RL78 Development
Environment Migration Guide

Migration between RL78 family
(IDE ed.)
(CA78KOR to CC-RL)

December 28, 2016
R20UT3415EJ0102

Software Business Division
Renesas System Design Co., Ltd

© 2016 Renesas System Design Co., Ltd. All rights reserved.

Introduction

B This document describes how to manipulate projects in CS+ to migrate projects created for the
CA78KOR C compiler for the RL78 family of MCUs to the CC-RL C compiler for the RL78 family of
MCUs.

B This document describes the CS+ integrated development environment, the CA78K0OR C compiler for
the RL78 family of MCUs, and the CC-RL C compiler for the RL78 family of MCUs.
The applicable versions are as follows.

®CS+ V4.01.00
O CA78KOR V1.20 and later
®CC-RL V1.03.00

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 2 | z E N ESAS

Agenda

» |[ntroduction Page 2
= Porting Projects to CS+ for CC-RL Page 4
- Starting up CS+ Page 5
- Creating a New Project Page 7
- Utilizing an Existing Project Page 8
= Differences from CA78KOR Projects Page 9
- Generated Files Page 10
- Startup Files Page 11
- iodefine.h Page 13
- Section Allocation Page 15
- Optimization Options Page 18

© 2016 Renesas System Design Co., Ltd. All rights reserved.

Page 3

LENESAS

Porting Projects to CS+ for CC-RL

Porting Projects to CS+ for CC-RL

CA78KOR projects that have been created using CS+ or CubeSuite+ can be ported to the CS+
environment for CC-RL in either of the following two ways.

Method 1 : Create a new project with CS+.
Create a new project in CS+ for RL78 and register existing source files that you have.

Method 2 : Utilize an existing project.
Utilize a CA78KOR CS+ or CubeSuite+ project to create a new project with CS+ for CC-RL.

Method 1 Veihod 2

Source file registration Manual Automatic

Option setting Manual (Partially) automatic

Source file folder location No care needs to be taken regarding The folder structure should be the same
the file registration location. as that of the existing project.(Note)

Conflict between source files and Care should be taken regarding Files should be modified after a project is

automatically generated files conflict at manual file registration. created.

(Note): If you do not convert the source files, a build error may occur if the structures of folders differ and the paths to the folders are
not specified.

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 5 | z E N ESAS

Creating a New Project

After creating a new project, register and use the existing source files for CA78KOR.

File Edit View Broject Build Debug Tosl

Ky L D (R e

o -

Create Project

Window Help

Bsat [BE@: X BE0C RSB z| 0% x G & ME TN
0P34

Project Tree 2% @,smn\

¢ @2 3

Learn About CS+

\wle recommend reading the tutorial to find out what can be done in CS+.
The tutorial contains the information on how to effectively use C5+.

Create New Project

Anew project can be created
A new project can also be crested by reusing the file configuration refistered to an existing project

»

Drop here to open the project
file(" mipi)

Create New Multi-core Project

Open Existing Project

Loads the project of C5+. Can also be opened directly from the following link.
Recent Projects
Nothing

[co |

Favorite Projects
Nothing

Open Existing ? studio/CubeSuite/High-performance Embedded Workshop/PM+

The project created with €@ studic and the old IDE can be converted to the CS+ project

i RL78
Using micrecontreller:
54 (Search mic roller) Update
3% R5F101GE(48pin) + | | Product Name:R5F100LE

-39 F5F100JE(52pin)
-8 F5F101JE(52pin)
»*
-8 F5F101LE(E4pin)
(- % RL7ZIG13 (ROM:SEKE)
(- ¥ RL7ZIG T3 (ROM: 128KE)
i

Intemal ROM size[KEBytes]:64
Intemal RAM size[Bytes]: 4056

+- %5 RL72/G13 (ROM:192KB)

0 s, D) Toac 10 con

s

I Kind of project: Application{CC-RL)

Project name: (Input the name of the project here)

Flace: Csample
Support version:
Curput Make the project folder
[=0F] |
(It is shown absclute path of a project file to create)
[7] Pass the file composition of an existing project to the new project I
Project to be passed: Browse. ..
All Messages P -)))
= HFE' HH HP" mJFE HFE ”F'l ”Fﬂ' [mm ”qu Copy composition files in the diverted project folder 1o a new project folder.
Create Cancel I [Help

© 2016 Renesas System Design Co., Ltd. All rights reserved.

