LENESAS

-
»
@
ﬁ\-
7)
<
Q
S
-
O

R-IN32 Series User’s Manual

(UNet3/SNMP edition)

- R-IN32M3-EC
- R-IN32M3-CL
* R-IN32M4-CL2

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http://www.renesas.com)

Document number: R18UZ0063EJ0100
Issue date: Sep 5, 2016 n RM
Renesas Electronics

www.renesas.com

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the
operation of semiconductor products and application examples. You are fully responsible for the incorporation of these
circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for
any losses incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas
Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever
for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property
rights of third parties by or arising from the use of Renesas Electronics products or technical information described in
this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other
intellectual property rights of Renesas Electronics or others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or
in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such
alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High
Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade,
as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio
and visual equipment; home electronic appliances; machine tools; personal electronic equipment;
and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster
systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a
direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may
cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality
grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas
Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable
for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for
which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas
Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage
range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no
liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified
ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products
have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use
conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to
implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire
in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including
but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or
any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please
evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all
applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation,
the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your
noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose
manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use
Renesas Electronics products or technology described in this document for any purpose relating to military applications
or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the
Renesas Electronics products or technology described in this document, you should comply with the applicable export
control laws and regulations and follow the procedures required by such laws and regulations.

10.1t is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or
otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set
forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as
a result of unauthorized use of Renesas Electronics products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of
Renesas Electronics.

12.Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its
majority-owned subsidiaries.
(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Instructions for the use of product

In this section, the precautions are described for over whole of CMOS device.
Please refer to this manual about individual precaution.
When there is a mention unlike the text of this manual, a mention of the text takes first priority.

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

- The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in
the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, associated shoot-through
current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal
become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.

- The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are
undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins are not
guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not
guaranteed from the moment when power is supplied until the power reaches the level at which resetting has
been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
- The reserved addresses are provided for the possible future expansion of functions. Do not access these
addresses; the correct operation of LSl is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When
switching the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset,
ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a
clock signal produced with an external resonator (or by an external oscillator) while program execution is in
progress, wait until the target clock signal is stable.

* ARM, AMBA, ARM Cortex, Thumb, ARM Cortex-M3 and Cortex-M4F are a trademark or a registered trademark of
ARM Limited in EU and other countries.

- Ethernet is a registered trademark of Fuji Zerox Limited.

- IEEE is a registered trademark of the Institute of Electrical and Electronics Engineers, Inc.

- EtherCAT is a registered trademark of Beckhoff Automation GmbH, Germany.

» CC-Link and CC-Link IE Field are a registered trademark of CC-Link Partner Association (CLPA).

+ Additionally all product names and service names in this document are a trademark or a registered trademark which
belongs to the respective owners.

How to Use This Manual

1. Purpose and Target Readers

This manual is intended for users who wish to understand the functions of an Ethernet communication LSI
"R-IN32M4-CL2" for designing application of it. It is assumed that the reader of this manual has general knowledge in

the fields of electrical engineering, logic circuits, and microcontrollers.

Particular attention should be paid to the precautionary notes when using the manual. These notes occur

within the body of the text, at the end of each section, and in the Usage Notes section.

The revision history summarizes the locations of revisions and additions. It does not list all revisions. Refer to

the text of the manual for details.

The mark “<R>" means the updated point in this revision. The mark “<R>" let users search for the updated

point in this document.

Literature Literature may be preliminary versions. Note, however, that the following descriptions do not indicate

"Preliminary". Some documents on cores were created when they were planned or still under

development. So, they may be directed to specific customers. Last four digits of document number

(described as ****) indicate version information of each document. Please download the latest

document from our web site and refer to it.

The document related to R-IN32 Series

Document Name

Document Number

R-IN32M3 Series Datasheet R18DS0008EJ****
R-IN32M3-EC User’s Manual R18UZ0003EJ****
R-IN32M3-CL User’s Manual R18UZO005EJ****
R-IN32M3 Series User’s Manual (Peripheral function) R18UZ0007EJ****
R-IN32M3 Series Programming Manual (OS edition) R18UZ0011EJ****
R-IN32M3 Series Programming Manual (Driver edition) R18UZ000Q9EJ****
R-IN32M4-CL2 User’'s Manual R18UZ0032EJ****
R-IN32M4-CL2 User’'s Manual (Peripheral Modules) R18UZ0034EJ****
R-IN32M4-CL2 User’'s Manual (Gigabit Ethernet PHY edition) R18UZ0044EJ****
R-IN32M4-CL2 Programming Manual (Driver edition) R18UZ0036EJ****
R-IN32M4-CL2 Programming Manual (OS edition) R18UZ0040EJ****
R-IN32 Series User's Manual (UNet3/SNMP edition) R18UZOOXXEJ****

2. Notation of Numbers and Symbols

Weight in data notation: Left is high-order column, right is low-order column
Active low notation:

XxxZ (capital letter Z after pin name or signal name)

or xxx_N (capital letter _N after pin name or signal name)

or xxnx (pin name or signal name contains small letter n)

Note:

Explanation of (Note) in the text
Caution:

Item deserving extra attention
Remark:

Supplementary explanation to the text
Numeric notation:

Binary -+ xxxx, XxxxB or n’bxxxx (n bits)

Decimal -+ Xxxx

Hexadecimal --- xxxxH or n’hxxxx (n bits)

Prefixes representing powers of 2 (address space, memory capacity):
K (kilo)--- 2'°=1024
M (mega)--- 2%° = 1024?
G (giga)--- 2*° =1024°
Data Type:
Word --- 32 bits
Halfword --- 16 bits
Byte --- 8 bits

1.

6.

Contents

Yoo 18Tt o o PP PP PP 1
11 RESEFICTIONS ...ttt E et E Rt R Rt R et E et 2
S =T 1 To= 4o 1K O 11 1 1 =SSP 3
2.1 SPECITICALIONS. ...ttt bbbttt b bt b e b e e b e e Rt e R e e e e b e e be e bt eb e e bt eh e et et e b ebenbeebeereenes 3
2.2 SUPPOITEA MIB-IT ODJECES ...t bbbt bbbt bt st e et e s et et et sbesbeebeebe e s 4
2.3 Updating Data in MIB ODJECESeciiiiiiie ittt bbbttt e e b et sbesbesneeneas 9
2.4 GENEIALING IMIB TIES ...ttt ettt bbbtk et b e bt bt bt bt e bt e Rt e a b e e e e bt e besb e eb e e bt es e e e et e nbesbesbeabeaneas 11
2.5 Vendor-Specific MIB and Callback FUNCLIONcooiiiiiiie s 13
OULIINE OF The STIUCTUIE.....eiii ettt et e e e e ettt et e e e e e e snbbebe e e e e e e e e annbbeeeaaaaeeaannes 14
31 FHIE STIUCTUIE ..ottt r e r et r et r et nn e nr s 14
3.2 LIDEAIIES ..ttt r e 15
33 MOAUIE STFUCTUIE OVEIVIBW........cviviiiieiiiisiereese ettt r et n et nrens 16
3.3.1 Task for Receiving SNMP Packets and Sending RESPONSESccvevereeriereresrseseeieeieseesie e seessesneenens 16
3.3.2 Task for Counting RUNNING TIMEvcviieiiiie sttt st e e e saesnesrenresneenens 18
3.3.3 LI LS 0 G T-T o T T T I 1SS 18
L0 1S T (T 0 11] o] 19
4.1 LSt OF OS RESOUITES ...ttt r et r et b et r e r et nnen e nr s 19
4.2 CONFIGUIING OS RESOUICESvveuvesveteieiteeteeseesiestestestessestessaesaesesseseessessesseaseaseesseseessessesseasesseessessessessessessessensens 21
(@] 01T 8T To TR 4TI 11, SRR 22
51 2 F L To =] 1] o USRS 22
511 ConfigurING the SNIMIP ...t b et bbbt bt e bbb et be st e s e 24
512 ConfiguriNg the IMIIB-1 ..ot b e bbbt et be bbb b e s e 26
513 Configuring the OPErating SYSLEMoii ittt bbbttt e bbb e 26
514 Examples of IMPIEemMENtAtiON ..o bbbt e sb et be e 27
5.2 CONTIGUITNG IMBNAGETS ...ttt sttt ettt b bbbttt e bt bt bt bt bt e seem b e ee e e bt e bt sbeeb e e Reese e e e benbesbesbeeneaneas 29
5.3 ConfIGUIING COMIMUNITIES ...ttt ettt b e bbbt e b e e e s b e s be s b e et e e seese e e et e sbesbesbeabenneas 30
5.4 Configuring Destinations for Sending Standard TraPScvooereieiireri e 31
55 Configuring Standard Callbacks for Vendor’s Private MIB...........ccocooiiiiiiiiiie e 32
Configuring Vendor-SPECIfiC IMIBScoiiuiiiiiiii ettt e e e e e e et e e e e e e e e e aanbbeaeeeaaaeaaanne 33
6.1 Configuring System Groups 0f the MIB-11..........cccviiiiiiiiecece e eneas 33

Contents-1

6.2
6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.2.6

7. Interfaces

7.1

7.2
7.2.1
7.2.2
7.2.3
7.2.4
7.2.5
7.2.6
7.2.7
7.2.8
7.2.9

7.3

Configuring VENndor’s Private MIBS.........cccovcieiiiiiiii s sesie st e e ra e e et tesresta s e eseeseensesaesnesnesnennens 35

VR T T3 TaTo I @ o] =Tt 1 L 36
IMIIB TADIES ...ttt 37
OID PIETIX woveveiiireieireeee sttt Rt 38
(@] o T S 1= o] [P 38
DAta TADIE...... et 41
Callback FUNCLION TaBI ..o 42
... 44
LSE OF FUNCEIONS ...ttt etk bbbkt sb et ekt r et eb e sb et nr e ebennes 44
SPECITICALION OF FUNCHIONS ...t e b et b ettt se et b sbesbesbenneas 45
SAMP_INT (INFIAHZALION) ...ttt bbbttt nb e bbb e e eneas 45
SIMP_EXE (EXIE) vttt ettt b bbbttt et e e bt e ke s bt e bt b e e s e et et e besbenbesreeneas 46
SNMP_ENA (ENADIE) ..ottt bttt bbb b eneas 47
SNMP_AIS (DISADIE) ...ttt bttt b e bbb eneas 48
get_mib_obj (Read Data from a Vendor’s MIB ODJECE).......ccccuiiiiiiiiiiini e 49
set_mib_obj (Write Data to a Vendor’s MIB ODJECE)cccoiiiiiiiiiiice e 51
ena_trp (Enable Standard TraPS)coecueerere ettt sttt et sttt se b et sbesbesneeneas 53
dis_trp (Disable StANAard TIAPS)cueiuireieririere ettt bttt bbbt ebe e et see bbb sbeene e 54
snd_trp (Send Vendor-SPeCifiC TIAPS)covereieiiiiieeie ettt ettt sb e bbb eneas 55
CallDACK FUNCLIONS ...ttt bbbt bbbt bbb 59

Contents-2

Figure 1.1
Figure 2.1
Figure 2.2
Figure 2.3
Figure 3.1
Figure 6.1
Figure 6.2
Figure 6.3
Figure 7.1
Figure 7.2
Figure 7.3

List of Figures

SNMP MaNAgEr ANG AGENTS.veiveireerierieriesestesteseereeeete e ste e sseaseeeesesaesseseesseasesseessessessessessessessesses 1
Updating Data in the MIB-11 ODjJECES.........cuiiviieieiie st eneens 10
YL T TSP TR TP PP OTPOPRTUPT 12
Vendor-Specific MIB and Callback FUNCLIONScccoveieiiiiiiescccce e 13
Task for Receiving and Responding Packets between MIBS.........c.cccovvvviivirieiieerescne e 17
Example of Implementing Vendor’s EXtended MIBS..........ccccoiiiiiiiinineieseseee e 35
Configuration of Vendor’s EXeNded MIBS.........c.coeiiiiiiiiiieieeienecse sttt 36
Standard Callback Function and Callback Function for Each Object...........cccoevevvviviiviniiiiecenns 42
Adding Variable-Bindings t0 & TraDccueoueiueriieiieieieie ettt ettt bbb sne s 57
Callback FUNCLION OF GEREQUESLcveiiiiieiiicieceee et sttt sne e ne e 61
Callback FUNCLION fOF SEIREGUEST.......cviiviieieeciece e et sa et snesreene e 62

Contents-3

Table 2.1
Table 2.2
Table 3.1
Table 3.2
Table 3.3
Table 4.1
Table 5.1
Table 5.2
Table 6.1
Table 6.2
Table 6.3

List of Tables

RS 0L 1= L o] 4SSO 3
Supported MIB-I1 OBJECES (1/5) ..uuiuverieiirieiesiesie st eeete et e ettt e e e e e saestesrenreaneeneas 4
FIIE SETUCTUIE ... bbbttt bbbt et e bt e bt e e et et sbesbesbeereenes 14
(@00 1) 1T VT 1T AT T PSP 14
LIPSO 16
LiSt OF OS RESOUICES (L/2) ..ttt ettt bbbttt ettt e et e bbb neeneas 19
List of Configuration MaCrOS (1/2)cceieiireieieeresese st se s se et e et re e ae st sresresre e eneas 22
Macros for Setting StaNdard TIPSeiereirereeriere e st e e e sre e e e e saesresresresresneeneas 26
Macros for Configuring the SYSIEM GrOUP.......cccciueiiiriiiiiieie et 33
(D 1 R Y 1T 0 o] =11 £ 39
Y AN or= Tt 1Y [T [0) O o =Tt £ 39

Contents-4

RENESAS

R18UZ0063EJ0100
R-IN32 Series User's Manual (uNet3/SNMP edition) Sep 5, 2016

1. Introduction

The uNet3-SNMP is software which provides an SNMP agent role for the uNet3 TCP/IP protocol stack. This software
responds to GetRequest or other packets sent from the manager as shown in the figure below. Also, it is capable of
sending notifications such as traps to the manager. Using this software allows monitoring of the state of incorporated
devices (agents) which are connected to the Ethernet through an SNMP manager.

(SNMP Manager (Windows/Unix)
)
Port Port
Get
Request yy
Get Next Get
Request Request
Request
Set Inform
Request
Port Port
161 161
uNet3-SNMP uNet3-SNMP
Agent Agent
MIB
(Management MIB
information base)

Figure 1.1 SNMP Manager and Agents

This software is for use with the uNet3 (TCP/IP protocol stack) which supports the SNMP protocol.

R18UZ0063EJ0100 RENESAS Page 1 of 63
Sep 5, 2016

R-IN32 Series User's Manual (uNet3/SNMP edition) 1. Introduction

1.1 Restrictions

The following restrictions apply to this system.
e This system supports part of the MIB-11 objects of SNMP but not all of them. For details, see Section 2.2, Supported
MIB-II Objects.

e The data types available for vendor-specific MIB objects are integer, counter (32), gauge (32), time ticks, IP address,
and octet string (character string). Other types are not supported.

o The vendor-specific private MIB tree cannot be modified while data are processing. In other words, addition or
removal of objects (nodes) in the tree while the connected device is running is not allowed.

o This system does not support interfaces with PPP (point-to-point protocol) but with Ethernet.
e This system does not support IPv6.

e This system does not support multiple Ethernet ports. If the agent device has two LAN ports, transmission and
reception of SNMP packets are handled only through a single port. For this reason, this system cannot transmit a
linkDown trap because there will be no port available. When the system searches for a link to send a linkUp trap, it
only detects the port assigned to the transmission and reception of SNMP packets.

On the other hand, the MIB-II can manage information from up to two ports, which means that the MIB objects in the
Interface group and the ipAddrTable (in the IP group) can contain information from two ports.

The names of the companies and products are the trademarks or the registered trademarks of individual companies.

Contents described in this document may be changed without prior notice.

