

Calibration Guide

ZSSC3281

R33US0002ED0100 Rev.1.00
Jun 29, 2022

 Page 1
© 2022 Renesas Electronics

The calibration DLL file described in this document is created to expedite the calibration process for the
ZSSC3281. Section 1 provides a short overview of the main calibration steps using the file. Section 3 describes
how to implement a DLL (CalibrationL6.DLL) in customer-specific software.

Contents
1. Calibration Sequence .. 2

1.1 Set-up and Initialization ... 3
1.1.1. Assigning a Unique Identification Number to the IC ... 3
1.1.2. Analog Front End Configuration .. 3
1.1.3. Temperature Configuration ... 4

1.2 Data Collection .. 4
1.2.1. Data Collection by Raw Measurement Requests ... 6

1.3 Coefficient Calculations ... 8
1.4 Programming CCP ... 8
1.5 Verification ... 9

2. CalibrationL6.DLL .. 9
2.1 DLL Setup .. 9
2.2 DLL Use ... 10

2.2.1. Using Customer Default Values as Coefficients ... 10
2.3 CalibrationL6.DLL Application Programming Interface (API) .. 10

2.3.1. Constants Used with CalibrationL6.DLL ... 10
2.3.2. Conversion Routines ... 12
2.3.3. Coefficients Calculation ... 14
2.3.4. Verification Routine ... 16

3. Glossary .. 19

4. Revision History .. 19

Figures
Figure 1. AFEs and Signal Paths ... 2
Figure 2. Calibration Flow Chart ... 3
Figure 3. Calibration Point Locations for Selected Calibration Methods .. 5
Figure 4. Assignment Input Resistive Range to SSC-output .. 7
Figure 5. Raw Data Handling for Coefficient Calculation (DLL) ... 8

Tables
Table 1. Calibration Types .. 4
Table 2. ZSSC3281 Coefficients CCP Addresses.. 8
Table 3. Overview of the Routines ... 12

ZSSC3281 Calibration Guide

R33US0002ED0100 Rev.1.00
Jun 29, 2022

 Page 2

Table 4. Parameter Bridge Routines .. 12
Table 5. Overview of the Routines ... 13
Table 6. Parameter Temperature Routines .. 14
Table 7. Overview of the Routine ... 14
Table 8. Parameter CalculateCoefficients Function ... 16
Table 9. Parameter BackClacRawTemp/BackCalcRawBridge Functions ... 18

1. Calibration Sequence
A typical calibration flow for the ZSSC3281 contains five steps in the following order:

1. Set-up and initialization
2. Data collection
3. Coefficient calculation
4. Memory programming
5. Verification

The recommended approach for data collection with the ZSSC3281 can be performed using the raw
measurement commands described in section 1.2.1.2, which requires a simpler initialization of the IC’s memory
(customer ID and AFE setup).

The ZSSC3281 has two Analog Front Ends (AFEs); the calibration sequence must be applied separately for
Sensor 1 + Temp Ch1, Sensor 2 + Temp Ch2, and Temp Ch3 (see the overview diagram in Figure 1).

Figure 1. AFEs and Signal Paths

For a more detailed calibration flow graph, see Figure 2.

AFE2

AFE1

SSC
 Main Sensor –

CH1

SSC
Temperature –

CH1

SSC
 Main Sensor –

CH2

SSC
Temperature –

CH2

Sensor 1

Sensor 2

PTAT

T1

T2

T3

SSC
Temperature –

CH3
1 of 4:

T_CH3_raw

Conditioned
Data

Raw
Data

ZSSC3281 Calibration Guide

R33US0002ED0100 Rev.1.00
Jun 29, 2022

 Page 3

Figure 2. Calibration Flow Chart

1.1 Set-up and Initialization

1.1.1. Assigning a Unique Identification Number to the IC
This identification is programmed in the IC’s memory and can be used as an index in the database stored on the
calibration PC. This type of a database can contain all the raw values of external sensor readings (and
temperature readings if applied, or vice versa) for that part, as well as the according reference values for the
calibration. For a detailed description of the registers Cust_ID0 (0xFD) and Cust_ID1 (0xFE) dedicated to the
customer for his product identification, see the ZSSC3281 Datasheet.

1.1.2. Analog Front End Configuration
Before useful raw data can be collected from the IC, the circuitry must be initialized. The initialization step
involves setting the AFE (Analog Front End) configuration bits for the end application and optionally
programming the math coefficients to their default value. For detailed description for the single parameters of the
AFE, and for the default settings of the AFE parameters and coefficients, which have been already programmed
during the wafer test, see the ZSSC3281 Datasheet.

Initialized? No

Enter in NVM:
- Interface Configuration
- AFE(s) configuration
- Customer ID

Set temperature and external
sensor values at calibration

reference machine

Power-On Reset

Enough Points?

Yes

Verify Calibration
Take further data points, calculate
error at existing points, etc.

Add Point

No

Yes

Calculate coefficients

Write Values to NVM

DONE

Write CheckSumC (CRC)

Power-On reset

Convert IC output (Bridge/Temp
values) into linear characteristic …

mapping of „negative“ bridge values

Call CalculateCoefficients()

Get raw value: Bridge

Get Raw value: Temperature

Initialization

Data Collection

Calculate
Coefficients

NVM
Programming

Verification

ZSSC3281 Calibration Guide

R33US0002ED0100 Rev.1.00
Jun 29, 2022

 Page 4

1.1.3. Temperature Configuration
For a possible temperature measurement with the IC-internal temperature sensor, the default configuration is
programmed into the temperature configuration registers. These default settings allow the full temperature range
of -40°C to +125°C to be used.

1.2 Data Collection
The minimum number of calibration points used depends on the precision required and the behavior of the
resistive bridge in use (it is normally between two and seven). There is no maximum number of calibration points
that can be used; in general, taking more calibration points results in a better calibration.

