

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

HI7200/MP V.1.00
User’s Manual

U
ser’s M

anual

 Rev.1.01 2007.09

Renesas Microcomputer
Development Environment
System

1. This document is provided for reference purposes only so that Renesas customers may select the appropriate
 Renesas products for their use. Renesas neither makes warranties or representations with respect to the
 accuracy or completeness of the information contained in this document nor grants any license to any
 intellectual property rights or any other rights of Renesas or any third party with respect to the information in
 this document.
2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising
 out of the use of any information in this document, including, but not limited to, product data, diagrams, charts,
 programs, algorithms, and application circuit examples.
3. You should not use the products or the technology described in this document for the purpose of military
 applications such as the development of weapons of mass destruction or for the purpose of any other military
 use. When exporting the products or technology described herein, you should follow the applicable export
 control laws and regulations, and procedures required by such laws and regulations.
4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and
 application circuit examples, is current as of the date this document is issued. Such information, however, is
 subject to change without any prior notice. Before purchasing or using any Renesas products listed in this
 document, please confirm the latest product information with a Renesas sales office. Also, please pay regular
 and careful attention to additional and different information to be disclosed by Renesas such as that disclosed
 through our website. (http://www.renesas.com)
5. Renesas has used reasonable care in compiling the information included in this document, but Renesas
 assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information
 included in this document.
6. When using or otherwise relying on the information in this document, you should evaluate the information in
 light of the total system before deciding about the applicability of such information to the intended application.
 Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any
 particular application and specifically disclaims any liability arising out of the application and use of the
 information in this document or Renesas products.
7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas
 products are not designed, manufactured or tested for applications or otherwise in systems the failure or
 malfunction of which may cause a direct threat to human life or create a risk of human injury or which require
 especially high quality and reliability such as safety systems, or equipment or systems for transportation and
 traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or undersea communication
 transmission. If you are considering the use of our products for such purposes, please contact a Renesas
 sales office beforehand. Renesas shall have no liability for damages arising out of the uses set forth above.
8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
 (1) artificial life support devices or systems
 (2) surgical implantations
 (3) healthcare intervention (e.g., excision, administration of medication, etc.)
 (4) any other purposes that pose a direct threat to human life
 Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who
 elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas
 Technology Corp., its affiliated companies and their officers, directors, and employees against any and all
 damages arising out of such applications.
9. You should use the products described herein within the range specified by Renesas, especially with respect
 to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
 characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or
 damages arising out of the use of Renesas products beyond such specified ranges.
10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific
 characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use
 conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and
 injury or damage caused by fire in the event of the failure of a Renesas product, such as safety design for
 hardware and software including but not limited to redundancy, fire control and malfunction prevention,
 appropriate treatment for aging degradation or any other applicable measures. Among others, since the
 evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or
 system manufactured by you.
11. In case Renesas products listed in this document are detached from the products to which the Renesas
 products are attached or affixed, the risk of accident such as swallowing by infants and small children is very
 high. You should implement safety measures so that Renesas products may not be easily detached from your
 products. Renesas shall have no liability for damages arising out of such detachment.
12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written
 approval from Renesas.
13. Please contact a Renesas sales office if you have any questions regarding the information contained in this
 document, Renesas semiconductor products, or if you have any other inquiries.

Notes regarding these materials

i

Preface

This manual describes how to use the HI7200/MP for the SH2A-DUAL microcomputer. Before
using the HI7200/MP, please read this manual to fully understand the operating system.

Notes on Descriptions

Prefix Prefixes H' and 0x indicate hexadecimal numbers. The prefix D' indicates
a decimal number. Numbers with no prefix are decimal.

\ ‘\’ is the directory delimiter.

cfg file Kernel configuration file

xx.xx (e.g.
system.stack_size)

A character string delimited by periods indicates one of the following:

(a) The setting of an item in the cfg file

(b) A member of a structure

(c) A bit in a register

[Menu -> Menu item] -> leads to the menu item (e.g. File -> Save).

<RTOS_INST> System directory where header files and the configurator are installed.
The system directory is x.yy.zzww under the directory specified by the
user at the time of installation. The product version is indicated by
x.yy.zz and ww is an internal identification number with a value from 00
to 99.

Examples

- Product version is V.1.01 Release 02: 1.01.02ww
- Product version is V.2.11 Release 13: 2.11.13ww

<SAMPLE_INST> Directory where sample files for the HI7200/MP are stored. The user can
specify this directory while setting up the HI7200/MP.

$(xxxx) Custom placeholder in the HEW. For example, $(RTOS_INST) and
$(SAMPLE_INST) are custom placeholders that represent
<RTOS_INST> and <SAMPLE_INST>, respectively.

ii

Trademarks

1. µITRON is an acronym of the "Micro Industrial TRON" and TRON is an acronym of "The
Real Time Operating system Nucleus".

TRON, ITRON, and µITRON are the names of computer specifications and do not indicate a
specific group of the commodity or the commodity.

The µITRON4.0 specification is an open realtime-kernel specification defined by TRON
Association. The document of the µITRON4.0 specification can be downloaded from the
TRON Association homepage (http://www.assoc.tron.org).

The copyright of the µITRON specification belongs to TRON Association.

2. Microsoft® Windows® 2000 and Microsoft® Windows® XP operating systems are registered
trademarks of Microsoft Corporation in the United States and/or other countries.

3. SuperHTM is a trademark of Renesas Technology Corp..

4. All other product names are trademarks or registered trademarks of the respective holders.

Renesas Technology Homepage

Various support information are available on the following Renesas Technology homepage:

http://www.renesas.com/en/tools/

iii

Contents

Section 1 Configuration of This Manual ...1

Section 2 Installation..3
2.1 Method of Installation... 3
2.2 Directory Structure.. 3

2.2.1 System Directory (<RTOS_INST>) .. 3
2.2.2 Sample Directory (<SAMPLE_INST>)... 4

Section 3 Overview..5
3.1 Overview... 5
3.2 Features... 5

3.2.1 Kernel .. 5
3.2.2 RPC (Remote Procedure Call) Library .. 5
3.2.3 OAL ... 5
3.2.4 Spinlock Library .. 6
3.2.5 IPI Function ... 6
3.2.6 Cache Support Library... 6
3.2.7 Sample Programs ... 6
3.2.8 Configurator... 6
3.2.9 Debugging Extension (Option) .. 7

3.3 Multicore... 7
3.4 Operating Environment... 11

Section 4 Introduction to the Kernel..13
4.1 Principles of Kernel Operation ... 13
4.2 Service Calls ... 16
4.3 CPU ID ... 16
4.4 Objects .. 17

4.4.1 Outline ... 17
4.4.2 ID Numbers.. 17
4.4.3 Using ID Names to Specify Objects .. 18

4.5 Tasks ... 19
4.5.1 Task State... 19
4.5.2 Task Scheduling (Priority and Ready Queue).. 22
4.5.3 Task Waiting Queues... 23
4.5.4 Task Stack.. 25

iv

4.5.5 Shared Stack Function ... 26
4.6 System State.. 28

4.6.1 Task Contexts and Non-Task Contexts.. 28
4.6.2 Dispatch-Disabled State/Dispatch-Enabled State .. 29
4.6.3 CPU-Locked State/CPU-Unlocked State... 29
4.6.4 Dispatch-Pending State.. 30

4.7 Processing Units and Precedence.. 31
4.8 Interrupts... 32

4.8.1 Types of Interrupt Handler .. 32
4.8.2 Controlling Interrupts (by Setting IMASK Bits in the Register SR) 34
4.8.3 Restriction on Service Calls... 36

4.9 CPU Exceptions.. 36
4.9.1 Types of CPU Exception Handler.. 36
4.9.2 Reserved Exceptions.. 37

Section 5 Kernel Functions ...39
5.1 Task Management... 39
5.2 Task-Dependent Synchronization Functions .. 43
5.3 Task Event Flags... 46
5.4 Task Exception Handling.. 48
5.5 Semaphores... 50

5.5.1 Priority Inversion ... 52
5.6 Event Flags ... 53
5.7 Data Queues.. 56
5.8 Mailboxes ... 58
5.9 Mutexes... 60

5.9.1 Base Priority and Current Priority ... 63
5.10 Message Buffers ... 64
5.11 Fixed-Sized Memory Pools... 66
5.12 Variable-Sized Memory Pools .. 68

5.12.1 Controlling Memory Fragmentation .. 70
5.12.2 Management of Variable-Sized Memory Pools... 73

5.13 Time Management .. 74
5.13.1 Task Timeout ... 74
5.13.2 Delaying Tasks .. 75
5.13.3 Stopping and Restarting the Timer .. 76
5.13.4 Cyclic Handlers ... 76
5.13.5 Alarm Handler ... 79
5.13.6 Overrun Handler .. 80
5.13.7 Time Precision ... 82

v

5.13.8 Notes on Time Management.. 85
5.14 System State Management .. 86

5.14.1 Managing System State.. 86
5.14.2 Service Calls Associated with Initialization .. 88
5.14.3 System Down (vsys_dwn, ivsys_dwn) .. 88
5.14.4 Service Call Trace.. 88

5.15 Interrupt Management... 90
5.16 Extended Service Calls ... 91
5.17 System Configuration Management.. 91
5.18 Profile Management.. 92
5.19 Kernel Idling ... 94

Section 6 Kernel Service Calls ..95
6.1 Calling Form ... 95
6.2 Header Files .. 95
6.3 Basic Data Types .. 95
6.4 Register Contents Guaranteed after Issuing Service Call ... 97
6.5 Return Value of Service Call and Error Code... 97

6.5.1 Overview.. 97
6.5.2 Parameter Check Function... 97
6.5.3 Stack Overflow Detection.. 98
6.5.4 Main Error Code and Suberror Code ... 98

6.6 System State and Service Calls ... 99
6.6.1 Task Contexts and Non-Task Contexts.. 99
6.6.2 CPU-Locked State ... 100
6.6.3 Dispatch-Disabled State... 100
6.6.4 Normal CPU Exception Handler.. 101
6.6.5 When SR.IMASK is Changed to a Non-Zero Value in a Task Context 101

6.7 ID Number .. 101
6.7.1 Overview.. 101
6.7.2 Function Macros Related to ID Number.. 102

6.8 Behavior of Service Calls ... 103
6.8.1 Remote Service Call and Local Service Call ... 103
6.8.2 Behavior of Local Service Call.. 104
6.8.3 Behavior of Remote Service Call... 104
6.8.4 Notes on Remote Service Call ... 105

6.9 Service Calls not in the μITRON4.0 Specification ... 105
6.10 Service Call Description Form.. 106
6.11 Task Management... 108

vi

6.11.1 Create Task
(cre_tsk, icre_tsk)
(acre_tsk, iacre_tsk: Assign Task ID Automatically)
(vscr_tsk, ivscr_tsk) (Using Static Stack) .. 110

6.11.2 Delete Task (del_tsk) ... 114
6.11.3 Activate Task (act_tsk, iact_tsk).. 115
6.11.4 Cancel Task Activation Requests (can_act, ican_act) ... 117
6.11.5 Activate Task with Start Code (sta_tsk, ista_tsk) .. 118
6.11.6 Terminate Current Task (ext_tsk),

Terminate and Delete Current Task (exd_tsk) ... 119
6.11.7 Terminate Another Task (ter_tsk).. 121
6.11.8 Change Task Priority (chg_pri, ichg_pri) .. 122
6.11.9 Get Task Priority (get_pri, iget_pri) .. 123
6.11.10 Reference Task State (ref_tsk, iref_tsk)... 124
6.11.11 Reference Task State: Simple Version (ref_tst, iref_tst)...................................... 127
6.11.12 Change Task Execution Mode (vchg_tmd) ... 129

6.12 Task-Dependent Synchronization ... 130
6.12.1 Sleep Task (slp_tsk, tslp_tsk) .. 132
6.12.2 Wake up Task (wup_tsk, iwup_tsk)... 133
6.12.3 Cancel Wakeup Task (can_wup, ican_wup).. 134
6.12.4 Forcible Release from WAITING State (rel_wai, irel_wai) 135
6.12.5 Suspend Task (sus_tsk, isus_tsk) ... 136
6.12.6 Resume Task (rsm_tsk, irsm_tsk), Force Task to Resume (frsm_tsk, ifrsm_tsk) 137
6.12.7 Delay Task (dly_tsk).. 138
6.12.8 Set Task Event Flag (vset_tfl, ivset_tfl)... 139
6.12.9 Clear Task Event Flag (vclr_tfl, ivclr_tfl) ... 140
6.12.10 Wait for Task Event Flag (vwai_tfl, vpol_tfl, vtwai_tfl) 141

6.13 Task Exception Handling.. 143
6.13.1 Define Task Exception Handling Routine (def_tex, idef_tex)............................. 145
6.13.2 Request Task Exception Handling (ras_tex, iras_tex) ... 146
6.13.3 Disable Task Exception Handling (dis_tex) .. 147
6.13.4 Enable Task Exception Handling (ena_tex)... 148
6.13.5 Reference Task Exception Handling Disabled State (sns_tex) 148
6.13.6 Reference Task Exception Handling State (ref_tex, iref_tex) 149

6.14 Synchronization and Communication (Semaphore) ... 150
6.14.1 Create Semaphore

(cre_sem, icre_sem)
(acre_sem, iacre_sem: Assign Semaphore ID Automatically)............................. 151

6.14.2 Delete Semaphore (del_sem) ... 153
6.14.3 Release Semaphore Resource (sig_sem, isig_sem) ... 154

vii

6.14.4 Acquire Semaphore Resource (wai_sem, pol_sem, ipol_sem, twai_sem) 155
6.14.5 Reference Semaphore State (ref_sem, iref_sem) ... 156

6.15 Synchronization and Communication (Event Flag) .. 158
6.15.1 Create Event Flag

(cre_flg, icre_flg)
(acre_flg, iacre_flg: Assign Event Flag ID Automatically) 159

6.15.2 Delete Event Flag (del_flg).. 161
6.15.3 Set Event Flag (set_flg, iset_flg).. 162
6.15.4 Clear Event Flag (clr_flg, iclr_flg) .. 163
6.15.5 Wait for Event-Flag Setting (wai_flg, pol_flg, ipol_flg, twai_flg) 164
6.15.6 Reference Event Flag State (ref_flg, iref_flg).. 166

6.16 Synchronization and Communication (Data Queue)... 167
6.16.1 Create Data Queue

(cre_dtq, icre_dtq)
(acre_dtq, iacre_dtq: Assign Data Queue ID Automatically) 169

6.16.2 Delete Data Queue (del_dtq).. 171
6.16.3 Send Data to Data Queue

(snd_dtq, psnd_dtq, ipsnd_dtq, tsnd_dtq, fsnd_dtq, ifsnd_dtq) 172
6.16.4 Receive Data from Data Queue (rcv_dtq, prcv_dtq, trcv_dtq) 174
6.16.5 Reference Data Queue State (ref_dtq, iref_dtq)... 176

6.17 Synchronization and Communication (Mailbox).. 177
6.17.1 Create Mailbox

(cre_mbx, icre_mbx)
(acre_mbx, iacre_mbx: Assign Mailbox ID Automatically)................................ 179

6.17.2 Delete Mailbox (del_mbx)... 181
6.17.3 Send Message to Mailbox (snd_mbx, isnd_mbx) .. 182
6.17.4 Receive Message from Mailbox (rcv_mbx, prcv_mbx, iprcv_mbx, trcv_mbx) .. 184
6.17.5 Reference Mailbox State (ref_mbx, iref_mbx) .. 186

6.18 Extended Synchronization and Communication (Mutex) ... 188
6.18.1 Create Mutex (cre_mtx) (acre_mtx: Assign Mutex ID Automatically) 189
6.18.2 Delete Mutex (del_mtx)... 191
6.18.3 Lock Mutex (loc_mtx, ploc_mtx, tloc_mtx) .. 192
6.18.4 Unlock Mutex (unl_mtx) ... 194
6.18.5 Reference Mutex State (ref_mtx)... 195

6.19 Extended Synchronization and Communication (Message Buffer) 196
6.19.1 Create Message Buffer

(cre_mbf, icre_mbf)
(acre_mbf, iacre_mbf: Assign Message Buffer ID Automatically) 197

6.19.2 Delete Message Buffer (del_mbf).. 200
6.19.3 Send Message to Message Buffer (snd_mbf, psnd_mbf, ipsnd_mbf, tsnd_mbf). 201

viii

6.19.4 Receive Message from Message Buffer (rcv_mbf, prcv_mbf, trcv_mbf)............ 203
6.19.5 Reference Message Buffer State (ref_mbf, iref_mbf).. 205

6.20 Memory Pool Management (Fixed-Sized Memory Pool)... 206
6.20.1 Create Fixed-Sized Memory Pool

(cre_mpf, icre_mpf)
(acre_mpf, iacre_mpf: Assign Memory Pool ID Automatically)......................... 208

6.20.2 Delete Fixed-Sized Memory Pool (del_mpf)... 212
6.20.3 Get Fixed-Sized Memory Block (get_mpf, pget_mpf, ipget_mpf, tget_mpf) 213
6.20.4 Release Fixed-Sized Memory Block (rel_mpf, irel_mpf).................................... 215
6.20.5 Reference Fixed-Sized Memory Pool State (ref_mpf, iref_mpf)......................... 216

6.21 Memory Pool Management (Variable-Sized Memory Pool) .. 217
6.21.1 Create Variable-Sized Memory Pool

(cre_mpl, icre_mpl)
(acre_mpl, iacre_mpl: Assign Variable-Sized Memory Pool ID Automatically) 219

6.21.2 Delete Variable-Sized Memory Pool (del_mpl) .. 224
6.21.3 Get Variable-Sized Memory Block (get_mpl, pget_mpl, ipget_mpl, tget_mpl).. 225
6.21.4 Release Variable-Sized Memory Block (rel_mpl, irel_mpl) 227
6.21.5 Reference Variable-Sized Memory Pool State (ref_mpl, iref_mpl)..................... 228

6.22 Time Management (System Clock) .. 229
6.22.1 Set System Clock (set_tim, iset_tim)... 231
6.22.2 Get System Clock (get_tim, iget_tim) ... 232
6.22.3 Supply Time Tick (isig_tim).. 233
6.22.4 Stop Timer (vstp_tmr) ... 234
6.22.5 Restart Timer (vrst_tmr, ivrst_tmr).. 235
6.22.6 Reference Timer State (vsns_tmr) ... 236

6.23 Time Management (Cyclic Handler) .. 236
6.23.1 Create Cyclic Handler

(cre_cyc, icre_cyc)
(acre_cyc, iacre_cyc: Assign Cyclic Handler ID Automatically) 238

6.23.2 Delete Cyclic Handler (del_cyc).. 240
6.23.3 Start Cyclic Handler (sta_cyc, ista_cyc) .. 241
6.23.4 Stop Cyclic Handler (stp_cyc, istp_cyc).. 242
6.23.5 Reference Cyclic Handler State (ref_cyc, iref_cyc) .. 243

6.24 Time Management (Alarm Handler)... 244
6.24.1 Create Alarm Handler

(cre_alm, icre_alm)
(acre_alm, iacre_alm: Assign Alarm Handler ID Automatically) 245

6.24.2 Delete Alarm Handler (del_alm) ... 247
6.24.3 Start Alarm Handler (sta_alm, ista_alm) ... 248
6.24.4 Stop Alarm Handler (stp_alm, istp_alm) ... 249

ix

6.24.5 Reference Alarm Handler State (ref_alm, iref_alm).. 250
6.25 Time Management (Overrun Handler).. 251

6.25.1 Define Overrun Handler (def_ovr) .. 252
6.25.2 Start Overrun Handler (sta_ovr, ista_ovr).. 253
6.25.3 Stop Overrun Handler (stp_ovr, istp_ovr) ... 254
6.25.4 Reference Overrun Handler State (ref_ovr, iref_ovr) .. 255

6.26 System State Management .. 257
6.26.1 Rotate Ready Queue (rot_rdq, irot_rdq) .. 258
6.26.2 Get Current Task ID (get_tid, iget_tid).. 259
6.26.3 Lock CPU (loc_cpu, iloc_cpu)... 259
6.26.4 Unlock CPU (unl_cpu, iunl_cpu)... 261
6.26.5 Disable Dispatch (dis_dsp) .. 262
6.26.6 Enable Dispatch (ena_dsp) .. 263
6.26.7 Check Context (sns_ctx) .. 263
6.26.8 Check CPU-Locked State (sns_loc)... 264
6.26.9 Check Dispatch-Disabled State (sns_dsp) ... 264
6.26.10 Check Dispatch-Pending State (sns_dpn) .. 265
6.26.11 Start Kernel (vsta_knl, ivsta_knl) .. 265
6.26.12 Initialize Remote Service-Call Environment (vini_rmt) 266
6.26.13 System Down (vsys_dwn, ivsys_dwn) .. 268
6.26.14 Get Trace Information (vget_trc, ivget_trc)... 268
6.26.15 Get Start of Interrupt Handlers as Trace Information (ivbgn_int) 269
6.26.16 Get End of Interrupt Handlers as Trace Information (ivend_int)......................... 270

6.27 Interrupt Management... 271
6.27.1 Define Interrupt Handler (def_inh, idef_inh)... 272
6.27.2 Change Interrupt Mask Level (chg_ims, ichg_ims)... 274
6.27.3 Reference Interrupt Mask Level (get_ims, iget_ims)... 275

6.28 Service Call Management ... 276
6.28.1 Define Extended Service-Call Routine (def_svc, idef_svc)................................. 277
6.28.2 Call Extended Service-Call Routine (cal_svc, ical_svc)...................................... 278

6.29 System Configuration Management.. 279
6.29.1 Define CPU Exception Handler (def_exc, idef_exc) ... 280
6.29.2 Define CPU Exception (TRAPA-Instruction Exception) Handler

(vdef_trp, ivdef_trp)... 282
6.29.3 Reference Configuration Information (ref_cfg, iref_cfg) 285
6.29.4 Reference Version Information (ref_ver, iref_ver) .. 286

6.30 Profile Management.. 288
6.30.1 Reference Profile Counter (vref_prf, ivref_prf)... 289
6.30.2 Clear Profile Counter (vclr_prf, ivclr_prf)... 291

6.31 Macros .. 292

x

6.31.1 Constant Macros .. 292
6.31.2 Kernel Configuration Macros .. 297
6.31.3 Function Macros Defined in itron.h... 301
6.31.4 Function Macros Defined in kernel.h .. 302

6.32 Directory and File Structure.. 304
6.33 Building the Library (Only for a Product with the Source Code) 305

Section 7 RPC Library...307
7.1 Overview... 307
7.2 Overview of RPC Operation... 308
7.3 Server.. 310

7.3.1 Server ID.. 310
7.3.2 Function ID.. 310
7.3.3 Server Task .. 310
7.3.4 Server Stub and Server Function ... 311
7.3.5 Client Stub ... 311
7.3.6 Server Conflicts ... 311

7.4 Synchronous Mode and Asynchronous Mode .. 311
7.5 Sending and Receiving Parameters... 312

7.5.1 Features.. 312
7.5.2 IOVEC Structure ... 312
7.5.3 Server Parameter Area ... 313
7.5.4 Server Parameter Area Size Required by RPC Call... 314
7.5.5 Parameter Copy Methods... 314
7.5.6 Application Examples.. 315

7.6 OS Resources Used by RPC ... 316
7.6.1 Task ... 316
7.6.2 OAL_GetMemory() ... 316
7.6.3 IPI .. 316
7.6.4 Spinlock Library .. 316

7.7 Provided Files ... 317
7.8 Building the Library (Only for a Product with the Source Code) 317
7.9 Building the System.. 318

7.9.1 Configuration of Kernel... 318
7.9.2 Configuration of IPI... 319
7.9.3 Building the System... 319

7.10 API Functions ... 320
7.10.1 Header File... 320
7.10.2 Basic Data Types ... 320
7.10.3 Initialize RPC Library (rpc_init).. 321

xi

7.10.4 Terminate RPC Library (rpc_shutdown) ... 323
7.10.5 Start Dynamic Server (rpc_start_server).. 324
7.10.6 Start Static Server (rpc_start_server_with_paramarea).. 326
7.10.7 Stop Server (rpc_stop_server).. 328
7.10.8 Connect Server (rpc_connect).. 329
7.10.9 Disconnect Server (rpc_disconnect) .. 330
7.10.10 Call Server Function (rpc_call).. 331
7.10.11 Call Server Function (Data Transfer Callback) (rpc_call_copycbk).................... 336
7.10.12 Acquire Server Properties (rpc_get_server_properties) 338

7.11 Stubs ... 339
7.11.1 Server Stub... 339
7.11.2 Client Stub ... 342

7.12 Server Stop Callback Function ... 342
7.13 CopyCbk1 and CopyCbk2 Callback Functions .. 342

Section 8 OAL ...345
8.1 Overview... 345
8.2 Provided Files ... 345
8.3 Configuration and Build.. 346

8.3.1 Configuration... 346
8.3.2 Build .. 346

8.4 API Functions ... 347
8.4.1 Header File... 347
8.4.2 Basic Data Types ... 347
8.4.3 Return Value .. 348
8.4.4 Initialize OAL (OAL_Init)... 348
8.4.5 Terminate OAL (OAL_Shutdown).. 349
8.4.6 Disable Task Preemption (OAL_DisablePreempt) .. 349
8.4.7 Enable Task Preemption (OAL_EnablePreempt) .. 350
8.4.8 Confirm Task Preemption State (OAL_IsDisablePreempt)................................. 350
8.4.9 Confirm Whether Current Task Can Wait (OAL_CanWait) 350
8.4.10 Confirm Context Type (OAL_IsNotTaskLevel).. 351
8.4.11 Confirm Processor Interrupt Mask (OAL_IsMaskInterrupt) 351
8.4.12 Create Task (OAL_CreateTask) .. 352
8.4.13 Activate Task (OAL_ActivateTask) .. 353
8.4.14 Exit and Delete Current Task (OAL_DestroyTask)... 353
8.4.15 Get Current Task Identification Information (OAL_GetTaskID) 354
8.4.16 Shift Current Task to WAITING State (OAL_SleepTask) 354
8.4.17 Wakeup Task (OAL_WakeupTask)... 355
8.4.18 Allocate Memory (OAL_GetMemory) .. 355

xii

8.4.19 Release Memory (OAL_ReleaseMemory) .. 356

Section 9 Spinlock Library..357
9.1 Overview... 357
9.2 Basic Usage Method ... 358
9.3 Spinlock Behavior and Usage Notes... 358

9.3.1 Exclusive Control in the Same CPU and Deadlock ... 359
9.3.2 Problem of Locked Period ... 359

9.4 Three Spinlock Functions ... 360
9.5 Lock Variables for Normal Lock and RW Lock... 361

9.5.1 Entity of Lock Variable ... 361
9.5.2 RAM where Lock Variables are Placed... 361

9.6 Provided Files ... 362
9.7 Building the Library.. 362
9.8 Building the System.. 362
9.9 API Functions ... 363

9.9.1 Header File... 363
9.9.2 Basic Data Types ... 363
9.9.3 Note ... 364

9.10 Normal Lock... 364
9.10.1 Initialize Normal Lock Variable (SPIN_InitLock) .. 364
9.10.2 Perform Normal Lock (SPIN_Lock).. 365
9.10.3 Try to Perform Normal Lock (SPIN_TryLock) ... 366
9.10.4 Cancel Normal Lock (SPIN_Unlock) .. 367
9.10.5 Check Normal Lock State (SPIN_IsLocked)... 367

9.11 RW Lock... 368
9.11.1 Initialize RW Lock Variable (SPIN_InitRWLock).. 368
9.11.2 Perform Read Lock (SPIN_ReadLock) ... 369
9.11.3 Try to Perform Read Lock (SPIN_ReadTryLock)... 370
9.11.4 Cancel Read Lock (SPIN_ReadUnlock).. 371
9.11.5 Check Read Lock State (SPIN_IsReadLocked)... 371
9.11.6 Perform Write Lock (SPIN_WriteLock).. 372
9.11.7 Try to Perform Write Lock (SPIN_WriteTryLock) ... 373
9.11.8 Cancel Write Lock (SPIN_WriteUnlock) .. 374
9.11.9 Check Write Lock State (SPIN_IsWriteLocked)... 374

9.12 Semaphore Lock ... 375
9.12.1 Initialize Semaphore Register (SPIN_InitSemLock) ... 375
9.12.2 Perform Semaphore Lock (SPIN_SemLock)... 375
9.12.3 Try to Perform Semaphore Lock (SPIN_SemTryLock) 376
9.12.4 Cancel Semaphore Lock (SPIN_SemUnlock) ... 376

xiii

Section 10 IPI...377
10.1 Overview... 377
10.2 IPI Structure.. 377
10.3 Port ID... 378
10.4 Overview of Operation.. 378
10.5 Notes ... 379
10.6 Provided Files ... 379
10.7 Configuration and Build.. 380

10.7.1 Configuration... 380
10.7.2 Build .. 382

10.8 API Functions ... 383
10.8.1 Header File... 383
10.8.2 Basic Data Types ... 383
10.8.3 Initialize IPI (IPI_init).. 383
10.8.4 Create IPI Port (IPI_create) ... 384
10.8.5 Delete IPI Port (IPI_delete) ... 385
10.8.6 Transmission to IPI Port (IPI_send)... 386

10.9 Inter-Processor Interrupt Handlers.. 387
10.10 Callback Function ... 388

Section 11 SH2A-DUAL Cache-Support Library ...389
11.1 Overview... 389
11.2 Notes ... 389
11.3 Directory and File Structure.. 390
11.4 Building the Library.. 390
11.5 Building the System.. 390
11.6 API Functions ... 391

11.6.1 Header File... 391
11.6.2 Basic Data Types ... 391
11.6.3 Initialize Cache (sh2adual_ini_cac) ... 392
11.6.4 Clear Cache (sh2adual_clr_cac)... 393
11.6.5 Flush Operand Cache (sh2adual_fls_cac).. 395
11.6.6 Invalidate Cache (sh2adual_inv_cac) .. 397

Section 12 Application Program Creation ...399
12.1 About the FPU .. 399
12.2 Tasks ... 399
12.3 Task Exception Handling Routines... 402
12.4 Extended Service Call Routines.. 404
12.5 Interrupt Handlers ... 405

xiv

12.5.1 Types of Interrupt Handler .. 405
12.5.2 Register Banks ... 406
12.5.3 Normal Interrupt Handlers... 407
12.5.4 Direct Interrupt Handlers ... 409

12.6 CPU Exception Handlers (Including TRAPA Exceptions)... 412
12.6.1 Types of CPU Exception Handler.. 412
12.6.2 Normal CPU Exception Handlers.. 413
12.6.3 Direct CPU Exception Handlers .. 415

12.7 Time Event Handlers .. 417
12.8 Initialization Routines... 419
12.9 Timer Drivers.. 421

12.9.1 tdr_ini_tmr(): Initialize Timer.. 422
12.9.2 tdr_int_tmr(): Execute Timer-Interrupt Handling.. 424
12.9.3 tdr_stp_tmr(): Stop Timer.. 426
12.9.4 tdr_rst_tmr(): Restart Timer... 428

12.10 System-Down Routines .. 430

Section 13 Generating Load Modules ...433
13.1 Introduction... 433

Section 14 Configurator (cfg72mp)...435
14.1 Representation Format in cfg File... 435

14.1.1 Comment Statement... 435
14.1.2 End of Statement.. 435
14.1.3 Definition Statement .. 435
14.1.4 Numeric Value... 436
14.1.5 Symbol... 438
14.1.6 External Reference Name .. 438
14.1.7 Note ... 438

14.2 Default cfg File ... 439
14.3 Definition Items in cfg File... 439

14.3.1 Description Format .. 440
14.3.2 Defining the System (system).. 441
14.3.3 Defining the Maximum IDs (maxdefine)... 450
14.3.4 Defining the Default Task Stack Area (memstk)... 456
14.3.5 Defining the Default Data Queue Area (memdtq) ... 457
14.3.6 Defining the Default Message Buffer Area (memmbf) 458
14.3.7 Defining the Default Fixed-Sized Memory Pool Area (memmpf)....................... 459
14.3.8 Defining the Default Variable-Sized Memory Pool Area (memmpl) 460
14.3.9 Defining the System Clock (clock).. 461

xv

14.3.10 Defining the Remote Service-Call Environment (remote_svc) 463
14.3.11 Defining a Task (task[]) ... 466
14.3.12 Defining a Static Stack Area (static_stack[]) ... 471
14.3.13 Defining a Semaphore (semaphore[]) .. 473
14.3.14 Defining an Event Flag (flag[]).. 475
14.3.15 Defining a Data Queue (dataqueue[]) .. 477
14.3.16 Defining a Mailbox (mailbox[])... 480
14.3.17 Defining a Mutex (mutex[])... 482
14.3.18 Defining a Message Buffer (message_buffer[])... 484
14.3.19 Defining a Fixed-Sized Memory Pool (memorypool[])....................................... 487
14.3.20 Defining a Variable-Sized Memory Pool (variable_memorypool[]) 491
14.3.21 Defining a Cyclic Handler (cyclic_hand[]).. 494
14.3.22 Defining an Alarm Handler (alarm_hand[]) .. 497
14.3.23 Defining an Overrun Handler (overrun_hand)... 499
14.3.24 Defining an Extended Service Call Routine (extend_svc[]) 500
14.3.25 Defining an Interrupt Handler or a CPU Exception Handler (interrupt_vector[])500
14.3.26 Defining an Initialization Routine (init_routine[])... 503
14.3.27 Defining Service Calls (service_call) .. 504

14.4 Configurator Execution... 507
14.4.1 Overview.. 507
14.4.2 Environment Setting .. 508
14.4.3 Files Required to Execute Configurator... 508
14.4.4 Files Output by cfg72mp ... 508
14.4.5 Starting Configurator ... 509
14.4.6 Command Options ... 510
14.4.7 Note.. 510

14.5 Error Messages.. 510
14.5.1 Error Output Format and Error Levels... 510
14.5.2 List of Messages .. 511

14.6 ID Name Header Files... 515
14.6.1 Overview.. 515
14.6.2 Types of ID Name Header Files .. 515

14.7 kernel_macro.h.. 516

Section 15 GUI Configurator...521

Section 16 Sample Programs ...523
16.1 Target Hardware ... 523
16.2 Directory Structure.. 525
16.3 Startup Processing... 527

xvi

16.3.1 Overview ... 527
16.3.2 Reset Vectors (cpuid1\reset\reset.src).. 532
16.3.3 Reset Main Program for CPUID#1 (cpuid1\reset\resetprg1.c) 543
16.3.4 Common Hardware and CPUID#1 Resource Initialization Function

HardwareSetup_CPUID1() (cpuid1\reset\hwsetup1.c).. 548
16.3.5 Virtual Reset Vector Table for CPUID#2 (cpuid2\reset\vreset.src)..................... 550
16.3.6 Reset Main Program for CPUID#2 (cpuid2\reset\resetprg2.c) 552
16.3.7 CPUID#1 Initial Startup Task InitTask1() (cpuid1\init\init_task1.c) 557
16.3.8 CPUID#2 Initial Startup Task InitTask2() (cpuid2\init\init_task2.c) 561
16.3.9 Synchronization of Startup Phases in Two CPUs .. 566

16.4 Example of RPC Usage .. 570
16.4.1 Overview ... 570
16.4.2 Registration of RPC Servers (CPUID#2)... 572
16.4.3 SampleAdd().. 573
16.4.4 SampleStrlen() ... 576
16.4.5 SampleSort1() and SampleSort2() ... 578
16.4.6 SampleMemcopy()... 579
16.4.7 SampleCreateTask(), SampleKillTask(), and SampleRefTaskState() 579
16.4.8 Example of RPC Call (CPUID#1) ... 582
16.4.9 Initialization and Termination of Servers (CPUID#2)... 583
16.4.10 Initialization and Termination of Clients (CPUID#1) ... 586
16.4.11 Initialization of RPC Library (rpc_init() Call) ... 587

16.5 Remote Service Call Example .. 587
16.6 Timer Driver ... 590
16.7 Standard Libraries... 591

16.7.1 Overview ... 591
16.7.2 Low-Level Interface Routines ... 592
16.7.3 Initialization of Standard Library Environment

(_INIT_LOWLEVEL() and _INIT_OTHERLIB()) .. 593
16.7.4 Section Initialization (_INITSCT()) .. 593
16.7.5 Standard Library Configuration (lowsrc_config.h).. 595
16.7.6 Source Codes ... 596

16.8 Dummy Objects .. 609
16.8.1 Dummy Programs.. 609
16.8.2 Other Dummy Objects ... 610

16.9 I/O Register Definitions, Peripheral Clock Definition, and kernel_intspec.h 611
16.10 List of Kernel Objects... 612

16.10.1 Tasks.. 612
16.10.2 Other Objects ... 613

16.11 cfg Files .. 615

xvii

16.11.1 CPUID#1 (cpuid1\cfg_out\sample.cfg) ... 615
16.11.2 CPUID#2 (cpuid2\cfg_out\sample.cfg) ... 629

16.12 IPI Ports .. 643
16.13 Porting to Other Hardware.. 644

Section 17 Build...645
17.1 Setting Custom Placeholder $(RTOS_INST) ... 645
17.2 Registering cfg72mp to Workspaces as Custom Build Phase... 645

17.2.1 Registering the File Extension ... 646
17.2.2 Creating the cfg72mp Custom Build Phase ... 648
17.2.3 Setting Build Phases .. 655

17.3 Creating CPU Interrupt Specification Definition File (kernel_intspec.h)......................... 656
17.3.1 IBNR Register Addresses

(INTSPEC_IBNR_ADR1 and INTSPEC_IBNR_ADR2) 659
17.3.2 Vector Numbers That Cannot Use Register Banks

(INTSPEC_NOBANK_VECxxx).. 659
17.4 kernel_def.c and kernel_cfg.c ... 659
17.5 Sections... 660

17.5.1 Rules for Section Names.. 660
17.5.2 Sections.. 662
17.5.3 Common Symbols (Exporting Symbols from CPUID#1 to CPUID#2)............... 666
17.5.4 Virtual Reset Vector Table of CPUID#2 ... 666
17.5.5 Memory Map of this Sample ... 666

17.6 Kernel Library... 670
17.7 Build Order of Each CPU ... 671

17.7.1 Basic Form... 671
17.7.2 Exporting the ID Name.. 672

17.8 Description of Build of CPUID#1 (cpuid1\cpuid1.hws)... 675
17.8.1 Registered Sources... 675
17.8.2 Compiler Options... 678
17.8.3 Standard Library Generator ... 683
17.8.4 Optimizing Linkage Editor .. 685

17.9 Description of Build of CPUID#2 (cpuid2\cpuid2.hws)... 691
17.9.1 Registered Sources... 691
17.9.2 Compiler Options... 694
17.9.3 Standard Library Generator ... 698
17.9.4 Optimizing Linkage Editor .. 700

17.10 Download to Target System.. 705

xviii

Section 18 Calculation of Stack Size...707
18.1 Stack Types... 707
18.2 Basics of Stack Size Calculation... 708

18.2.1 Size Consumed by Function Tree .. 708
18.2.2 Kernel Service Calls .. 709
18.2.3 RPC Library Call ... 709
18.2.4 OAL, IPI, SH2A-DUAL Cache Support Library, and Spinlock Library............. 709
18.2.5 Extended Service Calls .. 709
18.2.6 Normal CPU Exception Handler and Direct CPU Exception Handler 709

18.3 Usage Notes for Call Walker .. 710
18.4 Usage Notes for NMI.. 711
18.5 Notes on Changes in Stack Size.. 711
18.6 Task Stack... 712

18.6.1 Calculation of Stack Size... 712
18.6.2 Specification Location for Stack Size.. 713
18.6.3 Calculation of Default Task Stack Area Size (memstk.all_memsize) 714
18.6.4 Stack Size Used by SVC Server Task (remote_svc.stack_size) 714
18.6.5 RPC Server Task and Server Stub ... 714

18.7 Normal Interrupt Handler Stack (system.stack_size).. 715
18.7.1 Calculation of Stack Size Used by Each Handler .. 715
18.7.2 Calculation of and Specification Location for Interrupt Stack Area Size

(system.stack_size) .. 715
18.8 Direct Interrupt Handler Stack.. 716

18.8.1 Calculation of Stack Size... 716
18.8.2 Specification Location for Stack Size.. 717
18.8.3 Shared Stack Function ... 717

18.9 Timer Stack (clock.stack_size) ... 718
18.10 Kernel Stack (system.kernel_stack_size).. 719
18.11 Size Used by Features Provided by HI7200/MP... 721

18.11.1 Kernel .. 721
18.11.2 RPC Library... 721
18.11.3 API Functions of OAL... 722
18.11.4 IPI .. 722
18.11.5 API Functions of Spinlock Library.. 722
18.11.6 API Functions of Cache Support Library .. 722

Section 19 types.h..723

xix

Section 20 Notes on the FPU...725
20.1 Compiler Options.. 725

20.1.1 Consistency of Options .. 725
20.1.2 cpu Option ... 725
20.1.3 Options fpu and fpscr... 725

20.2 Floating-Point Operations in Tasks and Task Exception Handling Routines 726
20.2.1 TA_COP1 Attribute ... 726
20.2.2 Initialization of FPSCR.. 726

20.3 Floating-Point Operations in Handlers.. 727
20.3.1 Overview.. 728
20.3.2 Coding.. 728

20.4 Floating-Point Operations in Extended Service-Call Routines ... 729
20.4.1 When Called from Task Contexts.. 729
20.4.2 When Called from Non-Task Contexts.. 729

20.5 Handling by the Compiler (Reference) ... 730

xx

1

Section 1 Configuration of This Manual

This manual consists of the following sections:

Section 2, Installation: Installation of the HI7200/MP

Section 3, Overview: Overview of the HI7200/MP

Section 4, Introduction to the Kernel: Basic information required for use of the HI7200/MP and
key items regarding the kernel at the core of the HI7200/MP

Section 5, Kernel Functions: All functions of the kernel

Section 6, Kernel Service Calls: Specifications of the kernel service calls

Section 7, RPC Library: Specifications of the RPC library

Section 8, OAL: Specifications of OAL

Section 9, Spinlock Library: Specifications of the spinlock library

Section 10, IPI: Specifications of IPI functions

Section 11, SH2A-DUAL Cache-Support Library: Specifications of the SH2A-DUAL cache-
support library

Section 12, Application Program Creation: Methods for writing a task or a handler

Section 13, Generating Load Modules: Procedures for generating load modules

Section 14, Configurator (cfg72mp): Specifications of cfg72mp

Section 15, GUI Configurator: Introduction to the GUI configurator. For usage of the GUI
configurator, refer to the online help.

Section 16, Sample Programs: Descriptions of the provided sample programs

Section 17, Build: Methods to generate a load module by compilation

2

Section 18, Calculating Stack Size: Methods for calculating the sizes of stacks for use by tasks or
handlers

Section 19, types.h: Description of types.h, in which basic data types are defined

Section 20, Notes on the FPU: Notes on using the FPU. Read this section before using a CPU
that includes an FPU, whether or not you will actually use the FPU functions.

3

Section 2 Installation

2.1 Method of Installation

For the method of installation, read the release notes that come with the product.

2.2 Directory Structure

The HI7200/MP is installed in two directories: a system directory and sample directory. These two
directories can be located under different directories.

2.2.1 System Directory (<RTOS_INST>)

Header files and the configurator are installed under the system directory. The system directory is
referred to as <RTOS_INST> in this manual. The system directory is x.yy.zzww under the
directory specified by the user at installation. x.yy.zz stands for the product version and ww is an
internal identification number with a value from 00 to 99. Examples are shown below.

• Product version is V.1.01 Release 02: 1.01.02ww

• Product version is V.2.11 Release 13: 2.11.13ww

The structure of the directories under the system directory is as follows:

cfg72mp\ cfg72mp (command line configurator)
gui_config\ GUI configurator
manuals\ Manual

os\
 include\ Common header files (types.h, itron.h, etc.)
 kernel\ Source code for kernel (only HI7200/MP with a source code license)

 lib\ Library
 rpc\ Source code for RPC library (only HI7200/MP with a source code license)
 sh2adual_cache\ Source code for SH2A-DUAL cache support library

 spinlock\ Source code for spinlock library
 system\ System definition files

4

2.2.2 Sample Directory (<SAMPLE_INST>)

The sample directory, as its name indicates, is a directory in which the sample programs are
installed. The sample directory is referred to as <SAMPLE_INST> in this manual. The location of
the sample directory should be specified by the user at installation.

The structure under the sample directory is as follows:

R0K572650D000BR\
Sample programs for the "R0K572650D000BR" evaluation board equipped with the SH7265

Detailed descriptions of the sample programs under the R0K572650D000BR directory are given
in section 16, Sample Programs.

5

Section 3 Overview

3.1 Overview

This product which is a realtime OS developed for the SH2A-DUAL microcomputer is designed
to run on a system in which the features are distributed among the CPU cores.

A system using this OS can operate with an OS for each CPU running independently and
synchronous communication between CPUs possible when required.

3.2 Features

3.2.1 Kernel

This product has a kernel based on μITRON4.0 specifications which are realtime OS
specifications widely popular. Therefore, knowledge obtained from commercially available
μITRON-related books or seminars can be used with little modification. Software components
based on μITRON specifications can be embedded easily.

An API with conventional μITRON4.0 specifications can call a service call for the kernel of the
other CPU core. Accordingly, an application program for a conventional single CPU can be easily
distributed to the two CPUs. In other words, a programming model using a μITRON-specification
OS for a conventional single CPU can be extended for a multicore environment.

3.2.2 RPC (Remote Procedure Call) Library

The RPC is used for calling a function in the other CPU in the same format as a normal function
call. This facilitates feature distribution to each CPU on a function basis.

3.2.3 OAL

The OAL is a functional module in which the OS dependent part of the RPC has been extracted.
Rewriting the OAL facilitates porting of the RPC to another OS.

6

3.2.4 Spinlock Library

Exclusive control is required when a shared resource is used by multiple CPUs. The spinlock
library is prepared as a primitive for exclusive control between the CPUs.

The spinlock library is also used by the kernel and RPC.

3.2.5 IPI Function

The IPI function which is a primitive that performs communication between the CPUs provides
receive ports using inter-CPU interrupts.

The IPI function is also used by the kernel and RPC.

3.2.6 Cache Support Library

The application can use the cache support library for the purpose of maintaining the coherency
between the local cache of each CPU and the actual memory.

3.2.7 Sample Programs

Sample programs for understanding the OS functions and High-performance Embedded Workshop
workspaces as the build environments are provided.

3.2.8 Configurator

The kernel configurator (cfg72mp) is prepared to facilitate configuration of a kernel suitable for
the system. The user should create a kernel configuration file (cfg file) in the defined format.

A GUI configurator that can be operated through the GUI screen is also prepared for beginners as
a tool to configure a cfg file.

7

3.2.9 Debugging Extension (Option)

The debugging extension which adds a multitasking debugging function to High-performance
Embedded Workshop V.4 or later versions is prepared. The debugging extension supports the
following functions.

• Refer to the status of objects, such as a task

• Perform operation to objects, such as starting a task or setting the task event flag

• Display the service call history

The debugging extension can be downloaded free of charge from our homepage. (However, the
debugging extension to support this OS was still being developed at the time this manual was
created.)

3.3 Multicore

This OS is on both of the CPUs and each OS operates individually. The application designer
should statically determine the operations to be performed by each CPU (feature distribution) and
implement the features on the respective OS.

SH2A-DUALConventional product (single CPU)

Application

Software component

Device driver

Hardware Hardware

OS

Application

Software component

Device driverOS

Application

Software component

Device driver OS

CPUID#2CPU CPUID#1

Figure 3.1 Software Structure

Which CPU is to control each hardware resource is also statically determined based on the feature
distribution.

8

CPUID#1

Timer #0

CPUID#2

Timer #1

Parallel I/F

Serial I/F

Interrupt controller Interrupt controller

SDRAM

[Legend]
Yellow: Controlled by CPUID#1
Light blue: Controlled by CPUID#2
Green: Shared

Serial I/F

Memory partition
for CPUs

Figure 3.2 Hardware Resource Division (Image)

The memory space of the SH2A-DUAL is basically one plane that is shared by both CPUs.
Memory is statically divided into ranges that can be used by each CPU. Naturally, memory shared
by both CPUs can be used for communication between the CPUs.

9

For CPUID#1

For CPUID#2

Shared

For CPUID#1

For CPUID#2

Shared

[Legend]
Yellow: Controlled by CPUID#1
Light blue: Controlled by CPUID#2
Green: Shared

0x00000000

0xFFFFFFFF

ROM

RAM

Figure 3.3 Memory Map Division (Image)

The basic methods for distributing the features to each CPU is a method of dividing the features
on a function basis using the RPC library (figure 3.4) and a method of dividing the features on a
task basis using remote service calls (figure 3.5).

When the RPC library is used, a function in another CPU can be called.

When a remote service call is used, access to a task or kernel object (e.g. semaphore) in the other
CPU is possible with the same service call as in a conventional product.

10

Single CPU

Function A

Function C

Function B Function C
Function A

Function B

R
P

C
 li

br
ar

y

CPUID#1
CPUID#2

SH2A-DUAL

Figure 3.4 Feature Distribution Using RPC (Image)

Task A

Task B

Task C

Task A

Task B

Task C

R
em

ot
e

se
rv

ic
e

ca
lls

Single CPU

CPUID#1 CPUID#2

SH2A-DUAL

Figure 3.5 Feature Distribution Using Remote Service Calls (Image)

11

3.4 Operating Environment

The operating environment is shown in table 3.1.

Table 3.1 Operating Environment

Item Operating Environment

Target CPU core SH2A-DUAL

Host machine IBM-PC/AT compatible machine operated under Windows® 2000 or
Windows® XP

Compiler Renesas C/C++ Compiler Package for SuperH™ RISC engine V.9.00
Release 04A or later

High-performance
Embedded Workshop*

V.4.02.00 or later

*Note: When the provided High-performance Embedded Workshop workspace is used

12

13

Section 4 Introduction to the Kernel

4.1 Principles of Kernel Operation

In the HI7200/MP, an independent kernel operates for each CPU of an SH2A-DUAL
microcomputer.

The kernel program is the nucleus of the realtime operating system.

The kernel enables one CPU to appear as if multiple CPUs are operating. How does the kernel do
this?

As is shown in figure 4.1, the kernel switches operation between various tasks as required.

Key input task

Remote controller
task

LED control
task

Sound volume
control task

Motor control
task

Machine control
task

Time

Figure 4.1 Operation of Multiple Tasks

This switching between tasks is called task dispatch.

14

The kernel dispatches tasks in the following cases.

• When a task itself requests a dispatch

• When an event (such as an interrupt) outside the current task requests a dispatch

This means that tasks are not switched at predetermined intervals as in a time-sharing system. This
type of scheduling is generally called event-driven.

After a task is dispatched, execution of the task resumes from the point at which it was previously
suspended (figure 4.2).

…
…

Key input task

Remote controller
task

Program is
suspended

Program is
resumed

During this interval, it appears
that the key input microcomputer
is halted.

Figure 4.2 Suspending and Resuming a Task

In figure 4.2, when the control of execution is passed to another task from the key input task,
execution of the program for the key input task appears to the programmer to have halted; that is,
the key input microcomputer appears to have halted.

By restoring the contents of CPU registers that were stored when a task was suspended, the kernel
resumes the execution of a task from the state in which it was suspended. In other words,
dispatching a task means saving the contents of the CPU registers for the task currently being
executed in a memory area prepared for the management of that task, and restoring the contents of
the CPU registers for the task for which execution is being resumed (figure 4.3).

15

…
…

…
…

…
…

…
…

CPU registers

R0

R1

PC

Saving

Restoration

Memory

R0

R1

PC

R0

R1

PC

Area for storage of
register data for the
key-input task

Area for storage of
register data for the
remote-controller task

Figure 4.3 Task Dispatch

As well as the CPU registers, task execution requires stack areas. Separate stack space must be
allocated for each task.

16

4.2 Service Calls

How should the programmer use kernel functions in a program?

To use kernel functions, they must be called in a program. This call is a service call. Through
service calls, requests for various operations such as task initiation can be sent to the kernel.

Key input task
Service call

Kernel
Task scheduling Remote controller

task

Figure 4.4 Service Call

In actual programs, a service call is issued as a C-language function.

act_tsk(ID_MAINTASK);

There are two types of service call: local service calls, which send requests only to the kernel for
the current CPU, and remote service calls, which send requests to the kernel for the other CPU.

4.3 CPU ID

A CPU ID is a number that identifies a CPU core. Two purposes for which CPU IDs are useful are
given below.

• Specifying the CPU to which the target object of a service call belongs

• Specifying the target CPU to which data is transmitted by using the IPI (see section 10, IPI)

In the HI7200/MP, the CPU IDs of CPU#0 and CPU#1 as defined in the specifications for the
SH2A-DUAL microcomputer are 1 and 2, respectively. Note that counting for CPU IDs starts with
1, while counting for the CPU names defined in the specifications of the SH2A-DUAL
microcomputer starts with 0.

17

4.4 Objects

4.4.1 Outline

The processing objectives of service calls, such as tasks or semaphores, are called objects. Objects
are distinguished by their IDs. In service calls such as those for activating tasks and setting event
flags, the IDs of target objects should be specified as parameters. In some service calls, it is also
possible to handle objects of the kernel for the other CPU by specifying the corresponding object
IDs.

4.4.2 ID Numbers

An ID number is represented as a 16-bit signed integer. The 16 bits of an ID number have the
following meanings.

• Bit 15 (MSB): Sign of the local object ID

• Bits 14 to 12: CPU ID

• Bits 11 to 0: Local object ID

(1) CPU ID

To issue a remote service call, bits 14 to 12 of the target object ID should contain the
corresponding CPU ID. Specifying VCPU_SELF as the CPU ID selects the same CPU as that
for the caller of the service call. VCPU_SELF is a macro defined as 0 in kernel.h and is not
based on the μITRON4.0 specification.

(2) Local Object ID

Positive local object IDs are assigned to objects. The maximum value for the local object IDs
of objects should be defined as maxdefine in the cfg file. Although no object has a negative
local object ID, some service calls allow the specification of negative local object IDs (only for
special purposes).

18

4.4.3 Using ID Names to Specify Objects

To differentiate between objects, the kernel internally activates the objects by using their ID
numbers. Specifically, control of the form “Start the task having the task ID number 1” might be
applied. However, directly using literal task numbers in programs will give the programs very
poor readability. If, for instance, the following statement is entered in a program, the programmer
must always know which task has the local object ID number 1.

act_tsk(1); /* Start the task having local object ID number 1 in the
current CPU */

Moreover, anyone else viewing the program will not be able to see at a glance which task is No. 1.
To avoid such inconvenience, the HI7200/MP provides means of specifying tasks by name (ID
name). “configurator cfg72mp” automatically converts task ID names to task ID numbers. To be
more specific, the configurator outputs a header file (e.g. kernel_id.h) that includes definitions of
the following type, associating task ID names with task ID numbers.

#define ID_MAINTASK MAKE_ID(1, 1) 1

Figure 4.5 is a schematic view of the task identification system.

act_tsk (task name)

Name -> ID number
Start the task having
the designated ID number

Configurator

Figure 4.5 Task Identification

With this task identification system, our earlier example is now as follows.

act_tsk(ID_MAINTASK); /* Start the task having the ID name
“ID_MAINTASK” */

1 MAKE_ID() is a macro for creating IDs consisting of the CPU ID and the local object ID. For
details, refer to section 6.31.4, Function Macros Defined in kernel.h.

19

This call specifies invocation of the task corresponding to "ID_MAINTASK". Also note that the
compiler’s pre-processor converts task names to ID numbers in the generation of an executable
program. Therefore, this feature does not reduce processing speeds.

Although the example on the previous page just referred to task identification, other objects that
have ID numbers can also be given ID names.

4.5 Tasks

4.5.1 Task State

The kernel checks the task state to control whether to execute a task. For example, figure 4.6
shows the state of the key input task and its execution control. When a key input is detected, the
kernel must execute the key input task; that is, the key input task enters the RUNNING state.
While waiting for a key input, the kernel does not need to execute the key input task; that is, the
key input task is in the WAITING state.

Key input
task

RUNNING state WAITING state RUNNING state

Figure 4.6 Task States

The kernel controls transitions between seven states, including the RUNNING and WAITING
states, as shown in figure 4.7. A task makes the transitions between these seven states.

20

READY
(executable state)

RUNNING
(execution state)

WAITING
(wait state)

WAITING-SUSPENDED
(double-wait state)

SUSPENDED
 (forcible-wait state)

WAITING-SUSPENDED
 (shared stack

 double-wait state)

DORMANT
(inactive state)

NON-EXISTENT
(unregistered state)

Forcible
termination
(ter_tsk)

Resumption
(rsm_tsk, frsm_tsk)

Suspension
(sus_tsk)

Shared stack
allocation

Shared stack
allocation

Shared stack is
released or unused
(act_tsk, sta_tsk)

When the shared
stack is monopolized
(act_tsk, sta_tsk)

WAITING
(shared stack wait state)

Forcible
termination
(ter_tsk)

Figure 4.7 Task State Transition Diagram

21

(1) NON-EXISTENT State

The task has not been registered in the kernel. This is a virtual state.

(2) DORMANT State

The task has been registered in the kernel, but has not yet been initiated, or has already been
terminated.

(3) READY (executable) State

The task is ready for execution, but cannot be executed because another higher priority task is
currently running.

(4) RUNNING State

The task is currently running. The kernel puts the READY task with the highest priority in the
RUNNING state.

(5) WAITING State

When the task issues a service call such as tslp_tsk and the specified conditions are not satisfied,
the task enters the WAITING state. A task is released from the WAITING state by the service call
(such as wup_tsk) that corresponds to the call which initiated the WAITING state, after which the
task enters the READY state.

(6) SUSPENDED State

A task has been suspended by another task through sus_tsk.

(7) WAITING-SUSPENDED State

This state is a combination of the WAITING state and SUSPENDED state.

22

4.5.2 Task Scheduling (Priority and Ready Queue)

For each task, a task priority is assigned to determine the priority of processing. A smaller value
indicates a higher priority level and level 1 is the highest priority. The range of available priorities
is 1 to system.priority as defined in the cfg file.

The kernel selects the highest-priority task from among the READY tasks and puts it in the
RUNNING state.

The same priority can be assigned to multiple tasks. When there are multiple READY tasks with
the highest priority, the kernel selects the first task to have become READY and puts it in the
RUNNING state. To implement this behavior, the kernel has ready queues, which are queues of
READY task waiting for execution.

Figure 4.8 shows the ready queue configuration. A ready queue is provided for each priority level,
and the kernel selects the task at the head of the non-empty ready queue for the highest priority
and puts it in the RUNNING state.

…
…

…
…

1

2

3 Task C Task D Task E

n Task F Task G

Task A

Priority

Task B

Figure 4.8 Ready Queues (Waiting for Execution)

23

4.5.3 Task Waiting Queues

A service call can make a task wait (enter the WAITING state) until a condition designated in
terms of objects (such as semaphores and event flags) has been satisfied. For some types of objects,
two or more tasks may be in the WAITING state. Attributes that select the order in which waiting
tasks are handled are specifiable when the objects are created. The specifiable attributes are
TA_TFIFO (handling on an FIFO basis) or TA_TPRI (handling on a priority basis). Tasks leave
the WAITING state in the order specified for the waiting queue. Figures 4.9 and 4.10 show the
order of task handling for objects with the respective attributes, where task D (priority: 9), task C
(priority: 6), task A (priority: 1), and task B (priority: 5) have joined the waiting queue, in that
order.

…
…

…
…

1

ID number of the object

2

3 Task A Task B Task C Task D

Priority 1 Priority 5 Priority 6 Priority 9

n

Figure 4.9 Waiting Queue with the Attribute TA_TPRI

24

…
…

…
…

Task A Task BTask CTask D

Priority 1 Priority 5Priority 6Priority 9

1

ID number of the object

2

3

n

Figure 4.10 Waiting Queue with the Attribute TA_TFIFO

25

4.5.4 Task Stack

Each task needs a stack area. For the kernel, there are basically two types of stack: static stack and
non-static stack. Tasks having local task ID numbers less than or equal to
maxdefine.max_statictask in the cfg file use static stacks, and other tasks use non-static stacks. A
single static stack can also be shared by multiple tasks (shared stack function).

(1) Static Stack

Multiple static stack areas can be defined by static_stack[] statements in the cfg file. For
static_stack[], the size of the stack, a section name to be given to the stack, and the local IDs of
tasks that are to use the stack should be specified. When two or more local task IDs are
specified, the stack is shared by these tasks.

(2) Non-Static Stack

The types of non-static stack area are listed below.

(a) Use the default task-stack area

In this case, simply specify the size of the stack when creating a task by making a cre_tsk
or acre_tsk service call or by a task[] statement in the cfg file. The kernel allocates the
specified size of a stack area from the default task-stack area. There is only one default
task-stack area, which is managed internally by the kernel just like a variable-sized
memory pool. The section name for the default task-stack area is BC_hitskstk.

(b) Use the stack area allocated by the application

In this case, the application allocates the stack area. After that, specify the address and size
of the stack when creating a task by making a cre_tsk or acre_tsk service call or by a task[]
statement in the cfg file.

(c) Create a stack area according to the cfg file

Specify the size of the stack and a section name to be given to the stack when generating a
task by a task[] statement in the cfg file.

26

Table 4.1 shows the differences between static and non-static stacks.

Table 4.1 Differences between Static and Non-Static Stacks

 Static Stack Non-Static Stack

Local task ID numbers 1 to maxdefine.max_statictask maxdefine.max_statictask + 1
or more

cfg file task[] task[]

 ID number Cannot be omitted (automatic
allocation not available)

Can be omitted (automatic
allocation available)

 Other Definition is required in
static_stack[]

-

Create
tasks by

Service calls vscr_tsk, ivscr_tsk cre_tsk, icre_tsk, acre_tsk,
iacre_tsk

Sharing of stack by tasks Available Not available

4.5.5 Shared Stack Function

More than one task can share a single static stack. The shared stack function is not defined in the
µITRON4.0 specification.

To have two or more tasks share one static stack, type the local IDs of these tasks as
static_stack[].tskid in the cfg file.

Only one task in a task group that shares a static stack can be executed at a time. When multiple
tasks are initiated and share a stack, the task that was initiated first uses the stack first. The
remaining tasks enter the shared-stack waiting state. Tasks in the shared-stack waiting state are
managed as a first-in first-out (FIFO) queue, regardless of their priority. Tasks join the shared-
stack waiting queue in the order in which they were initiated.

A shared stack is released from the task when the task becomes DORMANT. When tasks are
waiting for the shared stack, the task at the head of the wait queue will use the stack, and enters the
READY state.

Figure 4.11 shows the task-state transitions for the shared stack function.

27

READY
(executable state)

RUNNING
(execution state)

WAITING
(wait state)

WAITING-SUSPENDED
(double-wait state)

SUSPENDED
 (forcible-wait state)

WAITING-SUSPENDED
 (shared stack

 double-wait state)

DORMANT
(inactive state)

NON-EXISTENT
(unregistered state)

Forcible
termination
(ter_tsk)

Resumption
(rsm_tsk, frsm_tsk)

Suspension
(sus_tsk)

Shared stack
allocation

Shared stack
allocation

Shared stack is
released or unused
(act_tsk, sta_tsk)

When the shared
stack is monopolized
(act_tsk, sta_tsk)

WAITING
(shared stack wait state)

Figure 4.11 Task-State Transitions for the Shared Stack Function

28

4.6 System State

The system state is classified into the following orthogonal states.

• Task context/non-task context

• Dispatch-disabled/dispatch-enabled

• CPU-locked/CPU-unlocked

The system operations and available service calls are determined based on the above system states.

4.6.1 Task Contexts and Non-Task Contexts

System is in either task contexts or non-task contexts. The difference between task contexts and
non-task contexts is described in table 4.2.

Table 4.2 Task Contexts and Non-Task Contexts

Item Task Contexts Non-Task Contexts

Available service calls Service calls that can be called
from task contexts

Service calls that can be called from
non-task contexts

Task scheduling Refer to sections 4.6.2 and 4.6.3 Does not occur

The following forms of processing are executed in non-task contexts.

• Interrupt handlers

• Time event handlers (cyclic handlers, alarm handlers, and overrun handler)

• Portions of execution where the interrupt mask has been changed to a value other than 0 by the
chg_ims service call

Note that extended service calls initiated in the above processing states are also executed in non-
task contexts.

CPU exception handlers are executed in the same context as that before the exception occurred.

29

4.6.2 Dispatch-Disabled State/Dispatch-Enabled State

System is in either dispatch-disabled state or dispatch-enabled state. In dispatch-disabled state,
task scheduling is not allowed and service calls that place the current task in the WAITING state
cannot be used.

Issuing the dis_dsp service call changes the system state to dispatch-disabled state, while issuing
the ena_dsp service call will return the system state to the dispatch-enabled state. Issuing the
sns_dsp service call will check whether the system is in dispatch-disabled state or not.

4.6.3 CPU-Locked State/CPU-Unlocked State

System is in either CPU-locked state or CPU-unlocked state. In CPU-locked state, interrupts and
task scheduling are not allowed. Note, however, that interrupts with interrupt levels higher than
that specified in the kernel interrupt mask level (system.system_IPL in the cfg file) are allowed.
Any service calls that make tasks enter the WAITING state cannot be issued.

Issuing the loc_cpu or iloc_cpu service call changes the system state to CPU-locked state. Issuing
an unl_cpu or iunl_cpu will return the system state to the CPU-unlocked state. In addition, issuing
the sns_loc service call will check whether the system is in CPU-locked state or not.

Service calls that can be issued in the CPU-locked state are restricted to those listed in table 4.3.

Table 4.3 Service Calls that can be Issued in the CPU-Locked State

loc_cpu,
iloc_cpu

unl_cpu,
iunl_cpu sns_ctx sns_loc sns_dsp sns_dpn

vsta_knl,
ivsta_knl

vsys_dwn,
ivsys_dwn sns_tex vsns_tmr ext_tsk * exd_tsk *

Note: These calls will release the system from the CPU-locked state.

30

4.6.4 Dispatch-Pending State

The dispatch-pending state means that processing with a higher priority than the dispatcher is in
progress so that no other task can be executed. To be more specific, each of the following cases
corresponds to the dispatch-pending state.

• Non-task context

• Dispatch-disabled state

• CPU-locked state

• Interrupt mask level (value indicated by the IMASK bits in SR) of the CPU is not 0

The sns_dpn service call can be used to check if the system is in the dispatch-pending state.

31

4.7 Processing Units and Precedence

An application program is executed in the following processing units.

Task: A task is a unit controlled by multitasking.

Task Exception Handling Routine: A task exception handling routine is executed when task
exception handling is requested by a task in the ras_tex service call.

Interrupt Handler: An interrupt handler is executed when an interrupt occurs.

CPU Exception Handler: A CPU exception handler is executed when a CPU exception occurs.

Time Event Handler (Cyclic Handler, Alarm Handler, and Overrun Handler):
A time event handler is executed when a specified cycle or time has been reached.

Extended Service Call: An extended service call is used to call a module that is not linked.
When this extended service call is issued, the corresponding extended service call routine is called.

The various processing units are processed in the following order of precedence.

(1) Interrupt handlers, time event handlers and CPU exception handlers

(2) Dispatcher (part of kernel processing)

(3) Tasks

The dispatcher is kernel processing that switches the task being executed. Since interrupt handlers,
time event handlers, and CPU exception handlers have higher precedence than the dispatcher, no
tasks are executed while these handlers are running.

The precedence of an interrupt handler becomes higher when the interrupt level is higher.

The precedence of a time event handler is the same as the timer interrupt level (clock.IPL).

The precedence of a CPU exception handler is higher than that of the processing where the CPU
exception occurred and of the dispatcher. The precedence of a CPU exception handler is also
lower than that of other processing that has higher precedence than the processing where the CPU
exception occurred.

The order of precedence for tasks depends on the priority of the tasks.

The precedence of an extended service call routine is higher than that of the processing where the
extended service call was called. The precedence of an extended service call routine is also lower
than that of other processing that has higher precedence than the processing where the extended
service call was called.

32

The precedence of a task's exception processing routine is higher than that of the task and lower
than that of other higher-level tasks.

When the following service calls are made, a level of precedence other than those described above
can be temporarily generated:

(a) When dis_dsp is called, the precedence will be between (1) and (2) above. The state is
returned to the prior state by calling ena_dsp.

(b) When loc_cpu or iloc_cpu is called, the precedence will be the same as that of an interrupt
handler having the same interrupt level as the kernel interrupt mask level
(system.system_IPL). The state is returned to the prior state by calling unl_cpu or iunl_cpu.

(c) While the values of the IMASK bits in the SR register are changed to other than 0, the
precedence is the same as for an interrupt handler at the same level.

4.8 Interrupts

An interrupt handler defined by the user is initiated in response to interrupt generation. The system
goes down when no interrupt handler has been defined. Interrupt handlers are executed in non-task
contexts.

4.8.1 Types of Interrupt Handler

Interrupt handlers can be divided into types in the following two ways.

• Kernel interrupt handlers and non-kernel interrupt handlers

• Direct interrupt handlers and normal interrupt handlers

(1) Kernel interrupt handlers and non-kernel interrupt handlers

• Kernel interrupt handlers

These are interrupt handlers with an interrupt level lower than or equal to the kernel
interrupt mask level (system.system_IPL). Service calls can be issued from within a kernel
interrupt handler are those that can be called in non-task contexts. Note, however, that
handling of kernel interrupts generated during kernel processing may be delayed until the
interrupts become acceptable.

33

• Non-kernel interrupt handlers

These are interrupt handlers with an interrupt level higher than the kernel interrupt mask
level (system.system_IPL). Non-kernel interrupts generated during service-call processing
are immediately accepted whether or not kernel processing is in progress. Note, however,
that no service call can be issued from within a non-kernel interrupt handler.

(2) Direct interrupt handlers and normal interrupt handlers

A direct interrupt handler is directly initiated in response to an interrupt, while a normal
interrupt handler is initiated via the kernel. Direct interrupt handlers thus incur less overhead.
Also refer to the following information in selecting the types of interrupt handler you wish to
use.

(a) Description format

Normal interrupt handlers are written as C-language functions. Direct interrupt handlers, on
the other hand, are written as interrupt functions and require specification of the #pragma
interrupt directive. Handler functions specified in this way are thus less portable than
normal interrupt handlers. How #pragma interrupt should be specified depends on the
conditions listed below. For details, refer to section 12.5.4, Direct Interrupt Handlers.

• Whether the interrupt handler is a kernel interrupt handler or non-kernel interrupt
handler (i.e., whether the interrupt level is higher than system.system_IPL)

• Whether the interrupt uses register banks or not

(b) Interrupt level

Non-kernel interrupt handlers must be implemented as direct interrupt handlers. As stated
in section 4.8.3, Restriction on Service Calls, service calls are not to be made from within
these handlers.

(c) Stack

Normal interrupt handlers use the interrupt stack, which is the only specific stack area in
the system. The size of the interrupt stack should be specified as system.stack_size in the
cfg file. On the other hand, the stack area for use by a direct-interrupt handler should be
allocated by the application. This stack area should be selected for use at the start of the
direct interrupt handler and then returned to its previous state at the end of the handler (this
processing is performed by specifying “sp=” in the #pragma interrupt directive). Handlers
for interrupts at the same level can share the same stack area.

(d) Service calls

Since all of these interrupt handlers are executed in non-task contexts, service calls
available in non-task contexts can be issued in cases other than those covered by (b).

(e) Definition

To define a direct interrupt handler, the VTA_DIRECT attribute should be specified.

34

4.8.2 Controlling Interrupts (by Setting IMASK Bits in the Register SR)

Specifications of the SH microcomputers allow control of the levels of interrupts accepted by the
CPU by setting the IMASK bits in the register SR.

(1) Controlling the IMASK level during the period of a service call

Interrupts are enabled or disabled during the execution of a service call by setting the IMASK
bits in the register SR. Since the execution of a service call should not be broken up, the
IMASK level is changed to the kernel interrupt mask level (system.system_IPL) within the
service call as required. Such periods are called kernel-level critical sections. In other periods,
the IMASK level is the same as that before the service call. Figure 4.12 shows interrupt control
during the period of a service call.

Kernel interrupt mask level (system.system_IPL)

In
te

rr
up

t m
as

k
le

ve
l

IMASK level when a service call is issued

Application Application

Time

 Kernel service call

Figure 4.12 Interrupt Control during the Period of a Service Call

35

(2) Controlling the IMASK level by the application

As in the example in the figure above, the IMASK level must be changed within service calls.
The IMASK level can be changed from an application in the following three ways.

(a) Use loc_cpu or iloc_cpu

These calls change the IMASK level to the kernel interrupt mask level
(system.system_IPL). Since the system enters the CPU-locked state, dispatching of tasks is
postponed until the system is unlocked. While the system is in the CPU-locked state, the
IMASK level should not be directly adjusted (method (c) below) to be lower than the
kernel interrupt mask level (system.system_IPL). Furthermore, if the method described
under (c) is used to change the IMASK level to be higher than the kernel interrupt mask
level (system.system_IPL), the IMASK level must be set back to its original level before
the system leaves the CPU-locked state.

(b) Use chg_ims or ichg_ims

These calls change the IMASK level to a desired value but are not available when the
system is in the CPU-locked state. If the IMASK level is changed to a value other than 0 in
a task context, the system is assumed to be in a non-task context. Note that the available
service calls and the size of the stack for use by the service calls are different in a non-task
context. To return the IMASK level to 0, use ichg_ims in the non-task context. Moreover,
dispatching of tasks is postponed in the non-task context.

(c) Directly change the IMASK level (by using the intrinsic function set_imask() or set_cr()
provided by the compiler)

The behavior is much the same as that of chg_ims except that this method is available even
when the system is in the CPU-locked state. However, the following differences apply.

• This method incurs less overhead than chg_ims.

• Restrictions apply to the use of this method to change the IMASK level in task
contexts. For details, see the following sections.

Here are some possible situations.

Controlling the IMASK level in task contexts

• To mask interrupts at a specific level

(c) is recommended for better performance, although (b) is also available. However, do not
use (c) when changing the IMASK level to be lower than the kernel interrupt mask level
(system.system_IPL).

• To mask interrupts at the kernel interrupt mask level

(a), (b), and (c) are available. (a) is recommended for portability and (c) for better
performance.

36

Controlling the IMASK level in non-task contexts

• To mask interrupts at a specific level

(c) is recommended for better performance, although (b) is also available.

• To mask interrupts at the kernel interrupt mask level

(a), (b), and (c) are available. (a) is recommended for portability and (c) for better
performance.

4.8.3 Restriction on Service Calls

When SR.IMASK is higher than the kernel interrupt mask level (system.system_IPL), no service
call should be issued because service-call processing should not be broken up. If a service call is
issued, interrupts will be accepted unexpectedly since the interrupt mask level is lowered during
processing of the service call. This leads to incorrect operation of the system.

4.9 CPU Exceptions

When a CPU exception (e.g. an address error or a TRAPA instruction) occurs, a CPU exception
handler defined by the user is initiated. The system goes down if no CPU exception handler has
been defined.

4.9.1 Types of CPU Exception Handler

There are two CPU exception handlers: direct and normal. A direct CPU exception handler is
directly initiated in response to a CPU exception, while a normal CPU exception handler is
initiated via the kernel. Select the type of CPU exception handler you wish to use with reference to
the following information.

(a) Description format

A normal CPU exception handler is written as a C-language function. When a CPU
exception occurs, its number (vector number) and other information (see section 12.6.2) are
passed to the normal CPU exception handler as parameters.

A direct CPU exception handler, on the other hand, is written as an interrupt function and
requires specification of the #pragma interrupt directive. The portability of the handler
function is thus lower than that of a normal CPU exception handler.

No parameters are passed to a direct CPU exception handler. A direct handler should thus
be written in assembly language so that it can acquire the information on the CPU
exception (see section 12.6.2).

37

(b) Context

When a CPU exception occurs, the context for the execution of the handler, regardless of
its type, is the same as the context before the exception occurred. The same stack is also
used. Thus, care must be taken to ensure that the handler does not make an overflow of the
stack in use. Since a normal CPU exception handler stores the information on the CPU
exception on the stack, such a handler uses more stack space than a direct CPU exception
handler. If a CPU exception has occurred with task-dispatch not suspended (e.g. in a task
context), task dispatch remains suspended during the execution of a normal CPU exception
handler but is not suspended during execution of a direct CPU exception handler.

(c) Service calls

The service calls that can be issued from a normal CPU exception handler are limited to
those listed in table 4.4. Also note the restriction described in section 4.8.3, Restriction on
Service Calls.

Table 4.4 Service Calls that can be Issued from a Normal CPU Exception Handler

get_tid, iget_tid ras_tex,
iras_tex

sns_tex sns_ctx sns_loc

sns_dsp sns_dpn vsta_knl,
ivsta_knl

vsys_dwn,
ivsys_dwn

vsns_tmr

During the execution of a direct CPU exception handler, no service call should be issued if
the CPU exception occurred within the kernel. If the CPU exception occurred within an
application, however, the same service calls can be issued as were permitted before the
CPU exception.

(d) Definition

Specify the VTA_DIRECT attribute to define a direct CPU exception handler.

4.9.2 Reserved Exceptions

TRAPA #60 to TRAPA #63 are reserved for use by the kernel. No handler processing can be
defined for these TRAPA instructions.

38

39

Section 5 Kernel Functions

This section mainly describes the functions and usage of kernel service calls.

5.1 Task Management

The task management functions are used to perform task operations such as creating, deleting,
starting, and ending tasks, and changing task priorities. For details on the task stack, refer to
section 4.5.4, Task Stack. The HI7200/MP offers the following task management service calls.

(1) Create Task (cre_tsk or icre_tsk)

Creates a task with the specified ID.

(2) Create Task (acre_tsk or iacre_tsk)

Creates a task with an arbitrary ID that is automatically assigned by the kernel and returned.

(3) Delete Task (del_tsk)

Deletes the task with the specified ID.

(4) Activate Task (act_tsk, iact_tsk)

Activates the task with the specified ID. Unlike sta_tsk and ista_tsk, the activation requests by
these service calls are queued, but a start code to be passed to the target task cannot be specified in
these service calls. Extended information specified at the time of task creation is passed to the
target task.

act_tsk can be issued to a task of the other CPU.

(5) Cancel Task Activation Requests (can_act, ican_act)

Cancels the activation requests that have been queued for the task with the specified ID.

can_act can be issued for a task of the other CPU.

40

(6) Activate Task (sta_tsk, ista_tsk)

Activates the task with the specified ID. In either service call, unlike in act_tsk or iact_tsk,
requests for service call startup of this type are not queued, but a start code to be passed to the
target task can be specified.

sta_tsk can be issued for a task of the other CPU.

(7) Terminate Current Task (ext_tsk)

Terminates the current task, placing the task in the DORMANT state. If activation requests for the
task have been queued, task startup processing is performed again. In this case, the current task
behaves as if it has been reset.

Behavior of the task in response to this service call is the same as the task returning from its entry
function.

(8) Terminate and Delete Current Task (exd_tsk)

Terminates and deletes the current task.

(9) Terminate Another Task (ter_tsk)

Terminates another task that is not in the DORMANT state and places the task in the DORMANT
state. If activation requests for the task have been queued, task startup processing is performed
again. The vchg_tmd service call can mask termination requests issued by ter_tsk.

ter_tsk can be issued for a task of the other CPU.

(10) Change Task Priority (chg_pri, ichg_pri)

Changes the priority of the task with the specified ID. If the priority of a task is changed while the
task is in the READY or RUNNING state, the ready queue is also updated (figure 5.1). Moreover,
if the target task is placed in the wait queue of an object with the TA_TPRI attribute, the wait
queue is also updated (figure 5.2).

chg_pri can be issued for a task of the other CPU.

41

…
…

…
…

Priority

Example: The priority of task B is changed from 3 to 1

1

2

3

n

Task A Task B

Task C Task B

Task E Task F

Task D

Figure 5.1 Changing Priority

…
…

…
…

Object ID number

1

2

3

n

Task A

Priority 1

Task B

Priority 2

Task C

Priority 3

Task B

Priority 4

Example: The priority of task B is changed from 2 to 4

Figure 5.2 Re-Arranging the Wait Queue

However, it is generally recommended that these service calls not be used because changing the
priority affects the behavior of the entire system.

A task has two priority levels: base priority and current priority. In general operation, these two
priority levels are the same; they differ only while the task has a mutex locked. For details, refer to
section 5.9, Mutexes.

42

(11) Get Task Priority (get_pri, iget_pri)

Acquires the priority of the task with the specified ID.

get_pri can be issued for a task of the other CPU.

(12) Reference Task State (ref_tsk, iref_tsk)

Refers to the state of the task with the specified ID.

ref_tsk can be issued for a task of the other CPU.

(13) Reference Task State: Simple Version (ref_tst, iref_tst)

Refers to the state of the task with the specified ID. Either service call produces less overhead than
ref_tsk or iref_tsk because it refers to less information.

ref_tst can be issued for a task of the other CPU.

43

(14) Change Task Execution Mode (vchg_tmd)

Changes the execution mode of a task with the specified ID. The task execution mode is not
defined in the μITRON4.0 specification.

A forcible termination request (service call ter_tsk) issued by another task may make a task enter
the DORMANT state with unexpected timing, i.e. before the acquired resources have been
released. Service call sus_tsk or isus_tsk may also suspend the execution of a task with unexpected
timing.

Service call vchg_tmd can thus mask termination requests and suspension requests.

5.2 Task-Dependent Synchronization Functions

The task-dependent synchronization functions are used to achieve synchronization between tasks
by placing tasks in the WAITING, SUSPENDED, or WAITING-SUSPENDED states, or to wake
up tasks in the WAITING state. The HI7200/MP offers the following task-dependent
synchronization service calls.

(1) Sleep Task (slp_tsk, tslp_tsk) and Wakeup Task (wup_tsk, iwup_tsk)

slp_tsk places the current task in the WAITING state. tslp_tsk performs the same function as
slp_tsk except that a timeout period before wakeup is specifiable. wup_tsk or iwup_tsk wakes up a
task that has been placed in the WAITING state by slp_tsk or tslp_tsk. While a task is not in a
WAITING state initiated by slp_tsk or tslp_tsk, the issued wakeup requests are queued. If a task
for which wakeup requests have been queued calls slp_tsk or tslp_tsk, the wakeup request count is
decremented by one (-1) and the task does not enter the WAITING state (figure 5.3).

wup_tsk can be issued for a task of the other CPU.

Wakeup request count 00 1 2 1

wup_tsk

slp_tsk

wup_tsk wup_tsk

slp_tsk

Task

Figure 5.3 Wakeup Request Queue

44

(2) Cancel Wakeup Task (can_wup, ican_wup)

Cancels the wakeup requests queued for a task with the specified ID (figure 5.4).

can_wup can be issued for a task of the other CPU.

Wakeup request count 00 1 0 0

wup_tsk

slp_tsk

wup_tsk can_wup

slp_tsk

Task

Figure 5.4 Canceling Wakeup Requests

(3) Suspend Task (sus_tsk, isus_tsk) and Resume Task (rsm_tsk, irsm_tsk, frsm_tsk,
ifrsm_tsk)

Issuing sus_tsk or isus_tsk forcibly suspends the task with the specified ID (the SUSPENDED
state). A task in the READY state is placed in the SUSPENDED state. A task in the WAITING
state is placed in the WAITING-SUSPENDED state. Suspension requests issued by calling
sus_tsk or isus_tsk are nested.

rsm_tsk or irsm_tsk decrements the suspension count for a task with the specified ID. When the
number reaches 0, the task is taken out of the SUSPENDED state (figure 5.5).

frsm_tsk or ifrsm_tsk forcibly releases the task with the specified ID from the SUSPENDED state.
The task is returned to its previous state (figure 5.6).

sus_tsk, rsm_tsk, and frsm_tsk can be issued for a task of the other CPU.

45

sus_tsk sus_tsk rsm_tsk rsm_tsk

0 21 1 0

READYSUSPENDED

Task

READY

WAITING

Number of nested
suspension requests

WAITING-SUSPENDED WAITING

Figure 5.5 Suspending and Resuming Tasks

sus_tsk sus_tsk frsm_tsk

0 021

READYSUSPENDED

Task

READY

WAITING

Number of nested
suspension requests

WAITING-SUSPENDED WAITING

Figure 5.6 Suspending and Forcibly Resuming Tasks

(4) Forcible Release from WAITING State (rel_wai, irel_wai)

rel_wai or irel_wai forcibly releases the task with the specified ID from the WAITING state. Note
that neither service call can release a task from the SUSPENDED state.

rel_wai can be issued for a task of the other CPU.

(5) Delay Task (dly_tsk)

Transfers the current task from the RUNNING state to a timed WAITING state.

46

5.3 Task Event Flags

Task event flags are bit patterns for tasks. A task can be made to wait until a specified bit is set in
the task event flag for the current task; that is, it can be made to wait until a specified event occurs.
Task event flags are not defined in the μITRON4.0 specification. Figure 5.7 shows an example of
task event flag operation.

0x00 0x00 0x02 0x00Task A event flags

Task A

Task B

Interrupt
handler C

vset_tfl: Set pattern = 0x01
-> Task A is released from
the WAITING state

vwai_tfl: Waiting pattern = 0x0F
-> Does not enter the WAITING
state. The flag pattern is cleared
to 0.

Time

vwai_tfl: Waiting pattern = 0x0F
-> Enters the WAITING state

ivset_tfl: Set pattern = 0x02

Figure 5.7 Example of Task Event Flag Operation

47

Control related to task event flags is implemented by the service calls listed below.

(1) Wait for Task Event Flag (vwai_tfl, vtwai_tfl)

vwai_tfl or vtwai_tfl makes a task wait until a specified bit of the task event flag has been set.
Once the specified bit is set, the task is released from the WAITING state and the task event flag is
cleared to 0. The call returns the pre-clearing bit pattern in the task event flag. If the specified bit
has already been set, the task will not enter the WAITING state.

(2) Acquire Task Event Flag (vpol_tfl)

vpol_tfl checks if a specified bit in the event flag is set. The only difference between this service
call and vwai_tfl or vtwai_tfl is that an error code is immediately returned and the task does not
enter the WAITING state when the wait condition is not satisfied.

(3) Set Task Event Flag (vset_tfl, ivset_tfl)

vset_tfl or ivset_tfl sets a specified bit in the event flag of the task with the specified ID.

vset_tfl can be issued for a task of the other CPU.

(4) Clear Task Event Flag (vclr_tfl, ivclr_tfl)

vclr_tfl or ivclr_tfl clears a specified bit in the event flag of the task with the specified ID.

vclr_tfl can be issued for a task of the other CPU.

48

5.4 Task Exception Handling

Task exception handling is performed when an exception occurs during task execution. Task
exception handling is performed asynchronously with task processing and is similar to the
function commonly referred to as "signals".

Figure 5.8 shows an example of task exception handling.

Task exception
processing routine

Enable task A exceptions
(ena_tex) (a)

Task A

(b) An exception occurs
 (ras_tex)

(c) Task exception is received
 (disable task exceptions and
 clear the exception source)

(e)

(d)

Figure 5.8 Example of Task Exception Handling

Description (letters indicate the order of operations):

(a) Task A enables task exceptions.

(b) Service call ras_tex issued during the execution of task A requests a task A exception. The
pattern to indicate the reason for the exception should be specified in the call.

(c) When task A is scheduled for execution, the task exception handling routine is initiated
instead of the main task A routine. At this time, further task exceptions are disabled, and the
task’s current pending-exception pattern is cleared.

(d) The task exception handling routine is executed. The pattern for the pending exception is
passed to the task exception handling routine.

(e) On return from the task exception handling routine, execution of the main task A routine is
resumed.

49

Control of task exception handling is implemented by the service calls listed below.

(1) Define Task Exception Handling Routine (def_tex, idef_tex)

Defines a task exception handling routine for the task with the specified ID.

(2) Request Task Exception Handling (ras_tex, iras_tex)

Requests task exception handling for the task with the specified ID. The pattern to indicate the
reason for the exception should be specified.

(3) Enable Task Exception Handling (ena_tex)

The current task is shifted to the task exception handling enabled state.

(4) Disable Task Exception Handling (dis_tex)

The current task is shifted to the task exception handling disabled state.

(5) Reference Task Exception Handling Disabled State (sns_tex)

Checks if task exception handling is disabled for the current task.

(6) Reference Task Exception Handling State (ref_tex, iref_tex)

Refers to the task exception handling state of the task with a specified ID.

50

5.5 Semaphores

A semaphore is an object used to prevent conflicts over resources such as devices or variables
shared by multiple tasks. For example, if task switching occurs while task A is updating a shared
variable and task B refers to this variable when updating of its value is not complete, task B may
incorrectly read the shared variable. Such conflicts can be prevented by using semaphores.

A semaphore provides exclusive control and a synchronization function by expressing the
existence of a resource or the number of resources as a counter.

Applications must be programmed so that semaphores are associated with resources to be
exclusively controlled.

Note the following rules on exclusive control using a semaphore.

• A task should acquire the semaphore before using the associated resource

• A task should release the semaphore after its usage of the resource is finished

Figure 5.9 shows an example of semaphore usage.

Task A

wai_sem: Task A attempts to acquire the semaphore
 but fails to enter the WAITING state Acquires the semaphore

wai_sem: Acquires the semaphore The current task is switched to task A for
some reason sig_sem: Releases the semaphore

: Period over which the task has the semaphore (access to the associated resource is allowed)

Time

Task B

Figure 5.9 Example of Semaphore Usage

51

Control related to semaphores is implemented by the service calls listed below.

(1) Create Semaphore (cre_sem, icre_sem)

Creates a semaphore with the specified ID.

(2) Create Semaphore (acre_sem, iacre_sem)

Creates a semaphore with an ID that is automatically assigned by the kernel and returned.

(3) Delete Semaphore (del_sem)

Deletes a semaphore.

(4) Acquire Semaphore Resource (wai_sem, twai_sem)

Acquires a semaphore. If the semaphore’s counter has a positive value, the counter is decremented
by one. If the semaphore cannot be acquired (semaphore count = 0), the task enters the WAITING
state.

wai_sem and twai_sem can be issued for a semaphore of the other CPU.

(5) Acquire Semaphore Resource (pol_sem, ipol_sem)

Acquires a semaphore. The only difference between these service calls and wai_sem or twai_sem
is that an error is immediately returned and the task does not enter the WAITING state when the
semaphore count is 0.

pol_sem can be issued for a semaphore of the other CPU.

(6) Release Semaphore Resource (sig_sem, isig_sem)

Releases a semaphore. When a task is waiting to acquire a semaphore, either service call makes
the task leave the WAITING state. If not, the counter is incremented by one.

sig_sem can be issued for a semaphore of the other CPU.

(7) Reference Semaphore’s State (ref_sem, iref_sem)

Refers to the state of a semaphore, including its counter and the IDs of waiting tasks.

ref_sem can be issued for a semaphore of the other CPU.

52

5.5.1 Priority Inversion

When a semaphore is used for exclusive control of a resource, a problem called priority inversion
may arise. This refers to the situation where a task that is not using a resource delays the execution
of a task requesting the resource.

Figure 5.10 illustrates this problem. In this figure, tasks A and C are using the same resource,
which task B does not use. Task A attempts to acquire a semaphore so that it can use the resource
but enters the WAITING state because task C is already using the resource. Task B has a priority
higher than task C and lower than task A. Thus, if task B is executed before task C has released the
semaphore, release of the semaphore is delayed by the execution of task B. This also delays
acquisition of the semaphore by task A. From the viewpoint of task A, a lower-priority task that is
not even competing for the resource gets priority over task A. To avoid this problem, use a mutex
instead of a semaphore.

High

Priority

Low

Task A

Task B

Task C

wai_sem: Failed to acquire the semaphore
and enters the WAITING state

Time taken for task A to acquire the semaphore depends
on the execution time of task B

Acquires the semaphore

slp_tsk: Enters the WAITING state

sig_sem: Releases the semaphore
Time

Task B is executed for some reason
Task A is executed for some
reason

: The semaphore has been acquired in this period.

wai_sem: Acquires the semaphore

Figure 5.10 Priority Inversion

53

5.6 Event Flags

An event flag is a group of bits that correspond to events. One event corresponds to one bit.

A task can be made to wait for one (OR condition) or all (AND condition) of the specified bits to
be set. Whether more than one task is allowed to wait for a specific bit of an event flag to be set
can be selected as an attribute when the event flag is created. Either of the following attributes is
selectable.

• TA_WMUL (more than one task is allowed to wait)

• TA_WSGL (only one task is allowed to wait)

A TA_CLR attribute is also specifiable; in this case, the bit pattern of the event flag is cleared to 0
whenever the wait condition of a task is satisfied.

One feature of the event-flag mechanism is that multiple tasks can be released from the WAITING
state at the same time. To allow this, specify the TA_WMUL attribute. Do not specify the
TA_CLR attribute in this case.

Figure 5.11 shows an example of task execution control by an event flag. In this figure, six tasks,
task A to task F, have been placed in a wait queue. After the flag pattern has been set to 0x0F by
the service call set_flg, the pattern satisfies the wait conditions for three of the tasks (task A, task
C, and task E). These tasks are sequentially removed from the head of the queue.

If this event flag has the TA_CLR attribute, when task A is released from the WAITING state, the
bit pattern of the event flag will be set to 0, and task C and task E will not be removed from the
queue.

54

Wait queue

Event flag

Event flag

Flag pattern = 0

Flag pattern = 0x0F

Task A Task B Task C Task D Task E Task F

Task B Task D Task F

0x0F 0xFF 0x0F
AND

0xFF 0xFF 0x30
OR

Wait pattern
Wait mode AND

Set 0x0F by set_flg

AND OR OR

Figure 5.11 Task Execution Control by an Event Flag

55

Control related to event flags is implemented by the service calls listed below.

(1) Create Event Flag (cre_flg, icre_flg)

Creates an event flag with the specified ID.

(2) Create Event Flag (acre_flg, iacre_flg)

Creates an event flag with an ID that is automatically assigned by the kernel and returned.

(3) Delete Event Flag (del_flg)

Deletes an event flag.

(4) Wait for Event-Flag Setting (wai_flg, twai_flg)

Makes a task wait until specific bits in the event flag have been set. Select either of the following
wait conditions.

• AND condition: The task waits until all of the specified bits have been set

• OR condition: The task waits until any of the specified bits has been set

When a task is released from the WAITING state, the value of the event flag at satisfaction of the
wait condition is returned to the task that issued this service call. If the TA_CLR attribute has been
specified for the event flag, the event flag is also cleared to 0. In this case, the value of the event
flag immediately before it was cleared is returned to the task that issued this service call.

wai_flg and twai_flg can be issued for an event flag of the other CPU.

(5) Acquire Event Flag Value (pol_flg, ipol_flg)

Checks if specified bits in an event flag have been set. The only difference between these service
calls and wai_flg or twai_flg is that an error code is immediately returned and the task does not
enter the WAITING state if the condition is not satisfied.

pol_flg can be issued for an event flag of the other CPU.

(6) Set Event Flag (set_flg, iset_flg)

Sets an event flag to a specified bit pattern. This may release tasks with wait conditions that match
the pattern.

set_flg can be issued for an event flag of the other CPU.

56

(7) Clear Event Flag (clr_flg, iclr_flg)

Clears specified bits of an event flag.

clr_flg can be issued for an event flag of the other CPU.

(8) Reference Event Flag State (ref_flg, iref_flg)

Refers to the state of an event flag, including its bit pattern and the IDs of waiting tasks.

ref_flg can be issued for an event flag of the other CPU.

5.7 Data Queues

A data queue is an object used to achieve the communication of single words (32-bit units) of data.
Figure 5.12 shows the structure of a data queue.

Receiving data

D
at

a

D
at

a

D
at

a

D
at

aSend data

Data queue

Figure 5.12 Data Queue

Data are sent to a data queue for storage. When data are received from a data queue, the oldest
data are taken out first (on an FIFO basis). The maximum number of data items that can be queued
in a data queue is specifiable when the data queue is created.

Areas for use as data queues can be allocated in the default data-queue area owned by the kernel or
in an area specified by an application. Either method is selectable when the data queue is created.
The size of the default data-queue area should be specified as memdtq.all_memsize in the cfg file.

Data queues are controlled by the service calls listed below.

(1) Create Data Queue (cre_dtq, icre_dtq)

Creates a data queue with the specified ID.

(2) Create Data Queue (acre_dtq, iacre_dtq)

Creates a data queue with an ID that is automatically assigned by the kernel and returned.

57

(3) Delete Data Queue (del_dtq)

Deletes a data queue.

(4) Send Data to Data Queue (snd_dtq, tsnd_dtq)

Sends data to a data queue. When the data queue is full of data, the calling task enters the
WAITING state.

snd_dtq and tsnd_dtq can be issued for a data queue of the other CPU.

(5) Send Data to Data Queue (psnd_dtq, ipsnd_dtq)

Sends data to a data queue. The only difference between these service calls and snd_dtq or
tsnd_dtq is that an error code is immediately returned and the calling task does not enter the
WAITING state if the data queue is full.

psnd_dtq can be issued for a data queue of the other CPU.

(6) Forcibly Send Data to Data Queue (fsnd_dtq, ifsnd_dtq)

Sends data to a data queue. When the data queue is full of data, the oldest data are deleted and the
new data are sent.

fsnd_dtq can be issued to a data queue of the other CPU.

(7) Receive Data from Data Queue (rcv_dtq, trcv_dtq)

Receives data from a data queue. When the data queue has no data, the calling task enters the
WAITING state. If the data queue was full of data and a task was waiting to send data, this call
releases the first task in the wait queue for sending data from the WAITING state.

rcv_dtq and trcv_dtq can be issued for a data queue of the other CPU.

(8) Receive Data from Data Queue (prcv_dtq, iprcv_dtq)

Receives data from a data queue. When the data queue has no data, an error code is returned. If the
data queue was full of data and a task was waiting to send data, this call releases the first task in
the wait queue for sending data from the WAITING state.

prcv_dtq can be issued for a data queue of the other CPU.

58

(9) Reference Data Queue State (ref_dtq, iref_dtq)

Refers to the state of a data queue, including the number of data stored in the queue and the IDs of
tasks waiting to send or receive data.

ref_dtq can be issued for a data queue of the other CPU.

5.8 Mailboxes

A mailbox is an object used to send or receive messages, which are data of a designated size.
Figure 5.13 shows the structure of a mailbox.

Send a message

Mailbox

Message queue

Receive a message

Figure 5.13 Mailbox

High-speed data communications are achieved regardless of the message size because only the
addresses where the messages start are sent and received. Applications should create messages in
memory areas that are accessible by both the sending and receiving tasks (i.e., messages should
not be created in the local variable areas). A sending task should not access the message area after
it has sent the message.

Using a mailbox for data communications between two CPUs also requires that either

• messages are created in non-cacheable areas or

• the contents of messages are written back into the actual memory before they are sent.

Messages in a mailbox with the TA_MPRI attribute have priority levels. Of the messages in the
mailbox, that with the highest priority will be received first. If priority levels for messages are not
necessary, specify TA_MFIFO rather than TA_MPRI.

59

Mailboxes are controlled by the service calls listed below.

(1) Create Mailbox (cre_mbx, icre_mbx)

Creates a mailbox with the specified ID.

(2) Create Mailbox (acre_mbx, iacre_mbx)

Creates a mailbox with an ID that is automatically assigned by the kernel and returned.

(3) Delete Mailbox (del_mbx)

Deletes a mailbox.

(4) Send Message to Mailbox (snd_mbx, isnd_mbx)

Sends a message to a mailbox.

snd_mbx can be issued for a mailbox of the other CPU.

(5) Receive Message from Mailbox (rcv_mbx, trcv_mbx)

Receives a message from a mailbox. When the mailbox has no message, the task is in the
WAITING state until a message is sent to the mailbox.

rcv_mbx and trcv_mbx can be issued for a mailbox of the other CPU.

(6) Receive Message from Mailbox (prcv_mbx, iprcv_mbx)

Receives a message from a mailbox. The only difference between these service calls and rcv_mbx
or trcv_mbx is that an error code is immediately returned and the task does not enter the
WAITING state if the mailbox has no message.

prcv_mbx can be issued for a mailbox of the other CPU.

(7) Reference Mailbox State (ref_mbx, iref_mbx)

Refers to the address of the first message queued in the mailbox and the IDs of waiting tasks.

ref_mbx can be issued for a mailbox of the other CPU.

60

5.9 Mutexes

A mutex is an object used to achieve exclusive control. It differs from a semaphore on the
following points.

(a) A priority ceiling protocol is applied to avoid priority inversion problems.

(b) A mutex can only be used for exclusive control of a single resource.

A detailed description of (a) is given below.

The priority ceiling protocol is the only method for controlling the priorities of tasks in mutexes of
the HI7200/MP kernel. Strictly speaking, however, the protocol supports a simplified priority
ceiling protocol. In the protocol, each mutex has a specified ceiling priority. When a task acquires
(locks) a mutex, the priority of the task is raised to this ceiling priority. When the task releases
(unlocks) the mutex, the kernel returns the priority of the task to the previous level unless the task
has locked another mutex.

61

Figure 5.14 shows an example of mutex usage.

lo
c_

m
tx

un
l_

m
tx

lo
c_

m
tx

RUNNING

RUNNING

WAITING

WAITING READY

READY

RUNNING

READY

un
l_

m
tx

RUNNING

RUNNING

RUNNING

lo
c_

m
tx

un
l_

m
tx

RUNNING

RUNNING

WAITINGTask A

Task B

Task C

Ceiling priority

Priority

Higher

Lower

Time1 2 3 4 5 6

Figure 5.14 Example of Mutex Usage

Description:

1. Task C locks a mutex by issuing loc_mtx. The priority of task C is raised to the ceiling priority
specified for the mutex.

2. Task A enters the READY state while task C is being executed at the ceiling priority. The
priority of task A is higher than that initially specified for task C. However, task C now locks
the mutex and is thus executed at the ceiling priority. Since this is higher than that of task A,
task A cannot enter the RUNNING state. In other words, while task C has the mutex locked,
execution of task C continues even if task A, with its higher initial priority, becomes ready.

3. Task C unlocks the mutex by issuing unl_mtx. The priority of task C returns to the initial level
and higher-priority task A enters the RUNNING state.

4. Task A issues loc_mtx to raise its priority to the ceiling priority.

5. Task A issues unl_mtx to return its priority to the initial level.

6. Task B issues loc_mtx to raise its priority to the ceiling priority.

7. Task B issues unl_mtx to return its priority to the initial level.

62

Mutexes are controlled by the service calls listed below.

(1) Create Mutex (cre_mtx, icre_mtx)

Creates a mutex with the specified ID and ceiling priority.

(2) Create Mutex (acre_mtx, iacre_mtx)

Creates a mutex with an ID that is automatically assigned by the kernel and returned, and specifies
the ceiling priority for the mutex.

(3) Delete Mutex (del_mtx)

Deletes a mutex.

(4) Lock Mutex (loc_mtx, tloc_mtx)

Locks a mutex and raises the priority of the locking task to its ceiling priority. When another task
has already locked the mutex, the task that issued loc_mtx or tloc_mtx enters the WAITING state
until the mutex is unlocked.

(5) Lock Mutex (ploc_mtx)

Locks a mutex and raises the priority of the locking task to its ceiling priority. The only difference
between this service call and loc_mtx or tloc_mtx is that an error is immediately returned and the
task that issued ploc_mtx does not enter the WAITING state when another task has already locked
the mutex.

(6) Unlock Mutex (unl_mtx)

Unlocks a mutex. If a task is waiting to lock the mutex, this service call makes the task leave the
WAITING state.

(7) Reference Mutex State (ref_mtx, iref_mtx)

Refers to the state of a mutex, including the ID of a task that has locked the mutex and of waiting
tasks.

63

5.9.1 Base Priority and Current Priority

A task has two priority levels: base priority and current priority. Tasks are scheduled according to
current priority.

While a task does not have a mutex locked, its current priority is always the same as its base
priority.

When a task locks a mutex, only its current priority is raised to the ceiling priority specified for the
mutex.

When priority-changing service call chg_pri or ichg_pri is issued, both the base priority and
current priority are changed if the specified task does not have a mutex locked. When the specified
task locks a mutex, only the base priority is changed. When the specified task has a mutex locked
or is waiting to lock a mutex, an E_ILUSE error is returned if a priority higher than the ceiling
priority of the mutex is specified.

The current priority can be checked through service call get_pri or iget_pri.

64

5.10 Message Buffers

Like a mailbox, a message buffer is an object for the sending and receiving of messages, which are
data of a designated size. The only difference is that the actual contents of the messages are copied
and passed. For this reason, the message area becomes available immediately after a message has
been sent, regardless of whether or not the receiving task has received the message.

Figure 5.15 shows the structure of a message buffer.

Send a message

Copy Copy

Message Buffer

M
es

sa
ge

M
es

sa
ge

M
es

sa
ge

M
es

sa
ge Receive a message

Figure 5.15 Message Buffer

Messages sent to a message buffer are stored in the buffer. When a message is received from a
message buffer, the oldest message is taken out first (i.e. operation is FIFO).

Areas for use as message buffers can be allocated in the default message-buffer area owned by the
kernel or in an area specified by an application. Either method is selectable when the message
buffer is created. The size of the default message-buffer area should be specified as
memmbf.all_memsize in the cfg file.

Message buffers are controlled by the service calls listed below.

(1) Create Message Buffer (cre_mbf, icre_mbf)

Creates a message buffer with the specified ID.

(2) Create Message Buffer (acre_mbf, iacre_mbf)

Creates a message buffer with an ID that is automatically assigned by the kernel and returned.

(3) Delete Message Buffer (del_mbf)

Deletes a message buffer.

65

(4) Send Message to Message Buffer (snd_mbf, tsnd_mbf)

Sends a message to a message buffer. For a message to be sent to a massage buffer, the message
buffer must have at least the following amount of free space:

(size of the message in bytes rounded up to a multiple of 4) + 4

When the message buffer has less free space than is required, the task is in the WAITING state
until enough space becomes available.

snd_mbf and tsnd_mbf can be issued for a message buffer of the other CPU.

(5) Send Message to Message Buffer (psnd_mbf, ipsnd_mbf)

Sends a message to a message buffer. The only difference between these service calls and
snd_mbf or tsnd_mbf is that an error code is immediately returned and the task does not enter the
WAITING state if the message buffer does not have enough free space.

psnd_mbf can be issued for a message buffer of the other CPU.

