

ForgeFPGA Advanced Development Board R1.2 Manual

User Manual

ForgeFPGA[™]

Advanced Development Board R1.2

R12UT0023EU0100

May 10, 2024

Contents

1.	Fund	ctional Description	4
2.	Spec	cifications	7
	2.1	Configurable Test Points	7
	2.2	Power Supplies	
	2.3	Logic Analyzer	
	2.4	Pattern Generator	10
	2.5	Configurable Voltage Sources	11
3.	Worl	king with ForgeFPGA Products	12
	3.1	Socket Adapter Board	13
4.	Addi	tional Features	13
	4.1	Kit Contents	13
	4.2	Status Display and Controls	
	4.3	Firmware Update	14
5.	Orde	ering Information	15
6.	Revi	sion History	16

Figures

Figure 1: ForgeFPGA Advanced Dev. Board R1.2	3
Figure 2: ForgeFPGA Dev. Board Structure	4
Figure 3: ForgeFPGA Dev. Board Overview	5
Figure 4: Interaction Connector Pinout	6
Figure 5: TP Interconnect Structure	7
Figure 6: GPIO output signal waveform RL= 10k, CL = 10pF. 5ns/div, 500mv/div	
Figure 7: Power Structure	8
Figure 8: Configurable Position of Trigger Point in Data Buffer	10
Figure 9: Logic Analyzer Workflow	10
Figure 10: Development Kit	12
Figure 11: Debugging Setup for Socket Adapters	12
Figure 12: Example of a Socket Adapter Board	13
Figure 13: Kit Content	14

The ForgeFPGA Advanced Development Board R1.2 is a multi-functional tool that allows you to develop FPGA designs by providing onboard multichannel power source, digital signal generator, and logic analyser features. This development tool is a precision platform, which can replace a stack of lab equipment for digital circuit debug.

PC Requirements

- Windows 7/8.1/10/11, macOS (v10.15 or higher), Ubuntu 18.04/20.04/22.04, Debian 11/Testing
- USB 3.0 (primary), USB 2.0 interface.

Figure 1: ForgeFPGA Advanced Dev. Board R1.2

Features

Driven by the Go Configure Software Hub, the ForgeFPGADev. Board can be configured to work as several digital circuit debug instruments, which include:

- Logic analyzer (LA) up to 800MS/s
- Digital pattern generator (PG) up to 200MS/s
- 80 Test Points (TP) shared with LA and PG
- Real-time Test Point control.
- Three Programmable Power Supplies
- Eight Configurable Voltage Reference Sources

1. Functional Description

The main components are shown in Figure 2.

Figure 2: ForgeFPGA Dev. Board Structure

A set of 80 Test Points provides all interactions between ForgeFPGA Development Board and ForgeFPGA IC. Test Points and power supplies are configurable by the software depending on the actual IC's manufactured part number. There are two main options for Test Points – programming interface and real-time control interface. Programming interface works only during programming and emulation entry. When programming or emulation entry is done – programming interface Test Points move their functionality to real-time control depending on FPGA chip part number.

ForgeFPGA Advanced Development Board has following connectors:

- External power supply connector
- USB 3.0 Type-C connector
- 2 Interaction connectors

Development Board has two LEDs – Power LED and Status LED, and two buttons – reset and user "Macro" buttons. Their operation logic is described in subsection 4.2.

Figure 3: ForgeFPGA Dev. Board Overview

Table 1 shows general USB and Power supply characteristics that are required for Development Board stable functionality.

