

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

User’s Manual

Printed in Japan
©

RA17K
Relocatable Assembler

Document No. U10305EJ2V0UM00 (2nd edition)
Date Published November 1997 J

1996

[MEMO]

SUMMARY OF CONTENTS

OVERVIEW

CHAPTER 1 OVERVIEW OF THE ASSEMBLER

CHAPTER 2 PROGRAM STRUCTURE

CHAPTER 3 SIMPLEHOSTTM

SOURCE PROGRAM

CHAPTER 4 SOURCE PROGRAM CONFIGURATION

CHAPTER 5 CONTROL SYMBOLS

CHAPTER 6 FUNCTIONS

CHAPTER 7 ASSEMBLE-TIME VARIABLES

PSEUDO INSTRUCTIONS

CHAPTER 8 SYMBOL DEFINITION PSEUDO INSTRUCTIONS

CHAPTER 9 DATA DEFINITION PSEUDO INSTRUCTIONS

CHAPTER 10 PROGRAM CONFIGURATION PSEUDO INSTRUCTIONS

CHAPTER 11 LOCATION COUNTER CONTROL PSEUDO INSTRUCTION

CHAPTER 12 EXTERNAL DEFINITION AND EXTERNAL REFERENCE PSEUDO INSTRUCTIONS

CHAPTER 13 CONDITIONAL ASSEMBLY PSEUDO INSTRUCTIONS

CHAPTER 14 REPETITIVE PSEUDO INSTRUCTIONS

CHAPTER 15 MESSAGE CREATION PSEUDO INSTRUCTIONS

CHAPTER 16 MACRO PSEUDO INSTRUCTIONS

CHAPTER 17 MASK OPTION PSEUDO INSTRUCTION

CHAPTER 18 CHARACTER STRING REPLACEMENT PSEUDO INSTRUCTIONS

CHAPTER 19 CONTROL INSTRUCTIONS

INSTRUCTIONS

CHAPTER 20 17K SERIES INSTRUCTIONS

CHAPTER 21 BUILT-IN MACRO INSTRUCTIONS

OPERATING

CHAPTER 22 OPERATING PROCEDURES

CHAPTER 23 OUTPUT LIST FORMATS

ERROR MESSAGES

CHAPTER 24 RA17K ERROR MESSAGES

SIMPLEHOST and emIC-17K are trademarks of NEC Corporation.

MS-DOS and Windows are registered trademarks or trademarks of Microsoft Corporation in

the United States and/or other countries.

PC/AT and PC DOS are trademarks of IBM Corporation.

The information in this document is subject to change without notice.
No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from use of a device described herein or any other liability arising
from use of such device. No license, either express, implied or otherwise, is granted under any patents,
copyrights or other intellectual property rights of NEC Corporation or of others.

M7A 96. 10

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC
product in your application, pIease contact the NEC office in your country to obtain a list of authorized
representatives and distributors. They will verify:

• Device availability

• Ordering information

• Product release schedule

• Availability of related technical literature

• Development environment specifications (for example, specifications for third-party tools and
 components, host computers, power plugs, AC supply voltages, and so forth)

• Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary
from country to country.

NEC Electronics Inc. (U.S.)
Santa Clara, California
Tel: 408-588-6000
 800-366-9782
Fax: 408-588-6130
 800-729-9288

NEC Electronics (Germany) GmbH
Duesseldorf, Germany
Tel: 0211-65 03 02
Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.
Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290

NEC Electronics Italiana s.r.1.
Milano, Italy
Tel: 02-66 75 41
Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH
Benelux Office
Eindhoven, The Netherlands
Tel: 040-2445845
Fax: 040-2444580

NEC Electronics (France) S.A.
Velizy-Villacoublay, France
Tel: 01-30-67 58 00
Fax: 01-30-67 58 99

NEC Electronics (France) S.A.
Spain Office
Madrid, Spain
Tel: 01-504-2787
Fax: 01-504-2860

NEC Electronics (Germany) GmbH
Scandinavia Office
Taeby, Sweden
Tel: 08-63 80 820
Fax: 08-63 80 388

NEC Electronics Hong Kong Ltd.
Hong Kong
Tel: 2886-9318
Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.
United Square, Singapore 1130
Tel: 253-8311
Fax: 250-3583

NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-719-2377
Fax: 02-719-5951

NEC do Brasil S.A.
Cumbica-Guarulhos-SP, Brasil
Tel: 011-6465-6810
Fax: 011-6465-6829

J97. 8

Major Changes

Page Description

Throughout The version of this manual has been changed from V1.0 to V2.0.

p.6 Section 1.2.2

The ENTRY pseudo instruction has been deleted.

p.10 Section 1.4 has been added.

p.10 In Section 1.5 , WindowsTM has been added as an OS.

p.13 Section 1.7 has been changed.

p.13 Section 1.8 has been added.

p.303 Chapter 21

The following instructions have been added:

• System register operation instructions

• Extended instructions

• Structured instructions

p.305 Instructions have been added to Section 21.1 .

p.306 The description has been added to Section 21.1.1 .

p.313 The description has been added to Section 21.2 .

p.319 The note in Section 21.2.1 has been deleted.

p.328 Instructions have been added to Section 21.3 .

p.390 Section 21.4 has been added.

Chapter 24

p.484 Error message F147 has been added.

p.484 Error message W149 has been added.

The mark * shows major revised points.

[MEMO]

PREFACE

Outline of product RA17K is the relocatable assembler for the development of 17K series software.

Intended readers This manual is aimed at those engineers working with the 17K series 4-bit single-

chip micro controller, who are responsible for designing and developing related

applications by using RA17K or emlC-17KTM.

Organization This manual is organized as follows:

• Overview

• Source program

• Pseudo instructions

• Instructions

• Operations

• Error messages

Prerequisites Readers of this manual are assumed to be familiar with RA17K or emlC-17K.

Legend This manual uses the following symbols and conventions:

... : Indicates that the preceding option can be repeated.

[] : The item enclosed in brackets is optional.

{|} : One of the characters or character strings, delimited by "|" in braces, must

be selected.

" " : Indicates a character string.

' ' : Indicates a character.

CR : Carriage return

LF : Line feed

TAB : Horizontal tab

∆ : Indicates a space or tab.

: Indicates the contents corresponding to the expression.

< > : Character or characters to be specified as is, usually a title enclosed in <>.

xxxx : Indicates any character string.

Number representation systems : Binary : xxxxB

Decimal : xxxx or xxxxD

Hexadecimal : xxxxH

File naming rule [drive-name:][\directory-name\…]filename[.extension]

A file name may include a drive name and directory name(s). A path name includes

a drive name and directory name(s) only.

Notation for error In this manual, error messages are explained as follows:

messages

(XXX:YYYY)

XXX: Message No.

YYYY: Explanation of the output message

XXX indicates the message number output when an error occurs and YYYY outlines

the error message. Note that YYYY is not an error message itself; it just outlines

an error message.

- i -

CONTENTS

CHAPTER 1 OVERVIEW OF THE ASSEMBLER ... 1

1.1 FUNCTION OVERVIEW.. 1

1.1.1 Features .. 2

1.2 ASSEMBLE MODES ... 5

1.2.1 Relocatable Mode (Default) ... 5

1.2.2 Absolute Mode ... 6

1.3 SYSTEM CONFIGURATION .. 7

1.3.1 I/O Files .. 8

1.4 FILE CONFIGURATION .. 10

1.5 OPERATING ENVIRONMENT.. 10

1.5.1 Hardware Environment .. 10

1.5.2 Software Environment .. 10

1.6 ENVIRONMENTAL VARIABLES .. 12

1.7 LIMITATIONS .. 13

1.8 INSTALLATION ... 13

CHAPTER 2 PROGRAM STRUCTURE .. 21

2.1 SPLIT ASSEMBLY OF A MODULE.. 21

2.1.1 External Module Definition Reference Function 21

2.2 RELOCATION OF SECTIONS ... 21

2.3 LAST INSTRUCTION OF A PROGRAM .. 22

2.4 SEGMENT STRUCTURE.. 23

2.4.1 Segment Configuration .. 23

2.5 EXTRA PROGRAM ADDRESS (EPA) STRUCTURE.. 24

2.5.1 Address Management .. 25

CHAPTER 3 SIMPLEHOSTTM.. 27

3.1 OVERVIEW .. 27

CHAPTER 4 SOURCE PROGRAM CONFIGURATION ... 29

4.1 STATEMENT CONFIGURATION ... 29

4.2 CHARACTERS .. 30

4.3 SYMBOL FIELD... 31

4.3.1 Symbol Types ... 33

4.3.2 Reserved Words ... 35

*

*

- ii -

4.4 MNEMONIC FIELD.. 36

4.5 OPERAND FIELD .. 37

4.5.1 Operand Field Coding Format ... 37

4.6 COMMENT FIELD ... 41

4.7 EXPRESSIONS AND OPERATORS .. 41

4.7.1 Expressions .. 41

4.7.2 Operators .. 47

4.7.3 Arithmetic Operators .. 48

4.7.4 Logic Operators .. 53

4.7.5 Relational Operators .. 57

4.7.6 Shift Operators ... 63

4.7.7 () (Operation Order Specification Symbols) .. 67

CHAPTER 5 CONTROL SYMBOLS .. 69

5.1 EPA BIT CONTROL SYMBOLS (@AR_EPA0 AND @AR_EPA1) 69

CHAPTER 6 FUNCTIONS .. 73

6.1 TYPE CONVERSION FUNCTION .. 74

6.2 $ (LOCATION COUNTER FUNCTION) .. 78

6.3 .TYPE. FUNCTION .. 79

6.4 .DEF. FUNCTION .. 81

6.5 .EV. FUNCTION .. 84

6.6 ZZZLINE FUNCTION .. 86

6.7 ZZZARGC FUNCTION .. 87

6.8 ZZZDEVID FUNCTION ... 89

CHAPTER 7 ASSEMBLE-TIME VARIABLES .. 91

7.1 ZZZn ... 93

7.2 ZZZSKIP .. 94

7.3 ZZZBANK ... 96

7.4 ZZZPRINT .. 97

7.5 ZZZLSARG .. 100

7.6 ZZZSYDOC .. 101

7.7 ZZZALMAC .. 102

7.8 ZZZALBMAC .. 104

7.9 ZZZEPA ... 105

7.10 ZZZRP .. 107

7.11 ZZZAR .. 108

- iii -

CHAPTER 8 SYMBOL DEFINITION PSEUDO INSTRUCTIONS .. 109

8.1 SYMBOL DECLARATION ... 111

8.2 SYMBOL TYPES ... 111

8.3 DAT PSEUDO INSTRUCTION ... 113

8.4 LAB PSEUDO INSTRUCTION .. 114

8.5 MEM PSEUDO INSTRUCTION .. 116

8.6 FLG PSEUDO INSTRUCTION ... 121

8.7 SET PSEUDO INSTRUCTION ... 123

CHAPTER 9 DATA DEFINITION PSEUDO INSTRUCTIONS .. 125

9.1 DW (DEFINE WORD) PSEUDO INSTRUCTION... 126

9.2 DB (DEFINE BYTE) PSEUDO INSTRUCTION.. 128

9.3 DCP (DEFINE CHARACTER PATTERN) PSEUDO INSTRUCTION 130

CHAPTER 10 PROGRAM CONFIGURATION PSEUDO INSTRUCTIONS ... 133

10.1 CSEG PSEUDO INSTRUCTION (ABSOLUTE MODE) ... 134

10.2 CSEG PSEUDO INSTRUCTION (RELOCATABLE MODE) 136

10.3 END PSEUDO INSTRUCTION ... 140

10.4 ENSURE PSEUDO INSTRUCTION ... 142

CHAPTER 11 LOCATION COUNTER CONTROL PSEUDO INSTRUCTIONS 145

11.1 ORG ... 145

CHAPTER 12 EXTERNAL DEFINITION AND EXTERNAL REFERENCE

PSEUDO INSTRUCTIONS ... 147

12.1 PUBLIC, PUBLIC BELOW ... ENDP ... 147

12.2 EXTRN ... 150

CHAPTER 13 CONDITIONAL ASSEMBLY PSEUDO INSTRUCTIONS ... 153

13.1 IF ... ELSE ... ENDIF ... 158

13.2 CASE ... EXIT ... OTHER ... ENDCASE .. 161

13.3 IFCHAR ... ELSE ... ENDIFC .. 165

13.4 IFNCHAR ... ELSE ... ENDIFNC... 170

13.5 IFSTR ... ELSE ... ENDIFS ... 172

- iv -

CHAPTER 14 REPETITIVE PSEUDO INSTRUCTIONS .. 175

14.1 IRP ... ENDR.. 177

14.2 REPT ... ENDR .. 179

14.3 EXITR ... 181

CHAPTER 15 MESSAGE CREATION PSEUDO INSTRUCTIONS ... 183

15.1 ZZZERROR PSEUDO INSTRUCTION ... 184

15.2 ZZZMSG PSEUDO INSTRUCTION.. 186

CHAPTER 16 MACRO PSEUDO INSTRUCTIONS .. 187

16.1 DEFINING A MACRO.. 189

16.1.1 MACRO and ENDM (MACRO Definition and END of Macro).................. 189

16.2 REFERENCING A MACRO .. 192

16.3 EXPANDING A MACRO.. 195

16.4 SCOPE OF SYMBOLS IN A MACRO .. 197

16.5 MACRO PARAMETER .. 205

16.6 MACRO OPERATORS AND PSEUDO INSTRUCTIONS 210

16.6.1 Replacement Operator & ... 210

16.6.2 Comment in Macro Definition .. 213

16.6.3 Expression Operator % .. 214

16.6.4 GLOBAL.. 219

16.6.5 ZZZMCHK... 226

16.6.6 PURGE ... 230

CHAPTER 17 MASK OPTION PSEUDO INSTRUCTION .. 233

17.1 OPTION ... ENDOP ... 233

CHAPTER 18 CHARACTER STRING REPLACEMENT PSEUDO INSTRUCTIONS 235

18.1 LITERAL... 236

18.2 UNLITERAL ... 239

CHAPTER 19 CONTROL INSTRUCTIONS .. 241

19.1 SOURCE INPUT CONTROL INSTRUCTIONS .. 242

19.1.1 INCLUDE .. 243

19.1.2 EOF... 248

- v -

19.2 LISTING OUTPUT CONTROL INSTRUCTIONS ... 251

19.2.1 TITLE .. 252

19.2.2 EJECT... 253

19.2.3 C14344 ... 254

19.2.4 C4444 ... 255

19.2.5 LIST .. 256

19.2.6 NOLIST ... 257

19.3 INSTRUCTIONS FOR CONTROLLING FALSE CONDITION BLOCK

LISTING OUTPUT ... 258

19.3.1 SFCOND ... 259

19.3.2 LFCOND ... 261

19.4 INSTRUCTIONS FOR CONTROLLING MACRO EXPANSION

LISTING OUTPUT ... 263

19.4.1 SMAC and SBMAC .. 264

19.4.2 VMAC and VBMAC .. 266

19.4.3 OMAC and OBMAC ... 268

19.4.4 NOMAC and NOBMAC .. 270

19.4.5 LMAC and LBMAC ... 272

19.5 DOCUMENT CREATION CONTROL INSTRUCTIONS .. 273

19.5.1 SUMMARY ... 275

19.5.2 ;. (tag) ... 284

19.5.3 ;.V (registration of labels as tags) ... 288

CHAPTER 20 17K SERIES INSTRUCTIONS ... 289

20.1 MNEMONICS ... 289

20.2 OPERAND CODING RULES .. 292

20.2.1 Operand (r) ... 293

20.2.2 Operand (m) ... 295

20.2.3 Operand (#n4) .. 296

20.2.4 Operand (AR) ... 296

20.2.5 Operand (IX) ... 297

20.2.6 Operand (@r) ... 297

20.2.7 Operand (DBF) ... 298

20.2.8 Operand (@AR) ... 298

20.2.9 Operand (WR) .. 299

20.2.10 Operand (rf) .. 299

20.2.11 Operand (p) .. 300

20.2.12 Operand (#n) .. 300

- vi -

20.2.13 Operand (addr) ... 301

20.2.14 Operand (entry) .. 301

20.2.15 Operand (s) .. 302

20.2.16 Operand (h) .. 302

CHAPTER 21 BUILT-IN MACRO INSTRUCTIONS .. 303

21.1 SYSTEM REGISTER OPERATION INSTRUCTIONS ... 305

21.1.1 BANKn .. 306

21.1.2 SETBANK ... 307

21.1.3 SETRP .. 308

21.1.4 SETMP.. 309

21.1.5 SETIX.. 310

21.1.6 SETAR .. 311

21.2 FLAG OPERATION INSTRUCTIONS .. 312

21.2.1 SETn ... 319

21.2.2 CLRn ... 321

21.2.3 NOTn .. 322

21.2.4 SKTn ... 323

21.2.5 SKFn ... 325

21.2.6 INITFLG .. 326

21.3 EXTENDED INSTRUCTIONS ... 328

21.3.1 SETX... 330

21.3.2 CLRX .. 333

21.3.3 NOTX .. 335

21.3.4 SKTX... 337

21.3.5 SKFX... 339

21.3.6 INITFLGX .. 341

21.3.7 MOVX ... 343

21.3.8 MOVTX ... 348

21.3.9 ADDX .. 349

21.3.10 ADDCX ... 351

21.3.11 ADDSX.. 353

21.3.12 ADDCSX ... 355

21.3.13 SUBX .. 357

21.3.14 SUBCX.. 359

21.3.15 SUBSX .. 361

21.3.16 SUBCSX ... 363

21.3.17 SKEX .. 365

- vii -

21.3.18 SKNEX .. 367

21.3.19 SKGEX.. 369

21.3.20 SKGTX .. 371

21.3.21 SKLEX .. 373

21.3.22 SKLTX... 375

21.3.23 RORCX ... 377

21.3.24 ROLCX.. 378

21.3.25 SHRX .. 379

21.3.26 SHLX... 380

21.3.27 ANDX .. 381

21.3.28 ORX .. 383

21.3.29 XORX .. 385

21.3.30 BRX ... 387

21.3.31 CALLX... 388

21.3.32 SYSCALX ... 389

21.4 STRUCTURED INSTRUCTIONS.. 390

21.4.1 _IF ... _ELSEIF ... _ELSE ... _ENDIF ... 393

21.4.2 _WHILE ... _ENDW .. 404

21.4.3 _SWITCH ... _CASE ... _DEFAULT ... _ENDS .. 410

21.4.4 _REPEAT ... _UNTIL ... 413

21.4.5 _FOR_ ... _NEXT ... 419

21.4.6 _BREAK .. 421

21.4.7 _CONTINUE ... 424

21.4.8 _GOTO ... 426

CHAPTER 22 OPERATING PROCEDURES .. 429

22.1 FILE CONFIGURATION .. 429

22.2 INSTALLATION ... 431

22.3 STARTUP .. 431

22.3.1 Entering a Device File Name ... 432

22.3.2 Entering a Source Module File Name ... 433

22.3.3 Entering Options... 434

22.3.4 If All Parameters Are Omitted; Only RA17K Is Specified......................... 435

22.4 STARTUP AND END MESSAGES ... 436

22.5 MESSAGES DISPLAYED DURING ASSEMBLY... 437

22.6 ASSEMBLER OPTIONS ... 441

22.6.1 Object Output Control (-OBJ, -NOO) .. 443

22.6.2 List Output Control (-LIS, -NOL) .. 444

*

- viii -

22.6.3 Undefined Symbol File Output Control (-UND, -NOU) 445

22.6.4 Work Drive Control (-WOR) ... 446

22.6.5 SIMPLEHOST Information Control (-HOS, -NOH) 447

22.6.6 Assemble Time Variable (-ZZZn) .. 448

22.6.7 Warning Output Level Control (-WAR) .. 449

22.6.8 Include File Search Path Specification (-INC) .. 450

22.6.9 Assemble Mode Control (-ABS) .. 451

22.6.10 Intermediate Cross-Reference Output Control (-XRE, -NOX) 452

22.6.11 Tag Start Character String Specification (-TAGS).................................... 453

22.6.12 Tag End Character String Specification (-TAGE) 454

22.6.13 Summary File Output Control (-SUM, -NOS).. 455

CHAPTER 23 OUTPUT LIST FORMATS .. 457

23.1 INTERMEDIATE LIST FILE .. 458

23.1.1 Error/EPA Field .. 459

23.1.2 Source Line Number Field ... 460

23.1.3 Location Counter Field ... 462

23.1.4 Object Code Field .. 463

23.1.5 Macro Nest Field .. 465

23.1.6 Include Nest Field .. 466

23.1.7 Control Field ... 467

23.1.8 Label Field .. 470

23.1.9 Source Field ... 470

23.2 LOG FILE ... 471

23.3 UNDEFINED SYMBOL FILE ... 472

CHAPTER 24 RA17K ERROR MESSAGES ... 473

24.1 MESSAGES ... 473

- ix -

LIST OF FIGURES

Figure No. Title Page

1-1. Files Required at Assembly Time... 1

1-2. Flow of Software Development for the 17K Series ... 7

1-3. I/O File Configuration .. 8

2-1. Sample Segmented Address Space of the 17K Series

(16K Steps Correspond to 32K Bytes) ... 23

2-2. Address Space in a Segment of the 17K Series ... 24

22-1. Outlined Flow of 17K Series Software Development .. 430

LIST OF TABLES

Table No. Title Page

1-1. Differences between RA17K (in Absolute Mode) and AS17K .. 6

1-2. Distribution Media and Storage Format of RA17K .. 13

4-1. Priorities of Operators ... 47

21-1. Extended Instructions.. 328

*

*

- x -

[MEMO]

1

CHAPTER 1 OVERVIEW OF THE ASSEMBLER

1.1 FUNCTION OVERVIEW

The RA17K relocatable assembler is a common assembler designed to be used with 17K-series devices.

RA17K processes source programs written in assembly language for the 17K series.

The RA17K.EXE file and a device file are necessary to execute RA17K. The device file contains information

relating to a particular 17K-series device (target device), including debugging information and error information

output at assembly time.

Figure 1-1. Files Required at Assembly Time

RA17K assembles an address at which an instruction or data is stored and creates object information.

RA17K also supports a conventional absolute assemble mode in which the absolute address at which an

instruction or data will be stored is determined at assembly time.

RA17K supports machine instructions and pseudo instructions of several types, which include macro

pseudo instructions for creating a macro and conditional pseudo instructions. The operand to be coded in

a machine instruction must be either a character string defined as a symbol or an expression that includes

a symbol. Numerics should not be directly coded in the operand field (except as immediate data). Symbols

are assigned attributes. The attributes of the operand are strictly examined.

Because RA17K provides built-in macro instructions that represent structured instructions or extended

instructions that individually express two or more machine instructions for multiple nibble processing, the user

can create a structured, easy-to-read program and debug the program efficiently.

Relocatable assembler

RA17K

Device file

AS17xxx

+

2

RA17K USER'S MANUAL

1.1.1 Features

RA17K offers the following features:

(1) RA17K supports two assemble modes: relocatable mode and absolute mode.

(2) Because RA17K is a relocatable assembler, it can divide a source program into modules.

The use of two types of symbols is supported: A public symbol can be referenced outside a module; A

local symbol can be referenced only within a module.

(3) Four types of symbols are added.

• Data type, data memory type, flag type, label type

• A symbol can consist of up to 253 characters.

• Shift JIS kanji code characters can be used (PC-9800 series only).

• A symbol type can be changed (type conversion function).

(4) RA17K provides a powerful macro function and a conditional assembly function.

A series of instruction blocks for fixed processing can be defined as a macro for repeated use. Part of

a source program can be selectively assembled.

[Macro definition and conditional pseudo instructions]

• MACRO...ENDM

• REPT...ENDR

• IRP...ENDR

• IF...ENDIF

• IFCHAR...ENDIFC

• IFNCHAR...ENDIFNC

• IFSTR...ENDIFS

• CASE...ENDCASE

(5) RA17K has built-in macro instructions specifically for flag operation.

The 17K series does not itself support a bit manipulation instruction, this function instead being provided

by a built-in macro instruction. This built-in macro instruction is incorporated into the main body of RA17K

and need not be defined by the user.

3

CHAPTER 1 OVERVIEW OF THE ASSEMBLER

[Built-in macro instructions]

• SETn (Sets a flag.)

• CLRn (Resets a flag.)

• NOTn (Inverts a flag.)

• SKTn (Judges a flag. True)

• SKFn (Judges a flag. False)

• INITFLG (Initializes a flag.)

• SETX (Sets a flag. <Extended>)

• CLRX (Resets a flag. <Extended>)

• NOTX (Inverts a flag. <Extended>)

• SKTX (Judges a flag. True <Extended>)

• SKFX (Judges a flag. False <Extended>)

• INITFLGX (Initializes a flag. <Extended>)

(6) RA17K has built-in macro instructions for expanded machine instructions and structured

instructions.

A single machine instruction of the 17K series can process an increased number of nibbles. An operation

on two or more nibbles can be expressed in one instruction. Optimum instruction groups are automatically

expanded.

[Extended machine instructions]

• MOVX (Extended transfer instruction)

• LDX (Extended transfer instruction)

• STX (Extended transfer instruction)

• ADDX (Extended add instruction)

• ADDCX (Extended add instruction)

• ADDSX (Extended add instruction)

• ADDCSX (Extended add instruction)

• SUBX (Extended subtract instruction)

• SUBCX (Extended subtract instruction)

• SUBSX (Extended subtract instruction)

• SUBCSX (Extended subtract instruction)

• SKEX (Extended compare instruction)

• SKNEX (Extended compare instruction)

• SKGEX (Extended compare instruction)

• SKGTX (Extended compare instruction)

• SKLEX (Extended compare instruction)

• SKLTX (Extended compare instruction)

• RORCX (Extended rotate instruction)

• ROLCX (Extended rotate instruction)

• SHRX (Extended shift instruction)

• SHLX (Extended shift instruction)

• ANDX (Extended logical instruction)

• ORX (Extended logical instruction)

*

*

4

RA17K USER'S MANUAL

• XORX (Extended logical instruction)

• BRX (Extended branch instruction)

• CALLX (Extended function call instruction)

• SYSCALX (Extended system function call instruction)

[Structured instructions]

• _IF..._ELSEIF..._ELSE..._ENDIF

• _WHILE..._ENDW

• _SWITCH..._CASE..._DEFAULT..._ENDS

• _REPEAT..._UNTIL

• _FOR..._NEXT

• _BREAK

• _CONTINUE

• _GOTO

(7) RA17K supports a wide range of options, all of which can be specified at activation.

(8) RA17K can be used with target devices with a ROM capacity of up to 64K words (eight segments

installed).

(9) RA17K handles numeric data in 32-bit units.

*

5

CHAPTER 1 OVERVIEW OF THE ASSEMBLER

1.2 ASSEMBLE MODES

RA17K supports two assemble modes: relocatable mode and absolute mode.

1.2.1 Relocatable Mode (Default)

Relocatable mode is the default assemble mode of RA17K.

In relocatable mode, absolute addresses are not determined at assembly time, relative addresses in units

of sections being determined instead. The assembler creates an object module file but not an executable

load module file (.ICE/.PRO). To create an executable load module file, a linker is started, then the object

module file (.REL) created by the assembler is input.

The linker relocates the input object module file in units of sections. By means of this relocation, absolute

addresses are determined and an executable load module file is created.

In relocatable mode, an error occurs if the following symbol or assemble-time variable is included in the

program to be assembled.

• @AR_EPA0, @AR_EPA1 (EPA bit control symbol)

• ZZZEPA (assemble-time variable)

The following pseudo instructions produce different results in absolute mode and relocatable mode:

• ORG pseudo instruction

• CSEG pseudo instruction

6

RA17K USER'S MANUAL

1.2.2 Absolute Mode

RA17K enters absolute mode if an option is specified at activation. (The functions are almost the same

as those of AS17K.)

When absolute mode is specified, absolute addresses are assigned at assembly time. Object module files

are integrated into a single load module file by the link processing.

The linker does not relocate the input object module files, instead sequentially integrating the input object

module files into an executable load module file.

In absolute mode, an error occurs if the following pseudo instruction is included in the program to be

assembled.

• ENSURE pseudo instruction (Can be included only in relocatable mode)

RA17K, in absolute mode, differs from AS17K in the following points:

• Evaluation value of a numeric or symbol

• ZZZn (assemble-time variable)

• ZZZSKIP (assemble-time variable)

• ZZZPRINT (assemble-time variable)

• END (pseudo instruction)

• EOF (control instruction)

Table 1-1. Differences between RA17K (in Absolute Mode) and AS17K

Function AS17K RA17K in absolute mode

Evaluation value of numeric or symbolNote 16 bits 32 bits

ZZZn The value is passed to the The value is not passed to the
next file. next file.

ZZZSKIP The value is passed to the The value is not passed to the
next file. next file.

ZZZPRINT Bits 0 to 6 are used. Information is added to bits 7
and 8 as well as to bits 0 to 6.

END Cannot be omitted. Can be omitted.
(If omitted, an error message (If omitted, a warning message
 is output.) is output.)

EOF If omitted, a warning message If omitted, a warning message
is output. is not output.

Note The evaluation value is expanded to 32 bits. The result of an operation is affected if it consists of

17 bits or more. When the length of an evaluation value exceeds 16 bits in absolute mode, a warning

message is displayed.

*

7

CHAPTER 1 OVERVIEW OF THE ASSEMBLER

1.3 SYSTEM CONFIGURATION

RA17K is a two-pass relocatable assembler.

Codes are assembled in units of source modules.

Figure 1-2 shows an outline of the flow of software development with RA17K for the 17K series.

Figure 1-2. Flow of Software Development for the 17K Series

Remarks 1. For details of the files output by the document processor, refer to the Document Processor

(DOC17K) User's Manual .

2. A shaded oval indicates a program included in the relocatable assembler package.

Assembler source
module file

.ASM

Object module file

.REL

Link map
file

.LMP

Load module
file

.PRO

Load module
file

.ICE

Link object
module file

.LNK

Intermediate
list file

.IPN

Intermediate
cross-reference file

.IXF

Summary
file

.SUM

Log
file

.LOG

Preprocessor
output file

.PPL

C source
module file

.C

Compiler
(emlC-17K)

Relocatable assembler
(RA17K)

Linker
(LK17K)

Document processor
(DOC17K)

8

RA17K USER'S MANUAL

1.3.1 I/O Files

The figure below shows those files that are referenced and created by RA17K.

Figure 1-3. I/O File Configuration

[Input files]

• Source module file (.ASM*)

A source program is written in this file. The user must create this file, using a text editor or other tools.

• Include file (.ASM*/.EQU)

.ASM is another source program file. The file is included by the INCLUDE pseudo instruction. The

user must create this file.

.EQU is a file containing symbol definition statements only. The file is included by the INCLUDE pseudo

instruction. The user must create this file. A symbol file (.SYM) is created from this file.

• Device file (.DEV/.OPT)

In the .DEV file, information relating to items to be assembled (mnemonic, reserved word, debugging

information, etc.) is stored. In the .OPT file, mask option definition information is stored. The file varies

with the item to be assembled.

• Macro library file (.LIB*)

Some devices have a macro library file. The user includes this file by using the INCLUDE pseudo

instruction.

*: Default extension. The extension can be changed.

RA17K assembler

Include file
(.ASM/.EQU)

Device file
(.DEV/.OPT)

Summary file
(.SUM)

Source module file
(.ASM)

Object module file
(.REL)

Symbol file
(.SYM)

Log file
(.LOG)

Macro library file
(.LIB)

Intermediate
cross-reference file

(.IXF)

Intermediate list file
(.IPN)

Undefined symbol file
(.UND)

9

CHAPTER 1 OVERVIEW OF THE ASSEMBLER

[Output files]

• Object module file (.REL)

This file contains assembly information, object codes corresponding to a single source module file, and

the SIMPLEHOST information.

The file has the same name as the corresponding source module file. The file is not created if an error

occurs at assembly time.

• Symbol file (.SYM)

Based on the symbol definition file (.EQU), the symbol file is created to speed up assembly. The format

of the symbol file is such that RA17K can easily process the data.

Once a symbol file has been created, another symbol file can be created only after the symbol definition

file has been updated.

• Log file (source-module-file-name.LOG)

The log file contains messages to be displayed on the screen during execution. This file also outputs

the assembly start time and end time.

The file has the same name as the source module file. If assembly processing halts because of an

error before all options have been analyzed, the file name becomes RA17K.LOG.

• Summary information file (.SUM)

The file contains the summary information used by SIMPLEHOST. The SUMMARY pseudo instruction

outputs the defined information.

• Undefined symbol file (.UND*)

The output file contains undefined symbols corresponding to a single source module file.

• Intermediate list file (.IPN*)

This list file contains the results of assembly. The document processor (DOC17K) must be used to

obtain an absolute-address-based list.

• Intermediate cross-reference file (.IXF*)

This file contains cross-reference information for symbols.

This file is a binary file, not a list file (ASCII file). The document processor (DOC17K) must be used

to obtain a complete cross-reference file.

In addition to the above files, a temporary work file is created on the disk during assembly. The work file

is automatically deleted once assembly has been completed.

*: Default extension. The extension can be changed.

10

RA17K USER'S MANUAL

1.4 FILE CONFIGURATION

The file configuration described below is required to start RA17K.

(1) Main body of the assembler

• RA17K.EXE: Main body of RA17K (32-bit application)

(2) Attachment of files for DOS-Extender

Three files supported by Borland C are provided:

• 32RTM.EXE

• DPMI32VM.OVL

• WINDPMI.386

The above files can be distributed to end users.

The above files are also used with other 32-bit applications within the RA17K assembler package.

1.5 OPERATING ENVIRONMENT

RA17K operates under the following environment:

1.5.1 Hardware Environment

(1) Host machine

<1> PC-9800 series

<2> PC/ATTM

(2) OS

MS-DOSTM: Version 3.30 or later

PC DOSTM: Version 5.02 or later

Windows 3.1, Windows 95

(3) Required memory

Conventional memory: 400K bytes or more

Protect memory: 2M bytes or more

(4) External storage (hard disk)

About 8M bytes of free space is required for installation.

At least 10M bytes is required for a work drive.

1.5.2 Software Environment

(1) Command line environment

As the memory driver, at least himem.sys or an equivalent is required.

Ensure normal operation under the following environments:

• himem.sys only

• himem.sys + emm386.exe

*

*

11

CHAPTER 1 OVERVIEW OF THE ASSEMBLER

(a) PC-9800 series

Environment himem.sys only himem.sys + emm386.exe

OS

MS-DOS 3.30D o Note 1 x Note 1

MS-DOS 5.00A o x

MS-DOS 6.2 o o Notes 2, 3

Windows 3.1, Windows 95 o o Note 2

(DOS prompt only) Note 4

Notes 1. MS-DOS 3.30D does not provide himem.sys and emm386.exe, so the use of the driver

provided by Windows 3.1/95 is assumed.

2. At the end of emm386.exe, a /DPMI switch needs to be added.

3. Operation will be unpredictable if the DPMI server provided by DOS is installed.

4. To use RA17K under Windows, the project manager is required.

MS-DOS 5.00A and emm386.exe, provided by Windows 3.1/95, do not support the /DPMI function.

So, to use UMB/EMS, combine it with a third-party product, or use the DOS window of Windows 3.1/

95 instead of executing the command from the command line.

(b) PC/AT

Environment himem.sys only himem.sys + emm386.exe

OS

PC DOS 5.0 o o

PC DOS 6.3 o o

MS-DOS 6.2 o o

MS-DOS 7.0 o o

Windows 3.1, Windows 95 o o

(DOS prompt only) Note

Note To use RA17K under Windows, the project manager is required.

(2) DOS window environment

(a) Common to PC-9800 series and PC/AT

Environment himem.sys only himem.sys + emm386.exe

OS

Windows 3.1 o Note o Note

Windows 95 o o

Note In the [386Enh] field of system.ini, windpmi.386, provided by the product, must be installed.

For this installation, the installer provided by the product can be used.

12

RA17K USER'S MANUAL

1.6 ENVIRONMENTAL VARIABLES

RA17K supports the following environmental variables:

• DEV17K : Search path for device file

• INC17K : Search path for include file

• TMP : Search path for temporary file

If the path specified by the corresponding environmental variable cannot be found, the specification

becomes invalid (no error occurs).

[Format]

DEV17K = [<path-name>][;<path-name>...]

INC17K = [<path-name>][;<path-name>...]

TMP = [<path-name>][;<path-name>...]

[Function]

The variable enables a file, necessary for assembly, in another directory to be referenced from the current

directory.

If a path name is specified with environmental variable DEV17K or INC17K, a search is made for the device

file or include file indicated by the path name.

If a path name is specified with environmental variable TMP, a temporary file is output to the file indicated

by the path name.

Two or more path names can be specified by separating them with a semicolon (;). When multiple path

names are specified, the first search is made based on the first path name. If the desired file cannot be

found, the next search is made based on the second path name. If two or more path names are specified

with TMP, only the first path name is valid.

• A search is made for a device file as described below. If the file cannot be found, an error occurs. See

Section 22.3.1 for details.

(1) When a device file is specified without a path name

• If environmental variable DEV17K is specified, that path is used as the basis for the search.

• If environmental variable DEV17K is not specified, the current path is used as the basis for the

search.

(2) When a device file is specified with path name

• The specified path is used as the basis for the search.

• A search is made for an include file as described below. If the file cannot be located, an error occurs.

See Section 19.1.1 for details.

(1) When an include file is specified without a path name

• If option -INCLUDE is specified, the path is used as the basis for the search.

• If environmental variable INC17K is specified, the path is used as the basis for the search.

• If neither of the above is specified, the path containing a source module file is used as the basis

for the search.

13

CHAPTER 1 OVERVIEW OF THE ASSEMBLER

(2) When an include file is specified with a path name

• The specified path is used as the basis for the search.

• A temporary file is generated under file name R$xxxxxx (xxxxxx is a random numeric).

• If option -WORK is specified, the file is generated at the location indicated by the path.

• If environmental variable TMP is specified, the file is generated at the location indicated by the path.

• If neither of the above is specified, or if the specified path does not exist, the file is generated at the

location indicated by the current path.

Remark See Section 22.6 for details of the -INCLUDE and -WORK options.

1.7 LIMITATIONS

This section describes the limitations imposed by RA17K.

(1) A macro having body size (number of characters) of up to 64K bytes can be coded.

(2) The maximum number of symbols and macro bodies that can be registered varies with the memory

capacity.

(3) Up to 64K bytes of information (characters) can be coded in a repetitive pseudo instruction IRP...ENDR

or REPT...ENDR.

(4) Macro pseudo instructions, conditional assembly pseudo instructions (IF, for example), repetitive

pseudo instructions (REPT, for example), and include files can be nested. They can be nested up to

40 levels deep. A built-in macro uses nesting that is one level deep.

(5) Include files can be nested up to eight levels deep. Any include files that are nested more than eight

levels deep are not included.

1.8 INSTALLATION

For each host machine, RA17K is delivered using the distribution media and storage format indicated in

Table 1-2.

Table 1-2. Distribution Media and Storage Format of RA17K

Host machine OS Distribution media Storage format

PC-9800 series MS-DOS (Version 3.30/5.00 or later) 3.5-inch, 2HD MS-DOS

Windows (3.1/95) Note

PC/AT PC DOS (Version 5.00 or later) PC DOS

Windows (3.1/95) Note

Note To use RA17K under Windows, the project manager is required. RA17K operates under MS-

DOS or PC DOS. So, when the project manager is not used, start RA17K under DOS.

*

*

14

RA17K USER'S MANUAL

Install the assembler package (RA17K) and project manager. When RA17K is used under Windows, the

project manager is required.

The distribution media consist of four floppy disks.

Two installation methods are available:

Installation method Installable program

Execute setup31.exe/setup95.exe under Windows. Assembler package, project manager

Execute dosinst.bat under DOS. Assembler package

[Execution example 1] Installation under Windows 95

The following is an execution example which reads the assembler package and project manager from drive

A, and installs the assembler package and project manager into C:\nectools\bin.

It is assumed that Windows 95 has already been started.

(1) Start the installer.

<1> Insert RA17K SETUP DISK#1 into the floppy disk drive.

<2> Select [Run] from the start menu.

<3> Enter the following in the “Open” field.

15

CHAPTER 1 OVERVIEW OF THE ASSEMBLER

<4> Select “OK.” Then, the installer starts after setup initialization.

<5> Select “Continue.”

(2) Select an installation item.

<1> Select a product to be installed by clicking the corresponding check box.

By default, “Project Manager V2.13” and “17K Series Assembler Package V2.00” are selected for

installation.

16

RA17K USER'S MANUAL

<2> After selecting a product to be installed, select “Continue.”

Remark Items that cannot be installed are grayed.

Caution When the assembler package is installed, the project manager must have already been

installed, or it must be installed at the same time.

(3) Specify an installation directory.

<1> The Directory Option dialog box is displayed.

<2> Enter the desired installation directory in “Root.”

<3> Select “Continue.”

Remarks 1. When “Back” is selected, the display returns to the Products to Install dialog box.

2. When “Original” is selected, the default directory is selected. The default installation

destination root is \nectools of the drive on which Windows 95 is installed. If a tool has already

been installed with the installer, the root is selected. When a root change is made, the

directories under the root are also changed accordingly.

3. When a supplement is unavailable, the directory in “Addendum Text” is grayed. When a

supplement is available, the supplement is registered with an icon after installation. Users

are recommended to read the supplement.

17

CHAPTER 1 OVERVIEW OF THE ASSEMBLER

(4) Specify a registration group.

<1> The Group Name dialog box is displayed.

<2> Specify a desired registration group name in “Group.”

If the specified group does not yet exist, the group is newly created. If the specified group has already

been registered using the installer, that group is used as is.

<3> Select “Continue.”

Remarks 1. When “Back” is selected, the display returns to the Directory Option dialog box.

2. When the project manager is not installed, the Group Name dialog box is not displayed.

(5) Start file copy operation.

<1> The File copy Start dialog box is displayed.

<2> When “Continue” is selected, file copy operation starts.

Remark When “Back” is selected, the display returns to the Group Name dialog box.

18

RA17K USER'S MANUAL

(6) Change the distribution media

<1> When the following message is displayed, insert RA17K SETUP DISK#3 into the floppy disk drive.

<2> Similarly, insert RA17K SETUP DISK#4 into the floppy disk drive when prompted.

(7) The registered group and icon are created.

Caution The assembler package cannot be used under Windows, so that it is not registered as an

icon.

19

CHAPTER 1 OVERVIEW OF THE ASSEMBLER

(8) Modify AUTOEXEC.BAT.

Select “Auto Modify by the Installer” or “Modify by yourself” as the method for modifying AUTOEXEC.BAT.

• When “Auto Modify by the Installer” is selected

AUTOEXEC.BAT on the drive where the Windows directory is placed is rewritten, then the original file

is saved under the name AUTOEXEC.OLD.

• When “Modify by yourself” is selected

As a rewrite sample, create AUTOEXEC.SMP under the root directory. When AUTOEXEC.SMP

already exists, add the following:

PATH c:\nectools\bin; %PATH%

20

RA17K USER'S MANUAL

(9) Terminate the installer.

<1> When “OK” is selected, the installer terminates.

<2> Restart the computer.

[Execution example 2] Installation under DOS

The following execution example reads the assembler package from drive A, then installs the executable

format into C:\nectools\bin.

For installation, batch file dosinst.bat is executed.

The description format is as follows:

X>dosinst.bat∆install-source-drive∆install-destination-drive∆install-destination-directory

∆: One or more blanks

Example of execution

C >mkdir nectools; Creates an installation destination directory.

C >a :; Changes the current drive to the installation source drive.

A >dosinst.bat a : c : nectools; Executes the batch file.

Once the execution of the batch file has been completed, rewrite autoexec.bat according to the contents

of nectools\ra17k.add as follows:

PATH c:\nectools\BIN; %PATH%

Remark To stop the installation, press CTRL+C or ALT+C when the message “Press any key to

continue...” appears.

21

CHAPTER 2 PROGRAM STRUCTURE

2.1 SPLIT ASSEMBLY OF A MODULE

A source program written in assembly language consists of one or more source module files. The assembler

reads a source module file, which is a text file, assembles the file, then converts the file into an object module

file that can be linked.

The source module file must be coded using the ASCII character set (or shift JIS character set, if Japanese

is used). Other character types can be coded in the comment field and SUMMARY definition block. At the

end of a statement, a line feed (LF) code is necessary.

RA17K is a relocatable assembler. At assembly time, an object module is assigned a relative address.

When the linker relocates the object module in units of sections, absolute addresses are assigned.

2.1.1 External Module Definition Reference Function

Pseudo instruction PUBLIC/EXTRN can reference a symbol defined by an external module.

At assembly time, the symbol defined by the external module is merely subjected to an attribute check and

converted to an unresolved symbol. The object module file contains information relating to the unresolved

symbol. The linker resolves the unresolved symbol, based on the information of the external module.

2.2 RELOCATION OF SECTIONS

In relocatable mode, the linker relocates a program module in units of blocks. A block is referred to as a

section. A single section extends from one CSEG to another CSEG, from CSEG to END, or from CSEG to

the end of the file.

An instruction to generate an object code can be coded only within the section block. (See Chapter 10 .)

22

RA17K USER'S MANUAL

2.3 LAST INSTRUCTION OF A PROGRAM

The last instruction of a program is checked to prevent a program crash. If the ORG pseudo instruction

causes a location address to be changed, the instruction preceding ORG is checked. If the instruction is other

than a branch instruction, a program crash may occur. A warning is output to notify the user of this danger.

The check method depends on the assembly mode.

(1) Relocatable mode

Because a module is relocated in units of sections, a warning (W110: Invalid mnemonic in last of program)

is output if an individual section does not end with a branch (BR), return (RET, RETI, RETSK), or data

definition (DW, DB, DCP) instruction. The object, however, is output.

If the ORG pseudo instruction causes a location address in a section to be changed, the instruction

preceding the ORG pseudo instruction is checked. The instruction is checked only when the location

address is changed.

A warning is not output in the following case:

ORG 100H

ORG 200H <- Because an instruction for generating an object code does not exist between ORG

100H and ORG 200H, no warning is output.

(2) Absolute mode

A warning (W110: Invalid mnemonic in last of program) is output if the instruction preceding the CSEG

pseudo instruction or the last instruction of a user program is other than a branch (BR) instruction to a

user area, return instruction (RET, RETI, RETSK), or data definition instruction (DW, DB, DCP). The

object, however, is output.

If the ORG pseudo instruction causes a location address to be changed, the instruction preceding the ORG

pseudo instruction is checked. The instruction is checked only when the location address is changed.

A warning is not output in the following case:

ORG 100H

ORG 200H <- Because an instruction for generating an object code does not exist between ORG

100H and ORG 200H, no warning is output.

23

CHAPTER 2 PROGRAM STRUCTURE

2.4 SEGMENT STRUCTURE

2.4.1 Segment Configuration

A segment consists of 2K-step pages. Some devices that have multiple segments can use the last segment

as one that can be branched by the SYSCAL instruction. The last segment is called as the system segment.

Page 0 of the system segment is divided into 256-step blocks (BLOCK0 to BLOCK7).

The 17K series supports two types of branch instructions: direct branch instructions and indirect branch

instructions. Direct branch instructions (BR addr or CALL addr instructions) cannot invoke a branch to a point

beyond the segment boundary. This is because the program counter capacity is 13 bits (8K steps). A segment

is specified by the value of a segment register (SGR), separately from the program counter.

A branch to a point beyond the segment boundary is executed by an indirect branch instruction (BR @AR

or CALL @AR instruction) that uses an address register (AR), which is one of system registers, or the SYSCAL

instruction. A single SYSCAL instruction can invoke a branch to a system segment beyond a segment

boundary. The first 16 words of each block of the system segment are used as the entry address for the

SYSCAL instruction.

In the operand of the CALL addr instruction, the addresses of up to 11 bits can be specified. The branch

destination of the CALL addr instruction must be within page 0.

Figure 2-1. Sample Segmented Address Space of the 17K Series

(16K Steps Correspond to 32K Bytes)

SEG0

PAGE0

(16 bits x 2K steps)

PAGE3

PAGE2

PAGE1

00000H

007FFH
00800H

00FFFH
01000H

017FFH
01800H

01FFFH
(16 bits x 8K steps)

SEG1 (System segment)

•

•

•

•

PAGE3

PAGE2

PAGE1

02000H

027FFH
02800H

02FFFH
03000H

037FFH
03800H

03FFFH
(16 bits x 8K steps)

BLOCK0 of SEG1

Entry address of the
SYSCAL instruction

02000H
BLOCK0

BLOCK1

BLOCK2

BLOCK7
02700H

022FFH

021FFH
02200H

020FFH
02100H

Area in which
the entry address
of a system
segment can be
specified

0200FH

24

RA17K USER'S MANUAL

2.5 EXTRA PROGRAM ADDRESS (EPA) STRUCTURE

When a program is debugged, the program size may temporarily exceed the ROM capacity of the target

device. It would be inconvenient if this excess part could not be debugged. The IE-17K in-circuit emulator

for the 17K series uses the program counter of the 17K-series device during debugging. When the ROM

capacity of the target device is exceeded, the program counter will be too small to control the excess part

of the program.

To overcome this problem, IE-17K incorporates an extra program address (EPA) bit. This enables the

control of a program of up to double the ROM capacity of this chip.

The function adds a single EPA bit to an address sent from the program counter of this chip and

simultaneously adds one bit to the program counter. The address space that can be controlled is thus

expanded to about double the ROM capacity of the chip. A program exceeding the ROM capacity can be

debugged with IE-17K.

The EPA bit is added as a one-bit address, in the next-most significant bit position to the most significant

bit of the ROM address of the target device. The ROM capacity which can be emulated is thus expanded

to about double that of the target device. An address space in which the EPA bit is set to 1 is referred to as

the EPA area and used as a patch area.

If the last ROM address of the target device (LPMA) is smaller than 2n – 1, the address space between

LPMA to 2n – 1 becomes an emulation area that can be used without the EPA bit. This area is referred to

as the REMAIN area and can be used as a patch area in the same way as the EPA area.

If a program exceeds the maximum valid address in ROM, LK17K causes an error. This error differs from

other errors in that a normal object can be created in spite of the error. The program size should be reduced

to a point where an error does not occur when the code of the ROM to be ordered is determined.

Figure 2-2. Address Space in a Segment of the 17K Series

No-ROM area

REMAIN area

User program area

EPA area

0000H

LPMA

2n – 1

10000H

10000H + (2n – 1)

25

CHAPTER 2 PROGRAM STRUCTURE

2.5.1 Address Management

RA17K creates an object in an area outside normal program memory.

RA17K does not locate sections. RA17K does not output an error even if the size of an object exceeds

the ROM capacity. Instead, the linker (LK17K) locates the sections.

Refer to the LK17K User's Manual for details of error output when a program exceeds the ROM capacity

of a target device.

26

RA17K USER'S MANUAL

[MEMO]

27

CHAPTER 3 SIMPLEHOSTTM

3.1 OVERVIEW

SIMPLEHOST is a source level debugger designed to operate under Windows. SIMPLEHOST is available

as optional support software for IE-17K and IE-17K-ET for the 17K series. SIMPLEHOST has functions for

debugging object codes created by RA17K on the host machine, to send the codes to IE-17K or IE-17K-ET

in real time, and to execute the codes on the SE board.

Refer to the user's manual provided with the optional SIMPLEHOST for details.

28

RA17K USER'S MANUAL

[MEMO]

29

CHAPTER 4 SOURCE PROGRAM CONFIGURATION

4.1 STATEMENT CONFIGURATION

An RA17K source program consists of multiple statements.

A statement consists of four fields: symbol, mnemonic, operand, and comment, as shown below. It is

terminated with an LF (Line Feed). When using an editor to create a source program, each statement is usually

terminated with a CR (Carriage Return)/LF; however, the assembler ignores the CR.

Fields are separated with a blank (space or TAB), colon (":"), or semicolon (";"). These delimiters must

be ASCII characters. Each line (from the beginning of the statement to the CR/LF) can contain up to 255

characters. If the number of characters in a line exceeds 255, a warning (W157: Letters in a line are over

255) is issued; the first 255 characters are read and processed while the excess characters are ignored. The

excess characters are not output to an intermediate list.

When writing a statement, a user can enter up to 254 characters per line, excluding the CR/LF. Statements

can be written in free form; the symbol, mnemonic, operand, and comment fields can begin at any column

provided they appear in this order. Statements consisting only of a comment, as well as empty statements

(lines having only a CR/LF or lines filled entirely with blanks) can also be specified.

As a blank, specify either a space or TAB code.

Note Blank for a symbol definition pseudo instruction.

Symbol :

One colonNote
(Not required when
there is no label)

One or more blanks

;

One semicolon
(Not required when
there is no comment)

Mnemonic Operand Comment

30

RA17K USER'S MANUAL

4.2 CHARACTERS

A source program is written using the characters listed below. Except for those listed in (4), the following

are all ASCII characters.

(1) Alphabetic characters

A B C D E F G H I J K L M

N O P Q R S T U V W X Y Z

a b c d e f g h i j k l m

n o p q r s t u v w x y z

Characters ?_ (underscore)

(2) Digits

0 1 2 3 4 5 6 7 8 9

(3) Special characters

Space Field delimiter

@ (unit price symbol) Indirect addressing specification symbol

, (comma) Operand delimiter

. (period) Bit delimiting operator

+ (plus) Plus sign or addition operator

– (minus) Minus sign or subtraction operator

* (asterisk) Multiplication operator

/ (slash) Division operator

((left parenthesis) Used to change the order in which operations are performed.

) (right parenthesis) Same as above.

$ (dollar symbol) Value of the location counter

= (Equal sign) Relational operator

; (semicolon) Comment start symbol

;; Comment in a macro

: (colon) Label delimiter

' (quotation mark) Character constant start or end symbol

< Relational operator

> Relational operator

Immediate data specification symbol

& (ampersand) Specifies the concatenation of character strings in a macro.

% (expression operator)

TAB code Equivalent to eight spaces.

LF code Statement termination symbol

CR code Usually ignored by the assembler.

31

CHAPTER 4 SOURCE PROGRAM CONFIGURATION

(4) Kanji, hiragana, and katakana (supported by only the PC-9800 series version)

Shift JIS code kanji, hiragana, katakana, and 8-bit JIS code katakana can be used.

No characters other than those listed in (1) through (4) can be used.

If a statement contains a character other than those listed above, an error (F082: Illegal character) occurs.

Note, however, that a comment field and a SUMMARY block defined with a SUMMARY pseudo instruction

can contain any characters (visible characters). A comment field is terminated by a CR/LF, whereas in a

SUMMARY block, a CR/LF can be entered in any position.

4.3 SYMBOL FIELD

In the symbol field, enter a symbol.

Symbols are divided into two categories: labels, to each of which a program memory address value is

assigned to define the destination of a branch instruction; and names, each of which defines the data to be

entered in the operand field. Labels and names are generically referred to as symbols.

If a character string entered at the beginning of a statement is terminated with a colon, that character string

is assumed to be a label.

The value of the location counter of the program memory that stores the instruction immediately following

a label is defined for that label. A label can also be defined with a symbol definition pseudo instruction (LAB),

as described later.

When a label is entered, the label is registered in a symbol table, provided the description in the mnemonic

field is correct, even if an error occurs in the operand field.

[Example]

ABCD: IF IF

This above example will produce a syntax error; however, because the descriptions in the symbol and

mnemonic fields are correct, label ABCD will be registered.

A name is defined with a symbol definition pseudo instruction (such as DAT, FLG, or MEM). The evaluation

value of the operand for the symbol definition pseudo instruction is assigned to the name. In addition to the

evaluation value, variable length information can also be assigned by using the NIBBLEn or NIBBLEnV pseudo

instruction, described later.

For a macro definition statement, enter a macro name in the symbol field. The block of macro definition

pseudo instructions between MACRO and ENDM is defined for the macro name, as one procedure statement.

A previously defined symbol name cannot be used as a macro name. If a macro name conflicts with a symbol

name, an error occurs. (See Chapter 16 .)

32

RA17K USER'S MANUAL

[Symbol coding rules]

(1) A symbol can consist of alphanumeric characters, underscore, ?, kanji, hiragana (Shift JIS code), and

katakana (8-bit JIS or Shift JIS code). It must begin with an alphabetic character, underscore, ?, kanji,

hiragana, or katakana character. A character string beginning with a digit is not recognized as a

symbol. In a CASE to ENDCASE block, however, a numeric label beginning with a digit is supported.

(2) No limit is imposed on the number of characters constituting a symbol; however, a statement can

contain no more than 255 characters, including the instruction, pseudo instruction, operand, and

terminator (LF). Note that one Shift JIS code character requires the same amount of space as two

alphanumeric characters.

(3) The names used in symbol definition pseudo instructions and macro definition statements cannot be

omitted. A name is terminated with a blank.

(4) A symbol cannot be defined more than once. If an attempt is made to redefine a symbol, an error

(F057: Symbol multi defined) occurs. This rule does not apply to a symbol defined with a SET

statement.

For an explanation of the scope of a local symbol defined in a macro or the scope of a symbol when

the source program is divided into source modules, see Section 16.4 .

(5) Reserved words cannot be used as symbols. Otherwise, an error (F037: Syntax error) occurs.

(6) Symbols are case-sensitive. For example, ABCD and abcd are recognized as being different symbols.

[Label coding rules]

(1) A label can consist of alphanumeric characters, underscore, ?, kanji, hiragana (Shift JIS code), and

katakana (8-bit JIS or Shift JIS code). It must begin with an alphabetic character, underscore, ?, kanji,

hiragana, or katakana character. A character string beginning with a digit is not recognized as being

a symbol. In a CASE to ENDCASE block, however, the specification of a numeric label beginning

with a digit is allowed.

If a label contains characters other than those described above, an error (F037: Syntax error) occurs.

(2) A label is terminated with a colon. One or more blanks (space or TABs) may be inserted between

the label and the colon. (The blanks are ignored.)

(3) Labels can be written in a section or table block only. If a label is written elsewhere, an error (F146:

Impossible to write out of section block) occurs.

(4) If an error occurs in a label description, and if an instruction for which object code will be created is

written on the same line, the instruction will be nullified and the object code for an NOP instruction

will be created; if a pseudo instruction is written on the same line, the pseudo instruction will be nullified.

(5) If a reserved word is written as a label, an error (F037: Syntax error) occurs.

33

CHAPTER 4 SOURCE PROGRAM CONFIGURATION

4.3.1 Symbol Types

Symbols are assigned types. These types are listed below:

LAB type : LAB

DAT type : DAT

FLG type : FLG

MEM type: MEM

NIBBLE

NIBBLEn (1 ≤ n ≤ 8)

NIBBLEnV (2 ≤ n ≤ 8)

Caution For details of how to handle types, see the explanations of the symbol definition pseudo

instruction and the type conversion instruction.

(1) Symbol examples

[Example 1] Label definition examples

Valid label Invalid label

F1F4: 1F4F: ... Begins with a digit.

LABEL: LABEL ... A colon is missing.

HERE: HE RE: ... There are blanks in the symbol.

ADDITION: ADD: ... An instruction cannot be used.

TERMINATION: END: ... A pseudo instruction cannot be used.

[Example 2] Limit imposed on the number of characters in a symbol

• A label can consist of up to 253 characters.

• For other symbols, see (2) in the Symbol coding rules.

ABC······XYZ:CRLF

253

254 255
Ignored

An LF code is also counted in the number of characters.

34

RA17K USER'S MANUAL

[Example 3] Symbol definition example

A previously defined symbol can be entered as an operand in a symbol definition statement.

In this case, the same attributes and value as those specified for the symbol entered in the operand field

are defined for the symbol in the symbol field.

Symbol Mnemonic Operand Comment

ABC DAT 0300H

XYZ DAT ABC ; 0300H is defined for XYZ.

[Example 4] Symbol multi-definition

If the same name is defined more than once, the second and any subsequent definitions will cause an

error (F057: Symbol multi defined). Only the first definition is valid.

Symbol Mnemonic Operand Comment

TURN: NOP
······

TURN MEM 0.01H ; Error (F057: Symbol multi defined)

ADD TURN, #1 ; Error (F011: Illegal first operand type)

[Example 5] Symbols defined with SET pseudo instructions

The value of the symbol defined with a SET pseudo instruction can be changed. A SET pseudo instruction

is used to change as well as set the value.

Symbol Mnemonic Operand Comment

Counter SET 3 ; (Counter=3)

IF Counter=3 ; The IF block is expanded.
······

ENDIF

Counter SET 5 ; (Counter=5)

IF Counter=3 ; The IF block is not expanded.
······

ENDIF

Because a symbol defined with a SET pseudo instruction can be redefined, the symbol can be used as

a variable that is meaningful at assembly time only. This user's manual refers to such a variable as an

assemble-time variable.

The contents of an assemble-time variable are referenced with an instruction such as the IF pseudo

instruction, and used for conditional assembly, etc.

35

CHAPTER 4 SOURCE PROGRAM CONFIGURATION

4.3.2 Reserved Words

Reserved words are those words which are defined by the system. They include instruction, pseudo

instruction, register, and operator names. Such names can be used only exactly as they are defined; they

cannot be redefined as symbols. As will be described later, however, the values of assemble-time variables

(reserved words having prefix ZZZ) can be changed with a SET pseudo instruction. Also, one character string

can be replaced with another by using a LITERAL pseudo instruction.

• Reserved words are not case-sensitive. For example, a reserved word is handled in the same way

regardless of whether it is entered in uppercase or lowercase. (Ordinary symbols are case-sensitive.

For example, sym and SYM are recognized as being different symbols.)

• Reserved words vary with the hardware specifications and, therefore, differ with the product type. A list

of reserved words is provided in the data sheet and user's manual for each device.

Reserved words

_BREAK _CASE _CONTINUE _DEFAULT

_ELSE _ELSEIF _ENDIF _ENDS

_ENDW _FOR _GOTO _IF

_NEXT _REPEAT _SWITCH _UNTIL

_WHILE ADDCSX ADDCX ADDSX

ADDX ANDX AR_EPA0 AR_EPA1

BANK0 BANK1 BANK2 BANK3

BANK4 BANK5 BANK6 BANK7

BANK8 BANK9 BANK10 BANK11

BANK12 BANK13 BANK14 BANK15

BELOW BRX C14344 C4444

CALLX CASE CLR1 CLR2

CLR3 CLR4 CLRX CSEG

DAT DB DCP DW

EJECT ELSE END ENDCASE

ENDIF ENDIFC ENDIFNC ENDIFS

ENDM ENDOP ENDP ENDR

ENDSUM ENSURE ENTRY EOF

EQ EXIT EXITR EXTRN

FLG GE GLOBAL GT

IF IFCHAR IFNCHAR IFSTR

INCLUDE INITFLG INITFLGX INV

IRP LAB LBMAC LE

LFCOND LIST LITERAL LMAC

LT MACRO MEM MOD

MOVTX MOVX NE NIBBLE

36

RA17K USER'S MANUAL

NIBBLE1 NIBBLE2 NIBBLE3 NIBBLE4

NIBBLE5 NIBBLE6 NIBBLE7 NIBBLE8

NIBBLE2V NIBBLE3V NIBBLE4V NIBBLE5V

NIBBLE6V NIBBLE7V NIBBLE8V NOBMAC

NOCHANGE NOLIST NOMAC NOT

NOT1 NOT2 NOT3 NOT4

NOTX OBMAC OMAC OPTION

ORG ORX OTHER PAGE0

PAGE1 PAGE2 PAGE3 PUBLIC

PURGE REPT ROLCX RORCX

SBMAC SET SET1 SET2

SET3 SET4 SETAR SETBANK

SETIX SETMP SETRP SETX

SFCOND SHL SHLX SHR

SHRX SKEX SKF1 SKF2

SKF3 SKF4 SKFX SKGEX

SKGTX SKLEX SKLTX SKNEX

SKT1 SKT2 SKT3 SKT4

SKTX SMAC SUBCSX SUBCX

SUBSX SUBX SUMMARY SYS

SYSCALX TABLE TITLE UNKNOWN

UNLITERAL VBMAC VMAC XORX

ZZZERROR ZZZMCHK ZZZMSG ZZZOPT

4.4 MNEMONIC FIELD

In the mnemonic field, enter an instruction, pseudo instruction, or macro reference statement.

For an instruction that requires an operand, one or more blanks (spaces or TABs) are required to separate

the mnemonic field from the operand field.

Assembly processing creates the object code for an instruction written in a mnemonic field. A pseudo

instruction is an instruction for the assembly processing.

37

CHAPTER 4 SOURCE PROGRAM CONFIGURATION

4.5 OPERAND FIELD

In the operand field, enter the operand for the instruction, pseudo instruction, or macro reference (including

a built-in macro instruction).

Some 17K series instructions require no operand. Others, however, require that an operand be specified.

Some pseudo instructions allow more than one operand to be entered. To enter two or more operands, delimit

them with a comma (,)Note . No limit is imposed on the number of operands; however, the statement must

fit on one line (255 characters).

For those instructions that require the specification of operand(s), the number of operands and evaluation

values are examined.

One or more blanks (spaces or TABs) must be inserted between a mnemonic field and an operand field.

As the operand for a pseudo instruction, an external definition symbol defined in another module cannot

be entered.

Note For the CSEG pseudo instruction only, a blank is used as the operand delimiter.

4.5.1 Operand Field Coding Format

(1) Constants

Constants are divided into numeric constants which consist entirely of digits, and character constants

which consist entirely of characters.

Numeric constants include binary, octal, decimal, and hexadecimal constants. They are entered using

single-byte characters.

If a numeric constant consists of more than 32 bits, an error (F164: The constant is over 32 bits) occurs.

If any error other than this occurs, and if the constant is entered as the operand of an instruction for which

object code will be created, the object code for an NOP instruction will be created; if it is entered as the

operand of a pseudo instruction, the pseudo instruction will be nullified.

(a) Binary constants

A binary constant is identified by being suffixed with a single-byte B.

The B may be either uppercase or lowercase. If a binary constant contains digits other than 0 and

1, an error (F044: Invalid value) occurs.

[Example]

1011B

1011b ; The B may also be in lowercase.

38

RA17K USER'S MANUAL

(b) Octal constants

An octal constant is identified by being suffixed with a single-byte O or Q.

The O or Q may be either uppercase or lowercase.

If an octal constant contains digits other than 0 through 7, an error (F044: Invalid value) occurs.

[Example]

1234567O ···A single-byte O is added to the end.

1234Q ···A single-byte Q is added to the end.

(c) Decimal constants

A decimal constant is identified by being suffixed with a single-byte D or nothing.

The D may be either uppercase or lowercase.

If a decimal constant contains digits other than 0 through 9, an error (F044: Invalid value) occurs.

[Example]

1234567890 ···Nothing is added to the end.

1234567890D ···A single-byte D is added to the end.

(d) Hexadecimal constants

A hexadecimal constant is identified by being suffixed with a single-byte H. It must begin with a

character between 0 and 9. If it must begin with a character between A and F, it must be prefixed

with a 0. (A constant that does not begin with a character between 0 and 9 is recognized as a symbol.)

The H may be specified in either uppercase or lowercase.

If a hexadecimal constant contains digits other than 0 through 9 and A through F, an error (F044:

Invalid value) occurs.

[Example]

147H

1ABCDEFH

ABCDH ; Not recognized as a hexadecimal constant because it begins

with a character other than 0 through 9. 0 must be added

to the beginning to change it to 0ABCDH.

39

CHAPTER 4 SOURCE PROGRAM CONFIGURATION

(e) Character constants

A character constant consists of characters enclosed in single quotation marks (').

A <character-string> enclosed in single quotation marks is called a character constant. The

<character-string> can contain any characters other than a CR/LF. In the same way as numeric

constants, character constants have evaluation values (ASCII code values).

[Format]

'<character-string>'

[Example]

' A' : 41H

' ' ' ' : 27H (Two single quotation marks are recognized as a single quotation mark.)

' A' ' ' : 4127H

' ' : 20H (space code)

' <' : 203CH

' ABCD' : 41424344H

[Notes]

(1) When a character constant is written in a macro, if the <character-string> contains the same character

string as a formal parameter, the assembler does not recognize it as the formal parameter.

LOC. OBJ. M I STATEMENT

MACW MACRO X

ZZZMSG ' Invalid value X'

ENDM

MACW %MEM1

1 ZZZMSG ' Invalid value X'

This parameter is not replaced.

(2) When a character constant is entered as the actual parameter of a macro, only the character string

enclosed in single quotation marks is passed. That is, the single quotation marks at both ends are

removed.

LOC. OBJ. M I STATEMENT

MACC MACRO X

ZZZMSG X

ENDM

MACC ' Invalid value'

1 ZZZMSG Invalid value <- Error

MACC ''' Invalid value'''

1 ZZZMSG ' Invalid value' <- Normal processing

40

RA17K USER'S MANUAL

(2) $ (location counter)

$ returns the value of the location counter. That is, it indicates the program memory address of the

instruction for which $ is written.

[Example]

100 MOV R0, #20H

101 LOOP: ADD R2, #30H

102 BR $–1

In the above example, $ indicates address 102H and, therefore, BR $–1 is a jump instruction that causes

a jump to address 101H. BR $–1 is equivalent to BR LOOP, in which label LOOP is used.

(3) Symbols

When a symbol is entered in an operand field, the value assigned to the symbol (label or name) is assumed

as the value of the operand.

[Example]

Here: BR There
······

There: RET

(4) Expressions

A combination of constants, $, and symbols linked by operators is called an expression. There are 17

operators. Each is assigned a priority.

Bit delimiting operators, necessary to represent memory and flag addresses, can be written as part of an

expression. (See Section 4.7 .)

41

CHAPTER 4 SOURCE PROGRAM CONFIGURATION

4.6 COMMENT FIELD

A comment field begins with a semicolon (;) and ends with a line feed code (LF).

Comments can be provided to improve the readability of program processing, etc. Comments are ignored

during assembly processing and are output to the assembly listing exactly as entered.

The document creation function and memory map creation function supported by the document processor

can extract comments entered in the lines of symbol definition pseudo instructions and those of specific

instructions (such as branch instructions) and expand them into a list as symbol information. (The document

creation function and memory map creation function automatically extract symbols and comments from a

source program to create a list.)

A comment can start in any column, provided it appears after the symbol, mnemonic, and operand fields.

The characters enclosed between a semicolon and a LF are recognized as a comment and are not subjected

to assembly processing. Note that it is also possible for a line to begin with a semicolon (i.e., the whole line

becomes a comment).

Remark A comment can also be entered using the SUMMARY pseudo instruction of the document

creation function. If a source program is written hierarchically, writing comments using SUMMARY

pseudo instructions can assist in maintaining the program.

4.7 EXPRESSIONS AND OPERATORS

4.7.1 Expressions

A character or numeric expression containing symbols, constants, and operators in its operand field is

referred to as an expression.

Expressions are classified as data types (DAT), data memory types (MEM), flag types (FLG), and label

types (LAB).

The combinations of types that can be processed are shown below, together with relevant notes.

• Type and numeric value : The result of an operation will have the same attributes as the type.

• Type and type : Symbols of different types cannot be processed.

• Numeric value and numeric value : The result of an operation will be of data type.Note

Note A numeric value is processed as a data type.

To process symbols of different types, ensure that they are of the same type, using the type

conversion function if necessary.

The following expressions can be written.

For information on the types of symbols used in each expression, see Chapter 8 .

42

RA17K USER'S MANUAL

<expression (DAT-type) > <numeric-value>

<DAT-type-symbol>

<numeric-value> <operator> <numeric-value>

<DAT-type-symbol> <operator> <numeric-value>

<expression (DAT-type) > <operator> <numeric-value>

<expression (DAT-type) > <operator> <DAT-type-symbol>

<expression (MEM-type) > <expression (DAT-type) >. <expression (DAT-type) > Note

<MEM-type-symbol>

<MEM-type-symbol> <operator> <expression (DAT-type) >

<expression (FLG-type) > <expression (DAT-type) >. <expression (DAT-type) >.

<expression (DAT-type) > Note

<expression (MEM-type) >. <expression (DAT-type) > Note

<FLG-type-symbol>

<FLG-type-symbol> <operator> <expression (DAT-type) >

<expression (LAB-type) > <numeric-value>

<LAB-type-symbol>

<numeric-value> <operator> <numeric-value>

<LAB-type-symbol> <operator> <numeric-value>

<expression (LAB-type) > <operator> <numeric-value>

<expression (LAB-type) > <operator> <LAB-type-symbol>

A <numeric-value> can be coded in binary, octal, decimal, or hexadecimal.

Note An <expression> with a bit delimiting operator (.) can be entered as the operand for the MEM pseudo

instruction and FLG pseudo instruction only. If an <expression> with a bit delimiting operator is

entered as the operand for a pseudo instruction other than MEM and FLG or for a mnemonic, an

error (F037: Syntax error) occurs.

[Notes]

(1) If an <expression> contains symbols of different types, an error (F045: Invalid type) occurs. If,

however, the <expression> is entered as the operand of an instruction for which object code will be

created, an error (F011: Illegal first operand type) occurs if it is the first operand; similarly, an error

(F012: Illegal second operand type) occurs if it is the second operand.

Operations on symbols of data and data memory types; data and label types; and data and flag types

do not cause errors.

(2) When an error occurs in an <expression> description, if the description is entered as the operand of

an instruction for which object code will be created, the instruction will be nullified and the object code

for an NOP instruction will be created; if it is entered as the operand of a pseudo instruction, the pseudo

instruction will be nullified.

43

CHAPTER 4 SOURCE PROGRAM CONFIGURATION

(3) In absolute mode, if the final evaluation value or an intermediate result of an <expression> exceeds

16 bits, a warning (W111: The result is over 16 bits) is issued.

(1) Data type (DAT type) expression

A data type expression is used to represent 32-bit data. If the result of an expression exceeds 32 bits,

the 33rd and subsequent bits are ignored.

Immediate data, i.e., a data type expression preceded by a #, entered as the operand of an instruction,

represents 4-bit data. If the result of this expression exceeds 4 bits, an error (F015: Illegal second operand

value) occurs. (For an extended instruction, the immediate data can be 32-bits data.)

A data type expression can use constants and data type symbols.

To use a symbol of a type other than data type in a data type expression, convert the type.

[Example]

S1 CSEG

Count DAT 0256H ; <1>

MEM1 MEM 0.00H ; <2>
···
MOV MEM1, #Count/82H ; <3>
···
ADD MEM1, #Count*4H ; <4>

;

; Causes an error

END

[Description]

<1> The value of 0256H is assigned to the name, Count.

<2> Bank 0 and data memory address 00H are assigned to the name, MEM1.

<3> Count/82H (256H/82H=4H) is stored in MEM1. Count/82H is a data type expression.

<4> Count*4H is equivalent to 256Hx4H in this example, the result of which exceeds 4 bits. Therefore,

an error (F015: Illegal second operand value) occurs.

44

RA17K USER'S MANUAL

(2) Data memory type (MEM type) expression

A data memory type expression is used to represent a data memory address.

A data memory type expression can use a position delimiting symbol ".". Once an operation has been

executed, only the low-order 12 bits of the data are valid.

The symbol types that may be specified in a data memory type expression are the data memory and data

types.

[Example]

S2 CSEG

MEM4 MEM 0.10H

MEM5 MEM 0.20H <1>

CONST1 DAT 2H

CONST2 DAT 4H
···
MOV MEM4+4H,#CONST1 ;<2>

MEMA MEM CONST1+3H.CONST2+2H ;<3>
···
END

[Description]

<1> MEM4, MEM5, CONST1, and CONST2 are defined with symbol definition pseudo instructions.

<2> The expression MEM4+4H indicates bank 0 and data memory address 14H. MEM4 is a data memory

type symbol.

<3> The expressions CONST1+3H and CONST2+2H indicate bank 5 and data memory address 06H.

Thus, MEMA is defined as bank 5 and data memory address 06H.

45

CHAPTER 4 SOURCE PROGRAM CONFIGURATION

(3) Flag type (FLG type) expression

A flag type expression is used to represent a flag.

A flag type expression does not permit an operation on flag type symbols. Only the operation in the range

specified with a position delimiting symbol (.) is valid. The allowable symbol types are the data and data

memory types.

[Example]

S3 CSEG

MEM6 MEM 0.13H

CONST3 DAT 0H <1>

CONST4 DAT 14H

CONST5 DAT 3H
···

FLAG1 FLG MEM6.0H ; <2>

FLAG2 FLG CONST3+2H.CONST4+6H.CONST5 ;<3>
···
END

[Description]

<1> MEM6, CONST3, CONST4, and CONST5 are defined with symbol definition pseudo instructions.

<2> Bank 0, data memory address 13H (MEM6), and bit position 0 (LSB) are assigned to the name,

FLAG1. In this example, MEM6 is a data memory type symbol.

<3> Bank 2, data memory address 1AH, and bit position 3 (MSB) are assigned to the name, FLAG2.

In this example, CONST3, CONST4, and CONST5 are data type symbols.

46

RA17K USER'S MANUAL

(4) Label type (LAB type) expression

A label type expression is used to represent a program memory address (the value of the location counter).

A label type expression can use constants and label type symbols.

To use a symbol of a type other than label type in a label type expression, convert the type.

