

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

User’s Manual

Target Devices

 78K4 Series

CC78K4 Ver. 2.40 or Later
C Compiler

Operation

Document No. U16707EJ1V0UM00 (1st edition)
Date Published September 2003 N CP(K)

 2003
Printed in Japan

User’s Manual U16707EJ1V0UM 2

[MEMO]

User’s Manual U16707EJ1V0UM 3

Windows and Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the

United States and/or other countries.

PC/AT is a trademark of International Business Machines Corporation.

i386 is a trademark of Intel Corporation.

UNIX is a registered trademark in the United States and other countries, licensed exclusively through X/Open

Company Limited.

SPARCstation is a trademark of SPARC International, Inc.

SunOS and Solaris are trademarks of Sun Microsystems, Inc.

HP9000 Series 700 and HP-UX are trademarks of Hewlett-Packard Company.

The information in this document is current as of June, 2003. The information is subject to change
without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or
data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all
products and/or types are available in every country. Please check with an NEC Electronics sales
representative for availability and additional information.
No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may
appear in this document.
NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from the use of NEC Electronics products listed in this document
or any other liability arising from the use of such products. No license, express, implied or otherwise, is
granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
Descriptions of circuits, software and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these
circuits, software and information in the design of a customer's equipment shall be done under the full
responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by
customers or third parties arising from the use of these circuits, software and information.
While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products,
customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To
minimize risks of damage to property or injury (including death) to persons arising from defects in NEC
Electronics products, customers must incorporate sufficient safety measures in their design, such as
redundancy, fire-containment and anti-failure features.
NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and
"Specific".
The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-
designated "quality assurance program" for a specific application. The recommended applications of an NEC
Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of
each NEC Electronics product before using it in a particular application.
 "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio

and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots.

"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support).

"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC
Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications
not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to
determine NEC Electronics' willingness to support a given application.

(Note)
(1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its

majority-owned subsidiaries.
(2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics

(as defined above).

•

•

•

•

•

•

M8E 02. 11-1

User’s Manual U16707EJ1V0UM 4

Regional Information

• Device availability

• Ordering information

• Product release schedule

• Availability of related technical literature

• Development environment specifications (for example, specifications for third-party tools and
 components, host computers, power plugs, AC supply voltages, and so forth)

• Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary
from country to country.

[GLOBAL SUPPORT]
 http://www.necel.com/en/support/support.html

NEC Electronics America, Inc. (U.S.)
Santa Clara, California
Tel: 408-588-6000
 800-366-9782

NEC Electronics Hong Kong Ltd.
Hong Kong
Tel: 2886-9318

NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-558-3737

NEC Electronics Shanghai, Ltd.
Shanghai, P.R. China
Tel: 021-6841-1138

NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-2719-2377

NEC Electronics Singapore Pte. Ltd.
Novena Square, Singapore
Tel: 6253-8311

J03.4

NEC Electronics (Europe) GmbH
Duesseldorf, Germany
Tel: 0211-65 03 01

• Sucursal en España
Madrid, Spain
Tel: 091-504 27 87

Vélizy-Villacoublay, France
Tel: 01-30-67 58 00

• Succursale Française

• Filiale Italiana
Milano, Italy
Tel: 02-66 75 41

• Branch The Netherlands
Eindhoven, The Netherlands
Tel: 040-244 58 45

• Tyskland Filial
Taeby, Sweden
Tel: 08-63 80 820

• United Kingdom Branch
Milton Keynes, UK
Tel: 01908-691-133

Some information contained in this document may vary from country to country. Before using any NEC
Electronics product in your application, pIease contact the NEC Electronics office in your country to
obtain a list of authorized representatives and distributors. They will verify:

User’s Manual U16707EJ1V0UM 5

INTRODUCTION

The purpose of this manual is to give the user a complete understanding of the functions and operation of the

CC78K4 (78K4 Series C Compiler).

This manual does not explain how to write CC78K4 source programs. Therefore, before reading this manual,

please read “CC78K4 C Compiler Language User’s Manual (U15556E)” (hereafter called the “Language

manual”).

[Target Devices]

Software for 78K4 Series microcontrollers can be developed by using the CC78K4. To use this software, the

RA78K4 (78K4 Series Assembler Package (sold separately)) and the target model’s device file are required.

[Target Readers]

This manual is written for users who have the knowledge gained from reading through the user’s manual for

the device once and have software programming experience. However, since knowledge about C compilers

and the C language is not particularly needed, first-time users of C compilers can use this manual.

[Organization]

The organization of this manual is described below.

CHAPTER 1 OVERVIEW

This chapter describes the role and position of the CC78K4 in microcontroller development.

CHAPTER 2 PRODUCT OVERVIEW AND INSTALLATION

This chapter describes how to install the CC78K4, the file names of the supplied programs, and the

operating environment for programs.

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

This chapter uses sample programs to describe how to run the CC78K4 and presents examples showing

the processes from compiling to linking.

CHAPTER 4 CC78K4 FUNCTIONS

This chapter describes optimization methods and ROMization functions in the CC78K4.

CHAPTER 5 COMPILER OPTIONS

This chapter describes the functions of the compiler options, specification methods, and prioritization.

CHAPTER 6 C COMPILER OUTPUT FILES

This chapter describes the output of various list files output by the CC78K4.

CHAPTER 7 USING C COMPILER

This chapter introduces techniques to aid in the skillful use of the CC78K4.

User’s Manual U16707EJ1V0UM 6

CHAPTER 8 STARTUP ROUTINES

The CC78K4 provides startup routines as samples. This chapter describes the uses of the startup

routines and provides suggestions on how to improve them.

CHAPTER 9 ERROR MESSAGES

This chapter describes the error messages output by the CC78K4.

APPENDICES

The appendices provide and a sample program, a list of the cautions encountered during use, lists of the

restrictions related to the CC78K4, and an index.

[How to Read This Manual]

First, those who want to see how to actually use CC78K4, read CHAPTER 3 PROCEDURE FROM

COMPILING TO LINKING.

Users with a general knowledge of C compilers or users who have read the Language manual can skip

CHAPTER 1 OVERVIEW.

[Related Documents]

The table below shows the documents (such as user’s manuals) related to this manual. The related

documents indicated in this publication may include preliminary versions. However, preliminary versions are not

marked as such.

Document Name Document No.

Operation This manual CC78K4 C Compiler

Language U15556E

Operation U16708E

Language U15255E

RA78K4 Assembler Package

Structured Assembler Language U11743E

SM78K4 Series System Simulator WindowsTM Based Operation To be prepared

SM78K Series System Simulator Ver. 1.40 or Later External Part User Open Interface

Specifications

U10092E

ID78K4-NS Integrated Debugger Ver. 2.52 or Later

Windows Based

Operation U16632E

ID78K4 Integrated Debugger Windows Based Reference U10440E

Fundamental U10603E RX78K4 Real-Time OS

Installation U10604E

PM plus Ver. 5.10 To be prepared

User’s Manual U16707EJ1V0UM 7

[Conventions]

The meanings of the symbols used in this manual are explained.

RTOS: Real-time OS for 78K4 Series RX78K4

…: Repeat in the same format.

[]: Characters enclosed in these brackets can be omitted.

 : Characters enclosed in these brackets are as shown (character string).

“ “: Characters enclosed in these brackets are as shown (character string).

‘ ‘: Characters enclosed in these brackets are as shown (character string).

Boldface: Characters in bold face are as shown (character string).

_ : Underlining at important locations or in examples is the input character sequence.

∆ : At least one space

 : Indicates an omission in a program description

() : Characters between parentheses are as shown (character string).

/ : Delimiter

\: Backslash

[File Name Conventions]

The conventions for specifying the input files that are designated in the command line are shown below.

(1) Specifying disk file names

[drive-name] [\] [[path-name]...] primary-name [.[file-type]]

 <1> <2> <3> <4> <5>

<1> Specifies the name of the drive (A: to Z:) storing the file.

<2> Specifies the name of the root directory.

<3> Specify the subdirectory name.

 Specify a character string of a length allowed by the OS.

 Characters that can be used:

All the characters allowed by the OS, except parentheses (()), semicolons (:), and commas (,).

Note that a hyphen (-) cannot be used as the first character of a path name.

<4> Primary name

 Specify a character string of a length allowed by the OS.

 Characters that can be used:

All the characters allowed by the OS, except parentheses (()), semicolons (:), and commas (,).

Note that a hyphen (-) cannot be used as the first character of a path name.

<5> File type

 Specify a character string of a length allowed by the OS.

 Characters that can be used:

All the characters allowed by the OS, except parentheses (()), semicolons (:), and commas (,).

Example: C:\nectools32\smp78k4\CC78k4\prime.C

Remarks 1. A space cannot be specified before and after ‘:’, ‘.’, or ‘\’.

 2. Uppercase and lowercase letters are not distinguished (not case-sensitive).

.
.
.

User’s Manual U16707EJ1V0UM 8

(2) Specifying device file names

The following logical devices are available.

Logical Device Description

CON Output to the console.

PRN Output to the printer.

AUX Output to an auxiliary output device.

NUL Dummy output (nothing is output.)

User’s Manual U16707EJ1V0UM 9

CONTENTS

CHAPTER 1 OVERVIEW...12

1.1 Microcontroller Application Product Development and Role of CC78K413
1.2 Development Procedure Using CC78K4..15

1.2.1 Using editor to create source module files ... 16
1.2.2 C compiler.. 17
1.2.3 Assembler.. 18
1.2.4 Linker ... 19
1.2.5 Object converter .. 20
1.2.6 Librarian... 21
1.2.7 Debugger ... 22
1.2.8 System simulator ... 23
1.2.9 PM plus.. 24

CHAPTER 2 PRODUCT OVERVIEW AND INSTALLATION ...25

2.1 Host Machines and Supply Media..25
2.2 Installation ..26

2.2.1 Installation of Windows version.. 26
2.2.2 Installation of UNIX version.. 26

2.3 Installation of Device Files..27
2.3.1 Installation of Windows version.. 27
2.3.2 Installation of UNIX version.. 27

2.4 Directory Configuration...27
2.4.1 Windows version directory configuration ... 27
2.4.2 UNIX version directory configuration ... 29

2.5 Uninstallation Procedure ..30
2.5.1 Uninstallation of Windows version ... 30
2.5.2 Uninstallation of UNIX version ... 30

2.6 Environment Settings..31
2.6.1 Host machine (for PC-9800 Series and IBM PC/AT compatibles) ... 31
2.6.2 Environment variables ... 31
2.6.3 File organization .. 32
2.6.4 Library files .. 33

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING..36

3.1 PM plus ...36
3.1.1 Position of CC78K4P.DLL (tools DLL) ... 36
3.1.2 Execution environment .. 36
3.1.3 CC78K4 option setting menu ... 37
3.1.4 Description of each part of <Compiler Options> dialog box ... 40

3.2 Procedure from Compiling to Linking
(When Not Using Flash Memory Self Rewrite Mode) ...60
3.2.1 MAKE from PM plus .. 60
3.2.2 Starting up PM plus ... 60
3.2.3 Creating project ... 60

User’s Manual U16707EJ1V0UM 10

3.2.4 Setting compiler and linker options ..61
3.2.5 Building project ..63
3.2.6 Compiling to linking in command line (for DOS prompt and EWS) ..64

3.3 Compiling to Linking (When Using Flash Memory Self Rewrite Mode)................................66
3.3.1 Compiling to linking via PM plus ..66
3.3.2 Compiling to linking in command line (for DOS prompt and EWS) ..74

3.4 I/O Files of C Compiler...77
3.5 Execution Start and End Messages ...79

CHAPTER 4 CC78K4 FUNCTIONS ..81

4.1 Optimization Method..81
4.2 ROMization Function ...83

4.2.1 Linking..83

CHAPTER 5 COMPILER OPTIONS..84

5.1 Specifying Compiler Options..84
5.2 Prioritization of Compiler Options..85
5.3 Descriptions of Compiler Options..86

CHAPTER 6 C COMPILER OUTPUT FILES.. 131

6.1 Object Module File .. 131
6.2 Assembler Source Module File.. 131
6.3 Error List File ... 135

6.3.1 Error list file with C source ...135
6.3.2 Error list file with error message only ...137

6.4 Preprocess List File .. 138
6.5 Cross-Reference List File... 140

CHAPTER 7 USING C COMPILER .. 143

7.1 Efficient Operation (EXIT Status Function) .. 143
7.2 Setting Up Development Environment (Environment Variables)....................................... 144
7.3 Interrupting Compilation .. 144

CHAPTER 8 STARTUP ROUTINES... 145

8.1 File Organization ... 145
8.1.1 BAT directory contents...146
8.1.2 SRC directory contents ..147

8.2 Batch File Description .. 148
8.2.1 Batch files for creating startup routines ..148

8.3 Startup Routines ... 150
8.3.1 Overview of startup routines ..150
8.3.2 Description of sample program (cstart.asm) ..153
8.3.3 Revising startup routines..165

8.4 ROMization Processing in Startup Module for Flash Area ... 186

CHAPTER 9 ERROR MESSAGES... 188

User’s Manual U16707EJ1V0UM 11

9.1 Error Message Format...188
9.2 Types of Error Messages ..188
9.3 List of Error Messages ..189

APPENDIX A SAMPLE PROGRAMS ...213

A.1 C Source Module File ..213
A.2 Execution Example ..214
A.3 Output List ..215

APPENDIX B LIST OF USE-RELATED CAUTIONS..222

APPENDIX C LIST OF RESTRICTIONS RELATED TO CC78K4..234

C.1 Details About Restrictions and Prevention Methods...235

APPENDIX D INDEX ...240

User’s Manual U16707EJ1V0UM 12

CHAPTER 1 OVERVIEW

The CC78K4 C compiler program translates C source programs written in ANSI-CNote or the C language for the

78K4 Series into the machine language for the 78K4 Series.

The CC78K4 can be run on Windows 98/Me/2000/XP or Windows NT™ 4.0 when using PM plus included in the

assembler package for the 78K4 Series. If PM plus is not used, the compiler can be run from the DOS prompt

(Windows 98/Me) or command prompt (Windows NT 4.0/2000/XP) (for Windows versions).

Note ANSI-C is the C language that conforms to the standard set by the American National Standards Institute.

CHAPTER 1 OVERVIEW

User’s Manual U16707EJ1V0UM 13

1.1 Microcontroller Application Product Development and Role of CC78K4

The position of CC78K4 in product development is shown below.

Figure 1-1. Development Process for Microcontroller Application Products

Product planning

System design

Hardware design Software design

Production Coding

System evaluation

Product creation

E
rr

or
s

B
ug

s

M
is

ta
ke

s

Inspection

Compile/assemble

Debugging

CC78K4

C compiler

CHAPTER 1 OVERVIEW

User’s Manual U16707EJ1V0UM 14

The software development process is shown below.

Figure 1-2. Software Development Process

Software development

Write program specification

Create flowchart

Coding

Compile

Link

Edit source modules

File conversion

Debug

System evaluation

Errors?

OK

… Depends on 78K Series C language or ANSI-C

… Use the editor to create the C source module files.

… Link to the reference library and function library.

… Convert the file to the hexadecimal format.

… Use the hardware debugger (in-circuit emulator,
etc.) to verify the operation.

YES

YES

NO

NO

CHAPTER 1 OVERVIEW

User’s Manual U16707EJ1V0UM 15

1.2 Development Procedure Using CC78K4

The development procedure using CC78K4 is shown below.

Figure 1-3. Program Development Procedure Using CC78K4

Structured assembler

Assembler

Linker

Object converter

PROM programmer

System
simulator

Integrated debuggerList converter

Librarian

Real-time OS

Structured
assembler
source

Assembler
source

Library file

Library file
Assemble list

Load module file

Hexadecimal
object

Absolute
assemble list

Object module file

Assembler
source

C compiler

C source

Include file

RS-232-C

Dedicated parallel
interface

In-circuit emulator

POWER

IN
 C

IR
C
U
IT

 E
M

U
LA

TO
R

CHAPTER 1 OVERVIEW

User’s Manual U16707EJ1V0UM 16

1.2.1 Using editor to create source module files

One program is divided into several functional modules.

One module is the coding unit and becomes the input unit to the compiler. A module that is the input unit to the C

compiler is called a C source module.

After each C source module is coded, use the editor to save the source module to a file. A file created in this way

is called a C source module file.

The C source module files become the CC78K4 input files.

Figure 1-4. Creating Source Module Files

Source module

 END

Source module

 END

Source module

 END

END

Program Source module

Write to file (editor)

Source module file

CHAPTER 1 OVERVIEW

User’s Manual U16707EJ1V0UM 17

1.2.2 C compiler

The C compiler inputs the C source modules and converts the C language into machine language. If description

errors are detected in the C source module, compiling errors are output.

If there are no compiling errors, the object module files are output. To correct and check the programs at the

assembly language level, assembler source module files can be output. If you want to output assembler source

module files, specify the -A or -SA option in the specification for creating assembler module files when compiling (for

information about the options, see CHAPTER 5 COMPILER OPTIONS).

Figure 1-5. C Compiler Function

C source module file

Object module file Assembler source module file

C Compiler

CHAPTER 1 OVERVIEW

User’s Manual U16707EJ1V0UM 18

1.2.3 Assembler

Assembling is performed by using the assembler included in the RA78K4 Assembler Package (sold separately).

The assembler is the program that inputs an assembler source module file and translates assembly language into

machine language. If description errors were discovered in the source module, the assemble errors are output.

If there are no assemble errors, the output is the object module file that includes machine language information and

location information such as at which address each machine language code should be placed in memory. In addition,

information during assembly is output as an assemble list file.

Figure 1-6. Assembler Function

Assembler source module file

Assemble list file Object module file

Assembler

CHAPTER 1 OVERVIEW

User’s Manual U16707EJ1V0UM 19

1.2.4 Linker

Linking is performed by using the linker included in the RA78K4 Assembler Package (sold separately).

The linker inputs multiple object module files output by the compiler or object module files output by the assembler,

and links them to the library files (even if there is one object module, linking must be performed). One load module file

is output.

In this case, the linker determines the location addresses of relocatable segments in the input module. This

determines the values of relocatable symbols and external reference symbols, and embeds the correct values in the

load module file.

The linker outputs the linking information as a link map file.

Figure 1-7. Linker Function

Multiple object module files Library file

. . . .

Link map file Load module file

Linker

CHAPTER 1 OVERVIEW

User’s Manual U16707EJ1V0UM 20

1.2.5 Object converter

The object converter uses the converter included in the RA78K4 Assembler Package (sold separately).

The object converter inputs a load module file output by the linker and converts its file format. The result is output

as an intel-standard hexadecimal object module file.

Symbol information is output as a symbol table file.

Figure 1-8. Object Converter Function

Load module file

Hexadecimal object module file

Object Converter

Symbol table file

CHAPTER 1 OVERVIEW

User’s Manual U16707EJ1V0UM 21

1.2.6 Librarian

Clearly defined modules having a general interface are formed into a library for convenience. By creating the

library, many object modules form one file and become easy to handle.

The linker has functions to extract only the needed modules from the library file and link them. Therefore, if

multiple modules are registered in one library file, the names of the module files needed when linking no longer have

to be individually specified.

The librarian is used to create and update library files. The librarian uses the librarian included in the RA78K4

Assembler Package (sold separately).

Figure 1-9. Librarian Function

Object module files output by compiler

. . .

Object module file output by assembler

Library file

Librarian

CHAPTER 1 OVERVIEW

User’s Manual U16707EJ1V0UM 22

1.2.7 Debugger

Source debugging using a graphical user interface becomes possible by loading the load module files output by the

linker into the IE (in-circuit emulator) by using the ID78K4, ID78K4-NS (78K4 Series integrated debugger).

To debug, the -G option specifying the output of debugging information is specified when the target source program

is compiled (-G is the default option). By making this specification, the symbols and line numbers needed in

debugging are added to the object module. For information on the compiler options, see CHAPTER 5 COMPILER

OPTIONS.

Figure 1-10. Debugger Function

Parallel interface

• Object information

• Debugging information

In-circuit emulator

Integrated Debugger

CHAPTER 1 OVERVIEW

User’s Manual U16707EJ1V0UM 23

1.2.8 System simulator

Source debugging using a graphical user interface becomes possible by downloading the load module files output

from the linker by using the SM78K4 (78K4 Series system simulator).

SM78K4 is software that has the same operating image as the ID78K4, ID78K4-NS and performs simulations on

the host machine. In addition to simulating machine instructions in the SM78K4, the on-chip peripherals for the

devices and the interrupts can be simulated. Since external parts and procedures are provided to construct dummy

target systems, the programs including the operation of the target system are debugged at an early stage independent

of hardware development.

Figure 1-11. Simulator Function

• Object information

• Debugging information

Simulator

Load module file

CHAPTER 1 OVERVIEW

User’s Manual U16707EJ1V0UM 24

1.2.9 PM plus

PM plus is software that uses the DLL files added to CC78K4 and is able to start CC78K4 on Windows

98/Me/2000/XP or Windows NT 4.0. Editing the source, automatically creating the MAKEFILE, and compiling to

linking can be performed from the startup screen of PM plus. Thus, editing to debugging can be performed using GUI

images.

PM plus is included to the RA78K4 Assembler Package. The installer for the RA78K4 Assembler Package is used

to install and to make the settings. If CC78K4 will be started from PM plus, install the RA78K4 Assembler Package

before installing the compiler.

Figure 1-12. PM plus Function

Remark Build analyzes and executes the make file to create the executable file. The dependency relationships

described in the make file basically remove unused assembling, compiling, and linking and can create

efficient executable files.

User’s Manual U16707EJ1V0UM 25

CHAPTER 2 PRODUCT OVERVIEW AND INSTALLATION

This chapter explains the procedure to install the files stored in the supply media of the CC78K4 to the user

development environment (host machine) and the procedure to uninstall them from the user development

environment.

2.1 Host Machines and Supply Media

This C compiler supports the development environments listed in Table 2-1.

Table 2-1. Supply Media and Recording Formats for C Compiler

Host Machine OS Supply Media Recording Format

PC-9800 Series Japanese Windows

(98/Me/2000/XP/NT 4.0)Note

IBM PC/ATTM and compatibles Japanese Windows

(98/Me/2000/XP/NT 4.0)Note

English Windows

(98/Me/2000/XP/NT 4.0)Note

CD-ROM Standard Windows installer

supported

HP9000 Series 700TM HP-UXTM (Rel. 10.20 or later)

SPARCstationTM Family SunOSTM (Rel. 4.1.4 or later)

SolarisTM (Rel. 2.5.1 or later)

CD-ROM cp command

Note PM plus is required if the C compiler is used on Windows. The C compiler can be started up from the DOS

prompt (Windows 98/Me) or command prompt (Windows 2000/XP/INT 4.0) if PM plus is not used.

CHAPTER 2 PRODUCT OVERVIEW AND INSTALLATION

User’s Manual U16707EJ1V0UM 26

2.2 Installation

2.2.1 Installation of Windows version

The procedure for installing to the host machine the files provided in the CC78K4’s supply media is described

below.

(1) Starting up Windows

Power on the host machine and peripherals and start Windows.

(2) Set supply media

Set the CC78K4’s supply media in the appropriate drive (CD-ROM drive) of the host machine. The setup

programs will start automatically. Perform the installation by following the messages displayed in the monitor

screen.

Caution If the setup program does not start automatically, execute SETUP.EXE in the CC78K4\DISK1

folder.

(3) Confirmation of files

Using Windows Explorer, etc., check that the files contained in the CC78K4’s supply media have been installed to

the host machine.

For the details of each folder, refer to 2.4.1 Windows version directory configuration.

2.2.2 Installation of UNIX version

Install the UNIX version with the following procedure. Installation to /nectools is assumed here.

(1) Login

Log in to the host machine.

(2) Directory selection

Go to the install directory.

 % cd /nectools

(3) Setting of supply media

Set the CD-ROM in the CD-ROM drive and close the tray.

(4) Execute the cp command to copy the files from the CD-ROM (copy the files after checking that the CD-

ROM has been set in the CD-ROM drive).

(5) Add /nectools/bin to the environmental variable PATH.

CHAPTER 2 PRODUCT OVERVIEW AND INSTALLATION

User’s Manual U16707EJ1V0UM 27

2.3 Installation of Device Files

2.3.1 Installation of Windows version

Use the device file installer to install the device files. The device file installer is installed at the same time as the

CC78K4.

2.3.2 Installation of UNIX version

Either specify the directory for device files with the -y option (example: -y/nectools/dev), or copy the device files to a

directory with the compiler execution format (example: /nectools/bin).

2.4 Directory Configuration

2.4.1 Windows version directory configuration

The standard directory displayed during installation is “NECTools32” of the Windows system. The configuration

under the install directory is as follows. Note that the drive and install directory can be changed during installation.

When performing MAKE operation with PM plus, perform installation of tools (CC78K4, RA78K4) to the same drive

and directory.

The descriptions in this manual assume installation to the standard directory with “NECTools32”, which is the

default program name, according to the setup program default directions.

CHAPTER 2 PRODUCT OVERVIEW AND INSTALLATION

User’s Manual U16707EJ1V0UM 28

Figure 2-1. Windows Version Directory Configuration

bin\
 cc78k4.exe,
 cc78k4p.dll,etc.

inc78k4\
 *.h

lib78k4\Note 2 (For link)
 cl4*.lib
 s4*.rel

src\cc78k4\

 bat\
 mkstup.bat
 *.bat

 src\
 cstart*.asm
 rom.asm
 *.asm

 lib\Note 2 (For modifications)
 cl4*.lib
 s4*.rel

 dbgsrc\
 *.asm

smp78k4\CC78K4\
 prime.c
 sample.bat
 readme.doc
 lk78k4.dr

hlp\
 cc78k4*.hlp

Executable form of compiler
PM plus tools DLL

Header files for standard library

Libraries (runtime and standard libraries)
Object files for startup routines

Assemble batch files for startup routinesNote 1

Source files for startup routines
Source files for ROMization routines
Source files for some standard functions

Libraries (runtime and standard libraries)
Object files for startup routines

Runtime library source for debugging when -QL4 is specified

Source program for verifying installation
Batch files for verifying installation

Link directive file for reference

On-line help files

NECTools32\

Notes 1. This batch file cannot be used in PM plus. To use the batch file, run it from the DOS prompt (Windows

98/Me) or command prompt (Windows 2000/XP/NT 4.0).

 2. The startup routines and libraries in the lib78k4 directory are identical to those in the src\cc78k4 directory.

If a startup routine is modified, change the source in the src\cc78k4 directory. Since assembled files by the

batch file are stored in src\cc78k4\lib, copy lib78k4 directory and link.

CHAPTER 2 PRODUCT OVERVIEW AND INSTALLATION

User’s Manual U16707EJ1V0UM 29

2.4.2 UNIX version directory configuration

The file organization when the cp command was used for installation to /nectools is shown below.

Figure 2-2. UNIX Version Directory Configuration

bin/
 cc78k4, etc.

inc78k4/
 *.h

lib78k4/Note (For link)
 cl4*.lib
 s4*.rel

src/cc78k4/

 bat/
 mkstup.sh
 *.sh

 src/
 cstart*.asm
 rom.asm
 *.asm

 lib/Note (For modifications)
 cl4*.lib
 s4*.rel

 dbgsrc/
 *.asm

smp78k4/cc78k4/
 prime.c
 sample.sh
 readme.doc
 lk78k4.dr

Executable form of compiler

Header files for standard library

Libraries (runtime and standard libraries)
Object files for startup routines

Assemble batch files for startup routines

Source files for startup routines
Source files for ROMization routines
Source files for some standard functions

Libraries (runtime and standard libraries)
Object files for startup routines

Runtime library source for debugging when -QL4 is specified

Source program for verifying installation
Batch files for verifying installation

Link directive file for reference

nectools/

Note The startup routines and libraries in the lib78k4 directory are identical to those in the src/cc78k4 directory. If a

startup routine is modified, change the source in the src/cc78k4 directory. Since assembled files by the batch

file are stored in src/cc78k4/lib, copy lib78k4 directory and link.

CHAPTER 2 PRODUCT OVERVIEW AND INSTALLATION

User’s Manual U16707EJ1V0UM 30

2.5 Uninstallation Procedure

2.5.1 Uninstallation of Windows version

The procedure for uninstalling the files installed to the host machine is described below.

(1) Windows startup

Power on the host machine and peripherals and start Windows.

(2) Opening Control Panel window

Press the Start button and select [Settings]-[Control Panel] to open the <Control Panel> window.

(3) Opening of <Add/Remove Programs Properties> window

Double-click the [Add/Remove Programs] icon in the <Control Panel> window to open the <Add/Remove

Programs Properties> window.

(4) Deletion of CC78K4

After selecting “NEC CC78K4 78K/IV C Compiler Vx.xx” from the list of installed software displayed in the

<<Install/Uninstall>> tab in the <Add/Remove Programs Properties> window, click the Add/Remove... button.

When the <System Setting Change> window is opened, click the Yes button.

(5) Confirmation of files

Using Windows Explorer, etc., check that the files installed to the host machine have been uninstalled. For the

details of each folder, refer to 2.4.1 Windows version directory configuration.

2.5.2 Uninstallation of UNIX version

Delete the files copied in 2.2.2 Installation of UNIX version with the rm command.

CHAPTER 2 PRODUCT OVERVIEW AND INSTALLATION

User’s Manual U16707EJ1V0UM 31

2.6 Environment Settings

2.6.1 Host machine (for PC-9800 Series and IBM PC/AT compatibles)

The CC78K4 handles 32 bits and runs on models equipped with the i386™ CPU or later versions.

Since handling 32 bits is implemented by using DOS Extender, it is designed to run on the following operating

systems.

Windows 98/Me/2000/XP/NT 4.0

DOS prompt in Windows 98/Me

Command prompt in Windows 2000/XP/NT 4.0

2.6.2 Environment variables

Set the following environment variables for EWS or DOS prompt (Windows 98/Me) or command prompt (Windows

2000/XP/NT 4.0) operation.

Table 2-2. Environment Variables

Environment Variable Description

PATH Specifies the directory where the executable form of the compiler is located.

TMP Specifies the directory where temporary files are created

(only valid for PC-9800 Series and IBM PC/AT compatibles).

LANG78K Specifies the kanji code (2-byte code) in the source files.

sjis Shift JIS (Default for PC-9800 Series, IBM PC/AT compatibles, and HP9000 Series 700)

euc EUC (Default for SPARCstation)

none No 2-byte codes

INC78K4 Specifies the directory where the standard header files of the compiler are located. (required only

for EWS)

LIB78K4 Specifies the directory where the compiler’s libraries are located. (required only for EWS)

Specification Example

For PC-9800 Series and IBM PC/AT compatibles

 PATH = %PATH%;C:\NECTools32\bin
 set TMP = C:\
 set LANG78K = sjis

For HP9000 Series 700 and SPARCstation

 Example using csh
 set path = ($path /nectools/bin)
 setenv LANG78K euc
 setenv INC78K4 /nectools/inc78k4
 setenv LIB78K4 /nectools/lib78k4

CHAPTER 2 PRODUCT OVERVIEW AND INSTALLATION

User’s Manual U16707EJ1V0UM 32

 Example using sh
 PATH = $PATH:/nectools/bin
 LANG78K = euc
 INC78K4 = /nectools/inc78k4
 LIB78K4 = /nectools/lib78k4
 export PATH LANG78K INC78K4 LIB78K4

2.6.3 File organization

The table below lists the contents of each directory. The files for PC-9800 Series and IBM PC/AT compatibles are

described. The directory structure and file organization are the ones obtained when the installer was used.

Remark Some of the file extensions differ in UNIX.

Table 2-3. File Organization (* = alphanumeric symbols)

Directory Name File Name Description

cc78k4.exe Compiler

cc78k4.msg Message file

*.hlp Help files

BIN\

*.dll DLL files

INC78K4\ *.hNote 1 Header files for standard library

mkstup.bat Assemble batch files for startup routines

reprom.bat For updating rom.asm

SRC\CC78K4\BAT\Note 2

*.batNote 3 Batch files for updating standard functions (partial)

cstart*.asmNote 4 Source files for startup routines

rom.asm Source files for ROMization routine

SRC\CC78K4\SRC

*.asmNote 5 Source files for standard functions (partial)

SRC\CC78K4\DBGSRC *.asm Runtime library source for debugging when -QL4 is specified

HLP *.hlp On-line help file

Notes 1. See 10.2 Headers in the Language manual (U15556E).

 2. The batch files in this directory cannot be used in PM plus. Use these batch files only when the source

must be revised.

 3. Refer to the contents in Table 8-1 BAT Directory Contents.

 4. * = B | E | N (B: when the boot area is specified, E: when the flash area is specified, N: when the standard

libraries are not used)

 5. Refer to the contents in Table 8-2 SRC Directory Contents.

CHAPTER 2 PRODUCT OVERVIEW AND INSTALLATION

User’s Manual U16707EJ1V0UM 33

2.6.4 Library files

These files consist of standard libraries, runtime libraries, and startup routines.

Table 2-4 lists the directory contents.

Table 2-4. Library Files

File Name Directory Name

Normal Boot Area Flash Area

File Role

CL4S.LIB

CL4SO.LIB

CL4SR.LIB

CL4.LIB

CL4M.LIB

CL4MR.LIB

CL4O.LIB

CL4OP.LIB

CL4P.LIB

CL4PR.LIB

CL4R.LIB

CL4SF.LIB

CL4SFR.LIB

CL4F.LIB

CL4FR.LIB

CL4MF.LIB

CL4MFR.LIB

CL4S.LIB

CL4SO.LIB

CL4SR.LIB

CL4.LIB

CL4M.LIB

CL4MR.LIB

CL4O.LIB

CL4OP.LIB

CL4P.LIB

CL4PR.LIB

CL4R.LIB

CL4SF.LIB

CL4SFR.LIB

CL4F.LIB

CL4FR.LIB

CL4MF.LIB

CL4MFR.LIB

CL4SE.LIB

CL4SOE.LIB

CL4SRE.LIB

CL4E.LIB

CL4ME.LIB

CL4MRE.LIB

CL4OE.LIB

CL4OPE.LIB

CL4PE.LIB

CL4PRE.LIB

CL4RE.LIB

CL4SFE.LIB

CL4SFRE.LIB

CL4FE.LIB

CL4FRE.LIB

CL4MFE.LIB

CL4MFRE.LIB

Library (runtime and standard libraries)Note 1 LIB78K4\

S4.REL

S4C.REL

S4CL.REL

S4CLP.REL

S4CP.REL

S4L.REL

S4LP.REL

S4M.REL

S4MC.REL

S4MCL.REL

S4ML.REL

S4P.REL

S4S.REL

S4SL.REL

S4B.REL

S4CB.REL

S4CLB.REL

S4CLPB.REL

S4CPB.REL

S4LB.REL

S4LPB.REL

S4MB.REL

S4MCB.REL

S4MCLB.REL

S4MLB.REL

S4PB.REL

S4SB.REL

S4SLB.REL

S4E.REL

S4CE.REL

S4CLE.REL

S4CLPE.REL

S4CPE.REL

S4LE.REL

S4LPE.REL

S4ME.REL

S4MCE.REL

S4MCLE.REL

S4MLE.REL

S4PE.REL

S4SE.REL

S4SLE.REL

Object files for startup routinesNote 2

CHAPTER 2 PRODUCT OVERVIEW AND INSTALLATION

User’s Manual U16707EJ1V0UM 34

Notes 1. The rules for naming libraries are given below.

<model>

 None Large model (when compiler option -ML is specified)

 m Medium model (when compiler option -MM is specified)

 s Small model (when compiler option -MS is specified)

<i/f>

 None Use the function interface that conforms to the CC78K4 V2.00 specification

 (when compiler option -ZO is not specified)

 o Use the function interface that conforms to the CC78K4 V1.00 specification

 (when compiler option -ZO is specified)

Remark This option is valid only for the large/small model. It is not specified for the medium model.

<align>

 None When compiler options -RP/-RA are not specified

 p When compiler options -RP/-RA are specified

Remark This option is valid only for the large model. It is not specified for the small/medium model.

