

R20UT3233EJ0101 Rev.1.01 Page 1 of 27
Apr. 21, 2017

RH850 Development Environment Migration Guide
Migration from V850E2 Family to RH850 Family (Compiler ed.) (CX to CC-RH)

Introduction
This document describes the points that should be especially borne in mind for migration from the V850E2 compiler
(hereafter called the CX) to the RH850 family compiler (hereafter called the CC-RH).

Contents

1. Options.. 2
1.1 Compiler Options .. 2
1.2 Assembler Options ... 7
1.3 Linkage Editor Options ... 8

2. Intrinsic Functions ... 10

3. Predefined Macros ... 12

4. Extended Language Specifications .. 14

5. Assembler Directives ... 15

6. Peripheral I/O Registers ... 16
6.1 Peripheral I/O Registers in CX ... 16
6.2 Peripheral I/O Registers in CC-RH .. 16

7. Interrupts and Exceptions ... 17
7.1 Interrupts and Exceptions in CX.. 17
7.2 Interrupts and Exceptions in CC-RH ... 17

8. ROMization ... 21
8.1 ROMization Processing in CX .. 21
8.2 ROMization Processing in CC-RH ... 21

9. Section Allocation .. 24
9.1 Section Allocation in CX ... 24
9.2 ROMization Processing in CC-RH ... 25

10. Program Compatibility ... 26

R020UT3233EJ0101
Rev.1.01

Apr. 21, 2017

RH850 Development Environment Migration Guide from V850E2 Family to RH850 Family

R20UT3233EJ0101 Rev.1.01 Page 2 of 27
Apr. 21, 2017

1. Options
This section shows a table that compares the CX options with their corresponding CC-RH options. Note that the CC-RH
distinguishes between uppercase and lowercase letters in the compiler options and assembler options, but does not
distinguish between them in the linkage editor options.

1.1 Compiler Options
Classification Description CX (cx.exe) CC-RH (ccrh.exe)

Version/help
display
specification

This option displays the version information. -V -V

This option displays the descriptions of options. -h -h

Output file

specification

This option specifies the output file name. -o -o

This option specifies where the object module file
generated during compiling is to be saved. -Xobj_path -Xobj_path

This option specifies where an assembly-language
source file generated during compilation is to be
saved.

-Xasm_path -Xasm_path

This option specifies where an assemble list file is
to be saved. -Xprn_path -Xasm_option=-Xprn_path

This option specifies the temporary folder. -Xtemp_path None.

This option saves the load module file before
ROMization processing. -Xlink_output None. (Note 1)

Source debugging
control

This option outputs information for source
debugging. -g -g

This option prohibits changing the memory access
size. -Xkeep_access_size None.

Device specification

This option specifies the target device. -C None. (Note 2)

This option specifies that an object module file
common to the various devices is generated. -Xcommon -Xcommon (Note 3)

This option specifies the folder to search for device
files. -Xdev_path None. (Note 2)

This option sets the start address of the
programmable peripheral I/O register. -Xprogrammable_io None.

Processing
interrupt
specification

This option executes only preprocessing for the
input file. -P -P

This option does not execute processing after
assembling. -S -S

This option does not execute processing after
linking. -c -c

Preprocessor
control

This option defines preprocessor macros. -D -D

This option deletes the preprocessor macro
definitions by the –D option. -U -U

This option specifies the folder to search for
include files. -I -I

This option controls outputting the result of
preprocessing. -Xpreprocess -Xpreprocess

Note 1: The CC-RH does not execute ROMization by default. To enable it, the user should specify the
"–ROm" option at linkage.

Note 2: The CC-RH does not support the use of device files.

Note 3: The specifiable parameters differ between the CX and CC-RH.

RH850 Development Environment Migration Guide from V850E2 Family to RH850 Family

R20UT3233EJ0101 Rev.1.01 Page 3 of 27
Apr. 21, 2017

Classification Description CX (cx.exe) CC-RH (ccrh.exe)

C language control

This option processes as to make C source
programs comply strictly with the ANSI standard. -Xansi -Xansi

This option specifies signed for char type. -Xchar None. (Note 4)

This option specifies which integer type the
enumeration type handles. -Xenum_type -Xenum_type

This option handles tentative definitions of
variables as full definitions. -Xdef_var None. (Note 5)

Variable/function
information
specification

This option specifies the use of a symbol
information file. -Xsymbol_file None.

Japanese/Chinese
character control

This option specifies the Japanese/Chinese
character code. -Xcharacter_set -Xcharacter_set

Optimization
specification

This option specifies the optimization level or the
details of each optimization item. -O -O (Note 6)

This option deletes unused functions. -Xdelete_func None.

This option sorts external variables. -Xsort_var None.

This option performs inline expansion of standard
library function calls "strcpy", "strcmp", "memcpy",
and "memset".

-Xinline_strcpy -Xinline_strcpy

This option specifies whether or not to perform
prologue/epilogue processing of the function
through runtime library calls.

-Xpro_epi_runtime None.

This option suppresses inline expansion of the
library function. -Xcall_lib None.

This option merges string literals. -Xmerge_string -Xmerge_string

Generated code
control

This option performs the structure packing. -Xpack -Xpack (Note 7)

This option outputs a C source program as a
comment to the assembly-language source file. -Xpass_source -Xpass_source

This option specifies a mode in which the code of
a switch statement is to be output. -Xswitch -Xswitch

This option generates a 4-byte branch table. -Xword_case None.

This option specifies the register where external
variables are to be allocated. -Xr None.

This option specifies the register mode. -Xreg_mode -Xreg_mode (Note 8)

This option specifies the maximum size of data
allocated to the .sdata or .sbss section. -Xsdata

-Xsection (note 9)
This option specifies that constant data is
allocated to the .sconst section. -Xsconst

This option controls generating floating-point
calculation instructions. -Xfloat -Xfloat

This option controls outputting far jump. -Xfar_jump -Xfar_jump

This option generates the div and divu instructions
for division. -Xdiv -Xdiv

Assembler control
specification

This option controls outputting far jump for an
assembly-language source file. -Xasm_far_jump -Xasm_option=-

Xasm_far_jump

Note 4: The CC-RH always handles unsigned char types as signed types.
Note 5: The CC-RH always handles tentative definitions of variables as full definitions.
Note 6: The specifiable parameters differ between the CX and CC-RH.
Note 7: The CC-RH does not allow a value of 8 to be specified as a parameter.
Note 8: The CC-RH does not provide the 26-register mode.
Note 9: This option was added in CC-RH V1.02.00; it collectively changes the default allocation of

variables to sections.
Note 10: Both the CX and CC-RH allocate constant data to the .const section by default.