Descriptions of the standard set of calibration points are displayed in Figure 3.
■ 2-point calibration can be used either to:

● Obtain only a gain and offset terms for bridge compensation with no temperature compensation for either
term

● Obtain only a gain and offset terms for temperature compensation, without using any external sensor
■ 3-point calibration can be used either to:

● Obtain the additional term SOT for 2nd order correction for the bridge (SOT_sens), but no temperature
compensation of the bridge output

● Obtain the additional term SOT for 2nd order correction for the temperature (SOT_temp); temperature only is
compensated, without using any external sensor

■ 4-point calibration can be used to obtain bridge offset and gain, and both the Tco term and the Tcg term,
which provides 1st order temperature compensation of the bridge offset and gain term. Additionally, the
temperature sensor’s offset and gain can be compensated based on the same calibration points.

■ 5-point calibration can be used to obtain bridge sensor’s gain, offset and 2nd-order term, Tco (bridge sensor
related temperature offset term) and 2nd-order term that provides correction applied to the bridge’s
temperature coefficient’s offset. Additionally, the temperature sensor’s offset, gain and 2nd-order nonlinearity
can be compensated based on the same calibration points.

■ 6-point calibration can be used to obtain bridge sensor’s gain, offset, Tcg, Tco, SOT_tco, and SOT_tcg.
Additionally, the temperature sensor’s offset, gain and 2nd-order nonlinearity can be compensated based on
the same calibration points.

■ 7-point calibration can be used to obtain the complete set off supported signal correction coefficients for the
sensor bridge and IC-internal temperature sensor.

Table 1. Calibration Types

Type Calculated Coefficients [1]
Required Number of Data

Points

Bridge Temp

2 Points OFFSET_S, GAIN_S 2 0

2 Points OFFSET_T,GAIN_T 0 2

3 Points OFFSET_S,GAIN_S, SOT_S 3 0

3 Points OFFSET_T,GAIN_T, SOT_T 0 3

4 Points OFFSET_S, GAIN_S, TCO, TCG, OFFSET_T, GAIN_T 2 2

5 Points OFFSET_S, GAIN_S, TCO, OFFSET_T, GAIN_T, SOT_TCO, SOT_S, SOT_T 3 3

6 Points OFFSET_S, GAIN_S, TCO, TCG, OFFSET_T, GAIN_T,SOT_TCO,
SOT_TCG, SOT_T 2 3

7 Points OFFSET_S, GAIN_S, TCO, TCG, OFFSET_T, GAIN_T, SOT_TCO,
SOT_TCG, SOT_T, SOT_S 3 3

1. Coefficients notation as used in the Calibration.dll / Calibration.h.

ZSSC3281 Calibration Guide

R33US0002ED0100 Rev.1.00
Jun 29, 2022

 Page 5

■ Gain_S – External Sensor/Bridge gain term
■ Offset_S – External Sensor/Bridge offset term
■ Tcg – Temperature coefficient gain term
■ Tco – Temperature coefficient offset term
■ SOT_tcg – Second-order term for Tcg non-linearity
■ SOT_tco – Second-order term for Tco non-linearity
■ SOT_sens – Second-order term for bridge non-linearity
■ Gain_T – Gain coefficient for temperature
■ Offset_T – Offset coefficient for temperature
■ SOT_T – Second-order term for temperature source non-linearity

Figure 3. Calibration Point Locations for Selected Calibration Methods

5-Point Calibration

Temperature

B
rid

ge

Temperature

B
rid

ge

Temperature

B
rid

ge

Temperature

B
rid

ge

Temperature

B
rid

ge

Temperature

B
rid

ge

3-Point Calibrations

4-Point Calibration

6-Point Calibration 7-Point Calibration

Temperature

Br
id

ge

Temperature

Br
id

ge

2-Point Calibrations

ZSSC3281 Calibration Guide

R33US0002ED0100 Rev.1.00
Jun 29, 2022

 Page 6

Figure 3 shows the expected, recommended placement of calibration points for the different calibration options.
The order of the points taken is not important; however, the number of points per temperature must be followed
or the calibration may fail. It is important to keep the calibration points as orthogonal as possible to maximize
calibration accuracy.

In addition, the provided calibration DLL can also generate other subsets and combinations of calibration
coefficients based on calibration points at different locations than described in Figure 3.

1.2.1. Data Collection by Raw Measurement Requests
The number of unique points (external sensor and/or temperature) at which calibration must be performed
generally depends on the requirements of the application and the behavior of the resistive bridge in use. The
minimum number of points required is equal to the number of bridge/temperature coefficients to be calculated.
For a full calibration resulting in values for all seven possible bridge coefficients and three possible temperature
coefficients, a minimum of seven pairs of bridge with temperature measurements must be collected.

1.2.1.1. Definition of Reference Values for Raw Measurements
The reference points for the resistive sensor calibration are usually defined in percent in relation to the full target
application range. After that, they must be converted into digital value relative to the full scale (FS) output of 24-
bit, by a given function in the DLL.

The reference values for the raw temperature measurements are defined in degree Celsius (°C). In combination
with user-defined temperature limits (also in °C), the reference input for each point is then converted into the
according digital reference value for the DLL.

