
© 2016 Renesas System Design Co., Ltd. All rights reserved.

RL78 Development
Environment Migration Guide
Migration between RL78 family
(Compiler ed; Coding)
(CA78K0R to CC-RL)

December 28, 2016
R20UT3416EJ0102

Software Business Division
Renesas System Design Co., Ltd.

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 2

Introduction

 This document describes the source code differences when migrating projects or source codes
created for the CA78K0R C compiler for the RL78 family of MCUs to the CC-RL C compiler for
the RL78 family of MCUs.

 This document describes the CA78K0R C compiler for the RL78 family of MCUs and the CC-RL
C compiler for the RL78 family of MCUs.
The applicable versions are as follows.

CA78K0R V1.20 and later

CC-RL V1.03.00

© 2016 Renesas System Design Co., Ltd. All rights reserved.

Agenda

 Introduction Page 2

 Compiler Language Specifications Page 4

 Assembly Language Specifications Page 20

 Function Call Interface Specifications Page 24

 Porting Support Functions Page 26

 FAQ Page 46

Page 3

© 2016 Renesas System Design Co., Ltd. All rights reserved.

Compiler Language Specifications

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 5

Differences in the language specifications(1/2)
Item CA78K0R CC-RL Remarks
Language C language C language
Language standard C89 C90 and some functions of C99 are supported.
Endian little little
Usable multibyte
characters

EUC, SJIS EUC, SJIS, UTF-8, big5, gbk

Range of support for
multibyte characters

Japanese can be written in
comments.

Japanese and Chinese can be written in
comments and strings.

Handling of char type
not specified as signed
or unsigned

Signed integer
Unsigned integer when the
-qu option is specified.

Unsigned integer
Signed integer when the
-signed_char option is specified.

double type Conforms to IEEE754-
1985.
32-bit data

Conforms to IEEE754-1985.
• When -dbl_size=4 is used

32-bit data
• When -dbl_size=8 is used

64-bit data

-dbl_size=8
is available
only for the
RL78-S3
core.

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 6

Differences in the language specifications(2/2)
Item CA78K0R CC-RL Remarks
int-type bit field in a
structure or union
specifier

Handled as unsigned. Handled as unsigned.
Becomes signed int type when
-signed_bitfield is used.

Allocation order of the
bit field in a structure
or union specifier

Allocated from lower to higher bits.
Allocated from higher to lower bits
when the -rb option is specified.

Allocated from lower to higher bits.

Boundary for each
member in a structure
or union specifier

• 1-byte boundaries
char/signed char/unsigned char

• Others: 2-byte boundaries

• 1-byte boundaries
char/signed char/unsigned char/_Bool

• Others: 2-byte boundaries
Enumeration specifier The enumeration type becomes

one of the following depending on
the range of the enumeration
constants.
signed char/unsigned char/
signed int

The enumeration type becomes one of the
following depending on the range of the
enumeration constants.
char/signed char/unsigned char/
signed short

Refer to the user's manual for the compiler for more information and make changes as required.

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 7

Differences in the boundary for each member
in a structure or union specifier

struct SSS {
char x;
short y;
char z;
struct {

char a;
char b;

} s;
}

Higher
address

Empty

y

Empty
z

s.a
s.bThere is one empty

byte because a
structure is allocated
to align with the word
boundary.

x
Empty

y
z

s.a
s.b

A structure is allocated
to satisfy the alignment
condition of the largest
member. Since
alignment of the char
type is 1-byte
boundaries, there are no
empty bytes.

x

Allocation of structure SSS

CA78K0R CC-RL

Definition of
structure SSS

Refer to the user's manual for the compiler for more information and make changes as required.

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 8

Differences in the enumeration specifier

The type of internal representation varies according to the range of the enumerator.

For CA78K0R (priority)

For CC-RL (priority)

Range: -128 to 127 → signed char
Range: 0 to 255 → unsigned char
Range: -32768 to 32767 → signed int¥

• With -signed_char
Range: -128 to 127 (including the case of 0 to 127) → char
Range: 0 to 255 → unsigned char
Range: Other than above → signed short

• Without -signed_char
Range: -128 to 127 → signed char
Range: 0 to 255 (including the case of 0 to 127) → char
Range: Other than above → signed short

Refer to the user's manual for the compiler for more information and make changes as required.