When a label type symbol is defined with a LAB pseudo instruction, the following occur if the evaluation

value of the expression falls outside the ROM range:

• If the evaluation value is in the EPA area

A warning (W153: The address is in EPA area) is issued.

• If the evaluation value falls outside the ROM and EPA areas

An error (F152: The address is out of ROM) occurs.

[Example]

S4 CSEG

Data table 1 LAB 0300H ; <1>
···
ORG Data table 1 ; <2>

Table area 1: DB 00H,48H
···
ORG Data table 1 + 20H ; <3>

Table area 2: DB 10H,52H
···
ORG Data table 1 + 40H ; <4>

Table area 3: DB 50H,60H
···
END

[Description]

<1> The value of 0300H is assigned to the label type symbol, Data table 1.

<2>, <3>, <4> The top address of each table area is defined with a label type expression.

47

CHAPTER 4 SOURCE PROGRAM CONFIGURATION

4.7.2 Operators

(1) Outline

The operators of the RA17K assembly language are divided into five types. Priorities are set for each

of these operators.

• Arithmetic operators

+, –, *, /, MOD (remaindering)

• Logic operators

OR, AND, XOR, NOT

• Relational operators

EQ, NE, LT, LE, GT, GE

=, <>, <, <=, >, >=

• Shift operators

SHR, SHL

• Unary operators

+, –

(2) Operator priorities

Priorities are set as shown in the table below. () can change the order in which operations are performed.

If operators having the same priority exist in an expression, they are performed from left to right.

Table 4-1. Priorities of Operators

Priority Operator(s)

1 () (operator order specification symbols)

2 NOT, + (unary operator), – (unary operator), type conversion function, .TYPE., .DEF., .EV.

3 *, /, MOD, SHL, SHR

4 +, – (arithmetic operator)

5 AND

6 OR, XOR

7 EQ, NE, LT, LE, GT, GE, =, <>, <, <=, >, >=

48

RA17K USER'S MANUAL

4.7.3 Arithmetic Operators

(1) Addition operator (+)

[Format]

<expression-1>+<expression-2>

[Function]

This operator adds the values of <expression-1> and <expression-2> together.

[Explanation]

If the result of the operation exceeds the 32-bit range (–231 to 231) including the sign bit, the high-order

bits beyond the 32-bit limit are truncated.

[Example]

START DAT 4H

OFFSET DAT 3H

STEP DAT 2H <1>

R1 MEM 0.01H

···

MOV R1,#START + OFFSET ;<2>

LOOP1:

ADD R1,#STEP ; <3>

SKF1 CY ; <4>

BR LOOP1END

···

BR LOOP1

LOOP1END:

[Description]

<1> Symbols are defined.

<2> As an initial value, START+OFFSET (07H) is stored in R1.

<3> STEP is added to R1.

<4> If there is a carry, a jump to LOOP1END occurs.

···

49

CHAPTER 4 SOURCE PROGRAM CONFIGURATION

(2) Subtraction operator (–)

[Format]

<expression-1>–<expression-2>

[Function]

This operator subtracts the value of <expression-2> from that of <expression-1>.

[Explanation]

If the result of the operation exceeds the 32-bit range (–231 to 231) including the sign bit, the high-order

bits beyond the 32-bit limit are truncated.

[Example]

TABLE end LAB 100H

<1>

TABLE area LAB 40H

···

ORG TABLE end–TABLE area ; <2>

TABLE start:

DW 0445H

<3>

DW 5637H

···

ORG TABLE end

···

[Description]

<1> Symbols are defined.

<2> The start address of the table area is set in the TABLE end–TABLE area (0C0H).

<3> Define data.

50

RA17K USER'S MANUAL

(3) Multiplication operator (*)

[Format]

<expression-1> * <expression-2>

[Function]

This operator multiplies the value of <expression-1> by that of <expression-2>.

[Explanation]

If the result of the operation exceeds the 32-bit range (–231 to 231) including the sign bit, the high-order

bits beyond the 32-bit limit are truncated.

[Example]

Table LAB 100H
<1>

Block LAB 10H

···

ORG Table

Table area 1:
···
ORG Table+Block

Table area 2:
·· <2>·
ORG Table+(Block*2)

Table area 3:
···
ORG Table+(Block*3)

Table area 4:
···

[Description]

<1> Symbols are defined.

<2> The uppermost address of each table area is defined in program memory.

51

CHAPTER 4 SOURCE PROGRAM CONFIGURATION

(4) Division operator (/)

[Format]

<expression-1>/<expression-2>

[Function]

This operator divides the value of <expression-1> by that of <expression-2>.

[Explanation]

If the result of an operation exceeds the 32-bit range (–231 to 231) including the sign bit, the high-order

bits beyond the 32-bit limit are truncated.

If <expression-2> is equal to 0, an error (F044: Invalid value) occurs and the result of the operation is

set to 0.

If the result is not an integer, the decimal part is truncated.

[Example]

Table area LAB 40H

<1>

Table start LAB 200H

···

ORG Table start+(Table area/4H)

·· <2>·

ORG Table start+(2*(Table area/4H))

[Description]

<1> Symbols are defined.

<2> The start address of the table area is defined in program memory.

52

RA17K USER'S MANUAL

(5) Remaindering operator (MOD)

[Format]

<expression-1> ∆MOD∆<expression-2>

[Function]

This operator takes the remainder resulting from dividing the value of <expression-1> by that of

<expression-2>.

[Explanation]

If <expression-2> is equal to 0, the result of the operation is 0.

[Example]

Constant 1 DAT 552H

Constant 2 DAT 7H

R1 MEM 0.10H

···

ADD R1,#Constant 1 MOD Constant 2

[Description]

In the above example, the result of Constant 1 MOD Constant 2 is 4H.

53

CHAPTER 4 SOURCE PROGRAM CONFIGURATION

4.7.4 Logic Operators

(1) OR operator

[Format]

<expression-1> ∆OR∆<expression-2>

[Function]

This operator takes the OR of the values of <expression-1> and <expression-2>.

[Explanation]

A numeric value with a minus sign is processed as a 2s complement; the sign bit is processed as part

of the numeric value.

[Example]

R1 MEM 1.40H

Constant 1 DAT 4H

···

SUB R1,#Constant 1 OR 8H

[Description]

In the above example, the result of Constant 1 OR 8H is 0CH.

54

RA17K USER'S MANUAL

(2) AND operator

[Format]

<expression-1> ∆AND∆<expression-2>

[Function]

This operator takes the AND of the values of <expression-1> and <expression-2>.

[Explanation]

A numeric value with a minus sign is processed as a 2s complement; the sign bit is processed as part

of the numeric value.

[Example]

Constant 1 DAT 4567H

R10 MEM 2.50H

···

MOV R10,#(Constant 1/2H) AND 0FH

[Description]

In the above example, the result of (Constant 1/2H) AND 0FH is 03H. AND 0FH is used to validate only

the lower four bits of a data type expression.

In the above example, an error occurs if AND 0FH is omitted because the range of values supported for

the operand is exceeded.

55

CHAPTER 4 SOURCE PROGRAM CONFIGURATION

(3) XOR operator

[Format]

<expression-1> ∆XOR∆<expression-2>

[Function]

This operator takes the exclusive OR of the values of <expression-1> and <expression-2>.

[Explanation]

A numeric value with a minus sign is processed as a 2s complement; the sign bit is processed as part

of the numeric value.

[Example]

Constant A DAT 2345H

Constant B DAT 42H

R02 MEM 0.42H

···

MOV R02,#((Constant A–Constant B) XOR 0FH) AND 0FH

[Description]

In the above example, the result of ((Constant A–Constant B) XOR 0FH) AND 0FH is 0CH.

AND 0FH is used to validate only the lower four bits of a data type expression.

In the above example, an error occurs if AND 0FH is omitted because the range of values supported for

the operand is exceeded.

56

RA17K USER'S MANUAL

(4) NOT operator

[Format]

NOT∆<expression>

[Function]

This operator takes the 1s complement of the value of <expression>.

[Explanation]

A numeric value with a minus sign is processed as a 2s complement; the sign bit is processed as part

of the numeric value.

[Example]

Constant DAT 4567H

R9 MEM 0.12H

···

MOV R9,#(NOT Constant) AND 0FH

[Description]

In the above example, the result of (NOT Constant) AND 0FH is 8H.

AND 0FH is used to validate only the low-order four bits of a data type expression.

In the above example, an error occurs if AND 0FH is omitted because the range of values supported for

the operand is exceeded.

57

CHAPTER 4 SOURCE PROGRAM CONFIGURATION

4.7.5 Relational Operators

A relational operator compares the values to its right and left, returning –1 if the result is true or 0 if it is

false.

(1) EQ (Equal) operator

[Format]

<expression-1> ∆EQ∆<expression-2>

or <expression-1>=<expression-2>

[Function]

This operator returns –1 (true) if the value of <expression-1> is equal to that of <expression-2>; otherwise,

it returns 0 (false).

[Explanation]

EQ can be replaced with =.

–1 is processed as a 2s complement, thus is represented by 0FFFFFFFFH in hexadecimal.

[Example]

Condition DAT 0AH
<1>

R1 MEM 0.43H
···

Macro MACRO P1,P2,P3

IF P1 EQ Condition

MOV R1,#P2
···
ELSE <2>

MOV R1,#P3
···
ENDIF

ENDM

[Description]

<1> Symbols are defined.

<2> A macro is defined. P1, P2, and P3 are formal parameters.

If P1 = Condition, the statements between IF and ELSE are expanded. If P1 ≠ Condition, the

statements between ELSE and ENDIF are expanded.

58

RA17K USER'S MANUAL

(2) NE (Not Equal) operator

[Format]

<expression-1> ∆NE∆<expression-2>

or <expression-1><><expression-2>

[Function]

This operator returns –1 (true) if the value of <expression-1> is not equal to that of <expression-2>;

otherwise, it returns 0 (false).

[Explanation]

NE can be replaced with <>.

–1 is processed as a 2s complement, thus is represented by 0FFFFFFFFH in hexadecimal.

[Example]

Condition DAT 0BH
<1>

R3 MEM 1.34H
···

Macro MACRO P1,P2,P3

IF P1 NE Condition

MOV R3,#P2
···
ELSE <2>

MOV R3,#P3
···
ENDIF

ENDM

[Description]

<1> Symbols are defined.

<2> A macro is defined. P1, P2, and P3 are formal parameters.

If P1 ≠ Condition, the statements between IF and ELSE are expanded. If P1 = Condition, the

statements between ELSE and ENDIF are expanded.

59

CHAPTER 4 SOURCE PROGRAM CONFIGURATION

(3) LT (Less Than) operator

[Format]

<expression-1> ∆LT∆<expression-2>

or <expression-1><<expression-2>

[Function]

This operator returns –1 (true) if the value of <expression-1> is less than that of <expression-2>. If the

value of <expression-1> is larger than or equal to that of <expression-2>, it returns 0 (false).

[Explanation]

LT can be replaced with <.

–1 is processed as a 2s complement, thus is represented by 0FFFFFFFFH in hexadecimal.

[Example]

Condition DAT 02H
<1>

R3 MEM 3.45H
···

Macro MACRO P1,P2,P3

IF P1 LT Condition

MOV R3,#P2
···
ELSE <2>

MOV R3,#P3
···
ENDIF

ENDM

[Description]

<1> Symbols are defined.

<2> A macro is defined. P1, P2, and P3 are formal parameters.

If P1 < Condition, the statements between IF and ELSE are expanded. If P1 ≥ Condition, the

statements between ELSE and ENDIF are expanded.

60

RA17K USER'S MANUAL

(4) LE (Less Than or Equal) operator

[Format]

<expression-1> ∆LE∆<expression-2>

or <expression-1><=<expression-2>

[Function]

This operator returns –1 (true) if the value of <expression-1> is less than or equal to that of <expression-

2>. If the value of <expression-1> is larger than that of <expression-2>, it returns 0 (false).

[Explanation]

LE can be replaced with <=.

–1 is processed as a 2s complement, thus is represented by 0FFFFFFFFH in hexadecimal.

[Example]

Condition DAT 04H
<1>

R1 MEM 1.13H
···

Macro MACRO P1,P2,P3

IF P1 LE Condition

MOV R1,#P2
···
ELSE <2>

MOV R1,#P3
···
ENDIF

ENDM

[Description]

<1> Symbols are defined.

<2> A macro is defined. P1, P2, and P3 are formal parameters.

If P1 ≤ Condition, the statements between IF and ELSE are expanded. If P1 > Condition, the

statements between ELSE and ENDIF are expanded.

61

CHAPTER 4 SOURCE PROGRAM CONFIGURATION

(5) GT (Greater Than) operator

[Format]

<expression-1> ∆GT∆<expression-2>

or <expression-1>><expression-2>

[Function]

This operator returns –1 (true) if the value of <expression-1> is greater than that of <expression-2>. If

the value of <expression-1> is less than or equal to that of <expression-2>, it returns 0 (false).

[Explanation]

GT can be replaced with >.

–1 is processed as a 2s complement, thus is represented by 0FFFFFFFFH in hexadecimal.

[Example]

Condition DAT 07H
<1>

R1 MEM 3.44H
···

Macro MACRO P1,P2,P3

IF P1 GT Condition

MOV R1,#P2
···
ELSE <2>

MOV R1,#P3
···
ENDIF

ENDM

[Description]

<1> Symbols are defined.

<2> A macro is defined. P1, P2, and P3 are formal parameters.

If P1 > Condition, the statements between IF and ELSE are expanded. If P1 ≤ Condition, the

statements between ELSE and ENDIF are expanded.

62

RA17K USER'S MANUAL

(6) GE (Greater or Equal) operator

[Format]

<expression-1> ∆GE∆<expression-2>

or <expression-1>>=<expression-2>

[Function]

This operator returns –1 (true) if the value of <expression-1> is greater than or equal to that of

<expression-2>. If the value of <expression-1> is less than that of <expression-2>, it returns 0 (false).

[Explanation]

GE can be replaced with >=.

–1 is processed as a 2s complement, thus is represented by 0FFFFFFFFH in hexadecimal.

[Example]

Condition DAT 0FH
<1>

R1 MEM 1.67H
···

Macro MACRO P1,P2,P3

IF P1 GE Condition

MOV R1,#P2
···
ELSE <2>

MOV R1,#P3
···
ENDIF

ENDM

[Description]

<1> Symbols are defined.

<2> A macro is defined. P1, P2, and P3 are formal parameters.

If P1 ≥ Condition, the statements between IF and ELSE are expanded. If P1 < Condition, the

statements between ELSE and ENDIF are expanded.

63

CHAPTER 4 SOURCE PROGRAM CONFIGURATION

4.7.6 Shift Operators

(1) SHR (Shift Right) operator

[Format]

<expression-1> ∆SHR∆<expression-2>

[Function]

This operator shifts the bits of the value of <expression-1> to the right by a number of positions equal

to the value of <expression-2>.

[Explanation]

The maximum allowable number of bits is 32. As a result of the shift, the MSB is set to 0.

[Example]

Constant DAT 00004578H

Memory 1 MEM 0.48H

Memory 2 MEM 0.49H

Memory 3 MEM 0.4AH

Memory 4 MEM 0.4BH
···

MOV Memory 1,#Constant AND 0FH

MOV Memory 2,#Constant SHR 4 AND 0FH

MOV Memory 3,#Constant SHR 8 AND 0FH

MOV Memory 4,#Constant SHR 0CH AND 0FH

64

RA17K USER'S MANUAL

[Description]

In the above example, the numeric value assigned to symbol Constant is stored in 0.48H through 0.4BH

in data memory.

AND 0FH is used to make only the lower four bits valid in a data type expression.

In the above example, an error occurs if AND 0FH is omitted because the range of values supported for

the operand is exceeded.

The processing procedure for Memory 1, #Constant SHR 4 AND 0FH in the above example is as follows:

0 0 0 0

0

0 0 0 0

0

0 0 0 0

0

0 0 0 0

0

0 1 0 0

4

0 1 0 1

5

0 1 1 1

7

1 0 0 0

8

After #Constant SHR 4 is executed

0 0 0 0

0

0 0 0 0

0

0 0 0 0

0

0 0 0 0

0

0 0 0 0

0

0 1 0 0

4

0 1 0 1

5

0 1 1 1

7

After AND 0FH is executed

0 0 0 0

0

0 0 0 0

0

0 0 0 0

0

0 0 0 0

0

0 0 0 0

0

0 0 0 0

0

0 0 0 0

0

0 1 1 1

7

0s are inserted into the high-order bits.

4578H is assigned to Constant.

65

CHAPTER 4 SOURCE PROGRAM CONFIGURATION

(2) SHL (Shift Left) operator

[Format]

<expression-1> ∆SHL∆<expression-2>

[Function]

This operator shifts the bits of the value of <expression-1> to the left by a number of positions equal to

the value of <expression-2>.

[Explanation]

The maximum allowable number of bits is 32. As a result of the shift, the LSB is set to 0.

[Example]

Memory 1 MEM 0.48H
···

SET1 .FM.Memory 1 SHL 4 OR 0001B
···

66

RA17K USER'S MANUAL

[Description]

In the above example, a symbol defined as a data memory type symbol is used to set only one bit in the

data memory specified by the symbol (the LSB of memory 1). SET1 is a built-in macro instruction that

sets the flag at the position specified in the operand field. .FM. is a type conversion function that converts

a symbol from memory type to flag type.

The processing procedure for .FM.Memory 1 SHL 4 OR 0001B in the above example is as follows:

The value of 0.48H is assigned to memory 1. First, memory 1 is converted from data memory type to

flag type. At this time, the value of 0.48H is not affected.

0 0 0 0

0

0 0 0 0

0

0 0 0 0

0

0 0 0 0

0

0 0 0 0

0

0 0 0 0

0

0 1 0 0

4

1 0 0 0

8

After Memory 1 SHL 4 is executed

0 0 0 0

0

0 0 0 0

0

0 0 0 0

0

0 0 0 0

0

0 0 0 0

0

0 1 0 0

4

1 0 0 0

8

0 0 0 0

0

After OR 0001B is executed

0 0 0 0

0

0 0 0 0

0

0 0 0 0

0

0 0 0 0

0

0 0 0 0

0

0 1 0 0

4

1 0 0 0

8

0 0 0 1

1

0s are inserted into the low-order bits.

67

CHAPTER 4 SOURCE PROGRAM CONFIGURATION

4.7.7 () (Operation Order Specification Symbols)

[Format]

<expression-1> Operator (<expression-2> Operator <expression-3>)

(<expression-1> Operator <expression-2>) Operator <expression-3>

[Function]

A pair of these operators causes the operations enclosed in the parentheses to be performed first,

irrespective of the operator priorities.

[Explanation]

If more than one pair of () has been specified, the operations enclosed in the innermost pair are performed

first.

There is no limit on the number of () pairs that can be specified. However, one line can consist of no more

than 255 characters.

[Example]

Constant 1 DAT 4789H

Constant 2 DAT 3H

Memory 1 MEM 0.48H
···

MOV Memory 1,#((Constant 1 + Constant 2)*04H) AND 0FH
···

[Description]

In the above example, () are used to perform addition processing Constant 1+Constant 2 before

multiplication processing Constant 2*04H.

68

RA17K USER'S MANUAL

[MEMO]

69

CHAPTER 5 CONTROL SYMBOLS

5.1 EPA BIT CONTROL SYMBOLS (@AR_EPA0 AND @AR_EPA1)

These control symbols are valid in absolute mode only. They cannot be used in relocatable mode. This

is because, in relocatable mode, the linker (LK17K) performs relocation section by section, such that the user

cannot determine whether the location to which a jump occurs is in ROM or the EPA area. For this reason,

RA17K supports the CALLX and BRX extended instructions. CALLX and BRX automatically control the EPA

bit and are therefore easier to use from the standpoint of compatibility with AS17K.

Usually, the EPA bit is automatically controlled for a direct branch instruction (BR addr) and subroutine call

instruction (CALL addr). That is, no matter where the program is located, the EPA bit is set if a branch to

the EPA area occurs and reset if a branch to an area that can be created by the PC occurs.

If the operand for the branch instruction or the CALL instruction is an indirect specification (@AR), the

assembler cannot determine the address of the location to which a branch occurs. If, therefore, BR @AR

or CALL @AR is itself in the EPA area, a branch must occur within the EPA area; if it is in the user area, a

branch must occur within the user area.

It can be seen, therefore, that the EPA area cannot be used intentionally during debugging. For example,

the address of a location in the user area cannot be specified as the operand for an indirect branch instruction

located in the EPA area.

To overcome this problem, the @AR_EPA0 and @AR_EPA1 control symbols are provided.

E STNO LOC. OBJ. M I SOURCE STATEMENT

00112 1D772 MOV AR0, #.DL.LAB0 AND 0FH

00113 1D760 MOV AR1, #.DL.LAB0 SHR 4H AND 0FH

00114 1D750 MOV AR2, #.DL.LAB0 SHR 8H AND 0FH

00115 1D748 MOV AR3, #.DL.LAB0 SHR 12H AND 0FH

00116 07040 BR @AR

 ; EPA area

1 10000 07090 INC AR

1 10001 07050 CALL @AR

 LAB0:
···

In the above example, BR @AR causes a branch to the EPA area. Therefore, to instigate a branch from

location 00116H in the user area, the EPA bit must be set. To do this, the instruction at location 00116H must

be changed from BR @AR to BR @AR_EPA1.

70

RA17K USER'S MANUAL

[Format]

EPA bit control symbols

@AR_EPA1 ; Sets the EPA bit and indicates the address indicated by @AR.

@AR_EPA0 ; Resets the EPA bit and indicates the address indicated by @AR.

Caution To enable the EPA bit control symbols, assemble-time variable ZZZEPA must be ≠ 0.

The ZZZEPA assemble-time variable controls the enabling and disabling of @AR_EPA1

and @AR_EPA0.

ZZZEPA = 0 ; The EPA bit control symbols are disabled.

; The object code is the same as that when @AR is

; specified.

ZZZEPA ≠ 0 ; The EPA bit control symbols are enabled.

; The EPA bit is set and reset according to @AR_EPA1

; and @AR_EPA0.

[Function]

Symbol @AR_EPA1 or @AR_EPA0 can be used instead of operand @AR for an indirect branch

instruction. The ZZZEPA assemble-time variable controls the enabling and disabling of @AR_EPA1 and

@AR_EPA0. If ZZZEPA ≠ 0, the EPA bit is set by the statement containing @AR_EPA1 and reset by

that containing @AR_EPA0.

[Example]

E STNO LOC. OBJ. M I SOURCE STATEMENT

; Manipulating indirect addresses

;

0001 ZZZEPA SET 1

; The EPA bit control symbols are enabled.

; User area

00001 07090 INC AR

00002 07050 CALL @AR

00003 07040 BR @AR

1 00004 07040 BR @AR_EPA1

; The EPA bit is set.

00005 07040 BR @AR_EPA0

; The EPA bit is reset.

; EPA area

1 10000 07090 INC AR

1 10001 07050 CALL @AR

1 10002 07050 CALL @AR_EPA1

; The EPA bit is set.

10003 07050 CALL @AR_EPA0

; The EPA bit is reset.

71

CHAPTER 5 CONTROL SYMBOLS

[Notes]

(1) Use the SET pseudo instruction to change the value of ZZZEPA. The default is 0; @AR_EPA1 and

@AR_EPA0 are disabled.

(2) The scope of ZZZEPA is limited in one source module file only. ZZZEPA cannot be passed to another

module. Upon starting to assemble each module, ZZZEPA is set to its default value of 0.

(3) @AR_EPA0 and @AR_EPA1 cannot be used as the operand of the MOVT instruction. Therefore,

the MOVT instruction cannot be used to reference a table in the user area from the EPA area. Nor

can it be used to reference a table in the EPA area from the user area.

72

RA17K USER'S MANUAL

[MEMO]

73

CHAPTER 6 FUNCTIONS

RA17K supports functions previously defined by the system. Users cannot define functions.

Functions can be elements of an expression. They return predetermined values. The functions supported

by RA17K are as follows:

• Type conversion function (temporarily changes the type of a symbol)

• $ ((location counter function) returns the value of the location counter)

• .TYPE. function (returns the type of a symbol)

• .DEF. function (returns a reference direction)

• .EV. function (returns the value of an environmental variable)

• ZZZLINE function (returns a line number in a source module file)

• ZZZARGC function (returns the number of parameters in a macro call statement)

• ZZZDEVID function (returns a device code)

[Notes]

(1) If an error occurs in a statement having a function, either of the following occurs:

• If the function is written as the operand of an instruction for which object code will be created

The object code for an NOP instruction is created.

• If the function is written as the operand of a pseudo instruction (no object code is created)

The pseudo instruction is nullified.

(2) Functions must be written as the operands of mnemonics and pseudo instructions. If a function is

written by itself, an error (F037: Syntax error) occurs. No object code is created.

(3) Functions cannot be declared as PUBLIC. Otherwise, an error (F037: Syntax error) occurs. For an

explanation of error handling, see Section 12.1 .

(4) Functions cannot be declared as EXTRN. Otherwise, an error (F037: Syntax error) occurs and the

EXTRN declaration is nullified. At the same time, all symbols in the EXTRN declaration are also

nullified.

74

RA17K USER'S MANUAL

6.1 TYPE CONVERSION FUNCTION

RA17K does not permit the direct writing of data as the operand of an instruction or a pseudo instruction.

If a symbol is used to represent the operands of multiple instructions, the symbol types required for the

operands of the individual instructions may differ.

If different types of the same value are to be used, defining different symbols for the respective types makes

the program less readable. In addition, to change the value, all these symbols must be changed. To overcome

this problem, RA17K supports symbol type conversion, allowing one symbol to be used for different types.

[Format]

.<target-type><current-type>.<expression>

[Function]

This function converts the type of the symbol written in <expression> to <target-type>.

[Explanation]

<expression> is converted to the target type according to the above conversion rule.

The types that can be specified in < > are as follows:

D : Data type

L : Label type

M : Data memory type

F : Flag type

Symbol type conversion by the type conversion function is effective only at the position where the function

is written; the conversion is temporary.

[Notes]

(1) The data type is represented by D, irrespective of the data length.

(2) The data memory type is represented by M, irrespective of the number of nibbles. The evaluation

value of a data memory type symbol is a defined value, plus nibble information; therefore, be careful

when converting the type. (See Section 8.5 .)

(3) For the flag type, the evaluation values of 0, 1, 2, and 3, indicated at the bit positions, are 1, 2, 4, and

8H. (See Section 8.6 .)

75

CHAPTER 6 FUNCTIONS

(4) Changing a symbol from data memory type to flag type can be accomplished easily using . (period),

as follows:

<data-memory-type-symbol-name>.<bit-position>

MEMORY MEM 0.00H

SET1 MEMORY.3 ; The MSB of MEMORY is set.

There is no need to use the type conversion function. If a value of 4 or more is written into the bit

positions, an error (F044: Invalid value) occurs.

(5) Do not insert a blank (space or TAB) between . (period) and <target-type>, or between <current-

type> and . (period). Otherwise, the description is not interpreted as a type conversion function and

an error (F037: Syntax error) occurs. A blank may be inserted between . (period) and <expression>.

(6) If <current-type> and <expression> differ in type, an error (F045: Invalid type) occurs.

(7) If an undefined or forward reference symbol is written in <expression>, an error (F058: Undefined

symbol) occurs.

(8) If no symbol name is written in <expression>, or if a character string (reserved word) other than a

symbol name is written, an error (F037: Syntax error) occurs.

(9) A symbol declared as EXTRN can be written in <expression>.

(10) If the target type is the same as the current type, an error (F037: Syntax error) occurs.

Descriptions that cause errors .DD.

.MM.

.FF.

.LL.

76

RA17K USER'S MANUAL

[Example]

(1) Examples with symbols written in <expression>

<1> Convert from data type to label type.

DATA1 DAT 0100H

LABEL1 LAB .LD.DATA1

<2> Convert from data type to data memory type.

DATA2 DAT 0011H

MEMORY MEM .MD.DATA2

<3> Convert from data type to flag type.

DATA3 DAT 0022H

FLAG FLG .FD.DATA3

<4> Convert from label type to data type.

LABEL2 LAB 0200H

DATA1 DAT .DL.LABEL2

<5> Convert from label type to data memory type.

LABEL4 LAB 0030H

MEMORY2 MEM .ML.LABEL4

<6> Convert from label type to flag type.

LABEL3 LAB 0011H

FLAG2 FLG .FL.LABEL3

<7> Convert from data memory type to data type.

MEMORY1 MEM 0.00H

DATA2 DAT .DM.MEMORY1

<8> Convert from data memory type to label type.

MEMORY MEM 1.00H

LABEL2 LAB .LM.MEMORY

<9> Convert from data memory type to flag type.

MEMORY3 MEM 0.04H

FLAG3 FLG .FM.MEMORY3

77

CHAPTER 6 FUNCTIONS

<10> Convert from flag type to data type.

FLAG FLG 0.00.0H

DATA3 DAT .DF.FLAG

<11> Convert from flag type to label type.

FLAG1 FLG 1.02.3H

LABEL3 LAB .LF.FLAG1

<12> Convert from flag type to data memory type.

FLAG2 FLG 2.00.1H

MEMORY2 MEM (.MF.FLAG2 SHR 4) AND 0FH

(2) Example with an operation expression in <expression> (data type to data memory type)

ABCD DAT 1000H

.MD. (ABCD+1000H)

or .MD.ABCD+1000H

(3) Example with an operation expression in <expression> (data memory type to data type)

MEM1 MEM 1.00H

MEM2 MEM 1.11H

.DM. (MEM1+MEM2)

or .DM.MEM1+.DM.MEM2

78

RA17K USER'S MANUAL

6.2 $ (LOCATION COUNTER FUNCTION)

[Format]

$

[Function]

In relocatable mode, this function returns the value of the offset location counter in the section.

In absolute mode, this function returns the current value (physical address) of the location counter.

[Explanation]

$ allows a relative address to be referenced easily.

[Notes]

(1) When $ is used, a warning (W114: The address carried out an operation using $ may be incorrect)

is issued; object code is created, however.

If built-in macro instructions and user-defined macro instructions exist between the instruction

containing $ and the address determined with the expression using the $, pay careful attention to the

numbers of instructions into which these macro instructions will be expanded.

(2) $ returns the value of the label type.

[Example]

Memory MEM 0.47H
···

ADD Memory,#01H

SKT Memory,#01H

BR $-2

In the above example, $–2 indicates (Current value of the location counter) – 2. By using $ in combination

with operators, a relative address can be represented.

79

CHAPTER 6 FUNCTIONS

6.3 .TYPE. FUNCTION

[Format]

.TYPE.<expression>

[Function]

 .TYPE. returns the type of the <expression> that follows immediately after it.

The following values are returned for the respective types:

Data type (DAT) = 00H

Label type (LAB) = 01H

Flag type (FLG) = 02H

Data memory type (MEM/NIBBLE/NIBBLE1) = 03H

(NIBBLE2) = 13H

(NIBBLE3) = 23H

(NIBBLE4) = 33H

(NIBBLE5) = 43H

(NIBBLE6) = 53H

(NIBBLE7) = 63H

(NIBBLE8) = 73H

(NIBBLE2V) = 93H

(NIBBLE3V) = 0A3H

(NIBBLE4V) = 0B3H

(NIBBLE5V) = 0C3H

(NIBBLE6V) = 0D3H

(NIBBLE7V) = 0E3H

(NIBBLE8V) = 0F3H

[Notes]

(1) A blank (space or TAB) may be inserted between .TYPE. and <expression>. Note, however, that

inserting a blank between a period and TYPE or between TYPE and a period causes an error (F037:

Syntax error) to occur.

(2) If the symbol specified in <expression> is a forward reference or undefined symbol, an error (F058:

Undefined symbol) occurs and 0 is returned.

(3) If a symbol defined with a symbol definition pseudo instruction or a non-label type symbol (segment

name, section name, table name) is written in <expression>, an error (F045: Invalid type) occurs and

0 is returned.

80

RA17K USER'S MANUAL

···

(4) Symbols representing the data, data memory, flag, and label types can be written, even if they are

declared as EXTRN.

(5) If <expression> is not specified or a character string (reserved word) other than a symbol name is

written in it, an error (F037: Syntax error) occurs and 0 is returned.

(6) .TYPE. returns the value of the data type.

(7) .TYPE. can be written in a macro. Also, a macro local symbol can be written in operand <expression>.

(See Section 16.4 .)

(8) If an operation expression of data memory type is written in <expression>, nibble information is

determined from the operation result.

A NIBBLE2 0.00H

B SET .TYPE. (A+A)

B is set to 23H because .TYPE. determines nibble information from the result of A+A.

(9) If an operation expression of label type is written in <expression>, 01H (label type) is always returned.

ENTRY LAB : AAA

A SET AAA+123

A is set to 01H (label type).

[Example]

FLAG_TYPE DAT 2
···
IF .TYPE.SYM0 = FLAG_TYPE ; If symbol SYM0 is flag type, the

; IF clause will be expanded.

ENDIF

81

CHAPTER 6 FUNCTIONS

6.4 .DEF. FUNCTION

[Format]

.DEF.<symbol-name>

[Function]

 .DEF. returns the reference direction of the symbol specified by <symbol-name>, relative to the location

where the function is written.

Reference can be performed either forwards or backwards. The meanings of the returned values are as

follows:

0 : Forward reference; or, the symbol is undefined.

–1 (0FFFFFFFFH) : Backward reference

The reference direction is based on the source module file. At the location where .DEF.<symbol-name>

is written, if the symbol specified by <symbol-name> is already registered in a symbol table, –1 is returned;

otherwise, 0 is returned.

[Notes]

(1) A blank (space or TAB) may be inserted between .DEF. and <symbol-name>. However, inserting a

blank between a period and DEF, or between DEF and a period, causes an error (F037: Syntax error)

to occur.

(2) If <symbol-name> is not specified or a character string (reserved word) other than a symbol name

is written in it, an error (F037: Syntax error) occurs and 0 is returned.

(3) If a symbol declared as being EXTRN is written, 0 is returned.

(4) .DEF. returns the value of the data type.

(5) .DEF. returns the value for backward reference if the symbol specified in <symbol-name> has already

been registered in a symbol table. When .DEF. is used in a macro, if the symbol is registered in either

a macro local symbol table or GLOBAL symbol table, .DEF. returns the value for backward reference.

(6) Any user-defined symbol can be specified in <symbol-name>, such as those symbols defined with

the DAT, FLG, SET, and MEM pseudo instructions and macro names.

(7) If .DEF. is written as the label of a CASE statement, it is regarding as being a numeric label such that

an error (F069: Invalid CASE LABEL) can occur.

82

RA17K USER'S MANUAL

[Example]

(1) Symbol found with backward reference

SYM1 SET 1
···

IF .DEF.SYM1

; This part will be assembled because SYM1 was defined earlier.
···

ELSE

; This part will not be assembled.
···

ENDIF

(2) Undefined symbol

IF .DEF.SYM2

; This part will not be assembled.
···

ELSE

; This part will be assembled because SYM2 is not defined anywhere.
···

ENDIF

(3) Symbol defined in another section

SEC1 CSEG
···

SYM2 SET 1
···

SEC2 CSEG
···

IF .DEF. SYM2

; This part will be assembled because SYM2 is defined in SEC1, which

; exists in the same module.
···

ELSE
···

ENDIF

83

CHAPTER 6 FUNCTIONS

(4) Symbol defined in another module

EXTRN DAT:SYM2

IF .DEF. SYM2
···

ELSE

; This part will be assembled because SYM2 is defined in another

; module.
···

ENDIF

84

RA17K USER'S MANUAL

6.5 .EV. FUNCTION

[Format]

.EV.<environmental-variable-name>

[Function]

This function returns the value of the environmental variable specified by <environmental-variable-name>.

If the value of the environmental variable cannot be converted to a numeric value, –1 (0FFFFFFFFH) is

returned.

[Notes]

(1) If the numeric value to which the value of the variable is converted exceeds the range of values that

can be represented with 32 bits, the excess portion is ignored.

(2) If the environmental variable specified by <environmental-variable-name> is not found, or if its value

cannot be converted to a numeric value, –1 is returned.

(3) A blank (space or TAB) may be inserted between .EV. and <environmental-variable-name>. Note,

however, that inserting a blank between a period and EV, or between EV and a period, causes an

error (F037: Syntax error) to occur.

(4) If <environmental-variable-name> is not specified, an error (F037: Syntax error) occurs.

(5) Any character string (including reserved words, but excluding special characters) can be written in

<environmental-variable-name>. If special characters are used, an error (F037: Syntax error) occurs.

–1 is returned.

(6) .EV. returns the value of the data type.

(7) Do not enclose <environmental-variable-name> in quotation marks. Otherwise, an error (F037:

Syntax error) occurs and –1 is returned.

(8) The character string in <environmental-variable-name> must be entirely in upper case. If a character

string is written in lower case, it is not converted to upper case. In this case, therefore, a value of

–1 is always returned (an error does not occur).

85

CHAPTER 6 FUNCTIONS

[Example]

(1) To extract the value of environmental variable COUNTRY

IF .EV.COUNTRY = 1 ; Environmental variable (COUNTRY)

;

ZZZERROR 'WAIT A MINUTE!!'

ZZZERROR 'PROGRAM CANNOT STOP RAPIDRY···'

;

ELSE

;

ZZZERROR 'The program will not run as the user desires.'

;

ENDIF

(2) Variable whose value cannot be converted to a numeric value

IF .EV.PATH<>–1 ; Environmental variable (PATH)

;

ZZZMSG 'This system is in error.'

;

ELSE

;

ZZZERROR 'Cannot converted to a numeric value.'

;

ENDIF

86

RA17K USER'S MANUAL

6.6 ZZZLINE FUNCTION

[Format]

ZZZLINE

[Function]

This function returns the line number of a statement in a source module file in a listing.

The same source line number is returned for the statements into which an include or macro instruction

is expanded.

[Notes]

(1) If an operand is written for ZZZLINE, an error (F037: Syntax error) occurs.

(2) ZZZLINE returns the value of the data type.

[Example]

The following is an example of a macro that causes a warning message to be issued to the console on

the line where the macro is written.

; Macro definition " WARNING"

WARNING MACRO LINE_NO

;

ZZZMSG 'WARNING AT LINE=&LINE_NO'

ENDM

This macro is written to the location where a message would be issued, as follows:

LINE SET ZZZLINE

WARNING %LINE ; MACRO CALL

% in argument %LINE is an expression operator. % passes a 32-bit representation of the value of the

<expression> immediately following it to a parameter. When this macro is expanded, the following

message is displayed on the console:

Module name (line number):WARNING AT LINE = 1234H

87

CHAPTER 6 FUNCTIONS

6.7 ZZZARGC FUNCTION

[Format]

ZZZARGC

[Function]

ZZZARGC, which can be written in a macro, returns the number of actual parameters in the macro in which

it is written.

[Notes]

(1) Because ZZZLSARG is set to 0 by default, the macro will be expanded even if there are fewer actual

parameters in the macro than the number of formal parameters. (See Section 7.5 .)

(2) If this pseudo instruction is used outside a macro, an error (F145: Impossible to use out of macro)

occurs. This line becomes invalid. At the same time, if it is written as the operand of an instruction

for which object code will be created, the object code for an NOP instruction will be created; if it is

written as the operand of a pseudo instruction, the pseudo instruction will be nullified.

(3) If the macro is nested, it will be as shown below.

LOC. OBJ. M I STATEMENT
···

1 AMAC P1,P2 ; Expansion of AMAC
· ·· ·· ·
1 A SET ZZZARGC ; A=2
· ·· ·· ·
2 BMAC P1
· ·· ·· ·
2 A SET ZZZARGC ; A=1
· ·· ·· ·
2 ENDM
· ·· ·· ·
1 A SET ZZZARGC ; A=2
· ·· ·· ·
1 ENDM

···

(4) If an operand is written for ZZZARGC, an error (F037: Syntax error) occurs.

(5) ZZZARGC returns the value of the data type.

88

RA17K USER'S MANUAL

[Example]

SSMAC MACRO X,Y,Z

DW X+Y
···
IF ZZZARGC=3

DW Z

ENDIF

ENDM

If there are three actual parameters when the SSMAC macro is called, the IF block is expanded. If there

are only two actual parameters, the IF block is not expanded.

SSMAC 61,62,63 ; Three parameters

DW 61+62

:

IF ZZZARGC=3

DW 63 ; To be expanded.

ENDIF

SSMAC 71,72 ; Two parameters

DW 71+72

:

IF ZZZARGC=3

DW ; Not to be expanded.

ENDIF

89

CHAPTER 6 FUNCTIONS

6.8 ZZZDEVID FUNCTION

[Format]

ZZZDEVID

[Function]

This function returns the device number defined for a device file as a 32-bit value.

(1) If an operand is written for ZZZDEVID, an error (F037: Syntax error) occurs.

(2) ZZZDEVID returns the value of the data type.

Remark For details of device numbers, refer to the user's manual supplied with the device file

corresponding to the target device.

90

RA17K USER'S MANUAL

[Example]

The following example shows a macro that supports the selection of an action according to the input device

number because, in the library, the action differs according to the number of bits mounted in the address

register.

TBL_JUMP MACRO DVID_PARAMETER, JUMP_ADDRESS

;

CASE DVID_PARAMETER

;

03: ;AR=8 bits

MOV AR0, #JUMP_ADDRESS AND 0FH

MOV AR1, #JUMP_ADDRESS SHR 4 AND 0FH

BR @AR

EXIT

;

05: ;AR=12 bits

MOV AR0, #JUMP_ADDRESS AND 0FH

MOV AR1, #JUMP_ADDRESS SHR 4 AND 0FH

MOV AR2, #JUMP_ADDRESS SHR 8 AND 0FH

BR @AR

EXIT

;

07: ;AR=14 bits

MOV AR0, #JUMP_ADDRESS AND 0FH

MOV AR1, #JUMP_ADDRESS SHR 4 AND 0FH

MOV AR2, #JUMP_ADDRESS SHR 8 AND 0FH

MOV AR3, #JUMP_ADDRESS SHR 12 AND 0FH

BR @AR

EXIT

;

OTHER:

ZZZERROR 'CANNOT USE THIS MACRO FOR THIS PRODUCT'

ENDCASE

ENDM

The macro is referenced as follows:

TBL_JUMP ZZZDEVID , .DL.LABEL

The assembler reads a device code from the device file currently being used, selects the corresponding

action, assigns the address (LABEL) of the location to which a branch occurs to the other parameter, then

expands the macro.

91

CHAPTER 7 ASSEMBLE-TIME VARIABLES

RA17K supports variables that are unique to the system, and for which values can be set by both the

assembler (system) and user-written SET pseudo instructions. These variables are called assemble-time

variables.

An assemble-time variable is a symbol of data type. When referenced, it returns the value indicating the

internal state of the system at that point, and so on. Also, by defining a value for an assemble-time variable

with an instruction such as the SET pseudo instruction, the internal state of the system can be changed.

Assemble-time variables are registered as reserved words. The assemble-time variables are listed below:

• ZZZn (can be set to a value when assembly starts)

• ZZZSKIP (returns a value indicating whether the instruction immediately preceding the statement

containing the variable has a skip function)

• ZZZBANK (returns the current bank number)

• ZZZPRINT (returns a list output state)

• ZZZLSARG (specifies whether an error occurs according to the number of parameters in a macro)

• ZZZSYDOC (controls the output of a symbol information table)

• ZZZALMAC (controls the output of the list associated with a user-defined macro)

• ZZZALBMAC (controls the output of the list associated with a built-in macro)

• ZZZEPA (controls the enabling and disabling of the EPA bit output control function)

• ZZZRP (returns the current value of the register pointer)

• ZZZAR (returns the current value of the address register)

[Notes]

(1) A value can be set for an assemble-time variable by using a SET pseudo instruction. If an

<expression> of a type other than data type is written for the operand, an error (F045: Invalid type)

occurs. This line becomes invalid. Therefore, the variable retains its previous value.

(2) An assemble-time variable is usually written in a parameter of a conditional assembly pseudo

instruction. If an assemble-time variable is written by itself (either inside or outside a section

blockNote), an error (F037: Syntax error) occurs. This line becomes invalid. No object code is created.

Note A section block is a block defined by a CSEG pseudo instruction.

(3) If a parameter is written for an assemble-time variable, an error (F037: Syntax error) occurs. This

line becomes invalid. At the same time, if the assemble-time variable is written as the operand of an

instruction for which object code will be created, the object code for an NOP instruction will be created;

if it is written as the operand of a pseudo instruction, the pseudo instruction will be nullified.

92

RA17K USER'S MANUAL

(4) An assemble-time variable returns a value of DAT type.

(5) An assemble-time variable cannot be declared as PUBLIC. If it is declared as PUBLIC, an error (F167:

Invalid PUBLIC statement) occurs. For details of error handling, see Section 12.1 .

(6) An assemble-time variable cannot be declared as EXTRN. If it is declared as EXTRN, an error (F166:

Invalid EXTRN statement) occurs. For details of error handling, see Section 12.2 .

93

CHAPTER 7 ASSEMBLE-TIME VARIABLES

7.1 ZZZn

[Function]

Optional switch ZZZn (where 0 ≤ n ≤ 15) is a variable for which a value can be set when assembly starts.

As with ordinary options, to set a value, write -ZZZn=<numeric-value>.

In a program, ZZZn is used in the same way as a variable defined by a SET pseudo instruction. The only

difference is that ZZZn is set to a value when assembly starts, provided the value is specified as an option.

[Notes]

(1) The range of <numeric-value> is from 0 to 0FFFFFFFFH (32 bits). If a numeric value that falls outside

this range is written, an error (A106: Invalid option) occurs when assembly starts, such that assembly

stops immediately.

(2) <numeric-value> can be specified in binary, decimal, or hexadecimal. If an expression or character

string is specified for <numeric-value>, an error (A106: Invalid option) occurs when assembly starts,

such that assembly stops immediately.

(3) The initial value of ZZZn (where 0 ≤ n ≤ 15) is 0 when assembly starts, unless a value is specified

as an option.

(4) The value set for ZZZn in a module is valid within that module only.

(5) 0 cannot be inserted before n. For example, if ZZZ1 is written instead of ZZZ01, it is handled as an

ordinary symbol, not as an assemble-time variable.

[Example]

In the following example, the user can specify whether to issue the error message by means of the

ZZZERROR pseudo instruction when the assembler starts. If ZZZ9 ≠ –1, the error message is issued.

ZZZ_ERROR_MESSAGE_FOR_IRQ MACRO
IF (ZZZ9 <> –1) AND (ZZZIRQMES = 0)

ZZZERROR 'CAUTION! Unexpected IRQ may be canceled. See users manual'

ENDIF
ENDM

SETIRQ1 MACRO F1

IF .DF. (F1 AND 0FE0H = 0BE0H)

ZZZ_ERROR_MESSAGE_FOR_IRQ
PEEK WR,.MF.((F1) SHR 4)
OR WR,#.DF.(F1) AND 0FH
ZZZPOKEIRQ F1

ELSE
SET1 F1

ENDIF
ENDM

94

RA17K USER'S MANUAL

7.2 ZZZSKIP

[Function]

ZZZSKIP returns a value indicating whether the instruction for which object code will be created, written

immediately before the statement in which ZZZSKIP is written, has a skip function. If the instruction has

a skip function, ZZZSKIP returns a value of –1 (0FFFFFFFFH). Otherwise, 0 is returned.

Instructions that this variable recognizes as having a skip function are as follows:

(Machine language instructions) SKE, SKNE, SKGE, SKLT, SKT, SKF

(Built-in macro instructions) SKTn, SKFn, SKTX, SKFX, ADDSX, ADDCSX,

SUBSX, SUBCSX, SKEX, SKNEX, SKGEX, SKGTX,

SKLEX, SKLTX

[Notes]

(1) Even if the instruction for which object code will be created and which is written immediately before

the statement containing ZZZSKIP has a skip function, ZZZSKIP returns 0 in the following cases:

• If the value of the location counter is changed with an ORG pseudo instruction, ZZZSKIP returns

0 even if the instruction written immediately before it has a skip function.

• In absolute mode, if the value of the location counter is changed by executing a CSEG pseudo

instruction, ZZZSKIP returns 0, even if the instruction written immediately before it has a skip

function.

• If a CSEG pseudo instruction is written immediately before the statement containing ZZZSKIP,

ZZZSKIP returns 0 regardless of the instruction immediately preceding the CSEG pseudo instruction.

(2) The value of ZZZSKIP can be changed to another value by using a SET pseudo instruction.

(3) If the instruction immediately preceding the statement containing ZZZSKIP has a skip function, but

the instruction has caused an assemble error, ZZZSKIP is set to 0. This is because the object code

for a NOP instruction is created due to the occurrence of the error.

95

CHAPTER 7 ASSEMBLE-TIME VARIABLES

[Example]

In the following example, when the macro instruction is expanded, if the instruction for which object code

will be created and which is written immediately before it has a skip function, branch instructions are

automatically created to avoid logical conflicts. If ZZZSKIP returns 0, the instruction is deemed not to have

a skip function. Otherwise, it is assumed to have a skip function. Thus, optimum object code will be

created.

SETIRQ1 MACRO F1

IF ZZZSKIP

BR $ + 2

BR $ + 4

ENDIF

PEEK WR,.MF.((F1) SHR 4)

OR WR,#.DF.(F1) AND 0FH

ZZZPOKEIRQ F1

ENDM

;

96

RA17K USER'S MANUAL

7.3 ZZZBANK

[Function]

ZZZBANK returns the value indicating whether a built-in macro instruction (BANKn or SETBANK) or a

label line appear in a statement later in the program. If a built-in macro instruction (BANKn or SETBANK)

appears, ZZZBANK returns the bank number set by the built-in macro instruction; if a label line appears,

–1 (0FFFFFFFFH) is returned.

[Notes]

(1) If a statement contains an instruction for manipulating a BANK register other than that of a built-in

macro instruction (BANKn or SETBANK), information on the bank number is not stored in ZZZBANK.

(2) The value returned by ZZZBANK is valid in only the section block in which it is written. At the beginning

of a section block, ZZZBANK is always initialized to –1.

(3) A value can be set for ZZZBANK by using a SET pseudo instruction. If an attempt is made to set

a value that does not exist in the device, an error (F046: Invalid BANK No.) occurs and ZZZBANK

retains the previous value.

[Example]

An example of an automatic bank switching macro is shown below:

BNKCHG MACRO AA

IF ZZZBANK = –1 ; If a label line appears before a

BANK&AA ; reference is made to this macro, bank

; switching is performed forcibly.

ELSE

IF ZZZBANK <> AA SHR 8 AND 0FH ; If ZZZBANK contains a value other

BANK&AA ; than –1, ZZZBANK and parameter AA are

ENDIF ; compared to determine whether bank

ENDIF ; switching should be performed.

ENDM

By using the above macro in a program, whether bank switching should be performed in the program is

automatically determined so that bank switching can be performed with a minimum number of instructions.

97

CHAPTER 7 ASSEMBLE-TIME VARIABLES

7.4 ZZZPRINT

[Function]

ZZZPRINT returns the assemble list output status specified immediately before a NOLIST pseudo

instruction. The following list output control instruction states can be set in ZZZPRINT:

LIST/NOLIST

SMAC/VMAC/OMAC/NOMAC/LMAC

SBMAC/VBMAC/OBMAC/NOBMAC/LBMAC

SFCOND/LFCOND

C14344/C4444

Nine bits are set in ZZZPRINT. Each bit has the following meaning:

A list output status can also be set by changing the value of ZZZPRINT with a SET pseudo instruction.

For example, if ZZZPRINT is set to 001001110B (04EH), OBMAC/SMAC/SFCOND/LIST take effect in

the subsequent lines.

ZZZPRINT has a 32-bit evaluation value; however, the high-order 23 bits are fixed to 0s. Therefore, even

if a value exceeding 9 bits is set in ZZZPRINT by using a SET pseudo instruction, the high-order 23 bits

are cleared to 0s.

[Notes]

(1) ZZZPRINT is always reset to 0 when assembly starts.

(2) The value of ZZZPRINT is effective from the location of a NOLIST pseudo instruction to the point where

another NOLIST pseudo instruction appears, unless the value is changed by using a SET pseudo

instruction. Within this range, even if another list output control pseudo instruction exists, the value

of ZZZPRINT does not change. Only when a NOLIST pseudo instruction appears is its information

set in ZZZPRINT.

(3) If the value to be set in ZZZPRINT exceeds 9 bits, only the low-order 9 bits are set. No error occurs

at this time.

8 7 6 5 4 3 2 1 0

0: NONE
1: VBMAC

0: NONE
1: VMAC

00: LBMAC
01: SBMAC
10: OBMAC
11: NOBMAC

00: LMAC
01: SMAC
10: OMAC
11: NOMAC

1: C4444
0: C14344

1: SFCOND
0: LFCOND

1: NOLIST
0: LIST

98

RA17K USER'S MANUAL

(4) In the NOLIST state, if the state is changed to LIST by setting a value in ZZZPRINT, the statement

that sets the value itself is not printed on the list.

SMAC
 · · ·
NOLIST

A SET ZZZPRINT ; A value indicating the state SMAC/LIST

; is set in A.
 · · ·

ZZZPRINT SET A ; This line itself is not printed.

; SMAC/LIST take effect in the subsequent

; lines.

(List output)

[Example]

When a NOLIST control instruction is used in a macro, ZZZPRINT can be used after macro expansion

to restore the list output control state to the state existing immediately before macro expansion.

In the following example, list output is prohibited by NOLIST in a macro during macro expansion.

LOC. OBJ. M I STATEMENT

DATA_SET MACRO MAX_VALUE,MEMA,FLGA,MEMB,FLGB

NOLIST ;SET ZZZPRINT

;

SFCOND ;

IF MAX_VALUE < 0FH

LD CHANGE_DATA,MEMA–1

LD CHANGE_DATA,MEMA

MOV DATA_MAX–1,#MAX_VALUE SHR 4

MOV DATA_MAX,#MAX_VALUE AND 0FH

SET1 FLGA

ELSE

LD CHANGE_DATA,MEMB–1

LD CHANGE_DATA,MEMB

MOV DATA_MAX–1,#MAX_VALUE SHR 4

MOV DATA_MAX,#MAX_VALUE AND 0FH

SET1 FLGB

ENDIF

LFCOND

LIST

ENDM

If the list output control state is NOLIST before reference is made to the DATA_SET macro, NOLIST is

canceled by the last LIST pseudo instruction when this macro is expanded. After macro expansion, to

restore the list output control state to the same state as that existing immediately before the macro

reference, ZZZPRINT can be used as follows:

 · · ·

99

CHAPTER 7 ASSEMBLE-TIME VARIABLES

SFCOND
···

DATA_SET 0EH,MEMORY1,FLG1

NOLIST ;SET ZZZPRINT

LIST_CON SET ZZZPRINT ;LIST_CON = 2H

;

SFCOND

LD CHANGE_DATA,MEMB–1

LD CHANGE_DATA,MEMB

MOV DATA_MAX–1,#MAX_VALUE SHR 4

MOV DATA_MAX,#MAX_VALUE AND 0FH

SET1 FLGB

LFCOND

ZZZPRINT SET LIST_CON ;After macro expansion, the

;state returns to SFCOND,

ENDM ;the state existing

;immediately before the

;reference.

100

RA17K USER'S MANUAL

7.5 ZZZLSARG

[Function]

ZZZLSARG is used to select the action to be performed if the number of actual parameters specified during

macro expansion is smaller than the number of defined formal parameters.

ZZZLSARG ≠ 0 : If the number of actual parameters < number of formal parameters, an error (F036:

Operand count error) occurs. The macro is not expanded.

ZZZLSARG = 0 : If the number of actual parameters < number of formal parameters, no error occurs.

Macro parameters are passed in the order they appear, starting from the left.

[Notes]

(1) ZZZLSARG is always reset to 0 when assembly starts.

(2) Before using a ZZZARGC function, the value of ZZZLSARG must be 0. If ZZZLSARG ≠ 0 and the

number of actual parameters < number of formal parameters, an error occurs. The macro is not

expanded and the ZZZARGC function becomes invalid.

(3) If the number of actual parameters for a macro exceeds the number of formal parameters, an error

(F036: Operand count error) occurs regardless of the value of ZZZLSARG. The macro is not

expanded.

[Example]

MAC1 MACRO P1,P2 ;Two parameters
···

ENDM

;

ZZZLSARG SET –1

MAC1 R1 ;An error occurs.

;

ZZZLSARG SET 0

MAC1 R2 ;No error occurs.

101

CHAPTER 7 ASSEMBLE-TIME VARIABLES

7.6 ZZZSYDOC

[Function]

ZZZSYDOC controls the output of the symbol information table by the document creation function.

ZZZSYDOC = 0 : The output of the symbol information table, created for each routine, is prohibited.

ZZZSYDOC ≠ 0 : The symbol information table created for each routine is output.

[Notes]

(1) The value of ZZZSYDOC is 1 when assembly starts. A symbol table is output. (Refer to the Document

Processor (DOC17K) User's Manual for details.)

102

RA17K USER'S MANUAL

7.7 ZZZALMAC

[Function]

ZZZALMAC controls the output format of the list associated with the expansion of a user-defined macro

(including libraries).

The intermediate list output by RA17K is not controlled by ZZZALMAC; the list output by the document

processor (DOC17K) is controlled.

ZZZALMAC = 0 : Macro expansion starts from the same column as macro definition.

ZZZALMAC ≠ 0 : Macro expansion starts according to the macro call statement. This means that

macro expansion starts from the same column as the first character of the macro

name in the macro call statement.

If the macro call statement is indented, macro expansion is also indented by the same

number of columns.

[Notes]

(1) ZZZALMAC is always reset to 0 when assembly starts.

(2) If the value of ZZZALMAC is changed in a macro, the value takes effect in the statements subsequent

to ZZZALMAC in the macro.

103

CHAPTER 7 ASSEMBLE-TIME VARIABLES

[Example] Macro definition and lists output by DOC17K

LOC. OBJ. M I STATEMENT

MEM_CLR MACRO START , END

MOV IXH , #.DM.START SHR 9 AND 01H

MOV IXM , #.DM.START SHR 5 AND 08H

MOV IXL , #00H

MOV RG1 , #.DM.END SHR 9 AND 01H

MOV RG2 , #.DM.END SHR 5 AND 08H

CALL MEMCLR

ENDM

ZZZALMAC SET –1

MEM_CLR MEM1 , MEM2

+ MOV IXH , #.DM.START SHR 9 AND 01H

+ MOV IXM , #.DM.START SHR 5 AND 08H

+ MOV IXL , #00H

+ MOV RG1 , #.DM.END SHR 9 AND 01H

+ MOV RG2 , #.DM.END SHR 5 AND 08H

+ CALL MEMCLR

ZZZALMAC SET 0

MEM_CLR MEM1 , MEM2

+ MOV IXH , #.DM.START SHR 9 AND 01H

+ MOV IXM , #.DM.START SHR 5 AND 08H

+ MOV IXL , #00H

+ MOV RG1 , #.DM.END SHR 9 AND 01H

+ MOV RG2 , #.DM.END SHR 5 AND 08H

+ CALL MEMCLR

104

RA17K USER'S MANUAL

7.8 ZZZALBMAC

[Function]

ZZZALBMAC controls the output format of the list associated with the expansion of an RA17K built-in

macro instruction.

The intermediate list output by RA17K is not controlled by ZZZALBMAC; the list output by the document

processor (DOC17K) is controlled.

ZZZALBMAC = 0 : Macro expansion starts from the first column of the assembler list.

ZZZALBMAC ≠ 0 : Macro expansion starts according to the macro call statement. This means that

macro expansion starts from the same column as the first character of the macro

name in the macro call statement.

If the macro call statement is indented, the macro expansion is also indented by the

same number of columns.

[Notes]

(1) ZZZALBMAC is always reset to 0 when assembly starts.

[Example] Macro description and lists output by DOC17K

LOC. OBJ. M I STATEMENT

MEMORY_F FLG 0.20H.0

DATA_F FLG 0.40H.0
···
···

ZZZALBMAC SET –1

SET2 MEMORY_F,DATA_F

+ OR .MF.MEMORY_F SHR 4,#.DF.MEMORY_F AND 0FH

+ OR .MF.DATA_F SHR 4,#.DF.DATA_F AND 0FH

ZZZALBMAC SET 0

CLR2 MEMORY_F , DATA_F

+ AND .MF.MEMORY_F SHR 4,#.DF.MEMORY_F AND 0FH

+ AND .MF.DATA_F SHR 4,#.DF.DATA_F AND 0FH

105

CHAPTER 7 ASSEMBLE-TIME VARIABLES

7.9 ZZZEPA

[Function]

Assemble-time variable ZZZEPA is valid in absolute mode only. This is because the control symbols

@AR_EPA1 and @AR_EPA0 are valid in absolute mode only.

This variable specifies whether the EPA bit output control function (@AR_EPA0 and @AR_EPA1) is to

be enabled or disabled.

ZZZEPA = 0 : Control symbols @AR_EPA1 and @AR_EPA0 are disabled.

ZZZEPA ≠ 0 : Control symbols @AR_EPA1 and @AR_EPA0 are enabled.

Whether the EPA bit output control function is to be enabled or disabled corresponds to whether the EPA

bit should be manipulated by the statements in a program in which symbols @AR_EPA0 and @AR_EPA1

are written. If ZZZEPA ≠ 0, the EPA bit is cleared from the statement in which @AR_EPA0 is written,

and set in the statement in which @AR_EPA1 is written. If ZZZEPA = 0, @AR_EPA1 and @AR_EPA0

have the same effect as @AR.

[Notes]

(1) ZZZEPA cannot be passed between modules. ZZZEPA is always reset to 0 at the start of module

assembly. (At the beginning of each module, the EPA bit output control function is disabled.)

(2) If ZZZEPA is not written in a program, the assembler assumes that ZZZEPA is equal to 0, such that

the EPA bit output control function is disabled.

(3) Using ZZZEPA in relocatable mode causes an error (F112: Impossible to use on relocatable mode).

106

RA17K USER'S MANUAL

[Example]

In the following example, symbols @AR_EPA1 and @AR_EPA0 are written instead of operand @AR for

indirect branch instructions.

E STNO LOC. OBJ. M I SOURCE STATEMENT

; Manipulating indirect addresses

;

0001 ZZZEPA SET 1

; The EPA bit control symbols are enabled.

00001 07090 INC AR

00002 07050 CALL @AR

1 00003 07040 BR @AR_EPA1 ; EPA bit ON

00004 07040 BR @AR_EPA0 ; EPA bit OFF

;

ORG 10000H ; EPA AREA

1 10000 07090 INC AR

10001 07050 CALL @AR_EPA0 ; EPA bit OFF

0001 ZZZEPA SET 0

; The EPA bit control symbols are disabled.

1 10002 07050 CALL @AR_EPA0 ; EPA bit ON

107

CHAPTER 7 ASSEMBLE-TIME VARIABLES

7.10 ZZZRP

[Function]

ZZZRP returns the value of the register pointer set by a built-in macro instruction (SETRP). If, however,

a label exists between the SETRP and ZZZRP, –1 (0FFFFFFFFH) is returned.

[Notes]

(1) If the register pointer (RP) is set to a value without using a SETRP instruction, ZZZRP does not reflect

that value.

(2) If a label exists between a SETRP instruction and ZZZRP, ZZZRP returns –1 (0FFFFFFFFH). The

reason for this is that ZZZRP is set to –1 if a label exists between them because, during the execution

of the program, the program may branch to the label without first passing through SETRP.

(3) ZZZRP is valid in only the section block in which it is written. At the beginning of a section block, ZZZRP

is always set to –1.

(4) ZZZRP can be set to a value with a SET pseudo instruction. If an attempt is made to set it to a value

that does not exist in the device, an error (F044: Invalid value) occurs and ZZZRP retains the previous

value.

(5) If the register pointer (RP) is set to a value with an ENSURE pseudo instruction, ZZZRP reflects that

value.

[Example]

Example of automatic register pointer switching macro

RPCHG MACRO NO ;An MEM attribute symbol must have

;been previously specified for NO.

 IF ZZZRP <> .DM.NO SHR 4 AND 0F7H

SETRP NO

 ENDIF

ENDM

108

RA17K USER'S MANUAL

7.11 ZZZAR

[Function]

ZZZAR returns the value of the register pointer set by a built-in macro instruction (SETAR). If, however,

a label exists between the SETAR and ZZZAR, –1 (0FFFFFFFFH) is returned.

[Notes]

(1) If the register pointer (AR) is set to a value without using a SETAR instruction, ZZZAR does not reflect

the value.

(2) If a label exists between a SETAR instruction and ZZZAR, ZZZAR returns –1 (0FFFFFFFFH). The

reason for this is that ZZZAR is set to –1 if a label exists between them because, during the execution

of the program, the program may branch to the label without first passing through SETAR.

(3) ZZZAR is valid only in the section block in which it is written. At the beginning of a section block, ZZZAR

is always set to –1.

(4) ZZZAR can be set to a value with a SET pseudo instruction. If an attempt is made to set it to a value

that does not exist in the device, an error (F044: Invalid value) occurs and ZZZAR retains the previous

value.

(5) If the register pointer (AR) is set to a value with an ENSURE pseudo instruction, ZZZAR reflects the

value.

[Example]

Example of automatic register pointer switching macro

ARCHG MACRO NO ;An LAB attribute symbol must have

;been previously specified for NO.

IF ZZZAR <> .DL.NO

SETAR NO

ENDIF

ENDM

109

CHAPTER 8 SYMBOL DEFINITION PSEUDO INSTRUCTIONS

This chapter explains the data to be described in programs and the types of labels and variables that

reference storage locations (addresses) for instructions and data. It also explains how to declare the symbols.

The symbol definition pseudo instructions include the following:

• DAT pseudo instruction (define a data type name.)

• LAB pseudo instruction (define a label type name.)

• MEM pseudo instruction (define a memory type name.)

• NIBBLE pseudo instruction (define a memory type name.)

• NIBBLEn pseudo instruction (define a memory type name.)

• NIBBLEnV pseudo instruction (define a memory type name.)

• FLG pseudo instruction (define a flag type name.)

• SET pseudo instruction (define a name.)

[Basic format]

<name>∆symbol-definition-pseudo-instruction ∆<expression>

[Notes]

(1) If an operand is omitted or two or more operands are described, an error (F037: Syntax error) occurs.

<name> is registered as evaluation value 0.

(2) If <name> is omitted, an error (F037: Syntax error) occurs.

(3) If an undefined symbol or forward reference symbol is described in <expression>, an error (F058:

Undefined symbol) occurs. <name> is registered as evaluation value 0.

(4) If the <expression> description is invalid, an error (see Section 4.7.1 for details) occurs. <name>

is registered as evaluation value 0.

(5) If a reserved word is described in <name>, an error (F037: Syntax error) occurs. However, upon

assembly, the SET pseudo instruction can be used to set a value in a variable.

(6) If a defined symbol is not referenced, a warning (W020: Unreference symbol) is output. This warning,

however, is output only to the log file. It is not output for a line in which a symbol that is not referenced

on the intermediate list is defined.

110

RA17K USER'S MANUAL

(7) A defined symbol cannot be redefined in <name>. If it is redefined, an error (F057: Symbol multi

defined) occurs. This line is invalidated. However, redefinition is possible for a local symbol in a

macro.

A symbol defined with the SET pseudo instruction can be set again with the SET pseudo instruction.

(8) See Section 4.3 for details of the <name> description.

(9) If the EXTRN symbol is described in operand <expression>, an error (F150: Impossible to write the

external symbol) occurs. <name> is registered as evaluation value 0.

(10) If an error occurs in explanations (1) - (9), above, and <name> is registered as evaluation value 0,

the following types are used:

DAT : Data type

LAB : Label type

MEM : Data memory type

NIBBLE : Data memory type

NIBBLEn : Data memory type

NIBBLEnV : Data memory type

FLG : Flag type

SET : The data type is retained for new registration. The previous type is retained when

a registered symbol is set again. For this reset, the previous value is also retained.

111

CHAPTER 8 SYMBOL DEFINITION PSEUDO INSTRUCTIONS

8.1 SYMBOL DECLARATION

In RA17K, data and addresses used by instructions and pseudo instructions cannot be described only with

numerics or numeric expressions. Before these numerics are used, they must be defined or declared as

symbols. A symbol can be defined or declared at any point in a program. However, the scope is defined

according to the declaration location.

Types are added for these symbols. The types of symbols used by certain instructions and pseudo

instructions are predetermined; therefore, these types are useful for locating mistakes at program creation.

Cross reference creation, memory map creation, and document creation by the document processor are

accomplished by adding types to symbols.

With RA17K, a program can be split into two or more modules. A symbol is a local symbol that can be

used only in a certain module and which cannot be referenced from other modules. To reference a symbol

defined by an external module, the user must declare that the symbol is used by the external module (PUBLIC

declaration).

The purpose of this definition is to enhance program development efficiency and program maintainability.

8.2 SYMBOL TYPES

RA17K defines symbol types for items (1) to (4), below:

(1) Data type: Constant, immediate data

DAT

(2) Label type: Address in program memory (ROM)

LAB

(3) Data memory type: Address in data memory (RAM) or register file (RF) (in nibbles)

MEM NIBBLE

NIBBLE1

NIBBLE2 NIBBLE2V
· ·· ·· ·
· ·· ·· ·
NIBBLE8 NIBBLE8V

(4) Flag type: Flag in data memory (RAM) or register file (RF) (in bits)

FLG

112

RA17K USER'S MANUAL

To define a symbol, use a symbol definition pseudo instruction. In addition to (1) to (4), the SET pseudo

instruction is used as the symbol definition pseudo instruction.

A value assigned by a symbol definition pseudo instruction cannot be changed. However, the value of a

symbol defined by the SET pseudo instruction can be changed by using the SET pseudo instruction.

Therefore, the SET pseudo instruction is used to define variables that are meaningful only at assembly. The

assemble-time variables include user-defined variables defined within a program and assemble-time variables

whose values can be assigned either by the assembler system or the SET pseudo instruction of the program.

The assemble-time variables are used as the parameters of macros and conditional pseudo instructions.

113

CHAPTER 8 SYMBOL DEFINITION PSEUDO INSTRUCTIONS

8.3 DAT PSEUDO INSTRUCTION

[Format]

<name>∆DAT∆<expression>[∆][;<comment>]

[Function]

Assigns the value of <expression>, described in the operand, to <name>. The evaluation value of

<expression> is 32 bits.

[Explanation]

(1) A blank (space or TAB) must be inserted between <name> and the pseudo instruction, and also

between the pseudo instruction and <expression>. If no blank is inserted, the line is not recognized

as a DAT pseudo instruction and an error (F037: Syntax error) occurs. This line is invalidated.

Therefore, the symbol described in <name> is not registered.

(2) If the pseudo instruction description is invalid, an error (F037: Syntax error) occurs. This line is

invalidated. Therefore, the symbol described in <name> is not registered.

(3) Any operator other than the bit delimiting operator (.) can be used in <expression>.

(4) If an <expression> other than the data type is described, an error (F045: Invalid type) occurs. <name>

is registered as evaluation value 0.

114

RA17K USER'S MANUAL

8.4 LAB PSEUDO INSTRUCTION

[Format]

<name>∆LAB∆<expression>[∆][;<comment>]

[Function]

Assigns the value of <expression>, described in the operand, to <name>.

<name> is used as a label type symbol.

[Explanation]

(1) A blank (space or TAB) must be inserted between <name> and the pseudo instruction, and also

between the pseudo instruction and <expression>. If no blank is inserted, or if the description is

invalid, the line is not recognized as a LAB pseudo instruction and an error (F037: Syntax error) occurs.

This line is invalidated. Therefore, the symbol described in <name> is not registered.

(2) The evaluation value assigned by <expression> can consist of up to 32 bits.

If the evaluation value of <expression> is set in other than the ROM area, the following results:

• If the evaluation value is set in the EPA area

A warning (W153: The address is in EPA area) is output.

• If the evaluation value is set in other than the ROM or EPA areas

An error (F152: The address is out of ROM) occurs and <name> is not registered.

(3) Any operator other than the bit delimiting operator (.) can be used in <expression>.

(4) If <expression> other than a label or data type is described, an error (F045: Invalid type) occurs.

<name> is registered as evaluation value 0.

115

CHAPTER 8 SYMBOL DEFINITION PSEUDO INSTRUCTIONS

[Notes]

(1) In general, a label is defined in a program by coding <symbol-name>: at the beginning of the line to

which an address is to be assigned.

[Example] TABLE1: MOV A, #1H
···

BR TABLE1

The label type symbol definition pseudo instruction is used to reference an address of another source

module file.

(2) To reference an entry address within the 17K series system segment by using the SYSCAL instruction,

describe a data type symbol, not a label type symbol, in the operand.

(3) A value of <expression>, described in an operand of a label type symbol definition pseudo instruction,

is used as an absolute address. The value of the symbol defined by <label>: is an offset address.

However, the value of a symbol defined by the label type definition pseudo instruction is used as an

absolute value.

116

RA17K USER'S MANUAL

8.5 MEM PSEUDO INSTRUCTION

With RA17K, a symbol name can be defined as a data memory type for two or more nibbles in data memory.

The number of nibbles is specified by the pseudo instruction.

The following table lists the storage areas (number of nibbles) and value ranges to be declared by the

pseudo instructions:

Type Storage area Value range

MEM 1 nibble 0 to 15

NIBBLE 1 nibble 0 to 15

NIBBLE1 1 nibble 0 to 15

NIBBLE2 (2V) 2 nibbles 0 to 255

NIBBLE3 (3V) 3 nibbles 0 to 4095

NIBBLE4 (4V) 4 nibbles 0 to 65535

NIBBLE5 (5V) 5 nibbles 0 to 1048575

NIBBLE6 (6V) 6 nibbles 0 to 16777215

NIBBLE7 (7V) 7 nibbles 0 to 268435455

NIBBLE8 (8V) 8 nibbles 0 to 4294967295

These types are collectively referred to as a data memory type.

The data memory type symbol definition pseudo instruction has the same name as that of the symbol type

listed in the above table. All <expression> items described in pseudo instruction operations are of the same

type and specify addresses in data memory.

When the type of a multi-nibble is declared, if it is Horizontal (= horizontal symbol) defined by the NIBBLEn

instruction, the upper area, from the specified address to the column, is allocated. The allocated area can

thus extend over two or more low-order addresses.

If the declared multi-nibble is Vertical (= vertical type) defined by the NIBBLEnV instruction, the upper

addresses, from the specified address to the low-order address, are allocated. An error occurs if 7H of the

low-order address is exceeded (see [Explanation] below).

The evaluation value indicated by the symbol is that obtained by adding nibble information to a value defined

by the symbol.

• Nibble information: Indicates the storage area (number of nibbles) for the symbol.

For the horizontal type, the value obtained by subtracting 1H from the actual number

of nibbles is stored. For the vertical type, the value obtained by adding 7H to the

number of nibbles is stored.

When a symbol is defined, the value of the nibble information is automatically stored

by the assembler.

Nibble
information

4 bits

Address

8 bits

Fixed to 0.

16 bits

Bank

4 bits

117

CHAPTER 8 SYMBOL DEFINITION PSEUDO INSTRUCTIONS

• Bank : Bank number of the data memory (RAM)

The above is stored by a symbol definition pseudo instruction.

• Address : Address in data memory (RAM)

The above is stored by a symbol definition pseudo instruction.

• Example of a data memory type symbol

<1> 0.02H-0.03H NIBBLE2 (define 0.02H.)

<2> 0.0EH-0.11H NIBBLE4 (define 0.0EH.)

<3> 0.16H-0.1AH NIBBLE5 (define 0.16H.)

With RA17K, a symbol can be defined for a vertical data memory area. In this case, the pseudo instruction

is NIBBLE2V to NIBBLE8V. V indicates Vertical (vertical type).

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

COLUMN ->

<1> <2>

<3>

118

RA17K USER'S MANUAL

<1> 0.04H-0.54H NIBBLE6V (define 0.04H.)

<2> 0.12H-0.32H NIBBLE3V (define 0.12H.)

<3> 0.29H-0.39H NIBBLE2V (define 0.29H.)

<4> 0.2BH-0.3BH NIBBLE2V (define 0.2BH.)

The evaluation value of a symbol defined by the vertical type nibble pseudo instruction (NIBBLEnV) has

a value obtained by adding 7H to the number of nibbles as nibble information of the high-order four bits.

This is because vertical data memory is differentiated from horizontal data memory.

NIBBLE2V ... 9H

NIBBLE3V ... 0AH
 · · ·
NIBBLE8V ... 0FH

The data memory type symbol definition is explained.

[Format]

All formats are the same. Use a type name to which a pseudo instruction is added.

<name>∆MEM∆<expression>[∆][;<comment>]

<name>∆NIBBLEn∆<expression>[∆][;<comment>]

<name>∆NIBBLEnV∆<expression>[∆][;<comment>]

[Function]

Assigns the value of <expression>, described in the operand, to <name>.

<name> is used as a data memory type symbol.

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

COLUMN ->

<3> <4>

<1>

<2>

119

CHAPTER 8 SYMBOL DEFINITION PSEUDO INSTRUCTIONS

[Explanation]

(1) The following can be described in <expression>:

<1> <expression> of data memory type

<2> Binomial expression containing one bit-delimiting operator

<bank-expression>.<address-expression>

Both the <bank-expression> and <address-expression> are data type expressions. The

evaluation value of <bank-expression> in the first item specifies the bank in data memory.

