

Preliminary User's Manual

ERTEC 200

Enhanced Real-Time Ethernet Controller 32-Bit RISC CPU Core

Hardware

µPD800261F1-523-HN2

Document No. A17988EE1V1UM00 Date Published August 2007

© NEC Electronics Corporation 2007 Printed in Germany

NOTES FOR CMOS DEVICES —

(1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (MAX) and V_{IH} (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (MAX) and V_{IH} (MIN).

(2) HANDLING OF UNUSED INPUT PINS

Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to V_{DD} or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.

③ PRECAUTION AGAINST ESD

A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.

④ STATUS BEFORE INITIALIZATION

Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.

(5) INPUT OF SIGNAL DURING POWER OFF STATE

Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.

All other product, brand, or trade names used in this publication are the trademarks or registered trademarks of their respective trademark owners.

Product specifications are subject to change without notice. To ensure that you have the latest product data, please contact your local NEC Electronics sales office.

- The information in this document is current as of August, 2007. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property
 rights of third parties by or arising from the use of NEC Electronics products listed in this document or any
 other liability arising from the use of such products. No license, express, implied or otherwise, is granted under
 any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".

The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.

- "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
- "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
- "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).

M8E 02.11-1

For further information, please contact:

NEC Electronics Corporation

1753, Shimonumabe, Nakahara-ku, Kawasaki, Kanagawa 211-8668, Japan Tel: 044-435-5111 http://www.necel.com/

[America]

NEC Electronics America, Inc.

2880 Scott Blvd. Santa Clara, CA 95050-2554, U.S.A. Tel: 408-588-6000 800-366-9782 http://www.am.necel.com/

[Europe]

NEC Electronics (Europe) GmbH

Arcadiastrasse 10 40472 Düsseldorf, Germany Tel: 0211-65030 http://www.eu.necel.com/

Hanover Office

Podbielskistrasse 166 B 30177 Hannover Tel: 0 511 33 40 2-0

Munich Office Werner-Eckert-Strasse 9 81829 München Tel: 0 89 92 10 03-0

Stuttgart Office Industriestrasse 3 70565 Stuttgart Tel: 0 711 99 01 0-0

United Kingdom Branch Cygnus House, Sunrise Parkway Linford Wood, Milton Keynes MK14 6NP, U.K. Tel: 01908-691-133

Succursale Française 9, rue Paul Dautier, B.P.52 78142 Velizy-Villacoublay Cédex France Tel: 01-3067-5800

Sucursal en España Juan Esplandiu, 15 28007 Madrid, Spain Tel: 091-504-2787

Tyskland Filial Täby Centrum Entrance S (7th floor)

18322 Täby, Sweden Tel: 08 638 72 00 **Filiale Italiana** Via Fabio Filzi, 25/A

Via Fabio Fiizi, 25/A 20124 Milano, Italy Tel: 02-667541

Branch The Netherlands

Steijgerweg 6 5616 HS Eindhoven The Netherlands Tel: 040 265 40 10

[Asia & Oceania]

NEC Electronics (China) Co., Ltd 7th Floor, Quantum Plaza, No. 27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: 010-8235-1155 http://www.cn.necel.com/

Shanghai Branch

Room 2509-2510, Bank of China Tower, 200 Yincheng Road Central, Pudong New Area, Shanghai, P.R.China P.C:200120 Tel:021-5888-5400 http://www.cn.necel.com/

Shenzhen Branch

Unit 01, 39/F, Excellence Times Square Building, No. 4068 Yi Tian Road, Futian District, Shenzhen, P.R.China P.C:518048 Tel:0755-8282-9800 http://www.cn.necel.com/

NEC Electronics Hong Kong Ltd.

Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: 2886-9318 http://www.hk.necel.com/

NEC Electronics Taiwan Ltd.

7F, No. 363 Fu Shing North Road Taipei, Taiwan, R. O. C. Tel: 02-8175-9600 http://www.tw.necel.com/

NEC Electronics Singapore Pte. Ltd.

238A Thomson Road, #12-08 Novena Square, Singapore 307684 Tel: 6253-8311 http://www.sg.necel.com/

NEC Electronics Korea Ltd.

11F., Samik Lavied'or Bldg., 720-2, Yeoksam-Dong, Kangnam-Ku, Seoul, 135-080, Korea Tel: 02-558-3737 http://www.kr.necel.com/

G0705

Preface

Readers	This manual is intended ERTEC 200.	for users who want to understand the functions of the
Purpose	This manual presents th	e hardware manual of ERTEC 200.
Organization	This user's manual desc	ribes the following sections:
	Pin function	
	CPU function	
	Internal peripheral fu	unction
	Test function	
Legend	Symbols and notation a	re used as follows:
	Weight in data notation	: Left is high-order column, right is low order column
	Active low notation	N (capital letter N before or after signal name)
	Memory map address:	: High order at high stage and low order at low stage
	Note	: Explanation of (Note) in the text
	Caution	: Item deserving extra attention
	Remark	: Supplementary explanation to the text
	Numeric notation	: Binary xxx _b Decimal xxxx Hexadecimal xxxxH or 0x xxxx
	Prefixes representing po	wers of 2 (address space, memory capacity) k (kilo): $2^{10} = 1024$ M (mega): $2^{20} = 1024^2 = 1.048.576$ G (giga): $2^{30} = 1024^3 = 1.073.741.824$
	Data Type:	Word 32 bits Halfword 16 bits Byte 8 bits

Related Documents

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

Document Name	Document No.
ERTEC 200 Preliminary Data Sheet	A17989EE1V1DS00
ERTEC 200 Preliminary User's Manual - Boot Mode Description	TPS-HE-A-1066
CB-12 Family L/M Type Block Library	A15353EJ4V0BL00
CB-12 Family L/M Type Product Data	A14937EJ3V0DM00
ARM946E-S Technical Reference Manual	DDI0201C ^{Note}
ARM9E-S (Rev. 1) Technical Reference Manual	DDI0165B ^{Note}
ARM AMBA Specification Rev. 2.0	IHI0011A ^{Note}
ARM PrimeCell TM UART (PL010) Technical Reference Manual	DDI0139B ^{Note}
ARM PrimeCell TM Synchronous Serial Port (PL021) Technical Reference Manual	DDI0171B ^{Note}
ARM Embedded Trace Macrocell Architecture Specification	IHI0014J ^{Note}
ARM Multi ICE System Design Considerations Application Note 72	DAI0072A ^{Note}

Note: These documents are available from ARM Limited (www.arm.com).

Table of Contents

Chapter 1	Introduction	
1.1	General	
1.2	Device Features	
1.3	Ordering Information	
1.4	Pin Configuration	
1.5	Pin Identification	
1.6	Configuration of Functional Blocks	
	.6.1 Block Diagram of ERTEC 200	
1	.6.2 On-chip Units	30
•		
2.	Pin Functions	
2.1	List of Pin Functions	
2.2	Pin Characteristics	
2.3	Pin Status and Drive Characteristics	45
Chapter 3	CPU Function	10
3.1	Structure of The ARM946E-S Processor System	
3.1	Cache Structure of ARM946E-S	
3.2 3.3	Tightly Coupled Memories	
3.3 3.4	Memory Protection Unit (MPU)	
3.4 3.5	Bus Interface of ARM946E-S.	
3.6 3.7	ARM946E-S Embedded Trace Macrocell (ETM9) ARM946E-S Registers	
3.7		55
Chapter 4	ERTEC 200 Bus System	55
4.1	Multilayer AHB Bus	
4.2	APB I/O Bus	
7.2		50
Chapter 5	ERTEC 200 Memory Map	57
5.1	Memory Partitioning of ERTEC 200	
5.2	Detailed Memory Map Description	58
5.3	Memory Map Example	60
_		
Chapter 6	External Memory Interface (EMIF)	
6.1	Address Assignment of EMIF Registers	
6.2	Detailed EMIF Register Description	
6.3	Asynchronous Access Timing Examples	
6.4	External Memory Connection Example	
6.5	Hints for Setting the EMIF Registers	77
01		70
Chapter 7	DMA Controller	
7.1	Address Assignment of DMA Controller Registers	
7.2	Detailed DMA Controller Register Description	81
Chapter 8	Interrupt Controller	87
8.1	Prioritization of Interrupts	
8.2	Trigger Modes	
8.3	Masking the Interrupt Inputs	
8.4	Software Interrupts for IRQ	
8.5	Nested Interrupt Structure	
8.6	EOI End-Of-Interrupt	
8.0 8.7	IRQ Interrupts as FIQ Interrupt Sources	
8.8	Interrupt Control Register Summary	
8.9	Detailed ICU Register Description	
0.5		50

Chapter 9	Local Bus Unit (LBU)	109
9.1	Page Size Setting	111
9.2	Page Offset Setting	112
9.3	Local Bus Unit Address Mapping Example	113
9.4	Page Control Setting	
9.5	Host Accesses to ERTEC 200	116
9.6	Host Interrupt Handling	
9.7	Address Assignment of LBU Registers	119
9.8	Detailed LBU Register Description.	120
Chapter 10	0 Boot ROM	
10.1	Booting from External ROM	
10.2	Booting via SPI	
10.3	Booting via UART	
10.4	Booting via LBU	
10.5	Memory Swapping	124
Chapter 11	1 General Purpose I/O (GPIO)	
11.1	Address Assignment of GPIO Registers	
11.2	Detailed GPIO Register Description	128
Chapter 12	2 Asynchronous Serial Interface UART	
12.1	Address Assignment of UART Registers	
12.2	Detailed UART Register Description	
12.3	GPIO Register Initialization for UART Usage	150
-	3 Synchronous Serial Interface SPI1	
13.1	Address Assignment of SPI1 Registers.	
40.0		
13.2	Detailed SPI1 Register Description	
13.2 13.3	Detailed SPI1 Register Description [GPIO Register Initialization for SPI1 Usage	
13.3	[GPIO Register Initialization for SPI1 Usage	160
13.3 Chapter 14	[GPIO Register Initialization for SPI1 Usage 4 ERTEC 200 Timers	160 161
13.3 Chapter 14 14.1	[GPIO Register Initialization for SPI1 Usage 4 ERTEC 200 Timers Timer 0 and Timer 1	160 161 161
13.3 Chapter 14 14.1	[GPIO Register Initialization for SPI1 Usage 4 ERTEC 200 Timers Timer 0 and Timer 1 14.1.1 Operation mode of Timer 0 and Timer 1	160 161 161 162
13.3 Chapter 14 14.1 1 1	[GPIO Register Initialization for SPI1 Usage 4 ERTEC 200 Timers Timer 0 and Timer 1 14.1.1 Operation mode of Timer 0 and Timer 1 14.1.2 Timer interrupts	160 161 161 162 162
13.3 Chapter 14 14.1 1 1 1	[GPIO Register Initialization for SPI1 Usage 4 ERTEC 200 Timers Timer 0 and Timer 1 14.1.1 Operation mode of Timer 0 and Timer 1 14.1.2 Timer interrupts 14.1.3 Timer prescaler	160 161 162 162 162 162
13.3 Chapter 14 14.1 1 1 1 1 1	[GPIO Register Initialization for SPI1 Usage 4 ERTEC 200 Timers Timer 0 and Timer 1 14.1.1 Operation mode of Timer 0 and Timer 1 14.1.2 Timer interrupts 14.1.3 Timer prescaler 14.1.4 Cascading of timers	160 161 162 162 162 162 162
13.3 Chapter 14 14.1 1 1 1 1 1 1	[GPIO Register Initialization for SPI1 Usage 4 ERTEC 200 Timers Timer 0 and Timer 1 14.1.1 Operation mode of Timer 0 and Timer 1 14.1.2 Timer interrupts 14.1.3 Timer prescaler 14.1.4 Cascading of timers 14.1.5 Address assignment of Timer 0/1 registers	160 161 162 162 162 162 162 163
13.3 Chapter 14 14.1 1 1 1 1 1 1 1	[GPIO Register Initialization for SPI1 Usage 4 ERTEC 200 Timers Timer 0 and Timer 1 14.1.1 Operation mode of Timer 0 and Timer 1 14.1.2 Timer interrupts 14.1.3 Timer prescaler 14.1.4 Cascading of timers 14.1.5 Address assignment of Timer 0/1 registers 14.1.6 Detailed description of Timer 0/1 registers	160 161 162 162 162 162 163 163 163
13.3 Chapter 14 14.1 1 1 1 1 1 1 1 1 14.2	[GPIO Register Initialization for SPI1 Usage4 ERTEC 200 TimersTimer 0 and Timer 114.1.1 Operation mode of Timer 0 and Timer 114.1.2 Timer interrupts14.1.3 Timer prescaler14.1.4 Cascading of timers14.1.5 Address assignment of Timer 0/1 registers14.1.6 Detailed description of Timer 0/1 registersTimer 2	160 161 162 162 162 162 163 163 163 171
13.3 Chapter 14 14.1 1 1 1 1 1 1 1 1 1 4.2	[GPIO Register Initialization for SPI1 Usage4 ERTEC 200 TimersTimer 0 and Timer 114.1.1Operation mode of Timer 0 and Timer 114.1.2Timer interrupts14.1.3Timer prescaler14.1.4Cascading of timers14.1.5Address assignment of Timer 0/1 registers14.1.6Detailed description of Timer 0/1 registers14.2.1Address assignment of Timer 2 registers	160 161 162 162 162 162 163 163 163 171
13.3 Chapter 14 14.1 1 1 1 1 1 1 1 1 1 4.2 1 1 1 1 1 1 1 1 1	[GPIO Register Initialization for SPI1 Usage 4 ERTEC 200 Timers Timer 0 and Timer 1 14.1.1 Operation mode of Timer 0 and Timer 1 14.1.2 Timer interrupts 14.1.3 Timer prescaler 14.1.4 Cascading of timers 14.1.5 Address assignment of Timer 0/1 registers 14.1.6 Detailed description of Timer 0/1 registers 14.2.1 Address assignment of Timer 2 registers 14.2.2 Detailed description of Timer 2 registers	160 161 162 162 162 162 163 163 163 171 171 172
13.3 Chapter 14 14.1 1 1 1 1 1 14.2 1 14.3	[GPIO Register Initialization for SPI1 Usage	160 161 162 162 162 162 163 163 171 171 172 174
13.3 Chapter 14 14.1 1 1 1 1 1 14.2 1 14.3 1 14.3	[GPIO Register Initialization for SPI1 Usage 4 ERTEC 200 Timers Timer 0 and Timer 1 14.1.1 Operation mode of Timer 0 and Timer 1 14.1.2 Timer interrupts 14.1.3 Timer prescaler 14.1.4 Cascading of timers 14.1.5 Address assignment of Timer 0/1 registers 14.1.6 Detailed description of Timer 0/1 registers 14.2.1 Address assignment of Timer 2 registers 14.2.2 Detailed description of Timer 2 registers 14.2.1 Address assignment of Timer 2 registers	160 161 162 162 162 162 163 163 171 171 172 174
13.3 Chapter 14 14.1 1 1 1 1 1 14.2 1 1 14.3 1 1 14.3	[GPIO Register Initialization for SPI1 Usage	160 161 162 162 162 162 163 163 163 163 171 171 171 172 174 174
13.3 Chapter 14 14.1 1 1 1 1 1 14.2 1 1 14.3 1 1 14.3	[GPIO Register Initialization for SPI1 Usage 4 ERTEC 200 Timers Timer 0 and Timer 1 14.1.1 Operation mode of Timer 0 and Timer 1 14.1.2 Timer interrupts 14.1.3 Timer prescaler 14.1.4 Cascading of timers 14.1.5 Address assignment of Timer 0/1 registers 14.1.6 Detailed description of Timer 0/1 registers 14.2.1 Address assignment of Timer 2 registers 14.2.2 Detailed description of Timer 2 registers 14.2.1 Address assignment of Timer 2 registers	160 161 162 162 162 162 163 163 163 163 171 171 171 172 174 174
13.3 Chapter 14 14.1 1 1 1 1 1 14.2 1 14.3 1 1 14.3	[GPIO Register Initialization for SPI1 Usage 4 ERTEC 200 Timers Timer 0 and Timer 1 14.1.1 Operation mode of Timer 0 and Timer 1 14.1.2 Timer interrupts 14.1.3 Timer prescaler 14.1.4 Cascading of timers 14.1.5 Address assignment of Timer 0/1 registers 14.1.6 Detailed description of Timer 0/1 registers 14.2.1 Address assignment of Timer 2 registers 14.2.2 Detailed description of Timer 2 registers 14.2.1 Address assignment of Timer 2 registers 14.2.1 Address assignment of Timer 2 registers 14.2.1 Address assignment of Timer 2 registers 14.2.2 Detailed description of Timer 2 registers 14.3.1 Functional description of the F-Timer 14.3.2 Address assignment of F-Timer registers 14.3.3 Detailed F-Timer register description	160 161 162 162 162 162 162 163 163 163 171 171 172 174 174 175 175
13.3 Chapter 14 14.1 1 1 1 1 14.2 1 14.3 1 14.3 1 1 14.3 1 1 14.3	[GPIO Register Initialization for SPI1 Usage 4 ERTEC 200 Timers Timer 0 and Timer 1 14.1.1 Operation mode of Timer 0 and Timer 1 14.1.2 Timer interrupts 14.1.3 Timer prescaler 14.1.4 Cascading of timers 14.1.5 Address assignment of Timer 0/1 registers 14.1.6 Detailed description of Timer 0/1 registers 14.2.1 Address assignment of Timer 2 registers 14.2.2 Detailed description of Timer 2 registers 14.2.3 Functional description of Timer 2 registers 14.3.1 Functional description of the F-Timer 14.3.2 Address assignment of F-Timer registers 14.3.3 Detailed F-Timer register description	160 161 162 162 162 162 163 163 171 171 171 172 174 175 175 177
13.3 Chapter 14 14.1 1 1 1 1 1 14.2 1 14.3 1 1 14.3	[GPIO Register Initialization for SPI1 Usage 4 ERTEC 200 Timers Timer 0 and Timer 1 14.1.1 Operation mode of Timer 0 and Timer 1 14.1.2 Timer interrupts 14.1.3 Timer prescaler 14.1.4 Cascading of timers 14.1.5 Address assignment of Timer 0/1 registers 14.1.6 Detailed description of Timer 0/1 registers 14.2.1 Address assignment of Timer 2 registers 14.2.2 Detailed description of Timer 2 registers 14.2.1 Address assignment of Timer 2 registers 14.2.1 Address assignment of Timer 2 registers 14.2.2 Detailed description of Timer 2 registers 14.2.1 Address assignment of Fimer 2 registers 14.2.2 Detailed description of the F-Timer 14.3.1 Functional description of the F-Timer 14.3.2 Address assignment of F-Timer registers 14.3.3 Detailed F-Timer register description 5 Watchdog Timers	160 161 162 162 162 162 163 163 171 171 171 172 174 175 175 177 177
13.3 Chapter 14 14.1 1 1 1 1 14.2 1 14.3 1 14.3 1 1 14.3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	[GPIO Register Initialization for SPI1 Usage 4 ERTEC 200 Timers Timer 0 and Timer 1 14.1.1 Operation mode of Timer 0 and Timer 1 14.1.2 Timer interrupts 14.1.3 Timer prescaler 14.1.4 Cascading of timers 14.1.5 Address assignment of Timer 0/1 registers 14.1.6 Detailed description of Timer 0/1 registers 14.2.1 Address assignment of Timer 2 registers 14.2.2 Detailed description of Timer 2 registers 14.2.1 Address assignment of Timer 2 registers 14.2.2 Detailed description of Timer 2 registers 14.2.1 Address assignment of Timer 2 registers 14.2.2 Detailed description of the F-Timer 14.3.1 Functional description of the F-Timer 14.3.2 Address assignment of F-Timer registers 14.3.3 Detailed F-Timer register description 5 Watchdog Timers Watchdog Timer Function Address Assignment of Watchdog Registers	160 161 162 162 162 162 162 163 163 163 171 171 172 174 175 175 177 177 179
13.3 Chapter 14 14.1 1 1 1 1 14.2 1 14.3 1 14.3 1 1 14.3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	[GPIO Register Initialization for SPI1 Usage 4 ERTEC 200 Timers Timer 0 and Timer 1 14.1.1 Operation mode of Timer 0 and Timer 1 14.1.2 Timer interrupts 14.1.3 Timer prescaler 14.1.4 Cascading of timers 14.1.5 Address assignment of Timer 0/1 registers 14.1.6 Detailed description of Timer 0/1 registers 14.2.1 Address assignment of Timer 2 registers 14.2.2 Detailed description of Timer 2 registers 14.2.1 Address assignment of Timer 2 registers 14.2.1 Address assignment of Timer 2 registers 14.2.2 Detailed description of Timer 2 registers 14.2.1 Address assignment of Fimer 2 registers 14.2.2 Detailed description of the F-Timer 14.3.1 Functional description of the F-Timer 14.3.2 Address assignment of F-Timer registers 14.3.3 Detailed F-Timer register description 5 Watchdog Timers	160 161 162 162 162 162 162 163 163 163 171 171 172 174 175 175 177 177 179
13.3 Chapter 14 14.1 1 1 1 14.2 1 14.3 1 14.3 1 14.3 1 1 5.1 15.2 15.3	[GPIO Register Initialization for SPI1 Usage 4 ERTEC 200 Timers Timer 0 and Timer 1 14.1.1 Operation mode of Timer 0 and Timer 1 14.1.2 Timer interrupts 14.1.3 Timer prescaler 14.1.4 Cascading of timers 14.1.5 Address assignment of Timer 0/1 registers 14.1.6 Detailed description of Timer 0/1 registers 14.2.1 Address assignment of Timer 2 registers 14.2.2 Detailed description of Timer 2 registers 14.2.1 Address assignment of Timer 2 registers 14.2.2 Detailed description of Timer 2 registers 14.2.1 Address assignment of Timer 2 registers 14.2.2 Detailed description of the F-Timer 14.3.1 Functional description of the F-Timer 14.3.2 Address assignment of F-Timer registers 14.3.3 Detailed F-Timer register description 5 Watchdog Timers Watchdog Timer Function Address Assignment of Watchdog Registers	160 161 162 162 162 162 162 162 162 163 163 171 171 171 174 175 175 177 179 180
13.3 Chapter 14 14.1 1 1 1 14.2 1 14.3 1 14.3 1 14.3 1 1 5.1 15.2 15.3	[GPIO Register Initialization for SPI1 Usage 4 ERTEC 200 Timers Timer 0 and Timer 1 14.1.1 Operation mode of Timer 0 and Timer 1 14.1.2 Timer interrupts 14.1.3 Timer prescaler 14.1.4 Cascading of timers 14.1.5 Address assignment of Timer 0/1 registers 14.1.6 Detailed description of Timer 2 registers 14.2.1 Address assignment of Timer 2 registers 14.2.2 Detailed description of Timer 2 registers 14.2.1 Address assignment of Timer 2 registers 14.2.2 Detailed description of Timer 2 registers 14.2.1 Address assignment of F-Timer registers 14.2.2 Detailed description of the F-Timer 14.3.1 Functional description of the F-Timer 14.3.2 Address assignment of F-Timer registers 14.3.3 Detailed F-Timer register description 5 Watchdog Timers	160 161 161 162 162 162 162 162 162 163 163 171 171 171 174 175 175 175 179 180 185
13.3 Chapter 14 14.1 1 1 1 1 14.2 1 14.3 1 14.3 1 14.3 1 1 14.3 1 1 1 1 1 5.2 15.3 Chapter 16 16.1	[GPIO Register Initialization for SPI1 Usage 4 ERTEC 200 Timers Timer 0 and Timer 1 14.1.1 Operation mode of Timer 0 and Timer 1 14.1.2 Timer interrupts 14.1.3 Timer prescaler 14.1.4 Cascading of timers 14.1.5 Address assignment of Timer 0/1 registers 14.1.6 Detailed description of Timer 0/1 registers 14.2.1 Address assignment of Timer 2 registers 14.2.2 Detailed description of Timer 2 registers 14.2.1 Address assignment of Timer 2 registers 14.2.2 Detailed description of Timer 2 registers 14.2.1 Address assignment of Fimer 2 registers 14.2.2 Detailed description of the F-Timer 14.3.1 Functional description of the F-Timer 14.3.2 Address assignment of F-Timer registers 14.3.3 Detailed F-Timer register description 5 Watchdog Timers	160 161 162 162 162 162 163 163 171 171 171 172 175 175 177 179 180 185 187
13.3 Chapter 14 14.1 1 1 1 14.2 1 14.3 1 14.3 1 14.3 1 1 14.3 1 1 1 5.2 15.3 Chapter 16 16.1 1	[GPIO Register Initialization for SPI1 Usage 4 ERTEC 200 Timers Timer 0 and Timer 1 14.1.1 Operation mode of Timer 0 and Timer 1 14.1.2 Timer interrupts 14.1.3 Timer prescaler 14.1.4 Cascading of timers 14.1.5 Address assignment of Timer 0/1 registers 14.1.6 Detailed description of Timer 0/1 registers 14.2.1 Address assignment of Timer 2 registers 14.2.2 Detailed description of Timer 2 registers 14.2.1 Address assignment of Timer 2 registers 14.2.2 Detailed description of Timer 2 registers 14.2.1 Address assignment of Fimer 2 registers 14.2.2 Detailed description of the F-Timer 14.3.1 Functional description of the F-Timer registers 14.3.2 Address assignment of F-Timer registers 14.3.3 Detailed F-Timer register description 5 Watchdog Timers 4 Stockhog Register Description 6 Multiport Ethernet PHY Functional Description	160 161 162 162 162 162 162 163 163 163 171 171 172 175 175 175 177 179 180 185 187 187 187
13.3 Chapter 14 14.1 1 1 14.2 1 14.3 1 14.3 1 14.3 1 1 14.3 1 1 1 1 1 5.2 15.3 Chapter 16 16.1 1 1	[GPIO Register Initialization for SPI1 Usage 4 ERTEC 200 Timers Timer 0 and Timer 1 14.1.1 Operation mode of Timer 0 and Timer 1 14.1.2 Timer interrupts 14.1.3 Timer prescaler 14.1.4 Cascading of timers 14.1.5 Address assignment of Timer 0/1 registers 14.1.6 Detailed description of Timer 0/1 registers 14.2.1 Address assignment of Timer 2 registers 14.2.2 Detailed description of Timer 2 registers 14.2.1 Address assignment of Timer 2 registers 14.2.2 Detailed description of Timer 2 registers 14.2.1 Address assignment of F-Timer registers 14.2.2 Detailed description of the F-Timer 14.3.1 Functional description of F-Timer registers 14.3.2 Address assignment of F-Timer registers 14.3.3 Detailed F-Timer register description 5 Watchdog Timer Function Address Assignment of Watchdog Registers Detailed Watchdog Register Description 6 Multiport Ethernet PHY Functional Description 16.1.1 10BASE-T Operation	160 161 162 162 162 162 163 163 163 163 163 163 171 171 171 175 175 175 177 179 180 187 187 189

1	6.1.5 Miscellaneous Function	. 195
16.2	PHY Related Interfaces	. 202
16.3	PHY Register Description	. 206
16.4	Board Design Recommendations	. 236
1	16.4.1 Supply Voltage Circuitry	. 236
1	16.4.2 10BASE-T and 100BASE-TX Mode Circuitry	. 237
1	16.4.3 100BASE-FX Circuitry	. 239
Chapter 17	7 System Control Registers	241
17.1	Address Assignment of System Control Registers	
17.2	Detailed System Control Register Description	
Chapter 18	8 ERTEC 200 Clock Supply	263
18.1	Clock Supply in ERTEC 200	. 263
18.2	Specific Clock Supplies	. 265
Chapter 19	9 Reset Logic of ERTEC 200	267
19.1	PowerOn Reset	. 267
19.2	Hardware Reset	. 268
19.3	Watchdog Reset	
19.4	Software Reset	
19.5	IRT Switch Reset	
19.6	Actions when HW Reset is Active	. 269
Chanter 2	0 Address Space and Timeout Monitoring	271
20.1	AHB Bus Monitoring	
20.1	APB Bus Monitoring	
20.2	External Memory Interface Monitoring	
20.0		
Chapter 2 ⁴	1 Test and Debugging	273
21.1	ETM9 Embedded Trace Macrocell	
21.2	ETM9 Registers	. 274
21.3	Trace Interface	. 274
21.4	JTAG Interface	. 275
21.5	Debugging via UART	. 276

List of Figures

Figure 1-1:	Pin Configuration of ERTEC 200 - 304-Pin Plastic FBGA (19 mm \times 19 mm)	
Figure 1-2:	Internal Block Diagram	
Figure 3-1:	ARM 946E-S Processor System in ERTEC 200	. 49
Figure 6-1:	Revision_Code_and_Status Register	. 65
Figure 6-2:	Async_Wait_Cycle_Config Register	. 66
Figure 6-3:	SDRAM_Bank_Config Register (1/2)	. 67
Figure 6-4:	SDRAM_Refresh_Control Register	
Figure 6-5:	Async_Bank(3:0)_Config Registers (1/2)	
Figure 6-6:	Extended_Config Register (1/2)	
Figure 6-7:	Write to External Device ("Active Data Bus")	
Figure 6-8:	Read from External Device ("Active Data Bus")	
Figure 6-9:	Write to External Device Using RDY_PER_N ("Active Data Bus")	
Figure 6-10:	32-bit Write to External 8-bit Device ("Active Data Bus")	
Figure 6-11:	External Memory Connection Example	
Figure 7-1:	DMAC0_SRC_ADDR_REG DMA Source Address Register	
Figure 7-2:	DMAC0_DEST_ADDR_REG DMA Destination Address Register	
Figure 7-3:	DMAC0_CONTR_REG DMA Control Register	
Figure 7-4:	DMAC0_CONF_REG DMA Configuration Register (1/4)	
Figure 8-1:	IRVEC IRQ Interrupt Vector Register	
Figure 8-2:	FIVEC FIQ Interrupt Vector Register	
Figure 8-3:	LOCKREG IRQ Interrupt Priority Lock Register	
Figure 8-4:	FIQ1SREG Interrupt Select Register	
Figure 8-5:	FIQ2SREG Interrupt Select Register	
Figure 8-6:	IRQACK IRQ Interrupt Acknowledge Register	
Figure 8-7:	FIQACK FIQ Interrupt Acknowledge Register	
Figure 8-8:	IRCLVEC IRQ Interrupt Request Clear Register	
-	MASKALL Mask All IRQ Interrupt Request Register	
Figure 8-9:	IRQEND End of IRQ Interrupt Signaling Register	
Figure 8-10:		
Figure 8-11:	FIQEND End of FIQ Interrupt Signaling Register	
Figure 8-12:	FIQPR07 FIQ Interrupt Priority Register	
Figure 8-13:	FIQISR FIQ Interrupt In-Service Register	
Figure 8-14:	FIQIRR FIQ Interrupt Request Register	
Figure 8-15:	FIQ_MASKREG FIQ Interrupt Mask Register	
Figure 8-16:	IRREG IRQ Interrupt Request Register	
Figure 8-17:	MASKREG IRQ Interrupt Mask Register	
Figure 8-18:	ISREG IRQ Interrupt In-Service Register	
Figure 8-19:	TRIGREG IRQ Trigger Mode Select Register	
Figure 8-20:	EDGEREG IRQ Trigger Edge Select Register	
Figure 8-21:	SWIRREG Software IRQ Interrupt Register	
Figure 8-22:	PRIOREG0-15 IRQ Interrupt Priority Register	
Figure 9-1:	Example for LBU Address Line Connection	
Figure 9-2:	LBU Read from ERTEC 400 with Separate Read Control Line	
Figure 9-3:	LBU Write to ERTEC 400 with Separate Write Control Line	
Figure 9-4:	LBU Read from ERTEC 400 with Common Read/Write Control Line	
Figure 9-5:	LBU Write to ERTEC 400 with Common Read/Write Control Line	
Figure 9-6:	LBU Page Range Register Low (LBU_Pn_RG_L)	
Figure 9-7:	LBU Page Range Register High (LBU_Pn_RG_H)	
Figure 9-8:	LBU Page Offset Register Low (LBU_Pn_OF_L)	
Figure 9-9:	LBU Page Offset Register High (LBU_Pn_OF_H)	
Figure 9-10:	LBU Page Configuration Register (LBU_Pn_CFG)	
Figure 11-1:	GPIO Cells of ERTEC 200 for GPIO(31:0)	
Figure 11-2:	GPIO_IOCTRL Register	128
Figure 11-3:	GPIO_OUT Register	128
Figure 11-4:	GPIO_IN Register	
Figure 11-5:	GPIO_PORT_MODE_L Register	130

Figure 11 C		101
Figure 11-6:	GPIO_PORT_MODE_H Register	
Figure 11-7:	GPIO_POLSEL Register	
Figure 11-8:	GPIO2_IOCTRL Register	
Figure 11-9:	GPIO2_OUT Register	
Figure 11-10:	GPIO2_IN Register UART Macro Block Diagram	
Figure 12-1:		
Figure 12-2:	UARTDR Data Register UARTRSR/UARTECR Registers	
Figure 12-3: Figure 12-4:		
Figure 12-4.	UARTLCR_H Register (1/2) UARTLCR_M Register	
Figure 12-5:	UARTLCR_L Register	
Figure 12-0:	UARTCR Register (1/2)	
Figure 12-8:	UARTFR Register (1/2)	
Figure 12-9:	UARTIIR/UARTICR Register	
Figure 13-1:	Block Diagram of SPI1 Interface	
Figure 13-2:	SSPCR0 SPI1 Control Register 0 (1/2)	
Figure 13-3:	SSPCR1 SPI1 Control Register 1 (1/2)	
Figure 13-4:	SSPDR SPI1 Rx/Tx FIFO Data Register	
Figure 13-5:	SSPSR SPI1 Status Register	
Figure 13-6:	SSPCPSR SPI1 Clock Prescale Register	
Figure 13-7:	SSPIIR/SSPICR SPI1 Interrupt Identification and Clear Register	
Figure 13-8:	Connection of Serial Flash Memory to ERTEC 200 SPI Interface	
Figure 14-1:	Simplified Block Diagram of Timers 0 and 1	
Figure 14-2:	Control/Status Register 0 (CTRL_STAT0) (1/2)	
Figure 14-3:	Control/Status Register 1 (CTRL_STAT1) (1/2)	
Figure 14-4:	Reload Register for Timer 0 (RELD0)	
Figure 14-5:	Reload Register for Timer 1 (RELD1)	
Figure 14-6:	Control Register for Prescaler 0 and 1 (CTRL_PREDIV) (1/2)	168
Figure 14-7:	Reload Register for Prescaler 0 and 1 (RELD_PREDIV)	169
Figure 14-8:	Current Timer Value Register for Timer 0 (TIM0)	. 170
Figure 14-9:	Current Timer Value Register for Timer 1 (TIM1)	
Figure 14-10:	Control Register for Timer 2 (TIM2_CTRL) (1/2)	
Figure 14-11:	Current Timer Value Register for Timer 2 (TIM2)	. 173
Figure 14-12:	F-Timer Block Diagram	
Figure 14-13:	F-Timer Value Register (F-COUNTER-VAL)	
Figure 14-14:	F-Timer Reset Register (F-COUNTER-RES)	
Figure 15-1:	Watchdog Timer Block Diagram	
Figure 15-2:	Watchdog Timer Output Timing	
Figure 15-3:	Watchdog Control/Status Register (CTRL/STATUS) (1/2)	
Figure 15-4:	Reload Register Low for Watchdog 0 (RELD0_LOW)	
Figure 15-5:	Reload Register High for Watchdog 0 (RELD0_HIGH)	
Figure 15-6:	Reload Register Low for Watchdog 1 (RELD1_LOW)	
Figure 15-7:	Reload Register High for Watchdog 1 (RELD1_HIGH)	
Figure 15-8:	Counter Register for Watchdog 0 (WDOG0)	
Figure 15-9:	Counter Register for Watchdog 1 (WDOG1)	
Figure 16-1:	PHY Block Diagram	. 187
Figure 16-2:	MLT-3 Encoding Example	. 191
Figure 16-3:	Internal and Remote Loopback Modes	. 196
Figure 16-4:	Phase Offset Indicator Function	. 201
Figure 16-5:	PHY Related Interfaces	. 202
Figure 16-6:	Basic Control Register (1/2)	. 208
Figure 16-6:	Basic Control Register (2/2)	
Figure 16-7:	Basic Status Register (1/3)	
Figure 16-7:	Basic Status Register (2/3)	
Figure 16-7:	Basic Status Register (3/3)	
Figure 16-8:	PHY Identifier Register REG2OUIIN	
Figure 16-9:	PHY Identifier Register REG3OUIIN	
Figure 16-10:	Auto-Negotiation Advertisement Register (1/3)	. 215

=		
Figure 16-10:	Auto-Negotiation Advertisement Register (2/3)	
Figure 16-10:	Auto-Negotiation Advertisement Register (3/3)	217
Figure 16-11:	Auto-Negotiation Link Partner Ability Register (Base Page, 1/2)	
Figure 16-11:	Auto-Negotiation Link Partner Ability Register (Base Page, 2/2)	
Figure 16-12:	Auto-Negotiation Link Partner Ability Register (Next Page, 1/2)	
Figure 16-12:	Auto-Negotiation Link Partner Ability Register (Next Page, 2/2)	
Figure 16-13:	Auto-Negotiation Expansion Register	
Figure 16-14:	Auto-Negotiation Next Page Transmit Register	
Figure 16-15:	Silicon Revision Register	
Figure 16-16:	Mode Control/Status Register (1/3)	
Figure 16-16:	Mode Control/Status Register (2/3)	
Figure 16-16:	Mode Control/Status Register (3/3)	
Figure 16-17:	Special Mode Register (1/2)	
Figure 16-17:	Special Mode Register (2/2)	
Figure 16-18:	Special Control/Status Indication Registerr	
Figure 16-19:	Interrupt Source Flag Register (1/2)	
Figure 16-19:	Interrupt Source Flag Register (2/2)	
Figure 16-20:	Interrupt Mask Register	
Figure 16-21:	PHY Special Control/Status Register (1/2)	
Figure 16-21:	PHY Special Control/Status Register (2/2)	
Figure 16-22:	Decoupling Capacitor Usage	
Figure 16-23:	10BASE-T and 100BASE-TX Interface Circuit Example 1	
Figure 16-24:	10BASE-T and 100BASE-TX Interface Circuit Example 2	
Figure 16-25:	Circuit for Unused 100BASE-FX Mode	
Figure 16-26:	100BASE-FX Interface Example	
Figure 17-1:	Device Identification Register (ID_REG)	
Figure 17-2:	Boot Mode Pin Register (BOOT_REG)	
Figure 17-3:	Config Pin Register (CONFIG_REG)	
Figure 17-4:	Reset Control Register (RES_CTRL_REG) (1/2)	
Figure 17-5:	Reset Status Register (RES_STAT_REG)	
Figure 17-6:	PLL Status Register (PLL_STAT_REG) (1/2)	
Figure 17-7:	AHB Timeout Address Register (QVZ_AHB_ADR) AHB Timeout Control Signal Register (QVZ_AHB_CTRL)	
Figure 17-8:	\mathbf{c} \mathbf{c} \mathbf{c} \mathbf{c} \mathbf{c} \mathbf{c}	
Figure 17-9:	AHB Timeout Master Register (QVZ_AHB_M)	
Figure 17-10: Figure 17-11:	APB Timeout Address Register (QVZ_APB_ADR) EMIF Timeout Address Register (QVZ_EMIF_ADR)	
Figure 17-11:	Memory Swap Register (MEM_SWAP)	
Figure 17-12:	AHB Master Lock Control Register (M_LOCK_CTRL)	
Figure 17-13:	ARM9 Control Register (ARM9_CTRL) (1/2)	
Figure 17-14:	ARM9 Control Write Enable Register (ARM9_WE)	
Figure 17-16:	ERTEC 200 TAG Identification Register (ERTEC200_TAG)	
Figure 17-17:	PHY1/2 Configuration Register (PHY_CONFIG) (1/4)	
Figure 17-17:	PHY1/2 Configuration Register (PHY_CONFIG) (2/4))	
Figure 17-17:	PHY1/2 Configuration Register (PHY_CONFIG) (3/4))	
Figure 17-17:	PHY1/2 Configuration Register (PHY_CONFIG) (3/4/)	
Figure 17-18:	PHY1/2 Status Register (PHY_STATUS)	
Figure 17-19:	UART Clock Section Register (UART_CLK)	
Figure 18-1:	Detailed Representation of Clock Unit	
Figure 18-2:	Clock Supply of Ethernet Interface	
Figure 19-1:	PLL Power-up Phase	
Figure 21-1:	JTAG Connector Pin Assignment	
. 19010 21 1.		270

List of Tables

Table 1-1:	Pin Configuration of ERTEC 200	. 22
Table 1-2:	Pin Identification	
Table 2-1:	External Memory Interface Pin Functions	. 33
Table 2-2:	Local Bus Interface Pin Functions	
Table 2-3:	MII/SMI Diagnosis Interface Pin Functions	
Table 2-4:	PHY Interface Pin Functions	
Table 2-5:	General Purpose I/O Pin Functions	
Table 2-6:	UART Pin Functions	
Table 2-7:	SPI1 Pin Functions	
Table 2-8:	MC_PLL Pin Functions	
Table 2-9:	Clock and Reset Pin Functions	
Table 2-10:	JTAG and Debug Interface Pin Functions	
Table 2-11:	Trace Port Pin Functions	
Table 2-12:	Power Supply Pin Functions	
Table 2-13:	Alternative Functions of GPIO(31:0) Pins	
Table 2-14:	Pin Characteristics	
Table 2-15:	Pin Status During Reset and Recommended Connections	
Table 2-16:	Alternative Functions of LBU Interface Pins	
Table 3-1:	CP15 Coprocessor Registers	
Table 4-1:	Possible AHB Master/Slave Combinations	
Table 5-1:	Memory Area Partitioning	
Table 5-2:	Detailed Description of Memory Segments	
Table 5-2:	Memory Map and Used Address Range Example	
Table 5-5.	External Memory Interface Pin Functions	
Table 6-1:		
	External Memory Interface Control Registers	
Table 7-1:	DMA Transfer Modes	
Table 7-2:	DMA Synchronization Signals	
Table 7-3:	DMA Controller Registers	
Table 8-1:	FIQ Interrupt Sources	
Table 8-2:	IRQ Interrupt Sources.	
Table 8-3:	Interrupt Control Registers	
Table 9-1:	Local Bus Interface Pin Functions	
Table 9-2:	Page Size Settings	
Table 9-3:	Page Offset Setting Examples	
Table 9-4:	Local Bus Unit Address Mapping Example	
Table 9-5:	LBU Register Initialization Example	
Table 9-6:	32-bit Accesses in Various Address Ranges	
Table 9-7:	Possible Host Accesses to ERTEC 200	
Table 9-8:	Address Assignment of LBU Registers	
Table 10-1:	Supported Download Modes	
Table 11-1:	GPIO Pin and Related Drive Capabiliy	
Table 11-2:	Address Assignment of GPIO Registers	
Table 11-3:	Alternative Functions of GPIO(31:0) pins	
Table 11-4:	Alternative Functions of GPIO(44:32) pins	136
Table 12-1:	UART Pin Functions	
Table 12-2:	Baud Rates and Tolerances for 50 MHz UART Operation Clock	139
Table 12-3:	Address Assignment of UART Registers	140
Table 12-4:	GPIO Register Initialization Example for Two-wire UART	150
Table 12-5:	GPIO Register Initialization Example for Five-wire UART	
Table 13-1:	SPI1 Pin Functions	
Table 13-2:	Address Assignment of SPI1 Registers	
Table 13-3:	GPIO Register Initialization Example for External Serial Flash Memory	160
Table 14-1:	Address Assignment of Timer 0 and Timer 1 Registers	163
Table 14-2:	Address Assignment of Timer 2 Registers	
Table 14-3:	F-Timer Pin Functions	174

Table 14-4:	Address Assignment of F-Timer Registers	. 175
Table 15-1:	Address Assignment of Watchdog Registers	. 179
Table 16-1:	PHY Interface Pin Functions	186
Table 16-2:	4B/5B Code Table	. 190
Table 16-3:	Assignment of LED Signals to GPIO Pins	. 195
Table 16-4:	PHY Interrupt Events	. 199
Table 16-5:	MII (Diagnosis) Interface Signals	203
Table 16-6:	SMI (Diagnosis) Interface Signals	204
Table 16-7:	MDI Interface Signals	. 204
Table 16-8:	Other PHY Related Signals	205
Table 16-9:	PHY-internal Registers	206
Table 16-10:	Initial Parameter Settings for PHYs	207
Table 16-11:	NEC OUI Composition	. 213
Table 16-12:	PHY ID Number Composition	. 213
Table 16-13:	Generation of PHY-specific Supply Voltages	236
Table 16-14:	Examples for Magnetics Selection	. 238
Table 17-1:	Address Assignment of System Control Registers	. 241
Table 18-1:	Overview of ERTEC 200 Clocks	. 263
Table 19-1:	BOOT(3:0) Pin Functions	. 269
Table 19-2:	CONFIG(6:1) Pin Functions	. 270
Table 21-1:	Memory Map Decode Regions in ETM9 on ERTEC 200	. 273
Table 21-2:	Trace Port Pin Functions	. 274
Table 21-3:	JTAG and Debug Interface Pin Functions	275

Chapter 1 Introduction

1.1 General

ERTEC 200 is a powerful communication block for development of industrial Ethernet devices with hard real-time capabilities. ERTEC 200 contains a 32-bit RISC processor, an external memory interface with SDRAM and SRAM controller, a local bus interface, a 2-channel real-time Ethernet interface with integrated PHYs, synchronous and asynchronous serial ports, and general purpose I/Os. Its robust construction, specific automation functions, and openness to the IT world are distinguishing features. The ERTEC 200 is housed in a 304-pin plastic FBGA package (19 mm \times 19 mm).

(1) ARM946E-S Processor

ERTEC 200 uses an ARM946E-S processor with configurable clock frequencies of 50, 100 or 150 MHz. This processor however, is based on the ARM9E-S core that supports the ARM5vTE instruction set architecture with 32-bit wide normal instructions and the 16-bit wide THUMB instruction set.

It includes support for separate instruction and data caches as well as tightly coupled memory. In case of ERTEC 200 8 kBytes of instruction cache (I-cache) and 4 kBytes of data cache (D-cache) are available. The tightly coupled memory (TCM) has a size of 4 kBytes and can be accessed with full CPU speed.

An integrated memory protection unit (MPU) allows to restrict access permission to eight programmable portions of the ERTEC 200 address space.

The processor core is extended with two on-chip interrupt controllers, one of which is connected to the core's FIQ input while the other one is connected to the IRQ input. The IRQ interrupt controller handles up to 16 interrupt sources that can be prioritized; the FIQ interrupt controller can handle up to 8 sources. Most interrupt sources are assigned to internal peripheral units, however GPIO pins can be used as interrupt sources as well.

For easy debugging, ERTEC 200 is equipped with an ETM9 debug and trace module. In addition to the on-chip debug capabilities of the ARM946E-S core, the ETM9 module allows instruction and data trace. The ETM9 cell can be operated in full rate mode, as long as the CPU core frequency is 50 or 100 MHz; otherwise, half-rate mode must be selected.

(2) Bus System

ERTEC 200's internal bus structure is made up of a multilayer AHB bus and an APB bus. Both run at a maximum speed of 50 MHz.

The multilayer AHB bus offers multimaster capability and up to four simultaneous bus communication processes between masters and slaves. Thus a very high availability of the AHB bus is achieved. Potential bus masters are the ARM core, the LBU interface, the DMA controller and the IRT switch; slaves are the external memory interface, the DMA controller, the IRT switch, the interrupt controller and the AHB-to-APB bridge.

The APB bus connects to the less demanding peripherals like UARTs, SPI, GPIOs etc.

(3) On-chip Memories

ERTEC 200 has two categories of on-chip memories: the caches and the data TCM that are regarded as belonging to the core, and a ROM area that is on-chip, but off-core. The on-chip ROM has a size of 8 kBytes and is implemented as an APB peripheral. The boot ROM content is predefined and cannot be altered by the user. It contains a boot loader program with the ability to choose among various other boot sources, if desired.

(4) External Memory Interface

The memory controller on ERTEC 200 supports synchronous DRAM as well as static memories like SRAM or Flash. Additionally, static peripherals can be connected. For SDRAM a data bus width of 16 or 32 bits can be configured; the addressing capabilities allow connection of up to 128 MBytes of SDRAM. SDRAM is accessed with the clock speed of the multilayer AHB bus, therefore the maximum SDRAM speed is 50 MHz with a CAS-latency of 2. For static devices 4 chip selects with an address range of 16 MBytes each are prepared. They are independently configurable to 8-, 16- or 32-bit bus width and to individual access timings. Slow peripherals are supported with a ready signal input and a timeout function. Static chip select 0 can be used for an external boot device - typically a flash memory - as an alternative to using the boot loader in the on-chip ROM.

(5) IRT Switch

The IRT switch block provides two Ethernet channels for 10 or 100 Mbps respectively half or full duplex operation. The IRT switch is coupled to the multilayer AHB bus as a master and a slave and to the external world via two integrated PHYs allowing direct connection to magnetics or optical transceivers. For the use of external PHYs, the IRT switch can be re-configured to 2-channel MII operation. A large internal Communication SRAM with 64 kBytes in size helps to support RT and IRT data communication over Ethernet.

(6) Local Bus Unit

The Local Bus unit (LBU) allows to run ERTEC 200 as a peripheral to an external host controller. The LBU is a master to the multilayer AHB bus and has separate address (21-bit) and data (16-bit) buses to the external world. Seen with the eyes of the external host, the LBU opens a total of four configurable windows into the ERTEC 200, that allow to configure ERTEC 200 and to access all internal resources.

(7) DMA Controller

ERTEC 200 has a one-channel DMA controller for data transfers between peripherals, between memories and between peripheral and memory. The DMA controller supports programmable transfer sizes and auto-increment and address hold functions for data source and target. A set of control registers can be accessed from the ARM946E-S core to set up transfers as required. The completion of a DMA transfer is signalled with an interrupt or with a status bit.

(8) Other Peripherals

The ERTEC 200 has several additional communication interfaces that can be accessed over the AHB-to-APB bridge and the subsequent APB bus. These are a widely 16550-compatible UART, an SPI channel, three timers, a watchdog, an additional fail-safe timer (F-timer) and a GPIO block with up to 45 individually configurable I/Os. The interfaces share their pins with the GPIOs, so that depending on the selected configuration a reduced number of GPIOs is available. 4 GPIOs can be used as interrupt sources.

(9) Clock and Power Supply

The ERTEC 200 can be operated with a single, external 25 MHz crystal. An internal oscillator and PLL generate all required clocks for the ARM946E-S, the IRT block, the internal buses and other peripherals. Alternatively, an external clock of 25 MHz can be supplied.

Two supply voltage levels are required for operation of ERTEC 200: The internal logic is running at 1.5 V; the I/Os and parts of the integrated PHYs are operating at 3.3 V.

1.2 Device Features

ARM946E-S Processor

- Adjustable operating frequency (50/100/150 MHz)
- System control coprocessor (CP15)
- 4 kBytes of Data-TCM
- Interface with "Write buffer" on 32-bit multilayer AHB bus
- 8 kBytes I-cache and 4 kBytes D-cache with lock functionality
- Memory Protection Unit
- Cacheability attribute setting for regions
- Read/write access rights for certain modes only
- 2 interrupt controllers with 16 inputs for IRQ and 8 inputs for FIQ
- Debug/trace functionality by ETM9 module via JTAG interface
- Trace in full rate mode at operating frequencies of 50 and 100 MHz
- Trace in half rate mode at an operating frequency of 150 MHz
- 4-/8-bit trace data width selectable
- Trace can be restricted to selected address ranges and memory regions

• External Memory Interface (EMIF)

- SDRAM memory controller
 - Adjustable 16-/32-bit data bus width
 - PC100 SDRAM-compatible (50 MHz clock frequency)
 - Maximum of 128 MBytes/32-bit or 64 Mbytes/16-bit SDRAM
 - Adjustable RAS/CAS latency (2, 3 for Write; 1, 2 for Read)
 - 2-bit bank address (1/2/4 banks) via address bits A(1:0)
 - 8-/9/-10-/11-bit column address A13, A(11:2)
 - Maximum 13-bit row address A(14:2)
- Asynchronous memory controller for SRAM, Flash, I/O
 - Adjustable 8-/16-/32-bit data bus width
 - 4 chip selects with individual timing control
 - Default setting for boot operation timing is "slow"
 - Maximum of 16 Mbytes can be addressed for each chip select
 - Chip select CS_PER0_N can be used for boot memory
 - Data bus width of boot ROM at CS_PER0_N is selectable via BOOT(3:0) pins
 - Adjustable timeout monitoring
 - DTR_N (direction) and OE_DRIVER_N (enable) control signals for direct control of an external driver for chip select signals CS_PER(3:0)_N

• IRT Switch

- Two Fast Ethernet ports with integrated PHYs
- 10BASE-T and 100BASE-TX/FX support
- Full duplex/half duplex mode support
- Supports RT and IRT data traffic
- Autonegotiation
- Broadcast filter
- IEEE 1588 time stamping
- 64 kBytes of Communication SRAM

• Local Bus Unit (LBU)

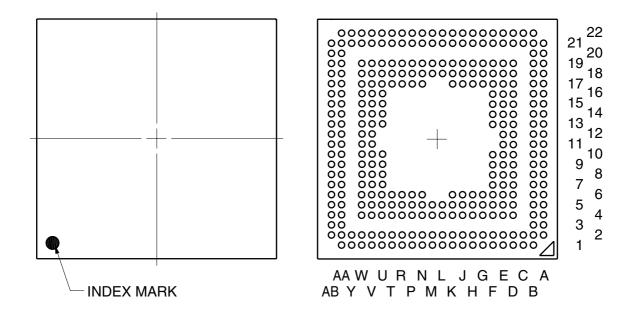
- 16-bit data bus width, 21-bit address bus width
- Host access to LBU paging registers via chip select signal LBU_CS_R_N
- Host access to any address area of ERTEC 200 via chip select signal LBU_CS_M_N
- Maximum of 4 pages can be addressed
- Adjustable page-range and page-offset for each page; reconfigurable at any time

• DMA Controller

- One-channel DMA controller
- Supports data transfers between internal and external memories
- Supports data transfers between peripherals and internal memory
- Selectable transfer width (8/16/32 bits) and block size
- 4 request inputs for synchronization with peripherals
- Change/hold address modes selectable
- DMA control via hard- or software
- End of transfer can be signalled with an interrupt

• Other I/O Interfaces

- 45-bit General Purpose I/O (GPIO)
 - Input/outputs GPIO(31:0) can be assigned on a bit-by-bit basis
 - Input/outputs GPIO(44:32) can be used alternatively to LBU interface
 - All GPIOs equipped with internal pull-up resistor
 - 4 GPIO inputs are interruptible (active Low level is not a supported interrupt level)
 - GPIO(31:0) can be assigned up to 4 different functions (see Table 11-3)
 - 8-/16-/32-bit access to registers is possible
- UART
 - Based on ARM PrimeCellTM UART PL010 and widely 16550 compatible
- SPI
 - Supports Motorola SPI, TI SSI and National Instruments microwire modes
 - Programmable data frame size and bit rate
 - Master and slave mode capability
 - Send and Receive FIFOs with 8 16-bit entries
 - Group and overrun error interrupts
- Timers
 - Two 32-bit down counters with load/reload capability (T0/1)
 - Start, stop, continue functions and interrupts
 - Cascadable to a 64-bit timer and additional 8-bit prescaler selectable
 - Timers run on 50 MHz internal clock
 - Single 16-bit up counter with load/reload capability (T2)
 - Start, stop functions and interrupts
 - Timer runs on 50 MHz internal clock
 - Additional 32-bit fail-safe F-Timer
 - Runs from external clock F_CLK
- Watchdog
 - 32-bit count-down watchdog 0 with output pin WD_WDOUT0_N
 - 36-bit count-down watchdog 1
 - Load/reload function
 - Write protection for watchdog
 - Watchdog interrupt on the FIQ interrupt controller


1.3 Ordering Information

Device	Part Number	Package
ERTEC 200	µPD800261F1-523-HN2	P-FBGA304, 19 × 19 mm
	µPD800261F1-523-HN2-A	

Remark: Products with -A at the end of the part number are lead-free products.

