Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

User's Manual

Multimedia Processor for Mobile Applications

ITU-R BT.656 Interface

EMMA Mobile1

Document No. S19257EJ2V0UM00 (2nd edition) Date Published April 2009

© NEC Electronics Corporation 2009 Printed in Japan [MEMO]

1 VOLTAGE APPLICATION WAVEFORM AT INPUT PIN

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (MAX) and V_{IH} (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (MAX) and V_{IH} (MIN).

(2) HANDLING OF UNUSED INPUT PINS

Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.

③ PRECAUTION AGAINST ESD

A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.

④ STATUS BEFORE INITIALIZATION

Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.

5 POWER ON/OFF SEQUENCE

In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current.

The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.

6 INPUT OF SIGNAL DURING POWER OFF STATE

Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.

The names of other companies and products are the registered trademarks or trademarks of the respective company.

These commodities, technology or software, must be exported in accordance with the export administration regulations of the exporting country. Diversion contrary to the law of that country is prohibited.

- The information in this document is current as of August, 2008. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".

The "Specific" quality grade applies only to NEC Electronics products developed based on a customerdesignated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.

- "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
- "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
- "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).

PREFACE

Readers	This manual is intended for hardware/software application system designers who wish to understand and use the ITU-R BT.656 interface functions of EMMA Mobile1 (EM1), a multimedia processor for mobile applications.				
Purpose	the ITU-R BT.656 interface	xplain to users the hardware and software functions of of EM1, and be used as a reference material for ware for systems that use EM1.			
Organization	This manual consists of the for• Chapter 1Overview• Chapter 2Pin function• Chapter 3Registers• Chapter 4Description	ions			
How to Read This Manual	 It is assumed that the readers of this manual have general knowledge of electricity, logic circuits, and microcontrollers. To understand the functions of the ITU-R BT.656 interface of EM1 in detail → Read this manual according to the CONTENTS. To understand the other functions of EM1 → Refer to the user's manual of the respective module. To understand the electrical specifications of EM1 → Refer to the Data Sheet. 				
Conventions	Data significance: Note: Caution: Remark: Numeric representation: Data type:	Higher digits on the left and lower digits on the right Footnote for item marked with Note in the text Information requiring particular attention Supplementary information Binary xxxx or xxxxB Decimal xxxx Hexadecimal xxxxH Word 32 bits Halfword 16 bits			

Byte ... 8 bits

Related Documents

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

	Document Name					
MC-10118A Data	sheet	S19657E				
μ PD77630A Dat	a sheet	S19686E				
User's manual	Audio/Voice and PWM Interfaces	S19253E				
	DDR SDRAM Interface	S19254E				
	DMA Controller	S19255E				
	I ² C Interface	S19256E				
	ITU-R BT.656 Interface	This manual				
	LCD Controller	S19258E				
	MICROWIRE	S19259E				
	NAND Flash Interface	S19260E				
	SPI	S19261E				
	UART Interface	S19262E				
	Image Composer	S19263E				
	Image Processor Unit	S19264E				
	System Control/General-Purpose I/O Interface	S19265E				
	Timer	S19266E				
	Terrestrial Digital TV Interface	S19267E				
	Camera Interface	S19285E				
	USB Interface	S19359E				
	SD Memory Card Interface	S19361E				
	PDMA	S19373E				
	One Chip (MC-10118A)	S19598E				
	One Chip (S19687E				

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document when designing.

CONTENTS

CHAPTE	R 1 C	OVERVIEW	9
1.1	Gene	eral	9
1.2	Featu	ures	9
1.3		tion Block Diagram	
CHAPTE	R 2 F	PIN FUNCTIONS	11
2.1	NTS	Pins	11
CHAPTE	R 3 F	REGISTERS	12
3.1	Regis	sters	
3.2	-	ster Functions	
	3.2.1	Control register	13
	3.2.2	Display register	14
	3.2.3	Status register	15
	3.2.4	Display area address register	16
	3.2.5	Display area address register UV	17
	3.2.6	Address addition value register	17
	3.2.7	Frame select register	18
	3.2.8	Interrupt setting registers	19
СНАРТЕ	R 4 C	DESCRIPTION OF FUNCTIONS	26
4.1	NTS	Encoder Interface	
	4.1.1	Generating synchronization signals	
	4.1.2	Adjusting the phase of control clock (NTS_CLKI)	
4.2	Fram	e Buffer and Data Buffer	
	4.2.1	Frame buffer	
	4.2.2	Frame buffer storage format	
	4.2.3	Switching frame buffers	
	4.2.4	Data buffer	
	4.2.5	Gain adjustment	
4.3	Interr	rupt Sources	
4.4	Cloc	k Control	

