruction to Manipulate Cache Memory

See the "CPU" section in the hardware manual of the product used.

5.2.10 Configuration of Instruction Cache

See the "CPU" section in the hardware manual of the product used.

5.2.11 Data Buffer Function

See the "CPU" section in the hardware manual of the product used."

RH850G4MH Virtualization Section 6 Coprocessor

R01UH0865EJ0140 Rev.1.40 Page 189 of 200
August 31, 2023

Section 6 Coprocessor

6.1 Floating-Point Operation

See the "CPU" section in the hardware manual of the product used.

6.2 Extended Floating-Point Operation

See the "CPU" section in the hardware manual of the product used.

RH850G4MH Virtualization Section 7 Hazard Control

R01UH0865EJ0140 Rev.1.40 Page 190 of 200
August 31, 2023

Section 7 Hazard Control

In this CPU, software-based hazard control may be required in order to allow subsequent instructions

to refer to the correct operation results of memory or system register.

 Dedicated instruction for Synchronization Processing

 Guaranteeing the Completion of Store Instruction

 Hazard Management after System Register Update

 Restricted Operating Mode Transition

7.1 Synchronization Processing

For details, see the "CPU" section in the hardware manual of the product used.

7.2 Guaranteeing the Completion of Store Instruction

For details, see the "CPU" section in the hardware manual of the product used.

RH850G4MH Virtualization Section 7 Hazard Control

R01UH0865EJ0140 Rev.1.40 Page 191 of 200
August 31, 2023

7.3 Hazard Management after System Register Update

If an LDSR instruction is executed to update the setting of a system register before an STSR instruction

is executed to read the system register or before a CALLT instruction or the like, which uses the system

register, is executed, then the new setting must be reflected in order to perform the desired operation.

This CPU guarantees that if an LDSR instruction is used to update system registers shown in Table

7.1, the new register setting will be applied when the subsequent instruction is executed. However, it

does not guarantee that the new setting will be applied in instruction fetching. In this case,

synchronization process is required. Also, the execution of an EI or DI instruction is treated in the same

way as the update of PSW by an LDSR instruction; that is, it is guaranteed that the values updated by

an EI or DI instruction is applied to the subsequent instruction.

Note 1. In the representation of LDSR and STSR instructions, selection ID are represented as selID.

Note 2. This table includes registers whose value cannot be updated and registers that have bits whose values
cannot be updated.

Note 3. If these registers, which control the acceptance of interrupts, are updated, interrupts will be accepted with
the new register settings if interrupt requests are present at the time of executing the subsequent instruction.

Note 4. If these registers, which control the register bank function, are updated, interrupts will be accepted with the
new register settings if interrupt requests are present at the time of executing the subsequent instruction.
However, when the RESBANK instruction is executed after updating the RBCR0.MD, a synchronization
process is required.

Note 5. If an LDSR instruction is executed to update the MPLA, MPUA, or MPAT register immediately after another
LDSR instruction is executed to update the MPIDX register, it is guaranteed that the new setting of MPIDX
is reflected in the subsequent instructions. In order to read the MPLA, MPUA, or MPAT register by using a
STSR instruction after the update of the MPIDX register, a synchronization process is required.

If the settings related to instruction fetch or a system register that is not shown in Table 7.1 is updated,

the new register setting can be reflected by performing any of the following synchronization processes

immediately after the LDSR instruction. The appropriate synchronization process should be decided

according to details of the new register setting and the subsequent operation.

For SYNCI or SYNCP instruction, that is used for synchronization process, see Section 7.1,

Synchronization Processing.