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 9

Differences in inclusion of header files
Item CA78K0R CC-RL Remarks
Search order of the
include <string> format

(1) Folder specified by the -i option
(2) Folder specified by the
environment variable INC78K0R
(3) Folder containing the standard
include files

(1) Folder specified by the -I option
(2) Folder containing the standard
include files

Search order of the
#include ”string“ format

(1) Folder containing the source files
(2) Folder specified by the -i option
(3) Folder specified by the
environment variable INC78K0R
(4) Folder containing the standard
include files

(1) Folder containing the source files
(2) Folder specified by the -I option
(3) Folder containing the standard
include files

Refer to the user's manual for the compiler for more information and make changes as required.

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 10

Differences in the translation limits(1/2)
Item CA78K0R CC-RL
Nesting levels of files in an iteration statement, compound statement, and selection
statement 45 Depends

on memoryNesting levels of conditional inclusion 255
Number of pointers, arrays, and function declarators (any combination) that qualify one
arithmetic type, structure type, union type, or incomplete type in one declarator 12 128

Nesting levels of declarators that are enclosed within parentheses in one full declarator 

Depends
on memory

Nesting levels of expressions that are enclosed within parentheses in one full expression 1024
Number of effective starting characters in a macro name 256
Number of effective starting characters in an internal identifier 249
Number of effective starting characters in an external identifier 249
Number of external identifiers in one translation unit 1024
Number of identifiers that have a block scope for one block 255
Number of macro identifiers that can be defined simultaneously in one translation unit 60000
Number of formal parameters in one function definition 39
Number of arguments in one function call 39
Number of formal parameters in one macro definition 31
Number of arguments in one macro call 31

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 11

Differences in the translation limits(2/2)
Item CA78K0R CC-RL
Number of characters in one logical source line 32767 Depends on

memoryNumber of characters in a character string literal or wide string literal (after
concatenation)

509

Number of bytes of one object (in the host environment) 65535 32767
(65535 when
the -large_variable
option is specified)

Nesting levels of files that are included by #include 50 Depends on
memoryNumber of case labels in one switch statement (nested switch statements are

excluded)
1024

Number of members in one structure or union 1024
Number of enumeration constants in one enumeration 255
Nesting levels of structure or union definitions in one string of member declarations 15

* The column of CA78K0R indicate values for V1.50 and later.

Refer to the user's manual for the compiler for more information and make changes as required.

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 12

Differences in the numerical limits(1/2)
Item CA78K0R CC-RL
CHAR_MIN -128 0 (-128)
CHAR_MAX +127 +255 (+127)
LLONG_MIN  -9223372036854775808
LLONG_MAX  +9223372036854775807
ULLONG_MAX  +18446744073709551615
DBL_MANT_DIG +24 +24 (+53)
LDBL_MANT_DIG +24 +24 (+53)
DBL_DIG +6 +6 (+15)
LDBL_DIG +6 +6 (+15)
DBL_MIN_EXP -125 -125 (-1021)
LDBL_MIN_EXP -125 -125 (-1021)

* For CHAR_MIN and CHAR_MAX, the values enclosed within parentheses are effective when
-signed_char is specified.

For other items, the values enclosed within parentheses are effective when
the -dbl_size=8 option is specified (RL78-S3 core only).

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 13

Differences in the numerical limits(2/2)
Item CA78K0R CC-RL
DBL_MIN_10_EXP -37 -37 (-307)
LDBL_MIN_10_EXP -37 -37 (-307)
DBL_MAX_EXP +128 +128 (+1024)
LDBL_MAX_EXP +128 +128 (+1024)
DBL_MAX_10_EXP +38 +38 (+308)
LDBL_MAX_10_EXP +38 +38 (+308)
DBL_MAX 3.40282347E+38F 3.40282347E+38F (1.7976931348623158E+308)
LDBL_MAX 3.40282347E+38F 3.40282347E+38F (1.7976931348623158E+308)
DBL_ EPSILON 1.19209290E-07F 1.19209290E-07F (2.2204460492503131E-016)
LDBL_ EPSILON 1.19209290E-07F 1.19209290E-07F (2.2204460492503131E-016)
DBL_MIN 1.17549435E-38F 1.17549435E-38F (2.2250738585072014E-308)
LDBL_MIN 1.17549435E-38F 1.17549435E-38F (2.2250738585072014E-308)

* The values enclosed within parentheses are effective when the -dbl_size=8 option is specified
(RL78-S3 core only).

Refer to the user's manual for the compiler for more information and make changes as required.