LIST OF FIGURES

Figure No.	Title	Page
Figure 1-1.	NTS Block Diagram	10
Figure 4-1.	Data Format in NTSC System	27
Figure 4-2.	Vertical Blanking Interval in NTSC System	27
Figure 4-3.	Data Format in PAL System	28
Figure 4-4.	Vertical Blanking Interval in PAL System	28
Figure 4-5.	Relationship Between Horizontal- and Vertical-Direction Timing Control Signals in NTSC System	29
Figure 4-6.	Relationship Between Horizontal- and Vertical-Direction Timing Control Signals in PAL System	30
Figure 4-7.	Synchronization with Rising Edge of NTS_CLKI	31
Figure 4-8.	Synchronization with Falling Edge of NTS_CLKI	31
Figure 4-9.	Image of Frame Buffer	32
Figure 4-10	9. Frame Buffer Switching Timing	34
Figure 4-11	. Data Buffer Access	35
Figure 4-12	2. YUV Data Gain Adjustment	36
Figure 4-13	6. Clock Supply Timing	37

LIST OF TABLES

Table No.	Title	Page
Table 4-1.	Video Timing Reference Codes	
Table 4-2.	SAV and EAV Setting Values in NTSC System	
Table 4-3.	SAV and EAV Setting Values in PAL System	
Table 4-4.	Interrupt Sources	

CHAPTER 1 OVERVIEW

1.1 General

This document describes the ITU-R BT.656 interface (NTS) of EM1.

1.2 Features

NTS fetches YUV422-format image data from a frame buffer memory, converts it to the image to be output to the ITU-R BT.656-compliant parallel interface in synchronization with the internal timing signals, and outputs it to an external NTSC/PAL encoder IC.

- (1) Supported standards
 NTSC (525/60): Effective pixels: 720 × 486
 PAL (625/50): Effective pixels: 720 × 576
- (2) Output data formatITU-R BT.656-compliant parallel data interface for data output
- (3) Input image data format YUV422 image data
- (4) Gain adjustment

Internally adjusts the gain of the input YUV data to support ITU-R BT.601.

(5) Upscaling

Can double an image vertically and horizontally.

If images need not be expanded to NTSC/PAL size, such as when playing MPEG videos, a small image is generated in the memory and is quadrupled when transferred to the encoder IC. This function reduces internal processing during image generation and memory traffic.

1.3 Function Block Diagram

Figure 1-1. NTS Block Diagram

CHAPTER 2 PIN FUNCTIONS

2.1 NTS Pins

Pin Name	I/O	After Reset	Function	Alternate Pin Function
NTS_DATA0	Output	_	ITU-R BT.656-compliant parallel data Bit 0	AB0_A17/GIO_P28/GIO_P75/SPI_SO CAM_YUV0
NTS_DATA1	Output	_	ITU-R BT.656-compliant parallel data Bit 1	AB0_A18/GIO_P29/GIO_P76/SP1_CS0 CAM_YUV1
NTS_DATA2	Output	_	ITU-R BT.656-compliant parallel data Bit 2	AB0_A19/GIO_P30/GIO_P77/SP1_CS1 CAM_YUV2
NTS_DATA3	Output	_	ITU-R BT.656-compliant parallel data Bit 3	AB0_RDB/GIO_P39/GIO_P78/SP1_CS2 CAM_YUV3
NTS_DATA4	Output	_	ITU-R BT.656-compliant parallel data Bit 4	AB0_WRB/GIO_P40/GIO_P79/SP1_CS3
NTS_DATA5	Output	_	ITU-R BT.656-compliant parallel data Bit 5	AB0_WAIT/GIO_P41/GIO_P80/ SP1_CS4/PM1_SEN
NTS_DATA6	Output	_	ITU-R BT.656-compliant parallel data Bit 6	AB0_CSB0/GIO_P42/GIO_P81/ SP1_CS5/PM1_SI
NTS_DATA7	Output	-	ITU-R BT.656-compliant parallel data Bit 7	AB0_CSB1/GIO_P43/GIO_P82/PM1_SO
NTS_VS	Output	_	Vertical synchronization signal (for debugging)	AB0_CSB2/GIO_P44/GIO_P73/ SP1_CLK
NTS_HS	Output	-	Horizontal synchronization signal (for debugging)	AB0_CSB3/GIO_P45/GIO_P74/SP1_SI
NTS_CLK	Input	-	ITU-R BT.656 interface control clock (27 MHz)	AB0_CLK/GIO_P11/GIO_P72/PM1_CLK

CHAPTER 3 REGISTERS

The NTS registers allow word access only.

Do not access reserved registers.

Any value written to reserved bits in each register is ignored.