(6) Receive Message from Message Buffer (rcv_mbf, trcv_mbf)

Receives a message from a message buffer. If the message buffer has no messages, the task is in
the WAITING state until a message is sent to the message buffer. When a message is received
from the message buffer, free space in the message buffer increases by the following amount:

(size of the message in bytes rounded up to multiple of 4) + 4

If the amount of free space in the message buffer becomes larger than the size of a message that a
task is waiting to send, the message is sent to the message buffer and the task leaves the
WAITING state.

rcv_mbf and trcv_mbf can be issued for a message buffer of the other CPU.

(7) Receive Message from Message Buffer (prcv_mbf)

Receives a message from a message buffer. The only difference between this service call and
rcv_mbf or trcv_mbf is that an error code is immediately returned and the task does not enter the
WAITING state if the message buffer has no messages.

prcv_mbf can be issued for a message buffer of the other CPU.

66

(8) Reference Message Buffer State (ref_mbf, iref_mbf)

Refers to the state of a message buffer, including the number of messages it contains, the amount
of free space, and the IDs of tasks waiting to send or receive messages.

ref_mbf can be issued for a message buffer of the other CPU.

5.11 Fixed-Sized Memory Pools

A fixed-sized memory pool is an object used to dynamically allocate and release memory blocks
of fixed size. While fixed-sized memory pools cannot be used to acquire memory blocks of
arbitrary size, their advantage over variable-sized memory pools is that acquiring and releasing
blocks produces less overhead. To create a fixed-sized memory pool, specify the size and number
of blocks. Figure 5.16 is a schematic view of a fixed-sized memory pool.

Fixed-sized memory pool

Memory block 1:

Memory block 3:

Memory block 2:

Memory block 4:

Used by task A

Used by task B
Task D

Enters the WAITING state

Request to acquire a memory block

Memory block acquired

Request to acquire
a memory block

No block available Task E

Free

Used by task C

Figure 5.16 Fixed-Sized Memory Pool

Areas for use as fixed-sized memory pools can be allocated from the default fixed-sized memory
pool area owned by the kernel or in an area specified by an application. Either method is selectable
when the pool is created. The size of the default fixed-sized memory pool area should be specified
as memmpf.all_memsize in the cfg file.

67

The user can choose either of the following management methods by the system.mpfmanage
setting in the cfg file.

(1) Conventional method (with IN specified for system.mpfmanage)

The kernel places the kernel management tables adjacent to the memory blocks in the memory
pool.

(2) Extended method (with OUT specified for system.mpfmanage)

The kernel places the kernel management tables outside the memory pool.

With this method, the application must specify the address of the management tables when
creating the fixed-sized memory pool. The application must also allocate an area for
management tables. However, this method eases alignment of the addresses of memory blocks
acquired from fixed-sized memory pools.

Control related to fixed-sized memory pools is implemented by the service calls listed below.

(1) Create Fixed-Sized Memory Pool (cre_mpf, icre_mpf)

Creates a fixed-sized memory pool with the specified ID.

(2) Create Fixed-Sized Memory Pool (acre_mpf, iacre_mpf)

Creates a fixed-sized memory pool with an ID that is automatically assigned by the kernel and
returned.

(3) Delete Fixed-Sized Memory Pool (del_mpf)

Deletes a fixed-sized memory pool.

(4) Get Memory Block (get_mpf, tget_mpf)

Acquires a fixed-sized memory block. When no memory block is available in the memory pool,
the task is in the WAITING state until a memory block is released.

get_mpf and tget_mpf can be issued to a fixed-sized memory pool of the other CPU.

(5) Get Memory Block (pget_mpf, ipget_mpf)

Acquires a fixed-sized memory block. The only difference between these service calls and
get_mpf or tget_mpf is that an error code is immediately returned and the task does not enter the
WAITING state if no memory blocks are available in the memory pool.

pget_mpf can be issued for a fixed-sized memory pool of the other CPU.

68

(6) Release Memory Block (rel_mpf, irel_mpf)

Releases a fixed-sized memory block. When a task is waiting to acquire a memory block, either
service call makes the task leave the WAITING state.

rel_mpf can be issued for a fixed-sized memory pool of the other CPU.

(7) Reference Fixed-Sized Memory Pool State (ref_mpf, iref_mpf)

Refers to the state of a fixed-sized memory pool, including the number of available memory
blocks and the IDs of waiting tasks.

ref_mpf can be issued for a fixed-sized memory pool of the other CPU.

5.12 Variable-Sized Memory Pools

A variable-sized memory pool is an object used to dynamically allocate and release memory
blocks of desired size. While variable-sized memory pools can be used to acquire memory blocks
of arbitrary size, they have a disadvantage in that acquiring and releasing blocks produces more
overhead than with fixed-sized memory pools. Also note that variable-sized memory pools are
subject to fragmentation as described in section 5.12.1, Controlling Memory Fragmentation.

Areas for use as variable-sized memory pools can be allocated from the default variable-sized
memory pool area owned by the kernel or in an area specified by an application. Either method is
selectable when the pool is created. The size of the default variable-sized memory pool area
should be specified as memmpl.all_memsize in the cfg file.

Control related to variable-sized memory pools is implemented by the service calls listed below.

(1) Create Variable-Sized Memory Pool (cre_mpl, icre_mpl)

Creates a variable-sized memory pool with a specified ID.

(2) Create Variable-Sized Memory Pool (acre_mpl, iacre_mpl)

Creates a variable-sized memory pool with an ID that is automatically assigned by the kernel and
returned.

(3) Delete Variable-Sized Memory Pool (del_mpl)

Deletes a variable-sized memory pool.

69

(4) Get Memory Block (get_mpl, tget_mpl)

Acquires a variable-sized memory block. When a variable-sized memory block is acquired, a
management table is created in the memory pool. The available space in the memory pool is thus
reduced by the size of the memory block and that of the management table. When the memory
pool lacks the space for allocation of the block, the task is in the WAITING state until the memory
pool has enough available space. For details of the management table, refer to section 5.12.2,
Management of Variable-Sized Memory Pools.

get_mpl and tget_mpl can be issued for a variable-sized memory pool of the other CPU.

(5) Get Memory Block (pget_mpl, ipget_mpl)

Acquires a variable-sized memory block. The only difference between these service calls and
get_mpl or tget_mpl is that an error is immediately returned and the task does not enter the
WAITING state when no memory block can be acquired from the memory pool.

pget_mpl can be issued for a variable-sized memory pool of the other CPU.

(6) Release Memory Block (rel_mpl, irel_mpl)

Releases a variable-sized memory block. Releasing a memory block increases the amount of
available space in the variable-sized memory pool. For details, refer to section 5.12.2,
Management of Variable-Sized Memory Pools.

When a task has been waiting to acquire a block and the release of another block gives the
memory pool enough available space, the task leaves the WAITING state and acquires the
requested memory block.

rel_mpl can be issued for a variable-sized memory pool of the other CPU.

(7) Reference Variable-Sized Memory Pool State (ref_mpl, iref_mpl)

Refers to the state of a variable-sized memory pool, including the total amount of available
memory, the maximum size of a contiguous memory block, and the IDs of waiting tasks.

ref_mpl can be issued for a variable-sized memory pool of the other CPU.

70

5.12.1 Controlling Memory Fragmentation

The repeated acquisition and release of memory from variable-sized pools causes fragmentation of
free space. Contiguous free space can thus become insufficient even when the total amount of free
space is sufficient; this makes the acquisition of relatively large memory areas impossible (figure
5.17).

Free space

Used

Free space

Used

Used

Free space

Used

Figure 5.17 Fragmentation of Free Space

We strongly recommend specifying NEW for system.newmpl in the cfg file because this slightly
reduces the degree of fragmentation. If PAST is specified for system.newmpl, on the other hand,
the kernel manages variable-sized memory pools in the same manner as the version 1 of the
HI7000/4 series.

Selecting NEW for system.newmpl allows specification of the VTA_UNFRAGMENT attribute to
further reduce the fragmentation of variable-sized memory pools and adds parameters (minimum
block size, number of sectors, and management table address) for the use of this attribute to the
T_CMPL structure, which is specified at the time of variable-sized memory pool creation.
Although specification of the VTA_UNFRAGMENT attribute generally helps in reducing
fragmentation, the degree of fragmentation will still depend on usage of the variable-sized
memory pools.

71

When the VTA_UNFRAGMENT attribute is specified, the variable-sized memory pools are
managed by a sector-based method.

In this method, blocks with sizes up to (smallest block size in bytes × 8) are handled as "small
blocks". The sizes allocated in response to block acquisition requests are rounded up as shown in
table 5.1.

When a "small block" is requested, the kernel creates a sector consisting of blocks of the rounded-
up size. The sector size is always minblksz × 32. This means that the number of blocks in a sector
depends on the requested size.

Table 5.1 Small Block Control

Acquisition Request Size (blksz)*
Size after
Rounding* Number of Blocks in a Sector

0 < blksz ≤ minblksz minblksz 32

minblksz < blksz ≤ minblksz × 2 minblksz × 2 16

minblksz × 2 < blksz ≤ minblksz × 4 minblksz × 4 8

minblksz × 4 < blksz ≤ minblksz × 8 minblksz × 8 4

Note: blksz: Requested size
 minblksz: Smallest block size in bytes

Then the kernel allocates one of the memory blocks in the sector in response to the request. The
remaining blocks in the sector are reserved for later requests for small blocks.

In this manner, small blocks are allocated contiguously to leave larger free spaces available.

Figure 5.18 shows an example of a variable-sized memory pool when the minimum block size is
32.

First a 32-byte memory block is requested. In response, sector [A] with 32 blocks × 32 bytes
= 1024 bytes is allocated and 32-byte area [A-1] in the sector is allocated as the requested block
(figure 5.18 (1)). When a 16-byte memory block is then requested, 32-byte area [A-2] in sector A
is allocated in response (figure 5.18 (2)).

Next, a 36-byte memory block is requested. Since the size of each block in sector A is 32 bytes, no
block in sector A can be assigned in response. Instead, new sector [B] is allocated for 16 blocks ×
64 bytes (since the requested size, 36, is rounded up to a multiple of the minimum block size) =
1024 bytes, and 64-byte area [B-1] is allocated as the requested block (figure 5.18 (3)).

72

[A-1] 32
[A-2] 32
[A-3] 32

[A-32] 32
:

[A-1] 32
[A-2] 32
[A-3] 32

[A-32] 32
:

[B-1] 64
[B-2] 64

:

[B-16] 64

[A-1] 32
[A-2] 32
[A-3] 32

[A-32] 32
:

Sector [A]

Sector [B]

(1) (2) (3)

Figure 5.18 Example of Variable-Sized Memory Pool

If the maximum number of sectors has already been used or there is not enough contiguous free
space to create a new sector, the requested size is allocated and a sector is not created. In such
cases, free space may be fragmented. If there is too little contiguous free space for a block of the
requested size, the memory block is allocated in a sector for larger blocks.

When all blocks in a sector are released, the sector itself is also released.

When a large block is requested (larger than minblksz × 8), the kernel always allocates a block of
the requested size and does not create a sector.

73

5.12.2 Management of Variable-Sized Memory Pools

In each variable-sized memory pool, the kernel creates management tables to manage the allocated
memory blocks. When determining the size required for a variable-sized memory pool, note that
the pool area is used for kernel management tables as well as the memory block areas acquired by
applications.

(1) When PAST is specified for system.newmpl

The kernel creates a 16-byte management table whenever a memory block is acquired. This
management table is released when the memory block is released.

(2) When NEW is specified for system.newmpl

If the VTA_UNFRAGMENT attribute is specified, the kernel also creates a 32-byte management
table when a new sector is created in response to acquisition of a memory block. This management
table is released when the sector is returned.

The kernel also creates a 32-byte management table when a memory block is allocated outside the
sectors while the VTA_UNFRAGMENT attribute is specified or when a memory block is
allocated while the VTA_UNFRAGMENT attribute is not specified. This management table is
released when the memory block is returned.

74

5.13 Time Management

The kernel provides the following functions related to time management:

• Reference to and setting of the system clock

• Time event handler (cyclic handler, alarm handler, and overrun handler) execution control

• Task execution control such as timeout

The kernel uses a counter called the system clock to perform the above functions. The unit of time
used to define time parameters for the service calls is 1 ms. The system.tic_nume and
system.tic_deno settings in the cfg file determine the cycle for supply of the basic time tick.

Using the time management functions requires the TIMER specification for clock.timer and
creation of a timer driver. For how to create a timer driver, see section 12.9, Timer Driver. A
sample timer driver is provided with this product.

5.13.1 Task Timeout

Timeout values for WAITING states are specifiable with service calls that start with t, such as
tslp_tsk and twai_sem.

If the wait condition has not been satisfied after the specified timeout period has elapsed, the task
is taken out of the WAITING state and the error code E_TMOUT is returned as the return value
for the service call.

Timeouts can be used to detect abnormal behavior in the form of events that should have been
generated within the timeout period but were not.

75

tslp_tsk (50) Error E_TMOUT

tslp_tsk (50) E_OK

RUNNING state RUNNING state

Timeout period (50)

RUNNING state RUNNING state

wup_tsk

WAITING state

WAITING state

Figure 5.19 Timeout

5.13.2 Delaying Tasks

A task can be placed in the WAITING state for a specified time by using dly_tsk. When the
specified time has elapsed, the task is taken out of the WAITING state and E_OK is returned as
the return value.

WAITING state

dly_tsk (50)

RUNNING state RUNNING state

Delay time (50)

E_OK

Figure 5.20 Delaying a Task

76

5.13.3 Stopping and Restarting the Timer

The hardware timer used by the kernel can be stopped by calling vstp_tmr and restarted by calling
vrst_tmr or ivrst_tmr.

These functions are used to stop timer interrupts when placing the CPU in the sleep state. An
upper time limit is specified for vstp_tmr. vstp_tmr only stops the timer after no timer event (task
timeout or time event handler) has occurred within the upper time limit.

vrst_tmr or ivrst_tmr is used to restart the timer. When another method is available for measuring
the time over which the timer is stopped, an elapsed time can be specified in vrst_tmr or ivrst_tmr.
This elapsed time specification can be used to adjust the time kept by the kernel, which may lead
to a timer event. When the time over which the timer is stopped is not measurable, always specify
the elapsed time as 0.

Use vsns_tmr to check whether or not the timer is running.

These functions are not defined in the μITRON4.0 specification.

5.13.4 Cyclic Handlers

A cyclic handler is a time-event handler that is initiated cyclically at a specific interval after a
specified initiation phase has elapsed. A cyclic handler is initiated either with or without an
initiation phase to be preserved. When an initiation phase is to be preserved, initiation of the cyclic
handler is based on the timing of cyclic-handler creation. When an initiation phase is not to be
preserved, initiation of the cyclic handler is based on the timing with which the cyclic handler is
started.

Figure 5.21 shows examples of cyclic handler operation.

77

Initiation
phase

Initiation
cycle

Initiation
cycle

Initiation
cycle

Initiation
cycle

Not initiated Not initiated Not initiatedCyclic handler Cyclic handler

(Initiated) (Initiated)

Create a cyclic handler
(cre_cyc)

Start a cyclic handler
(sta_cyc)

Stop a cyclic handler
(stp_cyc)

Time

(a)

(b)

(c)

(d)

(e)

(f)

(I) Initiation phase is stored

Initiation
phase

Initiation
cycle

Initiation
cycle

Initiation
cycle

Initiation
cycle

Not initiated Not initiated Not initiatedCyclic handler Cyclic handler

(Initiated) (Initiated)

Create a cyclic handler
(cre_cyc)

Start a cyclic handler
(sta_cyc)

Stop a cyclic handler
(stp_cyc)

Time

(a)

(b)

(c)

(d)

(e)

(f)

(II) Initiation phase is not stored

Figure 5.21 Examples of Cyclic Handler Operation

78

Extended information specified at the time of creation is passed to the cyclic handler. Cyclic
handlers are controlled by the service calls listed below.

(1) Create Cyclic Handler (cre_cyc, icre_cyc)

Creates a cyclic handler with the specified ID.

(2) Create Cyclic Handler (acre_cyc, iacre_cyc)

Creates a cyclic handler with an ID that is automatically assigned by the kernel and returned.

(3) Delete Cyclic Handler (del_cyc)

Deletes a cyclic handler.

(4) Start Cyclic Handler (sta_cyc, ista_cyc)

Initiates a cyclic handler.

sta_cyc can be issued for a cyclic handler of the other CPU.

(5) Stop Cyclic Handler (stp_cyc, istp_cyc)

Stops a cyclic handler.

stp_cyc can be issued for a cyclic handler of the other CPU.

(6) Reference Cyclic Handler State (ref_cyc, iref_cyc)

Refers to the operating state of the cyclic handler, including the time left until the cyclic handler is
initiated.

ref_cyc can be issued for a cyclic handler of the other CPU.

79

5.13.5 Alarm Handler

An alarm handler is a time-event handler that is initiated once when the specified time is reached.
Alarm handlers can be used to make processing run on a timetable.

Figure 5.22 shows an example of alarm handler operation.

Initiation time

Alarm handler is not initiated.Alarm handler

(Initiated)

Create an alarm
handler (cre_alm)

Start an alarm
handler (sta_alm)

Stop an alarm
handler (stp_alm)

Time

(a) (b)

(c)

(d)

Start an alarm
handler (sta_alm)

Initiation time

(e)

Figure 5.22 Example of Alarm Handler Operation

Extended information specified at the time of creation is passed to the alarm handler. Alarm
handlers are controlled by the service calls listed below.

(1) Create Alarm Handler (cre_alm, icre_alm)

Creates an alarm handler with the specified ID.

(2) Create Alarm Handler (acre_alm, iacre_alm)

Creates an alarm handler with an ID that is automatically assigned by the kernel and returned.

(3) Delete Alarm Handler (del_alm)

Deletes an alarm handler.

(4) Start Alarm Handler (sta_alm, ista_alm)

Initiates an alarm handler after the specified time has elapsed.

sta_alm can be issued for an alarm handler of the other CPU.

80

(5) Stop Alarm Handler (stp_alm, istp_alm)

Stops an alarm handler.

stp_alm can be issued for an alarm handler of the other CPU.

(6) Reference Alarm Handler State (ref_alm, iref_alm)

Refers to the operating status of the alarm handler and the time left until the alarm handler is
initiated.

ref_alm can be issued to an alarm handler of the other CPU.

5.13.6 Overrun Handler

The overrun handler is a time-event handler. The processor time limit can be set for each of the
tasks. When a task uses the processor for a longer time than the limit, the overrun handler is
started. Only one overrun handler can be defined in a single system.

Figure 5.23 shows an example of overrun handler operation.

Upper limit
processor time

An overrun handler is not initiated.Overrun handler

(Start execution)

Define an
overrun handler
(def_ovr)

Time

(a) (b)

(c)

(d) (e)

Start an
overrun handler
(sta_ovr)

Upper limit
processor time

Start an
overrun handler
(sta_ovr)

Stop an
overrun handler
(stp_ovr)

Figure 5.23 Example of Overrun Handler Operation

81

IDs and extended information of tasks for overrun handling are passed to the overrun handler. The
overrun handler is controlled by the service calls listed below.

(1) Define Overrun Handler (def_ovr)

Defines an overrun handler.

(2) Start Overrun Monitoring of Task (sta_ovr, ista_ovr)

Sets an upper time limit for a specified task. When the task is executed for more than the specified
time, the overrun handler is initiated.

sta_ovr can be issued for a task of the other CPU.

(3) Stop Overrun Monitoring of Task (stp_ovr, istp_ovr)

Stops the overrun monitoring of a specified task.

stp_ovr can be issued for a task of the other CPU.

(4) Reference Overrun Monitoring Status of Task (ref_ovr, iref_ovr)

Refers to the status of overrun monitoring for a specified task, including the time left until the
upper limit.

ref_ovr can be issued for a task of the other CPU.

82

5.13.7 Time Precision

The unit of time used for setting time parameters, such as a timeout period, is 1 ms, but the
precision of time is TIC_NUME/TIC_DENO [ms]. This precision applies to updating of the
system clock and time management. TIC_NUME and TIC_DENO are respectively defined in
system.tic_nume and system.tic_deno of the cfg file.

A time event (timeout occurrence or cyclic handler initiation) is generated after the specified time
has passed.

Figure 5.24 shows examples of tslp_tsk(5) execution when the actual time is 9.2 ms.

9 System
clock

tslp_tsk(5)

10 11 12 13 14 15 16 17 18

9 System
clock

tslp_tsk(5)

12 15 18

9 System
clock

10 11 12 13 14 15 16 17 18

tslp_tsk(5)

5 ms or longer -> 5 ms

5 ms or longer -> 6 ms

5 ms or longer -> 5 ms

Timeout

Timeout

Timeout

[Example 1: TIC_NUME = TIC_DENO = 1]

[Example 2: TIC_NUME = 3 and TIC_DENO = 1]

[Example 3: TIC_NUME = 1 and TIC_DENO = 2]

Figure 5.24 Time Precision (tslp_tsk)

83

The timing of initiation of a cyclic handler is as described below.

(1) Cyclic handler for which the TA_PHS attribute has not been specified

(a) Operation started by sta_cyc or ista_cyc

From the time of the sta_cyc or ista_cyc call, the timing of the nth round of handler
initiation is the value of the following expression.

 (Initiation cycle) × n

(b) Operation started by specifying the TA_STA attribute at the time of handler creation

From the time of creation, the timing of the nth round of handler initiation is the value
obtained from the following expression.

 (Initiation phase) + (Initiation cycle) × (n – 1)

(2) Cyclic handler for which the TA_PHS attribute has been specified

Handling is the same as case (b) under (1). However, whether or not the handler is actually
initiated depends on its operational state at the given time on each cycle.

Figure 5.25 shows examples of the timing of a cyclic handler when the call to start it (sta_cyc) is
made at an actual time of 9.5 ms and the initiation cycle is three. Note that when the initiation
cycle is less than TIC_NUME/TIC_DENO (as in example 2), there may be cases where the
initiation handler is initiated two or more times with the same timing.

84

 [Example 1: TIC_NUME = TIC_DENO = 1]

[Example 2: TIC_NUME = 5 and TIC_DENO = 1]

18 ms or longer → 18 ms

15 ms or longer → 15 ms

12 ms or longer → 12 ms

9 ms or longer → 9 ms

6 ms or longer → 6 ms

3 ms or longer → 3 ms

System
clock

sta_cyc

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 ..

6th time

6th time

5th time

5th time

4th time

4th time

3rd time

3rd time

2nd time

2nd time

1st time

18 ms or longer → 20 ms

15 ms or longer → 15 ms

12 ms or longer → 15 ms

9 ms or longer → 10 ms

6 ms or longer → 10 ms

3 ms or longer → 5 ms

System
clock 5 10 15 20 25 30

6th time

5th time

4th time

3rd time

2nd time

1st time

1st time

sta_cyc 6th time4th and 5th time2nd and 3rd time1st time

Figure 5.25 Time Precision (sta_cyc)

85

5.13.8 Notes on Time Management

The kernel performs the following processing when a timer interrupt occurs.

(a) Updates the system clock.

(b) Initiates and executes alarm handlers.

(c) Initiates and executes cyclic handlers.

(d) Initiates and executes the overrun handler.

(e) Performs task timeout processing specified by service calls with the timeout function and
dly_tsk.

These processes are all performed with the timer interrupt level or lower interrupt levels masked.
Among these processes, (b), (c), and (e) may overlap for multiple tasks and handlers. In that case,
the processing time of the kernel becomes very long and results in the following defects.

• Delay of the response to interrupts

• Delay of the system clock

To avoid these problems, the following steps must be taken.

• The time for time event handler processing must be as short as possible.

• The time event handler cycles and the timeout values specified by timeout service calls must
be set to the largest possible values. As an extreme example, if the cycle time of a cyclic
handler is 1 ms and the handler's processing takes longer than 1 ms, that cyclic handler will be
executed forever; and the system will hang.

86

5.14 System State Management

5.14.1 Managing System State

(1) Rotate Ready Queue (rot_rdq, irot_rdq)

This service call establishes the time-sharing system (TSS). That is, rotating the ready queue at
regular intervals accomplishes the round-robin scheduling required for the TSS.

…
…

…
…

1

2

3 Task C

Task D Task En

Task ATask A

Priority

Task B

Moved to the end of the queue

Figure 5.26 Management of the Ready Queue by rot_rdq

(2) Get Current Task ID (get_tid, iget_tid)

get_tid refers to the ID of the task in the RUNNING state. When iget_tid is issued in a non-task
context, the ID of the task running at the time is acquired.

(3) Lock CPU (loc_cpu, iloc_cpu) and Unlock CPU (unl_cpu, iunl_cpu)

loc_cpu or iloc_cpu makes the system enter the CPU-locked state. To subsequently leave the
CPU-locked state, issue unl_cpu or iunl_cpu.

(4) Disable Dispatch (dis_dsp) and Enable Dispatch (ena_dsp)

dis_dsp makes the system enter the dispatch-disabled state. To subsequently leave the dispatch-
disabled state, issue ena_dsp.

87

(5) Check Context (sns_ctx)

Checks whether the system is in a task or non-task context.

(6) Check CPU-Locked State (sns_loc)

Checks if the system is in the CPU-locked state.

(7) Check Dispatch-Disabled State (sns_dsp)

Checks if the system is in the dispatch-disabled state.

(8) Check Dispatch-Pending State (sns_dpn)

Checks if the system is in the dispatch-pending state. The dispatch-pending state means that
processing with a higher priority than the dispatcher is in progress so that no other task can be
executed. To be more specific, each of the following cases corresponds to the dispatch-pending
state.

• CPU-locked state

• Dispatch-disabled state

• Non-task context

• Execution of normal CPU exception handler

• IMASK level in SR is not 0

Unless the system is in the dispatch-pending state, all service calls to make a task enter the
WAITING state are available. When developing software (e.g., middleware) that may be invoked
from any system state, this service call (sns_dpn) is useful for checking the current system state to
see whether a service call that makes a task enter the WAITING state can be processed or will lead
to an error being returned.

88

5.14.2 Service Calls Associated with Initialization

(1) Start Kernel (vsta_knl, ivsta_knl)

Initiates the kernel according to the results of configuration.

(2) Initialize Remote Service-Call Environment (vini_rmt)

Initializes the remote service-call environment according to the result of configuration.

5.14.3 System Down (vsys_dwn, ivsys_dwn)

vsys_dwn makes the system go down and initiates the system-down routine.

5.14.4 Service Call Trace

The service call trace function acquires the history of service calls. The acquired trace information
can be displayed by using the debugging extension.

Define whether or not the trace function is to be used as system.trace in the cfg file.

For details on the trace function, refer to the help information for the debugging extension.

(1) Trace Timing and Information to be Acquired

Trace information is acquired with the following timing.

• On issuing of and return from service calls

• Initiation and completion of tasks and task exception handling routines

• Transitions to the kernel-idling state

The following set of information is acquired.

• Type of service call

• Parameters for the service call

• Error codes for the service call

• Value of the program counter (PC)

• Trace serial number

A trace serial number is a serial number for a set of acquired trace information which is common
to both CPUs.

89

(2) Trace Type

The trace information can be stored either in a buffer allocated to the RAM on the target system or
in the trace memory of the simulator or emulator, as selected by the system.trace setting in the cfg
file. The former is called a target trace and the latter is called a tool trace. For a target trace,
specify the buffer size as system.trace_buffer.

Although environments where a tool trace is available are limited to those including a simulator or
emulator, a tool trace does not require the buffer for tracing on the target system.

(3) Number of Objects

In the debugging extension, the state of the objects specified by the user can also be acquired with
the trace timing. The maximum number of objects that can be traced at one time should be
specified as system.trace_object in the cfg file.

(4) User Event Trace (vget_trc, ivget_trc)

Use vget_trc or ivget_trc to acquire any user-specified information with the user-specified timing.

(5) Tracing of Start and End of Interrupt Handlers or CPU Exception Handlers (ivbgn_int,
ivend_int)

By default, trace information on the start and end of interrupt handlers and CPU exception
handlers is not acquired. To make the debugging extension show the execution history of a handler,
call ivbgn_int and ivend_int at the start and end of handler execution, respectively. A vector
number should also be specified for these service calls as information to identify the handler.

90

(6) Note on Service Call Tracing

a. Degradation of performance

When the service call tracing functions are used, the performance of the kernel is degraded.

b. Service call information not traced

Service calls for non-task contexts of the form ixxx_yyy are all acquired as if they were service
calls for task contexts of the form xxx_yyy.

The following service calls cannot be traced.

⎯ cal_svc, ical_svc

⎯ vsta_knl, ivsta_knl

⎯ vsys_dwn, ivsys_dwn

c. Trace serial number

When system.trace!=NO, the trace serial numbers may be inconsistent. To avoid this problem,
call vsta_knl on CPUID#2 after starting the initialization routine or the first task on CPUID#1.

5.15 Interrupt Management

When an interrupt is generated, the corresponding interrupt handler is initiated. Interrupt handlers
should be defined through interrupt_vector[] or by issuing a def_inh or idef_inh service call. Also
refer to section 4.8, Interrupts.

(1) Define Interrupt Handler (def_inh, idef_inh)

Defines an interrupt handler for a specified vector number.

(2) Change Interrupt Mask Level (chg_ims, ichg_ims)

Changes the interrupt mask level (the IMASK bits in register SR) to a specified value.

(3) Reference Interrupt Mask Level (get_ims, iget_ims)

Refers to the current mask level (the IMASK bits in register SR).

91

5.16 Extended Service Calls

A service call processing routine can be created and defined in the kernel as an extended service
call routine. An application can call an extended service call routine without being linked to the
routine.

Each extended service call is identified by a positive function code. The maximum value for use as
a function code should be defined as maxdefine.max_fncd in the cfg file.

Extended service calls are controlled by the service calls listed below.

(1) Define Extended Service-Call Routine (def_svc, idef_svc)

Defines an extended service-call routine with the specified function code.

(2) Call Extended Service-Call Routine (cal_svc, ical_svc)

Issues the extended service call with the specified function code. This initiates the corresponding
extended service-call routine. In cal_svc or ical_svc, up to four 32-bit integers can be specified as
parameters for passing to the extended service-call routine.

5.17 System Configuration Management

(1) Define CPU Exception Handler (def_exc, idef_exc)

Defines a CPU exception handler for a specified vector number.

(2) Define CPU Exception (TRAPA-Instruction Exception) Handler (vdef_trp, idef_trp)

Defines a CPU exception handler for a specified trap number.

(3) Reference Configuration Information (ref_cfg, iref_cfg)

Refers to configuration information such as the maximum local object ID for objects.

(4) Reference Version Information (ref_ver, iref_ver)

Refers to the version numbers of the kernel and the μITRON specification implemented in the
kernel. The information acquired by ref_ver or iref_ver can also be acquired through kernel
configuration macros (refer to section 6.31.2, Kernel Configuration Macros).

92

5.18 Profile Management

The profile management function samples the running task at a specified interval to give the user
statistics on the execution ratio of tasks. This function is not defined in the μITRON4.0
specification.

Respective 32-bit profile counters are provided for overall time, each task, and kernel idling. The
timer-interrupt processing for the kernel executed in cycles of TIC_NUME/TIC_DENO
milliseconds governs updating of these counters. That is, incrementation of the individual profile
counters for the running task or kernel idling, and that for the overall time, proceeds with this
cycle (figure 5.27).

…

Profile counter for overall time

Task ID = 1

Task ID = 2

Task ID = 3

Kernel idling

Ta
sk

 ID
 =

 1

Ta
sk

 ID
 =

 2

Ta
sk

 ID
 =

 3

K
er

ne
l i

dl
in

g

Increment

Increment

Individual profile counters

Figure 5.27 Profile Management

93

Although the results are not exact, a long period of measurement gives approximate execution
times for tasks as calculated by the formula below.

Execution time (ms) =
Value of an individual profile counter for a task × (TIC_NUME/TIC_DENO)

In addition, the CPU usage of a task or of kernel idling can be estimated by dividing the value of
the corresponding profile counter by the value of the profile counter for overall time.

Issuing vsta_knl initializes all profile counters to 0. Individual profile counters for tasks are also
initialized when the corresponding tasks are deleted.

Also note that the kernel does not detect any overflow of the profile counters. For example, the
counters will start to overflow in 50 days when TIC_NUME/TIC_DENO = 1 ms, and in 12 hours
or so when TIC_NUME/TIC_DENO = 10 μs.

The HI7200/MP offers the following profile management function service calls.

(1) Reference Profile Counter (vref_prf, ivref_prf)

Refers to the value of a specified profile counter.

vref_prf can be issued for a task of the other CPU.

(2) Clear Profile Counter (vclr_prf, ivclr_prf)

Clears a specified profile counter.

vclr_prf can be issued for a task of the other CPU.

94

5.19 Kernel Idling

When there is no READY task, the kernel enters an endless loop and waits for interrupts.

The lowest-priority task is usually used to make transitions to low power consumption modes of
the CPU.

95

Section 6 Kernel Service Calls

6.1 Calling Form
All service calls are described in the following C language function call format.

ercd = slp_tsk();

6.2 Header Files
Programs that issue service calls should include kernel.h which is located under
<RTOS_INST>\os\include\.

kernel.h includes the files listed in table 6.1.

Table 6.1 Files Included in kernel.h

Directory File Name Description

itron.h Definitions for the ITRON specification
common regulations.

<RTOS_INST>\os\include\

kernel_api.h Definitions for the kernel service calls.

Specified by user kernel_intspec.h Definitions for the hardware specifications
related to interrupts.

For details, refer to section 17.3, Creating CPU
Interrupt Specification Definition File
(kernel_intspec.h).

Output by cfg72mp kernel_macro.h Definitions for the kernel configuration
constants which are determined at
configuration.

 mycpuid.h Definitions for MYCPUID (current CPU ID).

6.3 Basic Data Types
The basic data types are shown in table 6.2. These basic data types are defined on the basis of
types.h.

For types.h, refer to section 19, types.h.

96

Table 6.2 Basic Data Types

No. Data Type Meaning No. Data Type Meaning

1 B 8-bit signed integer 22 STAT 32-bit unsigned integer

2 H 16-bit signed integer 23 MODE 32-bit unsigned integer

3 W 32-bit signed integer 24 PRI 16-bit signed integer

4 D 64-bit signed integer 25 SIZE 32-bit unsigned integer

5 UB 8-bit unsigned integer 26 TMO 32-bit signed integer

6 UH 16-bit unsigned integer 27 RELTIM 32-bit unsigned integer

7 UW 32-bit unsigned integer A structure which
contains the following
members:

8 UD 64-bit unsigned integer Upper: 16-bit unsigned
integer

9 VB 8-bit signed integer*

28 SYSTIM

Lower: 32-bit unsigned
integer

10 VH 16-bit signed integer* 29 VP_INT 32-bit signed integer*

11 VW 32-bit signed integer* 30 ER_BOOL 32-bit signed integer

12 VD 64-bit signed integer* 31 ER_ID 32-bit signed integer

13 VP Pointer to void type
function

 32 ER_UINT 32-bit signed integer

14 FP Pointer to void type
function

 33 TEXPTN 32-bit unsigned integer

15 INT Signed integer (signed
int)

 34 FLGPTN 32-bit unsigned integer

16 UINT Unsigned integer
(unsigned int)

 35 RDVPTN 32-bit unsigned integer

17 BOOL Signed integer (signed
int)

 36 RDVNO 32-bit unsigned integer

18 FN 32-bit signed integer 37 OVRTIM 32-bit unsigned integer

19 ER 32-bit signed integer 38 INHNO 32-bit unsigned integer

20 ID 16-bit signed integer 39 EXCNO 32-bit unsigned integer

21 ATR 32-bit unsigned integer 40 IMASK 32-bit unsigned integer

Note: * When the variable values of these data types are referred to or substituted, the type
must be explicitly converted (casted).

97

6.4 Register Contents Guaranteed after Issuing Service Call
Some registers guarantee the contents after a service call is issued but some do not. This rule
follows the Renesas C compiler. The details are shown in table 6.3.

Table 6.3 Register Contents Guaranteed after Issuing Service Call

Register Register State after Service Call Return

SR, R8 to R15, PR,
GBR, MACH, MACL

The register contents are guaranteed. IMASK bits in SR are updated
when service call chg_ims, ichg_ims, loc_cpu, iloc_cpu, unl_cpu, or
iunl_cpu is issued.

R0 Normal end (E_OK) or an error code is set.

R1 to R7 The register contents are guaranteed only when they are specified as
return parameters.

TBR The register contents are guaranteed when system.tbr is set as
FOR_SVC (use for only service call) or TASK_CONTEXT (task context).

For SH2A-FPU:
FR0 to FR11

The register contents are not guaranteed.

For SH2A-FPU:
FPSCR, FPUL, FR12
to FR15

The register contents are guaranteed only when a service call is issued
in either one of the following states.

• From a task with the TA_COP1 attribute or a task exception handling

routine

• In dispatch-pending state

6.5 Return Value of Service Call and Error Code

6.5.1 Overview

For service calls that have return values, a positive value or 0 (E_OK) indicates a normal end, and
a negative value indicates an error code. The meaning of the return value at a normal end differs
according to the service call; however, only E_OK is returned at a normal end for many service
calls.

However, for service calls that have a BOOL-type return value, this is not the case.

6.5.2 Parameter Check Function

In this kernel, detection of parameter errors can be omitted. If the parameter check function is
omitted after debugging is completed, the overhead and code size can be reduced.

To omit the parameter check function, define NO for system.parameter_check.

98

6.5.3 Stack Overflow Detection

Stack overflow is a failure that is hard to determine where it has occurred. This function is a
debugging function to assist in determining the location.

For only a service call issued in a task context, this function inspects whether the stack has
overflowed when the service call has been issued. If the stack has overflowed, the system goes
down.

However, this inspection is not performed for some service calls. The information on which
service call is inspected is not released because it depends on the kernel version.

Note that this function inspects whether the stack has overflowed at only the point at which the
service call was issued. Stack overflow in the application is not detected. For example, in a case
where the number of nestings of the stack becomes greater than that when the service call was
issued on the application side.

This function is always enabled. (There are no settings related to this function in the cfg file.)

6.5.4 Main Error Code and Suberror Code

An error code consists of a main error code (lower 8 bits) and a suberror code (the remaining
upper bits). The suberror code of all error codes returned by this kernel is always −1.

The following macros are defined in standard header itron.h.

• ER MERCD(ER ercd); Extracts the main error code from the error code.

• ER SERCD(ER ercd); Extracts the suberror code from the error code.

• ER ERCD(ER mercd, ER sercd); Generates the error code using the main error code and
 suberror code.

99

6.6 System State and Service Calls
Whether a service call can be issued depends on the system state.

6.6.1 Task Contexts and Non-Task Contexts

(1) Special Service Calls

The following service calls can be issued in either task contexts or non-task contexts.

• vsta_knl, ivsta_knl

• vsys_dwn, ivsys_dwn

(2) Service Calls Starting with sns or vsns

The service calls whose names start with "sns" or "vsns" can be issued in either task contexts or
non-task contexts.

(3) Other Service Calls

The service calls whose names start with "i" are dedicated to non-task contexts, and the other
service calls are for task contexts.

The service calls for task contexts are further classified into the following two types.

(a) Service calls for which no corresponding service calls starting with "i" are provided
(e.g. del_tsk; there is no idel_tsk)

If this type of service call is issued in a non-task context, an E_CTX error will be returned.

(b) Service calls for which corresponding service calls starting with "i" are provided
(e.g. act_tsk and iact_tsk)

In the kernel, the processing for a service call with "i" is the same as that for the corresponding
service call without "i". Accordingly, when a service call starting with "i" is issued in a task
context or when a service call without "i" is issued in a non-task context, no E_CTX error will
be detected and the service call is processed correctly.

Note that this behavior is only for this version of kernel implementation, and it may change in
a later version of the kernel.

To improve the portability of an application, programming is recommended to be done
following the rule that the service calls starting with "i" are for non-task contexts and the other
service calls are for task contexts.

100

6.6.2 CPU-Locked State

Service calls that can be issued in the CPU-locked state are listed below. No E_CTX error is
detected when a service call other than these is issued in the CPU-locked state. In this case, correct
system operation cannot be guaranteed. Note that, when a service call that shifts a task to the
WAITING state is issued, an E_CTX error is detected.

• ext_tsk (CPU-locked state will be canceled)

• exd_tsk (CPU-locked state will be canceled)

• sns_tex

• loc_cpu, iloc_cpu

• unl_cpu, iunl_cpu

• sns_ctx

• sns_loc

• sns_dsp

• sns_dpn

• vsta_knl, ivsta_knl

• vsys_dwn, ivsys_dwn

• vsns_tmr

6.6.3 Dispatch-Disabled State

When a service call that shifts a task to the WAITING state is issued in this state, an E_CTX error
is returned.

101

6.6.4 Normal CPU Exception Handler

The service calls that can be issued from the normal CPU exception handler are listed below.

• iras_tex

• sns_tex

• sns_loc

• sns_dsp

• sns_dpn

• get_tid, iget_tid

• vsta_knl, ivsta_knl

• vsys_dwn, ivsys_dwn

• vsns_tmr

No E_CTX error will be detected when a service call other than these is issued from the normal
CPU exception handler. In this case, correct operation cannot be guaranteed.

6.6.5 When SR.IMASK is Changed to a Non-Zero Value in a Task Context

This state is handled as a non-task context.

6.7 ID Number

6.7.1 Overview

Software components operated by service calls, such as tasks and semaphores, are referred to as
"objects". ID numbers are used to identify the objects. An ID number is expressed as a 16-bit
signed integer.

An independent ID number space is prepared for each object type. The ID number space for each
object type is one plane for all CPUs.

The ID number consists of the CPU ID and local object ID, as shown in figure 6.1.

102

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ID number

Sign bit
Local object ID

CPU ID

Figure 6.1 ID Number

(1) CPU ID

The CPU ID is assigned to each CPU starting from number 1.

In the SH2A-DUAL, the CPU ID of CPU#0 is determined as 1 and the CPU ID of CPU#1 is
determined as 2. If a CPU ID other than that of the current CPU is specified for the object to be
operated in a service call, that service call is handled as a "remote service call".

The same CPU as the caller of the service call can be specified by using VCPU_SELF.
VCPU_SELF is a macro defined as 0 in kernel.h and is not defined in the μITRON4.0
specification.

The CPU ID is handled as unsigned data.

(2) Local Object ID

The local object ID ranges between 1 and _MAX_???. _MAX_??? is the "maximum ID" among
the objects output to kernel_cfg.h by cfg72mp. For details, refer to section 6.31.2 (8), Kernel
Configuration Macros Output to kernel_cfg.h by cfg72mp (not in the μITRON4.0 Specification).

Bit 15 in the ID number serves as the sign bit of the local object ID. A negative local object ID is
used for making special specifications in some of the service calls.

6.7.2 Function Macros Related to ID Number

The following macros are prepared for facilitating use of the ID number, CPU ID, and local object
ID. These macros are defined in kernel.h.

These macros are not defined in the μITRON4.0 specification.

• ID GET_CPUID(ID id) Returns CPU ID of id

• ID GET_LOCALID(ID id) Returns local object ID of id

• ID MAKE_ID(ID cpuid, ID localid) Returns ID number consisting of cpuid and localid

103

6.8 Behavior of Service Calls

6.8.1 Remote Service Call and Local Service Call

In a service call that has the object ID to be operated as a parameter, the CPU that contains the
object to be operated is specified by the CPU ID of that object ID. However, specification of
another CPU is not permitted in some of the service calls.

If the object ID of another CPU is specified, the service call means a request to the kernel of
another CPU and is referred to as a "remote service call".

If the object ID of the current CPU is specified or if the service call does not have the object ID as
a parameter, the service call means a request to the kernel of the current CPU and is referred to as
a "local service call".

The kernel structure is shown in figure 6.2.

SVC server task
SVC server task

SVC server task

SVC server task
SVC server task

SVC server task

IPI IPI

CPUID#2

API layer

Application

Local kernel

API layer

Application

CPUID#1

Local kernel

Blue arrow: Local servce call from CPUID#1
Red arrow: Remote servce call from CPUID#1

Figure 6.2 Kernel Structure

The region in yellow is the kernel of each CPU.

The local kernel is a module almost equivalent to the μITRON4.0 specification kernel for a
conventional single CPU. It manages the tasks and objects in the current CPU and has the task
scheduling function.

The API layer is an interface layer between the local kernel and application. When a service call is
issued, first the API layer is executed. The API layer is executed in the same way as a normal
function. Thus, the API layer operates in the same state as the caller (context type or stack), and
task switching may be performed during processing.

104

The SVC server tasks accept remote service-call requests from another CPU and perform the role
of issuing the service calls to the kernel of the current CPU instead of the calling tasks.

6.8.2 Behavior of Local Service Call

The API layer calls the local kernel of the current CPU. On returning from the local kernel, control
will return to the caller after the return value has been set.

6.8.3 Behavior of Remote Service Call

The following definitions related to remote service calls are made in the cfg file of each CPU. For
details, refer to section 14.3.10, Defining the Remote Service-Call Environment (remote_svc).

• Number of SVC server tasks (remote_svc.num_server)

• Priority of SVC server tasks (remote_svc.priority)

• Stack size used by SVC server tasks (remote_svc.stack_size)

• IPI port in use (remote_svc.ipi_portid)

• Maximum number of tasks waiting for an available SVC server task (remote_svc.num_wait)

First, in service call vini_rmt that initializes the remote service-call environment, SVC server tasks
for the number of num_server are created and initiated using service call acre_tsk. SVC server
tasks are then shifted to the WAITING state by service call slp_tsk until remote service-call
requests are sent from another CPU.

A remote service call is processed using the following procedure.

1. When a remote service call is issued, the API layer attempts to use an available SVC server
task of the target CPU. However, if vini_rmt in the current CPU or target CPU has not
completed, an EV_NOINIT error will be returned immediately.

If there are no available SVC server tasks in the target CPU, the calling task is shifted to the
WAITING state by slp_tsk in the API layer until an SVC server task becomes available.
However, if remote_svc.num_wait in the current CPU is set to 0, an EV_NORESOURCE error
will be returned immediately.

Before shifting the task to the WAITING state, memory is allocated using pget_mpf in order to
manage the WAITING state. This fixed-sized memory pool is created using acre_mpf in
vini_rmt. The number of memory blocks is specified by remote_svc.num_wait. When
pget_mpf fails because there is no free memory block in the memory pool or for other reasons,
an EV_NORESOURCE error will be returned to the caller.

2. After becoming able to use an SVC server task, the API layer then wakes up that SVC server
task in the target CPU by using the IPI. The IPI port used here is remote_svc.ipi_portid in the
target CPU. The calling task is shifted to the WAITING state by slp_tsk and remains in this
state in the API layer until SVC server task processing has completed.

105

3. The woken up SVC server task in the target CPU issues the service call (local service call)
requested to the kernel of the current CPU (target CPU when seen from the caller of the
service call). The behavior at this point is the same as that in section 6.8.2, Behavior of Local
Service Call. When returning from this service call, the SVC server task sets the return value
and notifies the calling CPU that processing has completed through the IPI. The IPI port used
here is remote_svc.ipi_portid in the calling CPU.

4. The requesting task that was kept in the WAITING state in the API layer is woken up. The
API layer sets the return value and returns from the service call.

6.8.4 Notes on Remote Service Call

• When a remote service call is issued, the wakeup request count for the calling task must be 0.

• A service call that will change the task state, such as ter_tsk, rel_wai, and sus_tsk, must not be
issued for an SVC server task or a task in the middle of calling a remote service call.

• In the case of a remote service call with a timeout setting, timeout will be specified in the
service calls issued by SVC server tasks. The remote service call is sometimes shifted to the
WAITING state by slp_tsk (no timeout specification) before it has been processed by the SVC
server task as a client processing, as shown in section 6.8.3, Behavior of Remote Service Call.

6.9 Service Calls not in the μITRON4.0 Specification
The service-call names starting with “v”, “iv”, or “V”, such as vset_tfl, are not defined in the
µITRON4.0 specification.

The following "ixxx_yyy"-format service calls (starting with "i'") are also not defined in the
µITRON4.0 specification. They are provided to enable the "xxx_yyy"-format service calls
corresponding to the following service calls to be issued in non-task contexts because the
"xxx_yyy"-format service calls are defined to be issued only in task contexts in the µITRON4.0
specification.

icre_tsk, iacre_tsk, ista_tsk, ichg_pri, iget_pri, iref_tsk, iref_tst, isus_tsk, irsm_tsk, frsm_tsk,
idef_tex, iref_tex, icre_sem, iacre_sem, ipol_sem, iref_sem, icre_flg, iacre_flg, iclr_flg, ipol_flg,
iref_flg, icre_dtq, iacre_dtq, iref_dtq, icre_mbx, iacre_mbx, isnd_mbx, iprcv_mbx, iref_mbx,
icre_mbf, iacre_mbf, ipsnd_mbf, iref_mbf, icre_mpf, iacre_mpf, ipget_mpf, iref_mpf, icre_mpl,
iacre_mpl, ipget_mpl, iref_mpl, iset_tim, iget_tim, icre_cyc, iacre_cyc, ista_cyc, istp_cyc,
iref_cyc, iacre_alm, iacre_alm, ista_alm, istp_alm, iref_alm, ista_ovr, istp_ovr, iref_ovr, idef_inh,
ichg_ims, iget_ims, idef_svc, ical_svc, idef_exc, iref_cfg, iref_ver

106

6.10 Service Call Description Form
Service calls are described in details as shown in figure 6.3 in this section.

Section Brief function description (Service call name)

C-Language API:

 Service call issuing format

Parameters:

 Parameter name Meaning

 : :

Return Values:

 Parameter name Meaning

 : :

Packet Structure:

 Type Member name Meaning

 : : :

Error Codes:

 Mnemonic Type Meaning

 : : :

Function:

 ...

Figure 6.3 Service Call Description Form

107

(1) Error Code

• E_CTX

In this kernel, detection of an E_CTX error is limited. No E_CTX error will be detected in a
service call for which E_CTX is not listed in "Error Code" in each service call description
shown later.

• E_NOSPT

An E_NOSPT error will be returned if an unconfigured service call (service call defined as NO
in service_call) is issued.

An E_NOSPT error will also be returned if a remote service call is issued to a kernel that has
been configured with the number of SVC server tasks (remote_svc.num_server) specified as 0.

This error code is not listed in "Error Code" in each service call description shown later.

• EV_NOINIT or EV_NORESOURCE

There is a possibility that these errors will be returned when a remote service call is issued. For
details, refer to section 6.8.3, Behavior of Remote Service Call.

These error codes are not listed in "Error Code" in each service call description shown later.

(2) Error Code Type

• [k]: Detected in all states.

• [p]: Detected only when YES is set for system.parameter_check.

108

6.11 Task Management
Tasks are managed by the service calls listed in table 6.4.

Table 6.4 Service Calls for Task Management

System State*2

Service Call*1 Description T N E D U L C

cre_tsk [s] O O O O

icre_tsk

Creates task using non-static
stack O O O O

vscr_tsk [s] O O O O

ivscr_tsk

Creates task using static stack

 O O O O

acre_tsk O O O O

iacre_tsk

Creates task and assigns task
ID automatically O O O O

del_tsk Deletes task O O O O

act_tsk [S] [R] O O Δ O

iact_tsk [S]

Activates task

 O O O O

can_act [S] [R] O O Δ O

ican_act

Cancels task activation
requests O O O O

sta_tsk [B] [R] O O Δ O

ista_tsk

Activates task and specifies
startup code O O O O

ext_tsk [B] [S] Terminates current task O O O O O

exd_tsk [S] Terminates and deletes current
task

O O O O O

ter_tsk [B] [S] [R] Terminates another task O O Δ O

chg_pri [B] [S] [R] O O Δ O

ichg_pri

Changes task priority

 O O O O

get_pri [S] [R] O O Δ O

iget_pri

Acquires task priority

 O O O O

ref_tsk [R] O O Δ O

iref_tsk

Refers to task state

 O O O O

ref_tst [R] O O Δ O

iref_tst

Refers to task state (simple
version) O O O O

vchg_tmd Changes task execution mode O O O O

Notes: 1. [S]: Standard profile service calls
[s]: Service calls that are not standard profile service calls but are needed in order to
 use the standard profile function
[B]: Basic profile service calls
[R]: Service calls that can be issued remotely

109

 2. T: Can be called in a task context
N: Can be called in a non-task context
E: Can be called in dispatch-enabled state
D: Can be called in dispatch-disabled state
U: Can be called in CPU-unlocked state
L: Can be called in CPU-locked state
C: Can be called while executing the normal CPU exception handler
O: Can be called in the state
Δ: Can be called in the state only when a local object is the target

The task management specifications are listed in table 6.5.

Table 6.5 Task Management Specifications

Item Description

Local task ID 1 to _MAX_TSK (1023 max.)

Task priority 1 to TMAX_TPRI (255 max.)

Maximum activation request
count

15

Task attributes TA_HLNG: Written in a high-level language

TA_ASM: Written in assembly language

TA_ACT: Task makes a transition to the READY state after
 it has been created

TA_COP1: FPU is used

110

6.11.1 Create Task
(cre_tsk, icre_tsk)
(acre_tsk, iacre_tsk: Assign Task ID Automatically)
(vscr_tsk, ivscr_tsk) (Using Static Stack)

C-Language API:
 ER ercd = cre_tsk(ID tskid, T_CTSK *pk_ctsk);

 ER ercd = icre_tsk(ID tskid, T_CTSK *pk_ctsk);

 ER_ID tskid = acre_tsk(T_CTSK *pk_ctsk);

 ER_ID tskid = iacre_tsk(T_CTSK *pk_ctsk);

 ER ercd = vscr_tsk(ID tskid, T_CTSK *pk_ctsk);

 ER ercd = ivscr_tsk(ID tskid, T_CTSK *pk_ctsk);

Parameters:
 pk_ctsk Pointer to the packet where the task creation information is

stored

 <cre_tsk, icre_tsk, vscr_tsk, ivscr_tsk>

 tskid Task ID

Return Values:
 <cre_tsk, icre_tsk, vscr_tsk, ivscr_tsk>

 Normal end (E_OK) or error code

 <acre_tsk, iacre_tsk>

 Created task ID (a positive value) or error code

Packet Structure:
 typedef struct {

 ATR tskatr; Task attribute

 VP_INT exinf; Extended information

 FP task; Task start address

 PRI itskpri; Initial task priority

 SIZE stksz; Task stack size

 VP stk; Start address of task stack area

 }T_CTSK;

111

Error Codes:
 E_NOMEM [k] Insufficient memory

(Task stack area cannot be allocated in the memory)

 E_RSATR [p] Reserved attribute (tskatr is invalid)

 E_PAR [p] Parameter error

(1) stksz is other than a multiple of four, stksz = 0, or

stksz ≥ 0x80000000

(2) itskpri ≤ 0 or

TMAX_TPRI of current CPU < itskpri

 E_ID [p] Invalid ID number

(1) CPU ID is invalid (cre_tsk, icre_tsk, vscr_tsk,

ivscr_tsk)

(GET_CPUID (tskid) is not the current CPU)

(2) Out of local ID range

 (a) GET_LOCALID (tskid) ≤ 0 or (_MAX_TSK of GET_CPUID

(tskid)) < GET_LOCALID (tskid) (cre_tsk, icre_tsk,

vscr_tsk, ivscr_tsk)

 (b) GET_LOCALID (tskid) ≤ (_MAX_STTSK of GET_CPUID

(tskid)) (cre_tsk, icre_tsk)

 E_OBJ [k] Object state is invalid (The task specified by tskid is not

in the DORMANT state or the current task is specified)

(cre_tsk, icre_tsk, vscr_tsk, ivscr_tsk)

 E_NOID [k] No ID available (acre_tsk, iacre_tsk)

Function:

Service call cre_tsk, icre_tsk, acre_tsk, or iacre_tsk creates a task that uses the default task stack
area or the stack area allocated by the user, while vscr_tsk or ivscr_tsk creates a task that uses a
static stack. The created task makes a transition to the DORMANT state when the TA_ACT
attribute is not specified, or to the READY state when the TA_ACT attribute is specified.

Each of these service calls can create a task belonging to the kernel of the current CPU. This
kernel does not have service calls for creating an object belonging to the kernel of another CPU.

The processing that is performed at task creation is listed in table 6.6.

112

Table 6.6 Processing to be Performed at Task Creation

Contents

Clears the activation request count.

Resets the task state so that the task exception handling routine is not defined.

Resets the task state so that the processing time limit is not specified.

Assigns a stack (for cre_tsk and acre_tsk).

The following describes the meaning of the parameters.

(1) tskid

Service call vscr_tsk or ivscr_tsk creates a task that uses a static stack. 1 to (_MAX_STTSK of
current CPU) can be specified for the local ID of tskid. VCPU_SELF or the current CPU ID must
be specified for the CPU ID of tskid.

Service call cre_tsk or icre_tsk creates a task that uses the default task stack area or the stack area
allocated by the user. A value from (_MAX_STTSK of current CPU + 1) to (_MAX_TSK of
current CPU) can be specified for the local ID of tskid. VCPU_SELF or the current CPU ID must
be specified for the CPU ID of tskid.

Service call acre_tsk or iacre_tsk also creates a task that uses the default task stack area or the
stack area allocated by the user. However, either service call searches for an unused task ID,
creates a task with that ID, and returns the ID to tskid. The range searched for the local task ID is
(_MAX_STTSK of current CPU + 1) to (_MAX_TSK of current CPU). The CPU ID of the task
ID that will be returned is the current CPU ID.

(2) tskatr

Parameter tskatr specifies the language in which the task is written and the coprocessor to be used
as the attributes.

tskatr := ((TA_HLNG || TA_ASM) [|TA_ACT] [|TA_COP1])

• TA_HLNG (0x00000000): Written in a high-level language

• TA_ASM (0x00000001): Written in assembly language

• TA_ACT (0x00000002): Task makes a transition to the READY state after it has been
 created

• TA_COP1 (0x00000200): FPU is used

When the TA_ACT attribute is specified, extended information (exinf) is passed to the task as a
parameter.

113

The FPU registers can also be guaranteed as task context by specifying the TA_COP1 attribute.
Note that the TA_COP1 attribute is not defined in the µITRON4.0 specification.

(3) exinf

Parameter exinf can be widely used by the user, for example, to set information concerning tasks
to be created.

(4) task

Specify the task start address.

(5) itskpri

Specify 1 to TMAX_TPRI as the task priority at initiation.

(6) stksz

Parameter stksz is valid only for service calls cre_tsk, icre_tsk, acre_tsk, and iacre_tsk and
specifies the stack size of the task to be created. A multiple of four can be specified for the stack
size.

Note that stksz has no meaning to service calls vscr_tsk and ivscr_tsk because each service call
creates a task that uses the static stack. Parameter stksz is ignored in kernel processing.

(7) stk

Parameter stk is effective in cre_tsk, icre_tsk, acre_tsk, and iacre_tsk service calls.

When NULL is specified for stk, the kernel allocates a stack from the default task stack area. After
that, the size of the free space in the default task stack area will decrease by an amount given by
the following expression:

Decrease in size = stksz + 16 bytes

The stack area address allocated by application can be specified as stk. In this case, allocate a
stack area for the size specified by stksz and specify the start address of the area.

Service calls vscr_tsk and ivscr_tsk are functions not defined in the µITRON4.0 specification.

114

6.11.2 Delete Task (del_tsk)

C-Language API:
 ER ercd = del_tsk(ID tskid);

Parameters:
 tskid Task ID

Return Values:
 Normal end (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number

(1) CPU ID is invalid (GET_CPUID (tskid) is not the current

CPU)

(2) Out of local ID range

(GET_LOCALID (tskid) ≤ 0 or

(_MAX_TSK of GET_CPUID (tskid)) < GET_LOCALID (tskid))

 E_CTX [k] Context error (Called in prohibited system state)

 E_NOEXS [k] Non-existent object (Task specified by tskid does not exist)

 E_OBJ [k] Object state is invalid (Task specified by tskid is not in the

DORMANT state or the current task is specified)

Function:

Service call del_tsk deletes the task indicated by parameter tskid. The deleted task makes a
transition to the NON-EXISTENT state. The profile counter of the deleted task ID is initialized to
0.

Only a task belonging to the kernel of the current CPU can be specified for tskid.

If the stack for the task specified by tskid has been allocated from the default task stack area, the
stack for that task is released. After that, the size of the free space in the default task stack area
will increase by an amount given by the following expression:

Increase in size = (stksz specified at creation) + 16 bytes

115

6.11.3 Activate Task (act_tsk, iact_tsk)

C-Language API:
 ER ercd = act_tsk(ID tskid);

 ER ercd = iact_tsk(ID tskid);

Parameters:
 tskid Task ID

Return Values:
 Normal end (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number

(1) CPU ID is invalid (GET_CPUID (tskid) is invalid)

(2) Out of local ID range

(GET_LOCALID (tskid) < 0 or

(_MAX_TSK of GET_CPUID (tskid)) < GET_LOCALID (tskid))

(3) tskid = TSK_SELF (0) when called in a non-task context

 E_CTX [k] Context error (Called in prohibited system state when

GET_CPUID (tskid) is not the current CPU)

 E_NOEXS [k] Non-existent object (Task specified by tskid does not exist)

 E_QOVR [k] Queuing overflow (actcnt > 15)

Function:

Each service call activates the task indicated by parameter tskid. The activated task makes a
transition from the DORMANT state to the READY state.

The processing that is performed during task activation is listed in table 6.7.

Table 6.7 Processing to be Performed during Task Activation

Contents

Initializes base priority and current priority of the task.

Clears the wakeup request count.

Clears the suspension count.

Clears pending-exception causes.

Sets task exception handling disabled state.

Clears the flag pattern of the task event flag.

By specifying tskid = TSK_SELF (0), the current task is specified.

116

Extended information of the task specified at task creation will be passed to the task as the
parameter.

If the static stack of the task indicated by tskid is not being used by any task when service calls
act_tsk and iact_tsk are issued, the task indicated by tskid occupies the shared stack and shifts to
the READY state.

If the stack is being used by another task, the task indicated by tskid shifts to the WAITING state
and is placed in the shared-stack wait queue since the stack area cannot be used. The wait queue is
managed on a first-in first-out (FIFO) basis.

When the task is not in the DORMANT state, up to 15 task activation requests from service calls
act_tsk and iact_tsk can be queued.

In service call act_tsk, a task belonging to the kernel of another CPU can be specified as tskid,
except for in dispatch-pending state. In service call iact_tsk, a task belonging to the kernel of
another CPU cannot be specified as tskid.

117

6.11.4 Cancel Task Activation Requests (can_act, ican_act)

C-Language API:
 ER_UINT actcnt = can_act(ID tskid);

 ER_UINT actcnt = ican_act(ID tskid);

Parameters:
 tskid Task ID

Return Values:
 Activation request count (positive value or 0), or error code

Error Codes:
 E_ID [p] Invalid ID number

(1) CPU ID is invalid (GET_CPUID (tskid) is invalid)

(2) Out of local ID range

(GET_LOCALID (tskid) < 0 or

(_MAX_TSK of GET_CPUID (tskid)) < GET_LOCALID (tskid))

(3) tskid = TSK_SELF (0) when called in a non-task context

 E_CTX [k] Context error (Called in prohibited system state when

GET_CPUID (tskid) is not the current CPU)

 E_NOEXS [k] Non-existent object (Task specified by tskid is not created)

Function:

Each service call returns the activation request count for the task specified by tskid, and clears the
activation request count.

By specifying tskid=TSK_SELF (0), the current task is specified.

A task in the DORMANT state can also be specified; in this case each service call returns 0.

In service call can_act, a task belonging to the kernel of another CPU can be specified as tskid,
except for in dispatch-pending state. In service call ican_act, a task belonging to the kernel of
another CPU cannot be specified as tskid.

118

6.11.5 Activate Task with Start Code (sta_tsk, ista_tsk)

C-Language API:
 ER ercd = sta_tsk(ID tskid, VP_INT stacd);

 ER ercd = ista_tsk(ID tskid, VP_INT stacd);

Parameters:
 tskid Task ID

 stacd Start code

Return Values:
 Normal end (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number

(1) CPU ID is invalid (GET_CPUID (tskid) is invalid)

(2) Out of local ID range

(GET_LOCALID (tskid) ≤ 0 or

(_MAX_TSK of GET_CPUID (tskid)) < GET_LOCALID (tskid))

 E_CTX [k] Context error (Called in prohibited system state when

GET_CPUID (tskid) is not the current CPU)

 E_NOEXS [k] Non-existent object (Task specified by tskid does not

exist)

 E_OBJ [k] Object state is invalid (The task specified by tskid is not

in the DORMANT state or the current task is specified)

Function:

Each service call initiates the task indicated by parameter tskid. The initiated task makes a
transition from the DORMANT state to the READY state. At this time, the processing to be
performed during task activation (table 6.7) is performed. The start code indicated by parameter
stacd will be passed to the initiated task as the parameter.

If the static stack of the task indicated by tskid is not being used by any task when service calls
sta_tsk and ista_tsk are issued, the task indicated by tskid occupies the shared stack and shifts to
the READY state.

If the stack is being used by another task, the task indicated by tskid shifts to the WAITING state
and is placed in the shared-stack wait queue since the stack area cannot be used. The wait queue is
managed on a first-in first-out (FIFO) basis.

In service call sta_tsk, a task belonging to the kernel of another CPU can be specified as tskid,
except for in dispatch-pending state. In service call ista_tsk, a task belonging to the kernel of
another CPU cannot be specified as tskid.

119

6.11.6 Terminate Current Task (ext_tsk),
Terminate and Delete Current Task (exd_tsk)

C-Language API:
 void ext_tsk(void);

 void exd_tsk(void);

Return Values:
 Service calls ext_tsk and exd_tsk do not return to the position where they

were issued.

However, if service call ext_tsk or exd_tsk is issued without being installed

at system configuration, error code E_NOSPT is set in R0 and returned.

In addition, service calls ext_tsk and exd_tsk may generate the following

error, and in this case, the system will go down.

 E_CTX [k] Context error (Called in prohibited system state)

Function:

Service call ext_tsk exits the current task normally. After execution of service call ext_tsk, the
current task makes a transition from the RUNNING state to the DORMANT state. When an
activation request is queued, service call ext_tsk exits the current task and then restarts the task.

The processing that is performed at task termination is listed in table 6.8.

Table 6.8 Processing to be Performed at Task Termination

Contents

Unlock the mutex locked by the task

Set the processing time limit as undefined

Service call exd_tsk exits the current task normally and deletes it. After execution of service call
exd_tsk, the current task makes a transition from the RUNNING state to the NON-EXISTENT
state. The profile counter of the deleted task is initialized to 0.

Service calls ext_tsk and exd_tsk do not release resources other than mutexes (such as semaphores
and memory blocks) acquired before the task is exited. Therefore, the user must call service calls
to release resources before exiting the task.

120

If the task that issues service calls ext_tsk and exd_tsk shares the stack with other tasks, the task at
the head of the stack wait queue is removed and WAITING state is canceled. At this time, the
processing to be performed during task activation (table 6.7) is performed for the task that is
removed from the stack wait queue and the task makes a transition to the READY state.

If a stack allocated from the default task stack area is used by the task that issued service call
exd_tsk, the stack for that task is released. After that, the size of the free space in the default task
stack area will increase by an amount given by the following expression:

Increase in size = (stksz specified at creation) + 16 bytes

Service calls ext_tsk and exd_tsk can be issued while task dispatch is disabled or the CPU is
locked. After either of the service calls is issued, the dispatch-disabled state or CPU-locked state is
canceled.

Note that when the task returns from the start function, the same operation as for service call
ext_tsk will be performed.

121

6.11.7 Terminate Another Task (ter_tsk)

C-Language API:
 ER ercd = ter_tsk(ID tskid);

Parameters:
 tskid Task ID

Return Values:
 Normal end (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number

(1) CPU ID is invalid (GET_CPUID (tskid) is not the current

CPU)

(2) Out of local ID range

(GET_LOCALID (tskid) ≤ 0 or

(_MAX_TSK of GET_CPUID (tskid)) < GET_LOCALID (tskid))

 E_CTX [k] Context error (Called in prohibited system state)

 E_NOEXS [k] Non-existent object (Task specified by tskid does not

exist)

 E_OBJ [k] Object state is invalid

(Task specified by tskid is in the DORMANT state)

 E_ILUSE [k] Illegal use of service call

(ID of the current task is specified for tskid)

Function:

Service call ter_tsk forces a task specified by tskid to terminate. The terminated task enters the
DORMANT state. At this time, the processing shown in table 6.8 is performed.

When the activation request is queued, the processing to be performed during task activation is
performed, and the target task enters the READY state.

A request from a task to force another task to terminate is delayed in the following cases:

• If the task specified by tskid is masking requests from other tasks to force tasks to terminate by
calling service call vchg_tmd

Service call ter_tsk does not release resources other than the mutexes (such as semaphores and
memory blocks) acquired before the task is terminated. Therefore, the user must call service calls
to release resources before calling service call ter_tsk.

122

If the task specified by tskid shares the stack with other tasks, the task at the head of the stack wait
queue is removed and released from the WAITING state. At this time, the processing to be
performed during task activation (table 6.7) is performed for the task that is removed from the
stack wait queue and the task makes a transition to the READY state.

In service call ter_tsk, a task belonging to the kernel of another CPU can be specified as tskid,
except for in dispatch-pending state.

6.11.8 Change Task Priority (chg_pri, ichg_pri)

C-Language API:
 ER ercd = chg_pri(ID tskid, PRI tskpri);

 ER ercd = ichg_pri(ID tskid, PRI tskpri);

Parameters:
 tskid Task ID

 tskpri Base priority of task

Return Values:
 Normal end (E_OK) or error code

Error Codes:
 E_PAR [p] Parameter error

(1) tskpri < 0

(2) tskpri > TMAX_TPRI of GET_CPUID (tskid)

 E_ID [p] Invalid ID number

(1) CPU ID is invalid (GET_CPUID (tskid) is invalid)

(2) Out of local ID range

(GET_LOCALID (tskid) < 0 or

(_MAX_TSK of GET_CPUID (tskid)) < GET_LOCALID (tskid))

(3) tskid = TSK_SELF (0) when called in a non-task context

 E_CTX [k] Context error (Called in prohibited system state when

GET_CPUID (tskid) is not the current CPU)

 E_NOEXS [k] Non-existent object (Task specified by tskid does not

exist)

 E_ILUSE [k] Illegal use of service call (Ceiling priority is exceeded)

 E_OBJ [k] Object state is invalid (Task is in the DORMANT state)

Function:

Each service call changes the base priority of the task specified by parameter tskid to the value
specified by parameter tskpri. The current priority is also changed.

By specifying tskid = TSK_SELF (0), the current task can also be specified.

123

Specifying tskpri = TPRI_INI (0) returns the task priority to the initial priority that was specified
at task creation.

A priority changed by the service calls is valid until the task is terminated or until the service calls
are issued again. When a task makes a transition to the DORMANT state, the task priority before
termination becomes invalid and returns to the initial task priority specified at task creation.

If the task specified by tskid is in the WAITING state and TA_TPRI is specified for the object
attribute, the wait queue can be changed by the service calls and as a result, the task at the head of
the wait queue may be released from the WAITING state.

If the base priority specified in parameter tskpri is higher than the ceiling priority of one of the
mutexes when the target task locks or waits to lock the mutexes with the TA_CEILING attribute,
E_ILUSE is returned.

In service call chg_pri, a task belonging to the kernel of another CPU can be specified as tskid,
except for in dispatch-pending state. In service call ichg_pri, a task belonging to the kernel of
another CPU cannot be specified as tskid.

6.11.9 Get Task Priority (get_pri, iget_pri)

C-Language API:
 ER ercd = get_pri(ID tskid, PRI *p_tskpri);

 ER ercd = iget_pri(ID tskid, PRI *p_tskpri);

Parameters:
 tskid Task ID

 p_tskpri Pointer to the memory area where the current priority of the

target task is to be returned

Return Values:
 Normal end (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number

(1) CPU ID is invalid (GET_CPUID (tskid) is invalid)

(2) Out of local ID range

(GET_LOCALID (tskid) < 0 or

(_MAX_TSK of GET_CPUID (tskid)) < GET_LOCALID (tskid))

(3) tskid = TSK_SELF (0) when called in a non-task context

 E_CTX [k] Context error (Called in prohibited system state when

GET_CPUID (tskid) is not the current CPU)

 E_NOEXS [k] Non-existent object (Task specified by tskid does not

exist)

 E_OBJ [k] Object state is invalid (Task is in the DORMANT state)

124

Function:

Each service call acquires the current priority of the task specified by parameter tskid, and returns
it to the area indicated by parameter p_tskpri.

By specifying tskid = TSK_SELF (0), the current task is specified.

In service call get_pri, a task belonging to the kernel of another CPU can be specified as tskid,
except for in dispatch-pending state. In service call iget_pri, a task belonging to the kernel of
another CPU cannot be specified as tskid.

6.11.10 Reference Task State (ref_tsk, iref_tsk)

C-Language API:
 ER ercd = ref_tsk(ID tskid , T_RTSK *pk_rtsk);

 ER ercd = iref_tsk(ID tskid , T_RTSK *pk_rtsk);

Parameters:
 tskid Task ID

 pk_rtsk Pointer to the packet where the task state is to be returned

Return Values:
 Normal end (E_OK) or error code

Packet Structure:
 typedef struct {

 STAT tskstat; Task state

 PRI tskpri; Current priority of the task

 PRI tskbpri; Base priority of the task

 STAT tskwait; Wait cause

 ID wobjid; Wait object ID

 TMO lefttmo; Time to timeout

 UINT actcnt; Activation request count

 UINT wupcnt; Wakeup request count

 UINT suscnt; Suspension count

 UINT tskmode; Task execution mode

 UINT tflptn; Current task event flag value

 }T_RTSK;

125

Error Codes:
 E_ID [p] Invalid ID number

(1) CPU ID is invalid (GET_CPUID (tskid) is invalid)

(2) Out of local ID range

(GET_LOCALID (tskid) < 0 or

(_MAX_TSK of GET_CPUID (tskid)) < GET_LOCALID (tskid))

(3) tskid = TSK_SELF (0) when called in a non-task context

 E_CTX [k] Context error (Called in prohibited system state when

GET_CPUID (tskid) is not the current CPU)

 E_NOEXS [k] Non-existent object (Task specified by tskid does not exist)

Function:

Each service call refers to the state of the task indicated by parameter tskid, and then returns it to
the area indicated by parameter pk_rtsk.

By specifying tskid = TSK_SELF (0), the current task is specified.

The following values are returned to the area indicated by pk_rtsk. Note that data with an asterisk
(*) is invalid when the task is in the DORMANT state. If referenced information is related to a
function that is not installed, the referenced information will be undefined.

• tskstat

Indicates the current task state. The following values are returned.

⎯ TTS_RUN (0x00000001): RUNNING state
⎯ TTS_RDY (0x00000002): READY state
⎯ TTS_WAI (0x00000004): WAITING state
⎯ TTS_SUS (0x00000008): SUSPENDED state
⎯ TTS_WAS (0x0000000c): WAITING-SUSPENDED state
⎯ TTS_DMT (0x00000010): DORMANT state
⎯ TTS_STK (0x40000000): Shared-stack WAITING state

• tskpri

Indicates the current task priority. When the task is in the DORMANT state, the initial priority
of the task is returned.

• tskbpri

Indicates the base priority of the task. When the task is in the DORMANT state, the initial
priority of the task is returned.

126

• tskwait*

Valid only when TTS_WAI or TTS_WAS is returned to tskstat and the following values are
returned.

⎯ TTW_SLP (0x00000001): WAITING state caused by slp_tsk or tslp_tsk
⎯ TTW_DLY (0x00000002): WAITING state caused by dly_tsk
⎯ TTW_SEM (0x00000004): WAITING state caused by wai_sem or twai_sem
⎯ TTW_FLG (0x00000008): WAITING state caused by wai_flg or twai_flg
⎯ TTW_SDTQ (0x00000010): WAITING state caused by snd_dtq or tsnd_dtq
⎯ TTW_RDTQ (0x00000020): WAITING state caused by rcv_dtq or trcv_dtq
⎯ TTW_MBX (0x00000040): WAITING state caused by rcv_mbx or trcv_mbx
⎯ TTW_MTX (0x00000080): WAITING state caused by loc_mtx or tloc_mtx
⎯ TTW_SMBF (0x00000100): WAITING state caused by snd_mbf or tsnd_mbf
⎯ TTW_RMBF (0x00000200): WAITING state caused by rcv_mbf or trcv_mbf
⎯ TTW_MPF (0x00002000): WAITING state caused by get_mpf or tget_mpf
⎯ TTW_MPL (0x00004000): WAITING state caused by get_mpl or tget_mpl
⎯ TTW_TFL (0x00008000): WAITING state caused by vwai_tfl or vtwai_tfl

• wobjid*

Valid only when TTS_WAI or TTS_WAS is returned to tskstat and the waiting target object
ID is returned.

The CPU ID for only the task indicated by parameter tskid is set in bits 14 to 12 of wobjid.

• lefttmo*

The time until the target task times out is returned. Note that when the target task is in the
WAITING state according to service call dly_tsk, the value is undefined.

• actcnt*

The current activation request count is returned.

• wupcnt*

The current wakeup request count is returned.

• suscnt*

The current suspension count is returned.

• tskmode*

The task execution mode set in service call vchg_tmd, and whether there is a request that is
delayed by service call vchg_tmd, are returned. The following value is returned to tskmode.

⎯ ECM_SUS (0x00000001): A suspension request is masked
⎯ ECM_TER (0x00000002): A forcible termination request is masked
⎯ PND_SUS (0x00000004): A suspension request is delayed
⎯ PND_TER (0x00000008): A forcible termination request is delayed

127

• tflptn*

The current task event flag value is returned. However, if the task event flag function was not
installed at system configuration, an undefined value is returned.

tskmode and tflptn are members not defined in the μITRON4.0 specification.

In service call ref_tsk, a task belonging to the kernel of another CPU can be specified as tskid,
except for in dispatch-pending state. In service call iref_tsk, a task belonging to the kernel of
another CPU cannot be specified as tskid.

6.11.11 Reference Task State: Simple Version (ref_tst, iref_tst)

C-Language API:
 ER ercd = ref_tst(ID tskid , T_RTST *pk_rtst);

 ER ercd = iref_tst(ID tskid , T_RTST *pk_rtst);

Parameters:
 tskid Task ID

 pk_rtst Start address of the packet where the task state is to be

returned

Return Values:
 Normal end (E_OK) or error code

Packet Structure:
 typedef struct {

 STAT tskstat; Task state

 STAT tskwait; Wait cause

 }T_RTST;

Error Codes:
 E_ID [p] Invalid ID number

(1) CPU ID is invalid (GET_CPUID (tskid) is invalid)

(2) Out of local ID range

(GET_LOCALID (tskid) < 0 or

(_MAX_TSK of GET_CPUID (tskid)) < GET_LOCALID (tskid))

(3) tskid = TSK_SELF (0) when called in a non-task context

 E_CTX [k] Context error (Called in prohibited system state when

GET_CPUID (tskid) is not the current CPU)

 E_NOEXS [k] Non-existent object (Task specified by tskid does not exist)

128

Function:

Each service call refers to the state and the cause of the WAITING state of the task indicated by
parameter tskid, and then returns it to the area indicated by parameter pk_rtst.

By specifying tskid = TSK_SELF (0), the current task can be specified.

The following values are returned to the area indicated by pk_rtst. Note that data with an asterisk
(*) is invalid when the task is in the DORMANT state. If referenced information is related to a
function that is not installed, the referenced information will be undefined.

• tskstat

Indicates the current task state. The following values are returned.

⎯ TTS_RUN (0x00000001): RUNNING state
⎯ TTS_RDY (0x00000002): READY state
⎯ TTS_WAI (0x00000004): WAITING state
⎯ TTS_SUS (0x00000008): SUSPENDED state
⎯ TTS_WAS (0x0000000c): WAITING-SUSPENDED state
⎯ TTS_DMT (0x00000010): DORMANT state
⎯ TTS_STK (0x40000000): Shared-stack WAITING state

• tskwait*

Valid only when TTS_WAI or TTS_WAS is returned to tskstat and the following values are
returned.

⎯ TTW_SLP (0x00000001): WAITING state caused by slp_tsk or tslp_tsk
⎯ TTW_DLY (0x00000002): WAITING state caused by dly_tsk
⎯ TTW_SEM (0x00000004): WAITING state caused by wai_sem or twai_sem
⎯ TTW_FLG (0x00000008): WAITING state caused by wai_flg or twai_flg
⎯ TTW_SDTQ (0x00000010): WAITING state caused by snd_dtq or tsnd_dtq
⎯ TTW_RDTQ (0x00000020): WAITING state caused by rcv_dtq or trcv_dtq
⎯ TTW_MBX (0x00000040): WAITING state caused by rcv_mbx or trcv_mbx
⎯ TTW_MTX (0x00000080): WAITING state caused by loc_mtx or tloc_mtx
⎯ TTW_SMBF (0x00000100): WAITING state caused by snd_mbf or tsnd_mbf
⎯ TTW_RMBF (0x00000200): WAITING state caused by rcv_mbf or trcv_mbf
⎯ TTW_MPF (0x00002000): WAITING state caused by get_mpf or tget_mpf
⎯ TTW_MPL (0x00004000): WAITING state caused by get_mpl or tget_mpl
⎯ TTW_TFL (0x00008000): WAITING state caused by vwai_tfl or vtwai_tfl

In service call ref_tst, a task belonging to the kernel of another CPU can be specified as tskid,
except for in dispatch-pending state. In service call iref_tst, a task belonging to the kernel of
another CPU cannot be specified as tskid.

129

6.11.12 Change Task Execution Mode (vchg_tmd)

C-Language API:
 ER ercd = vchg_tmd(UINT tmd);

Parameters:
 tmd Task execution mode to change

Return Values:
 Normal end (E_OK) or error code

Error Codes:
 E_PAR [p] Parameter error (tmd is invalid)

 E_CTX [k] Context error (Called in prohibited system state)

Function:

Service call vchg_tmd changes the execution mode of the current task. A mask for requests from
other tasks can be specified in tmd as the task execution mode.

• ECM_SUS (0x00000001): Suspension request is masked

• ECM_TER (0x00000002): Forcible termination request is masked

When the suspension request is masked, even if service call sus_tsk or isus_tsk is issued, the
request is delayed until the mask is canceled (with tmd = 0 specified) by service call vchg_tmd.

When the forced termination request is masked, even if service call ter_tsk is issued, the request is
delayed until the mask is canceled (with tmd = 0 specified) by service call vchg_tmd.

In task execution mode, the state of the calling task is taken over as the task context in extended
service call routines and task exception handling routines.

Delays of suspension requests and forcible termination requests can be referenced through service
calls ref_tsk and iref_tsk.

This service call is a function not defined in the μITRON4.0 specification.

130

6.12 Task-Dependent Synchronization
The service calls for task-dependent synchronization are listed in table 6.9.

Table 6.9 Service Calls for Task-Dependent Synchronization

System State*2

Service Call*1 Description T N E D U L C

slp_tsk [B] [S] Shifts current task to the
WAITING state

O O O

tslp_tsk [S] Shifts current task to the
WAITING state with timeout
function

O O O

wup_tsk [B] [S] [R] O O Δ O

iwup_tsk [B] [S]

Wakes up task

 O O O O

can_wup [B] [S] [R] O O Δ O

ican_wup

Cancels wakeup task

 O O O O

rel_wai [B] [S] [R] O O Δ O

irel_wai [B] [S]

Forcibly cancels the WAITING
state O O O O

sus_tsk [B] [S] [R] O O Δ O

isus_tsk

Shifts the task to the
SUSPENDED state O O O O

rsm_tsk [B] [S] [R] O O Δ O

irsm_tsk

Resumes execution of a task in
the SUSPENDED state O O O O

frsm_tsk [S] [R] O O Δ O

ifrsm_tsk

Forcibly resumes execution of
a task in the SUSPENDED
state

 O O O O

dly_tsk [B] [S] Delays the current task O O O

vset_tfl [R] O O Δ O

ivset_tfl

Sets the task event flag

 O O O O

vclr_tfl [R] O O Δ O

ivclr_tfl

Clears the task event flag

 O O O O

vwai_tfl Waits for the task event flag O O O

vpol_tfl Polls and waits for the task
event flag

O O O O

vtwai_tfl Waits for the task event flag
with timeout function

O O O

131

Notes: 1. [S]: Standard profile service calls
[s]: Service calls that are not standard profile service calls but are needed in order to
 use the standard profile function
[B]: Basic profile service calls
[R]: Service calls that can be issued remotely

 2. T: Can be called in a task context
N: Can be called in a non-task context
E: Can be called in dispatch-enabled state
D: Can be called in dispatch-disabled state
U: Can be called in CPU-unlocked state
L: Can be called in CPU-locked state
C: Can be called while executing the normal CPU exception handler
O: Can be called in the state
Δ: Can be called in the state only when a local object is the target

The task-dependent synchronization specifications are listed in table 6.10.

Table 6.10 Task-Dependent Synchronization Specifications

Item Description

Maximum wakeup request count 15

Maximum suspension count 15

Number of task event flag bits 32 bits (lower 16 bits are reserved for future
expansion)

Initial value of task event flag Initialized as 0 at task activation

Wait condition of task event flag Waits for a logical OR

132

6.12.1 Sleep Task (slp_tsk, tslp_tsk)

C-Language API:
 ER ercd = slp_tsk(void);

 ER ercd = tslp_tsk(TMO tmout);

Parameters:
 <tslp_tsk>

 tmout Timeout specification

Return Values:
 Normal end (E_OK) or error code

Error Codes:
 E_PAR [p] Parameter error (tmout ≤ –2)

 E_CTX [k] Context error (Called in prohibited system state)

 E_TMOUT [k] Timeout

 E_RLWAI [k] WAITING state is forcibly canceled

(rel_wai service call was issued while the task was in the

WAITING state)

Function:

Each service call shifts the current task to the wakeup WAITING state. However, if wakeup
requests are queued for the current task, the wakeup request count is decremented by one and task
execution continues.

The wakeup WAITING state is canceled by service calls wup_tsk and iwup_tsk.

In service call tslp_tsk, parameter tmout specifies the timeout period.

If a positive value is specified for parameter tmout, the WAITING state is released and error code
E_TMOUT is returned when the tmout period has passed without the wait release conditions
being satisfied.

If tmout = TMO_POL (0) is specified, the task continues execution by decrementing the wakeup
request count by one if the wakeup request count is a positive value. If the wakeup request count is
0, error code E_TMOUT is returned.

If tmout = TMO_FEVR (–1) is specified, the same operation as for service call slp_tsk is
performed. In other words, timeout will not be monitored.

The maximum value that can be specified for tmout is (0x7FFFFFFF − TIC_NUME)/TIC_DENO.
If a value larger than this is specified, operation is not guaranteed.

For details on time management, refer to section 5.13.7, Time Precision.

133

6.12.2 Wake up Task (wup_tsk, iwup_tsk)

C-Language API:
 ER ercd = wup_tsk(ID tskid);

 ER ercd = iwup_tsk(ID tskid);

Parameters:
 tskid Task ID

Return Values:
 Normal end (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number

(1) CPU ID is invalid (GET_CPUID (tskid) is invalid)

(2) Out of local ID range

(GET_LOCALID (tskid) < 0 or

(_MAX_TSK of GET_CPUID (tskid)) < GET_LOCALID (tskid))

(3) tskid = TSK_SELF (0) when called in a non-task context

 E_CTX [k] Context error (Called in prohibited system state when

GET_CPUID (tskid) is not the current CPU)

 E_NOEXS [k] Non-existent object (Task specified by tskid does not exist)

 E_OBJ [k] Object state is invalid

(Task specified by tskid is in the DORMANT state)

 E_QOVR [k] Queuing overflow (wupcnt > 15)

Function:

Each service call releases a task from the wakeup WAITING state caused by slp_tsk or tslp_tsk. If
the target task is not in the WAITING state, up to 15 requests to wake up a task can be queued.

By specifying tskid = TSK_SELF (0), the current task can be specified.

In service call wup_tsk, a task belonging to the kernel of another CPU can be specified as tskid,
except for in dispatch-pending state. In service call iwup_tsk, a task belonging to the kernel of
another CPU cannot be specified as tskid.

134

6.12.3 Cancel Wakeup Task (can_wup, ican_wup)

C-Language API:
 ER_UINT wupcnt = can_wup(ID tskid);

 ER_UINT wupcnt = ican_wup(ID tskid);

Parameters:
 tskid Task ID

Return Values:
 Wakeup request count (0 or a positive value) or error code

Error Codes:
 E_ID [p] Invalid ID number

(1) CPU ID is invalid (GET_CPUID (tskid) is invalid)

(2) Out of local ID range

(GET_LOCALID (tskid) < 0 or

(_MAX_TSK of GET_CPUID (tskid)) < GET_LOCALID (tskid))

(3) tskid = TSK_SELF (0) when called in a non-task context

 E_CTX [k] Context error (Called in prohibited system state when

GET_CPUID (tskid) is not the current CPU)

 E_NOEXS [k] Non-existent object (Task specified by tskid is not

created)

 E_OBJ [k] Object state is invalid

(Task specified by tskid is in the DORMANT state)

Function:

Each service call returns the wakeup request count for the task specified by tskid and invalidates
all of those requests.

By specifying tskid = TSK_SELF (0), the current task can be specified.

In service call can_wup, a task belonging to the kernel of another CPU can be specified as tskid,
except for in dispatch-pending state. In service call ican_wup, a task belonging to the kernel of
another CPU cannot be specified as tskid.

135

6.12.4 Forcible Release from WAITING State (rel_wai, irel_wai)

C-Language API:
 ER ercd = rel_wai(ID tskid);

 ER ercd = irel_wai(ID tskid);

Parameters:
 tskid Task ID

Return Values:
 Normal end (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number

(1) CPU ID is invalid (GET_CPUID (tskid) is invalid)

(2) Out of local ID range

(GET_LOCALID (tskid) ≤ 0 or

(_MAX_TSK of GET_CPUID (tskid)) < GET_LOCALID (tskid))

 E_CTX [k] Context error (Called in prohibited system state when

GET_CPUID (tskid) is not the current CPU)

 E_NOEXS [k] Non-existent object (Task specified by tskid is not

created)

 E_OBJ [k] Object state is invalid (Task specified by tskid is not

in the WAITING state)

Function:

When the task specified by tskid is in some kind of WAITING state (not including the
SUSPENDED state or shared-stack WAITING state), it is forcibly canceled. E_RLWAI is
returned as the error code for the task for which the WAITING state is canceled by service call
rel_wai or irel_wai.

If service calls rel_wai and irel_wai are issued for a task in the WAITING-SUSPENDED state, the
task enters the SUSPENDED state. Thereafter, if service call rsm_tsk, irsm_tsk, frsm_tsk, or
ifrsm_tsk is issued and the SUSPENDED state is canceled, E_RLWAI is returned as the error
code for the task.

For canceling the SUSPENDED state, rsm_tsk, irsm_tsk, frsm_tsk, or ifrsm_tsk should be used.
Note that there is no service call for canceling shared-stack WAITING state.

In service call rel_wai, a task belonging to the kernel of another CPU can be specified as tskid,
except for in dispatch-pending state. In service call irel_wai, a task belonging to the kernel of
another CPU cannot be specified as tskid.

136

6.12.5 Suspend Task (sus_tsk, isus_tsk)

C-Language API:
 ER ercd = sus_tsk(ID tskid);

 ER ercd = isus_tsk(ID tskid);

Parameters:
 tskid Task ID

Return Values:
 Normal end (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number

(1) CPU ID is invalid (GET_CPUID (tskid) is invalid)

(2) Out of local ID range

(GET_LOCALID (tskid) < 0 or

(_MAX_TSK of GET_CPUID (tskid)) < GET_LOCALID (tskid))

(3) tskid = TSK_SELF (0) when called in a non-task context

 E_CTX [k] Context error

(1) tskid = TSK_SELF (0) or the current task ID is

specified in a task context while dispatch is disabled

(2) Called in prohibited system state when GET_CPUID

(tskid) is not the current CPU

 E_NOEXS [k] Non-existent object (Task specified by tskid does not

exist)

 E_OBJ [k] Object state is invalid

(Task specified by tskid is in the DORMANT state)

 E_QOVR [k] Queuing overflow (suscnt > 15)

Function:

Each service call suspends execution of the task specified by tskid and shifts the task to the
SUSPENDED state. If the specified task is in the WAITING state, the task shifts to the
WAITING-SUSPENDED state.

By specifying tskid = TSK_SELF (0), the current task can be specified.

The SUSPENDED state can be canceled by calling service call rsm_tsk, irsm_tsk, frsm_tsk, or
ifrsm_tsk.

Requests to suspend a task by calling service calls sus_tsk and isus_tsk are nested. Up to 15
requests can be queued.

137

Requests to suspend a task by calling service calls sus_tsk and isus_tsk are delayed in the
following cases:

1. When the task specified by tskid masks the suspension request by calling service call
vchg_tmd, the task enters the SUSPENDED state immediately after the suspension request is
canceled by service call vchg_tmd (by specifying tmd = 0).

2. When the task specified by tskid has issued service call dis_dsp to disable task dispatch, the
task enters the SUSPENDED state immediately after task execution resumes.

Delayed requests to suspend a task can be canceled by calling service call rsm_tsk, irsm_tsk,
frsm_tsk, or ifrsm_tsk. Therefore, tasks are suspended when there is one or more delayed
suspension request.

In service call sus_tsk, a task belonging to the kernel of another CPU can be specified as tskid,
except for in dispatch-pending state. In service call isus_tsk, a task belonging to the kernel of
another CPU cannot be specified as tskid.

6.12.6 Resume Task (rsm_tsk, irsm_tsk), Force Task to Resume (frsm_tsk, ifrsm_tsk)

C-Language API:
 ER ercd = rsm_tsk(ID tskid);

 ER ercd = irsm_tsk(ID tskid);

 ER ercd = frsm_tsk(ID tskid);

 ER ercd = ifrsm_tsk(ID tskid);

Parameters:
 tskid Task ID

Return Values:
 Normal end (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number

(1) CPU ID is invalid (GET_CPUID (tskid) is invalid)

(2) Out of local ID range

(GET_LOCALID (tskid) ≤ 0 or

(_MAX_TSK of GET_CPUID (tskid)) < GET_LOCALID (tskid))

 E_CTX [k] Context error (Called in prohibited system state when

GET_CPUID (tskid) is not the current CPU)

 E_NOEXS [k] Non-existent object (Task specified by tskid does not

exist)

 E_OBJ [k] Object state is invalid (Task specified by tskid is not

in the SUSPENDED state)

138

Function:

Each service call releases the task specified by parameter tskid from the SUSPENDED state.
Service calls rsm_tsk and irsm_tsk decrement, by one, the suspension count, and release the task
from the SUSPENDED state when the suspension count becomes 0. Service calls frsm_tsk and
ifrsm_tsk clear the suspension count to 0 and release the task from the SUSPENDED state. When
the task is in the WAITING-SUSPENDED state, the task is shifted to the WAITING state.

In service call rsm_tsk or frsm_tsk, a task belonging to the kernel of another CPU can be specified
as tskid, except for in dispatch-pending state. In service call irsm_tsk or ifrsm_tsk, a task
belonging to the kernel of another CPU cannot be specified as tskid.

6.12.7 Delay Task (dly_tsk)

C-Language API:
 ER ercd = dly_tsk(RELTIM dlytim);

Parameters:
 dlytim Delayed time

Return Values:
 Normal end (E_OK) or error code

Error Codes:
 E_CTX [k] Context error (Called in prohibited system state)

 E_RLWAI [k] WAITING state is forcibly canceled

(rel_wai service call was issued in the WAITING state)

Function:

The current task is transferred from the RUNNING state to a timed WAITING state, and waits
until the time specified by dlytim has expired. When the time specified by dlytim has elapsed, the
state of the current task is returned to the READY state. The current task is put into the WAITING
state even if dlytim = 0 is specified.

The maximum value that can be specified for dlytim is
(0xFFFFFFFF − TIC_NUME)/TIC_DENO. If a value larger than this is specified, operation is not
guaranteed.

This service call differs from service call tslp_tsk in that it terminates normally when execution is
delayed by the amount of time specified by dlytim. Further, even if a service call wup_tsk or
iwup_tsk is executed, the WAITING state is not canceled. The WAITING state is canceled before
the delay time has elapsed only when service call rel_wai, irel_wai, or ter_tsk is issued.

For details on time management, refer to section 5.13.7, Time Precision.

139

6.12.8 Set Task Event Flag (vset_tfl, ivset_tfl)

C-Language API:
 ER ercd = vset_tfl(ID tskid, UINT setptn);

 ER ercd = ivset_tfl(ID tskid, UINT setptn);

Parameters:
 tskid Task ID

 setptn Bit pattern to set

Return Values:
 Normal end (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number

(1) CPU ID is invalid (GET_CPUID (tskid) is invalid)

(2) Out of local ID range

(GET_LOCALID (tskid) < 0 or

(_MAX_TSK of GET_CPUID (tskid)) < GET_LOCALID (tskid))

(3) tskid = TSK_SELF (0) when called in a non-task context

 E_CTX [k] Context error (Called in prohibited system state when

GET_CPUID (tskid) is not the current CPU)

 E_NOEXS [k] Non-existent object (Task specified by tskid does not

exist)

 E_OBJ [k] Object state is invalid

(Task specified by tskid is in the DORMANT state)

Function:

The task event flag of the task indicated by parameter tskid is ORed with the value indicated by
parameter setptn. Note that the lower 16 bits of the bit pattern to specify in parameter setptn must
be set to 0 because the corresponding bits of the event flag are reserved for future expansion.

By specifying tskid = TSK_SELF (0), the current task can be specified.

When the logical sum of the waiting pattern and the updated pattern of the task event flag is not 0,
the task is released from the WAITING state and the task event flag is cleared to 0.

In service call vset_tfl, a task belonging to the kernel of another CPU can be specified as tskid,
except for in dispatch-pending state. In service call ivset_tfl, a task belonging to the kernel of
another CPU cannot be specified as tskid.

These service calls are functions not defined in the μITRON4.0 specification.

140

6.12.9 Clear Task Event Flag (vclr_tfl, ivclr_tfl)

C-Language API:
 ER ercd = vclr_tfl(ID tskid, UINT clrptn);

 ER ercd = ivclr_tfl(ID tskid, UINT clrptn);

Parameters:
 tskid Task ID

 clrptn Bit pattern to clear

Return Values:
 Normal end (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number

(1) CPU ID is invalid (GET_CPUID (tskid) is invalid)

(2) Out of local ID range

(GET_LOCALID (tskid) < 0 or

(_MAX_TSK of GET_CPUID (tskid)) < GET_LOCALID (tskid))

(3) tskid = TSK_SELF (0) when called in a non-task context

 E_CTX [k] Context error (Called in prohibited system state when

GET_CPUID (tskid) is not the current CPU)

 E_NOEXS [p] Non-existent object (Task specified by tskid does not

exist)

 E_OBJ [k] Object state is invalid

(Task specified by tskid is in the DORMANT state)

Function:

The task event flag of the task indicated by parameter tskid are ANDed with the value indicated by
parameter clrptn. Note that the lower 16 bits of the bit pattern to specify parameter clrptn must be
set to 0xffff because the corresponding bits of the event flag are reserved for future expansion.

By specifying tskid = TSK_SELF (0), the current task can be specified.

In service call vclr_tfl, a task belonging to the kernel of another CPU can be specified as tskid,
except for in dispatch-pending state. In service call ivclr_tfl, a task belonging to the kernel of
another CPU cannot be specified as tskid.

These service calls are functions not defined in the μITRON4.0 specification.

141

6.12.10 Wait for Task Event Flag (vwai_tfl, vpol_tfl, vtwai_tfl)

C-Language API:
 ER ercd = vwai_tfl(UINT waiptn, UINT *p_tflptn);

 ER ercd = vpol_tfl(UINT waiptn, UINT *p_tflptn);

 ER ercd = vtwai_tfl(UINT waiptn, UINT *p_tflptn, TMO tmout);

Parameters:
 waiptn Bit pattern to wait

 p_tflptn Pointer to the memory area where the bit pattern when releasing

the WAITING state is to be returned

 <vtwai_tfl>

 tmout Timeout specification

Return Values:
 Normal end (E_OK) or error code

Error Codes:
 E_PAR [p] Parameter error (waiptn = 0 or tmout ≤ –2)

 E_CTX [k] Context error

(Called in prohibited system state)

 E_TMOUT [k] Timeout

 E_RLWAI [k] WAITING state is forcibly canceled

(rel_wai service call was called in the WAITING state)

Function:

Each service call waits for any bit of the task event flag specified by waiptn to be set. When the
wait release condition is satisfied, the bit pattern of the task event flag is returned to the area
indicated by parameter p_tflptn. At the same time, the task event flag value is cleared to 0.

Each service call immediately terminates if any bit specified by waiptn is already set when a
service call is issued. If no bit is set, the task that issued service call vwai_tfl or vtwai_tfl enters
the WAITING state. With service call vpol_tfl, error code E_TMOUT is immediately returned in
this case. Tasks are released from the WAITING state when any bits specified by waiptn are set by
service call vset_tfl or ivset_tfl.

The task event flag value is 0 at task activation.

In service call vtwai_tfl, parameter tmout specifies the timeout period.

142

If a positive value is specified for parameter tmout, error code E_TMOUT is returned when the
tmout period has passed without the wait release condition being satisfied.

If tmout = TMO_POL (0) is specified, the same operation as for service call vpol_tfl will be
performed.

If tmout = TMO_FEVR (-1) is specified, timeout monitoring is not performed. In other words, the
same operation as for service call vwai_tfl will be performed.

The maximum value that can be specified for tmout is (0x7FFFFFFF − TIC_NUME)/TIC_DENO.
If a value larger than this is specified, operation is not guaranteed.

For details on time management, refer to section 5.13.7, Time Precision.

These service calls are functions not defined in the μITRON4.0 specification.

143

6.13 Task Exception Handling
Task exception handling is controlled by the service calls listed in table 6.11.

Table 6.11 Service Calls for Task Exception Handling

System State*2

Service Call*1 Description T N E D U L C

def_tex [s] O O O O

idef_tex

Defines the task exception
handling routine O O O O

ras_tex [S] O O O O O

iras_tex [S]

Requests the task exception
handling O O O O O

dis_tex [S] Disables the task exception
handling

O O O O

ena_tex [S] Enables the task exception
handling

O O O O

sns_tex [S] Refers to the task exception
handling disabled state

O O O O O O O

ref_tex O O O O

iref_tex

Refers to the task exception
handling state O O O O

Notes: 1. [S]: Standard profile service calls
[s]: Service calls that are not standard profile service calls but are needed in order to
 use the standard profile function
[B]: Basic profile service calls
[R]: Service calls that can be issued remotely

 2. T: Can be called in a task context
N: Can be called in a non-task context
E: Can be called in dispatch-enabled state
D: Can be called in dispatch-disabled state
U: Can be called in CPU-unlocked state
L: Can be called in CPU-locked state
C: Can be called while executing the normal CPU exception handler
O: Can be called in the state
Δ: Can be called in the state only when a local object is the target

144

The task exception specifications are listed in table 6.12.

Table 6.12 Task Exception Specifications

Item Description

Exception cause 32 bits

Status at task activation • Task exception handling disabled state

• No pending-exception causes

Task exception handling
routine attributes

TA_HLNG: Written in a high-level language

TA_ASM: Written in assembly language

TA_COP1: FPU is used

The task exception handling routine is initiated as the task context when the following conditions
are satisfied.

• Task exception handling enabled state

• Pending-exception cause is not 0

• Task is in the RUNNING state

• Neither a non-task context nor a normal CPU exception handler is not executed

When the task returns from the task exception handling routine, the processing that is performed
before the task exception handling routine was initiated is continued. At this time, the task enters
the task exception enabled state. When the pending-exception cause is not 0, the task exception
handling routine is initiated again.

145

6.13.1 Define Task Exception Handling Routine (def_tex, idef_tex)

C-Language API:
 ER ercd = def_tex(ID tskid, T_DTEX *pk_dtex);

 ER ercd = idef_tex(ID tskid, T_DTEX *pk_dtex);

Parameters:
 tskid Task ID

 pk_dtex Pointer to the packet where the task exception-processing-

routine definition information is stored

Return Values:
 Normal end (E_OK) or error code

Packet Structure
 typedef struct {

 ATR texatr; Task exception handling routine attribute

 FP texrtn; Task exception handling routine initiation

address

 }T_DTEX;

Error Codes:
 E_RSATR [p] Reserved attribute (texatr is invalid)

 E_ID [p] Invalid ID number

(1) CPU ID is invalid (GET_CPUID (tskid) is not the current

CPU)

(2) Out of local ID range

(GET_LOCALID (tskid) < 0 or

(_MAX_TSK of GET_CPUID (tskid)) < GET_LOCALID (tskid))

(3) tskid = TSK_SELF (0) when called in a non-task context

 E_NOEXS [k] Non-existent object (Task specified by tskid does not exist)

Function:

The task exception handling routine indicated by tskid is defined as specified by pk_dtex.

Only a task belonging to the kernel of the current CPU can be specified for tskid.

By specifying tskid = TSK_SELF (0), the current task can be specified.

Parameter texatr specifies the language in which the task exception handling routine was written
and the coprocessor to be used as the attributes.

texatr := ((TA_HLNG || TA_ASM) [|TA_COP1])

146

• TA_HLNG (0x00000000): Written in a high-level language

• TA_ASM (0x00000001): Written in assembly language

• TA_COP1 (0x00000200): FPU is used

The FPU registers can also be guaranteed as task context by specifying the TA_COP1 attribute.
Note that the TA_COP1 attribute is not defined in the µITRON4.0 specification.

texrtn specifies the start address of the task exception handling routine. When, in a service call
def_tex or idef_tex, pk_dtex = NULL(0) is specified, the definition of the task exception handling
routine for tskid is canceled. At this time the task pending-exception cause is cleared to 0, and the
task is transferred to the task exception handling disabled state.

If a task exception handling routine has already been defined, the previous definition is canceled
and is replaced with the new definition. At this time, pending-exception causes are not cleared and
task exception handling is not disabled.