R18UZ0063EJ0100 RENESAS Page 2 of 63
Sep 5, 2016

R-IN32 Series User's Manual (uNet3/SNMP edition)

2. Specification Outline

2. Specification Outline

The outline of the specifications of this system is described here.

2.1 Specifications

The specifications of this system are shown below.

Table 2.1 Specifications

Item

Content

Remark

Role in SNMP

Agent

Does not work as a manager.

Supported SNMP versions

SNMPv1 and SNMPv2c

SNMPv3 is not supported.

Supported IP versions

IPv4

Supported MIBs

MIB-II | System Group

Interfaces Group

Address Translation Group

IP Group

ICMP Group

TCP Group

UDP Group

Note

EGP Group

Not supported

Transmission Group

Not supported

SNMP Group

Note

The enterprise group in the vendor’s private subtree

The vendor-specific extended MIB

Supported traps

Standard trap

Supports the traps listed below;
coldStart(0)
warmStart(1)
linkUp(3)
authenticationFailure(4),

but not linkDown(2).

Extended trap

enterpriseSpecific(6)
(vendor-specific trap)

Others

Function used for enabling and disabling standard
traps

Function name: ena_trp/dis_trp

Function used for issuing extended traps

Function name: snd_trp

Note: Part of the MIB-Il objects of each group are supported but not all of them. For details on
unsupported objects, see the next section.

R18UZ0063EJ0100
Sep 5, 2016

RENESAS

Page 3 of 63

R-IN32 Series User's Manual (uNet3/SNMP edition) 2. Specification Outline

2.2 Supported MIB-II Objects

This system supports part of the MIB-11 objects but not all of them. Supported objects in each group are listed in the table
below. The cells in gray show the objects which do not reflect data immediately. The shortest interval at which those
objects are updated is every 100 milliseconds. Details on updating data in objects are described in the next section. Note
that inaccessible objects such as tcpConnTable and tcpConnEntry are omitted from the table below.

Table 2.2 Supported MIB-II Objects (1/5)

Group Name

Supported Object

Restrictions

System group

sysDescr

Objects with IDs greater

sysObjectID

than that of sysServices are

sysUpTime

not supported.

sysContact

sysName

sysLocation

sysServices

Interfaces group

ifNumber

The value should be 1 or 2. Up to two network interfaces

ifTable

(for the device number 1 and

ifEntry

2) are supported.

iflndex

ifDescr

ifType

ifMtu

ifSpeed

ifPhysAddress

ifAdminStatus

The value should always be 1.

Only read access is allowed (not
read-write).

Link states of the network cannot be
changed through the SNMP

manager.
ifOperStatus

ifLastChanges

ifinOctets Whether these are supported or not

iflnUcastPkts

depends on the implementation of

iflnNUcastPkts

the Ethernet driver in use. The driver
for AM335x supports these objects.

iflnDiscards

ifinErrors

iflnUnknownProtos

ifOutOctets

ifOutUcastPkts

ifOutNUcastPkts

ifOutDiscards

ifOutErrors

ifOutQLen

The value should always be 0.

ifSpecific

The value should always be “0.0”
(no detail is provided).

R18UZ0063EJ0100

Sep 5, 2016

RENESAS Page 4 of 63

R-IN32 Series User's Manual (uNet3/SNMP edition)

2. Specification Outline

Table 2.2 Supported MIB-II Objects (2/5)
Group Name Supported Object Restrictions
Address atlfindex
translation atPhysAddress
group
atNetAddress
IP group ipForwarding The value should always be 2 Objects with IDs greater
(notForward-ing). than that of
Only read access is allowed (not ipRoutingDiscards are not
read-write). supported.
ipDefaultTTL Only read access is allowed (not
read-write).
The values cannot be modified
through the SNMP manager.
ipInReceives
ipInHdrErrors
ipInAddrErrors
ipForwDatagrams
ipInUnknownProtos
ipInDiscards
ipInDelivers
ipOutRequests
ipOutDiscards
ipOutNoRoutes
ipReasmTimeout
ipReasmReqds
ipReasmOKs
ipReasmFails
ipFragOKs
ipFragFails
ipFragCreates
ipAdEntAddr These objects are generated when
ipAdEntifindex the system starts_ up and will not be
; deleted even at link down, for
ipAdEntNetMask example.
ipAdEntBcastAddr
ipAdEntReasmMaxSize
ipNetToMedialflndex Only read access is allowed (not
ipNetToMediaPhysAddress read-write).
ipNetToMediaNetAddress The values cannot be modified
- - through the SNMP manager.
ipNetToMediaType
ipRoutingDiscards
R18UZ0063EJ0100 RENESAS Page 5 of 63

Sep 5, 2016

R-IN32 Series User's Manual (uNet3/SNMP edition)

2. Specification Outline

Table 2.2

Supported MIB-II Objects (3/5)

Group Name

Supported Object

Restrictions

ICMP group

icmplnMsgs

icmpInErrors

icmpInDestUnreachs

icmpInTimeExcds

icmplnParmProbs

icmpInSrcQuenchs

icmplInRedirects

icmpInEchos

icmplnEchoReps

icmpInTimestamps

icmpInTimestampReps

icmplnAddrMasks

icmplnAddrMaskReps

icmpOutMsgs

icmpOutErrors

icmpOutDestUnreachs

icmpOutTimeExcds

icmpOutParmProbs

icmpOutSrcQuenchs

icmpOutRedirects

icmpOutEchos

icmpOutEchoReps

icmpOutTimestamps

icmpOutTimestampReps

icmpOutAddrMasks

icmpOutAddrMaskReps

Objects with IDs greater
than that of
icmpOutAddrMaskReps are
not supported.

R18UZ0063EJ0100

Sep 5, 2016

RENESAS

Page 6 of 63

R-IN32 Series User's Manual (uNet3/SNMP edition) 2. Specification Outline

Table 2.2

Supported MIB-II Objects (4/5)

Group Name

Supported Object

Restrictions

TCP group

tcpRtoAlgorithm

Objects with IDs greater

tcpRtoMin

than that of tcpOutRsts are

tcpRtoMax

not supported.

tcpMaxConn

tcpActiveOpens

tcpPassiveOpens

tcpAttemptFails

tcpEstabResets

tcpCurrEstab

tcpinSegs

tcpOutSegs

tcpRetransSegs

tcpConnState

Only read access is allowed (not
read-write).

The values cannot be modified
through the SNMP manager. For
example, you cannot rewrite
tcpConnState with deleteTCB.

tcpConnLocalAddress

tcpConnLocalPort

tcpConnRemAddress

tcpConnRemPort

tepInErrs

tcpOutRsts

UDP group

udplnDatagrams

Objects with IDs greater

udpNoPorts

than that of udpLocalPort

udpInErrors

are not supported.

udpOutDatagrams

udpLocalAddress

udpLocalPort

R18UZ0063EJ0100

Sep 5, 2016

RENESAS Page 7 of 63

R-IN32 Series User's Manual (uNet3/SNMP edition)

2. Specification Outline

Table 2.2

Supported MIB-II Objects (5/5)

Group Name

Supported Object

Restrictions

SNMP group

snmplnPkts

snmpOutPkts

snmplnBadVersions

snmplnBadCommunityNames

snmplnBadCommunityUses

snmpInASNParseErrs

snmpInTooBigs

snmplnNoSuchNames

snmplnBadValues

snmplnReadOnlys

snmpIinGenErrs

snmplnTotalReqVars

snmplnTotalSetVars

snmplnGetRequests

snmplnGetNexts

snmplnSetRequests

snmpInGetResponses

snmplinTraps

snmpOutTooBigs

snmpOutNoSuchNames

snmpOutBadValues

snmpOutGenErrs

snmpOutGetRequests

snmpOutGetNexts

snmpOutSetRequests

snmpOutGetResponses

snmpOutTraps

snmpEnableAuthenTraps

Only read access is allowed (not
read-write).

The values cannot be modified
through the SNMP manager.

Objects with IDs greater
than that of
snmpEnableAuthenTraps
are not supported.

R18UZ0063EJ0100

Sep 5, 2016

RENESAS

Page 8 of 63

R-IN32 Series User's Manual (uNet3/SNMP edition) 2. Specification Outline

2.3 Updating Data in MIB Objects

The timing of updating MIB objects is described here. The MIB objects are held in the TCP/IP protocol stack, for which
the shortest interval of updating the objects is every 100 milliseconds, as described in the previous section, and in the
SNMP module, for which the objects are updated immediately (Figure 2.1).

As shown in the figure, the objects related to the link state of the interface groups are, as exceptions, updated
immediately by a callback. On reception of a callback which signifies the detection of linkage, the SNMP module returns
a linkUp trap (if this is enabled) in response.

On the other hand, the data in the TCP/IP protocol stack are updated at interval in order to prevent the transmission rate
from decreasing. Updating of the objects, for which the shortest interval is every 100 milliseconds, is based on the timer
task in the protocol stack, which runs every 100 milliseconds.

Users can set a longer interval by setting a desired value in millisecond (in multiples of 100) in the macro
CFG_STS_UPD_RES for configuring the protocol stack. The default value of this sample program (net_cfg.c) is two
seconds as explained below;

E.g., if you want an interval of 100 milliseconds, define CFG_STS_UPD_RES with the value 100.

— Network/inc/net_cfg.h — (the header file for setting default values for the protocol stack)
#define DEF_STS_UPD_RES 2000 /* default value (2 seconds) */

— Sample/*** SNMP/net_cfg.c — (the configuration file for the protocol stack)
#define CFG_STS_UPD_RES DEF_STS_UPD_RES [* 2 seconds */

R18UZ0063EJ0100 RENESAS Page 9 of 63
Sep 5, 2016

R-IN32 Series User's Manual (uNet3/SNMP edition)

2. Specification Outline

TCP/IP protocol stack

Immediately updated by a callback
ifSpeed
ifOperStatus

Updated every 100 milliseconds
(the shortest interval)

MIB

\ 4

AT

Interface [ifOperStatus_]

IP
ICMP
TCP
ubpP

SNMP module

[Updated immediately]

MIB

System group

Interface group [ifNumber...ifAdminStatus]

Bl

SNMP group
Figure 2.1 Updating Data in the MIB-Il Objects
R18UZ0063EJ0100 RENESAS Page 10 of 63

Sep 5, 2016

R-IN32 Series User's Manual (uNet3/SNMP edition) 2. Specification Outline

2.4 Generating MIB Trees

Users are generally required to generate an MIB tree to implement SNMP in their systems. In this system, a tree is
generated in memory (RAM) by using a two-way list when the system is initialized. The tree needs the OIDs of
individual objects (such as “1.3.6.1.2.1.1.1"), which take the form of numerals separated by “.” in this system. For
example, a vendor-specific private MIB object with the OID “1.3.6.1.4.1.1234.1.1” is configured as follows (highlighted

in gray).

/* The prefix for the MIB OID (add a period at the end) */
const VB snmp_mib_ven_pre_1[] ="1.3.6.1.4.1.1234."; [* Prefix OID */

/* The MIB OIDs following the prefix (add a period at the end) */

const VB snmp_mib_1234 1 1[] ="1.1.0"; [* Descr (1.3.6.1.4.1.1234.1.1) */
const VB snmp_mib_1234 1 2[] ="1.2.0"; [* Version (1.3.6.1.4.1.1234.1.2) */
const VB snmp_mib_1234 1 3[] ="1.3.0"; [* Status (1.3.6.1.4.1.1234.1.3) */
const VB snmp_mib_1234 1 4[] ="1.4.0"; /* User name (1.3.6.1.4.1.1234.1.4) */

As shown above, in the configuration of vendor-specific private MIBs, users need to include the information in the form
of the OID strings, data types of individual objects, and their initial values in the C-language source file.

This system reads the strings in the source file and form a tree of MIB on memory as shown in Figure 2.2. The MIB-11
tree includes objects associated with TCP or UDP sockets. These objects (nodes in the tree) should be generated and
deleted as users generate and delete sockets in their applications. This means that the generated MIB-II tree is modified
while data are being processed. However, it is not possible to add objects (nodes) in a vendor-specific private MIB.

Furthermore, the number of nodes to be used in the tree is only figured out after it has been generated, which means that
the user cannot tell how much memory will be used in advance. Therefore, the function for initializing this system
(snmp_ini) is configured to return the number of nodes (amount of memory) needed to generate a tree for debugging.

R18UZ0063EJ0100 RENESAS Page 11 of 63
Sep 5, 2016

R-IN32 Series User's Manual (uNet3/SNMP edition) 2. Specification Outline

Node

System

Nodes cannot be added

A TCP socket is generated

(cre_soc (IP_PROTO_TCP, node);) 1.3.6.1.4.1.1234.1.1

Nodes can be added

Node
(tcpConnState)

Figure 2.2 MIB Tree

R18UZ0063EJ0100 RENESAS Page 12 of 63
Sep 5, 2016

R-IN32 Series User's Manual (uNet3/SNMP edition) 2. Specification Outline

2.5 Vendor-Specific MIB and Callback Function

Values for the objects in a vendor-specific private MIB are changed in two ways. One way is to obtain the target value by
calling the get_mib_obj function and change it by calling the set_mib_obj function from a user task (process 1 in Figure
2.3). The other way is to change the value in the callback function issued by the receiving task in the system, in response
to packets such as GetRequest from the manager (process 2 in Figure 2.3). With the latter approach, when this system
receives GetRequest, for example, from the manager, the user can change the argument of the callback function to be
returned to the desired value and exit the function. Then, the system returns the callback with the new value to the
manager.

In summary, if you want to change the value in an object of a vendor-specific private MIB at any time, use the functions
get_mib_obj and set_mib_obj, and if you want to change the value on reception of a request from the manager, use a

callback function.
1 Get/Set
User application task get_mib_obj() ———
L set_mib_obj() Process 1

A 4

p
User-defined callback function Vendor’s
apl_snmp_ch() private MIB

A

Process 2

Receiving task in SNMP
snmp_rcv_tsk()

?

Get Get
Request Response

Get
Next/Buk
Request

I

Set
Request

| \ 4
[SNMP manager J

Figure 2.3 Vendor-Specific MIB and Callback Functions

R18UZ0063EJ0100 RENESAS Page 13 of 63
Sep 5, 2016

R-IN32 Series User's Manual (uNet3/SNMP edition) 3. Outline of the Structure

3. Outline of the Structure

3.1 File Structure

The installer of this system copies the files to the uC3/Compact/SNMP folder (for the compact version of the operating
system) or the pC3Std/SNMP folder (for the standard version of the operating system). The file structure of the system is
shown below.

Table 3.1 File Structure

Folder File Name Description
SNMP/doc uNet3_SNMP.txt Update history
uNet3_SNMAUsersGuide.pdf User’s guide
SNMP/inc (header file) snmp.h User-defined function
snmp_ber.h BER (basic encoding rules) of ASN.1 (Abstract
Syntax Notation One)
snmp_def.h Internal definition
snmp_lib.h For creating libraries
snmp_mac.h Macro for configuration
snmp_mib.h Macro for defining MIB-II IDs
snmp_net.h Fixed values for MIB-II
SNMP/src (source file) snmp.c User-defined functions and functions for tasks
snmp_ber.c Encoding and decoding in BER
snmp_mib.c For processing the MIB tree
snmp_mib_dat.c Data in MIB-II
snmp_tcp.c For TCP/IP protocol stack
SNMP/lib/ (library) SNMP[processor name, etc.].* Libraries

(excluding snmp_mib_dat.c)

[processor name]/ Project file for building libraries
SNMP[processor name, etc.].
[extension of the project]

An application which uses the API functions of this system requires snmp.h among its files of source code. The other
header files are for use in the system or in the user’s configuration files (snmp_cfg.c, snmp_mib_cfg.c).

The source files composing the library of this system do not include snmp_mib_dat.c because this file contains variable
data (sysDescr of MIB-II for defining the name and version identifier of the device, for example). Therefore, the user will
need to create this file.

To use this system, settings are required by using the files listed in the table below. These files are included in the folders
for the sample program. For example, the configuration files are included in the Sample/EVMAM3358.SNMP folder for
the Cortex-A8 (AM335Xx).