3.1 Registers

Base address: 4021_0000H

Address	Register Name	Register Symbol	R/W	After Reset
0000H	Control register	NTS_CONTROL	R/W	0000_0000H
0004H	Display register	NTS_OUT	R/W	0000_0000H
0008H	Status register	NTS_STATUS	R	0000_0000H
000CH	Display area address register YA	NTS_YAREAAD_A	R/W	0000_0000H
0010H	Display area address register YB	NTS_YAREAAD_B	R/W	0000_0000H
0014H	Display area address register YC	NTS_YAREAAD_C	R/W	0000_0000H
0018H	Display area address register UVA	NTS_UVAREAAD_A	R/W	0000_0000H
001CH	Display area address register UVB	NTS_UVAREAAD_B	R/W	0000_0000H
0020H	Display area address register UVC	NTS_UVAREAAD_C	R/W	0000_0000H
0024H	Address addition value register	NTS_HOFFSET	R/W	0000_0000H
0028H	Frame select register	NTS_FRAMESEL	R/W	0000_0001H
002CH-	Reserved			
005CH	Reserved	_	_	_
0060H	Interrupt status register	NTS_INTSTATUS	R	0000_0000H
0064H	Interrupt raw status register	NTS_INTRAWSTATUS	R	0000_0000H
0068H	Interrupt enable set register	NTS_INTENSET	R/W	0000_0000H
006CH	Interrupt enable clear register	NTS_INTENCLR	W	0000_0000H
0070H	Interrupt source clear register	NTS_INTFFCLR	W	0000_0000H
0074H	Error address register	NTS_ERRORADR	R/W	0000_0000H
0078H	Software reset register	NTS_SWRESET	R/W	0000_0000H
007CH-	Deserved			
00FCH	Reserved	_	_	_

3.2 Register Functions

3.2.1 Control register

This register (NTS_CONTROL: 4021_0000H) control NTS.

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
			Rese	erved						
15	14	13	12	11	10	9	8			
			Rese	erved						
7	6	5	4	3	2	1	0			
	Reserved				OUTMODE	CLKPOL	ENDIAN			

Name	R/W	Bit	After Reset	Function
Reserved	R	31:4	0	Reserved. When these bits are read, 0 is returned for each bit.
UPSCALE	R/W	3	0	Specifies whether to enable the upscale (zoom) function.
				0: Disable
				1: Enable
OUTMODE	R/W	2	0	Selects the NTSC encoder interface output system.
				0: NTSC (525/60)
				1: PAL (625/60)
CLKPOL	R/W	1	0	Selects the phase of the NTS_CLKI (27 MHz).
				0: Rising edge of NTS_CLKI
				1: Falling edge of NTS_CLKI
ENDIAN	R/W	0	0	Specifies the endian of the image data being stored in the frame buffer
				memory.
				0: Little endian
				1: Big endian

3.2.2 Display register

This register (NTS_OUT: 4021_0004H) controls the data output to the NTS encoder interface.

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
			Rese	erved						
15	14	13	12	11	10	9	8			
			Rese	erved						
7	6	5	4	3	2	1	0			
	Reserved						OUT			

Name	R/W	Bit	After Reset	Function
Reserved	R	31:2	0	Reserved. When these bits are read, 0 is returned for each bit.
NTSOUT	R/W	1:0	0	Controls the data output to the NTS encoder interface.
				00: OFF (all-0 data is output), without synchronization signal output
				01: ON (BlackBack output), with synchronization signal output
				10: ON (BlueBack output), with synchronization signal output
				11: ON (Normal output), with synchronization signal output

3.2.3 Status register

This register (NTS_STATUS: 4021_0008H) indicates the status of NTS. The status of the NTS output can be acquired by polling this register.

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
			Rese	erved						
15	14	13	12	11	10	9	8			
	Reserved									
7	6	5	4	3	2	1	0			
	Reserved						TUS			

Name	R/W	Bit	After Reset	Function
Reserved	R	31:2	0	Reserved. When these bits are read, 0 is returned for each bit.
STATUS	R	1:0	0	Indicates the NTS output status.
				00: OFF (all-0 data is output), without synchronization signal output
				01: ON (BlackBack output), with synchronization signal output
				10: ON (BlueBack output), with synchronization signal output
				11: ON (Normal output), with synchronization signal output

3.2.4 Display area address register

These registers (NTS_YAREAAD_A: 4021_000CH, NTS_YAREAAD_B: 4021_0010H, NTS_YAREAAD_C: 4021_0014H) specify the head address of the Y-layer area in the frame buffer memory to which the YUV422-format image data is stored. A UV layer has three planes (A, B, and C), which have common specifications.

31	30	29	28	27	26	25	24			
	YAREAADA/B/C									
23	22	21	20	19	18	17	16			
	YAREAADA/B/C									
15	14	13	12	11	10	9	8			
			YAREA	ADA/B/C						
7	6	5	4	3	2	1	0			
	YAREAADA/B/C						0			
8							4			

Name	R/W	Bit	After Reset	Function		
YAREAADA/	R/W 31:2 0 Specifies the he		0	Specifies the head address of the frame buffer memory(Y layer).		
B/C				Specify the address by byte address on a 32-bit boundary.		
-	– R 1:0 0		0	Fixed to 0. When these bits are read, 0 is returned for each bit.		

