
APPLICATION NOTE

Page 1 of 57 R20AN0480EJ0100 Rev.1.00
Nov 01, 2017

Renesas e2 studio

Porting projects produced with the Code Generator to projects for use with the
Smart Configurator

Introduction
This application note describes how to port projects produced with the Code Generator to projects for use with the
Smart Configurator.

Target Device
• RX64M Group
If you are applying the information in this application note to another MCU, do so in a way that suits the given MCU
and evaluate the results.

Reference Documents
Renesas e2 studio Smart Configurator User Guide (R20AN0451)

e2 studio Integrated Development Environment User’s Manual: Getting Started Guide (R20UT2771)

RSK+RX64M Code Generator Tutorial Manual (R20UT2930)

RX64M Renesas Starter Kit Sample Code for CubeSuite+ (R01AN2219)

Contents

1. Overview ... 3
1.1 Purpose of This Document .. 3
1.2 Operating Environment .. 3

2. Porting Projects Produced with the Code Generator to Projects for Use with the
Smart Configurator... 4

2.1 Projects Used in This Application Note .. 5
2.2 Downloading the Source Project ... 6
2.3 Generating a Report on the Source Project ... 7

2.3.1 Generating the Report .. 7
2.4 Newly Creating the Destination Project .. 10
2.5 Setting Peripheral Functions in the Smart Configurator .. 10

2.5.1 Correspondence between the Code Generator and the Smart Configurator 10
2.5.2 Setting the Clock Generator .. 12
2.5.3 Setting the Compare Match Timers .. 17
2.5.4 Setting the Serial Communications Interfaces .. 22

R20AN0480EJ0100
Rev.1.00

Nov 01, 2017

Renesas e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0480EJ0100 Rev.1.00 Page 2 of 57
Nov 01, 2017

2.5.5 Setting Other Peripheral Functions .. 34
2.5.6 Generating Code ... 34

2.6 Porting User-defined Source Code ... 35
2.6.1 Overview .. 35
2.6.2 Areas for Writing User-defined Source Code .. 35
2.6.3 Copying the User-created Source Files .. 36
2.6.4 Copying Source Code, Including the main() Function .. 39
2.6.5 Correspondences between Code Generated by the Code Generator and

by the Smart Configurator ... 46
2.6.6 Copying Custom Code in Generated Code .. 48
2.6.7 Modifying the Include Directives ... 51
2.6.8 Modifying Parts that Call API Functions .. 53

2.7 Setting Build Options ... 56

3. Reference Documents .. 57

Renesas e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0480EJ0100 Rev.1.00 Page 3 of 57
Nov 01, 2017

1. Overview

1.1 Purpose of This Document
Using sample source code, this application note concretely describes how to port projects produced with the Code
Generator to projects for use with the Smart Configurator in terms of the differences in methods of settings and in the
names of functions that are generated.

For the usage of the e2 studio, refer to the e2 studio Integrated Development Environment User’s Manual: Getting
Started Guide.

1.2 Operating Environment
Table 1.1 Operating Environment

Target Device RX64M Group
Emulator E1
IDE e2 studio v.6.0.0 and later versions
Toolchain Renesas C/C++ compiler package for RX family
Toolchain version CC-RX V2.07.00

Renesas e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0480EJ0100 Rev.1.00 Page 4 of 57
Nov 01, 2017

2. Porting Projects Produced with the Code Generator to Projects for Use with the
Smart Configurator

Figure 2.1 shows the steps in porting projects produced with the Code Generator to projects for use with the Smart
Configurator.

Figure 2.1 Steps in Porting Projects Produced with the Code Generator to Projects for Use with the

Smart Configurator

Start

2.3 Generating a Report on the Source Project

2.4 Newly Creating the Destination Project

2.5 Setting Peripheral Functions in the Smart Configurator

2.6 Porting User-defined Source Code

2.7 Setting Build Options

Completion and
building

Renesas e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0480EJ0100 Rev.1.00 Page 5 of 57
Nov 01, 2017

2.1 Projects Used in This Application Note
The following two projects are used in this application note.

A project for the RSK+RX64M, which is a tool for evaluating Renesas MCUs, is used as the source project. The
destination project is newly created.

Table 2.1 Projects Used in This Application Note

Project Name Description
RSK+RX64M_Tutorial A project for the RSK+RX64M produced with the

use of the Code Generator serves as the source
project. This project is used to generate a report to
provide guidance on the setting of peripheral
functions and the copying of user-created source
code.

RSK_RX64M_Tutorial_SC A destination project which is newly created for use
with the Smart Configurator. In this project, the
settings of peripheral functions and user-created
source code in the source project are modified and
reflected in the Smart Configurator according to the
steps in Figure 2.1.

Renesas e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0480EJ0100 Rev.1.00 Page 6 of 57
Nov 01, 2017

2.2 Downloading the Source Project
You can download the RSK+RX64M project, which is used as the source project in this application note, from the Web
site of Renesas Electronics.

Note: To download the project, you need to register a My Renesas account.

(1) From the top page of the Web site of Renesas (https://www.renesas.com/ja-jp/), select [Boards and Kits] under the

[Products] menu, then [See more] under [Renesas Starter Kits].

Figure 2.2 Downloading the Source Project (1)

(2) Select [Renesas Starter Kit+ for RX64M] from the list of Renesas Starter Kits.

Figure 2.3 Downloading the Source Project (2)

https://www.renesas.com/ja-jp/

Renesas e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0480EJ0100 Rev.1.00 Page 7 of 57
Nov 01, 2017

(3) Select [RX64M Renesas Starter Kit Sample Code for CubeSuite+] in the list under [Product Name] on the
[Download] tabbed page, then click on the [Download] button at the bottom of the page to proceed with
downloading.

Figure 2.4 Downloading the Source Project (3)

2.3 Generating a Report on the Source Project
Use the function for generating reports from the Code Generator to output a report on the source project in the form of a
list of peripheral functions. Refer to this report to set peripheral functions in the Smart Configurator for the destination
project.

2.3.1 Generating the Report
• From CS+
(1) Start CS+ and open the source project [RSK+RX64M_Tutorial] that uses the Code Generator. Expand [Code

Generator] under [Project Tree] and double-click on [Peripheral Functions].
(2) Select [Save Code Generator Report] from the [File] menu to generate the report.

Figure 2.5 Generating the Report from CS+

Renesas e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0480EJ0100 Rev.1.00 Page 8 of 57
Nov 01, 2017

(3) When the report has been generated, two files, Function.html and Macro.html, are output to the project folder.

Figure 2.6 Report Files Output by the Report Function of the Code Generator for CS+

• From the e2 studio
(1) Start the e2 studio and open the source project [RSK+RX64M_Tutorial] for which the Code Generator was used.

Expand [Code Generator] under [Project Tree] and double-click on [Peripheral Functions].
(2) Click on the [Generate Report] button to generate the report.

Figure 2.7 Generating a Report from the e2 studio

(3) When the report has been generated, two files, Function.html and Macro.html, are output to the doc folder.

[Generate Report] button

Renesas e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0480EJ0100 Rev.1.00 Page 9 of 57
Nov 01, 2017

Figure 2.8 Report Files Output by the Report Function of the Code Generator for the e2 studio

Table 2.2 Report Files Output by the Report Function of the Code Generator

File Name Description
Function.html A list of API functions generated by the Code Generator.
Macro.html A list of peripheral functions set by the Code Generator.

Renesas e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0480EJ0100 Rev.1.00 Page 10 of 57
Nov 01, 2017

2.4 Newly Creating the Destination Project
Newly create a C project as the destination project for use with the Smart Configurator. Regarding how to create a
project, refer to section 2, Generating a Project, in the Renesas e2 studio Smart Configurator User Guide.

2.5 Setting Peripheral Functions in the Smart Configurator
2.5.1 Correspondence between the Code Generator and the Smart Configurator
Table 2.3 shows the correspondence of the peripheral functions which are to be set in the RSK+RX64M project
between those in the Code Generator and those in the Smart Configurator.