Table 3.2 Configuration Files

File Name Content
snmp_cfg.h Macros used for configuring the SNMP
snmp_cfg.c Variables for configuring the SNMP
snmp_mib_cfg.h Macros used for configuring the vendor’s private MIB
snmp_mib_cfg.c Variables for configuring the vendor’s private MIB
R18UZ0063EJ0100 RENESAS Page 14 of 63

Sep 5, 2016

R-IN32 Series User's Manual (uNet3/SNMP edition) 3. Outline of the Structure

3.2 Libraries

The libraries of this system are built by using the same compiler options as for the operating systems and the TCP/IP
protocol stack. For example, this system, when used with a Cortex-A8 (AM335x), includes four libraries representing the
four combinations of the ARM and Thumb states and whether VFP is or is not present. Each file name starts with
“SNMP”, followed by the same strings as those of the operating systems or the protocol stack.

[Code Composer Studio]

ARM/Thumb Endian VFP Library Name
ARM Little — SNMPcortexal.lib
Thumb Little — SNMPcortexatl.lib
ARM Little VFPv3 SNMPcortexafl.lib
Thumb Little VFPv3 SNMPcortexaftl.lib

The libraries are built into this system without including debugging information. The libraries having already been built
in this way means that this system cannot be traced by a debugger. If you want to trace the source code of this system,
rebuild the library with debugging information.

R18UZ0063EJ0100 RENESAS Page 15 of 63
Sep 5, 2016

R-IN32 Series User's Manual (uNet3/SNMP edition) 3. Outline of the Structure

3.3 Module Structure Overview

This section describes major structures of the modules used in this system. Three tasks are provided in this system and
implemented in the function snmp.c as shown below.

Table 3.3 Tasks

Number Function for Each Task Description
1 snmp_rcv_tsk Receive SNMP packets and send responses
snmp_tim_tsk Count running time
3 snmp_trp_tsk Send traps and Inform packets

This system also requires memory area where the MIB (MIB-11 and vendor-specific private MIB) information are to be
stored. The TCP/IP protocol stack also sums up data for the MIB-11 and updates this area. Behavior of each task is
described from the next section.

3.3.1 Task for Receiving SNMP Packets and Sending Responses

This task receives SNMP packets and sends response packets. A task waits for incoming SNMP packets at port 161 as
UDP by issuing the rcv_soc command of the pNet3 stack, and, on receiving data, it returns a response to the manager
from the same port by issuing the snd_soc command of pNet3.

For example, when this task receives a packet such as GetRequest, it refers to the data in the relevant MIB and generates
a response packet based on the SNMP specifications. These packets are generated by encoding or decoding the data
based on the BER (basic encoding rules) of ASN.1. An authenticationFailure trap may be returned (from the task for
sending traps) if the community string of the received packet does not match that set by the user.

When this task receives a packet such as SetRequest, it updates the value in the relevant MIB object.

R18UZ0063EJ0100 RENESAS Page 16 of 63
Sep 5, 2016

R-IN32 Series User's Manual (uNet3/SNMP edition) 3. Outline of the Structure

[User application J

| 4

Get/Put
Trap/ "t‘rfg(r)m get_mib_obj()
= put_mib_obj()

‘ \

e ™

Vendor’s
> p| private MIB

Receiving task in SNMP
snmp_rcv_tsk()

Get Get MIB-II
Request Response

Get
Next/Bulk
Request
|
Set
Request

TCP/IP protocol stack

Port
161

v

Dynamic Port
port 162

[SNMP manager J

Figure 3.1 Task for Receiving and Responding Packets between MIBs

R18UZ0063EJ0100 RENESAS Page 17 of 63
Sep 5, 2016

R-IN32 Series User's Manual (uNet3/SNMP edition) 3. Outline of the Structure

3.3.2 Task for Counting Running Time

This task obtains a value which indicates how much time has passed since power was supplied to the device. The
obtained value is stored in the object “sysUpTime” in the system group. The value is obtained by using the service call
API, “get_tim” (get system time). After waking up within an interval such that the value of the thirty-two lower-order
bits of the returned system time value does not overflow, this task converts the returned value into the running time of the
SNMP and stores it in the relevant MIB. As a whole, the execution time of this task is very short.

Do not use the set_tim command to change the system time while this task is running.

3.3.3 Task for Sending Traps

This task sends traps and Inform packets. There are two types of traps; standard traps and vendor-specific traps. The user
can enable and disable standard traps by using the configuration macros or the API functions.

When a vendor-specific traps is to be sent, the user’s application task issues a call of the “snd_trp” function. Once the
task sends a message to the destination, it waits until completion of the transmission of the trap, which is the time when
uNet3 has finished sending the trap by snd_soc (UDP transmission).

When this task sends an Inform packet, it waits until receiving a response packet (rcv_soc) from the destination. This task
is not needed for operations which do not use traps and Inform packets.

R18UZ0063EJ0100 RENESAS Page 18 of 63
Sep 5, 2016

R-IN32 Series User's Manual (uNet3/SNMP edition)

4. OS_Resources

4.

OS_Resources

This section describes the resources for the operating systems.

4.1

The operating system resources used in this system are listed in the table below. Among the resources, task 3, semaphore

List of OS Resources

2, event flag 2, and mailbox (ID_xxx_TRP) (those highlighted in gray in the table) are not needed for operations which
do not use traps.

The table of resources is automatically generated in the standard version of the operating system. For the compact
version, users are required to configure the resources listed in Table 4.1 by the configurator provided with the operating

system.
Table 4.1 List of OS Resources (1/2)
No. Resource Settings (Default or Sample Value) Content

1 Task 1 Defined ID name ID_SNMP_TSK_RCV Receiving SNMP

Function name of the task snmp_rcv_tsk packets and sending
— — the response packets

Initial value for the priority level 6
Extended information None
Executable state None
Restrictions on the task None
Stack size 768 (local stack)

2 Task 2 Defined ID name ID_SNMP_TSK_TIM Counting running time
Function name of the task snmp_tim_tsk
Initial value for the priority level 6
Extended information None
Executable state None
Restrictions on the task None
Stack size 512 (local stack)

3 Task 3 Defined ID name ID_SNMP_TSK_TRP Sending traps and
Function name of the task snmp_trp_tsk Inform packets
Initial value for the priority level 6
Extended information None
Executable state None
Restrictions on the task None
Stack size 512 (local stack)

4 Semaphore 1 | Defined ID name ID_SNMPA_SEM_MIB Excluding other MIBs
Initial value for the number of resources 1
Maximum number of the resources 1 1
Attribute TA_TFIFO

5 Semaphore 2 | Defined ID name ID_SNMPA_SEM_TRP Excluding other trap
Initial value for the number of resources |1 resources
Maximum number of the resources 1 1
Attribute TA_TFIFO

R18UZ0063EJ0100 RENESAS Page 19 of 63

Sep 5, 2016

R-IN32 Series User's Manual (uNet3/SNMP edition)

4. OS_Resources

Table 4.1 List of OS Resources (2/2)
No. Resource Settings (Default or Sample Value) Content

6 Event flag 1 Defined ID name ID_SNMP_FLG_STS State of the task
Initial value 0x0
Queueing of tasks to be executed TA_TFIFO
To permit multiple tasks to wait TA_WSGL
Clear the flag None

7 Event flag 2 Defined ID name ID_SNMP_FLG_TRP State of handling a
Initial value 0x0 trap
Queueing of tasks to be executed TA_TFIFO
To permit multiple tasks to wait TA_WSGL
Clear the flag None

8 Mailbox Defined ID name ID_SNMP_MBX_TRP Sending a command
Queueing of tasks to be executed TA_TFIFO block of a trap
Message queueing TA_MFIFO

9 UDP socket Defined ID name ID_SNMP_UDP_SOC UDP socket
Interface binding EthernetO (optional)
IP version number IPv4
Protocol UDP
Local port 161
Timeout value for snd_soc 2000
Timeout value for rcv_soc 2000

R18UZ0063EJ0100 ;{ENESAS Page 20 of 63

Sep 5, 2016

R-IN32 Series User's Manual (uNet3/SNMP edition) 4. OS_Resources

4.2 Configuring OS Resources

Specific variables are required for configuring the resources for the operating system. In this system, the variables have
been already implemented in the sample program file snmp_cfg.c.

Configuration of the resources for the compact version of the operating system is as follows:

Declare the variable for the structure T_SNMP_CFG_QOS as “snmp_cfg_os”. Assign the ID of each resource which is set
by the configurator to the corresponding variables and initialize each of them. This system uses the values read from
these variables (assigned to the ROM area).

const T_SNMP_CFG_OS snmp_cfg_os ={

ID_SNMP_TSK_RCV, /*task 1 */
ID_SNMP_TSK_TIM, /* task 2 */
ID_SNMP_TSK_TRP, /* task 3 */
ID_SNMP_SEM_MIB, /* semaphore 1 */
ID_SNMP_SEM_TRP, /* semaphore 2 */
ID_SNMP_FLG_STS, /* event flag 1 */
ID_SNMP_FLG_TRP, /* event flag 2 */
ID_SNMP_MBX_TRP, /* mailbox */

ID_SNMP_UDP_SOC /* UDP socket */

Configuration of the resources for the standard version of the operating system (such as the Cortex-A8 (AM335x)) is as
follows:

The variables representing the information for generating resources are implemented in the snmp_cfg.c file as shown
below. The resources for the operating system is automatically generated using these variables.

const T_CTSK snmp_cfg_os_tsk_rcv = {TA_HLNG, 0, (FP)snmp_rcv_tsk, TSK_RCV_PRI, TSK_RCV_STK, 0, 0};
const T_CTSK snmp_cfg_os_tsk_tim = {TA_HLNG, 0, (FP)snmp_tim_tsk, TSK_TIM_PRI, TSK_TIM_STK, 0, 0};
const T_CTSK snmp_cfg_os_tsk_trp = {TA_HLNG, 0, (FP)snmp_trp_tsk, TSK_TRP_PRI, TSK_TRP_STK, 0, 0};
const T_CSEM snmp_cfg_os_sem_mib = {TA_TFIFO, 1, 1, 0},

(Omitted)

The priority level and the stack size of individual tasks are configured in the configurator which is provided with the
compact version of the operating system, or use the macro in the snmp_cfg.f for the standard version of the operating
system.

R18UZ0063EJ0100 RENESAS Page 21 of 63
Sep 5, 2016

R-IN32 Series User's Manual (uNet3/SNMP edition) 5. Configuring the SNMP

5. Configuring the SNMP

Implement the configuration macros for this system in the files snmp_cfg.h and snmp_cfg.c. Implement the identifier
macro described in Section 5.1, Basic Settings in the snmp_cfg.h file and the configuration variables described from the
subsequent sections in the snmp_cfg.c file.

5.1 Basic Settings

The macros defined in the file snmp_cfg.h are shown in the table below. The macros for “OS and network™ in this table
are not used for the compact version of the operating system. Instead, the user needs to set the priority level and the stack
size for individual tasks.

Table 5.1 List of Configuration Macros (1/2)
Category Macro Definition Example Value Description
SNMP CFG_SNMP_NET_DEV_CNT 1 The number of network devices to be used, in
other words, the number of LAN ports to be
used.
Always set 1.
CFG_SNMP_NET_DEV_NUM 1 The number given to each network device to be

used.
Set 1 or 2.

CFG_SNMP_MAX_SOC_CNT

DEF_NET_SOC_MAX

The maximum number of the TCP and UDP
sockets to be generated in the pNet3, which is
set by net_cfg.c (the default value of the pNet3
is DEF_NET_SOC_MAX).

CFG_SNMP_MAX_TCP_CNT

DEF_NET_TCP_MAX

The maximum number of the TCP sockets to
be generated in the pNet3, which is set by
net_cfg.c (the default value of the pNet3 is
DEF_NET_TCP_MAX).

CFG_SNMP_MAX_ARP_CNT

DEF_NET_ARP_MAX

The number of entries in the ARP table to be
used in the pNet3, which is set by net_cfg.c
(the default value in the puNet3 is
DEF_NET_ARP_MAX).

CFG_SNMP_MAX_TRP_CNT

12

The maximum number of the traps and Inform
packets (including the standard traps from this
system) which are transmitted at the same
time.

Set a value between 0 and 32. Set 0 if no traps
are to be used.

CFG_SNMP_MSG_VAR_CNT

32

The maximum number of the variable-bindings
to be added to the SNMP packet.

Set an integer value greater than or equal to 4.

CFG_SNMP_MIB_NOD_CNT

800

The maximum number of the nodes in the MIB
tree.

CFG_SNMP_MAX_MIB_DEP

32

The maximum depth of nodes in the MIB tree,
in other words, the maximum number of the
dotted strings of the object ID.

CFG_SNMP_MIB_DAT_LEN

(64 + 1)

The maximum amount of data allowed in a MIB
object in bytes, including the terminating null
character.

CFG_SNMP_GEN_TRP_ENA

TRP_ALL BIT

Enables and disables the standard traps when
the system is initialized.

R18UZ0063EJ0100
Sep 5, 2016

RENESAS

Page 22 of 63

R-IN32 Series User's Manual (uNet3/SNMP edition)

5. Configuring the SNMP

Table 5.1 List of Configuration Macros (2/2)
Category Macro Definition Example Value Description
MIB-II CFG_SNMP_MIB2_IF_ENA 1 Enables (1) and disables (0) the Interfaces
group.
CFG_SNMP_MIB2_AT_ENA 1 Enables (1) and disables (0) the Address
Translation group.
CFG_SNMP_MIB2_IP_ENA 1 Enables (1) and disables (0) the IP group.
CFG_SNMP_MIB2_ICMP_ENA |1 Enables (1) and disables (0) the ICMP group.
CFG_SNMP_MIB2_TCP_ENA 1 Enables (1) and disables (0) the TCP group.
CFG_SNMP_MIB2_UDP_ENA 1 Enables (1) and disables (0) the UDP group.
CFG_SNMP_MIB2_SNMP_ENA |1 Enables (1) and disables (0) the SNMP group.
OSand |TSK_RCV_PRI 6 Priority level For task 1 (receiving SNMP
network packets)
TSK_TIM_PRI 6 For task 2 (counting running
times)
TSK_TRP_PRI 6 For task 3 (sending traps)
TSK_RCV_STK 1024 Stack sizes in For task 1 (receiving SNMP
bytes packets)
TSK_TIM_STK 512 For task 2 (counting running
times)
TSK_TRP_STK 768 For task 3 (sending traps)
CFG_SNMP_RCV_MSG_LEN 2048 The maximum size of receiving SNMP
message in bytes
CFG_SNMP_SND_MSG_LEN CFG_SNMP_RCV_MSG | The maximum size of sending SNMP message
_LEN in bytes
R18UZ0063EJ0100 RENESAS Page 23 of 63

Sep 5, 2016

R-IN32 Series User's Manual (uNet3/SNMP edition) 5. Configuring the SNMP

5.1.1 Configuring the SNMP

CFG_SNMP_NET_DEV_CNT

This macro is used to specify the number of network devices to be used, in other words, the number of LAN ports.
Always set 1.

CFG_SNMP_NET_DEV_NUM

This macro is used to specify the number given to the network device to be used. This number should be same as the
number (from 1) defined in the puNet3 TCP/IP protocol stack, which corresponds to the number of the LAN port to be
used. For example, the value for this macro is 1 if a single LAN port is to be used. The function gNET_ADR in the
net_cfg.c file is used for the configuration of LAN ports. The value obtained by adding 1 to the index (from 0) of the
array variable gNET_ADR is the device number.

CFG_SNMP_MAX_SOC_CNT

This macro is used to specify the value representing the maximum number of the TCP and UDP sockets to be
generated in the pNet3.

CFG_SNMP_MAX_TCP_CNT
This macro is used to specify the maximum number of the TCP sockets to be generated in the uNet3.

