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The calibration DLL file described in this document is created to expedite the calibration process for the 
ZSSC3281. Section 1 provides a short overview of the main calibration steps using the file. Section 3 describes 
how to implement a DLL (CalibrationL6.DLL) in customer-specific software.
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1. Calibration Sequence 
A typical calibration flow for the ZSSC3281 contains five steps in the following order: 

1. Set-up and initialization 
2. Data collection 
3. Coefficient calculation 
4. Memory programming 
5. Verification 
 

The recommended approach for data collection with the ZSSC3281 can be performed using the raw 
measurement commands described in section 1.2.1.2, which requires a simpler initialization of the IC’s memory 
(customer ID and AFE setup).  

The ZSSC3281 has two Analog Front Ends (AFEs); the calibration sequence must be applied separately for 
Sensor 1 + Temp Ch1, Sensor 2 + Temp Ch2, and Temp Ch3 (see the overview diagram in Figure 1). 
 

 

 

Figure 1. AFEs and Signal Paths  
 

For a more detailed calibration flow graph, see Figure 2.  
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Figure 2. Calibration Flow Chart 

1.1 Set-up and Initialization 

1.1.1. Assigning a Unique Identification Number to the IC 
This identification is programmed in the IC’s memory and can be used as an index in the database stored on the 
calibration PC. This type of a database can contain all the raw values of external sensor readings (and 
temperature readings if applied, or vice versa) for that part, as well as the according reference values for the 
calibration. For a detailed description of the registers Cust_ID0 (0xFD) and Cust_ID1 (0xFE) dedicated to the 
customer for his product identification, see the ZSSC3281 Datasheet.  

1.1.2. Analog Front End Configuration 
Before useful raw data can be collected from the IC, the circuitry must be initialized. The initialization step 
involves setting the AFE (Analog Front End) configuration bits for the end application and optionally 
programming the math coefficients to their default value. For detailed description for the single parameters of the 
AFE, and for the default settings of the AFE parameters and coefficients, which have been already programmed 
during the wafer test, see the ZSSC3281 Datasheet. 
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1.1.3. Temperature Configuration  
For a possible temperature measurement with the IC-internal temperature sensor, the default configuration is 
programmed into the temperature configuration registers. These default settings allow the full temperature range 
of -40°C to +125°C to be used.  

1.2 Data Collection 
The minimum number of calibration points used depends on the precision required and the behavior of the 
resistive bridge in use (it is normally between two and seven). There is no maximum number of calibration points 
that can be used; in general, taking more calibration points results in a better calibration. 

Descriptions of the standard set of calibration points are displayed in Figure 3. 
■ 2-point calibration can be used either to: 

● Obtain only a gain and offset terms for bridge compensation with no temperature compensation for either 
term 

● Obtain only a gain and offset terms for temperature compensation, without using any external sensor 
■ 3-point calibration can be used either to: 

● Obtain the additional term SOT for 2nd order correction for the bridge (SOT_sens), but no temperature 
compensation of the bridge output 

● Obtain the additional term SOT for 2nd order correction for the temperature (SOT_temp); temperature only is 
compensated, without using any external sensor 

■ 4-point calibration can be used to obtain bridge offset and gain, and both the Tco term and the Tcg term, 
which provides 1st order temperature compensation of the bridge offset and gain term. Additionally, the 
temperature sensor’s offset and gain can be compensated based on the same calibration points. 

■ 5-point calibration can be used to obtain bridge sensor’s gain, offset and 2nd-order term, Tco (bridge sensor 
related temperature offset term) and 2nd-order term that provides correction applied to the bridge’s 
temperature coefficient’s offset. Additionally, the temperature sensor’s offset, gain and 2nd-order nonlinearity 
can be compensated based on the same calibration points. 

■ 6-point calibration can be used to obtain bridge sensor’s gain, offset, Tcg, Tco, SOT_tco, and SOT_tcg. 
Additionally, the temperature sensor’s offset, gain and 2nd-order nonlinearity can be compensated based on 
the same calibration points. 

■ 7-point calibration can be used to obtain the complete set off supported signal correction coefficients for the 
sensor bridge and IC-internal temperature sensor. 