For example, defining pressure reference points for calibration dependent on a customer’s target range can be
the following:
■ Customer’s target application range: 0 to 16bar
■ Customer’s pressure reference points: 2bar/6bar/14bar.
■ Exact assignment would be:

● 0bar  0% of the range
● 16bar  100% of the range

■ The defined reference points have the following assignments:
● 2bar  12.5% of the range
● 6bar  37.5% of the range
● 14bar  87.5% of the range

■ To add buffers for parasitic impact and to have integer percentage values for the calibration, it is
recommended to change the points slightly as follows:
● 2bar  15% of the range
● 6bar  35% of the range
● 14bar  85% of the range

ZSSC3281 Calibration Guide

R33US0002ED0100 Rev.1.00
Jun 29, 2022

 Page 7

Figure 4. Assignment Input Resistive Range to SSC-output

To obtain the potentially best and most robust coefficients, it is recommended that measurement pairs
(temperature vs. pressure) are collected near the outer corners of the intended operation range or at points that
are located far from each other. It is essential to provide highly precise reference values as nominal, expected
values. The measurement precision of the external calibration-measurement equipment must be ten times more
accurate than the expected ZSSC3281 output precision after calibration to avoid precision losses caused by the
nominal reference values (i.e., resistive sensor signal and temperature deviations).

Note: There is an inherent redundancy in the seven resistive sensor-related and three temperature-related
coefficients. Since the temperature is a necessary output (which also needs correction), the temperature-related
information is mathematically separated, which supports faster and more efficient calculations during the normal
usage of the sensor-IC system.

1.2.1.2. Raw Measurement Commands
Before data collection, it is recommended to find the optimal AFE configuration for the applied sensor and the
target voltage input range, and then program it to the CCP configuration registers (for a description of registers
from 0x13 to 0x1C, see the ZSSC3281 Datasheet). After AFE configuration, raw data can be acquired.

For data collection, the command A7HEX must be used: it returns measurements raw data values for sensors and
temperatures for all channels activated.

1.2.1.3. Raw Data Output
The raw data measurement results are always MSB (Most Significant Bit)-aligned. The internal temperature
sensor has a preconfigured setup with an ADC resolution of 14 bits.

Note: In cases of the use of measurements from the third temperature channel, note that the device provides
these in a 32-bit format. The 8 least significant should be discarded and the remaining 3 bytes contains raw data
MSB aligned, and then can be processed as data relevant to the other channels.

In order to adapt both resistive and temperature raw values to the expected format (integer representation, 24-
bit, MSB-aligned in the range of -2^23..2^23 in), they must be converted from the two's complement
representation to integer values in a range from -2^23..2^23.

Figure 5 summarizes the recommended raw data process before passing it to the CalculateCoefficients function
of the DLL.

ZSSC3281 Calibration Guide

R33US0002ED0100 Rev.1.00
Jun 29, 2022

 Page 8

Figure 5. Raw Data Handling for Coefficient Calculation (DLL)

1.3 Coefficient Calculations
The coefficients are calculated after all calibration data points are collected. The DLL exposes a C code interface
and can be used directly from code (see section 2 for details). Features of the DLL are:
■ Coefficient calculation
■ Verification at calibration points
■ Extended range verification

1.4 Programming CCP
After the coefficients are calculated, they must be written to the CCP. The following table lists the commands
necessary to program the coefficients to the according registers. Every coefficient is saved in the CCP in a 32-bit
register; each coefficient is a 24-bit wide value. Examples displayed in the following sections of the document
are based on Main Sensor Ch1 and Temperature Sensor Ch1. Other channels can be considered equivalent.
Sensor Temperature Ch3 measurement requires upfront formatting to 24 bits as explained in Section 1.2.1.3.

Table 2. ZSSC3281 Coefficients CCP Addresses

Register
[Hex] Data from Coefficients for the According Register Description Provided by

4D coefficients[INDEX_OFFSET_S] Offset_S[31:0] DLL

4E coefficients[INDEX_GAIN_S] Gain_S[[31:0] DLL

53 coefficients[INDEX_TCG] Tcg[[31:0] DLL

51 coefficients[INDEX_TCO] Tco[31:0] DLL

Resistive Sensor CH1
ADC resolution: N-bit

DLL Function
BRAW_DLL = TwosComplementToDecimal

(BRAW_MSB)

BRAW_MSB

Output range:
[-223..223-1]

Two’s Complement,
MSB aligned

DLL Function
CalculateCoefficients

(...BRAW_DLL

 TRAW_DLL…)

Output range:
[-223..223-1]

Integer, 24-bit
MSB aligned

Temperature Sensor CH1
ADC resolution: M-bit

DLL Function
TRAW_DLL = TwosComplementToDecimal

(TRAW_MSB)

TRAW_MSB

Output range:
[-223..223-1]

Integer, 24-bit
MSB aligned

Output range:
[-223..223-1]

Two’s Complement,
MSB aligned

ZSSC3281

Resistive Sensor CH2
ADC resolution: N-bit

DLL Function
BRAW_DLL = TwosComplementToDecimal

(BRAW_MSB)

BRAW_MSB

Output range:
[-223..223-1]

Two’s Complement,
MSB aligned

Output range:
[-223..223-1]

Integer, 24-bit
MSB aligned

Temperature Sensor CH2
ADC resolution: M-bit

DLL Function
TRAW_DLL = TwosComplementToDecimal

(TRAW_MSB)

TRAW_MSB

Output range:
[-223..223-1]

Integer, 24-bit
MSB aligned

Output range:
[-223..223-1]

Two’s Complement,
MSB aligned

Temperature Sensor CH3
ADC resolution: M-bit

DLL Function
TRAW_DLL = TwosComplementToDecimal

(TRAW_MSB)

TRAW_32 bits

Output range:
[-223..223-1]

Integer, 24-bit
MSB aligned

Output range:
[-223..223-1]

4 Bytes.LSB to be
discarded.

Two’s Complement,
MSB aligned

DLL Function
CalculateCoefficients

(...BRAW_DLL

 TRAW_DLL…)

DLL Function
CalculateCoefficients

 (.. TRAW_DLL..)