Table 1. General Specifications

Parameter	Description	Condition	Min	Тур	Max	Unit
V _{PSU}	Power Supply Voltage	-	-	12	-	V
I _{PSU}	Power Supply Rated Current	-	5	-	-	А
V _{USB}	USB Input Voltage	-	-	5	-	V
I _{USB}	USB Input Current	-	-	-	100	mA
T _A	Operating Ambient Temperature	-	15	-	45	°C
	Board Dimensions	-		150 X 144		mm
	Weight	-		146		g

All TPs and three Programmable Power Sources are shared between two Interaction Connectors. Figure 4 demonstrates Interaction Connector map. TP1-TP40 are referred to VDD_A Power Source, TP41-TP80 are referred to VDD_B. Basically, the board supports dual V_{DDIO} devices. V_{DDC} is used for FPGA core power. AlO signals are used as constant voltage sources. All pins that marked as "RSRV" are used for internal configuration and power purposes.

O		14	-	-1-1		T-MARK -	-		
	1 1				1			V V	1
Y		•			-		•	¥/	Y
10									
A49		A1	2 A11	A1	A49			A12 A11	A
					7.10				
B49		B1	2 B11	B1	 B49			B12 B11	B´
	T T	NECTO	1				NEC	TOR 1	
Pin name	Pin number	F	Pin number	Pin name	 Pin name	Pin number		Pin number	Pin nam
	A1 A2	///	B1 B2	RSRV	RSRV	A1 A2		B1 B2	RSRV
	A3		B3			A3		B3	
	A4		B4	GND	VDD_C	A4		B4	
RSRV	A5		B5		VDD B	A5		B5	
1.5117	A6	///	B6			A6		B6	GND
	A7	////	B7		 VDD_A	A7		B7	
	A8 A9	////	B8 B9	RSRV		A8 A9		B8 B9	
	A9 A10		B9 B10		RSRV	A9 A10		B9 B10	RSRV
GND	A11		B10 B11	GND	GND	A11		B10 B11	GND
RSRV	A12		B12	RSRV	 RSRV	A12		B12	RSRV
GND	A13		B13	GND	 GND	A13		B13	GND
TP21	A14		B14	TP61	TP1	A14		B14	TP41
TP22	A15		B15	TP62	TP2	A15		B15	TP42
GND	A16	////	B16	GND	GND	A16		B16	GND
TP23	A17	////	B17	TP63	 TP3	A17		B17	TP43
TP24 GND	A18 A19		B18 B19	GND	TP4 GND	A18 A19		B18 B19	TP44 GND
TP25	A19 A20		B19 B20	TP65	TP5	A19 A20		B19 B20	TP45
TP26	A21		B20 B21	TP66	TP6	A21		B20 B21	TP46
GND	A22		B22	GND	GND	A22		B22	GND
AIO2	A23		B23	AIO18	GND	A23		B23	GND
TP27	A24	2	B24	TP67	 TP7	A24	PCB	B24	TP47
TP28	A25	////	B25	CND	TP8	A25		B25	TP48
GND TP29	A26 A27		B26 B27	GND TP69	GND TP9	A26 A27		B26 B27	GND TP49
TP30	A27 A28		B27 B28	TP70	TP10	A27		B27 B28	TP50
GND	A29		B29	GND	GND	A29		B29	GND
TP31	A30		B30	TP71	TP11	A30		B30	TP51
TP32	A31		B31	TP72	TP12	A31		B31	TP52
GND	A32		B32	GND	 GND	A32		B32	GND
AIO4 TP33	A33 A34		B33 B34	AIO20 TP73	GND TP13	A33 A34		B33 B34	GND TP53
TP34	A34 A35		B35	TP75	 TP15	A34 A35		B35	TP55
GND	A36		B36	GND	 GND	A36		B36	GND
TP35	A37		B37	TP 75	TP15	A37		B37	TP55
TP36	A38		B38	TP76	TP16	A38		B38	TP56
GND	A39		B39	GND	GND	A39		B39	GND
TP37	A40	////-	B40	TP 77	TP7	A40		B40	TP57
TP38 GND	A41 A42		B41 B42	GND	TP18 GND	A41 A42		B41 B42	TP58 GND
AIO6	A42 A43		B42 B43	AIO22	 GND	A42 A43		B42 B43	GND
TP39	A43		B43 B44	TP79	TP19	A44		B43 B44	TP59
TP40	A45		B45	TP80	TP20	A45		B45	TP60
GND	A46		B46	GND	GND	A46		B46	GND
AIO7	A47		B47	AIO23	GND	A47		B47	GND
GND	A48	1111	B48	GND	GND	A48	V////	B48	GND

