

REJ06J0077-0200 Rev.2.00 Page 1 of 17
Nov. 30, 2016

RX Development Environment Migration Guide
Migration from H8C Family to RX Family (Compiler ed.)
(High-performance Embedded Workshop and H8C to CS+ and CC-RX)

Introduction
In this application notes, it explains the software migration method when C program made by H8SX, H8S, H8 family
compiler (It is recorded as H8-family) is transplanted to RX-family compiler.

In Renesas RX-family compiler, the function to absorb the difference between the option and the language specification
is supported inconsideration of the migration from H8-family to RX-family. As a result, the application part of the
embedded software can be smoothly transplanted.

Please use this application notes when you transplanted to RX-family from H8-family.

Contents

1. Options .. 2
1.1 Specifying sign for the char type .. 2
1.2 Specifying sign for bit-field members ... 4
1.3 Specifying bit-field member allocation ... 5
1.4 Specifying endian ... 6
1.5 Specifying the size of double type .. 7
1.6 Correspondence of int type size to difference ... 8

2. Language specification ... 9
2.1 Signs for char types .. 9
2.2 Specifying sign for bit-field members ... 10
2.3 Endian .. 11
2.4 Size of double type ... 12
2.5 Size of int type ... 13
2.6 asm blocks ... 14

3. Optimization option setting for migration from H8-family ... 15

Exsample: Sample source .. 16

REJ06J0077-0200
Rev.2.00

Nov. 30, 2016

RX Development Environment Migration Guide Migration from H8C Family to RX Family (Compiler ed.)

REJ06J0077-0200 Rev.2.00 Page 2 of 17
Nov. 30, 2016

1. Options
Some specifications differ for the default options between H8-family compilers and RX-family compilers. The
following explains options that will likely require handling during migration from H8 to RX.

Table 1-1 List of options

No Functionality H8 option RX option Reference
1 Specifying sign for the char type - signed_char 1.1
2 Specifying sign for bit-field members - signed_bitfield 1.2
3 Specifying bit-field member allocation bit_order bit_order 1.3
4 Specifying endian - endian 1.4
5 Specifying the size of double type dubole=float dbl_size 1.5
6 Correspondence of int type size to difference - int_to_short 1.6

1.1 Specifying sign for the char type
H8-family compilers treat char types with no sign specified as signed char types, whereas RX-family compilers treat
them as unsigned char types in default. To migrate to RX a program created in H8 based on the requirement that char
types be signed char types, specify the “signed_char” option.

Format

signed_char : unsigned_char by default

unsigned_char

RX Development Environment Migration Guide Migration from H8C Family to RX Family (Compiler ed.)

REJ06J0077-0200 Rev.2.00 Page 3 of 17
Nov. 30, 2016

[How to specify this option in CS+]

Perform the following settings in the [Common Options] page of CC-RX (build tool) properties.

Figure 1-1

RX Development Environment Migration Guide Migration from H8C Family to RX Family (Compiler ed.)

REJ06J0077-0200 Rev.2.00 Page 4 of 17
Nov. 30, 2016

1.2 Specifying sign for bit-field members
H8-family compilers treat bit-field members with no sign specified as signed types, whereas RX-family compilers treat
them as unsigned types in default.

To migrate to RX a program created in H8 based on the requirement that bit-field members with no sign specification
are signed types, specify the “signed_bitfield” option.

Format

signed_bitfield : unsigned_bitfield by default

unsigned_bitfield

[How to specify this option in CS+]

Perform the following settings in the [Common Options] page of CC-RX (build tool) properties.

Figure 1-2

RX Development Environment Migration Guide Migration from H8C Family to RX Family (Compiler ed.)

REJ06J0077-0200 Rev.2.00 Page 5 of 17
Nov. 30, 2016

1.3 Specifying bit-field member allocation
With H8-family compilers, bit-field members are allocated from the most significant bit, whereas with RX-family
compilers, they are allocated from the least significant bit in default. To migrate to RX a program created in H8 based
on the requirement that bit-field members are allocated from the most significant bit, specify the “bit_order=left” option.

Format

bit_order={left|right} : right by default

[How to specify this option in CS+]

Perform the following settings in the [Common Options] page of CC-RX (build tool) properties.

Figure 1-3

RX Development Environment Migration Guide Migration from H8C Family to RX Family (Compiler ed.)

REJ06J0077-0200 Rev.2.00 Page 6 of 17
Nov. 30, 2016

1.4 Specifying endian
With H8-family compilers, the data byte order is big-endian, whereas with RX-family compilers, it is little-endian in
default.

To migrate to RX a program created in H8 based on the requirement that the data byte order is big-endian, specify the
“endian=big” option.