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 14

Differences in the #pragma directive
Item CA78K0R CC-RL Actions

Enabling of data insert
functions
__OPC()

#pragma opc  Delete the #pragma directive and
write the data insert processing
using #pragma inline_asm and
assembly-language instructions.

Function call from boot area
to flash memory area

#pragma ext_func  There is no relevant directive.
Delete the #pragma directive.
Specify an absolute address and
call the function.

Specification of inline
expansion of standard library
functions memcpy() and
memset()

#pragma inline  Delete the #pragma directive.
In CC-RL, this means inline
expansion of a user-defined
function.

Refer to the user's manual for the compiler for more information and make changes as required.

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 15

Differences in the macros
Macro Name in CA78K0R Relevant Macro Name in CC-RL Value

__K0R_LARGE__ None 

CPU macro None 

Refer to the user's manual for the compiler for more information and make changes as required.

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 16

Differences in the keywords(1/2)
Function Keyword Relevant Keyword

in CC-RL
Actions

near/far attribute __near/__far __near/__far The specified position is different.

Declaration of bit
variables for saddr area

__boolean
boolean
bit

 Define and declare the bit fields of a structure and
change the bit access processing.

asm statement __asm
#asm to
#endasm

#pragma
inline_asm

An assembly-language instruction cannot be directly
written to a C source program using an asm statement.
Define the assembly-language instruction part with an
assembly-language function and use #pragma
inline_asm.

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 17

Differences in the keywords(2/2)
Function Keyword Relevant Keyword

in CC-RL
Actions

78K0-compatible __callf
callf

 78K0-compatible keywords are not
supported.
Delete the relevant keywords.noauto 

__leaf
norec



__pascal 

__temp 

__mxcall 

Refer to the user's manual for the compiler for more information and make changes as required.

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 18

Differences in declaration of bit variables for the saddr area

CA78K0R

CC-RL

Format: bit (or boolean or __boolean) [variable name]

__saddr struct S{
char a:1;

}

char-type 1-bit
numerical value

• Since there are no bit variables, bit fields are defined in a structure.

• The following types can be used for the types of bit field members.
char, signed char, unsigned char, signed short, unsigned short, signed int,
unsigned int, signed long, unsigned long, signed long long, unsigned long long

Format: __saddr struct [tag name] {
[type name] [field name]: [bit width];
[type name] [field name]: [bit width];
…
[type name] [field name]: [bit width];
};

Refer to the user's manual for the compiler for more information and make changes as required.

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 19

Differences in the assembly-language instruction descriptions

CA78K0R

CC-RL

Format: #asm
−assembly-language description−

#endasm

Format: #pragma inline_asm [(] function name [,...][)]

#pragma inline_asm func

static int func() {
/* assembly-language description */

}

The func function for assembly-language
description is declared.
The assembly-language source program is
written in the func function

Refer to the user's manual for the compiler for more information and make changes as required.

© 2016 Renesas System Design Co., Ltd. All rights reserved.

Assembly Language Specifications

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 21

Differences in the macro operators and the operators

Operation Type CA78K0R CC-RL Remarks
Arithmetic operation + sign, - sign, +, -, *, /, MOD + sign, - sign, +, -, *, /, %
Bit logic operation NOT, AND, OR, XOR ∼, &, |, ^
Shift operation SHR (logic), SHL <<, >>
Section operation  STARTOF, SIZEOF
Separation operation HIGH, LOW, HIGHW, LOWW,

MIRHW, MIRLW
HIGH, LOW, HIGHW, LOWW, MIRHW,
MIRLW,SMRLW

Comparison operation =(EQ), <>(NE), >(GT), >=(GE), <(LT),
<=(LE)
When the result is true, the value is 0FFH.

==, !=, >, >=, <, <=
When the result is true, the value is 1.

Logical operation  &&, ||

Operation Type CA78K0R CC-RL Remarks
Concatenate symbol & ?

Refer to the user's manual for the compiler for more information and make changes as required.

 Differences in the macro operators

 Differences in the operators

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 22

Differences in the directives(1/2)
Instruction Type CA78K0R CC-RL Remarks

Segment definition directives BSEG



.SECTION

Memory initialization or area
allocation directives

 .DB8

 .ALIGN

Macro directives MACRO .MACRO
LOCAL .LOCAL
REPT .REPT
IRP .IRP
EXITM .EXITM
 .EXITMA
ENDM .ENDM

Include directive  $BINCLUDE

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 23

Differences in the directives(2/2)
Instruction Type CA78K0R CC-RL Remarks

Conditional assembler
directives

 $IFNDEF
 $IFN
 $ELSEIFN

Refer to the user's manual for the compiler for more information and make changes as required.