1.4 Pin Configuration

Pin Number	Pin Name	Pin Number	Pin Name
A2	VDD IO	A21	GND Core
A3	A1	B1	GND IO
A4	WR_N	B2	A3
A5	CS_PER1_N	В3	A2
A6	CS_PER2_N	B4	A0
A7	GPIO26	B5	RD_N
A8	GND IO	B6	CS_PER3_N
A9	VDD IO	B7	RESET_N
A10	VDD IO	B8	GPIO30
A11	GPIO21/SPI1_SFRMOUT	B9	GPIO25/TGEN_OUT1_N
A12	GND IO	B10	GPIO27
A13	GPIO16/SPI1_SSPCTLOE	B11	GPIO24/PLL_EXT_IN_N
A14	VDD IO	B12	GPIO18/SPI1_SSPRXD
A15	REF_CLK	B13	F_CLK
A16	GPIO12/UART-CTS-N	B14	CLKP_A

B15

B16

B17

B18

GPIO13

GPIO10/UART-DCD-N

GPIO6/P1-RX-LED_N/P1-TX-LED_N/P1-ACTIVE-LED_N

GPIO8/UART-TXD

A17

A18

A19

A20

GPIO9/UART-RXD

GPIO4/P1-LINK-LED_N

VDD IO

GND IO

Pin Number	Pin Name	Pin Number	Pin Name	
B19	GPIO3/P2-SPEED-100LED_N/P2-SPEED-10LED_N	E13	VDD Core	
B20	GPIO1/P2 -DUPLEX-LED_N	E14	GPIO15/WD_WDOUT0_N	
B21	GND IO	E15	GPIO14/DBGACK	
B22	VDD IO	E16	GPIO11/UART-DSR-N	
C1	A6	E17	GND Core	
C2	A5	E18	VDD Core	
C21	P1TDxP	E19	GND ^{Note}	
C22	P1TDxN	E21	P1RDxN	
D1	A8	E22	P1RDxP	
D2	A7	F1	A12	
D4	A4	F2	A11	
D5	CS_PER0_N	F4	A20/CONFIG3	
D6	VDD Core	F5	GND Core	
D7	RDY_PER_N	F6	VDD Core	
D8	OE_DRIVER_N	F7	GND Core	
D9	VDD Core	F8	GND IO	
D10	GPIO23/SPI1_SCLKIN	F9	GPIO28	
D11	GPIO20/SPI1_SCLKOUT	F10	GPIO22/SPI1_SFRMIN/DBGACK	
D12	VDD Core	F13	PLL_AGND	
D13	GPIO19/SPI1_SSPTXD	F14	GPIO17/SPI1_SSPOE	
D14	CLKP_B	F15	GND IO	
D15	GPIO7/P2-RX-LED_N/P2-TX-LED_N/P2-ACTIVE-LED_N	F16	GND Core	
D16	GPIO5/P2-LINK-LED_N	F17	VDD Core	
D17	GPIO2/P1-SPEED-100LED_N/P1-SPEED-10LED_N	F18	GND (PECL)	
D18	VDD Core	F19	P1SDxN	
D19	GPIO0/P1-DUPLEX-LED_N	F21	GND ^{Note}	
D21	VDDQ (PECL)	F22	VDD33ESD	
D22	VDDQ (PECL)	G1	A14	
E1	A10	G2	A13	
E2	A9	G4	A21/CONFIG4	
E4	A19/CONFIG2	G5	GND IO	
E5	VDD Core	G6	GND Core	
E6	GND Core	G17	DGND2	
E7	DTR_N/BOOT0	G18	DVDD1	
E8	GPIO31/DBGREQ	G19	P1SDxP	
E9	GPIO29	G21	P1RxP	
E10	GND IO	G22	P1RxN	
E11	GND Core	H1	VDD IO	
E12	PLL_AVDD	H2	A15/BOOT1	

 Table 1-1:
 Pin Configuration of ERTEC 200 (2/5)

Note: Connect to GND to improve heat dissipation; pins may as well be left open.

Pin Number	Pin Name	Pin Number	Pin Name
H4	A23/CONFIG6	M4	WE_SDRAM_N
H5	A22/CONFIG5	M5	RAS_SDRAM_N
H6	GND IO	M18	P2VSSATX1
H17	GND ^{Note}	M19	GND ^{Note}
H18	GND33ESD	M21	P2TxN
H19	DVDD2	M22	P2TxP
H21	DGND1	N1	VDD IO
H22	VDDACB	N2	D1
J1	GND IO	N4	BE0_DQM0_N
J2	A16/BOOT2	N5	D20
J4	BE2_DQM2_N	N6	D21
J5	leave open	N17	P2VSSARX
J6	D18	N18	P2VDDARXTX
J17	P1VSSARX	N19	GND ^{Note}
J18	GND ^{Note}	N21	GND ^{Note}
J19	P1VDDARXTX	N22	GND ^{Note}
J21	P1TxN	P1	D2
J22	P1TxP	P2	D3
K1	A18/CONFIG1	P4	D25
K2	A17/BOOT3	P5	BE3_DQM3_N
K4	D16	P6	D22
K5	D17	P17	GND ^{Note}
K6	D19	P18	GND ^{Note}
K17	P1VSSATX1	P19	GND ^{Note}
K18	P1VSSATX2	P21	P2RxP
K19	VDDAPLL	P22	P2RxN
K21	GND ^{Note}	R1	D4
K22	GND ^{Note}	R2	VDD Core
L1	CS_SDRAM_N	R4	D26
L2	CAS_SDRAM_N	R5	D23
L4	VDD Core	R6	D24
L5	GND Core	R17	DGND3
L18	VSSAPLLCB	R18	GND ^{Note}
L19	P2VSSATX2	R19	VDDQ (PECL)
L21	EXTRES	R21	DVDD4
L22	leave open	R22	DVDD3
M1	CLK_SDRAM	T1	GND IO
M2	D0	T2	D5

Table 1-1: Pin Configuration of ERTEC 200 (3/5)

Note: Connect to GND to improve heat dissipation; pins may as well be left open.

Pin Number	Pin Name	Pin Number	Pin Name	
T4	D27	V15	LBU_D13/SMI_MDIO	
T5	leave open	V16	LBU_D14/RES_PHY_N	
Т6	GND Core	V17	GND IO	
T17	DGND4	V18	VDD Core	
T18	GND (PECL)	V19	P2SDxP	
T19	GND (PECL)	V21	VDDQ (PECL)	
T21	VDD Core	V22	GND ^{Note}	
T22	GND ^{Note}	W1	D9	
U1	D6	W2	D10	
U2	D7	W4	D29	
U4	D28	W5	D30	
U5	GND IO	W6	D31	
U6	VDD Core	W7	тск	
U7	GND IO	W8	TAP_SEL	
U8	VDD Core	W9	LBU_A16/GPIO32	
U9	TDI	W10	LBU_A17/GPIO33	
U10	TRST_N	W11	LBU_A15/COL_P2	
U13	LBU_SEG_1/GPIO38	W12	LBU_A19/GPIO35	
U14	LBU_CS_M_N/GPIO40	W13	VDD Core	
U15	GND IO	W14	LBU_D12/SMI_MDC	
U16	GND Core	W15	LBU_D1/TXD_P11	
U17	VDD Core	W16	LBU_D15/GPIO41	
U18	P2SDxN	W17	VDD Core	
U19	leave open	W18	LBU_IRQ1_N/GPIO44	
U21	P2RDxN	W19	LBU_RDY_N/GPIO42	
U22	P2RDxP	W21	P2TDxN	
V1	BE1_DQM1_N	W22	VDD IO	
V2	D8	Y1	VDD IO	
V4	VDD Core	Y2	D11	
V5	VDD Core	Y21	P2TDxP	
V6	GND Core	Y22	VDD IO	
V7	TMS	AA1	D12	
V8	SRST_N	AA2	D13	
V9	TDO	AA3	D15	
V10	LBU_A18/GPIO34	AA4	LBU_A1/RXD_P11/ETMEXTIN1	
V11	GND Core	AA5	LBU_A2/RXD_P12/TRACEPKT7	
V12	LBU_A20/GPIO36	AA6	LBU_A4/CRS_P1/TRACEPKT5	
V13	LBU_SEG_0/GPIO37	AA7	LBU_A6/RX_DV_P1/TRACEPKT3	
V14	GND Core	AA8	LBU_A8/RXD_P20/TRACEPKT1	

 Table 1-1:
 Pin Configuration of ERTEC 200 (4/5)

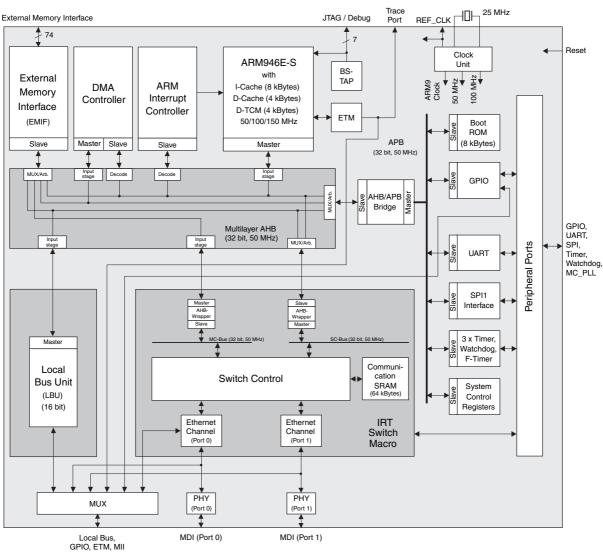
Note: Connect to GND to improve heat dissipation; pins may as well be left open.

Pin Number	Pin Name	Pin Number	Pin Name
AA9	LBU_A10/RXD_P22/TRACESYNC	AB5	LBU_A3/RXD_P13/TRACEPKT6
AA10	LBU_A11/RXD_P23/PIPESTA2	AB6	LBU_A5/RX_ER_P1/TRACEPKT4
AA11	LBU_A13/RX_ER_P2/PIPESTA0	AB7	LBU_A7/COL_P1/TRACEPKT2
AA12	LBU_WR_N/TX_CLK_P1	AB8	LBU_A9/RXD_P21/TRACEPKT0
AA13	LBU_BE1_N/RX_CLK_P2	AB9	VDD IO
AA14	LBU_D0/TXD_P10	AB10	LBU_A12/CRS_P2/PIPESTA1
AA15	VDD Core	AB11	LBU_A14/RX_DV_P2
AA16	LBU_D3/TXD_P13	AB12	LBU_CS_R_N/GPIO39
AA17	LBU_D5/TX_ERR_P1	AB13	LBU_RD_N/TX_CLK_P2
AA18	LBU_D7/TXD_P21	AB14	LBU_BE0_N/RX_CLK_P1
AA19	LBU_D9/TXD_P23	AB15	VDD IO
AA20	LBU_D10/TX_EN_P2	AB16	LBU_D2/TXD_P12
AA21	LBU_IRQ0_N/GPIO43	AB17	LBU_D4/TX_EN_P1
AA22	GND Core	AB18	LBU_D6/TXD_P20
AB2	D14	AB19	LBU_D8/TXD_P22
AB3	LBU_A0/RXD_P10/ETMEXTOUT	AB20	VDD IO
AB4	TRACECLK	AB21	LBU_D11/TX_ERR_P2

Table 1-1: Pin Configuration of ERTEC 200 (5/5)

1.5 Pin Identification

Table 1-2:	Pin Identification (1/2)
------------	--------------------------


A(23:0)	: Address bus	SPI1_SSPRXD	: SPI receive data
D(31:0)	: Data bus	SPI1_SSPTXD	: SPI transmit data
WR_N	: Write strobe	SPI1_SCLKOUT	: SPI clock out
RD_N	: Read strobe	SPI1_SFRMOUT	: SPI serial frame output
CLK_SDRAM	: Clock to SDRAM	SPI1_SFRMIN	: SPI serial frame input
BE(3:0)_DQM(3:0)_N	: Byte enable	SPI1_SCLKIN	: SPI clock in
CS_SDRAM_N	: Chip select to SDRAM	SPI1_SSPCTLOE	: SPI clock and serial frame output enable
RAS_SDRAM_N	: Row address strobe to SDRAM	SPI1_SSPOE	: SPI output enable
CAS_SDRAM_N	: Column address strobe to SDRAM	TXD_P(2:1) 0	: MII transmit data bit 0
WE_SDRAM_N	: RD/WR SDRAM	TXD_P(2:1) 1	: MII transmit data bit 1
CS_PER(3:0)_N	: Chip select	TXD_P(2:1) 2	: MII transmit data bit 2
RDY_PER_N	: Ready signal	TXD_P(2:1) 3	: MII transmit data bit 3
DTR_N	: Direction signal for external driver or scan clock	RXD_P(2:1) 0	: MII receive data bit 0
OE_DRIVER_N	: Enable signal for external driver or scan clock	RXD_P(2:1) 1	: MII receive data bit 1
BOOT(3:0)	: Boot mode	RXD_P(2:1) 2	: MII receive data bit 2
CONFIG(6:1)	: System configuration	RXD_P(2:1) 3	: MII receive data bit 3
GPIO(44:0)	: GPIO pins	TX_EN_P(2:1)	: MII transmit enable
UART-TXD	: UART transmit data output	TX_ERR_P(2:1)	: MII transmit error
UART-RXD	: UART receive data input	RX_ER_P(2:1)	: MII receive error
UART-DCD_N	: UART carrier detection signal	CRS_P(2:1)	: MII carrier sense
UART-DSR_N	: UART data set ready signal	RX_DV_P(2:1)	: MII receive data valid
UART-CTS_N	: UART transmit enable signal	COL_P(2:1)	: MII collision
LBU_A(20:0)	: LBU address bus	RX_CLK_P(2:1)	: MII receive clock
LBU_D(15:0)	: LBU data bus	TX_CLK_P(2:1)	: MII transmit clock
LBU_WR_N	: LBU write control	SMI_MDC	: MII SMI clock
LBU_RD_N	: LBU read control	SMI_MDIO	: MII SMI input/output
LBU_BE(1:0)_N	: LBU byte enable	RES_PHY_N	: Reset to PHY
LBU_SEG_(1:0)	: LBU page selection	P(2:1)TxP	: Differential transmit output
LBU_IRQ_(1:0)_N	: LBU interrupt request	P(2:1)TxN	: Differential transmit output
LBU_RDY_N	: LBU ready signal	P(2:1)RxP	: Differential receive input
LBU_CS_M_N	: LBU chip select to ERTEC 200 internal resources	P(2:1)RxN	: Differential receive input
LBU_CS_R_N	: LBU chip select to page configuration registers	P(2:1)TDxP	: FX differential transmit out- put

		()	
P(2:1)TDxN	: FX differential transmit out- put	DBGREQ	: Debug request to ARM9
P(2:1)RDxP	: FX differential receive input	DBGACK	: Debug acknowledge
P(2:1)RDxN	: FX differential receive input	TAP_SEL	: Select TAP controller
P(2:1)SDxP	: FX differential SD input	CLKP_A	: Quartz connection
P(2:1)SDxN	: FX differential SD input	CLKP_B	: Quartz connection
EXTRES	: Reference resistor 12.4 k Ω	REF_CLK	: Reference clock output
P(2:1)DUPLEX-LED_N	: PHY LED	F_CLK	: Clock for F-counter
P(2:1)LINK-LED_N	: PHY LED	RESET_N	: Power On reset
P(2:1)-SPEED-100LED_N (TX/FX)	: PHY LED	WD_WDOUT0_N	: Watchdog output
P(2:1)-SPEED-10LED_N	: PHY LED	VDD Core	: Power supply for core, 1.5 V
P(2:1)-RX-LED_N	: PHY LED	GND Core	: GND for core
P(2:1)-TX-LED_N	: PHY LED	VDD IO	: Power supply for IO, 3.3 V
P(2:1)-ACTIVE-LED_N	: PHY LED	GND IO	: GND for IO
PLL_EXT_IN_N	: MC_PLL input signal	PLL_AVDD	: Analog power supply for PLL, 1.5 V
TGEN_OUT1_N	: MC_PLL output signal	PLL_AGND	: Analog GND for PLL
TRACEPKT(7:0)	: Trace pins of ETM	VDDQ (PECL)	: Power supply for PECL buffers, 3.3 V
ETMEXTOUT	: ETM output signal	GND (PECL)	: GND for PECL buffers
ETMEXTIN1	:ETM input signal	DVDD(4:1)	: Digital power supply for PHYs, 1.5 V
PIPESTA(2:0)	: Trace pipeline status	DGND(4:1)	: Digital GND for PHYs
TRACESYNC	: Trace sync signal	P(2:1)VDDARXTX	: Analog port Tx/Rx power supply, 1.5 V
TRACECLK	: ETM trace or scan clock	P(2:1)VSSARX	: Analog port GND
TRST_N	: JTAG reset	P(2:1)VSSATX(2:1)	: Analog port GND
ТСК	: JTAG clock	VDDAPLL	: Analog central power sup- ply, 1.5 V
TDI	: JTAG data in	VDDACB	: Analog central power sup- ply, 3.3 V
TMS	: JTAG test mode select	VSSAPLLCB	: Analog central GND
TDO	: JTAG data out	VDD33ESD	: Analog test power supply, 3.3 V
SRST_N	: Hardware reset for debug usage	GND33ESD	: Analog test GND

Table 1-2: Pin Identification (2/2)

1.6 Configuration of Functional Blocks

1.6.1 Block Diagram of ERTEC 200

Figure 1-2: Internal Block Diagram

MDI (Port 1)

1.6.2 On-chip Units

(1) CPU (ARM946E-S)

ERTEC 200 uses an ARM946E-S 32-bit RISC processor core running at a maximum speed of 150 MHz. This core processes 32-bit instructions according to the ARM5v5TE instruction set architecture as well as 16-bit wide THUMB instructions. Instruction throughput is increased using a five-stage pipeline, 8 kBytes of I-cache, 4 kBytes of D-cache and 4 kBytes of D-TCM.

(2) Multilayer AHB Bus

The Multilayer AHB bus is the data highway within ERTEC 200. It connects all major functional blocks with a 32-bit, 50 MHz segmented bus structure, that is able to run four bus transfers in parallel without blocking.

(3) External Memory Interface

Access to external memories is provided with a double memory controller that supports 128 MBytes of standard SDRAM with an access speed of 50 MHz and a total of 64 MBytes of static memory with one dynamic and four static chip select signals. The static chip select signals can be used for SRAM, Flash and peripheral devices. External bus width is configurable to 16-/32-bit for SDRAM and 8-/16-/32-bit for the static portion of the interface. Access timings are individually selectable for each chip select.

(4) Interrupt Controller

The ARM processor core on ERTEC 200 has a "normal" interrupt input (IRQ) and a fast interrupt input (FIQ). With the on-chip interrupt controller, the interrupt processing capabilities are extended to 16 IRQs and 8 FIQs with prioritization and vectorization. These interrupts are partly assigned to internal resources and partly accessible to the external world via GPIO pins.

(5) IRT Switch

The IRT switch block on ERTEC 200 provides two 10/100 Mbps Ethernet channels; due to special control features and the large Communication SRAM of 64 kBytes, all channels support real-time and isochronous real-time communication. Connection to an Ethernet network is realized with integrated PHYs that support 10BASE-T and 100BASE-TX/FX modes. The internal MII interface between MACs and PHYs can be made available for diagnosis purposes.

(6) Local Bus Interface

ERTEC 200 has a local bus interface (LBU) to an external host controller; it offers 21 address bits and 16 data bits. ERTEC 200 is a slave with respect to this interface. The external host can look through four configurable (in size and position) windows into ERTEC 200's address space. Read/ write control is either done with separate read and write lines or with a common read/write line.

(7) DMA Controller

The integrated DMA controller reduces CPU load for data transfers between memory and memory respectively between memory and peripheral. Address increment/hold modes as well as soft- or hardware handshake between the DMA transfer and the CPU are supported.

(8) AHB to APB Bridge

The slower peripherals of ERTEC 200 are connected to an internal 32-bit/50 MHz APB bus that can be accessed via an AHB-to-APB bridge from the AHB side. From the programmers point of view, these peripherals are memory mapped like any other.

(9) Boot ROM

ERTEC 200 has 8 kBytes of 32-bit wide boot ROM; it is pre-defined with a boot-loader program that supports various external boot sources: external Flash via EMIF, serial Flash or EEPROM via SPI, LBU with an external host and UART. Selection of boot sources is done via the BOOT(3:0) configuration pins.

(10) GPIO Block

ERTEC 200 has a total of 45 GPIO pins that are individually programmable as input or output. Four of these GPIOs can be used as interrupts. 38 of these GPIOs are shared with other interfaces like UART, SPI and LBU.

(11) UART

The integrated UART can be used for asynchronous, serial communication. It is based on the ARM PrimeCellTM PL010 and is widely 16550-compatible. 2 data lines and 3 handshake lines are used. The internal 50 MHz clock is used for the UART operation and with a baud rate generator standard baud rates up to 115 kbps can be selected.

(12) SPI

The SPI is used for synchronous serial communication according to Motorola, TI and National quasi-standards. Frame size, protocol and speed are software programmable. The maximum transmission speed is 25 MHz in master mode and 4.16 MHz in slave mode. The SPI is based on the ARM PrimeCellTM PL021.

(13) Timers, Watchdog

ERTEC 200 has four timers and two watchdogs. Three of the timers are driven with the internal 50 MHz clock and based on 32-bit respectively 36-bit down counters that are cascadable and that can be configured with an additional 8-bit prescaler, and an additional 16-bit up counter. The fourth timer, the F-timer, runs under the control of an external clock.

The watchdog timers are also based on 32-bit and 36-bit down-counters. Watchdog 0 (32-bit) is generating an output signal on the WD_WDOUT0_N pin; watchdog 1 (36-bit) generates a reset.

(14) System Control Registers

A bundle of specific system control registers help to configure the processor and to analyse internal problems like access right and/or address range violations or timeouts.

[MEMO]

2. Pin Functions

2.1 List of Pin Functions

Pin Name	I/O	Function	Alternate Function
A(23:18)	I/O ^{Note}	External memory address bus (23:18)	CONFIG(6:1) ^{Note}
A(17:15)	I/O ^{Note}	External memory address bus (17:15)	BOOT(3:1) ^{Note}
A(14:0)	0	External memory address bus (14:0)	-
D(31:0)	I/O	External memory data bus (31:0)	-
WR_N	0	Write strobe signal	-
RD_N	0	Read strobe signal	-
CLK_SDRAM	0	Clock to SDRAM	-
CS_SDRAM_N	0	Chip select to SDRAM	-
RAS_SDRAM_N	0	Row address strobe SDRAM	-
CAS_SDRAM_N	0	Column address strobe to SDRAM	-
WE_SDRAM_N	0	RD/WR signal to SDRAM	-
CS_PER(3:0)_N	0	Chip select to static memories and peripherals	-
BE(3:0)_DQM(3:0)_N	0	Byte enable signal	-
RDY_PER_N	I	Ready signal	-
DTR_N	I/O ^{Note}	Direction signal for external driver or scan clock	BOOT0 ^{Note}
OE_DRIVER_N	0	Enable signal for external driver or scan clock	-

Table 2-1: External Memory Interface Pin Functions

Note: The BOOT(3:0) and CONFIG(6:1) pins are used as inputs and read into the BOOT_REG respectively CONFIG_REG system configuration registers during the active Power On reset phase. After a reset, these pins are available as normal function pins and used as outputs.

Pin Name	I/O ^{Note}	Function	Alternate Function ^{Note}
LBU_A(20:16)	I	LBU address bits	GPIO(36:32)
LBU_A15	I	LBU address bit 15	COL_P2
LBU_A14	I	LBU address bit 14	RX_DV_P2
LBU_A13	I	LBU address bits 13	RX_ER_P2/PIPESTA0
LBU_A12	I	LBU address bit 12	CRS_P2/PIPESTA1
LBU_A11	I	LBU address bit 11	RXD_P23/PIPESTA2
LBU_A10	I	LBU address bit 10	RXD_P22/TRACESYNC
LBU_A9	I	LBU address bit 9	RXD_P21/TRACEPKT0
LBU_A8	I	LBU address bit 8	RXD_P20/TRACEPKT1
LBU_A7	I	LBU address bit 7	COL_P1/TRACEPKT2
LBU_A6	I	LBU address bit 6	RX_DV_P1/TRACEPKT3
LBU_A5	I	LBU address bit 5	RX_ER_P1/TRACEPKT4
LBU_A4	I	LBU address bit 4	CRS_P1/TRACEPKT5
LBU_A3	I	LBU address bit 3	RXD_P13/TRACEPKT6
LBU_A2	I	LBU address bit 2	RXD_P12/TRACEPKT7
LBU_A1	I	LBU address bit 1	RXD_P11/ETMEXTIN1
LBU_A0	I	LBU address bit 0	RXD_P10/ETMEXTOUT
LBU_D15	I/O	LBU data bit 15	GPIO41
LBU_D14	I/O	LBU data bit 14	RES_PHY_N
LBU_D13	I/O	LBU data bit 13	SMI_MDIO
LBU_D12	I/O	LBU data bit 12	SMI_MDC
LBU_D11	I/O	LBU data bit 11	TX_ERR_P2
LBU_D10	I/O	LBU data bit 10	TX_EN_P2
LBU_D9	I/O	LBU data bit 9	TXD_P23
LBU_D8	I/O	LBU data bit 8	TXD_P22
LBU_D7	I/O	LBU data bit 7	TXD_P21
LBU_D6	I/O	LBU data bit 6	TXD_P20
LBU_D5	I/O	LBU data bit 5	TX_ERR_P1
LBU_D4	I/O	LBU data bit 4	TX_EN_P1
LBU_D3	I/O	LBU data bit 3	TXD_P13
LBU_D2	I/O	LBU data bit 2	TXD_P12
LBU_D1	I/O	LBU data bit 1	TXD_P11
LBU_D0	I/O	LBU data bit 0	TXD_P10
LBU_WR_N	I	LBU write control signal	TX_CLK_P1
LBU_RD_N	I	LBU read control signal	TX_CLK_P2
LBU_BE(1:0)_N	I	LBU byte enable	RX_CLK_P(2:1)
LBU_SEG_1	I	LBU page selection signal	GPIO38
LBU_SEG_0	I	LBU page selection signal	GPIO37
LBU_IRQ_1_N	0	LBU interrupt request signal	GPIO44
LBU_IRQ_0_N	0	LBU interrupt request signal	GPIO43

 Table 2-2:
 Local Bus Interface Pin Functions (1/2)

2. Pin Functions

Pin Name	I/O ^{Note}	Function	Alternate Function ^{Note}
LBU_RDY_N	0	LBU ready signal	GPIO42
LBU_CS_M_N	I	LBU chip select for ERTEC 200 internal resources	GPIO40
LBU_CS_R_N	I	LBU chip select for page configuration registers	GPIO39

 Table 2-2:
 Local Bus Interface Pin Functions (2/2)

Note: Local bus interface pins are alternatively used as MII diagnosis, trace or GPIO pins; in this table the I/O type is listed for the local bus function.

Pin Name ^{Note}	I/O	Function	Alternate Function ^{Note}
SMI_MDC	0	Serial management interface clock	LBU_D12
SMI_MDIO	0	Serial management interface data input/output	LBU_D13
RES_PHY_N	0	Reset signal to PHYs	LBU_D14
TXD_P2(3:0)	0	Transmit data port 2 bits	LBU_D(9:6)
RXD_P23	0	Receive data port 2 bit 3	LBU_A11/PIPESTA2
RXD_P22	0	Receive data port 2 bit 2	LBU_A10/TRACESYNC
RXD_P21	0	Receive data port 2 bit 1	LBU_A9/TRACEPKT0
RXD_P20	0	Receive data port 2 bit 0	LBU_A8/TRACEPKT1
TX_EN_P2	0	Transmit enable port 2	LBU_D10
CRS_P2	0	Carrier sense port 2	LBU_A12
RX_ER_P2	0	Receive error port 2	PIPESTA0
TX_ERR_P2	0	Transmit error port 2	LBU_D11
RX_DV_P2	0	Receive data valid port 2	LBU_A14
COL_P2	0	Collision port 2	LBU_A15
RX_CLK_P2	0	Receive clock port 2	LBU_BE1_N
TX_CLK_P2	0	Transmit clock port 2	LBU_RD_N
TXD_P1(3:0)	0	Transmit data port 1 bits	LBU_D(3:0)
RXD_P13	0	Receive data port 1 bit 3	LBU_A3/TRACEPKT6
RXD_P12	0	Receive data port 1 bit 2	LBU_A2/TRACEPKT7
RXD_P11	0	Receive data port 1 bit 1	LBU_A1/ETMEXTIN1
RXD_P10	0	Receive data port 1 bit 0	LBU_A0/ETMEXTOUT
TX_EN_P1	0	Transmit enable port 1	LBU_D4
CRS_P1	0	Carrier sense port 1	LBU_A4/TRACEPKT5
RX_ER_P1	0	Receive error port 1	LBU_A5/TRACEPKT4
TX_ERR_P1	0	Transmit error port 1	LBU_D5
RX_DV_P1	0	Receive data valid port 1	LBU_A6/TRACEPKT3
COL_P1	0	Collision port 1	LBU_A7/TRACEPKT2
RX_CLK_P1	0	Receive clock port 1	LBU_BE0_N
TX_CLK_P1	0	Transmit clock port 1	LBU_WR_N

Table 2-3: MII/SMI Diagnosis Interface Pin Functions

Note: MII/SMI diagnosis interface pins are alternatively used as local bus interface or trace pins; in this table the I/O type is listed for the MII/SMI diagnosis function

2. Pin Functions

Pin Name	I/O	Function	Alternate Function
P(2:1)TxN	0	Differential transmit data output	-
P(2:1)TxP	0	Differential transmit data output	-
P(2:1)TDxN	0	Differential FX transmit data output	-
P(2:1)TDxP	0	Differential FX transmit data output	-
P(2:1)RxN	I	Differential receive data input	-
P(2:1)RxP	I	Differential receive data input	-
P(2:1)RDxN	I	Differential FX receive data input	-
P(2:1)RDxP	I	Differential FX receive data input	-
P(2:1)SDxN	I	Differential FX signal detect input	-
P(2:1)SDxP	I	Differential FX signal detect input	-
EXTRES	I/O	External reference resistor (12.4 kΩ) Note	-
DVDD(4:1)	I	Digital power supply, 1.5 V	-
DGND(4:1)	I	Digital GND	-
P(2:1)VSSATX(2:1)	I	Analog port GND	-
P(2:1)VDDARXTX	I	Analog port RX/TX power supply, 1.5 V	-
P(2:1)VSSARX	I	Analog port GND	-
VDDAPLL	I	Analog central power supply, 1.5 V	-
VDDACB	I	Analog central power supply, 3.3 V	-
VSSAPLLCB	I	Analog central GND	-
VDD33ESD	I	Analog test power supply, 3.3 V	-
VSS33ESD	I	Analog test GND	-

Table 2-4: PHY Interface Pin Functions

Note: The external resistor must have a maximum tolerance of 1%.

Pin Name	I/O ^{Note}	Function	Alternate Function ^{Note}
GPIO(44:43)	I/O	General purpose I/O signal	LBU_IRQ(1:0)_N
GPIO42	I/O	General purpose I/O signal	LBU_RDY_N
GPIO41	I/O	General purpose I/O signal	LBU_D15
GPIO40	I/O	General purpose I/O signal	LBU_CS_M_N
GPIO39	I/O	General purpose I/O signal	LBU_CS_R_N
GPIO(38:37)	I/O	General purpose I/O signal	LBU_SEG(1:0)_N
GPIO(36:32)	I/O	General purpose I/O signal	LBU_A(20:16)
GPIO31	I/O	General purpose I/O signal	DBGREQ
GPIO(30:26)	I/O	General purpose I/O signal	-
GPIO25	I/O	General purpose I/O signal	TGEN_OUT1_N
GPIO24	I/O	General purpose I/O signal	PLL_EXT_IN_N
GPIO23	I/O	General purpose I/O signal	SPI1_SCLKIN
GPIO22	I/O	General purpose I/O signal	SPI1_SFRMIN/DBGACK
GPIO21	I/O	General purpose I/O signal	SPI1_SFRMOUT
GPIO20	I/O	General purpose I/O signal	SPI1_CLKOUT
GPIO19	I/O	General purpose I/O signal	SPI1_SSPTXD
GPIO18	I/O	General purpose I/O signal	SPI1_SSPRXD
GPIO17	I/O	General purpose I/O signal	SPI1_SSPOE
GPIO16	I/O	General purpose I/O signal	SPI1_SSPCTLOE
GPIO15	I/O	General purpose I/O signal	WD_WDOUT0_N
GPIO14	I/O	General purpose I/O signal	DBGACK
GPIO13	I/O	General purpose I/O signal	-
GPIO12	I/O	General purpose I/O signal	UART-CTS_N
GPIO11	I/O	General purpose I/O signal	UART-DSR_N
GPIO10	I/O	General purpose I/O signal	UART-DCD_N
GPIO9	I/O	General purpose I/O signal	UART-RXD
GPIO8	I/O	General purpose I/O signal	UART-TXD
GPIO7	I/O	General purpose I/O signal	P2-RX-LED_N/P2-TX-LED_N/P2-ACTIVE-LED_N
GPIO6	I/O	General purpose I/O signal	P1-RX-LED_N/P1-TX-LED_N/P1-ACTIVE-LED_N
GPIO5	I/O	General purpose I/O signal	P2-LINK-LED_N
GPIO4	I/O	General purpose I/O signal	P1-LINK-LED_N
GPIO3	I/O	General purpose I/O signal	P2-SPEED-100LED_N (TX/FX)/P2-SPEED-10LED_N
GPIO2	I/O	General purpose I/O signal	P1-SPEED-100LED_N (TX/FX)/P1-SPEED-10LED_N
GPIO1	I/O	General purpose I/O signal	P2-DUPLEX-LED_N
GPIO0	I/O	General purpose I/O signal	P1-DUPLEX-LED_N

Table 2-5: General Purpose I/O Pin Functions

Note: Primary and alternative functions for GPIO(31:0) are selected with the GPIO_PORT_MODE_H and GPIO_PORT_MODE_L registers; primary and alternative functions for GPIO(44:32) are selected with the configuration pins. In this table the I/O types are listed for the GPIO function.

			-
Pin Name	I/O ^{Note}	Function	Alternate Function ^{Note}
UART-TXD	0	UART transmit data output	GPIO8
UART-RXD	I	UART receive data input	GPIO9
UART-DCD_N	I	UART carrier detection signal	GPIO10
UART-DSR_N	I	UART data set ready signal	GPIO11
UART-CTS_N	I	UART transmit enable signal	GPIO12

Table 2-6: UART Pin Functions

Note: Primary and alternative functions are selected with the GPIO_PORT_MODE_H and GPIO_PORT_MODE_L registers. In this table the I/O types are listed for the UART function.

Pin Name	I/O ^{Note}	Function	Alternate Function ^{Note}
SPI1_SSPRXD	I	SPI1 receive data input	GPIO18
SPI1_SSPTXD	0	SPI1 transmit data output	GPIO19
SPI1_SCLKOUT	0	SPI1 clock output	GPIO20
SPI1_SFRMOUT	0	SPI1 serial frame input signal	GPIO21
SPI1_SFRMIN	I	SPI1 serial frame output signal	GPIO22, DBGACK
SPI1_SCLKIN	I	SPI1 clock input	GPIO23
SPI1_SSPCTLOE	0	SPI1 clock and serial frame output enable	GPIO16
SPI1_SSPOE	0	SPI1 output enable	GPIO17

Table 2-7: SPI1 Pin Functions

Note: Function and alternative functions are selected with the GPIO_PORT_MODE_H and GPIO_PORT_MODE_L registers. In this table the I/O types are listed for the SPI1 function.

Table 2-8:	МС	PLL	Pin	Functions

Pin Name	I/O ^{Note 1}	Function	Alternate Function ^{Note 1}	
PLL_EXT_IN_N	I	MC_PLL input signal	GPIO24	
TGEN_OUT1_N	0	MC_PLL output signal ^{Note 2}	GPIO25	

Notes: 1. Function and alternative functions are selected with the GPIO_PORT_MODE_H register. In this table the I/O types are listed for the MC_PLL function.

2. For a PROFINET IRT application, GPIO25 must be configured as TGEN_OUT1_N output pin. A synchronous clock signal is then output at this pin; during certification of a PROFINET IO device with IRT support this signal must be accessible from the outside.

2. Pin Functions

Pin Name	I/O	Function	Alternate Function
TRACECLK	0	ETM trace or scan clock	
CLKP_A	I	Quartz connection	
CLKP_B	0	Quartz connection	
F_CLK	I	F_CLK for F-counter	
REF_CLK	I/O	Reference clock	
RESET_N	I	Power On reset	

Table 2-9: Clock and Reset Pin Functions

Table 2-10: JTAG and Debug Interface Pin Functions

Pin Name	I/O ^{Note}	Function	Alternate Function ^{Note}
TRST_N	I	JTAG reset signal	
ТСК	I	JTAG clock signal	
TDI	I	JTAG data input signal	
TMS	I	JTAG test mode select signal	
TDO	0	JTAG data output signal	
SRST_N	I/O	Hardware reset for debug usage	
DBGREQ	I	Debug request signal	GPIO31
DBGACK	0	Debug acknowledge signal	GPIO14/GPIO22/SPI1_SFRMIN
TAP_SEL	I	TAP controller select signal	

Note: The DBGREQ (DBGACK) pin is alternatively used as GPIO (GPIO or SPI1) pin; the function is selected with the GPIO_PORT_MODE_H and GPIO_PORT_MODE_L registers. In this table the I/O type is listed for the DBGREQ (DBGACK) function.

Pin Name	I/O ^{Note}	Function	Alternate Function ^{Note}
TRACEPKT7	0	Trace packet bit 7	LBU_A2, RXD_P12
TRACEPKT6	0	Trace packet bit 6	LBU_A3, RXD_P13
TRACEPKT5	0	Trace packet bit 5	LBU_A4, CRS_P1
TRACEPKT4	0	Trace packet bit 4	LBU_A5, RX_ER_P1
TRACEPKT3	0	Trace packet bit 3	LBU_A6, RX_DV_P1
TRACEPKT2	0	Trace packet bit 2	LBU_A7, COL_P1
TRACEPKT1	0	Trace packet bit 1	LBU_A8, RXD_P20
TRACEPKT0	0	Trace packet bit 0	LBU_A9, RXD_P21
PIPESTA2	0	CPU pipeline status, bit 2	LBU_A11, RXD_P23
PIPESTA1	0	CPU pipeline status, bit 1	LBU_A12, CRS_P2
PIPESTA0	0	CPU pipeline status, bit 0	LBU_A13, RX_ER_P2
TRACESYNC	0	Trace sync signal	LBU_A10, RXD_P22
ETMEXTIN1	I	External input to the ETM	LBU_A1, RXD_P11
ETMEXTOUT	0	Output signal from the ETM	LBU_A0, RXD_P10

Table 2-11: Trace Port Pin Functions

Note: Trace port pins are alternatively used as local bus or MII diagnosis pins; the function is selected with the GPIO_PORT_MODE_H and GPIO_PORT_MODE_L registers. In this table the I/O types are listed for the trace port pin functions.

Pin Name	Function
VDD Core	Power supply for core, 1.5 V
GND Core	GND CORE
VDD IO	Power supply for IO, 3.3 V
GND IO	GND for IO
PLL_AVDD	Analog power supply for PLL, 1.5 V
PLL_AGND	Analog GND for PLL
VDDQ (PECL)	Power supply for PECL buffers, 3.3 V
GND (PECL)	GND for PECL buffers

Table 2-12: Power Supply Pin Functions

GPIO pin	Function ^{Note}							
GFIO pill	0	1	2	3	after Reset			
GPIO0	GPIO0	P1-DUPLEX-LED_N	-	-	GPIO0			
GPIO1	GPIO1	P2-DUPLEX-LED_N	-	-	GPIO1			
GPIO2	GPIO2	P1-SPEED-100LED_N (TX/FX)	P1-SPEED-10LED_N	-	GPIO2			
GPIO3	GPIO3	P2-SPEED-100LED_N (TX/FX)	P2-SPEED-10LED_N	-	GPIO3			
GPIO4	GPIO4	P1-LINK-LED_N	-	-	GPIO4			
GPIO5	GPIO5	P2-LINK-LED_N	-	-	GPIO5			
GPIO6	GPIO6	P1-RX-LED_N	P1-TX-LED_N	P1-ACTIVE-LED_N	GPIO6			
GPIO7	GPIO7	P2-RX-LED_N	P2-TX-LED_N	P2-ACTIVE-LED_N	GPIO7			
GPIO8	GPIO8	UART-TXD	-	-	GPIO8			
GPIO9	GPIO9	UART-RXD	-	-	GPIO9			
GPIO10	GPIO10	UART-DCD_N	-	-	GPIO10			
GPIO11	GPIO11	UART-DSR_N	-	-	GPIO11			
GPIO12	GPIO12	UART-CTS_N	-	-	GPIO12			
GPIO13	GPIO13	Reserved	-	-	GPIO13			
GPIO14	GPIO14	DBGACK	-	-	GPIO14			
GPIO15	GPIO15	WD_WDOUT_N	-	-	GPIO15			
GPIO16	GPIO16	SPI1_SSPCTLOE	-	-	GPIO16			
GPIO17	GPIO17	SPI1_SSPOE	-	-	GPIO17			
GPIO18	GPIO18	SPI1_SSPRXD	-	-	GPIO18			
GPIO19	GPIO19	SPI1_SSPTXD	-	-	GPIO19			
GPIO20	GPIO20	SPI1_SCLKOUT	-	-	GPIO20			
GPIO21	GPIO21	SPI1_SFRMOUT	-	-	GPIO21			
GPIO22	GPIO22	SPI1_SFRMIN	DBGACK	-	GPIO22			
GPIO23	GPIO23	SPI1_SCLKIN	Reserved	-	GPIO23			
GPIO24	GPIO24	TGEN_OUT1_N	-	-	GPIO24			
GPIO25	GPIO25	PLL_EXT_IN_N	-	-	GPIO25			
GPIO(30:26)	GPIO(30:26)	Reserved	-	-	GPIO(30:26)			
GPIO31	GPIO31	DBGREQ	-	-	GPIO31			

 Table 2-13:
 Alternative Functions of GPIO(31:0) Pins

Note: Alternative functions are software configurable using the GPIO_PORT_MODE_L/H registers.

2. Pin Functions

2.2 Pin Characteristics

Pin Name	I/O	Input type		Internal pull	Drive capability	
Pin Name	1/0	Input type	Output type	up/down	I _{ОН}	I _{OL}
A23	I/O ^{Note 1}	Schmitt ^{Note 1}	3.3 V CMOS	50 k Ω pull up	9 mA	9 mA
A22	I/O ^{Note 1}	Schmitt ^{Note 1}	3.3 V CMOS	50 k Ω pull down	9 mA	9 mA
A21	I/O ^{Note 1}	Schmitt ^{Note 1}	3.3 V CMOS	50 k Ω pull up	9 mA	9 mA
A20	I/O ^{Note 1}	Schmitt ^{Note 1}	3.3 V CMOS	50 k Ω pull down	9 mA	9 mA
A(19:17)	I/O ^{Note 1}	Schmitt ^{Note 1}	3.3 V CMOS	50 kΩ pull up	9 mA	9 mA
A(16:15)	I/O ^{Note 1}	Schmitt ^{Note 1}	3.3 V CMOS	50 kΩ pull down	9 mA	9 mA
A(14:0)	0	-	3.3 V CMOS	-	9 mA	9 mA
D(31:0)	I/O	Schmitt	3.3 V CMOS	50 kΩpull up	9 mA	9 mA
WR_N	0	-	3.3 V CMOS	-	9 mA	9 mA
RD_N	0	-	3.3 V CMOS	-	9 mA	9 mA
CLK_SDRAM	0	-	3.3 V CMOS	-	9 mA	9 mA
CS_SDRAM_N	0	-	3.3 V CMOS	-	9 mA	9 mA
RAS_SDRAM_N	0	-	3.3 V CMOS	-	9 mA	9 mA
CAS_SDRAM_N	0	-	3.3 V CMOS	-	9 mA	9 mA
WE_SDRAM_N	0	-	3.3 V CMOS	-	9 mA	9 mA
CS_PER(3:0)_N	0	-	3.3 V CMOS	-	6 mA	6 mA
BE(3:0)_DQM(3:0)_N	0	-	3.3 V CMOS	-	9 mA	9 mA
RDY_PER_N	I	Schmitt	-	50 kΩ pull up	-	-
DTR_N	I/O ^{Note 1}	Schmitt ^{Note 1}	3.3 V CMOS	50 k Ω pull up	9 mA	9 mA
OE_DRIVER_N	0	-	3.3 V CMOS	-	9 mA	9 mA
LBU_A(20:0) ^{Note 2}	I/O	Schmitt	3.3 V CMOS	50 k Ω pull up	6 mA	6 mA
LBU_D(15:0) Note 2	I/O	Schmitt	3.3 V CMOS	50 kΩ pull up	9 mA	9 mA
LBU_WR_N Note 2	I/O	Schmitt	3.3 V CMOS	50 kΩ pull up	6 mA	6 mA
LBU_RD_N Note 2	I/O	Schmitt	3.3 V CMOS	50 kΩpull up	6 mA	6 mA
LBU_BE(1:0)_NNote 2	I/O	Schmitt	3.3 V CMOS	50 kΩpull up	6 mA	6 mA
LBU_SEG_(1:0) Note 2	I/O	Schmitt	3.3 V CMOS	50 kΩpull up	6 mA	6 mA
LBU_IRQ_(1:0)_N Note 2	I/O	Schmitt	3.3 V CMOS	50 kΩpull up	6 mA	6 mA
LBU_RDY_N Note 2	I/O	Schmitt	3.3 V CMOS	50 kΩpull up	6 mA	6 mA
LBU_CS_M_N Note 2	I/O	Schmitt	3.3 V CMOS	50 kΩpull up	6 mA	6 mA
LBU_CS_R_N Note 2	I/O	Schmitt	3.3 V CMOS	50 kΩpull up	6 mA	6 mA
GPIO(31:30) Note 2	I/O	Schmitt	3.3 V CMOS	50 kΩpull up	6 mA	6 mA
GPIO(29:27) Note 2	I/O	Schmitt	3.3 V CMOS	50 k Ω pull up	24 mA	24 mA
GPIO(26:8) Note 2	I/O	Schmitt	3.3 V CMOS	50 k Ω pull up	6 mA	6 mA
GPIO(7:0) Note 2	I/O	Schmitt	3.3 V CMOS	50 kΩpull up	9 mA	9 mA
CLKP_A	I	Osc. in	-	-	-	-
CLKP_B	0	-	Osc. out	-	6 mA	6 mA
TRACECLK	0	-	3.3 V CMOS	-	18 mA	18 mA

 Table 2-14:
 Pin Characteristics (1/2)

2. Pin Functions

				Internal pull	Drive ca	Drive capability	
Pin Name	I/O	Input type	Output type	up/down	I _{ОН}	I _{OL}	
F_CLK	I	3.3 V CMOS	-	-	-	-	
REF_CLK	0	-	3.3 V CMOS	-	6 mA	6 mA	
RESET_N	I	Schmitt	-	50 kΩ pull up	-	-	
P(2:1)TxN	I/O	Analog	Analog	-	-	-	
P(2:1)TxP	I/O	Analog	Analog	-	-	-	
P(2:1)TDxN Note 3	0	-	3.3 V CMOS	-	12 mA	12 mA	
P(2:1)TDxP Note 3	0	-	3.3 V CMOS	-	12 mA	12 mA	
P(2:1)RxN	I/O	Analog	Analog	-	-	-	
P(2:1)RxP	I/O	Analog	Analog	-	-	-	
P(2:1)RDxN	I	PECL	-	-	-	-	
P(2:1)RDxP	I	PECL	-	-	-	-	
P(2:1)SDxN	I	PECL	-	-	-	-	
P(2:1)SDxP	I	PECL	-	-	-	-	
EXTRES	I/O	Analog	Analog	-	-	-	
TRST_N	I	Schmitt	-	-	-	-	
TCK	I	Schmitt	-	50 kΩ pull up	-	-	
TDI	I	Schmitt	-	50 kΩ pull up	-	-	
TMS	I	Schmitt	-	50 k Ω pull up	-	-	
TDO	0	-	3.3 V CMOS	-	6 mA	6 mA	
SRST_N	I/O	Schmitt	3.3 V CMOS	50 k Ω pull up	6 mA	6 mA	
TAP_SEL	I	Schmitt	-	50 kΩ pull up	-	-	

Notes: 1. The address pins A(23:15) and the DTR_N pin are used as inputs only during the active reset phase.

2. These pins have alternative functions, to which the pin characteristics apply as well. Note that the I/O type given in Table 2-14 applies to the **pin**. I/O types that apply to one of the shared **functions** of a specific pin are found in Tables 2-1 to 2-12.

3. These pins require external circuitry in order to provide PECL compliant output levels.

Remark: Shared pins are not listed with all possible pin names. Please check Tables 2-1 to 2-11 for possible pin names first, before looking up pin characteristics in Table 2-14.

2.3 Pin Status and Drive Characteristics

D

 Table 2-15:
 Pin Status During Reset and Recommended Connections (1/2)

Pin Name	I/O	Internal pull up/down	I/O during reset	Level during reset	External pull up/down required
TDO ^{Note 6}	0	-	0	L	-
SRST_N	I/O	50 k Ω pull up	0	L	-
TAP_SEL	I	50 k Ω pull up	I	Н	-

 Table 2-15:
 Pin Status During Reset and Recommended Connections (2/2)

- **Notes: 1.** These pins are used as inputs only during the active reset phase. The levels during reset shown in Table 2-15 refer to the default configuration without external pull-up/down resistors connected to BOOT(3:0) and CONFIG(6:1)
 - 2. These pins have alternative functions, to which the pin characteristics apply as well. Note that the I/O type given in Table 2-14 applies to the **pin**. I/O types that apply to one of the shared **functions** of a specific pin are found in Tables 2-1 to 2-12.
 - 3. The reset behaviour of this pin is determined by the CONFIG1 signal.
 - 4. RESET_N must be externally driven low in order to reset the device.
 - 5. High level is generated from external pull up resistor and not by internal device circuitry.
 - 6. The reset signal, that affects these signals, is TRST_N.
 - **7.** All trace interface pins are configured as inputs in the default configuration that is determined by the internal pull-up/down resistors at the CONFIG(6:5) and CONFIG1 pins.
- **Remarks: 1.** Shared pins are not listed with all possible pin names. Please check Tables 2-1 to 2-11 for possible pin names first, before looking up reset characteristics and recommended connections in Table 2-15.
- **Remarks: 2.** I/O and level during reset are given for the default configuration that is determined by the internal pull-up/down resistors at the CONFIG(6:5) and CONFIG1 pins.

LBU active		MII diagnosis	mode	Trace interface	active	
CONFIG(6:5) CONFIG2=	-	CONFIG(6:5) = 01 _b CONFIG2= 1 _b			$CONFIG(6:5) = 10_{b}$ $CONFIG2=1_{b}$	
Function 1	during reset	Function 2	Function 2 during reset		during reset	
LBU_A20	I	GPIO36	I	GPIO36	I	
LBU_A19	I	GPIO35	I	GPIO35	I	
LBU_A18	I	GPIO34	I	GPIO34	I	
LBU_A17	I	GPIO33	I	GPIO33	I	
LBU_A16	I	GPIO32	I	GPIO32	I	
LBU_A15	I	COL_P2	0	-	-	
LBU_A14	I	RX_DV_P2	0	-	-	
LBU_A13	I	RX_ER_P2	0	PIPESTA0	I	
LBU_A12	I	CRS_P2	0	PIPESTA1	I	
LBU_A11	I	RXD_P23	0	PIPESTA2	I	
LBU_A10	I	RXD_P22	0	TRACESYNC	I	
LBU_A9	I	RXD_P21	0	TRACEPKT0	I	
LBU_A8	I	RXD_P20	0	TRACEPKT1	I	
LBU_A7	I	COL_P1	0	TRACEPKT2	I	
LBU_A6	I	RX_DV_P1	0	TRACEPKT3	I	
LBU_A5	I	RX_ER_P1	0	TRACEPKT4	I	
LBU_A4	I	CRS_P1	0	TRACEPKT5	I	
LBU_A3	I	RXD_P13	0	TRACEPKT6	I	
LBU_A2	I	RXD_P12	0	TRACEPKT7	I	
LBU_A1	I	RXD_P11	0	ETMEXTIN1	I	
LBU_A0	I	RXD_P10	0	ETMEXTOUT	I	
LBU_D15	I	GPIO41	I	GPIO41	I	
LBU_D14	I	RES_PHY_N	0	-	-	
LBU_D13	I	SMI_MDIO	0	-	-	
LBU_D12	I	SMI_MDC	0	-	-	
LBU_D11	I	TX_ERR_P2	0	-	-	
LBU_D10	I	TX_EN_P2	0	-	-	
LBU_D9	I	TXD_P23	0	-	-	
LBU_D8	I	TXD_P22	0	-	-	
LBU_D7	I	TXD_P21	0	-	-	
LBU_D6	I	TXD_P20	0	-	-	
LBU_D5	I	TX_ERR_P1	0	-	-	
LBU_D4	I	TX_EN_P1	0	-	-	
LBU_D3	I	TXD_P13	0	-	-	
LBU_D2	I	TXD_P12	0	-	-	
LBU_D1	I	TXD_P11	0	-	-	
LBU_D0	I	TXD_P10	0	-	-	

 Table 2-16:
 Alternative Functions of LBU Interface Pins (1/2)

2. Pin Functions

LBU activ	LBU active		MII diagnosis mode		active
. ,	$CONFIG(6:5) = xx_b$		$CONFIG(6:5) = 01_b$		= 10 _b
CONFIG2=	0 _b	CONFIG2=	1 _b	CONFIG2=	1 _b
Function 1	during reset	Function 2	during reset	Function 3	during reset
LBU_WR_N	I	TX_CLK_P1	0	-	-
LBU_RD_N	I	TX_CLK_P2	0	-	-
LBU_BE1_N	I	RX_CLK_P2	0	-	-
LBU_BE0_N	I	RX_CLK_P1	0	-	-
LBU_SEG_1	I	GPIO38	I	GPIO38	I
LBU_SEG_0	I	GPIO37	I	GPIO37	I
LBU_IRQ_1_N	0	GPIO44	I	GPIO44	I
LBU_IRQ_0_N	0	GPIO43	I	GPIO43	I
LBU_RDY_N	0	GPIO42	I	GPIO42	I
LBU_CS_M_N	I	GPIO40	I	GPIO40	I
LBU_CS_R_N	I	GPIO39	I	GPIO39	I

Table 2-16: Alternative Functions of LBU Interface Pins (2/2)

Chapter 3 CPU Function

3.1 Structure of The ARM946E-S Processor System

An ARM946E-S processor system is used in ERTEC 200. Figure 3-1 shows the structure of the processor. In addition to the ARM9E-S processor core, the system contains a data cache, an instruction cache, a memory protection unit (MPU), a system control coprocessor, and a tightly coupled data memory. The processor system has an interface to the integrated AHB bus.

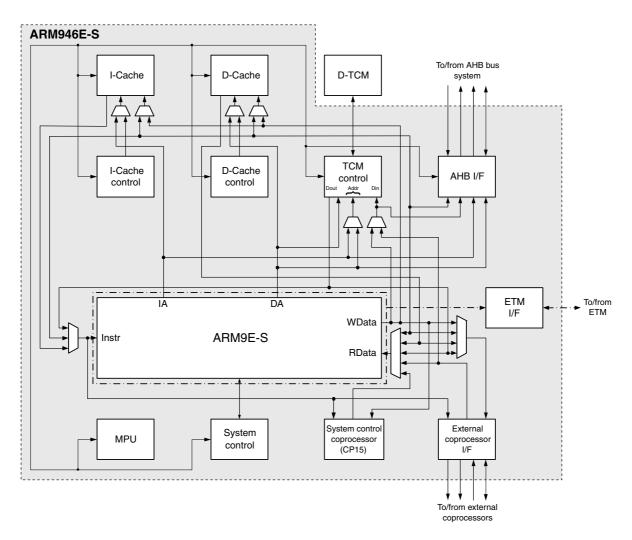


Figure 3-1: ARM 946E-S Processor System in ERTEC 200

The ARM946E-S processor system is a member of the ARM9 Thumb family. It has a processor core with Harvard architecture. Compared to the standard ARM9 family, the ARM946E-S has an enhanced 5vTE architecture permitting faster switching between ARM and Thumb code segments and an enhanced multiplier structure. In addition, the processor has an integrated JTAG interface. The processor can be operated at 50 MHz, 100 MHz or 150 MHz. The operating frequency is set during

the reset phase via the CONFIG3 and CONFIG4 configuration pins. Communication with the components of the ERTEC 200 takes place via the AHB bus at a frequency of 50 MHz.

3.2 Cache Structure of ARM946E-S

The following caches are integrated in the ARM946E-S processor system:

- 8 kBytes of instruction cache (I-cache) with lock function
- 4 kBytes of data cache (D-cache) with lock function

Both caches are 4-way set associative and have 1-kByte segments. Each segment consists of 32 lines with 32 Bytes (8 x 4 Bytes). The D-cache has a write buffer with write-back function.

The lock function enables the user to "freeze" the contents of the cache segments. This function allows the code for fast routines to be kept permanently in the I-cache. This mechanism can only be implemented on a segment-specific basis in the ARM946E-S.

Both caches are locked after a reset. The caches can be enabled only if the memory protection unit is enabled at the same time. The I-cache can be enabled by setting Bit 12 of the CP15 control register; the D-cache can be enabled by setting Bit 2 of the CP15 control register. Access to this area is blocked if the cache is not enabled. When enabled, the caches can be accessed with the full CPU speed, i.e. with a maximum of 150 MHz.

3.3 Tightly Coupled Memories

A 4-kBytes data TCM (D-TCM) is implemented in the ARM946E-S processor of ERTEC 200. A TCM is a (mostly) small portion of memory that is close to the core, that can be accessed with full CPU speed, but that is not subjected to automatic control mechanisms like a cache. It is typically used to keep the data for time-critical routines.

The D-TCM is locked after a reset; it can be mapped to various positions in the address space of the ARM946E-S and must be used together with a region of the memory protection unit. The D-TCM can be enabled by setting Bit 16 of the CP15 control register. In addition, the address position of the D-TCM must be set in the Tightly-Coupled Memory Region register.