ZSSC3281 Calibration Guide

R33US0002ED0100 Rev.1.00
Jun 29, 2022

 Page 9

Register
[Hex] Data from Coefficients for the According Register Description Provided by

52 coefficients[INDEX_SOT_TCO] SOT_tco[31:0] DLL

54 coefficients[INDEX_SOT_TCG] SOT_tcg[31:0] DLL

4F coefficients[INDEX_SOT_S] SOT_sens[31:0] DLL

61 coefficients[INDEX_OFFSET_T] Offset_T[[31:0] DLL

62 coefficients[INDEX_GAIN_T] Gain_T[31:0] DLL

63 coefficients[INDEX_SOT_T] SOT_T[31:0] DLL

Assignment to the 32 bit register of coefficients calculated by the dll
if (coefficients[INDEX_OFFSET_S] < 0) Offset_S = (-coefficients[INDEX_OFFSET_S] | 0x800000);
else Offset_S = coefficients[INDEX_OFFSET_S];

if (coefficients[INDEX_GAIN_S] <0) Gain_S = (coefficients[INDEX_GAIN_S] | 0x800000);
else Gain_S = coefficients[INDEX_GAIN_S];

Numerical example:
// results from coefficients calculation
coefficients[INDEX_OFFSET_S] = -520831 // = 0x0087F27F (32 bit sign-magnitude
 //representation)
coefficients[INDEX_GAIN_S] = 5880722 // = 0x0059BB92 (32 bit sign-magnitude
 //representation)

1.5 Verification
The DLL interface provides verification at calibration time (see section 2.3.4). To verify if the results are
consistent with expected results, also perform an online verification at a different bridge measurand /
temperature combination than was used for calibration.

2. CalibrationL6.DLL
The CalibrationL6.DLL’s properties, interfacing, and variable declaration, and the available routines with the
respective returns of the available methods, are characterized in detail. The main focus in this document is to
enable the user to integrate the DLL in a customer software environment for production purposes.

2.1 DLL Setup
Complete the following setup steps to use the CalibrationL6.DLL in a user program:

1. Declare all functions to be used from the DLL:
■ In C/C++, link CalibrationL6.lib into the final executable.
■ In VB (Visual Basic), add CalibrationL6.DLL as a reference and verify that it is in the path.

2. Create CalibrationL6.h that must contain the same declarations for the functions used in CalibrationL6.DLL.
The user’s program must be set up to use WindowsTM calling conventions (stdcall), not “C” style calling
conventions (cdecl).

All functions listed in section 2 can be called as if they were local functions.

ZSSC3281 Calibration Guide

R33US0002ED0100 Rev.1.00
Jun 29, 2022

 Page 10

2.2 DLL Use
CalibrationL6.DLL typically is used for the following calibration steps:

1. Data Conversion – All raw and target data input for both bridge and temperature (if applicable) must be
converted into the correct format (see section 1.2).

2. Coefficient Calculation – The converted data along with control information is passed to the
CalculateCoefficients method which generates all necessary coefficients (see section 2.3.3).

3. Verification – The coefficients are verified both for accuracy and proper operation across the entire region of
operation. The CalibrationL6.DLL provides methods to do this verification offline (see section 2.3.4).

2.2.1. Using Customer Default Values as Coefficients
The CalibrationL6.DLL library supports calibration using customer-calculated default values. These values can
be applied to all calibrations without recalculating each time, allowing one less calibration point for every used
default value. The pre-condition for using customer default values is a known, repeatable sensor characteristic.
The result of a calibration using default values is always less accurate than a complete calibration. To use a
default value during calibration, do not select coefficient for calculation.

2.3 CalibrationL6.DLL Application Programming Interface (API)

2.3.1. Constants Used with CalibrationL6.DLL
Within CalibrationL6.DLL many different enumerations are used to clarify the control and separation of data
going to and from the DLL.

2.3.1.1. COEFFICIENT_COUNT
COEFFICIENT_COUNT is a constant that represents the number of coefficients. All coefficient arrays passed to
CalibrationL6.DLL are expected to be of size COEFFICIENT_COUNT.

Example: Declaration of an array of integers for the coefficients and initialize the array to 0.
int coefficients[COEFFICIENT_COUNT] = {0}; //c compiler will 0 fill remaining entries

2.3.1.2. Calibration Type
The programmable coefficients have the listed flag values (see the following C code declaration) in the DLL. The
most common combinations of coefficients are shown in the source code Example of this section. The type of
calibration desired is indicated through the coefficients selected for calibration. For best results, use the pre-
defined combinations. The coefficients can be individually OR’ed together in order to form other calibration
types.

C code declaration:
#define CO_OFFSET_S 0x1
#define CO_GAIN_S 0x2
#define CO_TCG 0x4
#define CO_TCO 0x8
#define CO_SOT_TCO 0x10
#define CO_SOT_TCG 0x20
#define CO_SOT_S 0x40
#define CO_OFFSET_T 0x80
#define CO_GAIN_T 0x100
#define CO_SOT_T 0x200

Example: The following C code lines show applicable combinations of coefficients and a possible definition of a
variable which passes this information validly to the CalculateCoefficients method.

int errorcode;
int negCoeffs;

ZSSC3281 Calibration Guide

R33US0002ED0100 Rev.1.00
Jun 29, 2022

 Page 11

// Variable definition for required coefficients
int P2_S = (CO_OFFSET_S|CO_GAIN_S);
int P3_S = (CO_OFFSET_S|CO_GAIN_S|CO_SOT_S);
int P3_T = (CO_OFFSET_T|CO_GAIN_T|CO_SOT_T);
int P4_S = (CO_OFFSET_S|CO_GAIN_S|CO_TCO|CO_TCG|CO_OFFSET_T|CO_GAIN_T);
int P5_S = (CO_OFFSET_S|CO_GAIN_S|CO_TCO|CO_OFFSET_T|CO_GAIN_T|CO_SOT_TCO|CO_SOT_S|CO_SOT_T);
int P6_S = (CO_OFFSET_S|CO_GAIN_S|CO_TCO|CO_TCG|CO_OFFSET_T|CO_GAIN_T|CO_SOT_TCO|CO_SOT_TCG|CO_SOT_T);
int P7_S =
(CO_OFFSET_S|CO_GAIN_S|CO_TCO|CO_TCG|CO_OFFSET_T|CO_GAIN_T|CO_SOT_TCO|CO_SOT_TCG|CO_SOT_T|CO_SOT_S);
…

// calculate just bridge coefficients -> P3_S
// possible function call
errorcode = CalculateCoefficients(coefficients,
 &negCoeffs

2,
P3_S,
0,
rawBridge,
desiredBridge,
rawDummy,
desiredDummy, /* Not calibrating anything with temp */
);

2.3.1.3. Indexes for Coefficients
After calculating coefficients, the CalibrationL6.DLL provides them in a certain order in the coefficients array. The
access with these indexes returns the signed value of each coefficient.