RH850 Development Environment Migration Guide from V850E2 Family to RH850 Family

R20UT3233EJ0101 Rev.1.01 Page 4 of 27
Apr. 21, 2017

Classification Description CX (cx.exe) CC-RH (ccrh.exe)

Library link control

This option specifies the library file to be used
during linking. -l -Xlk_option=-LIBrary

This option specifies the folder to search for library
files. -L None. (Note 11)

This option suppresses linking the standard library. -Xno_stdlib None. (Note 12)

This option suppresses linking the startup routine. -Xno_startup None. (Note 13)

This option specifies the startup routine. -Xstarup None. (Note 13)

ROMization control

This option suppresses ROMization processing. -Xno_romize None. (Note 14)

This option specifies the ROMization area
reservation code file. -Xrompcrt None.

This option specifies the start address of the
rompsec section. -Xrompsec_start None.

This option specifies the data section included in
the rompsec section. -Xrompsec_data None.

This option specifies the text section included in
the rompsec section. -Xrompsec_text None.

This option generates the load module file that has
only the rompsec section. -Xrompsec_only None.

This option omits error checking under
ROMization. -Xromize_check_off None.

Link control

This option specifies the link directive file. -Xlink_directive None. (Note 15)

This option outputs the link map file. -Xmap -Xlk_option=-LISt

This option outputs symbol information to the link
map file. -Xsymbol_dump -Xlk_option=-SHow

 This option specifies the security ID. -Xsecurity_id None. (Note 16)

 This option sets the user option bytes. -Xoprion_byte None. (Note 16)

 This option specifies the entry point address. -Xentry_address -Xlk_option=-ENTry

 This option generates the relocatable object
module file. -Xrelinkable_object -Xlk_option= -

FOrm=Relocate

 This option outputs detailed information when
different register modes are used together. -Xregmode_info None.

Note 11: The user should specify the folder to search for library files as a parameter of

-Xlk_option=-LIBrary.

Note 12: The CC-RH does not link the default standard library.

Note 13: The CC-RH handles the startup routine as an ordinary source file.

Note 14: The CC-RH linkage editor does not execute ROMization by default. To enable it, the user should
specify the "–ROm" option at linkage.

Note 15: The CC-RH does not support the use of link directive files.

 The user should specify the start addresses of section allocation through the "–STARt" linkage
editor option.

Note 16: The security ID and option bytes for the RH850 should be specified through a flash programmer or
the like.

RH850 Development Environment Migration Guide from V850E2 Family to RH850 Family

R20UT3233EJ0101 Rev.1.01 Page 5 of 27
Apr. 21, 2017

Classification Description CX (cx.exe) CC-RH (ccrh.exe)

Link control

This option continues link processing when the
internal ROM/RAM overflows. -Xforce_link None. (Note 17)

This option outputs information that can be used
as a reference value for the parameter of the -
Xsdata option to the standard output.

-Xsdata_info None.

This option performs linking in the 2-pass mode. -Xtwo_pass_link None.

This option continues link processing if an illegality
is found during relocation processing when linking. -Xignore_address_error None. (Note 17)

This option outputs an error message for all multi-
defined external symbols. -Xmultiple_symbol None. (Note 17)

This option suppresses checking when linking. -Xlink_check_off None. (Note 17)

This option specifies the filling value of align holes. -Xalign_fill None. (Note 18)

This option rescans the library file specified by the
-l option. -Xrescan None.

This option generates the load module file from
which the debugging information, line number
information, and global pointer table have been
removed.

-Xstrip -Xlk_option=-NODEBug

Hex output control

This option specifies the hex file name. -Xhex -Xlk_option=-OUtput

This option executes only hex output. -Xhex_only -Xlk_option=-FOrm

This option specifies the format of the hex file to be
output. -Xhex_format -Xlk_option=-FOrm

This option specifies fill processing of the hex file. -Xhex_fill -Xlk_option=-SPace

This option converts the codes in the specified
section to hex format and outputs them. -Xhex_section -Xlk_option=-OUtput

This option specifies the maximum length of the
block. -Xhex_block_size -Xlk_option=-BYte_count

This option specifies the offset of the address to
be output. -Xhex_offset None.

This option generates as many null characters as
the size of the section of data without initial values. -Xhex_null None.

This option converts the symbol table and outputs
it. -Xhex_symtab None.

This option does not use the information of the
internal ROM area when the hex file is filled. -Xhex_rom_less None.

This option outputs the result of the CRC
operation. -Xcrc None.

This option specifies the method for the CRC
operation. -Xcrc_method None.

Note 17: Processing can be continued by changing the type of messages from an error to a warning through
the "-CHange_message" option for the CC-RH linkage editor.

Note 18: Part of the functions of this option can be implemented by using CC-RH linkage editor options
such as –PADDING and -Space.

RH850 Development Environment Migration Guide from V850E2 Family to RH850 Family

R20UT3233EJ0101 Rev.1.01 Page 6 of 27
Apr. 21, 2017

Classification Description CX (cx.exe) CC-RH (ccrh.exe)

Information file
output control

This option outputs the static analysis information
file. -Xcref -Xcref

This option suppresses the output of the static
analysis information file. -Xno_cref None.

This option generates a symbol information file. -Xsfg None.

This option outputs the optimum allocation
information. -Xsfg_opt None.

This option specifies the size of .tidata section. -Xsfg_size_tidata None.

This option specifies the size of .tidata.byte
section. -Xsfg_size_tidata_byte None.

This option specifies the size of .sidata section. -Xsfg_size_sidata None.

This option specifies the size of .sedata section. -Xsfg_size_sedata None.

This option specifies the size of .sdata section. -Xsfg_size_sdata None.

Error output
control This option outputs error messages to a file. -Xerror_file -Xerror_file

Warning
message output
control

This option outputs the specified warning
message. -Xwarning None.