Table 1. Calibration Types 

Type Calculated Coefficients [1] 
Required Number of Data 

Points 

Bridge Temp 

2 Points OFFSET_S, GAIN_S 2 0 

2 Points OFFSET_T,GAIN_T 0 2 

3 Points OFFSET_S,GAIN_S, SOT_S 3 0 

3 Points OFFSET_T,GAIN_T, SOT_T 0 3 

4 Points OFFSET_S, GAIN_S, TCO, TCG, OFFSET_T, GAIN_T 2 2 

5 Points OFFSET_S, GAIN_S, TCO, OFFSET_T, GAIN_T, SOT_TCO, SOT_S, SOT_T 3 3 

6 Points OFFSET_S, GAIN_S, TCO, TCG, OFFSET_T, GAIN_T,SOT_TCO, 
SOT_TCG, SOT_T 2 3 

7 Points OFFSET_S, GAIN_S, TCO, TCG, OFFSET_T, GAIN_T, SOT_TCO, 
SOT_TCG, SOT_T, SOT_S 3 3 

1. Coefficients notation as used in the Calibration.dll / Calibration.h. 
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■ Gain_S – External Sensor/Bridge gain term 
■ Offset_S – External Sensor/Bridge offset term 
■ Tcg – Temperature coefficient gain term 
■ Tco – Temperature coefficient offset term  
■ SOT_tcg – Second-order term for Tcg non-linearity 
■ SOT_tco – Second-order term for Tco non-linearity 
■ SOT_sens – Second-order term for bridge non-linearity 
■ Gain_T – Gain coefficient for temperature 
■ Offset_T – Offset coefficient for temperature 
■ SOT_T – Second-order term for temperature source non-linearity 

 

Figure 3. Calibration Point Locations for Selected Calibration Methods 
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Figure 3 shows the expected, recommended placement of calibration points for the different calibration options. 
The order of the points taken is not important; however, the number of points per temperature must be followed 
or the calibration may fail. It is important to keep the calibration points as orthogonal as possible to maximize 
calibration accuracy. 

In addition, the provided calibration DLL can also generate other subsets and combinations of calibration 
coefficients based on calibration points at different locations than described in Figure 3.  

1.2.1. Data Collection by Raw Measurement Requests 
The number of unique points (external sensor and/or temperature) at which calibration must be performed 
generally depends on the requirements of the application and the behavior of the resistive bridge in use. The 
minimum number of points required is equal to the number of bridge/temperature coefficients to be calculated. 
For a full calibration resulting in values for all seven possible bridge coefficients and three possible temperature 
coefficients, a minimum of seven pairs of bridge with temperature measurements must be collected. 

1.2.1.1. Definition of Reference Values for Raw Measurements 
The reference points for the resistive sensor calibration are usually defined in percent in relation to the full target 
application range. After that, they must be converted into digital value relative to the full scale (FS) output of 24-
bit, by a given function in the DLL. 

The reference values for the raw temperature measurements are defined in degree Celsius (°C). In combination 
with user-defined temperature limits (also in °C), the reference input for each point is then converted into the 
according digital reference value for the DLL. 

For example, defining pressure reference points for calibration dependent on a customer’s target range can be 
the following: 
■ Customer’s target application range: 0 to 16bar 
■ Customer’s pressure reference points: 2bar/6bar/14bar. 
■ Exact assignment would be:  

● 0bar  0% of the range 
● 16bar  100% of the range 

■ The defined reference points have the following assignments: 
● 2bar  12.5% of the range 
● 6bar  37.5% of the range 
● 14bar  87.5% of the range 

■ To add buffers for parasitic impact and to have integer percentage values for the calibration, it is 
recommended to change the points slightly as follows: 
● 2bar  15% of the range 
● 6bar  35% of the range 
● 14bar  85% of the range 
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Figure 4. Assignment Input Resistive Range to SSC-output 
 

To obtain the potentially best and most robust coefficients, it is recommended that measurement pairs 
(temperature vs. pressure) are collected near the outer corners of the intended operation range or at points that 
are located far from each other. It is essential to provide highly precise reference values as nominal, expected 
values. The measurement precision of the external calibration-measurement equipment must be ten times more 
accurate than the expected ZSSC3281 output precision after calibration to avoid precision losses caused by the 
nominal reference values (i.e., resistive sensor signal and temperature deviations). 

Note: There is an inherent redundancy in the seven resistive sensor-related and three temperature-related 
coefficients. Since the temperature is a necessary output (which also needs correction), the temperature-related 
information is mathematically separated, which supports faster and more efficient calculations during the normal 
usage of the sensor-IC system. 

1.2.1.2. Raw Measurement Commands 
Before data collection, it is recommended to find the optimal AFE configuration for the applied sensor and the 
target voltage input range, and then program it to the CCP configuration registers (for a description of registers 
from 0x13 to 0x1C, see the ZSSC3281 Datasheet). After AFE configuration, raw data can be acquired.  

For data collection, the command A7HEX must be used: it returns measurements raw data values for sensors and 
temperatures for all channels activated.  

1.2.1.3. Raw Data Output 
The raw data measurement results are always MSB (Most Significant Bit)-aligned. The internal temperature 
sensor has a preconfigured setup with an ADC resolution of 14 bits. 

Note: In cases of the use of measurements from the third temperature channel, note that the device provides 
these in a 32-bit format. The 8 least significant should be discarded and the remaining 3 bytes contains raw data 
MSB aligned, and then can be processed as data relevant to the other channels. 

In order to adapt both resistive and temperature raw values to the expected format (integer representation, 24-
bit, MSB-aligned in the range of -2^23..2^23 in), they must be converted from the two's complement 
representation to integer values in a range from -2^23..2^23. 