C code declaration:
//INDEXES for coefficients array
#define INDEX_OFFSET_S 0
#define INDEX_GAIN_S 1
#define INDEX_TCG 2
#define INDEX_TCO 3
#define INDEX_SOT_TCO 4
#define INDEX_SOT_TCG 5
#define INDEX_SOT_S 6
#define INDEX_OFFSET_T 7
#define INDEX_GAIN_T 8
#define INDEX_SOT_T 9

Example: Accessing the OFFSET_S coefficient value after calculation with CalculateCoefficients method:
//assuming int coefficients[COEFFICIENT_COUNT]; has been previously declared
int offset_s = coefficients[INDEX_OFFSET_S];

2.3.1.4. Sign Flags of the Coefficients
The sign flags allow excluding a certain sign from the representative “sign number,” which contains the sign
information for all coefficients. The coefficients themselves are signed, too. This “sign number” makes data
processing more comfortable. Gain coefficients do not have a flag for negative presentation; the results are
always positive.

C code declaration:
//FLAGS for negCoeffs
#define NEG_SOT_S 0x1
#define NEG_SOT_TCO 0x2
#define NEG_SOT_TCG 0x4
#define NEG_SOT_T 0x8
#define NEG_TCO 0x10
#define NEG_TCG 0x20
#define NEG_OFFSET_S 0x40
#define NEG_OFFSET_T 0x80

ZSSC3281 Calibration Guide

R33US0002ED0100 Rev.1.00
Jun 29, 2022

 Page 12

Example:
 int negSOT_S =0;

//negSOT_S=0 when the coefficient is positive, = 1 when it’s negative.
negSOT_S = negCoeffs & NEG_SOT_S;

2.3.2. Conversion Routines
The following conversion routines are used for translation of an input value into the necessary format to
complete the calculations.

2.3.2.1. Bridge Conversion Routines
Table 3. Overview of the Routines

Name Description

ConvertBridgeFromPercent
Converts a percentage value [0,100] into the proper domain for use by CalibrationL6.DLL.
100 percent correspond to the full scale output (16777215 = 2^24-1) of the 24-bit wide IC
output

ConvertBridgeToPercent Converts result from the IC (corrected measurement) or DLL’s calculation domain into a
percentage reading for use in error calculations.

The percentage declarations for the bridge input are useful for defining the common range of the measured item
(e.g., pressure). For calculation or verification routines listed in sections 2.3.3 and 2.3.4, the sensor inputs must
be processed through ConvertBridgeFromPercent routine which maps the bridge sensor precentral values (0%
to 100%) to the full scale range of 24 bits.

C code declaration:
double ConvertBridgeFromPercent(double percent);

Returns: The desired (reference) sensor value in counts according to the input in percent.

Example: One calibration input represents the desired and reference value of 10%. To convert this sensor value
for valid use in further process of coefficients calculation, this function must be applied:

double desired_s1 = ConvertBridgeFromPercent(10.0);

ConvertBridgeToPercent can be used to convert any output from CalibrationL6.DLL back into the percentage
domain for error analysis. This routine should be used for the external sensor output after calibration; otherwise
the percentage numbers is meaningless.

C code declaration:
double ConvertBridgeToPercent(double codes);

Returns: The sensor value in percent according to the input in code is provided.

Table 4. Parameter Bridge Routines

Parameter Description

codes 24-bit digital result value from the IC or DLL’s calculation (corrected measurement).

percent Bridge value in percent, referring to the applied measurement range.

ZSSC3281 Calibration Guide

R33US0002ED0100 Rev.1.00
Jun 29, 2022

 Page 13

2.3.2.2. Temperature Conversion Routines
Table 5. Overview of the Routines

Name Description

ConvertTempFromDegrees
Converts a Celsius value [-45,150] into the proper domain for use by CalibrationL6.DLL.
User entered limit for the maximum temperature corresponds to the full scale output
(16777215 = 2^24-1) of the 24-bit wide IC output.

ConvertTempToDegrees Converts result from the IC (corrected measurement) or DLLs domain back into Celsius to
use in error calculations or to display values in Celsius.

All “°C” temperature inputs must be run through the ConvertTempFromDegrees function before coefficients
calculation. It expects a value between [-45, +150°C]. The result in code is saved to the variable, which is
passed as first argument as a reference.

C code declaration:

__int32 ConvertTempFromDegrees(double *tempInCodes,
double tempInDegrees,
double minTemp,
double maxTemp);

Returns: An error code denoting the status of the calculations. 0 is returned if the method passes successfully. 1
is returned if the input parameters are out of the expected ranges.

Example: During calibration, an environmental temperature of 50°C is applied as a calibration point. It must be
converted for further coefficient determination. The limits for minimum and maximum temperature must be
provided to the function.

double desiredTemp;
int errorcode = 0;

errorcode = ConvertTempFromDegrees(&desiredTemp, 50.0, -40.0, 125.0);

ConvertTempToDegrees can be used to convert a 24-bit temperature as returned by GetCorrectedTemp into
degrees Celsius.