CFG_SNMP_MAX_ARP_CNT
This macro is used to specify the number of entries in the ARP table to be used in the uNet3.

The values for these three macros above should be same as each of those defined in the configuration file of the pNet3
(net_cfg.c), in other words, the values in CFG_NET_SOC_MAX, CFG_NET_TCP_MAX, and CFG_NET_ARP_MAX.

CFG_SNMP_MAX_TRP_CNT

This macro is used to specify the maximum number of the traps which are transmitted at the same time. Set 0 if traps are
not to be used. In this case, the task for sending traps will be restrained from waking up. The maximum number of the
resources for traps, which are used internally, is calculated as follows.

x = the number of destinations for sending the traps specified in snmp_cfg_trp
y = the number of managers specified by snmp_cfg_mgr or currently connecting to the device
z = the number of traps sent from multiple tasks at the same time by calling the function snd_trp

CFG_SNMP_MAX_TRP_CNT = (x *2) +y + 2

If Inform packets are also to be sent, the value is calculated as follows.

CFG_SNMP_MAX_TRP_CNT = (x *2) +y + (z * 3)

The resources required for x in issuing the standard trap (1) cold/warmsStart and (2) linkUp are doubled because these
traps may be used at the same time. The amount of resources required for issuing the authenticationFailure trap is
expressed by y. The amount of resources required at the time of issuing a snd_trp call is represented by z. When an
Inform packet is issued, the cancellation and the response to the notification make the required resources three times the
value expressed by z.

R18UZ0063EJ0100 RENESAS Page 24 of 63
Sep 5, 2016

R-IN32 Series User's Manual (uNet3/SNMP edition) 5. Configuring the SNMP

CFG_SNMP_MSG_VAR_CNT

This macro is used to specify the value representing the maximum number of variable-bindings contained in a SNMP
packet to be received or transmitted. Set an integer value greater than or equal to 4.

This system returns the error code “tooBig” to the destination if the received v1 packets contain more variable-bindings
than specified in this macro.

CFG_SNMP_MIB_NOD_CNT

This macro is used to specify the number of nodes in the MIB tree, which is only figured out after it is generated by the
snmp_ini function. Accordingly, check if the snmp_ini function is terminating normally by setting a value greater than
the expected one in this macro. If the value set in this macro is smaller than it should be, the snmp_ini function returns
the error code E_ NOMEM. After successful execution of the snmp_ini function, the value indicating the number of
nodes for the newly generated MIB tree is stored in the buffer pointed to by the argument of the function. Users can set
this value (that is the number of nodes) in this macro.

CFG_SNMP_MAX_MIB_DEP

This macro is used to specify the maximum depth of the tree, consisting of the MIB-II and the vendor-specific MIB. For
example, if the OID of the vendor-specific MIB tree is set as “1.3.6.1.4.1.1234.1.2.3.4.5.6.7”, which is composed of
fourteen strings, the value to be set in this macro definition is 14. In other words, set the dotted strings of the OID in this
macro.

CFG_SNMP_MIB_DAT_LEN

This macro is used to specify the maximum amount of data allowed in a MIB object in bytes. The SNMP specification
allows four-byte integer data or 65,535 characters (bytes) of octet string data. The memory used for these values can be
reduced, for example, by limiting the number of strings to 64 in sysDescr (defining names of the hardware and software)
in the system group of the MIB. In summary, this macro is especially designed to specify the maximum string size. Note
that the size includes a terminating null character. For example, set 65 to this macro for the data with the maximum
number of characters as 64.

On the other hand, CFG_SNMP_MIB_SYS DESCR_LEN in the snmp_mib_cfg.h file is used to specify the maximum
size of certain objects such as the maximum number of strings for sysDescr in the system group of the MIB. This means
that the value for this macro should be same or greater than the maximum amount of data specified in each object. The
error code E_BOVR is returned from the function snmp_ini if the value for this macro is smaller than the maximum
values specified in each macro.

CFG_SNMP_GEN_TRP_ENA

This macro is used to specify the standard traps to be enabled when the system is initialized. Example of implementation
is given below. Specify 0x00 for disabling all traps.

/* enabling all traps */
#define CFG_SNMP_GEN_TRP_ENA TRP_ALL_BIT

/* enabling coldStart and linkUp */
#define CFG_SNMP_GEN_TRP_ENA (COLD_STA_BIT | LINK_UP_BIT)

R18UZ0063EJ0100 RENESAS Page 25 of 63
Sep 5, 2016

R-IN32 Series User's Manual (uNet3/SNMP edition)

5. Configuring the SNMP

The macros used for enabling each trap are shown below.

Table 5.2 Macros for Setting Standard Traps
Number Macro Trap Name Remark
1 COLD_STA BIT coldStart
2 WARM_STA_BIT warmStart
3 LINK_DOWN_BIT linkDown Not supported
4 LINK_UP_BIT linkUp
5 AUTH_FAIL_BIT authenticationFailure
6 EPG_LOSS_BIT egpNeighborLoss Not supported
7 TRP_ALL_BIT All traps

This system sends a coldStart trap when the function snmp_ena (enabling this system) is issued the first time and sends a
warmsStart trap when the function is issued the second and subsequent times.

5.1.2

Configuring the MIB-II

CFG_SNMP_MIB2_*** ENA is used to enable and disable individual groups in the MIB-I1. For example, setting

CFG_SNMP_MIB2_SNMP_ENA to 0 disables the SNMP group. Although it reduces memory usage in the system by
eliminating the part occupied by the given group, when the manager requests a value from the MIB, this system returns
an error indicating that the relevant MIB entry does not exist.

5.1.3

Configuring the Operating System

TSK_*** PRI specifies priority levels of individual tasks in this system. The default value for the number of tasks in the
TCP/IP protocol stack is four, which is specified in the macro DEF_NET_TSK_PRI in net_cfg.h, and the priority level
for the tasks in this system should be set to a value lower than that (six).

TSK_***_ STK specifies the stack size for the tasks in this system in bytes. For example, TSK_RCV_STK is used for
specifying the stack size of the receiving task (shown in Figure 2.3). Given that the receiving task issues a user-defined
callback function, if the callback includes a process that uses a large amount of stack space, the value for this macro
should be large enough to cover this. Users are not required to change other values except for the receiving task.

CFG_SNMP_RCV_MSG_LEN and CFG_SNMP_SND_MSG_LEN are used for specifying the maximum size of the
SNMP messages to be received or transmitted in bytes. When this system calls the rcv_soc function (reception of UDP
packets) to receive an SNMP message, the size of the buffer where the message will be stored will have been set as an
argument for the function by using the value in CFG_SNMP_RCV_MSG_LEN. Note that this system always stores the
message as a whole. If the reception of a message longer than the size given by this macro is attempted, the message is
discarded and there is no response to the manager. In CFG_SNMP_SND_MSG_LEN, specify the size of the buffer
where transmission messages are held. Generally, set the same value as the macro for reception.

R18UZ0063EJ0100

Sep 5, 2016

RENESAS

Page 26 of 63

R-IN32 Series User's Manual (uNet3/SNMP edition) 5. Configuring the SNMP

5.1.4 Examples of Implementation

Examples of implementation for the basic settings are shown below.

/* The number of network devices (LAN ports) (always 1) */

#define CFG_SNMP_NET_DEV_CNT 1 /* Number of network devices (1) */
/* The numbers given to individual network devices to be used (1 or 2) */
#define CFG_SNMP_NET_DEV_NUM 1 /* Network devices number (1..2) */

/* The maximum number of network sockets and TCP sockets (same as the value in net_cfg.c) */
#include "net_cfg.h"

#define CFG_SNMP_MAX_SOC_CNT DEF_NET_SOC_MAX

#define CFG_SNMP_MAX_TCP_CNT DEF_NET_TCP_MAX

#define CFG_SNMP_MAX_ARP_CNT DEF_NET_ARP_MAX

/* The maximum number of the traps and Inform packets which are transmitted at the same time (0 means no traps will

be used) */
#define CFG_SNMP_MAX_TRP_CNT 12 /* Number of traps at any time (0 or 1...32) */
/* The maximum number of variable bindings to be added to the SNMP packet */
#define CFG_SNMP_MSG_VAR_CNT 32 /* Maximum number of variable bindings */
/* The maximum number of nodes in the MIB tree */
#define CFG_SNMP_MIB_NOD_CNT 680 /* Number of nodes in the MIB tree */
/* The maximum depth of the nodes in the MIB tree (the maximum number of the strings of the OID) */
#define CFG_SNMP_MAX_MIB_DEP 32 /* Maximum depth of the MIB tree */

/* The maximum amount of data allowed in a MIB object

The maximum length of octet string data specified by using DESCR_LEN in the snmp_mib_cfg.c, including the
terminating null character */

#define CFG_SNMP_MIB_DAT_LEN (64 +1) /* Maximum size of the MIB data */

/* Generic trap enabled */

/* Specify the standard traps to be sent */

/* TRP_ALL_BIT specifies all traps (no transmission of traps when the link is down) */
#define CFG_SNMP_GEN_TRP_ENA TRP_ALL_BIT

/* MIB2 group selector */
/* Enabling (1) and disabling (0) the groups of MIB2 */
#define CFG_SNMP_MIB2_IF_ENA 1 [* Interfaces (1.3.6.1.2.1.2) */

#define CFG_SNMP_MIB2_AT_ENA 1 /*Addresstrans (1.3.6.1.2.1.3) %/
#define CFG_SNMP_MIB2_IP_ENA 1 FIP (1.3.6.1.2.1.4) */
#define CFG_SNMP_MIB2_ICMP_ENA 1 /*ICMP (1.3.6.1.2.1.5) */
#define CFG_SNMP_MIB2_TCP_ENA 1 /*TCP (1.3.6.1.2.1.6) */
#define CFG_SNMP_MIB2_UDP_ENA 1 /*UDP (1.3.6.1.2.1.7) */
#define CFG_SNMP_MIB2_SNMP_ENA 1 /* SNMP (1.3.6.1.2.1.11) ¥/

[* Task priority */
[* Priority levels of the SNMP tasks for the standard version of the operating systems */
/* Priority levels of the SNMP tasks for the compact version of the operating systems are specified by the configurator

*/
#define TSK_RCV_PRI 6 /* Receive task */
#define TSK_TIM_PRI 6 [* Timer task */
#define TSK_TRP_PRI 6 [* Trap task */
R18UZ0063EJ0100 RENESAS Page 27 of 63

Sep 5, 2016

R-IN32 Series User's Manual (uNet3/SNMP edition) 5. Configuring the SNMP

/* Task stack size */

#define TSK_RCV_STK 1024 /* Receive task (byte) */
#define TSK_TIM_STK 512 /* Timer task (byte) */
#define TSK_TRP_STK 768 [* Trap task (byte) */

/* Maximum size of an SNMP message (4-byte aligned) */

/* The maximum size of an SNMP messages to be received or transmitted */

#define CFG_SNMP_RCV_MSG_LEN 2048 [* Message can receive */
#define CFG_SNMP_SND_MSG_LEN CFG_SNMP_RCV_MSG_LEN /* Message can send*/

R18UZ0063EJ0100 RENESAS Page 28 of 63
Sep 5, 2016

R-IN32 Series User's Manual (uNet3/SNMP edition) 5. Configuring the SNMP

5.2 Configuring Managers

This section describes how to designate managers. The user can select which managers to allow as the source of SNMP
messages. If an SNMP packet from a manager other than the selected ones is received, this system discards the packet on
reception. It is also possible to receive all SNMP packets without limiting the source managers.

To select managers, declare the array variable in the T_SNMP_CFG_MGR structure as “snmp_cfg_mgr”. This structure
contains the following variable.

[* Manager */

typedef struct t_snmp_cfg_mgr {
T_NODE* nod; /* Remote node */

} T_SNMP_CFG_MGR,;

Number Type Variable Name Description

1 T_NODE nod The network device number of the manager to allow receiving messages
from and its IP address.

For T_NODE, specify 0 in “port” and IP_VER4 in “ver”.

Examples of implementation are given below. Add a null character at the end to terminate the array.

static T_NODE snmp_cfg_mgr_nod_1 = {O/*port*/, IP_VER4, NET_DEV_ID, 0xcOa8016¢€};

/* 0xc0a8016e = 192.168.1.110 */
static T_NODE snmp_cfg_mgr_nod_2 = {0/*port*/, IP_VER4, NET_DEV_ID, 0xc0a80165};

/* 0xc0a80165 = 192.168.1.101 */

T_SNMP_CFG_MGR snmp_cfg_mgr[] = {
{&snmp_cfg_mgr_nod_1},
{&snmp_cfg_mgr_nod_2},

0

This is an example of receiving SNMP packets from all the managers. Set an empty value in the variable as shown
below.

/* Receive SNMP packets from all managers (managers not specified) */
T_SNMP_CFG_MGR snmp_cfg_mgr[] = {
0

R18UZ0063EJ0100 RENESAS Page 29 of 63
Sep 5, 2016

R-IN32 Series User's Manual (uNet3/SNMP edition) 5. Configuring the SNMP

5.3 Configuring Communities

This section describes how to configure the community. Declare the array variable in the structure T_SNMP_CFG_COM
as “snmp_cfg_com”. This structure contains the following variables.

/* Community */

typedef struct t_snmp_cfg_com {
VB* str; [* Community strings */
UB sts; /* Access status */

} T_SNMP_CFG_COM;

Number Type Variable Name Description
1 VB* str A string which represents the community name
2 uB sts Access mode

STS_RO: read only
STS_RW: readable and writable

Examples of implementation are given below. Configuring multiple communities is possible. Add a null character at the
end to terminate the array.

static VB snmp_cfg_com_ro[] = "public”; /* Read only */
static VB snmp_cfg_com_rw[] = "private”; /* Read and write */

T_SNMP_CFG_COM snmp_cfg_com[] = {
{snmp_cfg_com_ro, STS_ROY},
{snmp_cfg_com_rw, STS_RW},

{0, 0}

R18UZ0063EJ0100 RENESAS Page 30 of 63
Sep 5, 2016

R-IN32 Series User's Manual (uNet3/SNMP edition) 5. Configuring the SNMP

5.4 Configuring Destinations for Sending Standard Traps

This section describes how to configure the destination for sending standard traps. Declare the array variable in the
structure T_SNMP_CFG_TRP as “snmp_cfg_trp”. This structure contains the following variables.

/* Trap */

typedef struct t_snmp_cfg_trp {
VB* str; [* Community strings */
T_NODE* nod; /* Remote node */
UB ver; /* Protocol version */
ID id; /* ID (Reserve) */

}T_SNMP_CFG_TRP;

Number Type Variable Name Description
1 VB* str A string which represents the community name of the destina-tion for
sending traps.
2 T_NODE* nod The network device number of the destination and its IP address.
For T_NODE, specify 0 in “port” and IP_VER4 in “ver”.
3 uB ver The version number of the trap
Version 1: SNMP_VER_V1
Version 2c: SNMP_VER_V2C
4 ID id Always set 0 for the current version numbers.

Examples of implementation are given below. Add a null character at the end to terminate the array.

static VB snmp_cfg_trp_com_1][] = "public";
static VB snmp_cfg_trp_com_2[] = "public";
static T_NODE snmp_cfg_trp_nod_1 = {0/*port*/, IP_VER4, NET_DEV_ID, 0xc0a8016e};
/* 0xc0a8016e = 192.168.1.110 */
static T_NODE snmp_cfg_trp_nod_2 = {0/*port*/, IP_VER4, NET_DEV_ID , Oxc0a80165};
/* 0xc0a80165 = 192.168.1.101 */

T_SNMP_CFG_TRP snmp_cfg_trp[] ={
{snmp_cfg_trp_com_1, &nmp_cfg_trp_nod_1, SNMP_VER_V2C, 0},
{snmp_cfg_trp_com_2, &snmp_cfg_trp_nod_2, SNMP_VER_V1, 0},
{0, 0, 0, 0}

The configuration described here applies to standard traps which are sent within this system such as coldStart and linkUp.
Destinations for vendor’s traps, which users send by calling the API function snd_trp, are specified in the respective
arguments.

