

The sales of these products are limited for China and Hong Kong.

6

R7F0C020M2DFB

User's Manual: Hardware

16-Bit Single-Chip Microcontrollers

All information contained in these materials, including products and product specifications, represents information on the product at the time of publication and is subject to change by Renesas Electronics Corp. without notice. Please review the latest information published by Renesas Electronics Corp. through various means, including the Renesas Electronics Corp. website (http://www.renesas.com).

Rev.1.10 Jul 2024

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
- 5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 6. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION ("Vulnerability Issues"). RENESAS ELECTRONICS DISCLAIMS ANY AND ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
- 8. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power is supplied until the power is supplied until the power reaches the level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (Max.) and V_{IH} (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (Max.) and V_{IH} (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a systemevaluation test for the given product.

How to Use This Manual

Readers	-	ers who wish to understand the functions of the ation systems and programs for these devices.
Purpose	This manual is intended to give users an Organization below.	n understanding of the functions described in the
Organization		hree parts: this manual, the hardware edition of FB and R7F0C004M2DFB, and the software
	R7F0C020M2DFB User's Manual (This Manual)	RL78 family User's Manual Software
	R7F0C003M2DFB, R7F0C004M2DFB User's Manual	
	 Pin functions Internal block functions Interrupts Other on-chip peripheral functions Electrical specifications 	 CPU functions Instruction set Explanation of each instruction
How to Read This Manual	 engineering, logic circuits, and microcontrol To gain a general understanding of fund → Read this manual in the order of the revised points. The revised points of PDF file and specifying it in the "Find How to interpret the register format: → For a bit number enclosed in angle word in the assembler, and is de directive in the compiler. To know details of the R7F0C020 Micro 	ctions: the CONTENTS . The mark " <r>" shows major an be easily searched by copying an "<r>" in the d what:" field. e brackets, the bit name is defined as a reserved fined as an sfr variable using the #pragma sfr</r></r>

→ Refer to the separate document RL78 family User's Manual: Software (R01US0015E).

Conventions	Data significance: Active low representations:	• •	n the left and lower digits on the right e over pin and signal name)
	Note:	Footnote for ite	em marked with Note in the text
	Caution:	Information red	quiring particular attention
	Remark:	Supplementar	y information
	Numerical representations:	Binary	…×××× or ××××B
		Decimal	××××
		Hexadecimal	××××H

Related Documents The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

Documents Related to Devices

Document Name	Document No.
R7F0C020M2DFB User's Manual: Hardware	This manual
R7F0C003M2DFB, R7F0C004M2DFB User's Manual: Hardware	R01UH0393E
RL78 family User's Manual: Software	R01US0015E

Documents Related to Flash Memory Programming

	Document Name	Document No.
PG-FP5 Flash Memory Programmer User's Manual		_
	RL78, 78K, V850, RX100, RX200, RX600 (Except RX64x), R8C, SH	R20UT2923E
	Common	R20UT2922E
	Setup Manual	R20UT0930E

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document when designing.

Other Documents

Document Name	Document No.
RENESAS Microcontrollers RL78 Family	R01CP0003E
Semiconductor Package Mount Manual	R50ZZ0003E
Semiconductor Reliability Handbook	R51ZZ0001E

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document when designing.

All trademarks and registered trademarks are the property of their respective owners.

EEPROM is a trademark of Renesas Electronics Corporation.

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.

CONTENTS

CHAPTER 1	OUTLINE	1
1.1 Featu	res	1
1.2 List o	f Part Numbers	4
1.3 Pin Co	onfiguration (Top View)	5
1.6 Outlin	ne of Functions	6
CHAPTER 2	PIN FUNCTIONS	8
CHAPTER 3	CPU ARCHITECTURE	9
3.1 Memo	ory Space	9
3.1.1	Internal program memory space	14
3.1.2	Mirror area	17
3.1.3	Internal data memory space	19
3.1.6	Data memory addressing	20
3.2 Proce	essor Registers	
	Control registers	
CHAPTER 4	PORT FUNCTIONS	24
CHAPTER 5	CLOCK GENERATOR	
CHAPTER 6	TIMER ARRAY UNIT	
CHAPTER 7	REAL-TIME CLOCK 2	27
CHAPTER 8	SUBSYSTEM CLOCK FREQUENCY MEASUREMENT CIRCUIT	
CHAPTER 9	12-BIT INTERVAL TIMER	
CHAPTER 10	CLOCK OUTPUT/BUZZER OUTPUT CONTROLLER	30
CHAPTER 11	WATCHDOG TIMER	31
CHAPTER 12	2 A/D CONVERTER	32
CHAPTER 13	COMPARATOR	

CHAPTER 14	SERIAL ARRAY UNIT	
CHAPTER 15	SERIAL INTERFACE IICA	35
CHAPTER 16	SMART CARD INTERFACE (SMCI)	36
CHAPTER 17	LCD CONTROLLER/DRIVER	37
CHAPTER 18	MULTIPLIER AND DIVIDER/MULTIPLY-ACCUMULATOR	38
CHAPTER 19	DMA CONTROLLER	39
19.2.2	DMA RAM address register n (DRAn)	39
CHAPTER 20	INTERRUPT FUNCTIONS	40
CHAPTER 21	STANDBY FUNCTION	41
CHAPTER 22	RESET FUNCTION	42
CHAPTER 23	POWER-ON-RESET CIRCUIT	43
CHAPTER 24	VOLTAGE DETECTOR	44
CHAPTER 25	SAFETY FUNCTIONS	45
	25.3.1.1 Flash memory CRC control register (CRC0CTL)	
	25.3.1.2 Flash memory CRC operation result register (PGCRCL)	
	25.3.4.1 Invalid memory access detection control register (IAWCTL)	
25.3.6	Invalid memory access detection function	50
CHAPTER 26	REGULATOR	51
CHAPTER 27	OPTION BYTE	52
CHAPTER 28	FLASH MEMORY	53
28.4.4	Communication commands	55
28.5.3	Flash shield window function	57
CHAPTER 29	ON-CHIP DEBUG FUNCTION	58
29.3 Secur	ring of User Resources	58

CHAPTER 30 BCD CORRECTION CIRCUIT	
CHAPTER 31 INSTRUCTION SET	61
CHAPTER 32 ELECTRICAL SPECIFICATIONS	62
32.1 Absolute Maximum Ratings	63
32.2 Oscillator Characteristics	
32.2.1 X1 and XT1 oscillator characteristics	
32.2.2 On-chip oscillator characteristics	
32.3 DC Characteristics	
32.3.1 Pin characteristics	
32.3.2 Supply current characteristics	73
32.4 AC Characteristics	
32.5 Peripheral Functions Characteristics	
32.5.1 Serial array unit	
32.5.2 Serial interface IICA	
32.5.3 Smart card interface (SMCI)	
32.6 Analog Characteristics	
32.6.1 A/D converter characteristics	111
32.6.2 Temperature sensor/internal reference voltage characteristics	
32.6.3 Comparator characteristics	
32.6.4 POR circuit characteristics	
32.6.5 LVD circuit characteristics	
32.6.6 Supply voltage rising slope characteristics	
32.7 LCD Characteristics	-
32.7.1 External resistance division method	
32.7.2 Internal voltage boosting method	
32.8 RAM Data Retention Characteristics	
32.9 Flash Memory Programming Characteristics	
32.10 Dedicated Flash Memory Programmer Communication (UART)	
32.11 Timing of Entry to Flash Memory Programming Modes	
CHAPTER 33 PACKAGE DRAWINGS	
APPENDIX A REVISION HISTORY	125
A.1 Major Revisions in This Edition	
A.2 Revision History of Preceding Editions	

R7F0C020M2DFB RENESAS MCU

CHAPTER 1 OUTLINE

This chapter of the manual only consists of 1.1, 1.2, 1.3, and 1.6. For all other material on the outline, see the other parts of CHAPTER 1 of R7F0C003M2DFB, R7F0C004M2DFB User's Manual: Hardware (R01UH0393E).

1.1 Features

Ultra-low power consumption technology

- VDD = single power supply voltage of 1.6 to 5.5 V which can operate a 1.8 V device at a low voltage
- HALT mode
- STOP mode
- SNOOZE mode

RL78 CPU core

- CISC architecture with 3-stage pipeline
- Minimum instruction execution time: Can be changed from high speed (0.04167 μs: @ 24 MHz operation with high-speed on-chip oscillator) to ultra-low speed (30.5 μs: @ 32.768 kHz operation with subsystem clock)
- Address space: 1 MB
- General-purpose registers: (8-bit register × 8) × 4 banks
- On-chip RAM: 24 KB

Flash memory

- Flash memory: 256 KB
- Block size: 1 KB
- Prohibition of block erase and rewriting (security function)
- On-chip debug function
- Self-programming (with boot swap function/flash shield window function)

High-speed on-chip oscillator

- Select from 24 MHz, 16 MHz, 12 MHz, 8 MHz, 6 MHz, 4 MHz, 3 MHz, 2 MHz, and 1 MHz
- High accuracy: ±1.0 % (V_{DD} = 1.8 to 5.5 V, T_A = -20 to +85°C)

Operating ambient temperature

• T_A = -40 to +85°C

Power management and reset function

- On-chip power-on-reset (POR) circuit
- On-chip voltage detector (LVD) (Select interrupt and reset from 14 levels)

DMA (Direct Memory Access) controller

- 4 channels
- Number of clocks during transfer between 8/16-bit SFR and internal RAM: 2 clocks

Multiplier and divider/multiply-accumulator

- 16 bits × 16 bits = 32 bits (Unsigned or signed)
- 32 bits ÷ 32 bits = 32 bits (Unsigned)
- 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed)

Serial interface

- Simplified SPI (CSI^{Note 1}): 1 channel
- UART/UART (LIN-bus supported): 4 channels/1 channel
- I²C/Simplified I²C communication: 1 channel/2 channels
- Smart card interface (SMCI): 2 channels

Timer

- 16-bit timer: 8 channels
- 12-bit interval timer: 1 channel
- Real-time clock 2: 1 channel (calendar for 99 years, alarm function, and clock correction function)
- Watchdog timer: 1 channel (operable with the dedicated low-speed on-chip oscillator)

A/D converter

- 8/10-bit resolution A/D converter (V_{DD} = 1.6 to 5.5 V)
- Analog input: 4 channels
- Internal reference voltage (1.45 V) and temperature sensor^{Note 2}

Comparator

- 2 channels
- Operation mode: Comparator high-speed mode, comparator low-speed mode, or window mode
- External reference voltage and internal reference voltage are selectable

LCD controller/driver

- Segment signal output: 51 (47)Note 3
- Common signal output: 4 (8)Note 3
- Internal voltage boosting method and external resistance division method are switchable

I/O port

- I/O port: 65 (N-ch open drain I/O [withstand voltage of 6 V]: 2,
 - N-ch open drain I/O [VDD withstand voltage]: 18)
- Can be set to N-ch open drain, TTL input buffer, and on-chip pull-up resistor
- Different potential interface: Can connect to a 1.8/2.5/3 V device
- On-chip clock output/buzzer output controller

Others

On-chip BCD (binary-coded decimal) correction circuit

- **Notes 1.** Although the CSI function is generally called SPI, it is also called CSI in this product, so it is referred to as such in this manual.
 - 2. Can be selected only in HS (high-speed main) mode
 - 3. The values in parentheses are the number of signal outputs when 8 com is used.

• ROM, RAM capacities

Flash ROM	Data flash	RAM	Part number
256 KB	_	24 KB ^{Note}	R7F0C020M2DFB

Note This is about 23 KB when the self-programming function is used. (For details, see CHAPTER 3.)

1.2 List of Part Numbers

Figure 1-1. Part Number, Memory Size, and Package

Table 1-1. List of Ordering Part Numbers

Pin Count	Package	Data Flash	Packaging Style, Environmental	Part Number
80 pins	80-pin plastic LQFP	Not mounted	Tray, Lead Free (Pure Sn)	R7F0C020M2DFB-C#AA0
	(fine pitch) (12 × 12)			R7F0C020M2DFB-C#BA0

<R>

1.3 Pin Configuration (Top View)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 $\mu F).$

Remarks 1. For pin identification, see 1.4 Pin Identification.

2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). See Figure 4-42 Format of Peripheral I/O Redirection Register (PIOR).

1.6 Outline of Functions

		(1/2)	
Item		R7F0C020M2DFB	
Code flash m	emory	256 KB	
Data flash me	emory	-	
RAM		24 KB ^{Note 1}	
Address space	ce	1 MB	
Main system clock	High-speed system clock	X1 (crystal/ceramic) oscillation, external main system clock input (EXCLK) HS (High-speed main) mode: 1 to 20 MHz (V_{DD} = 2.7 to 5.5 V),	
		HS (High-speed main) mode: 1 to 16 MHz (V_{DD} = 2.4 to 5.5 V),	
		LS (Low-speed main) mode: 1 to 8 MHz (V_{DD} = 1.8 to 5.5 V),	
		LV (Low-voltage main) mode: 1 to 4 MHz (V _{DD} = 1.6 to 5.5 V)	
	High-speed on-chip oscillator	HS (High-speed main) mode: 1 to 24 MHz (V_{DD} = 2.7 to 5.5 V), HS (High-speed main) mode: 1 to 16 MHz (V_{DD} = 2.4 to 5.5 V), LS (Low-speed main) mode: 1 to 8 MHz (V_{DD} = 1.8 to 5.5 V), LV (Low-voltage main) mode: 1 to 4 MHz (V_{DD} = 1.6 to 5.5 V)	
Subsystem cl	lock	XT1 (crystal) oscillation, external subsystem clock input (EXCLKS) 32.768 kHz (TYP.): V _{DD} = 1.6 to 5.5 V	
Low-speed or	n-chip oscillator	15 kHz (TYP.)	
General-purp	ose register	(8-bit register × 8) × 4 banks	
Minimum instruction execution time		0.04167 μs (High-speed on-chip oscillator: f⊩ = 24 MHz operation)	
		0.05 μs (High-speed system clock: f _{MX} = 20 MHz operation)	
		30.5 µs (Subsystem clock: fsuв = 32.768 kHz operation)	
Instruction set		 Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 bits) Multiplication (8 bits × 8 bits) Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc. 	
I/O port	Total	65	
	CMOS I/O	58 (N-ch O.D. I/O [V₀₀ withstand voltage]: 18)	
	CMOS input	5	
	CMOS output	-	
	N-ch O.D I/O (withstand voltage: 6 V)	2	
Timer	16-bit timer TAU	8 channels (timer outputs 8, PWM outputs: 7 ^{Note 2})	
	Watchdog timer	1 channel	
	12-bit interval timer (IT)	1 channel	
	Real-time clock 2	1 channel	
	RTC output	1 • 1 Hz (subsystem clock: fsuв = 32.768 kHz)	

Notes 1. In the case of the 24 KB, this is about 23 KB when the self-programming function is used.

2. The number of outputs varies depending on the setting of the channels in use and the number of master channels (see 6.9.3 Operation as multiple PWM output function).

(2/2)

measurement circuit externally. (for clock error correction of real-time clock 2) Clock output/buzzer output controller 2 • 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 5 MHz, 10 MHz (Main system clock: fawa = 20 MHz operation) • 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 kHz, 8.192 kHz, 16.384 kHz, 32.768 kH (Subsystem clock: fawa = 20 MHz operation) 8/10-bit resolution A/D converter 4 channels Comparator 2 channels Serial interface • Simplified SPI (CSI): 1 channel/UART (UART supporting LIN-bus): 1 channel/simplified 1 channel • UART: 1 channel/simplified I ² C: 1 channel • UART: 2 channels I ² C bus 1 channel Smart card interface (SMCI) 2 channels LCD controller/driver Internal voltage boosting method and external resistance division method are switchable Segment signal output 51 (47) ^{Wote 1} Common signal output 4 (bits × 16 bits = 32 bits (Unsigned or signed) accumulator • 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed) • 20 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed) • 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed) • 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed) • 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed) • 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or		Item	R7F0C020M2DFB
• 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (Main system clock: fww = 20 MHz operation) • 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 kHz, 8.192 kHz, 16.384 kHz, 32.768 kH (Subsystem clock: fsue = 32.768 kHz operation) 8/10-bit resolution A/D converter 4 channels Comparator 2 channels Serial interface • Simplified SPI (CSI): 1 channel/UART (UART supporting LIN-bus): 1 channel/simplified 1 channel • UART: 1 channel/simplified I ² C: 1 channel • UART: 2 channels I ² C bus 1 channel Smart card interface (SMCI) 2 channels LCD controller/driver Internal voltage boosting method and external resistance division method are switchable Segment signal output 51 (47) ^{Note 1} Common signal output 4 (8) ^{Note 1} Multiplier and divider/multiply- accumulator • 16 bits × 16 bits = 32 bits (Unsigned) • 16 bits × 16 bits = 32 bits (Unsigned) • 16 bits × 16 bits = 32 bits (Unsigned) • 16 bits × 16 bits = 32 bits (Unsigned) • 16 bits × 16 bits = 32 bits (Unsigned) • 16 bits × 16 bits = 32 bits (Unsigned or signed) • 16 bits × 16 bits = 32 bits (Unsigned) or signed)	-		
(Main system clock: fmain = 20 MHz operation) • 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz (Subsystem clock: fsus = 32.768 kHz operation) 8/10-bit resolution A/D converter 4 channels Comparator 2 channels Serial interface • Simplified SPI (CSI): 1 channel/UART (UART supporting LIN-bus): 1 channel/simplified 1 channel UART: 1 channel/simplified I ² C: 1 channel • UART: 2 channels I channel • UART: 2 channels I channel • UART: 2 channels Serial interface (SMCI) 2 channels Segment signal output 51 (47) ^{Note 1} Common signal output 4 (8) ^{Note 1} Multiplier and divider/multiply-accumulator • 16 bits × 16 bits = 32 bits (Unsigned or signed) • 32 bits + 32 bits = 32 bits (Unsigned or signed) • 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed) DMA controller 4 channels Vectored Internal 41 internal 10	lock output/buz	uzzer output controller	
Comparator 2 channels Serial interface •Simplified SPI (CSI): 1 channel/UART (UART supporting LIN-bus): 1 channel/simplified 1 channel UART: 1 channel •UART: 2 channels I²C bus 1 channel Smart card interface (SMCI) 2 channels LCD controller/driver Internal voltage boosting method and external resistance division method are switchable Segment signal output 51 (47) ^{Note 1} Common signal output 4 (8) ^{Note 1} Multiplier and divider/multiply- accumulator •16 bits × 16 bits = 32 bits (Unsigned or signed) •16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed) •16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed) DMA controller 4 channels Vectored Internal 41 internal 10			(Main system clock: f _{MAIN} = 20 MHz operation) ● 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz
Serial interface •Simplified SPI (CSI): 1 channel/UART (UART supporting LIN-bus): 1 channel/simplified 1 channel Serial interface •Simplified SPI (CSI): 1 channel/UART (UART supporting LIN-bus): 1 channel/simplified 1 channel UART: 1 channel/simplified I ² C: 1 channel •UART: 2 channels I ² C bus 1 channel Smart card interface (SMCI) 2 channels LCD controller/driver Internal voltage boosting method and external resistance division method are switchable Segment signal output 51 (47) ^{Note 1} Common signal output 4 (8) ^{Note 1} Multiplier and divider/multiply- •16 bits × 16 bits = 32 bits (Unsigned or signed) accumulator •16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed) DMA controller 4 channels Vectored Internal 41 interrupt sources Internal 10	10-bit resolutio	tion A/D converter	4 channels
1 channel • UART: 1 channel/simplified I²C: 1 channel UART: 2 channels • UART: 2 channels I channel • UART: 2 channels Smart card interface (SMCI) 2 channels LCD controller/driver Internal voltage boosting method and external resistance division method are switchable Segment signal output 51 (47) ^{Note 1} Common signal output 4 (8) ^{Note 1} Multiplier and divider/multiply- accumulator • 16 bits × 16 bits = 32 bits (Unsigned or signed) • 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed) • 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed) • 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed) • 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed) • 16 bits × 16 bits + 12 bits = 32 bits (Unsigned or signed) • 16 bits × 16 bits + 12 bits = 32 bits (Unsigned or signed) • 16 bits × 16 bits + 12 bits = 32 bits (Unsigned or signed) • 16 bits × 16 bits + 13 bits = 32 bits (Unsigned or signed) • 16 bits × 16 bits + 10	omparator		2 channels
Smart card interface (SMCI) 2 channels LCD controller/driver Internal voltage boosting method and external resistance division method are switchable Segment signal output 51 (47) ^{Note 1} Common signal output 4 (8) ^{Note 1} Multiplier and divider/multiply- accumulator • 16 bits × 16 bits = 32 bits (Unsigned or signed) • 32 bits ÷ 32 bits = 32 bits (Unsigned) • 16 bits × 16 bits + 32 bits = 32 bits (Unsigned) • 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed) • 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed) DMA controller 4 channels Vectored Internal 41 interrupt sources 10	∍rial interface	9	• UART: 1 channel/simplified I ² C: 1 channel
LCD controller/driver Internal voltage boosting method and external resistance division method are switchable Segment signal output 51 (47) ^{Note 1} Common signal output 4 (8) ^{Note 1} Multiplier and divider/multiply- accumulator • 16 bits × 16 bits = 32 bits (Unsigned or signed) • 32 bits ÷ 32 bits = 32 bits (Unsigned or signed) • 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed) DMA controller 4 channels Vectored interrupt sources Internal 41 10	I ² C bu	ous	1 channel
Segment signal output 51 (47) ^{Note 1} Common signal output 4 (8) ^{Note 1} Multiplier and divider/multiply- accumulator • 16 bits × 16 bits = 32 bits (Unsigned or signed) • 32 bits ÷ 32 bits = 32 bits (Unsigned) • 16 bits × 16 bits + 32 bits = 32 bits (Unsigned) • 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed) • 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed) DMA controller 4 channels Vectored Internal 41 interrupt sources 10	Smart	art card interface (SMCI)	2 channels
Common signal output 4 (8) ^{Note 1} Multiplier and divider/multiply- accumulator • 16 bits × 16 bits = 32 bits (Unsigned or signed) • 32 bits ÷ 32 bits = 32 bits (Unsigned) • 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed) • 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed) • 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed) • 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed) • 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed) • 16 bits × 16 bits + 16 bits + 32 bits = 32 bits (Unsigned or signed) • 16 bits × 16 bits + 16 bits + 32 bits = 32 bits (Unsigned or signed) • 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed) • 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed) • 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed) • 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed) • 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed) • 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed) • 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed) • 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed) • 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed) • 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed) • 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed)	CD controller/d	/driver	Internal voltage boosting method and external resistance division method are switchable.
Multiplier and divider/multiply-accumulator • 16 bits × 16 bits = 32 bits (Unsigned or signed) • 32 bits ÷ 32 bits = 32 bits (Unsigned) • 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed) • 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed) • 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed) • 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed) • 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed) • 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed) • 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed) • 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed) • 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed) • 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed) • 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed) • 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed) • 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed) • 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed) • 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed) • 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed) • 17 bits = 32 bits (Unsigned or signed) • 10 bits = 32 bits = 32 bits (Unsigned or signed)	Segm	ment signal output	51 (47) ^{Note 1}
accumulator • 32 bits + 32 bits = 32 bits (Unsigned) • 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed) DMA controller 4 channels Vectored Internal 41 interrupt sources External 10	Comn	nmon signal output	4 (8) ^{Note 1}
DMA controller 4 channels Vectored interrupt sources Internal 41			• 32 bits ÷ 32 bits = 32 bits (Unsigned)
Vectored interrupt sources Internal 41 External 10	MA controller	r	
interrupt sources External 10			
Reset • Reset by RESET pin • Internal reset by watchdog timer • Internal reset by power-on-reset • Internal reset by voltage detector • Internal reset by illegal instruction execution ^{Note 2} • Internal reset by RAM parity error • Internal reset by illegal-memory access	Reset		 Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution^{Note 2} Internal reset by RAM parity error
Power-on-reset circuit Power-on-reset: 1.51 V (TYP.) Power-down-reset: 1.50 V (TYP.) 	Power-on-reset circuit		
Voltage detector • Rising edge: 1.67 V to 4.06 V (14 steps) • Falling edge: 1.63 V to 3.98 V (14 steps)	Voltage detector		
On-chip debug function Provided	n-chip debug fi	g function	Provided
Power supply voltage V_DD = 1.6 to 5.5 V	ower supply vo	voltage	V _{DD} = 1.6 to 5.5 V
Operating ambient temperature $T_A = -40$ to $+85^{\circ}$ C	perating ambie	pient temperature	T _A = -40 to +85°C