Table 7.1 System Registers that Guarantee Reflection of their Updates by LDSR
Instruction to the Subsequent Instruction

selID*1 System Register*2

0 EIPC EIPSW FEPC FEPSW PSW FPSR FPEPC FPST

FPCC FPCFG EIIC FEIC PSWH CTPC CTPSW EIPSWH

FEPSWH CTBP SNZCFG EIWR FEWR

1 SPID SPIDLIST RBASE EBASE INTBP*3 MCTL PID SVLOCK

SCCFG SCBP HVCFG GMCFG HVSB

2 PEID BMID MEA MEI ISPR*3 IMSR ICSR INTCFG*3

PLMR*3 RBCR0*4 RBCR1*4 RBNR*4 RBIP*4

5 MPM MPCFG MCA MCS MCC MCR MCI MPIDX*5

10 FXSR FXST FXINFO FXCFG FXXC FXXP

12 LSCFG

13 L1RCFG RDBCR

RH850G4MH Virtualization Section 7 Hazard Control

R01UH0865EJ0140 Rev.1.40 Page 192 of 200
August 31, 2023

7.3.1 Updating the Settings Related to Instruction Fetching

For details, see the "CPU" section in the hardware manual of the product used.

7.3.2 Updating the Memory Protection Settings of MPU

For details, see the "CPU" section in the hardware manual of the product used.

7.3.3 Updating Interrupt-Related System Registers

For details, see the "CPU" section in the hardware manual of the product used.

7.3.4 Updating Register Bank Function-Related System Registers

For details, see the "CPU" section in the hardware manual of the product used.

7.3.5 Reading a System Register by Using an STSR Instruction

For details, see the "CPU" section in the hardware manual of the product used.

7.3.6 Referencing a System Register by the Subsequent Instruction

For details, see the "CPU" section in the hardware manual of the product used.

7.3.7 Use of EIRET and FERET Instructions in Synchronization Process

For details, see the "CPU" section in the hardware manual of the product used.

7.3.8 Updating PSW.EBV and EBASE

EBASE is a register that indicates the vector address of the exception handler. This is enabled when

PSW.EBV is set (to 1). The recommended updating procedure is as follows.

1. Set PSW.ID to 1

2. Clear PSW.EBV to 0 (updating at the same time with PSW.ID is possible)*1

3. Update EBASE

4. Set PSW.EBV to 1*1

5. Clear PSW.ID to 0 (updating at the same time with PSW.EBV is possible)

Note 1. In Guest Mode, PSW.EBV=1 is fixed, so this procedure is unnecessary.

For updating PSW.UM in the procedure above as well, use of an EIRET or FERET instruction

described in the hardware manual of the product used is recommended.

RH850G4MH Virtualization Section 7 Hazard Control

R01UH0865EJ0140 Rev.1.40 Page 193 of 200
August 31, 2023

7.3.9 Synchronization processing of STM.MP, LDM.MP, STM.GSR, LDM.GSR
instructions

The STM.MP, LDM.MP, STM.GSR and LDM.GSR instructions manipulate the values of the system

registers. Therefore, for instructions executed before and after these instruction executions, these

instructions perform the following synchronization process.

 STM.GSR instruction waits for the execution completion of all preceding FPU instructions

executed. Consequently, the values of FPSR and FPECP updated by the FPU instructions are

certainly saved.

 STM.MP and STM.GSR instructions wait for the execution completion of all preceding LDSR

instructions executed. Consequently, the update results of the system registers which are not listed

in Table 7.1 are also certainly saved.

 All instructions following LDM.MP and LDM.GSR wait for the completion of LDM.MP and

LDM.GSR executed in advance. Consequently, subsequent instructions can operate with the

update results of the system registers due to these instructions. However, regarding the update of

the MPU function register due to the LDM.MP instruction, it may not be precisely reflected in the

memory protection function related to instruction fetch. For details, see Section 7.3.1,

Updating the Settings Related to Instruction Fetching.