Table 2.3 Correspondence of Peripheral Functions between the Code Generator and the Smart

Configurator (1)

Code Generator Smart Configurator

Peripheral
functions

Setting items Tabs Peripheral
functions

Setting items

Interrupt
Controller
Unit

IRQ2 setting － Components Interrupt
Controller

IRQ2 setting －

Pins Pin function Interrupt

controller unit
IRQ2

IRQ5 setting － Components Interrupt
Controller

IRQ5 setting －

Pins Pin function Interrupt

controller unit
IRQ5

Group BL0
setting

－ Interrupts GROUPBL0 － －

Compare
Match Timer

CMT0 － Components Compare
Match Timer

CMT0 －

CMT1 － CMT1 －

CMT2 － CMT2 －

12-Bit A/D
Converter

Single scan
mode

Analog input
channel
setting

Components Single Scan
Mode S12AD

Basic setting Analog input
channel
setting

Conversion
start trigger
setting

Conversion
start trigger
setting

ADTRGn#
pin selection

Pins Pin function 12-bit A/D
converter

－

Renesas e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0480EJ0100 Rev.1.00 Page 11 of 57
Nov 01, 2017

Table 2.4 Correspondence of Peripheral Functions between the Code Generator and the Smart
Configurator (2)

Code Generator Smart Configurator

Peripheral
functions

Setting items Tabs Peripheral
functions

Setting items

Serial
Communication
s Interface

Simple SPI
bus

Master
transmit only

Components SPI Clock
Synchronous
Mode

－ Master
transmit
only

Transfer
direction
setting

－ Transfer
direction
setting

Transfer rate
setting

－ Transfer
speed setting

Pin setting Pins Pin function Serial
communications
interface

－

Asynchronous
mode

Transmission
/reception

Components SCI/SCIF
Asynchronous
Mode

－ Transmission
/Reception

Start bit edge
detection
setting

－ Start bit
edge
detection
setting

Transfer rate
setting

－ Transfer rate
setting

I/O Port Port0 P03 Components ポート PORT0 P03

P05 P05

Port2 P26 PORT2 P26

P27 P27

Port4 P45 PORT4 P45

P46 P46

P47 P47

Set the Smart Configurator with the project that has been created in section 2.4, Newly Creating the Destination Project,
with reference to the report that was output in section 2.3, Generating a Report on the Source Project.

This section describes settings of the clock generator, compare-match timer, and serial communications interface. Set
other peripheral functions according to the same procedure.

Renesas e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0480EJ0100 Rev.1.00 Page 12 of 57
Nov 01, 2017

2.5.2 Setting the Clock Generator
Set the clock generator.

(1) Open the Macro.html file of the report that was output in section 2.3, Generating a Report on the Source Project, and
display the parts to be set for the clock generator.

Figure 2.9 Report on the Clock Generator Output by the Code Generator

(2) Open the window for setting the Smart Configurator for the project that was created in section 2.4, Newly Creating

the Destination Project, and select the [Clocks] tabbed page.

Figure 2.10 Window for Using the Smart Configurator to Make Clock Settings

Renesas e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0480EJ0100 Rev.1.00 Page 13 of 57
Nov 01, 2017

(3) Reflect the items in the [Setting] and [Status] columns in Macro.html of the report in the settings of the Smart

Configurator.

Figure 2.11 Setting Clocks in the Smart Configurator (1)

(1)
(2)

(3)

(5)
(6)

(1)
(2)

(3)

(5)

(6)

(4)

(4)

Renesas e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0480EJ0100 Rev.1.00 Page 14 of 57
Nov 01, 2017

Figure 2.12 Setting Clocks in the Smart Configurator (2)

(8)
(9)
(10)
(11)

(12)
(13)

(7)

(8)

(9)

(15)

(13)

(14)

(7)

(12)

(14)
(15)
(16)

(10)

(11)
(16)

Renesas e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0480EJ0100 Rev.1.00 Page 15 of 57
Nov 01, 2017

Table 2.5 Settings of the Clock Generator (1)

 Code Generator Smart Configurator
Item to be Set
([Macro] or [Setting] in
Macro.html)

Setting
([Status] in
Macro.html)

Item to be Set Setting

(1) Main clock oscillation
source

Resonator [Main clock]
Oscillation source

Resonator

(2) Main clock oscillation
source Frequency

24(MHz) [Main clock]
Frequency

24(MHz)

(3) Oscillator wait time 11000(us) (Actual
value: 11090.909 us)

[Main clock]
Oscillation wait
time

11000(us) (Actual
value: 11090.909 us)

(4) PLL clock source Main clock oscillator Check that the PLL clock source is selected
as [Main clock].

(5) Input frequency division
ratio

× 1 [PLL circuit]
Frequency
Division

× 1

(6) Frequency multiplication
factor

× 10.0 [PLL circuit]
Frequency
Multiplication

× 10.0

(7) SubCLK Operation Unused Sub-clock Not selected
(8) HOCO Operation Unused HOCO clock Not selected
(9) LOCO Operation Used LOCO clock Selected
(10) Low speed clock

oscillator (LOCO)
setting

240 (kHz) Frequency 240 (kHz)

(11) IWDT operation Unused IWDT-dedicated
on-chip clock

Not selected

(12) Clock source PLL circuit Check that the clock source is selected as
[PLL circuit].

Renesas e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0480EJ0100 Rev.1.00 Page 16 of 57
Nov 01, 2017

Table 2.6 Settings of the Clock Generator (2)

 Code Generator Smart Configurator
Item to be Set
([Macro] or [Setting] in
Macro.html)

Setting
([Status] in
Macro.html)

Item to be Set Setting

(13) System clock (ICLK) × 1/2 120 (MHz) SCKCR
(ICLK[3:0])

× 1/2

System clock
(ICLK)

120.0 (MHz)

Peripheral module clock
(PCLKA)

× 1/2 120 (MHz) SCKCR
(PCLKA[3:0])

× 1/2

Peripheral module
clock A (PCLKA)

120.0 (MHz)

Peripheral module clock
(PCLKB)

× 1/4 60 (MHz) SCKCR
(PCLKB[3:0])

× 1/4

Peripheral module
clock B (PCLKB)

60.0 (MHz)

Peripheral module clock
(PCLKC)

× 1/4 60 (MHz) SCKCR
(PCLKC[3:0])

× 1/4

Peripheral module
clock C (PCLKC)

60.0 (MHz)

Peripheral module clock
(PCLKD)

× 1/4 60 (MHz) SCKCR
(PCLKD[3:0])

× 1/4

Peripheral module
clock D (PCLKD)

60.0 (MHz)

Peripheral module clock
(BCLK)

× 1/4 60 (MHz) SCKCR
(BCK[3:0])

× 1/4

External bus clock
(BCLK)

60.0 (MHz)

Flash lF clock (FCLK) × 1/4 60 (MHz) SCKCR
(FCLK[3:0])

× 1/4

FlashlF clock
(FCLK)

60.0 (MHz)

(14) USB clock (UCLK) × 1/5 48 (MHz) SCKCR2
(UCK[3:0])

× 1/5

USB clock
(UCLK)

48.0 (MHz)

(15) BCLK Operation Unused BCKCR
(BCLKDIV)

Not selected

(16) SDCLK Operation Unused SDRAM clock
(SDCLK)

Not selected

Renesas e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0480EJ0100 Rev.1.00 Page 17 of 57
Nov 01, 2017

2.5.3 Setting the Compare Match Timers
Set the compare-match timers.

(1) Refer to ‘(1) To add a Code Generator component’ under section 3.3.1, Add a software component into the project,
in the Renesas e2 studio Smart Configurator User Guide, and add the compare match timers as components of the
project.
In the [Add new configuration for selected component] dialog box, use the default names as the names of the
configurations of the resources, as listed below.

Table 2.7 Correspondence between Resources and the Configuration Names of the Compare Match

Timers

Component Type Component Resource Configuration Name
Code Generator Compare match

timer
CMT0 Config_CMT0 (default)
CMT1 Config_CMT1 (default)
CMT2 Config_CMT2 (default)

(2) Display the parts showing the settings of the compare match timers in the Macro.html file of the report that was

output in section 2.3, Generating a Report on the Source Project.

Figure 2.13 Report on the Compare Match Timers Output by the Code Generator

Renesas e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0480EJ0100 Rev.1.00 Page 18 of 57
Nov 01, 2017

(3) Open the window for setting compare match timer CMT0 that was created in step (1).

Figure 2.14 Window for Setting the Compare Match Timer (CMT0) in the Smart Configurator

(4) Reflect the settings of the compare match timers in Macro.html in those for CMT0 in the Smart Configurator.

Figure 2.15 Settings of the Compare Match Timer (CMT0) in the Smart Configurator

(2)
(3)
(4)

(1)

(1)

(3)

(2)

(4)

Renesas e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0480EJ0100 Rev.1.00 Page 19 of 57
Nov 01, 2017

Table 2.8 Settings of the Compare Match Timer (CMT0)

 Code Generator Smart Configurator
Item to be Set
([Macro] or [Setting] in
Macro.html)

Setting
([Status] in
Macro.html)

Item to be Set Setting

(1) Count clock setting PCLK/8 Count clock setting PCLK/8
(2) Interval value setting 1 ms (Actual value: 1) [Compare match

setting]
Interval value

1 ms (Actual value:
1.000000)

(3) Enable compare match
interrupt (CMI0)

Used [Compare match
setting]
Enable compare
match interrupt
(CMI0)

Selected

(4) Priority Level 10 [Compare match
setting]
Priority

Level 10

(5) Similarly, add CMT1 and CMT2 as components and make their settings.