Figure 5 summarizes the recommended raw data process before passing it to the CalculateCoefficients function 
of the DLL. 
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Figure 5. Raw Data Handling for Coefficient Calculation (DLL) 

1.3 Coefficient Calculations 
The coefficients are calculated after all calibration data points are collected. The DLL exposes a C code interface 
and can be used directly from code (see section 2 for details). Features of the DLL are: 
■ Coefficient calculation 
■ Verification at calibration points 
■ Extended range verification 

1.4 Programming CCP 
After the coefficients are calculated, they must be written to the CCP. The following table lists the commands 
necessary to program the coefficients to the according registers. Every coefficient is saved in the CCP in a 32-bit 
register; each coefficient is a 24-bit wide value. Examples displayed in the following sections of the document 
are based on Main Sensor Ch1 and Temperature Sensor Ch1. Other channels can be considered equivalent. 
Sensor Temperature Ch3 measurement requires upfront formatting to 24 bits as explained in Section 1.2.1.3.  

Table 2. ZSSC3281 Coefficients CCP Addresses 

Register 
[Hex] Data from Coefficients for the According Register Description Provided by 

4D coefficients[INDEX_OFFSET_S] Offset_S[31:0] DLL 

4E coefficients[INDEX_GAIN_S] Gain_S[[31:0] DLL 

53 coefficients[INDEX_TCG] Tcg[[31:0] DLL 

51 coefficients[INDEX_TCO] Tco[31:0] DLL 

Resistive Sensor CH1
ADC resolution: N-bit

DLL Function
BRAW_DLL = TwosComplementToDecimal 

(BRAW_MSB)

BRAW_MSB

Output range:
[-223..223-1]

Two’s Complement,
MSB aligned

DLL Function
CalculateCoefficients 

(...BRAW_DLL

 TRAW_DLL…)

Output range:
[-223..223-1]

Integer, 24-bit
MSB aligned

Temperature Sensor CH1
ADC resolution: M-bit

DLL Function
TRAW_DLL = TwosComplementToDecimal 

(TRAW_MSB)

TRAW_MSB

Output range:
[-223..223-1]

Integer, 24-bit
MSB aligned

Output range:
[-223..223-1]

Two’s Complement,
MSB aligned

ZSSC3281

Resistive Sensor CH2
ADC resolution: N-bit

DLL Function
BRAW_DLL = TwosComplementToDecimal 

(BRAW_MSB)

BRAW_MSB

Output range:
[-223..223-1]

Two’s Complement,
MSB aligned

Output range:
[-223..223-1]

Integer, 24-bit
MSB aligned

Temperature Sensor CH2
ADC resolution: M-bit

DLL Function
TRAW_DLL = TwosComplementToDecimal 

(TRAW_MSB)

TRAW_MSB

Output range:
[-223..223-1]

Integer, 24-bit
MSB aligned

Output range:
[-223..223-1]

Two’s Complement,
MSB aligned

Temperature Sensor CH3
ADC resolution: M-bit

DLL Function
TRAW_DLL = TwosComplementToDecimal 

(TRAW_MSB)

TRAW_32 bits

Output range:
[-223..223-1]

Integer, 24-bit
MSB aligned

Output range:
[-223..223-1]

4 Bytes.LSB to be 
discarded. 

Two’s Complement,
MSB aligned

DLL Function
CalculateCoefficients 

(...BRAW_DLL

 TRAW_DLL…)

DLL Function
CalculateCoefficients

 (.. TRAW_DLL..)
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Register 
[Hex] Data from Coefficients for the According Register Description Provided by 

52 coefficients[INDEX_SOT_TCO] SOT_tco[31:0] DLL 

54 coefficients[INDEX_SOT_TCG] SOT_tcg[31:0] DLL 

4F coefficients[INDEX_SOT_S] SOT_sens[31:0] DLL 

61 coefficients[INDEX_OFFSET_T] Offset_T[[31:0] DLL 

62 coefficients[INDEX_GAIN_T]  Gain_T[31:0] DLL 

63 coefficients[INDEX_SOT_T] SOT_T[31:0] DLL 

 

Assignment to the 32 bit register of coefficients calculated by the dll 
if (coefficients[INDEX_OFFSET_S] < 0) Offset_S = (-coefficients[INDEX_OFFSET_S]  | 0x800000); 
else Offset_S = coefficients[INDEX_OFFSET_S]; 
 
if (coefficients[INDEX_GAIN_S] <0) Gain_S =  (coefficients[INDEX_GAIN_S] | 0x800000); 
else Gain_S = coefficients[INDEX_GAIN_S]; 
 
Numerical example: 
// results from coefficients calculation 
coefficients[INDEX_OFFSET_S] = -520831 // = 0x0087F27F (32 bit sign-magnitude    
       //representation) 
coefficients[INDEX_GAIN_S] = 5880722    // = 0x0059BB92 (32 bit sign-magnitude   
        //representation) 

1.5 Verification 
The DLL interface provides verification at calibration time (see section 2.3.4). To verify if the results are 
consistent with expected results, also perform an online verification at a different bridge measurand / 
temperature combination than was used for calibration.  

