Help

Thermal Noise Calculator (TNC Calc) is a program that aids in the analysis of thermal noise found in resistors and other noise sources. TNC finds the noise voltage generated by any device if its white noise spectral density and 1/f corner frequency are known. Each parameter can be entered or found.

Parameters

- 1. Noise Voltage, **Vn**, in μ Vpp or μ Vrms
- 2. White Noise Spectral Density, ND, in nV/\sqrt{Hz}
- 3. Johnson Resistance, **R**, in Ω
- 4. Temperature, **T**, in °C

Calculator Window

- 5. Upper Frequency, Fh, in Hz
- 6. Lower frequency, Fl, in Hz
- 7. 1/f Corner Frequency, Fc, in Hz

Commands

<u>F</u> ind	Alt + F	Find the selected parameter
<u>G</u> raph	Alt + G	Graph the noise spectral density curve specified by the parameters
<u>E</u> xport	Alt + E	Export all parameters to a .cvs file
<u>I</u> mport	Alt + I	Import all parameters from a .cvs file
<u>D</u> efaults	Alt + D	Load the default startup parameter values
<u>H</u> elp	Alt + H	Display the help page
<u>C</u> lose	Alt +C	Close the calculator

"Consistent" indicates that all parameters are consistent. It appears following a Find (Alt + F) command. "Inconsistent" indicates that all parameters may not be consistent. It appears following an entry or import command.

Noise Density Curve with Parameters

Gaussian Noise Distribution

$$Vn_{pp} = 6.6 \cdot Vn_{rms}$$

The probability of exceeding $\pm 3.3\sigma$ is 0.001, thus 6.6 Vrms is the peak to peak amplitude that will occur 0.1 % of the time.

About

Version 1.1.0 March 1, 2015 Author: Steve Edwards Ported to Python by Matthew Fortin