3.2.5 Display area address register UV

These registers (NTS_UVAREAAD_A: 4021_0018H, NTS_UVAREAAD_B: 4021_001CH, NTS_UVAREAAD_C: 4021_0020H) specify the head address of the UV-layer area in the frame buffer memory to which the YUV422-format image data is stored. A UV layer has three planes (A, B, and C), which have common specifications.

31	30	29	28	27	26	25	24		
	UVAREAADA/B/C								
23	22	21	20	19	18	17	16		
			UVAREA	ADA/B/C					
15	14	13	12	11	10	9	8		
			UVAREA	ADA/B/C					
7	6	5	4	3	2	1	0		
	UVAREAADA/B/C						0		

Name	R/W	Bit	After Reset	Function		
UVAREAAD	R/W	31:2	0	Specifies the head address of the frame buffer memory (UV layer).		
A/B/C			Specify the address by byte address on a 32-bit boundar			
_	– R 1:0 0		0	Fixed to 0. When these bits are read, 0 is returned for each bit.		

3.2.6 Address addition value register

This register (NTS_HOFFSET: 4021_0024H) specifies the total number of bytes in the horizontal direction of frame buffer areas. The setting is commonly applied to frame buffers A, B and C.

31	30	2	29 2	8 27	26	25	24		
Reserved									
23	22	2	21 2	0 19	18	17	16		
				Reserved					
15	14	1	3 1	2 11	10	9	8		
	Reserve	ed		HOFFSET					
7	6		5 4	3	2	1	0		
			HOFFSET			0	0		
Name	R/W	Bit	After Reset		Function	l			
Reserved	R	31:13	0	Reserved. When the	nese bits are read,	0 is returned fo	r each bit.		
HOFFSET	R/W	12:0	0	Specifies the total number of bytes in the horizontal direction of the					
				frame buffer areas.	(The lower 2 bits a	are fixed to 0.)			

3.2.7 Frame select register

This register (NTS_FRAMESEL: 4021_0028H) selects display frame A, B, or C.

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
			Rese	rved						
7	6	5	4	3	2	1	0			
	Reserved				TATUS	ARE	ASEL			

Name	R/W	Bit	After Reset	Function
Reserved	R	31:4	0	Reserved. When these bits are read, 0 is returned for each
				bit.
AREASTATUS	R	3:2	00	Indicates the frame currently being displayed.
				00: Initial state
				01: Frame buffer A
				10: Frame buffer B
				11: Frame buffer C
AREASEL	R/W	1:0	01	Selects the frame buffer whose image is to be displayed.
				00: Setting prohibited
				01: Frame buffer A
				10: Frame buffer B
				11: Frame buffer C

3.2.8 Interrupt setting registers

These registers are used to specify various interrupt parameters. NTS uses four interrupts.

(1) Interrupt status register

This read-only register (NTS_INTSTATUS: 4021_0060H) indicates the status of the interrupt sources. The status of the interrupt sources enabled by the interrupt enable set register can be read.

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
			Rese	erved						
15	14	13	12	11	10	9	8			
	Reserved									

7	6	5	4	3	2	1	0
	Rese	rved		UNDERRUN	DMASTOP	DMAERR	NTSVS

Name	R/W	Bit	After Reset	Function
Reserved	R	31:4	0	Reserved. When these bits are read, 0 is returned for each bit.
UNDERRUN	R	3	0	Indicates the status of the underrun interrupt.
				0: No interrupt source
				1: Interrupt source occurred
DMASTOP	R	2	0	Indicates the status of the transfer stop interrupt.
				0: No interrupt source
				1: Interrupt source occurred
DMAERR	R	1	0	Indicates the status of the transfer error interrupt.
				0: No interrupt source
				1: Interrupt source occurred
NTSVS	R	0	0	Indicates the status of the NTS frame interrupt.
				0: No interrupt source
				1: Interrupt source occurred

(2) Interrupt raw status register

This read-only register (NTS_INTRAWSTATUS: 4021_0064H) indicates the status of the interrupt sources. The bits corresponding to the interrupt sources are set regardless of the settings of the interrupt enable set register and the interrupt enable clear register.