6.13.2 Request Task Exception Handling (ras_tex, iras_tex)

C-Language API:
 ER ercd = ras_tex(ID tskid, TEXPTN rasptn);

 ER ercd = iras_tex(ID tskid, TEXPTN rasptn);

Parameters:
 tskid Task ID

 rasptn Task exception cause of task exception handling to be requested

Return Values:
 Normal end (E_OK) or error code

Error Codes:
 E_PAR [p] Parameter error (rasptn = 0)

 E_ID [p] Invalid ID number

(1) CPU ID is invalid (GET_CPUID (tskid) is not the current

CPU)

(2) Out of local ID range

(GET_LOCALID (tskid) < 0 or

(_MAX_TSK of GET_CPUID (tskid)) < GET_LOCALID (tskid))

(3) tskid = TSK_SELF (0) when called in a non-task context

 E_NOEXS [k] Non-existent object (Task specified by tskid does not exist)

 E_OBJ [k] Object state is invalid (Task specified by tskid is in the

DORMANT state or task exception handling routine is not

defined)

147

Function:

Requests task exception handling by the task exception cause specified by rasptn, for the task
specified by tskid. That is, the pending-exception cause for the task is ORed with the value
indicated by parameter rasptn.

Only a task belonging to the kernel of the current CPU can be specified for tskid.

By specifying tskid = TSK_SELF (0), the current task can be specified.

When the conditions for starting task exception handling routine are satisfied, the task exception
handling routine is initiated.

Each service call can also be issued from the normal CPU exception handler.

6.13.3 Disable Task Exception Handling (dis_tex)

C-Language API:
 ER ercd = dis_tex(void);

Return Values:
 Normal end (E_OK) or error code

Error Codes:

 E_OBJ [k] Object state is invalid (Task exception handling routine

is not defined on the current task)

 E_CTX [k] Context error (Called in prohibited system state)

Function:

The current task is transferred to the task exception handling disabled state.

148

6.13.4 Enable Task Exception Handling (ena_tex)

C-Language API:
 ER ercd = ena_tex(void);

Return Values:
 Normal end (E_OK) or error code

Error Codes:

 E_OBJ [k] Object state is invalid (Task exception handling routine

is not defined on the current task)

 E_CTX [k] Context error (Called in prohibited system state)

Function:

The current task is transferred to the task exception enabled state.

When conditions for starting the task exception handling routine are satisfied through this service
call, the task exception handling routine is initiated.

6.13.5 Reference Task Exception Handling Disabled State (sns_tex)

C-Language API:
 BOOL state= sns_tex(void);

Return Values:
 TRUE is returned when the task is in task exception handling disabled state

and FALSE is returned when the task is in task exception handling enabled

state

Function:

Checks whether a task in the RUNNING state is in the task exception handling disabled state.

A task in the RUNNING state is the current task when called in a task context, and when called in
a non-task context is the task which had been run immediately prior to the transition to the non-
task context. When a task is called in a non-task context, and no task is in the RUNNING state,
TRUE is returned.

Tasks for which no task exception handling routines are defined are held in the task exception
handling disabled state, so that when no task exception handling routine has been defined for a
task in the RUNNING state, this service call returns TRUE.

This service call can also be issued in the CPU-locked state and from the normal CPU exception
handler.

149

6.13.6 Reference Task Exception Handling State (ref_tex, iref_tex)

C-Language API:
 ER ercd = ref_tex(ID tskid, T_RTEX *pk_rtex);

 ER ercd = iref_tex(ID tskid, T_RTEX *pk_rtex);

Parameters:
 tskid Task ID

 pk_rtex Pointer to the packet where the task exception handling state is

to be returned

Return Values:
 Normal end (E_OK) or error code

Packet Structure:
 typedef struct {

 STAT texstat; Task exception handling state

 TEXPTN pndptn; Pending-exception cause

 }T_RTEX;

Error Codes:
 E_ID [p] Invalid ID number

(1) CPU ID is invalid (GET_CPUID (tskid) is not the current CPU)

(2) Out of local ID range

(GET_LOCALID (tskid) < 0 or

(_MAX_TSK of GET_CPUID (tskid)) < GET_LOCALID (tskid))

(3) tskid = TSK_SELF (0) when called in a non-task context

 E_NOEXS [k] Non-existent object (Task specified by tskid does not exist)

 E_OBJ [k] Object state is invalid (Task specified by tskid is in the DORMANT

state or task exception handling routine is not defined)

Function:

The state relating to task exception handling for the task specified by tskid is referenced, and the
result is returned to the area indicated by pk_rtex.

One of the following values is returned for texstat, according to whether the target task is in a task
exception enabled state or a task exception handling disabled state.

• TTEX_ENA (0x00000000): Task exception handling enabled state

• TTEX_DIS (0x00000001): Task exception handling disabled state

The pending-exception cause for the target task is returned as pndptn. If there are no unprocessed
exception processing requests, 0 is returned as pndptn.

Only a task belonging to the kernel of the current CPU can be specified for tskid.

By specifying tskid = TSK_SELF (0), the current task can be specified.

150

6.14 Synchronization and Communication (Semaphore)
Semaphores are controlled by the service calls listed in table 6.13.

Table 6.13 Service Calls for Synchronization and Communication (Semaphore)

System State*2

Service Call*1 Description T N E D U L C

cre_sem [s] O O O O

icre_sem

Creates semaphore

 O O O O

acre_sem O O O O

iacre_sem

Creates semaphore and
assigns semaphore ID
automatically

 O O O O

del_sem Deletes semaphore O O O O

sig_sem [B] [S] [R] O O Δ O

isig_sem [B] [S]

Returns semaphore resource

 O O O O

wai_sem [B] [S] [R] Waits for semaphore resource O O O

pol_sem [B] [S] [R] O O Δ O

ipol_sem

Polls and waits for semaphore
resource O O O O

twai_sem [S] [R] Waits for semaphore resource
with timeout function

O O O

ref_sem [R] O O Δ O

iref_sem

Refers to semaphore state

 O O O O

Notes: 1. [S]: Standard profile service calls
[s]: Service calls that are not standard profile service calls but are needed in order to
 use the standard profile function
[B]: Basic profile service calls
[R]: Service calls that can be issued remotely

 2. T: Can be called in a task context
N: Can be called in a non-task context
E: Can be called in dispatch-enabled state
D: Can be called in dispatch-disabled state
U: Can be called in CPU-unlocked state
L: Can be called in CPU-locked state
C: Can be called while executing the normal CPU exception handler
O: Can be called in the state
Δ: Can be called in the state only when a local object is the target

151

The semaphore specifications are listed in table 6.14.

Table 6.14 Semaphore Specifications

Item Description

Local semaphore ID 1 to _MAX_SEM (1023 max.)

Maximum semaphore count 65535

Semaphore attributes TA_TFIFO: Wait task queue is managed on a FIFO basis

TA_TPRI: Wait task queue is managed on the current priority

6.14.1 Create Semaphore
(cre_sem, icre_sem)
(acre_sem, iacre_sem: Assign Semaphore ID Automatically)

C-Language API:
 ER ercd = cre_sem(ID semid, T_CSEM *pk_csem);

 ER ercd = icre_sem(ID semid, T_CSEM *pk_csem);

 ER_ID semid = acre_sem(T_CSEM *pk_csem);

 ER_ID semid = iacre_sem(T_CSEM *pk_csem);

Parameters:
 pk_csem Pointer to the packet where the semaphore creation

information is stored

 <cre_sem, icre_sem>

 semid Semaphore ID

Return Values:
 <cre_sem, icre_sem>

 Normal end (E_OK) or error code

 <acre_sem, iacre_sem>

 ID of created semaphore (a positive value) or error code

Packet Structure
 typedef struct {

 ATR sematr; Semaphore attribute

 UINT isemcnt Initial semaphore resource count

 UINT maxsem; Maximum semaphore resource count

 }T_CSEM;

Error Codes:
 E_RSATR [p] Invalid attribute (sematr is invalid)

 E_PAR [p] Parameter error (maxsem = 0, maxsem > 0xffff, or

isemcnt > maxsem)

152

 E_ID [p] Invalid ID number (cre_sem, icre_sem)

(1) CPU ID is invalid (GET_CPUID (semid) is not the current CPU)

(2) Out of local ID range

(GET_LOCALID (semid) ≤ 0 or

(_MAX_TSK of GET_CPUID (semid)) < GET_LOCALID (semid))

 E_OBJ [k] Object state is invalid (Semaphore indicated by semid already

exists) (cre_sem, icre_sem)

 E_NOID [k] No ID available (acre_sem, iacre_sem)

Function:

Each of these service calls creates a semaphore.

These service calls can create semaphores belonging to the kernel of the current CPU. This kernel
does not have service calls for creating objects belonging to the kernel of another CPU.

Service calls cre_sem and icre_sem create a semaphore with an ID indicated by semid. 1 to
(_MAX_SEM of current CPU) can be specified for the local ID of semid. VCPU_SELF or the
current CPU ID must be specified for the CPU ID of semid.

Service calls acre_sem and iacre_sem search for an unused semaphore ID, create a semaphore
with that ID, and return the ID to semid. The range searched for the local semaphore ID is 1 to
(_MAX_SEM of current CPU). The CPU ID of the semaphore ID that will be returned is the
current CPU ID.

Parameter sematr specifies the order of the tasks in the queue waiting to acquire the semaphore
resource as the attribute.

sematr := (TA_TFIFO || TA_TPRI)

• TA_TFIFO (0x00000000): Wait task queue is managed on a FIFO basis

• TA_TPRI (0x00000001): Wait task queue is managed on the current priority

Parameter isemcnt specifies the initial value of the semaphore to be created. It can range from 0 to
maxsem.

Parameter maxsem specifies the maximum number of resources of the semaphore to be created. It
can range from 1 to 65,535.

153

6.14.2 Delete Semaphore (del_sem)

C-Language API:
 ER ercd = del_sem(ID semid);

Parameters:
 semid Semaphore ID

Return Values:
 Normal end (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number

(1) CPU ID is invalid (GET_CPUID (semid) is not the

current CPU)

(2) Out of local ID range

(GET_LOCALID (semid) ≤ 0 or

(_MAX_SEM of GET_CPUID (semid)) < GET_LOCALID (semid))

 E_CTX [k] Context error (Called in prohibited system state)

 E_NOEXS [k] Non-existent object (Semaphore indicated by semid does

not exist)

Function:

Service call del_sem deletes the semaphore indicated by parameter semid.

Only semaphores belonging to the kernel of the current CPU can be specified for semid.

No error will occur even if there is a task waiting to acquire a resource with the semaphore
indicated by semid. However, in that case, the task in the WAITING state will be released and
error code E_DLT will be returned.

154

6.14.3 Release Semaphore Resource (sig_sem, isig_sem)

C-Language API:
 ER ercd = sig_sem(ID semid);

 ER ercd = isig_sem(ID semid);

Parameters:
 semid Semaphore ID

Return Values:
 Normal end (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number

(1) CPU ID is invalid (GET_CPUID (semid) is invalid)

(2) Out of local ID range

(GET_LOCALID (semid) ≤ 0 or

(_MAX_SEM of GET_CPUID (semid)) < GET_LOCALID (semid))

 E_CTX [k] Context error (Called in prohibited system state when

GET_CPUID (semid) is not the current CPU)

 E_NOEXS [k] Non-existent object (Semaphore indicated by semid does not

exist)

 E_QOVR [k] Queuing overflow (semcnt > maxsem*)

Note: * maxsem: Maximum number of semaphore resources specified at semaphore creation

Function:

Each service call returns one resource to the semaphore indicated by semid. If there is a task
waiting for the semaphore indicated by semid, the task at the head of the wait queue is released
from the WAITING state, and the resource is assigned to the task. If there are no tasks in the wait
queue, the semaphore count is incremented by one.

The maximum semaphore count is maxsem, which is specified at semaphore creation.

In service call sig_sem, semaphores belonging to the kernel of another CPU can be specified as
semid, except for in dispatch-pending state. In service call isig_sem, semaphores belonging to the
kernel of another CPU cannot be specified as semid.

155

6.14.4 Acquire Semaphore Resource (wai_sem, pol_sem, ipol_sem, twai_sem)

C-Language API:
 ER ercd = wai_sem(ID semid);

 ER ercd = pol_sem(ID semid);

 ER ercd = ipol_sem(ID semid);

 ER ercd = twai_sem(ID semid, TMO tmout);

Parameters:
 semid Semaphore ID

 <twai_sem>

 tmout Timeout specification

Return Values:
 Normal end (E_OK) or error code

Error Codes:
 E_PAR [p] Parameter error (tmout ≤ –2)

 E_ID [p] Invalid ID number

(1) CPU ID is invalid (GET_CPUID (semid) is invalid)

(2) Out of local ID range

(GET_LOCALID (semid) ≤ 0 or

(_MAX_SEM of GET_CPUID (semid)) < GET_LOCALID (semid))

 E_CTX [k] Context error (Called in prohibited system state)

 E_NOEXS [k] Non-existent object (Semaphore indicated by semid does not

exist)

 E_DLT [k] Waiting object deleted (Target semaphore indicated by semid

has been deleted while waiting)

 E_RLWAI [k] WAITING state is forcibly canceled

(rel_wai service call was called in the WAITING state)

 E_TMOUT [k] Polling failed or timeout

Function:

Each service call acquires one resource from the semaphore specified by semid.

Each service call decrements the number of resources of the target semaphore by one if the
number of resources of the target semaphore is equal to or greater than 1, and the task calling the
service call continues execution. If no resources exist, the task calling service call wai_sem or
twai_sem shifts to the WAITING state, and with service call pol_sem or ipol_sem, error code
E_TMOUT is immediately returned. The wait queue is managed according to the attribute
specified at creation.

In service call twai_sem, parameter tmout specifies the timeout period.

156

If a positive value is specified for parameter tmout, error code E_TMOUT is returned when the
tmout period has passed without the wait release conditions being satisfied.

If tmout = TMO_POL (0) is specified, the same operation as for service call pol_sem will be
performed.

If tmout = TMO_FEVR (–1) is specified, timeout monitoring is not performed. In this case, the
same operation as for service call wai_sem will be performed.

The maximum value that can be specified for tmout is (0x7FFFFFFF − TIC_NUME)/TIC_DENO.
If a value larger than this is specified, operation is not guaranteed.

For details on time management, refer to section 5.13.7, Time Precision.

In service call wai_sem, pol_sem, or twai_sem, semaphores belonging to the kernel of another
CPU can be specified as semid, except for in dispatch-pending state. In service call ipol_sem,
semaphores belonging to the kernel of another CPU cannot be specified as semid.

6.14.5 Reference Semaphore State (ref_sem, iref_sem)

C-Language API:
 ER ercd = ref_sem(ID semid, T_RSEM *pk_rsem);

 ER ercd = iref_sem(ID semid, T_RSEM *pk_rsem);

Parameters:
 semid Semaphore ID

 pk_rsem Pointer to the packet where the semaphore state is to be

returned

Return Values:
 Normal end (E_OK) or error code

Packet Structure:
 typedef struct {

 ID wtskid; Wait task ID

 UINT semcnt; Current semaphore count value

 }T_RSEM;

157

Error Codes:
 E_ID [p] Invalid ID number

(1) CPU ID is invalid (GET_CPUID (semid) is invalid)

(2) Out of local ID range

(GET_LOCALID (semid) ≤ 0 or

(_MAX_SEM of GET_CPUID (semid)) < GET_LOCALID (semid))

 E_CTX [k] Context error (Called in prohibited system state when

GET_CPUID (semid) is not the current CPU)

 E_NOEXS [k] Non-existent object (Semaphore indicated by semid does not

exist)

Function:

Each service call refers to the state of the semaphore indicated by parameter semid.

Each service call returns the task ID at the head of the semaphore wait queue (wtskid) and the
current semaphore count (semcnt), to the area specified by parameter pk_rsem.

The CPU ID (1 or 2) where the specified semaphore belongs is always set in bits 14 to 12 of a wait
task ID.

In the case where a task of another CPU is waiting to acquire a resource from the specified
semaphore, an SVC server task belonging to the same CPU as the specified semaphore will
actually wait to acquire a resource from the specified semaphore instead of the task of another
CPU. Accordingly, the ID of the SVC server task will be returned to the wait task ID in such a
case.

If there is no task waiting for the specified semaphore, TSK_NONE (0) is returned as a wait task
ID.

In service call ref_sem, semaphores belonging to the kernel of another CPU can be specified as
semid, except for in dispatch-pending state. In service call iref_sem, semaphores belonging to the
kernel of another CPU cannot be specified as semid.

158

6.15 Synchronization and Communication (Event Flag)
Event flags are controlled by the service calls listed in table 6.15.

Table 6.15 Service Calls for Synchronization and Communication (Event Flag)

System State*2

Service Call*1 Description T N E D U L C

cre_flg [s] O O O O

icre_flg

Creates event flag

 O O O O

acre_flg O O O O

iacre_flg

Creates event flag and assigns
event flag ID automatically O O O O

del_flg Deletes event flag O O O O

set_flg [B] [S] [R] O O Δ O

iset_flg [S] [R]

Sets event flag

 O O O O

clr_flg [B] [S] [R] O O Δ O

iclr_flg

Clears event flag

 O O O O

wai_flg [B] [S] [R] Waits for event flag O O O

pol_flg [B] [S] [R] O O Δ O

ipol_flg [S]

Polls and waits for event flag

 O O O O

twai_flg [S] [R] Waits for event flag with
timeout function

O O O

ref_flg [R] O O Δ O

iref_flg

Refers to event flag state

 O O O O

Notes: 1. [S]: Standard profile service calls
[s]: Service calls that are not standard profile service calls but are needed in order to
 use the standard profile function
[B]: Basic profile service calls
[R]: Service calls that can be issued remotely

 2. T: Can be called in a task context
N: Can be called in a non-task context
E: Can be called in dispatch-enabled state
D: Can be called in dispatch-disabled state
U: Can be called in CPU-unlocked state
L: Can be called in CPU-locked state
C: Can be called while executing the normal CPU exception handler
O: Can be called in the state
Δ: Can be called in the state only when a local object is the target

159

The event flag specifications are listed in table 6.16.

Table 6.16 Event Flag Specifications

Item Description

Local event flag ID 1 to _MAX_FLAG (1023 max.)

Event flag size 32 bits

Event flag attributes TA_TFIFO: Wait task queue is managed on a FIFO basis

TA_TPRI: Wait task queue is managed on the current priority

TA_WSGL: Does not permit multiple tasks to wait for the event flag

TA_WMUL: Permits multiple tasks to wait for the event flag

TA_CLR: Clears the event flag at the time of waiting release

6.15.1 Create Event Flag
(cre_flg, icre_flg)
(acre_flg, iacre_flg: Assign Event Flag ID Automatically)

C-Language API:
 ER ercd = cre_flg(ID flgid, T_CFLG *pk_cflg);

 ER ercd = icre_flg(ID flgid, T_CFLG *pk_cflg);

 ER_ID flgid = acre_flg(T_CFLG *pk_cflg);

 ER_ID flgid = iacre_flg(T_CFLG *pk_cflg);

Parameters:
 pk_cflg Pointer to the packet where the event flag creation information

is stored

 <cre_flg, icre_flg>

 flgid Event flag ID

Return Values:
 <cre_flg, icre_flg>

 Normal end (E_OK) or error code

 <acre_flg, iacre_flg>

 Created event flag ID (a positive value) or error code

Packet Structure:
 typedef struct {

 ATR flgatr; Event flag attribute

 FLGPTN iflgptn; Initial value of event flag

 }T_CFLG;

160

Error Codes:
 E_RSATR [p] Invalid attribute (flgatr is invalid)

 E_ID [p] Invalid ID number (cre_flg, icre_flg)

(1) CPU ID is invalid (GET_CPUID (flgid) is not the current

CPU)

(2) Out of local ID range

(GET_LOCALID (flgid) ≤ 0 or

(_MAX_FLAG of GET_CPUID (flgid)) < GET_LOCALID (flgid))

 E_OBJ [k] Object state is invalid (Event flag indicated by flgid

already exists) (cre_flg, icre_flg)

 E_NOID [k] No ID available (acre_flg, iacre_flg)

Function:

Each of these service calls creates an event flag.

These service calls can create event flags belonging to the kernel of the current CPU. This kernel
does not have service calls for creating objects belonging to the kernel of another CPU.

Service calls cre_flg and icre_flg create an event flag with an ID indicated by flgid. 1 to
(_MAX_FLAG of current CPU) can be specified for the local ID of flgid. VCPU_SELF or the
current CPU ID must be specified for the CPU ID of flgid.

Service calls acre_flg and iacre_flg search for an unused event flag ID, create an event flag with
that ID, and return the ID to flgid. The range searched for the local event flag ID is 1 to
(_MAX_FLAG of current CPU). The CPU ID of the event flag ID that will be returned is the
current CPU ID.

Parameter flgatr specifies the order of the tasks in the queue waiting for the event flag and the
number of tasks allowed to wait for the event flag as the attributes.

flgatr := ((TA_TFIFO || TA_TPRI) | (TA_WSGL || TA_WMUL) | [TA_CLR])

• TA_TFIFO (0x00000000): Wait task queue is managed on a FIFO basis

• TA_TPRI (0x00000001): Wait task queue is managed on the current priority

• TA_WSGL (0x00000000): Does not permit multiple tasks to wait for the event flag

• TA_WMUL (0x00000002): Permits multiple tasks to wait for the event flag

• TA_CLR (0x00000004): Clears event flag at the time of waiting release

161

If the TA_WSGL attribute is specified for flgatr, only one task can wait for the created event flag.
In this case, the event flag performs the same operation when either attribute TA_TFIFO or
TA_TPRI is specified. On the other hand, multiple tasks can enter the WAITING state when the
TA_WMUL attribute is specified. If the TA_CLR attribute is specified for flgatr, all bits of the
event flag bit pattern are cleared when the wait release condition is satisfied.

Parameter iflgptn specifies the initial value of the event flag.

6.15.2 Delete Event Flag (del_flg)

C-Language API:
 ER ercd = del_flg(ID flgid);

Parameters:
 flgid Event flag ID

Return Values:
 Normal end (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number

(1) CPU ID is invalid (GET_CPUID (flgid) is not the current

CPU)

(2) Out of local ID range

(GET_LOCALID (flgid) ≤ 0 or

(_MAX_FLAG of GET_CPUID (flgid)) < GET_LOCALID (flgid))

 E_CTX [k] Context error (Called in prohibited system state)

 E_NOEXS [k] Non-existent object (Event flag indicated by flgid does not

exist)

Function:

Service call del_flg deletes the event flag indicated by parameter flgid.

Only event flags belonging to the kernel of the current CPU can be specified as flgid.

No error will occur even if there is a task waiting for the conditions to be met in the event flag
indicated by flgid. However, in that case, the task in the WAITING state will be released and error
code E_DLT will be returned.

162

6.15.3 Set Event Flag (set_flg, iset_flg)

C-Language API:
 ER ercd = set_flg(ID flgid, FLGPTN setptn);

 ER ercd = iset_flg(ID flgid, FLGPTN setptn);

Parameters:
 flgid Event flag ID

 setptn Bit pattern to set

Return Values:
 Normal end (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number

(1) CPU ID is invalid (GET_CPUID (flgid) is invalid)

(2) Out of local ID range

(GET_LOCALID (flgid) ≤ 0 or

(_MAX_FLAG of GET_CPUID (flgid)) < GET_LOCALID (flgid))

 E_CTX [k] Context error (Called in prohibited system state when

GET_CPUID (flgid) is not the current CPU)

 E_NOEXS [k] Non-existent object (Event flag indicated by flgid does not

exist)

Function:

The event flag specified by flgid is ORed with the value indicated by parameter setptn.

Each service call shifts a task to the READY state after the event flag value has been changed and
when the wait release conditions of a task waiting for an event flag have been satisfied. Wait
release conditions are checked in the queue order. All bits of the event flag bit pattern and service
call are cleared when the TA_CLR attribute is set to the target event flag attribute.

When the TA_WMUL attribute is set to the event flag and the TA_CLR attribute is not specified,
multiple wait tasks may be released when service call set_flg is issued only once. When multiple
wait tasks are released, the tasks are released in the queue order of the event flag.

In service call set_flg, event flags belonging to the kernel of another CPU can be specified as
flgid, except for in dispatch-pending state. In service call iset_flg, event flags belonging to the
kernel of another CPU cannot be specified as flgid.

163

6.15.4 Clear Event Flag (clr_flg, iclr_flg)

C-Language API:
 ER ercd = clr_flg(ID flgid, FLGPTN clrptn);

 ER ercd = iclr_flg(ID flgid, FLGPTN clrptn);

Parameters:
 flgid Event flag ID

 clrptn Bit pattern to clear

Return Values:
 Normal end (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number

(1) CPU ID is invalid (GET_CPUID (flgid) is invalid)

(2) Out of local ID range

(GET_LOCALID (flgid) ≤ 0 or

(_MAX_FLAG of GET_CPUID (flgid)) < GET_LOCALID (flgid))

 E_CTX [k] Context error (Called in prohibited system state when

GET_CPUID (flgid) is not the current CPU)

 E_NOEXS [k] Non-existent object (Event flag indicated by flgid does not

exist)

Function:

The event-flag bits specified by flgid is ANDed with the value indicated by parameter clrptn.

In service call clr_flg, event flags belonging to the kernel of another CPU can be specified as flgid,
except for in dispatch-pending state. In service call iclr_flg, event flags belonging to the kernel of
another CPU cannot be specified as flgid.

164

6.15.5 Wait for Event-Flag Setting (wai_flg, pol_flg, ipol_flg, twai_flg)

C-Language API:
 ER ercd = wai_flg(ID flgid , FLGPTN waiptn, MODE wfmode, FLGPTN *p_flgptn);

 ER ercd = pol_flg(ID flgid , FLGPTN waiptn, MODE wfmode, FLGPTN *p_flgptn);

 ER ercd = ipol_flg(ID flgid , FLGPTN waiptn, MODE wfmode, FLGPTN *p_flgptn);

 ER ercd = twai_flg(ID flgid , FLGPTN waiptn, MODE wfmode, FLGPTN *p_flgptn,

TMO tmout);

Parameters:
 flgid Event flag ID

 waiptn Wait bit pattern

 wfmode Wait mode

 p_flgptn Pointer to the memory area where the bit pattern at waiting

release is to be returned

 <twai_flg>

 tmout Timeout value

Return Values:
 Normal end (E_OK) or error code

Error Codes:
 E_PAR [p] Parameter error (waiptn = 0, wfmode is invalid, or tmout ≤ –2)

 E_ID [p] Invalid ID number

(1) CPU ID is invalid (GET_CPUID (flgid) is invalid)

(2) Out of local ID range

(GET_LOCALID (flgid) ≤ 0 or

(_MAX_FLAG of GET_CPUID (flgid)) < GET_LOCALID (flgid))

 E_CTX [k] Context error (Called in prohibited system state)

 E_NOEXS [k] Non-existent object (Event flag indicated by flgid does not

exist)

 E_ILUSE [k] Illegal use of service call (A task is already waiting for the

event flag with TA_WSGL attribute)

 E_DLT [k] Waiting object deleted (Event flag indicated by flgid has been

deleted in the WAITING state)

 E_TMOUT [k] Polling failed or timeout

 E_RLWAI [k] WAITING state was forcibly canceled

(rel_wai service call was called in the WAITING state)

165

Function:

A task that has called one of these service calls waits until the event flag specified by parameter
flgid is set according to the waiting conditions indicated by parameters waiptn and wfmode. Each
service call returns the bit pattern of the event flag to the area indicated by p_flgptn when the wait
release condition is satisfied.

If the attribute of the target event flag is TA_WSGL and another task is waiting for the event flag,
error code E_ILUSE is returned.

If the wait release conditions are met before a task issues service call wai_flg, pol_flg, ipol_flg, or
twai_flg, the service call will be completed immediately. If they are not met, the task will be sent
to the wait queue when service call wai_flg or twai_flg is issued. With service call pol_flg or
ipol_flg, error code E_TMOUT is immediately returned, and then the task terminates.

Parameter wfmode specifies the following as the attribute.

wfmode := ((TWF_ANDW || TWF_ORW))

• TWF_ANDW (0x00000000): AND wait

• TWF_ORW (0x00000001): OR wait

If TWF_ANDW is specified as wfmode, the task waits until all the bits specified by waiptn have
been set. If TWF_ORW is specified as wfmode, the task waits until any one of the bits specified
by waiptn has been set in the specified event flag.

In service call twai_flg, parameter tmout specifies the timeout period.

If a positive value is specified for parameter tmout, error code E_TMOUT is returned when the
tmout period has passed without the waiting release conditions being satisfied.

If tmout = TMO_POL (0) is specified, the same operation as for service call pol_flg will be
performed.

If tmout = TMO_FEVR (–1) is specified, timeout monitoring is not performed. In this case, the
same operation as for service call wai_flg will be performed.

The maximum value that can be specified for tmout is (0x7FFFFFFF − TIC_NUME)/TIC_DENO.
If a value larger than this is specified, operation is not guaranteed.

For details on time management, refer to section 5.13.7, Time Precision.

In service call wai_flg, pol_flg, or twai_flg, event flags belonging to the kernel of another CPU
can be specified as flgid, except for in dispatch-pending state. In service call ipol_flg, event flags
belonging to the kernel of another CPU cannot be specified as flgid.

166

6.15.6 Reference Event Flag State (ref_flg, iref_flg)

C-Language API

 ER ercd = ref_flg(ID flgid , T_RFLG *pk_rflg);

 ER ercd = iref_flg(ID flgid , T_RFLG *pk_rflg);

Parameters:
 flgid Event flag ID

 pk_rflg Pointer to the packet where the event flag state is to be

returned

Return Values:
 Normal end (E_OK) or error code

Packet Structure:
 typedef struct {

 ID wtskid; Wait task ID

 FLGPTN flgptn; Event flag bit pattern

 }T_RFLG;

Error Codes:
 E_ID [p] Invalid ID number

(1) CPU ID is invalid (GET_CPUID (flgid) is invalid)

(2) Out of local ID range

(GET_LOCALID (flgid) ≤ 0 or

(_MAX_FLAG of GET_CPUID (flgid)) < GET_LOCALID (flgid))

 E_CTX [k] Context error (Called in prohibited system state when

GET_CPUID (flgid) is not the current CPU)

 E_NOEXS [k] Non-existent object (Event flag indicated by flgid does not

exist)

Function:

Each of these service calls refers to the state of the event flag indicated by parameter flgid.

Each service call returns the task ID at the head of the event flag wait queue (wtskid) and the
current event flag bit pattern (flgptn), to the area specified by parameter pk_rflg.

The CPU ID (1 or 2) where the specified event flag belongs is always set in bits 14 to 12 of a wait
task ID.

In the case where a task of another CPU is waiting for the specified event flag to be set, an SVC
server task belonging to the same CPU as the specified event flag will actually wait for the
specified event flag to be set instead of the task of another CPU. Accordingly, the ID of the SVC
server task will be returned to the wait task ID in such a case.

167

If there is no task waiting for the specified event flag, TSK_NONE (0) is returned as a wait task
ID.

In service call ref_flg, event flags belonging to the kernel of another CPU can be specified as
flgid, except for in dispatch-pending state. In service call iref_flg, event flags belonging to the
kernel of another CPU cannot be specified as flgid.

6.16 Synchronization and Communication (Data Queue)
Data queues are controlled by the service calls listed in table 6.17.

Table 6.17 Service Calls for Synchronization and Communication (Data Queue)

System State*2

Service Call*1 Description T N E D U L C

cre_dtq [s] O O O O

icre_dtq

Creates data queue

 O O O O

acre_dtq O O O O

iacre_dtq

Creates data queue and
assigns data queue ID
automatically

 O O O O

del_dtq Deletes data queue O O O O

snd_dtq [S] [R] Sends data to data queue O O O

psnd_dtq [S] [R] O O Δ O

ipsnd_dtq [S]

Polls and sends data to data
queue O O O O

tsnd_dtq [S] [R] Sends data to data queue with
timeout function

O O O

fsnd_dtq [S] [R] O O Δ O

ifsnd_dtq [S]

Forcibly sends data to data
queue O O O O

rcv_dtq [S] [R] Receives data from data queue O O O

prcv_dtq [S] [R] Polls and receives data from
data queue

O O Δ O

trcv_dtq [S] [R] Receives data from data queue
with timeout function

O O O

ref_dtq [R] O O Δ O

iref_dtq

Refers to data queue state

 O O O O

168

Notes: 1. [S]: Standard profile service calls
[s]: Service calls that are not standard profile service calls but are needed in order to
 use the standard profile function
[B]: Basic profile service calls
[R]: Service calls that can be issued remotely

 2. T: Can be called in a task context
N: Can be called in a non-task context
E: Can be called in dispatch-enabled state
D: Can be called in dispatch-disabled state
U: Can be called in CPU-unlocked state
L: Can be called in CPU-locked state
C: Can be called while executing the normal CPU exception handler
O: Can be called in the state
Δ: Can be called in the state only when a local object is the target

The data queue specifications are listed in table 6.18.

Table 6.18 Data Queue Specifications

Item Description

Local data queue ID 1 to _MAX_DTQ (1023 max.)

One word 32 bits

Data queue attributes TA_TFIFO: Wait task queue is managed on a FIFO basis

TA_TPRI: Wait task queue is managed on the current priority

169

6.16.1 Create Data Queue
(cre_dtq, icre_dtq)
(acre_dtq, iacre_dtq: Assign Data Queue ID Automatically)

C-Language API:
 ER ercd = cre_dtq(ID dtqid, T_CDTQ *pk_cdtq);

 ER ercd = icre_dtq (ID dtqid, T_CDTQ *pk_cdtq);

 ER_ID dtqid = acre_dtq (T_CDTQ *pk_cdtq);

 ER_ID dtqid = iacre_dtq (T_CDTQ *pk_cdtq);

Parameters:
 pk_cdtq Pointer to the packet where the data queue creation information

is stored

 <cre_dtq, icre_dtq>

 dtqid Data queue ID

Return Values:
 <cre_dtq, icre_dtq>

 Normal end (E_OK) or error code

 <acre_dtq, iacre_dtq>

 Created data queue ID (a positive value) or error code

Packet Structure:
 typedef struct {

 ATR dtqatr; Data queue attribute

 UINT dtqcnt; Size of data queue area (the number of data items)

 VP dtq; Start address of data queue area

 }T_CDTQ;

Error Codes:
 E_NOMEM [k] Insufficient memory (Data queue area cannot be allocated in

the memory)

 E_RSATR [p] Invalid attribute (dtqatr is invalid)

 E_PAR [p] Parameter error (TSZ_DTQ (dtqcnt) exceeds 32-bit area)

 E_ID [p] Invalid ID number (cre_dtq, icre_dtq)

(1) CPU ID is invalid (GET_CPUID (dtqid) is not the current

CPU)

(2) Out of local ID range

(GET_LOCALID (dtqid) ≤ 0 or

(_MAX_DTQ of GET_CPUID (dtqid)) < GET_LOCALID (dtqid))

 E_OBJ [k] Object state is invalid (Data queue indicated by dtqid

already exists) (cre_dtq, icre_dtq)

 E_NOID [k] No ID available (acre_dtq, iacre_dtq)

170

Function:

Each of these service calls creates a data queue.

These service calls can create data queues belonging to the kernel of the current CPU. This kernel
does not have service calls for creating objects belonging to the kernel of another CPU.

Service calls cre_dtq and icre_dtq create a data queue with the ID specified by dtqid. 1 to
(_MAX_DTQ of current CPU) can be specified for the local ID of dtqid. VCPU_SELF or the
current CPU ID must be specified for the CPU ID of dtqid.

Service calls acre_dtq and iacre_dtq search for an unused data queue ID, create a data queue with
that ID, and return the ID to dtqid. The range searched for the local data queue ID is 1 to
(_MAX_DTQ of current CPU). The CPU ID of the data queue ID that will be returned is the
current CPU ID.

(1) dtqatr

Parameter dtqatr specifies the order of the tasks in the queue waiting to send data as the attribute.

dtqatr := (TA_TFIFO || TA_TPRI)

• TA_TFIFO (0x0000000): Wait task queue is managed on a FIFO basis

• TA_TPRI (0x00000001): Wait task queue is managed on the current priority

The tasks in the queue waiting to receive data are managed on a first-in first-out (FIFO) basis,
regardless of dtqatr.

(2) dtqcnt

Parameter dtqcnt specifies the number of data items that can be stored in the data queue area.

It is also possible to create a data queue with a value of 0 specified for dtqcnt. Since data cannot be
stored in a data queue created by dtqcnt = 0, the data sending task or data receiving task that has
performed its operation first will enter the WAITING state. The WAITING state of that task is
canceled when the other task has performed its operation. Thus, data sending tasks and data
receiving tasks are completely synchronized.

171

(3) dtq

Parameter dtq specifies the start address of a free area to be used as a data queue. An area of
TSZ_DTQ (dtqcnt) bytes from dtq is used as the data queue. TSZ_DTQ() is a macro used for
calculating the data queue size.

When a value of 0 is specified for dtq, dtq does not have any meaning and is simply ignored.

When NULL is specified for dtq, the kernel allocates a data queue area of TSZ_DTQ (dtqcnt)
bytes from the default data queue area. After that, the size of the free space in the default data
queue area will decrease by an amount given by the following expression:

Decrease in size = TSZ_DTQ (dtqcnt) + 16 bytes

6.16.2 Delete Data Queue (del_dtq)

C-Language API:
 ER ercd = del_dtq(ID dtqid);

Parameters:
 dtqid Data queue ID

Return Values:
 Normal end (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number

(1) CPU ID is invalid (GET_CPUID (dtqid) is not the

current CPU)

(2) Out of local ID range

(GET_LOCALID (dtqid) ≤ 0 or

(_MAX_DTQ of GET_CPUID (dtqid)) < GET_LOCALID (dtqid))

 E_CTX [k] Context error (Called in prohibited system state)

 E_NOEXS [k] Non-existent object (Data queue indicated by dtqid does

not exist)

Function:

The data queue specified by dtqid is deleted.

Only data queues belonging to the kernel of the current CPU can be specified as dtqid.

No error occurs even if there is a send-waiting task or receive-waiting task in the data queue
specified by dtqid. However, the WAITING state of the task is canceled, and an error code
E_DLT is returned.

172

On deletion, the size of the free space in the default data queue area will increase by an amount
given by the following expression:

Increase in size = TSZ_DTQ (dtqcnt specified at creation) + 16 bytes

6.16.3 Send Data to Data Queue (snd_dtq, psnd_dtq, ipsnd_dtq, tsnd_dtq, fsnd_dtq,
ifsnd_dtq)

C-Language API:
 ER ercd = snd_dtq(ID dtqid, VP_INT data);

 ER ercd = psnd_dtq(ID dtqid, VP_INT data);

 ER ercd = ipsnd_dtq(ID dtqid, VP_INT data);

 ER ercd = tsnd_dtq(ID dtqid, VP_INT data, TMO tmout);

 ER ercd = fsnd_dtq(ID dtqid, VP_INT data);

 ER ercd = ifsnd_dtq(ID dtqid, VP_INT data);

Parameters:
 dtqid Data queue ID

 data Data sent to data queue

 <tsnd_dtq>

 tmout Timeout specification

Return Values:
 Normal end (E_OK) or error code

Error Codes:
 E_PAR [p] Parameter error (tmout ≤ -2)

 E_ID [p] Invalid ID number

(1) CPU ID is invalid (GET_CPUID (dtqid) is invalid)

(2) Out of local ID range

(GET_LOCALID (dtqid) ≤ 0 or

(_MAX_DTQ of GET_CPUID (dtqid)) < GET_LOCALID (dtqid))

 E_CTX [k] Context error (Called in prohibited system state)

 E_ILUSE [k] Illegal use of service call (fsnd_dtq, ifsnd_dtq is issued

for the data queue which dtqcnt is 0)

 E_NOEXS [k] Non-existent object (Data queue indicated by dtqid does not

exist)

 E_DLT [k] Waiting object deleted (Target data queue indicated by dtqid

has been deleted while waiting)

 E_TMOUT [k] Polling failed or timeout

 E_RLWAI [k] WAITING state is forcibly canceled

(rel_wai service call was called in the WAITING state)

173

Function:

The 4-byte data specified by parameter data is sent to the data queue specified by dtqid.

In addition, when the data queue created by dtqcnt = 0 is specified, service call fsnd_dtq or
ifsnd_dtq generates an E_ILUSE error.

(1) When a Task Is Waiting to Receive Data in the Target Data Queue

The data is passed to the head task in the receive-waiting queue and the waiting state of the task is
canceled.

(2) When No Task Is Waiting to Receive Data in the Target Data Queue

(a) When the data queue is not full

Parameter data is stored at the end of the data queue. The count of the data queue is
incremented by one.

(b) When the data queue is full

⎯ snd_dtq, tsnd_dtq
The calling task is connected to the queue waiting for the data queue to have free space
(send-waiting queue).

In service call tsnd_dtq, parameter tmout specifies the timeout period.

If a positive value is specified for parameter tmout, error code E_TMOUT is returned when
the tmout period has passed without the wait release conditions being satisfied. If tmout =
TMO_POL (0) is specified, the same operation as for service call psnd_dtq will be
performed. If tmout = TMO_FEVR (–1) is specified, timeout monitoring is not performed.
In other words, the same operation as for service call snd_dtq will be performed.

The maximum value that can be specified for tmout is (0x7FFFFFFF −
TIC_NUME)/TIC_DENO. If a value larger than this is specified, operation is not
guaranteed.

For details on time management, refer to section 5.13.7, Time Precision.

⎯ psnd_dtq, ipsnd_dtq
In these service calls, error code E_TMOUT is returned immediately.

⎯ fsnd_dtq, ifsnd_dtq
In these service calls, even if no task is waiting to send data in the target data queue,
parameter data is stored at the end of the data queue after the data at the head of the data
queue (the oldest data) has been deleted.

In service call psnd_dtq, snd_dtq, tsnd_dtq, or fsnd_dtq, data queues belonging to the kernel of
another CPU can be specified as dtqid, except for in dispatch-pending state. In service call
ipsnd_dtq or ifsnd_dtq, data queues belonging to the kernel of another CPU cannot be specified as
dtqid.

174

6.16.4 Receive Data from Data Queue (rcv_dtq, prcv_dtq, trcv_dtq)

C-Language API:
 ER ercd = rcv_dtq(ID dtqid, VP_INT *p_data);

 ER ercd = prcv_dtq(ID dtqid, VP_INT *p_data);

 ER ercd = trcv_dtq(ID dtqid, VP_INT *p_data, TMO tmout);

Parameters:
 dtqid Data queue ID

 p_data Pointer to the memory area where received data is to be

returned

 <trcv_dtq>

 tmout Timeout specification

Return Values:
 Normal end (E_OK) or error code

Error Codes:
 E_PAR [p] Parameter error (tmout ≤ -2)

 E_ID [p] Invalid ID number

(1) CPU ID is invalid (GET_CPUID (dtqid) is invalid)

(2) Out of local ID range

(GET_LOCALID (dtqid) ≤ 0 or

(_MAX_DTQ of GET_CPUID (dtqid)) < GET_LOCALID (dtqid))

 E_CTX [k] Context error (Called in prohibited system state)

 E_NOEXS [k] Non-existent object (Data queue indicated by dtqid does

not exist)

 E_DLT [k] Waiting object deleted (Target data queue indicated by

dtqid has been deleted while waiting)

 E_TMOUT [k] Polling failed or timeout

 E_RLWAI [k] WAITING state is forcibly canceled

(rel_wai service call was called in the WAITING state)

Function:

Data is received from the data queue specified by dtqid, and stored it to the area indicated by
parameter p_data.

If there is data in the data queue, the leading data (the oldest data) is received. On receiving data
from the data queue, the data queue count is decremented by 1. As a result, if data can be stored
for a task in the send-waiting queue, data is sent and processed in the order of the wait queue.

175

If there is no data in the data queue, and there exists a data send-waiting task (such a circumstance
can occur only when the data queue area capacity is 0), the data of the task at the head of data
send-waiting queue is received. As a result, the WAITING state of the data send-waiting task is
canceled.

If there is no data in the data queue, and there are also no data send-waiting tasks, a service call
rcv_dtq or trcv_dtq causes the calling task to be linked to a wait queue to wait for data arrival
(receive-waiting queue). In the case of a service call prcv_dtq, the call returns immediately with an
E_TMOUT error. The receive-waiting queue is managed on a first-in first-out (FIFO) basis.

In service call trcv_dtq, parameter tmout specifies the timeout period.

If a positive value is specified for parameter tmout, error code E_TMOUT is returned when the
tmout period has passed without the wait release conditions being satisfied.

If tmout = TMO_POL (0) is specified, the same operation as for service call prcv_dtq will be
performed.

If tmout = TMO_FEVR (–1) is specified, timeout monitoring is not performed. In other words, the
same operation as for service call rcv_dtq will be performed.

The maximum value that can be specified for tmout is (0x7FFFFFFF − TIC_NUME)/TIC_DENO.
If a value larger than this is specified, operation is not guaranteed.

For details on time management, refer to section 5.13.7, Time Precision.

In service call prcv_dtq, rcv_dtq, or trcv_dtq, data queues belonging to the kernel of another CPU
can be specified as dtqid, except for in dispatch-pending state.

176

6.16.5 Reference Data Queue State (ref_dtq, iref_dtq)

C-Language API:
 ER ercd = ref_dtq(ID dtqid, T_RDTQ *pk_rdtq);

 ER ercd = iref_dtq(ID dtqid, T_RDTQ *pk_rdtq);

Parameters:
 dtqid Data queue ID

 pk_rdtq Pointer to the packet where the data queue state is to be

returned

Return Values:
 Normal end (E_OK) or error code

Packet Structure:
 typedef struct {

 ID stskid; Task ID waiting for sending

 ID rtskid; Task ID waiting for receiving

 UINT sdtqcnt; The number of data in the data queue

 }T_RDTQ;

Error Codes:
 E_ID [p] Invalid ID number

(1) CPU ID is invalid (GET_CPUID (dtqid) is invalid)

(2) Out of local ID range

(GET_LOCALID (dtqid) ≤ 0 or

(_MAX_DTQ of GET_CPUID (dtqid)) < GET_LOCALID (dtqid))

 E_CTX [k] Context error (Called in prohibited system state when

GET_CPUID (dtqid) is not the current CPU)

 E_NOEXS [k] Non-existent object (Data queue indicated by dtqid does not

exist)

Function:

The state of the data queue specified by dtqid is referenced, and the send-waiting task IDs (stskid),
the receive-waiting task IDs (rtskid), and the number of data items in the data queue (sdtqcnt) are
returned to the area specified by pk_rdtq.

The CPU ID (1 or 2) where the specified data queue belongs is always set in bits 14 to 12 of a wait
task ID.

177

In the case where a task of another CPU is waiting to send data or receive data from the specified
data queue, an SVC server task belonging to the same CPU as the specified data queue will
actually wait to perform data transmission/reception with the specified data queue instead of the
task of another CPU. Accordingly, the ID of the SVC server task will be returned to the wait task
ID in such a case.

If there are no send-waiting tasks or receive-waiting tasks, TSK_NONE (0) is returned as the wait
task ID.

In service call ref_dtq, data queues belonging to the kernel of another CPU can be specified as
dtqid, except for in dispatch-pending state. In service call iref_dtq, data queues belonging to the
kernel of another CPU cannot be specified as dtqid.

6.17 Synchronization and Communication (Mailbox)
Mailboxes are controlled by the service calls listed in table 6.19.

Table 6.19 Service Calls for Synchronization and Communication (Mailbox)

System State*2

Service Call*1 Description T N E D U L C

cre_mbx [s] O O O O

icre_mbx

Creates mailbox

 O O O O

acre_mbx O O O O

iacre_mbx

Creates mailbox and assigns
mailbox ID automatically O O O O

del_mbx Deletes mailbox O O O O

snd_mbx [B] [S] [R] O O Δ O

isnd_mbx

Sends data to mailbox

 O O O O

rcv_mbx [B] [S] [R] Receives data from mailbox O O O

prcv_mbx [B] [S] [R] O O Δ O

iprcv_mbx

Polls and receives data from
mailbox O O O O

trcv_mbx [S] [R] Receives data from mailbox
with timeout function

O O O

ref_mbx [R] O O Δ O

iref_mbx

Refers to mailbox state

 O O O O

178

Notes: 1. [S]: Standard profile service calls
[s]: Service calls that are not standard profile service calls but are needed in order to
 use the standard profile function
[B]: Basic profile service calls
[R]: Service calls that can be issued remotely

 2. T: Can be called in a task context
N: Can be called in a non-task context
E: Can be called in dispatch-enabled state
D: Can be called in dispatch-disabled state
U: Can be called in CPU-unlocked state
L: Can be called in CPU-locked state
C: Can be called while executing the normal CPU exception handler
O: Can be called in the state
Δ: Can be called in the state only when a local object is the target

The mailbox specifications are listed in table 6.20.

Table 6.20 Mailbox Specifications

Item Description

Local mailbox ID 1 to _MAX_MBX (1023 max.)

Message priority 1 to TMAX_MPRI (255 max.)

Mailbox attributes TA_TFIFO: Wait task queue is managed on a FIFO basis

TA_TPRI: Wait task queue is managed on the current priority

TA_MFIFO: Message queue is managed on a FIFO basis

TA_MPRI: Message queue is managed on the current priority

179

6.17.1 Create Mailbox
(cre_mbx, icre_mbx)
(acre_mbx, iacre_mbx: Assign Mailbox ID Automatically)

C-Language API:
 ER ercd = cre_mbx(ID mbxid, T_CMBX *pk_cmbx);

 ER ercd = icre_mbx(ID mbxid, T_CMBX *pk_cmbx);

 ER_ID mbxid = acre_mbx(T_CMBX *pk_cmbx);

 ER_ID mbxid = iacre_mbx(T_CMBX *pk_cmbx);

Parameters:
 pk_cmbx Pointer to the packet where the mailbox creation information

is stored

 <cre_mbx, icre_mbx>

 mbxid Mailbox ID

Return Values:
 <cre_mbx, icre_mbx>

 Normal end (E_OK) or error code

 <acre_mbx, iacre_mbx>

 Created mailbox ID (a positive value) or error code

Packet Structure:
 typedef struct {

 ATR mbxatr; Mailbox attribute

 PRI maxmpri; Maximum value of message priority

 VP mprihd; Start address of message queue header with

priority

 }T_CMBX;

Error Codes:
 E_RSATR [p] Invalid attribute (mbxatr is invalid)

 E_PAR [p] Parameter error (maxmpri ≤ 0 or

maxmpri > TMAX_MPRI of current CPU)

 E_ID [p] Invalid ID number (cre_mbx, icre_mbx)

(1) CPU ID is invalid (GET_CPUID (mbxid) is not the current

CPU)

(2) Out of local ID range

(GET_LOCALID (mbxid) ≤ 0 or

(_MAX_MBX of GET_CPUID (mbxid)) < GET_LOCALID (mbxid))

 E_OBJ [k] Object state is invalid (Mailbox indicated by mbxid already

exists) (cre_mbx, icre_mbx)

 E_NOID [k] No ID available (acre_mbx, iacre_mbx)

180

Function:

Each of these service calls creates a mailbox.

These service calls can create mailboxes belonging to the kernel of the current CPU. This kernel
does not have service calls for creating objects belonging to the kernel of another CPU.

Service calls cre_mbx and icre_mbx create a mailbox with an ID indicated by mbxid. 1 to
(_MAX_MBX of current CPU) can be specified for the local ID of mbxid. VCPU_SELF or the
current CPU ID must be specified for the CPU ID of mbxid.

Service calls acre_mbx and iacre_mbx search for an unused mailbox ID, create a mailbox with
that ID, and return the ID to mbxid. The range searched for the local mailbox ID is 1 to
(_MAX_MBX of current CPU). The CPU ID of the mailbox ID that will be returned is the current
CPU ID.

Parameter mbxatr specifies the order of the receive-waiting tasks and messages in the wait queues
as the attributes.

mbxatr := ((TA_TFIFO || TA_TPRI) | TA_MFIFO || TA_MPRI))

• TA_TFIFO (0x00000000): Message receive-waiting queue is managed on a FIFO basis

• TA_TPRI (0x00000001): Message receive-waiting queue is managed on the current priority

• TA_MFIFO (0x00000000): Message queue is managed on a FIFO basis

• TA_MPRI (0x00000002): Message queue is managed on the current priority

When TA_MPRI is specified for mbxatr, NULL must be specified for mprihd. The message-queue
header area is created in the area specified by mprihd when a value other than NULL is specified
by the μITRON4.0 specification. However, the kernel does not support a value other than NULL.
If a value other than NULL is used, normal system operation cannot be guaranteed. If TA_MPRI
is not specified, mprihd does not have any meaning and is simply ignored.

181

6.17.2 Delete Mailbox (del_mbx)

C-Language API:
 ER ercd = del_mbx(ID mbxid);

Parameters:
 mbxid Mailbox ID

Return Values:
 Normal end (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number

(1) CPU ID is invalid (GET_CPUID (mbxid) is not the

current CPU)

(2) Out of local ID range

(GET_LOCALID (mbxid) ≤ 0 or

(_MAX_MBX of GET_CPUID (mbxid)) < GET_LOCALID (mbxid))

 E_CTX [k] Context error (Called in prohibited system state)

 E_NOEXS [k] Non-existent object (Mailbox indicated by mbxid does not

exist)

Function:

Service call del_mbx deletes the mailbox indicated by parameter mbxid.

Only mailboxes belonging to the kernel of the current CPU can be specified as mbxid.

No error will occur even if there is a task waiting for a message in the mailbox indicated by
mbxid. However, in that case, the task in the WAITING state will be released and error code
E_DLT will be returned. If there is a message in the mailbox, no error will occur, but the kernel
will not perform any processing for the message area. For example, the kernel will not
automatically return the message area to the memory pool when a memory block acquired from
the memory pool is used for a message.

182

6.17.3 Send Message to Mailbox (snd_mbx, isnd_mbx)

C-Language API:
 ER ercd = snd_mbx(ID mbxid, T_MSG *pk_msg);

 ER ercd = isnd_mbx(ID mbxid, T_MSG *pk_msg);

Parameters:
 mbxid Mailbox ID

 pk_msg Start address of the message to be sent

Return Values:
 Normal end (E_OK) or error code

Packet Structure:
 <Mailbox message header>

 typedef struct {

 VP msghead; Kernel management area

 }T_MSG;

 <Mailbox message header with priority>

 typedef struct {

 T_MSG msgque; Message header

 PRI msgpri; Message priority

 }T_MSG_PRI;

Error Codes:
 E_PAR [p] Parameter error (the first four bytes of the message is

other than 0)

 [k] (msgpri ≤ 0 or msgpri > TMAX_MPRI of current CPU)

 E_ID [p] Invalid ID number

(1) CPU ID is invalid (GET_CPUID (mbxid) is invalid)

(2) Out of local ID range

(GET_LOCALID (mbxid) ≤ 0 or

(_MAX_MBX of GET_CPUID (mbxid)) < GET_LOCALID (mbxid))

 E_CTX [k] Context error (Called in prohibited system state when

GET_CPUID (mbxid) is not the current CPU)

 E_NOEXS [k] Non-existent object (Mailbox indicated by mbxid does not

exist)

183

Function:

Each service call sends a message specified by pk_msg to the mailbox specified by mbxid.

If there is a task waiting to receive a message in the mailbox, the task at the head of the wait queue
receives the message and is released from the WAITING state. On the other hand, if there are no
tasks waiting to receive a message, the message specified by pk_msg is placed at the end of the
message queue. The message queue is managed according to the attribute specified at creation.

To send a message to a mailbox that has the TA_MFIFO attribute, the message must have the
T_MSG structure at the head of the message, as shown in figure 6.4.

To send a message to a mailbox that has the TA_MPRI attribute, the message must have the
T_MSG_PRI structure at the head of the message, as shown in figure 6.5.

Messages must be created in RAM for both the TA_MFIFO and TA_MPRI attributes, and the
contents of the T_MSG area must be set to 0 before sending a message.

Note that the T_MSG area is used by the kernel; therefore, the area must not be modified after a
message has been sent. After a message is sent, if this area is modified before receiving that
message, normal system operation cannot be guaranteed.

typedef struct {
 T_MSG t_msg; /* T_MSG structure */
 B data[8]; /* Example of user message data structure (any structure) */
} USER_MSG;

Figure 6.4 Example of a Message Form

typedef struct {
 T_MSG_PRI t_msg; /* T_MSG_PRI structure */
 B data[8]; /* Example of user message data structure (any structure) */
} USER_MSG;

Figure 6.5 Example of a Message Form with Priority

In service call snd_mbx, mailboxes belonging to the kernel of another CPU can be specified as
mbxid, except for in dispatch-pending state. In this case, messages must be created in a non-
cacheable area.

In service call isnd_mbx, mailboxes belonging to the kernel of another CPU cannot be specified as
mbxid.

184

6.17.4 Receive Message from Mailbox (rcv_mbx, prcv_mbx, iprcv_mbx, trcv_mbx)

C-Language API:
 ER ercd = rcv_mbx(ID mbxid, T_MSG **ppk_msg);

 ER ercd = prcv_mbx(ID mbxid, T_MSG **ppk_msg);

 ER ercd = iprcv_mbx(ID mbxid, T_MSG **ppk_msg);

 ER ercd = trcv_mbx(ID mbxid, T_MSG **ppk_msg, TMO tmout);

Parameters:
 mbxid Mailbox ID

 ppk_msg Pointer to the memory area where the start address of the received

message is to be returned

 <trcv_mbx>

 tmout Timeout specification

Return Values:
 Normal end (E_OK) or error code

Packet Structure:
 <Mailbox message header>

 typedef struct {

 VP msghead; Kernel management area

 }T_MSG;

 <Mailbox message header with priority>

 typedef struct {

 T_MSG msgque; Message header

 PRI msgpri; Message priority

 }T_MSG_PRI;

Error Codes:
 E_PAR [p] Parameter error (tmout ≤ –2)

 E_ID [p] Invalid ID number

(1) CPU ID is invalid (GET_CPUID (mbxid) is invalid)

(2) Out of local ID range

(GET_LOCALID (mbxid) ≤ 0 or

(_MAX_MBX of GET_CPUID (mbxid)) < GET_LOCALID (mbxid))

 E_CTX [k] Context error (Called in prohibited system state)

 E_NOEXS [k] Non-existent object (Mailbox indicated by mbxid does not exist)

 E_DLT [k] Waiting object deleted (Mailbox indicated by mbxid has been

deleted in the WAITING state)

 E_TMOUT [k] Polling failed or timeout

 E_RLWAI [k] WAITING state is forcibly canceled

(rel_wai service call was called in the WAITING state)

185

Function:

Each service call receives a message from the mailbox specified by parameter mbxid. Then the
start address of the received message is returned to the area indicated by parameter pk_msg.

With service calls rcv_mbx and trcv_mbx, if there are no messages in the mailbox, the task that
called the service call is placed in the wait queue to receive a message. With service calls
prcv_mbx and iprcv_mbx, if there are no messages in the mailbox, error code E_TMOUT is
returned immediately. The wait queue is managed according to the attribute specified at creation.

In service call trcv_mbx, parameter tmout specifies the timeout period.

If a positive value is specified for parameter tmout, error code E_TMOUT is returned when the
tmout period has passed without the wait release conditions being satisfied.

If tmout = TMO_POL (0) is specified, the same operation as for service call prcv_mbx will be
performed.

If tmout = TMO_FEVR (–1) is specified, timeout monitoring is not performed. In other words, the
same operation as for service call rcv_mbx will be performed.

The maximum value that can be specified for tmout is (0x7FFFFFFF − TIC_NUME)/TIC_DENO.
If a value larger than this is specified, operation is not guaranteed.

For details on time management, refer to section 5.13.7, Time Precision.

In service call prcv_mbx, rcv_mbx, or trcv_mbx, mailboxes belonging to the kernel of another
CPU can be specified as mbxid, except for in dispatch-pending state. In service call iprcv_mbx,
mailboxes belonging to the kernel of another CPU cannot be specified as mbxid.

186

6.17.5 Reference Mailbox State (ref_mbx, iref_mbx)

C-Language API:
 ER ercd = ref_mbx(ID mbxid, T_RMBX *pk_rmbx);

 ER ercd = iref_mbx(ID mbxid, T_RMBX *pk_rmbx);

Parameters:
 mbxid Mailbox ID

 pk_rmbx Pointer to the packet where the mailbox state is to be

returned

Return Values:
 Normal end (E_OK) or error code

Packet Structure:
 (1) T_RMBX

 typedef struct {

 ID wtskid; Wait task ID

 T_MSG *pk_msg; Start address of the message to be received next

 }T_RMBX;

 (2) T_MSG

 <Mailbox message header>

 typedef struct {

 VP msghead; Kernel management area

 }T_MSG;

 <Mailbox message header with priority>

 typedef struct {

 T_MSG msgque; Message header

 PRI msgpri; Message priority

 }T_MSG_PRI;

Error Codes:
 E_ID [p] Invalid ID number

(1) CPU ID is invalid (GET_CPUID (mbxid) is invalid)

(2) Out of local ID range

(GET_LOCALID (mbxid) ≤ 0 or

(_MAX_MBX of GET_CPUID (mbxid)) < GET_LOCALID (mbxid))

 E_CTX [k] Context error (Called in prohibited system state when

GET_CPUID (mbxid) is not the current CPU)

 E_NOEXS [k] Non-existent object (Mailbox indicated by mbxid does not

exist)

187

Function:

Each service call refers to the state of the mailbox indicated by parameter mbxid. Service calls
ref_mbx and iref_mbx return the wait task ID (wtskid) and the start address of the message to be
received next (pk_msg) to the area indicated by pk_rmbx.

The CPU ID (1 or 2) where the specified mailbox belongs is always set in bits 14 to 12 of a wait
task ID.

In the case where a task of another CPU is waiting to send a message or receive a message from
the specified mailbox, an SVC server task belonging to the same CPU as the specified mailbox
will actually wait to perform message transmission/reception with the specified mailbox instead of
the task of another CPU. Accordingly, the ID of the SVC server task will be returned to the wait
task ID in such a case.

If there is no task waiting for the specified mailbox, TSK_NONE (0) is returned as a wait task ID.

If there is no message to be received next, NULL (0) is returned as a message start address.

In service call ref_mbx, mailboxes belonging to the kernel of another CPU can be specified as
mbxid, except for in dispatch-pending state. In service call iref_mbx, mailboxes belonging to the
kernel of another CPU cannot be specified as mbxid.

188

6.18 Extended Synchronization and Communication (Mutex)
Mutexes are controlled by the service calls listed in table 6.21.

Table 6.21 Service Calls for Extended Synchronization and Communication (Mutex)

System State*2

Service Call*1 Description T N E D U L C

cre_mtx Creates mutex O O O O

acre_mtx Creates mutex and assigns mutex ID
automatically

O O O O

del_mtx Deletes mutex O O O O

loc_mtx Locks mutex O O O

ploc_mtx Polls and locks mutex O O O O

tloc_mtx Locks mutex with timeout function O O O

unl_mtx Unlocks mutex O O O O

ref_mtx Refers to mutex state O O O O

Notes: 1. [S]: Standard profile service calls
[s]: Service calls that are not standard profile service calls but are needed in order to
 use the standard profile function
[B]: Basic profile service calls
[R]: Service calls that can be issued remotely

 2. T: Can be called in a task context
N: Can be called in a non-task context
E: Can be called in dispatch-enabled state
D: Can be called in dispatch-disabled state
U: Can be called in CPU-unlocked state
L: Can be called in CPU-locked state
C: Can be called while executing the normal CPU exception handler
O: Can be called in the state
Δ: Can be called in the state only when a local object is the target

189

The mutex specifications are listed in table 6.22.

Table 6.22 Mutex Specifications

Item Description

Local mutex ID 1 to _MAX_MTX (1023 max.)

Attribute supported TA_CEILING: Priority ceiling protocol

Note: This kernel only supports the TA_CEILING attribute (priority ceiling protocol). In this kernel,
the mutexes are managed by "simplified priority control rule". Under this rule, the
management which changes the task's current priority to a higher value is always done, but
the management which changes the task's priority to a lower value is done only when the
task releases all of the mutexes.

6.18.1 Create Mutex
(cre_mtx)
(acre_mtx: Assign Mutex ID Automatically)

C-Language API:
 ER ercd = cre_mtx(ID mtxid, T_CMTX *pk_cmtx);

 ER_ID mtxid = acre_mtx(T_CMTX *pk_cmtx);

Parameters:
 pk_cmtx Pointer to the packet where the mutex creation information is

stored

 <cre_mtx>

 mtxid Mutex ID

Return Values:
 <cre_mtx>

 Normal end (E_OK) or error code

 <acre_mtx>

 Created mutex ID (a positive value) or error code

Packet Structure:
 typedef struct {

 ATR mtxatr; Mutex attribute

 PRI ceilpri; Ceiling priority of mutex

 }T_CMTX;

190

Error Codes:
 E_RSATR [p] Invalid attribute (mtxatr is invalid)

 E_PAR [p] Parameter error (ceilpri ≤ 0 or

ceilpri > TMAX_TPRI of current CPU)

 E_ID [p] Invalid ID number (cre_mtx)

(1) CPU ID is invalid (GET_CPUID (mtxid) is not the current

CPU)

(2) Out of local ID range

(GET_LOCALID (mtxid) ≤ 0 or

(_MAX_MTX of GET_CPUID (mtxid)) < GET_LOCALID (mtxid))

 E_OBJ [k] Object state is invalid (Mutex indicated by mtxid already

exists) (cre_mtx)

 E_NOID [k] No ID available (acre_mtx, iacre_mtx)

Function:

Each of these service calls creates a mutex.

These service calls can create mutexes belonging to the kernel of the current CPU. This kernel
does not have service calls for creating objects belonging to the kernel of another CPU.

Service call cre_mtx creates a mutex with the ID specified by mtxid. 1 to (_MAX_MTX of current
CPU) can be specified for the local ID of mtxid. VCPU_SELF or the current CPU ID must be
specified for the CPU ID of mtxid.

Service call acre_mtx searches for an unused mutex ID, creates a mutex with that ID, and returns
the ID to mtxid. The range searched for the local mutex ID is 1 to (_MAX_MTX of current CPU).
The CPU ID of the mutex ID that will be returned is the current CPU ID.

Parameter mtxatr can specify only the priority ceiling protocol (TA_CEILING) as the attribute.

mtxatr := (TA_CEILING)

• TA_CEILING (0x00000003): Priority ceiling protocol

Parameter ceilpri specifies the ceiling priority for the mutex to be created. The range of values
which can be specified is 1 to TMAX_TPRI.

191

6.18.2 Delete Mutex (del_mtx)

C-Language API:
 ER ercd = del_mtx(ID mtxid);

Parameters:
 mtxid Mutex ID

Return Values:
 Normal end (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number

(1) CPU ID is invalid (GET_CPUID (mtxid) is not the

current CPU)

(2) Out of local ID range

(GET_LOCALID (mtxid) ≤ 0 or

(_MAX_MTX of GET_CPUID (mtxid)) < GET_LOCALID

(mtxid))

 E_CTX [k] Context error (Called in prohibited system state)

 E_NOEXS [k] Non-existent object (Mutex indicated by mtxid does not

exist)

Function:

Service call del_mtx deletes the mutex specified by parameter mtxid.

Only mutexes belonging to the kernel of the current CPU can be specified as mtxid.

No error occurs even when there is a lock-waiting task for the mutex specified by mtxid; but the
WAITING state of the task is canceled, and E_DLT is returned as an error code.

When the target mutex is locked, the lock for the task locked by the mutex is canceled. As a result,
only when all mutexes locking the task are removed, the task priority is returned to base priority.

The task locked by the deleted mutex is not notified that the mutex has been deleted. If an attempt
is later made to release the mutex lock, an error is returned.

192

6.18.3 Lock Mutex (loc_mtx, ploc_mtx, tloc_mtx)

C-Language API:
 ER ercd = loc_mtx(ID mtxid);

 ER ercd = ploc_mtx(ID mtxid);

 ER ercd = tloc_mtx(ID mtxid, TMO tmout);

Parameters:
 mtxid Mutex ID

 <tloc_mtx>

 tmout Timeout specification

Return Values:
 Normal end (E_OK) or error code

Error Codes:
 E_PAR [p] Parameter error (tmout ≤ –2)

 E_ID [p] Invalid ID number

(1) CPU ID is invalid (GET_CPUID (mtxid) is not the

current CPU)

(2) Out of local ID range

(GET_LOCALID (mtxid) ≤ 0 or

(_MAX_MTX of GET_CPUID (mtxid)) < GET_LOCALID

(mtxid))

 E_CTX [k] Context error (Called in prohibited system state)

 E_ILUSE [k] Illegal use of service call

(1) The mutex specified by mtxid is already locked by the

calling task

(2) Base priority of the calling task > Ceiling priority

of the target mutex

 E_NOEXS [k] Non-existent object (Mutex indicated by mtxid does not

exist)

 E_DLT [k] Waiting object deleted (Mutex indicated by mtxid has

been deleted in the WAITING state)

 E_RLWAI [k] The WAITING state was forcibly canceled

(rel_wai service call was called in the WAITING state)

 E_TMOUT [k] Polling failed or timeout

193

Function:

Service calls loc_mtx, ploc_mtx and tloc_mtx lock the mutex specified by parameter mtxid.

If the target mutex is not locked, the current task locks the mutex, and the service call processing
is completed. At this time, the priority of the current task is raised to the ceiling priority of the
mutex.

If the target mutex is locked, the current task is placed in a wait queue, and the current task enters
the mutex lock-wait state. The wait queue is managed in priority order.

In service call tloc_mtx, parameter tmout specifies the timeout period.

If a positive value is specified for parameter tmout, error code E_TMOUT is returned when the
tmout period has passed without the wait release conditions being satisfied.

If tmout = TMO_POL (0) is specified, the same operation as for service call ploc_mtx will be
performed.

If tmout = TMO_FEVR (–1) is specified, timeout monitoring is not performed. In other words, the
same operation as for service call loc_mtx will be performed.

The maximum value that can be specified for tmout is (0x7FFFFFFF − TIC_NUME)/TIC_DENO.
If a value larger than this is specified, operation is not guaranteed.

For details on time management, refer to section 5.13.7, Time Precision.

194

6.18.4 Unlock Mutex (unl_mtx)

C-Language API:
 ER ercd = unl_mtx(ID mtxid);

Parameters:
 mtxid Mutex ID

Return Values:
 Normal end (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number

(1) CPU ID is invalid (GET_CPUID (mtxid) is not the

current CPU)

(2) Out of local ID range

(GET_LOCALID (mtxid) ≤ 0 or

(_MAX_MTX of GET_CPUID (mtxid)) < GET_LOCALID

(mtxid))

 E_CTX [k] Context error (Called in prohibited system state)

 E_ILUSE [k] Illegal use of service call (The calling task has not

locked the target mutex)

 E_NOEXS [k] Non-existent object (Mutex indicated by mtxid does not

exist)

Function:

The lock for the mutex specified by mtxid is released. If there are tasks waiting for the lock for the
specified mutex, the WAITING state for the task at the head of the mutex wait queue is released,
and the task whose WAITING state has been released is put into a state which locks the mutex. At
this time, the priority of the locking task is raised to the ceiling priority of the mutex. If there are
no tasks waiting for the mutex, the mutex is put into the unlocked state.

The simplified priority ceiling protocol is used for the TA_CEILING attribute of this kernel. That
is, only when all the mutex that are locked by the task are unlocked, the present priority of the task
is returned to a base priority. When the task still locks other mutex after this call, the present
priority does not change in this service call.

195

6.18.5 Reference Mutex State (ref_mtx)

C-Language API:
 ER ercd = ref_mtx(ID mtxid, T_RMTX *pk_rmtx);

Parameters:
 mtxid Mutex ID

 pk_rmtx Pointer to the packet where the mutex state is to be returned

Return Values:
 Normal end (E_OK) or error code

Packet Structure:
 typedef struct {

 ID htskid; Task ID locking a mutex

 ID wtskid; Start task ID of mutex waiting queue

 }T_RMTX;

Error Codes:
 E_ID [p] Invalid ID number

(1) CPU ID is invalid (GET_CPUID (mtxid) is not the current

CPU)

(2) Out of local ID range

(GET_LOCALID (mtxid) ≤ 0 or

(_MAX_MTX of GET_CPUID (mtxid)) < GET_LOCALID (mtxid))

 E_NOEXS [k] Non-existent object (Mutex indicated by mtxid does not

exist)

Function:

Service call ref_mtx refers to the state of the mutex.

Service call ref_mtx returns the task ID that locks the mutex (htskid) and the start task ID of the
mutex wait queue (wtskid) to the area indicated by pk_rmtx.

The CPU ID (1 or 2) where the specified mutex belongs is always set in bits 14 to 12 of htskid and
wtskid.

If there is no task that locks the target mutex, TSK_NONE (0) is returned to htskid.

If there is no task waiting for the target mutex, TSK_NONE (0) is returned to wtskid.

196

6.19 Extended Synchronization and Communication (Message Buffer)
Message buffers are controlled by the service calls listed in table 6.23.

Table 6.23 Service Calls for Extended Synchronization and Communication (Message
Buffer)

System State*2

Service Call*1 Description T N E D U L C

cre_mbf O O O O

icre_mbf

Creates message buffer

 O O O O

acre_mbf O O O O

iacre_mbf

Creates message buffer and
assigns message buffer ID
automatically

 O O O O

del_mbf Deletes message buffer O O O O

snd_mbf [R] Sends message to message
buffer

O O O

psnd_mbf [R] O O Δ O

ipsnd_mbf

Polls and sends message to
message buffer O O O O

tsnd_mbf [R] Sends message to message
buffer with timeout function

O O O

rcv_mbf [R] Receives message from
message buffer

O O O

prcv_mbf [R] Polls and receives message
from message buffer

O O Δ O

trcv_mbf [R] Receives message from
message buffer with timeout
function

O O O

ref_mbf [R] O O Δ O

iref_mbf

Refers to message buffer state

 O O O O

Notes: 1. [S]: Standard profile service calls
[s]: Service calls that are not standard profile service calls but are needed in order to
 use the standard profile function
[B]: Basic profile service calls
[R]: Service calls that can be issued remotely

197

 2. T: Can be called in a task context
N: Can be called in a non-task context
E: Can be called in dispatch-enabled state
D: Can be called in dispatch-disabled state
U: Can be called in CPU-unlocked state
L: Can be called in CPU-locked state
C: Can be called while executing the normal CPU exception handler
O: Can be called in the state
Δ: Can be called in the state only when a local object is the target

The message buffer specifications are listed in table 6.24.

Table 6.24 Message Buffer Specifications

Item Description

Local message buffer ID 1 to _MAX_MBF (1023 max.)

Message buffer attributes TA_TFIFO: Wait task queue is managed on a FIFO basis

TA_TPRI: Wait task queue is managed on the current priority

6.19.1 Create Message Buffer
(cre_mbf, icre_mbf)
(acre_mbf, iacre_mbf: Assign Message Buffer ID Automatically)

C-Language API:
 ER ercd = cre_mbf(ID mbfid, T_CMBF *pk_cmbf);

 ER ercd = icre_mbf(ID mbfid, T_CMBF *pk_cmbf);

 ER_ID mbfid = acre_mbf(T_CMBF *pk_cmbf);

 ER_ID mbfid = iacre_mbf(T_CMBF *pk_cmbf);

Parameters:
 pk_cmbf Pointer to the packet where the message buffer creation information

is stored

 <cre_mbf, icre_mbf>

 mbfid Message buffer ID

Return Values:
 <cre_mbf, icre_mbf>

 Normal end (E_OK) or error code

 <acre_mbf, iacre_mbf>

 Created message buffer ID (a positive value) or error code

198

Packet Structure:
 typedef struct {

 ATR mbfatr; Message buffer attribute

 UINT maxmsz; Maximum message size (Number of bytes)

 SIZE mbfsz; Message buffer size (Number of bytes)

 VP mbf; Start address of message buffer area

 }T_CMBF;

Error Codes:
 E_NOMEM [k] Insufficient memory (Message buffer area cannot be allocated

in the memory)

 E_RSATR [p] Invalid attribute (mbfatr is invalid)

 E_PAR [p] Parameter error

(1) mbfsz is other than a multiple of four

(2) maxmsz = 0

(3) mbfsz is other than 0 and maxmsz + 4 > mbfsz

 E_ID [p] Invalid ID number (cre_mbf, icre_mbf)

(1) CPU ID is invalid (GET_CPUID (mbfid) is not the current

CPU)

(2) Out of local ID range

(GET_LOCALID (mbfid) ≤ 0 or

(_MAX_MBF of GET_CPUID (mbfid)) < GET_LOCALID (mbfid))

 E_OBJ [k] Object state is invalid (Message buffer indicated by mbfid

already exists) (cre_mbf, icre_mbf)

 E_NOID [k] No ID available (acre_mbf, iacre_mbf)

Function:

Each of these service calls creates a message buffer.

These service calls can create message buffers belonging to the kernel of the current CPU. This
kernel does not have service calls for creating objects belonging to the kernel of another CPU.

Service calls cre_mbf and icre_mbf create a message buffer with an ID indicated by mbfid. 1 to
(_MAX_MBF of current CPU) can be specified for the local ID of mbfid. VCPU_SELF or the
current CPU ID must be specified for the CPU ID of mbfid.

199

Service calls acre_mbf and iacre_mbf search for an unused message buffer ID, create a message
buffer with that ID, and return the ID to mbfid. The range searched for the local message buffer ID
is 1 to (_MAX_MBF of current CPU). The CPU ID of the message buffer ID that will be returned
is the current CPU ID.

(1) mbfatr

Parameter mbfatr specifies the order of the tasks in the queue waiting for sending a message to the
message buffer as the attribute.

mbfatr := (TA_TFIFO || TA_TPRI)

• TA_TFIFO (0x00000000): Task queue waiting for sending a message is managed on a FIFO
basis

• TA_TPRI (0x00000001): Task queue waiting for sending a message is managed on the current
priority

The message queue and the task queue waiting for receiving a message are managed on a first-in
first-out (FIFO) basis regardless of the mbfatr specification.

(2) mbfsz

Parameter mbfsz specifies the size of the message buffer to be created.

The following macro is provided to estimate the approximate size to be specified for mbfsz.

SIZE mbfsz = TSZ_MBF (UINT msgcnt, UINT msgsz)

Approximate size (bytes) of a message buffer area required to store the msgcnt number of
msgsz-byte messages

A message buffer of mbfsz = 0 can also be created. In this case, no message can be stored in the
message buffer, and the message-receiving task completely synchronizes with the message-
sending task. In other words, when a service call to send a message is issued, the task stays in the
WAITING state until another task calls a service call to receive a message. Similarly, when a task
calls a service call to receive a message the task stays in the WAITING state until another task
calls a service call to send a message. Note that for a message buffer with mbfsz = 0, there will be
no copying via the message buffer.

(3) maxmsz

Parameter maxmsz specifies the maximum length of a message that can be held in a message
buffer.

200

(4) mbf

Parameter mbf specifies the start address of a free area to be used as a message buffer. An area of
mbfsz bytes from mbf is used as the message buffer.

When a value of 0 is specified for mbfsz, mbf does not have any meaning and is simply ignored.

When NULL is specified for mbf, the kernel allocates a message buffer area of mbfsz bytes from
the default message buffer area. After that, the size of the free space in the default message buffer
area will decrease by an amount given by the following expression:

Decrease in size = mbfsz + 16 bytes

6.19.2 Delete Message Buffer (del_mbf)

C-Language API:
 ER ercd = del_mbf(ID mbfid);

Parameters:
 mbfid Message buffer ID

Return Values:
 Normal end (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number

(1) CPU ID is invalid (GET_CPUID (mbfid) is not the current

CPU)

(2) Out of local ID range

(GET_LOCALID (mbfid) ≤ 0 or

(_MAX_MBF of GET_CPUID (mbfid)) < GET_LOCALID (mbfid))

 E_CTX [k] Context error (Called in prohibited system state)

 E_NOEXS [k] Non-existent object (Message buffer indicated by mbfid does

not exist)

Function:

Service call del_mbf deletes the message buffer indicated by parameter mbfid.

Only message buffers belonging to the kernel of the current CPU can be specified as mbfid.

No error will occur even if there is a task waiting for receiving or sending a message in the
message buffer indicated by mbfid. However, in that case, the task in the WAITING state will be
released and error code E_DLT will be returned. In addition, if there is a message in the message
buffer, no error will occur, but all stored messages will be deleted.

201

On deletion, the size of the free space in the default message buffer area will increase by an
amount given by the following expression:

Increase in size = mbfsz specified at creation + 16 bytes

6.19.3 Send Message to Message Buffer (snd_mbf, psnd_mbf, ipsnd_mbf, tsnd_mbf)

C-Language API:
 ER ercd = snd_mbf(ID mbfid, VP msg, UINT msgsz);

 ER ercd = psnd_mbf(ID mbfid, VP msg, UINT msgsz);

 ER ercd = ipsnd_mbf(ID mbfid, VP msg, UINT msgsz);

 ER ercd = tsnd_mbf(ID mbfid, VP msg, UINT msgsz, TMO tmout);

Parameters:
 mbfid Message buffer ID

 msg Start address of the message to send

 msgsz Size of the message to send (number of bytes)

 <tsnd_mbf>

 tmout Timeout specification

Return Values:
 Normal end (E_OK) or error code

Error Codes:
 E_PAR [p] Parameter error (msgsz = 0 or tmout ≤ –2)

 [k] (msgsz > maxmsz*)

 E_ID [p] Invalid ID number

(1) CPU ID is invalid (GET_CPUID (mbfid) is invalid)

(2) Out of local ID range

(GET_LOCALID (mbfid) ≤ 0 or

(_MAX_MBF of GET_CPUID (mbfid)) < GET_LOCALID (mbfid))

 E_CTX [k] Context error (Called in prohibited system state when

GET_CPUID (mbfid) is not the current CPU)

 E_NOEXS [k] Non-existent object (Message buffer indicated by mbfid does

not exist)

 E_DLT [k] Waiting object deleted (Message buffer indicated by mbfid

has been deleted during the WAITING state)

 E_TMOUT [k] Polling failed or timeout

 E_RLWAI [k] WAITING state is forcibly canceled

(rel_wai service call was called in the WAITING state)

Note: * maxmsz: Maximum length of a message specified at message buffer creation

202

Function:

Each service call sends a message specified by msg to the message buffer specified by mbfid. The
message size is specified by parameter msgsz.

If there is a task waiting to receive a message, the message sent by the service call is not placed in
the message buffer. Instead, the message is passed to the task at the head of the receive wait
queue, releasing the task from the WAITING state.

If there are already tasks waiting to send a message to the message buffer, the task that called
service call snd_mbf or tsnd_mbf is placed in the queue to wait for free space in the message
buffer (send-waiting queue). With service calls psnd_mbf and ipsnd_mbf, error code E_TMOUT
is immediately returned. The send-waiting queue is managed according to the attribute specified at
task creation.

If there are no tasks waiting to send or receive a message, the message sent from a task is stored in
the message buffer. After that, the size of the free space in the default message buffer area will
decrease by an amount given by the following expression:

Decrease in size = msgsz + 4 bytes

However, if the free space in the message buffer is less than the above size (including when the
buffer size is 0), the task that issued the service call is placed in the send-waiting queue.

ipsnd_mbf can also be issued from a non-task context. Since the priority of a non-task context is
higher than that of a task, when the target message buffer has the TA_TPRI attribute and the
buffer has enough free space, the specified message is copied to the buffer even if there exists a
task that has been waiting to be transmitted.

In service call tsnd_mbf, parameter tmout specifies the timeout period.

If a positive value is specified for parameter tmout, error code E_TMOUT is returned when the
tmout period has passed without the wait release conditions being satisfied.

If tmout = TMO_POL (0) is specified, the same operation as for service call psnd_mbf will be
performed.

If tmout = TMO_FEVR (–1) is specified, the same operation as for service call snd_mbf will be
performed. In other words, timeout monitoring is not performed.

The maximum value that can be specified for tmout is (0x7FFFFFFF − TIC_NUME)/TIC_DENO.
If a value larger than this is specified, operation is not guaranteed.

For details on time management, refer to section 5.13.7, Time Precision.

203

In service call snd_mbf, psnd_mbf, or tsnd_mbf, message buffers belonging to the kernel of
another CPU can be specified as mbfid, except for in dispatch-pending state. In this case,
messages must be created in a non-cacheable area.

In service call ipsnd_mbf, message buffers belonging to the kernel of another CPU cannot be
specified as mbfid.

6.19.4 Receive Message from Message Buffer (rcv_mbf, prcv_mbf, trcv_mbf)

C-Language API:
 ER_UINT msgsz = rcv_mbf(ID mbfid, VP msg);

 ER_UINT msgsz = prcv_mbf(ID mbfid, VP msg);

 ER_UINT msgsz = trcv_mbf(ID mbfid, VP msg, TMO tmout);

Parameters:
 mbfid Message buffer ID

 msg Pointer to the memory area where the received message is to

be stored

 <trcv_mbf>

 tmout Timeout specification

Return Values:
 Size of the received message (number of bytes, a positive value) or error

code

Error Codes:
 E_PAR [p] Parameter error (tmout ≤ –2)

 E_ID [p] Invalid ID number

(1) CPU ID is invalid (GET_CPUID (mbfid) is invalid)

(2) Out of local ID range

(GET_LOCALID (mbfid) ≤ 0 or

(_MAX_MBF of GET_CPUID (mbfid)) < GET_LOCALID (mbfid))

 E_CTX [k] Context error (Called in prohibited system state)

 E_NOEXS [k] Non-existent object (Message buffer indicated by mbfid does

not exist)

 E_DLT [k] Waiting object deleted (Target message buffer indicated by

mbfid has been deleted during the WAITING state)

 E_TMOUT [k] Polling failed or timeout

 E_RLWAI [k] WAITING state is forcibly canceled

(rel_wai service call was called in the WAITING state)

204

Function:

Each service call receives a message from the message buffer specified by parameter mbfid and
stores the received message in the area indicated by msg. The received message size is returned as
the return parameter.

If there are already messages in the message buffer, the task receives the message at the head of
the queue (the oldest message). After the message in the message buffer has been received, the
size of the free space in the message buffer will increase by an amount given by the following
expression:

Increase in size = msgsz + 4 bytes

If, as a result, the free space in the message buffer becomes larger than the size of the message to
be sent by the task at the head of the send-waiting queue, the message is sent and stored in the
message buffer and the task is released from the WAITING state. The same will be done for the
remaining tasks in the order of the send-waiting queue if the message can be stored.

If there are no messages in the message buffer and there are tasks waiting to send a message, the
message of the task at the head of the send-waiting queue is received by the service call. As a
result, the task is released from the WAITING state.

If there are no messages in the message buffer and there are no tasks in the queue to send a
message, the task that called service call rcv_mbf or trcv_mbf is placed in the queue to wait to
receive a message (receive-waiting queue). With service call prcv_mbf, error code E_TMOUT is
immediately returned. The receive-waiting queue is managed on a first-in first-out (FIFO) basis.

Parameter msg points to a RAM area whose size is specified by maxmsz by service call cre_mbf,
icre_mbf, acre_mbf, or iacre_mbf.

In service call trcv_mbf, parameter tmout specifies the timeout period.

If a positive value is specified for parameter tmout, error code E_TMOUT is returned when the
tmout period has passed without the wait release conditions being satisfied.

If tmout = TMO_POL (0) is specified, the same operation as for service call prcv_mbf will be
performed.

If tmout = TMO_FEVR (–1) is specified, timeout monitoring is not performed. In other words, the
same operation as for service call rcv_mbf will be performed.

The maximum value that can be specified for tmout is (0x7FFFFFFF − TIC_NUME)/TIC_DENO.
If a value larger than this is specified, operation is not guaranteed.

For details on time management, refer to section 5.13.7, Time Precision.

205

In these service calls, message buffers belonging to the kernel of another CPU can be specified as
mbfid, except for in dispatch-pending state. In this case, a non-cacheable area must be specified as
the area pointed to by parameter msg.

6.19.5 Reference Message Buffer State (ref_mbf, iref_mbf)

C-Language API:
 ER ercd = ref_mbf(ID mbfid, T_RMBF *pk_rmbf);

 ER ercd = iref_mbf(ID mbfid, T_RMBF *pk_rmbf);

Parameters:
 mbfid Message buffer ID

 pk_rmbf Pointer to the packet where the message buffer state is to be

returned

Return Values:
 Normal end (E_OK) or error code

Packet Structure:
 typedef struct {

 ID stskid; Start task ID of the queue waiting to send a

message

 ID rtskid; Start task ID of the queue waiting to receive

a message

 UINT smsgcnt; Number of messages in message buffer

 SIZE fmbfsz; Size of free buffer (Number of bytes)

 }T_RMBF;

Error Codes:
 E_ID [p] Invalid ID number

(1) CPU ID is invalid (GET_CPUID (mbfid) is invalid)

(2) Out of local ID range

(GET_LOCALID (mbfid) ≤ 0 or

(_MAX_MBF of GET_CPUID (mbfid)) < GET_LOCALID (mbfid))

 E_CTX [k] Context error (Called in prohibited system state when

GET_CPUID (mbfid) is not the current CPU)

Function:

Each service call refers to the state of the message buffer indicated by parameter mbfid and returns
the task ID of the task waiting to send a message (stskid), task waiting to receive a message
(rtskid), the size of the next message to be received (smsgcnt), and the available free buffer size
(fmbfsz) to the area indicated by pk_rmbf.

206

The CPU ID (1 or 2) where the specified message buffer belongs is always set in bits 14 to 12 of
stskid and rtskid.

If no task is waiting to receive or send a message, TSK_NONE (0) is returned as a wait task ID.

In service call ref_mbf, message buffers belonging to the kernel of another CPU can be specified
as mbfid, except for in dispatch-pending state. In service call iref_mbf, message buffers belonging
to the kernel of another CPU cannot be specified as mbfid.

6.20 Memory Pool Management (Fixed-Sized Memory Pool)
Fixed-sized memory pools are controlled by the service calls listed in table 6.25.

Table 6.25 Service Calls for Memory Pool Management (Fixed-Sized Memory Pool)

System State*2

Service Call*1 Description T N E D U L C

cre_mpf [s] O O O O

icre_mpf

Creates fixed-sized memory
pool O O O O

acre_mpf O O O O

iacre_mpf

Creates fixed-sized memory
pool and assigns fixed-sized
memory pool ID automatically

 O O O O

del_mpf Deletes fixed-sized memory
pool

O O O O

get_mpf [B] [S] [R] Acquires fixed-sized memory
block

O O O

pget_mpf [B] [S] [R] O O Δ O

ipget_mpf

Polls and acquires fixed-sized
memory block O O O O

tget_mpf [S] [R] Acquires fixed-sized memory
block with timeout function

O O O

rel_mpf [B] [S] [R] O O Δ O

irel_mpf

Releases fixed-sized memory
block O O O O

ref_mpf [R] O O Δ O

iref_mpf

Refers to fixed-sized memory
pool state O O O O

Notes: 1. [S]: Standard profile service calls
[s]: Service calls that are not standard profile service calls but are needed in order to
 use the standard profile function
[B]: Basic profile service calls
[R]: Service calls that can be issued remotely

207

 2. T: Can be called in a task context
N: Can be called in a non-task context
E: Can be called in dispatch-enabled state
D: Can be called in dispatch-disabled state
U: Can be called in CPU-unlocked state
L: Can be called in CPU-locked state
C: Can be called while executing the normal CPU exception handler
O: Can be called in the state
Δ: Can be called in the state only when a local object is the target

The fixed-sized memory pool specifications are listed in table 6.26.

Table 6.26 Fixed-Sized Memory Pool Specifications

Item Description

Local fixed-sized memory
pool ID

1 to _MAX_MPF (1023 max.)*

Fixed-sized memory pool
attributes

TA_TFIFO: Wait task queue is managed on a FIFO basis

TA_TPRI: Wait task queue is managed on the current priority

Management method Whether to place management information in the memory pool area
can be chosen with system.mpfmanage in the cfg file.

Note: * Though the maximum value of _MAX_MPF is 1023, the maximum value that can be
specified for maxdefine.max_mpf in the cfg file is 1022.

208

6.20.1 Create Fixed-Sized Memory Pool
(cre_mpf, icre_mpf)
(acre_mpf, iacre_mpf: Assign Memory Pool ID Automatically)

C-Language API:
 ER ercd = cre_mpf(ID mpfid, T_CMPF *pk_cmpf);

 ER ercd = icre_mpf(ID mpfid, T_CMPF *pk_cmpf);

 ER_ID mpfid = acre_mpf(T_CMPF *pk_cmpf);

 ER_ID mpfid = iacre_mpf(T_CMPF *pk_cmpf);

Parameters:
 pk_cmpf Pointer to the packet where the fixed-sized memory pool

creation information is stored

 <cre_mpf, icre_mpf>

 mpfid Fixed-sized memory pool ID

Return Values:
 <cre_mpf, icre_mpf>

 Normal end (E_OK) or error code

 <acre_mpf, iacre_mpf>

 Created fixed-sized memory pool ID (a positive value) or error code

Packet Structure:
(1) system.mpfmanage is IN

 typedef struct {

 ATR mpfatr; Fixed-sized memory pool attribute

 UINT blkcnt; Number of blocks in memory pool

 UINT blksz; Block size of fixed-sized memory pool (Number of

bytes)

 VP mpf; Start address of the fixed-sized memory pool

area

 }T_CMPF;

(2) system.mpfmanage is OUT

 typedef struct {

 ATR mpfatr; Fixed-sized memory pool attribute

 UINT blkcnt; Number of blocks in memory pool

 UINT blksz; Block size of fixed-sized memory pool (Number of

bytes)

 VP mpf; Start address of the fixed-sized memory pool

area

 VP mpfmb; Start address of the fixed-sized memory block

management area

 }T_CMPF;

209

Error Codes:
 E_NOMEM [k] Insufficient memory (Memory pool area cannot be allocated in

the memory)

 E_RSATR [p] Invalid attribute (mpfatr is invalid)

 E_PAR [p] Parameter error (blkcnt = 0, blksz is other than a multiple

of four, or blksz = 0)

 [k] TSZ_MPF (blkcnt, blksz) exceeds the 32-bit range

 E_ID [p] Invalid ID number (cre_mpf, icre_mpf)

(1) CPU ID is invalid (GET_CPUID (mpfid) is not the current

CPU)

(2) Out of local ID range

(GET_LOCALID (mpfid) ≤ 0 or

(_MAX_MPF of GET_CPUID (mpfid)) < GET_LOCALID (mpfid))

 E_OBJ [k] Object state is invalid (Fixed-sized memory pool indicated

by mpfid already exists) (cre_mpf, icre_mpf)

 E_NOID [k] No ID available (acre_mpf, iacre_mpf)

Function:

Each of these service calls creates a fixed-sized memory pool.

These service calls can create fixed-sized memory pools belonging to the kernel of the current
CPU. This kernel does not have service calls for creating objects belonging to the kernel of
another CPU.

Service calls cre_mpf and icre_mpf create a fixed-sized memory pool with an ID indicated by
mpfid. 1 to (_MAX_MPF of current CPU) can be specified for the local ID of mpfid.
VCPU_SELF or the current CPU ID must be specified for the CPU ID of mpfid.

Service calls acre_mpf and iacre_mpf search for an unused fixed-sized memory pool ID, create a
fixed-sized memory pool with that ID, and return the ID to mpfid. The range searched for the local
fixed-sized memory pool ID is 1 to (_MAX_MPF of current CPU). The CPU ID of the fixed-sized
memory pool ID that will be returned is the current CPU ID.

210

Parameter mpfatr specifies the order of the tasks in the queue waiting to acquire a memory block
as the attribute.

mpfatr := (TA_TFIFO || TA_TPRI)

• TA_TFIFO (0x00000000): Task queue waiting to acquire a memory block is managed on a
FIFO basis

• TA_TPRI (0x00000001): Task queue waiting to acquire a memory block is managed by the
current priority

Parameter blkcnt specifies the total number of memory blocks to be created.

The size of the memory block to be created is specified by blksz, and must be a multiple of four.

When NULL is specified for mpf, the kernel automatically allocates a fixed-sized memory pool.
This fixed-sized memory pool will be allocated from the default fixed-sized memory pool area
specified by the configurator. After that, the size of the free space in the default fixed-sized
memory pool area will decrease by an amount given by the following expression:

Decrease in size = TSZ_MPF(blkcnt, blksz) + 16 bytes

The following macro is provided to estimate the approximate size to be specified for mpfsz.

SIZE TSZ_MPF(UINT blkcnt, UINT blksz)

Approximate size (bytes) of a fixed-sized memory pool area required to store the blkcnt
number of blksz-byte memory blocks

Note that the definition of the TSZ_MPF() macro differs depending on the system.mpfmanage
setting as follows.

(1) system.mpfmanage is IN

TSZ_MPF (blkcnt, blksz) = (blksz + 4 bytes) × blkcnt

(2) system.mpfmanage is OUT

TSZ_MPF (blkcnt, blksz) = blksz × blkcnt

The address of the allocated fixed-sized memory pool can be specified as mpf. In this case,
allocate an area whose size is calculated by TSZ_MPF (blkcnt, blksz), and specify the address as
mpf.

If system.mpfmanage is OUT, the start address for the fixed-sized memory block management
area must be specified as mpfmb. In this case, allocate an area whose size is calculated by
VTSZ_MPFMB (blkcnt, blksz), and specify the address as mpfmb.

211

mpfmb is a member not defined in the μITRON4.0 specification.

If there is a possibility that another CPU will access the memory block acquired from the fixed-
sized memory pool, the fixed-sized memory pool area must be in a non-cached area. If, in
particular, there is a possibility that another CPU will access the memory block acquired from the
fixed-sized memory pool which was allocated from the default fixed-sized memory pool area, the
section (BC_himpf) for the default fixed-sized memory pool area must be placed at a non-
cacheable area at linkage.

212

6.20.2 Delete Fixed-Sized Memory Pool (del_mpf)

C-Language API:
 ER ercd = del_mpf(ID mpfid);

Parameters:
 mpfid Fixed-sized memory pool ID

Return Values:
 Normal end (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number

(1) CPU ID is invalid (GET_CPUID (mpfid) is not the current

CPU)

(2) Out of local ID range

(GET_LOCALID (mpfid) ≤ 0 or

(_MAX_MPF of GET_CPUID (mpfid)) < GET_LOCALID (mpfid))

 E_CTX [k] Context error (Called in prohibited system state)

 E_NOEXS [k] Non-existent object (Fixed-sized memory pool indicated by

mpfid does not exist)

Function:

Service call del_mpf deletes the fixed-sized memory pool indicated by mpfid.

Only fixed-sized memory pools belonging to the kernel of the current CPU can be specified as
mpfid.

No error will occur even if there is a task waiting to acquire a memory block in the fixed-sized
memory pool area indicated by mpfid. However, in that case, the task in the WAITING state will
be released and error code E_DLT will be returned.

When the fixed-sized memory pool allocated from the default fixed-sized memory pool area is
deleted (NULL is specified for mpf at creation), the size of the free space in the default fixed-sized
memory pool area will increase by an amount given by the following expression:

Increase in size
= TSZ_MPF (blkcnt specified at creation, blksz specified at creation) + 16 bytes

The kernel will not perform any processing even when a block has already been acquired.

213

6.20.3 Get Fixed-Sized Memory Block (get_mpf, pget_mpf, ipget_mpf, tget_mpf)

C-Language API:
 ER ercd = get_mpf(ID mpfid, VP *p_blk);

 ER ercd = pget_mpf(ID mpfid, VP *p_blk);

 ER ercd = ipget_mpf(ID mpfid, VP *p_blk);

 ER ercd = tget_mpf(ID mpfid, VP *p_blk, TMO tmout);

Parameters:
 mpfid Fixed-sized memory pool ID

 p_blk Pointer to the memory area where the start address of the

memory block is to be returned

 <tget_mpf>

 tmout Timeout specification

Return Values:
 Normal end (E_OK) or error code

Error Codes:
 E_PAR [p] Parameter error (tmout ≤ –2)

 E_ID [p] Invalid ID number

(1) CPU ID is invalid (GET_CPUID (mpfid) is invalid)

(2) Out of local ID range

(GET_LOCALID (mpfid) ≤ 0 or

(_MAX_MPF of GET_CPUID (mpfid)) < GET_LOCALID (mpfid))

 E_CTX [k] Context error (Called in prohibited system state)

 E_NOEXS [k] Non-existent object (Fixed-sized memory pool indicated by

mpfid does not exist)

 E_DLT [k] Waiting object deleted

(Fixed-sized memory pool indicated by mpfid has been

deleted)

 E_TMOUT [k] Polling failed or timeout

 E_RLWAI [k] WAITING state was forcibly canceled

(rel_wai service call was called in the WAITING state)

214

Function:

Each service call gets one fixed-sized memory block from the fixed-sized memory pool indicated
by mpfid, and returns the start address of the acquired memory block to the area indicated by
p_blk.

If there are tasks already waiting for the memory pool, or if no task is waiting but there is no
memory block available in the fixed-sized memory pool, the task having called service call
get_mpf or tget_mpf is placed in the queue for waiting to acquire a memory block, and the task
having called service call pget_mpf or ipget_mpf is immediately returned with error code
E_TMOUT. The queue is managed according to the attribute specified at creation.

In service call tget_mpf, parameter tmout specifies the timeout period.

If a positive value is specified for parameter tmout, error code E_TMOUT is returned when the
tmout period has passed without the wait release conditions being satisfied.

If tmout = TMO_POL (0) is specified, the same operation as for service call pget_mpf will be
performed.

If tmout = TMO_FEVR (–1) is specified, timeout monitoring is not performed. In other words, the
same operation as for service call get_mpf will be performed.

The maximum value that can be specified for tmout is (0x7FFFFFFF − TIC_NUME)/TIC_DENO.
If a value larger than this is specified, operation is not guaranteed.

For details on time management, refer to section 5.13.7, Time Precision.

In service call pget_mpf, get_mpf, or tget_mpf, fixed-sized memory pools belonging to the kernel
of another CPU can be specified as mpfid, except for in dispatch-pending state. In service call
ipget_mpf, fixed-sized memory pools belonging to the kernel of another CPU cannot be specified
as mpfid.

215

6.20.4 Release Fixed-Sized Memory Block (rel_mpf, irel_mpf)

C-Language API:
 ER ercd = rel_mpf(ID mpfid, VP blk);

 ER ercd = irel_mpf(ID mpfid, VP blk);

Parameters:
 mpfid Fixed-sized memory pool ID

 blk Start address of memory block

Return Values:
 Normal end (E_OK) or error code

Error Codes:
 E_PAR [p] Parameter error (blk is other than a multiple or four)

 [k] (blk is other than the start address of the memory block or

blk has already been released)

 E_ID [p] Invalid ID number

(1) CPU ID is invalid (GET_CPUID (mpfid) is invalid)

(2) Out of local ID range

(GET_LOCALID (mpfid) ≤ 0 or

(_MAX_MPF of GET_CPUID (mpfid)) < GET_LOCALID (mpfid))

 E_CTX [k] Context error (Called in prohibited system state when

GET_CPUID (mpfid) is not the current CPU)

 E_NOEXS [k] Non-existent object (Fixed-sized memory pool indicated by

mpfid does not exist)

Function:

Each service call returns the memory block indicated by blk to the fixed-sized memory pool
indicated by mpfid.

The start address of the memory block acquired by service call get_mpf, pget_mpf, ipget_mpf, or
tget_mpf must be specified for parameter blk.

If there are tasks waiting to get a memory block in the target fixed-sized memory pool, the
memory block released by this service call is passed to the task at the head of the wait queue,
releasing it from the WAITING state.

In service call rel_mpf, fixed-sized memory pools belonging to the kernel of another CPU can be
specified as mpfid, except for in dispatch-pending state. In service call irel_mpf, fixed-sized
memory pools belonging to the kernel of another CPU cannot be specified as mpfid.

216

6.20.5 Reference Fixed-Sized Memory Pool State (ref_mpf, iref_mpf)

C-Language API:
 ER ercd = ref_mpf(ID mpfid, T_RMPF *pk_rmpf);

 ER ercd = iref_mpf(ID mpfid, T_RMPF *pk_rmpf);

Parameters:
 mpfid Fixed-sized memory pool ID

 pk_rmpf Pointer to the packet where the fixed-sized memory pool state

is to be returned

Return Values:
 Normal end (E_OK) or error code

Packet Structure:
 typedef struct {

 ID wtskid; Wait task ID

 UINT fblkcnt; Number of available blocks

 }T_RMPF;

Error Codes:
 E_ID [p] Invalid ID number

(1) CPU ID is invalid (GET_CPUID (mpfid) is invalid)

(2) Out of local ID range

(GET_LOCALID (mpfid) ≤ 0 or

(_MAX_MPF of GET_CPUID (mpfid)) < GET_LOCALID (mpfid))

 E_CTX [k] Context error (Called in prohibited system state when

GET_CPUID (mpfid) is not the current CPU)

 E_NOEXS [k] Non-existent object (Fixed-sized memory pool indicated by

mpfid does not exist)

Function:

Each service call refers to the status of the fixed-sized memory pool indicated by mpfid.

Service calls ref_mpf and iref_mpf return the wait task ID (wtskid) and the number of available
blocks (fblkcnt) to the area indicated by pk_rmpf.

The CPU ID (1 or 2) where the specified fixed-sized memory pool belongs is always set in bits 14
to 12 of a wait task ID.

217

In the case where a task of another CPU is waiting to acquire a memory block in the specified
fixed-sized memory pool, an SVC server task belonging to the same CPU as the specified fixed-
sized memory pool will actually wait to acquire a memory block in the specified fixed-sized
memory pool instead of the task of another CPU. Accordingly, the ID of the SVC server task will
be returned to the wait task ID in such a case.

If there is no task waiting to acquire a memory block in the specified memory pool, TSK_NONE
(0) is returned as a wait task ID.

In service call ref_mpf, fixed-sized memory pools belonging to the kernel of another CPU can be
specified as mpfid, except for in dispatch-pending state. In service call iref_mpf, fixed-sized
memory pools belonging to the kernel of another CPU cannot be specified as mpfid.

6.21 Memory Pool Management (Variable-Sized Memory Pool)
Variable-sized memory pools are controlled by the service calls listed in table 6.27.