3.4 Memory Protection Unit (MPU)

The memory protection unit enables the user to partition the address space of the ARM946E-S processor into several regions and to assign various attributes to these regions. A maximum of 8 regions of variable size can be set. If regions overlap, the attributes of the higher

region number apply. The possible settings for each region are as follows:

- Base address of region
- Size of region
- Cache and "write buffer" configuration
- Read/write access enable for privileged users/users

They have to be made in the following registers of the ARM946E-S:

- Register 2: Cache configuration register
- Register 3: Write buffer control register
- Register 5: Access permission register
- Register 6: Protection region/base size register

The base address defines the start address of the region. It must always be a multiple of the size of the region.

Example: The region size is 4 kBytes. The starting address is then always a multiple of 4 kBytes.

Before the MPU is enabled, at least one region must have been specified. Otherwise, the ARM946E-S can enter a state that can only be cancelled by a reset. The MPU can be enabled by setting Bit 0 of the CP15 control register. If the MPU is locked, neither the I-cache nor the D-cache can be accessed even if they are enabled.

3.5 Bus Interface of ARM946E-S

The ARM946E-S uses an AHB bus master interface to the multilayer AHB bus for opcode fetches and data transfers. The interface operates at a fixed frequency of 50 MHz, independently of the CPU frequency. The two uni-directional data buses and the address bus each have a width of 32 bits. The AHB bus supports burst transfers that are typically used during cache operations.

To improve system performance, the AHB bus master interface contains a write buffer that reduces CPU stall times during data cache misses. The write buffer operation is normally transparent, however there is indirect control over the write buffer using the MPU. If a memory region is specified as non-cacheable and non-bufferable in the MPU, the write buffer is effectively bypassed.

3.6 ARM946E-S Embedded Trace Macrocell (ETM9)

An ETM9 module is connected at the ARM946E-S. This module permits debugging support for data and instruction traces in the ERTEC 200. The module contains all signals required by the processor for the data and instruction traces. The ETM9 module is operated by means of the JTAG interface. The trace information is provided outwards to the trace port via a FIFO memory. A more detailed description is provided in section 21.1.

Remark: Details about the ARM946E-S processor system and its components can be found in the related ARM documents (see page 6).

3.7 ARM946E-S Registers

Beside the working registers that are part of the ARM9E-S core architecture, the ARM946E-S processor system includes a CP15 coprocessor with a register set for system control. These registers are used for functions like

- Cache type and cache memory area configuration
- Tightly coupled memory area configuration
- Memory protection unit setting for various regions and memory types
- · Assignment of system option parameters
- Configuration of "Little Endian" or "Big Endian" operation

Table 3-1 summarizes the function of the CP15 coprocessor registers and their access options.

Register	Access type	Comment	Notes
0	R	ID code register Cache type register Tightly coupled memory size register	1
1	R/W	Control register	
2	R/W	Cache configuration register	2
3	R/W	Write buffer control register	
4	-	Reserved	3
5	R/W	Access permission register	2
6	R/W	Protection region base/size register	1
7	W	Cache operation register	
8	-	Reserved	3
9	R/W	Cache lock-down register Tightly coupled memory region	1,2
10	-	Reserved	3
11	-	Reserved	3
12	-	Reserved	3
13	R/W	Trace process ID register	
14	-	Reserved	3
15	R/W	RAM/TAG-BIST test register Test state register Cache debug index register Trace control register	1

Table 3-1: CP15 Coprocessor Registers

- **Notes: 1.** These register locations provide access to several registers that are selected with the "opcode 2" or "CRm" field of the ARM register access instructions.
 - 2. Separate registers implemented for instruction and data.
 - 3. Undefined, when read; do not write!

[MEMO]

Chapter 4 ERTEC 200 Bus System

ERTEC 200 has two internal buses respectively bus systems:

- High-performance communication bus (multilayer AHB bus)
- I/O bus (APB bus)

The following functional blocks are directly connected to the multilayer AHB bus:

- ARM946E-S processor system (Master interface)
- IRT switch (Master/Slave interface)
- Local bus unit (Master interface)
- Interrupt controller (Slave interface)
- DMA controller (Master/Slave interface)
- External memory interface (Slave interface)
- AHB-to-APB bridge (Slave interface)

The current AHB master can access the remaining I/O devices that are connected to the APB bus via the AHB-to-APB bridge.

4.1 Multilayer AHB Bus

The multilayer AHB bus in ERTEC 200 is characterized by high bus availability and data throughput. The multilayer AHB bus is a 32-bit wide bus with multiple master capability. It runs at a frequency of 50 MHz and has the functionality of the ARM AHB bus (see documents listed on page 6). By combination of multiple AHB segments to the multilayer AHB bus, four AHB masters can access various AHB slaves simultaneously.

(1) AHB Arbiters

Arbiters control the access when multiple AHB masters try to access a slave simultaneously. Each of the AHB arbiters uses the same "round robin" arbitration scheme. The round robin arbitration scheme prevents mutual blocking of the AHB masters over a long period on the multilayer AHB bus. A fixed priority scheme as shown in Table 4-1 can be configured, but it is not recommended to do so, because the AHB bus can potentially be blocked by a high-priority master.

(2) AHB Master-Slave Coupling

As can be seen in the block diagram in Figure 1-2, not every AHB master is connected to an arbitrary AHB slave. Table 4-1 shows the possible AHB masters/slave communication combinations.

			AHB slaves				
		AHB master priority	AHB-to- APB	External memory interface	DMA	IRT	Interrupt controller
	ARM	high	х	х	х	х	х
AHB	IRT		-	х	-	-	-
masters	DMA	· ·	х	х	-	-	-
	LBU	low	х	х	-	х	-

Remark: "x" stands for "possible; "-" stands for "impossible"

For closed-loop control applications, attention must be paid that AHB masters do not block each other over a long period. This would be possible if, for example, a IRT master and ARM master want to access the same EMIF slave with a time lag. In this case, the ARM master would have to pause in a "Wait" until the IRT master enables the EMIF slave again. To prevent this situation, monitoring is integrated into the AHB master interface of the IRT switch, which enables the slave momentarily via an IDLE state after 8 consecutive data transfers (burst or single access). In this phase, another AHB master can access this slave.

In case of simultaneous accesses of two AHB masters to the same address, the characteristics of the higher priority master's access are stored in several system control registers (see section 20.1 for details).

4.2 APB I/O Bus

All less demanding peripherals are connected to the ARM946E-S processor system via the multilayer AHB bus, an AHB-to-APB bridge and an APB bus. The APB bus itself has a width of 32 bits and operates at a frequency of 50 MHz. All registers in the peripheral I/O blocks are memory mapped into the address space of the ARM946E-S processor system.

Remark: A detailed specification of the internal bus systems of ERTEC 200 can be found in the related ARM documents (see page 6).

Chapter 5 ERTEC 200 Memory Map

This section presents a detailed description of the memory areas of all integrated function blocks. The memory map depends partly on the device configuration selected during reset and partly on the block that actually accesses the memory.

5.1 Memory Partitioning of ERTEC 200

The memory partitioning is explained from the position of the multilayer AHB bus. Basically, the AHB bus has an 32-bit address range that corresponds to 4 GBytes of memory. Every potential master on the multilayer AHB bus has its own perception of the memory range. These different perceptions are summarized in Table 5-1.

Start address	Segment	ARM946E-S	IRT Switch	LBU	DMA	
End address	ocginent			LBO	Diviri	
0000 0000H	0	Internal boot ROM (0-8 kBytes) SDRAM (0-128 MBytes) Static memory	Internal boot ROM (0-8 kBytes) SDRAM	Internal boot ROM (0-8 kBytes) SDRAM	Internal boot ROM (0-8 kBytes) SDRAM	
OFFF FFFFH		(0-64 MBytes) D-TCM (4 kBytes) Locked I-cache (2/4/6 kBytes)	(0-128 MBytes) Static memory (0-64 MBytes)	(0-128 MBytes) Static memory (0-64 MBytes)	(0-128 MBytes) Static memory (0-64 MBytes)	
1000 0000H	1	IRT Switch	IRT Switch	IRT Switch	Not used	
1FFF FFFFH	I				Not used	
2000 0000H	-	External memory	External memory	External memory	External memory	
2FFF FFFFH	2	interface (CS_SDRAM_N)	interface (CS_SDRAM_N)	interface (CS_SDRAM_N)	interface (CS_SDRAM_N)	
3000 0000H		External memory	External memory	External memory	External memory	
3FFF FFFFH	3	interface (CS_PER(3:0)_N)	interface (CS_PER(3:0)_N)	interface (CS_PER(3:0)_N)	interface (CS_PER(3:0)_N)	
4000 0000H	4	AHB-to-APB	Not used	AHB-to-APB	AHB-to-APB	
4FFF FFFFH	-	bridge		bridge	bridge	
5000 0000H	5	Interrupt controller	Not used	Not used	Not used	
5FFF FFFFH	•					
6000 0000H	6	6	Not used	Not used	Not used	Not used
6FFF FFFFH	-					
7000 0000H	7	External memory	Not used	External memory	Not used	
7FFF FFFFH		interface registers		interface registers		
8000 0000H	8	DMA	Not used	Not used	Not used	
8FFF FFFFH						
9000 0000H	9-15	Not used	Not used	Not used	Not used	
FFFF FFFFH						

Table 5-1: Memory Area Partitioning

5.2 Detailed Memory Map Description

Table 5-2 below presents a more detailed description of the memory segments. Memories in address ranges, that are handled by external chip select signals, are mirrored over the complete address range of the respective chip select. However mirrored segments should not be used for addressing to ensure compatibility in case of future memory expansions.

When a locked I-cache or D-cache and D-TCM are used, they can only be addressed by the ARM946E-S and not by the IRT. When the I-cache is used, it cross-fades the first 4 kBytes (addresses 0000 0000H to 0000 0FFFH) of the memory area. The D-TCM memory can be positioned flexibly in the address space of the ARM946E-S with the Tightly-Coupled Memory Region register of the CP15 system control coprocessor.

Segment	Contents	Size	Address range	Comment
	Boot ROM			After reset: Boot ROM (8 kBytes, physical) ^{Note 1}
0	0 SDRAM Static memory D-TCM Locked I-cache		0000 0000H - 0FFF FFFH	After memory swap using MEM_SWAP register: Internal SRAM (8 kBytes, physical) ^{Note 1}
				1000 0000H - 100F FFFFH for registers ^{Note 2}
1	IRT switch	256 MBytes	1000 0000H - 1FFF FFFFH	1010 0000H - 1010 FFFFH for Communication SRAM (64 kBytes, physical) ^{Note 2}
2	External memory interface (SDRAM)	256 MBytes	2000 0000H - 2FFF FFFFH	Maximum 128 MBytes Smaller external memories are mir- rored over the entire range.
	I/O Bank 0	16 MBytes	3000 0000H - 30FF FFFFH	
	I/O Bank 1	16 MBytes	3100 0000H - 31FF FFFFH	Smaller external memory ranges are mirrored over the entire
3	I/O Bank 2	16 MBytes	3200 0000H - 32FF FFFFH	16 MByte range.
	I/O Bank 3	16 MBytes	3300 0000H - 33FF FFFFH	
	Not used	192 MBytes	3400 0000H - 3FFF FFFFH	
	Internal boot ROM	8 kBytes	4000 0000H - 4000 1FFFH	8 kBytes, physical
	Timers	256 Bytes	4000 2000H - 4000 20FFH	32 Bytes, physical ^{Note 1}
	Watchdog	256 Bytes	4000 2100H - 4000 21FFH	28 Bytes, physical ^{Note 1}
	SPI	256 Bytes	4000 2200H - 4000 22FFH	256 Bytes, physical
	UART	256 Bytes	4000 2300H - 4000 23FFH	256 Bytes, physical
4	Reserved	256 Bytes	4000 2400H - 4000 24FFH	256 Bytes, physical
	GPIO	256 Bytes	4000 2500H - 4000 25FFH	32 Bytes, physical ^{Note 1}
	System Control Registers	256 Bytes	4000 2600H - 4000 26FFH	164 Bytes, physical General register block ^{Note 1}
	F-Counter	256 Bytes	4000 2700H - 4000 27FFH	8 Bytes, physical ^{Note 1}
	Not used		4000 2800H - 4FFF FFFFH	
5	Interrupt controller	256 MBytes	5000 0000H - 5FFF FFFFH	ARM interrupt controller 128 Bytes, physical ^{Note 1}
6	Reserved	256 MBytes	6000 0000H - 6FFF FFFFH	

 Table 5-2:
 Detailed Description of Memory Segments (1/2)

Segment	Contents	Size	Address range	Comment
7	External memory interface register	256 MBytes	7000 0000H - 7FFF FFFFH	Control registers for external memory interface 64 Bytes, physical Note 1
8	DMA controller	256 MBytes	8000 0000H - 8FFF FFFFH	Control registers for DMA 16 Bytes, physical ^{Note 1}
9-15	Not used	1,75 GBytes	9000 0000H - FFFF FFFFH	

 Table 5-2:
 Detailed Description of Memory Segments (2/2)

- **Notes: 1.** Memories respectively register sets are mirrored over the complete partial segment size; the address distance of the mirrored blocks corresponds to an integer power of two, that is greater or equal to the physically implemented size. For example for the watchdog timers, 28 Bytes are physically implemented. The next higher power of two is 32 Bytes and thus, the watchdog registers are mirrored every 32 Bytes over a 256 Byte range. Accesses to the gaps in this address area do not activate the bus monitoring circuitry, that is described in section 20.1; read and write accesses to these addresses result in undefined data.
 - 2. IRT registers and Communication SRAM may only be accessed at the first 2 MBytes of memory segment 1. Accesses to the gaps in this address area do not activate the bus monitoring circuitry, that is described in section 20.1; read and write accesses to these addresses result in undefined data.

These 2 MBytes are mirrored every 8 MByte over the complete 256 MByte range of segment 1.

5.3 Memory Map Example

In this chapter a memory map example for a stripped down memory system consisting of 64 MBytes of external SDRAM and 4 MBytes of external parallel Flash memory connected to chip select CS_PER0_N is shown. The representation in Table 5-3 is somewhat different than in the previous tables, as the last two columns illustrate the actually used address ranges, to which programmers should limit their addressing operations. Users are discouraged from using mirrors of the addressing ranges shown in Table 5-3 in order to avoid the risk of future software compatibility problems.

Segment	Contents	Avai	lable	Us	ed			
Segment	Contents	Address range	Size	Address range	Size			
0	Boot ROM	0000 0000H - 0FFF FFFFH	256 MBytes	0000 0000H - 0000 1FFFH	8 kBytes			
				Not	used			
		1000 0000H -	1 MBytes	Not disclosed	Not disclosed			
		100F FFFFH	T MDytes	Not	used			
1	IRT switch	1010 0000H - 1FFF FFFFH	255 MBytes	1010 0000H - 1010 FFFFH	64 kBytes			
				Not	used			
2	SDRAM	2000 0000H - 2FFF FFFFH	256 MBytes	2000 0000H - 23FF FFFFH	64 MBytes			
		2111 11111		Not used				
3	Parallel Flash	3000 0000H - 3FFF FFFFH	256 MBytes	3000 0000H - 303F FFFF	4 MBytes			
		51111111		Not	used			
	Internal boot ROM	4000 0000H - 4000 1FFFH	8 kBytes	4000 0000H - 4000 1FFFH	8 kBytes			
	Timers	4000 2000H - 4000 20FFH	256 Bytes	4000 2000H - 4000 201FH	32 Bytes			
		4000 20FFH		Not used				
	Watchdog	4000 2100H - 4000 21FFH	256 Bytes	4000 2100H - 4000 211BH	28 Bytes			
		4000 211111		Not used				
4	SPI1	4000 2200H - 4000 22FFH	256 Bytes	4000 2200H - 4000 22FFH	256 Bytes			
	UART1	4000 2300H - 4000 23FFH	256 Bytes	4000 2300H - 4000 23FFH	256 Bytes			
	Reserved	4000 2400H - 4000 24FFH	256 Bytes	4000 2400H - 4000 24FFH	256 Bytes			
	GPIO	4000 2500H - 4000 25FFH	256 Bytes	4000 2500H - 4000 251FH	32 Bytes			
		-1000 231 1 11		Not	used			

Table 5-3: Memory Map and Used Address Range Example (1/2)

Segment	Contents	Avai	lable	Us	ed			
Segment	Contents	Address range	Size	Address range	Size			
	System Control Registers	4000 2600H - 4000 26FFH	256 Bytes	4000 2600H - 4000 26A3H	164 Bytes			
	registers	4000 201111		Not	used			
4 (cntd.)	F-Counter	4000 2700H - 4000 27FFH	256 Bytes	4000 2700H - 4000 2707H	8 Bytes			
		4000 271111		Not	used			
	Not used	4000 2800H - 4FFF FFFFH	(almost) 256 MBytes	Not used				
5	Interrupt controller	5000 0000H - 5FFF FFFFH	256 MBytes	5000 0000H - 5000 007F	128 Bytes			
	controller	JEFE FEFFI		Not	used			
6	Internal SRAM	6000 0000H - 6FFF FFFFH	256 MBytes	6000 0000H - 6000 1FFFH	8 kBytes			
		OFFF FFFFI		Not used				
7	External memory interface register	7000 0000H - 7FFF FFFFH	256 MBytes	7000 0000H - 7000 003FH	64 Bytes			
	interface register	7111 11111		Not used				
8	DMA	8000 0000H - 8FFF FFFFH	256 MByte	8000 0000H - 8000 000FH	16 Bytes			
				Not used				
9-15	Not used	9000 0000H - FFFF FFFFH	1,75 GBytes	Not used				

Table 5-3:	Memory Map and Used Address	Range Example	(2/2)
------------	-----------------------------	---------------	-------

[MEMO]

Chapter 6 External Memory Interface (EMIF)

In order to access external memory areas, an External Memory Interface (EMIF) is incorporated in ERTEC 200. The interface contains an SDRAM memory controller for standard SDRAM and an SRAM memory controller for asynchronous memories and peripherals. Both interfaces can be configured separately as "active interfaces". That is, the data bus is driven actively to high level at the end of each access. The internal pull-up resistors keep the data bus actively at high level; external pull-up resistors are not required. When writing, this occurs after the end of the strobe phase. When reading, this occurs after a specified time has elapsed after the end of the strobe phase to avoid driving against the externally read block. For the SDRAM controller, this time is equivalent to one AHB bus cycle. For the asynchronous controller, the time is equivalent to the time required for the hold phase to elapse, which corresponds to the time from the rising edge of RD_N to the rising edge of the chip select signal. By default, the active interface is switched on.

The following signal pins are available for the EMIF on ERTEC 200:

Pin Name	I/O	Function	Number of pins
A(23:15)	I/O ^{Note}	External memory address bus (23:15)	9
A(14:0)	0	External memory address bus (14:0)	15
D(31:0)	I/O	External memory data bus (31:0)	32
WR_N	0	Write strobe signal	1
RD_N	0	Read strobe signal	1
CLK_SDRAM	0	Clock to SDRAM	1
CS_SDRAM_N	0	Chip select to SDRAM	1
RAS_SDRAM_N	0	Row address strobe SDRAM	1
CAS_SDRAM_N	0	Column address strobe to SDRAM	1
WE_SDRAM_N	0	RD/WR signal to SDRAM	1
CS_PER(3:0)_N	0	Chip select	4
BE(3:0)_DQM(3:0)_N	0	Byte enable	4
RDY_PER_N	I	Ready signal	1
DTR_N	I/O ^{Note}	Direction signal for external driver or scan clock	1
OE_DRIVER_N	0	Enable signal for external driver or scan clock	1
total	•	•	74

Table 6-1: External Memory Interface Pin Functions

Note: The pins A(23:15) and DTR_N are used as inputs BOOT(3:0) and CONFIG(6:1) and read into the BOOT_REG respectively CONFIG_REG system configuration registers during the active RESET phase. After a reset, these pins are available as normal function pins and used as outputs.

The external memory interface supports all transfer types, transfer sizes, and burst operations as described in the ARM AMBA specification (see page 6), except for the "Split" and "Retry" functions. All AHB burst accesses to asynchronous blocks are divided into individual accesses on the external bus. All AHB burst accesses with a non-specified length to the SDRAM controller are divided into 8-beat burst accesses on the external bus.

The SDRAM controller has the following features:

- 16-bit or 32-bit data bus width selectable
- PC100 SDRAM-compatible (at 50 MHz SDRAM clock frequency)
- Up to 128 MBytes of SDRAM for 32-bit data bus width configured as
 - 1 bank of 128 MBytes
 - 2 banks of 64 MBytes
 - 4 banks of 32 MBytes
- Supports various SDRAMs with the following properties:
 - CAS latency 2 or 3 clock cycles
 - 1/2/4 internal banks can be addressed via A(1:0)
 - 8-/9-/10-/11-bit column address A13, A(11:2)
 - Maximum of 13-bit row address A(14:2)

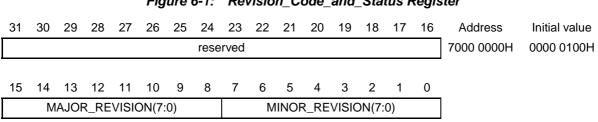
SDRAMs with a maximum of 4 banks are supported. The SDRAM controller can keep all 4 banks open simultaneously. In terms of addresses, these four banks correspond to one quarter of the SDRAM address area on the AHB bus. As long as the alternating accesses are in the respective page, no page miss can occur.

The asynchronous memory controller has the following features:

- 8-bit, 16-bit, or 32-bit data bus width can be selected
- 4 chip select signals
- Maximum of 16 MBytes per chip select can be addressed
- Different access timing can be configured for each chip select
- Ready signal can be configured differently for each chip select
- Chip select CS_PER0_N can be used for boot operations from external memory
- Data bus width of the external boot memory selected via the BOOT(3:0) input pins
- Default register setting "Slow timing" for boot operation
- Timeout monitoring can be selected
- · Supports the following asynchronous devices
 - SRAM
 - Flash memoryROM
 - External I/O devices

Care must be taken when configuring the asynchronous access timing: The maximum asynchronous access duration must not exceed the time between two refresh cycles, because otherwise an SDRAM refresh may get lost. It must also be taken into account that a 32-bit access to an 8-bit external device requires four sequential accesses that are not interruptible for an SDRAM refresh.

6.1 Address Assignment of EMIF Registers


The EMIF registers are 32-bits wide. The registers can be written to with 32-bit accesses only. Table 6-2 gives an overview of all external memory interface control registers.

Address	Register Name	Size	R/W	Initial value	Description
7000 0000H	Revision_Code_and_Status	32-bit	R	0000 0100H	Contains revision code and status register information
7000 0004H	Async_Wait_Cycle_Config	32-bit	R/W	4000 0080H	Configures number of wait cycles for asynchronous accesses
7000 0008H	SDRAM_Bank_Config	32-bit	R/W	0000 20A0H	Sets SDRAM bank configuration, number of row and column addresses and latency
7000 000CH	SDRAM_Refresh_Control	32-bit	R/W	0000 0190H	Sets refresh rate, indication for timeout
7000 0010H	Async_BANK0_Config	32-bit	R/W	3FFF FFF2H	Configures access timing and
7000 0014H	Async_BANK1_Config	32-bit	R/W	3FFF FFF2H	data bus width for asynchronous
7000 0018H	018H Async_BANK2_Config		R/W	3FFF FFF2H	chip selects CS_PER(3:0)_N
7000 001CH	Async_BANK3_Config	32-bit	R/W	3FFF FFF2H	individually
7000 0020H	Extended_Config	32-bit	R/W	0303 0000H	Sets miscellaneous other functionalities

Table 6-2: External Memory Interface Control Registers

Note: Reserved bits in all registers are undefined when read; always write the initial (reset) values to these bits.

6.2 Detailed EMIF Register Description

Figure 6-1:	Revision_	_Code_	_and_	_Status	Register	
-------------	-----------	--------	-------	---------	----------	--

Bit position	Bit name	R/W	Function				
(31:16)	-	-	Reserved				
(15:8)	MAJOR_ REVISION	R	Major revision code (initial value: 01H)				
(7:0)	MINOR_ REVISION	R	Minor revision code (initial value: 00H)				

					Fig	gure	6 - 2:	As	ync_	Wai	t_Cy	cle_	Con	fig R	egis	ter	
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Address	Initial value
res.	s. WP reserved								7000 0004H	4000 0080H							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	_	
reserved						MAX_EXT_WAIT											

Chapter 6 External Memory Interface (EMIF)

Bit position	Bit name	R/W	Function							
31	-	-	Reserved							
			WP, wait polarity Selects if RDY_PER_N signal is interpreted as active high or active low.							
30	WP	R/W	WP Wait polarity							
			0 _b Wait, if RDY_PER_N is low							
			1 _b Wait, if RDY_PER_N is high (initial value)							
(29:8)	-	-	Reserved							
			MAX_EXT_WAIT(7:0) Determines the number of AHB cycles before termination of an asynchronous memory or peripheral access with an IRQ.							
			MAX_EXT_WAIT(7:0) Wait cycle setting							
(7:0)	MAX_EXT_ WAIT	R/W	n = 0H FFH number of AHB clock cycles that the asynchro- nous controller waits for RDY_PER_N before access is terminated with timeout IRQ. The initi setting is 80H, corresponding to 2048 AHB cycles or 40.96 µs in case of 50 MHz AHB clock	- ial						

Chapter 6 E	External Memory	Interface	(EMIF)
-------------	-----------------	-----------	--------

					Fig	gure	6-3:	SD	RAI	M_Ba	nk_	Conf	ig Re	egist	ter (1	/2)	
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Address	Initial value
	reserved											7000 0008H	0000 20A0H				
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
rese	erved	CL	rese	rved	F	ROW	S	res.		IBAN	K	res.	PA	GES	ZE		

Bit position	Bit name	R/W	Function								
(31:14)	-	-	Reserved								
			CL, CAS latenc	У							
13 ^{Note}	CL	R/W	CL	CAS latency							
13	0L	17/44	0 _b	CAS latency 2							
			1 _b	CAS latency 3 (initial value)							
(12:11)	-	-	Reserved								
			Configures the	w address select number of used row address lines							
			ROWS(2:0)	Number of used row address lines							
			000 _b	8 row address lines (initial value)							
(DOWO	DAA	001 _b	9 row address lines							
(10:8) ^{Note}	ROWS	R/W	010 _b	10 row address lines							
			011 _b	11 row address lines							
			100 _b	12 row address lines							
			101 _b	13 row address lines							
			others	Reserved							
7	-	-	Reserved								

Note: Writing to the SDRAM_Bank_Config register executes the Mode Register Set command on the SDRAM if Bit 29 (INIT_DONE) is set in the SDRAM_Refresh_Control register (i.e., the SDRAM power-up sequence has been executed).

Bit position	Bit name	R/W	Function									
			IBA	NK(2:0), internal	SDRAM bank setup							
				IBANK(2:0)	Number of internal SDRAM banks							
(0.4)				000 _b	1 bank							
(6:4) IB	IBANK	R/W		001 _b	2 banks							
				010 _b	4 banks (initial value)							
				others	Reserved							
3	-	-	Re	Reserved								
			Co	PAGESIZE(2:0), page size Configures the SDRAM page size by selection of the number of column address lines								
				PAGESIZE(2:0)	Number of column address lines							
(0.0)				000 _b	8 column address lines (initial value)							
(2:0)	PAGESIZE	R/W		001 _b	9 column address lines							
				010 _b	10 column address lines							
				011 _b	11 column address lines							
	1		1	others								

Figure 6-3: SDRAM_Bank_Config Register (2/2)

	Figure 6-4: SDRAM_Refresh_Control Register																
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Address	Initial value
res.	AT	INIT_ DON E		reserved										7000 000CH	0000 0190H		
15 	14 serve		12	11	10	9	-		-	-		3	2	1	0		
Te	Serve	eu		REFRESH_RATE													

Bit position	Bit name	R/W	Function							
31	-	-	R	eserved						
			Ir	T, asynchrono ndicates wheth control register	er the interval, that is specified with the Async_Wait_Cycle_					
				AT Asynchronous timeout						
30	AT	R		0 _b	Interval, that is specified with the Async_Wait_Cycle_ Control register has not yet elapsed (initial value)					
				1 _b	Interval, that is specified with the Async_Wait_Cycle_ Control register has elapsed					
		R		ndicates, if the	DRAM initialization done SDRAM initialization sequence is completed.					
29	INIT_DONE			INIT_DONE	SDRAM initialization done SDRAM initialization sequence is not completed					
				0 _b	(initial value)					
				1 _b	SDRAM initialization sequence is completed					
(28:13)	-	-	R	eserved						
(12:0)	REFRESH_ RATE	R/W	REFRESH_RATE, refresh rate Specifies the number of AHB clock cycles between 2 SDRAM refresh cycles; the initial setting of 190H corresponds to a refresh cycle of 8µs (with 50 MHz SDRAM clock)							

Note: The refresh counter is always active, even if no SDRAM is used at all. In this case, REFRESH_RATE should be set to its maximum value, in order to keep the additional bus load as low as possible.

					Figu	re 6-	5: /	Asyn	IC_B	ank((3:0)_	Con	fig F	Regi	sters	(1/2)	
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Address	Initial value
EWS _XAS	EW		W_	SU			۷	V_ST	ROB	E		W_HOLI			R_SU	7000 001xH	3FFF FFF2H
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
ŀ	R_SU			F	R_ST	ROB	E		R_HOLD			rese	rved	AS	SIZE		

Bit position	Bit name	R/W		Function							
				led wait timing mode ER_N signal is treated synchronously or not							
31	EWS_XAS	R/W	EWS_XAS	Extended wait timing mode							
51	EVVS_AAS	R/ VV	0 _b	treat RDY_PER_N asynchronously (initial value)							
			1 _b	treat RDY_PER_N synchronously							
				mode Y_PER_N signal is ignored or not.							
			EW	Extended wait mode							
30	EW	R/W	0 _b	ignore RDY_PER_N signal (initial value)							
			1 _b	Check timeout condition based on Async_Wait_Cycle _Config register setting and generate IRQ if required							
(29:26)	W_SU	R/W		strobe setup cycles mber of AHB clock cycles between valid address, data, d falling edge of the write signal WR_N. Write strobe setup cycles							
			n = 0HEH	(n+1) AHB cycles							
			FH	16 AHB cycles (initial value)							
(25:20)	W_STROBE	R/W	Determines the null of the write signal W_STROBE(5:	_STROBE(5:0), write strobe duration cycles termines the number of AHB clock cycles between falling and rising edge the write signal WR_N. W_STROBE(5:0) Write strobe duration cycles n = 0H3EH (n+1) AHB cycles 3FH 64 AHB cycles (initial value)							

Figure 6-5:	Async_B	ank(3:0)_Confi	g Registers	(2/2)
-------------	---------	----------------	-------------	-------

Bit position	Bit name	R/W		Function						
			Determines the nur	V_HOLD(2:0), write strobe hold cycles Determines the number of AHB clock cycles between rising edge of the write ignal WR_N and change of address, data and chip select.						
(19:17)	W_HOLD	R/W	W_HOLD(2:0)	Write strobe hold cycles						
~ /	—		n = 0H6H	(n+1) AHB cycles						
			7H	8 AHB cycles (initial value)						
				robe setup cycles nber of AHB clock cycles between valid address and chip dge of the read signal RD_N.						
(16:13)	R_SU	R/W	R_SU(3:0)	Read strobe setup cycles						
			n = 0HEH	(n+1) AHB cycles						
			FH	16 AHB cycles (initial value)						
(12.7)		R/W	Determines the nur of the read signal R							
(12:7)	R_STROBE		R_STROBE(5:0)							
			n = 0H3EH 3FH	(n+1) AHB cycles 64 AHB cycles (initial value)						
			3611							
		R/W	R_HOLD(2:0), read strobe hold cycles Determines the number of AHB clock cycles between rising edge of the rea signal RD_N and change of address and chip select.							
(6:4)	R_HOLD		R_HOLD(2:0)	Read strobe hold cycles						
			n = 0H6H	(n+1) AHB cycles						
			7H	8 AHB cycles (initial value)						
(3:2)	-	_	Reserved							
(0.2)			ASIZE(1:0), data bu	us width						
				ed width of the data bus for each chip select individually.						
			ASIZE(1:0)	Data bus width						
(1:0)	ASIZE	R/W	00 _b	8-bit data bus						
· /	ASIZE		01 _b	16-bit data bus						
			10 _b	32-bit data bus (initial value)						
			11 _b	32-bit data bus						

Remark: An AHB clock cycle normally has a length of 20 ns.

	Figure 6-6: Extended_Config Register (1/2)																
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Address	Initial value
res.	TEST_ 1	TEST_ 2	re	serve	əd	ADB	ASD B		rese	rved		TEST_ 3	res.	BURS G	T_LEN TH	7000 0020H	0303 0000H
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
res.	TRC D/ TCD		re	serve	ed		SDS IZE	ATI RQ			re	eserve	ed				

Chapter 6 External Memory Interface (EMIF)

Bit position	Bit name	R/W	Function									
31	-	-	Reserved									
			Test mode 1	Test mode 1								
			TEST_1	Test mode 1								
30	TEST_1	R/W		200 μs delay after system reset (SDRAM power-up) (initial value)								
			1 _b	Delay after system reset is immediately terminated								
			Test mode 2									
			TEST_2	Test mode 2								
29	TEST_2	R/W	0 _b	Normal function (initial value)								
			1 _b	All SDRAM accesses are misses.								
(28:26)	-	-	Reserved									
			With an active access to the	ADS, active data bus (for SDRAM accesses) With an active data bus, the data bus is driven actively to high level after each access to the SDRAM in order to support the integrated pull-up resistors.								
25	ADS	R/W	ADB	Active data bus (for SDRAM)								
			0 _b	No active data bus after SDRAM accesses								
			1 _b	Active data bus after SDRAM accesses (initial value)								
24	4000	DAA	With an active	e data bus (for asynchronous accesses) e data bus, the data bus is driven actively to high level after each asynchronous device in order to support the integrated pull-up								
24	ASDB	R/W	ASDB	Active data bus (for asynchronous accesses)								
			0 _b	No active data bus after asynchronous accesses								
			1 _b	Active data bus after asynchronous accesses (initial value)								

Figure 6-6: Extended_Config Register (1/2)

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
19TEST_3R/W $\overline{\text{TEST}_3}$ Test mode 319TEST_3R/W $\overline{\text{D}_b}$ Normal function (initial value)18Reserved18Reserved18Reserved19BURST_LENGTH(1:0), SDRAM burst length10BURST_LENGTH(1:0)SDRAM burst length11BURST_LENGTH(1:0)SDRAM burst length1210_b1131515-Reserved14TRCD/TCDR/W14TRCD/TCDR/W15-R/W14TRCD/TCD14TRCD/TCD15-16-17-18-19-10211112-13-14TRCD/TCD15-16-17-18-19-19-10211112-13-14TRCD/TCD15-16-17-18-19-19-10-10-11-12-13-14-15-16-1	
19 TEST_3 R/W 0b Normal function (initial value) 1b DTR_N is test output 18 - - Reserved (17:16) BURST_LENGTH R/W BURST_LENGTH(1:0) SDRAM burst length (17:16) BURST_LENGTH R/W BURST_LENGTH(1:0) SDRAM burst length 00b 1 00b 1 01b 2 00b 1 01b 2 10b 2 10b Full Page, Read INCR_S burst length = 4 11b 11b Full Page, Read INCR_S burst length = 8 11b 15 - Reserved TRCD/TCD, time between the SDRAM commands Activate and read/write, pre-charge and activate 14 TRCD/TCD R/W TRCD/TCD Time between SDRAM commands Activate (13:9) - - Reserved SDSIZE, SDRAM bank size 8 SDSIZE R/W SDSIZE SDRAM bank size	
$\begin{bmatrix} 0_{b} & \text{Normal function (Initial value)} \\ \hline 1_{b} & \text{DTR_N is test output} \\ \hline 1_{b} & DTR_N$	
18Reserved18Reserved $(17:16)$ $BURST_LENGTH$ $BURST_LENGTH(1:0)$, SDRAM burst length $(17:16)$ $BURST_LENGTH$ 00_b 1 00_b 1 00_b 1 10_b Full Page, Read INCR_S burst length = 4 11_b Full Page, Read INCR_S burst length = 8 11_b Full Page, Read INCR_S burst length = 8 11_b TRCD/TCD, time between the SDRAM commands Activate and read/write, pre-charge and activate 14 TRCD/TCDR/W 14 TRCD/TCDTime between SDRAM commands 0_b 139 $(13:9)$ 8 SDSIZER/W 8 SDSIZESDRAM bank size 0_b 32-bit data bus (initial value)	
(17:16) BURST_LENGTH R/W BURST_LENGTH(1:0), SDRAM burst length (17:16) BURST_LENGTH R/W BURST_LENGTH(1:0) SDRAM burst length 00b 1 00b 1 01b 2 10b Full Page, Read INCR_S burst length = 4 11b Full Page, Read INCR_S burst length = 8 11b 15 - - Reserved 14 TRCD/TCD R/W TRCD/TCD, time between the SDRAM commands Activate and read/write, pre-charge and activate 14 TRCD/TCD TRCD/TCD Time between SDRAM commands Activate 14 TRCD/TCD R/W SDSIZE SDSIZE 8 SDSIZE R/W SDSIZE SDSIZE	
(17:16) BURST_LENGTH R/W BURST_LENGTH(1:0) SDRAM burst length 00b 1 01b 2 10b Full Page, Read INCR_S burst length = 4 11b Full Page, Read INCR_S burst length = 8 15 - - 15 - - 16 - Reserved 17 TRCD/TCD TRCD/TCD, time between the SDRAM commands Activate and read/write, pre-charge and activate 14 TRCD/TCD R/W 14 TRCD/TCD R/W 13:9) - - 13:9) - - 8 SDSIZE SDSIZE, SDRAM bank size 8 SDSIZE R/W	
$(17:16) \begin{array}{ c c c c c } BURST_{LENGTH} & R/W \end{array} \begin{array}{ c c c c } \hline 00_b & 1 \\ \hline 01_b & 2 \\ \hline 10_b & Full Page, Read INCR_S burst length = 4 \\ \hline 11_b & Full Page, Read INCR_S burst length = 4 \\ \hline 11_b & Full Page, Read INCR_S burst length = 8 \\ \hline (initial value) \end{array}$ $15 - & Reserved$ $15 - & Reserved \\ \hline 14 & TRCD/TCD & R/W $	
$(17:16) \begin{array}{ c c c c c } BURST_{LENGTH} \\ (17:16) \end{array} \begin{array}{ c c c c } BURST_{LENGTH} \\ R/W \end{array} \begin{array}{ c c c } \hline 00_b & 1 \\ \hline 01_b & 2 \\ \hline 10_b & Full Page, Read INCR_S burst length = 4 \\ \hline 11_b & Full Page, Read INCR_S burst length = 8 \\ \hline (initial value) \end{array}$ $15 - & Reserved \\ \hline 15 - & Reserved \\ \hline 14 & TRCD/TCD & R/W \end{array} \begin{array}{ c } \hline TRCD/TCD, time between the SDRAM commands \\ Activate and read/write, pre-charge and activate \\ \hline 0_b & 2 AHB clocks between SDRAM commands (initial value) \\ \hline 1_b & 1 AHB clock between SDRAM commands \\ \hline 1_b & 1 AHB clock between SDRAM commands \\ \hline 1b & 1 AHB clock between SDRAM commands \\ \hline 1b & 1 AHB clock between SDRAM commands \\ \hline 1b & 1 AHB clock between SDRAM commands \\ \hline 1b & 1 AHB clock between SDRAM commands \\ \hline 1b & 32-bit data bus (initial value) \\ \hline \end{array}$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
11 11 (initial value) 15 - - Reserved 14 TRCD/TCD R/W TRCD/TCD Time between the SDRAM commands Activate and read/write, pre-charge and activate 14 TRCD/TCD R/W TRCD/TCD Time between two SDRAM commands (initial value) 14 TRCD/TCD R/W TRCD/TCD Time between SDRAM commands (initial value) (13:9) - - Reserved SDSIZE, SDRAM bank size 8 SDSIZE R/W SDSIZE SDRAM bank size 8 SDSIZE R/W SDSIZE SDRAM bank size	
14 TRCD/TCD TRCD/TCD, time between the SDRAM commands Activate and read/write, pre-charge and activate 14 TRCD/TCD Time between two SDRAM commands 14 TRCD/TCD Time between two SDRAM commands 0b 2 AHB clocks between SDRAM commands (initial value) (13:9) - - 8 SDSIZE R/W 8 SDSIZE R/W	
14 TRCD/TCD R/W Activate and read/write, pre-charge and activate 14 TRCD/TCD Time between two SDRAM commands 0b 2 AHB clocks between SDRAM commands (initial value) (13:9) - - 8 SDSIZE R/W SDSIZE R/W SDSIZE R/W	
14 TRCD/TCD R/W TRCD/TCD Time between two SDRAM commands 0b 2 AHB clocks between SDRAM commands (initial value) (13:9) - - Reserved 8 SDSIZE R/W SDSIZE SDSIZE 8 SDSIZE R/W SDSIZE SDSIZE	
14 TRCD/TCD R/W 0b 2 AHB clocks between SDRAM commands (initial value) (13:9) - - Reserved 8 SDSIZE R/W SDSIZE SDSIZE 8 SDSIZE R/W SDSIZE SDSIZE	
(13:9) - - Reserved 8 SDSIZE R/W SDSIZE SDSIZE SDRAM bank size	
(13:9) - - Reserved 8 SDSIZE R/W SDSIZE SDRAM bank size 8 SDSIZE R/W 0b 32-bit data bus (initial value)	e)
8 SDSIZE R/W SDSIZE SDRAM bank size 8 SDSIZE R/W 0b 32-bit data bus (initial value)	
8 SDSIZE R/W SDSIZE SDRAM bank size 8 SDSIZE R/W 0b 32-bit data bus (initial value)	
8 SDSIZE R/W SDSIZE SDRAM bank size 0b 32-bit data bus (initial value)	
8 SDSIZE R/W 0 _b 32-bit data bus (initial value)	
1 _b 16-bit data bus	
ATIRQ, asynchronous access timeout enable After the watchdog expires (256 AHB clock cycles), an interrupt is trig Setting Bit 7 to 0 deletes the interrupt request.	gered.
7 ATIRQ R/W ATIRQ Asynchronous access timeout enable	
0 _b Timeout watchdog for asynchronous accesses disabled (initial value)	
1 _b Timeout watchdog for asynchronous accesses enabled	
(6:0) Reserved	

Figure 6-6: Extended_Config Register (2/2)

6.3 Asynchronous Access Timing Examples

The following Figures 6-7 to 6-10 illustrate the access timing for asynchronous devices like SRAM that are connected to the ERTEC 200 external memory interface. The accesses, that are asynchronous from the external viewpoint are internally synchronized to the 50 MHz clock signal CLK_50 that is shown in the subsequent timing diagrams for reference.

Below timings are based on a specific setting of the Async_Bank(3:0)_Config registers and vary of course on the individual setting of these registers.

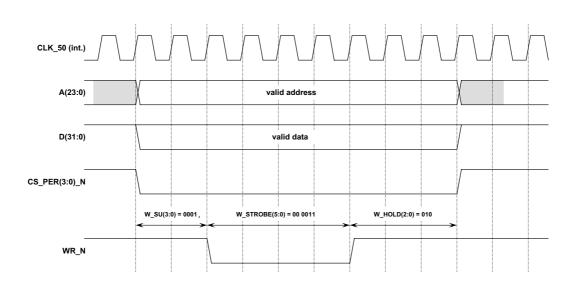
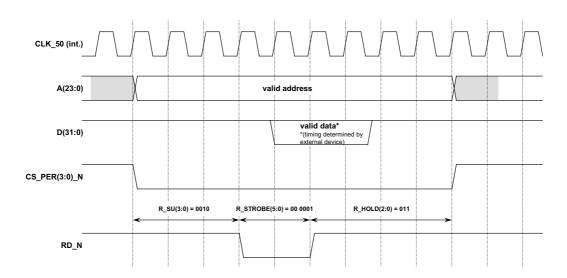



Figure 6-7: Write to External Device ("Active Data Bus")

Figure 6-8: Read from External Device ("Active Data Bus")

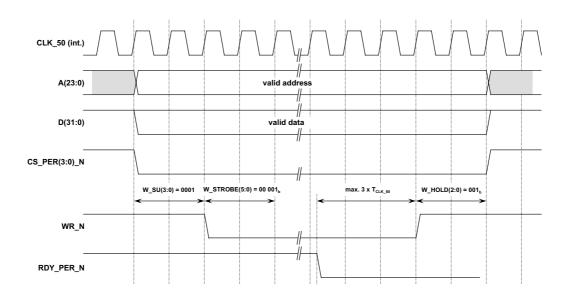
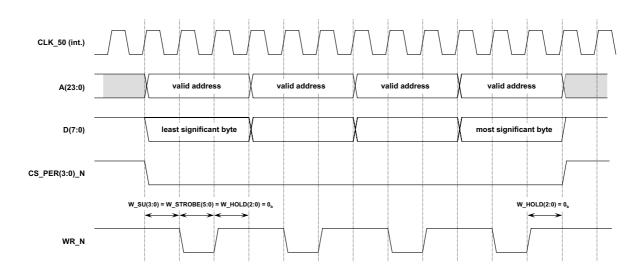
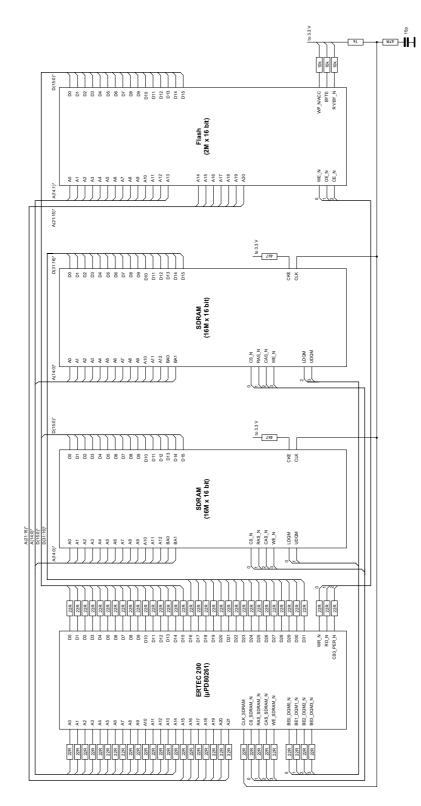



Figure 6-9: Write to External Device Using RDY_PER_N ("Active Data Bus")



6.4 External Memory Connection Example

Figure 6-11 shows an example for a memory system consisting of two external SDRAMs with 16M x 16 bit organization and an additional parallel boot Flash memory of 2M x 16 bit. In a typical application the code is copied from the boot Flash memory to SDRAM during the system startup phase and subsequently executed from SDRAM for optimized system performance.

Preliminary User's Manual A17988EE1V1UM00

6.5 Hints for Setting the EMIF Registers

For proper operation of an SDRAM in conjunction with ERTEC 200, the bits BURST_LENGTH(1:0) and SDSIZE must be set carefully. The bits must be set before the Mode-Register-Set command is issued to the SDRAM; otherwise the new settings are not transferred.

The Mode-Register-Set command is triggered by writing to the SDRAM_Bank_Config register, while the INIT_DONE bit (bit 29) in the SDRAM_Refresh_Control register is 1_b.

Possible settings for BURST_LENGTH(1:0) and SDSIZE are shown below:

- If SDSIZE = 0_b (32-bit data bus)
 - BURST_LENGTH = 11_b Full Page, Read INCR_S burst length = 8
 - BURST_LENGTH = 10_b Full Page, Read INCR_S burst length = 4
 - BURST_LENGTH = 00_b Burst length = 1
- If SDSIZE = 1_b (16-bit data bus)
 - BURST_LENGTH = 11_b Full Page, Read INCR_S burst length = 8
 - BURST_LENGTH = 10_b Full Page, Read INCR_S burst length = 4
 - BURST_LENGTH = 01_b Burst length = 2

Other settings than the ones shown above lead to malfunction of the memory controller.

[MEMO]

Chapter 7 DMA Controller

ERTEC 200 has a one-channel DMA controller integrated. This enables data to be transferred without placing an additional load on the ARM946E-S core. The supported transfer modes are summarized in Table 7-1.

Source	Target	Synchronisation
Peripheral ^{Note}	Memory	Source
Memory	Peripheral ^{Note}	Target
Peripheral ^{Note}	Peripheral ^{Note}	Source and target
Memory	Memory	None

Table 7-1: DMA Transfer Modes

Note: Due to the single-channel structure the DMA controller can handle only one direction (transmit or receive) of a peripheral. For full-duplex operation the other direction must be serviced by software.

The characteristics of the DMA controller are listed below:

- AHB master interface for data transfers
- AHB slave interface for access of the ARM946E-S CPU to the DMA control registers
- 4 request inputs for synchronisation of the DMA controller with peripherals like UART or SPI
- Source and destination address must be 4-Byte aligned (address bits (1:0) are ignored)
- Transfer width can be specified independently for source and target; transfer width may be smaller than the width of source or target.
- DMA block size is specified in Bytes and must be aligned to the transfer width (if a DMA transfer is configured to 32 bit transfer width, the block size must be 4-Byte aligned).
- Change-address and hold-address modes must be specified separately for source and target.

UART and SPI provide synchronisation signals to the DMA controller that can be selected in the DMAC0_CONF_REG register; these signals are listed in Table 7-2.

Peripheral	Source	Description
SPI	SPI1_SSPRXDMA	RX-FIFO not empty
551	SPI1_SSPTXDMA	TX-FIFO empty
UART	UART_UARTRXINTR	UART receive interrupt
	UART_UARTTXINTR	UART transmit interrupt

Table 7-2: DMA Synchronization Signals

In order to be able to deal with memories as well as with FIFOs, the DMA controller supports different addressing modes that are described below.

(1) Change-Address-Mode

Increments or decrements the target and/or source address after each transfer (8/16/32-bit). The byte counter is incremented or decremented in accordance with the number of transferred bytes.

(2) Hold-Address-Mode

In this mode, the target or source addressed is fixed. The DMA transfer can be initiated by software via the DMAC0_CONF_REG register or by a hardware signal.

(a) Software control:

The transfer can be started or stopped by writing to the Start/Abort DMA configuration register bit.

(b) Hardware control:

The data transfer is controlled by activating the synchronisation signal (see Table 7-2). As soon as the sync signal is deactivated, the DMA controller stops the transfer. With the next activation of the sync signal, the data transfer is resumed by the DMA controller.

When the DMA transfer is complete, a DMA_INT interrupt takes place that is routed to the IRQ15 input of the IRQ interrupt controller. In the case of a transfer to the UART or SPI, the interrupt takes place after the last byte is transferred.

7.1 Address Assignment of DMA Controller Registers

The DMA registers are 32 bits in width. The registers can be written to with 32-bit accesses only. Only the ARM946E-S processor can access the registers.

Address	Register Name	Size	R/W	Initial value	Description
8000 0000H	DMAC0_SRC_ADDR_REG	32-bit	R/W	0000 0000H	DMA source address register
8000 0004H	DMAC0_DEST_ADDR_REG	32-bit	R/W	0000 0000H	DMA destination address register
8000 0008H	DMAC0_CONTR_REG	32-bit	R/W	0000 0000H	DMA control register
8000 000CH	DMAC0_CONF_REG	32-bit	R/W	0000 0000H	DMA configuration register

Table 7-3: DMA Controller Registers

7.2 Detailed DMA Controller Register Description

Figure 7-1: DMAC0_SRC_ADDR_REG DMA Source Address Register

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Address	Initial value
						STA	RT_A	DDR	ESS							8000 0000H	0000 0000H
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
						STA	RT_A	DDR	ESS								

ĺ	Bit position	Bit name	R/W	Function
	(31:0)	START_ ADDRESS	R/W	START_ADDRESS(31:0) Specifies the address of the first data to be transferred from the source. Only addresses with 4-Byte alignment are permitted; bits (1:0) are ignored.

Figure 7-2: DMAC0_DEST_ADDR_REG DMA Destination Address Register

DESTINATION_ADDRESS 8000 0004H 0000 0000H 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 DESTINATION_ADDRESS	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Address	Initial value
		DESTINATION_ADDRESS														8000 0004H	0000 0000H	
																-		
DESTINATION_ADDRESS	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
		DESTINATION_ADDRESS																

Bit position	Bit name	R/W	Function
(31:0)	DESTINATION _ADDRESS	R/W	DESTINATION_ADDRESS(31:0) Specifies the address to which the first data is to be transferred. Only addresses with 4-Byte alignment are permitted; bits (1:0) are ignored.

Chapter 7 DMA Controller

	Figure 7-3: DMAC0_CONTR_REG DMA Control Register																
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Address	Initial value
			rese	rved					ELAN	/_EX ON	S_D	ELAY	′_EX	TENS	SION	8000 0008H	0000 0000H
15	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 BYTE_COUNT												0				

Bit position	Bit name	R/W	Function
(31:24)	-	-	Reserved
(23:21)	D_DELAY_ EXTEN- SION	R/W	D_DELAY_EXTENSION(2:0) Extends the D_DELAY (delay between two write accesses to the DMA desti- nation, that can be specified in the DMAC0_CONF_REG register) in number of 50 MHz clocks. The resulting delay is given by addition of the parameters D_DELAY and D_DELAY_EXTENSION.
(20:16)	S_DELAY_ EXTEN- SION	R/W	S_DELAY_EXTENSION(4:0) Extends the S_DELAY (delay between two read accesses from the DMA source, that can be specified in the DMAC0_CONF_REG register) in number of 50 MHz clocks. The resulting delay is given by addition of the parameters S_DELAY and S_DELAY_EXTENSION
(15:0)	BYTE_ COUNT	R/W	BYTE_COUNT(15:0) Number of bytes to be transferred via DMA. The byte count must be aligned with the configured bus width; that is, if a 32-bit transfer width is set for the tar- get or source, only one 4-byte aligned byte count can be used.

Chapter 7	DMA Controller
-----------	----------------

	Figure 7-4: DMAC0_CONF_REG DMA Configuration Regist															egister (1/4)	
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Address	Initial value
STA RT/ ABO RT	res.	INTR_ ENA- BLE	SYCH ZAT	IRONI ION	re	serve	ed		DDR DDE	S_D	MA_	REQ	S_	_WID	TH	8000 000CH	0000 0000H
	14 DDR DDE		12 DMA_F	11 REQ	10 D_	9 _WID [.]	8 TH	7	6 D_DI	5 ELAY	4	3		1 ELAY	0		

Bit position	Bit name	R/W		Function							
				START/ABORT Starts or stops the DMA transfer ^{Note 1}							
			Sta								
				START/ ABORT	DMA transfer start/stop						
31	START/ ABORT	R/W		0 _b	Write: stops the DMA transfer Read: DMA transfer completed or stopped (initial value)						
				1 _b	Write: starts the DMA transfer Read: DMA transfer ongoing						
30	-	-	Re	eserved							
			INTR_ENABLE								
	INTR_ ENABLE	R/W	Ena	Enables the interrupt after DMA transfer completion ^{Note 2}							
29			E	INTR_ ENABLE	DMA interrupt enable						
			[0 _b DMA interrupt disabled (initial value)							
				1 _b	DMA interrupt enabled						
			SYNCHRONIZATION(1:0) Determines which synchronization scheme is used for DMA source and des- tination								
(20.07)	SYNCHRONI-			SYNCHRO- NIZA- TION(1:0)	DMA synchronization scheme						
(28:27)	ZATION	R/W		00 _b	No synchronization (initial value)						
				01 _b	Synchronization to destination						
				10 _b Synchronization to source							
				11 _b Synchronization to source and destination							

- **Notes: 1.** The DMA is started with START/ABORT = 1_b and stopped during operation with START/ABORT = 0_b . The remaining bits are locked while the DMA is in operation. If the DMA has been stopped, it requires at least 2 clocks (50 MHz) before it can be restarted
 - 2. When synchronization is used, the interrupt takes place only after the target request has been activated again. When D_Delay is used, the interrupt takes place only after the delay of the last write access.