 

2. CalibrationL6.DLL 
The CalibrationL6.DLL’s properties, interfacing, and variable declaration, and the available routines with the 
respective returns of the available methods, are characterized in detail. The main focus in this document is to 
enable the user to integrate the DLL in a customer software environment for production purposes.  

2.1 DLL Setup 
Complete the following setup steps to use the CalibrationL6.DLL in a user program: 

1. Declare all functions to be used from the DLL: 
■ In C/C++, link CalibrationL6.lib into the final executable.  
■ In VB (Visual Basic), add CalibrationL6.DLL as a reference and verify that it is in the path. 

2. Create CalibrationL6.h that must contain the same declarations for the functions used in CalibrationL6.DLL. 
The user’s program must be set up to use WindowsTM calling conventions (stdcall), not “C” style calling 
conventions (cdecl). 

All functions listed in section 2 can be called as if they were local functions. 
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2.2 DLL Use 
CalibrationL6.DLL typically is used for the following calibration steps: 

1. Data Conversion – All raw and target data input for both bridge and temperature (if applicable) must be 
converted into the correct format (see section 1.2). 

2. Coefficient Calculation – The converted data along with control information is passed to the 
CalculateCoefficients method which generates all necessary coefficients (see section 2.3.3). 

3. Verification – The coefficients are verified both for accuracy and proper operation across the entire region of 
operation. The CalibrationL6.DLL provides methods to do this verification offline (see section 2.3.4). 

2.2.1. Using Customer Default Values as Coefficients 
The CalibrationL6.DLL library supports calibration using customer-calculated default values. These values can 
be applied to all calibrations without recalculating each time, allowing one less calibration point for every used 
default value. The pre-condition for using customer default values is a known, repeatable sensor characteristic. 
The result of a calibration using default values is always less accurate than a complete calibration. To use a 
default value during calibration, do not select coefficient for calculation. 

2.3 CalibrationL6.DLL Application Programming Interface (API) 

2.3.1. Constants Used with CalibrationL6.DLL 
Within CalibrationL6.DLL many different enumerations are used to clarify the control and separation of data 
going to and from the DLL. 

2.3.1.1. COEFFICIENT_COUNT 
COEFFICIENT_COUNT is a constant that represents the number of coefficients. All coefficient arrays passed to 
CalibrationL6.DLL are expected to be of size COEFFICIENT_COUNT. 

Example: Declaration of an array of integers for the coefficients and initialize the array to 0. 
int coefficients[COEFFICIENT_COUNT] = {0}; //c compiler will 0 fill remaining entries 

 

2.3.1.2. Calibration Type 
The programmable coefficients have the listed flag values (see the following C code declaration) in the DLL. The 
most common combinations of coefficients are shown in the source code Example of this section. The type of 
calibration desired is indicated through the coefficients selected for calibration. For best results, use the pre-
defined combinations. The coefficients can be individually OR’ed together in order to form other calibration 
types.  

C code declaration: 
#define CO_OFFSET_S   0x1 
#define CO_GAIN_S   0x2 
#define CO_TCG    0x4 
#define CO_TCO    0x8 
#define CO_SOT_TCO   0x10 
#define CO_SOT_TCG   0x20 
#define CO_SOT_S    0x40 
#define CO_OFFSET_T   0x80 
#define CO_GAIN_T   0x100 
#define CO_SOT_T    0x200 
 

Example: The following C code lines show applicable combinations of coefficients and a possible definition of a 
variable which passes this information validly to the CalculateCoefficients method. 

int errorcode; 
int negCoeffs; 
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// Variable definition for required coefficients 
int P2_S = (CO_OFFSET_S|CO_GAIN_S);       
int P3_S = (CO_OFFSET_S|CO_GAIN_S|CO_SOT_S);  
int P3_T = (CO_OFFSET_T|CO_GAIN_T|CO_SOT_T); 
int P4_S = (CO_OFFSET_S|CO_GAIN_S|CO_TCO|CO_TCG|CO_OFFSET_T|CO_GAIN_T); 
int P5_S = (CO_OFFSET_S|CO_GAIN_S|CO_TCO|CO_OFFSET_T|CO_GAIN_T|CO_SOT_TCO|CO_SOT_S|CO_SOT_T); 
int P6_S = (CO_OFFSET_S|CO_GAIN_S|CO_TCO|CO_TCG|CO_OFFSET_T|CO_GAIN_T|CO_SOT_TCO|CO_SOT_TCG|CO_SOT_T); 
int P7_S = 
(CO_OFFSET_S|CO_GAIN_S|CO_TCO|CO_TCG|CO_OFFSET_T|CO_GAIN_T|CO_SOT_TCO|CO_SOT_TCG|CO_SOT_T|CO_SOT_S); 
… 
  
// calculate just bridge coefficients -> P3_S 
// possible function call  
errorcode = CalculateCoefficients( coefficients,  
     &negCoeffs 

2,  
P3_S, 
0,  
rawBridge, 
desiredBridge, 
rawDummy,  
desiredDummy, /* Not calibrating anything with temp */ 
); 

2.3.1.3. Indexes for Coefficients 
After calculating coefficients, the CalibrationL6.DLL provides them in a certain order in the coefficients array. The 
access with these indexes returns the signed value of each coefficient. 