 If an interrupt is acknowledged or an exception occurs during the execution of the LDM.MP

instruction or the LDM.GSR instruction, those acknowledges wait for the completion of all load

processing in the middle of execution. Consequently, this ensures that the system registers

operated by these instructions are not updated after the interrupt handler or exception handler

starts processing

RH850G4MH Virtualization Section 7 Hazard Control

R01UH0865EJ0140 Rev.1.40 Page 194 of 200
August 31, 2023

7.4 Synchronizing for restricted operating mode transition

The state of restricted operating mode differs greatly from the viewpoint of CPU authority. Therefore,

if CPU authority and authority of bus access being executed in the bus system are different, there might

be a risk of causing unnecessary authority conflict.

In order to prevent such risk in advance, in case the state transition of the restricted operating mode is

necessary in this CPU, the same synchronization processing as the SYNCM instruction is performed at

the time of acknowledging of causing exception and execution of the return instruction. Consequently,

all the load and store processing that were executed before the state transition are completed. For

details of SYNCM instruction, that are used for synchronization processing, see Section 7.1,

Synchronization Processing.

If the transition cause of the restricted operating mode is a terminating exception such as interrupt

(EIINTn), which exception will be acknowledged is determined according to the judgment of

acknowledgment priority order between terminating exceptions. For details of the determination of

acknowledgment priority order, see Section 4.1.1, Exception Cause List. If SYSERR

(terminating-type) is not acknowledged, the request for that exception is made pending. SYSERR

(terminating type) which is detected during guest mode operation will not occur after transitioning to

host mode.

RH850G4MH Virtualization Section 8 Reset

R01UH0865EJ0140 Rev.1.40 Page 195 of 200
August 31, 2023

Section 8 Reset

8.1 Status of Registers After Reset

If a reset signal is input by a method defined by the hardware specifications, the program registers and

system registers are placed in the status shown by the value after reset of each register in Section 3,

Register Set, and program execution is started. Set the contents of each register to an appropriate

value in the program.

The CPU starts execution of a program from the reset address specified in Section 4.4, Exception

Handler Address by reset.

Note that because the PSW.ID bit is set to 1 immediately after a reset, conditional EI level exceptions

will not be acknowledged. To acknowledge conditional EI level exceptions, clear the PSW.ID bit to 0.

RH850G4MH Virtualization Section 9 Virtualization of Interrupt

R01UH0865EJ0140 Rev.1.40 Page 196 of 200
August 31, 2023

Section 9 Virtualization of Interrupt

This section describes the virtualization function provided by the interrupt controller. For details of

interrupt controller registers, see the "Interrupts" section in the hardware manual of the product used.

9.1 Interrupt Binding

In the interrupt controller, all EI level and FE level interrupt channels can be allocated to Host mode or

Guest mode. This allocation of interrupt channels to operating modes is called interrupt binding. An

interrupt is bound by setting the CPU operating mode and partition ID (valid only when the CPU

operating mode is Guest mode) in the EIBDn and FIBDn registers.

When an interrupt request of an interrupt channel bound to Host mode is accepted by the CPU, the

exception handler is processed in Host mode. In the interrupt controller after reset, all interrupt

channels are bound to Host mode.

When an interrupt request of an interrupt channel bound to Guest mode is accepted by the CPU, the

exception handler is processed in Guest mode. To bind an interrupt channel to Guest mode, use a

partition ID (GPID) to specify a Guest mode partition (PSWH.GPID) for binding. By binding an

interrupt channel to Guest mode in this way, a virtual machine operating in Guest mode can directly

accept an interrupt to handle the interrupt quickly.

9.2 Notification of an Interrupt Request

Table 9.1, Interrupt Binding and Interrupt Request lists interrupt binding settings and interrupt

requests of which the CPU is notified according to the CPU operating mode. The CPU always notifies

the interrupt controller of the CPU operating mode (PSWH.GM) and partition ID (PSWH.GPID) used

by the interrupt controller to check interrupt channel binding.

Note 1. Allowed when FIBG.BGEn corresponding to the channel is 1. Not allowed when it is 0.

Note 2. Allowed when the interrupt priority is higher than EIBG.BGPR. Not allowed when it is not.