C code declaration:
__int32 ConvertTempToDegrees(double *tempInDegrees,

__int32 tempInCodes,
double minTemp,
double maxTemp);

Returns: An error code denoting the status of the calculations. 0 is returned if the method passes successfully. 1
is returned if the input parameters are out of expected ranges.

Example: It is assumed that calibration is performed successfully. The coefficients are calculated and stored in
coefficients [COEFFICIENT_COUNT].

double tempCorrectedCodes;
double tempDegreesC;
int errorcode = 0;

tempCorrectedCodes = GetCorrectedTemp(coefficients, 320000);
errorcode += ConvertTempToDegrees(&tempDegreesC, tempCorrectedCodes, -40, 85);

ZSSC3281 Calibration Guide

R33US0002ED0100 Rev.1.00
Jun 29, 2022

 Page 14

Table 6. Parameter Temperature Routines

Parameter Description

*tempInCodes Pointer to the variable where the calculated raw temperature value is stored.

tempInDegrees Temperature in Celsius to be converted to codes.

minTemp The lower temperature limit of the calibration range, in Celsius.

maxTemp The upper temperature limit for of the calibration range, in Celsius.

2.3.2.3. Raw Values Conversion
Table 7. Overview of the Routine

Name Description

TwosComplementToDecimal
Converts a raw measurement value into a signed integer number in the range
 [-2^23..2^23-1].

Raw bridge measurement results are provided from the ZSSC3240 as N-bit two’s complement numbers, where
N is the customer configured ADC-resolution. For a proper input to the CalculateCoefficients function or for
common display in as a signed integer values, they must be converted accordingly (for more information, see
section 1.2.1.3).

For the conversion from a 24-bit two’s complement value to a 24-bit decimal value, the
TwosComplementToDecimal function can be used.

C code declaration:
__int32 TwosComplementToDecimal (__int32 input);

Returns: Digital value in signed magnitude representation.

Example:
 __int32 testTwosComp = 0;

__int32 signMagn = 0;

testTwosComp = 0xfffff6;
signMagn = TwosComplementToDecimal(testTwosComp);
// signMagn = -10

testTwosComp = 0x7000A3;
signMagn = TwosComplementToDecimal(testTwosComp);
// signMagn = 7340195

testTwosComp = 0x5;
signMagn = TwosComplementToDecimal(testTwosComp);
// signMagn = 5

testTwosComp = 0x800005;
signMagn = TwosComplementToDecimal(testTwosComp);
// signMagn = -8388603

2.3.3. Coefficients Calculation
CalculateCoefficients is the main function for doing the actual calibration calculations. It determines a set of
coefficients that provides calibrated output based on the provided set of data points. This function provides the
calibrated coefficients, which can be used in all the verification methods listed in section 2.3.4.

ZSSC3281 Calibration Guide

R33US0002ED0100 Rev.1.00
Jun 29, 2022

 Page 15

C code declaration:
 __int32 CalculateCoefficients(__int32 coefficients[COEFFICIENT_COUNT],
 __int32 *negCoeffs

__int32 numPoints,
__int32 selCoeffs,
__int32 calType,
double *bridgeRaw,
double *bridgeDesired,
double *tempRaw,
double *tempDesired);

Returns: An error code denoting the status of the calculations. 0 is passed if the method passes completely.

Before using the CalculateCoefficients function, the collected raw data must be converted to the expected
format. For more information on the IC-provided measurement data, see section 1.2.

Example:
int errorcode = 0;

 int numPoints = 2;
 int negCoeffs=0;

 double rawBridge[2], desiredBridge[2];

 // temperature input not relevant
 double rawDummy[2] = = {NULL,NULL};
 double desiredDummy[2] = {NULL,NULL};

 int selCoeffs = CO_OFFSET_S | CO_GAIN_S;

 // set coefficient array to zero
 int coefficients[COEFFICIENT_COUNT] = {0};

 // calibration type, default value
 int calType = 0;

 // raw data as double values
 rawBridge[0] = -10000.0;
 rawBridge[1] = 8236410.0;

 // convert percentage reference values into the digital representative
 desiredBridge [0] = ConvertBridgeFromPercent(10.0);
 desiredBridge [1] = ConvertBridgeFromPercent(90.0);

 // run coefficients calculation
 errorcode = CalculateCoefficients(coefficients,
 &negCoeffs,
 numPoints,
 selCoeffs,
 calType,
 rawBridge,
 desiredBridge,
 rawDummy, /* Not calibrating anything with temp */
 desiredDummy /* Not calibrating anything with temp */
);
 /************resulting coefficients******
 coefficients[0] = coefficients[INDEX_OFFSET_S] = -1028301
 coefficients[1] = coefficients[INDEX_GAIN_S] = 3413303
 errorcode = 0
 ***/

ZSSC3281 Calibration Guide

R33US0002ED0100 Rev.1.00
Jun 29, 2022

 Page 16

Table 8. Parameter CalculateCoefficients Function

Parameter Description

coefficients[COEFFICIENT_COUNT] This array contains the calculated coefficients (functions’ return). The array must be zero-
filled prior to calling CalculateCoefficients unless using default values.

*negCoeffs Pointer to the representative sign parameter, with bitwise negative coefficient flags.

numPoints Number of calibration points used.

selCoeffs In binary representation, this parameter indicates which coefficient is to be calculated.

calType The type of calibration desired. A default value of 0 is recommended, which represents the
parabolic correction function and provides the best calculation approach.

*bridgeRaw [1] Array of raw sensor values. Must be converted for DLL input and have the length of
numPoints. If not calibrating for bridge correction, the array elements can be NULL.

*bridgeDesired [1] Array of target sensor values. Must be converted for DLL input and have the length of
numPoints. If not calibrating for bridge correction, the array elements can be NULL.