C code declaration: 
//INDEXES for coefficients array 
#define INDEX_OFFSET_S  0 
#define INDEX_GAIN_S  1 
#define INDEX_TCG  2 
#define INDEX_TCO  3 
#define INDEX_SOT_TCO  4 
#define INDEX_SOT_TCG  5 
#define INDEX_SOT_S  6 
#define INDEX_OFFSET_T  7 
#define INDEX_GAIN_T  8 
#define INDEX_SOT_T  9 

 

Example: Accessing the OFFSET_S coefficient value after calculation with CalculateCoefficients method: 
//assuming int coefficients[COEFFICIENT_COUNT]; has been previously declared  
int offset_s = coefficients[INDEX_OFFSET_S]; 

2.3.1.4. Sign Flags of the Coefficients 
The sign flags allow excluding a certain sign from the representative “sign number,” which contains the sign 
information for all coefficients. The coefficients themselves are signed, too. This “sign number” makes data 
processing more comfortable. Gain coefficients do not have a flag for negative presentation; the results are 
always positive. 

C code declaration: 
//FLAGS for negCoeffs 
#define NEG_SOT_S  0x1 
#define NEG_SOT_TCO  0x2 
#define NEG_SOT_TCG  0x4 
#define NEG_SOT_T  0x8 
#define NEG_TCO   0x10 
#define NEG_TCG   0x20 
#define NEG_OFFSET_S  0x40 
#define NEG_OFFSET_T  0x80 
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Example: 
 int negSOT_S =0; 
 

//negSOT_S=0 when the coefficient is positive, = 1 when it’s negative. 
negSOT_S = negCoeffs & NEG_SOT_S; 

 

2.3.2. Conversion Routines 
The following conversion routines are used for translation of an input value into the necessary format to 
complete the calculations. 

2.3.2.1. Bridge Conversion Routines 
Table 3. Overview of the Routines 

Name Description 

ConvertBridgeFromPercent 
Converts a percentage value [0,100] into the proper domain for use by CalibrationL6.DLL.  
100 percent correspond to the full scale output (16777215 = 2^24-1) of the 24-bit wide IC 
output  

ConvertBridgeToPercent Converts result from the IC (corrected measurement) or DLL’s calculation domain into a 
percentage reading for use in error calculations. 

 

 

 

The percentage declarations for the bridge input are useful for defining the common range of the measured item 
(e.g., pressure). For calculation or verification routines listed in sections 2.3.3 and 2.3.4, the sensor inputs must 
be processed through ConvertBridgeFromPercent routine which maps the bridge sensor precentral values (0% 
to 100%) to the full scale range of 24 bits. 

C code declaration: 
double  ConvertBridgeFromPercent(double percent); 

 

Returns: The desired (reference) sensor value in counts according to the input in percent. 

Example: One calibration input represents the desired and reference value of 10%. To convert this sensor value 
for valid use in further process of coefficients calculation, this function must be applied: 

double desired_s1 = ConvertBridgeFromPercent(10.0); 
 

ConvertBridgeToPercent can be used to convert any output from CalibrationL6.DLL back into the percentage 
domain for error analysis. This routine should be used for the external sensor output after calibration; otherwise 
the percentage numbers is meaningless. 

C code declaration: 
double ConvertBridgeToPercent(double codes); 

 

Returns: The sensor value in percent according to the input in code is provided. 

Table 4. Parameter Bridge Routines 

Parameter Description 

codes 24-bit digital result value from the IC or DLL’s calculation (corrected measurement). 

percent  Bridge value in percent, referring to the applied measurement range. 
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2.3.2.2. Temperature Conversion Routines 
Table 5. Overview of the Routines 

Name Description 

ConvertTempFromDegrees 
Converts a Celsius value [-45,150] into the proper domain for use by CalibrationL6.DLL. 
User entered limit for the maximum temperature corresponds to the full scale output 
(16777215 = 2^24-1) of the 24-bit wide IC output. 

ConvertTempToDegrees Converts result from the IC (corrected measurement) or DLLs domain back into Celsius to 
use in error calculations or to display values in Celsius. 

 

All “°C” temperature inputs must be run through the ConvertTempFromDegrees function before coefficients 
calculation. It expects a value between [-45, +150°C]. The result in code is saved to the variable, which is 
passed as first argument as a reference.  