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
			Res	erved						
7	6	5	4	3	2	1	0			
	Reserved				DMASTOP	DMAERRRAW	NTSVSRAW			
				RAW	RAW					

Name	R/W	Bit	After Reset	Function
Reserved	R	31:4	0	Reserved. When these bits are read, 0 is returned for each bit.
UNDERRUN	R	3	0	Indicates the status of the underrun interrupt.
RAW				0: No interrupt source
				1: Interrupt source occurred
DMASTOPR	R	2	0	Indicates the status of the transfer stop interrupt.
AW				0: No interrupt source
				1: Interrupt source occurred
DMAERRRA	R	1	0	Indicates the status of the transfer error interrupt.
W				0: No interrupt source
				1: Interrupt source occurred
NTSVSRAW	R	0	0	Indicates the status of the NTS frame interrupt.
				0: No interrupt source
				1: Interrupt source occurred

(3) Interrupt enable set register

This register (NTS_INTENSET: 4021_0068H) enables issuance of interrupt requests. Only data of bits to which 1 is written is updated. When the bit corresponding to an interrupt source in this register is set to 1, the interrupt source is set, request for the interrupt is issued, and the corresponding bit of the interrupt status register is set to 1. If no bits are set to 1 in this register, no interrupt requests are issued even if an interrupt source is set, but the corresponding bit of the interrupt raw status register is set to 1.

31	30	29	28	27	26	25	24			
Reserved										
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
	Reserved									
7	6	5	4	3	2	1	0			

Reserved UNDERRUNEN DMASTOPEN DMAERREN NTSVSEN
--

Name	R/W	Bit	After Reset	Function
Reserved	R	31:4	0	Reserved. When these bits are read, 0 is returned for each bit.
UNDERRUNEN	R	3	0	Indicates whether issuance of the underrun interrupt request is enabled. 0: Not enabled, 1: Enabled
	W	3	_	Enables issuance of the underrun interrupt request. 0: Ignored, 1: Cancels masking of the interrupt.
DMASTOPEN	R	2	0	Indicates whether issuance of the transfer stop interrupt request is enabled. 0: Not enabled, 1: Enabled
	W	2	-	Enables issuance of the transfer stop interrupt request. 0: Ignored, 1: Cancels masking of the interrupt.
DMAERREN	R	1	0	Indicates whether issuance of the transfer stop interrupt request is enabled. 0: Not enabled, 1: Enabled
	W	1	_	Enables issuance of the transfer stop interrupt request. 0: Ignored, 1: Cancels masking of the interrupt.
NTSVSEN	R	0	0	Indicates whether issuance of the NTS frame interrupt request is enabled. 0: Not enabled, 1: Enabled
	W	0	-	Enables issuance of the NTS frame interrupt request. 0: Ignored, 1: Cancels masking of the interrupt.

(4) Interrupt enable clear register

This write-only register (NTS_INTENCLR:4021_006CH) disables (masks) issuance of interrupt requests. If the bit corresponding to an interrupt source in this register is set to 1, no interrupt requests are issued even if the interrupt source is generated. The status of the corresponding bit in the interrupt status register also remains unchanged. If no bits are set to 1 in this register, an interrupt request is issued when an interrupt source is set, and the corresponding bit of the interrupt status register is set to 1. Writing 0 to this register does not affect the setting.

31	30	29	28	27	26	25	24			
Reserved										
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
			Re	served						
7	6	5	4	3	2	1	0			
	Rese	erved		UNDERRUN	DMASTOP	DMAERR	NTSVSMASK			
				MASK	MASK	MASK				

Name	R/W	Bit	After Reset	Function
Reserved	-	31:4	0	Reserved.
UNDERRUN	W	3	0	Disables issuance of the underrun interrupt request.
MASK				1: Disables (masks) the interrupt.
DMASTOPM	W	2	0	Disables issuance of the transfer stop interrupt request.
ASK				1: Disables (masks) the interrupt.
DMAERRMA	W	1	0	Disables issuance of the transfer stop interrupt request.
SK				1: Disables (masks) the interrupt.
NTSVSMASK	W	0	0	Disables issuance of the NTS frame interrupt request.
				1: Disables (masks) the interrupt.

(5) Interrupt source clear register

This write-only register (NTS_INTFFCLR: 4021_0070H) requests clearing of interrupt sources. Setting the bit corresponding to an interrupt source to 1 clears the interrupt source. Writing 0 to this register does not affect the setting.

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
			Res	erved					
7	6	5	4	3	2	1	0		
	Rese	erved		UNDERRUNCLR	DMASTOPCLR	DMAERR CLR	NTSVS CLR		

Name	R/W	Bit	After Reset	Function
Reserved	-	31:4	0	Reserved.
UNDERRUN	W	3	0	Requests clearing of the source of the underrun interrupt.
CLR				1: Clears the interrupt source.
DMASTOPC	W	2	0	Requests clearing of the source of the transfer stop interrupt.
LR				1: Clears the interrupt source.
DMAERRCLR	W	1	0	Requests clearing of the source of the transfer error interrupt.
				1: Clears the interrupt source.
NTSVSCLR	W	0	0	Requests clearing of the source of the NTS frame interrupt.
				1: Clears the interrupt source.

(6) Error address register

This register (NTS_ERRORADR: 4021_0074H) retains the current HADDR status when an internal bus response ERROR, RETRY, or SPLIT is received during DMA transfer.