Page 6

LENESAS

Utilizing an Existing Project (1/2)

During the process of creating a new project, select [Pass the file composition of an existing project to
the new project]. Then select a project that was created using CA78KO0R.

File Edit View Project Build Debug Tosl Window Help
Bison BE @ X BB OO HE S vl 1005 iE@ g i Dy M R e o o
=N R =] Create Project g
posates &% []
coa@ Learn About CS+ |RL?E lz” |
e recommend reading the tutorial to find out what can be done in CS+. Using micrecontreller:
0 The tutorial contains the information on how to effectively use C5+.
@ (Search microcontroller) | Update.
Create New Project i REF101GE(48pin) - ::tcduclt ggﬂe:%&l&]uﬁm -
} in emal size es]:
o | ﬁmi‘;:ﬁzﬂiﬁ’?ifmwmmgmmﬁgmm,*,,,m.,ammwm 3 RO | |Intemal RAM size Bytes]:4096
. . . -3 RSF101LE{E4pin)
cj-g RL72/G12 (ROM:SEKE)
. &% RL72/G13 (ROM-122KE)
Remark. [1-2 RL7BIG13 (ROM:192KB) J v
When a new project is created in the same folder as where _ —
o)) . . . Kind of project: Application(CC-AL) (=]
the existing project is stored, the relationship with the header E— Moo tepaectteey o
files included through relative paths from the project folder Plce [Chaampl =l [

becomes the same as that of the existing project.
However, if an existing file has the same name as

Make the project folder

| (It is shown absclute path of a project file to create) |

that of an automatically generated file, a message will
be output to confirm storing of the file as a *.bak file.

In this case, modify the file name back to

the original one after the project is created.

Pass the file composition of an existing project to the new project I
Project to be passed: (Input project file to be diverted.) E| Browse...
ﬁqﬂi [C] Copy composition files in the diverted project folder to a new project folder.
Creste | [Cancel I [Help]

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 7

LENESAS

Utilizing an Existing Project (2/2)

When you create a new project, you can convert the existing source files of CA78K0R compiler to the

source files of CC-RL.
(Source Convert Settings @1

Y'ou can corvert the project composition files ke source files for the build tool of the new
project. _
Do you really want to convert source files?

* Original source files are overwritten by conversion

@ ‘es
71 Mo

Backup of project before conversion.

Backup the project compozition files before converzsion

Place: C:hzample_backup

k.][Cancel H Help]

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 8 [| z E N ESAS

Differences from CA78KO0R Projects

Generated Files

Project Tree q x

When a new project is created for CC-RL, the following files necessary 2 08 &

. - CH
for development will be generated. | M RSFL00LE (Microcontroller)

- Pin Configurater (Design Tool)
-4 Code Generator (Design Tool)
----- 4, CC-RL (Build Tool)

® Startup file (cstartasm) | i &/ RL78 Simulator (Debug Tool)
@ hdwinit initial-setting function file (hdwinit.asm) DgE;‘f“mA”H'FE'EA”E'FET“”
® stkinit stack initial-setting function (stkinit.asm) { ot cstartasm
(This is not output for an MCU with the RL78-S1 core.) % I
----- "EI main.c

®main function file (main.c) k] e :
® SFR file (iodefine.h)

Note:
When a project is created for CA78KO0R,
these files for CC-RL will not be generated.

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 10 | z E N ESAS

Startup File (1/2)

The following shows the contents of the startup file registered in the project tree.

(Example for the RL78-S2/S3 core)
Reset the CPU

v

”

_cstart:
1. Initialize the CPU

- e e e e e e e e e e e

3. Call the hardware initial-setting function

4. Initialize RAM areas
Clear uninitialized data areas
(Default: .bss and .sbss sections*)
Copy initialized data from ROM to RAM
(Default: .data and .sdata sections*)

”,

v (stkinitasm) This function call is commented out; call it as
< > nhecessary.