This option suppresses outputting warning
messages of the specified numbers. -Xno_warning -Xno_warning

Phase individual
option
specification

This option specifies the file to be assembled. -Xasm_option -Xasm_option

This option specifies the file to be linked. -Xlk_option -Xlk_option

This option specifies an option for the common
optimization module. -Xopt_option None.

Command file
specification This option specifies a command file. @ @

RH850 Development Environment Migration Guide from V850E2 Family to RH850 Family

R20UT3233EJ0101 Rev.1.01 Page 7 of 27
Apr. 21, 2017

1.2 Assembler Options
Classification Description CX (cx.exe) CC-RH (asrh.exe)

Version/help
display
specification

This option displays the version information. -V -V

This option displays the descriptions of options. -h -h

Output file
specification

This option specifies the output file name. -o -o

This option specifies where the object module file
generated during compilation is to be saved. -Xobj_path -Xobj_path

This option specifies where an assemble list file is
to be saved. -Xprn_path -Xprn_path

Source debugging
control

This option outputs information for source
debugging. -g -g

Device specification

This option specifies the target device. -C None. (Note 1)

This option specifies that an object module file
common to the various devices is generated. -Xcommon -Xcommon (Note 2)

This option specifies the folder to search for device
files. -Xdev_path None. (Note 1)

This option sets the start address of the
programmable peripheral I/O register. -Xprogrammable_io None.

Preprocessor
control

This option defines assembly-language macros. -D -D

This option deletes the assembly-language symbol
definitions by the –D option. -U -U

This option specifies the folder to search for
include files. -I -I

Japanese/Chinese

character control
This option specifies the Japanese/Chinese
character code. -Xcharacter_set -Xcharacter_set

Generated code
control

This option specifies the register mode. -Xreg_mode -Xreg_mode (Note 3)

This option specifies the maximum size of data
allocated to the .sdata or .sbss section. -Xsdata None. (Note 4)

Assembler control
specification

This option controls outputting far jump for an
assembly-language source file. -Xasm_far_jump -Xasm_far_jump

Error output control This option outputs error messages to a file. -Xerror_file -Xerror_file

Warning message
output control

This option outputs the specified warning
message. -Xwarning None.

This option suppresses outputting warning
messages of the specified numbers. -Xno_warning -Xno_warning

Command file
specification This option specifies a command file. @ @

Note 1: The CC-RH does not support the use of device files.

Note 2: The specifiable parameters differ between the CX and CC-RH.

Note 3: The CC-RH does not provide the 26-register mode.

Note 4: By default, the CX allocates variables to the .sdata or .sbss section, but the CC-RH allocates them to
the .data or .bss section.

RH850 Development Environment Migration Guide from V850E2 Family to RH850 Family

R20UT3233EJ0101 Rev.1.01 Page 8 of 27
Apr. 21, 2017

1.3 Linkage Editor Options
Classification Description CX (cx.exe) CC-RH (rlink.exe)

Version/help
display
specification

This option displays the version information. -V None. (Note 1)

This option displays the descriptions of options. -h None. (Note 1)

Output file
specification

This option specifies the output file name. -o -output

This option specifies the temporary folder. -Xtemp_path None.

Source debugging
control

This option outputs information for source
debugging.

-g -debug

Device specification
This option specifies the target device. -C None. (Note 2)

This option specifies the folder to search for device
files.

-Xdev_path None. (Note 2)

Library link control

This option specifies the library file to be used
during linking.

-l -library

This option specifies the folder to search for library
files.

-L None.

This option suppresses linking the standard library. -Xno_stdlib None. (Note 3)

Link directive file
specification This option specifies the link directive file. -Xlink_directive None. (Note 4)

Security ID control This option specifies the security ID. -Xsecurity_id None. (Note 5)

User option byte
control This option sets the user option bytes. -Xoprion_byte None. (Note 5)

Force linking to

continue
This option continues link processing when the
internal ROM/RAM overflows.

-Xforce_link None. (Note 6)

Entry point address
specification This option specifies the entry point address. -Xentry_address -entry

Link map file output
specification This option outputs the link map file. -Xmap -list

Symbol information
output specification

This option outputs symbol information to the link
map file.

-Xsymbol_dump -show

Generating object
module file control

This option generates the relocatable object
module file.

-Xrelinkable_object -form=relocate

Note 1: The CC-RH information is displayed by entering rlink[ENTER] from the command line.

Note 2: The CC-RH does not support the use of device files.

Note 3: The CC-RH does not link the default standard library.

Note 4: The CC-RH does not support the use of link directive files.

 The user should specify the section allocation addresses through the "-start" option.

Note 5: The security ID and option bytes for the RH850 should be specified through a flash programmer or
the like.

Note 6: Processing can be continued by changing the type of messages from an error to a warning through
the "-change_message" linkage editor option.

RH850 Development Environment Migration Guide from V850E2 Family to RH850 Family

R20UT3233EJ0101 Rev.1.01 Page 9 of 27
Apr. 21, 2017

Classification Description CX (cx.exe) CC-RH (rlink.exe)
Generating object
module file control

This option generates the relocatable object
module file.

-Xrelinkable_object -form=relocate

Control checking
for mixing regarding
register modes and
device common
objects

This option checks whether the specified register
mode is mixed.

-Xreg_mode None.

This option outputs detailed information when
different register modes are used together.

-Xregmode_info None.

This option checks for mixing of the device
common object module file to be generated and
the device specified by the -C option.

-Xcommon None.

sdata/sbss
information output
specification

This option outputs information that can be used
as a reference value for the parameter of the -
Xsdata option to the standard output.

-Xsdata_info None.

2-pass mode link
specification This option performs linking in the 2-pass mode. -Xtwo_pass_link None.

Relocation
resolution error
processing control

This option continues link processing if an illegality
is found during relocation processing when linking.

-Xignore_address_error None. (Note 6)

Symbol multiple
definition error
output specification

This option outputs an error message for all multi-
defined external symbols. -Xmultiple_symbol None. (Note 6)

Link-time check
suppress
specification

This option suppresses checking when linking. -Xlink_check_off None. (Note 6)

Filling value
specification This option specifies the filling value of align holes. -Xalign_fill None. (Note 7)

Library file rescan
specification

This option rescans the library file specified by the
-l option. -Xrescan None.

Debugging
information section
output suppress
specification

This option generates the load module file from
which the debugging information, line number
information, and global pointer table have been
removed.