Format

endian={big|little} : little by default

[How to specify this option in CS+]

Perform the following settings in the [Common Options] page of CC-RX (build tool) properties.

Figure 1-4

RX Development Environment Migration Guide Migration from H8C Family to RX Family (Compiler ed.)

REJ06J0077-0200 Rev.2.00 Page 7 of 17
Nov. 30, 2016

1.5 Specifying the size of double type
With H8-family compilers, the size of the double type is 8 bytes, whereas with RX-family compilers, the size of the
double type is four bytes in default. To migrate to RX a program created in H8 based on the requirement that the size of
the double type is 8 bytes, specify the “dbl_size=8” option.

Format

dbl_size ={4|8} : 4 by default

[How to specify this option in CS+]

Perform the following settings in the [Common Options] page of CC-RX (build tool) properties.

Figure 1-5

Precaution:

In optional double=float of the compiler for the H8 family, the size of the float type and the double type is four bytes.
And the long long type is eight bytes. In optional dbl_size=4 of the compiler for the RX family, it is four bytes as for
the size of the float type, the double type, and the long double type.

The result of conversion/library related to the floating point might be different from the result of the compiler for the

H8 family when optional dbl_size=4 is effective.

RX Development Environment Migration Guide Migration from H8C Family to RX Family (Compiler ed.)

REJ06J0077-0200 Rev.2.00 Page 8 of 17
Nov. 30, 2016

1.6 Correspondence of int type size to difference
With H8-family compilers, the size of the int type is 2 bytes, whereas with RX-family compilers, the size of the int type
is 4 bytes in default. To migrate to RX a program created in H8 based on the requirement that the size of the int type is
2 bytes, specify the “int_to_short” option.

Format

int_to_short

[How to specify this option in CS+]

Perform the following settings in the [Common Options] page of CC-RX (build tool) properties.

Figure 1-6

Precaution:

Before compilation, the int type is replaced with the short type in the source file, but the value of INT_MAX, INT_MIN,
and UINT_MAX in limits.h are not converted.

This option cannot be specified by combining with lang=cpp or lang=ecpp. Optional int_to_short becomes invalid when
combining.

RX Development Environment Migration Guide Migration from H8C Family to RX Family (Compiler ed.)

REJ06J0077-0200 Rev.2.00 Page 9 of 17
Nov. 30, 2016

2. Language specification
This chapter explains the language specifications that need to be changed during RX migration.

Table 2-1 List of language specifications

No Functionality Reference
1 Signs for char types 2.1
2 Specifying sign for bit-field members 2.2
3 Endian 2.3
4 Size of double type 2.4
5 Size of int type 2.5
6 asm blocks 2.6

2.1 Signs for char types
With H8-family compilers, char types without a specified sign are treated as signed char types, whereas with RX-family
compilers, they are treated as unsigned char types in default. When programs created in H8 based on the requirement
that char types are signed char types are migrated to RX, they may not operate properly.

Example: Code for which operation is different due to absence/presence of sign for the char type

Source code

char a = -1;

void main(void)

{

 if (a < 0) {

 // char types are signed and ’a’ is interpreted as negative,

 // so the expression is satisfied (H8)

 } else {

 // char types are unsigned and ’a’ is interpreted as positive,

 // so the expression is not satisfied (RX)

 }

}

To migrate to RX a program created in H8 based on the requirement that a signed char type is used for the char type,
specify the “signed_char” option. For details about how to specify this option, see 1.1 Specifying sign for the char type.

RX Development Environment Migration Guide Migration from H8C Family to RX Family (Compiler ed.)

REJ06J0077-0200 Rev.2.00 Page 10 of 17
Nov. 30, 2016

2.2 Specifying sign for bit-field members
With H8-family compilers, bit-field members with no sign specified as treated as signed types, whereas with RX-family
compilers, they are treated as unsigned types in default.

When programs created in H8 based on the requirement that bit-field members with no sign specified are signed types
are migrated to RX, they may not operate properly.

Example: Code for which operation is different due to absence/presence of sign for bit-field members

Source code

struct S {

 int a : 15;

} s = { -1 };

void main(void)

{

 if (s.a < 0) {

 // bit-field members are signed and ’s.a’ is interpreted as negative,

 // so the expression is satisfied (H8)

 } else {

 // bit-field members are unsigned and ’s.a’ is interpreted as positive,

 // so the expression is not satisfied (RX)

 }

}

To migrate to RX a program created in H8 based on the requirement that a bit-field member with no sign specified is a
signed type, specify the “signed_bitfield” option. For details about how to specify this option, see 1.2 Specifying sign
for bit-field members.