<float>

None Standard library and runtime library (floating-point library is not used)

f For floating-point library

<pascal>

 None When normal function interface is used

 r When pascal function interface is used (when compiler option -ZR is specified)

<flash>

 None Normal/for boot area

 e For flash memory area

cl4<model><i/f><align><float><pascal><flash>.lib

CHAPTER 2 PRODUCT OVERVIEW AND INSTALLATION

User’s Manual U16707EJ1V0UM 35

Notes 2. The rules for naming startup routines are given below.

<model> (memory model)

 None Large model (when compiler option -ML is specified)

 m Medium model (when compiler option -MM is specified)

 s Small model (when compiler option -MS is specified)

<loc>

 None When compiler option -CS15 is specified

 c When compiler option -CS0 is specified

Remark This option is valid only for the large/medium model. It is not specified for the small model.

<lib>

 None When standard library functions are not used

 l When standard library functions are used

<align>

 None When compiler options -RP/-RA are not specified

 p When compiler options -RP/-RA are specified

Remark This option is valid only for the large model. It is not specified for the small/medium model.

<flash>

 None Normal

 b For boot area

 e For flash memory area

s4<model><loc><lib><align><flash>.rel

User’s Manual U16707EJ1V0UM 36

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

This chapter uses the CC78K4 and the RA78K4 Assembler Package to describe the procedure from compiling to

linking.

By actually performing the processes from compiling to linking of the ‘prime.c’ sample program following the

execution procedure given in this chapter, you can become familiar with the operations of compiling, assembling, and

linking (see APPENDIX A SAMPLE PROGRAMS for information about the sample program).

How to execute on PM plus is described for the PC-9800 Series and IBM PC/AT compatible machines. For other

machines, how to execute from the command line is described (for information on installation, see 2.2 Installation).

3.1 PM plus

This section describes the user interface when the CC78K4 is started in PM plus included in the RA78K4

Assembler Package. If the CC78K4 is started from PM plus, CC78K4P.DLL included in CC78K4 is referenced.

3.1.1 Position of CC78K4P.DLL (tools DLL)

The tools DLL file, such as the CC78K4P.DLL file, is needed to run the Windows version of the 78K4 Series C

compiler (CC78K4) from PM plus in Windows 98/Me/2000/XP or Windows NT 4.0.

3.1.2 Execution environment

This environment conforms to PM plus.

The display mode switches between Japanese and English according to the operating system (Windows English

version/Japanese version).

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U16707EJ1V0UM 37

3.1.3 CC78K4 option setting menu

(1) Option menu items

The item “Compiler Options…” is added to the [Tools] menu in PM plus by the tools DLL file included in the

CC78K4 C Compiler Package.

(2) Compiler Options dialog box

Select the [Compiler Options…] menu under [Tools] in PM plus to call the option setting function for the tools

DLL.

The <Compiler Options> dialog box is shown below.

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U16707EJ1V0UM 38

(3) Browse for Folder dialog box

In the <Compiler Options> dialog box, when the Browse… button is clicked for the following path settings, the

following dialog box appears.

Only the folders can be specified in this dialog box.

• Include file path

• Object module file output path

• Assembler module file output path

• Error list file output path

• Cross-reference list file output path

• Preprocessor list file output path

• Temporary file path

When the Browse… button is clicked in the parameter file specification, the following dialog box appears.

This dialog box is as follows.

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U16707EJ1V0UM 39

Current directory: Project file directory

File type: Parameter file (*.pcc)

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U16707EJ1V0UM 40

3.1.4 Description of each part of <Compiler Options> dialog box

Each part of the <Compiler Options> dialog box is described.

• [OK] button

The settings edited in this dialog box are set, and the <Compiler Options> dialog box closes. If a source file is

selected in this source list, the options are set for this file. If nothing is selected, the options are set for all of the

source files.

• [Cancel] button

The options are not set, and the dialog box closes. The ESC key has the same effect as the [Cancel] button no

matter where the focus is in the dialog box.

• [Apply] button

This button is effective only when option settings have been changed.

The edited contents in this dialog box are applied and the <Compiler Options> dialog box remains displayed.

• [Help] button

The help file for this dialog box opens.

Command line option OK button Cancel button Apply button Help button

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U16707EJ1V0UM 41

• Command Line Options:

 The option character string currently set is displayed.

 The option character string entered in [Other Options:] of <Others> dialog box is reflected and displayed in real

time.

 Nothing can be input in this display area. Even though the default option of the CC78K4 is the “specified” state

(i.e., a check box is checked, etc.), nothing is displayed in this area by default.

Options that do not fit in the option character display area can be checked by scrolling with the button.

• Setting of compiler options

 The compiler options are divided into the following nine options and set respectively. Each setting screen is

displayed by clicking the corresponding tab at the top of the dialog box.

Preprocessor (default)

Memory Model

Data Assign

Optimize

Debug

Output

Extend

Others

Startup Routine

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U16707EJ1V0UM 42

(1) Screen when “Preprocessor” is selected

• Define Macro[-d]:

 The macro name and definition name specified by the -D option is input to the combo box.

 For the macro name, multiple macro definitions can be performed at once by delimiting with ‘,’.

• Undefine Macro[-u]:

 The macro name specified by the -U option is input to the combo box.

 For the macro name, multiple macro definitions can be invalidated at once by delimiting with ‘,’.

• Include Search Path[-i]:

 The directory that contains include files specified by the -I option is input to the combo box.

 Multiple directories can be specified at once by delimiting with ‘,’.

 The [Browse..] button can also be used for specification.

 Unexisted path cannot be specified.

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U16707EJ1V0UM 43

(2) Screen when “Memory Model” is selected

• Memory Model

 Select the memory model option to be used by clicking a radio button: -MS, -MM, or -ML (small, medium, or

large).

• Change Location of SFR and Around Area

 Select the location option to be used by clicking a radio button: -CS0, -CS15, or -CSA (LOCATION0, 0FH, or

0AH) to instruct the location of the saddr area to the compiler.

• Control Object

 Output Old Calling Sequence[-zo]

 Select this check box to enable the -ZO option.

 Regard All Function as _ _pascal Except Varargs[-zr]

 Select this check box to enable the -ZR option.

 Output the Object for Flash Memory[-zf]

 Select this check box to enable the -ZF option.

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U16707EJ1V0UM 44

(3) Setting screen when “Data Assign” is selected

• Assign External Variable to SADDR Area

 Select the check box to validate the -RD option.

The type of external variable to be assigned to the saddr area is selected by clicking a radio button.

• Assign Static Variable to SADDR Area

 Select the check box to validate the -RS option.

The type of static variable to be assigned to the saddr area is selected by clicking a radio button.

• Assign Bit Field from MSB[-rb]

 Select the check box to validate the -RB option.

• 2-Byte boundaries

Align External Variable (except for SREG) to 2-Byte boundaries (Large Model Only) [-ra]

 - Select the check box to validate the -RA option.

Align Structure-Member to 2-Byte boundaries [-rp]

 - Select the check box to validate the -RP option.

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U16707EJ1V0UM 45

(4) Screen when “Optimize” is selected

(a) When “Integrated Recommendable Optimizing Option” is selected in the [Group:] drop-down list box

• Integrated Recommendable Optimizing Option

The “Integrated Recommendable Optimizing Option” integrates optimization options according to purpose,

instead of specifying them individually. Accordingly this option makes the optimization option easier to set.

There are four settings: “Exec Time [-qx1]”, “Default [-qx2]”, “Code Size [-qx3]”, and “Parity Undebuggable [-

qx4]”. Their meanings are as follows.

Exec Time[-qx1]: -QX1 option. Select this option when the efficiency of executing speed is

important.

Default[-qx2]: -QX2 option. Select this option when both the efficiency of executing speed

and the efficiency of object code size are equally important.

Code Size[-qx3]: -QX3 option. Select this option when the efficiency of object code size is

important.

Partially Undebuggable[-qx4]: Select this option to place an emphasis especially on the object code size

when the -QX4 option is used, in order to reduce the code size more than

when -QX3 is used. However, debugging may be partially restricted at the

optimized location of the code.

 To validate the -QX option, select the check box, and select each of the above

patterns by clicking the corresponding radio button.

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U16707EJ1V0UM 46

(b) When “Char Expression Behavior, Automatic Allocation” is selected in the [Group:] drop-down list box

• Char Expression Behavior

Assign char without Sign Expand

Select this check box to validate the -QC option (not to extend general integer) and select a variable to be

assigned by clicking a radio button. Select the type of non sign-expanded char operation by clicking a radio

button.

 Change Plain char to unsigned char[-qu]

Select this check box to validate the -QU option.

• Automatic Allocation

Use SADDR Area for norec + Register Variable

Select this check box to validate the -QR option and select a variable to be assigned by clicking a radio

button.

Use Register for Auto Variable[-qv]

Select this check box to validate the -QV option and select a variable to be assigned by clicking a radio

button.

• Jump Optimization[-qj]

Select this check box to validate the -QJ option.

• Use SP to Access to Auto[-gfj]

Select this check box to validate the -QF option.

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U16707EJ1V0UM 47

(c) When “Optimize Object Size by Calling Library” is selected in the [Group:] drop-down list box

• Optimize Object Size by Calling Libraries

Select this check box to validate the -QL option and specify the level of the object size priority optimization by

clicking a radio button. When the number n of -QLn becomes greater, the object code size becomes smaller,

and accordingly the executing speed becomes slower.

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U16707EJ1V0UM 48

(d) When “Others” is selected in the [Group:] drop-down list box

• Treat Offset as unsigned[-qh]

Select the check box to validate the -QH option.

• Aggressive Optimization[-qw]

Select the check box to validate the -QW option.

• Assume no Data Aliases[-qy]

Select the check box to validate the -QY option.

• Use String Instructions[-qn]

Select the check box to validate the -QN option.

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U16707EJ1V0UM 49

(5) Screen when “Debug” is selected

• Output Debugging Information

 Select this check box to validate the -G option and select a file that should output debug information by

checking a radio button. If [Debug] is disabled by a PM plus option, it is not possible to perform settings in the

<Debug> dialog box, and debug information is not output.

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U16707EJ1V0UM 50

(6) Screen when “Output” is selected

(a) When “Object Module File, Assembler Source Module File” is selected in the [Group:] drop-down list box

• Object Module File

To specify an object module file output path, input the path name in the combo box. Specification is also

possible using the [Browse…] button.

When universal options are specified in PM plus, processing is always performed assuming that the path name

is specified.

When the source file is specified, processing is performed as a path name if a path exists, and as a file name if

no path exists.

• Create Assembler Source Module File

To enable the -A/-SA/-LI options, select this check box, and select with/without C source to attach to the

assembler source module file and with/without include file contents by clicking the appropriate radio button.

To specify the output path of the assembler source module file, input the path name in the combo box.

Specification is also possible using the [Browse…] button.

When universal options are specified in PM plus, processing is always performed assuming that the path name

is specified.

When the source file is specified, processing is performed as a path name if a path exists, and as a file name if

no path exists.

• [Assembler Options[H]] button

Specify assembler options for the assembler source module file.

If no option is specified, processing is performed assuming that all assembler options have been specified.

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U16707EJ1V0UM 51

• <Assembler Options> dialog box

When the [Assembler Options[H]] button under the <Output> tab in the <Compiler Options> dialog box is

clicked, the following dialog box appears.

• Use Assembler common option

Select this check box to enable all the options set in the <Assembler Options> dialog box.

• Assembler Source Options

To enable options for the output assembler source of the compiler, input a character string including the option

name in the combo box.

Past inputs can be selected by clicking the button at the right of the combo box.

Caution Do not describe chip type specification (-C), device file specification (-Y), and parameter file

specification (-F) because they are set separately with this tools DLL.

• Command Line Options:

This edit box is a read-only box.

The option character strings that are currently set are displayed.

If the character strings do not all fit in the box, they can be viewed by scrolling with the button.

All the character strings specified by setting a button or inputting in a box are immediately displayed in this edit

box.

Assembler common options and output assembler options are displayed as the option character strings.

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U16707EJ1V0UM 52

(b) When “Error List File, Cross-reference List File” is selected in the [Group:] drop-down list box

• Create Error List File

Select this check box to enable the -E/-SE option. Also select whether or not to attach the C source to the

error list by clicking the appropriate radio button.

To specify the error list file output path, input the path name in the combo box. Specification is also possible

using the [Browse…] button.

When universal options are specified, processing is always performed assuming that the path name is

specified.

When the source file is specified, processing is performed as a path name if a path exists, and as a file name if

no path exists.

• Create Cross Reference List File[-x]

Select this check box to enable the -X option. To specify the cross-reference list file output path, input the path

name in the combo box. Specification is also possible using the [Browse…] button.

When universal options are specified, processing is always performed assuming that the path name is

specified.

When the source file is specified, processing is performed as a path name if a path exists, and as a file name if

no path exists.

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U16707EJ1V0UM 53

(c) When “Preprocess List File, List Format” is selected in the [Group:] drop-down list box

• Create Preprocess List File

 Select this check box to validate the -P option and the specification for the following preprocess list files.

Delete Comment[-kc]

Select this check box to validate the -KC option.

Execute #define[-kd]

Select this check box to validate the -KD option.

Execute #if, #ifdef, #ifndef[-kf]

Select this check box to validate the -KF option.

Execute #include[-ki]

Select this check box to validate the -KI option.

Execute #line[-kl]

Select this check box to validate the -KL option.

Add Line No. and Paging[-kn]

Select this check box to validate the -KN option.

To specify the preprocess list file output path, input the path name in the combo box. Specification is also

possible using the [Browse…] button.

When universal options are specified, processing is always performed assuming that the path name is specified.

When the source file is specified, processing is performed as a path name if a path exists, and as a file name if no

path exists.

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U16707EJ1V0UM 54

• Add Form Feed at End of List File[-lf]

 Select this check box to validate the -LF option.

• List setting

 The list is output in the following format specified when the output option of each list is set.

Columns per Line[-lw]:

Specifies the number of characters in one line by using the -LW option. To increase/decrease the number of

characters in the box, click button.

Lines per Page[-ll]:

Specifies the number of lines in one page by using the -LL option. To increase/decrease the number of

characters in the box, click button.

Expand TAB Character[-lt]:

Specifies the length of tab character by using the -LT option. To increase/decrease the number of characters

in the box, click button.

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U16707EJ1V0UM 55

(7) Screen when “Extend” is selected

• Change Source Regulation

Disable Extensions (ANSI Standard Only)[-za]

Select this check box to validate the -ZA option.

Enable C++ Comment, Ignore from // Till End of Line[-zp]

Select this check box to validate the -ZP option.

Comment Can Nest[-zc]

Select this check box to validate the -ZC option.

Not Expand Argument and Return Value[-zb]

Select this check box to validate the -ZB option.

Generate branch table for callf function[-zg]

Select this check box to validate the -ZG option.

Regard all function as callf except varargs[-zh]

Select this check box to validate the -ZH option.

Kanji Code of Source

Select the type (SJIS/EUC/None) of Kanji code used in the comment of the source by selecting the

appropriate radio button.

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U16707EJ1V0UM 56

(8) Screen when “Others” is selected

• Verbose Compile Messages[-v]

 Select this check box to enable the -V option.

• Warning Level[-w]:

 Use the button to change the -W option level.

• Temporary File Creation Directory[-t]:

 Input the directory in which to store the temporary files specified with the -T option in the combo box.

• Parameterfile:

Input the parameter file name specified with the -F option in the combo box.

Past inputs can be selected by clicking the button at the right of the combo box.

• Other Options:

If a compiler option other than the various option specification items must be specified, input that option in the

combo box.

Past inputs can be selected by clicking the button at the right of the combo box.

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U16707EJ1V0UM 57

• [Reset] button

Clicking this button sets the default option settings.

• [Option file read…] button

Clicking this button causes the option information file containing the option settings to be read.

• [Option file save…] button

This button is enabled only when information has been set with the [OK] button or the [Apply] button. Option

settings are saved as an option information file.

• Use Command File

By selecting this check box, the option character string is output to the command file, so awareness of

restrictions on the length of the option character string is not required. This check box is selected by default.

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U16707EJ1V0UM 58

(9) Screen when “Startup Routine” is selected

<Startup Routine> dialog box settings cannot be performed when a source is specified.

• Using Startup Routine

Select this check box to use the standard startup routine provided for this C compiler.

• Using Fixed Area of Standard Library

 Select this check box to use the fixed area used by the standard library.

• Select Object

 Select the desired startup routine for the normal, boot, or flash area by clicking the corresponding radio button.

 If the [Output the Object for Flash Memory[-zf]] check box under the <Memory Model> tab is not selected, the

startup routine for the normal or boot areas can be selected, and if the check box is selected, only the startup

routine for the flash area can be selected.

• Startup Routine:

 Indicates the file name of the startup routine to be used.

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U16707EJ1V0UM 59

• Using Library

Select this check box to use the standard library provided for this C compiler.

• Using Floating Point in sprintf,sscanf,printf,scanf,vprintf,vsprintf

Select this check box to use the sprintf, sscanf, printf, scanf, vprintf, and vsprintf functions supporting floating

points.

If the [Output Old Calling Sequence[-zo]] or [Regard All Function as _ _pascal Except Varargs[-zr]] option is

specified, the sprintf, sscanf, printf, scanf, vprintf, and vsprintf functions supporting floating points cannot be

used.

• Library:

 Displays the file name of the library to be used.

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U16707EJ1V0UM 60

3.2 Procedure from Compiling to Linking (When Not Using Flash Memory Self Rewrite Mode)

3.2.1 MAKE from PM plus

The MAKE method using PM plus with a PC-9800 Series or IBM PC/AT compatible is described below.

PM plus is a software program used for the integrated management of tools as the core of the development

environment. Using PM plus enables handling application programs and environment settings as projects. Program

creation using an editor, source management, compilation, and debugging can be performed as a continuous series of

operations.

3.2.2 Starting up PM plus

When the development tool packages are correctly installed, the [NECTools32] menu is created in the Programs

folder displayed from the Start button, and PM plus and other programs are registered in this menu.

Click [PM plus] from the menu to start up PM plus.

3.2.3 Creating project

Register a project first to start a series of development operations using PM plus.

To register a project, first create the workspace in which that project is managed. For the procedure to create a

workspace, refer to the PM plus Ver. 5.10 User’s Manual (U16569E).

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U16707EJ1V0UM 61

3.2.4 Setting compiler and linker options

A minimum number of options are set for build in the MAKE file created automatically upon completion of project

creation. Project-specific options are set in the [Tools] menu.

If the [Compiler Options…] in the [Tools] menu is selected, the <Compiler Options> dialog box appears.

An example changing the Optimize option from default [-QCFHJLVW] to Code Size[-qx3] is shown below.

Figure 3-1. Selection of Optimize Options

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U16707EJ1V0UM 62

If “Using Startup Routine” is selected in the <<Startup Routine>> tab of the <Compiler Options> dialog box, the

standard startup routine for this compiler gets linked before all sources (not displayed to the <Linker Options> dialog

box).

When “Using Library” is selected, the standard library for this compiler gets linked behind all libraries.

If C source is included in the source file settings, stack symbol automatic generation option -S is automatically

specified to the linker.

The name of the startup routine file does not affect the load module file name.

Figure 3-2. Linker Options Dialog Box

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U16707EJ1V0UM 63

3.2.5 Building project

Projects are built with the set options.

Building of an entire project is done by selecting [Build] from the [Build] menu, or by clicking the button on the

tool bar. PM plus MAKE is started up by the automatically created MAKE file.

Upon completion of build, a message dialog box appears. Check that build has been completed normally.

Caution The contents displayed in the <Output> window during build are saved as the “Project file name

+ .plg” file name to the project directory.

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U16707EJ1V0UM 64

3.2.6 Compiling to linking in command line (for DOS prompt and EWS)

(1) When parameter file is not used

 The command below is used to start the CC78K4, assembler, and linker in a command line. Assembling is not

needed when there is no assembler description in C source. In this case, link the object module file output from a

C compiler (∆: space).

Caution To link libraries created by users, be sure to specify the libraries attached to the compiler

and the floating point libraries at the end of the library list.

To use the sprintf, sscanf, printf, scanf, vprintf, and vsprintf functions supporting floating

points, specify the floating point libraries attached to the compiler and the libraries

attached to the compiler, in this order.

To use the sprintf, sscanf, printf, scanf, vprintf, and vsprintf functions not supporting

floating points, specify the libraries attached to the compiler and the floating point libraries

attached to the compiler, in this order.

Also, specify the startup routine attached to the C compiler before the user programs.

The library and object module file specification order during linking is shown below.

(Library specification order)

When using sprintf, sscanf, printf, scanf, vprintf, and vsprintf functions not supporting

floating points

1. User program library file (specified with -B option)

2. Library file attached to C compiler (specified with -B option)

3. Floating point library file attached to C compiler (specified with -B option)

When using sprintf, sscanf, printf, scanf, vprintf, and vsprintf functions supporting floating

points

1. User program library file (specified with -B option)

2. Floating point library file attached to C compiler (specified with -B option)

3. Library file attached to C compiler (specified with -B option)

(Specification order of other files)

1. Object file of startup routine attached to CC78K4

2. Object module file of user program

The following shows an example of linking C source s1.c and assembler source s2.asm.

>[path name]CC78K4[∆ option] ∆ C source name[∆ option]

>[path name]RA78K4[∆ option] ∆ assembler source name[∆ option]

>[path name]LK78K4 object module name[∆ option]

C>cc78k4 –c4038 s1.c -e -a -iC:\nectools32\inc78k4 –yC:\nectools32\dev
C>ra78k4 –c4038 s2.asm -e -yC:\nectools32\dev
C>lk78k4 s41.rel s1.rel s2.rel -bC:\nectools32\lib78k4\cl4.lib -s
-osample.lmf -yC:\nectools32\dev

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U16707EJ1V0UM 65

Remark When specifying multiple compiler options, delimit between compiler options by a space. It does not matter

whether a description is written in uppercase or lowercase (non case sensitive). For detailed information,

see CHAPTER 5 COMPILER OPTIONS.

The -i option specification, -b option path specification, and -y option specification can be omitted

depending on the condition. For details, see CHAPTER 5 COMPILER OPTIONS and RA78K4

Assembler Package Operation User’s Manual (U16708E).

(2) When parameter file is used

 When multiple options are input in starting a compiler, assembler, or linker, the same specification may be

repeated several times if sufficient information for startup has not been specified in the command line. In such

cases, a parameter file should be used.

 Specify the parameter file specification option in the command line when using a parameter file.

Caution Parameter files cannot be specified by means of the option setting of PM plus.

The following shows the startup method for a compiler, assembler, and linker by using a parameter file.

The following shows a usage example.

Parameter files are created by an editor. All options and output file names that should be specified in a command

line can be written.

The following shows examples of creating parameters by the editor.

The -i option specification, -b option path specification, and -y option specification can be omitted depending on the

condition. For details, see CHAPTER 5 COMPILER OPTIONS and RA78K4 Assembler Package Operation

User’s Manual (U16708E).

>[path name]CC78K4 ∆ -F parameter file name

>[path name]RA78K4 ∆ -F parameter file name

>[path name]LK78K4 ∆ -F parameter file name

Example C>cc78k4 -Fpara.pcc
 C>ra78k4 -Fpara.pra
 C>lk78k4 -Fpara.plk

-c4038 s1.c -e -a -iC:\nectools32\inc78k4 -yC:\nectools32\dev

-c4038 s2.asm -e -yC:\nectools32\dev

s41.rel s1.rel s2.rel -bC:\nectools32\lib78k4\cl4.lib -s -osample.lmf
-yC:\nectools32\dev

(Contents of para.pcc)

(Contents of para.pra)

(Contents of para.plk)

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U16707EJ1V0UM 66

3.3 Compiling to Linking (When Using Flash Memory Self Rewrite Mode)

This function is available only for the device having the flash memory self rewriting function.

3.3.1 Compiling to linking via PM plus

PM plus is used on the PC-9800 Series and the IBM PC/AT compatibles to illustrate the MAKE technique.

Be sure to compile to link in the following order.

(1) Compiling to linking program for boot area

(a) Creating a project

Create a project for the boot area and register the source file.

(b) Setting compiler, linker, and object converter options

A minimum number of options are set for build in the MAKE file created automatically upon completion of

project creation. Project-specific options are set in the [Tools] menu.

If the [Compiler Options…] in the [Tools] menu is selected, the <Compiler Options> dialog box appears.

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U16707EJ1V0UM 67

<1> Setting compiler option

 Do not specify the -ZF option in the <<Memory Model>> tab.

Figure 3-3. Compiler Options Dialog Box

Select “Boot” in the [Select Object] box under the <<Startup Routine>> tab.

Figure 3-4. Selection of Boot Area Object

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U16707EJ1V0UM 68

<2> Setting linker option

 Specify flash start address specification option -ZB and then click the [OK] button.

 Since “Using Startup Routine” and “Using Library” check boxes are selected under the <<Startup

Routine>> tab, it is not necessary to specify the startup routine and library in the <Linker Options>

dialog box.

 Also, since C source (boot.c) is included in the source file specification, stack symbol automatic

generation option -S is automatically set.

Remark For information about the linker options, refer to RA78K4 Assembler Package Operation

User's Manual (U16708E).

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U16707EJ1V0UM 69

<3> Setting object converter option

 Do not specify the object converter option -ZF.

Caution After the program for boot area is compiled and object-converted, write in the HEX file

(e.g. boot.hex) with a flash programmer. After writing, be sure to save the load

module file (e.g. boot.lmf) and HEX file created in the above procedure. Do not build

the program for boot area again.

(c) Building project

Projects are built with the set options.

Build of an entire project is done by selecting [Build] from the [Build] menu, or by clicking the button on

the tool bar. PM plus MAKE is started up by the automatically created MAKE file.

Upon completion of build, a message dialog box appears. Check that build has been completed normally.

Caution The contents displayed in the <Output> window during build are saved as the “Project file

name + .plg” file name to the project directory.

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U16707EJ1V0UM 70

(2) Compiling to linking program for flash area

(a) Creating a project

Create a project for the flash area and register the source file.

(b) Setting compiler, linker, and object converter options

A minimum number of options is set for build in the MAKE file created automatically upon completion of

project creation. Project-specific options are set in the [Tools] menu.

If the [Compiler Options…] in the [Tools] menu is selected, the <Compiler Options> dialog box appears.

<1> Setting compiler option

 Specify the -ZF option in the <<Memory Model>> tab.

Figure 3-5. Compiler Options Dialog Box

Flash is automatically selected in the [Select Object] box under the <<Startup Routine>> tab.

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U16707EJ1V0UM 71

<2> Setting linker option

 Specify the load module file for the boot area to be linked and then click the [OK] button.

 Since the “Using Startup Routine” and “Using Library” check boxes are selected under the <<Startup

Routine>> tab in the <Compiler Options> dialog box, it is not necessary to specify the startup routine

and library in the <Linker Options> dialog box.

 Also, since C source (flash.c) is included in the source file specification, stack symbol automatic

generation option -S is automatically set.

Remark For information about the linker options, refer to RA78K4 Assembler Package Operation

User's Manual (U16708E).

Figure 3-6. Linker Options Dialog Box

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U16707EJ1V0UM 72

<3> Setting object converter option (for flash area)

 Be sure to specify the object converter option -ZF.

 By specifying the -ZF option, HEX file for boot area (e.g. flash.hxb) and HEX file for flash area (e.g.

flash.hxf) are output.

 The flash.hxb and the boot.hex that is generated when the program for boot area is built have the same

contents. However, when the HEX file for boot area is already written and the program for flash area is

built again, it is recommended to confirm that there is no difference in the saved boot.hex and the

created flash.hxb.

Figure 3-7. Object Converter Options Dialog Box

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U16707EJ1V0UM 73

(c) Building project

Projects are built with the set options.

Build of an entire project is done by selecting [Build] from the [Build] menu, or by clicking the button on

the tool bar. PM plus MAKE is started up by the automatically created MAKE file.

Upon completion of build, a message dialog box appears. Check that build has been completed normally.

Caution The contents displayed in the <Output> window during build are saved as the “Project file

name + .plg” file name to the project directory.

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U16707EJ1V0UM 74

3.3.2 Compiling to linking in command line (for DOS prompt and EWS)

(1) When parameter file is not used

 The command below is used to start the CC78K4, assembler, and linker in a command line. Assembling is not

needed when there is no assembler description in C source. In this case, link the object module file output from a

C compiler (∆: space).

 The following shows examples of compiling and linking the C source for boot area and the C source for flash area.

(a) Compiling to linking, object-converting program for boot area

Caution After the program for boot area is compiled and object-converted, write in the HEX file (e.g.

boot.hex) with a flash programmer. After writing, be sure to save the load module file (e.g.

boot.lmf) and HEX file created in the above procedure. Do not build the program for boot

area again.

(b) Compiling to linking program for flash area

Caution By specifying the -ZF option when object-converting, HEX file for boot area (e.g. flash.hxb)

and HEX file for flash area (e.g. flash.hxf) are output. The flash.hxb and the boot.hex that is

generated when the program for boot area is built have the same contents. However, when

the HEX file for boot area is already written and the program for flash area is built again, it is

recommended to confirm that there is no difference in the saved boot.hex and the created

flash.hxb.

>[path name]CC78K4[∆ option] ∆ C source name[∆ option]

>[path name]RA78K4[∆ option] ∆ assembler source name[∆ option]

>[path name]LK78K4[∆ option] object module name, etc.[∆ option]

Examples <1> Compiling program for boot area
 C> cc78k4 –cf4943 boot.c -iC:\nectools32\inc78k4 -yC:\nectools32\dev

 <2> Linking program for boot area
 C> lk78k4 s41b.rel boot.rel -bC:\nectools32\lib78k4\cl4.lib -s

 -oboot.lmf -zb2000h -yC:\nectools32\dev

 <3> Object-converting program for boot area
 C> oc78k4 boot.lmf -u0FFh -oboot.lmf -yC:\nectools32\dev

Examples <4> Compiling program for flash area
 C> cc78k4 –cf4943 flash.c -zf -iC:\nectools32\inc78k4

 -yC:\nectools32\dev

 <5> Linking program for flash area
 C> lk78k4 boot.lmf s4le.rel flash.rel -bC:\nectools32\lib784\

 cl4e.lib -s -oflash.lmf -yC:\nectools32\dev

 <6> Object-converting program for flash area
 C> oc78k4 flash.lmf -u0FFh -r -oflash.lmf -yC:\nectools32\dev

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U16707EJ1V0UM 75

Remark When specifying multiple compiler options, delimit between compiler options by a space. It does not

matter whether a description is written in uppercase or lowercase (non case sensitive). For detailed

information, see CHAPTER 5 COMPILER OPTIONS.

 The -i option specification, -b option path specification, and -y option specification can be omitted depending on

the condition. For details, see CHAPTER 5 COMPILER OPTIONS and RA78K4 Assembler Package

Operation User’s Manual (U16708E).

Caution When linking a library created by a user or a floating-point library, be sure to specify the library

attached to the CC78K4 at the end of the library line. When linking a program for flash area and

a program for boot area, specify the load module file for boot area in the beginning, and specify

the startup routine for flash area before the user program.

 The following shows the library and object module file specification orders when linking.

(Library specification order)

When using sprintf, sscanf, printf, scanf, vprintf, and vsprintf functions not supporting floating

points

1. User program library file (specified with -B option)

2. Library file attached to C compiler (specified with -B option)

3. Floating point library file attached to C compiler (specified with -B option)

When using sprintf, sscanf, printf, scanf, vprintf, and vsprintf functions supporting floating

points

1. User program library file (specified with -B option)

2. Floating point library file attached to C compiler (specified with -B option)

3. Library file attached to C compiler (specified with -B option)

Specify the library for boot area when linking the program for boot area, and the library for flash

area when linking the program for flash area.

(Specification order of other files)

1. Load module file for boot area of user program

2. Startup routine object module file for flash area attached to CC78K4

3. Object module file for flash area of user program

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U16707EJ1V0UM 76

(2) When parameter file is used

 When multiple options are input in starting a compiler, assembler, or linker, the same specification may be

repeated several times if sufficient information for startup has not been specified in the command line. In such

cases, a parameter file should be used.

 Specify the parameter file specification option in the command line when using a parameter file.

Caution Parameter files cannot be specified by means of the option setting of PM plus.

 The following shows the startup method for a compiler, assembler, and linker by using a parameter file.

The following shows a usage example.

Parameter files are created by Editor. All options and output file names that should be specified in a command line

can be written.

The following shows examples of creating parameters by Editor.

Remark The -i option specification, -b option path specification, and -y option specification can be omitted

depending on the condition. For details, see CHAPTER 5 COMPILER OPTIONS and RA78K4

Assembler Package Operation User’s Manual (U16708E).

>[path name]CC78K4 ∆ -F parameter file name

>[path name]RA78K4 ∆ -F parameter file name

>[path name]LK78K4 ∆ -F parameter file name

Example C>cc78k4 -Fpara.pcc

 C>lk78k4 -Fpara.plk

-cf4943 boot.c -iC:\nectools32\inc78k4 -yC:\nectools32\dev

s4lb.rel boot.rel -bC:\nectools32\lib78k4\cl4.lib -s -oboot.lmf -zb2000h

-yC:\nectools32\dev

(Contents of para.pcc)

(Contents of para.pra)

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U16707EJ1V0UM 77

3.4 I/O Files of C Compiler

The CC78K4 inputs the C source module files written in the C language. These are converted into machine

language and output as object module files.

After compiling, the assembler source module files are output so that the user can check and revise the contents at

the assembly language level. Based on the compiler options, the list files such as the preprocess list, cross-reference

list, and error list are output.

If there is a compiler error, the error message is output to the console and the error list file. If errors occur, various

files other than an error list file cannot be output.

The CC78K4 I/O files are shown below.

Table 3-1. I/O Files of C Compiler

Type File Name Description Default File Type

C source module file • Source file written in the C language

• File created by the user

C

Include file • File referenced by a C source module file

• File written in the C language

• File created by the user

H

In
pu

t F
ile

s

Parameter file • File created by the user when the user wants to specify

multiple commands that cannot be specified in the

command line when the C compiler is run

PCC

Object module file • Binary image file containing machine language information,

relocatable information related to the location address of

the machine language, and symbol information

REL

Assembler source module file • ASCII image file of the object code output by the compiler ASM

Preprocess list file • List file output by the preprocess instructions such as

#include

• ASCII image file

PPL

Cross-reference list file • List file containing the function name and variable name

information used in the C source module file

XRF O
ut

pu
t F

ile
s

Error list file • List file containing the source file and compiler error

messages

ECC

CER

HER

ERNote

I/O
 F

ile
 Temporary file • Intermediate file for compiling

• The file is renamed to an appropriate name when

compiling ends without error and is deleted when compiling

ends in error.

$nn

(file name fixed)

Note The following four file types are available for error list files.

CER: Error list files with C source corresponding to *.C’ files (output by specifying the -SE option)

HER: Error list files with C source corresponding to *.H’ files (output by specifying the -SE option)

ER: Error list files with C source corresponding to files other than the above (output by specifying the -SE

option)

ECC: Error list files without C source corresponding to all of the source files (output by specifying the -E

option)

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U16707EJ1V0UM 78

Figure 3-40. I/O Files of C Compiler

Remark If there are compiling errors, a variety of files other than the error list and cross reference files cannot be

output.

 A temporary file is renamed to an appropriate name when the compiling ends without error. If compiling

ends in error, the temporary files are deleted.

CC78K4

Preprocess list files

Cross-reference list files Error list files Object module files Assembler source

module files

Temporary files

Parameter files C source module files Include files

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U16707EJ1V0UM 79

3.5 Execution Start and End Messages

(1) Execution start message

When the CC78K4 starts, the execution start message is displayed on the console.

 78K/IV Series C Compiler Vx.xx [xx xxx xxxx]

 Copyright (C) NEC Electronics Corporation xxxx,xxxx

(2) Execution end message

If compiler errors were not detected in the compilation result, the compiler outputs the following message to the

console and returns control to the operating system.

 Target chip : uPD784xxx

 Device file : Vx.xx

 Compilation complete, 0 error(s) and 0 warning(s) found.