Figure 7-4: DMAC0_CONF_REG DMA Configuration Register (2/4)

-			ADDR_MODE(1:0) Infigures how the data source address is modified during the DMA transfer S_ADDR_ MODE(1:0) DMA source address modification 00b Increment source address (initial value) 01b Decrement source address 10b Hold source address 11b Reserved DMA_REQ(2:0) DMA synchronization scheme S_DMA_ REQ(2:0) DMA synchronization scheme 000b Internal SPI1_SPI1RXDMA signal used for DMA transfer synchronization (initial value) 000b Internal SPI1_SPI1TXDMA signal used for DMA transfer									
	-	Reserved	_ADDR_MODE(1:0) onfigures how the data source address is modified during the DMA transf S_ADDR_ MODE(1:0) DMA source address modification									
		S_ADDR_MODE(1:0) Configures how the data source address is modified during the DMA transfer										
			DMA source address modification									
S_ADDR_ MODE	R/W	00 _b	Increment source address (initial value)									
MODE		01 _b	Decrement source address									
		10 _b	Hold source address									
		11 _b	Reserved									
		Selects the in zation on the	nternal hardware handshake signal for DMA transfer synchroni-									
	R/W		DMA synchronization scheme									
		000 _b										
S_DMA_REQ		001 _b	Internal SPI1_SPI1TXDMA signal used for DMA transfer synchronization									
		010 _b	Internal UART_UARTRXINTR signal used for DMA transfer synchronization									
		011 _b	Internal UART_UARTTXINTR signal used for DMA transfer synchronization									
		others	Reserved									
			0) he width of the data elements to be transferred from the DMA									
		S_WIDT H(2:0)	DMA data element width									
S_WIDTH	R/W	000 _b	use 8-bit transfers from DMA source (initial value)									
		001 _b	use 16-bit transfers from DMA source									
		010 _b	use 32-bit transfers from DMA source									
		others	Reserved									
S	MODE	MODE R/W	S_ADDR_ MODE MODE R/W S_DMA_REQ B_DMA_REQ S_DMA_REQ R/W S_UMA_REQ R/W S_WIDTH S_WIDTH R/W S_WIDTH R/W MODE(1:0) 00 0 S_DMA_REQ S_DMA_REQ S_DMA_REQ S_DMA_REQ 000b 000b 001b 010b 010b 011b 010b 011b 011b 011b 011b 010b 011b 010b 011b 010b 011b 010b 011b 010b 011b 010b 011b 010b 011b 010b 011b 010b 011b 010b 011b 011b 011b 010b 011b 011b 010b 011b 010b									

Figure 7-4: DMAC0_CONF_REG DMA Configuration Register (3/4)

Bit position	Bit name	R/W		Function							
			D_ADDR_M Configures h transfer	ODE(1:0) ow the data destination address is modified during the DMA							
			D_ADDR_ MODE(1:0)	DMA destination address modification							
(15:14)	D_ADDR_ MODE	R/W	00 _b	Increment destination address (initial value)							
			01 _b	Decrement destination address							
			10 _b	Hold destination address							
			11 _b	Reserved							
			D_DMA_REQ(2:0) Selects the internal hardware handshake signal for DMA transfer s zation on the destination side								
(13:11)		R/W	D_DMA_ REQ(2:0)								
			000 _b	Internal SPI1_SPI1RXDMA signal used for DMA transfer synchronization on the destination side (initial value)							
	D_DMA_REQ		001 _b	Internal SPI1_SPI1TXDMA signal used for DMA transfer synchronization on the destination side							
			010 _b	Internal UART_UARTRXINTR signal used for DMA transfer synchronization on the destination side							
			011 _b	Internal UART_UARTTXINTR signal used for DMA transfer synchronization on the destination side							
			others	Reserved							
			tination ^{Note}	he width of the data elements to be transferred to the DMA des-							
			D_WIDT H(2:0)	DMA data element width							
			000 _b	use 8-bit transfers to DMA destination (initial value)							
(10:8)	D_WIDTH	R/W	001 _b	use 16-bit transfers to DMA destination							
			010 _b	use 32-bit transfers to DMA destination							
			others	Reserved							
			word (cons	count and destination width (D_WIDTH) must match up. If Half- is selected in D_WIDTH, then bit 0 is ignored by byte count sidered to be 0_b). If Word is selected in D_WIDTH, then bits (1:0) gnored by byte count (considered to be 00_b)							

Figure 7-4: DMAC0_CONF_REG DMA Configuration Register (4/4)

Bit position	Bit name	R/W		Function D DELAY(3:0)									
			Se nu	D_DELAY(3:0) Sets the write inactive delay counter: The DMA controller puts the specified number of clocks (50 MHz) in between two write accesses to the DMA desti- nation.									
(7:4)	D_DELAY	R/W		D_DELAY(3:0)	Write inactive delay counter								
. ,				0H	Do not insert delay clocks in between two write accesses to the DMA destination (initial value)								
				n = 1HFH Insert n delay clocks in between two write accesses to the DMA destination ^{Note}									
			Se nu		ve delay counter: The DMA controller puts the specified O MHz) in between two read accesses to the DMA								
(3:0)	S_DELAY	R/W		S_DELAY(3:0)	Read inactive delay counter								
(0.0)	•_• •			ОH	Do not insert delay clocks in between two read accesses to the DMA source (initial value)								
				n = 1HFH	Insert n delay clocks in between two read accesses to the DMA source ^{Note}								

Note: With the delay counter, there is a wait time until the next request if the target (UART, SPI1) is too slow. With the following settings, the specified delay values for UART and SPI1 are obligatory; otherwise, the DMA will incorrectly process the relevant request signal and will access the corresponding I/O module too soon:

Synchronization = Destination + D_DMA_Requ = SPI1_SPI1TXDMA ==>	$D_DELAY >= 4$
Synchronization = Destination + D_DMA_Requ = UART_UARTTXINTR ==>	D_DELAY >= 5
Synchronization = Source + S_DMA_Requ = SPI1_SPI1RXDMA ==>	$S_DELAY >= 0$
Synchronization = Source + S_DMA_Requ = UART_UARTRXINTR ==>	$S_DELAY >= 0$

The interrupt controller (ICU) on ERTEC 200 supports the FIQ and IRQ interrupt levels of the ARM946E-S processor. An interrupt controller with 8 interrupt inputs is implemented for FIQ. Six FIQ interrupt inputs are assigned to internal peripherals respectively function blocks of the ERTEC 200, and two interrupt inputs are available for external events. Table 8-1 summarizes the possible FIQ interrupt sources.

Int. No.	Function Block	Signal name	Default setting	Comment
0	Watchdog		Rising edge	
1	APB bus		Rising edge	Access to a non-existing address at the APB bus ^{Note 1}
2	Multilayer AHB bus		Rising edge	Access to a non-existing address at the AHB bus ^{Note 1}
3	PLL-Status- Register		Rising edge	Group interrupt of several blocks ^{Note 2} EMIF: I/O QVZ PLL: Loss state PLL: Lock state
4	ARM-CPU	COMM_Rx	Rising edge	Debug receive communications channel interrupt
5	ARM-CPU	COMM_Tx	Rising edge	Debug transmit communications channel interrupt
6	Selectable	Configurable from IRQ	Rising edge	User-selectable from IRQ
7	Selectable	Configurable from IRQ	Rising edge	User-selectable from IRQs

Table 8-1: FIQ Interrupt Sources

- **Notes: 1.** Access to a non-existing address is detected by the individual function blocks of ERTEC 200 and triggers an interrupt pulse with duration $T_P = 2/50$ MHz. For evaluation of this interrupt, the connected FIQ input must be specified as an edge-triggered input.
 - 2. See PLL_Stat_Reg register description in section 17.2.

An interrupt controller for 16 interrupt inputs is implemented for IRQ. Of the 16 IRQ inputs, 2 IRQ sources can be selected for processing as fast interrupt requests. The assignment is made by specifying the IRQ number of the relevant interrupt input in the FIQ1REG / FIQ2REG register. The interrupt inputs selected as FIQ must be disabled for the IRQ logic. All other interrupt inputs can continue to be processed as IRQs.

Twelve IRQ interrupt inputs are assigned to internal peripherals of the ERTEC 200 and four IRQ interrupt inputs are available for external events as they are routed to GPIO pins. Table 8-2 summarizes the possible IRQ interrupt sources.

Int. No.	Function Block	Signal name	Default setting	Comment
0	Timer	TIM_INT0	Rising edge	Timer 0 interrupt
1	Timer	TIM_INT1	Rising edge	Timer 1 interrupt
3:2	GPIO	GPIO(1:0)	Configurable	External input ERTEC 200 GPIO(1:0)
5:4	GPIO	GPIO(31:30)	Configurable	External input ERTEC 200 GPIO(31:30)
6	Timer	TIM_INT2	Rising edge	Timer 2 interrupt
7	-	-	-	Reserved
8	UART	UART_INTR	High level	Group interrupt UART
9	PHY0/1	P0/1_INTERP	High level	Interrupt from PHY0/1
10	SPI1	SSP_INTR	Rising edge	Group interrupt SPI1
11	SPI1	SSP_ROR_INTR	Rising edge	Receive overrun interrupt SPI1
12	IRT Switch	IRQ0_SP	Rising edge	High-priority IRT interrupt
13	IRT Switch	IRQ1_SP	Rising edge	Low-priority IRT interrupt
14				Reserved
15	DMA	DMA_INT	Rising edge	DMA transfer terminated

Table 8-2: IRQ Interrupt Sources

The interrupt controller is operated at a clock frequency of 50 MHz. Interrupt request signals that are generated at a higher clock frequency must be extended accordingly for error-free detection.

8.1 Prioritization of Interrupts

It is possible to set priorities for the IRQ and FIQ interrupts. Priorities 0 to 15 can be assigned to IRQ interrupts while priorities 0 to 7 can be assigned to FIQ interrupts. The highest priority is 0 for both interrupt levels. After a reset, all IRQ interrupt inputs are set to priority 15 and all FIQ interrupt inputs are set to priority 7. A priority register is associated with each interrupt input. PRIOREG0 to PRIOREG15 are for the IRQ interrupts and FIQPR0 to FIQPR7 are for the FIQ interrupts. A priority must not be assigned more than once. The interrupt control logic does not check for assignment of identical priorities. All interrupt requests with a lower or equal priority can be blocked at any time in the IRQ priority resolver by assigning a priority in the LOCKREG register. If an interrupt that is to be blocked is requested at the same time as the write access to the LOCKREG register, an IRQ signal is output. However, the signal is revoked after two clock cycles. If an acknowledgement is to be generated nonetheless, the transferred interrupt vector is the default vector.

8.2 Trigger Modes

Edge-trigger or level-trigger modes are available for each interrupt input. The trigger type is defined by means of the assigned bit in the TRIGREG register. For the edge-trigger mode setting, differentiation can be made between a positive and negative edge evaluation. This is set in the EDGEREG register. Edge-trigger with positive edge is the default trigger mode assignment for all interrupts. The active level in level-trigger mode is always "high".

The interrupt input signal must be present for at least one clock cycle in edge-trigger mode. The input signal must be present until confirmation by the ARM946E-S CPU in level-trigger mode. Shorter signals result in loss of the event.

8.3 Masking the Interrupt Inputs

Each IRQ interrupt can be enabled or disabled individually. The MASKREG register is available for this purpose. The interrupt mask acts only after the IRREG interrupt request register. That is, an interrupt is entered in the IRREG register in spite of the block in the MASKREG register. After a reset, all mask bits are set and, thus, all interrupts are disabled. At a higher level, all IRQ interrupts can be disabled globally via a command. When IRQ interrupts are enabled globally via a command, only those IRQ interrupts that are enabled by the corresponding mask bit in the MASKREG register are enabled.

For the FIQ interrupts, only selective masking by the mask bits in the FIQ_MASKREG register is possible. After a reset, all FIQ interrupts are disabled. A detected FIQ interrupt request is entered in the FIQ interrupt request register. If the interrupt is enabled in the mask register, processing takes place in the priority logic. If the interrupt request is accepted by the ARM946E-S CPU and an entry is made in the in-service request register (ISR), the corresponding bit is reset in the IRREG register. Each bit that is set in the IRREG register can be deleted via software. For this purpose, the number of the bit to be reset in the IRCLVEC register is transferred to the interrupt controller.

8.4 Software Interrupts for IRQ

Each IRQ interrupt request can be triggered by setting the bit corresponding to the input channel in the SWIRREG software interrupt register. Multiple requests can also be entered in the 16-bit SWIRREG register. The software interrupt requests are received directly in the IRREG register and, thus, treated like a hardware IRQ. Software interrupts can only be triggered by the ARM946E-S processor because only this processor has access rights to the interrupt controller.

8.5 Nested Interrupt Structure

When enabled by the interrupt priority logic, an IRQ interrupt request causes an IRQ signal to be output. Similarly, an FIQ interrupt request causes the FIQ signal to be output to the CPU. If the request is accepted by the CPU (in the IRQACK or FIQACK register), the bit corresponding to the physical input is set in the ISREG or FIQISR register. The IRQ/FIQ signal is revoked. The ISR bit of the accepted interrupt remains set until the CPU returns an "End-of-interrupt" command to the interrupt controller. As long as the ISR bit is set, interrupts with lower priority in the priority logic of the interrupt controller are disabled. Interrupts with a higher priority are allowed by the priority logic to pass and generate an IRQ/FIQ signal to the CPU. As soon as the CPU accepts this interrupt, the corresponding ISR bit in the ISREG or FIQISR register is also set. The CPU then interrupts are not lost. They are entered in the IRREG register and are processed at a later time when all higher-priority interrupt routines have been executed.

8.6 EOI End-Of-Interrupt

A set ISR bit is deleted by the End-of-Interrupt command. The CPU must use the EOI command to communicate this to the interrupt controller after the corresponding interrupt service routine is processed. To communicate the EOI command to the interrupt controller, the CPU writes any value to the IRQEND/FIQEND register. The interrupt controller autonomously decides which ISR bit is reset with the EOI command. If several ISR bits are set, the interrupt controller deletes the ISR bit of the interrupt request with the highest priority at the time of the EOI command. The interrupt controller regards the interrupt cycle as ended when all of the set ISR bits have been reset by the appropriate number of EOI commands. Afterwards, low priority interrupts that occurred in the meantime and were entered in the IRREG register can be processed in the priority logic.

During one or more accepted interrupts, the priority distribution of the IRQ/FIQ interrupt inputs must not be changed because the ICU can otherwise no longer correctly assign the EOI commands. An IRQ/FIQ request is accepted by the CPU by reading the IRVEC/FIVEQ register. This register

contains the binary-coded vector number of the highest priority interrupt request at the moment. Each of the two interrupt vector registers can be referenced using two different addresses. The interrupt controller interprets the reading of the vector register with the first address as an "interrupt acknowledge". This causes the sequences for this interrupt to be implemented in the ICU logic. Reading of the vector register with the second address is not linked to the "acknowledge function". This is primarily useful for the debugging functions in order to read out the content of the interrupt vector register without starting the acknowledge function of the interrupt controller.

8.7 IRQ Interrupts as FIQ Interrupt Sources

The interrupts of the FIQ interrupt controller are used for debugging, monitoring of address space accesses, and for the watchdog. Additionally, two arbitrary IRQ interrupts can be re-routed to the FIQ inputs FIQ6 and FIQ7.

FIQ interrupts No. 4 and 5 are the interrupts of embedded ICE RT communication. The UART can also be used as a debugger instead of the ICE. An effective real-time debugging is possible if the IRQ interrupt sources of the UART are mapped to the FIQs with numbers 6 or 7. This enables debugging of interrupt routines.

8.8 Interrupt Control Register Summary

The interrupt control registers are used to specify all aspects of control, prioritization, and masking of the IRQ/FIQ interrupt controllers; they are located at address 5000 0000H and beyond in the 32-bit AHB address space. Interrupt control registers can only be accessed by the ARM946E-S CPU; table 8-3 summarizes these registers.

Address	Register Name	Size	R/W	Initial value	Description		
5000 0000H	IRVEC	32 bit	R	FFFF FFFFH	Interrupt vector register		
5000 0004H	FIVEC	32 bit	R	FFFF FFFFH	Fast interrupt vector register		
5000 0008H	LOCKREG	32 bit	R/W	0000 0000H	Priority lock register		
5000 000CH	FIQ1SREG	32 bit	R/W	0000 0000H	Fast int. request 1 select register (FIQ6 on FIQ interrupt controller)		
5000 0010H	FIQ2SREG	32 bit	R/W	0000 0000H	Fast int. request 2 select register (FIQ7 on FIQ interrupt controller)		
5000 0014H	IRQACK	32 bit	R	FFFF FFFFH	Interrupt vector register with IRQ acknowledge		
5000 0018H	FIQACK	32 bit	R	FFFF FFFFH	Fast interrupt vector register with FIQ acknowledge		
5000 001CH	IRCLVEC	32 bit	W	undefined	Interrupt request clear vector		
5000 0020H	MASKALL	32 bit	R/W	0000 0001H	Mask for all interrupts		
5000 0024	IRQEND	32 bit	W	0x	End of IRQ interrupt		
5000 0028H	FIQEND	32 bit	W	0x	End of FIQ interrupt		
5000 002CH	FIQPR0	32 bit	R/W	0000 0007H			
5000 0030H	FIQPR1	32 bit	R/W	0000 0007H			
5000 0034H	FIQPR2	32 bit	R/W	0000 0007H			
5000 0038H	FIQPR3	32 bit	R/W	0000 0007H	FIQ priority registers for inputs FIQ0 to FIQ7 of the FIQ interrupt		
5000 003CH	FIQPR4	32 bit	R/W	0000 0007H	controller		
5000 0040H	FIQPR5	32 bit	R/W	0000 0007H			
5000 0044H	FIQPR6	32 bit	R/W	0000 0007H			
5000 0048H	FIQPR7	32 bit	R/W	0000 0007H			
5000 004CH	FIQISR	32 bit	R	0000 0000H	FIQ in-service register		
5000 0050H	FIQIRR	32 bit	R	0000 0020H	FIQ request register		
5000 0054H	FIQ_MASKREG	32 bit	R/W	0000 00FFH	FIQ interrupt mask register		
5000 0058H	IRREG	32 bit	R	0000 01xxH	Interrupt request register		
5000 005CH	MASKREG	32 bit	R/W	0000 FFFFH	Interrupt mask register		
5000 0060H	ISREG	32 bit	R	0000 0000H	In-service register		
5000 0064H	TRIGREG	32 bit	R/W	0000 0000H	Trigger select register		
5000 0068H	EDGEREG	32 bit	R/W	0000 0000H	Edge select register		
5000 006CH	SWIRREG	32 bit	R/W	0000 0000H	Software interrupt register		

 Table 8-3:
 Interrupt Control Registers (1/2)

Address	Register Name	Size	R/W	Initial value	Description
5000 0070H	PRIOREG0	32 bit	R/W	0000 000FH	
5000 0074H	PRIOREG1	32 bit	R/W	0000 000FH	
5000 0078H	PRIOREG2	32 bit	R/W	0000 000FH	
5000 007CH	PRIOREG3	32 bit	R/W	0000 000FH	
5000 0080H	PRIOREG4	32 bit	R/W	0000 000FH	
5000 0084H	PRIOREG5	32 bit	R/W	0000 000FH	
5000 0088H	PRIOREG6	32 bit	R/W	0000 000FH	
5000 008CH	PRIOREG7	32 bit	R/W	0000 000FH	IRQ priority registers for inputs IRQ0 to IRQ15 of the IRQ
5000 0090H	PRIOREG8	32 bit	R/W	0000 000FH	interrupt controller
5000 0094H	PRIOREG9	32 bit	R/W	0000 000FH	
5000 0098H	PRIOREG10	32 bit	R/W	0000 000FH	
5000 009CH	PRIOREG11	32 bit	R/W	0000 000FH	
5000 00A0H	PRIOREG12	32 bit	R/W	0000 000FH	
5000 00A4H	PRIOREG13	32 bit	R/W	0000 000FH	1
5000 00A8H	PRIOREG14	32 bit	R/W	0000 000FH]
5000 00ACH	PRIOREG15	32 bit	R/W	0000000FH]

 Table 8-3:
 Interrupt Control Registers (2/2)

Note: Reserved bits in all registers are undefined when read; always write the initial (reset) values to these bits.

8.9 Detailed ICU Register Description

Figure 8-1: IRVEC IRQ Interrupt Vector Register

Vector ID 5000 0000H FFFF FF	FFFH
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0	
Vector ID IRVEC	

Bit position	Bit name	R/W		Function									
				Vector ID(27:0) Differentiates valid IRQ interrupt vectors from the default IRQ vector.									
(31:4)	Vector ID	R		Vector ID(27:0)	IRQ interrupt vector identification								
· · · ·		R		000 0000H	Valid IRQ interrupt vector pending								
				FFF FFFFH	Default interrupt vector (initial value)								
			Ν	IRVEC(3:0) Number of the currently pending, valid IRQ interrupt vector with the hig priority									
				IRVEC(3:0)	Interrupt vector number								
(3:0)	IRVEC			0000 _b	Valid IRQ0 with highest priority pending								
				1111 _b	Valid IRQ15 with highest priority pending or default vector (initial value)								

					Fig	gure	8-2 <i>:</i>	FI	/EC	FIQ	Inter	rupt	Vect	or R	egis	ter	
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Address	Initial value
	Vector ID											5000 0004H	FFFF FFFFH				
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	_	
Vector ID										F	FIVE	2					

Bit position	Bit name	R/W												
				ector ID(28:0) fferentiates valid F	FIQ interrupt vectors from the default FIQ vector.									
(31:3)	Vector ID	R		Vector ID(28:0)	FIQ interrupt vector identification									
· · · ·				0000 0000H	Valid FIQ interrupt vector pending									
				1FFF FFFFH	H Default interrupt vector (initial value)									
			Νι	VEC(2:0) umber of the curre iority FIVEC(2:0)	ently pending valid FIQ interrupt vector with the highest									
(2:0)	FIVEC	R		000 _b	Valid FIQ0 with highest priority pending									
		R												
				111 _b	Valid FIQ7 with highest priority pending or default vector (initial value)									
					·									

				Figu	ure 8	-3:	LO	CKRE	EG II	RQ lı	nterr	ock	Register				
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Address	Initial value
	reserved															5000 0008H	0000 0000H
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
	reserved							LOCK ENA- BLE	re	eserve	əd	L	-OCk	PRIC)		

Bit position	Bit name	R/W											
(31:8)	-	-	Re	served									
			-	CKENABLE ables or disables lock	mechanism								
7	LOCKENABLE	R/W		LOCKENABLE	Interrupt locking mechanism enable								
				0 _b	Interrupt locking disabled (initial value)								
				1 _b	Interrupt locking enabled								
(6:4)	-	-	Re	served									
LOCKPRIO(3:0) Specification of a priority for blocking interrupt requests of priority.													
				LOCKPRIO(3:0)	Blocked interrupt priority								
(3:0)	LOCKPRIO	R/W		0000 _b	Interrupts with priority 0 or lower can be blocked (initial value)								
				1111 _b	Interrupts with priority 15 or lower can be blocked								
					·								

	Figure 8-4: FIQ1SREG Interrupt Sele														egis	ter	
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Address	Initial value
	reserved													5000 000CH	0000 0000H		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	_	
	reserved							FIQ1S ENA- BLE		eserv	ed	ł	FIQ1	SREC	3		

Bit position	Bit name	R/W											
(31:8)	-	-	Reserved										
			FIQ1SENABLE Enables or disables	the re-routing of an IRQ interrupt to FIQ6									
7	FIQ1SENABLE	R/W	FIQ1SENABLE	Interrupt re-routing mechanism enable									
			0 _b	Interrupt re-routing to FIQ6 disabled (initial value)									
			1 _b	Interrupt re-routing to FIQ6 enabled									
(6:4)	-	-	Reserved										
			FIQ1SREG(3:0) Declaration of an IR controller).	Q interrupt as FIQ (input FIQ6 on FIQ interrupt									
			FIQ1SREG(3:0)	Interrupt number selection									
(3:0)	FIQ1SREG	R/W	0000 _b	IRQ0 interrupt request can be re-routed to FIQ6 (initial value)									
			1111 _b	IRQ15 interrupt request can be re-routed to FIQ6									
				· · · · · · · · · · · · · · · · · · ·									

	Figure 8-5: FIQ2SREG Interrupt Select Register															ter	
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Address	Initial value
							rese	erved								5000 0010H	0000 0000H
45		4.0	40		4.0	•	•	-	•	_		•	•		•		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
	reserved							FIQ2S ENA- BLE		eserv	ed		FIQ28	SREG	6		

Bit position	Bit name	R/W		Function
(31:8)	-	-	Reserved	
			FIQ2SENABLE Enables or disables	the re-routing of an IRQ interrupt to FIQ7
7	FIQ2SENABLE	R/W	FIQ2SENABLE	Interrupt re-routing mechanism enable
			0 _b	Interrupt re-routing to FIQ7 disabled (initial value)
			1 _b	Interrupt re-routing to FIQ7 enabled
(6:4)	-	-	Reserved	
			FIQ2SREG(3:0) Declaration of an IR controller).	Q interrupt as FIQ (input FIQ7 on FIQ interrupt
			FIQ2SREG(3:0)	Interrupt number selection
(3:0)	FIQ2SREG	R/W	0000 _b	IRQ0 interrupt request can be re-routed to FIQ7 (initial value)
			1111 _b	IRQ15 interrupt request can be re-routed to FIQ7

				Fig	ure	8-6 <i>:</i>	IRQ	QACI	K IRQ	Q Int	erru	ge R	Register				
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Address	Initial value
	Vector ID														5000 0014H	FFFF FFFFH	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
	Vector ID												IR∨	/EC			

Bit position	Bit name	R/W												
				ector ID(27:0) fferentiates valid I	RQ interrupt vectors from the default IRQ vector.									
(31:4)	Vector ID	R		Vector ID(27:0)	IRQ interrupt vector identification									
				000 0000H	Valid IRQ interrupt vector pending									
				FFF FFFFH	Default interrupt vector (initial value)									
				sociated IRQ inte	ghest-priority pending interrupt request by reading the rrupt vector number									
(2.0)	IRVEC	R		IRVEC(3:0)	IRQ Interrupt vector number									
(3:0)	IKVEC	ĸ		0000 _b	Valid IRQ0 with highest priority pending									
				1111 _b	Valid IRQ15 with highest priority pending or default vector (initial value)									

	Figure 8-7: FIQACK FIQ Interrupt Acknowledge Register																
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Address	Initial value
							Vect	or ID								5000 0018H	FFFF FFFFH
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	_	
	Vector ID										F	FIVE	2				

Bit position	Bit name	R/W												
			Vector ID(28:0) Differentiates valid	FIQ interrupt vectors from the default FIQ vector.										
(31:3)	Vector ID	R	Vector ID(28:0)	FIQ interrupt vector identification										
			0000 0000H	Valid FIQ interrupt vector pending										
			1FFF FFFFH	Default interrupt vector (initial value)										
			associated FIQ inte	highest-priority fast interrupt request by reading the hterrupt vector number										
(0.0)			FIVEC(2:0)	FIQ Interrupt vector number										
(2:0)	FIVEC	ĸ	000 _b	Valid FIQ0 with highest priority pending										
			111 _b	Valid FIQ7 with highest priority pending or default vector (initial value)										
(2:0)	FIVEC	R	000 _b	Valid FIQ7 with highest priority pending or										

	Figure 8-8: IRCLVEC IRQ Interrupt Request Clear Register																
31																Initial value	
	reserved															5000 001CH	undefined
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	_	
	reserved												IRCL	VEC			

Bit position	Bit name	R/W		Function
(31:4)	-	-	Reserved	
(3:0)	IRCLVEC	W		errupt vector number to these bits clears the respective of request register (IRREG). IRQ Interrupt vector number to be cleared clears IRQ0 in interrupt request register (IRREG) clears IRQ15 in interrupt request register (IRREG)

Figure 8-9: MASKALL Mask All IRQ Interrupt Request Register

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Address	Initial value
							rese	rved								5000 0020H	0000 0001H
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
						re	eserve	ed							MAS KALL		

Bit position	Bit name	R/W		Function
(31:1)	-	-	Reserved	
			MASKALL Masks all pending mask bit setting in M	IRQ interrupt requests independent of their individual MASKREG register
0	MASKALL	R/W	0 _b	Enable all IRQ interrupt requests that are not individually masked in MASKREG
			1 _b	Mask all IRQ interrupt requests independent of their individual mask bit setting in MASKREG register (initial value)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Address Init	ial value
don't care 5000 0024H ur	defined
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0	
don't care	

Figure 8-10: IRQEND End of IRQ Interrupt Signaling Register

Bit position	Bit name	R/W	Function
(31:0)	-	W	Don't care A write to this register indicates the completion of the interrupt service routine associated with the current IRQ request to the IRQ interrupt controller; the value that is written to this register does not matter.

Figure 8-11: FIQEND End of FIQ Interrupt Signaling Register

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Address	Initial value
							don't	care								5000 0028H	undefined
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
							don't	care									

Bit position	Bit name	R/W	Function
(31:0)	-	W	Don't care A write to this register indicates the completion of the interrupt service routine associated with the current FIQ request to the FIQ interrupt controller; the value that is written to this register does not matter.

	Figure 8-12: FIQPR07 FIQ Interrupt Priority Register																
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Address	Initial value
							rese	erved								5000 00xxH	0000 0007H
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	_	
					re	serve	ed						FIC	QPR0	7		

Bit position	Bit name	R/W		Function
(31:3)	-	-	Reserved	
			interrupt controller	fast interrupt request at inputs FIQ0 to FIQ7 of the FIQ
			FIQPRn(2:0)	FIQ Interrupt request priority
(2:0)	FIQPR07	R/W	000 _b	Assigns priority 0 (highest) to FIQ interrupt FIQn
			111 _b	Assigns priority 7 (lowest) to FIQ interrupt FIQn (initial value)
				·

Figure 8-13: FIQISR FIQ Interrupt In-Service Register

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Address	Initial value
							rese	rved								5000 004CH	0000 0000H
																-	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
			rese	rved							FIQ	ISR]	

Bit name	R/W		Function
-	-	Reserved	
FIQISR	R	FIQISR(7:0) Individual indication of fas the CPU. Bit 0 correspon FIQISRn (n = 0,, 7)	st interrupt requests that have been confirmed by ds to FIQ0 etc. Confirmation of FIQ interrupt request
		0 _b	Fast interrupt request FIQn not confirmed (initial value)
		1 _b	Fast interrupt request FIQn has been confirmed
	-		- - Reserved - - Reserved FIQISR(7:0) Individual indication of fast the CPU. Bit 0 correspon FIQISR R FIQISRn (n = 0,, 7) 0b 0b

					Figu	re 8-	-14:	FIQ	IRR	FIQ	Inter	rupt	ister				
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Address	Initial value
							rese	erved								5000 0050H	0000 0020H
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	_	
			rese	rved				FIQIRR									

Bit position	Bit name	R/W		Function
(31:8)	-	-	Reserved	
			FIQIRR(7:0) Individual indication of fas the ICU. Bit 0 correspond FIQIRRn (n = 0,, 7)	st interrupt requests that have been recognized by s to FIQ0 etc. Recognition of FIQ interrupt request
(7:0)	FIQIRR	R	0 _b	Fast interrupt request FIQn not recognized by ICU (initial value for bits FIQIRR(7:6) and FIQIRR(4:0))
			1 _b	Fast interrupt request FIQn has been recognized by ICU (initial value for bit FIQIRR5)

Figure 8-15: FIQ_MASKREG FIQ Interrupt Mask Register

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Address	Initial value
							rese	rved								5000 0054H	0000 00FFH
																-	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
	reserved FIQ_MASKREG																

Bit position	Bit name	R/W		Function
(31:8)	-	-	Reserved	
			FIQ_MASKREG(7:0) Individual masking of fast interrupt FIQ_MASKREGn (n = 0,, 7)	inputs. Bit 0 corresponds to FIQ0 etc. Masking of fast interrupt inputs
(7:0)	FIQ_MASK REG	R/W	0 _b	Fast interrupt request FIQn enabled
			1 _b	Fast interrupt request FIQn masked (initial value)

	Figure 8-16: IRREG IRQ Interrupt Request Register 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Address Initial value reserved																
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Address	Initial value
	reserved												5000 0058H	0000 01xxH			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	_	
	IRREG																

Bit position	Bit name	R/W		Function
(31:16)	-	-	Reserved	
			IRREG(15:0) Individual indication of IR the ICU. Bit 0 correspond	Q interrupt requests that have been recognized by s to IRQ0 etc.
			IRREGn (n = 0,, 15)	Recognition of IRQ interrupt request
			0 _b	Interrupt request IRQn not recognized by ICU
(15:0)	IRREG	R	1 _b	Interrupt request IRQn has been recognized by ICU
			GPIO(31:30) interrupt input be pulled dow due to the def	lue of 0000 01xxH for this register is caused by and GPIO(1:0), that are by default configured as s with internal pull-up resistors and that can though vn externally. Thus IRQ requests, that are masked ault setting of the MASKALL register, may automati- ated during reset.

Figure 8-17: MASKREG IRQ Interrupt Mask Register

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Address	Initial value
							rese	rved								5000 005CH	0000 FFFFH
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
	MASKREG																

Bit position	Bit name	R/W		Function
(31:16)	-	-	Reserved	
			MASKREG(15:0) Individual masking of IRQ interrup MASKREGn (n = 0,, 15)	ot inputs. Bit 0 corresponds to IRQ0 etc. Masking of IRQ interrupt inputs
(15:0)	MASKREG	R/W	0 _b	Interrupt request IRQn enabled
			1 _b	Interrupt request IRQn masked (initial value)
				· · · · · · · · · · · · · · · · · · ·

				F	igur	e 8-1	18:	ISRI	EG II	RQ lı	nterr	upt l	n-Se	rvice	e Re	gister	
31	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Address Initial value																
							rese	erved								5000 0060H	0000 0000H
																-	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	_	
							ISF	REG									

Bit name	R/W		Function
-	-	Reserved	
ISREG	R	ISREG(15:0) Individual indication of IR the CPU. Bit 0 correspond ISREGn (n = 0,, 15) 0_{b}	Q interrupt requests that have been confirmed by ds to IRQ0 etc. Confirmation of IRQ interrupt request Interrupt request IRQn not confirmed (initial value)
		1 _b	Interrupt request IRQn has been confirmed
	-		Reserved ISREG(15:0) Individual indication of IR the CPU. Bit 0 correspond ISREG R ISREGn (n = 0,, 15) 0 _b

Figure 8-19: TRIGREG IRQ Trigger Mode Select Register

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Address	Initial value
							rese	rved								5000 0064H	0000 0000H
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	_	
							TRIG	REG									

Bit position	Bit name	R/W		Function
(31:16)	-	-	Reserved	
			Bit 0 corresponds to IRQ0 etc	level trigger mode for each IRQ interrupt input.
(15:0)	TRIGREG	R/W	TRIGREGn (n = 0,, 15)	Selection of IRQ trigger mode
~ /			0 _b	Edge trigger mode for IRQn (initial value)
			1 _b	Level trigger mode for IRQn

				Fig	ure	8-20.	E	DGE	REG	IRQ	Trig	ger l	Edge	e Sel	ect F	Register	
31	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Address Initial value																
							rese	erved								5000 0068H	0000 0000H
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
	EDGEREG																

Bit name	R/W	Function								
-	-	Reserved								
EDGEREG	R/W	EDGEREG(15:0) Individual selection of positive or negative trigger edge for each IRQ inte input. The setting of this bit is only relevant, if edge trigger mode has bee for the respective IRQ input using the TRIGREG register. Bit 0 correspon- IRQ0 etc.								
		EDGEREGn (n = 0,, 15)	Selection of IRQ trigger edge							
		0 _b	Positive edge trigger for IRQn (initial value)							
		1 _b	Negative edge trigger for IRQn							
E	- EDGEREG		EDGEREG R/W EDGEREG (15:0) Individual selection of positive input. The setting of this bit is of for the respective IRQ input us IRQ0 etc. EDGEREGn (n = 0,, 15)							

Figure 8-21: SWIRREG Software IRQ Interrupt Register

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Address	Initial value
							rese	erved								5000 006CH	0000 0000H
																-	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
	SWIRREG																

Bit name	R/W	Function								
-	-	Reserved								
SWIRREG	R/M/	SWIRREG(15:0) Generation of individual IRQ interrupts by software. This register is p used for debugging purposes. SWIRREGn (n = 0,, 15) Generation of IRQ interrupts								
ominice		0 _b	Do not generate interrupt request for IRQn (initial value)							
		1 _b	Generate interrupt request for IRQn							
	Bit name		- - Reserved SWIRREG SWIRREG(15:0) Generation of individual IRQ i used for debugging purposes. SWIRREG R/W SWIRREGn (n = 0,, 15) 0b							

				Fig	ure a	8-22:	P	RIOR	REGO)-15 I	IRQ I	nteri	rupt	Prio	rity F	Register	
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Address	Initial value
	reserved													5000 00xxH	0000 000FH		
																-	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
	reserved										PR	IOR	EG0	.15			

Bit position	Bit name	R/W	Function									
(31:4)	-	-	Reserved									
	PRIOREG0 15		PRIOREG015(3:0) Specifies priority for individual IRQ interrupt requests. PRIOREG0 corresponds to IRQ0 etc. It is not allowed to assign equal priorities to more than one IRQ interrupt request.									
(3:0)		R/W	PRIOREGn(3:0)	IRQn interrupt request priority								
(0.0)			0000 _b	Assigns priority 0 (highest) to IRQ interrupt IRQn								
			1111 _b	Assigns priority 15 (lowest) to IRQ interrupt IRQn (initial value)								
	·											

[MEMO]

Chapter 9 Local Bus Unit (LBU)

ERTEC 200 can be operated from an external host processor via a local bus interface. The local bus interface is selected using the CONFIG2 input pin.

$CONFIG2 = 0_b$	LBU bus system is active
$CONFIG2 = 1_b$	LBU bus system is inactive (alternative functions like MII diagnosis, ETM
	trace and GPIOs can be used instead)

The LBU interface uses a 16-bit data bus and a 21-bit address bus. The externally connected μ C is always the master with respect to this interface. All registers of the LBU are 16-bits wide; write accesses to these registers must be 16-bit wide.

Pin Name	I/O	Function	Number of pins
LBU_A(20:0)	I	LBU address bits	21
LBU_D(15:0)	I/O	LBU data bits	16
LBU_WR_N	I	LBU write control signal	1
LBU_RD_N	I	LBU read control signal	1
LBU_BE(1:0)_N	I	LBU byte enable	2
LBU_SEG(1:0)	I	LBU page selection signals	2
LBU_IRQ(1:0)_N	0	LBU interrupt request signals	2
LBU_RDY_N	I	LBU ready signal	1
LBU_CS_M_N	I	LBU chip select for ERTEC 200 internal resources	1
LBU_CS_R_N	I	LBU chip select for page configuration registers	1
total		·	48

Table 9-1: Local Bus Interface Pin Functions

Four different pages within ERTEC 200 can be accessed via the LBU. Each page can be set individually. The settings for the four pages are made via the LBU page registers. Five registers are available per page. These registers are used for the size, offset, and access width settings of the page. The LBU_CS_R_N chip select signal can be used to access the page registers.

The following settings are possible for each page:

- Access size of a page between 256 Bytes and 2 MBytes with two page range registers (LBU_Pn_RG_H and LBU_Pn_RG_L with n = 0, 1, 2, 3)
- Offset (segment) of page in 4-GBytes address area with two page offset registers (LBU_Pn_OF_H and LBU_Pn_OF_L with n = 0, 1, 2, 3)
- Access type (data bit width) with a page control register (LBU_Pn_CFG with n = 0, 1, 2, 3)

The ERTEC 200-internal address area is accessed via the LBU_CS_M_N chip select signal. The LBU supports accesses to the address area with two separate read and write lines or with a common read/ write line. The access type is selected via the CONFIG5 input level during the active reset phase.

$CONFIG5 = 0_b$	separate LBU_RD_N and LBU_WR_N lines
CONFIG5 = 1 _b	LBU_WR_N serves as common RD/WR line

The polarity of the ready signal is selected via the CONFIG6 input level during the active reset phase.

$CONFIG6 = 0_b$	LBU_RDY_N active low
$CONFIG6 = 1_{b}$	LBU_RDY_N active high

LBU_RDY_N is a tri-state output and must be pulled to its "normally ready" level by an external pulldown or pull-up resistor. During an access from an external host via the LBU-interface to ERTEC 200, the LBU_RDY_N output is first driven to its inactive level first. When ERTEC 200 is ready to take or to provide data, LBU_RDY_N will be active for approximately 20 ns (50 MHz internal clock period). After that LBU_RDY_N is switched back to tri-state and the external pull-down or pull-up generates the ready state again.

The four pages, that were defined using the page registers, are addressed via the LBU_SEG(1:0) inputs.

$LBU_SEG(1:0) = 00_b$	LBU_PAGE0 addressed
$LBU_SEG(1:0) = 01_b$	LBU_PAGE1 addressed
$LBU_SEG(1:0) = 10_b$	LBU_PAGE2 addressed
LBU_SEG(1:0) = 11 _b	LBU_PAGE3 addressed

9.1 Page Size Setting

The page size of each page is set in the LBU_Pn_RG_H and LBU_Pn_RG_L range registers (n = 0 to 3). Together, the two page range registers yield a 32-bit address register. The size of the page varies between 256 Bytes and 2 MBytes. Therefore, Bits (7:0) and (31:22) of the PAGEn_RANGE register remain unchanged at a value of 0_b even if a value of 1_b is written. If no bit at all is set in one of the page size registers, the size of this page is set to 256 Bytes, by default. If several bits are set to 1_b in one of the page range registers, the size is always calculated based on the most significant bit, that is set to 1_b . Table 9-2 summarizes the possible settings.

LBU_Pn_RG_H		LBU_Pn_RG_L		Page size	Required
Bit (31:22) ^{Note}	Bit (21:16) ^{Note}	Bit (15:8)	Bit (7:0)	(of page n)	address lines
0000 0000 00 _b	00 0000 _b	0000 0001 _b	0000 0000 _b	256 Bytes	LBU_A(7:0)
0000 0000 00 _b	00 0000 _b	0000 001x _b	0000 0000 _b	512 Bytes	LBU_A(8:0)
0000 0000 00 _b	00 0000 _b	0000 01xx _b	0000 0000 _b	1 kByte	LBU_A(9:0)
0000 0000 00 _b	00 0000 _b	0000 1xxx _b	0000 0000 _b	2 kBytes	LBU_A(10:0)
0000 0000 00 _b	00 0000 _b	0001 xxxx _b	0000 0000 _b	4 kBytes	LBU_A(11:0)
0000 0000 00 _b	00 0000 _b	001x xxxx _b	0000 0000 _b	8 kBytes	LBU_A(12:0)
0000 0000 00 _b	00 0000 _b	01xx xxxx _b	0000 0000 _b	16 kBytes	LBU_A(13:0)
0000 0000 00 _b	00 0000 _b	1xxx xxxx _b	0000 0000 _b	32 kBytes	LBU_A(14:0)
0000 0000 00 _b	00 0001 _b	xxxx xxxx _b	0000 0000 _b	64 kBytes	LBU_A(15:0)
0000 0000 00 _b	00 001x _b	xxxx xxxx _b	0000 0000 _b	128 kBytes	LBU_A(16:0)
0000 0000 00 _b	00 01xx _b	xxxx xxxx _b	0000 0000 _b	256 kBytes	LBU_A(17:0)
0000 0000 00 _b	00 1xxx _b	xxxx xxxx _b	0000 0000 _b	512 kBytes	LBU_A(18:0)
0000 0000 00 _b	01 xxxx _b	xxxx xxxx _b	0000 0000 _b	1 MByte	LBU_A(19:0)
0000 0000 00 _b	1x xxxx _b	xxxx xxxx _b	0000 0000 _b	2 MBytes	LBU_A(20:0)

Note: Bit numbers in the table refer to the complete 32-bit address that is formed by concatenating LBU_Pn_RG_H and LBU_Pn_RG_L registers.

Remark: "x" stands for "don't care'

The largest of all configured pages determines the number of address lines that have to be connected to the LBU. In Table 9-2 above, the largest page is 2 Mbyte and the most significant bit, that is set to 1_b , is Bit 21. In this case the number of required address lines is calculated from Amax = 21 - 1 = 20. Therefore, address lines LBU_A(20:0) are required. This addressing mechanism results in a mirroring of the specified page size in the total segment.

9.2 Page Offset Setting

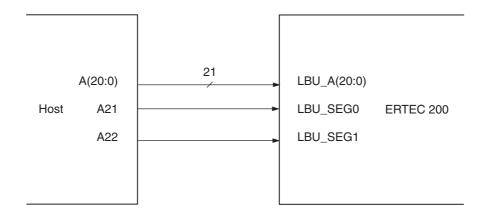
The page offset of each page is set in the LBU_Pn_OF_H and LBU_Pn_OF_L registers (n = 0 to 3). Bit (7:0) of LBU_Pn_OF_L are hardwired to 0_b .Together, the two page offset registers yield a 32-bit address register. The register is evaluated in such a way that the offset is evaluated only down to the most significant bit of the associated page range register that is set to 1_b . These bits are then put on the AHB bus as the upper part of the address. This mechanism guarantees that the offset is always an integer multiple of the selected page size. The following Table 9-3 shows some examples for offset calculations for various page sizes.

Page size	LBU_Pn_OF_H		LBU_Pr	Describing offerst	
(of page n)	Bit (31:24) ^{Note}	Bit (23:16) ^{Note}	Bit (15:8)	Bit (7:0)	Resulting offset
256 Bytes	0000 0000 _b	0000 0000 _b	0000 0001 _b	0000 0000 _b	256 Bytes
256 Bytes	0000 0000 _b	0000 0000 _b	0001 0000 _b	0000 0000 _b	4 kBytes
2 MBytes	0100 0000 _b	0000 0000 _b	0000 0000 _b	0000 0000 _b	1 GByte
512 kBytes	0001 0000 _b	0000 0000 _b	0000 0000 _b	0000 0000 _b	256 MBytes
8 kBytes	0000 0000 _b	0000 0001 _b	0000 0000 _b	0000 0000 _b	64 kBytes
8 kBytes	0000 0000 _b	0000 0001 _b	0100 0000 _b	0000 0000 _b	80 kBytes

Table 9-3:	Page Offset Setting Examples	
14010 0 01		

Note: Bit numbers in the table refer to the complete 32-bit address that is formed by concatenating LBU_Pn_RG_H and LBU_Pn_RG_L registers.

Because the host computer can always access the page registers, the pages can be reassigned at any time. This is useful, for example, if a page is to be used to initialize the I/O. If access to this address area is no longer required after the initialization, the page can then be reassigned in order to access other address areas of ERTEC 200.


9.3 Local Bus Unit Address Mapping Example

The following Table 9-4 illustrates, how an external host processor looks into the ERTEC 200 memory space for a specific page range and offset register setting. The example is based on the initial register values after reset and the full 2 MByte segment size, which can be achieved by connecting all LBU address lines of the external host processor to ERTEC 200 as shown in Figure 9-1. Selection of the segment is done by connecting the host address lines A(22:21) to the segment select inputs LBU_SEG(1:0) of ERTEC 200.

O a thin a	Host a	ddress	ERTEC 200	Memory area seen	
Setting	LBU_SEG(1:0)	LBU_A(20:0)	internal address	by external host	
	00 _b	00 0000H	1010 0000H		
	00 _b			64 kBytes of Communication SRAM	
Range: 0001 0000H	00 _b	00 FFFFH	1010 FFFFH		
Offset: 1010 0000H	00 _b	01 0000H	1010 0000H		
	00 _b			Mirrors of 64 kBytes of Com- munication SRAM	
	00 _b	1F FFFFH	1010 FFFFH		
	01 _b	00 0000H	1000 0000H		
	01 _b			Lower 1 MByte of IRT Switch internal registers	
Range: 0010 0000H	01 _b	0F FFFFH	100F FFFFH		
Offset: 1000 0000H	01 _b	10 0000H	1000 0000H	Mirror of lower 1 MByte of IRT Switch internal registers	
	01 _b				
	01 _b	1F FFFFH	100F FFFFH	Ì	
_	10 _b	00 0000H	3000 0000H	Lower 2 MBytes of external	
Range: 0020 0000H Offset: 3000 0000H	10 _b			memory connected to	
	10 _b	1F FFFFH	301F FFFFH	CS_PER0_N	
	11 _b	00 0000H	4000 2000H		
Range: 0000 0800H Offset: 4000 2000H	11 _b			2 kBytes of APB peripherals (above internal boot ROM)	
	11 _b	00 07FFH	4000 27FFH		
	11 _b	00 0800H	4000 2000H	Mirrors of 2 kBytes of APB	
	11 _b			peripherals (above internal	
	11 _b	1F FFFFH	4000 27FFH	boot ROM)	

Table 9-4: Local Bus Unit Address Mapping Example

In order to program an address mapping according to Table 9-4, the LBU registers must be set as shown in Table 9-5; these values are the initial values of the LBU registers after ERTEC 200 has been reset.

Register	n=0	n=1	n=2	n=3
LBU_Pn_RG_L	0000H	0000H	0000H	0800H
LBU_Pn_RG_H	001H	0010H	0020H	0000H
LBU_Pn_OF_L	0000H	0000H	0000H	2000H
LBU_Pn_OF_H	1010H	1000H	3000H	4000H

Table 9-5: LBU Register Initialization Example

9.4 Page Control Setting

The user can program the page control register to set the type of access to the relevant page. Certain areas of ERTEC 200 must be accessed 32-bit wide in order to ensure data consistency. For other areas, an 8-bit or 16-bit data access is permitted or even required. Table 9-6 lists the areas where 32-bit accesses are allowed respectively obligatory.

ERTEC 200 address range	32-bit access required	other access (than 32-bit) allowed
System control registers	х	
Timer 0 / 1 / 2	х	
F-counter	х	
Watchdog	х	
IRT register	x	
SDRAM		х
Communication SRAM (as User-RAM)		х
Communication SRAM (as Switch-RAM)		х
Remaining APB I/O (UART, SPI1, GPIOs)		х

 Table 9-6:
 32-bit Accesses in Various Address Ranges

A setting is made in the page control registers to indicate whether the relevant page area is addressed according to a 16-bit or 32-bit organization. In case of a page with 16-bit organization, each 8-bit or 16-bit access is forwarded to the AHB bus. In case of a page with 32-bit organization, a 32-bit read access is implemented on the AHB bus when the LOW word is read. In addition, the LOW word is forwarded and the HIGH word is stored temporarily in the LBU. A subsequent read access to the HIGH word address outputs the temporarily stored value. This ensures consistent reading of 32-bit data on a 16-bit bus. In the case of a 32-bit write access, the LOW word is first stored temporarily in the LBU area. When the HIGH word is write accessed, a 32-bit access to the AHB bus is implemented. Eight bit accesses are forwarded directly to the AHB bus and are therefore not useful for a 32-bit page.

9.5 Host Accesses to ERTEC 200

When the host μ C accesses address areas of the ERTEC 200, a distinction must be made between 16-bit and 32-bit host processors. The data width of the variables is defined for a 16-bit host processor. The various compilers implement the accesses in any order. In case of a 32-bit access by the user software, it must be ensured that the lower 16-bit half-word access to the 32-bit address area precedes the upper 16-bit half-word access. In case of a 32-bit host processor, the access order is defined by setting the "external bus controller" of the host processor. In this case, the address area access must be assigned as "Little Endian access".

If an external host accesses ERTEC 200, ERTEC 200 behaves like 16-bit little endian device with 8-bit and 16-bit access possibilities. Table 9-7 lists all allowed access types.

LBU_BE1_N	LBU_BE0_N	LBU_A0	Internal AHB access
1 _b	0 _b	0 _b	8-bit (low byte)
0 _b	1 _b	1 _b	8-bit (high byte)
0 _b	0 _b	0 _b	16-bit
	Others		Not allowed

Table 9-7: Possible Host Accesses to ERTEC 200

Accesses from the external host are typically asynchronous to the ERTEC 200 internal AHB clock; therefore they are synchronized to the internal AHB clock. Figures 9-2 and 9-3 show typical read and write sequences.

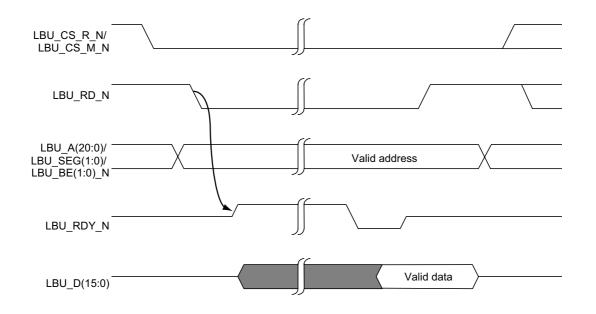


Figure 9-2: LBU Read from ERTEC 400 with Separate Read Control Line

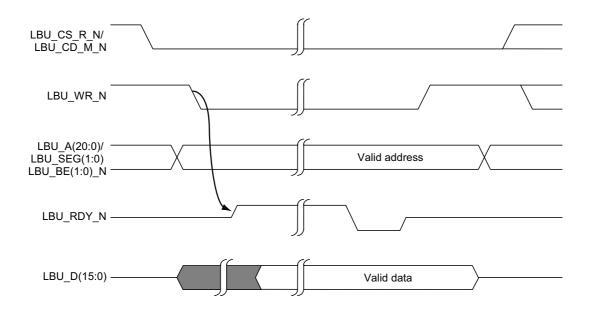
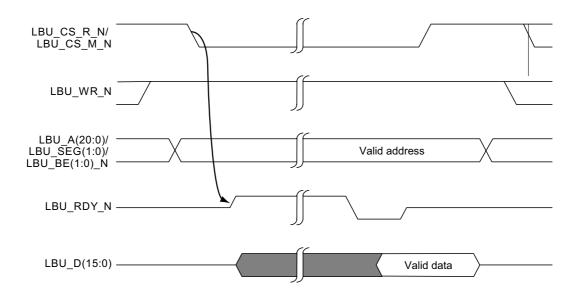



Figure 9-3: LBU Write to ERTEC 400 with Separate Write Control Line

Figure 9-4: LBU Read from ERTEC 400 with Common Read/Write Control Line

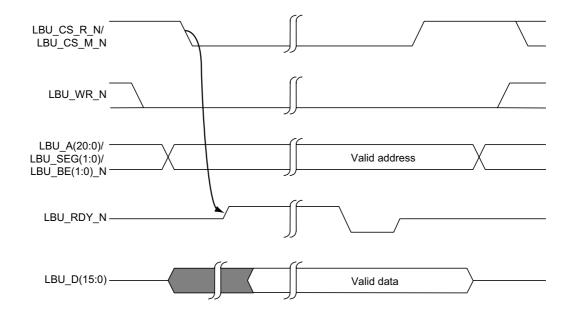


Figure 9-5: LBU Write to ERTEC 400 with Common Read/Write Control Line

9.6 Host Interrupt Handling

ERTEC 200 is a pure slave with respect to the LBU interface. In order to be able to issue requests to an external host, ERTEC 200 can generate the two interrupt signals LBU_IRQ(1:0)_N. Both interrupts are generated in the IRT switch and by default configured as active low. However this configuration can be changed in the IRT switch.

A mailbox communication, going via the IRT switch, is possible between the ARM946E-S core and the external host processor. An interrupt request from the ARM946E-S processor to the external host is triggered by writing to the Activate_HP_Interrupt register. An interrupt request from the external host to the ARM946E-S processor is triggered by writing to the Activate_SP_Interrupt register. Both registers are only writeable; the written value does not matter.

9.7 Address Assignment of LBU Registers

The LBU registers are 16-bit wide; the registers can be written to with 16-bit accesses only. The LBU page configuration registers are addressed via the LBU_CS_R_N signal. Table 9-8 summarizes the implemented registers.

Address	Register Name	Size	R/W	Initial value	Description
00 0000H	LBU_P0_RG_L	16 bit	R/W	0000H	LBU page 0 range register low
00 0002H	LBU_P0_RG_H	16 bit	R/W	0001H	LBU page 0 range register high
00 0004H	LBU_P0_OF_L	16 bit	R/W	0000H	LBU page 0 offset register low
00 0006H	LBU_P0_OF_H	16 bit	R/W	1010H	LBU page 0 offset register high
00 0008H	LBU_P0_CFG	16 bit	R/W	0000H	LBU page 0 configuration register
00 0010H	LBU_P1_RG_L	16 bit	R/W	0000H	LBU page 1 range register low
00 0012H	LBU_P1_RG_H	16 bit	R/W	0010H	LBU page 1 range register high
00 0014H	LBU_P1_OF_L	16 bit	R/W	0000H	LBU page 1 offset register low
00 0016H	LBU_P1_OF_H	16 bit	R/W	1000H	LBU page 1 offset register high
00 0018H	LBU_P1_CFG	16 bit	R/W	0001H	LBU page 1 configuration register
00 0020H	LBU_P2_RG_L	16 bit	R/W	0000H	LBU page 2 range register low
00 0022H	LBU_P2_RG_H	16 bit	R/W	0020H	LBU page 2 range register high
00 0024H	LBU_P2_OF_L	16 bit	R/W	0000H	LBU page 2 offset register low
00 0026H	LBU_P2_OF_H	16 bit	R/W	3000H	LBU page 2 offset register high
00 0028H	LBU_P2_CFG	16 bit	R/W	0000H	LBU page 2 configuration register
00 0030H	LBU_P3_RG_L	16 bit	R/W	0800H	LBU page 3 range register low
00 0032H	LBU_P3_RG_H	16 bit	R/W	0000H	LBU page 3 range register high
00 0034H	LBU_P3_OF_L	16 bit	R/W	2000H	LBU page 3 offset register low
00 0036H	LBU_P3_OF_H	16 bit	R/W	4000H	LBU page 3 offset register high
00 0038H	LBU_P3_CFG	16 bit	R/W	0001H	LBU page 3 configuration register

Table 9-8: Address Assignment of LBU Registers

Note: Reserved bits in all registers are undefined when read; always write the initial (reset) values to these bits.