R18UZ0063EJ0100 RENESAS Page 31 of 63
Sep 5, 2016

R-IN32 Series User's Manual (uNet3/SNMP edition) 5. Configuring the SNMP

5.5 Configuring Standard Callbacks for Vendor’s Private MIB

This section describes how to configure the standard callback functions for the vendor’s private MIB (Figure 2.3).
Declare the array variable in the structure T_SNMP_CFG_CBK as “snmp_cfg_cbk”. This structure contains the
following variables.

/* Callback functions */
typedef struct t_snmp_cfg_cbk {

ER (*fnc)(T_SNMP_CFG_CBK_DAT*);
} T_SNMP_CFG_CBK;

Number Type/Variable Name Description
1 ER (*fnc)(T_SNMP_CFG_CBK_DAT¥) A pointer to the standard callback function

Examples of implementation are given below. Only a single function may be recorded. Add a null character at the end to
terminate the array.

extern ER apl_snmp_cbk_O(T_SNMP_CFG_CBK_DAT?);

T_SNMP_CFG_CBK snmp_cfg_cbk[] = {
apl_snmp_cbk_0,
0

This is an example of implementation when callback function is not used. Set an empty value for the variable as shown
below.

T_SNMP_CFG_CBK snmp_cfg_cbk[] = {
0

The configuration described here applies to the standard callback function. In addition to the standard callbacks, users
can configure multiple callback functions for individual vendor-specific extended MIB objects. The standard callback
function is not issued for objects for which a separate callback function has been set. See the subsequent sections for how
to set the callback functions for each object.

R18UZ0063EJ0100 RENESAS Page 32 of 63
Sep 5, 2016

R-IN32 Series User's Manual (uNet3/SNMP edition) 6. Configuring Vendor-Specific MIBs

6. Configuring Vendor-Specific MIBs

This section describes how to configure the vendor-dependent MIBs. The system group of the MIB-I1 is macro-defined
in the configuration file snmp_mib_cfg.h. Vendor-specific extended MIBs are configured by setting variables in the
configuration file snmp_mib_cfg.c.

6.1 Configuring System Groups of the MIB-II

This section describes how to configure the system group of the MIB-II. This group contains sysDescr (defining the
name and version identifier of the hardware and software) and sysObjectID (vendor’s object ID). Define values for these
objects in the configuration file snmp_mib_cfg.h by using the macro definitions listed below.

Table 6.1 Macros for Configuring the System Group

Target Macro Definition Example Value Description
System CFG_SNMP_MIB_SYS DESCR_LEN (32+1) The maximum number of characters
group allowed in sysDescr including a null
terminator
CFG_SNMP_MIB_SYS_DESCR "HW:Ver.1.0.0 sysDescr (1.3.6.1.2.1.1.1)
SW:Ver.1.0.0" The name and version identifier of
the hardware and software
CFG_SNMP_MIB_SYS OBJECTID_LEN (32 +1) The maximum number of characters

allowed in sysObjectID including a
null terminator

CFG_SNMP_MIB_SYS_OBJECTID "1.3.6.1.4.1.1234" | sysObjectID (1.3.6.1.2.1.1.2)

The vendor’s object ID
(the ID of the enterprise field on the
trap (v1))

CFG_SNMP_MIB_SYS_CONTACT_LEN (32+1) The maximum number of characters
allowed in sysContact including a
null terminator
CFG_SNMP_MIB_SYS_CONTACT "Email address" sysContact (1.3.6.1.2.1.1.4)

The contact of the device manager
(e-mail address)

CFG_SNMP_MIB_SYS_NAME_LEN (32 +1) The maximum number of characters
allowed in sysName including a null
terminator

CFG_SNMP_MIB_SYS_NAME "System name" sysName (1.3.6.1.2.1.1.5)

Domain name of the device

CFG_SNMP_MIB_SYS LOCATION_LEN (32 +1) The maximum number of characters

allowed in sysLocation including a
null terminator

CFG_SNMP_MIB_SYS_LOCATION "First floor" sysLocation (1.3.6.1.2.1.1.6)
Physical location of the device
CFG_SNMP_MIB_SYS_SERVICES 64 sysServices (1.3.6.1.2.1.1.7)

A value which indicates the set of
services that this device may
potentially offer

R18UZ0063EJ0100 RENESAS Page 33 of 63
Sep 5, 2016

R-IN32 Series User's Manual (uNet3/SNMP edition) 6. Configuring Vendor-Specific MIBs

Examples of implementation are given below.

/* System sysDescr (1.3.6.1.2.1.1.1) */
/* The name and version identifier of the hardware and software */

#define CFG_SNMP_MIB_SYS DESCR_LEN (32+1) /*The maximum length including a terminating null
character */
#define CFG_SNMP_MIB_SYS_DESCR "HW:Ver.1.0.0 SW:Ver.1.0.0"

[* System sysObjectID (1.3.6.1.2.1.1.2) */

/* Vendor's Object ID */

[* sysObjectID in the system group of the MIB and the enterprise field of the trap (v1) */
#define CFG_SNMP_MIB_SYS_OBJECTID_LEN (32 + 1)

#define CFG_SNMP_MIB_SYS_OBJECTID "1.3.6.1.4.1.1234"

/* System sysContact (1.3.6.1.2.1.1.4) */

/* Contact of the device manager (e-mail address) */

#define CFG_SNMP_MIB_SYS_CONTACT_LEN (32+1)
#define CFG_SNMP_MIB_SYS_CONTACT "Email address"

/* System sysName (1.3.6.1.2.1.1.5) */

/* Domain name of the device */

#define CFG_SNMP_MIB_SYS_NAME_LEN (32+1)

#define CFG_SNMP_MIB_SYS_NAME "Evalution board"

/* System sysLocation (1.3.6.1.2.1.1.6) */

/* Physical location of the device */

#define CFG_SNMP_MIB_SYS_LOCATION_LEN (32 +1)
#define CFG_SNMP_MIB_SYS_LOCATION "First floor"

[* System sysServices (1.3.6.1.2.1.1.7) */
/* A value which indicates the set of services that this device may potentially offer */
#define CFG_SNMP_MIB_SYS_SERVICES 64 /* Application layer */

R18UZ0063EJ0100 RENESAS Page 34 of 63
Sep 5, 2016

R-IN32 Series User's Manual (uNet3/SNMP edition) 6. Configuring Vendor-Specific MIBs

6.2 Configuring Vendor’s Private MIBs

Users can add vendor-specific extended MIBs in the enterprise group under the private subtree of the MIB tree. This
section describes how to configure the extended MIBs.

The structure of the extended MIBs described in this section is shown below.

o private
0 enterprises

Vendor
MIB ID: O

A gl O DEa
0J01600J60J0)O, @[2 bt adedat |
@)

Object ID: 0 1 2. e

©0J010J010 (32) 39

Disk Memory
0 e Table e e Table
Disk Memory

c Entry e Entry
(1) (1) (2)

O@O@®& (3 OO O

#1 #2 #200 #551 #0 #1

TO@8 5
TOO® Yy

L@ ® &

Figure 6.1 Example of Implementing Vendor’'s Extended MIBs

R18UZ0063EJ0100 RENESAS Page 35 of 63
Sep 5, 2016

R-IN32 Series User's Manual (uNet3/SNMP edition) 6. Configuring Vendor-Specific MIBs

6.2.1 MIB IDs and Object IDs

In general, an object in a MIB is represented by numerals separated by “.” such as “1.3.6.1.4.1.1234.1.1”. In this system,
the objects are recognized by using ID codes (16-bit values of type UH). If, as shown in Figure 6.1, the MIB tree is split
into two groups with OIDs “1.3.6.1.4.1.1234.*” and “1.3.6.1.4.1.5678.*”, an MIB ID (8-bit value of UB type) is applied
to each group.

In configuration of an extended MIB tree, (1) declare the MIB table in the figure below in an array and then, (2) declare
the object table, (3) the data table, and (4) the callback function table in the table (1). Here, the index for the table (1)
(index to the array) selects an 8-bit MIB ID and the index for table (2) (index to the array) selects an object ID.

(1) Vendor’'s MIB table

T_SNMP_MIB_TBL snmp_mib_venO={

I* Prefix (e]]n] Data Callback Reserve */
{snmp_mib_ven_pre_0, snmp_mib_ven_abj_0, snmp_mib_ven_dat_0, snmp_mib_ven_cbk_0, 0}, /*MIB 0 */
{snmp_mib_ven_pre_1, snmp_mib_ven_abj_1, snmp_mib_ven_dat_1, snmp_mib_ven_cbk_1, 0}, /*MIB1*

penen @ ©
h

v

Vendor's
MIB ID
0

Vendor's
MIB ID
1
Obj. ID Obj.ID Obj.ID Obj.ID Obj.ID Obj.ID Obj.ID Obj. ID
0 1 2 3 4 5 6 7
(Object IDs)
((2) Object table in the MIB)
const T_SNMP_MIB snmp_mib_ven_obj_00= {
/*OID Length Type Access */
{snmp_mib_1234_1.1, DES_LEN, TYP_OCT_STR, STS_RO}, I* Descr */
{shmp_mib_1234 1.2, LEN_INT, TYP_INT, STS_RO}, /*Version */
{snmp_mib_1234 13 USFR IEN TYP OCT STR STS RW} /* User name */
{snmp_mib_1234 i i * Time ticks */
fonmp_mib_1234 (3) Data table in the MIB object }, ™" ¥
{snmp_mib_1234 1 TEN INT TVD 1D ADD TS D [* 1D add, */
{snmp_mib_1234 | T SNMP MIB DAT . _
" . ' MIB_| snmp_mib_ven_dat_00={
{snmp_mib_1234 | . N o
{0,0,0,0,0} (VP)snmp_mib_ven_descr, / Desgr
¥ e (VP)100, I* Version */
. (VP)snmp_mib_ven_user_name, /* User name */
(VP)21924 1. I*x Tima ticke (B:05:24 Q1) */
(VP)L, (4) Callback function table in the MIB object)
(VP)0xc0a
(VP)O, = I 4ncanconnr: o
(VP)42949{ const T_SNMP_CFG_CBK snmp_mib_ven_cbk_00= {
} CBK_NONE, [* Descr */
CBK_NONE, /* Version */
CBK_NONE, /* User name */
apl_snmp_cbk_0, [* Time ticks (6:05:24.81) */
apl_snmp_cbk_0, /* Status */
apl_snmp_cbk_0, [* 1P address (192.168.1.103) */
apl_snmp_cbk_0, /* Counter [0..4294967295] */
apl_snmp_cbk_0, /* Gauge [0..4294967295] */
h
Figure 6.2 Configuration of Vendor’'s Extended MIBs
R18UZ0063EJ0100 -QENESAS Page 36 of 63

Sep 5, 2016

R-IN32 Series User's Manual (uNet3/SNMP edition) 6. Configuring Vendor-Specific MIBs

IDs are used for recognizing individual MIBs and objects in the API functions and callback functions of this system with
the variable names “mib_id”and “obj_id”. The capacity of individual MIB ID and object ID is 8 bits and 16 bits,
respectively.

One MIB table can contain up to 256 groups and one object table can contain up to 65,536 objects.

An extended MIB is configured by declaring the array variable in the configuration file snmp_mib_cfg.c. The array
variables for the MIB table ((1) in above figure) and the data table ((3) in above figure) are assigned to the RAM area
because values to the variables are to be changed. Other array variables are assigned to the ROM area. Implementation of
array variables are described in the subsequent sections.

6.2.2 MIB Tables

As shown in Figure 6.1, the extended MIB is split into two groups. The MIB IDs are 0 for the group with the OID
“1.3.6.1.4.1.1234.*” and 1 for the other with the OID “1.3.6.1.4.1.5678.*”. At the beginning of the configuration, specify
pointers to the variables which will configure the objects at the group level. Declare the array variable in the
T_SNMP_MIB_TBL structure as “snmp_mib_ven”. This structure contains the following variables.

/* Vendor MIB table */
typedef struct t_snmp_mib_tbl {

const VB* pre; I* Prefix */

const T_SNMP_MIB* mib; /* Objects */
T_SNMP_MIB_DAT* dat; [* Data */
T_SNMP_CFG_CBK* cbk; /* Callback functions */
UH cnt; /* Predefined */

}T_SNMP_MIB_TBL;

Number Type Variable Name Description

1 const VB* pre A pointer to the prefix (strings) of the MIB OID

2 const T_SNMP_MIB* mib A pointer to the configuration variable for the T_SNMP_MIB
structure (MIB OID, size, type, access restriction)

3 T_SNMP_MIB_DAT* dat A pointer to the T_SNMP_MIB_DAT structure (object data)

T_SNMP_CFG_CBK* cbk A pointer to the configuration variable for the

T_SNMP_CFG_CBK structure (callback function for each object).
Set 0x00 if a callback function is not to be set.

5 UH cnt Predefined variable (used inside this system)

An example of implementation is given below. Two groups are configured in this example. Up to 255 MIB groups can be
configured in the snmp_mib_ven structure. Add a null character at the end to terminate the array.

/* Vendor MIB table */
/* The table of vendor-specific MIB groups (add {0, 0, 0, 0, 0} at the end) */
T_SNMP_MIB_TBL snmp_mib_ven[] ={

[* Prefix OID Data Callback Reserve */
{snmp_mib_ven_pre_0, snmp_mib_ven_obj_0, snmp_mib_ven_dat_0, 0x00, 0},
{snmp_mib_ven_pre_1, snmp_mib_ven_obj_1, snmp_mib_ven_dat_1, snmp_mib_ven_cbk_1, 0},
{0, 0,0, 0, 0}

The subsequent section describes how to configure the variables to the T_SNMP_MIB_TBL structure.

R18UZ0063EJ0100 RENESAS Page 37 of 63
Sep 5, 2016

R-IN32 Series User's Manual (uNet3/SNMP edition) 6. Configuring Vendor-Specific MIBs

6.2.3 OID Prefix

This section describes how to configure the variable “pre” of the T_SNMP_MIB_TBL structure. Specify the pointer to
the prefix (strings) of an OID in pre. Here, the prefix means the common header of the dotted strings of OIDs. In the
following example, there are two sub-groups in the enterprise group under the private subtree, one with the OID
“1.3.6.1.4.1.1234.*” and the other with the OID “1.3.6.1.4.1.5678.*”. Declare the prefix and set it in the variable pre as
follows. Add a period at the end of each string of the prefix.

/* Prefix of the MIB OID (add a period at the end) */
const VB snmp_mib_ven_pre_ 0[] ="1.3.6.1.4.1.1234."; [* Prefix OID (MIB 0) */
const VB snmp_mib_ven_pre_1[] ="1.3.6.1.4.1.5678."; [* Prefix OID (MIB 1) */

const T_SNMP_MIB_TBL snmp_mib_ven[] = {

I* Prefix OoID Data Callback Reserve */
{snmp_mib_ven_pre_0, snmp_mib_ven_obj_0, snmp_mib_ven_dat_0, 0x00, 0},
{snmp_mib_ven_pre_1, snmp_mib_ven_obj_1, snmp_mib_ven_dat_1, snmp_mib_ven_cbk_1, 0},
{0,0,0,0, 0}
I3
6.2.4 Object Table

This section describes how to configure the variable “mib” in the T_SNMP_MIB_TBL structure. Specify the pointer to
the variable for the T_SNMP_MIB structure in mib, which are, the OID string following the prefix, the maximum
amount of data for the object, data type, and access mode. This structure contains the following variables.