-Xstrip -nodebug

Non-ROMized load
module file save
specification

This option saves the load module file before
ROMization processing. -Xlink_output None. (Note 8)

Error output control This option outputs error messages to a file. -Xerror_file None.

Warning message
output control

This option outputs the specified warning
message. -Xwarning None.

This option suppresses outputting warning
messages of the specified number. -Xno_warinig None.

Command file
specification This option specifies a command file. @ -subcommand

Note 6: Processing can be continued by changing the type of messages from an error to a warning through
the "-change_message" linkage editor option.

Note 7: Part of the functions of this option can be implemented by using CC-RH linkage editor options such
as –PADDING and -Space.

Note 8: The CC-RH does not execute ROMization by default. To enable it, the user should specify the
"–ROm" option at linkage.

RH850 Development Environment Migration Guide from V850E2 Family to RH850 Family

R20UT3233EJ0101 Rev.1.01 Page 10 of 27
Apr. 21, 2017

2. Intrinsic Functions
This section shows a table that compares the CX intrinsic functions with their corresponding CC-RH intrinsic functions.
Note that when an intrinsic function that is provided in the CX but not in the CC-RH is called, the CC-RH compiles it
as an ordinary function. If the definition of the function is not found, an error will occur.

Instruction Description CX CC-RH
di Disables interrupts void __DI(void); void __DI(void);

ei Enables interrupts void __EI(void); void __EI(void);

nop No operation void __nop(void); void __nop(void);

halt Stops the processor void __halt(void); void __halt(void);

satadd Saturated addition long a, b;

long __satadd(a, b);

long a, b;

long __satadd(a, b);

satsub Saturated subtraction long a, b;

long __satsub(a, b);

long a, b;

long __satsub(a, b);

bsh Halfword data byte swap long a;

long __bsh(a);

long a;

long __bsh(a);

bsw Word data byte swap long a;

long __bsw(a);

long a;

long __bsw(a);

hsw Word data halfword swap long a;

long __hsw(a);

long a;

long __hsw(a);

sxb Byte data sign extension char a;

long __sxb(a);

None.

sxh Halfword data sign extension short a;

long __sxh(a);

None.

mul Instruction that assigns the result of
32-bit * 32-bit signed multiplication
to a variable using mul instruction

long a, b;

long long __mul(a, b);

None.

mulu Instruction that assigns the result of
32-bit * 32-bit unsigned
multiplication to a variable using
mulu instruction

unsigned long a, b;

unsigned long long __mulu(a,b);

None.

mul Instruction that assigns the higher
32 bits of multiplication result to a
variable using mul32 instruction

long a, b;

long __mul32(a, b);

long a, b;

long __mul32(a, b);

mulu Instruction that assigns the higher
32 bits of unsigned multiplication
result to a variable using mul32u
instruction

unsigned long a, b;

unsigned long __mul32u(a, b);

unsigned long a, b;

unsigned long __mul32u(a, b);

sasf Flag condition setting with logical
left shift

long a; unsigned int b;

long __sasf(a, b);

None.

sch0l Bit (0) search from MSB side long a;

long __sch0l(a);

long a;

long __sch0l(a);

sch0r Bit (0) search from LSB side long a;

long __sch0r(a);

long a;

long __sch0r(a);

sch1l Bit (1) search from MSB side long a;

long __sch1l(a);

long a;

long __sch1l(a);

sch1r Bit (1) search from LSB side long a;

long __sch1r(a);

long a;

long __sch1r(a);

RH850 Development Environment Migration Guide from V850E2 Family to RH850 Family

R20UT3233EJ0101 Rev.1.01 Page 11 of 27
Apr. 21, 2017

ldsr Loads to a system register long regID; long a;

void __ldsr(regID, a);

long regID; unsigned long a;

void __ldsr(regID, a);

stsr Stores contents of a system register long regID;

unsigned long __stsr(regID);

long regID;

unsigned long __stsr(regID);

ldgr Loads to a general-purpose register long a;

void __ldgr(regID, a);

None.

stgr Stores contents of a general-
purpose register

unsigned long __stgr(regID); None.

caxi Compare and exchange long *a;

long b, c;

void __caxi(a, b, c);

long *a;

long b, c;

long __caxi(a, b, c);

- Controls interrupt level (Note 1) int NUM;

void __set_il(NUM, “interrupt-request
name");

int NUM;

void* ADDR;

void __set_il_rh(NUM, ADDR);

RH850 Development Environment Migration Guide from V850E2 Family to RH850 Family

R20UT3233EJ0101 Rev.1.01 Page 12 of 27
Apr. 21, 2017

3. Predefined Macros
This section shows a table that compares the CX predefined macros with their corresponding CC-RH predefined macros.

CX Macro Name CX Definition CC-RH Macro Name
__LINE__ Line number of source line at that point

(decimal).

__LINE__

__FILE__ Name of assumed source file (character
string constant).

__FILE__

__DATE__ Date of translating source file __DATE__

__TIME__ Translation time of source file __TIME__

__STDC__ Decimal constant 1. (Defined when the -
Xansi option is specified)

__STDC__

__v850

__v850__

__v850e2

__v850e2__

__v850e2v3

__v850e2v3__

Decimal constant 1. __RH850

__RH850__

__v850e3v5

__v850e3v5__

__CX

__CX__

Decimal constant 1. __CCRH

__CCRH__

__CHAR_SIGNED__ Decimal constant 1. (Defined when signed is
specified by the -Xchar option or when the -
Xchar option is not specified).

No value specified.

__CHAR_UNSIGNED__ Decimal constant 1 (Defined when unsigned
is specified by the -Xchar option).

None.

__DOUBLE_IS_64BITS__ Decimal constant 1. No value specified.

__CPUmacro__ Macro indicating the target CPU. Decimal
constant 1. A character string indicated by
"product type specification" in the device file
with "_ _" prefixed and "_" or "_ _"suffixed is
defined.

None.

__reg32__ Decimal constant 1.

(Defined when the -Xreg_mode=32 option is
specified or when the -Xreg_mode option is
not specified)

No value specified.

 (Defined when the -Xreg_mode=32
option is specified)

__reg26__ Decimal constant 1.

(Defined when the -Xreg_mode=26 option is
specified)

None.