RX Development Environment Migration Guide Migration from H8C Family to RX Family (Compiler ed.)

REJ06J0077-0200 Rev.2.00 Page 11 of 17
Nov. 30, 2016

2.3 Endian
With H8-family compilers, the data byte order is big-endian, whereas with RX-family compilers, it is little-endian in
default.

When programs created in H8 based on the requirement that the data byte order is big-endian are migrated to RX, they
may not operate properly.

Example: Code for which operation is different due to variance for endian

Source code

typedef union{

 short data1;

 struct {

 unsigned char upper;

 unsigned char lower;

 } data2;

} UN;

UN u = { 0x7f6f };

void main(void)

{

 if (u.data2.upper == 0x7f && u.data2.lower == 0x6f) {

 // When the data byte order is big-endian (H8)

 } else {

 // When the data byte order is little-endian (RX)

 }

}

To migrate to RX a program created based on the requirement that data byte order is big-endian, specify the
“endian=big” option. For details about how to specify this option, see 1.4 Specifying endian.

RX Development Environment Migration Guide Migration from H8C Family to RX Family (Compiler ed.)

REJ06J0077-0200 Rev.2.00 Page 12 of 17
Nov. 30, 2016

2.4 Size of double type
With H8-family compilers, the size of the double type is 8 bytes, whereas with RX-family compilers, the size of the
double type is 4 bytes in default. When H8 programs created based on the requirement that the size of the double type is
8 bytes are migrated to RX, they may not operate properly.

Example: Code for which operation is different due to variance in double type size

Source code

double d1 = 1E30;

double d2 = 1E20;

void main(void)

{

 d1 = d1 * d1; // When the size of the double type is 4 bytes, d1 * d1 overflows

 d2 = d2 * d2; // When the size of the double type is 4 bytes, d2 * d2 overflows

 if (d1 > d2) {

 // When the size of the double type is 8 bytes,

 // normal size comparison is performed (H8)

 } else {

 // When the size of the double type is 4 bytes,

 // size comparison fails because both d1 and d2 overflow (RX)

 }

}

When migrating programs created based on the requirement that the size of the double type is 8 bytes to RX, specify the
“dbl_size=8” option. For details about how to specify this option, see 1.5 Specifying the size of double type.

RX Development Environment Migration Guide Migration from H8C Family to RX Family (Compiler ed.)

REJ06J0077-0200 Rev.2.00 Page 13 of 17
Nov. 30, 2016

2.5 Size of int type
On H8-family compilers, the size of the int type is 2 bytes, whereas on RX-family compilers the size of the int type is 4
bytes in default. When H8 programs created based on the requirement that the size of the int type is 2 bytes are migrated
to RX, they may not operate properly.

Example: Code for which operation is different due to variance in int type size

Source code

typedef union{

 long data;

 struct {

 int dataH;

 int dataL;

 } s;

} UN;

void main(void)

{

 UN u;

 u.s.dataH = 0;

 u.s.dataL = 1;

 if (u.data == 0) {

 // When the size of the int type is 4 bytes (RX)

 } else {

 // When the size of the int type is 2 bytes (H8)

 }

}

To migrate to RX a program created based on the requirement that the size of the int type is 2 bytes, specify the
“int_to_short” option. For details about how to specify this option, see 1.6 Correspondence of int type size to difference.

RX Development Environment Migration Guide Migration from H8C Family to RX Family (Compiler ed.)

REJ06J0077-0200 Rev.2.00 Page 14 of 17
Nov. 30, 2016

2.6 asm blocks
H8-family compilers allow asm blocks to be used to code assembly language programs in C source programs. Since
RX-family compilers lack the corresponding functionality, programs using asm blocks need special handling when
migrated to RX.

RX-family compilers have assembly code functions to code assembly language in C source programs. The contents
coded in the asm block can sometimes be handled by being coded in the assembly code function.

For details about assembly code functions, see Compiler User’s Manual.

Example:

Program using the H8 asm blocks and program using the RX assembly code function

Source code using an H8 asm block

C source code

void func(void)

{

 __asm {

 NOP

 }

}

Assembler source expansion code

_func:

 NOP

 rts

Source code using the RX assembly code function

C source code

#pragma inline_asm asm_nop

static void asm_nop(void)

{

 NOP

}

void func(void)

{

 asm_nop();

}

Assembler source expansion code

_func:

 NOP

 RTS

Precautions

• H8 allows variables to be coded in the assembler, but RX does not.

RX Development Environment Migration Guide Migration from H8C Family to RX Family (Compiler ed.)

