
BASICS OF THE RENESAS
SYNERGY TM PLATFORM
Richard Oed

2020.04

CONTENTS

10 SENDING DATA THROUGH USB USING A QUEUE 03

10.1 Setting Up a USB Port in Synergy Platform 03

10.2 Sending Messages 05

10.3 Setting Up a Receiver On the Host Side 06

Disclaimer 08

02

CHAPTER 10
SENDING DATA THROUGH
USB USING A QUEUE

10 SENDING DATA THROUGH USB USING A QUEUE

In this chapter, we will use the communication framework inside the Application Frameworks to send the state of LED1 through an

USB-port to the Windows® workstation. For this, you will to add a new thread and a queue to your project from the previous chapter 9

and modify the existing LED thread to send the state as a string to the queue. The new communications thread will then send the

string to a terminal program on the host using USB. While programming this exercise, you will experience once again the simplicity

the Synergy Software Package (SSP) provides to users, even when setting up complex communications like USB.

If you haven’t done the exercise from chapter 9, you can download the project from the book’s website (www.renesas.com/synergy-book).

Import it according to the instructions given in chapter 5.1.3 and you are all set. Of course, you can download a full project for this

chapter as well, if you just want to see how the goal is achieved. If you are using IAR Embedded Workbench® for Renesas Synergy™ (IAR EW

for Synergy), you can also download a complete project, if you do not want to follow the instructions below and adjust them as necessary.

What you will learn in this chapter:

 ¡ How to setup an USB-transfer using one of the Renesas Synergy™ Application Frameworks and how to receive the data on a

host workstation.

03

10.1 Setting Up a USB Port in Synergy Platform

If you closed e2 studio after the last exercise, re-open it and make sure that your project MyRtosProject is active. If not, just click on it and

it will be displayed in bold. The first step for you is to switch to the Synergy Configuration perspective and to go to the Synergy Configuration

[MyRtosProject] view. If this view was closed before, you can re-open it by double clicking on the configuration.xml file in the Project

Explorer view, or by clicking on the Gear icon on the main menu bar. As you are a Synergy expert by now, I will not describe every step in

detail, as it was already detailed in a previous exercise.

Select the Threads tab and add a new thread with the symbol comms_thread and the name Comms Thread. Also change the priority

from the default 1 to 2. Having all threads running at the same priority is something to be avoided. With the newly added thread

selected, add a communications framework instance to it. Click on the New Stack icon in the Comms Thread Stack pane and select

New Stack → Framework → Connectivity → Communications Framework on sf_el_ux_comms_v2.

Figure 10-1: First step is to add the communications framework

https://www.renesas.com/en-eu/products/synergy/trending/synergy-book.html

04

This will add the complete stack of the g_sf_comms0 Communications Framework on sf_el_ux_comms_v2 to the system, down to

alevel where a user intervention is necessary. You might wonder what the meaning of different colour bars of the thread modules is.

Itis quite simple: Regular instances are marked in grey, common instances in blue (there is just one global per project) and pink marks

options. And the small triangles in the colour bars let you expand or collapse the module trees.

For our project, one USBX port is needed. To add it, click on the optional Add USBX Port DCD module and select New and USBX Port DCD on

sf_el_ux for USBFS. In the Properties for this module, change the Full Speed Interrupt Priority property to e.g. Priority 8 (see Figure 10-2).

Figure 10-3: With all additions and modifications made, the Threads tab should look like this

You might also want to have a look at the USBX Pool Memory Size in the properties of the USBX on ux module. It default to 18 kBytes,

which is sufficient for most tasks. If you want to use different transfer classes in the future, you have to adjust the pool size accordingly.

The USBX documentation, which can be downloaded from the SSP-page on the Solutions Gallery has all the details for that.

With the Comms Thread still selected, add the queue we need for sending the data in the Comms Thread Objects pane. Name it

CDC Queue and assign it the symbol g_cdc_queue in the Properties view. Also set the Message Size to 3, as we want to transmit

3 words with 4 bytes each in each transfer and the Queue Size to 24 bytes, meaning that the queue has space for two (12-byte) messages.

With this, the configuration of the SSP is complete. Save the configuration and click on the Generate Project Content button. Note

that the file comms_thread_entry.c has been added to the src-folder of your project. You will add code to this file during the next steps.

Figure 10-2: An USB Full-Speed port
needs to be added to the system

10.2 Sending Messages

But before you add the code needed to transfer the state of the LED to the host work-station, you will have to add code to the LED Thread

to actually copy the message into the queue. For this, switch back to the C/C++ Perspective and open the file led_thread_entry.c.