<address-expression> in the second item specifies the address.

When describing a numeric expression, describe both the bank of the address to be specified and

the address itself. A period (.) must be inserted between the bank and the address. This period is

called a bit-delimiting operator. A blank can be inserted both before and after the bit-delimiting

operator.

(2) The evaluation value of <expression> consists of 32 bits. It contains the nibble information, bank,

and address value. If the evaluation value of <bank> produces a bank number that is not installed

in the target device, an error (F046: Invalid BANK No.) occurs. If the evaluation value of <address>

produces an area that is not installed in the target device (for a multi-nibble, all nibbles must be

contained in the installed area), an error (F067: Address error) occurs and the evaluation value is

registered as 0.

Nibble
information

4 bits

Address

8 bits

Fixed to 0.

16 bits

Bank

4 bits

MSB LSB

120

RA17K USER'S MANUAL

(3) When a symbol name is described in the operand, the number of nibbles in the symbol can differ

from that in a symbol definition pseudo instruction. In other words, the following description is valid:

SYM1 NIBBLE4 0.05H

SYM2 NIBBLE8 SYM1

In this case, the evaluation values of symbols SYM1 and SYM2 are as follows:

SYM1 : (00003005H)

SYM2 : (00007005H)

(4) A blank must be inserted between <name> and the pseudo instruction, and also between the pseudo

instruction and <expression>. If no blank is inserted, this line is not interpreted as a MEM pseudo

instruction and an error occurs (F037: Syntax error). This line is invalidated and the symbol

described in <name> is not registered.

(5) If the pseudo instruction description is invalid, an error (F037: Syntax error) occurs. This line is

invalidated and the symbol described in <name> is not registered.

(6) All operators can be used in <expression>. Note, however, that the bit delimiting operator (.) is used

to separate the bank and address.

(7) If an <expression> other than the data memory type is described, an error (F045: Invalid type) occurs

and <expression> is registered as evaluation value 0.

(8) A data memory type symbol can be used as an operand of an instruction in which the data memory

type must be specified.

If a multi-nibble symbol is described in an operand, nibble information and bank information is not

reflected in the instruction. In other words, only an address value indicated by the low-order eight

bits is reflected in an object code.

(9) Only the low-order 16 bits are valid as the evaluation value of <expression>, described in an operand.

The high-order 16 bits are unconditionally cleared to zero.

(10) Even if nibble information is contained in the evaluation value of <expression> of an operand in the

MEM pseudo instruction, its value is not reflected.

In other words, 0 is always set in the nibble information area.

121

CHAPTER 8 SYMBOL DEFINITION PSEUDO INSTRUCTIONS

8.6 FLG PSEUDO INSTRUCTION

[Format]

<name>∆FLG∆<expression>[∆][;<comment>]

[Function]

Assigns the value of <expression>, described in an operand, to <name>.

<name> is used as a flag type symbol.

[Explanation]

(1) The following can be described in <expression>:

<1> Flag type <expression>

<2> Binominal expression containing two bit-delimiting operators

<bank-expression>.<address-expression>.<bit-expression>

<bank-expression>, <address-expression>, and <bit-expression> are data type expressions.

The evaluation value of <bank-expression> in the first item specifies the bank. <address-

expression> in the second item specifies an address. <bit-expression> in the third item specifies

a bit position.

To describe a numeric expression, describe the bank, address, and bit position. The bank, address,

and bit position must be separated by a period (.). This period is called a bit-delimiting operator. A

blank (space or TAB) can be inserted before and after the bit-delimiting operator.

The numerics that can be described in <bit-position> are 0, 1, 2, and 3 only.

(2) The evaluation value of <expression> consists of 32 bits. It contains the bank, address, and bit position

values. If the evaluation value of <bank> produces a bank that is not installed in the target device,

an error (F046: Invalid BANK No.) occurs. If the evaluation value of <address> produces an area

that is not installed in the target device (for a multi-nibble, all nibbles must be contained in the installed

area), an error (F067: Address error) occurs and the evaluation value is registered as 0.

The evaluation value of a bit position (0, 1, 2, 3) is the value of the bit (1, 2, 4, 8).

If an evaluation value of <bit-position>, that is, the value of the low-order four bits, is other than 1,

2, 4, or 8H, an error (F044: Invalid value) occurs and the evaluation value is registered as 0.

122

RA17K USER'S MANUAL

(3) A blank must be inserted between <name> and the pseudo instruction, and also between the pseudo

instruction and <expression>. If no blank is inserted, this line is not recognized as a flag type symbol

definition pseudo instruction and an error (F037: Syntax error) occurs. This line is invalidated and

the symbol described in <name> is not registered.

(4) If the pseudo instruction description is invalid, an error (F037: Syntax error) occurs. This line is

invalidated and the symbol described in <name> is not registered.

(5) All operators can be used in <expression>. Note, however, that the bit delimiting operator (.) is used

to separate the bank, address, and bit position.

(6) If the evaluation value of <expression> is other than the flag type, an error (F045: Invalid type) occurs.

The evaluation value is registered as 0.

(7) Only the low-order 16 bits are valid as the evaluation value of <expression>, described in the operand.

The high-order 16 bits are unconditionally cleared to zero.

Bank

4 bits

Bit position

4 bits

Fixed to 0.

16 bits

Address

8 bits

MSB LSB

123

CHAPTER 8 SYMBOL DEFINITION PSEUDO INSTRUCTIONS

8.7 SET PSEUDO INSTRUCTION

[Format]

<name>∆SET∆<expression>[∆][;<comment>]

[Function]

Assigns the value and type of <expression>, described in the operand, to <name>.

The value registered in <name> can be changed using the SET pseudo instruction.

The same type as that of <expression> in the operand is defined in <name>. If <expression> of the operand

is a numeric constant or numeric expression, <name> is used as the data type symbol.

[Explanation]

(1) A blank (space or TAB) must be inserted between <name> and the pseudo instruction, and also

between the pseudo instruction and <expression>. If no blank is inserted, this line is not recognized

as a SET pseudo instruction and an error (F037: Syntax error) occurs. This line is invalidated and

the symbol described in <name> is not registered.

(2) If the pseudo instruction description is invalid, an error (F037: Syntax error) occurs. This line is

invalidated and the symbol described in <name> is not registered.

(3) The type of <name>, defined by the SET pseudo instruction, cannot be changed within the same

module to another type by using the SET pseudo instruction. If an attempt is made to make this change,

an error (F045: Invalid type) occurs and this line is invalidated. The symbol specified in <name>

continues to hold the value used when it was previously defined.

(4) A symbol defined by the SET pseudo instruction cannot be referenced by an external module. In other

words, if the symbol is subjected to PUBLIC declaration, an error (F167: Invalid PUBLIC statement)

occurs. However, a symbol other than those defined by the SET pseudo instruction is subjected to

PUBLIC declaration.

[Example]

PUBLIC A, B, C, D, E

C SET 3

In this case, an error occurs in the PUBLIC declaration for the C symbol. However, symbols A, B,

D, and E, but not C, are subjected to PUBLIC declaration.

(5) The symbol defined by the SET pseudo instruction is not output to the memory map and flag map.

The value defined at the end of the program is output to the cross reference.

124

RA17K USER'S MANUAL

[MEMO]

125

CHAPTER 9 DATA DEFINITION PSEUDO INSTRUCTIONS

This chapter explains the data definition pseudo instructions used to generate the data to be described in

program memory. The data definition pseudo instructions are DB, DW, and DCP. DB and DW convert an

expression described in an operand to data, in units of bytes or words. DCP generates data used for the

peripheral circuit IDC of a device. The coded data is output to the object file as is.

Data definition pseudo instructions are:

• DW pseudo instruction (define data in words.)

• DB pseudo instruction (define data in bytes.)

• DCP pseudo instruction (define IDC data.)

[Notes]

(1) In relocatable mode, a data definition pseudo instruction can be described only within the section and

table blocks. (See Chapter 10 .)

(2) If the <label> description is invalid, an error (see Section 4.3) occurs. One line is invalidated and

an object code for the NOP instruction is created.

126

RA17K USER'S MANUAL

9.1 DW (DEFINE WORD) PSEUDO INSTRUCTION

[Format]

[<label>:][∆]DW∆<expression>[∆][;<comment>]

[Function]

Stores the evaluation value of <expression>, described in the operand, into the address indicated by the

current location counter. <expression> can be used to describe a numeric expression, data type symbol,

or character constant consisting of one shift JIS character or one half-size character.

[Notes]

(1) The operand can describe only one <expression> or <symbol> that can be expressed by 16 bits. If

the evaluation value of <expression> exceeds 16 bits, a warning (W169: Omitted a surplus due to

an input value is over a regular value) occurs and the 17th and subsequent bits are truncated. If two

or more operands are specified with each separated by a comma (,), an error (F037: Syntax error)

occurs. This line is invalidated and an object code of the NOP instruction is generated.

(2) Only one full-size or half-size character can be described as a character constant enclosed by single

quotation marks ('). If two or more characters are enclosed in single quotation marks as a character

constant, an error (F051: Invalid data length) occurs. This line is invalidated and an object code of

the NOP instruction is generated.

(3) If a symbol described in an operand is not defined, an error (F058: Undefined symbol) occurs. This

line is invalidated and the NOP instruction is generated. An external definition symbol and forward

reference symbol can be described.

(4) Only a data type expression can be described in <expression> of the operand. If an expression other

than the data type expression is described, an error (F045: Invalid type) occurs. This line is invalidated

and an object code of the NOP instruction is generated.

To describe a symbol other than a data type symbol, the symbol type must be converted to a data

type by using the type conversion function.

(5) If an expression described in <expression> is incorrect, an error (see Section 4.7.1 for details) occurs,

and an object code for the NOP instruction is generated.

(6) If the evaluation value of an expression described in an operand consists of fewer than 16 bits, it is

stored starting from the least significant bit. In other words, 0 is stored in the high-order bits and the

evaluation value is stored in the low-order bits.

127

CHAPTER 9 DATA DEFINITION PSEUDO INSTRUCTIONS

(7) If <expression> is omitted or two or more <expression> items are described, an error (F037: Syntax

error) occurs. This line is invalidated and an object code of the NOP instruction is generated.

[Example]

E LOC. OBJ. M I CL SOUCE STATEMENT

00000 1923 DW 1800H OR 123H

00001 0041 DW 'A'

00002 889F DW ' '

00003 000D DW 1101B

00004 0000 DW 0001H + 0FFFFH

F051 00005 3CF0 DW 'AB'

F037 00006 3CF0 DW 'A','B'

00007 **** DW UNDEF

128

RA17K USER'S MANUAL

9.2 DB (DEFINE BYTE) PSEUDO INSTRUCTION

[Format]

[<label>:][∆]DB ∆<expression>[,<expression>[...]][∆][;<comment>]

[Function]

Converts <expression>, described in the operand, to 8-bit (1-byte) data. <expression> can describe a

numeric expression, data type symbol, and character constant consisting of a shift JIS kanji character or

half-size character.

[Notes]

(1) Any number of operands can be described, each separated by a comma (,), provided the maximum

number of characters (255) is not exceeded.

(2) If a symbol described in an operand is undefined, an error (F058: Undefined symbol) occurs. This

line is invalidated and an object code of the NOP instruction is generated.

However, external definition and forward reference symbols can be described.

(3) If an expression described in <expression> is incorrect, an error (see Section 4.7.1 for details) occurs.

An object code of the NOP instruction is generated.

(4) If the evaluation value of an expression described in an operand consists of 8 bits, 00H is stored in

the low-order eight bits and the evaluation value is stored in the high-order eight bits.

(5) If the value of <expression> consists of nine or more bits, a warning (W169: Omitted a surplus due

to an input value is over a regular value) is output and only the data for the low-order eight bits is set.

(6) If <expression> is omitted, an error (F037: Syntax error) occurs. This line is invalidated and an object

code of the NOP instruction is generated.

(7) When the generation of two or more object codes is described, if an error (such as that for an undefined

symbol) occurs in the portion in which a forward reference symbol is described, an object code for

the NOP instruction is generated in this portion only.

(8) Only a data type expression can be described in <expression> of an operand. If an expression other

than the data type expression is described, an error (F045: Invalid type) occurs. This line is invalidated

and an object code of the NOP instruction is generated.

129

CHAPTER 9 DATA DEFINITION PSEUDO INSTRUCTIONS

To describe a symbol other than a data type symbol, the symbol type must be converted to a data

type.

[Example]

E LOC. OBJ. M I STATEMENT

00000 2300 DB 1800H OR 123H Warning

00001 0000 DB 1800H AND 0FF00H Warning

00002 4100 DB 'A'

00003 4142 DB 'A','B','C'

00004 4300

00005 4142 DB 'ABC'

00006 4300

00007 889F DB

00008 88A0

00009 88A1

0000A 88A2

0000B 0102 DB 1,2,3,4,5,6,···

0000C 0304

0000D 0506
···

00010 FF00 DB 1800H + 0FFFFH Warning

00013 **** DB UNDEF

130

RA17K USER'S MANUAL

9.3 DCP (DEFINE CHARACTER PATTERN) PSEUDO INSTRUCTION

[Format]

[<label>:][∆]DCP∆<expression>,'<pattern>'[∆][;<comment>]

[Function]

Acquires the pattern described in the second operand as 10-bit object data. This data is used as the pattern

for display data (one-character width, one horizontal column) of the image display controller (IDC).

Therefore, the DCP pseudo instruction need not be used for a device that does not support the IDC

function. See the data sheet for the device for details of the IDC function.

The definition is made as follows:

(1) <expression> can describe a numeric expression and data type symbol having a value of 0H or 1H.

<expression> specifies whether outline processing is performed for the defined pattern in the second

operand.

<expression> = 0H: Does not perform outline processing.

<expression> = 1H: Performs outline processing.

If the evaluation value of <expression> is other than 0H or 1H, an error (F044: Invalid value) occurs.

This line is invalidated and an object code of the NOP instruction is generated.

(2) <pattern> can describe only three half-size characters "O" (alphabetic character), "#", and " " (space).

<pattern> must consist of 10 characters, using only these half-size characters.

The meanings of the three half-size characters are as follows:

O : Lighting data of one dot

: Outline of one dot

" " : Non-lighting data of one dot

If <pattern> does not consist of 10 characters, an error (F083: Illegal format) occurs. This line is

invalidated and the NOP instruction is generated. If a character other than the above half-size

characters is described, an error (F082: Illegal character) occurs. This line is invalidated and an object

code of the NOP instruction is generated.

131

CHAPTER 9 DATA DEFINITION PSEUDO INSTRUCTIONS

(3) If the evaluation value of the first operand is 0, an object is generated according to the following rules:

<1> 0 is unconditionally inserted into the six high-order bits of the object.

<2> 1 is inserted into the 10 low-order bits at the location corresponding to the bits in which O of

the second operand is described.

[Example] DCP 0,' OOO O O'

If the evaluation value of the first operand is 0, <pattern> cannot describe #. If # is described, an error

(F082: Illegal character) occurs. This line is invalidated and the object code of the NOP instruction

is generated.

(4) If the evaluation value of the first operand is 1, the object is generated according to the following rules:

<1> 1 is unconditionally inserted into the high-order position of the object.

<2> 1 is inserted in the low-order 10 bits (bit#9-bit#0), corresponding one-to-one to # (outline

symbol).

<3> Bits#14-bit#10 have a one-to-one correspondence with a block in which the second operand

characters are separated two at a time. If at least one O appears in this block, 1 is inserted

into the bits of the associated object. However, O and " " cannot coexist in one block. If O and

" " coexist, an error (F083: Illegal format) occurs. This line is invalidated and an object code

of the NOP instruction is generated.

[Example 1] DCP 1,' OO#OO# #O#'

[Example 2] For an F error

DCP 1, ' OOO O O#'

-> O and " " coexist in one block.

(5) The DCP pseudo instruction cannot be coded in an address whose low-order four bits are 0FH. The

assembler cannot determine the address where an instruction is placed. This check is made by the

linker (LK17K).

(6) If the coded <expression> is invalid, an error (see Section 4.7.1 for details) occurs. An object code

of the NOP instruction is generated.

0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 1 Object

1 1 1 1 0 1 0 0 1 0 0 1 0 1 0 1 Object

132

RA17K USER'S MANUAL

[Notes]

(1) If an undefined symbol is described in <expression>, an error (F058: Undefined symbol) occurs. This

line is invalidated and an object code of the NOP instruction is generated.

(2) If the EXTRN symbol is described in <expression>, an error (F150: Impossible to write the external

symbol) occurs. This line is invalidated and an object code of the NOP instruction is generated. This

is because if <expression> is not evaluated, the second operand cannot be checked.

(3) If one or fewer operands, or three or more are specified, an error (F037: Syntax error) occurs. This

line is invalidated and an object code of the NOP instruction is generated.

(4) When <expression> is evaluated, if the type is not a data type, an error (F045: Invalid type) occurs.

This line is invalidated and an object code of the NOP instruction is generated.

(5) If <pattern> is other than a character constant, an error (F037: Syntax error) occurs. This line is

invalidated and an object code of the NOP instruction is generated.

133

CHAPTER 10 PROGRAM CONFIGURATION PSEUDO INSTRUCTIONS

This chapter explains the pseudo instructions used to define program configurations. The pseudo

instructions used in relocatable mode differ from those used in absolute mode. The absolute mode basically

conforms to conventional AS17K. In relocatable mode, a section block can be defined with the CSEG pseudo

instruction. Section blocks are used as the minimum unit of relocation during linking. The allocation method

can be indicated in a program by using the pseudo instructions.

The program configuration pseudo instructions are as follows:

• CSEG pseudo instruction (used to define a segment or section block)

(1) A segment is defined in absolute mode.

(2) A section block is defined in relocatable mode.

• END pseudo instruction (used to indicate the end of a program)

• ENSURE pseudo instruction (used to set bank, register, and pointer values. Usable only in relocatable

mode.)

134

RA17K USER'S MANUAL

10.1 CSEG PSEUDO INSTRUCTION (ABSOLUTE MODE)

[Format]

CSEG∆<expression>[∆][;<comment>]

(<expression>=0-7: depends on the target device)

[Function]

Declares the start of the segment specified in <expression>. In other words, the programs appearing

between one CSEG pseudo instruction and the next are handled as being within the same segment.

[Notes]

(1) The above format can be described only in absolute mode.

If this format is described in relocatable mode, an error (F112: Impossible to use on relocatable mode)

occurs. This line is invalidated.

(2) To describe two or more CSEG pseudo instructions within a source program, specify the <expression>

values in ascending order, regardless of whether the source program is split.

If <expression> is equal to or less than the segment number which belongs to the instruction and is

that which was described most recently, an error (F044: Invalid value) occurs. The CSEG pseudo

instruction is ignored and is assumed to be the same segment as that described most recently.

Consecutive addresses are generated (in this case "consecutive" means that a patch area is used

if the size of the program exceeds that of the user area of the segment).

(3) If the evaluation value of <expression> corresponds to the number of a segment that is not installed

in a target device, an error (F044: Invalid value) occurs and the line is invalidated. Therefore, the

instruction is assumed to correspond to the same segment as that described most recently and,

therefore, consecutive addresses are generated.

(4) A warning (see Section 2.3) is output if an instruction for generating an object preceding the CSEG

pseudo instruction is not a branch instruction (BR), return instruction (RET, RETI, RETSK), or data

definition instruction (DW, DB, DCP).

(5) When the CSEG pseudo instruction is described, the first address of the segment is set in the location

counter. The use of this counter starts from the line subsequent to the CSEG pseudo instruction.

(6) If an undefined symbol or forward reference symbol is described in <expression>, an error (F058:

Undefined symbol) occurs. Consecutive addresses are generated immediately after the preceding

segment.

(7) If the EXTRN symbol is described in <expression>, an error (F150: Impossible to write the external

symbol) occurs. This line is invalidated and consecutive addresses are generated immediately after

the preceding segment.

135

CHAPTER 10 PROGRAM CONFIGURATION PSEUDO INSTRUCTIONS

(8) If the <expression> description is incorrect, an error (see Section 4.7.1 for details) occurs. This line

is invalidated and consecutive addresses are generated immediately after the preceding segment.

(9) If the operand is omitted or two or more operands are described, an error (F037: Syntax error) occurs.

This line is invalidated and consecutive addresses are generated immediately after the preceding

segment.

(10) If a label is described, an error (F037: Syntax error) occurs. This line is invalidated and consecutive

addresses are generated immediately after the preceding segment.

(11) Only a data type expression can be described in <expression> of the operand. If an expression other

than the data type is described, an error (F045: Invalid type) occurs. This line is invalidated and

consecutive addresses are generated immediately after the preceding segment.

[Relationship between CSEG and linking]

(1) The CSEG pseudo instruction can be omitted. If so, the instruction is linked with the last segment

of the preceding object file (indicated in the order of the files specified at linking).

Source 1 Source 2

CSEG 0 ADD M1, #1

END

NOP

NOP

END

If source 1 then source 2 are linked, the object of source 2 is linked with the same segment (segment

0) as that of the preceding file (source 1).

(2) Based on the same idea as that in (1), at linking, the instruction that generater an object code that

exists until the CSEG pseudo instruction is described is linked with the same segment as that of the

preceding file.

Source 1 Source 2

CSEG 0 ADD M1, #1

NOP CSEG 2

NOP INC IX

END END

If source 1 then source 2 are linked, the ADD instruction of source 2 is linked with the same segment

(segment 0) as that of the preceding file and the INC instruction is allocate in segment 2.

(3) If a file from which the CSEG pseudo instruction has been omitted is specified first at linking, segment

0 is automatically set.

136

RA17K USER'S MANUAL

10.2 CSEG PSEUDO INSTRUCTION (RELOCATABLE MODE)

[Format]

<1> <section-name> ∆ CSEG[∆AT∆<expression>]

<section-name> - Section-name

<expression> - Expression of the absolute address

<2> <section-name> ∆ CSEG[∆<allocation-specification>][∆<expression>]

<section-name> - Section name

<allocation-specification> - SSYS : System call subroutine (indirect allocationNote 1)

DSYS : System call subroutine (direct allocationNote 2)

SBR : Subroutine (indirect allocationNote 1)

DSBR : Subroutine (direct allocationNote 2)

CROM : Non-program memory data (data to be stored in ROM other

than program memory)

TABLE : Data for table lookup (data to be referenced with the MOVT

instruction)

<expression> - Allocation segment number

0-7 or SYS

<3> <section-name> ∆ CSEG[∆<allocation-specification>]

<section-name> - Section name

<allocation-specification> - BOOT : Main routine (boot section)

VECTn : Interrupt processing routine (indirect allocationNote 1)

DVECTn : Interrupt processing routine (direct allocationNote 2)

However, n is hexadecimal 1-9, 0A-0F, or 10-3F.

Notes 1. A branch instruction is generated in the area in which a section, for which allocation has been

specified, is to be allocated. The section is allocated within an area that can be referenced

by the branch instruction.

2. The section for which allocation was specified is directly allocated within the area in which the

section is to be allocated.

[Function]

Defines the minimum unit of the reallocation at linking.

An instruction, described between one CSEG and the next, between a CSEG and END, or between a

CSEG and the end of the file, is used as a single section block. It is used as the minimum unit for

reallocation at linking.

An instruction which generates an object code must be described in this section block.

The linker performs allocation processing for each allocation specification. Refer to the Linker (LK17K)

User's Manual for details of allocation processing.

137

CHAPTER 10 PROGRAM CONFIGURATION PSEUDO INSTRUCTIONS

[Explanation]

(1) An instruction which generates an object code must be described within the section block defined

between one CSEG pseudo instruction and the next, between a CSEG instruction and an END pseudo

instruction, or between a CSEG instruction and the end of the file. If the instruction is described outside

the section block, an error (F146: Impossible to write out of section block) occurs and no object code

is generated.

(2) If a reserved symbol is described in <section-name>, an error (F037: Syntax error) occurs. This line

is invalidated.

(3) If a defined symbol is described in <section-name>, an error (F057: Symbol multi defined) occurs.

This line is invalidated.

(4) If <section-name> is omitted, an error (F037: Syntax error) occurs. This line is invalidated.

[Notes]

(1) The ORG pseudo instruction, defined in the section, is specified in an offset address for which the

beginning of the section block is address 0H.

(2) A name described in <section-name> is registered as a symbol. Unlike general symbols, this symbol

cannot be described in an operand of other instructions and other pseudo instructions. If described,

an error (F182: Specified illegal symbol name) occurs. If this symbol is described as an operand

of an instruction which generates an object code, the NOP instruction is generated. If it is described

as an operand of an pseudo instruction, the pseudo instruction is invalidated.

(3) Section blocks having the same name cannot be defined in a single source module file. If two or more

section blocks having the same name are defined, an error (F197: Section or table block multi defined

in a source file) occurs in the second CSEG and subsequent statements. This line is invalidated.

(4) If an undefined symbol or forward reference symbol is described in <expression>, an error (F058:

Undefined symbol) occurs. This line is invalidated.

(5) If the EXTRN symbol is described in <expression>, an error (F150: Impossible to write the external

symbol) occurs. This line is invalidated.

(6) If the <expression> description is invalid, an error (see Section 4.7.1 for details) occurs. This line

is invalidated.

(7) A data type expression is described in <expression> of the operand in format <1>. If other expressions

are specified, an error (F044: Invalid value) occurs. This line is invalidated.

138

RA17K USER'S MANUAL

(8) A data type expression or "SYS" is described in <expression> of the operand in format <2>. If other

expressions are specified, an error (F044: Invalid value) occurs. This line is invalidated.

(9) If an evaluation value of <expression> in format <2> is the number of a segment that is not installed

in a target device, an error (F044: Invalid value) occurs. This line is invalidated.

(10) Only hexadecimal values between 1H and 3FH can be specified as n of VECTn and DVECTn in

<allocation-specification> of format <3>. However, H, indicating the end of a hexadecimal number,

is not described.

(11) If the operands are omitted, the linker automatically performs allocation in any segment.

[Examples]

[Example 1] Section definition

• Definition with the operands omitted

R01 CSEG
···

END

Section R01 is allocated in any segment at linking because no segment has been specified.

• Defining only the allocation specification in format <2>

R02 CSEG SBR
···

END

Section R02 has a subroutine attribute. It is allocated in any segment at linking because no segment

has been specified.

• Definition with the allocation specification omitted from format <2>

R02 CSEG 0
···

END

Section R02 is allocated in segment 0.

139

CHAPTER 10 PROGRAM CONFIGURATION PSEUDO INSTRUCTIONS

• Defining the boot section

B01 CSEG BOOT
···

END

Section B01 has a boot attribute. At linking, it is allocated as the section to be executed first after

resetting.

• Defining the interrupt handling routine

I01 CSEG VECT1
···

END

I13 CSEG VECT13
···

END

I32 CSEG VECT32
···

END

At linking, Section I01 is allocated as the interrupt handling routine for interrupt vector address 1H.

At linking, section I13 is allocated as the interrupt handling routine for interrupt vector address 13H.

At linking, section I32 is allocated as the interrupt handling routine for interrupt vector address 32H.

140

RA17K USER'S MANUAL

10.3 END PSEUDO INSTRUCTION

[Format]

END

[Function]

Indicates the end of the program to the assembler. The description, however, can be omitted.

[Notes]

(1) No more than one END statement may be used for a single assemble unit. An error does not occur

even if the last line of the source module file does not end with an END statement or if the END

statement is omitted.

(2) In a source module file, the END statement must be described at the end. If a statement follows END,

a warning (W065: Statement after END) is output for that line. If this warning is output, the statements

after END are not analyzed. Therefore, only the END description line and the next line, for displaying

W065, are output to the intermediate list. No data is subsequently output.

(3) If the END statement is omitted, a warning (W028: No END statement) is output.

(4) The END statement is processed by the conditional assembly pseudo instruction, even when

assembly is skipped. (See Chapter 13 .)

(5) If the END statement is described in the macro definition (macro body), assembly terminates with the

END statement at macro registration. Therefore, any statements after the END statement are not

interpreted and are not output to the intermediate list. See (2) above for details of output to the

intermediate list.

(6) If a label or operand is described in the END statement, an error (F037: Syntax error) occurs. This

line is invalidated and thus not interpreted as an END statement.

(7) If the END statement is described in the include file, the include file is included normally. If an

instruction that generates an object code is placed after the END statement, the object code is

generated normally. However, when control returns to the source module file, if any statement follows

an INCLUDE statement in which a file containing an END statement is described, a warning (W065:

Statement after END) is output.

141

CHAPTER 10 PROGRAM CONFIGURATION PSEUDO INSTRUCTIONS

If a warning is output

Source module file A.ASM Include file B.ASM

· ·· ·· ·
INCLUDE 'B.ASM' END

NOP <- Warning output line
···

The warning is output because the statement is described after INCLUDE 'B.ASM'.

If no warning is output

Source module file A.ASM Include file B.ASM

· ·· ·· ·
INCLUDE 'B.ASM' END

(End of the file) NOP

NOP

No warning is output, even if a statement is described after the END statement in an include file. For

a source module file, no warning is output because no statements are described after INCLUDE in

the file in which the END statement is described.

(8) If the END statement is described in the summary statement, the assembler terminates at this line.

A warning (W162: No ENDSUM statement) is output.

142

RA17K USER'S MANUAL

10.4 ENSURE PSEUDO INSTRUCTION

[Format]

ENSURE∆register-name=<expression>[,register-name=<expression>]···

register-name = {BANK|RP|AR}

<expression> = {BANK value|RP value|AR value|NOCHANGE|UNKNOWN}

[Function]

Issued for the assembler and specifies bank, register pointer (RP), and address register (AR) values

immediately after a label line and CALL instruction.

<expression> : Each register value ... Described only when it belongs to the related register.

NOCHANGE ... Described when a value is unclear but the previous value

remains unchanged.

UNKNOWN ... Described when a value is unclear and it is impossible to

determine whether the previous value has changed.

[Explanation]

(1) When a bank value is set by ENSURE, it is also set in ZZZBANK.

(2) When an RP value is set by ENSURE, it is also set in ZZZRP.

(3) When an AR value is set by ENSURE, it is also set in ZZZAR.

(4) When NOCHANGE is set in <expression>, it is determined that a register value specified for register-

name remains as is and that an assemble time variable is not changed.

(5) When UNKNOWN is specified in <expression>, the register value specified for register-name may

have been changed. –1 is set as the assemble time variable.

(6) When ENSURE is described, describe only those registers whose contents are known. Any other

registers should not be described. For any registers that are not described, –1 is set for the

corresponding assembly time variables.

(7) ENSURE can be described only in relocatable mode. If an attempt is made to use ENSURE in absolute

mode, an error (F113: Impossible to use on absolute mode) occurs. This line is invalidated.

143

CHAPTER 10 PROGRAM CONFIGURATION PSEUDO INSTRUCTIONS

[Notes]

(1) If an undefined symbol is described in <expression>, an error (F058: Undefined symbol) occurs. This

line is invalidated. ZZZBANK, ZZZRP, and ZZZAR all continue to hold their previous values.

(2) If the EXTRN symbol was described in <expression>, an error (F150: Impossible to write the external

symbol) occurs. This line is invalidated. ZZZBANK, ZZZRP, and ZZZAR all continue to hold their

previous values.

(3) If the <expression> description is invalid, an error (see Section 4.7.1 for details) occurs. This line

is invalidated. ZZZBANK, ZZZRP, and ZZZAR all continue to hold their previous values.

(4) If a bank or register pointer that is not installed is specified, an error (F044: Invalid value) occurs.

This line is invalidated.

(5) If a label is specified in ENSURE, an error (F037: Syntax error) occurs.

(6) If a character other than BANK, RP, or AR is specified as a register name, an error (F050: Not reserved

word) occurs.

(7) To specify a value using <expression>, use a data type expression. If an expression other than the

data type is described, an error (F045: Invalid type) occurs. This line is invalidated.

144

RA17K USER'S MANUAL

[MEMO]

145

CHAPTER 11 LOCATION COUNTER CONTROL PSEUDO INSTRUCTION

11.1 ORG

[Format]

[<label>:][∆]ORG∆<expression>

[Coding example]

In relocatable mode

When using ORG, specify an offset for which the beginning of the section block is address 0H. Therefore,

if ORG 100H is specified, the location address of the next line is 100H.

LOC. SOURCE STATEMENT

SEC1 CSEG
···

21 AND R1,M1

22 ORG 100H

100 AND R1,M1
···
END

[Function]

Sets an evaluation value for <expression> in the location counter.

A location counter value set by the ORG pseudo instruction is used from the line subsequent to that on

which the ORG pseudo instruction is described. Therefore, the label value described in the ORG pseudo

instruction is not that value specified by <expression>, instead being the preceding value (on the line on

which the ORG pseudo instruction was described).

[Notes]

(1) In relocatable mode, the ORG pseudo instruction can be described only in the section block. If it is

described outside the section block, an error (F146: Impossible to write out of section block) occurs.

This line is invalidated.

(2) In relocatable mode, the ORG pseudo instruction defined within the section is positioned to the offset

address for which the beginning of the section block is 0H.

(3) If the <expression> description is invalid, an error (see Section 4.7.1 for details) occurs. This line

is invalidated. The location counter value remains as is.

146

RA17K USER'S MANUAL

(4) If an undefined symbol or forward reference symbol is described in <expression>, an error (F058:

Undefined symbol) occurs. This line is invalidated. Therefore, the location counter value remains

as is.

(5) If an external definition symbol is described in <expression>, an error (F150: Impossible to write

the external symbol) occurs. This line is invalidated. Therefore, the location counter value remains

as is.

(6) If a value less than the present location value is specified in <expression>, an error (F048: ORG

address error) occurs. This line is invalidated. Therefore, the location counter value remains as

is.

(7) In absolute mode, if an address (outside the ROM and EPA areas) that does not exist in a target

device is specified, an error (F152: The address is out of ROM) occurs. The location counter value

remains as is.

(8) In absolute mode, specify an absolute address corresponding to the segment specified by the CSEG

pseudo instruction.

(9) If the operand is omitted or two or more operands are specified, an error (F037: Syntax error) occurs.

(10) If the <label> description is invalid, an error (see Section 4.3) occurs.

(11) Only label type <expression> or data type <expression> can be described in <expression>. If an

expression other than the label type or data type expressions is specified, an error (F045: Invalid

type) occurs. This line is invalidated. The location counter value remains as is.

147

CHAPTER 12 EXTERNAL DEFINITION AND EXTERNAL REFERENCE PSEUDO

INSTRUCTIONS

12.1 PUBLIC, PUBLIC BELOW ... ENDP

[Format]

(1) [<label>:][∆]PUBLIC ∆<symbol>[,<symbol>...][∆][;<comment>]

(2) [<label>:][∆]PUBLIC ∆BELOW[∆][;<comment>]

Name Symbol definition pseudo instruction Expression
· · ·· · ·· · ·

ENDP [;<comment>]

[Coding examples]

Symbol Mnemonic Operand

DATA1 DAT 2H

FLAG2 FLG 0.10H.3
···
PUBLIC DATA1,FLAG2
···
PUBLIC BELOW

MEM00 MEM 0.00H

MEM10 MEM 0.10H
···
ENDP

Symbol Mnemonic Operand

PUBLIC BELOW

DATA1 DAT 2H

FLAG2 FLG 0.10H.3
···
PUBLIC DATA1,FLAG2 <- No error occurs.
···
PUBLIC BELOW <- No error occurs because nesting is not

supported.

MEM00 MEM 0.00H

MEM10 MEM 0.10H
···
ENDP

148

RA17K USER'S MANUAL

[Function]

Declares that a symbol described in the operand field of the PUBLIC declaration statement or a symbol

defined in a block enclosed by PUBLIC BELOW and ENDP is to be referenced by other modules (external

modules) created when a program was split as part of modularization.

[Notes]

(1) The PUBLIC statement can be described in any location in a source program (or within a macro).

(2) A symbol declared by PUBLIC must be defined as a symbol within the same assembly unit (within

a source module in which the declaration is made). If not defined, an error (F058: Undefined symbol)

occurs. If, however, two or more symbols are described in a single line, a symbol other than the

erroneous symbols is registered (PUBLIC declaration).

(3) Any number of symbols can be described in the operand field of the PUBLIC statement, up to the

maximum number of characters that can be specified on one line (255 characters). If a line is fed,

those symbols on the second and subsequent lines are not registered. PUBLIC must be declared

again.

(4) Two or more symbols having different attributes are described in the operand field of the PUBLIC

statement.

(5) An instruction other than a symbol definition pseudo instruction can also be described in a block

enclosed by PUBLIC BELOW and ENDP.

(6) If there is no corresponding ENDP for PUBLIC BELOW, an error (F033: No ENDP statement) occurs

in the END statement or at the end of a file.

(7) If ENDP is described without PUBLIC BELOW, an error (F085: Invalid ENDP statement) occurs. This

line is invalidated.

(8) The symbol types that can be specified in <symbol> are the data type, label type (including a label

defined by symbol:), data memory type, and flag type only. If other symbol types are declared by

PUBLIC, an error occurs. However, the symbols specified by the SET pseudo instruction between

PUBLIC BELOW and ENDP are excluded from the PUBLIC declaration.

A list of symbols that cannot be declared, together with the related error message, are shown below.

149

CHAPTER 12 EXTERNAL DEFINITION AND EXTERNAL REFERENCE PSEUDO INSTRUCTIONS

Symbols that cannot be declaredNote

• Symbols defined by the SET pseudo instruction

• Reserved words

• Local symbols within macros

Error messages (F167: Invalid PUBLIC statement)

Note A section name (see Section 10.2) cannot be declared by PUBLIC. If declared, an error

(F182: Specified illegal symbol name) occurs.

(9) An error does not occur even if the same symbol is declared two or more times with PUBLIC or

PUBLIC BELOW.

(10) If a label or operand is described in the ENDP statement, an error (F037: Syntax error) occurs. This

line is invalidated.

(11) If an operand is omitted from the PUBLIC statement, an error (F037: Syntax error) occurs.

(12) If an operand is described in the PUBLIC BELOW statement, an error (F037: Syntax error) occurs.

(13) If the <label> description is invalid, an error (see Section 4.3) occurs.

(14) Nesting is not supported for the PUBLIC BELOW...ENDP structure. (See [Examples] .)

(15) If the PUBLIC statement has been described in a macro, a global symbol can be declared by PUBLIC.

If, however, a local symbol is declared by PUBLIC, an error (F190: Impossible to write a local symbol)

occurs.

150

RA17K USER'S MANUAL

12.2 EXTRN

[Format]

[<label>:][∆]EXTRN∆<attribute>:<symbol>[,<symbol>...][;comment]

<attribute>: Symbol type (one of DAT, MEM, FLG, and LAB)

[Coding example]

Defining and referencing the DAT, MEM, FLG, and LAB attributes

; Module for referencing external symbols

EXTRN LAB : LAB1

EXTRN DAT : DATA1

EXTRN MEM : MEM03

EXTRN FLG : FLG1
···
ADD MEM03 , #5H

DW DATA1

SUB .FM.FLG1 SHR 4 ,#1H

BR LAB1

; Module for defining external symbols

PUBLIC BELOW ;Public symbol declaration

LAB1:
···
FLG1 FLG 0.00H.0

DATA1 DAT 1H

ENDP

PUBLIC MEM03 ;Public symbol declaration

MEM03 MEM 0.03

[Function]

Declares that an external module definition symbol described in the operand is to be referenced within

the module.

DAT : Data type symbol

MEM : Data memory type symbol

FLG : Flag type symbol

LAB : Label type symbol

151

CHAPTER 12 EXTERNAL DEFINITION AND EXTERNAL REFERENCE PSEUDO INSTRUCTIONS

[Notes]

(1) The external reference definition made by EXTRN is required to reference a symbol defined by a

program (external module) having a different assembly unit.

(2) Describe <attribute> for a symbol at the beginning of an operand field and delimit it with : (colon).

Then, describe the symbol having the specified attribute. Any number of symbols can be specified

within a single line; they must all have the same attribute, however.

(3) If a symbol declared by EXTRN is defined as another symbol in the same module, an error (F057:

Symbol multi defined) occurs. This line is invalidated.

(4) If <attribute> and : (colon) are not described at the beginning of the operand field, an error (F037:

Syntax error) occurs. A symbol is not registered as an external reference symbol. If, therefore, the

symbol is referenced, an error (F058: Undefined symbol) occurs.

(5) If <symbol>, described in the operand, is not referenced, a warning (W020: Unreferenced symbol)

is generated.

(6) See Section 4.7.1 for details of DAT, MEM, FLG, and LAB.

(7) The same symbol can be declared by EXTRN two or more times.

Note, however, that if two or more identical symbols are declared, they must have the same attribute.

If their attributes differ, an error (F045: Invalid type) occurs. This line is invalidated.

(8) If the operand is omitted, an error (F037: Syntax error) occurs.

(9) If the <label> description is invalid, an error (see Section 4.3) occurs.

(10) If a character string other than the reserved words that can be described for the type is described,

an error (F037: Syntax error) occurs.

(11) If a reserved word (excluding the assembly time variables) is described in <symbol>, an error (F037:

Syntax error) occurs. This line is invalidated. Therefore, the symbols described in <symbol> are

not defined as external reference symbols.

(12) If an assembly time variable is described in <symbol>, an error (F166: Invalid EXTRN statement)

occurs. This line is invalidated. Therefore, the symbols described in <symbol> are not defined as

external reference symbols.

152

RA17K USER'S MANUAL

[MEMO]

153

CHAPTER 13 CONDITIONAL ASSEMBLY PSEUDO INSTRUCTIONS

This chapter explains the conditional assembly pseudo instructions that are used to evaluate expressions

described as operands and thus make decisions as to whether assembly is to be executed.

The conditional assembly pseudo instructions are as follows:

• IF ... ELSE ... ENDIF

(Assembles those instructions between IF and ELSE or between ELSE and ENDIF, depending on the

result of evaluating the operand.)

• CASE ... EXIT ... OTHER ... ENDCASE

(Assembles a block having the same numeric label as that of the result of evaluating the operand.)

• IFCHAR ... ELSE ... ENDIFC

(Compares a character string with another string and, depending on the result, assembles those

instructions between IFCHAR and ELSE or between ELSE and ENDIFC.)

• IFNCHAR ... ELSE ... ENDIFC

(Has the same function as IFCHAR, above, except that the condition under which assembly is executed

is reversed.)

• IFSTR ... ELSE ... ENDIFS

(Checks whether a specific character string exists within a specified character string and, depending on

the result, assembles those instructions between IFSTR and ELSE or between ELSE and ENDIFS.)

[Notes]

(1) If a conditional assembly pseudo instruction is described in a macro body, this pseudo instruction is

interpreted when the macro is expanded. The instruction is not interpreted when the macro body is

registered, however (see Chapter 16 for details).

(2) Even if INCLUDE or a macro reference is described in a block for which assembly is skipped when

a given condition is satisfied, the macro is not expanded. Also, the built-in macro instructions are not

expanded, either.

(3) Even if END is described in a block for which assembly is skipped when a given condition is satisfied,

the end of the source module file is assumed to be that END (see Section 10.3 for details).

154

RA17K USER'S MANUAL

(4) Conditional assembly pseudo instructions can be nested up to 40 levels deep, including repetitive

pseudo instructions and macro instructions. If the nesting level exceeds 41, an error (A035: Nesting

overflow) occurs. Assembly is terminated.

(5) A block for which assembly is skipped by a conditional assembly pseudo instruction is not checked

(for syntax, etc.). Therefore, no error occurs. However, nesting of the conditional assembly pseudo

instruction is controlled even during skip.

If the nesting level exceeds 41 during assembly skip, an error (A035: Nesting overflow) occurs.

Assembly is terminated.

(6) If the description of a label is invalid, an error occurs (see Section 4.3 for details).

(7) For details of the relations between the conditional assembly pseudo instructions and INCLUDE

pseudo instruction, see (1) in Section 19.1.1 .

155

CHAPTER 13 CONDITIONAL ASSEMBLY PSEUDO INSTRUCTIONS

[Processing during assembly skip]

Nesting is controlled even during assembly skip. This is because, if IF is encountered again during skip

processing for IF, the ENDIF corresponding to that IF is encountered, the next ENDIF corresponding to

the IF during skip processing.

To control nesting, the nesting of conditional assembly pseudo instructions and repetitive pseudo

instructions is controlled, even during skip processing. At this time, the syntax is not checked because

skip processing is in progress. For ELSE, therefore, even if a label or operand is described for that ELSE,

ELSE is assumed and the processing is performed accordingly.

During skip processing, the SUMMARY control instruction unconditionally skips up to ENDSUM.

(1) If IF appears during skip by IF

DDD1 SET 1

IF DDD1=0 ;Skip processing is performed.
···
IF AAA=1 ;Normally, an error occurs because no symbol

;is defined for AAA. Because, however, the

;syntax is not checked during skip processing,

;IF is assumed and the nesting level is

;incremented by one.
···
···

LLL: ENDIF ;Normally, an error occurs. However, because

;the syntax is not checked during skip

;processing, this ENDIF decrements the nesting

;level by one.

SUMMAY, ;Because the description up to ENDSUM is a

Summary statement ;summary statement, processing skips to ENDSUM.

ENDIF ,The description between SUMMARY and ENDSUM is

ENDSUM ;handled as a comment by the assembles.

ENDIF ;Skip processing ends.

156

RA17K USER'S MANUAL

[Relations between conditional assembly pseudo instructions and a macro]

A conditional assembly pseudo instruction described in a macro body must be closed within that macro.

Otherwise, an error will occur once the macro body is expanded. The conditional assembly pseudo

instruction that has caused the error is forcibly closed as soon as the error occurs.

If an error occurs, one of the following messages will be output.

• F029: No ENDIF statement ... IF is not closed within a macro body.

• F030: No ENDCASE statement ... CASE is not closed within a macro body.

• F101: No ENDIFC statement ... IFCHAR is not closed within a macro body.

• F102: No ENDIFNC statement ... IFNCHAR is not closed within a macro body.

• F103: No ENDIFS statement ... IFSTR is not closed within a macro body.

(1) If only IF is described within a macro body

DAT1 DAT 1

MAC1 <- Macro reference
···
MAC2 <- Macro reference in macro

···
IF DAT1=0 ; Assembly is skipped.
···
MAC3 <- Macro reference being skipped is not expanded.
···
ENDM <- Error (F029: No ENDIF statement) occurs at the end of macro

expansion, and macro MAC2 is not processed normally. IF is

unconditionally closed at ENDM, and is assembled starting from the

next line.
···
EMDM <- Macro expansion ends normally.
···

ENDIF <- Error (F121: Invalid ENDIF statement) occurs.

157

CHAPTER 13 CONDITIONAL ASSEMBLY PSEUDO INSTRUCTIONS

(2) If IF is encountered during skip of IF

DAT1 DAT 1

MAC1 <- Macro reference
···
IF DAT1=0 ; Assembly is skipped.
···
MAC3 <- Macro reference that is skipped is not expanded.
···

IF DAT1=1 <- This IF is skipped because skip processing is in progress.
···
ENDM <- Error (F029: No ENDIF statement) occurs at end of macro expansion, and

macro MAC1 is not processed correctly. Two IFs are unconditionally closed

at ENDM, and are assembled starting from the next line.
···

ENDIF <- Error (F121: Invalid ENDIF statement) occurs.

(3) If only an ENDIF statement is described in a macro body

DAT1 DAT 1
···
IF DAT1=1
···
MAC1 <- Macro reference

···
ENDIF <- Error (F121: Invalid ENDIF statement) occurs.
···
EMDM <- End of macro expansion

···
ENDIF IF ends here.

158

RA17K USER'S MANUAL

13.1 IF ... ELSE ... ENDIF

[Format]

[<label>:][∆]IF ∆<expression>[∆][;<comment>]
···

statements
···

[ELSE][∆][;<comment>]
···

statements
···

ENDIF[∆][;<comment>]

[Coding example]

[Example 1] Example using ELSE

COND SET 0FH

;

IF COND

MOV A, #5H
···

ELSE

MOV A, #6H
···

ENDIF

[Example 2] Example not using ELSE

COND SET 0FH

;

IF COND

MOV A, #5H

MOV A, #4H
···

ENDIF

Assembled because COND ≠ 0.

Assembled because COND ≠ 0.

Not assembled.

159

CHAPTER 13 CONDITIONAL ASSEMBLY PSEUDO INSTRUCTIONS

[Example 3] Example of nesting

IF .TYPE.TABLE1=1 ; If TABLE1 is LAB attribute, the following

; is assumed:

;

IF (TABLE1 AND 01FFFH) > 07FFH

MOV AR0 , #.DL.TABLE1 AND 0FH

MOV AR1 , #.DL.TABLE1 SHR 4 AND 0FH

MOV AR2 , #.DL.TABLE1 SHR 8 AND 0FH

CALL @AR

ELSE

CALL TABLE1

ENDIF

;

ELSE ; DAT attribute is assumed if TABLE1 is

; not LAB attribute.

;

IF (TABLE1 AND 01FFFH) > 07FFH

MOV AR0 , #TABLE1 AND 0FH

MOV AR1 , #TABLE1 SHR 4 AND 0FH

MOV AR2 , #TABLE1 SHR 8 AND 0FH

CALL @AR

ELSE

CALL TABLE1

ENDIF

ENDIF

[Function]

(1) IF ... ENDIF

The statements between IF and ENDIF are assembled if the result of evaluating <expression> is true

(≠0).

If the result of evaluating <expression> is false (=0), the statements (IF clause) between IF and ENDIF

are not assembled.

(2) IF ... ELSE ... ENDIF

If the result of evaluating <expression> is true (≠0), the statements between IF and ELSE are

assembled, while those between ELSE and ENDIF are not assembled.

If the result of evaluating <expression> is false (=0), the statements (IF clause) between IF and ELSE

are not assembled, but the statements (ELSE clause) between ELSE and ENDIF are assembled.

160

RA17K USER'S MANUAL

[Notes]

(1) If an error occurs in an IF statement, that IF statement becomes invalid. Consequently, an error

occurs on the line of ELSE that corresponds to IF (F120: Invalid ELSE statement), and an error

(F121: Invalid ENDIF statement) occurs at ENDIF.

(2) The ELSE statement does not always have to be specified.

Specify only one ELSE for an IF ... ENDIF block. If two or more ELSEs are described for one IF

... ENDIF block, the second and subsequent ELSE statements cause an error (F120: Invalid ELSE

statement). The first line becomes invalid.

(3) If the description of <expression> is invalid, an error occurs (for details, see Section 4.7.1). That

line becomes invalid.

(4) Describe a symbol that has already been defined as the operand <expression> of an IF statement.

If a symbol that is not defined in the same module or a forward reference symbol is described, an

error (F058: Undefined symbol) occurs. That line becomes invalid.

(5) The result of evaluating the operand <expression> of an IF statement must be of data type. If the

evaluation result is of other than data type, an error (F045: Invalid type) occurs. That line becomes

invalid.

(6) If there is no ENDIF specified corresponding to IF, an error (F029: No ENDIF statement) occurs,

either at the END statement or at the end of the file.

(7) If only ENDIF is described without IF, an error (F121: Invalid ENDIF statement) occurs. That line

becomes invalid. If only ELSE is described, an error (F120: Invalid ELSE statement) also occurs.

That line becomes invalid.

(8) If a label or operand is described on the line of ELSE or ENDIF, an error (F037: Syntax error) occurs.

That line becomes invalid.

(9) If an external definition symbol is described as <expression>, an error (F150: Impossible to write

the external symbol) occurs. The IF statement becomes invalid.

(10) If an IF or ELSE statement is described in a macro body, the clause must be always closed within

the macro body.

(11) If the operand <expression> of an IF statement is omitted, or two or more <expression> are

described, an error (F037: Syntax error) occurs. The IF statement becomes invalid.

161

CHAPTER 13 CONDITIONAL ASSEMBLY PSEUDO INSTRUCTIONS

13.2 CASE ... EXIT ... OTHER ... ENDCASE

[Format]

[<label>:] [∆]CASE∆<expression>[∆][;<comment>]

<numeric-label>: [∆][;<comment>]

[<label>:] [∆]statements

[∆][EXIT]

<numeric-label>: [∆][;<comment>]

[<label>:] [∆]statements

[∆][EXIT]

···
[:<data-type-symbol>:]

···
[OTHER:][∆][;<comment>]

[<label>:]statements

ENDCASE[∆][;<comment>]

[Coding example]

(1) Example of CASE and EXIT

CASE N ; (0FH)=(0FH)+N

;

3: ;

MOV MEM01, #1H ; Range to be assembled where N=3.

ADD MEM01, #2H ;

00B: ;

CALL LAB1 ; Range to be assembled where N=00B.

SUB MEM02, #5H ;

EXIT ;

0FH: ;

MOV MEM03, #4H ; Range to be assembled where N=0FH.

EXIT ;

OTHER: ;

SUB MEM03, #5H ; Range to be assemble where N≠3,

ENDCASE ; N≠00B, and N≠0FH.

162

RA17K USER'S MANUAL

[Function]

Assembles those statements between <numeric-label>, having the same value as the result of evaluating

<expression> described as the operand of the CASE statement, and the ENDCASE statement. A "numeric

label" is a numeral expressed as a 7-bit ASCII code followed by a colon (:).

If the EXIT statement appears during assembly, processing is stopped, and execution exits from the

innermost CASE block.

If no numeric label equivalent to the value of <expression> exists, the block between OTHER and

ENDCASE is assembled. Note, however, that the OTHER block must be described after the numeric label

block. If the OTHER block is omitted, and no numeric label equivalent to the value of <expression> exists,

all statements between CASE and ENDCASE are skipped and not assembled.

[Notes]

(1) Statements other than a comment statement cannot be described on the numeric label line. If a

mnemonic or operand is described on the numeric label line, an error (F069: Invalid CASE LABEL)

occurs. That line becomes invalid.

(2) The value of the numeric label must be an integer in the range of 0 ≤ x ≤ 0FFFFFFFFH. If a negative

value or a value outside this range is described, an error (F164: The constant is over 32 bits) occurs.

That line becomes invalid. Describe the numeric label in binary, octal, decimal, or hexadecimal.

(3) For numeric labels numerals need not to be described in ascending or descending order.

(4) If the same numeric label is described two or more times in a single CASE block, only that which

appears first becomes valid. The second and subsequent specifications are ignored.

(5) A label other than a numeric label can be described in the CASE ... ENDCASE block.

(6) If a label or operand is described for ENDCASE or EXIT, an error (F037: Syntax error) occurs. That

line becomes invalid.

(7) If another OTHER is described in the CASE ... ENDCASE block, an error (F123: Invalid OTHER

statement) occurs. That line becomes invalid.

(8) If a numeric label is described after an OTHER statement, an error (F037: Syntax error) occurs. That

line becomes invalid.

(9) Only one OTHER statement can be described in a CASE ... ENDCASE block. If two or more OTHER

statements are described, the second and subsequent statements cause an error (F123: Invalid

OTHER statement). That line becomes invalid.

163

CHAPTER 13 CONDITIONAL ASSEMBLY PSEUDO INSTRUCTIONS

(10) The EXIT statement may be described as many times as required.

(11) If there is no ENDCASE corresponding to CASE, an error (F030: No ENDCASE statement) occurs,

either at the END statement or at the end of the file.

(12) If ENDCASE is described before CASE, an error (F122: Invalid ENDCASE statement) occurs. That

line becomes invalid. If EXIT is described, an error (F080: Invalid EXIT statement) occurs. Similarly,

if OTHER is described, an error (F123: Invalid OTHER statement) occurs. In both cases, the line

becomes invalid.

(13) A data type symbol can be used for <numeric-label> by describing ":" first.

Coding format :<data-type-symbol>:

If a symbol of other than data type is described at this time, an error (F045: Invalid type) occurs.

That line becomes invalid.

(14) If an undefined symbol or forward reference symbol is described for <expression>, an error (F058:

Undefined symbol) occurs. The CASE statement becomes invalid.

(15) If an external definition symbol is described for <expression>, an error (F150: Impossible to write

the external symbol) occurs. The CASE statement becomes invalid.

(16) If any error occurs in <expression> (see Section 4.7.1), the CASE statement becomes invalid.

(17) If any error occurs in the CASE statement, the CASE statement becomes invalid. At this time, each

statement corresponding to this CASE statement is assumed to be as follows:

• Line containing numeric label for CASE statement -> F069: Invalid CASE LABEL

• OTHER statement -> F123: Invalid OTHER statement

• ENDCASE statement -> F122: Invalid ENDCASE statement

• EXIT statement -> F080: Invalid EXIT statement

(18) If no operand is specified for a CASE statement, or two or more operands are described, an error

(F037: Syntax error) occurs, and that CASE statement becomes invalid.

164

RA17K USER'S MANUAL

(19) No error occurs even if no numeric label or OTHER is described between CASE and ENDCASE.

In this case, however, all statements between CASE and ENDCASE are skipped and not assembled.

CASE 0

IF 1 ; This IF is skipped.

EXIT

ELSE ; This ELSE is also skipped.

ENDCASE

(20) The result of evaluating the operand <expression> of a CASE statement must be of data type.

Otherwise, an error (F045: Invalid type) occurs. That line becomes invalid.

(21) Relation between CASE and IF

The nesting level does not increase even if a pseudo instruction related to nesting, such as IF, is

encountered during skip processing in a CASE block. During skip processing for the CASE block,

a search is made for the corresponding numeric label and CASE pseudo instruction. If a

corresponding numeric label is found, assembly is started from that label. If a CASE pseudo

instruction is found, that CASE block is skipped.

A SET 10

B SET 10

CASE A

0:

IF B=10 ; Nesting level does not increase during skip

; processing for CASE block.

NOP

ELSE

NOP

ENDIF

5:

CASE B ; Skipped up to ENDCASE. Therefore,

; a numeric label corresponding to this CASE

; is also skipped.

0:

5:

10:

ENDCASE

10: ; Assembly starts from here.

IF B=10

NOP

ELSE

NOP

ENDIF

ENDCASE

165

CHAPTER 13 CONDITIONAL ASSEMBLY PSEUDO INSTRUCTIONS

13.3 IFCHAR ... ELSE ... ENDIFC

[Format]

[<label:>][∆]IFCHAR ∆<string-1>,<string-2>[,<start-character-position>,<end-character-position>][;<comment>]

···
statements

···
[ELSE][∆][;<comment>]

···
statements

···
ENDIFC[∆][;<comment>]

[Coding Examples]

[Example 1] When a character constant is specified

IFCHAR ' ABC' , ' BBB' , 1, 1
···
ELSE
···
ENDIFC

In this case, the statements between IFCHAR and ELSE are assembled, even if a character constant

is specified, because the first character of the constant is a quotation mark (').

[Example 2] If both string 1 and string 2 are omitted

IFCHAR , , 1 , 1
···
ELSE
···
ENDIFC

In this case, the statements between ELSE and ENDIFC are always assembled because there are

no character strings to be compared.

166

RA17K USER'S MANUAL

[Example 3] If string 1, string 2, the character start position, and the character end position

are omitted

IFCHAR ,

An error (F037: Syntax error) occurs.

[Function]

IFCHAR, ELSE, and ENDIFC are conditional pseudo instructions that compare string 1 and string 2,

described as operands. If string 1 and string 2 coincide (i.e., if the result of evaluating the operands is

"true"), the statements between IFCHAR and ENDIFC (or ELSE) are expanded. The block is expanded

depending on whether the result of the evaluation is true or false, in accordance with IF, ELSE, and ENDIF.

The characters to be compared are specified by the start and end character positions. If no start or end

character position is specified, all characters in the character strings are compared.

[Notes]

(1) String 1 and string 2 may consist of symbols, expressions, numeric values, or characters. Special

characters other than a comma (,) can also be described. The system differentiates between

uppercase and lowercase characters.

If a character constant is described by using quotation marks, the quotation marks are regarded as

being part of the character string.

Example IFCHAR ' AAA',' BBB', 1, 1

In this example, whether the first character of string ' AAA' is the same as the first character of string

' BBB' is checked. For both strings, the first character is a quotation mark (').

(2) The first character of a character string is assumed to be the first character. If "0" is described as

the start/end character position, therefore, an error (F044: Invalid value) occurs. That line becomes

invalid.

(3) As the start/end character, describe a numeric constant as a binary, octal, decimal, or hexadecimal

number in the range of 1 ≤ n ≤ 253. If any other item (such as an expression) is described, an error

(F037: Syntax error) occurs. That line becomes invalid.

(4) If the value of the start character position is greater than that of the end character position, an error

(F044: Invalid value) occurs. That line becomes invalid.

(5) Even if the value of the start or end character position is greater than string 1 or 2, no error occurs.

167

CHAPTER 13 CONDITIONAL ASSEMBLY PSEUDO INSTRUCTIONS

• If the value of the start character position is greater than that of the character string

The statements between IFCHAR and ELSE or between IFCHAR and ENDIFC are not assembled.

• If the value of the end character position is greater than that of the character string

The character string is checked from the specified start character position, up to the end.

(6) If ENDIFC corresponding to IFCHAR is missing, an error (F101: No ENDIFC statement) occurs, either

in the END statement or at the end of the file.

(7) If ENDIFC is described before IFCHAR, an error (F124: Invalid ENDIFC statement) occurs. That line

becomes invalid. Similarly, if ELSE is described, an error (F120: Invalid ELSE statement) occurs.

That line becomes invalid.

(8) If a label is described for ELSE or ENDIFC, or if a mnemonic or operand is described, an error (F037:

Syntax error) occurs. That line becomes invalid.

(9) If no operand or more than five operands are specified for an IFCHAR statement, an error (F037:

Syntax error) occurs. The IFCHAR statement becomes invalid.

Remark IFCHAR and IFNCHAR, explained in the next section, are pseudo instructions that are used for

macro definition. These instructions enable the control of conditional assembly processing in

a macro based on a macro parameter passed by a macro call statement.

168

RA17K USER'S MANUAL

[Example] Example of extended addition instruction

In the following example, it is assumed that the macro is never expanded if 0 is specified as the operand

of the REPT pseudo instruction.

;
; In the following example, the symbol representing the data memory attribute is
; described as A, while the symbol representing the data memory attribute or data
; attribute starting from "#" is described as B.
; Note This example does not correspond to the symbol of the data memory
; attribute defined by the NIBBLEnV pseudo instruction.

MEM_TYPE DAT 3 ; Defines the return value for the data memory
; attribute by .TYPE. function

; Macro definition

ADD_EX MACRO A,B

IF .TYPE.A <> MEM_TYPE
ZZZERROR '1ST OPERAND TYPE ERROR'

ELSE
IFCHAR #,B,1,1 ; If second operand starts with #

;
ADD A, B AND 0FH ; Addition of least significant digit

;
COUNT SET1 ; Initial setting of macro loop counter

REPT A SHR 12 ; The following addition is repeated by
; (number of nibbles - 1)

ADDC A+COUNT, B SHR (COUNT*4) AND 0FH
COUNT SET COUNT+1 ; Updates loop counter

ENDR
;

ELSE ; If second operand does not start with #, bit
; length is determined by first operand.

IF .TYPE.B <> MEM_TYPE
ZZZERROR '2ND OPERAND TYPE ERROR'

ELSE
ADD A, B ; Addition of least significant digit

;
COUNT SET1 ; Initial setting of macro loop counter

REPT A SHR 12 ; The following addition is repeated as many
; times as number of nibbles - 1.

IF COUNT =< (B SHR 12) ;
ADDC A+COUNT, B+COUNT

ELSE ;If the second operand is shorter than the
; first operand

ADDC A+COUNT,#0
ENDIF

COUNT SET COUNT+1 ; Updates loop counter
ENDR

ENDIF
ENDIFC

ENDIF
ENDM

169

CHAPTER 13 CONDITIONAL ASSEMBLY PSEUDO INSTRUCTIONS

; This macro is called as follows.

; Symbol (variable) definition

; Note A symbol is defined for the lower bit of a variable in this example.

MEMORY3 NIBBLE3 0.10H

REGISTER4 NIBBLE 0.0H

DATA DAT 123H

; Call

ADD_EX MEMORY3, #DATA ; <1>

ADD_EX REGISTER3, MEMORY ; <2>

; Expansion of <1>

ADD MEMORY3, #DATA AND 0FH

ADDC MEMORY3+COUNT, #DATA SHR (COUNT*4) AND 0FH

ADDC MEMORY3+COUNT, #DATA SHR (COUNT*4) AND 0FH

; Expansion of <2>

ADD REGISTER4, MEMORY3

ADDC REGISTER4+COUNT, MEMORY3+COUNT

ADDC REGISTER4+COUNT, MEMORY3+COUNT

ADDC REGISTER4+COUNT, #0

170

RA17K USER'S MANUAL

13.4 IFNCHAR ... ELSE ... ENDIFNC

[Format]

[<label>:][∆]IFNCHAR∆<string-1>,<string-2>[,<start-character-position>, <end-character-position>][;<comment>]

···
statements

···
[ELSE][∆][;<comment>]

···
statements

···
ENDIFNC[∆][;<comment>]

[Function]

IFNCHAR, ELSE, and ENDIFNC are conditional pseudo instructions that compare string 1 with string 2,

both of which are described as operands. If string 1 and string 2 are found to differ (i.e., if the result of

evaluating the operands is "false"), the statements between IFNCHAR and ENDIFNC (or ELSE) are

expanded. The block is expanded, depending on whether the result of the evaluation is true or false, in

accordance with IF, ELSE, and ENDIF.

The characters constituting a string to be compared are specified by means of the start and end character

positions. If no start or end character position is specified, all characters in the character strings are

compared.

[Notes]

(1) String 1 and string 2 may consist of symbols, expressions, numeric values, or characters. Special

characters other than a comma (,) can also be described. The system differentiates between

uppercase and lowercase characters.

If a character constant is described using quotation marks, the quotation marks are regarded as being

part of the character string.

[Example] IFNCHAR ' AAA',' BBB',1,1

In this example, whether the first character of string ' AAA' is the same as the first character of string

' BBB' is checked. The first character of both strings is a quotation mark (').

(2) The first character of a character string is assumed to be the first character. If "0" is described as

the start/end character, therefore, an error (F044: Invalid value) occurs. That line becomes invalid.

(3) As the start/end character, describe a numeric constant as a binary, octal, decimal, or hexadecimal

number in the range of 1 ≤ n ≤ 253. If any other item (such as expression) is described, an error (F037:

Syntax error) occurs. That line becomes invalid.

171

CHAPTER 13 CONDITIONAL ASSEMBLY PSEUDO INSTRUCTIONS

(4) If the value of the start character is greater than that of the end character, an error (F044: Invalid

value) occurs. That line becomes invalid.

(5) Even if the value of the start character or end character is greater than string 1 or 2, no error occurs.

• If the value of the start character is greater than that of the character string

The statements between IFNCHAR and ELSE or between IFNCHAR and ENDIFNC are not

assembled.

• If the value of the end character position is greater than that of the character string

The character string is checked from the specified start character position, up to the end.

(6) If ENDIFNC corresponding to IFNCHAR is missing, an error (F102: No ENDIFNC statement) occurs,

either in the END statement or at the end of the file.

(7) If ENDIFNC is described before IFNCHAR, an error (F125: Invalid ENDIFNC statement) occurs. That

line becomes invalid. Similarly, if ELSE is described, an error (F120: Invalid ELSE statement) occurs.

That line becomes invalid.

(8) If a label is described for ELSE or ENDIFNC, or if a mnemonic or operand is described, an error (F037:

Syntax error) occurs. That line becomes invalid.

(9) If no operand or more than five operands are specified for an IFNCHAR statement, an error (F037:

Syntax error) occurs, and the IFNCHAR statement becomes invalid.

172

RA17K USER'S MANUAL

13.5 IFSTR ... ELSE ... ENDIFS

[Format]

[<label>:][∆]IFSTR ∆<string-1>,<string-2>[,<string-3>...][∆][;<comment>]
···

statements 1
···

[ELSE][∆][;<comment>]
···

statements 2
···

ENDIFS[∆][;<comment>]

[Function]

Selects whether statements 1 or statements 2 are assembled depending on whether string 1 coincides

with string 2 and the subsequent strings.

If string 1 coincides with any of string 2 or the subsequent strings, the instructions described as statement

1 are assembled. If string 1 does not coincide with any of string 2 and the subsequent strings, the

instructions described as statement 2 are assembled. If, however, the ELSE statement is not specified,

all statements between IFSTR and ENDIFS are skipped and not assembled.

As a string, symbols, expressions, and numeric values may be described. To describe a string, it need

not be enclosed in quotation marks ('). If a string is enclosed by quotation marks, those quotation marks

are regarded as being part of the string. Special characters, other than a comma (,), may be described.

[Notes]

(1) IFSTR and ENDIFS statements must always be specified as a pair within a given level.

(2) If only the ELSE statement is described, an error (F120: Invalid ELSE statement) occurs. That line

becomes invalid. Similarly, if only the ENDIFS statement is described, an error (F126: Invalid ENDIFS

statement) occurs. That line becomes invalid.

(3) The number of characters that can be described for <string-2> and subsequent strings is equal to the

number of characters that can be described on one line (253).

(4) If no ENDIFS statement is specified as the partner to an IFSTR statement, an error (F103: No ENDIFS

statement) occurs, either in the END statement or at the end of the file.

(5) If ENDIFS is described before IFSTR, an error (F126: Invalid ENDIFS statement) occurs. That line

becomes invalid.

(6) If ELSE is described before IFSTR, an error (F120: Invalid ELSE statement) occurs. That line

becomes invalid.

173

CHAPTER 13 CONDITIONAL ASSEMBLY PSEUDO INSTRUCTIONS

(7) The system distinguishes between uppercase and lowercase characters when character strings are

compared.

(8) If a label, mnemonic, or operand is described on the ELSE or ENDIFS line, an error (F037: Syntax

error) occurs. That line becomes invalid.

(9) If the operand of the IFSTR statement is omitted, an error (F037: Syntax error) occurs. The IFSTR

statement becomes invalid.

[Example]

[Example 1]

STRCMP MACRO STR1 ;

IFSTR STR1,DAT1,MEM1 ; Judges whether string of macro parameter

; STR1 is DAT1 or MEM1.

; If STR1 is DAT1 or MEM1, expands macro.

ELSE

; If STR1 is neither DAT1 nor MEM1, expands

; macro.

ENDIFS

ENDM

[Example 2]

IFSTR 'ABCD',ABCD

NOP

ELSE

NOP

ENDIFS

In Example 2 above, the statements between ELSE and ENDIFS are assembled (because quotation

marks (') are regarded as being part of a character string, strings 'ABCD' and ABCD do no coincide).

···
···

···
···

174

RA17K USER'S MANUAL

[MEMO]

175

CHAPTER 14 REPETITIVE PSEUDO INSTRUCTIONS

This chapter explains the repetitive pseudo instructions.

The repetitive pseudo instructions are as follows:

• IRP ... ENDR (Expands a specified block while replacing formal parameters with actual parameters.)

• REPT ... ENDR (Expands a specified block a specified number of times.)

[Notes]

(1) The symbols defined in IRP and REPT are global symbols. Therefore, they can be referenced from

outside IRP and REPT.

(2) A macro cannot be defined in IRP and REPT. If defined, an error (F183: Invalid MACRO place) occurs

on the line on which the macro pseudo instruction is described.

[Relation between repetitive pseudo instructions and macro]

When describing a repetitive pseudo instruction in a macro body, the instruction must be closed within

the macro body. Otherwise, an error (F031: No ENDR statement) occurs when the macro body is

expanded.

The repetitive pseudo instruction that is responsible for the error is forcibly closed as soon as the error

occurs.

(1) If only the IRP statement is described in the macro body

DAT1 DAT 1

MAC1 <- Macro reference
···
MAC2 <- Macro reference in macro

···
IRP X,1,2,3
···
ENDM <- Error (F031: No ENDR statement) occurs when macro has

been expanded, but macro MAC2 is not correctly processed.

IRP is unconditionally closed by ENDM and assembly is

executed normally, starting from the next line.
···
ENDM <- Macro expansion is completed normally.
···

ENDR <- Error (F041: Invalid ENDR statement) occurs.

176

RA17K USER'S MANUAL

(2) If REPT is described during the processing of IF

DAT1 DAT 1

MAC1 <- Macro reference
···
IF DAT1=1 ; Statements between IF and ENDIF are assembled.
···

REPT5
· ·· ·· ·

ENDM <- Error (F031: No ENDR statement) occurs when macro has been

expanded, and macro MAC1 is not processed correctly.

REPT and IF are unconditionally closed by ENDM and assembly is

executed normally, starting from the next line.
···

ENDIF <- Error (F121: Invalid ENDIF statement) occurs.

177

CHAPTER 14 REPETITIVE PSEUDO INSTRUCTIONS

14.1 IRP ... ENDR

[Format]

[<label>:][∆]IRP ∆<formal-parameter>,<actual-parameter-list>[;<comment>]
···

[EXITR][;<comment>]
···

ENDR[;<comment>]

[Function]

Repeatedly expands the block enclosed between IRP and ENDR, as many times as the number of actual

parameters specified for IRP (data described in the actual parameter list). When the IRP ... ENDR block

is expanded, the formal parameters described in the block are replaced by the actual parameters. Each

time the block is expanded, the actual parameters change in the sequence described in the actual

parameter list.

[Notes]

(1) The character string described as the first operand is assumed to be a formal parameter. A formal

parameter consists of characters (complying with the symbol coding rules). (The length of both the

formal and actual parameters is limited by the 253 characters-per-line maximum.) The coding format

of the actual parameter list, described as the second and subsequent operands, is the same as that

used when a macro is referenced.

(2) If no actual parameter is described, an error (F037: Syntax error) occurs. That line becomes invalid.

(3) If EXITR is encountered while the IRP ... ENDR block is being expanded, the innermost repeat

processing is terminated (for details, see Section 14.3).

(4) The IRP ... ENDR block can be nested up to 40 levels deep, in combination with other repetitive and

conditional assembly pseudo instructions and macro pseudo instruction blocks. If the nesting level

exceeds 41, however, an error (A035: Nesting overflow) occurs. The assembly processing is

terminated.

(5) IRP must be terminated with ENDR. If ENDR is not described, an error (F031: No ENDR statement)

occurs, either in the END statement or at the end of the file.

(6) If IRP is not described before ENDR, an error (F041: Invalid ENDR statement) occurs. That line

becomes invalid.

178

RA17K USER'S MANUAL

(7) A macro body must be enclosed between IRP and ENDR. If only one of either IRP or ENDR is

described, an error occurs at ENDM when the macro is expanded (F031: No ENDR statement if

only IRP is described, and F041: Invalid ENDR statement if only ENDR is described).

(8) If a label or operand is described on the description line for ENDR, an error (F037: Syntax error)

occurs. That line becomes invalid.

(9) If the operand of IRP is omitted, an error (F037: Syntax error) occurs. IRP becomes invalid.

(10) If <label> is described erroneously, an error occurs (see Section 4.3).

(11) If <formal-parameter> is omitted, an error (F037: Syntax error) occurs. That line becomes invalid.

(12) If any error occurs during IRP expansion, the description line number for ENDR is output to the log

file.

179

CHAPTER 14 REPETITIVE PSEUDO INSTRUCTIONS

14.2 REPT ... ENDR

[Format]

[<label>:][∆]REPT∆<expression>[;<comment>]
···

[EXITR][;<comment>]
···

ENDR[;<comment>]

[Function]

Repeatedly expands the statements enclosed between REPT and ENDR as many times as the value

specified for <expression>. If EXITR is encountered between REPT and ENDR, the innermost REPT

processing is terminated.

The evaluation value of <expression> is 32 bits long.

[Notes]

(1) The REPT ... ENDR block can be nested up to 40 levels deep, in combination with other repetitive

and conditional assembly pseudo instructions and macro pseudo instruction blocks. If the nesting

level exceeds 41, however, an error (A035: Nesting overflow) occurs. Assembly processing is

terminated.

(2) If the description of <expression> is invalid, an error occurs (for details, see Section 4.7.1). That line

becomes invalid.

(3) To describe a symbol for <expression>, that symbol must have already been defined. If a forward

reference symbol or undefined symbol is described, an error (F058: Undefined symbol) occurs. The

REPT statement becomes invalid.

(4) If an external definition symbol is described for <expression>, an error (F150: Impossible to write the

external symbol) occurs. The REPT statement becomes invalid.

(5) An REPT pseudo instruction must be terminated with ENDR. If ENDR is not described, an error (F031:

No ENDR statement) occurs, either in the END statement or at the end of the file.

(6) If an REPT pseudo instruction is not described before an ENDR pseudo instruction, an error (F041:

Invalid ENDR statement) occurs. That line becomes invalid.

(7) A macro body must be enclosed between REPT and ENDR. If only one of either REPT or ENDR is

described, an error occurs at ENDM when the macro is expanded (F031: No ENDR statement if only

REPT is described, and F041: Invalid ENDR statement if only ENDR is described).

180

RA17K USER'S MANUAL

(8) If a label or operand is described on the description line for ENDR, an error (F037: Syntax error)

occurs. That line becomes invalid.

(9) If the operand of REPT statement is omitted, or if two or more operands are described, an error (F037:

Syntax error) occurs. The REPT statement becomes invalid.

(10) If <label> is described erroneously, an error occurs (see Section 4.3).

(11) If the evaluation value of <expression> is 0, the statements enclosed by REPT and ENDR are not

expanded.