9.8 Detailed LBU Register Description

This chapter gives a detailed description of the LBU register bit functions. As there is an identical set of five LBU registers for each configurable page, only one set will be described as representative. The initial values of the LBU registers result in a frequently usable view into the ERTEC 200 internal resources

- Page 0
 64 kBytes view into Communication SRAM from 1010 0000H onwards, 16-bit page
- Page 1 1 MByte view into the IRT switch internal registers from 1000 0000H onwards, 32-bit page
- Page 2 2 MBytes view into external memory connected to CS_PER0_N from 3000 0000H onwards, 16-bit page
- Page 3 2 kBytes view into APB peripherals from 4000 2000H onwards (above internal boot ROM), 32-bit page

Figure 9-6:	LBU Page Range Register Low (LBU_Pn_RG_L)
-------------	---

-	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Address	Initial value
			LB	SU_Pr	n_RG	i_L						alwa	ys 0 _b				00 0000H	0000H
																	00 0010H	0000H
																	00 0020H	0000H
																	00 0030H	0800H

Bit position	Bit name	R/W	Function
15:8	LBU_Pn_RG_L	R/W	Bit (15:8) of the LBU page n size setting
7:0	-	R	Always 0 _b ; writing has no effect

Figure 9-7: LBU Page Range Register High (LBU_Pn_RG_H)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Address	Initial value
				alwa	ys 0 _b						LB	U_Pr	n_RG	_H		00 0002H	0001H
																00 0012H	0010H
																00 0022H	0020H
																00 0032H	0000H

Bit position	Bit name	R/W	Function
15:6	-	R	Always 0 _b ; writing has no effect
5:0	LBU_Pn_RG_H	R/W	Bit (21:16) of the LBU page n size setting

Chapter 9	Local Bus	Unit (LBU)
-----------	-----------	------------

				Figu	ire 9	-8:	LBU	Pag	e Of	iset	Reg	ster	LOW	(LB	U_P	n_OF_L)	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Address	Initial value
		LE	BU_Pi	n_OF	_L						alwa	ys 0 _b				00 0004H	0000H
<u> </u>								•								00 0014H	0000H
																00 0024H	0000H
																00 0034H	2000H

Figure 9-8: LBU Page Offset Register Low (LBU_Pn_OF_L)

Bit position	Bit name	R/W	Function
15:8	LBU_Pn_OF_L	R/W	Bit (15:8) of the LBU page n offset setting
7:0	-	R	Always 0 _b ; writing has no effect

Figure 9-9: LBU Page Offset Register High (LBU_Pn_OF_H)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Address	Initial value
						LB	U_Pr	_OF	_H							00 0006H	1010H
-																00 0016H	1000H
																00 0026H	3000H
																00 0036H	4000H

Bit position	Bit name	R/W	Function
15:0	LBU_Pn_OF_H	R/W	Bit (31:16) of the LBU page n offset setting

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Address	Initial value
						re	serve	ed							Pag e_n _32	00 0008H	0000H
																00 0018H	0001H
																00 0028H	0000H
																00 0038H	0001H

Figure 9-10: LBU Page Configuration Register (LBU_Pn_CFG)

Bit position	Bit name	R/W	Function								
15:1	-	-	Reserved								
0	Page_n_32	R/W	Page_n_32 Configures 32-bit or 16 Page_n_32 0 _b 1 _b	6-bit pages Page width configuration 16-bit page width 32-bit page width							

Chapter 10 Boot ROM

ERTEC 200 is equipped with a pre-programmed boot ROM that allows software to be downloaded from an external storage medium. The boot ROM has a size of $2 \text{ k} \times 32$ bits = 8 kBytes and may only be read with 32-bit accesses. Various routines are available for the different boot and download modes. In order to select the boot source and mode, four BOOT(3:0) inputs are available on ERTEC 200. During the active reset phase, the boot pins are read in and stored in the BOOT_REG register in the system control register area.

After start-up of the processor, the system branches to the appropriate boot routine based on the previously read boot mode selection, and the download is performed. After the download is complete, the newly loaded functions are executed. When reset has become inactive, the pins BOOT(3:0) can be used as normal external memory interface pins.

The following actions lead to a boot operation:

- HW reset
- Watchdog reset
- Software reset caused by setting the XRES_SOFT bit in the reset control register (SCR area).

Table 10-1 summarizes the supported download modes; the shaded area shows the default boot mode that is used when only the internal pull-up/down resistors at the BOOT(3:0) pins are effective:

BOOT3	BOOT2	BOOT1	BOOT0	Selected download mode
0 _b	0 _b	0 _b	0 _b	Via external ROM/NOR flash with 8-bit width
0 _b	0 _b	0 _b	1 _b	Via external ROM/NOR flash with 16-bit width
0 _b	0 _b	1 _b	0 _b	Via external ROM/NOR flash with 32-bit width
1 _b	0 _b	0 _b	0 _b	Fast boot via external ROM/NOR flash with 8-bit width
1 _b	0 _b	0 _b	1 _b	Fast boot via external ROM/NOR flash with 16-bit width
1 _b	0 _b	1 _b	0 _b	Fast boot via external ROM/NOR flash with 32-bit width
0 _b	1 _b	0 _b	1 _b	SPI1 (e.g. for use with EEPROMs with serial interface)
0 _b	1 _b	1 _b	0 _b	UART (bootstrap method)
0 _b	1 _b	1 _b	1 _b	LBU (from external host)
	All of	thers		Reserved

Table 10-1: Supported Download Modes

- Booting from NOR Flash or EEPROM with 8-/16-/32-bit data width via EMIF I/O Bank 0 (CS_PER0_N).
- Booting from serial EEPROMs/Flashes via the SPI1 interface. The GPIO22 control line is then
 used as the chip select for the serial boot ROM. The storage medium (Flash or EEPROM) is
 selected by means of the GPIO23 control line.
- Booting from an external host processor system via the LBU interface.
- Booting from UART; with the bootstrap method, a routine for operation of the serial interface is executed first. This routine then controls the actual program download.
- **Note:** A more detailed description of the boot modes and the operation of the related program parts is given in the documentation that is listed on page 6.

10.1 Booting from External ROM

This boot mode is provided for applications for which the majority of the user firmware runs on the ARM946E-S. The boot process is completely determined be the external image and it can be started with a minimum initialisation.

10.2 Booting via SPI

SPI-compatible EEPROMs as well as SPI-compatible Data Flash memories can be used as an SPI source. GPIO23 is used to select the type.

$GPIO23 = 0_b$	SPI-compatible Data Flash e.g., AT45DB011B
GPIO23 = 1 _b	SPI-compatible EEPROM e.g., AT25HP256

GPIO22 is used as chip select output for the boot device. The serial protocols by Motorola, Texas Instruments, and NSC are in principle supported.

10.3 Booting via UART

When booting via the UART, a bootstrap methodology is used, that first downloads a routine for operation of the serial interface to ERTEC 200. This routine then takes care of the actual download of the program to be executed.

After the boot process is finished, the UART can be used for other purposes.

10.4 Booting via LBU

Booting of user software via LBU must be actively performed by an external host processor. The LBU host can then transfer the user code into the ERTEC 200 memories.

The boot software for boot via LBU does not read any device identification information from the ERTEC 200 system. If required, such device ID must be stored in a storage medium (for example EEPROM connected to SPI1), that the host processor reads via the LBU interface. The host processor can then decide based on the device ID, which user code is to be downloaded to the LBU.

10.5 Memory Swapping

The reset vector of the ARM946E-S core points to the address 0000 0000H and consequently to the boot ROM. Additionally, the boot ROM can be accessed in its mirror area (see Table 5-1). After completion of the boot process, SRAM or SDRAM can be swapped to address 0000 0000H, in order to implement the exception vector table for the ARM946E-S from this address onwards. The original memory positions of boot ROM, SRAM or SDRAM are not affected by memory swapping.

Memory swapping is controlled by the register MEM SWAP in the system control register area.

A maximum of 45 general purpose inputs/outputs is available in ERTEC 200; these can be divided into two groups:

- GPIO(31:0) 32 pins shared with other peripherals that are connected to the internal ABP bus
- GPIO(44:32) 13 pins as alternative function of the LBU interface

GPIO(31:0) can be used as follows:

- as inputs
- as outputs
- as one of maximum 3 alternative functions (watchdog, F-counter, UART, SPI1 or the ETM)

Depending on the internal circuitry, the GPIOs may have different current drive capabilities. ERTEC 200 users drives with 6, 9 or 24 mA capability; the relation between GPIO pin number and drive capability is summarized in Table 11-1.

GPIO pin number	Drive capability
GPIO(44:42), GPIO(40:32), GPIO(31:30), GPIO(26:8)	6 mA
GPIO41, GPIO(7:0)	9 mA
GPIO(29:27)	24 mA

Table 11-1: GPIO Pin and Related Drive Capabiliy

Input values are stored in the GPIO_IN register; output values must be written to the GPIO_OUT register. The direction of the I/O can be programmed bit-by-bit in the GPIO_IOCTRL register. The special I/O function selection can be programmed in the GPIO_PORT_MODE_L and GPIO_PORT_MODE_H registers and the direction (input or output) in the GPIO_IOCTRL register. GPIO(1:0) and GPIO(31:30) can also be used as external interrupt inputs. They are connected to the IRQ interrupt controller of the ARM946E-S. An interrupt can be generated only with an active High input level, rising edge, or falling edge (for configuration, refer to Chapter 8.9).

The following Figure 11-1 shows the structure of a GPIO pin as a standard I/O function or as an alternative function.

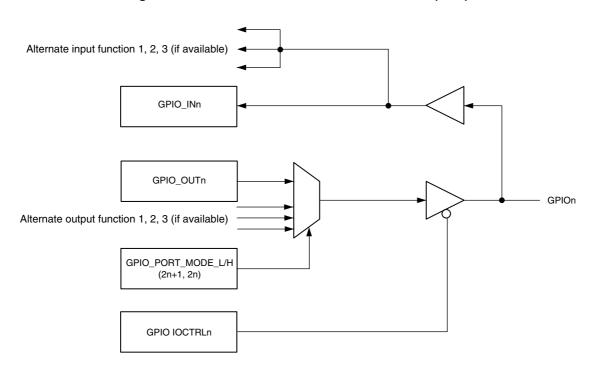


Figure 11-1: GPIO Cells of ERTEC 200 for GPIO(31:0)

GPIO(44:32) are shared with the LBU interface and are only available, if the LBU interface is not used. This is configured using the CONFIG2 pin that is tested during the active reset phase.

- CONFIG2 = 0_b Use LBU interface
- CONFIG2 = 1_b Use GPIO(45:32)

If CONFIG2 was 1_b during the active reset phase, GPIO(44:32) can be used as normal inputs or outputs; I/O direction can be programmed bit-wise using the GPIO_IOCTRL2 register.

11.1 Address Assignment of GPIO Registers

The GPIO registers are 32-bits wide. However, the registers can be read or written to with 8-bit, 16-bit, or 32-bit accesses. In case of accesses with less than 32 bits note, that the ERTEC 200 memory organization is Little Endian.

Address	Register Name	Size	R/W	Initial value	Description
4000 2500H	GPIO_IOCTRL	32 bit	R/W	FFFF FFFFH	Configuration register for GPIO(31:0)
4000 2504H	GPIO_OUT	32 bit	R/W	0000 0000H	Data output register for GPIO(31:0)
4000 2508H	GPIO_IN	32 bit	R	xxxx xxxxH ^{Note}	Data input register for GPIO(31:0)
4000 250CH	GPIO_PORT_MODE_L	32 bit	R/W	0000 0000H	Function selection for GPIO(15:0)
4000 2510H	GPIO_PORT_MODE_H	32 bit	R/W	0000 0000H	Function selection for GPIO(31:16)
4000 2514H	GPIO_POLSEL	32 bit	R/W	0000 0000H	Polarity of GPIO interrupts
4000 2520H	GPIO2_IOCTRL	32 bit	R/W	0000 1FFFH	Configuration register for GPIO(44:32)
4000 2524H	GPIO2_OUT	32 bit	R/W	0000 0000H	Data output register for GPIO(44:32)
4000 2528H	GPIO2_IN	32 bit	R	0000 xxxxH ^{Note}	Data input register for GPIO(44:32)

Table 11-2: Address Assignment of GPIO Registers

- **Note:** During reset, all GPIO pins are configured as input port pins. Thus, the content of the GPIO_IN register reflects the logical level of the GPIO(31:0) pins during reset. Additionally, the content of the GPIO2_IN register reflects the logical level of the GPIO(44:32) pins during reset, if the LBU pins are configured as GPIOs with the CONFIG2 signal.
- **Remark:** Reserved bits in all registers are undefined when read; always write the initial (reset) values to these bits.

11.2 Detailed GPIO Register Description

Figure 11-2: GPIO_IOCTRL Register

31 30 29 28 27 26 25 24 23 22 2	0 19 18 17 16	Address Initial value
GPIO_IOCTRL	4000 2500H FFFF FFFFH	
15 14 13 12 11 10 9 8 7 6 5	4 3 2 1 0	
GPIO_IOCTRL		

Bit position	Bit name	R/W	Function							
			GPIO_IOCTRL(31:0) Controls if GPIO pin is	s used as input or output pin.						
(31:0)	GPIO_IOCTRL	R/W	GPIO_IOCTRLn	GPIO pin direction control						
(31.0)	GFIO_IOCTKL	17/10	0 _b	GPIOn is used as output						
			1 _b	GPIOn is used as input (initial value)						

Figure 11-3: GPIO_OUT Register

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Address	Initial value
						(GPIO	_00	Γ							4000 2504H	0000 0000H
																-	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
						(GPIO	_00	Γ								

Bit position	Bit name	R/W	Function								
(31:0)	gpio out	R/W		egister is output at the GPIO pins on a bit-by-bit basis that the pin is actually configured as output). GPIO output data							
(01.0)	0110_001	10,00		Output low level at GPIOn pin (initial value)							
			~								
			1 _b Output high level at GPIOn pin.								

							Fig	jure	11-4	: G	PIO_	IN R	egis	ter			
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Address	Initial value
							GPI	O_IN								4000 2508H	xxxx xxxxH
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
							GPI	O_IN									

Bit position	Bit name	R/W	Function								
(31:0)	GPIO_IN	R	GPIO_IN(31:0) This register reflects the logical level at the GPIO pins on a bit-by-b (under the assumption that the pin is actually configured as input). GPIO_INn GPIO input data								
			0 _b	Low level is applied to GPIOn pin							
			1 _b High level is applied to GPIOn pin								

Figure 11-5: GPIO_PORT_MODE_L Register

31			28													Address	Initial value
GPI PORT	O15_ MODE	GPI(PORT	D14_ MODE	GPI PORT	013_ MODE	GPI PORT	012_ MODE	GPI PORT	D11_ MODE	GPI PORT	O10_ MODE	GPI PORT	09_ MODE	GPI PORT	08_ MODE	4000 250CH	0000 0000H
1.0111		- o		, on the			_11002	1 0 M 1		i oltr				- o			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		

GPI07_	GPI06_	GPI05_	GPI04_	GPI03_	GPI02_	GPI01_	GPIO0_
PORT_MODE							

Bit position	Bit name	R/W		Function
			PIO15_PORT_MOD	E(1:0) ur different functions for pin GPIO15.
			GPIO15_PORT_MODE	GPIO15 function selection
(21.20)	GPIO15_PORT_		00 _b	Select function 0 for pin GPIO15 (initial value)
(31:30)	MODE	R/W	01 _b	Select function 1 for pin GPIO15 (if available)
			10 _b	Select function 2 for pin GPIO15 (if available)
			11 _b	Select function 3 for pin GPIO15 (if available)
			PIO0_PORT_MODE elects one of max. fo	(1:0) ur different functions for pin GPIO0.
			GPIO0_PORT_MODE	GPIO0 function selection
(1:0)	GPIO0_PORT_	R/W	00 _b	Select function 0 for pin GPIO0 (initial value)
(1.0)	MODE	10,00	01 _b	Select function 1 for pin GPIO0 (if available)
			10 _b	Select function 2 for pin GPIO0 (if available)
			11 _b	Select function 3 for pin GPIO0 (if available)
			<u>.</u>	

Figure 11-6:	GPIO_PORT_MODE_H Register
--------------	---------------------------

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Address	Initial value
-	PIO31_ T_MODE	GPI PORT													024_ MODE		0000 0000H
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
	PIO23_	GPI			021_	-	020_	1	-	GPI		GPI		GPI	-		

PORT_MODE PORT_MODE PORT_MODE PORT_MODE PORT_MODE PORT_MODE PORT_MODE

Bit position	Bit name	R/W	Function	
			GPIO31_PORT_MODE(1:0) Selects one of max. four different functions for	r pin GPIO31.
			GPI031_PORT_MODE GPIO31 fun	ction selection
(31:30)	GPIO31_PORT_	R/W	00 _b Select function 0 for p	in GPIO31 (initial value)
(31.30)	MODE	1.7, 4.4	01 _b Select function 1 for p	in GPIO31 (if available)
			10 _b Select function 2 for p	in GPIO31 (if available)
			11 _b Select function 3 for p	in GPIO31 (if available)
			GPIO16_PORT_MODE(1:0) Selects one of max. four different functions for	or pin GPIO16.
			GPI016_PORT_MODE GPI016 fun	ction selection
(1:0)	GPIO16_PORT_	R/W	00 _b Select function 0 for p	n GPIO16 (initial value)
(1.0)	MODE		01 _b Select function 1 for p	in GPIO16 (if available)
			10 _b Select function 2 for p	in GPIO16 (if available)
			11 _b Select function 3 for p	in GPIO16 (if available)
			L	

Chapter 11	General Purpose I/O (GPIO)
------------	----------------------------

	Figure 11-7: GPIO_POLSEL Register																
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Address	Initial value
							rese	erved								4000 2514H	0000 0000H
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
	reserved GPIO_POLSEL													EL			

Bit position	Bit name	R/W	Function
(31:4)	-	-	Reserved
			POLSEL_GPIO31 Controls if GPIO31 input signal is inverted before interrupt controller input.
	POLSEL_		POLSEL_GPIO31 GPIO input inversion
3	GPIO31	R/W	0 _b GPIO31 is not inverted before IRQ5 input to ICU (initial value)
			1 _b GPIO31 is inverted before IRQ5 input to ICU
2	POLSEL_ GPIO30	R/W	POLSEL_GPIO30 Controls if GPIO30 input signal is inverted before interrupt controller input. POLSEL_GPIO30 GPIO input inversion 0b GPIO30 is not inverted before IRQ4 input to ICU (initial value) 1b GPIO30 is inverted before IRQ4 input to ICU
1	POLSEL_ GPIO1	R/W	POLSEL_GPI01 Controls if GPI01 input signal is inverted before interrupt controller input. POLSEL_GPI01 GPI0 input inversion 0b GPI01 is not inverted before IRQ3 input to ICU (initial value) 1b GPI01 is inverted before IRQ3 input to ICU
0	POLSEL_ GPIO0	R/W	POLSEL_GPI00 Controls if GPI00 input signal is inverted before interrupt controller input. POLSEL_GPI00 GPI0 input inversion 0b GPI00 is not inverted before IRQ2 input to ICU (initial value) 1b GPI00 is inverted before IRQ2 input to ICU

	Figure 11-8: GPIO2_IOCTRL Register																
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Address	Initial value
							rese	erved								4000 2520H	0000 1FFFH
																-	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	_	
re	reserved GPIO2_IOCTRL																

Bit position	Bit name	R/W		Function
(31:13)	-	-	Reserved	
	GPIO2		GPIO2_IOCTRL(12:0) Controls if GPIO pin is GPIO2_IOCTRLn	used as input or output pin. GPIO pin direction control
(12:0)	IOCTRL	R/W	0 _b	GPIOn is used as output
			1 _b	GPIOn is used as input (initial value)

Figure 11-9: GPIO2_OUT Register

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Address	Initial value
							rese	rved								4000 2524H	0000 0000H
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
re	serve	ed GPIO2_OUT															

Bit position	Bit name	R/W	Function						
(31:13)	-	-	Reserved	Reserved					
			GPIO2_OUT(12:0) Data written into this register is output at the GPIO pins on a bit-by-bit (under the assumption that the pin is actually configured as output).						
(12:0)	GPIO2_ OUT	R/W	GPIO2_OUTn	GPIO output data					
	001		0 _b	Output low level at GPIOn pin (initial value)					
			1 _b	Output high level at GPIOn pin.					

								Fiar	ıro 1	1_10	· 6	PIO2		Port	istor			
3'	1	30	29	28	27	26	25	-				20		-		16	Address	Initial value
Ē	<u> </u>	00	20	20	21	20	20		rved		21	20	10	10		10	4000 2528H	0000 xxxxH
L																	J	
15	5	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	_	
	re	serve	ed						GF	PIO2_	IN							

Bit position	Bit name	R/W		Function							
(31:13)	-	-	Reserved	Reserved							
(12:0)	gpio2 in	R		he logical level at the GPIO pins on a bit-by-bit basis in that the pin is actually configured as input). GPIO input data							
			0 _b	Low level is applied to GPIOn pin							
			1 _b	1 _b High level is applied to GPIOn pin							
				·							

The following Table 11-3 describes the GPIO(31:0) pins and their alternative functions that are configurable with the GPIO_PORT_MODE_L/H registers.

GPIO pin		Fund	tion	
GPIO pin	0	1	2	3
GPIO0	GPIO0	P1-DUPLEX-LED_N	-	-
GPIO1	GPIO1	P2-DUPLEX-LED_N	-	-
GPIO2	GPIO2	P1-SPEED-100LED_N (TX/FX)	P1-SPEED-10LED_N	-
GPIO3	GPIO3	P2-SPEED-100LED_N (TX/FX)	P2-SPEED-10LED_N	-
GPIO4	GPIO4	P1-LINK-LED_N	-	-
GPIO5	GPIO5	P2-LINK-LED_N	-	-
GPIO6	GPIO6	P1-RX-LED_N	P1-TX-LED_N	P1-ACTIVE-LED_N
GPIO7	GPIO7	P2-RX-LED_N	P2-TX-LED_N	P2-ACTIVE-LED_N
GPIO8	GPIO8	UART-TXD	-	-
GPIO9	GPIO9	UART-RXD	-	-
GPIO10	GPIO10	UART-DCD_N	-	-
GPIO11	GPIO11	UART-DSR_N	-	-
GPIO12	GPIO12	UART-CTS_N	-	-
GPIO13	GPIO13	Reserved	-	-
GPIO14	GPIO14	DBGACK	-	-
GPIO15	GPIO15	WD_WDOUT_N	-	-
GPIO16	GPIO16	SPI1_SSPCTLOE	-	-
GPIO17	GPIO17	SPI1_SSPOE	-	-
GPIO18	GPIO18	SPI1_SSPRXD	-	-
GPIO19	GPIO19	SPI1_SSPTXD	-	-
GPIO20	GPIO20	SPI1_SCLKOUT	-	-
GPIO21	GPIO21	SPI1_SFRMOUT	-	-
GPIO22	GPIO22	SPI1_SFRMIN	DBGACK	-
GPIO23	GPIO23	SPI1_SCLKIN	Reserved	-
GPIO24	GPIO24	PLL_EXT_IN_N		
GPIO25	GPIO25	TGEN_OUT1_N		
GPIO(30:26)	GPIO(30:26)	Reserved	-	-
GPIO31	GPIO31	DBGREQ	-	-

Table 11-3: Alternative Functions of GPIO(31:0) pins

Remark: There is no protection against the selection of non-existing alternative GPIO functions implemented; in this case the behaviour of ERTEC 200 is unpredictable.

The function of the GPIO(44:32) pins is selected using the configuration pins CONFIG(6:5) and CONFIG2; the function of these pins cannot be re-configured dynamically. The primary function of these pins is dedicated to the LBU interface; in this context the GPIO function must be regarded as an "alternative" function. Table 11-4 summarizes all possible functions for GPIO(44:32).

		Function		
GPIO pin	0	1	2	
	$CONFIG(6:5) = xx_b$ $CONFIG2 = 0_b$	$CONFIG(6:5) = 01_b$ $CONFIG2 = 1_b$	$CONFIG(6:5) = 10_b$ $CONFIG2 = 1_b$	
GPIO32	LBU_A16	GPIO32	GPIO32	
GPIO33	LBU_A17	GPIO33	GPIO33	
GPIO34	LBU_A18	GPIO34	GPIO34	
GPIO35	LBU_A19	GPIO35	GPIO35	
GPIO36	LBU_A20	GPIO36	GPIO36	
GPIO37	LBU_SEG_0	GPIO37	GPIO37	
GPIO38	LBU_SEG_1	GPIO38	GPIO38	
GPIO39	LBU_CS_R_N	GPIO39	GPIO39	
GPIO40	LBU_CS_M_N	GPIO40	GPIO40	
GPIO41	LBU_D15	GPIO41	GPIO41	
GPIO42	LBU_RDY	GPIO42	GPIO42	
GPIO43	LBU_IRQ0_N	GPIO43	GPIO43	
GPIO44	LBU_IRQ1_N	GPIO44	GPIO44	

 Table 11-4:
 Alternative Functions of GPIO(44:32) pins

Chapter 12 Asynchronous Serial Interface UART

A UART is implemented in ERTEC 200. The inputs and outputs of the UART are available as an alternative function at GPIO(12:8). To use the UART, it is required

- to set input/output direction accordingly for the affected pins using the GPIO_IOCTRL register
- to configure alternative function 1 for the affected pins using the GPIO_PORT_MODE_L/H registers

Note that after reset, GPIO(31:0) pins are configured as GPIO inputs; an eventually configured UART is "lost". If the UART is used, the affected pins are no longer available as standard I/O. The baud rate generation is derived from the internal 50 MHz APB clock or a dedicated 6 MHz clock. The data bit width for read/write accesses to UART registers on the APB bus is 8 bits.

The following signal pins are available for the UART on ERTEC 200.

Pin Name	I/O	Function	Number of pins
UART-TXD	0	UART transmit data output	1
UART-RXD	I	UART receive data input	1
UART-DCD_N	I	UART carrier detection signal	1
UART-DSR_N	I	UART data set ready signal	1
UART-CTS_N	I	UART transmit enable signal	1
total	•		5

 Table 12-1:
 UART Pin Functions

The UART is implemented as an ARM PrimeCellTM (PL010) macro. This is similar to the standard UART 16C550; the functional differences between the PL010 macro and a 16C550 are as follows:

- Receive FIFO trigger level is set permanently to 8 bytes.
- Receive errors are stored in the FIFO.
- Receive errors do not generate an interrupt.
- The internal register address mapping and the register bit functions are different.
- 1.5 Stop bits are not supported.
- "Forcing stick parity" function is not supported.
- An independent receive clock is not possible.
- Modem signals DTR, RTS and RI are not supported.

For a detailed description of the PL010 macro, please refer to the list of documents on page 6.

Figure 12-1 below shows the structure of the UART.

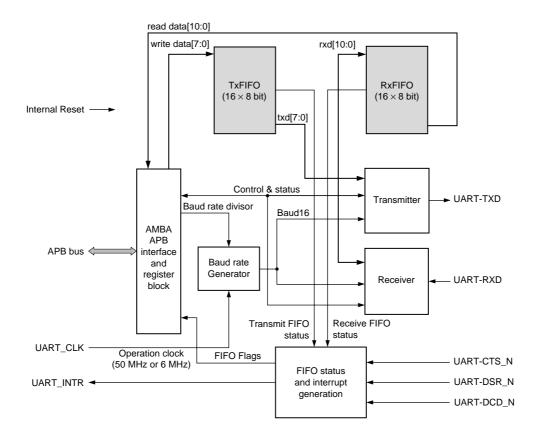


Figure 12-1: UART Macro Block Diagram

The UART has a single interrupt source that is wired to the IRQ interrupt controller (see Table 8-2):

UART_INTR UART - group interrupt wired to IRQ8

Data transfer to and from the UART can either be controlled by the ARM946E-S core or alternatively by the DMA controller. In DMA-mode, the FIFO must be switched off, because it does not indicate the "watermark" level. As the DMA controller supports only one channel, it can control either send or receive direction; control of the other direction must then be implemented in software. The baud rate and the divisor are calculated according to the following formulas:

$$BR = \frac{f_{UART_CLK}}{(BAUDDIV+1)\times 16} \qquad BAUDDIV = \frac{f_{UART_CLK}}{BR\times 16} - 1$$

This yields the following error tolerance calculation:

$$E_p = \frac{BR - BRI}{BRI} \times 100\%$$

with BRI being the ideal bit rate.

The following Table 12-2 shows the baud rate values to be set and the deviations from the standard baud rates. The associated error percentages are within the baud rate tolerance range.

BRI	BAUDDIV	BR	Ep
115200	26	115740	+0.47
76800	40	76219	-0.76
57600	53	57870	+0.47
38400	80	38580	+0.47
19200	162	19171	-0.15
14400	216	14400.9	+0.006
9600	325	9585.9	-0.15
2400	1301	2400.15	+0.006
1200	2603	1200.077	+0.006
110	28408	110.0004	+0.0003

Table 12-2: Baud Rates and Tolerances for 50 MHz UART Operation Clock

The UART can also be used as a BOOT medium if, for example, functions from an external PC are to be loaded to ERTEC 200 and executed. The BOOT medium is selected by the BOOT(3:0) inputs during the active reset phase (see section 10.3). The BOOT loader then takes over setting of the UART signal pins and loading of the program code. The "Boot strap loader" functionality is also used. If the UART is not utilized as boot source or for normal communication, it can also be used as a debugging interface.

12.1 Address Assignment of UART Registers

The UART registers are 8 bits in width. When they are accessed with 16- or 32-bit read operations, the upper bits are undefined. The following Table 12-3 gives an overview of the address assignment for the UART registers.

Address	Register Name	Size	R/W	Initial value	Description
4000 2300H	UARTDR	8 bit	R/W	xxH	Read/write data from interface
4000 2304H	UARTRSR/UARTECR	8 bit	R/W	00H	Receive status register (when read) - error clear register (when written)
4000 2308H	UARTLCR_H	8 bit	R/W	00H	Line control register high byte
4000 230CH	UARTLCR_M	8 bit	R/W	00H	Line control register middle byte
4000 2310H	UARTLCR_L	8 bit	R/W	00H	Line control register low byte
4000 2314H	UARTCR	8 bit	R/W	00H	Control register
4000 2318H	UARTFR	8 bit	R	9xH	Flag register
4000 231CH	UARTIIR/UARTICR	8 bit	R/W	00H	Interrupt identification register (read), Interrupt clear register (write)
4000 2320H - 4000 23FFH	-	-	-	-	Reserved

Table 12-3: Address Assignment of UART Registers

Remarks: 1. During reset, pins GPIO(31:0) are configured as input port pins. Thus, I/O direction and alternative pin function usage have to be configured first before using the UART.

2. Reserved bits in all registers are undefined when read; always write the initial (reset) values to these bits.

12.2 Detailed UART Register Description

Figure 12-2: UARTDR Data Register

7	6	5	4	3	2	1	0	Address	Initial value						
			UAR	TDR		UARTDR									

Bit position	Bit name	R/W	Function
(7:0)	UARTDR	R/W	 UARTDR(7:0) Write access: If FIFO is enabled, the written data are entered in the FIFO. If FIFO is disabled, the written data are entered in the transmit holding register (the first word of the transmit FIFO). Read access: If FIFO is enabled, the received data are entered in the FIFO. If FIFO is disabled, the received data are entered in the FIFO. If FIFO is disabled, the received data are entered in the receive holding register (the first word of the receive FIFO). Note: When data are received, the UARTDR data register must be read out first and then the UARTRSR/UARTECR error register

Chapter 12	Asynchronous Serial Interface UART
------------	------------------------------------

Figure 12-3: UARTRSR/UARTECR Registers

7	6	5	4	3	2	1	0	Address	Initial value
	reserved				BE	PE	FE	4000 2304H	00H

Bit position	Bit name	R/W	Function				
(7:4)	-	R	Reserved, undefined when read				
		R	OE Overrun error is detected, when the FIFO is full and a new character is received.				
3	OE		OE	Overrun error			
			0 _b	No overrun error detected (initial value)			
			1 _b	Overrun error detected			
			BE A break error is detect standard character wit	ed when the received data are at low for longer than a h all control bits lasts.			
2	BE	R	BE	Break error			
			0 _b	No break error detected (initial value)			
			1 _b	Break error detected			
	PE	PE R	match the parity that is	ed when the parity of received character does not configured in the EPS bit.			
1			PE	Parity error			
			0 _b	No parity error detected (initial value)			
			1 _b	Parity error detected			
	FE				FE A framing error is dete valid stop bit.	cted, when the received character does not have a	
0		R	FE	Framing error			
			0 _b	No framing error detected (initial value)			
			1 _b	Framing error detected			
(7:0)	-	w	UARTECR(7:0) All error flags are cleared when a write access is performed to this register				

Note: When new data are displayed, the UARTDR data register must be read out first and then the UARTRSR/UARTECR error register. The error register is not updated until the data register is read.

The UART line control register UARTLCR consists of 3 Bytes, that are distributed over the registers UARTLCR_H, UARTLCR_M and UARTLCR_L. Writing the UARTLCR register is complete when UARTLCR_H has been written. If one of the first two bytes is to be changed, UARTLCR_H must be written at the end following the change.

Example: Write UARTLCR_L and/or UARTLCR_M; then write UARTLCR_H to accept the changes. Write UARTLCR_H only means write and accept UARTLCR_H bits.

			Figure	12-4: U	ARTLCR	_H Regis	ter (1/2)		
7	6	5	4	3	2	1	0	Address	Initial value
reserved	WLEN		FEN	STP2	EPS	PEN	BRK	4000 2308H	00H

Bit position	Bit name	R/W	Function				
7	-	-	Reserved				
		R/W	WLEN(1:0) The word length indic	ates the number of data bits within a frame.			
			WLEN	Word length			
(6:5)	WLEN		00 _b	5-bit data (initial value)			
			01 _b	6-bit data			
			10 _b	7-bit data			
			11 _b	8-bit data			
			FEN				
4	FEN	R/W	FIFOs are disabled, s registers (actually the	ling and receiving data are enabled or disabled. If the ending/receiving is performed via 1-Byte holding first elements of the FIFOs).			
			FEN	FIFO enable			
			0 _b	FIFO disable (initial value)			
			1 _b	FIFO enable			
	STP2	STP2 R/W		ended at the end of the frame when sending. The t check the received character for two stop bits.			
3			STP2	Two stop bit select			
			0 _b	Insert one stop bit (initial value)			
			1 _b	Insert two stop bits			

_.

Bit position	Bit name	R/W	Function					
		R/W		parity for check and generation. The setting of this bit is / is disabled with the PEN bit.				
2	EPS		EPS	Parity type selection				
			0 _b	Odd parity selected (initial value)				
			1 _b	Even parity selected				
1	PEN	R/W	PEN Enables or disables p PEN 0 _b 1 _b	arity checking and generation. Parity checking/generation enable bit Parity checking/generation disabled (initial value) Parity checking/generation enabled				
0	BRK	R/W	BRK Selects, if a low level i BRK 0 _b 1 _b	is sent continuously at the transmit output. Send break bit Do not send break (initial value) Send break (continuous low level)				

Figure 12-4: UARTLCR_H Register (2/2)

Figure 12-5: UARTLCR_M Register

7	6	5	4	3	2	1	0	Address	Initial value
		4000 230CH	00H						

Bit position	Bit name	R/W	Function
(7:0)	BAUD DIVMS	R/W	BAUD DIVMS(7:0) Higher byte of 16-bit wide baud rate divisor

			Figu	re 12-6:	UARTLO	R_L Reg	gister		
7	6	5	4	3	2	1	0	Address	Initial value
			BAUD	DIVLS				4000 2310H	00H

Chapter 12 Asynchronous Serial Interface UART

Bit position	Bit name	R/W	Function
(7:0)	BAUD DIVLS	R/W	BAUD DIVLS(7:0) Lower byte of 16-bit wide baud rate divisor

Note: The baud rate divisor is calculated according to the following formula:

$$BAUDDIVLS = \frac{f_{UART_CLK}}{BR \times 16} - 1$$

Zero is not a valid divisor; in this case sending or receiving is not possible.

Figure 12-7: UARTCR Register (1/2)

	7	6	5	4	3	2	1	0	Address	Initial value
Ī	LBE	RTIE	TIE	RIE	MSIE	rese	rved	UARTEN	4000 2314H	00H

Bit position	Bit name	R/W			Function		
			LB Act		node for testing purposes.		
7	LBE	R/W	Γ	LBE	Loop back mode enable bit		
				0 _b	Loop back mode disabled (initial value)		
				1 _b Loop back mode enabled			
			RT En:		out interrupt enable		
6	RTIE	R/W		RTIE	Receive timeout interrupt enable bit		
				0 _b	Receive timeout interrupt disabled (initial value)		
				1 _b	Receive timeout interrupt enabled		
			"				

	R/W		Function			
		TIE Transmit interrupt en	able bit			
TIF	R/W	TIE	Transmit interrupt enable bit			
	1011	0 _b	Transmit interrupt disabled (initial value)			
		1 _b	Transmit interrupt enabled			
		RIE Receive interrupt ena	able bit			
RIE	R/W	RIE	Receive interrupt enable bit			
		0 _b	Receive interrupt disabled (initial value)			
		1 _b	Receive interrupt enabled			
MSIE	R/W	MSIE Modem status interrupt enable bit				
		MSIE	Modem status interrupt enable bit			
-		0 _b	Modem status interrupt disabled (initial value)			
		1 _b	Modem status interrupt enabled			
-	-	Reserved				
		UARTEN UART enable bit				
	D (14)	UARTEN	UART enable bit			
UARTEN	R/W	0 _b	UART disabled (initial value)			
		1 _b	UART enabled; reception and transmission of data is possible			
	MSIE	RIE R/W	TIE R/W TIE 0b 1b 1b 1b RIE RECeive interrupt end RIE R/W RIE MSIE 0b 1b MSIE 0b 1b MSIE 0b 1b MSIE MSIE 0b MSIE 0b 1b MSIE MSIE 0b 1b 1b 1b MSIE MSIE 0b 1b 1b 1b UARTEN UARTEN 0b UARTEN UARTEN 0b UARTEN 0b 0b			

Figure 12-7: UARTCR Register (2/2)

Chapter 12 Asynchronous Serial Interface UART

	Figure 12-8: UARTFR Register (1/2)									
	7	6	5	4	3	2	1	0	Address	Initial value
]	TXFE	RXFF	TXFF	RXFE	BUSY	DCD	DSR	CTS	4000 2318H	9xH

Bit position	Bit name	R/W		Function				
			TXFE Indicates whethe	er the transmit FIFO is empty.				
			TXFE	Transmit FIFO empty flag				
7	TXFE	R	0 _b	Else				
			1 _b	Transmit FIFOs are enabled and empty or FIFOs are disabled and transmit holding registers are empty (initial value)				
			RXFF Indicates, wheth	er receive FIFO is full.				
6	RXFF	R	RXFF	Receive FIFO full flag				
			0 _b	Else (initial value)				
			1 _b	Receive FIFOs are enabled and full or FIFOs are disabled and receive holding registers are full				
		R	TXFF Indicates, wheth	TXFF Indicates, whether transmit FIFO is full.				
5	TXFF		TXFF	Transmit FIFO full flag				
Ũ			0 _b	Else (initial value)				
			1 _b	Transmit FIFOs are enabled and full or FIFOs are disabled and transmit holding registers are full				
			RXFE Indicates, whether receive FIFO is empty.					
			RXFE	Receive FIFO empty flag				
4	RXFE	R	0 _b	Else				
			1 _b	Receive FIFOs are enabled and empty or FIFOs are disabled and receive holding registers are empty (initial value)				
	BUSY		BUSY Indicates, that th	e UART is busy.				
		_	BUSY	UART busy flag				
3		R	0 _b	Else				
			1 _b	Sending data is in progress or transmit FIFO is not empty (or both)				

Figure 12-8: UARTFR Register (2/2)

Bit position	Bit name	R/W	Function
2	DCD	R	DCD This flag reflects the inverse logical level of the UART-DCD_N input pin.
1	DSR	R	DSR This flag reflects the inverse logical level of the UART-DSR_N input pin.
0	CTS	R	CTS This flag reflects the inverse logical level of the UART-CTS_N input pin.

Chapter 12 Asynchronous Serial Interface UART

			Figure	12-9: UA	ARTIIR/U	ARTICR I	Register		
7	6	5	4	3	2	1	0	Address	Initial value
	rese	rved		RTIS	TIS	RIS	MIS	4000 231CH	00H

Bit position	Bit name	R/W	Function
(7:4)	-	R	Reserved, undefined when read
			RTIS Receive timeout interrupt status bit; indicates if a receive timeout interrupt was generated within the UART and if the (internal) UARTRTINTR ^{Note} signal is active.
3	RTIS	R	RTIS Receive timeout interrupt status bit
			0 _b Receive timeout interrupt did not occur (initial value)
			1 _b Receive timeout interrupt occurred
2	TIS	R	TIS Transmit interrupt status bit; indicates if a transmit interrupt was generated within the UART and if the (internal) UARTTXINTR ^{Note} signal is active. TIS Transmit interrupt status bit 0b Transmit interrupt did not occur (initial value) 1b Transmit interrupt occurred
1	RIS	R	RIS Receive interrupt status bit; indicates if a receive interrupt was generated within the UART and if the (internal) UARTRXINTR ^{Note} signal is active. RIS Receive interrupt status bit 0b Receive interrupt did not occur (initial value) 1b Receive interrupt occurred
0	MIS	R	MIS Modem interrupt status bit; indicates if a modem interrupt was generated within the UART and if the (internal) UARTMSINTR ^{Note} signal is active. MIS Modem interrupt status bit 0b Modem interrupt did not occur (initial value) 1b Modem interrupt occurred
(7:0)	-	W	MIS bit is cleared when a write access with any value is performed to this register.

Note: These are internal interrupt signals that are generated within the UART block and that are not routed to the ICU. For details on these signals, please refer to the list of documents on page 6.

12.3 GPIO Register Initialization for UART Usage

Due to the fact, that all UART pins are shared with GPIO pins on ERTEC 200, the GPIO registers need to be initialized properly before any of the UARTs on ERTEC 200 can be used. Below, two examples are given for a two-wire UART and a five-wire UART.

UART pin function	Realized with	I/O	GPIO_PORT_ MODE_H ^{Note}	GPIO_PORT_ MODE_L ^{Note}	GPIO_IOCTRL ^{Note}
UART-TXD	GPIO8, function 1	0	XXXX XXXX XXXX XXXX	xxxx xxxx xxxx 0101	XXXX XXXX XXXX XXXX
UART-RXD	GPIO9, function 1	I	xxxx xxxx xxxx xxxx _b	xxxx xxxx xxxx xxxx _b	xxxx xx10 xxxx xxxx _b

Table 12-4: GPIO Register Initialization Example for Two-wire UART

Table 12-5: GPIO Register Initialization Example for Five-wire UART

UART pin function	Realized with	I/O	GPIO_PORT_ MODE_H ^{Note}	GPIO_PORT_ MODE_L ^{Note}	GPIO_IOCTRL ^{Note}
UART-TXD	GPIO8, function 1	0			
UART-RXD	GPIO9, function 1	I		xxxx xx01 0101 0101	xxxx xxxx xxxx xxxx xxx1 1110 xxxx xxxx _b
UART-DCD_N	GPIO10, function 1	I	XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXX		
UART-DSR_N	GPIO11, function 1	I			5
UART-CTS_N	GPIO12, function 1	I			

Note: In Table 12-4 and 12-5 "x" stands for "don't care".

Chapter 13 Synchronous Serial Interface SPI1

A synchronous, serial interface is implemented in ERTEC 200; it is referred to as SPI1. The inputs and outputs of the SPI1 interface are available as an alternative function at GPIO(23:16). To use SPI1, it is required:

- to set input/output direction accordingly for the affected pins using the GPIO_IOCTRL register
- to configure alternative function 1 for the affected pins using the GPIO_PORT_MODE_H register.

Note that after reset, all GPIO pins are configured as GPIO inputs; an eventually configured SPI1 is "lost". If the SPI1 is used, the affected pins are no longer available as standard I/O. The base frequency for the internal bit rate generation is the 50 MHz APB clock. The data bit width for read/write accesses to the SPI1 registers is 16 bits.

The following signal pins are available for the SPI1 interface on the ERTEC 200.

Pin Name	I/O	Function	Number of pins
SPI1-SSPTXD	0	SPI transmit data output	1
SPI1-SSPRXD	I	SPI receive data input	1
SPI1-SCLKIN	I	SPI clock input	1
SPI1-SCLKOUT	0	SPI clock output	1
SPI1-SSPCTLOE	0	SPI clock and serial frame output enable	1
SPI1-SSPOE	0	SPI output enable	1
SPI1-SFRMIN	I	SPI serial frame input signal	1
SPI1-SFRMOUT	0	SPI serial frame output signal	1
total	•	·	8

Table 13-1: SPI1 Pin Functions

The SPI1 interface is implemented as ARM PrimeCellTM (PL021) macro. For a detailed description, please refer to the list of documents on page 6. Figure 13-1 shows the structure of the SPI1 macro.

In order to support a wide range of connectable devices, the SPI1 interface provides several operation modes:

- Motorola SPI-compatible mode
- Texas Instruments synchronous serial interface compatible mode
- National Semiconductor microwire interface compatible mode

The operation mode is software configurable in the SSPCR0 register. Furthermore, the SPI1 interface has the following features:

- Separate send and receive FIFOs for 8 entries with 16-bit data width
- Data frame sizes of 4 to 16 bits can be selected (in steps of 1 bit).
- Master and slave mode operation
- Bit rate from 769 Hz to 25 MHz in master mode
- Maximum bit rate of 4.16 MHz in slave mode

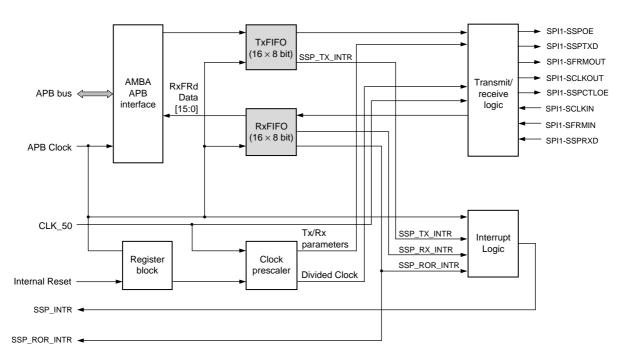


Figure 13-1: Block Diagram of SPI1 Interface

The SPI1 interface talks to the rest of ERTEC 200 via the APB bus and via two interrupt lines that are connected to the IRQ interrupt controller of the ARM946E-S CPU; these are:

SSP_INTRSPI1 group interruptwired to IRQ10SSP_ROR_INTRSPI1 receive overrun error interruptwired to IRQ11

Data transfers from and to the SPI1 interface can be operated under control of the ARM946E-S core or the DMA controller.

For the synchronous clock output of the SPI1 interface, the SPI1 has an internal clock divider. Clock division is performed in two steps and must be programmed in two registers. The prescaler is configured in the SSPCPSR register and the serial clock rate parameter SCR is configured in the SSPCR0 register. The resulting frequency is calculated according to the assigned SPI registers. Based on the settings made in the respective fields of these registers, the output clock frequency is calculated as follows:

 $f_{SCLKOUT} = \frac{50MHz}{CPSDVSR \times (1 + SCR)}$

The SPI1 parameters can be set to the following values:

CPSDVSR	from 2 to 254
SCR	from 0 to 255

This results in an overall frequency range of

769 Hz	for CPSDVSR = 254 , SCR = 255
25 MHz	for CPSDVSR = 2, SCR = 0

The SPI1 interface can also be used as a BOOT medium if, for example, functions from a serial EEPROM are to be loaded to ERTEC 200 and executed. The boot medium is selected by the BOOT(3:0) inputs during the active reset phase (see section 10.2). The boot loader then takes care of setting the SPI1 signal pins and loading the program code. In the boot mode via the SPI1 interface, the pin GPIO22 is used as a chip select signal.

13.1 Address Assignment of SPI1 Registers

The SPI1 registers are 16 bits in width. For meaningful read/write accesses to the SPI1 registers 16-bit accesses are required. However, a byte-by-byte write operation is not intercepted by the hardware.

Address	Register Name	Size	R/W	Initial value	Description
4000 2200H	SSPCR0	16 bit	R/W	0000H	SPI1 control register 0
4000 2204H	SSPCR1	16 bit	R/W	0000H	SPI1 control register 1
4000 2208H	SSPDR	16 bit	R/W	xxxxH	Rx/Tx FIFO data register
4000 220CH	SSPSR	16 bit	R	0000H	SPI1 status register
4000 2210H	SSPCPSR	16 bit	R/W	0000H	SPI1 clock prescale register
4000 2214H	SSPIIR/SSPICR	16 bit	R/W	0000H	Interrupt identification register (read)/Interrupt clear register (write)
4000 2218H - 4000 22FFH	-	-	-	-	Reserved

Table 13-2: Address Assignment of SPI1 Registers

Note: Reserved bits in all registers are undefined when read; always write the initial (reset) values to these bits.

13.2 Detailed SPI1 Register Description

Figure 13-2: SSPCR0 SPI1 Control Register 0 (1/2)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Address	Initial value
			SC	CR				SPH	SPO	FF	٦F		DS	SS		4000 2200H	0000H

Bit position	Bit name	R/W	Function									
(15:8)	SCR	R/W	SCR(7:0) Selects serial transmission speed for master mode. The value that has been programmed in this field determines transmission speed via the following formula: $f_{SCLKOUT} = \frac{50MHz}{CPSDVSR \times (1 + SCR)}$									
			SPH Selects phase of transmitted bits. This bit is only applicable to Motorola SPI frame format.									
7	SPH	R/W	SPH Serial transmission phase									
1	351	r///	0 _b Received MSB is expected immediately after frame signal goes low (initial value)									
			1 _b Received MSB is expected half a clock period after frame signal goes low.									
			SPO Selects serial clock output polarity. This bit is only applicable to Motorola SPI frame format. SPO SPO Serial clock output polarity									
6	SPO	R/W	0 _b Received bits are latched on the rising edge of SCLKIN/ OUT; outgoing bits are switched on the falling edge of SCLKIN/OUT (initial value)									
			1b Received bits are latched on the falling edge of SCLKIN/ OUT; outgoing bits are switched on the rising edge of SCLKIN/OUT									
			FRF(1:0) Selects one of the possible operation modes.									
			FRF(1:0) Frame format									
(5:4)	FRF	R/W	00 _b Motorola SPI frame format (initial value)									
(3.4)	FKF	Γ./ V V	01 _b TI synchronous serial frame format									
			10 _b National Microwire frame format									
			11 _b Reserved									

Bit position	Bit name	R/W	Function									
			DSS(3:0) Selects data wo	ord size for serial transmission /reception								
			DSS(3:0)	Data size select								
			0000 _b	Reserved (initial value)								
			0001 _b	Reserved								
(3:0)	DSS	R/W	0010 _b	Reserved								
			0011 _b	4-bit data words								
			0100 _b	5-bit data words								
			1111 _b	16-bit data words								

Figure 13-2: SSPCR0 SPI1 Control Register 0 (2/2)

						Figu	re 1	3 - 3:	SS	PCR	1 SF	PI1 C	ontro	ol Re	gist	er 1 ((1/2)	
15	5	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Address	Initial value
				re	serve	ed				SOD	MS	SSE	LBM	RO RIE	TIE	RIE	4000 2204H	0000H

Bit position	Bit name	R/W	Function								
(15:7)	-	-	Reserved								
			"Multiple slave	e output enable bit. This bit is only relevant in slave mode. In systems," the master can send a broadcast message to all stem in order to ensure that only one slave drives data at its							
6	SOD	R/W	SOD	Slave mode output enable bit							
			0 _b	SPI1 operates the SSPTXD output in slave mode (initial value)							
			1 _b	SPI1 does not have to operate the SSPTXD output in slave mode.							
			MS Master /slave m	node selection							
5	MS	R/W	MS	Master/slave mode selection							
Ű	inc		0 _b	Device is master (initial value)							
			1 _b	Device is slave.							
			SSE Synchronous se	erial port enable bit							
			SSE	Synchronous serial port enable							
4	SSE	R/W	0 _b	SPI1 is disabled (initial value)							
			1 _b	SPI1 is enabled.							
			LBM Activates the lo	op-back mode							
			LBM	Loop-back mode activation							
3	LBM	R/W	0 _b	Loop-back mode is disabled (initial value)							
			1 _b	Loop-back mode is enabled; the output of the transmit shift register is internally connected to the input of the receive shift-register							

Chapter 13 Synchronous Serial Interface SPI1

Bit position	Bit name	R/W	Function								
			RORIE Receive FIFO ov	verrun interrupt enable							
			RORIE	Receive FIFO overrun interrupt enable							
2	RORIE	R/W	0 _b	FIFO overrun display interrupt SSP_ROR_INTR ^{Note 1} is disabled; when this bit is deleted, the SSP_ROR_INTR interrupt is also deleted if this interrupt was currently being enabled (initial value)							
			1 _b	FIFO overrun display interrupt SSP_ROR_INTR is enabled							
			TIE Transmit FIFO interrupt enable								
1	TIE	R/W	TIE O _b	Transmit FIFO interrupt enable Transmit FIFO half full or less interrupt, SSP_TX_INTR ^{Note 2} is disabled (initial value)							
			1 _b	Transmit FIFO half full or less interrupt SSP_TX_INTR is enabled							
			RIE Receive FIFO in	RIE Receive FIFO interrupt enable							
			RIE	Receive FIFO interrupt enable							
0	RIE	R/W	0 _b	Receive FIFO half full or less interrupt, SSP_RX_INTR ^{Note 2} is disabled (initial value)							
			1 _b	Receive FIFO half full or less interrupt SSP_RX_INTR is enabled							

Figure 13-3: SSPCR1 SPI1 Control Register 1 (2/2)

Notes: 1. The SSP_ROR_INTR interrupt is mapped to the IRQ11 input of the IRQ interrupt controller.

2. The interrupts SSP_TX_INTR and SSP_RX_INTR are combined (wired OR) to the SSP_INTR interrupt, that is wired to the IRQ10 input of the IRQ interrupt controller.

Figure 13-4: SSPDR SPI1 Rx/Tx FIFO Data Register

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Address	Initial value
							Da	ata								4000 2208H	xxxxH

Bit position	Bit name	R/W	Function
(15:0)	Data	-	Data Accesses the first position of the transmit/receive FIFOs; when read, the receive FIFO is accessed; when written, the transmit FIFO is accessed. ^{Note}

Note: If data with less than 16 bits width is used, the user must write the data to the Transmit FIFO in the proper format. When data are read, they are read out correctly from the Receive FIFO

Chapter 13 Synchronous Serial Interface SPI1

Figure 13-5: SSPSR SPI1 Status Register

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Address	Initial value
				re	serve	ed					BSY	RFF	RNE	TNF	TFE	4000 220CH	0000H

Bit position	Bit name	R/W	Function								
(15:5)	-	-	Reserved								
			indication								
			BSY	Busy status indication							
4	BSY	R	0 _b \$	SPI1 is not busy (initial value)							
				SPI1 is sending and/or receiving a frame or the transmit FIFO is not empty.							
			RFF Receive FIFO full	l indication							
3	RFF	R	RFF	Receive FIFO full indication							
Ŭ			0 _b F	Receive FIFO is not full (initial value)							
			1 _b F	Receive FIFO is full							
			RNE Receive FIFO not empty indication								
2	RNE	R	R	R	R	RNE	Receive FIFO not empty indication				
				O _b F	Receive FIFO is empty (initial value)						
			1 _b F	Receive FIFO is not empty							
			TNF Transmit FIFO no	ot full indication							
1	TNF	R	TNF	Transmit FIFO not full indication							
			0 _b -	Transmit FIFO is full (initial value)							
			1 _b	Transmit FIFO is not full							
			TFE Transmit FIFO en	npty indication							
0	TFE	R	TFE	Transmit FIFO empty indication							
	0 _b Transmit FIFO is not empty (initial value)		Transmit FIFO is not empty (initial value)								
			1 _b	Transmit FIFO is empty							
			1 _b	Transmit FIFO is empty							

Chapter 13	Synchronous Serial	Interface SPI1
------------	--------------------	----------------

I IQUIE 13-0. SOF OF SA SFIT CIUCA FIESCAIE AEGISIEI	Figure 13-6:	SSPCPSR SPI1 Clock Prescale Register
--	--------------	--------------------------------------

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Address	Initial value
			rese	rved							CPSI	DVSR	2			4000 2210H	0000H

Bit position	Bit name	R/W	Function
(15:8)	-	-	Reserved
(7:0)	CPSDVSR	R/W	CPSDVSR(7:0) Sets the divisor for the SPI1 clock prescaler; CPSDVSR is always an even number - even when this field is written with an odd number, bit 0 returns a 0. The resulting SPI1 clock frequency can be calculated with the formula in Figure 13-2.

Figure 13-7: SSPIIR/SSPICR SPI1 Interrupt Identification and Clear Register

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Address	Initial value
					re	serve	ed						RO RIS	TIS	RIS	4000 2214H	0000H

Bit position	Bit name	R/W	Function									
(15:3)	-	R	Reserved									
			RORIS SPI1 receive FIFC	D overrun interrupt status								
2	RORIS	R	RORIS	SSP_ROR_INTR status indication								
			0 _b \$	SSP_ROR_INTR not active (initial value)								
			1 _b \$	SSP_ROR_INTR active								
1	TIS	R	TIS	O service request interrupt status SSP_TX_INTR status indication								
			0 _b S	SSP_TX_INTR not active (initial value)								
			1 _b S	SSP_TX_INTR active								
			· · · · · ·	D service request interrupt status								
0	RIS	R	RIS	SSP_RX_INTR status indication								
			0 _b 5	SSP_RX_INTR not active (initial value)								
		SSP_RX_INTR active										
(15:0)	-	W	With any write access to this register the SPI1 receive FIFO overrun interrupt SSP_ROR_INTR is deleted without checking whether data are currently being written.									

13.3 [GPIO Register Initialization for SPI1 Usage

Due to the fact, that all SPI1 pins are shared with GPIO pins on ERTEC 200, the GPIO registers need to be initialized properly before the SPI1 on ERTEC 200 can be used. Below, an example is given for a simple three-wire SPI connection to an external, serial Flash memory as it is typically used for boot purposes.

Note, that in the specific case of a serial Flash for boot purposes two extra GPIOs are used in order to identify the type of external memory and to control the chip select signal of the serial Flash. These two GPIOs are not directly involved in the SPI communication.