Figure 2.16 Settings of the Compare Match Timer (CMT1) in the Smart Configurator

(2)
(3)

(4)

(1)

(1)

(3)

(2)

(4)

Renesas e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0480EJ0100 Rev.1.00 Page 20 of 57
Nov 01, 2017

Table 2.9 Settings of the Compare Match Timer (CMT1)

 Code Generator Smart Configurator
Item to be Set
([Macro] or [Setting] in
Macro.html)

Setting
([Status] in
Macro.html)

Item to be Set Setting

(1) Count clock setting PCLK/32 Count clock setting PCLK/32
(2) Interval value setting 20 ms, (Actual value:

20)
[Compare match
setting]
Interval value

20 ms (Actual value:
20.000000)

(3) Enable compare match
interrupt (CMI1)

Used [Compare match
setting]
Enable compare
match interrupt
(CMI1)

Selected

(4) Priority Level 10 [Compare match
setting]
Priority

Level 10

Figure 2.17 Settings of the Compare Match Timer (CMT2) in the Smart Configurator

(2)

(3)

(4)

(1)

(1)

(3)

(2)

(4)

Renesas e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0480EJ0100 Rev.1.00 Page 21 of 57
Nov 01, 2017

Table 2.10 Settings of the Compare Match Timer (CMT2)

 Code Generator Smart Configurator
Item to be Set
([Macro] or [Setting] in
Macro.html)

Setting
([Status] in
Macro.html)

Item to be Set Setting

(1) Count clock setting PCLK/512 Count clock setting PCLK/512
(2) Interval value setting 200 ms (Actual value:

200.004267)
[Compare match
setting]
Interval value

200 ms (Actual value:
200.004267)

(3) Enable compare match
interrupt (CMI2)

Used [Compare match
setting]
Enable compare
match interrupt
(CMI2)

Selected

(4) Priority Level 10 [Compare match
setting]
Priority

Level 10

Renesas e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0480EJ0100 Rev.1.00 Page 22 of 57
Nov 01, 2017

2.5.4 Setting the Serial Communications Interfaces
Set the serial communications interfaces.

(1) Refer to ‘(1) To add a Code Generator component’ under section 3.3.1, Add a software component into the project,
in the Renesas e2 studio Smart Configurator User Guide, and add the compare match timers as components of the
project.
Since SCI6 and SCI7 are used in the simple SPI mode and SCI asynchronous mode, respectively, set the component,
resource, and operation/work mode as listed below, using the default configuration names.

Table 2.11 Correspondence between Resources and the Configuration Names of the Serial

Communications Interfaces

Component Type Component Resource Configuration Name Operation/
Work Mode

Code Generator SPI clock
synchronous
mode

SCI6 Config_SCI6 (default) Master
transmission

SCI (SCIF)
asynchronous
mode

SCI7 Config_SCI7 (default) Transmission
and
reception

Renesas e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0480EJ0100 Rev.1.00 Page 23 of 57
Nov 01, 2017

(2) Display the parts showing the settings of the serial communications interfaces in the Macro.html file of the report
that was output in section 2.3, Generating a Report on the Source Project.

Figure 2.18 Report on the Serial Communications Interfaces Output by the Code Generator

Renesas e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0480EJ0100 Rev.1.00 Page 24 of 57
Nov 01, 2017

(3) Open the window for setting serial communications interface SCI6 that was created in step (1).

Figure 2.19 Window for Setting the Serial Communications Interface (SCI6) in the Smart
Configurator

Renesas e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0480EJ0100 Rev.1.00 Page 25 of 57
Nov 01, 2017

(4) Reflect the settings of the serial communications interfaces in Macro.html in those for SCI6 in the Smart
Configurator.
Pins to handle SMOSI6 and SCK6 are set on the [Pins] tabbed page.

Figure 2.20 Settings of the Serial Communications Interface (SCI6) in the Smart Configurator

(1)
(2)
(3)
(4)
(5)

(6)
(7)
(8)
(9)
(10)

 (1)

(2)

(3)

(4)
(5)

(6) (7)

(8)

(9)

(11)

(11)

(10)

Renesas e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0480EJ0100 Rev.1.00 Page 26 of 57
Nov 01, 2017

Table 2.12 Settings of the Serial Communications Interface (SCI6)

 Code Generator Smart Configurator
Item to be Set
([Macro] or [Setting] in
Macro.html)

Setting
([Status] in
Macro.html)

Item to be Set Setting

(1) Transfer direction
setting

MSB-first Transfer direction
setting

MSB-first

(2) Data inversion setting Normal Data inversion
setting

Normal

(3) Transfer clock Internal clock [Transfer speed
setting]
Transfer clock

Internal clock (SCK6
pin functions as clock
output pin)

(4) Bit rate 1500000 (bps) [Transfer speed
setting]
Bit rate

1500 (kbps)

(5) Enable modulation duty
correction

Unused [Transfer speed
setting]
Enable modulation
duty correction

Not selected

(6) Clock delay Clock is not
delayed

[Clock setting]
Enable clock delay

Not selected

(7) Enable clock polarity
inversion

Unused [Clock setting]
Enable clock polarity
inversion

Not selected

(8) Transmit data handling Data handled in
interrupt service
routine

[Data handling
setting]
Transmit data
handling

Data handled in
interrupt service
routine

(9) TXI6 priority Level 15 (highest) [Interrupt setting]
TXI6 priority

Level 15 (highest)

(10) TEI6, ERI6 priority
(Group BL0)

Level 15 (highest) [Interrupt setting]
TEI6 priority (Group
BL0)

Level 15 (highest)

(11) Transmission end Used [Callback function
setting]
Transmission end

Selected

Renesas e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0480EJ0100 Rev.1.00 Page 27 of 57
Nov 01, 2017

(5) Open the window for setting serial communications interface SCI7 that was created in step (1).

Figure 2.21 Window for Setting the Serial Communications Interface (SCI7) in the Smart
Configurator

Renesas e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0480EJ0100 Rev.1.00 Page 28 of 57
Nov 01, 2017

(6) Reflect the settings of the serial communications interfaces in Macro.html to those for SCI7 in the Smart
Configurator. Pins to handle TXD7 and RXD7 are set on the [Pins] tabbed page.

Figure 2.22 Settings of the Serial Communications Interface (SCI7) in the Smart Configurator (1)

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(9)

(10)

(8)

Renesas e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0480EJ0100 Rev.1.00 Page 29 of 57
Nov 01, 2017

Figure 2.23 Settings of the Serial Communications Interface (SCI7) in the Smart Configurator (2)

(11)

(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)

(12)
(13)

(16)
(15)

(14)
(17)

(18) (19) (20)

Renesas e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0480EJ0100 Rev.1.00 Page 30 of 57
Nov 01, 2017

Table 2.13 Settings of the Serial Communications Interface (SCI7)

 Code Generator Smart Configurator
Item to be Set
([Macro] or [Setting] in
Macro.html)

Setting
([Status] in
Macro.html)

Item to be Set Setting

(1) Start bit edge detection
setting

Falling edge on
RXD7 pin

Start bit edge
detection setting

Falling edge on RXD7
pin

(2) Data length setting 8 bits Data length setting 8 bits
(3) Parity setting None Parity setting None
(4) Stop bit length setting 1 bit Stop bit length

setting
1 bit

(5) Transfer direction
setting

LSB-first Transfer direction
setting

LSB-first

(6) Transfer clock Internal clock [Transfer rate
setting]
Transfer clock

Internal clock

(7) Bit rate 19200 (bps) [Transfer rate
setting]
Bit rate

19200 (bps)

(8) Enable modulation duty
correction

Used [Transfer rate
setting]
Enable modulation
duty correction

Selected

(9) SCK7 pin function SCK7 is not used [Transfer rate
setting]
SCK7 pin function

SCK7 is not used

(10) Enable noise filter Unused [Noise filter setting]
Enable noise filter

Not selected

(11) Hardware flow control
setting

None Hardware flow
control setting

None

(12) Transmit data handling Data handled in
interrupt service
routine

[Data handling
setting]
Transmit data
handling

Data handled in
interrupt service
routine

(13) Receive data handling Data handled in
interrupt service
routine

[Data handling
setting]
Receive data
handling

Data handled in
interrupt service
routine

(14) Enable error interrupt
(ERI7)

Used [Interrupt setting]
Enable reception
error interrupt (ERI7)

Selected

(15) TXI7 priority Level 15 (highest) [Interrupt setting]
TXI7 priority

Level 15 (highest)

(16) RXI7 priority Level 15 (highest) [Interrupt setting]
RXI7 priority

Level 15 (highest)

(17) TEI7, ERI7 priority
(Group BL0)

Level 15 (highest) [Interrupt setting]
TEI7, ERI7 priority
(Group BL0)

Level 15 (highest)

(18) Transmission end Used [Callback function
setting]
Transmission end

Selected

Renesas e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0480EJ0100 Rev.1.00 Page 31 of 57
Nov 01, 2017

(19) Reception end Used [Callback function
setting]
Reception end

Selected

(20) Reception error Used [Callback function
setting]
Reception error

Selected

(7) Make settings of pins. Select the [Pins] and [Pin Function] tabs. When [SCI6] or [SCI7] under [Serial

communications interface] is selected in the left pane, a list of pin functions that may be used is displayed in the
right [Pin Function] pane.