(12) Only a data type expression can be described for <expression>. If an expression of any other type

is described, an error (F045: Invalid type) occurs. That line becomes invalid.

(13) If any error occurs during REPT expansion, the description line number of ENDR is output to the

log file.

[Example]

LOC. OBJ. M I STATEMENT

D_MOJI SET 0F00H

;

REPT 3

D_MOJI SET D_MOJI + 1

DB D_MOJI

ENDR

D_MOJI SET D_MOJI + 1

0F01 DB D_MOJI

D_MOJI SET D_MOJI + 1

0F02 DB D_MOJI

D_MOJI SET D_MOJI + 1

0F03 DB D_MOJI

181

CHAPTER 14 REPETITIVE PSEUDO INSTRUCTIONS

14.3 EXITR

[Format]

[<label>:][∆]EXITR[∆][;comment]

[Function]

If an EXITR pseudo instruction is encountered while REPT/IRP is being expanded, the innermost REPT/

IRP processing is aborted, and assembly is resumed starting from the statement subsequent to ENDR.

[Notes]

(1) If EXITR is described at a location other than the REPT/IRP ... ENDR block, an error (F042: Invalid

EXITR statement) occurs. That line becomes invalid.

(2) If an operand is described for the EXITR statement, an error (F037: Syntax error) occurs. That line

becomes invalid.

(3) If the description of <label> is invalid, an error occurs (see Section 4.3).

[Example]

(1)

IRP X, P1, P2, P3

;

IF X > 05H

ADD MEM00,#X&H

ELSE

EXITR

ENDIF

ENDR

The statements between IRP and ENDR are expanded, and parameter X is sequentially replaced by

P1, P2, and P3. In this example, if the condition is false, the statements in the IF block following ELSE

are assembled. IRP processing is aborted at EXITR.

182

RA17K USER'S MANUAL

(2) If EXITR exists in a macro

IRP X, P1, P2, P3

;

ABC ; Macro reference
···

IF X > 05H

ADD MEM00,#X&H

ELSE

EXITR <- Terminates ABC macro expansion and aborts IRP processing.

ENDIF

ENDM

ENDR

A macro is referenced in IRP. If EXITR is encountered during macro expansion, all statements up

to ENDR are skipped.

183

CHAPTER 15 MESSAGE CREATION PSEUDO INSTRUCTIONS

RA17K supports two pseudo instructions that are used to create messages. During assembly, created

messages are output to the console in real time. In addition to these messages, the numbers of the lines

on which the messages are described are also output to the console.

• ZZZERROR pseudo instruction (Outputs and counts error messages.)

• ZZZMSG (Outputs messages.)

[Notes]

(1) If the description of <label> is invalid, an error (see Section 4.3) occurs.

(2) If an operand is omitted, or if two or more operands are described, an error (F037: Syntax error) occurs.

184

RA17K USER'S MANUAL

15.1 ZZZERROR PSEUDO INSTRUCTION

[Format]

[<label>:][∆]ZZZERROR∆'<string>'[;<comment>]

[Function]

Transfers the character string, described as the operand and enclosed in single quotation marks ('), to

the OS as an error message. The character string is output to the console and log file during assembly,

in the same way as an error message output by the system.

Also, these messages are counted as part of the total number of errors output during assembly.

[Notes]

(1) When a message created by the ZZZERROR pseudo instruction is output, the line number of the

source is also output, in the same way as for messages created by the system. However, messages

output by ZZZERROR have no error numbers and, therefore, no error number is output.

(2) The sequence in which messages are created by the ZZZERROR pseudo instruction does not

correspond to the line numbers of the source program.

(3) <string> specified for ZZZERROR must always be enclosed in single quotation marks. Otherwise,

an error (F037: Syntax error) occurs. That line becomes invalid.

185

CHAPTER 15 MESSAGE CREATION PSEUDO INSTRUCTIONS

[Example]

Mask option definition macro

OPTCK MACRO XIP,CKP

IF (XIP > 2) OR (XIP = 0)

ZZZERROR 'Invalid value for SYSTEM CLOCK'

ELSE

ZZZOPT 5,0,XIP

IF (CKP > 2) or (CKP = 0)

ZZZERROR' Invalid value for SYSTEM CLOCK at reset time'

ELSE

IF (CKP = 10B) AND (XIP = 01B)

ZZZERROR' Invalid selection : NOXT,INITCKXT'

ELSE

ZZZOPT 2,0,CKP

ENDIF

ENDIF

ENDIF

ENDM

[Output example]

Assume that the following line exists in module TEST.ASM.

Line No. Mnemonic

100 ZZZERROR 'Error occurs.'

When this module is assembled, the following message is output to the screen and log file.

TEST.ASM(100) error : Error occurs.

186

RA17K USER'S MANUAL

15.2 ZZZMSG PSEUDO INSTRUCTION

[Format]

[<label>:][∆]ZZZMSG∆'<string>'[;<comment>]

[Function]

Transfers the character string, described as the operand and enclosed in single quotation marks ('), to

the OS as a message. The character string is output to the console and log file during assembly.

However, the total number of errors and warnings output at the end of assembly is not counted.

[Notes]

(1) When the message created by the ZZZMSG pseudo instruction is output, the line number of the source

is also output, in the same manner as messages created by the system. At this time, the type of the

message is not output.

(2) The sequence in which messages are created by the ZZZMSG pseudo instruction does not correspond

to the line numbers of the source program.

(3) <string> specified for ZZZMSG must always be enclosed in single quotation marks. Otherwise, an

error (F037: Syntax error) occurs. That line becomes invalid.

[Example]

MESSAGE_FOR_IRQ_FLAG MACRO FLG1

;

IF FLG1 SHR 4 AND 0BEH <> 0

ZZZMSG 'CAUTION! Unexpected IRQ may be canceled.'

ENDIF

;

SET1 FLG1

ENDM

[Output example]

Assume that the following line exists in module TEST.ASM.

Line No. Mnemonic

150 ZZZMSG 'This is a pseudo instruction to output a message.'

When this module is assembled, the following message is output to the screen and log file.

TEST.ASM(150) : This is a pseudo instruction to output a message.

187

CHAPTER 16 MACRO PSEUDO INSTRUCTIONS

This chapter explains pseudo instructions, macro parameters, and operators, and how to define and

reference macros.

A macro consists of a series of procedure statements (macro body) in a source program, to which a name

is assigned. The macro name and procedure statements can be arbitrarily defined by the user. A macro can

be used simply by describing the corresponding macro name in the source program (macro reference). During

assembly, the assembler replaces the macro name with the defined statements. Thus, a macro must be

defined before it can be referenced. A defined macro can be used as many times as necessary within a source

module file. A macro can pass parameters and the destinations to which the parameters are passed can be

changed each time the macro is referenced.

The use of macros can also improve the legibility of a program by assigning a name that is indicative of

the contents of the procedure to a series of blocks.

If identical processing were to be described repeatedly, the overall flow of a program would be difficult to

understand. By calling a macro instead the coding can be simplified considerably. By defining, as a macro,

a previously created procedure, the stable operation of which has been confirmed, the macro can be used

in the same way as the statements. In this case, an independent file containing only the macro definition

statement is created, that file being read by the INCLUDE statement at the start of execution of the source

program. This technique is particularly convenient for creating libraries.

A macro can be used more efficiently when used in combination with a conditional assembly pseudo

instruction (see Chapter 13).

Next, the definition, reference, and expansion of a macro are explained by using a simple example.

Suppose a macro, named SHIFTR, shifts the contents of a register 1 bit to the right and inserts 0 into the

most significant bit position. This macro is defined, referenced, and expanded in a program as follows:

[Macro definition]

Macro definition involves allocating a series of instruction statements and pseudo instructions to a macro

name.

In this example, the SHIFTR macro is defined.

LABEL MNEMONIC OPERAND COMMENT

SHIFTR MACRO ;MACRO DEFINITION

RORC MEM7F

AND MEM7F,#7FH

ENDM

188

RA17K USER'S MANUAL

To the SHIFTR macro, two instructions are allocated, as shown below. The macro name must not duplicate

the name of a symbol or reserved word. If an existing name is specified for the macro, an error (F057:

Symbol multi defined) occurs. That line becomes invalid.

RORC MEM7F

AND MEM7F,#7FH

[Macro reference]

After macro definition, a macro can be referenced from any point within the same source module, as many

times as required.

A macro reference is described in the mnemonic field of a statement.

LABEL MNEMONIC OPERAND COMMENT

SHIFTR ;MACRO REFERENCE

[Macro expansion]

When a macro is referenced, the assembler expands the series of instruction statements allocated to that

macro, in the defined sequence. Simply by describing a macro name in the source program, the same

result as that produced when the defined instructions are described can be obtained.

LABEL MNEMONIC OPERAND COMMENT

RORC MEM7F

AND MEM7F,#7FH

The following macro pseudo instructions are supported.

• MACRO (Defines a macro name and declares the beginning of a macro body.)

• ENDM (Declares the end of a macro body.)

• GLOBAL (Declares that a symbol defined within a macro can be referenced from outside the macro.)

• PURGE (Deletes a macro that is no longer required.)

The use of these macro pseudo instructions and the referencing of a macro are described in the following

sections.

189

CHAPTER 16 MACRO PSEUDO INSTRUCTIONS

16.1 DEFINING A MACRO

16.1.1 MACRO and ENDM (MACRO Definition and END of Macro)

[Format]

<macro-name> ∆MACRO[∆<formal-parameter-list>][∆][;<comment>]
···
<macro-body (Macro body)>[∆][;][;<comment>]
···
ENDM[∆][;<comment>]

[Function]

Allocates the name (macro name) described in the symbol field to a series of statements (macro body)

between the MACRO and ENDM statements. To reference this macro body, describe a macro name and

any parameters that may be necessary (for an explanation of the use of parameters, see Section 16.5).

[Notes]

(1) The macro body consists of a "symbol," "instructions," "pseudo instructions" (excluding MACRO and

ENDM), "comments," and a "macro name" (to reference other macros).

(2) A comment statement prefixed with two semicolons (;;) in the macro body relates to the macro

definition. This comment is not expanded when the macro is expanded.

(3) formal-parameter-list

<1> A formal parameter consists of characters (complying with the symbol coding rules). Two or

more parameters can be specified, delimited by a comma (,) (the length and number of the formal

parameters must not exceed 253 characters per line).

<2> A formal parameter is valid only in a macro body.

<3> A formal parameter that is described in a macro body is replaced by the character string

(including when a character constant is used) of that actual parameter described in the operand

field when the macro is referenced.

<4> No error occurs even if a reserved word is described as a formal parameter. The formal

parameter is interpreted as a simple character string, and is replaced by the actual parameter

when the macro is expanded.

(4) If an error occurs on the line of the MACRO statement, that line becomes invalid. Therefore, the macro

body described starting from the next line is not registered, instead being interpreted as ordinary

instructions and processed accordingly.

(5) If there is no ENDM corresponding to MACRO, an error (F032: No ENDM statement) occurs for the

END statement or at the end of the file.

190

RA17K USER'S MANUAL

(6) If ENDM is encountered before MACRO, an error (F043: Invalid ENDM statement) occurs. That line

becomes invalid.

(7) When a macro is defined, the syntax of the macro body is not checked. The syntax is checked when

the macro is expanded.

(8) If a label, mnemonic, or operand is described for an ENDM statement, an error (F037: Syntax error)

occurs. That line becomes invalid.

(9) If a previously defined symbol is specified as <macro-name>, an error (F057: Symbol multi defined)

occurs. That line becomes invalid.

(10) If a reserved word is described for <macro-name>, an error (F037: Syntax error) occurs. That line

becomes invalid.

(11) If <macro-name> is omitted, an error (F037: Syntax error) occurs. That line becomes invalid.

(12) The maximum supported macro body size is 64K bytes. If this is exceeded, an error (F148: Macro

body is over 64 K bytes) occurs. The macro is not registered (all statements up to ENDM are skipped).

(13) When a macro is defined, the character strings up to ENDM are registered as the macro body. At

this time, these character strings are not checked (for syntax), the character strings up to ENDM

being unconditionally registered as a macro body.

The MACRO and END character strings, however, are checked and processed.

• If MACRO exists in a macro body

Because no other macro can be defined in a macro, if a MACRO statement is described in a macro

body, an error (F183: Invalid MACRO place) occurs. If an error occurs in a macro body, that macro

is not registered.

• If END is encountered in a macro body

The end of the source program is assumed and END processing is performed.

(14) For details of the relationship between MACRO and INCLUDE, see (1) in Section 19.1.1 .

*

191

CHAPTER 16 MACRO PSEUDO INSTRUCTIONS

[Example]

[Example 1] Macro having no parameters

LABEL MNEMONIC OPERAND COMMENT

ADMAC MACRO ;Macro definition

MOV MEM0, #2H

ADD R0, MEM0

ENDM
···

ADMAC ;Macro reference

Macro expansion ↓

MOV MEM0, #2H

ADD R0, MEM0

[Example 2] Macro having a parameter

The following macro subtracts immediate data SB2 from immediate data SB1, then stores the result

at the address indicated by data memory MEM0.

LABEL MNEMONIC OPERAND COMMENT

SUBMAC MACRO SB1,SB2

MOV MEM0, #SB1 ;;SB1 – SB2

SUB MEM0, #SB2

ENDM

A macro for which parameters are described in the operand field can replace the data at the positions

at which parameters are described with any data when the macro is referenced. To replace the values

of SB1 and SB2 in the above example, specify the following:

LABEL MNEMONIC OPERAND COMMENT

SUBMAC 01H,02H

Macro expansion ↓

MOV MEM0, #01H

SUB MEM0, #02H

Placing two semicolons before a comment in the macro, as shown in the above example, specifies

that the comment (comment in macro definition) is not to be expanded when the macro is expanded.

192

RA17K USER'S MANUAL

16.2 REFERENCING A MACRO

[Format]

[<label>:][∆]macro-name[∆<actual-parameter-list>][∆][;<comment>]

[Function]

References the macro body defined by the MACRO and ENDM statements.

[Notes]

(1) macro-name must be the "macro name" described in the label field of a MACRO and must be defined

before the macro is referenced. If an attempt is made to reference a macro that has not yet been

defined, an error (F037: Syntax error) occurs. That line becomes invalid.

(2) The following six types of actual parameters can be described. The actual parameters are evaluated

after the macro has been expanded.

<1> Numeric constants

<2> Character constants (ASCII or shift JIS characters enclosed in quotation marks)

<3> Symbols

<4> Expressions

<5> Blanks (no description, comma only)

<6> Any character string containing no blanks

(3) The formal parameters are replaced by the actual parameters in the sequence in which they were

originally described, starting from the left.

(4) If the number of formal parameters specified upon defining the macro does not coincide with the

number of actual parameters specified when the macro is referenced, the following error may occur:

• If number of actual parameters > number of formal parameters

An error (F036: Operand count error) occurs. That line becomes invalid and the macro is not

expanded.

• If number of actual parameters < number of formal parameters

The macro is expanded. NULL strings are passed to the remaining formal parameters. NULL

strings cannot be evaluated in the operand field. If, however, a value other than 0 is set in common

assemble-time variable ZZZLSARG, an error (F036: Operand count error) occurs. That line

becomes invalid and the macro is not expanded.

(5) When describing a delimiter (blank, comma, or quotation mark) as an actual parameter, it must be

treated as a character constant and be enclosed in a pair of single quotation marks (for details, see

Section 16.5).

193

CHAPTER 16 MACRO PSEUDO INSTRUCTIONS

(6) A macro can be referenced in another macro by describing the other macro name in the macro body.

In this case, macros can be nested up to 40 levels deep, including the macro expansion levels and

repetitive pseudo instruction block levels. If the nesting level reaches 41, an error (A035: Nesting

overflow) occurs, and the assembly processing is terminated.

(7) If a macro name is described as a label, the operand of a pseudo instruction, or an instruction, an

error (F037: Syntax error) occurs.

[Example]

[Example 1]

As an example, the macro (SUBMAC) defined in [Example 2] of [Example] of Section 16.1.1 is

referenced. Actual parameters 01H and 02H are substituted into formal parameters SB1 and SB2,

respectively.

LOC. OBJ. M I STATEMENT

SUBMAC 01H, 02H

MOV MEM0, #01H

SUB MEM0, #02H

Formal parameters SB1 and SB2 are replaced by actual parameters 01H and 02H. The comment

(comment in macro definition) statement, described when the macro was defined, following the two

semicolons (;;) is not expanded.

194

RA17K USER'S MANUAL

[Example 2]

The following is an example of referencing another macro within a macro. In this case, because an

IF ... ENDIF block is used in addition to the macros, the nesting level is two.

LOC. OBJ. M I STATEMENT

MAC1 MACRO

SKLT MEM0 , #1H

ENDM

;

MAC2 MACRO

SKNE MEM0 , #1H

ENDM

;

MAC3 MACRO EX1

IF EX1

MAC1

ELSE

MAC2

ENDIF

ENDM
···

MAC3 0FH

1 IF 0FH

2 MAC1

2 SKLT MEM0 , #1H

1 ELSE

1 MAC2

1 ENDIF

Expanded as shown

below

195

CHAPTER 16 MACRO PSEUDO INSTRUCTIONS

16.3 EXPANDING A MACRO

RA17K analyzes macros by means of the following procedure:

[Function]

(1) A macro body, enclosed between MACRO and ENDM, is stored into the macro table. If two contiguous

semicolons (;;) are detected in the definition statement, the characters between ;; and the next carriage

return are assumed to be a comment and are ignored (macro registration).

(2) If there is a macro reference after a macro definition within the same module, the corresponding macro

body is expanded at the position where the macro name is encountered.

(3) Formal parameters are replaced by actual parameters when the macro is expanded. At this time, only

the character strings described in the macro body are replaced. When a macro within a macro is

expanded, therefore, the formal parameters of the inner macro are not replaced by the actual

parameters of the outer macro. Similarly, the contents of the include file described in the macro by

using INCLUDE are not replaced.

(4) The expanded macro body is assembled.

[Note]

(1) Symbols specified as the operands of pseudo instructions or built-in macros cannot be forward-

referenced.

196

RA17K USER'S MANUAL

[Example]

[Example 1]

LOC. OBJ. M I STATEMENT

LABEL MNEMONIC OPERAND COMMENT

ADMAC MACRO DATA

MOV R0 , #DATA ;;R0=0.00H Note

MOV R1 , #DATA+1 ;;R1=0.01H Note

ENDM
···

 STOP_COND DAT 0100B

ADMAC STOP_COND

+ MOV R0, #STOP_COND

+ MOV R1, #STOP_COND+1

Note When the macro is expanded, a comment prefixed by two semicolons is not expanded.

[Example 2]

RA17K does not support the definition of a macro in another macro. If a macro is defined in another

macro, an error occurs, as illustrated in the example below.

LOC. OBJ. M I STATEMENT

MAC1 MACRO

NOP

MAC2 MACRO

MOV RG1,#2H

RORC RG1

SET1 RG_F

ENDM

IF P=0

 MAC2 ; Error (F037: Syntax error)

ENDIF

ENDM ;Error (F043: Invalid ENDM

; statement)
···

MAC1 ; Error (F037: Syntax error)

Error (F183: Invalid MACRO

place) occurs because MAC2 is

defined in the definition block of

MAC1. Therefore, all statements

up to ENDM of MAC2 are skipped,

and registered as MAC1.

Consequently, MAC2 is not

registered, MAC1 being registered

with illegal contents.

197

CHAPTER 16 MACRO PSEUDO INSTRUCTIONS

16.4 SCOPE OF SYMBOLS IN A MACRO

[Outline]

Two types of symbols, global and local, can be specified in a macro.

(1) Local symbols

A symbol defined in a macro that is valid only in the macro that defines that symbol (local symbol).

Even, therefore, if the same symbol is re-defined outside the macro, or if the same macro is referenced

more than once or a symbol definition statement is created more than once, the "Symbol multi defined"

error does not occur.

(2) Global symbols

In some cases, it is necessary to reference a symbol defined in a macro from a point outside the macro.

At this time, the symbol is declared to be GLOBAL, allowing it to be referenced from any point within

the same module (global symbol).

Note, however, that if a symbol defined by a pseudo instruction other than SET references a macro

declared to be GLOBAL more than once, or if that symbol definition statement is created more than

once, the "Symbol multi definition" error occurs.

If the same symbol as that defined by the SET pseudo instruction outside a macro is defined within

a macro, that symbol is regarded as being a completely different local symbol in the macro,

independent of the symbol having the same name outside the macro.

To assign a value to a symbol outside a macro from within a macro, GLOBAL declaration is required.

198

RA17K USER'S MANUAL

[Example] To reference global symbols (DATA_A, DATA_B)

[Example 1]

LOC. OBJ. M I STATEMENT

LABEL MNEMONIC OPERAND COMMENT

MOS MACRO ;; Macro definition

GLOBAL DATA_A,DATA_B

LOOP:

MOV MEM00,#DATA_A

MOV MEM01,#DATA_B
···

DATA_A SET DATA_A + 1

DATA_B SET DATA_B + 1

SKT1 FLG_S

BR LOOP

ENDM

First macro expansion

DATA_A SET 00H

DATA_B SET 00H
···

MOS ; Macro reference

+ GLOBAL DATA_A,DATA_B

+ LOOP:

+ MOV MEM00,#DATA_A <- 00H is referenced for

DATA_A

+ MOV MEM01,#DATA_B <- 00H is referenced for

DATA_B

+

+ DATA_A SET DATA_A + 1 <- DATA_A becomes 01H

+ DATA_B SET DATA_B + 1 <- DATA_B becomes 01H

SKT1 FLG_S

+ BR LOOP

···

199

CHAPTER 16 MACRO PSEUDO INSTRUCTIONS

Because symbols DATA_A and DATA_B, defined in the macro, are declared to be GLOBAL, DATA_A

and DATA_B are first assigned the values set as a result of the first macro reference at the second

and subsequent macro reference.

MOS ; Macro reference

+ GLOBAL DATAA,DATA_B

+ LOOP:

+ MOV MEM00,#DATA_A <- 01H is referenced for

DATA_A

+ MOV MEM01,#DATA_B <- 01H is referenced for

DATA_B

+

+ DATA_A SET DATA_A + 1 <- DATA_A becomes 02H

+ DATA_B SET DATA_B + 1 <- DATA_B becomes 02H

SKT1 FLG_S

+ BR LOOP

; Reference outside macro

MOV MEM00,#DATA_A <- 02H is referenced for

DATA_A

MOV MEM01,#DATA_B <- 02H is referenced for

DATA_B

[Example 2] To reference a reference to a local symbol (AA) with a pseudo instruction at the

same level

In this case, only backward reference is performed because a local symbol exists at the same level.

If a symbol has not been defined, an error (F058: Undefined symbol) occurs.

LABEL MNEMONIC OPERAND COMMENT

MAC1 MACRO

AA SET 1 ;AA=1

MAC2

IF AA ;AA=1

ENDIF

ENDM

MAC2 MACRO

AA SET 2 ;AA=2

IF AA ;AA=2

ENDIF

ENDM

···

200

RA17K USER'S MANUAL

[Example 3] To reference a local symbol (AA) with a low-level pseudo instruction

In this case, a high-level symbol is referenced because there is no local symbol at the same level.

If a high-level symbol has not been defined, an error (F058: Undefined symbol) occurs.

LABEL MNEMONIC OPERAND COMMENT

MAC1 MACRO ; High-level macro

AA SET 1 ;AA=1

MAC2

IF AA ;AA=1

ENDIF

ENDM

MAC2 MACRO ; Low-level macro

IF AA ;AA=1

ENDIF

ENDM

[Example 4] To reference local symbols (AA, BB) with an instruction at the same level

In this case, because a local symbol exists at the same level, that symbol is referenced. However,

to forward-reference the symbol defined by the SET pseudo instruction, the most-recently defined

value is used as the value of the symbol.

LABEL MNEMONIC OPERAND COMMENT

MAC1 MACRO

AA SET 1 ;AA=1

MAC2

MOV MEM1 , #AA ;AA=1

MOV MEM1 , #BB ;BB=2 Value set most recently

AA SET AA+1 ;AA=2

BB SET 1 ;BB=1

BB SET BB+1 ;BB=2

ENDM

MAC2 MACRO

AA SET 3 ;AA=3

MOV MEM1 , #AA ;AA=3

MOV MEM1 , #BB ;BB=4 Value set most recently

AA SET AA+1 ;AA=4

BB SET 3 ;BB=3

BB SET BB+1 ;BB=4

ENDM

201

CHAPTER 16 MACRO PSEUDO INSTRUCTIONS

[Example 5] To reference a reference to local symbols (AA, BB) with a low-level instruction

In this case, because there is no local symbol at the same level, a high-level symbol is referenced.

To forward-reference the symbol defined by the SET pseudo instruction, however, the most-recently

defined value is used as the value of the symbol.

LABEL MNEMONIC OPERAND COMMENT

MAC1 MACRO

AA SET 1 ;AA=1

MAC2

MOV MEM1 , #AA ;AA=1

MOV MEM1 , #BB ;BB=2 Value set most recently

BB SET 1 ;BB=1

BB SET BB+1 ;BB=2

ENDM

MAC2 MACRO

MOV MEM1 , #AA ;AA=1

MOV MEM1 , #BB ;BB=2 Value set most recently

ENDM

[Scope of symbol in macro]

The reference range of the symbol used in a macro is classified as follows:

(1) Symbol reference sequence of instruction

The symbol reference sequence of an instruction is as follows:

Reference sequence:

<1> Backward reference at same level

<2> Forward reference at same level

<3> Backward reference at higher level

<4> Forward reference at higher level

<5> Backward reference outside macro

<6> Forward reference outside macro

Examples of referencing symbols with the operands of instructions (including DW/DB) are given below.

202

RA17K USER'S MANUAL

[Example 1] Reference sequence for symbol AA

[Example 2] Reference sequence for labels LAB1, LAB2, LAB3, and LAB4

[Explanation] Symbols LAB1, LAB2, and LAB3, used in the above example, are handled as follows:

<1> Reference LAB1, defined at the same level (first macro level).

<2> Reference LAB1, defined at the same level (second macro level).

<3> LAB2, defined at the lower macro level, cannot be referenced.

<4><5> Symbols defined at other than the same level sequentially reference the higher levels.

<5>

<3>

<1>

<2>
<4>

<6>

LOC. OBJ. M I SOURCE STATEMENT

 AA DAT 1

 1 MAC1
 1 AA DAT 1
 2 MAC2
 2 AA DAT 1
 2 MOV MEM1 , #AA
 2 AA DAT 1
 1 AA DAT 1

 AA DAT 1

LOC. OBJ. M I SOURCE STATEMENT

 1 MAC01
0002 074F0 1 LAB1: NOP
 2 MAC02

 0C00F 2 BR LAB1

000F 2 LAB1:
 LAB2:
 (ENDM)

 0C002 1 BR LAB1
 074F0 BR LAB2
 (ENDM)
 1 MAC11
 2 MAC12
 0C014 2 BR LAB3
 0C015 2 BR LAB4
 (ENDM)
074F0 1 LAB3: NOP
 (ENDM)
 LAB4:
 LAB3:

0014

0015
0016

<1>

<3>; Undefined symbol

<2>

<4>

<5>

···

203

CHAPTER 16 MACRO PSEUDO INSTRUCTIONS

(2) Symbol reference sequence for pseudo instruction

The symbol reference sequence for a pseudo instruction is as follows:

Reference sequence:

<1> Backward reference at same level

<2> Backward reference at higher level

<3> Backward reference outside macro

Examples of referencing a symbol with the operand of a pseudo instruction (except DW/DB) are given

below.

[Example 1] Reference sequence for symbol AA

<3>

<2>

<1>

LOC. OBJ. M I SOURCE STATEMENT

 AA DAT 1

 1 MAC1
 1 AA DAT 1
 2 MAC2
 2 AA DAT 1
 2 IF AA
 2 ENDIF
 2 AA DAT 1
 1 AA DAT 1

 AA DAT 1

204

RA17K USER'S MANUAL

[Example 2] Reference sequences for symbols DT1 and DT2

The scope of a symbol referenced with a pseudo instruction (a statement used to make a decision

as to whether to generate an address at path 1, such as conditional judgment or a built-in macro

instruction).

[Explanation] Because the symbol used for a pseudo instruction must be resolved in path 1, a

previously defined symbol must not be used at the same level. If the symbol is not

defined in a subsequent statement at the same level, the level immediately above is

searched.

Symbols DT1 and DT2, used in the above example, are handled as follows:

<1> Sequentially searches subsequent statements. References DT0 two levels

above.

<2> Sequentially searches subsequent statements. References DT1 one level

above (DT1, defined prior to the current level, cannot be seen).

<3> Sequentially searches subsequent statements. References DT1 at the same

level.

<4> Because the symbol defined one level above cannot be seen, the "Undefined

symbol" error occurs.

<5> References DT1 at the same level.

<1>

<2>

LOC. OBJ. M I SOURCE STATEMENT

 DT0 DAT 00H

 1 MAC01
 1 DT1 DAT 01H
 2 MAC2

 2 IF DT0

 2 ENDIF
 2 IF DT1

 2 ENDIF
 2 DT1 DAT 00H

 2 IF DT1

 2 ENDIF
 2 IF DT2

 2 ENDIF
 2 ENDM
 1 DT2 DAT 02H

 1 IF DT1

 1 ENDIF

<3>

<4> ; Undefined symbol

<5> ; Reference same level
 (Same DT1 as <2>)

; Reference two levels above

; Reference one level above

; Reference same level

···
···

···
···

···
···

···
···

···
···

···
···

205

CHAPTER 16 MACRO PSEUDO INSTRUCTIONS

16.5 MACRO PARAMETER

The formal parameters described in the operand field when a macro is defined are replaced by the actual

parameters when the macro is expanded.

Examples of macro definition and macro reference using parameters are given below.

[Example 1]

LABEL MNEMONIC OPERAND COMMENT

PMAC MACRO P1,P2,P3 <1>

L1 DAT 1000H

 DW P1 ; Formal parameter: P1

 DW P2 ; Formal parameter: P2

 DW P3 ; Formal parameter: P3

ENDM
···

L1 DAT 2000H <2>
···

 PMAC 3000H, L1, 'L1'

L1 DAT 1000H

 DW 3000H ; Actual parameter: replaced by 3000H <3>

 DW L1 ; Actual parameter: replaced by L1 <4>

 DW L1 ; Actual parameter: replaced by 'L1'
···

<1> P1, P2, and P3 in the macro definition statement are formal parameters and are referenced by the

DW instruction in the macro.

<2> When the macro is referenced, formal parameters P1, P2, and P3 are replaced by actual parameters

3000H, L1, and 'L1'.

<3> Because actual parameter 3000H of P1 is a constant, the constant replaces P1 as is.

<4> Actual parameter L1 of P2 is a symbol, and actual parameter 'L1' of P3 is a character constant.

Consequently, the operands of both the DWs are replaced by L1.

This L1 is a local symbol, and is assigned a value of 1000H as defined by the DAT instruction in

the macro.

206

RA17K USER'S MANUAL

[Example 2]

LABEL MNEMONIC OPERAND COMMENT

PMAC MACRO P1

 GLOBAL L1

L1 SET P1 ; Formal parameter: P1

 IF .DEF.L1=0

 SET1 L1

 ENDIF
···

L2 SET L1
···

ENDM

 PMAC FLG12

 GLOBAL L1

L1 SET FLG12 ; Actual parameter: replaced by FLG12

 IF .DEF.L1=1

 SET1 L1

 ENDIF
···

L2 SET L1
···

Because L1 is declared to be GLOBAL, it is valid even outside the macro. Because both L1 and L2 define
symbols by using the SET pseudo instruction, the "Symbol multi defined" error does not occur no matter
how many times the macro may be referenced.

[Example 3]
Macro parameters can be described in all the symbol, mnemonic, operand, and comment fields.

LABEL MNEMONIC OPERAND COMMENT

ABC MACRO P1,P2,P3,P4
···

P1: P2 P3,#0H ;P4
···

ENDM

 ABC LOOP, SKT, MEM03, CONVINIENCE!!
···

LOOP: SKT MEM03, #0H ;CONVINIENCE!!
···

If no actual parameter is described upon referencing a macro for which formal parameters are described,

the operand or the number of operands is not evaluated and an error occurs. If a value other than 0 is

specified for assemble-time variable ZZZLSARG, however, the error does not occur.

207

CHAPTER 16 MACRO PSEUDO INSTRUCTIONS

[Example]

LABEL MNEMONIC OPERAND COMMENT

MAC1 MACRO P1

 IF P1

 AND MEM0, #1H

 ENDIF

ENDM
···

 MAC1

Because an error (F036: Operand count error) occurs because no actual parameter is defined when MAC1
is referenced, the macro is not expanded.

To reference the single quotation marks as parameters, describe two contiguous quotation marks.

[Example]

LOC. OBJ. M I STATEMENT

LABEL MNEMONIC OPERAND

MAC1 MACRO A

MAC2 A

ENDM
···

MAC2 MACRO B

MAC3 B

ENDM
···

MAC3 MACRO C

C

ENDM
···

1 MAC1 '''''''MOV MEM12, #5H'''''''

2 MAC2 '''MOV MEM12, #5H'''

3 MAC3 'MOV MEM12, #5H'

0125 3 MOV MEM12, #5H

In the above MACRO reference, seven quotation marks are described as the operand of MAC1. Of these,
the first quotation mark indicates a character constant. The following six quotation marks are three pairs,
i.e., three characters. As a result, three quotation marks are passed as parameters to MAC1. Likewise,
only one quotation mark is passed to MAC3 in MAC2.

Remark If two contiguous quotation marks are described as the operand of a macro reference statement, and

immediately followed by a comma or CR/LF, a NULL STRING is passed as a parameter. The same

applies when the quotation marks are immediately followed by a space or TAB and a comment.

208

RA17K USER'S MANUAL

If MAC3 is referenced as follows in the above example, an error occurs.

MAC3 '' NOP''

In the above example, the first quotation mark is a delimiter indicating a character constant. Note the

character following the subsequent quotation mark. If this character were CR/LF, space, or TAB, a NULL

STRING would be passed as a parameter, as discussed above. In this example, however, because an

N follows the second quotation mark, an error (F037: Syntax error) occurs.

When nesting macros and repetitive pseudo instructions, a formal parameter must not be described

repetitively.

[Example]

LABEL MNEMONIC OPERAND

ALLOC MACRO P1

 IRP P1,1,2,3

 MEM&&P1&&P1 MEM 0.0&&P1&&P1&&H

 ENDR

ENDM
···

ALLOC 0

In this example, when formal parameter P1 is replaced by the actual parameter upon expansion of the

macro, it is not clear whether P1 is the formal parameter for IRP or ALLOC. In this case, P1 is judged

to be the formal parameter for IRP, and is replaced by the actual parameter. In the above example, an

error occurs because ALLOC 0 is expanded as follows.

MEM&1&1 MEM 0&1&1H -> Error occurs

209

CHAPTER 16 MACRO PSEUDO INSTRUCTIONS

When nesting a macro in another macro, a formal parameter cannot be assigned to the macro nested at

the higher level. The formal parameter is valid only in that macro (the formal parameter is passed as is).

[Example]

LABEL MNEMONIC OPERAND COMMENT

MAC1 MACRO P1

DW P1

ENDM

MAC2 MACRO P1

DW P1

MAC1 L1

ENDM

MAC2 LLL

DW LLL

DW L1

To pass a parameter to the macro in the next-higher level, describe the formal parameter of the macro

in the next-lower level as the actual parameter of that macro.

LABEL MNEMONIC OPERAND COMMENT

MAC1 MACRO P1

DW P1

ENDM

MAC2 MACRO P1

DW P1

MAC1 P1

ENDM

MAC2 LLL

DW LLL

DW LLL

210

RA17K USER'S MANUAL

16.6 MACRO OPERATORS AND PSEUDO INSTRUCTIONS

RA17K supports special operators and pseudo instructions to make the best use of macros.

16.6.1 Replacement Operator &

[Format]

&

[Function]

If there is a replacement operator (&) in a macro definition statement, the character strings on both sides

of & are coupled when the macro is expanded (as a result, the character strings are replaced by a NULL

STRING). An & in a character constant, however, is not treated as a replacement operator & and,

therefore, the constant is not replaced.

[Notes]

(1) The replacement operator (&) is meaningful only when described in a macro definition statement. If

it is described outside a macro definition statement, it causes an error (F037: Syntax error) because

it is a special character. The line on which & is described becomes invalid.

(2) An & does not have to be described between a macro formal parameter and a delimiter such as a

space, colon (:), semicolon (;), operator, #, or @.

(3) If macros are nested, the formal parameters are sequentially replaced by actual parameters, starting

from the macro at the highest nesting level.

(4) The replacement of parameters can be delayed by using two or more replacement operators (&) with

a complicated macro having a deep nesting level. Generally, the same number of replacement

operators as the number of nesting levels must be used.

For example, a replacement operator having X as a dummy parameter is used two times in the

following macro definition, replacement always being performed while the IRP pseudo instruction is

executed.

LOC. OBJ. M I STATEMENT

ALLOC MACRO X

IRP Z, 1, 2, 3

MEM&&X&&Z MEM 0.0&&X&&Z&H

ENDR

ENDM

ALLOC 6

211

CHAPTER 16 MACRO PSEUDO INSTRUCTIONS

First, the formal parameter of IRP, having the deepest nesting level, is replaced. Then, the formal

parameter of ALLOC is replaced. At this time, replacement is executed as shown below.

MEM&&X&&Z MEM 0.0&&X&&Z&H

↓
MEM&X&&Z MEM 0.0&&X&&Z&H <1>

↓
MEM&X&Z MEM 0.0&&X&&Z&H <2>

↓
MEM&X&1 MEM 0.0&&X&&Z&H <3>

↓
MEM&X&1 MEM 0.0&X&1H <4>

↓
MEM61 MEM 0.061H <5>

<1> "MEM" is skipped because it is not a formal parameter. Because "&&" follows, the next character

string is checked. Because the next character string is a formal parameter, one "&" is deleted.

<2> Because the next character string "X" is the formal parameter of the macro one level below, it

is not replaced by an actual parameter here.

Because "&&" appears again, and because the character string preceding "&&" is a formal

parameter, one "&" is deleted.

<3> Checking reveals the next character string to be a formal parameter. This formal parameter is

also found for IRP. Therefore, it is replaced by actual parameter "1".

<4> In the same manner as in <1> through <3> above, the entire line is processed up to the end.

<5> Next, the formal parameter of macro ALLOC one level below is replaced by an actual parameter.

<6> <1> through <5> are repeated as many times as the number of actual parameters.

The formal parameters are replaced as soon as the macro is called. However, formal parameters X

and Z are replaced when the IRP pseudo instruction is expanded. The above example (ALLOC 6)

is ultimately expanded as follows.

MEM61 MEM 0.061H

MEM62 MEM 0.062H

MEM63 MEM 0.063H

212

RA17K USER'S MANUAL

(5) To describe replacement operator "&", consider the following:

• To describe "&" between a character constant and formal parameter

Describe "&" as many times as the number of nested macros, from the position where the formal

parameter is to be described to the macro for which the formal parameter is defined.

ABC MACRO P1

IRP P2,1,2,3

IRP P3,1,2,3

MEM&P3

MEM&&P2

IRP P4,1,2,3

MEM&P4

MEM&&P3

MEM&&&P2

MEM&&&&P1

ENDP

ENDP

ENDP

ENDM

• To describe "&" between two formal parameters

Describe "&" as many times as the number of times macros are nested, from the position at which

one of the two formal parameters for which the macro nesting level is greater.

ABC MACRO P1

IRP P2,1,2,3

IRP P3,1,2,3

IRP P4,1,2,3

MEM&P4&&&&P1

MEM&&P3&&P4

MEM&&&P2

MEM&&&&P1&&&&P1

ENDP

ENDP

ENDP

ENDM

Because a formal parameter is used in a defined

macro, one "&" is described.

Because a formal parameter defined in a macro one

level below is used, "&" is described twice.

Describe "&" as many times as the number of

occurrences of P4 because the macro nesting level

for P4 is greater than that for P1.

213

CHAPTER 16 MACRO PSEUDO INSTRUCTIONS

(6) The characters in a character constant cannot be replaced by a formal parameter. Therefore, even

if "&" is described as a character in a character constant, "&" does not disappear when the macro is

expanded.

ERRORGEN MACRO A, B

ZZZERROR 'A&B ERROR ILLEGAL STATEMENT' ;

ENDM

ERRORGEN PAGE,100

ZZZERROR 'A&B ERROR ILLEGAL STATEMENT'

As a result of expanding this macro, the message 'A&B ERROR ILLEGAL STATEMENT' is output,

and parameters A and B are not replaced by '100' and 'PAGE'.

(7) Because formal parameters can be described in the comment field, the replacement operator can also

be described in the comment field.

16.6.2 Comment in Macro Definition

[Format]

;;<comment>

[Function]

The comment in a macro definition is an arbitrary test (comment) described in the macro definition.

<comment> prefixed by two semicolons is ignored and not output when the macro is expanded. On the

assembly listing, the comment is output only on the macro definition line.

Conversely, if a normal comment statement that is described immediately after one semicolon is described

in a macro definition, that comment is output even when the macro is expanded.

Therefore, a comment in a macro definition is used as a comment that need not be output when the macro

is expanded.

214

RA17K USER'S MANUAL

16.6.3 Expression Operator %

[Format]

%<symbol>

%(<expression>)

[Function]

If expression operator (%) appears in a macro, the <symbol> or <expression> immediately following %

is replaced by a 32-bit numeric value. This value is always prefixed with 0 and suffixed with H.

To couple expression operator % <expression> with other character strings, describe % <expression>

and the character strings in succession, in the same way as when coupling using &. Therefore, <character-

string>+%<expression> in a macro definition block is replaced by <character-string>+<evaluation-result-

of-expression> when the macro is expanded.

[Example]

Definition Expansion

CNT SET 1

M%CNT -> M01H

M% (CNT) N -> M01HN

M% (CNT+1) N -> M02HN

M%CNT+1 -> M01H+1

[Notes]

(1) The expression operator (%) can be described only in a macro definition statement. If it is described

in any other statement, it causes an error (F037: Syntax error) because it is a special character. The

line on which % is described becomes invalid.

(2) If a reserved word (except functions having no argument and assemble-time variables) is described

as the symbol of %<symbol>, an error (F037: Syntax error) occurs. The line on which the reserved

word is described becomes invalid.

(3) If an undefined symbol, forward reference symbol, or external definition symbol is described as the

symbol of %<symbol>, an error (F058: Undefined symbol) occurs. That line becomes invalid.

(4) %<expression> can be used only as a macro parameter or within a macro. If it is used outside a macro,

an error (F037: Syntax error) occurs. That line becomes invalid.

(5) The symbol described in <expression> must be defined before macro reference. If a symbol defined

after the macro reference line or an undefined symbol is described, an error (F058: Undefined symbol)

occurs. That line becomes invalid.

215

CHAPTER 16 MACRO PSEUDO INSTRUCTIONS

(6) If the description of <expression> is invalid, an error occurs (for details, see Section 4.7.1). That line

becomes invalid.

(7) Because % is replaced by a NULL STRING after <expression> has been evaluated, & need not be

described. However, even if & is described as shown in the example below, an error does not occur.

[Example]

M LABEL MNEMONIC OPERAND COMMENT

CNT SET 5

M1 MACRO
 ADD MEM&%CNT , #1

ENDM

M1
+ ADD MEM05H , #1

(8) To describe %<expression> in a macro definition block, macro parameters may be used in <expres-

sion>.

[Example]

M LABEL MNEMONIC OPERAND COMMENT

M1 MACRO p1
 ADD MEM%p1 , #1

ENDM

CNT SET 5
M1 CNT

+ ADD MEM05H , #1

In the above example, formal parameter p1 is replaced by actual parameter CNT, then converted into

a character string by %.

The following description can also be made.

M LABEL MNEMONIC OPERAND COMMENT

M1 MACRO p1
 ADD MEM&p1 , #1

ENDM

CNT SET 1
M1 %CNT

+ ADD MEM01H , #1

216

RA17K USER'S MANUAL

(9) Only a DAT type expression can be described as <expression>. If any other type of expression is

described, an error (F045: Invalid type) occurs. That line becomes invalid.

[Example]

[Example 1] To pass as a macro parameter

LOC. OBJ. M I STATEMENT

LABEL MNEMONIC OPERAND COMMENT

VAL_DEF MACRO SUFFIX

GLOBAL M&SUFFIX

REPT 10

 M&SUFFIX MEM M00H + SUFFIX

 A SET A + 1

ENDR

ENDM

;

A SET 1

M00H MEM 0.00H

;

VAL_DEF %A

The following statements are created by expanding this macro.

M01H MEM M00H + 01H
···

M0AH MEM M00H + 0AH

217

CHAPTER 16 MACRO PSEUDO INSTRUCTIONS

[Example 2] To describe in a macro (example of structured macro)

LOC. OBJ. M I STATEMENT

OPJDGE MACRO p4

GLOBAL OPERATOR

IFCHAR p4, =

OPERATOR SET 1

ENDIFC

IFCHAR p4, >=

OPERATOR SET 2

ENDIFC

IFCHAR p4, <<

OPERATOR SET 3

ENDIFC

IFCHAR p4, !=

OPERATOR SET 4

ENDIFC

ENDM

IFX MACRO p1,p2,p3

GLOBAL L_CNT

GLOBAL B_CNT

IF NOT.DEF.L_CNT

 L_CNT SET 0

ENDIF

IF NOT.DEF.B_CNT

 B_CNT SET 0

ENDIF

;

L_CNT SET L_CNT + 1

B_CNT SET B_CNT + 1

;

OPJDGE p2

;

CASE OPERATOR

 1:

SKE p1, #p3

BR LAB%(L_CNT)_%(B_CNT + 1)

 2:

SKGE p1, #p3

BR LAB%(L_CNT)_%(B_CNT + 1)

 3:

SKLT p1, #p3

BR LAB%(L_CNT)_%(B_CNT + 1)

 4:

SKNE p1, #p3

BR LAB%(L_CNT)_%(B_CNT + 1)

ENDCASE

ENDM

218

RA17K USER'S MANUAL

ELSEX MACRO
GLOBAL B_CNT

B_CNT SET B_CNT + 1
;

BR LAB%(L_CNT)_%(B_CNT + 1)
LAB%(L_CNT)_%(B_CNT):

ENDM

ENDIFX MACRO
GLOBAL B_CNT
B_CNT SET B_CNT + 1
;
LAB%(L_CNT)_%(B_CNT):

BR LAB%(L_CNT)_%(B_CNT + 1)

;
GLOBAL L_CNT
L_CNT SET L_CNT – 1

ENDM

Remark IFX, ELSEX, and ENDIFX are used as follows.

IFX MEM010, != , 3 SKNE MEM010, #3
BR LAB1_2

 LOOP: LOOP:
SET1 IPTM SET1 IPTM
SKF1 IRQTM SKF1 IRQTM

BR INT_TM_TABLE BR INT_TM_TABLE
BR LOOP BR LOOP

ELSEX BR LAB1_3
LAB1_2:

NOP NOP

ENDIFX LAB1_3:

219

CHAPTER 16 MACRO PSEUDO INSTRUCTIONS

16.6.4 GLOBAL

Symbols defined in a macro are usually local symbols and cannot be referenced from outside the macro.

To reference such symbols from outside the macro, they must be declared as global symbols by using the

GLOBAL pseudo instruction before the symbols are defined.

[Format]

GLOBAL∆<symbol-list>[∆][;comment]

[Function]

(1) Declares that the symbols described in operand <symbol-list> are global symbols that can be

referenced from outside the macro.

(2) Allows symbols defined outside the macro by the SET pseudo instruction to be manipulated within

the macro by using the SET pseudo instruction.

[Notes]

(1) The GLOBAL pseudo instruction can be described only in a macro definition block. If it is described

in any other block, an error (F145: Impossible to use out of macro) occurs. That line becomes invalid.

(2) More than one symbol name can be described as the operand of the GLOBAL pseudo instruction.

As many symbols as required can be described, provided the maximum number of characters per line

(253) is not exceeded.

(3) If a symbol described as the operand of the GLOBAL pseudo instruction has already been defined

at the backward of the same macro level, an error (F057: Symbol multi defined) occurs. That line

(global declaration) becomes invalid.

(4) If the symbol defined by the SET pseudo instruction references forward, the value SET last is

referenced.

(5) If <label> is described for a GLOBAL statement, an error (F037: Syntax error) occurs, and that one

line (global declaration) becomes invalid.

220

RA17K USER'S MANUAL

[Example]

[Example 1]

The symbol declared to be GLOBAL in a macro remains valid even after the macro has been expanded.

LOC. OBJ. M I STATEMENT

LABEL MNEMONIC OPERAND COMMENT

STMAC MACRO

GLOBAL SYMA

SYMA SET 00H ; Macro definition

0000 DB SYMA

ENDM
···

STMAC ; Macro expansion
···

0000 DB SYMA ; Referenced from

; outside of macro

[Example 2]

Symbol (FLGA), declared to be GLOBAL in the macro, can be referenced from outside the macro. The

value of the local symbol (FLGB) must be re-defined outside the macro.

LOC. OBJ. M I STATEMENT

LABEL MNEMONIC OPERAND COMMENT

BAIGMAC MACRO

GLOBAL FLGA

FLGA FLG 0.10H.0

FLGB FLG 0.10H.1

SET1 FLGA

CLR1 FLGB

ENDM

BIGMAC ; Macro reference
···

; References FLGA, FLGB outside macro

SKT1 FLGA ; FLGA=0.10H.0

SKF1 FLGB ; S error (Undefined

; symbol)

221

CHAPTER 16 MACRO PSEUDO INSTRUCTIONS

[Example 3]

A symbol defined outside the macro can be used as a separate symbol in the macro. Therefore, a

separate value can be defined for that symbol in the macro, like symbol DATA1 in the following

example. Once the macro has been expanded, however, the value of the symbol is restored to the

original value that was defined outside the macro.

LOC. OBJ. M I STATEMENT

LABEL MNEMONIC OPERAND COMMENT

DATA1 DAT 0H

MEM01 MEM 0.00H

;

SMMAC MACRO

DATA1 DAT 01H

MEM01 MEM 0.01H

MOV MEM01,#DATA1 ;MEM01=0.01H

;DATA1=1H

ENDM
···
···

; References DATA1.MEM01 outside macro

MOV MEM01,#DATA1 ;MEM01=0.00H

;DATA1=0H

222

RA17K USER'S MANUAL

[Example 4]
Symbols in the macro can be referenced from any point within the macro.

LOC. OBJ. M I STATEMENT
LABEL MNEMONIC OPERAND COMMENT

0012 MEM12 MEM 0.12H

MAC001 MACRO ; Macro definition
GLOBAL CCC
BR AAA

AAA:
BR AAA

CCC:
BR BBB

BBB:
BR CCC

ENDM

0001 074F0 AAA: NOP
0002 0C005 BR CCC

MAC001
+ GLOBAL CCC

0003 0C004 + BR AAA
+ AAA:

0004 0C004 + BR AAA
+ CCC:

0005 0C006 + BR BBB
+ BBB:

0006 0C005 + BR CCC
0007 0C001 BR AAA ; Symbol defined outside

; macro is valid
S 0008 074F0 BR BBB 058 ; Undefined symbol error

[Example 5]
If GLOBAL declaration is not made, even if a symbol is defined by the SET pseudo instruction, the

value of the symbol is restored to the original value defined outside the macro, once the macro has

been expanded.

LABEL MNEMONIC OPERAND COMMENT
SYMB SET 00H
SYMC SET 01H

···

PMAC MACRO
GLOBAL SYMB

SYMB SET 02H ;SYMB=2H
SYMC SET 03H ;SYMC=3H

MOV M , #SYMB ;SYMB=2H
MOV M , #SYMC ;SYMC=3H

ENDM

···
MOV M , #SYMB ;SYMB=2H
MOV M , #SYMC ;SYMC=1H

223

CHAPTER 16 MACRO PSEUDO INSTRUCTIONS

If SYMB and SYMC, re-defined in the macro, are referenced from outside the macro again, the re-

defined value (2) of SYMB, which has been declared to be GLOBAL, becomes valid, and as does the

original value (1) of SYMC.

[Example 6] To reference global symbol (nest) ... to perform reference with a pseudo instruction

or instruction at the same level

In this case, the pseudo instruction only backward-references the global symbol, while the instruction

both backward- and forward-references the global symbol.

LABEL MNEMONIC OPERAND COMMENT

MAC1 MACRO

GLOBAL AA

GLOBAL BB

AA SET 1 ;AA=1

 ;

MAC2 ;References macro

 ;

IF AA ;AA=3

ENDIF

MOV MEM1 , #AA ;AA=3

MOV MEM1 , #BB ;BB=4 Value set most recently

BB SET 2 ;BB=2

ENDM

MAC2 MACRO

GLOBAL AA

GLOBAL BB

AA SET 3 ;AA=3

IF AA ;AA=3

ENDIF

MOV MEM1 , #AA ;AA=3

MOV MEM1 , #BB ;BB=4 Value set most recently

BB SET 3 ;BB=3

BB SET BB+1 ;BB=4

ENDM

224

RA17K USER'S MANUAL

[Example 7] To reference global symbol (nest) ... to perform reference with a pseudo instruction

at a high level

In this case, the pseudo instruction only backward-references the global symbol.

LABEL MNEMONIC OPERAND COMMENT

MAC1 MACRO

GLOBAL AA

AA SET 1 ; AA=1

 ;

MAC2 ; References macro

 ;

IF AA ; AA=2

ENDIF

ENDM

MAC2 MACRO

GLOBAL AA

IF AA ; AA=1

ENDIF

AA SET 2 ; AA=2

ENDM

[Example 8] To reference global symbol (nest) ... to perform reference with an instruction at

high level

In this case, the instruction both backward- and forward-references the global symbol.

LABEL MNEMONIC OPERAND COMMENT

MAC1 MACRO

GLOBAL AA

GLOBAL BB

AA SET 1 ; AA=1

 ;

MAC2 ; References macro

 ;

MOV MEM1 , #AA ; AA=1

MOV MEM1 , #BB ; BB=2 Value set most recently
BB SET 1 ; BB=1

BB SET BB+1 ; BB=2

ENDM

MAC2 MACRO

GLOBAL AA

GLOBAL BB

MOV MEM1 , #AA ; AA=1

MOV MEM1 , #BB ; BB=2 Value set most recently
ENDM

225

CHAPTER 16 MACRO PSEUDO INSTRUCTIONS

[Example 9] To reference global symbol ... to pass data

LABEL MNEMONIC OPERAND COMMENT

MAC1 MACRO

GLOBAL AA ; Declares global symbol

AA SET 1 ; Defines global symbol AA (AA=1)

ENDM

MAC2 MACRO

GLOBAL AA

MOV MEM1 , #AA ; References global symbol AA

ENDM

[Example 10] Definition of global symbol (error occurs)

In the following example, an error (Symbol multi defined) occurs in the GLOBAL declaration statement

because a symbol is referenced or defined before the GLOBAL declaration.

LABEL MNEMONIC OPERAND COMMENT

MAC1 MACRO

AA SET 0

GLOBAL AA ; Defined before GLOBAL statement

ENDM

MAC2 MACRO

MOV MEM1 , #AA

GLOBAL AA ;Referenced before GLOBAL statement

ENDM

MAC3 MACRO

IF AA

ENDIF

GLOBAL AA ;Referenced before GLOBAL statement

ENDM

226

RA17K USER'S MANUAL

16.6.5 ZZZMCHK

[Format]

<name>∆ZZZMCHK∆<formal-parameter>

[Function]

Allocates the attribute of the actual parameter symbol replaced as the operand to <name> when the macro

is expanded. The value to be assigned to <name> must be of the following format.

If # or @ is prefixed to the symbol name of the operand, # or @ is deleted from the actual parameter after

the macro has been referenced by ZZZMCHK.

0 0 0 0 0 0 0 0 0 0 0 0High-order 16 bits

MSB Fixed LSB
Symbol attribute

(NIBBLEn/NIBBLEnV)

1H
2H
3H
4H
5H
6H
7H
8H
9H
0AH
0BH
0CH
0DH
0EH
0FH

: NIBBLE/NIBBLE1
: NIBBLE2
: NIBBLE3
: NIBBLE4
: NIBBLE5
: NIBBLE6
: NIBBLE7
: NIBBLE8
: NIBBLE2V
: NIBBLE3V
: NIBBLE4V
: NIBBLE5V
: NIBBLE6V
: NIBBLE7V
: NIBBLE8V

0 0Low-order 16 bits

Fixed
Error value

00H
0FBH
0F7H

: normal (value of high-order 8 bits is set)
: undefined symbol
: external definition symbol
 (no value is set in the high-order 8 bits,
 except 00H)

Symbol attribute

1H
2H
3H
4H

: MEM attribute
: FLG attribute
: DAT attribute
: LAB attribute

1
0

: # prefixed
: # not prefixed

1
0

: @ prefixed
: @ not prefixed

227

CHAPTER 16 MACRO PSEUDO INSTRUCTIONS

[Notes]

(1) The information carried by the high-order 16 bits is masked in absolute mode.

(2) ZZZMCHK is meaningful only when it is described in a macro definition statement. If it is described

in any other statement, an error (F145: Impossible to use out of macro) occurs. That line becomes

invalid.

(3) Data type is allocated to <name>.

(4) If a previously defined symbol is described as <name>, an error (F057: Symbol multi defined) occurs.

That line becomes invalid.

(5) If a reserved symbol is described as <name>, an error (F037: Syntax error) occurs. That line becomes

invalid.

(6) If <name> is omitted, an error (F037: Syntax error) occurs. That line becomes invalid.

(7) If a character string other than a symbol is described as <formal-parameter>, an error (F070: Invalid

operand) occurs. That line becomes invalid. A symbol described as <name> is not registered.

(8) If <formal-parameter> is omitted, an error (F037: Syntax error) occurs. That line becomes invalid.

(9) If an operation expression of MEM type is described as <expression>, nibble information is collected

from the operation result.

A NIBBLE2 0.00H

B SET .TYPE. (A+A)

.TYPE. assigns value 23H to B to collect nibble information from the result of operation A+A.

228

RA17K USER'S MANUAL

[Example]

[Example 1]

LOC. OBJ. M I STATEMENT

AMAC MACRO B,C

;

BB ZZZMCHK B

CC ZZZMCHK C

;

IF (BB AND 4F00H) = 4300H

 ADD MEM010, B

ELSE

 ADD MEM010, #B

ENDIF

;

IF (CC AND 8F00H) = 8300H

 BR C

ELSE

 BR @C

ENDIF

;

ENDM

229

CHAPTER 16 MACRO PSEUDO INSTRUCTIONS

[Example 2] Addition in units of bytes

LOC. OBJ. M I STATEMENT

ADD2 MACRO A,B

;

AA ZZZMCHK A

BB ZZZMCHK B

;

IF (AA AND 0F00H) = 100H ;MEM TYPE

CASE (BB AND 0F00H)

100H: ;MEM TYPE

ADD A,B

ADDC A+1,B+1

EXIT

300H: ;DAT TYPE

ADD A, #B AND 0FH

ADDC A+1,#(B SHR 4) AND 0FH

EXIT

OTHER:

ZZZERROR '2nd OPERAND ERROR'

ENDCASE

ELSE

ZZZERROR '1st OPERAND ERROR'

ENDIF

ENDM

Reference this macro as follows:

<1> Addition of memory by using register

ADD2 R1, M1

<2> Addition of memory and immediate data

ADD2 M1, #N

↑
In this case, # is deleted by ZZZMCHK in the macro.

230

RA17K USER'S MANUAL

16.6.6 PURGE

[Format]

PURGE∆<macro-name>

[Function]

Deletes the macro defined in the macro table reserved in memory or on disk.

When a macro is defined, the macro is registered in the memory of the host machine. If a macro is larger

than the macro registration capacity reserved when the assembler was started, the excess portion is

automatically written to the disk. Therefore, the absolute capacity of the macro that can be registered

depends not only on the reserved memory capacity, but also on the capacity of the disk (disk specified

by work drive specification option [/WORK=]) (therefore, the macro can be registered provided the disk

capacity permits).

PURGE deletes all unnecessary macros from memory to increase the memory capacity and allow more

macros to be registered and thus shorten the assemble processing time (macro reference time).

[Notes]

(1) The PURGE pseudo instruction must not be described in a macro definition statement.

If the PURGE pseudo instruction is encountered during macro expansion, an error (F037: Syntax

error) occurs. That line becomes invalid.

(2) If a symbol other than a previously registered macro name is described as the operand of the PURGE

instruction, an error (F037: Syntax error) occurs. That line becomes invalid.

(3) If a PURGEd macro name is described in a statement in the source program, an error (F037: Syntax

error) occurs. That line becomes invalid.

(4) Even if a PURGEd macro name is defined as a separate forward macro within the same module, the

"Symbol multi defined" error does not occur. Moreover, the macro can also be referenced after that

macro definition.

(5) If a macro is PURGEd and a vacant macro area becomes available in memory, the macro defined

after PURGE is registered in a vacant area in memory.

A macro written to the disk before PURGE remains registered on the disk even if a sufficiently large

memory area has become available. In other words, a macro on disk does not automatically move

into memory.

(6) If <macro-name> is omitted, an error (F037: Syntax error) occurs. That line becomes invalid.

231

CHAPTER 16 MACRO PSEUDO INSTRUCTIONS

(7) If a label is described in the PURGE statement, an error (F037: Syntax error) occurs. That line

becomes invalid.

[Example]

LOC. OBJ. M I STATEMENT

BRANCH MACRO ADDR

BR ADDR

ENDM

BRANCH 1000H <- Macro expansion

1 BR ADDR

PURGE BRANCH
···

BRANCH 1000H <- S error

232

RA17K USER'S MANUAL

[MEMO]

233

CHAPTER 17 MASK OPTION PSEUDO INSTRUCTION

For details of the mask option pseudo instruction, see the User's Manual for the device file of the target

device.

17.1 OPTION ... ENDOP

[Format]

OPTION
···
···

ENDOP

[Function]

The block enclosed between OPTION and ENDOP is used as a mask option definition block.

When the assembler encounters the OPTION pseudo instruction, it automatically includes the mask option

definition file (.OPT), registered in the device file.

[Notes]

(1) OPTION must be always terminated with ENDOP. If ENDOP is missing, or if END is encountered

before ENDOP, an error (F034: No ENDOP statement) occurs. If an ENDOP instruction is

encountered before OPTION, an error (F144: Invalid ENDOP statement) occurs. That line becomes

invalid.

(2) If an instruction that creates an object in the OPTION ... ENDOP block is described, a warning message

(W068: Operation in OPTION block) is output. At this time, the object for the instruction is not created.

(3) The OPTION ... ENDOP block can be described only once in a group of source programs. If it is

described two or more times, the second and subsequent OPTION blocks cause an error (F053:

Duplicated OPTION directive) to occur, and all statements preceding ENDOP are ignored. In this

case, the data described first is stored to the data storage address (OPDATA) in the ICE file.

(4) The OPTION ... ENDOP block must not straddle two source module files.

(5) Only the object (option data) is output as a list in the OPTION ... ENDOP block.

(6) If a label is described, an error (F037: Syntax error) occurs.

(7) If an error occurs while a macro call statement is being expanded, the error code is not output to the

list, instead being output to the log file.

234

RA17K USER'S MANUAL

(8) If CSEG is described between OPTION and ENDOP, an error (F172: Invalid CSEG statement)

occurs.

(9) If execution terminates by describing OPTION ... ENDOP in REPT and by using EXITR, an error

(F034: No ENDOP statement) occurs because ENDOP processing is not performed.

(10) If an error occurs between OPTION and ENDOP, that OPTION pseudo instruction becomes invalid.

(11) The mask option pseudo instruction that actually sets a mask option differs depending on the target

device. For details, refer to the user's manual and data sheet for the target device.

235

CHAPTER 18 CHARACTER STRING REPLACEMENT PSEUDO INSTRUCTIONS

This chapter explains the character string replacement pseudo instructions that are used to replace one

character string with another.

The following character string replacement pseudo instructions are supported.

• LITERAL (replaces the subsequent character string with another character string.)

• UNLITERAL (determines the end of the valid range of LITERAL.)

236

RA17K USER'S MANUAL

18.1 LITERAL

[Format]

LITERAL ∆<string-to-be-replaced>,<replacing-string>[∆][;<comment>]

[Function]

Replaces <string-to-be-replaced>, described as the first operand, with <replacing-string>, described as

the second operand. Once this specification has been made, statements are evaluated by the replaced

character string. However, any character strings on the macro expansion line and in comments are not

replaced.

The parameters of built-in macro pseudo instructions are replaced. The expansion line, however, is not

replaced.

[Notes]

(1) A character string that has been replaced once cannot be replaced again. Therefore, a character string

cannot be duplicated, even in the following case.

LABEL MNEMONIC OPERAND COMMENT

A MEM 0.01H

LITERAL A, B ; A->B

ADD A, #1H ; Error (F058: Undefined symbol)
···
LITERAL B, A ; LITERAL B, B

ADD B, #1H ; Error (F058: Undefined symbol)
···
ADD B, #1H ; Error (F058: Undefined symbol)

(2) The character string before replacement is output to the assembly listing, the output object corresponding

to the evaluation value of the character string after replacement.

However, the character string of the macro expansion line after replacement is output. This is because

the macro body is registered after the character string has been replaced.

(3) This pseudo instruction must not be described in a macro. Otherwise, an error (F037: Syntax error)

occurs. That line becomes invalid.

(4) If no more character strings can be registered, an error (A039: Symbol or macro area overflow) occurs.

That line becomes invalid, and the character string is not registered.

(5) The macro body is registered with the characters replaced by LITERAL. Consequently, replacement

by LITERAL is not performed when the macro is expanded.

237

CHAPTER 18 CHARACTER STRING REPLACEMENT PSEUDO INSTRUCTIONS

(6) When include is performed by executing the INCLUDE pseudo instruction, the character strings of

the contents of the included source file are also replaced by LITERAL.

If the INCLUDE pseudo instruction is described in a macro body, however, the instruction is interpreted

and include processing is performed when the macro is expanded. Because the macro is being

expanded, however, the character strings of the contents of the file included by the INCLUDE pseudo

instruction are not replaced by LITERAL.

(7) The operands of LITERAL must not be omitted. If omitted, an error (F037: Syntax error) occurs.

[Example]

[Example 1]

When recycling a program used with the AS17K, character string "LITERAL," used as a symbol,

duplicates reserved word "LITERAL" of RA17K. In this case, an error occurs. To prevent this error

from occurring, apply the following countermeasures.

LABEL MNEMONIC OPERAND COMMENT

LITERAL LIT, LITERAL ; Use 'LIT' instead of reserved

; word 'LITERAL' (subsequently,

; 'LIT' is used instead of

; 'LITERAL').

LIT LITERAL, LITERAL1 ; Change existing symbol 'LITERAL'

; to 'LITERAL1.'

[Example 2]

To use a program that uses user-defined symbol POA0 for the target device for which POA0 is defined

as a reserved word, in the same manner as in Example 1.

BR POA0
···
POA0:

In this case, add a character string replacement line at the beginning of the source, and

specify a dummy character string at the location where the reserved word is to be used.

LITERAL DUMMY_POA0, POA0

LITERAL POA0, LAB_POA0

BR POA0
···
POA0:

SET1 DUMMY_POA0

A "Symbol multi defined" error occurs because POA0

is used as a reserved word.

Original source Added portion

238

RA17K USER'S MANUAL

When this source is assembled, the character string is replaced as follows.

LITERAL DUMMY_POA0, POA0

LITERAL POA0, LAB_POA0

BR POA0 ; (processed with the contents of

; LAB_POA0)
···
POA0: ; (processed with the contents of

; LAB_POA0)

SET1 DUMMY_POA0 ; (processed with the contents of POA0)

The original character string is output to the listing. However, the object corresponding to the replaced

character string is processed.

[Example 3] Macro expansion after UNLITERAL

LITERAL A, B

ABC MACRO

AND A, #1

ENDM

UNLITERAL A

ABC

Character A is replaced by B and registered when the macro body is registered. Consequently, even

if the macro is referenced after UNLITERAL, the macro is expanded with the replaced character string.

The replaced character string is also output to the intermediate listing.

[Example 4] When replacing a macro name with LITERAL

LITERAL ABC, AAA

ABC MACRO

AND A, # 1

ENDM

UNLITERAL ABC

ABC

Macro ABC is replaced by AAA when it is registered. Even if UNLITERAL is subsequently executed,

an error (F037: Syntax error) occurs when ABC is described because macro ABC does not exist.

If ABC is described before UNLITERAL, that character is replaced by AAA, and the macro is expanded.

If AAA is described instead of ABC, the macro is expanded, in the same manner as when ABC is

described, because it is registered as AAA.

239

CHAPTER 18 CHARACTER STRING REPLACEMENT PSEUDO INSTRUCTIONS

18.2 UNLITERAL

[Format]

UNLITERAL∆<string-to-be-replaced>[∆][;<comment>]

[Function]

Specifies the valid range of the LITERAL pseudo instruction. The character strings in the block enclosed

by LITERAL and UNLITERAL are replaced by the specified strings.

[Notes]

(1) This instruction is used to specify the valid range of LITERAL. If it is omitted, all character strings

subsequent to LITERAL in the module file are replaced with the specified character strings.

(2) <string-to-be-replaced>, described as the operand, must be the same as <string-to-be-replaced>

described for LITERAL. If two or more strings are specified by two or more LITERALs, as many

UNLITERALs as the number of LITERALs are required to specify the valid range of each LITERAL.

(3) This instruction must not be described in a macro. If described, an error (F037: Syntax error) occurs.

That line becomes invalid.

(4) If the character string described as <string-to-be-replaced) is not registered by LITERAL, or if only

UNLITERAL is described, an error (F184: No entry characters for LITERAL) occurs. That line

becomes invalid.

[Example]

[Example 1]

LABEL MNEMONIC OPERAND COMMENT

A MEM 0.01H

LITERAL A, B ; This block is within the valid

ADD A, #1H ; range of replacement because

UNLITERAL A ; UNLITERAL is described after

; LITERAL.

; A -> B

ADD A, #1H ; Symbol A of this instruction is

; not replaced.

LITERAL B, A ; The valid range is up to END

ADD B, #1H ; because UNLITERAL is not

; described after LITERAL.

END ; B -> A

···

···

···

240

RA17K USER'S MANUAL

[Example 2]

LABEL MNEMONIC OPERAND COMMENT

A MEM 0.01H

LITERAL A,B ; Because two or more LITERALs are

LITERAL C,D ; described, two or more UNLITERALs

ADD A, #1H ; must be described to specify the

ADD C, #1H ; valid range of the LITERALs.

UNLITERAL A

UNLITERAL C

241

CHAPTER 19 CONTROL INSTRUCTIONS

This chapter explains the file control instructions, which control the reading and creation of source module

files, object files, and listing files by the assembler.

The file control instructions are as follows:

Source input control instructions

• INCLUDE (Includes a source module file.)

• EOF (Indicates the end of an include file.)

Listing output control instructions

• TITLE (Specifies the title of an assembly listing.)

• EJECT (Specifies a line feed in an assembly listing.)

• C14344 (Specifies the output format of the object code in an assembly listing (1-4-3-4-4-bit format).)

• C4444 (Specifies the output format of the object code in an assembly listing (4-4-4-4-bit format).)

• LIST (Cancels NOLIST.)

• NOLIST (Disables statement output to an assembly listing.)

Instructions for controlling false condition block listing output

• SFCOND (Disables the output of false condition blocks to an assembly listing.)

• LFCOND (Cancels SFCOND.)

Instructions for controlling macro expansion listing output

• SMAC and SBMAC (Control the output of the results of macro expansion to an assembly listing (code

is output in rows).)

• VMAC and VBMAC (Control the output of the results of macro expansion to an assembly listing (code

is output in columns).)

• OMAC and OBMAC (Control the output of the results of macro expansion to an assembly listing (code

is output in lines).)

• NOMAC and NOBMAC (Disable the output of the results of macro expansion to an assembly listing.)

• LMAC and LBMAC (Cancel a macro expansion control instruction.)

The assembler (RA17K) does not process control instructions other than the those given above, merely

checking the syntax of any other instructions. Instructions other than source input control instructions are

processed by the document processor (DOC17K). That is, control by control instructions is not applied to

intermediate listing files output by RA17K, these files being output together with control information.

242

RA17K USER'S MANUAL

[Notes]

(1) <label> can be written for control instructions other than EOF. If <label> is not written correctly, an

error occurs (see Section 4.3). Incorrectly specifying <label> invalidates any control instruction

written on the same line as <label>.

19.1 SOURCE INPUT CONTROL INSTRUCTIONS

The source input control instructions (INCLUDE and EOF) add the contents of one specified include file

to another. The user may specify only constant definitions and macro definitions in an include file. Thus,

the source input control instructions can also be used to add items such as common external variables or

complex data tables.

243

CHAPTER 19 CONTROL INSTRUCTIONS

19.1.1 INCLUDE

[Format]

[<label>:][∆]INCLUDE ∆'[<path-name>\]<file-name>'[∆][;<comment>]

[Function]

(1) Depending on the include file extension, INCLUDE causes either of two types of processing to be

performed, as described later in this section.

(2) If <path-name> is specified, specifying INCLUDE causes the directory to be searched.

For an explanation of INCLUDE with only <file-name> (without <path-name>), see Section 1.5 .

(3) If a source module file name is specified in <file-name>, an error (F170: Impossible to include a source

module file) occurs. That line is invalidated.

[Notes]

(1) If a <file-name> is not specified in <file-name> (e.g., when only a path name is specified, or a file name

longer than eight characters is specified), an error (F191: File name error) occurs.

(2) If a file name is specified with extension .DEV, .SEQ, .OPT, or .SYM, an error (F191: File name error)

occurs.

(3) An INCLUDE statement can be written in an include file that is itself specified with INCLUDE. This

is referred to as the nesting of INCLUDE. The maximum allowable nesting level for macros and the

IF statement is 40, while INCLUDE can be nested up to 8 levels deep. If the nesting level is nine or

more, an error (F052: Include nesting error) occurs for the line on which the INCLUDE control

instruction is written.

244

RA17K USER'S MANUAL

(1) When the include file is a source module file

[Function]

The contents of the source module file specified in <file-name> are expanded as if they were specified

where <file-name> is placed.

[Notes]

(1) If no extension is specified for <file-name> in the operand field, processing is performed assuming

that .ASM has been specified as the extension.

(2) Unless a single quotation mark (') is specified both before and after <file-name>, an error (F037:

Syntax error) occurs. The file is not opened.

(3) A file name may include <path-name>. Up to 141 characters can be specified for <path-name> and

<file-name> (the maximum supported by DOS).

If 142 or more characters are specified, an error (F037: Syntax error) occurs. The file is not opened.

(4) If the file specified in INCLUDE cannot be found, an error (F061: No include file xxxxxxxx.xxx) occurs.

(5) Statements expanded by an INCLUDE statement are assembled in the same way as those written

in the original source program. Thus, the symbols and macros defined in include files can be

referenced from outside those include files. In addition, symbols and macros defined outside include

files can be referenced from within the include files.

[Relationships between INCLUDE and other pseudo instructions]

[Example 1] Relationship between INCLUDE and MACRO

• Contents of the source module file

···
INCLUDE' ABCD.ASM'

ENDM
···

245

CHAPTER 19 CONTROL INSTRUCTIONS

• Contents of include file ABCD.ASM

A MACRO X

IF X <> ZZZBANK

SETBANK X

ENDIF

Macro A is registered normally. Although the include file does not contain ENDM, the existence

of ENDM immediately after the INCLUDE statement in the source module file causes macro

registration to end normally. Macro A is expanded normally when referenced.

[Example 2] Relationship between INCLUDE and a conditional pseudo instruction

• When an ENDIF statement is written in a source module file

Contents of the source module file

···
INCLUDE ' ABCD.ASM'

ENDIF
···

Contents of include file ABCD.ASM

IF A=B

BANK2

ELSE

BANK1

Although the include file does not contain ENDIF, the existence of ENDIF in the source module file

terminates the IF specified in the include file.

If A=B is true, the line between IF and ELSE is assembled. The lines between ELSE and ENDIF

in the source module file are not assembled, however.

246

RA17K USER'S MANUAL

• When only an ELSE statement is specified in the include file

Contents of the source module file

···
IF A=B

INCLUDE ' ABCD.ASM'

ENDIF
···

Contents of include file ABCD.ASM

BANK2

ELSE

BANK1

If IF A=B is true, the line between IF and ELSE (BANK2) is assembled. If IF A=B is false, the

INCLUDE pseudo instruction is skipped. Thus, the line following the ELSE statement in the include

file (BANK1) is not expanded.

(2) When the include file is a symbol definition file (.EQU)

When RA17K is used, it is recommended that symbols be defined in an independent file.

This method of definition enables the following:

<1> Macro optimization using public symbols (Macros cannot be optimized by using PUBLIC...EXTRN.)

<2> High-speed processing by providing the symbol definition file with an independent MAKE function

[Function]

(1) An include file with extension .EQU is processed as a symbol definition file (EQU file).