If compiler errors were detected in the compilation result, the compiler outputs the error messages and the

number of errors to the console and returns control to the operating system.

 PRIME.C(18) : W745 Expected function prototype

 PRIME.C(20) : W745 Expected function prototype

 PRIME.C(26) : W622 No return value

 PRIME.C(37) : W622 No return value

 PRIME.C(44) : W622 No return value

 Target chip : uPD784xxx

 Device file : Vx.xx

 Compilation complete, 0 error(s) and 5 warning(s) found.

If a fatal error was detected where the compiling process cannot continue during compilation, the compiler outputs

a message to the console, stops compilation, and returns control to the operating system.

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U16707EJ1V0UM 80

An example that outputs an error is shown below.

 C>cc78k4 –c4038 -e prime.c -s

 78K/IV Series C Compiler Vx.xx [xx xxx xxxx]

 Copyright (C) NEC Electronics Corporation xxxx,xxxx

 A018 Option is not recognized '-s'

 Please enter ‘ CC78K4 -- ‘ , if you want help messages.

 Program aborted.
 .
 .
 .

In this example, since a nonexistent compiler option was input, an error results and the compiler stops.

If the compiler outputs error messages and stops the compilation, find the sources of these error messages in

CHAPTER 9 ERROR MESSAGES and correct.

User’s Manual U16707EJ1V0UM 81

CHAPTER 4 CC78K4 FUNCTIONS

4.1 Optimization Method

Optimization is performed to create efficient object module files in the CC78K4. Table 4-1 Optimization Methods

lists the supported optimization methods.

Table 4-1. Optimization Methods (1/2)

Phase Contents Example

<1> Execute during constant computations

compilation.

a=3*5; → a=15;

<2> True or false decision based on partial

evaluation of a logical expression

0 && (a || b) → 0

1 || (a && b) → 1

S
yn

ta
x

A
na

ly
ze

r

<3> Offset calculations of pointers, arrays, etc. Calculate the offsets during compilation.

<4> Register management Effectively use unused registers.

<5> Use the special instructions of the target

CPU.

a=a+1; → Use the inc instruction.

Use the move instruction to substitute array elements.

<6> Use short instructions. If there is an instruction with the same operation, use the

instruction with fewer bytes.

mov a, #0 or xor a, a (differs depending on the device)

C
od

e
G

en
er

at
or

<7> Change long jump instructions to short jump

instructions.

The intermediate code that was output is reprocessed.

<8> Delete common partial expressions. a=b+c; → a=b+c;

d=b+c+e; d=a+e;

<9> Move outside an instruction loop. for (i=0; i<10; i++)

{

 ...

 a=b+c;

 ...

}

 ↓

a=b+c;

for (i=0; i<10; i++)

{

 ...

 ...

}

<10> Delete unused instructions. a=a; → Delete

After a=b;, a is not referenced → Delete

(a is an automatic variable)

<11> Delete copies. a=b;

c=a+d; → c=b+d;

a is not referenced any more (a is an automatic variable).

O
pt

im
iz

er

<12> Change the calculation order in an

expression.

The calculation whose result remains in the register as valid

before other calculations is executed.

CHAPTER 4 CC78K4 FUNCTIONS

User’s Manual U16707EJ1V0UM 82

Table 4-1. Optimization Methods (2/2)

Phase Contents Example

<13> Memory device allocation (temporary

variables)

Variables used locally are allocated to registers.

<14> Peephole optimization Replacement of special patterns

Examples a*1 → a, a+0 → a

<15> Decrease the strength of the calculation. Examples a*2 → a+a, a<< 1

<16> Memory device allocation (register

variables)

Data is allocated to rapidly accessible memory.

Examples Registers, saddr (only when -QR is specified)

<17> Jump optimization (-QJ option) Consecutive jump instructions are combined into one instruction.

O
pt

im
iz

er

<18> Register allocation (-QV/-QR/-RS/-RD

options)

Variables are automatically allocated to registers.

Remark <1> to <7> are performed regardless of the optimization option specifications.

 The optimizations in <8> to <13>, <17>, and <18> are performed when optimization options are specified.

 Future support is planned for the optimizations in <8> to <13>.

 <14> and <15> are performed regardless of the optimization option specifications.

 <16> is performed when there are register declarations in the C source program. However, the saddr area

is only allocated when the -QR option is specified.

 For information about the optimization options, see CHAPTER 5 COMPILER OPTIONS.

CHAPTER 4 CC78K4 FUNCTIONS

User’s Manual U16707EJ1V0UM 83

4.2 ROMization Function

ROMization means that the initial values, such as the initial values of external variables, are placed in the ROM.

These values are copied to RAM when the system is executed.

The CC78K4 provides startup routines with the processing of programs in ROM as samples. For ROMization,

using the startup routines in ROM eliminates the problem of describing ROMization processes for startup.

For information about the startup routines, see 8.3 Startup Routines.

How to store a program on ROM is described below.

4.2.1 Linking

During linking, the startup routine, object module files, and libraries are linked. The startup routine initializes the

object program.

(1) s4*.rel: Startup routine (when stored on ROM)

 The copy routine for the initialization data is included, and the beginning of the initial data is indicated.

 The label _@cstart (symbol) is added to the start address.

(2) cl4*.lib: Library attached to CC78K4. The library files of the CC78K4 include the following two libraries.

<1> Runtime library

 @@ is added to the symbol head of the runtime library name. For the special library cstart, however, _@ is

added to the symbol head.

<2> Standard library

 _ is added to the symbol head of the standard library name.

(3) *.lib: Library created by a user. _ is added to the symbol head.

Caution The CC78K4 provides various kinds of startup routines and libraries. For details of startup

routine, refer to CHAPTER 8 STARTUP ROUTINES. For details of libraries, refer to 2.6.4 Library

files.

User’s Manual U16707EJ1V0UM 84

CHAPTER 5 COMPILER OPTIONS

When the C compiler is started, the compiler options can be specified. The compiler options provide instructions

for compiler operation and indicate the information required beforehand in program execution.

The compiler options are not specified individually, but multiple options can be simultaneously specified. The user

selects the compiler options to match the objectives and to perform the tasks efficiently.

5.1 Specifying Compiler Options

Compiler options can be specified in the following ways.

(1) Specified in the command line when the C compiler starts.

(2) Specified in the <Compiler Options> dialog box of PM plus.

(3) Specified in the parameter file.

For the specification methods for the compiler options described above, see CHAPTER 3 PROCEDURE FROM

COMPILING TO LINKING.

Specify the suboption or file name after a compiler option without inserting a blank, such as a space. Spaces are

required between the compiler options.

Example (∆: blanks such as spaces)

 CC78K4∆-c4038∆prime.c∆-aprime.asm∆-qx3

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16707EJ1V0UM 85

5.2 Prioritization of Compiler Options

For the compiler options shown in the following table, the prioritization is explained in a case where two or more

options along the vertical axis and options along the horizontal axis are simultaneously specified.

Table 5-1. Prioritization of Compiler Options

 -NO -G -P -NP -D -U -A -E -X -- -SA ← Horizontal axis

 -R × ×

 -Q × ×

 -G × ×

 -K ∆ × ×

 -D Ο ×

 -U Ο ×

 -SA × ×

 -LW ∆ ∆ ∆ ∆ ×

 -LL ∆ ∆ ∆ ∆ ×

 -LT ∆ ∆ ∆ ∆ ×

 -LF ∆ ∆ ∆ ∆ ×

 -LI × ∆

↑

Vertical axis

[Location marked by ×]

If an option in the horizontal axis is specified, the option in the vertical axis becomes invalid.

[Location marked by ∆]

If an option in the horizontal axis is not specified, the option in the vertical axis becomes invalid.

[Location marked by O]

The option specified last out of an option in the horizontal axis and an option in the vertical axis has priority.

Example 1 C>cc78k4 –c4038 -e sample.c -no -r -g

The -RD and -G options become invalid.

Example 2 C>cc78k4 –c4038 -e sample.c -p -k

Since the -P option is specified, the -K option is valid.

Example 3 C>cc78k4 –c4038 -e sample.c -utest -dtest=1

Since the -D option is specified last, the -U option becomes invalid, and the -D option has priority.

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16707EJ1V0UM 86

As with the -O and -NO options, the option specified last has priority even if N can be added before the option

name.

Example 4 C>cc78k4 –c4038 -e sample.c -o -no

Since the -NO option is specified last, the -O option becomes invalid, and the -NO option has priority.

Options not described in Table 5-1 Prioritization of Compiler Options are not particularly affected by other

options. However, if the help specification option “- -” was specified, all of the option specifications become invalid.

The help specification option cannot be specified in PM plus. To reference help in PM plus, press the help button in

each option dialog box of PM plus.

5.3 Descriptions of Compiler Options

This section describes each compiler option in detail.

This example illustrates starting the CC78K4 in the command line. To start in PM plus, specify the command,

device type specification, and options left out of the C source in the <Compiler Options> dialog box.

Example In command line

 C>cc78k4 -c4038 prime.c -g

Example When using PM plus

Figure 5-1. Compiler Options Dialog Box

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16707EJ1V0UM 87

(1) Device type specification (-C)

-C Device type specification

Description format -C device-type

Default interpretation None

[Function]

The -C option specifies the target device designated for compilation.

[Application]

Be sure to specify this option. The C compiler compiles for the specified target device and generates the object

code for it.

[Description]

Refer to the advice about use in the supplemental product materials of the device file for the target devices that

can be specified by the -C option and the corresponding device type.

When CC78K4 is used, device files are required. Use the device file by copying it to the BIN directory or to the

DEV directory.

[Caution]

The -C option cannot be omitted. However, if the following description is in the C source, the specification can

be omitted from the command line.

#pragma pc (device type)

If different devices were specified in the C source and the command line, the device in the command line has

priority.

It is not necessary for this option to be set by the compiler option when PM plus is used, because the setting of this

option is determined by the project setting.

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16707EJ1V0UM 88

-C Device type specification

[Use Example]

The specification is made in the command line. The target device is the µPD784038.

C>cc78k4 -c4038 prime.c

This specification is made in the C source and the compiler is started.

#pragma pc(4038)

#define TRUE 1

#define FALSE 0

#define SIZE 200

char mark[SIZE+1];

main() {

 int i, prime, k, count;

Therefore, the target device specification can be omitted from the command line.

C>cc78k4 prime.c

…

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16707EJ1V0UM 89

-C Device type specification

Different devices are specified in the C source and the command line and the compiler is started.

C source

#pragma pc(4038)

#define TRUE 1

#define FALSE 0

#define SIZE 200

char mark[SIZE+1];

main() {

 int i, prime, k, count;

Command line

C>cc78k4 -c4026 prime.c

After the command line is executed, compiling is executed as follows.

78K/IV Series C Compiler Vx.xx [xx xxx xxxx]

 Copyright (C) NEC Electronics Corporation xxxx,xxxx

 SAMPLE\PRIME.C(1) : W832 Duplicated chip specifier

 sample\prime.c(18): W745 Expected function prototype

 sample\prime.c(20): W745 Expected function prototype

 sample\prime.c(26): W622 No return value

 sample\prime.c(37): W622 No return value

 sample\prime.c(44): W622 No return value

 Target chip : uPD784026

 Device file : Vx.xx

 Compilation complete, 0 error(s) and 6 warning(s) found.

The target device specification in the command line has priority.

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16707EJ1V0UM 90

(2) Object module file creation specification (-O/-NO)

-O/-NO Object module file creation specification

Description formats -O [output-file-name]

 -NO

Default interpretation -O [input-file-name.rel]

[Function]

The -O option specifies the output of the object module file. In addition, the output destination or output file

name is specified.

The -NO option specifies not to output the object module file.

[Application]

If you want to change the output destination or the output file name of the object module file, specify the -O

option.

If only the output of the assembler source module file is the target for compilation, specify the -NO option.

Consequently, the compilation time is reduced.

[Description]

If there is a compilation error even when the -O option is specified, the object module file is not output.

If the drive name is omitted when the -O option is specified, the object module file is output to the current drive.

If both the -O and -NO options are simultaneously specified, the last specified one is valid.

[Cautions]
To change the output destination when using PM plus, specify the new output destination in the <<Output

Path>> combo box in the <<Object Module File>> area under the <<Output>> tab.

When individual options are specified, the output file name can also be changed.

Specify the file name or the output destination in the <<Output File>> combo box under the <<Output>> tab.

[Use Example]

Both the -NO and -O options are specified (-O has priority) in this example.

C>cc78k4 -c4038 prime.c -no -o

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16707EJ1V0UM 91

(3) Memory assignment specification (-R/-NR, -RD/-NR, -RS/-NR, -RA/-NR, -RP/-NR, -RB/-NR)

-R/-NR Memory assignment specification

Description formats -R [process-type] (Multiple specifications are possible)

 -NR

Default interpretation -NR

[Function]
The -R option specifies how to assign a program to the memory.

The -NR option invalidates the -R option.

[Application]
If you want to specify how to assign a program to the memory, specify the -R option.

[Description]
The process types that can be specified by the -R option are shown below. Process type specification cannot be

omitted. Otherwise, an abort error (A012) occurs.

Process type Function

B Assigns a bit field from the most significant bit (MSB).

D[n] (n = 1, 2, 4) Assigns an external variable/external static variable (except for the const-type variable)

automatically to the saddr area, irrespective of whether there is an sreg declaration or not.

S[n] (n = 1, 2, 4) Assigns a static auto variable automatically to the saddr area, irrespective of whether there is

an sreg declaration or not.

A Assigns an external variable of 2 bytes or more (except the variable assigned to saddr) as 2-

byte alignment. In addition, treats a structure as Non-packing.

P Treats a structure as Non-packing.

Remark Multiple process types can be specified.

When the -NR option is specified, the process types are interpreted as follows.

Process type Function

B Assigns a bit field from the least significant bit (LSB).

D Does not automatically assign any variable to the saddr area.

S Does not automatically assign any variable to the saddr area.

A Does not execute 2-byte alignment. In addition, treats a structure as packing.

P Treats a structure as packing.

[Use Example]

C>cc78k4 -c4038 -rds

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16707EJ1V0UM 92

-RD/-NR Memory assignment specification

Description formats -RD [n] (n = 1, 2, 4)

 -NR

Default interpretation -NR

[Function]
The -RD option specifies the automatic assignment of an external variable/external static variable (except for the

const-type variable) to the saddr area.

The -NR option invalidates the -RD option.

[Application]
If you want to automatically assign an external variable/external static variable (except for the const-type

variable) to the saddr area irrespective of whether there is an sreg declaration or not, specify the -RD option.

[Description]
Variables to be assigned change depending on the value of n.

Value of n Variable types to be assigned

1 char, unsigned char

2 char, unsigned char, short, unsigned short, int, unsigned int, enum, pointer (to data of small

model and medium model)

4 char, unsigned char, short, unsigned short, int, unsigned int, enum, pointer (to data of small

model and medium model), long, unsigned long, pointer (to function of medium model and

large model)

Omitted All variables (including structures and unions)

The sreg-declared variable is automatically assigned to the saddr area irrespective of -RD option specification.

The variable that is referenced by means of an extern declaration is processed as are to be assigned to the

saddr area.

The variable assigned to the saddr area by specifying this option is handled in a similar way to an sreg variable.

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16707EJ1V0UM 93

-RS/-NR Memory assignment specification

Description formats -RS [n] (n = 1, 2, 4)

 -NR

Default interpretation -NR

[Function]
The -RS option specifies the automatic assignment of a static auto variable to the saddr area.

The -NR option invalidates the -RS option.

[Application]
If you want to automatically assign a static auto variable to the saddr area irrespective of whether there is an

sreg declaration or not, specify the -RS option.

[Description]
Variables to be assigned change depending on the value of n.

Value of n Variable types to be assigned

1 char, unsigned char

2 char, unsigned char, short, unsigned short, int, unsigned int, enum, pointer (to data of small

model and medium model)

4 char, unsigned char, short, unsigned short, int, unsigned int, enum, pointer (to data of small

model and medium model), long, unsigned long, pointer (to function of medium model and

large model)

Omitted All variables (including structures and unions)

The sreg-declared variable is automatically assigned to the saddr area irrespective of -RS option specification.

The variable that is referenced by means of an extern declaration is processed as are to be assigned to the

saddr area.

The static auto variable that is assigned to the saddr area by specifying this option is handled in a similar way to

an sreg-declared auto variable.

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16707EJ1V0UM 94

(4) Optimization specification (-Q/-NQ)

-Q/-NQ Optimization specification

Description formats -Q [optimization-type] (If multiple types are specified, specify them consecutively)

 -NQ

Default interpretation -QCFHJLVW

[Function]

The -Q option specifies calling the optimization phase to generate efficient objects.

The -NQ option invalidates the -Q option.

[Application]

If you want to improve the execution speed of the objects and reduce the code size, specify the -Q option. If the

-Q option is specified and you want to perform multiple optimizations simultaneously, specify the optimization

types consecutively. For details, see Table 5-2 Optimization Types.

[Description]

Table 5-2 lists the optimization types that can be specified by the -Q option.

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16707EJ1V0UM 95

-Q/-NQ Optimization specification

Table 5-2. Optimization Types (1/2)

Optimization Type Process Description

No specification Regarded as the -QCFHJLVW specification.

U Regards the char with no qualifier as a unsigned char to improve code efficiency

C[n] (n = 1, 2) By executing char calculations without integral promotion, the code becomes more efficient. Integral

promotion indicates an ANSI-C rule that is set so that a calculation for a type smaller than an integer

(char, short) is converted to intNote.

The scope changes depending on the value of n as follows. If n is omitted, it is interpreted as n = 1.

1: Only variables are not integral-promoted

2: Neither variables nor constants are integral-promoted

R[n] (n = 1, 2) Adds a register variable to a register and assigns it to the saddr area.

The scope of assigning register variable changes depending on the value of n as follows. If n is

omitted, it is interpreted as n = 2.

1: Assigns norec argument and auto variable to the saddr area

2: Assigns norec argument, auto variable, and register variable to the saddr area

J Optimize jump instructions.

X[n] (n = 1 to 4) Assigns the optimization options automatically according to the priority of speed/code size.

The assigned option differs depending on the value of n as follows. If n is omitted, it is interpreted as

n = 2.

1: Speed precedence. Regarded as the -QCFHJVW option specification.

2: Default. Regarded as the -Q option specification.

3: Code size precedence. Regarded as the -QCFHJL3VW option specification.

4: Code size precedence. Regarded as the -QCFHJL4VW option specification (debugging is

partially restricted).

F SP and not the UUP register is used as the frame pointer (register used to access function

arguments and automatic variables on the stack). By using an empty UUP register in a register

variable, the execution speed and the code efficiency improve. If the -QF option is not specified, the

UUP register is used as the frame pointer.

H Improve the code efficiency by calculating the array and pointer offsets without signs. If this option is

used, note that the following restrictions apply.

• An object accessed by using an array element or a pointer can only be 64 KB or smaller.

• Offset calculations are not possible in the negative direction.

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16707EJ1V0UM 96

-Q/-NQ Optimization specification

Table 5-2. Optimization Types (2/2)

Optimization Type Process Description

W Outputs an efficient code and design for the effective use of the registers by changing the execution

order in an expression (i.e., changing the execution order of the right subexpression and the left

subexpression in an expression with two terms).

However, if the option is not included (although within the scope of the standard, since the ANSI-C

standard omits some of the operators and does not set the execution order), the result of the

execution sometimes differs. According to the ANSI-C standard, this is not a problem in a properly

written source.

V[n] (n = 1, 2) Automatically assigns an automatic variable to a register and the saddr area.

If the R sub-option is also specified, the automatic register is assigned to a register and the saddr

area; otherwise, the variable is assigned only to a register.

If the -ZO option is not specified, the automatic variable is also assigned to a parameter.

The range of automatic assignment differs as follows, depending on the value of n.

If n is omitted, it is interpreted as n = 2.

1: Assigns the variable to only rp3, vp, and up.

2: Assigns the variable to all registers.

N Generates a code using a block transfer instruction.

Y Enhances the code efficiency because compiling is executed on the assumption that a data alias

is missing.

If the direct address of the entity and an indirect access using a pointer indicating the entity are

described in together in the same function when this option is used, an illegal code may be

generated.

(Example of illegal code)
int i,j;

int *p = &i;

void main()

{

 *p = 2;

 i = 1;

 j = *p; /* 2 is assigned to j when -QY is specified and 1 is assigned when -QY is not

specified */

}

L[n] (n = 1 to 4) The constant code pattern is replaced with a library.

The scope changes depending on the value of n as follows. If n is omitted, it is interpreted as n =

1.

1: No replacement

2: Access code to array (valid only when large model is used)

3: Arithmetic operation in 1-instruction units in addition to 2

4: Code assigning a symbol or constant of long or unsigned long type, or a register (debugging

is restricted because the return address from the execution routine changes) in addition to 3

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16707EJ1V0UM 97

-Q/-NQ Optimization specification

Note When the -QC option is specified in the CC78K4, the types of constants and character constants are handled

in the following way.

0 to 127, 0x00 to 0x7F, 00 to 0177 char type

128 to 255, 0x80 to 0xFF, 0200 to 0377 unsigned char type

0U to 255U unsigned char type

 ‘\0’ to ‘\377’ char type

However, when the -QU option is specified, character constants in the range from ‘\200’ to ‘\377’ are handled as

unsigned char type constants and have the values from +128 to +255.

The constant added – (minus) is treated as follows.

–0 to 128 char type

From –129 int type

If the result of constant or variable calculation is overflow, cast either the constant or variable to a type capable of

representing the calculation result. Changing the data type can be avoided by casting. When the -QC1 option is

specified, constant calculation is sign-extended.

(Example) When -QC2 option is specified

 int i;

 i = (int)20 * 20; /* 400 */

Multiple optimization types can be specified.

If the -Q option or optimization types are omitted, the optimization is identical to when the -QCFHJLVW option is

specified.

To delete a portion of the default options specify the options other than the options you want to delete (Example

-QF is specified → Deletes -QCHJLVW).

If both the object module file and the assembler source module file are not output, the -Q option other than -QU

becomes invalid.

If both the -Q and -NQ options are simultaneously specified, the last specified one is valid.

If several -Q options are simultaneously specified, the last specified one is valid.

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16707EJ1V0UM 98

-Q/-NQ Optimization specification

[Use Example]

Optimize so that a char without modifier is regarded as unsigned.

C>cc78k4 -c4038 prime.c -qu

If both the -QC and -QR options are specified as below, the -QC option becomes invalid, and the -QR option is

validated.

C>cc78k4 -c4038 prime.c -qc -qr

If you want to validate both the -QC and -QR options, input the following command.

C>cc78k4 -c4038 prime.c -qcr

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16707EJ1V0UM 99

(5) Debugging information output specification (-G/-NG)

-G/-NG Debugging information output specification

Description formats -G [n] (n = 1, 2)

 -NG

Default interpretation -G2

[Function]

The -G option specifies the addition of debugging information to the object module file.

The -NG option invalidates the -G option.

[Application]

If the -G option is not specified, the line numbers and symbol information needed in the object module file to be

input to the debugger are not output. Therefore, in source level debugging, all of the modules to be linked are

compiled by specifying the -G option.

[Description]

The operation differs depending on the value of n as follows.

Value of n Function

Omitted Regarded as n = 2.

1 Adds debug information (information starting with $DGS or $DGL) to the object module file only. No

debug information is added to the assembler source module file.

This option makes it easier to reference an assembler file.

Source debugging of object files is available since debug information is added to them.

2 Adds debug information to the object module file and the assembler source module file.

If both -G and -NG are simultaneously specified, the last specified one is valid.

If both the object module file and the assembler source module file are not output, the -G option becomes invalid.

[Use Example]

The -G option is specified.

C>cc78k4 -c4038 prime.c -g

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16707EJ1V0UM 100

(6) Preprocess list file creation specification (-P, -K)

-P Preprocess list file creation specification

Description formats -P [output-file-name]

Default interpretation Nothing (no file is output)

[Function]

The -P option specifies the output of the preprocess list file. In addition, the output destination or output file

name is specified. If the -P option is omitted, no preprocess list file is output.

[Application]

If you want to output the source file after preprocess processing is executed according to the -K option process

type, or want to change the output destination or the output file name of the preprocess list file, specify the -P

option.

[Description]

If the output file name is omitted when the -P option is specified, the preprocess list file name becomes “input-

file-name.ppl”.

If the drive name is omitted when the -P option is specified, the preprocess list file is output to the current drive.

[Cautions]
To change the output destination when using PM plus, specify the new output destination in the <<Output

Path>> combo box in the <<Create Preprocess List File>> area under the Output tab.

When individual options are specified, the output file name can also be changed.

Specify the file name or the output destination in the <<Output File>> combo box under the <<Output>> tab.

[Use Example]

The preprocess list file sample.ppl is output.

C>cc78k4 -c4038 prime.c -psample.ppl

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16707EJ1V0UM 101

-K Preprocess list file creation specification

Description formats -K [process-type] (Multiple specifications are possible)

Default interpretation -KFLN

[Function]

The -K option specifies the processing for the preprocess list.

[Application]

This option is specified when comments are deleted and definition expansions are referenced when the

preprocess list file is output.

[Description]

The process types that can be specified by the -K option are listed below.

Table 5-3. Process Types of -K Option

Process Type Description

Omitted Same as specifying FLN

C Delete comments

D #define expansion

F Conditional compilations of #if, #ifdef, and #ifndef

I #include expansion

L #line processing

N Line number and paging processing

Remark Multiple process types can be specified.

If the -P option is not specified, the -K option becomes invalid.

If several -K options are simultaneously specified, the last specified one is valid.

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16707EJ1V0UM 102

-K Preprocess list file creation specification

[Use Example]

Comments are deleted from the preprocess list prime.ppl, and line number and paging processing are performed.

C>cc78k4 -c4038 prime.c -p -kcn

prime.ppl is referenced.

/*

 78K/IV Series C Compiler VX.XX Preprocess List

 Date: XX XXX XXXX Page: 1

 Command : -c4038 prime.c –p -kcn

 In-file : prime.c

 PPL-file : prime.ppl

 Para-file :

 */

 1 : #define TRUE 1

 2 : #define FALSE 0

 3 : #define SIZE 200

 4 :

 5 : char mark[SIZE+1];

 6 :

 7 : main()

 8 : {

/*

 Target chip : uPD784038

 Device file : VX.XX

*/

…

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16707EJ1V0UM 103

(7) Preprocess specification (-D, -U, -I)

-D Preprocess specification

Description formats -D macro-name [=definition-name] [, macro-name [=definition-name]]...

 (Multiple specifications are possible)

Default interpretation Only the macro definitions in a C source module file are valid.

[Function]

The -D option specifies the same macro definition as the #define statement in the C source.

[Application]

Specify this option when you want to replace all of the macro names for the specified constants.

[Description]

By delimiting each definition by a comma ‘,’, multiple macro definitions are made at one time.

Spaces are not allowed before and after ‘=’ and ‘,’.

If the definition name is omitted, the name is defined as ‘1’.

If the same macro name was specified in both the -D and -U options, the last specified one is valid.

[Use Example]

C>cc78k4 -c4038 prime.c -dTEST,TIME=10

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16707EJ1V0UM 104

-U Preprocess specification

Description formats -U macro-name [, macro-name]... (Multiple specifications are possible)

Default interpretation A macro definition specified with -D is valid.

[Function]

The -U option disables macro definitions similar to the #undef statement in the C source.

[Application]

Specify this option to invalidate the macro name defined by the -D option.

[Description]

By delimiting each macro name by a comma ‘,’, multiple macro definitions can be disabled at one time. Spaces

are not allowed before and after a comma ‘,’.

A macro definition that can be disabled by the -U option is one that has been defined by the -D option. A macro

name defined by #define in a C source module file or a system macro name of the compiler cannot be disabled

by the -U option.

If the same macro name is specified by both the -D and -U options, the last specified one is valid.

[Use Example]

The same macro name is specified by the -D and -U options. In this example, the TEST macro is disabled.

C>cc78k4 -c4038 prime.c -dTEST -uTEST

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16707EJ1V0UM 105

-I Preprocess specification

Description format -I directory [, directory]... (Multiple specifications are possible)

Default interpretation Directory with source fileNote 1

 Directory specified by environment variable INC78K4

 C:\NECTools32\INC78K4Note 2

[Function]

The -I option specifies input of the include files specified by the #include statement in the C source from the

specified directory.

[Application]

Specify this option when you want to search for the include files from a certain directory.

[Description]

By using a comma ‘,’ to delimit, multiple directories can be specified at one time.

Spaces cannot be inserted before and after a comma ‘,’.

If multiple directories are specified after -I, or if the -I option is specified multiple times, the files specified by

#include are searched for in the specified order.

The search sequence is as follows.

• Directory with source fileNote 1

• Directory specified with -I option

• Directory specified with environment variable INC78K4

• C:\NECTools32\INC78K4Note 2

Notes 1. If the include file name is specified with “ ” (double quotation marks) in the #include statement,

directories with source files are searched first. If the include file name is specified with < >, search is

not performed.

 2. This is an example of when the CC78K4 is installed to C:\NECTools32 (Windows version).

[Use Example]

The -I option is specified.

C>cc78k4 -c4038 prime.c -ib:,b:\sample

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16707EJ1V0UM 106

(8) Assembler source module file creation specification (-A, -SA)

-A Assembler source module file creation specification

Description formats -A [output-file-name]

Default interpretation No assembler source module file is output.

Output file *.asm (*: alphanumeric symbols)

[Function]

The -A option specifies the output of the assembler source module file. In addition, the output destination or

output file name is specified.

[Application]

If you want to change the output destination or the output file name of the assembler source module file, specify

the -A option.

[Description]

A disk file name or device file name can be specified as the file name.

If the output file name is omitted when the -A option is specified, the assembler source module file name

becomes “input-file-name.asm”.

If the drive name is omitted when the -A option is specified, the assembler source module file is output to the

current drive.

If both the -A and -SA options are simultaneously specified, the -SA option is ignored.

[Caution]
To change the output destination when using PM plus, specify the new output destination in the <<Output

Path>> combo box in the <<Create Assembler Source Module File>> area under the <<Output>> tab, and select

“without C Source[-a]”.

When individual options are specified, the output file name can also be changed.

Specify the file name or the output destination in the <<Output File>> combo box under the <<Output>> tab.

[Use Example]

The assembler source module file sample.asm is created.

C>cc78k4 -c4038 prime.c -asample.asm

The assembler source module file is output to the printer.

C>cc78k4 -c4038 prime.c -aprn

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16707EJ1V0UM 107

-SA Assembler source module file creation specification

Description formats -SA [output-file-name]

Default interpretation No assembler source module file is output.

Output file *.asm (*: alphanumeric symbols)

[Function]

The -SA option adds the C source as a comment to the assembler source module file. In addition, the output

destination or output file name is specified.

[Application]

If you want to output the assembler source module file and the C source module file together, specify the -SA

option.

[Description]

A disk file name or device file name can be specified as the file name.

If the output file name is omitted when the -SA option is specified, the assembler source module file name

becomes “input-file-name.asm”.

If the drive name is omitted when the -SA option is specified, the assembler source module file is output to the

current drive.

If both the -SA and -A options are simultaneously specified, the -SA option is ignored.

The C source in an include file is not added to the comments in the output assembler source module. However,

if the -LI option is specified, the C source in the include file is also added to the comments.

[Caution]
To change the output destination when using PM plus, specify the new output destination in the <<Output

Path>> combo box in the <<Create Assembler Source Module File>> area under the <<Output>> tab, and select

either “with C Source[without Include][-sa]” or “with C Source[with Include][-sa -li]”.

When individual options are specified, the output file name can also be changed.

Specify the file name or the output destination in the <<Output File>> combo box under the <<Output>> tab.

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16707EJ1V0UM 108

-SA Assembler source module file creation specification

[Use Example]

The -SA option is specified.

C>cc78k4 -c4038 prime.c -sa

prime.asm is referenced.

; 78K/IV Series C Compiler Vx.xx Assembler Source

; Date:xx xxx xxxx Time:xx:xx:xx

; Command : -c4038 prime.c -sa

; In-file : prime.c

; Asm-file : prime.asm

; Para-file :

$CHGSFR(15)

$PROCESSOR(4038)

$DEBUG

$NODEBUGA

$KANJICODE SJIS

$TOL_INF 03FH, 0230H, 02H, 08021H, 00H

$DGS FIL_NAM, .file, 03BH, 0FFFEH, 03FH, 067H, 01H, 00H

$DGS AUX_FIL, prime.c

$DGS MOD_NAM, prime, 00H, 0FFFEH, 00H, 077H, 00H, 00H

 :

 EXTRN @@isrem

 PUBLIC _mark

 PUBLIC _main

 PUBLIC _printf

 PUBLIC _putchar

 :

@@CODE CSEG

_main:

$DGL 1,19

 push uup

 push rp3

 push vvp

 push ax

??bf_main:

; line 9 : int i, prime, k, count;

; line 10 :

; line 11 : count = 0;

$DGL 0,4

 subw ax,ax

 movw [sp+0],ax ; count

; line 12 :

; line 13 : for (i = 0 ; i <= SIZE ; i++)

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16707EJ1V0UM 109

-SA Assembler source module file creation specification

$DGL 0,6

 subw rp3,rp3

?L0003:

 cmpw rp3,#0C8H ; 200

 bgt $?L0004

; line 14 : mark[i] = TRUE;

$DGL 0,7

 movw de,rp3

 mov a,#01H ; 1

 mov _mark[de],a

 incw rp3

 br $?L0003

 :

 END

; Target chip : uPD784038

; Device file : Vx.xx

The C source is appended as a comment.

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16707EJ1V0UM 110

(9) Error list file creation specification (-E, -SE)

-E Error list file creation specification

Description formats -E [output-file-name]

Default interpretation No error list file is output.

Output file *.ecc (*: alphanumeric symbols)

[Function]

The -E option specifies the output of the error list file. In addition, the output destination or output file name is

specified.

[Application]

If you want to change the output destination or the output file name of the error list file, specify the -E option.

[Description]

A disk file name or device file name can be specified as the file name.

If the output file name is omitted when the -E option is specified, the error list file name becomes “input-file-

name.ecc”.

If the drive name is omitted when the -E option is specified, the error list file is output to the current drive.

If the -W0 option is specified, warning messages are not output.

[Cautions]
To change the output destination when using PM plus, specify the new output destination in the <<Output

Path>> combo box in the <<Create Error List File>> area under the <<Output>> tab and select “without C

Source[-e]”.

When individual options are specified, the output file name can also be changed.

Specify the file name or the output destination in the <<Output File>> combo box under the <<Output>> tab.

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16707EJ1V0UM 111

-E Error list file creation specification

[Use Example]

The -E option is specified.

C>cc78k4 -c4038 prime.c -e

The error list file is referenced.

prime.c(18) : W745 Expected function prototype

prime.c(20) : W745 Expected function prototype

prime.c(26) : W622 No return value

prime.c(37) : W622 No return value

prime.c(44) : W622 No return value

Target chip : uPD784038

Device file : Vx.xx

Compilation complete, 0 error(s) and 5 warning(s) found.

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16707EJ1V0UM 112

-SE Error list file creation specification

Description formats -SE [output-file-name]

Default interpretation No error list file is output.

Output files *.cer: Error list for *.C files (*: alphanumeric symbols)

 *.her: Error list for *.H files

 *.er: Error list for files other than *.C and *.H files

[Function]

 The -SE option adds the C source module file to the error list file. In addition, the output destination or output file

name is specified.

[Application]

If you want to output the error list file and the C source module file together, specify the -SE option.

[Description]

A disk file name or device file name can be specified as the file name.

 If the output file name is omitted when the -SE option is specified, the error list file name becomes ‘input-file-

name.cer’.

If the drive name is omitted when the -SE option is specified, the error list file is output to the current drive.

The directory and the file name cannot be specified for include files. If the file type of the include file is ‘H,’ the

error list file with the file type of ‘her’ is output to the current drive. It the file type of the include file is ‘C,’ the

error list file with the file type of ‘cer’ is output. In all other cases, the error list file with the ‘er’ file type is output.