Table 6.27 Service Calls for Memory Pool Management (Variable-Sized Memory Pool)

System State*2

Service Call*1 Description T N E D U L C

cre_mpl O O O O

icre_mpl

Creates variable-sized memory
pool O O O O

acre_mpl O O O O

iacre_mpl

Creates variable-sized memory
pool and assigns variable-sized
memory pool ID automatically

 O O O O

del_mpl Deletes variable-sized memory
pool

O O O O

get_mpl [R] Acquires variable-sized
memory block

O O O

pget_mpl [R] O O Δ O

ipget_mpl

Polls and acquires variable-
sized memory block O O O O

tget_mpl [R] Acquires variable-sized
memory block with timeout
function

O O O

rel_mpl [R] O O Δ O

irel_mpl

Releases variable-sized
memory block O O O O

ref_mpl [R] O O Δ O

iref_mpl

Refers to variable-sized
memory pool state O O O O

218

Notes: 1. [S]: Standard profile service calls
[s]: Service calls that are not standard profile service calls but are needed in order to
 use the standard profile function
[B]: Basic profile service calls
[R]: Service calls that can be issued remotely

 2. T: Can be called in a task context
N: Can be called in a non-task context
E: Can be called in dispatch-enabled state
D: Can be called in dispatch-disabled state
U: Can be called in CPU-unlocked state
L: Can be called in CPU-locked state
C: Can be called while executing the normal CPU exception handler
O: Can be called in the state
Δ: Can be called in the state only when a local object is the target

The variable-sized memory pool specifications are listed in table 6.28.

Table 6.28 Variable-Sized Memory Pool Specifications

Item Description

Local variable-sized memory
pool ID

1 to _MAX_MPL (1023 max.)

Management method Selecting NEW for system.newmpl in the cfg file improves the
following:

• Acquisition and release of memory blocks becomes faster

when a large number of memory blocks are used in the
memory pool.

• The degree of fragmentation is reduced.

• The VTA_UNFRAGMENT attribute can be used to further
reduce fragmentation of the free space.

Variable-sized memory pool
attributes

TA_TFIFO: Wait task queue is managed on a FIFO basis

VTA_UNFRAGMENT: Sector management

The free space in the variable-sized memory pool may be fragmented. Also refer to section 5.12.1,
Controlling Memory Fragmentation.

219

6.21.1 Create Variable-Sized Memory Pool
(cre_mpl, icre_mpl)
(acre_mpl, iacre_mpl: Assign Variable-Sized Memory Pool ID Automatically)

C-Language API:
 ER ercd = cre_mpl(ID mplid, T_CMPL *pk_cmpl);

 ER ercd = icre_mpl(ID mplid, T_CMPL *pk_cmpl);

 ER_ID mplid = acre_mpl(T_CMPL *pk_cmpl);

 ER_ID mplid = iacre_mpl(T_CMPL *pk_cmpl);

Parameters:
 pk_cmpl Pointer to the packet where the variable-sized memory pool

creation information is stored

 <cre_mpl, icre_mpl>

 mplid Variable-sized memory pool ID

Return Values:
 <cre_mpl, icre_mpl>

 Normal end (E_OK) or error code

 <acre_mpl, iacre_mpl>

 Created variable-sized memory pool ID (a positive value) or error code

Packet Structure:
(1) system.newmpl is PAST

 typedef struct {

 ATR mplatr; Variable-sized memory pool attribute

 SIZE mplsz; Size of memory pool (Number of bytes)

 VP mpl; Start address of the variable-sized memory

pool area

 }T_CMPL;

(2) system.newmpl is NEW

 typedef struct {

 ATR mplatr; Variable-sized memory pool attribute

 SIZE mplsz; Size of memory pool (Number of bytes)

 VP mpl; Start address of the variable-sized memory

pool area

 VP mplmb; Start address of the variable-sized memory

block management area

 UINT minblksz; Minimum block size

 UINT sctnum; Maximum sector number

 }T_CMPL;

220

Error Codes:
 E_NOMEM [k] Insufficient memory (Memory pool area cannot be allocated in

the memory)

 E_RSATR [p] Invalid attribute (mplatr is invalid)

 E_PAR [p] Parameter error

(1) mplsz is other than a multiple of four

(2) mplsz < TSZ_MPL(1, 4)

(3) mplsz ≥ 0x80000000

(4) minblksz = 0 for the VTA_UNFRAGMENT attribute

(5) sctnum = 0 for the VTA_UNFRAGMENT attribute

(6) mplsz < minblksz*32 for the VTA_UNFRAGMENT attribute

 E_ID [p] Invalid ID number (cre_mpl, icre_mpl)

(1) CPU ID is invalid (GET_CPUID (mplid) is not the current

CPU)

(2) Out of local ID range

(GET_LOCALID (mplid) ≤ 0 or

(_MAX_MPL of GET_CPUID (mplid)) < GET_LOCALID (mplid))

 E_OBJ [k] Object state is invalid (Variable-sized memory pool indicated

by mplid already exists) (cre_mpl, icre_mpl)

 E_NOID [k] No ID available (acre_mpl, iacre_mpl)

Function:

Each of these service calls creates a variable-sized memory pool.

These service calls can create variable-sized memory pools belonging to the kernel of the current
CPU. This kernel does not have service calls for creating objects belonging to the kernel of
another CPU.

Service calls cre_mpl and icre_mpl create a variable-sized memory pool with an ID indicated by
mplid. 1 to (_MAX_MPL of current CPU) can be specified for the local ID of mplid.
VCPU_SELF or the current CPU ID must be specified for the CPU ID of mplid.

Service calls acre_mpl and iacre_mpl search for an unused variable-sized memory pool ID, create
a variable-sized memory pool with that ID, and return the ID to mplid. The range searched for the
local variable-sized memory pool ID is 1 to (_MAX_MPL of current CPU). The CPU ID of the
variable-sized memory pool ID that will be returned is the current CPU ID.

221

(1) mplatr

Specify the logical OR of the following values for mplatr.

(a) Order of tasks in the queue for waiting for memory block acquisition

Only TA_TFIFO can be specified.

⎯ TA_TFIFO (0x00000000): Task queue waiting for memory is managed on a FIFO basis

(b) Management method

When NEW has been specified for system.newmpl in the cfg file, the VTA_UNFRAGMENT
attribute can be specified.

⎯ VTA_UNFRAGMENT (0x80000000): Sector management (reducing fragmentation in free
space)

The VTA_UNFRAGMENT attribute is suitable for a memory pool from which a large number
of small memory blocks are to be acquired. When this attribute is specified, small blocks are
collectively allocated in specialized contiguous areas to keep larger possible contiguous areas.

Only when the VTA_UNFRAGMENT attribute is specified, mplmb, minblksz, and sctnum
become valid. When sctnum is set to a larger value than mplsz/(minblksz × 32),
mplsz/(minblksz × 32) is assumed.

For details, refer to section 5.12.1, Controlling Memory Fragmentation.

(2) mplsz

Parameter mplsz specifies the size of the variable-sized memory pool to be created. Also refer to
section 5.12.2, Management of Variable-Sized Memory Pools.

The following macro is provided to estimate the approximate size to be specified for mplsz.

SIZE mplsz = TSZ_MPL (UINT blkcnt, UINT blksz)

Approximate size (bytes) of a variable-sized memory pool area required to store the
blkcnt number of blksz-byte memory blocks

This macro calculates the size assuming that the VTA_UNFRAGMENT attribute is not selected.
The expression for calculating the size depends on the system.newmpl setting.

222

(3) mpl

Parameter mpl specifies the start address of a free area to be used as a variable-sized memory pool.
The kernel allocates an mplsz-byte area starting from address mpl as a variable-sized memory
pool.

When NULL is specified for mpl, the kernel allocates an mplsz-byte area from the default
variable-sized memory pool area. After that, the size of the free space in the default variable-sized
memory pool area will decrease by an amount given by the following expression:

Decrease in size = mplsz + 16 bytes

If there is a possibility that another CPU will access the memory block acquired from the variable-
sized memory pool, the variable-sized memory pool area must be in a non-cacheable area. If, in
particular, there is a possibility that another CPU will access the memory block acquired from the
variable-sized memory pool which was allocated from the default variable-sized memory pool
area, the section (BC_himpl) for the default variable-sized memory pool area must be placed at a
non-cacheable area at linkage.

(4) mplmb

mplmb is a member not defined in the μITRON4.0 specification.

Parameter mplmb is only valid when the VTA_UNFRAGMENT attribute is specified; it is
ignored in other cases.

Allocate an area for the size calculated by the following macro, and specify the start address of the
area as mplmb.

 VTSZ_MPLMB (maximum number of sectors)

(5) minblksz and sctnum

These members are not defined in the μITRON4.0 specification.

These parameters are valid only when the VTA_UNFRAGMENT attribute is specified. For
details, refer to section 5.12.2, Management of Variable-Sized Memory Pools.

223

Supplement:

The address of a memory block is aligned with a 4-byte boundary.

To align the address of a memory block with the cache line size (16 or 32), allocate the area as
follows (N means the alignment size).

• When NEW is specified for system.newmpl and VTA_UNFRAGMENT is not specified

⎯ Allocate a memory pool area to the N-byte boundary address by the application, and
specify that address when creating a memory pool.

⎯ Specify a multiple of N as the size of every memory block to be acquired.
• When NEW is specified for system.newmpl and VTA_UNFRAGMENT is specified

⎯ Allocate a memory pool area to the N-byte boundary address by the application, and
specify that address when creating a memory pool.

⎯ Specify N for the minimum block size.
⎯ Specify a multiple of N as the size of every memory block to be acquired.

• When PAST is specified for system.newmpl

(a) Alignment when N = 16

• Allocate a memory pool area to the 16-byte boundary address by the application, and
specify that address when creating a memory pool.

• Specify a multiple of 16 as the size of every memory block to be acquired.
(b) Alignment when N = 32

• Allocate a memory pool area to the address obtained by (32-byte boundary address −
16) by the application, and specify that address when creating a memory pool.

• Specify (a multiple of N + 16) as the size of every memory block to be acquired.

224

6.21.2 Delete Variable-Sized Memory Pool (del_mpl)

C-Language API:
 ER ercd = del_mpl(ID mplid);

Parameters:
 mplid Variable-sized memory pool ID

Return Values:
 Normal end (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number

(1) CPU ID is invalid (GET_CPUID (mplid) is not the current

CPU)

(2) Out of local ID range

(GET_LOCALID (mplid) ≤ 0 or

(_MAX_MPL of GET_CPUID (mplid)) < GET_LOCALID (mplid))

 E_CTX [k] Context error (Called in prohibited system state)

 E_NOEXS [k] Non-existent object (Variable-sized memory pool indicated by

mplid does not exist)

Function:

Service call del_mpl deletes the variable-sized memory pool specified by mplid.

Only variable-sized memory pools belonging to the kernel of the current CPU can be specified as
mplid.

No error will occur even if there is a task waiting to acquire a memory block in the variable-sized
memory pool specified by mplid. However, in that case, the task in the WAITING state will be
released and error code E_DLT will be returned.

When the variable-sized memory pool allocated from the default variable-sized memory pool area
is deleted (NULL is specified for mpl at creation), the size of the free space in the default variable-
sized memory pool area will increase by an amount given by the following expression:

Increase in size = (mplsz specified at creation) + 16 bytes

The kernel will not perform any processing even when a block has already been acquired.

225

6.21.3 Get Variable-Sized Memory Block (get_mpl, pget_mpl, ipget_mpl, tget_mpl)

C-Language API:
 ER ercd = get_mpl(ID mplid, UINT blksz, VP *p_blk);

 ER ercd = pget_mpl(ID mplid, UINT blksz, VP *p_blk);

 ER ercd = ipget_mpl(ID mplid, UINT blksz, VP *p_blk);

 ER ercd = tget_mpl(ID mplid, UINT blksz, VP *p_blk, TMO tmout);

Parameters:
 mplid Variable-sized memory pool ID

 blksz Memory block size (Number of bytes)

 p_blk Pointer to the memory area where the start address of the memory

block is to be returned

 <tget_mpl>

 tmout Timeout specification

Return Values:
 Normal end (E_OK) or error code

Error Codes:
 E_PAR [p] Parameter error (blksz is other than a multiple of four or 0,

or tmout ≤ –2)

 [k] (mplsz* – 16 < blksz)

 E_ID [p] Invalid ID number

(1) CPU ID is invalid (GET_CPUID (mplid) is invalid)

(2) Out of local ID range

(GET_LOCALID (mplid) ≤ 0 or

(_MAX_MPL of GET_CPUID (mplid)) < GET_LOCALID (mplid))

 E_CTX [k] Context error (Called in prohibited system state)

 E_NOEXS [k] Non-existent object (Variable-sized memory pool indicated by

mplid does not exist)

 E_DLT [k] Waiting object deleted (The memory pool specified by mplid has

been deleted)

 E_TMOUT [k] Polling failed or timeout

 E_RLWAI [k] WAITING state was forcibly canceled

(rel_wai service call was called in the WAITING state)

Note: * mplsz: Memory pool size specified at variable-sized memory pool creation

226

Function:

Each service call acquires a variable-sized memory block with the size specified by blksz (number
of bytes) from the variable-sized memory pool indicated by mplid, and returns the start address of
the acquired memory block to the area indicated by p_blk.

After the memory block has been acquired, the size of the free space in the variable-sized memory
pool will decrease. For details, refer to section 5.12.2, Management of Variable-Sized Memory
Pools.

If there are tasks already waiting for the memory pool, or if no task is waiting but there is no
memory block available, the task having called service call get_mpl or tget_mpl is placed in the
memory block wait queue, and the task having called service call pget_mpl or ipget_mpl is
immediately terminated with the error code E_TMOUT returned. The queue is managed on a first-
in first-out (FIFO) basis.

In service call tget_mpl, parameter tmout specifies the timeout period.

If a positive value is specified for parameter tmout, error code E_TMOUT is returned when the
tmout period has passed without the wait release conditions being satisfied.

If tmout = TMO_POL (0) is specified, the same operation as for service call pget_mpl will be
performed.

If tmout = TMO_FEVR (–1) is specified, timeout watch is not performed. In other words, the
same operation as for service call get_mpl will be performed.

The maximum value that can be specified for tmout is (0x7FFFFFFF − TIC_NUME)/TIC_DENO.
If a value larger than this is specified, operation is not guaranteed.

For details on time management, refer to section 5.13.7, Time Precision.

In service call get_mpl, pget_mpl, or tget_mpl, variable-sized memory pools belonging to the
kernel of another CPU can be specified as mplid, except for in dispatch-pending state. In service
call ipget_mpl, variable-sized memory pools belonging to the kernel of another CPU cannot be
specified as mplid.

227

6.21.4 Release Variable-Sized Memory Block (rel_mpl, irel_mpl)

C-Language API:
 ER ercd = rel_mpl(ID mplid, VP blk);

 ER ercd = irel_mpl(ID mplid, VP blk);

Parameters:
 mplid Variable-sized memory pool ID

 blk Start address of memory block

Return Values:
 Normal end (E_OK) or error code

Error Codes:
 E_PAR [k] Parameter error (blk is other than the start address of the

memory block or blk has already been released)

 E_ID [p] Invalid ID number

(1) CPU ID is invalid (GET_CPUID (mplid) is invalid)

(2) Out of local ID range

(GET_LOCALID (mplid) ≤ 0 or

(_MAX_MPL of GET_CPUID (mplid)) < GET_LOCALID (mplid))

 E_CTX [k] Context error (Called in prohibited system state when

GET_CPUID (mplid) is not the current CPU)

 E_NOEXS [k] Non-existent object (Variable-sized memory pool indicated

by mplid does not exist)

Function:

Each service call returns the memory block specified by blk to the variable-sized memory pool
specified by mplid.

The start address of the memory block acquired by service call get_mpl, pget_mpl, ipget_mpl, or
tget_mpl must be specified as parameter blk.

After the memory block has been released, the size of the free space in the variable-sized memory
pool will increase. For details, refer to section 5.12.2, Management of Variable-Sized Memory
Pools.

After the memory block has been released, if the target variable-sized memory pool has a
contiguous free area of the size requested by the task at the head of the memory block acquisition
wait queue, a memory block is assigned to that task and the task is released from the WAITING
state. The same process will be done for the remaining tasks in the order of the wait queue if the
remaining memory pool still has enough contiguous free space.

228

In service call rel_mpl, variable-sized memory pools belonging to the kernel of another CPU can
be specified as mplid, except for in dispatch-pending state. In service call irel_mpl, variable-sized
memory pools belonging to the kernel of another CPU cannot be specified as mplid.

6.21.5 Reference Variable-Sized Memory Pool State (ref_mpl, iref_mpl)

C-Language API:
 ER ercd = ref_mpl(ID mplid, T_RMPL *pk_rmpl);

 ER ercd = iref_mpl(ID mplid, T_RMPL *pk_rmpl);

Parameters:
 mplid Variable-sized memory pool ID

 pk_rmpl Pointer to the packet where the variable-sized memory pool

state is to be returned

Return Values:
 Normal end (E_OK) or error code

Packet Structure:
 typedef struct {

 ID wtskid; Wait task ID

 SIZE fmplsz; Total size of available memory area (Number of

bytes)

 UINT fblksz; Maximum memory area available (Number of bytes)

 }T_RMPL;

Error Codes:
 E_ID [p] Invalid ID number

(1) CPU ID is invalid (GET_CPUID (mplid) is invalid)

(2) Out of local ID range

(GET_LOCALID (mplid) ≤ 0 or

(_MAX_MPL of GET_CPUID (mplid)) < GET_LOCALID (mplid))

 E_CTX [k] Context error (Called in prohibited system state when

GET_CPUID (mplid) is not the current CPU)

 E_NOEXS [k] Non-existent object (Variable-sized memory pool indicated by

mplid does not exist)

Function:

Each service call refers to the status of the variable-sized memory pool indicated by mplid.

Service calls ref_mpl and iref_mpl return the wait task ID (wtskid), the total size of the current
free space (fmplsz), and the maximum memory block size available (fblksz) to the area indicated
by pk_rmpl.

229

The CPU ID (1 or 2) where the specified variable-sized memory pool belongs is always set in bits
14 to 12 of a wait task ID.

In the case where a task of another CPU is waiting to acquire a memory block in the specified
variable-sized memory pool, an SVC server task belonging to the same CPU as the specified
variable-sized memory pool will actually wait to acquire a memory block in the specified variable-
sized memory pool instead of the task of another CPU. Accordingly, the ID of the SVC server task
will be returned to the wait task ID in such a case.

If there is no task waiting to acquire a memory block in the specified memory pool, TSK_NONE
(0) is returned as a wait task ID.

The free space is usually fragmented. The maximum contiguous free space is returned to
parameter fblksz. A block up to the size fblksz can be acquired immediately by calling service call
get_mpl, pget_mpl, ipget_mpl, or tget_mpl.

In service call ref_mpl, variable-sized memory pools belonging to the kernel of another CPU can
be specified as mplid, except for in dispatch-pending state. In service call iref_mpl, variable-sized
memory pools belonging to the kernel of another CPU cannot be specified as mplid.

6.22 Time Management (System Clock)
The system clock is controlled by the service calls listed in table 6.29.

Table 6.29 Service Calls for System Clock Management

System State*2

Service Call*1 Description T N E D U L C

set_tim [S] O O O O

iset_tim

Sets system clock

 O O O O

get_tim [S] O O O O

iget_tim

Gets system clock

 O O O O

isig_tim [S] Supplies time tick (Automatically executed by specifying
TIMER for clock.timer)

vstp_tmr Stops the timer O O O O

vrst_tmr O O O O

ivrst_tmr

Restarts the timer

 O O O O

vsns_tmr Refers to timer state O O O O O O O

230

Notes: 1. [S]: Standard profile service calls
[s]: Service calls that are not standard profile service calls but are needed in order to
 use the standard profile function
[B]: Basic profile service calls
[R]: Service calls that can be issued remotely

 2. T: Can be called in a task context
N: Can be called in a non-task context
E: Can be called in dispatch-enabled state
D: Can be called in dispatch-disabled state
U: Can be called in CPU-unlocked state
L: Can be called in CPU-locked state
C: Can be called while executing the normal CPU exception handler
O: Can be called in the state
Δ: Can be called in the state only when a local object is the target

The system clock management specifications are listed in table 6.30.

Table 6.30 System Clock Management Specifications

Item Description

System clock value Unsigned 48 bits

System clock unit 1 [ms]

System clock update cycle TIC_NUME/TIC_DENO [ms]

System clock initial value (at initialization) 0x000000000000

The system clock is expressed as a 48-bit unsigned integer by using a structure of data type
“SYSTIM”. The maximum value of the system clock is shown below.

• When TIC_NUME/TIC_DENO ≤ 1:

Maximum value = 0x7FFFFFFFFFFF/TIC_DENO

• When TIC_NUME/TIC_DENO > 1:

Maximum value = 0x7FFFFFFFFFFF

When the system clock exceeds the above maximum value by a timer interrupt (isig_tim), the
system clock is initialized to 0.

If a value larger than the above maximum value is specified in service call set_tim or iset_tim,
operation is not guaranteed.

231

6.22.1 Set System Clock (set_tim, iset_tim)

C-Language API:
 ER ercd = set_tim(SYSTIM *p_systim);

 ER ercd = iset_tim(SYSTIM *p_systim);

Parameters:
 p_systim Pointer to the packet where the system clock to be set is

indicated

Return Values:
 Normal end (E_OK) or error code

Packet Structure:
 typedef struct {

 UH utime; Current time data (upper)

 UW ltime; Current time data (lower)

 }SYSTIM;

Function:

Each service call changes the current system clock retained in the system to the value specified by
p_systim.

If a value larger than 1 is specified for TIC_DENO (the denominator for time tick cycles), the
maximum value that can be specified is 0x7FFFFFFFFFFF/TIC_DENO. If a value larger than this
is specified, operation is not guaranteed.

For details on time management, refer to section 5.13.7, Time Precision.

232

6.22.2 Get System Clock (get_tim, iget_tim)

C-Language API:
 ER ercd = get_tim(SYSTIM *p_systim);

 ER ercd = iget_tim(SYSTIM *p_systim);

Parameters:
 p_systim Pointer to the packet where the system clock is to be returned

Return Values:
 Normal end (E_OK) or error code

Packet Structure:
 typedef struct {

 UH utime; Current time data (upper)

 UW ltime; Current time data (lower)

 }SYSTIM;

Function:

Each service call reads the current system clock and returns it to the area indicated by p_systim.

233

6.22.3 Supply Time Tick (isig_tim)

Function:

Service call isig_tim updates the system clock.

When TIMER is specified for clock.timer in the cfg file, the system is configured such that service
call isig_tim is executed automatically in cycles of TIC_NUME/TIC_DENO [ms]. In other words,
this function is not a service call, and so cannot be issued from an application.

When a time tick is supplied, the kernel performs the following time-related processing.

(1) Calling of timer driver interrupt processing function (tdr_int_tmr())

(2) Update of system clock (+1)

(3) Update of profile counters

(4) Startup of time event handler

(5) Timeout processing for tasks in the WAITING state due to service calls with a timeout, such as
tslp_tsk

In order to use kernel functions related to time, the timer driver must be included. For details, refer
to section 12.9, Timer Drivers.

234

6.22.4 Stop Timer (vstp_tmr)

C-Language API:
 ER ercd = vstp_tmr(RELTIM limit);

Parameters:
 limit Upper time limit

Return Values:
 Normal end (E_OK) or error code

Error Codes:
 E_PAR [p] Parameter error (0x80000000 ≤ limit ≤ 0xFFFFFFFE)

 E_OBJ [k] Object state is invalid

(1) The given period until the nearest timer event is less

than limit

(2) Kernel timer is already stopped

 E_CTX [k] Context error (Called in prohibited system state)

Function:

Service call vstp_tmr stops the kernel timer.

However, in case the period until occurrence of the nearest timer event (timeout by txxx_yyy,
delay by dly_tsk, cyclic handler, or alarm handler) is less than parameter limit, an E_OBJ error
will be returned.

A value from 1 to 0x7FFFFFFF should be specified for limit.

When 0xFFFFFFFF is specified for limit, the timer can be stopped only when there are no timer
events.

When 0 is specified for limit, the timer can be stopped even if there are timer events.

While the kernel timer is stopped, time-related processing that is supposed to be performed by the
kernel results as follows:

(1) The system clock is not updated.

(2) Timer events, such as a cyclic handler and timeout of a task, do not occur. If service call
tslp_tsk or sta_alm, which creates a new timer event is issued, an E_OBJ error will be
returned.

(3) Counting of the task overrun monitor period is stopped.

(4) The profile counters are not updated.

235

In this service call, tdr_stp_tmr() of the timer driver is called back to stop operation of the timer
hardware.

This service call is normally used for also stopping timer interrupt processing when the CPU is
shifted to SLEEP mode.

This service call is a function not defined in the μITRON4.0 specification.

6.22.5 Restart Timer (vrst_tmr, ivrst_tmr)

C-Language API:
 ER ercd = vrst_tmr(RELTIM eratim);

 ER ercd = ivrst_tmr(RELTIM eratim);

Parameters:
 eratim Elapsed time

Return Values:
 Normal end (E_OK) or error code

Error Codes:
 E_OBJ [k] Object state is invalid (Kernel timer is not stopped)

Function:

Each service call restarts operation of the kernel timer as if the period specified by eratim has
elapsed from the point at where the kernel timer was stopped.

When a value other than 0 is specified for eratim, a timer event may occur.

In these service calls, tdr_rst_tmr() of the timer driver is called back to restart operation of the
timer hardware.

These service calls are functions not defined in the μITRON4.0 specification.

236

6.22.6 Reference Timer State (vsns_tmr)

C-Language API:
 BOOL state = vsns_tmr(void);

Return Values:
 TRUE is returned when the kernel timer is stopped and FALSE is returned when

the kernel timer is operating

Function:

Service call vsns_tmr checks whether the kernel timer is stopped.

This service call can be issued in the CPU-locked state and from the normal CPU exception
handler.

This service call is a function not defined in the μITRON4.0 specification.

6.23 Time Management (Cyclic Handler)
Cyclic handlers are controlled by the service calls listed in table 6.31.

Table 6.31 Service Calls for Cyclic Handler

System State*2

Service Call*1 Description T N E D U L C

cre_cyc [s] O O O O

icre_cyc

Creates cyclic handler

 O O O O

acre_cyc O O O O

iacre_cyc

Creates cyclic handler and
assigns cyclic handler ID
automatically

 O O O O

del_cyc Deletes cyclic handler O O O O

sta_cyc [B] [S] [R] O O Δ O

ista_cyc

Starts cyclic handler operation

 O O O O

stp_cyc [B] [S] [R] O O Δ O

istp_cyc

Stops cyclic handler operation

 O O O O

ref_cyc [R] O O Δ O

iref_cyc

Refers to the cyclic handler
state O O O O

237

Notes: 1. [S]: Standard profile service calls
[s]: Service calls that are not standard profile service calls but are needed in order to
 use the standard profile function
[B]: Basic profile service calls
[R]: Service calls that can be issued remotely

 2. T: Can be called in a task context
N: Can be called in a non-task context
E: Can be called in dispatch-enabled state
D: Can be called in dispatch-disabled state
U: Can be called in CPU-unlocked state
L: Can be called in CPU-locked state
C: Can be called while executing the normal CPU exception handler
O: Can be called in the state
Δ: Can be called in the state only when a local object is the target

The cyclic handler specifications are listed in table 6.32.

Table 6.32 Cyclic Handler Specifications

Item Description

Local cyclic handler ID 1 to _MAX_CYH (15 max.)*

Cyclic handler attributes TA_HLNG: Written in a high-level language

TA_ASM: Written in assembly language

TA_STA: Cyclic handler makes a transition to the operating state after
 it has been created

TA_PHS: Reserves initiation phase

Note: * Though the maximum value of _MAX_CYH is 15, the maximum value that can be
specified for maxdefine.max_cyh in the cfg file is 14.

238

6.23.1 Create Cyclic Handler
(cre_cyc, icre_cyc)
(acre_cyc, iacre_cyc: Assign Cyclic Handler ID Automatically)

C-Language API:
 ER ercd = cre_cyc(ID cycid, T_CCYC *pk_ccyc);

 ER ercd = icre_cyc(ID cycid, T_CCYC *pk_ccyc);

 ER_ID cycid = acre_cyc(T_CCYC *pk_ccyc);

 ER_ID cycid = iacre_cyc(T_CCYC *pk_ccyc);

Parameters:
 pk_ccyc Pointer to the packet where the cyclic handler creation

information is stored

 <cre_cyc, icre_cyc>

 cycid Cyclic handler ID

Return Values:
 <cre_cyc, icre_cyc>

 Normal end (E_OK) or error code

 <acre_cyc, iacre_cyc>

 Created cyclic handler ID number (a positive value) or error code

Packet Structure:
 typedef struct {

 ATR cycatr; Cyclic handler attribute

 VP_INT exinf; Extended information

 FP cychdr; Cyclic handler address

 RELTIM cyctim; Cyclic handler initiation cycle

 RELTIM cycphs; Cyclic handler initiation phase

 }T_CCYC;

Error Codes:
 E_RSATR [p] Invalid attribute (cycatr is invalid)

 E_PAR [p] Parameter error (cyctim = 0 or cycphs > cyctim)

 E_ID [p] Invalid ID number (cre_cyc, icre_cyc)

(1) CPU ID is invalid (GET_CPUID (cycid) is not the current

CPU)

(2) Out of local ID range

(GET_LOCALID (cycid) ≤ 0 or

(_MAX_CYH of GET_CPUID (cycid)) < GET_LOCALID (cycid))

 E_OBJ [k] Object state is invalid (Cyclic handler specified by cycid

already exists) (cre_cyc, icre_cyc)

 E_NOID [k] No ID available (acre_cyc, iacre_cyc)

239

Function:

Each of these service calls creates a cyclic handler.

These service calls can create cyclic handlers belonging to the kernel of the current CPU. This
kernel does not have service calls for creating objects belonging to the kernel of another CPU.

Service calls cre_cyc and icre_cyc create a cyclic handler with an ID indicated by cycid. 1 to
(_MAX_CYH of current CPU) can be specified for the local ID of cycid. VCPU_SELF or the
current CPU ID must be specified for the CPU ID of cycid.

Service calls acre_cyc and iacre_cyc search for an unused cyclic handler ID, create a cyclic
handler with that ID, and return the ID to cycid. The range searched for the local cyclic handler ID
is 1 to (_MAX_CYH of current CPU). The CPU ID of the cyclic handler ID that will be returned
is the current CPU ID.

The cyclic handler is a time event handler for a non-task context and is initiated at specified time
intervals.

Parameter cycatr specifies the language in which the handler was written and the attribute at
initiation as the attributes.

cycatr := ((TA_HLNG || TA_ASM) | [TA_STA] | [TA_PHS])

• TA_HLNG (0x00000000): Written in a high-level language

• TA_ASM (0x00000001): Written in assembly language

• TA_STA (0x00000002): Cyclic handler makes a transition to the operating state after it has
 been created

• TA_PHS (0x00000004): Preserves the initiation phase

When TA_STA is specified, the cyclic handler makes a transition to the operating state after it has
been created. When TA_STA is not specified, the cyclic handler does not operate until service call
sta_cyc or ista_cyc is issued. When TA_PHS is specified, the initiation phase of the cyclic handler
is kept before activating the cyclic handler, and the next time to initiate the handler is determined.
When TA_PHS is not specified, the next time to initiate the cyclic handler is determined based on
the time that service call sta_cyc or ista_cyc is issued.

Parameter exinf specifies the extended information to be passed as a parameter when initiating the
cyclic handler. Parameter exinf can be widely used by the user, for example, to set information
concerning cyclic handlers to be defined.

Parameter cychdr specifies the start address of the cyclic handler.

Parameter cyctim specifies the handler initiation state.

240

Parameter cycphs specifies the handler initiation phase.

The first time to initiate the cyclic handler occurs after cycphs (initiation phase) has passed since
the service call that creates the cyclic handler has been issued. The cyclic handler is then initiated
at every cyctim (initiation interval).

The maximum value that can be specified for cyctim and cycphs is (0x7FFFFFFF −
TIC_NUME)/TIC_DENO. If a value larger than this is specified, operation is not guaranteed.

For details on time management, refer to section 5.13.7, Time Precision.

6.23.2 Delete Cyclic Handler (del_cyc)

C-Language API:
 ER ercd = del_cyc(ID cycid);

Parameters:
 cycid Cyclic handler ID

Return Values:
 Normal end (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number

(1) CPU ID is invalid (GET_CPUID (cycid) is not the current

CPU)

(2) Out of local ID range

(GET_LOCALID (cycid) ≤ 0 or

(_MAX_CYH of GET_CPUID (cycid)) < GET_LOCALID (cycid))

 E_CTX [k] Context error (Called in prohibited system state)

 E_NOEXS [k] Non-existent object (Cyclic handler specified by cycid does

not exist)

Function:

Service call del_cyc deletes the cyclic handler specified by parameter cycid.

Only cyclic handlers belonging to the kernel of the current CPU can be specified as cycid.

241

6.23.3 Start Cyclic Handler (sta_cyc, ista_cyc)

C-Language API:
 ER ercd = sta_cyc(ID cycid);

 ER ercd = ista_cyc(ID cycid);

Parameters:
 cycid Cyclic handler ID

Return Values:
 Normal end (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number

(1) CPU ID is invalid (GET_CPUID (cycid) is invalid)

(2) Out of local ID range

(GET_LOCALID (cycid) ≤ 0 or

(_MAX_CYH of GET_CPUID (cycid)) < GET_LOCALID (cycid))

 E_CTX [k] Context error (Called in prohibited system state when

GET_CPUID (cycid) is not the current CPU)

 E_NOEXS [k] Non-existent object (Cyclic handler specified by cycid

does not exist)

Function:

Each service call causes the cycle handler specified by cycid to enter the operating state.

If TA_PHS is not specified as a cyclic handler attribute, the cyclic handler is started each time the
start cycle has passed, based on the timing at which the service calls are issued.

If the cyclic handler specified by cycid is in the operating state and TA_PHS is not specified as its
attribute, the next timing of initiation is set after the service call is issued.

If the cyclic handler specified by cycid is in the operating state and TA_PHS is specified as its
attribute, the next timing of initiation is not set because the initiation of the cyclic handler is based
on the timing at which the handler has been started.

In service call sta_cyc, cyclic handlers belonging to the kernel of another CPU can be specified as
cycid, except for in dispatch-pending state. In service call ista_cyc, cyclic handlers belonging to
the kernel of another CPU cannot be specified as cycid.

242

6.23.4 Stop Cyclic Handler (stp_cyc, istp_cyc)

C-Language API:
 ER ercd = stp_cyc(ID cycid);

 ER ercd = istp_cyc(ID cycid);

Parameters:
 cycid Cyclic handler ID

Return Values:
 Normal end (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number

(1) CPU ID is invalid (GET_CPUID (cycid) is invalid)

(2) Out of local ID range

(GET_LOCALID (cycid) ≤ 0 or

(_MAX_CYH of GET_CPUID (cycid)) < GET_LOCALID (cycid))

 E_CTX [k] Context error (Called in prohibited system state when

GET_CPUID (cycid) is not the current CPU)

 E_NOEXS [k] Non-existent object (Cyclic handler specified by cycid does

not exist)

Function:

Each service call causes the cyclic handler specified by parameter cycid to enter the not-operating
state.

In service call stp_cyc, cyclic handlers belonging to the kernel of another CPU can be specified as
cycid, except for in dispatch-pending state. In service call istp_cyc, cyclic handlers belonging to
the kernel of another CPU cannot be specified as cycid.

243

6.23.5 Reference Cyclic Handler State (ref_cyc, iref_cyc)

C-Language API:
 ER ercd = ref_cyc(ID cycid, T_RCYC *pk_rcyc);

 ER ercd = iref_cyc(ID cycid, T_RCYC *pk_rcyc);

Parameters:
 cycid Cyclic handler ID

 pk_rcyc Pointer to the packet where the cyclic handler state is to

be returned

Return Values:
 Normal end (E_OK) or error code

Packet Structure:
 typedef struct {

 STAT cycstat; Cyclic handler operating state

 RELTIM lefttim; Remaining time until the cyclic handler is

initiated

 }T_RCYC;

Error Codes:
 E_ID [p] Invalid ID number

(1) CPU ID is invalid (GET_CPUID (cycid) is invalid)

(2) Out of local ID range

(GET_LOCALID (cycid) ≤ 0 or

(_MAX_CYH of GET_CPUID (cycid)) < GET_LOCALID (cycid))

 E_CTX [k] Context error (Called in prohibited system state when

GET_CPUID (cycid) is not the current CPU)

 E_NOEXS [k] Non-existent object (Cyclic handler specified by cycid does

not exist)

Function:

Each service call reads the cyclic handler state indicated by cycid and returns the cyclic handler
operating state (cycstat) and the time remaining until the cyclic handler is initiated (lefttim), to the
area indicated by parameter pk_rcyc.

The target cyclic handler operating state is returned to parameter cycstat.

• TCYC_STP (0x00000000): The cyclic handler is not in the operating state

• TCYC_STA (0x00000001): The cyclic handler is in the operating state

The relative time until the target cyclic handler is next initiated is returned to parameter lefttim.
When the target cyclic handler is not initiated, lefttim is undefined.

244

In service call ref_cyc, cyclic handlers belonging to the kernel of another CPU can be specified as
cycid, except for in dispatch-pending state. In service call iref_cyc, cyclic handlers belonging to
the kernel of another CPU cannot be specified as cycid.

6.24 Time Management (Alarm Handler)
Alarm handlers are controlled by the service calls listed in table 6.33.

Table 6.33 Service Calls for Alarm Handler

System State*2

Service Call*1 Description T N E D U L C

cre_alm O O O O

icre_alm

Creates alarm handler

 O O O O

acre_alm O O O O

iacre_alm

Creates alarm handler and
assigns alarm handler ID
automatically

 O O O O

del_alm Deletes alarm handler O O O O

sta_alm [R] O O Δ O

ista_alm

Starts alarm handler operation

 O O O O

stp_alm [R] O O Δ O

istp_alm

Stops alarm handler operation

 O O O O

ref_alm [R] O O Δ O

iref_alm

Refers to the alarm handler
state O O O O

Notes: 1. [S]: Standard profile service calls
[s]: Service calls that are not standard profile service calls but are needed in order to
 use the standard profile function
[B]: Basic profile service calls
[R]: Service calls that can be issued remotely

 2. T: Can be called in a task context
N: Can be called in a non-task context
E: Can be called in dispatch-enabled state
D: Can be called in dispatch-disabled state
U: Can be called in CPU-unlocked state
L: Can be called in CPU-locked state
C: Can be called while executing the normal CPU exception handler
O: Can be called in the state
Δ: Can be called in the state only when a local object is the target

245

The alarm handler specifications are listed in table 6.34.

Table 6.34 Alarm Handler Specifications

Item Description

Local alarm handler ID 1 to _MAX_ALH (15 max.)

Alarm handler attributes TA_HLNG: Written in a high-level language

TA_ASM: Written in assembly language

6.24.1 Create Alarm Handler
(cre_alm, icre_alm)
(acre_alm, iacre_alm: Assign Alarm Handler ID Automatically)

C-Language API:
 ER ercd = cre_alm(ID almid, T_CALM *pk_calm);

 ER ercd = icre_alm(ID almid, T_CALM *pk_calm);

 ER_ID almid = acre_alm(T_CALM *pk_calm);

 ER_ID almid = iacre_alm(T_CALM *pk_calm);

Parameters:
 pk_calm Pointer to the packet where the alarm handler creation

information is stored

 <cre_alm, icre_alm>

 almid Alarm handler ID

Return Values:
 <cre_alm, icre_alm>

 Normal end (E_OK) or error code

 <acre_alm, iacre_alm>

 Created alarm handler ID (a positive value) or error code

Packet Structure:
 typedef struct {

 ATR almatr; Alarm handler attribute

 VP_INT exinf; Extended information

 FP almhdr; Alarm handler address

 }T_CALM;

246

Error Codes:
 E_RSATR [p] Invalid attribute (almatr is invalid)

 E_ID [p] Invalid ID number (cre_alm, icre_alm)

(1) CPU ID is invalid (GET_CPUID (almid) is not the current

CPU)

(2) Out of local ID range

(GET_LOCALID (almid) ≤ 0 or

(_MAX_ALH of GET_CPUID (almid)) < GET_LOCALID (almid))

 E_OBJ [k] Object state is invalid (Alarm handler specified by almid

already exists) (cre_alm, icre_alm)

 E_NOID [k] No ID available (acre_alm, iacre_alm)

Function:

Each of these service calls creates an alarm handler.

These service calls can create alarm handlers belonging to the kernel of the current CPU. This
kernel does not have service calls for creating objects belonging to the kernel of another CPU.

Service calls cre_alm and icre_alm create an alarm handler with an ID indicated by almid. 1 to
(_MAX_ALH of current CPU) can be specified for the local ID of almid. VCPU_SELF or the
current CPU ID must be specified for the CPU ID of almid.

Service calls acre_alm and iacre_alm search for an unused alarm handler ID, create an alarm
handler with that ID, and return the ID to almid. The range searched for the local alarm handler ID
is 1 to (_MAX_ALH of current CPU). The CPU ID of the alarm handler ID that will be returned is
the current CPU ID.

The alarm handler is a time event handler for a non-task context and is initiated at the specified
time only once.

Parameter almatr specifies the language in which the handler was written as the attribute.

almatr := (TA_HLNG || TA_ASM)

• TA_HLNG (0x00000000): Written in a high-level language

• TA_ASM (0x00000001): Written in assembly language

Parameter exinf specifies extended information to be returned as a parameter when initiating the
alarm handler. Parameter exinf can be widely used by the user, for example, to set information
concerning alarm handlers to be defined.

247

Parameter almhdr specifies the start address of the alarm handler.

The time to initiate the alarm handler is not set immediately after creating the alarm handler. The
alarm handler is in the stopped state.

6.24.2 Delete Alarm Handler (del_alm)

C-Language API:
 ER ercd = del_alm(ID almid);

Parameters:
 almid Alarm handler ID

Return Values:
 Normal end (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number

(1) CPU ID is invalid (GET_CPUID (almid) is not the current

CPU)

(2) Out of local ID range

(GET_LOCALID (almid) ≤ 0 or

(_MAX_ALH of GET_CPUID (almid)) < GET_LOCALID (almid))

 E_CTX [k] Context error (Called in prohibited system state)

 E_NOEXS [k] Non-existent object (Alarm handler specified by almid does

not exist)

Function:

Service call del_alm deletes the alarm handler specified by parameter almid.

Only alarm handlers belonging to the kernel of the current CPU can be specified as almid.

248

6.24.3 Start Alarm Handler (sta_alm, ista_alm)

C-Language API:
 ER ercd = sta_alm(ID almid, RELTIM almtim);

 ER ercd = ista_alm(ID almid, RELTIM almtim);

Parameters:
 almid Alarm handler ID

 almtim Alarm handler initiation time

Return Values:
 Normal end (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number

(1) CPU ID is invalid (GET_CPUID (almid) is invalid)

(2) Out of local ID range

(GET_LOCALID (almid) ≤ 0 or

(_MAX_ALH of GET_CPUID (almid)) < GET_LOCALID

(almid))

 E_CTX [k] Context error (Called in prohibited system state when

GET_CPUID (almid) is not the current CPU)

 E_NOEXS [k] Non-existent object (Alarm handler specified by almid

does not exist)

Function:

The starting time for the alarm handler specified by almid is set to the relative time specified by
almtim after the moment at which the service call is issued, to start operation of the alarm handler.

If a time is set for an alarm handler already in operation, the previous starting time setting is
canceled, and the new starting time is set.

If almtim is set to 0, the alarm handler is started at the next time tick.

The maximum value that can be specified for almtim is (0x7FFFFFFF −
TIC_NUME)/TIC_DENO. If a value larger than this is specified, operation is not guaranteed.

For details on time management, refer to section 5.13.7, Time Precision.

In service call sta_alm, alarm handlers belonging to the kernel of another CPU can be specified as
almid, except for in dispatch-pending state. In service call ista_alm, alarm handlers belonging to
the kernel of another CPU cannot be specified as almid.

249

6.24.4 Stop Alarm Handler (stp_alm, istp_alm)

C-Language API:
 ER ercd = stp_alm (ID almid);

 ER ercd = istp_alm (ID almid);

Parameters:
 almid Alarm handler ID

Return Values:
 Normal end (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number

(1) CPU ID is invalid (GET_CPUID (almid) is invalid)

(2) Out of local ID range

(GET_LOCALID (almid) ≤ 0 or

(_MAX_ALH of GET_CPUID (almid)) < GET_LOCALID (almid))

 E_CTX [k] Context error (Called in prohibited system state when

GET_CPUID (almid) is not the current CPU)

 E_NOEXS [k] Non-existent object (Alarm handler specified by almid does

not exist)

Function:

Each service call releases the alarm handler initiation time indicated by parameter almid, and stops
alarm handler operation.

In service call stp_alm, alarm handlers belonging to the kernel of another CPU can be specified as
almid, except for in dispatch-pending state. In service call istp_alm, alarm handlers belonging to
the kernel of another CPU cannot be specified as almid.

250

6.24.5 Reference Alarm Handler State (ref_alm, iref_alm)

C-Language API:
 ER ercd = ref_alm(ID almid, T_RALM *pk_ralm);

 ER ercd = iref_alm(ID almid, T_RALM *pk_ralm);

Parameters:
 almid Alarm handler ID

 pk_ralm Pointer to the packet where the alarm handler state is to be

returned

Return Values:
 Normal end (E_OK) or error code

Packet Structure:
 typedef struct {

 STAT almstat; Alarm handler operating state

 RELTIM lefttim; Remaining time until the alarm handler is

initiated

 }T_RALM;

Error Codes:
 E_ID [p] Invalid ID number

(1) CPU ID is invalid (GET_CPUID (almid) is invalid)

(2) Out of local ID range

(GET_LOCALID (almid) ≤ 0 or

(_MAX_ALH of GET_CPUID (almid)) < GET_LOCALID (almid))

 E_CTX [k] Context error (Called in prohibited system state when

GET_CPUID (almid) is not the current CPU)

 E_NOEXS [k] Non-existent object (Alarm handler specified by almid does

not exist)

Function:

Each service call reads the alarm handler state indicated by almid and returns the alarm handler
operating state (almstat) and remaining time until the alarm handler is initiated (lefttim) to the area
indicated by parameter pk_ralm.

The target alarm handler operating state is returned to parameter almstat.

• TALM_STP (0x00000000): The alarm handler is not in the operating state

• TALM_STA (0x00000001): The alarm handler is in the operating state

The relative time until the target alarm handler is next initiated is returned to parameter lefttim.
When the target alarm handler is not initiated, lefttim is undefined.

251

In service call ref_alm, alarm handlers belonging to the kernel of another CPU can be specified as
almid, except for in dispatch-pending state. In service call iref_alm, alarm handlers belonging to
the kernel of another CPU cannot be specified as almid.

6.25 Time Management (Overrun Handler)
Overrun handler is controlled by the service calls listed in table 6.35.

Table 6.35 Service Calls for Overrun Handler

System State*2

Service Call*1 Description T N E D U L C

def_ovr Defines overrun handler O O O O

sta_ovr [R] O O Δ O

ista_ovr

Starts overrun handler
operation O O O O

stp_ovr [R] O O Δ O

istp_ovr

Stops overrun handler
operation O O O O

ref_ovr [R] O O Δ O

iref_ovr

Refers to overrun handler state

 O O O O

Notes: 1. [S]: Standard profile service calls
[s]: Service calls that are not standard profile service calls but are needed in order to
 use the standard profile function
[B]: Basic profile service calls
[R]: Service calls that can be issued remotely

 2. T: Can be called in a task context
N: Can be called in a non-task context
E: Can be called in dispatch-enabled state
D: Can be called in dispatch-disabled state
U: Can be called in CPU-unlocked state
L: Can be called in CPU-locked state
C: Can be called while executing the normal CPU exception handler
O: Can be called in the state
Δ: Can be called in the state only when a local object is the target

Only one overrun handler can be defined in the system. The overrun handler is a time event
handler.

The processor time used by the task includes the execution times of a task, the service calls issued
by the task, and the interrupt handler that is initiated during execution of the task. Used processor
time is not counted while the task is not in the RUNNING state.

252

The overrun handler specifications are listed in table 6.36.

Table 6.36 Overrun Handler Specifications

Item Description

Processor time unit (OVRTIM) Same as system clock (1 [ms])

Overrun handler attributes TA_HLNG: Written in a high-level language

TA_ASM: Written in assembly language

6.25.1 Define Overrun Handler (def_ovr)

C-Language API:
 ER ercd = def_ovr(T_DOVR *pk_dovr);

Parameters:
 pk_dovr Pointer to the packet where the overrun handler definition

information is stored

Return Values:
 Normal end (E_OK) or error code

Packet Structure:
 typedef struct {

 ATR ovratr; Overrun handler attribute

 FP ovrhdr; Overrun handler address

 }T_DOVR;

Error Codes:
 E_RSATR [p] Invalid attribute (ovratr is invalid)

Function:

The overrun handler is defined using the contents specified by pk_dovr for the current CPU.

The overrun handler is a time event handler for a non-task context which is started when the
processor is used by a task for a time exceeding a preset time.

Parameter ovratr specifies the language in which the handler was written as the attribute.

ovratr := (TA_HLNG || TA_ASM)

• TA_HLNG (0x00000000): Written in a high-level language

• TA_ASM (0x00000001): Written in assembly language

Parameter ovrhdr specifies the start address of the overrun handler.

253

When pk_dovr = NULL (0) is specified in service call def_ovr, the overrun handler definition is
canceled.

When an overrun handler has already been defined, if this service call is issued, the preceding
definition is canceled and the new definition takes its place.

6.25.2 Start Overrun Handler (sta_ovr, ista_ovr)

C-Language API:
 ER ercd = sta_ovr(ID tskid, OVRTIM ovrtim);

 ER ercd = ista_ovr(ID tskid, OVRTIM ovrtim);

Parameters:
 tskid Task ID

 ovrtim Processing time limit

Return Values:
 Normal end (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number

(1) CPU ID is invalid (GET_CPUID (tskid) is invalid)

(2) Out of local ID range

(GET_LOCALID (tskid) < 0 or

(_MAX_TSK of GET_CPUID (tskid)) < GET_LOCALID (tskid))

(3) tskid = TSK_SELF (0) when called in a non-task context

 E_CTX [k] Context error (Called in prohibited system state when

GET_CPUID (tskid) is not the current CPU)

 E_NOEXS [k] Non-existent object (Task specified by tskid does not

exist)

 E_OBJ [k] Object state is invalid

(Overrun handler has not been defined)

Function:

Overrun handler operation begins for the task specified by tskid.

By specifying tskid = TSK_SELF (0), the current task can be specified.

The processing time limit for the task is set to the time specified by ovrtim, and the processor time
used is cleared to 0. If the overrun handler has already been operating, the previously set
processing time limit is canceled, and the new processing time limit is set.

When the processor time used exceeds the processing time limit, the overrun handler is started.

254

If 0 is specified for ovrtim, the overrun handler is started on the first time tick after the task begins
to use the processor.

The maximum value that can be specified for ovrtim is (0x7FFFFFFF −
TIC_NUME)/TIC_DENO. If a value larger than this is specified, operation is not guaranteed.

For details on time management, refer to section 5.13.7, Time Precision.

In service call sta_ovr, a task belonging to the kernel of another CPU can be specified as tskid,
except for in dispatch-pending state. In service call ista_ovr, a task belonging to the kernel of
another CPU cannot be specified as tskid.

6.25.3 Stop Overrun Handler (stp_ovr, istp_ovr)

C-Language API:
 ER ercd = stp_ovr(ID tskid);

 ER ercd = istp_ovr(ID tskid);

Parameters:
 tskid Task ID

Return Values:
 Normal end (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number

(1) CPU ID is invalid (GET_CPUID (tskid) is invalid)

(2) Out of local ID range

(GET_LOCALID (tskid) < 0 or

(_MAX_TSK of GET_CPUID (tskid)) < GET_LOCALID (tskid))

(3) tskid = TSK_SELF (0) when called in a non-task context

 E_CTX [k] Context error (Called in prohibited system state when

GET_CPUID (tskid) is not the current CPU)

 E_NOEXS [k] Non-existent object (Task specified by tskid does not

exist)

 E_OBJ [k] Object state is invalid

(Overrun handler has not been defined)

255

Function:

Each service call releases the processing time limit for the task indicated by parameter tskid and
stops overrun handler operation.

By specifying tskid = TSK_SELF (0), the current task can be specified.

In service call stp_ovr, a task belonging to the kernel of another CPU can be specified as tskid,
except for in dispatch-pending state. In service call istp_ovr, a task belonging to the kernel of
another CPU cannot be specified as tskid.

6.25.4 Reference Overrun Handler State (ref_ovr, iref_ovr)

C-Language API:
 ER ercd = ref_ovr(ID tskid, T_ROVR *pk_rovr);

 ER ercd = iref_ovr(ID tskid, T_ROVR *pk_rovr);

Parameters:
 tskid Task ID

 pk_rovr Pointer to the packet where the overrun handler state is to

be returned

Return Values:
 Normal end (E_OK) or error code

Packet Structure:
 typedef struct {

 STAT ovrstat; Overrun handler operating state

 OVRTIM leftotm; Remaining processor time

 }T_ROVR;

Error Codes:
 E_ID [p] Invalid ID number

(1) CPU ID is invalid (GET_CPUID (tskid) is invalid)

(2) Out of local ID range

(GET_LOCALID (tskid) < 0 or

(_MAX_TSK of GET_CPUID (tskid)) < GET_LOCALID (tskid))

(3) tskid = TSK_SELF (0) when called in a non-task context

 E_CTX [k] Context error (Called in prohibited system state when

GET_CPUID (tskid) is not the current CPU)

 E_NOEXS [k] Non-existent object (Task specified by tskid does not

exist)

 E_OBJ [k] Object state is invalid

(Overrun handler has not been defined)

256

Function:

The state of the overrun handler for the task specified by tskid is referenced, and the state of
operation of the overrun handler (ovrstat) and the remaining processor time (leftotm) are returned
to the area specified by pk_rovr.

By specifying tskid = TSK_SELF (0), the current task can be specified.

As the operating state of the overrun handler, the processing time limit setting is returned as
ovrstat.

• TOVR_STP (0x00000000): No processing time limit is set

• TOVR_STA (0x00000001): A processing time limit is set

The processor time remaining until the overrun handler is started due to the target task is returned
as leftotm. If no processing time limit is set for the task, the value of leftotm is undefined.

In service call ref_ovr, a task belonging to the kernel of another CPU can be specified as tskid,
except for in dispatch-pending state. In service call iref_ovr, a task belonging to the kernel of
another CPU cannot be specified as tskid.

257

6.26 System State Management
The system state is controlled by the service calls listed in table 6.37.

Table 6.37 Service Calls for System State Management

System State*2

Service Call*1 Description T N E D U L C

rot_rdq [B] [S] O O O O

irot_rdq [B] [S]

Rotates ready queue

 O O O O

get_tid [B] [S] O O O O O

iget_tid [S]

Refers to task ID in RUNNING
state O O O O O

loc_cpu [B] [S] O O O O O

iloc_cpu [S]

Locks CPU

 O O O O O

unl_cpu [B] [S] O O O O O

iunl_cpu [S]

Unlocks CPU

 O O O O O

dis_dsp [B] [S] Disables task dispatch O O O O

ena_dsp [B] [S] Enables task dispatch O O O O

sns_ctx [S] Refers to task context O O O O O O O

sns_loc [S] Refers to CPU-locked state O O O O O O O

sns_dsp [S] Refers to dispatch-disabled
state

O O O O O O O

sns_dpn [S] Refers to dispatch-pending
state

O O O O O O O

vsta_knl [s] O O O O O O O

ivsta_knl [s]

Starts kernel

O O O O O O O

vini_rmt Initializes the remote service-
call environment

O O O

vsys_dwn [s] O O O O O O O

ivsys_dwn [s]

Terminates the system

O O O O O O O

vget_trc O O O O

ivget_trc

Acquires trace information

 O O O O

ivbgn_int Acquires start of interrupt
handler to trace

 O O O O

ivend_int Acquires end of interrupt
handler to trace

 O O O O

258

Notes: 1. [S]: Standard profile service calls
[s]: Service calls that are not standard profile service calls but are needed in order to
 use the standard profile function
[B]: Basic profile service calls
[R]: Service calls that can be issued remotely

 2. T: Can be called in a task context
N: Can be called in a non-task context
E: Can be called in dispatch-enabled state
D: Can be called in dispatch-disabled state
U: Can be called in CPU-unlocked state
L: Can be called in CPU-locked state
C: Can be called while executing the normal CPU exception handler
O: Can be called in the state
Δ: Can be called in the state only when a local object is the target

6.26.1 Rotate Ready Queue (rot_rdq, irot_rdq)

C-Language API:
 ER ercd = rot_rdq(PRI tskpri);

 ER ercd = irot_rdq(PRI tskpri);

Parameters:
 tskpri Task priority

Return Values:
 Normal end (E_OK) or error code

Error Codes:
 E_PAR [p] Parameter error (tskpri < 0, tskpri > TMAX_TPRI of current

CPU, or tskpri = TPRI_SELF (0) is specified in a non-task

context)

Function:

Each service call rotates the current CPU's ready queue of the task priority indicated by parameter
tskpri. In other words, the task at the head of the ready queue for the task priority is sent to the end
of the queue, enabling the second task in the ready queue to be executed.

Specifying tskpri = TPRI_SELF (0) rotates the ready queue with the base priority of the current
task. The base priority is the same as the current priority when the mutex function is not used;
however, the current priority is not the same as the base priority while the mutex is locked. Thus,
the ready queue for the priority where the current task is included, cannot be rotated even when
TPRI_SELF is specified.

259

6.26.2 Get Current Task ID (get_tid, iget_tid)

C-Language API:
 ER ercd = get_tid(ID *p_tskid);

 ER ercd = iget_tid(ID *p_tskid);

Parameters:
 p_tskid Pointer to the memory area where the task ID is to be

returned

Return Values:
 Normal end (E_OK)

Function:

Each service call refers to the ID of the task in the RUNNING state for the current CPU and
returns it to the area indicated by p_tskid.

If each service call is issued in a task context, the current task ID is returned. If each service call is
issued in a non-task context, the task ID that is being executed at that point is returned. The CPU
ID (1 or 2) for the current CPU is set in bits 14 to 12. If there is no task in the RUNNING state,
TSK_NONE (0) is returned.

Service calls get_tid and iget_tid can also be issued from the normal CPU exception handler.

6.26.3 Lock CPU (loc_cpu, iloc_cpu)

C-Language API:
 ER ercd = loc_cpu(void);

 ER ercd = iloc_cpu(void);

Return Values:
 Normal end (E_OK)

Function:

Each service call shifts the system state of the current CPU's kernel to the CPU-locked state, and
disables interrupts and task dispatches.

The following describes the CPU-locked state:

• Tasks cannot be scheduled in the CPU-locked state.

• Interrupts, having a level equal to or below the kernel interrupt mask level
(system.system_IPL) specified in the cfg file, are disabled.

260

• Only the following service calls can be issued in the CPU-locked state. Normal system
operation cannot be guaranteed when a service call other than the following is issued:

⎯ ext_tsk
⎯ exd_tsk
⎯ sns_tex
⎯ loc_cpu, iloc_cpu
⎯ unl_cpu, iunl_cpu
⎯ sns_ctx
⎯ sns_loc
⎯ sns_dsp
⎯ sns_dpn
⎯ vsta_knl, ivsta_knl
⎯ vsys_dwn, ivsys_dwn
⎯ vsns_tmr

When the following service calls are issued in the CPU-locked state, the system returns to the
CPU-unlocked state.

⎯ unl_cpu or iunl_cpu
⎯ ext_tsk or exd_tsk

The transition between CPU-locked state and CPU-unlocked state occurs only when service call
loc_cpu, iloc_cpu, unl_cpu, iunl_cpu, ext_tsk, or exd_tsk is issued. An interrupt handler whose
level is equal to or lower than the kernel interrupt mask level, time event handler, initialization
routine, and task exception handling routine must unlock the CPU at termination. If the CPU is
locked at termination, normal system operation cannot be guaranteed. Note that the CPU is always
unlocked at the start of these handlers.

If the CPU exception handler switches the CPU-locked state and CPU-unlocked state, the system
must be returned to the state at handler initiation before the handler terminates. If the former state
is not recovered, normal system operation cannot be guaranteed.

If service calls loc_cpu and iloc_cpu are issued in CPU-unlocked state, no error will occur, but
queuing will not be done.

261

6.26.4 Unlock CPU (unl_cpu, iunl_cpu)

C-Language API:
 ER ercd = unl_cpu(void);

 ER ercd = iunl_cpu(void);

Return Values:
 Normal end (E_OK)

Function:

Each service call cancels the CPU-locked state of the current CPU's kernel; CPU was locked by
service call loc_cpu or iloc_cpu. If service call unl_cpu is issued in the dispatch-enabled state, task
scheduling is performed.

When the system makes a transition to the CPU-locked state by issuing service call iloc_cpu in the
interrupt handler, service call iunl_cpu must be issued to unlock the CPU before returning from
the interrupt handler.

The CPU-locked state and dispatch-disabled state are managed individually. Thus, service call
unl_cpu or iunl_cpu does not enable task dispatch which was disabled by service call dis_dsp.

If service calls unl_cpu and iunl_cpu are issued in CPU-unlocked state, no error will occur, but
queuing will not be done.

262

6.26.5 Disable Dispatch (dis_dsp)

C-Language API:
 ER ercd = dis_dsp(void);

Return Values:
 Normal end (E_OK)

Error Codes:
 E_CTX [k] Context error (Called in prohibited system state)

Function:

Service call dis_dsp shifts the system state of the current CPU's kernel to the dispatch-disabled
state.

The following describes the dispatch-disabled state:

• Task scheduling is delayed, so that a task other than the current task cannot enter the
RUNNING state.

• Interrupts can be accepted.

• Service calls to shift a task to the WAITING state cannot be issued.

When the following service calls are issued while task dispatch is disabled, the system returns to
the task dispatch-enabled state.

• ena_dsp

• ext_tsk or exd_tsk

The transition between dispatch-disabled state and dispatch-enabled state occurs only when
service call dis_dsp, ena_dsp, ext_tsk, or exd_tsk is issued.

If the CPU exception handler switches the dispatch-disabled state and dispatch-enabled state, the
system must be returned to the state at handler initiation before the handler terminates. If the
former state is not recovered, normal system operation cannot be guaranteed.

When task dispatch is disabled by this service call, the task state is undefined. Therefore, if the
current task refers to its state by service call ref_tsk, the returned state is not always the
RUNNING state.

If service call dis_dsp is issued while task dispatch is disabled, no error will occur, but queuing
will not be done.

This service call must always be issued in a task context while the CPU is unlocked. If this service
call is issued in any other state, normal system operation cannot be guaranteed.

263

6.26.6 Enable Dispatch (ena_dsp)

C-Language API:
 ER ercd = ena_dsp(void);

Return Values:
 Normal end (E_OK)

Error Codes:
 E_CTX [k] Context error (Called in prohibited system state)

Function:

Service call ena_dsp cancels the dispatch-disabled state of the current CPU's kernel; dispatch was
disabled by service call dis_dsp. Task scheduling is then performed after the system is able to
execute tasks.

If service call ena_dsp is issued while task dispatch is enabled, no error will occur, but queuing
will not be done.

This service call must always be issued in a task context while the CPU is unlocked. If this service
call is issued in any other state, normal system operation cannot be guaranteed.

6.26.7 Check Context (sns_ctx)

C-Language API:
 BOOL state = sns_ctx(void);

Return Values:
 TRUE is returned when this service call is issued in a non-task context and

FALSE is returned when this service call is issued in a task context

Function:

Service call sns_ctx checks the current context type.

Service call sns_ctx can be issued in the CPU-locked state and from the normal CPU exception
handler.

264

6.26.8 Check CPU-Locked State (sns_loc)

C-Language API:
 BOOL state = sns_loc(void);

Return Values:
 TRUE is returned when the CPU is locked and FALSE is returned when the CPU is

unlocked

Function:

Service call sns_loc checks whether the CPU is locked.

Service call sns_loc can be issued in the CPU-locked state and from the normal CPU exception
handler.

6.26.9 Check Dispatch-Disabled State (sns_dsp)

C-Language API:
 BOOL state = sns_dsp(void);

Return Values:
 TRUE is returned when task dispatch is disabled and FALSE is returned when

task dispatch is enabled

Function:

Service call sns_dsp checks whether task dispatch is disabled.

Service call sns_dsp can be issued in the CPU-locked state and from the normal CPU exception
handler.

265

6.26.10 Check Dispatch-Pending State (sns_dpn)

C-Language API:
 BOOL state = sns_dpn(void);

Return Values:
 TRUE is returned when task dispatch is pended and FALSE is returned when task

dispatch is not pended

Function:

Service call sns_dpn checks whether task dispatch is pended.

When any one of the following conditions is satisfied, task dispatch is pended.

• Task dispatch is disabled.

• The CPU is locked.

• A non-task context is being executed.

• The normal CPU exception handler is being executed.

• Interrupt mask level (value indicated by the IMASK bits in SR) is not 0

Service call sns_dpn can be issued in the CPU-locked state and from the normal CPU exception
handler.

6.26.11 Start Kernel (vsta_knl, ivsta_knl)

C-Language API:
 void vsta_knl(void);

 void ivsta_knl(void);

Function:

Each service call starts the kernel.

If the kernel has already been started, the multitasking environment up to that point is all nullified.

Each service call can also be issued in the CPU-locked state and from the normal CPU exception
handler. Each service call can be issued even before the kernel is started.

Each service call should be issued in a state with all interrupts masked (SR.IMASK = 15).

An application issuing these service calls must be linked with the kernel.

Control will not return to the caller from these service calls.

266

The following outlines processing performed by these service calls.

1. Creates the interrupt vector table and initializes VBR.

2. Initializes the kernel internal table.

3. Creates objects specified in the cfg file.

4. Sets the IMASK bits in SR to the kernel interrupt mask level (system.system_IPL).

5. Calls the timer initialization function tdr_ini_tmr().

6. Calls the initialization routines specified in the cfg file.

7. Enters the multitasking environment.

When system.trace!=NO, the trace serial numbers may be inconsistent. To avoid this problem, call
vsta_knl on CPUID#2 after starting the initialization routine or the first task on CPUID#1.

These service calls are functions not defined in the μITRON4.0 specification.

6.26.12 Initialize Remote Service-Call Environment (vini_rmt)

C-Language API:
 ER ercd = vini_rmt(void);

Return Values:
 Normal end (E_OK) or error code

Error Codes:
 E_CTX [k] Context error (Called in prohibited system state)

 E_SYS [k] System error

 EV_NORESOURCE [k] Insufficient resource

(1) Failed in IPI port creation

(2) Failed in SVC server task creation

(3) Failed in fixed-sized memory pool creation

Function:

Service call vini_rmt performs initialization processing for accepting remote service calls from
another CPU and sending remote service calls to another CPU.

If remote_svc.num_server is not 0, the following initialization processing is performed to accept
remote service calls from another CPU.

1. Creates an IPI port.

The IPI port specified by remote_svc.ipi_portid is created using IPI_create().

267

2. Creates and initiates SVC server tasks.

SVC server tasks are created using service call acre_tsk for the number specified by
remote_svc.num_server. The main contents of the parameter packet (T_CTSK structure)
passed to acre_tsk are as follows:

⎯ tskatr (task attribute): TA_HLNG | TA_ACT
⎯ task (task start address): Address of SVC server task function in the kernel
⎯ itskpri (initial priority): remote_svc.priority
⎯ stksz (stack size): remote_svc.stack_size
⎯ stk (stack address): Area automatically allocated at configuration (inside of section

BC_hirmtstk)

If remote_svc.num_wait is not 0, the following initialization processing is performed to send
remote service calls to another CPU.

3. Creates a fixed-sized memory pool.

A single fixed-sized memory pool with memory blocks for the number specified by
remote_svc.num_wait is created using service call acre_mpf. The main contents of the
parameter packet (T_CMPFstructure) passed to acre_mpf are as follows:

⎯ mpfatr (fixed-sized memory pool attribute): TA_TFIFO
⎯ blkcnt (number of memory blocks): remote_svc.num_wait
⎯ blksz (memory block size): 20 bytes
⎯ mpf (start address for fixed-sized memory pool): Area automatically allocated at

configuration (inside of section BD_hirmtmpf)
⎯ mpfmb (fixed-sized memory pool management table address) (only when

system.mpfmanage is OUT): Area automatically allocated at configuration (inside of
section BC_hiwrk)

Remote service calls can be issued to and from the current CPU after operation of service call
vini_rmt has completed.

IPI_init() must be completed before service call vini_rmt is issued. Furthermore, if the current
CPU ID is not 1, service call vini_rmt needs to be completed in the master CPUID#1 before
service call vini_rmt is issued in the current CPU. If these requirements are not satisfied, operation
becomes undefined.

Service call vini_rmt should be issued only once immediately after the kernel has been initiated.

Service call vini_rmt is implemented only in the API layer. Therefore, each processing of this
service call is executed in the same context as the caller.

This service call is a function not defined in the μITRON4.0 specification.

268

6.26.13 System Down (vsys_dwn, ivsys_dwn)

C-Language API:
 void vsys_dwn(W type, VW inf1, VW inf2, VW inf3);

 void ivsys_dwn(W type, VW inf1, VW inf2, VW inf3);

Parameters:
 type Error type

 inf1 System abnormal information 1

 inf2 System abnormal information 2

 inf3 System abnormal information 3

Function:

Each service call passes control to the system down routine.

For parameter type, a value (1 to 0x7FFFFFFF) corresponding to the generated error must be
specified as the error type. Value 0 or smaller values are reserved for system use.

The system down routine is also executed when abnormal operation is detected in the kernel.

Service calls vsys_dwn and ivsys_dwn can be issued in the CPU-locked state and from the normal
CPU exception handler.

Control will not return to the caller from these service calls.

These service calls are functions not defined in the μITRON4.0 specification.

6.26.14 Get Trace Information (vget_trc, ivget_trc)

C-Language API:
 ER ercd = vget_trc(VW para1, VW para2, VW para3, VW para4);

 ER ercd = ivget_trc(VW para1, VW para2, VW para3, VW para4);

Parameters:
 para1 Parameter 1

 para2 Parameter 2

 para3 Parameter 3

 para4 Parameter 4

Return Values:
 Normal end (E_OK)

269

Function:

Each service call traces and acquires information required by the user.

Parameters para1 to para4 can be used freely by the user to distinguish the information to be
acquired.

The acquired trace information can be displayed by using a debugging extension (DX).

If NO is specified for system.trace in the cfg file, these service calls do not perform any
processing.

These service calls are functions not defined in the μITRON4.0 specification.

6.26.15 Get Start of Interrupt Handlers as Trace Information (ivbgn_int)

C-Language API:
 ER ercd = ivbgn_int(UINT dintno);

Parameters:
 dintno Interrupt handler number

Return Values:
 Normal end (E_OK)

Function:

Service call ivbgn_int traces the beginning of processing of the interrupt handler for the interrupt
handler number specified by dintno.

The CPU interrupt vector number is specified for the interrupt handler number.

This service call should be issued at the beginning of an interrupt handler. In addition, it should
always be used in combination with service call ivend_int.

An error does not occur if this service call is issued from code other than an interrupt handler, but
in such cases there is a possibility that the trace display by the debugging extension may be illegal.

If NO is specified for system.trace in the cfg file, this service call does not perform any
processing.

This service call is a function not defined in the μITRON4.0 specification.

270

6.26.16 Get End of Interrupt Handlers as Trace Information (ivend_int)

C-Language API:
 ER ercd = ivend_int(UINT dintno);

Parameters:
 dintno Interrupt handler number

Return Values:
 Normal end (E_OK)

Function:

Service call ivend_int traces the end of processing of the interrupt handler for the interrupt handler
number specified by dintno.

The CPU interrupt vector number is specified for the interrupt handler number.

This service call should be issued at the end of an interrupt handler. In addition, it should always
be used in combination with service call ivbgn_int.

An error does not occur if this service call is issued from code other than an interrupt handler, but
in such cases there is a possibility that the trace display by the debugging extension may be illegal.

If NO is specified for system.trace in the cfg file, this service call does not perform any
processing.

This service call is a function not defined in the μITRON4.0 specification.

271

6.27 Interrupt Management
Interrupts are controlled by the service calls listed in table 6.38.

Table 6.38 Service Calls for Interrupt Management

System State*2

Service Call*1 Description T N E D U L C

def_inh O O O O

idef_inh

Defines interrupt handler

 O O O O

chg_ims O O O O

ichg_ims

Changes interrupt mask

 O O O O

get_ims O O O O

iget_ims

Refers to interrupt mask

 O O O O

Notes: 1. [S]: Standard profile service calls
[s]: Service calls that are not standard profile service calls but are needed in order to
 use the standard profile function
[B]: Basic profile service calls
[R]: Service calls that can be issued remotely

 2. T: Can be called in a task context
N: Can be called in a non-task context
E: Can be called in dispatch-enabled state
D: Can be called in dispatch-disabled state
U: Can be called in CPU-unlocked state
L: Can be called in CPU-locked state
C: Can be called while executing the normal CPU exception handler
O: Can be called in the state
Δ: Can be called in the state only when a local object is the target

The interrupt management specifications are listed in table 6.39.

Table 6.39 Interrupt Management Specifications

Item Description

Interrupt handler number 4 to _MAX_INT (511 max.)

Interrupt handler attributes TA_HLNG: Written in a high-level language

TA_ASM: Written in assembly language

272

6.27.1 Define Interrupt Handler (def_inh, idef_inh)

C-Language API:
 ER ercd = def_inh(INHNO inhno, T_DINH *pk_dinh);

 ER ercd = idef_inh(INHNO inhno, T_DINH *pk_dinh);

Parameters:
 inhno Interrupt handler number

 pk_dinh Pointer to the packet where the interrupt handler definition

information is stored

Return Values:
 Normal end (E_OK) or error code

Packet Structure:
 typedef struct {

 ATR inhatr; Handler attribute

 FP inthdr; Handler address

 UINT inhsr; (For future expansion)

 }T_DINH;

Error Codes:
 E_RSATR [p] Invalid attribute (inhatr is invalid)

 E_PAR [p] Parameter error

Invalid number was specified (inhno = 0 to 3 or 60 to 63, or

inhno > _MAX_INT of current CPU)

Function:

Each service call defines the interrupt handler for the interrupt handler number specified by inhno
in the kernel of the current CPU with the contents specified by pk_dinh.

These service calls can be used only when RAM or RAM_ONLY_DIRECT is specified for
system.vector_type in the cfg file.

The CPU vector number is specified for the interrupt handler number.

These service calls cannot be used to define handlers for interrupt handler numbers 0 to 3 (power-
on reset, manual reset). Interrupt handler numbers 60 to 63 are reserved numbers for system use
and must not be specified.

273

Parameter inhatr specifies the following as the attributes.

inhatr := (TA_HLNG || TA_ASM) [|(VTA_DIRECT || VTA_REGBANK)]

• TA_HLNG (0x00000000): Written in a high-level language

• TA_ASM (0x00000001): Written in assembly language

• VTA_DIRECT (0x80000000): Direct attribute

• VTA_REGBANK (0x40000000): Normal interrupt handler making use of the register banks

If the VTA_DIRECT attribute is specified, the defined handler is initiated without any kernel
intervention when an interrupt occurs. Such kind of handler is referred to as a "direct interrupt
handler". If the VTA_DIRECT attribute is not specified, the handler is initiated through kernel
intervention when an interrupt occurs. Such kind of handler is referred to as a "normal interrupt
handler".

VTA_DIRECT must be specified when defining an interrupt handler with an interrupt level higher
than the kernel interrupt mask level.

Note that the method for writing a handler differs depending on whether VTA_DIRECT is
specified. For details, refer to section 12.5, Interrupt Handlers.

When RAM_ONLY_DIRECT is specified for system.vector_type in the cfg file, it is not possible
to define handlers without the VTA_DIRECT attribute.

VTA_REGBANK is valid only when all of the following conditions are satisfied. Otherwise, the
specification of VTA_REGBANK has no meaning.

(a) The VTA_DIRECT attribute is not specified.

(b) BANKLEVELxx is specified for system.regbank.

(c) A value other than 0 is specified for INTSPEC_IBNR_ADR1 (for CPUID#1) or
INTSPEC_IBNR_ADR2 (for CPUID#2) for the relevant CPU in the "CPU interrupt
specification definition file (kernel_intspec.h)". (A CPU that provides register banks is used.)

(d) A vector number other than the vector number corresponding to
INTSPEC_NOBANK_VEC??? defined in the "CPU interrupt specification definition file
(kernel_intspec.h)" is specified. (A vector number for an interrupt source with which the
register banks can be used is specified due to the CPU specifications.)

When all of these conditions hold, VTA_REGBANK must be specified as appropriate according
to the interrupt level of the interrupt handler to be defined as shown below. If these are not
followed, the interrupt handler will not operate correctly.

274

(i) When BANKLEVELxx corresponding to the interrupt level of the interrupt handler to be used
is specified for system.regbank

VTA_REGBANK must be specified.

(ii) When BANKLEVELxx corresponding to the interrupt level of the interrupt handler to be used
is not specified for system.regbank

VTA_REGBANK must not be specified.

inhsr is reserved for future expansion and is simply ignored.

When pk_dinh = NULL (0) is specified, the definition of inhno is canceled.

inhsr is a member not defined in the μITRON4.0 specification.

6.27.2 Change Interrupt Mask Level (chg_ims, ichg_ims)

C-Language API:
 ER ercd = chg_ims(IMASK imask);

 ER ercd = ichg_ims(IMASK imask);

Parameters:
 imask Interrupt mask value

Return Values:
 Normal end (E_OK) or error code

Error Codes:
 E_PAR [p] Parameter error (A value other than SR_IMS00 to SR_IMS15

was specified for imask)

Function:

Each service call changes the CPU's interrupt mask (IMASK bits in SR) to the level specified by
imask.

imask can be specified as follows:

• SR_IMSnn (0x0000000m) Changes interrupt mask level to nn.

nn: Character string indicating a two-digit decimal number from 0 to 15 (00, 01, 02, ... , 15)

m: nn converted to a hexadecimal number

For details on controlling the interrupt mask, refer to section 4.8.2, Controlling Interrupts (by
Setting IMASK Bits in the Register SR).

275

6.27.3 Reference Interrupt Mask Level (get_ims, iget_ims)

C-Language API:
 ER ercd = get_ims(IMASK *p_imask);

 ER ercd = iget_ims(IMASK *p_imask);

Parameters:
 p_imask Pointer to the memory area where the interrupt mask

level is to be returned

Return Values:
 Normal end (E_OK)

Function:

Each service call refers to the interrupt mask bits (IMASK bits) of the current CPU status register
(SR) and returns the interrupt mask level to the area indicated by p_imask.

The value to be returned to p_imask has the same format as parameter imask used by service call
chg_ims.

276

6.28 Service Call Management
Service calls are controlled by the service calls listed in table 6.40.

Table 6.40 Service Calls for Service Call Management

System State*2

Service Call*1 Description T N E D U L C

def_svc O O O O

idef_svc

Defines extended service call
routine O O O O

cal_svc O O O O

ical_svc

Calls service call routine

 O O O O

Notes: 1. [S]: Standard profile service calls
[s]: Service calls that are not standard profile service calls but are needed in order to
 use the standard profile function
[B]: Basic profile service calls
[R]: Service calls that can be issued remotely

 2. T: Can be called in a task context
N: Can be called in a non-task context
E: Can be called in dispatch-enabled state
D: Can be called in dispatch-disabled state
U: Can be called in CPU-unlocked state
L: Can be called in CPU-locked state
C: Can be called while executing the normal CPU exception handler
O: Can be called in the state
Δ: Can be called in the state only when a local object is the target

The service call management specifications are listed in table 6.41.

Table 6.41 Service Call Management Specifications

Item Description

Function code of extended service call 1 to _MAX_FNCD (1023 max.)

Parameter that can be passed 0 to 4 VP_INT type parameters

Extended service call routine attributes TA_HLNG: Written in a high-level language

TA_ASM: Written in assembly language

277

6.28.1 Define Extended Service-Call Routine (def_svc, idef_svc)

C-Language API:
 ER ercd = def_svc(FN fncd, T_DSVC *pk_dsvc);

 ER ercd = idef_svc(FN fncd, T_DSVC *pk_dsvc);

Parameters:
 fncd Function code of extended service call

 pk_dsvc Pointer to the packet where the extended service call routine

definition information is stored

Return Values:
 Normal end (E_OK) or error code

Packet Structure:
 typedef struct {

 ATR svcatr; Extended service call routine attribute

 FP svcrtn; Extended service call routine address

 }T_DSVC;

Error Codes:
 E_RSATR [p] Invalid attribute (svcatr is invalid)

 E_PAR [p] Parameter error (fncd ≤ 0 or

fncd > _MAX_FNCD of current CPU)

Function:

For the kernel of the current CPU, each service call defines an extended service call routine for the
extended function code indicated by fncd with the contents specified by pk_dsvc.

Parameter svcatr specifies the language in which the routine was written as the attribute.

svcatr := ((TA_HLNG || TA_ASM))

• TA_HLNG (0x00000000): Written in a high-level language

• TA_ASM (0x00000001): Written in assembly language

Parameter svcrtn specifies the start address of the extended service call routine.

If pk_dsvc = NULL (0) is specified for svcatr in these service calls, the extended service call
routine defined for fncd is canceled.

The state of the calling task is taken over in extended service call routines.

278

6.28.2 Call Extended Service-Call Routine (cal_svc, ical_svc)

C-Language API:
 ER_UINT ercd = cal_svc(FN fncd, …);

 ER_UINT ercd = ical_svc(FN fncd, …);

Parameters:
 fncd Function code of extended service call

 In “…” above, up to four VP_INT-type parameters can be substituted. If more

than four parameters are specified, only the first four parameters are passed

to the extended service call routine.

 par1 Parameter 1

 par2 Parameter 2

 par3 Parameter 3

 par4 Parameter 4

Return Values:
 Return value from service call

Error Codes:
 E_RSFN [p] Reserved function code (fncd is invalid or cannot be used)

Function:

Each service call executes the extended service call routine corresponding to the function code
specified by parameter fncd.

Up to four VP_INT-type parameters can be specified. In the extended service call routine to be
called, par1 to par4 are stored in R4 to R7, respectively, and passed.

For details, refer to section 12.4, Extended Service Call Routines.

279

6.29 System Configuration Management
System configuration is controlled by the service calls listed in table 6.42.

Table 6.42 Service Calls for System Configuration Management

System State*2

Service Call*1 Description T N E D U L C

def_exc O O O O

idef_exc

Defines CPU exception handler

 O O O O

vdef_trp O O O O

ivdef_trp

Defines CPU exception handler
(TRAPA instruction exception) O O O O

ref_cfg O O O O

iref_cfg

Refers to configuration information

 O O O O

ref_ver O O O O

iref_ver

Refers to version information

 O O O O

Notes: 1. [S]: Standard profile service calls
[s]: Service calls that are not standard profile service calls but are needed in order to
 use the standard profile function
[B]: Basic profile service calls
[R]: Service calls that can be issued remotely

 2. T: Can be called in a task context
N: Can be called in a non-task context
E: Can be called in dispatch-enabled state
D: Can be called in dispatch-disabled state
U: Can be called in CPU-unlocked state
L: Can be called in CPU-locked state
C: Can be called while executing the normal CPU exception handler
O: Can be called in the state
Δ: Can be called in the state only when a local object is the target

The system configuration management specifications are listed in table 6.43.

Table 6.43 System Configuration Management Specifications

Item Description

CPU exception handler number 4 to _MAX_INT (511 max.)

CPU exception handler attributes TA_HLNG: Written in a high-level language

TA_ASM: Written in assembly language

280

6.29.1 Define CPU Exception Handler (def_exc, idef_exc)

C-Language API:
 ER ercd = def_exc(EXCNO excno, T_DEXC *pk_dexc);

 ER ercd = idef_exc(EXCNO excno, T_DEXC *pk_dexc);

Parameters:
 excno CPU exception handler number

 pk_dexc Pointer to the packet where the CPU exception handler

definition information is stored

Return Values:
 Normal end (E_OK) or error code

Packet Structure:
 typedef struct {

 ATR excatr; Handler attribute

 FP exchdr; Handler address

 UINT excsr; (For future expansion)

 }T_DEXC;

Error Codes:
 E_RSATR [p] Invalid attribute (excatr is invalid)

 E_PAR [p] Parameter error

Invalid number was specified (inhno = 0 to 3 or 60 to 63, or

inhno > _MAX_INT of current CPU)

Function:

For the kernel of the current CPU, each service call defines a CPU exception handler for the CPU
exception handler number specified by excno with the contents specified by pk_dexc.

These service calls can be used only when RAM or RAM_ONLY_DIRECT is specified for
system.vector_type in the cfg file.

The CPU vector number is specified for the CPU exception handler number.

These service calls cannot be used to define handlers for CPU exception handler numbers 0 to 3
(power-on reset, manual reset). CPU exception handler numbers 60 to 63 are reserved numbers for
system use and must not be specified.

281

Parameter excatr specifies the following as the attributes.

excatr := (TA_HLNG || TA_ASM) [|VTA_DIRECT]

• TA_HLNG (0x00000000): Written in a high-level language

• TA_ASM (0x00000001): Written in assembly language

• VTA_DIRECT (0x80000000): Direct attribute

If the VTA_DIRECT attribute is specified, the defined handler is initiated without any kernel
intervention when a CPU exception occurs. Such kind of handler is referred to as a "direct CPU
exception handler". If the VTA_DIRECT attribute is not specified, the handler is initiated through
kernel intervention when a CPU exception occurs. Such kind of handler is referred to as a "normal
CPU exception handler".

Note that the method for writing a handler differs depending on whether VTA_DIRECT is
specified. For details, refer to section 12.6, CPU Exception Handlers (Including TRAPA
Exceptions).

When RAM_ONLY_DIRECT is specified for system.vector_type in the cfg file, it is not possible
to define handlers without the VTA_DIRECT attribute.

excsr is reserved for future expansion and is simply ignored. The SR value when a CPU exception
handler is actually initiated is determined by the CPU exception handling.

When pk_dexc = NULL (0) is specified, the definition of excno is canceled.

The normal CPU exception handler is executed in a context referred to as the "CPU exception
handler execution state", which is different from the context in which the CPU exception cause
occurred. Service calls which can be issued from this state are limited to the following service
calls. If service calls other than the following are issued, operation is not guaranteed.

• sns_tex

• sns_ctx

• sns_loc

• sns_dsp

• sns_dpn

• get_tid, iget_tid

• ras_tex, iras_tex

• vsta_knl, ivsta_knl

• vsys_dwn, ivsys_dwn

• vsns_tmr

282

The direct CPU exception handler is executed in the same context as that before the CPU
exception cause occurred. Accordingly, the service calls that can be issued are the same as those
before the CPU exception occurred and will not be determined statically.

In order to define a CPU exception handler for a TRAPA instruction, service call vdef_trp or
ivdef_trp should be used instead of service calls def_exc and idef_exc.

excsr is a member not defined in the μITRON4.0 specification.

6.29.2 Define CPU Exception (TRAPA-Instruction Exception) Handler (vdef_trp,
ivdef_trp)

C-Language API:
 ER ercd = vdef_trp(UINT dtrpno, T_DTRP *pk_dtrp);

 ER ercd = ivdef_trp(UINT dtrpno, T_DTRP *pk_dtrp);

Parameters:
 dtrpno Trap number

 pk_dtrp Pointer to the packet where the CPU exception (TRAPA

instruction exception) handler definition information is

stored

Return Values:
 Normal end (E_OK) or error code

Packet Structure:
 typedef struct {

 ATR trpatr; CPU exception (TRAPA instruction exception)

handler attribute

 FP trphdr; CPU exception (TRAPA instruction exception)

handler address

 UINT trpsr; (For future expansion)

 }T_DTRP;

Error Codes:
 E_RSATR [p] Invalid attribute (trpatr is invalid)

 E_PAR [p] Parameter error

Invalid number was specified (inhno = 0 to 3 or 60 to 63,

or inhno > _MAX_INT of current CPU)

283

Function:

For the kernel of the current CPU, each service call defines a CPU exception (TRAPA instruction
exception) handler for the trap number specified by dtrpno with the contents specified by pk_dtrp.

These service calls can be used only when RAM or RAM_ONLY_DIRECT is specified for
system.vector_type in the cfg file.

The CPU vector number is specified for the trap number.

These service calls cannot be used to define handlers for trap numbers 0 to 3 (power-on reset,
manual reset). Trap numbers 60 to 63 are reserved numbers for system use and must not be
specified.

Parameter trpatr specifies the following as the attributes.

trpatr := (TA_HLNG || TA_ASM) [|VTA_DIRECT]

• TA_HLNG (0x00000000): Written in a high-level language

• TA_ASM (0x00000001): Written in assembly language

• VTA_DIRECT (0x80000000): Direct attribute

If the VTA_DIRECT attribute is specified, the defined handler is initiated without any kernel
intervention when a TRAPA instruction exception occurs. Such kind of handler is referred to as a
"direct CPU exception handler". If the VTA_DIRECT attribute is not specified, the handler is
initiated through kernel intervention when a TRAPA instruction exception occurs. Such kind of
handler is referred to as a "normal CPU exception handler".

Note that the method for writing a handler differs depending on whether VTA_DIRECT is
specified. For details, refer to section 12.6, CPU Exception Handlers (Including TRAPA
Exceptions).

When RAM_ONLY_DIRECT is specified for system.vector_type in the cfg file, it is not possible
to define handlers without the VTA_DIRECT attribute.

trpsr is reserved for future expansion and is simply ignored. The SR value when a CPU exception
handler is actually initiated is determined by the CPU exception handling.

When pk_dtrp = NULL (0) is specified, the definition of dtrpno is canceled.

The normal CPU exception handler is executed in a context referred to as the "CPU exception
handler execution state", which is different from the context in which the CPU exception cause
occurred. Service calls which can be issued from this state are limited to the following service
calls. If service calls other than the following are issued, operation is not guaranteed.

284

• sns_tex

• sns_ctx

• sns_loc

• sns_dsp

• sns_dpn

• get_tid, iget_tid

• ras_tex, iras_tex

• vsta_knl, ivsta_knl

• vsys_dwn, ivsys_dwn

• vsns_tmr

The direct CPU exception handler is executed in the same context as that before the CPU
exception cause occurred. Accordingly, the service calls that can be issued are the same as those
before the CPU exception occurred and will not be determined statically.

These service calls are functions not defined in the μITRON4.0 specification.

285

6.29.3 Reference Configuration Information (ref_cfg, iref_cfg)

C-Language API:
 ER ercd = ref_cfg(T_RCFG *pk_rcfg);

 ER ercd = iref_cfg(T_RCFG *pk_rcfg);

Parameters:
 pk_rcfg Pointer to the packet where the configuration information is to

be returned

Return Values:
 Normal end (E_OK)

Packet Structure:
 typedef struct {

 ID maxtskid; Maximum local task ID

 ID ststkid; Maximum local task ID using static stack

 ID maxsemid; Maximum local semaphore ID

 ID maxflgid; Maximum local event flag ID

 ID maxdtqid; Maximum local data queue ID

 ID maxmbxid; Maximum local mailbox ID

 ID maxmtxid; Maximum local mutex ID

 ID maxmbfid; Maximum local message buffer ID

 ID maxmplid; Maximum local variable-sized memory pool ID

 ID maxmpfid; Maximum local fixed-sized memory pool ID

 ID maxcycid; Maximum local cyclic handler ID

 ID maxalmid; Maximum local alarm handler ID

 ID maxs_fncd; Maximum extended service call function code

 }T_RCFG;

Function:

Each service call returns the system configuration information to the area indicated by pk_rcfg.

The following parameters are returned to the packet specified by pk_rcfg.

• maxtskid: Maximum local task ID (_MAX_TSK)

• ststkid: Maximum local task ID using static stack (_MAX_STTSK)

• maxsemid: Maximum local semaphore ID (_MAX_SEM)

• maxflgid: Maximum local event flag ID (_MAX_FLAG)

• maxdtqid: Maximum local data queue ID (_MAX_DTQ)

• maxmbxid: Maximum local mailbox ID (_MAX_MBX)

• maxmtxid: Maximum local mutex ID (_MAX_DTQ)

286

• maxmbfid: Maximum local message buffer ID (_MAX_MBF)

• maxmplid: Maximum local variable-sized memory pool ID (_MAX_MPL)

• maxmpfid: Maximum local fixed-sized memory pool ID (_MAX_MPF)

• maxcycid: Maximum local cyclic handler ID (_MAX_CYH)

• maxalmid: Maximum local alarm handler ID (_MAX_ALH)

• maxs_fncd: Maximum extended service call function code (_MAX_FNCD)

The members of the T_RCFG structure are all not defined in the μITRON4.0 specification; the
μITRON4.0 specification does not define anything about the contents of the T_RCFG structure.

6.29.4 Reference Version Information (ref_ver, iref_ver)

C-Language API:
 ER ercd = ref_ver(T_RVER *pk_rver);

 ER ercd = iref_ver(T_RVER *pk_rver);

Parameters:
 pk_rver Pointer to the packet where the version information is to be

returned

Return Values:
 Normal end (E_OK)

Packet Structure:
 typedef struct {

 UH maker; Manufacturer

 UH prid; Identification number

 UH spver; Specification version

 UH prver; Product version

 UH prno[4]; Product management information

 }T_RVER;

Function:

Each service call reads information on the version of the kernel currently in use and returns it to
the area indicated by pk_rver.

The following information is returned to the packet indicated by pk_rver.

(1) maker

Parameter maker indicates the manufacturer of this kernel. The value for this kernel is 0x0115,
which means Renesas.

287

(2) prid

Parameter prid indicates the number to identify the kernel or VLSI type. The value for this kernel
is 0x0013.

(3) spver

Parameter spver indicates the specifications to which the kernel conforms, as follows:

• Bits 15 to 12: MAGIC (Number to identify the TRON specification series)

0x5 (μITRON specifications) for this kernel

• Bits 11 to 0: SpecVer (Version number of the TRON specification on which the product is
based)

0x403 (μITRON4.0 specifications Ver.4.03.00) for this kernel

(4) prver

Parameter prver indicates the version number of the kernel.

The value of prver is different for each product version. Refer to the release notes attached to the
product. For example, the value of prver is 0x0100 for V.1.00 Release 00.

(5) prno

Parameter prno indicates the product management information and the product number.

The prno[0] to prno[3] values of this kernel are 0x0000.

288

6.30 Profile Management
The profile function is controlled by the service calls listed in table 6.44.

Table 6.44 Service Calls for Profile Management

System State*2

Service Call*1 Description T N E D U L C

vref_prf [R] O O Δ O

ivref_prf

Refers to profile counter state

 O O O O

vclr_prf [R] O O Δ O

ivclr_prf

Clears profile counter

 O O O O

Notes: 1. [S]: Standard profile service calls
[s]: Service calls that are not standard profile service calls but are needed in order to
 use the standard profile function
[B]: Basic profile service calls
[R]: Service calls that can be issued remotely

 2. T: Can be called in a task context
N: Can be called in a non-task context
E: Can be called in dispatch-enabled state
D: Can be called in dispatch-disabled state
U: Can be called in CPU-unlocked state
L: Can be called in CPU-locked state
C: Can be called while executing the normal CPU exception handler
O: Can be called in the state
Δ: Can be called in the state only when a local object is the target

Respective 32-bit profile counters are provided for overall time, each task, and kernel idling.

The timer-interrupt processing for the kernel executed in cycles of TIC_NUME/TIC_DENO
milliseconds governs updating of these counters. That is, incrementation of the individual profile
counters for the running task or kernel idling, and that for the overall time, proceeds with this
cycle.

Although the results are not exact, a long period of measurement gives approximate execution
times for tasks as calculated by the formula below.

Execution time [ms] =
Value of an individual profile counter for a task × (TIC_NUME/TIC_DENO)

In addition, the CPU usage of a task or of kernel idling can be estimated by dividing the value of
the corresponding profile counter by the value of the profile counter for overall time.

289

Issuing vsta_knl initializes all profile counters to 0. Individual profile counters for tasks are also
initialized when the corresponding tasks are deleted.

Also note that the kernel does not detect any overflow of the profile counters. For example, the
counters will start to overflow in 50 days when TIC_NUME/TIC_DENO = 1 ms, and in 12 hours
or so when TIC_NUME/TIC_DENO = 10 μs.

Profile information is acquired even when these service calls are not selected at configuration, and
the acquired profile information can be displayed by using a debugging extension (DX).

6.30.1 Reference Profile Counter (vref_prf, ivref_prf)

C-Language API:
 ER ercd = vref_prf(ID tskid, UW *p_count, UW *p_allcount);

 ER ercd = ivref_prf(ID tskid, UW *p_count, UW *p_allcount);

Parameters:
 tskid Task ID

 p_count Pointer to the memory area where the profile counter for tskid

is to be returned

 p_allcount Pointer to the memory area where the value of the profile

counter for the overall time is to be returned

Return Values:
 Normal end (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number

(1) CPU ID is invalid (GET_CPUID (tskid) is invalid)

(2) Out of local ID range

(GET_LOCALID (tskid) < VKNL_IDLE,

VKNL_IDLE < GET_LOCALID (tskid) < 0,

(_MAX_TSK of GET_CPUID (tskid)) < GET_LOCALID (tskid))

(3) tskid = TSK_SELF (0) when called in a non-task context

 E_CTX [k] Context error (Called in prohibited system state when

GET_CPUID (tskid) is not the current CPU)

 E_NOEXS [k] Non-existent object (Task specified by tskid does not exist)

(Only when GET_LOCALID (tskid) > 0)

290

Function:

Each service call acquires profile information for the task specified by tskid and returns the
acquired profile information to the area indicated by p_count.

When VKNL_IDLE is specified for the local ID of tskid, kernel idling is specified for the
specified CPU ID.

By specifying tskid = TSK_SELF (0) when these service calls are issued from a task context, the
current task of the current CPU is specified.

The value of the profile counter for the overall time is returned to the area indicated by p_allcount.

There is no means to learn whether the contents of p_count or p_allcount have overflowed.

In service call vref_prf, another CPU ID can be specified as the CPU ID of tskid, except for in
dispatch-pending state. In service call ivref_prf, another CPU ID cannot be specified as the CPU
ID of tskid.

291

6.30.2 Clear Profile Counter (vclr_prf, ivclr_prf)

C-Language API:
 ER ercd = vclr_prf(ID tskid);

 ER ercd = ivclr_prf(ID tskid);

Parameters:
 tskid Task ID

Return Values:
 Normal end (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number

(1) CPU ID is invalid (GET_CPUID (tskid) is invalid)

(2) Out of local ID range

(GET_LOCALID (tskid) < VCTX_ALL,

VKNL_IDLE < GET_LOCALID (tskid) < 0,

(_MAX_TSK of GET_CPUID (tskid)) < GET_LOCALID (tskid))

(3) tskid = TSK_SELF (0) when called in a non-task context

 E_CTX [k] Context error (Called in prohibited system state when

GET_CPUID (tskid) is not the current CPU)

 E_NOEXS [k] Non-existent object (Task specified by tskid does not exist)

(Only when GET_LOCALID (tskid) > 0)

Function:

Each service call clears the profile counter for the task specified by tskid.

When VKNL_IDLE is specified for the local ID of tskid, the kernel idling profile counter for the
specified CPU ID is cleared to 0.

When VTSK_ALL is specified for the local ID of tskid, the profile counters for all tasks of the
specified CPU ID are cleared to 0.

When VCTX_ALL is specified for the local ID of tskid, all profile counters (for overall time, each
task, and kernel idling) for the specified CPU ID are cleared to 0.

By specifying tskid = TSK_SELF (0) when these service calls are issued from a task context, the
current task of the current CPU is specified.

In service call vclr_prf, another CPU ID can be specified as the CPU ID of tskid, except for in
dispatch-pending state. In service call ivclr_prf, another CPU ID cannot be specified as the CPU
ID of tskid.

292

6.31 Macros

6.31.1 Constant Macros

(1) Error Codes

Error codes are defined in itron.h as shown below.

#define E_OK 0L /* normal end */

/*---- internal error class ----*/

#define E_SYS (-5L) /* system error */

/*---- no support error class ----*/

#define E_NOSPT (-9L) /* no support function */

#define E_RSFN (-10L) /* reserved function code number */

#define E_RSATR (-11L) /* reserved attribute code number */

/*---- parameter error class ----*/

#define E_PAR (-17L) /* parameter error */

#define E_ID (-18L) /* reserved id number */

/*---- context error class ----*/

#define E_CTX (-25L) /* context error */

#define E_MACV (-26L) /* memory access violation */

#define E_OACV (-27L) /* object access violation */

#define E_ILUSE (-28L) /* service call illegal use */

/*---- resource insufficiency error class ----*/

#define E_NOMEM (-33L) /* no memory */

#define E_NOID (-34L) /* no ID */

/*---- object status error class ----*/

#define E_OBJ (-41L) /* object status error */

#define E_NOEXS (-42L) /* object non existent */

#define E_QOVR (-43L) /* queuing over flow */

/*---- wait release error class ----*/

#define E_RLWAI (-49L) /* wait status forced release */

#define E_TMOUT (-50L) /* time out */

#define E_DLT (-51L) /* delete object */

/*---- other errors ---*/

#define EV_NOINIT (-97L) /* not initialized */

#define EV_NORESOURCE (-98L) /* no resource */

#define EV_OBJ (-99L) /* kernel busy */

293

(2) General
Definition
Name

Where
Definition Is Defined Value Description

NULL Same as the definition in the C standard include file stddef.h.
Defined only when NULL has not been defined.

TRUE 1 BOOL-type data "TRUE"
FALSE

itron.h

0 BOOL-type data "FALSE"

(3) Object Attributes
Definition
Name

Where
Definition Is Defined Value Description

TA_NULL itron.h 0UL No object attribute specification
TA_HLNG 0x00000000UL Program is started in high-level language

interface*
TA_ASM 0x00000001UL Program is started in assembly language

interface*
TA_COP1 0x00000200UL FPU is used
TA_TFIFO 0x00000000UL Wait task queue is managed on a FIFO basis
TA_TPRI 0x00000001UL Wait task queue is managed on the task

priority
TA_MFIFO 0x00000000UL Message queue is managed on a FIFO basis
TA_MPRI 0x00000002UL Message queue is managed on the message

priority
TA_ACT 0x00000002UL Task makes a transition to the READY state

after it has been created
TA_WSGL 0x00000000UL Does not permit multiple tasks to wait for the

event flag
TA_WMUL 0x00000002UL Permits multiple tasks to wait for the event

flag
TA_CLR 0x00000004UL Clears the event flag at the time of waiting

release
TA_CEILING 0x00000003UL Priority ceiling protocol for mutexes
TA_STA 0x00000002UL Cyclic handler makes a transition to the

operating state after it has been created
TA_PHS 0x00000004UL Preserves the initiation phase of the cyclic

handler
VTA_REGBANK 0x40000000UL Normal interrupt handler making use of

register banks
VTA_DIRECT 0x80000000UL Direct interrupt handler or direct CPU

exception handler
VTA_
UNFRAGMENT

kernel.h

0x80000000UL Sector management is specified for variable-
sized memory pools

Note: * In this kernel, the same operation is performed no matter whether TA_HLNG or
TA_ASM has been specified.

294

(4) Timeout Specification
Definition
Name

Where
Definition Is Defined Value Description

TMO_POL 0L Polling

TMO_FEVR

itron.h

−1L Waiting forever

(5) Service Call Operating Modes
Definition
Name

Where
Definition Is Defined Value Description

TWF_ANDW 0x00000000UL AND wait for event flags

TWF_ORW

kernel.h

0x00000001UL OR wait for event flags

(6) Task State
Definition
Name

Where
Definition Is Defined Value Description

TTS_RUN 0x00000001UL RUNNING state

TTS_RDY 0x00000002UL READY state

TTS_WAI 0x00000004UL WAITING state

TTS_SUS 0x00000008UL SUSPENDED state

TTS_WAS 0x0000000cUL WAITING-SUSPENDED state

TTS_DMT 0x00000010UL DORMANT state

TTS_STK*

kernel.h

0x40000000UL Shared-stack WAITING state

Note: * Not defined in the μITRON4.0 specification.

295

(7) Cause of WAITING State of Task
Definition
Name

Where
Definition Is Defined Value Description

TTW_SLP 0x00000001UL Waiting for wakeup (slp_tsk, tslp_tsk)

TTW_DLY 0x00000002UL Waiting for the specified time to elapse
(dly_tsk)

TTW_SEM 0x00000004UL Waiting to acquire a semaphore resource
(wai_sem, twai_sem)

TTW_FLG 0x00000008UL Waiting for the event flag to be set (wai_flg,
twai_flg)

TTW_SDTQ 0x00000010UL Waiting to send data to the data queue
(snd_dtq, tsnd_dtq)

TTW_RDTQ 0x00000020UL Waiting to receive data from the data queue
(rcv_dtq, trcv_dtq)

TTW_MBX 0x00000040UL Waiting to receive a message from the
mailbox (rcv_mbx, trcv_mbx)

TTW_MTX 0x00000080UL Waiting to lock the mutex (loc_mtx, tloc_mtx)

TTW_SMBF 0x00000100UL Waiting to send a message to the message
buffer (snd_mbf, tsnd_mbf)

TTW_RMBF 0x00000200UL Waiting to receive a message from the
message buffer (rcv_mbf, trcv_mbf)

TTW_MPF 0x00002000UL Waiting to get a fixed-sized memory block
(get_mpf, tget_mpf)

TTW_MPL 0x00004000UL Waiting to get a variable-sized memory block
(get_mpl, tget_mpl)

TTW_TFL*

kernel.h

0x00008000UL Waiting for any bit of the task event flag to be
set (vwai_tfl, vtwai_tfl)

Note: * Not defined in the μITRON4.0 specification.