31	30	29	28	27	26	25	24		
ERRADR									
23	22	21	20	19	18	17	16		
	ERRADR								
15	14	13	12	11	10	9	8		
			ERR	ADR					
7	6	5	4	3	2	1	0		
		ERR	ADR			0	LOCK		
							•		

Name	R/W	Bit	After Reset	Function
ERRADR	R	31:2	0	Stores HADDR upon occurrence of an error response.
Reserved	R	1	0	Reserved. When this bit is read, 0 is returned.
LOCK	R/W	0	0	Error status
				0: Stores the address when an error response occurs.
				1: An error response occurred and the address was stored.

Caution If an error response occurs when the LOCK bit is 0, the current HADDR status is stored in the ERRADR bit and the LOCK bit is set to 1. To acquire the error status again, set the LOCK bit to 0. Writing 1 to the LOCK bit does not affect the setting.

(7) Software reset register

SWRESET

R/W

0

0

This register (NTS_SWRESET: 4021_0078H) is used for switching the phase of the NTS_CLKI (27 MHz) clock. This register resets the circuit operating at 27 MHz before the NTS_CLK phase is switched by using the CLKPOL bit of the control register (NTS_CONTROL). Cancel this setting after changing the phase.

31	30	2	29 2	.8 27	26	25	24		
Reserved									
23	22	2	21 2	.0 19	18	17	16		
Reserved									
15	14		13 1	2 11	10	9	8		
				Reserved					
7	6		5 4	4 3	2	1	0		
	Reserved								
Name	R/W	Bit	After Reset		Fun	ction			
Reserved	R	31:1	0	Reserved. Whe	en these bits are re	ead, 0 is returne	d for each bit.		

0: Disables reset.1: Enables reset.

Specifies whether to enable software reset.

CHAPTER 4 DESCRIPTION OF FUNCTIONS

4.1 NTS Encoder Interface

The ITU-R BT.656-compliant format uses the interlace system where a single screen (frame) consists of two fields. This system does not use the vertical synchronizing (VD) and horizontal synchronizing (HD) signals for synchronizing the image, but recognizes the effective pixel area by using the two timing reference signals SAV (start of active video) and EAV (end of active video), included in the data stream, for the synchronization.

SAV and EAV each consist of 3-byte preamble data (FF/00/00) and 1-byte timing reference data.

The following table lists the timing for the NTSC system and PAL system.

Data[7:0] Bit Number	1st Word (FF)	2nd Word (00)	3rd Word (00)	4th Word (XY)
7 (MSB)	1	0	0	1
6	1	0	0	F
5	1	0	0	V
4	1	0	0	н
3	1	0	0	P3
2	1	0	0	P2
1	1	0	0	P1
0	1	0	0	P0
F = 0: Fie	eld 1 is being acce	essed F =	1: Field 2 is be	eing accessed

Not in a field blanking interval V = 1: In a field blanking interval

Table 4-1. Video Timing Reference Codes

V = 0:

F = 1: Field 2 is being accessed

SAV, H = 1: EAV H = 0:

P3 to P0: Protection bits

P3 = V EXOR H P2 = F EXOR H P1 = F EXOR V P0 = F EXOR V EXOR H

(1) NTSC system

Table 4-2. SAV and EAV Setting Values in NTSC System

Line No.		SAV: XY Value								EAV: XY Value						
NTSC	1	F	V	Н	P3	P2	P1	P0	1	F	V	Н	P3	P2	P1	P0
1 to 3	1	1	1	0	1	1	0	0	1	1	1	1	0	0	0	1
4 to 20	1	0	1	0	1	0	1	1	1	0	1	1	0	1	1	0
21 to 263	1	0	0	0	0	0	0	0	1	0	0	1	1	1	0	1
264 to 265	1	0	1	0	1	0	1	1	1	0	1	1	0	1	1	0
266 to 282	1	1	1	0	1	1	0	0	1	1	1	1	0	0	0	1
283 to 525	1	1	0	0	0	1	1	1	1	1	0	1	1	0	1	0

Figure 4-2. Vertical Blanking Interval in NTSC System

(2) PAL system

Figure 4-3. Data Format in PAL System

Table 4-3.	SAV and EAV	Setting Values	in PAL System
------------	-------------	-----------------------	---------------

Line No.		SAV: XY Value							EAV: XY Value							
PAL	1	F	V	н	P3	P2	P1	P0	1	F	V	Н	P3	P2	P1	P0
1 to 22	1	0	1	0	1	0	1	1	1	0	1	1	0	1	1	0
23 to 310	1	0	0	0	0	0	0	0	1	0	0	1	1	1	0	1
311 to 312	1	0	1	0	1	0	1	1	1	0	0	1	1	1	1	0
313 to 335	1	1	1	0	1	1	0	0	1	1	1	1	0	0	0	1
336 to 623	1	1	0	0	0	1	1	1	1	1	0	1	1	0	1	0
624 to 625	1	1	1	0	1	1	0	0	1	1	1	1	0	0	0	1

Figure 4-4. Vertical Blanking Interval in PAL System

4.1.1 Generating synchronization signals

The horizontal-direction timing control signal is generated by using an 11-bit counter that operates with the NTS_CLKI clock.