C code declaration: 

__int32 ConvertTempFromDegrees( double *tempInCodes,  
double tempInDegrees,  
double minTemp,  
double maxTemp);  

 
Returns: An error code denoting the status of the calculations. 0 is returned if the method passes successfully. 1 
is returned if the input parameters are out of the expected ranges. 

Example: During calibration, an environmental temperature of 50°C is applied as a calibration point. It must be 
converted for further coefficient determination. The limits for minimum and maximum temperature must be 
provided to the function. 

double desiredTemp; 
int errorcode = 0; 

 
errorcode = ConvertTempFromDegrees(&desiredTemp, 50.0, -40.0, 125.0); 

 

 

ConvertTempToDegrees can be used to convert a 24-bit temperature as returned by GetCorrectedTemp into 
degrees Celsius.  

C code declaration: 
__int32 ConvertTempToDegrees( double *tempInDegrees, 

__int32 tempInCodes, 
double minTemp, 
double maxTemp); 

 

Returns: An error code denoting the status of the calculations. 0 is returned if the method passes successfully. 1 
is returned if the input parameters are out of expected ranges. 

Example: It is assumed that calibration is performed successfully. The coefficients are calculated and stored in 
coefficients [COEFFICIENT_COUNT].  

double tempCorrectedCodes; 
double tempDegreesC; 
int errorcode = 0; 

 
tempCorrectedCodes = GetCorrectedTemp(coefficients, 320000); 
errorcode += ConvertTempToDegrees(&tempDegreesC, tempCorrectedCodes, -40, 85); 
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Table 6. Parameter Temperature Routines 

Parameter Description 

*tempInCodes Pointer to the variable where the calculated raw temperature value is stored. 

tempInDegrees Temperature in Celsius to be converted to codes. 

minTemp The lower temperature limit of the calibration range, in Celsius. 

maxTemp The upper temperature limit for of the calibration range, in Celsius. 

 

2.3.2.3. Raw Values Conversion 
Table 7. Overview of the Routine 

Name Description 

TwosComplementToDecimal 
Converts a raw measurement value into a signed integer number in the range 
 [-2^23..2^23-1]. 

 

 

 

Raw bridge measurement results are provided from the ZSSC3240 as N-bit two’s complement numbers, where 
N is the customer configured ADC-resolution. For a proper input to the CalculateCoefficients function or for 
common display in as a signed integer values, they must be converted accordingly (for more information, see 
section 1.2.1.3).  

For the conversion from a 24-bit two’s complement value to a 24-bit decimal value, the 
TwosComplementToDecimal function can be used. 

C code declaration: 
__int32 TwosComplementToDecimal (__int32 input); 
 

Returns: Digital value in signed magnitude representation. 

Example: 
 __int32 testTwosComp = 0; 

__int32 signMagn = 0; 
 

testTwosComp = 0xfffff6; 
signMagn = TwosComplementToDecimal(testTwosComp); 
// signMagn = -10 

 
testTwosComp = 0x7000A3; 
signMagn = TwosComplementToDecimal(testTwosComp); 
// signMagn = 7340195 
 
testTwosComp = 0x5; 
signMagn = TwosComplementToDecimal(testTwosComp); 
// signMagn = 5 
 
testTwosComp = 0x800005; 
signMagn = TwosComplementToDecimal(testTwosComp); 
// signMagn = -8388603 

 

2.3.3. Coefficients Calculation 
CalculateCoefficients is the main function for doing the actual calibration calculations. It determines a set of 
coefficients that provides calibrated output based on the provided set of data points. This function provides the 
calibrated coefficients, which can be used in all the verification methods listed in section 2.3.4. 
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C code declaration:  
 __int32 CalculateCoefficients(__int32 coefficients[COEFFICIENT_COUNT], 
      __int32 *negCoeffs 

__int32 numPoints, 
__int32 selCoeffs, 
__int32 calType, 
double *bridgeRaw, 
double *bridgeDesired, 
double *tempRaw, 
double *tempDesired); 

 
Returns: An error code denoting the status of the calculations. 0 is passed if the method passes completely. 

Before using the CalculateCoefficients function, the collected raw data must be converted to the expected 
format. For more information on the IC-provided measurement data, see section 1.2.  