(2) Upon the termination of the include operation, an intermediate file with extension .SYM (SYM file) is

output for the EQU file. The SYM file is created in the same directory as the EQU file.

(3) The time stamps of the EQU and SYM files are compared. If the SYM file has a later time stamp than

the EQU file, the EQU file is not reassembled.

247

CHAPTER 19 CONTROL INSTRUCTIONS

[Notes]

(1) If instructions other than symbol definition pseudo instructions exist in an EQU file, an error (F185:

Invalid statement in symbol definition file (.EQU)) occurs. Assembly, however, is performed up to the

end of the file.

(2) An INCLUDE statement cannot be specified in an EQU file (i.e., include cannot be nested).

(3) If an EQU file is to be included, the corresponding INCLUDE statement must be written before the

symbols defined in the EQU file are referenced. If the corresponding INCLUDE statement is written

after a symbol is referenced, especially after a symbol is referenced in the operand of a pseudo

instruction, an error (F058: Undefined symbol) occurs for the line on which the symbol is referenced.

(4) If an EQU or SYM file is included, the contents of the include file are not output to an intermediate

listing file, nor is the line number incremented.

(5) If a symbol is to be referenced in an EQU file, the symbol must be defined within that EQU file. If

the symbol is not defined in the EQU file, an error (F058: Undefined symbol) occurs.

(6) If an EQU file is include and an error occurs in the include EQU file, an error (F189: Impossible to

create SYM file due to error in EQU file) occurs. The SYM file is not created. If a SYM file having

the same name as the EQU file exists, that SYM file is deleted.

248

RA17K USER'S MANUAL

19.1.2 EOF

[Format]

EOF[∆][;<comment>]

[Function]

EOF indicates the end of the file specified in an INCLUDE statement.

[Notes]

(1) Even if EOF does not appear on the last line of an include file, an error does not occur nor is a warning

issued.

(2) If, within a program, EOF is followed by a statement, a warning (W066: Statement after EOF) is issued.

No object code is generated for the statements following EOF. Only the line on which EOF is specified

and the next line (to output W066) are output to the intermediate list.

For an EQU file, however, the next line is not output because LIST output is not performed. The next

line is output to the LOG file and the screen.

(3) If a label or an operand is specified for an EOF statement, an error (F037: Syntax error) occurs. That

line becomes invalid.

(4) The EOF control instruction can be specified only in include files. If this control instruction is specified

in a file other than an include file (i.e., in a source file), an error (F040: Invalid EOF statement) occurs.

249

CHAPTER 19 CONTROL INSTRUCTIONS

[Example]

In the following example, an include file is used as a macro definition file.

In the example, macro definition statements used commonly in two or more of the modules constituting

a source program are stored together in one include file. The definitions in the include file are referenced

by including that file.

• File: MACRO1.ASM

WAIT_OR_K_OFF_SENSE MACRO T

IF T <> 0

MOVE 4, UTIMER, T

CALL W_OR_KOF

ENDIF

ENDM
···
INCLUDE 'PUBSYM.ASM'

• File: PUBSYM.ASM

PUBLIC W_OF_KOF

PUBLIC K_OF_SENSE
···

• Module 1: MOD1.ASM

INCLUDE 'MACRO1.ASM'
···

W_OF_KOF:

SKF1 KEYJ

SKF4 KIN3, KIN2, KIN1, KIN0

BR KOF_TIME

RET
···

In this example, the contents of the include files are expanded in module 1, MOD1.ASM, as follows:

250

RA17K USER'S MANUAL

STNO LOC OBJ M I SOURCE STATEMENT

20 1 INCLUDE 'MACRO1.ASM'

+ 1 1 WAIT_OR_K_OFF_SENSE MACRO T

+ 2 1 IF T <> 0

+ 3 1 MOVE 4,UTIMER,T

+ 4 1 CALL W_OR_KOF

+ 5 1 ENDIF

+ 6 1 ENDM

+ : :

+ 10 2 INCLUDE 'PUBSYM.ASM'

+ 11 2 PUBLIC W_OF_KOF

+ 12 2 PUBLIC K_OF_SENSE

+ 13 2

+ : :

W_OF_KOF:

SKF1 KEYJ

SKF4 KIN3, KIN2, KIN1, KIN0

BR KOF_TIME

RET

In this assembly listing, the numbers output in column I (field) indicate the include nesting level. The line

numbers output in the leftmost column are those assigned in the include file.

Thus, the line number of a symbol output to a cross-reference listing or to a document consists of the line

number of the INCLUDE control instruction and that of the file, the two being connected by a hyphen (-).

The following shows an example where line numbers are connected by hyphens for output to a cross-

reference listing.

RA17K V1.00 V1 << D17xxx XREF LIST>> HH:MM:SS MM/DD/YY PAGE0-001

PROG =

SOURCE = SAMPLE.ASM

SYMBOL VALUE CLASS TYPE /REF(#DEF)

SEC_SAMPLE0 00000000 Local SEC /# 0

WAIT_OR_K_OFF_SENSE

00000000 Local MAC /# 20-1, 29
···
···

KOF_TIME 0000000a Local LAB /# 37, 34

W_OF_KOF 00000002 Public LAB /# 31, 29-4

···

···
···

Line numbers are connected

by a hyphen.

251

CHAPTER 19 CONTROL INSTRUCTIONS

19.2 LISTING OUTPUT CONTROL INSTRUCTIONS

Listing output control instructions are used with the document processor (DOC17K). RA17K does not

support the listing output control instructions, instead outputting an intermediate listing file, the control

instructions remaining in the file. The document processor interprets and processes the listing output control

instructions remaining in the intermediate listing file output by RA17K.

252

RA17K USER'S MANUAL

19.2.1 TITLE

[Format]

[<label>:]TITLE'<character-string>'[;<comment>]

[Function]

Specifying TITLE causes a form feed in an assembly listing followed by the printing of <character-string>,

specified in the operand of the TITLE instruction, on the header line of the next page.

[Notes]

(1) The combined length of the character string specified in TITLE and the TITLE control instruction itself

must not exceed the maximum number of characters that can be written on one line (253).

(2) If it encounters a TITLE statement, the document processor causes a form feed and prints the

specified <character-string> on the header line of the new page. The document processor does not

print single quotation marks. The TITLE statement is printed on the first line of a new page in a listing.

(3) If ' and ' are omitted, an error (F037: Syntax error) occurs. That line becomes invalid.

[Output example]

RA17K V1.0 V1 <<D17005 ASEMBLER LIST>>

PROG = '·····'

TEST PROGRAM <- The title is printed here.

MODULE = ·····.ASM

E STNO LOC OBJ M I SOURCE STATEMENT

1 TITLE 'TEST PROGRAM'

2

3

4
···

253

CHAPTER 19 CONTROL INSTRUCTIONS

19.2.2 EJECT

[Format]

[<label>:][∆]EJECT[∆][;<comment>]

[Function]

Specifying EJECT causes a form feed in an assembly listing.

[Notes]

(1) The EJECT statement itself is printed before the form feed occurs.

(2) If a mnemonic or an operand is specified for an EJECT statement, an error (F037: Syntax error) occurs.

That line becomes invalid.

[Output example]

E STNO LOC OBJ M I SOURCE STATEMENT

1

2

3

4
···

EJECT <- The form feed code is placed on the line immediately

following this line.

254

RA17K USER'S MANUAL

19.2.3 C14344

[Format]

[<label>:][∆]C14344[∆][;<comment>]

[Function]

C14344 outputs the object code to the object field of an output assembly listing following the C14344

control instruction, in 1-4-3-4-4-bit format. If no output format is specified, C14344 is assumed.

In 1-4-3-4-4-bit format, a 16-bit object code is divided into 1, 4, 3, 4, and 4 bits starting from the MSB,

the result being represented in hexadecimal notation. In an instruction for the 17K series, the high-order

five bits constitute an operation code. Thus, for a normal instruction, this representation format provides

an easier correspondence to the instruction.

[Notes]

(1) Object code is output, in 4-4-4-4-bit format, to an intermediate listing file output by RA17K.

(2) The object code of constant data defined by a DW, DB, or DCP pseudo instruction is output in 4-4-

4-4-bit format.

(3) If a mnemonic or an operand is specified for a C14344 statement, an error (F037: Syntax error) occurs.

That line becomes invalid.

255

CHAPTER 19 CONTROL INSTRUCTIONS

19.2.4 C4444

[Format]

[<label>:][∆]C4444[∆][;<comment>]

[Function]

C4444 outputs the object code to the object field of an assembly listing following the C4444 control

instruction, in 4-4-4-4-bit format. If no output format is specified, C14344 is assumed.

In 4-4-4-4-bit format, a 16-bit object code is divided into 4, 4, 4, and 4 bits starting from the MSB, the result

being represented in hexadecimal notation. The 4-4-4-4-bit format is used to output 16-bit data.

[Notes]

(1) The object code of constant data defined by a DW, DB, or DCP pseudo instruction is output in 4-4-

4-4-bit format, regardless of the control instruction.

(2) If a mnemonic or an operand is specified for a C4444 statement, an error (F037: Syntax error) occurs.

That line becomes invalid.

256

RA17K USER'S MANUAL

19.2.5 LIST

[Format]

[<label>:][∆]LIST[∆][;<comment>]

[Function]

LIST specifies the start of the output of an assembly listing that was previously disabled by specifying

NOLIST.

[Notes]

(1) The default setting at the start of assembly (at the beginning of the module file) is that an assembly

listing is to be output.

(2) If the output of an assembly listing is started by a LIST statement, the LIST statement is not output

to the assembly listing.

If, however, a LIST statement is encountered during assembly listing output, the LIST statement is

output.

(3) If a mnemonic or an operand is written for a LIST statement, an error (F037: Syntax error) occurs.

That line becomes invalid.

[Example]

NOLIST

; An assembly listing is not printed.

LIST

; An assembly listing is printed.

···

···

257

CHAPTER 19 CONTROL INSTRUCTIONS

19.2.6 NOLIST

[Format]

[<label>:][∆]NOLIST[∆][;<comment>]

[Function]

NOLIST specifies the stopping of assembly listing output.

[Notes]

(1) A NOLIST statement remains effective until a LIST statement appears or the module file ends. The

default setting at the start of module file assembly is that an assembly listing is to be output. Thus,

NOLIST must be specified again for another module file.

(2) If the output of an assembly listing is stopped upon a NOLIST statement being encountered, the

NOLIST statement is output to the assembly listing.

(3) If a mnemonic or an operand is specified for a NOLIST statement, an error (F037: Syntax error) occurs.

That line becomes invalid.

(4) The status of list output control, specified on the line containing NOLIST, is indicated in ZZZPRITNT.

258

RA17K USER'S MANUAL

19.3 INSTRUCTIONS FOR CONTROLLING FALSE CONDITION BLOCK LISTING OUTPUT

This section explains control instructions SFCOND and LFCOND, which control listing output for a block

that has not yet been assembled because the condition for a conditional assembly pseudo instruction is false.

SFCOND disables listing output of those blocks for which the condition is false, among the condition blocks

following SFCOND. In contrast, LFCOND enables listing output for false condition blocks.

SFCOND and LFCOND are invalidated by specifying -COND as an assembly option. Thus, when the

assembler is activated, the specification of SFCOND and LFCOND can be changed without having to modify

the program.

The instructions for controlling false condition block listing output are effective for the document processor

(DOC17K). RA17K does not process the instructions for controlling false condition block listing output, instead

outputting an intermediate listing file, the control instructions remaining in the file. The document processor

interprets and processes the instructions for controlling false condition block listing output that remain in the

intermediate listing file output by RA17K.

259

CHAPTER 19 CONTROL INSTRUCTIONS

19.3.1 SFCOND

[Format]

[<label>:][∆]SFCOND[∆][;<comment>]

[Function]

SFCOND disables the output of an assembly listing for false condition blocks in an IF (IFCHAR, IFNCHAR,

or IFSTR) or CASE statement.

[Notes]

(1) The SFCOND statement is effective when the -NOCOND option is specified for the document

processor (DOC17K).

(2) At the start of assembly (at the beginning of the module file), processing is performed assuming that

LFCOND, described in the next section, is specified as the default.

(3) An SFCOND statement remains effective until an LFCOND statement is encountered or the module

file ends.

(4) An SFCOND statement also disables the output of the control instruction written immediately before

the portion for which the SFCOND statement disables listing output.

For example, if the output of the IF...ELSE block in an IF...ELSE...ENDIF block is disabled, the output

of pseudo instruction IF is disabled, but ELSE is output.

(5) If a mnemonic or an operand is written for an SFCOND statement, an error (F037: Syntax error) occurs.

That line becomes invalid.

260

RA17K USER'S MANUAL

[Example]

···

SFCOND ; Disable listing output for

; false condition blocks.

COND SET 0FFH

IF COND

MOV A , #01H <- Listing output (This line is assembled.)

MOV A , #02H <- Listing output (This line is assembled.)

ELSE

MOV A , #0FH <- No listing output (This line is not

assembled.)

MOV A , #0EH <- No listing output (This line is not

assembled.)

ENDIF
···

LFCOND ; Enable listing output for

; false condition blocks.

The listing output for the above example is shown below.

Listing output is not performed for the ELSE pseudo instruction itself.

E STNO LOC OBJ M I SOURCE STATEMENT

···
SFCOND

COND SET 0FFH

IF COND

MOV A , #01H <- Listing output (This line is assembled.)

MOV A , #02H <- Listing output (This line is assembled.)

ENDIF
···

LFCOND

(The NOCOND option is specified for

assembly)

261

CHAPTER 19 CONTROL INSTRUCTIONS

19.3.2 LFCOND

[Format]

[<label>:][∆]LFCOND[∆][;<comment>]

[Function]

LFCOND outputs an assembly listing for false condition blocks.

[Notes]

(1) When the -NOCOND option is specified for the document processor (DOC17K), LFCOND statement

cancels the SFCOND (false condition block assembly listing suppression) instruction specified in the

source program.

(2) At the start of assembly (at the beginning of the module file), processing is performed assuming that

LFCOND is specified as the default.

(3) If a mnemonic or an operand is specified for an LFCOND statement, an error (F037: Syntax error)

occurs. That line becomes invalid.

[Example]

···

SFCOND ; Disable listing output for

; false condition blocks.

COND SET 0FFH

IF COND

MOV A , #01H <- Listing output (This line is assembled.)

MOV A , #02H <- Listing output (This line is assembled.)

ELSE

MOV A , #0FH <- No listing output (This line is not

assembled.)

MOV A , #0EH <- No listing output (This line is not

assembled.)

ENDIF
···

LFCOND ; Enable listing output for

; false condition blocks.

(The NOCOND option is specified for

assembly)

262

RA17K USER'S MANUAL

Listing output for the above example is shown below. Listing output is not performed for the ELSE pseudo

instruction.

E STNO LOC OBJ M I SOURCE STATEMENT

···
SFCOND

COND SET 0FFH

IF COND

MOV A , #01H <- Listing output (This line is assembled.)

MOV A , #02H <- Listing output (This line is assembled.)

ENDIF
···

LFCOND

263

CHAPTER 19 CONTROL INSTRUCTIONS

19.4 INSTRUCTIONS FOR CONTROLLING MACRO EXPANSION LISTING OUTPUT

This section explains the SMAC, VMAC, OMAC, NOMAC, and LMAC control instructions, which are used

to control listing output for macro expansion blocks (also covered are the SBMAC, VBMAC, OBMAC,

NOBMAC, and LBMAC control instructions for built-in macro instructions).

SMAC and SBMAC perform the same function, as do VMAC and VBMAC, OMAC and OBMAC, NOMAC

and NOBMAC, and LMAC and LBMAC. Which of each pair is to be used depends on the type of the macro

for which listing output is to be controlled. Use SMAC, VMAC, OMAC, NOMAC, and LMAC for user-defined

macros defined in programs. Use SBMAC, VBMAC, OBMAC, NOBMAC, and LBMAC for those macros built

into the assembler (RA17K).

SMAC (and SBMAC) disables listing output for the source statements in the macro expansion block

specified immediately after it, and performs listing output, in rows, for those object codes generated by

executing a call to the macro.

VMAC (and VBMAC) disables listing output for the source statements in the macro expansion block

specified immediately after it, and performs listing output, in columns, for those object codes generated by

executing a call to the macro.

OMAC (and OBMAC) performs listing output only for those source statements from which object code is

generated upon the issue of a macro call, and disables the output of any statements from which object code

is not generated.

NOMAC (and NOBMAC) disables listing output for an entire macro expansion block.

LMAC (and LBMAC) enables listing output for an entire expansion block upon the issue of a macro call.

SMAC (and SBMAC), VMAC (and VBMAC), OMAC (and OBMAC), NOMAC (and NOBMAC), and LMAC

(and LBMAC) are invalidated by specifying GEN in the [NOGEN/GEN] option. This enables the control

specification to be changed without having to modify the program when the assembler is activated.

The instructions used for controlling macro expansion listing output are effective for the document processor

(DOC17K). RA17K does not process the instructions for controlling macro expansion listing output, instead

outputting an intermediate listing file, the control instructions remaining in the file. The document processor

interprets and processes the instructions for controlling macro expansion listing output that remain in the

intermediate listing file output by RA17K.

264

RA17K USER'S MANUAL

19.4.1 SMAC and SBMAC

[Format]

[<label>:][∆]SMAC[∆][;<comment>]

[<label>:][∆]SBMAC[∆][;<comment>]

[Function]

SMAC and SBMAC disable listing output for all statements in the macro and repetitive blocks, instead

outputting only object codes.

Object codes are output, in rows, to the assembly listing SOURCE STATEMENT, with up to eight codes

per row. If the number of object codes is greater than 8, they are output to multiple rows.

[Notes]

(1) SMAC (and SBMAC) is effective only when -NOGEN is specified as an option for the document

processor (DOC17K).

(2) The object codes in an expansion block are output in rows, with up to eight codes per row. In the

output, only the location counter value corresponding to the leftmost object is indicated in the LOC.

location column of the assembly listing.

(3) When SMAC (or SBMAC) is specified, the macro call statement (or built-in macro instruction) itself

is output to the listing.

(4) If a mnemonic or an operand is specified for SMAC (or SBMAC), an error (F037: Syntax error) occurs.

That line becomes invalid.

265

CHAPTER 19 CONTROL INSTRUCTIONS

[Example] (Listing output example)

LOC. SOURCE STATEMENT <- Listing header

SMAC

 MAC_OUT_CONTROL MACRO
···

ENDM
···

MAC_OUT_CONTROL

01240 0C002 0C004 ····· 07128 <- Up to eight objects per row

01248 0713F 15780 ·····

SBMAC
···

SET2 FLG00 , FLG10 <- Two flags have different

01255 16001 16011 addresses.

266

RA17K USER'S MANUAL

19.4.2 VMAC and VBMAC

[Format]

[<label>:][∆]VMAC[∆][;<comment>]

[<label>:][∆]VBMAC[∆][;<comment>]

[Function]

VMAC and VBMAC disable listing output for all the statements in macro and repetitive blocks, instead

outputting only object code.

Object codes are output, in columns, to the OBJ. assembly listing.

[Notes]

(1) VMAC (and VBMAC) is effective only when -NOGEN is specified as an option for the document

processor (DOC17K).

(2) The object codes in an expansion block are output in columns. In the output, the location counter

value corresponding to each object code is indicated in the LOC. location column of the assembly

listing.

(3) When VMAC (or VBMAC) is specified, the macro call statement (or built-in macro instruction) itself

is output to the listing.

(4) If a mnemonic or an operand is specified for VMAC (or VBMAC), an error (F037: Syntax error) occurs.

That line becomes invalid.

267

CHAPTER 19 CONTROL INSTRUCTIONS

[Example] (Listing output example)

LOC. OBJ. M I SOURCE STATEMENT <- Listing header

VMAC

MAC_OUT_CONTROL MACRO ; User-defined macro
···
ENDM
···
MAC_OUT_CONTROL

01240 0C002 <- Only objects are output, in columns, to the listing.

01241 0C004 (The LOC. column contains the location address corresponding to the object.)
···
···

01248 07128

01249 0713F

01250 15780
···
···

VBMAC

SET2 FLG00 , FLG10 ; Built-in macro

01255 16001

01256 16011

···
···

268

RA17K USER'S MANUAL

19.4.3 OMAC and OBMAC

[Format]

[<label>:][∆]OMAC[∆][;<comment>]

[<label>:][∆]OBMAC[∆][;<comment>]

[Function]

OMAC and OBMAC output to an assembly listing only those statements, existing in the macro and

repetitive blocks, from which object code is generated.

[Notes]

(1) OMAC (and OBMAC) is effective only when the -NOGEN option is specified for the document

processor (DOC17K).

(2) For a built-in macro instruction, the assembler outputs only those statements from which object code

is generated, unless SBMAC or NOBMAC is specified. That is, the processing performed is the same

as that performed when LBMAC is specified.

(3) When OMAC (or OBMAC) is specified, the macro call statement (or built-in macro instruction) itself

is also output to the listing.

(4) If a mnemonic or an operand is specified for OMAC (or OBMAC), an error (F037: Syntax error) occurs.

That line becomes invalid.

269

CHAPTER 19 CONTROL INSTRUCTIONS

[Example] (Listing output example)

LOC. OBJ. M I SOURCE STATEMENT <- Listing header

OMAC

MAC_OUT_CONTROL MACRO

IF COND

MOV MEMA , @REGA

ADD MEMA , #1

ELSE

MOV MEMA , @REGB

ADD MEMA , #1

ENDIF
···
···
ENDM
···

COND SET 1

MAC_OUT_CONTROL <- Only subsequent

01240 0C002 MOV MEMA , @REGA statements are output to

01241 0C004 ADD MEMA , #1 the assembly listing.

01248

···
···

···
···

270

RA17K USER'S MANUAL

19.4.4 NOMAC and NOBMAC

[Format]

[<label>:][∆]NOMAC[∆][;<comment>]

[<label>:][∆]NOBMAC[∆][;<comment>]

[Function]

NOMAC and NOBMAC disable listing output for all the statements in macro and repetitive blocks.

[Notes]

(1) NOMAC (and NOBMAC) is effective only when the -NOGEN option is specified for the document

processor (DOC17K).

(2) In the listing, only the location counter value corresponding to the first object of the macro appears

in the LOC. column of the row immediately following that of the macro call statement or built-in macro

instruction.

(3) When NOMAC (or NOBMAC) is specified, the macro call statement (or built-in macro instruction) itself

is output to the listing.

(4) If a mnemonic or an operand is specified for NOMAC (or NOBMAC), an error (F037: Syntax error)

occurs. That line becomes invalid.

271

CHAPTER 19 CONTROL INSTRUCTIONS

[Example] (Listing output example)

LOC. SOURCE STATEMENT <- Listing header

NOMAC

 MAC_OUT_CONTROL MACRO
···

ENDM
···

MAC_OUT_CONTROL

01240

NOBMAC
···

SET1 FLG00

01255

INITFLG FLG10 , FLG11 , FLG12 , FLG13

001258

272

RA17K USER'S MANUAL

19.4.5 LMAC and LBMAC

[Format]
[<label>:][∆]LMAC[∆][;<comment>]

[<label>:][∆]LBMAC[∆][;<comment>]

[Function]
LMAC and LBMAC enable listing output for all the statements in macro and repetitive blocks.

[Notes]

(1) At the start of assembly (at the beginning of a module file), processing is performed assuming that
LMAC (or LBMAC) is specified as the default.

(2) Use LMAC (or LBMAC) to invalidate SMAC (or SBMAC), VMAC (or VBMAC), OMAC (or OBMAC),

or NOMAC (or NOBMAC), specified in the source program, when the -NOGEN option is specified for
the document processor (DOC17K).

(3) If a statement in a macro contains a listing output control instruction, processing is performed
according to the listing output control instruction even though LMAC is specified before the macro is

referenced. For example, if SFCOND is specified in a macro as shown in the following example, listing
output is not performed for those statements in the false condition block.

NOMAC
···

MAC_OUT MACRO
SFCOND

COND SET 1
IF COND

MOV MEMA , @REGA
ADD MEMA , #1

ELSE
MOV MEMA , @REGB
ADD MEMA , #1

ENDIF
···
ENDM
···
LMAC ; Macro MAC_OUT is referenced after

; LMAC is specified.
MAC_OUT

01240 0C002 MOV MEMA , @REGA<- Only this and
01241 0C004 ADD MEMA , #1 subsequent statements

are output to the
assembly listing.

(4) If a mnemonic or an operand is specified for an LMAC or LBMAC statement, an error (F037: Syntax

error) occurs. That line becomes invalid.

273

CHAPTER 19 CONTROL INSTRUCTIONS

19.5 DOCUMENT CREATION CONTROL INSTRUCTIONS

Document creation control instructions are effective for the document processor (DOC17K).

The supported control instructions are SUMMARY and tag (;.). These control instructions are effective only

when -SUMMARY is specified as an assembler option. If the -SUMMARY option is not specified, SUMMARY

or tag and any subsequent description are assumed to be a comment, such that no processing is performed.

In addition, no error occurs nor is any warning issued.

If an error occurs as a result of executing a document creation control instruction, no summary file (.SUM)

is created. If only a warning is issued, however, a summary file is created.

[Summary configuration]

The following figure shows the summary configuration in a module (source module file).

274

RA17K USER'S MANUAL

Specify a first-layer program summary with the

-SUMMARY option of the document processor.

The SUMMARY specified at the beginning of a module

is a second-layer module summary.

A SUMMARY that is specified in a location for which

a second-layer module summary is not specified

becomes a third-layer routine summary.

Normally, specify a third-layer routine summary

immediately before CSEG.

Specify fourth- and lower-layer summaries by using a

tag (;. and ;..).

The range of a fourth- or lower-layer summary can be

specified using ;. and ;... Fourth- and lower-layer

summaries can be nested.

Tags can be specified only within section blocks.

;.

;..

······

;.

;..

···

;.

;..

···

;.

;..

SUMMAY

Summary text

ENDSUM
CSEG

END

···

···

······

SUMMARY

Summary text

ENDSUM

···

···

SUMMARY

Summary text

ENDSUM

CSEG

···

···

3rd-layer routine summary

5th-layer summary

5th-layer summary

4th-layer summary

4th-layer summary

3rd-layer routine summary

2nd-layer module summary

275

CHAPTER 19 CONTROL INSTRUCTIONS

19.5.1 SUMMARY

[Format]

Definition format <1>

[<label>:][∆]SUMMARY∆'<terminating-string>'[,'[\f\nx]<title>[\nx]']

<summary-text> (Character string without a terminating string)

<terminating-string>

Definition format <2>

[<label>:][∆]SUMMARY [∆][,'[\f\nx]<title>[\nx]']

<summary-text>

ENDSUM

Remark Parameters \f and \n specify a form feed and a line feed in document text, respectively.

\f : Places the form feed code (FF) immediately before the document text of the module or

routine. \f must be specified in half-size lower-case letters. Use the .EJ command to

specify a form feed at the end of a document.

\nx : Specifies, with x, the number of line feed codes (CR/LF) that are to be placed before or

after the title to be printed for the document text of the module or routine. Specifying \n

immediately before <title> places the line feed code before the title. Specifying \n

immediately after <title> places the line feed code after the title. \n must be specified in

half-size lower-case letters, while x must be a one-digit decimal number (1 ≤ x ≤ 9).

[Function]

The SUMMARY control instruction defines <summary-text> (summary) of a module or routine.

Two definition formats are supported.

Definition format <1>

The block that begins on the line immediately following that containing the SUMMARY control instruction

and which ends with the character string specified in the first operand <terminating-string> is <summary-

text> of the module or routine. The second operand is <title> of the module or routine.

Definition format <2>

<terminating-string> can be omitted. When <terminating-string> is omitted, ENDSUM is assumed to be

<terminating-string>. In this case, the block between SUMMARY and ENDSUM is assumed to be

<summary-text> of the module or routine. The first operand is <title> of the module or routine.

<title> is printed in the contents and text of a document. <summary-text> is printed in the text of a

document.

If a NULL character string (' ') is specified for <terminating-string> in definition format <1>, only <title>

is registered. In such a case, <summary-text> cannot be written.

276

RA17K USER'S MANUAL

[Title]

Specify <title> in an operand of the SUMMARY control instruction. <title> can be omitted. When <title>

is omitted, it is assigned as described below.

• When <title> of a module summary is omitted

The module file name is <title>.

• When <title> of a routine summary is omitted

The section name is <title>. If no applicable CSEG pseudo instruction is specified or absolute mode

is set, <title> is assigned as follows:

No title xx (Applies to PC-9800 series computers. xx is a serial number consisting of half-size numeric

characters, beginning with 01.)

NON_TITLE xx (Applies to IBM PC series computers. xx is a serial number consisting of half-size

numeric characters, beginning with 01.)

[Notes]

(1) <terminating-string> is replaced by a line feed code in the document text. If <terminating-string> is

placed at the beginning of a line, one line of line feed codes is placed immediately after the document

text.

(2) If a character string containing <terminating-string> is specified in <summary-text>, the portion of the

character string that follows <terminating-string> is ignored, such that the definition of <summary-text>

ends at <terminating-string>.

If <summary-text> is continued to the next line, an error (F037: Syntax error) occurs.

(3) If a label or an operand is specified for ENDSUM, an error (F037: Syntax error) occurs. That line

becomes invalid. This causes the line to be regarded as being part of <summary-text>.

(4) In <terminating-string>, only the first 16 characters (ASCII) are valid. The 17th and subsequent

characters, if specified, are ignored.

(5) The combined length of <title> and the SUMMARY control instruction must not exceed the maximum

number of characters that can be specified on one line (253).

(6) To specify \ (half-size character) in <title>, code two consecutive \s. For example, to register "no line

feed \" as <title>, code the following:

SUMMARY '%','"no line feed \\"'

277

CHAPTER 19 CONTROL INSTRUCTIONS

(7) Commands for documents can be specified in <summary-text> (see [Commands for documents] ,

below).

The character string of such a command is not registered as part of <summary-text>.

(8) Be particularly careful when using only one half-size character (8-bit ASCII character) for

<terminating-string> in the SUMMARY control instruction of the document creation function.

Assume that one half-size character is specified for <terminating-string>. In this case, if a full-size

character specified in the block between SUMMARY and <terminating-string> contains the 8-bit code

corresponding to the half-size character specified as <terminating-string>, that full-size character

may be regarded as being a terminating character.

[Example] \ is specified as a terminating string.

8-bit code for \ : 5CH

Shift JIS code for (table) : 955CH

Example statement:

SUMMARY '\','TITLE CHARACTER-STRING'
···

··· ; is recognized as a terminating

; string.

; All characters following are

 \ ;handled as syntax errors.

(9) The SUMMARY pseudo instruction cannot be nested. Even if a SUMMARY statement is specified

between SUMMARY and ENDSUM, that SUMMARY statement is regarded as being part of

<summary-text>.

(10) If no <terminating-string> or ENDSUM statement is specified for SUMMARY, an error (F162: No

ENDSUM statement) occurs at the end of the END statement or source module file.

(11) Specifying only an ENDSUM statement results in an error (F195: Invalid ENDSUM statement).

(12) If ' ' (NULL character string) is specified in <title>, the assembler assumes that the title has been

omitted (see [Title]).

(13) If <summary-text> contains an END statement, assembly ends at that END statement.

(14) In the final section, SUMMARY remains effective up to the line preceding the END statement.

(15) SUMMARY remains effective between CSEG and the next CSEG, or between CSEG and the line

preceding END.

···

278

RA17K USER'S MANUAL

(16) If multiple SUMMARY statements are specified between CSEGs, a warning (W021: The SUMMARY

statement described before is invalid) is issued in the second or a subsequent SUMMARY statement

and the most recently written SUMMARY statement becomes valid. That is, the SUMMARY

statement specified immediately before CSEG is the routine summary.

[Document commands]

Commands for specifying the document output format are described below. These commands begin with

a period (.) and are specified in the block between SUMMARY and a terminating string. The commands

can be written at any point within the summary text. A command itself is not output in the document text.

RA17K unconditionally skips commands for documents because they are written in summary text. Thus,

RA17K does not perform any check on the validity of commands.

<1> .EJECT: In the summary text of document text, places the form feed code at the location where

.EJECT is specified.

<2> .EJn: In document text, places the form feed code at the beginning of the n-th line, counted from

the line following the end of the summary text.

n = 0 to 250 -> The form feed code is placed on the n-th line. When n = 0, no form feed code is

placed. Note that .EJn is invalid in the following cases:

• When the form feed code specified in the ROW option appears before the n-th

line.

• When the document text specified in the next SUMMARY statement appears

before the n-th line.

n = –1 -> The form feed code is placed at the end of the document text for the module or

routine.

n is a decimal number, written in half-size characters, and must be –1 or from 0 to 250. If any other

number is specified, an error occurs and the default is assumed.

The default for n is 0, indicating that no form feed code is placed.

<3> .LFn: Specifies the number of line feed codes inserted between titles in the contents.

n = 0 to 99 -> The line feed code is placed on the n-th line, counted from the line immediately

following the title. Note that .LFn is invalid if the form feed code specified in the ROW

option appears before the n-th line.

n is a decimal number, from 0 to 99, written in half-size characters. If any other number is specified,

an error occurs and the default is assumed. The default for n is 0, indicating that no line feed code

is placed.

<4> .TITLE'character-string': Specifies the title to be printed on the first line of each page of the document

text.

If a page contains documents prepared using multiple SUMMARY statements, the title character

string for the document, output on the first line of the page, is printed.

279

CHAPTER 19 CONTROL INSTRUCTIONS

[Notes]

(1) If the .EJn or .LFn command is specified more than once in a single SUMMARY block, the most-

recently specified value becomes valid.

(2) Even if the value of n for the .EJn or .LFn command falls outside the specified range, an error does

not occur during assembly or linkage. For document processing, however, the document processor

(DOC17K) issues a warning (W030: Invalid command). The specified value becomes invalid.

(3) A command must be specified starting from the beginning of a line. It is possible, however, for a

command to be preceded by spaces or a tab code.

[Example]

(1) SUMMARY is specified more than once (in absolute mode)

SUMMARY ' @' <- The module name becomes <title> because <title> is omitted.
···

<summary-text>
···

@

SUMMARY ' @' <- No title 01 is <title> because <title> is omitted.
···

<summary-text>
···

@

SUMMARY ' @' <- No title 02 is <title> because <title> is omitted.
···

<summary-text>
···

@

END

The first SUMMARY specified is the module summary (second layer). Any subsequent SUMMARY

is a routine summary (third layer).

280

RA17K USER'S MANUAL

(2) SUMMARY is written only once (in absolute mode)

SUMMARY ' @' , 'initialization'
···

<summary-text>
···

@

END

The specified SUMMARY is a routine summary (third layer). The module summary (second layer)

is generated automatically by RA17K. The title of the generated module summary (second layer)

becomes the module name.

(3) SUMMARY is not specified (in absolute mode)

END

The module summary (second layer) and a routine summary (third layer) are generated automatically.

The title of the generated module summary (second layer) becomes the module name, while the

generated routine summary (third layer) has no title.

281

CHAPTER 19 CONTROL INSTRUCTIONS

(4) SUMMARY is specified more than once (in relocatable mode)

SUMMARY ' @' <- The module name becomes <title> because <title> is omitted.
···

<summary-text>
···

@

SUMMARY ' @' <- Section name PRO1 is <title> because <title> is omitted.
···

<summary-text>
···

@

PRO1 CSEG
···
···

SUMMARY ' @' <- Section name PRO2 is <title> because <title> is omitted.
···

<summary-text>
···

@

PRO2 CSEG
···
···

END

The first SUMMARY specified is the module summary (second layer). Any subsequent SUMMARY
is a routine summary (third layer).

(5) The module summary (second layer) is omitted (in relocatable mode)

SUMMARY ' @' <- Section name PRO1 becomes <title> because <title> is omitted.
···

<summary-text>
···

@

PRO1 CSEG
···
···

END

If only one SUMMARY is specified between the beginning of a module and CSEG, the SUMMARY
is a routine summary (third layer). The module summary (second layer) is generated automatically.

282

RA17K USER'S MANUAL

(6) SUMMARY is specified more than once before a CSEG pseudo instruction (in relocatable mode)

SUMMARY ' @'
···

<summary-text>
···

@

SUMMARY ' @' <- Although <title> is omitted, no title 01 becomes <title> because no applicable

CSEG exists.
···

<summary-text>
···

@

SUMMARY ' @'
···

<summary-text>
···

@

PRO1 CSEG
···
···

END

The first SUMMARY specified is the module summary (second layer). Any subsequent SUMMARY

is a routine summary (third layer).

(7) No SUMMARY is specified before a CSEG pseudo instruction (in relocatable mode)

The module summary (second layer) and routine summaries (third layer) are generated automatically.

283

CHAPTER 19 CONTROL INSTRUCTIONS

(8) SUMMARY is specified in CSEG (in relocatable mode)

PRO1 CSEG
···

SUMMARY
···

<summary-text>
···

ENDSUM
···

END

[Relationship between SUMMARY and macros]

If a SUMMARY control instruction is specified in a macro body, it must also be closed within that macro

body. If the SUMMARY control instruction is not closed, an error (F162: No ENDSUM statement) occurs

once the expansion of all macro bodies is completed. In addition, the SUMMARY control instruction for

which the error occurred is closed forcibly upon the occurrence of the error.

(1) Only a SUMMARY statement is specified in a macro body

DAT1 DAT 1

+ MAC1 <- Macro reference

+

+ SUMMARY

+

+ ENDM <- An error (F162: No ENDSUM statement) occurs when macro

expansion is completed, and macro MAC1 is not processed

normally. In addition, SUMMARY is closed unconditionally by

ENDM, and the next and subsequent lines are assembled.
···

ENDSUM <- An error (F195: Invalid ENDSUM statement) occurs.

···

···

284

RA17K USER'S MANUAL

19.5.2 ;. (tag)

[Format]

[<label>:] ;.[[\nx]character-string[\nx]]

;

; <summary-text>

;

statement-group

;.. (Tag terminating symbol)

[Function]

The character string following ;. is registered as a tag.

The registered character string is used in SIMPLEHOST as the lowest-level header of the program layer.

In the document, the registered character string is printed in the contents as a low-level header. In the

document text, a tag table consisting only of the tags specified in a routine is generated. This tag table

is placed after the <summary-text> for the routine.

If \nx is specified immediately before or after character-string, the line feed code is placed either before

or after character-string in the contents and tag table. x must be a one-digit decimal number. If \nx is

omitted or specified incorrectly, no line feed code is placed.

In relocatable mode, a tag begins with ;. and ends with ;... The scope of a tag can be specified using

these symbols. In addition, a tag can be specified within another tag, that is, they can be nested.

[Title]

The title of a tag is determined as follows:

In absolute mode

• The character string following ;. is the title.

In relocatable mode

• When <label> is specified

<label> becomes <title>. The character string following ;. is merely a comment.

• When no <label> is specified

The character string following ;. is <title>.

• When neither <label> nor the character string following ;. is specified

The first line of <summary-text> is the title. If the first line of <summary-text> is a blank line or if

<summary-text> is omitted, the title is no title xx (where xx is the serial number).

285

CHAPTER 19 CONTROL INSTRUCTIONS

[Summary text]

In relocatable mode, all comment lines (lines in which only comments are specified) immediately after the

line specifying a tag, are <summary-text>. A line without a comment terminates <summary-text>.

[Notes]

(1) The maximum length of a character string corresponds to the maximum number of characters that

can be specified on a line.

(2) Specification of the tag control instruction itself can be started from any character position on a line.

Even if a tag control instruction and other control instructions are specified on the same line, no error

occurs. However, that line will not be processed as a tag.

(3) Tags can be nested in relocatable mode. If, however, the nesting is made incorrectly, a warning

(W198: No end mark for tag) is issued in the next CSEG or END statement.

(4) In relocatable mode, a tag starting with (.) and terminating with (..) can be replaced with other

characters by using the -TAGSTART and -TAGEND options.

(5) In relocatable mode, a tag can be specified only in a section block. If a tag is specified outside a

section block, an error (F200: Invalid tag statement) occurs. That line becomes invalid.

(6) In relocatable mode, a range can be specified using the starting (.) and terminating (..) characters.

In absolute mode, the scope of a tag begins with the starting character (.) and ends with the next

tag or SUMMARY.

(7) If a tag is specified in relocatable mode, any instruction from which object code is generated must

be written in the tag (between . and ..). If an instruction from which object code is generated is placed

outside the tag, a warning (W201: No mnemonic to make an object code in a tag) is issued.

(8) If the tag terminating character (..) appears before the specification of a tag starting character (.),

an error (F200: Invalid tag statement) occurs.

(9) In absolute mode, the tag terminating character (..) is handled as a comment.

(10) All characters following ;.. are ignored.

(11) The -TAGSTART and -TAGEND options are ignored in absolute mode.

286

RA17K USER'S MANUAL

[Example]

(1) Example coding (in absolute mode)

;. processing-1
···

statement-group
···

;. processing-2
···

The scope of the tag for title processing-1 extends to the next tag.

(2) Example coding (in relocatable mode)

ABC CSEG

title-1: ;.

; The character string specified here is <summary-text>.

;

;

statement-group

;. title-2 (<summary-text> is omitted.)

statement-group

;.. (Terminating symbol for title-2)

;.. (Terminating symbol for title-1)

END

287

CHAPTER 19 CONTROL INSTRUCTIONS

(3) Specifying tags that cause an error (in relocatable mode)

ABC CSEG

title-1: ;.

; The character string specified here is <summary-text>.

;

;

statement-group

;. title-2 (<summary-text> is omitted.)

statement-group

;.. (Terminating symbol for title-2)

;.

;..

END <- A warning (W198: No end mark for tag) is issued because the

nesting of tags is invalid.

(4) Object code outside a tag (in relocatable mode)

ABC CSEG

title-1: ;.

; The character string specified here is <summary-text>.

;

;

statement-group

;.. <- End of the tag for title title-1

NOP <- A warning (W201: No mnemonic to make an object code in a

tag) is issued because this instruction is place outside the tag.

;. title-2 (<summary-text> is omitted.)

statement-group

;.. (Terminating symbol for title-2)

;.

;..

END

288

RA17K USER'S MANUAL

19.5.3 ;.V (registration of labels as tags)

[Format]
;.V[\nx]
;
; <summary-text>
;

<label>:

statement-group

;.. (Terminating symbol for tag)

[Function]
The label on the line following the line where ;.V[\nx] is specified is registered as a tag in the tag table.
Most of the specifications for the tag control instruction also apply to the ;.V control instruction.

[Example]

LOC. OBJ. M I STATEMENT

;.V\n2 ;TAG1
TBL1:
LIST_ON
;
PUBLIC Delay change
EXTRN LAB:DELAYCHNG
EXTRN MEM:RGO,object-of-control

;.V ;***
Delay change: ;***

;***

LD RGO,object-of-control ;Save object-of-control in RGO.
DELAY_CHNG
BR Timer processing
···
···
BR Delay change
···
···

; **
;. Timer processing ;***
; **
Timer processing:

;..
;..

In the above example, TBL1, delay change, and timer processing are indicated in the routine tag table
as tags of the same routine.

289

CHAPTER 20 17K SERIES INSTRUCTIONS

This chapter explains the mnemonics and operands used with the 17K series.

20.1 MNEMONICS

[Explanation]

(1) The mnemonics are listed below. Some devices may not support some of the mnemonics shown.

For details, refer to the data sheet and user's manual provided with the target device, as well as the

user's manual for the device file.

(2) For each mnemonic, the number of operands is fixed. If too many or too few operands are specified

for a given mnemonic, an error (F037: Syntax error) occurs and the object code indicating an NOP

instruction is generated.

(3) If an invalid operand is specified, an error occurs and the object code indicating an NOP instruction

is generated.

The instruction sets are shown below:

Mnemonic Operand(s) Operation Machine code

Operation Operand(s)
code

Addition ADD r, m (r) <- (r) + (m) 00000 mR mC r

m, #n4 (m) <- (m) + n4 10000 mR mC n4

ADDC r, m (r) <- (r) + (m) + CY 00010 mR mC r

m, #n4 (m) <- (m) + n4 + CY 10010 mR mC n4

INC AR AR <- AR + 1 00111 000 1001 0000

IX IX <- IX + 1 00111 000 1000 0000

Subtraction SUB r, m (r) <- (r) – (m) 00001 mR mC r

m, #n4 (m) <- (m) – n4 10001 mR mC n4

SUBC r, m (r) <- (r) – (m) – CY 00011 mR mC r

m, #n4 (m) <- (m) – n4 – CY 10011 mR mC n4

Instruction
set

290

RA17K USER'S MANUAL

Logical
operation

Mnemonic Operand(s) Operation Machine code

Operation Operand(s)
code

OR r, m (r) <- (r) ∨ (m) 00110 mR mC r

m, #n4 (m) <- (m) ∨ n4 10110 mR mC n4

AND r, m (r) <- (r) ∧ (m) 00100 mR mC r

m, #n4 (m) <- (m) ∧ n4 10100 mR mC n4

XOR r, m (r) <- (r) ∨ (m) 00101 mR mC r

m, #n4 (m) <- (m) ∨ n4 10101 mR mC n4

Decision SKT m, #n CMP <- 0, if (m) ∧ n = n, then skip 11110 mR mC n

SKF m, #n CMP <- 0, if (m) ∧ n = 0, then skip 11111 mR mC n

Comparison SKE m, #n4 (m) – n4, skip if zero 01001 mR mC n4

SKNE m, #n4 (m) – n4, skip if not zero 01011 mR mC n4

SKGE m, #n4 (m) – n4, skip if not borrow 11001 mR mC n4

SKLT m, #n4 (m) – n4, skip if borrow 11011 mR mC n4

Rotation RORC r > CY -> (r)b3 -> (r)b2 -> (r)b1 -> (r)b0 00111 000 0111 r

Transfer LD r, m (r) <- (m) 01000 mR mC r

ST m, r (m) <- (r) 11000 mR mC r

MOV @r, m if MPE = 1 : (MP, (r)) <- (m) 01010 mR mC r
if MPE = 0 : (BANK, mR, (r)) <- (m)

m, @r if MPE = 1 : (m) <- (MP, (r)) 11010 mR mC r
if MPE = 0 : (m) <- (BANK, mR, (r))

m, #n4 (m) <- n4 11101 mR mC n4

MOVT DBF, @AR SP <- SP – 1, ASR <- PC, PC <- AR, 00111 000 0001 0000
DBF <- (PC), PC <- ASR, SP <- SP + 1

PUSH AR SP <- SP – 1, ASR <- AR 00111 000 1101 0000

POP AR AR <- ASR, SP <- SP + 1 00111 000 1100 0000

PEEK WR, rf WR <- (rf) 00111 rfR 0011 rfC

POKE rf, WR (rf) <- WR 00111 rfR 0010 rfC

GET DBF, p DBF <- (p) 00111 pH 1011 pL

PUT p, DBF (p) <- (DBF) 00111 pH 1010 pL

Instruction
set

291

CHAPTER 20 17K SERIES INSTRUCTIONS

Mnemonic Operand(s) Operation Machine code

Operation Operand(s)
code

Branch BR addr PC10–0 <- addr, PAGE <- 0 01100 addr

PC10–0 <- addr, PAGE <- 1 01101

PC10–0 <- addr, PAGE <- 2 01110

PC10–0 <- addr, PAGE <- 3 01111

@AR PC <- AR 00111 000 0100 0000

Subroutines CALL addr SP <- SP – 1, ASR <- PC, 11100 addr
PC12, 11 <- 0, PC10–0 <- addr

@AR SP <- SP – 1, ASR <- PC, 00111 000 0101 0000
PC <- AR

SYSCAL entry SP <- SP – 1, ASR <- PC, SGR <- 1, 00111 entryH 0000 entryL
PC12, 11 <- 0, PC10–8 <- entryH, PC7–4 <- 0,
PC3–0 <- entryL

RET PC <- ASR, SP <- SP + 1 00111 000 1110 0000

RETSK PC <- ASR, SP <- SP + 1 and skip 00111 001 1110 0000

RETI PC <- ASR, INTR <- INTSK, SP <- SP + 1 00111 100 1110 0000

Interrupt EI INTEF <- 1 00111 000 1111 0000

DI INTEF <- 0 00111 001 1111 0000

Others STOP s STOP 00111 010 1111 s

HALT h HALT 00111 011 1111 h

NOP No operation 00111 100 1111 0000

Instruction
set

292

RA17K USER'S MANUAL

20.2 OPERAND CODING RULES

This section explains the rules governing the coding of operands.

The following rules are applied to an operand type check.

When multiple operands are specified, the types of all the specified operands are checked simultaneously.

If an operand type error occurs, the error is classified into one of the following types. The error message output

when an operand type is invalid thus depends on the error type.

• When the types of all operands are invalid

The message "F011: Illegal first operand type" is output.

• When two operands are specified, the first of which is invalid

The message "F011: Illegal first operand type" is output.

• When two operands are specified, the second of which is invalid

The message "F012: Illegal second operand type" is output.

• When all operand types are valid, but the operand pattern cannot be recognized

The message "F192: Illegal operand type" is output.

If an operand of an invalid type is specified, an error message is output according to the above rules.

293

CHAPTER 20 17K SERIES INSTRUCTIONS

20.2.1 Operand (r)

[Explanation]

(1) Specify an <expression (MEM type)>. If other than an MEM-type <expression> is specified, an error

occurs.

(2) An <expression> of other than MEM type can be specified by using the type conversion function.

(3) An address cannot be directly specified with a numeric. If the user attempts to directly specify an

address with a numeric, an error occurs. ".MD.11H" can be specified, however.

(4) If the specified address points to uninstalled memory, an error does not occur. If a data memory

address above 7FH is specified, an error occurs. For the first operand, the message "F014: Illegal

first operand value" is output. For the second operand, the message "F015: Illegal second operand

value" is output.

(5) A symbol with the multi-nibble attribute can also be specified. When such a symbol is specified, any

nibble information is ignored.

(6) The row address of the <expression>, specified for the first operand, and the value of the register

pointer (RP) are not checked.

[Examples]

(1) Example of correct use

M011 MEM 0.11H

R00 MEM 0.00H

ADD R00,M011 An MEM-type symbol is specified for operand (r).

(2) When a numeric is specified directly

M011 MEM 0.11H

ADD 00H,M011 An error (F011: Illegal first operand type) occurs because DAT-

type data is specified for operand (r) (the system determines that a

DAT-type numeric has been directly specified).

294

RA17K USER'S MANUAL

(3) When a numeric is specified directly

M011 MEM 0.11H

ADD .MD.00H,M011 An error does not occur because the type is converted.

(4) When the system cannot determine whether the specified data is a numeric

M011 MEM 0.11H

ADD 0.00H,M011 An error (F037: Syntax error) occurs because the system

cannot determine whether the data specified for operand (r) is

an <expression>.

295

CHAPTER 20 17K SERIES INSTRUCTIONS

20.2.2 Operand (m)

[Explanation]

(1) Specify an <expression (MEM type)>. If other than an MEM-type <expression> is specified, an error

occurs.

(2) An <expression> of other than MEM type can also be specified using the type conversion function.

(3) An address cannot be directly specified with a numeric. If the user attempts to directly specify an

address with a numeric, an error occurs. ".MD.11H" can be specified, however.

(4) If the specified address points to uninstalled memory, an error does not occur. If a data memory

address above 7FH is specified, an error occurs. For the first operand, the message "F014: Illegal

first operand value" is output. For the second operand, the message "F015: Illegal second operand

value" is output.

(5) A symbol with the multi-nibble attribute can also be specified. When such a symbol is specified, any

nibble information is ignored.

[Examples]

(1) Example of correct use

M011 MEM 0.11H

R00 MEM 0.00H

ADD R00,M011 An MEM-type symbol is specified for operand (m).

(2) When a numeric is specified directly

R00 MEM 0.00H

ADD R00,11H An error (F012: Illegal second operand type) occurs because

DAT-type data is specified for operand (m) (the system

determines that a DAT-type numeric has been directly

specified).

(3) When a numeric is specified directly

R00 MEM 0.00H

ADD R00,.MD.11H An error does not occur because the type is converted.

296

RA17K USER'S MANUAL

(4) When the system cannot determine whether the specified data is a numeric

R00 MEM 0.00H

ADD R00,0.00H An error (F037: Syntax error) occurs because the system

cannot determine whether the data specified for operand (m)

is an <expression>.

20.2.3 Operand (#n4)

[Explanation]

(1) Specify an <expression (DAT type)>, preceded by "#." If other than a DAT-type <expression> is

specified, an error occurs.

(2) If "#" is omitted, an error (F037: Syntax error) occurs.

(3) If only "#" is specified, without an <expression>, an error (F037: Syntax error) occurs.

(4) If the evaluation value is other than 0 to 15, an error (F015: Illegal second operand value) occurs.

(5) A numeric can also be specified directly.

20.2.4 Operand (AR)

[Explanation]

(1) An <expression> can be specified. Normally, specify reserved word symbol AR. A DAT-type

<expression> for which the evaluation value is 40H can also be specified. This is because, for an

operand, only the type and evaluation value are checked.

(2) If a non-resolved symbol is specified for the <expression>, an error (F058: Undefined symbol) occurs.

(3) If an external symbol is specified for the <expression>, an error (F150: Impossible to write the external

symbol) occurs.

(4) If the type obtained when the <expression> is evaluated is other than DAT, an error occurs.

(5) If the evaluation value of the <expression> is other than 40H, an error (F014: Illegal first operand

value) occurs.

297

CHAPTER 20 17K SERIES INSTRUCTIONS

20.2.5 Operand (IX)

[Explanation]

(1) An <expression> can be specified. Normally, specify reserved word symbol IX. A DAT-type

<expression> having an evaluation value of 01H can also be specified. This is because, for an

operand, only the type and evaluation value are checked.

(2) If a non-resolved symbol is specified for the <expression>, an error (F058: Undefined symbol) occurs.

(3) If an external symbol is specified for the <expression>, an error (F150: Impossible to write the external

symbol) occurs.

(4) If the type obtained when the <expression> is evaluated is other than DAT, an error occurs.

(5) If the evaluation value of the <expression> is other than 01H, an error (F014: Illegal first operand

value) occurs.

20.2.6 Operand (@r)

[Explanation]

(1) Specify an <expression (MEM type)>, preceded by "@." If other than an MEM-type <expression> is

specified, an error occurs.

(2) If "@" is omitted, an error (F037: Syntax error) occurs.

(3) If only "@" is specified, without an <expression>, an error (F037: Syntax error) occurs.

(4) An <expression> of other than MEM type can also be specified using the type conversion function.

(5) Addresses cannot be directly specified with a numeric. If the user attempts to directly specify an

address with a numeric, an error occurs. ".MD.11H" can be specified, however.

(6) If the specified address points to uninstalled memory, an error does not occur. If a data memory

address above 7FH is specified, an error occurs. For the first operand, the message (F014: Illegal

first operand value) is output. For the second operand, the message (F015: Illegal second operand

value) is output.

(7) A symbol with the multi-nibble attribute can also be specified. When such a symbol is specified, any

nibble information is ignored.

298

RA17K USER'S MANUAL

20.2.7 Operand (DBF)

[Explanation]

(1) An <expression> can be specified. Normally, specify reserved word symbol DBF. A DAT-type

<expression> for which the evaluation value is 0FH can also be specified. This is because, for an

operand, only the type and evaluation value are checked.

(2) If a non-resolved symbol is specified for the <expression>, an error (F058: Undefined symbol) occurs.

(3) If an external symbol is specified for the <expression>, an error (F150: Impossible to write the external

symbol) occurs.

(4) If the type obtained when the <expression> is evaluated is other than DAT, an error occurs.

(5) If the evaluation value of the <expression> is other than 0FH, an error (F014: Illegal first operand

value) occurs.

20.2.8 Operand (@AR)

[Explanation]

(1) The format is @<expression>.

(2) If a non-resolved symbol is specified for the <expression>, an error (F058: Undefined symbol) occurs.

(3) If an external symbol is specified for the <expression>, an error (F150: Impossible to write the external

symbol) occurs.

(4) If the type obtained when the <expression> is evaluated is other than DAT, an error occurs.

(5) If the evaluation value of the <expression> is other than 40H, an error (F014: Illegal first operand

value) occurs for the first operand. Or, for the second operand, (F015: Illegal second operand value)

occurs.

299

CHAPTER 20 17K SERIES INSTRUCTIONS

20.2.9 Operand (WR)

[Explanation]

(1) An <expression> can be specified. Normally, specify reserved word symbol WR. An MEM-type

<expression> for which the evaluation value is 0.78H can also be specified. This is because, for an

operand, only the type and evaluation value are checked.

(2) If a non-resolved symbol is specified for the <expression>, an error (F058: Undefined symbol) occurs.

(3) If an external symbol is specified for the <expression>, an error (F150: Impossible to write the external

symbol) occurs.

(4) If the type obtained when the <expression> is evaluated is other than MEM, an error occurs.

(5) If the evaluation value of the <expression> is other than 0.78H, an error (F014: Illegal first operand

value) occurs for the first operand. Or, for the second operand, (F015: Illegal second operand value)

occurs.

20.2.10 Operand (rf)

[Explanation]

(1) Specify an <expression (MEM type)>. If other than an MEM-type <expression> is specified, an error

occurs.

(2) An <expression> of other than MEM type can also be specified by using the type conversion function.

(3) Addresses cannot be directly specified with a numeric. If the user attempts to directly specify an

address with a numeric, an error occurs. ".MD.81H" can be specified, however.

(4) If a write-only register file is specified for the operand of the PEEK instruction, an error occurs.

If a read-only register file is specified for the operand of the POKE instruction, an error occurs.

If an unused area is specified with the PEEK or POKE instruction, an error occurs.

(5) A symbol with the multi-nibble attribute can also be specified. When such a symbol is specified, any

nibble information is ignored.

(6) If the evaluation value of the <expression> is other than 40H to BFH, an error occurs.

300

RA17K USER'S MANUAL

20.2.11 Operand (p)

[Explanation]

(1) Specify an <expression (DAT type)>. If other than a DAT-type <expression> is specified, an error

occurs.

(2) An <expression> of other than DAT type can also be specified using the type conversion function.

(3) A numeric can also be specified directly.

(4) If a write-only port is specified for the operand of the GET instruction, an error occurs.

If a read-only port is specified for the operand of the PUT instruction, an error occurs.

If an unused address is specified with the GET or PUT instruction, an error occurs.

(5) If the evaluation value of the <expression> is greater than 7FH, an error (F014: Illegal first operand

value) occurs for the first operand. Or, for the second operand, (F015: Illegal second operand value)

occurs.

(6) A symbol with the multi-nibble attribute can also be specified. When such a symbol is specified, any

nibble information is ignored.

20.2.12 Operand (#n)

[Explanation]

(1) Specify an <expression (DAT type)> preceded by "#." If other than a DAT-type <expression> is

specified, an error occurs.

(2) If "#" is omitted, an error (F037: Syntax error) occurs.

(3) If only "#" is specified, without an <expression>, an error (F037: Syntax error) occurs.

(4) If the evaluation value is other than 0 to 15, an error (F015: Illegal second operand value) occurs.

(5) A numeric can be directly specified for the <expression>.

301

CHAPTER 20 17K SERIES INSTRUCTIONS

20.2.13 Operand (addr)

[Explanation]

(1) Specify an <expression (LAB type)>. If other than an LAB-type <expression> is specified, an error

occurs.

(2) An <expression> of other than LAB type can also be specified using the type conversion function.

(3) Addresses cannot be directly specified with a numeric. If the user attempts to directly specify an

address with a numeric, an error occurs. ".LD.11H" can be specified, however.

(4) If the specified address points to uninstalled memory (neither ROM area nor EPA area), an error (F152:

The address is out of ROM) occurs.

20.2.14 Operand (entry)

[Explanation]

(1) Specify an <expression (DAT type)>. If other than a DAT-type <expression> is specified, an error

occurs.

(2) An <expression> of other than DAT type can also be specified using the type conversion function.

(3) A numeric can also be specified directly.

(4) If the evaluation value of the <expression> is greater than 7FH, an error (F014: Illegal first operand

value) occurs.

302

RA17K USER'S MANUAL

20.2.15 Operand (s)

[Explanation]

(1) Specify an <expression (DAT type)>. If other than a DAT-type <expression> is specified, an error

occurs.

(2) An <expression> of other than DAT type can also be specified using the type conversion function.

(3) A numeric can also be specified directly.

(4) If the evaluation value of the <expression> is greater than 0FH, an error (F014: Illegal first operand

value) occurs.

20.2.16 Operand (h)

[Explanation]

(1) Specify an <expression (DAT type)>. If other than a DAT-type <expression> is specified, an error

occurs.

(2) An <expression> of other than DAT type can also be specified using the type conversion function.

(3) A numeric can also be specified directly.

(4) If the evaluation value of the <expression> is greater than 0FH, an error (F014: Illegal first operand

value) occurs.

303

CHAPTER 21 BUILT-IN MACRO INSTRUCTIONS

RA17K supports built-in macro instructions, thus freeing the user from the need to define such instructions

before using them.

This chapter explains the following built-in instructions, as supported by RA17K:

• System register operation instructions

• Flag (bit) manipulation instructions

• Instructions extended from 17K series instructions

• Structured instructions for creating structured program descriptions.

The built-in macro instructions can be classified into four types.

• System register operation instructions

BANKn SETBANK SETRP SETMP SETIX SETAR

• Flag operation instructions

SETn CLRn NOTn SKTn SKFn INITFLG

• Extended instructions

SETX CLRX NOTX SKTX SKFX INITFLGX

MOVX MOVTX ADDX ADDCX ADDSX ADDCSX

SUBX SUBCX SUBSX SUBCSX SKEX SKNEX

SKGEX SKGTX SKLEX SKLTX RORCX ROLCX

SHRX SHLX ANDX ORX XORX BRX

CALLX SYSCALX

• Structured instructions

_IF..._ELSEIF..._ELSE..._ENDIF

_WHILE..._ENDW

_SWITCH..._CASE..._DEFAULT..._ENDS

_REPEAT..._UNTIL

_FOR..._NEXT

_BREAK

_CONTINUE

_GOTO

*

*

*

304

RA17K USER'S MANUAL

[Notes]

(1) A <label> can be specified for all built-in macros (excluding structured instructions). If an invalid

<label> is specified, an error (see Section 4.3) occurs. In this case, the built-in macro is not expanded,

an NOP instruction being generated instead.

(2) A symbol specified for an operand must be a backward reference symbol. Neither forward reference

symbols nor external symbols can be specified. If a forward reference symbol is specified, an error

(F058: Undefined symbol) occurs. If an external symbol is specified, an error (F150: Impossible to

write the external symbol) occurs. In this case, the built-in macro is not expanded, an NOP instruction

being generated instead.

[Label in a built-in macro]

Expanding a built-in macro may cause a branch instruction, such as a BR instruction, to be generated.

At this time, a label is automatically created for the branch destination and a branch instruction is created

for the label.

Label rule applied to built-in macro expansion

?Lxxxx xxxx : Decimal serial number (starting with 0)

[Example]

SKT3 FLG1 , FLG2 , FLG3

↓

SKT .MF.FLG1 SHR 4 , #.DF.FLG1 AND 0FH

BR ?L0

SKF .MF.FLG1 SHR 4 , #.DF.FLG1 AND 0FH

SKT .MF.FLG2 SHR 4 , #.DF.FLG2 AND 0FH

?L0

[Built-in macro expansion]

Built-in macro expansion varies depending on whether the previous instruction has a skip function.

(1) When the previous instruction has no skip function

-> The built-in macro is expanded to the instructions required to perform processing.

(2) When the previous instruction has a skip function

-> The built-in macro is expanded so that the entire macro can be skipped by the skip function. When

the built-in macro instruction is expanded to multiple instructions, therefore, instructions which skip

those instructions are also generated.

305

CHAPTER 21 BUILT-IN MACRO INSTRUCTIONS

[Example 1]

M1 MEM 1.10H

M2 FLG 1.20H.1

M3 FLG 1.34H.2

SKE M1,#1

SET2 M2,M3

↓

SKE M1,#1

BR ?L0

BR ?L1

?L0:

OR .MF.M2 SHR 4 , #.DF.M2 AND 0FH

OR .MF.M3 SHR 4 , #.DF.M3 AND 0FH

?L1:

<1> Expansion of SET2 M2,M3

<2> Instructions are generated because the SET2 instruction follows an instruction having a skip function

21.1 SYSTEM REGISTER OPERATION INSTRUCTIONS

The system register operation instructions are built-in macro instructions used to set values in the system

registers allocated in data memory.

<1>

<2>

*

306

RA17K USER'S MANUAL

21.1.1 BANKn

[Format]

[<label>:][∆]BANKn[∆][;<comment>]

n: 0 ≤ n ≤ 15, n is a decimal integer.

[Function]

BANKn sets the value indicated by n in the bank register (address 79H in data memory).

n indicates a bank number.

[Explanation]

(1) The value set by BANKn can be checked using ZZZBANK.

(2) There is no functional difference between BANKn and SETBANK.

[Notes]

(1) The BANKn instruction cannot be applied to a device having no bank register. Only the BANK0

instruction can be used for a device for which the bank register is fixed to 0.

(2) The value indicated by n is the number of a bank installed in the target device. If a number

corresponding to an uninstalled bank is specified, an error (F046: Invalid BANK No.) occurs and an

NOP instruction is generated. If n indicates a value of more than 15, an error (F037: Syntax error)

occurs.

(3) If an operand is specified with the BANK instruction, an error (F037: Syntax error) occurs. That line

is invalidated.

[Sample expansion]

BANKn is expanded to the following instruction, according to the value specified with n:

BANK3

↓
MOV BANK , #03

*

307

CHAPTER 21 BUILT-IN MACRO INSTRUCTIONS

21.1.2 SETBANK

[Format]

[<label>:][∆]SETBANK∆<expression (MEM type)>[∆][;<comment>]

[Function]

SETBANK sets the bank information for <expression (MEM type)> specified as the operand in the bank

register.

[Explanation]

(1) The value set by SETBANK can be checked using ZZZBANK.

(2) There is no functional difference between BANKn and SETBANK.

[Notes]

(1) Only one <expression> can be specified for the operand. If less than or more than one <expression>

is specified, an error (F037: Syntax error) occurs, and an NOP instruction is generated as an object.

(2) If the type obtained when the <expression> is evaluated is other than MEM, an error (F045: Invalid

type) occurs, and an NOP instruction is generated as an object.

(3) If the bank number obtained when the <expression> is evaluated is not used with the product, an error

(F046: Invalid BANK No.) occurs, and an NOP instruction is generated.

[Sample expansion]

An MEM-type symbol is specified as the operand.

MEM1 MEM 1.23H ;Symbol definition (Bank =1, Row = 2, Column = 3)

SETBANK MEM1

↓
MOV BANK,#.DM. (MEM1)SHR 8 AND 0FH ;BANK1

308

RA17K USER'S MANUAL

21.1.3 SETRP

[Format]

[<label>:][∆]SETRP∆<expression (MEM type)>[∆][;<comment>]

[Function]

SETRP sets the bank and row information of <expression (MEM type)> specified as the operand in RPH

and RPL.

[Notes]

(1) Only one <expression> can be specified as the operand. If less than or more than one <expression>

is specified, an error (F037: Syntax error) occurs, and an NOP instruction is generated as an object.

(2) If the type obtained when the <expression> is evaluated is other than MEM, an error (F045: Invalid

type) occurs, and an NOP instruction is generated as an object.

(3) If the bank number obtained when the <expression> is evaluated is not used with the product, an error

(F046: Invalid BANK No.) occurs, and an NOP instruction is generated.

[Sample expansion]

Only a symbol is specified as the operand.

MEM1 MEM 1.23H ;Symbol definition (Bank =1, Row = 2, Column = 3)

SETRP MEM1

↓
MOV RPH,#.DM.(MEM1)SHR 8 AND 0FH ;RPH=1 (bank)

AND RPL,#01H

OR RPL,#.DM.(MEM1)SHR 3 AND 0EH ;RPH=2 (row)

309

CHAPTER 21 BUILT-IN MACRO INSTRUCTIONS

21.1.4 SETMP

[Format]

[<label>:][∆]SETMP∆<expression (MEM type)>[∆][;<comment>]

[Function]

SETMP sets the bank and row information of <expression (MEM type)> specified as the operand in MPH

and MPL.

[Notes]

(1) Only one <expression> can be specified as the operand. If less than or more than one <expression>

is specified, an error (F037: Syntax error) occurs, and an NOP instruction is generated as an object.

(2) If the type obtained when the <expression> is evaluated is other than MEM, an error (F045: Invalid

type) occurs, and an NOP instruction is generated as an object.

[Sample expansion]

MEM1 MEM 1.23H ;Symbol definition (Bank =1, Row = 2, Column = 3)

SETMP MEM1

↓
AND MPH,#08H

OR MPH,#.DM.(MEM1)SHR 9 AND 07H

MOV MPL,#(.DM.(MEM1)SHR 4 AND 0FH)OR(.DM.(MEM1)SHR 5 AND 08H)

310

RA17K USER'S MANUAL

21.1.5 SETIX

[Format]

[<label>:][∆]SETIX ∆<expression (MEM type)>[∆][;<comment>]

[Function]

SETIX sets the bank, row, and column information of <expression (MEM type)> specified as the operand

in IXH, IXM, and IXL.

[Notes]

(1) Only one <expression> can be specified as the operand. If less than or more than one <expression>

is specified, an error (F037: Syntax error) occurs, and an NOP instruction is generated as an object.

(2) If the type obtained when the <expression> is evaluated is other than MEM, an error (F045: Invalid

type) occurs, and an NOP instruction is generated as an object.

[Sample expansion]

MEM1 MEM 1.23H ;Symbol definition (Bank =1, Row = 2, Column = 3)

SETIX MEM1

↓
AND IXH,#08H

OR IXH,#.DM.(MEM1)SHR 9 AND 07H

MOV IXM,#(.DM.(MEM1)SHR 4 AND 07H)OR(.DM.(MEM1)SHR 5 AND 08H)

MOV IXL,#.DM.(MEM1)AND 0FH

311

CHAPTER 21 BUILT-IN MACRO INSTRUCTIONS

21.1.6 SETAR

[Format]

[<label>:][∆]SETAR∆<expression (LAB type)>[∆][;<comment>]

[Function]

SETAR sets the evaluation value of <expression (LAB type)> specified as the operand in AR.

[Notes]

(1) Only one <expression> can be specified as the operand. If less than or more than one <expression>

is specified, an error (F037: Syntax error) occurs, and an NOP instruction is generated as an object.

(2) If the type obtained when the <expression> is evaluated is other than LAB, an error (F045: Invalid

type) occurs, and an NOP instruction is generated as an object.

[Sample expansion]

MEM1 LAB 1.23H ;Symbol definition (Bank =1, Row = 2, Column = 3)

SETAR LAB1

↓
MOV AR3,#.DL.(LAB1)SHR 12 AND 0FH

MOV AR2,#.DL.(LAB1)SHR 8 AND 0FH

MOV AR1,#.DL.(LAB1)SHR 4 AND 0FH

MOV AR0,#.DL.(LAB1)AND 0FH

312

RA17K USER'S MANUAL

21.2 FLAG OPERATION INSTRUCTIONS

The 17K series does not support any instructions that enable the manipulation of data bit-by-bit. RA17K

implements simulated flag (bit) operation using flag-type symbols and built-in macro instructions for flag

manipulation.

When manipulating multiple flags (bits) located at the same address, the processing can be achieved using

fewer instructions than is required when manipulating flags located at different addresses. The number of

steps required for manipulating multiple flags varies greatly depending on the relationships between the

addresses at which the flags are located.

To set four flags having symbolic names A, B, C, and D, when all four are located at the same data memory

address, the processing can be achieved only one OR instruction.

[Example 1] When A, B, C, and D are assigned to bits 3, 2, 1, and 0 at the same address (0.43H)

(MEM043 MEM 0.43H)

OR MEM043 , #1111B

If these four flags were to be located at different addresses, four OR instructions would be required.

[Example 2] When A, B, C, and D are defined as the following symbols:

A FLG 0.10H.0

B FLG 0.11H.1

C FLG 0.12H.2

D FLG 0.13H.3

To set each bit, the following four instructions are required:

OR .MF.A SHR 4 , #0001B

OR .MF.B SHR 4 , #0010B

OR .MF.C SHR 4 , #0100B

OR .MF.D SHR 4 , #1000B

When the user codes a source program for manipulating multiple flags, the user may have to consider

the bit locations of the flags defined as symbols and determine whether one instruction or multiple

instructions are required. Coding a program in this way not only reduces coding efficiency, but may

also lead to the introduction of a bug. When there is a source-level library whose operation is

guaranteed, library compatibility cannot be maintained for any devices having internal flags located

at different addresses.

The use of flag operation instructions can help to eliminate such inconveniences when coding a source

program.

The following built-in macro instructions are provided for flag manipulation:

313

CHAPTER 21 BUILT-IN MACRO INSTRUCTIONS

SETn : Sets flags.

CLRn : Resets flags.

NOTn : Reverses the contents of flags.

SKTn : Tests the contents of flags: When 1 is returned, skips the next instruction.

SKFn : Tests the contents of flags: When 0 is returned, skips the next instruction.

INITFLG : Initializes flags.

n indicates the number of flags specified in the operand field. For example, to set four flags, A, B,

C, and D, specify the following macro:

Extended instructions SETX to SKFX determine the number of symbols that are automatically specified

as the operand for replacement with SETn to SKFn. So, the functions are the same as SETn to SKFn.

[Example 3] SET4 A , B , C , D

or

SETX A , B , C , D

For the above macro, RA17K obtains the addresses and bit positions, using the evaluation values of

flags A, B, C, and D, then automatically generates the optimum object. (The optimum object is the

shortest object.) When flags A, B, C, and D are all located at the same address, RA17K expands the

macro to the object shown in [Example 1]. When the flags are located at different addresses, RA17K

expands the macro to the object shown in [Example 2]. Because RA17K expands the macro,

automatically determining whether the flags specified in the operand field are data memory flags or

register file flags, the user need not consider the address space in which the flags to be manipulated

are mapped.

Because symbolic names are specified in the operand field of each built-in macro, when a flag definition

location (address or bit location) is changed during program coding, the user simply has to change

the symbol definition. There is no need to modify the program itself. By defining the same symbolic

name for each flag, the user does not have to consider the flag location when reusing another program

routine. The use of this method enables the creation of a program library.

[INITFLG]

The following explains the processing performed when flags A, B, C, and D are assigned to the same

address, with A and B initialized to 1, and C and D initialized to 0.

When flags A, B, C, and D are assigned to bits 3, 2, 1, and 0 at the same address (1.53H), initialization

of the four flags with the 17K series requires only the following instruction:

[Example 4]

(MEM153 MEM 1.53H)

MOV MEM153 , #1100B

To initialize the flags using built-in macro instructions such as SETn and CLRn, the user would have to

specify the following instructions:

*

*

314

RA17K USER'S MANUAL

[Example 5]

SET2 A,B

CLR2 C,D

↓
OR MEM153 , #1100H

AND MEM153 , #1100H

The above example illustrates that a redundant object may be generated when built-in macro

instructions merely have functions for setting and resetting flags. The user may also specify an MOV

instruction to reduce the number of steps, ignoring program compatibility or the possibility of flag

relocation. In this case, of course, relocation of the flags initialized using the MOV instruction cannot

be guaranteed. This is because RA17K is incapable of recognizing that the MOV instruction is used

to initialize flags after a flag location has been changed after program coding.

To overcome this problem, RA17K provides the INITFLG instruction.

The following INITFLG instruction has the same effect as the above example:

[Example 6] INITFLG A ,B ,NOT C,NOT D

When all the flags are located at the same address, this macro is expanded to one instruction as shown

in [Example 4]. When at least one bit is located at a different address, however, this macro is expanded

to the optimum instructions.

[Example 7] When D is located at an address (1.54H) other than that at which the other flags

(A, B, and C) are located

INITFLG A , B , NOT C , NOT D

↓
CLR1 C

AND MEM153 , #1101B

SET2 A , B

OR MEM153 , #1100B

CLR1 D

AND MEM154 , #1110B

As shown above, the macro is expanded to three instructions.

In the above explanation, data memory flags are used as examples. For register file flags, the format is

exactly the same. For an explanation of the register file, see the following item.

315

CHAPTER 21 BUILT-IN MACRO INSTRUCTIONS

[Concept of register file]

The register file (RF) consists of registers that are mainly used for controlling hardware components

peripheral to the CPU. It has a capacity of 4 bits x 128 nibbles. In the register file space, peripheral

hardware control registers (control registers) are assigned to the 64 high-order nibbles (00H to 3FH).

Addresses 40H to 7FH of the currently specified bank in data memory are assigned to the 64 low-order

nibbles (40H to 7FH). Addresses 40H to 7FH in each bank of data memory are located in both the data

memory address space and register file space.

The register file address space is shown in the following memory map image.

Control registers in the register file space can be accessed from any bank. The evaluation value for the

bank is set to 0, however. Addresses 00H to 3FH are physically assigned to the control registers. However,

the evaluation value for the address of each control register indicates the value obtained by adding 1 to

the most significant bit (80H to 0BFH), thus distinguishing the control register space from the data memory

space.