Figure 2.24 Settings of Pins for a Serial Communications Interface in the Smart Configurator (1)

Renesas e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0480EJ0100 Rev.1.00 Page 32 of 57
Nov 01, 2017

(8) Assign the SMOSI6 and SCK6 functions to pins.

Figure 2.25 Settings of Pins for a Serial Communications Interface in the Smart Configurator (2)

Renesas e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0480EJ0100 Rev.1.00 Page 33 of 57
Nov 01, 2017

Table 2.14 Settings of Pins for the Serial Communications Interfaces (SCI6 and SCI7)

Code Generator Smart Configurator
Item to be
Set
([Macro] or
[Setting] in
Macro.html)

Setting
([Status] in
Macro.html)

Item to
be Set

Setting

SCK6 P02 SCK6 P02/TMCI1/SCK6/IRQ10/AN120
SMOSI6 P00 SMOSI6 P00/TMRI0/TXD6/SMOSI6/SSDA6/IRQ8/AN118
TXD7 P90 TXD7 P90/A16/D16/ET1_RX_DV/TXD7/SMOSI7/SSDA7/AN114
RXD7 P92 RXD7 P92/A18/D18/POE4#/ET1_CRS/RMII1_CRS_DV/RXD7/SMOSO7/

SSCL7/AN116

Renesas e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0480EJ0100 Rev.1.00 Page 34 of 57
Nov 01, 2017

2.5.5 Setting Other Peripheral Functions
For settings of the 12-bit A/D converter, interrupt functions, and port pins, refer to the steps described in Table 2.2,
Report Files Output by the Report Function of the Code Generator, section 2.5.2, Setting the Clock Generator, section
2.5.3, Setting the Compare Match Timers, and section 2.5.4, Setting the Serial Communications Interfaces, and set the
Smart Configurator in the equivalent ways.

2.5.6 Generating Code
When all settings are finished, save the project and click on the [Generate Code] button to make the Smart
Configurator generate the code.

Renesas e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0480EJ0100 Rev.1.00 Page 35 of 57
Nov 01, 2017

2.6 Porting User-defined Source Code
2.6.1 Overview
The user-created source files or user-defined source code written in the source files which were generated by the Code
Generator in the source project created by using the Code Generator must be copied to the destination project created by
using the Smart Configurator.

Figure 2.26 shows the procedure for porting user-defined source code.

Figure 2.26 Procedure for Porting User-defined Source Code

2.6.2 Areas for Writing User-defined Source Code
Files generated by the Code Generator and Smart Configurator include areas where the user can freely add code. Areas
for custom code are indicated by comments as shown below.

In the comments above, the part ‘xxxxxx’ depends on the area where custom code is to be added. For example, it is the
word ‘include’ in the part where include declarations are to be written and the word ‘global’ in the part where global
variables are to be defined.

Start

2.6.3 Copying the User-created Source Files

2.6.4 Copying Source Code, Including the main() Function

2.6.6 Copying Custom Code in Generated Code

2.6.7 Modifying the Include Directives

2.6.8 Modifying Parts that Call API Functions

End

/* Start user code for xxxxxx. Do not edit comment generated here */

/* End user code. Do not edit comment generated here */

Renesas e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0480EJ0100 Rev.1.00 Page 36 of 57
Nov 01, 2017

Custom code located between these comments must be copied from the source projects to the destination projects.

2.6.3 Copying the User-created Source Files
Copy the user-created source files other than the source files output by the Code Generator from the source project.

As shown below, copy the source files and header files from the folder other than ‘cg_src’ in the source project to the
‘src’ folder in the destination project.

Figure 2.27 Copying the User-created Source Files

Since the copied source files will use the names of the API functions generated by the Code Generator, these names
must be modified to those generated by the Smart Configurator. In addition, the header files to be included must also be
modified as required. For modifying the names of the API functions, refer to section 2.6.8, Modifying Parts that Call
API Functions. For modifying the include directives, refer to section 2.6.7, Modifying the Include Directives.

Renesas e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0480EJ0100 Rev.1.00 Page 37 of 57
Nov 01, 2017

The ‘src’ folder must be added to the include directory since the ‘src’ folder will include header files to be included.
Add the include directory through the following steps.

(1) Right-click on [RSK_RX64M_Tutorial_SC], which is the destination project, to open [Properties for

RSK_RX64M_Tutorial_SC]. Select [Settings] under [C/C++ Build] in the left pane. Select the [Tool Settings]
tabbed page in the right window. Then select [Source] under [Compiler] and click on the [Add] button in the
[Include file directories] category.

Figure 2.28 Adding the Include Directory (1)

(2) Select [Workspace] in the [Add directory path] dialog box. In the [Folder selection] dialog box, select the folder

(e.g. ‘src’) to be added as the include directory and click on [OK]. Check that the folder specified for [Directory] has
been added to the [Add directory path] dialog box and click on [OK].

Renesas e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0480EJ0100 Rev.1.00 Page 38 of 57
Nov 01, 2017

Figure 2.29 Adding the Include Directory (2)

Renesas e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0480EJ0100 Rev.1.00 Page 39 of 57
Nov 01, 2017

2.6.4 Copying Source Code, Including the main() Function
Copy user-defined source code from the source file including the main() function.

In the source project, the main() function will be in the ‘r_cg_main.c’ file in the ‘cg_src’ folder. Since ‘r_cg_main.c’ is
a source file generated by the Code Generator, the user-defined source code will be in the area between comments.

In the destination project, the file that includes the main() function is not among the files generated by the Smart
Configurator. Instead, the main() function is in the {ProjName}.c file, which is automatically generated when a new
project is created. Since the name of the destination project is ‘RSK_RX64M_Tutorial_SC’ in this application note, the
main() function will be in ‘RSK_RX64M_Tutorial_SC.c’. All source code in ‘{ProjName}.c’ is user-defined.

Open ‘r_cg_main.c’ and copy all source code written between comments of the type shown in section 2.6.2, Areas for
Writing User-defined Source Code.

The following explains how to copy the include directives as an example.

For the include files, the source code between comments of the type shown in section 2.6.2, Areas for Writing User-
defined Source Code, will generally be copied. Header files that contain user-defined source code (e.g.
‘r_cg_userdefine.h’) are also copied.

An include directive for ‘r_smc_entry.h’ is automatically written in ‘{ProjName}.c’ when this source file is generated
during creation of the new project.

Preprocessor directives for the inclusion of other header files written in ‘r_cg_main.c’ (e.g. ‘r_cg_macrodriver.h’
through ‘r_cg_s12ad.h’) need not be copied unless these header files contain user-defined source code.

The statements to be copied are highlighted in yellow below.

/**

Includes

**********************************/
#include "r_cg_macrodriver.h"
#include "r_cg_cgc.h"
#include "r_cg_icu.h"
#include "r_cg_port.h"
#include "r_cg_cmt.h"
#include "r_cg_sci.h"
#include "r_cg_s12ad.h"
/* Start user code for include. Do not edit comment generated here */
#include "r_okaya_lcd.h"
#include "r_rsk_switch.h"
#include "r_rsk_debug.h"
#include "rskrx64mdef.h"
/* End user code. Do not edit comment generated here */
#include "r_cg_userdefine.h"

r cg main.c

#include "r_smc_entry.h"
#include "r_okaya_lcd.h"
#include "r_rsk_switch.h"
#include "r_rsk_debug.h"
#include "rskrx64mdef.h"
#include "r_cg_userdefine.h"

{ProjName}.c

Renesas e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0480EJ0100 Rev.1.00 Page 40 of 57
Nov 01, 2017

Source code written between comments of the type shown in section 2.6.2, Areas for Writing User-defined Source
Code, such as the user-defined prototype declarations and function definitions, is copied to ‘{ProjName}.c’, preserving
the original order.