Notes 1. The values in parentheses are the number of signal outputs when 8 com is used.

2. This reset occurs when instruction code FFH is executed.

This reset does not occur during emulation using an in-circuit emulator or an on-chip debugging emulator.

CHAPTER 2 PIN FUNCTIONS

The contents of this chapter are omitted from this manual because the information is the same as in the R7F0C003M2DFB, R7F0C004M2DFB User's Manual: Hardware (R01UH0393E). See CHAPTER 2 of the latter document for information on the pin functions.

CHAPTER 3 CPU ARCHITECTURE

This chapter of the manual only consists of 3.1, 3.1.1, 3.1.2, 3.1.3, 3.1.6, 3.2, and 3.2.1. For all other material on the CPU architecture, see the other parts of CHAPTER 3 of R7F0C003M2DFB, R7F0C004M2DFB User's Manual: Hardware (R01UH0393E).

Note that references to "R7F0C003M2DFB" and "R7F0C004M2DFB" should be read as R7F0C020M2DFB.

3.1 Memory Space

Products in the R7F0C020 can access a 1 MB memory space. Figure 3-1 shows the memory map.

Figure 3-1. Memory Map (R7F0C020)

- **Notes 1.** Do not allocate RAM addresses which are used as a stack area, a data buffer, a branch destination of vector interrupt processing, and a DMA transfer destination/transfer source to the area FFE20H to FFEDFH when performing self-programming. Also, use of the area F9F00H to FA309H is prohibited, because this area is used for library.
 - 2. Instructions can be executed from the RAM area excluding the general-purpose register area.
 - When boot swap is not used: Set the option bytes to 000C0H to 000C3H, and the on-chip debug security IDs to 000C4H to 000CDH.

When boot swap is used:Set the option bytes to 000C0H to 000C3H and 010C0H to 010C3H, and the
on-chip debug security IDs to 000C4H to 000CDH and 010C4H to 010CDH.

- 4. Writing boot cluster 0 can be prohibited depending on the setting of security (see 28.6 Security Setting).
- Caution While RAM parity error resets are enabled (RPERDIS = 0), be sure to initialize RAM areas where data access is to proceed and the RAM area + 10 bytes when instructions are fetched from RAM areas, respectively.

Reset signal generation sets RAM parity error resets to enabled (RPERDIS = 0). For details, see 25.3.3 RAM parity error detection function.

RemarkThe flash memory is divided into blocks (one block = 1 KB). For the address values and block numbers, seeTable 3-1Correspondence Between Address Values and Block Numbers in Flash Memory.

Correspondence between the address values and block numbers in the flash memory are shown below.

Address Value	Block Number	Address Value	Block Number	Address Value	Block Number	Address Value	Block Number
00000H to 003FFH	00H	08000H to 083FFH	20H	10000H to 103FFH 40H 18000H to 183FFH		18000H to 183FFH	60H
00400H to 007FFH	01H	08400H to 087FFH	21H	10400H to 107FFH	41H	18400H to 187FFH	61H
00800H to 00BFFH	02H	08800H to 08BFFH	22H	10800H to 10BFFH	42H	18800H to 18BFFH	62H
00C00H to 00FFFH	03H	08C00H to 08FFFH	23H	10C00H to 10FFFH	43H	18C00H to 18FFFH	63H
01000H to 013FFH	04H	09000H to 093FFH	24H	11000H to 113FFH	44H	19000H to 193FFH	64H
01400H to 017FFH	05H	09400H to 097FFH	25H	11400H to 117FFH	45H	19400H to 197FFH	65H
01800H to 01BFFH	06H	09800H to 09BFFH	26H	11800H to 11BFFH	46H	19800H to 19BFFH	66H
01C00H to 01FFFH	07H	09C00H to 09FFFH	27H	11C00H to 11FFFH	47H	19C00H to 19FFFH	67H
02000H to 023FFH	08H	0A000H to 0A3FFH	28H	12000H to 123FFH	48H	1A000H to 1A3FFH	68H
02400H to 027FFH	09H	0A400H to 0A7FFH	29H	12400H to 127FFH	49H	1A400H to 1A7FFH	69H
02800H to 02BFFH	0AH	0A800H to 0ABFFH	2AH	12800H to 12BFFH	4AH	1A800H to 1ABFFH	6AH
02C00H to 02FFFH	0BH	0AC00H to 0AFFFH	2BH	12C00H to 12FFFH	4BH	1AC00H to 1AFFFH	6BH
03000H to 033FFH	0CH	0B000H to 0B3FFH	2CH	13000H to 133FFH	4CH	1B000H to 1B3FFH	6CH
03400H to 037FFH	0DH	0B400H to 0B7FFH	2DH	13400H to 137FFH	4DH	1B400H to 1B7FFH	6DH
03800H to 03BFFH	0EH	0B800H to 0BBFFH	2EH	13800H to 13BFFH	4EH	1B800H to 1BBFFH	6EH
03C00H to 03FFFH	0FH	0BC00H to 0BFFFH	2FH	13C00H to 13FFFH	4FH	1BC00H to 1BFFFH	6FH
04000H to 043FFH	10H	0C000H to 0C3FFH	30H	14000H to 143FFH	50H	1C000H to 1C3FFH	70H
04400H to 047FFH	11H	0C400H to 0C7FFH	31H	14400H to 147FFH	51H	1C400H to 1C7FFH	71H
04800H to 04BFFH	12H	0C800H to 0CBFFH	32H	14800H to 14BFFH	52H	1C800H to 1CBFFH	72H
04C00H to 04FFFH	13H	0CC00H to 0CFFFH	33H	14C00H to 14FFFH	53H	1CC00H to 1CFFFH	73H
05000H to 053FFH	14H	0D000H to 0D3FFH	34H	15000H to 153FFH	54H	1D000H to 1D3FFH	74H
05400H to 057FFH	15H	0D400H to 0D7FFH	35H	15400H to 157FFH	55H	1D400H to 1D7FFH	75H
05800H to 05BFFH	16H	0D800H to 0DBFFH	36H	15800H to 15BFFH	56H	1D800H to 1DBFFH	76H
05C00H to 05FFFH	17H	0DC00H to 0DFFFH	37H	15C00H to 15FFFH	57H	1DC00H to 1DFFFH	77H
06000H to 063FFH	18H	0E000H to 0E3FFH	38H	16000H to 163FFH	58H	1E000H to 1E3FFH	78H
06400H to 067FFH	19H	0E400H to 0E7FFH	39H	16400H to 167FFH	59H	1E400H to 1E7FFH	79H
06800H to 06BFFH	1AH	0E800H to 0EBFFH	3AH	16800H to 16BFFH	5AH	1E800H to 1EBFFH	7AH
06C00H to 06FFFH	1BH	0EC00H to 0EFFFH	3BH	16C00H to 16FFFH	5BH	1EC00H to 1EFFFH	7BH
07000H to 073FFH	1CH	0F000H to 0F3FFH	3CH	17000H to 173FFH	5CH	1F000H to 1F3FFH	7CH
07400H to 077FFH	1DH	0F400H to 0F7FFH	3DH	17400H to 177FFH	5DH	1F400H to 1F7FFH	7DH
07800H to 07BFFH	1EH	0F800H to 0FBFFH	3EH	17800H to 17BFFH	5EH	1F800H to 1FBFFH	7EH
07C00H to 07FFFH	1FH	0FC00H to 0FFFFH	3FH	17C00H to 17FFFH	5FH	1FC00H to 1FFFFH	7FH

Table 3-1. Correspondence Between Address Values and Block Numbers in Flash Memory (1/2)

Address Value	Block Number	Address Value	Block Number	Address Value Bloo Num		Address Value	Block Number
20000H to 203FFH	80H	28000H to 283FFH	A0H	30000H to 303FFH C0H 3800		38000H to 383FFH	E0H
20400H to 207FFH	81H	28400H to 287FFH	A1H	30400H to 307FFH	C1H	38400H to 387FFH	E1H
20800H to 20BFFH	82H	28800H to 28BFFH	A2H	30800H to 30BFFH	C2H	38800H to 38BFFH	E2H
20C00H to 20FFFH	83H	28C00H to 28FFFH	A3H	30C00H to 30FFFH	СЗН	38C00H to 38FFFH	E3H
21000H to 213FFH	84H	29000H to 293FFH	A4H	31000H to 313FFH	C4H	39000H to 393FFH	E4H
21400H to 217FFH	85H	29400H to 297FFH	A5H	31400H to 317FFH	C5H	39400H to 397FFH	E5H
21800H to 21BFFH	86H	29800H to 29BFFH	A6H	31800H to 31BFFH	C6H	39800H to 39BFFH	E6H
21C00H to 21FFFH	87H	29C00H to 29FFFH	A7H	31C00H to 31FFFH	C7H	39C00H to 39FFFH	E7H
22000H to 223FFH	88H	2A000H to 2A3FFH	A8H	32000H to 323FFH	C8H	3A000H to 3A3FFH	E8H
22400H to 227FFH	89H	2A400H to 2A7FFH	A9H	32400H to 327FFH	С9Н	3A400H to 3A7FFH	E9H
22800H to 22BFFH	8AH	2A800H to 2ABFFH	AAH	32800H to 32BFFH	CAH	3A800H to 3ABFFH	EAH
22C00H to 22FFFH	8BH	2AC00H to 2AFFFH	ABH	32C00H to 32FFFH	СВН	3AC00H to 3AFFFH	EBH
23000H to 233FFH	8CH	2B000H to 2B3FFH	ACH	33000H to 333FFH	ССН	3B000H to 3B3FFH	ECH
23400H to 237FFH	8DH	2B400H to 2B7FFH	ADH	33400H to 337FFH	CDH	3B400H to 3B7FFH	EDH
23800H to 23BFFH	8EH	2B800H to 2BBFFH	AEH	33800H to 33BFFH	CEH	3B800H to 3BBFFH	EEH
23C00H to 23FFFH	8FH	2BC00H to 2BFFFH	AFH	33C00H to 33FFFH	CFH	3BC00H to 3BFFFH	EFH
24000H to 243FFH	90H	2C000H to 2C3FFH	B0H	34000H to 343FFH	D0H	3C000H to 3C3FFH	F0H
24400H to 247FFH	91H	2C400H to 2C7FFH	B1H	34400H to 347FFH	D1H	3C400H to 3C7FFH	F1H
24800H to 24BFFH	92H	2C800H to 2CBFFH	B2H	34800H to 34BFFH	D2H	3C800H to 3CBFFH	F2H
24C00H to 24FFFH	93H	2CC00H to 2CFFFH	B3H	34C00H to 34FFFH	D3H	3CC00H to 3CFFFH	F3H
25000H to 253FFH	94H	2D000H to 2D3FFH	B4H	35000H to 353FFH	D4H	3D000H to 3D3FFH	F4H
25400H to 257FFH	95H	2D400H to 2D7FFH	B5H	35400H to 357FFH	D5H	3D400H to 3D7FFH	F5H
25800H to 25BFFH	96H	2D800H to 2DBFFH	B6H	35800H to 35BFFH	D6H	3D800H to 3DBFFH	F6H
25C00H to 25FFFH	97H	2DC00H to 2DFFFH	B7H	35C00H to 35FFFH	D7H	3DC00H to 3DFFFH	F7H
26000H to 263FFH	98H	2E000H to 2E3FFH	B8H	36000H to 363FFH	D8H	3E000H to 3E3FFH	F8H
26400H to 267FFH	99H	2E400H to 2E7FFH	B9H	36400H to 367FFH	D9H	3E400H to 3E7FFH	F9H
26800H to 26BFFH	9AH	2E800H to 2EBFFH	BAH	36800H to 36BFFH	DAH	3E800H to 3EBFFH	FAH
26C00H to 26FFFH	9BH	2EC00H to 2EFFFH	BBH	36C00H to 36FFFH	DBH	3EC00H to 3EFFFH	FBH
27000H to 273FFH	9CH	2F000H to 2F3FFH	BCH	37000H to 373FFH	DCH	3F000H to 3F3FFH	FCH
27400H to 277FFH	9DH	2F400H to 2F7FFH	BDH	37400H to 377FFH	DDH	3F400H to 3F7FFH	FDH
27800H to 27BFFH	9EH	2F800H to 2FBFFH	BEH	37800H to 37BFFH	DEH	3F800H to 3FBFFH	FEH
27C00H to 27FFFH	9FH	2FC00H to 2FFFFH	BFH	37C00H to 37FFFH	DFH	3FC00H to 3FFFFH	FFH

Table 3-1. Correspondence Between Address Values and Block Numbers in Flash Memory (2/2)

3.1.1 Internal program memory space

The internal program memory space stores the program and table data. The R7F0C020 products incorporate internal ROM (flash memory), as shown below.

Part Number	Internal ROM		
	Structure	Capacity	
R7F0C020M2DFB	Flash memory	262144 × 8 bits (00000H to 3FFFFH)	

Table 3-2. Internal ROM Capacity

The internal program memory space is divided into the following areas.

(1) Vector table area

The 128-byte area 00000H to 0007FH is reserved as a vector table area. The program start addresses for branch upon reset or generation of each interrupt request are stored in the vector table area. Furthermore, the interrupt jump address is a 64 K address of 00000H to 0FFFFH, because the vector code is assumed to be 2 bytes.

Of the 16-bit address, the lower 8 bits are stored at even addresses and the higher 8 bits are stored at odd addresses. To use the boot swap function, set a vector table also at 01000H to 0107FH.

Vector Table Address	Interrupt Source
00000H	RESET, POR, LVD, WDT, TRAP, IAW, RPE
00004H	INTWDTI
00006H	INTLVI
00008H	INTP0
0000AH	INTP1
0000CH	INTP2
0000EH	INTP3
00010H	INTP4
00012H	INTP5
00014H	INTST2
00016H	INTSR2
00018H	INTSRE2
0001AH	INTDMA0
0001CH	INTDMA1
0001EH	INTSTO/INTCSI00/INTIIC00
00020H	INTTM00
00022H	INTSR0
00024H	INTSRE0
	INTTM01H
00026H	INTST1/INTIIC10
00028H	INTSR1
0002AH	INTSRE1
	ІЛТТМ03Н
0002CH	INTIICA0
0002EH	INTRTIT
00030H	INTFM
00032H	INTTM01
00034H	INTTM02
00036H	INTTM03
00038H	INTAD
0003AH	INTRTC
0003CH	INTIT
00040H	INTST3
00042H	INTSR3

 Table 3-3.
 Vector Table (1/2)

Vector Table Address	Interrupt Source
00046H	INTTM04
00048H	INTTM05
0004AH	INTP6
0004CH	INTP7
00050H	INTCMP0
00052H	INTCMP1
00054H	INTTM06
00056H	INTTM07
00058H	INTSCT0
0005AH	INTSCR0
0005CH	INTSRE3
0005EH	INTMD
00060H	INTSCE0
00062H	INTFL
00064H	INTDMA2
00066H	INTDMA3
00068H	INTSCT1
0006AH	INTSCR1
0006CH	INTSCE1
0007EH	BRK

Table 3-3. Vector Table (2/2)

(2) CALLT instruction table area

The 64-byte area 00080H to 000BFH can store the subroutine entry address of a 2-byte call instruction (CALLT). Set the subroutine entry address to a value in a range of 00000H to 0FFFFH (because an address code is of 2 bytes). To use the boot swap function, set a CALLT instruction table also at 01080H to 010BFH.

(3) Option byte area

A 4-byte area of 000C0H to 000C3H can be used as an option byte area. Set the option byte at 010C0H to 010C3H when the boot swap is used. For details, see **CHAPTER 27 OPTION BYTE**.

(4) On-chip debug security ID setting area

A 10-byte area of 000C4H to 000CDH and 010C4H to 010CDH can be used as an on-chip debug security ID setting area. Set the on-chip debug security ID of 10 bytes at 000C4H to 000CDH when the boot swap is not used and at 000C4H to 000CDH and 010C4H to 010CDH when the boot swap is used. For details, see **CHAPTER 29 ON-CHIP DEBUG FUNCTION**.

3.1.2 Mirror area

The R7F0C020 mirrors the flash area of 00000H to 0FFFFH or 10000H to 1FFFFH, to F0000H to FFFFFH (the flash area to be mirrored is set by the processor mode control register (PMC)).

By reading data from F0000H to FFFFFH, an instruction that does not have the ES register as an operand can be used, and thus the contents of the flash can be read with the shorter code. However, the flash area is not mirrored to the SFR, extended SFR, RAM area, and use prohibited areas.

See 3.1 Memory Space for the mirror area of each product.

The mirror area can only be read and no instruction can be fetched from this area.

The following show examples.

Example R7F0C020 (Flash memory: 256 KB, RAM: 24 KB)

The PMC register is described below.

• Processor mode control register (PMC)

This register sets the flash memory space for mirroring to area from F0000H to FFFFFH.

The PMC register can be set by a 1-bit or 8-bit memory manipulation instruction.

Reset signal generation sets this register to 00H.

Figure 3-3. Format of Configuration of Processor Mode Control Register (PMC)

Address: FI	FFFEH	Afte	r reset: 00⊦	R/W					
Symbol	7		6	5	4	3	2	1	<0>
PMC	0		0	0	0	0	0	0	MAA
	MAA Selection of flash memory space for mirroring to area from F0000H to FFFFFH						FFFFFH		

MAA	Selection of flash memory space for mirroring to area from F0000H to FFFFH				
0	00000H to 0FFFFH is mirrored to F0000H to FFFFFH				
1	10000H to 1FFFFH is mirrored to F0000H to FFFFFH				

Caution After setting the PMC register, wait for at least one instruction and access the mirror area.

3.1.3 Internal data memory space

The R7F0C020 product incorporates the following RAMs.