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

Column →

0 1 2 3 4 5 6 7 8 9 A B C D E F

8 (0)

9 (1)

A (2)

B (3)

Control register

Register file address space

Data memory address space

316

RA17K USER'S MANUAL

[Example 8] Stack pointer (SP) -> 0.81H

Each register in the register file space is accessed via the window register (WR [address 0.78H]).

The following two instructions are used to access the register file space:

PEEK WR, rf (Transfers the contents of the register specified by rf to the WR.)

POKE rf, WR (Transfers the contents of the WR to the register specified by rf.)

Note that when a control register in the register file space is specified for an operand of the direct

transfer instruction (MOV) or arithmetic/logical instruction (such as ADD or SUB), the object which

manipulates the data memory area, at an address for which the most significant bit (bit 7) is masked,

is generated.

[Flag operation for register file space]

RA17K enables the use of flag operation instructions by defining a control register in the register file space

in the same way as for data memory. The user can manipulate a control register flag simply by specifying

the control flag in the register file space in the operand field of a built-in macro. When specifying the flag,

the user does not have to consider whether the specified flag is located in the data memory space or

register file space. The assembler automatically generates the optimum object.

Assume that a flag with symbolic name DMF is defined for bit 1 at address 32H in data memory, and that

a flag with symbolic name RFF is defined for bit 2 at address 25H (= 0.0A5H) in the register file. The built-

in macro for setting the contents of each flag is expanded as follows:

[Example 9]

<1> SET1 DMF

↓
OR MEM032,#0010B

<2> SET1 RFF

↓
PEEK WR , MEM0A5

OR WR , #0100B

POKE MEM0A5 , WR

When this operation is specified using the SET2 instruction, the instruction is expanded to two SET1

instructions. These two SET1 instructions are expanded to the instructions shown in [Example 9].

317

CHAPTER 21 BUILT-IN MACRO INSTRUCTIONS

[Example 10]

SET2 DMF , RFF

↓
SET1 DMF

OR MEM032 ,#0010B

SET1 RFF

PEEK WR ,MEM0A5

OR WR ,#0100B

POKE MEM0A5 , WR

[Optimization of flag operation for the register file space]

RA17K automatically determines whether each flag specified in the operand field of a flag operation

instruction is located in the data memory space or register file space, then generates an object. It checks

the most significant bit (bit 7) of the address using the evaluation value of the flag. When the bit is 0, RA17K

recognizes the flag as being located in data memory. When the bit is 1, it recognizes the flag as being

in the register file. For a flag in the register file space, the PEEK and POKE instructions are added as

shown in the above item.

Control registers in the register file space are used for controlling peripheral hardware. The control flag

names (words reserved for the target device) and addresses are defined in the device file. If an address

is not defined in the device file, RA17K outputs an error message (F014: Illegal first operand value) for

the PEEK and POKE instructions at expansion.

For example, the instruction for setting control flag RF330 (bit 0 at address 33H) in the register file space

is expanded as follows:

[Example 11]

SET1 RF330

↓
PEEK WR , .MF.RF330

OR WR , #0001B

POKE .MF.RF330 , WR

When only flag RF330 is assigned to address 33H in the register file, the size of the object code can

be reduced by one step for [Example 11] by coding the following instructions:

318

RA17K USER'S MANUAL

[Example 12]

MOV WR,#0001B

POKE .MF.RF330 ,WR

When all the flags assigned to an address are specified in the operand field of a flag operation

instruction, the PEEK instruction is not required (when the flags assigned to a 1-nibble area constitute

less than four bits, the instruction also is not required).

To enable this, the device file also contains flag map information in addition to the symbolic names

and address information for the control flags. Flag map information indicates the number of flags and

flag locations assigned to each 1-nibble area. By referencing this flag map information, RA17K can

automatically expand the following built-in macro instructions without generating the PEEK instruction,

as shown in [Example 12].

• SETn

• CLRn

• INITFLG

Using this function, the SET1 instruction shown in [Example 11] is automatically expanded as shown

in [Example 12].

When the flags to be initialized using the INITFLG instruction are located at the same address, and

no other flag is assigned to the 1-nibble area, the flags are processed by the MOV instruction as shown

in [Example 13], below.

[Example 13] When three flags F0, F1, and F2 (bits 0, 1, and 2) in the register file space are

to be initialized to 1, 1, and 0, respectively

• When another flag is assigned to bit 3

INITFLG F0 , F1 , NOT F2

↓
SET2 F0 , F1

PEEK WR , .MF.F0 SHR 4

AND WR , #1011B

OR WR , #1011B

POKE .MF.F0 SHR 4 , WR

• When no other flag is assigned to bit 3

INITFLG F0 , F1 , NOT F2

↓
MOV WR , #0011B

POKE .MF.F0 SHR 4 , WR

319

CHAPTER 21 BUILT-IN MACRO INSTRUCTIONS

21.2.1 SETn

[Format]

[<label>:][∆]SETn ∆<FLG-type-expression-list>[∆][;comment]

[Function]

SETn sets the flags specified in the operand field.

n indicates the number of flags in the operand field (1 ≤ n ≤ 4).

[Notes]

(1) If the value specified for n in the instruction differs from the number of flags specified in the operand

field, an error (F037: Syntax error) occurs and the built-in macro is not expanded. In this case, an

NOP instruction is generated as the object.

(2) If the type obtained when the <expression> is evaluated is of other than flag type, an error (F045:

Invalid type) occurs and the built-in macro is not expanded. In this case, an NOP instruction is

generated as the object.

(3) If multiple flags on different banks are specified in the operand field, an error (F063: Bank unmatch)

occurs and the built-in macro is not expanded. In this case, an NOP instruction is generated as the

object.

When both the control flags in the register file space and the flags in the data memory space are

specified simultaneously, however, no error occurs provided the flags in the data memory space are

in other than bank 0.

(4) When at least one control flag in the register file space is specified in the operand field, the contents

of the window register (WR) are rewritten by the built-in macro instruction.

The user may include a built-in macro, for manipulating a control flag in the register file space, in an

interrupt handling routine. In this case, save the contents of the WR in the data memory space at

the beginning of the interrupt handling routine.

(5) If a value of 0 or 5 or greater is specified for n, an error (F037: Syntax error) occurs and an NOP

instruction is generated as the object.

(6) If the system determines that a bank number which is not installed in the target device has been

specified, upon evaluating the <expression>, an error (F046: Invalid BANK No.) occurs and an NOP

instruction is generated as the object.

(7) If the system determines that a data memory address which does not exist in the target device has

been specified upon evaluating the <expression>, an error (F067: Address error) occurs and an NOP

instruction is generated as the object.

(8) If the system determines that the value of a bit location is other than 1, 2, 4, or 8, during the evaluation

of the <expression>, an error (F044: Invalid value) occurs and an NOP instruction is generated as

the object.

*

320

RA17K USER'S MANUAL

[Sample expansion]

SETn generates the shortest object for setting flags, using the evaluation values of the addresses of the

flags specified in the operation field. An example of manipulating three bits in data memory is shown below:

[Example 1]

FLG1 FLG 3.3FH.1

FLG2 FLG 3.3FH.2

FLG3 FLG 3.30H.3

SET1 FLG1 ···<1>

SET2 FLG1 , FLG2 ···<2>

SET3 FLG1 , FLG2 , FLG3 ···<3>

For multiple flags located at the same address, SETn is expanded to one instruction.

<1>, <2>, and <3> are expanded as follows:

<1> SET1 FLG1

↓
OR .MF.(FLG1) SHR 4, #.DF.(FLG1) AND 0FH

<2> SET2 FLG1 , FLG2

↓
OR .MF.(FLG1) SHR 4, #.DF.((FLG1) OR (FLG2)) AND 0FH

<3> SET3 FLG1 , FLG2 , FLG3

↓
OR .MF.(FLG1) SHR 4, #.DF.((FLG1) OR (FLG2)) AND 0FH

OR .MF.(FLG3) SHR 4, #.DF.(FLG1) AND 0FH

321

CHAPTER 21 BUILT-IN MACRO INSTRUCTIONS

21.2.2 CLRn

[Format]

[<label>:][∆]CLRn ∆<FLG-type-expression-list>[∆][;<comment>]

[Function]

CLRn resets the flags specified in the operand field.

n indicates the number of flags in the operand field (1 ≤ n ≤ 4).

[Notes]

CLRn differs from SETn only in the object it generates.

The notes on specifying CLRn are the same as for SETn. See [Notes] in Section 21.2.1 .

[Sample expansion]

CLRn generates the shortest object for resetting flags using the evaluation values of the addresses of

the flags specified in the operation field. An example of manipulating three bits in data memory is shown

below:

[Example 1]

FLG1 FLG 3.3FH.1

FLG2 FLG 3.3FH.2

FLG3 FLG 3.30H.3

CLR1 FLG1 ···<1>

CLR2 FLG1 , FLG2 ···<2>

CLR3 FLG1 , FLG2 , FLG3 ···<3>

For multiple flags located at the same address, CLRn is expanded to one instruction.

<1>, <2>, and <3> are expanded as follows:

<1> CLR1 FLG1

↓
AND .MF.FLG1 SHR 4, #.DF.(NOT FLG1 AND 0FH)

<2> CLR2 FLG1 , FLG2

↓
AND .MF.FLG1 SHR 4, #.DF.(NOT(FLG1 OR FLG2) AND 0FH)

<3> CLR3 FLG1 , FLG2 , FLG3

↓
AND .MF.FLG1 SHR 4, #.DF.(NOT(FLG1 OR FLG2) AND 0FH)

AND .MF.FLG3 SHR 4, #.DF.(NOT FLG3 AND 0FH)

322

RA17K USER'S MANUAL

21.2.3 NOTn

[Format]

[<label>:][∆]NOTn∆<FLG-type-expression-list>[∆][;<comment>]

[Function]

NOTn reverses the flags specified in the operand field (obtains their ones complement).

n indicates the number of flags in the operand fields (1 ≤ n ≤ 4).

[Notes]

(1) When all the control flags assigned to an address in the register file space are specified in the NOTn

operand field, the PEEK instruction is not omitted, unlike in the case of SETn and CLRn. This is

because the NOTn instruction reads the contents of flags, inverts their values, then transfers the

inverted values to the flags.

(2) The notes on specifying NOTn are the same as for SETn. See [Notes] in Section 21.2.1 .

[Sample expansion]

NOTn generates the shortest object for resetting flags, using the evaluation values of the addresses of the

flags specified in the operation field. An example of manipulating three bits in data memory is shown below:

[Example 1]
FLG1 FLG 3.3FH.1

FLG2 FLG 3.3FH.2

FLG3 FLG 3.30H.3

NOT1 FLG1 ···<1>
NOT2 FLG1 , FLG2 ···<2>
NOT3 FLG1 , FLG2 , FLG3 ···<3>

For multiple flags located at the same address, NOTn is expanded to one instruction.

<1>, <2>, and <3> are expanded as follows:

<1> NOT1 FLG1

↓
XOR .MF.FLG1 SHR 4, #.DF.FLG1 AND 0FH

<2> NOT2 FLG1 , FLG2

↓
XOR .MF.FLG1 SHR 4, #.DF.(FLG1 OR FLG2) AND 0FH

<3> NOT3 FLG1 , FLG2 , FLG3

↓
XOR .MF.FLG1 SHR 4, #.DF.(FLG1 OR FLG2) AND 0FH

XOR .MF.FLG3 SHR 4, #.DF.FLG1 AND 0FH

323

CHAPTER 21 BUILT-IN MACRO INSTRUCTIONS

21.2.4 SKTn

[Format]

[<label>:][∆]SKTn ∆<MEM-type-expression-list>[∆][;<comment>]

[Function]

SKTn tests all the flags specified in the operand field. When all flags are set, SKTn skips the instruction

following SKTn.

n indicates the number of flags in the operand field (1 ≤ n ≤ 4).

[Notes]

(1) When all the control flags assigned to an address in the register file space are specified in the SKTn

operand field, the PEEK instruction is not omitted, unlike in the case of SETn and CLRn. This is

because the SKTn instruction reads the contents of flags, then determines whether to skip the next

instruction.

(2) The notes on specifying SKTn are the same as for SETn. See [Notes] in Section 21.2.1 .

[Sample expansion]

SKTn generates the shortest object for checking flags, using the evaluation values of the addresses of

the flags specified in the operation field.

The generated instruction string depends on the number of flags specified in the operand field, as well

as their address locations, as follows:

[Example 1]

SKT1 FLG1 ···<1>

SKT2 FLG1 , FLG2 ···<2>

SKT3 FLG1 , FLG2 , FLG3 ···<3>

Assemble expansion (assuming that FLG1, FLG2, and FLG3 are all located in the data memory space)

<1> 1 flag

SKT1 FLG1

↓
SKT .MF.FLG1 SHR 4 , #.DF.FLG1 AND 0FH

324

RA17K USER'S MANUAL

<2> 2 flags

• When FLG1 and FLG2 are located at the same address

SKT2 FLG1 , FLG2

↓
SKT .MF.FLG1 SHR 4 , #.DF.(FLG1 OR FLG2) AND 0FH

• When FLG1 and FLG2 are located at different addresses

SKT2 FLG1 , FLG2

↓
SKF .MF.FLG1 SHR 4 , #.DF.FLG1 AND 0FH

SKT .MF.FLG2 SHR 4 , #.DF.FLG2 AND 0FH

<3> 3 flags

• When FLG1, FLG2, and FLG3 are all located at the same address

SKT3 FLG1 , FLG2 , FLG3

↓
SKT .MF.FLG1 SHR 4 , #.DF.((FLG1 OR FLG2) OR FLG3) AND 0FH

• When FLG2 and FLG3 are located at the same address but FLG1 is located at a different

address

SKT3 FLG1 , FLG2 , FLG3

↓
SKF .MF.FLG1 SHR 4 , #.DF.FLG1 AND 0FH

SKT .MF.FLG1 SHR 4 , #.DF.(FLG2 OR FLG3) AND 0FH

• When FLG1, FLG2, and FLG3 are all located at different addresses

SKT3 FLG1 , FLG2 , FLG3

↓
SKT .MF.FLG1 SHR 4 , #.DF.FLG1 AND 0FH

BR ?L0

SKF .MF.FLG1 SHR 4 , #.DF.FLG1 AND 0FH

SKT .MF.FLG2 SHR 4 , #.DF.FLG2 AND 0FH

?L0:

325

CHAPTER 21 BUILT-IN MACRO INSTRUCTIONS

21.2.5 SKFn

[Format]

[<label>:][∆]SKFn ∆<FLG-type-expression-list>[∆][;<comment>]

[Function]

SKFn tests all the flags specified in the operand field. When all the flags are reset, SKFn skips the

instruction following SKFn.

n indicates the number of flags in the operand field (1 ≤ n ≤ 4).

[Notes]

(1) When all the control flags assigned to an address in the register file space are specified in the SKFn

operand field, the PEEK instruction is not omitted, unlike in the case of SETn and CLRn. This is

because the SKFn instruction reads the contents of flags, then determines whether to skip the next

instruction.

(2) The notes on specifying SKFn are the same as for SETn. See [Notes] in Section 21.2.1 .

[Sample expansion]

SKFn generates the shortest object for checking flags, using the evaluation values of the addresses of

the flags specified in the operation field.

An instruction string is generated according to the number of flags specified in the operand field, as well

as their address locations, in the same way as for the SKTn instruction. See [Sample expansion] in

Section 21.2.4 .

326

RA17K USER'S MANUAL

21.2.6 INITFLG

[Format]

[<label>:][∆]INITFLG ∆<[NOT|INV]FLG-type-expression-list>[∆][;<comment>]

[Function]

INITFLG generates the shortest object for initializing flags, using the evaluation values of the addresses

of the flags specified in the operation field.

INITFLG initializes the flags, specified in the operand field and preceded by NOT or INV, to 0. Those

preceded by nothing are initialized to 1. Up to four flags can be specified in the operand field.

As explained in [Example 12] in Section 21.2 , when all the flags assigned to an address in the register

file space are specified in the INITFLG operand field, the PEEK instruction is not generated.

[Notes]

(1) When control flags assigned to the same address in the register file space are to be initialized and

all the flags assigned to that address are specified, the system automatically determines that the PEEK

instruction need not be generated if these flags consist of fewer than four bits.

[Example]

Control flags TMCK0, TMCK1, and TMCK2 in the register file space are to be initialized. These flags

are assigned to bits 0, 1, and 2 at the same address (no flag is assigned to bit 3).

To initialize these bits to 0, 1, and 1, respectively, the following INITFLG instruction is written:

INITFLG NOT TMCK0 , TMCK1 , TMCK2

↓
MOV WR , #0110B

POKE .MF.TMCK0 , WR

327

CHAPTER 21 BUILT-IN MACRO INSTRUCTIONS

(2) For those flags defined in the data memory space, when there are fewer than four bits to be initialized,

INITFLG is not expanded to the MOV instruction.

[Example]

Flags in the data memory space are to be initialized.

FLG090 FLG 0.09H.0

FLG091 FLG 0.09H.1

FLG092 FLG 0.09H.2

INITFLG FLG090 , NOT FLG091 , FLG092

↓
CLR1 FLG091

AND .MF.FLG091 SHR 4 , #.DF.(NOT FLG091 AND 0FH)

SET2 FLG090 , FLG092

OR .MF.FLG090 SHR 4 , #.DF.(FLG090 OR FLG092) AND 0FH

Note that INITFLG is not expanded as shown below:

INITFLG FLG090 , NOT FLG091 , FLG092

↓
MOV .MF.FLG090 SHR 4 , #0101B

(3) The notes on specifying INITFLG are the same as for SETn. See [Notes] in Section 21.2.1 .

328

RA17K USER'S MANUAL

21.3 EXTENDED INSTRUCTIONS

Extended instructions extend the number of nibbles for the symbols and numerics specified in the operand

field of a 17K series instruction, and can represent multiple-nibble operations on one line. They improve coding

efficiency and program readability. Users are encouraged to use extended instructions to maximize

programming efficiency.

The following lists the built-in macros to which 17K series instructions are extended, as supported by version

2.xx of RA17K.

Table 21-1. Extended Instructions

Instruction Reference Instruction Reference
page page

Extended flag operation SETX p.330 Extended comparison SKEX p.365

CLRX p.333 SKNEX p.367

NOTX p.335 SKGEX p.369

SKTX p.337 SKGTX p.371

SKFX p.339 SKLEX p.373

INITFLGX p.341 SKLTX p.375

Extended transfer MOVX p.343 Extended rotation RORCX p.377

MOVTX p.348 ROLCX p.378

Extended addition ADDX p.349 Extended shift SHRX p.379

ADDCX p.351 SHLX p.380

ADDSX p.353 Extended logic operation ANDX p.381

ADDCSX p.355 ORX p.383

Extended subtraction SUBX p.357 XORX p.385

SUBCX p.359 Extended branch BRX p.387

SUBSX p.361 Extended subroutine call CALLX p.388

SUBCSX p.363 SYSCALX p.389

As explained above, the above instructions can be used to represent a function performed by combining

multiple 17K series instructions with one built-in macro instruction. This improves program readability and

maximizes programming efficiency because object optimization is performed.

*

329

CHAPTER 21 BUILT-IN MACRO INSTRUCTIONS

[Memory-to-memory operations enabled]

Within an extended instruction, register pointers and bank numbers are managed to enable memory-to-

memory operation.

If the MEM-type symbol information specified in the first operand does not match the current register

pointer and bank number when an instruction is expanded, the SETBANK and SETRP built-in macros are

executed using the MEM-type symbol to match the symbol specified in the first operand.

In addition, an operation involving a mixture of horizontal and vertical types is allowed. When a vertical-

type symbol is specified in the first operand, operation is performed by updating the register pointer.

[Notes]

(1) When the number of nibbles in the first operand differs from the number of nibbles in the second

operand, the following processing is performed.

[Number of nibbles in first operand = Number of nibbles in second operand]

Normal processing

[Number of nibbles in first operand > Number of nibbles in second operand]

Zeros are added to the value of the second operand to match the number of nibbles in the first

operand.

[Number of nibbles in first operand < Number of nibbles in second operand]

A warning (W186: Nibble number unmatch. Unified the number to left) is output, and the number

of nibbles in the second operand is reduced to match the number of nibbles in the first

operand.

(2) For a memory-to-memory operation, a mismatch is allowed between the bank number defined by the

MEM-type symbol specified in the first operand and the value specified in SETBANK or BANKn, and

between a row address value and the value of the register pointer set in SETRP. If a mismatch is

found, the assembler automatically generates an instruction (SETBANK or SETRP) for setting a bank

number and register pointer.

The condition for generating each instruction is described below.

• Condition for generating the SETBANK instruction

- The bank number defined by the symbol specified in the first operand differs from the current

bank number set in SETBANK or BANKn.

- When this instruction is expanded, the currently set bank number is unknown.

• Condition for generating the SETRP instruction

- The row address defined by the symbol specified in the first operand differs from the current

register pointer value set in SETRP.

- When this instruction is expanded, the currently set register pointer value is unknown.

(3) When data consisting of multiple nibbles is processed, big endian mode is used.

330

RA17K USER'S MANUAL

21.3.1 SETX

[Format]

[<label>:][∆]SETX ∆<expression (FLG type)>[∆][;<comment>]

[<label>:][∆]SETX∆<expression (FLG type)>,<expression (FLG type)>[∆][;<comment>]

[<label>:][∆]SETX∆<expression (FLG type)>,<expression (FLG type)>,<expression (FLG type)>[∆][;<comment>]

[<label>:][∆]SETX∆<expression (FLG type)>,<expression (FLG type)>,<expression (FLG type)>,<expression (FLG type)>[∆][;<comment>]

[Function]

The flag specified in each operand field is set to 1.

In the operand fields, up to four FLG-type symbols can be specified.

[Notes]

(1) If the type obtained when an <expression> is evaluated is other than FLG, an error (F045: Invalid type)

occurs. In this case, the line is invalidated, and an NOP instruction is generated.

(2) A mixture of flags in different banks of data memory can be specified in the operand fields.

In this case, the assembler automatically generates an instruction (SETBANK) for setting the bank

number defined by an <expression> in the bank register, and generates an instruction for flag

operation after bank switching.

(3) In the operand fields, a flag defined in data memory and/or a flag defined in the register file can be

specified. The register file area (40H-7FH) in which data memory and addresses overlap each other

is processed as a data memory area.

(4) If the number of operands is 0 or greater than 4, an error (F037: Syntax error) occurs. In this case,

the line is invalidated and is not expanded, and an NOP instruction is generated.

(5) When a symbol is specified in an operand field, the symbol must be defined before the SETX

instruction. If a symbol is not defined beforehand or is defined after being referenced, an error (F058:

Undefined symbol) occurs, and the line is invalidated. Accordingly, the built-in macro is not expanded,

and an NOP instruction is generated.

(6) If an external definition symbol is specified in an operand field, an error (F150: Impossible to write

the external symbol) occurs, and the line is invalidated. Accordingly, the built-in macro is not

expanded, and an NOP instruction is generated.

(7) Built-in macros allow nesting in the same way as for ordinary macros. This means that the nesting

of built-in macros, ordinary macros, conditional assembly pseudo instructions, and repetitive pseudo

instructions is allowed up to 40 levels. If the depth of nesting exceeds 41 levels, an abort error (A035:

Nesting overflow) occurs, and assembly processing is terminated.

(8) If the bank number obtained when an <expression> is evaluated is not used with the product, an error

(F046: Invalid BANK No.) occurs, and an NOP instruction is generated.

331

CHAPTER 21 BUILT-IN MACRO INSTRUCTIONS

(9) If the data memory address obtained when an <expression> is evaluated is not used with the product,

an error (F067: Address error) occurs, and an NOP instruction is generated.

(10) If the bit position value obtained when an <expression> is evaluated is a value other than 1, 2, 4,

or 8, an error (F044: Invalid value) occurs, and an NOP instruction is generated.

[Sample expansion]

[Example 1] When one flag is specified

It is assumed that 0 is set in the bank register when the SETX instruction is executed. In this case,

SETX is expanded to one instruction.

F1 FLG 0.01H.0

SETX F1

↓
OR .MF.(F1)SHR 4,#.DF.(F1)AND 0FH

[Example 2] When four flags are specified, each located at a different address

It is assumed that 1 is set in the bank register when the SETX instruction is executed. In this case,

a bank set instruction is expanded.

F1 FLG 0.00H.0

F2 FLG 0.10H.1

F3 FLG 0.20H.2

F4 FLG 0.30H.3

SETX F1,F2,F3,F4

↓
MOV BANK,#.DF.(F1)SHR 12 AND 0FH

OR .MF.(F1)SHR 4,#.DF.(F1)AND 0FH

OR .MF.(F2)SHR 4,#.DF.(F2)AND 0FH

OR .MF.(F3)SHR 4,#.DF.(F3)AND 0FH

OR .MF.(F4)SHR 4,#.DF.(F4)AND 0FH

332

RA17K USER'S MANUAL

[Example 3] When two flags are specified, each located at a different bank and address

It is assumed that 1 is set in the bank register when the SETX instruction is executed. In this case,

a bank set instruction is expanded.

F1 FLG 1.00H.0

F2 FLG 2.10H.1

SETX F1,F2

↓
OR .MF.(F1)SHR 4,#.DF.(F1)AND 0FH

MOV BANK,#.DF.(F2)SHR 12 AND 0FH

OR .MF.(F2)SHR 4,#.DF.(F2)AND 0FH

333

CHAPTER 21 BUILT-IN MACRO INSTRUCTIONS

21.3.2 CLRX

[Format]

[<label>:][∆]CLRX∆<expression (FLG type)>[∆][;<comment>]

[<label>:][∆]CLRX∆<expression (FLG type)>,<expression (FLG type)>[∆][;<comment>]

[<label>:][∆]CLRX∆<expression (FLG type)>,<expression (FLG type)>,<expression (FLG type)>[∆][;<comment>]

[<label>:][∆]CLRX∆<expression (FLG type)>,<expression (FLG type)>,<expression (FLG type)>,<expression (FLG type)>[∆][;<comment>]

[Function]

The flag specified in each operand field is reset to 0.

[Notes]

The notes relating to CLRX are the same as those for SETX. See Section 21.3.1 .

[Sample expansion]

[Example 1] When one flag is specified

It is assumed that 0 is set in the bank register when the CLRX instruction is executed. In this case,

CLRX is expanded to one instruction.

F1 FLG 0.01H.0

CLRX F1

↓
AND .MF.(F1)SHR 4,#.DF.(NOT(F1))AND 0FH

[Example 2] When four flags are specified, each located at a different address

It is assumed that 1 is set in the bank register when the CLRX instruction is executed. In this case,

a bank set instruction is expanded.

F1 FLG 0.00H.0

F2 FLG 0.10H.1

F3 FLG 0.20H.2

F4 FLG 0.30H.3

CLRX F1,F2,F3,F4

↓
MOV BANK,#.DF.(F1)SHR 12 AND 0FH

AND .MF.(F1)SHR 4,#.DF.(NOT(F1))AND 0FH

AND .MF.(F2)SHR 4,#.DF.(NOT(F2))AND 0FH

AND .MF.(F3)SHR 4,#.DF.(NOT(F3))AND 0FH

AND .MF.(F4)SHR 4,#.DF.(NOT(F4))AND 0FH

334

RA17K USER'S MANUAL

[Example 3] When two flags are specified, each located at a different bank and address

It is assumed that 1 is set in the bank register when the CLRX instruction is executed. In this case,

a bank set instruction is expanded.

F1 FLG 1.00H.0

F2 FLG 2.10H.1

CLRX F1,F2

↓
AND .MF.(F1)SHR 4,#.DF.(NOT(F1))AND 0FH

MOV BANK,#.DF.(F2)SHR 12 AND 0FH

AND .MF.(F2)SHR 4,#.DF.(NOT(F2))AND 0FH

335

CHAPTER 21 BUILT-IN MACRO INSTRUCTIONS

21.3.3 NOTX

[Format]

[<label>:][∆]NOTX∆<expression (FLG type)>[∆][;<comment>]

[<label>:][∆]NOTX∆<expression (FLG type)>,<expression (FLG type)>[∆][;<comment>]

[<label>:][∆]NOTX∆<expression (FLG type)>,<expression (FLG type)>,<expression (FLG type)>[∆][;<comment>]

[<label>:][∆]NOTX∆<expression (FLG type)>,<expression (FLG type)>,<expression (FLG type)>,<expression (FLG type)>[∆][;<comment>]

[Function]

The flag specified in each operand field is inverted.

[Notes]

The notes relating to NOTX are the same as those for SETX. See Section 21.3.1 .

[Sample expansion]

[Example 1] When one flag is specified

It is assumed that 0 is set in the bank register when the NOTX instruction is executed. In this case,

NOTX is expanded to one instruction.

F1 FLG 0.01H.0

NOTX F1

↓
XOR .MF.(F1)SHR 4,#.DF.(F1)AND 0FH

[Example 2] When four flags are specified

It is assumed that 1 is set in the bank register when the NOTX instruction is executed. In this case,

a bank set instruction is expanded.

F1 FLG 0.00H.0

F2 FLG 0.10H.1

F3 FLG 0.20H.2

F4 FLG 0.30H.3

NOTX F1,F2,F3,F4

↓
MOV BANK,#.DF.(F1)SHR 12 AND 0FH

XOR .MF.(F1)SHR 4,#.DF.(F1)AND 0FH

XOR .MF.(F2)SHR 4,#.DF.(F2)AND 0FH

XOR .MF.(F3)SHR 4,#.DF.(F3)AND 0FH

XOR .MF.(F4)SHR 4,#.DF.(F4)AND 0FH

336

RA17K USER'S MANUAL

[Example 3] When two flags are specified, each located at a different bank and address

It is assumed that 1 is set in the bank register when the NOTX instruction is executed. In this case,

a bank set instruction is expanded.

F1 FLG 1.00H.0

F2 FLG 2.10H.1

NOTX F1,F2

↓
XOR .MF.(F1)SHR 4,#.DF.(F1)AND 0FH

MOV BANK,#.DF.(F2)SHR 12 AND 0FH

XOR .MF.(F2)SHR 4,#.DF.(F2)AND 0FH

337

CHAPTER 21 BUILT-IN MACRO INSTRUCTIONS

21.3.4 SKTX

[Format]

[<label>:][∆]SKTX ∆<expression (FLG type)>[∆][;<comment>]

[<label>:][∆]SKTX∆<expression (FLG type)>,<expression (FLG type)>[∆][;<comment>]

[<label>:][∆]SKTX∆<expression (FLG type)>,<expression (FLG type)>,<expression (FLG type)>[∆][;<comment>]

[<label>:][∆]SKTX ∆<expression (FLG type)>,<expression (FLG type)>,<expression (FLG type)>,<expression (FLG type)>[∆][;<comment>]

[Function]

When the flag specified in each operand field is set to 1, the next instruction is skipped.

[Notes]

The notes relating to SKTX are the same as those for SETX. See Section 21.3.1 .

[Sample expansion]

[Example 1] When one flag is specified

It is assumed that 0 is set in the bank register when the SKTX instruction is executed. In this case,

SKTX is expanded to one instruction.

F1 FLG 0.01H.0

SKTX F1

↓
SKT .MF.(F1)SHR 4,#.DF.(F1)AND 0FH

[Example 2] When four flags are specified, each located at a different address

It is assumed that 1 is set in the bank register when the SKTX instruction is executed. In this case,

a bank set instruction is expanded.

F1 FLG 0.00H.0

F2 FLG 0.10H.1

F3 FLG 0.20H.2

F4 FLG 0.30H.3

SKTX F1,F2,F3,F4

↓
MOV BANK,#.DF.(F1)SHR 12 AND 0FH

SKT .MF.(F1)SHR 4,#.DF.(F1)AND 0FH

BR ?L0

SKT .MF.(F2)SHR 4,#.DF.(F2)AND 0FH

BR ?L0

SKF .MF.(F3)SHR 4,#.DF.(F3)AND 0FH

SKT .MF.(F4)SHR 4,#.DF.(F4)AND 0FH

?L0:

338

RA17K USER'S MANUAL

[Example 3] When two flags are specified, each located at a different bank and address

It is assumed that 1 is set in the bank register when the SKTX instruction is executed. In this case,

a bank set instruction is expanded.

F1 FLG 1.00H.0

F2 FLG 2.10H.1

SKTX F1,F2

↓
SKT .MF.(F1)SHR 4,#.DF.(F1)AND 0FH

BR ?L0

MOV BANK,#.DF.(F2)SHR 12 AND 0FH

SKT .MF.(F2)SHR 4,#.DF.(F2)AND 0FH

?L0:

339

CHAPTER 21 BUILT-IN MACRO INSTRUCTIONS

21.3.5 SKFX

[Format]

[<label>:][∆]SKFX ∆<expression (FLG type)>[∆][;<comment>]

[<label>:][∆]SKFX∆<expression (FLG type)>,<expression (FLG type)>[∆][;<comment>]

[<label>:][∆]SKFX∆<expression (FLG type)>,<expression (FLG type)>,<expression (FLG type)>[∆][;<comment>]

[<label>:][∆]SKFX ∆<expression (FLG type)>,<expression (FLG type)>,<expression (FLG type)>,<expression (FLG type)>[∆][;<comment>]

[Function]

When the flag specified in each operand field is reset to 0, the next instruction is skipped.

[Notes]

The notes relating to SKFX are the same as those for SETX. See Section 21.3.1 .

[Sample expansion]

[Example 1] When one flag is specified

It is assumed that 0 is set in the bank register when the SKFX instruction is executed. In this case,

SKFX is expanded to one instruction.

F1 FLG 0.01H.0

SKFX F1

↓
SKF .MF.(F1)SHR 4,#.DF.(F1)AND 0FH

[Example 2] When four flags are specified

It is assumed that 1 is set in the bank register when the SKFX instruction is executed. In this case,

a bank set instruction is expanded.

F1 FLG 0.00H.0

F2 FLG 0.10H.1

F3 FLG 0.20H.2

F4 FLG 0.30H.3

SKFX F1,F2,F3,F4

↓
MOV BANK,#.DF.(F1)SHR 12 AND 0FH

SKF .MF.(F1)SHR 4,#.DF.(F1)AND 0FH

BR ?L0

SKF .MF.(F2)SHR 4,#.DF.(F2)AND 0FH

BR ?L0

SKT .MF.(F3)SHR 4,#.DF.(F3)AND 0FH

SKF .MF.(F4)SHR 4,#.DF.(F4)AND 0FH

?L0:

340

RA17K USER'S MANUAL

[Example 3] When two flags are specified, each located at a different bank and address

It is assumed that 1 is set in the bank register when the SKFX instruction is executed. In this case,

a bank set instruction is expanded.

F1 FLG 1.00H.0

F2 FLG 2.10H.1

SKFX F1,F2

↓
SKF .MF.(F1)SHR 4,#.DF.(F1)AND 0FH

BR ?L0

MOV BANK,#.DF.(F2)SHR 12 AND 0FH

SKF .MF.(F2)SHR 4,#.DF.(F2)AND 0FH

?L0:

341

CHAPTER 21 BUILT-IN MACRO INSTRUCTIONS

21.3.6 INITFLGX

[Format]

[<label>:][∆]INITFLGX ∆<[NOT|INV]FLG-type-expression-list>[∆][;<comment>]

[Function]

The flag(s) specified in the operand field are initialized to 0 if the flag name(s) are preceded by NOT or

INV; if the flag name(s) are preceded by neither NOT nor INV, the flag(s) are initialized to 1. Up to four

flags can be specified in the operand field.

[Notes]

The notes relating to INITFLGX are the same as those for SETX. See Section 21.3.1 .

[Sample expansion]

[Example 1] When one flag is specified

It is assumed that 0 is set in the bank register when the INITFLGX instruction is executed. In this case,

INITFLGX is expanded to one instruction.

F1 FLG 0.01H.0

INITFLGX F1

↓
OR .MF.(F1)SHR 4,#.DF.(F1)AND 0FH

[Example 2] When four flags are specified

It is assumed that 1 is set in the bank register when the INITFLGX instruction is executed. In this case,

a bank set instruction is expanded.

F1 FLG 0.00H.0

F2 FLG 0.10H.1

F3 FLG 0.20H.2

F4 FLG 0.30H.3

INITFLGX F1,NOT F2,NOT F3,F4

↓
MOV BANK,#.DF.(F1)SHR 12 AND 0FH

OR .MF.(F1)SHR 4,#.DF.(F1)AND 0FH

AND .MF.(F2)SHR 4,#.DF.(NOT(F2))AND 0FH

AND .MF.(F3)SHR 4,#.DF.(NOT(F3))AND 0FH

OR .MF.(F4)SHR 4,#.DF.(F4)AND 0FH

342

RA17K USER'S MANUAL

[Example 3] When two flags are specified, each located at a different bank and address

It is assumed that 1 is set in the bank register when the INITFLGX instruction is executed. In this case,

a bank set instruction is expanded.

F1 FLG 1.00H.0

F2 FLG 2.10H.1

INITFLGX F1,NOT F2

↓
OR .MF.(F1)SHR 4,#.DF.(F1)AND 0FH

MOV BANK,#.DF.(F2)SHR 12 AND 0FH

AND .MF.(F2)SHR 4,#.DF.(NOT(F2)) AND 0FH

343

CHAPTER 21 BUILT-IN MACRO INSTRUCTIONS

21.3.7 MOVX

[Format]

[<label>:][∆]MOVX∆M,#i[∆][;<comment>]

[<label>:][∆]MOVX∆@M1,M2[∆][;<comment>]

[<label>:][∆]MOVX∆M1,@M2[∆][;<comment>]

[<label>:][∆]MOVX∆<expression (FLG type)>,<expression (FLG type)>[∆][;<comment>]

[<label>:][∆]MOVX∆M1,M2[∆][;<comment>]

[Function]

(1) MOVX M,#i

In the data memory location specified in M, immediate data i is stored.

(2) MOVX @M1,M2

• When MPE = 1

[(MP),(M1)] ← (M2)

• When MPE = 0

[mH,(M1)] ← (M2) mH: Row address of M2

Remarks 1. The data at the data memory location specified in M2 is stored into the data memory

location specified in M1.

2. When MPE = 0, a transfer occurs within the same row address as M2.

(3) MOVX M1,@M2

• When MPE = 1

(M1) ← [(MP),(M2)]

• When MPE = 0

(M1) ← [mH,(M2)] mH: Row address of M1

Remarks 1. The data of the data memory location specified in M2 is stored into the data memory

location specified in M1.

2. When MPE = 0, a transfer occurs within the same row address as M1.

(4) MOV M1,M2

The data of the memory location specified in M2 is transferred to the memory location specified in

M1.

Remarks 1. The MEM-type symbol specified in each operand may have a different bank specified.

In this case, the assembler generates an instruction for setting a bank for automatic bank

switching.

2. Horizontal data can be transferred to a vertical data area, or vice versa. For example,

four nibbles of horizontal data can be transferred to a vertical four-nibble area.

344

RA17K USER'S MANUAL

(5) MOVX <expression (FLG type)>,<expression (FLG type)>

The value of the flag specified in the second operand <expression (FLG type)> is stored into the flag

specified in the first operand <expression (FLG type)>. This operation transfers only one bit.

Remark The FLG-type symbol specified in each operand may have a different bank specified. In

this case, the assembler generates an instruction for setting a bank for automatic bank

switching.

[Notes]

(1) In operand M, <expression (MEM type)> can be specified.

(2) When immediate data is specified, a 32-bit value can be specified. If a value of more than 32 bits

is specified, the data beyond the 32 bits is ignored.

(3) When multiple nibbles are transferred with the MOVX @M,M or MOVX M,@M instruction, the value

of the memory location specified in @M is incremented by the number of nibbles that have been

transferred.

[Sample expansion]

[Example 1] Expansion of MOVX M,#i

Four-nibble immediate data is transferred to a 4-nibble data memory location.

M1 NIBBLE4 0.00H

MOVX M1,#1234H

↓
MOV (M1)+3H,#(1234H)AND 0FH

MOV (M1)+2H,#(1234H)SHR 4 AND 0FH

MOV (M1)+1H,#(1234H)SHR 8 AND 0FH

MOV (M1),#(1234H)SHR 12 AND 0FH

345

CHAPTER 21 BUILT-IN MACRO INSTRUCTIONS

[Example 2] Expansion of MOVX @M1,M2

The data of the data memory location specified in M1 is transferred to the data memory location

specified in M2.

It is assumed that the bank register (BANK) and register pointer (RP) hold the same symbol value as

that specified in M1.

M0 NIBBLE 0.08H

M1 NIBBLE4 0.00H

MOVX @M0,M1

↓
ADD (M0),#03H

MOV @(M0),(M1)+03H

SUB (M0),#01H

MOV @(M0),(M1)+02H

SUB (M0),#01H

MOV @(M0),(M1)+01H

SUB (M0),#01H

MOV @(M0),(M1)

[Example 3] Expansion of MOVX M1,@M2

The data of the data memory location specified in M2 is transferred to the data memory location

specified in M1.

M0 NIBBLE 0.08H

M1 NIBBLE4 0.38H

MOVX M1,@M0

↓
ADD (M0),#03H

MOV (M1)+03H,@(M0)

SUB (M0),#01H

MOV (M1)+02H,@(M0)

SUB (M0),#01H

MOV (M1)+01H,@(M0)

SUB (M0),#01H

MOV (M1),@(M0)

346

RA17K USER'S MANUAL

[Example 4] Expansion of MOVX M,M

Horizontal 4-nibble data is transferred to a vertical 4-nibble data area.

It is assumed that 0 is set in the bank register, and that 0 is set in the register pointer.

M0 NIBBLE4V 0.01H

M1 NIBBLE4 0.38H

MOVX M0,M1

↓
MOV RPH,#.DM.(M0)SHR 8 AND 0FH

AND RPL,#01H

OR RPH,#.DM.((M0)+030H)SHR 3 AND 0EH

LD (M0),(M1)+03H

AND RPL,#01H

OR RPH,#.DM.((M0)+020H)SHR 3 AND 0EH

LD (M0),(M1)+02H

AND RPL,#01H

OR RPH,#.DM.((M0)+010H)SHR 3 AND 0EH

LD (M0),(M1)+01H

AND RPL,#01H

OR RPH,#.DM.(M0)SHR 3 AND 0EH

LD (M0),(M1)

[Example 5] Expansion 1 of MOVX <expression (FLG type)>,<expression (FLG type)>

Only a 1-bit value is transferred from one flag to another.

F1 FLG 0.10H.0

F2 FLG 0.20H.0

MOVX F1,F2

↓
SKT .MF.(F2)SHR 4,#.DF.(F2)AND 0FH

AND .MF.(F1)SHR 4,#.DF.NOT(F1)AND 0FH

SKF .MF.(F2)SHR 4,#.DF.(F2)AND 0FH

OR .MF.(F1)SHR 4,#.DF.(F1)AND 0FH

347

CHAPTER 21 BUILT-IN MACRO INSTRUCTIONS

[Example 6] Expansion 2 of MOVX <expression (FLG type)>,<expression (FLG type)>

Only a one-bit value is transferred from the RF flag.

RF1 FLG 0.90H.0

RF2 FLG 0.0A5H.0

MOVX RF1,RF2

↓
PEEK WR,.MF.(RF2)SHR 4

SKT WR,#.DF.(RF2)AND 0FH

BR ?L0

PEEK WR,.MF.(RF1)SHR 4

OR WR,#.DF.(RF1)AND 0FH

BR ?L1

?L0:

PEEK WR,.MF.(RF1)SHR 4

AND WR,#.DF.NOT(RF1)AND 0FH

?L1:

POKE .MF.(RF1)SHR 4,WR

348

RA17K USER'S MANUAL

21.3.8 MOVTX

[Format]

[<label>:][∆]MOVTX∆<expression>[∆][;<comment>]

[Function]

The value of the program memory location specified in the AR register is stored into data buffer DBF. At

this time, the EPA bit is determined from <table-name> specified in the operand field.

[Notes]

As <expression> in the operand field, only a label-type symbol can be specified. If a symbol of a type

other than the label type is specified, an error (F011: Illegal first operand type) occurs. In this case, the

line is invalidated, and an NOP instruction is generated.

[Sample expansion]

MOVTX TBL1

↓
MOV AR3,#.DL.(TBL1)SHR 12 AND 0FH

MOV AR2,#.DL.(TBL1)SHR 8 AND 0FH

MOV AR1,#.DL.(TBL1)SHR 4 AND 0FH

MOV AR0,#.DL.(TBL1)AND 0FH

MOVT DBF,@AR

349

CHAPTER 21 BUILT-IN MACRO INSTRUCTIONS

21.3.9 ADDX

[Format]

[<label>:][∆]ADDX∆M,#i[∆][;<comment>]

[<label>:][∆]ADDX∆M1,M2[∆][;<comment>]

[Function]

• When CMP = 0

(1) M ← (M) + i

Immediate data i is added to the value of the data memory location specified in the first operand, then

the result is stored into the data memory location specified in the first operand.

(2) M1 ← (M1) + (M2)

The value of the data memory location specified in the second operand is added to the data memory

location specified in the first operand, then the result is stored into the data memory location specified

in the first operand.

• When CMP = 1

(1) (M) + i

The result of addition is not stored, but only the flag changes.

(2) (M1) + (M2)

The result of addition is not stored, but only the flag changes.

[Operation-based flag manipulation]

(1) If a carry is generated in an addition, the carry flag (CY) is set. If no carry is generated in an addition,

the carry flag (CY) is reset.

(2) If an addition produces a value other than 0, the zero flag (Z) is reset.

(3) If an addition produces a zero, the zero flag (Z) is set when the compare flag is reset (CMP = 0); the

zero flag (Z) does not change when the compare flag is set (CMP = 1).

(4) Two types of addition can be performed: binary addition and BCD addition. The type of addition to

be performed can be specified using the BCD flag (BCD) of PSW.

350

RA17K USER'S MANUAL

[Notes]

(1) In the first operand, only <expression (MEM type)> can be specified. If the type obtained when the

expression is evaluated is other than MEM, an error (F011: Illegal first operand type) occurs. In this

case, the extended instruction is not expanded, and an NOP instruction is generated.

(2) In the second operand, only immediate data using # or <expression (MEM type)> can be specified.

If any other data or value is specified, an error (F012: Illegal second operand type) occurs. In this

case, the extended instruction is not expanded, and an NOP instruction is generated.

[Sample expansion]

[Example 1] Expansion of ADDX M,#i

Four-nibble immediate data is added to a 4-nibble data memory location (with 0 set in the bank register).

M1 NIBBLE4 0.00H

ADDX M1,#1234H

↓
ADD (M1)+03H,#(1234H)AND 0FH

ADDC (M1)+02H,#(1234H)SHR 4 AND 0FH

ADDC (M1)+01H,#(1234H)SHR 8 AND 0FH

ADDC (M1),#(1234H)SHR 12 AND 0FH

[Example 2] Expansion of ADDX M,M

The value of a 4-nibble data memory location is added to the value of another 4-nibble data memory

location (with 0 set in the bank register, and 1 set in the register pointer).

M1 NIBBLE4 0.00H

M5 NIBBLE4 0.38H

ADDX M1,M5

↓
MOV RPH,#.DM.(M1)SHR 8 AND 0FH

AND RPL,#01H

OR RPL,#.DM.(M1)SHR 3 AND 0EH

ADD (M1)+03H,(M5)+03H

ADDC (M1)+02H,(M5)+02H

ADDC (M1)+01H,(M5)+01H

ADDC (M1),(M5)

351

CHAPTER 21 BUILT-IN MACRO INSTRUCTIONS

21.3.10 ADDCX

[Format]

[<label>:][∆]ADDCX∆M,#i[∆][;<comment>]

[<label>:][∆]ADDCX∆M1,M2[∆][;<comment>]

[Function]

• When CMP = 0

(1) M ← (M) + i + CY

Immediate data i and CY are added to the value of the data memory location specified in the first

operand, then the result is stored into the data memory location specified in the first operand.

(2) M1 ← (M1) + (M2) + CY

The value of the data memory location specified in the second operand and CY are added to the data

memory location specified in the first operand, then the result is stored into the data memory location

specified in the first operand.

• When CMP = 1

(1) (M) + i + CY

The result of addition is not stored, but only the flag changes.

(2) (M1) + (M2) + CY

The result of addition is not stored, but only the flag changes.

[Operation-based flag manipulation]

(1) If a carry is generated in an addition, the carry flag (CY) is set. If no carry is generated in an addition,

the carry flag (CY) is reset.

(2) If an addition produces a value other than 0, the zero flag (Z) is reset.

(3) If an addition produces a zero, the zero flag (Z) is set when the compare flag is reset (CMP = 0); the

zero flag (Z) does not change when the compare flag is set (CMP = 1).

(4) Two types of addition can be performed: binary addition and BCD addition. The type of addition to

be performed is specified using the BCD flag (BCD) of PSW.

352

RA17K USER'S MANUAL

[Notes]

The notes relating to ADDCX are the same as those for ADDX. See Section 21.3.9 .

[Sample expansion]

[Example 1] Expansion of ADDCX M,#i

Four-nibble immediate data is added to a 4-nibble data memory location (with 0 set in the bank register).

M1 NIBBLE4 0.00H

ADDCX M1,#1234H

↓
ADDC (M1)+03H,#(1234H)AND 0FH

ADDC (M1)+02H,#(1234H)SHR 4 AND 0FH

ADDC (M1)+01H,#(1234H)SHR 8 AND 0FH

ADDC (M1),#(1234H)SHR 12 AND 0FH

[Example 2] Expansion of ADDCX M,M

The value of a 4-nibble data memory location is added to the value of another 4-nibble data memory

location (with 0 set in the bank register, and 1 set in the register pointer).

M1 NIBBLE4 0.00H

M5 NIBBLE4 0.38H

ADDCX M1,M5

↓
MOV RPH,#.DM.(M1)SHR 8 AND 0FH

AND RPL,#01H

OR RPL,#.DM.(M1)SHR 3 AND 0EH

ADDC (M1)+03H,(M5)+03H

ADDC (M1)+02H,(M5)+02H

ADDC (M1)+01H,(M5)+01H

ADDC (M1),(M5)

353

CHAPTER 21 BUILT-IN MACRO INSTRUCTIONS

21.3.11 ADDSX

[Format]

[<label>:][∆]ADDSX∆M,#i[∆][;<comment>]

[<label>:][∆]ADDSX∆M1,M2[∆][;<comment>]

[Function]

• When CMP = 0

(1) M ← (M) + i (Skip if CY = 1)

Immediate data i is added to the value of the data memory location specified in the first operand, then

the result is stored into the data memory location specified in the first operand. If a carry is generated,

the next instruction is skipped.

(2) M1 ← (M1) + (M2) (Skip if CY = 1)

The value of the data memory location specified in the second operand is added to the data memory

location specified in the first operand, then the result is stored into the data memory location specified

in the first operand. If a carry is generated, the next instruction is skipped.

• When CMP = 1

(1) (M) + i (Skip if CY = 1)

The result of addition is not stored, so only the flag changes.

(2) (M1) + (M2) (Skip if CY = 1)

The result of addition is not stored, so only the flag changes.

[Operation-based flag manipulation]

(1) If a carry is generated in an addition, the carry flag (CY) is set. If no carry is generated in an addition,

the carry flag (CY) is reset.

(2) If an addition produces a value other than 0, the zero flag (Z) is reset.

(3) If an addition produces a zero, the zero flag (Z) is set when the compare flag is reset (CMP = 0); the

zero flag (Z) does not change when the compare flag is set (CMP = 1).

(4) Two types of addition can be performed: binary addition and BCD addition. The type of addition to

be performed is specified using the BCD flag (BCD) of PSW.

354

RA17K USER'S MANUAL

[Notes]

The notes relating to ADDSX are the same as those for ADDX. See Section 21.3.9 .

[Sample expansion]

[Example 1] Expansion of ADDSX M,#i

Four-nibble immediate data is added to a 4-nibble data memory location (with 0 set in the bank register).

M1 NIBBLE4 0.00H

ADDSX M1,#1234H

↓
ADD (M1)+03H,#(1234H)AND 0FH

ADDC (M1)+02H,#(1234H)SHR 4 AND 0FH

ADDC (M1)+01H,#(1234H)SHR 8 AND 0FH

ADDC (M1),#(1234H)SHR 12 AND 0FH

SKT .MF.CY SHR 4,#.DF.CY AND 0FH

[Example 2] Expansion of ADDSX M,M

The value of a 4-nibble data memory location is added to the value of another 4-nibble data memory

location (with 0 set in the bank register, and 1 set in the register pointer).

M1 NIBBLE4 0.00H

M5 NIBBLE4 0.38H

ADDSX M1,M5

↓
MOV RPH,#.DM.(M1)SHR 8 AND 0FH

AND RPL,#01H

OR RPH,#.DM.(M1)SHR 3 AND 0EH

ADD (M1)+03H,(M5)+03H

ADDC (M1)+02H,(M5)+02H

ADDC (M1)+01H,(M5)+01H

ADDC (M1),(M5)

SKT .MF.CY SHR 4,#.DF.CY AND 0FH

355

CHAPTER 21 BUILT-IN MACRO INSTRUCTIONS

21.3.12 ADDCSX

[Format]

[<label>:][∆]ADDCSX∆M,#i[∆][;<comment>]

[<label>:][∆]ADDCSX∆M1,M2[∆][;<comment>]

[Function]

• When CMP = 0

(1) M ← (M) + i + CY (Skip if CY = 1)

Immediate data i and CY are added to the value of the data memory location specified in the first

operand, then the result is stored into the data memory location specified in the first operand. If a

carry is generated, the next instruction is skipped.

(2) M1 ← (M1) + (M2) + CY (Skip if CY = 1)

The value of the data memory location specified in the second operand and CY are added to the data

memory location specified in the first operand, then the result is stored into the data memory location

specified in the first operand. If a carry is generated, the next instruction is skipped.

• When CMP = 1

(1) (M) + i + CY (Skip if CY = 1)

The result of addition is not stored, so only the flag changes.

(2) (M1) + (M2) + CY (Skip if CY = 1)

The result of addition is not stored, so only the flag changes.

[Operation-based flag manipulation]

(1) If a carry is generated by an addition, the carry flag (CY) is set. If no carry is generated by an addition,

the carry flag (CY) is reset.

(2) If addition results in a value other than 0, the zero flag (Z) is reset.

(3) If addition results in zero, the zero flag (Z) is set when the compare flag is reset (CMP = 0); the zero

flag (Z) does not change when the compare flag is set (CMP = 1).

(4) Two types of addition can be performed: binary addition and BCD addition. The type of addition to

be performed can be specified using the BCD flag (BCD) of PSW.

356

RA17K USER'S MANUAL

[Notes]

The notes relating to ADDCSX are the same as those for ADDX. See Section 21.3.9 .

[Sample expansion]

[Example 1] Four-nibble immediate data is added to a 4-nibble data memory location (with 0

set in the bank register).

M1 NIBBLE4 0.00H

ADDCSX M1,#1234H

↓
ADDC (M1)+03H,#(1234H)AND 0FH

ADDC (M1)+02H,#(1234H)SHR 4 AND 0FH

ADDC (M1)+01H,#(1234H)SHR 8 AND 0FH

ADDC (M1),#(1234H)SHR 12 AND 0FH

SKT .MF.CY SHR 4,#.DF.CY AND 0FH

[Example 2] The value of a 4-nibble data memory location is added to that of another 4-nibble

data memory location (with 0 set in the bank register, and 1 set in the register

pointer).

M1 NIBBLE4 0.00H

M5 NIBBLE4 0.38H

ADDCSX M1,M5

↓
MOV RPH,#.DM.(M1)SHR 8 AND 0FH

AND RPL,#01H

OR RPH,#.DM.(M1)SHR 3 AND 0EH

ADDC (M1)+03H,(M5)+3H

ADDC (M1)+02H,(M5)+2H

ADDC (M1)+01H,(M5)+1H

ADDC (M1),(M5)

SKT .MF.CY SHR 4,#.DF.CY AND 0FH

357

CHAPTER 21 BUILT-IN MACRO INSTRUCTIONS

21.3.13 SUBX

[Format]

[<label>:][∆]SUBX∆M,#i[∆][;<comment>]

[<label>:][∆]SUBX∆M1,M2[∆][;<comment>]

[Function]

• When CMP = 0

(1) M ← (M) - i

Immediate data i is subtracted from the value of the data memory location specified in the first operand,

then the result is stored into the data memory location specified in the first operand.

(2) M1 ← (M1) - (M2)

The value of the data memory location specified in the second operand is subtracted from the data

memory location specified in the first operand, then the result is stored into the data memory location

specified in the first operand.

• When CMP = 1

(1) (M) - i

The result of subtraction is not stored, so only the flag changes.

(2) (M1) - (M2)

The result of subtraction is not stored, so only the flag changes.

[Operation-based flag manipulation]

(1) If a borrow is generated by a subtraction, the carry flag (CY) is set. If no borrow is generated by a

subtraction, the carry flag (CY) is reset.

(2) If subtraction results in a value other than 0, the zero flag (Z) is reset.

(3) If subtraction results in zero, the zero flag (Z) is set when the compare flag is reset (CMP = 0); the

zero flag (Z) does not change when the compare flag is set (CMP = 1).

(4) Two types of subtraction can be performed: binary subtraction and BCD subtraction. The type of

subtraction to be performed can be specified using the BCD flag (BCD) of PSW.

358

RA17K USER'S MANUAL

[Notes]

The notes relating to SUBX are the same as those for ADDX. See Section 21.3.9 .

[Sample expansion]

[Example 1] Four-nibble immediate data is subtracted from a 4-nibble data memory location

(with 0 set in the bank register).

M1 NIBBLE4 0.00H

SUBX M1,#1234H

↓
SUB (M1)+03H,#(1234H)AND 0FH

SUBC (M1)+02H,#(1234H)SHR 4 AND 0FH

SUBC (M1)+01H,#(1234H)SHR 8 AND 0FH

SUBC (M1),#(1234H)SHR 12 AND 0FH

[Example 2] The value of a 4-nibble data memory location is subtracted from that of another

4-nibble data memory location (with 0 set in the bank register, and 1 set in the

register pointer).

M1 NIBBLE4 0.00H

M5 NIBBLE4 0.38H

SUBX M1,M5

↓
MOV RPH,#.DM.(M1)SHR 8 AND 0FH

AND RPL,#01H

OR RPH,#.DM.(M1)SHR 3 AND 0EH

SUB (M1)+03H,(M5)+3H

SUBC (M1)+02H,(M5)+2H

SUBC (M1)+01H,(M5)+1H

SUBC (M1),(M5)

359

CHAPTER 21 BUILT-IN MACRO INSTRUCTIONS

21.3.14 SUBCX

[Format]

[<label>:][∆]SUBCX∆M,#i[∆][;<comment>]

[<label>:][∆]SUBCX∆M1,M2[∆][;<comment>]

[Function]

• When CMP = 0

(1) M ← (M) - i - CY

Immediate data i and CY are subtracted from the value of the data memory location specified in the

first operand, then the result is stored into the data memory location specified in the first operand.

(2) M1 ← (M1) - (M2) - CY

The value of the data memory location specified in the second operand and CY are subtracted from

the data memory location specified in the first operand, then the result is stored into the data memory

location specified in the first operand.

• When CMP = 1

(1) (M) - i - CY

The result of subtraction is not stored, so only the flag changes.

(2) (M1) - (M2) - CY

The result of subtraction is not stored, so only the flag changes.

[Operation-based flag manipulation]

(1) If a borrow is generated by a subtraction, the carry flag (CY) is set. If no borrow is generated by a

subtraction, the carry flag (CY) is reset.

(2) If subtraction results in a value other than 0, the zero flag (Z) is reset.

(3) If subtraction results in zero, the zero flag (Z) is set when the compare flag is reset (CMP = 0); the

zero flag (Z) does not change when the compare flag is set (CMP = 1).

(4) Two types of subtraction can be performed: binary subtraction and BCD subtraction. The type of

subtraction to be performed can be specified using the BCD flag (BCD) of PSW.

360

RA17K USER'S MANUAL

[Notes]

The notes relating to SUBCX are the same as those for ADDX. See Section 21.3.9 .

[Sample expansion]

[Example 1] Four-nibble immediate data is subtracted from a 4-nibble data memory location

(with 0 set in the bank register).

M1 NIBBLE4 0.00H

SUBCX M1,#1234H

↓
SUBC (M1)+03H,#(1234H)AND 0FH

SUBC (M1)+02H,#(1234H)SHR 4 AND 0FH

SUBC (M1)+01H,#(1234H)SHR 8 AND 0FH

SUBC (M1),#(1234H)SHR 12 AND 0FH

[Example 2] The value of a 4-nibble data memory location is subtracted from that of another

4-nibble data memory location (with 0 set in the bank register, and 1 set in the

register pointer).

M1 NIBBLE4 0.00H

M5 NIBBLE4 0.38H

SUBCX M1,M5

↓
MOV RPH,#.DM.(M1)SHR 8 AND 0FH

AND RPL,#01H

OR RPL,#.DM.(M1)SHR 3 AND 0EH

SUBC (M1)+03H,(M5)+3H

SUBC (M1)+02H,(M5)+2H

SUBC (M1)+01H,(M5)+1H

SUBC (M1),(M5)

361

CHAPTER 21 BUILT-IN MACRO INSTRUCTIONS

21.3.15 SUBSX

[Format]

[<label>:][∆]SUBSX∆M,#i[∆][;<comment>]

[<label>:][∆]SUBSX∆M1,M2[∆][;<comment>]

[Function]

• When CMP = 0

(1) M ← (M) - i (Skip if CY = 1)

Immediate data i is subtracted from the value of the data memory location specified in the first operand,

then the result is stored into the data memory location specified in the first operand. If a borrow is

generated, the next instruction is skipped.

(2) M1 ← (M1) - (M2) (Skip if CY = 1)

The value of the data memory location specified in the second operand is subtracted from the data

memory location specified in the first operand, then the result is stored into the data memory location

specified in the first operand. If a borrow is generated, the next instruction is skipped.

• When CMP = 1

(1) (M) - i (Skip if CY = 1)

The result of subtraction is not stored, so only the flag changes.

(2) (M1) - (M2) (Skip if CY = 1)

The result of subtraction is not stored, so only the flag changes.

[Operation-based flag manipulation]

(1) If a borrow is generated by a subtraction, the carry flag (CY) is set. If no borrow is generated by a

subtraction, the carry flag (CY) is reset.

(2) If subtraction results in a value other than 0, the zero flag (Z) is reset.

(3) If subtraction results in zero, the zero flag (Z) is set when the compare flag is reset (CMP = 0); the

zero flag (Z) does not change when the compare flag is set (CMP = 1).

(4) Two types of subtraction can be performed: binary subtraction and BCD subtraction. The type of

subtraction to be performed can be specified using the BCD flag (BCD) of PSW.

362

RA17K USER'S MANUAL

[Notes]

The notes relating to SUBSX are the same as those for ADDX. See Section 21.3.9 .

[Sample expansion]

[Example 1] Four-nibble immediate data is subtracted from a 4-nibble data memory location

(with 0 set in the bank register).

M1 NIBBLE4 0.00H

SUBSX M1,#1234H

↓
SUB (M1)+03H,#(1234H)AND 0FH

SUBC (M1)+02H,#(1234H)SHR 4 AND 0FH

SUBC (M1)+01H,#(1234H)SHR 8 AND 0FH

SUBC (M1),#(1234H)SHR 12 AND 0FH

SKT .MF.CY SHR 4,#.DF.CY AND 0FH

[Example 2] The value of a 4-nibble data memory location is subtracted from that of another

4-nibble data memory location (with 0 set in the bank register, and 1 set in the

register pointer).

M1 NIBBLE4 0.00H

M5 NIBBLE4 0.38H

SUBSX M1,M5

↓
MOV RPH,#.DM.(M1)SHR 8 AND 0FH

AND RPL,#01H

OR RPL,#.DM.(M1)SHR 3 AND 0EH

SUB (M1)+03H,(M5)+3H

SUBC (M1)+02H,(M5)+2H

SUBC (M1)+01H,(M5)+1H

SUBC (M1),(M5)

SKT .MF.CY SHR 4,#.DF.CY AND 0FH

363

CHAPTER 21 BUILT-IN MACRO INSTRUCTIONS

21.3.16 SUBCSX

[Format]

[<label>:][∆]SUBCSX∆M,#i[∆][;<comment>]

[<label>:][∆]SUBCSX∆M1,M2[∆][;<comment>]

[Function]

• When CMP = 0

(1) M ← (M) - i - CY (Skip if CY = 1)

Immediate data i and CY are subtracted from the value of the data memory location specified in the

first operand, then the result is stored into the data memory location specified in the first operand.

If a borrow is generated, the next instruction is skipped.

(2) M1 ← (M1) - (M2) - CY (Skip if CY = 1)

The value of the data memory location specified in the second operand and CY are subtracted from

the data memory location specified in the first operand, then the result is stored into the data memory

location specified in the first operand. If a borrow is generated, the next instruction is skipped.

• When CMP = 1

(1) (M) - i - CY (Skip if CY = 1)

The result of subtraction is not stored, so only the flag changes.

(2) (M1) - (M2) - CY (Skip if CY = 1)

The result of subtraction is not stored, so only the flag changes.

[Operation-based flag manipulation]

(1) If a borrow is generated by a subtraction, the carry flag (CY) is set. If no borrow is generated by a

subtraction, the carry flag (CY) is reset.

(2) If subtraction results in a value other than 0, the zero flag (Z) is reset.

(3) If subtraction results in zero, the zero flag (Z) is set when the compare flag is reset (CMP = 0); the

zero flag (Z) does not change when the compare flag is set (CMP = 1).

(4) Two types of subtraction can be performed: binary subtraction and BCD subtraction. The type of

subtraction to be performed can be specified using the BCD flag (BCD) of PSW.

364

RA17K USER'S MANUAL

[Notes]

The notes relating to SUBCSX are the same as those for ADDX. See Section 21.3.9 .

[Sample expansion]

[Example 1] Four-nibble immediate data is subtracted from a 4-nibble data memory location

(with 0 set in the bank register).

M1 NIBBLE4 0.00H

SUBCSX M1,#1234H

↓
SUBC (M1)+03H,#(1234H)AND 0FH

SUBC (M1)+02H,#(1234H)SHR 4 AND 0FH

SUBC (M1)+01H,#(1234H)SHR 8 AND 0FH

SUBC (M1),#(1234H)SHR 12 AND 0FH

SKT .MF.CY SHR 4,#.DF.CY AND 0FH

[Example 2] The value of a 4-nibble data memory location is subtracted from that of another

4-nibble data memory location (with 0 set in the bank register, and 1 set in the

register pointer).

M1 NIBBLE4 0.00H

M5 NIBBLE4 0.38H

SUBCSX M1,M5

↓
MOV RPH,#.DM.(M1)SHR 8 AND 0FH

AND RPL,#01H

OR RPL,#.DM.(M1)SHR 3 AND 0EH

SUBC (M1)+03H,(M5)+3H

SUBC (M1)+02H,(M5)+2H

SUBC (M1)+01H,(M5)+1H

SUBC (M1),(M5)

SKT .MF.CY SHR 4,#.DF.CY AND 0FH

365

CHAPTER 21 BUILT-IN MACRO INSTRUCTIONS

21.3.17 SKEX

[Format]

[<label>:][∆]SKEX∆M,#i[∆][;<comment>]

[<label>:][∆]SKEX∆M1,M2[∆][;<comment>]

[Function]

(1) SKEX M,#i

When the value of the data memory location specified in the first operand is equal to that of immediate

data i, specified in the second operand, the next instruction is skipped.

(2) SKEX M1,M2

When the value of the data memory location specified in the first operand is equal to that of the data

memory location specified in the second operand, the next instruction is skipped.

[Notes]

The notes relating to SKEX are the same as those for ADDX. See Section 21.3.9 .

[Sample expansion]

[Example 1] The value of a 4-nibble data memory location is compared with 4-nibble immediate

data (with 0 set in the bank register).

M1 NIBBLE4 0.00H

SKEX M1,#1234H

↓
SKNE (M1)+03H,#(1234H)AND 0FH

SKE (M1)+02H,#(1234H)SHR 4 AND 0FH

BR ?L0

SKNE (M1)+01H,#(1234H)SHR 8 AND 0FH

SKE (M1),#(1234H)SHR 12 AND 0FH

?L0:

366

RA17K USER'S MANUAL

[Example 2] The value of a 6-nibble data memory location is compared with 6-nibble immediate

data (with 0 set in the bank register).

This expansion differs from an expansion performed with 4-nibble operands.

M1 NIBBLE6 0.00H

SKEX M1,#123456H

↓
OR .MF.CY SHR 4,#.DF.(CMP OR Z)AND 0FH

SUB (M1)+05H,#(123456H)AND 0FH

SUBC (M1)+04H,#(123456H)SHR 4 AND 0FH

SUBC (M1)+03H,#(123456H)SHR 8 AND 0FH

SUBC (M1)+02H,#(123456H)SHR 12 AND 0FH

SUBC (M1)+01H,#(123456H)SHR 16 AND 0FH

SUBC (M1),#(123456H)SHR 20 AND 0FH

SKT .MF.Z SHR 4,#.DF.Z AND 0FH

[Example 3] The value of a 4-nibble data memory location is compared with that of another

4-nibble data memory location (with 0 set in the bank register, and 1 set in the

register pointer).

M1 NIBBLE4 0.00H

M5 NIBBLE4 0.38H

SKEX M1,M5

↓
OR .MF.CMP SHR 4,#.DF.(CMP OR Z) AND 0FH

MOV RPH,#.DM.(M1)SHR 8 AND 0FH

AND RPL,#01H

OR RPL,#.DM.(M1)SHR 3 AND 0FH

SUB (M1)+03H,(M5)+3H

SUBC (M1)+02H,(M5)+2H

SUBC (M1)+01H,(M5)+1H

SUBC (M1),(M5)

SKT .MF.Z SHR 4,#.DF.Z AND 0FH

367

CHAPTER 21 BUILT-IN MACRO INSTRUCTIONS

21.3.18 SKNEX

[Format]

[<label>:][∆]SKNEX ∆ M,#i[∆][;<comment>]

[<label>:][∆]SKNEX ∆ M1,M2[∆][;<comment>]

[Function]

(1) SKNEX M,#i

When the value of the data memory location specified in the first operand is not equal to that of

immediate data i, specified in the second operand, the next instruction is skipped.

(2) SKNEX M1,M2

When the value of the data memory location specified in the first operand is not equal to that of the

data memory location specified in the second operand, the next instruction is skipped.

[Notes]

The notes relating to SKNEX are the same as those for ADDX. See Section 21.3.9 .

[Sample expansion]

[Example 1] The value of a 4-nibble data memory location is compared with 4-nibble immediate

data (with 0 set in the bank register).

M1 NIBBLE4 0.00H

SKNEX M1,#1234H

↓
SKE (M1)+03H,#(1234H)AND 0FH

BR $+6

SKNE (M1)+02H,#(1234H)SHR 4 AND 0FH

SKE (M1)+01H,#(1234H)SHR 8 AND 0FH

BR $+3

SKNE (M1),#(1234H)SHR 12 AND 0FH

368

RA17K USER'S MANUAL

[Example 2] The value of a 6-nibble data memory location is compared with 6-nibble immediate

data (with 0 set in the bank register).

This expansion differs from that performed with 4-nibble operands.

M1 NIBBLE6 0.00H

SKNEX M1,#123456H

↓
OR .MF.CMP SHR 4,#.DF.(CMP OR Z)AND 0FH

SUB (M1)+05H,#(123456H)AND 0FH

SUBC (M1)+04H,#(123456H)SHR 4 AND 0FH

SUBC (M1)+03H,#(123456H)SHR 8 AND 0FH

SUBC (M1)+02H,#(123456H)SHR 12 AND 0FH

SUBC (M1)+01H,#(123456H)SHR 16 AND 0FH

SUBC (M1),#(123456H)SHR 20 AND 0FH

SKF .MF.Z SHR 4,#.DF.Z AND 0FH

[Example 3] The value of a 4-nibble data memory location is compared with the value of

another 4-nibble data memory location (with 0 set in the bank register, and 1 set

in the register pointer).

M1 NIBBLE4 0.00H

M5 NIBBLE4 0.38H

SKNEX M1,M5

↓
OR .MF.CMP SHR 4,#.DF.(CMP OR Z) AND 0FH

MOV RPH,#.DM.(M1)SHR 8 AND 0FH

AND RPL,#01H

OR RPL,#.DM.(M1)SHR 3 AND 0EH

SUB (M1)+03H,(M5)+3H

SUBC (M1)+02H,(M5)+2H

SUBC (M1)+01H,(M5)+1H

SUBC (M1),(M5)

SKF .MF.Z SHR 4,#.DF.Z AND 0FH

369

CHAPTER 21 BUILT-IN MACRO INSTRUCTIONS

21.3.19 SKGEX

[Format]

[<label>:][∆]SKGEX∆M,#i[∆][;<comment>]

[<label>:][∆]SKGEX∆M1,M2[∆][;<comment>]

[Function]

(1) SKGEX M,#i

When the value of the data memory location specified in the first operand is greater than or equal to

that of immediate data i specified in the second operand, the next instruction is skipped.

(2) SKGEX M1,M2

When the value of the data memory location specified in the first operand is greater than or equal to

that of the data memory location specified in the second operand, the next instruction is skipped.

[Notes]

The notes relating to SKGEX are the same as those for ADDX. See Section 21.3.9 .

[Sample expansion]

[Example 1] The value of a 4-nibble data memory location is compared with 4-nibble immediate

data (with 0 set in the bank register).

M1 NIBBLE4 0.00H

SKGEX M1,#1234H

↓
OR .MF.CMP SHR 4,#.DF.(CMP OR Z)AND 0FH

SUB (M1)+03H,#(1234H)AND 0FH

SUBC (M1)+02H,#(1234H)SHR 4 AND 0FH

SUBC (M1)+01H,#(1234H)SHR 8 AND 0FH

SUBC (M1),#(1234H)SHR 12 AND 0FH

SKF .MF.CY SHR 4,#.DF.CY AND 0FH

370

RA17K USER'S MANUAL

[Example 2] The value of a 4-nibble data memory location is compared with the value of

another 4-nibble data memory location (with 0 set in the bank register, and 1 set

in the register pointer).

M1 NIBBLE4 0.00H

M5 NIBBLE4 0.38H

SKGEX M1,M5

↓
OR .MF.CMP SHR 4,#.DF.(CMP OR Z) AND 0FH

MOV RPH,#.DM.(M1)SHR 8 AND 0FH

AND RPL,#01H

OR RPL,#.DM.(M1)SHR 3 AND 0EH

SUB (M1)+03H,(M5)+03H

SUBC (M1)+02H,(M5)+02H

SUBC (M1)+01H,(M5)+01H

SUBC (M1),(M5)

SKF .MF.CY SHR 4,#.DF.CY AND 0FH

371

CHAPTER 21 BUILT-IN MACRO INSTRUCTIONS

21.3.20 SKGTX

[Format]

[<label>:][∆]SKGTX∆M,#i[∆][;<comment>]

[<label>:][∆]SKGTX∆M,M[∆][;<comment>]

[Function]

(1) SKGTX M,#i

When the value of the data memory location specified in the first operand is greater than that of

immediate data i specified in the second operand, the next instruction is skipped.

(2) SKGTX M,M

When the value of the data memory location specified in the first operand is greater than that of the

data memory location specified in the second operand, the next instruction is skipped.

[Notes]

The notes relating to SKGTX are the same as those for ADDX. See Section 21.3.9 .

[Sample expansion]

[Example 1] The value of a 4-nibble data memory location is compared with 4-nibble immediate

data (with 0 set in the bank register).

M1 NIBBLE4 0.00H

SKGTX M1,#1234H

↓
OR .MF.CMP SHR 4,#.DF.(CMP OR Z)AND 0FH

SUB (M1)+03H,#(1234H)AND 0FH

SUBC (M1)+02H,#(1234H)SHR 4 AND 0FH

SUBC (M1)+01H,#(1234H)SHR 8 AND 0FH

SUBC (M1),#(1234H)SHR 12 AND 0FH

SKF .MF.CY SHR 4,#.DF.(CY OR Z)AND 0FH

372

RA17K USER'S MANUAL

[Example 2] The value of a 4-nibble general-purpose register is compared with that of a

4-nibble data memory location (with 0 set in the bank register, and 1 set in

the register pointer).

M1 NIBBLE4 0.00H

M5 NIBBLE4 0.38H

SKGTX M1,M5

↓
OR .MF.CMP SHR 4,#.DF.(CMP OR Z) AND 0FH

MOV RPH,#.DM.(M1)SHR 8 AND 0FH

AND RPL,#01H

OR RPL,#.DM.(M1)SHR 3 AND 0EH

SUB (M1)+03H,(M5)+03H

SUBC (M1)+02H,(M5)+02H

SUBC (M1)+01H,(M5)+01H

SUBC (M1),(M5)

SKF .MF.CY SHR 4,#.DF.(CY OR Z)AND 0FH

373

CHAPTER 21 BUILT-IN MACRO INSTRUCTIONS

21.3.21 SKLEX

[Format]

[<label>:][∆]SKLEX ∆M,#i[∆][;<comment>]

[<label>:][∆]SKLEX ∆M,M[∆][;<comment>]

[Function]

(1) SKLEX M,#i

When the value of the data memory location specified in the first operand is less than or equal to the

value of immediate data i specified in the second operand, the next one instruction is skipped.