In the example, copy the user-defined prototype and variable declarations highlighted in yellow on the next page.

Renesas e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0480EJ0100 Rev.1.00 Page 41 of 57
Nov 01, 2017

/**

Global variables and functions

**********************************/
/* Start user code for global. Do not edit comment generated here */

/* Prototype declaration for cb_switch_press */
static void cb_switch_press (void);

/* Prototype declaration for get_adc */
static uint16_t get_adc (void);

/* Prototype declaration for lcd_display_adc */
static void lcd_display_adc (const uint16_t adc_result);

/* Prototype declaration for uart_display_adc */
static void uart_display_adc (const uint8_t adc_count, const uint16_t adc_result);

/* Variable to store the A/D conversion count for user display */
static uint8_t adc_count = 0;

/* Prototype declaration for led_display_count */
static void led_display_count (const uint8_t count);

/* Variable for flagging user requested ADC conversion */
volatile uint8_t g_adc_trigger = FALSE;

/* End user code. Do not edit comment generated here */

r cg main.c

void main(void);

/* Prototype declaration for cb_switch_press */
static void cb_switch_press (void);

/* Prototype declaration for get_adc */
static uint16_t get_adc (void);

/* Prototype declaration for lcd_display_adc */
static void lcd_display_adc (const uint16_t adc_result);

/* Prototype declaration for uart_display_adc */
static void uart_display_adc (const uint8_t adc_count, const uint16_t adc_result);

/* Prototype declaration for led_display_count */
static void led_display_count (const uint8_t count);

/* Variable to store the A/D conversion count for user display */
static uint8_t adc_count = 0;

/* Variable for flagging user requested ADC conversion */
volatile uint8_t g_adc_trigger = FALSE;

{ProjName}.c

Renesas e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0480EJ0100 Rev.1.00 Page 42 of 57
Nov 01, 2017

Copy the function calls and other code in the main() function that is highlighted in yellow below. All sections indicated
as ‘- Omitted -’ must also be copied. Code related to functions generated by the Code Generator, such as
‘R_MAIN_UserInit()’, need not be copied unless user-defined code has been added to the functions.

void R_MAIN_UserInit(void);

/**

* Function Name: main
* Description : This function implements main function.
* Arguments : None
* Return Value : None

**********************************/
void main(void)
{
 R_MAIN_UserInit();
 /* Start user code. Do not edit comment generated here */

 /* Initialise the switch module */
 R_SWITCH_Init();

 /* Set the call back function when SW1 or SW2 is pressed */
 R_SWITCH_SetPressCallback(cb_switch_press);

 - Omitted -

 /* Set up SCI7 receive buffer and callback function */
 R_SCI7_Serial_Receive((uint8_t *)&g_rx_char, 1);

 /* Enable SCI7 operations */
 R_SCI7_Start();

 while (1U)
 {
 uint16_t adc_result;

 /* Wait for user requested A/D conversion flag to be set (SW1 or SW2) */
 if (TRUE == g_adc_trigger)
 {
 /* Call the function to perform an A/D conversion */
 adc_result = get_adc();

 - Omitted -

 /* Send the result to the UART */
 uart_display_adc(adc_count, adc_result);

 /* Reset the flag */
 g_adc_complete = FALSE;
 }
 else
 {
 /* do nothing */
 }
 }
 /* End user code. Do not edit comment generated here */
}

r cg main.c

Renesas e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0480EJ0100 Rev.1.00 Page 43 of 57
Nov 01, 2017

Copy the function calls and other code in the private function that is highlighted in yellow below. All sections indicated
as ‘- Omitted -’ must also be copied. Code related to functions generated by the Code Generator, such as
‘R_MAIN_UserInit()’, need not be copied unless user-defined code has been added to the functions.

void main(void)
{
 /* Initialise the switch module */
 R_SWITCH_Init();

 /* Set the call back function when SW1 or SW2 is pressed */
 R_SWITCH_SetPressCallback(cb_switch_press);

 - Omitted -

 while (1U)
 {
 uint16_t adc_result;

 /* Wait for user requested A/D conversion flag to be set (SW1 or SW2) */
 if (TRUE == g_adc_trigger)
 {
 /* Call the function to perform an A/D conversion */
 adc_result = get_adc();

 - Omitted -

 /* Send the result to the UART */
 uart_display_adc(adc_count, adc_result);

 /* Reset the flag */
 g_adc_complete = FALSE;
 }
 else
 {
 /* do nothing */
 }
 }
}

{ProjName}.c

Renesas e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0480EJ0100 Rev.1.00 Page 44 of 57
Nov 01, 2017

/**

* Function Name: R_MAIN_UserInit
* Description : This function adds user code before implementing main function.
* Arguments : None
* Return Value : None

**********************************/
void R_MAIN_UserInit(void)
{
 /* Start user code. Do not edit comment generated here */
 /* End user code. Do not edit comment generated here */
}

/* Start user code for adding. Do not edit comment generated here */

/**
* Function Name : cb_switch_press
* Description : Switch press callback function. Sets g_adc_trigger flag.
* Argument : none
* Return value : none
**/
static void cb_switch_press (void)
{
 /* Check if switch 1 or 2 was pressed */
 if (g_switch_flag & (SWITCHPRESS_1 | SWITCHPRESS_2))
 {
 /* set the flag indicating a user requested A/D conversion is required */
 g_adc_trigger = TRUE;

 /* Clear flag */
 g_switch_flag = 0x0;
 }
}

/**
* End of function cb_switch_press
**/

 - Omitted -

/**
* Function Name : led_display_count
* Description : Converts count to binary and displays on 4 LEDS0-3
* Argument : uint8_t count
* Return value : none
**/
static void led_display_count (const uint8_t count)
{
 /* Set LEDs according to lower nibble of count parameter */
 LED0 = (uint8_t)((count & 0x01) ? LED_ON : LED_OFF);
 LED1 = (uint8_t)((count & 0x02) ? LED_ON : LED_OFF);
 LED2 = (uint8_t)((count & 0x04) ? LED_ON : LED_OFF);
 LED3 = (uint8_t)((count & 0x08) ? LED_ON : LED_OFF);
}

/**
* End of function led_display_count
**/

/* End user code. Do not edit comment generated here */

r cg main.c

Renesas e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0480EJ0100 Rev.1.00 Page 45 of 57
Nov 01, 2017

/**
* Function Name : cb_switch_press
* Description : Switch press callback function. Sets g_adc_trigger flag.
* Argument : none
* Return value : none
**/
static void cb_switch_press (void)
{
 /* Check if switch 1 or 2 was pressed */
 if (g_switch_flag & (SWITCHPRESS_1 | SWITCHPRESS_2))
 {
 /* set the flag indicating a user requested A/D conversion is required */
 g_adc_trigger = TRUE;

 /* Clear flag */
 g_switch_flag = 0x0;
 }
}

/**
* End of function cb_switch_press
**/

 - Omitted -

/**
* Function Name : led_display_count
* Description : Converts count to binary and displays on 4 LEDS0-3
* Argument : uint8_t count
* Return value : none
**/
static void led_display_count (const uint8_t count)
{
 /* Set LEDs according to lower nibble of count parameter */
 LED0 = (uint8_t)((count & 0x01) ? LED_ON : LED_OFF);
 LED1 = (uint8_t)((count & 0x02) ? LED_ON : LED_OFF);
 LED2 = (uint8_t)((count & 0x04) ? LED_ON : LED_OFF);
 LED3 = (uint8_t)((count & 0x08) ? LED_ON : LED_OFF);
}

/**
* End of function led_display_count
**/

{ProjName}.c

Renesas e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0480EJ0100 Rev.1.00 Page 46 of 57
Nov 01, 2017

2.6.5 Correspondences between Code Generated by the Code Generator and by the
Smart Configurator

Since files generated by the Code Generator and the Smart Configurator are not paired and are output in different folder
structures, copying between the appropriate files is required.

The following lists the main files and output folders for which user-created code must be copied from the source project
to the destination project.

Table 2.15 Correspondences between Code Generated by the Code Generator and by the Smart

Configurator

Code Generator Smart Configurator Note
Output
Folder

Source File Output Folder Source File

cg_src r_cg_main.c src {ProjName}.c File that contains main().
cg_src r_cg_userdefine.h src¥smc_gen¥general r_cg_userdefine.h Header file for user-

defined code that is used
in common with peripheral
functions.

cg_src r_cg_xxx.c src¥smc_gen¥ Config_XXX Config_XXX.c Source file for initializing
and operating peripheral
functions. With the Smart
Configurator, one file is
output for each resource.

r_cg_xxx_user.c src¥smc_gen¥ Config_XXX Config_XXX_user.c Source file for writing
user-defined code or
interrupt callback
functions after peripheral
functions have been
initialized. With the Smart
Configurator, one file is
output for each resource.

r_cg_xxx.h src¥smc_gen¥ general r_cg_xxx.h Header file including
macro definitions for
setting the SFR registers.
These files are used in
common with the
peripheral functions.

src¥smc_gen¥ Config_XXX Config_XXX.h Header file for
Config_XXX.c.