REJ06J0077-0200 Rev.2.00 Page 15 of 17
Nov. 30, 2016

3. Optimization option setting for migration from H8-family
There is a difference in an optional setting method for optimization in the compiler of H8-family, and RX-family.

Please refer to the following optimization option setting when embedded software transplant from H8-family to RX-
family and the performance is evaluated.

Optimization option setting of each compiler and comparison of ROM size

(The sample program for the measurement is described to the next page.）

H8SX Optimize
OFF

Object Size
Precedence

Execution Speed
Precedence

opt=0 opt=1 opt=1 speed
main() 0xB8 0x96 0x96
sort() 0xA2 0x5E 0x6E

* By H8-family compiler V.7.00 Release 00

RX Optimize
OFF

Object Size
Precedence

Execution Speed
Precedence

optimize=0

optimize=1

optimize=2

optimize
=max

optimize=1

speed

optimize=2

speed

optimize
=max
speed

main() 0xAC 0x80 0x76 0x76 0x80 0x76 0x76
sort() 0x92 0x47 0x51 0x53 0x4A 0x5D 0x5F

* By RX-family compiler V2.05.00

Please refer to the compiler user's manual for details of the optimization level of the RX-family compiler.

RX Development Environment Migration Guide Migration from H8C Family to RX Family (Compiler ed.)

REJ06J0077-0200 Rev.2.00 Page 16 of 17
Nov. 30, 2016

Exsample: Sample source
#include <stdio.h>

#include <math.h>

#include <stdlib.h>

void main(void);

void sort(long *a);

void change(long *a);

void main(void)

{

 long a[10];

 long j;

 int i;

 printf("### Data Input ###¥n");

 for(i=0; i<10; i++){

 j = rand();

 if(j < 0){

 j = -j;

 }

 a[i] = j;

 printf("a[%d]=%ld¥n",i,a[i]);

 }

 sort(a);

 printf("*** Sorting results ***¥n");

 for(i=0; i<10; i++){

 printf("a[%d]=%ld¥n",i,a[i]);

 }

 change(a);

}

void sort(long *a)

{

 long t;

 int i, j, k, gap;

 gap = 5;

 while(gap > 0){

 for(k=0; k<gap; k++){

 for(i=k+gap; i<10; i=i+gap){

 for(j=i-gap; j>=k; j=j-gap){

 if(a[j]>a[j+gap]){

 t = a[j];

 a[j] = a[j+gap];

 a[j+gap] = t;

 }else{

 break;

 }

 }

 }

 }

 gap = gap/2;

 }

}

 void change(long *a)

{

 long tmp[10];

 int i;

 for(i=0; i<10; i++){

 tmp[i] = a[i];

 }

 for(i=0; i<10; i++){

 a[i] = tmp[9 - i];

 }

}

RX Development Environment Migration Guide Migration from H8C Family to RX Family (Compiler ed.)

REJ06J0077-0200 Rev.2.00 Page 17 of 17
Nov. 30, 2016

Website and Support
Renesas Electronics Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/contact/

Revision History

Rev. Date
Description
Page Summary

1.00 Oct. 1, 2009 -- Initial edition
2.00 Nov. 30, 2016 -- Revised the destination to CS+ and CC-RX

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas.
For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as
well as any technical updates that have been issued for the products.

1. Handling of Unused Pins
Handle unused pins in accordance with the directions given under Handling of Unused Pins in the
manual.
 The input pins of CMOS products are generally in the high-impedance state. In operation with an

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
 The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
 The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.
4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has
stabilized.
 When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
Before changing from one product to another, i.e. to a product with a different part number, confirm
that the change will not lead to problems.
 The characteristics of Microprocessing unit or Microcontroller unit products in the same group but

having a different part number may differ in terms of the internal memory capacity, layout pattern,
and other factors, which can affect the ranges of electrical characteristics, such as characteristic
values, operating margins, immunity to noise, and amount of radiated noise. When changing to a
product with a different part number, implement a system-evaluation test for the given product.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use

of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or

third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on

the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical

implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it

in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses

incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or

regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the

development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and

regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the

contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HALII Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2016 Renesas Electronics Corporation. All rights reserved.
Colophon 5.0

	1. Options
	1.1 Specifying sign for the char type
	1.2 Specifying sign for bit-field members
	1.3 Specifying bit-field member allocation
	1.4 Specifying endian
	1.5 Specifying the size of double type
	1.6 Correspondence of int type size to difference

	2. Language specification
	2.1 Signs for char types
	2.2 Specifying sign for bit-field members
	2.3 Endian
	2.4 Size of double type
	2.5 Size of int type
	2.6 asm blocks

	3. Optimization option setting for migration from H8-family
	Exsample: Sample source