Table 9.1 Interrupt Binding and Interrupt Request

Interrupt
Input

CPU Operating
Mode

Interrupt Channel Bind Destination
Background Interrupt

Interrupt Request of
Which the CPU Is
NotifiedOperating Mode GPID

FEINT Host mode Host mode — — FEINT

Guest mode — — None

Guest mode Host mode — — FEINT

Guest mode Match — GMFEINT

Mismatch Allowed*1 BGFEINT

Not allowed*1 None

EIINT Host mode Host mode — — EIINT

Guest mode — — None

Guest mode Host mode — — EIINT

Guest mode Match — GMEIINT

Mismatch Allowed*2 BGEIINT

Not allowed*2 None

RH850G4MH Virtualization Section 9 Virtualization of Interrupt

R01UH0865EJ0140 Rev.1.40 Page 197 of 200
August 31, 2023

When the CPU is in Host mode, the interrupt controller notifies the CPU of only the interrupt requests

bound to Host mode (FEINT/EIINT). The interrupt requests bound to Guest mode are treated as

masked.

When the CPU is in Guest mode, the interrupt controller notifies the CPU of the interrupt requests

bound to Guest mode for which the PSWH.GPID and EIBDn/FIBDn setting match (GMFEINT/

GMEIINT). The interrupt requests for which the PSWH.GPID and setting do not match are treated as

masked. However, when a priority for which a background interrupt is allowed is specified by the

EIBG/FIBG setting, the interrupt requests for which the PSWH.GPID and setting do not match are not

treated as masked and the CPU is notified of the interrupt requests as background interrupts

(BGFEINT/BGEIINT).

Notification priority is determined for interrupt requests for which the PSWH.GPID and setting match

and interrupt requests treated as background interrupts together. Therefore, even when there is an

interrupt request treated as a background interrupt, when there is an interrupt request with higher

priority for which the PSWH.GPID and setting match, the CPU is notified of GMFEINT/GMEIINT.

When the CPU is in Guest mode, it is also notified of an interrupt request bound to Host mode (FEINT/

EIINT). When the CPU accepts the interrupt request, it changes to Host mode. The CPU is notified of

an interrupt request bound to Host mode with any interrupt priority by giving priority over any

interrupt request bound to Guest mode. For this reason, if an interrupt acceptance condition is not

satisfied in Host mode, the interrupt request bound to Host mode is not accepted, and the CPU is not

notified of the interrupt request bound to Guest mode. To avoid this status, to change the CPU from

Host mode to Guest mode, set the Host mode acceptance condition in advance so that all interrupt

requests bound to Host mode can be accepted. To accept the interrupt requests, the following settings

are required.

 For operation when INTCFG.EPL is cleared (0), clear all ISPR bits (0).

 For operation when INTCFG.EPL is set (1), set PSW.EIMASK to 3FH.

 Set the PLMR to 3FH.

 Clear (0) PSW.ID.

 Clear (0) PSW.NP.

 Set the priority of interrupts bound to Host mode to a value smaller than 3FH.

To clear the ISPR (0), set INTCFG.ISPC (1) and write 0 to the ISPR. To change the CPU from Host

mode to Guest mode by using the EIRET instruction, set values for EIPSW.EIMASK, NP, and ID as

shown above to change the PSW bits, and then execute the EIRET instruction.

9.3 Restriction on IHVCFG.IHVE Operation

Be sure to set the same value in IHVCFG.IHVE and HVCFG.HVE. When different values are set in

IHVCFG.IHVE and HVCFG.HVE, enabling the interrupt function is prohibited.

RH850G4MH Virtualization Section 9 Virtualization of Interrupt

R01UH0865EJ0140 Rev.1.40 Page 198 of 200
August 31, 2023

9.4 Restriction on Operation in Guest Mode with Interrupt Controller
INTC1

When the CPU is in Guest mode, it can operate only the channels bound to PSWH.GPID to update

INTC1 registers. Accessing a channel not bound to PSWH.GPID causes an access violation to HV

privilege. Operating the IMR to update interrupt masks at a time can update only the bits corresponding

to the channels bound to PSWH.GPID. The values of the bits corresponding to the channels not bound

to PSWH.GPID are retained.