Figure 4: Interaction Connector Pinout

2. Specifications

2.1 Configurable Test Points

ForgeFPGA Dev. Board has 80 configurable Test Points (TP). Each TP can work as a channel in the logic analyzer (LA) and the pattern generator (PG). In addition to PG and LA function, TPs can be controlled manually by setting to VDD, GND and Hi-Z states, or programmable software button.

Figure 5: TP Interconnect Structure

Output Interaction connectors are optimized for high-speed digital applications. Each TP matches to 50-ohm impedance (Z0).

Note: The development board has 80 TP, but access to them depends on actual ForgeFPGA part number.

Parameter	Description	Condition	Min	Тур	Max	Unit
VIH	High input voltage		$65\% V_{DD}$	-	V _{DD} +0.3	V
VIL	Low input voltage		-0.3	-	$35\% V_{DD}$	V
I _{OH}	High-level output current	V _{DD} =3.3V	-	16	-	mA
IOL	Low-level output current		-	16	-	mA
V _{OH}	Low-level output voltage		-	-	0.4	V
V _{OL}	High-level output voltage		$75\% V_{DD}$	-	-	V
t _R	Output rise time	R _L = 10k; C _L = 10pF	-	2.4	-	ns
t _F	Output fall time	$R_{L} = 10k; C_{L} = 10pF$	-	1.7	-	ns
VCLAMP	Input diode clamp voltage	I_{PP} =1A, from TP to GND	-	6.6	-	V
	Input leakage current	V _{DD} =3.3V	-	15	-	μA
CIO	Input-Output Pin Capacitance		-	8	-	рF

Table 2 shows GPIO characteristics. VDD value depends on TP group and matches voltage corresponding to VDD_A or VDD_B (see Figure 4).

Figure 6: GPIO output signal waveform RL = 10k, CL = 10pF. 5ns/div, 500mv/div

Figure 6 shows 50MHz clock signal, where t_R and t_F are measured between 10% and 90% of V_{OL} to V_{OH} .

2.2 **Power Supplies**

Figure 7: Power Structure

The board has three programmable power supplies. The maximum available output current is 3.4A for each source. The same voltage is supplied to the TPs, for keeping the logic level compatibility with externally connected circuit. As mentioned before, VDD_A works as logic level reference for TP1-TP40, VDD_B for TP41-TP80. If Load current value exceeds I_{OUT(MAX), VDD} output will go into OCP mode. Output voltage range for all power sources may vary. Limits will be set according to selected target device in Go Configure software.

 Table 3. Voltage Sources Characteristics (VDD_A, VDD_B, VDD_C)

Parameter	Description	Condition	Min	Тур	Max	Unit
V _{OUT}	Output Voltage	$I_{OUT(MIN)} \leq I_{OUT} \leq I_{OUT(MAX)}$	0.8	-	3.3	V
V _{STEP}	Output Voltage Regulation Step	$V_{OUT(MIN)} \leq V_{OUT} \leq V_{OUT(MAX)}$	•	25	-	mV
ΔV_{OUT}	Output Voltage DC Error	$I_{OUT(MIN)} \leq I_{OUT} \leq I_{OUT(MAX)}$	-2	-	2	%
Ι _{ΟυΤ}	Output Load Current	$V_{OUT(MIN)} \leq V_{OUT} \leq V_{OUT(MAX)}$	0	-	3.4	А
V _{OUT(SR)}	VOUT Slew Rate	$I_{OUT(MIN)} \leq I_{OUT} \leq I_{OUT(MAX)}$	2.24	2.8	4	V/ms
DCLOAD	Load Regulation	$I_{OUT(MIN)} \leq I_{OUT} \leq I_{OUT(MAX)}$	-	5	-	mV
ACLOAD	Transient Load Response	t _r = t _f = 100 ns; Step 1.5 A	-20	-	20	mV
C∟	Load Capacitance		0	-	150	μF
RDISCHRG	Output Discharge Resistance	$V_{OUT(MIN)} \le V_{OUT} \le V_{OUT(MAX)}$	168	210	252	Ω
	Output Ripple	I _{OUT} = 1A		12		mV