© 2016 Renesas System Design Co., Ltd. All rights reserved.

Function Call Interface Specifications

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 25

Differences in the normal function call interface
Operation Type CA78K0R CC-RL Remarks

Registers for storing
return values

CY

BC
DE

A
AX
BC
DE

Since the order or combination for
assigning registers is different, refer
to the user's manual for the
compiler for more information.

Registers for storing
arguments AX

BC

A, X, C, B, E, D
AX
BC
DE

Same as above

Locations for storing
auto variables

Stack
saddr area (when the -qr
option is specified）

Stack Same as above

Refer to the user's manual for the compiler for more information and make changes as required.

© 2016 Renesas System Design Co., Ltd. All rights reserved.

Porting Support Functions

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 27

Porting support functions of CC-RL

CC-RL provides the porting support functions.
Porting support functions become valid by specifying the following options.
 compiler porting support functions : -convert_cc option
 assembler porting support functions : -convert_asm option
(Example) -convert_cc=ca78k0r

-convert_asm

It isn't necessary to include “iodefine.h” using #include sentence every source file by specifying
the following option.
“iodefine.h” have the definition of SFR name and an interrupt request name.
 Preprocessor control option of Compiler : -preinclude option
(Example) -preinclude=iodefine.h

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 28

Applicable #pragma directive(1/4)

When specifying the -convert_cc=ca78k0r option, those descriptions are replaced according to the CC-RL specifications.

Item CA78K0R CC-RL Actions
(when porting support function is not used)

C-source level
coding
of SFR name

#pragma sfr It isn't replaced to the
function of CC-RL. Please
use the following way.
#include “iodefine.h”

or
-preinclude=iodefine.h

Delete the #pragma directive.
Use the definition of iodefine.h (generated by
IDE) for SFR access.

Declaration of
interrupt functions

#pragma vect
#pragma interrupt


#pragma interrupt

The format is different.
Refer to the manual and rewrite the declaration.

Enabling of
interrupt functions
DI()
EI()

#pragma DI
#pragma EI

__DI
__EI

Delete the #pragma directive and replace the
function name as follows:
__DI();
__EI();

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 29

Applicable #pragma directive(2/4)
Item CA78K0R CC-RL Actions

(when porting support function is not used)

Enabling of CPU control
instructions
HALT()
STOP()
BRK()
NOP()

#pragma HALT
#pragma STOP
#pragma BRK
#pragma NOP

__halt
__stop
__brk
__nop

Delete the #pragma directive and replace
the function name as follows:
__halt();
__stop();
__brk();
__nop();

Changing of section name #pragma section #pragma section The format is different.
Refer to the manual and change the format.

Changing of module name #pragma name  Delete the #pragma directive.
Specify the -rename option of the linker.

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 30

Applicable #pragma directive(3/4)
Item CA78K0R CC-RL Actions

(when porting support function is not used)
Enabling of rotate functions
rorb()
rolb()
rorw()
rolw()

#pragma rot __rorb
__rolb
__rorw
__rolw

Delete the #pragma directive and replace
the function name as follows:
__rorb();
__rolb();
__rorw();
__rolw();

Enabling of multiply functions
mulu()
muluw()
mulsw()

#pragma mul __mulu
__mului
__mulsi

Delete the #pragma directive and replace
the function name as follows:
__mulu();
__mului();
__mulsi();

Enabling of divide functions
divuw()
moduw()

#pragma div __divui
__remui

Delete the #pragma directive and replace
the function name as follows:
__divui();
__remui();

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 31

Applicable #pragma directive(4/4)
Item CA78K0R CC-RL Actions

(when porting support function is not used)
Enabling of multiply-
and-accumulate
functions
macuw()
macsw()

#pragma mac __macui
__macsi

Delete the #pragma directive and replace
the function name as follows:
__macui();
__macsi();

Declaration of RTOS
function

#pragma rtos_interrupt #pragma rtos_interrupt The format is different.
Refer to the manual and rewrite the
declaration.

Refer to the user's manual for the compiler for more information and make changes as required.