Table 3-4. Internal RAM Capacity

Part Number	Internal RAM		
R7F0C020	24576 × 8 bits (F9F00H to FFEFFH)		

The internal RAM can be used as a data area and a program area where instructions are written and executed. Four general-purpose register banks consisting of eight 8-bit registers per bank are assigned to the 32-byte area of FFEE0H to FFEFFH of the internal RAM area. However, instructions cannot be executed by using the general-purpose registers.

The internal RAM is used as stack memory.

- Cautions 1. The space (FFEE0H to FFEFFH) that the general-purpose registers are allocated cannot be used for fetching instructions or as a stack area.
 - 2. Do not allocate RAM addresses which are used as a stack area, a data buffer, a branch destination of vector interrupt processing, and a DMA transfer destination/transfer source to the area FFE20H to FFEDFH when performing self-programming.
 - 3. Use of the RAM areas of the following products is prohibited when performing self-programming, because these areas are used for library.

R7F0C020: F9F00H to FA309H

3.1.6 Data memory addressing

Addressing refers to the method of specifying the address of the instruction to be executed next or the address of the register or memory relevant to the execution of instructions.

Several addressing modes are provided for addressing the memory relevant to the execution of instructions for the R7F0C020, based on operability and other considerations. In particular, special addressing methods designed for the functions of the special function registers (SFR) and general-purpose registers are available for use. Figure 3-4 shows correspondence between data memory and addressing.

For details of each addressing, see 3.4 Addressing for Processing Data Addresses.

Figure 3-4. Correspondence Between Data Memory and Addressing

3.2 Processor Registers

The R7F0C020 product incorporates the following processor registers.

3.2.1 Control registers

The control registers control the program sequence, statuses and stack memory. The control registers consist of a program counter (PC), a program status word (PSW) and a stack pointer (SP).

(1) Program counter (PC)

The program counter is a 20-bit register that holds the address information of the next program to be executed. In normal operation, PC is automatically incremented according to the number of bytes of the instruction to be fetched. When a branch instruction is executed, immediate data and register contents are set.

Reset signal generation sets the reset vector table values at addresses 00000H and 00001H to the program counter.

Figure 3-5. Format of Program Counter

(2) Program status word (PSW)

The program status word is an 8-bit register consisting of various flags set/reset by instruction execution.

Program status word contents are stored in the stack area upon vectored interrupt request is acknowledged or PUSH PSW instruction execution and are restored upon execution of the RETB, RETI and POP PSW instructions. Reset signal generation sets the PSW register to 06H.

(a) Interrupt enable flag (IE)

This flag controls the interrupt request acknowledge operations of the CPU.

When 0, the IE flag is set to the interrupt disabled (DI) state, and all maskable interrupt requests are disabled. When 1, the IE flag is set to the interrupt enabled (EI) state and maskable interrupt request acknowledgment is

controlled with an in-service priority flag (ISP1, ISP0), an interrupt mask flag for various interrupt sources, and a priority specification flag.

The IE flag is reset (0) upon DI instruction execution or interrupt acknowledgment and is set (1) upon EI instruction execution.

(b) Zero flag (Z)

When the operation result is zero or equal, this flag is set (1). It is reset (0) in all other cases.

(c) Register bank select flags (RBS0, RBS1)

These are 2-bit flags to select one of the four register banks. In these flags, the 2-bit information that indicates the register bank selected by SEL RBn instruction execution is stored.

(d) Auxiliary carry flag (AC)

If the operation result has a carry from bit 3 or a borrow at bit 3, this flag is set (1). It is reset (0) in all other cases.

(e) In-service priority flags (ISP1, ISP0)

This flag manages the priority of acknowledgeable maskable vectored interrupts. Vectored interrupt requests specified lower than the value of ISP0 and ISP1 flags by the priority specification flag registers (PRn0L, PRn0H, PRn1L, PRn1H, PRn2L, PRn2H) (see **20.3.3**) can not be acknowledged. Actual vectored interrupt request acknowledgment is controlled by the interrupt enable flag (IE).

Remark n = 0, 1

(f) Carry flag (CY)

This flag stores overflow and underflow upon add/subtract instruction execution. It stores the shift-out value upon rotate instruction execution and functions as a bit accumulator during bit operation instruction execution.

(3) Stack pointer (SP)

This is a 16-bit register to hold the start address of the memory stack area. Only the internal RAM area can be set as the stack area.

Figure 3-7. Format of Stack Pointer

In stack addressing through a stack pointer, the SP is decremented ahead of write (save) to the stack memory and is incremented after read (restore) from the stack memory.

- Cautions 1. Since reset signal generation makes the SP contents undefined, be sure to initialize the SP before using the stack.
 - 2. It is prohibited to use the general-purpose register (FFEE0H to FFEFFH) space for fetching instructions or a stack area.
 - 3. Do not allocate RAM addresses which are used as a stack area, a data buffer, a branch destination of vector interrupt processing, and a DMA transfer destination/transfer source to the area FFE20H to FFEDFH when performing self-programming.
 - 4. Use of the RAM areas of the following products is prohibited when performing self-programming, because these areas are used for library.

R7F0C020: F9F00H to FA309H

CHAPTER 4 PORT FUNCTIONS

The contents of this chapter are omitted from this manual because the information is the same as in the R7F0C003M2DFB, R7F0C004M2DFB User's Manual: Hardware (R01UH0393E). See CHAPTER 4 of the latter document for information on the port functions.

Note that references to "R7F0C003M2DFB" and "R7F0C004M2DFB" should be read as R7F0C020M2DFB.

CHAPTER 5 CLOCK GENERATOR

The contents of this chapter are omitted from this manual because the information is the same as in the R7F0C003M2DFB, R7F0C004M2DFB User's Manual: Hardware (R01UH0393E). See CHAPTER 5 of the latter document for information on the clock generator.

Note that references to "R7F0C003M2DFB" and "R7F0C004M2DFB" should be read as R7F0C020M2DFB.

CHAPTER 6 TIMER ARRAY UNIT

The contents of this chapter are omitted from this manual because the information is the same as in the R7F0C003M2DFB, R7F0C004M2DFB User's Manual: Hardware (R01UH0393E). See CHAPTER 6 of the latter document for information on the timer array unit.

CHAPTER 7 REAL-TIME CLOCK 2

The contents of this chapter are omitted from this manual because the information is the same as in the R7F0C003M2DFB, R7F0C004M2DFB User's Manual: Hardware (R01UH0393E). See CHAPTER 7 of the latter document for information on the real-time clock 2.

CHAPTER 8 SUBSYSTEM CLOCK FREQUENCY MEASUREMENT CIRCUIT

The contents of this chapter are omitted from this manual because the information is the same as in the R7F0C003M2DFB, R7F0C004M2DFB User's Manual: Hardware (R01UH0393E). See CHAPTER 8 of the latter document for information on the subsystem clock frequency measurement circuit.

CHAPTER 9 12-BIT INTERVAL TIMER

The contents of this chapter are omitted from this manual because the information is the same as in the R7F0C003M2DFB, R7F0C004M2DFB User's Manual: Hardware (R01UH0393E). See CHAPTER 9 of the latter document for information on the 12-bit interval timer.

CHAPTER 10 CLOCK OUTPUT/BUZZER OUTPUT CONTROLLER

The contents of this chapter are omitted from this manual because the information is the same as in the R7F0C003M2DFB, R7F0C004M2DFB User's Manual: Hardware (R01UH0393E). See CHAPTER 10 of the latter document for information on the clock output/buzzer output controller.

CHAPTER 11 WATCHDOG TIMER

The contents of this chapter are omitted from this manual because the information is the same as in the R7F0C003M2DFB, R7F0C004M2DFB User's Manual: Hardware (R01UH0393E). See CHAPTER 11 of the latter document for information on the watchdog timer.

CHAPTER 12 A/D CONVERTER

The contents of this chapter are omitted from this manual because the information is the same as in the R7F0C003M2DFB, R7F0C004M2DFB User's Manual: Hardware (R01UH0393E). See CHAPTER 12 of the latter document for information on the A/D converter.

CHAPTER 13 COMPARATOR

The contents of this chapter are omitted from this manual because the information is the same as in the R7F0C003M2DFB, R7F0C004M2DFB User's Manual: Hardware (R01UH0393E). See CHAPTER 13 of the latter document for information on the comparator.

CHAPTER 14 SERIAL ARRAY UNIT

The contents of this chapter are omitted from this manual because the information is the same as in the R7F0C003M2DFB, R7F0C004M2DFB User's Manual: Hardware (R01UH0393E). See CHAPTER 14 of the latter document for information on the serial array unit.

CHAPTER 15 SERIAL INTERFACE IICA

The contents of this chapter are omitted from this manual because the information is the same as in the R7F0C003M2DFB, R7F0C004M2DFB User's Manual: Hardware (R01UH0393E). See CHAPTER 15 of the latter document for information on the serial interface IICA.

CHAPTER 16 SMART CARD INTERFACE (SMCI)

The contents of this chapter are omitted from this manual because the information is the same as in the R7F0C003M2DFB, R7F0C004M2DFB User's Manual: Hardware (R01UH0393E). See CHAPTER 16 of the latter document for information on the smart card interface.

CHAPTER 17 LCD CONTROLLER/DRIVER

The contents of this chapter are omitted from this manual because the information is the same as in the R7F0C003M2DFB, R7F0C004M2DFB User's Manual: Hardware (R01UH0393E). See CHAPTER 17 of the latter document for information on the LCD controller/driver.

CHAPTER 18 MULTIPLIER AND DIVIDER/MULTIPLY-ACCUMULATOR

The contents of this chapter are omitted from this manual because the information is the same as in the R7F0C003M2DFB, R7F0C004M2DFB User's Manual: Hardware (R01UH0393E). See CHAPTER 18 of the latter document for information on the multiplier and divider/multiply-accumulator.

CHAPTER 19 DMA CONTROLLER

This chapter of the manual only consists of 19.2.2. For all other material on the DMA controller, see the other parts of CHAPTER 19 of R7F0C003M2DFB, R7F0C004M2DFB User's Manual: Hardware (R01UH0393E).

Note that references to "R7F0C003M2DFB" and "R7F0C004M2DFB" should be read as R7F0C020M2DFB.

19.2.2 DMA RAM address register n (DRAn)

This is a 16-bit register that is used to set a RAM address that is the transfer source or destination of DMA channel n.

Addresses of the internal RAM area other than the general-purpose registers (see Table 19-2) can be set to this register.

Set the lower 16 bits of the RAM address.

This register is automatically incremented when DMA transfer has been started. It is incremented by +1 in the 8-bit transfer mode and by +2 in the 16-bit transfer mode. DMA transfer is started from the address set to this DRAn register. When the data of the last address has been transferred, the DRAn register stops with the value of the last address +1 in the 8-bit transfer mode, and the last address +2 in the 16-bit transfer mode.

In the 16-bit transfer mode, the least significant bit is ignored and is treated as an even address.

The DRAn register can be read or written in 8-bit or 16-bit units. However, it cannot be written during DMA transfer. Reset signal generation clears this register to 0000H.

Figure 19-2. Format of DMA RAM Address Register n (DRAn)

Address: FFFB2H, FFFB3H (DRA0), FFFB4H, FFFB5H (DRA1), After reset: 0000H R/W F0202H, F0203H (DRA2), F0204H, F0205H (DRA3)

Table 19-2. Internal RAM Area other than the General-purpose Registers

Part Number	Internal RAM Area Other than the General-purpose Registers		
R7F0C020	F9F00H to FFEDFH		

Remark n: DMA channel number (n = 0 to 3)

CHAPTER 20 INTERRUPT FUNCTIONS

The contents of this chapter are omitted from this manual because the information is the same as in the R7F0C003M2DFB, R7F0C004M2DFB User's Manual: Hardware (R01UH0393E). See CHAPTER 20 of the latter document for information on the interrupt functions.

CHAPTER 21 STANDBY FUNCTION

The contents of this chapter are omitted from this manual because the information is the same as in the R7F0C003M2DFB, R7F0C004M2DFB User's Manual: Hardware (R01UH0393E). See CHAPTER 21 of the latter document for information on the standby function.

CHAPTER 22 RESET FUNCTION

The contents of this chapter are omitted from this manual because the information is the same as in the R7F0C003M2DFB, R7F0C004M2DFB User's Manual: Hardware (R01UH0393E). See CHAPTER 22 of the latter document for information on the reset function.

CHAPTER 23 POWER-ON-RESET CIRCUIT

The contents of this chapter are omitted from this manual because the information is the same as in the R7F0C003M2DFB, R7F0C004M2DFB User's Manual: Hardware (R01UH0393E). See CHAPTER 23 of the latter document for information on the power-on reset circuit.

CHAPTER 24 VOLTAGE DETECTOR

The contents of this chapter are omitted from this manual because the information is the same as in the R7F0C003M2DFB, R7F0C004M2DFB User's Manual: Hardware (R01UH0393E). See CHAPTER 24 of the latter document for information on the voltage detector.

CHAPTER 25 SAFETY FUNCTIONS

This chapter of the manual only consists of 25.3.1.1, 25.3.1.2, 25.3.4.1, and 25.3.6. For all other material on the safety functions, see the other parts of CHAPTER 25 of R7F0C003M2DFB, R7F0C004M2DFB User's Manual: Hardware (R01UH0393E).

25.3.1.1 Flash memory CRC control register (CRC0CTL)

This register is used to control the operation of the high-speed CRC ALU, as well as to specify the operation range. The CRC0CTL register can be set by a 1-bit or 8-bit memory manipulation instruction.

Reset signal generation clears this register to 00H.

Figure 25-1. Format of Flash Memory CRC Control Register (CRC0CTL)

Address: F02F0H After reset: 00H R/W								
Symbol	<7>	6	5	4	3	2	1	0
CRC0CTL	CRC0EN	0	0	0	FEA3	FEA2	FEA1	FEA0
-								

CRC0EN	Control of CRC ALU operation
0	Stop the operation.
1	Start the operation according to HALT instruction execution.

FEA3	FEA2	FEA1	FEA0	High-speed CRC operation range
0	0	0	0	00000H to 03FFBH (16 K – 4 bytes)
0	0	0	1	00000H to 07FFBH (32 K – 4 bytes)
0	0	1	0	00000H to 0BFFBH (48 K – 4 bytes)
0	0	1	1	00000H to 0FFFBH (64 K – 4 bytes)
0	1	0	0	00000H to 13FFBH (80 K – 4 bytes)
0	1	0	1	00000H to 17FFBH (96 K – 4 bytes)
0	1	1	0	00000H to 1BFFBH (112 K – 4 bytes)
0	1	1	1	00000H to 1FFFBH (128 K – 4 bytes)
1	0	0	0	00000H to 23FFBH (144K – 4 bytes)
1	0	0	1	00000H to 27FFBH (160K – 4 bytes)
1	0	1	0	00000H to 2BFFBH (176K – 4 bytes)
1	0	1	1	00000H to 2FFFBH (192K – 4 bytes)
1	1	0	0	00000H to 33FFBH (208K – 4 bytes)
1	1	0	1	00000H to 37FFBH (224K – 4 bytes)
1	1	1	0	00000H to 3BFFBH (240K – 4 bytes)
1	1	1	1	00000H to 3FFFBH (256K – 4 bytes)

Remark Input the expected CRC operation result value to be used for comparison in the lowest 4 bytes of the flash memory. Note that the operation range will thereby be reduced by 4 bytes.

25.3.1.2 Flash memory CRC operation result register (PGCRCL)

This register is used to store the high-speed CRC operation results.

The PGCRCL register can be set by a 16-bit memory manipulation instruction.

Reset signal generation clears this register to 0000H.

Figure 25-2. Format of Flash Memory CRC Operation Result Register (PGCRCL)

Address: F0	02F2H After	reset: 0000H	R/W					
Symbol	15	14	13	12	11	10	9	8
PGCRCL	PGCRC15	PGCRC14	PGCRC13	PGCRC12	PGCRC11	PGCRC10	PGCRC9	PGCRC8
	7	6	5	4	3	2	1	0
	PGCRC7	PGCRC6	PGCRC5	PGCRC4	PGCRC3	PGCRC2	PGCRC1	PGCRC0
	PGCRO	C15 to 0		Н	gh-speed CRC	operation resul	lts	
	0000H to	o FFFFH	Store the high	-speed CRC of	peration results			

Caution The PGCRCL register can only be written if CRC0EN (bit 7 of the CRC0CTL register) = 1.

Figure 25-3 shows the flowchart of flash memory CRC operation function (high-speed CRC).

<Operation flow>

Figure 25-3. Flowchart of Flash Memory CRC Operation Function (High-speed CRC)

Cautions 1. The CRC operation is executed only on the flash.

- 2. Store the expected CRC operation value in the area below the operation range in the flash.
- 3. The CRC operation is enabled by executing the HALT instruction in the RAM area. Be sure to execute the HALT instruction in RAM area.

The expected CRC value can be calculated by using the Integrated Development Environment CubeSuite+. See the **Integrated Development Environment CubeSuite+ User's Manual** for details.

RENESAS

25.3.4.1 Invalid memory access detection control register (IAWCTL)

This register is used to control detection of invalid memory access and the RAM/SFR guard function.

The GRAM1 and GRAM0 bits are used for the RAM guard function.

The IAWCTL register can be set by an 8-bit memory manipulation instruction.

Reset signal generation clears this register to 00H.

Figure 25-9. Format of Invalid Memory Access Detection Control Register (IAWCTL)

Address: F0078H After reset: 00H R/W

Symbol	7	6	5	4	3	2	1	0
IAWCTL	IAWEN	0	GRAM1	GRAM0	0	GPORT	GINT	GCSC

GRAM1	GRAM0	RAM guard space ^{Note}
0	0	Disabled. RAM can be written to.
0	1	The 128 bytes of space starting at the start address in the RAM
1	0	The 256 bytes of space starting at the start address in the RAM
1	1	The 512 bytes of space starting at the start address in the RAM

Note The RAM start address is F9F00H.

25.3.6 Invalid memory access detection function

The IEC60730 standard mandates checking that the CPU and interrupts are operating correctly.

The illegal memory access detection function triggers a reset if a memory space specified as access-prohibited is accessed.

The illegal memory access detection function applies to the areas indicated by NG in Figure 25-11.

Figure 25-11. Invalid Access Detection Area

Products	Flash memory	RAM	Detected lowest address for read/
	(00000H to xxxxxH)	(zzzzzH to FFEFFH)	instruction fetch (execution) (yyyyyH)
R7F0C020	262144 × 8 bit (00000H to 3FFFFH)	24576 × 8 bit (F9F00H to FFEFFH)	40000H

CHAPTER 26 REGULATOR

The contents of this chapter are omitted from this manual because the information is the same as in the R7F0C003M2DFB, R7F0C004M2DFB User's Manual: Hardware (R01UH0393E). See CHAPTER 26 of the latter document for information on the regulator.

CHAPTER 27 OPTION BYTE

The contents of this chapter are omitted from this manual because the information is the same as in the R7F0C003M2DFB, R7F0C004M2DFB User's Manual: Hardware (R01UH0393E). See CHAPTER 27 of the latter document for information on the option byte.

CHAPTER 28 FLASH MEMORY

This chapter of the manual only consists of 28.4.4 and 28.5.3. For all other material on the flash memory, see the other parts of CHAPTER 28 of R7F0C003M2DFB, R7F0C004M2DFB User's Manual: Hardware (R01UH0393E).

The RL78 microcontroller incorporates the flash memory to which a program can be written, erased, and overwritten.

The following methods for programming the flash memory are available.

The flash memory can be rewritten to through serial programming using a flash memory programmer or an external device (UART communication), or through self-programming.

- Serial programming using flash memory programmer (see **28.1**) Data can be written to the flash memory on-board or off-board by using a dedicated flash memory programmer.
- Serial programming using external device (UART communication) (see **28.2**) Data can be written to the flash memory on-board through UART communication with an external device (microcontroller or ASIC).
- Self-programming (see **28.5**) The user application can execute self-programming of the flash memory by using the flash self-programming library.

28.4.4 Communication commands

The RL78 microcontroller executes serial programming through the commands listed in Table 28-7.

The signals sent from the dedicated flash memory programmer or external device to the RL78 microcontroller are called commands, and programming functions corresponding to the commands are executed. For details, refer to the **RL78 Microcontrollers (RL78 Protocol A) Programmer Edition Application Note (R01AN0815)**.

Classification	Command Name	Function	
Verify	Verify Compares the contents of a specified area of the flash memor data transmitted from the programmer.		
Erase	Block Erase	Erases a specified area in the flash memory.	
Blank check	Block Blank Check	Checks if a specified block in the flash memory has been correctly erased.	
Write	Programming	Writes data to a specified area in the flash memory ^{Note} .	
Getting information	Silicon Signature	Gets the RL78 microcontroller information (such as the part number, flash memory configuration, and programming firmware version).	
	Checksum	Gets the checksum data for a specified area.	
Security	Security Set	Sets security information.	
	Security Get	Gets security information.	
	Security Release	Release setting of prohibition of writing.	
Others	Reset	Used to detect synchronization status of communication.	
	Baud Rate Set	Sets baud rate when UART communication mode is selected.	

Table 28-7.	Flash	Memory	Control	Commands
-------------	-------	--------	---------	----------

Note Confirm that no data has been written to the write area. Because data cannot be erased after block erase is prohibited, do not write data if the data has not been erased.

Product information (such as product name and firmware version) can be obtained by executing the "Silicon Signature" command.

Table 28-8 is a list of signature data and Table 28-9 shows an example of signature data.