(For example, call it when using the RAM
parity function in the MCU.)

-

— | (hdwinit.asm)

hdwinit function
—Initial setting for the CPU
*Blank at the time of creating the project

\l To be created by the user

*The processing for the .bssf and .dataf sections for far
variables is commented out.

5. Call the main function

End of the system

When defining a far variable, enable this processing.

- __ .
T T=s . (main.c)
6. After the main functionhias-ended, execution enters an endless loop. _ _ _
= main function (with no parameters or return values)
l ‘‘‘‘‘‘‘‘ —sUser main function

- To be created by the user

© 2016 Renesas System Design Co., Ltd. All rights reserved.

Page 11

LENESAS

Startup File (2/2)

When the main function and hdwinit function are registered in the existing project, use either of the
following two ways to exclude the files that are automatically generated during project creation from the

target of build.
® Delete the files from the project tree.

® Select [No] for "Set as build-target" in the property of the main.c and hdwinit.asm files registered in
the project tree.

‘-'EI main.c Property E] E] E]

4 Build
Set as build-target :m El
File type SOUNCE Tl

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 12 | z E N ESAS

lodefine.h (1/2)

The declarations in this file can be used in a C source file to access SFRs in the RL78.

<iodefine.h>

typedef struct
{

unsigned char no0:1;
unsigned char nol:1;
unsigned char no2:1;
unsigned char no3:1;
unsigned char no4:1;
unsigned char no5:1;
unsigned char no6:1;
unsigned char no7:1;

}_ bitf T;
)

#define ADM2

(*(volatile __near unsigned char *)0x10)

#define ADM2_bit (*(volatile __near __ bitf_T *)0x10)

#define PO
#define PO_bit
#define P1
#define P1_bit
o000

#define INTPO
#define INTP1
#define INTP2
#define INTP3

(*(volatile __near unsigned char *)OxFF0O0)
(*(volatile __near __ bitf T *)OxFFO0O0)
(*(volatile __near unsigned char *)OxFF01)
(*(volatile __near __ bitf T *)OxFF01)

0x0008
0x000A
0x000C
0x000E

<Registers are accessed from this file>
#include “iodefine.h”
LN]

void main(void)

{

o000

ADM2 = 0x12;
ADTYP =1;
PO_bit.no2 = 1;

}

LN]
#pragma interrupt inter (vect=INTPO)
void __near inter (void) {

[*Interrupt processing*/

}

\/

<How to Access>

e Use the descriptions in the iodefine.h file to access SFRs
and their bits.

¢ For the bits that are not registered as reserved words,
use the names with suffix "_bit" to access them.

e Specify #pragma interrupt to use interrupt request names.

© 2016 Renesas System Design Co., Ltd. All rights reserved.

rege 1 RRENESAS

lodefine.h (2/2)

It's possible by the next one of ways for inclusion iodefine.h to source files.

®\\/rite #include "iodefine.h" in each source file.

- Description is needed every each source file.
- It's necessary to do inclusion before an interrupt request name of vector table designation(#pragma interrupt)

and a description of SFR access.
® Specify -preinclude=iodefine.h by a compilation option.

—It's applied to all source files.
- When SFR name and an interrupt request name are used by the different use, #define is replaced by a definition

in iodefine.h <example of C source file> ST
s CC-RL Property : : : ..+

#include “iodefine.h” A p__ - - - —
QOutputs additicnal information for inter-module optimization Mo -

° '_‘; . id 4 Preprocess
void main(void) b Additional include paths Additional include paths[2]
. ST

{ e —————
ADM2 = 0x12; Pl Include files at head of compiling units Include files at head of compiling units[1]

m |

b

PO_bit.no2 = 1; o iadaficak
} > Macro definition Macro definition[0]
[Y | Aefimat A Anfim it na kv

#pragma interrupt inter (vect=INTPO)
void __near inter (void) {

[*Interrupt processing*/

L

Include files at head of compiling unii=
Specifies include files at head of compiling units.
This option corresponds to the -preinclude option of the corl command....