(8) Operating State
Definition
Name

Where
Definition Is Defined Value Description

TTEX_ENA 0x00000000UL Task exception handling enabled state

TTEX_DIS 0x00000001UL Task exception handling disabled state

TCYC_STP 0x00000000UL Cyclic handler is not in the operating state

TCYC_STA 0x00000001UL Cyclic handler is in the operating state

TALM_STP 0x00000000UL Alarm handler is not in the operating state

TALM_STA 0x00000001UL Alarm handler is in the operating state

TOVR_STP 0x00000000UL No processing time limit is set

TOVR_STA

kernel.h

0x00000001UL An processing time limit is set

296

(9) Others
Definition
Name

Where
Definition Is Defined Value Description

TSK_SELF 0 Current task is specified

TSK_NONE 0 The required task does not exist

TPRI_SELF 0 Base priority of the current task is specified

TPRI_INI 0 Initial task priority is specified

VCPU_SELF* 0 Current CPU is specified

VCPU_MAX* 2 Maximum CPU ID

VKNL_IDLE* −32768 Kernel idling is specified

VTSK_ALL* −32767 All tasks are specified

VCTX_ALL* −32766 All contexts are specified

ECM_SUS* 0x00000001UL Forcible suspension request

ECM_TER* 0x00000002UL Forcible termination request

PND_SUS* 0x00000004UL Forcible suspension request is pended

PND_TER* 0x00000008UL Forcible termination request is pended

SR_IMS00* 0x00000000UL Interrupt mask level = 0

SR_IMS01* 0x00000001UL Interrupt mask level = 1

SR_IMS02* 0x00000002UL Interrupt mask level = 2

SR_IMS03* 0x00000003UL Interrupt mask level = 3

SR_IMS04* 0x00000004UL Interrupt mask level = 4

SR_IMS05* 0x00000005UL Interrupt mask level = 5

SR_IMS06* 0x00000006UL Interrupt mask level = 6

SR_IMS07* 0x00000007UL Interrupt mask level = 7

SR_IMS08* 0x00000008UL Interrupt mask level = 8

SR_IMS09* 0x00000009UL Interrupt mask level = 9

SR_IMS10* 0x0000000aUL Interrupt mask level = 10

SR_IMS11* 0x0000000bUL Interrupt mask level = 11

SR_IMS12* 0x0000000cUL Interrupt mask level = 12

SR_IMS13* 0x0000000dUL Interrupt mask level = 13

SR_IMS14* 0x0000000eUL Interrupt mask level = 14

SR_IMS15*

kernel.h

0x0000000fUL Interrupt mask level = 15

Note: * Not defined in the μITRON4.0 specification.

297

6.31.2 Kernel Configuration Macros

Some kernel configuration macros will be output to kernel_macro.h, kernel_def.h, or kernel_cfg.h
by cfg72mp.

(1) Range of Priority
Definition
Name

Where
Definition Is Defined Value Description

TMIN_TPRI kernel.h 1 Minimum value of task priority

TMAX_TPRI kernel_macro.h system.priority Maximum value of task priority

TMIN_MPRI kernel.h 1 Minimum value of message
priority

TMAX_MPRI kernel_macro.h system.message_pri Maximum value of message
priority

(2) Version Information

Definition Name
Where
Definition Is Defined Value Description

TKERNEL_MAKER 0x0115 Kernel manufacturer code

TKERNEL_PRID 0x0013 Kernel identification number

TKERNEL_SPVER 0x5403 ITRON specification version number

TKERNEL_PRVER

kernel.h

* Kernel version number

Note: * Refer to the release notes attached to the product. For example, the value of prver is
0x0100 for V.1.00 Release 00.

(3) Maximum Number of Queued Requests and Nesting Levels

Definition Name
Where
Definition Is Defined Value Description

TMAX_ACTCNT 15U Maximum activation request count

TMAX_WUPCNT 15U Maximum wakeup request count

TMAX_SUSCNT 15U Maximum suspension count

TMAX_SEMCNT

kernel.h

65535U Maximum number of semaphore
resources

298

(4) Number of Bits in Bit Pattern

Definition Name
Where
Definition Is Defined Value Description

TBIT_TEXPTN 32U Number of task exception cause bits

TBIT_FLGPTN

kernel.h

32U Number of event flag bits

(5) Time Tick Cycle

Definition Name
Where
Definition Is Defined Value Description

TIC_NUME system.tic_nume Numerator of time tick cycle

TIC_DENO

kernel_macro.h

system.tic_deno Denominator of time tick cycle

(6) Other Kernel Configuration Macros Output to kernel_macro.h by cfg72mp
 (not in the μITRON4.0 Specification)

(a) Kernel configuration macros

Definition Name Defined Value Description

VTCFG_TBR "_" prefixed to the symbol defined for system.tbr becomes the value
defined for this macro.

VTCFG_MPFMANAGE "_" prefixed to the symbol defined for system.mpfmanage becomes the
value defined for this macro.

VTCFG_NEWMPL "_" prefixed to the symbol defined for system.newmpl becomes the
value defined for this macro.

VTCFG_VECTYPE "_" prefixed to the symbol defined for system.vector_type becomes the
value defined for this macro.

VTCFG_REGBANK "_" prefixed to the symbol defined for system.regbank becomes the
value defined for this macro.

TIM_LVL clock.IPL Timer interrupt priority level

299

(b) Constant macros used in definitions

Classification Definition Name
Where
Definition Is Defined Value

Common _NOTUSE 0UL

_NOMANAGE 0UL

_FOR_SVC 1UL

For VTCFG_TBR

_TASK_CONTEXT 2UL

_IN 0UL For VTCFG_MPFMANAGE

_OUT 1UL

_PAST 0UL For VTCFG_NEWMPL

_NEW 1UL

_ROM_ONLY_DIRECT 0UL

_RAM_ONLY_DIRECT 1UL

_ROM 2UL

For VTCFG_VECTYPE

_RAM 3UL

_ALL 0x40000000UL

_BANKLEVEL01 0x00000002UL

_BANKLEVEL02 0x00000004UL

_BANKLEVEL03 0x00000008UL

_BANKLEVEL04 0x00000010UL

_BANKLEVEL05 0x00000020UL

_BANKLEVEL06 0x00000040UL

_BANKLEVEL07 0x00000080UL

_BANKLEVEL08 0x00000100UL

_BANKLEVEL09 0x00000200UL

_BANKLEVEL10 0x00000400UL

_BANKLEVEL11 0x00000800UL

_BANKLEVEL12 0x00001000UL

_BANKLEVEL13 0x00002000UL

For VTCFG_REGBANK

_BANKLEVEL14 0x00004000UL

 _BANKLEVEL15

kernel.h

0x00008000UL

300

(7) Kernel Configuration Macros Output to kernel_def.h by cfg72mp
 (not in theμITRON4.0 Specification)

Among the kernel configuration macros output to kernel_def.h by cfg72mp, the macros whose
specifications are to be open externally are described here. However, the compatibility with future
versions is not guaranteed for the specifications of these macros.

Definition Name Defined Value Description
_SYSTEM_IPL system.system_IPL Kernel interrupt mask level
_MAX_STTSK maxdefine.max_statictask Maximum local ID of task using static stack
_MAX_INT maxdefine.max_int Maximum interrupt vector number

(8) Kernel Configuration Macros Output to kernel_cfg.h by cfg72mp
 (not in the μITRON4.0 Specification)

Among the kernel configuration macros output to kernel_cfg.h by cfg72mp, the macros whose
specifications are to be open externally are described here. However, the compatibility with future
versions is not guaranteed for the specifications of these macros.

Definition Name Defined Value Description
_SYSTEM_STACK_SIZE system.stack_size Interrupt stack size
_SYSTEM_KERNEL_
STACK_SIZE

system.kernel_stack_size Kernel stack size

_MAX_TSK maxdefine.max_task Maximum local task ID
_MAX_SEM maxdefine.max_sem Maximum local semaphore ID
_MAX_FLG maxdefine.max_flag Maximum local event flag ID
_MAX_DTQ maxdefine.max_dtq Maximum local data queue ID
_MAX_MBX maxdefine.max_mbx Maximum local mailbox ID
_MAX_MTX maxdefine.max_mtx Maximum local mutex ID
_MAX_MBF maxdefine.max_mbf Maximum local message buffer ID
_MAX_MPF maxdefine.max_mpf Maximum local variable-sized memory

pool ID
_MAX_MPL maxdefine.max_mpl Maximum local fixed-sized memory pool

ID
_MAX_CYH maxdefine.max_cyh Maximum local cyclic handler ID
_MAX_ALH maxdefine.max_alh Maximum local alarm handler ID
_MAX_FNCD maxdefine.max_fncd Maximum extended service call function

code
_MEMSTK_ALLMEMSIZE memstk.all_memsize Size of default task stack area
_MEMDTQ_ALLMEMSIZE memdtq.all_memsize Size of default data queue area
_MEMMBF_ALLMEMSIZE memmbf.all_memsize Size of default message buffer area
_MEMMPF_ALLMEMSIZE memmpf.all_memsize Size of default fixed-sized memory pool

area
_MEMMPL_ALLMEMSIZE memmpl.all_memsize Size of default variable-sized memory

pool area

301

6.31.3 Function Macros Defined in itron.h

(1) ER MERCD(ER ercd)

Description: Returns the main error code for ercd.

Header File: itron.h

Parameters: ercd Error code

Return Values: Main error code for ercd

(2) ER SERCD(ER ercd)

Description: Returns the suberror code for ercd.

Header File: itron.h

Parameters: ercd Error code

Return Values: Suberror code for ercd

Remarks The suberror code of the error code that will be returned from the kernel is
always −1.

(3) ER ERCD(ER mercd, ER sercd)

Description: Returns the error code consisting of the main error code (mercd) and suberror
code (sercd).

Header File: itron.h

Parameters: mercd Main error code

 sercd Suberror code

Return Values: Error code

Remarks The suberror code of the error code that will be returned from the kernel is
always −1.

302

6.31.4 Function Macros Defined in kernel.h

(1) UH GET_CPUID(ID id)

Description: Returns the CPU ID of id.

Header File: kernel.h

Parameters: id Object ID

Return Values: CPU ID

Remarks: This macro is a function not defined in the μITRON4.0 specification.

(2) ID GET_LOCALID(ID id)

Description: Returns the local object ID of id.

Header File: kernel.h

Parameters: id Object ID

Return Values: Local object ID

Remarks: This macro is a function not defined in the μITRON4.0 specification.

(3) ID MAKE_ID(UH cpuid, ID localid)

Description: Returns the object ID consisting of the CPU ID (cpuid) and local object ID
(localid).

Header File: kernel.h

Parameters: cpuid CPU ID

 localid Local object ID

Return Values: Object ID

Remarks: This macro is a function not defined in the μITRON4.0 specification.

(4) SIZE TSZ_DTQ(UINT dtqcnt)

Description: Returns the size of a data queue area in which the dtqcnt number of data items
can be stored.

Header File: kernel.h

Parameters: dtqcnt Number of data items

Return Values: Size of data queue area

303

(5) SIZE TSZ_MBF(UINT msgcnt, UINT msgsz)

Description: Returns the approximate size of a message buffer area in which msgcnt number
of msgsz-byte messages can be stored.

Header File: kernel.h

Parameters: msgcnt Number of messages

 msgsz Message size

Return Values: Approximate size of message buffer area

(6) SIZE TSZ_MPF(UINT blkcnt, UINT blksz)

Description: Returns the size of a fixed-sized memory pool from which blkcnt number of
blksz-byte memory blocks can be acquired.

Header File: kernel.h

Parameters: blkcnt Number of memory blocks

 blksz Memory block size

Return Values: Size of fixed-sized memory pool

Remarks: The value returned from this macro differs depending on system.mpfmanage.

(7) SIZE VTSZ_MPFMB(UINT blkcnt, UINT blksz)

Description: Returns the size of the management area required for a fixed-sized memory
pool from which blkcnt number of blksz-byte memory blocks can be acquired.

Header File: kernel.h

Parameters: blkcnt Number of memory blocks

 blksz Memory block size

Return Values: Size of fixed-sized memory pool management area

Remarks: This macro is defined only when system.mpfmanage==OUT.

This macro is a function not defined in the μITRON4.0 specification.

304

(8) SIZE TSZ_MPL(UINT blkcnt, UINT blksz)

Description: Returns the approximate size of a variable-sized memory pool from which
blkcnt number of blksz-byte memory blocks can be acquired.

Header File: kernel.h

Parameters: blkcnt Number of memory blocks

 blksz Memory block size

Return Values: Approximate size of variable-sized memory pool

Remarks: The value returned from this macro differs depending on system.newmpl.

6.32 Directory and File Structure
<RTOS_INST>\os\include\

 itron.h ITRON specification definition file

 kernel.h Kernel specification definition file

 kernel_api.h Service call API definition file

 kernel_dbg.h Debugging function API definition file

 sh2afpu.h Header file for using the FPU in handlers

<RTOS_INST>\os\lib\release\

 hiknl.lib Base library (without debugging information)

 fpu_knl.lib Patch library with FPU support (without debugging information)

 hiexpand.lib Patch library without FPU support for debugging

 (without debugging information)

 fpu_expand.lib Patch library with FPU support for debugging (without debugging information)

<RTOS_INST>\os\system\ System definition files

305

The following directories are provided with only a product that includes the source code.

<RTOS_INST>\os\lib\debug\

 hiknl.lib Base library (with debugging information)

 fpu_knl.lib Patch library with FPU support (with debugging information)

 hiexpand.lib Patch library without FPU support for debugging

 (with debugging information)

 fpu_expand.lib Patch library with FPU support for debugging

 (with debugging information)

<RTOS_INST>\os\kernel\ Workspace, etc. for creating libraries

<RTOS_INST>\os\kernel\knl_src\ Source code

<RTOS_INST>os\kernel\fpu_expand\ Project directory

<RTOS_INST>os\kernel\fpu_expand\debug\ Configuration directory (with debugging information)

<RTOS_INST>os\kernel\fpu_expand\release\ Configuration directory (without debugging information)

<RTOS_INST>os\kernel\fpu_knl\ Project directory

<RTOS_INST>os\kernel\fpu_knl\debug\ Configuration directory (with debugging information)

<RTOS_INST>os\kernel\fpu_knl\release\ Configuration directory (without debugging information)

<RTOS_INST>os\kernel\hiexpand\ Project directory

<RTOS_INST>os\kernel\hiexpand\debug\ Configuration directory (with debugging information)

<RTOS_INST>os\kernel\hiexpand\release\ Configuration directory (without debugging information)

<RTOS_INST>os\kernel\hiintfc\ Project directory

<RTOS_INST>os\kernel\hiintfc\debug\ Configuration directory (with debugging information)

<RTOS_INST>os\kernel\hiintfc\release\ Configuration directory (without debugging information)

<RTOS_INST>os\kernel\hiknl\ Project directory

<RTOS_INST>os\kernel\hiknl\debug\ Configuration directory (with debugging information)

<RTOS_INST>os\kernel\hiknl\release\ Configuration directory (without debugging information)

<RTOS_INST>os\kernel\intdwn\ Project directory

<RTOS_INST>os\kernel\intdwn\debug\ Configuration directory (with debugging information)

<RTOS_INST>os\kernel\intdwn\release\ Configuration directory (without debugging information)

<RTOS_INST>os\kernel\svcapi\ Project directory

<RTOS_INST>os\kernel\svcapi\debug\ Configuration directory (with debugging information)

<RTOS_INST>os\kernel\svcapi\release\ Configuration directory (without debugging information)

<RTOS_INST>os\kernel\svcrmt\ Project directory

<RTOS_INST>os\kernel\svcrmt\debug\ Configuration directory (with debugging information)

<RTOS_INST>os\kernel\svcrmt\release\ Configuration directory (without debugging information)

6.33 Building the Library (Only for a Product with the Source Code)
Building the library is not usually necessary. If you wish to build the library (e.g. for debugging),
you should use the provided High-performance Embedded Workshop workspace (kernel.hws).

306

307

Section 7 RPC Library

7.1 Overview

The RPC is used to execute functions registered in advance in another CPU. Figure 7.1 shows a
conceptual diagram of the RPC.

func1()
{

func2(1);
}

func2(int par)
{

}

CPUID#1 CPUID#2

func4(int par)
{

}

func3()
{

func4(2);

}

func1()
{

func2(1);
}

func2(int par)
{

}

CPU

func4(int par)
{

}

func3()
{

func4(2);
}

Client

Client

Server

Server

Conventional (single CPU) RPC used in SH2A-DUAL

Figure 7.1 Conceptual Diagram of RPC

In the RPC, the function that calls a function is referred to as the client, whereas, the function that
executes the function is referred to as the server.

A server of the current CPU can also be called by the RPC. This allows (static) CPU switching to
be performed relatively easily for each server. However, it must be noticed that calling a server of
the current CPU naturally takes more time than a normal function call.

308

Table 7.1 Overview of RPC Library

No. Item Component

1 Hardware resources used by this software None

2 Software components used by this software (1) OAL

(2) IPI

(3) Spinlock library

3 Other software components using this
software

None

7.2 Overview of RPC Operation

The RPC configuration and operation with the client as CPUID#1 and the server as CPUID#2 are
described with reference to figure 7.2.

RPCRPC

CPUID#1 CPUID#2

Application

Application

RPC server function

RPC server function
RPC server function

Client stub
Client stub

Client stub

Server stub

Hardware (inter-CPU interrupts + shared memory)

Server stub
Server stub

(2)(2)

(3)(3)

(4)(4)

(6)(6)

(7)(7)

(8)(8)

(9)(9)

(1)(1) (10)(10) (5)(5)

Figure 7.2 RPC Configuration and Operation

(1) The CPUID#1 application makes a function call with the same API as the RPC server
function in order to have CPUID#2 execute the RPC server function.

(2) In CPUID#1, a client stub with the same name and having the same API as the RPC server
function will be called. The client stub converts the I/O parameters into a format
understandable by the RPC and then calls the remote function call API (rpc_call) of the
RPC. Note that the client stub has to be implemented by the server creator.

309

(3) rpc_call() of CPUID#1 is executed in the same context as the called task. rpc_call() transfers
the received information to the server area and wakes up the CPUID#2 server task using an
IPI primitive. The caller of rpc_call() is kept in the WAITING state in rpc_call() until
execution of the RPC server function has finished.

The server area should be allocated in non-cacheable shared memory.

(4) The CPUID#2 server task calls the server stub corresponding to the request. The server stub
has to be implemented by the user and must be registered in advance. The server stub is
executed in the server task context defined for each server.

Note that a server task is created and initiated in advance by the server start API
(rpc_start_server()).

(5) Information, such as, input parameters that were transferred in step (3) is passed to the server
stub. Based on the information given from the RPC, the server stub transforms the input
parameters to match the interface specifications for the RPC server function and then it calls
the RPC server function. Note that the server stub has to be implemented by the server
creator.

(6) The RPC server function returns to the server stub.

(7) The server stub sets the output information and returns to the server task.

(8) The server task, using an IPI primitive, wakes up the client task that was shifted to the
WAITING state in step (3).

(9) The woken up client task transfers the output information set in step (7) to the client area as
part of the rpc_call() processing and then returns to the client stub.

(10) The client stub performs necessary processing, such as, setting of the return information, and
then returns to the caller.

310

7.3 Server

7.3.1 Server ID

The server ID is information for identifying the server, and the ID of each server must be unique
in the entire system.

The server ID is specified when the server is started. Normally, the server ID needs to be statically
determined by the system engineer so that the same server ID is not used for more than one server
in the entire system.

The server ID is represented as a 32-bit unsigned integer. To facilitate making rules for preventing
the same server ID from being used, any value can be set.

However, a server ID of 0x80000000 or higher should not be used because it is kept for future use
by the OS.

The maximum number of servers that can be registered in each CPU is specified in rpc_init() used
for initiating the RPC library.

7.3.2 Function ID

A server has at least one server function. Each server function is identified by a serial function ID
starting from 0. The function ID is specified when a server call (rpc_call) is made.

A server can have up to 32767 function IDs.

7.3.3 Server Task

The server stub and server function are executed in the server task context. This means that the
server stub is called from the server task.

The code entity of the server task is within the RPC library, and the server task is created when the
server is started. The priority of the server task and the stack size used by the server task can be
specified when the server is started.

311

7.3.4 Server Stub and Server Function

The server stub is called from the server task within the RPC library. The parameter information to
be passed to the server function is transferred to the server stub in the format defined by the RPC
specifications. The server stub converts this information to match the API specifications for the
specified server function and then calls the specified server function.

The server stub has to be implemented by the server creator.

7.3.5 Client Stub

The client stub has the same API specifications as those for the specified function. The client stub
converts the parameters into the format defined by the RPC specifications and then calls the RPC.

The client stub has to be implemented by the server creator.

7.3.6 Server Conflicts

This RPC is designed to have only a single server task for each server in order to reduce the
overhead by simplifying management of the parameter transfer area between the client and server.

This means the server can process only one RPC call request at a time.

When two or more RPC calls are requested to the same server simultaneously, the server processes
the requests in the order they were called. A client waiting to be processed will be blocked.

7.4 Synchronous Mode and Asynchronous Mode

The RPC supports synchronous mode (RPC_ACK) and asynchronous mode (RPC_UNACK) as
call modes. In which mode the call will be made is specified when the RPC call request is made.

For an RPC call in synchronous mode, the client task is blocked until server execution is finished.
The client can acquire the data output from the server.

For an RPC call in asynchronous mode, the client task immediately returns after making the
request for server execution. In asynchronous mode, the client cannot acquire the data output from
the server. Furthermore, the client does not have means to acknowledge whether the server
processing has finished.

Note however that in either mode, there is a possibility that the client will be blocked in a case
shown in section 7.3.6, Server Conflicts.

312

7.5 Sending and Receiving Parameters

7.5.1 Features

• The RPC itself does not have a buffer for sending and receiving parameters.

• The server has a "server parameter area" for storing the input parameters from the client and
the output parameters to the client. The server parameter area must be allocated in a non-
cacheable area.

• The server parameter area can be allocated by the server creator in a static manner or can be
automatically allocated by the RPC in an on-demand manner.

• The input parameters specified by the client are directly copied to the server parameter area.
Similarly, the output parameters from the server are directly copied to the area specified by the
client. Accordingly, either type of copy is performed once.

• Copy is performed by the RPC library in the client using a CPU instruction or by the user-
created function called back from the RPC library in the client. When the latter copy method is
used, the parameters can be copied through DMA transfer.

7.5.2 IOVEC Structure

In the RPC, the input parameters (client → server) and output parameters (server → client) are
specified by a structure array called IOVEC. The IOVEC structure allows parameters scattered
over noncontiguous memory to be handled efficiently.

typedef struct {

 void *pBaseAddress; // Start address of data area

 UINT32 ulSize; // Area size (number of bytes)

} IOVEC;

Note that ulSize = 0 means there is no area.

313

7.5.3 Server Parameter Area

The server has a parameter area for storing the input parameters from the client and the output
parameters to the client. In the RPC, the server can process only one client request at a time.
Therefore, each server has only one server parameter area.

There are two methods for allocating the server parameter area: allocate an area on-demand or use
an area that has been allocated statically. A server using the former method is called a "dynamic
server" and will be started using rpc_start_server().A server using the latter method is called a
"static server" and will be started using rpc_start_server_with_paramarea().

In either case, the server area must be allocated in a non-cacheable area for maintaining the
coherency between the server and client.

(1) Dynamic Server

A dynamic server is started using rpc_start_server().

When a dynamic server is called via an RPC call, the server allocates an area of the size required
by that call using OAL_GetMemory(). This area is released when processing of the call has
finished.

The OAL must be configured so that the memory allocated by OAL_GetMemory() becomes a
non-cacheable area.

(2) Static Server

A static server is started using rpc_start_server_with_paramarea().

In rpc_start_server_with_paramarea(), the address and size of the server parameter area are
specified. The server parameter area is allocated by the application.

Though the dynamic server can be used to make efficient use of memory when the size of the I/O
parameters is not constant, the processing time is longer than the static server because memory is
allocated and released dynamically.

314

7.5.4 Server Parameter Area Size Required by RPC Call

rpc_call() or rpc_call_copycbk() is used to request an RPC call.

The server parameter area size necessary for accepting an RPC call can be calculated from the
formula below.

Necessary size = sizeof(rpc_server_stub_info)
 + ∑ ALIGNUP4 (pCallInfo->pInputIOVectorTable->ulSize)
 + (pCallInfo->ulOutputIOVectorTableSize) × sizeof(IOVEC) (a)
 + ∑ ALIGNUP4 (pCallInfo->pOutputIOVectorTable->ulSize) (b)

(a) and (b) are both calculated as 0 when asynchronous mode is specified.

ALIGNUP4 (data) which is defined as a function macro in types.h indicates that "data" has been
rounded up to a multiple of 4.

(1) For a Dynamic Server

When an RPC call has been requested, the server allocates memory for the size calculated in the
above formula using OAL_GetMemory(). When memory allocation fails, rpc_call() returns an
RPC_E_NOMEM error.

In a case where ulMaxParamAreaSize is specified as a value other than 0 in rpc_start_server(), if
the requested size in rpc_call() exceeds ulMaxParamAreaSize, the server does not execute
OAL_GetMemory() and the RPC call returns an RPC_E_PAR error.

(2) For Static Server

If the size calculated in the above formula exceeds ulMaxParamAreaSize specified in
rpc_start_server_with_paramarea(), the RPC call returns an RPC_E_PAR error.

7.5.5 Parameter Copy Methods

(1) Using rpc_call()

Both the input and output parameters are copied by rpc_call() in the client.

To be specific, the input parameters specified by the client are copied to the server parameter area
by rpc_call() in the client. The output parameters set in the server parameter area by the server
stub are also copied to the output parameter area specified by the client by rpc_call() in the client.

315

(2) Using rpc_call_copycbk()

In rpc_call_copycbk(), the callback functions for performing the copy process is specified. Two
callback functions will be specified. Callback functions are called back respectively by
rpc_call_copycbk() in the client when the input parameters need to be copied to the server
parameter area and when the output parameters need to be copied from the server parameter area
to the output parameter area specified by the client.

7.5.6 Application Examples

(1) Reduction of Copy Overhead

In a multiprocessor system where the memory spaces are shared, the copy overhead can be
reduced by sending and receiving only the pointer.

In the SH2A-DUAL, a multicore system without a cache snoop controller, the coherency between
the client CPU's cache and server CPU's cache cannot be guaranteed. Therefore, the area indicated
by the pointer must be a non-cacheable area.

(2) Utilization of Cache

The server acquires input parameters from the server parameter area and also sets the output
parameters. Since the server parameter area is a non-cacheable area, performance degradation
caused by accesses to these parameters not being cached may become a problem depending on
how frequently the server accesses these parameters.

In such a case, the server should first transfer the parameters to an area allocated in a cacheable
area.

316

7.6 OS Resources Used by RPC

7.6.1 Task

Each server has a server task.

A server task is created by rpc_start_server() or rpc_start_server_with_paramarea() and deleted by
rpc_stop_server(). The priority of the server task and the stack size used by the server task are
specified in rpc_start_server() or rpc_start_server_with_paramarea().

The entry function of a server task is contained in the RPC library, and this entry function calls the
server stub.

Note that all API functions of the RPC library are executed as normal functions. Accordingly, they
are executed in the same context as the caller.

7.6.2 OAL_GetMemory()

In the RPC, memory is allocated by OAL_GetMemory() in the following cases. The OAL must be
configured so that the memory allocated by OAL_GetMemory() becomes a non-cacheable area.

(1) Parameter Area Allocation by Dynamic Server

When rpc_call() or rpc_call_copycbk() is issued for a dynamic server, the server task allocates the
parameter area using OAL_GetMemory().

(2) Waiting for Server to be Called

When rpc_call() or rpc_call_copycbk() is kept waiting for the specified server to become free, a
memory area for managing the WAITING state is allocated using OAL_GetMemory().

7.6.3 IPI

In the RPC, a single IPI port is used. rpc_init() is used to specify which IPI port is to be used.

The IPI must be configured so that the IPI port specified by rpc_init() is usable.

7.6.4 Spinlock Library

In the RPC, RW lock is used for exclusive control between the CPUs.

317

7.7 Provided Files

<RTOS_INST>\os\include\
 rpc_pubic.h API definition header file

<RTOS_INST>\os\lib\debug\ *
 rpc.lib * Library (with debugging information)
<RTOS_INST>\os\lib\release\

 rpc.lib Library (without debugging information)
<SAMPLE_INST>\R0K572650D000BR\cpuid1\rpc_config\
 rpc_table.c Management table (see section 7.9, Building the

 System)
<SAMPLE_INST>\R0K572650D000BR\cpuid2\rpc_config\
 rpc_table.c Management table (see section 7.9, Building the

 System)
<RTOS_INST>\os\rpc\ * Workspace, etc. for creating the library
<RTOS_INST>\os\rpc\rpc\ * Project, etc. for creating the library

<RTOS_INST>\os\rpc\rpc\include\ * Internal definition file
<RTOS_INST>\os\rpc\rpc\source\ * Source code

The directories with an asterisk (*) are provided only in products with the source code.

Note that rpc_table.c has the same contents in each directory.

7.8 Building the Library (Only for a Product with the Source Code)

Building the library is not usually necessary. If you wish to build the library (e.g. for debugging),
you should use the provided High-performance Embedded Workshop workspace (rpc.hws).

318

7.9 Building the System

7.9.1 Configuration of Kernel

When using the RPC, the kernel must be configured suitably.

(1) system.system_IPL

The interrupt level of rpc_config.ulIPIPortID specified in rpc_init() must be lower than or equal to
system.system_IPL.

(2) maxdefine.max_task and memstk.all_memsize

In rpc_start_server() or rpc_start_server_with_paramarea(), a server task is created by
OAL_CreateTask() (acre_tsk). The number of server tasks that have the possibility of being
created at the same time is rpc_config.ulTableSize which is specified in rpc_init(). This must be
taken into consideration when specifying maxdefine.max_task.

The server task uses the default task stack area. This must be taken into consideration when
specifying memstk.allmemsize.

319

(3) service_call

The RPC (OAL to be accurate) uses the following service calls so they must be installed.

• acre_tsk

• act_tsk

• exd_tsk

• slp_tsk

• wup_tsk

• acre_mpl

• del_mpl

• pget_mpl

• rel_mpl

• get_tid

• dis_dsp

• ena_dsp

• sns_ctx

• sns_dsp

• sns_dpn

7.9.2 Configuration of IPI

In rpc_init(), an IPI port is created (IPI_Create()) with the specified rpc_config.ulIPIPortID.

The IPI must be configured so that this IPI port is usable.

7.9.3 Building the System

Programs that use functions of this API must be linked to the RPC library.

rpc_table.c is compiled for each CPU and linked to the RPC library. rpc_table.c must not be
edited.

For the sections of the RPC library and rpc_table.c, refer to section 17.5.2, Sections.

320

7.10 API Functions

Table 7.2 API Functions

No. Classification API Name Function

1 Initialization rpc_init Initializes RPC library

2 Termination rpc_shutdown Terminates RPC library

3 rpc_start_server Starts dynamic server

4 rpc_start_server_with_
paramarea

Starts static server

5

For the server

rpc_stop_server Stops server

6 rpc_connect Connects server

7 rpc_disconnect Disconnects server

8 rpc_call Calls server function

9

For the client

rpc_call_copycbk Calls server function (data transfer
callback)

10 Others rpc_get_server_properties Acquires server properties

7.10.1 Header File

Include rpc_public.h.

7.10.2 Basic Data Types

In the RPC library, the basic data types defined in types.h are used.

For types.h, refer to section 19, types.h.

The structure used in each API function is described in the relevant API section.

321

7.10.3 Initialize RPC Library (rpc_init)

C-Language API:
 INT32 rpc_init(rpc_config *pConfig);

Parameters:
 pConfig Pointer to the RPC library initialization information packet

Packet Structure:
 typedef struct {

 rpc_info *pRpcTable;

 UINT32 ulTableSize;

 UINT32 ulCmdRspRangeBaseValue;

 UINT32 RedirectionTaskStackSize;

 UINT32 ServerTaskStackSize;

 UINT32 MFIFramePriority;

 UINT32 RPCTaskPriority;

 UINT32 ulIPIPortID;

 } rpc_config;

Note that the rpc_info structure is not described because it is an RPC internal specification.

Return Values:
 RPC_E_OK Normal end

 RPC_E_SYS The OS state is invalid

 RPC_E_NOINIT RPC is not initialized (only when MYCPUID is a value other

than 1)

 RPC_E_NORESOURCE Failed in IPI port creation

Function:

Initializes the RPC library environment of the current CPU according to the pConfig contents.
When the current CPU is CPUID#1, the RPC library environment shared by the CPUs is
initialized.

The IPI primitives IPI_init() and OAL_Init() have to be finished before calling this function. To
call this function in CPUID#2, rpc_init() has to be finished in CPUID#1 before then.

This function must be called from a context state of the task level with the interrupts not masked.
In such a state, this function can be called even when preempt is disabled.

This function should be called only once in each CPU at the beginning. Even when no server is
created in the current CPU, initialization by this function is required when an RPC call is
requested to another CPU.

322

(1) pRpcTable and ulTableSize

These specify the table area for managing the RPC servers. The number of servers that can be
created simultaneously in the current CPU is specified in ulTableSize. If no server is created in
the current CPU, specify ulTableSize as 0.

Allocate a non-cacheable area of the size calculated in the formula below and specify the start
address in pRpcTable. pRpcTable must be an address at the 4-byte boundary.

Size = sizeof(rpc_info) × ulTableSize

When ulTableSize is 0, the members in the rpc_config_info structure, except for ulIPIPortID,
are all ignored.

(2) ServerTaskStackSize

Specifies the stack size used by the server task.

For details, refer to section 18.6.4, Stack Size Used by SVC Server Task
(remote_svc.stack_size).

(3) ulIPIPortID

Specifies the ID of the IPI port used to accept return notification from the RPC requested to
another CPU and also used to accept RPC requests from another CPU.

In this function, the IPI port specified by ulIPIPortID is created by IPI_create().

The interrupt level of ulIPIPortID must be lower than or equal to the kernel interrupt mask
level (system.system_IPL).

(4) ulCmdRspRangeBaseValue, RedirectionTaskStackSize, MFIFramePriority, and
RPCTaskPriority

These are reserved for future expansion and are simply ignored.

323

7.10.4 Terminate RPC Library (rpc_shutdown)

C-Language API:
 INT32 rpc_shutdown(void);

Return Values:
 RPC_E_OK Normal end

 RPC_E_SYS The OS state is invalid

 RPC_E_NOINIT RPC is not initialized

 RPC_E_STATE A started server exists

Function:

Terminates the RPC library environment of the current CPU. The IPI port created in rpc_init() is
deleted using IPI_delete(). However, if there is a server already started in the current CPU, an
error is returned.

When the current CPU is CPUID#1, the RPC library environment shared by the CPUs is also
terminated. However, if there is a server already started in another CPU, an error is returned.

When this function is executed successfully, the API functions of the RPC requested from the
current CPU will all return an RPC_E_NOINIT error from here on. When the current CPU is
CPUID#1, the API functions of the RPC requested from all CPUs will all return an
RPC_E_NOINIT error from here on.

This function must be called from a context state of the task level with the interrupts not masked.
In such a state, this function can be called even when preempt is disabled.

When this function is called before initialization by rpc_init() has been performed, the operation is
undefined.

324

7.10.5 Start Dynamic Server (rpc_start_server)

C-Language API:
 INT32 rpc_start_server(rpc_server_info *pServerInfo);

Parameters:
 pServerInfo Pointer to the server registration information packet

Packet Structure:
 typedef struct {

 UINT32 ulRPCServerID;

 UINT32 ulRPCServerVersion;

 UINT32 ServerStubTaskPriority;

 UINT32 (**ServerStubList)(rpc_server_stub_info *);

 UINT32 ulNumFunctions;

 UINT32 ulStubStackSize;

 UINT32 ulMaxParamAreaSize;

 void *pUserDefinedData;

 } rpc_server_info;

 For rpc_server_stub_info, refer to section 7.11.1, Server Stub.

Return Values:
 RPC_E_OK Normal end

 RPC_E_SYS The OS state is invalid (failed in OAL_CanWait())

 RPC_E_NOINIT RPC is not initialized

 RPC_E_PAR Parameter error

0 < ulMaxParamSize < sizeof (rpc_server_stub_info)

 RPC_E_NORESOURCE Servers for the number of rpc_config.ulTableSize are already

started

 RPC_E_STATE Server of ulServerID is already started

 RPC_E_CREATETASK Failed in server task creation

Function:

Starts the server in the current CPU according to the information specified in pServerInfo.

The server started by this API dynamically allocates the parameter area used for communication
with the client using OAL_GetMemory() as soon as a call request from the client has been
accepted.

This API creates a server task for the server to be registered and initiates the server task. The
server task is kept waiting (WAITING state) by OAL_SleepTask() until it is called by the client.

325

(1) ulRPCServerID

Specifies the server ID to be registered.

If a server ID already registered is specified, an error is returned.

(2) ulRPCServerVersion

Specifies the version of the server to be registered.

(3) ServerStubTaskPriority

Specifies the priority of the server task. The relationship with the other tasks in the CPU in
which the server operates must be taken into consideration when specifying the priority. When
a priority not supported by the OS is specified, an error is returned.

(4) ServerStubList and ulNumFunctions

ServerStubList is the address of the function table that holds the server stub function address of
the function ID from 0 to (ulNumFunctions − 1).

Since this function table is referenced by the RPC library until the server is stopped, it must be
created in a static area.

(5) ulStubStackSize

Stands for the stack size used by the server stub.

For the method of calculating the stack size, refer to section 18.11.2, RPC Library.

(6) ulMaxParamAreaSize

Specifies the maximum acceptable size for the parameter area dynamically allocated by the
server. For an RPC call request that requires a parameter area larger than this limit, an error is
returned.

If ulMaxParamAreaSize is specified as 0, the acceptable size is unlimited. However, when the
limit for the allocatable size by OAL_GetMemory() is exceeded, the RPC call returns an error.

(7) pUserDefinedData

The data specified here is passed to the server stub without changes. The RPC does not make
use of this information at all. The data does not have to be a pointer.

This function must be called from a context state of the task level with the interrupts not masked
and preempt enabled.

326

7.10.6 Start Static Server (rpc_start_server_with_paramarea)

C-Language API:
 INT32 rpc_start_server_with_paramarea(

 rpc_server_info *pServerInfo,

 UINT8 *pParamArea);

Parameters:
 pServerInfo Pointer to the server registration information packet

 pParamArea Start address of parameter area

Packet Structure:
 typedef struct {

 UINT32 ulRPCServerID;

 UINT32 ulRPCServerVersion;

 UINT32 ServerStubTaskPriority;

 UINT32 (**ServerStubList)(rpc_server_stub_info *);

 UINT32 ulNumFunctions;

 UINT32 ulStubStackSize;

 UINT32 ulMaxParamAreaSize;

 void *pUserDefinedData;

 } rpc_server_info;

 For rpc_server_stub_info, refer to section 7.11.1, Server Stub.

Return Values:
 RPC_E_OK Normal end

 RPC_E_SYS The OS state is invalid (failed in OAL_CanWait())

 RPC_E_NOINIT RPC is not initialized

 RPC_E_PAR Parameter error

ulMaxParamSize < sizeof (rpc_server_stub_info)

 RPC_E_NORESOURCE Servers for the number of rpc_config.ulTableSize are already

started

 RPC_E_STATE Server of ulServerID is already started

 RPC_E_CREATETASK Failed in server task creation

327

Function:

Starts the server in the current CPU according to the information specified in pServerInfo.

The server created by this API uses the area specified by pParamArea and ulMaxParamAreaSize
as the parameter area used for communication with the client.

This API creates a server task for the server to be registered and initiates the server task. The
server task is kept waiting (WAITING state) by OAL_SleepTask() until it is called by the client
(by rpc_call).

Only the differences with the parameters in rpc_start_server() are described below.

(1) ulMaxParamAreaSize and pParamArea

Allocate a free area of ulMaxParamAreaSize bytes and specify the start address in
pParamArea.

Since this server parameter area is referenced by the RPC library until the server is stopped, it
must be allocated in a static area. The server parameter area must also be aligned to the 4-byte
boundary. pParamArea must be an address at the 4-byte boundary.

In the SH2A-DUAL, the parameter area must be allocated in a non-cacheable area.

328

7.10.7 Stop Server (rpc_stop_server)

C-Language API:
 INT32 rpc_stop_server(

 UINT32 ulServerID;

 UINT32 ulServerVersion,

 void (*cbk)(UINT32),

 UINT32 ulParam);

Parameters:
 ulServerID Server ID

 ulServerVersion Server version

 cbk Server stop callback function

 ulParam Data passed to server stop callback function

Return Values:
 RPC_E_OK Normal end

 RPC_E_SYS The OS state is invalid (failed in OAL_CanWait())

 RPC_E_NOINIT RPC is not initialized

 RPC_E_STATE Server of ulServerID is not started in current CPU

 RPC_E_VER Version does not match

Function:

Stops the server with the server ID specified in ulServerID. The version of the server to be stopped
is specified in ulServerVersion.

In this API, servers of another CPU cannot be stopped.

The task that was waiting because it had called rpc_call() is released from the WAITING state,
and an error is returned.

This API ends normally even when the server is in the middle of processing a client request.
However, the server will actually be stopped when the server function being processed has
finished.

When the server has completely stopped, the callback function specified by cbk is called. If NULL
is specified in cbk, the callback function will not be called.

The callback function should simply notify a certain event and then return without delay. The
callback function should not be used to block a task or perform a process other than event
notification.

329

7.10.8 Connect Server (rpc_connect)

C-Language API:
 INT32 rpc_connect (

 UINT32 ulServerID;

 UINT32 ulServerVersion);

Parameters:
 ulServerID Server ID

 ulServerVersion Server version

Return Values:
 RPC_E_OK Normal end

Function:

Connects the server specified in ulServerID. The specified server should be connected using this
API before issuing rpc_call().

This API is reserved for future expansion. In the current implementation, this API is defined in
rpc_public.h as shown below to always normally end and the above specification is not
implemented.

#define rpc_connect(ulServerID, ulServerVersion) RPC_E_OK

330

7.10.9 Disconnect Server (rpc_disconnect)

C-Language API:
 INT32 rpc_disconnect(

 UINT32 ulServerID;

 UINT32 ulServerVersion);

 void (*cbk)(UINT32),

 UINT32 ulParam);

Parameters:
 ulServerID Server ID

 ulServerVersion Server version

 cbk Callback function

 ulParam Parameter passed to callback function

Return Values:
 RPC_E_OK Normal end

Function:

Cancels connection with the server specified in ulServerID.

A task other than the client task that has requested connection can cancel connection using this
API as long as it is in the same CPU or OS the client task that has requested connection.

When connection is canceled, the callback function specified by cbk is called. If NULL is
specified in cbk, the callback function will not be called.

The callback function should simply notify a certain event and then return without delay. The
callback function should not be used to block a task or perform a process other than event
notification.

This API is reserved for future expansion. In the current implementation, this API is defined in
rpc_public.h as shown below to always normally end and the above specification is not
implemented.

#define rpc_disconnect(ulServerID, ulServerVersion, cbk, ulParam) RPC_E_OK

331

7.10.10 Call Server Function (rpc_call)

C-Language API:
 INT32 rpc_call(rpc_call_info *pCallInfo);

Parameters:
 pCallInfo Pointer to the server function call information packet

Packet Structure:
 typedef struct {

 UINT32 ulMarshallingType;

 UINT32 ulServerID;

 UINT32 ulServerVersion;

 UINT32 ulServerProcedureID;

 IOVEC *pInputIOVectorTable;

 UINT32 ulInputIOVectorTableSize;

 IOVEC *pOutputIOVectorTable;

 UINT32 ulOutputIOVectorTableSize;

 UINT32 *pulLastOutputIOVectorSize;

 UINT32 *pulReturnValue;

 enum rpc_ack_mode AckMode;

 } rpc_call_info;

Return Values:
 RPC_E_OK Normal end

 RPC_E_SYS The OS state is invalid (failed in OAL_CanWait())

 RPC_E_NOINIT RPC is not initialized

 RPC_E_GETTASKID Failed in OAL_GetTaskID()

 RPC_E_STATE Server of ulServerID is not started

 RPC_E_VER Version does not match

 RPC_E_PARM (1) AckMode is other than RPC_ACK or RPC_UNACK

(2) Necessary size for calling exceeded the acceptable size

of the server

(3) ulProcedureID ≥ rpc_server_info.ulNumFunctions

 RPC_E_STOP Server was stopped during call waiting

 RPC_E_NOMEM Insufficient memory

(1) Failed in allocation of call waiting management area

(2) The server has failed in allocation of parameter area

332

Function:

Calls the server function of the function ID specified in ulServerProcedureID of the server
specified in ulServerID. The server function is executed by the server CPU.

The contents of the input vectors specified by pInputIOVectorTable are all transferred to the
parameter area of the server.

RPC_ACK (synchronous mode) or RPC_UNACK (asynchronous mode) can be specified as the
call mode (AckMode).

In synchronous mode, the task that has called this API waits in this API until execution of the
server function finishes and then returns from this API.

In asynchronous mode, this API requests execution to the server and then returns without waiting
for execution of the server function to finish.

The data output from the server can be received in synchronous mode but not in asynchronous
mode.

This API is processed in the following phases.

(1) Phase 1: Acquires Right to Use Server (Call Waiting)

Acquires the right to use the server.

If the specified server is processing another client request, the right to use the server cannot be
obtained. This API is kept waiting by OAL_SleepTask() until that client request is finished. This
is called "call waiting". Call waiting is performed regardless of the AckMode setting. More than
one client task may enter this waiting state. These client tasks are managed on a FIFO basis.

Before issuing OAL_SleepTask(), OAL_GetMemory() should be issued to allocate memory for
managing the waiting state. When OAL_GetMemory() fails, an RPC_E_NOMEM error is
returned immediately.

(2) Phase 2: Allocates Server Parameter Area (Dynamic Server Only)

Requests allocation of the parameter area to the specified server and is then kept waiting by
OAL_SleepTask() until that process is completed. This waiting is performed regardless of the
AckMode setting.

When the server fails in parameter area allocation, an RPC_E_NOMEM error is returned
immediately.

333

(3) Phase 3: Transfers Input Parameters

The contents of the input parameter area defined by the specified input IOVEC array (arrays for
the number of ulInputIOVectorTableSize, starting from pInputIOVectorTable) are copied to the
server parameter area.

(4) Phase 4: Requests Execution to Server

Requests execution of the server function specified in ulServerProcedureID.

In synchronous mode, the task that has called this API is kept waiting in this API by
OAL_SleepTask() until execution of the server function finishes.

On the other hand, in asynchronous mode, the task that has called this API does not wait and
immediately returns from this API without executing the subsequent phases. Processing equivalent
to phases 6 and 7 is performed when the RPC server task returns from the server stub function.

(5) Phase 5: Retrieves Output Parameters

In synchronous mode, the output parameters set in the server parameter area are copied to the area
defined by pOutputIOVectorTable and ulOutputIOVectorTableSize.

(6) Phase 6: Releases Server Parameter Area (Dynamic Server Only)

Requests release of the parameter area to the server and is then kept waiting by OAL_SleepTask()
until that process is completed.

334

(7) Phase 7: Releases Right to Use Server

Releases the right to use the server. This allows the server to process another client request. If
there are tasks waiting to call the server, the task at the head of the waiting queue is woken up.
Processing is resumed from phase 2 for that task.

The parameters are described as follows:

(1) ulMarshallingType

Specifies the marshalling type. How to handle the marshalling type should be determined
between the client stub and server stub. The RPC library itself does not use this information.
ulMarshallingType is passed to the server stub without changes.

When the following conditions are satisfied, ulMarshallingType does not need to be used in
general.

(a) The client's CPU and server's CPU are the same (byte order, etc.) (SH2A-DUAL falls
under this category).

(b) The client and server have the same compiler environment.

(2) ulServerID, ulServerVersion, and ulServerProcedureID

The server function specified by ulServerProcedureID for the server specified by ulServerID is
called.

When the version of the specified server does not match ulServerVersion, an error is returned.

(3) pInputIOVectorTable and ulInputIOVectorTableSize

These specify the area for the input parameters passed to the server function. The input
parameter area can be allocated in a cacheable area. The number of elements in the IOVEC
array pointed to by pInputIOVectorTable is specified in ulInputIOVectorTableSize.

The number of input parameters (ulInputIOVectorTableSize) must always be fixed.
IOVEC.ulSize must always be a fixed size except for the last IOVEC.ulSize. This is because
these are used to obtain the address for storing the input parameters in each server stub. The
last IOVEC.ulSize can be a variable size.

When there is no information to give, specify ulInputIOVectorTableSize as 0.

The IOVEC array contents are not updated by this API.

335

(4) pOutputIOVectorTable, ulOutputIOVectorTableSize, and pulLastOutputIOVectorSize

These specify the area for receiving the output from the server function. The number of
elements in the IOVEC array pointed to by pOutputIOVectorTable is specified in
ulOutputIOVectorTableSize.

When there is no information to receive, specify ulOutputIOVectorTableSize as 0.

The data output from the server is stored in the area specified by each IOVEC.

To areas indicated by IOVEC except for the last IOVEC, ulSize bytes of that IOVEC are
output. To the area indicated by the last IOVEC, ulSize bytes of that IOVEC will not be
output. The actually output size is returned to the area pointed to by
pulLastOutputIOVectorSize.

The IOVEC array contents are not updated by this API.

(5) pulReturnValue

The return value of the server function is returned to *pulReturnValue.

(6) AckMode

Either one of the following can be specified.

• RPC_ACK (synchronous mode)

The task that has called this API waits in this API until the server function returns.

• RPC_UNACK (asynchronous mode)

After requesting execution of the server function, this API immediately returns without
waiting for execution of the server function to finish. pOutputIOVectorTable,
ulOutputIOVectorTableSize, and pulReturnValue are ignored when asynchronous mode is
specified.

A server function in the current CPU can also be called by this API. However, since the same
procedure for a call to another CPU is followed even for the current CPU, this API will take
longer than a normal function call.

336

7.10.11 Call Server Function (Data Transfer Callback) (rpc_call_copycbk)

C-Language API:
 INT32 rpc_call_copycbk(

 rpc_call_info *pCallInfo,

 void (*CopyCbk1)(void *, const void *, UINT32),

 void (*CopyCbk2)(void *, const void *, UINT32));

Parameters:
 pCallInfo Pointer to the server function call information packet

 CopyCbk1 Start address of the function to copy the client's input

parameters to the server parameter area

 CopyCbk2 Start address of the function to copy the parameters output

from the server to the client's output parameter area

Packet Structure:
 typedef struct {

 UINT32 ulMarshallingType;

 UINT32 ulServerID;

 UINT32 ulServerVersion;

 UINT32 ulServerProcedureID;

 IOVEC *pInputIOVectorTable;

 UINT32 ulInputIOVectorTableSize;

 IOVEC *pOutputIOVectorTable;

 UINT32 ulOutputIOVectorTableSize;

 UINT32 *pulLastOutputIOVectorSize;

 UINT32 *pulReturnValue;

 enum rpc_ack_mode AckMode;

 } rpc_call_info;

Return Values:
 RPC_E_OK Normal end

 RPC_E_SYS The OS state is invalid (failed in OAL_CanWait())

 RPC_E_NOINIT RPC is not initialized

 RPC_E_GETTASKID Failed in OAL_GetTaskID()

 RPC_E_STATE Server of ulServerID is not started

 RPC_E_VER Version does not match

 RPC_E_PARM (1) AckMode is other than RPC_ACK or RPC_UNACK

(2) Necessary size for calling exceeded the acceptable size

of the server

(3) ulProcedureID ≥ rpc_server_info.ulNumFunctions

 RPC_E_STOP Server was stopped during call waiting

337

 RPC_E_NOMEM Insufficient memory

(1) Failed in allocation of call waiting management area

(2) The server has failed in allocation of parameter area

Function:

Calls the server function specified in ulServerProcedureID for the server specified in ulServerID.
The server function is executed by the server CPU.

This API is the same as rpc_call() except for the following points.

Transferring the input parameters to the server parameter area (phase 3) and retrieving the output
parameters from the server parameter area (phase 5) in rpc_call() are performed not by rpc_call()
but by the callback functions specified in CopyCbk1 and CopyCbk2, respectively. If NULL is
specified in CopyCbk1 or CopyCbk2, the relevant callback function will not be called.

338

7.10.12 Acquire Server Properties (rpc_get_server_properties)

C-Language API:
 INT32 rpc_get_server_properties(

 UINT32 ulServerID,

 rpc_server_properties *pProp);

Parameters:
 ulServerID Server ID

 pProp Pointer to the server property information packet

Packet Structure:
 typedef struct {

 UINT32 ulServerVersion;

 UINT32 ulMaxParamArea;

 } rpc_server_properties;

Return Values:
 RPC_E_SYS The OS state is invalid (failed in OAL_CanWait())

 RPC_E_NOINIT RPC is not initialized

 RPC_E_STATE Server of ulServerID is not started

Function:

Acquires the information on the server specified by ulServerID and returns it to the area pointed to
by pProp.

pProp -> ulServerVersion returns the server version. pProp -> ulMaxParamArea returns
rpc_server_info.ulMaxParamAreaSize which was specified when the server was started.

339

7.11 Stubs

The server stub and client stub must be created by the server creator. Both of them must be
prepared for each server function.

7.11.1 Server Stub

The server stub is called from the RPC server task. The server stub should be created according to
the following specifications. Any function name can be used.

UINT32 stub_function(rpc_server_stub_info *pInfo);

typedef struct {

 UINT32 ulProcedureID;

 enum rpc_ack_mode AckMode;

 UINT32 ulMarshallingType;

 UINT8 *pucParamArea;

 UINT32 ulMaxParamArea;

 UINT32 ulInParamSize;

 IOVEC *pOutputIOVectorTable;

 UINT32 ulOutputIOVectorTableSize;

 void *pUserDefinedData;

} rpc_server_stub_info;

(1) ulProcedureID

Receives rpc_call_info.ulServerProcedureID specified in rpc_call() or rpc_call_copycbk().

(2) AckMode

Receives rpc_call_info.AckMode (RPC_ACK or RPC_UNACK) specified in rpc_call() or
rpc_call_copycbk().

(3) ulMarshallingType

Receives rpc_call_info.ulMarshallingType specified in rpc_call() or rpc_call_copycbk().

(4) pucParamArea and ulInParamSize

Receives information indicating the input parameters from the client.

The input parameters specified in rpc_call() or rpc_call_copycbk() are stored in an area that
starts from pucParamArea and whose size is ulInParamSize bytes. pucParamArea is an address
in the server parameter area and it must be aligned to the 4-byte boundary.

340

The size calculated from the formula below is set in ulInParamSize.

∑ (ALIGNUP4(rpc_call_info.pInputIOVectorTable[i]->ulSize)) (a)

The storage address for the 0th parameter becomes pucParamArea.

The storage address for the kth (k = 1 … rpc_call_info.ulInputIOVectorTableSize − 1)
parameter is calculated by the formula below.

pucParamArea + (ALIGNUP4(rpc_call_info pInputIOVectorTable[i]-> ulSize))
i=0

k-1
+ .Σ .. (b)

The server stub and client stub have to be implemented according to the specification of "the
number of parameters is always fixed and the size of the parameters except for the last
parameter is also fixed" in order for the server stub to correctly calculate the storage address
for each parameter using the above formula (b).

(5) pOutputIOVectorTable and ulOutputIOVectorTableSize

Receives information indicating the area where to store the parameters to be output to the
client.

pOutputIOVectorTable is the start address of the output IOVEC array.
ulOutputIOVectorTableSize indicates the number of elements in that array.
rpc_call_info.ulInputIOVectorTableSize specified by the client in rpc_call() or
rpc_call_copycbk() will be set in ulOutputIOVectorTableSize.

Each output IOVEC has the following settings. This means that the default output area is set in
advance.

• pBaseAddress: Address in the server parameter area (does not overlap with the input
parameter area).

• ulSize: Size specified by the client in rpc_call() or rpc_call_copycbk(). In other words, the
size of data the client can receive.

Note that when the client does not request output or when the call was made in asynchronous
mode, ulOutputIOVectorTableSize and pOutputIOVectorTable are specified as 0.

The server stub sets the output data to the area specified by each output IOVEC and returns. At
this point, the output IOVEC should be handled as follows:

• pBaseAddress: Normally do not change this setting. In a case where overlapping of the
input parameter area and output parameter area is desired, specify pBaseAddress to satisfy
the condition of "area indicated by IOVEC is within the server parameter area".

• ulSize: Change ulSize for only the last IOVEC. ulSize for the last IOVEC should be
changed to the actual size.

341

The RPC copies the data indicated by the IOVEC array, at the point on returning from the
server stub, to the output parameter area (area pointed to by the IOVEC array of
rpc_call_info.pOutputIOVectorTable) specified by the client. ulSize of the last IOVEC is
returned to the area pointed to by rpc_call_info.pulLastOutputIOVectorSize for the client.

(6) ulMaxParamArea

The size the server stub can use is passed from pucParamArea to ulMaxParamArea. The output
parameter storage area indicated by each IOVEC of pOutputIOVectorTable is included in this
size. Note that the ulMaxParamArea value sent to the server stub differs from
rpc_server_info.ulMaxParamAreaSize which is specified when the server is started.

(7) pUserDefinedData

Receives user definition information specified in rpc_start_server() or
rpc_start_server_with_paramarea().

Figure 7.3 shows an example of the server parameter area when there are four input parameters
and two output parameters.

pucParamArea

Input parameter specified by
pInputIOVectorTable[0]

Input parameter specified by
pInputIOVectorTable[1]

Input parameter specified by
pInputIOVectorTable[2]

Input parameter specified by
pInputIOVectorTable[3]

u
lI
n

P
a

ra
m

S
iz

e

u
lM

a
x
P

a
ra

m
A

re
a

pBaseAddress

ulSize

pBaseAddress

ulSize

ALIGNUP4(pInputIOVectorTable[0].ulSize)

ALIGNUP4(pInputIOVectorTable[1].ulSize)

ALIGNUP4(pInputIOVectorTable[2].ulSize)

ALIGNUP4(pInputIOVectorTable[3].ulSize)

pOutputIOVectorTable

pOutputIOVectorTable[0].ulSize

pOutputIOVectorTable[1].ulSize

Server parameter area

Server management area

First output parameter
setting area

Second output parameter
setting area

Free space

The gray areas indicate areas which are not used due to boundary adjustment.
The red letters represent information in rpc_server_stub_info that is passed to the server stubs.
The blue letters represent information in rpc_call_info that is specified by an RPC call on the client side.

Figure 7.3 Server Parameter Area Example

342

7.11.2 Client Stub

The client stub has the same function names as the original server functions from the application,
and it should be implemented to issue an RPC call using rpc_call() or rpc_call_copycbk().

7.12 Server Stop Callback Function

This callback function is called from the server task. This callback function should be created
according to the following specification. Any function name can be used.

void StopServer(UINT32 ulParam);

ulParam specified in rpc_stop_server() is passed to ulParam.

7.13 CopyCbk1 and CopyCbk2 Callback Functions

These callback functions are called from rpc_call_copycbk(). These callback functions should be
created according to the following specification. Any function name can be used.

void CopyFunc(void *pDest, const void *pSource, UINT32 ulSize);

ulSize bytes from the address specified in pSource are copied to the address pointed to by pDest.

When performing copy with a function other than the CPU, such as the DMAC, and operand
cache is enabled, note the following.

(1) CopyCbk1

pDest points to the server parameter area (non-cacheable area).

pSource points to the input parameter area specified by the client. When operand cache is in write-
back mode, if the contents indicated by pSource are registered in operand cache and have not been
written back to the actual memory, the contents in the area pointed to by pSource have to be
written back from operand cache to the actual memory before DMA transfer. Otherwise, the
DMAC may read from pSource the data before write-back.

343

(2) CopyCbk2

pSource points to the area for storing the parameters output from the server (non-cacheable area).

pDest points to the output parameter area specified by the client. If the area indicated by pDest is
registered in operand cache, the operand cache contents of the area pointed to by pDest have to be
invalidated before DMA transfer. Otherwise, when the client reads from the output parameter area
after DMA transfer, the read becomes an operand cache hit and the client reads the operand cache
contents instead of the data transferred to the actual memory by the DMAC. When operand cache
is in write-back mode, if the contents indicated by pDest are registered in operand cache and have
not been written back to the actual memory, when a write-back due to operand cache replacement
occurs after DMA transfer, the data transferred to the actual memory via DMA transfer may be
damaged.

Since the operand cache contents of a specific address range cannot be invalidated in the SH2A-
DUAL, either the entire operand cache has to be invalidated or the output parameter area specified
by the client has to be restricted to a non-cacheable area.

344

345

Section 8 OAL

8.1 Overview

The OAL localizes the OS dependent part of the RPC so that the RPC can be easily ported to
another OS. This improves the portability of the RPC.

Only the minimum OS functions required by the RPC are implemented in this OAL.

Table 8.1 Overview of OAL

No. Item Component

1 Hardware resources used by this software None

2 Software components used by this software None

3 Other software components using this
software

RPC

8.2 Provided Files

<RTOS_INST>\os\include\
 oal.h API definition header file
<SAMPLE_INST>\R0K572650D000BR\cpuid1\ipi\

 oal_config.h Configuration file (see section 8.3.1, Configuration)
 oal.c Source code
<SAMPLE_INST>\R0K572650D000BR\cpuid2\ipi\

 oal_config.h Configuration file (see section 8.3.1, Configuration)
 oal.c Source code

Note that oal.c has the same contents in each directory.

346

8.3 Configuration and Build

The OAL must be separately configured for each CPU.

8.3.1 Configuration

(1) Configuration of OAL

Define the following in oal_config.h.

#define OAL_MEMSIZE 0x1000

The size of the memory area handled by OAL_GetMemory() should be defined in
OAL_MEMSIZE.

(2) Configuration of Kernel

Refer to section 7.9.1 (3), service_call.

8.3.2 Build

Compile oal.c and link it with programs using API functions.

For the OAL sections, refer to section 17.5.2, Sections.

347

8.4 API Functions

Table 8.2 lists the API functions.

Table 8.2 API Functions

No. Type API Name Function

1 Function OAL_Init Initializes OAL

2 Function OAL_Shutdown Terminates OAL

3 Function OAL_DisablePreempt Disables task preemption

4 Function OAL_EnablePreempt Enables task preemption

5 Function OAL_IsDisablePreempt Confirms task preemption state

6 Function OAL_CanWait Confirms whether current task can wait

7 Function OAL_IsNotTaskLevel Confirms context type

8 Function OAL_IsMaskInterrupt Confirms processor interrupt mask

9 Function OAL_CreateTask Creates task

10 Function OAL_ActivateTask Activates task

11 Function OAL_DestroyTask Exits and deletes current task

12 Function OAL_GetTaskID Acquires identification information on
current task

13 Function OAL_SleepTask Shifts current task to WAITING state

14 Function OAL_WakeupTask Wakes up task

15 Function OAL_GetMemory Allocates memory

16 Function OAL_ReleaseMemory Releases memory

8.4.1 Header File

Include oal.h.

8.4.2 Basic Data Types

The basic data types defined in types.h are used.

For types.h, refer to section 19, types.h.

348

8.4.3 Return Value

For APIs that have return values, basically a positive value or 0 indicates normal end, and a
negative value indicates an error.

The following values are defined as error return values. However, what kind of error is returned
under what kind of condition depends on the OAL implementation and OS. Therefore, in an
application using the OAL, determining the error return value for a purpose other than debugging
is not recommended. For example, a condition that returns the OAL_E_PAR error in a certain OS
may return another error in a different OS.

Due to the above reason, the error return values are not described in the subsequent sections on
APIs.

#define OAL_E_OK 0L Normal end

#define OAL_E_PAR (-1L) Parameter error

#define OAL_E_SYS (-4L) System state error

#define OAL_E_STATE (-5L) OS object state error

#define OAL_E_NOMEM (-7L) Insufficient memory

#define OAL_E_NORESOURCE (-8L) Insufficient resource

#define OAL_E_TIMEOUT (-16L) Timeout

#define OAL_E_RELEASED (-17L) WAITING state is forcibly canceled

8.4.4 Initialize OAL (OAL_Init)

C-Language API:
 INT32 OAL_Init(void);

Function:

Initializes the OAL and starts it.

Operation when this API function is called in a context state other than the task level is undefined.

349

8.4.5 Terminate OAL (OAL_Shutdown)

C-Language API:
 void OAL_Shutdown(void);

Function:

Terminates the OAL.

Operation when this API function is called from a state in which OAL_DisablePreempt() was
called is undefined.

Operation when this API function is called in a context state other than the task level is undefined.

8.4.6 Disable Task Preemption (OAL_DisablePreempt)

C-Language API:
 void OAL_DisablePreempt(void);

Function:

Disables task preemption.

This API function must not be called from a state in which OAL_DisablePreempt() was called.

Operation when this API function is called in a context state other than the task level is undefined.

350

8.4.7 Enable Task Preemption (OAL_EnablePreempt)

C-Language API:
 void OAL_EnablePreempt(void);

Function:

Enables task preemption.

This API function can even be called from a state in which OAL_DisablePreempt() was called.

Operation when this API function is called in a context state other than the task level is undefined.

8.4.8 Confirm Task Preemption State (OAL_IsDisablePreempt)

C-Language API:
 INT32 OAL_IsDisablePreempt(void);

Function:

When task preemption is disabled, 1 is returned. When task preemption is enabled, 0 is returned.

No error value will be returned.

Operation when this API function is called in a context state other than the task level is undefined.

8.4.9 Confirm Whether Current Task Can Wait (OAL_CanWait)

C-Language API:
 INT32 OAL_CanWait(void);

Function:

If the calling context can enter the WAITING state of the OS, 1 is returned. If transition is not
possible, 0 is returned.

No error value will be returned.

351

8.4.10 Confirm Context Type (OAL_IsNotTaskLevel)

C-Language API:
 INT32 OAL_IsNotTaskLevel(void);

Function:

If the calling context is at the task level, 0 is returned. Otherwise, 1 is returned.

No error value will be returned.

8.4.11 Confirm Processor Interrupt Mask (OAL_IsMaskInterrupt)

C-Language API:
 INT32 OAL_IsMaskInterrupt (void);

Function:

If there is an interrupt masked by the processor interrupt mask, 1 is returned. If no interrupts are
masked, 0 is returned.

No error value will be returned.

352

8.4.12 Create Task (OAL_CreateTask)

C-Language API:
 INT32 OAL_CreateTask(

 void **pTaskID

 void *pTaskStartAddress,

 void *pArg,

 UINT32 ulTaskPriority,

 UINT32 ulStackSize,

 enum OAL_TASK_START AutoStart);

Parameters:
 pTaskID Pointer to the memory area where the identification

information on the created task is to be returned

 pTaskStartAddress Task start address

 pArg Parameter to be passed to task

 ulTaskPriority Task priority

 ulStackSize Stack size

 AutoStart Task start specification

Function:

Creates a task and returns the identification information on the created task to *pTaskID. The task
identification information is used for specifying the task in another API of OAL.

OAL_AUTO_START or OAL_NO_START can be specified for AutoStart.

When OAL_AUTO_START is specified, the specified task immediately enters the executable
state on the OS. When OAL_NO_START is specified, the specified task is only created and not
executed. To execute the task, the task has to be separately started by OAL_ActivateTask().

The parameter to be passed to the task is specified in pArg.

This API can even be called from a state in which OAL_DisablePreempt() was called.

Operation when this API function is called in a context state other than the task level is undefined.

353

8.4.13 Activate Task (OAL_ActivateTask)

C-Language API:
 INT32 OAL_ActivareTask(void *TaskID);

Parameters:
 TaskID Task identification information

Function:

Activates the task.

This API can even be called from a state in which OAL_DisablePreempt() was called.

Operation when this API function is called in a context state other than the task level is undefined.

8.4.14 Exit and Delete Current Task (OAL_DestroyTask)

C-Language API:
 INT32 OAL_DestroyTask(void);

Function:

Exits the current task and deletes it.

Operation when this API function is called from a state in which OAL_DisablePreempt() was
called is undefined.

Operation when this API function is called in a context state other than the task level is undefined.

354

8.4.15 Get Current Task Identification Information (OAL_GetTaskID)

C-Language API:
 INT32 OAL_GetTaskID(void **pTaskID);

Parameters:
 pTaskID Pointer to the memory area where the identification

information on the task is to be returned

Function:

Returns the identification information on the current task to *pTaskID.

Operation when this API function is called from a state in which OAL_DisablePreempt() was
called is undefined.

Operation when this API function is called in a context state other than the task level is undefined.

8.4.16 Shift Current Task to WAITING State (OAL_SleepTask)

C-Language API:
 INT32 OAL_SleepTask(void);

Function:

Shifts the current task to the WAITING state. The WAITING state is canceled by
OAL_WakeupTask().

Correct operation is not guaranteed when this API function is called from a state in which the task
cannot be shifted to the WAITING state of the OS.

Operation when this API function is called from a state in which OAL_DisablePreempt() was
called is undefined.

Operation when this API function is called in a context state other than the task level is undefined.

355

8.4.17 Wakeup Task (OAL_WakeupTask)

C-Language API:
 INT32 OAL_WakeupTask(void *TaskID);

Parameters:
 TaskID Task identification information

Function:

Cancels the WAITING state of the task.

This API can even be called from a state in which OAL_DisablePreempt() was called.

This API can even be called in a context state other than the task level.

8.4.18 Allocate Memory (OAL_GetMemory)

C-Language API:
 INT32 OAL_GetMemory(

 UINT32 ulSize,

 void **ppAddress);

Parameters:
 ulSize Allocation size

 ppAddress Pointer to the memory area where the allocated memory

address is to be returned

Function:

Allocates memory for the size specified by ulSize and returns the start address to the area
indicated by ppAddress.

When memory cannot be allocated, an error is returned immediately without any wait.

The memory start address to be returned is aligned at the 4-byte boundary.

This API can even be called from a state in which OAL_DisablePreempt() was called.

Operation when this API function is called in a context state other than the task level is undefined.

356

8.4.19 Release Memory (OAL_ReleaseMemory)

C-Language API:
 INT32 OAL_ReleaseMemory(void *pAddress);

Parameters:
 pAddress Allocated memory address

Function:

Releases memory whose start address is pAddress. pAddress has to be the start address of the
memory allocated by OAL_GetMemory().

This API can even be called from a state in which OAL_DisablePreempt() was called.

Operation when this API function is called in a context state other than the task level is undefined.

357

Section 9 Spinlock Library

9.1 Overview

Usage of the spinlock library permits only one CPU to access the resources shared by the CPUs at
one time.

This can also be achieved by using semaphores in the kernel. The differences from using
semaphores in the kernel are shown below.

(1) Smaller overhead than when using semaphores in the kernel

(2) Can be used even when an interrupt handler is in the dispatch-pended state (semaphores in the
kernel cannot be used in the dispatch-pended state)

However, there are notes for using the spinlock library. Be sure to read section 9.3, Spinlock
Behavior and Usage Notes.

Table 9.1 Overview of Spinlock Library

No. Item Component

1 Hardware resources used by this software None (However, the semaphore register
specified by a parameter is accessed
during semaphore lock)

2 Software components used by this software None

3 Other software components using this
software

(1) Kernel (remote service call, etc.)

(2) RPC library

(3) IPI

Use of the spinlock library should be avoided as much as possible in the application. Repeated use
of the spinlock library indicates that the degree of linkage between the CPUs is high in the
application so that distributing the features to each CPU may be troublesome. In addition, the
possibility of the kind of failures described in section 9.3 (Spinlock Behavior and Usage Notes)
occurring is increased.

358

9.2 Basic Usage Method

In the spinlock library, the resources shared by the CPUs are exclusively controlled using the
"lock variables" in memory or the "semaphore registers" in the SH2A-DUAL. The relationship
between the lock variables or semaphore registers and the resources shared by the CPUs is
determined by the application.

In an application that desires to access the resources shared by the CPUs, call an API to perform
lock before accessing the shared resources. Then, after access to the shared resources has finished,
call an API to perform unlock.

9.3 Spinlock Behavior and Usage Notes

In an API to perform lock, whether lock has already been performed is checked. If lock has not
been performed, the state is immediately updated to locked and returned. If lock has already been
performed, busy-wait is performed until lock is canceled.

In other words, when attempting to obtain a lock variable that is already locked, the CPU time
continues to be futilely consumed until the program that had performed lock calls the API to
perform unlock.

This busy-wait operation may cause the following problems. Fully understand this section and
make sure no such problems occur.

359

9.3.1 Exclusive Control in the Same CPU and Deadlock

The spinlock function supports exclusive control for programs that are processed by multiple
CPUs.

If two or more programs in the same CPU may access the resources shared by the CPUs
simultaneously, exclusive control in the same CPU is necessary whether the spinlock function will
be used or not. If the spinlock function is used without performing this, a deadlock may occur.

• Example 1

If task A and task B in the same CPU may simultaneously access a certain resource shared by
the CPUs, task A and task B must be exclusively controlled by the semaphore function of the
kernel or by the function to disable task dispatch.

If this is not performed, a deadlock occurs in the following case.

Assume that while task A has performed lock, task B with a higher priority preempts task A.

When task B attempts to perform lock, the attempt fails and busy-wait is performed. However,
since the priority of task A which has performed lock is lower than the priority of task B, task
A will never be executed. Accordingly, task B keeps waiting to perform lock that will not be
canceled, and results into a deadlock.

• Example 2

If task A and an interrupt handler in the same CPU may simultaneously access a certain
resource shared by the CPUs, task A and the interrupt handler must be exclusively controlled
by disabling the interrupt or locking the CPU.

If this is not performed, a deadlock occurs in the following case.

Assume that while task A has performed lock, an interrupt handler is initiated.

When the interrupt handler attempts to perform lock, the attempt fails and busy-wait is
performed. However, task A which has performed lock will never be executed unless the
interrupt handler is finished. Accordingly, the interrupt handler keeps waiting to perform lock
that will not be canceled, and results into a deadlock.

9.3.2 Problem of Locked Period

Busy-wait performed by spinlock just wastes the CPU time.

To reduce this waste, the period for performing lock should be as short as possible. This will
shorten the busy-wait period that may be generated when another program attempts to perform
lock.

360

The user must be careful not to unintentionally prolong the locked period. Examples of such cases
are shown below.

• Example 1

A certain task was coded to access the resources shared by the CPUs after performing lock,
and then immediately cancel lock. However, at task execution, the task was preempted by
another task before canceling lock. Another CPU attempted to perform lock during this period,
and busy-wait was performed for a long time.

Such a case can be improved by disabling task dispatch before performing lock.

• Example 2

A certain task was coded so that after dispatch-disabled state was entered, the task accesses the
resources shared by the CPUs after performing lock, and then immediately cancels lock.
However, at task execution, an interrupt occurred before canceling lock so that unlock was
delayed until the interrupt handler was finished. Another CPU attempted to perform lock
during this period, and busy-wait was performed for a long time.

Such a case can be improved by disabling interrupts before performing lock.

9.4 Three Spinlock Functions

This spinlock library provides the following three types of spinlock functions.

(1) Normal Lock

A basic lock function that performs exclusive control between the CPUs by applying the TST
instruction to the lock variable located in the memory shared by the CPUs.

(2) RW Lock

Similar to normal lock, this function performs exclusive control between the CPUs by applying
the TST instruction to the lock variable located in the memory shared by the CPUs. However, this
function is more efficient than normal lock because exclusive control of reference (read) accesses
is omitted. Compared to normal lock, RW lock is suitable for exclusive control of resources that
are often only referenced (read).

361

(3) Semaphore Lock

The semaphore lock function performs exclusive control between the CPUs by using the
semaphore registers in the SH2A-DUAL. Note that these semaphore registers have nothing to do
with the semaphores in the kernel.

In normal lock or RW lock, access to a lock variable during busy-wait for performing lock
occupies the bus to the memory where the lock variable is stored. This sometimes degrades the
access performance to that bus from another CPU.

The benefit of semaphore lock is that such kind of down side is small because a semaphore
register is accessed through a different bus than the memory bus.

The IPI uses the semaphore lock function.

9.5 Lock Variables for Normal Lock and RW Lock

9.5.1 Entity of Lock Variable

The entities of lock variables should be defined in CPUID#1. At this time, a dedicated section
different from the others should be used. When performing linkage in CPUID#1, the symbol
address file (fsy extension) of that section is output, and assembling and linking that symbol
address file in CPUID#2 enables the CPUID#2 program to perform symbol resolution for the lock
variables in CPUID#1.

9.5.2 RAM where Lock Variables are Placed

Lock variables must be placed in memory connected via the same memory bus to each CPU that
accesses those lock variables. Accesses must be non-cacheable.

Examples for SH7205 or SH7265 are shown below.

(1) When Placing Lock Variables in On-Chip RAM

Accesses to on-chip RAM are not cached.

Place the lock variables at an address in the shadow area (0xFFD80000 to 0xFFDA7FFF) of on-
chip RAM at linkage. Both CPUs use the same high-speed on-chip RAM access bus to access this
address.

362

(2) When Placing Lock Variables in External RAM

When placing lock variables in SDRAM connected to the SDRAM0 space (0x18000000 to
0x1BFFFFFF), place the lock variables at an address in the non-cacheable shadow area
(0x38000000 to 0x3BFFFFFF) of the SDRAM0 space.

9.6 Provided Files

<RTOS_INST>\os\include\
 spinlock.h API definition header file

<RTOS_INST>\os\lib\debug\
 spinlock.lib Library (with debugging information)
<RTOS_INST>\os\lib\release\

 spinlock.lib Library (without debugging information)
<RTOS_INST>\os\spinlock\ Workspace, etc. for creating the library
<RTOS_INST>\os\spinlock\spinlock\ Project, etc. for creating the library

<RTOS_INST>\os\spinlock\spinlock\include\ Internal definition file (assembly language)
<RTOS_INST>\os\spinlock\spinlock\source\ Source code
<RTOS_INST>\os\spinlock\spinlock\debug\ Configuration directory (with debugging

 information)
<RTOS_INST>\os\spinlock\spinlock\release\ Configuration directory (without debugging
 information)

9.7 Building the Library

Building the library is not usually necessary. If you wish to build the library (e.g. for debugging),
you should use the provided High-performance Embedded Workshop workspace (spinlock.hws).

9.8 Building the System

For the spinlock library sections, refer to section 17.5.2, Sections.

363

9.9 API Functions

Table 9.2 lists the API functions. Each API function is implemented as a C function macro or C
function.

Table 9.2 API Functions

No. Classification Function Name Function

1 SPIN_InitLock Initializes normal lock variable

2 SPIN_Lock Performs normal lock

3 SPIN_TryLock Tries to perform normal lock

4 SPIN_Unlock Cancels normal lock

5

Normal lock

SPIN_IsLocked Checks normal lock state

6 SPIN_InitRWLock Initializes RW lock variable

7 SPIN_ReadLock Performs read lock

8 SPIN_ReadTryLock Tries to perform read lock

9 SPIN_ReadUnlock Cancels read lock

10 SPIN_IsReadLocked Checks read lock state

11 SPIN_WriteLock Performs write lock

12 SPIN_WriteTryLock Tries to perform write lock

13 SPIN_WriteUnlock Cancels write lock

14

RW lock

SPIN_IsWriteLocked Checks write lock state

15 SPIN_InitSemLock Initializes semaphore register

16 SPIN_SemLock Performs semaphore lock

17 SPIN_SemTryLock Tries to perform semaphore lock

18

Semaphore lock

SPIN_SemUnlock Cancels semaphore lock

9.9.1 Header File

Include spinlock.h.

9.9.2 Basic Data Types

The basic data types defined in types.h are used.

For types.h, refer to section 19, types.h.

364

9.9.3 Note

Error detection is not performed in these API functions.

9.10 Normal Lock

9.10.1 Initialize Normal Lock Variable (SPIN_InitLock)

C-Language API:
 void SPIN_InitLock(LOCK *pLock);

Parameters:
 pLock Pointer to lock variable

Packet Structure:
 typedef struct {

 UINT8 ucLock; Lock variable

 } LOCK;

Function:

Initializes the lock variable indicated by pLock.

The lock variable is managed by the spinlock library and cannot be directly changed from the
application.

pLock must be an address to which access is non-cacheable.

365

9.10.2 Perform Normal Lock (SPIN_Lock)

C-Language API:
 void SPIN_Lock(LOCK *pLock);

Parameters:
 pLock Pointer to lock variable

Packet Structure:
 typedef struct {

 UINT8 ucLock; Lock variable

 } LOCK;

Function:

Locks the access right for the resource associated with pLock.

pLock must be a pointer to the lock variable that has already been initialized in SPIN_InitLock().

If the access right is already locked, the busy loop is executed in this function to wait for lock to
be canceled. After lock cancellation, the access right is locked.

Lock performed by this function is canceled by SPIN_Unlock().

366

9.10.3 Try to Perform Normal Lock (SPIN_TryLock)

C-Language API:
 INT32 SPIN_TryLock(LOCK *pLock);

Parameters:
 pLock Pointer to lock variable

Return Values:
 1: Lock succeeded

0: Lock failed

Packet Structure:
 typedef struct {

 UINT8 ucLock; Lock variable

 } LOCK;

Function:

Locks the access right for the resource associated with pLock.

pLock must be a pointer to the lock variable that has already been initialized in SPIN_InitLock().

If the access right is already locked, lock fails and 0 is returned as the return value. If the access
right is not locked, lock succeeds and 1 is returned as the return value.

Lock performed by this function is canceled by SPIN_Unlock().

367

9.10.4 Cancel Normal Lock (SPIN_Unlock)

C-Language API:
 void SPIN_Unlock(LOCK *pLock);

Parameters:
 pLock Pointer to lock variable

Packet Structure:
 typedef struct {

 UINT8 ucLock; Lock variable

 } LOCK;

Function:

Unlocks the access right for the resource associated with pLock.

pLock must be a pointer to the lock variable that was acquired in SPIN_Lock() or
SPIN_TryLock().

9.10.5 Check Normal Lock State (SPIN_IsLocked)

C-Language API:
 INT32 SPIN_IsLocked(LOCK *pLock);

Parameters:
 pLock Pointer to lock variable

Packet Structure:
 typedef struct {

 UINT8 ucLock; Lock variable

 } LOCK;

Return Values:
 1: Locked

0: Not locked

Function:

1 is returned if pLock is locked and 0 is returned if pLock is not locked.

368

9.11 RW Lock

9.11.1 Initialize RW Lock Variable (SPIN_InitRWLock)

C-Language API:
 void SPIN_InitRWLock(RWLOCK *pRWLock);

Parameters:
 pRWLock Pointer to lock variable

Packet Structure:
 typedef struct {

 UINT8 ucWriteLock; Write lock variable

 UINT8 ucReadLock; Read lock variable

 } RWLOCK;

Function:

Initializes the RW lock variable indicated by pRWLock.

The RW lock variable is managed by the spinlock library and must not be directly changed from
the application.

pRWLock must be an address to which access is non-cacheable.

369

9.11.2 Perform Read Lock (SPIN_ReadLock)

C-Language API:
 void SPIN_ReadLock(RWLOCK *pRWLock);

Parameters:
 pRWLock Pointer to lock variable

Packet Structure:
 typedef struct {

 UINT8 ucWriteLock; Write lock variable

 UINT8 ucReadLock; Read lock variable

 } RWLOCK;

Function:

Locks the read access right for the resource associated with pRWLock.

pRWLock must be a pointer to the lock variable that has already been initialized in
SPIN_InitRWLock().

Read lock can be nested. The maximum number of nestings is 255.

If write lock has already been performed, the busy loop is executed in this function to wait for
write lock to be canceled. After lock cancellation, read lock is performed. If write lock has not
been performed, even though read lock has been performed, read lock succeeds immediately.

Lock performed by this function is canceled by SPIN_ReadUnlock().

370

9.11.3 Try to Perform Read Lock (SPIN_ReadTryLock)

C-Language API:
 INT32 SPIN_ReadTryLock(RWLOCK *pRWLock);

Parameters:
 pRWLock Pointer to lock variable

Return Values:
 1: Read lock succeeded

0: Read lock failed

Packet Structure:
 typedef struct {

 UINT8 ucWriteLock; Write lock variable

 UINT8 ucReadLock; Read lock variable

 } RWLOCK;

Function:

Locks the read access right for the resource associated with pRWLock.

pRWLock must be a pointer to the lock variable that has already been initialized in
SPIN_InitRWLock().

Read lock can be nested. The maximum number of nestings is 255.

If write lock has already been performed, read lock fails and 0 is returned as the return value. If
write lock has not been performed, even though read lock has been performed, read lock succeeds
immediately and 1 is returned as the return value.

Lock performed by this function is canceled by SPIN_ReadUnlock().

371

9.11.4 Cancel Read Lock (SPIN_ReadUnlock)

C-Language API:
 void SPIN_ReadUnlock(RWLOCK *pRWLock);

Parameters:
 pRWLock Pointer to lock variable

Packet Structure:
 typedef struct {

 UINT8 ucWriteLock; Write lock variable

 UINT8 ucReadLock; Read lock variable

 } RWLOCK;

Function:

Unlocks the read access right for the resource associated with pRWLock.

pRWLock must be a pointer to the lock variable that was acquired in SPIN_ReadLock() or
SPIN_ReadTryLock().

9.11.5 Check Read Lock State (SPIN_IsReadLocked)

C-Language API:
 INT32 SPIN_IsReadLocked(RWLOCK *pRWLock);

Parameters:
 pRWLock Pointer to lock variable

Packet Structure:
 typedef struct {

 UINT8 ucWriteLock; Write lock variable

 UINT8 ucReadLock; Read lock variable

 } RWLOCK;

Return Values:
 1: Locked

0: Not locked

Function:

1 is returned if pRWLock is read-locked and 0 is returned if pRWLock is not read-locked.

372

9.11.6 Perform Write Lock (SPIN_WriteLock)

C-Language API:
 void SPIN_WriteLock(RWLOCK *pRWLock);

Parameters:
 pRWLock Pointer to lock variable

Packet Structure:
 typedef struct {

 UINT8 ucWriteLock; Write lock variable

 UINT8 ucReadLock; Read lock variable

 } RWLOCK;

Function:

Locks the write access right for the resource associated with pRWLock.

pRWLock must be a pointer to the lock variable that has already been initialized in
SPIN_InitRWLock().

If read lock or write lock has already been performed, the busy loop is executed in this function to
wait for those locks to be canceled. After lock cancellation, write lock is performed.

Lock performed by this function is canceled by SPIN_WriteUnlock().

373

9.11.7 Try to Perform Write Lock (SPIN_WriteTryLock)

C-Language API:
 INT32 SPIN_WriteTryLock(RWLOCK *pRWLock);

Parameters:
 pRWLock Pointer to lock variable

Return Values:
 1: Write lock succeeded

0: Write lock failed

Packet Structure:
 typedef struct {

 UINT8 ucWriteLock; Write lock variable

 UINT8 ucReadLock; Read lock variable

 } RWLOCK;

Function:

Locks the write access right for the resource associated with pRWLock.

pRWLock must be a pointer to the lock variable that has already been initialized in
SPIN_InitRWLock().

If read lock or write lock has already been performed, write lock fails and 0 is returned as the
return value. If neither read lock nor write lock has been performed, write lock succeeds and 1 is
returned as the return value.

Lock performed by this function is canceled by SPIN_WriteUnlock().

374

9.11.8 Cancel Write Lock (SPIN_WriteUnlock)

C-Language API:
 void SPIN_WriteUnlock(RWLOCK *pRWLock);

Parameters:
 pRWLock Pointer to lock variable

Packet Structure:
 typedef struct {

 UINT8 ucWriteLock; Write lock variable

 UINT8 ucReadLock; Read lock variable

 } RWLOCK;

Function:

Unlocks the write access right for the resource associated with pRWLock.

pRWLock must be a pointer to the lock variable that was acquired in SPIN_WriteLock() or
SPIN_WriteTryLock().

9.11.9 Check Write Lock State (SPIN_IsWriteLocked)

C-Language API:
 INT32 SPIN_IsWriteLocked(RWLOCK *pRWLock);

Parameters:
 pRWLock Pointer to lock variable

Packet Structure:
 typedef struct {

 UINT8 ucWriteLock; Write lock variable

 UINT8 ucReadLock; Read lock variable

 } RWLOCK;

Return Values:
 1: Locked

0: Not locked

Function:

1 is returned if pRWLock is write-locked and 0 is returned if pRWLock is not write-locked.

375

9.12 Semaphore Lock

9.12.1 Initialize Semaphore Register (SPIN_InitSemLock)

C-Language API:
 void SPIN_InitSemLock(UINT8 *pucSemRegister);

Parameters:
 pucSemRegister Semaphore register address

Function:

Initializes the semaphore register indicated by pucSemRegister.

The address of a semaphore register in the microcomputer used must be specified in
pucSemRegister.

9.12.2 Perform Semaphore Lock (SPIN_SemLock)

C-Language API:
 void SPIN_SemLock(UINT8 *pucSemRegister);

Parameters:
 pucSemRegister Semaphore register address

Function:

Locks the access right for the resource associated with pucSemRegister.

The address of a semaphore register in the microcomputer used must be specified in
pucSemRegister.

If the access right is already locked, the busy loop is executed in this function to wait for lock to
be canceled. After lock cancellation, the access right is locked.

Lock performed by this function is canceled by SPIN_SemUnlock().

376

9.12.3 Try to Perform Semaphore Lock (SPIN_SemTryLock)

C-Language API:
 INT32 SPIN_SemTryLock(UINT8 *pucSemRegister);

Parameters:
 pucSemRegister Semaphore register address

Return Values:
 1: Lock succeeded

0: Lock failed

Function:

Locks the access right for the resource associated with pucSemRegister.

The address of a semaphore register in the microcomputer used must be specified in
pucSemRegister.

If the access right is already locked, lock fails and 0 is returned as the return value. If the access
right is not locked, lock succeeds and 1 is returned as the return value.

Lock performed by this function is canceled by SPIN_SemUnlock().

9.12.4 Cancel Semaphore Lock (SPIN_SemUnlock)

C-Language API:
 void SPIN_SemUnlock(UINT8 *pucSemRegister);

Parameters:
 pucSemRegister Semaphore register address

Function:

Unlocks the access right for the resource associated with pucSemRegister.

The address of a semaphore register in the microcomputer used must be specified in
pucSemRegister.

377

Section 10 IPI

10.1 Overview

The IPI is software providing a primitive function for communication between the processors.

The IPI can create "IPI ports" for receiving data from another CPU. Up to eight IPI ports can be
created.

Table 10.1 Overview of IPI

No. Item Component

1 Hardware resources used by this software (1) Inter-processor interrupt function

(2) Semaphore registers (accessed within
the spinlock library)

2 Software components used by this software Spinlock library

3 Other software components using this
software

(1) Kernel (remote service calls)

(2) RPC library

10.2 IPI Structure

The IPI consists of API functions and inter-processor interrupt handler functions.

The API functions process the APIs of the IPI.

An inter-processor interrupt handler function is a processing function executed when an inter-
processor interrupt occurs. The user must appropriately register these functions in the kernel as
interrupt handlers. (IPI_init(), which initializes the IPI, does not define the interrupt handlers in the
kernel.)

378

10.3 Port ID

Each CPU has port IDs that have values from 0 to 7. The port IDs and inter-processor interrupts
have a one-to-one correspondence, as shown in table 10.2.

Table 10.2 Relationship between Port ID and Inter-Processor Interrupt

Port ID Vector Number Inter-Processor Interrupt Level

0 21 15

1 22 14

2 23 13

3 24 12

4 25 11

5 26 10

6 27 9

7 28 8

10.4 Overview of Operation

First, the port ID to be handled by the IPI must be defined at IPI configuration. In other words, the
vector number of the inter-processor interrupt used by the IPI must be determined.

In an application that receives data through communication using the IPI, IPI ports should be
created first using IPI_create(). At this time, the port ID to be created and the callback function
that is executed at data reception should be registered.

In an application that transmits data to an IPI port of another CPU, IPI_send() is used. At this time,
the target CPUID, port ID, and data to be transmitted should be specified. The transmit data size is
(1 byte + 4 bytes).

IPI_send() issues an inter-processor interrupt to the CPU to which data is transmitted. In the CPU
to which data is transmitted, this interrupt calls the callback function registered in IPI_create().
The transmitted data is passed to the callback function.

379

10.5 Notes

An API function may perform semaphore lock for an IPI port. If another program in the same
CPU calls an API to perform semaphore lock for the same IPI port, there is a possibility that a
deadlock occurs. In such a case, exclusive control within the same CPU should be performed by
the program that calls the API function.

For details on a deadlock, refer to section 9.3.1, Exclusive Control in the Same CPU and
Deadlock.

10.6 Provided Files

<RTOS_INST>\os\include\
 ipi.h API definition header file

<SAMPLE_INST>\R0K572650D000BR\cpuid1\ipi\
 ipi_config.h Configuration file (see section 10.7.1, Configuration)
 ipi_defs.h Internal definition file

 ipi.c Source code
<SAMPLE_INST>\R0K572650D000BR\cpuid2\ipi\
 ipi_config.h Configuration file (see section 10.7.1, Configuration)

 ipi_defs.h Internal definition file
 ipi.c Source code

Note that ipi_defs.h and ipi.c have the same contents in each directory.

380

10.7 Configuration and Build

The IPI must be separately configured for each CPU.

10.7.1 Configuration

Define the following in ipi_config.h.

(1) Definition of Ports to be Used

Defines whether to enable usage of the port for each ID.

When using the inter-processor interrupt for a purpose other than the IPI, set 0 as the definition for
that port ID. If a port ID defined as 0 is specified in IPI_create(), an error is returned.

/*** Defines using ports ***/

#define PORT0 1 /* 1:use PORT0, 0:not use PORT0 */

#define PORT1 1 /* 1:use PORT1, 0:not use PORT1 */

#define PORT2 1 /* 1:use PORT2, 0:not use PORT2 */

#define PORT3 1 /* 1:use PORT3, 0:not use PORT3 */

#define PORT4 1 /* 1:use PORT4, 0:not use PORT4 */

#define PORT5 1 /* 1:use PORT5, 0:not use PORT5 */

#define PORT6 1 /* 1:use PORT6, 0:not use PORT6 */

#define PORT7 1 /* 1:use PORT7, 0:not use PORT7 */

Note the following when making the definition.

(a) When accepting a remote service call from another CPU

When a value other than 0 is specified for remote_svc.num_server (number of SVC servers) in
the cfg file, make the definition so that the IPI port ID specified in remote_svc.ipi_portid is
enabled.

Note that the interrupt level of remote_svc.ipi_portid must be equal to or lower than
system.system_IPL. Otherwise, cfg72mp reports an error.

(b) When accepting RPC from another CPU

When a value other than 0 is specified for rpc_config.ulTableSize (number of RPC servers that
can be registered) in rpc_init(), make the definition so that the IPI port ID specified in
rpc_config.ulIPIPortID is enabled.

Note that the interrupt level of rpc_config.ulIPIPortID must be equal to or lower than
system.system_IPL. Otherwise, correct operation is not guaranteed.

381

(2) Semaphore Register Address Used in Each Port

Each port uses a semaphore register for exclusive control between the processors. The address of
the semaphore register used in each port is defined here. Note that the definition of the semaphore
register address for a port that has been defined as 0 in "(1) Definition of Ports to be Used" will be
ignored. The address of a single semaphore register must not be specified for two or more ports
even when the ports belong to different CPUs.

/*** Defines using ports ***/

#define PORT0_SEMADR 0xFFFC1E00

#define PORT1_SEMADR 0xFFFC1E04

#define PORT2_SEMADR 0xFFFC1E08

#define PORT3_SEMADR 0xFFFC1E0C

#define PORT4_SEMADR 0xFFFC1E10

#define PORT5_SEMADR 0xFFFC1E14

#define PORT6_SEMADR 0xFFFC1E18

#define PORT7_SEMADR 0xFFFC1E1C

(3) Base Address of Inter-Processor Interrupt Control Register

Specify the address of C0IPCR15 in the interrupt controller with a constant expression, regardless
of CPUID.

/*** Defines C0IPCR15 register address ***/

#define ADDR_C0IPCR15 0xFFFC1C00

382

(4) Stack Size Used by an Interrupt Handler

Define the stack size used by the inter-processor interrupt handler for each port. Note that the
definition of the stack size for a port that has been defined as 0 in "(1) Definition of Ports to be
Used" will be ignored.

/*** Defines stack size for interrupt handlers ***/

#define PORT0_STKSZ 0x400

#define PORT1_STKSZ 0x400

#define PORT2_STKSZ 0x400

#define PORT3_STKSZ 0x400

#define PORT4_STKSZ 0x400

#define PORT5_STKSZ 0x400

#define PORT6_STKSZ 0x400

#define PORT7_STKSZ 0x400

10.7.2 Build

Compile ipi.c and link it with programs using API functions (e.g. RPC).

Note that ipi.c includes mycpuid.h that is output from cfg72mp, and uses the macro MYCPUID
which is defined in that file.

The interrupt handlers need to be defined in the kernel using methods, such as registering it in the
cfg file.

For the IPI sections, refer to section 17.5.2, Sections.

383

10.8 API Functions

Table 10.3 lists the API functions.

Table 10.3 API Functions

No. API Name Function

1 IPI_init Initializes IPI

2 IPI_create Creates IPI port

3 IPI_delete Deletes IPI port

4 IPI_send Transmission to IPI port

10.8.1 Header File

Include ipi.h.

10.8.2 Basic Data Types

The basic data types defined in types.h are used.

For types.h, refer to section 19, types.h.

10.8.3 Initialize IPI (IPI_init)

C-Language API:
 INT32 IPI_init(void);

Return Values:
 IPI_E_OK Normal end

 IPI_E_NOINIT IPI is not initialized (detected only when MYCPUID = 2)

Function:

Initializes the IPI.

To call this API function from CPUID#2, IPI_init() has to be already completed in CPUID#1.

This API should be called by each CPU only once in the beginning.

384

Current CPU's IPI Ports Locked during API Function Execution:

All ports defined as "used" in ipi_config.h

Note:

Though the interrupt handlers described later are usually implemented by dynamically defining
them in the kernel in this initialization function, this is not performed in the state at shipment. This
is because the interrupt handlers cannot be dynamically defined when the interrupt vector table is
in ROM. The interrupt handlers described later should be defined as appropriate vector numbers
(vector numbers for inter-processor interrupts) at kernel configuration.

10.8.4 Create IPI Port (IPI_create)

C-Language API:
 INT32 IPI_create(

 UINT32 ulPortID,

 void (*pCallBack)(UINT8, UINT32));

Parameters:
 ulPortID Target port ID

 pCallBack Callback function address

Return Values:
 IPI_E_OK Normal end

 IPI_E_NOINIT IPI is not initialized

 IPI_E_PAR ulPortID is 8 or higher

 IPI_E_STATE Port ID already created has been specified

 Port ID defined as "not used" in configuration file has

been specified

Function:

Creates the IPI port of the port ID specified by ulPortID in the current CPU.

The address of the callback routine called when data is transmitted to the relevant port should be
specified in pCallBack. For the callback function, refer to section 10.10, Callback Function.

Current CPU's IPI Ports Locked during API Function Execution:

Port specified by ulPortID

385

10.8.5 Delete IPI Port (IPI_delete)

C-Language API:
 INT32 IPI_delete(

 UINT32 ulPortID);

Parameters:
 ulPortID Target port ID

Return Values:
 IPI_E_OK Normal end

 IPI_E_NOINIT IPI is not initialized

 IPI_E_PAR ulPortID is 8 or higher

 IPI_E_STATE Port ID not created has been specified

 Port ID in the middle of transmission has been specified

 Port ID defined as "not used" in configuration file has

been specified

Function:

Deletes the IPI port of the port ID specified by ulPortID.

Current CPU's IPI Ports Locked during API Function Execution:

Port specified by ulPortID

386

10.8.6 Transmission to IPI Port (IPI_send)

C-Language API:
 INT32 IPI_send(

 UINT32 ulCpuID,

 UINT32 ulPortID,

 UINT8 ucCode,

 UINT32 ulData);

Parameters:
 ulCpuID Target CPUID

 ulPortID Port ID

 ucCode Transmission code

 ulData Transmit data

Return Values:
 IPI_E_OK Normal end

 IPI_E_NOINIT IPI is not initialized

 IPI_E_PAR ulPortID is 8 or higher

 IPI_E_STATE Port ID not created has been specified

 Port ID defined as "not used" in configuration file has

been specified

Function:

Transmits ucCode and ulData to the port specified by ulPortID in the CPU specified by ulCpuID.

ucCode and ulData are passed to the callback function of the port to which ucCode and ucData are
transmitted. For the callback function, refer to section 10.10, Callback Function.

In this function, an inter-processor interrupt is requested to the target CPU. After that, busy-wait is
performed in this function until the target CPU accepts the interrupt.

If the IPI supports interrupt requests to the current CPU, transmission can also be performed to the
current CPU. However, in this case, this function must be called from a state in which the relevant
inter-processor interrupt can be accepted. Otherwise, the CPU gets deadlocked.

Current CPU's IPI Ports Locked during API Function Execution:

Port specified by ulPortID when ulCpuID is the current CPU

387

10.9 Inter-Processor Interrupt Handlers

An inter-processor interrupt handler is contained in each port of each CPU.

The inter-processor interrupt handlers are shown in table 10.4.

Table 10.4 Inter-Processor Interrupt Handlers

Port ID Vector Number
Inter-Processor
Interrupt Level

Interrupt Handler Function
Name

0 21 15 IPI_Port0Handler

1 22 14 IPI_Port1Handler

2 23 13 IPI_Port2Handler

3 24 12 IPI_Port3Handler

4 25 11 IPI_Port4Handler

5 26 10 IPI_Port5Handler

6 27 9 IPI_Port6Handler

7 28 8 IPI_Port7Handler

As described above, the interrupt handlers are not defined in the kernel by IPI_init() in the state at
shipment. Therefore the user needs to define these handlers in the kernel.

The state at shipment is as follows:

• Interrupt handlers are implemented as the HI7200/MP direct interrupt handlers.

• Interrupt handlers are defined in the kernel by the sample cfg file.

388

10.10 Callback Function

In IPI_create(), the callback function that is called at data reception should be specified.

This callback function must be written in the following format. The function name can be set
freely.

void callback(UINT8 ucCode, UINT32 ulData)

The values specified in IPI_send() are passed to ucCode and ulData, respectively.

The callback function is called from each inter-processor interrupt handler of the IPI. Take this
point in consideration when calculating the stack size used by the interrupt handler.

389

Section 11 SH2A-DUAL Cache-Support Library

11.1 Overview

The SH2A-DUAL cache-support library provides functions that allow maintenance of the local
caches for each of the CPUs within the SH2A-DUAL. These functions can be used to maintain
coherence between data in the cache and in the actual memory and so on.

Note, however, that the cache-support library does not provide any facilities for maintaining
coherence between the caches for the two CPUs.

Table 11.1 Outline of the SH2A-DUAL Cache-Support Library

Item Description

Hardware resource used Cache memory within the SH2A-DUAL

Software components used by this software None

Other software components using this
software

None

11.2 Notes

(1) Incorrect use of the cache-support library may affect system operation; for example,
coherence between the cache and the actual memory may not be maintainable. Before using
the cache-support library, ensure that you fully understand the specifications of the caches in
the target microcomputer and the behavior of the library.

(2) The cache-support library is just a set of functions. Tasks may be switched or interrupts may
be accepted while these functions are being executed. Prevent the occurrence of such events
as required before executing cache-support functions.

390

11.3 Directory and File Structure

<RTOS_INST>\os\include\

 sh2adual_cache.h API definition header file

<RTOS_INST>\os\lib\debug\

 sh2adual_cache.lib Library (with debugging information)

<RTOS_INST>\os\lib\release\

 sh2adual_cache.lib Library (without debugging information)

<RTOS_INST>\os\sh2adual_cache\ Workspace, etc. for creating the library

<RTOS_INST>\os\sh2adual_cache\sh2adual_cache\ Project, etc. for creating the library

<RTOS_INST>\os\sh2adual_cache\sh2adual_cache\include\ Internal definitions

<RTOS_INST>\os\sh2adual_cache\sh2adual_cache\source\ Source code

<RTOS_INST>\os\sh2adual_cache\sh2adual_cache\Debug\ Configuration directory

 (with debugging information)

<RTOIS_INST>\os\sh2adual_cache\sh2adual_cache\Release\ Configuration directory

 (without debugging information)

11.4 Building the Library

Building the library is not usually necessary. If you wish to build the library (e.g. for debugging),
you should use the provided High-performance Embedded Workshop workspace
(sh2adual_cache.hws).

11.5 Building the System

Programs that use functions of this API must be linked to the cache-support library. For sections
of the cache-support library, refer to section 17.5.2, Sections.

391

11.6 API Functions

Table 11.2 lists the API functions.

Table 11.2 Outline of the SH2A-DUAL Cache-Support Library

Classification API Name Description
Initialize sh2adual_ini_cac Initializes the cache
Clear sh2adual_clr_cac Clears the cache
Flush sh2adual_fls_cac Flushes the cache
Invalidate sh2adual_inv_cac Invalidates the cache

11.6.1 Header File

Include include\sh2adual_cache.h.

11.6.2 Basic Data Types

The basic data types defined in types.h are used.

For types.h, refer to section 19, types.h.

392

11.6.3 Initialize Cache (sh2adual_ini_cac)

C-Language API:

 INT32 sh2adual_ini_cac(UINT32 ulCacAtr);

Parameters:

 ulCacAtr Cache-initialization attribute

Return Value:

 CAC_E_OK Normal end

Function:

This function initializes the caches. More specifically, the CCR1 register is updated to a value
determined by ulCacAtr as described below. CCR1 is updated while SR.IMASK = 15.

Any of the following values or the logical OR of a combination of these values can be specified
for ulCacAtr. This function does not check the value for errors.

This function writes 1 to the CCR1.ICF and CCR1.OCF bits regardless of the ulCacAtr setting;
that is, any contents of the cache before this function call are cleared.

• TCAC_IC_ENABLE (H'00000100)

Setting this value enables the instruction cache (CCR1.ICE = 1); otherwise, the instruction
cache is disabled (CCR1.ICE = 0).

• TCAC_OC_ENABLE (H'00000001)

Setting this value enables the operand cache (CCR1.OCE = 1); otherwise, the operand cache is
disabled (CCR1.OCE = 0).

• TCAC_OC_WT (0x00000002)

Setting this value selects the write-through mode as the write mode for the target-cache area
(CCR1.WT = 1); otherwise, the write-back mode is selected (CCR1.WT = 0).

This API function does not manipulate the CCR2 register.

Do not call this API function when the cache memory is in the module-standby state.