If there weren’t any errors, the C source is not added. In this case, the error list file is not created for the include

file.

If the -W0 option is specified, warning messages are not output.

[Cautions]
To change the output destination when using PM plus, specify the new output destination in the <<Output

Path>> combo box in the <<Create Error List File>> area under the <<Output>> tab and select “with C Source[-

se]”.

When individual options are specified, the output file name can also be changed.

Specify the file name or the output destination in the <<Output File>> combo box under the <<Output>> tab.

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16707EJ1V0UM 113

-SE Error list file creation specification

[Use Example]

The -SE option is specified.

C>cc78k4 -c4038 prime.c -se

prime.cer is referenced.

 /*

 78K/IV Series C Compiler VX.XX Error List Date:XX XXX XXXX Time:XX:XX:XX

 Command : -c4038 prime.c -se

 In-file : prime.c

 Err-file : prime.cer

 Para-file :

 */

 #defineTRUE 1

 #defineFALSE 0

 #defineSIZE 200

 char mark[SIZE+1];

 main()

 {

 prime = i + i + 3;

 printf("%6d",prime);

 *** WARNING W745 Expected function prototype

 count++;

 if((count%8) == 0) putchar('\n');

 *** WARNING W745 Expected function prototype

 for (k = i + prime ; k <= SIZE ; k += prime)

…

…

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16707EJ1V0UM 114

(10) Cross-reference list file creation specification (-X)

-X Cross-reference list file creation specification

Description formats -X [output-file-name]

Default interpretation No cross-reference list file is output.

Output file *.xrf (*: alphanumeric symbols)

[Function]

The -X option specifies the output of the cross-reference list file. In addition, the output destination or output file

name is specified. The cross-reference list file is valuable for checking the referencing frequency, definition, and

referenced point of a symbol.

[Application]

If you want to output the cross-reference list file or want to change the output destination or the output file name

of the cross-reference list file, specify the -X option.

[Description]

A disk file name or a device file name can be specified as the file name.

If the output file name is omitted when the -X option is specified, the cross-reference list file name becomes

‘input-file-name.xrf’.

The cross-reference file is created even if a compile error except for fatal errors (F101, abort errors other than

A024) occurs. In such a case, however, the file contents are not guaranteed.

[Cautions]
To change the output destination when using PM plus, specify the new output destination in the <<Output

Path>> combo box in the <<Create Cross Reference List File[-x]>> area under the <<Output>> tab.

When individual options are specified, the output file name can also be changed.

Specify the file name or the output destination in the <<Output File>> combo box under the <<Output>> tab.

[Use Example]

The -X option is specified.

C> cc78k4 -c4038 prime.c -x

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16707EJ1V0UM 115

-X Cross-reference list file creation specification

prime.xrf is referenced.

78K/IV Series C Compiler VX.XX Cross reference List Date:XX XXX XXXX Page: 1

Command : -c4038 prime -x

In-file : prime.c

Xref-file : prime.xrf

Para-file :

ATTRIB MODIFY TYPE SYMBOL DEFINE REFERENCE

EXTERN array mark 5 14 16 22

EXTERN func main 7

REG1 int i 9 13 13 13 14 15 15

 15 16 17 17

 21

REG1 int prime 9 17 18 21 21

REG1 int k 9 21 21 21 22

AUTO1 int count 9 11 19 20 25

EXTERN func printf 28 18 25

EXTERN func putchar 39 20

REG1 pointer s 29 36

PARAM

PARAM int i 30 35

REG1 int j 32 35

REG1 pointer ss 33 36

REG1 char c 40 43

PARAM

REG1 char d 42 43

 #define TRUE 1 14

 #define FALSE 2 22

 #define SIZE 3 5 13 15 21

 Target chip : uPD784038

 Device file : VX.XX

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16707EJ1V0UM 116

(11) List format specification (-LW, -LL, -LT, -LF, -LI)

-LW List format specification

Description format -LW [number-of-characters]

Default interpretation -LW132 (For console output, this becomes 80 characters)

[Function]

The -LW option specifies the number of characters in one line of each type of list file.

[Application]

If you want to change the number of characters in one line of each list file, specify the -LW option.

[Description]

The range of the number of characters that can be specified by the -LW option is as follows and does not include

terminators (CR, LF).

72 ≤ number of characters printed in one line ≤ 132

If the number of characters is omitted, the number of characters in one line becomes 132 characters (If output to

the console, there is a maximum of 80 characters).

If the list file specification specifies nothing, the -LW option is invalid.

[Use Example]

The cross-reference list file when the -LW option is omitted is output to “file-name.xrf”.

C> cc78k4 -c4038 prime.c -x

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16707EJ1V0UM 117

-LL List format specification

Description format -LL [number-of-lines]

Default interpretation -LL66 (For console output, this becomes 65,535 lines)

[Function]

The -LL option specifies the number of lines on one page of each type of list file.

[Application]

If you want to change the number of lines in one page in each type of list file, specify the -LL option.

[Description]

The range of the number of lines that can be specified by the -LL option is as follows.

20 ≤ number of lines printed on one page ≤ 65,535

If -LL0 is specified, there is no page break.

If the number of lines is omitted, the number of lines on one page becomes 66 lines (If output to the console, this

becomes 65,535).

If the list file specification specifies nothing, the -LL option is invalid.

[Use Example]

The number of lines on one page of the cross-reference list file is set to 20 lines.

C> cc78k4 -c4038 prime.c -x -ll20

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16707EJ1V0UM 118

-LT List format specification

Description format -LT [number-of-characters]

Default interpretation -LT8

[Function]

The -LT option indicates the basic number of characters for outputting a horizontal tabulation (HT) code in the

source module file, replacing it with several blanks (spaces) in each list (tabulation processing).

[Application]

If few characters are specified in one line in each list by the -LW option, few blanks will result from an HT code,

so specify the -LT option to reduce the number of characters.

[Description]

The range of the number of characters that can be specified by the -LT option is as follows.

0 ≤ number of specifiable characters ≤ 8

If the -LT0 is specified, the tabulation processing is not performed, and the tab codes are output.

If the number of characters is omitted, the number of expansion characters of a tab becomes 8 characters.

If the list file specification specifies nothing, the -LT option is invalid.

[Use Example]

The -LT option is omitted.

C> cc78k4 -c4038 prime.c -p

The blanks based on the HT code are set to one (1).

C> cc78k4 -c4038 prime.c -p -lt1

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16707EJ1V0UM 119

-LF List format specification

Description format -LF

Default interpretation None

[Function]

The -LF option specifies adding the new page break code at the end of each list file.

[Description]

If the list file specification specifies nothing, the -LF option is invalid.

[Use Example]

The -LF option is specified.

C> cc78k4 -c4038 prime.c -a -lf

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16707EJ1V0UM 120

-LI List format specification

Description format -LI

Default interpretation None

[Function]

The -LI option adds the C source of the include file to the assembler source module file with C source

comments.

[Description]

If the -SA option is not specified, this option is ignored.

[Use Example]

The -LI option is specified.

C> cc78k4 -c4038 prime.c -sa -li

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16707EJ1V0UM 121

(12) Warning output specification (-W)

-W Warning output specification

Description format -W [level]

Default interpretation -W1

[Function]

The -W option specifies the output of warning messages to the console.

[Application]

This option specifies whether to output warning messages to the console. Detailed messages can also be

output.

[Description]

The levels of the warning message are given below.

Table 5-4. Warning Message Levels

Level Description

0 Do not output warning messages.

1 Output normal warning messages.

2 Output detailed warning messages.

 If the -E or -SE option is specified, the warning messages are output to the error list file.

 Level 0 indicates not to output warning messages to the console and the error list file (when -E or -SE is

specified).

[Use Example]

The warning messages when the -W option is omitted are referenced.

C> cc78k4 -c4038 prime.c

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16707EJ1V0UM 122

(13) Execution state display specification (-V/-NV)

-V/-NV Execution state display specification

Description formats -V

 -NV

Default interpretation -NV

[Function]

The -V option outputs the execution state of the current compilation to the console.

The -NV option invalidates the -V option.

[Application]

Specify this option to execute compiling while continuing to output the execution state of the compilation to the

console.

[Description]

The phase name and function names in the process are output.

If both the -V and -NV options are simultaneously specified, the last specified one is valid.

[Use Example]

The -V option is specified.

C> cc78k4 -c4038 prime.c -v

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16707EJ1V0UM 123

(14) Parameter file specification (-F)

-F Parameter file specification

Description format -F file-name

Default interpretation The options and the input file name can be input only from the command line.

[Function]

The -F option specifies the input of the options or input file name from the specified file.

[Application]

When sufficient information for starting a compiler cannot be specified in a command line because multiple

options are input while compiling, specify the -F option.

When specifying options repeatedly for compilation, describe the options in the parameter file and specify the

-F option.

[Description]

Parameter file nesting is not allowed.

The number of characters that can be described in a parameter file is not limited.

Spaces and tabs delimit the options or input file names.

The options or input file names described in the parameter file are expanded at the location of the parameter file

specification in the command line.

The prioritization of the expanded options is that the last specified one is valid.

Characters described after the ‘;’ and ‘#’ are interpreted as comments until the end of the line.

[Caution]

This option cannot be used when using PM plus (an error occurs).

[Use Example]

Contents of parameter file prime.pcc

; parameter file

prime.c -c4038 -aprime.asm -e -x

prime.pcc is used in the compilation.

C> cc78k4 -fprime.pcc

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16707EJ1V0UM 124

(15) Temporary file creation directory specification (-T)

-T Temporary file creation directory specification

 Description format -T directory

 Default interpretation The files are created in the drive and directory specified by the environment

variable TMP. If not specified in a Windows-based system, the files are created in

the current drive and current directory. If UNIX-based, they are created in /tmp.

[Function]

The -T option specifies the drive and directory where the temporary files are created.

[Application]

The location for creating the temporary files can be specified.

[Description]

Even if there are temporary files that have been created previously, if a file is not protected, it is overwritten the

next time it is created.

A temporary file expands in memory to the required memory size. If the required memory size is no longer

available, the temporary file is created in the specified directory and the memory contents are written to the file.

Accesses to subsequent temporary files are to files not in memory.

The temporary files are deleted when compilation ends. By pressing CTRL-C, the files are deleted when

compilation stops.

[Use Example]

This specifies output of the temporary files to the TMP directory.

C> cc78k4 -c4038 prime.c -ttmp

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16707EJ1V0UM 125

(16) Help specification (--/-?/-H)

--/-?/-H Help specification

Description formats --, -?, -H

Default interpretation Nothing is displayed

[Function]

The --, -?, and -H options display brief explanations of the options and the help messages such as the default

options on the console (valid only in the command lineNote).

Note Do not specify this option in PM plus. To reference help in PM plus, press the help button in the <Compiler

Options> dialog box.

[Application]

The option and its description are displayed. Refer to them when running the C compiler.

[Description]

If the --, -?, or -H option is specified, all of the other compiler options become invalid.

When viewing the continuation of a displayed help message, press the return key. To exit the display before the

end, press any character other than the return key, and then press the return key.

[Use Example]

The -H option is specified.

C> cc78k4 -H

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16707EJ1V0UM 126

(17) Memory model specification (-MS/-MM/-ML)

-MS/-MM/-ML Memory model specification

Description formats -MS

 -MM

 -ML

Default interpretation -ML

[Function]

These options specify one of the following memory models for compiling:

-MS: Small model

-MM: Medium model

-ML: Large model

[Application]

The program area and data area can be changed.

[Description]

The small model is 64 KB with a program area and a data area combined.

The medium model is 1 MB with a program area of 1 MB and a data area of 64 KB.

The large model is 16 MB with a program area of 1 MB and a data area of 16 MB.

All the above data areas include a stack area.

[Use Example]

To specify the small model

C> cc78k4 -c4038 prime.c -ms

To specify the medium model

C> cc78k4 -c4038 prime.c -mm -cs15

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16707EJ1V0UM 127

(18) Location function specification (-CS)

-CS Location function specification

Description formats -CS [n] (n: Location address)

Default interpretation Small model: Locates saddr area at FD20H to FFFFH.

 Medium model: Locates saddr area at FFD20H to FFFFFH.

 Large model: Locates saddr area at FFD20H to FFFFFH.

[Function]

The -CS option specifies a location function.

The location function is used to change the addresses of the internal data areas (internal RAM area and SFR

area) of the 78K4 Series.

[Application]

When -CS0 is specified, mapping when the LOCATION 0 instruction is executed is specified for the internal data

area.

When -CS15 or -CS0FH is specified, mapping when the LOCATION OFH instruction is executed is specified.

When -CSA is specified, the linker performs checking related to mapping of the internal data area.

[Description]

If 0, 15, or A is selected as the location address, the location of the saddr area can be specified as shown in

Table 5-5.

If an option other than -CS0 is specified with the small model, a warning is output and the specification is

ignored.

If an option other than -CSA is specified with the medium model, a warning is output and the specification is

ignored.

Table 5-5. Address Specified for Location Function

Type Specification Explanation

0 Locates saddr area at addresses FD20 to FFFFH.

15/0FH Locates saddr area at addresses FFD20 to FFFFFH.

A The compiler does not check mapping. Instead, the linker checks

mapping.

[Use Example]

To specify addresses FD20H to FFFFH for saddr area

C> cc78k4 -c4038 prime.c -mm -cs0

To specify addresses FFD20H to FFFFFH for saddr area

C> cc78k4 -c4038 prime.c -ml -cs15

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16707EJ1V0UM 128

(19) Function expansion specification (-Z/-NZ)

-Z/-NZ Function expansion specification

Description format -Z [type] (If multiple types are specified, specify them consecutively)

 -NZ

Default interpretation -NZ

[Function]

The -Z option enables the processing for type specification.

The -NZ option invalidates the -Z option.

Types must not be omitted, otherwise, an abort error (A012) will occur.

[Application]

The functions for processing by the following type specifications are available for the 78K Series expansion

functions.

[Description]

The type specifications of the -Z option are as follows.

Table 5-6. Type Specifications of -Z Option (1/2)

Type Specification Description

Omitted Regarded as -NZ specification.

O Outputs code of interface between functions of old specification (CC78K4 V1.00 or before).

P The characters after “//” until the line return are interpreted as a comment.

C Nested comments “/* */” are allowed.

SNote Interprets the type of kanji in comments as SJIS code.

ENote Interprets the type of kanji in comments as EUC code.

NNote Interprets comments as not containing kanji codes.

B char-/unsigned char-type argument and return value are not int-extended.

Note S, E, and N cannot be specified simultaneously.

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16707EJ1V0UM 129

-Z/-NZ Function expansion specification

Table 5-6. Type Specifications of -Z Option (2/2)

Type Specification Description

A Functions not in the ANSI standard are illegal. The ANSI-compliant portion of the functions are

valid.

Specifically, the following tasks are performed.

 The following are no longer reserved words.

 callt, callf noauto, norec, sreg, bit, boolean, #asm, #endasm

 The trigraph sequence (3-character representation) becomes valid.

 The compiler-defined macro _ _STDC_ _ is 1.

 The following warning is output for a char type bit field.

 (W787 Bit field type is char)

 If -W2 is specified, the following warnings are output for the -QC, -ZP, and -ZC options.

 (W029 ‘-QC’ option is not portable)

(W031 ‘-ZP’ option is not portable)

 (W032 ‘-ZC’ option is not portable)

 If –W2 is specified, the following warning is output for each #pragma statement.

 (W849 #pragma statement is not portable)

 If –W2 is specified, the following warning is output for an _ _asm statement and the assemble

output is performed.

 (W850 Asm statement is not portable)

 If -W2 is specified, the following error is output for an #asm to #endasm block.

 (F801 Undefined control, etc.)

R Automatically adds a pascal function modifier.

F Outputs object from flash.

G Creates a branch table for callf function.

H Automatically adds a callf function modifier.

[Use Example]

The -ZC and -ZP options are specified.

C> cc78k4 -c4038 prime.c -zpc

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16707EJ1V0UM 130

(20) Device file search path (-Y)

-Y Device file search path

Description format -Y

Default interpretation Normal search path only

[Function]

The -Y option first searches the path specified as the search path for reading device files. If it does not exist, the

normal paths are searched.

The normal search paths are as follows.

(1) <..\dev> (for the path where cc78k4.exe started)

(2) Path where CC78K4 started

(3) Current directory

(4) PATH environment variable

[Application]

If the device file is not installed in the normal search path, but in a special directory, the path is specified by this

option.

[Caution]

When using PM plus, a directory is determined when registering a device file at “Device Name:” in the <Project

Setup> dialog box. Therefore, it is not necessary to specify this option when setting an option with this compiler.

[Use Example]

The -Y option is specified.

C> cc78k4 -c4038 -ya:\tmp\dev

User’s Manual U16707EJ1V0UM 131

CHAPTER 6 C COMPILER OUTPUT FILES

The CC78K4 outputs the following files.

 • Object module file

 • Assembler source module file

 • Preprocess list file

 • Cross-reference list file

 • Error list file

6.1 Object Module File

The object module file is a binary image file containing C source program compilation results.

If the debug data output option (-G) has been specified, the object module file will also contain debug data.

6.2 Assembler Source Module File

The assembler source module file is an ASCII image list of C source program compilation results, and is a source

module file in assembly language that corresponds to the target C source program.

It can also include the C source program to this file as comments by setting the assembler source module file

creation specification option (-SA).

CHAPTER 6 C COMPILER OUTPUT FILES

User’s Manual U16707EJ1V0UM 132

[Output format]

 ; 78K/IV Series C Compiler V(1)x.xx Assembler Source
 ; Date:(2)xxxxx Time:(3)xxxxx

 ; Command :(4)-c4038 prime.c –sa
 ; In-file :(5)prime.c
 ; Asm-file :(6)prime.asm
 ; Para-file :(7)

(8) $CHGSFR(15)

 $PROCESSOR((9)4038)

(10)$DEBUG

(11)$NODEBUGA

(12)$KANJICODE SJIS

(13)$TOL_INF 03FH, 0230H, 02H, 08021H, 00H

(14)$DGS FIL_NAM, .file, 03BH, 0FFFEH, 03FH, 067H, 01H, 00H

 :

(15) EXTRN @@isrem

 :

 ; line (16)1 : (17)#define TRUE 1

 ; line (16)2 : (17)#define FALSE 0

 ; line (16)3 : (17)#define SIZE 200

 :

(15)_main:

(18)$DGL 1,19

(15) push uup

(15) push rp3

(15) push vvp

(15) push ax

 :

(19)??bf_main:

 :

 ; Target chip : (20)uPD784038

 ; Device file : (21)Vx.xx

CHAPTER 6 C COMPILER OUTPUT FILES

User’s Manual U16707EJ1V0UM 133

[Description of output items] (1/2)

Item

Number
Description

Number of Columns Format

(1) Version number 4 (fixed) Displayed in “x.yz” format

(2) Date 11 (fixed) System date (Displayed in “DD Mmm YYYY” format)

(3) Time 8 (fixed) System time (Displayed in “HH:MM:SS” format)

(4) Command line — Outputs the command line contents following “CC78K4”. Contents after

column 80 are output beginning at column 15 on the next line. A

semicolon (;) is output to column 1. One or more white-space characters or

tabs are replaced by a single white-space character.

(5) C source

module file

name

Number of

characters

enabled by OS

Outputs the specified file name. If the file type is omitted, ‘.c’ is attached

as the file type (extension). Contents after column 80 are output beginning

at column 15 on the next line. A semicolon (;) is output to column 1.

(6) Assembler

source module

file name

Number of

characters

enabled by OS

Outputs the specified file name. If the file type is omitted, ‘.asm’ is

attached as the file type (extension). Contents after column 80 are output

beginning at column 15 on the next line. A semicolon (;) is output to

column 1.

(7) Parameter file

contents

— Outputs the parameter file contents. Contents after column 80 are output

beginning at column 15 on the next line. A semicolon (;) is output to

column 1. One or more white-space characters or tabs are replaced by a

single white-space character.

(8) SFR relocation

information

— Outputs SFR relocation information.

$CHGSFR (n) n = 0, 15

 0: Locates sfr area at FF00H to FFFFH.

 15: Locates sfr area at FFF00H to FFFFFH.

$CHGSFRA

 A: Compiler does not check mapping. Instead, linker checks it.

(9) Device type Maximum 6

(variable)

This character string is specified via the –C option. See the documentation

describing device files.

(10) Debug data Maximum 8

(variable)

Outputs DEBUG control. Output is either $DEBUG or $NODEBUG.

(11) Debug

information

control of

assembler

9 (fixed) Outputs NODEBUGA control. Output is $NODEBUGA.

(12) Kanji type

information

Maximum 15

(variable)

Outputs the Kanji code type. Output is $KANJICODE SJIS, $KANJICODE

EUC, or $KANJICODE NONE.

(13) Tool information 37 (fixed) Outputs tool information, version number, error information, specified

options, etc. (information starts with $TOL_INF).

(14) Symbol

information

— Outputs symbol information (information starts with $DGS). This

information is output only when the debug data output option has been

specified. Even then, it is not output if the –G1 option has been specified.

(15) Assembler

source

— Outputs an assembler source file containing the compilation results.

(16) Line number 4 (fixed) Outputs the C source module file’s line numbers as right-aligned decimal

value with zeros suppressed.

(17) C source — This is the input C source image. Contents after column 80 are output

beginning at column 16 on the next line. A semicolon (;) is output to

column 1.

CHAPTER 6 C COMPILER OUTPUT FILES

User’s Manual U16707EJ1V0UM 134

[Description of output items] (2/2)

Item

Number
Description

Number of Columns

Format

(18) Line number

information

— Line number for line number entry (information starts with $DGL)

This information is output only when the debug data output option has

been specified. Even then, it is not output if the –G1 option has been

specified.

(19) Labels for

symbol

information

creation

Maximum 34

(variable)

Outputs function label information (information starts with ??).

This information is output only when the debug data output option has

been specified.

(20) Target device

for this compiler

Maximum 15

(variable)

Displays the target device as specified via command line option -C or the

source file.

(21) Device file

version

6 (fixed) Displays the version number of the input device file.

CHAPTER 6 C COMPILER OUTPUT FILES

User’s Manual U16707EJ1V0UM 135

6.3 Error List File

An error list file contains messages regarding any errors and warnings that occurred during compilation.

The C source program can be added to the error list by specifying a compiler option. An error list file that contains

a C source program can be used as a C source module file by revising the C source program and deleting comments,

such as the list header.

6.3.1 Error list file with C source

[Output format]

 /*

 78K/IV Series C Compiler V (1) x.xx Error List Date:(2) xxxxx Time:(3) xxxxx

 Command : (4) –c4038 prime.c -se

 C-file : (5) prime.c

 Err-file : (6) prime.cer

 Para-file : (7)

 */

(8)#define TRUE 1

(8)#define FALSE 0

(8)#define SIZE 200

(8) char mark[SIZE +1];

(8) main()

(8){

(8) int i, prime, k, count;

(8) cont = 0;

 ***ERROR (9) F711 (10) Undeclared ‘cont’ ; function ‘main’

(8) for (i = 0 ; i <= SIZE ; i++)

(8) mark[i] = TRUE;

(8) for (i = 0 ; i<= SIZE ; i++) {

(8) if (mark[i]) {

 prime = i + i + 3;

 printf ("%6d", prime);

 ***WARNING (9)W745 (10)Expected function prototype

 /*

 (11) Target chip: uPD784038

 (12) Device file: Vx.xx

 Compilation complete, (13) 1 error(s) and (14) 5 warning(s) found.

 */

…

CHAPTER 6 C COMPILER OUTPUT FILES

User’s Manual U16707EJ1V0UM 136

[Description of output items]

Item

Number
Description

Number of Columns

Format

(1) Version number 4 (fixed) Displayed in “x.yz” format

(2) Date 11 (fixed) System date (Displayed in “DD Mmm YYYY” format)

(3) Time 8 (fixed) System time (Displayed in “HH:MM:SS” format)

(4) Command line — Outputs the command line contents following “CC78K4”. Contents after

column 80 are output beginning at column 13 on the next line. One or

more white-space characters or tabs are replaced by a single white-space

character.

(5) C source

module file

name

Number of

characters

enabled by OS

(variable)

Outputs the specified file name. If the file type is omitted, ‘.c’ is attached

as the file type (extension). Contents after column 80 are output beginning

at column 13 on the next line.

(6) Error list file

name

Number of

characters

enabled by OS

(variable)

Outputs the specified file name.

If the file type is omitted, ‘.cer’ is attached.

Contents after column 80 are output beginning at column 13 on the next

line.

(7) Parameter file

contents

— Outputs the parameter file contents.

Contents after column 80 are output beginning at column 13 on the next

line. One or more white-space characters or tabs are replaced by a single

white-space character.

(8) C source — This is the input C source image. Contents after column 80 are not

wrapped to the next line.

(9) Error message

number

4 (fixed) Outputs error numbers in the “#nnn” format. “F” is output if "#" is an error

and “W” is output if it is a warning. "nnn" (the error number) is displayed as

a three-digit decimal number. (No zero suppression)

(10) Error message — See CHAPTER 9 ERROR MESSAGES. Contents after column 80 are not

wrapped to the next line.

(11) Target device

for this compiler

Maximum 15

(variable)

Displays the target device as specified via command line option -C or the

source file.

(12) Device file

version

6 (fixed) Displays the version number of the input device file.

(13) Number of

errors

4 (fixed) Outputs a right-aligned decimal value with zeroes suppressed.

(14) Number of

warnings

4 (fixed) Outputs a right-aligned decimal value with zeroes suppressed.

CHAPTER 6 C COMPILER OUTPUT FILES

User’s Manual U16707EJ1V0UM 137

6.3.2 Error list file with error message only

[Output format]

(1) prime.c((2) 18) : (3) W745 (4) Expected function prototype

(1) prime.c((2) 20) : (3) W745 (4) Expected function prototype

(1) prime.c((2) 26) : (3) W622 (4) No return value

(1) prime.c((2) 37) : (3) W622 (4) No return value

(1) prime.c((2) 44) : (3) W622 (4) No return value

Target chip :(7) uPD784038

Device file :(8) Vx.xx

Compilation complete, (5) 0 error(s) and (6) 5 warning(s) found.

[Description of output items]

Item

Number
Description

Number of Columns Format

(1) C source

module file

name

Number of

characters

enabled by OS

Outputs the specified file name. If the file type is omitted, ‘.c’ is attached

as the file type (extension).

(2) Line number 5 (fixed) Outputs a right-aligned decimal value with zeros suppressed.

(3) Error message

number

4 (fixed) Outputs the error message number in “#nnn” format. “F” is output if "#" is

an error and “W” is output if it is a warning. "nnn" is the error number.

(4) Error message — See CHAPTER 9 ERROR MESSAGES.

(5) Number of

errors

4 (fixed) Outputs a right-aligned decimal value with zeroes suppressed.

(6) Number of

warnings

4 (fixed) Outputs a right-aligned decimal value with zeroes suppressed.

(7) Target device

for this compiler

Maximum 15

(variable)

Displays the target device as specified via command line option -C or the

source file.

(8) Device file

version

6 (fixed) Displays the version number of the input device file.

CHAPTER 6 C COMPILER OUTPUT FILES

User’s Manual U16707EJ1V0UM 138

6.4 Preprocess List File

The preprocess list file is an ASCII image file that contains results of C source program preprocessing only.

When specifying the -K option, a preprocess list file can be used as a C source module file unless “N” has been

specified as the processing type. When the -KD option is specified, the list with #define expansion is output.

[Output format]

When PAGEWIDTH = 80

 /*

 78K/IV Series C Compiler V (1) x.xx Preprocess List Date:(2) xxxxx Page:(3) xxx

 Command : (4) –c4038 prime.c -p -lw80

 In-file : (5) prime.c

 PPL-file : (6) prime.ppl

 Para-file : (7)

 */

 (8) 1 : (9)#define TRUE 1

 (8) 2 : (9)#define FALSE 0

 (8) 3 : (9)#define SIZE 200

 (8) 4 : (9)

 (8) 5 : (9) char mark[SIZE+1];

 (8) 6 : (9)

/*

(10) Target chip: uPD784038

(11) Device file: Vx.xx

*/

CHAPTER 6 C COMPILER OUTPUT FILES

User’s Manual U16707EJ1V0UM 139

[Description of output items]

Item

Number
Description

Number of Columns Format

(1) Version number 4 (fixed) Displayed in “x.yz” format

(2) Date 11 (fixed) System date (Displayed in “DD Mmm YYYY” format)

(3) Number of

pages

4 (fixed) Outputs a right-aligned decimal number with zeros suppressed.

(4) Command line — Outputs the command line contents following “CC78K4”. Contents that

exceed the line length are output beginning at column 13 on the next line.

One or more white-space characters or tabs are replaced by a single

white-space character.

(5) C source

module file

name

Number of

characters

enabled by OS

Outputs the specified file name. If the file type is omitted, ‘.c’ is attached

as the file type (extension). Contents that exceed the line length are output

beginning at column 13 on the next line.

(6) Preprocess list

file name

Number of

characters

enabled by OS

Outputs the specified file name. If the file type is omitted, “.ppl” is

attached. Contents that exceed the line length are output beginning at

column 13 on the next line.

(7) Parameter file

contents

— Outputs the parameter file contents. Contents that exceed the line length

are output beginning at column 13 on the next line. A semicolon (;) is

output to column 1. One or more white-space characters or tabs are

replaced by a single white-space character.

(8) Line number 5 (fixed) Outputs a right-aligned decimal value with zeros suppressed.

(9) C source — This is the input C source. Contents that exceed the line length are output

beginning at column 9 on the next line.

(10) Target device

for this compiler

Maximum 15

(variable)

Indicates the target device that is specified by a command line option or in

a source file

(11) Device file

version

6 (fixed) Displays the version number of the input device file.

CHAPTER 6 C COMPILER OUTPUT FILES

User’s Manual U16707EJ1V0UM 140

6.5 Cross-Reference List File

Cross-reference list files contain lists of identifiers such as declarations, definitions, referenced functions, and

variables. They also include other information, such as attributes and line numbers. These are output in the order

they are found.

[Output format]

When PAGEWIDTH = 80

 78K/IV Series C Compiler V (1) x.xx Cross reference List Date:(2) xxxxx Page:(3) xxx

 Command : (4) –c4038 prime.c -x -lw80

 In-file : (5) prime.c

 Xref-file : (6) prime.xrf

 Para-file : (7)

 Inc-file : [n] (8)

 ATTRIB MODIFY TYPE SYMBOL DEFINE REFERENCE

(9) EXTERN (10) (11) array (12) mark (13) 5 (14) 14 (14)16 (14) 22

(9) EXTERN (10) (11) func (12) main (13) 7

(9) REG1 (10) (11) int (12) i (13) 9 (14) 13 (14) 13 (14) 13 (14) 14

 (14) 15 (14) 15 (14) 15 (14) 16

 (14) 17 (14) 17 (14) 21

(9) REG1 (10) (11) int (12) prime (13) 9 (14) 17 (14) 18 (14) 21 (14) 21

(9) REG1 (10) (11) int (12) k (13) 9 (14) 21 (14) 21 (14) 21 (14) 22

(9) AUTO1 (10) (11) int (12) count (13) 9 (14) 11 (14) 19 (14) 20 (14) 25

(15) Target chip: uPD784038

(16) Device file: Vx.xx

.
.
.

CHAPTER 6 C COMPILER OUTPUT FILES

User’s Manual U16707EJ1V0UM 141

[Description of output items] (1/2)

Item

Number
Description

Number of Columns Format

(1) Version number 4 Displayed in “x.yz” format

(2) Date 11 (fixed) System date (Displayed in “DD Mmm YYYY” format)

(3) Number of

pages

4 (fixed) Outputs a right-aligned decimal number with zeros suppressed.

(4) Command line — Outputs the command line contents following “CC78K4”. Contents that

exceed the line length are output beginning at column 13 on the next line.

One or more white-space characters or tabs are replaced by a single

white-space character.

(5) C source

module file

name

Number of

characters

enabled by OS

Outputs the specified file name. If the file type is omitted, ‘.c’ is attached

as the file type (extension). Contents that exceed the line length are output

beginning at column 13 on the next line.

(6) Cross-reference

list file name

Number of

characters

enabled by OS

Outputs the specified file name. If the file type is omitted, “.xrf” is attached.

Contents that exceed the line length are output beginning at column 13 on

the next line.

(7) Parameter file

contents

— Outputs the parameter file contents. Contents that exceed the line length

are output beginning at column 13 on the next line. One or more white-

space characters or tabs are replaced by a single white-space character.

(8) Include file Number of

characters

enabled by OS

Outputs the file name specified in the C source. “n” is a number starting

with “1” that indicates the include file number. Contents that exceed the

line length are output beginning at column 13 on the next line. This line is

not output when there is no include file.

(9) Symbol attribute 6 (fixed) Displays the symbol attributes.

An external variable is displayed as EXTERN, an external static variable as

EXSTC, an internal static variable as INSTC, an auto variable as AUTOnn,

a register variable as REGnn (where nn is the scope value, a numerical

value that begins with "1"), an external typedef declaration as EXTYP, an

internal typedef declaration as INTYP, a label as LABEL, a structure or

union tag as TAG, a member as MEMBER, and a function parameter as

PARAM.

(10) Symbol qualifier

attributes

6 (fixed) Displays the symbol qualifier attributes (left-aligned). A const variable is

displayed as CONST, a volatile variable as VLT, a callt function as CALLT,

a callf function as CALLF, a noauto function as NOAUTO, a norec function

as NOREC, an sreg-bit variable as SREG, an sfr variable as RWSFR, a

read-only sfr variable as ROSFR, a write-only sfr variable as WOSFR, an

interrupt function as VECT, an sreg1-boolean1 variable as SREG1, an

RTOS interrupt handler as OSVECT, and a task function for RTOS as

TASK.

(11) Symbol type 7 (fixed) Displays the symbol type. Types include char, int, short, long, and field.

“u” is added at the start for unsigned type. Additional types include void,

float, double, ldouble (long double), func, array, pointer, struct, union,

enum, bit, inter, and #define.

(12) Symbol name 15 (fixed) If the symbol name exceeds 15 characters and fit into a line, that name is

output as it is. If it exceeds 15 characters and one line, the excess is

output from column 23 on the next line and items 13 and 14 are output

from column 39 on the next line.

(13) Symbol

definition line

number

7 (fixed) This outputs the line number and file name defined for the symbol, and is

displayed as:

line number (five-digit): include file number

CHAPTER 6 C COMPILER OUTPUT FILES

User’s Manual U16707EJ1V0UM 142

[Description of output items] (2/2)

Item

Number
Description

Number of Columns

Format

(14) Symbol

reference line

number

7 (fixed) This outputs the line number and file name that reference the symbol, and

is displayed as:

line number (five-digit): include file number

If the line contents exceed the line length, the remaining contents are

output beginning at column 47 of the next line.

(15) Target device

for this compiler

Maximum 15

(variable)

Displays the target device as specified via command line option -C or the

source file.

(16) Device file

version

6 (fixed) Displays the version number of the input device file.

User’s Manual U16707EJ1V0UM 143

CHAPTER 7 USING C COMPILER

7.1 Efficient Operation (EXIT Status Function)

When the compilation ends, the CC78K4 returns the top error level generated during compilation to the operating

system as the EXIT status.

The EXIT status is shown below.

• Ends normally: 0

• WARNING: 0

• FATAL ERROR: 1

• ABORT: 2

If PM plus is not used and the CC78K4 is started in the command line, efficient operation can be further improved

by using the status in a batch file.

[Use Example]

cc78k4 –c4038 %1

IF ERRORLEVEL 1 GOTO ERR

cc78k4 –c4038 %2

IF ERRORLEVEL 1 GOTO ERR

GOTO EXIT

:ERR

echo Some error found.

:EXIT

[Description]

• When the C source passed to %1 was compiled, a fatal error was generated. Essentially, the process continues

after an error message was output. But using the 1 returned in the EXIT status, execution can be stopped

without processing the next C source in %2.