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 32

Differences in declaration of the interrupt functions

CA78K0R

CC-RL

Format: #pragma vect (or interrupt) [interrupt request name] [function name] [stack switching setting]

#pragma interrupt INTP0 inter rb1

void inter (void) {
/* interrupt processing for INTP0 pin input */
}

Format: #pragma interrupt [(] interrupt handler request name [(interrupt specification [,...])][)]

#include “iodefine.h”
#pragma interrupt inter (vect=INTP0, bank=RB1)
__near void inter (void) {
/* interrupt processing for INTP0 pin input */
}

It's possible by -preinclude=iodefine.h option,
if it isn't written in a source file.

The interrupt request name can be
written when iodefine.h is included.

Refer to the user's manual for the compiler for more information and make changes as required.

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 33

Differences in changing the section name

CA78K0R

CC-RL

Format: #pragma section [compiler output section name] [new section name] [AT start address]

Format: #pragma section [section type] [new section name]

#pragma section @@DATA DD1 AT 2400H
The section name @@DATA is
changed to DD1 and 2400H is
specified as the start address.

The compiler output section name is changed.

The section name corresponding with the section type of text, const, data, or bss is changed.
• For the near section: new section name + “_n”
• For the far section: new section name + “_f”
• For the saddr section: new section name + “_s”
#pragma section bss DD1
int __far fdata; The section name bss is

changed to DD1_f.

Note that when specifying the start address of a section, it should be specified with the -start option of the linker.

Refer to the user's manual for the compiler for more information and make changes as required.

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 34

Applicable macros

When specifying the -convert_cc=ca78k0r option, those descriptions are replaced according to the CC-RL
specifications.

Macro Name in CA78K0R Relevant Macro Name in CC-RL Value
__K0R__ __RL78__ decimal constant 1
__K0R_SMALL__ __RL78_SMALL__
__K0R_MEDIUM__ __RL78_MEDIUM__
__CHAR_UNSIGNED__ __UCHAR
__RL78_1__ __RL78_S1__
__RL78_2__ __RL78_S2__
__RL78_3__ __RL78_S3__
__CA78K0R__ None

Refer to the user's manual for the compiler for more information and make changes as required.

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 35

Applicable keywords(1/5)

When specifying the -convert_cc=ca78k0r option, those descriptions are replaced according to the CC-RL
specifications.

Function Keyword Relevant Keyword
in CC-RL

Actions
(when porting support function is not used)

Allocation of variables to
saddr area

__sreg
sreg

__saddr
#pragma saddr

Change __sreg to __saddr.

Absolute address setting __directmap #pragma address An absolute address cannot be specified by
__directmap. Use #pragma address.
Addresses of variables cannot overlap with
each other.

Declaration of hardware
interrupt function

__interrupt #pragma interrupt Change the declaration using #pragma
interrupt.

Declaration of software
interrupt function

__interrupt_brk #pragma
interrupt_brk

Change the declaration using #pragma
interrupt_brk.

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 36

Applicable keywords(2/5)
Function Keyword Relevant Keyword

in CC-RL
Actions

(when porting support function is not used)

Declaration of RTOS
function

__rtos_interrupt #pragma
rtos_interrupt

__rtos_interrupt has become unnecessary.
Delete “__rtos_interrupt” from the
declaration of the interrupt handler function
for RTOS.

Declaration of callt
function

__callt
callt

__callt
#pragma callt

Change callt to __callt.

Declaration of bit
variables for saddr
area*

__boolean
boolean
bit

 Change __boolean to char(when the –ansi
option is specified).
Change __Boolean, Boolean, bit to
_Bool(when the –ansi option is not
specified).

* Since there are no bit variables, bit variables is treated as 1-byte data when specifying -convert_cc=ca78k0r
option.

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 37

Applicable keywords(3/5)
Function Keyword Relevant Keyword

in CC-RL
Actions

(when porting support function is not used)

Segment definition
directives

CSEG .CSEG Change CSEG to .CSEG.
The description format of the relocation
attribute is different.
When the relocation attribute is UNITP,
change CSEG to “.CSEG TEXTF” and
“.ALIGN 2”.

DSEG .DSEG Change DSEG to .DSEG.
The description format of the relocation
attribute is different.

BSEG .BSEG Change BSEG to .BSEG.
ORG .ORG Change ORG to .ORG.
EQU .EQU Change EQU to .EQU.
SET .SET Change SET to .SET.

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 38

Applicable keywords(4/5)
Function Keyword Relevant Keyword

in CC-RL
Actions

(when porting support function is not used)
Branch instruction automatic
selection directives

BR BR !!addr20 Change BR to BR !!addr20.