393

11.6.4 Clear Cache (sh2adual_clr_cac)

C-Language API:

INT32 sh2adual_clr_cac(void *pStart, void *pEnd, UINT32 ulMode);

Parameters:

 pStart Address where cache clearing starts
 pEnd Address where cache clearing ends
 ulMode Target cache

Return Values:

 CAC_E_OK Normal end
 CAC_E_PAR Parameter error (pStart > pEnd or incorrect ulMode)

Function:

This function clears the caches. More specifically, the contents of the specified cache(s) are
invalidated, and if the operand cache contains data that have not been written back into memory,
the data are written into memory. Even when the cache-lock mode has been selected, all cache
entries that are locked will be cleared. This function does not unlock the entries.

The target cache is specified by ulMode. Any one of the following values can be specified for
ulMode.

• TC_FULL (H'00000000): Both the instruction cache and operand cache are to be cleared.

• TC_EXCLUDE_IC (H'00000001): Only the operand cache is to be cleared (the instruction
cache is excluded).

• TC_EXCLUDE_OC (H'00000002): Only the instruction cache is to be cleared (the operand
cache is excluded).

If the target cache has been disabled, however, it will not be cleared.

The address range for which the corresponding cache entries are to be cleared is specified by
pStart and pEnd. If pStart is not an integer multiple of 16, it is rounded down to the nearest such
number; if pEnd is not of the form (integer multiple of 16) - 1, it is rounded up to the nearest such
number.

394

(1) Clearing Cache for a Specified Address Range

This function clears the entries corresponding to the address range from pStart to pEnd in the
cache(s) specified by ulMode. If this address range includes a non-cacheable area, entries for that
area are not cleared.

When the operand cache is specified as a target (when TC_FULL or TC_EXCLUDE_IC is
specified for ulMode), this function copies dirty entries (entries that have not been written into
memory) back into memory before clearing them.

This processing is achieved by manipulating the memory-mapped cache. During processing, the
value of the SR.IMASK bit remains the same as when the function was called. If interrupts should
not be accepted during processing of this function, mask interrupts beforehand.

(2) Clearing All Entries

Specifying pStart = 0 and pEnd = H'ffffffff clears all entries in the cache(s) specified by ulMode.
This function performs the following processing.

(a) When TC_FULL or TC_EXCLUDE_OC is specified for ulMode, this function sets the
CCR1.ICF bit to 1 to invalidate all entries in the instruction cache. CCR1 is updated while
SR.IMASK = 15.

(b) After step (a), if TC_FULL or TC_EXCLUDE_IC has been specified for ulMode, this function
writes V = 0 and U = 0 to all entries in the memory-mapped operand cache. At the same time,
the dirty entries (U = 1: entries that have not been written back into memory) are copied back
into memory. During processing, the value of the SR.IMASK bit remains the same as when the
function was called. If interrupts should not be accepted during processing of this function,
mask interrupts beforehand.

This function reads the contents of the CCR1 register. If the contents of CCR1 are changed during
execution of this function, its operation is undefined.

Do not call this API function when the cache memory is in the module-standby state.

395

11.6.5 Flush Operand Cache (sh2adual_fls_cac)

C-Language API:

 INT32 sh2adual_fls_cac(void * pStart, void *pEnd);

Parameters:

 pStart Address where cache flushing starts
 pEnd Address where cache flushing ends

Return Values:

 CAC_E_OK Normal end
 CAC_E_PAR Parameter error (pStart > pEnd)

Function:

This function flushes the operand cache. More specifically, if the operand cache contains data that
have not been written back into memory, these data are copied back into memory. Even when the
cache-lock mode has been selected, all cache entries that are locked will be flushed. This does not
unlock the entries.

The address range for which the corresponding cache entries are to be flushed is specified by
pStart and pEnd. If pStart is not an integer multiple of 16, it is rounded down to the nearest such
number; if pEnd is not of the form (integer multiple of 16) - 1, it is rounded up to the nearest such
number.

When the operand cache is disabled or in the write-through mode, nothing is done in response to a
call of this function; that is, execution simply returns.

(1) Flushing Entries for a Specified Address Range

This function flushes the entries corresponding to the address range from pStart to pEnd in the
operand cache, that is, when the specified entries have not been written into memory, the entries
are copied back into memory. If this address range includes a non-cacheable area, the entries are
not flushed.

This processing is achieved by manipulating the cache based on allocation to memory. During
processing, the value of the SR.IMASK bit remains the same as when the function is called. If
interrupts should not be accepted during processing of this function, mask interrupts beforehand.

396

(2) Flushing All Entries

Specifying pStart = 0 and pEnd = H'ffffffff flushes all entries in the operand cache. This function
performs the following processing.

This function reads all entries of the operand cache that have been allocated to memory, and writes
V = 1 and U = 0 to the valid (V = 1) entries. During processing, the value of the SR.IMASK bit
remains the same as when the function was called. If interrupts should not be accepted during
processing of this function, mask interrupts beforehand.

This function reads the contents of the CCR1 register. If the contents of CCR1 are changed during
execution of this function, operation of the function is undefined. Do not call this API function
when the cache memory is in the module-standby state.

397

11.6.6 Invalidate Cache (sh2adual_inv_cac)

C-Language API:

 INT32 sh2adual_inv_cac(UINT32 ulMode);

Parameter:

 ulMode Target cache

Return Values:

 CAC_E_OK Normal end
 CAC_E_PAR Parameter error (incorrect ulMode)

Function:

This function invalidates the cache.

The target cache is specified by ulMode. Any of the following values can be specified for ulMode.

• TC_FULL (H'00000000): Both the instruction cache and operand cache are to be invalidated.

• TC_EXCLUDE_IC (H'00000001): Only the operand cache is to be invalidated (the instruction
cache is excluded).

• TC_EXCLUDE_OC (H'00000002): Only the instruction cache is to be invalidated (the
operand cache is excluded).

If the target cache has been disabled, however, it will not be invalidated.

The CCR1 register is updated as follows according to ulMode while SR.IMASK = 15.

• ulMode = TC_FULL

If the instruction cache is enabled, CCR1.ICF = 1; if the operand cache is enabled, CCR1.OCF
= 1.

• ulMode = TC_EXCLUDE_IC

If the operand cache is enabled, CCR1.OCF = 1.

• ulMode = TC_EXCLUDE_OC

If the instruction cache is enabled, CCR1.ICF = 1.

Do not call this API function when the cache memory is in the module-standby state.

398

399

Section 12 Application Program Creation

12.1 About the FPU

If you intend to use the SH2A-FPU, be sure to read section 20, Notes on the FPU, whether or not
you will actually need the floating-point operations.

12.2 Tasks

(1) Writing a Task

As shown in figure 12.1, tasks are written as normal C-language functions. Use an ext_tsk or
exd_tsk service call to end a task. If execution returns without ext_tsk or exd_tsk having been
called, operation is the same as if ext_tsk was explicitly called.

#include "kernel.h"

#pragma noregsave(Task) <- Since the task entry function does not

 need to guarantee the restoration of

 register contents, #pragma noregsave

 can be specified.

void Task(VP_INT exinf) <- When a task is initiated by the

{ TA_ACT attribute or act_tsk, exinf

 specified at the time of task creation

 is passed as a parameter; when a task

 is initiated by sta_tsk, stacd

 specified by sta_tsk is passed as a

 parameter.

 /* task processing */

 if(…)

 ext_tsk(); <- Use an ext_tsk or exd_tsk service

 call to end a task.

} <- If the call has not been made, ext_tsk

 is automatically called at the end of

 the function.

Figure 12.1 Example of a Task

400

A task can also be an endless loop. Figure 12.2 shows an example.

#include "kernel.h"

#pragma noregsave(Task)

void Task(VP_INT exinf)

{

 while(1) {

 /* task processing */

 }

}

Figure 12.2 Example of a Task as an Endless Loop

401

(2) Rules on Using Registers

Table 12.1 shows rules on using registers in tasks. Refer to this information when debugging or
creating tasks in assembly language.

Table 12.1 Rules on Using Registers in Tasks

Registers Guarantee*1 Initial Value

PC Not
necessary

Address where task starts

SR *2 H'00000000

R0 to R3 Not
necessary

Undefined

R4 Not
necessary

[Activation by TA_ACT attribute or act_tsk]

exinf as specified at the time of task creation

[Activation by sta_tsk]

stacd as specified by sta_tsk

R5 to R14, MACH, MACL,
GBR

Not
necessary

Undefined

R15 Necessary Last address of stack area for the task

PR Necessary Undefined

TBR *3 *3

[SH2A-FPU] FPSCR Not
necessary *4

H'00040001

[SH2A-FPU] FPUL,

FR0 to FR15

Not
necessary *4

Undefined

Notes: 1. Indicates whether the values before the task was launched must be restored to the
registers when execution is returned from the entry function.

 2. Except in the CPU-locked state, IMASK = 0 must be guaranteed.
 3. Depends on the system.tbr setting.
 (1) system.tbr = NOMANAGE: The kernel does not manipulate the TBR.

 (2) system.tbr = FOR_SVC: Do not modify the TBR.
 (3) system.tbr = TASK_CONTEXT: No guarantee is required and the initial value is

undefined.
 4. Available only when the TA_COP1 attribute has been specified; restoration of prior

values need not be guaranteed.

402

12.3 Task Exception Handling Routines

(1) Writing a Task Exception Handling Routine

As shown in figure 12.3, task exception handling routines are written as normal C-language
functions.

#includle "kernel.h"

#pragma noregsave (Texrtn) <- Since a task exception

 handling routine does not

 need to guarantee the

 restoration of register

 contents, #pragma noregsave

 can be specified.

void Texrtn(TEXPTN texptn, VP_INT exinf) <- The source of the exception

 and extended information are

 passed as parameters.

{

 /* Task exception handling routine */

 }

Figure 12.3 Example of a Task Exception Handling Routine

403

(2) Rules on Using Registers

Table 12.2 shows rules on using registers in task exception handling routines. Refer to this
information when debugging or creating a task exception handling routine in assembly language.

Table 12.2 Rules on Using Registers in a Task Exception Handling Routine

Registers Guarantee*1 Initial Value

PC Not
necessary

Address of the task exception handling routine

SR *2 0

R0 to R3 Not
necessary

Undefined

R4 Not
necessary

Task exception pattern

R5 Not
necessary

Extended information on the task

R6 to R14, MACH, MACL,
GBR

Not
necessary

Undefined

R15 Necessary Points to the task's stack area

PR Necessary Undefined

TBR *3 *3

[SH2A-FPU] FPSCR Not
necessary *4

H'00040001

[SH2A-FPU] FPUL,

FR0 to FR15

Not
necessary *4

Undefined

Notes: 1. Indicates whether the values before the task was launched must be restored to the
registers when execution is returned from the entry function.

 2. Except in the CPU-locked state, IMASK = 0 must be guaranteed.

 3. Depends on the system.tbr setting.
 (1) system.tbr = NOMANAGE: The kernel does not manipulate the TBR.
 (2) system.tbr = FOR_SVC: Do not modify the TBR.

 (3) system.tbr = TASK_CONTEXT: Restoration must be guaranteed. The initial value is
undefined.

 4. Available only when the TA_COP1 attribute is specified.

404

12.4 Extended Service Call Routines

(1) Writing an Extended Service Call Routine

As shown in figure 12.4, extended service call routines are written as normal C-language
functions.

#include "kernel.h"
ER_UINT Svcrtn(VP_INT par1,VP_INT par2) <- Parameters specified by
 cal_svc are passed to the
 extended service call
 routine.

{

 /* Extended service call routine */

 return E_OK; <- Passes the return value
 } to the caller.

Figure 12.4 Example of an Extended Service Call Routine

(2) Rules on Using Registers

An extended service call routine is executed by issuing an cal_svc or ical_svc service call in the
same way as a normal function call. Therefore, extended service call routines can use registers in
the same way as normal C language functions. For details, refer to the SuperH™ RISC engine
C/C++ Compiler User's Manual.

Parameters 1 to 4 specified by cal_svc are stored in the R4 to R7 registers. Note that the caller of
cal_svc or ical_svc determines whether or not the FPU registers can be used in an extended service
call routine.

405

12.5 Interrupt Handlers

12.5.1 Types of Interrupt Handler

There are two types of interrupt handler: normal interrupt handlers and direct interrupt handlers.

Normal interrupt handlers, which are initiated via the kernel when an interrupt occurs, are written
as normal C-language functions.

Direct interrupt handlers, on the other hand, are registered in the interrupt-exception vector table
for the CPU. Since these handlers are directly initiated in response to interrupts, they provide
faster operation than normal interrupt handlers. Direct interrupt handlers must be written as
interrupt functions (with the #pragma interrupt directive specified).

All of these interrupt handlers are executed in non-task contexts.

406

12.5.2 Register Banks

In this kernel, whether the interrupt uses register banks or not determines how direct interrupt
handlers are written and how normal interrupt handlers are defined. Table 12.3 shows how the
usage or non-usage of register banks by interrupts is differentiated.

Table 12.3 Usage of Register Banks

kernel_intspec.h cfg File

INTSPEC
_IBNR_ADR

INTSPEC
_NOBANK_VEC???
Correspondence to a
Defined Interrupt
No.? system.regbank

Interrupt
Level

Register Bank
Used?

0 ⎯ ⎯ ⎯ No

Yes ⎯ ⎯ No

NOTUSE ⎯ No

ALL ⎯ Yes

Other than 0

No

BANKLEVELxx Level not
defined in
system.regbank

No
(do not specify
VTA_REGBANK
when defining a
normal interrupt
handler)

 Level defined in
system.regbank

Yes
(VTA_REGBANK
must be specified
when defining a
normal interrupt
handler)

407

12.5.3 Normal Interrupt Handlers

When defining a normal interrupt handler, the VTA_REGBANK attribute must be specified if the
interrupt will use register banks. Conversely, the VTA_REGBANK attribute must not be specified
if the interrupt is not to use register banks (see table 12.3).

Handlers for interrupts (including the NMI) with a level higher than the kernel interrupt mask
level (system.system_IPL) must be written and defined as direct interrupt handlers. If such
handlers are written and defined as normal interrupt handlers, correct system operation cannot be
guaranteed.

(1) Writing a Normal Interrupt Handler

As shown in figure 12.5, normal interrupt handlers are written as normal C-language functions.

#include "kernel.h"

#pragma noregsave(Inh) <- Since a normal interrupt handler

 does not need to guarantee the

 restoration of register contents when

 the interrupt uses register banks,

 #pragma noregsave can be specified.

void Inh(void) <- An interrupt handler is defined as a

{ function having no parameter or return

 value.

 /* Handler processing */

}

Figure 12.5 Example of a Normal Interrupt Handler

(2) Rules on Using Registers

Table 12.4 shows rules on using registers in normal interrupt handlers. Refer to this information
when debugging or creating a normal interrupt handler in assembly language.

408

Table 12.4 Rules on Using Registers in a Normal Interrupt Handler

Registers Guarantee*1 Initial Value

PC Not
necessary

Address of the normal interrupt handler

SR *2 IMASK: Interrupt level. While a handler is being
executed, IMASK must not be lower than the current
interrupt level.

Other bits: Undefined

R0 to R7 Not
necessary

Undefined

R8 to R14, MACH, MACL,
GBR

Necessary *3 Undefined

R15 Necessary Points to the interrupt handler's stack area.

When an interrupt is accepted, entry/exit processing
by the kernel switches the stack to that for the
interrupt handlers. All normal interrupt handlers use
the same interrupt stack area.

The size of the interrupt stack area is defined by
system.stack_size. Note that the size must be
calculated carefully in consideration of interrupt
nesting. For details, refer to section 18.7, Normal
Interrupt Handler Stack (system.stack_size).

PR Necessary Undefined

TBR *4 *4

[SH2A-FPU] FPSCR,
FPUL, FR12 to FR15

Necessary *5 Undefined

Notes: 1. Indicates whether the values before the task was launched must be restored to the
registers when execution is returned from the entry function.

 2. The IMASK level must be guaranteed.
 3. No guarantee is required when the interrupt uses register banks (see table 12.3).
 4. Depends on the system.tbr setting.

 (1) system.tbr = NOMANAGE: The kernel does not manipulate the TBR.
 (2) system.tbr = FOR_SVC: Do not modify the TBR.
 (3) system.tbr = TASK_CONTEXT: Restoration must be guaranteed. The initial value is

undefined.
 5. To use the FPU in a handler, refer to section 20.3, Floating-Point Operations in

Handlers.

409

12.5.4 Direct Interrupt Handlers

When defining a direct interrupt handler, the VTA_DIRECT attribute must be specified.

Handlers for interrupts (including the NMI) with a level higher than the kernel interrupt mask
level (system.system_IPL) must be written and defined as direct interrupt handlers. If these
handlers are written and defined as normal interrupt handlers, correct system operation cannot be
guaranteed.

(1) Writing a Direct Interrupt Handler

As shown in figure 12.6, direct interrupt handlers are written as interrupt functions. Take care to
make specifications for an interrupt function in accord with the conditions listed in table 12.5.

#include "kernel.h"

#define stksz 512 (1)

VW stk[stksz/sizeof(VW)];

static const VP p_stk=(VP)&stk[stksz/sizeof(VW)]; (2)

#pragma interrupt(DirectInh(sp=p_stk,tn=25)) (3)

void DirectInh(void) (4)

{

 /* Handler processing */

}

Figure 12.6 Example of a Direct Interrupt Handler

Description:

(1) Allocate a stack area for the interrupt handler.

This is to avoid an overflow of the interrupted program's stack. Interrupt handlers at the same
interrupt level can share a stack.

(2) Define the initial value of the stack pointer as const.

(3) Declare the handler as an interrupt function by using a #pragma interrupt statement. Specify
the following items.

 (a) "sp=" (switching stack)

 For interrupts other than the NMI, the stack must be switched. In such cases, specify the
variable defined in (2).

 (b) "tn=" (return by TRAPA)

 For details, see table 12.5.

410

 (c) "resbank" (restore bank register)

 If the interrupt uses register banks, "resbank" must be specified. For details, see table 12.5.

(4) Write the handler as a function having no parameter or return value.

Table 12.5 "tn=" and "resbank"

Register
Bank Used? Interrupt Level "tn=" "resbank"

Higher than system.system_IPL Prohibited No *

Less than or equal to
system.system_IPL

"tn=63"

Prohibited

Yes * Higher than system.system_IPL Prohibited Necessary

 Less than or equal to
system.system_IPL

"tn=62"

Note: See table 12.3.

(2) Rules on Using Registers

Table 12.6 shows rules on using registers in direct interrupt handlers. Refer to this information
when debugging or creating a direct interrupt handler in assembly language.

411

Table 12.6 Rules on Using Registers in a Direct Interrupt Handler

Registers Guarantee*1 Initial Value

PC Not
necessary

Address of the direct interrupt handler

SR *2 IMASK: Interrupt level. While a handler is being
executed, IMASK must not be lower than the current
interrupt level.

Other bits: Same as before the interrupt

R0 to R14, MACH, MACL,
GBR

Necessary *3 Undefined

R15 Necessary Points to the stack area for the interrupted program.

[Interrupts other than the NMI]

To keep the stack in use by the program that was
running prior to the interrupt from overflowing, switch
the stack to a dedicated stack for the interrupt
handler. If this is not done, usage of the interrupted
stack by the interrupt handler may cause it to
overflow.

Direct interrupt handlers at the same interrupt level
can share a stack since such interrupt handlers will
not be executed simultaneously. When the stack is
shared by direct interrupt handlers at the same
interrupt level, definition of the stack size must be
based on the largest amount of stack usage by a
direct interrupt handler. A direct interrupt handler is
permitted to use four bytes of the interrupted stack.

[The NMI]

Do not switch the stack in cases where there is a
possibility of nested NMIs. Since the NMI interrupt
handler uses the same stack as was in use when the
NMI was generated, the amount of stack to be used
by the NMI interrupt handler must be added to the
stacks for tasks and interrupt handlers.

PR Necessary *3 Undefined

TBR *4 *4

[SH2A-FPU] FPSCR,
FPUL, FR0 to FR15

Necessary *5 Undefined

412

Notes: 1. Indicates whether the values before the task was launched must be restored to the
registers when execution is returned from the entry function (RTE or TRAPA
instruction).

 2. The IMASK level must be guaranteed.

 3. No guarantee is required when the interrupt uses register banks (see table 12.3).
 4. Depends on the system.tbr setting.
 (1) system.tbr = NOMANAGE: The kernel does not manipulate the TBR.

 (2) system.tbr = FOR_SVC: Do not modify the TBR.
 (3) system.tbr = TASK_CONTEXT: Restoration must be guaranteed. The initial value is

undefined.
 5. To use the FPU in a handler, refer to section 20.3, Floating-Point Operations in

Handlers.

12.6 CPU Exception Handlers (Including TRAPA Exceptions)

12.6.1 Types of CPU Exception Handler

There are two types of CPU exception handler: normal CPU exception handlers and direct CPU
exception handlers.

Normal CPU exception handlers, which are initiated via the kernel when a CPU exception occurs,
are written as normal C-language functions. When a CPU exception occurs, its number (vector
number) and other information are passed to the normal CPU exception handler as parameters.

Direct CPU exception handlers, on the other hand, are registered in the interrupt-exception vector
table for the CPU. Direct CPU exception handlers must be written as interrupt functions (with the
#pragma interrupt directive specified). Parameters are not passed to direct CPU exception
handlers.

413

12.6.2 Normal CPU Exception Handlers

(1) Writing a Normal CPU Exception Handler

As shown in figure 12.7, normal CPU exception handlers are written as normal C-language
functions.

#include "kernel.h"

void Exc(UW excno, VT_EXC *pk_exc) <- A CPU exception handler is

 defined as a function having no

 parameter or return value.

 CPU exception number and

{ other information on the

 /* Handler processing */ exception are passed as excno

} and pk_exc, respectively.

Figure 12.7 Example of a Normal CPU Exception Handler

The specification of the VT_EXC attribute is as follows:

typedef struct {

 UW r0; /* R0 when the CPU exception occurred */

 UW r1; /* R1 when the CPU exception occurred */

 UW r2; /* R2 when the CPU exception occurred */

 UW r3; /* R3 when the CPU exception occurred */

 UW r4; /* R4 when the CPU exception occurred */

 UW r5; /* R5 when the CPU exception occurred */

 UW r6; /* R6 when the CPU exception occurred */

 UW r7; /* R7 when the CPU exception occurred */

 UW pr; /* PR when the CPU exception occurred */

 UW pc; /* PC when the CPU exception occurred */

 UW sr; /* SR when the CPU exception occurred */

} VT_EXC;

When a normal CPU exception handler is initiated, R8 to R14, GBR, MACH, and MACL have the
same values as when the CPU exception occurred. The value of R15 at the time of the CPU
exception can be calculated by using the following formula: pk_exc + sizeof (VT_EXC).

414

(2) Rules on Using Registers

Table 12.7 shows rules on using registers in normal CPU exception handlers. Refer to this
information when debugging or creating a normal CPU exception handler in assembly language.

Table 12.7 Rules on Using Registers in a Normal CPU Exception Handler

Registers Guarantee*1 Initial Value

PC Not
necessary

Address of the normal CPU exception handler

SR *2 Same as before the CPU exception

R0 to R3, R6, R7 Not
necessary

Undefined

R4 Not
necessary

excno (vector number of the CPU exception that
occurred)

R5 Not
necessary

pk_exc

R8 to R14, MACH, MACL,
GBR

Necessary Same as when the CPU exception occurred

R15 Necessary Points to the stack area for the program that
generated the exception.

As a CPU exception handler is re-entrant, the CPU
exception handler uses the same stack as the
program which generated the exception. A CPU
exception handler cannot have a dedicated stack.

PR Necessary Undefined

TBR *3 *3

[SH2A-FPU] FPSCR,
FPUL, FR12 to FR15

Necessary *4 Same as when the CPU exception occurred

Notes: 1. Indicates whether the values before the task was launched must be restored to the
registers when execution is returned from the entry function.

 2. The IMASK level must be guaranteed.

 3. Depends on the system.tbr setting.
 (1) system.tbr = NOMANAGE: The kernel does not manipulate the TBR.
 (2) system.tbr = FOR_SVC: Do not modify the TBR.

 (3) system.tbr = TASK_CONTEXT: Restoration must be guaranteed. The initial value is
undefined.

 4. To use the FPU in a handler, refer to section 20.3, Floating-Point Operations in
Handlers.

415

12.6.3 Direct CPU Exception Handlers

(1) Writing a Direct CPU Exception Handler

As shown in figure 12.8, direct CPU exception handlers are written as interrupt functions.

#include "kernel.h"

#pragma interrupt(DirectExc) (1)

void DirectExc(void) (2)

{

 /* Handler processing */

}

Figure 12.8 Example of a Direct CPU Exception Handler

Description:

(1) Declare the handler as an interrupt function by using a #pragma interrupt statement. Do not
add anything as the interrupt specification of #pragma interrupt.

(2) Write the handler as a function having no parameter or return value.

(2) Rules on Using Registers

Table 12.8 shows rules on using registers in direct CPU exception handlers. Refer to this
information when debugging or creating a direct CPU exception handler in assembly language.

416

Table 12.8 Rules on Using Registers in a Direct CPU Exception Handler

Registers Guarantee*1 Initial Value

PC Not
necessary

Address of the direct CPU exception handler

SR *2 Same as before the CPU exception. While a handler
is being executed, IMASK must not be lower than the
current interrupt level.

R0 to R14, MACH, MACL,
GBR

Necessary Same as before the CPU exception

Points to the stack area for the program that
generated the exception.

As a CPU exception handler is re-entrant, the CPU
exception handler uses the same stack as the
program which generated the exception. A CPU
exception handler cannot have a dedicated stack.

 4 bytes

R15 -> PC at the time the CPU exception occurred

 SR at the time the CPU exception occurred

R15 before the

CPU exception ->

R15 Necessary

PR Necessary Undefined

TBR *3 *3

[SH2A-FPU] FPSCR,
FPUL, FR0 to FR15

Necessary *4 Undefined

Notes: 1. Indicates whether the values before the task was launched must be restored to the
registers when execution is returned from the entry function (by an RTE or TRAPA
instruction).

 2. The IMASK level must be guaranteed.
 3. Depends on the system.tbr setting.
 (1) system.tbr = NOMANAGE: The kernel does not manipulate the TBR.

 (2) system.tbr = FOR_SVC: Do not modify the TBR.
 (3) system.tbr = TASK_CONTEXT: Restoration must be guaranteed. The initial value is

undefined.
 4. To use the FPU in a handler, refer to section 20.3, Floating-Point Operations in

Handlers.

417

12.7 Time Event Handlers

(1) Writing a Time Event Handler

Time event handlers are written as normal C-language functions. Figure 12.9 shows an example of
a cyclic handler and an alarm handler. Figure 12.10 shows an example of an overrun handler
written in the C language. These handlers are executed in non-task contexts.

#include "kernel.h"

void Handler(VP_INT exinf) <- exinf is passed as a parameter

 specified at the time of generation.

{

 /* Handler processing */

}

Figure 12.9 Example of a Cyclic Handler and an Alarm Handler

#include “kernel.h”

void Overhdr (ID tskid, VP_INT exinf) <- tskid indicating the

 initiating factor and

 exinf for the task are

 passed.

{

 /* Handler processing */

}

Figure 12.10 Example of an Overrun Handler

(2) Rules on Using Registers

Table 12.9 shows rules on using registers in time event handlers. Refer to this information when
debugging or creating a time event handler in assembly language.

418

Table 12.9 Rules on Using Registers in a Time Event Handler

Registers Guarantee*1 Initial Value

PC Not
necessary

Address of the time event handler

SR *2 (1) IMASK

When the handler is initiated by a timer interrupt:

timer interrupt level (clock.IPL)

When the handler is initiated by calling vrst_tmr:

whichever is greater of the timer interrupt level
(clock.IPL) and the IMASK level when vrst_tmr was
called

While a handler is being executed, IMASK must not
be lower than the current interrupt level.

(2) Other bits: Undefined

R0 to R3 Not
necessary

Undefined

R4 Not
necessary

Cyclic handler or alarm handler: Extended information
on the handler

Overrun handler: Target task ID

R5 Not
necessary

Cyclic handler or alarm handler: Undefined

Overrun handler: Extended information on the target
task

R6, R7 Not
necessary

Undefined

R8 to R14, MACH, MACL,
GBR

Necessary Undefined

R15 Necessary Points to the timer stack area.

PR Necessary Undefined

TBR *3 *3

[SH2A-FPU] FPSCR,
FPUL, FR12 to FR15

Necessary *4 Undefined

Notes: 1. Indicates whether the values before the task was launched must be restored to the
registers when execution is returned from the entry function.

 2. The IMASK level must be guaranteed.

419

 3. Depends on the system.tbr setting.
 (1) system.tbr = NOMANAGE: The kernel does not manipulate the TBR.
 (2) system.tbr = FOR_SVC: Do not modify the TBR.

 (3) system.tbr = TASK_CONTEXT: Restoration must be guaranteed. The initial value is
undefined.

 4. To use the FPU in a handler, refer to section 20.3, Floating-Point Operations in
Handlers.

12.8 Initialization Routines

(1) Writing an Initialization Routine

Initialization routines are written as normal C-language functions. Figure 12.11 shows an example
of an initialization routine. Initialization routines are executed in non-task contexts.

#include "kernel.h"

void InitRoutine(VP_INT exinf) <- exinf is passed as a parameter

 specified at the time of

 generation.

{

 /* Handler processing */

}

Figure 12.11 Example of an Initialization Routine

(2) Rules on Using Registers

Table 12.10 shows rules on using registers in initialization routines. Refer to this information
when debugging or creating an initialization routine in assembly language.

420

Table 12.10 Rules on Using Registers in an Initialization Routine

Registers Guarantee*1 Initial Value

PC Not
necessary

Address of the initialization routine

SR *2 (1) IMASK: Kernel interrupt mask level
(system.system_IPL)

While a routine is being executed, IMASK must not
be lower than the current interrupt level.

(2) Other bits: Undefined

R0 to R3 Not
necessary

Undefined

R4 Not
necessary

Extended information on the routine

R5 to R7 Not
necessary

Undefined

R8 to R14, MACH, MACL,
GBR

Necessary Undefined

R15 Necessary Points to the kernel stack area.

PR Necessary Undefined

TBR *3 *3

[SH2A-FPU] FPSCR,
FPUL, FR12 to FR15

Necessary *4 Undefined

Notes: 1. Indicates whether the values before the task was launched must be restored to the
registers when execution is returned from the entry function.

 2. The IMASK level must be guaranteed.
 3. Depends on the system.tbr setting.
 (1) system.tbr = NOMANAGE: The kernel does not manipulate the TBR.

 (2) system.tbr = FOR_SVC: Do not modify the TBR.
 (3) system.tbr = TASK_CONTEXT: Restoration must be guaranteed. The initial value is

undefined.
 4. To use the FPU in a routine, refer to section 20.3, Floating-Point Operations in

Handlers.

421

12.9 Timer Drivers

When TIMER has been specified for clock.timer in the cfg file, it is necessary to create a timer
driver and link it to the kernel. Each CPU requires its own timer driver.

A timer driver consists of the functions listed below. Implement a timer driver with reference to
the information on the following pages and in timer driver files provided as samples.

• tdr_ini_tmr(): Initialize the timer

• tdr_int_tmr(): Execute timer-interrupt handling

• tdr_stp_tmr(): Stop the timer

• tdr_rst_tmr(): Restart the timer

422

12.9.1 tdr_ini_tmr(): Initialize Timer

Format:

 void tdr_ini_tmr(void);

Parameter:

 None

Return Value:

 None

Function:

This function initializes the timer.

For initialization, use the macros listed below. They are output to kernel_macro.h by cfg72mp. In
particular, the time cycle for timer interrupts must be TIC_NUME/TIC_DENO [ms].
kernel_macro.h is included from within kernel.h.

• TIC_NUME: Numerator of the timer-interrupt cycle (ms)

• TIC_DENO: Denominator of the timer-interrupt cycle (ms)

• TIM_LVL: Timer interrupt level

When TIMER has been specified for clock.timer, cfg72mp automatically takes the following
actions.

(a) Registers tdr_ini_tmr() as an initialization routine.

(b) Defines the processing module within the kernel library as a direct interrupt handler for the
interrupt number specified as clock.number. tdr_int_tmr() will be called from this kernel
module.

(2) Rules on Using Registers

Table 12.11 shows rules on using registers in tdr_ini_tmr(). Refer to this information when
debugging or creating tdr_ini_tmr() in assembly language.

423

Table 12.11 Rules on Using Registers in tdr_ini_tmr()

Registers Guarantee*1 Initial Value

PC Not
necessary

tdr_ini_tmr()

SR *2 IMASK: Kernel interrupt mask level
(system.system_IPL)

While tdr_ini_tmr() is being executed, IMASK must
not be lower than the current interrupt level.

Other bits: Undefined

R0 to R7 Not
necessary

Undefined

R8 to R14, MACH, MACL,
GBR

Necessary Undefined

R15 Necessary Points to the kernel stack area.

PR Necessary Undefined

TBR *3 *3

[SH2A-FPU] FPSCR,
FPUL, FR12 to FR15

Necessary *4 Undefined

Notes: 1. Indicates whether the values before the task was launched must be restored to the
registers when execution is returned from the entry function.

 2. The IMASK level must be guaranteed.
 3. Depends on the system.tbr setting.

 (1) system.tbr = NOMANAGE: The kernel does not manipulate the TBR.
 (2) system.tbr = FOR_SVC: Do not modify the TBR.
 (3) system.tbr = TASK_CONTEXT: Restoration must be guaranteed. The initial value is

undefined.
 4. To use the FPU in tdr_ini_tmr(), refer to section 20.3, Floating-Point Operations in

Handlers.

424

12.9.2 tdr_int_tmr(): Execute Timer-Interrupt Handling

Format:

 void tdr_int_tmr(void);

Parameter:

 None

Return Value:

 None

Function:

This function clears the timer interrupt source.

This function is called from within a timer-interrupt direct interrupt handler in the kernel: in other
words, it is called in a non-task context. Service calls for non-task contexts can be issued from
within this function.

Table 12.12 shows rules on using registers in tdr_int_tmr(). Refer to this information when
debugging or creating tdr_int_tmr() in assembly language.

425

Table 12.12 Rules on Using Registers in tdr_int_tmr()

Registers Guarantee*1 Initial Value

PC Not
necessary

tdr_int_tmr()

SR *2 IMASK: Timer interrupt level (clock.IPL)

While tdr_int_tmr() is being executed, IMASK must
not be lower than the value before the task was
launched.

Other bits: Undefined

R0 to R7 Not
necessary

Undefined

R8 to R14, MACH, MACL,
GBR

Necessary Undefined

R15 Necessary Points to the timer stack area.

PR Necessary Undefined

TBR *3 *3

[SH2A-FPU] FPSCR,
FPUL, FR12 to FR15

Necessary *4 Undefined

Notes: 1. Indicates whether the values before the task was launched must be restored to the
registers when execution is returned from the entry function.

 2. The IMASK level must be guaranteed.
 3. Depends on the system.tbr setting.

 (1) system.tbr = NOMANAGE: The kernel does not manipulate the TBR.
 (2) system.tbr = FOR_SVC: Do not modify the TBR.
 (3) system.tbr = TASK_CONTEXT: Restoration must be guaranteed. The initial value is

undefined.
 4. To use the FPU in tdr_int_tmr(), refer to section 20.3, Floating-Point Operations in

Handlers.

426

12.9.3 tdr_stp_tmr(): Stop Timer

Format:

 void tdr_stp_tmr(void);

Parameter:

 None

Return Value:

 None

Function:

This function stops the timer so that timer interrupts will not occur.

tdr_stp_tmr() is a callback function from the vstp_tmr service call and is executed as part of the
processing of the vstp_tmr service call. Service calls for non-task contexts can be issued from
within this function.

This function need not be implemented when the vstp_tmr service call has not been selected in the
cfg file.

Table 12.13 shows rules on using registers in tdr_stp_tmr(). Refer to this information when
debugging or creating tdr_stp_tmr() in assembly language.

427

Table 12.13 Rules on Using Registers in tdr_stp_tmr()

Registers Guarantee*1 Initial Value

PC Not
necessary

tdr_stp_tmr()

SR *2 IMASK: Timer interrupt level (clock.IPL)

While tdr_stp_tmr() is being executed, IMASK must
not be lower than the value before the task was
launched.

Other bits: Undefined

R0 to R7 Not
necessary

Undefined

R8 to R14, MACH, MACL,
GBR

Necessary Undefined

R15 Necessary Points to the timer stack area.

PR Necessary Undefined

TBR *3 *3

[SH2A-FPU] FPSCR,
FPUL, FR12 to FR15

Necessary *4 Undefined

Notes: 1. Indicates whether the values before the task was launched must be restored to the
registers when execution is returned from the entry function.

 2. The IMASK level must be guaranteed.
 3. Depends on the system.tbr setting.

 (1) system.tbr = NOMANAGE: The kernel does not manipulate the TBR.
 (2) system.tbr = FOR_SVC: Do not modify the TBR.
 (3) system.tbr = TASK_CONTEXT: Restoration must be guaranteed. The initial value is

undefined.
 4. To use the FPU in tdr_stp_tmr(), refer to section 20.3, Floating-Point Operations in

Handlers.

428

12.9.4 tdr_rst_tmr(): Restart Timer

Format:

 void tdr_rst_tmr(void);

Parameter:

 None

Return Value:

 None

Function:

This function restarts the timer so that timer interrupts will occur.

tdr_rst_tmr() is a callback function from the vrst_tmr or ivrst_tmr service call and is executed as
part of the processing of the vrst_tmr or ivrst_tmr service call. Service calls for non-task contexts
can be issued from within this function.

This function need not be implemented unless the vrst_tmr or ivrst_tmr service call has been
selected in the cfg file.

Table 12.14 shows rules on using registers in tdr_rst_tmr(). Refer to this information when
debugging or creating tdr_rst_tmr() in assembly language.

429

Table 12.14 Rules on Using Registers in tdr_rst_tmr()

Registers Guarantee*1 Initial Value

PC Not
necessary

tdr_rst_tmr()

SR *2 IMASK: Whichever of the following values is greater:

- timer interrupt level (clock.IPL);

- IMASK level at the time vrst_tmr or ivrst_tmr was
issued.

While tdr_rst_tmr() is being executed, IMASK must
not be lower than the value before the task was
launched.

Other bits: Undefined

R0 to R7 Not
necessary

Undefined

R8 to R14, MACH, MACL,
GBR

Necessary Undefined

R15 Necessary Points to the timer stack area.

PR Necessary Undefined

TBR *3 *3

[SH2A-FPU] FPSCR,
FPUL, FR12 to FR15

Necessary *4 Undefined

Notes: 1. Indicates whether the values before the task was launched must be restored to the
registers when execution is returned from the entry function.

 2. The IMASK level must be guaranteed.
 3. Depends on the system.tbr setting.
 (1) system.tbr = NOMANAGE: The kernel does not manipulate the TBR.

 (2) system.tbr = FOR_SVC: Do not modify the TBR.
 (3) system.tbr = TASK_CONTEXT: Restoration must be guaranteed. The initial value is

undefined.
 4. To use the FPU in tdr_rst_tmr(), refer to section 20.3, Floating-Point Operations in

Handlers.

430

12.10 System-Down Routines

The system-down routine is written as the following C-language function. Note that the name of
the routine is fixed.

 void _kernel_sysdwn(W type, VW inf1, VW inf2, VW inf3)

The system-down routine must be created and linked to the kernel.

Table 12.15 lists the specifications of parameters passed to the system-down routine.

Although the system-down routine can perform processing in response to abnormal conditions, it
cannot use kernel functions such as system calls if the internal operation of the kernel led to the
system going down (error type is negative).

Furthermore, execution does not return from a system-down routine.

When debugging an application program, preserve the state at the time the system went down,
make the program enter an endless loop, analyze the reasons for the system going down, and apply
countermeasures.

431

Table 12.15 Parameters Passed to the System-Down Routine

Cause
Error Type:
W type (R4)

System-Down
Information 1:
VW inf1 (R5)

System-Down
Information 2:
VW inf2 (R6)

System-Down
Information 3:
VW inf3 (R7)

vsys_dwn or
ivsys_down service call

1 to H’7fffffff Parameters of the vsys_dwn or ivsys_down service call

Contents of the packet
containing the initial
registration information
created by the cfg file
are incorrect (corrupted
data etc.)

0 Address where
incorrect data
were detected

Undefined

The initial registration
information in the cfg file
is incorrect

0

Error code
(negative) *1

Object type *1 Object number *1

A context error has
occurred due to an
ext_tsk service call
being issued in a non-
task context

H’ffffffff (-1) E_CTX
(H’ffffffe7)

Address where
ext_tsk was
called

Undefined

A context error has
occurred due to an
exd_tsk service call
being issued in a non-
task context

H’fffffffe (-2) E_CTX
(H’ffffffe7)

Address where
ext_tsk was
called

Undefined

Detection of a stack
overflow due to a
service call issued in a
task context

H’fffffff8 (-8) Task ID First address of
the task stack
area

Value of the
stack pointer on
detection of the
overflow

An undefined interrupt
has occurred.

Undefined Undefined

An undefined CPU
exception has occurred.

H’fffffff0 (-16) Vector number

PC value when
the exception
occurred

VT_EXC
*pk_exc *2

Notes: 1. The error code, object type, and object number correspond to the object for which initial
registration failed, as listed in table 12.16.

 2. Valid only when system.vector_type is ROM or RAM.

432

Table 12.16 Object Types and Numbers for Failures in Initial Registration

Note: The error code is that returned by the service call listed in this column.

Object Error Code (inf1) * Object Type (inf2)
Object Number
(inf3)

Interrupt or CPU
exception handler

def_inh 0 Vector number

Task cre_tsk 1 Local task ID

Task exception handling
routine

def_tex 2 Local task ID

Semaphore cre_sem 3 Local semaphore ID

Event flag cre_flg 4 Local event-flag ID

Data queue cre_dtq 5 Local data-queue ID

Mailbox cre_mbx 6 Local mailbox ID

Mutex cre_mtx 7 Local mutex ID

Message buffer cre_mbf 8 Local message-
buffer ID

Fixed-sized memory pool cre_pf 9 Local fixed-sized
memory pool ID

Variable-sized memory
pool

cre_mpl 10 Local variable-sized
memory pool ID

Cyclic handler cre_cyc 11 Local cyclic-handler
ID

Alarm handler cre_alm 12 Local alarm-handler
ID

Overrun handler def_ovr 13 Undefined

Extended service call
routine

def_svc 14 Function code

433

Section 13 Generating Load Modules

13.1 Introduction

In the HI7200/MP, a separate load module should be generated for each CPU.

Use the following procedures to generate a load module in most cases.

(1) Creating a High-performance Embedded Workshop workspace project

When using the High-performance Embedded Workshop, copy the provided sample High-
performance Embedded Workshop workspace project and use it as a template.

(2) Coding application programs

Code application programs with reference to provided sample programs.

(3) Creating a cfg file

Create a cfg file (with extension .cfg), which defines the task entry addresses or stack sizes, by
using a text editor with reference to the provided sample cfg file.

A cfg file can also be created through the GUI configurator.

(4) Executing the configurator

Use configurator cfg72mp to create configuration and header files.

To complete the configurator processing and build processing in a single execution, register
cfg72mp as a custom build phase in the High-performance Embedded Workshop.

434

(5) Generating a load module through a build

Use the High-performance Embedded Workshop to execute a build and generate a load module.

Figure 13.1 shows a flowchart of load module generation.

Standard C
 header file

High-performance
Embedded Workshop

CPU interrupt specification
definition file
(kernel_intspec.h)

GUI configurator

Configuration file

Configurator
cfg72mp

ID name
header file

HI7200/MP
header file

Application
header file

Application
source

Standard library
generator

System data
definition file

kernel_def.c
kernel_cfg.c

Compiler (shc) and assembler (asmsh)

Standard C
library

Application
object

kernel_def.obj
kernel_cfg.obj

HI7200/MP
library

Optimizing linkage editor (optlnk)

Absolute
load module

Note: The items in yellow are provided with the HI7200/MP.

Figure 13.1 Flowchart of Load Module Generation

435

Section 14 Configurator (cfg72mp)

14.1 Representation Format in cfg File

This section describes the representation format of the definition data in the cfg file.

14.1.1 Comment Statement

A statement from a double slash (//) to the end of a line is handled as a comment and no
processing is applied.

14.1.2 End of Statement

A statement must end with a semicolon (;).

14.1.3 Definition Statement

A definition statement must be written in the cfg file in either of the following formats.

Format 1: Definition name {

 Definition item name = Setting ;

 Definition item name = Setting ;

 ...

 };

Format 2: Definition name[Number] {

 Definition item name = Setting ;

 Definition item name = Setting ;

 ...

 };

Definition names and definition item names are character strings that are prescribed in the cfg file
specification, which are collectively called keywords. The format of keywords is the same as that
of symbols to be described later.

436

Settings are values that should be determined by the user. They can be written in the format of
numeric values, symbols, or external reference names to be described later. Available formats
depend on the keyword to define. Some keywords allow multiple settings to be made.

Numbers are used to distinguish between multiple definitions of a same type, such as definitions
of multiple tasks. Whether to use a number depends on the definition name.

Numbers must be written in the numeric value format. The meaning of a number depends on the
definition name; for example, it can be a task ID, a semaphore ID, or an interrupt vector number.
For some definition names, numbers can be omitted.

14.1.4 Numeric Value

A numeric value must be written in one of the following formats.

• Hexadecimal

Add "0x" or "0X" at the beginning of a numeric value or add "h" or "H" at the end. In the latter
format, be sure to add "0" at the beginning when the value begins with an alphabetic letter
from A to F or a to f. Note that the configurator does not distinguish between uppercase and
lowercase letters for alphabetic letters (A to F or a to f) used in numeric value representation. 2

• Decimal

Simply write an integer value as is usually done (23, for example). Note that a decimal value
must not begin with "0".

• Octal

Add "0" at the beginning of a numeric value or add "O" or "o" at the end.

• Binary

Add "B" or "b" at the end of a numeric value. Note that a binary value must not begin with "0".

2 The configurator distinguishes uppercase and lowercase letters except for A to F and a to f in
numeric value representation.

437

Table 14.1 Examples of Numeric Value Representation

Format Example

0xf12

0Xf12

0a12h

0a12H

12h

Hexadecimal

12H

Decimal 32

017

17o

Octal

17O

Binary 101110b

 101010B

A numeric value can include operators. Table 14.2 shows the available operators.

Table 14.2 Operators

Operator Precedence Direction of Computation

() High Left to right

-(unary minus) Right to left

* / % Left to right

+ -(binary minus) Low Left to right

The following are examples of numeric values.

• 123

• 123 + 0x23

• (23/4 + 3) * 2

• 100B + 0aH

A numeric value greater than 0xFFFFFFFF must not be specified.

438

14.1.5 Symbol

A symbol is a string of numeric characters, uppercase alphabetic letters, lowercase alphabetic
letters, underscores (_), and question marks (?). It must not begin with a numeric character.

The following are examples of symbols.

• _TASK1

• IDLE3

A symbol is used to specify an object ID name or a section name.

14.1.6 External Reference Name

An external reference name is an external reference symbol name in C language, which consists of
numeric characters, uppercase alphabetic letters, lowercase alphabetic letters, underscores (_), and
dollar signs ($). It must not begin with a numeric character and must end with "()".

An external reference name is used to refer to the address of an external function or variable from
the cfg file.

Table 14.3 shows examples of external reference names.

Table 14.3 Examples of External Reference Names

External Definition Symbol to be Referred to Representation of External Reference Name

main() function in C language main()

int data in C language (This cannot be represented because it is not
an address.)

Address of int data in C language data()

Address of int *pointer in C language pointer()

Address of the int array[] array in C language array()

Label _LABEL1 in the assembly language LABEL1()

Label LABEL2 in the assembly language (Cannot be referred to.)

14.1.7 Note

The configurator does not detect errors regarding duplicate specifications of ID names, section
names, and external reference names in the cfg file. In most cases, such errors will be reported
when the file output from the configurator is compiled.

439

14.2 Default cfg File

For most definition items, if the user omits settings, the settings in the default cfg file are used.
The default cfg file is <RTOS_INST>\cfg72mp\default.cfg. Be sure not to edit this file.

14.3 Definition Items in cfg File

The following items should be defined in the cfg file.

• System definition (system)

• Maximum ID definition (maxdefine)

• Default task stack area definition (memstk)

• Default data queue area definition (memdtq)

• Default message buffer area definition (memmbf)

• Default fixed-sized memory pool area definition (memmpf)

• Default variable-sized memory pool area definition (memmpl)

• System clock definition (clock)

• Remote service-call environment definition (remote_svc)

• Task definition (task[])

• Static stack area definition (static_stack[])

• Semaphore definition (semaphore[])

• Event flag definition (flag[])

• Data queue definition (dataqueue[])

• Mailbox definition (mailbox[])

• Mutex definition (mutex[])

• Message buffer definition (message_buffer[])

• Fixed-sized memory pool definition (memorypool[])

• Variable-sized memory pool definition (variable_memorypool[])

• Cyclic handler definition (cyclic_hand[])

• Alarm handler definition (alarm_hand[])

• Overrun handler definition (overrun_hand)

• Extended service call routine definition (extend_svc[])

• Interrupt handler and CPU exception handler definition (interrupt_vector[])

• Initialization routine definition (init_routine[])

• Service call definition (service_call)

440

14.3.1 Description Format

Description: Describes the definition item.

Definition Format: Shows the definition format that can be used for the definition item.

Specifiable Range: Shows the range of values that can be set.

Default Setting: Describes the value or processing when the definition is omitted.

GUI Configurator Item: Shows the corresponding definition item name in the GUI configurator.

Remarks: Describes the specification in special cases.

441

14.3.2 Defining the System (system)

This defines general information regarding the kernel system. The system definition must not be
omitted.

Format

system {

 cpuid = <Setting>; // (1) CPUID

 stack_size = <Setting>; // (2) Interrupt stack size

 kernel_stack_size = <Setting>; // (3) Kernel stack size

 priority = <Setting>; // (4) Maximum task priority

 system_IPL = <Setting>; // (5) Kernel interrupt mask level

 message_pri = <Setting>; // (6) Maximum message priority

 tic_deno = <Setting>; // (7) Time tick denominator

 tic_nume = <Setting>; // (8) Time tick numerator

 tbr = <Setting>; // (9) TBR register usage

 parameter_check = <Setting>; // (10) Service call parameter check

 mpfmanage = <Setting>; // (11) Fixed-sized memory pool management

 newmpl = <Setting>; // (12) Variable-sized memory pool

management

 trace = <Setting>; // (13) Service call trace

 trace_buffer = <Setting>; // (14) Buffer size for service call trace

 trace_object = <Setting>; // (15) Object count for service call trace

 action = <Setting>; // (16) Object manipulation

 vector_type = <Setting>; // (17) Interrupt vector type

 regbank = <Setting>; // (18) Register bank usage

};

442

Contents

(1) CPUID (cpuid)

Description: Defines the ID of the CPU on which this kernel is to run.

Definition Format: Numeric value

Specifiable Range: 1 or 2

Default Setting: This definition must not be omitted (an error will result).

GUI Configurator Item: CFG_MYCPUID

(2) Interrupt stack size (stack_size)

Description: Defines the size of the stack used by normal interrupt handlers. The
specified value is rounded up to a multiple of four. For the calculation of
the value to be set, refer to section 18.7, Normal Interrupt Handler Stack
(system.stack_size).

 According to this definition, the BC_hiirqstk section of stack_size bytes
is generated.

Definition Format: Numeric value

Specifiable Range: 128 to 0x20000000

Default Setting: Setting in the default cfg file (0x1000 at shipment) (with a warning)

GUI Configurator Item: CFG_IRQSTKSZ

Remarks: When system.vector_type is set to ROM_ONLY_DIRECT or
RAM_ONLY_DIRECT, this definition has no meaning. The BC_hiirqstk section is
not generated in this case.

(3) Kernel stack size (kernel_stack_size)

Description: Defines the size of the stack used by the kernel. The specified value is
rounded up to a multiple of four. For the calculation of the value to be set,
refer to section 18.10, Kernel Stack (system.kernel_stack_size).

 According to this definition, the BC_hiknlstk section of kernel_stack_size
bytes is generated.

Definition Format: Numeric value

Specifiable Range: 256 to 0x20000000

Default Setting: Setting in the default cfg file (0x400 at shipment) (with a warning)

GUI Configurator Item: CFG_KNLSTKSZ

443

(4) Maximum task priority (priority)

Description: Defines the maximum priority of the tasks used in the application.

Definition Format: Numeric value

Specifiable Range: 1 to 255

Default Setting: Setting in the default cfg file (255 at shipment) (with a warning)

GUI Configurator Item: CFG_MAXTSKPRI

(5) Kernel interrupt mask level (system_IPL)

Description: Defines the interrupt mask level used when a critical section of the kernel
is executed. An interrupt higher in priority than this mask level is treated
as a non-kernel interrupt.

Definition Format: Numeric value

Specifiable Range: 1 to 15

Default Setting: Setting in the default cfg file (15 at shipment) (with a warning)

GUI Configurator Item: CFG_KNLMSKLVL

(6) Maximum message priority (message_pri)

Description: Defines the maximum priority of the messages used in the mailbox
function.

 When the mailbox function is not used, this definition has no meaning.

Definition Format: Numeric value

Specifiable Range: 1 to 255

Default Setting: Setting in the default cfg file (255 at shipment) (with a warning)

GUI Configurator Item: CFG_MAXMSGPRI

(7) Time tick denominator (tic_deno)

Description: Defines the denominator of the time tick. At least the time tick numerator
or denominator must be set to 1.

 The time tick (cycle of kernel timer interrupts) is calculated by the
following equation.

 Time tick (ms) = tic_nume / tic_deno

 For example, to set the system clock cycle to 10 ms, specify tic_deno = 1
and tic_nume = 10.

 To set it to 0.1 ms, specify tic_deno = 10 and tic_nume = 1.

 If neither the denominator nor numerator is 1 (tic_deno = 5 and tic_nume
= 4, for example), an error will result.

444

 The unit of time used by the service calls is always milliseconds
regardless of the tic_nume and tic_deno settings. tic_nume and tic_deno
define the precision of the time managed by the kernel.

 When the time management function is not used (system.timer is set to
NOTIMER), the tic_deno and tic_deno definitions have no meaning.

Definition Format: Numeric value

Specifiable Range: 1 to 100

Default Setting: Setting in the default cfg file (1 at shipment) (with a warning)

GUI Configurator Item: CFG_TICDENO

(8) Time tick numerator (tic_nume)

Description: Defines the numerator of the time tick. For details, refer to the above
description of tic_deno.

Definition Format: Numeric value

Specifiable Range: 1 to 65535

Default Setting: Setting in the default cfg file (1 at shipment) (with a warning)

GUI Configurator Item: CFG_TICNUME

(9) TBR register usage (tbr)

Description: Defines the usage of the TBR register in the CPU.

Definition Format: Symbol

Specifiable Range: Select from the following.

⎯ NOMANAGE: The TBR is not used or managed.

⎯ FOR_SVC: The TBR is used to issue service calls.

⎯ TASK_CONTEXT: The TBR is managed as the task context
register.

Default Setting: Setting in the default cfg file (NOMANAGE at shipment) (with a
warning)

GUI Configurator Item: CFG_TBR

(10) Service call parameter check (parameter_check)

Description: Defines whether to detect errors in service call parameters. When the
parameter check function is not selected, the parameter errors indicated as
[p] in section 6. Kernel Service Calls, are not detected; in this case, the
operation is undefined if a service call includes a parameter error. Note
that the service call processing is faster when the parameter check
function is not selected.

Definition Format: Symbol

445

Specifiable Range: Select from the following.

⎯ YES: Detects errors in service call parameters.

⎯ NO: Does not detect errors in service call parameters.

Default Setting: Setting in the default cfg file (YES at shipment) (with a warning)

GUI Configurator Item: CFG_PARCHK

(11) Fixed-sized memory pool management (mpfmanage)

Description: Defines the management of fixed-sized memory pools; in particular, this
item defines whether to store the kernel management information in the
memory pool area (IN) or not (OUT). For the difference between these
management methods, refer to section 5.11, Fixed-Sized Memory Pools.

 When the fixed-sized memory pool function is not used, this definition
has no meaning.

Definition Format: Symbol

Specifiable Range: Select from the following.

⎯ IN: Stores the kernel management information in the memory pool
area.

⎯ OUT: Does not store the kernel management information in the
memory pool area.

Default Setting: Setting in the default cfg file (IN at shipment) (with a warning)

GUI Configurator Item: CFG_MPFMANAGE

(12) Variable-sized memory pool management (newmpl)

Description: Defines whether to use the conventional method (PAST) or new method
(NEW) to manage variable-sized memory pools.

 The new method has the following advantages over the conventional
method.

⎯ Reduces the degree of fragmentation of the free space in variable-
sized memory pools.

⎯ Reduces the overhead of memory block acquisition and release.

 For the difference between these management methods, refer to section
5.12.1, Controlling Memory Fragmentation.

 When the variable-sized memory pool function is not used, this definition
has no meaning.

Definition Format: Symbol

Specifiable Range: Select from the following.

⎯ PAST: Conventional method

446

⎯ NEW: New method

Default Setting: Setting in the default cfg file (PAST at shipment) (with a warning)

GUI Configurator Item: CFG_NEWMPL

(13) Service call trace (trace)

Description: Defines whether to incorporate the service call trace function. The
acquired service call trace information can be displayed through the
debugging extension.

 This function increases the service call processing time. For the service
call trace, refer to section 5.14.4, Service Call Trace.

Definition Format: Symbol

Specifiable Range: Select from the following.

⎯ NO: Does not incorporate the service call trace function.

⎯ TARGET_TRACE: Stores the service call trace information in the
buffer on the target system. The buffer size should be specified in
trace_buffer described below.

⎯ TOOL_TRACE: Stores the service call trace information in the
emulator or simulator manufactured by Renesas. Note that some
emulators do not support this function. In an emulator not supporting
this function, the service call trace information cannot be displayed
through the debugging extension even if TOOL_TRACE is specified.

Default Setting: Setting in the default cfg file (NO at shipment) (with a warning)

GUI Configurator Item: CFG_TRACE

(14) Buffer size for service call trace (trace_buffer)

Description: Defines the buffer size when trace is set to TARGET_TRACE. Specify
the size in bytes. The specified value is rounded up to a multiple of four.

Definition Format: Numeric value

Specifiable Range: 512 to 0x20000000

Default Setting: Setting in the default cfg file (0x10000 at shipment) (with a warning)

GUI Configurator Item: CFG_TRCBUFSZ

Remarks: When system.trace != TARGET_TRACE, this definition has no meaning.

447

(15) Object count for service call trace (trace_object)

Description: Defines the number of objects that can be acquired through the service
call trace function.

Definition Format: Numeric value

Specifiable Range: 0 to 32

Default Setting: Setting in the default cfg file (4 at shipment) (with a warning)

GUI Configurator Item: CFG_TRCOBJCNT

Remarks: When system.trace is set to NO, this definition has no meaning.

(16) Object manipulation (action)

Description: Defines whether to incorporate the function for issuing service calls from
the debugger, such as the debugging extension, that supports the OS
debugging function.

 As the object manipulation function uses a cyclic handler, the
maxdefine.max_cyh, service_call.cre_cyc, and icre_cyc values may be
corrected in some cases.

 Even when this item is set to YES, if the time management function is not
selected (clock.timer == NOTIMER), a warning message is output and
this item is corrected to NO.

Definition Format: Symbol

Specifiable Range: Select from the following.

⎯ YES: Incorporates the object manipulation function.

⎯ NO: Does not incorporate the object manipulation function.

Default Setting: Setting in the default cfg file (NO at shipment) (with a warning)

GUI Configurator Item: CFG_ACTION

(17) Interrupt vector type (vector_type)

Description: Defines the type of interrupt handlers to be used and allocation of
interrupt vector tables.

Definition Format: Symbol

Specifiable Range: Select from the following. Table 14.4 shows their differences.

⎯ ROM_ONLY_DIRECT

⎯ RAM_ONLY_DIRECT

⎯ ROM

⎯ RAM

Default Setting: Setting in the default cfg file (ROM at shipment) (with a warning)

GUI Configurator Item: CFG_DIRECT, CFG_VCTRAM

448

Table 14.4 Interrupt Vector Type

 ROM_ONLY_
DIRECT

RAM_ONLY_
DIRECT ROM RAM

Available handlers • Direct interrupt handler

• Direct CPU exception handler

• Direct interrupt handler

• Direct CPU exception handler

• Normal interrupt handler

• Normal CPU exception handler

def_int, def_exc,
and vdef_trp
service calls *

Not incorporated Incorporated Not incorporated Incorporated

GUI configurator
setting

CFG_DIRECT: On

CFG_VCTRAM: Off

CFG_DIRECT: On

CFG_VCTRAM: On

CFG_DIRECT: Off

CFG_VCTRAM: Off

CFG_DIRECT: Off

CFG_VCTRAM: On

Note: * The definitions of these service calls set in service_call are ignored.

(18) Register bank usage (regbank)

Description: Defines the usage of the on-chip register bank in the processor.

 Note that depending on the kernel_intspec.h setting, the register bank
might not be used for any interrupt regardless of the setting here. For
details, refer to section 17.3, Creating CPU Interrupt Specification
Definition File (kernel_intspec.h).

 In addition, note that the format of direct interrupt handler creation
depends on whether the register bank is used.

Definition Format: Symbol

Specifiable Range: See table 14.5.

449

Table 14.5 regbank Definition

Usage Definition

The register bank function is not
used.

NOTUSE

The register bank is used for all
interrupts. *

ALL

Whether to use the register bank
is specified for each interrupt
level. *

Specify the following symbol according to the interrupt level to
use the register bank. To specify multiple levels, separate the
symbols with a comma (,).

BANKLEVEL01: Interrupt level 1

BANKLEVEL02: Interrupt level 2

BANKLEVEL03: Interrupt level 3

BANKLEVEL04: Interrupt level 4

BANKLEVEL05: Interrupt level 5

BANKLEVEL06: Interrupt level 6

BANKLEVEL07: Interrupt level 7

BANKLEVEL08: Interrupt level 8

BANKLEVEL09: Interrupt level 9

BANKLEVEL10: Interrupt level 10

BANKLEVEL11: Interrupt level 11

BANKLEVEL12: Interrupt level 12

BANKLEVEL13: Interrupt level 13

BANKLEVEL14: Interrupt level 14

BANKLEVEL15: Interrupt level 15

Note: * The register bank is not used for the interrupt sources that are defined not to use the
register bank in kernel_intspec.h.

450

Default Setting: Setting in the default cfg file (ALL at shipment) (with a warning)

GUI Configurator Item: CFG_REGBANK

Remarks: The kernel initializes the necessary registers in the interrupt controller as follows
when a vsta_knl call is issued if INTSPEC_IBNR_ADR1 (for CPUID#1) or
INTSPEC_IBNR_ADR2 (for CPUID#2) in kernel_intspec.h is not 0.

(1) When system.regbank is set to ALL:

IBNR is initialized to 0x4000.

(2) When system.regbank is set to BANKLEVELxx:

IBNR is initialized to 0xC000, and IBCR is initialized so that the specified
levels of interrupts use the register bank.

(3) When system.regbank is set to NOTUSE:

IBNR is initialized to 0.

14.3.3 Defining the Maximum IDs (maxdefine)

This defines the maximum local ID for each kernel object. Each kernel object can use local IDs
within the range from 1 to the defined maximum ID.

Definitions can be omitted except for static_task. If a definition is omitted, the minimum value is
automatically set (for example, enough value to use all the corresponding objects defined (xxxx[])
in the cfg file).

Even when a definition is not omitted, if the specified value is smaller than the ID or vector
number specified in the corresponding object definition (xxxx[]) in the cfg file, the maximum ID
is automatically increased. In this case, a warning message will be output.

451

Format

maxdefine{

 max_task = <Setting>; // Maximum local task ID

 max_statictask = <Setting>; // Maximum local task ID using static stack

 max_sem = <Setting>; // Maximum local semaphore ID

 max_flag = <Setting>; // Maximum local event flag ID

 max_dtq = <Setting>; // Maximum local data queue ID

 max_mbx = <Setting>; // Maximum local mailbox ID

 max_mtx = <Setting>; // Maximum local mutex ID

 max_mbf = <Setting>; // Maximum local message buffer ID

 max_mpf = <Setting>; // Maximum local fixed-sized memory pool ID

 max_mpl = <Setting>; // Maximum local variable-sized memory pool

ID

 max_cyh = <Setting>; // Maximum local cyclic handler ID

 max_alh = <Setting>; // Maximum local alarm handler ID

 max_fncd = <Setting>; // Maximum extended service call function

code

 max_int = <Setting>; // Maximum interrupt vector number

};

Contents

(1) Maximum local task ID (max_task)

Description: A value from 1 to max_task can be used for a local task ID.

Definition Format: Numeric value

Specifiable Range: 1 to 1023

Default Setting: Automatically calculated.

GUI Configurator Item: CFG_MAXTSKID

(2) Maximum local task ID using static stack (max_statictask)

Description: In this OS, tasks with local task IDs 1 to max_statictask use the static
stack defined as described in section 14.3.12, Static Stack Area Definition
(static_stack[]). When this item is set to 0, no task uses the static stack.

Definition Format: Numeric value

Specifiable Range: 0 to 1023

Default Setting: Setting in the default cfg file (0 at shipment) (with a warning)

452

GUI Configurator Item: CFG_STSTKID

(3) Maximum local semaphore ID (max_sem)

Description: A value from 1 to max_sem can be used for a local semaphore ID. When
max_sem is set to 0, no semaphore can be used.

Definition Format: Numeric value

Specifiable Range: 0 to 1023

Default Setting: Automatically calculated.

GUI Configurator Item: CFG_MAXSEMID

Remarks: When ((service_call.cre_sem == NO) && (service_call.icre_sem == NO)),
max_sem is assumed to be 0. All semaphore[] settings are ignored.

(4) Maximum local event flag ID (max_flag)

Description: A value from 1 to max_flag can be used for a local event flag ID. When
max_flag is set to 0, no event flag can be used.

Definition Format: Numeric value

Specifiable Range: 0 to 1023

Default Setting: Automatically calculated.

GUI Configurator Item: CFG_MAXFLGID

Remarks: When ((service_call.cre_flg == NO) && (service_call.icre_flg == NO)), max_flag
is assumed to be 0. All eventflag[] settings are ignored.

(5) Maximum local data queue ID (max_dtq)

Description: A value from 1 to max_dtq can be used for a local data queue ID. When
max_dtq is set to 0, no data queue can be used.

Definition Format: Numeric value

Specifiable Range: 0 to 1023

Default Setting: Automatically calculated.

GUI Configurator Item: CFG_MAXDTQID

Remarks: When ((service_call.cre_dtq == NO) && (service_call.icre_dtq == NO)), max_dtq
is assumed to be 0. All dataqueue[] settings are ignored. The memdtq definition is
also ignored, and the default data queue area is not generated.

453

(6) Maximum local mailbox ID (max_mbx)

Description: A value from 1 to max_mbx can be used for a local mailbox ID. When
max_mbx is set to 0, no mailbox can be used.

Definition Format: Numeric value

Specifiable Range: 0 to 1023

Default Setting: Automatically calculated.

GUI Configurator Item: CFG_MAXMBXID

Remarks: When ((service_call.cre_mbx == NO) && (service_call.icre_mbx == NO)),
max_mbx is assumed to be 0. All mailbox[] settings are ignored.

(7) Maximum local mutex ID (max_mtx)

Description: A value from 1 to max_mtx can be used for a local mutex ID. When
max_mtx is set to 0, no mutex can be used.

Definition Format: Numeric value

Specifiable Range: 0 to 1023

Default Setting: Automatically calculated.

GUI Configurator Item: CFG_MAXMTXID

Remarks: When (service_call.cre_mtx == NO), max_mtx is assumed to be 0. All mutex[]
settings are ignored.

(8) Maximum local message buffer ID (max_mbf)

Description: A value from 1 to max_mbf can be used for a local message buffer ID.
When max_mbf is set to 0, no message buffer can be used.

Definition Format: Numeric value

Specifiable Range: 0 to 1023

Default Setting: Automatically calculated.

GUI Configurator Item: CFG_MAXMBFID

Remarks: When ((service_call.cre_mbf == NO) && (service_call.icre_mbf == NO)),
max_mbf is assumed to be 0. All message_buffer[] settings are ignored. The
memmbf definition is also ignored, and the default message buffer area is not
generated.

454

(9) Maximum local fixed-sized memory pool ID (max_mpf)

Description: A value from 1 to max_mpf can be used for a local fixed-sized memory
pool ID. When max_mpf is set to 0, no fixed-sized memory pool can be
used.

Definition Format: Numeric value

Specifiable Range: 0 to 1022

Default Setting: Automatically calculated.

GUI Configurator Item: CFG_MAXMPFID

Remarks: When ((service_call.cre_mpf == NO) && (service_call.icre_mpf == NO)),
max_mpf is assumed to be 0. All memorypool[] settings are ignored. The memmpf
definition is also ignored, and the default fixed-sized memory pool area is not
generated.

 Note that when remote_svc.num_wait is a positive value, both cre_mpf and
icre_mpf are corrected to YES.

(10) Maximum local variable-sized memory pool ID (max_mpl)

Description: A value from 1 to max_mpl can be used for a local variable-sized
memory pool ID. When max_mpl is set to 0, no variable-sized memory
pool can be used.

Definition Format: Numeric value

Specifiable Range: 0 to 1023

Default Setting: Automatically calculated.

GUI Configurator Item: CFG_MAXMPLID

Remarks: When ((service_call.cre_mpl == NO) && (service_call.icre_mpl == NO)),
max_mpl is assumed to be 0. All variable_memorypool[] settings are ignored. The
memmpl definition is also ignored, and the default variable-sized memory pool
area is not generated.

(11) Maximum local cyclic handler ID (max_cyh)

Description: A value from 1 to max_cyh can be used for a local cyclic handler ID.
When max_cyh is set to 0, no cyclic handler can be used.

Definition Format: Numeric value

Specifiable Range: 0 to 14

Default Setting: Automatically calculated.

GUI Configurator Item: CFG_MAXCYCID

Remarks: When ((service_call.cre_cyc == NO) && (service_call.icre_cyc == NO)),
max_cyh is assumed to be 0. All cyclic_hand[] settings are ignored.

455

 Note that when system.action is YES, both cre_cyc and icre_cyc are corrected to
YES.

(12) Maximum local alarm handler ID (max_alh)

Description: A value from 1 to max_alh can be used for a local alarm handler ID.
When max_alh is set to 0, no alarm handler can be used.

Definition Format: Numeric value

Specifiable Range: 0 to 15

Default Setting: Automatically calculated.

GUI Configurator Item: CFG_MAXALMID

Remarks: When ((service_call.cre_alm == NO) && (service_call.icre_alm == NO)),
max_alh is assumed to be 0. All alarm_hand[] settings are ignored.

(13) Maximum extended service call function code (max_fncd)

Description: A value from 1 to max_fncd can be used for an extended service call
function code. When max_fncd is set to 0, no extended service call can be
used.

Definition Format: Numeric value

Specifiable Range: 0 to 1023

Default Setting: Automatically calculated.

GUI Configurator Item: CFG_MAXSVCCD

Remarks: When ((service_call.def_svc == NO) && (service_call.idef_svc == NO)),
max_fncd is assumed to be 0. All extend_svc [] settings are ignored.

(14) Maximum interrupt vector number (max_int)

Description: A value from 0 to max_int can be used for an interrupt or exception
vector number. Note that this OS does not manage the reset vectors
(vector numbers 0 to 3).

 Operation is undefined when an interrupt with a vector number greater
than max_int occurs while the system is working.

Definition Format: Numeric value

Specifiable Range: 64 to 511

Default Setting: Automatically calculated.

GUI Configurator Item: CFG_MAXVCTNO

456

14.3.4 Defining the Default Task Stack Area (memstk)

According to this definition, the BC_hitskstk section of all_memsize bytes is generated.

Format

memstk{

 all_memsize = <Setting>; // Default task stack area size

};

Contents

(1) Default task stack area size (all_memsize)

Description: Defines the size of the default task stack area. The specified value is
rounded up to a multiple of four. For the calculation of the value to be set,
refer to section 18.6.3, Calculation of Default Task Stack Area Size
(memstk.all_memsize).

 According to this definition, the BC_hitskstk section of all_memsize
bytes is generated.

Definition Format: Numeric value

Specifiable Range: 0 to 0x20000000

Default Setting: Automatically calculated according to all task[] definitions as described
in section 18.6.3, Calculation of Default Task Stack Area Size
(memstk.all_memsize).

GUI Configurator Item: CFG_TSKSTKSZ

457

14.3.5 Defining the Default Data Queue Area (memdtq)

According to this definition, the BC_hidtq section of all_memsize bytes is generated.

Format

memdtq {

 all_memsize = <Setting>; // Default data queue area size

};

Contents

(1) Default data queue area size (all_memsize)

Description: Defines the size of the default data queue area. The specified value is
rounded up to a multiple of four.

 The required size of the default data queue area is calculated by the
following equation.

 Σ(TSZ_DTQ(data count) + 0x10) + 0x1C

 The Σ term in the equation should be calculated for the data queues that
satisfy all of the following conditions.

 (1) The data count is not 0.

 (2) The data queue address is NULL.

 Note that when the result of the Σ term calculation is 0, 0x10 is used
instead of it.

 According to this definition, the BC_hidtq section of all_memsize bytes is
generated.

Definition Format: Numeric value

Specifiable Range: 0 to 0x20000000

Default Setting: Automatically calculated according to all dataqueue[] definitions by the
above equation.

GUI Configurator Item: CFG_DTQSZ

458

14.3.6 Defining the Default Message Buffer Area (memmbf)

According to this definition, the BC_himbf section of all_memsize bytes is generated.

Format

memmbf{

 all_memsize = <Setting>; // Default message buffer area size

};

Contents

(1) Default message buffer area size (all_memsize)

Description: Defines the size of the default message buffer area. The specified value is
rounded up to a multiple of four.

 The required size of the default message buffer area is calculated by the
following equation.

 Σ(message buffer size + 0x10) + 0x1C

 The Σ term in the equation should be calculated for the message buffers
that satisfy all of the following conditions.

 (1) The message buffer size is not 0.

 (2) The message buffer address is NULL.

 Note that when the result of the Σ term calculation is 0, 0x10 is used
instead of it.

 According to this definition, the BC_himbf section of all_memsize bytes
is generated.

Definition Format: Numeric value

Specifiable Range: 0 to 0x20000000

Default Setting: Automatically calculated according to all message_buffer[] definitions by
the above equation.

GUI Configurator Item: CFG_MBFSZ

459

14.3.7 Defining the Default Fixed-Sized Memory Pool Area (memmpf)

According to this definition, the BC_himpf section of all_memsize bytes is generated.

Format

memmpf{

 all_memsize = <Setting>; // Default fixed-sized memory pool area size

};

Contents

(1) Default fixed-sized memory pool area size (all_memsize)

Description: Defines the size of the default fixed-sized memory pool area. The
specified value is rounded up to a multiple of four.

 The required size of the default fixed-sized memory pool area is
calculated by the following equation.

 Σ(TSZ_MPF(block count, block size) + 0x10) + 0x1C

 The Σ term in the equation should be calculated for the fixed-sized
memory pools whose address is not NULL. When the result of the Σ term
calculation is 0, 0x10 is used instead of it.

 Note that the definition contents of the TSZ_MPF() macro depend on the
system.mpfmanage setting.

 According to this definition, the BC_himpf section of all_memsize bytes
is generated.

Definition Format: Numeric value

Specifiable Range: 0 to 0x20000000

Default Setting: Automatically calculated by the above equation.

GUI Configurator Item: CFG_MPFSZ

460

14.3.8 Defining the Default Variable-Sized Memory Pool Area (memmpl)

According to this definition, the BC_himpl section of all_memsize bytes is generated.

Format

memmpl{

 all_memsize = <Setting>; // Default variable-sized memory pool area size

};

Contents

(1) Default variable-sized memory pool area size (all_memsize)

Description: Defines the size of the default variable-sized memory pool area. The
specified value is rounded up to a multiple of four.

 The required size of the default variable-sized memory pool area is
calculated by the following equation.

 Σ(memory pool size + 0x10) + 0x1C

 The Σ term in the equation should be calculated for the variable-sized
memory pools whose address is not NULL. When the result of the Σ term
calculation is 0, 0x10 is used instead of it.

 According to this definition, the BC_himpl section of all_memsize bytes
is generated.

Definition Format: Numeric value

Specifiable Range: 0 to 0x20000000

Default Setting: Automatically calculated by the above equation.

GUI Configurator Item: CFG_MPLSZ

461

14.3.9 Defining the System Clock (clock)

This defines the information related to the system clock.

Format

clock {

 timer = <Setting>; // (1) Timer mode

 IPL = <Setting>; // (2) Timer interrupt level

 number = <Setting>; // (3) Timer interrupt vector number

 stack_size = <Setting>; // (4) Timer stack size

};

Contents

(1) Timer mode (timer)

Description: Defines whether to use the time management function of the kernel.
When using the time management function, link a timer driver with the
kernel.

 When this item is set to TIMER, the following descriptions are assumed
in the cfg file.

 // Definition of timer driver initialization routine

 init_routine[] {

 exinf = 0;

 entry_address = tdr_ini_tmr();

 };

 // Definition of kernel timer interrupt handler

 interrupt_vector[<clock.number setting>] {

 direct = ON;

 regbank = ON;

 entry_address = _kernel_isig_tim();

 };

Definition Format: Symbol

Specifiable Range: Select from the following.

462

⎯ TIMER: Uses the time management function of the kernel.

⎯ NOTIMER: Does not use the time management function of the
kernel.

Default Setting: Setting in the default cfg file (NOTIMER at shipment) (with a warning)

GUI Configurator Item: CFG_TIMUSE

(2) Timer interrupt level (IPL)

Description: Defines the level of the kernel timer interrupt. When the timer mode is set
to NOTIMER, this definition has no meaning.

 Specify a value not greater than the kernel interrupt mask level
(system.system_IPL); otherwise, an error will result.

Definition Format: Numeric value

Specifiable Range: 1 to 15

Default Setting: Setting in the default cfg file (15 at shipment) (with a warning)

 (If system.system_IPL is smaller than 15, an error will result.)

GUI Configurator Item: CFG_TIMINTLVL

Remarks: When clock.timer is set to NOTIMER, this definition has no meaning.

(3) Timer interrupt vector number (number)

Description: Defines the vector number used by the kernel timer.

 If the vector number specified here is used for an interrupt_vector[]
definition, the configurator will report an error.

Definition Format: Numeric value

Specifiable Range: 64 to 511

Default Setting: This definition must not be omitted (an error will result).

GUI Configurator Item: CFG_TIMINTNO

Remarks: When clock.timer is set to NOTIMER, this definition has no meaning.

(4) Timer stack size (stack_size)

Description: Defines the timer stack size. The specified value is rounded up to a
multiple of four. For the calculation of the value to be set, refer to section
18.9, Timer Stack (clock.stack_size).

 According to this definition, the BC_hitmrstk section of stack_size bytes
is generated.

Definition Format: Numeric value

Specifiable Range: 0 to 0x20000000

Default Setting: Setting in the default cfg file (0x100 at shipment) (with a warning)

463

GUI Configurator Item: CFG_TMRSTKSZ

Remarks: When clock.timer is set to NOTIMER, this definition has no meaning.

14.3.10 Defining the Remote Service-Call Environment (remote_svc)

Format

remote_svc{

 num_server = <Setting>; // (1) Number of SVC server tasks

 priority = <Setting>; // (2) Priority of SVC server tasks

 stack_size = <Setting>; // (3) Stack size used by each SVC server task

 ipi_portid = <Setting>; // (4) IPI port ID to be used

 num_wait = <Setting>; // (5) Maximum number of tasks waiting for SVC

servers task

};

Contents

(1) Number of SVC server tasks (num_server)

Description: Defines the number of SVC server tasks. This is the number of remote
service calls that this kernel can accept from the other CPU at the same
time.

 When this item is set to 0, no remote service calls from the other CPU can
be accepted. Note that remote service call requests can always be issued
to the other CPU regardless of this definition.

 When a value other than 0 is specified, the service_call settings for the
following are corrected to YES.

⎯ acre_tsk and iacre_tsk

⎯ ter_tsk

⎯ del_tsk

⎯ slp_tsk

⎯ wup_tsk and iwup_tsk

Definition Format: Numeric value

Specifiable Range: 0 to 1023

Default Setting: Setting in the default cfg file (1 at shipment) (with a warning)

GUI Configurator Item: CFG_REMOTE_NUMSERVER

464

(2) Priority of SVC server tasks (priority)

Description: Defines the priority of SVC server tasks that process the remote service-
call requests.

Definition Format: Numeric value

Specifiable Range: 1 to 255

Default Setting: Setting in the default cfg file (1 at shipment) (with a warning)

GUI Configurator Item: CFG_REMOTE_PRIORITY

Remarks: When remote_svc.num_server is set to 0, this definition has no meaning.

(3) Stack size used by each SVC server task (stack_size)

Description: Defines the stack size used by each SVC server task. The specified value
is rounded up to a multiple of four. For the calculation of the value to be
set, refer to section 18.6.4, Stack Size Used by SVC Server Task
(remote_svc.stack_size).

 According to this definition, the BC_hirmtstk section of stack_size ×
num_server bytes is generated.

Definition Format: Numeric value

Specifiable Range: 128 to 0x20000000

Default Setting: Setting in the default cfg file (0x200 at shipment) (with a warning)

GUI Configurator Item: CFG_REMOTE_STKSZ

Remarks: When remote_svc.num_server is set to 0, this definition has no meaning.

(4) IPI port ID to be used (ipi_portid)

Description: Defines the IPI port ID to be used to accept remote service calls and
return information from remote service calls requested to the other CPU.

 The IPI interrupt level is calculated by (15 – port ID), which must not
exceed system.system_IPL.

Definition Format: Numeric value

Specifiable Range: 0 to 7

Default Setting: This definition must not be omitted (an error will result).

GUI Configurator Item: CFG_REMOTE_IPI

465

(5) Maximum number of tasks waiting for SVC server task (num_wait)

Description: When a remote service call is issued, if no SVC server task is available in
the target CPU, the calling task enters the WAITING state. num_wait
defines the maximum number of tasks waiting for an available SVC
server task of the other CPU at the same time.

 If all of the following conditions are satisfied when a remote service call
is issued, the remote service call immediately returns the
EV_NORESOURCE error.

(1) There is no available SVC server task in the target CPU.

(2) The number of tasks waiting for available SVC server tasks has
already reached the num_wait count in the calling kernel.

 To never wait for available SVC server tasks, set num_wait to 0.

 If the specified value exceeds maxdefine.max_task, it is corrected to the
max_task value.

 If the specified value is not 0, the service_call settings for the following
are corrected to YES.

⎯ slp_tsk

⎯ wup_tsk and iwup_tsk

⎯ cre_mpf and icre_mpf

⎯ acre_mpf and iacre_mpf

⎯ del_mpf

⎯ pget_mpf

⎯ rel_mpf

Definition Format: Numeric value

Specifiable Range: 0 to 1023

Default Setting: Setting in the default cfg file (0 at shipment) (with a warning).

GUI Configurator Item: CFG_REMOTE_NUMWAIT

466

14.3.11 Defining a Task (task[])

This defines (creates) a task.

task[] corresponds to the [Creation of Task] dialog box of the GUI configurator.

Tasks are broadly classified into two types: tasks using the static stacks defined by static_stack[]
and those using non-static stacks. These types are distinguished by the local task ID.

To define a task that uses a static stack, the local ID number cannot be omitted.

Table 14.6 shows the task types.

Table 14.6 Task Types

task[] Definition Items

Stack Area Local ID Number stack_size stack_section stack_address

Allocated in the
default task stack
area

Should be
specified

Should not be
specified

Should not be
specified

Stack area
generated by the
configurator

Should be
specified

Should be
specified

Should not be
specified

Stack area allocated
by the user

system.max_statictask + 1
or greater (when the
definition is omitted, a value
satisfying this condition is
assigned)

Should be
specified

Should not be
specified

Should be
specified

Static stack is used 1 to system.max_statictask
(definition must not be
omitted)

Ignored Ignored Ignored

467

Format

task[<Local ID number>]{ // (1) Local ID number

 name = <Setting>; // (2) ID name

 export = <Setting>; // (3) ID name exporting

 entry_address = <Setting>; // (4) Start address of task

 stack_size = <Setting>; // (5) Stack size

 stack_section = <Setting>; // (6) Section name assigned to stack area

 stack_address = <Setting>; // (7) Start address of user-allocated

stack area

 priority = <Setting>; // (8) Initial priority of task

 initial_start = <Setting>; // (9) Initial state after creation

 exinf = <Setting>; // (10) Extended information

 fpu = <Setting>; // (11) FPU use in task

 tex_address = <Setting>; // (12) Start address of task exception

handling routine

 tex_fpu = <Setting>; // (13) FPU use in task exception handling

routine

};

Contents

(1) Local ID number

Description: A local ID number must be a value from 1 to 1023.

 The local ID number can be omitted; in this case, the configurator
automatically assigns a local ID number equal to or greater than
maxdefine.max_statictask + 1.

 Note that a task with a local ID number from 1 to
maxdefine.max_statictask uses a static stack defined as described in
section 14.3.12, Static Stack Area Definition (static_stack[]).

Definition Format: Numeric value

Specifiable Range: 1 to 1023

Default Setting: A local ID number equal to or greater than maxdefine.max_statictask + 1
is automatically assigned.

468

(2) ID name (name)

Description: Defines an ID name for the task. The specified ID name is output to the
ID name header file.

Definition Format: Symbol

Specifiable Range: None

Default Setting: If this definition is omitted, the task is handled with no ID name and is
not output to the ID name header file.

 Note that the ID name should be defined when the local ID number
definition is omitted. If the ID name is omitted in this case, an error will
be reported.

(3) ID name exporting (export)

Description: Defines whether to export the ID name to the other CPU.

Definition Format: Symbol

Specifiable Range: YES or NO

Default Setting: Setting in the default cfg file (NO at shipment) (without a warning)

Remarks: When the ID name is not defined, this definition has no meaning.

(4) Start address of task (entry_address)

Description: Defines the start address of the task.

Definition Format: External reference name or numeric value

Specifiable Range: An even number in the range from 0 to 0xFFFFFFFF when a numeric
value is specified.

Default Setting: This definition must not be omitted (an error will be reported).

(5) Stack size (stack_size)

Description: Defines the stack size used by the task. The specified value is rounded up
to a multiple of four. For the calculation of the stack size required for the
task, refer to section 18.6.1, Calculation of Stack Size.

Definition Format: Numeric value

Specifiable Range: 128 to 0x20000000

Default Setting: Setting in the default cfg file (0x100 at shipment) (with a warning)

Remarks: When the local ID number is a value from 1 to maxdefine.max_statictask,
the task uses a static stack and this definition has no meaning.

469

(6) Section name assigned to stack area (stack_section)

Description: stack_section should be defined when having the configurator generate
the stack area. Refer also to table 14.6.

 If both stack_section and stack_address are defined, an error will result.

 The actual section name is generated by adding "B" at the beginning of
the character string specified in stack_section. The user must allocate this
section at an appropriate address at linkage.

Definition Format: Symbol

Specifiable Range: None

Default Setting: See table 14.6.

Remarks: When the local ID number is a value from 1 to maxdefine.max_statictask,
the task uses a static stack and this definition has no meaning.

(7) Start address of user-allocated stack area (stack_address)

Description: When using the user-allocated stack area, define the start address of the
stack area through stack_address. The area of stack_size bytes starting
from stack_address must be allocated by the user.

Definition Format: External reference name or numeric value

Specifiable Range: A multiple of four in the range from 0 to 0xFFFFFFFF when a numeric
value is specified.

Default Setting: See table 14.6.

Remarks: When the local ID number is a value from 1 to maxdefine.max_statictask,
the task uses a static stack and this definition has no meaning.

(8) Initial priority of task (priority)

Description: Defines the priority of the task at initiation. Specify a value from 1 to 255
not greater than the maximum task priority (system.priority).

Definition Format: Numeric value

Specifiable Range: 1 to 255

Default Setting: Setting in the default cfg file (1 at shipment) (with a warning)

470

(9) Initial state after creation (initial_start)

Description: Defines whether the initial task state is READY or DORMANT. This
item corresponds to the TA_ACT attribute of a task.

Definition Format: Symbol

Specifiable Range: Select from the following.

⎯ ON: Moves the task to the READY state after kernel activation.

⎯ OFF: Moves the task to the DORMANT state after kernel activation.

Default Setting: Setting in the default cfg file (OFF at shipment) (without a warning)

(10) Extended information (exinf)

Description: Defines extended information for the task.

Definition Format: External reference name or numeric value

Specifiable Range: 0 to 0xFFFFFFFF when a numeric value is specified.

Default Setting: Setting in the default cfg file (0 at shipment) (without a warning)

(11) FPU use in task (fpu)

Description: Defines whether to use the FPU in the task; that is, whether to include the
FPU registers in task contexts. This item corresponds to the TA_COP1
attribute of a task.

Definition Format: Symbol

Specifiable Range: Select from the following.

⎯ ON: Uses the FPU.

⎯ OFF: Does not use the FPU.

Default Setting: Setting in the default cfg file (OFF at shipment) (with a warning)

(12) Start address of task exception handling routine (tex_address)

Description: Defines the start address of the task exception handling routine. Do not
define this item when not defining a task exception handling routine.

Definition Format: External reference name or numeric value

Specifiable Range: An even number in the range from 0 to 0xFFFFFFFF when a numeric
value is specified.

Default Setting: No task exception handling routine is defined.

Remarks: When (service_call.def_tex == NO) && (service_call.idef_tex == NO),
this definition has no meaning.

471

(13) FPU use in task exception handling routine (tex_fpu)

Description: Defines whether to use the FPU in the task exception handling routine;
that is, whether to include the FPU registers in task exception handling
routine contexts. This item corresponds to the TA_COP1 attribute of a
task exception handling routine.

Definition Format: Symbol

Specifiable Range: Select from the following.

⎯ ON: Uses the FPU.

⎯ OFF: Does not use the FPU.

Default Setting: Setting in the default cfg file (OFF at shipment) (with a warning)

Remarks: When (service_call.def_tex == NO) && (service_call.idef_tex == NO),
this definition has no meaning.

14.3.12 Defining a Static Stack Area (static_stack[])

This defines a static stack area and associates it with the tasks that use the stack area. When
maxdefine.max_staticstack > 0, static_stack should be defined.

Multiple static_stack definitions are allowed.

Each local task ID from 1 to maxdefine.max_staticstack must be specified only once through all
static_stack[].tskid definitions.

When maxdefine.max_statictask is 0, the static_stack[] definition is ignored; in this case, a
warning message will be output.

Format

static_stack[<stack number>]{ // (1) Stack number

 tskid = <Setting>(,<Setting>,…); // (2) Local task ID using the stack

 stack_size = <Setting>; // (3) Stack size

 stack_section = <Setting>; // (4) Section name assigned to stack

area

};

472

Contents

(1) Stack number

Description: Defines the number used by the configurator to distinguish between
static_stack[] definitions. A unique stack number should be assigned to
each static_stack definition.

 Stack numbers do not need to be sequential numbers starting from 1.

Definition Format: Numeric value

Specifiable Range: 1 to 1023

Default Setting: This definition must not be omitted (an error will result).

(2) Local task ID using the stack

Description: Defines the local ID number or ID name of the task that uses this stack
area.

 A local ID number must be a value from 1 to maxdefine.max_statictask,
but it does not need to be defined through task[].

 An ID name can be specified only when a task[] is defined for the name,
a local ID number is specified in the task[] definition, and the local ID
number is a value from 1 to maxdefine.max_statictask.

 To assign multiple tasks to the stack area, separate them with a comma
(,); in this case, these multiple tasks share the static stack (shared stack
function).

Definition Format: Symbol or numeric value

Specifiable Range: A task[].name setting for which a local ID number is defined and that is
not greater than maxdefine.max_statictask when a symbol (ID name) is
specified.

 A value from 1 to maxdefine.max_statictask when a numeric value is
specified.

Default Setting: This definition must not be omitted (an error will result).

(3) Stack size (stack_size)

Description: Defines the size of the stack area. The specified value is rounded up to a
multiple of four. For the calculation of the stack size required for the task,
refer to section 18.6, Task Stack.

Definition Format: Numeric value

Specifiable Range: 128 to 0x20000000

Default Setting: Setting in the default cfg file (0x100 at shipment) (with a warning)

473

(4) Section name assigned to stack area (stack_section)

Description: Defines a section name to be assigned to the stack area. The configurator
generates an uninitialized data section specified in stack_size with a name
generated by adding "B" at the beginning of the character string specified
in stack_section. The user must allocate this section at an appropriate
address at linkage.

 Note that when the GUI configurator is used, stack_section is always
defined as C_histstk (restriction of GUI configurator).

Definition Format: Symbol

Specifiable Range: None

Condition for Omitting Definition: This definition can always be omitted.

Default Setting: Setting in the default cfg file (C_histstk at shipment) (with a warning)

14.3.13 Defining a Semaphore (semaphore[])

This defines (creates) a semaphore.

semaphore[] corresponds to the [Creation of Semaphore] dialog box of the GUI configurator.

When both service_call.cre_sem and icre_sem are set to NO, the semaphore[] definition is
ignored; in this case, a warning message will be output.

Format

semaphore[<Local ID number>]{ // (1) Local ID number

 name = <Setting>; // (2) ID name

 export = <Setting>; // (3) ID name exporting

 max_count = <Setting>; // (4) Maximum semaphore counter value

 initial_count = <Setting>; // (5) Initial semaphore counter value

 wait_queue = <Setting>; // (6) Wait queue attribute

};

474

Contents

(1) Local ID number

Description: A local ID number must be a value from 1 to 1023.

 The ID number can be omitted; in this case, the configurator
automatically assigns an ID number.

Definition Format: Numeric value

Specifiable Range: 1 to 1023

Default Setting: A local ID number is automatically assigned.

(2) ID name (name)

Description: Defines an ID name for the semaphore. The specified ID name is output
to the ID name header file.

Definition Format: Symbol

Specifiable Range: None

Default Setting: If this definition is omitted, the semaphore is handled with no ID name
and is not output to the ID name header file.

 Note that the ID name should be defined when the local ID number
definition is omitted. If the ID name is omitted in this case, an error is
reported.

(3) ID name exporting (export)

Description: Defines whether to export the ID name to the other CPU.

Definition Format: Symbol

Specifiable Range: YES or NO

Default Setting: Setting in the default cfg file (NO at shipment) (without a warning)

Remarks: When the ID name is not defined, this definition has no meaning.

(4) Maximum semaphore counter value (max_count)

Description: Defines the maximum value of the semaphore counter.

Definition Format: Numeric value

Specifiable Range: 1 to 65535

Default Setting: Setting in the default cfg file (1 at shipment) (with a warning)

(5) Initial semaphore counter value (initial_count)

Description: Defines the initial value of the semaphore counter. It must not exceed the
maximum semaphore counter value.

Definition Format: Numeric value

475

Specifiable Range: 0 to 65535

Default Setting: Setting in the default cfg file (1 at shipment) (with a warning)

(6) Wait queue attribute (wait_queue)

Description: Defines the wait queue attribute.

Definition Format: Symbol

Specifiable Range: Select from the following.

⎯ TA_TFIFO: The wait queue is managed on a FIFO basis.

⎯ TA_TPRI: The wait queue is managed on a task priority basis.

Default Setting: Setting in the default cfg file (TA_TFIFO at shipment) (with a warning)

14.3.14 Defining an Event Flag (flag[])

This defines (creates) an event flag.

flag[] corresponds to the [Creation of Event Flag] dialog box of the GUI configurator.

Both service_call.cre_flg and icre_flg are set to NO, the flag[] definition is ignored; in this case, a
warning message will be output.

Format

flag[<Local ID number>]{ // (1) Local ID number

 name = <Setting>; // (2) ID name

 export = <Setting>; // (3) ID name exporting

 initial_pattern = <Setting>; // (4) Initial event flag bit pattern

 wait_queue = <Setting>; // (5) Wait queue attribute

 wait_multi = <Setting>; // (6) Multiple-wait attribute

 clear_attribute = <Setting>; // (7) Clear attribute

};

Contents

(1) Local ID number

Description: A local ID number must be a value from 1 to 1023.

 The local ID number can be omitted; in this case, the configurator
automatically assigns a local ID number.

Definition Format: Numeric value

476

Specifiable Range: 1 to 1023

Default Setting: A local ID number is automatically assigned.

(2) ID name (name)

Description: Defines an ID name for the event flag. The specified ID name is output to
the ID name header file.

Definition Format: Symbol

Specifiable Range: None

Default Setting: If this definition is omitted, the event flag is handled with no ID name and
is not output to the ID name header file.

 Note that the ID name should be defined when the local ID number
definition is omitted. If the ID name is omitted in this case, an error is
reported.

(3) ID name exporting (export)

Description: Defines whether to export the ID name to the other CPU.

Definition Format: Symbol

Specifiable Range: YES or NO

Default Setting: Setting in the default cfg file (NO at shipment) (without a warning)

Remarks: When the ID name is not defined, this definition has no meaning.

(4) Initial event flag bit pattern (initial_pattern)

Description: Defines the initial bit pattern for the event flag.

Definition Format: Numeric value

Specifiable Range: 0 to 0xFFFFFFFF

Default Setting: Setting in the default cfg file (0 at shipment) (with a warning)

(5) Wait queue attribute (wait_queue)

Description: Defines the wait queue attribute.

Definition Format: Symbol

Specifiable Range: Select from the following.

⎯ TA_TFIFO: The wait queue is managed on a FIFO basis.

⎯ TA_TPRI: The wait queue is managed on a task priority basis.

Default Setting: Setting in the default cfg file (TA_TFIFO at shipment) (with a warning)

477

(6) Multiple-wait attribute (wait_multi)

Description: Defines whether to permit multiple tasks to wait for the event flag.

Definition Format: Symbol

Specifiable Range: Select from the following.

⎯ TA_WMUL: Permits multiple tasks to wait for the event flag.

⎯ TA_WSGL: Does not permit multiple tasks to wait for the event flag.

Default Setting: Setting in the default cfg file (TA_WMUL at shipment) (with a warning)

(7) Clear attribute (clear_attribute)

Description: Defines the clear attribute of the event flag.

Definition Format: Symbol

Specifiable Range: Select from the following.

⎯ YES: Specifies the clear attribute.

⎯ NO: Does not specify the clear attribute.

Default Setting: Setting in the default cfg file (NO at shipment) (with a warning)

14.3.15 Defining a Data Queue (dataqueue[])

This defines (creates) a data queue.

dataqueue[] corresponds to the [Creation of Data Queue] dialog box of the GUI configurator.

When both service_call.cre_dtq and icre_dtq are set to NO, the dataqueue[] definition is ignored;
in this case, a warning message will be output.

Format

dataqueue[<Local ID number>]{ // (1) Local ID number

 name = <Setting>; // (2) ID name

 export = <Setting>; // (3) ID name exporting

 buffer_size = <Setting>; // (4) Maximum data count for data queue

 section = <Setting>; // (5) Section name assigned to data queue

area

 address = <Setting>; // (6) Start address of data queue area

 wait_queue = <Setting>; // (7) Wait queue attribute

};

478

Contents

(1) Local ID number

Description: A local ID number must be a value from 1 to 1023.

 The local ID number can be omitted; in this case, the configurator
automatically assigns a local ID number.

Definition Format: Numeric value

Specifiable Range: 1 to 1023

Default Setting: A local ID number is automatically assigned.

(2) ID name (name)

Description: Defines an ID name for the data queue. The specified ID name is output
to the ID name header file.

Definition Format: Symbol

Specifiable Range: None

Default Setting: If this definition is omitted, the data queue is handled with no ID name
and is not output to the ID name header file.

 Note that the ID name should be defined when the local ID number
definition is omitted. If the ID name is omitted in this case, an error is
reported.

(3) ID name exporting (export)

Description: Defines whether to export the ID name to the other CPU.

Definition Format: Symbol

Specifiable Range: YES or NO

Default Setting: Setting in the default cfg file (NO at shipment) (without a warning)

Remarks: When the ID name is not defined, this definition has no meaning.

(4) Maximum data count for data queue (buffer_size)

Description: Specifies the maximum number of data items for the data queue. A data
queue with the data count set to 0 can also be created.

Definition Format: Numeric value

Specifiable Range: 0 to 0x08000000

Default Setting: Setting in the default cfg file (1 at shipment) (with a warning)

(5) Section name assigned to data queue area (section)

Description: This item should be defined when having the configurator generate the
data queue area.

479

 Table 14.7 shows the methods for specifying the data queue area.

Table 14.7 Data Queue Area Specification Methods

Data Queue Area section address

Allocated in the default data
queue area

Should not be specified Should not be specified

Data queue area generated by
the configurator.

Should be specified Should not be specified

Data queue area allocated by
the user.

Should not be specified Should be specified

 If both section and address are defined, an error will result.

 When section is specified, the actual section name is generated by adding
"B" at the beginning of the character string specified in section. The user
must allocate this section at an appropriate address at linkage.

Definition Format: Symbol

Specifiable Range: None

Default Setting: See table 14.7.

Remarks: When buffer_size is set to 0, this definition has no meaning.

(6) Start address of data queue area (address)

Description: When using the user-allocated data queue area, define the start address of
the data queue area here. The area of TSZ_DTQ(buffer_size) bytes
starting from address must be allocated by the user.

 Refer also to the above item, (5) Section name assigned to data queue
area (section).

Definition Format: External reference name or numeric value

Specifiable Range: A multiple of four in the range from 0 to 0xFFFFFFFF when a numeric
value is specified.

Default Setting: See table 14.7.

Remarks: When buffer_size is set to 0, this definition has no meaning.

480

(7) Wait queue attribute (wait_queue)

Description: Defines the send-wait queue attribute. Note that the receive-wait queue is
always managed on a FIFO basis.

Definition Format: Symbol

Specifiable Range: Select from the following.

⎯ TA_TFIFO: The wait queue is managed on a FIFO basis.

⎯ TA_TPRI: The wait queue is managed on a task priority basis.

Default Setting: Setting in the default cfg file (TA_TFIFO at shipment) (with a warning)

14.3.16 Defining a Mailbox (mailbox[])

This defines (creates) a mailbox.

mailbox[] corresponds to the [Creation of Mailbox] dialog box of the GUI configurator.

When both service_call.cre_mbx and icre_mbx are set to NO, the mailbox[] definition is ignored;
in this case, a warning message will be output.

Format

mailbox[<Local ID number>]{ // (1) Local ID number

 name = <Setting>; // (2) ID name

 export = <Setting>; // (3) ID name exporting

 wait_queue = <Setting>; // (4) Wait queue attribute

 message_queue = <Setting>; // (5) Message queue attribute

 max_pri = <Setting>; // (6) Maximum message priority

};

Contents

(1) ID number

Description: A local ID number must be a value from 1 to 1023.

 The local ID number can be omitted; in this case, the configurator
automatically assigns a local ID number.

Definition Format: Numeric value

Specifiable Range: 1 to 1023

Default Setting: A local ID number is automatically assigned.

481

(2) ID name (name)

Description: Defines an ID name for the mailbox. The specified ID name is output to
the ID name header file.

Definition Format: Symbol

Specifiable Range: None

Default Setting: If this definition is omitted, the mailbox is handled with no ID name and
is not output to the ID name header file.

 Note that the ID name should be defined when the local ID number
definition is omitted. If the ID name is omitted in this case, an error is
reported.

(3) ID name exporting (export)

Description: Defines whether to export the ID name to the other CPU.

Definition Format: Symbol

Specifiable Range: YES or NO

Default Setting: Setting in the default cfg file (NO at shipment) (without a warning)

Remarks: When the ID name is not defined, this definition has no meaning.

(4) Wait queue attribute (wait_queue)

Description: Defines the wait queue attribute.

Definition Format: Symbol

Specifiable Range: Select from the following.

⎯ TA_TFIFO: The wait queue is managed on a FIFO basis.

⎯ TA_TPRI: The wait queue is managed on a task priority basis.

Default Setting: Setting in the default cfg file (TA_TFIFO at shipment) (with a warning)

(5) Message queue attribute (message_queue)

Description: Defines the message queue attribute.

Definition Format: Symbol

Specifiable Range: Select from the following.

⎯ TA_MFIFO: Messages are stored on a FIFO basis.

⎯ TA_MPRI: Messages are stored on a message priority basis.

Default Setting: Setting in the default cfg file (TA_MFIFO at shipment) (with a warning)

482

(6) Maximum message priority (max_pri)

Description: Be sure to define the maximum message priority here when
message_queue is set to TA_MPRI.

 Specify a value from 1 to 255. It must not exceed the maximum message
priority specified in system.message_pri.

Definition Format: Numeric value

Specifiable Range: 1 to 255

Default Setting: Setting in the default cfg file (1 at shipment) (with a warning)

Remarks: When message_queue is set to TA_MFIFO, this definition has no
meaning.

14.3.17 Defining a Mutex (mutex[])

This defines (creates) a mutex.

mutex[] corresponds to the [Creation of Mutex] dialog box of the GUI configurator.

When service_call.cre_mtx is set to NO, the mutex[] definition is ignored; in this case, a warning
message will be output.

Format

mutex[<Local ID number>]{ // (1) Local ID number

 name = <Setting>; // (2) ID name

 protocol = <Setting>; // (3) Priority ceiling protocol

 ceil_pri = <Setting>; // (4) Ceiling priority

};

Contents

(1) Local ID number

Description: A local ID number must be a value from 1 to 1023.

 The local ID number can be omitted; in this case, the configurator
automatically assigns a local ID number.

Definition Format: Numeric value

Specifiable Range: 1 to 1023

Default Setting: A local ID number is automatically assigned.

483

(2) ID name (name)

Description: Defines an ID name for the mutex. The specified ID name is output to the
ID name header file.

Definition Format: Symbol

Specifiable Range: None

Default Setting: If this definition is omitted, the mutex is handled with no ID name and is
not output to the ID name header file.

 Note that the ID name should be defined when the local ID number
definition is omitted. If the ID name is omitted in this case, an error is
reported.

(3) Priority ceiling protocol (protocol)

Description: Defines the priority ceiling protocol. In this version, only TA_CEILING
(priority ceiling protocol) can be specified.

Definition Format: Symbol

Specifiable Range: Select from the following.

⎯ TA_CEILING: Priority ceiling protocol

Default Setting: Setting in the default cfg file (TA_CEILING at shipment) (without a
warning)

(4) Ceiling priority (ceil_pri)

Description: Defines the ceiling priority used in the priority ceiling protocol.