CHAPTER 7 USING C COMPILER

User’s Manual U16707EJ1V0UM 144

7.2 Setting Up Development Environment (Environment Variables)

The CC78K4 supports the following environment variables.

• PATH: Search path for executable forms

• INC78K4: Search path for include files

• TMP: Search path for temporary files

• LANG78K: Type of kanji code (can be specified by -ZE, -ZS, or -ZN option)

 (euc: EUC code, sjis: shift JIS code, none: no 2-byte codes)

• LIB78K4: Search path for libraries

[Use Example] (When using DOS prompt)

;AUTOEXEC.BAT

PATH C:\nectools32\bin;c:\bat;c:\cc78k4;c:\tool

VERIFY ON

BREAK ON

SET INC78K4=c:\nectools32\inc78k4

SET LIB78K4=c:\nectools32\lib78k4

SET TMP=c:\tmp

SET LANG78K=sjis

[Description]

• Executable files are searched in the sequence of c:\nectools32\bin, c:\bat, c:\cc78k4, c:\tool by path

specification.

• Include files are searched from c:\nectools32\inc78k4.

In the Windows version, if no setting is made, search is performed from C:\NECTools32\INC78K4 (if the

CC78K4 is installed to C:\NECTools32).

• Library files are searched from c:\nectools32\lib78k4 during linking.

In the Windows version, if no setting is made, search is performed from C:\NECTools32\LIB78K4 (if the

CC78K4 is installed to C:\NECTools32).

• Temporary files are created in c:\tmp.

• Shift JIS code is used as kanji code.

[Caution]

Do not set environment variables when using PM plus.

7.3 Interrupting Compilation

If compiling was started from the command line, the compilation can be interrupted by the command key input

(CTRL-C). If ‘break on’ was specified, control returns to the operating system unrelated to the timing of the key input.

And for ‘break off,’ control returns to the operating system only when the screen is displayed. Then all of the open

temporary files and output files are deleted.

If you want to stop a build (MAKE) in PM plus, select “Stop build” in the [Build] menu in the PM plus window, or

click the button in the tool bar. When building in PM plus, command key input is not accepted.

User’s Manual U16707EJ1V0UM 145

CHAPTER 8 STARTUP ROUTINES

To execute a C language program, a program is needed to activate ROMization for inclusion in the system and the

user program (main function). This program is called the startup routine.

To execute a program written by a user, a startup routine must be created for that program. The CC78K4 provides

the object files of the startup routines that include the processing required before program execution and the source

files (assembly source) of the startup routines that the user can adapt to the system. By linking the object file of the

startup routine to the user program, an executable program can be created even if the user does not describe the

execution preprocess.

This chapter describes the contents, uses, and improvements of the startup routines.

8.1 File Organization

The files related to a startup routine are stored in the directory SRC\CC78K4 of the compiler package.

 → Directories that contain files

 related to startup routines

The contents of the directory that has files related to the startup routine below SRC\CC78K4 are explained next.

The LIB directory contains the object files of the startup routines and the assembled library sources. An object

file can be linked to a program for any target device in the 78K4 Series. If no particular revisions are needed, link

the unmodified object files that are already available. If mkstup.bat (mkstup.sh) offered by the CC78K4 is

executed, this object file can be overwritten.

For the file contents, see 2.6.4 Library files.

INC78K4

BIN

SMP78K4

SRC\CC78K4

BAT

SRC

LIB

LIB78K4

\

HLP

DBCSRC

CHAPTER 8 STARTUP ROUTINES

User’s Manual U16707EJ1V0UM 146

8.1.1 BAT directory contents

A batch file in this directory cannot be used in PM plus.

Use these batch files only when the source, such as for a startup routine, must be modified.

The device files (d4025.78k) in the BAT directory are not for development, and are used when a batch file for

updating library, etc., is started. Therefore, other optional device files are required for development.

Table 8-1. BAT Directory Contents

Batch File Name Description

mkstup.bat Assemble batch file for startup routine

reprom.bat Batch file for updating rom.asmNote 1

repgetc.bat Batch file for updating getchar.asm

repputc.bat Batch file for updating putchar.asm

repputcs.bat Batch file for updating _putchar.asm

repselo.bat Batch file for updating setjmp.asm and longjmp.asm

(the compiler reserved area is saved)Note 2

repselon.bat Batch file for updating setjmp.asm and longjmp.asm

(the compiler reserved area is not saved)Note 2

repvect.bat Batch file for updating vect*.asm

Notes 1. Since ROMization routines are in the library, the library is also updated by this batch file.

 2. The setjmp and longjmp that save the compiler reserved area (saddr area secured for KREG××, etc.),

and the setjmp and longjmp that do not save the compiler reserved area (only the registers are saved)

are created.

CHAPTER 8 STARTUP ROUTINES

User’s Manual U16707EJ1V0UM 147

8.1.2 SRC directory contents

The SRC directory contains the assembler sources of the startup routines, ROM routines, error processing

routines, and standard library functions (a portion). If the source must be modified to conform to the system, the

object files for linking can be created by modifying this assembler source and using a batch file in the BAT directory to

assemble.

Table 8-2. SRC Directory Contents

Startup Routine Source File Name Description

cstart.asmNote Source file for startup routine (when standard library is used)

cstartn.asmNote Source file for startup routine (when standard library is not used)

rom.asm Source file for ROMization routine

_putchar.asm _putchar function

putchar.asm putchar function

getchar.asm getchar function

longjmp.asm longjmp function

setjmp.asm setjmp function

vectxx.asm Vector source for each interrupt (xx: vector address)

def.inc For setting library according to type

macro.inc Macro definition for each typical pattern

vect.inc Start address of flash memory area branch table

library.inc Selection of library assigned to boot area explicitly

Note A file name with n added is a startup routine that does not have standard library processing. Use only if the

standard library will not be used. cstartb*.asm is a startup routine for boot area and cstarte*.asm is a startup

routine for flash memory area.

CHAPTER 8 STARTUP ROUTINES

User’s Manual U16707EJ1V0UM 148

8.2 Batch File Description

8.2.1 Batch files for creating startup routines

The mkstup.bat (mkstup.sh in UNIX) in the BAT directory is used to create the object file of a startup routine.

The assembler in the RA78K4 Assembler Package is required for mkstup.bat (mkstup.sh). Therefore, if PATH is

not specified, specify it and run.

How to use this file is described next.

[How To Use]

Execute the following command line in the src\cc78k4\bat directory containing mkstup.bat (mkstup.sh).

mkstup device-typeNote

Note Refer to the document related to device files.

[Use Example]

The startup routine to be used is created when the target device is the µPD784038Y.

mkstup 4038Y

The mkstup.bat (mkstup.sh) batch file is stored in the form that overwrites the object file of the startup routine in the

LIB directory at the same level as the BAT directory as shown below.

The startup routine that is required to link the object file is output to each directory.

CHAPTER 8 STARTUP ROUTINES

User’s Manual U16707EJ1V0UM 149

The names of the object files created in LIB are shown below.

 LIB s4.rel

s4b.rel

s4c.rel

s4cb.rel

s4ce.rel

s4cl.rel

s4clb.rel

s4cle.rel

s4clp.rel

s4clpb.rel

s4clpe.rel

s4cp.rel

s4cpb.rel

s4cpe.rel

s4e.rel

s4l.rel

s4lb.rel

s4le.rel

s4lp.rel

s4lpb.rel

s4lpe.rel

s4m.rel

s4mb.rel

s4mc.rel

s4mcb.rel

s4mce.rel

s4mcl.rel

s4mclb.rel

s4mcle.rel

s4me.rel

s4ml.rel

s4mlb.rel

s4mle.rel

s4p.rel

s4pb.rel

s4pe.rel

s4s.rel

s4sb.rel

s4se.rel

s4sl.rel

s4slb.rel

s4sle.rel

CHAPTER 8 STARTUP ROUTINES

User’s Manual U16707EJ1V0UM 150

8.3 Startup Routines

8.3.1 Overview of startup routines

A startup routine makes the preparations needed to execute the C source program written by the user. By linking

to a user program, a load module file that achieves the objective can be created.

(1) Function

Memory initialization, ROMization for inclusion in the system, and the starting and ending processes for the C

source program are performed.

ROMization: The initial values of the external variables, static variables, and sreg variables defined in the C

source program are located in ROM. However, the variable values cannot be rewritten; only placed

in ROM as is. Therefore, the initial values located in ROM must be copied to RAM. This process is

called a ROMization. When a program is written to ROM, it can be run by a microcontroller.

CHAPTER 8 STARTUP ROUTINES

User’s Manual U16707EJ1V0UM 151

(2) Configuration

Table 8-4 shows the programs related to the startup routines and their configurations.

Table 8-4. Startup Routine Overview

For system inclusion

 PreprocessNote 1

Initial settings

(hdwinit function

call)Note 2

 ROMization

 Start main function

 Postprocess

Definitions of labels used in

ROM processing

Notes 1. If the standard library is used, the processing related to the library is performed first. Files that do not

have an ‘n’ appended at the end of the name in the startup routine source file are processed in relation

to the standard library. Files with the appended ‘n’ are not processed.

 2. The hdwinit function is a function created when needed by the user as the function to initialize a

peripheral device (sfr). By creating the hdwinit function, the timing of the initial settings can be sped up

(the initial settings can be made in the main function). If the user does not create the hdwinit function,

the process returns without doing anything.

cstart.asm and cstartn.asm have nearly identical contents.

CHAPTER 8 STARTUP ROUTINES

User’s Manual U16707EJ1V0UM 152

Table 8-5 shows the differences between cstart.asm and cstartn.asm.

Table 8-5. Differences Between Startup Routine Sources

Type of Startup Routine Uses Library Processing

cstart.asm Yes

cstartn.asm No

(3) Uses of startup routines

Table 8-6 lists the names of the object files for the source files provided by the CC78K4.

Table 8-6. Correspondence Between Source Files and Object Files

File Type Source File Object File

Startup routine cstart*.asmNotes 1, 2 s4*.relNotes 2, 3

ROM file rom.asm Included in library

Notes 1. *: If the standard library is not used, ‘n’ is added. If used, the character is not added.

 2. ‘b’ is startup routine for boot area, and ‘e’ is that for flash area.

 3. *: If a fixed area in the standard library is used, ‘l’ is added.

rom.asm defines the label indicating the final address of the data copied by ROMization. The object of the

rom.asm is included in the library.

CHAPTER 8 STARTUP ROUTINES

User’s Manual U16707EJ1V0UM 153

8.3.2 Description of sample program (cstart.asm)

This section uses cstart.asm and rom.asm as examples to describe the contents of the startup routines. A startup

routine consists of the preprocessing, initial settings, ROMization processing, starting the main function, and

postprocessing.

Remark cstart is called in the format added _@ to its head.

(1) Preprocessing

Preprocessing in cstart.asm is described in <1> to <6> (see below).

[cstart.asm preprocessing]

 NAME @cstart

$INCLUDE (def.inc) <1> Including include files

 <2> Library switch

BRKSW EQU 1 ;brk,sbrk,calloc,free,malloc,realloc function use

EXITSW EQU 1 ;exit,atexit function use

RANDSW EQU 1 ;rand,srand function use

DIVSW EQU 1 ;div function use

LDIVSW EQU 1 ;ldiv function use

FLOATSW EQU 1 ;floating point variable use

PUBLIC _@cstart,_@cend <3> Symbol definitions

$_IF(BRKSW)

 PUBLIC _@BRKADR,_@MEMTOP,_@MEMBTM

$ENDIF

$_IF(EXITSW)

 PUBLIC _@FNCTBL,_@FNCENT

$ENDIF

 :

 <4> External reference declaration of symbol for stack resolution

 EXTRN _main,_@STBEG,_hdwinit

$_IF(EXITSW)

 EXTRN _exit

$ENDIF

 <5> External reference declaration of label for ROMization processing

 EXTRN _?R_INIT,_?R_INIS,_?R_INS1,_?DATS,_?DATS1

$_IF(MEDIUM AND (LOC_0=0))

 EXTRN _?DATA_F

$ELSE

 EXTRN _?DATA

$ENDIF

 :

 <6> Securing area for standard library

$_IF(MEDIUM AND (LOC_0=0))

@@ DATAM DSEG PAGE64K

$_ELSEIF(LARGE AND TWO_ALN)

CHAPTER 8 STARTUP ROUTINES

User’s Manual U16707EJ1V0UM 154

@@ DATA DSEG UNITP

$ELSE

@@ DATA DSEG

$ENDIF

$_IF(EXITSW)

$_IF(SMALL)

_@FNCTBL: DS 2*32

$ELSE

_@FNCTBL: DS 3*32

$ENDIF

_@FNCENT: DS 2

 :

$ENDIF

<1> Including include files

def.inc → For setting library according to the type.

<2> Library switch

If standard libraries in comments are not used, by changing the EQU definition to 0, the space secured for the

processing of unused libraries and for use by the library can be conserved. The default is set to use everything

(In a startup routine without library processing, this processing is not performed).

<3> Symbol definitions

The symbols used when using the standard library are defined.

<4> External reference declaration of symbol for stack resolution

• The public symbol (_@STBEG) for stack resolution is an external reference declaration. _@STBEG has the

value of the last address in the stack area + 1.

• _@STBEG is automatically generated by specifying the symbol generation option (-S) for stack resolution in

the linker. Therefore, always specify the -S option when linking. In this case, specify the name of the area

used in the stack. If the name of the area is omitted, the RAM area is used, but the stack area can be located

anywhere by creating a link directive file. For memory mapping, refer to the user’s manual of the target device.

• An example of a link directive file is shown below. The link directive file is a text file created by the user in an

ordinary editor (for details about the description method, refer to RA78K4 Assembler Package Operation

User’s Manual (U16708E)).

CHAPTER 8 STARTUP ROUTINES

User’s Manual U16707EJ1V0UM 155

[Example when -sSTACK is specified in linking]

Create lk78k4.dr (link directive file). Since ROM and RAM are allocated as default operations by referencing the

memory map of the target device, it is not necessary to specify ROM and RAM allocations unless they should be

changed. For link directive, refer to lk78k4.dr in the smp78k4\cc78k4 directory.

 First address Size

 memory STACK: (xxxxh, xxxh)

<5> External reference declaration of label for ROMization processing

The label for ROMization processing is defined in the postprocessing section.

<6> Securing area for standard library

The area used when using the standard library is secured.

Specify the first address and size here,

then specify lk78k4.dr by the -d linker

option.

(Example -dlk78k4.dr)

CHAPTER 8 STARTUP ROUTINES

User’s Manual U16707EJ1V0UM 156

(2) Initial settings

The initial settings in cstart.asm are described in <7> to <13>.

[Initial settings in cstart.asm]

@@VECT00 CSEG AT 0H <7> Reset vector setting
 DW _@cstart

@@LBASE CSEG BASE

_@cstart:

$_IF(LOC_0)

 LOCATION 0H <8> Location setting

$ELSE

 LOCATION 0FH

$ENDIF

$_IF(LARGE)

 SEL RB0

$ELSE

 SEL RB7

$_IF(LOC_0)

 MOV A,#00H <9> Initialization of general-purpose registers

$ELSE

 MOV A,#0FH

$ENDIF

 MOV V,A

 MOV U,A

 MOV T,A

$_IF(SMALL)

 MOV W,A

$ENDIF

 SEL RB6

$_IF(LOC_0)

 MOV A,#00H

$ELSE

 MOV A,#0FH

$ENDIF

 MOV V,A

 MOV U,A

 MOV T,A

$_IF(SMALL)

 MOV W,A

$ENDIF

 SEL RB0 <10> Register bank setting

 :

CHAPTER 8 STARTUP ROUTINES

User’s Manual U16707EJ1V0UM 157

$_IF(LOC_0)

 MOV A,#00H

$ELSE

 MOV A,#0FH

$ENDIF

 MOV V,A

 MOV U,A

 MOV T,A

$_IF(SMALL)

 MOV W,A

$ENDIF

$ENDIF

 MOVG SP,#_@STBEG <11> SP (stack pointer) setting

$_IF(SMALL)

 CALL !_hdwinit <12> Hardware initialization function call

$ELSE

 CALL !!_hdwinit <12> Hardware initialization function call

$ENDIF

$_IF(BRKSW OR EXITSW OR RANDSW OR FLOATSW) <13> Setting default value for standard library

 SUBW AX,AX

$ENDIF

$_IF(BRKSW OR FLOATSW)

$_IF(SMALL)

 MOVW !_errno,AX ;errno <- 0

$ELSE

 MOVW !!_errno,AX ;errno <- 0

$ENDIF

$ENDIF

$_IF(EXITSW)

$_IF(SMALL)

 MOVW !_@FNCENT,AX ;FNCENT <- 0

$ELSE

 MOVW !!_@FNCENT,AX ;FNCENT <- 0

$ENDIF

$ENDIF

$_IF(RANDSW)

$_IF(SMALL)

 MOVW !_@SEED+2,AX

 MOVW !_@SEED,#1 ;SEED <- 1

$ELSE

 MOVW !!_@SEED+2,AX

 MOVW !!_@SEED,#1 ;SEED <- 1

CHAPTER 8 STARTUP ROUTINES

User’s Manual U16707EJ1V0UM 158

$ENDIF

$ENDIF

 :

<7> Reset vector setting

The segment of the reset vector table is defined as follows. The first address of the startup routine is set.

 @@VECT00 CSEG AT 0H

 DW _@cstart

<8> Location setting

Set LOCATION 0H/0FH in accordance with the setting of compiler option -CS.

<9> Initialization of general-purpose registers

Initialize the registers of register banks 0 to 7 as follows.

If the small model is specified, initialize the V, U, T, and W registers once after reset. If the medium model is

specified, initialize the V, U, and T registers once after reset. These registers hold their default values during

program execution (the operation is not guaranteed if the user rewrites these registers in the middle of

execution).

The W register when the medium model is specified and all the above registers when the large model is

specified are always changed during program execution and therefore do not have to be initialized.

Small model (-MS): Set V, U, T, and W to 0.

Location 0H (-CS0) with medium model (-MM): Set V, U, and T to 0.

Location 0FH (-CS14) with medium model (-MM): Set 0FH to V, U, and T.

<10> Register bank setting

Register bank RB0 is set as the work register.

<11> Stack pointer (SP) setting

_@STBEG is set in the stack pointer.

_@STBEG is automatically generated by specifying the symbol generation option (-S) for stack resolution in the

linker.

<12> Hardware initialization function call

The hdwinit function is created when needed by the user as the function for initializing a peripheral device (SFR).

By creating this function, initial settings can be made to match the user’s objectives.

If the user does not create the hdwinit function, the process returns without doing anything.

<13> Setting default value for standard library

Execute initialization necessary for using the standard library.

CHAPTER 8 STARTUP ROUTINES

User’s Manual U16707EJ1V0UM 159

(3) ROMization processing

The ROMization processing in cstart.asm is described.

[ROMization processing]

;**************************************

;ROM DATA COPY

;**************************************

;copy external variables having initial value <14> ROMization processing
$_IF(SMALL)

 MOVW DE,#_@INIT

 MOVW HL,#_@R_INIT

$ENDIF

$_IF(MEDIUM)

 MOVW DE,#_@INIT

 MOVG WHL,#_@R_INIT

$ENDIF

$_IF(LARGE)

 MOVG TDE,#_@INIT

 MOVG WHL,#_@R_INIT

$ENDIF

LINIT1:

$_IF(SMALL)

 CMPW HL,#_?R_INIT

$ELSE

 SUBG WHL,#_?R_INIT

$ENDIF

 BE $LINIT2

$_IF(MEDIUM OR LARGE)

 ADDG WHL,#_?R_INIT

$ENDIF

 MOV A,[HL+]

 MOV [DE+],A

 BR $LINIT1

LINIT2:

 :

 :

CHAPTER 8 STARTUP ROUTINES

User’s Manual U16707EJ1V0UM 160

In ROMization processing, the initial values of the external variables and the sreg variables stored in ROM are

copied to RAM. The variables to be processed have the six types (a) to (f) shown in the following example.

(Example)

char c = 1; (a) External variable with initial value

int i; (b) External variable without initial valueNote

_ _sreg int si = 0; (c) sreg variable with initial value

_ _sreg char sc; (d) sreg variable without initial valueNote

_ _sreg1 int si1 = 0; (e) sreg1 variable with initial value

_ _sreg1 char sc1; (f) sreg1 variable without initial valueNote

main ()

{

}

Note The external variables without initial value and sreg variables without initial value are not

copied, and zeros are written directly to RAM.

• Figure 8-1 shows the ROMization processing for (a) External variable with initial value.

The initial value of the variable (a) is placed in @@R_INIT segment in the ROM by the compiler. The

ROMization processing copies this value to the @@INIT segment in RAM (the same processes are performed

for the variable (c) or (e)).

• The first and last labels in the @@R_INIT segment are defined by _@R_INIT and _?R_INIT. The first and last

labels in the @@INIT segment are defined by _@INIT and _?INIT.

• The variables (b), (d), and (f) are not copied, but zeros are directly placed in the segment determined by the

RAM (see Table 8-8 RAM Area for Initial Values (Copy Destination)). Tables 8-7 and 8-8 show the segment

names of the ROM and RAM areas where the variables (a) to (f) are placed, and the first and last labels of the

initial values in each segment.

…

CHAPTER 8 STARTUP ROUTINES

User’s Manual U16707EJ1V0UM 161

Figure 8-1. ROMization Processing

@@R_INIT (segment name)

 _@R_INIT:

@@INIT

 _@INIT:

(first label)

 _?R_INIT:

Area storing initial

value of variable

(a)

→

Copy

 _?INIT:

(last label)

Table 8-7. ROM Area for Initial Values

Variable Type Segment First Label Last Label

External variable with initial value (a) @@R_INIT _@R_INIT _?R_INIT

sreg variable with initial value (c) @@R_INIS _@R_INIS _?R_INIS

sreg1 variable with initial value (e) @@R_INS1 _@R_INS1 _?R_INS1

Table 8-8. RAM Area for Initial Values (Copy Destination)

Variable Type Segment First Label Last Label

External variable with initial value (a) @@INIT _@INIT _?INIT

External variable without initial value (b) @@DATA _@DATA _?DATA

sreg variable with initial value (c) @@INIS _@INIS _?INIS

sreg variable without initial value (d) @@DATS _@DATS _?DATS

sreg1 variable with initial value (e) @@INIS1 _@INIS1 _?INIS1

sreg1 variable without initial value (f) @@DATS1 _@DATS1 _?DATS1

CHAPTER 8 STARTUP ROUTINES

User’s Manual U16707EJ1V0UM 162

(4) Starting main function and postprocessing

Starting the main function and postprocessing in cstart.asm are described in <15> to <17>.

[Starting main function and postprocessing]

$_IF(SMALL)

 CALL !_main ;main(); <15> Starting main function

$ELSE

 CALL !!_main ;main(); <15> Starting main function

$ENDIF

$_IF(EXITSW)

 SUBW AX,AX

$_IF(SMALL)

 CALL !_exit ;exit(0); <16> Starting exit function

$ELSE

 CALL !!_exit ;exit(0); <16> Starting exit function

$ENDIF

$ENDIF

 BR $$

;

_@cend:

 <17> Definitions of segments and labels used in

$_IF(LARGE AND TWO_ALN) ROMization processing

@@R_INIT CSEG UNITP

$_ELSEIF(SMALL)

@@RSINIT CSEG BASE

$ELSE

@@R_INIT CSEG

$ENDIF

_@R_INIT:

$_IF(SMALL)

@@RSINIS CSEG BASE

_@R_INIS:

@@RSINS1 CSEG BASE

_@R_INS1:

$ELSE

@@R_INIS CSEG

_@R_INIS:

 :

$_IF(SMALL)

@@CODES CSEG BASE

@@CALFS CSEG FIXEDA

$ELSE

@@CODE CSEG

CHAPTER 8 STARTUP ROUTINES

User’s Manual U16707EJ1V0UM 163

@@CALF CSEG FIXED

$ENDIF

$_IF(MEDIUM AND (LOC_0=0))

@@CNSTM CSEG PAGE64K

$_ELSEIF(LARGE AND TWO_ALN)

@@CNST CSEG UNITP

$_ELSEIF(LARGE)

@@CNST CSEG

$ELSE

@@CNSTS CSEG BASE

$ENDIF

@@CALT CSEG CALLT0

@@BITS BSEG SADDR2

@@BITS1 BSEG SADDR

;

 END

<15> Starting main function

The main function is called.

<16> Starting exit function

The exit function is called if needed.

<17> Definitions of segments and labels used in ROMization processing

The segments and labels used in each variable (a) to (f) (see 8.3.2 (3) ROMization processing) in ROMization

processing are defined. A segment indicates the area that stores the initial value of each variable. A label

indicates the first address in each segment.

The ROMization processing file rom.asm is described. The relocatable object file of rom.asm is in the library.

$INCLUDE (def.inc)

;

 :

 NAME @rom

 PUBLIC _?R_INIT,_?R_INIS,_?R_INS1

$_IF(SMALL OR LARGE)

 PUBLIC _?INIT,_?DATA

$ENDIF

 PUBLIC _?INIS,_?DATS

 PUBLIC _?INIS1,_?DATS1

$_IF(LARGE AND TWO_ALN)

@@R_INIT CSEG UNITP ; <1> Definition of labels used in ROMization processing

$_ELSEIF(SMALL)

@@RSINIT CSEG BASE

CHAPTER 8 STARTUP ROUTINES

User’s Manual U16707EJ1V0UM 164

$ELSE

@@R_INIT CSEG

$ENDIF

_?R_INIT:

$_IF(SMALL)

@@RSINIS CSEG BASE

_?R_INIS:

@@RSINS1 CSEG BASE

_?R_INS1:

$ELSE

@@R_INIS CSEG

_?R_INIS:

@@R_INS1 CSEG

_?R_INS1:

$ENDIF

$_IF(LARGE AND TWO_ALN)

@@INIT DSEG UNITP

_?INIT:

@@DATA DSEG UNITP

_?DATA:

$_ELSEIF(SMALL OR LARGE)

@@INIT DSEG

_?INIT:

@@DATA DSEG

_?DATA:

$ENDIF

@@INIS DSEG SADDR2

_?INIS:

@@DATS DSEG SADDR2

_?DATS:

@@INIS1 DSEG SADDR

_?INIS1:

@@DATS1 DSEG SADDR

_?DATS1:

$ENDIF

;

 END

<1> Definition of labels used in ROMization processing

The labels used for each variable (a) to (f) (see 8.3.2 (3) ROMization processing) in ROMization processing,

are defined. These labels indicate the last address of the segment storing the initial value of each variable.

CHAPTER 8 STARTUP ROUTINES

User’s Manual U16707EJ1V0UM 165

8.3.3 Revising startup routines

The startup routines provided by the CC78K4 can be revised to match the target system actually being used. The

essential points about revising these files are explained in this section.

(1) When revising startup routine

The essential points about revising a startup routine source file are described. After revising, use the batch file

mkstup.bat (mkstup.sh) in the src\cc78k4\bat directory to assemble the revised source file (cstart*.asm) (*:

alphanumeric symbols).

• Symbols used in standard library functions

If the library functions listed in Table 8-9 are not used, the symbols corresponding to each function in the startup

routine (cstart.asm) can be deleted. However, since the exit function is used in the startup routine, _@FNCTBL

and _@FNCENT cannot be deleted (if the exit function is deleted, these symbols can be deleted). The symbols

in the unused library functions can be deleted by changing the library switch.

Table 8-9. Symbols Used in Library Functions

Library Function Name Symbols Used

brk

sbrk

strtol

strtoul

malloc

calloc

realloc

free

_errno

_@MEMTOP

_@MEMBTM

_@BRKADR

exit

_@FNCTBL

_@FNCENT

rand

srand

_@SEED

div _@DIVR

ldiv _@LDIVR

strtok _@TOKPTR

atof

strtod

Mathematical function

Floating-point runtime library

_errno

CHAPTER 8 STARTUP ROUTINES

User’s Manual U16707EJ1V0UM 166

• Area used in memory functions

If the size of the area used by a memory function is defined by the user, this is explained in the following

example.

Example) If you want to reserve 72 bytes for use by memory functions, make the following

changes to the initial settings of the startup routine.

 _@MEMTOP: DS

 _@MEMBTM

72

 _@MEMTOP →

 _@MEMBTM →

72 bytes reserved

as area for

memory functions

If the specified size is too big to be stored in the RAM area, errors may occur when linking.

In this case, decrease the size specified as shown below, or avoid by correcting the link directive file. For

correction of the link directive file, see (2) Link directive file.

 Example) To decrease the specified size

 _@MEMTOP: DS 72 → Change to 40

CHAPTER 8 STARTUP ROUTINES

User’s Manual U16707EJ1V0UM 167

(2) Link directive file

How to create a link directive file is explained. Specify a file created using the -D option when linking to match the

actual target system. Heed the following cautions when creating the file (for the detailed description method for a

link directive, see RA78K4 Assembler Package Operation User’s Manual (U16708E)).

• The CC78K4 sometimes uses a portion of the short direct address area (saddr2 area) in the following compiler-

specific objectives. Specifically, this area is any 32-byte area of (F)FD20H to (F)FDFFH.

(a) Arguments or automatic variables of norec function (16 bytes)

(b) register variable when the –qr2 option is specified (16 bytes)

(c) Standard library task (part of the area (b)).

 Specifically, _@KREG00 is referenced when longjmp/setjmp is used.

• If the user does not use the standard library, the area (c) is not used.

The following shows an example of changing RAM size with a link directive file (lk78k4.dr). When changing

memory size, do not overlap another area. Refer to the memory map of the target device to be used when

changing memory size.

<lk78k4.dr>

 First address Size

memory RAM: (0FEE00h, 20h) → Make this size larger.

memory SDR: (0FEE20h, 11E0h) (also change the first address if necessary)

merge @@DATA: = EXTRAM (0F0000h, 00100h) → Specifies the location of the segment.

If you want to change the location of the segment, add a merge statement. If the function to revise the compiler

output section name was used, the segment can be independently located (refer to CHAPTER 11 in CC78K4

Language User’s Manual (U15556E)).

If the result of changing the location of a segment does not provide enough memory for the location, change the

corresponding memory statement.

CHAPTER 8 STARTUP ROUTINES

User’s Manual U16707EJ1V0UM 168

(3) When using RTOS

Initialization routines are respectively provided for RX78K4 and CC78K4 as samples (assembler format).

Therefore, when using RX78K4 and CC78K4 in combination, changes must be performed so as to include the

processing actions required for each in a single initialization routine.

Here, an example of the editing method is described by adding processing described in startup.asm (initialization

routine provided for RX78K4) to cstart.asm (initialization routine provided for CC78K4). Ver. 2.40 is assumed for

CC78K4.

Remark cstart.asm is a version that uses a standard library with ROMization.

<1> The following EXTRN declaration required for RX78K4 is added.

[After change]

EXTRN sys_inf,?sysrt

<2> The EXTRN declarations of the main and exit functions described in cstart.asm are deleted. If the stack area

is secured by the user (when using task stack other than initial task), the EXTRN declaration of _@STBEG is

also deleted. (The _@STBEG area is automatically secured by specifying the -s option during linking.)

[Before change]

 EXTRN _main,_@STBEG,_hdwinit

$_IF(EXITSW)

 EXTRN _exit

$_ENDIF

[After change]

EXTRN _@STBEG,_hdwinit

The EXITSW setting locations are also changed.

[Before change]

EXITSW EQU 1

[After change]

EXITSW EQU 0

CHAPTER 8 STARTUP ROUTINES

User’s Manual U16707EJ1V0UM 169

<3> The next location is edited (or vcttbl.asm is edited) to avoid redundancy with vector 0 of vcttbl.asm provided

for RX78K4. If _@cstart is not used, change it to the symbol to be used.

[Before change]

 @@VECT00 CSEG AT 0H

 DW _@cstart

<4> Prior to selecting the register banks, select the interrupt disabled state.

[Before change]

$_IF(LARGE)

 SEL RB0

$ELSE

 SEL RB7

[After change]

DI

$_IF(LARGE)

 SEL RB0

$ELSE

 SEL RB7

<5> If _@STBEG of the stack area is not used, change the following location.

[Before change]

MOVG SP,#_@STBEG ;SP <- stack begin address

<6> Describe the hardware initialization processing required for the user system to the hardware initialization

function (hdwinit).

CHAPTER 8 STARTUP ROUTINES

User’s Manual U16707EJ1V0UM 170

<7> When using RX78K4, delete the following location because the main and exit functions are not needed.

Delete also processing that is not required for RX78K4 control, and add processing for transferring control to

the RX78K4 system initialization routine.

[Before change]

$_IF(SMALL)

 CALL !_main ;main();

$ELSE

 CALL !!_main ;main();

$ENDIF

$_IF(EXITSW)

 SUBW AX,AX

$_IF(SMALL)

 CALL !_exit ;exit(0);

$ELSE

 CALL !!_exit ;exit(0);

$ENDIF

$ENDIF

 BR $$

[After change]

$_IF(LARGE) ; Large model

 location 0fh

 movg tde,#sys_inf

 movw ax,[tde]

 br ax

$ELSE ; Small model

 location 0

 sel rb7

 mov w,#00h

 mov t,#00h

 mov u,#00h

 mov v,#00h

 sel rb6

 mov w,#00h

 mov t,#00h

 mov u,#00h

 mov v,#00h

 sel rb5

 mov w,#00h

 mov t,#00h

 mov u,#00h

 mov v,#00h

 sel rb4

 mov w,#00h

CHAPTER 8 STARTUP ROUTINES

User’s Manual U16707EJ1V0UM 171

 mov t,#00h

 mov u,#00h

 mov v,#00h

 sel rb3

 mov w,#00h

 mov t,#00h

 mov u,#00h

 mov v,#00h

 sel rb2

 mov w,#00h

 mov t,#00h

 mov u,#00h

 mov v,#00h

 sel rb1

 mov w,#00h

 mov t,#00h

 mov u,#00h

 mov v,#00h

 sel rb0

 mov w,#00h

 mov t,#00h

 mov u,#00h

 mov v,#00h

 movw de,#sys_inf

 movw ax,[de]

 br ax

#ENDIF

CHAPTER 8 STARTUP ROUTINES

User’s Manual U16707EJ1V0UM 172

<Example of initialization routine after editing>

; Copyright (C) NEC Electronics Corporation 19xx, 20xx

; NEC ELECTRONICS CONFIDENTIAL AND PROPRIETARY

; All rights reserved by NEC Electronics Corporation.

; This program must be used solely for the purpose for which

; it was furnished by NEC Electronics Corporation. No Part of this

; program may be reproduced or disclosed to others, in any

; form, without the prior written permission of NEC Electronics

; Corporation.Use of copyright notice does not evidence

; publication of the program.

;=====================================

; W-1 cstart

;

; Version x.xx xx Xxx 20xx

;=====================================

 NAME @cstart

$INCLUDE (def.inc)

;---

; declaration of symbol

;

; attention): change to EQU value 1 -> 0 if necessary

;---

BRKSW EQU 1 ;brk,sbrk,calloc,free,malloc,realloc function use

EXITSW EQU 0 ;exit,atexit function use ; Change location

RANDSW EQU 1 ;rand,srand function use

DIVSW EQU 1 ;div function use

LDIVSW EQU 1 ;ldiv function use

STRTOKSW EQU 1 ;strtok function use

FLOATSW EQU 1 ;floating point variables use

 PUBLIC _@cstart,_@cend

$_IF(BRKSW)

 PUBLIC _@BRKADR,_@MEMTOP,_@MEMBTM

$ENDIF

$_IF(EXITSW)

 PUBLIC _@FNCTBL,_@FNCENT

$ENDIF

$_IF(RANDSW)

 PUBLIC _@SEED

$ENDIF

$_IF(DIVSW)

 PUBLIC _@DIVR

CHAPTER 8 STARTUP ROUTINES

User’s Manual U16707EJ1V0UM 173

$ENDIF

$_IF(LDIVSW)

 PUBLIC _@LDIVR

$ENDIF

$_IF(STRTOKSW)

 PUBLIC _@TOKPTR

$ENDIF

$_IF(BRKSW OR FLOATSW)

 PUBLIC _errno

$ENDIF

;---

; external declaration of symbol for stack area

;

; _@STBEG has value of the end address +1 of compiler's stack area.