CALL CALL !!addr20 Change CALL to CALL !!addr20.
Memory initialization or area
allocation directives

DB .DB Change DB to .DB.
The interpretation of the “(size)” operand is different.

DW .DB2 Change DW to .DB2.
The interpretation of the “(size)” operand is different.

DG DB4 Change DG to .DB4.
The interpretation of the “(size)” operand is different.

DS .DS Change DS to .DS.
DBIT .DBIT Change DBIT to .DBIT.

Linkage directives PUBLIC .PUBLIC Change PUBLIC to .PUBLIC.
EXTRN .EXTERN Change EXTERN to .EXTERN.
EXTBIT .EXTBIT Change EXTBIT to .EXTBIT.

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 39

Applicable keywords(5/5)
Function Keyword Relevant Keyword in CC-

RL
Actions

(when porting support function is not used)

Object module name
declaration directive

NAME treated as a comment Delete the NAME directive. Specify
the -rename option of the linker.

Assemble end
directive

END treated as a comment Delete the END directive.

Refer to the user's manual for the compiler for more information and make changes as required.

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 40

Symbol definition directive EQU
(when porting support function is not used)
A relocatable label cannot be written as an operand of the symbol definition directive EQU.
Replace the reference points of the name on the left side of EQU with relocatable labels and disable EQU itself.

CA78K0R

CC-RL

DMAINP DSEG SADDRP
RABUF1: DS 8
RABUF2: DS 8
OFFSET EQU RABUF2 - RABUF1
FPREAD EQU RABUF1.4

CSEG
ADD A,#OFFSET
CLR1 FPREAD

DMAINP DSEG SADDRP
RABUF1: DS 8
RABUF2: DS 8

CSEG
ADD A, #RABUF2 - RABUF1
CLR1 RABUF1.4

Delete this.

Delete this.

Replace this.

Replace this.

Refer to the user's manual for the compiler for more information and make changes as required.

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 41

Memory initialization or area allocation directive
(when porting support function is not used)

Only one operand can be written in a memory initialization or area allocation directive.
If more than one operand is written, divide the directive into multiple directives.

CA78K0R

CC-RL

MSGDATA CSEG AT 80H
TMSGOK:

DB 'OK'
DB 0DH,0AH
END

MSGDATA CSEG AT 80H
TMSGOK:

.DB 'OK'

.DB 0DH

.DB 0AH

Correct this.

Refer to the user's manual for the compiler for more information and make changes as required.

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 42

Size in a memory initialization or area allocation directive
(when porting support function is not used)
Only one operand can be written in a memory initialization or area allocation directive.

If moreAthan one operand is written, divide the directive into multiple directives.

CA78K0R

CC-RL

CSEG
DW (3)
END

.CSEG

.DS 6

Correct this. 3 words x 2 = 6 bytes

Format: DW (size) Specify the size in words.

Format: .DS (size) Specify the size in bytes.

Refer to the user's manual for the compiler for more information and make changes as required.

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 43

Applicable directives(1/3)

When specifying the -convert_asm option, those descriptions are replaced according to the CC-RL
specifications.

Function Keyword Relevant Keyword
in CC-RL

Actions
(when porting support function is not used)

Assemble target type
specification directive $PROCESSOR ($PC) treated as a comment Specify the -dev option.

Include directive $INCLUDE ($IC) $INCLUDE Change to $INCLUDE.
RAM area allocation
specification directive $RAM_ALLOCATE treated as a comment Allocate the target segment using the .CSEG

directive.
Conditional
assembler directives

$IF $IF Use the -define option or .SET.

$_IF $IF Change to $IF.

$ELSEIF $ELSEIF Use the -define option or .SET.

$_ELSEIF $ELSEIF Change to $ELSEIF.

$ELSE $ELSE

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 44

Applicable directives(2/3)
Function Keyword Relevant Keyword in

CC-RL
Actions

(when porting support function is not used)

Conditional
assembler directives

$ENDIF $ENDIF
$SET, $RESET treated as a comment Delete the $SET, $RESET directive.

Debugging
information output
directive

$DEBUG ($DG),
$NODEBUG ($NODG)

treated as a comment Specify the -debug option.

$DEBUGA,
$NODEBUGA

treated as a comment

Cross reference list
output specification
directives

$XREF ($XR),
$NOXREF ($NOXR)

treated as a comment Delete the $XREF ($XR),
$NOXREF ($NOXR) directive.