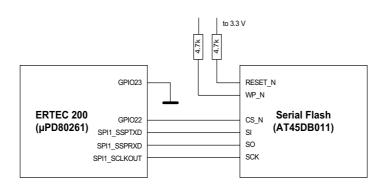

SPI1 pin func- tion	Realized with	I/O	GPIO_PORT_ MODE_H ^{Note}	GPIO_PORT_ MODE_L ^{Note}	GPIO_IOCTRL ^{Note}
SPI1-SSPRXD	GPIO18, function 1	Ι			0.04
SPI1- SSPTXD	GPIO19, function 1	0	xxxx xxxx xxxx xxxx xxxx xxxx xx01 0101xxxxh	XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXX	xxxx xxxx xxx0 01xx xxxx xxxx xxxx xxxx _b
SPI1-SCLKOUT	GPIO20, function 1	0	5	5	
Chip select control	GPIO22, function 0	0	xxxx xxxx xxxx xxxx	xxxx xxxx xxxx xxxx	xxxx xxxx 01xx xxxx
Memory detection	GPIO23, function 0	I	0000 xxxx xxxx xxx _b	xxxx xxxx xxxx xxxx _b	xxxx xxxx xxxx xxxx _b

Table 13-3: GPIO Register Initialization Example for External Serial Flash Memory

Note: In Table 13-3 "x" stands for "don't care".

Figure 13-8 shows a simple circuit diagram for the connection of a serial Flash memory to ERTEC 200 based on above initialization.

ERTEC 200 has two types of timers integrated: Timer 0 and Timer 1 are two almost identical, but cascadable timers that work with an internal clock; Timer 2 is a self-contained block but also working from an internal clock. Timer F however works from an external clock source. All timers can interrupt the processor.

14.1 Timer 0 and Timer 1

Timer 0 and Timer 1 are two independent timers integrated in ERTEC 200. They can be used for internal monitoring of diverse software routines. Each timer has an interrupt output that is connected to the IRQ interrupt controller of the ARM946E-S CPU. Access to the timer registers is always 32 bits in width.

Both timers have the following functionality:

- 32-bit count register
- Input clock can be switched to:
 - 50 MHz clock (default setting)
 - 8-bit prescaler per timer (can be assigned separately)
- Down-counting
- Load/reload function
- Start, stop and continue functions
- · Interrupt when counter state 0 is reached
- · Count register can be read/write-accessed

Figure 14-1 shows a simplified block diagram of Timers 0 and 1.

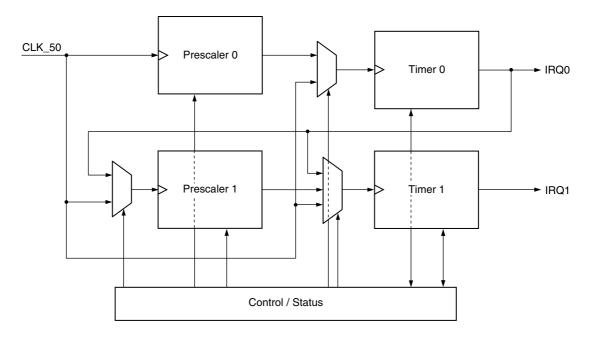


Figure 14-1: Simplified Block Diagram of Timers 0 and 1

14.1.1 Operation mode of Timer 0 and Timer 1

Both timers are deactivated after a reset. The timers are enabled by setting the Run/xStop bit in the status/control register of the respective timer. The timer then counts downwards from its loaded 32-bit starting value. When the timer value reaches 0, a timer interrupt is generated. The interrupt can then be evaluated by the IRQ interrupt controller. The interrupt generated by Timer 0 is connected to the IRQ0 input of the IRQ interrupt controller; the interrupt from Timer 1 is connected to IRQ1.

If the Reload-Mode bit is set to 0_b , the timer stops when 0 is reached; if the Reload Mode bit is 1_b , the timer is reloaded with the 32-bit reload value and automatically restarted. The timer can also be reloaded with the reload value during normal timer function (count value $\neq 0$). This happens by setting the LOAD bit in the status/control register of the timer.

Normally, the timer clock operates at 50 MHz, which is generated by the internal PLL. Each timer can also be operated with an 8-bit prescaler, that can be used to increase the timer period accordingly.

14.1.2 Timer interrupts

The timer interrupt is active (High) starting from the point at which the timer value is counted down to 0. The timer interrupt is deactivated (Low) when the reload value is automatically reloaded or the "LOAD" bit is set by the user. The interrupt is not reset if the loaded reload value is 0. If the timer is deactivated (Run/XStop bit set to 0_b), the interrupt is also deactivated.

If the timer operates in reload mode without a prescaler, the interrupt is present for only one 50 MHz cycle. This must be taken into account when assigning the relevant interrupt input (level/edge evaluation).

14.1.3 Timer prescaler

An 8-bit prescaler is available for each timer. Both prescalers are inactive after reset and are started setting the Run/xStop_V bit to 1_b . Settings can be made independently for each prescaler. Each prescaler has its own 8-bit reload register. If the reload value or starting value of the prescaler is 0, prescaling does not occur. The current prescaler value cannot be read out. In addition, there are no status bits for the prescalers. The prescalers always operate in reload mode.

14.1.4 Cascading of timers

If the cascading bit is set, both 32-bit timers can be cascaded to a 64-bit timer. This cascaded timer is enabled via the status/control register of Timer 1. The interrupt of Timer 1 is active. The interrupt of Timer 0 must be disabled when the timers are cascaded. When prescalers are specified additionally, only the prescaler of Timer 1 is used.

The user must ensure data consistency in the user software when initialising or reading out the 64-bit timer.

14.1.5 Address assignment of Timer 0/1 registers

The timer registers are 32 bits in width. For read/write access of the timer registers to be meaningful, a 32-bit access is required. However, an 8-bit or 16-bit access is not intercepted by the hardware.

Address	Register Name	Size	R/W	Initial value	Description
4000 2000H	CTRL_STAT0	32 bit	R/W	0000 0000H	Control/status register timer 0
4000 2004H	CTRL_STAT1	32 bit	R/W	0000 0000H	Control/status register timer 1
4000 2008H	RELD0	32 bit	R/W	0000 0000H	Reload register timer 0
4000 200CH	RELD1	32 bit	R/W	0000 0000H	Reload register timer 1
4000 2010H	CTRL_PREDIV	32 bit	R/W	0000 0000H	Control register for both prescalers
4000 2014H	RELD_PREDIV	32 bit	R/W	0000 0000H	Reload register for both prescalers
4000 2018H	TIM0	32 bit	R	0000 0000H	Timer 0 value register
4000 201CH	TIM1	32 bit	R	0000 0000H	Timer 1 value register

Table 14-1: Address Assignment of Timer 0 and Timer 1 Registers

Note: Reserved bits in all registers are undefined when read; always write the initial (reset) values to these bits.

14.1.6 Detailed description of Timer 0/1 registers

 Figure 14-2:
 Control/Status Register 0 (CTRL_STAT0) (1/2)

 31
 30
 29
 28
 27
 26
 25
 24
 23
 22
 21
 20
 19
 18
 17
 16
 Address
 Initial value

51	30	29	20	21	20	25	24	23	22	21	20	19	10	17	10	Audress	
							rese	erved								4000 2000H	0000 0000H
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
				rese	erved					Sta- tus	re	s.	Relo ad- Mode	Load	Run/ xStop		

Bit position	Bit name	R/W	Function									
(31:6)	-	-	Re	Reserved								
				atus ner 0 status	indication							
			Status Timer 0 status indication									
5	Status	R		0 _b	Timer 0 has not expired (initial value).							
				1 _b	Timer 0 has expired. Note							
			No	t can only be read as 1_b , when the Run/xStop bit is set to 1_b .								
(4:3)	-	-	Reserved									

Figure 14-2:	Control/Status Register 0 (CTRL_STAT0) (2/2)
--------------	--

Bit position	Bit name	R/W		Function							
			Reload-Mode Timer 0 reload-mode s	election ^{Note}							
			Reload-Mode	Timer 0 reload-mode selection							
2	Reload-	R/W	0 _b	Timer 0 stops at value 0000 0000h (initial value).							
2	Mode	K/VV	1 _b	Timer 0 is loaded with the reload register value when the timer value is 0000 0000h and the timer continues to run.							
			Note: If Timers 0 and 1 are cascaded, the reload-mode setting of Timer 0 i irrelevant.								
			Load Load trigger for Timer 0								
			Load	Reload Timer 0							
			0 _b	No effect (initial value)							
1	Load	W	1 _b	Timer is loaded with the reload register value. Note							
			Note: Reload is executed irrespective of the Run/xStop bit. Even though this bit can be read back, it only has an effect at the instance of writing. Writing a value of 1_b to this bit is sufficient to trigger the timer a $0_b/1_b$ edge is not needed.								
			Run/xStop Starts and stops the co	punter in Timer 0 ^{Note}							
			Run/xStop Timer 0 start/stop								
0	Run/xStop	R/W	0 _b	Timer 0 is stopped (initial value).							
			1 _b	Timer 0 is running. ^{Note}							
			Note: If Timers 0 and 1 are cascaded, the Run/xStop bit setting of Time is irrelevant.								

				Fig	ure 1	4-3:	Co	ntro	l/Sta	tus l	Regi	ster	1 (C	TRL_	STA	T1) (1/2)	
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Address	Initial value
							rese	rved								4000 2004H	0000 0000H
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
			re	serve	ed				Cas- cad- ing	Sta- tus	re	s.	Relo ad- Mode	Load	Run/ xStop		

Bit position	Bit name	R/W	Function								
(31:7)	-	-	Reserved								
			Cascading Selects, if Timers () and 1 are cascaded							
6	Cascading	R/W	Cascading	Cascading of Timers 0 and 1							
	5		0 _b	Timers 0 and 1 are not cascaded (initial value).							
			1 _b	Timers 0 and 1 are cascaded.							
			Status Timer 1 status indi	cation							
			Status	Timer 1 status indication							
5	Status	R	0 _b	Timer 1 has not expired (initial value).							
			1 _b	Timer 1 has expired. ^{Note}							
			Note: This bit ca	n only be read as 1_b , when the Run/xStop bit is set to 1_b							
(4:3)	-	-	Reserved								
			Reload-Mode Timer 1 Reload-m	ode selection ^{Note}							
			Reload-Mod	e Timer 1 Reload-mode							
2	Reload-	R/W	0 _b	Timer 1 stops at value 0000 0000h (initial value).							
_	Mode		Timer 1 is loaded with the reload register value1bwhen the timer value is 0000 0000h and the timercontinues to run.								
			Note: If Timers 0 and 1 are cascaded, this setting applies to both timers.								

Bit position	Bit name	R/W			Function				
			Load Load t	rigger for Timer	1				
				Load	Reload Timer 1				
				0 _b	No effect (initial value)				
1	Load	w		1 _b	Timer 1 is loaded with the reload register value. ^{Note}				
			Note:	this bit can be	ecuted irrespective of the Run/xStop bit. Even though read back, it only has an effect at the instance of g a value of 1_b to this bit is sufficient to trigger the timer; s not needed.				
			Run/x Starts	•	ounter in Timer 1 ^{Note}				
	_ / _			Run/xStop	Timer 1 start/stop				
0	Run/xStop	R/W		0 _b	Timer 1 is stopped (initial value).				
				1 _b	Timer 1 is running.				
			Note: If Timers 0 and 1 are cascaded, this setting applies to both timers						

Figure 14-3: Control/Status Register 1 (CTRL_STAT1) (2/2)

					Fig	ure 1	4-4:	Re	load	Reg	giste	r for	Tim	er 0 ((REL	.D0)	
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Address	Initial value
							Rel	oad								4000 2008H	0000 0000H
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	_	
							Rel	oad									

Bit position	Bit name	R/W	Function
(31:0)	Reload	R/W	Reload(31:0) This register holds the 32-bit reload value for Timer 0.

Figure 14-5: Reload Register for Timer 1 (RELD1)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Address	Initial value
							Rel	oad								4000 200CH	0000 0000H
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
							Rel	oad									

Bit position	Bit name	R/W	Function
(31:0)	Reload	R/W	Reload(31:0) This register holds the 32-bit reload value for Timer 1.

		Fi	gure	14-0	6: C	Cont	rol R	egis	ter f	or Pi	resca	aler () and	11(0	CTRL	_PREDIV) (1,	/2)
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Address	Initial value
							Rese	erved								4000 2010H	0000 0000H
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
					rese	rved						Load _V1	Run/ xStop _V1	Load _V0	Run/ xStop _V0		

Bit position	Bit name	R/W		Function					
(31:4)	-	-	Reserved						
			Load_V1 Load trigger for Presc	aler 1					
			Load_V1	Reload for Prescaler 1					
			0 _b	No effect (initial value)					
3	Load_V1	R/W	1 _b	Prescaler 1 is loaded with the prescaler reload register value. ^{Note}					
			this bit can be writing. Writing a 0 _b /1 _b edge i	cuted irrespective of the Run/xStop_V1 bit. Even though read back, it only has an effect at the instance of g a value of 1_b to this bit is sufficient to trigger the timer; s not needed.					
			Run/xStop_V1 Starts and stops Prescaler 1 for Timer 1						
2	Run/ xStop_V1	R/W	Run/xStop_V1	Prescaler 1 start/stop					
	x3t0p_v1		0 _b	Prescaler 1 is stopped (initial value)					
			1 _b	Prescaler 1 is running					
			Load_V0 Load trigger for Presc	aler 0					
			Load_V0	Reload for Prescaler 0					
			0 _b	No effect (initial value)					
1	Load_V0	R/W	1 _b	Prescaler 0 is loaded with the prescaler reload register value. ^{Note}					
			this bit can be	cuted irrespective of the Run/xStop_V0 bit. Even though read back, it only has an effect at the instance of g a value of 1 _b to this bit is sufficient to trigger the timer; s not needed.					

Figure 14-6: Control Register for Prescaler 0 and 1 (CTRL_PREDIV) (2/2)

Bit position	Bit name	R/W	Function						
			Run/xStop_V0 Starts and stops Pres	caler 0 for Timer 0					
0	Run/	R/W	Run/xStop_V0	Prescaler 0 start/stop					
Ū	xStop_V0		0 _b	Prescaler 0 is stopped (initial value)					
			1 _b	Prescaler 0 is running					

Remark: The current counter value of the prescalers cannot be read. In addition, there are no status bits for the prescalers indicating when the counter state is 0. The prescalers always run continuously (in Reload mode) after they have been started.

Figure 14-7: Reload Register for Prescaler 0 and 1 (RELD_PREDIV)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Address	Initial value
							rese	rved								4000 2014H	0000 0000H
																-	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
	Prediv_V1 Prediv_V0																

Bit position	Bit name	R/W	Function
(31:16)			Reserved
(15:8)	Prediv_V1	R/W	Prediv_V1(7:0) This register holds the 8-bit reload value for Prescaler 1.
(7:0)	Prediv_V0	R/W	Prediv_V0(7:0) This register holds the 8-bit reload value for Prescaler 0.

	Figure 14-8: Current Timer Value Register for Timer 0 (TIM0)																
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Address	Initial value
							Tir	ner								4000 2018H	0000 0000H
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	_	
	Timer																

Bit position	Bit name	R/W	Function
(31:0)	Timer	R	Timer(31:0) This register holds the current counter value for Timer 0.

Figure 14-9: Current Timer Value Register for Timer 1 (TIM1)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Address	Initial value
							Tir	ner								4000 201CH	0000 0000H
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
							Tir	ner									

Bit position	Bit name	R/W	Function
(31:0)	Timer	R	Timer(31:0) This register holds the current counter value for Timer 1.

14.2 Timer 2

Timer 2 is a simple 16-bit up-counter that can be used for all kinds of supervision functions. Timer 2 has an interrupt output that is connected to the IRQ6 input of the interrupt controller of the ARM946E-S CPU. Access to the timer registers is always 32 bits in width.

Timer 2 has the following functionality:

- 16-bit count register
- Input clock hardwired to 50 MHz clock
- Up-counting
- Load/reload function
- Start, stop functions
- Interrupt when counter state 0 is reached (IRQ6)
- Support of different counter modes
 - One-shot mode: Timer 2 is started by setting Run/xStop_T2 to 1_b. Timer 2 counts up from OH until the reload value is reached. Timer 2 then stops at the reload value and an interrupt is generated at IRQ6. Setting Run/xStop_T2 to 0_b will reset the count register TIM2 and reset the interrupt request.
 - Circular mode: Timer 2 is started by setting Run/xStop_T2 to 1_b. Timer 2 counts up from 0H until the reload value is reached. Then an interrupt is generated at IRQ6, the timer is automatically reset and re-starts counting from 0H. Setting Run/xStop_T2 to 0_b will stop the counter, reset the count register TIM2 and reset the interrupt request (if active).
 - Retrigger mode: Timer 2 is started by setting Run/xStop_T2 to 1_b. Timer 2 counts up from 0H, if the UART-RXD pin is at high level. If UART-RXD goes to low level, the timer register TIM2 is reset to zero and re-starts counting, when UARD-RXD goes back to high level. If Timer 2 reaches the reload value, before UART-RXD goes to low level, an interrupt is generated at IRQ6.

14.2.1 Address assignment of Timer 2 registers

The timer registers are 32 bits in width. For read/write access of the timer registers to be meaningful, a 32-bit access is required. However, an 8-bit or 16-bit access is not intercepted by the hardware.

Address	Register Name	Size	R/W	Initial value	Description
4000 2020H	TIM2_CTRL	32 bit	R/W	0000 0000H	Control register timer 2
4000 2024H	TIM2	32 bit	R	0000 0000H	Timer 2 value register

Table 14-2: Address Assignment of Timer 2 Registers

Note: Reserved bits in all registers are undefined when read; always write the initial (reset) values to these bits.

14.2.2 Detailed description of Timer 2 registers

Figure 14-10: Control Register for Timer 2 (TIM2_CTRL) (1/2)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Address	Initial value
					re	serve	ed						Timer _Mode	One Shot_ Mode	Run/ xStop _T2	4000 2020H	0000 0000H
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
	Reload																

Bit position	Bit name	R/W			Function
(31:19)	-	-	Re	served	
				ner_Mode lects trigger mode f	or Timer 2.
18	Timer_Mode	R/W		Timer_Mode	Timer 2 trigger mode selection
				0 _b	Timer 2 is "free running" (initial value).
				1 _b	Timer 2 is re-triggered, if UART-RXD pin goes to 0_{b}
				eShot_Mode lects between one-s	shot mode and reload mode for Timer 2.
				OneShot_Mode	Timer 2 one shot mode selection
17	OneShot_ Mode	R/W		0 _b	Timer 2 is automatically set to 0H when the reload value is reached and continues counting (reload mode, initial value)
				1 _b	Timer 2 stops when the timer value equals the reload value (one shot mode)
				in/xStop_T2 arts and stops Time	r 2
16	Run/	R/W		Run/xStop_T2	Timer 2 start/stop
16	xStop_T2	K/VV		0 _b	Stops Timer 2, resets timer value register and de- activates Timer 2 interrupt request (initial value)
				1 _b	Starts Timer 2
(15:0)	Reload	R/W		load(15:0) is register holds the	16-bit reload value for Timer 2.

	Figure 14-11: Current Timer Value Register for Timer 2 (TIM2)																
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Address	Initial value
							rese	erved								4000 2024H	0000 0000H
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
	Timer																

Bit position	Bit name	R/W	Function
(31:16)	-	-	Reserved
(15:0)	Timer	R	Timer(15:0) This register holds the current counter value for Timer 2.

14.3 F-Timer

An F-timer is integrated in ERTEC 200 in addition to the system timers. This timer works independently of the system clock and can be used for fail-safe applications, for example. The F-timer is operated with an external clock, that is supplied via the F_CLK input pin.

The following signal pins are available for the F-timer on ERTEC 200.

Pin Name	I/O	Function	Number of pins
F_CLK	I	F_CLK for F-timer	1
total			1

Table 14-3: F-Timer Pin Functions

14.3.1 Functional description of the F-Timer

The asynchronous input signal of the external independent time base is applied at a synchronization stage via the F_CLK input pin. To prevent occurrences of metastable states at the counter input, the synchronization stage is implemented with three flip-flop stages. The count pulses are generated in a series-connected edge detection. All flip-flops run at the APB clock of 50 MHz.

The F-COUNTER-VAL register is reset using an asynchronous block reset or by writing the value xxxx 55AAH ("x" means "don't care) to the F-counter register F-COUNTER-RES. The next count pulse sets the counter to FFFF FFFFH and the counter is decremented at each additional count pulse. The F-COUNTER_RES register is cleared again at the next clock cycle.

The current count value can be read out by a 32-bit read access. While an 8-bit or 16-bit read access is possible, it is not useful because it can result in an inconsistency in the read count values.

Note: The maximum input frequency for the F_CLK pin is one-quarter of the APB clock. In the event of a quartz failure on ERTEC 200, a minimum output frequency between 40 and 90 MHz is set at the PLL. This results in a minimum APB clock frequency of 40 MHz / 6 = 6.6666 MHz. To prevent a malfunction in the edge evaluation, the F_CLK frequency must not exceed a quarter of the minimum APB clock frequency, thus 6.66 MHz/4 = 1.6666 MHz

The figure below shows the function blocks of the F-timer.

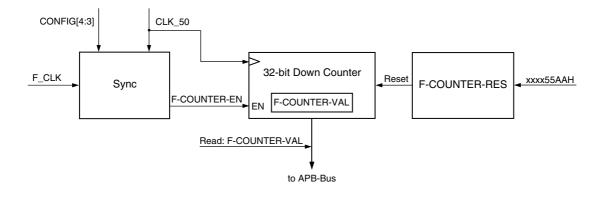


Figure 14-12: F-Timer Block Diagram

14.3.2 Address assignment of F-Timer registers

The F-timer registers are 32 bits wide. The registers should be read or written to with 32-bit accesses only in order to avoid inconsistencies.

Table 14-4:	Address Assignment of F-Timer Registers
-------------	---

Address	Register Name	Size	R/W	Initial value	Description
4000 2700H	F-COUNTER-VAL	32 bit	R	0000 0000H	F-timer value
4000 2704H	F-COUNTER-RES	32 bit	W	0000 0000H	F-timer reset register

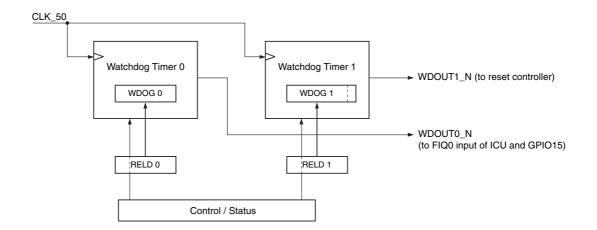
14.3.3 Detailed F-Timer register description

Figure 14-13: F-Timer Value Register (F-COUNTER-VAL)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Address	Initial value
	F-CNT-VAL											4000 2700H	0000 0000H				
												-					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
	F-CNT-VAL																

Bit position	Bit name	R/W	Function
(31:0)	F-CNT-VAL	R	F-CNT-VAL(31:0) This register contains the current value of the F-timer's counter register.

Figure 14-14: F-Timer Reset Register (F-COUNTER-RES)


31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Address	Initial value
	reserved												4000 2704H	0000 0000H			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
	F-CNT-RES																

Bit position	Bit name	R/W	Function
(31:16)	-	W	Reserved Write arbitrary data
(15:0)	F-CNT- RES	W	F-CNT-RES(15:0) Reset value for F-timer; a reset of the F-timer is only performed if the pattern 55AAH is written to the lower 16 bits of the F-timer reset register. Conse- quently, an F-timer reset could as well be performed with a 16-bit write access.

[MEMO]

Chapter 15 Watchdog Timers

Two watchdog timers are integrated in ERTEC 200. The watchdog timers are intended for stand-alone monitoring of processes. Like the processor clock, their working clock of 50 MHz is derived from the PLL. Figure 15-1 shows a simplified block diagram of the watchdog timers.

15.1 Watchdog Timer Function

Watchdog timer 0 is a 32-bit down-counter to which the WD_WDOUT0_N output is assigned. This output can be used as an alternative function 2 of the GPIO15-pin (see section 11.2). The timer is locked after a reset. It is started by setting the Run/xStop_Z0 bit in the CTRL/STATUS watchdog register. A maximum monitoring time of 85.89 s (with a resolution of 20 ns) can be programmed.

Watchdog timer 1 is a 36-bit down-counter in which only the upper 32 bits can be programmed. The WDOUT1_N output signal is assigned to watchdog timer 1. This output signal is not routed to the outside; it triggers a hardware reset internally. The timer is locked after a reset. It is started by setting the Run/xStop_Z1 bit in the CTRL/STATUS watchdog register. A maximum monitoring time of 1374.3 s (with a resolution of 320 ns) can be programmed.

When the Load bit is set in the CTRL/STATUS watchdog register, both watchdog timers are simultaneously reloaded with the applicable reload values of their reload registers. In the case of watchdog timer 1, bits (35:4) are loaded with the reload value; bits (3:0) are set to 0.

The count values of the watchdog timers can also be read. When watchdog timer 1 is read, bits (35:4) are read out. The status of the two watchdog timers can be checked by reading the CTRL/STATUS register.

The output of watchdog timer 0 is routed to the input FIQ0 of the FIQ interrupt controller. The interrupt is only active (High), if watchdog timer 0 is in RUN mode and if watchdog timer 0 has reached zero. The exception to this is a load operation with reload value = 0.

The WD_WDOUT0_N output is at Low after a reset. If watchdog timer 0 is set in RUN mode and the timer value does not equal zero, the output changes to High. The output changes to Low again when the count has reached zero. The output can also be reset by stopping and then restarting watchdog timer 0. The signal can be used as an external output signal at the GPIO15 port, if the alternative function 2 is configured for this pin. The output can thus inform an external host about an imminent watchdog event.

The (internal) WDOUT1_N signal is at high (inactive) level after a reset when watchdog timer 1 goes to Stop. If watchdog timer 1 is started, WDOUT1_N changes to Low when the timer reaches zero. It remains Low until watchdog timer 1 is loaded with the reset value again by setting the LOAD bit. The exception is, when reload value = 0 is loaded. A hardware reset is triggered internally with WDOUT1_N.

Figure 15-2 below shows the time sequence of the watchdog interrupt and the two watchdog signals:

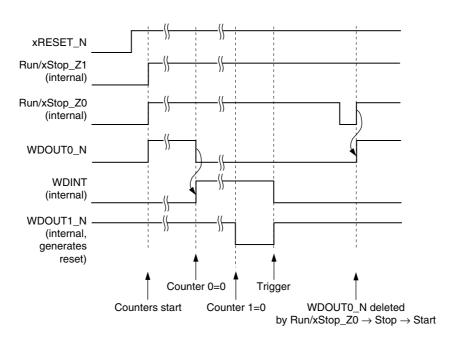


Figure 15-2: Watchdog Timer Output Timing

15.2 Address Assignment of Watchdog Registers

The watchdog registers are 32 bits in width. For meaningful read/write accesses to the watchdog registers, 32-bit accesses are required. However, a byte-by-byte write operation is not intercepted by the hardware.

To prevent the watchdog registers from being written to inadvertently, e.g., in the event of an undefined computer crash, the writable watchdog registers are provided with a write protection mechanism. The upper 16 bits of the registers are so-called key bits. In order to write a valid value in the lower 16 bits, the key bits must be set to 9876 yyyyH, where yyyyH is the 16-bit value to be written.

Address	Register Name	Size	R/W	Initial value	Description
4000 2100H	CTRL/STATUS	32 bit	R/W	0000 0000H	Control/status register watchdog
4000 2104H	RELD0_LOW	32 bit	R/W	0000 FFFFH	Reload register 0 low
4000 2108H	RELD0_HIGH	32 bit	R/W	0000 FFFFH	Reload register 0 high
4000 210CH	RELD1_LOW	32 bit	R/W	0000 FFFFH	Reload register 1 low
4000 2110H	RELD1_HIGH	32 bit	R/W	0000 FFFFH	Reload register 1 high
4000 2114H	WDOG0	32 bit	R	FFFF FFFFH	Watchdog timer 0 counter register
4000 2118H	WDOG1	32 bit	R	FFFF FFFFH	Watchdog timer 1 counter register

Table 15-1: Address Assignment of Watchdog Registers

Note: Reserved bits in all registers are undefined when read; always write the initial (reset) values to these bits.

15.3 Detailed Watchdog Register Description

Figure 15-3: Watchdog Control/Status Register (CTRL/STATUS) (1/2)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Address	Initial value
							Key	bits								4000 2100H	0000 0000H
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
				re	serve	ed					Statu s_Co unter 1	s_Co	Loa	xSto	′Run/ xSto p_Z 0		

Bit position	Bit name	R/W		Function								
(31:16)	Key bits	R/W	Key bits Must be written with 9876H in order to make a write access effective; read 0000H.									
(15:5)			Reserved									
			Status_Counter 1 Represents the curren	Status_Counter 1 Represents the current status of watchdog timer 1 counter								
			Status_Counter 1	Watchdog timer 1 counter status								
4	Status_ Counter 1	R	0 _b	Watchdog 1 has not expired (initial value)								
	o ountor 1		1 _b	Watchdog 1 has expired ^{Note}								
			Status_Counter 0	ly be read as 1 _b , when the Run/xStop_Z1 bit is set.								
	Status_ Counter 0	R	Status_Counter 0	Watchdog timer 0 counter status								
3			0 _b	Watchdog 0 has not expired (initial value)								
			1 _b	Watchdog 0 has expired ^{Note}								
				ly be read as 1_b , when the Run/xStop_Z0 bit is set.								
			Load Common load trigger f	or both watchdog timer counters.								
			Load	Reload for watchdog timer counters								
			0 _b	No effect (initial value)								
2	Load	R/W	1 _b	Watchdog counters 0 and 1 are loaded with their respective reload register values. ^{Note}								
			though this bit of writing. Wri	cuted irrespective of the Run/xStop_Z1/0 bits. Even can be read back, it only has an effect at the instance ting a value of 1 _b to this bit is sufficient to trigger the edge is not needed.								

Bit position	Bit name	R/W		Function
			Run/xStop_Z1 Starts/stops watchdog	g timer 1 counter
			Run/xStop_Z1	Watchdog 1 start/stop
1	Run/ xStop_Z1	R/W	0b	Watchdog 1 is stopped (initial value)
	X010p_21		1 _b	Watchdog 1 is running
				s $0_{\rm b}$, the watchdog output to the reset controller inactive the status bit of the watchdog counter 1 is $0_{\rm b}$.
			Run/xStop_Z0 Starts/stops watchdog	g timer 0 counter
			Run/xStop_Z0	Watchdog 0 start/stop
	Run/		0 _b	Watchdog 0 is stopped (initial value)
0	xStop_Z0	R/W	1 _b	Watchdog 0 is running
			active (low	s 0_b , the WD_WDOUT0_N output of the ERTEC 200 is v), the interrupt request of the watchdog is 0_b and the of the watchdog counter 1 is 0_b .

Figure 15-3: Watchdog Control/Status Register (CTRL/STATUS) (2/2)

Figure 15-4: Reload Register Low for Watchdog 0 (RELD0_LOW)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Address	Initial value
							Key	bits								4000 2104H	0000 FFFFH
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
							Relo	bad0									

Bit position	Bit name	R/W	Function
(31:16)	Key bits	R/W	Key bits(15:0) Must be written with 9876H in order to make a write access effective; read 0000H.
(15:0)	Reload0	R/W	Reload0(15:0) Holds the reload value for bits (15:0) of watchdog timer 0 counter.

Chapter 15 Watchdog Timers

			Fig	ure	15-5	: R	eloa	d Re	giste	er Hi	gh fo	or Wa	atcho	dog () (RE	ELD0_HIGH)	
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Address	Initial value
							Key	bits								4000 2108H	0000 FFFFH
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
							Relo	bad0									

Bit position	Bit name	R/W	Function
(31:16)	Key bits	R/W	Key bits(15:0) Must be written with 9876H in order to make a write access effective; read 0000H.
(15:0)	Reload0	R/W	Reload0(15:0) Holds the reload value for bits (31:16) of watchdog timer 0 counter.

Figure 15-6: Reload Register Low for Watchdog 1 (RELD1_LOW)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Address	Initial value
							Key	bits								4000 210CH	0000 FFFFH
																-	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
							Relo	oad1									

Bit position	Bit name	R/W	Function
(31:16)	Key bits	R/W	Key bits(15:0) Must be written with 9876H in order to make a write access effective; read 0000H.
(15:0)	Reload1	R/W	Reload1(15:0) Holds the reload value for bits (19:4) of watchdog timer 1 counter; bits (3:0) are always reloaded to $0000_{\rm b}$.

Chapter 15 Watchdog Timers

			Fig	ure	15-7.	:R	eloa	d Re	giste	er Hi	gh fo	or Wa	atcho	dog	1 (RE	ELD1_HIGH)	
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Address	Initial value
							Key	bits								4000 2110H	0000 FFFFH
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	_	
							Rel	bad1									

Bit position	Bit name	R/W	Function
(31:16)	Key bits	R/W	Key bits(15:0) Must be written with 9876H in order to make a write access effective; read 0000H
(15:0)	Reload1	R/W	Reload1(15:0) Holds the reload value for bits (35:20) of watchdog timer 1 counter.

Figure 15-8: Counter Register for Watchdog 0 (WDOG0)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Address	Initial value
							WD	OG0								4000 2114H	FFFF FFFFH
																-	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
							WD	OG0									

Bi	t position	Bit name	R/W	Function
	(31:0)	WDOG0	R	WDOG0(31:0) Holds the current counter value for watchdog timer 0.

Figure 15-9: Counter Register for Watchdog 1 (WDOG1)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Address	Initial value
							WD	OG1								4000 2118H	FFFF FFFFH
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
							WD	OG1									

Bit position	Bit name	R/W	Function
(31:0)	WDOG1	R	WDOG1(31:0) Holds bit (35:4) of the current counter value for watchdog timer 1; bits (3:0) of the current counter value cannot be read.

[MEMO]

Chapter 16 Multiport Ethernet PHY

ERTEC 200 has a multiport Ethernet PHY (Physical Layer Transceiver) for 2 channels integrated, that supports the following transmission modes:

- 10BASE-T
- 100BASE-TX
- 100BASE-FX

It can be connected to unshielded twisted-pair (UTP) cable via external magnetics or to optical fiber via fiber PMD modules. Internally on the ERTEC 200 it interfaces to the MAC layer through the IEEE 802.3 Standard Media Independent Interface (MII).

The core has a DSP-based architecture for signal equalization and baseline wander correction. This helps to achieve high noise immunity and to extend UTP cable lengths. The transmission modes can be configured for each port individually. Beside these basic modes, the following (configurable) features are supported as well:

- Auto-negotiation
- Auto-MDI/MDIX detection
- Auto polarity

The PHYs comply to the following standards:

- IEEE802.3
- IEEE802.3u
- ANSI X3.263-1995
- ISO/IEC9314

Communication between the integrated PHYs and the integrated Ethernet MACs is realized with onchip MII interfaces. Internal registers of the PHYs can be accessed via the common (on-chip) serial management interface (SMI). Furthermore certain set-ups for the PHYs can be programmed using the system control registers that are described in Chapter 17. A couple of output signals per channel is available to reflect the connection status via LEDs; these signals are shared with GPIO pins. The PHYs need a 25 MHz clock that can be provided on two alternative ways:

- connect a 25 MHz quartz to the CLKP_A and CLKP_B pins
- connect a 25 MHz oscillator to the CLKP_A pin.

In order to reduce power consumption, the PHYs can be driven to a power down mode either manually or automatically, if there is no activity on the Ethernet line.

The on-chip PHYs of ERTEC 200 use the following pins:

Pin Name	I/O	Function	Number of pins
P(2:1)TxN	0	Differential transmit data output	2
P(2:1)TxP	0	Differential transmit data output	2
P(2:1)TDxN	0	Differential FX transmit data output	2
P(2:1)TDxP	0	Differential FX transmit data output	2
P(2:1)RxN	Ι	Differential receive data input	2
P(2:1)RxP	Ι	Differential receive data input	2
P(2:1)RDxN	Ι	Differential FX receive data input	2
P(2:1)RDxP	Ι	Differential FX receive data input	2
P(2:1)SDxN	Ι	Differential FX signal detect input	2
P(2:1)SDxP	Ι	Differential FX signal detect input	2
EXTRES	I/O	External reference resistor (12.4 kΩ) Note	1
DVDD(4:1)	Ι	Digital power supply, 1.5 V	4
DGND(4:1)	Ι	Digital GND	4
P(2:1)VSSATX(2:1)	Ι	Analog port GND	4
P(2:1)VDDARXTX	I	Analog port RX/TX power supply, 1.5 V	2
P(2:1)VSSARX	Ι	Analog port GND	2
VDDAPLL	Ι	Analog central power supply, 1.5 V	1
VDDACB	I	Analog central power supply, 3.3 V	1
VSSAPLLCB	Ι	Analog central GND	1
VDD33ESD	Ι	Analog test power supply, 3.3 V	1
VSS33ESD	I	Analog test GND	1
total	•	•	42

Note that Table 16-1 includes the specific power supply pins that are needed for operation of the PHYs, however it does not include the status indication signals that are shared with GPIO pins.

16.1 Functional Description

This chapter gives a functional description of the integrated PHYs on ERTEC 200 based on the block diagram shown in Figure 16-1. Figure 16-1 shows a single channel; both channels have identical structure. The subsequent chapters will frequently refer to signals that are present on the MII interface between on-chip PHY and on-chip MAC. In these cases the signal names that have been introduced in Table 2-3 will be used. Note that these signals can be externally monitored when ERTEC 200 has been configured to MII diagnosis mode with the CONFIG(6:1) pins.



Figure 16-1: PHY Block Diagram

16.1.1 10BASE-T Operation

A 10BASE-T transceiver is implemented for a 10 Mbps CSMA/CD LAN over two pairs of twisted-pair wires according to the specifications given in clause 14 of the IEEE 802.3 standard. During transmission, 4-bit nibble data comes from the MII interface at a rate of 2.5 MHz and is converted into a 10 Mbps serial data stream. The data stream is then Manchester-encoded and sent to the analog transmitter which drives a signal to the twisted pair cable via external magnetics.

In order to comply with legacy 10BASE-T MAC/Controllers, the transmitted data is looped back to the receive path, if the PHY is configured to work in half-duplex mode.

On the receiver side, the receive clock is recovered from the incoming signal. The received Manchester-encoded analog signal from the cable is recovered to the NRZI data stream using the clock. Then the 10 Mbps serial data stream is again converted to 4-bit data that are passed to the MAC across the MII interface at a rate of 2.5 MHz. The PHY realizes a complete 10BASE-T transceiver function. It includes the receiver, transmitter and the following functions.

- <1> Filter and squelch
- <2> Jabber detection
- <3> Signal quality error (SQE) message test function
- <4> Timing recovery from received data
- <5> Manchester encoding/decoding
- <6> Full-duplex or half-duplex mode In half-duplex mode, the PHY transmits and simultaneously receives in order to provide
 - loopback of the transmitted signal. (Refer to section 14.2.1.3 of IEEE802.3)
- <7> Collision presence function (half duplex mode only)
- <8> Carrier sense detection CRS is asserted only to receive activity for Full-Duplex mode. CRS is asserted during either packet transmission or reception for half-duplex mode.

(1) Filter and Squelch

The Manchester encoded signal from the cable is fed into the transceiver's receive path via 1:1 ratio magnetics (see Chapter for details of the circuit). It is first filtered to reduce any out-of-band noise. It then passes through a squelch circuit - a set of amplitude and timing comparators that normally reject differential voltage levels below 300 mV and detect and recognize differential voltages above 585 mV.

(2) Jabber detection

Jabber is a condition in which a station transmits for a period of time longer than the maximum permissible packet length - usually due to a fault condition - that results in holding the TX_EN_P(2:1) signal active for a long period. Special logic is used to detect the jabber state and to abort the transmission to the line within 45 ms. The maximum time of of unjab is 350 ms. Once TX_EN_P(2:1) is deasserted, the logic resets the jabber condition. Basic status register 1 indicates that a jabber condition was detected; details about the register functions are given in Chapter 16.3.

(3) SQE test function

The PHYs on ERTEC 200 support a signal quality error (SQE) test function. This function controls if data transmission is successful; successful transmission is indicated by activating the COL_P(2:1) signal for 1 μ s, 2 μ s after TX_EN_P(2:1) has been deasserted. This signal is also referred to as "heartbeat" signal.

If desired, the SQE test function can be disabled by setting the SQEOFF bit in control/status register 27 to 1_b . The setting of the SQEOFF bit is irrelevant when the PHY is working in 100BASE-TX or -FX modes.

(4) Manchester encoding/decoding

When encoding, the 4-bit nibble data, that is coming from the MII interface, is converted to a 10 Mbps serial NRZI data stream. The 10M PLL locks onto the external clock and produces a 20 MHz clock signal. which is used to Manchester encode the NRZ data stream.

When no data is being transmitted, normal link pulses (NLPs) are output to maintain communications with the remote link partner.

When decoding, the 10M PLL is locked onto the received Manchester signal and from this, the internal 20 MHz receive clock is generated. Using this clock, the Manchester encoded data is extracted and converted to a 10 MHz NRZI data stream. This stream is then converted from serial to 4-bit nibble data.

16.1.2 100BASE-TX Operation

100BASE-TX specifies operation over two copper media: two pairs of shielded twisted-pair cable (STP) and two pairs of unshielded twisted-pair cable (Category 5 UTP). 100BASE-TX function includes the physical coding sub-layer (PCS), the physical medium attachment (PMA) and physical medium dependent sub-layer (PMD).

When transmitting, 4-bit data nibbles come from the MII interface at a rate of 25 MHz and are converted to 5-bit encoded data. The data is then serialized and scrambled, subsequently converted to a NRZI data stream and MLT-3 encoded.

In the receive path the ADC samples the incoming MLT-3 signal at a sapling frequency of 125 MHz. The resulting MLT-3 signal is reconverted to the NRZI data stream, and then the descrambler performs the inverse function of the scrambler in the transmit path and parallelizes the data. The 4B/5B decoder completes the processing and supplies the data ready for transmission over the MII interface.

This section describes the main functions of the 100BASE-TX portion of the PHYs.

- <1> Full-duplex or Half-duplex mode
- <2> Collision detect indication
- <3> Carrier Sense detection
- <4> MLT-3 to (from) NRZ Decoding/Encoding
- <5> 4B/5B Encoding/Decoding
- <6> Scrambler/Descrambler
- <7> Adaptive Equalization(DSP)
- <8> Baseline Wander Correction
- <9> Timing recovery from received data
- <10> Support MII, RMII and Symbol interface

(1) Timing recovery

The 125M PLL locks onto the 25 MHz reference clock and generates an internal 125 MHz clock used to drive the 125 MHz logic and the 100BASE-TX transmitter. The PLL generates multiple phases of the 125 MHz clock. A multiplexer, controlled by the timing unit of the DSP block, selects the optimum phase for sampling the data. This is used as the recovered receive clock, which is then used to extract the serial data from the received signal.

(2) Adaptive equalizer

The adaptive equalizer compensates phase and amplitude distortion caused by the physical transmission channel consisting of magnetics, connectors, and CAT-5 cable. Thus, the supported cable length is increased.

(3) Baseline wander correction

If the DC content of the signal is such that the low-frequency components fall below the low frequency pole of the isolation transformer, then the droop characteristics of the transformer will become significant and baseline wander (BLW) on the received signal will result. To prevent corruption of the received data, the PHY corrects the baseline wander effects using DSP algorithms.

(4) 4B/5B encoding/decoding

In 100BASE-TX mode, 4B/5B coding is used. The 4B/5B encoder converts 4-bit nibbles coming from the MII interface to 5-bit symbols that are referred to as "code-groups". The relation between original and encoded data is shown in Table 16-2.

For testing purposes the encoder and decoder can be bypassed with the Enable 4B5B bit in the PHY special control/status register. In this case the 5th bit of the output pattern reflects the current level of the TX_ERR_P(2:1) signal of the MII interface.

Codo group	Name	Trans	Transmitter		Receiver	
Code group	name	from MAC via MII Interpretation		Interpretation	to MAC via MII	
11110	0	0000	Data 0	Data 0	0000	
01001	1	0001 Data 1		Data 1	0001	
10100	2	0010	Data 2	Data 2	0010	
10101	3	0011	Data 3	Data 3	0011	
01010	4	0100	Data 4	Data 4	0100	
01011	5	0101	Data 5	Data 5	0101	
01110	6	0110	Data 6	Data 6	0110	
01111	7	0111	Data 7	Data 7	0111	
10010	8	1000	Data 8	Data 8	1000	
10011	9	1001	Data 9	Data 9	1001	
10110	Α	1010	Data A	Data A	1010	
10111	В	1011	Data B	Data B	1011	
11010	С	1100	Data C	Data C	1100	
11011	D	1101	1101 Data D		1101	
11100	E	1110	Data E	Data E	1110	
11101	F	1111	Data F	Data F	1111	
11111	I	Sent after /T and /R (end of stream) until TX_EN_P(2:1) is asserted again		Idle		
11000	J	Sent, when TX_EN_P(2:1) is asserted		1 st nibble of start of stream data (SSD); translates to 0101 if received after "idle"; otherwise RX_ERR_P(2:1) is asserted		
10001	к	Sent after /J		2 nd nibble of SSD; if received after /J; RX_ERR_P(2:1) is	otherwise	
01101	т	Sent when TX_EN_P(2:1) is deas- serted		1 st nibble of end of (ESD); translates to deassertion of CRS lowed by /R; otherw RX_ERR_P(2:1) is	o 1010 and causes S_P(2:1) when fol- vise	
00111	R	Sent after /T		2 st nibble of ESD; t and causes deasse CRS_P(2:1) when otherwise RX_ERR asserted	ertion of preceded by /T;	
00100	н	Sent when TX_ERI asserted	R_P(2:1) is	Transmit error	Undefined	
all others	V	Invalid code		Invalid code; RX_ERR_P(2:1) is asserted if received while RX_DV_P(2:1) is active		

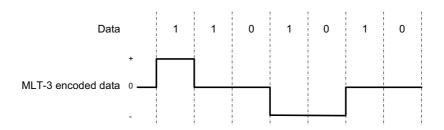
Table 16-2: 4B/5B Code Table

(5) Scrambling/Descrambling

Scrambling the data before transmission helps to eliminate large narrow-band signal power peaks for repeated data patterns, and spreads the signal power more uniformly over the entire channel bandwidth.

The scrambler encodes a plaintext NRZ bit stream by addition (modulo 2) of 2047 bits generated by the recursive linear function X[n] = X[n-11] + X[n-9] (modulo 2). The scrambler generates the specified non-zero key stream whenever the active output interface is required to transmit a scrambled data stream. The seed for the scrambler is generated from the PHY address, ensuring that in multiple-PHY applications each PHY will have its individual scrambler sequence.

The descrambler descrambles the NRZ ciphertext bit stream coming from the MLT-3 decoder by addition (modulo 2) of a key stream to re-produce a plaintext bit stream. During the reception of IDLE symbols, the descrambler synchronizes its descrambler key to the incoming stream. Once synchronization is achieved, the descrambler locks on this key and is able to descramble incoming data.


Special logic in the descrambler ensures synchronization with the remote PHY by searching for IDLE symbols within a window of 4000 bytes (40us). This window ensures that a maximum packet size of 1514 bytes, allowed by the IEEE 802.3 standard, can be received with no interference.

This core has a scrambler and descrambler bypass mode for testing purposes.

(6) MLT3 Encoding/Decoding

In the transmit direction, the serial 125 MHz NRZI data stream is encoded to MLT-3. MLT-3 is a trilevel code where a change in the logic level represents a code bit "1" and the logic output remaining at the same level represents a code bit "0".

In the receive direction, the MLT-3 code is converted to an NRZI data stream. The NRZI to MLT-3 conversion is illustrated in Figure 16-2.

Figure 16-2: MLT-3 Encoding Example

(7) Receive Data Valid / Receive Error

The receive data valid signal RX_DV_P(2:1) indicates that recovered and decoded nibbles are being presented on the RXD_P1(3:0) respectively RXD_P2(3:0) outputs synchronous to RX_CLK_P(2:1). RX_DV_P(2:1) becomes active after the /J/K/ delimiter has been recognized and RXD_P(2:1) is aligned to nibble boundaries. It remains active until either the /T/R/ delimiter is recognized or link test indicates failure or CRS_P(2:1) becomes false.

RXDV is asserted when the first nibble of translated /J/K/ is ready for transfer over the Media Independent Interface (MII).

During a frame, unexpected code-groups are considered as receive errors. Expected code groups are the data set (0H through FH), and the /T/R/(ESD) symbol pair. When a receive error occurs, the RX_ERR_P(2:1) signal is asserted and arbitrary data is driven onto the RXD lines. Should an error be detected during the time that the /J/K/ delimiter is being decoded (bad SSD error), RX_ERR(2:1) is asserted true and the value 1110_b is driven onto the RXD_P(2:1) lines. Note that the valid vata signal is not yet asserted when the bad SSD error occurs.

16.1.3 100BASE-FX Operation

This section describes main functions within the PHY in 100BASE-FX operation.

- <1> NRZI to(from) NRZ converter
- <2> Far End Fault Indication
- <3> Timing recovery from received data
- <4> Support MII, RMII, SMII and Symbol interface

The 100BASE-FX shares logic with 100BASE-TX; the differences between 100BASE-FX mode and 100BASE-TX mode are following,

- <1> Transmit output/receive input is not scrambled or MLT3 encoded.
- <2> All analog circuits except for the PLL are powered-down.
- <3> Auto-Negotiation is disabled.
- <4> The transmit data is output to a FX transmitter.
- <5> The receive data is input to the FX ECL level detector instead of the equalizer.
- <6> The FX interface has a signal detect input.

(1) Signal Detect

The signal detect signals P(2:1)SDxP/N are input signals to the PHY from the PMD FX transceiver. Assertion of P(2:1)SDxP/N indicates a valid FX signal on the fiber. When SD is deactivated, the LINK goes down and no data is sent to the controller.

(2) Far End Fault indication

Far End fault indication (FEFI) is a mechanism used to communicate physical status across a fiber link. Each PHY monitors the status of its receive link using the Signal Detect input. If the PHY detects a problem with its receive link, it communicates that to its link partner using the FEFI mechanism.

FEFI consists of a modification to the IDLE code patterns. In this mode, every 16 IDLE code groups are followed by a data-0 code group. If the PHY detects a FEFI pattern in its receive stream, it de-asserts its link status and transmits only IDLE patterns (not FEFI) on its transmit stream.

A full description of the Far End Fault Function is given in Section 24.3.2.1 in the 802.3 standard.

The objective of the Auto-Negotiation function is to provide the means to exchange information between two devices that share a link segment and to automatically configure both devices to take maximum advantage of their abilities.

16.1.4 Auto-Negotiation

The auto-negotiation protocol is a purely physical layer activity and proceeds independently of the MAC controller. The auto-negotiation function sends fast link pulse (FLP) bursts for exchanging information with its link partner. A FLP burst consists of 33 pulse positions. The 17 odd-numbered pulse positions shall contain a link pulse and represent clock information. The 16 even-numbered pulse positions represent data information. The data transmitted by an FLP burst is known as a "Link Code Word". These are fully defined in clause 28 of the IEEE 802.3 specification.

This core supports auto-negotiation and implements the "Base page", defined by IEEE 802.3. It also supports the optional "Next page" function to get the remote fault number code.

(1) Parallel detection

The parallel detection function allows detection of Link Partners that support 100BASE-TX and/or 10BASE-T, but do not support Auto-Negotiation. The PHY is able to determine the speed of the link based on either 100M MLT-3 symbols or 10M Normal Link Pulses. If the PHY detects either mode, it automatically reverts to the corresponding operating mode. In this case the link is presumed to be half duplex.

If a link is established via parallel detection, then Bit 0 of the Auto-Negotiation Expansion register is cleared to indicate that the link partner is not capable of auto-negotiation. The controller has access to this information via the management interface. If a fault occurs during parallel detection, bit 4 of the Auto-Negotiation Expansion register is set.

The Auto-Negotiation Link Partner Ability register is used to store the link partner ability information, which is coded in the received FLPs. If the link partner is not auto-negotiation capable, then the Auto-Negotiation Link Partner Ability register is updated after completion of parallel detection to reflect the speed capabilities of the link partner.

(2) Re-negotiation

Auto-negotiation is started by one of the following events:

- <1> H/W reset
- <2> S/W reset
- <3> setting the Auto-Negotiation Enable bit in the Basic Control register from low to high

When auto-negotiation is enabled, it is re-started by one of the following events:

- <1> Link status is down.
- <2> Setting the Auto-Negotiation Restart bit in the Basic Control register to high.

(3) **Priority Resolution**

If two Ethernet communication partners negotiate their capabilities, there are four possible matches of the technology abilities. In the order of priority these are:

- 100M full Duplex (highest priority)
- 100M Half Duplex
- 10M full Duplex
- 10M Half Duplex (lowest priority)

Since two devices (local device and remote device) may have multiple abilities in common, a prioritization scheme exists to ensure that the highest common denominator ability is chosen. Full duplex solutions are always higher in priority than their half duplex counterparts. 10BASE-T is the lowest common denominator and therefore has the lowest priority. If a link is formed via parallel detection, then the Link Partner Auto-negotiation Able bit in the Auto Negotiation Expansion register is cleared to indicate that the link partner is not capable of auto-negotiation. The controller has access to this information via the management interface. If a fault occurs during parallel detection, the Parallel Detection Fault bit in the same register is set. The Auto-Negotiation Link Partner Ability register 5 is used to store the link partner's ability information, which was decoded from the received FLPs. If the link partner is not auto-negotiation capable, then register is updated after completion of parallel detection to reflect the speed capability of the link partner.

(4) Next Page function

Additional information, exceeding that required by base page exchange, is also sent via "Next Pages"; this PHY supports the optional "Next page" function. Next page exchange occurs after the base page has been exchanged. Next page exchange consists of using the normal Auto-Negotiation arbitration process to send next page messages. Two kinds of message encodings are defined: Message Pages, which contain predefined 11 bit codes, and unformatted pages.

Next page transmission ends when both ends of a link segment set their Next Page bits to logic zero, indicating that neither has anything additional to transmit. It is possible for one device to have more pages to transmit than the other device. Once a device has completed transmission of its next page information, it shall transmit message pages with Null message codes and the NP bit set to logic zero while its link partner continues to transmit valid next pages.

Devices, that are able of auto-negotiation, shall recognize reception of message pages with Null message codes as the end of its link partner's next page information. The default value of the next page support is disable (Next Page bit in Auto-Negotiation Advertisement register). To enable next page support, the Next Page bit should be set to 1_b . Auto-Negotiation should be restarted and the message code to be transmitted to the remote link partner should be written to bit(10:0) of the Auto-Negotiation Next Page Transmit register .

(5) Disabling Auto-Negotiation

Auto-negotiation can be disabled by setting the Auto-Negotiation Enable bit in the Basic Control register. When Auto-negotiation is disabled, the speed and duplex mode settings are configured via the serial management interface.

16.1.5 Miscellaneous Function

This chapter summarizes some additional functions of the PHYs.

(1) LED indicators

Six LED signals are provided per PHY. These provide a convenient means to determine the operation mode of the PHYs. All LED signals are active low. The LED signals are made available through the GPIO pins of the ERTEC 200. The functions of the LED signals are as follows:

• 100BASE-TX/FX status

This signal shows, that operation speed is 100Mbps or during Auto-Negotiation; this signal will go inactive when the operating speed is 10Mbps or during line isolation.

- 10BASE-T status This signal shows, that operation speed is 10Mbps; this signal will go inactive when the operating speed is 100Mbps or during line isolation.
- Link status This signal shows, that the PHY detects a valid link. The use of the 10Mbps or 100Mbps link test status is determined by the condition of the internally determined speed selection.
- Full/Half Duplex

This signal shows, whether the established link is operating in full or half duplex mode; it is active in full duplex mode.

Transmit Activity

This signal shows, that CRS_P(2:1) is active (high) at transmit. When CRS becomes inactive, the transmit activity LED output is extended by 128ms in order to improve visibility.

Receive Activity

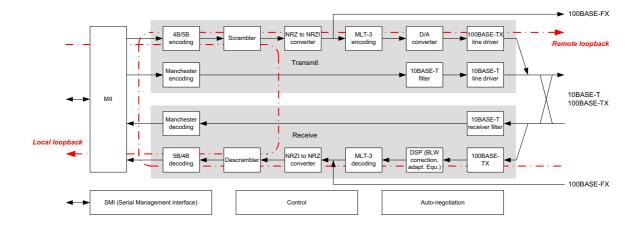
This signal shows, that CRS_P(2:1) is active (high) at receive. When CRS becomes inactive, the receive activity LED output is extended by 128ms in order to improve visibility. In loopback mode, this LED is not active.

Table 16-3 illustrates how the LED signals are made available at the GPIO pins.

GPIO pin	Function						
	1	2	3				
GPIO0	P1-DUPLEX-LED_N	-	-				
GPIO0	P1-DUPLEX-LED_N	-	-				
GPIO1	P2-DUPLEX-LED_N	-	-				
GPIO2	P1-SPEED-100LED_N (TX/FX)	P1-SPEED-10LED_N	-				
GPIO3	P2-SPEED-100LED_N (TX/FX)	P2-SPEED-10LED_N	-				
GPIO4	P1-LINK-LED_N	-	-				
GPIO5	P2-LINK-LED_N	-	-				
GPIO6	P1-RX-LED_N	P1-TX-LED_N	P1-ACTIVE-LED_N				
GPIO7	P2-RX-LED_N	P2-TX-LED_N	P2-ACTIVE-LED_N				

 Table 16-3:
 Assignment of LED Signals to GPIO Pins

(2) MDI/MDI-X crossover detection


The PHYs automatically detect and correct MDI/MDI-X crossover. This function can be disabled by setting the AutoMDIX_en bit in the Mode Control/Status register to 0_b. When it is disabled, crossover is corrected manually by setting the MDI mode bit in the same register accordingly.