__reg22__ Decimal constant 1.

(Defined when the -Xreg_mode=22 option is
specified)

No value specified.

 (Defined when the -Xreg_mode=22
option is specified)

__reg_common__ Decimal constant 1.

(Defined when the -Xreg_mode=common
option is specified)

No value specified.

 (Defined when the -
Xreg_mode=common option is
specified)

RH850 Development Environment Migration Guide from V850E2 Family to RH850 Family

R20UT3233EJ0101 Rev.1.01 Page 13 of 27
Apr. 21, 2017

_MULTI_CORE__ Decimal constant 1. (Defined when the -
Xmulti option is specified)

None.

__MULTI_CMN__ Decimal constant 1.

(Defined when the -Xmulti=cmn option is
specified)

None.

__MULTI_PEn__ Decimal constant 1.

(Defined when -Xmulti=pen option is
specified)

None.

RH850 Development Environment Migration Guide from V850E2 Family to RH850 Family

R20UT3233EJ0101 Rev.1.01 Page 14 of 27
Apr. 21, 2017

4. Extended Language Specifications
This section shows a table that compares the CX extended language specifications with their corresponding CC-RH
extended language specifications.

Description CX CC-RH
Description with assembly-
language instruction (Note 1)

#pragma asm

Assembly-language instruction

#pragma endasm

#pragma inline_asm function name[, function name]

__asm(“assembly-language instruction");

None.

Inline expansion
specification

#pragma inline function name[, function name]

#pragma inline function name[, function name]

Data memory allocation

(Note 2)
#pragma section section type ["section name"]

Variable declarations and definitions

#pragma section default

#pragma section attribute strings ["section name"]

Variable declarations and definitions

#pragma section default

Program memory
allocation (Note 3)

#pragma text “section name" function
name[,function name]…

#pragma section text ["section name"]

Variable definitions

#pragma section default

Peripheral I/O register
name validation
specification (Note 4)

#pragma ioreg None.

Interrupt/exception handler
specification (Note 5)

#pragma interrupt interrupt-request name
function name [allocation method] [option]

#pragma interrupt function name [interrupt
specification]

Interrupt disable function
specification

#pragma block_interrupt function name

#pragma block_interrupt function name

Task specification #pragma rtos_task [function name]

None.

Structure type packing
specification

#pragma pack ([1|2|4|8])

#pragma pack ([1|2|4])

Note 1: In the CX, this type of extended description is used to embed an assembly-language instruction in a
function written in C language. However, the CC-RH assumes that the specified function consists
only of assembly-language instructions and inline-expands the assembly-language function declared
with #pragma inline_asm at the location where the function is called.

Note 2: The section names differ between the CX and CC-RH. Therefore, the specifiable character strings
differ between section type and attribute strings. For details, refer to the user's manuals for coding.

Note 3: If a section name starting with a number is specified in the CC-RH, "_" is automatically added before
the number.

Note 4: In the CC-RH, include the header file for the peripheral I/O registers.

Note 5: The CX automatically allocates at the interrupt handler address an instruction for branching to the
specified interrupt function. In the CC-RH, however, the user should define and allocate interrupt and
exception vectors. The specifiable character strings differ between option and interrupt specification.

RH850 Development Environment Migration Guide from V850E2 Family to RH850 Family

R20UT3233EJ0101 Rev.1.01 Page 15 of 27
Apr. 21, 2017

5. Assembler Directives
This section shows a table that compares the CX assembler directives with their corresponding CC-RH assembler
directives. Directives are used to give various directions necessary for the assembler to execute a series of processes.

Description CX CC-RH
Section definition directives .cseg .cseg (Note 1)

.dseg .dseg (Note 1)

.org .offset (Note 2)

.vseg None.

Symbol definition directive .set .set

Data definition and area reservation
directives

.db .db

.db2/.dhw .db2/.dhw

.dshw .dshw

.db4/.dw .db4/.dw

.db8/.ddw .db8/.ddw

.float .float

.double .double

.ds .ds

.align .align

External definition and external
reference directives

.public .public

.extern .extern

.comm None.

Macro directives .macro .macro

.local .local

.rept .rept

.irp .irp

.exitm .exitm

.exitma .exitma

.endm .endm

Note 1: The relocation attribute that can be specified as the operand differs from that in the CX.

Note 2: .org in the CC-RH is a directive that specifies the start of an absolute-addressing section.

RH850 Development Environment Migration Guide from V850E2 Family to RH850 Family

R20UT3233EJ0101 Rev.1.01 Page 16 of 27
Apr. 21, 2017

6. Peripheral I/O Registers
This section describes how the CX and CC-RH handle peripheral I/O registers.

6.1 Peripheral I/O Registers in CX
In the CX, register names can be used to access peripheral I/O registers in C language when the #pragma directive is
added. A list of register names and their corresponding addresses is specified in the device file and the register names
are translated into their addresses at assembly. Refer to the user's manual for the register names specified in the device
file.

6.2 Peripheral I/O Registers in CC-RH
The CC-RH does not support the use of device files and the user should prepare a file including a list of peripheral I/O
register names and their corresponding addresses.

When a new project is created in the CS+, the CS+ generates an I/O header file "iodefine.h" for the target MCU
specified in the project and registers it as a source file in the project. The I/O header file defines the names of the
registers provided in the MCU and their addresses. The header file can also be generated by right-clicking the [CC-RH
(Build Tool)] node in the CS+ project tree and then clicking [Generate I/O Header File].

When accessing a register in a C-language program, include the I/O header file. By specifying the header file as a
parameter for the –Xpreinclude option, the #include specification can be omitted from the source file. The –Xpreinclude
option can be specified by selecting the [Compile Options] tab => [Preprocess] category => [Include files at head of
compiling units]. In this property setting, specify the I/O header file for the target MCU.

RH850 Development Environment Migration Guide from V850E2 Family to RH850 Family

R20UT3233EJ0101 Rev.1.01 Page 17 of 27
Apr. 21, 2017

7. Interrupts and Exceptions
This section describes the interrupt/exception handlers in the CX and CC-RH.

7.1 Interrupts and Exceptions in CX
When a #pragma interrupt directive is specified, the CX embeds an instruction for branching to the function specified in
"function name" at the handler address corresponding to the specified "interrupt-request name". The CX compiles the
function specified in "function name" as an interrupt function.