$SYMLIST,
$NOSYMLIST

treated as a comment Delete the $SYMLIST, $NOSYMLIST
directive.

Assemble list
directives

$EJECT ($EJ) treated as a comment Delete the $EJECT ($EJ) directive.
$LIST ($LI),
$NOLIST ($NOLI)

treated as a comment Delete the $LIST ($LI),
$NOLIST ($NOLI) directive.

$GEN, $NOGEN treated as a comment Delete the $GEN, $NOGEN directive.

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 45

Applicable directives(3/3)
Function Keyword Relevant Keyword in

CC-RL
Actions

(when porting support function is not used)

Assemble list directives $COND, $NOCOND treated as a comment Delete the $COND, $NOCOND directive.
$TITLE ($TI) treated as a comment Delete the $TITLE ($TI) directive.
$SUBTITLE ($ST) treated as a comment Delete the $SUBTITLE ($ST) directive.
$FORMFEED,
$NOFORMFEED

treated as a comment Delete the $FORMFEED,
$NOFORMFEED directive.

$WIDTH treated as a comment Delete the $WIDTH directive.
$LENGTH treated as a comment Delete the $LENGTH directive.
$TAB treated as a comment Delete the $TAB directive.

Kanji code directive $KANJICODE treated as a comment Specify the -character_set option.

Other directives $TOL_INF, $DGS,
$DGL

treated as a comment Delete the $TOL_INF, $DGS, $DGL
directive.

Refer to the user's manual for the compiler for more information and make changes as required.

© 2016 Renesas System Design Co., Ltd. All rights reserved.

FAQ

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 47

FAQ

 After this page, FAQ about Compiler and Linker Error massages at converting from CA78K0R to
CC-RL is described.

 You can show the FAQ in Renesas web, so please refer to a web for the latest information.

http://www.renesas.com/rl78_c
-> FAQ

http://www.renesas.com/rl78_c

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 48

FAQ

FAQ No. Q A
1011661 I get the error message below

when I try to access the SFRs.
How do I get around this?

E0520020: Identifier "character
string" is undefined.

Include the iodefine.h file that is generated when you use an IDE to
create a project. This gives you reserved words to use in access to
SFRs. SFRs that are addressable from the compiler in byte or word
units and those SFRs having bits which are addressable in bit units
(only those bit names corresponding to bit numbers enclosed in
squares in the user's manual for the MCU) can be accessed by
writing their names.
（Example）
#include"iodefine.h"
ADM2 = 0x12; /* Reserved word for the byte-unit SFR */
ADTYP = 1; /* Reserved word for the bit-unit SFR */
You can designate inclusion of the file by a directive as shown above
or by designating it with the compiler’s –preinclude option.
（Example）
-preinclude=iodefine.h

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 49

FAQ

FAQ No. Q A
1011662 I get the error

message
below when I
try to access
the bits of
SFRs. How do
I get around
this?

E0520020:
Identifier
"character
string" is
undefined.
E0520065:
Expected a ";".

Include the iodefine.h file that is generated when you use an IDE to create a project. This gives you
reserved words to use in access to SFRs. SFRs that are addressable from the compiler in byte or word
units and those SFRs having bits which are addressable in bit units (only those bit names corresponding
to bit numbers enclosed in squares in the user's manual for the MCU) can be accessed by writing their
names. In the case of bits for which the numbers are not enclosed in squares, use the reserved word with
_bit appended for the name of the byte- or word-unit SFR defined in iodefine.h.
(Example)
#include"iodefine.h"
P0_bit.no2 = 1; /* There is no reserved word for the bit-unit SFR */
In CC-RL, owing to the porting assistance facilities, you can use the -convert_cc option of the compiler to
write it in the style of CA78K0R without using the reserved words for bytes and words with the _bit name
attached.
(Example)
#include"iodefine.h"
P0.2 = 1; /* There is no reserved word for the bit-unit SFR */
You can designate inclusion of the file by a directive as shown above or by designating it with the
compiler’s -preinclude option.
(Example)
-preinclude=iodefine.h

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 50

FAQ

FAQ No. Q A
1011663 I get the error message below

when I use #pragma to define an
interrupt function. How do I get
around this?