9.5 Restriction on Operating EICn and EEICN Registers

The interrupt controller determines priority with 64 priority levels regardless of the EPL value in the

CPU. At this time, the interrupt priority of each channel is determined according to the EEICn.EIP[7:4]

and EEICn.EIP[3:0]*1 values. For this reason, when each channel is operated using the EICn register,

the determined priority may not be as expected depending on the EEICn.EIP[7:4] value. To operate

each channel when the interrupt priority level extension function is disabled (INTCFG.EPL = 0), be

sure to set the EEICn.EIP[7:4] value to 0, and then use the EICn register. To operate each channel

when the interrupt priority level extension function is enabled (INTCFG.EPL = 1), be sure to use the

EEICn register.

Note 1. The update of EICn.EIP[3:0] is reflected to EEICn.EIP[3:0]. The update of EEICn.EIP[3:0] is reflected to
EICn.EIP[3:0].

RH850G4MH Virtualization
User’s Manual: Hardware

Publication Date: Rev.0.90 April 17, 2020
Rev.1.40 August 31, 2023

Published by: Renesas Electronics Corporation

Colophon

RH850G4MH Virtualization

R01UH0865EJ0140

Back Cover

	Cover
	Notice
	General Precautions in the Handling of Microprocessing Unit and MicrocontrollerUnit Products
	Table of Contents
	Section 1 Virtualization support function
	1.1 Outline of virtualization support function
	1.1.1 Virtualization system
	1.1.2 Paravirtualization and Partition Function
	1.1.3 Enabling virtualization support function
	1.1.4 Host mode and Guest mode

	1.2 Occupied and Shared resources
	1.3 Functional difference based on activation of Virtualization Support Function

	Section 2 Processor Model
	2.1 CPU Operating Modes
	2.1.1 Definition of CPU Operating Modes
	2.1.1.1 Virtualization operating mode
	2.1.1.2 Restricted operating mode
	2.1.1.3 Authority operating mode

	2.1.2 CPU Operating Mode Transition
	2.1.3 CPU Operating Mode and Privileges
	2.1.4 Halt State by a HALT Instruction
	2.1.5 Temporary Halt State by a SNOOZE instruction

	2.2 Instruction Execution
	2.3 Exceptions and Interrupts
	2.3.1 Types of Exceptions
	2.3.2 Exception Level

	2.4 Coprocessors
	2.4.1 Coprocessor Use Permissions
	2.4.2 Correspondences between Coprocessor Use Permissions and Coprocessors
	2.4.3 Coprocessor Unusable Exceptions
	2.4.4 System Registers

	2.5 Registers
	2.5.1 Program Registers
	2.5.2 System Registers
	2.5.3 Register Updating
	2.5.4 Accessing Undefined Registers
	2.5.5 Supervisor Lock Setting
	2.5.6 Change in Register Model
	2.5.7 System Register Multiplexing

	2.6 Data Types
	2.6.1 Data Formats
	2.6.2 Data Representation
	2.6.3 Data Alignment

	2.7 Address Space
	2.7.1 Memory Map
	2.7.2 Instruction Addressing
	2.7.3 Data Addressing

	2.8 Execution Timing of a Store Instruction
	2.9 Memory Ordering
	2.10 Acquiring the CPU Number
	2.11 System Protection Identifier (SPID)
	2.12 Timestamp Counter
	2.12.1 How to Operate the Timestamp Counter

	2.13 Performance Measurement Function
	2.14 Debug Target Limitation

	Section 3 Register Set
	3.1 Program Registers
	3.2 Basic System Registers
	3.3 Interrupt Function Registers
	3.3.1 Interrupt Function system Registers