Note: ‘xxx’ and ‘XXX’ represent the names of peripheral functions.

Renesas e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0480EJ0100 Rev.1.00 Page 47 of 57
Nov 01, 2017

For files requiring the porting of custom code in the RSK+RX64M sample code, the following shows the
correspondences between the locations in code generated by the Code Generator and by the Smart Configurator. In this
example, the porting of custom code is not required for files on a gray background. The other files have custom code
that requires porting.

Table 2.16 Files that Require Porting of Custom Code in the RSK+RX64M Sample Code (1)

Peripheral
Function

Code Generator Smart Configurator
Output
Folder

Source File Output Folder Source File

File
including
main()

cg_src r_cg_main.c src {ProjName}.c

General
settings

cg_src r_cg_userdefine.
h

src¥smc_gen¥general r_cg_userdefine.h

Interrupt
controller

cg_src r_cg_icu.c src¥smc_gen¥ Config_ICU Config_ICU.c
src¥smc_gen¥ general r_smc_interrupt.c

r_cg_icu_user.c src¥smc_gen¥ Config_ICU Config_ICU_user.c
r_cg_icu.h src¥smc_gen¥ general r_cg_icu.h

src¥smc_gen¥ Config_ICU Config_ICU.h
src¥smc_gen¥ general r_smc_interrupt.h

I/O port cg_src r_cg_port.c src¥smc_gen¥ Config_PORT Config_PORT.c
r_cg_port_user.c src¥smc_gen¥ Config_PORT Config_PORT_user.c
r_cg_port.h src¥smc_gen¥ general r_cg_port.h

src¥smc_gen¥ Config_PORT Config_PORT.h
Compare
match timer

cg_src r_cg_cmt.c src¥smc_gen¥ Config_CMT0 Config_CMT0.c
src¥smc_gen¥ Config_CMT1 Config_CMT1.c
src¥smc_gen¥ Config_CMT2 Config_CMT2.c

r_cg_cmt_user.c src¥smc_gen¥ Config_CMT0 Config_CMT0_user.c
src¥smc_gen¥ Config_CMT1 Config_CMT1_user.c
src¥smc_gen¥ Config_CMT2 Config_CMT2_user.c

r_cg_cmt.h src¥smc_gen¥ general r_cg_cmt.h
src¥smc_gen¥ Config_CMT0 Config_CMT0.h
src¥smc_gen¥ Config_CMT1 Config_CMT1.h
src¥smc_gen¥ Config_CMT2 Config_CMT2.h

Renesas e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0480EJ0100 Rev.1.00 Page 48 of 57
Nov 01, 2017

Table 2.17 Files that Require Porting of Custom Code in the RSK+RX64M Sample Code (2)

Peripheral
Function

Code Generator Smart Configurator
Output
Folder

Source File Output Folder Source File

Serial
communi-
cations
interface

cg_src r_cg_sci.c src¥smc_gen¥ Config_SCI6 Config_SCI6.c
src¥smc_gen¥ Config_SCI7 Config_SCI7.c

r_cg_sci_user.c src¥smc_gen¥ Config_SCI6 Config_SCI6_user.c
src¥smc_gen¥ Config_SCI7 Config_SCI7_user.c

r_cg_sci.h src¥smc_gen¥ general r_cg_sci.h
src¥smc_gen¥ Config_SCI6 Config_SCI6.h
src¥smc_gen¥ Config_SCI7 Config_SCI7.h

12-bit A/D
converter

cg_src r_cg_s12ad.c src¥smc_gen¥ Config_S12AD0 Config_S12AD0.c
r_cg_s12ad_user.c src¥smc_gen¥ Config_S12AD0 Config_S12AD0_user.c
r_cg_s12ad.h src¥smc_gen¥ general r_cg_s12ad.h

src¥smc_gen¥ Config_S12AD0 Config_S12AD0.h

2.6.6 Copying Custom Code in Generated Code
The following explains how to copy custom code from the files in the source project to the destination project according
to the correspondences listed in Table 2.16, taking the case of the SCI6 serial communications interface (in use for SPI
master transmission) as an example.

Firstly, copy the custom code for SCI6 that is highlighted in yellow below from ‘r_cg_sci.h’ to ‘Config_SCI6.h’.

/* Start user code for function. Do not edit comment generated here */
/* Exported functions used to transmit a number of bytes and wait for completion */
MD_STATUS R_SCI6_SPIMasterTransmit(uint8_t * const tx_buf, const uint16_t tx_num);
MD_STATUS R_SCI7_AsyncTransmit(uint8_t * const tx_buf, const uint16_t tx_num);

r cg sci.h

/* Start user code for function. Do not edit comment generated here */
/* Exported functions used to transmit a number of bytes and wait for completion */
MD_STATUS R_SCI6_SPIMasterTransmit(uint8_t * const tx_buf, const uint16_t tx_num);
/* End user code. Do not edit comment generated here */

Config SCI6.h

Renesas e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0480EJ0100 Rev.1.00 Page 49 of 57
Nov 01, 2017

After that, copy the custom code for SCI6 that is highlighted in yellow below from ‘r_cg_sci_user.c’ to
‘Config_SCI6_user.c’.

/* Start user code for global. Do not edit comment generated here */
/* Flag used locally to detect transmission complete */

/* Global used to receive a character from the PC terminal */
uint8_t g_rx_char;

/* Flag used to control transmission to PC terminal */
volatile uint8_t g_tx_flag = FALSE;

/* Flag used locally to detect transmission complete */
static volatile uint8_t sci6_txdone;
static volatile uint8_t sci7_txdone;

- Omitted -

static void r_sci6_callback_transmitend(void)
{
 /* Start user code. Do not edit comment generated here */
 sci6_txdone = TRUE;
 /* End user code. Do not edit comment generated here */
}

- Omitted -
/* Start user code for adding. Do not edit comment generated here */
/***
* Function Name: R_SCI6_SPIMasterTransmit
* Description : This function sends SPI6 data to slave device.
* Arguments : tx_buf -
* transfer buffer pointer
* tx_num -
* buffer size
* Return Value : status -
* MD_OK or MD_ARGERROR
***/
MD_STATUS R_SCI6_SPIMasterTransmit (uint8_t * const tx_buf,
 const uint16_t tx_num)
{
 MD_STATUS status = MD_OK;

 /* clear the flag before initiating a new transmission */
 sci6_txdone = FALSE;

 /* Send the data using the API */
 status = R_SCI6_SPI_Master_Send(tx_buf, tx_num);

 /* Wait for the transmit end flag */
 while (FALSE == sci6_txdone)
 {
 /* Wait */
 }

 return (status);
}

/***
* End of function R_SCI6_SPIMasterTransmit
***/

r cg sci user.c

Renesas e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0480EJ0100 Rev.1.00 Page 50 of 57
Nov 01, 2017

Since ‘R_SCI6_SPI_Master_Send’, highlighted in blue, is the name of the API function from the Code Generator, the
name must be modified to that from the Smart Configurator. Details of the steps for this modification are described in
section 2.6.8, Modifying Parts that Call API Functions.

extern uint8_t *gp_sci6_tx_address; /* SCI6 transmit buffer address */
extern uint16_t g_sci6_tx_count; /* SCI6 transmit data number */
/* Start user code for global. Do not edit comment generated here */
/* Flag used locally to detect transmission complete */
static volatile uint8_t sci6_txdone;
/* End user code. Do not edit comment generated here */

- Omitted -

static void r_Config_SCI6_callback_transmitend(void)
{
 /* Start user code for r_Config_SCI6_callback_transmitend. Do not edit comment
generated here */
 sci6_txdone = TRUE;
 /* End user code. Do not edit comment generated here */
}

- Omitted -

/* Start user code for adding. Do not edit comment generated here */
/***
* Function Name: R_SCI6_SPIMasterTransmit
* Description : This function sends SPI6 data to slave device.
* Arguments : tx_buf -
* transfer buffer pointer
* tx_num -
* buffer size
* Return Value : status -
* MD_OK or MD_ARGERROR
***/
MD_STATUS R_SCI6_SPIMasterTransmit (uint8_t * const tx_buf,
 const uint16_t tx_num)
{
 MD_STATUS status = MD_OK;

 /* clear the flag before initiating a new transmission */
 sci6_txdone = FALSE;

 /* Send the data using the API */
 status = R_SCI6_SPI_Master_Send(tx_buf, tx_num);

 /* Wait for the transmit end flag */
 while (FALSE == sci6_txdone)
 {
 /* Wait */
 }

 return (status);
}

/***
* End of function R_SCI6_SPIMasterTransmit
***/
/* End user code. Do not edit comment generated here */

Config SCI6 user.c

Renesas e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0480EJ0100 Rev.1.00 Page 51 of 57
Nov 01, 2017

2.6.7 Modifying the Include Directives
The Code Generator mainly outputs files with names of the form ‘r_cg_xxx.h’ per peripheral function. The Smart
Configurator outputs more than one header files by dividing them into ‘r_cg_xxx.h’ that are common to peripheral
functions and ‘Config_XXX.h’ for resources of the component. Accordingly, the description of source code including
header files must be modified to the appropriate names of header files. (‘xxx’ and ‘XXX’ represent the names of
peripheral functions.)