Table 28-8. Signature Data List

Field Name	Description	Number of Transmit Data
Device code	The serial number assigned to the device	3 bytes
Device name	Device name (ASCII code)	10 bytes
Flash memory area last address	Last address of flash memory area (Sent from lower address. Example: 00000H to 3FFFFH (256 KB) → FFH, FFH, 03H)	3 bytes
Firmware version	Version information of firmware for programming (Sent from upper address. Example: From Ver. 1.23 \rightarrow 01H, 02H, 03H)	3 bytes

Field Name	Description	Number of Transmit Data	Data (Hexadecimal)
Device code	RL78 protocol A	3 bytes	10 00 06
Device name	R7F0C020	10 bytes	52 = "R" 37 = "7" 46 = "F" 30 = "0" 43 = "C" 30 = "0" 32 = "2" 30 = "0" 4D = "M" 20 = " "
Flash memory area last address	Flash memory area 00000H to 3FFFFH (256 KB)	3 bytes	FF FF 03
Firmware version	Ver.1.23	3 bytes	01 02 03

Table 28-9. Example of Signature Data

28.5.3 Flash shield window function

The flash shield window function is provided as one of the security functions for self programming. It disables writing to and erasing areas outside the range specified as a window only during self programming.

The window range can be set by specifying the start and end blocks. The window range can be set or changed during both serial programming and self-programming.

Writing to and erasing areas outside the window range are disabled during self programming. During serial programming, however, areas outside the range specified as a window can be written and erased.

Figure 28-11. Flash Shield Window Setting Example (Target Devices: R7F0C020, Start Block: 04H, End Block: 06H)

Caution If the rewrite-prohibited area of the boot cluster 0 overlaps with the flash shield window range, prohibition to rewrite the boot cluster 0 takes priority.

Table 28-10. Relationship Between Flash Shield Window Function Setting/Change Methods and Commands

Programming Conditions	s Window Range Setting/Change Methods	Execution Commands	
		Block Erase	Write
Self-programming	Specify the starting and ending blocks by the flash self-programming library.	Block erasing is enabled only within the window range.	Writing is enabled only within the range of window range.
Serial programming	Specify the starting and ending blocks on GUI of dedicated flash memory programmer, etc.	Block erasing is enabled also outside the window range.	Writing is enabled also outside the window range.

Remark See 28.6 Security Settings to prohibit writing/erasing during serial programming.

CHAPTER 29 ON-CHIP DEBUG FUNCTION

This chapter of the manual only consists of 29.3. For all other material on the on-chip debug function, see the other parts of CHAPTER 29 of R7F0C003M2DFB, R7F0C004M2DFB User's Manual: Hardware (R01UH0393E).

29.3 Securing of User Resources

To perform communication between the RL78 microcontroller and E1 on-chip debugging emulator, as well as each debug function, the securing of memory space must be done beforehand.

If Renesas Electronics assembler or compiler is used, the items can be set by using link options.

(1) Securement of memory space

The shaded portions in Figure 29-2 are the areas reserved for placing the debug monitor program, so user programs or data cannot be allocated in these spaces. When using the on-chip debug function, these spaces must be secured so as not to be used by the user program. Moreover, this area must not be rewritten by the user program.

Figure 29-2. Memory Spaces Where Debug Monitor Programs Are Allocated

Notes 1. Address differs depending on products as follows.

Product Name	Address of Note 1
R7F0C020	3FFFFH

2. When real-time RAM monitor (RRM) function and dynamic memory modification (DMM) function are not used, it is 256 bytes.

- 3. In debugging, reset vector is rewritten to address allocated to a monitor program.
- 4. Since this area is allocated immediately before the stack area, the address of this area varies depending on the stack increase and decrease. That is, 4 extra bytes are consumed for the stack area used. When using self-programming, 12 extra bytes are consumed for the stack area used.

CHAPTER 30 BCD CORRECTION CIRCUIT

The contents of this chapter are omitted from this manual because the information is the same as in the R7F0C003M2DFB, R7F0C004M2DFB User's Manual: Hardware (R01UH0393E). See CHAPTER 30 of the latter document for information on the BCD correction circuit.

CHAPTER 31 INSTRUCTION SET

The contents of this chapter are omitted from this manual because the information is the same as in the R7F0C003M2DFB, R7F0C004M2DFB User's Manual: Hardware (R01UH0393E). See CHAPTER 31 of the latter document for information on the instruction set.

CHAPTER 32 ELECTRICAL SPECIFICATIONS

Caution The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.

32.1 Absolute Maximum Ratings

Absolute	Maximum	Ratings	(1/3)
----------	---------	---------	-------

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	Vdd		–0.5 to +6.5	V
REGC pin input voltage	VIREGC	REGC	-0.3 to +2.8 and -0.3 to $V_{\rm DD}$ +0.3 $^{Note\ 1}$	V
Input voltage	VI1	P00 to P07, P10 to P17, P20 to P27, P30 to P35, P40 to P47, P50 to P57, P70 to P77, P121 to P127, P130, P137	–0.3 to V_{DD} +0.3 ^{Note 2}	V
	VI2	P60 and P61 (N-ch open-drain)	-0.3 to +6.5	V
	Vı3	EXCLK, EXCLKS, RESET	–0.3 to V _{DD} +0.3 ^{Note 2}	V
Output voltage	V ₀₁	P00 to P07, P10 to P17, P20 to P27, P30 to P35, P40 to P47, P50 to P57, P60, P61, P70 to P77, P121 to P127, P130, P137	–0.3 to V_{DD} +0.3 ^{Note 2}	V
Analog input voltage	VAI1	ANIO, ANI1, ANI16, ANI17	-0.3 to V_DD +0.3 and -0.3 to AV_{REF(+)} +0.3^{Notes 2, 3} $$	V

- **Notes 1.** Connect the REGC pin to Vss via a capacitor (0.47 to 1 μF). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
 - 2. Must be 6.5 V or lower.
 - 3. Do not exceed $AV_{REF(+)}$ + 0.3 V in case of A/D conversion target pin.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
 - 2. AVREF (+): + side reference voltage of the A/D converter.
 - 3. Vss: Reference voltage

Parameter	Symbol		Conditions	Ratings	Unit
LCD voltage	V _{L1}	V∟1 voltage ^{Note 1}		–0.3 to +2.8 and –0.3 to V _{L4} +0.3	V
	VL2	VL2 voltage ^{Note 1}		-0.3 to V _{L4} +0.3 ^{Note 2}	V
	VL3	VL3 voltage ^{Note 1}		–0.3 to VL4 +0.3 ^{Note 2}	V
	VL4	VL4 voltage ^{Note 1}		-0.3 to +6.5	V
	VLCAP	CAPL, CAPH volt	age ^{Note 1}	–0.3 to VL4 +0.3 ^{Note 2}	V
	Vout	COM0 to COM7	External resistance division method	-0.3 to V _{DD} +0.3 ^{Note 2}	V
		SEG0 to SEG50 output voltage	Internal voltage boosting method	-0.3 to V _{L4} +0.3 ^{Note 2}	V

Absolute Maximum Ratings (2/3)

- **Notes 1.** This value only indicates the absolute maximum ratings when applying voltage to the V_{L1}, V_{L2}, V_{L3}, and V_{L4} pins; it does not mean that applying voltage to these pins is recommended. When using the internal voltage boosting method, connect these pins to Vss via a capacitor (0.47 μF ± 30%) and connect a capacitor (0.47 μF ± 30%) between the CAPL and CAPH pins.
 - 2. Must be 6.5 V or lower.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- Remark Vss: Reference voltage

Absolute Maximum Ratings (3/3)

Parameter	Symbol		Conditions	Ratings	Unit
Output current, high	Іон1	Per pin	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P60, P61, P70 to P77, P125 to P127, P130	-40	mA
		Total of all pins –170 mA	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P60, P61, P70 to P77, P125 to P127, P130	-170	mA
	Іон2	Per pin	P20, P21	-0.5	mA
		Total of all pins		–1	mA
Output current, low	Iol1	Per pin	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P60, P61, P70 to P77, P125 to P127, P130	40	mA
		Total of all pins 170 mA	P40 to P47, P130	70	mA
			P00 to P07, P10 to P17, P22 to P27, P30 to P35, P50 to P57, P60, P61, P70 to P77, P125 to P127	100	mA
	IOL2	Per pin	P20, P21	1	mA
		Total of all pins		2	mA
Operating ambient	TA	In normal operati	on mode	-40 to +85	°C
temperature		In flash memory	programming mode		
Storage temperature	Tstg			–65 to +150	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

32.2 Oscillator Characteristics

32.2.1 X1 and XT1 oscillator characteristics

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation	Ceramic resonator/	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	1.0		20.0	MHz
frequency (fx) ^{Note}	crystal resonator	$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	1.0		16.0	
		$1.8 \text{ V} \le \text{V}_{\text{DD}} < 2.4 \text{ V}$	1.0		8.0	
		$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$	1.0		4.0	
XT1 clock oscillation frequency (f _{XT}) ^{Note}	Crystal resonator		32	32.768	35	kHz

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

- **Note** Indicates only permissible oscillator frequency ranges. Refer to **AC Characteristics** for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.
- Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.
- **Remark** When using the X1 oscillator and XT1 oscillator, see **5.4** System Clock Oscillator.

32.2.2 On-chip oscillator characteristics

Parameter	Symbol		MIN.	TYP.	MAX.	Unit	
High-speed on-chip oscillator clock frequency ^{Notes 1, 2}	fін			1		24	MHz
High-speed on-chip oscillator		–20 to +85°C	$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	-1.0		+1.0	%
clock frequency accuracy			$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$	-5.0		+5.0	%
		–40 to –20°C	$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	-1.5		+1.5	%
			$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$	-5.5		+5.5	%
Low-speed on-chip oscillator clock frequency	fı∟				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Notes1. The high-speed on-chip oscillator frequency is selected by bits 0 to 4 of the option byte (000C2H/010C2H) and bits 0 to 2 of the HOCODIV register.

2. This indicates the oscillator characteristics only. Refer to AC Characteristics for the instruction execution time.

32.3 DC Characteristics

32.3.1 Pin characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high ^{Note 1}	Іон1	Per pin for P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P70 to P77, P125 to P127, P1301.6 V \leq V_{DD} \leq 5.5 V				–10.0 ^{Note 2}	mA
		Total of P00 to P07, P10 to P17, $4.0 V \le V_{DD} \le 5.5 V_{DD}$				-90.0	mA
		P22 to P27, P30 to P35, P40 to P47,	$2.7~\textrm{V} \leq \textrm{V}_\textrm{DD} < 4.0~\textrm{V}$			-15.0	mA
		P50 to P57, P70 to P77, P125 to P127,	$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$			-7.0	mA
		P130 (When duty = 70% ^{Note 3})	$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$			-3.0	mA
	Іон2	Per pin for P20 and P21	$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			-0.1 ^{Note 2}	mA
		Total of all pins (When duty = 70% ^{Note 3})	$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			-0.2	mA

- Notes1. Value of the current at which the device operation is guaranteed even if the current flows from the V_{DD} pin to an output pin
 - 2. Do not exceed the total current value.
 - 3. Output current value under conditions where the duty factor ≤ 70%. The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).
 - Total output current of pins = $(I_{OH} \times 0.7)/(n \times 0.01)$

<Example> Where n = 80% and IoH = -90.0 mA

Total output current of pins = $(-90.0 \times 0.7)/(80 \times 0.01) \approx -78.75$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P00, P04 to P07, P16, P17, P35, P42 to P44, P46, P47, P53 to P56, and P130 do not output high level in Nch open-drain mode.

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, low ^{Note 1}	Iol1	Per pin for P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P70 to P77, P125 to P127, P130				20.0 ^{Note 2}	mA
		Per pin for P60 and P61				15.0 ^{Note 2}	mA
		Total of P40 to P47, P130	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			70.0	mA
		(When duty = 70% ^{Note 3})	$2.7~V \leq V_{DD} < 4.0~V$			15.0	mA
			$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$			9.0	mA
			$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$			4.5	mA
		Total of P00 to P07, P10 to P17,	$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			90.0	mA
		P22 to P27, P30 to P35, P50 to P57, P70 to P77, P125 to P127	$2.7~\text{V} \leq \text{V}_{\text{DD}} < 4.0~\text{V}$			35.0	mA
			$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$			20.0	mA
		(When duty = 70% ^{Note 3})	$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$			10.0	mA
		Total of all pins (When duty = 70% ^{Note 3})				160.0	mA
	IOL2	Per pin for P20 and P21				0.4 ^{Note 2}	mA
		Total of all pins (When duty = 70% ^{Note 3})	$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			0.8	mA

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Notes1. Value of the current at which the device operation is guaranteed even if the current flows from an output pin to the Vss pin

- 2. Do not exceed the total current value.
- **3.** Output current value under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins = (IoL × 0.7)/(n × 0.01) <Example> Where n = 80% and IoL = 70.0 mA

Total output current of pins = (70.0 × 0.7)/(80 × 0.01) ≈ 61.25 mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	Vih1	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P70 to P77, P125 to P127, P130	Normal input buffer	0.8Vdd		Vdd	V
	VIH2	P03, P05, P06, P16, P17, P34, P43, P44, P46, P47, P53, P55	TTL input buffer 4.0 V ≤ V _{DD} ≤ 5.5 V	2.2		Vdd	V
			TTL input buffer 3.3 V ≤ V _{DD} < 4.0 V	2.0		Vdd	V
			TTL input buffer 1.6 V ≤ V _{DD} < 3.3 V	1.5		Vdd	V
	VIH3	P20, P21		0.7Vdd		Vdd	V
	VIH4	P60, P61		0.7Vdd		6.0	V
	VIH5	P121 to P124, P137, EXCLK, EXCLKS	0.8Vdd		Vdd	V	
Input voltage, low	VIL1	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P70 to P77, P125 to P127, P130	P30 to P35, P40 to P47, P50 to P57,			0.2Vdd	V
	VIL2	P03, P05, P06, P16, P17, P34, P43, P44, P46, P47, P53, P55	TTL input buffer 4.0 V ≤ V _{DD} ≤ 5.5 V	0		0.8	V
			TTL input buffer 3.3 V ≤ V _{DD} < 4.0 V	0		0.5	V
			TTL input buffer 1.6 V ≤ V _{DD} < 3.3 V	0		0.32	V
	VIL3	P20, P21		0		0.3Vdd	V
	VIL4	P60, P61		0		0.3Vdd	V
	VIL5	P121 to P124, P137, EXCLK, EXCLKS	, RESET	0		0.2VDD	V

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Caution The maximum value of V_{IH} of pins P00, P04 to P07, P16, P17, P35, P42 to P44, P46, P47, P53 to P56, and P130 is V_{DD}, even in the N-ch open-drain mode.

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output voltage, high	Vон1	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57,	4.0 V ≤ V _{DD} ≤ 5.5 V, I _{OH1} = −10.0 mA	Vdd - 1.5			V
		P70 to P77, P125 to P127, P130	4.0 V ≤ V _{DD} ≤ 5.5 V, I _{OH1} = −3.0 mA	Vdd - 0.7			V
			$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ IOH1 = -2.0 mA	Vdd - 0.6			V
			1.8 V ≤ V _{DD} ≤ 5.5 V, Іон1 = −1.5 mA	Vdd - 0.5			V
			1.6 V ≤ V _{DD} ≤ 5.5 V, Іон1 = −1.0 mA	Vdd - 0.5			V
	V _{OH2}	P20 and P21	1.6 V ≤ V _{DD} ≤ 5.5 V, І _{ОН2} = −100 µА	Vdd - 0.5			V
Output voltage, Vou	V _{OL1}	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57,	$4.0 V \le V_{DD} \le 5.5 V$, $I_{OL1} = 20 \text{ mA}$			1.3	V
		P70 to P77, P125 to P127, P130	$4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ $I_{\text{OL1}} = 8.5 \text{ mA}$			0.7	V
			$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ $I_{\text{OL1}} = 3.0 \text{ mA}$			0.6	V
			2.7 V ≤ V _{DD} ≤ 5.5 V, I _{OL1} = 1.5 mA			0.4	V
			$1.8 V \le V_{DD} \le 5.5 V$, $I_{OL1} = 0.6 \text{ mA}$			0.4	V
			$1.6 V \le V_{DD} < 1.8 V$, $I_{OL1} = 0.3 mA$			0.4	V
	Vol2	P20 and P21	$1.6 V \le V_{DD} \le 5.5 V$, $I_{OL2} = 400 \mu A$			0.4	V
	Vol3	P60 and P61	$4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ $I_{\text{OL3}} = 15.0 \text{ mA}$			2.0	V
			$4.0 V \le V_{DD} \le 5.5 V$, $I_{OL3} = 5.0 mA$			0.4	V
			$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ $I_{\text{OL3}} = 3.0 \text{ mA}$			0.4	V
			$1.8 V \le V_{DD} \le 5.5 V$, $I_{OL3} = 2.0 mA$			0.4	V
			$1.6 V \le V_{DD} < 1.8 V$, $I_{OL3} = 1.0 mA$			0.4	V

Caution P00, P04 to P07, P16, P17, P35, P42 to P44, P46, P47, P53 to P56, and P130 do not output high level in N-ch open-drain mode.

$(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Con	ditions		MIN.	TYP.	MAX.	Unit
Input leakage current, high	Ішні	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P70 to P77, P125 to P127, P130, P137	$V_I = V_{DD}$	Vi = VDD			1	μΑ
	Ілн2	P20 and P21, RESET	$V_{I} = V_{DD}$				1	μA
	Іцнз	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	$V_I = V_{DD}$	In input port mode and when external clock is input			1	μA
				Resonator connected			10	μA
Input leakage current, low	ILIL1	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P70 to P77, P125 to P127, P130, P137	VI = Vss	Vi = Vss			-1	μΑ
		P20 and P21, RESET	VI = Vss				-1	μA
	Ililis	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VSS	In input port mode and when external clock is input			-1	μA
				Resonator connected			-10	μA
On-chip pull-up	Ruı	P00 to P07, P10 to P17,	VI = Vss	$2.4 \text{ V} \le \text{V}_{\text{DD}} < 5.5 \text{ V}$	10	20	100	kΩ
resistance		P22 to P27, P30 to P35, P46, P47, P50 to P57, P70 to P77, P125 to P127, P130		1.6 V ≤ V _{DD} < 2.4 V	10	30	100	kΩ
	Ru2	P40 to P45	VI = Vss		10	20	100	kΩ

32.3.2 Supply current characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply	IDD1	Operating	HS (high-	f _{IH} = 24 MHz ^{Note 3}	Basic	V _{DD} = 5.0 V		1.7		mA
current ^{Note 1}		mode	speed main) mode ^{Note 5}		operation	V _{DD} = 3.0 V		1.7		mA
			mode		Normal	V _{DD} = 5.0 V		3.6	6.1	mA
					operation	V _{DD} = 3.0 V		3.6	6.1	mA
				f⊪ = 16 MHz ^{Note 3}	Normal	V _{DD} = 5.0 V		2.7	4.7	mA
					operation	V _{DD} = 3.0 V		2.7	4.7	mA
			LS (low-	f⊪ = 8 MHz ^{Note 3}	Normal	V _{DD} = 3.0 V		1.2	2.1	mA
			speed main) mode ^{Note 5}		operation	V _{DD} = 2.0 V		1.2	2.1	mA
			LV (low-	f⊪ = 4 MHz ^{Note 3}	Normal	V _{DD} = 3.0 V		1.2	1.8	mA
			voltage main) mode ^{Note 5}		operation	V _{DD} = 2.0 V		1.2	1.8	mA
			HS (high-	f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		3.0	5.1	mA
			speed main) mode ^{Note 5}	V _{DD} = 5.0 V	operation	Resonator connection		3.2	5.2	mA
			mode	f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		2.9	5.1	mA
				V _{DD} = 3.0 V	operation	Resonator connection		3.2	5.2	mA
				f _{MX} = 16 MHz ^{Note 2} ,	Normal	Square wave input		2.5	4.4	mA
			V _{DD} = 5.0 V	operation	Resonator connection		2.7	4.5	mA	
				f _{MX} = 16 MHz ^{Note 2} ,	Normal	Square wave input		2.5	4.4	mA
				V _{DD} = 3.0 V	operation	Resonator connection		2.7	4.5	mA
					Normal	Square wave input		1.9	3.0	mA
					operation	Resonator connection		1.9	3.0	mA
					Normal	Square wave input		1.9	3.0	mA
					operation	Resonator connection		1.9	3.0	mA
			LS (low-	f _{MX} = 8 MHz ^{Note 2} ,	Normal	Square wave input		1.1	2.0	mA
			speed main) mode ^{Note 5}	V _{DD} = 3.0 V	operation	Resonator connection		1.1	2.0	mA
			mode	f _{MX} = 8 MHz ^{Note 2} ,	Normal	Square wave input		1.1	2.0	mA
				V _{DD} = 2.0 V	operation	Resonator connection		1.1	2.0	mA
			Subsystem	fsuв = 32.768 kHz ^{Note 4} ,	Normal	Square wave input		4.0	5.4	μA
			clock	$T_A = -40^{\circ}C$	operation	Resonator connection		4.3	5.4	μA
			operation	fsue = 32.768 kHz ^{Note 4} ,	Normal	Square wave input		4.0	5.4	μA
				T _A = +25°C	operation	Resonator connection		4.3	5.4	μA
				fsue = 32.768 kHz ^{Note 4} ,	Normal	Square wave input		4.1	7.1	μA
				$T_{A} = +50^{\circ}C$	operation	Resonator connection		4.4	7.1	μA
				fsue = 32.768 kHz ^{Note 4} ,	Normal	Square wave input		4.3	8.7	μA
				T _A = +70°C	operation	Resonator connection		4.7	8.7	μA
				fs∪в = 32.768 kHz ^{Note 4} ,	Normal	Square wave input		4.7	12.0	μA
				T _A = +85°C	operation	Resonator connection		5.2	12.0	μA

(Notes and Remarks are listed on the next page.)