	3.4 FPU Function Registers
	3.5 FXU Function Registers
	3.6 MPU Function Registers
	3.6.1 MPU Function System Registers

	3.7 Cache Operation Function Registers
	3.7.1 Cache Control Function System Registers

	3.8 Count Function Registers
	3.8.1 Count Function System Registers

	3.9 Hardware Function Registers
	3.10 Virtualization support function system registers
	3.11 Host Context Register
	3.12 Guest Context Register

	Section 4 Exceptions and Interrupts
	4.1 Outline of Exceptions
	4.1.1 Exception Cause List
	4.1.2 Overview of Exception Causes
	4.1.3 Types of Exceptions
	4.1.4 Exception Acknowledgment Conditions and Priority Order
	4.1.5 Interrupt Exception Priority and Priority Masking
	4.1.6 Return and Restoration
	4.1.7 Context switching
	4.1.8 Exception to transition from guest mode to host mode
	4.1.9 Background Interrupts

	4.2 Operation when Acknowledging an Exception
	4.2.1 Special Operations

	4.3 Return from Exception Handling
	4.4 Exception Handler Address
	4.4.1 Resets, Exceptions, and Interrupts
	4.4.2 System Calls

	4.5 Register Bank Function
	4.5.1 Outline of the Register Bank Function
	4.5.2 Automatic Context Saving
	4.5.3 Context Restoration

	4.6 List of Memory Access Exceptions

	Section 5 Memory Management
	5.1 Memory Protection Unit (MPU)
	5.1.1 Features
	5.1.2 Protection Area Settings
	5.1.3 Precautions for Protection Area Setup
	5.1.4 Access Control
	5.1.5 Violations and Exceptions
	5.1.6 Memory Protection Setting Check Function
	5.1.7 Layered Memory Protection Function
	5.1.8 Memory Protection Setting Bank Function
	5.1.9 Memory protection setting High speed save and restore function

	5.2 Cache
	5.2.1 Features
	5.2.2 Cache Operation Registers
	5.2.3 Change Cache Use Mode
	5.2.4 Cache Operations Using CACHE Instruction
	5.2.5 Cache Operation by the PREF Instruction
	5.2.6 Cache Index Specification Method
	5.2.7 Execution Privilege of the CACHE/PREF Instruction
	5.2.8 Memory Protection for the CACHE and PREF Instructions
	5.2.9 Example of Using the CACHE Instruction to Manipulate Cache Memory
	5.2.10 Configuration of Instruction Cache
	5.2.11 Data Buffer Function

	Section 6 Coprocessor
	6.1 Floating-Point Operation
	6.2 Extended Floating-Point Operation

	Section 7 Hazard Control
	7.1 Synchronization Processing
	7.2 Guaranteeing the Completion of Store Instruction
	7.3 Hazard Management after System Register Update
	7.3.1 Updating the Settings Related to Instruction Fetching
	7.3.2 Updating the Memory Protection Settings of MPU
	7.3.3 Updating Interrupt-Related System Registers
	7.3.4 Updating Register Bank Function-Related System Registers
	7.3.5 Reading a System Register by Using an STSR Instruction
	7.3.6 Referencing a System Register by the Subsequent Instruction
	7.3.7 Use of EIRET and FERET Instructions in Synchronization Process
	7.3.8 Updating PSW.EBV and EBASE
	7.3.9 Synchronization processing of STM.MP, LDM.MP, STM.GSR, LDM.GSR instructions

	7.4 Synchronizing for restricted operating mode transition

	Section 8 Reset
	8.1 Status of Registers After Reset

	Section 9 Virtualization of Interrupt
	9.1 Interrupt Binding
	9.2 Notification of an Interrupt Request
	9.3 Restriction on IHVCFG.IHVE Operation
	9.4 Restriction on Operation in Guest Mode with Interrupt Controller INTC1
	9.5 Restriction on Operating EICn and EEICN Registers

	Colophon
	Back Cover