 Specify a value from 1 to 255. It must not exceed the maximum task
priority specified in system.priority.

Definition Format: Numeric value

Specifiable Range: 1 to 255

Default Setting: Setting in the default cfg file (1 at shipment) (with a warning)

484

14.3.18 Defining a Message Buffer (message_buffer[])

This defines (creates) a message buffer.

message_buffer[] corresponds to the [Creation of Message Buffer] dialog box of the GUI
configurator.

When both service_call.cre_mbf and icre_mbf are set to NO, the message_buffer[] definition is
ignored; in this case, a warning message will be output.

Format

message_buffer[<Local ID number>]{ // (1) Local ID number

 name = <Setting>; // (2) ID name

 export = <Setting>; // (3) ID name exporting

 buffer_size = <Setting>; // (4) Message buffer size

 section = <Setting>; // (5) Section name assigned to message

buffer area

 address = <Setting>; // (6) Start address of message buffer area

 max_msgsz = <Setting>; // (7) Maximum message size

 wait_queue = <Setting>; // (8) Wait queue attribute

};

Contents

(1) Local ID number

Description: A local ID number must be a value from 1 to 1023.

 The local ID number can be omitted; in this case, the configurator
automatically assigns a local ID number.

Definition Format: Numeric value

Specifiable Range: 1 to 1023

Default Setting: A local ID number is automatically assigned.

485

(2) ID name (name)

Description: Defines an ID name for the message buffer. The specified ID name is
output to the ID name header file.

Definition Format: Symbol

Specifiable Range: None

Default Setting: If this definition is omitted, the message buffer is handled with no ID
name and is not output to the ID name header file.

 Note that the ID name should be defined when the local ID number
definition is omitted. If the ID name is omitted in this case, an error is
reported.

(3) ID name exporting (export)

Description: Defines whether to export the ID name to the other CPU.

Definition Format: Symbol

Specifiable Range: YES or NO

Default Setting: Setting in the default cfg file (NO at shipment) (without a warning)

Remarks: When the ID name is not defined, this definition has no meaning.

(4) Message buffer size (buffer_size)

Description: Defines the message buffer size in bytes. The specified value is rounded
up to a multiple of four.

 A message buffer with the size set to 0 can also be created.

Definition Format: Numeric value

Specifiable Range: 0 or 8 to 0x20000000

Default Setting: Setting in the default cfg file (32 at shipment) (with a warning)

(5) Section name assigned to message buffer area (section)

Description: This item should be defined when having the configurator generate the
message buffer area.

 Table 14.8 shows the methods for specifying the message buffer area.

486

Table 14.8 Message Buffer Area Specification Methods

Message Buffer Area section address

Allocated in the default message buffer
area

Should not be specified Should not be specified

Message buffer area generated by the
configurator

Should be specified Should not be specified

Message buffer area allocated by the user Should not be specified Should be specified

 If both section and address are defined, an error will result.

 When section is specified, the actual section name is generated by adding
"B" at the beginning of the character string specified in section. The user
must allocate this section at an appropriate address at linkage.

Definition Format: Symbol

Specifiable Range: None

Default Setting: See table 14.8.

Remarks: When buffer_size is set to 0, this definition has no meaning.

(6) Start address of message buffer area (address)

Description: When using the user-allocated message buffer area, define the start
address of the message buffer area here. The area of buffer_size bytes
starting from address must be allocated by the user.

 Refer also to the above item, (5) Section name assigned to message buffer
area (section).

Definition Format: External reference name or numeric value

Specifiable Range: A multiple of four in the range from 0 to 0xFFFFFFFF when a numeric
value is specified.

Default Setting: See table 14.8.

Remarks: When buffer_size is set to 0, this definition has no meaning.

(7) Maximum message size (max_msgsz)

Description: Defines the maximum message size in bytes. The specified value is
rounded up to a multiple of four. When buffer_size > 0, max_msgsz must
not exceed (buffer_size - 4).

Definition Format: Numeric value

Specifiable Range: 4 to 0x20000000

Default Setting: Setting in the default cfg file (4 at shipment) (with a warning)

487

(8) Wait queue attribute (wait_queue)

Description: Defines the send-wait queue attribute. Note that the receive-wait queue is
always managed on a FIFO basis.

Definition Format: Symbol

Specifiable Range: Select from the following.

⎯ TA_TFIFO: The wait queue is managed on a FIFO basis.

⎯ TA_TPRI: The wait queue is managed on a task priority basis.

Default Setting: Setting in the default cfg file (TA_TFIFO at shipment) (with a warning)

14.3.19 Defining a Fixed-Sized Memory Pool (memorypool[])

This defines (creates) a fixed-sized memory pool.

memorypool[] corresponds to the [Creation of Fixed-size Memory Pool] dialog box of the GUI
configurator.

When system.mpfmanage is set to OUT, the fixed-sized memory block management area (mpfmb
in the T_CMPF structure) is necessary and is automatically generated. The section name of this
area is BC_hicfg.

When both service_call.cre_mpf and icre_mpf are set to NO, the memorypool[] definition is
ignored; in this case, a warning message will be output. When remote_svc.num_server > 0, both
service_call.cre_mpf and icre_mpf are corrected to YES.

Format

memorypool[<Local ID number>]{ // (1) Local ID number

 name = <Setting>; // (2) ID name

 export = <Setting>; // (3) ID name exporting

 section = <Setting>; // (4) Section name assigned to pool area

 address = <Setting>; // (5) Start address of pool area

 num_block = <Setting>; // (6) Block count

 siz_block = <Setting>; // (7) Block size

 wait_queue = <Setting>; // (8) Wait queue attribute

};

488

Contents

(1) Local ID number

Description: A local ID number must be a value from 1 to 1022.

 The local ID number can be omitted; in this case, the configurator
automatically assigns a local ID number.

Definition Format: Numeric value

Specifiable Range: 1 to 1022 (the maximum value is 1023 in the kernel specification but it is
1022 in the cfg file)

Default Setting: A local ID number is automatically assigned.

(2) ID name (name)

Description: Defines an ID name for the fixed-sized memory pool. The specified ID
name is output to the ID name header file.

Definition Format: Symbol

Specifiable Range: None

Default Setting: If this definition is omitted, the memory pool is handled with no ID name
and is not output to the ID name header file.

 Note that the ID name should be defined when the local ID number
definition is omitted. If the ID name is omitted in this case, an error is
reported.

(3) ID name exporting (export)

Description: Defines whether to export the ID name to the other CPU.

Definition Format: Symbol

Specifiable Range: YES or NO

Default Setting: Setting in the default cfg file (NO at shipment) (without a warning)

Remarks: When the ID name is not defined, this definition has no meaning.

(4) Section name assigned to pool area (section)

Description: This item should be defined when having the configurator generate the
pool area.

 Table 14.9 shows the methods for specifying the pool area.

489

Table 14.9 Fixed-Sized Memory Pool Area Specification Methods

Fixed-Sized Memory Pool Area section address

Allocated in the default fixed-sized memory
pool area

Should not be specified Should not be specified

Pool area generated by the configurator Should be specified Should not be specified

Pool area allocated by the user Should not be specified Should be specified

 If both section and address are defined, an error will result.

 When section is specified, the actual section name is generated by adding
"B" at the beginning of the character string specified in section. The user
must allocate this section at an appropriate address at linkage.

Definition Format: Symbol

Specifiable Range: None

Default Setting: See table 14.9.

(5) Start address of pool area (address)

Description: When using the user-allocated pool area, define the start address of the
pool area here. The area of TSZ_MPF(num_block, siz_block) bytes
starting from address must be allocated by the user.

 Refer also to the above item, (4) Section name assigned to pool area
(section).

Definition Format: External reference name or numeric value

Specifiable Range: A multiple of four in the range from 0 to 0xFFFFFFFF when a numeric
value is specified.

Default Setting: See table 14.9.

(6) Block count (num_block)

Description: Defines the number of blocks in the memory pool.

Definition Format: Numeric value

Specifiable Range: 1 to 0x08000000

Default Setting: Setting in the default cfg file (4 at shipment) (with a warning)

490

(7) Block size (siz_block)

Description: Defines the block size in bytes. The specified value is rounded up to a
multiple of four.

Definition Format: Numeric value

Specifiable Range: 4 to 0x20000000

Default Setting: Setting in the default cfg file (4 at shipment) (with a warning)

(8) Wait queue attribute (wait_queue)

Description: Defines the wait queue attribute.

Definition Format: Symbol

Specifiable Range: Select from the following.

⎯ TA_TFIFO: The wait queue is managed on a FIFO basis.

⎯ TA_TPRI: The wait queue is managed on a task priority basis.

Default Setting: Setting in the default cfg file (TA_TFIFO at shipment) (with a warning)

491

14.3.20 Defining a Variable-Sized Memory Pool (variable_memorypool[])

This defines (creates) a variable-sized memory pool.

variable_memorypool[] corresponds to the [Creation of Variable-size Memory Pool] dialog box of
the GUI configurator.

When both service_call.cre_mpl and icre_mpl are set to NO, the variable_memorypool[]
definition is ignored; in this case, a warning message will be output.

Format

variable_memorypool[<Local ID number>]{ // (1) Local ID number

 name = <Setting>; // (2) ID name

 export = <Setting>; // (3) ID name exporting

 heap_size = <Setting>; // (4) Memory pool size

 wait_queue = <Setting>; // (5) Wait queue attribute

 mpl_section = <Setting>; // (6) Section name assigned to pool area

 mpl_address = <Setting>; // (7) Start address of pool area

 unfragment = <Setting>; // (8) Fragmentation reduction

 min_blksz = <Setting>; // (9) Minimum block size

 num_sector = <Setting>; // (10) Sector count

};

Contents

(1) Local ID number

Description: A local ID number must be a value from 1 to 1023.

 The local ID number can be omitted; in this case, the configurator
automatically assigns a local ID number.

Definition Format: Numeric value

Specifiable Range: 1 to 1023

Default Setting: A local ID number is automatically assigned.

492

(2) ID name (name)

Description: Defines an ID name for the variable-sized memory pool. The specified ID
name is output to the ID name header file.

Definition Format: Symbol

Specifiable Range: None

Default Setting: If this definition is omitted, the memory pool is handled with no ID name
and is not output to the ID name header file.

 Note that the ID name should be defined when the local ID number
definition is omitted. If the ID name is omitted in this case, an error is
reported.

(3) ID name exporting (export)

Description: Defines whether to export the ID name to the other CPU.

Definition Format: Symbol

Specifiable Range: YES or NO

Default Setting: Setting in the default cfg file (NO at shipment) (without a warning)

Remarks: When the ID name is not defined, this definition has no meaning.

(4) Memory pool size (heap_size)

Description: Defines the memory pool size in bytes. The specified value is rounded up
to a multiple of four.

Definition Format: Numeric value

Specifiable Range: 36 to 0x20000000

Default Setting: Setting in the default cfg file (0x200 at shipment) (with a warning)

(5) Wait queue attribute (wait_queue)

Description: Defines the wait queue attribute. In this version, only TA_TFIFO can be
specified.

Definition Format: Symbol

Specifiable Range: Select from the following.

⎯ TA_TFIFO: The wait queue is managed on a FIFO basis.

Default Setting: Setting in the default cfg file (TA_TFIFO at shipment) (without a
warning)

(6) Section name assigned to pool area (mpl_section)

Description: This item should be defined when having the configurator generate the
pool area.

 Table 14.10 shows the methods for specifying the pool area.

493

Table 14.10 Variable-Sized Memory Pool Area Specification Methods

Variable-Sized Memory Pool Area mpl_section mpl_address

Allocated in the default variable-sized
memory pool area

Should not be specified Should not be specified

Pool area generated by the configurator Should be specified Should not be specified

Pool area allocated by the user Should not be specified Should be specified

 If both mpl_section and mpl_address are defined, an error will result.

 When mpl_section is specified, the actual section name is generated by
adding "B" at the beginning of the character string specified in
mpl_section. The user must allocate this section at an appropriate address
at linkage.

Definition Format: Symbol

Specifiable Range: None

Default Setting: See table 14.10.

(7) Start address of pool area (mpl_address)

Description: When using the user-allocated pool area, define the start address of the
pool area here. The area of heap_size bytes starting from mpl_address
must be allocated by the user.

 Refer also to the above item, (6) Section name assigned to pool area
(mpl_section).

Definition Format: External reference name or numeric value

Specifiable Range: A multiple of four in the range from 0 to 0xFFFFFFFF when a numeric
value is specified.

Default Setting: See table 14.10

(8) Fragmentation reduction (unfragment)

Description: When system.newmpl is set to NEW, the VTA_UNFRAGMENT
attribute can be specified to reduce fragmentation.

Definition Format: Symbol

Specifiable Range: Select from the following.

⎯ ON: Specifies the VTA_UNFRAGMENT attribute.

⎯ OFF: Does not specify the VTA_UNFRAGMENT attribute.

Default Setting: Setting in the default cfg file (OFF at shipment) (with a warning)

Remarks: When system.newmpl is set to PAST, this definition has no meaning.

494

(9) Minimum block size (min_blksz)

Description: When the VTA_UNFRAGMENT attribute is specified, the minimum
block size should be specified. The specified value is rounded up to a
multiple of four.

 The minimum block size must not exceed (heap_size / 32).

Definition Format: Numeric value

Specifiable Range: 4 to 0x20000000

Default Setting: Setting in the default cfg file (4 at shipment) (with a warning)

Remarks: When system.newmpl is set to PAST or unfragment is set to OFF, this
definition has no meaning.

(10) Sector count (num_sector)

Description: When the VTA_UNFRAGMENT attribute is specified, the sector count
should be specified. When the specified value is greater than (heap_size /
(min_blksz × 32)), the value is corrected to this calculation result.

Definition Format: Numeric value

Specifiable Range: 1 to 0x 400000

Default Setting: Setting in the default cfg file (1 at shipment) (with a warning)

Remarks: When system.newmpl is set to PAST or unfragment is set to OFF, this
definition has no meaning.

14.3.21 Defining a Cyclic Handler (cyclic_hand[])

This defines (creates) a cyclic handler.

cyclic_hand[] corresponds to the [Creation of Cyclic Handler] dialog box of the GUI configurator.

When both service_call.cre_cyc and icre_cyc are set to NO, the cyclic_hand [] definition is
ignored; in this case, a warning message will be output. When system.action is set to YES, both
service_call.cre_mpf and icre_mpf are corrected to YES.

495

Format

cyclic_hand[<Local ID number>]{ // (1) Local ID number

 name = <Setting>; // (2) ID name

 export = <Setting>; // (3) ID name exporting

 interval_counter = <Setting>; // (4) Initiation cycle

 start = <Setting>; // (5) Cyclic handler state

 phsatr = <Setting>; // (6) Preserving initiation phase

 phs_counter = <Setting>; // (7) Initiation phase

 entry_address = <Setting>; // (8) Start address of handler

 exinf = <Setting>; // (9) Extended information

};

Contents

(1) Local ID number

Description: A local ID number must be a value from 1 to 14.

 The local ID number can be omitted; in this case, the configurator
automatically assigns a local ID number.

Definition Format: Numeric value

Specifiable Range: 1 to 14

Default Setting: A local ID number is automatically assigned.

(2) ID name (name)

Description: Defines an ID name for the cyclic handler. The specified ID name is
output to the ID name header file.

Definition Format: Symbol

Specifiable Range: None

Default Setting: If this definition is omitted, the cyclic handler is handled with no ID name
and is not output to the ID name header file.

 Note that the ID name should be defined when the local ID number
definition is omitted. If the ID name is omitted in this case, an error is
reported.

496

(3) ID name exporting (export)

Description: Defines whether to export the ID name to the other CPU.

Definition Format: Symbol

Specifiable Range: YES or NO

Default Setting: Setting in the default cfg file (NO at shipment) (without a warning)

Remarks: When the ID name is not defined, this definition has no meaning.

(4) Initiation cycle (interval_counter)

Description: Defines the initiation cycle in ms.

Specifiable Range: 1 to 0x7FFFFFFF

Default Setting: Setting in the default cfg file (1 at shipment) (with a warning)

(5) Cyclic handler state (start)

Description: Defines the attribute regarding the cyclic handler state.

Definition Format: Symbol

Specifiable Range: Select from the following.

⎯ ON: Starts the cyclic handler operation (with the TA_STA attribute)

⎯ OFF: Does not start the cyclic handler (without the TA_STA
attribute)

Default Setting: Setting in the default cfg file (OFF at shipment) (with a warning)

(6) Preserving initiation phase (phsatr)

Description: Defines the attribute regarding the function for preserving the initiation
phase.

Definition Format: Symbol

Specifiable Range: Select from the following.

⎯ ON: Preserves the initiation phase (with the TA_PHS attribute)

⎯ OFF: Does not preserve the initiation phase (without the TA_PHS
attribute)

Default Setting: Setting in the default cfg file (OFF at shipment) (with a warning)

(7) Initiation phase (phs_counter)

Description: Defines the initiation phase in ms. The initiation phase must not exceed
the initiation cycle.

Definition Format: Numeric value

Specifiable Range: 0 to 0x7FFFFFFF

Default Setting: Setting in the default cfg file (0 at shipment) (with a warning)

497

(8) Start address of cyclic handler (entry_address)

Description: Specifies the start address of cyclic handler.

Definition Format: External reference name or numeric value

Specifiable Range: An even number in the range from 0 to 0xFFFFFFFF when a numeric
value is specified.

Default Setting: This definition must not be omitted (an error will result).

(9) Extended information (exinf)

Description: Defines the extended information of the cyclic handler.

Definition Format: External reference name or numeric value

Specifiable Range: 0 to 0xFFFFFFFF when a numeric value is specified; no limitation on the
range when an external reference name is selected.

Default Setting: Setting in the default cfg file (0 at shipment) (without a warning)

14.3.22 Defining an Alarm Handler (alarm_hand[])

This defines (creates) an alarm handler.

alarm_hand[] corresponds to the [Creation of Alarm Handler] dialog box of the GUI configurator.

When both service_call.cre_cyc and icre_alm are set to NO, the alarm_hand[] definition is
ignored; in this case, a warning message will be output.

Format

alarm_hand[<Local ID number>]{ // (1) Local ID number

 name = <Setting>; // (2) ID name

 export = <Setting>; // (3) ID name exporting

 entry_address = <Setting>; // (4) Start address of handler

 exinf = <Setting>; // (5) Extended information

};

Contents

(1) Local ID number

Description: A local ID number must be a value from 1 to 15.

 The local ID number can be omitted; in this case, the configurator
automatically assigns a local ID number.

498

Definition Format: Numeric value

Specifiable Range: 1 to 15

Default Setting: A local ID number is automatically assigned.

(2) ID name (name)

Description: Defines an ID name for the alarm handler. The specified ID name is
output to the ID name header file.

Definition Format: Symbol

Specifiable Range: None

Default Setting: If this definition is omitted, the alarm handler is handled with no ID name
and is not output to the ID name header file.

 Note that the ID name should be defined when the local ID number
definition is omitted. If the ID name is omitted in this case, an error is
reported.

(3) ID name exporting (export)

Description: Defines whether to export the ID name to the other CPU.

Definition Format: Symbol

Specifiable Range: YES or NO

Default Setting: Setting in the default cfg file (NO at shipment) (without a warning)

Remarks: When the ID name is not defined, this definition has no meaning.

(4) Start address of alarm handler (entry_address)

Description: Specifies the start address of alarm handler execution.

Definition Format: External reference name or numeric value

Specifiable Range: An even number in the range from 0 to 0xFFFFFFFF when a numeric
value is specified.

Default Setting: This definition must not be omitted (an error will result).

(5) Extended information (exinf)

Description: Defines the extended information of the alarm handler.

Definition Format: External reference name or numeric value

Specifiable Range: 0 to 0xFFFFFFFF when a numeric value is specified; no limitation on the
range when an external reference name is selected.

Default Setting: Setting in the default cfg file (0 at shipment) (without a warning)

499

14.3.23 Defining an Overrun Handler (overrun_hand)

This defines an overrun handler.

overrun_hand corresponds to the [Overrun Handler] page of the GUI configurator.

Only one overrun handler can be defined in a system. Therefore, the overrun_hand definition can
be done only once, unlike the other objects.

When service_call.def_ovr is set to NO, the overrun_hand definition is ignored; in this case, a
warning message will be output.

Format

overrun_hand{

 entry_address = <Setting>; // Start address of overrun handler

};

Contents

(1) Start address of overrun handler (entry_address)

Description: Specifies the start address of overrun handler.

Definition Format: External reference name or numeric value

Specifiable Range: An even number in the range from 0 to 0xFFFFFFFF when a numeric
value is specified.

Default Setting: This definition must not be omitted (an error will result).

500

14.3.24 Defining an Extended Service Call Routine (extend_svc[])

This defines an extended service call routine.

extend_svc[] corresponds to the [Definition of Extended Service Call] dialog box of the GUI
configurator.

When both service_call.def_svc and idef_svc are set to NO, the extend_svc[] definition is ignored;
in this case, a warning message will be output.

Format

extend_svc[<function code >]{ // (1) Function code

 entry_address = <Setting>; // (2) Start address of extended service

call routine

};

Contents

(1) Function code

Description: A function code must be a value from 1 to 1023.

Definition Format: Numeric value

Specifiable Range: 1 to 1023

Default Setting: This definition must not be omitted (an error will result).

(2) Start address of extended service call routine (entry_address)

Description: Defines the start address of extended service call routine.

Definition Format: External reference name or numeric value

Specifiable Range: An even number in the range from 0 to 0xFFFFFFFF when a numeric
value is specified.

Default Setting: This definition must not be omitted (an error will result).

14.3.25 Defining an Interrupt Handler or a CPU Exception Handler (interrupt_vector[])

This defines an interrupt handler or a CPU exception handler.

A vector number must not be omitted and the same number must not be specified multiple times.

Vector numbers 0 to 3 are reset vectors, which cannot be defined in the configurator. Vector
numbers 60 to 63 are reserved for OS use and cannot be defined.

501

No handler can be defined with a vector number equal to the timer interrupt number
(clock.number); if attempted, an error will result.

interrupt_vector[] corresponds to the [Definition of Interrupt/CPU Exception Handler] dialog box
of the GUI configurator.

Format

interrupt_vector[<vector number>]{ // (1) Vector number

 entry_address = <Setting>; // (2) Start address of handler

 direct = <Setting>; // (3) Direct attribute

 regbank = <Setting>; // (4) Register bank attribute

};

Contents

(1) Vector number

Description: Defines a vector number. Specify a value from 4 to 59 or 64 to 511.

Definition Format: Numeric value

Specifiable Range: 4 to 59 or 64 to 511

Default Setting: This definition must not be omitted (an error will result).

(2) Start address of handler (entry_address)

Description: Defines the start address of handler.

Definition Format: External reference name or numeric value

Specifiable Range: An even number in the range from 0 to 0xFFFFFFFF when a numeric
value is specified

Default Setting: This definition must not be omitted (an error will result).

(3) Direct attribute (direct)

Description: Defines whether to add the VTA_DIRECT attribute.

 For an interrupt handler (including the NMI handler) having an interrupt
level higher than system.system_IPL, be sure to add the VTA_DIRECT
attribute.

Definition Format: Symbol

Specifiable Range: Select from the following.

⎯ YES: Adds the VTA_DIRECT attribute.

⎯ NO: Does not add the VTA_DIRECT attribute.

502

Default Setting: Setting in the default cfg file (YES at shipment) (with a warning)

Remarks: When system.vector_type is set to ROM_ONLY_DIRECT or
RAM_ONLY_DIRECT while direct = NO, the handler is not defined; in
this case, a warning message will be output.

(4) Register bank attribute (regbank)

Description: Defines whether to add the register bank attribute (VTA_REGBANK) for
the interrupt handler without the direct attribute (VTA_DIRECT).

 The register bank attribute is valid only when all of the following
conditions are satisfied. When these conditions are not satisfied, the
register bank attribute setting has no meaning and a warning message will
not be output in this case.

(a) direct is set to OFF.

(b) system.regbank is set to BANKLEVELxx.

(c) The value specified for INTSPEC_IBNR_ADR1 (for CPUID#1) or
INTSPEC_IBNR_ADR2 (for CPUID#2) in the CPU interrupt
specification definition file (kernel_intspec.h) is not 0. (That is, the
CPU supporting the register bank is used.)

(d) The specified vector number is not a number that corresponds to
INTSPEC_NOBANK_VECxxx defined in the CPU interrupt
specification definition file (kernel_intspec.h). (That is, the specified
vector number is for an interrupt source that is allowed to use the
register bank in the CPU specifications.)

 When these conditions are satisfied, VTA_REGBANK should be
appropriately specified as follows according to the interrupt level of the
target interrupt handler. If this attribute is not specified appropriately, the
interrupt handler will not operate correctly.

(i) When system.regbank is set to BANKLEVELxx that corresponds to
the interrupt level of the target interrupt handler:

Specify regbank = YES.

(ii) When system.regbank is not set to BANKLEVELxx that corresponds
to the interrupt level of the target interrupt handler:

Specify regbank = NO.

Definition Format: Symbol

Specifiable Range: Select from the following.

⎯ YES: Adds the VTA_REGBANK attribute.

⎯ NO: Does not add the VTA_REGBANK attribute.

Default Setting: Setting in the default cfg file (NO at shipment) (with a warning)

503

14.3.26 Defining an Initialization Routine (init_routine[])

This registers (defines) an initialization routine.

Multiple initialization routines can be registered in a system.

init_routine[] corresponds to the [Registration of Initialization Routine] dialog box of the GUI
configurator.

When the kernel is started, the initialization routines are executed in the order of appearance in the
cfg file.

Format

init_routine[] {

 entry_address = <Setting>; // (1) Start address of initialization

routine

 exinf = <Setting>; // (2) Extended information

};

Contents

(1) Start address of initialization routine (entry_address)

Description: Defines the start address of initialization routine.

Definition Format: External reference name or numeric value

Specifiable Range: An even number in the range from 0 to 0xFFFFFFFF when a numeric
value is specified

Default Setting: This definition must not be omitted (an error will be reported).

(2) Extended information (exinf)

Description: Defines the extended information of the initialization routine. The
initialization routine receives the extended information specified here as a
parameter.

Definition Format: External reference name or numeric value

Specifiable Range: 0 to 0xFFFFFFFF when a numeric value is specified; no limitation on the
range when an external reference name is selected.

Default Setting: Setting in the default cfg file (0 at shipment) (without a warning)

504

14.3.27 Defining Service Calls (service_call)

This defines the service calls to be incorporated in the target.

service_call corresponds to the [Service Calls Selection] page of the GUI configurator.

Format

service_call {

 <service call name>= <Setting>;

 …

};

To use a kernel object, the corresponding cre_xxx or def_xxx service call should be incorporated
in principle. Table 14.11 shows the service calls necessary for each object.

505

Table 14.11 Service Calls Necessary for Each Object

Object
Necessary Service
Call

When Necessary Service Call is not
Installed

Task ⎯ Always available

Task exception handling
routine

def_tex or idef_tex All task[].tex_address and task[].tex_fpu are
ignored.

Semaphore cre_sem or icre_sem All semaphore[] definitions are ignored and
maxdefine.max_sem is assumed as 0.

Event flag cre_flg or icre_flg All flag[] definitions are ignored and
maxdefine.max_flag is assumed as 0.

Data queue cre_dtq or icre_dtq All dataqueue[] definitions are ignored and
maxdefine.max_dtq is assumed as 0. The
default data queue area is not generated.

Mailbox cre_mbx or icre_mbx All mailbox[] definitions are ignored and
maxdefine.max_mbx is assumed as 0.

Mutex cre_mtx All mutex[] definitions are ignored and
maxdefine.max_mtx is assumed as 0.

Message buffer cre_mbf or icre_mbf All message_buffer[] definitions are ignored
and maxdefine.max_mbf is assumed as 0.
The default message buffer area is not
generated.

Fixed-sized memory pool cre_mpf or icre_mpf All memorypool[] definitions are ignored and
maxdefine.max_mpf is assumed as 0. The
default fixed-sized memory pool area is not
generated.

Variable-sized memory
pool

cre_mpl or icre_mpl All variable_memorypool[] definitions are
ignored and maxdefine.max_mpl is assumed
as 0. The default variable-sized memory
pool area is not generated.

Cyclic handler cre_cyc or icre_cyc All cyclic_hand[] definitions are ignored and
maxdefine.max_cyh is assumed as 0.

Alarm handler cre_alm or icre_alm All alarm_hand[] definitions are ignored and
maxdefine.max_alh is assumed as 0.

Overrun handler def_ovr The overrun_hand definition is ignored.

Extended service call def_svc or idef_svc All extend_svc[] definitions are ignored and
maxdefine.max_fncd is assumed as 0.

Interrupt handler or CPU
exception handler

⎯ Always available.

506

For the service calls shown in table 14.12, definitions are corrected; in this case, a warning
message will be output.

Table 14.12 Service Calls whose Definitions are Corrected

Service Call Condition of Correction

cre_tsk, icre_tsk, ext_tsk, slp_tsk,
wup_tsk, iwup_tsk, dis_dsp, ena_dsp,
sns_dpn, vsta_knl, ivsta_knl, vini_rmt,
vsys_dwn, ivsys_dwn

Always corrected to YES. *

vscr_tsk, ivscr_tsk Corrected to YES when maxdefine.max_statictask >
0; otherwise, corrected to NO. *

def_inh, idef_inh, def_exc, idef_exc,
vdef_trp, ivdef_trp

Corrected to NO when system.vector_type is set to
ROM or ROM_ONLY_DIRECT; otherwise, YES. *

cre_cyc, icre_cyc Corrected to YES when system.action is set to YES.

acre_tsk, iacre_tsk, del_tsk, ter_tsk Corrected to YES when remote_svc.num_server > 0.

cre_mpf, icre_mpf, acre_mpf, iacre_mpf,
del_mpf, pget_mpf, rel_mpf,

Corrected to YES when remote_svc.num_wait > 0.

Note: * As a result of this correction, the settings in the user-specified cfg file and default cfg file
are ignored.

When clock.timer is set to NOTIMER, the definitions of the service calls that require timer
operation, such as dly_tsk or cre_alm, are automatically corrected to NO. In this case, note that no
warning message will be output.

Contents

(1) Setting

Description: Defines whether to incorporate each service call in the system.

 If a service call that is not incorporated is issued, an E_NOSPT error will
be returned.

Definition Format: Symbol

Specifiable Range: Select from the following.

⎯ YES: Incorporates the service call.

⎯ NO: Does not incorporate the service call

Default Setting: Setting in the default cfg file (all set to NO at shipment) (without a
warning)

507

14.4 Configurator Execution

14.4.1 Overview

Figure 14.1 gives an overview of the configurator operation.

xxx.cfg

Edited by
user

Configuration file
Default
configuration file

HI7200/MP
version file

cfg72mp

ID header file
such as kernel_id.h

System definition file System file
CPU interrupt
specification
definition file

Application
kernel_cfg.c kernel_def.c

Kernel library

Edited by
user

Legend:

File input/output

Include

File output from
the configurator

Supplied HI7200/MP file

Compiler, assembler, and linker

Load module

default.cfg version

kernel_intspec.h

Figure 14.1 Overview of Configurator Operation

For details of the CPU interrupt specification definition file, refer to section 17.3, Creating CPU
Interrupt Specification Definition File (kernel_intspec.h).

508

14.4.2 Environment Setting

The following environment variable should be set appropriately.

In the sample High-performance Embedded Workshop workspace provided, cfg72mp is registered
as a custom build phase, in which the environment variable is set.

• LIB72MP

Path to the default.cfg and version files

14.4.3 Files Required to Execute Configurator

• cfg file (XXXX.cfg)

This file contains a description of the initial setup items for the system. This should be created
by the user.

• Default cfg file (default.cfg)

This file contains default settings that are used in most cases when settings in the cfg file are
omitted. This file should be placed in the directory indicated by environment variable
"LIB72MP".

• Version file (version)

This file contains a description of the HI7200/MP version. This file should be placed in the
directory indicated by environment variable "LIB72MP." cfg72mp reads this file and outputs
HI7200/MP version information to the startup message.

14.4.4 Files Output by cfg72mp

cfg72mp outputs the following files to the current directory. The output directory cannot be
specified by the user.

(1) Current CPUID definition file (mycpuid.h)

This file contains the definition of the ID of the CPU (system.cpuid) in which the configured
kernel is to run. This file is included in kernel.h. The following shows an example of CPUID
definition output when system.cpuid is 1.

#define MYCPUID 1U

509

(2) ID name header files

These files contain definitions of object ID numbers. Include them in the application when
necessary. For details, refer to section 14.6, ID Name Header Files.

The ID name header file includes kernel.h.

(3) kernel_macro.h

This file is included in kernel.h. For its contents, refer to section 14.7, kernel_macro.h.

(4) System definition files

The system definition files are included in kernel_def.c and kernel_cfg.c to create a system in
accordance with the specified configuration. The contents of these files are implementation-
dependent; the compatibility with future versions will not be guaranteed either. The application
must not include these files.

cfg72mp outputs the following system definition files.

1. kernel_cfg.h

2. kernel_cfg_area.h

3. kernel_cfg_extern.h

4. kernel_cfg_inireg.h

5. kernel_cfg_inirtn.h

6. kernel_cfg_ststk.h

7. kernel_def.h

8. kenrel_def_area.h

9. kernel_def_extern.h

10. kernel_def_inireg.h

11. kernel_def_inirtn.h

14.4.5 Starting Configurator

Input the following command line to start the configurator.

C> cfg72mp[-vV] cfg file name

When the extension of the cfg file name is omitted, it is assumed as ".cfg".

510

14.4.6 Command Options

(1) –v option

Displays the description of the command options and detailed version information.

(2) –V option

Displays the information of the files generated through the command execution.

14.4.7 Note

After cfg72mp is executed, be sure to recompile the files that include kernel.h because cfg72mp
outputs kernel_macro.h that is included in kernel.h.

14.5 Error Messages

14.5.1 Error Output Format and Error Levels

This section describes the meaning of the error messages output in the following format.

Error number (Error level) Error message

Errors are classified into two levels as shown in table 14.13.

Table 14.13 Error Levels

Error Level Operation

(W) Warning Continues processing.

(E) Error Aborts processing.

511

14.5.2 List of Messages

(1) Error Messages

0001 (E) Illegal option --> <character>

 The command option has an error.

0002 (E) Illegal argument --> <string>

 The startup format has an error.

0003 (E) Invalid option

 The command option or startup format has an error.

0100 (E) syntax error

 Syntax error.

1000 (E) Not enough memory

 Insufficient memory.

2000 (E) Can't write open <file name>

 The file cannot be generated. Check the directory attribute and the free space in the
disk.

2002 (E) Can't open version file

 The version file "version" cannot be found in the current directory or the directory
indicated by environment variable "LIB72MP".

2003 (E) can't open default configuration file

 The default cfg file (default.cfg) cannot be found in the current directory or the
directory indicated by environment variable "LIB72MP".

2004 (E) Can't open configuration file <file name>

 The specified configuration file cannot be accessed.

512

3000 (E) Zero divide error

 The cfg file has a zero division expression.

3001 (E) Illegal XXXX --> <setting>

 The setting for definition name XXXX is illegal.

3002 (E) Illegal number expression --> <string>

 The specified string cannot be converted to a numeric value.

3003 (E) Unknown token --> <string>

 The specified string cannot be recognized as a definition name.

3003 (E) Unknown XXXX --> <string>

 The string specified as the setting for definition name XXXX is not allowed in the
cfg72mp specification.

3004 (E) Number of tasks exceeds upper limit(1023)

 The number of tasks exceeds the upper limit (1023).

3005 (E) Illegal number of XXXX --> <value>

 There are too many XXXX[] definitions.

4000 (E) XXXX not defined

 Definition name XXXX is not defined.

4002 (E) XXXX[].YYYY not defined

 XXXX[].YYYY is not defined.

4003 (E) When “name" is omitted, “ID" cannot be omitted.

 When "name" is omitted, the local ID number must always be specified.

4200 (E) Double definition <XXXX>

 Definition name XXXX is defined multiple times.

513

4201 (E) Double definition xxxx[number]

 The object definition item is defined multiple times.

4202 (E) System timer's vector <Vector number> conflict

 The vector number specified in interrupt_vector[] is already specified as
clock.number.

4203 (E) Double definition taskid=Local ID in static_stack[stack no.] and

[stack no.]

 A single task is specified for multiple static_stack[].tskid settings.

4300 (E) The ID of task[] with name="ID name" does not use static stack

 In static_stack[].tskid, the name of task[] that has a local ID number larger than
maxdefine.max_statictask or task[] without a local ID number is specified. When an
ID name is used to specify a task that uses a static stack, a local ID number must be
specified in the corresponding task[] and the ID number must not exceed
maxdefine.max_statictask.

4301 (E) The task ID=Local ID does not use static stack

 In static_stack[].tskid, a local ID number larger than maxdefine.max_statictask is
specified. When a local ID number is used to specify a task that uses a static stack, the
local ID number must not exceed maxdefine.max_statictask.

4302 (E) The task[] with name=ID name is not defined

 No task[] definition that has the ID name specified in static_stack[].tskid is found.

4303 (E) Static stack for tskid=Local ID is not assigned

 No static stack is assigned to the task with the specified local ID number. Add the
local task ID in any of the static_stack[].tskid settings.

4400 (E) YYYY must set ZZZZ or less in XXXX definition

 XXXX.YYYY should ZZZZ or smaller.

514

4401 (E) YYYY must set ZZZZ or more in XXXX definition

 XXXX.YYYY should ZZZZ or greater.

4402 (E) Can't define both XXXX keyword and YYYY keyword in ZZZZ

definition

 XXXX and YYYY cannot be specified for definition item ZZZZ at the same time.

4403 (E) XXXX exceeds 512MB

 XXXX exceeds 512 Mbytes.

4404 (E) Total of required default XXXX size exceeds 512MB

 The size of the required default XXXX area exceeds 512 Mbytes.

4406 (E) Too big task[Local ID]'s priority --> <priority>

 The specified task[Local ID].priority exceeds system.priority.

4407 (E) Too big IPL --> <clock.IPL setting>

 clock.IPL exceeds system.system_IPL.

4408 (E) Either system.tic_deno or system.tic_nume must be 1.

 Either system.tic_nume or system.tic_deno must be 1.

(2) Warning Messages

8000 (W) XXXX is not defined.

 Definition name XXXX is omitted; the setting in the default cfg file is used.

8100 (W) Already definition XXXX

 Definition name XXXX has already been defined; the first definition is used.

8101 (W) XXXX[number] definition is ignored

 The corresponding service call is not selected; the object definition is ignored.

515

8200 (W) XXXX is corrected to YYYY

 The setting for definition name XXXX is corrected to YYYY.

8201 (W) XXXX is not multiple of 4 --> <YYYY>

 The setting for definition name XXXX is rounded up to YYYY.

14.6 ID Name Header Files

14.6.1 Overview

The ID names of objects are output to ID name header files in the following format.

#define <ID name> MAKE_ID(<CPUID>, <ID number>)

<CPUID> indicates the CPUID specified in system.cpuid.

<ID name> is a user-specified ID name.

MAKE_ID() is a macro for creating an ID number from the CPUID and local ID; it is defined in
kernel.h. The ID name header files include kernel.h.

14.6.2 Types of ID Name Header Files

(1) kernel_id.h

To use an ID name specified in the cfg file, be sure to include kernel_id.h.

kernel_id.h contains definitions of the ID names that are not exported to the other CPU
(xxx[].export is set to NO) and it includes kernel_id_cpu1.h or kernel_id_cpu2.h described below,
which each contain definitions of the ID names that are exported to the other CPU.

(2) kernel_id_cpu1.h and kernel_id_cpu2.h

These files contain definitions of the ID names that are exported to the other CPU (xxx[].export is
set to YES).

cfg72mp outputs kernel_id_cpu1.h when system.cpuid is 1 or kernel_id_cpu2.h when
system.cpuid is 2.

516

(3) kernel_id_sys.h, kenrel_id_sys_cpu1.h, and kernel_id_sys_cpu2.h

These files are reserved for future extensions. No definition statements will be output to them in
most cases.

14.7 kernel_macro.h

This file is included in kernel.h.

#define TMAX_TPRI 10

#define TMAX_MPRI 10

#define TIC_NUME 1UL

#define TIC_DENO 1UL

#define TIM_LVL 13UL

#define TIM_INHNO 64UL

#define VTCFG_TBR _FOR_SVC

#define VTCFG_MPFMANAGE _OUT

#define VTCFG_NEWMPL _NEW

#define VTCFG_VECTYPE _ROM

#define VTCFG_REGBANK (_BANKLEVEL01|_BANKLEVEL14|_BANKLEVEL15)

(1) TMAX_TPRI

This indicates the maximum task priority (system.priority).

(2) TMAX_MPRI

This indicates the maximum message priority (system.message_pri).

(3) TIC_NUME and TIC_DENO

These indicate the numerator (clock_tic_nume) and denominator (clock.tic_deno) of the time tick,
respectively. These definitions are ignored when clock.timer is set to NOTIMER.

517

(4) TIM_LVL

This indicates the timer interrupt level (clock.IPL). It is set to 0 when clock.timer is set to
NOTIMER.

When creating a timer driver, implement the timer initialization processing according to the
TIC_NUME, TIC_DENO, and TIM_LVL settings.

(5) VTCFG_TBR

This indicates the TBR usage (system.tbr). A symbol generated by adding "_" at the beginning of
the symbol specified in system.tbr is set here. The definition value for each symbol is as follows.

#define _NOMANAGE 0UL

#define _FOR_SVC 1UL

#define _TASK_CONTEXT 2UL

(6) VTCFG_MPFMANAGE

This indicates the fixed-sized memory pool management (system.mpfmanage). A symbol
generated by adding "_" at the beginning of the symbol specified in system.mpfmanage is set here.
The definition value for each symbol is as follows.

#define _IN 0UL

#define _OUT 1UL

(7) VTCFG_NEWMPL

This indicates the variable-sized memory pool management (system.newmpl). A symbol generated
by adding "_" at the beginning of the symbol specified in system.nemwpl is set here. The
definition value for each symbol is as follows.

#define _PAST 0UL

#define _NEW 1UL

518

(8) VTCFG_VECTYPE

This indicates the interrupt vector type (system.vector_type). A symbol generated by adding "_" at
the beginning of the symbol specified in system.vector_type is set here. The definition value for
each symbol is as follows.

#define _ROM_ONLY_DIRECT 0UL

#define _RAM_ONLY_DIRECT 1UL

#define _ROM 2UL

#define _RAM 3UL

(9) VTCFG_REGBANK

This indicates the register bank usage (system.regbank). A symbol generated by adding "_" at the
beginning of the symbol specified in system.regbank is set here. The definition value for each
symbol is as follows.

#define _NOTUSE 0UL

#define _ALL 0x40000000UL

#define _BANKLEVEL01 0x00000002UL

#define _BANKLEVEL02 0x00000004UL

#define _BANKLEVEL03 0x00000008UL

#define _BANKLEVEL04 0x00000010UL

#define _BANKLEVEL05 0x00000020UL

#define _BANKLEVEL06 0x00000040UL

#define _BANKLEVEL07 0x00000080UL

#define _BANKLEVEL08 0x00000100UL

#define _BANKLEVEL09 0x00000200UL

#define _BANKLEVEL10 0x00000400UL

#define _BANKLEVEL11 0x00000800UL

#define _BANKLEVEL12 0x00001000UL

#define _BANKLEVEL13 0x00002000UL

#define _BANKLEVEL14 0x00004000UL

#define _BANKLEVEL15 0x00008000UL

519

(10) VTCFG_TRACE

This indicates the service call trace (system.trace). A symbol generated by adding "_" at the
beginning of the symbol specified in systemtrace is set here. The definition value for each symbol
is as follows.

#define _NO 0UL

#define _TARGET_TRACE 1UL

#define _TOOL_TRACE 2UL

(11) VTCFG_TRACE_OBJECT

This indicates the number of objects that can be acquired by service call trace
(system.trace_object). 0 is output when system.trace is set to NO.

520

521

Section 15 GUI Configurator

The GUI configurator is a tool used to input various types of kernel configuration information on
the GUI screen to create a cfg file. The output cfg file should be input to cfg72mp.

The GUI configurator provides an easy way to configure the kernel without learning how to write
a cfg file.

Figure 15.1 shows the relationship among the GUI configurator, cfg file, and cfg72mp.

Kernel configuration file (cfg file)

GUI configurator

Output files such as system definition
files and ID header files

Configurator cfg72mp

Figure 15.1 Relationship among GUI Configurator, cfg File, and cfg72mp

For information on the operation of the GUI configurator, refer to the online help.

522

523

Section 16 Sample Programs

This section describes a sample of programs stored in the
<SAMPLE_INST>\R0K572650D000BR directory.

This sample is created to show the behavior of the OS functions. Use of an emulator, such as the
E10A-USB, to check the operation is assumed; this sample does not externally input or output any
data.

16.1 Target Hardware

This sample is created for use on the Renesas R0K572650D00BR evaluation board equipped with
the SH7265 microcomputer.

Table 16.1 gives an overview of the board specifications and figure 16.1 shows the SH7265
memory map on the R0K572650D00BR.

Table 16.1 Overview of R0K572650D00BR Specifications

Item Specifications

Microcomputer • SH7265 (R5S72653P200BG)

⎯ Input clock (XIN): 16.67 MHz

⎯ Bus clock: 66.67 MHz max.

⎯ CPU clock: 200 MHz max.

External memory • NOR flash memory (CS0 space, 16-bit bus): 16 Mbytes

⎯ S29GL128M90TFIR2 (manufactured by SPANSION) × 1

• SDRAM (SDRAM0 space, 16-bit bus): 32 Mbytes

⎯ EDS2516APTA-75 (manufactured by Elpida) × 1

524

SH7265 logical space

 R0K572650D00BR

memory map

0x00000000

0x00000000

0x00FFFFFF

Flash memory (16 Mbytes)
16-bit bus

CS0 space
(64 Mbytes)

 User area

0x04000000 CS1 space
(64 Mbytes)

0x04000000

User area

0x08000000 CS2 space
(64 Mbytes)

0x08000000

User area

0x0C000000 CS3 space
(64 Mbytes)

0x0C000000

User area

0x10000000 CS4 space
(64 Mbytes)

0x10000000

User area

0x14000000 CS5 space
(64 Mbytes)

0x14000000

User area

0x18000000

0x18000000

0x19FFFFFF
SDRAM (32 Mbytes)

SDRAM0 space
(64 Mbytes)

0c1C000000

0x1C000000

0x1DFFFFFF

SDRAM (32 Mbytes)

Not mounted (only patterns are
printed)

SDRAM1 space
(64 Mbytes)

0x20000000 CS0 to CS5, SDRAM0, and
SDRAM1 spaces
(cache-disabled)

0x20000000 CS0 to CS5, SDRAM0, and

SDRAM1 spaces
(cache-disabled)

0x40000000 Reserved (access-prohibited) 0x40000000 Reserved (access-prohibited)

0xE8000000
On-chip peripheral modules

0xE8000000

On-chip peripheral modules

0xEC000000 Reserved (access-prohibited) 0xEC000000 Reserved (access-prohibited)

0xFF400000
On-chip peripheral modules

0xFF400000

On-chip peripheral modules

0xFFC00000 Reserved (access-prohibited) 0xFFC00000 Reserved (access-prohibited)

0xFFD80000 Fast on-chip RAM0 (shadow)
(64 Kbytes)

0xFFD80000 Fast on-chip RAM0 (shadow)

(64 Kbytes)

0xFFD90000 Reserved (access-prohibited) 0xFFD90000 Reserved (access-prohibited)

0xFFDA0000 Fast on-chip RAM1 (shadow)
(32 Kbytes)

0xFFDA0000 Fast on-chip RAM1 (shadow)

(32 Kbytes)

525

0xFFDA8000 Reserved (access-prohibited) 0xFFDA8000 Reserved (access-prohibited)

0xFFF80000 Fast on-chip RAM0
(64 Kbytes)

0xFFF80000 Fast on-chip RAM0

(64 Kbytes)

0xFFF90000 Reserved (access-prohibited) 0xFFF90000 Reserved (access-prohibited)

0xFFFA0000 Fast on-chip RAM1
(32 Kbytes)

0xFFFA0000 Fast on-chip RAM1

(32 Kbytes)

0xFFA80000 Reserved (access-prohibited) 0xFFA80000 Reserved (access-prohibited)

0xFFFC0000

0xFFFFFFFF
On-chip peripheral modules

0xFFFC0000

0xFFFFFFFF
On-chip peripheral modules

Figure 16.1 SH7265 Memory Map

16.2 Directory Structure

The following shows the structure of the directories under the
<SAMPLE_INST>\R0K572650D000BR directory.

include\ Header files common to both CPUs
iodefine\ Hardware definition header files, peripheral clock frequency definition,
 and kernel_intspec.h
cpuid1\ Workspace directory for CPUID#1
 include\ Header file common to CPUID#1 sample programs
 cfg_out\ cfg file, configurator output files, kernel_def.c, and kernel_cfg.c
 ipi\ IPI
 oal\ OAL
 rpc_config\ RPC data file (rpc_table.c)
 reset\ Reset handling
 os_timer\ Timer driver for on-chip CMT of SH7205 or SH7265
 init_task\ Initial startup task
 stdlib\ Initialization functions and low-level functions of the standard library
 sysdwn\ System down routines
 dummy_prog\ Dummy programs
 rpc_sample_clnt\ RPC client stub example
 rpc_caller\ RPC call example
 remote_svc_sample\ Remote service call example
 prj_cpuid1\ Project directory
 debug\ "debug" configuration directory
cpuid2\ Workspace directory for CPUID#2
 include\ Header file common to CPUID#2 sample programs
 cfg_out\ cfg file, configurator output files, kernel_def.c, and kernel_cfg.c

526

 ipi\ IPI
 oal\ OAL
 rpc_config\ RPC data file (rpc_table.c)
 reset\ Reset handling
 os_timer\ Timer driver for on-chip CMT of SH7205 or SH7265
 init_task\ Initial startup task
 stdlib\ Initialization functions and low-level functions of the standard library
 sysdwn\ System down routines
 dummy_prog\ Dummy programs
 rpc_sample_svr\ RPC server stub and RPC server function example
 remote_svc_sample\ Remote service call example
 prj_cpuid2\ Project directory
 debug\ "debug" configuration directory

The following files are not sample programs but are stored in this directory for convenience.

(1) kernel_def.c, kernel_cfg.c

(2) IPI

(3) OAL

(4) RPC data file (rpc_table.c)

527

16.3 Startup Processing

This section describes the procedures of this sample processing until each CPU moves to the
multitasking environment after a reset. Please fully understand this description and the sample
code to avoid wasting time to check the startup state in the early stages of application system
development.

16.3.1 Overview

Figure 16.2 is a schematic flowchart of procedures until each CPU moves to the multitasking
environment after a reset.

Reset vector table common

to both CPUs (address 0) Reset vector

fetch by CPU

Reset operation emulated by

using a virtual reset vector table

Branch by
JMP instruction

_Reset_Poweron _Reset_Manual

Virtual reset vector table for CPUID = 2

Main program for

CPUID#1 power-on reset

PowerON_Reset

_PC_CPUID1()

Main program for

CPUID#1 manual reset

Manual_Reset

_PC_CPUID1()

Main program for

CPUID#2 power-on reset

PowerON_Reset

_PC_CPUID2()

Main program for

CPUID#2 manual reset

Manual_Reset

_PC_CPUID2()

CPUID#1 kernel startup

vsta_knl()

CPUID#2 kernel startup

vsta_knl()

Moves to multitasking environment

Initial startup task

InitTask()

Moves to multitasking environment

Initial startup task

InitTask()

Figure 16.2 Schematic Flowchart of Startup Procedures

528

The legend for figure 16.2 is as follows.

• Red arrow: CPUID#1 operation

• Blue arrow: CPUID#2 operation

• Shaded in green: CPUID#1 linkage unit

• Shaded in blue: CPUID#2 linkage unit

As the initialization processing of the CPUs should be executed in a specified order, it is
controlled by using initialization flags. For details, refer to section 16.3.9, Synchronization of
Startup Phases in Two CPUs.

Table 16.2 shows the source files described in this section.

529

Table 16.2 Source Files Related to Startup Processing

Directory File Name Function

reset.src (1) Reset vector table (address 0)

(2) _Reset_Poweron

(3) _Reset_Manual

resetprg1.c Main processing for CPUID#1 reset:

(1) PowerON_Reset_PC_CPUID1()

(2) Manual_Reset_PC_CPUID1()

hwsetup1.c Initialization of common hardware and
CPUID#1-dedicated hardware:

HardwareSetup_CPUID1()

cpg1.c CPG (FRQCR0) initialization: io_set_cpg_couid1()

uram.c On-chip RAM initial settings: io_set_uram()

bsc_cs0.c CS0 initialization: io_init_bsc_cs0()

cpuid1\reset

bscsdram.c SDRAM space initialization: io_init_sdram()

cpuid1\init_task\ init_task1.c CPUID#1 initial startup task: InitTask1()

reset\vreset.src Virtual reset vector table for CPUID#2

reset\resetprg2.c Main processing for CPUID#2 reset:

(1) PowerON_Reset_PC_CPUID2()

(2) Manual_Reset_PC_CPUID2()

reset\hwsetup2.c Initialization of CPUID#2-dedicated hardware:

HardwareSetup_CPUID2()

cpuid2\reset\

reset\cpg2.c CPG (FRQCR2) initialization: io_set_cpg_cpuid2()

cpuid2\init_task\ init_task\init_task2.c CPUID#2 initial startup task: InitTask2()

Figure 16.3 is a flowchart of the CPUID#1 startup procedures and figure 16.4 is a flowchart of the
CPUID#2 startup procedures. The rectangles shaded in yellow in the figures indicate API calls
provided in the HI7200/MP.

530

(Execution does not return)

PowerOnReset_PC_CPUID1 function or

ManualReset_PC_CPUID1 function HardwareSetup_CPUID1 function io_set_cpg_cpuid1 function

HardwareSetup_CPUID1 function io_set_cpg_cpuid1 function FRQCR1 initialization
 (I0, I1, B, and P clock setting)

Default setting for on-chip
module standby

Section initialization
_INITSCT function

io_set_uram function

Cache initialization
sh2adual_ini_cac function

io_init_bsc_cs0 function

io_set_uram function

Initialization of on-chip RAM
access right

Kernel startup
vsta_knl service call

io_init_sdram function

io_init_bsc_cs0 function

CS0 space initializationtdr_ini_tmr function

Kernel timer (CMT) initialization io_init_sdram function

SDRAM space initialization

Initial startup task InitTask1 function

Standard library initialization
_INIT_LOWLEVEL function
_INIT_OTHERLIB function

IPI initialization: IPI_init function

OAL initialization: OAL_Init function

RPC initialization: rpc_init function

Initialization of remote service
call environment

vini_rmtl service call

Initialization of sample RPC client
SampleInit function

Figure 16.3 CPUID#1 Startup Flowchart

531

(Execution does not return)

PowerOnReset_PC_CPUID2 function or

ManualReset_PC_CPUID2 function HardwareSetup_CPUID2 function io_set_cpg_cpuid2 function

HardwareSetup_CPUID2 function io_set_cpg_cpuid2 function FRQCR1 initialization
 (I1 clock division ratio setting)

Section initialization
_INITSCT function

Cache initialization
sh2adual_ini_cac function

Kernel startup
vsta_knl service call

tdr_ini_tmr function

Kernel timer (CMT) initialization

Initial startup task InitTask2 function

Standard library initialization
_INIT_LOWLEVEL function
_INIT_OTHERLIB function

IPI initialization: IPI_init function

OAL initialization: OAL_Init function

RPC initialization: rpc_init function

Initialization of remote service
call environment

vini_rmtl service call

Initialization of sample RPC server
SampleInit function

Figure 16.4 CPUID#2 Startup Flowchart

532

16.3.2 Reset Vectors (cpuid1\reset\reset.src)

In the SH7265, each CPU fetches a vector from the reset vector table at address 0 to start
execution.

The user should create a reset vector table such as this sample file for this kernel.

Although this kernel requires a separate load module to be generated for each CPU, a reset vector
table should be created for the CPUID#1 linkage unit.

Table 16.3 shows the contents registered in the reset vector table. The reset vector table and the
two programs shown in table 16.3 are in reset.src for CPUID#1. This file is written in assembly
language.

Table 16.3 Reset Vector Table

Vector No. Description Registered Contents

0 Power-on reset PC _Reset_Poweron: Program for power-on reset

1 Power-on reset SP End address of on-chip RAM0

2 Manual reset PC _Reset_Manual: Program for power-on reset

3 Manual reset SP End address of on-chip RAM0

_Reset_Poweron and _Reset_Manual are executed in both CPUs simultaneously.

The overview of these program operations is given below.

After a reset, the CPU reset handling initializes the stack pointer (R15) as shown in table 16.3 and
both CPUs start executing the appropriate program from the above. Note that the stack pointer is
initialized for use in CPUID#1; do not use the stack before initializing the stack pointer for
CPUID#2. These programs are written in assembly language to ensure that the stack is not used in
these programs.

Next, whether CPUID#1 or CPUID#2 is in execution should be determined.

When CPUID#1 is in execution, execution branches through a JMP instruction to the following
reset main program for CPUID#1, which is written in C language. Execution does not return after
the branch.

• For a power-on reset: PowerON_Reset_PC_CPUID1()

• For a manual reset: Manual_Reset_PC_CPUID1()

533

On the other hand, when CPUID#2 is in execution, CPUID#2 is in busy-wait state until CPUID#1
completes initialization of common hardware (refer to section 16.3.3, Reset Main Program for
CPUID#1), and after that, CPUID#2 emulates operation of a reset only for CPUID#2 by referring
to the virtual reset vector table for CPUID#2 (section 16.3.5, Virtual Reset Vector Table for
CPUID#2); that is, the stack pointer is initialized according to the virtual reset vector table and
execution branches through a JMP instruction to the address registered in the virtual reset vector
table. Execution does not return after the branch.

Figure 16.5 shows the source code in reset.src and its description.

534

1 ;**

2 ;* Import virtual reset vector table symbol of CPUID#2

3 ;*

4 ;* When CPUID#1 is linked, you must define the absolute address of

5 ;* the symbol "_ResetVectorTable_CPUID2" manually.

6 ;* When CPUID#2 is linked, you must locate "CC_resetvct" section to the above address.

7 ;* If you locate this section to other address, you must re-link CPUID#1 side with

8 ;* new address definition for "_ResetVectorTable_CPUID2".

9 ;**

10 .import _ResetVectorTable_CPUID2 ; In "CC_resetvct" section of CPUID#2

11

12

External reference declaration of

the virtual reset vector table for

CPUID#2

(address is forcibly defined at

linkage)

13 ;**

14 ;* Please define copied program size for CPUID#2

15 ;**

16 ;*** for POWERON RESET

17 COPYSIZE_POWERON .assign 20

18 ; [Caution!]

19 ; The size must be equal to

20 ; POWERON_EXEC_RAM1_END - POWERON_EXEC_RAM1_START)

Size of CPUID#2 program to

implement busy-wait in on-chip

RAM at a power-on reset

21

22 ;*** for MANUAL RESET

23 COPYSIZE_MANUAL .assign 20

24 ; [Caution!]

Size of CPUID#2 program to

implement busy-wait in on-chip

RAM at a manual reset

25 ; The size must be equal to

26 ; (MANUAL_EXEC_RAM1_END - MANUAL_EXEC_RAM1_START)

27

28

29 ;**

30 ;* Definition

31 ;**

Figure 16.5 cpuid1\reset\reset.src

535

32 URAMEND_CPUID1 .assign H'FFF90000 ;* End of URAM0 address (reset stack for CPUID#1) End address of on-chip RAM0

(initial stack pointer value for

CPUID#1)

33

34 CPUIDR .assign H'FFFC1404 ;* CPUIDR register address CPUIDR register address

35 CPUIDR_CPU2 .assign H'40000000

36

37 DELAY_CPUID2 .assign H'200 ;* delay count of CPUID#2 to wait for CPUID#1

38 ;* to initialize s_ucIsInitHW

39

40 ;**

41 ;* Reset vector table

Reset vector table common to

both CPUs

42 ;**

43 .section CC_resetvct, data, align=4

Section name = CC_resetvct

44 .export _ResetVectorTable

45

46 _ResetVectorTable:

47 ;* 0 : Power-on Reset (PC)

48 .data.l _Reset_Poweron ; in this file

49 ;* 1 : Power-on Reset (SP)

50 .data.l URAMEND_CPUID1

51 ;* 2 : Manual Reset (PC)

52 .data.l _Reset_Manual ; in this file

53 ;* 3 : Manual Reset (SP)

54 .data.l URAMEND_CPUID1

55

56 ;**

57 ;* _Reset_Poweron Reset_Poweron program

58 ;* Power-on reset program for both CPU (reset vector entry)

59 ;* This program should not use stack.

60 ;**

61 .section PC_reset

62 .export _Reset_Poweron

Figure 16.5 cpuid1\reset\reset.src (cont)

536

63 .import _PowerON_Reset_PC_CPUID1

64

65 _Reset_Poweron:

66 ;*** if I'm CPUID#1 then POWERON_CPUID1, else POWERON_CPUID2 Determines which CPU is in

execution.

67 mov.l #CPUIDR,r0

68 mov.l @r0,r0

69 mov.l #CPUIDR_CPU2,r1

70 tst r0,r1

71 bf POWERON_CPUID2

72

73 ;************* For CPUID#1 ************* Path to be executed when

CPUID#1 is in execution

74 ;*** initialize s_ucIsInitHW Initializes each initialization flag

(A1 in figure 16.11).

75 mov.l #_s_ucIsInitHW,r1

76 mov #0,r0

77 mov.b r0,@r1

78

79 ;*** initialize s_ucIsInitKnlCPUID1

80 mov.l #_s_ucIsInitKnlCPUID1,r1

81 mov #0,r0

82 mov.b r0,@r1

83

84 ;*** initialize s_ucIsInitEnvCPUID1

85 mov.l #_s_ucIsInitEnvCPUID1,r1

86 mov #0,r0

87 mov.b r0,@r1

88

89 ;*** initialize s_ucIsInitEnvCPUID2

90 mov.l #_s_ucIsInitEnvCPUID2,r1

91 mov #0,r0

92 mov.b r0,@r1

Figure 16.5 cpuid1\reset\reset.src (cont)

537

93

94 ;*** wait for the completion that CPUID#2 set s_ucIsInitHW = 1

95 POWERON1_HW_WAIT:

96 mov.b @r1,r0

Waits until CPUID#2 sets

s_ucIsInitHW to 1 (B11 in figure

16.11).

97 cmp/eq #1,r0

98 bf POWERON1_HW_WAIT

99

100 ;*** jump to PowerON_Reset_PC_CPUID1()

101 mov.l #_PowerON_Reset_PC_CPUID1,r0

Branches to

PowerON_Reset_PC_CPUID1().

102 jmp @r0

103 nop

104

105 ;************* For CPUID#2 *************

106 POWERON_CPUID2:

Path to be executed when

CPUID#2 is in execution

107 ;*** get ResetVectorTable_CPUID2 address to R7

108 mov.l #_ResetVectorTable_CPUID2,r7

109

110 ;*** initialize R15

111 mov.l @(4,r7),r15 ; load SP(R15)

112

Initializes the stack pointer

according to the virtual reset

vector table for CPUID#2.

113 ;*** delay to wait for CPUID#1 to initialize s_ucIsInitHW

114 mov.l #DELAY_CPUID2,r0

115

Delays execution for a period

long enough for CPUID#1 to

initialize s_ucIsInitHW (B21 in

figure 16.11).

116 POWERON2_DELAY:

117 dt r0

118 bf POWERON2_DELAY

119

120 ;*** jump to RAM1

121 mov.l #POWERON_EXEC_RAM1_START,r1

122 mov.l #R_POWERON_EXEC_RAM1_START,r2

Copies the program to on-chip

RAM1 and calls it (B22 in figure

16.11).

123 mov.l #COPYSIZE_POWERON,r3

124 add r1,r3

125

Figure 16.5 cpuid1\reset\reset.src (cont)

538

126 POWERON_LOOP_COPY:

127 mov.w @r1+,r0

128 mov.w r0,@r2+

129 cmp/hi r1,r3

130 bt POWERON_LOOP_COPY

131

132 mov.l #R_POWERON_EXEC_RAM1_START,r0

133 jsr/n @r0

134

135 ;*** jump to PowerON_Reset_PC_CPUID2()

136 mov.l @(0,r7),r1 ; load PC

137 jmp @r1

138 nop

Branches to the address

(PowerON_Reset_PC_CPUID2())

registered in the virtual reset

vector table for CPUID#2.

139

140 .pool

141

142 ;*** This code is copied to RAM1 *****************

143 POWERON_EXEC_RAM1_START:

Program to be copied to on-chip

RAM1

144 ;*** set s_ucIsInitHW = 1

145 mov.l #_s_ucIsInitHW,r1

Sets s_ucIsInitHW to 1 (B23 in

figure 16.11).

146 mov #1,r0

147 mov.b r0,@r1

148

149 ;*** wait for the completion that CPUID#1 set s_ucIsInitHW=2

150 POWERON2_HW_WAIT:

151 mov.b @r1,r0

Waits until CPUID#2 sets

s_ucIsInitHW to 2 (B24 in figure

16.11).

152 cmp/eq #2,r0

153 bf POWERON2_HW_WAIT

154

155 rts ; do not "rts/n" Returns control.

156 nop

157 .pool

158 POWERON_EXEC_RAM1_END:

Figure 16.5 cpuid1\reset\reset.src (cont)

539

159 ;*** end of copied program

160

161

162 ;**

163 ;* _Reset_Manual Reset_Manual program

164 ;* Manual reset program for both CPU (reset vector entry)

165 ;* This program should not use stack.

166 ;**

167 .export _Reset_Manual

168 .import _Manual_Reset_PC_CPUID1

169

170 _Reset_Manual

171 ;*** if I'm CPUID#1 then MANUAL_CPUID1, else MANUAL_CPUID2

172 mov.l #CPUIDR,r0

Determines which CPU is in

execution.

173 mov.l @r0,r0

174 mov.l #CPUIDR_CPU2,r1

175 tst r0,r1

176 bf MANUAL_CPUID2

177

178 ;************* For CPUID#1 ************* Path to be executed when

CPUID#1 is in execution

179 ;*** initialize s_ucIsInitHW

180 mov.l #_s_ucIsInitHW,r1

Initializes each initialization flag

(A1 in figure 16.11).

181 mov #0,r0

182 mov.b r0,@r1

183

184 ;*** initialize s_ucIsInitKnlCPUID1

185 mov.l #_s_ucIsInitKnlCPUID1,r1

186 mov #0,r0

187 mov.b r0,@r1

188

189 ;*** initialize s_ucIsInitEnvCPUID1

190 mov.l #_s_ucIsInitEnvCPUID1,r1

191 mov #0,r0

Figure 16.5 cpuid1\reset\reset.src (cont)

540

192 mov.b r0,@r1

193

194 ;*** initialize s_ucIsInitEnvCPUID2

195 mov.l #_s_ucIsInitEnvCPUID2,r1

196 mov #0,r0

197 mov.b r0,@r1

198

199 ;*** wait for the completion that CPUID#2 set s_ucIsInitHW = 1

200 MANUAL1_HW_WAIT:

201 mov.b @r1,r0

Waits until CPUID#2 sets

s_ucIsInitHW to 1 (B11 in figure

16.11).

202 cmp/eq #1,r0

203 bf MANUAL1_HW_WAIT

204

205 ;*** jump to Manual_Reset_PC_CPUID1()

206 mov.l #_Manual_Reset_PC_CPUID1,r0

Branches to

ManualReset_PC_CPUID1().

207 jmp @r0

208 nop

209

210 ;************* For CPUID#2 *************

211 MANUAL_CPUID2:

Path to be executed when

CPUID#2 is in execution

212 ;*** get ResetVectorTable_CPUID2 address to R7

213 mov.l #_ResetVectorTable_CPUID2,r7

214

215 ;*** initialize R15

216 mov.l @(12,r7),r15 ; load SP(R15)

217

Initializes the stack pointer

according to the virtual reset

vector table for CPUID#2.

218 ;*** delay to wait for CPUID#1 to initialize s_ucIsInitHW

219 mov.l #DELAY_CPUID2,r0

220

Delays execution for a period

long enough for CPUID#1 to

initialize s_ucIsInitHW (B21 in

figure 16.11).

221 MANUAL2_DELAY:

222 dt r0

223 bf MANUAL2_DELAY

224

Figure 16.5 cpuid1\reset\reset.src (cont)

541

225 ;*** jump to RAM1

226 mov.l #MANUAL_EXEC_RAM1_START,r1

227 mov.l #R_MANUAL_EXEC_RAM1_START,r2

Copies the program to on-chip

RAM1 and calls it (B22 in figure

16.11).

228 mov.l #COPYSIZE_MANUAL,r3

229 add r1,r3

230

231 MANUAL_LOOP_COPY:

232 mov.w @r1+,r0

233 mov.w r0,@r2+

234 cmp/hi r1,r3

235 bt MANUAL_LOOP_COPY

236

237 mov.l #R_MANUAL_EXEC_RAM1_START,r0

238 jsr/n @r0

239

240 ;*** jump to Manual_Reset_PC_CPUID2()

241 mov.l @(8,r7),r1 ; load PC

242 jmp @r1

243 nop

244

245 .pool

246

247 ;*** This code is copied to RAM1 *****************

248 MANUAL_EXEC_RAM1_START:

Program to be copied to on-chip

RAM1

249 ;*** set s_ucIsInitHW = 1

250 mov.l #_s_ucIsInitHW,r1

Sets s_ucIsInitHW to 1(B23 in

figure 16.11).

251 mov #1,r0

252 mov.b r0,@r1

253

254 ;*** wait for the completion that CPUID#1 set s_ucIsInitHW=2

255 MANUAL2_HW_WAIT:

256 mov.b @r1,r0

Waits until CPUID#2 sets

s_ucIsInitHW to 2 (B24 in figure

16.11).

257 cmp/eq #2,r0

258 bf MANUAL2_HW_WAIT

Figure 16.5 cpuid1\reset\reset.src (cont)

542

259

260 rts ; do not "rts/n" Returns control.

261 nop

262 .pool

263 MANUAL_EXEC_RAM1_END:

264 ;*** end of copied program

265

266 ;**

267 ;* Program Section in RAM1 for CPUID#2

268 ;**

269 .section BD_URAM1, data, align=4

270

Section allocated to on-chip

RAM1

271 R_POWERON_EXEC_RAM1_START:

272 .res.b COPYSIZE_POWERON

Destination area in on-chip RAM

for program copy (power-on

reset)

273 R_MANUAL_EXEC_RAM1_START:

274 .res.b COPYSIZE_MANUAL

Destination area in on-chip RAM

for program copy (manual reset)

275

276 ;**

277 ;* Flags in RAM0 Initialization flags

278 ;**

279 .section BL_S_URAM0, data, align=4

280 .export _s_ucIsInitHW, _s_ucIsInitKnlCPUID1, _s_ucIsInitEnvCPUID1,

_s_ucIsInitEnvCPUID2

281 _s_ucIsInitHW:

282 .res.b 1

283 _s_ucIsInitKnlCPUID1:

284 .res.b 1

285 _s_ucIsInitEnvCPUID1:

286 .res.b 1

287 _s_ucIsInitEnvCPUID2:

288 .res.b 1

289

290 .end

Figure 16.5 cpuid1\reset\reset.src (cont)

543

16.3.3 Reset Main Program for CPUID#1 (cpuid1\reset\resetprg1.c)

The following two reset main programs are necessary for CPUID#1.

• For power-on reset: PowerON_Reset_PC_CPUID1()

• For manual reset: Manual_Reset_PC_CPUID1()

(1) PowerON_Reset_PC_CPUID1()

This function is initiated through a branch from _Reset_Poweron in reset.src when a power-on
reset is generated during CPUID#1 execution. This function must not return.

This function performs the following processing.

1. Initializes the common hardware and CPUID#1-dedicated hardware (calls
HardwareSetup_CPUID1()).

2. Initializes the section (calls _INITSCT()).

3. Initializes the cache (calls sh2adual_ini_cac()). 3

4. Starts the kernel (calls vsta_knl).

Note that the standard libraries are initialized by the initial startup task because the kernel
functions may be required to initialize the standard libraries in some cases; for example, when a
reentrant library is used.

(2) Manual_Reset_PC_CPUID1()

This function is initiated through a branch from _Reset_Manual in reset.src when a manual reset is
generated during CPUID#1 execution. This function must not return.

This function performs almost the same processing as PowerON_Reset_PC_CPUID1().

3 The cache can be initialized before this, but note the following case.
For the section initialization processing involving a program section copy from ROM to RAM, if
the cache is initialized in copy-back mode before section initialization, the contents of the operand
cache corresponding to the program code area to which the program has been copied should be
copied back to the actual memory after section initialization. Otherwise, an illegal instruction code
will be executed if instructions are fetched from the program code address before the program
code that has been written to the operand cache during section initialization is copied back to the
actual memory through cache entry replacing.

544

Figure 16.6 shows the source code in resetprg1.c and its description.

1 /**

2 Includes

3 **/

4 #include <machine.h>

5

6 #include "types.h"

7 #include "kernel.h"

8 #include "sh2adual_cache.h"

9

10 #include "io_sys.h"

11 #include "io_multicore.h"

12

13 #include "initsct.h"

14

15 /**

16 Prototypes

17 **/

18 void PowerON_Reset_PC_CPUID1(void);

19 void Manual_Reset_PC_CPUID1(void);

20

21 /**

22 External reference

23 **/

24 extern void HardwareSetup_CPUID1(void);

25

26 /**

27 Section definition

28 **/

29 #pragma section C_reset Specifies the section name.

30

Figure 16.6 cpuid1\reset\resetprg1.c

545

31 /**

32 Initialize section information

33 **/

Section initialization information

table

34 /*** D section information table ***/

35 static const ST_DTBL dtbl[]= {

36 MACRO_ENTRY_DTBL("DC_stdlib", "RC_stdlib")

37 };

38 /*** B section information table ***/

39 static const ST_BTBL btbl[]= {

40 MACRO_ENTRY_BTBL("BC_stdlib"),

41 MACRO_ENTRY_BTBL("BC_sample"),

42 MACRO_ENTRY_BTBL("BC_heap")

43 };

44

45 /***/

46 /** Power-on Reset function PowerON_Reset_PC_CPUID1()

47 * @retval None

48 * @note This routine is called from "_Reset_Poweron" in "reset.src",

49 * and must not return.

50 **/

51 #pragma noregsave(PowerON_Reset_PC_CPUID1)

52 void PowerON_Reset_PC_CPUID1(void)

53 {

The register contents do not need

to be saved because execution

does not return.

54 extern UINT8 s_ucIsInitHW; /* defined in reset.src */

55

56 set_imask(15); /* set SR.IMASK = 15 */

57

58 /*** check CPUID ***/

59 if(IO_CPUIDR.BIT._ID != (MYCPUID)-1U) {

60 while(1){ /* error */

Stops processing when the

unexpected CPU is in execution.

61 };

62 }

63

Figure 16.6 cpuid1\reset\resetprg1.c (cont)

546

64 /*** initialize shared hardware and CPUID#1 hardware ***/

65 HardwareSetup_CPUID1();

66 s_ucIsInitHW = 2;

67

Sets s_ucIsInitHW to 2 after

initialization of common hardware

(B12 in figure 16.11).

68 /*** initialize section ***/ Initializes the section.

69 _INITSCT(dtbl, sizeof dtbl, btbl, sizeof btbl);

70

71 /*** initialize cache ***/ Initializes the cache.

72 sh2adual_ini_cac(TCAC_IC_ENABLE|TCAC_OC_ENABLE);

73

74 /*** start kernel (never return) ***/

75 vsta_knl();

Starts the kernel (do not return

control here).

76

77 /*** (NEVER return from vsta_knl()) ***/

78 while(1) {

79 }

80 }

81

82 /***/

83 /** Manual Reset function ManualReset_PC_CPUID1()

84 * @retval None

85 * @note This routine is called from "_Reset_Manual" in "reset.src",

86 * and must not return.

87 **/

88 #pragma noregsave(Manual_Reset_PC_CPUID1)

89 void Manual_Reset_PC_CPUID1(void)

90 {

91 extern UINT8 s_ucIsInitHW; /* defined in reset.src */

92

93 set_imask(15); /* set SR.IMASK = 15 */

94

95 /*** clear DSFR.MRES ***/

96 IO_SYS.DSFR.BIT._MRES = 0;

97

Figure 16.6 cpuid1\reset\resetprg1.c (cont)

547

98 /*** initialize shared hardware and CPUID#1 hardware ***/

99 HardwareSetup_CPUID1();

100 s_ucIsInitHW = 2;

101

Sets s_ucIsInitHW to 2 after

initialization of common hardware

(B12 in figure 16.11).

102 /*** initialize section ***/ Initializes the section.

103 _INITSCT(dtbl, sizeof dtbl, btbl, sizeof btbl);

104

105 /*** initialize cache ***/ Initializes the cache.

106 sh2adual_ini_cac(TCAC_IC_ENABLE|TCAC_OC_ENABLE);

107

108 /*** start kernel (never return) ***/

109 vsta_knl();

Starts the kernel (do not return

control here).

110

111 /*** (NEVER return from vsta_knl()) ***/

112 while(1)

113 {

114 }

115 }

Figure 16.6 cpuid1\reset\resetprg1.c (cont)

548

16.3.4 Common Hardware and CPUID#1 Resource Initialization Function

HardwareSetup_CPUID1() (cpuid1\reset\hwsetup1.c)

The hardware resources shared by both CPUs and the CPUID#1 hardware resources are initialized
through HardwareSetup_CPUID1() executed in CPUID#1. HardwareSetup_CPUID1() is called
from PowerON_Reset_PC_CPUID1() and Manual_Reset_PC_CPUID1().

HardwareSetup_CPUID1() calls the following functions.

(1) io_set_cpg_cpuid1() (cpg1.c)

This function sets FRQCR0 to specify the clocks as follows.

• CPUID#1 internal clock (I0φ): 200 MHz

• CPUID#2 internal clock (I1φ): 200 MHz

• Bus clock (Bφ): 66.67 MHz

• Peripheral clock (Pφ): 33.33 MHz

This function also makes the default settings determining whether each on-chip module moves to
a standby state.

Note that the I1φ division ratio setting in FRQCR1 is done through io_set_cpg_cpuid2() (cpg2.c)
in CPUID#2 because FRQCR1 can only be modified by CPUID#2 according to the LSI
specification.

In addition to this function, the peripheral clock frequency is defined in iodefine\pclock.h; when
modifying the peripheral clock, be sure to also modify the definition in pclock.h.

549

(2) io_set_uram() (uram.c)

This function initializes the access rights to the on-chip RAM. This sample initializes them as
shown in table 16.4.

Table 16.4 Initialization of On-Chip RAM Access Rights

RAM Page
Access from
CPUID#1

Access from
CPUID#2 Access from DMAC

RAM0 page 0 Readable/Writable Readable/Writable Readable/Writable

RAM0 page 1 Readable/Writable Read-only Readable/Writable

RAM0 page 2 Readable/Writable Read-only Readable/Writable

RAM0 page 2 Readable/Writable Read-only Readable/Writable

RAM1 page 0 Read-only Readable/Writable Readable/Writable

RAM1 page 1 Read-only Readable/Writable Readable/Writable

(3) io_init_bsc_cs0() (bsc_cs0.c)

This function makes the settings for the pin function controller (PFC) and bus state controller
(BSC) to specify the timing of the access to the flash memory in the CS0 space.

(4) io_init_sdram() (bscsdram.c)

This function makes the settings for the pin function controller (PFC) and bus state controller
(BSC) to enable the SDRAM space in the SDRAM0 space.

550

16.3.5 Virtual Reset Vector Table for CPUID#2 (cpuid2\reset\vreset.src)

The virtual reset vector table is dedicated for CPUID#2 and is referred to from _Reset_Poweron
and _Reset_Manual in reset.src for CPUID#1.

The symbol name of the table in assembly language is _ResetVectorTable_CPUID2, and the
section name is CC_vresetvct.

This table is linked to the CPUID#2 side but is referred to from reset.src linked to the CPUID#1
side. Therefore, the following steps are necessary.

(1) The address where the virtual reset vector table is to be allocated should be determined in
advance.

(2) At linkage on the CPUID#1 side, the _ResetVectorTable_CPUID2 symbol should be forcibly
defined to be the address determined in step (1).

(3) At linkage on the CPUID#2 side, the CC_vresetvct section should be allocated to the address
determined in step (1).

Table 16.5 shows the contents registered in the reset vector table.

Table 16.5 Virtual Reset Vector Table

Vector No. Description Registered Contents

0 Power-on reset PC PowerON_Reset_PC_CPUID2(): Power-on reset main
program

1 Power-on reset SP End address of on-chip RAM1

2 Manual reset PC Manual_Reset_PC_CPUID2(): Manual reset main
program

3 Manual reset SP End address of on-chip RAM1

PowerON_Reset_PC_CPUID2() and Manual_Reset_PC_CPUID2() are reset main programs in
resetprg2.c for CPUID#2, and are initiated by a branch through a JMP instruction from
_Reset_Poweron and _Reset_Manual in reset.src, respectively. When a reset main program is
initiated, the stack pointer is initialized according to the respective vector number (1 or 3).

Figure 16.7 shows the source code in vreset.src and its description.

551

1 ;**

2 ;* Definition

3 ;**

4 URAMEND_CPUID2 .assign H'FFFA8000 ;* End of URAM1 address (reset stack for

CPUID#2)

5

End address of on-chip RAM1

(initial stack pointer value for

CPUID#2)

6 ;**

7 ;* Virtual reset vector table Virtual reset vector table

8 ;*

9 ;* This table is referred by "reset.src".

10 ;* This is virtual reset vector table for CPUID#2.

11 ;* The "reset.src" emulates "Reset" by referring this table.

12 ;* When linking of CPUID#2, do not change the location address of the

13 ;* "CC_resetvct" section. If changed, CPUID#1 must be re-linked with

14 ;* changed this symbol address.

15 ;**

16 .section CC_vresetvct, data, align=4 Section name = CC_vresetvct

17 .export _ResetVectorTable_CPUID2 External reference declaration

for the virtual reset vector table

symbol

18 .import _PowerON_Reset_PC_CPUID2 External reference definition of

PowerON_Reset_PC_CPUID2()

19 .import _Manual_Reset_PC_CPUID2 External reference definition of

Manual_Reset_PC_CPUID2()

20

21 _ResetVectorTable_CPUID2:

22 ;* 0 : Power-on Reset (PC)

23 .data.l _PowerON_Reset_PC_CPUID2 ; in resetprg.c

Power-on reset PC =

PowerON_Reset_PC_CPUID2()

24 ;* 1 : Power-on Reset (SP)

25 .data.l URAMEND_CPUID2

Power-on reset SP = End

address of on-chip RAM1

26 ;* 2 : Manual Reset (PC)

27 .data.l _Manual_Reset_PC_CPUID2 ; in resetprg.c

Manual reset PC =

Manual_Reset_PC_CPUID2()

28 ;* 3 : Manual Reset (PC)

29 .data.l URAMEND_CPUID2

Manual reset SP = End address

of on-chip RAM1

30

31 .end

Figure 16.7 cpuid2\reset\vreset.src

552

16.3.6 Reset Main Program for CPUID#2 (cpuid2\reset\resetprg2.c)

The following two reset main programs are necessary for CPUID#2.

• For power-on reset: PowerON_Reset_PC_CPUID2()

• For manual reset: Manual_Reset_PC_CPUID2()

Note that the common hardware resources are initialized by CPUID#1; after the initialization is
completed, this function is called in the CPUID#2.

(1) PowerON_Reset_PC_CPUID2()

This function is initiated through a branch from _Reset_Poweron in reset.src when a power-on
reset is generated during CPUID#2 execution. This function must not return.

This function performs the following processing.

1. Initializes the CPUID#2 hardware (calls HardwareSetup_CPUID2()).

2. Initializes the section (calls _INITSCT()).

3. Initializes the cache (calls sh2adual_ini_cac()).4

4. Starts the kernel (calls vsta_knl).

Note that the standard libraries are initialized by the initial startup task because the kernel
functions may be required to initialize the standard libraries in some cases; for example, when a
reentrant library is used.

(2) Manual_Reset_PC_CPUID2()

This function is initiated through a branch from _Reset_Manual in reset.src when a manual reset is
generated during CPUID#2 execution. This function must not return.

4 The cache can be initialized before this, but note the following case.
For the section initialization processing involving a program section copy from ROM to RAM, if
the cache is initialized in copy-back mode before section initialization, the contents of the operand
cache corresponding to the program code area to which the program has been copied should be
copied back to the actual memory after section initialization. Otherwise, an illegal instruction code
will be executed if instructions are fetched from the program code address before the program
code that has been written to the operand cache during section initialization is copied back to the
actual memory through cache entry replacing.

553

This function performs almost the same processing as PowerON_Reset_PC_CPUID2().

Figure 16.8 shows the source code in resetprg2.c and its description.

1 /**

2 Includes

3 **/

4

5

6 #include "types.h"

7 #include "kernel.h"

8 #include "sh2adual_cache.h"

9

10 #include "io_multicore.h"

11

12 #include "initsct.h"

13

14 /**

15 Prototypes

16 **/

17 void PowerON_Reset_PC_CPUID2(void);

18 void Manual_Reset_PC_CPUID2(void);

19

20 /**

21 External reference

22 **/

23 extern void HardwareSetup_CPUID2(void);

24

25 /**

26 Section definition

27 **/

28 #pragma section C_reset Specifies the section name.

29

Figure 16.8 cpuid2\reset\resetprg2.c

554

30 /**

31 Initialize section information

32 **/

Section initialization information

table

33 /*** D section information table ***/

34 static const ST_DTBL dtbl[]= {

35 MACRO_ENTRY_DTBL("DC_stdlib", "RC_stdlib")

36 };

37 /*** B section information table ***/

38 static const ST_BTBL btbl[]= {

39 MACRO_ENTRY_BTBL("BC_stdlib"),

40 MACRO_ENTRY_BTBL("BC_sample"),

41 MACRO_ENTRY_BTBL("BC_heap")

42 };

43

44 /***/

45 /** Power-on Reset function PowerON_Reset_PC_CPUID2()

46 * @retval None

47 * @note This routine is called from "_Reset_Poweron" in "reset.src",

48 * and must not return.

49 **/

50 #pragma noregsave(PowerON_Reset_PC_CPUID2)

51 void PowerON_Reset_PC_CPUID2(void)

52 {

The registers do not need to be

saved because execution does

not return.

53 extern UINT8 s_ucIsInitKnlCPUID1; /* defined in reset.src */

54

55 set_imask(15); /* set SR.IMASK = 15 */

56

57 /*** check CPUID ***/

58 if(IO_CPUIDR.BIT._ID != (MYCPUID)-1U) {

59 while(1) { /* error */

Stops processing when the

unexpected CPU is in execution.

60 };

61 }

62

Figure 16.8 cpuid2\reset\resetprg2.c (cont)

555

63 /*** initialize CPUID#2 hardware ***/

64 HardwareSetup_CPUID2();

65

Initializes the CPUID#2

hardware.

66 /*** initialize section ***/ Initializes the section.

67 _INITSCT(dtbl, sizeof dtbl, btbl, sizeof btbl);

68

69 /*** initialize cache ***/ Initializes the cache.

70 sh2adual_ini_cac(TCAC_IC_ENABLE|TCAC_OC_ENABLE);

71

72 /*** wait for s_ucIsInitKnlCPUID1=1 ***/

73 while(s_ucIsInitKnlCPUID1 == 0) {

74 }

Waits until CPUID#1 sets

s_ucIsInitKnlCPUID1 to 1 (C21

in figure 16.11).

75

76 /*** start kernel (never return) ***/

77 vsta_knl();

Starts the kernel (do not return

control here).

78

79 /*** (NEVER return from vsta_knl()) ***/

80 while(1) {

81 }

82 }

83

84 /***/

85 /** Manual Reset function ManualReset_PC_CPUID2()

86 * @retval None

87 * @note This routine is called from "_Reset_Manual" in "reset.src",

88 * and must not return.

89 **/

90 #pragma noregsave(Manual_Reset_PC_CPUID2)

91 void Manual_Reset_PC_CPUID2(void)

92 {

93 extern UINT8 s_ucIsInitKnlCPUID1; /* defined in reset.src */

94

95 set_imask(15); /* set SR.IMASK = 15 */

96

Figure 16.8 cpuid2\reset\resetprg2.c (cont)

556

97 /*** initialize CPUID#2 hardware ***/

98 HardwareSetup_CPUID2();

Initializes the CPUID#2

hardware

99

100 /*** initialize section ***/ Initializes the section.

101 _INITSCT(dtbl, sizeof dtbl, btbl, sizeof btbl);

102

103 /*** initialize cache ***/ Initializes the cache.

104 sh2adual_ini_cac(TCAC_IC_ENABLE|TCAC_OC_ENABLE);

105

106 /*** wait for s_ucIsInitKnlCPUID1=1 ***/

107 while(s_ucIsInitKnlCPUID1 == 0) {

108 }

Waits until CPUID#1 sets

s_ucIsInitKnlCPUID1 to 1 (C21

in figure 16.11).

109

110 /*** start kernel (never return) ***/

111 vsta_knl();

Starts the kernel (do not return

control here).

112

113 /*** (NEVER return from vsta_knl()) ***/

114 while(1) {

115 }

116 }

Figure 16.8 cpuid2\reset\resetprg2.c (cont)

557

16.3.7 CPUID#1 Initial Startup Task InitTask1() (cpuid1\init\init_task1.c)

InitTask1() is registered in the cfg file for CPUID#1 as the first task to be executed in CPUID#1.

This task initializes the following.

1. Standard libraries (_INIT_LOWLEVEL() and _INIT_OTHERLIB() calls)

2. IPI (IPI_init() call)

3. OAL (OAL_Init() call)

4. RPC (rpc_init() call)

The IPI and OAL initialization should be completed before an rpc_init() call.

5. Remote service call environment (vini_rmt call)

The IPI initialization should be completed before a vini_rmt call.

6. Sample RPC client (SampleInit() call)

Figure 16.9 shows the source code in InitTask1() and its description.

558

1 /**

2 Includes

3 ***/

4 #include "types.h"

5 #include "kernel.h"

6 #include "kernel_id.h"

7

8 #include "rpc_public.h"

9 #include "oal.h"

10 #include "ipi.h"

11

12 #include "lowsrc.h"

13 #include "otherlib.h"

14

15 #include "rpc_sample.h"

16

17 /**

18 Prototypes

19 ***/

20 void InitTask1(VP_INT exinf);

21

22 /**

23 Defines

24 ***/

25 #define NUM_SERVER 10UL Number of servers specified by

rpc_init() (actually, no server is

registered).

26 #define RPCSERVER_STKSZ 0x200UL Stack size for the server tasks

specified by rpc_init()

27 #define RPCSERVER_IPIPORT 2UL /* interrupt level = 13 */

28

ID of the IPI port specified by

rpc_init()

29 /**

30 Data

31 ***/

Figure 16.9 cpuid1\init\init_task1.c

559

32 #pragma section L_sample

33 static rpc_info RpcInfo[NUM_SERVER];

Creates rpc_info[] to be passed

to rpc_init() in a non-cacheable

area.

34

35 /**

36 Section definition

37 ***/

38 #pragma section C_sample Specifies the section name.

39

40 /***/

41 /** Initial task Initial startup task (InitTask1())

42 * This task calls various API to initialize OS,

43 * and then notifies CPUID#2 to have completed initialization phase of CPUID#1

44 * by setting s_ucIsInitEnvCPUID1.

45 * After that, this task waits to complete the initialization phase of CPUID#2.

46 * Afterwards, this task exits and be deleted.

47 *
This task is created and activated by "task[]" definition in .cfg file.

48 * @param exinf Undefined

49 * @retval None

50 ***/

51 void InitTask1(VP_INT exinf)

52 {

53 extern UINT8 s_ucIsInitKnlCPUID1; /* defined in reset.src */ External reference of

s_ucIsInitKnlCPUID1

54 extern UINT8 s_ucIsInitEnvCPUID1; /* defined in reset.src */ External reference of

s_ucIsInitEnvCPUID1

55 extern UINT8 s_ucIsInitEnvCPUID2; /* defined in reset.src */ External reference of

s_ucIsInitEnvCPUID2

56

57 static const rpc_config ConfigInfo = { rpc_config structure to be

passed to rpc_init()

58 RpcInfo, /* rpc_info *pRpcTable; */ Pointer to the rpc_info

structure array

59 NUM_SERVER, /* UINT32 ulTableSize; */ Number of servers that can be

registered

Figure 16.9 cpuid1\init\init_task1.c (cont)

560

60 0UL, /* UINT32 ulCmdRspRangeBaseValue; */ Reserved member

61 0UL, /* UINT32 RedirectionTaskStackSize; */ Reserved member

62 RPCSERVER_STKSZ, /* UINT32 ServerTaskStackSize; */ Stack size for the server task

63 0UL, /* UINT32 MFIFramePriority; */ Reserved member

64 1UL, /* UINT32 RPCTaskPriority; */ Reserved member

65 RPCSERVER_IPIPORT /* UINT32 ulIPIPortID; */

66 };

67

ID of the IPI port used by RPC

(the interrupt level should not

exceed the kernel interrupt

mask level

(system.system_IPL))

68 /*** disable dispatch ***/ Disables dispatch.

69 dis_dsp();

70

71 /*** set s_ucIsInitKnlCPUID1 ***/

72 s_ucIsInitKnlCPUID1 = 1;

Sets s_ucIsInitKnlCPUID1 to 1

(C11 in figure 16.11)

73

74 /*** initialize standard library ***/

75 if(_INIT_LOWLEVEL() != 1) {

Initializes the low-level interface

routines in the standard library.

76 while(1){ /* error */

77 }

78 }

79

80 _INIT_OTHERLIB(); Initializes _s1ptr and rand().

81

82 /*** initialize IPI ***/ Initializes IPI.

83 IPI_init();

84

85 /*** initialize OAL ***/ Initializes OAL.

86 OAL_Init();

87

88 /*** initialize RPC ***/ Initializes the RPC library.

89 rpc_init(&ConfigInfo);

90

91 /*** initialize remote-SVC ***/

92 vini_rmt();

Initializes the remote service call

environment.

Figure 16.9 cpuid1\init\init_task1.c (cont)

561

93

94 /*** set ucIsInitializedCPUID1 ***/

95 s_ucIsInitEnvCPUID1 = 1;

Sets s_ucIsInitEnvCPUID1 to 1

(D11 in figure 16.11)

96

97 /*** wait for s_ucIsInitEnvCPUID2=1 ***/

98 while(s_ucIsInitEnvCPUID2 == 0) {

99 }

Waits until CPUID#2 sets

s_ucIsInitEnvCPUID2 to 1 (E11

in figure 16.11).

100

101 /*** enable dispatch ***/ Enables dispatch.

102 ena_dsp();

103

104 /*** connect to sample RPC server ***/ Initializes the sample RPC

client.

105 SampleInit();

106

107 /*** exit and delete this task ***/

108 exd_tsk();

Exits and deletes the initial

startup task.

109 }

Figure 16.9 cpuid1\init\init_task1.c (cont)

16.3.8 CPUID#2 Initial Startup Task InitTask2() (cpuid2\init\init_task2.c)

InitTask2() is registered in the cfg file for CPUID#2 as the first task to be executed in CPUID#2.

This task initializes the following.

1. Standard libraries (_INIT_LOWLEVEL() and _INIT_OTHERLIB() calls)

2. IPI (IPI_init() call)

3. OAL (OAL_Init() call)

4. RPC (rpc_init() call)

The IPI and OAL initialization should be completed before an rpc_init() call.

5. Remote service call environment (vini_rmt call)

The IPI initialization should be completed before a vini_rmt call.

6. Sample RPC server (SampleInit() call)

Figure 16.10 shows the source code in InitTask2() and its description.

562

1 /**

2 Includes

3 ***/

4 #include "types.h"

5 #include "kernel.h"

6 #include "kernel_id.h"

7

8 #include "rpc_public.h"

9 #include "oal.h"

10 #include "ipi.h"

11

12 #include "lowsrc.h"

13 #include "otherlib.h"

14

15 #include "rpc_sample.h"

16

17 /**

18 Prototypes

19 ***/

20 void InitTask2(VP_INT exinf);

21

22 /**

23 Defines

24 ***/

25 #define NUM_SERVER 10UL Number of servers specified by

rpc_init()

26 #define RPCSERVER_STKSZ 0x200UL Stack size for the server tasks

specified by rpc_init()

27 #define RPCSERVER_IPIPORT 2UL /* interrupt level = 13 */ ID of the IPI port specified by

rpc_init()

28

29 /**

30 Data

31 ***/

Figure 16.10 cpuid2\init\init_task2.c

563

32 #pragma section L_sample

33 static rpc_info RpcInfo[NUM_SERVER];

34

Creates rpc_info[] to be passed

to rpc_init() in a non-cacheable

area.

35 /**

36 Section definition

37 ***/

38 #pragma section C_sample Specifies the section name.

39

40 /***/

41 /** Initial task Initial startup task (InitTask2())

42 * At first, this task waits to complete the initialization phase of CPUID#1.

43 * and then calls various API to initialize OS.

44 * After that, this task notifies CPUID#1 to have completed initialization

45 * phase of CPUID#2 by setting s_ucIsInitializedCPUID2.

46 * Afterwards, this task exits and be deleted.

47 *
This task is created and activated by "task[]" definition in .cfg file.

48 * @param exinf Undefined

49 * @retval None

50 ***/

51 void InitTask2(VP_INT exinf)

52 {

53 extern UINT8 s_ucIsInitEnvCPUID1; /* defined in reset.src */ External reference of

s_ucIsInitEnvCPUID1

54 extern UINT8 s_ucIsInitEnvCPUID2; /* defined in reset.src */ External reference of

s_ucIsInitEnvCPUID2

55

56 static const rpc_config ConfigInfo = { rpc_config structure to be

passed to rpc_init()

57 RpcInfo, /* rpc_info *pRpcTable; */ Pointer to the rpc_info

structure array

58 NUM_SERVER, /* UINT32 ulTableSize; */ Number of servers that can be

registered

59 0UL, /* UINT32 ulCmdRspRangeBaseValue; */ Reserved member

60 0UL, /* UINT32 RedirectionTaskStackSize; */ Reserved member

61 RPCSERVER_STKSZ, /* UINT32 ServerTaskStackSize; */ Stack size for the server task

Figure 16.10 cpuid2\init\init_task2.c (cont)

564

62 0UL, /* UINT32 MFIFramePriority; */ Reserved member

63 1UL, /* UINT32 RPCTaskPriority; */ Reserved member

64 RPCSERVER_IPIPORT /* UINT32 ulIPIPortID; */

65 };

66

ID of the IPI port used by RPC

(the interrupt level should not

exceed the kernel interrupt

mask level

(system.system_IPL))

67 /*** disable dispatch ***/ Disables dispatch.

68 dis_dsp();

69

70 /*** wait for s_ucIsInitEnvCPUID1=1 ***/

71 while(s_ucIsInitEnvCPUID1 == 0) {

72 }

Waits until CPUID#1 sets

s_ucIsInitEnvCPUID to 1 (D21

in figure 16.11).

73

74 /*** initialize standard library ***/

75 if(_INIT_LOWLEVEL() != 1) {

Initializes the low-level interface

routines in the standard library.

76 while(1){ /* error */

77 }

78 }

79

80 _INIT_OTHERLIB(); Initializes _s1ptr and rand().

81

82 /*** initialize IPI ***/ Initializes IPI.

83 IPI_init();

84

85 /*** initialize OAL ***/ Initializes OAL.

86 OAL_Init();

87

88 /*** initialize RPC ***/ Initializes the RPC library.

89 rpc_init(&ConfigInfo);

90

91 /*** initialize remote-SVC ***/

92 vini_rmt();

Initializes the remote service call

environment.

93

Figure 16.10 cpuid2\init\init_task2.c (cont)

565

94 /*** enable dispatch ***/ Enables dispatch.

95 ena_dsp();

96

97 /*** start sample RPC server ***/

98 SampleInit();

Initializes the sample RPC

server

99

100 /*** set s_ucIsInitEnvCPUID2 ***/

101 s_ucIsInitEnvCPUID2 = 1;

Sets the s_ucIsInitEnvCPUID2

flag (E21 in figure 16.11).

102

103 /*** exit and delete this task ***/

104 exd_tsk();

Exits and deletes the initial

startup task.

105 }

Figure 16.10 cpuid2\init\init_task2.c (cont)

566

16.3.9 Synchronization of Startup Phases in Two CPUs

This sample uses the four flags described below to enable each CPU to check the progress of
processing in the other CPU during initialization. These flags are defined in reset.src linked to the
CPUID#1 side. As these flags need to be accessed before the initialization process required for
external RAM access, they are placed in on-chip RAM0, which does not need to be initialized and
can be accessed from both CPUs.

The following describes the role of each flag. Figure 16.11 shows the synchronization of startup
phases with a focus on these four flags.

(1) s_ucIsInitHW: Common hardware resource initialization variable

In this sample, CPUID#1 initializes the common hardware resources. CPUID#2 executes no
processing before the common hardware resources are initialized because it cannot perform an
operation such as SDRAM access in this state.

When CPUID#1 sets the bus state controller to initialize the CS0 space, CPUID#2 must not access
CS0 according to the bus state controller specification. Therefore, CPUID#2 is placed in the busy-
wait state in the on-chip RAM1 until CPUID#1 completes CS0 initialization.

s_ucIsInitHW is a variable used to control the order of processing as described above.

The meaning of s_ucIsInitHW is as follows.

• 0: Initial state

• 1: CPUID#1 can initialize the common hardware resources (CPUID#2 is in busy-wait state
 in the on-chip RAM)

• 2: CPUID#1 has completed the initialization of the common hardware resources

567

(2) s_ucIsInitKnlCPUID1: CPUID#1 kernel initialization flag

s_ucIsInitKnlCPUID1 is a flag that indicates that CPUID#1 has completed the kernel
initialization.

This kernel has a restriction that serial numbers cannot be acquired as the trace numbers if
CPUID#2 issues a service call before CPUID#1 completes the kernel initialization. In this sample,
s_ucIsInitKnlCPUID1 is used to control CPUID#2 so that CPUID#2 does not issue vsta_knl until
CPUID#1 completes the kernel initialization (until control moves to the initial startup task).

The meaning of s_ucIsInitKnlCPUID1 is as follows.

• 0: Initial state

• 1: CPUID#1 has completed the kernel initialization

(3) s_ucIsInitEnvCPUID1: CPUID#1 software environment initialization flag

The HI7200/MP has the following restrictions on the order of APIs related to initialization.

• IPI_init() must not be issued in CPUID#2 before completion of IPI_init() in CPUID#1.

• rpc_init() must not be issued in CPUID#2 before completion of vini_rmt in CPUID#1.

• vini_rmt must not be issued in CPUID#2 before completion of vini_rmt in CPUID#1.

In addition, the order of processing in the application may have similar restrictions (this situation
does not apply to this sample).

s_ucIsInitEnvCPUID1 is a flag to control the order of processing as described above. In particular,
this flag is used to control CPUID#2 so that CPUID#2 calls the above initialization APIs only
after the initial startup task in the CPUID#1 completes the above initialization APIs.

The meaning of s_ucIsInitEnvCPUID1 is as follows.

• 0: Initial state

• 1: CPUID#1 has completed the initialization of various software environments

568

(4) s_ucIsInitEnvCPUID2: CPUID#2 software environment initialization flag

When the RPC is used, the RPC servers should be registered before RPC calls.

In addition, the order of processing in the application may have similar restrictions (this situation
does not apply to this sample).

s_ucIsInitEnvCPUID2 is a flag to control the order of processing as described above. In particular,
this flag is used to control CPUID#1 so that CPUID#1 does not issue RPC calls before the initial
startup task in CPUID#2 completes registration of the sample RPC server.

The meaning of s_ucIsInitEnvCPUID2 is as follows.

• 0: Initial state

• 1: CPUID#2 has completed the initialization of various software environments

569

…

…

Reset vector fetch

CPUID=1 CPUID=2

reset.src in CPUID#1

_Reset_Poweron or _Reset_Manual

Initialize all flags to 0.

_Reset_Poweron or _Reset_Manual

Delay execution for a period long enough for
CPUID#1 to complete s_ucIsInitHW
initialization (A1).

Copy the program to the on-chip RAM
and branch to the on-chip RAM to execute
the B23 and B24 processing in the on-chip
RAM.

Enter busy-wait state until s_ucIsInitHW is
set to 1.

Start the kernel (vsta_knl).
Start the kernel (vsta_knl).

Enter busy-wait state until s_ucIsInitHW
is set to 2.

PowerON_Reset_PC_CPUID1() or

Manual_Reset_PC_CPUID1()

Initialize hardware
(HardwareSetup_CPUID1()).

Set s_ucIsInitHW to 2. PowerON_Reset_PC_CPUID2() or

Manual_Reset_PC_CPUID2()

Enter busy-wait state until
s_ucIsInitKnlCPUID1 is set.

Start the kernel (vsta_knl).

1. Initialize the standard library.
2. IPI_init()
3. rpc_init()
4. vini_rmt

1. Initialize the standard library.
2. IPI_init()
3. rpc_init()
4. vini_rmt

Set s_ucIsInitKnlCPUID1.

Init Task1()

Init Task2()

Set s_ucIsInitEnvCPUID1.

Enter busy-wait state until
s_ucIsInitEnvCPUID1 is set.

Registers the sample RPC server.

Set s_ucIsInitCPUID2.

Enter busy-wait state until
s_ucIsInitEnvCPUID2 is set.

(Sample RPC call can be issued.)

Legend: Green: Access to s_ucIsInitHW
Orange: Access to s_ucIsInitKnlCPUID1
Yellow: Access to s_ucIsInitEnvCPUID1
Blue: Access to s_ucIsInitEnvCPUID2
A1, B11, B21, B22, B23, and B24: See figure 16.5, cpuid1\reset\reset.src.
B12: See figure 16.6, cpuid1\reset\resetprg1.c.
C21: See figure 16.8, cpuid2\reset\resetprg2.c.
C11, D11, and E11: See figure 16.9, cpuid1\init\init_task1.c.
D21 and E21: See figure 16.10, cpuid2\init\init_task2.c.