; _@STBEG is created by linker with -S option.

; Accordingly, specify the -S option when linking.

;---

 EXTRN sys_inf,?sysrt ; Addition location

 EXTRN _@STBEG,_hdwinit ; Change location

;---

; external declaration of label for ROMable

;---

 EXTRN _?R_INIT,_?R_INIS,_?R_INS1,_?DATS,_?DATS1

$_IF(MEDIUM AND (LOC_0=0))

 EXTRN _?DATA_F

$ELSE

 EXTRN _?DATA

$ENDIF

;---

; allocation area which library uses

;

; _@FNCTBL top address of area used in atexit function

; _@FNCENT total number of functions registered by the atexit function

; _@SEED sequence of pseudo-random numbers

; _@DIVR a result of div library

; _@LDIVR a result of ldiv library

; _@TOKPTR pointer which strtok function uses

; _errno errno number code

; _@MEMTOP top address of area which memory management functions use

; _@MEMBTM bottom address of area which memory management functions use

; _@BRKADR break value

;---

CHAPTER 8 STARTUP ROUTINES

User’s Manual U16707EJ1V0UM 174

$_IF(MEDIUM AND (LOC_0=0))

@@DATAM DSEG PAGE64K

$_ELSEIF(LARGE AND TWO_ALN)

@@DATA DSEG UNITP

$ELSE

@@DATA DSEG

$ENDIF

$_IF(EXITSW)

$_IF(SMALL)

_@FNCTBL: DS 2*32

$ELSE

_@FNCTBL: DS 3*32

$ENDIF

_@FNCENT: DS 2

$ENDIF

$_IF(RANDSW)

_@SEED: DS 4

$ENDIF

$_IF(DIVSW)

_@DIVR: DS 4

$ENDIF

$_IF(LDIVSW)

_@LDIVR: DS 8

$ENDIF

$_IF(STRTOKSW)

$_IF(SMALL OR MEDIUM)

_@TOKPTR: DS 2

$ELSE

_@TOKPTR: DS 3

$ENDIF

$ENDIF

$_IF(BRKSW OR FLOATSW)

_errno: DS 2

$ENDIF

$_IF(BRKSW)

$_IF(SMALL OR MEDIUM)

_@BRKADR: DS 2

_@MEMTOP: DS 32

$ELSE

_@BRKADR: DS 3

_@MEMTOP: DS 48

$ENDIF

_@MEMBTM:

$ENDIF

CHAPTER 8 STARTUP ROUTINES

User’s Manual U16707EJ1V0UM 175

@@VECT00 CSEG AT 0H ; Change if required

 DW _@cstart ;

@@LBASE CSEG BASE

_@cstart:

$_IF(LOC_0)

 LOCATION 0H

$ELSE

 LOCATION 0FH

$ENDIF

;---

; setting the register bank RB0 as work register set

;---

 DI ; Addition location

$_IF(LARGE)

 SEL RB0

$ELSE

 SEL RB7

$_IF(LOC_0)

 MOV A,#00H

$ELSE

 MOV A,#0FH

$ENDIF

 MOV V,A

 MOV U,A

 MOV T,A

$_IF(SMALL)

 MOV W,A

$ENDIF

 SEL RB6

$_IF(LOC_0)

 MOV A,#00H

$ELSE

 MOV A,#0FH

$ENDIF

 MOV V,A

 MOV U,A

 MOV T,A

$_IF(SMALL)

 MOV W,A

$ENDIF

 SEL RB5

$_IF(LOC_0)

CHAPTER 8 STARTUP ROUTINES

User’s Manual U16707EJ1V0UM 176

 MOV A,#00H

$ELSE

 MOV A,#0FH

$ENDIF

 MOV V,A

 MOV U,A

 MOV T,A

$_IF(SMALL)

 MOV W,A

$ENDIF

 SEL RB4

$_IF(LOC_0)

 MOV A,#00H

$ELSE

 MOV A,#0FH

$ENDIF

 MOV V,A

 MOV U,A

 MOV T,A

$_IF(SMALL)

 MOV W,A

$ENDIF

 SEL RB3

$_IF(LOC_0)

 MOV A,#00H

$ELSE

 MOV A,#0FH

$ENDIF

 MOV V,A

 MOV U,A

 MOV T,A

$_IF(SMALL)

 MOV W,A

$ENDIF

 SEL RB2

$_IF(LOC_0)

 MOV A,#00H

$ELSE

 MOV A,#0FH

$ENDIF

 MOV V,A

 MOV U,A

 MOV T,A

$_IF(SMALL)

 MOV W,A

CHAPTER 8 STARTUP ROUTINES

User’s Manual U16707EJ1V0UM 177

$ENDIF

 SEL RB1

$_IF(LOC_0)

 MOV A,#00H

$ELSE

 MOV A,#0FH

$ENDIF

 MOV V,A

 MOV U,A

 MOV T,A

$_IF(SMALL)

 MOV W,A

$ENDIF

 SEL RB0

$_IF(LOC_0)

 MOV A,#00H

$ELSE

 MOV A,#0FH

$ENDIF

 MOV V,A

 MOV U,A

 MOV T,A

$_IF(SMALL)

 MOV W,A

$ENDIF

$ENDIF

;---

; setting the stack pointer

;

; _@STBEG is created by linker with -S option.

;---

 MOVG SP,#_@STBEG ;SP <- stack begin address ; Change if required

$_IF(SMALL)

 CALL !_hdwinit

$ELSE

 CALL !!_hdwinit

$ENDIF

;---

; errno and _@FNCENT are initialized to 0

;

; The positive error number will be set by several libraries at called them.

;---

$_IF(BRKSW OR EXITSW OR RANDSW OR FLOATSW)

 SUBW AX,AX

$ENDIF

CHAPTER 8 STARTUP ROUTINES

User’s Manual U16707EJ1V0UM 178

$_IF(BRKSW OR FLOATSW)

$_IF(SMALL)

 MOVW !_errno,AX ;errno <- 0

$ELSE

 MOVW !!_errno,AX ;errno <- 0

$ENDIF

$ENDIF

$_IF(EXITSW)

$_IF(SMALL)

 MOVW !_@FNCENT,AX ;FNCENT <- 0

$ELSE

 MOVW !!_@FNCENT,AX ;FNCENT <- 0

$ENDIF

$ENDIF

;---

; initializing _@SEED as 1

;

; Pseudo-random sequence is decided by _@SEED value. This value can be set by

; srand function. If rand is called before srand, the random sequence will

; be the same as when srand is called with a _@SEED value as 1 at first.

;---

$_IF(RANDSW)

$_IF(SMALL)

 MOVW !_@SEED+2,AX

 MOVW !_@SEED,#1 ;SEED <- 1

$ELSE

 MOVW !!_@SEED+2,AX

 MOVW !!_@SEED,#1 ;SEED <- 1

$ENDIF

$ENDIF

;---

; setting _@MEMTOP address to _@BRKADR

;---

$_IF(BRKSW)

$_IF(SMALL)

 MOVW !_@BRKADR,#_@MEMTOP ;BRKADR <- #MEMTOP

$_ELSEIF(MEDIUM)

 MOVW !!_@BRKADR,#_@MEMTOP ;BRKADR <- #MEMTOP

$ELSE

 MOVG WHL,#_@MEMTOP

 MOVG !!_@BRKADR,WHL ;BRKADR <- #MEMTOP

$ENDIF

$ENDIF

;---

CHAPTER 8 STARTUP ROUTINES

User’s Manual U16707EJ1V0UM 179

; ROM data copy

;---

; copy external variables having initial value

$_IF(SMALL)

 MOVW DE,#_@INIT

 MOVW HL,#_@R_INIT

$ENDIF

$_IF(MEDIUM)

 MOVW DE,#_@INIT

 MOVG WHL,#_@R_INIT

$ENDIF

$_IF(LARGE)

 MOVG TDE,#_@INIT

 MOVG WHL,#_@R_INIT

$ENDIF

LINIT1:

$_IF(SMALL)

 CMPW HL,#_?R_INIT

$ELSE

 SUBG WHL,#_?R_INIT

$ENDIF

 BE $LINIT2

$_IF(MEDIUM OR LARGE)

 ADDG WHL,#_?R_INIT

$ENDIF

 MOV A,[HL+]

 MOV [DE+],A

 BR $LINIT1

LINIT2:

; copy external variables which doesn't have initial value

$_IF(SMALL)

 MOVW DE,#_@DATA

 MOVW HL,#_?DATA

$ENDIF

$_IF(MEDIUM)

 MOVW DE,#_@DATA

$_IF(LOC_0)

 MOVW HL,#_?DATA

$ELSE

 MOVW HL,#_?DATA_F

$ENDIF

$ENDIF

$_IF(LARGE)

 MOVG TDE,#_@DATA

 MOVG WHL,#_?DATA

CHAPTER 8 STARTUP ROUTINES

User’s Manual U16707EJ1V0UM 180

$ENDIF

 MOV A,#0

LDATA1:

$_IF(SMALL OR MEDIUM)

 CMPW HL,DE

$ELSE

 SUBG WHL,TDE

$ENDIF

 BE $LDATA2

$_IF(LARGE)

 ADDG WHL,TDE

$ENDIF

 MOV [DE+],A

 BR $LDATA1

LDATA2:

; copy sreg variables having initial value

$_IF(SMALL)

 MOVW DE,#_@INIS

 MOVW HL,#_@R_INIS

$ENDIF

$_IF(MEDIUM)

 MOVW DE,#_@INIS

 MOVG WHL,#_@R_INIS

$ENDIF

$_IF(LARGE)

 MOVG TDE,#_@INIS

 MOVG WHL,#_@R_INIS

$ENDIF

LINIS1:

$_IF(SMALL)

 CMPW HL,#_?R_INIS

$ELSE

 SUBG WHL,#_?R_INIS

$ENDIF

 BE $LINIS2

$_IF(MEDIUM OR LARGE)

 ADDG WHL,#_?R_INIS

$ENDIF

 MOV A,[HL+]

 MOV [DE+],A

 BR $LINIS1

LINIS2:

; copy sreg variables which doesn't have initial value

$_IF(SMALL OR MEDIUM)

 MOVW DE,#_@DATS

CHAPTER 8 STARTUP ROUTINES

User’s Manual U16707EJ1V0UM 181

 MOVW HL,#_?DATS

$ELSE

 MOVG TDE,#_@DATS

 MOVG WHL,#_?DATS

$ENDIF

 MOV A,#0

LDATS1:

$_IF(SMALL OR MEDIUM)

 CMPW HL,DE

$ELSE

 SUBG WHL,TDE

$ENDIF

 BE $LDATS2

$_IF(LARGE)

 ADDG WHL,TDE

$ENDIF

 MOV [DE+],A

 BR $LDATS1

LDATS2:

; copy sreg1 variables having initial value

$_IF(SMALL)

 MOVW DE,#_@INIS1

 MOVW HL,#_@R_INS1

$ENDIF

$_IF(MEDIUM)

 MOVW DE,#_@INIS1

 MOVG WHL,#_@R_INS1

$ENDIF

$_IF(LARGE)

 MOVG TDE,#_@INIS1

 MOVG WHL,#_@R_INS1

$ENDIF

LINIS11:

$_IF(SMALL)

 CMPW HL,#_?R_INS1

$ELSE

 SUBG WHL,#_?R_INS1

$ENDIF

 BE $LINIS12

$_IF(MEDIUM OR LARGE)

 ADDG WHL,#_?R_INS1

$ENDIF

 MOV A,[HL+]

 MOV [DE+],A

 BR $LINIS11

CHAPTER 8 STARTUP ROUTINES

User’s Manual U16707EJ1V0UM 182

LINIS12:

; copy sreg1 variables which doesn't have initial value

$_IF(SMALL OR MEDIUM)

 MOVW DE,#_@DATS1

 MOVW HL,#_?DATS1

$ELSE

 MOVG TDE,#_@DATS1

 MOVG WHL,#_?DATS1

$ENDIF

 MOV A,#0

LDATS11:

$_IF(SMALL OR MEDIUM)

 CMPW HL,DE

$ELSE

 SUBG WHL,TDE

$ENDIF

 BE $LDATS12

$_IF(LARGE)

 ADDG WHL,TDE

$ENDIF

 MOV [DE+],A

 BR $LDATS11

LDATS12:

;--

; branches to the reset routine for system initialization of RX78K/IV

;--

$_IF(LARGE) ; Large model ;

 movg tde,#sys_inf ;

 movw ax,[tde] ;

 br ax ;

$ELSE ; Small model ;

 sel rb7 ;

 mov w,#00h ;

 mov t,#00h ;

 mov u,#00h ;

 mov v,#00h ;

 sel rb6 ;

 mov w,#00h ;

 mov t,#00h ;

 mov u,#00h ;

 mov v,#00h ;

 sel rb5 ;

 mov w,#00h ;

 mov t,#00h ;

CHAPTER 8 STARTUP ROUTINES

User’s Manual U16707EJ1V0UM 183

 mov u,#00h ;

 mov v,#00h ;

 sel rb4 ;

 mov w,#00h ; Change location

 mov t,#00h ;

 mov u,#00h ;

 mov v,#00h ;

 sel rb3 ;

 mov w,#00h ;

 mov t,#00h ;

 mov u,#00h ;

 mov v,#00h ;

 sel rb2 ;

 mov w,#00h ;

 mov t,#00h ;

 mov u,#00h ;

 mov v,#00h ;

 sel rb1 ;

 mov w,#00h ;

 mov t,#00h ;

 mov u,#00h ;

 mov v,#00h ;

 sel rb0 ;

 mov w,#00h ;

 mov t,#00h ;

 mov u,#00h ;

 mov v,#00h ;

 movw de,#sys_inf ;

 movw ax,[de] ;

 br ax ;

$ENDIF ;

;

_@cend:

;---

; define segment and label used by ROMable processing

;---

$_IF(LARGE AND TWO_ALN)

@@R_INIT CSEG UNITP

$_ELSEIF(SMALL)

@@RSINIT CSEG BASE

$ELSE

@@R_INIT CSEG

$ENDIF

_@R_INIT:

$_IF(SMALL)

CHAPTER 8 STARTUP ROUTINES

User’s Manual U16707EJ1V0UM 184

@@RSINIS CSEG BASE

_@R_INIS:

@@RSINS1 CSEG BASE

_@R_INS1:

$ELSE

@@R_INIS CSEG

_@R_INIS:

@@R_INS1 CSEG

_@R_INS1:

$ENDIF

$_IF(MEDIUM AND (LOC_0=0))

@@INITM DSEG PAGE64K

_@INIT:

@@DATAM DSEG PAGE64K

_@DATA:

$_ELSEIF(LARGE AND TWO_ALN)

@@INIT DSEG UNITP

_@INIT:

@@DATA DSEG UNITP

_@DATA:

$ELSE

@@INIT DSEG

_@INIT:

@@DATA DSEG

_@DATA:

$ENDIF

@@INIS DSEG SADDR2

_@INIS:

@@DATS DSEG SADDR2

_@DATS:

@@INIS1 DSEG SADDR

_@INIS1:

@@DATS1 DSEG SADDR

_@DATS1:

$_IF(SMALL)

@@CODES CSEG BASE

@@CALFS CSEG FIXEDA

$ELSE

@@CODE CSEG

@@CALF CSEG FIXED

$ENDIF

$_IF(MEDIUM AND (LOC_0=0))

@@CNSTM CSEG PAGE64K

$_ELSEIF(LARGE AND TWO_ALN)

@@CNST CSEG UNITP

CHAPTER 8 STARTUP ROUTINES

User’s Manual U16707EJ1V0UM 185

$_ELSEIF(LARGE)

@@CNST CSEG

$ELSE

@@CNSTS CSEG BASE

$ENDIF

@@CALT CSEG CALLT0

@@BITS BSEG SADDR2

@@BITS1 BSEG SADDR

;

 END

CHAPTER 8 STARTUP ROUTINES

User’s Manual U16707EJ1V0UM 186

8.4 ROMization Processing in Startup Module for Flash Area

The startup modules for flash differ with the ordinary startup modules in the following points.

Table 8-10. ROM Area Section for Initialization Data

Memory Model Variable Type Segment First Label Terminal Label

External variable with initial value (a) @ER_INIT CSEG E@R_INIT E?R_INIT

sreg variable with initial value (c) @ER_INIS CSEG E@R_INIS E?R_INIS

Large model

(without 2-byte

alignment),

medium model sreg1 variable with initial value (e) @ER_INS1 CSEG E@R_INS1 E?R_INS1

External variable with initial value (a) @ER_INIT CSEG UNITP E@R_INIT E?R_INIT

sreg variable with initial value (c) @ER_INIS CSEG E@R_INIS E?R_INIS

Large model (with

2-byte alignment)

sreg1 variable with initial value (e) @ER_INS1 CSEG E@R_INS1 E?R_INS1

External variable with initial value (a) @ERSINIT CSEG BASE E@R_INIT E?R_INIT

sreg variable with initial value (c) @ERSINIS CSEG BASE E@R_INIS E?R_INIS

Small model

sreg1 variable with initial value (e) @ERSINS1 CSEG BASE E@R_INS1 E?R_INS1

Table 8-11. RAM Area Section for Copy Destination

Memory Model Variable Type Segment First Label Terminal Label

External variable with initial value (a) @EINIT DSEG E@INIT E?INIT

External variable without initial value (b) @EDATA DSEG E@DATA E?DATA

sreg variable with initial value (c) @EINIS DSEG SADDR2 E@INIS E?INIS

sreg variable without initial value (d) @EDATS DSEG SADDR2 E@DATS E?DATS

sreg1 variable with initial value (e) @EINIS1 DSEG SADDR E@INIS1 E?INIS1

Large model

(without 2-byte

alignment),

medium model

(location 0), small

model

sreg1 variable without initial value (f) @EDATS1 DSEG SADDR E@DATS1 E?DATS1

External variable with initial value (a) @EINIT DSEG UNITP E@INIT E?INIT

External variable without initial value (b) @EDATA DSEG UNITP E@DATA E?DATA

sreg variable with initial value (c) @EINIS DSEG SADDR2 E@INIS E?INIS

sreg variable without initial value (d) @EDATS DSEG SADDR2 E@DATS E?DATS

sreg1 variable with initial value (e) @EINIS1 DSEG SADDR E@INIS1 E?INIS1

Large model (with

2-byte alignment)

sreg1 variable without initial value (f) @EDATS1 DSEG SADDR E@DATS1 E?DATS1

External variable with initial value (a) @EINITM DSEG PAGE64K E@INIT E?INIT_F

External variable without initial value (b) @EDATAM DSEG PAGE64K E@DATA E?DATA_F

sreg variable with initial value (c) @EINIS DSEG SADDR2 E@INIS E?INIS

sreg variable without initial value (d) @EDATS DSEG SADDR2 E@DATS E?DATS

sreg1 variable with initial value (e) @EINIS1 DSEG SADDR E@INIS1 E?INIS1

Medium model

(location 15)

sreg1 variable without initial value (f) @EDATS1 DSEG SADDR E@DATS1 E?DATS1

CHAPTER 8 STARTUP ROUTINES

User’s Manual U16707EJ1V0UM 187

• In the startup module, the following labels are added at the head of each segment in ROM area and RAM area.

 E@R_INIT, E@R_INIS, E@R_INS1, E@INIT, E@DATA, E@INIS, E@DATS, E@INIS, E@DATS1

• In the terminal module, the following labels are added at the terminal of each segment in ROM area and RAM

area.

 E?R_INIT, E?R_INIS, E?R_INS1, E?INIT (medium model location 15 is E?INIT_F), E?DATA (medium model

location 15 is E?DATA_F), E?INIS, E?DATS, E?INIS1, E?DATS1

• The startup module copies the contents from the first label address of each segment in ROM area to the

terminal label address -1, to the area from the first label address of each segment in RAM area.

• E@DATA to E?DATA (medium model location 15 is E?DATA_F), E@DATS to E?DATS, and E@DATS1 to

E?DATS1 are filled with zeros.

User’s Manual U16707EJ1V0UM 188

CHAPTER 9 ERROR MESSAGES

9.1 Error Message Format

The error message format is as follows.

Source-file-name (line-number) : Error-message

Examples

prime.c(8) : F712 Declaration syntax

prime.c(8) : F301 Syntax error

prime.c(8) : F701 External definition syntax

prime.c(19) : W745 Expected function prototype

However, the following output format is used only for the internal errors F101, F103, and F104.

[xxx.c <yyy> zzz] F101 Internal error

[xxx.c <yyy> zzz] F103 Intermediate file error

[xxx.c <yyy> zzz] F104 Illegal use of register

xxx.c: source file name, yyy: line number, zzz: message

9.2 Types of Error Messages

The following ten types of error messages are output by the compiler.

(1) Error message for a command line

(2) Error message for an internal error or memory

(3) Error message for a character

(4) Error message for a configuration element

(5) Error message for conversion

(6) Error message for an expression

(7) Error message for a statement

(8) Error message for a declaration or function definition

(9) Error message for a preprocessing directive

(10) Error message for fatal file I/O and running on an illegal operating system

CHAPTER 9 ERROR MESSAGES

User’s Manual U16707EJ1V0UM 189

9.3 List of Error Messages

It is necessary to understand the format of an error number before using the list of error messages. The error

number indicates the type of error message and the compiler processing for the error.

The error number format is as follows.

 A/F/Wnnn

A: ABORT

After the error message is output, the compile processing ends immediately. The object module file and

the assembler source module file are not output.

F: FATAL

After the error message is output, the error portion is ignored and processing continues. The object

module file and the assembler source module file are not output.

W: WARNING

After the warning message is output, processing continues. The file specified by the option is output.

nnn (3-digit number)

From 001 Error message for a command line

From 101 Error message for an internal error or memory

From 201 Error message for a character

From 301 Error message for a configuration element

From 401 Error message for conversion

From 501 Error message for an expression

From 601 Error message for a statement

From 701 Error message for a declaration or a function definition

From 801 Error message for a preprocessing directive

From 901 Error message for fatal file I/O or running on an illegal operating system

Caution If the file name contains a syntax error, the file name is added to the message. An error message

is added, changed, and deleted according to the language specification of the C compiler being

developed.

CHAPTER 9 ERROR MESSAGES

User’s Manual U16707EJ1V0UM 190

(1) Error message for a command line <from 001> (1/3)

Message Missing input file

Cause The input source file name was not specified.

A001

Response “Please enter ‘cc78k4--’ if you want help message” is output.

Use the --, -?, or -H option to reference the help file and input the file name correctly.

Message Too many input files

Cause Multiple input source file names are specified.

A002

Response “Please enter ‘cc78k4--’ if you want help message” is output.

Use the --, -?, or -H option to reference the help file and input the file name correctly.

Message Unrecognized string A003

Cause An item other than an option was specified on the interactive command line.

Message Illegal file name file name A004

Cause Either the format, characters, or number of characters in the specified file name are incorrect.

Message Illegal file specification A005

Cause An illegal file name was specified.

Message File not found A006

Cause The specified input file does not exist.

Message Input file specification overlapped file name A007

Cause Duplicate input file names were specified.

Message File specification conflicted file name A008

Cause Duplicate I/O file names were specified.

Message Unable to make file file name A009

Cause Since the specified output file already exists as a read-only file, it cannot be created.

Message Directory not found A010

Cause A drive or directory not existed is included in the output file name.

Message Illegal path A011

Cause An illegal path name was specified in the option setting the path name in the parameter.

Message Missing parameter ‘option’

Cause A required parameter is not specified.

A012

Response “Please enter ‘cc78k4--’ if you want help message” is output.

Use the --, -?, or -H option to reference the help file and input the parameter correctly.

Message Parameter not needed ‘option’

Cause An unnecessary option parameter was specified.

A013

Response “Please enter ‘cc78k4--’ if you want help message” is output.

Use the --, -?, or -H option to reference the help file and input the parameter correctly.

Message Out of range ‘option’

Cause The specified value of the option parameter is out of range.

A014

Response “Please enter ‘cc78k4--’ if you want help message” is output.

Use the --, -?, or -H option to reference the help file and input the value correctly.

Message Parameter is too long A015

Cause The number of characters in the option parameter exceeded the limit.

CHAPTER 9 ERROR MESSAGES

User’s Manual U16707EJ1V0UM 191

(1) Error message for a command line <from 001> (2/3)

Message Illegal parameter ‘option’

Cause There is a syntax error in the option parameter.

A016

Response “Please enter ‘cc78k4--’ if you want help message” is output.

Use the --, -?, or -H option to reference the help file and input the option correctly.

Message Too many parameters A017

Cause The total number of option parameters exceeds the limit.

Message Option is not recognized ‘option’

Cause An incorrect option was specified.

A018

Response “Please enter ‘cc78k4--’ if you want help message” is output.

Use the --, -?, or -H option to reference the help file and input the option correctly.

Message Parameter file nested

Cause The -F option was specified in the parameter file.

A019

Response Since a parameter file cannot be specified in a parameter file, correct them so that there is no

nesting.

Message Parameter file read error A020

Cause The parameter file read failed.

Message Memory allocation failed A021

Cause Memory allocation failed.

Message Same category option specified – ignored ‘option’

Cause Conflicting options had duplicate specifications.

W022

Compiler The option specified later is validated and processing continues.

Message Incompatible chip name

Cause The device type in the command line and the device type in the source differ.

W023

Compiler The device type in the command line has priority.

Message Illegal chip specifier on command line A024

Cause The device type in the command line is incorrect.

Message ‘-MS’ or ‘-MM’ option specified - ignored ‘-CSA’ W027

Cause Location function specification option -CSA is ignored because the small model (-MS) or medium

model (-MM) is specified by the memory model specification option.

Message ‘-MS’ option specified - ignored ‘-CS15’ W028

Cause Location function specification option -CS15 is ignored because the small model (-MS) is specified

by the memory model specification option.

Message ‘-QC’ option is not portable W029

Cause The -QC option does not conform to the ANSI standard (for details about -QC, see CHAPTER 5

COMPILER OPTIONS).

Message ‘-ZP’ option is not portable W031

Cause The -ZP option does not conform to the ANSI standard (for details about -ZP, see CHAPTER 5

COMPILER OPTIONS).

Message ‘-ZC’ option is not portable W032

Cause The -ZC option does not conform to the ANSI standard (for details about -ZC, see CHAPTER 5

COMPILER OPTIONS).

CHAPTER 9 ERROR MESSAGES

User’s Manual U16707EJ1V0UM 192

(1) Error message for a command line <from 001> (3/3)

Message Same category option specified ‘option’

Cause Conflicting options had duplicate specifications.

W033

Response “Please enter ‘cc78k4--’ if you want help message” is output.

Use the --, -?, or -H option to reference the help file and correct the input.

Message ‘-QH’ option is not portable W042

Cause The -QH option does not conform to the ANSI standard (for details about -QH, see CHAPTER 5

COMPILER OPTIONS).

Message ‘-ZO’ option specified - ignored ‘-ZR’ W043

Cause Since the old specification function interface specification option -ZO is specified, the pascal function

interface specification option -ZR is ignored.

Message ‘-ZF’ option specified - regarded as ‘-QL1’ W046

Cause Since the flash area object creation option -ZF is specified, after -QL2 in the library replace option of

constant code pattern -QL is regarded as - QL1.

CHAPTER 9 ERROR MESSAGES

User’s Manual U16707EJ1V0UM 193

(2) Error message for an internal error and memory <from 101>

Message Internal error

Cause An internal error occurred.

F101

Response Contact support.

Message Too many errors

Cause The total number of FATAL errors exceeded 30.

F102

Compiler Processing continues, but subsequent error messages are not output. The previous errors may have

caused many errors. First, remove these previous errors.

Message Intermediate file error

Cause The intermediate file contains errors.

F103

Response Contact support.

Message Illegal use of register F104

Cause The register is incorrectly used.

Message Register overflow : simplify expression

Cause The expression is too complex and no more usable registers remain.

F105

Response Simplify the complex expression causing the error.

Message Stack overflow ‘overflow cause’

Cause The stack overflowed. The cause of the overflow is the stack or heap.

A106

Response Contact support.

Message Compiler limit : too much automatic data in function

Cause The area allocated for the automatic variables of the function exceeded the limit of 64 KB.

F108

Response Decrease the variables so that 64 KB is not exceeded.

Message Compiler limit : too much parameter of function

Cause The area allocated for the parameters of the function exceeded the limit of 64 KB.

F109

Response Decrease the parameters so that 64 KB is not exceeded.

Message Compiler limit : too much code defined in file

• Small model:

The area allocated for the code in the file exceeded the limit of 64 KB.

F110

Cause

• Medium/large model:

The area allocated for the code in the file exceeded the limit of 1,024 KB.

Message Compiler limit : too much global data defined in file

• Small/medium model:

The area allocated for the global variables in the file exceeded the limit of 64 KB.

F111

Cause

• Large model:

The area allocated for the global variables in the file exceeded the limit of 16 MB.

Message Compiler limit: too many local labels

Cause Number of local labels in one function exceeds the process limit.

F113

Response The function itself is too large. Divide it.

CHAPTER 9 ERROR MESSAGES

User’s Manual U16707EJ1V0UM 194

(3) Error message for a character <from 201>

Message Unknown character ‘hexadecimal number’ F201

Cause Characters having the specified internal code cannot be recognized.

Message Unexpected EOF F202

Cause The file ended while the function was operating.

Message Trigraph encountered

Cause A trigraph sequence (3-character representation) appeared.

W203

Response If the -ZA option was specified, since trigraph sequences are valid, this warning is not output.

(4) Error message for configuration element <from 301> (1/2)

Message Syntax error

Cause A syntax error occurred.

F301

Response Make sure there are no description errors in the source.

Message Expected identifier

Cause An identifier is required for the goto statement.

F303

Response Correctly describe the identifier to be specified for the goto statement.

Message Identifier truncate to ‘identifier’

Cause The specified identifier is too long. The character number of the identifier (including ‘_’) exceeds 250.

W304

Response Shorten the length of the identifier.

Message Compiler limit : too many identifiers with block scope F305

Cause There are too many symbols having block scope in one block.

Message Illegal index , indirection not allowed F306

Cause An index is used in an expression that does not take a pointer value.

Message Call of non-function ‘variable name’ F307

Cause The variable name is used as a function name.

Message Improper use of a typedef name F308

Cause The typedef name is improperly used.

Message Unused ‘variable name’ F309

Cause The specified variable is declared in the source, but is never used.

Message ‘Variable name’ is assigned a value which is never used F310

Cause The specified variable is used in an assignment statement, but is never used otherwise.

Message Number syntax F311

Cause The constant expression is illegal.

Message Illegal octal digit F312

Cause This is illegal as an octal digit.

Message Illegal hexadecimal digit F313

Cause This is illegal as a hexadecimal digit.

Message Too big constant F314

Cause The constant is too large and cannot be represented.

CHAPTER 9 ERROR MESSAGES

User’s Manual U16707EJ1V0UM 195

(4) Error message for configuration element <from 301> (2/2)

Message Too small constant W315

Cause The constant is too small and cannot be represented.

Message Too many character constants F316

Cause The character constant exceeds two characters.

Message Empty character constant F317

Cause The character constant ‘ ’ is empty.

Message No terminated string literal F318

Cause There is no double quote “ ” at the end of the string.

Message Changing string literal F319

Cause A character string literal is rewritten.

Message No null terminator in string literal W320

Cause The null character is not added to the character string literal.

Message Compiler limit : too many characters in string literal F321

Cause The number of characters in the character string literal exceeded 509.

Message Ellipsis requires three periods F322

Cause The compiler detected “..”, but “...” is required.

Message Missing ‘delimiter’ F323

Cause The delimiter is incorrect.

Message Too many }’s F324

Cause The ‘{’ and ‘}’ are incorrectly paired.

Message No terminated comment F325

Cause The comment is not terminated by “*/”.

Message Illegal binary digit F326

Cause This is illegal as a binary digit.

Message Hex constants must have at least one hex digit F327

Cause At least one hexadecimal digit is required in a hexadecimal constant representation.

Message Unrecognized character escape sequence ‘character’ W328

Cause The escape sequence cannot be correctly recognized.

Message Compiler limit : too many comment nesting F329

Cause The number of nesting levels of comments exceeded the limit of 255.

Message ‘-ZO’ option specified - _ _flash keyword is not allowed F336

Cause The _ _flash keyword cannot be used because the old specification function interface option (-ZO) is

specified.

Message ‘-ZO’ option specified - ignored ‘__pascal’ in this file W337

Cause Since the old specification function interface specification option -ZO is specified, __pascal keyword

is ignored in this file.

Message Unreferenced label ‘label name’ W340

Cause The specified label has been defined, but has not been referenced even once.

CHAPTER 9 ERROR MESSAGES

User’s Manual U16707EJ1V0UM 196

(5) Error message for conversion <from 401>

Message Conversion may lose significant digits W401

Cause A long was converted into int. Be careful the value may be lost.

Message Incompatible type conversion F402

Cause An illegal type conversion took place in the assignment statement.

Message Illegal indirection F403

Cause The * operator is used in an integer type expression.

Message Incompatible structure type conversion F404

Cause The types on both sides of an assignment statement to a structure or structure pair differ.

Message Illegal lvalue F405

Cause This is an illegal left value.

Message Cannot modify a const object ‘variable name’ F406

Cause A variable with the const attribute is rewritten.

Message Cannot write for read / only sfr ‘SFR name’ F407

Cause Tried to write to a read-only sfr.

Message Cannot read for write/only sfr ‘SFR name’ F408

Cause Tried to read a write-only sfr.

Message Illegal SFR access ‘sfr name’ F409

Cause Illegal data was read from or written to an sfr.

Message Illegal pointer conversion W410

Cause A pointer and an object other than a pointer are converted.

Message Illegal pointer combination W411

Cause Different types are mixed in the same pointer combination.

Message Illegal pointer combination in conditional expression W412

Cause Different types in a pointer combination are used in a conditional expression.

Message Illegal structure pointer combination F413

Cause Pointers to structures with different types are mixed.

Message Expected pointer F414

Cause A pointer is required.

CHAPTER 9 ERROR MESSAGES

User’s Manual U16707EJ1V0UM 197

(6) Error message for an expression <from 501> (1/3)

Message Expression syntax F501

Cause The expression contained a syntax error.

Message Compiler limit : too many parentheses F502

Cause The nesting of parentheses in the expression exceeded 32.

Message Possible use of ‘variable name’ before definition W503

Cause The variable is used before a value is assigned to it.

Message Possibly incorrect assignment W504

Cause The main operators in conditional expressions, such as if, while, and do statements, are assignment

operators.

Message Operator ‘operator’ has no effect W505

Cause The operator has no effect in the program. This is probably due to a description error.

Message Expected integral index F507

Cause Only an integer type expression is allowed in the index of an array.

Message Too many actual arguments W508

Cause The number of arguments specified in a function call is more than the number of parameters

specified in the list of argument types or the function definition.

Message Too few actual arguments W509

Cause The number of arguments specified in a function call is fewer than the number of parameters

specified in the list of argument types or the function definition.

Message Pointer mismatch in function ‘function name’ W510

Cause The given arguments have different pointer types than the arguments specified in the list of

argument types or the function definition.

Message Different argument types in function ‘function name’ W511

Cause The argument types given in the function call do not match the list of argument types or the function

definition.

Message Cannot call function in norec function F512

Cause A function is called in the norec function. A function cannot be called in a norec function.

Message Illegal structure / union member ‘member name’ F513

Cause A member that is referenced in the structure and not defined is indicated.

Message Expected structure / union pointer

Cause The expression before the ‘→’ operator is not a pointer to a structure or a union, but is the name of a

structure or a union.

F514

Response Make the expression before the ‘→’ operator a pointer to a structure or a union.

Message Expected structure / union name

Cause The expression before the ‘.’ operator is not the name of a structure or a union, but is a pointer to a

structure or a union.

W515

Response Make the expression before the ‘.’ operator a structure or a union variable.

Message Zero sized structure ‘structure name’ F516

Cause The size of the structure is zero.