/* MIB object */
typedef struct t_snmp_mib {
const VB* str; /* Object string */

UH len; /* Size (byte) */
UB typ; /* Type */
UB acs; /* Accsess */
} T_SNMP_MIB;
Number Type Variable Name Description
1 const VB* str A string of numerals separated by a period for the OID following the
prefix of the object

2 UH len The maximum amount of data for the object in bytes

3 uB typ Data type of the object

4 uB acs Access mode of the object

R18UZ0063EJ0100 RENESAS Page 38 of 63

Sep 5, 2016

R-IN32 Series User's Manual (uNet3/SNMP edition) 6. Configuring Vendor-Specific MIBs

In the variable “typ” (data type of the object) of this structure, set values by using the macros below.

Table 6.2 Data Types of Objects

Number Macro Size (len) in bytes Description Remark

1 TYP_NONE 4 Type is not defined. | For the Entry object in the table
TYP_INT 4 Integer 32bit
TYP_OCT_STR 1lto Octet String Character string

CFG_SNMP_MIB_DAT_LEN

4 TYP_SEQ 4 SEQUENCE For the Table object

5 TYP_IP_ADR 4 Ip Address 32 bits (for IPv4)

6 TYP_CNT 4 Counter 32 bits

7 TYP_GAUGE 4 Gauge 32 bits

8 TYP_TIM_TIC 4 Time ticks 32 bits

In the variable “acs” (access mode) of this structure, set values by using the macros below.

Table 6.3 Access Mode of Objects

Number Macro Description Remark

1 STS_NO Reference not allowed The object is not-accessible.

This is used only for the Table and
Entry objects.

STS_RO Read only
STS_WO Write only
STS_RW Readable and writable

In the variable “str” of this structure, specify the OID string following the prefix, which was specified in the previous
section.

An example of implementation for the group with the prefix “1.3.6.1.4.1.1234.*” is given below. Here, only the OID
strings following the prefix are declared. Add “0” (instance identifier) at the end of the each string if the target object is
not in the table.

const VB snmp_mib_ven_pre 0[] ="1.3.6.1.4.1.1234."; /* Prefix OID (MIB 0) */

/* OID of MIB 0 (add a period at the end) */

const VB snmp_mib_1234 1 1[] ="1.1.0"; [* Descr (1.3.6.1.4.1.1234.1.1) */
const VB snmp_mib_1234 1 2[] ="1.2.0"; [* Version (1.3.6.1.4.1.1234.1.2) */
const VB snmp_mib_1234 1 3[] ="1.3.0"; /*User name (1.3.6.1.4.1.1234.1.3) */
const VB snmp_mib_1234 1 4[] ="1.4.0"; [* Time ticks (1.3.6.1.4.1.1234.1.4) */
... (The rest are omitted.)

An example of implementation for the group with the prefix “1.3.6.1.4.1.5678.*” is given below. The objects “disk table”
and “memory table” are tables. The disk table contains the iflndex objects with the values 1, 2, 200, and 551. The
memory table contains the iflndex objects with values 0 and 1. In configuration of the t_snmp_mib.str structure, if the
object to be configured is not in a table, “.0” is added to the OID. If the object to be configured is a table, do not add “.0”,
including entry and the lower-order objects (the circles in gray in Figure 6.1).

R18UZ0063EJ0100 RENESAS Page 39 of 63
Sep 5, 2016

R-IN32 Series User's Manual (uNet3/SNMP edition) 6. Configuring Vendor-Specific MIBs

/* OID of MIB 1 (add “.0” at the end) */
/* However, “.0” is not added to the OIDs of entry and the lower-order objects if the object is a table */

const VB snmp_mib_5678 1_1[] ="1.1.0" /* Descr (1.3.6.1.4.1.5678.1.1) */
const VB snmp_mib_5678 1 2[] ="1.2.0"; /* Version (1.3.6.1.4.1.5678.1.2) */
const VB snmp_mib_5678_1_3[] ="1.3.0" /* Status (1.3.6.1.4.1.5678.1.3) */
const VB snmp_mib_5678_1_§][] ="1.8.0" /* Disk (1.3.6.1.4.1.5678.1.8) */
const VB snmp_mib_5678_1 8 1]] ="1.8.1.0"; /* Disk number (1.3.6.1.4.1.5678.1.8.1) */
const VB snmp_mib_5678_1 8_2J] ="1.8.2.0"; /* Disk table (1.3.6.1.4.1.5678.1.8.2) */

/* The beginning of the entry table (“.0” is not added) */
const VB snmp_mib_5678_1 8 2 1J] ="1.8.2.1" /* Disk entry (1.3.6.1.4.1.5678.1.8.2.1) */
const VB snmp_mib_5678_1 8 2 1 1 1J] ="1.8.2.1.1.1"; /*Disk#1 iflndex (1.3.6.1.4.1.5678.1.8.2.1.1.1) %/
const VB snmp_mib_5678 1 8 2 1 1 2[] ="1.8.2.1.1.2"; /*Disk#2 iflndex (1.3.6.1.4.1.5678.1.8.2.1.1.2) */
const VB snmp_mib_5678 1 8 2 1 1 200[]] ="1.8.2.1.1.200"; /* Disk #200iflndex (1.3.6.1.4.1.5678.1.8.2.1.1.200) */
const VB snmp_mib_5678 1 8 2 1 1 551]] ="1.8.2.1.1.551"; /* Disk #551ifindex (1.3.6.1.4.1.5678.1.8.2.1.1.551) */

... (The rest are omitted.)

In the variable “len” of this structure, set the maximum amount of data of the object in bytes. Set four in this variable
except for the following case; the data type of the object is TYP_OCT_STR (a character string), as shown in Table 6.2.
In this case, set the maximum size for the strings including the terminating null character. For example, if the value in
“len” is (32 + 1), the maximum number of strings allowed in response to the SetRequest command from the manager is
thirty-two strings. Note that the value in “len” cannot exceed the value specified in the macro
CFG_SNMP_MIB_DAT_LEN (the maximum amount of data of the object), which is described in Section 5.1, Basic
Settings.

An example of implementation of the T_SNMP_MIB structure is given below. Add a null character at the end to
terminate the array. The index of these arrays (0 to 7) represent the object IDs (obj_id).

#define LEN_INT 4 /* Data length of the data types INT, CNT, GAUGE, and IP_ADR */

/* Vendor Descr */

#define DESCR_LEN (16 + 1) /* The maximum length of the strings including a terminating null character */
/* User name */

#define USER_LEN (32+1)

/*MIB 0 */

/* Configuration of the vendor-specific MIB (add {0, O, O, 0} at the end) */

const T_SNMP_MIB snmp_mib_ven_obj_0O[] ={
/* OID Length Type Access */
{snmp_mib_1234 1 1, DESCR_LEN, TYP_OCT_STR, STS_RO}, /* Descr */
{snmp_mib_1234 1 2, DESCR_LEN, TYP_OCT_STR, STS_RO}, [* Version */
{snmp_mib_1234 1 3, USER_LEN, TYP_OCT_STR, STS_RW}, /* User name */

{snmp_mib_1234 1 _4, LEN_INT, TYP_TIM_TIC, STS_RW}, I* Time ticks */
{shmp_mib_1234 1 5, LEN_INT, TYP_INT, STS_RW}, I* Status */
{snmp_mib_1234 1 6, LEN_INT, TYP_IP_ADR, STS_RW}, /* IP address */
{snmp_mib_1234 1 7, LEN_INT, TYP_CNT, STS_RO}, I* Counter */
{snmp_mib_1234 1 8, LEN_INT, TYP_GAUGE, STS_RO}, /* Gauge */
{0, 0, 0, 0}
|3
R18UZ0063EJ0100 RENESAS Page 40 of 63

Sep 5, 2016

R-IN32 Series User's Manual (uNet3/SNMP edition) 6. Configuring Vendor-Specific MIBs

6.2.5 Data Table

This section describes how to configure the variable “dat” in the T_SNMP_MIB_TBL structure. Specify the buffer for
the object data with an initial value in “dat”. The data are stored in an array variable of the T_SNMP_MIB_DAT type,
with its VP (void*) being converted to a new name.

/* MIB data or data pointer */
typedef VP T_SNMP_MIB_DAT,;

An example of implementation is given below.

If the data type is TYP_OCT_STR (a character string), convert the pointer to the beginning of the buffer where the string
is stored to the VP type before setting in the array of the T_SNMP_MIB_DAT type. The buffer for the strings needs to be
large enough to allocate the maximum amount of data specified in the variable “len” of the T_SNMP_MIB structure.

If the data type is other than TYP_OCT_STR such as four bytes of type TYP_INT, convert the initial value of the data
into the VP type and set it in the array.

Declare a buffer for strings with an access mode other than read-only and the array variable of the T_SNMP_MIB_DAT
type in the RAM area. These variables hold the pointers to the buffers where the object data are to be stored and may be
overwritten while data are being processed. The array variables do not need a terminating null character at the end.

/* Vendor Descr */
static const VB snmp_mib_ven_descr[DESCR_LEN] = {
"Vendor MIB"

h

/* User name */
static VB snmp_mib_ven_user_name[USER_LEN] = {
"User name"

}

/* MIB 0 data */
/* Buffer where the vendor-specific MIB data are stored */
T_SNMP_MIB_DAT snmp_mib_ven_dat_0[] ={

(VP)snmp_mib_ven_descr, [* Descr strings */
(VP) snmp_mib_ven_ver, [* Version */
(VP)snmp_mib_ven_user_name, /* User name strings */
(VP)2192481, [* Time ticks (6:05:24.81) */
(VP)1, [* Status */
(VP)0xc0a80167, /* IP address (192.168.1.103) */
(VP)O, [* Counter [0..4294967295] */
(VP)10 [* Gauge [0..4294967295] */
h
R18UZ0063EJ0100 RENESAS Page 41 of 63

Sep 5, 2016

R-IN32 Series User's Manual (uNet3/SNMP edition) 6. Configuring Vendor-Specific MIBs

6.2.6 Callback Function Table

This section describes how to configure the variable “cbk” of the T_SNMP_MIB_TBL structure, in other words, how to
configure the callback function to each object.

As described in Section 2.5, Vendor-Specific MIB and Callback Function, this system issues an user-defined callback
function in response to the request to the vendor-specific extended MIB object from the manager. In addition to the
standard callback function described in Section 5.5, Configuring Standard Callbacks for Vendor’s Private MIB, users can
configure callback functions for individual objects.

Vendor
MIB ID: O

Vendor
MIB ID: 1

T_SNMP_CFG_CBK snmp_cfg_cbk[] = {
apl_snmp_cbk_0,
0

h

Standard callback function

const T_SNMP_MIB_TBL snmp_mib_ven[] = {

I* Prefix [e]]») Data Callback Reserve */
{pre_0, ven_0 dat_0 0x00, 0}, /~MIBO*
{pre_1, ven_1 dat_1 cbk_1, 0}, /~MIBO*
{0,0,0,0,0}

h

Callback function for a MIB object
cqnst T_SNMP_CFG_CBK cbk_1[] ={

CBK_NONE, /* Descr (CB_NONE: callback function is not issued)
*

GBK_NONE, /* Version */

CBK_NONE, /* Status */

CBIK_NONE, /* Disk #551 size */

(Omitied)

apl_snmp_cbk_1, /*Disk#1 free*/
apl_snmp_cbk_1, /*Disk#2 free*/
apl_snmp_cbk_1, /* Disk #200 free */
apl_snmp_cbk_1, /* Disk #551 free */
apl_snmp_cbk_0, /*Gauge 1*/

Figure 6.3 Standard Callback Function and Callback Function for Each Object

R18UZ0063EJ0100 RENESAS Page 42 of 63
Sep 5, 2016

R-IN32 Series User's Manual (uNet3/SNMP edition) 6. Configuring Vendor-Specific MIBs

Here, how to switch the standard callback function and the callback function for each object is described. In an example
of implementation, the group with the OID “1.3.6.1.4.1.1234.*” is configured to issue standard callback functions and the
other with the OID “1.3.6.1.4.1.5678.*” is configured to issue a callback function to each object. The mode of callback is
judged by the value in “cbk” of the T_SNMP_MIB_TBL structure (Figure 6.3). The value 0x00 (null) in cbk is for the
default callback function and other values are for cbk for the callback function for objects specified in the array variables
of the T_SNMP_CFG_CBK structure.

How to declare the array variable to this structure is shown in the example below. Note that no callback function is issued
to the relevant object if the element value in the array variable is 0x00 (null). At this time, no standard callback is issued
as well.

This array variable does not need a terminating null character at the end.

#define CBK_NONE 0x00 [* Callback function not defined */

const T_SNMP_CFG_CBK snmp_mib_ven_cbk_1[] ={

CBK_NONE, /* Descr (No callback functions are issued at all) */
CBK_NONE, /* Version (No standard callback functions are issued as well) */
CBK_NONE, [* Status */
(Omitted))
CBK_NONE, [* Disk #2 size */
CBK_NONE, [* Disk #200 size */
CBK_NONE, [* Disk #551 size */
apl_snmp_cbk_1, /* Disk #1 free (The callback function for the object is apl_snmp_cbk_1) */
apl_snmp_cbk_1, /* Disk #2 free */
apl_snmp_cbk_1, /* Disk #200 free */
(Omitted))
apl_snmp_cbk_0, /* Gauge 2 */
}
R18UZ0063EJ0100 RENESAS Page 43 of 63

Sep 5, 2016

R-IN32 Series User's Manual (uNet3/SNMP edition)

7. Interfaces

7. Interfaces

This section describes how to use the API functions of this system and their callback functions.

7.1 List of Functions

This system provides the following functions.

Category Function Name Description
Initialization snmp_ini Initialize the system
snmp_ext Exit the system
snmp_ena Enable the system
snmp_dis Disable the system
Management information get_mib_obj Read data from a vendor's MIB object
set_mib_obj Write data to a vendor’'s MIB object
Trap ena_trp Enable standard traps
dis_trp Disable standard traps
snd_trp Send vendor-specific traps

Use set_mib_obj or a callback function to rewrite the data in a vendor-specific MIB object. If the user directly rewrites
the data in an object declared in the snmp_mib_cfg.c file, the system may return a half-written value to the manager.

Directly rewriting the data in the objects is still possible if the system is yet to be started.

R18UZ0063EJ0100 RENESAS
Sep 5, 2016

Page 44 of 63

R-IN32 Series User's Manual (uNet3/SNMP edition) 7. Interfaces

7.2 Specification of Functions
Details on the functions used in this system are described in this section.
7.2.1 snmp_ini (Initialization)

Format
ER snmp_ini(UH* mib_nod_cnt)

Parameters
UH* mib_nod_cnt A pointer to the variable where the number of nodes in the MIB tree
is stored
Returned value
ER ercd E_OK for a normal termination or an error code
Error codes
E_PAR An error in the configuration file
E_NOMEM Insufficient memory (insufficient number of nodes in the MIB tree)
E_BOVR Maximum amount of data for the object is small.
E_OBJ Other error
Description

This function is used for initializing this system. Issue this function before using this system, following initialization
(net_ini) of the TCP/IP protocol stack.

This function handles the initialization of internal variables, initialization of internal buffers, generation of OS resources
(except for the compact version of the operating system), generation of the MIB tree, and generation of network sockets.

Once the MIB tree is generated, this function returns the value for the number of nodes to be used in the tree in the
mib_nod_cnt argument. Users are required to obtain this value and set it to the macro CFG_SNMP_MIB_NOD_CNT in
the basic settings. If this value is not necessary, specify 0x00 (null) in the mib_nod_cnt argument.

The error code E_PAR is returned for an error in the configuration files (xxx_cfg.h and xxx_cfg.c). The error code
E_NOMEM is returned if the value in CFG_SNMP_MIB_NOD_CNT is too small to create a MIB tree. The error code
E_BOVR is returned if the value of CFG_SNMP_MIB_DAT LEN is small.

R18UZ0063EJ0100 RENESAS Page 45 of 63
Sep 5, 2016

R-IN32 Series User's Manual (uNet3/SNMP edition) 7. Interfaces

7.2.2 snmp_ext (Exit)

Format
ER snmp_ext(void)

Parameters
None

Returned value
ER ercd

E_OK for a normal termination

Error codes
None

Description
This function causes a normal termination of the system. The resources generated in the function are freed, except for
that for the compact version of the operating system. When the system is initialized (snmp_ini) and enabled (snmp_ena)

again after issuing this function, it sends a coldStart trap.