<R>

<R>

- **Notes 1.** Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or V_{SS}. The following points apply in the HS (high-speed main), LS (low-speed main), and LV (low-voltage main) modes.
 - The currents in the "TYP." column do not include the operating currents of the peripheral modules.
 - The currents in the "MAX." column include the operating currents of the peripheral modules, except for those flowing into the LCD controller/driver, A/D converter, LVD circuit, comparator, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten.
 In the subsystem clock operation, the currents in both the "TYP." and "MAX." columns do not include the operating currents of the peripheral modules. However, in HALT mode, including the current flowing into the real-time clock 2.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - **4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When setting ultra-low power consumption oscillation (AMPHS1 = 1).
 - 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}_{\textcircled{m}}1 \text{ MHz}$ to 24 MHz

2.4 V \leq V_{DD} \leq 5.5 V@1 MHz to 16 MHz

- LS (low-speed main) mode: $1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}@1 \text{ MHz}$ to 8 MHz
- LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}@1 \text{ MHz}$ to 4 MHz
- **Remarks 1.** fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. file: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

$(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

10	In	۱.
(∠	12)

			$^{\circ}$ C, 1.6 V \leq VDD \leq 5.5 V, Vss = 0 V)						(2	2/2)
	Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
	Supply	DD2Note 2	HALT	HS (high-speed main) mode	fı⊢ = 24 MHz ^{Note 4}	V _{DD} = 5.0 V		0.49	1.64	mA
<r></r>	current ^{Note 1}		mode	Note 6		V _{DD} = 3.0 V		0.49	1.64	
					fı⊢ = 16 MHz ^{Note 4}	V _{DD} = 5.0 V		0.43	1.11	mA
						V _{DD} = 3.0 V		0.43	1.11	
				LS (low-speed	f⊪ = 8 MHz ^{Note 4}	V _{DD} = 3.0 V		280	770	μA
<r></r>				main) mode Note 6		V _{DD} = 2.0 V		280	770	
<r></r>				LV (low-voltage main) mode ^{Note 6}	fi⊢ = 4 MHz ^{Note 4}	V _{DD} = 3.0 V		430	700	μA
						V _{DD} = 2.0 V		430	700	
				HS (high-speed main) mode	$f_{MX} = 20 \text{ MHz}^{Note 3},$	Square wave input		0.31	1.42	mA
<r></r>				Note 6	V _{DD} = 5.0 V	Resonator connection		0.48	1.42	
					f_{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.29	1.42	mA
					V _{DD} = 3.0 V	Resonator connection		0.48	1.42	
					f _{MX} = 16 MHz ^{Note 3} ,	Square wave input		0.26	0.86	mA
					V _{DD} = 5.0 V	Resonator connection		0.45	1.15	
					f _{MX} = 16 MHz ^{Note 3} ,	Square wave input		0.25	0.86	mA
					V _{DD} = 3.0 V	Resonator connection		0.44	1.15	
					f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.20	0.63	mA
					V _{DD} = 5.0 V	Resonator connection		0.28	0.71	
					f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.19	0.63	mA
					V _{DD} = 3.0 V	Resonator connection		0.28	0.71	
				LS (low-speed	f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		100	560	μA
<r></r>				main) mode ^{Note 6}	V _{DD} = 3.0 V	Resonator connection		160	560	
					f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		100	560	μA
					V _{DD} = 2.0 V	Resonator connection		160	560	
				Subsystem	fsub = 32.768 kHz ^{Note 5} ,	Square wave input		0.34	0.62	μA
				clock operation	$T_A = -40^{\circ}C$	Resonator connection		0.51	0.80	
					fsub = 32.768 kHz ^{Note 5} ,	Square wave input		0.38	0.62	μA
					T _A = +25°C	Resonator connection		0.57	0.80	
					fsuв = 32.768 kHz ^{Note 5} ,	Square wave input		0.46	2.30	μA
					T _A = +50°C	Resonator connection		0.67	2.49	
					fsub = 32.768 kHz ^{Note 5} ,	Square wave input		0.65	4.03	μA
					T _A = +70°C	Resonator connection		0.91	4.22	
					fsub = 32.768 kHz ^{Note 5} ,	Square wave input		1.00	8.04	μA
					T _A = +85°C	Resonator connection		1.31	8.23	
<r></r>		IDD3	STOP	T _A = -40°C				0.18	0.52	μA
<r></r>			mode ^{Note 7}	T _A = +25°C				0.24	0.52	
			T _A = +50°C	>			0.33	2.21		
				T _A = +70°C			0.53	3.94		
				T _A = +85°C				0.93	7.95	

(Notes and Remarks are listed on the next page.)

<R>

<R>

<R>

<R>

Notes 1. Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or V_{SS}. The following points apply in the HS (high-speed main), LS (low-speed main), and LV (low-voltage main) modes.

- The currents in the "TYP." column do not include the operating currents of the peripheral modules.
- The currents in the "MAX." column include the operating currents of the peripheral modules, except for those flowing into the LCD controller/driver, A/D converter, LVD circuit, comparator, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten.
- In the subsystem clock operation, the currents in both the "TYP." and "MAX." columns do not include the operating currents of the peripheral modules. However, in HALT mode, including the current flowing into the real-time clock 2.

In the STOP mode, the currents in both the "TYP." and "MAX." columns do not include the operating currents of the peripheral modules.

- 2. During HALT instruction execution by flash memory.
- 3. When high-speed on-chip oscillator and subsystem clock are stopped.
- 4. When high-speed system clock and subsystem clock are stopped.
- 5. When high-speed on-chip oscillator and high-speed system clock are stopped.
- When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1).
- 6. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
 HS (high-speed main) mode: 2.7 V ≤ V_{DD} ≤ 5.5 V@1 MHz to 24 MHz
 - 2.4 V ≤ V_{DD} ≤ 5.5 V@1 MHz to 16 MHz
 - LS (low-speed main) mode: 1.8 V ≤ V_{DD} ≤ 5.5 V@1 MHz to 8 MHz
 - LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}_{@}1 \text{ MHz}$ to 4 MHz

7. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.

- **Remarks 1.** fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. file: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

$(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol		Condition	ns		MIN.	TYP.	MAX.	Unit
Low-speed on- chip oscillator operating current	_{FIL} Note 1						0.20		μA
RTC2 operating current	IRTC Notes 1, 2, 3	fsuв = 32.768 kHz					0.02		μA
12-bit interval timer operating current	ITMKA Notes 1, 2, 4						0.04		μA
Watchdog timer operating current	WDT ^{Notes 1, 2, 5}	fı∟ = 15 kHz					0.22		μA
A/D converter operating current	ADC ^{Notes 1, 6}	When conversion at maximum speed	Normal mode		D = 5.0 V = V _{DD} = 3.0 V		1.3 0.5	1.7 0.7	mA
A/D converter reference voltage current	ADREF ^{Note 1}						75.0		μA
Temperature sensor operating current	TMPS ^{Note 1}						75.0		μA
LVD operating current	LVD ^{Notes 1, 7}						0.08		μΑ
Comparator	ICMP ^{Notes 1, 10}	V _{DD} = 5.0 V, Window mode					12.5		μA
operating current		Regulator output Comparator high-speed mode					6.5		μA
		voltage = 2.1 V	Comparator lo	ow-speed mo	de		1.7		μA
		$V_{DD} = 5.0 V,$	Window mode	9			8.0		μA
		Regulator output voltage = 1.8 V	Comparator h	high-speed mo	ode		4.0		μA
		Volkago 1.0 V	Comparator lo	ow-speed mo	de		1.3		μA
Self- programming operating current	IFSP ^{Notes 1, 8}						2.00	12.20	mA
SNOOZE	ISNOZ ^{Note 1}	ADC operation	While the mo	de is shifting [№]	ote 9		0.50	0.60	mA
operating current			During A/D co mode, AVREFF		0		1.20	1.44	
		Simplified SPI (CSI)/	UART operatio	on			0.70	0.84	μA
LCD operating current	ILCD1 Notes 1, 11, 12	External resistance division method	f _{LCD} = f _{SUB} LCD clock = 128 Hz	1/3 bias, four time slices	V _{DD} = 5.0 V, V _{L4} = 5.0 V		0.04	0.20	μA
	I _{LCD2} Note 1, 11	Internal voltage boosting method	f _{LCD} = f _{SUB} LCD clock = 128 Hz	1/3 bias, four time slices	$V_{DD} = 3.0 V,$ $V_{L4} = 3.0 V$ $(V_{LCD} = 04H)$		0.85	2.20	μA
					$V_{DD} = 5.0 V,$ $V_{L4} = 5.1 V$ $(V_{LCD} = 12H)$		1.55	3.70	

(Notes and Remarks are listed on the next page.)

- **Notes 1.** Current flowing to VDD.
 - 2. When high speed on-chip oscillator and high-speed system clock are stopped.
 - 3. Current flowing only to the real-time clock 2 (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The value of the current for the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock 2 operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of real-time clock 2.
 - 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The value of the current for the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and ITMKA, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
 - 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer operates.
 - **6.** Current flowing only to the A/D converter. The current value of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
 - 7. Current flowing only to the LVD circuit. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit operates.
 - 8. Current flowing only during self programming.
 - 9. For shift time to the SNOOZE mode, see 21.3.3 SNOOZE mode.
 - **10.** Current flowing only to the comparator circuit. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ICMP when the comparator circuit operates.
 - **11.** Current flowing only to the LCD controller/driver. The value of the current for the RL78 microcontrollers is the sum of the supply current (IDD1 or IDD2) and LCD operating current (ILCD1, ILCD2, or ILCD3), when the LCD controller/driver operates in operation mode or HALT mode. However, not including the current flowing into the LCD panel. Conditions of the TYP. value and MAX. value are as follows.
 - Setting 20 pins as the segment function and blinking all
 - Selecting fsub for system clock when LCD clock = 128 Hz (LCDC0 = 07H)
 - Setting four time slices and 1/3 bias
 - **12.** Not including the current flowing into the external division resistor when using the external resistance division method.
- **Remarks 1.** fil: Low-speed on-chip oscillator clock frequency
 - 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 3. fclk: CPU/peripheral hardware clock frequency
 - 4. The temperature condition for the TYP. value is $T_A = 25^{\circ}C$.

32.4 AC Characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol		Conditi	ions		MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum	Тсч	Main system			$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	0.0417		1	μs
instruction execution time)		clock (fmain) operation	main) mode		$2.4 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V}$	0.0625		1	μs
		operation	LS (low-spee main) mode		$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	0.125		1	μs
			LV (low-volta main) mode	•	$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	0.25		1	μs
		Subsystem clo operation ^{Note}	ock (fsua)		$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	28.5	30.5	31.3	μs
		In the self			$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	0.0417		1	μs
		programming	main) mode		$2.4 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V}$	0.0625		1	μs
		mode	LS (low-spee main) mode		$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	0.125		1	μs
			LV (low-volta main) mode	•	$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	0.25		1	μs
External system clock	fex	$2.7 V \leq V_{DD} \leq 3$	5.5 V			1.0		20.0	MHz
frequency		$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 2$	2.7 V			1.0		16.0	MHz
		$1.8 V \le V_{DD} < 2$	2.4 V			1.0		8.0	MHz
		$1.6 V \leq V_{DD} <$	1.8 V			1.0		4.0	MHz
	fexs					32		35	kHz
External system clock input	t _{EXH} ,	$2.7 V \leq V_{DD} \leq 3$	5.5 V			24			ns
high-level width, low-level	texl	$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 2$	2.7 V			30			ns
width		1.8 V ≤ V _{DD} < 2	2.4 V			60			ns
		$1.6 \text{ V} \leq \text{V}_{\text{DD}} <$	1.8 V			120			ns
	texhs, texls					13.7			μs
TI00 to TI07 input high-level width, low-level width	tтıн, tтı∟					1/fмск+10			ns
TO00 to TO07 output	fто	HS (high-spee	ed main)	4.0 \	/ ≤ V _{DD} ≤ 5.5 V			12	MHz
frequency		mode	:	2.7 ۱	$V \leq V_{DD} < 4.0 V$			8	MHz
			:	2.4 \	/ ≤ V _{DD} < 2.7 V			4	MHz
		LV (low-voltag mode	je main)	1.6 \	$V \le V_{DD} \le 5.5 V$			2	MHz
		LS (low-speed mode	l main)	1.8 \	$V \le V_{DD} \le 5.5 V$			4	MHz
PCLBUZ0, PCLBUZ1 output	f PCL	HS (high-spee	ed main)	4.0 \	/ ≤ V _{DD} ≤ 5.5 V			16	MHz
frequency		mode	[:	2.7 ۱	$V \leq V_{DD} < 4.0 V$			8	MHz
				2.4 \	$V \leq V_{DD} < 2.7 V$			4	MHz
		LV (low-voltag	je main)	1.8 \	$V \le V_{DD} \le 5.5 V$			4	MHz
		mode		1.6 \	/ ≤ V _{DD} < 1.8 V			2	MHz
		LS (low-speed mode	l main)	1.8 \	$V \le V_{DD} \le 5.5 V$			4	MHz
Interrupt input high-level width, low-level width	tinth, tintl	INTP0 to INTF	77	1.6 \	$V \le V_{DD} \le 5.5 V$	1			μs
RESET low-level width	trsl		•			10			μs

(Note and Remark are listed on the next page.)

Note Operation is not possible if 1.6 V ≤ V_{DD} < 1.8 V in LV (low-voltage main) mode while the system is operating on the subsystem clock.

RemarkfMCK: Timer array unit operation clock frequency
(Operation clock to be set by the CKSmn0, CKSmn1 bits of timer mode register mn (TMRmn)
m: Unit number (m = 0), n: Channel number (n = 0 to 7))

Minimum Instruction Execution Time during Main System Clock Operation

R01UH0762EJ0110 Rev.1.10 Jul 31, 2024

TCY VS VDD (LS (low-speed main) mode)

- When the high-speed on-chip oscillator clock is selected
- --- During self programming
- ---- When high-speed system clock is selected

AC Timing Test Points

32.5 Peripheral Functions Characteristics

AC Timing Test Points

32.5.1 Serial array unit

(1) During communication at same potential (UART mode) ($T_A = -40$ to +85°C, 1.6 V $\leq V_{DD} \leq 5.5$ V, Vss = 0 V)

Parameter	Symbol	Conditions		h-speed Mode	`	/-speed Mode	`	/-voltage) Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate ^{Note 1}		2.4 V≤ V _{DD} ≤ 5.5 V		fмск/6		fмск/6		fмск/6	bps
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$		4.0		1.3		0.6	Mbps
		1.8 V ≤ V _{DD} ≤ 5.5 V		-		fмск/6		fмск/6	bps
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$		-		1.3		0.6	Mbps
		$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$		-		-		fмск/6	bps
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$		_		_		0.6	Mbps

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

2. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLK) are:

 HS (high-speed main) mode:
 $24 \text{ MHz} (2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V})$
 $16 \text{ MHz} (2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V})$

 LS (low-speed main) mode:
 $8 \text{ MHz} (1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V})$

 LV (low-voltage main) mode:
 $4 \text{ MHz} (1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V})$

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remarks 1. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 3)

fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

(2) During communication at same potential (Simplified SPI (CSI) mode) (master mode, SCKp... internal clock output)

Parameter	Symbol	Co	onditions	HS (high- main) N	•	LS (low-s main) N	•	LV (low-vo main) M	•	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.$	5 V	167 ^{Note 1}		500 ^{Note 1}		1000 ^{Note 1}		ns
		$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.$	5 V	250 ^{Note 1}		500 ^{Note 1}		1000 ^{Note 1}		ns
		$1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.$	5 V	-		500 ^{Note 1}		1000 ^{Note 1}		ns
		$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.$	5 V	-		-		1000 ^{Note 1}		ns
SCKp high-/low-level	tкнı,	$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.$	5 V	tkcy1/2-12		tkcy1/2-50		tkcy1/2-50		ns
width	t KL1	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.$	5 V	tkcy1/2-18		tkcy1/2-50		tkcy1/2-50		ns
		$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.$	5 V	tkcy1/2-38		tkcy1/2-50		tkcy1/2-50		ns
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.$	5 V	_		tkcy1/2-50		tkcy1/2-50		ns
		$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.$	5 V	_		_		tkcy1/2-100		ns
SIp setup time	tsik1	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.$	5 V	44		110		110		ns
(to SCKp↑) ^{Note 2}		$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.$	5 V	75		110		110		ns
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.$	5 V	_		110		110		ns
		$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.$	5 V	_		_		220		ns
SIp hold time	tksi1	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.$	5 V	19		19		19		ns
(from SCKp↑) ^{Note 3}		$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.$	5 V	_		19		19		ns
		$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.$	5 V	_		_		19		ns
Delay time from	tkso1	C = 30 pF ^{Note 5}	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$		25		25		25	ns
SCKp↓ to			$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$		_		25		25	ns
SOp output ^{Note 4}			$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$		_		-		25	ns

(T _A = -40 to +85°C, 1.0	$6 V \le V_{DD} \le 5.5 V, V_{SS} = 0 V$
(

Notes 1. The value must also be equal to or more than 4/fclk for CSI00.

- **2.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 5. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remarks 1. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM numbers (g = 0, 1)

> fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))

(3) During communication at same potential (Simplified SPI (CSI) mode) (slave mode, SCKp... external clock input)

Parameter	Symbol	Cor	ditions		h-speed Mode	•	/-speed Mode	•	-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle	t ксү2	$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5$	5 V fмск > 20 MHz	8/fмск		_		_		ns
time ^{Note 5}			fмск ≤ 20 MHz	6/fмск		6/fмск		6/fмск		ns
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5$	5 V fмск > 16 MHz	8/fмск		_		_		ns
			fмск ≤ 16 MHz	6/fмск		6/fмск		6/fмск		ns
		$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5$	ν	6/fмск and 500		6/fмск		6/fмск		ns
		$1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5$	V	_		6/fмск		6/fмск		ns
		$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5$	ν.	-		-		6/fмск		ns
SCKp high-/low-	t кн2,	$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5$	V V	tксү2/2-7		tксү2/2-7		tксү2/2-7		ns
level width	t _{KL2}	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5$	V	tксү2/2-8		tксү2/2-8		tксү2/2-8		ns
		$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5$	ν.	tксү2/2–18		tксү2/2–18		tксү2/2–18		ns
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5$	V V	-		tксү2/2–18		tксү2/2–18		ns
		$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5$	V	-		_		tксү2/2–66		ns
SIp setup time	tsik2	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5$	S V	1/fмск+20		1/fмск+30		1/fмск+30		ns
(to SCKp↑) ^{Note 1}		$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5$	5 V	1/fмск+30		1/fмск+30		1/fмск+30		ns
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5$	ν	-		1/fмск+30		1/fмск+30		ns
		$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5$	5 V	-		-		1/fмск+40		ns
SIp hold time	t _{KSI2}	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5$	ν	1/fмск+31		1/fмск+31		1/fмск+31		ns
(from SCKp↑) ^{Note 2}		$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5$	5 V	-		1/fмск+31		1/fмск+31		ns
SCKp ⁺) ^{inter}		$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5$	ν	-		-		1/fмск+250		ns
Delay time from	tĸso2	C = 30 pF ^{Note 4}	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$		2/fмск+44		2/fмск+110		2/fмск+110	ns
SCKp↓ to SOp output ^{Note 3}			$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$		2/fмск+75		2/fмск+110		2/fмск+110	ns
ouiput			$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$		-		2/fмск+110		2/fмск+110	ns
			$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$		-		-		2/fмск+220	ns

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

- Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **2.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SOp output lines.
 - 5. Transfer rate in SNOOZE mode: MAX. 1 Mbps
- Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remarks 1. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM number (g = 0, 1)

 fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00)) Simplified SPI (CSI) mode connection diagram (during communication at same potential)

Simplified SPI (CSI) mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remarks 1. p: CSI number (p = 00)

2. m: Unit number, n: Channel number (mn = 00)

(4) During communication at same potential (simplified I²C mode)