For "interrupt-request name", specify an interrupt-request name registered in the device file. Refer to the user's manual
for the target MCU for the interrupt-request names registered in the device file.

For example, the handler address for the interrupt-request name "INTP0" in the V850E2/FJ4 is 0x110. In this case, the
"jr _func" instruction is embedded at address 0x110 according to the #pragma interrupt directive shown below. In
addition, the "func" function is compiled as an interrupt function and the register saving and restoring processing is
output as an interrupt/exception handler.

7.2 Interrupts and Exceptions in CC-RH
When a #pragma interrupt directive is specified, the CC-RH compiles the function specified in "function name"
according to the specification in "interrupt specification".

For example, the "func" function is compiled as an interrupt function according to the #pragma interrupt directive
shown below. In addition, the processing for saving and restoring the ctpc, ctpsw, fpepc, and fpsr and the ei and di
instructions are output according to the interrupt specifications.

Note that the user should define and allocate interrupt and exception vectors in the CC-RH. When a new project file is
created in the CS+, the "boot.asm" file is registered as a source file and it defines the format for interrupt/exception
vectors. Customize the file as necessary and allocate vectors to appropriate addresses in accordance with the target
MCU. The following describes the interrupt/exception vectors in "boot.asm".

#pragma interrupt INTP0 func

void func(void) {

 …;

}

#pragma interrupt interrupt-request name function name [allocation method] [option]

#pragma interrupt function-name [interrupt specification]

#pragma interrupt func (enable=true, callt=true, fpu=true)

void func (unsigned long eiic)

{

 …;

}

RH850 Development Environment Migration Guide from V850E2 Family to RH850 Family

R20UT3233EJ0101 Rev.1.01 Page 18 of 27
Apr. 21, 2017

a. RESET
The following definition embeds the "jr32 __start" instruction at the head of the RESET section.

For example, when a new project is created for the RH850/F1L by the CS+, the "-start" linkage editor option specifies
the allocation of the RESET section at address %ResetVectorPE1%. %ResetVectorPE1% is specified in the
[Microcontroller] node in the Project Tree Panel => [Microcontroller Information]tab => [Microcontroller
Information]category => [Reset vector address].The "jr32 __start" instruction is embedded at address 0x00 by default.

b. Interrupts and exceptions in direct vector method
The base location for handler addresses is obtained by adding the base address indicated by the RBASE or EBASE
register and the offset specific to the exception source. Either the RBASE or EBASE register is selected through the
PSW.EBV bit. The following definition assumes RBASE as the base address and allocates interrupt/exception handlers
immediately after RESET.

In the "boot.asm" file, an instruction for branching to the dummy function "_Dummy" is specified at the offset locations
corresponding to SYSERR, FETRAP, etc. The "_Dummy" function is a routine that repeats branches to itself.
Customize it as necessary.

.section "RESET", text

 .align 512

 jr32 __start ; RESET

.section "RESET", text

 .align 512

 jr32 __start ; RESET

 .align 16

 jr32 _Dummy ; SYSERR

 .align 16

 jr32 _Dummy ;

 .align 16
 jr32 _Dummy ; FETRAP

 ・・・

RH850 Development Environment Migration Guide from V850E2 Family to RH850 Family

R20UT3233EJ0101 Rev.1.01 Page 19 of 27
Apr. 21, 2017

Modify "_Dummy" to "_interrupt-function name" at the offset locations corresponding to the exceptions and interrupts
that should be customized. In addition, define the interrupt functions through the #pragma interrupt directive. The
following shows an example for executing the interrupt function "func" when an exception "SYSERR" occurs.

c. Interrupts and exceptions in table lookup method
Interrupts can be specified in the table lookup method, which is an extended specification for interrupts. In the direct
vector method, only one handler address is assigned to each priority level of EI-level interrupts; for all interrupt
channels having the same priority level, execution therefore branches to the same interrupt handler address. However,
there will be cases where the application requires a separate code area to be used for each interrupt handler. To
implement this, the CC-RH provides the table lookup method.

In the "boot.asm" file, an interrupt/exception table for the table lookup method is defined in the EIINTTBL section.
When a new project file is created for the RH850/F1L by the CS+, the "-start" linkage editor option specifies allocation
of the table immediately after the RESET section.

The addresses where the dummy function "_Dummy_EI" is stored are specified in areas offset from the head of the
EIINTTBL section by an address of a multiple of four. Thus, execution branches to _Dummy_EI when an

.section "RESET", text

 .align 512

 jr32 __start ; RESET

 .align 16

 jr32 _func ; SYSERR

 .align 16

 jr32 _Dummy ; HVTRAP

 ・・・

Modify "_Dummy" to "_interrupt-function name".

#pragma interrupt func (priority=SYSERR, callt=true, fpu=true)

void func (unsigned long feic)

{

 …;

}

 .section "EIINTTBL", const

 .align 512

 .dw #_Dummy_EI ; INT0

 .dw #_Dummy_EI ; INT1

 .dw #_Dummy_EI ; INT2

 .rept 512 - 3

 .dw #_Dummy_EI ; INTn

 .endm

RH850 Development Environment Migration Guide from V850E2 Family to RH850 Family

R20UT3233EJ0101 Rev.1.01 Page 20 of 27
Apr. 21, 2017

exception/interrupt at interrupt priority level n (n is within the range of 0 to 512) in the table lookup method occurs. The
"_Dummy_EI" function is a routine that repeats branches to itself. Customize it as necessary.

Modify "#_Dummy_EI" to "#_interrupt-function name" at the offset locations corresponding to the channels that should
be customized. In addition, when defining interrupt functions in C source file, define the interrupt functions through the
#pragma interrupt directive. The following shows an example for executing the interrupt function "func" when a
channel-9 interrupt "EIINT9" occurs.

Note that the direct vector method is the default exception/interrupt method in the RH850; to switch to the table lookup
method, modify the interrupt control register value.

 .section "EIINTTBL", const

 .align 512

 .dw #_Dummy_EI ; INT0

 .dw #_Dummy_EI ; INT1

 .dw #_Dummy_EI ; INT2

 .dw #_Dummy_EI ; INT3

 .dw #_Dummy_EI ; INT4

 .dw #_Dummy_EI ; INT5

 .dw #_Dummy_EI ; INT6

 .dw #_Dummy_EI ; INT7

 .dw #_Dummy_EI ; INT8

 .dw #_func ; INT9

 .rept 512 - 10

 .dw #_Dummy_EI ; INTn

#pragma interrupt func (channel=9 enable=true, callt=true, fpu=true)

void func (unsigned long eiic)

{
 …;

}

Modify "#_Dummy_EI" to

"#_interrupt-function name".