(2) SKLEX M,M

When the value of the data memory location specified in the first operand is less than or equal to that

of the data memory location specified in the second operand, the next instruction is skipped.

[Notes]

The notes relating to SKLEX are the same as those for ADDX. See Section 21.3.9 .

[Sample expansion]

[Example 1] The value of a 4-nibble data memory location is compared with 4-nibble immediate

data (with 0 set in the bank register).

M1 NIBBLE4 0.00H

SKLEX M1,#1234H

↓
OR .MF.CMP SHR 4,#.DF.(CMP OR Z)AND 0FH

SUB (M1)+03H,#(1234H)AND 0FH

SUBC (M1)+02H,#(1234H)SHR 4 AND 0FH

SUBC (M1)+01H,#(1234H)SHR 8 AND 0FH

SUBC (M1),#(1234H)SHR 12 AND 0FH

SKF .MF.CY SHR 4,#.DF.(CY OR Z)AND 0FH

SKT (M1),#00H

374

RA17K USER'S MANUAL

[Example 2] The value of a 4-nibble general-purpose register is compared with that of a

4-nibble data memory location (with 0 set in the bank register, and 1 set in

the register pointer).

M1 NIBBLE4 0.00H

M5 NIBBLE4 0.38H

SKLEX M1,M5

↓
OR .MF.CMP SHR 4,#.DF.(CMP OR Z) AND 0FH

MOV RPH,#.DM.(M1)SHR 8 AND 0FH

AND RPL,#01H

OR RPL,#.DM.(M1)SHR 3 AND 0EH

SUB (M1)+03H,(M5)+03H

SUBC (M1)+02H,(M5)+02H

SUBC (M1)+01H,(M5)+01H

SUBC (M1),(M5)

SKF .MF.CY SHR 4,#.DF.(CY OR Z)AND 0FH

SKT (M1),#00H

375

CHAPTER 21 BUILT-IN MACRO INSTRUCTIONS

21.3.22 SKLTX

[Format]

[<label>:][∆]SKLTX ∆M,#i[∆][;<comment>]

[<label>:][∆]SKLTX ∆M,M[∆][;<comment>]

[Function]

(1) SKLTX M,#i

When the value of the data memory location specified in the first operand is less than that of immediate

data i, specified in the second operand, the next instruction is skipped.

(2) SKLTX M,M

When the value of the data memory location specified in the first operand is less than that of the data

memory location specified in the second operand, the next instruction is skipped.

[Notes]

The notes relating to SKLTX are the same as those for ADDX. See Section 21.3.9 .

[Sample expansion]

[Example 1] The value of a 4-nibble data memory location is compared with 4-nibble immediate

data (with 0 set in the bank register).

M1 NIBBLE4 0.00H

SKLTX M1,#1234H

↓
OR .MF.CMP SHR 4,#.DF.(CMP OR Z)AND 0FH

SUB (M1)+03H,#(1234H)AND 0FH

SUBC (M1)+02H,#(1234H)SHR 4 AND 0FH

SUBC (M1)+01H,#(1234H)SHR 8 AND 0FH

SUBC (M1),#(1234H)SHR 12 AND 0FH

SKT .MF.CY SHR 4,#.DF.CY AND 0FH

376

RA17K USER'S MANUAL

[Example 2] The value of a 4-nibble general-purpose register is compared with that of a

4-nibble data memory location (with 0 set in the bank register, and 1 set in

the register pointer).

M1 NIBBLE4 0.00H

M5 NIBBLE4 0.38H

SKLTX M1,M5

↓
OR .MF.CMP SHR 4,#.DF.(CMP OR Z) AND 0FH

MOV RPH,#.DM.(M1)SHR 8 AND 0FH

AND RPL,#01H

OR RPL,#.DM.(M1)SHR 3 AND 0EH

SUB (M1)+03H,(M5)+03H

SUBC (M1)+02H,(M5)+02H

SUBC (M1)+01H,(M5)+01H

SUBC (M1),(M5)

SKT .MF.CY SHR 4,#.DF.CY AND 0FH

377

CHAPTER 21 BUILT-IN MACRO INSTRUCTIONS

21.3.23 RORCX

[Format]

[<label>:][∆]RORCX∆R[∆][;<comment>]

[Function]

The contents of the general-purpose register specified in R and the carry flag are shifted one bit to the

right.

CY r3 r2 r1 r0

When r MEM 0.00H

r0: bit0

r1: bit1

r2: bit2

r3: bit3

[Notes]

If an expression of a type other than <expression (MEM type)> is specified in operand R, an error (F011: Illegal

first operand type) occurs. In this case, the line is invalidated, and an NOP instruction is generated.

[Sample expansion]

The contents of a 4-nibble general-purpose register are shifted one bit to the right.

R1 NIBBLE4 0.00H

RORCX R1

↓
RORC (R1)

RORC (R1)+01H

RORC (R1)+02H

RORC (R1)+03H

378

RA17K USER'S MANUAL

21.3.24 ROLCX

[Format]

[<label>:][∆]ROLCX∆R[∆][;<comment>]

[Function]

The contents of the general-purpose register specified in R and the carry flag are shifted one bit to the

left.

r3 r2 r1 r0 CY

When r MEM 0.00H

r0: bit0

r1: bit1

r2: bit2

r3: bit3

[Notes]

If an expression of a type other than <expression (MEM type)> is specified in operand R, an error (F011: Illegal

first operand type) occurs. In this case, the line is invalidated, and an NOP instruction is generated.

[Sample expansion]

The contents of a 4-nibble general-purpose register are shifted one bit to the left.

R1 NIBBLE4 0.00H

ROLCX R1

↓
ADDC (R1)+03H,(R1)+03H

ADDC (R1)+02H,(R1)+02H

ADDC (R1)+01H,(R1)+01H

ADDC (R1),(R1)

[M

379

CHAPTER 21 BUILT-IN MACRO INSTRUCTIONS

21.3.25 SHRX

[Format]

[<label>:][∆]SHRX∆R[∆][;<comment>]

[Function]

The contents of the general-purpose register specified in R are shifted one bit to the right.

0 r3 r2 r1 r0

When r MEM 0.00H

r0: bit0

r1: bit1

r2: bit2

r3: bit3

[Notes]

If an expression of a type other than <expression (MEM type)> is specified in operand R, an error (F011: Illegal

first operand type) occurs. In this case, the line is invalidated, and an NOP instruction is generated.

[Sample expansion]

The contents of a 4-nibble general-purpose register are shifted one bit to the right.

R1 NIBBLE4 0.00H

SHRX R1

↓
AND .MF.CY SHR 4,#1011B

RORC (R1)

RORC (R1)+01H

RORC (R1)+02H

RORC (R1)+03H

380

RA17K USER'S MANUAL

21.3.26 SHLX

[Format]

[<label>:][∆]SHLX ∆R[∆][;<comment>]

[Function]

The contents of the general-purpose register specified in R are shifted one bit to the left.

r3 r2 r1 r0 0

When r MEM 0.00H

r0: bit0

r1: bit1

r2: bit2

r3: bit3

[Notes]

If an expression of a type other than <expression (MEM type)> is specified in operand R, an error (F011: Illegal

first operand type) occurs. In this case, the line is invalidated, and an NOP instruction is generated.

[Sample expansion]

The contents of a 4-nibble general-purpose register are shifted one bit to the left.

R1 NIBBLE4 0.00H

SHLX R1

↓
ADD (R1)+03H,(R1)+03H

ADDC (R1)+02H,(R1)+02H

ADDC (R1)+01H,(R1)+01H

ADDC (R1),(R1)

381

CHAPTER 21 BUILT-IN MACRO INSTRUCTIONS

21.3.27 ANDX

[Format]

[<label>:][∆]ANDX∆M,#i[∆][;<comment>]

[<label>:][∆]ANDX∆M1,M2[∆][;<comment>]

[Function]

(1) ANDX M,#i

M ← (M) AND i

The value of the data memory location specified in M is ANDed with immediate data i, then the result

is stored into the data memory location specified in M.

(2) ANDX M1,M2

M1 ← (M1) AND (M2)

The value of the data memory location specified in M1 is ANDed with the value of the data memory

location specified in M2, then the result is stored into the data memory location specified in M1.

[Notes]

The notes relating to ANDX are the same as those for ADDX. See Section 21.3.9 .

[Sample expansion]

[Example 1] The value of a 4-nibble data memory location is ANDed with 4-nibble immediate

data (with 0 set in the bank register).

M1 NIBBLE4 0.00H

ANDX M1,#1234H

↓
AND (M1)+03H,#(1234H)AND 0FH

AND (M1)+02H,#(1234H)SHR 4 AND 0FH

AND (M1)+01H,#(1234H)SHR 8 AND 0FH

AND (M1),#(1234H)SHR 12 AND 0FH

382

RA17K USER'S MANUAL

[Example 2] The value of a 4-nibble general-purpose register is ANDed with the value of a

4-nibble data memory location (with 0 set in the bank register, and 1 set in the

register pointer).

M1 NIBBLE4 0.00H

M5 NIBBLE4 0.38H

ANDX M1,M5

↓
MOV RPH,#.DM.(M1)SHR 8 AND 0FH

AND RPL,#01H

OR RPL,#.DM.(M1)SHR 3 AND 0EH

AND (M1)+03H,(M5)+03H

AND (M1)+02H,(M5)+02H

AND (M1)+01H,(M5)+01H

AND (M1),(M5)

383

CHAPTER 21 BUILT-IN MACRO INSTRUCTIONS

21.3.28 ORX

[Format]

[<label>:][∆]ORX∆M,#i[∆][;<comment>]

[<label>:][∆]ORX∆M1,M2[∆][;<comment>]

[Function]

(1) ORX M,#i

M ← (M) OR i

The value of the data memory location specified in M is ORed with immediate data i, then the result

is stored into the data memory location specified in M.

(2) ORX M1,M2

M1 ← (M1) OR (M2)

The value of the data memory location specified in M1 is ORed with the value of the data memory

location specified in M2, then the result is stored into the data memory location specified in M1.

[Notes]

The notes relating to ORX are the same as those for ADDX. See Section 21.3.9 .

[Sample expansion]

[Example 1] The value of a 4-nibble data memory location is ORed with 4-nibble immediate

data (with 0 set in the bank register).

M1 NIBBLE4 0.00H

ORX M1,#1234H

↓
OR (M1)+03H,#(1234H)AND 0FH

OR (M1)+02H,#(1234H)SHR 4 AND 0FH

OR (M1)+01H,#(1234H)SHR 8 AND 0FH

OR (M1),#(1234H)SHR 12 AND 0FH

384

RA17K USER'S MANUAL

[Example 2] The value of a 4-nibble general-purpose register is ORed with the value of a

4-nibble data memory location (with 0 set in the bank register, and 1 set in the

register pointer).

M1 NIBBLE4 0.00H

M5 NIBBLE4 0.38H

ORX M1,M5

↓
MOV RPH,#.DM.(M1)SHR 8 AND 0FH

AND RPL,#01H

OR RPL,#.DM.(M1)SHR 3 AND 0EH

OR (M1)+03H,(M5)+03H

OR (M1)+02H,(M5)+02H

OR (M1)+01H,(M5)+01H

OR (M1),(M5)

385

CHAPTER 21 BUILT-IN MACRO INSTRUCTIONS

21.3.29 XORX

[Format]

[<label>:][∆]XORX∆M,#i[∆][;<comment>]

[<label>:][∆]XORX∆M1,M2[∆][;<comment>]

[Function]

(1) XORX M,#i

M ← (M) XOR i

The value of the data memory location specified in M is exclusive-ORed with immediate data i, then

the result is stored into the data memory location specified in M.

(2) XORX M1,M2

M1 ← (M1) OR (M2)

The value of the data memory location specified in M1 is exclusive-ORed with the value of the data

memory location specified in M2, then the result is stored into the data memory location specified in

M1.

[Notes]

The notes relating to XORX are the same as those for ADDX. See Section 21.3.9 .

[Sample expansion]

[Example 1] The value of a 4-nibble data memory location is exclusive-ORed with 4-nibble

immediate data (with 0 set in the bank register).

M1 NIBBLE4 0.00H

XORX M1,#1234H

↓
XOR (M1)+03H,#(1234H)AND 0FH

XOR (M1)+02H,#(1234H)SHR 4 AND 0FH

XOR (M1)+01H,#(1234H)SHR 8 AND 0FH

XOR (M1),#(1234H)SHR 12 AND 0FH

386

RA17K USER'S MANUAL

[Example 2] The value of a 4-nibble general-purpose register is exclusive-ORed with the value

of a 4-nibble data memory location (with 0 set in the bank register, and 1 set in

the register pointer).

M1 NIBBLE4 0.00H

M5 NIBBLE4 0.38H

XORX M1,M5

↓
MOV RPH,#.DM.(M1)SHR 8 AND 0FH

AND RPL,#01H

OR RPL,#.DM.(M1)SHR 3 AND 0EH

XOR (M1)+03H,(M5)+03H

XOR (M1)+02H,(M5)+02H

XOR (M1)+01H,(M5)+01H

XOR (M1),(M5)

387

CHAPTER 21 BUILT-IN MACRO INSTRUCTIONS

21.3.30 BRX

[Format]

[<label>:][∆]BRX∆<expression>[∆][;<comment>]

[Function]

BRX branches to the address specified in the operand field.

BRX is expanded to a direct branch instruction (BR <expression>).

[Notes]

(1) Only a label-type symbol can be specified for the <expression> in the operand field. If other than a

label-type symbol is specified, an error (F011: Illegal first operand type) occurs. In this case, the line

is invalidated and an NOP instruction is generated.

(2) If the address specified for the <expression> in the operand field is allocated in another segment, and

a branch operation cannot be performed with a direct branch instruction at link time, the linker

generates an indirect branch table in a free area.

[Sample expansion]

BRX BR_LAB1

↓
BR (BR_LAB1)

388

RA17K USER'S MANUAL

21.3.31 CALLX

[Format]

[<label>:][∆]CALLX ∆<expression>[∆][;<comment>]

[Function]

CALLX calls the subroutine located at the address specified in the operand field.

CALLX is expanded to a direct subroutine call instruction (CALL <expression>).

[Notes]

(1) Only a label-type symbol can be specified for the <expression> in the operand field. If other than a

label-type symbol is specified, an error (F011: Illegal first operand type) occurs. In this case, the line

is invalidated and an NOP instruction is generated.

(2) If the address specified for the <expression> in the operand field is allocated in another segment, and

a call operation cannot be performed with a direct subroutine call instruction at link time, the linker

generates an indirect subroutine call table in a free area.

[Sample expansion]

CALLX CAL_LAB1

↓
CALLX (CAL_LAB1)

389

CHAPTER 21 BUILT-IN MACRO INSTRUCTIONS

21.3.32 SYSCALX

[Format]

[<label>:][∆]SYSCALX∆<expression (LAB type)>[∆][;<comment>]

[Function]

SYSCALX calls the system subroutine located at the address specified in the operand field.

[Notes]

(1) Only a label-type symbol can be specified for the <expression (LAB type)> in the operand field. If

other than a label-type symbol is specified, an error (F011: Illegal first operand type) occurs. In this

case, the line is invalidated and one NOP instruction is generated as the object.

[Sample expansion]

EXTRN LAB:EXTLAB

SYSCALX EXTLAB

↓
SYSCALX (((.DL.(EXTLAB)) SHR 4) AND 00F0H) OR ((.DL.(EXTLAB)) AND 0FH)

390

RA17K USER'S MANUAL

21.4 STRUCTURED INSTRUCTIONS

Structured instructions are used for creating structured program descriptions.

The use of structured instructions improves the ease of programming as well as readability of the finished

code. Accordingly, efficiency in debugging is also improved.

The following built-in macro instructions are provided to facilitate structured programming:

_IF ... _ELSEIF ... _ELSE ... _ENDIF

_WHILE ... _ENDW

_SWITCH ... _CASE ... _DEFAULT ... _ENDS

_REPEAT ... _UNTIL

_FOR ... _NEXT

_BREAK

_CONTINUE

_GOTO

These built-in macro instructions automatically generate branch instructions and branch destination labels

based on condition checking.

[Relational operators]

The relational operators that can be used with structured instructions are shown below.

EQ (Equal) operator (==)

NE (Not Equal) operator (!=)

GE (Greater than or Equal) operator (>=)

GT (Greater than) operator (>)

LE (Less than or Equal) operator (<=)

LT (Less than) operator (<)

[Assignment operators]

The assignment operators that can be used with structured instructions are shown below.

• Simple assignment (=)

[Format] α = β
[Function] Assigns β to α.

[Explanation] α and β are assumed to be specifiable in extended instruction MOVTX which is a

generation instruction.

*

391

CHAPTER 21 BUILT-IN MACRO INSTRUCTIONS

• Addition assignment (+=)

[Format] α += β
[Function] Adds α and β, and assigns the result to α.

[Explanation] α and β are assumed to be specifiable in extended instruction ADDX which is a

generation instruction.

• Subtraction assignment (-=)

[Format] α -= β
[Function] Performs subtraction (α - β), and assigns the result to α.

[Explanation] α and β are assumed to be specifiable in extended instruction SUBX, which is a

generation instruction.

• Multiplication assignment (*=)

[Format] α *= β
[Function] Multiplies α and β (α * β), and assigns the result to α.

[Explanation] α is assumed to be specifiable in extended instruction SHLX which is a generation

instruction. For β, only immediate data is assumed to be specifiable. The value must

be 2n.

• Division assignment (/=)

[Format] α /= β
[Function] Performs bitwise division of α and β (α ÷ β), and assigns the result to α.

[Explanation] α is assumed to be specifiable in extended instruction SHRX which is a generation

instruction. For β, only immediate data is assumed to be specifiable. Its value must

be 2n.

• AND assignment (&=)

[Format] α &= β
[Function] Performs bitwise AND for α and β (α & β), and assigns the result to α.

[Explanation] α and β are assumed to be specifiable in extended instruction ANDX which is a

generation instruction.

• OR assignment (|=)

[Format] α |= β
[Function] Performs bitwise OR for α and β (α | β), and assigns the result to α.

[Explanation] α and β are assumed to be specifiable in extended ORX which is a generation

instruction.

• Exclusive OR assignment (^=)

[Format] α ^= β
[Function] Performs bitwise exclusive OR for α and β (α ^ β), and assigns the result to α.

[Explanation] α and β are assumed to be specifiable in extended instruction ORX which is a generation

instruction.

392

RA17K USER'S MANUAL

• Shift-right assignment (>>=)

[Format] α >>= β
[Function] Shifts α right by β, and assigns the result to α.

[Explanation] α is assumed to be specifiable in extended instruction SHRX which is a generation

instruction. For β, only immediate data is assumed to be specifiable.

• Shift-left assignment (<<=)

[Format] α <<= β
[Function] Shifts α left by β, and assigns the result to α.

[Explanation] α is assumed to be specifiable in extended instruction SHLX which is a generation

instruction. For β, only immediate data is assumed to be specifiable.

• Increment (++)

[Format] α ++

[Function] Increments the content of α by one.

[Explanation] A MEM-type symbol can be specified for α.

• Decrement (––)

[Format] α ––

[Function] Decrements the content of α by one.

[Explanation] A MEM-type symbol can be specified for α.

393

CHAPTER 21 BUILT-IN MACRO INSTRUCTIONS

21.4.1 _IF ... _ELSEIF ... _ELSE ... _ENDIF

[Format]

_IF[∆](conditional-expression-1)

statement-1

_ELSEIF[∆](conditional-expression-2)

statement-2

_ELSE

statement-3

_ENDIF

[Function]

(1) _IF ... _ENDIF

If conditional expression 1 is true, statement 1 is executed.

(2) _IF ... _ELSE ... _ENDIF

If conditional expression 1 is true, statement 1 is executed. If conditional expression 1 is false,

statement 3 is executed.

(3) _IF ... _ELSEIF ... _ELSE ... _ENDIF

_ELSEIF can be coded more than once for one statement.

If conditional expression 1 is true, statement 1 is executed. If it is false, conditional expression 2 is

checked. If conditional expression 2 is true, statement 2 is executed.

If conditional expression 2 is false, and if another _ELSEIF is encountered before _ENDIF, condition

checking is performed for that _ELSEIF. If conditional expression 2 is false, and if _ELSEIF is not

found, statement 3 is executed.

[Notes]

(1) Conditional expressions can be specified as follows:

• <FLG-type-symbol> ∆relational-operator∆ [#]<DAT-type-symbol>

• M∆relational-operator∆ [#]i

• M∆relational-operator∆M

(a) For [#]<DAT-type-symbol> specified when <FLG-type-symbol> is included in a conditional

expression, only 0 or 1 can be specified. If a value other than 0 and 1 is set for [#]<DAT-type-

symbol>, an error occurs (F044: Invalid value), and expansion is not performed.

(b) Up to four conditional expressions having <FLG-type-symbol> can be coded successfully by using

relational operators (OR, AND).

(c) For an explanation of other restrictions imposed on <FLG-type-symbol>, see Section 21.2 .

394

RA17K USER'S MANUAL

(d) If a symbol defined with NIBBLEnV is specified as a general-purpose register, an error occurs.

(This built-in macro does not manipulate RP.)

(e) When <FLG-type-symbol> is specified in a conditional expression, the specifiable relational

operators are EQ, ==, eq, NE, !=, <>, and ne. If a relational operator other than these specifiable

relational operators is specified, an error occurs.

(f) If the number of nibbles on the left side of a conditional expression is greater than the number

of nibbles on the right side, the upper bits on the right side are processed as 0s.

(g) If the number of nibbles on the left side of a conditional expression is smaller than the number

of nibbles on the right side, processing is performed on the assumption that the number of nibbles

on the left is valid. At the same time, a warning message is output, alerting the user to the shortage

of nibbles.

(h) If an illegal type is specified in the operand field, an error occurs (F045: Invalid type), and one

NOP instruction is generated as an object code.

(i) If immediate data of more than eight nibbles is specified in the operand field, an error occurs (F164:

The constant is over 32 bits), and one NOP instruction is generated as an object code.

(2) _IF ... _ELSE ... _ENDIF is used to control two different branches according to condition checking.

(3) _ELSEIF and _ELSE can be omitted.

[Instruction expansion]

(1) Processing for the _IF (conditional-expression-1) statement

An instruction for evaluating conditional expression 1 is generated.

An instruction for branching to _ELSEIF, _ELSE, or _ENDIF is generated.

(2) Processing for the _ELSEIF (conditional-expression-2) statement

An instruction for evaluating conditional expression 2 is generated.

An instruction for branching to the _ELSE or _ENDIF statement is generated.

A label for the branch instruction generated by the _IF statement is generated.

(3) Processing for the _ELSE statement

An instruction for branching to the _ENDIF statement is generated.

A label for the branch instruction generated by _IF or _ELSEIF is generated.

(4) Processing for the _ENDIF statement

A label for the branch instruction generated by _IF, _ELSEIF, or _ELSE is generated.

395

CHAPTER 21 BUILT-IN MACRO INSTRUCTIONS

[Sample expansion]

[Example 1] When relational operator == is used in conditional expressions that compare data

(four nibbles) and immediate data (four nibbles) (with 0 set in the bank register)

M4 NIBBLE4 0.00H

_IF (M4 == #0123H)
NOP

_ELSEIF (M4 == #3210H)
NOP

_ELSE
NOP

_ENDIF

↓
Expansion form

_IF (M4 == #0123H)

SKNE (M4)+03H,#(0123H)AND 0FH
SKE (M4)+02H,#(0123H)SHR 4 AND 0FH
BR ?L0
SKNE (M4)+01H,#(0123H)SHR 8 AND 0FH
SKE (M4),#(0123H)SHR 12 AND 0FH
?L0:
BR ?L1

NOP
_ELSEIF (M4 == #3210H)

BR ?L2
?L1:
MOV BANK,#.DM.(M4)SHR 8 AND 0FH
SKNE (M4)+03H,#(3210H)AND 0FH
SKE (M4)+02H,#(3210H)SHR 4 AND 0FH
BR ?L3
SKNE (M4)+01H,#(3210H)SHR 8 AND 0FH
SKE (M4),#(3210H)SHR 12 AND 0FH
?L3:
BR ?L4

NOP
 _ELSE

 BR ?L2
 ?L4:

NOP
_ENDIF

?L2:

396

RA17K USER'S MANUAL

[Example 2] When relational operator != is used in conditional expressions that compare data

(four nibbles) and immediate data (four nibbles) (with 0 set in the bank register)

 M4 NIBBLE4 0.00H

_IF (M4 != #0123H)
NOP

_ELSEIF (M4 != #3210H)
NOP

_ELSE
NOP

_ENDIF

↓
Expansion form

_IF (M4 != #0123H)

SKE (M4)+03H,#(0123H)AND 0FH
BR $+6
SKNE (M4)+02H,#(0123H)SHR 4 AND 0FH
SKE (M4)+01H,#(0123H)SHR 8 AND 0FH
BR $+3
SKNE (M4),#(0123H)SHR 12 AND 0FH
BR ?L0

NOP
_ELSEIF (M4 != #3210H)

BR ?L1
?L0:
MOV BANK,#.DM.(M4)SHR 8 AND 0FH
SKE (M4)+03H,#(3210H)AND 0FH
BR $+6
SKNE (M4)+02H,#(3210H)SHR 4 AND 0FH
SKE (M4)+01H,#(3210H)SHR 8 AND 0FH
BR $+3
SKNE (M4),#(3210H)SHR 12 AND 0FH
BR ?L2

NOP
 _ELSE

 BR ?L1
 ?L2:

NOP
_ENDIF

?L1:

397

CHAPTER 21 BUILT-IN MACRO INSTRUCTIONS

[Example 3] When relational operator >= is used in conditional expressions that compare data

(four nibbles) and immediate data (four nibbles) (with 0 set in the bank register)

M4 NIBBLE4 0.00H

_IF (M4 >= #0123H)
NOP

_ELSEIF (M4 >= #3210H)
NOP

_ELSE
NOP

_ENDIF

↓
Expansion form

_IF (M4 >= #0123H)

OR .MF.CMP SHR 4,#.DF.(CMP OR Z)AND 0FH
SUB (M4)+03H,#(0123H)AND 0FH
SUBC (M4)+02H,#(0123H)SHR 4 AND 0FH
SUBC (M4)+01H,#(0123H)SHR 8 AND 0FH
SUBC (M4),#(0123H)SHR 12 AND 0FH
SKF .MF.CY SHR 4,#.DF.CY AND 0FH
BR ?L0

NOP
_ELSEIF (M4 >= #3210H)

BR ?L1
?L0:
OR .MF.CMP SHR 4,#.DF.(CMP OR Z)AND 0FH
MOV BANK,#.DM.(M4)SHR 8 AND 0FH
SUB (M4)+03H,#(3210H)AND 0FH
SUBC (M4)+02H,#(3210H)SHR 4 AND 0FH
SUBC (M4)+01H,#(3210H)SHR 8 AND 0FH
SUBC (M4),#(3210H)SHR 12 AND 0FH
SKF .MF.CY SHR 4,#.DF.CY AND 0FH
BR ?L2

NOP
 _ELSE

 BR ?L1
 ?L2:

NOP
_ENDIF

?L1:

398

RA17K USER'S MANUAL

[Example 4] When relational operator > is used in conditional expressions that compare data

(four nibbles) and immediate data (four nibbles) (with 0 set in the bank register)

M4 NIBBLE4 0.00H

_IF (M4 > #0123H)
NOP

_ELSEIF (M4 > #3210H)
NOP

_ELSE
NOP

_ENDIF

↓
Expansion form

_IF (M4 > #0123H)

OR .MF.CMP SHR 4,#.DF.(CMP OR Z)AND 0FH
SUB (M4)+03H,#(0123H)AND 0FH
SUBC (M4)+02H,#(0123H)SHR 4 AND 0FH
SUBC (M4)+01H,#(0123H)SHR 8 AND 0FH
SUBC (M4),#(0123H)SHR 12 AND 0FH
SKF .MF.CY SHR 4,#.DF.(CY OR Z)AND 0FH
BR ?L0

NOP
_ELSEIF (M4 > #3210H)

BR ?L1
?L0:
OR .MF.CMP SHR 4,#.DF.(CMP OR Z)AND 0FH
MOV BANK,#.DM.(M4)SHR 8 AND 0FH
SUB (M4)+03H,#(3210H)AND 0FH
SUBC (M4)+02H,#(3210H)SHR 4 AND 0FH
SUBC (M4)+01H,#(3210H)SHR 8 AND 0FH
SUBC (M4),#(3210H)SHR 12 AND 0FH
SKF .MF.CY SHR 4,#.DF.(CY OR Z)AND 0FH
BR ?L2

NOP
 _ELSE

 BR ?L1
 ?L2:

NOP
_ENDIF

?L1:

399

CHAPTER 21 BUILT-IN MACRO INSTRUCTIONS

[Example 5] When relational operator <= is used in conditional expressions that compare data

(four nibbles) and immediate data (four nibbles) (with 0 set in the bank register)

M4 NIBBLE4 0.00H

_IF (M4 <= #0123H)
NOP

_ELSEIF (M4 <= #3210H)
NOP

_ELSE
NOP

_ENDIF

↓
Expansion form

_IF (M4 <= #0123H)

OR .MF.CMP SHR 4,#.DF.(CMP OR Z)AND 0FH
SUB (M4)+03H,#(0123H)AND 0FH
SUBC (M4)+02H,#(0123H)SHR 4 AND 0FH
SUBC (M4)+01H,#(0123H)SHR 8 AND 0FH
SUBC (M4),#(0123H)SHR 12 AND 0FH
SKF .MF.CY SHR 4,#.DF.(CY OR Z)AND 0FH
SKT (M4),#00H
BR ?L0

NOP
_ELSEIF (M4 <= #3210H)

BR ?L1
?L0:
OR .MF.CMP SHR 4,#.DF.(CMP OR Z)AND 0FH
MOV BANK,#.DM.(M4)SHR 8 AND 0FH
SUB (M4)+03H,#(3210H)AND 0FH
SUBC (M4)+02H,#(3210H)SHR 4 AND 0FH
SUBC (M4)+01H,#(3210H)SHR 8 AND 0FH
SUBC (M4),#(3210H)SHR 12 AND 0FH
SKF .MF.CY SHR 4,#.DF.(CY OR Z)AND 0FH
SKT (M4),#00H
BR ?L2

NOP
 _ELSE

 BR ?L1
 ?L2:

NOP
_ENDIF

?L1:

400

RA17K USER'S MANUAL

[Example 6] When relational operator < is used in conditional expressions that compare data

(four nibbles) and immediate data (four nibbles) (with 0 set in the bank register)

M4 NIBBLE4 0.00H

_IF (M4 < #0123H)
NOP

_ELSEIF (M4 < #3210H)
NOP

_ELSE
NOP

_ENDIF

↓
Expansion form

_IF (M4 < #0123H)

OR .MF.CMP SHR 4,#.DF.(CMP OR Z)AND 0FH
SUB (M4)+03H,#(0123H)AND 0FH
SUBC (M4)+02H,#(0123H)SHR 4 AND 0FH
SUBC (M4)+01H,#(0123H)SHR 8 AND 0FH
SUBC (M4),#(0123H)SHR 12 AND 0FH
SKT .MF.CY SHR 4,#.DF.CY AND 0FH
BR ?L0

NOP
_ELSEIF (M4 < #3210H)

BR ?L1
?L0:
OR .MF.CMP SHR 4, #.DF.(CMP OR Z)AND 0FH
MOV BANK,#.DM.(M4)SHR 8 AND 0FH
SUB (M4)+03H,#(3210H)AND 0FH
SUBC (M4)+02H,#(3210H)SHR 4 AND 0FH
SUBC (M4)+01H,#(3210H)SHR 8 AND 0FH
SUBC (M4),#(3210H)SHR 12 AND 0FH
SKT .MF.CY SHR 4,#.DF.CY AND 0FH
BR ?L2

NOP
 _ELSE

 BR ?L1
 ?L2:

NOP
_ENDIF

?L1:

401

CHAPTER 21 BUILT-IN MACRO INSTRUCTIONS

[Example 7] When relational operator == is used in conditional expressions that compare data

(vertical four nibbles) and immediate data (horizontal four nibbles) (with 0 set in

the bank register, and 1 set in the register pointer)

M8V NIBBLE8V 0.00H
R8 NIBBLE8 0.00H
M4V NIBBLE4V 0.00H
R4 NIBBLE4 0.00H

_IF (R8 < M8V)
NOP

_ELSEIF (R4 < M4V)
NOP

_ELSE
NOP

_ENDIF

↓
Expansion form

_IF (R8 < M8V)

OR .MF.CMP SHR 4,#.DF.(CMP OR Z)AND 0FH
MOV RPH,#.DM.(R8)SHR 8 AND 0FH
AND RPL,#01H
OR RPL,#.DM.(R8)SHR 3 AND 0EH
SUB (R8)+07H,(M8V)+070H
SUBC (R8)+06H,(M8V)+060H
SUBC (R8)+05H,(M8V)+050H
SUBC (R8)+04H,(M8V)+040H
SUBC (R8)+03H,(M8V)+030H
SUBC (R8)+02H,(M8V)+020H
SUBC (R8)+01H,(M8V)+010H
SUBC (R8),(M8V)
SKT .MF.CY SHR 4,#.DF.CY AND 0FH
BR ?L0

NOP
_ELSEIF (R4 < M4V)

BR ?L1
?L0:
OR .MF.CMP SHR 4,#.DF.(CMP OR Z)AND 0FH
MOV RPH,#.DM.(M4)SHR 8 AND 0FH
AND RPL,#01H
OR RPL,#.DM.(R4)SHR 3 AND 0EH
MOV BANK,#.DM.(M4V)SHR 8 AND 0FH
SUB (R4)+03H,#(M4V)+030H
SUBC (R4)+02H,#(M4V)+020H
SUBC (R4)+01H,#(M4V)+010H
SUBC (R4),(M4V)
SKT .MF.CY SHR 4,#.DF.CY AND 0FH
BR ?L2

NOP
_ELSE

BR ?L1
?L2:

NOP
_ENDIF

?L1:

402

RA17K USER'S MANUAL

[Example 8] When relational operator == is used in conditional expressions that compare flags

and immediate data (with 0 set in the bank register)

F1 FLG 0.01H.0
F2 FLG 0.02H.0
F3 FLG 0.03H.0
F4 FLG 0.04H.0

_IF ((F1 == #0)AND(F2 == #0)AND(F3 == #0)AND(F4 == #0))
NOP

_ELSEIF ((F1 == #1)AND(F2 == #1)AND(F3 == #1)AND(F4 == #1))
NOP

_ELSE
NOP

_ENDIF

↓
Expansion form

_IF ((F1 == #0)AND(F2 == #0)AND(F3 == #0)AND(F4 == #0))

SKF .MF.(F1)SHR 4,#.DF.(F1)AND 0FH
BR ?L0
SKF .MF.(F2)SHR 4,#.DF.(F2)AND 0FH
BR ?L0
SKF .MF.(F3)SHR 4,#.DF.(F3)AND 0FH
BR ?L0
SKF .MF.(F4)SHR 4,#.DF.(F4)AND 0FH
BR ?L0

NOP
_ELSEIF (F1 == #1)AND(F2 == #1)AND(F3 == #1)AND(F4 == #1)

BR ?L1
?L0:
MOV BANK,#.DF.(F1)SHR 12 AND 0FH
SKT .MF.(F1)SHR 4,#.DF.(F1)AND 0FH
BR ?L2
SKT .MF.(F2)SHR 4,#.DF.(F2)AND 0FH
BR ?L2
SKT .MF.(F3)SHR 4,#.DF.(F3)AND 0FH
BR ?L2
SKT .MF.(F4)SHR 4,#.DF.(F4)AND 0FH
BR ?L2

NOP
_ELSE

BR ?L1
?L2:

NOP
_ENDIF

?L1:

403

CHAPTER 21 BUILT-IN MACRO INSTRUCTIONS

[Example 9] When relational operator == is used in conditional expressions that compare data

(eight nibbles) and immediate data (eight nibbles) (with 0 set in the bank register)

M8 NIBBLE8 0.00H
M4 NIBBLE4 0.00H

_IF (M8 == #01234567H)
NOP

_ELSEIF (M4 == #3210H)
NOP

_ELSE
NOP

_ENDIF

↓
Expansion form

_IF (M8 == #01234567H)

OR .MF.CMP SHR 4,#.DF.(CMP OR Z)AND 0FH
SUB (M8)+07H,#(01234567H)AND 0FH
SUBC (M8)+06H,#(01234567H)SHR 4 AND 0FH
SUBC (M8)+05H,#(01234567H)SHR 8 AND 0FH
SUBC (M8)+04H,#(01234567H)SHR 12 AND 0FH
SUBC (M8)+03H,#(01234567H)SHR 16 AND 0FH
SUBC (M8)+02H,#(01234567H)SHR 20 AND 0FH
SUBC (M8)+01H,#(01234567H)SHR 24 AND 0FH
SUBC (M8),#(01234567H)SHR 28 AND 0FH
SKT .MF.Z SHR 4,#.DF.Z AND 0FH
BR ?L0

NOP
_ELSEIF (M4 == #3210H)

BR ?L1
?L0:
MOV BANK,#.DM.(M4)SHR 8 AND 0FH
SKNE (M4)+03H,#(3210)AND 0FH
SKE (M4)+02H,#(3210)SHR 4 AND 0FH
BR ?L2
SKNE (M4)+01H,#(3210)SHR 8 AND 0FH
SKE (M4),#(3210)SHR 12 AND 0FH
?L2:
BR ?L3

NOP
_ELSE

BR ?L1
?L3:

NOP
_ENDIF

?L1:

404

RA17K USER'S MANUAL

21.4.2 _WHILE ... _ENDW

[Format]

_WHILE[∆](conditional-expression)

statement

_ENDW

[Function]

While the conditional expression is true, the statement is executed.

[Notes]

(1) Conditional expressions can be specified as follows:

• <FLG-type-symbol> ∆relational-operator∆ [#]<DAT-type-symbol>

• M∆relational-operator∆ [#]i

• Rn∆relational-operator∆ M

(a) For [#]<DAT-type-symbol> specified when <FLG-type-symbol> is included in a conditional

expression, only 0 or 1 can be specified. If a value other than 0 or 1 is set for [#]<DAT-type-

symbol>, an error occurs (F044: Invalid value), and expansion is not performed.

(b) Up to four conditional expressions having <FLG-type-symbol> can be coded successfully by using

relational operators (OR, AND).

(c) For details of the other restrictions imposed on <FLG-type-symbol>, see Section 21.2 .

(d) If a symbol defined with NIBBLEnV is specified as a general-purpose register, an error occurs.

(This built-in macro does not manipulate RP.)

(e) When <FLG-type-symbol> is specified in a conditional expression, the specifiable relational

operators are EQ, ==, eq, NE, !=, <>, and ne. If a relational operator other than these specifiable

relational operators is specified, an error occurs.

(f) If the number of nibbles on the left side of a conditional expression is greater than the number

of nibbles on the right side, the upper bits on the right side are processed as 0s.

(g) If the number of nibbles on the left side of a conditional expression is smaller than the number

of nibbles on the right side, processing is performed on the assumption that the number of nibbles

on the left is valid. At the same time, a warning message is output, alerting the user to the shortage

of nibbles.

(h) If an illegal type is specified in the operand field, an error occurs (F045: Invalid type), and one

NOP instruction is generated as an object code.

405

CHAPTER 21 BUILT-IN MACRO INSTRUCTIONS

(i) If immediate data consisting of more than eight nibbles is specified in the operand field, an error

occurs (F164: The constant is over 32 bits), and one NOP instruction is generated as an object

code.

(2) Before the statement is executed, the conditional expression is evaluated. If the conditional

expression is found to be false when evaluated for the first time, the statement is never executed.

[Instruction expansion]

(1) Processing for _WHILE (conditional-expression)

A label for the branch instruction generated by _ENDW is generated.

(2) Processing for _ENDW statement

A branch instruction for repetition is generated.

A label for the branch instruction to exit from the _WHILE block is generated.

[Sample expansion]

[Example 1] When relational operator == is used in a conditional expression that compares

data (four nibbles) and immediate data (four nibbles) (with 0 set in the bank

register)

 M4 NIBBLE4 0.00H

_WHILE (M4 == #0123H)
 NOP
_ENDW

↓
Expansion form

 _WHILE (M4 == #0123H)

 ?L0:
 MOV BANK,#.DM.(M4) SHR 8 AND 0FH
 SKNE (M4)+03H, #(0123H) AND 0FH
 SKE (M4)+02H, #(0123H) SHR 4 AND 0FH
 BR ?L1
 SKNE (M4)+01H, #(0123H) SHR 8 AND 0FH
 SKE (M4), #(0123H) SHR 12 AND 0FH
 ?L1:
 BR ?L2

 NOP
 _ENDW

 BR ?L0
 ?L2:

406

RA17K USER'S MANUAL

[Example 2] When relational operator != is used in a conditional expression that compares

data (four nibbles) and immediate data (four nibbles) (with 0 set in the bank

register)

 M4 NIBBLE4 0.00H

_WHILE (M4 != #0123H)
 NOP
_ENDW

↓
Expansion form

 _WHILE (M4 != #0123H)

 ?L0:
 MOV BANK, #.DM.(M4) SHR 8 AND 0FH
 SKE (M4)+03H, #(0123H) AND 0FH
 BR $+6
 SKNE (M4)+02H, #(0123H) SHR 4 AND 0FH
 SKE (M4)+01H, #(0123H) SHR 8 AND 0FH
 BR $+3
 SKNE (M4), #(0123H) SHR 12 AND 0FH
 BR ?L1

 NOP
 _ENDW

 BR ?L0
 ?L1:

[Example 3] When relational operator >= is used in a conditional expression that compares

data (four nibbles) and immediate data (four nibbles) (with 0 set in the bank

register)

 M4 NIBBLE4 0.00H

_WHILE (M4 >= #0123H)
 NOP
_ENDW

↓
Expansion form

 _WHILE (M4 >= #0123H)

 ?L0:
 OR .MF.CMP SHR 4, #.DF.(CMP OR Z) AND 0FH
 MOV BANK, #.DM.(M4) SHR 8 AND 0FH
 SUB (M4)+03H, #(0123H) AND 0FH
 SUBC (M4)+02H, #(0123H) SHR 4 AND 0FH
 SUBC (M4)+01H, #(0123H) SHR 8 AND 0FH
 SUBC (M4), #(0123H) SHR 12 AND 0FH
 SKF .MF.CY SHR 4, #.DF.CY AND 0FH
 BR ?L1

 NOP
 _ENDW

 BR ?L0
 ?L1:

407

CHAPTER 21 BUILT-IN MACRO INSTRUCTIONS

[Example 4] When relational operator > is used in a conditional expression that compares data

(four nibbles) and immediate data (four nibbles) (with 0 set in the bank register)

 M4 NIBBLE4 0.00H

_WHILE (M4 > #0123H)
 NOP
_ENDW

↓
Expansion form

 _WHILE (M4 > #0123H)

 ?L0:
 OR .MF.CMP SHR 4, #.DF.(CMP OR Z)AND 0FH
 MOV BANK, #.DM.(M4) SHR 8 AND 0FH
 SUB (M4)+03H, #(0123H) AND 0FH
 SUBC (M4)+02H, #(0123H) SHR 4 AND 0FH
 SUBC (M4)+01H, #(0123H) SHR 8 AND 0FH
 SUBC (M4), #(0123H) SHR 12 AND 0FH
 SKF .MF.CY SHR 4, #.DF.(CY OR Z)AND 0FH
 BR ?L1

 NOP
 _ENDW

 BR ?L0
 ?L1:

[Example 5] When relational operator <= is used in a conditional expression that compares

data (four nibbles) and immediate data (four nibbles) (with 0 set in the bank

register)

 M4 NIBBLE4 0.00H

_WHILE (M4 <= #0123H)
 NOP
_ENDW

↓
Expansion form

 _WHILE (M4 <= #0123H)

 ?L0:
 OR .MF.CMP SHR 4, #.DF.(CMP OR Z)AND 0FH
 MOV BANK, #.DM.(M4) SHR 8 AND 0FH
 SUB (M4)+03H, #(0123H) AND 0FH
 SUBC (M4)+02H, #(0123H) SHR 4 AND 0FH
 SUBC (M4)+01H, #(0123H) SHR 8 AND 0FH
 SUBC (M4), #(0123H) SHR 12 AND 0FH
 SKF .MF.CY SHR 4, #.DF.(CY OR Z) AND 0FH
 SKT (M4), #00H
 BR ?L1

 NOP
 _ENDW

 BR ?L0
 ?L1:

408

RA17K USER'S MANUAL

[Example 6] When relational operator < is used in a conditional expression that compares data

(four nibbles) and immediate data (four nibbles) (with 0 set in the bank register)

 M4 NIBBLE4 0.00H

_WHILE (M4 < #0123H)
 NOP
_ENDW

↓
Expansion form

 _WHILE (M4 < #0123H)

 ?L0:
 OR .MF.CMP SHR 4, #.DF.(CMP OR Z)AND 0FH
 MOV BANK, #.DM.(M4)SHR 8 AND 0FH
 SUB (M4)+03H, #(0123H) AND 0FH
 SUBC (M4)+02H, #(0123H) SHR 4 AND 0FH
 SUBC (M4)+01H, #(0123H) SHR 8 AND 0FH
 SUBC (M4), #(0123H) SHR 12 AND 0FH
 SKT .MF.CY SHR 4, #.DF.CY AND 0FH
 BR ?L1

 NOP
 _ENDW

 BR ?L0
 ?L1:

[Example 7] When relational operator == is used in a conditional expression that compares

flags and immediate data (with 0 set in the bank register)

 F1 FLG 0.01H.0
 F2 FLG 0.02H.0
 F3 FLG 0.03H.0
 F4 FLG 0.04H.0

_WHILE ((F1 == #0)AND(F2 == #0)AND(F3 == #0)AND(F4 == #0))
NOP

_ENDW

↓
Expansion form

 _WHILE ((F1 == #0)AND(F2 == #0)AND(F3 == #0)AND(F4 == #0))

 ?L0:
 MOV BANK, #.DF.(F1) SHR 12 AND 0FH
 SKF .MF.(F1) SHR 4,#.DF.(F1) AND 0FH
 BR ?L1
 SKF .MF.(F2) SHR 4,#.DF.(F2) AND 0FH
 BR ?L1
 SKF .MF.(F3) SHR 4,#.DF.(F3) AND 0FH
 BR ?L1
 SKF .MF.(F4) SHR 4,#.DF.(F4) AND 0FH
 BR ?L1

 NOP
 _ENDW

 BR ?L0
 ?L1:

409

CHAPTER 21 BUILT-IN MACRO INSTRUCTIONS

[Example 8] When relational operator == is used in a conditional expression that compares

data (eight nibbles) and immediate data (eight nibbles) (with 0 set in the bank

register)

 M8 NIBBLE8 0.00H

_WHILE (M8 == #01234567H)
 NOP
_ENDW

↓
Expansion form

 _WHILE (M8 == #1234567H)

 ?L0:
 OR .MF.CMP SHR 4, #.DF.(CMP OR Z)AND 0FH
 MOV BANK, #.DM.(M8) SHR 8 AND 0FH
 SUB (M8)+07H, #(01234567H) AND 0FH
 SUBC (M8)+06H, #(01234567H) SHR 4 AND 0FH
 SUBC (M8)+05H, #(01234567H) SHR 8 AND 0FH
 SUBC (M8)+04H, #(01234567H) SHR 12 AND 0FH
 SUBC (M8)+03H, #(01234567H) SHR 16 AND 0FH
 SUBC (M8)+02H, #(01234567H) SHR 20 AND 0FH
 SUBC (M8)+01H, #(01234567H) SHR 24 AND 0FH
 SUBC (M8), #(01234567H) SHR 28 AND 0FH
 SKT .MF.Z SHR 4, #.DF.Z AND 0FH
 BR ?L1

 NOP
 _ENDW

 BR ?L0
 ?L1:

410

RA17K USER'S MANUAL

21.4.3 _SWITCH ... _CASE ... _DEFAULT ... _ENDS

[Format]

_SWITCH[∆](MEM-type-symbol)

_CASE∆constant-1

statement-1

_CASE∆constant-2

statement-2

 :

_CASE∆constant-N

statement-N

_DEFAULT

statement-N+1

_ENDS

[Function]

If the value of _SWITCH matches constant i, statement i is executed (i = 1 to N). If none of constants

1 to N matches the value of α, and if _DEFAULT exists, statement N+1 is executed. If none of constants

1 to N matches the value of α, and if there is no _DEFAULT, nothing is executed.

Normally, the _BREAK statement must be specified to exit from the _SWITCH block.

[Notes]

(1) Specify a MEM-type symbol for α.

(2) After control is passed to a _CASE statement, the subsequent _CASE statements are executed

sequentially. To exit from the _SWITCH block without executing the next _CASE statement, specify

a _BREAK statement.

(3) Constants may be specified in binary, octal, decimal, or hexadecimal.

(4) If the same constant is specified more than once within the same _SWITCH block, an error occurs.

(5) If an instruction that generates an object code is specified between the _SWITCH statement and the

first _CASE statement, an error occurs.

411

CHAPTER 21 BUILT-IN MACRO INSTRUCTIONS

[Instruction expansion]

(1) Processing for _SWITCH <MEM-type-symbol>

The <MEM-type-symbol> is stored internally, then passed to _CASE. No object code is generated.

(2) Processing for _CASE constant-i

A label for the branch instruction generated by the previous _CASE statement is generated.

An instruction for comparing the symbol passed from the _SWITCH statement and constant i is

generated.

When there is no _BREAK statement immediately before _CASE, a BR instruction for skipping the

compare instruction is generated.

(3) Processing for the _DEFAULT statement

A label for the branch instruction generated by a _CASE statement is generated.

(4) Processing for the _ENDS statement

A label for the branch instruction generated by a _CASE or _BREAK statement is generated.

412

RA17K USER'S MANUAL

[Sample expansion]

When the _DEFAULT statement is specified (with 0 set in the bank register)

 M1 NIBBLE4 0.00H
 M5 NIBBLE4 0.38H

_SWITCH (M1) ; α=M1
_CASE 1
 SUBX M5, #1H
_DEFAULT
 SUBX M5, #2H
_ENDS

↓
Expansion form

 _SWITCH (M1)
 _CASE 1

 SKNE (M1)+03H, #(1) AND 0FH
 SKE (M1)+02H, #(1) SHR 4 AND 0FH
 BR ?L0
 SKNE (M1)+01H, #(1) SHR 8 AND 0FH
 SKE (M1), #(1) SHR 12 AND 0FH
 ?L0:
 BR ?L1

 SUBX M5, #1H

 MOV BANK, #.DM.(M5) SHR 8 AND 0FH
 SUB (M5)+03H, #(1H) AND 0FH
 SUBC (M5)+02H, #(1H) SHR 4 AND 0FH
 SUBC (M5)+01H, #(1H) SHR 8 AND 0FH
 SUBC (M5), #(1H) SHR 12 AND 0FH

 _DEFAULT

 ?L1:

 SUBX M5,#2H

 MOV BANK, #.DM.(M5) SHR 8 AND 0FH
 SUB (M5)+03H, #(2H) AND 0FH
 SUBC (M5)+02H, #(2H) SHR 4 AND 0FH
 SUBC (M5)+01H, #(2H) SHR 8 AND 0FH
 SUBC (M5), #(2H) SHR 12 AND 0FH

 _ENDS

413

CHAPTER 21 BUILT-IN MACRO INSTRUCTIONS

21.4.4 _REPEAT ... _UNTIL

[Format]

_REPEAT

statement

_UNTIL[∆](conditional-expression)

[Format]

While the conditional expression is false, the statement is executed repeatedly.

The statement is executed at least once.

[Notes]

(1) Conditional expressions can be specified as follows:

• <FLG-type-symbol>∆relational-operator∆[#]<DAT-type-symbol>

• M∆relational-operator∆[#]i

• Rn∆relational-operator∆M

(a) For [#]<DAT-type-symbol> specified when <FLG-type-symbol> is included in a conditional

expression, only 0 or 1 can be specified. If a value of other than 0 or 1 is set for [#]<DAT-type-

symbol>, an error occurs (F044: Invalid value), and expansion is not performed.

(b) Up to four conditional expressions having <FLG-type symbol> can be coded successfully by using

relational operators (OR, AND).

(c) For details of the other restrictions imposed on <FLG-type-symbol>, see Section 21.2 .

(d) If a symbol defined with NIBBLEnV is specified as a general-purpose register, an error occurs.

(This built-in macro cannot manipulate RP.)

(e) When <FLG-type-symbol> is specified in a conditional expression, the specifiable relational

operators are EQ, ==, eq, NE, !=, <>, and ne. If a relational operator other than these specifiable

relational operators is specified, an error occurs.

(f) If the number of nibbles on the left side of a conditional expression is greater than the number

of nibbles on the right side, the upper bits on the right side are handled as 0s.

(g) If the number of nibbles on the left side of a conditional expression is smaller than the number

of nibbles on the right side, processing is performed assuming the number of nibbles on the left

to be valid. At the same time, a warning message is output, alerting the user to the shortage of

nibbles.

(h) If an illegal type is specified in the operand field, an error occurs (F045: Invalid type), and one

NOP instruction is generated as an object code.

414

RA17K USER'S MANUAL

(i) If immediate data of more than eight nibbles is specified in the operand field, an error occurs (F164:

The constant is over 32 bits), and one NOP instruction is generated as an object code.

(2) After the statement is executed once, the conditional expression is evaluated.

[Instruction expansion]

(1) Processing for the _REPEAT statement

A label for the branch instruction generated by the _UNTIL statement is generated.

(2) Processing for the _UNTIL (conditional-expression) statement

An instruction for evaluating the conditional expression is generated.

[Sample expansion]

[Example 1] When relational operator == is used in a conditional expression that compares

data (four nibbles) and immediate data (four nibbles) (with 0 set in the bank

register)

M4 NIBBLE4 0.00H

_REPEAT
 NOP
_UNTIL (M4 == #0123H)

↓
Expansion form

 _REPEAT

 ?L0:

 NOP
 _UNTIL (M4 == #0123H)

 MOV BANK, #.DM.(M4) SHR 8 AND 0FH
 SKNE (M4)+03H, #(0123H) AND 0FH
 SKE (M4)+02H, #(0123H) SHR 4 AND 0FH
 BR ?L1
 SKNE (M4)+01H, #(0123H) SHR 8 AND 0FH
 SKE (M4), #(0123H) SHR 12 AND 0FH
 ?L1:
 BR ?L0

415

CHAPTER 21 BUILT-IN MACRO INSTRUCTIONS

[Example 2] When relational operator != is used in a conditional expression that compares

data (four nibbles) and immediate data (four nibbles) (with 0 set in the bank

register)

 M4 NIBBLE4 0.00H

_REPEAT
 NOP
_UNTIL (M4 != #0123H)

↓
Expansion form

 _REPEAT

 ?L0:

 NOP

 _UNTIL (M4 != #0123H)

 MOV BANK, #.DM.(M4) SHR 8 AND 0FH
 SKE (M4)+03H, #(0123H) AND 0FH
 BR $+6
 SKNE (M4)+02H, #(0123H) SHR 4 AND 0FH
 SKE (M4)+01H, #(0123H) SHR 8 AND 0FH
 BR $+3
 SKNE (M4), #(0123H) SHR 12 AND 0FH
 BR ?L0

[Example 3] When relational operator >= is used in a conditional expression that compares

data (four nibbles) and immediate data (four nibbles) (with 0 set in the bank

register)

 M4 NIBBLE4 0.00H

_REPEAT
 NOP
_UNTIL (M4 >= #0123H)

↓
Expansion form

 _REPEAT

 ?L0:

 NOP
 _UNTIL (M4 >= #0123H)

 OR .MF.CMP SHR 4, #.DF.(CMP OR Z) AND 0FH
 MOV BANK, #.DM.(M4)SHR 8 AND 0FH
 SUB (M4)+03H, #(0123H) AND 0FH
 SUBC (M4)+02H, #(0123H) SHR 4 AND 0FH
 SUBC (M4)+01H, #(0123H) SHR 8 AND 0FH
 SUBC (M4), #(0123H) SHR 12 AND 0FH
 SKF .MF.CY SHR 4, #.DF.CY AND 0FH
 BR ?L0

416

RA17K USER'S MANUAL

[Example 4] When relational operator > is used in a conditional expression that compares data

(four nibbles) and immediate data (four nibbles) (with 0 set in the bank register)

 M4 NIBBLE4 0.00H

_REPEAT
 NOP
_UNTIL (M4 > #0123H)

↓
Expansion form

 _REPEAT

 ?L0:

 NOP
 _UNTIL (M4 > #0123H)

 OR .MF.CMP SHR 4, #.DF.(CMP OR Z) AND 0FH
 MOV BANK, #.DM.(M4) SHR 8 AND 0FH
 SUB (M4)+03H, #(0123H) AND 0FH
 SUBC (M4)+02H, #(0123H) SHR 4 AND 0FH
 SUBC (M4)+01H, #(0123H) SHR 8 AND 0FH
 SUBC (M4), #(0123H) SHR 12 AND 0FH
 SKF .MF.CY SHR 4, #.DF.(CY OR Z) AND 0FH
 BR ?L0

[Example 5] When relational operator <= is used in a conditional expression that compares

data (four nibbles) and immediate data (four nibbles) (with 0 set in the bank

register)

 M4 NIBBLE4 0.00H

_REPEAT
 NOP
_UNTIL (M4 <= #0123H)

↓
Expansion form

 _REPEAT

 ?L0:

 NOP
 _UNTIL (M4 <= #0123H)

 OR .MF.CMP SHR 4, #.DF.(CMP OR Z) AND 0FH
 MOV BANK, #.DM.(M4) SHR 8 AND 0FH
 SUB (M4)+03H, #(0123H) AND 0FH
 SUBC (M4)+02H, #(0123H) SHR 4 AND 0FH
 SUBC (M4)+01H, #(0123H) SHR 8 AND 0FH
 SUBC (M4), #(0123H) SHR 12 AND 0FH
 SKF .MF.CY SHR 4, #.DF.(CY OR Z) AND 0FH
 SKT (M4). #00H
 BR ?L0

417

CHAPTER 21 BUILT-IN MACRO INSTRUCTIONS

[Example 6] When relational operator < is used in a conditional expression that compares data

(four nibbles) and immediate data (four nibbles) (with 0 set in the bank register)

 M4 NIBBLE4 0.00H

_REPEAT
 NOP
_UNTIL (M4 < #0123H)

↓
Expansion form

 _REPEAT

 ?L0:

 NOP
 _UNTIL (M4 < #0123H)

 OR .MF.CMP SHR 4, #.DF.(CMP OR Z) AND 0FH
 MOV BANK, #.DM.(M4) SHR 8 AND 0FH
 SUB (M4)+03H, #(0123H) AND 0FH
 SUBC (M4)+02H, #(0123H) SHR 4 AND 0FH
 SUBC (M4)+01H, #(0123H) SHR 8 AND 0FH
 SUBC (M4), #(0123H) SHR 12 AND 0FH
 SKT .MF.CY SHR 4, #.DF.CY AND 0FH
 BR ?L0

[Example 7] When relational operator == is used in a conditional expression that compares

flags and immediate data (with 0 set in the bank register)

 F1 FLG 0.01H.0
 F2 FLG 0.02H.0
 F3 FLG 0.03H.0
 F4 FLG 0.04H.0

_REPEAT
 NOP
_UNTIL ((F1 == 0)AND(F2 == 0)AND(F3 == 0)AND(F4 == 0))

↓
Expansion form

 _REPEAT

 ?L0:

 NOP
 _UNTIL ((F1 == 0)AND(F2 == 0)AND(F3 == 0)AND(F4 == 0))

 MOV BANK, #.DF.(F1) SHR 12 AND 0FH
 SKF .MF.(F1) SHR 4, #.DF.(F1) AND 0FH
 BR ?L1
 SKF .MF.(F2) SHR 4, #.DF.(F2) AND 0FH
 BR ?L1
 SKF .MF.(F3) SHR 4, #.DF.(F3) AND 0FH
 BR ?L1
 SKF .MF.(F4) SHR 4, #.DF.(F4) AND 0FH
 ?L1:
 BR ?L0

418

RA17K USER'S MANUAL

[Example 8] When relational operator == is used in a conditional expression that compares

data (eight nibbles) and immediate data (eight nibbles) (with 0 set in the bank

register)

 M8 NIBBLE8 0.00H

_REPEAT
 NOP
_UNTIL (M8 == #01234567H)

↓
Expansion form

 _REPEAT

 ?L0:

 NOP
 _UNTIL (M8 == #01234567H)

 OR .MF.CMP SHR 4, #.DF.(CMP OR Z) AND 0FH
 MOV BANK, #. DM.(M8)SHR 8 AND 0FH
 SUB (M8)+07H, #(01234567H) AND 0FH
 SUBC (M8)+06H, #(01234567H) SHR 4 AND 0FH
 SUBC (M8)+05H, #(01234567H) SHR 8 AND 0FH
 SUBC (M8)+04H, #(01234567H) SHR 12 AND 0FH
 SUBC (M8)+03H, #(01234567H) SHR 16 AND 0FH
 SUBC (M8)+02H, #(01234567H) SHR 20 AND 0FH
 SUBC (M8)+01H, #(01234567H) SHR 24 AND 0FH
 SUBC (M8), #(01234567H) SHR 28 AND 0FH
 SKT .MF.Z SHR 4, #.DF. Z AND 0FH
 BR ?L0

419

CHAPTER 21 BUILT-IN MACRO INSTRUCTIONS

21.4.5 _FOR_ ... _NEXT

[Format]

_FOR[∆](expression-1:(expression-2):expression-3)

 statement

_NEXT

[Function]

An initial value is set in expression 1. While a conditional expression specified for expression 2 is true,

the statement and expression 3 are executed.

[Notes]

Specify an initial value (assignment expression) for expression 1. For expression 2, specify a conditional

expression, and for expression 3, specify an assignment expression such as an increment or decrement

expression.

[Instruction expansion]

(1) Processing for the _FOR (expression-1:(expression-2):expression-3) statement

An assignment instruction for the assignment expression in expression 1, an instruction for evaluating

the conditional expression specified in expression 2, and a label for the branch instruction generated

by the _NEXT statement are generated. A branch instruction for exiting from the _FOR block is also

generated.

(2) Processing for the _NEXT statement

An assignment instruction for the assignment expression in expression 3, an instruction for branching

to the _FOR statement, and a label for exiting from the _FOR block are generated.

420

RA17K USER'S MANUAL

[Sample expansion]

[Example 1] When relational operator == is used, and data (eight nibbles) and immediate data

(eight nibbles) are compared (with 0 set in the bank register)

 M1 NIBBLE4 0.00H
 M4 NIBBLE4 0.38H

_FOR (M1 = #0123H: (M1 != #3210H): M1 ++)
 ADDCX M4, #1H
_NEXT

↓
Expansion form

 _FOR (M1 = #0123H: (M1 != #3210H): M1 ++)

 MOV (M1)+03H, #(0123H) AND 0FH
 MOV (M1)+02H, #(0123H) SHR 4 AND 0FH
 MOV (M1)+01H, #(0123H) SHR 8 AND 0FH
 MOV (M1), #(0123H) SHR 12 AND 0FH
 ?L0:
 MOV BANK, #.DM.(M1) SHR 8 AND 0FH
 SKE (M1)+03H, #(3210H) AND 0FH
 BR $+6
 SKNE (M1)+02H, #(3210H) SHR 4 AND 0FH
 SKE (M1)+01H, #(3210H) SHR 8 AND 0FH
 BR $+3
 SKNE (M1), #(3210H) SHR 12 AND 0FH
 BR ?L1

 ADDCX M4, #1H

 ADDC (M4)+03H, #(1H) AND 0FH
 ADDC (M4)+02H, #(1H) SHR 4 AND 0FH
 ADDC (M4)+01H, #(1H) SHR 8 AND 0FH
 ADDC (M4), #(1H) SHR 12 AND 0FH

_NEXT

 ADDC (M1)+03H, #(1) AND 0FH
 ADDC (M1)+02H, #(1) SHR 4 AND 0FH
 ADDC (M1)+01H, #(1) SHR 8 AND 0FH
 ADDC (M1), #(1) SHR 12 AND 0FH
 BR ?L0
 ?L1:

421

CHAPTER 21 BUILT-IN MACRO INSTRUCTIONS

21.4.6 _BREAK

[Format]

_BREAK

[Function]

_BREAK terminates the execution of the innermost _WHILE, _REPEAT, _FOR, or _SWITCH block where

_BREAK is located.

[Instruction expansion]

A branch instruction for exiting from the _WHILE, _REPEAT, _FOR, or _SWITCH block is generated.

422

RA17K USER'S MANUAL

[Sample expansion]

[Example 1] When exiting from the _SWITCH block (with 0 set in the bank register)

 M1 NIBBLE4 0.00H
 M5 NIBBLE4 0.38H

_SWITCH (M1) ; α=M1
 _CASE 1

SUBX M5 ,#1H

_BREAK ;Exiting from the _SWITCH block here.
 _DEFAULT

SUBX M5 ,#2H
_ENDS

↓
Expansion form

 _SWITCH (M1)
 _CASE 1

 SKNE (M1)+03H, #(1) AND 0FH
 SKE (M1)+02H, #(1) SHR 4 AND 0FH
 BR ?L0
 SKNE (M1)+01H, #(1) SHR 8 AND 0FH
 SKE (M1), #(1)SHR 12 AND 0FH
 ?L0:
 BR ?L1

 SUBX M5 ,#1H

 MOV BANK, #.DM.(M5) SHR 8 AND 0FH
 SUB (M5)+03H, #(1H) AND 0FH
 SUBC (M5)+02H, #(1H) SHR 4 AND 0FH
 SUBC (M5)+01H, #(1H) SHR 8 AND 0FH
 SUBC (M5), #(1H) SHR 12 AND 0FH

 _BREAK

 BR ?L2

 _DEFAULT

 ?L1:

 SUBX M5 ,#2H

 MOV BANK, #.DM.(M5) SHR 8 AND 0FH
 SUB (M5)+03H, #(2H) AND 0FH
 SUBC (M5)+02H, #(2H) SHR 4 AND 0FH
 SUBC (M5)+01H, #(2H) SHR 8 AND 0FH
 SUBC (M5), #(2H)SHR 12 AND 0FH

 _ENDS

 ?L2:

423

CHAPTER 21 BUILT-IN MACRO INSTRUCTIONS

[Example 2] When exiting from the _WHILE block (with 0 set in the bank register)

 M1 NIBBLE4 0.00H
 M5 NIBBLE4 0.38H

_WHILE (M1 NE M5)
 _IF (M1 != #0FH)
 ADDCX M1, #1H
 _ELSE
 _BREAK ;Exiting from the _WHILE block here.
 _ENDIF
_ENDW

↓
Expansion form

 _WHILE (M1 NE M5)

 ?L0:
 OR .MF.CMP SHR 4, #.DF.(CMP OR Z)AND 0FH
 MOV RPH, #.DM.(M1)SHR 8 AND 0FH
 AND RPL, #01H
 OR RPL, #.DM.(M1) SHR 3 AND 0EH
 MOV BANK, #.DM.(M5) SHR 8 AND 0FH
 SUB (M1)+03H, #(M5)+03H
 SUBC (M1)+02H, #(M5)+02H
 SUBC (M1)+01H, #(M5)+01H
 SUBC (M1), (M5)
 SKF .MF.Z SHR 4, #.DF.Z AND 0FH
 BR ?L1

 _IF (M1 != #0FH)

 SKE (M1)+03H, #(0FH) AND 0FH
 BR $+6
 SKNE (M1)+02H, #(0FH) SHR 4 AND 0FH
 SKE (M1)+01H, #(0FH) SHR 8 AND 0FH
 BR $+3
 SKNE (M1), #(0FH) SHR 12 AND 0FH
 BR ?L2

 ADDCX M1, #1H

 ADDC (M1)+03H, #(1H) AND 0FH
 ADDC (M1)+02H, #(1H) SHR 4 AND 0FH
 ADDC (M1)+01H, #(1H) SHR 8 AND 0FH
 ADDC (M1), #(1H) SHR 12 AND 0FH

 _ELSE

 BR ?L3
 ?L2:

 _BREAK

 BR ?L1

 _ENDIF

 ?L3:

 _ENDW

 BR ?L0
 ?L1:

424

RA17K USER'S MANUAL

21.4.7 _CONTINUE

[Format]

_CONTINUE

[Function]

_CONTINUE causes an unconditional branch to the top label of the innermost _WHILE, _REPEAT, or

_FOR block where _CONTINUE is located, and executes the next loop.

[Instruction expansion]

A branch instruction for repeating a loop of the _WHILE, _REPEAT, or _FOR block is generated.

BR xxxx (xxxx: Branch destination label)

425

CHAPTER 21 BUILT-IN MACRO INSTRUCTIONS

[Sample expansion]

When _CONTINUE is specified in a _WHILE block (with 0 set in the bank register)

 M1 NIBBLE4 0.00H
 M5 NIBBLE4 0.38H

_WHILE (M1 NE M5)
 SUBX M1, #1H
 _IF (M1 >= #0FFH)
 _CONTINUE ;Branch to the top label of _WHILE
 _ELSE
 SUBX M1, #1H
 _ENDIF
_ENDW

↓
Expansion form

 _WHILE (M1 NE M5)

 ?L0:
 OR .MF.CMP SHR 4, #.DF.(CMP OR Z) AND 0FH
 MOV RPH, #.DM.(M1) SHR 8 AND 0FH
 AND RPL, #01H
 OR RPL, #.DM.(M1) SHR 3 AND 0EH
 MOV BANK, #.DM.(M5) SHR 8 AND 0FH
 SUB (M1)+03H,#(M5)+03H
 SUBC (M1)+02H,#(M5)+02H
 SUBC (M1)+01H,#(M5)+01H
 SUBC (M1), (M5)
 SKF .MF.Z SHR 4, #.DF.Z AND 0FH
 BR ?L1

 SUBX M1, #1H

 SUB (M1)+03H, #(1H) AND 0FH
 SUBC (M1)+02H, #(1H) SHR 4 AND 0FH
 SUBC (M1)+01H, #(1H) SHR 8 AND 0FH
 SUBC (M1), #(1H) SHR 12 AND 0FH

 _IF (M1 >= #0FFH)

 OR .MF.CMP SHR 4, #.DF.(CMP OR Z)AND 0FH
 SUB (M1)+03H, #(0FFH) AND 0FH
 SUBC (M1)+02H, #(0FFH) SHR 4 AND 0FH
 SUBC (M1)+01H, #(0FFH) SHR 8 AND 0FH
 SUBC (M1), #(0FFH) SHR 12 AND 0FH
 SKF .MF.CY SHR 4, #.DF.CY AND 0FH
 BR ?L2

 _CONTINUE

 BR ?L0

 _ELSE

 BR ?L3
 ?L2:

 SUBX M1, #1H

 MOV BANK, #.DM.(M1) SHR 8 AND 0FH
 SUB (M1)+03H, #(1H) AND 0FH
 SUBC (M1)+02H, #(1H) SHR 4 AND 0FH
 SUBC (M1)+01H, #(1H) SHR 8 AND 0FH
 SUBC (M1), #(1H) SHR 12 AND 0FH

 _ENDIF

 ?L3:

 _ENDW

 BR ?L0

 ?L1:

426

RA17K USER'S MANUAL

21.4.8 _GOTO

[Format]

_GOTO∆<branch-destination-label>

[Function]

_GOTO branches to the branch destination label unconditionally.

[Notes]

(1) Specify the _GOTO statement when error handling must be performed immediately by a program such

as an error handling program, or when errors may occur in different locations, and they are handled

in the same manner.

(2) For the label, specify a symbol specified in the label field in assembly language.

[Instruction expansion]

An instruction to branch to the <branch-destination-label> is generated.

BRX∆<branch-destination-label>

427

CHAPTER 21 BUILT-IN MACRO INSTRUCTIONS

[Sample expansion]

When exiting from the _WHILE block (with 0 set in the bank register)

M1 NIBBLE4 0.00H
M5 NIBBLE4 0.38H

_WHILE (M1 NE M5)
 _IF (M1 != #0FH)
 ADDCX M1, #1H
 _ELSE
 _GOTO L1 ;Branch to L1 unconditionally
 _ENDIF
_ENDW
L1:

↓
Expansion form

 _WHILE (M1 NE M5)

 ?L0:
 OR .MF.CMP SHR 4, #.DF.(CMP OR Z)AND 0FH
 MOV RPH, #.DM.(M1) SHR 8 AND 0FH
 AND RPL, #01H
 OR RPL, #.DM.(M1) SHR 3 AND 0EH
 MOV BANK,#.DM.(M5) SHR 8 AND 0FH
 SUB (M1)+03H, (M5)+03H
 SUBC (M1)+02H, (M5)+02H
 SUBC (M1)+01H, (M5)+01H
 SUBC (M1), (M5)
 SKF .MF.Z SHR 4, #.DF.Z AND 0FH
 BR ?L1

 _IF (M1 != #0FH)

 SKE (M1)+03H, #(0FH) AND 0FH
 BR $+6
 SKNE (M1)+02H, #(0FH) SHR 4 AND 0FH
 SKE (M1)+01H, #(0FH) SHR 8 AND 0FH
 BR $+3
 SKNE (M1) ,#(0FH) SHR 12 AND 0FH
 BR ?L2

 ADDCX M1, #1H

 ADDC (M1)+03H, #(1H) AND 0FH
 ADDC (M1)+02H, #(1H) SHR 4 AND 0FH
 ADDC (M1)+01H, #(1H) SHR 8 AND 0FH
 ADDC (M1), #(1H) SHR 12 AND 0FH

 _ELSE

 BR ?L3
 ?L2:

 _GOTO L1

 BR (L1)

 _ENDIF

 ?L3:

 _ENDW

 BR ?L0
 ?L1:

 L1:

428

RA17K USER'S MANUAL

[MEMO]

429

CHAPTER 22 OPERATING PROCEDURES

22.1 FILE CONFIGURATION

The RA17K assembler package consists of the following files:

RA17K assembler package file configuration

• Assembler

RA17K.EXE : Main body of the assembler

• Linker

LK17K.EXE : Main body of the linker

• Make processor

MAKE.EXE : Main body of the make processor

CNV17K.EXE : Sequence file converter

• Document processor

DOC17K.EXE : Main body of the document processor

• Document processor Utilities

LIST17K.EXE : Absolute-address-based list output utility

XREF17K.EXE : Cross-reference list output utility

PUB17K.EXE : Public cross-reference output utility

MAP17K.EXE : Module map list output utility

AMAP17K.EXE : Program map list output utility

REP17K.EXE : Report list output utility

SPEC17K.EXE : Document list output utility

MOD17K.EXE : Module list output utility

TREE17K.EXE : Call tree list output utility

Caution In addition to the files listed above, README.DOC is sometimes provided. When provided,

it should be read before the assembler is used, because it contains information not

provided in the manual.

Remark The document processor utilities are started by the document processor (DOC17K.EXE). The

user cannot start them separately.

430

RA17K USER'S MANUAL

The outlined flow of 17K series software development is shown below.

Figure 22-1. Outlined Flow of 17K Series Software Development

Remarks 1. Refer to the Document Processor (DOC17K) User's Manual for files created by the

document processor .

2. The programs indicated by hatching are included in the relocatable assembler package.

Assembler source
module file

.ASM

Object module file

.REL

Link map
file

.LMP

Load module
file

.PRO

Load module
file

.ICE

Link object
module file

.LNK

Intermediate
list file

.IPN

Intermediate
cross-reference file

.IXF

Summary
file

.SUM

Log
file

.LOG

Preprocessor
output file

.PPL

C source
module file

.C

Compiler
(emlC-17K)

Relocatable assembler
(RA17K)

Linker
(LK17K)

Document processor
(DOC17K)

431

CHAPTER 22 OPERATING PROCEDURES

22.2 INSTALLATION

RA17K must be installed on a hard disk before it can be used. For details, see Section 1.8 .

22.3 STARTUP

RA17K is started using the following command:

A>[path-name]RA17K ∆device-file-name ∆source-module-file-name ∆[option-list]

The underlined entities are what the user enters. The command name (RA17K), device file name, source

module file name, and each option described in the option list must be separated with at least one space

character.

• device-file-name

This parameter specifies the file that holds definitions of information specific to the target device. The

device file name varies with the target device. If a file name extension is omitted, .DEV is assumed.

If there is an .OPT file, it must be placed in the same directory as the .DEV file.

• source-module-file-name

This parameter specifies the file that holds an assembly source program. Any file-name extensions

except .DEV, .SEQ, and .OPT can be used. The file name extension need not necessarily be .ASM.

If a file name extension is omitted from the source module file, .ASM is assumed. This holds true of include

files, which are read into a source program.

• option-list

See Section 22.6 .

432

RA17K USER'S MANUAL

22.3.1 Entering a Device File Name

[Explanation]

(1) The device file name must follow the character string RA17K. In addition, there must be at least one

space character between the character string and the device file name.

(2) The extension of the device file name must be .DEV, unless omitted. If omitted, .DEV is assumed.

(3) The device file name can contain a path name where the device file is located. It can consist of up

to 141 characters.