2.3 Logic Analyzer

ForgeFPGA Dev. Board Includes 64 channel Logic Analyzer with sampling rate up to 800MS/s and memory depth up to 65k points. Number of channels, sample rate and memory depth are inter-depended. Characteristics in Table 4 describe parameters in three different modes based on selected sample rate. Logic Analyzer supports a wide range of sampling rates which are shared between three sampling modes. The number of available channels and number of points (memory depth) are defined depending on sampling mode. These dependencies are shown in Table 4.

Sample rate (MS/s)	Sample Mode	Number of available channels	Memory depth (total number of points)
800 (max)	MODE 3	16	65536
400	MODE 2	32	32768
200			
100			
50	MODE 1	64	16294
40		64	16384
190,7 S/s (min)			

Table 4. Logic Analyzer Specifications

Logic Analyzer works in two trigger modes: internal (invoked by configured triggering conditions on the target channels) and external (invoked by pressing onboard macro button). Internal triggering is configured by two setting types: group of per-channel conditions (edge, level triggering) and single global condition (AND/OR triggering), which are both described in Table 5.

Table 5 . Logic Analyzer trigger settings

Trigger mode	Trigger setting type	Available conditions	Description
External	-	Macro button pressed	Triggering occurs when onboard macro button pressed.
	Per-channel	Rising, falling or both edges and high or low logic states ⁽¹⁾	One condition can be selected per each channel.
Internal	Global	AND / OR	Collection type of per-channel conditions: AND – trigger occurs when all selected per-channel conditions are satisfied at current sampling time. OR – triggering occurs when at least one per-channel condition is satisfied at sampled period.

⁽¹⁾ For proper detection, electrical parameters of input signal should match GPIO Specifications (see Table 2).

The number of points to be written after trigger occurred is configurable, that allows to set desired position of trigger point in Logic Analyzer data waveform. This feature is shown in figure below.

Figure 8: Configurable Position of Trigger Point in Data Buffer

The block schematic of Logic Analyzer workflow is shown below.

Figure 9: Logic Analyzer Workflow

2.4 Pattern Generator

Pattern generator has 64 digital channels that are connected to each TP that is currently used in Go Configure emulation or testing modes. Sample rate is up to 200MS/s. Output signal is defined as a set of "points". Each point contains the output state and duration value for all 64 channels. Minimum duration value is 5ns. When the number of points with minimal duration in a row exceeds 512 – sample rate decreases to 40MS/s. Total number of available points is dynamic and depends on pattern configurations. All 64 channels are synchronized in time and the generator has a global start option for all channels at the same time.

Sample Rate ⁽¹⁾	Up to 200 MS/s
Number of channels:	64
Parametric Generator Features	PWM, CLK, UART, Raw
Repeat Functions	Cyclic, One-Shot, Custom
Repeat Count	2-255
Output Type	Push-Pull, OD HI, OD LO
Prestart/Pause/End Type	Low, High, Hi-Z
Waveform Type	Square

Table 6. Digital Pattern Generator Specifications

(1) Sample rate will be decreased depending on created waveform complexity

2.5 Configurable Voltage Sources

ForgeFPGA Dev. Board has eight built in voltage source channels. Figure 3 demonstrated voltage source locations as AIO (Analog Input-Output). All eight sources are working independently and can be set either to Hi-Z or constant voltage output. Voltage source characteristics are described in Table 6.