RH850 Development Environment Migration Guide from V850E2 Family to RH850 Family

R20UT3233EJ0101 Rev.1.01 Page 21 of 27
Apr. 21, 2017

8. ROMization
The data for variables with initial values should be stored in ROM and then copied to RAM before such variables are
accessed after the MCU is reset. This sequence is called ROMization. The ROMization processing differs between the
CX and CC-RH. This section describes ROMization processing in the CX and CC-RH.

8.1 ROMization Processing in CX
In the CX, the sections where the variables with initial values are stored (.sdata and .data sections) are the target of
ROMization by default. As the initial value data is stored in ROM, the "_rcopy" function should be used to copy the
data from ROM to RAM. The destination addresses for copying (.sdata and .data section addresses) should be specified
through a link directive file (*.dir). The following shows an example of an _rcopy function call in the startup routine
"cstart.asm".

"__S_romp" is a symbol defined in the "rompcrt.obj" file, which stores the ROMization area reservation code.
"#__S_romp" is the start address of the initial value data stored in ROM. These values are automatically determined by
the linkage editor.

8.2 ROMization Processing in CC-RH
a. Specifying ROMization
In the CC-RH, the target sections for ROMization should be specified through the "–rom" linkage editor option.
<ROM-section name> is a target section for ROMization. Use the "–start" linkage editor option to allocate the sections
specified as <ROM-section name> to ROM and those specified as <RAM-section name> to RAM.

In the CS+, select the [Link Options] tab => [Section] category, click the [...] button at the right end of the [ROM to
RAM mapped section] row, and specify the sections to be copied from ROM to RAM in the format of <ROM-section
name>=<RAM-section name> with one section per line.

mov32#__S_romp, r6 ; copy romized data

mov -1, r7

jarl __rcopy, lp

-rom=<ROM-section name>=<RAM-section name>

RH850 Development Environment Migration Guide from V850E2 Family to RH850 Family

R20UT3233EJ0101 Rev.1.01 Page 22 of 27
Apr. 21, 2017

When a new project is created by the CS+, the following options are specified by default.

When an additional section other than the .data section is specified to store variables with initial values, use the "–rom"
option to add this section to the target sections for ROMization. The following shows an example when the .sdata23
section is added as a target of ROMization (the RAM section name is .sdata.R).

b. Defining the initialization table
In the CC-RH, the ROMized data should be copied from ROM to RAM by using the "_INITSCT_RH" function. When
a new project file is created by the CS+, the startup routine "cstart.asm" is registered as a source file and it defines the
initialization table to be used to copy the data of variables with initial values as follows.

The initialization table is allocated to the .INIT_DSEC.const section, and a 4-byte area is allocated to each of the .data
section start address, .data section end address, and .data.R section start address in that order.

Prefixing a section name with "__s" generates a reserved symbol that has the start address of the section as its value. Likewise,
prefixing a section name with "__e" generates a reserved symbol that has the end address of the section as its value. Using these
reserved symbols is recommended for additional specifications to the initialization table.

-rom=.data=.data.R

;---

; section initialize table

;---

 .section ".INIT_DSEC.const", const

 .align 4

 .dw #__s.data, #__e.data, #__s.data.R

RH850 Development Environment Migration Guide from V850E2 Family to RH850 Family

R20UT3233EJ0101 Rev.1.01 Page 23 of 27
Apr. 21, 2017

When an additional section is specified to store variables with initial values, add the start and end addresses of the section in this
initialization table.

In the CC-RH, the "_INITSCT_RH" function can also be used to initialize with zero the sections where variables
without initial values are to be stored. The startup routine "cstart.asm" defines the zero-initialization table.

The zero-initialization table is allocated to the .INIT_BSEC.const section, and a 4-byte area is allocated to each of
the .bss section start address and .bss section end address in that order. When an additional section other than the .bss
section is specified to store variables without initial values, add the addresses of the section in the same format as the
existing settings.

c. Calling the copy function
The "_INITSCT_RH" function is called from the startup routine "cstartm.asm". This processing initializes the sections
defined in each table.

;---

; section initialize table

;---

 .section ".INIT_DSEC.const", const

 .align 4

 .dw #__s.data, #__e.data, #__s.data.R

 .dw #__s.sdata23, #__e.sdata23, #__s.sdata23.R

 .section ".INIT_BSEC.const", const

 .align 4

 .dw #__s.bss, #__e.bss

mov #__s.INIT_DSEC.const, r6

 mov #__e.INIT_DSEC.const, r7

 mov #__s.INIT_BSEC.const, r8

 mov #__e.INIT_BSEC.const, r9

 jarl32 __INITSCT_RH, lp ; initialize RAM area

RH850 Development Environment Migration Guide from V850E2 Family to RH850 Family

R20UT3233EJ0101 Rev.1.01 Page 24 of 27
Apr. 21, 2017

9. Section Allocation
This section describes the section allocation processing in the CX and CC-RH.

9.1 Section Allocation in CX
In the CX, section allocation addresses should be specified in the link directive file (*.dir) and this file should be input
to the linkage editor by specifying it through the -Xlink_directive option. The following shows the format for specifying
section allocation addresses in the link directive file for the CX.

In the following specifications, the .const section allocation begins from address 0x1000. Allocation of
the .pro_epi_runtime and .text sections begins after the end of the .const section and proceeds toward higher addresses
in that order. Allocation of the .data, .sdata, .sbss, and .bss sections begins from address 0xfedf6000 and proceeds
toward higher addresses in that order.