Example:  
int errorcode = 0; 

 
 int numPoints = 2; 
 int negCoeffs=0; 
 
 double rawBridge[2], desiredBridge[2]; 
 
 // temperature input not relevant 
 double rawDummy[2] = = {NULL,NULL};  
 double desiredDummy[2] = {NULL,NULL};  
 
 
 int selCoeffs = CO_OFFSET_S | CO_GAIN_S; 
 
 // set coefficient array to zero 
 int coefficients[COEFFICIENT_COUNT] = {0}; 
 
 // calibration type, default value 
 int calType = 0; 
 
 // raw data as double values  
 rawBridge[0] = -10000.0; 
 rawBridge[1] = 8236410.0; 
 
 // convert percentage reference values into the digital representative 
 desiredBridge [0] = ConvertBridgeFromPercent(10.0); 
 desiredBridge [1] = ConvertBridgeFromPercent(90.0); 
 
 // run coefficients calculation 
 errorcode = CalculateCoefficients( coefficients, 
      &negCoeffs, 
      numPoints,  
      selCoeffs,  
      calType,  
      rawBridge, 
      desiredBridge, 
      rawDummy, /* Not calibrating anything with temp */ 
      desiredDummy /* Not calibrating anything with temp */ 
         ); 
 /************resulting coefficients****** 
 coefficients[0] = coefficients[INDEX_OFFSET_S] = -1028301 
 coefficients[1] = coefficients[INDEX_GAIN_S] = 3413303 
 errorcode = 0 
 *****************************************/ 
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Table 8. Parameter CalculateCoefficients Function 

Parameter Description 

coefficients[COEFFICIENT_COUNT] This array contains the calculated coefficients (functions’ return). The array must be zero-
filled prior to calling CalculateCoefficients unless using default values. 

*negCoeffs Pointer to the representative sign parameter, with bitwise negative coefficient flags. 

numPoints Number of calibration points used. 

selCoeffs In binary representation, this parameter indicates which coefficient is to be calculated. 

calType The type of calibration desired. A default value of 0 is recommended, which represents the 
parabolic correction function and provides the best calculation approach. 

*bridgeRaw [1] Array of raw sensor values. Must be converted for DLL input and have the length of 
numPoints. If not calibrating for bridge correction, the array elements can be NULL. 

*bridgeDesired [1] Array of target sensor values. Must be converted for DLL input and have the length of 
numPoints. If not calibrating for bridge correction, the array elements can be NULL. 

*tempRaw [1] Array of raw temperature values. Must be converted for DLL input and have the length of 
numPoints. If not calibrating for temperature correction, the array elements can be NULL. 

*tempDesired [1] 
Array of target temperature values. Must be converted for DLL input and have the length 
of numPoints. If not calibrating for temperature correction, the array elements can be 
NULL. 

1. The array must have matching indices to the according calibration points. 

 

2.3.4. Verification Routine 
The function checks whether the DLL calculation produced coefficients, or has a size exceeding the destined 
dimensions. It is recommended to apply this function after each calculation of coefficients. 

C code declaration: 
__int32 VerifyCoefficients(const __int32 coefficients[COEFFICIENT_COUNT]); 

 

 

 

Returns: An __int32 error code denoting the status of the calculations: 1 on failure, 0 on success. 

Example:  
int errorcode = 0; 
errorcode = VerifyCoefficients(coefficients); 

 
if (errorcode != 0) // coefficients out of range 

2.3.4.1. GetCorrectedTemp 
GetCorrectedTemp calculates the calibrated temperature output based on the given calculated coefficients and a 
raw temperature value. 

C code declaration: 
double GetCorrectedTemp(const __int32 coefficients[COEFFICIENT_COUNT], double rawTemp); 

 

 

 

Returns: The calibrated temperature in double-precision floating-point format is provided. It can be converted to 
Celsius using the ConvertTempToDegree function, see section 2.3.2.2. 
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2.3.4.2. GetCorrectedBridge 
GetCorrectedBridge calculates the calibrated bridge output based on the given calculated coefficients and raw 
sensor and raw temperature values. 

C code declaration: 
double GetCorrectedBridge(const __int32 coefficients[COEFFICIENT_COUNT],  

            double rawBridge, double rawTemp); 
 

Returns: The calibrated output in double-precision floating-point format is provided. It can be converted to 
percentage using Bridge Conversion Routines (see section 2.3.2.1). 

Example: Assuming a seven point bridge/temperature calibration is accomplished with raw data (rawBridge[], 
rawTemp[]) and the result of a set of valid coefficients. Then a possible verification of the target accuracy (here: 
1.5% for the external bridge sensor and 3°C for temperature) at the calibration points can be done as the 
following source code shows. Such verification does not include the inaccuracies caused by the sensor and 
measurement, but the deviations caused by correction calculation. 
 

 // rawBridge[], rawTemp[] -> contain raw bridge/temperature data 
 // coefficients[] -> contain a set of valid coefficients 

// refTempDeg[] -> contain reference temperature values in degree Celsius 
// rawBridgePerc[] -> contain reference pressure values in percent  

 
 int errorcode = 0; 
 
 double outBridgeCodes, outBridgePerc, outTempCodes, outTempDeg;  
  
 // loop over calibration points 
 for(int i=0; i<3; i++) { 
 
  //Verify Temperature accuracy 
  outTempCodes = GetCorrectedTemp(coefficients, rawTemp[i]); 
  errorcode += ConvertTempToDegrees(&outTempDeg, outTempCodes, -40.0, 125.0); 
 
  // check ambient temperature accuracy comparing degC values  
  // between measured and reference values 
  if( fabs(refTempDeg[i]-outTempDeg) > 3.0 ) //ERROR 
 
  outBridgeCodes = GetCorrectedBridge(coefficients, rawBridge[i], rawTemp[i]);  
  outBridgePerc = ConvertBridgeToPercent(outBridgeCodes); 
 
  // check external sensor accuracy comparing percentage values  

// between measured and reference values 
  if( fabs(outBridgePerc-rawBridgePerc[i]) > 1.5 ){…} //ERROR 
 
 }; 
 

2.3.4.3. BackCalcRawTemp 
BackCalcRawTemp is the inverse function of GetCorrectedTemp. It calculates the raw temperature value based 
on the given calculated coefficients and a corrected temperature value. 