R18UZ0063EJ0100 RENESAS Page 46 of 63
Sep 5, 2016

R-IN32 Series User's Manual (uNet3/SNMP edition) 7. Interfaces

7.2.3 snmp_ena (Enable)

Format
ER snmp_ena(void)

Parameters
None

Returned value
ER ercd E_OK for a normal termination or the error code

Error codes
E_OBJ The system is not initialized (snmp_ini is not issued).

Description

This function enables the system and wakes up the tasks in the system. This function receives SNMP packets while a task
is running. This function sends a coldStart trap when it is issued the first time and sends a warmStart trap the second and
subsequent times. Basically, issue this function before issuing the function for initializing the Ethernet driver
(net_dev_ini). If the Ethernet driver has been initialized and connected to the network before issuing this function, a
linkUp trap will not be issued.

The error code E_OBJ is returned if this function is issued before the system is initialized (snmp_ini).

R18UZ0063EJ0100 RENESAS Page 47 of 63
Sep 5, 2016

R-IN32 Series User's Manual (uNet3/SNMP edition) 7. Interfaces

7.2.4 snmp_dis (Disable)

Format
ER snmp_dis(void)

Parameters
None

Returned value
ER ercd

E_OK for a normal termination or the error code

Error codes
E_OBJ The system has not been disabled (snmp_ena has not been issued).

Description

This function disables the system and terminates the tasks in the system. It may take up to two seconds to terminate all
the tasks in this function.

The error code E_OBJ is returned if this function is issued before the system is enabled (snmp_ena).

R18UZ0063EJ0100 RENESAS Page 48 of 63

Sep 5, 2016

R-IN32 Series User's Manual (uNet3/SNMP edition) 7. Interfaces

7.2.5 get_mib_obj (Read Data from a Vendor’s MIB Object)
Format
ER get_mib_obj(VP buf, UH* len, UH mib_id, UH obj_id)
Parameters
VP buf A pointer to the buffer where data is stored
UH* len Size of the buffer and data (in bytes)
UH mib_id MIB ID
UH* obj_id Object ID
Returned value
ER ercd E_OK for a normal termination or the error code
Error codes
E_PAR Argument error
E_BOVR Insufficient buffer length
E_OBJ Other error
Description

This function reads values from the vendor-specific MIB objects specified in the arguments mib_id and obj_id and stores
them in the buf argument. Buffer size for the data is specified in the len argument in bytes.

The error code E_BOVR is returned for insufficient buffer size (buf). In this case, the len argument with the value for
necessary buffer size is returned. This system also returns len with the value for the read data size in a successful reading
process. The content in the buffer (buf) is undefined in the case of an error.

The variable for buf should be 4 or more when the type of the object data is Integer, Counter32, Gauge32, Time Ticks, or
four-byte IP Address. When the type of the object data is octet string, the buf argument must have the area which is large
enough to allocate the number of strings to be obtained (without including the terminating null character). In this case,
the string stored in the buf does not need a null character (\0) at the end.

An example of implementation is given below.

#define MAX_STR_LEN 32 [* Maximum string buffer size */
#define MAX_DAT_LEN 32 [* Maximum buffer size */
static UW apl_str_buf[MAX_STR_LEN / sizeof(UW)];

static UW apl_dat_buf[MAX_DAT_LEN / sizeof(UW)];

VB* str;
UW* dat;
UH len;
UH mib_id;
UH obj_id;

str = (VB*)apl_str_buf;
dat = apl_dat_buf;
len = MAX_DAT_LEN,;

mib_id = 0;
obj_id = 2;
ercd = get_mib_obj(dat, &len, mib_id, obj_id);

R18UZ0063EJ0100 RENESAS Page 49 of 63
Sep 5, 2016

R-IN32 Series User's Manual (uNet3/SNMP edition) 7. Interfaces

if (ercd == E_OK) {

if (snmp_mib_ven[mib_id].mib[obj_id].typ == TYP_OCT_STR) {
[* TYP_OCT_STR (a character string) */
((vB*)dat)[len] = \0'; /* add a null string before printf */
printf((const VB*)dat);

} else if (snmp_mib_ven[mib_id].mib[obj_id].typ == TYP_IP_ADR) {
[* TYP_IP_ADR (four-byte IP address) */
ip_ntoa(str, *dat);
printf(str);

}else {
[* TYP_INT, TYP_CNT, TYP_GAUGE, TYP_TIM_TIC (four-byte value) */
printf("0x%x", *dat);

R18UZ0063EJ0100 RENESAS Page 50 of 63
Sep 5, 2016

R-IN32 Series User's Manual (uNet3/SNMP edition) 7. Interfaces

7.2.6 set_mib_obj (Write Data to a Vendor's MIB Object)

Format
ER set_mib_obj(VP buf, UH len, UH mib_id, UH obj_id)

Parameters
VP buf A pointer to the buffer where data is stored
UH* len Size of the data in bytes
UH mib_id MIB ID
UH* obj_id Object ID
Returned value
ER ercd E_OK for a normal termination or the error code
Error codes
E_PAR Argument error
E_OBJ Data overflow or underflow, or other error
Description

This function writes values from the buf argument to the vendor-specific MIB objects specified in the arguments mib_id
and obj_id. Buffer size for the data is specified in the len argument in bytes. The error code E_OBJ is returned if the
buffer overflows or underflows.

The variable for “len” should be 4 or more when the type of the object data is integer, counter32, gauge32, time ticks, or
four-byte IP address.

When the type of the object data is octet string, specify the number of the strings of the data (without including the
terminating null character) in the len argument. In this case, the string to be stored in buf does not need a null character
(\0) at the end.

Note that this function also updates data in objects for which only read access is allowed.

Example of implementation is given below.

R18UZ0063EJ0100 RENESAS Page 51 of 63
Sep 5, 2016

R-IN32 Series User's Manual (uNet3/SNMP edition) 7. Interfaces

#define MAX_STR_LEN 32 [* Maximum string buffer size */
static UW apl_str_buf[MAX_STR_LEN / sizeof(UW)];

VB* str;
UW dat;
UH len;
UH mib_id;
UH obj_id;

str = (VB*)apl_str_buf;

mib_id = 0;
obj_id = 2;

if (snmp_mib_ven[mib_id].mibJobj_id].typ == TYP_OCT_STR) {
[* TYP_OCT_STR (a character string) */
strepy(str, "test1234");
len = strlen(str);
ercd = set_mib_obj(str, len, mib_id, obj_id);
} else if (snmp_mib_ven[mib_id].mib[obj_id].typ == TYP_IP_ADR) {
[* TYP_IP_ADR (four-byte IP address) */
dat = 0xCOA80167;
ercd = set_mib_obj(&dat, 4, mib_id, obj_id);

}else {
[* TYP_INT, TYP_CNT, TYP_GAUGE, TYP_TIM_TIC (four-byte integer value) */
dat = 1234;
ercd = set_mib_obj(&dat, 4, mib_id, obj_id);
}
R18UZ0063EJ0100 RENESAS Page 52 of 63

Sep 5, 2016

R-IN32 Series User's Manual (uNet3/SNMP edition) 7. Interfaces

7.2.7 ena_trp (Enable Standard Traps)
Format
ER ena_trp(UH trp_bit)
Parameters
UH trp_bit The macro for the standard trap

Returned value
ER ercd E_OK for a normal termination or the error code

Error codes
E_OBJ Other error

Description

This function enables standard traps used in this system. Specify the macro or macros for the trap to be enabled in the
argument trp_bit.

Trap Number Identifier (Macro) Value Trap Name
0 COLD_STA_BIT 0x0001 coldStart

1 WARM_STA BIT 0x0002 warmsStart

2 Unsupported — linkDown

3 LINK_UP_BIT 0x0008 linkUp

4 AUTH_FAIL_BIT 0x0010 authenticationFailure

5 Unsupported — egpNeighborLoss

— TRP_ALL_BIT 0x003f All traps

An example of implementation is given below.

/* enabling coldStart and linkUp */
ercd = ena_trp(COLD_STA_BIT | LINK_UP_BIT);

R18UZ0063EJ0100 RENESAS Page 53 of 63
Sep 5, 2016

R-IN32 Series User's Manual (uNet3/SNMP edition) 7. Interfaces

7.2.8 dis_trp (Disable Standard Traps)
Format
ER dis_trp(UH trp_bit)
Parameters
UH trp_bit The macro for the standard trap

Returned value
ER ercd E_OK for a normal termination or the error code

Error codes
E_OBJ Other error

Description

This function disables standard traps used in this system. Specify the macro or macros for the trap to be disabled in the
argument trp_bit.

Trap Number Identifier (Macro) Value Trap Name
0 COLD_STA_BIT 0x0001 coldStart

1 WARM_STA BIT 0x0002 warmsStart

2 Unsupported — linkDown

3 LINK_UP_BIT 0x0008 linkUp

4 AUTH_FAIL_BIT 0x0010 authenticationFailure

5 Unsupported — egpNeighborLoss

— TRP_ALL_BIT 0x003f All traps

An example of implementation is given below.

/* disabling warmStart and linkUp */
ercd = dis_trp(WARM_STA_BIT | LINK_UP_BIT);

R18UZ0063EJ0100 RENESAS Page 54 of 63
Sep 5, 2016

R-IN32 Series User's Manual (uNet3/SNMP edition)

7.2.9 snd_trp (Send Vendor-Specific Traps)

Format
ER snd_trp(T_NODE* nod, T_SNMP_TRP* trp, TMO tmo)

Parameters
T_NODE* nod A pointer to the transmission destination node
T_SNMP_TRP* trp A pointer to the command of the trap
TMO tmo Time until expiration of the monitoring period (in milliseconds)

Returned value

ER ercd E_OK for a normal termination or the error code

Error codes

E_PAR An invalid parameter was specified.
E_TMO Timeout
E_OBJ Other error

Description

This function sends a vendor-specific trap or Inform packet to a particular destination. In the transmission of traps, once
this function generates a trap packet, it waits until transmission of the trap by the UDP is completed. In transmission of
Inform packets, once this function sends the notification to the destination, it waits until the response packet is received,
s0 this takes longer than the time for waiting in the transmission of traps.

Designate the destination of transmission in the nod argument including its IP address but not the port (nod.port) because

the system specifies it (port 162).

Specify the value for timeout in the tmo argument. Specify the pointer to the variable for the T_SNMP_TRP structure in
the trp argument according to the following table for variables.

Number Type Variable Name Content
1 uB ver The macro for the version number of the protocol:
SNMP_VER_V1: for vi
SNMP_VER_V2C: for v2c
2 VB* com Strings which represent the community name
3 UH flg Option flag
4 VB* ent_oid The string which represents the OID for the enterprise (for v1)
The string which represents the OID for snmpTrapOID (for v2c)
5 INT gen_trp The value which represents a standard trap (v1)
Always set TRP_ENT_SPEC.
6 INT spc_trp The value which represents trap specification (for v1)
7 UH tmo Timeout value (msec) (in sending Inform packets)
8 UH rty_cnt The number of retrials (in sending Inform packets)
9 VP var_oid The object ID or IDs of the variable binding or bindings to be added
10 UH var_cnt The number of added variable binding or bindings
R18UZ0063EJ0100 RENESAS Page 55 of 63

Sep 5, 2016

7. Interfaces

R-IN32 Series User's Manual (uNet3/SNMP edition) 7. Interfaces

Specify the version number of the protocol for the trap in the ver argument, SNMP_VER_V1 for v1 and
SNMP_VER_V2C for v2c.

Specify the community name where the trap is to be sent in the com argument.

Specify the options associated with trap transmission by using the macro below. Set 0x00 in the variable to select
transmission of a trap.

Number Identifier (Macro) Description
1 TRP_INF_ENA Send an inform packet instead of a trap

For v1 traps, specify the string of the enterprise OID, for example, “1.3.6.1.4.1.1234”, in the argument ent_oid.
Specifying 0x00 (null) in this argument uses the OID which was specified by the configuration macro
CFG_SNMP_MIB_SYS OBJECTID in the snmp_mib_cfg.h file. For v2c traps, specify the second variable binding, the
OID string for snmpTrapOID in the argument ent_oid.

v1 traps uses values in the variables gen_trp and spc_trp. Specify the macro TRP_ENT_SPEC (6) in gen_trp and the
number which indicates the detailed trap information in spc_trp.

Values in the variables tmo and rty_cnt are used to send Inform packets. trp.tmo is the time until timeout expiration and
trp.rty_cnt is the number the times sending of an Inform packet is retried. If there is no response from the destination
after the time set in trp.tmo has elapsed, the Inform packet is resent the number of times set in trp.rty_cnt. Note that
timeout detection proceeds every second (1000 ms), so the value in trp.tmo should be a multiple of 1000, for example,
8000 (eight seconds).

Specify the variable bindings to be added to a tarp in the variables var_oid and var_cnt. If there are no variable bindings
to be added, specify 0 and 0x00 in vat_cnt and var_oid, respectively. If there is one variable binding to be added, specify
0 in vat_cnt and the vendor-specific MIB ID and OID in var_oid after converting them into the VP type, by setting the
former in the sixteen higher-order bits and the latter in the sixteen lower-order bits.

A configuration macro is provided in the header file snmp.h as follows.

#define SNMP_TRP_VAR_ID(x,y) ((VP)((UH)(x) & Ox00ff) << 16 | (UH)(y)))

If two or more variable bindings are to be added, specify the number of targets in var_cnt and the pointer to the array of
their IDs in var_oid in the VP type. In summary, set the MIB ID and OIDs of the variable bindings in an array of the VP
type and set the pointer to the array in var_oid (Figure 7.1).

R18UZ0063EJ0100 RENESAS Page 56 of 63
Sep 5, 2016

R-IN32 Series User's Manual (uNet3/SNMP edition) 7. Interfaces

snd_trp(&nod, trp, 400);

hI'here are no variable bindings to be added.

trp.var_cnt = 0;
trp.var_oid = 0x00;

There is one variable binding to be added.

mib_id = 0;
bj_id = 2; 2

oo Array of IDs in the VP type

trp.var_cnt = 0;

trp.var_oid = TRP_VAR_ID(mib_id, obj_id);

/ VP apl_var_id[3];

(There are two or more variable bindings to be added.) apl_var_id[0] = TRP_VAR_ID(mib_id, obj_id);

apl_var_id[1] = TRP_VAR_ID(mib_id, obj_id + 1);
mib_id = 0; apl_var_id[2] = TRP_VAR_ID(mib_id, obj_id + 2);
obj_id = 2;

trp.var_cnt = 3;
trp.var_oid = apl_var_id;

Figure 7.1 Adding Variable-Bindings to a Trap

An example of implementation for sending a v1 trap is given below.