Common Options ; Compile Options AssemhbleOptions Link Options Hex Output Options /0 Header File Generation Options ¥
\ £

© 2016 Renesas System Design Co., Ltd. All rights reserved.

LENESAS

Page 14

Section Allocation (1/3)

Specify allocation of program and data sections on the Link Options tabbed page of the Property panel.

I
4 CC-RL Property E] @ E]
= List -
[Wariables/functions mformation
4 Section
Layaut sections automaticall it E AR R EE A En g
E Section start address .const__text. RLIB. 5LIB_ textf, constf, data, sdata/03000. dataR. bgs/FIF00..sdataR. sbss/FFE 20 E
;- Bection that outpifs" edtemal defined symbols B e fie" " " Bection Tha aubpirs wlemal detinged pmbof o e figfdy "= =" rornmnmnmnnnnmnnnmemnmmnmneg ot
[ROM to RAM mapped zection FROM to Rak mapped section[2] —
[Werify . |E| -
I Message Section Settings u
= Others
Layout zections automabcally Address Section
Specifiez whether to automatically layout sechions. k02000
Thiz option conezponds o the AUTO_SECTION_LAYOUT ophtion af the rhink command. const
FAEAEEERRENENRNNNRNRNN] taﬂ
Carmmon Options ({ Campile Options /{ Assemble Options ;& Link Options I,{E Hex Qutput Options /{ IfioH data
For section allocation, specify the ot =
section names generated by the const =) =
I (cFEFOO dataR
compiler. - |
stack_bss |
Refer to the link directive file created for . —
. . . Export
CA78KOR and modify section allocation.
o J e J

Any section can be allocated to a desired address.

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 15 | z E N ESAS

Section Allocation (2/3)

CC-RL generates sections with default section names.

Default Relocation Description
Section Name | Attribute

.callt0 CALLTO Section for the callt function call table
text TEXT Section for code (allocated to near area)
textf TEXTF Section for code (allocated to far area)

textf_unité4dkp TEXTF_UNIT64KP Section for code (the section is allocated so that the start address is an even
number and the section does not extend over a 64-KB - 1 boundary)

.const CONST ROM data (allocated to near area) (in mirror area)

.constf CONSTF ROM data (allocated to far area)

.data DATA Section for initialized data (with initial values, allocated to near area)
.dataf DATAF Section for initialized data (with initial values, allocated to far area)

.Sdata SDATA Section for initialized data (with initial values, variables allocated to saddr)

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 16 | z E N ESAS

SeCtIOn AI |OCat|On (3/3) (Note) : The section name cannot be modified through #pragma section.

.Ssbss_bit
.bss_Dhit
bss

.bssf

.Sbss
.option_byte
.security_id
.vectNote)

.dataR

.sdataR

RLIBNote)
SLIBNot)

© 2016 Renesas System Design Co., Ltd. All rights reserved.

SBSS_BIT Section for bit data area (uninitialized, variables allocated to saddr)

BSS BIT Section for bit data area (uninitialized, allocated to near area)

BSS Section for data area (uninitialized, allocated to near area)

BSSF Section for data area (uninitialized, allocated to far area)

SBSS Section for data area (uninitialized, variables allocated to saddr)

OPT_BYTE Section dedicated for user option byte and on-chip debug settings

SECUR_ID Section dedicated for security ID setting

AT interrupt vector table

DATA Section for initialized data RAM (initialized, allocated to near area)
Defined in the startup file.

DATA Section for initialized data RAM (initialized, allocated to saddr area)
Defined in the startup file.

TEXTF Section for code of runtime libraries.

TEXTF Section for code of standard libraries.

pege 1 RRENESAS

Optimization Options (1/4)

» The optimization techniques of the Renesas compilers and linkage editors have been enhanced to a
higher level that matches the RL78 MCUs (optimum register assignment, optimum instruction selection,
instruction scheduling, etc.) to generate compact codes.