Parameter	Symbol	Conditions		h-speed Mode		/-speed Mode		-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fsc∟	2.7 V ≤ V _{DD} ≤ 5.5 V, C _b = 50 pF, R _b = 2.7 kΩ		1000 Note 1		400 ^{Note 1}		400 ^{Note 1}	kHz
		$\begin{array}{l} 1.8 \; V \; (2.4 \; V^{\text{Note 3}}) \leq V_{\text{DD}} \leq 5.5 \; V, \\ C_{\text{b}} = 100 \; \text{pF}, \; R_{\text{b}} = 3 \; \text{k}\Omega \end{array}$		400 ^{Note 1}		400 ^{Note 1}		400 ^{Note 1}	kHz
		$\begin{array}{l} 1.8 \; V \; (2.4 \; V^{\text{Note 3}}) \leq V_{\text{DD}} < 2.7 \; V, \\ C_{\text{b}} = 100 \; \text{pF}, \; R_{\text{b}} = 5 \; \text{k}\Omega \end{array}$		300 ^{Note 1}		300 ^{Note 1}		300 ^{Note 1}	kHz
		1.6 V ≤ V _{DD} < 1.8 V, C _b = 100 pF, R _b = 5 kΩ		-		-		250 ^{Note 1}	kHz
Hold time when SCLr = "L"	t∟ow	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 5.5 \ V, \\ C_{b} = 50 \ pF, \ R_{b} = 2.7 \ k\Omega \end{array}$	475		1150		1150		ns
		$\begin{array}{l} 1.8 \; V \; (2.4 \; V^{\text{Note 3}}) \leq V_{\text{DD}} \leq 5.5 \; V, \\ C_{\text{b}} = 100 \; p\text{F}, \; R_{\text{b}} = 3 \; k\Omega \end{array}$	1150		1150		1150		ns
		$\begin{array}{l} 1.8 \; V \; (2.4 \; V^{\text{Note 3}}) \leq V_{\text{DD}} < 2.7 \; V, \\ C_{\text{b}} = 100 \; \text{pF}, \; R_{\text{b}} = 5 \; \text{k}\Omega \end{array}$	1550		1550		1550		ns
		1.6 V ≤ V _{DD} < 1.8 V, C _b = 100 pF, R _b = 5 kΩ	-		_		1850		ns
Hold time when SCLr = "H"	tніgн	2.7 V \leq V _{DD} \leq 5.5 V, C _b = 50 pF, R _b = 2.7 kΩ	475		1150		1150		ns
		1.8 V (2.4 V ^{Note 3}) \leq V _{DD} \leq 5.5 V, C _b = 100 pF, R _b = 3 kΩ	1150		1150		1150		ns
		$\begin{array}{l} 1.8 \ V \ (2.4 \ V^{\text{Note 3}}) \leq V_{\text{DD}} < 2.7 \ V, \\ C_{\text{b}} = 100 \ \text{pF}, \ R_{\text{b}} = 5 \ \text{k}\Omega \end{array}$	1550		1550		1550		ns
		1.6 V ≤ V _{DD} < 1.8 V, C _b = 100 pF, R _b = 5 kΩ	_		_		1850		ns
Data setup time (reception)	tsu:dat	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 5.5 \ V, \\ C_{b} = 50 \ pF, \ R_{b} = 2.7 \ k\Omega \end{array}$	1/f _{MCK} + 85 ^{Note 2}		1/fмск+ 145 ^{Note 2}		1/fмск+ 145 ^{Note 2}		ns
		$\begin{array}{l} 1.8 \; V \; (2.4 \; V^{\text{Note 3}}) \leq V_{\text{DD}} \leq 5.5 \; V, \\ C_{\text{b}} = 100 \; \text{pF}, \; R_{\text{b}} = 3 \; \text{k}\Omega \end{array}$	1/fмск+ 145 ^{Note 2}		1/fмск+ 145 ^{Note 2}		1/fмск+ 145 ^{Note 2}		ns
		$\begin{array}{l} 1.8 \; V \; (2.4 \; V^{\text{Note 3}}) \leq V_{\text{DD}} < 2.7 \; V, \\ C_{\text{b}} = 100 \; \text{pF}, \; R_{\text{b}} = 5 \; \text{k}\Omega \end{array}$	1/fмск+ 230 ^{Note 2}		1/fмск+ 230 ^{Note 2}		1/fмск+ 230 ^{Note 2}		ns
		$1.6 V \le V_{DD} < 1.8 V,$ $C_b = 100 \text{ pF}, R_b = 5 \text{ k}\Omega$	-		-		1/f _{МСК} + 290 ^{Note 2}		ns
Data hold time (transmission)	thd:dat	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 5.5 \ V, \\ C_{b} = 50 \ pF, \ R_{b} = 2.7 \ k\Omega \end{array}$	0	305	0	305	0	305	ns
		$\begin{array}{l} 1.8 \; V \; (2.4 \; V^{\text{Note 3}}) \leq V_{\text{DD}} \leq 5.5 \; V, \\ C_{\text{b}} = 100 \; \text{pF}, \; R_{\text{b}} = 3 \; \text{k}\Omega \end{array}$	0	355	0	355	0	355	ns
		$\begin{array}{l} 1.8 \; V \; (2.4 \; V^{\text{Note 3}}) \leq V_{\text{DD}} < 2.7 \; V, \\ C_{\text{b}} = 100 \; \text{pF}, \; R_{\text{b}} = 5 \; \text{k}\Omega \end{array}$	0	405	0	405	0	405	ns
		1.6 V ≤ V _{DD} < 1.8 V, C _b = 100 pF, R _b = 5 kΩ	_	_	_	_	0	405	ns

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

 $(\ensuremath{\textit{Notes}}, \ensuremath{\textit{Caution}}, \ensuremath{\text{and}} \ensuremath{\textit{Remarks}} \ensuremath{\text{are listed}} \ensuremath{\text{on the next page.}})$

- Notes 1. The value must also be equal to or less than $f_{MCK}/4$.
 - 2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".
 - 3. Condition in the HS (high-speed main) mode
- Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Simplified I²C mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

- **Remarks 1.** R_b[Ω]: Communication line (SDAr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance
 - **2.** r: IIC number (r = 00, 10), g: PIM and POM number (g = 0, 1)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0), n: Channel number (n = 0, 2), mn = 00, 02)

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2)

Parameter	Symbol			Conditions	、 U	h-speed Mode	``	/-speed Mode	`	-voltage Mode	Unit
					MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		Reception		$V \le V_{DD} \le 5.5 V$, $V \le V_b \le 4.0 V$		fмск/6 Note 1		fмск/6 Note 1		fмск/6 Note 1	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 3}$		4.0		1.3		0.6	Mbps
				$V \leq V_{DD} < 4.0 V,$ $V \leq V_b \leq 2.7 V$		fмск/6 Note 1		fмск/6 Note 1		fмск/6 Note 1	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 3}$		4.0		1.3		0.6	Mbps
			V,	$V (2.4 V^{Note 4}) \le V_{DD} < 3.3$ $V \le V_b \le 2.0 V$		fмск/6 Note s1, 2		fмск/6 Notes 1, 2		fмск/6 Notes 1, 2	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 3}$		4.0		1.3		0.6	Mbps

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = 0 \text{ V})$

Notes 1. Transfer rate in SNOOZE mode is 4800 bps only.

- **2.** Use it with $V_{DD} \ge V_b$.
- 3. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLK) are:

 HS (high-speed main) mode:
 $24 \text{ MHz} (2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V})$

 16 MHz (2.4 V $\le \text{V}_{DD} \le 5.5 \text{ V})$

 LS (low-speed main) mode:
 $8 \text{ MHz} (1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V})$

 LV (low-voltage main) mode:
 $4 \text{ MHz} (1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V})$

- 4. Condition in the HS (high-speed main) mode
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (V_{DD} tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** V_b[V]: Communication line voltage
 - **2.** q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 3)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)

Parameter	Symbol		Conditions	、 U	h-speed Mode	LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		Trans mission	$4.0 V \le V_{DD} \le 5.5 V,$ $2.7 V \le V_b \le 4.0 V$		Note 1		Note 1		Note 1	bps
			Theoretical value of the maximum transfer rate $(C_b = 50 \text{ pF}, R_b = 1.4 \text{ k}\Omega, V_b = 2.7 \text{ V}$		2.8 ^{Note 2}		2.8 ^{Note 2}		2.8 ^{Note 2}	Mbps
			$2.7 V \le V_{DD} < 4.0 V,$ $2.3 V \le V_b \le 2.7 V$		Note 3		Note 3		Note 3	bps
			Theoretical value of the maximum transfer rate $(C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega, V_b = 2.3 \text{ V})$		1.2 ^{Note 4}		1.2 ^{Note 4}		1.2 ^{Note 4}	Mbps
			$1.8 \vee (2.4 \vee^{Note 8}) \le \vee_{DD} < 3.3 \vee,$ $1.6 \vee \le \vee_{b} \le 2.0 \vee$		Notes 5, 6		Notes 5, 6		Notes 5, 6	bps
			Theoretical value of the maximum transfer rate $(C_b = 50 \text{ pF}, R_b = 5.5 \text{ k}\Omega, V_b = 1.6 \text{ V})$		0.43 ^{Note 7}		0.43 ^{Note 7}		0.43 ^{Note 7}	Mbps

(T_A = −40 to +85°C, 1.8 V ≤ V_{DD} ≤ 5.5 V, V_{SS} = 0 V)

Notes 1. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when $4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$ and $2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V}$

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.2}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
- **3.** The smaller maximum transfer rate derived by using f_{MCK}/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq V_DD < 4.0 V and 2.3 V \leq V_b \leq 2.7 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times ln (1 - \frac{2.0}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.0}{V_b})\}}{(\frac{1}{(\text{Transfer rate})} \times \text{Number of transferred bits}} \times 100 [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **4.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to **Note 3** above to calculate the maximum transfer rate under conditions of the customer.
- **5.** Use it with $V_{DD} \ge V_b$.

Notes 6. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 1.8 V (2.4 V^{Note 8}) \leq V_{DD} < 3.3 V and 1.6 V \leq V_b \leq 2.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) = $\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 6 above to calculate the maximum transfer rate under conditions of the customer.
- 8. Condition in the HS (high-speed main) mode
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (V_{DD} tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

- Remarks 1.
 R_b[Ω]: Communication line (TxDq) pull-up resistance, C_b[F]: Communication line (TxDq) load capacitance, V_b[V]: Communication line voltage
 - **2.** q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 3)
 - fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
 m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

(6) Communication at different potential (2.5 V, 3 V) (Simplified SPI (CSI) mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

Parameter	Symbol		Conditions	HS (hig main)	h-speed Mode	•	v-speed Mode		-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tксүı	tксү1 ≥ 2/fc∟к	$\begin{array}{l} 4.0 \; V \leq V_{DD} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 20 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$	200		1150		1150		ns
			$\begin{array}{l} 2.7 \; V \leq V_{DD} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 20 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	300		1150		1150		ns
SCKp high-level width	tкнı	$4.0 V \le V_{DD} \le 5$ $C_b = 20 \text{ pF}, R_b \le 5$.5 V, 2.7 V ≤ V₅ ≤ 4.0 V, = 1.4 kΩ	tксү1/2 — 50		tксү1/2 — 50		tксү1/2 — 50		ns
		2.7 V ≤ V _{DD} < 4. C _b = 20 pF, R _b	0 V, 2.3 V ≤ V₅ ≤ 2.7 V, = 2.7 kΩ	tксү1/2 — 120		tксү1/2 — 120		tксү1/2 — 120		ns
SCKp low-level width	tĸ∟1	$4.0 V \le V_{DD} \le 5$ $C_b = 20 \text{ pF}, R_b \le 5$.5 V, 2.7 V ≤ V₅ ≤ 4.0 V, = 1.4 kΩ	tксү1/2 — 7		tксү1/2 — 50		tксү1/2 — 50		ns
		$2.7 V \le V_{DD} < 4$ $C_b = 20 \text{ pF}, R_b = 100 \text{ pF}$	0 V, 2.3 V ≤ V₅ ≤ 2.7 V, = 2.7 kΩ	tксү1/2 — 10		tксү1/2 — 50		tксү1/2 — 50		ns
SIp setup time (to SCKp↑) ^{Note 1}	tsıĸı	$4.0 V \le V_{DD} \le 5$ $C_b = 20 \text{ pF}, R_b \le 5$.5 V, 2.7 V ≤ V₅ ≤ 4.0 V, = 1.4 kΩ	58		479		479		ns
		2.7 V ≤ V _{DD} < 4. C _b = 20 pF, R _b	0 V, 2.3 V ≤ V♭ ≤ 2.7 V, = 2.7 kΩ	121		479		479		ns
SIp hold time (from SCKp↑) ^{Note 1}	tksi1	$4.0 V \le V_{DD} \le 5$ $C_b = 20 \text{ pF}, R_b \le 5$.5 V, 2.7 V ≤ V₅ ≤ 4.0 V, = 1.4 kΩ	10		10		10		ns
		2.7 V ≤ V _{DD} < 4. C _b = 20 pF, R _b	0 V, 2.3 V ≤ V₅ ≤ 2.7 V, = 2.7 kΩ	10		10		10		ns
Delay time from SCKp↓ to	tkso1	$4.0 V \le V_{DD} \le 5$ $C_b = 20 \text{ pF}, R_b \le 5$.5 V, 2.7 V ≤ V₅ ≤ 4.0 V, = 1.4 kΩ		60		60		60	ns
SOp output ^{Note 1}		2.7 V ≤ V _{DD} < 4. C _b = 20 pF, R _b	0 V, 2.3 V ≤ V₅ ≤ 2.7 V, = 2.7 kΩ		130		130		130	ns
SIp setup time (to SCKp↓) ^{Note 2}	tsıĸı	$4.0 V \le V_{DD} \le 5$ $C_b = 20 \text{ pF}, R_b \le 5$.5 V, 2.7 V ≤ V₅ ≤ 4.0 V, = 1.4 kΩ	23		110		110		ns
		2.7 V ≤ V _{DD} < 4. C _b = 20 pF, R _b	0 V, 2.3 V ≤ V₅ ≤ 2.7 V, = 2.7 kΩ	33		110		110		ns
SIp hold time (from SCKp↓) ^{Note 2}	tksi1	$4.0 V \le V_{DD} \le 5$ $C_b = 20 \text{ pF}, R_b \le 5$.5 V, 2.7 V ≤ V₅ ≤ 4.0 V, = 1.4 kΩ	10		10		10		ns
		$2.7 V \le V_{DD} < 4.$ $C_b = 20 \text{ pF}, R_b = 100 \text{ pF}$	0 V, 2.3 V ≤ V₅ ≤ 2.7 V, = 2.7 kΩ	10		10		10		ns
Delay time from SCKp↑ to	tkso1	$4.0 V \le V_{DD} \le 5$ $C_b = 20 \text{ pF}, R_b \le 5$.5 V, 2.7 V ≤ V₅ ≤ 4.0 V, = 1.4 kΩ		10		10		10	ns
SOp output ^{Note 2}		2.7 V ≤ V _{DD} < 4. C _b = 20 pF, R _b :	0 V, 2.3 V ≤ Vb ≤ 2.7 V, = 2.7 kΩ		10		10		10	ns

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

(Notes, Caution and Remarks are listed on the next page.)

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
 - 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** R_b[Ω]: Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM number (g = 0, 1)
 - **3.** fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))
 - 4. This specification is valid only when CSI00's peripheral I/O redirect function is not used.

(7) Communication at different potential (1.8 V, 2.5 V, 3 V) (Simplified SPI (CSI) mode) (master mode, SCKp... internal clock output) (1/2)

Parameter	Symbol		Conditions	HS (hig main)	•	LS (low main)	/-speed Mode		-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	t ксү1	tkcyı ≥ 4/fc∟k	$\begin{array}{l} 4.0 \; V \leq V_{DD} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 30 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$	300		1150		1150		ns
			$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	500		1150		1150		ns
			$ \begin{split} & 1.8 \; V \; (2.4 \; V^{\text{Note 1}}) \leq V_{\text{DD}} < 3.3 \\ & V, \\ & 1.6 \; V \leq V_b \leq 1.8 \; V^{\text{Note 2}}, \\ & C_b = 30 \; pF, \; R_b = 5.5 \; k\Omega \end{split} $	1150		1150		1150		ns
SCKp high-level width	tкнı	$4.0 V \le V_{DD} \le C_b = 30 \text{ pF, R}$	5.5 V, 2.7 V \leq V _b \leq 4.0 V, _b = 1.4 kΩ	tксү1/2 — 75		tксү1/2 — 75		tксү1/2 — 75		ns
		2.7 V ≤ V _{DD} < C _b = 30 pF, R	4.0 V, 2.3 V \leq V _b \leq 2.7 V, _{bb} = 2.7 kΩ	tксү1/2 — 170		tксү1/2 — 170		tксү1/2 — 170		ns
		$\begin{array}{l} 1.8 \ V \ (2.4 \ V^{Nc} \\ 1.6 \ V \leq V_b \leq 2 \\ C_b = 30 \ pF, \ R \end{array}$		tксү1/2 — 458		tkcy1/2 - 458		tксү1/2 — 458		ns
SCKp low-level width	tĸ∟1	$4.0 V \le V_{DD} \le C_b = 30 \text{ pF, R}$	5.5 V, 2.7 V \leq V _b \leq 4.0 V, _{bb} = 1.4 kΩ	tксү1/2 — 12		tксү1/2 — 50		tксү1/2 — 50		ns
		2.7 V ≤ V _{DD} < C _b = 30 pF, R	4.0 V, 2.3 V \leq V _b \leq 2.7 V, _b = 2.7 kΩ	tксү1/2 — 18		tксү1/2 — 50		tксү1/2 — 50		ns
		$1.8 V (2.4 V^{NG})$ $1.6 V \le V_b \le 2$ $C_b = 30 \text{ pF, R}$,	tkcy1/2 – 50		tксү1/2 — 50		tксү1/2 — 50		ns
SIp setup time (to SCKp↑) ^{Note 3}	tsıĸı	4.0 V ≤ V _{DD} ≤ C _b = 30 pF, R	5.5 V, 2.7 V \leq V _b \leq 4.0 V, _{bb} = 1.4 kΩ	81		479		479		ns
		2.7 V ≤ V _{DD} < C _b = 30 pF, R	4.0 V, 2.3 V \leq V _b \leq 2.7 V, _{bb} = 2.7 kΩ	177		479		479		ns
		$1.8 \vee (2.4 \vee^{NG})$ $1.6 \vee \leq V_b \leq 2$ $C_b = 30 \text{ pF, R}$		479		479		479		ns
SIp hold time (from SCKp↑) ^{Note 3}	tksi1	$4.0 V \le V_{DD} \le C_b = 30 \text{ pF, R}$	5.5 V, 2.7 V \leq V _b \leq 4.0 V, _b = 1.4 kΩ	19		19		19		ns
		2.7 V ≤ V _{DD} < C _b = 30 pF, R	4.0 V, 2.3 V \leq V _b \leq 2.7 V, _{bb} = 2.7 kΩ	19		19		19		ns
		$1.8 \vee (2.4 \vee^{NG})$ $1.6 \vee \leq V_b \leq 2$ $C_b = 30 \text{ pF, R}$		19		19		19		ns
Delay time from SCKp↓ to	tkso1	4.0 V ≤ V _{DD} ≤ C _b = 30 pF, R	5.5 V, 2.7 V ≤ V₅ ≤ 4.0 V, ₅ = 1.4 kΩ		100		100		100	ns
SOp output ^{Note 3}		2.7 V ≤ V _{DD} < C _b = 30 pF, R	$4.0 V, 2.3 V \le V_b \le 2.7 V,$ _b = 2.7 kΩ		195		195		195	ns
		$1.8 \vee (2.4 \vee^{NG})$ $1.6 \vee \leq V_b \leq 2$ $C_b = 30 \text{ pF, R}$,		483		483		483	ns

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)

(7) Communication at different potential (1.8 V, 2.5 V, 3 V) (Simplified SPI (CSI) mode) (master mode, SCKp... internal clock output) (2/2)

Parameter	Symbol	Conditions	HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Slp setup time (to SCKp↓) ^{Note 4}	tsıkı	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 30 \ pF, \ R_b = 1.4 \ k\Omega \end{array}$	44		110		110		ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	44		110		110		ns
		$\begin{split} & 1.8 \ V \ (2.4 \ V^{\text{Note 1}}) \leq V_{\text{DD}} < 3.3 \ V, \\ & 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V^{\text{Note 2}}, \\ & C_{\text{b}} = 30 \ \text{pF}, \ R_{\text{b}} = 5.5 \ \text{k}\Omega \end{split}$	110		110		110		ns
SIp hold time (from SCKp↓) ^{Note 4}	tksı1		19		19		19		ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	19		19		19		ns
		$\begin{split} & 1.8 \ V \ (2.4 \ V^{\text{Note 1}}) \leq V_{\text{DD}} < 3.3 \ V, \\ & 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V^{\text{Note 2}}, \\ & C_{\text{b}} = 30 \ \text{pF}, \ R_{\text{b}} = 5.5 \ \text{k}\Omega \end{split}$	19		19		19		ns
Delay time from SCKp↑ to SOp output ^{Note 4}	tkso1			25		25		25	ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		25		25		25	ns
		$\begin{split} 1.8 \ V & (2.4 \ V^{\text{Note 1}}) \leq V_{\text{DD}} < 3.3 \ V, \\ 1.6 \ V & \leq V_{\text{b}} \leq 2.0 \ V^{\text{Note 2}}, \\ C_{\text{b}} & = 30 \ \text{pF}, \ R_{\text{b}} = 5.5 \ \text{k}\Omega \end{split}$		25		25		25	ns

(TA = -40 to +85°C, 1.8 V \leq VDD \leq 5.5 V, Vss = 0 V)

Notes 1. Condition in HS (high-speed main) mode

2. Use it with $V_{DD} \ge V_b$.

- 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
- 4. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