Message Illegal structure operation F517

Cause An operator that cannot be used in a structure is used.

CHAPTER 9 ERROR MESSAGES

User’s Manual U16707EJ1V0UM 198

(6) Error message for an expression <from 501> (2/3)

Message Illegal structure / union comparison F518

Cause Two structures or unions cannot be compared.

Message Illegal bit field operation F519

Cause There is an illegal description for a bit field.

Message Illegal use of pointer F520

Cause The only operators that can be used on pointers are addition, subtraction, assignment, relational,

indirection (*), and member reference (->).

Message Illegal use of floating F521

Cause An operator that cannot be used on floating-point variables is used.

Message Ambiguous operators need parentheses W522

Cause Two shift, relational, and bit logical operators appear continuously without parentheses.

Message Illegal bit, boolean type operation F523

Cause An illegal operation is performed on bit or boolean type variables.

Message ‘&’ on constant F524

Cause A constant address is not obtained.

Message ‘&’ requires lvalue F525

Cause The ‘&’ operator can only be used in an expression assigned to the left value.

Message ‘&’ on register variable F526

Cause The address of a register variable is not obtained.

Message ‘&’ on bit, boolean ignored F527

Cause The address of a bit field, or bit or boolean type variable is not obtained.

Message ‘&’ is not allowed array / function, ignored W528

Cause The & operator does not have to be applied to an array name or function name.

Message Sizeof returns zero F529

Cause The value of the sizeof expression becomes zero.

Message Illegal sizeof operand F530

Cause The operand of the sizeof expression must be an identifier or a type name.

Message Disallowed conversion

Cause Illegal casting occurred.

F531

Response Check for illegal casting.

This error occurs when a constant is cast to a pointer, or when an address is outside the range of the

memory model.

Message Pointer on left, needs integral right : ‘operator’ F532

Cause Since the left operand is a pointer, the right operand must be an integral value.

Message Invalid left-or-right operand : ‘operator’ F533

Cause The left or right operand is illegal for the operator.

Message Divide check F534

Cause The divisor of the / operation or % operation is zero.

CHAPTER 9 ERROR MESSAGES

User’s Manual U16707EJ1V0UM 199

(6) Error message for an expression <from 501> (3/3)

Message Invalid pointer addition F535

Cause Two pointers are not added.

Message Must be integral value addition F536

Cause Only integral values can be added to a pointer.

Message Illegal pointer subtraction F537

Cause The subtraction between pointers must be for pointers having the same type.

Message Illegal conditional operator F538

Cause The conditional operator is not correctly described.

Message Expected constant expression F539

Cause A constant expression is required.

Message Constant out of range in comparison W540

Cause The constant partial expression is compared to a value outside of the range permitted by the type of

the other partial expression.

Message Function argument has void type F541

Cause The argument of the function has the void type.

Message Undeclared parameter in noauto or norec function prototype W543

Cause The parameter declarations are not in the prototype declarations of the noauto or norec function.

Message Illegal type for parameter in noauto or norec function prototype F544

Cause Parameters with illegal types are declared in the prototype declarations of the noauto or norec

function.

Message Too few actual argument for inline function ‘function name’ F546

Cause The number of arguments specified in the function call of a function expanded inline is less than the

number of parameters provided in the specifications.

CHAPTER 9 ERROR MESSAGES

User’s Manual U16707EJ1V0UM 200

(7) Error message for a statement <from 601>

Message Compiler limit : too many characters in logical source line F602

Cause The number of characters in a logical source line exceeded 2048.

Message Compiler limit : too many labels F603

Cause The number of labels exceeded 33.

Message Case not in switch F604

Cause The case statement is not described in the correct position.

Message Duplicate case ‘label name’ F605

Cause The same case label is described two or more times in a switch statement.

Message Non constant case expression F606

Cause Something other than an integral constant is specified in a case statement.

Message Compiler limit : too many case labels F607

Cause The number of case labels in the switch statement exceeded 257.

Message Default not in switch F608

Cause The default statement is not described in the correct position.

Message More than one ‘default’ F609

Cause The default statement is described multiple times in the switch statement.

Message Compiler limit : block nest level too depth F610

Cause The block nesting exceeded 45.

Message Inappropriate ‘else’ F611

Cause There is no correspondence between if and else.

Message Loop entered at top of switch W613

Cause A while, do, or for is specified immediately after the switch statement.

Message Statement not reached W615

Cause The statement is never reached.

Message Do statement must have ‘while’ F617

Cause A while is required at the end of a do.

Message Break / continue error F620

Cause The positions of the break and continue statements are incorrect.

Message Void function ‘function name’ cannot return value F621

Cause A function declared as void returns a value.

Message No return value

Cause A function that should return a value does not return a value.

W622

Response If a value must be returned, add a return statement. If a value does not have to be returned, give the

function the void type.

Message No effective code and data, cannot create output file F623

Cause Since the code and data are not valid, the output file cannot be created.

CHAPTER 9 ERROR MESSAGES

User’s Manual U16707EJ1V0UM 201

(8) Error message for a declaration and function definition <from 701> (1/5)

Message External definition syntax F701

Cause The function is not correctly defined.

Message Too many callt functions

Cause There are too many declarations of the callt function. A maximum of 32 callt functions can be

declared.

F702

Response Decrease the number of callt function declarations.

Message Function has illegal storage class F703

Cause The function is specified with an illegal storage class.

Message Function returns illegal type F704

Cause The return value of the function is an illegal type.

Message Too many parameters in noauto or norec function

Cause A noauto or norec function has too many parameters.

F705

Response Decrease the number of parameters.

Message Parameter list error F706

Cause The function parameter list contains errors.

Message Not parameter ‘character string’ F707

Cause Something other than a parameter is declared in a function definition.

Message Already declared symbol ‘variable name’ W708

Cause The same variable has already been declared.

Message Illegal storage class F710

Cause The auto and register declarations are outside the function or the boolean variable is defined inside

the function.

Message Undeclared ‘variable name’; function ‘function name’ F711

Cause An undeclared variable is used.

Message Declaration syntax F712

Cause The declaration statement does not match the syntax.

Message Redefined ‘variable name’

Cause Two or more of the same variables are defined.

F713

Response Set the variable definition once.

Message Too many register variables

Cause There are too many declarations of register variables.

W714

Response Decrease the number of register variables. For the number that can be used, see CHAPTER 11 in

the Language (U15556E) manual.

Message Too many sreg variables F715

Cause There are too many declarations of sreg variables.

Message Not allowed automatic data in noauto function F716

Cause Automatic variables cannot be used in the noauto function.

CHAPTER 9 ERROR MESSAGES

User’s Manual U16707EJ1V0UM 202

(8) Error message for a declaration and function definition <from 701> (2/5)

Message Too many automatic data in noauto or norec function

Cause There are too many automatic variables in a noauto or norec function.

F717

Response Decrease the number of automatic variables in a noauto or norec function. For the number that can

be used, see CHAPTER 11 in the Language (U15556E) manual.

Message Too many bit, boolean type variables

Cause There are too many bit and boolean type variables.

F718

Response Decrease the number of bit, boolean, and _ _boolean type variables. For the number that can be

used, see CHAPTER 11 in the Language (U15556E) manual.

Message Illegal use of type F719

Cause An illegal type name is used.

Message Illegal void type for ‘identifier’ F720

Cause The identifier is declared by void.

Message Illegal type for register declaration

Cause A register declaration is specified with an illegal type.

W721

Compiler The register declaration is ignored and processing continues.

Message Illegal type for parameter in noauto or norec function F723

Cause The type of a parameter in a noauto or norec function is too big.

Message Structure redefinition F724

Cause The same structure is redefined.

Message Illegal zero sized structure member

Cause The area taken as a structure member is not secured.

W725

Response When an array is used in the member of a structure and the index is given by a constant

computation, sometimes there is overflow by the -QC2 action and the area is not secured. In this

case, specify -QC1 as in -QC. -QC is included in the default options.

Message Function cannot be structure / union member F726

Cause A function cannot be a member of a structure or a union.

Message Unknown size structure / union ‘name’ F727

Cause Structures or unions have undefined sizes.

Message Compiler limit : too many structure / union members F728

Cause The members in a structure or union exceeded 256.

Message Compiler limit : structure / union nesting F729

Cause The nesting of structures or unions exceeded 15.

Message Bit field outside of structure F730

Cause A bit field is declared outside of the structure.

Message Illegal bit field type F731

Cause A type other than an integral type is specified in a bit field type.

Message Too long bit field size F732

Cause The number of bit specifications in a bit field declaration exceeds the number of bits in that type.

Message Negative bit field size F733

Cause The number of bit specifications in a bit field declaration is negative.

CHAPTER 9 ERROR MESSAGES

User’s Manual U16707EJ1V0UM 203

(8) Error message for a declaration and function definition <from 701> (3/5)

Message Illegal enumeration F734

Cause The enumeration type declaration does not match the syntax.

Message Illegal enumeration constant F735

Cause The enumeration constant is illegal.

Message Compiler limit : too many enumeration constants F736

Cause The number of enumeration constants exceeded 255.

Message Undeclared structure / union / enum tag F737

Cause A tag is not declared.

Message Compiler limit : too many pointer modifying F738

Cause The number of indirection operators (*) exceeded 12 in a pointer definition.

Message Expected constant F739

Cause A variable is used in the index in an array declaration.

Message Negative subscript F740

Cause The specification of the size of an array is negative.

Message Unknown size array ‘array name’

Cause The size of an array is undefined.

F741

Response Specify the size of the array.

Message Compiler limit : too many array modifying F742

Cause The array declaration exceeds 12 dimensions.

Message Array element type cannot be function F743

Cause An array of functions is not allowed.

Message Zero sized array ‘array name’ W744

Cause The number of elements of the defined array is zero.

Message Expected function prototype W745

Cause The function prototype is not declared.

Message Function prototype mismatch

Cause The function prototype declaration contains errors.

F747

Response Check whether the parameter and return value types match the function.

Message A function is declared as a parameter W748

Cause A function is declared as an argument.

Message Unused parameter ‘parameter name’ W749

Cause The parameter is not used.

Message Initializer syntax F750

Cause The initialization does not match the syntax.

Message Illegal initialization F751

Cause The constant of an initial value setting does not match the type of the variable.

Message Undeclared initializer name ‘name’ W752

Cause The initializer name is not declared.

CHAPTER 9 ERROR MESSAGES

User’s Manual U16707EJ1V0UM 204

(8) Error message for a declaration and function definition <from 701> (4/5)

Message Cannot initialize static with automatic F753

Cause The static variable cannot be initialized using an automatic variable.

Message Too many initializers ‘array name’ F756

Cause There are more initial values than elements in the declared array.

Message Too many structure initializers F757

Cause There are more initial values than members in the declared structure.

Message Cannot initialize a function ‘function name’ F758

Cause The function cannot be initialized.

Message Compiler limit : initializers too deeply nested F759

Cause The depth of the nesting of initialized elements exceeded the limit.

Message Double and long double are treated as IEEE 754 single format W760

Cause double and long double are handled as IEEE 754 single-precision formats.

Message Cannot declare sreg with const or function

Cause sreg cannot be declared with a const declaration or function.

W761

Compiler An sreg declaration is ignored.

Message Overlapped memory area ‘variable name 1’ and ‘variable name 2’ W762

Cause The variable name 1 and variable name 2 areas for which absolute address allocation specification

is performed overlap.

Message Cannot declare const with bit, boolean

Cause bit and boolean type variables cannot have const declarations.

W763

Compiler A const declaration is ignored.

Message ‘Variable name’ initialized and declared extern-ignored extern

Cause An externally referenced variable without a body was initialized.

W764

Compiler The extern declaration is ignored.

Message Undefined static function ‘function name’ F765

Cause There was a reference to a function whose body is not in the same file and was declared static.

Message Illegal type for automatic data in noauto or norec function F766

Cause The type of the automatic variable in a noauto or norec function is large.

Message Too many _ _sreg1 variables F767

Cause There are too many declarations of _ _sreg1 variables.

Message Too many _ _boolean1 type variables F768

Cause There are too many declarations of _ _boolean1 type variables.

Message Parameters are not allowed for interrupt function F770

Cause An interrupt function cannot have arguments.

Message Interrupt function must be void type F771

Cause An interrupt function must have the void type.

Message Callt / callf / noauto / norec / __pascal are not allowed for interrupt function F772

Cause An interrupt function cannot be declared callt, callf, noauto, norec, or __pascal.

CHAPTER 9 ERROR MESSAGES

User’s Manual U16707EJ1V0UM 205

(8) Error message for a declaration and function definition <from 701> (5/5)

Message Cannot call interrupt function F773

Cause An interrupt function cannot be called.

Message Interrupt function can’t use with the other kind interrupts F774

Cause An interrupt function cannot be used in other types of interrupts.

Message Cannot call rtos_task function F775

Cause RTOS task cannot be called.

Message Cannot call ret_int / ret_wup except in rtos_interrupt_handler F776

Cause ret_int / ret_wup system call cannot be called except in the RTOS_INTERRUPT handler.

Message Not call ret_int / ret_wup in rtos_interrupt_handler F777

Cause ret_int / ret_wup system call is not called in the RTOS_INTERRUPT handler.

Message Cannot call ext_tsk in interrupt function F778

Cause ext_tsk system call cannot be called in the interrupt function/interrupt handler.

Message Not call ext_tsk in rtos_task W779

Cause ext_tsk system call is not called in the RTOS task.

Message Zero width for bit field ‘member name’ F780

Cause Member name is specified to the member whose bit specification number of bit field declaration is 0.

Message Bit field type is char W787

Cause char type is specified for bit field type.

Message Cannot allocate a _ _flash function ‘function name’ F788

Cause The _ _flash function cannot be allocated.

Message ‘-ZF’ option did not specify -cannot allocate an EXT_FUNC function ‘function name’ F789

Cause A flash area object creation option (-ZF) is not specified. The function specified by #pragma

EXT_FUNC cannot be allocated.

Message Callt/callf/_ _interrupt are not allowed for EXT_FUNC function ‘function name’ F790

Cause The callt/callf/_ _interrupt declaration cannot be specified for the function specified by #pragma

EXT_FUNC.

Message ‘-ZF’ option specified –cannot allocate a callt/callf function ‘function name’ F791

Cause The flash area object creation option (-ZF) is specified. The callt/callf function cannot be allocated.

Message Undeclared parameter in _ _pascal function definition or prototype W792

Cause Parameters are not declared in _ _pascal function definition or prototype declaration. void must be

described if there is no parameter.

Message Variable parameters are not allowed for _ _pascal function - ignored _ _pascal W793

Cause Variable parameters cannot be specified for _ _pascal function. _ _pascal keyword is ignored.

Message Cannot allocate ‘variable name’ out of ‘address range’ F799

Cause Address specification for variable names for which absolute address allocation specification is

performed exceed the specifiable address range.

CHAPTER 9 ERROR MESSAGES

User’s Manual U16707EJ1V0UM 206

(9) Error message for a preprocessing directive <from 801> (1/5)

Message Undefined control F801

Cause A symbol starting with # cannot be recognized as a keyword.

Message Illegal preprocess directive

Cause The preprocess directive is illegal.

F802

Response Check if the preprocess directive (such as #pragma) is written in front of the header of the file and if

there is any error.

Message Unexpected non-whitespace before preprocess directive F803

Cause A character other than a whitespace character precedes the preprocess directive.

Message Unexpected characters following ‘preprocess directive’ directive - newline expected W804

Cause Extra characters follow the preprocess directive.

Message Misplaced else or elif F805

Cause The #if, #ifdef, and #ifndef do not correspond to #else and #elif.

Message Misplaced endif F806

Cause The #if, #ifdef, and #ifndef do not correspond to #endif.

Message Compiler limit : too many conditional inclusion nesting F807

Cause The nesting of conditional compiling exceeded 255.

Message Cannot find include file ‘file name’

Cause The include file was not found.

F810

Response Specify the path in which an include file exists or specify a path using -i option for the environmental

variable INC78K4.

Message Too long file name ‘file name’ F811

Cause The file name is too long.

Message Include directive syntax F812

Cause The file name in the definition of the #include statement is not correctly enclosed by “ ” or < >.

Message Compiler limit : too many include nesting F813

Cause The nesting of the include files exceeded 8.

Message Illegal macro name F814

Cause The macro name is illegal.

Message Compiler limit: too many macro nesting F815

Cause The number of nesting macros exceeds 200.

Message Redefined macro name ‘macro name’ W816

Cause The macro name is redefined.

Message Redefined system macro name ‘macro name’ W817

Cause The system macro name is redefined.

Message Redeclared parameter in macro ‘macro name’ F818

Cause The same identifier appears in the parameter list in the macro definition.

Message Mismatch number of parameter ‘macro name’ W819

Cause The number of parameters when referencing differs from the number of parameters defined by

#define.

CHAPTER 9 ERROR MESSAGES

User’s Manual U16707EJ1V0UM 207

(9) Error message for a preprocessing directive <from 801> (2/5)

Message Illegal macro parameter ‘macro name’ F821

Cause The description enclosed by parentheses () in the function format macro is illegal.

Message Missing) ‘macro name’ F822

Cause The right parenthesis ‘)’ was not found in the same line as the #define definition in the function

format macro.

Message Too long macro expansion ‘macro name’ F823

Cause The actual argument during macro expansion is too long.

Message Identifier truncate to ‘macro name’

Cause The macro name is too long.

W824

Compiler It is shortened to the displayed ‘macro name’.

Message Macro recursion ‘macro name’ W825

Cause The #define definition becomes recursive.

Message Compiler limit : too many macro defines F826

Cause The number of macro definitions exceeded 10,000.

Message Compiler limit : too many macro parameters F827

Cause One macro definition had over 31 calling parameters.

Message Not allowed #undef for system macro name F828

 Cause The system macro name is specified by #undef.

Message Unrecognized pragma ‘character string’

Cause This character string is not supported.

W829

Response Check that the keywords are correct.

This warning occurs if an incorrect segment was specified in the #pragma section.

Message No chip specifier : #pragma pc () F830

Cause There is no device specifier.

Message Illegal chip specifier : #pragma pc (device type) F831

Cause The device specifier is illegal.

Message Duplicated chip specifier W832

Cause The device specifier is duplicated.

Message Expected #asm F833

Cause There is no #asm.

Message Expected #endasm F834

Cause There is no #endasm.

Message Too many characters in assembler source line W835

Cause A line in the assembler source is too long.

Message Expected assembler source W836

Cause There is no assembler source between #asm and #endasm.

CHAPTER 9 ERROR MESSAGES

User’s Manual U16707EJ1V0UM 208

(9) Error message for a preprocessing directive <from 801> (3/5)

Message Output assembler source file, not object file

Cause There is a #asm block or _ _asm statement. Assembler source file is output instead of the object

file.

W837

Response Specify the -a or -sa compiler option in order to output the #asm and _ _asm statement description to

the object file, and then assemble the output assembler file.

Message Duplicated pragma VECT or INTERRUPT or RTOS_INTERRUPT ‘character string’ F838

Cause The #pragma VECT ‘character string’, INTERRUPT ‘character string’, or RTOS_INTERRUPT

‘character string’ is duplicated.

Message Unrecognized pragma VECT or INTERRUPT or RTOS_INTERRUPT ‘character string’ F839

Cause There is an unrecognized #pragma VECT ‘character string’, INTERRUPT ‘character string’, or

RTOS_INTERRUPT ‘character string’.

Message Undefined interrupt function ‘function name’- ignored BANK or SP_SWITCH specified

Cause The save destination is specified for an undefined interrupt function.

W840

Compiler Register bank specifications or stack switching specifications are ignored.

Message Unrecognized pragma SECTION ‘character string’ F842

Cause There is an unrecognized #pragma SECTION ‘character string’.

Message Unspecified start address of ‘section name’ F843

Cause The correct starting address is not specified after AT in the #pragma section.

Message Cannot allocate ‘section name’ out of ‘address range’ F845

Cause The specified section cannot be placed at the specified starting address.

Message Rechanged section name ‘section name’

Cause The same section name is duplicated and its specification is changed.

W846

Compiler The section name specified last is valid and processing continues.

Message Different BANK or SP_SWITCH specified on same interrupt function ‘function name’ F847

Cause A different register bank specification or stack switching specification is specified for an interrupt

function with the same name.

Message Cannot allocate segment to saddr area with -CSA ‘section name’

Cause When -CSA is specified, a section cannot be allocated to the saddr area by specifying an address.

W848

Compiler To allocate a section to the saddr area by specifying an address, specify either the -CS0 or CS15

option.

Message #pragma statement is not portable W849

Cause The #pragma statement does not conform to ANSI.

Message Asm statement is not portable W850

Cause The ASM statement does not conform to ANSI.

Message Data aligned in ‘area name’ W851

Cause The segment area or structure tag is data aligned. The area name is a segment name or a structure

tag.

Message Module name truncate to ‘module name’

Cause The specified module name is too long.

W852

Compiler It is shortened to the displayed ‘module name’.

CHAPTER 9 ERROR MESSAGES

User’s Manual U16707EJ1V0UM 209

(9) Error message for a preprocessing directive <from 801> (4/5)

Message Unrecognized pragma NAME ‘module name’ F853

Cause Unrecognizable characters are in the ‘module name’.

Message Undefined rtos_task ‘character string’ W854

Cause The body of RTOS task is not defined.

Message Cannot assign rtos_interrupt_handler to non-maskable and software interrupt W855

Cause The non-maskable interrupt and software interrupt cannot be specified in the RTOS_INTERRUPT

handler.

Message Rechanged module name ‘module name’ W856

Cause Duplicate module names are specified.

Message Section name truncate to ‘section name’

Cause The specified section name is too long.

W857

Compiler It is shortened to the displayed ‘section name’. Make the section name 8 or fewer characters.

Message Unrecognized pragma ‘pragma character string’ ‘illegal character string’ F858

Cause An unrecognized #pragma ‘pragma character string’ ‘illegal character string’ has been found.

Message Cannot allocate EXT_TABLE out of 0x80 to 0xff80 F859

Cause The first addresses of the flash area branch table must be 0x80 to 0xff80.

Message Redefined #pragma EXT_TABLE F860

Cause #pragma EXT_TABLE has been redefined.

Message No EXT_TABLE specifier F861

Cause The first address of the flash area branch table is not specified.

Message Illegal EXT_FUNC id specifier : out of 0x0 to 0xff F862

Cause The ID value of the function in the flash area specified by #pragma EXT_FUNC must be 0x0 to 0xff.

Message Redefined #pragma EXT_FUNC name ‘function name’ F863

Cause A function name specified by #pragma EXT_FUNC has been redefined.

Message Redefined #pragma EXT_FUNC id ‘ID value’ F864

Cause The ID value specified by #pragma EXT_FUNC has been redefined.

Message Out of range - cannot allocate an EXT_FUNC function ‘function name’ F865

Cause The address of the flash area branch table exceeds the range. The function specified by #pragma

EXT_FUNC cannot be allocated.

Message #pragma section found after C body. cannot include file containing #pragma section and without C

body at the line

F866

Cause There is #pragma section syntax after C body description. Subsequent files that contain #pragma

section syntax and no C body (including external reference declarations of variables and functions)

cannot be included.

Message #pragma section found after C body. cannot specify #include after #pragma section in this file F867

Cause There is #pragma section syntax after C body description. Hereafter, #include syntax cannot be

described.

Message #include found after C body. cannot specify #pragma section after #include directive F868

Cause There is #include syntax after C body description. Hereafter, #pragma section syntax cannot be

described.

CHAPTER 9 ERROR MESSAGES

User’s Manual U16707EJ1V0UM 210

(9) Error message for a preprocessing directive <from 801> (5/5)

Message ‘section name’ section cannot change after C body W869

Cause Specified section cannot be changed after C body description.

Message Data aligned before ‘variable name’ in ‘section name’ W870

Cause Data alignment is done before ‘variable name’ is allocated in ‘section name’.

Message Data aligned after ‘variable name’ in ‘section name’ W871

Cause Data alignment is done after ‘variable name’ is allocated in ‘section name’.

Message Character string specified by #error is output F899

Cause An #error character string was specified.

CHAPTER 9 ERROR MESSAGES

User’s Manual U16707EJ1V0UM 211

(10) Error message for fatal file I/O and running on an illegal operating system <from 901> (1/2)

Message File I/O error

Cause A physical I/O error was generated during file input/output.

A901

Response If an intermediate file is the cause, increase the conventional memory, or use EMS or XMS memory.

Message Cannot open ‘file name’

Cause The file cannot be opened.

A902

Response Check if a device file is installed in an ordinary search path. The path can be specified by the -Y

option. Refer to the description about the search path in 5.3 (20) Device file.

Message Cannot open overlay file ‘file name’ A903

Cause The overlay file cannot be opened.

Message Cannot open temp A904

Cause The input temporary file cannot be opened.

Message Cannot create ‘file name’ A905

Cause A file create error was generated.

Message Cannot create temp

Cause A create error was generated in an output temporary file.

A906

Response Check if the environmental variable TMP is specified.

Message No available data block A907

Cause A temporary file cannot be created because the drive file does not have sufficient capacity.

Message No available directory space A908

Cause A temporary file cannot be created because of insufficient directory area on the drive.

Message R/O : read / only disk A909

Cause A temporary file cannot be created because the drive is read only.

Message R/O file : read / only , file opened read / only mode A910

Cause A write error was generated by a temporary file for the following reasons.

1. A file with the same name as a temporary file already exists on the drive and it has the read-only

attribute.

2. The output temporary file is opened with the read-only attribute because of internal conflicts.

Message Reading unwritten data, no available directory space A911

Cause An I/O error was generated for the following reasons.

1. EOF was passed and input proceeded.

2. The temporary file cannot be created because of insufficient directory area on the drive.

Message Write error on temp

Cause A write error was generated to the output temporary file.

A912

Response A complex source expression (such as too deep nesting) may be the cause. Contact support.

Message Requires MS-DOS V2.11 or greater A913

Cause The operating system is not MS-DOS (Ver. 2.11 or later).

Message Insufficient memory in hostmachine

Cause The compiler cannot start because of insufficient memory.

A914

Response Increase the free area in the conventional memory.

CHAPTER 9 ERROR MESSAGES

User’s Manual U16707EJ1V0UM 212

(10) Error message for fatal file I/O and running on an illegal operating system <from 901> (2/2)

Message Asm statement found. skip to jump optimize this function ‘function name’ W915

Cause #asm block or _ _ asm statement was detected. This function does not have jump optimization.

Perform the W837 response.

Message Heap overflow : please retry compile without -QJ F922

Cause A memory overflow was generated in jump optimization. Recompile without specifying -QJ.

Message Illegal device file format A923

Cause A device file in an old format was referenced.

User’s Manual U16707EJ1V0UM 213

APPENDIX A SAMPLE PROGRAMS

A.1 C Source Module File

#define TRUE 1

#define FALSE 0

#define SIZE 200

char mark[SIZE+1];

main()

{

 int i, prime, k, count;

 count = 0;

 for (i = 0 ; i <= SIZE ; i++)

 mark[i] = TRUE;

 for (i = 0 ; i <= SIZE ; i++) {

 if (mark[i]) {

 prime = i + i + 3;

 printf("%6d",prime);

 count++;

 if((count%8) == 0) putchar('\n');

 for (k = i + prime ; k <= SIZE ; k += prime)

 mark[k] = FALSE;

 }

 }

 printf("\n%d primes found.",count);

}

printf(s,i)

char *s;

int i;

{

 int j;

 char *ss;

 j = i;

 ss = s;

}

APPENDIX A SAMPLE PROGRAMS

User’s Manual U16707EJ1V0UM 214

putchar(c)

char c;

{

 char d;

 d = c;

}

A.2 Execution Example

C>cc78K4 –c4026 prime.c -a -p -x -e -ng

 78K/IV Series C Compiler Vx.xx [xx xxx xxxx]

 Copyright (C) NEC Electronics Corporation xxxx,xxxx

 sample\prime.c(18) : W745 Expected function prototype

 sample\prime.c(20) : W745 Expected function prototype

 sample\prime.c(26) : W622 No return value

 sample\prime.c(37) : W622 No return value

 sample\prime.c(44) : W622 No return value

 Target chip : uPD784026

 Device file : Vx.xx

 Compilation complete, 0 error(s) and 5 warning(s) found.

APPENDIX A SAMPLE PROGRAMS

User’s Manual U16707EJ1V0UM 215

A.3 Output List

(1) Assembler source module file

; 78K/IV Series C Compiler Vx.xx Assembler Source

; Date:xx Jun xxxx Time:xx:xx:xx

; Command : -c4026 prime.c -a -p -x -e -ng

; In-file : prime.c

; Asm-file : prime.asm

; Para-file :

$CHGSFR(15)

$PROCESSOR(4026)

$NODEBUG

$NODEBUGA

$KANJICODE SJIS

$TOL_INF 03FH, 0230H, 02H, 08021H, 00H

 EXTRN @@isrem

 PUBLIC _mark

 PUBLIC _main

 PUBLIC _printf

 PUBLIC _putchar

@@CNST CSEG

L0011: DB '%6d'

 DB 00H

L0017: DB 0AH

 DB '%d primes found.'

 DB 00H

@@DATA DSEG

_mark: DS (201)

; line 5

; line 8

@@CODE CSEG

_main:

 push uup

 push rp3

 push vvp

 push ax

; line 11

 subw ax,ax

 movw [sp+0],ax ; count

; line 13

 subw rp3,rp3

L0003:

 cmpw rp3,#0C8H ; 200

 bgt $L0004

; line 14

 movw de,rp3

 mov a,#01H ; 1

APPENDIX A SAMPLE PROGRAMS

User’s Manual U16707EJ1V0UM 216

 mov _mark[de],a

 incw rp3

 br $L0003

L0004:

; line 15

 subw rp3,rp3

L0006:

 cmpw rp3,#0C8H ; 200

 bgt $L0007

; line 16

 movw de,rp3

 mov a,_mark[de]

 cmp a,#00H ; 0

 be $L0015

; line 17

 addw de,de

 addw de,#03H ; 3

 movw up,de

; line 18

 push up

 movg whl,#L0011

 call $!_printf

 pop ax

; line 19

 movw ax,[sp+0] ; count

 incw ax

 movw [sp+0],ax ; count

; line 20

 movw bc,ax

 movw ax,#08H ; 8

 call !!@@isrem

 or a,x

 bne $L0012

 mov x,#0AH ; 10

 call $!_putchar

L0012:

; line 21

 movw ax,rp3

 addw ax,up

 movw vp,ax

L0014:

 cmpw vp,#0C8H ; 200

 bgt $L0015

; line 22

 movw hl,vp

 mov a,#00H ; 0

 mov _mark[hl],a

 addw vp,up

 br $L0014

L0015:

; line 24

 incw rp3

 br $L0006

L0007:

APPENDIX A SAMPLE PROGRAMS

User’s Manual U16707EJ1V0UM 217

; line 25

 movw ax,[sp+0] ; count

 push ax

 movg whl,#L0017

 call $!_printf

 pop ax

; line 26

 pop ax

 pop vvp

 pop rp3

 pop uup

 ret

; line 31

_printf:

 push uup

 push rp3

 push vvp

 movg uup,whl

; line 35

 movw ax,[sp+11] ; i

 movw rp3,ax

; line 36

 movg vvp,uup

; line 37

 pop vvp

 pop rp3

 pop uup

 ret

; line 41

_putchar:

 push rp3

 mov r6,x

; line 43

 mov r7,r6

; line 44

 pop rp3

 ret

 END

; Target chip : uPD784026

; Device file : Vx.xx

APPENDIX A SAMPLE PROGRAMS

User’s Manual U16707EJ1V0UM 218

(2) Preprocess list file

/*
78K/IV Series C Compiler Vx.xx Preprocess List Date:xx xxx xxxx Page:1

Command : -c4026 prime.c -a -p -x -e -ng
In-file : prime.c
PPL-file : prime.ppl
Para-file :
*/

 1 : #define TRUE 1
 2 : #define FALSE 0
 3 : #define SIZE 200
 4 :
 5 : char mark[SIZE+1];
 6 :
 7 : main()
 8 : {
 9 : int i, prime, k, count;
 10 :
 11 : count = 0;
 12 :
 13 : for (i = 0 ; i <= SIZE ; i++)
 14 : mark[i] = TRUE;
 15 : for (i = 0 ; i <= SIZE ; i++) {
 16 : if (mark[i]) {
 17 : prime = i + i + 3;
 18 : printf("%6d",prime);
 19 : count++;
 20 : if((count%8) == 0) putchar('\n');
 21 : for (k = i + prime ; k <= SIZE ; k += prime)
 22 : mark[k] = FALSE;
 23 : }
 24 : }
 25 : printf("\n%d primes found.",count);
 26 : }
 27 :
 28 : printf(s,i)
 29 : char *s;
 30 : int i;
 31 : {
 32 : int j;
 33 : char *ss;
 34 :
 35 : j = i;
 36 : ss = s;
 37 : }
 38 :
 39 : putchar(c)
 40 : char c;
 41 : {
 42 : char d;
 43 : d = c;
 44 : }

APPENDIX A SAMPLE PROGRAMS

User’s Manual U16707EJ1V0UM 219

/*
 Target chip : uPD784026
 Device file : Vx.xx
*/

APPENDIX A SAMPLE PROGRAMS

User’s Manual U16707EJ1V0UM 220

(3) Cross-reference list file

78K/IV Series C Compiler Vx.xx Cross reference List Date:XX XXX XXXX Page: 1

Command : -c4026 prime.c –a -p –x –e -ng

In-file : prime.c

Xref-file : prime.xrf

Para-file :

ATTRIB MODIFY TYPE SYMBOL DEFINE REFERENCE

EXTERN array mark 5 14 16 22

EXTERN func main 7

REG1 int i 9 13 13 13 14 15 15

 15 16 17 17

 21

REG1 int prime 9 17 18 21 21

REG1 int k 9 21 21 21 22

AUTO1 int count 9 11 19 20 25

EXTERN func printf 28 18 25

EXTERN func putchar 39 20

REG1 pointer s 29 36

PARAM

PARAM int i 30 35

REG1 int j 32 35

REG1 pointer ss 33 36

REG1 char c 40 43

PARAM

REG1 char d 42 43

 #define TRUE 1 14

 #define FALSE 2 22

 #define SIZE 3 5 13 15 21

 Target chip : uPD784026

 Device file : VX.XX

APPENDIX A SAMPLE PROGRAMS

User’s Manual U16707EJ1V0UM 221

(4) Error list file

PRIME.C(18) : W745 Expected function prototype

PRIME.C(20) : W745 Expected function prototype

PRIME.C(26) : W622 No return value

PRIME.C(37) : W622 No return value

PRIME.C(44) : W622 No return value

 Target chip : uPD784026

 Device file : VX.XX

Compilation complete, 0 error(s) and 5 warning(s) found.

User’s Manual U16707EJ1V0UM 222

APPENDIX B LIST OF USE-RELATED CAUTIONS

Number Cautions

1 [Cautions related to specification of options]

(a) When several specifications have been made for an option that does not allow multiple specifications, the last

specification takes priority (is valid).

(b) The type specification following the -C option must not be omitted. If it is omitted, an abort error occurs. If the -C

option is not specified, be sure to enter #pragma pc (type) in the C source module file instead. During

compilation, if the specified option is different from the option in the C source, the specified option takes priority.

A warning message is output at that time.

(c) If the help option has been specified, all other options are ignored.

2 [Cautions related to file output destinations]

Only disk-type files can be specified as the output destination for object module files.

3 [Cautions related to error messages]

When a syntax error has been found in a file, an error message is attached to the file name. If a device file has been

specified at a prohibited location, the specified character string is output by itself. In all other cases, the drive, path,

and file extension must be attached.

4 [Cautions related to source file names]

In the CC78K4, the part except the source file name extension (primary name) is used as the module name by

default. Therefore, some restrictions apply to the source file names that can be used.

(a) Regarding the length of the file name, configure the file name with a primary name and extension within the

range allowed by the OS, and separate the primary name and the extension with a dot (.). When using PM plus,

separate the primary name and extension with a dot (.), and use “.c”, “.C” as the C source extension.