Segment name: !segment type ?segment attribute Vaddress {

Output-section name=$section type ?section attribute input-section name;

Output-section name=$section type ?section attribute input-section name;

…

} ;

CONST:!LOAD ?R V0x1000 {

.const = $PROGBITS ?A .const ;

};

TEXT:!LOAD ?RX {

.pro_epi_runtime = $PROGBITS ?AX .pro_epi_runtime ;

.text = $PROGBITS ?AX .text ;

};

DATA:!LOAD ?RW V0xfedf6000 {

.data = $PROGBITS ?AW .data ;

.sdata = $PROGBITS ?AWG .sdata ;

.sbss = $NOBITS ?AWG .sbss ;

.bss = $NOBITS ?AW .bss ;

};

RH850 Development Environment Migration Guide from V850E2 Family to RH850 Family

R20UT3233EJ0101 Rev.1.01 Page 25 of 27
Apr. 21, 2017

9.2 ROMization Processing in CC-RH
In the CC-RH, section allocation addresses should be specified through the "-start" linkage editor option; the link
directive file in the CX or the like is not used. The following shows an example for specifying the "–start" option in the
CC-RH. For details, refer to the user's manual for the build process.

Through the above option settings, allocation of the RESET section begins from address %ResetVectorPE1%.
Allocation of the EIINTTBL, .const, .INIT_DSEC.const, .INIT_BSEC.const, .text, and .data sections begins after the
end of the RESET section and proceeds toward higher addresses in that order. Allocation of the .data.R, .bss,
and .stack.bss sections begins from address 0xFEDE0000 and proceeds toward higher addresses in that order.

In the CS+, section allocation can be specified through the GUI; select the [Link Options] tab => [Section] category,
and click the [...] button at the right end of the [Section start address] row.

The Section Settings dialog box will open; addresses and sections can be added and modified through manipulation in
this dialog box.

-start=RESET,EIINTTBL /%ResetVectorPE1%,.const,.INIT_DSEC.const,.INIT_BSEC.const,.text,

.data/00008000,.data.R,.bss,.stack.bss/FEDEFC00

RH850 Development Environment Migration Guide from V850E2 Family to RH850 Family

R20UT3233EJ0101 Rev.1.01 Page 26 of 27
Apr. 21, 2017

10. Program Compatibility
This section shows an example of program description that is successfully compiled in the CX but generates an error in
the CC-RH, and also shows a workaround to avoid this error.

1. Binary notation of constants

[Example]

The extended binary notation supported in the CX is not allowed in the CC-RH. Modify the notation to hexadecimal.

[Workaround]

int a = 0b00000001;

int a = 0x01;

RH850 Development Environment Migration Guide from V850E2 Family to RH850 Family

R20UT3233EJ0101 Rev.1.01 Page 27 of 27
Apr. 21, 2017

Website and Support <website and support,ws>

Renesas Electronics Website
http://www.renesas.com/

Inquiries

http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/contact/

Revision History

Rev. Date
Description
Page Summary

1.00 2014.10.17 - Publication of the first edition
1.01 2017.04.21 - Change CC-RH compiler version to V1.05.00

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas.
For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as
well as any technical updates that have been issued for the products.

1. Handling of Unused Pins
Handle unused pins in accordance with the directions given under Handling of Unused Pins in the
manual.
 The input pins of CMOS products are generally in the high-impedance state. In operation with an

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
 The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
 The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.
4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has
stabilized.
 When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
Before changing from one product to another, i.e. to a product with a different part number, confirm
that the change will not lead to problems.
 The characteristics of Microprocessing unit or Microcontroller unit products in the same group but

having a different part number may differ in terms of the internal memory capacity, layout pattern,
and other factors, which can affect the ranges of electrical characteristics, such as characteristic
values, operating margins, immunity to noise, and amount of radiated noise. When changing to a
product with a different part number, implement a system-evaluation test for the given product.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by

you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other disputes involving patents, copyrights, or other intellectual property rights of third parties, by or

arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawing, chart, program, algorithm, application

examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages

incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics products.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the

product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical

implantations etc.), or may cause serious property damages (space and undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas

Electronics disclaims any and all liability for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas

Electronics.

6. When using the Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the

reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat radiation

characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions or failure or accident arising out of the use of Renesas Electronics products beyond such specified

ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics such as the occurrence of failure at a

certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please ensure to implement safety measures to guard them

against the possibility of bodily injury, injury or damage caused by fire, and social damage in the event of failure or malfunction of Renesas Electronics products, such as safety design for hardware and

software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures by your own responsibility as warranty

for your products/system. Because the evaluation of microcomputer software alone is very difficult and not practical, please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please investigate applicable laws and

regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive carefully and sufficiently and use Renesas Electronics products in compliance with all

these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws

or regulations. You shall not use Renesas Electronics products or technologies for (1) any purpose relating to the development, design, manufacture, use, stockpiling, etc., of weapons of mass destruction,

such as nuclear weapons, chemical weapons, or biological weapons, or missiles (including unmanned aerial vehicles (UAVs)) for delivering such weapons, (2) any purpose relating to the development,

design, manufacture, or use of conventional weapons, or (3) any other purpose of disturbing international peace and security, and you shall not sell, export, lease, transfer, or release Renesas Electronics

products or technologies to any third party whether directly or indirectly with knowledge or reason to know that the third party or any other party will engage in the activities described above. When exporting,

selling, transferring, etc., Renesas Electronics products or technologies, you shall comply with any applicable export control laws and regulations promulgated and administered by the governments of the

countries asserting jurisdiction over the parties or transactions.

10. Please acknowledge and agree that you shall bear all the losses and damages which are incurred from the misuse or violation of the terms and conditions described in this document, including this notice,

and hold Renesas Electronics harmless, if such misuse or violation results from your resale or making Renesas Electronics products available any third party.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2017 Renesas Electronics Corporation. All rights reserved.
Colophon 6.0

(Rev.3.0-1 November 2016)

	1. Options
	1.1 Compiler Options
	1.2 Assembler Options
	1.3 Linkage Editor Options

	2. Intrinsic Functions
	3. Predefined Macros
	4. Extended Language Specifications
	5. Assembler Directives
	6. Peripheral I/O Registers
	6.1 Peripheral I/O Registers in CX
	6.2 Peripheral I/O Registers in CC-RH

	7. Interrupts and Exceptions
	7.1 Interrupts and Exceptions in CX
	7.2 Interrupts and Exceptions in CC-RH

	8. ROMization
	8.1 ROMization Processing in CX
	8.2 ROMization Processing in CC-RH

	9. Section Allocation
	9.1 Section Allocation in CX
	9.2 ROMization Processing in CC-RH

	10. Program Compatibility
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