Example : A: \UPD17000\D17001.DEV

[Notes]

(1) If the specified device file is not found, an error (A104: Can't open file <filename>) is detected, and

assembly is aborted (where <filename> is the specified device file name).

(2) If a file name extension other than .DEV is specified, an error (A105: <filename> is not device file)

is detected, and assembly is aborted (where <filename> is the specified device file name).

433

CHAPTER 22 OPERATING PROCEDURES

22.3.2 Entering a Source Module File Name

[Explanation]

(1) The source module file name must follow the device file name. In addition, there must be at least

one space character between the device file name and the source module file name.

(2) The extension of the source module file can be omitted. If omitted, .ASM is assumed.

(3) The source module file name can contain a path name where the source module file is located. It

can consist of up to 141 characters.

Example : A: \UPD17000\D17001.ASM

[Notes]

(1) If the specified source module file is not found, an error (A104: Can't open file <filename>) is detected,

and assembly is aborted (where <filename> is the specified source module file name).

(2) If no source module file name is specified, an error (A158: Parameter error at start time) is detected.

(3) There must be at least one space character between the source module file name and the option

specification that follows it.

(4) If the file name extension of the specified file is .DEV, .OPT, or .SEQ, an error (A163: <filename>

is not a source file) is detected.

434

RA17K USER'S MANUAL

22.3.3 Entering Options

[Explanation]

(1) The option list must follow the source module file name. In addition, there must be at least one space

character between the source module file name and the option list.

(2) The description of an option begin with a hyphen (-).

(3) If the option list contains more than one option description, they must be separated with a hyphen.

Do not place a space character between each option description and the corresponding hyphen, or

an error (A106: Invalid option (option_name)) is detected.

(4) If an attempt is made to specify mutually exclusive options, the last option to be specified is accepted.

[Notes]

If an attempt is made to specify an invalid option, an error (A106: Invalid option (option_name)) is detected.

Example 1 : RA17K D17001.DEV TEST.ASM -OBJ -LIST This is a valid specification.

Example 2 : RA17K D17001.DEV TEST.ASM -OBJ-LIST

An error is detected because there is no space between -OBJ and -LIST.

Example 3 : RA17K D17001.DEV TEST.ASM -OBJ - LIST

An error is detected because there is space between the hyphen and LIST.

435

CHAPTER 22 OPERATING PROCEDURES

22.3.4 If All Parameters Are Omitted; Only RA17K Is Specified

If all parameters are omitted, the following help message is displayed, and the DOS prompt appears again.

usage : RA17K device-file input-file[option[···]]

The file is as follows.

device-file :Specify 17K series device file name.

if extension omitted, .DEV assumed.

input-file :Specify assembler source module fine name.

if extension omitted, .ASM assumed.

The option is as follows([]means omissible).

–ABS :Set absolute assembler mode.

–HOS/–NOH :Use SIMPLEHOST / Not.

–SUM/–NOS :Create summary file / Not.

–INC[=path–name] :Specify path name list.

-LIS[=path–name]/-NOL :Create assemble list file / Not.

–OBJ[=directory–name]/–NOO :Create rel file / Not.

–XRE[=directory–name]/–NOX :Create cross reference file / Not.

–UND[=directory–name]/–NOU :Create underfined symbol file / Not.

–WAR=n :Set warning level.

–WOR=path_name :Set temporary directory.

–ZZZn=m :Set assembler parameter.

–TAGS="string" :Set tag start code.

–TAGE="string" :Set tag end code.

DEFAULT ASSIGNMENT: –NOH –NOS –LIS –OBJ –XRE –NOU –WAR=0

436

RA17K USER'S MANUAL

22.4 STARTUP AND END MESSAGES

(1) Startup message

The startup message echoes back exactly the source module file name entered by the user.

17K Series Relocatable Assembler V1.xx [DD MMM YY]

 Copyright(C)NEC Corporation 19xx

--- Assemble start hh:mm:ss yy/dd/mm ---

Device file name: Name of the device file

Source file name: Name of the source module file

Vx.xx : Version No.

[DD MMM YY] : Date of the current release

19xx : Year of the first release

hh:mm:ss yy/dd/mm : Time and date on which the assembly started

(2) End message

The end message contains the time and date on which the assembly ended. If errors and/or warnings

are detected during assembly, their totals are displayed at the end of assembly.

Caution After 65535 errors or warnings are detected, the count returns to 0. If 65536 errors or

warnings are detected, for example, the total count is indicated as 0. Moreover, the end

message contains the status of memory used, and the names and sizes of created files

(if any).

• If neither an error nor a warning is detected during assembly, the following end message appears:

--- Assemble end hh:mm:ss yy/dd/mm ---

Total error(s):0 Total warning(s):0

• If errors and warnings are detected during assembly, their counts are displayed.

--- Assemble end hh:mm:ss yy/dd/mm ---

Total error(s):5 Total warning(s):2

• If a fatal error (or abort error) occurs during assembly and disables further processing from continuing,

the following message is displayed, and assembly is aborted.

--- Assemble end hh:mm:ss yy/dd/mm ---

program aborted

437

CHAPTER 22 OPERATING PROCEDURES

22.5 MESSAGES DISPLAYED DURING ASSEMBLY

(1) Error, warning, and abort messages

The messages displayed during assembly include error, warning, and abort messages. See Chapter 24

for each message and their meanings.

[Output format]

If an error, warning, or abort condition occurs during assembly, the relevant message, as well as the source

line containing the error, warning, or abort condition, is displayed in the format described below.

file name (line-number) status message No.: message

File name
Displayed exactly
as entered on a
command line

Line number
where an error, warning,
or abort condition is detected

Line number in the source
module file or include file

Message category
"error"
"warning"
"abort"

Message No.
Message

438

RA17K USER'S MANUAL

[Explanation]

• Error message

An error message is displayed, mainly if an error is detected in a description in the source module file,

but assembly can continue. When an error message is displayed, only the relevant source line is

assumed to be invalid. If the source line is one that generates an object code, a NOP instruction is

generated, and assembly is continued. If an error message is output, an object module file is not created.

The following table lists whether each output file is created.

Output file name Whether created or not

Object module file (.REL) Not created

Log file (.LOG) Created

Symbol file (.SYM)

Summary file (.SUM)

Undefined symbol file (.UND)

Intermediate list file (.IPN)

Intermediate cross-reference file (.IXF)

• Warning message

If there is a possibility that the program does not behave as intended, a message is displayed to warn.

Even if a warning message is displayed, assembly continues. When a warning message is displayed,

all output files are created normally, provided that no error has occurred.

• Abort message

If assembly cannot continue because of an error (fatal error), an abort message is displayed. When

an abort message is displayed, assembly ends immediately. If a fatal error occurs, all output files except

the log and intermediate list files are not created normally. The log and intermediate list files hold

information collected before the fatal error occurs.

439

CHAPTER 22 OPERATING PROCEDURES

(2) Messages indicating the status of memory used and created files

Messages are displayed to indicate the size of memory reserved, and files created, by RA17K.

• Format of the memory use status report message

MEM AREA = XXXXXXXXXXXXXX : YYYYYY : ZZZZZZ

xxxxxxxxxxxxxx is the name of a memory area.

The following types of memory areas are supported. (No special order is observed.)

REL TMP Temporary file for a REL file

SUMMARY TMP Temporary file for a summary file

OPTION TMP Temporary file for the OPTION pseudo instruction

INTERM TMP Temporary file for intermediate code

LIST FILE Intermediate list file

XREF FILE Cross-reference file

REL FILE REL file

SUMMARY FILE Summary file

SYMBOL MAIN Symbol table

SYMBOL EMS EMS

ETC Others

YYYYYY represents the size of a reserved memory area (in bytes in decimal notation).

ZZZZZZ represents the size of an actually used memory area (in bytes in decimal notation).

• Format of the file creation report message

FILE NAME = AAAAAAAA.BBB: CCCCCC

AAAAAAAA.BBB is the name of a created file (full path name).

CCCCCC represents the size of a created file (in bytes in decimal notation).

440

RA17K USER'S MANUAL

[Output example]

17K Series Relocatable Assembler V1.xx [DD MMM YY]

 Copyright(C)NEC Corporation 19xx

--- Assemble start hh:mm:ss yy/dd/mm ---

Device file name: a.DEV

Source file name: a.ASM

MEM AREA = REL TMP : 4317 : 259

MEM AREA = REL TMP : 4317 : 229

MEM AREA = REL TMP : 4317 : 4317

FILE NAME = E:\r$b05938 : 12000

MEM AREA = REL TMP : 4317 : 4317

FILE NAME = E:\r$a05938 : 78000

MEM AREA = REL TMP : 4317 : 225

MEM AREA = REL TMP : 2269 : 2269

FILE NAME = E:\r$c05938 : 120440

MEM AREA = REL TMP : 4317 : 260

MEM AREA = REL FILE : 4321 : 4321

FILE NAME = ********.REL : 180656

MEM AREA = INTERM TMP : 8413 : 8413

FILE NAME = E:\r$005938 : 159021

MEM AREA = XREF FILE : 8417 : 8417

FILE NAME = ********.IXF : 48000

MEM AREA = SYMBOL MAIN : 46592: 46592

MEM AREA = SYMBOL EMS : 114688 : 114688

MEM AREA = LIST TMP : 4321 : 4321

FILE NAME = ********.IPN : 443306

MEM AREA = ETC : 5223 : 404

--- Assemble end hh:mm:ss yy/dd/mm ---

Total error(s):0 Total warning(s):0

441

CHAPTER 22 OPERATING PROCEDURES

22.6 ASSEMBLER OPTIONS

[Notes]

(1) For options for specifying numbers, only binary, decimal, and hexadecimal numbers can be specified.

A description of a hexadecimal number must begin with a numeral from 0 to 9. If an attempt is made

to specify any other numeral as the first numeral of a hexadecimal number, an error (A106: Invalid

option (option_name)) is detected.

(2) An option can be described in either uppercase or lowercase characters.

(3) If the description of an option contains only a path-name, the directory name need not end with the

special character "\".

Example : Outputting an object file to the \RA17K path

-OBJ = \RA17K\

-OBJ = \RA17K
Both descriptions are acceptable.

When the format of <path-name>\<file-name> is used, it is assumed to be a description of <path-

name> alone, if the last character is "\".

442

RA17K USER'S MANUAL

Options

Option name Description Default Assumption used when Reference
-HOST is specified page

-OBJ[ECT][=<path-name>] Controls object module file -OBJ -OBJ is specified forcibly; p.443
-NOO[BJECT] (.REL) output. the user's specification is

ignored.

-LIS[T][=<file-name>] Controls cross-reference list -LIS -LIS is specified forcibly; p.444
-NOL[IST] file (.IPN) output. the user's specification is

ignored.

-UND[EF][=<file-name>] Controls undefined symbol -NOU As specified p.445
-NOU[NDEF] file (.UND) output.

-WOR[K][=<path-name>] Specifies the path name of No specification As specified p.446
a work drive.

-HOS[T] Controls information about -NOH -HOST p.447
-NOH[OST] SIMPLEHOST.

-ZZZn = m Sets the initial values of -ZZZn = 0 As specified p.448
(0 ≤ n ≤ 15) assemble time variables. (0 ≤ n ≤ 15)
(0 ≤ m ≤ FFFFFFFFH)

-WAR[NING] = n Controls warning message -WAR = 0 As specified p.449
(0 ≤ n ≤ 1FH) output.

-INC[LUDE] = <path-name> Specifies a search path — As specified p.450
where an include file is to
be searched for.

-ABS[OLUTE] Specifies the absolute mode. No specification As specified p.451
(relocatable mode)

-XRE[F][=<path-name>] Controls intermediate -XRE As specified p.452
-NOX[REF] cross-reference file output.

-TAGS[TART] = "character string" Specifies a tag start No specification As specified p.453
character string (valid only
when -HOST is specified).

-TAGE[ND] = "character string" Specifies a tag end No specification As specified p.454
character string (valid only
when -HOST is specified).

-SUM[MARY] Controls summary file output. -NOS -SUM p.455
-NOS[UMMARY]

—: Indicates that there is no influence or specification.

443

CHAPTER 22 OPERATING PROCEDURES

22.6.1 Object Output Control (-OBJ, -NOO)

[Format]

-OBJ [ECT] [=<path-name>] (Default: -OBJ)

-NOO [BJECT]

[Function]

Controls object file (.REL) output.

[Explanation]

(1) -OBJ [ECT] [=<path-name>]

Specifies the path name where the object file is to be output.

If a path name is not specified with -OBJ, a default assumption described in item (3) is used.

(2) -NOO [BJECT]

Specifies that no object file be output.

(3) If this option is not specified (default)

The object code is output to a file having the same name as the source module file name (file name

extension .REL) in the current directory.

[Relationships with other options]

(1) If -HOST is specified, the <path-name> specified in the form of -OBJ=<path-name> and a specification

of -NOO become invalid, and -OBJ is assumed.

(2) A specification of -OBJ or -NOO does not affect other options.

[Notes]

(1) A file-name cannot be specified for an object file. If an attempt is made to specify one, an error (A106:

Invalid option (option_name)) is detected, and processing is aborted.

(2) If an attempt is made to specify a nonexistent <path-name>, an error (A106: Invalid option

(option_name)) is detected.

444

RA17K USER'S MANUAL

22.6.2 List Output Control (-LIS, -NOL)

[Format]

-LIS [T] [=<path-name> [\<file-name>]] (Default: -LIS)

-NOL [IST]

[Function]

Controls intermediate list file output.

[Explanation]

(1) -LIS [T]

If a specification of <path-name>\<file-name> is not provided, the intermediate list is output to a file

having the same name as the source module file name (file name extension .IPN) in the current

directory.

(2) -LIS [T]=<path-name>

The intermediate list is output to a file having the same name as the source module file name (file

name extension .IPN) in a directory specified in <path-name>.

(3) -LIS [T]=<file-name>

The intermediate list is output to a file named <file-name> in the directory where the source module

file is. If a file name extension is omitted, .IPN is assumed.

(4) -LIS [T]=<path-name>\<file-name>

The intermediate list is output to a file named <file-name> in a directory specified in <path-name>.

If a file name extension is omitted, .IPN is assumed.

(5) -NOL [IST]

An intermediate list file is not output.

(6) If this option is not specified (default)

-LIS is assumed.

[Relationships with other options]

(1) If -HOST is specified, the <path-name> and <file-name> specified in the form of -LIS=<path-name>

[\<file-name>], and a specification of -NOL become invalid, and -LIS is assumed.

(2) A specification of -LIS or -NOL does not affect other options.

[Notes]

(1) If an attempt is made to specify a nonexistent <path-name>, an error (A106: Invalid option

(option_name)) is detected.

445

CHAPTER 22 OPERATING PROCEDURES

22.6.3 Undefined Symbol File Output Control (-UND, -NOU)

[Format]

-UND [EF] [=<path-name> [\<file-name>]] (Default: -NOU)

-NOU [NDEF]

[Function]

Controls undefined symbol file output.

[Explanation]

(1) -UND [EF]

If a specification of <path-name>\<file-name> is not provided, undefined symbols are output to a file

having the same name as the source module file name (file name extension .UND) in the current

directory.

(2) -UND [EF]=<path-name>

Undefined symbols are output to a file having the same name as the source module file name (file

name extension .UND) in a directory specified in <path-name>.

(3) -UND [EF]=<file-name>

Undefined symbols are output to a file named <file-name> in the directory where the source module

file is. If a file name extension is omitted, .UND is assumed.

(4) -UND [EF]=<path-name>\<file-name>

Undefined symbols are output to a file having the specified name in a directory specified in <path-

name>. If a file name extension is omitted, .UND is assumed.

(5) -NOU [NDEF]

An undefined symbol is not output.

(6) If this option is not specified (default)

-NOU is assumed.

[Relationships with other options]

(1) A specification of -UND or -NOU does not affect other options.

[Notes]

(1) If an attempt is made to specify a nonexistent <path-name>, an error (A106: Invalid option

(option_name)) is detected.

446

RA17K USER'S MANUAL

22.6.4 Work Drive Control (-WOR)

[Format]

-WOR[K]=<path-name> (Default: Not specified)

[Function]

Specifies <path-name> where a work file is to be reserved for assembly.

[Explanation]

(1) If only a drive name is specified in <path-name>, a work file is created in the current directory.

(2) If only a directory name is specified in <path-name>, a work file is created in the specified directory

on the current drive.

(3) When this option is not specified, if <path-name> is specified in the TMP environment variable, the

path name in <path-name> is handled as a work drive. If <path-name> is not specified in the

environment variable, the current path is handled as a work drive.

[Relationships with other options]

(1) A specification of -WOR=<path-name> does not affect other options.

[Notes]

(1) If an attempt is made to specify a nonexistent <path-name>, an error (A106: Invalid option

(option_name)) is detected.

(2) All work files are deleted after assembly.

(3) 10 MB or more of free space should be available in the work drive.*

447

CHAPTER 22 OPERATING PROCEDURES

22.6.5 SIMPLEHOST Information Control (-HOS, -NOH)

[Format]

-HOS [T] (Default: -NOH)

-NOH [OST]

[Function]

Controls output of information necessary in using SIMPLEHOST.

[Explanation]

(1) -HOS [T]

The SIMPLEHOST information is output to the .REL file.

(2) -NOH [OST]

The SIMPLEHOST information is not output.

(3) If this option is not specified (default)

-NOH is assumed.

[Relationships with other options]

(1) A specification of -NOH makes invalid the following options:

• -TAGS [TART]="character string"

• -TAGE [ND]="character string"

(2) A specification of -HOST causes default assumptions to be used for the following options:

• Object output control option -> -OBJ

• List output control option -> -LIS

• Summary file output control option -> -SUM

448

RA17K USER'S MANUAL

22.6.6 Assemble Time Variable (-ZZZn)

[Format]

-ZZZn=m (0 ≤ n ≤ 15 where n is a decimal integer) (Default: -ZZZn = 0)

(0 ≤ m ≤ 0FFFFFFFFH)

[Function]

Initializes the ZZZn assemble time variable to value m.

[Relationships with other options]

(1) A specification of -ZZZn does not affect other options.

[Notes]

(1) Value m should evaluate to within a range between 0 and 0FFFFFFFFH. Otherwise, an error (invalid

option) is detected, and assembly is aborted.

(2) Value m can be any of binary, decimal, and hexadecimal numbers. If an expression or character string

is specified as m, an error (invalid option) is detected, and assembly is aborted.

(3) If this option is not specified when RA17K is started, the assemble time variable is initialized to 0.

449

CHAPTER 22 OPERATING PROCEDURES

22.6.7 Warning Output Level Control (-WAR)

[Format]

-WAR [NING]=n (n = 0 to 1FH) (Default: -WAR = 00000B)

[Function]

Specifies outputs of various warnings during assembly.

[Explanation]

Warning messages are grouped into six. A 5-bit value is specified with -WARNING. Each bit corresponds

to a warning message group. Group 6 is always checked regardless of the warning level, however.

When a bit is 0:

The corresponding group is checked for a warning.

When a bit is 1:

The corresponding group is not checked for a warning.

See Chapter 24 for the grouping of the warning messages.

[Relationships with other options]

(1) A specification of -WAR=n does not affect other options.

[Notes]

(1) If an attempt is made to specify n as a number that does not fall in a range between 0 and 1FH, an

error (A106: Invalid option (option_name)) is detected. n can be any of binary, decimal and

hexadecimal numbers.

[Example]

-WAR=10110B

Groups 5, 3, or 2 is not checked for a warning. Group 6 is always checked for a warning.

4 3 2 1 0Bit No.

Value specified with -WARNING

Group 5
Group 4

Group 3 Group 1
Group 2

450

RA17K USER'S MANUAL

22.6.8 Include File Search Path Specification (-INC)

[Format]

-INC [LUDE]=<path-name> [;<path-name>;...]

[Function]

Specifies a path name where the desired include file exists.

[Explanation]

(1) More than one path name can be specified by separating them with a semicolon (;). If more than one

path name is specified, the path names are searched for the target include file in the stated order.

(2) If the target include file is not in any <path-name> specified in this option, a <path-name> specified

in the environment variable (INC17K) is searched through. If the target include file is not found in

this <path-name> either, the directory holding the source module file is searched through.

[Relationships with other options]

(1) A specification of -INC=<path-name> [;<path-name>;...] does not affect other options.

[Notes]

(1) If a <path-name> specified in the form of -INC=<path-name> [;<path-name>;...] does not exist, an error

is not detected.

451

CHAPTER 22 OPERATING PROCEDURES

22.6.9 Assemble Mode Control (-ABS)

[Format]

-ABS [OLUTE] (Default: If not specified = relocatable mode)

[Function]

Specifies whether assembly be carried out in the relocatable or absolute mode.

[Explanation]

(1) When this option is specified, assembly is carried out in the absolute mode.

(2) When this option is not specified (default), assembly is carried out in the relocatable mode.

[Relationships with other options]

(1) A specification of -ABS does not affect other options.

[Notes]

(1) If a source module file contains a description which is not usable in each assemble mode, an error

is detected (see Chapter 2).

452

RA17K USER'S MANUAL

22.6.10 Intermediate Cross-Reference Output Control (-XRE, -NOX)

[Format]

-XRE [F] [=<path-name> [\<file-name>]] (Default: -XRE)

-NOX [REF]

[Function]

Controls intermediate cross-reference output.

[Explanation]

(1) -XRE [F]

If a specification of <path-name>\<file-name> is not provided, intermediate cross-references are

output to a file having the same name as the source module file name (file name extension .IXF) in

the current directory.

(2) -XRE [F]=<path-name>

Intermediate cross-references are output to a file having the same name as the source module file

name (file name extension .IXF) in a directory specified in <path-name>.

(3) -XRE [F]=<path-name>\<file-name>

Intermediate cross-references are output to a file named <file-name> in a directory specified in <path-

name>. If a file name extension is omitted, .IXF is assumed.

(4) -NOX [REF]

An intermediate cross-reference list is not output.

(5) If this option is not specified (default)

-XRE is assumed.

[Relationships with other options]

(1) A specification of -XRE or -NOX does not affect other options.

[Notes]

(1) If an attempt is made to specify a nonexistent <path-name>, an error (A106: Invalid option

(option_name)) is detected.

453

CHAPTER 22 OPERATING PROCEDURES

22.6.11 Tag Start Character String Specification (-TAGS)

[Format]

-TAGS [TART]="character string" (Default: Not specified)

[Function]

Replaces the tag start character string "." with another character string. The character string must be

enclosed in double quotations.

[Explanation]

(1) -TAGS [TART]="character string"

The specified character string is used as the tag start character string.

(2) If this option is not specified (default)

A period "." is used as the tag start character.

[Relationships with other options]

(1) A specification of -TAGS="character string" does not affect other options.

(2) This option is valid only when -HOST is specified.

[Notes]

(1) The tag start character string can consist of up to 64 characters excluding double quotations. If an

attempt is made to specify a larger character string, an error (A106: Invalid option (option_name))

is detected.

(2) If an attempt is made to specify a null character, an error (A106: Invalid option (option_name)) is

detected.

454

RA17K USER'S MANUAL

22.6.12 Tag End Character String Specification (-TAGE)

[Format]

-TAGE [ND]="character string" (Default: Not specified)

[Function]

Replaces the tag end character string ".." with another character string. The character string must be

enclosed in double quotations.

[Explanation]

(1) -TAGE [ND]="character string"

The specified character string is used as the tag end character string.

(2) If this option is not specified (default)

A pair of periods ".." is used as the tag end character string.

[Relationships with other options]

(1) A specification of -TAGE does not affect other options.

(2) This option is valid only when -HOST is specified.

[Notes]

(1) The tag end character string can consist of up to 64 characters excluding double quotations. If an

attempt is made to specify a larger character string, an error (A106: Invalid option (option_name))

is detected.

(2) If an attempt is made to specify a null character, an error (A106: Invalid option (option_name)) is

detected.

455

CHAPTER 22 OPERATING PROCEDURES

22.6.13 Summary File Output Control (-SUM, -NOS)

[Format]

-SUM [MARY] (Default: -NOS)

-NOS [UMMARY]

[Function]

Controls summary file output.

[Explanation]

(1) -SUM [MARY]

A summary file is created under the same name as the source module file name (file name extension

.SUM) in the current directory.

(2) -NOS [UMMARY]

A summary file is not output.

(3) If this option is not specified (default)

-NOS is assumed.

[Relationships with other options]

(1) A specification of -SUM or -NOS does not affect other options.

(2) If -HOST is specified, -NOS becomes invalid, and -SUM is assumed.

456

RA17K USER'S MANUAL

[MEMO]

457

CHAPTER 23 OUTPUT LIST FORMATS

This chapter describes the formats of the intermediate list, log, and undefined symbol files created by

RA17K.

458

RA17K USER'S MANUAL

23.1 INTERMEDIATE LIST FILE

RA17K outputs assembly results to an intermediate list file. It is possible to prohibit listing by using an option.

The intermediate list file is not affected by the list control pseudo instruction. Processing by the list control

pseudo instruction takes effect, when the intermediate list file is converted to an absolute-address-based list

file using the document processor (DOC17K).

Object code is in a fixed format of 4-4-4-4 bit arrangement (four hexadecimal digits).

The format of each intermediate list line is as follows:

EEEE SSSSSS LLLLLL OOOOOOOO MM I CL sssssss.....

Symbol Start position Number of digits Description Reference page

E Column 1 4 Error/EPA field p.459

S Column 6 6 Source line number field p.460

L Column 13 6 Location counter field p.462

O Column 20 8 Object code field p.463

M Column 29 2 Macro nest field p.465

I Column 32 1 Include nest field p.466

C Column 34 1 Control field p.467

L Column 35 1 Label field p.470

s Column 41 Variable Source field p.470

Each field is explained in the following sections.

459

CHAPTER 23 OUTPUT LIST FORMATS

23.1.1 Error/EPA Field

[Explanation]

(1) This field holds an error code, if an error occurs.

(2) If the EPA bit is 1, "1" is placed in this field, left-justified.

(3) If an error code is to be output, and the EPA bit becomes 1 simultaneously, error code output takes

precedence.

(4) If the EPA bit is 0, and no error has occurred, this field is set with four space characters.

[Output example]

(1) Error code

EEEE SSSSSS LLLLLL···

F011

(2) EPA bit

EEEE SSSSSS LLLLLL···

1

"1" is left-justified in the field, and the remaining positions (3 positions) in the field are set with space

characters.

460

RA17K USER'S MANUAL

23.1.2 Source Line Number Field

[Explanation]

(1) This field holds a decimal representation of a line number in the source module file.

(2) When include files or macros are expanded, their line numbers are preceded by the sign "+".

(3) For expansions of include files and macros (including built-in macros and repetitive pseudo

instructions), the line number begins at 1 in a nest one level down the normal line number level. Even

if further nesting occurs, the line numbers for the include file and macro expansions are kept

consecutive no matter how many nesting levels are there.

(4) The line number begins at 1, and can be as high as 65535. If there are more than 65535 source lines,

an error (A165: Source line over) is detected, and assembly is aborted. This holds true also of the

line numbers of include file and macro expansions.

(5) The line number is right-justified in the source line number field. For include file and macro expansion

line numbers, the sign "+" is placed in the leftmost position in the field.

[Output example]

(1) Ordinary source line number output

EEEE SSSSSS LLLLLL ···

·
··

123

124

125
·
··

461

CHAPTER 23 OUTPUT LIST FORMATS

(2) Include file expansion line numbers

EEEE SSSSSS LLLLLL ··· SSSS···

·
··
123

124 INCLUDE ' ABC.ASM'

+ 1 INCLUDE expansion line numbers

+ 2

+ 3

125
·
··

(3) Macro expansion line numbers

EEEE SSSSSS LLLLLL ··· SSSS···

·
··
123 ABC <- Macro reference

+ 1 Macro expansion line numbers

+ 2

124
·
··

462

RA17K USER'S MANUAL

23.1.3 Location Counter Field

[Explanation]

(1) If an instruction in a source line is one that causes an object code to be generated or one that evaluates

to a location counter value, the location counter value corresponding to the line is output to this field.

(2) The numbers output to this field are hexadecimal numbers, and represented using uppercase

characters. The location counter value is 5 digits, and right-justified in the field. If the value is smaller

than 5 digits, leading zeros are inserted to make it 5 digits.

(3) A location counter value is either an offset address (relative address) or an absolute address. The

absolute address is identified with "#" placed in the leftmost position in the 6-digit field.

[Output example]

(1) Relative address

···SSSSSS LLLLLL···

01000

01001

01002

(2) Absolute address

···SSSSSS LLLLLL···

01000

01001

01002

463

CHAPTER 23 OUTPUT LIST FORMATS

23.1.4 Object Code Field

[Explanation]

(1) The object code field indicates the object code of an instruction or pseudo instruction, or a value to

which a symbol definition pseudo instruction evaluates.

Pseudo instructions generating object code

• DB

• DW

• DCP

Pseudo instructions that evaluate to a value

• DAT

• MEM

• NIBBLEn

• NIBBLEnV

• FLG

• LAB

• SET

• Mask option pseudo instruction

• ZZZMCHK

(2) An object code is output in 4-4-4-4 bit format (4-digit hexadecimal number), and right-justified in the

field with space placed in the left-side four positions.

(3) An evaluated value is output as an 8-digit hexadecimal number. If it is smaller than 8 digits, leading

zeros are inserted to make it 8 digits.

(4) If an object code is not generated when it should be (for example, if an operand is an externally defined

symbol), the object code field is set with " ****".

464

RA17K USER'S MANUAL

[Output example]

(1) Object code

···LLLLLL 00000000 ··· SSSSS···

3CF0 NOP

3CF0 NOP

(2) Evaluated value

···LLLLLL 00000000 ··· SSSSS···

00001234 AAA DAT 1234H

00000123 BBB MEM 1. 23H

(3) If an object code is not generated when it should be

···LLLLLL 00000000 ··· SSSSS···

**** ADD MEM00, #1H

465

CHAPTER 23 OUTPUT LIST FORMATS

23.1.5 Macro Nest Field

[Explanation]

(1) This field indicates the nesting level of a macro, repetitive pseudo instruction, or built-in macro.

(2) For macros, the nesting level is increased by 1 on the macro reference line (or, for a built-in macro,

on the line where it is described).

(3) For repetitive pseudo instructions, the nesting level is output to the expansion line.

[Output example]

(1) Macro nesting level

···MM I CL SSSSS···

ABC MACRO

NOP

ENDM

1 ABC

1 NOP

(2) Repetitive pseudo instruction nesting level

···MM I CL SSSSS···

REPT 2

NOP

ENDR

1 NOP

1 NOP

466

RA17K USER'S MANUAL

(3) Nesting level of a repetitive pseudo instruction in a macro body

···MM I CL SSSSS···

ABC MACRO

NOP

REPT 2

INC IX

ENDR

NOP

ENDM

1 ABC

1 NOP

2 INC IX

2 INC IX

1 NOP

23.1.6 Include Nest Field

[Explanation]

(1) This field indicates a nesting level from 1 to 8.

(2) The nesting level is incremented by 1 on the line where the INCLUDE statement is described.

[Output example]

···MM I CL SSSSS···

···
1 INCLUDE ' ABCD. ASM'

1

1

2 INCLUDE ' BBB. ASM' ; Nested INCLUDE statement

2

2

···
···

···

···

467

CHAPTER 23 OUTPUT LIST FORMATS

23.1.7 Control Field

[Explanation]

This field indicates a control code that briefs the corresponding source line for the document processor

(DOC17K).

Control codes output to the control field (1/3)

Control code Description

A Line where a symbol definition pseudo DAT, LAB, MEM, FLG, SET, NIBBLE
instruction is described NIBBLEn, NIBBLEnV, ZZZMCHK

D Line where a data definition pseudo DW, DB, DCP
instruction is described

M Line where a macro definition pseudo MACRO, REPT, IRP
instruction is described

m Line where a macro definition ends ENDM, ENDR

= Line where an EXITR is described

G Line where an ORG is described

H Line where an absolute-mode CSEG is described

X Line where a relocatable-mode CSEG is described

T Line where a relocatable-mode CSEG is described (when TABLE is specified)

Z Line where an ENSURE is described

P Line where a PUBLIC is described

* Line where a PUBLIC BELOW is described

+ Line where an ENDP is described

E Line where an EXTRN is described

F Line where a LITERAL or UNLITERAL is described

I Line where an INCLUDE is described

J All lines to be skipped during conditional assembly
IF, ELSE, ENDIF, CASE, EXIT, ENDCASE, IFCHAR, ENDIFC
IFNCHAR, ENDIFNC, IFSTR, ENDIFS

C Line where a CASE is described

c Line where an ENDCASE is described

; Comment line (line containing only a comment or nothing), SUMMARY, and tag summary
statement lines

U Line referencing a user-defined macro (macro other than built-in macros)

z Line referencing a mask option macro

R Line where a SUMMARY is described

r Line where SUMMARY ends (ENDSUM line or line where a termination symbol is described)

. Line where a TAG is described (;. and ;.V)

468

RA17K USER'S MANUAL

Control codes output to the control field (2/3)

Control code Description

/ Line where a TAG is described (;..)

Q Line where an OPTION is described

q Line where an ENDOP is described

0 Line where a NOLIST is described

1 Line where a LIST is described

3 Line where a C14344 is described

4 Line where a C4444 is described

5 Line where a TITLE is described

6 Line where an EJECT is described

7 Line where an SFCOND is described

8 Line where an LFCOND is described

S Line where an SMAC is described

N Line where a NOMAC is described

O Line where an OMAC is described

L Line where an LMAC is described

V Line where a VMAC is described

s Line where an SBMAC is described

n Line where a NOBMAC is described

o Line where an OBMAC is described

l Line where an LBMAC is described

v Line where a VBMAC is described

a END

b EOF

\ ZZZERROR

d ZZZMSG

e GLOBAL

f PURGE

g Line where a BR instruction is described

h Line where a CALL instruction is described

i Line where a SYSCAL instruction is described

j Line where a RET instruction is described

k Line where a RETSK instruction is described

p Line where a RETI instruction is described

469

CHAPTER 23 OUTPUT LIST FORMATS

Control codes output to the control field (3/3)

Control code Description

! Mnemonic group 1 (reference-only instructions)
SKE SKGE SKLT SKNE SKT SKF

" Mnemonic group 2 (instructions with no operand)
DI EI NOP

Mnemonic group 3 (instructions with one operand)
INC PUSH POP RORC STOP HALT

$ Mnemonic group 3 (instructions with two operands)
ADD ADDC SUB SUBC AND OR XOR LD
ST MOV MOVTH MOVTL PEEK POKE GET PUT

y Structured instruction

% Built-in macro group 1 (reference-only instructions)
SETBANK SETRP SETMP SETIX SETAR
SKTn SKFn SKTX SKFX SKEX
SKNEX SKGEX SKGTX SKLEX SKLTX
BRX CALLX MOVTX SYSCALX

& Built-in macro group 2 (instructions with no operand)
BANKn

— Built-in macro group 3 (the other instructions)
SETn CLRn NOTn INITFLG SETX
CLRX NOTX MOVX ADDX ADDCX
ADDSX ADDCSX SUBX SUBCX SUBSX
SUBCSX RORCX ROLCX SHRX SHLX
ANDX ORX XORX INITFLGX

470

RA17K USER'S MANUAL

[Output example]

For control instructions that appear during an assemble skip, the J control code indicating that a skip is

in progress is output.

DDD DAT 1

IF DDD=1

NOP

NOP

ELSE

J NOP

J NOP

ENDIF

CASE DDD

J 0:

J NOP

J NOP

1:

NOP

NOP

OTHER:

NOP

NOP

ENDCASE

CASE DDD

J 0:

J NOP

1:

NOP

NOP

EXIT

J NOP

ENDCASE

23.1.8 Label Field

[Explanation]

For a line where a label is described, the label field indicates letter L. For a line where no label is described,

the label field is set with " ".

23.1.9 Source Field

[Explanation]

The source field contains exactly what the user describes in a source file. A TAB is not converted to a

space, or vice versa.

471

CHAPTER 23 OUTPUT LIST FORMATS

23.2 LOG FILE

[Explanation]

(1) The log file holds all data displayed on the screen during assembly.

(2) The log file is created automatically when RA17K runs. Its file name is in the form: Source-module-

file-name.LOG

(3) If assembly is aborted because of an error before the source module file name is specified, the log

file is named: RA17K.LOG

The following example shows the contents of a log file created when TEST1.ASM is assembled.

17K Series Relocatable Assembler V1.xx [DD MMM YY]
Copyright(C)NEC Corporation 19xx

TEST1.ASM assemble start hh:mm:ss MM/DD/YY

DB P1
TEST1.ASM(9) error F058: Undefined symbol
 DB P1

TEST1.ASM(10) error F058: Undefined symbol

MEM AREA = REL TMP : 4317 : 259
MEM AREA = REL TMP : 4317 : 229
MEM AREA = REL TMP : 4317 : 4317
FILE NAME = E:\r$b05938 : 12000

MEM AREA = REL TMP : 4317 : 4317
FILE NAME = E:\r$a05938 : 78000
MEM AREA = REL TMP : 4317 : 225
MEM AREA = REL TMP : 2269 : 2269
FILE NAME = E:\r$c05938 : 120440
MEM AREA = REL TMP : 4317 : 260

MEM AREA = REL FILE : 4321 : 4321
FILE NAME = TEST1.REL :180656
MEM AREA = INTERM TMP : 8413 : 8413
FILE NAME = E:\r$005938 : 159021
MEM AREA = XREF FILE : 8417 : 8417
FILE NAME = TEST1.IXF : 48000

MEM AREA = SYMBOL MAIN : 46592 : 46592
MEM AREA = SYMBOL EMS : 114688 : 114688
MEM AREA = LIST TMP : 4321 : 4321
FILE NAME = TEST1.IPN : 443306
MEM AREA = ETC :5223 : 404

Total error(s): 2 Total warning(s): 0
TEST1.ASM assemble end hh:mm:ss MM/DD/YY

In this example, two error have occurred, but a warning has not.

472

RA17K USER'S MANUAL

23.3 UNDEFINED SYMBOL FILE

[Explanation]

(1) The undefined symbol file contain symbols detected as undefined during assembly.

(2) If the -NOUNDEF option is specified, an undefined symbol file is not created even when an undefined

symbol is found.

(3) If the -UNDEF option is specified, an undefined symbol file is created even when no undefined symbol

is found.

(4) Because -NOUNDEF is a default assumption, an undefined symbol file is not created by default.

An example of undefined symbol file output follows.

[Output example]

In the following example, symbols FLG1, FLG2, FLG3, and FLG4 have been detected as undefined.

EXTRN ???:FLG1

EXTRN ???:FLG2

EXTRN ???:FLG3

EXTRN ???:FLG4

473

CHAPTER 24 RA17K ERROR MESSAGES

24.1 MESSAGES

The error and warning messages which may be output by RA17K are listed below. The first letter of each

message number indicates the message type: error, warning, or abort.

First letter

F : Error message

W : Warning message

A : Abort message

[Warning groups]

Warning messages are classified into six groups (the number enclosed in parentheses under the number

of each warning message indicates the warning group number of that message). The user can control

whether warning messages are to be output, in group units, using the -WARNING option. Messages in

warning group 6 are, however, always output if the corresponding condition occurs, regardless of the setting

of the -WARNING option (see Section 22.6.7).

Message No. Description

F011 Message Illegal first operand type

Cause The type of the first operand for a code-generating instruction is invalid.
• Operation is performed between different types.
• A type not allowed for the operand is described.

Action Describe an expression of a valid type.

F012 Message Illegal second operand type

Cause The type of the second operand for a code-generating instruction is invalid.
• Operation is performed between different types.
• A type not allowed for the operand is described.

Action Describe an expression of a valid type.

F014 Message Illegal first operand value

Cause The evaluated value of the first operand for a code-generating instruction falls
outside the valid range.

Action Describe the operand such that the evaluated value falls within the valid range.

F015 Message Illegal second operand value

Cause The evaluated value of the second operand for a code-generating instruction
falls outside the valid range.

Action Describe the operand such that the evaluated value falls within the valid range.

474

RA17K USER'S MANUAL

W020
(1)

Message No. Description

Message Unreference symbol (DAT type/MEM type/FLG type)

Cause A symbol is defined but not referenced.

Action Delete the symbol if not necessary.

Message Unreference symbol (LAB type)

Cause A symbol is defined but not referenced.

Action Delete the symbol if not necessary.

Message The SUMMARY statement described before is invalid

Cause Two or more summary statements are described before the CSEG statement.

Action Delete unnecessary summary statements.

Message No END statement

Cause A source module file is read in its entirety, but no END statement is found.

Action Describe an END statement at the end of the source module file.

F029 Message No ENDIF statement

Cause A source module file is read in its entirety, but an ENDIF statement
corresponding to an IF statement cannot be found.

Action Insert an ENDIF statement where appropriate.

F030 Message No ENDCASE statement

Cause A source module file is read in its entirety, but an ENDCASE statement
corresponding to a CASE statement cannot be found.

Action Insert an ENDCASE statement where appropriate.

F031 Message No ENDR statement

Cause A source module file is read in its entirety, but an ENDR statement
corresponding to an IRP or REPT statement cannot be found.

Action Insert an ENDR statement where appropriate.

F032 Message No ENDM statement

Cause A source module file is read in its entirety, but an ENDM statement
corresponding to a MACRO statement cannot be found.

Action Insert an ENDM statement where appropriate.

F033 Message No ENDP statement

Cause A source module file is read in its entirety, but an ENDP statement
corresponding to a PUBLIC BELOW statement cannot be found.

Action Insert an ENDP statement where appropriate.

F034 Message No ENDOP statement

Cause A source module file is read in its entirety, but an ENDOP statement
corresponding to an OPTION statement cannot be found.

Action Insert an ENDOP statement where appropriate.

W022
(1)

W021
(5)

W028
(2)

475

CHAPTER 24 RA17K ERROR MESSAGES

Message No. Description

A035 Message Nesting overflow

Cause • The nesting level for MACRO, IRP, or REPT exceeds the maximum (40).
• The nesting level for IF, CASE, IFCHAR, IFNCHAR, or IFSTR exceeds the

maximum (40).

Action Reduce the nesting level to 40 or less.

F036 Message Operand count error

Cause The number of operands is invalid.

Action Describe a valid number of operands.

F037 Message Syntax error

Cause • The syntax is erroneous.
• A label is described where no label can be described.
• An operand is described where no operand can be described.

Action Correct the syntax.

A038 Message System memory overflow

Cause Memory to be used by the system is insufficient.

Action Increase the memory capacity. Alternatively, split the source module file into
several small files.

A039 Message Symbol or macro area overflow

Cause The area for storing symbols and macro bodies is insufficient.

Action Increase the memory capacity. Alternatively, split the source module file into
several small files.

F040 Message Invalid EOF statement

Cause An EOF statement is found in a file other than an include file.

Action Delete the EOF statement if not necessary.

F041 Message Invalid ENDR statement

Cause An ENDR statement is found although there is no corresponding IRP or REPT
statement.

Action Insert an IRP or REPT statement where appropriate. Alternatively, delete the
ENDR statement if not necessary.

F042 Message Invalid EXITR statement

Cause An EXITR statement is found outside the range between IRP and ENDR or
between REPT and ENDR.

Action Move the EXITR statement to an appropriate position or delete it if not
necessary.

F043 Message Invalid ENDM statement

Cause An ENDM statement is found although there is no corresponding MACRO
statement.

Action Insert a MACRO statement where appropriate. Alternatively, delete the ENDM
statement if not necessary.

476

RA17K USER'S MANUAL

Message No. Description

F044 Message Invalid value

Cause • The evaluated value of an expression described in a pseudo instruction (or
the like) falls outside the valid range.

• Segment numbers for a CSEG pseudo instruction are not described in
ascending order.

• An uninstalled segment number is described for a CSEG pseudo instruction.
• An invalid numerical constant is described.

Action Correct the erroneous description.

F045 Message Invalid type

Cause The type of an operand specified for a pseudo instruction (or the like) is invalid.
• Operation is performed between different types.
• A type not allowed for the operand is described.
• For a type conversion function, the actual type of the expression differs from

the current type specified for that function.

Action Describe an expression of a valid type.

F046 Message Invalid BANK No.

Cause The specified bank number does not exist in the target device.

Action Specify a valid bank number.

F048 Message ORG address error

Cause The specified value is smaller than the current value of the location counter.

Action Specify a valid value.

F049 Message Used reserved word

Cause The string specified for symbol definition is a reserved word.

Action Specify a string other than reserved words.

F050 Message Not reserved word

Cause Characters other than valid reserved words are described.

Action Specify a valid reserved word.

F051 Message Invalid data length

Cause The specified number of characters exceeds the specified value.

Action Specify a valid data length.

F052 Message Include nesting error

Cause The nesting level for include files exceeds the maximum (8).

Action Reduce the level to eight or smaller.

F053 Message Duplicated OPTION directive

Cause An OPTION pseudo instruction is defined twice.

Action Delete either definition which is not necessary.

477

CHAPTER 24 RA17K ERROR MESSAGES

Message No. Description

F057 Message Symbol multi defined

Cause An attempt is made to define an already defined symbol.

Action Change the name of the symbol.

F058 Message Undefined symbol

Cause An undefined symbol is used.

Action Use a defined symbol. Alternatively, define the symbol to be used.

F060 Message Invalid mnemonic

Cause The described string is not an instruction.

Action Correct the string to a valid instruction or delete it if not necessary.

F061 Message No include file <filename>

Cause The specified include file does not exist.

Action Specify an existing include file.

F063 Message Bank unmatch

Cause The bank numbers specified for a symbol are not the same.

Action Specify the same bank numbers within an instruction.

Message Statement after END

Cause A statement follows an END statement.

Action Delete the statement if not necessary.

Message Statement after EOF

Cause A statement follows an EOF statement.

Action Delete the statement if not necessary.

F067 Message Address error

Cause The specified data memory address is not installed on the target device.

Action Specify a valid address.

Message Operation in OPTION block

Cause A mask option definition block contains an instruction.

Action Delete the instruction.

F069 Message Invalid CASE LABEL

Cause • A statement other than comments is described for a numerical label.
• A numerical label is described without a CASE statement.

Action Correct or delete the relevant description, as required.

F070 Message Invalid operand

Cause The operand field contains a syntax error.

Action Correct the syntax.

W065
(2)

W066
(2)

W068
(6)

478

RA17K USER'S MANUAL

Message No. Description

F080 Message Invalid EXIT statement

Cause An EXIT statement is described outside the range between CASE and
ENDCASE.

Action Move the EXIT statement to an appropriate position or delete it if not
necessary.

F081 Message Boundary error

Cause • A DCP instruction is described such that an object code will be generated at
an address the four low-order bits of which are 0FH.

• A table block spans the program area and EPA area.

Action • Describe a DCP instruction, using ORG, such that an object code will be
generated at an address the four low-order bits of which are other than 0FH.

• Adjust the location and size of the table block such that it is contained in the
program area.

F082 Message Illegal character

Cause An illegal character is described.

Action Correct the character.

F083 Message Illegal format

Cause An operand for a DCP instruction is described in illegal format.

Action Describe the operand in legal format.

F085 Message Invalid ENDP statement

Cause An ENDP statement is described when no PUBLIC BELOW statement is
defined.

Action Define a PUBLIC BELOW statement or delete the ENDP statement if not
necessary.

F087 Message Invalid OPTION statement

Cause An OPTION statement is described where it is not allowed.

Action Move the OPTION statement to an appropriate position or delete it if not
necessary.

F088 Message Mask-option multi defined

Cause The same mask option is defined twice.

Action Delete either definition which is not necessary.

F089 Message Undefined mask-option

Cause A mask option has yet to be defined.

Action Define all mask options properly.

479

CHAPTER 24 RA17K ERROR MESSAGES

Message No. Description

W094 Message Indirect addressing instructions may not work properly due to the program
(6) exceeded to EPA area

Cause The EPA area is used because the program is too large to be contained in the
program area. It, therefore, cannot be determined whether the branch
destination for an indirect addressing instruction falls within the program area or
EPA area.

Action Reduce the program size or replace the indirect addressing instruction with
another instruction.

A100 Message System error xxx

Cause Internal error (xxx: internal number)

Action Contact NEC or an NEC agency.

F101 Message No ENDIFC statement

Cause A source module file is read in its entirety, but an ENDIFC statement
corresponding to an IFCHAR statement cannot be found.

Action Insert an ENDIFC statement where appropriate.

F102 Message No ENDIFNC statement

Cause A source module file is read in its entirety, but an ENDIFNC statement
corresponding to an IFNCHAR statement cannot be found.

Action Insert an ENDIFNC statement where appropriate.

F103 Message No ENDIFS statement

Cause A source module file is read in its entirety, but an ENDIFS statement
corresponding to an IFSTR statement cannot be found.

Action Insert an ENDIFS statement where appropriate.

A104 Message Can't open file <filename>

Cause File <filename> is not found.

Action Specify a valid file name.

A105 Message <filename> is not device file

Cause The file specified with the first parameter, at activation, is other than device
files.

Action Specify a valid device file name.

A106 Message Invalid option (option_name)

Cause Option option_name is invalid.

Action Specify a valid option.

F107 Message Used extended reserved word

Cause A reserved word for expansion is used.

Action Change it to another symbol.

480

RA17K USER'S MANUAL

Message No. Description

A108 Message <filename> File I/O error at writing

Cause An error occurred while writing a file.
• The free disk space is insufficient.
• The file is write-protected.
• The drive is not ready.

Action Check the drive. If it is normal, increase the free disk space.

A109 Message <filename> File I/O error at reading

Cause An error occurred while reading a file.
• The disk contains a defective sector.
• The file is read-protected.
• The drive is not ready.

Action Check the drive.

Message Invalid mnemonic at the last of program

Cause • The last instruction in a section is other than a branch instruction and data
definition pseudo instruction.

• The instruction immediately before an ORG pseudo instruction changing the
location address is other than a branch instruction or data definition pseudo
instruction.

• The instruction immediately before a CSEG pseudo instruction is other than a
branch instruction or data definition pseudo instruction.

Action Describe a valid instruction.

Message The result is over 16 bits

Cause The operation result exceeds 16 bits in absolute mode.

Action Specify the operation such that the result becomes within 16 bits.

F112 Message Impossible to use on relocatable mode

Cause The specified pseudo instruction cannot be used in relocatable mode.

Action Delete the pseudo instruction.

F113 Message Impossible to use on absolute mode

Cause The specified pseudo instruction cannot be used in absolute mode.

Action Delete the pseudo instruction.

Message The address carried out an operation using $ may be incorrect

Cause The address cannot be determined because internal processing is performed in
relocatable mode.

Action Replace $ with a label.

Message ZZZn is not initialized

Cause ZZZn is used without initializing it.
(This message is output only in absolute mode.)

Action Initialize ZZZn.

W110
(6)

W111
(4)

W114
(6)

W115
(6)

481

CHAPTER 24 RA17K ERROR MESSAGES

Message No. Description

F120 Message Invalid ELSE statement

Cause An ELSE statement is found although there is no corresponding IF, IFCHAR,
IFNCHAR, or IFSTR statement.

Action Insert an IF, IFCHAR, IFNCHAR, or IFSTR statement where appropriate.
Alternatively, delete the ELSE statement if not necessary.

F121 Message Invalid ENDIF statement

Cause An ENDIF statement is found although there is no corresponding IF statement.

Action Insert an IF statement where appropriate. Alternatively, delete the ENDIF
statement if not necessary.

F122 Message Invalid ENDCASE statement

Cause An ENDCASE statement is found although there is no corresponding CASE
statement.

Action Insert a CASE statement where appropriate. Alternatively, delete the
ENDCASE statement if not necessary.

F123 Message Invalid OTHER statement

Cause An OTHER statement is described outside the range between CASE and
ENDCASE.

Action Move the OTHER statement to an appropriate position or delete it if not
necessary.

F124 Message Invalid ENDIFC statement

Cause An ENDIFC statement is found although there is no corresponding IFCHAR
statement.

Action Insert an IFCHAR statement where appropriate. Alternatively, delete the
ENDIFC statement if not necessary.

F125 Message Invalid ENDIFNC statement

Cause An ENDIFNC statement is found although there is no corresponding IFNCHAR
statement.

Action Insert an IFNCHAR statement where appropriate. Alternatively, delete the
ENDIFNC statement if not necessary.

F126 Message Invalid ENDIFS statement

Cause An ENDIFS statement is found although there is no corresponding IFSTR
statement.

Action Insert an IFSTR statement where appropriate. Alternatively, delete the ENDIFS
statement if not necessary.

F127 Message No _ENDIF statement

Cause A source module file is read in its entirety, but an _ENDIF statement
corresponding to an _IF statement cannot be found.

Action Insert an _ENDIF statement where appropriate.

482

RA17K USER'S MANUAL

Message No. Description

F128 Message Invalid _ELSEIF statement

Cause • An _ELSEIF statement is found although there is no corresponding _IF
statement.

• An _ELSEIF statement is duplicately specified.
• An _ELSEIF statement is described after an _ELSE statement.
• An _ELSEIF statement is described outside the range between _IF and

_ENDIF.

Action Correct the description of the _ELSEIF statement or delete it if not necessary.

F129 Message Invalid _ELSE statement

Cause • An _ELSE statement is found although there is no corresponding _IF
statement.

• An _ELSE statement is duplicately specified.
• An _ELSE statement is described outside the range between _IF and

_ENDIF.

Action Correct the description of the _ELSE statement or delete it if not necessary.

F130 Message Invalid _ENDIF statement

Cause An _ENDIF statement is found although there is no corresponding _IF
statement.

Action Insert an _IF statement where appropriate. Alternatively, delete the _ENDIF
statement if not necessary.

F131 Message No _ENDW statement

Cause A source module file is read in its entirety, but an _ENDW statement
corresponding to a _WHILE statement cannot be found.

Action Insert an _ENDW statement where appropriate.

F132 Message Invalid _ENDW statement

Cause An _ENDW statement is found although there is no corresponding _WHILE
statement.

Action Insert an _WHILE statement where appropriate. Alternatively, delete the
_ENDW statement if not necessary.

F133 Message Invalid _CASE statement

Cause • A _CASE statement is described outside the range between _SWITCH and
_ENDS.

• The same constant is specified for two or more _CASE statements.

Action Move the _CASE statement to an appropriate position or delete it if not
necessary.

F134 Message Invalid _DEFAULT statement

Cause • A _DEFAULT statement is described outside the range between _SWITCH
and _ENDS.

Action Move the _DEFAULT statement to an appropriate position or delete it if not
necessary.

483

CHAPTER 24 RA17K ERROR MESSAGES

Message No. Description

F135 Message Invalid _ENDS statement

Cause An _ENDS statement is found although there is no corresponding _SWITCH
statement.

Action Insert an _SWITCH statement where appropriate. Alternatively, delete the
_ENDS statement if not necessary.

F136 Message No _ENDS statement

Cause A source module file is read in its entirety, but an _ENDS statement
corresponding to a _SWITCH statement cannot be found.

Action Insert an _ENDS statement where appropriate.

F137 Message Invalid _UNTIL statement

Cause An _UNTIL statement is found although there is no corresponding _REPEAT
statement.

Action Insert a _REPEAT statement where appropriate. Alternatively, delete the
_UNTIL statement if not necessary.

F138 Message No _UNTIL statement

Cause A source module file is read in its entirety, but an _UNTIL statement
corresponding to a _REPEAT statement cannot be found.

Action Insert an _UNTIL statement where appropriate.

F139 Message Invalid _NEXT statement

Cause A _NEXT statement is found although there is no corresponding _FOR
statement.

Action Insert a _FOR statement where appropriate. Alternatively, delete the _NEXT
statement if not necessary.

F140 Message No _NEXT statement

Cause A source module file is read in its entirety, but a _NEXT statement
corresponding to a _FOR statement cannot be found.

Action Insert a _NEXT statement where appropriate.

F141 Message Invalid _BREAK statement

Cause A _BREAK statement is described outside the range between _WHILE and
_ENDW, _REPEAT and _UNTIL, _FOR and _NEXT, or _SWITCH and _ENDS.

Action Move the _BREAK statement to an appropriate position or delete it if not
necessary.

F142 Message Invalid _CONTINUE statement

Cause A _CONTINUE statement is described outside the range between _WHILE and
_ENDW, _REPEAT and _UNTIL, or _FOR and _NEXT.

Action Move the _CONTINUE statement to an appropriate position or delete it if not
necessary.

484

RA17K USER'S MANUAL

Message No. Description

F143 Message Invalid _GOTO statement

Cause A _GOTO statement is described outside the range of structured description.

Action Move the _GOTO statement to an appropriate position or delete it if not
necessary.

F144 Message Invalid ENDOP statement

Cause An ENDOP statement is found although there is no corresponding OPTION
statement.

Action Insert an OPTION statement where appropriate. Alternatively, delete the
ENDOP statement if not necessary.

F145 Message Impossible to use out of macro

Cause An instruction which can be used only within a macro body is used outside a
macro body.

Action Correct the instruction.

F146 Message Impossible to write out of section block

Cause An instruction which generates an object code is used outside a section block.

Action Move the instruction into a section.

F147 Message BOOT or INT multi defined

Cause BOOT or INT is defined twice in ENTRY.

Action Delete the unnecessary definition.

F148 Message Macro body is over 64 K bytes

Cause A macro body exceeds a maximum size of 64K bytes.

Action Reduce the size of the macro body to 64K bytes or less.

Message Carried out sub-routine call for the label not defined ENTRY

Cause A CALL instruction is executed for a label that is not defined in ENTRY.

Action Define the label in ENTRY.

F150 Message Impossible to write the external symbol

Cause An externally defined symbol is described in an operand of a pseudo instruction
(or the like).

Action Define another symbol and use that symbol instead of the externally defined
symbol.

Message The address is in remain area

Cause An address within the REMAIN area is specified as a ROM address.

Action Reduce the program size.

F152 Message The address is out of ROM

Cause An address within an area which cannot be controlled by the program counter
on the target device (other than the EPA area) is specified as a ROM address.

Action Specify a valid address.

W151
(4)

W149
(3)

*

*

*

485

CHAPTER 24 RA17K ERROR MESSAGES

Message No. Description

Message The address is in EPA area

Cause An address within the EPA area is specified as a ROM address.

Action Reduce the program size.

Message Letters in a line are over 255

Cause More than 255 characters are described within a line.

Action Reduce the number of characters to 255 or less.

A158 Message Parameter error at start time

Cause The format of a parameter specified at activation is invalid.

Action Specify a valid parameter.

A159 Message Can't open temporary file

Cause The free disk space is insufficient.

Action Increase the free disk space.

A160 Message Temporary file I/O error at reading

Cause The specified file is not found.

Action Check the disk.

A161 Message Temporary file I/O error at writing

Cause • The free disk space is insufficient.
• The drive is not ready.

Action Check the disk. If it is normal, increase the free disk space.

A162 Message No ENDSUM statement

Cause An ENDSUM statement corresponding to a SUMMARY statement cannot be
found.

Action Insert an ENDSUM statement where appropriate.

A163 Message <filename> is not a source file

Cause An extension which cannot be specified is specified.

Action Specify a source module file.

F164 Message The constant is over 32 bits

Cause A numerical constant has a value exceeding 32 bits.

Action Reduce the value of the numerical constant to 32 bits or less.

A165 Message Source line over

Cause The number of lines in a source module file, or the number of lines of an
expanded macro or include file exceeds the maximum value.

Action Split the source module file, macro, or include file.

F166 Message Invalid EXTRN statement

Cause A reserved word (such as a mnemonic, function, assemble-time variable) is
declared with EXTRN.

Action Delete any invalid symbols.

W157
(2)

W153
(6)

486

RA17K USER'S MANUAL

Message No. Description

F167 Message Invalid PUBLIC statement

Cause A reserved word (such as a mnemonic, function, assemble-time variable) is
declared with PUBLIC.

Action Delete any invalid symbols.

F168 Message Nibble number unmatch

Cause The number of nibbles specified in an operand is larger than that specified with
n in DATn, NIBBLEn, or NIBBLEnV.

Action Match the number of nibbles.

Message Omitted a surplus due to an input value is over a regular value

Cause A value specified in a DW or DB instruction exceeds one word or one byte,
respectively. The value is rounded off.

Action Specify a value within a specified range.

F170 Message Impossible to include a source file

Cause In a source file, that file itself is specified as an include file.

Action Specify a valid include file.

F172 Message Invalid CSEG statement

Cause A CSEG pseudo instruction is described where it cannot be described.

Action Move the CSEG pseudo instruction to an appropriate position, or delete it if not
necessary.

F173 Message Impossible to write in table block

Cause An instruction which cannot be described in a table block is described in a table
block.

Action Delete the instruction.

F178 Message The device doesn't have a system segment

Cause An instruction which requires a system segment is used.

Action Replace the instruction with another instruction.

F182 Message Specified illegal symbol name

Cause A segment name, section name, or table name is used as a symbol.

Action Define another symbol and use that symbol instead of the segment, section, or
table name.

F183 Message Invalid MACRO place

Cause • Another macro is defined within the definition of a macro.
• A macro is defined within a repetitive pseudo instruction.

Action Define the macro where appropriate, other than the above.

W169
(4)

487

CHAPTER 24 RA17K ERROR MESSAGES

Message No. Description

F184 Message No entry characters for LITERAL

Cause A string which has not been registered with LITERAL is specified.

Action Delete the string if not necessary.

F185 Message Invalid statement in symbol definition file (.EQU)

Cause The symbol definition file contains a statement (instruction) which cannot be
described.

Action Delete the statement (instruction).

Message Nibble number unmatch. Unified the number to left

Cause In an extended instruction, the number of nibbles of the first operand differs
from that of the second operand.

Action Match the number of nibbles.

F187 Message No mask-option definition file <filename>

Cause No mask option definition file exists.

Action Prepare a mask option definition file.

F189 Message Impossible to make SYM file due to error in EQU file

Cause No SYM can be created because an error occurred in the EQU file.

Action Eliminate all errors in the EQU file.

F190 Message Impossible to write a local symbol

Cause A local symbol is specified for PUBLIC.

Action Delete the symbol.

F191 Message File name error

Cause A string other than file names is specified for INCLUDE.

Action Specify a valid file name.

F192 Message Illegal operand type

Cause Any of the specified operands has a type which differs from that for the other
operands.

Action Specify a valid type.

F193 Message Illegal third operand type

Cause The third operand has a type which differs from that for the other operands.

Action Specify a valid type.

F194 Message Illegal fourth operand type

Cause The fourth operand has a type which differs from that for the other operands.

Action Specify a valid type.

W186
(4)

488

RA17K USER'S MANUAL

Message No. Description

F195 Message Invalid ENDSUM statement

Cause An ENDSUM statement is found although there is no corresponding SUMMARY
statement.

Action Insert a SUMMARY statement where appropriate. Alternatively, delete the
ENDSUM statement if not necessary.

F197 Message Section or table block multi defined in a source file

Cause Two or more section or table blocks having the same name are defined within a
source file.

Action Combine the blocks into a single section or table.

Message No end mark for tag

Cause String ;.. corresponding to ;. or ;.V cannot be found.

Action Insert ;.. where appropriate.

F199 Message Invalid SUMMARY statement

Cause A SUMMARY statement is described in a section or table block.

Action Describe the SUMMARY statement outside a section or table block.

F200 Message Invalid tag statement

Cause • A tag is described outside a section block.
• A tag end character (..) is found although there is no corresponding tag start

character (.).

Action Describe the tag in a section block.

Message No mnemonic to make an object code in a tag

Cause A tag does not contain an instruction which generates an object code.
SIMPLEHOST cannot display data for such a tag.

Action When describing a tag, include all instructions which generate an object code,
within the tag.

W198
(1)

W201
(1)

Although NEC has taken all possible steps
to ensure that the documentation supplied
to our customers is complete, bug free
and up-to-date, we readily accept that
errors may occur. Despite all the care and
precautions we've taken, you may
encounter problems in the documentation.
Please complete this form whenever
you'd like to report errors or suggest
improvements to us.

Hong Kong, Philippines, Oceania
NEC Electronics Hong Kong Ltd.
Fax: +852-2886-9022/9044

Korea
NEC Electronics Hong Kong Ltd.
Seoul Branch
Fax: 02-528-4411

Taiwan
NEC Electronics Taiwan Ltd.
Fax: 02-719-5951

Address

North America
NEC Electronics Inc.
Corporate Communications Dept.
Fax: 1-800-729-9288

1-408-588-6130

Europe
NEC Electronics (Europe) GmbH
Technical Documentation Dept.
Fax: +49-211-6503-274

South America
NEC do Brasil S.A.
Fax: +55-11-6465-6829

Asian Nations except Philippines
NEC Electronics Singapore Pte. Ltd.
Fax: +65-250-3583

Japan
NEC Corporation
Semiconductor Solution Engineering Division
Technical Information Support Dept.
Fax: 044-548-7900

I would like to report the following error/make the following suggestion:

Document title:

Document number: Page number:

Thank you for your kind support.

If possible, please fax the referenced page or drawing.

Excellent Good Acceptable PoorDocument Rating

Clarity

Technical Accuracy

Organization

CS 97.8

Name

Company

From:

Tel. FAX

Facsimile Message

	COVER
	Major Changes
	PREFACE
	CHAPTER 1 OVERVIEW OF THE ASSEMBLER
	1.1 FUNCTION OVERVIEW
	1.1.1 Features

	1.2 ASSEMBLE MODES
	1.2.1 Relocatable Mode (Default)
	1.2.2 Absolute Mode

	1.3 SYSTEM CONFIGURATION
	1.3.1 I/O Files

	1.4 FILE CONFIGURATION
	1.5 OPERATING ENVIRONMENT
	1.5.1 Hardware Environment
	1.5.2 Software Environment

	1.6 ENVIRONMENTAL VARIABLES
	1.7 LIMITATIONS
	1.8 INSTALLATION

	CHAPTER 2 PROGRAM STRUCTURE
	2.1 SPLIT ASSEMBLY OF A MODULE
	2.1.1 External Module Definition Reference Function

	2.2 RELOCATION OF SECTIONS
	2.3 LAST INSTRUCTION OF A PROGRAM
	2.4 SEGMENT STRUCTURE
	2.4.1 Segment Configuration

	2.5 EXTRA PROGRAM ADDRESS (EPA) STRUCTURE
	2.5.1 Address Management

	CHAPTER 3 SIMPLEHOST TM
	3.1 OVERVIEW

	CHAPTER 4 SOURCE PROGRAM CONFIGURATION
	4.1 STATEMENT CONFIGURATION
	4.2 CHARACTERS
	4.3 SYMBOL FIELD
	4.3.1 Symbol Types
	4.3.2 Reserved Words

	4.4 MNEMONIC FIELD
	4.5 OPERAND FIELD
	4.5.1 Operand Field Coding Format

	4.6 COMMENT FIELD
	4.7 EXPRESSIONS AND OPERATORS
	4.7.1 Expressions
	4.7.2 Operators
	4.7.3 Arithmetic Operators
	4.7.4 Logic Operators
	4.7.5 Relational Operators
	4.7.6 Shift Operators
	4.7.7 () (Operation Order Specification Symbols)

	CHAPTER 5 CONTROL SYMBOLS
	5.1 EPA BIT CONTROL SYMBOLS (@AR_EPA0 AND @AR_EPA1)

	CHAPTER 6 FUNCTIONS
	6.1 TYPE CONVERSION FUNCTION
	6.2 $ (LOCATION COUNTER FUNCTION)
	6.3 .TYPE. FUNCTION
	6.4 .DEF. FUNCTION
	6.5 .EV. FUNCTION
	6.6 ZZZLINE FUNCTION
	6.7 ZZZARGC FUNCTION
	6.8 ZZZDEVID FUNCTION

	CHAPTER 7 ASSEMBLE-TIME VARIABLES
	7.1 ZZZn
	7.2 ZZZSKIP
	7.3 ZZZBANK
	7.4 ZZZPRINT
	7.5 ZZZLSARG
	7.6 ZZZSYDOC
	7.7 ZZZALMAC
	7.8 ZZZALBMAC
	7.9 ZZZEPA
	7.10 ZZZRP
	7.11 ZZZAR

	CHAPTER 8 SYMBOL DEFINITION PSEUDO INSTRUCTIONS
	8.1 SYMBOL DECLARATION
	8.2 SYMBOL TYPES
	8.3 DAT PSEUDO INSTRUCTION
	8.4 LAB PSEUDO INSTRUCTION
	8.5 MEM PSEUDO INSTRUCTION
	8.6 FLG PSEUDO INSTRUCTION
	8.7 SET PSEUDO INSTRUCTION

	CHAPTER 9 DATA DEFINITION PSEUDO INSTRUCTIONS
	9.1 DW (DEFINE WORD) PSEUDO INSTRUCTION
	9.2 DB (DEFINE BYTE) PSEUDO INSTRUCTION
	9.3 DCP (DEFINE CHARACTER PATTERN) PSEUDO INSTRUCTION

	CHAPTER 10 PROGRAM CONFIGURATION PSEUDO INSTRUCTIONS
	10.1 CSEG PSEUDO INSTRUCTION (ABSOLUTE MODE)
	10.2 CSEG PSEUDO INSTRUCTION (RELOCATABLE MODE)
	10.3 END PSEUDO INSTRUCTION
	10.4 ENSURE PSEUDO INSTRUCTION

	CHAPTER 11 LOCATION COUNTER CONTROL PSEUDO INSTRUCTION
	11.1 ORG

	CHAPTER 12 EXTERNAL DEFINITION AND EXTERNAL REFERENCE PSEUDO
INSTRUCTIONS
	12.1 PUBLIC, PUBLIC BELOW ... ENDP
	12.2 EXTRN

	CHAPTER 13 CONDITIONAL ASSEMBLY PSEUDO INSTRUCTIONS
	13.1 IF ... ELSE ... ENDIF
	13.2 CASE ... EXIT ... OTHER ... ENDCASE
	13.3 IFCHAR ... ELSE ... ENDIFC
	13.4 IFNCHAR ... ELSE ... ENDIFNC
	13.5 IFSTR ... ELSE ... ENDIFS

	CHAPTER 14 REPETITIVE PSEUDO INSTRUCTIONS
	14.1 IRP ... ENDR
	14.2 REPT ... ENDR
	14.3 EXITR

	CHAPTER 15 MESSAGE CREATION PSEUDO INSTRUCTIONS
	15.1 ZZZERROR PSEUDO INSTRUCTION
	15.2 ZZZMSG PSEUDO INSTRUCTION

	CHAPTER 16 MACRO PSEUDO INSTRUCTIONS
	16.1 DEFINING A MACRO
	16.1.1 MACRO and ENDM (MACRO Definition and END of Macro)

	16.2 REFERENCING A MACRO
	16.3 EXPANDING A MACRO
	16.4 SCOPE OF SYMBOLS IN A MACRO
	16.5 MACRO PARAMETER
	16.6 MACRO OPERATORS AND PSEUDO INSTRUCTIONS
	16.6.1 Replacement Operator &
	16.6.2 Comment in Macro Definition
	16.6.3 Expression Operator %
	16.6.4 GLOBAL
	16.6.5 ZZZMCHK
	16.6.6 PURGE

	CHAPTER 17 MASK OPTION PSEUDO INSTRUCTION
	17.1 OPTION ... ENDOP

	CHAPTER 18 CHARACTER STRING REPLACEMENT PSEUDO INSTRUCTIONS
	18.1 LITERAL
	18.2 UNLITERAL

	CHAPTER 19 CONTROL INSTRUCTIONS
	19.1 SOURCE INPUT CONTROL INSTRUCTIONS
	19.1.1 INCLUDE
	19.1.2 EOF

	19.2 LISTING OUTPUT CONTROL INSTRUCTIONS
	19.2.1 TITLE
	19.2.2 EJECT
	19.2.3 C14344
	19.2.4 C4444
	19.2.5 LIST
	19.2.6 NOLIST

	19.3 INSTRUCTIONS FOR CONTROLLING FALSE CONDITION BLOCK LISTING OUTPUT
	19.3.1 SFCOND
	19.3.2 LFCOND

	19.4 INSTRUCTIONS FOR CONTROLLING MACRO EXPANSION LISTING OUTPUT
	19.4.1 SMAC and SBMAC
	19.4.2 VMAC and VBMAC
	19.4.3 OMAC and OBMAC
	19.4.4 NOMAC and NOBMAC
	19.4.5 LMAC and LBMAC

	19.5 DOCUMENT CREATION CONTROL INSTRUCTIONS
	19.5.1 SUMMARY
	19.5.2 ;. (tag)
	19.5.3 ;.V (registration of labels as tags)

	CHAPTER 20 17K SERIES INSTRUCTIONS
	20.1 MNEMONICS
	20.2 OPERAND CODING RULES
	20.2.1 Operand (r)
	20.2.2 Operand (m)
	20.2.3 Operand (#n4)
	20.2.4 Operand (AR)
	20.2.5 Operand (IX)
	20.2.6 Operand (@r)
	20.2.7 Operand (DBF)
	20.2.8 Operand (@AR)
	20.2.9 Operand (WR)
	20.2.10 Operand (rf)
	20.2.11 Operand (p)
	20.2.12 Operand (#n)
	20.2.13 Operand (addr)
	20.2.14 Operand (entry)
	20.2.15 Operand (s)
	20.2.16 Operand (h)

	CHAPTER 21 BUILT-IN MACRO INSTRUCTIONS
	21.1 SYSTEM REGISTER OPERATION INSTRUCTIONS
	21.1.1 BANKn
	21.1.2 SETBANK
	21.1.3 SETRP
	21.1.4 SETMP
	21.1.5 SETIX
	21.1.6 SETAR

	21.2 FLAG OPERATION INSTRUCTIONS
	21.2.1 SETn
	21.2.2 CLRn
	21.2.3 NOTn
	21.2.4 SKTn
	21.2.5 SKFn
	21.2.6 INITFLG

	21.3 EXTENDED INSTRUCTIONS
	21.3.1 SETX
	21.3.2 CLRX
	21.3.3 NOTX
	21.3.4 SKTX
	21.3.5 SKFX
	21.3.6 INITFLGX
	21.3.7 MOVX
	21.3.8 MOVTX
	21.3.9 ADDX
	21.3.10 ADDCX
	21.3.11 ADDSX
	21.3.12 ADDCSX
	21.3.13 SUBX
	21.3.14 SUBCX
	21.3.15 SUBSX
	21.3.16 SUBCSX
	21.3.17 SKEX
	21.3.18 SKNEX
	21.3.19 SKGEX
	21.3.20 SKGTX
	21.3.21 SKLEX
	21.3.22 SKLTX
	21.3.23 RORCX
	21.3.24 ROLCX
[M
	21.3.25 SHRX
	21.3.26 SHLX
	21.3.27 ANDX
	21.3.28 ORX
	21.3.29 XORX
	21.3.30 BRX
	21.3.31 CALLX
	21.3.32 SYSCALX

	21.4 STRUCTURED INSTRUCTIONS
	21.4.1 _IF ... _ELSEIF ... _ELSE ... _ENDIF
	21.4.2 _WHILE ... _ENDW
	21.4.3 _SWITCH ... _CASE ... _DEFAULT ... _ENDS
	21.4.4 _REPEAT ... _UNTIL
	21.4.5 _FOR_ ... _NEXT
	21.4.6 _BREAK
	21.4.7 _CONTINUE
	21.4.8 _GOTO

	CHAPTER 22 OPERATING PROCEDURES
	22.1 FILE CONFIGURATION
	22.2 INSTALLATION
	22.3 STARTUP
	22.3.1 Entering a Device File Name
	22.3.2 Entering a Source Module File Name
	22.3.3 Entering Options
	22.3.4 If All Parameters Are Omitted; Only RA17K Is Specified

	22.4 STARTUP AND END MESSAGES
	22.5 MESSAGES DISPLAYED DURING ASSEMBLY
	22.6 ASSEMBLER OPTIONS
	22.6.1 Object Output Control (-OBJ, -NOO)
	22.6.2 List Output Control (-LIS, -NOL)
	22.6.3 Undefined Symbol File Output Control (-UND, -NOU)
	22.6.4 Work Drive Control (-WOR)
	22.6.5 SIMPLEHOST Information Control (-HOS, -NOH)
	22.6.6 Assemble Time Variable (-ZZZn)
	22.6.7 Warning Output Level Control (-WAR)
	22.6.8 Include File Search Path Specification (-INC)
	22.6.9 Assemble Mode Control (-ABS)
	22.6.10 Intermediate Cross-Reference Output Control (-XRE, -NOX)
	22.6.11 Tag Start Character String Specification (-TAGS)
	22.6.12 Tag End Character String Specification (-TAGE)
	22.6.13 Summary File Output Control (-SUM, -NOS)

	CHAPTER 23 OUTPUT LIST FORMATS
	23.1 INTERMEDIATE LIST FILE
	23.1.1 Error/EPA Field
	23.1.2 Source Line Number Field
	23.1.3 Location Counter Field
	23.1.4 Object Code Field
	23.1.5 Macro Nest Field
	23.1.6 Include Nest Field
	23.1.7 Control Field
	23.1.8 Label Field
	23.1.9 Source Field

	23.2 LOG FILE
	23.3 UNDEFINED SYMBOL FILE

	CHAPTER 24 RA17K ERROR MESSAGES
	24.1 MESSAGES