(3) Polarity

This core automatically detects and corrects polarity reversal in wiring in 10BASE-T mode. The result of polarity detection is indicated by the XPOL bit in the Special Control/Status Indications register. Polarity is checked at end of packets in 10BASE-T. When a packet is corrupted by noise, the PHY may misinterprete information inside the packet as end of packet. In this case, the PHY may invert the polarity and a maximum of three packets is be needed to detect the valid polarity again.

(4) Loopback mode

This ERTEC 200 PHYs support two loopback modes: internal loopback and remote loopback. Figure 16-3 illustrates the differences between these two modes.

Figure 16-3: Internal and Remote Loopback Modes

(a) Internal loopback

This loopback mode is defined in the IEEE802.3 specification; it is enabled by setting the Loopback bit in the Basic Control register to1_b. In this mode, the scrambled transmit data is looped into the receive logic. The COL_P(2:1) signal will be inactive in this mode, unless the Collision Test bit in the Basic control register is active.

When the internal loopback mode is active, the receive circuitry should be isolated from the network medium. In this mode, the assertion of $TX_EN_P(2:1)$ at the MII interface does not result in the transmission of data on the network medium, and transmitters are powered down.

(b) Remote loopback

This mode is enabled by setting the FARLOOP BACK bit in the Mode Control/Status register to 1_b . This mode can be used only when the PHYs are in 100BASE-TX or 100BASE-FX mode. In this mode, packets that arrive at the receiver are looped back out to the transmitter. In 100BASE-TX mode, the data path includes the ADC, DSP, PCS circuits; in 100BASE-FX mode, the data path includes the ADC, DSP, PCS logic. As long as no data is received, IDLE symbols are transmitted.

In this mode, the complete preamble, SFD and EFD are re-generated by the PHY so that always complete packets are transmitted, even if received packets lack part of the preamble. The Isolate bit in the Basic Control register needs to be cleared to work in remote loopback mode.

(5) Power Down Modes

(a) Hardware power down

This state is entered after a hardware reset of ERTEC 200. The PHYs are switched off and their power consumption is almost 0 W. This state is left by setting the P1/2_PHY_ENB bits in the PHY_CONFIG register. All analog and digital blocks in the PHYs are initialized and the predefined configuration in the PHY_CONFIG register is copied to the PHYs. Then, the PHY-internal registers can be configured as well.

Setting the P1/2_PHY_ENB bits extends the internal reset signal in the PHYs to 5.2 ms in order to stabilize the PLL and all analog and digital blocks. When the PHYs are ready to operate, this is automatically indicated in the PHY_STATUS registers with the P1/2_PWRUPRST bits (set to 1_b).

(b) Software power down

This state is entered by writing a 1_b into the PowerDown bit of the Basic Control register of the PHYs. The affected PHY will then go into a low power state, where the MDIO interface is still active, but where no activity is possible on the MII interface. The power consumption of the PHYs in low power state is around 15 mW per PHY.

The low power mode is left by writing a 0_b into the PowerDown bit. The digital parts of the circuitry are re-initialised, however the start-up configuration, that is stored in the PHY_CONFIG register, is not copied again into the PHYs and the PHY registers are not set to their initial values. Leaving the low power state generates an internal reset for the PHYs with a duration of 256 μ s for PLL stabilization.

(c) Automatic power down

The PHYs support an automatic power down mode, that is entered, if there is no activity on the Ethernet line. To enable this mode, a 1_b must be written into the EDPWRDOWN bit of the Mode Control/Status register of the PHYs. No activity on the line will then automatically drive the PHY into the low power mode with approximately 15 mW power consumption per PHY. If link pulses or data packets are detected, the low power mode is automatically left with an internal reset of 256 µs and re-initialization of the circuitry. The first and possibly the second packet may be lost during the energy detection process. No configuration data is copied from the PHY_CONFIG register to the PHY at this point.

Automatic power down cannot be used as long as Auto-negotiation is enabled; therefore the Auto-Negotiation Enable bit in the Basic Control register must be set to 0_b for automatic power down.

(6) Resetting the PHYs

(a) Hardware reset

There are two methods to issue a hardware reset to the ERTEC 200 on-chip PHYs; the reset source can be selected using the PHY_RES_SEL bit in the PHY_CONFIG register:

PHY_RES_SEL = 0_bPowerOn reset via RESET_N input resets the PHYs PHY_RES_SEL = 1_bInternal RES_PHY_N signal from IRT switch resets the PHYs

If the PowerOn reset is used, the PHYs are active after reset; if RES_PHY_N is used, the PHYs remain in power down mode after reset and must subsequently be activated with the PowerDown bit in the Basic Control register. The HW reset must be present for at least 100 µs. These reset signals are internally extended by 5.2ms to ensure that the PHY is properly reset. All analog circuits and all digital logic including management registers are initialized. After initialization, the respective PWRUPRST signal in the PHY_STATUS register is set.

- **Notes: 1.** During the hardware reset and its extension, the clock signal for the PHYs must be supplied.
 - 2. A hardware reset is commonly issued to both PHYs.

(b) Software reset

Resetting the PHYs core can also be accomplished by setting the Reset bit in the respective Basic Control register to 1_b . This signal is self-clearing. After the register has been written, the internal software reset is extended by 256us for PLL stabilization before the logic is released from reset. A software reset affects the PHY registers and resets them to their initial values except where noted.

Note: A software reset can be issued separately for each PHY.

(c) Reset by software and energy detect power down

When the PHYs come out of software and energy detect power down, they are automatically activated. After exiting the power down mode, the PHY-internal power-down reset is extended by 256us for PLL stabilization before logic is released from reset.

Note: This PHY-internal power down reset does not affect the PHY management registers.

(7) Half/Full Duplex

In half duplex mode, stations contend for the use of the physical medium, using the CSMA/CD algorithms specified. Half duplex mode is required on those media that are not capable of supporting simultaneous transmission and reception without interference like 10BASE-2 and 100BASE-T4.

The full duplex operation mode can be used when all of the following conditions are fulfilled:

- <1> The physical medium is capable of supporting simultaneous transmission and reception without interference.
- <2> There are exactly two stations on the LAN. This allows the physical medium to be treated as a full duplex point-to-point link between the stations.
- <3> Both stations on the LAN are capable of and have been configured to use full duplex operation.

(8) Interrupt handling

Each PHY can generate a collective interrupt that can be triggered by several PHY-internal events; these two interrupts are routed with a wired-OR to the common IRQ9 input of the ERTEC 200 interrupt controller. Table 16-4 shows the events that can generate an interrupt from the PHYs:

Interrupt number	Interrupt Event
INT8	not used
INT7	ENERGYON generated
INT6	Auto-negotiation complete
INT5	Remote fault detected
INT4	Link down
INT3	Auto-negotiation LP acknowledge
INT2	Parallel detection fault
INT1	Auto-negotiation page received

Table 16-4: PHY Interrupt Events

Each of the interrupt events above is described in the protocol of the Interrupt Source Flag register in the PHYs; it can as well be masked or unmasked individually in the Interrupt Mask register in the PHYs (see Table 16-9).

(9) Isolate Mode

The PHY data path may be electrically isolated from the MII by setting the Isolate bit in the Basic Control register to 1_b . In isolate mode, in internal MII interface of the respective PHY is made inactive. However the PHYs still respond to management transactions. Isolation provides a means for multiple PHYs to be connected to the same MII without contention occurring and it is not really required to use onERTEC 200. The PHYs are not in isolate mode on power-up.

(10) Link integrity Test

The PHYs perform a link integrity test as outlined in the IEEE 802.3 Link Monitor state diagram. The link status is multiplexed with the 10Mbps link status to form the reportable Link Status bit in the Basic Control register 1, and is driven to the P(2:1)-LINK-LED_N output.

The DSP block indicates a valid MLT-3 waveform present on the P(2:1)RxP and P(2:1)RxN inputs as defined by the ANSI X3.263 TP-PMD standard, to the link monitor state-machine, using an internal signal called DATA_VALID. When it is asserted the control logic moves into a link-ready state, and waits for an enable from the auto-negotiation block. When received, the link-up state is entered, and the transmit and receive logic blocks become active.Should auto-negotiation be disabled, the link integrity logic moves immediately to the link-up state, when the DATA_VALID signal is asserted.

Note that to allow the link to stabilize, the link integrity logic will wait a minimum of 330 usec from the time DATA_VALID is asserted until the link-ready state is entered. Should the DATA_VALID input be negated at any time, this logic will immediately negate the link signal and enter the link-down state. When the 10/100 digital block is in 10BASE-T mode, the link status generated from the 10Base-T receiver logic.

(11) Link Lockup Protection

During the reception of 10BASE-T data, the link partner may switch to 100BASE-TX without starting auto-negotiation. In this case, the PHY must recognize this, de-assert the link status, and switch to 100BASE-TX mode.

To achieve this, a counter is activated at the beginning of every 10BASE-T packet. When the counter reaches the count of 157 msec and no end of packet was recognized, then the link will be de-asserted and the PHY will restart either auto-negotiation (if enabled) or try to achieve a 10 BASE-T link again.

(12) Phase Offset Indicator

The latency between transmitter and receiver can lead to 5 different phase variations of 125Mbps received packets against the 25Mbps data on the MII interface (only in 100BASE-TX/FX mode). It corresponds to the system latency between MII TX_EN_P(2:1) and MII RX_DV_P(2:1) and it is measured based on the first packet after link-up. This value is then stored in the PHASE_OFFSET field of the Special Controls/Status Indications register. Figure 16-4 illustrates this function.

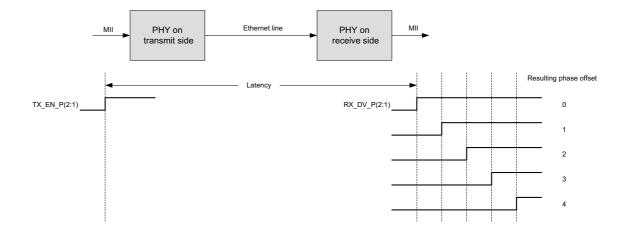


Figure 16-4: Phase Offset Indicator Function

16.2 PHY Related Interfaces

Like any other peripheral on the ERTEC 200 the PHYs have internal registers that allow control over their behaviour and that reflect their operation status; however in contrast to the other peripherals, the PHY control registrs are not memory mapped and not directly accessible for the ARM CPU core or any other AHB master within ERTEC 200. This is due to the standardized MII/SMI interface between the PHYs and the MACs that are integrated in the IRT switch. Figure 16-5 shows the different paths into the PHYs.

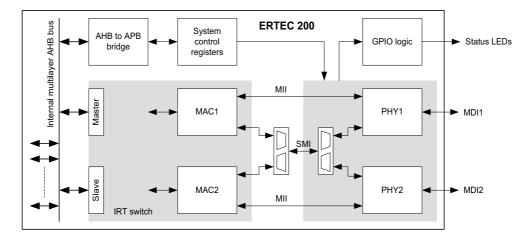


Figure 16-5: PHY Related Interfaces

The control and communication paths into and out of the PHYs can be categorized in four respectively five groups.

(1) MII Interface

The media independent interface (MII) is the data communication interface between MAC and PHY; each PHY (respectively each MAC) has its own MII interface. The two MII interfaces on ERTEC 200 are on-chip interfaces however they can be externally monitored, if ERTEC 200 is configured to MII diagnosis mode. LBU interface pins are used for this purpose.

Table 16-5 lists the signals that belong to the MII diagnosis interface and the "normal" usage of the same pins for LBU signals.

PHY	Pin Name ^{Note}	I/O	Function	Alternate Function ^{Note}
	TXD_P2(3:0)	0	Transmit data port 2 bits	LBU_D(9:6)
	RXD_P23	0	Receive data port 2 bit 3	LBU_A11/PIPESTA2
	RXD_P22	0	Receive data port 2 bit 2	LBU_A10/TRACESYNC
	RXD_P21	0	Receive data port 2 bit 1	LBU_A9/TRACEPKT0
	RXD_P20	0	Receive data port 2 bit 0	LBU_A8/TRACEPKT1
	TX_EN_P2	0	Transmit enable port 2	LBU_D10
PHY 2	CRS_P2	0	Carrier sense port 2	LBU_A12
	RX_ER_P2	0	Receive error port 2	PIPESTA0
	TX_ERR_P2	0	Transmit error port 2	LBU_D11
	RX_DV_P2	0	Receive data valid port 2	LBU_A14
	COL_P2	0	Collision port 2	LBU_A15
	RX_CLK_P2	0	Receive clock port 2	LBU_BE1_N
	TX_CLK_P2	0	Transmit clock port 2	LBU_RD_N
	TXD_P1(3:0)	0	Transmit data port 1 bits	LBU_D(3:0)
	RXD_P13	0	Receive data port 1 bit 3	LBU_A3/TRACEPKT6
	RXD_P12	0	Receive data port 1 bit 2	LBU_A2/TRACEPKT7
	RXD_P11	0	Receive data port 1 bit 1	LBU_A1/ETMEXTIN1
	RXD_P10	0	Receive data port 1 bit 0	LBU_A0/ETMEXTOUT
	TX_EN_P1	0	Transmit enable port 1	LBU_D4
PHY1	CRS_P1	0	Carrier sense port 1	LBU_A4/TRACEPKT5
	RX_ER_P1	0	Receive error port 1	LBU_A5/TRACEPKT4
	TX_ERR_P1	0	Transmit error port 1	LBU_D5
	RX_DV_P1	0	Receive data valid port 1	LBU_A6/TRACEPKT3
	COL_P1	0	Collision port 1	LBU_A7/TRACEPKT2
	RX_CLK_P1	0	Receive clock port 1	LBU_BE0_N
	TX_CLK_P1	0	Transmit clock port 1	LBU_WR_N

Table 16-5: MII (Diagnosis) Interface Signals

Note: MII diagnosis interface pins are alternatively used as local bus interface or trace pins; in this table the

I/O type is listed for the MII diagnosis function

(2) SMI Interface

The serial management interface (SMI) between MAC and PHY gives access to the PHY's internal control registers. There is a common SMI interface for both PHYs; the two PHYs have hardwired addresses, that are part of the protocol over the SMI interface. The SMI signals can as well be monitored together with the MII signals in MII diagnosis mode.

Table 16-6 lists the signals that belong to the SMI (diagnosis) interface and the "normal" usage of the same pins for LBU signals.

Pin Name ^{Note}	I/O	Function	Alternate Function ^{Note}
SMI_MDC	0	Serial management interface clock	LBU_D12
SMI_MDIO	0	Serial management interface data input/output	LBU_D13

Table 16-6:	SMI (Diagnosis) Interface Signals
-------------	-----------------------------------

Note: SMI diagnosis interface pins are alternatively used as local bus interface or trace pins; in this table the I/O type is listed for the SMI diagnosis function

(3) MDI Interface

The media dependent interface (MDI) is the PHY's data communication interface to the Ethenet network in 10BASE-T, 100BASE-TX or 100BAE-FX mode. It is partly analog and partly digital; the circuitry that is connected to the MDI interfaces must be carefully selected. Proposals can be found in Chapter 16.4.

Table 16-7 shows the MDI interface signals arranged for the various supported operation modes.

Pin Name	I/O	Function	Operation mode
P(2:1)TxN	0	Differential transmit data output	
P(2:1)TxP	0	Differential transmit data output	10BASE-TX
P(2:1)RxN	I	Differential receive data input	100BASE-TX
P(2:1)RxP	I	Differential receive data input	
P(2:1)TDxN	0	Differential FX transmit data output	
P(2:1)TDxP	0	Differential FX transmit data output	
P(2:1)RDxN	I	Differential FX receive data input	100BASE-FX
P(2:1)RDxP	I	Differential FX receive data input	TUUDASE-FA
P(2:1)SDxN	I	Differential FX signal detect input	
P(2:1)SDxP	I	Differential FX signal detect input	

Table 16-7: MDI Interface Signals

(4) System control register interface

A few general controls for the PHYs can be directly set via a subset of the system control registers that are described in Chapter 17.2.

- select the reset source for the PHYs
- enable auto-MDIX mode
- select the initial start up mode of the PHY, after they have been reset
- enable 100BASE-FX mode
- enable PHYs and release them from power down mode
- check operation status of PHYs

(5) Status LED Outputs

Each PHY provides six status LED outputs; four of these can be made simultaneously available on GPIO(7:0). The following status can be visualized in parallel:

P1/2_DUPLEX_N	Half duplex, full duplex
P1/2_SPEED_N	10BASE-T, 100BASE-TX, 100BASE-FX
P1/2_LINK_STATUS_N	Link up, link down
P1/2_ACTIVITY_N	Receive activity, transmit activity, no activity

Table 11-3 shows the assignment of GPIO pins to these status informations.

(6) Other Signals

There are a few other signals - mainly supply voltages - related to the PHYs summarized in Table 16-8.

Pin Name ^{Note}	I/O	Function	Alternate Function ^{Note}
RES_PHY_N	0	Reset signal to PHYs	LBU_D14
EXTRES	I/O	External reference resistor (12.4 k Ω) Note	-
DVDD(4:1)	I	Digital power supply, 1.5 V	-
DGND(4:1)	I	Digital GND	-
P(2:1)VSSATX(2:1)	I	Analog port GND	-
P(2:1)VDDARXTX	I	Analog port RX/TX power supply, 1.5 V	-
P(2:1)VSSARX	I	Analog port GND	-
VDDAPLL	I	Analog central power supply, 1.5 V	-
VDDACB	I	Analog central power supply, 3.3 V	-
VSSAPLLCB	I	Analog central GND	-
VDD33ESD	I	Analog test power supply, 3.3 V	-
VSS33ESD	Ι	Analog test GND	-

Table 16-8: Other PHY Related Signals

Note: The external resistor must have a maximum tolerance of 1%.

16.3 PHY Register Description

Via the SMI interface access is given to the internal registers listed in Table 16-9. Note that these registers are implemented for each PHY. During write or read accesses the registers are selected using their register number as an address. The PHY internal registers are not memory mapped.

Register number	Description	Group							
0	Basic control register	Basic							
1	1 Basic status register								
2	PHY identifier 1								
3	PHY identifier 2								
4	Auto negotiation advertisement register								
5	Auto negotiation link partner ability register (base page)	Extended							
5	Auto negotiation link partner ability register (next page)								
6	6 Auto negotiation expansion register								
7	7 Next page transmit register								
8-15	15 Reserved								
16	Silicon revision register								
17	Mode control/status register								
18	Special modes	1							
19-26	Reserved								
27	Control/status indication register	Vendor specific							
28	Reserved								
29	Interrupt source register]							
30	Interrupt mask register]							
31	PHY special control/status register]							

Table 16-9: PHY-internal Registers

During a hardware reset or when the PHYs are driven out of the power down state (by setting the P1/2_PHY_ENB bits in the PHY_CONFIG register to 1_b), a pre-defined configuration is set in the registers. This configuration is partly hardwired and affects the initial settings of PHY-internal registers. Table 16-10 shows these settings; the initial configuration can be altered later by writing to the PHY-internal registers.

Name	Description	Port 1	Port 2					
P1/2_PHYADDRESS(4:0)	PHY address	00000 _b	00001 _b					
P1/2_PHYMODE(2:0)	PHY mode	depends on PHY_CON	NFIG register setting					
P1/2_MIIMODE(1:0)	Interface mode of PHY	permanently set to MII	mode					
P1/2_SMIISOURCESYNC	SMII source mode	permanently set to normal mode						
P1/2_FXMODE	100BASE-FX mode	depends on PHY_CONFIG register setting						
P1/2_AUTOMDIXEN	Enable AutoMDIX state machine	depends on PHY_CON	NFIG register setting					
P1/2_NPMSGCODE(2:0)	Test of next page function	permanently set to 000) ^p					
P1/2_PHYENABLE	Enables the PHYs	depends on PHY_CONFIG register setting						
REG2OUIIN(15:0)	Default value for SMII register 2	003	33H					
REG3OUIIN(15:0) Default value for SMII register 3 2001H								

Table 16-10: Initial Parameter Settings for PHYs

			-						
15	14	13	12	11	10	9	8	No.	Initial value
Reset	Loopback	Speed selection	Auto- Negotiation Enable	Power- Down	Isolate		Duplex Mode	0	xxxxH ^{Note}
7	6	5	4	3	2	1	0	_	
Collision Test		Reserved							

Figure 16-6: Basic Control Register (1/2)

Note: The initial value depends on the setting of the P(2:1)_PHY_MODE(2:0) bits in the PHY1/2 Configuration Register in the System Control Register block.

Bit position	Bit name	R/W	Function									
			Reset Resets the complete I	РНΥ								
			Reset	Software reset								
15	Reset	R/W	0 _b	Normal operation (initial value)								
			1 _b	Execute a software reset for the affected PHY								
			Note: This bit is self cess.	-clearing; it is automatically set to 0 _b by the reset pro-								
			Loopback Controls internal loopl	back mode								
		DAM	Loopback	Internal loopback mode								
14	Loopback	R/W	0 _b	Disable internal loopback mode (initial value)								
			1 _b	Enable internal loopback mode								
13	Speed selection	R/W	irrelevant, if auto-nego Speed selection 0 _b 1 _b Note: The initial value	D0Mbps transmission speed; the setting of this bit is obtained. Speed selection function Select 10Mbps mode (initial value after device reset) Select 100Mbps mode e, after only the PHY has been reset, is selected by the PhY_MODE field in the PHY_CONFIG register.								
			Auto-Negotiation Enal Controls the auto-neg	otiation process								
	Auto-		Auto-Negotiation Enable	Auto-negotiation enable selection								
12	Negotiation Enable	R/W	0 _b	Disable auto-negotiation (initial value after device reset)								
			1 _b	Enable auto-negotiation								
				only the PHY has been reset, is selected by the con- MODE field in the PHY_CONFIG register.								

Bit position	Bit name	R/W		Function								
			PowerDown Puts the PHYs into po	ower down mode								
11	PowerDown	R/W	PowerDown	Power down mode control								
	TOWEIDOWI	10,00	0b	Normal operation (initial value)								
			1 _b	Enter general power down mode								
			Isolate Isolates the PHY elec	trically from MII interface.								
			Isolate	Isolate mode control								
10	Isolate	R/W	0 _b	Normal operation (initial value after device reset)								
			1 _b	Puts PHY into isolate mode								
				ie, after only the PHY has been reset, is selected by the e Pn_PHY_MODE field in the PHY_CONFIG register.								
			Restarts the auto-neg									
	Restart		Restart Auto-Negotiation	Auto-negotiation restart control								
9	Auto- Negotiation	R/W	0 _b	Normal operation (initial value)								
	riegenanen		1 _b	Restarts the auto-negotiation process								
			Note: This bit is self	Note: This bit is self-clearing.								
			Duplex Mode Configures the PHY to vant, if auto-negotiation	o half or full duplex mode; the setting of this bit is irrele- on is enabled.								
			Duplex Mode	Duplex mode control								
8	Duplex Mode	R/W	0 _b	Select half duplex mode (inital value after device reset)								
			1 _b	Select full duplex mode								
			Note: The initial value, after only the PHY has been reset, is selected by the contents of the Pn_PHY_MODE field in the PHY_CONFIG register.									
			Collision Test Activates collision sign	nal test (on internal MII interface)								
7	Collision	R/W	Collison Test	Collision signal test control								
	Test		0 _b	Disable collision signal test (initial value)								
			1 _b	Enable collision signal test								
6:0	-	R	Reserved Write 0 _b ; ignore on read access									

Figure 16-6: Basic Control Register (2/2)

			-			• •	2		
15	14	13	12	11	10	9	8	N0.	Initial value
100BASE -T4	100BASE -TX Full Duplex	100BASE10Mb/s10Mb/s-TX HalfFullHalfReservedDuplexDuplexDuplexDuplex					1	7809H	
7	6	5	4	3	2	1	0		
Rese	erved	Auto- Negotiation Complete	Remote Fault	Auto- Negotiation Ability	Link Sta- tus	Jabber Detect	Extended Capability		

Figure 16-7: Basic Status Register (1/3)

Bit position	Bit name	R/W	Function									
			100BASE-T4 Indicates ability to sup	port 100BASE-T4 mode								
15	100BASE-	R	100BASE-T4	100BASE-T4 ability indication								
	T4		0 _b	No 100BASE-T4 ability (initial value)								
			1 _b	100BASE-T4 ability supported								
			100BASE-TX Full Dup Indicates ability to sup	lex port 100BASE-TX full duplex mode								
14	100BASE- TX Full	R	100BASE-TX Full Duplex	100BASE-TX full duplex ability indication								
	Duplex		0 _b	100BASE-TX full duplex ability								
			1 _b	100BASE-TX full duplex supported (initial value)								
13	100BASE- TX Half Duplex	R	100BASE-TX Half Dup Indicates ability to sup 100BASE-TX Half Duplex 0 _b 1 _b	olex port 100BASE-TX half duplex mode 100BASE-TX half duplex ability indication 100BASE-TX half duplex ability 100BASE-TX half duplex supported (initial value)								
12	10Mb/s Full Duplex	R	10Mb/s Full Duplex Indicates ability to sup 10Mb/s Full Duplex 0 _b	port 10Mb/s full duplex mode 10Mb/s full duplex ability indication 10Mb/s full duplex ability								
			1 _b	10Mb/s full duplex supported (initial value)								
11	10Mb/s Half Duplex	R	10Mb/s Half Duplex Indicates ability to sup 10Mb/s Half Duplex 0 _b 1 _b	port 10Mb/s half duplex mode 10Mb/s half duplex ability indication 10Mb/s half duplex ability 10Mb/s half duplex supported (initial value)								

Figure 16-7:	Basic Status	Register (2/3)
--------------	--------------	----------------

Bit position	Bit name	R/W		Function								
10:6	-	R	Reserved									
			Auto-Negotiation Complete Indicates, if auto-negotiation process has been completed									
_	Auto-	-	Auto-Negotiation Complete	Auto-negotiation completion indication								
5	Negotiation Complete	R	0 _b	Auto-negotiation has not been completed (initial value)								
			1 _b	Auto-negotiation has been completed								
			Remote Fault Indicates, if a remote f	ault has been detected								
	Remote Fault		Remote Fault	Remote fault detection indication								
4		R	0 _b	No remote fault condition has been detected (initial value)								
			1 _b	Remote fault condition has been detected								
			Note: This bit is clea	red, when it has been read.								
			Auto-Negotiation Ability Indicates ability to perform auto-negotiation									
3	Auto Negotiation	R	Auto-Negotiation Ability	Auto-negotiation ability indication								
C	Ability		0 _b	Unable to perform auto-negotiation								
			1 _b	Able to perform auto-negotiation (initial value)								
			Link Status Indicates, if a valid link	k has been established								
			Link Status	Link status indication								
2	Link Status	R	0 _b	Link status is down (initial value)								
			1 _b	Link status is up								
			Note: This bit is clea	red, when it has been read.								

Bit position	Bit name	R/W		Function							
			Jabber Detect Indicates, if a jabber c	ondition has been detected							
			Jabber Detect	Jabber condition detection indication							
1	Jabber Detect	R	0 _b	No jabber condition has been detected (initial value)							
			1 _b	Jabber condition has been detected							
			Note: This bit is cleared, when it has been read.								
			Extended Capability Indicates. if the PHY s	supports extended register capabilities							
	Extended		Extended Capability	Extended register capabilities indication							
0	Capability	R	0 _b	Only basic register capabilities supported							
			1 _b	Extended register capabilities supported (initial value)							
			B	·							

Figure 16-7: Basic Status Register (3/3)

The PHYs on ERTEC 200 have two registers for storage of a PHY identifier pattern; a part of this pattern forms the upper 24 bits of the MAC address and a part of these 24 bits is given by the so-called organizationally unique identifier (OUI).

The information in the REG2/3OUIIN registers is composed respectively interpreted as follows: NEC's OUI number is 003013H. This hexadecimal number is mapped into OUI format according to Table 16-11.

1	2		3	4												23	24	Bit							
		0				()			0 3 3 1							1		Hex format						
0 _b	0 _b	D	0 _b	1 _b	1 _b	0 _b	0 _b	1 _b	1 _b	0 _b	0 _b	1 _b	0 _b	0 _b	0 _b	OUI format									

 Table 16-11:
 NEC OUI Composition

THe PHY ID number however, is composed of the OUI (bits (24:3)), a 6-bit wide manufacturer model number and a 4-bit revision number. Table 16-12 shows the details.

3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	Bits							ου	
0 _b	0 _b	0 _b	0 _b	0_{b}	0 _b	0 _b	0 _b	0 _b	0_{b}	1_{b}	1_{b}	0 _b	0 _b	1_{b}	1_{b}	0 _b	0 _b	1 _b	0 _b	0 _b	0_{b}	Valu	es						00	I
	Manufacturer model number(5:0) 0 _b																													
									R	evisio	n nui	mbe	er (3	:0)	0 _b	0 _b	0 _b	1 _b												
	()			()			3	3			3	3			2	2			()		()				1	
	REG2OUIIN															REG	3OU	IIN												
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	15	14	13	12	11	10	98	7	6	5	4	3	2	1	0

Table 16-12: PHY ID Number Composition

The setting shown in Table 16-12 is the initial value, after the PHYs have been reset. As both registers as writable, the PHY ID number can be changed arbitrarily.

Chapter 16 Multiport Ethernet PHY

15 14 13 12 11 10 9 8 No. Initial value PHY ID Number 2 0033H			20UIIN	ster REG	ifier Regi	PHY Ident	e 16-8:	Figur					
PHY ID Number 2 0033H	Initial value	No.	8	9	10	11	12	13	14	15			
	0033H	2	PHY ID Number										
7 6 5 4 3 2 1 0		_	0	1	2	3	4	5	6	7			
PHY IOD Number			PHY IOD Number										

Bit position	Bit name	R/W	Function
15:0	PHY ID Number		PHY ID Number(15:0) Reflects bits (18:3) of the organizationally unique identifier (OUI) for the ERTEC 200 (see Table 16-12 for exact bit assignment)

Figure 16-9: PHY Identifier Register REG3OUIIN

15	14	13	12	11	10	9	8	N0.	Initial value
		PHY ID	Number			Model N	Number	3	2001H
								_	
7	6	5	4	3	2	1	0		
	Model I	Number			Revision				

Bit position	Bit name	R/W	Function
15:10	REG3OUIIN	R/W	REG3OUIIN(15:0) Reflects bits (24:19) of the organizationally unique identifier (OUI) for the ERTEC 200 (see Table 16-12 for exact bit assignment)
9:4	Model Number	R/W	Model Number(5:0) Reflects a manufacturer depending revision number; initial value is 00H
3:0	Revision number	R/W	Revision number(3:0) Reflects a manufacturer depending revision number; initial value is 1H

15	14	13	12	11	10	9	8	No.	Initial value
Next Page	Reserved	Remote Fault	Reserved	Pause Operation		100BASE- T4	100BASE -TX Full duplex	4	xxxxH ^{Note}
7	6	5	4	3	2	1	0		
100BASE -TX	10BASE- T Full Duplex	10BASE- T		S	elector Fie	ld			

Figure 16-10: Auto-Negotiation Advertisement Register (1/3)

Note: The initial value depends on the setting of the P(2:1)_PHY_MODE(2:0) bits in the PHY1/2 Configuration Register in the System Control Register block.

Bit position	Bit name	R/W	Function							
			Next Page Selects, if next page	capablility is indicated to the link partner						
	Next Page		Next Page	Next page capability indication						
15		R/W	0 _b	No next page capability is indicated (initial value)						
			1 _b	Next page capability is indicated						
14	-	R	Reserved Write 0 _b ; ignore on read access							
			Remote Fault Indicates, if a remote	Remote Fault Indicates, if a remote fault has been detected						
	Remote Fault		Remote Fault	Remote fault detection indication						
13		R/W	0 _b	No remote fault condition has been detected (initial value)						
			1 _b	Remote fault condition has been detected						
12	-	R	Reserved Write 0 _b ; ignore on read access							
			Pause Operation Indicates the suppor	ted pause operation functions to the link partner						
			Pause Operation	Pause operation support indication						
			00 _b	No pause operation supported (initial value)						
11:10	Pause Operation	R/W	01 _b	Asymmetric pause operation towards link partner supported						
			10 _b	Symmetric pause operation supported						
			11 _b	Symmetric pause operation and asymmetric pause operation towards local device supported						

Bit position	Bit name	R/W	Function						
			100BASE-T4 Indicates, if 100BASE	E-T4 operation is supported					
			100BASE-T4	100BASE-T4 operation support indication					
9	100BASE- T4	R	0 _b	No 100BASE-T4 operation support (initial value after device reset)					
			1 _b	100BASE-T4 operation support					
				ue, after only the PHY has been reset, is selected by the he Pn_PHY_MODE field in the PHY_CONFIG register.					
			100BASE-TX Full Du Indicates, if 100BASE	plex E-TX full duplex operation is supported					
	4000405		100BASE-TX Full Duplex	100BASE-TX full duplex operation support					
8	100BASE- TX Full Duplex	R	0 _b	No 100BASE-TX full duplex operation support (initial value after device reset)					
			1 _b	100BASE-TX full duplex operation support					
			contents of th	ue, after only the PHY has been reset, is selected by the ne Pn_PHY_MODE field in the PHY_CONFIG register.					
			100BASE-TX Indicates, if 100BASE-TX operation mode is supported						
		R/W	100BASE-TX	100BASE-TX operation support indication					
7	100BASE- TX		0 _b	No 100BASE-TX operation support (initial value after device reset)					
			1 _b	100BASE-TX operation support					
				ue, after only the PHY has been reset, is selected by the e Pn_PHY_MODE field in the PHY_CONFIG register.					
			10BASE-T Full Duple Indicates, if 10BASE-	ex T full duplex operation mode is supported					
			10BASE-T Full Duplex	10BASE-T full duplex operation support					
6	10BASE-T Full Duplex	R/W	0 _b	No 10BASE-T full duplex operation support (initial value after device reset)					
			1 _b	10BASE-T full duplex operation support					
				ue, after only the PHY has been reset, is selected by the ne Pn_PHY_MODE field in the PHY_CONFIG register.					

Figure 16-10: Auto-Negotiation Advertisement Register (2/3)

Bit position	Bit name	R/W	Function				
		10BASE-T Indicates, if 10BASE-	OBASE-T ndicates, if 10BASE-T operation mode is supported				
		R/W	10BASE-T	10BASE-T operation support			
5	10BASE-T		0 _b	No 10BASE-T operation support (initial value after device reset)			
			1 _b	10BASE-T operation support			
			Note: The initial value, after only the PHY has been reset, is selected by contents of the Pn_PHY_MODE field in the PHY_CONFIG register				
4:0	Selector Field	R/W	Selector Field Indicates basic capabilities according to the IEEE802.3 specification				

Figure 16-10: Auto-Negotiation Advertisement Register (3/3)

Chapter 16	Multiport Ethernet PHY
------------	------------------------

15	14	13	12	11	10	9	8	No.	Initial value
Next Page	Acknowl- edge	Remote Fault	Rese	rved	Pause Operation	100BASE- T4	100BASE -TX Full duplex	5	0001H
7	6	5	4	3	2	1	0		
100BASE -TX	10BASE- T Full Duplex	10BASE- T	Selector Field						

Bit position	Bit name	R/W	Function				
			Next Page Indicates if additional next page with link information will follow.				
15	Next Page	R	Next Page	Next page indication			
	C C		0 _b	No additional next page will follow (initial value)			
			1 _b	Additional next page will follow			
			Acknowledge Indicates if the link p	artner's link code word has been successfully received			
	Acknowl-		Acknowledge	Next page indication			
14	edge	R	0 _b	Not successfully received the link partner's link code word (initial value)			
			1 _b	Successfully received the link partner's link code word			
		e R	Remote Fault Indicates, if a remote	fault has been detected			
	Remote		Remote Fault	Remote fault detection indication			
13	Fault		0 _b	No remote fault condition has been detected (initial value)			
			1 _b	Remote fault condition has been detected			
12:11	-	R	Reserved Ignore on read acces	SS			
			Pause Operation Indicates, if pause operation functions is supported by the remore link				
	Pause		Pause Operation	Pause operation support indication			
10	Operation	R	0 _b	No pause operation supported by remote link part- ner (initial value)			
			1 _b	Pause operation supported by remote link partner			

Figure 16-11:	Auto-Negotiation Link Partner Ability Register (Base Page, 2/2)
---------------	---

Bit position	Bit name	R/W	Function				
			100BASE-T4 Indicates, if 100BASE	E-T4 operation is supported by the link partner			
	100BASE-		100BASE-T4	100BASE-T4 operation support indication			
9	T4	R	0 _b	100BASE-T4 operation not supported by the link partner (initial value)			
			1 _b	100BASE-T4 operation supported by the link partner			
			100BASE-TX Full Du Indicates, if 100BASE partner	iplex E-TX full duplex operation is supported by the link			
	100BASE-	_	100BASE-TX Full Duplex	100BASE-TX full duplex operation support			
8	TX Full Duplex	R	0 _b	100BASE-TX full duplex operation not supported by the link partner (initial value)			
			1 _b	100BASE-TX full duplex operation supported by the link partner			
7	100BASE- TX	R	100BASE-TX Indicates, if 100BASE 100BASE-TX 0 _b 1 _b	E-TX operation is supported by the link partner 100BASE-TX operation support indication No 100BASE-TX operation not supported by the link partner (initial value) 100BASE-TX operation supported by the link partner			
6	10BASE-T Full Duplex	R	10BASE-T Full Duple Indicates, if 10BASE- 10BASE-T Full Duplex 0 _b 1 _b	T full duplex operation is supported by the link partner 10BASE-T full duplex operation support 10BASE-T full duplex operation not supported by the link partner (initial value) 10BASE-T full duplex operation supported by the link partner			
5	10BASE-T	R	10BASE-T Indicates, if 10BASE- 10BASE-T 0 _b 1 _b	T operation mode is supported 10BASE-T operation support 10BASE-T operation not supported by the link partner (initial value) 10BASE-T operation supported by the link partner			
4:0	Selector Field	R	Selector Field Indicates basic capabilities of the link partner according to the IEEE802.3 specification				

Fi	Figure 16-12: Auto-Negotiation Link Partner Ability Register (Next Page, 1/2)									
15	14	13	12	11	10	9	8	No.	Initial value	
Next Page	Acknowledge	Message Page	Acknowledge 2	Toggle	Message	/Unformatted (Code field	5	0000H	
7	6	5	4	3	2	1	0			
	Message/Unformatted Code field									

Bit position	Bit name	R/W		Function			
			Next Page Indicates if additional next page with link information will follow.				
15	Next Page	R	Next Page	Next page indication			
10	Next Tage		0 _b	No additional next page will follow (initial value)			
			1 _b	Additional next page will follow			
			Acknowledge Indicates if the link p Acknowledge	artner's link code word has been successfully received			
	Acknowl-		Acknowledge	Next page indication			
14	14 Acknowi- edge	R	0 _b	Not successfully received the link partner's link code word (initial value)			
			1 _b	Successfully received the link partner's link code word			
13	Message	R	Message Page Page type indication Message Page	Page type indication			
10	Page	IX.	0 _b	Next page is an unformatted page (initial value)			
			1 _b	Next page is a message page			
			Acknowledge 2 Indicates if device co	omplies to message			
12	Acknowl-	R	Acknowledge 2	Message compliance indication			
	edge 2		0 _b	Device does not comply to message (initial value)			
			1 _b	Device complies to message			

Bit position	Bit name	R/W		Function						
		le R	Toggle Indicates, if the toggle bit of the previous page equalled 0 _b or 1 _b ; this functio is used by the next page arbitration protocol.							
11	Toggle		Toggle	Toggle bit indication						
			K						0 _b	Toggle bit in the previously transmitted link code word has been 1_b (initial value)
						1 _b	Toggle bit in the previously transmitted link code word has been 0_{b}			
10:1	Message/ Unformatted Code field	R	Message/Unformatted Code field Contains a message or unformatted 11-bit code word from the link partner depending on the setting of the Message Page bit							

Figure 16-12: Auto-Negotiation Link Partner Ability Register (Next Page, 2/2)

		Figure	16-13: A	uto-Nego	otiation E	xpansion	Register		
15	14	13	12	11	10	9	8	No.	Initial value
		6	0000H						
-	0	F	4	0	0	4	0		
/	6	5	4	3	2	1	0		
	Reserved		Parallel Detection Fault	Link Partner Next Page Able	Next Page Able	Page Received	Link Partner Auto-Negotia- tion Able		

Bit position	Bit name	R/W	Function					
15:5	Reserved	R	Reserved Ignore on read access					
				Parallel Detection Fault Indicates if a fault occured during parallel detection				
	Parallel	_	Parallel Detection Fault	Parallel detection fault indication				
4	Detection Fault	R	0 _b	No fault has occured during parallel detection (ini- tial value)				
			1 _b	A fault has occured during parallel detection				
	Link Part-		Link Partner Next Pag Indicates, if the link p	ge Able artner is next page able or not				
3	ner Next	R	Link Partner Next Page Able	Link partner next page ability indication				
	Page Able		0 _b	Link partner is not next page able (initial value)				
			1 _b	Link partner is next page able				
		- 8	Next Page Able Indicates if the local of	device is next page able or not				
2	Next Page		Next Page Able	Next page ability indication				
-	Able		0 _b	Local device is not next page able				
			1 _b	Local device is next page able (initial value)				
			Page Received Indicates, if a new pa	ige has been received				
1	Page	R	Page Received	Page received indication				
	Received		0 _b	No new page has been received (initial value)				
			1 _b	A new page has been received				
			Link Partner Auto-Ne Indicates if the link pa	gotiation Able artner is auto-negotiation able or not				
0	Link Part- ner Auto-	R	Link Partner Auto- Negotiation Able	Link partner auto-negotiation ability indication				
	Negotiation Able	tion	0 _b	Link partner is not auto-negotiation able (initial value)				
			1 _b	Link partner is auto-negotiation able				

	' 'Y		. Auto-i	egoliali		age nan	Sint Ne	gister	
15	14	13	12	11	10	9	8	No.	Initial value
Next Page	Reserved	Message Page	Acknowledge 2	Toggle	Message	/Unformatted C	ode field	7	2001H
7	6	5	4	3	2	1	0	_	
	2	Messa	age/Unform	natted Cod	e field		•		

Figure 16-14: Auto-Negotiation Next Page Transmit Register

Bit position	Bit name	R/W		Function		
			Next Page Indicates if next page	e with link information exists.		
15	Next Page	R/W	Next Page	Next page indication		
10	Nextrage	17/17	0 _b	No next page exists (initial value)		
			1 _b	Next page exists		
14	-	R	Reserved Write 0 _b ; ignore on r	ead access		
			Message Page Page type indication			
13	Message		Message Page	Page type indication		
13	Page	R/W	0 _b	Next page is an unformatted page		
			1 _b	Next page is a message page (initial value)		
	Acknowl-		Acknowledge 2 Indicates if device complies to message Acknowledge 2 Message compliance indication			
12	edge 2		0 _b	Device does not comply to message (initial value)		
			1 _b	Device complies to message		
			is used by the next p	e bit of the previous page equalled 0 _b or 1 _b ; this function age arbitration protocol.		
11	Toggle	R	Toggle	Toggle bit indication		
	loggie		0 _b	Toggle bit in the previously transmitted link code word has been 1_b (initial value)		
			1 _b	Toggle bit in the previously transmitted link code word has been 0_{b}		
10:1	Message/ Unformatted Code field	R/W	Message/Unformatted Code field Contains a message or unformatted 11-bit code word to be transmitted to the link partner. The default message, that is stored in this field after reset, is the Null message (001H).			

		F	igure 16-	15: Silic	on Revis	sion Regis	ster		
15	14	13	12	11	10	9	8	No.	Initial value
		Rese	erved		Silicon	Revision	16	0040H	
								_	
 7	6	5	4	3	2	1	0	_	
Silicon	Revision			Rese	erved				

Bit position	Bit name	R/W	Function
15:10	-	R	Reserved Ignore on read access
9:6	Silicon Revision	R	Silicon Revision A 4-bit silicon revision identifier, that is hardwired to 1H
5:0	-	R	Reserved Ignore on read access

Chapter 16	Multiport Ethernet PHY
------------	------------------------

			' iguit	10 10.			ao nogio			
	15	14	13	12	11	10	9	8	No.	Initial value
	Rese	erved	EDPWR DOWN	Reserved	LOW SQEN	MDPRE BP	FAR LOOP BACK	Reserved	17	xyzH
	7	6	5	4	3	2	1	0		
1	AutoMDIX _en	MDI mode	Rese	erved	PHY- ADBP	Force Good Link Status	ENER- GYON	Reserved		

Figure 16-16: Mode Control/Status Register (1/3)

Bit position	Bit name	R/W	Function				
15:14	-	R/W	Reserved Write 0 _b ; ignore on read access				
			EDPWRDOWN Enables the energy c	EDPWRDOWN Enables the energy detect power down function			
13	EDPWR	R/W	EDPWRDOWN	Energy detect power down enable			
	DOWN		0 _b	Energy detect power down disabled (initial value)			
			1 _b	Energy detect power down enabled			
12	-	R/W	Reserved Write 0 _b ; ignore on re	ead access			
	11 LOW SQEN		LOWSQEN Sets a lower threshol	ld for the sqelch function			
			LOWSQEN	Energy detect power down enable			
11		R/W	0 _b	Higher threshold for squelch function set (less sensitive, initial value)			
			1 _b	Lower threshold for squelch function enabled (more sensitive)			
			MDPREBP Management data pr	eamble bypass			
10	MDPREBP	R/W	MDPREBP	Management data preamble bypass enable			
			0 _b	Ignore SMI packets without preamble (initial value)			
			1 _b	Detect SMI packets without preamble			
				oopback mode in which all received packets are immedi- if the PHY is set to 100BASE-TX or 100BASE-FX mode.			
9	FAR LOOP BACK	R/W	FARLOOPBACK	Remote loopback mode enable			
	DAUN		0 _b	Remote loopback mode disabled (initial value)			
			1 _b	Remote loopback mode enabled			

Bit position	Bit name	R/W	Function			
8	-	R/W	Reserved Write 0 _b ; ignore on re	ad access		
			AutoMDIX_en Enables the state ma	chine for automatic detection of MDI/MDIX mode		
			AutoMDIX_en	Automatic MDI/MDIX detection enable		
7	7 AutoMDIX_ en	R/W	0 _b	State machine for automatic MDI/MDIX detection disabled (initial value after device reset)		
			1 _b	State machine for automatic MDI/MDIX detection enabled		
				ote: The initial value, after only the PHY has been reset, is selected by the contents of the Pn_AUTOMDIXEN bit in the PHY_CONFIG register.		
			MDI mode Selects MDI or MDIX	mode manually		
			MDI mode	Manual MDI/MDIX setting		
6 MDI mode	R/W	0 _b	Set MDI mode (initial value)			
			1 _b	Set MDIX mode		
			Note: This bit is only	y relevant, if the AutoMDIX_en bit is set to 0 _b .		
5:4	-	R/W	Reserved Write 0 _b ; ignore on re	ad access		
				nore PHY address during SMI write access; this bit car ous write access to several PHYs		
3	PHYADBP	R/W	PHYADBP	PHY address bypass enable		
			0 _b	Do not ignore PHY address during SMI write access (initial value)		
			1 _b	Ignore PHY address during SMI write access		
	Force Good Link Status		Force Good Link Stat Forces an active 100 the line	us BASE-X link irrespective of what is happening on		
2		R/W	Force Good Link Status	Force active 100BASE-X link		
			0 _b	Normal operation (initial value)		
			1 _b	Force an active 100BASE-X link		
			Note: This bit should	d only be used during laboratory testing		

Figure 16-16: Mode Control/Status Register (2/3)

Bit position	Bit name	R/W	Function			
1	ENER-	R	ENERGYON Indicates wheter energy is detected on the line. If no (respetively too energy is detected for 256ms, this bit automatically goes to 0 _b .			
I	GYON					
			0 _b	No sufficient energy level detected (initial value)		
			1 _b	Sufficient energy level detected		
0	-	R/W	Reserved Write 0 _b ; ignore on read access			

Figure 16-16: Mode Control/Status Register (3/3)

			Fi	gure 16-17:	Spe	cial Mode F	Register	(1/2)		
	15	14	13	12	11	10	9	8	No.	Initial value
	MIIM	MIIMODE		Reserved		FX_MODE	Reserved		18	000xH
_									_	
	7	6	5	4	3	2	1	0		
Ī	F	PHY_MODE				PHY_ADD				

Bit position	Bit name	R/W		Function			
		R/W	MIIMODE Selects different interf	MIIMODE Selects different interface types between PHY and MAC.			
15:13	MIIMODE		MIIMODE	MIIMODE selection			
10.10		1.7, 4.4	00 _b	MII interface (initial value)			
			others	Reserved			
13	-	R	Reserved Ignore on read access	6			
12:11	-	R/W	Reserved Write 0 _b ; ignore on rea	Reserved Write 0 _b ; ignore on read access			
			FX_MODE Enables the 100BASE FX_MODE	100BASE-TX mode enable			
			0 _b	FX_MODE disabled (initial value after hardware reset)			
10	FX_MODE	R/W	1 _b	FX_MODE enabled			
			Notes: 1. The initial value after a software reset of the PHYs, is selected by the contents of the Pn_FX_MODE field in the PHY_CONFIG register.				
			 When FX_MODE is set to 1_b, the PHY_MODE field must be set to either 011_b or 010_b. A consistent setting of both fields is required; otherwise proper operation of the PHYs cannot be guaranteed. 				
9:8	-	R/W	Reserved Write 0 _b ; ignore on read access				

Bit position	Bit name	R/W	Function					
			PHY_MODE Selects between diffe	erent operation modes of the PHYs.				
			PHY_MODE	PHY operation mode				
			000 _b	Select 10BASE-T HD, Auto-negotiate disabled, (initial value after hardware reset)				
			001 _b	Select 10BASE-T FD, Auto-negotiate disabled				
			010 _b	Select 100BASE-TX/FX HD, Auto-negotiate disa- bled				
			011 _b	Select 100BASE-TX/FX FD, Auto-negotiate disa- bled				
7:5	PHY_MODE	R/W	100 _b	Select 100BASE-TX, HD advertised, Auto-negoti- ate enabled				
			101 _b	Select 100BASE-TX, HD advertised, Auto-negoti- ate enabled, repeater mode				
			110 _b PHY starts in power down mode					
			111 _b	Auto-negotiate enabled, AutoMDIX enabled				
			the conte register. 2. A consiste	value after a software reset of the PHYs, is selected by nts of the Pn_PHY_MODE field in the PHY_CONFIG ent setting of both FX_MODE and PHY_MODE fields is otherwise proper operation of the PHYs cannot be guar-				
			PHY_ADD Selects the internal P	HY address for accesses via the management interface.				
			PHY_ADD	PHY address setting				
			00000 _b	Address for PHY 1 is 00H, address for PHY2 is				
			00001 _b	01H (initial value after hardware reset)				
4:0	PHY ADD	R/W	00010 _b	Address for PHY 1 is 02H, address for PHY2 is				
1.0	1111_1.00		00011 _b	03H				
			11110 _b 11111 _b	Address for PHY 1 is 1EH, address for PHY2 is 1FH				
				it of the PHY_ADD fiels is ignored; it is internally hard- or PHY1 and to 1b for PHY2				

Figure 16-17: Special Mode Register (2/2)

	F	igure 16-	18: Spe	cial Conti	rol/Statu	s Indicatio	on Regist	terr	
15	14	13	12	11	10	9	8	No.	Initial value
	Reserved		SWRST_ FAST	SQEOFF		Reserved		27	xyzH
7	6	5	4	3	2	1	0	_	
Reserved FEFIEN XPOL Reserved									

Bit position	Bit name	R/W		Function			
15:13	-	R/W	Reserved Write 000 _b ; ignore on read access				
			SWRST_FAST Accelerates software	reset extension from 256µs to 10µs for production test			
12	SWRST_	R/W	SWRST_FAST	Software reset extension acceleration			
	FAST		0 _b	Software reset is extended to 256µs (initial value)			
			1 _b	Software reset is extended to 10µs (initial value)			
			SQEOFF Disables the SQE ("he	eartbeat") test			
			SQEOFF	SQE test disable			
11	SQEOFF	R/W	Uh	SQE test is enabled (initial value after hardware reset)			
			1 _b	SQE test is disabled			
			Note: The value is unchanged after a software reset of the PHYs.				
10:6	-	R/W	Reserved Write 00H; ignore on I	read access			
			FEFIEN Enables far end fault i	ndication.			
			FEFIEN	Far end fault indication enable			
5	FEFIEN	R/W	0 _b	Far end fault indication is disabled (initial value, when FX_MODE bit is 1_b during reset)			
			1 _b	Far end fault indication is enabled (initial value, when FX_MODE bit is 0_b during reset)			
			XPOL Indicates polarity state	e of a 10BASE-T link			
4	XPOL	R	XPOL	10BASE-T link polarity indication			
-			0 _b	Normal polarity (initial value)			
			1 _b	Reversed polarity			
3:0	-	R	Reserved Ignore on read access	5			

		Figure	16-19:	Interrupt	Source F	lag Regi	ister (1/2)		
15	14	13	12	11	10	9	8	No.	Initial value
			Res	erved				29	0H
 7	6	5	4	3	2	1	0		
INT7	INT6	INT5	INT4	INT3	INT2	INT1	Reserved		

Bit position	Bit name	R/W		Function				
15:8	-	R	Reserved Ignore on read acces	55				
			INT7 Indicates, if the ENERGYON bit has been set					
7	INT7	R	INT7	Energy detection interrupt				
1			0 _b	No sufficient energy level detected (initial value)				
			1 _b	Sufficient energy level detected				
			INT6 Indicates, if auto-neg	potiation process has been completed				
			INT6	Auto-negotiation completion interrupt				
6	INT6	INT6 R	R	0 _b	Auto-negotiation has not been completed (initial value)			
			1 _b	Auto-negotiation has been completed				
			INT5 Indicates, if a remote	e fault condition has been detected				
			INT5	Remore fault detection interrupt				
5	INT5	R	R	R	R	0 _b	No remote fault condition has been detected (initial value)	
			1 _b	Remote fault condition has been detected				
			INT4 Indicates, if the ENE	RGYON bit has been set				
		_	INT4	Link down interrupt				
4	INT4 R		INT4 R		INT4 R		0 _b	No link down interrupt has been generated (initial value)
			1 _b	Link down interrupt has been generated				
			1 _b	Link down interrupt has been generated				

Bit position	Bit name	R/W		Function				
			INT3 Indicates, if a link partner acknowledge has been received during the auto- negotiation process					
		_	INT3	Link partner acknowledge interrupt				
3	INT3	R	0 _b	No link partner acknowledge interrupt has been generated (initial value)				
			1 _b	Link partner acknowledge interrupt has been generated				
				detection fault has occurred				
			INT2	Parallel detection fault interrupt				
2	INT2	R	0 _b	No parallel detection fault interrupt has been gen- erated (initial value)				
			1 _b	Parallel detection fault interrupt has been gener- ated				
				negotiation page has been received				
			INT1	Auto-negotiation page receive interrupt				
1	INT1	R	R	0 _b	No auto-negotiation page receive interrupt has been generated (initial value)			
			1 _b	Auto-negotiation page receive interrupt has been generated				
0	-	R	Reserved Ignore on read access					

Figure 16-19: Interrupt Source Flag Register (2/2)

		ŀ	Figure 16	-20: Inte	errupt Ma	sk Regis	ster		
15	14	13	12	11	10	9	8	No.	Initial value
			Rese	erved				30	0H
7	6	5	4	3	2	1	0		
			Mask bits				Reserved		

Bit position	Bit name	R/W	Function				
15:8	-	R	Reserved Write 0b; ignore on read access				
			Mask bits Mask each interrupt from interrupt flag register separately				
			Mask bit n (n=1,, 7)	Interrupt n masking (n=1,, 7)			
71	Mask bits	R/W	Uh	pt source n from interrupt flag register is d (initial value)			
			1 _b Interru enable	pt source n from interrupt flag register is d			
0	-	R	Reserved Write 0b; ignore on read access				

Chapter 16	Multiport Ethernet PHY
------------	------------------------

		-igure 16	-21: PH	Special	Control	Status Re	egister (1/	2)	
15	14	13	12	11	10	9	8	No.	Initial value
	Reserved		Autodone		Res	erved		31	0040H
7	6	5	4	3	2	1	0		
Reserved	Enable 4B5B	Reserved	Spe	ed indicat	tion	Reserved	Scramble Disable		

Bit position	Bit name	R/W	Function				
15:12	-	R/W	Reserved Write 000 _b ; ignore on read access				
			Autodone Indicates, if auto-negotiation is done				
			Autodone	Auto-negotiation done indication			
11	Autodone	R	0 _b	Auto-negotiation is not done or disabled (initial value)			
			1 _b	Auto-negotiation is done			
11:7	-	R/W	Reserved Write 00H; ignore on	read access			
			Enable 4B5B Allows to bypass the 4	4B/5B encoder/decoder.			
6	Enable	R/W	Enable 4B/5B	4B/5B encoder/decoder bypass selection			
Ũ	4B5B		0 _b	4B/5B encoder/decoder is bypassed			
			1 _b	4B/5B encoder/decoder is enabled (initial value)			
5	-	R/W	Reserved Write 000 _b ; ignore on	read access			
			Speed Indication Indicates Speed and	HD/FD mode of the currently established link			
			Speed Indication	Current link speed indication			
			000 _b	No link (initial value)			
4:2	Speed	R	001 _b	10BASE-T half duplex			
	Indication		010 _b	100BASE-TX half duplex			
			101 _b	10BASE-T full duplex			
			110 _b	100BASE-TX full duplex			
			others	Reserved			
				·			

Figure 16-21: PHY Special Control/Status Register (1/2)

Bit position	Bit name	R/W		Function			
1	-	R/W	Reserved Write 0 _b ; ignore on read access				
	Scramble		Scramble Disable Allows to bypass the data scrambler/descrambler blocks.				
0	Disable	R/W		Data scrambler/descrambler enabled (initial value)			
			1 _b Data scrambler/descrambler disabled				

Figure 16-21: PHY Special Control/Status Register (2/2)

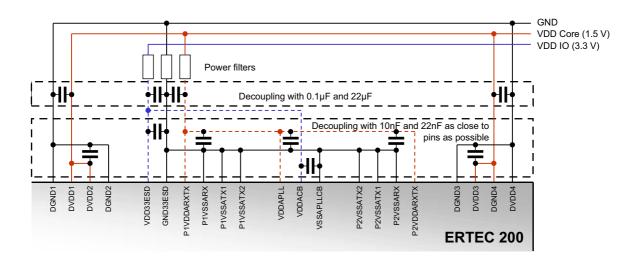
16.4 Board Design Recommendations

In this chapter some board design recommendations will be given with respect to

- supply voltage circuitry
- "line" interfaces for 10BASE-T, 100BASE-TX and 100BASE-FX
- unused "line" interfaces

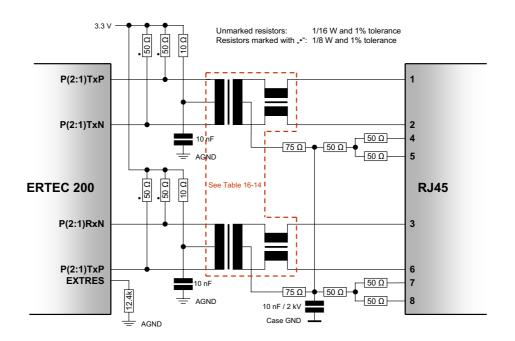
16.4.1 Supply Voltage Circuitry

ERTEC 200 works with two operating voltages: VDD Core (1.5 V) and VDD IO (3.3 V). Additionally the on-chip PLL for the device clock generation requires a supply voltage called PLL_AVDD of 1.5 V, that is typically a filtered version of VDD Core.