E0523005: Invalid pragma
declaration

Write the interrupt function in the form of
#pragma interrupt [(]interrupt handler name[(interrupt specification
[,...])][)].
A file iodefine.h is generated when you create a project in an IDE.
Include iodefine.h in the C source file which uses interrupt request
names, since it has definitions for the names of interrupt requests.
In CC-RL, owing to the porting assistance facilities, you can use the -
convert_cc option of the compiler to write it in the style of CA78K0R.

1011664 I get the error message below
when I try to define an interrupt
function. How do I eliminate this
error?

E0520065: Expected a ";".

Designate the interrupt function with #pragma interrupt.
CC-RL does not have a __interrupt interrupt qualifier.
In CC-RL, owing to the porting assistance facilities, you can use the -
convert_cc option of the compiler to write it in the style of CA78K0R.

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 51

FAQ

FAQ No. Q A
1011665 I get the error message below when

I try to define an interrupt function.
How do I eliminate this error?

E0520014: Extra text after
expected end of preprocessing
directive.

A file iodefine.h is generated when you create a project in an IDE.
Include iodefine.h before issuing the #pragma interrupt, since it has
definitions for the names of interrupt requests.
You can designate inclusion of the file by a directive as shown above
or by designating it with the compiler’s -preinclude option.
（Example）
-preinclude=iodefine.h

1011666 get the error message below when
I designate a library file. How do I
resolve this?

E0562201: Illegal library file :
"xxxx.lib"

Check that you have not designated a library file for CA78K0R. You
cannot use the CC-RL compiler to link a library which was generated
with CA78K0R because they are in different object formats. Please
recreate the library file for CC-RL.

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 52

FAQ

FAQ No. Q A
1011667 I get the error message below

when I designate an object file as
an input file. How do I resolve this?

E0562200: Illegal object file :
"xxxx.rel"

Check that you have not designated an object file for CA78K0R. You
cannot use the CC-RL compiler to link a object which was generated
with CA78K0R because they are in different object formats. Please
recreate the object file for CC-RL.

1011668 I get the warning message below
when I try to compile files. Why
does this happen?

W0511179: The evaluation version
is valid for the remaining number
days.

The message appears because you have not registered your license
key for CC-RL. You have a 60-day trial period from first building, and
your usage is not restricted over that period as it is a free evaluation
copy. The message indicates how much of that period remains. After
the trial period, the linkage size is restricted to 64 K or fewer bytes,
and the MISRA-C checking function becomes unusable.

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 53

FAQ

FAQ No. Q A
1011669 I get the error message below

when I attempt access to the PSW.
I have included iodefine.h. Is there
any way around this?

E0520020: Identifier " PSW " is
undefined.

There is no PSW definition in iodefine.h file, since you cannot access
the PSW directly.
Use the following intrinsic functions for PSW operations.

- __get_psw
This returns the contents of the PSW.

- __set_psw
This sets a value for the PSW.

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 54

Revision History

Revision Description Page

Rev.1.00 First revision -

Rev.1.01

Addition of FAQ title P3

Addition of method including “iodefine.h” P27

Modification of explain “#pragma sfr” P28
Addition of method including “iodefine.h” by -preinclude=iodefine.h
option P32

Addition of FAQ P47

Rev.1.02 Revised the destination to CC-RL V1.03.00 -

© 2016 Renesas System Design Co., Ltd. All rights reserved.

Renesas System Design Co., Ltd.

	RL78 Development Environment Migration Guide Migration between RL78 family (Compiler ed; Coding)(CA78K0R to CC-RL)
	Introduction
	Agenda
	Compiler Language Specifications
	Differences in the language specifications
	Differences in the boundary for each member in a structure or union specifier
	Differences in the enumeration specifier
	Differences in inclusion of header files
	Differences in the translation limits
	Differences in the numerical limits
	Differences in the #pragma directive
	Differences in the macros
	Differences in the keywords
	Differences in declaration of bit variables for the saddr area
	Differences in the assembly-language instruction descriptions

	Assembly Language Specifications
	Differences in the macro operators and the operators
	Differences in the directives

	Function Call Interface Specifications
	Differences in the normal function call interface

	Porting Support Functions
	Porting support functions of CC-RL
	Applicable #pragma directive
	Differences in declaration of the interrupt functions
	Differences in changing the section name
	Applicable macros
	Applicable keywords
	Symbol definition directive EQU�(when porting support function is not used)
	Memory initialization or area allocation directive �(when porting support function is not used)
	Size in a memory initialization or area allocation directive�(when porting support function is not used)
	Applicable directives

	FAQ
	Revision History