At the top, add an include directive for the file comms_thread.h to share elements, like the g_cdc_queue, from the Comms Thread

with the code in the LED Thread. As second step, add a global array of the type char named send_str with 12 characters.

And finally, add the following lines just after the ioport write statement inside the while(1) loop in this file:

g_ioport.p_api->pinWrite(Leds.p_leds[BSP_LED_LED1], led_level);

if(led_level == IOPORT_LEVEL_HIGH)

{

 strcpy(send_str, “LED off\n\r”);

 led_level = IOPORT_LEVEL_LOW;

}

else

{

 strcpy(send_str, “LED on\n\r”);

 led_level = IOPORT_LEVEL_HIGH;

}

/* Send the message in the queue. Wait forever for space */

/* to be available in the queue for the message. */

tx_queue_send(&g_cdc_queue, send_str, TX_WAIT_FOREVER);

tx_semaphore_get(&g_sw4_semaphore, TX_WAIT_FOREVER);

The final step is now to add code to the comms_thread_entry.c file. Open it from the Project Explorer.

Edit the comms_thread_entry.c file and add a global array of 12 elements of the type uint8_t named rx_msg. After that,

replace the line tx_thread_sleep(1); inside the while(1) loop with the following:

tx_queue_receive(&g_cdc_queue, rx_msg, TX_WAIT_FOREVER);

g_sf_comms0.p_api->write(g_sf_comms0.p_ctrl,

 rx_msg,

 strlen(rx_msg),

 TX_WAIT_FOREVER);

05

This concludes all the coding necessary. You may ask now: “Wait a minute: Two lines of code is all what’s needed to transfer

a string received by a queue over USB? Isn’t that too easy?” And the answer is: No, it is so easy. The SSP and the Application

Frameworks will take care about everything else. Isn’t that really simple. Remember the last time you coded a transfer on another

platform? I would guess, there was a huge difference in the effort needed for that.

Now, all what is left, is to build the project. The first time you do that, it will take some time, as the code for the communications

framework will need to be compiled as well. Once the project is built with zero errors, connect the S5D9 Promotion Kit and start

the debug session. With the Debug perspective open, click on Resume twice to start the program. As a first test, press SW4

once to see if LED1 still toggles.

10.3 Setting Up a Receiver On the Host Side

With the program running, connect a second USB type A to micro B cable to the USB port labeled J5 at the bottom of the Promotion

Kit. Insert the other end into your Windows® workstation and wait a couple of seconds until Windows® recognizes the board and

installs the drivers for it.

Start a terminal emulator program. During the development of this exercise, we used Tera Term Pro, which can be downloaded from

https://ttssh2.osdn.jp/ and found it quite useful. In Tera Term, you will see the CDC serial port listed. In Figure 10-4 it is COM6, but

it is likely to be different on other workstations. If you are not sure, use the Device Manager of Windows® to find out the port the board

is connected to.

Figure 10-4: If Windows® recognized the board correctly, it will be listed in Tera Term as
serial connection

In case, the board is not listed at all or the Device Manager indicates an error, there might be a problem with the driver. Please refer

to the latest support entry for this topic in the Renesas Synergy™ Knowledge Base to resolve this:

https://en-support.renesas.com/knowledgeBase/18959077.

06

https://ttssh2.osdn.jp/
https://en-support.renesas.com/knowledgeBase/18959077

With the connection made and Tera Term running, press SW4 a couple of times and you should see the LED1 toggling and the state of it

output to the terminal as shown in Figure 10-5.

Figure 10-5: With the transfer running, the terminal program will display the
state of LED1 each time SW4 is pressed

Points to take away from this chapter:

 ¡ Adding an USB transfer is easy if the Application Frameworks are used.

 ¡ Only very few lines are needed for the implementation.

CONGRATULATIONS!
You just finished this exercise. And what do you think now: Was this easy or not?

07

08

Copyright: © 2020 Renesas Electronics Corporation

Disclaimer:

This volume is provided for informational purposes without any warranty for correctness and completeness. The contents are not intended to be

referred to as a design reference guide and no liability shall be accepted for any consequences arising from the use of this book.

	BASICS OF THE RENESAS SYNERGY™ PLATFORM (Richard Oed)
	10 SENDING DATA THROUGH USB USING A QUEUE
	10 SENDING DATA THROUGH USB USING A QUEUE
	10.1 Setting Up a USB Port in Synergy Platform
	10.2 Sending Messages
	10.3 Setting Up a Receiver On the Host Side

	Disclaimer