(b) The characters that can be used for the primary name and the extension consist of the characters allowed by the

OS, except parentheses (()), semicolons (;), and commas (,). Note that a hyphen (-) cannot be used as the first

character of a file name. When PM plus is used, do not specify file names or path names that include a space or

square brackets ([]), or path names that include 2-byte characters, such as Chinese characters.

(c) Sharp symbol (#) cannot be used for file names and path names in parameter files.

(d) An error is output during linking for files that have the same name as the first 8 characters of the primary name.

(e) If using the ID78K4/ID78K4-NS or SM78K4, the characters that can be used for the file name are lowercase

letters (a to z), uppercase letters (A to Z), numbers (0 to 9), underscores (_), and dots (.)

5 [Cautions related to include files]

It is not possible to define functions (excluding declarations) in an include file and then expand the file within the C

source.

When definitions are made within an include file, problems such as incorrect display of definition lines during source

debugging may occur.

 APPENDIX B LIST OF USE-RELATED CAUTIONS

User’s Manual U16707EJ1V0UM 223

Number Cautions

6 [Cautions related to use of output assembler source]

When a C source program contains descriptions that use assembly language such as #asm blocks or _ _ asm

statements, the load module file creation procedure sequence is compile, assemble, and then link. Be careful about

the following points when using the assembler by outputting the assembler source to perform assembly without

outputting direct objects, such as when descriptions using assembly language are used.

(a) If symbols need to be defined in the #asm block (part between #asm and #endasm) and the _ _asm statement,

use a symbol of 8 or less characters beginning with the strings ?L@ (for example, ?L@01, ?L@sym, etc.).

However, these symbols cannot be defined externally (PUBLIC declaration). It is not possible to define segments

in the #asm block and the _ _asm statement. If a symbol of 8 or less characters beginning with the strings ?L@

is not used, the abort error A114 is output during assembly.

(b) Describe the definitions of “normal functions”, “callf functions”, and “callt and interrupt functions” by combining

these into three groups.

If definitions are not described in a combination the warning message W717 is output.

(c) When using variables that are extern-ed in the #asm block in C source, EXTRN is not generated if there are no

references in other C descriptions, and a link error is output. Therefore, perform EXTRN in the #asm block if no

referencing is done in C.

(d) If the C source contains #asm blocks and _ _ asm statements, specify the -A or -SA compiler option to enable

assembly descriptions, and assemble the output assembler source.

 When using PM plus, either specify the -A/-SA options through individual option specification for sources for

which only assembler source files are output, or specify the -A/-SA options through universal option specification.

(e) When using PM plus, the RA78K4 is started regardless of compiler options -O/-NO when compiler option -A or -

SA is specified.

(f) When changing the segment name using the #pragma section directive, do not specify a segment having the

same name as the primary name of the source file name. Otherwise, abort error A106 is output during assembly.

7 [Cautions when specifying compiler option -QC2]

If the -QC2 option is specified in the CC78K4, the ranges of the types of constants and character constants that can

be represented are handled as follows.

 –128 to +127 char type

 128 to 255 unsigned char type

 0U to 255U unsigned char type

 From 256 int type

 To –129 int type

 ‘\0’ to ‘\377’ char type

When specifying the -QC2 option, the calculation results of a pair of char type constants and a pair of unsigned char

type constants are handled as char types and unsigned char types, respectively. The calculation result of a char type

constant and an unsigned char type constant is handled as unsigned char type.

If the calculation result overflows, cast either of the constants to a type that can represent it or specify the -QC1 or

-QC (default) option simultaneously. Casting prevents the data type from changing.

 APPENDIX B LIST OF USE-RELATED CAUTIONS

User’s Manual U16707EJ1V0UM 224

Number Cautions

7 Example) When -QC2 option is specified

 int i;

 i = 20*20 /*Negative value*/

 i = (int)20*20 /*400*/

Remark However, when specifying the -QU option, all char type data are handled as unsigned char type. Character

constants in the range from ‘\200’ to ‘\377’ are handled as unsigned char type and have values from +128

to +255.

8 [Usable assembler package]

Since long file names are supported, use of an RA78K4 earlier than Ver. 1.50 may result in errors.

9 [Cautions when using network]

When the directory where the temporary files are created is placed in a file system shared on a network, file

contention may arise, depending on the type of network software being used, and abnormal operation may result.

Avoid such contention by setting the options and the environment variables.

Do not use the CC78K4 in the network environment when using PM plus.

10 [Creating link directive file]

When an area outside of the ROM or RAM area of the target device is used when linking the objects created by the

compiler, or when you want to place the code or data at any specified address, create a link directive file and specify

the -D option when linking.

For information about creating link directive files, see RA78K4 Assembler Package Operation User’s Manual

(U16708E) and lk78k4.dr (in the SMP78K4 directory) equipped with the compiler.

Example) When you want to place external variables without initial values (except sreg variables) from a certain C

source file to the external memory.

1. Change the section name for the external variables without initial value at the beginning of the C source.

 #pragma section @@DATA EXTDATA

Caution Initialization of the changed segment and ROMization should be performed by changing the

startup routine.

2. Create a link directive file.

 <lk78k4.dr>

 memory EXTRAM : (0F000h, 00200h)

 merge EXTDATA := EXTRAM

Heed the following points when creating a link directive file.

…

 APPENDIX B LIST OF USE-RELATED CAUTIONS

User’s Manual U16707EJ1V0UM 225

Number Cautions

10 1. When using the -S automatic generation option for stack symbols while linking, it is recommended to secure the

stack area by the memory directive of the link directive file and specify its name explicitly. If the area name is

omitted, it is used as the stack area in the RAM (except for the SFR area).

Example) When added to the link directive file lk78k4.dr

 memory EXTRAM : (0F000h, 00200h)

 memory STK : (0FB00H, 20H)

 merge EXTDATA := EXTRAM

 (Command line)

 > lk78k4 s4l.rel prime.rel –bcl4.lib -SSTK –Dlk78k4.dr

2. The following error may be output when linking in the defined memory area.

 “*** ERROR F206 Segment ‘xxx’ can’t allocate to memory-ignored.”

 [Cause]

 Because of insufficient space in the defined memory area, the indicated segment cannot be located.

 [Response]

 The response action is roughly divided into the following three steps.

1. Examine the size of a segment that cannot be located (refer to the .map file).

2. Based on the size of the segment examined in step 1, increase the size of the area where the segment is

located in the directive file.

3. Specify the directive file specification option -D and link.

 However, based on the type of the segment marked by an error in step 1, the method used to examine the

segment size differs in the following way.

(1) When the segment is automatically generated during compilation

Examine the size of the segment by the map file that is linked and created.

(2) When the segment is created by the user

Examine the size of the segment that is not located by the assemble list file (.prn).

11 [Cautions when using va_start macro]

When -ZO is not specified, the operation of va_start macro defined in stdarg.h is not guaranteed (because the offset

of the first argument differs depending on the function).

12 [Cautions when referencing special function register (SFR) constant address]

If the 16-bit SFR is referenced by a constant address reference, use the SFR name to reference it since an illegal

code is generated to access in 8-bit units.

 APPENDIX B LIST OF USE-RELATED CAUTIONS

User’s Manual U16707EJ1V0UM 226

Number Cautions

13 [Startup routines and libraries]

(a) Use the provided startup routines and libraries with the same versions as the files in the executable form

(cc78k4.exe or cc78k4).

(b) For the floating point support functions sprintf, vprintf, and vsprintf, if the result value of a conversion that is

specified with the conversion specifiers “%f”, “%e”, “%E”, “%g” or “%G” is smaller than the precision, the value is

rounded down. “%f” conversion is executed even if the result value of conversion that is specified with “%g” or

“%G” is greater than the precision.

 For functions sscanf and scanf, if no effective character is read during conversion that is specified with the

conversion specifiers “%f”, “%e”, “%E”, “%g”, or “%G”, +0 is regarded as the conversion result. If the conversion

result is “±”, ±0 is regarded as the conversion result.

[Prevention method] None

14 [-ZO option]

When the source is developed using CC78K4 Ver. 1.00 or when used with the assembler, changes must be made

unless the -ZO option is specified.

However, if the -ZO option is specified, the code efficiency drops and the functions in CC78K4 Ver. 2.00 and later

versions are not available.

15 [Cautions when source debugging with ID78K4, ID78K4-NS]

When calling a pascal function, the Next command operates as the same as the Step command. Return to the

calling side of the function with the Return command, etc. When compiler option -ZR is specified, all functions

become pascal functions. Therefore, never execute the Next command.

When debugging a load module file including the object module file for which compiler option -QL4 is specified,

locate the runtime library source supplied by the compiler in the current directory.

If the Next or Step command is specified while this load module file is being debugged, the window of the runtime

library may be displayed and the current PC may be moved to the runtime library. In this case, set a breakpoint on

the line next to the C source and return to the calling function by using the Go command.

16 [Cautions when source debugging with SM78K4]

Do not execute the Next command when calling a pascal function. Otherwise, a runaway will occur. When compiler

option -ZR is specified, all functions become pascal functions. Therefore, be sure not to execute the Next command

when the -ZR is specified.

When debugging a load module file including the object module file for which compiler option -QL4 is specified,

locate the runtime library source supplied by the compiler in the current directory.

If the Next command is executed when this load module file is debugged, a hang-up may occur. Therefore, do not

execute the Next command.

When the Step command is specified, the window of the runtime library may appear and the current PC may be

moved to the runtime library. In this case, set a breakpoint on the line next to the C source and return to the calling

function by using the Go command.

 APPENDIX B LIST OF USE-RELATED CAUTIONS

User’s Manual U16707EJ1V0UM 227

Number Cautions

17 [When performing ROMization]

ROMization consists in placing initial values such as those of external variables that have an initial value in ROM, and

then copying these values to RAM during system operation. In CC78K4, a code is generated by default for

ROMization. Therefore, it is necessary to perform linking with the startup routine including ROMization during linking.

The following startup routines, all including ROMization processing, are provided by the C compiler.

If the flash memory self rewrite mode for is used, refer to Table 8-7.

Startup routines:

(1) When not using C standard library area: S4.REL

(2) When using C standard library area: S4L.REL

[Usage example]

C:> LK78K4 s4.REL SAMPLE.REL -S -BCL4.LIB -OSAMPLE.LMF

SAMPLE.REL: Object module file of user program

S4.REL: Startup routine

CL4.LIB: Runtime library, standard library

The -S option is a stack symbol (_@STBEG, _@STEND) automatic generation option.

Cautions

• Be sure to link the startup routine at the beginning.

• When creating a library, create it separately from the library provided by the CC78K4, and specify it prior to

the compiler library during linking.

• Do not add user functions to the CC78K4 library.

• When using a floating point library (CL4*F.LIB), it is necessary to link the startup routine including the

ROMization processing to both the standard library (CL4*.LIB) and the floating point library.

When using sprintf, sscanf, printf, scanf, vprintf, and vsprintf functions supporting floating points

Example) -BMYLIB.LIB -BCL4F.LIB -BCL4.LIB

When using sprintf, sscanf, printf, scanf, vprintf, and vsprintf functions not supporting floating points

Example) -BMYLIB.LIB -BCL4.LIB -BCL4F.LIB

18 [Stack area symbol generation (-S)]

In CC78K4, the user cannot secure a stack area.

To secure a stack area, specify the -S option during linking.

When using PM plus, the S option is automatically attached when the source file specification includes the C source.

19 [ROM code]

When ordering ROM code, specify the -R or -U object converter options , such as –r, -u0FFH.

-R: Sort HEX file contents by order of addresses.

-U fill value: Fill empty space in ROM code with the specified fill value.

 APPENDIX B LIST OF USE-RELATED CAUTIONS

User’s Manual U16707EJ1V0UM 228

Number Cautions

20 [Help specification option]

In PM plus, compiler options --, -?, and -H, which display option descriptions, are ignored.

For help, click the help button in the <Option Setup> dialog box of each tool.

21 [-LL option specification]

When using PM plus, the maximum number that can be specified for the -LL option is 32767. If a number that

exceeds 32767 is specified, specify -LL with another option.

22 [Cautions regarding symbol name length]

When using ID78K4-NS V1.11, ID78K4 V1.42, and SM78K4 V1.42 or earlier versions, do not use symbol names with

more than 127 characters.

23 [Cautions when using PM plus]

(a) Parameter file created by user

 When PM plus is specified for the parameter file created by the user, those contents are loaded to the parameter

file created by PM plus. When creating a parameter file, be careful about the following points. Otherwise, an

error will occur during build execution.

 • Do not specify a file with the same name as the parameter file created by PM plus.

 • Do not describe the device type specification option (-c), device file search path specification option (-y), and

 source file.

 • No validity check is performed for the options described in the parameter file created by the user.

(b) <Assembler Options> dialog box

 Do not specify the -C, -F, and -Y options and the source file, or an error will occur during build execution.

 No validity check is performed for the options specified in the <Assembler Options> dialog box, so an error will

occur during build execution in case of description errors.

(c) Include file dependence relationship

 During checking of dependence relationships of include files during MAKE file creation with PM plus, condition

statements such as #if are ignored. Therefore, include files not required for build are mistaken as required files.

If described as comments or character strings, they are correctly judged as without dependence relationship.

 Example)

 #if 0
 #include "header1.h" /* Dependence relationship judged to exist */
 #else / * ! zero */
 #include "header2.h"
 #endif
 /*
 #include "header3.h"
 */

 header1.h is judged as required for build during the dependence relationship check. If the header1.h file exists,

header1.h gets registered to "ProjectWindow" of PM plus.

 [Prevention method] None. However, this has no effect on the build processing.

(d) Project-related file settings

 Compiler attribute startup routines and standard libraries can be added and deleted from the [Project] menu of

PM plus or from "Add Project-Related File" displayed by right-clicking in the Project window.

 Perform compiler attribute startup routine and standard library settings from the <<Startup Routine>> tab in the

<Compiler Options> dialog box.

(e) File names and path names enclosed in square brackets ([]) cannot be handled.

 APPENDIX B LIST OF USE-RELATED CAUTIONS

User’s Manual U16707EJ1V0UM 229

Number Cautions

24 [Cautions related to prototype declaration]

If a function prototype declaration does not contain a function type specification, an error (F301, F701) results.

 Example)

 f (void) ; /* F301 : Syntax error */
 /* F701 : External definition syntax */

[Prevention method] Describe the function type.

 Example)

 int f (void) ;
25 [Cautions related to error message output]

If there is a spelling error in the keyword at the beginning of a line outside the function, the display position of the

error line may be offset and an inappropriate error output.

 Example)

 extren int i ; /* extern spelling error. No error results here. */
 /* comment */
 void f (void) ;
 [EOF] /* Error such as F712 */

[Prevention method] None

26 [Cautions related to description of comments in preprocessing directive]

In the description of preprocessing directives, when a comment is described at the same line as a function type

macro either before or within a preprocessing directive, an error (F803, F814, F821, etc.) results.

 Example)

 /* com1 */ #pragma sfr /* F803 */
 /* com2 */ #define ONE 1 /* F803 */
 #define /* com3 */ TWO 2 /* F814 */
 #ifdef /* com4 */ ANSI_C /* F814 */

 /* com5 */ #endif
 #define SUB(p1, /* com6 */ p2) p2 = p1 /* F821 */

[Prevention method] Describe the comment after the preprocessing directive.

 Example)

 #pragma sfr /* com1 */
 #define ONE 1 /* com2 */
 #define TWO 2 /* com3 */
 #ifdef ANSI_C /* com4 */

 #endif /* com5 */
 #define SUB(p1, p2) p2 = p1 /* com6 */

 APPENDIX B LIST OF USE-RELATED CAUTIONS

User’s Manual U16707EJ1V0UM 230

Number Cautions

27 [Cautions related to use of tag for structure, union, or enum]

If the tag (for a structure, union, or enum) is used before defining it in a function prototype declaration, a warning

results if condition (1) below is fulfilled, and an error results if condition (2) below is fulfilled.

 (1) If the tag is used in an argument declaration and a pointer to a structure or union is defined, warning W510

 results when a function is called.

 Example)

void func (int , struct st) ;

struct st {

char memb1;

char memb2;

} st [] = {

{ 1, ’a’ } , { 2, ’b’ }

} ;

void caller (void) {

func (sizeof (st) / sizeof (st[0]) , st); /* W510 Pointer mismatch */

}

 (2) If the tag is used in a return value type declaration of an argument declaration, and a structure, union, or

 enum type is specified, error F737 results.

 Example)

 void func1(int , struct st) ; /* F737 Undeclared structure/union/enum tag */
 struct st func2 (int) ; /* F737 Undeclared structure/union/enum tag */
 struct st {
 char memb1;
 char memb2;
 } ;

[Prevention method] Define the tag of the structure, union, or enum beforehand.

 APPENDIX B LIST OF USE-RELATED CAUTIONS

User’s Manual U16707EJ1V0UM 231

Number Cautions

28 [Cautions related to initialization of array, structure, or union in function]

Arrays, structures, and unions using something other than a static variable address, constant, or character string

cannot be initialized.

 Example)

 void f (void) ;
 void f (void) {
 char *p, *p1, *p2 ;
 char *ca[3] = { p , p1 , p2 } ; /* Error(F750) */
 }

[Prevention method] Describe an assignment statement and use it instead of initialization.

 Example)

 void f (void) ;
 void f (void) {
 char *ca[3] ;
 char *p, *p1, *p2 ;
 ca[0] = p ; ca[1] = p1 ; ca[2] = p2 ;
 }

29 [Cautions related to extern callt function]

If the address of an extern callt function is referenced by initializing the function table, etc., and the callt function is

called by the same module, the assemble list is illegal and an error results during assembly.

 Example)

 callt extern void funca (void) ;
 callt extern void funcb (void) ;
 callt extern void funcc (void) ;

 static void (* const func []) () = {
 funca , funcb , funcc
 } ;
 callf void func2 (void) {
 funcc () ;
 funcb () ;
 funca () ;
 }
[Prevention method] Separate the function table and function call module.

 APPENDIX B LIST OF USE-RELATED CAUTIONS

User’s Manual U16707EJ1V0UM 232

Number Cautions

30 [Cautions related to functions returning a structure]

When a function returns a structure, an interrupt is generated in the process of returning a return value. If there is a

call of the same function during interrupt servicing, the return value is illegal after the interrupt servicing ends.

 Example)

struct str {
 char c ;
 int i ;
 long l ;
} st ;

struct str func () {
 /* Interrupt occurrence */
 :
}

void main () {
 st = func () ; /* Interrupt occurrence */
}

 If the func function is called at the interrupt destination during the above servicing, st may be corrupted.

[Prevention method] None

31 [Cautions related to union initialization]

When, during initialization of unions having structures, unions, or arrays as members, the initializer syntax is specified

with nesting, error F750 results.

 Example)

struct Ss {

int d1, d2 ;

} ;

union Au {

struct Ss t1;

 } u = { { 1, 2 } } ; /* F750 Initializer syntax */

[Prevention method] Do not specify the initializer of a union with nesting.

 Example)

struct Ss {
 int d1, d2 ;
} ;
union Au {
 struct Ss t1;
} u = { 1, 2 } ;

 APPENDIX B LIST OF USE-RELATED CAUTIONS

User’s Manual U16707EJ1V0UM 233

Number Cautions

32 [Cautions related to kanji code types]

When source that includes EUC code is used on Windows, set the environmental variable LANG78K to the euc or

specify the -ZE option.

33 [Cautions when using small model]

When using the small model (-MS), note the following.

In the small model, the W, V, U, and T registers of WHL, VVP, UUP, and TDE are set to 0H at startup. The codes

are then generated assuming that 0H is retained (setting the W, V, U, and T register values is performed in the

startup routine supplied with the CC78K4).

Therefore, when describing an assembler source and linking it without using the startup routine supplied with the

CC78K4, first set the W, V, U, and T registers to 0 and then take care that the W, V, U, and T registers are not

corrupted in the assembler source.

34 [Cautions when using medium model]

When using the medium model (-MM), note the following.

(a) 1 MB of code and 64 KB of data can be allocated in the medium model. Data is allocated in the 64 KB of

000000H to 00FFFFH or 0F0000H to 0FFFFFH depending on the value of LOCATION. If using code segment

@@CNSTS (LOCATION 0) and @@CNSTM (LOCATION 0F), be sure to allocate them in the same area as the

data.

(b) In the medium model, the V, U, and T registers of VVP, UUP, and TDE are set to 0H when using LOCATION 0 or

0FH when using LOCATION 15 at startup. The codes are then generated assuming that the value is retained

(setting the V, U, and T register values is performed in the startup routine supplied with the CC78K4).

 Therefore, when describing an assembler source and linking it without using the startup routine supplied with the

CC78K4, first set the V, U, and T registers to the appropriate value and then take care so that the V, U, and T

registers are not corrupted in the assembler source.

(c) When referencing a data address, if the lower 2 bytes of the data address are allocated to 0000H, it is judged as

“equivalent” when comparing with the NULL pointer (because the medium model has a data address of only the

lower 2 bytes).

35 [Cautions when using saddr1 or saddr2 area]

A variable with the same name as a variable declared with extern sreg (using saddr2 area) in one file is not declared

with _ _sreg1 (using saddr1 area) in another file. Do not do the reverse.

A variable with the same name as a variable declared with extern bit, boolean, or _ _boolean (using saddr2 area) in

one file is not declared with _ _boolean1 (using saddr1 area) in another file. Do not do the reverse.

If the above declarations are made, the operation is not guaranteed.

User’s Manual U16707EJ1V0UM 234

APPENDIX C LIST OF RESTRICTIONS RELATED TO CC78K4

This chapter describes in detail the restrictions on the CC78K4 and how to avoid them.

Number Overview of Restrictions

1 The initialization of an external variable declared extern within a block does not become an error. In addition, the

debugging information in the assembler source is incorrect.

2 Binding a variable with the same name to a variable declared extern in the block is sometimes illegal.

3 If a type defined by typedef (typedef name) is used in a function prototype declaration or a declaration using a const or

volatile type modifier, the typedef expansion is illegal, and an error results.

4 Sometimes a multidimensional array with an undefined size does not operate properly.

5 In a function returning the address of a function with arguments, those arguments cannot be referenced. There is no

error when referenced, but illegal code is output.

6 The signed type bit field is handled as an unsigned bit field.

7 If the total size of the auto variable in one function exceeds 65,535 bytes when the large model is used, the output code

and debug information become illegal.

APPENDIX C LIST OF RESTRICTIONS RELATED TO CC78K4

User’s Manual U16707EJ1V0UM 235

C.1 Details About Restrictions and Prevention Methods

Restriction 1
The initialization of an external variable declared extern within a block does not become an error. In addition, the

debugging information in the assembler source is incorrect.

[Description]

Since it is not compliant with the ANSI C language specifications, the initialization of an external variable declared

extern within a block should produce an error, but the description does not become an error. The object defined as an

external variable with initial value is interpreted and the code is output by the compiler.

The debugging information in the object output by the compiler is correct, but the debugging information in the

assembler source is incorrect.

[Reproduced example]

int i;

void f(void) {

 extern int i = 2;

}

[Prevention method] None

[Generation] Ver. 1.00 or later

Restriction 2

Binding a variable with the same name to a variable declared extern in the block is sometimes illegal.

[Description]

Binding a variable with the same name to a variable declared extern in the block is illegal in either of the following

cases.

(1) When a variable declared with extern in a block and a variable declared with static after outside the block have the

same name

Since no error occurs and there is no binding, illegal code is output when this variable is referenced.

[Reproduced example]

void f(void) {

 extern int i;

 i = 1; /* Illegal code output */

}

 static int i;

APPENDIX C LIST OF RESTRICTIONS RELATED TO CC78K4

User’s Manual U16707EJ1V0UM 236

(2) When a variable declared with extern in a block and a variable not declared with static outside the block after a

variable declared with extern have the same name

There is no binding, and illegal code is output.

[Reproduced example]

void f(void) {

 extern int i;

 i = 1; /* Illegal code output */

}

 int i;

(3) When a variable declared with extern in a block and a variable not declared with extern outside the block before a

variable declared with extern have the same name, and an automatic variable declared in a block containing the

block with the variable declared with extern has the same name

The variable outside the block and the variable declared with extern in the block are not bound, and illegal code is

output.

[Reproduced example]

int i = 1;

void f(void) {

 int i;

 {

 extern int i;

 i = 1; /* Illegal code output */

 }

 }

(4) A variable declared with extern in a block and a variable declared with extern in another block have the same

name

There is no binding, and illegal code is output.

[Reproduced example]

void f1(void) {

 extern int i;

 i = 2;

}

void f2(void){

 extern int i;

 i = 3;

}

[Prevention method] None

[Generation] Ver. 1.00 or later

APPENDIX C LIST OF RESTRICTIONS RELATED TO CC78K4

User’s Manual U16707EJ1V0UM 237

Restriction 3
If a type defined by typedef (typedef name) is used in a function prototype declaration or a declaration using a

const or volatile type modifier, the typedef expansion is illegal, and an error results.

[Description]

If a type defined by typedef (typedef name) is used in a function prototype declaration or a declaration using a

const or volatile type modifier, the typedef expansion is illegal, and an error may result.

[Reproduced example 1]

typedef int FTYPE();

FTYPE func;

int func(void); /* F713 Redefined 'func' */

[Reproduced example 2]

typedef int VTYPE[2];

typedef int *VPTYPE[3];

const VTYPE *a;

const int (*a)[2]; /* F713 Redefined 'a' */
volatile VPTYPE b[2];

volatile int *volatile b[2][3]; /* F713 Redefined 'b' */

[Prevention method] None

[Generation] Ver. 1.00 or later

Restriction 4

Sometimes a multidimensional array with an undefined size does not operate properly.

[Description]

Sometimes a multidimensional array with an undefined size does not operate properly.

[Reproduced example 1]

char c[][3]={{1},2,3,4,5}; /* Illegal code */

[Reproduced example 2]

char c[][2][3]={"ab","cd","ef"}; /* Error (F756) */

[Prevention method]

Define the size of the multidimensional array.

[Generation] Ver. 1.00 or later

APPENDIX C LIST OF RESTRICTIONS RELATED TO CC78K4

User’s Manual U16707EJ1V0UM 238

Restriction 5
In a function returning the address of a function with arguments, those arguments cannot be referenced. There is

no error when referenced, but illegal code is output.

[Description]

In a function returning the address of a function with arguments, those arguments cannot be referenced. There is

no error when referenced, but an illegal code is output.

[Reproduced example]

char *c;

int *i;

void (*f1(int *))(char *);

void (*f2(void))(char *);

void (*f3(int *))(void);

void main() {

 (*f1(i))(c); /* Correct description (W510) */
 (*f1(i))(i); /* Incorrect description */
 (*f2())(c); /* Correct description (W509) */
 (*f2())(); /* Incorrect description (W509) */
 (*f3(i))(); /* Correct description (W509) */
 (*f3(i))(i); /* Incorrect description */

}

W509 or W510 is output for a correct description. Nothing is output for a description that should produce a

warning. However, the output code is normal.

void (*f4())(int p) {

 p++; /* Incorrect description */

}

An error is not output for a description that should cause an error. An illegal code is generated.

[Prevention method] None

[Generation] Ver. 1.00 or later

APPENDIX C LIST OF RESTRICTIONS RELATED TO CC78K4

User’s Manual U16707EJ1V0UM 239

Restriction 6
The signed type bit field is handled as an unsigned bit field.

[Description]

The signed type bit field is handled as an unsigned bit field.

[Prevention method] None

[Generation] Ver. 1.00 or later

Restriction 7
If the total size of the auto variable in one function exceeds 65,535 bytes when the large model is used, the output

code and debug information become illegal.

[Description]

If the total size of the auto variable in one function exceeds 65,535 bytes when the large model is used, the output

code and debug information become illegal.

[Reproduced example] (when -ML is specified)
void func(long a, int b){

 int i;

 char tab1[35000];

 char tab2[35000];

 i = b;

}

[Prevention method] Keep the total size of the auto variable in one function to within 65,535 bytes.

[Generation] Ver. 1.00 or later

User’s Manual U16707EJ1V0UM 240

APPENDIX D INDEX

#pragma pc .. 87

$

$DGL.. 99

$DGS ... 99

*

*.asm.. 32

*.dll ... 32

*.h... 32

*.hlp.. 32

*.inc .. 32

_

_@BRKADR... 165

_@DIVR... 165

_@FNCENT... 165

_@FNCTBL.. 165

_@LDIVR... 165

_@MEMBTM.. 165, 166

_@MEMTOP.. 165, 166

_@SEED.. 165

_@STBEG ... 154, 158

_@TOKPTR... 165

_errno... 165

_putchar.asm ... 146, 147

A

-A option... 106

ABORT... 143, 189

ANSI-C... 12

Assembler .. 18

Assembler source .. 223

Assembler source module file 77, 131, 215

B

Build ... 24

C

C compiler...17, 143

-C option .. 87

C source module file16, 77, 213

cc78k4.exe... 32

cc78k4.msg.. 32

CC78K4P.DLL ... 36

CER ... 77

Constant address reference................................... 225

Cross-reference list file77, 140, 220

-CS option.. 127

cstart*.asm..32, 152

cstart.asm147, 151, 152, 153

cstartn.asm ...147, 151, 152

D

-D option .. 103

Debugger ... 22

E

-E option .. 110

ECC ... 77

Environment variable ... 31

ER.. 77

Error level .. 143

Error list file...77, 135, 221

euc... 31

EXIT status .. 143

F

-F option... 123

FATAL ... 189

FATAL ERROR.. 143

G

-G option.. 22, 99

getchar.asm..146, 147

APPENDIX D INDEX

User’s Manual U16707EJ1V0UM 241

H

--/-?/-H options ... 125

Hardware initialization function 158

hdwinit function .. 151, 158

HER ... 77

I

-I option.. 105

INC78K4 .. 31, 105, 144

Include file.. 77, 222

K

-K option .. 101

L

LANG78K... 31, 144

Large model ... 126, 127

-LF option... 119

-LI option.. 120

LIB78K4 ... 31, 144

Librarian... 21

Library.. 33, 226

Library file .. 33

Library function .. 165

Library switch ... 154, 165

Link directive file 155, 166, 224

Linker ... 19

-LL option... 117

Location ... 158

Location function.. 127

longjmp.asm... 146, 147

-LT option... 118

-LW option.. 116

M

Medium model ... 126, 127

Memory model ... 126

mkstup.bat ... 32, 146, 148

mkstup.sh .. 146, 148

-ML option.. 126

-MM option... 126, 158

-MS option.. 126, 158

N

-NG option ..99

-NO option ..90

-NQ option ..94

-NR option ..91, 92, 93

-NV option ..122

-NZ option...128

O

-O option...90

Object converter ...20

Object module file...77, 131

On-line help file...32

Optimization..81

P

-P option ...100

Parameter file ...38, 77

PATH..31

PM plus ..24, 36

Preprocess list file77, 100, 138, 218

putchar.asm..146, 147

Q

-Q option...94

-QC option ..97, 223

-QU option ..97, 224

R

-R option...91

-RD option ..92

repgetc.bat ...146

repputc.bat ...146

repputcs.bat..146

reprom.bat ..37, 146

repselo.bat..146

repselon.bat..146

repvect.bat..146

Reset vector ...158

rom.asm 32, 146, 147, 152, 163

ROMization...83

ROMization process150, 159, 160, 186

ROMization routine...146

-RS option ..93

Rule for naming libraries...34

APPENDIX D INDEX

User’s Manual U16707EJ1V0UM 242

Rule for naming startup routines 35

Runtime library ... 33, 83

S

s4*.rel ... 83, 152

-SA option .. 107

-SE option .. 112

setjmp.asm... 146, 147

setup.exe.. 26

sjis .. 31

Small model ... 126, 127

Source debug... 226

Source file name .. 222

Stack pointer .. 158

Standard library.. 33, 83

Startup module... 186

Startup routine............................ 33, 83, 145, 150, 226

System simulator.. 23

T

-T option ... 124

Temporary file .. 77

TMP ... 31

U

-U option .. 104

V

-V option .. 122

vectxx.asm... 147

W

-W option ... 121

WARNING ..143, 189

X

-X option .. 114

Y

-Y option .. 130

Z

-Z option... 128

-ZO option.. 226

	COVER
	INTRODUCTION
	CHAPTER 1 OVERVIEW
	1.1 Microcontroller Application Product Development and Role of CC78K4
	1.2 Development Procedure Using CC78K4
	1.2.1 Using editor to create source module files
	1.2.2 C compiler
	1.2.3 Assembler
	1.2.4 Linker
	1.2.5 Object converter
	1.2.6 Librarian
	1.2.7 Debugger
	1.2.8 System simulator
	1.2.9 PM plus

	CHAPTER 2 PRODUCT OVERVIEW AND INSTALLATION
	2.1 Host Machines and Supply Media
	2.2 Installation
	2.2.1 Installation of Windows version
	2.2.2 Installation of UNIX version

	2.3 Installation of Device Files
	2.3.1 Installation of Windows version
	2.3.2 Installation of UNIX version

	2.4 Directory Configuration
	2.4.1 Windows version directory configuration
	2.4.2 UNIX version directory configuration

	2.5 Uninstallation Procedure
	2.5.1 Uninstallation of Windows version
	2.5.2 Uninstallation of UNIX version

	2.6 Environment Settings
	2.6.1 Host machine (for PC-9800 Series and IBM PC/AT compatibles)
	2.6.2 Environment variables
	2.6.3 File organization
	2.6.4 Library files

	CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING
	3.1 PM plus
	3.1.1 Position of CC78K4P.DLL (tools DLL)
	3.1.2 Execution environment
	3.1.3 CC78K4 option setting menu
	3.1.4 Description of each part of <Compiler Options> dialog box

	3.2 Procedure from Compiling to Linking (When Not Using Flash Memory Self Rewrite Mode)
	3.2.1 MAKE from PM plus
	3.2.2 Starting up PM plus
	3.2.3 Creating project
	3.2.4 Setting compiler and linker options
	3.2.5 Building project
	3.2.6 Compiling to linking in command line (for DOS prompt and EWS)

	3.3 Compiling to Linking (When Using Flash Memory Self Rewrite Mode)
	3.3.1 Compiling to linking via PM plus
	3.3.2 Compiling to linking in command line (for DOS prompt and EWS)

	3.4 I/O Files of C Compiler
	3.5 Execution Start and End Messages

	CHAPTER 4 CC78K4 FUNCTIONS
	4.1 Optimization Method
	4.2 ROMization Function
	4.2.1 Linking

	CHAPTER 5 COMPILER OPTIONS
	5.1 Specifying Compiler Options
	5.2 Prioritization of Compiler Options
	5.3 Descriptions of Compiler Options

	CHAPTER 6 C COMPILER OUTPUT FILES
	6.1 Object Module File
	6.2 Assembler Source Module File
	6.3 Error List File
	6.3.1 Error list file with C source
	6.3.2 Error list file with error message only

	6.4 Preprocess List File
	6.5 Cross-Reference List File

	CHAPTER 7 USING C COMPILER
	7.1 Efficient Operation (EXIT Status Function)
	7.2 Setting Up Development Environment (Environment Variables)
	7.3 Interrupting Compilation

	CHAPTER 8 STARTUP ROUTINES
	8.1 File Organization
	8.1.1 BAT directory contents
	8.1.2 SRC directory contents

	8.2 Batch File Description
	8.2.1 Batch files for creating startup routines

	8.3 Startup Routines
	8.3.1 Overview of startup routines
	8.3.2 Description of sample program (cstart.asm)
	8.3.3 Revising startup routines

	8.4 ROMization Processing in Startup Module for Flash Area

	CHAPTER 9 ERROR MESSAGES
	9.1 Error Message Format
	9.2 Types of Error Messages
	9.3 List of Error Messages

	APPENDIX A SAMPLE PROGRAMS
	A.1 C Source Module File
	A.2 Execution Example
	A.3 Output List

	APPENDIX B LIST OF USE-RELATED CAUTIONS
	APPENDIX C LIST OF RESTRICTIONS RELATED TO CC78K4
	C.1 Details About Restrictions and Prevention Methods

	APPENDIX D INDEX