T_SNMP_TRP trp;

memset(&trp, 0, sizeof(trp));

trp.ver = SNMP_VER_V1; [* The trap version is v1 */

trp.com = "public"; [* Community name */

trp.gen_trp = TRP_ENT_SPEC; [* Vendor-specific trap (fixed value) */
trp.spc_trp = 1234; [* Detailed trap information (any integer value) */

ercd = snd_trp(nod, trp, TRP_TMO);
[* If the value in trp.ent_oid is 0, the enterprise OID uses CFG_SNMP_MIB_SYS_OBJECTID (snmp_mib_cfg.h) */
[* If the values in trp.var_cnt and trp.var_oid are 0, no variable bindings will be added */

An example of implementation for sending a v2c trap is given below.

memset(&trp, 0, sizeof(trp));

trp.ver = SNMP_VER_V2C; /* The trap version is v2c */
trp.com = "public"; /* Community name */
trp.ent_oid ="1.3.6.1.4.1.1234.1.2"; /* snmpTrapOID vendor’s private MIB */

ercd = snd_trp(nod, trp, TRP_TMO);
/* If the values in trp.var_cnt and trp.var_oid are 0, there are no variable-bhindings to be added */

R18UZ0063EJ0100 RENESAS Page 57 of 63
Sep 5, 2016

R-IN32 Series User's Manual (uNet3/SNMP edition) 7. Interfaces

An example of implementation for sending v1 trap with one variable binding is given below.

memset(&trp, 0, sizeof(trp));

trp.ver = SNMP_VER_V1,; /* The trap version is v1 */

trp.com = "public"; /* Community name */

trp.gen_trp = TRP_ENT_SPEC; /* Vendor-specific trap (fixed value) */

trp.spc_trp = 1234; /* Detailed trap information (any value) */

trp.ent_oid ="1.3.6.1.4.1.9876.1234"; /* Set the enterprise OID strings */

trp.var_cnt = 0; /* The number of variable bindings to be added to a trap (set O if there is one) */
trp.var_oid = TRP_VAR_ID(0, 2); /* The IDs of the variable bindings to be added */

ercd = snd_trp(nod, trp, TRP_TMO);

An example of implementation for sending a v2c trap with three variable bindings is given below.
VP apl_var_id[8]; /* Variable binding ID */

memset(&trp, 0, sizeof(trp));

trp.ver = SNMP_VER_V2C; /* The trap version is v2c */

trp.com = "public"; /* Community nhame */

trp.ent_oid ="1.3.6.1.4.1.1234.1.2"; /* snmpTrapOID vendor-specific MIB */

trp.var_cnt = 3; /* The number of variable bindings to be added to the trap */
apl_var_id[0] = TRP_VAR_ID(0, 2); /* Element 2 of snmp_mib_ven_0 */

apl_var_id[1] = TRP_VAR_ID(1, 5); /* Element 5 of snmp_mib_ven_1 */

apl_var_id[2] = TRP_VAR_ID(1, 6); /* Element 6 of snmp_mib_ven_1 */

trp.var_oid = apl_var_id; /* Array of the ID of the variable bindings */

ercd = snd_trp(nod, trp, TRP_TMO);

An example of implementation for sending an Inform packet is given below.

memset(&trp, 0, sizeof(trp));

trp.ver = SNMP_VER_V2C; /* The trap version is v2c */

trp.com = "public"; /* Community nhame */

trp.ent_oid ="1.3.6.1.4.1.1234.1.2"; /* snmpTrapOID vendor-specific MIB */

trp.flg = TRP_INF_ENA; /* Select an Inform packet instead of a trap */

trp.tmo = 8000; /* Timeout for sending an Inform packet (msec) */

trp.rty_cnt = 4; /* The number of times sending of the Inform packet is retried */

ercd = snd_trp(&nod, &trp, TRP_TMO); /* Send to the server specified in nod */

R18UZ0063EJ0100 RENESAS Page 58 of 63
Sep 5, 2016

R-IN32 Series User's Manual (uNet3/SNMP edition)

7. Interfaces

7.3

Callback Functions

This section describes the specification of callback function provided in this system. This system issues callback
functions in response to the reception of packets GetRequest, GetNextRequest, GetBulkRequest, and SetRequest to the
vendor-specific private MIB objects from the manager.

The argument of this callback functions is shown below.

Format

ER fnc(T_SNMP_CFG_CBK_DAT* cbk_dat)

Parameters

T_SNMP_CFG_CBK_DAT* cbk_dat A pointer to the variable of the structure for callback
Returned value

ER ercd E_OK for a normal termination or the error code

Error codes

E_OBJ

An error occurred.

The cbk_dat argument is a pointer to the variable for the T_SNMP_CFG_CBK_DAT structure, which was declared in
this system. This structure contains the following variables.

Number Type Variable Name Description

1 UH req A macro which defines the type of SNMP request, as listed below
SNMP_REQ_GET: Get Request, GetNextRequest, GetBulkRequest
SNMP_REQ_SET: SetRequest

2 UH mib_id Vendor's MIB ID

3 UH obj_id Vendor’'s OID

4 UH typ A macro which defines the type of data in the object

5 VP buf The buffer where data are stored

6 UH dat_len Data size in bytes

7 UH buf_len Buffer size in bytes

(valid only when the value in req is SNMP_REQ_GET)

The req variable indicates the type of the request from the manager. The value is SNMP_REQ_GET for GetRequest,
GetNextRequest, and GetBulkRequest and SNMP_REQ_SET for SetRequest.

The variables mib_id and obj_id indicate the vendor-specific MIB ID and OID, respectively. For details on ID, see
Section 6.2.1, MIB IDs and Object IDs.

The typ variable indicates the type of the object data by using the macros listed below.

Number Macro Data Type Remark

1 TYP_INT Integer 32 bits

2 TYP_OCT_STR Octet String Strings

3 TYP_IP_ADR IP Address 32 bits (for IPv4)

4 TYP_CNT Counter 32 hits

5 TYP_GAUGE Gauge 32 bits

6 TYP_TIM_TIC Time ticks 32 hits

R18UZ0063EJ0100 RENESAS Page 59 of 63

Sep 5, 2016

R-IN32 Series User's Manual (uNet3/SNMP edition) 7. Interfaces

The buf variable for the callback function holds the object data. It holds the current object data if the value in the req
variable is SNMP_REQ_GET and the data in SetRequest specified by the manager if the value is SNMP_REQ_SET.

The buf variable holds strings if the value in the typ variable is TYP_OCT_STR. In this case, a terminating null character
(\0) is added if the value in the req variable is SNMP_REQ_GET and not added if the value is SNMP_REQ_SET.

The dat_len variable indicates the length of the data stored in buf. If the value in typ is other than TYP_OCT_STR (a
character string), the value in dat_len is four and the value in buf is four-byte data. If the value in typ is TYP_OCT_STR,
the value in dat_len is the length of the strings without a terminating null character.

The buf_len variable indicates the size of the buffer area (buf). This variable is valid only when the value in req is
SNMP_REQ_GET. If the value in typ is other than TYP_OCT_STR, the value in buf_len is 4. If the value in typ is
TYP_OCT_STR (a character string), the value in buf_len is the length of the strings which is allowed in buf, including a
terminating null character.

The value in req is SNMP_REQ_GET when the reception task receives a packet of GetRequest, GetNextRequest or
GetBulkRequest from the manager. At this time, user can update the MIB object by setting a desired value in buf. This
system returns the given value to the manager. If the value in typ is other than TYP_OCT_STR, set four-byte data in buf.
If the value in typ is TYP_OCT_STR (a character string), copy the strings directly from typ. Always set the return value
of the callback function as E_OK.

The value in req is SNMP_REQ_SET when the reception task receives a SetRequest packet from the manager. At this
time, buf holds the data to be updated by the manager. The user can choose whether to accept the update, by setting the
return value in the callback to E_OK for accepting and E_OBJ for refusing. This system does not update the object data
when E_OBJ is returned. In this case, the system returns an error code commitFailed to the manager. While
SNMP_REQ_SET is set in req, do not rewrite the values in buf and dat_len.

From here, details of the argument cbk_dat->buf of the callback function are described. As in Figure 7.2, when a
GetRequest packet is sent, the data pointed by the argument cbk_dat->buf is the buffer for the MIB object which was
configured in the snmp_mib_cfg.c file by the user.

R18UZ0063EJ0100 RENESAS Page 60 of 63
Sep 5, 2016

R-IN32 Series User's Manual (uNet3/SNMP edition) 7. Interfaces

—> (SNMP Manager J

Get (Buffer for the MIB object J
Request

#define DESCR_LEN (32+1) /* The maximum number of characters in the string
including the null-terminator */
static const VB snmp_mib_ven_descr[DESCR_LEN] = *

) “Vendor MIB” A null-terminator is added

T MP_MIB snmp_mib_ven_dat_O[] ={
(VP)snmp_mib_ven_descr, /* Descr */
(VP)100, /* Version */
(VP)snmp_mib_ven_user_name, /* User name */
(VP)2192481, /* Time ticks (6:05:24:81) */
(VP)1, [* Status */
(VP)0xc0a80167, /* |P address (192.168.1.103) */
(VP)O, /* Counter [0..4294967295] */
(VP)4294967295, /* Gauge [0..4294967295] */
{0,0,0,0,0}

h

Callback function/
apl_snmp_cb(cbk.dat->buf)

Value in typ: not a character string
UW* dat;
dat = (UW*)cbk_dat->buf;
*dat = 1234;

Value in typ: a character string

strcpy ((char*)cbk_dat->buf, “test1234”);
cbk_dat->dat_len = strlen(“test1234”);

Figure 7.2 Callback Function of GetRequest

As shown above, the user can directly rewrite the buffer of the object in a callback function.

If the value in typ is other than TYP_OCT_STR, buf holds a four-byte value of the current object. The user can change
this value to a desired one. If the value in typ is TYP_OCT_STR (a character string), buf holds the strings of the current
object including a terminating null character. The user can change this value to a desired one.

The value of buf covers the maximum number of the characters in the string including the null-terminator for the string.
This makes it possible for the user to copy a new string to buf by using the function strcpy. It is also possible to copy a
string which does not include a terminating null character without using the function. When this system exits the callback
function, it adds a null-terminating character to the end of the string. The user is required to return dat_len with the same
value as was copied to buf (the length of the object string) to this system so that it can use the value in dat_len when
adding the null-character to terminate the string. Make sure that the new value does not exceed the buffer size
(cbk_dat->buf_len).

Figure 7.3 below shows the callback function for SetRequest. The value pointed by the cbk_dat->buf argument of the
callback function is the internal variable and the content of buf should not be rewritten by the user.

R18UZ0063EJ0100 RENESAS Page 61 of 63
Sep 5, 2016

R-IN32 Series User's Manual (uNet3/SNMP edition) 7. Interfaces

—_/

— [SNMP manager

Set
Request

UDP reception packet

“test1234”
A null-terminator is not added

N

[Callback function

apl_snmp_cb(cbk.dat->buf)

l Allow the update

return_E_OK;

Not to allow the update
return_E_OBJ;

Figure 7.3 Callback Function for SetRequest

The buf variable holds the data to be updated by the manager. If the value in typ is TYP_OCT_STR (a character string), a
null-terminating character is not added to the string in buf. This means that the user cannot use the function strcmp to
compare strings. Instead, use the function strncmp.

An example of implementation of GetRequest is given below.

UW* dat;

if (cbk_dat->req == SNMP_REQ_GET) {
[* Get request */
if (cbk_dat->mib_id == 0) {
/*MIB ID 0 */
switch (cbk_dat->obj_id) {
case O:
[* If the data type is a character string */
len = strlen("New String");
if (len < cbk_dat->buf_len) {
strcpy((char*)cbk_dat->buf, "New String");
cbk_dat->dat_len = len;
}
/* Data to be written should not exceed the buffer size (cbk_dat->buf_len) */
[* Use strcpy and copy the “New String” to buf (terminating null characters can be added) */
break;
case 1:
[* If the data type is strings */
len = strlen(apl_new_str); /* apl_new_str[] = "New String 2" */

R18UZ0063EJ0100 RENESAS Page 62 of 63
Sep 5, 2016

R-IN32 Series User's Manual (uNet3/SNMP edition) 7. Interfaces

if (len < cbk_dat->buf_len) {
str = (VB*)cbk_dat->buf;
for (i=0;i<len;i++) {
str[i] = apl_new_str[i];

}
cbk_dat->dat_len = len;
}
[* Use for loop and copy the strings to buf (terminating null characters can be omitted) */
break;
case 3:

[* If the data type is integer value */

dat = (UW*)cbk_dat->buf;

dat +=1; / An integer value is added */
break;

return E_OK; /* E_OK is returned */

An example of implementation for SetRequest is given below.

ercd = E_OK;
if (cbk_dat->req == SNMP_REQ_SET) {
[* Set request */
if (cbk_dat->mib_id == 0) {
[*MIB ID 0 */
switch (cbk_dat->obj_id) {
case 4:
[* If the data type is strings */
len = strlen("root");
res = strncmp((const char*)cbk_dat->buf, "root", len);
if (res ==0) {
ercd = E_OBJ; /* Updating of data is not allowed if the beginning is same as the string “root” */
}
[* Use strncmp to compare the strings because the strings in cbk_dat->buf does not have
a terminating null character at the end */
break;
case 5:
[* The data type is IP address */
dat = (UW*)cbk_dat->buf;
if ((*dat & 0xffff0000) != 0xc0a80000) {
ercd = E_OBJ; /* Not to allow updating unless the IP address is 192.168.*.* */

}
break;
default:
break;
}
}
}
return ercd;
R18UZ0063EJ0100 RENESAS Page 63 of 63

Sep 5, 2016

R-IN32 Series User's Manual (uNet3/SNMP edition)

REVISION HISTORY

REVISION HISTORY

R-IN32 Series User's Manual (UNet3/SNMP edition)

Rev.

Date

Description

Page

Summary

1.00

Sep 5, 2016

First edition issued

RENESAS

C-1

R-IN32 Series User's Manual (uNet3/SNMP edition) REVISION HISTORY

[MEMO]

RENESAS c-2

R-IN32 Series User’'s Manual
(MNet3/SNMP edition)

LENESANS

SAL ES OFFICES Renesas Bedrorics Caroration hifp /AWWVIEnesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.

2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.

Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited

9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3

Tel: +1-905-237-2004

Renesas Electronics Europe Limited

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K

Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Dusseldorf, Germany

Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.

Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.

Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited

Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022

Renesas Electronics Taiwan Co., Ltd.

13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan

Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.

80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949

Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.

Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, JIn Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics India Pvt. Ltd.

No.777C, 100 Feet Road, HALII Stage, Indiranagar, Bangalore, India

Tel: +91-80-67208700, Fax: +91-80-67208777

Renesas Electronics Korea Co., Ltd.

12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea

Tel: +82-2-558-3737, Fax: +82-2-558-5141

© 2013 Renesas Electronics Corporation. All rights reserved

	1. Introduction
	1.1 Restrictions

	2. Specification Outline
	2.1 Specifications
	2.2 Supported MIB-II Objects
	2.3 Updating Data in MIB Objects
	2.4 Generating MIB Trees
	2.5 Vendor-Specific MIB and Callback Function

	3. Outline of the Structure
	3.1 File Structure
	3.2 Libraries
	3.3 Module Structure Overview
	3.3.1 Task for Receiving SNMP Packets and Sending Responses
	3.3.2 Task for Counting Running Time
	3.3.3 Task for Sending Traps

	4. OS_Resources
	4.1 List of OS Resources
	4.2 Configuring OS Resources

	5. Configuring the SNMP
	5.1 Basic Settings
	5.1.1 Configuring the SNMP
	5.1.2 Configuring the MIB-II
	5.1.3 Configuring the Operating System
	5.1.4 Examples of Implementation

	5.2 Configuring Managers
	5.3 Configuring Communities
	5.4 Configuring Destinations for Sending Standard Traps
	5.5 Configuring Standard Callbacks for Vendor’s Private MIB

	6. Configuring Vendor-Specific MIBs
	6.1 Configuring System Groups of the MIB-II
	6.2 Configuring Vendor’s Private MIBs
	6.2.1 MIB IDs and Object IDs
	6.2.2 MIB Tables
	6.2.3 OID Prefix
	6.2.4 Object Table
	6.2.5 Data Table
	6.2.6 Callback Function Table

	7. Interfaces
	7.1 List of Functions
	7.2 Specification of Functions
	7.2.1 snmp_ini (Initialization)
	7.2.2 snmp_ext (Exit)
	7.2.3 snmp_ena (Enable)
	7.2.4 snmp_dis (Disable)
	7.2.5 get_mib_obj (Read Data from a Vendor’s MIB Object)
	7.2.6 set_mib_obj (Write Data to a Vendor’s MIB Object)
	7.2.7 ena_trp (Enable Standard Traps)
	7.2.8 dis_trp (Disable Standard Traps)
	7.2.9 snd_trp (Send Vendor-Specific Traps)

	7.3 Callback Functions