® Optimization by the compiler
- Easy selection of optimization mode
— Selection of size or speed precedence
- Wide-range optimization at compilation
— Inline expansion of functions in multiple files
- Detailed optimization settings
— Loop expansion, inline function expansion, replacement of a function call at the end of a function with a br
instruction, etc.
® Optimization by the optimizing linkage editor
- Inter-module optimization
— Branch instruction optimization
- Detailed settings for disabling optimization

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 18 | z E N ESAS

Optimization Options (2/4)

Specify options on the Compile Options tabbed page in the CC-RL (build tool) Property panel.

4.‘ CC-RL Property E] E] E]

Add debug information Yesi-g)

ElIulmmlllII --:
E Defautt Optimization{None}) B
MEJ!’.II'I"IIJI'I'] number of |DDp EXpansions
Femove unused static functions Yes(To adjust the level of optimization{MNone)
Perform inline expansion Yes(To adjust the level of optimization){Mone)
Use br instruction to call a function at the end of the function Yes(To adjust the level of optimization{MNone)
Perform inter-module optimization Mo
Perform optimization considering type of data indicated by pointer Mo
Clutputs additional information for inter-medule optimization Mo
= a{n mal o P AR Ern = =m0 m A A A A A A AR A A R R R A AR A AR R R A AR A A AR A A A AR AR AN A AR AN AEEEEEEAEAEEEEAEnEE A n

Level of optimization

Selects the level of the optimization for compiling.
This option corresponds to the -0 option of the cerl command.

' Comman Options }\Eﬂmpil&ﬂptinnsH{ AssembleOptions (< Link Options {.{ Hex Output Options {.{IJ'D Header File Generation Dpt‘mrrs/#

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 19 | z E N ESAS

Optimization Options (3/4)

Optimization options can be specified as follows through the selection of ROM size precedence or
execution speed precedence. In addition, optimization can be fine-tuned through detailed setting items.

Optimization Description
ltem

Loop expansion (the maximum rate of increase in code size after

unroll

delete_static_func
inline_level
inline_size

tail_call

*1 Level of expansion

0: Suppresses all inline expansion including the function for which #pragma inline is specified.
1: Performs inline expansion for only a function for which #pragma inline is specified.
2: Distinguishes a function that is the target of expansion automatically and expands it.

loop expansion)

Deletion of unused static functions

Inline expansion of functions (level of expansion)*1

Size of inline expansion *2

Replacement of a function call at the end of a function with a br

instruction

Optimization Level
2 1 1

on on off
2 3 -
100 0 -
On On Off

3: Distinguishes the function that is the target of expansion automatically and expands it, while minimizing the increase in code size.
However, even if 1 to 3 is specified, the function specified by #pragma inline may not be expanded depending on the contents of the function and the status of compilation.
*2 Size of inline expansion : This specifies the maximum increasing rate (%) of the code size up to which inline expansion is performed.

© 2016 Renesas System Design Co., Ltd. All rights reserved.

LENESAS

Optimization Options (4/4)

The RL78 build environment provides optimization by the linkage editor in addition to optimization by the
compiler. The information, such as allocation addresses, obtained at linkage is used for optimization to
generate more efficient codes.

» =

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 21 [| z E N ESAS

Revision History

Rev.1.00 First revision -

Rev.1.01 Modification of version number of CS+ P2
Addition of method including iodefine.h file P12

Rev.1.02 Modification of version number of CS+ and CC-RL -

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 22 | z E N ESAS

Renesas System Design Co., Ltd.

© 2016 Renesas System Design Co., Ltd. All rights reserved.

	RL78 Development Environment Migration Guide Migration between RL78 family (IDE ed.)(CA78K0R to CC-RL)
	Introduction
	Agenda
	Porting Projects to CS+ for CC-RL
	Porting Projects to CS+ for CC-RL
	Creating a New Project
	Utilizing an Existing Project

	Differences from CA78K0R Projects
	Generated Files
	Startup File
	iodefine.h
	Section Allocation
	Optimization Options

	Revision History