The vertical-direction timing control signal is generated by using a 10-bit counter that operates with the generated horizontal-direction timing control signal.

Figure 4-5. Relationship Between Horizontal- and Vertical-Direction Timing Control Signals in NTSC System

4.1.2 Adjusting the phase of control clock (NTS_CLKI)

The timing of outputting NTS_DATA can be selected from the rising or falling edge of the NTS_CLKI clock by setting the CLKPOL bit of the NTS_CONTROL register. The NTS_DATA signal is output in synchronization with the rising edge of the NTS_CLKI clock when CLKPOL is set to 0, and with the falling edge when CLKPOL is set to 1.

As a result of this adjustment, the phase of circuits operating at 27 MHz is changed. To prevent the internal circuits from malfunctioning, reset the circuits operating at 27 MHz by using the software reset register (NTS_SWRESET) before phase adjustment, and cancel the reset after adjustment.

Figure 4-7. Synchronization with Rising Edge of NTS_CLKI

4.2 Frame Buffer and Data Buffer

4.2.1 Frame buffer

Frame buffer is generic term used to refer to a buffer storing a single screen of image data. There are three frame buffers, defined as frame buffers A, B, and C. The display area address registers Y (NTS_YAREAAD_A/B/C) and the display area address registers UV (NTS_UVAREAAD_A/B/C) correspond to frame buffers A, B, and C, respectively, and any address can be set by using these registers. The address addition value register (NTS_HOFFSET) can be used to specify the horizontal size of the frame buffer area in word (2 bytes) units. By this means, a rectangle area clipped from the frame buffer, which has been mapped in a size larger than the display image size, can be output to NTS. (The parameter of address addition value is common to frame buffers A, B, and C.)

Frame buffers A, B, and C are never accessed at the same time. One frame buffer is selected by an order of the processor.

4.2.2 Frame buffer storage format

Frame buffers store YUV422-format image data. The storage data format is shown below. The endian type for the bus can be specified by using the ENDIAN bit of the NTS_CONTROL register.

Data size: The same size for Y and UV planes.

Y Plane: Data size is X size x Y size bytes for the data at 1 pixel per byte.

UV Plane: Data size is X size × Y size bytes for the data at 2 pixels per byte for UV individually.

The following shows the file images when X size = n, Y size = m, and the number of images is 1.

(1) Little endian

Y plane

Y[0]	Y[1]	Y[2]	Y[3]	Y[4]	Y[5]			Y[14]	Y[15]
Y[16]	Y[17]								
									Y[nxm-1]

• UV plane

U[0]	V[0]	U[1]	V[1]	U[2]	V[2]	•	•		U[7]	V[7]
U[8]	V[8]									
									U[nxm/2-1]	V[nxm/2-1]

(2) Big endian

٠	Y	plane
---	---	-------

Y[1]	Y[0]	Y[3]	Y[2]	Y[5]	Y[4]			Y[15]	Y[14]
Y[17]	Y[16]								
								Y[nxm-1]	Y[nxm-2]

• UV plane

	•								
V[0]	U[0]	V[1]	U[1]	V[2]	U[2]	•	•	V[7]	U[7]
V[8]	U[8]								
								V[nxm/2-1]	U[nxm/2-1]

4.2.3 Switching frame buffers

The AREASEL bit of the frame select register (NTS_FRAMESEL) can be used to switch the frame buffers. The frame buffers are switched at the start of a frame (frame display start signal).

4.2.4 Data buffer

Data buffer is an NTS internal buffer that fetches the image data sent from the frame buffer by burst transfer.

The data buffer is a 32-bit × 128- word FIFO buffer with two ports (1R and 1W). If there is an available space of 64 bytes in the data buffer, data is written to the data buffer from the write port via the frame buffer interface. The read port is used to read (display) data from NTS.

The data buffer is accessed as shown in Figure 4-11. First, image data is written to the data buffer via the frame buffer interface. NTS reads the image data from the area where it was written, and displays the image. The image data is written to the frame buffer if the data buffer has an available space of 64 bytes. If the speed of reading the data buffer by NTS is faster than the buffer write speed, an underrun interrupt occurs.

Figure 4-11. Data Buffer Access

Caution If the burst transfer rate is not fast enough in comparison with the NTS image refresh rate, the image data amount is insufficient, which results in a fatal image deterioration. To avoid this, determine the clock cycle so that the following expression is sufficiently met. NTS_CLKI clock << AHB clock

4.2.5 Gain adjustment

To comply with ITU-R BT.601, a gain is internally adjusted for the input YUV data. The following shows the method.