*tempRaw [1] Array of raw temperature values. Must be converted for DLL input and have the length of
numPoints. If not calibrating for temperature correction, the array elements can be NULL.

*tempDesired [1]
Array of target temperature values. Must be converted for DLL input and have the length
of numPoints. If not calibrating for temperature correction, the array elements can be
NULL.

1. The array must have matching indices to the according calibration points.

2.3.4. Verification Routine
The function checks whether the DLL calculation produced coefficients, or has a size exceeding the destined
dimensions. It is recommended to apply this function after each calculation of coefficients.

C code declaration:
__int32 VerifyCoefficients(const __int32 coefficients[COEFFICIENT_COUNT]);

Returns: An __int32 error code denoting the status of the calculations: 1 on failure, 0 on success.

Example:
int errorcode = 0;
errorcode = VerifyCoefficients(coefficients);

if (errorcode != 0) // coefficients out of range

2.3.4.1. GetCorrectedTemp
GetCorrectedTemp calculates the calibrated temperature output based on the given calculated coefficients and a
raw temperature value.

C code declaration:
double GetCorrectedTemp(const __int32 coefficients[COEFFICIENT_COUNT], double rawTemp);

Returns: The calibrated temperature in double-precision floating-point format is provided. It can be converted to
Celsius using the ConvertTempToDegree function, see section 2.3.2.2.

ZSSC3281 Calibration Guide

R33US0002ED0100 Rev.1.00
Jun 29, 2022

 Page 17

2.3.4.2. GetCorrectedBridge
GetCorrectedBridge calculates the calibrated bridge output based on the given calculated coefficients and raw
sensor and raw temperature values.

C code declaration:
double GetCorrectedBridge(const __int32 coefficients[COEFFICIENT_COUNT],

 double rawBridge, double rawTemp);

Returns: The calibrated output in double-precision floating-point format is provided. It can be converted to
percentage using Bridge Conversion Routines (see section 2.3.2.1).

Example: Assuming a seven point bridge/temperature calibration is accomplished with raw data (rawBridge[],
rawTemp[]) and the result of a set of valid coefficients. Then a possible verification of the target accuracy (here:
1.5% for the external bridge sensor and 3°C for temperature) at the calibration points can be done as the
following source code shows. Such verification does not include the inaccuracies caused by the sensor and
measurement, but the deviations caused by correction calculation.

 // rawBridge[], rawTemp[] -> contain raw bridge/temperature data
 // coefficients[] -> contain a set of valid coefficients

// refTempDeg[] -> contain reference temperature values in degree Celsius
// rawBridgePerc[] -> contain reference pressure values in percent

 int errorcode = 0;

 double outBridgeCodes, outBridgePerc, outTempCodes, outTempDeg;

 // loop over calibration points
 for(int i=0; i<3; i++) {

 //Verify Temperature accuracy
 outTempCodes = GetCorrectedTemp(coefficients, rawTemp[i]);
 errorcode += ConvertTempToDegrees(&outTempDeg, outTempCodes, -40.0, 125.0);

 // check ambient temperature accuracy comparing degC values
 // between measured and reference values
 if(fabs(refTempDeg[i]-outTempDeg) > 3.0) //ERROR

 outBridgeCodes = GetCorrectedBridge(coefficients, rawBridge[i], rawTemp[i]);
 outBridgePerc = ConvertBridgeToPercent(outBridgeCodes);

 // check external sensor accuracy comparing percentage values

// between measured and reference values
 if(fabs(outBridgePerc-rawBridgePerc[i]) > 1.5){…} //ERROR

 };

2.3.4.3. BackCalcRawTemp
BackCalcRawTemp is the inverse function of GetCorrectedTemp. It calculates the raw temperature value based
on the given calculated coefficients and a corrected temperature value.

C code declaration:
__int32 BackCalcRawTemp(const __int32 coefficents[COEFFICIENT_COUNT],

double *rawTemp, double correctedTempInDeg,
double minTemp, double maxTemp);

Returns: An error code denoting the status of the calculations. 0 is returned if the method passes successfully. 1
is returned if the input parameters are out of expected ranges.

ZSSC3281 Calibration Guide

R33US0002ED0100 Rev.1.00
Jun 29, 2022

 Page 18

2.3.4.4. BackCalcRawBridge
BackCalcRawBridge is the inverse function of GetCorrectedBridge. It calculates the raw bridge value based on
the given calculated coefficients and a corrected temperature value. Since the correction of bridge values is
processing also raw temperature values for specific calibration types, BackCalcRawBridge also expects the
passing of it.

C code declaration:
__int32 BackCalcRawBridge(const __int32 coefficents[COEFFICIENT_COUNT],

 double * rawBridge,
 double correctedBridgeInPerc,
 double rawTemp);

Returns: An error code denoting the status of the calculations. 0 is returned if the method passes successfully. 1
is returned if the input parameters are out of expected ranges.

Example:
// rawBridge[], rawTemp[] -> contain raw bridge/temperature data

 // coefficients[] -> contain a set of valid coefficients
 // caliPoints -> number of calibration points
 // T_min,T_max -> temperature calibration limits

 double correctedTempInCodes[caliPoints], correctedTempInDegC[caliPoints];

double correctedBridgeInCodes[caliPoints], correctedBridgeInPerc[caliPoints];
double rawT = 0, rawB = 0;

// correction functions applied in this loop calculating corrected output
for (i = 0;i<caliPoints;i++){

 correctedTempInCodes[i] = GetCorrectedTemp(coefficients, rawTemp[i]);

// convert corrected codes into degree celsius
 ConvertTempToDegrees(&correctedTempInDegC[i], (int)correctedTempInCodes[i], T_min, T_max);

 correctedBridgeInCodes[i] = GetCorrectedBridge (coefficients, rawBridge[i] , rawTemp[i]);
 // convert corrected codes into percent
 correctedBridgeInPerc[i] = ConvertBridgeToPercent(correctedBridgeInCodes[i]);
}

// back calculation functions applied in this loop calculating raw values
// from corrected degree celsius/percentage values

 for (i = 0;i<cali_points;i++){

 BackCalcRawTemp(coefficients, &rawT, CorrectedTempInDegC[i], T_min, T_max);
 BackCalcRawBridge(coefficients, &rawB, correctedBridgeInPerc[i], rawT);

 // origin and recalculated raw values should be the same
 // rawTemp[i] == rawT -> True

// rawBridge[i] == rawB -> True
 }

Table 9. Parameter BackClacRawTemp/BackCalcRawBridge Functions

Parameter Description

coefficients[COEFFICIENT_COUNT] This array contains the applied coefficients.