Simplified SPI (CSI) mode connection diagram (during communication at different potential)

Simplified SPI (CSI) mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

- **Remarks 1.** R_b[Ω]: Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - 2. p: CSI number (p = 00), m: Unit number , n: Channel number (mn = 00), g: PIM and POM number (g = 0, 1)
 - **3.** fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))

RENESAS

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (Simplified SPI (CSI) mode) (slave mode, SCKp... external clock input)

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	-
SCKp cycle	tKCY2	$4.0 V \le V_{DD} \le 5.5 V$,	20 MHz < fмск	12/fмск		_		_		ns
time ^{Note 1}		$4.0 V \le V_{\rm b} \le 3.0 V,$ $2.7 V \le V_{\rm b} \le 4.0 V$	8 MHz < fмск ≤ 20 MHz	10/fмск		_		_		ns
			4 MHz < fмск ≤ 8 MHz	8/ f мск		16/ f мск		_		ns
			fмск ≤ 4 MHz	6/fмск		10/fмск		10/f мск		ns
		$2.7 V \le V_{DD} < 4.0 V,$ $2.3 V \le V_b \le$ 2.7 V	20 MHz < fмск	16/fмск		_		_		ns
			16 MHz < fмск ≤ 20 MHz	14/ f мск		_		_		ns
			8 MHz < fмск ≤ 16 MHz	12/fмск		_		_		ns
			4 MHz < fмск ≤ 8 MHz	8/fмск		16/fмск		_		ns
			fмск ≤ 4 MHz	6/fмск		10/fмск		10/ f мск		ns
		$\begin{array}{l} 1.8 \lor (2.4 \lor^{\text{Note 2}}) \leq \\ \forall_{\text{DD}} < 3.3 \lor, \\ 1.6 \lor \leq \lor_{\text{b}} \leq \\ 2.0 \lor^{\text{Note 3}} \end{array}$	20 MHz < fмск	36/f мск		_		_		ns
			16 MHz < fмск ≤ 20 MHz	32/fмск		_		_		ns
			8 MHz < fмск ≤ 16 MHz	26/ f мск		_		_		ns
			4 MHz < fмск ≤ 8 MHz	16/ f мск		16/fмск		_		ns
			fмск ≤ 4 MHz	10/ f мск		10/fмск		10/fмск		ns
SCKp high- /low-level width	tкн2, tкL2	$4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V}$		tксү2/2 – 12		tксү2/2 – 50		tксү2/2 - 50		ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V}$		tксү2/2 – 18		tксү2/2 - 50		tксү2/2 - 50		ns
		1.8 V (2.4 V ^{Note 2}) \leq V _{DD} < 3.3 V, 1.6 V \leq V _b \leq 2.0 V ^{Note 3}		tксү2/2 – 50		tксү2/2 – 50		tксү2/2 - 50		ns
SIp setup time (to SCKp↑) ^{Note 4}	tsik2	$4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, 2$	$2.7 \text{ V} \leq V_b \leq 4.0 \text{ V}$	1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V}$		1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
		$\begin{array}{l} 1.8 \ V \ (2.4 \ V^{\text{Note 2}}) \leq V_{\text{DD}} < 3.3 \ V, \\ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V^{\text{Note 3}} \end{array}$		1/fмск + 30		1/fмск + 30		1/fмск + 30		ns
SIp hold time (from SCKp↑) ^{Note 5}	tksı2	$4.0 V \le V_{DD} \le 5.5 V, 2$	$2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V}$	1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}, 2$	$2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}$	1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
		$\begin{array}{l} 1.8 \ V \ (2.4 \ V^{\text{Note 2}}) \leq V_{\text{DD}} < 3.3 \ V, \\ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V^{\text{Note 3}} \end{array}$		1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
Delay time from SCKp↓ to SOp output ^{Note 6}	tkso2	4.0 V ≤ V _{DD} ≤ 5.5 V, 2 C _b = 30 pF, R _b = 1.4			2/fмск + 120		2/fмск + 573		2/fмск + 573	ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$			2/fмск + 214		2/fмск + 573		2/fмск + 573	ns
		$\begin{array}{l} 1.8 \; V \; (2.4 \; V^{Note\; 2}) \leq V \\ 1.6 \; V \leq V_{b} \leq 2.0 \; V^{Note} \\ \mathbf{C}_{b} = 30 \; pF, \; R_{b} = 5.5 \end{array}$	3,		2/fмск + 573		2/fмск + 573		2/fмск + 573	ns

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \ 1.8 \text{ V} \le V_{\text{DD}} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)
- Notes 1. Transfer rate in SNOOZE mode: MAX. 1 Mbps
 - 2. Condition in HS (high-speed main) mode
 - **3.** Use it with $V_{DD} \ge V_b$.
 - **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 5. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **6.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp†" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

Simplified SPI (CSI) mode connection diagram (during communication at different potential)

Simplified SPI (CSI) mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

- p: CSI number (p = 00), m: Unit number, n: Channel number (mn = 00),
 g: PIM and POM number (g = 0, 1)
- fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn) m: Unit number, n: Channel number (mn = 00))

RENESAS

(9) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode) (1/2)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions		Jh-speed) Mode	-	w-speed) Mode	LV (low-voltage main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fsc∟	$\begin{array}{l} 4.0 \; V \leq V_{DD} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$		1000 Note 1		300 ^{Note 1}		300 ^{Note 1}	kHz
		$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		1000 Note 1		300 ^{Note 1}		300 ^{Note 1}	kHz
		4.0 V \leq V _{DD} \leq 5.5 V, 2.7 V \leq V _b \leq 4.0 V, C _b = 100 pF, R _b = 2.8 kΩ		400 ^{Note 1}		300 ^{Note 1}		300 ^{Note 1}	kHz
		2.7 V \leq V _{DD} $<$ 4.0 V, 2.3 V \leq V _b \leq 2.7 V, C _b = 100 pF, R _b = 2.7 k Ω		400 ^{Note 1}		300 ^{Note 1}		300 ^{Note 1}	kHz
		$\begin{split} & 1.8 \ V \ (2.4 \ V^{\text{Note } 2}) \leq V_{\text{DD}} < 3.3 \ V, \\ & 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V^{\text{Note } 3}, \\ & C_{\text{b}} = 100 \ \text{pF}, \ R_{\text{b}} = 5.5 \ \text{k}\Omega \end{split}$		300 ^{Note 1}		300 ^{Note 1}		300 ^{Note 1}	kHz
Hold time when SCLr = "L"	t∟ow	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	475		1550		1550		ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	475		1550		1550		ns
		$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 100 \ pF, \ R_b = 2.8 \ k\Omega \end{array}$	1150		1550		1550		ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1150		1550		1550		ns
		$\begin{split} & 1.8 \ V \ (2.4 \ V^{\text{Note } 2}) \leq V_{\text{DD}} < 3.3 \ V, \\ & 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V^{\text{Note } 3}, \\ & C_{\text{b}} = 100 \ \text{pF}, \ R_{\text{b}} = 5.5 \ \text{k}\Omega \end{split}$	1550		1550		1550		ns
Hold time when SCLr = "H"	tніgн	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	245		610		610		ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	200		610		610		ns
		$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 100 \ pF, \ R_b = 2.8 \ k\Omega \end{array}$	675		610		610		ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	600		610		610		ns
		$\begin{split} 1.8 \ V & (2.4 \ V^{\text{Note } 2}) \leq V_{\text{DD}} < 3.3 \ V, \\ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V^{\text{Note } 3}, \\ C_{\text{b}} &= 100 \ \text{pF}, \ R_{\text{b}} = 5.5 \ \text{k}\Omega \end{split}$	610		610		610		ns

(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)

(9) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode) (2/2)

Parameter	Symbol	Conditions	HS (higl main)		LS (low main)	•	LV (low- main)	-	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Data setup time (reception)	tsu:dat	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1/f _{МСК} + 135 ^{Note 4}		1/f _{МСК} + 190 ^{Note 4}		1/f _{МСК} + 190 ^{Note 4}		ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1/f _{МСК} + 135 ^{Note 4}		1/f _{МСК} + 190 ^{Note 4}		1/f _{МСК} + 190 ^{Note 4}		ns
		4.0 V \leq V _{DD} \leq 5.5 V, 2.7 V \leq V _b \leq 4.0 V, C _b = 100 pF, R _b = 2.8 kΩ	1/f _{МСК} + 190 ^{Note 4}		1/f _{МСК} + 190 ^{Note 4}		1/f _{МСК} + 190 ^{Note 4}		ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1/f _{МСК} + 190 ^{Note 4}		1/f _{МСК} + 190 ^{Note 4}		1/f _{МСК} + 190 ^{Note 4}		ns
		$\begin{split} 1.8 \ V & (2.4 \ V^{\text{Note 2}}) \leq V_{\text{DD}} < 3.3 \ V, \\ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V^{\text{Note 3}}, \\ C_{\text{b}} &= 100 \ \text{pF}, \ R_{\text{b}} = 5.5 \ \text{k}\Omega \end{split}$	1/f _{МСК} + 190 ^{Note 4}		1/f _{МСК} + 190 ^{Note 4}		1/f _{МСК} + 190 ^{Note 4}		ns
Data hold time (transmission)	thd:dat	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	0	305	0	305	0	305	ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	0	305	0	305	0	305	ns
		$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 100 \ pF, \ R_b = 2.8 \ k\Omega \end{array}$	0	355	0	355	0	355	ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	0	355	0	355	0	355	ns
		$ \begin{split} & 1.8 \ \text{V} \ (2.4 \ \text{V}^{\text{Note 2}}) \leq \text{V}_{\text{DD}} < 3.3 \ \text{V}, \\ & 1.6 \ \text{V} \leq \text{V}_{\text{b}} \leq 2.0 \ \text{V}^{\text{Note 3}}, \\ & \text{C}_{\text{b}} = 100 \ \text{pF}, \ \text{R}_{\text{b}} = 5.5 \ \text{k}\Omega \end{split} $	0	405	0	405	0	405	ns

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Notes 1. The value must also be equal to or less than $f_{MCK}/4$.

- 2. Condition in HS (high-speed main) mode
- **3.** Use it with $V_{DD} \ge V_b$.
- 4. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".
- Caution Select the TTL input buffer and the N-ch open drain output (V_{DD} tolerance) mode for the SDAr pin and the N-ch open drain output (V_{DD} tolerance) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the next page.)

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- **Remarks 1.** R_b[Ω]: Communication line (SDAr, SCLr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance, V_b[V]: Communication line voltage
 - **2.** r: IIC number (r = 00, 10), g: PIM, POM number (g = 0, 1)
 - fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
 m: Unit number, n: Channel number (mn = 00, 02))

32.5.2 Serial interface IICA

(1) I²C standard mode (1/2)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ V}_{\text{SS}} = 0 \text{ V})$

Parameter	Symbol	Conditions			h-speed Mode		/-speed Mode	LV (low main)	Unit	
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock	fsc∟	Normal	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	0	100	0	100	0	100	kHz
frequency		mode: fc∟ĸ ≥ 1 MHz	1.8 V (2.4 V ^{Note 3}) ≤ V _{DD} ≤ 5.5 V	0	100	0	100	0	100	kHz
		$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	1	_	_	_	0	100	kHz	
Setup time of	tsu:sta	2.7 V ≤ V _{DD} ≤	≦5.5 V	4.7		4.7		4.7		μs
restart condition		1.8 V (2.4 V	Note 3) \leq VDD \leq 5.5 V	4.7		4.7		4.7		μs
		1.6 V ≤ V _{DD} ≤	≦5.5 V	-	-	_	-	4.7		μs
Hold time ^{Note 1}	thd:sta	2.7 V ≤ V _{DD} ≤	≦5.5 V	4.0		4.0		4.0		μs
		$1.8 \text{ V} (2.4 \text{ V}^{\text{Note 3}}) \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$		4.0		4.0		4.0		μs
		1.6 V ≤ V _{DD} ≤	≤5.5 V	_	-	_	-	4.0		μs
Hold time when	t∟ow	2.7 V ≤ V _{DD} ≤	≦5.5 V	4.7		4.7		4.7		μs
SCLA0 = "L"		1.8 V (2.4 V	Note ³) \leq VDD \leq 5.5 V	4.7		4.7		4.7		μs
		1.6 V ≤ V _{DD} ≤	≤5.5 V	_	-	_	-	4.7		μs
Hold time when	tніgн	2.7 V ≤ V _{DD} ≤ 5.5 V		4.0		4.0		4.0		μs
SCLA0 = "H"	SCLA0 = "H"	1.8 V (2.4 V	Note ³) \leq V _{DD} \leq 5.5 V	4.0		4.0		4.0		μs
		1.6 V ≤ V _{DD} ≤	≤5.5 V	_	_	_	_	4.0		μs

(Notes, Caution and Remark are listed on the next page.)

(1) I²C standard mode (2/2)

(T _A = -40 to +85°C,	$1.6 V \le V_{DD} \le 5.5 V$, Vss = 0 V)
---------------------------------	---

Parameter	Symbol	Conditions	HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Data setup time	tsu:dat	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	250		250		250		ns
(reception)		$1.8 \text{ V} (2.4 \text{ V}^{\text{Note 3}}) \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$	250		250		250		ns
		$1.6 V \le V_{DD} \le 5.5 V$	_	_	_	-	250		ns
Data hold time	thd:dat	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	0	3.45	0	3.45	0	3.45	μs
(transmission) ^{Note 2}		$1.8 \text{ V} (2.4 \text{ V}^{\text{Note 3}}) \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$	0	3.45	0	3.45	0	3.45	μs
		1.6 V ≤ V _{DD} ≤ 5.5 V	_	_	_	-	0	3.45	μs
Setup time of stop	tsu:sto	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	4.0		4.0		4.0		μs
condition		$1.8 \text{ V} (2.4 \text{ V}^{\text{Note 3}}) \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$	4.0		4.0		4.0		μs
		$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	_	-	_	_	4.0		μs
Bus-free time	t BUF	2.7 V ≤ V _{DD} ≤ 5.5 V	4.7		4.7		4.7		μs
		$1.8 \text{ V} (2.4 \text{ V}^{\text{Note 3}}) \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$	4.7		4.7		4.7		μs
		$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	_	_	_	_	4.7		μs

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of the:DAT is during normal transfer and a clock stretch state is inserted in the ACK (acknowledge) timing.

- 3. Condition in HS (high-speed main) mode
- **Remark** The maximum value of C_b (communication line capacitance) and the value of R_b (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: C_b = 400 pF, R_b = 2.7 k Ω

(2) I²C fast mode

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol	bol Conditions			h-speed Mode		/-speed Mode	LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscl	Fast mode: fclk	2.7 V ≤ V _{DD} ≤ 5.5 V	0	400	0	400	0	400	kHz
		≥ 3.5 MHz	1.8 V (2.4 V ^{Note 3}) ≤ V _{DD} ≤ 5.5 V	0	400	0	400	0	400	kHz
Setup time of	tsu:sta	$2.7 \text{ V} \leq \text{V}_{\text{DD}}$	≤ 5.5 V	0.6		0.6		0.6		μs
restart condition		1.8 V (2.4 V	$^{\text{Note 3}}) \leq V_{\text{DD}} \leq 5.5 \text{ V}$	0.6		0.6		0.6		μs
Hold time ^{Note 1}	thd:sta	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$		0.6		0.6		0.6		μs
		$1.8 \text{ V} (2.4 \text{ V}^{\text{Note 3}}) \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$		0.6		0.6		0.6		μs
Hold time when	t∟ow	$2.7 V \le V_{DD} \le 5.5 V$ $1.8 V (2.4 V^{Note 3}) \le V_{DD} \le 5.5 V$		1.3		1.3		1.3		μs
SCLA0 ="L"				1.3		1.3		1.3		μs
Hold time when	tніgн	$2.7 \text{ V} \leq \text{V}_{\text{DD}}$	≤ 5.5 V	0.6		0.6		0.6		μs
SCLA0 ="H"		1.8 V (2.4 V	$^{\text{Note 3}}) \leq V_{\text{DD}} \leq 5.5 \text{ V}$	0.6		0.6		0.6		μs
Data setup time	tsu:dat	2.7 V ≤ V _{DD}	≤5.5 V	100		100		100		ns
(reception)		1.8 V (2.4 V	$^{Note 3}) \le V_{DD} \le 5.5 V$	100		100		100		ns
Data hold time	thd:dat	2.7 V ≤ V _{DD}	≤ 5.5 V	0	0.9	0	0.9	0	0.9	μs
(transmission) ^{Note 2}		1.8 V (2.4 V	$1.8 \text{ V} (2.4 \text{ V}^{\text{Note 3}}) \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$		0.9	0	0.9	0	0.9	μs
Setup time of stop	tsu:sto	2.7 V ≤ V _{DD}	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$			0.6		0.6		μs
condition		1.8 V (2.4 V	$1.8 \text{ V} (2.4 \text{ V}^{\text{Note 3}}) \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$			0.6		0.6		μs
Bus-free time	t BUF	2.7 V ≤ V _{DD}	2.7 V ≤ V _{DD} ≤ 5.5 V			1.3		1.3		μs
		1.8 V (2.4 V	$(Note 3) \le V_{DD} \le 5.5 V$	1.3		1.3		1.3		μs

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of the:DAT is during normal transfer and a clock stretch state is inserted in the ACK (acknowledge) timing.

- **3.** Condition in HS (high-speed main) mode
- **Remark** The maximum value of C_b (communication line capacitance) and the value of R_b (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode: C_b = 320 pF, R_b = 1.1 k Ω

(3) I²C fast mode plus

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = 0 \text{ V})$

Parameter	Symbol	Conditions			h-speed Mode		/-speed Mode	LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscl	Fast mode plus: fc∟ĸ ≥ 10 MHz	2.7 V ≤ V _{DD} ≤ 5.5 V	0	1000	-	_	-	_	kHz
Setup time of restart condition	tsu:sta	2.7 V ≤ V _{DD} ≤	≦5.5 V	0.26		-	-	-	-	μs
Hold time ^{Note 1}	thd:sta	2.7 V ≤ V _{DD} ≤	≦5.5 V	0.26		-	-	-	_	μs
Hold time when SCLA0 ="L"	tLow	2.7 V ≤ V _{DD} ≤	≤5.5 V	0.5		-	-	-	-	μs
Hold time when SCLA0 ="H"	tніgн	2.7 V ≤ V _{DD} ≤	≤5.5 V	0.26		-	_	-	_	μs
Data setup time (reception)	tsu:dat	2.7 V ≤ V _{DD} ≤	≤5.5 V	50		-	-	-	_	ns
Data hold time (transmission) ^{Note 2}	thd:dat	2.7 V ≤ V _{DD} ≤	≤5.5 V	0	0.45	-	-	-	-	μs
Setup time of stop condition	tsu:sto	2.7 V ≤ V _{DD} ≤	≤5.5 V	0.26		-	-	-	-	μs
Bus-free time	t BUF	2.7 V ≤ V _{DD} ≤	≤5.5 V	0.5		-	_	-	_	μs

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of the:DAT is during normal transfer and a clock stretch state is inserted in the ACK (acknowledge) timing.

Remark The maximum value of C_b (communication line capacitance) and the value of R_b (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode plus: C_b = 120 pF, R_b = 1.1 k Ω

IICA serial transfer timing

32.5.3 Smart card interface (SMCI)

Parameter	Symbol	Conditions	HS (high-speed main) mode		LS (low-speed m mode	nain)	LV (low-voltage m mode	Unit	
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCCLKn clock	f scclk	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	Complies with the	6	Complies with the	2	Complies with	1	MHz
frequency		$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	ISO/IEC 7816-3	4	ISO/IEC 7816-3	2	the ISO/IEC	1	
		$1.8~V \leq V_{\text{DD}} \leq 5.5~V$	standards	_	standards	2	7816-3 standards	1	
		$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$		_	_	_		1	
SCCLKn high-/low-	t scн,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	1/(fscclк × 2) – 12		1/(fscclк × 2) – 50		1/(fscclк × 2) – 50		ns
level width	tsc∟	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	1/(fscclк × 2) – 18						
		$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	1/(fscclк × 2) – 38						
		$1.8~V \leq V_{\text{DD}} \leq 5.5~V$	_	_					
		$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	_	-	_	_	1/(fscclк × 2) – 100		

(TA = -40 to +85°C, 1.6 V \leq VDD \leq 5.5 V, Vss = 0 V)

Remark n: Channel number (n = 0, 1)

32.6 Analog Characteristics

32.6.1 A/D converter characteristics

Classification of A/D converter characteristics

Reference Voltage	Reference voltage (+) = AVREFP Reference voltage (-) = AVREFM	Reference voltage (+) = VDD Reference voltage (–) = Vss	Reference voltage (+) = V _{BGR} Reference voltage (–) = AV _{REFM}
ANIO, ANI1	_	See 32.6.1 (2) .	See 32.6.1 (3) .
ANI16, ANI17	See 32.6.1 (1) .		
Internal reference voltage Temperature sensor output voltage	See 32.6.1 (1) .		_

(1) When reference voltage (+) = AV_{REFP}/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (–) = AV_{REFM}/ANI1 (ADREFM = 1), target pins: ANI16, ANI17, internal reference voltage, and temperature sensor output voltage

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{AV}_{REFP} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V}, \text{ Reference voltage (+)} = \text{AV}_{REFP}, \text{ Reference voltage (-)} = \text{AV}_{REFM} = 0 \text{ V})$

Parameter	Symbol	C	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$		1.2	±5.0	LSB
		AV _{REFP} = V _{DD} ^{Note 3}	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}^{\text{Note 4}}$		1.2	±8.5	LSB
Conversion time	tCONV	10-bit resolution	$3.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	2.125		39	μs
		Target pin:	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	3.1875		39	μs
		ANI16, ANI17	$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	17		39	μs
			$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	57		95	μs
		10-bit resolution	$3.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	2.375		39	μs
		Target pin: Internal	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	3.5625		39	μs
		reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$			±0.35	%FSR
		AV _{REFP} = V _{DD} ^{Note 3}	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}^{\text{Note 4}}$			±0.60	%FSR
Full-scale error ^{Notes 1, 2}	Ers	10-bit resolution	1.8 V ≤ AV _{REFP} ≤ 5.5 V			±0.35	%FSR
		AV _{REFP} = V _{DD} ^{Note 3}	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}^{\text{Note 4}}$			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$			±3.5	LSB
		AV _{REFP} = V _{DD} ^{Note 3}	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}^{\text{Note 4}}$			±6.0	LSB
Differential linearity error ^{Note 1}	DLE	10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$			±2.0	LSB
		AV _{REFP} = V _{DD} ^{Note 3}	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}^{\text{Note 4}}$			±2.5	LSB
Analog input voltage	VAIN	ANI16, ANI17		0		AVREFP	V
		Internal reference vol (2.4 V \leq V _{DD} \leq 5.5 V,	tage HS (high-speed main) mode))		VBGR ^{Note 5}		V
		Temperature sensor (2.4 V \leq V _{DD} \leq 5.5 V,	output voltage HS (high-speed main) mode))	,	VTMPS25 ^{Note \$}	5	V

(Notes are listed on the next page.)