For example, we search to find files that include ‘r_cg_sci.h’, which was copied in section 2.6.6, Copying Custom Code
in Generated Code, and modify them to have the appropriate include directives.

After a search for files that contain ‘#include “r_cg_sci.h”’ in the source project, the results are as follows.

Tutorial
├─ cg_src
│ ├─ r_cg_hardware_setup.c
│ ├─ r_cg_main.c
│ ├─ r_cg_sci_user.c
│ └─ r_cg_sci.c
├─ r_okaya_lcd.c
└─ r_rsk_debug.h

Among these files that contain ‘#include “r_cg_sci.h”’, since files other than ‘r_cg_main.c’ ({ProjName}.c for the
destination project) in the ‘cg_src’ folder include appropriate header files from the Smart Configurator, the include
directives need not be modified.

For ‘r_okaya_lcd.c’ and ‘r_rsk_debug.h’, the include directives in the corresponding source files of the destination
project require modification.

• For the source file (r_okaya_lcd.c)
Open ‘r_okaya_lcd.c’ in the destination project and find the part where the SCI function is called. In
‘r_okaya_lcd.c’, the following two functions are called.
 R_Config_SCI6_Start()
 R_SCI6_SPIMasterTransmit()

Since the prototype declarations are in ‘Config_SCI6.h’, the directives are modified so that this header file is
included.

/* SPI Driver Layer */
#include "Config_SCI6.h"

r okaya lcd.c (before modification)

r_okaya_lcd.c (after modification)

/* SPI Driver Layer */
#include "r_cg_sci.h"

Renesas e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0480EJ0100 Rev.1.00 Page 52 of 57
Nov 01, 2017

• For the header file (r_rsk_debug.h)
Open ‘r_rsk_debug.h’ in the destination project and check if it has a function name or global variable declaration for
use with SCI6 or SCI7. Since the file has a macro definition in which the R_SCI7_AsyncTransmit() function is
used, the description is modified so that the header file of ‘Config_SCI7.h’ is to be included.

We then search for the files that include ‘r_rsk_debug.h’ in the source project and find the following two files.

Tutorial
├─ cg_src
│ └─ r_cg_main.c
└─ r_rsk_debug.c

A search for calls of functions for SCI6 or SCI7 in ‘r_cg_main.c’ ({ProjName}.c for the destination project) shows
calls of the following two functions.
 R_SCI7_Start ()
 R_SCI7_Serial_Receive()

Since ‘Config_SCI7.h’ including the description of those prototype declarations has already been included in
‘r_rsk_debug.h’, the modification is already complete.
Regarding the calls of the R_SCI7_Start () or R_SCI7_Serial_Receive() API functions, refer to section 2.6.8,
Modifying Parts that Call API Functions, and modify the statements in {ProjName}.c of the destination project.

#include "r_cg_macrodriver.h"
#include "Config_SCI7.h"

r_rsk_debug.h (before modification)

r_rsk_debug.h (after modification)

#include "r_cg_macrodriver.h"
#include "r_cg_sci.h"

Renesas e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0480EJ0100 Rev.1.00 Page 53 of 57
Nov 01, 2017

2.6.8 Modifying Parts that Call API Functions
Parts of the source code copied in section 2.6.3, Copying the User-created Source Files, will have calls of API functions
from the Code Generator. These names of the API functions must be modified to those from the Smart Configurator.

The user-created source file ‘r_okaya_lcd.c’ was copied in accord with section 2.6.3, Copying the User-created Source
Files. The definition of the R_LCD_Init() function is in the file. We take this as an example.

R_LCD_Init() calls two user-defined functions and one API function. The user-defined functions are init_pmod_lcd()
and R_LCD_ClearDisplay(), and the declarations are included in r_okaya_lcd.c. These functions need not be modified.

The API function R_SCI6_Start() generated by the Code Generator is called in r_okaya_lcd.c before modification.
Since this function is R_Config_SCI6_Start() generated by the Smart Configurator (when the default configuration
name is used during addition of the component), the name of the API function where it is called must be modified.

Table 2.18 shows the correspondences between the names of API functions generated by the Code Generator and by the
Smart Configurator. According to the table, modify the part where the API function is called.

The names of the API functions from the Smart Configurator listed in Table 2.18 are those when the default
configuration names are set during the addition of the component. Since users are able to set configuration names, the
names of the API functions may differ with the setting for the configuration name.

For the API functions from the Smart Configurator, refer to [Help - e2 studio] - [e2 studio User Guide] - [Building
Projects] - [Smart Configurator] - [API reference].

void R_LCD_Init (void)
{
 /* Start SPI comm channel to LCD Display */
 R_SCI6_Start();

 /* initialise Standard PMOD display */
 init_pmod_lcd();

 /* clear the display before use */
 R_LCD_ClearDisplay(back_colour);
}

r okaya lcd.c (before modification)

r_okaya_lcd.c (after modification)

void R_LCD_Init (void)
{
 /* Start SPI comm channel to LCD Display */
 R_Config_SCI6_Start();

 /* initialise Standard PMOD display */
 init_pmod_lcd();

 /* clear the display before use */
 R_LCD_ClearDisplay(back_colour);
}

Renesas e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0480EJ0100 Rev.1.00 Page 54 of 57
Nov 01, 2017

Table 2.18 Correspondences between the Names of API Functions Generated by the Code
Generator and by the Smart Configurator (1)

Code Generator Smart Configurator
File Name Name of the API Function File Name Name of the API Function

Clock generator
r_cg_cgc.c R_CGC_Create r_smc_cgc.c R_CGC_Create

Compare match timer
r_cg_cmt.c R_CMT0_Create Config_CMT0.c R_Config_CMT0_Create

R_CMT0_Start R_Config_CMT0_Start
R_CMT0_Stop R_Config_CMT0_Stop
R_CMT1_Create Config_CMT1.c R_Config_CMT1_Create
R_CMT1_Start R_Config_CMT1_Start
R_CMT1_Stop R_Config_CMT1_Stop
R_CMT2_Create Config_CMT2.c R_Config_CMT2_Create
R_CMT2_Start R_Config_CMT2_Start
R_CMT2_Stop R_Config_CMT2_Stop

r_cg_cmt_user.c − Config_CMT0_user.c R_Config_CMT0_Create_UserInit
r_cmt_cmi0_interrupt r_Config_CMT0_cmi0_interrupt
− Config_CMT1_user.c R_Config_CMT1_Create_UserInit
r_cmt_cmi1_interrupt r_Config_CMT1_cmi1_interrupt
− Config_CMT2_user.c R_Config_CMT2_Create_UserInit
r_cmt_cmi2_interrupt r_Config_CMT2_cmi2_interrupt

Interrupt controller
r_cg_icu.c R_ICU_Create Config_ICU.c R_Config_ICU_Create

R_ICU_IRQ2_Start R_Config_ICU_IRQ2_Start
R_ICU_IRQ2_Stop R_Config_ICU_IRQ2_Stop
R_ICU_IRQ5_Start R_Config_ICU_IRQ5_Start
R_ICU_IRQ5_Stop R_Config_ICU_IRQ5_Stop

r_cg_icu_user.c − Config_ICU_user.c R_Config_ICU_Create_UserInit
r_icu_irq2_interrupt r_Config_ICU_irq2_interrupt
r_icu_irq5_interrupt r_Config_ICU_irq5_interrupt

I/O port
r_cg_port.c R_PORT_Create Config_PORT.c R_Config_PORT_Create
r_cg_port_user.c − Config_PORT_user.c R_Config_PORT_Create_UserInit

Renesas e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0480EJ0100 Rev.1.00 Page 55 of 57
Nov 01, 2017