C code declaration: 
__int32 BackCalcRawTemp(const __int32 coefficents[COEFFICIENT_COUNT],  

double  *rawTemp, double correctedTempInDeg,   
double minTemp, double maxTemp); 
 

Returns: An error code denoting the status of the calculations. 0 is returned if the method passes successfully. 1 
is returned if the input parameters are out of expected ranges. 
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2.3.4.4. BackCalcRawBridge 
BackCalcRawBridge is the inverse function of GetCorrectedBridge. It calculates the raw bridge value based on 
the given calculated coefficients and a corrected temperature value. Since the correction of bridge values is 
processing also raw temperature values for specific calibration types, BackCalcRawBridge also expects the 
passing of it. 

C code declaration: 
__int32 BackCalcRawBridge(const __int32 coefficents[COEFFICIENT_COUNT],  

  double  * rawBridge, 
  double correctedBridgeInPerc,  
  double rawTemp); 

 

Returns: An error code denoting the status of the calculations. 0 is returned if the method passes successfully. 1 
is returned if the input parameters are out of expected ranges. 

Example: 
// rawBridge[], rawTemp[] -> contain raw bridge/temperature data 

 // coefficients[] -> contain a set of valid coefficients 
 // caliPoints -> number of calibration points 
 // T_min,T_max -> temperature calibration limits 
 
 double correctedTempInCodes[caliPoints], correctedTempInDegC[caliPoints]; 

double correctedBridgeInCodes[caliPoints], correctedBridgeInPerc[caliPoints]; 
double rawT = 0, rawB = 0; 
 
// correction functions applied in this loop calculating corrected output 
for (i = 0;i<caliPoints;i++){ 
 
 correctedTempInCodes[i] = GetCorrectedTemp(coefficients, rawTemp[i]); 

// convert corrected codes into degree celsius 
 ConvertTempToDegrees(&correctedTempInDegC[i], (int)correctedTempInCodes[i], T_min, T_max); 
 
 correctedBridgeInCodes[i] = GetCorrectedBridge (coefficients, rawBridge[i] , rawTemp[i]);  
 // convert corrected codes into percent 
 correctedBridgeInPerc[i] = ConvertBridgeToPercent(correctedBridgeInCodes[i]);  
} 
 
// back calculation functions applied in this loop calculating raw values 
// from corrected degree celsius/percentage values 

 for (i = 0;i<cali_points;i++){ 
   
  BackCalcRawTemp(coefficients, &rawT, CorrectedTempInDegC[i],  T_min, T_max ); 
  BackCalcRawBridge(coefficients, &rawB, correctedBridgeInPerc[i], rawT); 
   

 // origin and recalculated raw values should be the same 
 // rawTemp[i] == rawT -> True 

// rawBridge[i] == rawB -> True 
 } 
 

 

Table 9. Parameter BackClacRawTemp/BackCalcRawBridge Functions 

Parameter Description 

coefficients[COEFFICIENT_COUNT] This array contains the applied coefficients.  

*rawTemp [1] Array of raw temperature values (functions’ return).   

correctedTempInDeg The corrected temperature measurement output, should be provided in degree Celsius 

*rawBridge [1] Array of raw sensor values. Must be converted for DLL input and have the length of 
numPoints. If not calibrating for bridge correction, the array elements can be NULL. 
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Parameter Description 

correctedBridgeInPerc The corrected bridge measurement output, should be provided in percent 

minTemp The lower temperature limit of the calibration range, in Celsius. 

maxTemp The upper temperature limit for of the calibration range, in Celsius. 

1. The array must have matching indices to the according calibration points. 

 

3. Glossary 
Term Description 

AFE Analog Front End 

API Application Programming Interface 

CMD Command 

CRC Cyclic Redundancy Check 

DLL Dynamic-Link Library. An executable file that enables programs to share code and resources for completing 
specific tasks.  

FS Full Scale 

GUI Graphical User Interface 

IC Integrated Circuit 

ID Identifier 

LSB Least Significant Bit 

MSB Most Significant Bit 

CCP  Configuration and Calibration Page (non volatile memory) 

PC Personal Computer 

SSC Sensor Signal Conditioner 

T Temperature 

VB Visual Basic 
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