The on-chip PHYs of ERTEC 200 require additional filtered operating voltages as shown in Table 2-4. The subsequent Table 16-13 illustrates, how these supply voltage are related to the "normal" VDD Core and VDD IO.

Pin Name	Function	Supply Voltage Generation		
P(2:1)VDDARXTX	Analog port RX/TX power supply, 1.5 V	Must be generated from VDD		
VDDAPLL	Analog central power supply, 1.5 V	Core (1.5 V) via a filter.		
VDDACB	Analog central power supply, 3.3 V	Must be generated from VDD		
VDD33ESD	Analog test power supply, 3.3 V	IO (3.3 V) via a filter.		
DVDD(4:1)	Digital power supply, 1.5 V	No filter required; just capacitive decoupling from VDD Core		
P(2:1)VSSARX	Analog port GND	Must be generated from GND		
P(2:1)VSSATX(2:1)	Analog port GND	Core /IO via a filter or connected		
VSSAPLLCB	Analog central GND	to GND Core/IO at the far end from ERTEC 200.		
VSS33ESD	Analog test GND	IIOIII ERTEC 200.		
DGND(4:1)	Digital GND	No filter required; just capacitive decoupling from GND Core		

Table 16-13: Generation of PHY-specific Supply Voltages


Beside filtering, the PHY-specific supply voltages should be equipped with pairs of decoupling capacitors: 10nF and 22 nF capacitors should be used for DVDD(3:2), VDDESD, VDDAPLL, VDDACB and P(2:1)VDDARXTX; they should be placed as close as possible to the chip. Additonally pairs of 0.1 and 22 μ F capacitors should be applied to DVDD4, DVDD1, VDD3ESD and P(2:1)VDDARXTX. Figure 16-22 shows the proposed circuit.

16.4.2 10BASE-T and 100BASE-TX Mode Circuitry

The analog input and output signals are very noise sensitive and PCB layout of these signals should be done very carefully. P(2:1)TxN, P(2:1)TxP, P(2:1)RxN and P(2:1)RxP must be routed with differential 100 Ω impedance and the trace length must be kept as short as possible. The EXTRES input must be connected to analog GND with a 12.4 k Ω resistor (1% tolerance). Figures and show typical circuit examples for 10BASE-T and /or 100BASE-TX operation modes.

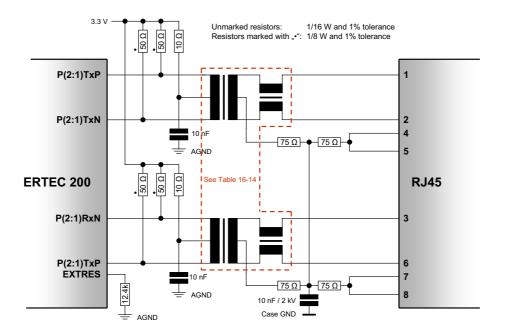


Figure 16-24: 10BASE-T and 100BASE-TX Interface Circuit Example 2

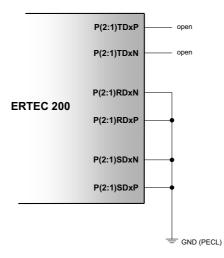
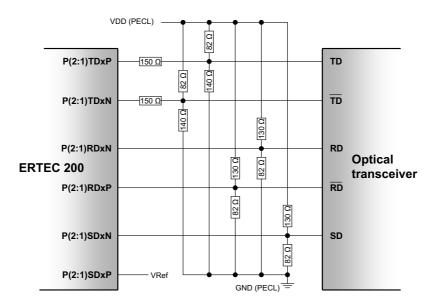

Table 16-14 shows some alternatives for the magnetics used in the previous circuits.

Table 16-14: Examples for Magnetics Selection

Manufacturer	Туре	Remarks
Pulse Engineering	H1102	single channel, 070°C operating temperature
Pulse Engineering	HX1188	single channel, -4085°C operating temperature
Pulse Engineering	H1270	dual channel, 070°C operating temperature
Pulse Engineering	HX1294	dual channel, -4085°C operating temperature

In applications that do not use the 100BASE-FX mode, the related inputs P(2:1)RDxN, P(2:1)RDxP, P(2:1)SDxN and P(2:1)SDxP should be connected to analog GND, while the related outputs P(2:1)TDxN and P(2:1)TDxP should be left open. Figure 16-25 shows the circuit for this case.


Figure 16-25: Circuit for Unused 100BASE-FX Mode

16.4.3 100BASE-FX Circuitry

In case of 100BASE-FX operation a standard optical transceiver module like (Agilent HFBR-5803) is connected to the P(2:1)RDxN, P(2:1)RDxP, P(2:1)SDxN, P(2:1)SDxP, P(2:1)TDxN and P(2:1)TDxP pins. The connection is straight forward and consists mainly of pull-up and pull-down resistors. The signals between the PHYs and the transceiver module(s) are 100 Ω differential respectively 50 Ω single-ended signals. This must be taken into account during PCB design. The external resistors should be placed as close to the ERTEC 200 pins as possible. Figure 16-26 shows the details of the circuit.

Note: The circuitry in the transmit path deviates slightly from the examples that are typically given in optical transceiver data sheets. However it is required to implement the circuit above in order to provide pECL-compliant output levels.

In applications that do not use 10BASE-T respectively 100BASE-TX modes, but only the 100BASE-FX mode, the analog I/Os P(2:1)TxN, P(2:1)TxP, P(2:1)RxN and P(2:1)RxP should be left open. Only EXTRES must still be connected with the 12.4 k Ω resistor to analog GND.

[MEMO]

The system control registers are no peripheral in the original sense, but rather an ERTEC 200-specific register set that can be read and written to from the various AHB masters via the AHB-to-APB bridge. The system control registers provide a certain level of self-diagnosis and configuration capabilities. A listing of all system control registers and their address assignments as well as a detailed description are included in the following sections.

17.1 Address Assignment of System Control Registers

The system control registers are 32 bits wide; they are summarized in Table 17-1 below.

Address	Register Name	Size	R/W	Initial value	Description
4000 2600H	ID_REG	32 bit	R	4027 0100H	Device identification register ERTEC 200
4000 2604H	BOOT_REG	32 bit	R	H	Boot mode pin register
4000 2608H	CONFIG_REG	32 bit	R	H	Config pin register
4000 260CH	RES_CTRL_REG	32 bit	R/W	0000 0004H	Control register for ERTEC 200 reset
4000 2610H	RES_STAT_REG	32 bit	R	0000 0004H	Status register for ERTEC 200 reset
4000 2614H	PLL_STAT_REG	32 bit	R/W	0007 0005H	Status register for PLL/FIQ3
4000 2628H	QVZ_AHB_ADR	32 bit	R	0000 0000H	Address of incorrect addressing on multilayer AHB
4000 262CH	QVZ_AHB_CTRL	32 bit	R	0000 0000H	Control signals of incorrect addressing on multilayer AHB
4000 2630H	QVZ_AHB_M	32 bit	R	0000 0000H	Master detection of incorrect addressing on multilayer AHB
4000 2634H	QVZ_APB_ADR	32 bit	R	0000 0000H	Address of incorrect addressing on APB
4000 2638H	QVZ_EMIF_ADR	32 bit	R	0000 0000H	Address that leads to timeout on EMIF
4000 2644H	MEM_SWAP	32 bit	R/W	0000 0000H	Memory swapping in Segment 0 between ROM and RAM
4000 264CH	M_LOCK_CTRL	32 bit	R/W	0000 0000H	AHB master lock enable. Master-selec- tive enable of AHB lock functionality
4000 2650H	ARM9_CTRL	32 bit	R/W	0000 1939H	Control of ARM9 and ETM inputs
4000 2654H	ARM9_WE	32 bit	R/W	0000 0000H	Write protection register for ARM9_CTRL
4000 2658H	ERTEC 200_TAG	32 bit	R	0001 0118H	Tag number of current switching status
4000 265CH	PHY_CONFIG	32 bit	R/W	0000 0000H	PHY1/2 configuration register
4000 2660H	PHY_STATUS	32 bit	R	0000 0000H	PHY1/2 status register
4000 2670H	UART_CLK	32 bit	R/W	0000 0000H	UART Clock selection

Table 17-1: Address Assignment of System Control Registers

Remark: Reserved bits in all registers are undefined when read; always write the initial (reset) values to these bits.

17.2 Detailed System Control Register Description

Figure 17-1: Device Identification Register (ID_REG)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Address	Initial value
	ERTEC200-ID												4000 2600H	4027 0100H			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	_	
	HW-RELEASE										META	L-FIX					

Bit position	Bit name	R/W	Function
(31:16)	ERTEC200 -ID	R	ERTEC200-ID(15:0) Holds an ERTEC 200 identification pattern: 4027H
(15:8)	HW- RELEASE	R	HW-RELEASE(7:0) Holds a number representing the HW release step: currently 01H
(7:0)	METAL-FIX	R	METAL-FIX(7:0) Holds a number representing the metal fix step: currently 00H

Figure 17-2: Boot Mode Pin Register (BOOT_REG)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Address	Initial value
	reserved													4000 2604H	H		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
					rese	rved							BO	ОТ			

Bit position	Bit name	R/W	Function
(31:4)	-	R	Reserved
(3:0)	BOOT	R	BOOT(3:0) Reflect the logical level of the BOOT(3:0) pins during the active reset phase (see Table 19-1 for possible settings). Note that the boot mode cannot be changed using this register, as it is a read-only register.

					Fig	ure	17-3	: C	onfig	l Pin	Reg	ister	· (CC	NFI	G_RE	EG)	
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Address	Initial value
							rese	erved								4000 2608H	H
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
	reserved									CONFIG res.							

Bit position	Bit name	R/W	Function
(31:7)	-	R	Reserved
(6:1)	CONFIG	R	CONFIG(6:1) Reflect the logical level of the CONFIG(6:1) pins during the active reset phase (see Table 19-2 for possible settings). Note that the configuration cannot be changed using this register, as it is a read-only register.
0	-	R	Reserved

					•							Ŭ	•	_	-	_		
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Address	Initial value
								rese	erved								4000 260CH	0000 0004H
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
	re	serve	ed				Ρ	ULSI	E_DU	R				EN_W D_SO FT_RE S_IRT E	XRES			
L														1 -				

Bit position	Bit name	R/W	V Function							
(31:13)	-	R	Reserved							
(12:3)	PULSE_DUR	R/W	watchdog timer 1) in mu AHB clock period (typica T _{RES_PUI} Remark: As the integ	a software or a watchdog reset (generated by ultiples of the AHB clock period. With T_{CLK} being the ally 20 ns) the resulting pulse duration is given by: $LSE = 8 \times (PULSE_DUR + 1) \times T_{CLK}$ rated PHYs need a reset pulse duration of more than SE_DUR must be set to values greater than 625.						
				RTE d soft resets include resetting the IRT switch.						
	EN_WD_SOFT_		EN_WD_SOFT_RES_IRTE	Software reset						
2	RES_IRTE	R/W	0 _b	Do not reset IRT switch with watchdog and soft resets						
				Reset IRT switch with watchdog and soft resets (initial value)						
				under software control. This bit is not "stored", as the r writing 1_b to this bit, automatically resets the bit						
1	XRES_SOFT	R/W	XRES_SOFT	Software reset						
			0 _b	Do not trigger software reset (initial value)						
			1 _b	Trigger software reset						
	WD_RES_		WD_RES_FREI Enables/disables a rese WD_RES_FREI	et triggered by watchdog timer 1 Watchdog reset enable						
0	FREI	R/W		Disable watchdog reset (initial value)						
				Enable watchdog reset						

Figure 17-4: Reset Control Register (RES_CTRL_REG) (1/2)

				F	igur	e 17	-5:	Res	et St	atus	Reg	iste	r (RE	s_s	TAT_	REG)	
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Address	Initial value
		reserved														4000 2610H	0000 0004H
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
													HW_{-}	. –			
					re	serve	ed						RES ET	RES ET	RES ET		

Bit position	Bit name	R/W	Function								
(31:3)	-	-	Reserved								
			HW_RESET Indicates, if the last re-	set event was a hardware reset or PowerOn reset. Note							
2	HW_RESET	R	HW_RESET	Hardware reset status							
2		i.	0 _b	Last reset event was no hardware reset							
			1 _b	Last reset event was a hardware reset or PowerOn reset (initial value)							
1	SW_RESET	R	SW_RESET Indicates, if the last re- SW_RESET	set event was a software reset. Note Software reset status							
			0 _b	Last reset event was no software reset (initial value)							
			1 _b	Last reset event was a software reset							
			timer 1). Note	set event was a watchdog reset (triggered by watchdog							
0	WD_RESET	R	WD_RESET	Watchdog reset status							
	_		Ob	Last reset event was no watchdog reset (initial value)							
			1 _b	Last reset event was a watchdog reset							

_: . : . _ _ _

Note: Only the bit of the most recent reset event is set; the other two bits are reset.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Address	Initial value
	reserved													INT_ MAS K_LO SS	MAS	4000 2614H	0007 0005H
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
reserved										INT_ QVZ_ EMIF _STA TE	res.	INT_ LOSS _STA TE	א פד	PLL INPT U_CL K_LO SS	LOC		

Bit position	Bit name	R/W	Function										
(31:18)	-	-	Reserved										
			INT_MASK_LOSS Interrupt masking for INT_	LOSS_STATE interrupt.									
17	INT_MASK	R/W	INT_MASK_LOSS	INT_LOSS_STATE interrupt masking									
	_LOSS		0 _b Int	terrupt is enabled									
			1 _b Int	errupt is masked (initial value)									
16	INT_MASK _ LOCK	R/W		LOCK_STATE interrupt. INT_LOCK_STATE interrupt masking terrupt is enabled terrupt is masked (initial value)									
(15:6)	-	-	Reserved										
5	INT_QVZ_	P	INT_QVZ_EMIF_STATE External memory interface 7 of the Extended Config r										
5	EMIF_ STATE	R	STATE	INT_QVZ_EMIF_STATE interrupt status									
			0 _b Int	terrupt request is not active (initial value)									
			1 _b Int	terrupt request is active									

Figure 17-6: PLL Status Register (PLL_STAT_REG) (1/2)

Note: These interrupts are connected via wired-OR and then routed to the FIQ3 input of the FIQ interrupt controller.

Bit position	Bit name	R/W		Function
4	-	-	Reserved	
				out clock has once been lost. This bit is not reset, when urns. Once set, it can only be reset by overriding it ^{Note.}
3	INT_LOSS _STATE	R/W	INT_LOSS_STATE	INT_LOSS_STATE interrupt status
			0 _b	Interrupt request is not active (initial value)
			1 _b	Interrupt request is active
				is once been unlocked. This bit is not reset, when the set, it can only be reset by overriding it ^{Note.}
2	INT_LOCK _STATE	R/W	INT_LOCK_STATE	INT_LOCK_STATE interrupt status
			0 _b	Interrupt request is not active
			1 _b	Interrupt request is active (initial value)
1	PLL_ INPUT_ CLK_LOSS	R	PLL_INPUT_CLK_LOS Represents the current PLL_INPUT_ CLOCK_LOSS 0 _b 1 _b	SS t monitoring status of the PLL input clock. PLL input clock monitoring status PLL input clock present (initial value) No PLL input clock present
			PLL_LOCK Indicates, if the PLL is	currently locked.
0	PLL_LOCK	R	PLL_LOCK	PLL locking status
			0 _b	PLL is not locked
			1 _b	PLL is locked (initial value)

Note: These interrupts are connected via wired-OR and then routed to the FIQ3 input of the FIQ interrupt controller.

	Figure 17-7: ARB Timeout Address Register (QVZ_ARB_ADK)																
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Address	Initial value
						Q٧	Z_AH	HB_A	DR							4000 2628H	0000 0000H
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
	QVZ_AHB_ADR																

Figure 17-7: AHB Timeout Address Register (QVZ_AHB_ADR)

Bit position	Bit name	R/W	Function
(31:0)	QVZ_AHB_ADR	R	QVZ_AHB_ADR(31:0) Holds the address in case of an incorrect multilayer AHB access.

Figure 17-8: AHB Timeout Control Signal Register (QVZ_AHB_CTRL)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Address	Initial value
	reserved														4000 262CH	0000 0000H	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
reserved								Н	BURS	ST	ŀ	ISIZE	Ξ	HW RIT E			

Bit position	on Bit name R/W Function												
(31:7)			Reserved										
(6:4)	HBURST	R	HBURST(2:0) Holds the logical level of the HBURST(2:0) signals in case of an incorrect multilayer AHB access.										
(3:1)	HSIZE	R	HSIZE(2:0) Holds the logical level of the HSIZE(2:0) signals in case of an incorrect multilayer AHB access.										
			HWRITE Holds the logical level of the HWRITE signal in case of an incorrect multilayer AHB access.										
0	HWRITE	R	HWRITE HWRITE status of incorrect access										
0	HWIRTE	K	0 _b Incorrect access was a read access (initial value).										
			1 _b Incorrect access was a write access.										

Chapter 17	System Contro	I Registers
------------	---------------	-------------

	Figure 17-9. And Timeout Master Register (QVZ_And_M)																
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Address	Initial value
	reserved															4000 2630H	0000 0000H
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
reserved QVZ_QVZ_QVZ_QVZ_QVZ_QVZ_AHB_AHB_AHB_AHB_AHB_AHB_ARM_946											AHB_ ARM						

Bit position	Bit name	R/W	Function									
(31:4)	-	-	Reserved									
			QVZ_AHB_DMA Indicates, whether the DMA controller was master during the incorrect multilayer AHB access.									
3	QVZ_AHB_DMA	R	QVZ_AHB_DMA DMA bus mastership									
			0 _b DMA controller was not bus master (initial value).									
			1 _b DMA controller switch was bus master.									
			QVZ_AHB_IRT Indicates, whether the IRT switch was master during the incorrect multilayer AHB access.									
2	QVZ_AHB_IRT	R	QVZ_AHB_IRT IRT bus mastership									
			0 _b IRT switch was not bus master (initial value).									
			1 _b IRT switch was bus master.									
			QVZ_AHB_LBU Indicates, whether the LBU block was master during the incorrect mul- tilayer AHB access.									
1	QVZ_AHB_LBU	R	QVZ_AHB_LBU LBU block bus mastership									
			0 _b LBU block was not bus master (initial value).									
			1 _b LBU block was bus master.									
			QVZ_AHB_ARM946 Indicates, whether the ARM946E-S CPU core was master during the incorrect multilayer AHB access.									
0	QVZ_AHB_ ARM946	R	QVZ_AHB_ ARM946E-S bus mastership									
			0 _b ARM946E-S was not bus master (initial value).									
			1 _b ARM946E-S was bus master.									

Figure 17-9: AHB Timeout Master Register (QVZ_AHB_M)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Address	Initial value
	QVZ_APB_ADR													4000 2634H	0000 0000H		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
	QVZ_APB_ADR																

Figure 17-10: APB Timeout Address Register (QVZ_APB_ADR)

Bit position	Bit name	R/W	Function
(31:0)	QVZ_APB_ADR	R	QVZ_APB_ADR(31:0) Holds the address in case of an incorrect APB access.

Figure 17-11: EMIF Timeout Address Register (QVZ_EMIF_ADR)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Address	Initial value
						QV	Z_EN	/IF_A	DR							4000 2638H	0000 0000H
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
						QV	Z_EN	/IF_A	DR								

Bit position	Bit name	R/W	Function
(31:0)	QVZ_EMIF_ADR	R	QVZ_EMIF_ADR(31:0) Holds the address in case of an external memory access that caused a timeout.

Chapter 17	System Control Registers
------------	--------------------------

					Figu	re 17	7-12:	Me	emor	y Sv	vap I	Regis	ster	(MEI	n_si	NAP)	
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Address	Initial value
	reserved											4000 2644H	0000 0000H				
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
						rese	erved							ME SV	:M_ /AP		

Bit position	Bit name	R/W	Function							
(31:2)	-	-	Reserved							
			MEM_SWAP(1:0) Re-maps alternative memories to the original internal ROM address tion.							
		R/W	MEM_SWAP	Memory mapping						
(1:0)	MEM SWAP		00 _b	Internal boot ROM at address 0000 0000H (initial value)						
(1.0)			01 _b	External SDRAM at address 0000 0000H						
			10 _b	External static memory (connected to CS_PER0_N) at address 0000 0000H						
			11 _b	No memory at address 0000 0000H; locked I- cache can be mapped to 0000 0000H						

			Fig	ure	17-13	B: A	AHB	Masi	ter L	ock	Cont	rol F	Regis	ster ("M_L	OCK_CTRL)	
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Address	Initial value
	reserved											4000 264CH	0000 0000H				
																-	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
					re	serv	ed							LOC CTRI			

Chapter 17	System Contro	ol Registers
------------	---------------	--------------

Bit position	Bit name	R/W	Function						
(31:3)	-	-	Reserved						
					K_CTRL	(2:0) aster bus locking for each AHB master			
				Bit	Setting	AHB master bus locking selection			
				2	0 _b	AHB master bus locking disabled for IRT (initial value)			
	M_LOCK_CTRL	R/W			1 _b	AHB master bus locking enabled for IRT			
(2:0)				1	0 _b	AHB master bus locking disabled for LBU (initial value)			
					1 _b	AHB master bus locking enabled for LBU			
				0 0 _b		AHB master bus locking disabled for ARM946E-S (initial value)			
					1 _b	AHB master bus locking enabled for ARM946E-S			
					1				

Figure 17-14: ARM9 Control Register (ARM9_CTRL) (1/2)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Address	Initial value
							rese	rved								4000 2650H	0000 1939H
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
rese	erved		Dis- able Gate The- Clk		MIC EBY PAS S	INI- TRA M				S	YSOF	ът					

Bit position	Bit name	R/W	Function
(31:14)	-	-	Reserved
			BIGENDIAN Indicates whether the processor is running in big endian mode
			BIGENDIAN Big Endian mode
13	BIGENDIAN	R	0 _b Processor is running in little Endian mode (initial value)
			1 _b Processor is running in big Endian mode
			DISABLE_GATE_THE_CLK Determines, if ARM9 CPU clock runs freely or not
			DISABLE_GATE_THE_CLK CPU clock run mode
12	DISABLE_GATE_ THE_CLK	R/W	0 _b ARM9 processor clock is paused by a Wait- for-Interrupt
			1 _b ARM9 processor clock runs freely (initial value)
			DBGEN Enables embedded ARM9 debugger
11	DBGEN	R/W	DBGEN Embedded debugger enable
			0 _b Embedded debugger disabled
			1 _b Embedded debugger enabled (initial value)
			MICEBYPASS Allows to bypass TCK synchronisation to ARM9 clock
		-	MICEBYPASS TCK synchronization mode
10	MICEBYPASS	R/W	0 _b TCK is synchronized to ARM9 clock (initial value)
			1 _b TCK is not synchronized to ARM9 clock

Bit position	Bit name	R/W	Function							
			INITRAM Indicates whether the	e TCMs are enabled to use ^{Note}						
			INITRAM	TCM enable						
9	INITRAM	R/W	0 _b	TCMs disabled (initial value)						
			1 _b	TCMs enabled						
				ot affected by soft or watchdog reset; it is only hardware reset via RESET_N.						
(8:0)	SYSOPT	R	SYSOPT(8:0) Displays the implemented ETM options; the default value of this field is 139H. Details can be found in the documents listed on page 6.							

Figure 17-14: ARM9 Control Register (ARM9_CTRL) (2/2)

Remark: This register may only be changed for debug purposes. Writing to this register must be enabled in the ARM9_WE register prior to accessing this register.

Figure 17-15: ARM9 Control Write Enable Register (ARM9_WE)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Address	Initial value
							rese	rved								4000 2654H	0000 0000H
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
						re	serve	ed							WE_ ARM 9_CT RL		

Bit position	Bit name	R/W	Function								Function							
(31:1)	-	-	Reserved															
0	WE_ARM9	R/W	WE_ARM9_CTRL Enables to write to and change the ARM9_CTRL register.															
ũ	_CTRL		0 _b	ARM9_CTRL register write disabled (initial value)														
			1 _b	ARM9_CTRL register write enabled														

Chapter 17 System Control Registers

	Figure 17-16: ERTEC								200 TAG Identification Register (ERTEC200_TAG)								G)
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Address	Initial value
	reserved								R	EVIS	ION_	4000 2659H	0001 0118H				
																-	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	_	
	VERSION_ID							DEBUG_ID									

Bit position	Bit name	R/W	Function
(31:24)	-	-	Reserved
(23:16)	REVISION_ID	R	REVISION_ID(7:0) Reflects the revision ID of the current ERTEC switching state (01H)
(15:8)	VERSION_ID	R	VERSION_ID(7:0) Reflects the version ID of the current ERTEC switching state (01H)
(7:0)	DEBUG_ID	R	DEBUG_ID(7:0) Reflects the debug ID of the current ERTEC switching state (18H)

Figure 17-17: PHY1/2 Configuration Register (PHY_CONFIG) (1/4)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Address	Initial value
						re	serve	ed							PHY _RE S_S EL	4000 265CH	0000 0000H
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
rese	rved	P2_ AUT OMDI XEN		2_PH Modi		P2_ FX_M ODE	P2_ PHY_ ENB	rese	rved	P1_ AUT OMDI XEN		_ph` /iodi		P1_ FX_M ODE			

Bit position	Bit name	R/W	Function							
(31:17)	-	-	Reserved							
			PHY_RES_SEL Selects reset source for PHY1 and PHY2							
			PHY_RES_SEL PHY reset source select							
16	PHY_RES_SEL	R/W	0 _b PHYs are reset with the normal device reset (like the IRT switch, initial value)							
			1b PHYs are reset with the (internal) IRT output "reset_phy_n" ^{Note}							
(15:14)	-	-	Reserved							
			P2_AUTOMDIXEN Enables AutoMDIX state machine for PHY2							
			P2_AUTOMDIXEN AutoMDIX enable							
13	P2_AUTOMDIXEN	R/W	0 _b Disable AutoMDIX state machine for PHY2, (initial value)							
			1 _b Enable AutoMDIX state machine for PHY2							

Note: If CONFIG(6:5) and CONFIG2 are set to 111_b (reserved configuration), this bit cannot be written to; it is then fixed to the default value (0_b) .

Bit position	Bit name	R/W		Function
			2_PHY_MODE(2:0) elect operation mode	e for PHY2
			P2_PHY_MODE	PHY2 operation mode
			000 _b	Select 10BASE-T HD, Auto-negotiate disa- bled, (initial value)
			001 _b	Select 10BASE-T FD, Auto-negotiate disa- bled
(12:10)	P2_PHY_MODE	R/W	010 _b	Select 100BASE-TX/FX HD, Auto-negotiate disabled
()			011 _b	Select 100BASE-TX/FX FD, Auto-negotiate disabled
			100 _b	Select 100BASE-TX, HD advertised, Auto- negotiate enabled
			101 _b	Select 100BASE-TX, HD advertised, Auto- negotiate enabled, repeater mode
			110 _b	Reserved
			111 _b	Auto-negotiate enabled, AutoMDIX enabled
			2_FX_MODE hables 100BASE-FX	interface
			P2_FX_MODE	PHY FX-mode enable
9	P2_FX_MODE	R/W	0 _b	100BASE-FX interface disabled (initial value)
			1 _b	100BASE-FX interface enabled ^{Note 2}
			2_PHY_ENB nables PHY2	
			P2_PHY_ENB	PHY enable
8	P2_PHY_ENB	R/W	0 _b	PHY2 is disabled and in power-down mode (initial value) ^{Note 3}
			1 _b	PHY2 is enabled ^{Notes 1, 3, 4}

Figure 17-17: PHY1/2 Configuration Register (PHY_CONFIG) (2/4))

- **Notes: 1.** If CONFIG(6:5) and CONFIG2 are set to 111_b (reserved configuration), this bit cannot be written to; it is then fixed to the default value (0_b) .
 - 2. This setting is only meaningful for P1_PHY_MODE set to 010_b or 011_b.
 - 3. If the PHY is disabled and subsequently re-enabled, a disable time of mode than 100 μ s must be maintained by the software.
 - 4. If the PHY is enabled, a reset is extended internally in the PHY by 5.3 ms. During this time, the PHY-internal PLL and all analog and digital components of the PHY are started up. The completion of this start-up phase is signaled in the PHY_STATUS register with P2_PWRUPRST=1_b.

Bit position	Bit name	R/W	Function							
(7:6)	-	-	Re	served						
				_AUTOMDIXEN ables AutoMDIX sta	te machine for PHY1					
			Γ	P1_AUTOMDIXEN	AutoMDIX enable					
5	P1_AUTOMDIXEN	R/W		0 _b	Disable AutoMDIX state machine for PHY1, (initial value)					
				1 _b	Enable AutoMDIX state machine for PHY1					
				_PHY_MODE(2:0) lect operation mode	for PHY2					
				P1_PHY_MODE	PHY1 operation mode					
				000 _b	Select 10BASE-T HD, Auto-negotiate disa- bled, (initial value)					
				001 _b	Select 10BASE-T FD, Auto-negotiate disa- bled					
(4.2)				010 _b	Select 100BASE-TX/FX HD, Auto-negotiate disabled					
(4:2)	P1_PHY_MODE	R/W		011 _b	Select 100BASE-TX/FX FD, Auto-negotiate disabled					
				100 _b	Select 100BASE-TX, HD advertised, Auto- negotiate enabled					
				101 _b	Select 100BASE-TX, HD advertised, Auto- negotiate enabled, repeater mode					
				110 _b	Reserved					
				111 _b	Auto-negotiate enabled, AutoMDIX enabled					
			-	_FX_MODE ables 100BASE-FX	interface					
			[P1_FX_MODE	PHY FX-mode enable					
1	P1_FX_MODE	R/W		Uh	100BASE-FX interface disabled (initial value)					
				1 _b	100BASE-FX interface enabled ^{Note}					

Figure 17-17: PHY1/2 Configuration Register (PHY_CONFIG) (3/4))

Note: This setting is only meaningful for P1_PHY_MODE set to 010_b or 011_b .

Bit position	Bit name	R/W		Function
			1_PHY_ENB nables PHY1	
			P1_PHY_ENB	PHY enable
0	P1_PHY_ENB	R/W		PHY1 is disabled and in power-down mode (initial value) ^{Note 1}
			1 _b	PHY1 is enabled ^{Notes 1, 2}
				·

Figure 17-17: PHY1/2 Configuration Register (PHY_CONFIG) (4/4))

- **Notes: 1.** If the PHY is disabled and subsequently re-enabled, a disable time of mode than 100 μ s must be maintained by the software.
 - If the PHY is enabled, a reset is extended internally in the PHY by 5.3 ms. During this time, the PHY-internal PLL and all analog and digital components of the PHY are started up. The completion of this start-up phase is signaled in the PHY_STATUS register with P1_PWRUPRST=1_b.

				F	igur	e 17	-18:	PH	Y1/2	Stat	tus R	Regis	ster (РНҮ	_STA	TUS)	
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Address	Initial value
							rese	rved								4000 2660H	0000 0000H
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
		re	eserve	ed			P2_P WRU PRST			re	eserve	ed			P1_P WRU PRST		

Chapter 17 System Control Registers

Bit position	Bit name	R/W	Function						
(31:9)	-	-	Reserved						
			P2_PWRUPRST Indicates, whether PHY	P2_PWRUPRST Indicates, whether PHY2 is ready to operate					
			P2_PWRUPRST	PHY operation status					
8	P2_PWRUPRST	R	Uh	PHY2 is not ready to operate (i.e. in power down mode or in start up phase, initial value)					
			1 _b	PHY2 is ready to operate					
			<u> </u>						
(7:1)	-	-	Reserved						
			P1_PWRUPRST Indicates, whether PH	1 is ready to operate					
			P1_PWRUPRST	PHY operation status					
0	P1_PWRUPRST	R	0 _b	PHY1 is not ready to operate (i.e. in power down mode or in start up phase, initial value)					
			1 _b	PHY1 is ready to operate					

Chapter 17	System Contro	I Registers
------------	---------------	-------------

				Fig	ure	17-1	9:	UAR	Τ Clo	ock S	Secti	on R	egis	ter (UAR	T_CLK)	
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Address	Initial value
							rese	erved								4000 2670H	0000 0000H
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
						re	serv	ed							UART _TAK T		

Bit position	Bit name	R/W	Function					
(31:1)	-	-	Reserved					
			UART_TAKT Selects operation cl	UART_TAKT Selects operation clock for UART				
			UART_TAKT	PHY operation status				
0	UART_TAKT	R/W	0 _b	50 MHz APB clock is used as UART opera- tion clock (initial value)				
			1 _b	6 MHz clock is used as UART operation clock (allows setting of a baudrate of 187.5 kbps)				

[MEMO]

Chapter 18 ERTEC 200 Clock Supply

The clock system of ERTEC 200 basically consists of four clock domains that are decoupled through asynchronous transfers; these are:

- ARM946E-S together with AHB bus, APB bus and IRT
- JTAG interface
- LBU interface
- PHYs and Ethernet MACs

18.1 Clock Supply in ERTEC 200

The required clocks are generated in the ERTEC 200 by means of an internal PLL and/or through direct clock supply. The following Table 18-1 provides a detailed list of the clocks:

Module	Clock ge	eneration	Frequency	
Module	Clock source	Name		
ARM946E-S		CLK_ARM (int.)	50/100/150 MHz (selectable)	
AHB/EMIF/ICU	CLKP_A, CLKP_B and	CLK_50 (int.)	50 MHz	
IRT (except MII)	subsequent PLL	CLK_50, CLK_100	50 and 100 MHz	
APB		CLK_50 (int.)	50 MHz	
MII and PHYs	CLKP_A (, CLKP_B)	PHY_CLK (int.)	25 MHz	
F-Timer	F_CLK	F-Clock	0-1.6666 MHz	
JTAG	ТСК	JTAG clock	0-10 MHz	

Table 18-1: Overview of ERTEC 200 Clocks

The synchronous clocks CLK_50 and CLK_100 are used primarily in ERTEC 200. These clocks are generated with an internal PLL that is, in turn, supplied by a 25 MHz quartz or oscillator. There are two possibilities for feeding the clock:

Input clock is fed with a 25 MHz quartz via the CLKP_A, CLKP_B pins. Input clock is fed with an 25 MHz oscillator directly to the CLKP_A pin.

The 25 MHz input clock is internally divided by 2 and then supplied to the internal PLL. The PLL however, generates an internal clock of 300 MHz, that is supplied to the internal clock generator. This generator provides all required internal system clocks.

The PLL generates the CLK_50 (50 MHz) and CLK_100 (100 MHz) system clocks as well as the clock for the ARM946E-S. This clock can be selected the CONFIG(4:3) configuration pins.

$CONFIG(4:3) = 00_b$	ARM946E-S processor clock	50 MHz
$CONFIG(4:3) = 01_b$	ARM946E-S processor clock	100 MHz
$CONFIG(4:3) = 10_{b}$	ARM946E-S processor clock	150 MHz
$CONFIG(4:3) = 11_b$	reserved	

Figure 18-1 shows the structure of the clock unit with the individual input and output clocks.

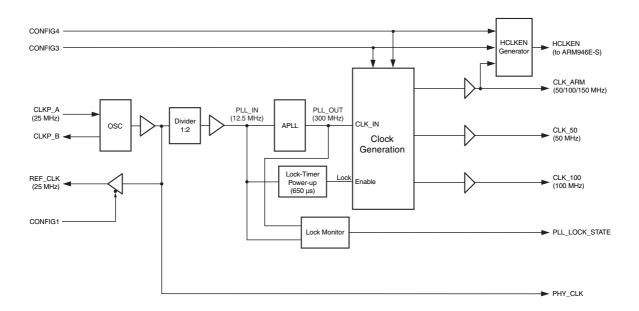


Figure 18-1: Detailed Representation of Clock Unit

18.2 Specific Clock Supplies

The clock supply for the JTAG interface is implemented using the JTAG_CLK pin. The frequency range is between 0 and 10 MHz. The boundary scan and the ICE macro cell of the ARM946E-S are enabled via the JTAG interface.

The connection between the integrated Ethernet MACs and the integrated PHYs is realized with onchip MII interfaces. The integrated PHYs are operated with the 25 MHz clock that is supplied via the CLKP_A and CLKP_B pins (respectively via the CLKP_A pin only). This clock is then used by the PHYs to generate the (normally internal) RX_CLK and TX_CLK clocks that are part of the MII interface to the MACs (see Figure 18-2).

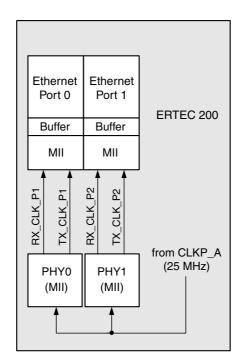


Figure 18-2: Clock Supply of Ethernet Interface

The MII interface is also presented at the LBU interface pins for Ethernet interface debugging. In this case, the LBU interface is not usable. The configuration is selected with the configuration pins CONFIG(6:5) and CONFIG2;

 $CONFIG(6:5) = 01_b, CONFIG2 = 1_b$

MII interface in diagnosis mode

[MEMO]

Chapter 19 Reset Logic of ERTEC 200

The reset logic resets the entire circuit of ERTEC 200. A reset of ERTEC 200 is activated by the following events:

- PowerOn reset via external RESET_N pin
- Software reset via XRES_SOFT bit in the reset control register
- Watchdog reset via watchdog timer overflow

The triggering reset event can be read out in the reset status register RES_STAT_REG.

19.1 PowerOn Reset

The PowerOn reset circuitry is connected to the RESET_N pin of ERTEC 200. If the PowerOn reset is activated, the entire ERTEC 200 circuit is reset internally. The PowerOn reset must be present steadily for at least 35 μ s (see Figure 19-1). Afterwards, the PLL powers up within a lock time of t_{Lock} = 645 μ s. In ERTEC 200 the PowerOn reset phase is extended for this period and the rest of the clock system is activated at the end of the PLL start up phase. During this period, no communication is possible with a debugger using the JTAG interface.

Figure 19-1 shows the power-up phase of the PLL after a reset.

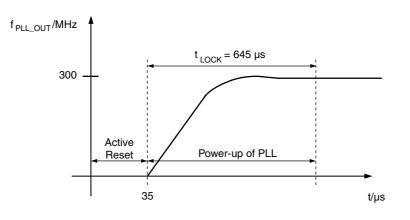


Figure 19-1: PLL Power-up Phase

The lock status of the PLL is monitored. Loss of the input clock and the PLL unlock state are signalled with the fast interrupt FIQ3. The state of the PLL can also be read out from the PLL_STAT_REG status register. A filter is integrated at the RESET N input, which suppresses spikes up to 5 ns.

In case of a PowerOn reset, bit 2 is set in the reset status register RES_STAT_REG. This bit remains unaffected by the triggering reset function and can be evaluated after a restart.

An external debug tool is informed of a PowerOn reset with the SRST_N signal: SRST_N is activated while RESET_N is active and while the internal RESET_N extension is working. This allows the external debugger to recognize the PowerOn reset phase.

19.2 Hardware Reset

A hardware reset is activated using the bi-directional SRST_N pin (open drain); SRST_N is only used by the debugger. While SRST_N is active, the complete internal logic is reset except

- the clock system and
- the BOOT and CONFIG pins are not read.

While SRST_N is active, the debugger can communicate via the JTAG interface with the embedded ICE logic; this allows single-step debugging from the reset address onwards. As with the RESET_N input, a 5 ns anti-spike filter is implemented at the SRST_N input.

After a hardware reset with SRST_N, ERTEC 200 will boot in the same mode, that was stored during the last PowerOn reset. PowerOn as well as hardware reset set the HW_RESET bit in the RES_STAT_REG register. This register can be evaluated after restart of the processor.

19.3 Watchdog Reset

The watchdog reset involves software monitoring with hardware support. The monitoring process is based on a time set in the watchdog timer reload registers. The time starts with activation of the watchdog timer. Re-triggering and thus reloading the timer with a specified reload value prevents the watchdog reset from being triggered. If the timer is not re-triggered, the watchdog reset is activated after the timer expires, if the watchdog function is enabled with the WD_RES_FREI bit in the reset control register RES_CTRL_REG.

As the reset pulse, that is generated by the watchdog, is too short, the watchdog reset is extended in ERTEC 200 by means of a programmable pulse stretching (PV). The maximum duration, that can be programmed in the RES_CTRL_REG register, is approximately 2.05 ms in case of a 50 MHz APB clock. The watchdog reset resets the same circuitry as the hardware reset, if the EN_WD_SOFT_RES_IRTE bit is set in the RES_CTRL_REG. Otherwise, the IRT switch is not affected by the watchdog reset. The watchdog event can be signalled to the host system via the GPIO15 pin, if this pin was configured to be the WD_WDOUT0_N pin.

As in the case of a hardware reset, a bit is set in the reset status register RES_STAT_REG. This bit remains unaffected by the triggering reset function. This register can be evaluated after a restart.

19.4 Software Reset

A software reset can be triggered in ERTEC 200 by setting the XRES_SOFT bit in the reset control register RES_CTRL_REG; this bit is not stored. The subsequent reset will be extended in the same way than the watchdog reset. The software reset resets the same circuitry as the hardware reset, if the EN_WD_SOFT_RES_IRTE bit is set in the RES_CTRL_REG. Again, a bit is set in the reset status register RES_STAT_REG when the reset is triggered.

BOOT and CONFIG pins are not re-read after a software reset.

19.5 IRT Switch Reset

The IRT switch can be reset via a bit in an internal register. The reset will be active, until the bit is reset again. The internal PHYs can either be reset using RESET_N or using the internal PHY_RES_N signal via the switch controller. Selection between the two reset sources is done in the PHY_CONFIG register with the PHY_RES_SEL bit. As long as the SMI interface in the IRT switch in not active, PHY_RES_N is active and keeps the PHYs in power down mode in order to reduce power consumption.

19.6 Actions when HW Reset is Active

During the active HW reset phase, the states of the 4 boot pins BOOT(3:0) are latched into the BOOT_REG register and the states of the 6 config pins CONFIG(6:1) are latched into the CONFIG_REG register. After the hardware reset phase, these pins are available as normal EMIF function pins. Tables 19-1 and 19-2 summarize the function of the BOOT and CONFIG pins. Note that BOOT and CONFIG pins are only latched in case of a PowerOn reset; a hardware, watchdog or software reset do not have this effect.

BOOT3	BOOT2	BOOT1	BOOT0	Selected download mode	
0 _b	0 _b	0 _b	0 _b	Via external ROM/NOR flash with 8-bit width	
0 _b	0 _b	0 _b	1 _b	Via external ROM/NOR flash with 16-bit width	
0 _b	0 _b	1 _b	0 _b	Via external ROM/NOR flash with 32-bit width	
1 _b	0 _b	0 _b	0 _b	Fast boot via external ROM/NOR flash with 8-bit width	
1 _b	0 _b	0 _b	1 _b Fast boot via external ROM/NOR flash with 16-bit wid		
1 _b	0 _b	1 _b	0 _b	Fast boot via external ROM/NOR flash with 32-bit width	
0 _b	1 _b	0 _b	1 _b	SPI (e.g. for use with EEPROMs with serial interface)	
0 _b	1 _b	1 _b	0 _b	UART (bootstrap method)	
0 _b	1 _b	1 _b	1 _b	LBU (from external host)	
	All of	thers		Reserved	

Table 19-1: BOOT(3:0) Pin Functions

CONFIG pin	Setting	Function		
	11 _b , 0 _b	LBU on, LBU_WR_N used as read/write control signal, LBU_RDY_N is active high		
	10 _b , 0 _b	LBU on, LBU_WR_N used as write control signal, LBU_RD_N used as read control signal, LBU_RDY_N is active high		
	01 _b , 0 _b	LBU on, LBU_WR_N used as read/write control signal, LBU_RDY_N is active low		
CONFIG(6:5), CONFIG2	00 _b , 0 _b	LBU on, LBU_WR_N used as write control signal, LBU_RD_N used as read control signal, LBU_RDY_N is active low		
	10 _b , 1 _b	LBU off, GPIO(44:32) active, embedded trace on, MII interface for diagnosis off		
	01 _b , 1 _b	LBU off, GPIO(44:32) active, embedded trace off, MII interface for diagnosis on		
	others	Reserved		
	00 _b	50 MHz CPU core clock frequency		
CONFIG(4:3)	01 _b	100 MHz CPU core clock frequency		
CONFIG(4.3)	10 _b	150 MHz CPU core clock frequency		
	11 _b	Reserved		
CONFIG1	0 _b	Clock output via REF_CLK pin (25 MHz)		
CONFIGT	1 _b	REF_CLK pin in tri-state		

Table 19-2: CONFIG(6:1) Pin Functions

Chapter 20 Address Space and Timeout Monitoring

Several monitoring mechanisms are incorporated in ERTEC 200 for detection of incorrect addressing, illegal accesses, and timeout. The following blocks are monitored:

- AHB bus
- APB bus
- EMIF

The monitoring mechanisms for these blocks will be described in detail in the subsequent chapters.

20.1 AHB Bus Monitoring

Separate address space monitoring is implemented for each of the four AHB masters. If an AHB master addresses an unused address space, the access is acknowledged with an error response and an FIQ interrupt is triggered at input FIQ2 of the ARM946E-S interrupt controller. The incorrect access address is stored in the QVZ_AHB_ADR system control register and the associated access type (HBURST, HSIZE, HWRITE) is stored in the QVZ_AHB_CTRL system control register. The master that caused the access error is stored in the QVZ_AHB_M register.

In case of an access violation by the LBU as an AHB master, an interrupt request is also enabled and stored in the IRT macro. Additionally an LBU_IRQ0 interrupt is issued to the external host.

If more than one AHB master causes an access violation simultaneously (within a single AHB clock cycle), only the violation of the highest priority AHB master is protocoled in the registers (see Table 4-1). Diagnostic registers QVZ_AHB_ADR, QVZ_AHB_CTRL, and QVZ_AHB_M remain locked for subsequent access violations until the QVZ_AHB_CTRL register has been read.

20.2 APB Bus Monitoring

The APB address space is monitored on the APB bus. If incorrect addressing is detected in the APB address space, access to the APB side and AHB side is terminated with an "OKAY" response because the APB bus does not recognize response-type signalling. An FIQ interrupt is triggered at input FIQ1 of the ARM946E-S interrupt controller. The incorrect access address is placed in the QVZ_APB_ADR system control register. The QVZ_APB_ADR system control register is locked for subsequent address violations until it has been read.

20.3 External Memory Interface Monitoring

In case of the EMIF, the external RDY_PER_N ready signal can be monitored. In order to enable monitoring, the Extended_Wait_Mode bit must be switched on in the Async_BANK_0_Config to Async_BANK_3_Config configuration registers. If one of the four memory areas, that are selected via the CS_PER(3:0)_N chip select outputs, is addressed, the memory controller of the ERTEC 200 waits for the RDY_PER_N input signal.

The monitoring duration is set in the Async_Wait_Cycle_Config register and it is active, if timeout monitoring (Bit 7) is set in the Extended_Config register. The specified value (maximum of 255) multiplied by 16 yields the monitoring time given in AHB clock cycles, i.e., the time that the memory controller waits for the Ready signal. After this time elapses, an (internal) ready signal is generated for the memory controller and an FIQ interrupt is generated at input FIQ3 of the ARM946E-S interrupt controller. In addition, the address of the incorrect access is stored in the QVZ_EMIF_ADR system control register. The QVZ_EMIF_ADR system control register is locked for subsequent address violations until it has been read. The previously set FIQ3 interrupt is then removed if timeout monitoring is reset.

Chapter 21 Test and Debugging

21.1 ETM9 Embedded Trace Macrocell

An ETM9 module is integrated in the ARM946E-S of ERTEC 200 to enable instructions and data to be traced. The ARM946E-S supplies the ETM module with the signals needed to carry out the trace functions. The ETM9 module is operated by means of the trace interface or JTAG interface. The trace information is stored in an internal FIFO and forwarded to the debugger via the interface. The trace interface is shared with the LBU interface; selection is made with the CONFIG(6:5) and CONFIG2 pins. The following trace modes are supported:

- Normal mode with 4- or 8-data bit width
- Transmission mode
 - Full rate mode at 50 or 100 MHz CPU core clock frequency
 - Half rate mode at 150 MHz CPU core clock frequency

The ETM9 embedded trace macrocell is available in different complexity levels; ERTEC 200 has the "medium" complexity version of the ETM9 implemented. Thus the ETM9 provides the following features:

- 4 address comparator pairs
- 2 data comparators with filter function
- 4 direct trigger inputs, one of which can be connected via GPIO16, if the alternative function ETMEXTIN1 has been selected
- 1 trigger output that is also available at GPIO12 for external purposes, if the alternative function ETMEXOUT has been selected
- 8 memory map decoders for decoding the physical address area of ERTEC 200
- 1 sequencer
- 2 counters

Supplemental to the ETM specification, 8 memory map decode (MMD) regions have been decoded out via hardware; these regions are summarized in Table 21-1.

Segment	Range	Memory			
0	0 - 4 kBytes	Instruction and data access to I-cache			
0	complete	Instruction and data access to BOOT ROM / SDRAM / CS_PER0_N			
1	0 - 1 MBytes	Data access to IRT register			
	1 - 2 MBytes	Instruction and data access to IRT internal communication SRAM			
2	0 - 256 MBytes	Instruction and data access to external SDRAM			
3	0 - 16 kBytes	Instruction and data access to external CS_PER0_N (typically Flash)			
5	16 - 32 kBytes	Instruction and data access to external CS_PER1_N (typically SRAM)			
4					
5	complete	Data access to internal registers (APB, ICU, EMIF, DMA)			
6	complete				
7					

 Table 21-1:
 Memory Map Decode Regions in ETM9 on ERTEC 200

For more information on the ETM, refer to the additional documents listed on page 6.

21.2 ETM9 Registers

The ETM registers are not described in this document because they are handled differently according to the ETM version being used. For a detailed description, the reader is referred to the documents listed on page 6.

21.3 Trace Interface

In order to read out the trace information collected by the ETM9, a trace port is provided in ERTEC 200 for tracing internal processor states. The trace port is controlled, enabled and disabled using a suitable hardware debugger that is connected to the JTAG interface. This trace port uses the following signals:

Pin Name	I/O	Function	Number of pins
PIPESTA(2:0)	0	CPU pipeline status	3
TRACESYNC	0	Trace sync signal	1
TRACECLK	0	ETM trace or scan clock	1
TRACEPKT(7:0)	0	Trace packet bits	8
total	•		13

Table 21-2: Trace Port Pin Functions

All these signals except TRACECLK are alternative signal pins at the LBU interface. The trace interface can be configured to a data width of 4 bits or 8 bits in the debugger. If a data width of 4 bits is selected, the TRACEPKT(3:0) signals are automatically switched to the trace function. If a data width of 8 bits is assigned, the TRACEPKT(7:4) signals are also switched to the trace function.

For connectors, pinning, and hardware circuitry for the trace interface, please consult the additional documents listed on page 6.

21.4 JTAG Interface

ERTEC 200 has a serial debug interface that conforms to the JTAG standard. If this interface is made accessible in a system, it can be used for the connection of hardware debuggers from different manufacturers. Table 21-3 summarizes the debug interface pins.

Pin Name	I/O ^{Note}	Function	Number of pins
TRST_N	I	JTAG reset signal	1
ТСК	I	JTAG clock signal	1
TDI	I	JTAG data input signal	1
TMS	I	JTAG test mode select signal	1
TDO	0	JTAG data output signal	1
DBGREQ	I	Debug request signal	1
DBGACK	0	Debug acknowledge signal	1
TAP_SEL	I	TAP controller select signal	1
total		•	8

Table 21-3: JTAG and Debug Interface Pin Functions

Besides the debug function, the JTAG interface is also used for the boundary scan function: selection between these two functions is made with the TAP_SEL input pin:

$TAP_SEL = 0_b$	Boundary scan function selected.
TAP_SEL = 1 _b	Debug function selected.

The TAP_SEL input is equipped with an internal pull-up resistor and must be at high level for normal operation of the ERTEC 200.

In addition to the JTAG interface, the DBGREQ and DBGACK signals are available as alternative function pins. Due to the different debuggers, an internal pull-up resistor at the TRST_N JTAG pin is not included. The user has to ensure the proper circuitry for the utilized debugger. The standard connector for JTAG interfaces is a low-cost 20-pin connector with a pin spacing of 0.1 inch. All JTAG pins and the two additional DBGREQ and DBGACK pins are connected here. The connector pins are assigned as follows:

	Pin No.	Pin No.	
V_{CC} -Sense	1	2	V_{CC}
TRST_N	3	4	GND
TDI	5	6	GND
TMS	7	8	GND
TCK	9	10	GND
RTCK ^{Note}	11	12	GND
TDO	13	14	GND
SRST_N	15	16	GND
DBGREQ	17	18	GND
DBGACK	19	20	GND

Figure 21-1: JTAG Connector Pin Assignment

Note: This optional pin is not supported on ERTEC 200.

For connectors, pinning, signal description, and hardware circuitry for a standard JTAG interface for the ARM Multi-ICE debugger, for example, refer to the documents listed on page 6.

In addition to the standard JTAG connector, the pins can also be connected with the trace signals at a single connector. For connectors, pinning, and hardware circuitry for JTAG signals at the Trace interface, please refer to the documents listed on page 6.

21.5 Debugging via UART

If the UART is not used for user-specific tasks, it can also be used as a debugging interface. In this case it is recommended to map the UART interrupt source to FIQ6 or FIQ7 in order to allow the debugging of interrupt routines.

NEC

Facsimile Message

FAX

Although NEC has taken all possible steps to ensure that the documentation supplied to our customers is complete, bug free and up-to-date, we readily accept that errors may occur. Despite all the care and precautions we've taken, you may encounter problems in the documentation. Please complete this form whenever you'd like to report errors or suggest improvements to us.

Address

Tel.

From:

Name

Company

Thank you for your kind support.

North America NEC Electronics America Inc. Corporate Communications Dept. Fax: 1-800-729-9288 1-408-588-6130	Hong Kong, Philippines, Oceania NEC Electronics Hong Kong Ltd. Fax: +852-2886-9022/9044	Asian Nations except Philippines NEC Electronics Singapore Pte. Ltd. Fax: +65-6250-3583	
Europe NEC Electronics (Europe) GmbH Marketing Services & Publishing Fax: +49(0)-211-6503-1344	Korea NEC Electronics Hong Kong Ltd. Seoul Branch Fax: 02-528-4411	Japan NEC Semiconductor Technical Hotline Fax: +81- 44-435-9608	
	Taiwan NEC Electronics Taiwan Ltd. Fax: 02-2719-5951		

I would like to report the following error/make the following suggestion:

Document title: ____

Document number: _____

_____ Page number: ___

If possible, please fax the referenced page or drawing.

Document Rating	Excellent	Good	Acceptable	Poor
Clarity				
Technical Accuracy				
Organization				