Table 7. Configurable Voltage Source (AIO2-AIO23) Characteristics

Parameter	Description	Condition	Min	Тур	Max	Unit
V _{OUT}	Output voltage Range	-	0	-	4096	mV
ΔV_{OUT}	Output voltage Accuracy	$10mV \le V_{OUT} \le 4000mV$	-1	-	1	mV
-	Zero Code Error	-	-	0.65	2	mV
t _{sett}	Settling Time	-	-	6	-	μS
Zo	DC Output impedance	-	I	33	-	Ω
-	Short-Circuit Current	-	-	-	25	mA
L	Off State Leakage Current	-	-	1	-	μA

3. Working with ForgeFPGA Products

To start working with the ForgeFPGA products, connect the platform to the PC via a USB Type-C cable and connect the power supply. Important note, that USB cable should be connected directly to PC without any USB hubs and Docking stations. Make sure that socket adapter board is connected to the ForgeFPGA Dev. Board as shown in Figure 10.

Figure 10: Development Kit

If all the connections are correct, then the red LED (PWR) will be automatically enabled. After Selecting "ForgeFPGA Advanced Development Board" in Go Configure "Debug" tab – blue LED will blink several times and "HW-FW" version will be available in left bottom corner of debugging control window (Figure 11).

Debugging controls			ð X
	Debugging Con	trols	
ForgeFPGA Ad	lvanced	Change pla	tform
Development	Platform	Import config	uration
Emulation	Test Mode	R	ead
Emulation	lest Mode		gram
	External Flash cor	trols	
Read	Program	Er	ase
	Generators cont	rols	
Start	Pause	S	top
	TP Map		
PN: N/D (N/D), DB HW-FW	412.03		
	1.1.2-0.3		

Figure 11: Debugging Setup for Socket Adapters

"Emulation" allows to debug the current project, it will only work after performing synthesis in FPGA Editor, "Test Mode" is used to debug the programmed project. "Read" button helps in reading the programmed chip configuration and opens the project in the new software instance or in the "Project data" window of the current instance. "Program" button is used to program the chip with the current project. "TP Map" shows the test point map on the work area, reflecting the physical Test Points on the development platform.

The more detailed information about Go Configure software can be found in

3.1 Socket Adapter Board

The ForgeFPGA Development Board can be used with additional external boards called a Socket Adapter. The function of the socket adapter board is to implement a connection between the target device and the ForgeFPGA Dev. Board. To implement this, the ForgeFPGA Dev. Board uses Dual Interaction connector.

Figure 12: Example of a Socket Adapter Board

The socket adapter is shown in Figure 12. There is a plastic socket on the adapter board. The FPGA chip should be inserted into this plastic socket, with appropriate "pin1" position.

4. Additional Features

4.1 Kit Contents

- ForgeFPGA Advanced Dev. Board R1.2
- Socket Adapter
- USB 3.0 to USB Type-C cable
- AC/DC 12V Power Supply
- AC Power Cable
- PMOD LED Adapter Board
- ForgeFPGA Samples

Figure 13: Kit Content

4.2 Status Display and Controls

The ForgeFPGA Dev. Board has two buttons and two status LEDs. Their operating logic is described below:

LEDs:

Table 8. LED Indication

PWR (RED)	STS (BLUE)	
OFF	OFF	USB or power supply is not connected
ON	OFF	Standby mode
ON	BLINK	USB data transfer
BLINK	OFF	Power fail

Buttons:

- "RESET" resets the board.
- "MACRO BUTTON" user button. Its functionality is defined by the software.

4.3 Firmware Update

Firmware update occurs automatically when ForgeFPGA Dev. Board is connected to the computer with Go Configure Software Hub open. It is enough to connect 2 cables; power and USB, then launch Go Configure software. There are no additional requirements or restrictions.

5. Ordering Information

Part Number	Description
SLG7DVKFORGE-KIT	ForgeFPGA SLG47910 KIT

6. Revision History

Revision	Date	Description
1.00	May 10, 2024	Initial release.