Table 2.19 Correspondences between the Names of API Functions Generated by the Code
Generator and by the Smart Configurator (2)

Code Generator Smart Configurator
File Name Name of the API Function File Name Name of the API Function

12-bit A/D converter
r_cg_s12ad.c R_S12AD0_Create Config_S12AD0.c R_Config_S12AD0_Create

R_S12AD0_Start R_Config_S12AD0_Start
R_S12AD0_Start R_Config_S12AD0_Stop
R_S12AD0_Get_ValueResul
t

R_Config_S12AD0_Get_ValueResu
lt

R_S12AD0_Set_CompareVa
lue

R_Config_S12AD0_Set_CompareV
alue

r_cg_s12ad_user
.c

− Config_S12AD0_use
r.c

R_Config_S12AD0_Create_UserInit
r_s12ad0_interrupt r_Config_S12AD0_interrupt
r_s12ad0_compare_interrupt r_Config_S12AD0_compare_interru

pt
Serial communications interface

r_cg_sci.c R_SCI6_Create Config_SCI6.c R_Config_SCI6_Create
R_SCI6_Start R_Config_SCI6_Start
R_SCI6_Stop R_Config_SCI6_Stop
R_SCI6_SPI_Master_Send R_Config_SCI6_SPI_Master_Send
R_SCI7_Create Config_SCI7.c R_Config_SCI7_Create
R_SCI7_Start R_Config_SCI7_Start
R_SCI7_Stop R_Config_SCI7_Stop
R_SCI7_Serial_Receive R_Config_SCI7_Serial_Receive
R_SCI7_Serial_Send R_Config_SCI7_Serial_Send

r_cg_sci_user.c − Config_SCI6_user.c R_Config_SCI6_Create_UserInit
r_sci6_transmit_interrupt r_Config_SCI6_transmit_interrupt
r_sci6_transmitend_interrupt r_Config_SCI6_transmitend_interru

pt
r_sci6_callback_transmitend r_Config_SCI6_callback_transmiten

d
− Config_SCI7_user.c R_Config_SCI7_Create_UserInit
r_sci7_transmit_interrupt r_Config_SCI7_transmit_interrupt
r_sci7_transmitend_interrupt r_Config_SCI7_transmitend_interru

pt
r_sci7_receive_interrupt r_Config_SCI7_receive_interrupt
r_sci7_receiveerror_interrupt r_Config_SCI7_receiveerror_interru

pt
r_sci7_callback_transmitend r_Config_SCI7_callback_transmiten

d
r_sci7_callback_receiveend r_Config_SCI7_callback_receiveend
r_sci7_callback_receiveerror r_Config_SCI7_callback_receiveerr

or

Renesas e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0480EJ0100 Rev.1.00 Page 56 of 57
Nov 01, 2017

2.7 Setting Build Options
The default build options are applied for the newly created destination project. Accordingly, build options in the source
project must be reflected in the destination project.

Refer to section 4.1, Build Option Settings, in the e2 studio Integrated Development Environment User’s Manual:
Getting Started Guide, and set the build options of the source project for the destination project.

Renesas e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0480EJ0100 Rev.1.00 Page 57 of 57
Nov 01, 2017

3. Reference Documents
User’s Manual: Hardware

The latest versions can be downloaded from the Renesas Electronics website.

Technical Update/Technical News

The latest information can be downloaded from the Renesas Electronics website.

User’s Manual: Development Tools

RX Family C/C++ Compiler CC-RX User’s Manual (R20UT3248)

The latest version can be downloaded from the Renesas Electronics website.

e2 studio Integrated Development Environment User’s Manual: Getting Started Guide (R20UT2771)

The latest version can be downloaded from the Renesas Electronics website.

Website and Support
Renesas Electronics Website

http://www.renesas.com/

Inquiries
http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/contact/

Revision History

Rev. Date
Description
Page Summary

1.00 Nov 01, 2017 − First edition issued

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas.
For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as
well as any technical updates that have been issued for the products.

1. Handling of Unused Pins
Handle unused pins in accordance with the directions given under Handling of Unused Pins in the
manual.
 The input pins of CMOS products are generally in the high-impedance state. In operation with

an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of
LSI, an associated shoot-through current flows internally, and malfunctions occur due to the
false recognition of the pin state as an input signal become possible. Unused pins should be
handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
 The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of
pins are not guaranteed from the moment when power is supplied until the reset process is
completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset
function are not guaranteed from the moment when power is supplied until the power reaches
the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
 The reserved addresses are provided for the possible future expansion of functions. Do not

access these addresses; the correct operation of LSI is not guaranteed if they are accessed.
4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become
stable. When switching the clock signal during program execution, wait until the target clock signal
has stabilized.
 When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock
signal. Moreover, when switching to a clock signal produced with an external resonator (or by
an external oscillator) while program execution is in progress, wait until the target clock signal is
stable.

5. Differences between Products
Before changing from one product to another, i.e. to a product with a different part number, confirm
that the change will not lead to problems.
 The characteristics of Microprocessing unit or Microcontroller unit products in the same group

but having a different part number may differ in terms of the internal memory capacity, layout
pattern, and other factors, which can affect the ranges of electrical characteristics, such as
characteristic values, operating margins, immunity to noise, and amount of radiated noise.
When changing to a product with a different part number, implement a system-evaluation test
for the given product.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by

you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other disputes involving patents, copyrights, or other intellectual property rights of third parties, by or

arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawing, chart, program, algorithm, application

examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages

incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics products.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the

product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical

implantations etc.), or may cause serious property damages (space and undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas

Electronics disclaims any and all liability for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas

Electronics.

6. When using the Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the

reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat radiation

characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions or failure or accident arising out of the use of Renesas Electronics products beyond such specified

ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics such as the occurrence of failure at a

certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please ensure to implement safety measures to guard them

against the possibility of bodily injury, injury or damage caused by fire, and social damage in the event of failure or malfunction of Renesas Electronics products, such as safety design for hardware and

software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures by your own responsibility as warranty

for your products/system. Because the evaluation of microcomputer software alone is very difficult and not practical, please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please investigate applicable laws and

regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive carefully and sufficiently and use Renesas Electronics products in compliance with all

these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws

or regulations. You shall not use Renesas Electronics products or technologies for (1) any purpose relating to the development, design, manufacture, use, stockpiling, etc., of weapons of mass destruction,

such as nuclear weapons, chemical weapons, or biological weapons, or missiles (including unmanned aerial vehicles (UAVs)) for delivering such weapons, (2) any purpose relating to the development,

design, manufacture, or use of conventional weapons, or (3) any other purpose of disturbing international peace and security, and you shall not sell, export, lease, transfer, or release Renesas Electronics

products or technologies to any third party whether directly or indirectly with knowledge or reason to know that the third party or any other party will engage in the activities described above. When exporting,

selling, transferring, etc., Renesas Electronics products or technologies, you shall comply with any applicable export control laws and regulations promulgated and administered by the governments of the

countries asserting jurisdiction over the parties or transactions.

10. Please acknowledge and agree that you shall bear all the losses and damages which are incurred from the misuse or violation of the terms and conditions described in this document, including this notice,

and hold Renesas Electronics harmless, if such misuse or violation results from your resale or making Renesas Electronics products available any third party.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2017 Renesas Electronics Corporation. All rights reserved.
Colophon 6.0

(Rev.3.0-1 November 2016)

	1. Overview
	1.1 Purpose of This Document
	1.2 Operating Environment

	2. Porting Projects Produced with the Code Generator to Projects for Use with the Smart Configurator
	2.1 Projects Used in This Application Note
	2.2 Downloading the Source Project
	2.3 Generating a Report on the Source Project
	2.3.1 Generating the Report

	2.4 Newly Creating the Destination Project
	2.5 Setting Peripheral Functions in the Smart Configurator
	2.5.1 Correspondence between the Code Generator and the Smart Configurator
	2.5.2 Setting the Clock Generator
	2.5.3 Setting the Compare Match Timers
	2.5.4 Setting the Serial Communications Interfaces
	2.5.5 Setting Other Peripheral Functions
	2.5.6 Generating Code

	2.6 Porting User-defined Source Code
	2.6.1 Overview
	2.6.2 Areas for Writing User-defined Source Code
	2.6.3 Copying the User-created Source Files
	2.6.4 Copying Source Code, Including the main() Function
	2.6.5 Correspondences between Code Generated by the Code Generator and by the Smart Configurator
	2.6.6 Copying Custom Code in Generated Code
	2.6.7 Modifying the Include Directives
	2.6.8 Modifying Parts that Call API Functions

	2.7 Setting Build Options

	3. Reference Documents
	Revision History