*rawTemp [1] Array of raw temperature values (functions’ return).

correctedTempInDeg The corrected temperature measurement output, should be provided in degree Celsius

*rawBridge [1] Array of raw sensor values. Must be converted for DLL input and have the length of
numPoints. If not calibrating for bridge correction, the array elements can be NULL.

ZSSC3281 Calibration Guide

R33US0002ED0100 Rev.1.00
Jun 29, 2022

 Page 19

Parameter Description

correctedBridgeInPerc The corrected bridge measurement output, should be provided in percent

minTemp The lower temperature limit of the calibration range, in Celsius.

maxTemp The upper temperature limit for of the calibration range, in Celsius.

1. The array must have matching indices to the according calibration points.

3. Glossary
Term Description

AFE Analog Front End

API Application Programming Interface

CMD Command

CRC Cyclic Redundancy Check

DLL Dynamic-Link Library. An executable file that enables programs to share code and resources for completing
specific tasks.

FS Full Scale

GUI Graphical User Interface

IC Integrated Circuit

ID Identifier

LSB Least Significant Bit

MSB Most Significant Bit

CCP Configuration and Calibration Page (non volatile memory)

PC Personal Computer

SSC Sensor Signal Conditioner

T Temperature

VB Visual Basic

4. Revision History

Revision Date Description

1.00 Jun 29, 2022 Initial release.

© 2020 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the

operation of semiconductor products and application examples. You are fully responsible for the incorporation or any
other use of the circuits, software, and information in the design of your product or system. Renesas Electronics
disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these
circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other
claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of
Renesas Electronics products or technical information described in this document, including but not limited to, the
product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual
property rights of Renesas Electronics or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses
for the lawful import, export, manufacture, sales, utilization, distribution or other disposal of any products incorporating
Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part.
Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising
from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High
Quality”. The intended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below.
“Standard”:Computers; office equipment; communications equipment; test and measurement equipment; audio and
visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
“High Quality”:Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale
communication equipment; key financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas
Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or
authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life
support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system;
undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment;
etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third
parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics
data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be
implemented in Renesas Electronics hardware or software products, Renesas Electronics shall have absolutely no
liability arising out of any vulnerability or security breach, including but not limited to any unauthorized access to or
use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY
SYSTEMS CREATED USING RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM
CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY
INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND ALL RESPONSIBILITY OR
LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES,
EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING
SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals,
application notes, “General Notes for Handling and Using Semiconductor Devices” in the reliability handbook, etc.),
and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum
ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics
disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics
products outside of such specified ranges.

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most
up-to-date version of a document, or your nearest sales
office, please visit:
www.renesas.com/contact/

Trademarks
Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered
trademarks are the property of their respective owners.

© 2020 Renesas Electronics Corporation. All rights reserved.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products,
semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and
malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh
environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to
guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event
of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software,
including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging
degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very
difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured
by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating
applicable laws and regulations that regulate the inclusion or use of controlled substances, including without
limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable
laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result
of your noncompliance with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems
whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall
comply with any applicable export control laws and regulations promulgated and administered by the governments of
any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes,
disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the
contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written
consent of Renesas Electronics.

14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in
this document or Renesas Electronics products.
(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes
its directly or indirectly controlled subsidiaries.
(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas
Electronics.

(Rev. 4.0-2 April 2020)

https://www.renesas.com
https://www.renesas.com/contact/
https://www.renesas.com/contact/

	1. Calibration Sequence
	1.1 Set-up and Initialization
	1.1.1. Assigning a Unique Identification Number to the IC
	1.1.2. Analog Front End Configuration
	1.1.3. Temperature Configuration

	1.2 Data Collection
	1.2.1. Data Collection by Raw Measurement Requests
	1.2.1.1. Definition of Reference Values for Raw Measurements
	1.2.1.2. Raw Measurement Commands
	1.2.1.3. Raw Data Output

	1.3 Coefficient Calculations
	1.4 Programming CCP
	1.5 Verification

	2. CalibrationL6.DLL
	2.1 DLL Setup
	2.2 DLL Use
	2.2.1. Using Customer Default Values as Coefficients

	2.3 CalibrationL6.DLL Application Programming Interface (API)
	2.3.1. Constants Used with CalibrationL6.DLL
	2.3.1.1. COEFFICIENT_COUNT
	2.3.1.2. Calibration Type
	2.3.1.3. Indexes for Coefficients
	2.3.1.4. Sign Flags of the Coefficients

	2.3.2. Conversion Routines
	2.3.2.1. Bridge Conversion Routines
	2.3.2.2. Temperature Conversion Routines
	2.3.2.3. Raw Values Conversion

	2.3.3. Coefficients Calculation
	2.3.4. Verification Routine
	2.3.4.1. GetCorrectedTemp
	2.3.4.2. GetCorrectedBridge
	2.3.4.3. BackCalcRawTemp
	2.3.4.4. BackCalcRawBridge

	3. Glossary
	4. Revision History