Restrict the image data, which is input with values 0 to 255, to the range of 16 to 240.

Restrict Y data to the range of 16 to 235, and UV data to the range of 16 to 240. The values out of the range are fixed to 0.

Figure 4-12. YUV Data Gain Adjustment

4.3 Interrupt Sources

Control of each interrupt is assigned to each bit of the interrupt setting registers.

Interrupt Name	Source	Bit Assignment
Underrun interrupt	Generated when an underrun occurs in the NTS internal data buffer.	3
Transfer stop interrupt	Generated when a RETRY or SPLIT response is received during AHB transfer.	2
Transfer error interrupt	Generated when an ERROR response is received during AHB transfer, after a single NTSC image of display data has been output.	1
NTS frame interrupt	Generated when the frame display is started.	0

Table 4-4. Interrupt Sources

Generation of an NTS frame interrupt is triggered by the frame display start signal. If register settings are changed immediately after an NTS frame interrupt occurs, the change is enabled from the next and subsequent frames.

4.4 Clock Control

EM1 is designed for low power consumption, so it controls the clock supply on a module basis.

A clock is supplied when a module requests a clock or a register is accessed to request a clock.

For the NTSC system, a clock supply request is issued if the display register (NTS_OUT) is set to 1.

When a display frame ends with no display requests (the NTS_OUT register is 0), the clock supply request is canceled. The following shows the timing of requesting clock supply.

Revision History

Date	Revision	Comments
February 10,2009	1.0	-
April 27, 2009	2.0	Incremental update from comments to the 1.0.

For further information, please contact:

NEC Electronics Corporation

1753, Shimonumabe, Nakahara-ku, Kawasaki, Kanagawa 211-8668, Japan Tel: 044-435-5111 http://www.necel.com/

[America]

NEC Electronics America, Inc.

2880 Scott Blvd. Santa Clara, CA 95050-2554, U.S.A. Tel: 408-588-6000 800-366-9782 http://www.am.necel.com/

[Europe]

NEC Electronics (Europe) GmbH

Arcadiastrasse 10 40472 Düsseldorf, Germany Tel: 0211-65030 http://www.eu.necel.com/

> Hanover Office Podbielskistrasse 166 B 30177 Hannover Tel: 0 511 33 40 2-0

Munich Office Werner-Eckert-Strasse 9 81829 München Tel: 0 89 92 10 03-0

Stuttgart Office Industriestrasse 3

70565 Stuttgart Tel: 0 711 99 01 0-0

United Kingdom Branch

Cygnus House, Sunrise Parkway Linford Wood, Milton Keynes MK14 6NP, U.K. Tel: 01908-691-133

Succursale Française

9, rue Paul Dautier, B.P. 52 78142 Velizy-Villacoublay Cédex France Tel: 01-3067-5800

Sucursal en España

Juan Esplandiu, 15 28007 Madrid, Spain Tel: 091-504-2787

Tyskland Filial

Täby Centrum Entrance S (7th floor) 18322 Täby, Sweden Tel: 08 638 72 00

Filiale Italiana

Via Fabio Filzi, 25/A 20124 Milano, Italy Tel: 02-667541

Branch The Netherlands

Steijgerweg 6 5616 HS Eindhoven The Netherlands Tel: 040 265 40 10

[Asia & Oceania]

NEC Electronics (China) Co., Ltd 7th Floor, Quantum Plaza, No. 27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: 010-8235-1155 http://www.cn.necel.com/

Shanghai Branch

Room 2509-2510, Bank of China Tower, 200 Yincheng Road Central, Pudong New Area, Shanghai, P.R.China P.C:200120 Tel:021-5888-5400 http://www.cn.necel.com/

Shenzhen Branch

Unit 01, 39/F, Excellence Times Square Building, No. 4068 Yi Tian Road, Futian District, Shenzhen, P.R.China P.C:518048 Tel:0755-8282-9800 http://www.cn.necel.com/

NEC Electronics Hong Kong Ltd.

Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: 2886-9318 http://www.hk.necel.com/

NEC Electronics Taiwan Ltd.

7F, No. 363 Fu Shing North Road Taipei, Taiwan, R. O. C. Tel: 02-8175-9600 http://www.tw.necel.com/

NEC Electronics Singapore Pte. Ltd.

238A Thomson Road, #12-08 Novena Square, Singapore 307684 Tel: 6253-8311 http://www.sg.necel.com/

NEC Electronics Korea Ltd.

11F., Samik Lavied'or Bldg., 720-2, Yeoksam-Dong, Kangnam-Ku, Seoul, 135-080, Korea Tel: 02-558-3737 http://www.kr.necel.com/