Notes 1. Excludes quantization error (±1/2 LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. When AV_{REFP} < V_{DD}, the MAX. values are as follows.

 Overall error:
 Add ±4 LSB to the MAX. value when AV_{REFP} = V_{DD}.

 Zero-scale error/Full-scale error:
 Add ±0.2%FSR to the MAX. value when AV_{REFP} = V_{DD}.

 Integral linearity error/ Differential linearity error:
 Add ±2 LSB to the MAX. value when AV_{REFP} = V_{DD}.
- 4. Values when the conversion time is set to 57 μs (min.) and 95 μs (max.).
- 5. See 32.6.2 Temperature sensor/internal reference voltage characteristics.

(2) When reference voltage (+) = V_{DD} (ADREFP1 = 0, ADREFP0 = 0), reference voltage (−) = V_{ss} (ADREFM = 0), target pins: ANI0, ANI1, ANI16, ANI17, internal reference voltage, and temperature sensor output voltage

Parameter	Symbol	Co	nditions	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Notes 1, 2}	AINL	10-bit resolution	$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$		1.2	±7.0	LSB
			$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}^{\text{Note 3}}$		1.2	±10.5	LSB
Conversion time	tconv	10-bit resolution	$3.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	2.125		39	μs
		Target pin:	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	3.1875		39	μs
		ANIO, ANI1, ANI16, ANI17 ^{Note 3}	$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	17		39	μs
		/	$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	57		95	μs
		10-bit resolution	$3.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	2.375		39	μs
		Target pin: Internal	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	3.5625		39	μs
		reference voltage, and temperature sensor output voltage	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	17		39	μs
		(HS (high-speed main) mode)					
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution	$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			±0.60	%FSR
			$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}^{\text{Note 3}}$			±0.85	%FSR
Full-scale error ^{Notes 1, 2}	Ers	10-bit resolution	$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			±0.60	%FSR
			$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}^{\text{Note 3}}$			±0.85	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution	$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			±4.0	LSB
			$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}^{\text{Note 3}}$			±6.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution	$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			±2.0	LSB
			$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}^{\text{Note 3}}$			±2.5	LSB
Analog input voltage	VAIN	ANIO, ANI1, ANI16, AN	117	0		Vdd	V
		Internal reference volta (2.4 V \leq V _{DD} \leq 5.5 V, HS	ge S (high-speed main) mode))		V _{BGR} Note 4		V
		Temperature sensor ou (2.4 V ≤ V _{DD} ≤ 5.5 V, HS	tput voltage S (high-speed main) mode))	Ň	/TMPS25 ^{Note}	4	V

(T _A = –40 to +85°C, 1.6 V ≤ V _D	D ≤ 5.5 V, Vss = 0 V, Referenc	e voltage (+) = VDD, Refe	erence voltage (–) = Vss)

Notes 1. Excludes quantization error (±1/2 LSB).

2. This value is indicated as a ratio (%FSR) to the full-scale value.

3. Values when the conversion time is set to 57 μs (min.) and 95 μs (max.).

4. See 32.6.2 Temperature sensor/internal reference voltage characteristics.

(3) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pins: ANI0, ANI16, ANI17

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V}, \text{Reference voltage (+)} = \text{V}_{\text{BGR}^{\text{Note 3}}},$ Reference voltage (-) = AV_{REFM}^{Note 4} = 0 V, HS (high-speed main) mode)

Parameter	Symbol	Cond	Conditions			MAX.	Unit	
Resolution	RES				8		bit	
Conversion time	t _{CONV}	8-bit resolution	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	17		39	μs	
Zero-scale error ^{Notes 1, 2}	Ezs	8-bit resolution	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			±0.60	%FSR	
Integral linearity error ^{Note 1}	ILE	8-bit resolution	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			±2.0	LSB	
Differential linearity error Note 1	DLE	8-bit resolution	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			±1.0	LSB	
Analog input voltage	VAIN			0		VBGR ^{Note 3}	V	

Notes 1. Excludes quantization error (±1/2 LSB).

2. This value is indicated as a ratio (%FSR) to the full-scale value.

3. See 32.6.2 Temperature sensor/internal reference voltage characteristics.

4. When reference voltage $(-) = V_{SS}$, the MAX. values are as follows.Zero-scale error:Add $\pm 0.35\%$ FSR to the AV_{REFM} MAX. value.Integral linearity error:Add ± 0.5 LSB to the AV_{REFM} MAX. value.Differential linearity error:Add ± 0.2 LSB to the AV_{REFM} MAX. value.

32.6.2 Temperature sensor/internal reference voltage characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	ADS register = 80H, T _A = +25°C		1.05		V
Internal reference output voltage	VBGR	ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	Fvtmps	Temperature sensor that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tамр		5			μs

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V}, \text{HS (high-speed main) mode)}$

32.6.3 Comparator characteristics

(TA = -40 to +85°C, 1.6 V \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Co	nditions	MIN.	TYP.	MAX.	Unit
Input voltage range	lvref			0		Vdd – 1.4	V
	lvcmp			-0.3		V _{DD} + 0.3	V
Output delay	td	V _{DD} = 3.0 V Input slew rate > 50 mV/µs	Comparator high-speed mode, standard mode			1.2	μs
			Comparator high-speed mode, window mode			2.0	μs
			Comparator low-speed mode, standard mode		3.0	5.0	μs
High-electric-potential reference voltage	VTW+	Comparator high-speed mod window mode	le,	0.66Vdd	0.76Vdd	0.86Vdd	V
Low-electric-potential reference voltage	VTW–	Comparator high-speed mod window mode	le,	0.14Vdd	0.24V _{DD}	0.34Vdd	V
Operation stabilization wait time	tсмр			100			μs
Internal reference output voltage ^{Note}	Vbgr	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}, \text{ HS}$ (high	n-speed main) mode	1.38	1.45	1.50	V

Note Cannot be used in LS (low-speed main) mode, LV (low-voltage main) mode, subsystem clock operation, and STOP mode.

32.6.4 POR circuit characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	When power supply rises		1.51	1.55	V
	VPDR	When power supply falls	1.46	1.50	1.54	V
Minimum pulse width ^{Note}	TPW		300			μs

Note This is the time required for the POR circuit to execute a reset operation when V_{DD} falls below V_{PDR}. When the microcontroller enters STOP mode and when the main system clock (f_{MAIN}) has been stopped by setting bit 0 (HIOSTOP) and bit 7 (MSTOP) of the clock operation status control register (CSC), this is the time required for the POR circuit to execute a reset operation between when V_{DD} falls below 0.7 V and when V_{DD} rises to V_{POR} or higher.

32.6.5 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode

(TA = -40 to +85°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Supply voltage level	VLVD0	When power supply rises	3.98	4.06	4.14	V
voltage			When power supply falls	3.90	3.98	4.06	V
		VLVD1	When power supply rises	3.68	3.75	3.82	V
			When power supply falls	3.60	3.67	3.74	V
		VLVD2	When power supply rises	3.07	3.13	3.19	V
			When power supply falls	3.00	3.06	3.12	V
		VLVD3	When power supply rises	2.96	3.02	3.08	V
			When power supply falls	2.90	2.96	3.02	V
		VLVD4	When power supply rises	2.86	2.92	2.97	V
			When power supply falls	2.80	2.86	2.91	V
		VLVD5	When power supply rises	2.76	2.81	2.87	V
			When power supply falls	2.70	2.75	2.81	V
		VLVD6	When power supply rises	2.66	2.71	2.76	V
			When power supply falls	2.60	2.65	2.70	V
		VLVD7	When power supply rises	2.56	2.61	2.66	V
			When power supply falls	2.50	2.55	2.60	V
		VLVD8	When power supply rises	2.45	2.50	2.55	V
			When power supply falls	2.40	2.45	2.50	V
		VLVD9	When power supply rises	2.05	2.09	2.13	V
			When power supply falls	2.00	2.04	2.08	V
		VLVD10	When power supply rises	1.94	1.98	2.02	V
			When power supply falls	1.90	1.94	1.98	V
		VLVD11	When power supply rises	1.84	1.88	1.91	V
			When power supply falls	1.80	1.84	1.87	V
		VLVD12	When power supply rises	1.74	1.77	1.81	V
			When power supply falls	1.70	1.73	1.77	V
		VLVD13	When power supply rises	1.64	1.67	1.70	V
			When power supply falls	1.60	1.63	1.66	V
Minimum pu	Ilse width	tLw		300			μs
Detection de	elay time					300	μs

LVD Detection Voltage of Interrupt & Reset Mode

(T_A = -40 to +85°C, V_{PDR} \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

Parameter	Symbol		Cond	litions	MIN.	TYP.	MAX.	Unit
Interrupt and reset	VLVD13	Vpoc2,	VPOC1, VPOC0 = 0, 0, 0,	falling reset voltage	1.60	1.63	1.66	V
mode	VLVD12		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	1.74	1.77	1.81	V
				Falling interrupt voltage	1.70	1.73	1.77	V
	VLVD11		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	1.84	1.88	1.91	V
				Falling interrupt voltage	1.80	1.84	1.87	V
	VLVD4		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	VLVD11	VPOC2,	VPOC1, VPOC0 = 0, 0, 1,	falling reset voltage	1.80	1.84	1.87	V
	VLVD10		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	1.94	1.98	2.02	V
				Falling interrupt voltage	1.90	1.94	1.98	V
	VLVD9		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.05	2.09	2.13	V
				Falling interrupt voltage	2.00	2.04	2.08	V
VLVD2	VLVD2		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.07	3.13	3.19	V
				Falling interrupt voltage	3.00	3.06	3.12	V
	VLVD8	Vpoc2,	VPOC1, VPOC0 = 0, 1, 0,	falling reset voltage	2.40	2.45	2.50	V
	VLVD7		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.56	2.61	2.66	V
				Falling interrupt voltage	2.50	2.55	2.60	V
	VLVD6		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.66	2.71	2.76	V
				Falling interrupt voltage	2.60	2.65	2.70	V
	VLVD1		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.68	3.75	3.82	V
				Falling interrupt voltage	3.60	3.67	3.74	V
	VLVD5	Vpoc2,	VPOC1, VPOC0 = 0, 1, 1,	falling reset voltage	2.70	2.75	2.81	V
	VLVD4		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	VLVD3		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.96	3.02	3.08	V
				Falling interrupt voltage	2.90	2.96	3.02	V
	VLVD0		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.98	4.06	4.14	V
				Falling interrupt voltage	3.90	3.98	4.06	V

32.6.6 Supply voltage rising slope characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
V _{DD} rising slope	SVDD				54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range shown in 32.4 AC Characteristics.

32.7 LCD Characteristics

32.7.1 External resistance division method

(1) Static display mode

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, V_{L4} \text{ (MIN.)} \le V_{DD} \le 5.5 \text{ V}, V_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.0		Vdd	V

(2) 1/2 bias method, 1/4 bias method

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, V_{L4} \text{ (MIN.)} \le V_{DD} \le 5.5 \text{ V}, V_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.7		Vdd	V

(3) 1/3 bias method

(TA = -40 to +85°C, VL4 (MIN.) \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.5		Vdd	V

32.7.2 Internal voltage boosting method

(1) 1/3 bias method

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = 0 \text{ V})$

Parameter	Symbol	Cond	itions	MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	VL1	C1 to C4 ^{Note 1}	VLCD = 04H	0.90	1.00	1.08	V
		= 0.47 µF ^{Note 2}	VLCD = 05H	0.95	1.05	1.13	V
			VLCD = 06H	1.00	1.10	1.18	V
			VLCD = 07H	1.05	1.15	1.23	V
			VLCD = 08H	1.10	1.20	1.28	V
			VLCD = 09H	1.15	1.25	1.33	V
			VLCD = 0AH	1.20	1.30	1.38	V
			VLCD = 0BH	1.25	1.35	1.43	V
			VLCD = 0CH	1.30	1.40	1.48	V
			VLCD = 0DH	1.35	1.45	1.53	V
			VLCD = 0EH	1.40	1.50	1.58	V
			VLCD = 0FH	1.45	1.55	1.63	V
			VLCD = 10H	1.50	1.60	1.68	V
			VLCD = 11H	1.55	1.65	1.73	V
			VLCD = 12H	1.60	1.70	1.78	V
			VLCD = 13H	1.65	1.75	1.83	V
Doubler output voltage	VL2	C1 to C4 ^{Note 1} =	0.47 µF	2 V _{L1} – 0.10	2 VL1	2 VL1	V
Tripler output voltage	VL4	C1 to C4 ^{Note 1} = 0.47 µF		3 VL1 – 0.15	3 VL1	3 VL1	V
Reference voltage setup time ^{Note 2}	tvwait1			5			ms
Voltage boost wait time ^{Note 3}	tvwait2	C1 to C4 ^{Note 1} =	0.47 µF	500			ms

Notes 1. This is a capacitor that is connected between voltage pins used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL

C2: A capacitor connected between $V_{\mbox{\tiny L1}}$ and GND

C3: A capacitor connected between $V_{\mbox{\tiny L2}}$ and GND

C4: A capacitor connected between $V_{{\scriptscriptstyle L4}}$ and GND

C1 = C2 = C3 = C4 = 0.47 µF ± 30 %

- 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected (by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B) if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).
- 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).

(2) 1/4 bias method

(TA = -40 to +85°C, 1.8 V \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Cor	ditions	MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	VL1	C1 to C5 ^{Note 1}	VLCD = 04H	0.90	1.00	1.08	V
		= 0.47 µF ^{Note 2}	VLCD = 05H	0.95	1.05	1.13	V
			VLCD = 06H	1.00	1.10	1.18	V
			VLCD = 07H	1.05	1.15	1.23	V
			VLCD = 08H	1.10	1.20	1.28	V
			VLCD = 09H	1.15	1.25	1.33	V
			VLCD = 0AH	1.20	1.30	1.38	V
Doubler output voltage	VL2	C1 to C5 ^{Note 1} =	0.47 µF	2 VL1-0.08	2 VL1	2 VL1	V
Tripler output voltage	VL3	C1 to C5 ^{Note 1} =	0.47 µF	3 VL1-0.12	3 VL1	3 VL1	V
Quadruply output voltage	VL4	C1 to C5 ^{Note 1} =	0.47 µF	4 VL1-0.16	4 VL1	4 VL1	V
Reference voltage setup time ^{Note 2}	tvwait1			5			ms
Voltage boost wait time ^{Note 3}	tvwait2	C1 to C5 ^{Note 1} =	0.47 µF	500			ms

Notes 1. This is a capacitor that is connected between voltage pins used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL

- C2: A capacitor connected between V_{L1} and GND
- C3: A capacitor connected between V_{L2} and GND
- C4: A capacitor connected between $V_{\mbox{\tiny L3}}$ and GND
- C5: A capacitor connected between $V_{{\scriptscriptstyle L4}}$ and GND
- C1 = C2 = C3 = C4 = C5 = 0.47 μ F ± 30%
- 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected (by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B) if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).
- 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).

32.8 RAM Data Retention Characteristics

(T_A = -40 to +85°C)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.46 ^{Note}		5.5	V

Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

Caution Data in RAM are not retained if the CPU operates outside the specified operating voltage range. Therefore, place the CPU in STOP mode before the operating voltage drops below the specified range.

32.9 Flash Memory Programming Characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
System clock frequency	fclk	$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	1		24	MHz
Number of flash rewrites ^{Notes 1, 2, 3}	Cerwr	Retained for 20 years	1,000			Times
		T _A = 85°C				

Notes 1. 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.

2. When using flash memory programmer and Renesas Electronics self programming library

3. This characteristic indicates the flash memory characteristic and based on Renesas Electronics reliability test.

Remark When updating data multiple times, use the flash memory as one for updating data.

32.10 Dedicated Flash Memory Programmer Communication (UART)

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps

32.11 Timing of Entry to Flash Memory Programming Modes

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Time to complete the communication for the initial setting after the external reset is released	tsuinit	POR and LVD reset must be released before the external reset is released.			100	ms
Time to release the external reset after the TOOL0 pin is set to the low level	ts∪	POR and LVD reset must be released before the external reset is released.	10			μs
Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)	tно	POR and LVD reset must be released before the external reset is released.	1			ms

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ V}_{\text{SS}} = 0 \text{ V})$

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and completion the baud rate setting.
- **Remark** tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period.
 - $t_{\text{SU:}}$ Time to release the external reset after the TOOL0 pin is set to the low level
 - t_{HD}: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)

R7F0C020M2DFB

<R>

CHAPTER 33 PACKAGE DRAWINGS

R7F0C020M2DFB

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LFQFP80-12x12-0.50	PLQP0080KB-B	_	0.5

NOTE)

- 1. 2. 3.

DIMENSIONS '*1' AND '*2' DO NOT INCLUDE MOLD FLASH. DIMENSION '*3' DOES NOT INCLUDE TRIM OFFSET. PIN 1 VISUAL INDEX FEATURE MAY VARY, BUT MUST BE LOCATED WITHIN THE HATCHED AREA. CHAMFERS AT CORNERS ARE OPTIONAL; SIZE MAY VARY. 4.

Reference	Dimension in Millimeters			
Symbol	Min	Nom	Max	
D	11.9	12.0	12.1	
E	11.9	12.0	12.1	
A2		1.4		
HD	13.8	14.0	14.2	
HE	13.8	14.0	14.2	
Α			1.7	
A1	0.05		0.15	
bp	0.15	0.20	0.27	
С	0.09		0.20	
θ	0	3.5	8	
е		0.5		
×			0.08	
У			0.08	
Lp	0.45	0.6	0.75	
L1		1.0		

APPENDIX A REVISION HISTORY

A.1 Major Revisions in This Edition

		(1/
Page	Description	Classification
ALL		
	Modification of CSI to Simplified SPI (CSI)	(c)
	Modification of wait of IICA to clock stretch	(c)
CHAPTER 1 OUTLI	NE	
p.2	Addition of Notes 1 in 1.1 Features	(c)
p.2	Modification of Notes 1 to Notes 2	(c)
p.2	Modification of Notes 2 to Notes 3	(c)
p.4	Modification of Figure 1-1. Part Number, Memory Size, and Package	(d)
p.4	Modification of Table 1-1. List of Ordering Part Numbers	(d)
CHAPTER 32 ELEC	TRICAL SPECIFICATIONS	
p.74	Modification of Notes 1 and 4 in 32.3.2 Supply current characteristics	(c)
p.76	Modification of Notes 1 and 5 in 32.3.2 Supply current characteristics	(c)
p.76	Deletion of Notes 6 in 32.3.2 Supply current characteristics	(c)
p.120	Modification of 32.7.2 Internal voltage boosting method	(a)
CHAPTER 33 PACK	CAGE DRAWINGS	
p.124	Addition of PLQP0080KB-B	(d)

Remark "Classification" in the above table classifies revisions as follows.

(a): Error correction, (b): Addition/change of specifications, (c): Addition/change of description or note,
 (d): Addition/change of package, part number, or management division, (e): Addition/change of related documents

A.2 Revision History of Preceding Editions

Here is the revision history of the preceding editions. Chapter indicates the chapter of each edition.

Edition	Description	Chapter
Rev.1.00	Modification of 32.3.2 Supply current characteristics	CHAPTER 32 ELECTRICAL SPECIFICATIONS
Rev.0.50	First Edition issued	Throughout

R7F0C020M2DFB User's Manual: Hardware

 Publication Date:
 Rev.0.50
 Jul 26, 2017

 Rev.1.10
 Jul 31, 2024

Published by: Renesas Electronics Corporation

R7F0C020M2DFB