E11

E21

D11

D21

C11

C21

B12

B11

A1

B21

B22

B23

B24

Figure 16.11 Synchronization of Startup Phases

570

16.4 Example of RPC Usage

16.4.1 Overview

In the provided example of RPC usage, CPUID#1 is the client and CPUID#2 is the server. This
section describes how to pass parameters.

Table 16.6 shows the server functions.

Table 16.6 Server Functions

No. Server Function Name Function Specification

1 INT32 SampleAdd (INT32 lPar1, INT32 lPar2) Adds lPar1 and lPar2 and returns the
result.

2 UINT32 SampleStrlen (INT8 * pString) Returns the length of the character string
indicated by pString.

3 void SampleSort1(INT32 * pData) Sorts the 10-element array indicated by
pData.

4 void SampleSort2(INT32 * pData) Sorts the 10-element array indicated by
pData.

5 void SampleMemcopy(void *pDest, const void
*pSrc, UINT32 ulSize)

Copies ulSize-byte data from pSrc to
pDest.

6 INT32 SampleCreateTask(void *entry , INT32
lPriority, UINT32 ulStackSize, void *UserData)

Creates and starts a task in the server
CPU (without the TA_COP1 attribute).

7 INT32 SampleKillTask(INT32 lTaskID) Forcibly terminates and deletes the task in
the server CPU.

8 INT32 SampleRefTaskState (INT32 lTaskID,
UINT32 *pulState)

Refers to the state of the task in the server
CPU.

Table 16.7 shows the source files described in this section.

571

Table 16.7 Source Files for RPC Usage Example

Directory File Description

rpc_sample.h Defines the APIs for initializing (SampleInit()) and
terminating (SampleShutdown()) the RPC server
and client.

sample_add.h Defines the API for server function SampleAdd().

sample_strlen.h Defines the API for server function SampleStrlen().

sample_sort.h Defines the APIs for server functions
SampleSort1() and SampleSort2().

sample_memcopy.h Defines the API for server function
SampleMemcopy().

include\

sample_svc.h Defines the APIs for server functions
SampleCreateTask (), SampleKillTask(), and
SampleRefTaskState().

cpuid1\ include\ rpc_sample_clnt.h Defines client API SampleGetLastRPCErr().

rpc_sample_clnt.c RPC client stubs

• SampleAdd()

• SampleStrlen()

• SampleSort1()

• SampleSort2()

• SampleMemcopy()

• SampleCreateTask()

• SampleKillTask()

• SAMPLE_SampleRefTaskState()

Client initialization API function: SampleInit()

Client termination API function: SampleShutdown()

cpuid1\
rpc_sample_clnt\

rpc_sample_private.h * Private header for RPC client and server stubs

cpuid1\
rpc_caller\

rpc_caller.c Function (task) for issuing an RPC call

572

Table 16.7 Source Files for RPC Usage Example (cont)

Directory File Description

rpc_sample_svr.c RPC server stubs

• rpcsvr_SAMPLE_SampleAdd()

• rpcsvr_SAMPLE_SampleStrlen()

• rpcsvr_SAMPLE_SampleSort1()

• rpcsvr_SAMPLE_SampleSort2()

• rpcsvr_SAMPLE_SampleMemcopy()

• rpcsvr_SAMPLE_SampleCreateTask()

• rpcsvr_SAMPLE_SampleKillTask()

• rpcsvr_SAMPLE_SampleRefTaskState()

Server initialization API function: SampleInit()

Server termination API function: SampleShutdown()

rpc_sample_private.h * Private header for RPC client and server stubs

sample_add.c Server function SampleAdd()

sample_strlen.c Server function SampleStrlen()

sample_sort.c Server functions SampleSort1()" and
SampleSort2(), and internal function
SampleSortMain()

cpuid2\
rpc_sample_svr\

sample_memcopy.c Defines the API for server function
SampleMemcopy().

 sample_svc.c Server functions SampleCreateTask (),
SampleKillTask(), and SampleRefTaskState()

Note: * These files have the same contents.

16.4.2 Registration of RPC Servers (CPUID#2)

In this example, each server function (corresponding server stub) described above is registered as
a single server.

A server is registered by calling rpc_start_server() in server initialization API SampleInit().
SampleInit() is called by the initial startup task.

573

16.4.3 SampleAdd()

SampleAdd() has two INT32-type input parameters: lPar1 and lPar2.

The client stub prepares two IOVECs and sets the input address and size parameters in the
IOVECs. This example uses two IOVECs for ease of comprehension; it is more efficient to use
only one IOVEC.

The input parameters are stored in the area indicated by pInfo->pucParamArea by being aligned
with 4-byte boundaries in the order of server function APIs; the server stub reads and passes them
to the server functions.

Figures 16.12 and 16.13 respectively show the source codes of the client stub and server stub.

574

1 /**/

2 /** Client stub of "SampleAdd()"

3 * @param lPar1 data1 to be added

4 * @param lPar2 data2 to be added

5 * @retval Result

6 ***/

7 INT32 SampleAdd (INT32 lPar1, INT32 lPar2)

8 {

9 UINT32 ulLastOutputIOVectorSize;

10 rpc_call_info info;

11 IOVEC input[2]; Prepares two input IOVECs

12 UINT32 ulReturn;

13 INT32 lRPCRet;

14

15 info.ulMarshallingType = 0UL;

16 info.ulServerID = SV_ID_SAMPLE;

17 info.ulServerVersion = SV_VER_SAMPLE;

18 info.ulServerProcedureID = RPC_SAMPLE_SAMPLEADD;

19 info.AckMode = RPC_ACK;

20 info.pInputIOVectorTable = input;

21 info.ulInputIOVectorTableSize = sizeof(input) / sizeof (IOVEC);

22 info.pOutputIOVectorTable = NULL; No output

23 info.ulOutputIOVectorTableSize = 0UL;

24 info.pulLastOutputIOVectorSize = &ulLastOutputIOVectorSize;

25 info.pulReturnValue = &ulReturn; Return value setting area

26

27 input[0].pBaseAddress = &lPar1; Sets lPar1 information.

28 input[0].ulSize = sizeof(INT32);

29

30 input[1].pBaseAddress = &lPar2; Sets lPar2 information.

31 input[1].ulSize = sizeof(INT32);

32

Figure 16.12 SampleAdd() (Client Stub)

575

33 lRPCRet = rpc_call(&info); RPC call

34 if(lRPCRet != RPC_E_OK) {

35 lLastErr = lRPCRet;

36 ulReturn = 0UL;

37 }

Sets the error code in lLastErr

and returns control with a return

value of 0 if the RPC call

generates an error.

38

39 return ((INT32)ulReturn);

40 }

Figure 16.12 SampleAdd() (Client Stub) (cont)

1 /***/

2 /** Server stub of "SampleAdd()"

3 * @param pInfo pointer to rpc_server_stub info structure

4 * @retval Return value of server function

5 ***/

6 static UINT32 rpcsvr_SAMPLE_SampleAdd (rpc_server_stub_info *pInfo)

7 {

8 INT32 lPar1;

9 INT32 lPar2;

10 INT32 lReturn;

11

12 lPar1 = *(INT32 *)(pInfo->pucParamArea); Acquires lPar1 from the server

parameter area.

13 lPar2 = *(INT32 *)(pInfo->pucParamArea + sizeof(INT32)); Acquires lPar2 from the server

parameter area.

14

15 lReturn = SampleAdd (lPar1, lPar2); Calls the server function.

16

17 pInfo->ulOutputIOVectorTableSize = 0UL; No output

18

19 return ((UINT32)lReturn);

20 }

Figure 16.13 rpcsvr_SAMPLE_SampleAdd() (Server Stub)

576

16.4.4 SampleStrlen()

SampleStrlen() is an example that inputs a pointer.

SampleStrlen() has an INT8*-type input parameter: pString.

The client stub prepares an IOVEC, and sets pString and the length of its character string in the
IOVEC.

The character string is stored in the area indicated by pInfo->pucParamArea; the server stub reads
and passes it to the server function.

Figures 16.14 and 16.15 respectively show the source codes of the client stub and server stub.

1 /***/

2 /** Client stub of "SampleStrlen()"

3 * @param pString pointer to the string to be counted

4 * @retval length of the string

5 ***/

6 UINT32 SampleStrlen (INT8 * pString)

7 {

8 UINT32 ulLastOutputIOVectorSize;

9 rpc_call_info info;

10 IOVEC input[1];

11 UINT32 ulReturn; Prepares an IOVEC.

12 INT32 lRPCRet;

13

14 info.ulMarshallingType = 0UL;

15 info.ulServerID = SV_ID_SAMPLE;

16 info.ulServerVersion = SV_VER_SAMPLE;

17 info.ulServerProcedureID = RPC_SAMPLE_SAMPLESTRLEN;

18 info.AckMode = RPC_ACK;

19 info.pInputIOVectorTable = input;

Figure 16.14 SampleStrlen() (Client Stub)

577

20 info.ulInputIOVectorTableSize = sizeof(input) / sizeof (IOVEC);

21 info.pOutputIOVectorTable = NULL; No output

22 info.ulOutputIOVectorTableSize = 0UL;

23 info.pulLastOutputIOVectorSize = &ulLastOutputIOVectorSize;

24 info.pulReturnValue = &ulReturn; Return value setting area

25

26 input[0].pBaseAddress = pString; Sets pString.

27 input[0].ulSize = strlen(pString) + 1UL;

28

This strlen() is a standard library

call; it is not part of

SampleStrlen().

29 lRPCRet = rpc_call(&info); RPC call

30 if(lRPCRet != RPC_E_OK) {

31 lLastErr = lRPCRet;

32 ulReturn = 0UL;

33 }

Sets the error code in lLastErr

and returns control with a return

value of 0 if the RPC call

generates an error.

34

35 return ulReturn;

36 }

Figure 16.14 SampleStrlen() (Client Stub) (cont)

578

1 /***/

2 /** Server stub of "SampleStrlen()"

3 * @param pInfo pointer to rpc_server_stub info structure

4 * @retval Return value of server function

5 ***/

6 static UINT32 rpcsvr_SAMPLE_SampleStrlen (rpc_server_stub_info *pInfo)

7 {

8 INT8 * pString;

9 UINT32 ulReturn;

10

11 pString = (INT8 *)(pInfo->pucParamArea);

Acquires pString from the server

parameter area.

12

13 ulReturn = SampleStrlen (pString); Calls the server function.

14

15 pInfo->ulOutputIOVectorTableSize = 0UL; No output

16

17 return (ulReturn);

18 }

Figure 16.15 rpcsvr_SAMPLE_SampleStrlen() (Server Stub)

16.4.5 SampleSort1() and SampleSort2()

SampleSort1() and SampleSort2() are examples that input a pointer. They work in the same way
except that SampleSort1() copies the data indicated by the pointer and passes it to the server while
SampleSort2() passes the pointer itself to the server. SampleSort2() is fast because it does not
copy data. but it has a restriction that the pointer must always indicate a non-cacheable area.

Read the codes of the provided client stub and server stub with reference to the descriptions in the
above sections.

579

16.4.6 SampleMemcopy()

SampleMemcopy() is also a server-function example that passes the input pointer itself to the
server.

16.4.7 SampleCreateTask(), SampleKillTask(), and SampleRefTaskState()

These are examples in which the kernel service calls are extended so that they can be issued also
to the kernel in the server through the RPC function.

In terms of the RPC, SampleRefTaskState() is an example that outputs a parameter, which is
described below.

SampleRefTaskState() has a UINT32*-type output parameter: pulState.

The client stub prepares an output IOVEC and sets pulState and its size (sizeof(UINT32)) in the
IOVEC. The RPC for the client writes data to the area indicated by the output IOVEC and
therefore, pulState does not need to indicate a non-cacheable area.

In the server, the RPC appropriately sets pInfo->pOutputIOVectorTable[0] (so that it indicates an
address in the server parameter area) and calls the server stub. The server stub acquires pulState
from the indicated area and calls the server function.

Figures 16.16 and 16.17 respectively show the source codes of the client stub and server stub.

580

1 /***/

2 /** Client stub of "SampleRefTaskState()"

3 * @param lTaskID task ID to be referred

4 * @param pulState pointer to be stored task state.

5 *
 0x00000001 ... RUNNING

6 *
 0x00000002 ... READY

7 *
 0x00000004 ... WAITING

8 *
 0x00000008 ... SUSPENDED

9 *
 0x0000000C ... WAITING and SUSPENDED

10 *
 0x00000010 ... DORMANT

11 *
 0x40000000 ... STACK-WAIT

12 * @retval 0(success), Negative value(fail)

13 **/

14 INT32 SampleRefTaskState (INT32 lTaskID, UINT32 *pulState)

15 {

16 UINT32 ulLastOutputIOVectorSize;

17 rpc_call_info info;

18 IOVEC input[1]; Prepares an input IOVEC.

19 IOVEC output[1]; Prepares an output IOVEC.

20 UINT32 ulReturn;

21 INT32 lRPCRet;

22

23 info.ulMarshallingType = 0UL;

24 info.ulServerID = SV_ID_SAMPLE;

25 info.ulServerVersion = SV_VER_SAMPLE;

26 info.ulServerProcedureID = RPC_SAMPLE_SAMPLEREFTASKSTATE;

27 info.AckMode = RPC_ACK;

28 info.pInputIOVectorTable = input;

29 info.ulInputIOVectorTableSize = sizeof(input) / sizeof (IOVEC);

30 info.pOutputIOVectorTable = output;

31 info.ulOutputIOVectorTableSize = sizeof(output) / sizeof (IOVEC);

32 info.pulLastOutputIOVectorSize = &ulLastOutputIOVectorSize;

33 info.pulReturnValue = &ulReturn;

34

Figure 16.16 SampleRefTaskState() (Client Stub)

581

35 input[0].pBaseAddress = &lTaskID; Sets lTaskID as an input.

36 input[0].ulSize = sizeof(INT32);

37

38 output[0].pBaseAddress = pulState; Sets pulState as an output.

39 output[0].ulSize = sizeof(UINT32);

40

41 lRPCRet = rpc_call(&info); RPC call

42 if(lRPCRet != RPC_E_OK) {

43 lLastErr = lRPCRet;

44 ulReturn = 0xFFFFFFFFUL; /* return value = -1 */

45 }

Sets the error code in lLastErr

and returns control with a return

value of -1 if the RPC call

generates an error.

46

47 return ((INT32)ulReturn);

48 }

Figure 16.16 SampleRefTaskState() (Client Stub) (cont)

582

1 /***/

2 /** Server stub of "SampleRefTaskState()"

3 * @param pInfo pointer to rpc_server_stub info structure

4 * @retval Size actually read

5 ***/

6 static UINT32 rpcsvr_SAMPLE_SampleRefTaskState (rpc_server_stub_info *pInfo)

7 {

8 INT32 lTaskID;

9 UINT32 *pulState;

10 INT32 lRet;

11

12 lTaskID = *(INT32 *)(pInfo->pucParamArea);

13

Acquires lTaskID from the server

parameter area.

14 pulState = pInfo->pOutputIOVectorTable[0].pBaseAddress; Acquires pulState.

15

16 lRet = SampleRefTaskState (lTaskID, pulState); Calls the server function.

17

18 pInfo->ulOutputIOVectorTableSize = 1UL;

19

20 return ((UINT32)lRet);

21 }

Figure 16.17 rpcsvr_SAMPLE_SampleRefTaskState() (Server Stub)

16.4.8 Example of RPC Call (CPUID#1)

TaskRpcCaller() in cpuid1\rpc_caller\rpc_caller.c is an example of issuing provided sample RPC
calls in sequence. TaskRpcCaller() is registered as a task in the cfg file.

583

16.4.9 Initialization and Termination of Servers (CPUID#2)

This RPC usage example provides an API function for initializing the server environment
(SampleInit()) and an API function for terminating the server (SampleShutdown()). The function
names are the same as those in the client.

In the configuration at shipment, SampleInit() is called by the initial startup task.
SampleShutdown() is not used.

SampleInit() registers servers by using rpc_start_server().

SampleShutdown() deletes servers by using rpc_stop_server().

Figure 16.18 shows the source codes of SampleInit() and SampleShutdown().

584

1 /***/

2 /** Initialize RPC-Sample for server-side

3 * @retval Return code of rpc_start_server()

4 ***/

5 INT32 SampleInit (void)

6 {

7 /*** Server stub list ***/

8 static UINT32 (* const rpcsvr_SAMPLE_StubTable[])(rpc_server_stub_info*) = Server stub table

9 {

10 rpcsvr_SAMPLE_SampleAdd,

11 rpcsvr_SAMPLE_SampleStrlen,

12 rpcsvr_SAMPLE_SampleSort1,

13 rpcsvr_SAMPLE_SampleSort2,

14 rpcsvr_SAMPLE_SampleMemcopy,

15 rpcsvr_SAMPLE_SampleCreateTask,

16 rpcsvr_SAMPLE_SampleKillTask,

17 rpcsvr_SAMPLE_SampleRefTaskState

18 };

19

20 /*** Server information ***/

21 static const rpc_server_info rpcsvr_SAMPLE_ServerInfo = Server information

22 {

23 SV_ID_SAMPLE, /* ulRPCServerID */

24 SV_VER_SAMPLE, /* ulRPCServerVersion */

25 1UL, /* ServerStubTaskPriority */

26 rpcsvr_SAMPLE_StubTable, /* ServerStubList */

27 sizeof(rpcsvr_SAMPLE_StubTable) / sizeof(rpcsvr_SAMPLE_StubTable[0]),

28 /* ulNumFunctions */

29 0x400UL, /* ulStubStackSize */

30 0UL, /* ulMaxParamAreaSize */

31 NULL /* user_data */

32 };

33

Figure 16.18 SampleInit() and SampleShutdown() (In the Server)

585

34 return rpc_start_server (&rpcsvr_SAMPLE_ServerInfo); Registers servers.

35 }

36

37 /***/

38 /** Shutdown RPC-Sample for server-side

39 * @retval Return code of rpc_stop_server()

40 ***/

41 INT32 SampleShutdown (void)

42 {

43 return rpc_stop_server(SV_ID_SAMPLE, SV_VER_SAMPLE, NULL, 0UL); Deletes servers.

44 }

Figure 16.18 SampleInit() and SampleShutdown() (In the Server) (cont)

586

16.4.10 Initialization and Termination of Clients (CPUID#1)

This RPC sample provides an API function for initializing the client environment (SampleInit())
and an API function for terminating the client (SampleShutdown()).

In the configuration at shipment, SampleInit() is called by the initial startup task.
SampleShutdown() is not used.

SampleInit() starts connection with the server by using rpc_connect().

SampleShutdown() terminates the connection with the server by using rpc_disconnect().

Figure 16.19 shows the source codes of SampleInit() and SampleShutdown().

1 /***/

2 /** Initialize RPC-Sample for client-side

3 * @retval Return code of rpc_connect()

4 ***/

5 INT32 SampleInit (void)

6 {

7 return rpc_connect(SV_ID_SAMPLE, SV_VER_SAMPLE); Connects with the server.

8

9 }

10

11 /***/

12 /** Shutdown RPC-Sample for client-side

13 * @retval Return code of rpc_disconnect()

14 ***/

15 INT32 SampleShutdown (void)

16 {

17 return rpc_disconnect(SV_ID_SAMPLE, SV_VER_SAMPLE, NULL, 0); Disconnects from the server.

18 }

19 /***/

Figure 16.19 SampleInit(), SampleShutdown() (in the Client)

587

16.4.11 Initialization of RPC Library (rpc_init() Call)

In both the client and server, the initial startup task calls rpc_init().

For the rpc_config structure passed to rpc_init(), see figure 16.9 for the client or figure 16.10 for
the server.

16.5 Remote Service Call Example

As an example of remote service call usage, a simple message communication program using a
mailbox and a fixed-sized memory pool is provided.

Specifically, in this example, a task in CPUID#1 acquires a message area from the fixed-sized
memory pool in CPUID#2 and sends a message to a mailbox in CPUID#2. A task in CPUID#2
receives the message from the mailbox and returns the message area to the fixed-sized memory
pool.

The mailbox and fixed-sized memory pool are created according to the cfg file for CPUID#2. In
the cfg file, export = ON is specified to output the ID names of the mailbox and memory pool to
kernel_id_cpu2.h. The file for CPUID#1 includes this kernel_id_cpu2.h.

As the message is accessed from both CPUs, the fixed-sized memory pool area is allocated to a
non-cacheable area.

Table 16.8 shows the source files of the remote service call example.

Table 16.8 Source Files of Remote Service Call Example

Directory File Name Function

include\ user_msg.h Message type definition

cpuid1\
remote_svc_sample\

remote_send.c Message-sending task (TaskSend())

cpuid2\
remote_svc_sample\

remote_recv.c Message-receiving task (TaskRecv())

Figures 16.20 and 16.21 respectively show source codes of the message-sending task in CPUID#1
and message-receiving task in CPUID#2.

588

1 /**

2 /** Sample task that send message by using remote service call.

3 ***/

4 void TaskSend(VP_INT exinf)

5 {

6 USER_MSG *message;

7 UINT32 ulIndex;

8

9 for(ulIndex = 0UL ; ; ulIndex++) {

10 /* get non-cached message area */

11 if(pget_mpf(EXID2_MPF_NONCACHED, (VP *)&message) != E_OK) {

12 ext_tsk();

Acquires a message area from a

fixed-sized memory pool.

13 }

14

15 /* create message */ Specifies a message.

16 message->osarea.msghead = NULL;

17 message->ulData = ulIndex;

18

19 /* send message to CPU2 */

20 snd_mbx(EXID2_MBX_COMM, (T_MSG *)&message); Sends the message.

21 }

22 }

Figure 16.20 Message-Sending Task (cpuid1\remote_svc_sample\sample_send.c)

589

1 /**

2 /** Sample task that receives message.

3 ***/

4 void TaskRecv(VP_INT exinf)

5 {

6 USER_MSG *p_message;

7 UINT32 ulIndex;

8

9 while(TRUE) {

10 /* receive message from CPU1 */

11 if(rcv_mbx(EXID2_MBX_COMM, (T_MSG **)&p_message) != E_OK) { Receives a message.

12 ext_tsk();

13 }

14

15 /* do operation according to message */

16

Processing according to the

message.

17 /* release memory */

18 rel_mpf(EXID2_MPF_NONCACHED, (VP)p_message); Releases the message area.

19 }

20 }

Figure 16.21 Message-Receiving Task (cpuid2\remote_svc_sample\sample_recv.c)

590

16.6 Timer Driver

A timer driver is provided to control the CMT in the SH7205 or SH7265.

CPUID#1 uses channel 0 and CPUID#2 uses channel 1 of the CMT.

Table 16.9 shows the source files of the timer driver.

Table 16.9 Source Files of Timer Driver

Directory File Name Function

tmrdrv.c *1 Timer driver for CMT in SH7205 or SH7265 cpuid1\ os_timer\

tmrdrv.h *2 Internal definition

cpuid2\ os_timer\ tmrdrv.c *1 Timer driver for CMT in SH7205 or SH7265

 tmrdrv.h *2 Internal definition

Note: *1. These files have the same contents.
 *2 These files have the same contents.

The file contents are the same for both CPUs; they are implemented so that they are conditionally
compiled according to MYCPUID.

591

16.7 Standard Libraries

16.7.1 Overview

In this example, standard libraries are included for both CPUs as follows.

• Included functions: stdlib.h and string.h

• Configured as reentrant libraries

As described in the compiler user's manual, note that when configuring a library as reentrant in the
application that uses a standard library, macro name "_REENTRANT" should be defined in a
#define statement (#define _REENTRANT) before including standard include files or
_REENTRANT should be defined through a define option at compilation. The provided High-
performance Embedded Workshop project adopts the latter.

Note also that stdio.h is not included. When using stdio.h, low-level interface routines for that
should be added.

Table 16.10 shows the source files related to standard libraries.

Table 16.10 Source Files Related to Standard Libraries

Directory File Name* Function

lowsrc.c Low-level interface routines, _INIT_LOWLEVEL()

lowsrc_config.h Configuration file for low-level interface routine

otherlib.c _INIT_OTHERLIB()

cpuid1\stdlib\

initsct.c _INITSCT()

lowsrc.h lowsrc.c external header cpuid1\include\

initsct.h initsct.c external header

lowsrc.c Low-level interface routines, _INIT_LOWLEVEL()

lowsrc_config.h Configuration file for low-level interface routine

otherlib.c _INIT_OTHERLIB()

cpuid2\stdlib\

initsct.c _INITSCT()

cpuid2\include\ lowsrc.h lowsrc.c external header

 initsct.h initsct.c external header

Note: * Files with the same name have the same contents.

592

16.7.2 Low-Level Interface Routines

To use standard I/O or memory management libraries or configure libraries as reentrant,
appropriate low-level interface routines should be created.

Table 16.11 shows the low-level interface routines specified in the compiler and the
implementation in this sample.

Table 16.11 Low-Level Interface Routines

Low-Level Interface
Routines Specified in
Compiler

Implementation in
This Sample Function

open() No Opens a file

close() No Closes a file

read() No Reads a file

write() No Writes to a file

lseek() No Specifies a read/write position in a file

sbrk() Yes Allocates a memory area

sbrk__X() No Allocates an X memory area (for a
microcomputer with a DSP)

sbrk__Y() No Allocates a Y memory area (for a
microcomputer with a DSP)

errno_adr() * Yes Acquires an errno address

wait_sem() * Yes Acquires a semaphore

signal_sem() * Yes Releases a semaphore

Note: * Required when using a reentrant library.

wait_sem() and signal_sem() are low-level interface routines for exclusive control. In the above
table, "semaphore" is a term used for standard library functions in the compiler user's manual and
differs from "semaphore" in the HI7200/MP.

wait_sem() and signal_sem() uses the mutex function in the kernel to implement exclusive control.

593

16.7.3 Initialization of Standard Library Environment (_INIT_LOWLEVEL() and

_INIT_OTHERLIB())

This sample provides _INIT_LOWLEVEL() for initializing the low-level interface routines and
_INIT_OTHERLIB() for initializing strtok() and rand().

These initialization functions are called from the initial startup task in both CPUs.

16.7.4 Section Initialization (_INITSCT())

Although the standard library of the compiler provides a standard _INITSCT(), this sample does
not use it but implements an original _INITSCT() because using _INITSCT() in the standard
library complicates the procedures for transferring the standard library code from ROM to RAM.

The _INITSCT() in this sample has the following additional arguments to initialize a desired
section with a desired timing in comparison with the _INITSCT() in the standard library.

• Standard library: void _INITSCT(void);

• This sample: void _INITSCT(

 const ST_DTBL *dtbl_top, // Start address of the ST_DTBL array

 UINT32 dtbl_sz, // Size of the ST_DTBL array (bytes)

 const ST_BTBL *btbl_top, // Start address of the ST_BTBL array

 UINT32 btbl_sz); // Size of the ST_BTBL array (bytes)

594

Each structure has the following elements.

typedef struct { // Initialization information on transfer sections

 UINT8 *SecD_Start; // Start address of source section

 UINT32 SecD_Size; // Size of source section

 UINT8 *SecR_Start; // Start address of destination section

} ST_DTBL;

typedef struct { // Initialization information on section to be cleared to 0

 UINT8 *SecB_Start; // Start address of section

 UINT32 SecB_Size; // Size of section

} ST_BTBL;

To make these argument settings easier, the following macros are provided. They are defined in
initsct.h.

• MACRO_ENTRY_DTBL(dname, rname)

Creates ST_DTBL to transfer the "dname" section to the "rname" section.

• MACRO_ENTRY_BTBL(bname)

Creates ST_BTBL to clear the "bname" section to 0.

595

16.7.5 Standard Library Configuration (lowsrc_config.h)

Specify the necessary define statements with reference to the following.

1 /**

2 * Defines

3

**/

4 /* size of area managed by sbrk */

5 #define HEAPSIZE 0x400UL

6

7 /* Mutex ceiling priority for wait_sem (only for reentrant library) */

8 #ifdef _REENTRANT

9 #define PRI_SBRK 1 /* for sbrk() */

10 #define PRI_S1PTR 1 /* for _s1ptr(strtok()) */

11 #define PRI_IOB 1 /* for iob */

12 #endif

13

14 /* Mutex timeout for wait_sem (only for reentrant library) */

15 #ifdef _REENTRANT

16 #define SEM_TMOUT 30000L /* 30000 msec */

17 #endif

18

19 /* Number of tasks for errno (only for reentrant library) */

20 #ifdef _REENTRANT

21 #define NUM_TASK _MAX_TSK

22 #endif

Figure 16.22 lowsrc_config.h

596

Table 16.12 Setting Items in Standard Library Configuration File

Item Description

HEAPSIZE Size of the heap area managed by sbrk()

PRI_SBRK* Ceiling priority of the mutex used for sbrk() exclusive control

PRI_S1PTR* Ceiling priority of the mutex used for _s1ptr exclusive control

PRI_IOB* Ceiling priority of the mutex used for iob exclusive control

SEM_TMOUT* Timeout for mutex lock

NUM_TASK* Maximum local task ID

Note: * Required when using a reentrant library.

16.7.6 Source Codes

(1) lowsrc.c (low-level interface routine, _INIT_LOWLEVEL())

597

1 /**

2 * Include

3 **/

4 #include <stddef.h>

5

6 #include "kernel.h"

7 #include "types.h"

8

9 #include "lowsrc.h"

10 #include "lowsrc_config.h"

11

12 /**

13 * Heap area

14 **/

15 #pragma section C_heap

16 static union { /* memory-pool area */

Heap area (a unique section

name is assigned)

17 INT32 dummy ; /* Dummy for 4-byte boundary */

18 INT8 heap[ALIGNUP4(HEAPSIZE)]; /* Declaration of the area managed */

19 /* by sbrk */

20 }heap_area ;

21 #pragma section

22

23

24 /**

25 * Prototypes

26 **/

27 INT8 *sbrk(size_t size);

28 #ifdef _REENTRANT

29 INT wait_sem(INT semnum);

30 INT signal_sem(INT semnum);

31 INT *errno_addr(void);

32 #endif

33

Figure 16.23 lowsrc.c

598

34 static INT sbrk_init(void);

35 static INT sem_init(void);

36 static void errno_init(void);

37

38

39

40 /**

41 * Section

42 **/

43 #pragma section C_stdlib Section name definition

44

45

46 /**

47 * Data

48 **/

49 /*** for sbrk() ***/

50 static ID sbrk_mplid; /* memory-pool ID */

51

Variable for holding the variable-

sized memory pool ID used in

sbrk()

52 /*** for semaphore ***/

53 #ifdef _REENTRANT

54 #define NUM_SEM 3

55

56 #define SEM_SBRK 1 /* semnum for sbrk() */ Semaphore number for sbrk(),

which is specified in the standard

library

57 #define SEM_S1PTR 2 /* semnum for _s1ptr(strtok()) */ Semaphore number for _s1ptr,

which is specified in the standard

library

58 #define SEM_IOB 3 /* semnum for iob */ Semaphore number for iob, which

is specified in the standard library

59

60 static ID mtx_id[NUM_SEM]; /* mutex ID for each semnum */

61 #endif /* end of _REENTRANT */

Variable for holding the mutex ID

used in wait_sem()

62

Figure 16.23 lowsrc.c (cont)

599

63 /*** for errno ***/

64 #ifdef _REENTRANT

65 static INT errno_context[NUM_TASK+1];

66 #endif /* end of _REENTRANT */

errno area for each task (task ID

is used as the index). Index = 0

indicates an area for use in non-

task contexts.

67

68 /**

69 /** Allocate memory

70 * @param size Required memory size

71 * @retval Pointer to allocated memory(Pass), -1(Failure)

72 **/

73 INT8 *sbrk(size_t size) sbrk() function

74 {

75 ER ercd;

76 INT8 *p;

77

78 if(sbrk_mplid != 0) {

79 ercd = pget_mpl(sbrk_mplid, ALIGNUP4(size), (VP *)&p);

80 if(ercd != E_OK) {

Acquires a memory area from the

variable-sized memory pool.

81 p = (INT8 *)(-1);

82 }

83 }

84 else {

85 p = (INT8 *)(-1);

86 }

87

88 return p;

89 }

90

91

Figure 16.23 lowsrc.c (cont)

600

92 /**

93 /** Initialize sbrk environment

94 * @param None

95 * @retval 1(Pass), 0(Failure)

96 **/

97 static INT sbrk_init(void) sbrk_init() function

98 {

99 ER_ID mplid;

100 INT rtn;

101

102 static const T_CMPL cmpl = {

103 TA_TFIFO,

Variable-sized memory pool

creation information

104 sizeof(heap_area.heap),

105 (VP)(heap_area.heap),

106 #if ((VTCFG_NEWMPL) == _NEW)

107 NULL,

108 0U,

109 0U

110 #endif

111 };

112

113 mplid = acre_mpl(&cmpl);

114 if(mplid > 0L) {

Creates a heap area as a

variable-sized memory pool.

115 sbrk_mplid = mplid;

116 rtn = 1;

117 }

118 else {

119 sbrk_mplid = 0;

120 rtn = 0;

Sets sbrk_mplid to 0 if an error

occurs.

121 }

122

123 return rtn;

124 }

Figure 16.23 lowsrc.c (cont)

601

125

126

127 /**

128 /** Get semaphore

129 * @param semnum Semaphore number 1(malloc), 2(strtok), 3(iob)

130 * @retval 1(Pass), 0(Failure)

131 * @Note When calling from non-task context, this function returns error.

132 **/

133 #ifdef _REENTRANT

134 INT wait_sem(INT semnum)

135 { wait_sem() function

136 INT rtn;

137 ID mtxid;

138

139 mtxid = mtx_id[semnum-1];

140

Acquires the mutex ID for the

semaphore number.

141 rtn = 0;

142

143 if(mtxid != 0) {

144 if(tloc_mtx(mtxid, SEM_TMOUT) == E_OK) { Locks the mutex.

145 rtn = 1;

146 }

147 }

148 return rtn;

149 }

150 #endif /* end of _REENTRANT */

151

152

153 /**

154 /** Release semaphore

155 * @param semnum Semaphore number 1(malloc), 2(strtok), 3(iob)

156 * @retval 1(Pass), 0(Failure)

157 * @Note When calling from non-task context, this function returns error.

158 **/

Figure 16.23 lowsrc.c (cont)

602

159 #ifdef _REENTRANT

160 INT signal_sem(INT semnum) signal_sem() function

161 {

162 INT rtn;

163 ID mtxid;

164

165 mtxid = mtx_id[semnum-1];

166

Acquires the mutex ID for the

semaphore number.

167 if(mtxid != 0) {

168 if(unl_mtx(mtxid) == E_OK) { Unlocks the mutex.

169 rtn = 1;

170 }

171 }

172 return rtn;

173 }

174 #endif /* end of _REENTRANT */

175

176

177 /**

178 /** Initialize wait_sem/signal_sem environment

179 * @param None

180 * @retval 1(Pass), 0(Failure)

181 **/

182 #ifdef _REENTRANT

183 static INT sem_init(void) sem_init() function

184 {

185 ER_ID mtxid;

186 INT rtn, i;

187 static const T_CMTX cmtx[NUM_SEM] = { Mutex creation information

188 {TA_CEILING, PRI_SBRK}, /* for sbrk() */

189 {TA_CEILING, PRI_S1PTR}, /* for _s1ptr(strtok()) */

190 {TA_CEILING, PRI_IOB} /* for iob */

191 };

192

Figure 16.23 lowsrc.c (cont)

603

193 for(i = 0 ; i < NUM_SEM ; i++) {

194 mtx_id[i] = 0; Clears mtx_id[] to 0.

195 }

196

197 rtn = 1;

198 for(i = 0 ; i < NUM_SEM ; i++) { Creates each mutex.

199 mtxid = acre_mtx(&cmtx[i]);

200 if(mtxid > 0L) {

201 mtx_id[i] = mtxid;

202 }

Sets mtx_id[] to the ID of a mutex

if the mutex has been created

successively.

203 else {

204 rtn = 0;

205 break;

206 }

207 }

208

209 return rtn;

210 }

211 #endif /* end of _REENTRANT */

212

213

214

215 /**

216 /** Return "errno" address for cuurent context

217 * @param None

218 * @retval Pointer to "errno"

219 **/

220 #ifdef _REENTRANT

221 INT *errno_addr(void) errno_addr() function

222 {

223 INT *rtn;

224 ER ercd;

225 ID id;

Figure 16.23 lowsrc.c (cont)

604

226

227 if(sns_ctx() == FALSE) {

228 /* Case task context */

229 get_tid(&id);

230 id = GET_LOCALID(id);

231 }

232 else {

233 /* Case non-task context */

234 id = 0;

235 }

236 return (&errno_context[id]);

237 }

238 #endif /* end of _REENTRANT */

239

240

241 /**

242 /** Initialize errno environment

243 * @param None

244 * @retval None

245 **/

246 #ifdef _REENTRANT

247 static void errno_init(void) errno_init() function

248 {

249 INT i;

250

251 for(i= 0 ; i < sizeof(errno_context)/sizeof(INT) ; i++) {

252 errno_context[i] = 0;

253 }

254 }

255 #endif /* end of _REENTRANT */

256

257

258

Figure 16.23 lowsrc.c (cont)

605

259 /**

260 /** Initialize low-level environment

261 * @param None

262 * @retval 1(Pass), 0(Failure)

263 **/

264 INT _INIT_LOWLEVEL(void) _INIT_LOWLEVEL() function

265 {

266 INT rtn;

267

268 /* initialize sbrk */

269 rtn = sbrk_init();

270 if(rtn == 0) {

271 return rtn;

272 }

273

274 /* initialize semaphore */

275 #ifdef _REENTRANT

276 rtn = sem_init();

277 if(rtn == 0) {

278 return rtn;

279 }

280 #endif /* end of _REENTRANT */

281

282 /* initialize errno */

283 #ifdef _REENTRANT

284 errno_init();

285 #endif /* end of _REENTRANT */

286

287 return rtn;

288 }

Figure 16.23 lowsrc.c (cont)

606

(2) otherlibc (_INIT_OTHERLIB())

_INIT_OTHERLIB() initializes global variable "_s1ptr" used in strtok() and calls srand(). The
source code is not shown in this manual.

(3) initsct.c (_INITSCT())

1 /**

2 * Include

3 **/

4 #include "types.h"

5

6 #include "initsct.h"

7

8

9 /**

10 * Section

11 **/

12 #pragma section C_stdlib Specifies the section name.

13

14

15 /**

16 /** Initialize sections _INITSCT()

17 * @param dtbl_top information table address of D section

18 * @param dtbl_sz size of section of information table

19 * @param btbl_top information table address of B section

20 * @param btbl_sz size of section of information table

21 * @retval None

22 **/

23 void _INITSCT(

24 const ST_DTBL *dtbl_top,

25 UINT32 dtbl_sz,

26 const ST_BTBL *btbl_top,

27 UINT32 btbl_sz

28)

Figure 16.24 initsct.c

607

29 {

30 const ST_DTBL *dtbl;

31 const ST_BTBL *btbl;

32 UINT32 tblcnt;

33 UINT32 sz;

34 UINT8 *rp, *wp;

35

36 /*** Copy D-section to R-section ***/

37 dtbl = dtbl_top;

38 tblcnt = dtbl_sz/sizeof(ST_DTBL);

39

40 while(tblcnt > 0UL) {

41 rp = dtbl->SecD_Start;

42 wp = dtbl->SecR_Start;

43 sz = dtbl->SecD_Size;

44

45 while(sz > 0UL) {

46 *wp = *rp; /* Copy D --> R */

47 rp++;

48 wp++;

49 sz--;

50 }

51 dtbl++;

52 tblcnt--;

53 }

54

55 /*** 0-clear B-section ***/

56 btbl = btbl_top;

57 tblcnt = btbl_sz/sizeof(ST_BTBL);

58

59 while(tblcnt > 0UL) {

60 wp = btbl->SecB_Start;

61 sz = btbl->SecB_Size;

62

Figure 16.24 initsct.c (cont)

608

63 while(sz > 0UL) {

64 *wp = 0U; /* 0-clear */

65 wp++;

66 sz--;

67 }

68 btbl++;

69 tblcnt--;

70 }

71 }

Figure 16.24 initsct.c (cont)

609

16.8 Dummy Objects

16.8.1 Dummy Programs

This sample provides several dummy programs as templates for coding and examples of cfg files
for users.

Table 16.3 shows the source files of the dummy programs. The files for both CPUs have the same
contents. They are registered in the kernel through the cfg file.

Table 16.13 Source Files of Dummy Programs

Directory File Name Function

cpuid1\dummy_prog\ dummy_prog.c Dummy program for CPUID#1

• DummyTask() (task)

• DummyCyclicHandler() (cyclic handler)

• DummyAlarmHandler() (alarm handler)

• DummyExtendedSVC() (extended service call
routine)

• DummyInitRoutine() (initialization routine)

• DummyNormalIntHandler508() (normal interrupt

handler)

• DummyDirectIntHandler509() (direct interrupt
handler)

cpuid2\dummy_prog\ dummy_prog.c Dummy program for CPUID#2

• DummyTask() (task)

• DummyCyclicHandler() (cyclic handler)

• DummyAlarmHandler() (alarm handler)

• DummyExtendedSVC() (extended service call

routine)

• DummyInitRoutine() (initialization routine)

• DummyNormalIntHandler510() (normal interrupt
handler)

• DummyDirectIntHandler511() (direct interrupt
handler)

610

(1) Dummy task (DummyTask()) and dummy extended service call (DummyExtendedSVC())

The dummy task calls a dummy extended service call. The dummy extended service call routine
returns control without any processing. The function code for the dummy extended service call is
1.

(2) Dummy cyclic handler (DummyCyclicHandler())

This is initiated at regular intervals but returns control without any processing.

(3) Dummy alarm handler (DummyAlarmHandler())

This is initiated only once but returns control without any processing.

(4) Dummy initialization routine (DummyInitRoutine())

This returns control without any processing.

(5) Dummy normal interrupt handlers (DummyNormalIntHandler508() and
DummyNormalIntHandler510())

Dummy normal interrupt handlers are defined for vector number 508 for CPUID#1 and vector
number 510 for CPUID#2.

These handlers return control without any processing. Interrupts for these handlers never occur.

(6) Dummy direct interrupt handlers (DummyDirectIntHandler509() and
DummyDirectIntHandler511())

Dummy direct interrupt handlers are defined for vector number 509 for CPUID#1 and vector
number 511 for CPUID#2.

These handlers return control without any processing. Interrupts for these handlers never occur.

16.8.2 Other Dummy Objects

Like dummy programs, several kernel objects are registered as examples of cfg file descriptions.
For details, read the sample cfg file contents.

611

16.9 I/O Register Definitions, Peripheral Clock Definition, and
kernel_intspec.h

This sample provides the I/O definition files shown in table 16.14.

Table 16.14 I/O Definition Files

Directory File Name Function

kernel_intspec.h CPU interrupt hardware specification definitions

pclock.h Peripheral clock frequency definition

io_bsc.h Bus state controller (BSC)

io_cmt.h Compare match timer (CMT)

io_cpg.h Clock pulse generator (CPG)

io_intc.h Interrupt controller (INTC)

io_multicore.h Definition related to multicore
environment

io_port.h Definition related to I/O ports

io_stb.h Definition related to low-power
modes

iodefine\

io_sys.h

SH7265 on-chip
peripheral register
definitions

Definition related to system control

 io_wdt.h Watchdog timer (WDT)

kernel_intspec.h is an important file for informing the kernel of the interrupt hardware
specifications. For details, refer to section 17.3, Creating CPU Interrupt Specification Definition
File (kernel_intspec.h).

pclock.h defines the frequency of the peripheral clock. The timer driver uses this definition.

612

16.10 List of Kernel Objects

In this sample, objects are created according to the cfg file contents or by service calls issued in
the sample programs.

16.10.1 Tasks

Table 16.15 Tasks (CPUID#1)

Category Creation and Initiation Method ID Name Priority

Initial startup task task[] in cfg file ID1_TASK_INIT 1

SVC server task Created by vini_rmt for the number
of remote_svc.num_server in cfg
file *1

(None) 1

Remote service call
example *2

task[] in cfg file ID1_TASK_SEND 3

Task for issuing
RPC call

task[] in cfg file ID1_TASK_RPCCALLER 5

Dummy task task[] in cfg file ID1_TASK_DUMMY 10

Notes: *1. The remote_svc.num_server setting at shipment is 3.
 *2. This task file (<SAMPLE_INST>\R0K572650D000BR\cpuid1\remote_svc_sample\

remote_send.c) includes kernel_id_cpu2.h generated for CPUID#2 through cfg72mp to
refer to the object IDs for CPUID#2.

Table 16.16 Tasks (CPUID#2)

Category Creation and Initiation Method ID Name Priority

Initial startup task task[] in cfg file ID2_TASK_INIT 1

SVC server task Created by vini_rmt for the number
of remote_svc.num_server in cfg
file *

(None) 1

Remote service call
example

task[] in cfg file ID2_TASK_RECV 3

Server task for RPC
example

Created by rpc_start_server() (None) 5

Dummy task task[] in cfg file ID2_TASK_DUMMY 10

Note: * The remote_svc.num_server setting at shipment is 3.

613

16.10.2 Other Objects

Table 16.17 Other Objects (CPUID#1)

Object Type Category Creation Method ID Name

Semaphore Dummy semaphore[] in cfg file ID1_SEM_DUMMY

Event flag Dummy flag[] in cfg file ID1_FLG_DUMMY

Data queue Dummy dataqueue[] in cfg file ID1_DTQ_DUMMY

Mailbox Dummy mailbox[] in cfg file ID1_MBX_DUMMY

For sbrk() exclusive
control

acre_mtx call from
_INIT_LOWLEVEL()

(None)

For _s1ptr exclusive
control

acre_mtx call from
_INIT_LOWLEVEL()

(None)

Mutex

For iob exclusive
control

acre_mtx call from
_INIT_LOWLEVEL()

(None)

Message buffer Dummy message_buffer[] in
cfg file

ID1_MBF_DUMMY

Fixed-sized memory
pool

Dummy memorypool[] in cfg
file

ID1_MPF_DUMMY

Dummy variable_memorypool[
] in cfg file

ID1_MPL_DUMMY Variable-sized
memory pool

For OAL acre_mpl call from
OAL_Init()

⎯

Cyclic handler Dummy cyclic_hand[] in cfg file ID1_CYC_DUMMY

Alarm handler Dummy alarm_hand[] in cfg file ID1_ALM_DUMMY

Overrun handler (Not used) ⎯ ⎯

Normal interrupt
handler

Dummy interrupt_vector[] in
cfg file

(Vector number 508)

Direct interrupt
handler

Dummy interrupt_vector[] in
cfg file

(Vector number 509)

CPU exception
handler

(Not used) ⎯ ⎯

Extended service call Dummy extend_svc[] in cfg file ⎯

Initialization routine Dummy init_routine[] in cfg file ⎯

614

Table 16.18 Other Objects (CPUID#2)

Object Type Category Creation Method ID Name

Semaphore Dummy semaphore[] in cfg file ID2_SEM_DUMMY

Event flag Dummy flag[] in cfg file ID2_FLG_DUMMY

Data queue Dummy dataqueue[] in cfg file ID2_DTQ_DUMMY

Mailbox Remoter service call
example

mailbox[] in cfg file EXID2_MBX_REMOT
E (export to the other
CPU)

For sbrk() exclusive
control

acre_mtx call from
_INIT_LOWLEVEL()

(None)

For _s1ptr exclusive
control

acre_mtx call from
_INIT_LOWLEVEL()

(None)

Mutex

For iob exclusive
control

acre_mtx call from
_INIT_LOWLEVEL()

(None)

Message buffer Dummy message_buffer[] in cfg
file

ID2_MBF_DUMMY

Fixed-sized memory
pool

Remoter service call
example

memorypool[] in cfg file EXID2_MPF_REMOTE
(export to the other
CPU)

Dummy variable_memorypool[]
in cfg file

ID2_MPL_DUMMY Variable-sized
memory pool

For OAL acre_mpl call from
OAL_Init()

⎯

Cyclic handler Dummy cyclic_hand[] in cfg file ID2_CYC_DUMMY

Alarm handler Dummy alarm_hand[] in cfg file ID2_ALM_DUMMY

Overrun handler (Not used) ⎯ ⎯

Normal interrupt
handler

Dummy interrupt_vector[] in cfg
file

(Vector number 510)

Direct interrupt
handler

Dummy interrupt_vector[] in cfg
file

(Vector number 511)

CPU exception
handler

(Not used) ⎯ ⎯

Extended service call Dummy extend_svc[] in cfg file ⎯

Initialization routine Dummy init_routine[] in cfg file ⎯

615

16.11 cfg Files

16.11.1 CPUID#1 (cpuid1\cfg_out\sample.cfg)

(1) system definition

1 system {

2 cpuid = 1; CPUID

3 stack_size = 0x1000; Interrupt stack size

4 kernel_stack_size = 0x400; Kernel stack size

5 priority = 255; Maximum task priority

6 system_IPL = 14; Kernel interrupt mask level

7 message_pri = 255; Maximum message priority

8 tic_deno = 1; Time tick cycle = TIC_NUME/TIC_DENO = 1 ms

9 tic_nume = 1;

10 tbr = FOR_SVC; Uses the TBR register only for service calls.

11 parameter_check = YES; Detects errors in kernel service call parameters.

12 mpfmanage = IN; Places a management table in the fixed-sized memory pool.

13 newmpl = NEW; Manages the variable-sized memory pool with the new
method.

14 trace = TARGET_TRACE; Uses the target trace function for service call trace.

15 trace_buffer = 0x10000; Trace buffer size

16 trace_object = 5; Number of objects to be acquired in service call trace

17 action = YES; Uses the object manipulation function

18 vector_type = ROM; Interrupt vector type

19 regbank = ALL; Uses the register bank for all interrupt sources that can use it.

20 };

616

(2) maxdefine definition

1 maxdefine {

2 max_task = 20; Maximum local task ID

3 max_statictask = 0; Maximum local task ID that uses the static stack

4 max_sem = 10; Maximum local semaphore ID

5 max_flag = 10; Maximum local event flag ID

6 max_dtq = 10; Maximum local data queue ID

7 max_mbx = 10; Maximum local mailbox ID

8 max_mtx = 10; Maximum local mutex ID

9 max_mbf = 10; Maximum local message buffer ID

10 max_mpf = 10; Maximum local fixed-sized memory pool ID

11 max_mpl = 10; Maximum local variable-sized memory pool ID

12 max_cyh = 10; Maximum local cyclic handler ID

13 max_alh = 10; Maximum local alarm handler ID

14 max_fncd = 10; Maximum function code for extended service calls

15 max_int = 511; Maximum vector number

16 };

(3) memstk definition

1 memstk {

2 all_memsize = 0x4000; Size of default task stack area

3 };

(4) memdtq definition

1 memdtq {

2 all_memsize = 0x4000; Size of default data queue area

3 };

617

(5) memmbf definition

1 memmbf {

2 all_memsize = 0x4000; Size of default message buffer area

3 };

(6) memmpf definition

1 memmpf {

2 all_memsize = 0x4000; Size of default fixed-sized memory pool area

3 };

(7) memmplf definition

1 memmpl {

2 all_memsize = 0x4000; Size of default variable-sized memory pool area

3 };

(8) clock definition

1 clock {

2 timer = TIMER; Uses the time management function.

3 IPL = 13; Timer interrupt level

4 number = 118; // CMT0-ch0 Timer interrupt number (CH0 of CMT0 in SH7265)

5 stack_size = 0x800; Timer stack size

6 };

618

(9) remote_svc definition

1 remote_svc {

2 num_server = 3; Number of SVC server tasks

3 priority = 1; Priority of SVC server tasks

4 stack_size = 0x400; Stack size for SVC server tasks

5 ipi_portid = 1; // Interrupt priority = 14 IPI port ID used for remote service calls
(interrupt level = 14)

6 num_wait = 20; Maximum number of tasks waiting for an
available SVC server task

7 };

619

(10) task[] definition

1 // InitTask1() **************** InitTask1() (initial startup task)

2 task[] { // the ID is assigned by configurator. Assigns an ID number automatically.

3 name = ID1_TASK_INIT; ID name

4 // export = <YES or NO>; Does not export the ID name.

5 entry_address = InitTask1(); Start address of the task

6 stack_size = 0x400; // the stack is allocated from default area. Stack size (allocates a stack area from the default

task stack area)

7 // stack_section = <input section name>; (Section name assigned to the stack area)

8 // stack_address = <input start address of stack area>; (Start address of the stack area)

9 priority = 1; Task priority at initiation

10 initial_start = ON; Initial state

11 exinf = 0; Extended information

12 fpu = OFF; Does not use the FPU.

13 };

14

15 // TaskSend() **************** TaskSend() (remote service call example)

16 task[] { // the ID is assigned by configurator. Assigns an ID number automatically.

17 name = ID1_TASK_SEND; ID name

18 // export = <YES or NO>; Does not export the ID name.

19 entry_address = TaskSend(); Start address of the task

20 stack_size = 0x400; Stack size (generates a stack area with the

specified section name)

21 stack_section = C_TSKSTK; // the section mane is "BC_TSKSTK". Section name assigned to stack area =

BC_TSKSTK

22 // stack_address = <input start address of stack area>; (Start address of the stack area)

23 priority = 3; Task priority at initiation

24 initial_start = ON; Initial state

25 exinf = 0; Extended information

26 fpu = OFF; Does not use the FPU.

27 };

28

620

29 // TaskRpcCaller() **************** TaskRpcCaller() (RPC call task)

30 task[] { // the ID is assigned by configurator. Assigns an ID number automatically.

31 name = ID1_TASK_RPCCALLER; ID name

32 // export = <YES or NO>; Does not export the ID name.

33 entry_address = TaskRpcCaller(); Start address of the task

34 stack_size = 0x400; // the stack is allocated from default area. Stack size (allocates a stack area from the default

task stack area)

35 // stack_section = <input section name>; (Section name assigned to the stack area)

36 // stack_address = <input start address of stack area>; (Start address of the stack area)

37 priority = 5; Task priority at initiation

38 initial_start = ON; Initial state

39 exinf = 0; Extended information

40 fpu = OFF; Does not use the FPU.

41 };

42

43 // DummyTask() **************** DummyTask() (dummy task)

44 task[] { // the ID is assigned by configurator. Assigns an ID number automatically.

45 name = ID1_TASK_DUMMY; ID name

46 // export = <YES or NO>; Does not export the ID name.

47 entry_address = DummyTask(); Start address of the task

48 stack_size = 0x200; // the stack is allocated from default area. Stack size (allocates a stack area from the default

task stack area)

49 // stack_section = <input section name>; (Section name assigned to the stack area)

50 // stack_address = <input start address of stack area>; (Start address of the stack area)

51 priority = 10; Task priority at initiation

52 initial_start = ON; Initial state

53 exinf = 0; Extended information

54 fpu = OFF; Does not use the FPU.

55 };

621

(11) semaphore[] definition

1 // Dummy semaphore *********** Dummy semaphore

2 semaphore[1] { // the ID is 1. Sets the local ID number to 1.

3 name = ID1_SEM_DUMMY; ID name

4 // export = <YES or NO>; Does not export the ID name.

5 wait_queue = TA_TFIFO; Wait queue attribute

6 max_count = 1; Maximum value of the semaphore counter

7 initial_count = 1; Initial value of the semaphore counter

8 };

(12) eventflag[] definition

1 // Dummy eventflag *********** Dummy event flag

2 flag[] { // the ID is assigned by configurator. Assigns an ID number automatically.

3 name = ID1_FLG_DUMMY; ID name

4 // export = <YES or NO>; Does not export the ID name.

5 wait_queue = TA_TFIFO; Wait queue attribute

6 initial_pattern = 0; Initial bit pattern

7 wait_multi = TA_WSGL; Does not allow multiple-wait.

8 clear_attribute = YES; Clear attribute

9 };

(13) dataqueue[] definition

1 // Dummy dataqueue *********** Dummy data queue

2 dataqueue[2] { // the ID is 2. Sets the local ID number to 2.

3 name = ID1_DTQ_DUMMY; ID name

4 // export = <YES or NO>; Does not export the ID name.

5 buffer_size = 256; Maximum data count

6 section = C_DTQ; // the section mane is "BC_DTQ". Section name assigned to the data queue
area

7 // address = <input start address of dataqueue area>; (Start address of the data queue area)

8 wait_queue = TA_TFIFO; Wait queue attribute

9 };

622

(14) mailbox[] definition

1 // Dummy mailbox *********** Dummy mailbox

2 mailbox[] { // the ID is assigned by configurator. Assigns an ID number automatically.

3 name = ID1_MBX_DUMMY; ID name

4 // export = <YES or NO>; Does not export the ID name.

5 wait_queue = TA_TFIFO; Wait queue attribute

6 message_queue = TA_MFIFO; Order of messages in the queue

7 max_pri = 255; Maximum message priority (this definition has
no meaning when TA_MFIFO is selected)

8 };

(15) mutex[] definition

1 // Dummy mutex *********** Dummy mutex

2 mutex[1] { // the ID is 1. Sets the local ID number to 1.

3 name = ID1_MTX_DUMMY; ID name

4 protocol = TA_CEILING; Priority ceiling protocol

5 ceil_pri = 1; Ceiling priority

6 };

(16) message_buffer[] definition

1 // Dummy message buffer *********** Dummy message buffer

2 message_buffer[] { // the ID is assigned by configurator. Assigns an ID number automatically.

3 name = ID1_MBF_DUMMY; ID name

4 // export = <YES or NO>; Does not export the ID name.

5 buffer_size = 0x400; Buffer size

6 section = C_MBF; // the section mane is "BC_MBF". Section name assigned to the buffer area

7 // address = <input start address of buffer area>; (Start address of the buffer area)

8 max_msgsz = 0x100; Maximum message size

9 wait_queue = TA_TFIFO; Wait queue attribute

10 };

623

(17) memorypool[] definition

1 // Dummy fixed-size memory pool *********** Dummy fixed-sized memory pool

2 memorypool[] { // the ID is assigned by configurator. Sets the local ID number to 2.

3 name = ID1_MPF_DUMMY; ID name

4 // export = <YES or NO>; Does not export the ID name.

5 section = C_MPF; // the section name is "BC_MPF". Section name assigned to the pool area

6 // address = <input start address of pool area>; (Start address of the pool area)

7 num_block = 32; Block count

8 siz_block = 16; Block size

9 wait_queue = TA_TFIFO; Wait queue attribute

10 };

(18) variable_memorypool[] definition

1 // Dummy variable size memory pool *********** Dummy variable-sized memory pool

2 variable_memorypool[] { // the ID is assigned by configurator. Assigns an ID number automatically.

3 name = ID1_MPL_DUMMY; ID name

4 // export = <YES or NO>; Does not export the ID name.

5 heap_size = 0x400; Pool size

6 mpl_section = C_MPL; Section name assigned to the pool area

7 // mpl_address = <input start address of pool area>; (Start address of the pool area)

8 unfragment = OFF; Uses the fragmentation reduction function.

9 wait_queue = TA_TFIFO; Wait queue attribute

10 };

624

(19) cyclic_hand[] definition

1 // Dummy cyclic handler *********** Dummy cyclic handler

2 cyclic_hand[] { // the ID is assigned by configurator. Assigns an ID number automatically.

3 name = ID1_CYC_DUMMY; ID name

4 // export = <YES or NO>; Does not export the ID name.

5 interval_counter = 100; Initiation cycle

6 start = ON; Starts the handler.

7 phsatr = OFF; Does not preserve the initiation phase.

8 phs_counter = 30; Initiation phase

9 exinf = 0; Extended information

10 entry_address = DummyCyclicHandler(); Start address of the handler

11 };

(20) alarm_hand[] definition

1 // Dummy alarm handler *********** Dummy alarm handler

2 alarm_hand[] { // the ID is assigned by configurator. Assigns an ID number automatically.

3 name = ID1_ALM_DUMMY; ID name

4 // export = <YES or NO>; Does not export the ID name.

5 exinf = 0; Extended information

6 entry_address = DummyAlarmHandler(); Start address of the handler

7 };

(21) overrun_hand[] definition

1 // Dummy overrun handler *********** Dummy overrun handler

2 overrun_hand {

3 entry_address = DummyOverrunHandler(); Start address of the handler

4 };

625

(22) extend_svc[] definition

1 // Dummy extended SVC *********** Dummy extended service call

2 extend_svc[1] { // the function code is 1. Sets the function code to 1.

3 entry_address = DummyExtendSVCRoutine(); Start address of the extended service call
routine

4 };

(23) interrupt_vector[] definition

1 // Direcr interrupt handler for IPI port ID#0 *********** Direct interrupt handler for IPI port ID#0 (ipi.c)

2 interrupt_vector[21] { Sets the vector number to 21.

3 direct = YES; Specifies the direct attribute.

4 regbank = YES; Uses the register bank (this setting has no
meaning because the direct attribute is
selected).

5 entry_address = IPI_Port0Handler(); Start address of the handler

6 };

7

8 // Direcr interrupt handler for IPI port ID#1 *********** Direct interrupt handler for IPI port ID#1 (ipi.c)

9 interrupt_vector[22] { Sets the vector number to 22.

10 direct = YES; Specifies the direct attribute.

11 regbank = YES; Uses the register bank (this setting has no
meaning because the direct attribute is
selected).

12 entry_address = IPI_Port1Handler(); Start address of the handler

13 };

14

626

15 // Direcr interrupt handler for IPI port ID#2 *********** Direct interrupt handler for IPI port ID#2 (ipi.c)

16 interrupt_vector[23] { Sets the vector number to 23.

17 direct = YES; Specifies the direct attribute.

18 regbank = YES; Uses the register bank (this setting has no
meaning because the direct attribute is
selected).

19 entry_address = IPI_Port2Handler(); Start address of the handler

20 };

21

22 // Direcr interrupt handler for IPI port ID#3 *********** Direct interrupt handler for IPI port ID#3 (ipi.c)

23 interrupt_vector[24] { Sets the vector number to 24.

24 direct = YES; Specifies the direct attribute.

25 regbank = YES; Uses the register bank (this setting has no
meaning because the direct attribute is
selected).

26 entry_address = IPI_Port3Handler(); Start address of the handler

27 };

28

29 // Direcr interrupt handler for IPI port ID#4 *********** Direct interrupt handler for IPI port ID#4 (ipi.c)

30 interrupt_vector[25] { Sets the vector number to 25.

31 direct = YES; Specifies the direct attribute.

32 regbank = YES; Uses the register bank (this setting has no
meaning because the direct attribute is
selected).

33 entry_address = IPI_Port4Handler(); Start address of the handler

34 };

35

36 // Direcr interrupt handler for IPI port ID#5 *********** Direct interrupt handler for IPI port ID#5 (ipi.c)

37 interrupt_vector[26] { Sets the vector number to 26.

38 direct = YES; Specifies the direct attribute.

39 regbank = YES; Uses the register bank (this setting has no
meaning because the direct attribute is
selected).

40 entry_address = IPI_Port5Handler(); Start address of the handler

41 };

42

43 // Direcr interrupt handler for IPI port ID#6 *********** Direct interrupt handler for IPI port ID#6 (ipi.c)

627

44 interrupt_vector[27] { Sets the vector number to 27.

45 direct = YES; Specifies the direct attribute.

46 regbank = YES; Uses the register bank (this setting has no
meaning because the direct attribute is
selected).

47 entry_address = IPI_Port6Handler(); Start address of the handler

48 };

49

50 // Direcr interrupt handler for IPI port ID#7 *********** Direct interrupt handler for IPI port ID#7 (ipi.c)

51 interrupt_vector[28] { Sets the vector number to 28.

52 direct = YES; Specifies the direct attribute.

53 regbank = YES; Uses the register bank (this setting has no
meaning because the direct attribute is
selected).

54 entry_address = IPI_Port7Handler(); Start address of the handler

55 };

56

57 // Dummy normal interrupt handler *********** Dummy normal interrupt handler

58 interrupt_vector[508] { // Normal interrupt handler Sets the vector number to 508.

59 direct = NO; Does not specify the direct attribute.

60 regbank = YES; Uses the register bank (this setting has no
meaning because system.regbank is set to
ALL).

61 entry_address = DummyNormalIntHandler508(); Start address of the handler

62 };

63

64 // Dummy direct interrupt handler *********** Dummy direct interrupt handler

65 interrupt_vector[509] { // Direct interrupt handler Sets the vector number to 509.

66 direct = YES; Specifies the direct attribute.

67 regbank = YES; Uses the register bank (this setting has no
meaning because the direct attribute is
selected).

68 entry_address = DummyDirectIntHandler509(); Start address of the handler

69 };

628

(24) init_routine[] definition

1 // Dummy initialization routine *********** Dummy initialization routine

2 init_routine[] {

3 exinf = 0; Extended information

4 entry_address = DummyInitRoutine(); Start address of the initialization routine

5 };

(25) service_call definition

Only the following service calls are defined as NO.

• vscr_tsk and ivscr_tsk (creating a task using the static stack)

• All service calls for task exception handling

• def_inh and idef_inh (defining an interrupt handler)

• def_exc and idef_exc (defining a CPU exception handler)

• vdef_trp and ivdef_trp (defining a TRAPA exception handler)

629

16.11.2 CPUID#2 (cpuid2\cfg_out\sample.cfg)

(1) system definition

1 system {

2 cpuid = 2; CPUID

3 stack_size = 0x1000; Interrupt stack size

4 kernel_stack_size = 0x400; Kernel stack size

5 priority = 255; Maximum task priority

6 system_IPL = 14; Kernel interrupt mask level

7 message_pri = 255; Maximum message priority

8 tic_deno = 1; Time tick cycle = TIC_NUME/TIC_DENO = 1 ms

9 tic_nume = 1;

10 tbr = FOR_SVC; Uses the TBR register only for service calls.

11 parameter_check = YES; Detects errors in kernel service call parameters.

12 mpfmanage = IN; Places a management table in the fixed-sized memory pool.

13 newmpl = NEW; Manages the variable-sized memory pool with the new
method.

14 trace = TARGET_TRACE; Uses the target trace function for service call trace.

15 trace_buffer = 0x10000; Trace buffer size

16 trace_object = 5; Number of objects to be acquired in service call trace

17 action = YES; Uses the object manipulation function

18 vector_type = ROM; Interrupt vector type

19 regbank = ALL; Uses the register bank for all interrupt sources that can use it.

20 };

630

(2) maxdefine definition

1 maxdefine {

2 max_task = 20; Maximum local task ID

3 max_statictask = 0; Maximum local task ID that uses the static stack

4 max_sem = 10; Maximum local semaphore ID

5 max_flag = 10; Maximum local event flag ID

6 max_dtq = 10; Maximum local data queue ID

7 max_mbx = 10; Maximum local mailbox ID

8 max_mtx = 10; Maximum local mutex ID

9 max_mbf = 10; Maximum local message buffer ID

10 max_mpf = 10; Maximum local fixed-sized memory pool ID

11 max_mpl = 10; Maximum local variable-sized memory pool ID

12 max_cyh = 10; Maximum local cyclic handler ID

13 max_alh = 10; Maximum local alarm handler ID

14 max_fncd = 10; Maximum function code for extended service calls

15 max_int = 511; Maximum vector number

16 };

(3) memstk definition

1 memstk {

2 all_memsize = 0x4000; Size of default task stack area

3 };

(4) memdtq definition

1 memdtq {

2 all_memsize = 0x4000; Size of default data queue area

3 };

631

(5) memmbf definition

1 memmbf {

2 all_memsize = 0x4000; Size of default message buffer area

3 };

(6) memmpf definition

1 memmpf {

2 all_memsize = 0x4000; Size of default fixed-sized memory pool area

3 };

(7) memmplf definition

1 memmpl {

2 all_memsize = 0x4000; Size of default variable-sized memory pool area

3 };

(8) clock definition

1 clock {

2 timer = TIMER; Uses the time management function.

3 IPL = 13; Timer interrupt level

4 number = 119; // CMT0-ch1 Timer interrupt number (CH1 of CMT0 in SH7265)

5 stack_size = 0x800; Timer stack size

6 };

632

(9) remote_svc definition

1 remote_svc {

2 num_server = 3; Number of SVC server tasks

3 priority = 1; Priority of SVC server tasks

4 stack_size = 0x400; Stack size for SVC server tasks

5 ipi_portid = 1; // Interrupt priority = 14 IPI port ID used for remote service calls
(interrupt level = 14)

6 num_wait = 20; Maximum number of tasks waiting for an
available SVC server task

7 };

(10) task[] definition

1 // InitTask2() **************** InitTask2() (initial startup task)

2 task[] { // the ID is assigned by configurator. Assigns an ID number automatically.

3 name = ID2_TASK_INIT; ID name

4 // export = <YES or NO>; Does not export the ID name.

5 entry_address = InitTask2(); Start address of the task

6 stack_size = 0x400; // the stack is allocated from default area. Stack size (allocates a stack area to the default task

stack area)

7 // stack_section = <input section name>; (Section name assigned to the stack area)

8 // stack_address = <input start address of stack area>; (Start address of the stack area)

9 priority = 1; Task priority at initiation

10 initial_start = ON; Initial state

11 exinf = 0; Extended information

12 fpu = OFF; Does not use the FPU.

13 };

14

633

15 // TaskRecv() **************** TaskRecv() (remote service call example)

16 task[] { // the ID is assigned by configurator. Assigns an ID number automatically.

17 name = ID2_TASK_RECV; ID name

18 // export = <YES or NO>; Does not export the ID name.

19 entry_address = TaskRecv(); Start address of the task

20 stack_size = 0x400; Stack size (creates a stack area with the specified

section name)

21 stack_section = C_TSKSTK; // the section mane is "BC_TSKSTK". Section name assigned to stack area =

BC_TSKSTK

22 // stack_address = <input start address of stack area>; (Start address of the stack area)

23 priority = 3; Task priority at initiation

24 initial_start = ON; Initial state

25 exinf = 0; Extended information

26 fpu = OFF; Does not use the FPU.

27 };

28

29 // DummyTask() **************** DummyTask() (dummy task)

30 task[] { // the ID is assigned by configurator. Assigns an ID number automatically.

31 name = ID2_TASK_DUMMY; ID name

32 // export = <YES or NO>; Does not export the ID name.

33 entry_address = DummyTask(); Start address of the task

34 stack_size = 0x200; // the stack is allocated from default area. Stack size (allocates a stack area to the default task

stack area)

35 // stack_section = <input section name>; (Section name assigned to the stack area)

36 // stack_address = <input start address of stack area>; (Start address of the stack area)

37 priority = 10; Task priority at initiation

38 initial_start = ON; Initial state

39 exinf = 0; Extended information

40 fpu = OFF; Does not use the FPU.

41 };

634

(11) semaphore[] definition

1 // Dummy semaphore *********** Dummy semaphore

2 semaphore[1] { // the ID is 1. Sets the local ID number to 1.

3 name = ID2_SEM_DUMMY; ID name

4 // export = <YES or NO>; Does not export the ID name.

5 wait_queue = TA_TFIFO; Wait queue attribute

6 max_count = 1; Maximum value of the semaphore counter

7 initial_count = 1; Initial value of the semaphore counter

8 };

(12) eventflag[] definition

1 // Dummy eventflag *********** Dummy event flag

2 flag[] { // the ID is assigned by configurator. Assigns an ID number automatically.

3 name = ID2_FLG_DUMMY; ID name

4 // export = <YES or NO>; Does not export the ID name.

5 wait_queue = TA_TFIFO; Wait queue attribute

6 initial_pattern = 0; Initial bit pattern

7 wait_multi = TA_WSGL; Does not allow multiple-wait.

8 clear_attribute = YES; Clear attribute

9 };

(13) dataqueue[] definition

1 // Dummy dataqueue *********** Dummy data queue

2 dataqueue[2] { // the ID is 2. Sets the local ID number to 2.

3 name = ID2_DTQ_DUMMY; ID name

4 // export = <YES or NO>; Does not export the ID name.

5 buffer_size = 256; Maximum data count

6 section = C_DTQ; // the section mane is "BC_DTQ". Section name assigned to the data queue
area

7 // address = <input start address of dataqueue area>; (Start address of the data queue area)

8 wait_queue = TA_TFIFO; Wait queue attribute

9 };

635

(14) mailbox[] definition

1 // Mailbox for remote-SVC sample *********** Mailbox used in remote service call example

2 mailbox[1] { // the ID is 1. Sets the local ID number to 1.

3 name = EXID2_MBX_COMM; ID name

4 export = YES; Exports the ID name.

5 wait_queue = TA_TFIFO; Wait queue attribute

6 message_queue = TA_MFIFO; Order of messages in the queue

7 max_pri = 255; Maximum message priority (this definition has
no meaning when TA_MFIFO is selected)

8 };

9

10 // Dummy mailbox *********** Dummy mailbox

11 mailbox[] { // the ID is assigned by configurator. Assigns an ID number automatically.

12 name = ID2_MBX_DUMMY; ID name

13 // export = <YES or NO>; Does not export the ID name.

14 wait_queue = TA_TFIFO; Wait queue attribute

15 message_queue = TA_MFIFO; Order of messages in the queue

16 max_pri = 255; Maximum message priority (this definition has
no meaning when TA_MFIFO is selected)

17 };

(15) mutex[] definition

1 // Dummy mutex *********** Dummy mutex

2 mutex[1] { // the ID is 1. Sets the local ID number to 1.

3 name = ID2_MTX_DUMMY; ID name

4 protocol = TA_CEILING; Priority ceiling protocol

5 ceil_pri = 1; Ceiling priority

6 };

636

(16) message_buffer[] definition

1 // Dummy message buffer *********** Dummy message buffer

2 message_buffer[] { // the ID is assigned by configurator. Assigns an ID number automatically.

3 name = ID2_MBF_DUMMY; ID name

4 // export = <YES or NO>; Does not export the ID name.

5 buffer_size = 0x400; Buffer size

6 section = C_MBF; // the section mane is "BC_MBF". Section name assigned to the buffer area

7 // address = <input start address of buffer area>; (Start address of the buffer area)

8 max_msgsz = 0x100; Maximum message size

9 wait_queue = TA_TFIFO; Wait queue attribute

10 };

637

(17) memorypool[] definition

1 // Fixed-size memory pool for remote-SVC sample *********** Fixed-sized memory pool used in remoter
service call example

2 memorypool[1] { // the ID is 1. Sets the local ID number to 1.

3 name = EXID2_MPF_NONCACHED; ID name

4 export = YES; Exports the ID name.

5 section = D_MPF; // the section name is "BD_MPF". Section name assigned to the pool area

6 // address = <input start address of pool area>; (Start address of the pool area)

7 num_block = 16; Block count

8 siz_block = 8; // sizeof(USER_MSG) Block size

9 wait_queue = TA_TFIFO; Wait queue attribute

10 };

11

12 // Dummy fixed-size memory pool *********** Dummy fixed-sized memory pool

13 memorypool[] { // the ID is assigned by configurator. Sets the local ID number to 2.

14 name = ID2_MPF_DUMMY; ID name

15 // export = <YES or NO>; Does not export the ID name.

16 section = C_MPF; // the section name is "BC_MPF". Section name assigned to the pool area

17 // address = <input start address of pool area>; (Start address of the pool area)

18 num_block = 32; Block count

19 siz_block = 16; Block size

20 wait_queue = TA_TFIFO; Wait queue attribute

21 };

638

(18) variable_memorypool[] definition

1 // Dummy variable size memory pool *********** Dummy variable-sized memory pool

2 variable_memorypool[] { // the ID is assigned by configurator. Assigns an ID number automatically.

3 name = ID2_MPL_DUMMY; ID name

4 // export = <YES or NO>; Does not export the ID name.

5 heap_size = 0x400; Pool size

6 mpl_section = C_MPL; Section name assigned to the pool area

7 // mpl_address = <input start address of pool area>; (Start address of the pool area)

8 unfragment = OFF; Uses the fragmentation reduction function.

9 wait_queue = TA_TFIFO; Wait queue attribute

10 };

(19) cyclic_hand[] definition

1 // Dummy cyclic handler *********** Dummy cyclic handler

2 cyclic_hand[] { // the ID is assigned by configurator. Assigns an ID number automatically.

3 name = ID2_CYC_DUMMY; ID name

4 // export = <YES or NO>; Does not export the ID name.

5 interval_counter = 100; Initiation cycle

6 start = ON; Starts the handler.

7 phsatr = OFF; Does not preserve the initiation phase.

8 phs_counter = 30; Initiation phase

9 exinf = 0; Extended information

10 entry_address = DummyCyclicHandler(); Start address of the handler

11 };

639

(20) alarm_hand[] definition

1 // Dummy alarm handler *********** Dummy alarm handler

2 alarm_hand[] { // the ID is assigned by configurator. Assigns an ID number automatically.

3 name = ID2_ALM_DUMMY; ID name

4 // export = <YES or NO>; Does not export the ID name.

5 exinf = 0; Extended information

6 entry_address = DummyAlarmHandler(); Start address of the handler

7 };

(21) overrun_hand[] definition

1 // Dummy overrun handler *********** Dummy overrun handler

2 overrun_hand {

3 entry_address = DummyAlarmHandler(); Start address of the handler

4 };

(22) extend_svc[] definition

1 // Dummy extended SVC *********** Dummy extended service call

2 extend_svc[1] { // the function code is 1. Sets the function code to 1.

3 entry_address = DummyExtendSVCRoutine(); Start address of the extended service call
routine

4 };

640

(23) interrupt_vector[] definition

1 // Direcr interrupt handler for IPI port ID#0 *********** Direct interrupt handler for IPI port ID#0 (ipi.c)

2 interrupt_vector[21] { Sets the vector number to 21.

3 direct = YES; Specifies the direct attribute.

4 regbank = YES; Uses the register bank (this setting has no
meaning because the direct attribute is
selected).

5 entry_address = IPI_Port0Handler(); Start address of the handler

6 };

7

8 // Direcr interrupt handler for IPI port ID#1 *********** Direct interrupt handler for IPI port ID#1 (ipi.c)

9 interrupt_vector[22] { Sets the vector number to 22.

10 direct = YES; Specifies the direct attribute.

11 regbank = YES; Uses the register bank (this setting has no
meaning because the direct attribute is
selected).

12 entry_address = IPI_Port1Handler(); Start address of the handler

13 };

14

15 // Direcr interrupt handler for IPI port ID#2 *********** Direct interrupt handler for IPI port ID#2 (ipi.c)

16 interrupt_vector[23] { Sets the vector number to 23.

17 direct = YES; Specifies the direct attribute.

18 regbank = YES; Uses the register bank (this setting has no
meaning because the direct attribute is
selected).

19 entry_address = IPI_Port2Handler(); Start address of the handler

20 };

21

22 // Direcr interrupt handler for IPI port ID#3 *********** Direct interrupt handler for IPI port ID#3 (ipi.c)

23 interrupt_vector[24] { Sets the vector number to 24.

24 direct = YES; Specifies the direct attribute.

25 regbank = YES; Uses the register bank (this setting has no
meaning because the direct attribute is
selected).

641

26 entry_address = IPI_Port3Handler(); Start address of the handler

27 };

28

29 // Direcr interrupt handler for IPI port ID#4 *********** Direct interrupt handler for IPI port ID#4 (ipi.c)

30 interrupt_vector[25] { Sets the vector number to 25.

31 direct = YES; Specifies the direct attribute.

32 regbank = YES; Uses the register bank (this setting has no
meaning because the direct attribute is
selected).

33 entry_address = IPI_Port4Handler(); Start address of the handler

34 };

35

36 // Direcr interrupt handler for IPI port ID#5 *********** Direct interrupt handler for IPI port ID#5 (ipi.c)

37 interrupt_vector[26] { Sets the vector number to 26.

38 direct = YES; Specifies the direct attribute.

39 regbank = YES; Uses the register bank (this setting has no
meaning because the direct attribute is
selected).

40 entry_address = IPI_Port5Handler(); Start address of the handler

41 };

42

43 // Direcr interrupt handler for IPI port ID#6 *********** Direct interrupt handler for IPI port ID#6 (ipi.c)

44 interrupt_vector[27] { Sets the vector number to 27.

45 direct = YES; Specifies the direct attribute.

46 regbank = YES; Uses the register bank (this setting has no
meaning because the direct attribute is
selected).

47 entry_address = IPI_Port6Handler(); Start address of the handler

48 };

49

50 // Direcr interrupt handler for IPI port ID#7 *********** Direct interrupt handler for IPI port ID#7 (ipi.c)

51 interrupt_vector[28] { Sets the vector number to 28.

52 direct = YES; Specifies the direct attribute.

53 regbank = YES; Uses the register bank (this setting has no
meaning because the direct attribute is
selected).

54 entry_address = IPI_Port7Handler(); Start address of the handler

642

55 };

56

57 // Dummy normal interrupt handler *********** Dummy normal interrupt handler

58 interrupt_vector[510] { // Normal interrupt handler Sets the vector number to 510.

59 direct = NO; Does not specify the direct attribute.

60 regbank = YES; Uses the register bank (this setting has no
meaning because system.regbank is set to
ALL).

61 entry_address = DummyNormalIntHandler510(); Start address of the handler

62 };

63

64 // Dummy direct interrupt handler *********** Dummy direct interrupt handler

65 interrupt_vector[511] { // Direct interrupt handler Sets the vector number to 511.

66 direct = YES; Specifies the direct attribute.

67 regbank = YES; Uses the register bank (this setting has no
meaning because the direct attribute is
selected).

68 entry_address = DummyDirectIntHandler511(); Start address of the handler

69 };

(24) init_routine[] definition

1 // Dummy initialization routine *********** Dummy initialization routine

2 init_routine[] {

3 exinf = 0; Extended information

4 entry_address = DummyInitRoutine(); Start address of the initialization routine

5 };

(25) service_call definition

Only the following service calls are defined as NO.

• vscr_tsk and ivscr_tsk (creating a task using the static stack)

• All service calls for task exception handling

• def_inh and idef_inh (defining an interrupt handler)

• def_exc and idef_exc (defining a CPU exception handler)

• vdef_trp and ivdef_trp (defining a TRAPA exception handler)

643

16.12 IPI Ports

In this sample, both CPUID#1 and CPUID#2 use IPI ports for remote service call and RPC
functions.

To use IPI ports, settings should be made in several files such as the cfg file, IPI configuration file,
and rpc_init() in the RPC library. This section describes how to make IPI port settings without
making wrong settings.

In the IPI configuration file, define whether to allow use of each port ID.

For the port ID to be used by remote service calls, select an available port ID that is not higher in
the interrupt level than the kernel interrupt mask level. Define it through remote_svc.ipi_portid in
the cfg file. According to this setting, vini_rmt executes IPI_create() with this port ID.

For the port ID to be used for RPC, select an available port ID that is not higher in the interrupt
level than the kernel interrupt mask level. Specify it in ulIPIPortID of the rpc_config structure to
be passed to rpc_init(). According to this setting, rpc_init() executes IPI_create() with this port ID.

The IPI configuration files are cpuid1\ipi\ipi_config.h for CPUID#1 and cpuid2\ipi\ipi_config.h
for CPUID#2.

rpc_init() is called by the initial startup task in cpuid1\init_task\init_task.c in CPUID#1 and by that
in cpuid2\init_task\init_task.c in CPUID#2.

The kernel interrupt mask level (system.system_IPL) is set to 14 for both CPUs.

Table 16.19 shows the IPI port usage in this sample.

644

Table 16.19 IPI Ports

CPUID#1 CPUID#2

Port
ID

Vector
No.

Inter-
Processor
Interrupt
Level

IPI
Configu-
ration IPI_create() State

IPI
Configu-
ration IPI_create() State

0 21 15 Available (Not used) Available (Not used)

1 22 14 Available For remote service calls
(remote_svc.ipi_portid)

Available For remote service
calls
(remote_svc.ipi_portid)

2 23 13 Available For RPC
(rpc_config.ulIPIPortID)

Available For RPC
(rpc_config.ulIPIPortID)

3 24 12 Available (Not used) Available (Not used)

4 25 11 Available (Not used) Available (Not used)

5 26 10 Available (Not used) Available (Not used)

6 27 9 Available (Not used) Available (Not used)

7 28 8 Available (Not used) Available (Not used)

16.13 Porting to Other Hardware

When porting these sample programs to other hardware, modify the following files according to
the target hardware specifications.

(1) Files in the iodefine\ directory (I/O register definitions, peripheral clock definition, and
kernel_intspec.h)

(2) Files in the cpuid1\reset\ directory and cpuid2\reset\ directory (settings related to reset)

(3) Files in the cpuid1\os_timer\ directory and cpuid2\os_timer\ directory (timer driver)

645

Section 17 Build

This section mainly explains the build method using the sample High-performance Embedded
Workshop workspaces under the <SAMPLE_INST>R0K572650D000BR directory.

A certain level of knowledge on the following tools is necessary to understand this section.

• High-performance Embedded Workshop

• Toolchain

• cfg72mp

The sample High-performance Embedded Workshop workspaces are as follows:

• For CPUID#1: <SAMPLE_INST>\R0K572650D000BR\cpuid1\cpuid1.hws

• For CPUID#2: <SAMPLE_INST>\R0K572650D000BR\cpuid2\cpuid2.hws

17.1 Setting Custom Placeholder $(RTOS_INST)

Custom placeholder "$(RTOS_INST)" is used in the provided workspaces. It stands for the system
directory of the HI7200/MP.

In a case where the system directory needs to be changed, such as when the HI7200/MP is
upgraded or when the workspaces are moved to another machine, the user workspace
$(RTOS_INST) must be changed.

For the method of adding or changing the custom placeholder, refer to the High-performance
Embedded Workshop manual or online help.

17.2 Registering cfg72mp to Workspaces as Custom Build Phase

Register cfg72mp to the workspaces as the custom build phase. This enables cfg72mp to be
executed by the build operations of the High-performance Embedded Workshop. The method for
registering the custom build phase is explained here.

Note that the procedure described below is unnecessary for the provided High-performance
Embedded Workshop workspaces because cfg72mp is already registered as the custom build
phase.

646

17.2.1 Registering the File Extension

In order to use the custom build phase, ".cfg" needs to be registered as the file extension handled
by the custom build phase.

Selecting [Project -> File Extensions] from the High-performance Embedded Workshop menu bar
can open the dialog box in figure 17.1.

Figure 17.1 [File Extensions] Dialog Box

Click the [Add...] button to open the [Add File Extension] dialog box, and then register ".cfg".

647

Figure 17.2 [Add File Extension] Dialog Box

648

17.2.2 Creating the cfg72mp Custom Build Phase

(1) Selecting [Build -> Build Phases] from the High-performance Embedded Workshop menu bar
can open the dialog box in figure 17.3.

Figure 17.3 [Build Phases] Dialog Box

Click the [Add...] button in this dialog box.

649

(2) The following dialog box is displayed. The cfg72mp custom build phase can be set in the
subsequent dialog boxes.

Figure 17.4 [New Build Phase ⎯ Step 1 of 4] Dialog Box

Click the [Next] button.

650

(3) Select [Multiple phase]. Then select "Kernel config file" in [Select input file group] and click
the [Next] button.

Figure 17.5 [New Build Phase ⎯ Step 2 of 4] Dialog Box

651

(4) Set the custom build phase information.

Any name can be set in [Phase name]. In this example, "cfg72mp" is set.

Specify "$(RTOS_INST)\cfg72mp\cfg72mp.exe" in [Command (excluding parameters)].

Specify "$(FULLFILE)" in [Default options].

Specify "$(WORKSPDIR)\cfg_out" in [Initial directory].

Figure 17.6 [New Build Phase ⎯ Step 3 of 4] Dialog Box

Click the [Next] button.

652

(5) Set the environment variables. Click the [Add...] button to open the [Environment Variable]
dialog box and make the setting as shown below.

Figure 17.7 [New Build Phase ⎯ Step 4 of 4] Dialog Box

Creating the cfg72mp custom build phase is completed at this point. Click the [Finish] button.

(6) Next, set the message syntaxes of cfg72mp. When this setting is made, double-clicking the

cfg72mp error or warning message displayed in the High-performance Embedded Workshop's
[Build] window makes the display jump to the relevant location in the cfg file.

Select cfg72mp in the [Build Phases] dialog box and click the [Modify...] button. This will
open the [Modify cfg72mp] dialog box.

Select the [Output Syntax] tab and set the error and warning syntaxes as shown below.

653

Figure 17.8 Registering cfg72mp Output Syntaxes

(7) After that, make a setting to delete the cfg72mp output files by using [Clean Current Project]
and [Clean All Projects] of the High-performance Embedded Workshop.
Select the [Build -> cfg72mp...] menu to open the [cfg72mp Options] dialog box. Then select
the [Output Files] tab and click the [Add...] button with the "Kernel config file" folder icon
selected to register the information shown in table 17.1.

Figure 17.9 [cfg72mp Options] Dialog Box

654

Table 17.1 cfg72mp Output Files

Setting Remarks

$(FILEDIR)\kernel_cfg.h

$(FILEDIR)\kernel_cfg_area.h

$(FILEDIR)\kernel_cfg_extern.h

$(FILEDIR)\kernel_cfg_inireg.h

$(FILEDIR)\kernel_cfg_inirtn.h

$(FILEDIR)\kernel_cfg_ststk.h

$(FILEDIR)\kernel_def.h

$(FILEDIR)\kernel_def_area.h

$(FILEDIR)\kernel_def_extern.h

$(FILEDIR)\kernel_def_inireg.h

$(FILEDIR)\kernel_def_inirtn.h

$(FILEDIR)\kernel_id.h

$(FILEDIR)\kernel_id_cpu1.h CPUID#1 only

$(FILEDIR)\kernel_id_cpu2.h CPUID#2 only

$(FILEDIR)\kernel_id_sys.h

$(FILEDIR)\kernel_id_sys_cpu1.h CPUID#1 only

$(FILEDIR)\kernel_id_sys_cpu2.h CPUID#2 only

$(FILEDIR)\kernel_macro.h

$(FILEDIR)\mycpuid.h

655

17.2.3 Setting Build Phases

(1) Setting Build Order

The created cfg72mp custom build phase is displayed on the lowest line. Use the [Move Up] or
[Move Down] button to move the phases so that the order of "cfg72mp" becomes higher than that
of "SH C/C++ Compiler" as shown below.

Figure 17.10 [Build Phases] Dialog Box (Build Order)

656

(2) Setting Build File Order

In the [Build File Order] tab, select "Kernel config file" from [File group] and select "cfg72mp" in
[Phase order] in the right pane.

Figure 17.11 [Build Phases] Dialog Box (Build File Order)

Setting the build phases is completed at this point.

17.3 Creating CPU Interrupt Specification Definition File
(kernel_intspec.h)

kernel_intspec.h is an important file used to inform the kernel of the CPU interrupt hardware
specifications, such as vector numbers that cannot use the register banks, e.g. NMI and exceptions.
One file is created to be shared by CPUID#1 and CPUID#2. The file is stored in the
<SAMPLE_INST>\R0K572650D000BR\iodefine\ directory at shipment.

kernel_intspec.h is included from kernel.h.

An example of kernel_intspec.h is shown in the following.

657

/***

1. Define IBNR register address (INTSPEC_IBNR_ADR)

 Specify 0 when the CPU used does not support register-bank.

/***/

#define INTSPEC_IBNR_ADR1 0xFFFD940E /**< IBNR register address for CPUID#1 */

#define INTSPEC_IBNR_ADR2 0xFFFD950E /**< IBNR register address for CPUID#2 */

/***

2. Define the vector number that can not use register-bank(INTSPEC_NOBANK_VECxxx)

 "xxx" is an expression of the vector number by three decimal digits.

 These definitions are ignored when INTSPEC_IBNR_ADR is 0.

 Note, you don't have to define for vector number 0...3.

/***/

#define INTSPEC_NOBANK_VEC004 /**< exception */

#define INTSPEC_NOBANK_VEC005 /**< exception */

#define INTSPEC_NOBANK_VEC006 /**< exception */

#define INTSPEC_NOBANK_VEC007 /**< exception */

#define INTSPEC_NOBANK_VEC008 /**< exception */

#define INTSPEC_NOBANK_VEC009 /**< exception */

#define INTSPEC_NOBANK_VEC010 /**< exception */

#define INTSPEC_NOBANK_VEC011 /**< NMI (cannot use register-bank) */

#define INTSPEC_NOBANK_VEC012 /**< user break interrupt (cannot use register-bank) */

#define INTSPEC_NOBANK_VEC013 /**< exception */

/* #define INTSPEC_NOBANK_VEC014 * H-UDI */

#define INTSPEC_NOBANK_VEC015 /**< exception */

#define INTSPEC_NOBANK_VEC016 /**< exception */

#define INTSPEC_NOBANK_VEC017 /**< exception */

#define INTSPEC_NOBANK_VEC018 /**< exception */

#define INTSPEC_NOBANK_VEC019 /**< exception */

#define INTSPEC_NOBANK_VEC020 /**< SCO interrupt (cannot use register-bank) */

/* #define INTSPEC_NOBANK_VEC021 * inter-processor interrupt */

/* #define INTSPEC_NOBANK_VEC022 * inter-processor interrupt */

/* #define INTSPEC_NOBANK_VEC023 * inter-processor interrupt */

/* #define INTSPEC_NOBANK_VEC024 * inter-processor interrupt */

/* #define INTSPEC_NOBANK_VEC025 * inter-processor interrupt */

/* #define INTSPEC_NOBANK_VEC026 * inter-processor interrupt */

658

/* #define INTSPEC_NOBANK_VEC027 * inter-processor interrupt */

/* #define INTSPEC_NOBANK_VEC028 * inter-processor interrupt */

#define INTSPEC_NOBANK_VEC029 /**< exception */

#define INTSPEC_NOBANK_VEC030 /**< exception */

#define INTSPEC_NOBANK_VEC031 /**< exception */

#define INTSPEC_NOBANK_VEC032 /**< TRAPA */

#define INTSPEC_NOBANK_VEC033 /**< TRAPA */

#define INTSPEC_NOBANK_VEC034 /**< TRAPA */

#define INTSPEC_NOBANK_VEC035 /**< TRAPA */

#define INTSPEC_NOBANK_VEC036 /**< TRAPA */

#define INTSPEC_NOBANK_VEC037 /**< TRAPA */

#define INTSPEC_NOBANK_VEC038 /**< TRAPA */

#define INTSPEC_NOBANK_VEC039 /**< TRAPA */

#define INTSPEC_NOBANK_VEC040 /**< TRAPA */

#define INTSPEC_NOBANK_VEC041 /**< TRAPA */

#define INTSPEC_NOBANK_VEC042 /**< TRAPA */

#define INTSPEC_NOBANK_VEC043 /**< TRAPA */

#define INTSPEC_NOBANK_VEC044 /**< TRAPA */

#define INTSPEC_NOBANK_VEC045 /**< TRAPA */

#define INTSPEC_NOBANK_VEC046 /**< TRAPA */

#define INTSPEC_NOBANK_VEC047 /**< TRAPA */

#define INTSPEC_NOBANK_VEC048 /**< TRAPA */

#define INTSPEC_NOBANK_VEC049 /**< TRAPA */

#define INTSPEC_NOBANK_VEC050 /**< TRAPA */

#define INTSPEC_NOBANK_VEC051 /**< TRAPA */

#define INTSPEC_NOBANK_VEC052 /**< TRAPA */

#define INTSPEC_NOBANK_VEC053 /**< TRAPA */

#define INTSPEC_NOBANK_VEC054 /**< TRAPA */

#define INTSPEC_NOBANK_VEC055 /**< TRAPA */

#define INTSPEC_NOBANK_VEC056 /**< TRAPA */

#define INTSPEC_NOBANK_VEC057 /**< TRAPA */

#define INTSPEC_NOBANK_VEC058 /**< TRAPA */

#define INTSPEC_NOBANK_VEC059 /**< TRAPA */

#define INTSPEC_NOBANK_VEC060 /**< TRAPA */

#define INTSPEC_NOBANK_VEC061 /**< TRAPA */

#define INTSPEC_NOBANK_VEC062 /**< TRAPA */

#define INTSPEC_NOBANK_VEC063 /**< TRAPA */

659

17.3.1 IBNR Register Addresses (INTSPEC_IBNR_ADR1 and INTSPEC_IBNR_ADR2)

The addresses for the IBNR register for CPUID#1 and the IBNR register for CPUID#2 of the
interrupt controller are defined with constant expressions.

If there are no IBNR registers, that is, if a CPU not supporting the register banks is used, specify 0.
In this case, the system.regbank setting in the cfg file loses meaning and all interrupts cannot use
the register banks.

The IBNR register addresses for SH7205 and SH7265 are shown below for reference.

• CPU#0 (CPUID#1): 0xFFFD940E

• CPU#1 (CPUID#2): 0xFFFD950E

17.3.2 Vector Numbers That Cannot Use Register Banks (INTSPEC_NOBANK_VECxxx)

The vector numbers for causes that cannot use the register banks due to the CPU specifications,
such as exceptions, NMI, and user breaks are defined. To be specific, define the
"INTSPEC_NOBANK_VECxxx" macro for those vector numbers. "xxx" represents a vector
number written as a three-digit decimal number.

17.4 kernel_def.c and kernel_cfg.c

These two files are used for importing the system definition files generated by cfg72mp. They are
stored under the <SAMPLE_INST>\R0K572650D000BR\cpuid1\cfg_out\ directory (for
CPUID#1) and the <SAMPLE_INST>\R0K572650D000BR\cpuid2\cfg_out\ directory (for
CPUID#2). The user is not permitted to edit these files.

When compiling kernel_def.c and kernel_cfg.c, <RTOS_INST>\os\system\ must be specified as
the include path.

When compiling kernel_def.c, the code=asmcode option also needs to be specified.

660

17.5 Sections

The user must allocate each section at a suitable address at linkage.

17.5.1 Rules for Section Names

Some sections are restricted. For example, some sections need consideration when allocating them
to non-cacheable areas.

All sections provided by the HI7200/MP are named according to the following rules so that the
user can allocate sections easily under such kind of restrictions. It is recommended for the
application to also follow these rules.

PC_hiknl

(1) First character

P: Program section

C: Constant section

B: Uninitialized data section

D: Initialized data section (ROM section)

R: Initialized data section (RAM section, which is generated with [ROM to RAM mapped
sections] specified in the linkage editor)

(2) Second character

C: Cacheable access enabled

D: Cacheable access disabled

L: Spinlock variable area (cacheable access disabled and must be accessed via the same bus
by all CPUs)

Table 17.2 shows the on-chip RAM address space of the SH7265. In the SH7265, accesses to on-
chip RAM are always handled as non-cacheable accesses. However, the section including spinlock
variables need to be allocated to address B.

661

Table 17.2 On-Chip RAM Address Space of SH7265

Page
Address A (Non-Cacheable
Access)

Address B (Non-Cacheable Access and
Access via the Same Bus by All CPUs)

RAM0 page 0 0xFFF80000 to 0xFFF83FFF 0xFFD80000 to 0xFFD83FFF

RAM0 page 1 0xFFF84000 to 0xFFF87FFF 0xFFD84000 to 0xFFD87FFF

RAM0 page 2 0xFFF88000 to 0xFFF8BFFF 0xFFD88000 to 0xFFD8BFFF

RAM0 page 3 0xFFF8C000 to 0xFFF8FFFF 0xFFD8C000 to 0xFFD8FFFF

RAM1 page 0 0xFFFA0000 to 0xFFFA3FFF 0xFFDA0000 to 0xFFDA3FFF

RAM1 page 1 0xFFFA4000 to 0xFFFA7FFF 0xFFDA4000 to 0xFFDA7FFF

(3) Third character

Fixed to "_".

(4) Fourth and subsequent characters

As desired.

662

17.5.2 Sections

Table 17.3 Sections for Kernel Library, kernel_def.c, and kernel_cfg.c

Section Remarks

PC_hiknl Kernel program

CC_hicfg Kernel internal data

CC_hijmptbl Kernel internal data

CC_hivct Kernel internal data*2

CC_hiinttbl Kernel internal data

BC_hivct Kernel internal data*2

BC_hiinttbl Kernel internal data

BC_hiknlstk Kernel stack

BC_hiirqstk Interrupt stack

BC_hitmrstk Timer stack

BC_hiwrk Kernel internal data

BC_hirmtstk SVC server task stack

BD_hirmtmpf Fixed-sized memory pool area for remote SVC

BD_hiwrk Kernel internal data

BD_hitooltrc Tool trace area*3

BC_hitrcbuf Target trace buffer

BL_S_hiwrk Kernel internal data (only when MYCPUID = 1)*1

BC_hitskstk Default task stack area

BC_hidtq Default data queue area

BC_himbf Default message buffer area

BC_himpf Default fixed-sized memory pool area

BC_himpl Default variable-sized memory pool area

Notes: 1. At linkage of CPUID#1, the symbol address file for this section needs to be output so
that CPUID#2 can link that symbol address file.

 2. In vsta_knl, the VBR register is initialized according to system.vector_type as follows:

(1) When system.vector_type is ROM or ROM_ONLY_DIRECT: Start address of
CC_hivct section − 16

(2) When system.vector_type is RAM or RAM_ONLY_DIRECT: Start address of
BC_hivct section − 16

 3. The size of this section is four bytes. The kernel writes the trace data to this section.

663

Table 17.4 Sections for RPC Library and rpc_table.c

Section Remarks

PC_rpc

CC_rpc

BC_rpc

BL_S_rpc Only when MYCPUID = 1*

Note: * At linkage of CPUID#1, the symbol address file for this section needs to be output so
that CPUID#2 can link that symbol address file.

Table 17.5 Section for Spinlock Library

Section Remarks

PC_spin

Table 17.6 Sections for SH2A-DUAL Cache Support Library

Section Remarks

PC_cache

PD_cache

CC_cache

Table 17.7 Sections for IPI

Section Remarks

PC_ipi

CC_ipi

BC_ipi

BL_S_ipi Only when MYCPUID = 1*

Note: * At linkage of CPUID#1, the symbol address file for this section needs to be output so
that CPUID#2 can link that symbol address file.

Table 17.8 Sections for OAL

Section Remarks

PC_oal

CC_oal

BC_oal

BD_oalpool Variable-sized memory pool area for OAL

664

Table 17.9 Sample Sections (CPUID#1)

Classification Section Remarks

CC_resetvct Reset vector table

PC_reset

CC_reset

BL_S_URAM0 Flag (in on-chip RAM0) used for synchronization of
both CPUs at start-up*

Reset

BD_URAM1 Area (in on-chip RAM1) to write the program to keep
CPUID#2 waiting until CPUID#1 initializes the shared
hardware

BC_TSKSTK Stack used by the TaskSend() task

BC_DTQ Dummy data queue area

BC_MBF Dummy message buffer area

B52 Dummy fixed-sized memory pool area

Sections created by cfg
file

BC_MPL Dummy variable-sized memory pool area

PC_stdlib

CC_stdlib

DC_stdlib

BC_stdlib

RC_stdlib Created by ROM option of linkage editor

Standard libraries,
lowsrc.c, otherlib.c

BC_heap Heap area (lowsrc.c)

PC_tmrdrv Timer driver

CC_tmrdrv

PC_sysdwn System down

BC_sysdwn

PC_sample

CC_sample

BC_sample

Samples

BL_sample rpc_info structure (init_task1.c) passed to rpc_init()

 BD_memcopy Non-cacheable area used by RPC samples

Note: * At linkage of CPUID#1, the symbol address file for this section needs to be output so
that CPUID#2 can link that symbol address file.

665

Table 17.10 Sample Sections (CPUID#2)

Classification Section Remarks

CC_vresetvct Virtual reset vector table

PC_reset

Reset

CC_reset

BC_TSKSTK Stack used by the TaskSend() task

BC_DTQ Dummy data queue area

BC_MBF Dummy message buffer area

BD_MPF Fixed-sized memory pool area used by remote
service call examples

BC_MPF Dummy fixed-sized memory pool area

Sections created by cfg
file

BC_MPL Dummy variable-sized memory pool area

PC_stdlib

CC_stdlib

DC_stdlib

BC_stdlib

RC_stdlib Created by ROM option of linkage editor

Standard libraries,
lowsrc.c, otherlib.c

BC_heap Heap area (lowsrc.c)

PC_tmrdrv Timer driver

CC_tmrdrv

PC_sysdwn System down

BC_sysdwn

PC_sample

CC_sample

BC_sample

Samples

BL_sample rpc_info structure (init_task2.c) passed to rpc_init()

CPUID#1 symbol
address file
(prj_cpuid1.fsy)

P P section with a size of 0 bytes

666

17.5.3 Common Symbols (Exporting Symbols from CPUID#1 to CPUID#2)

For symbols to be shared by both CPUs, the entities should be defined in CPUID#1. At this time,
separate section names are assigned to the symbol entities. At linkage of CPUID#1, a specification
is made to output the symbols in that section to the symbol address file (file extension: fsy).

In CPUID#2, register the symbol address file into a project as a file to be assembled. This enables
a CPUID#2 program to reference CPUID#1 symbols.

Note that both CPUID#1 and CPUID#2 are not supposed to reference each other's symbols. This
only causes dependencies to become recurrent.

17.5.4 Virtual Reset Vector Table of CPUID#2

The entity of the virtual reset vector table is created in CPUID#2 but the virtual reset vector table
is referenced from CPUID#1 programs (cpuid1\reset\reset.src). Because CPUID#2 symbols being
referenced by CPUID#1 is not permitted to avoid the build dependencies between CPUs becoming
recurrent as described above, this sample has the following specifications.

(1) The address for allocating the virtual reset vector table should be determined in advance.

(2) At linkage of CPUID#1, the symbol of the virtual reset vector table should be forcibly defined
in the address determined in (1).

(3) At linkage of CPUID#2, the section of the virtual reset vector table should be allocated to the
address determined in (1).

17.5.5 Memory Map of this Sample

In this sample, the sections are allocated on the assumption of downloading this sample to
SDRAM and executing it without using flash memory for facilitating initial evaluation of the
board. Note the following.

(1) Before downloading the sample, SDRAM must be initialized to make it accessible.

(2) Since the reset vector table (CC_resetvct section) cannot be allocated from address 0, this
sample cannot be executed at a reset. Before executing the sample, use the debugger to
manually initialize PC, SR, and R15 so they become the same values at a reset.

Sample batch files for facilitating the above items is provided in this product. For details, refer to
section 17.10, Download to Target System.

667

(1) Allocation of Program and Constant Sections

These sections can be allocated in ROM at the final stage.

 CPUID#1 CPUID#2
Physical
address

Logical
address

Logical
address

0x18000000 0x18000000 CC_resetvct CC_hivct
 (Cacheable) CC_hijmptbl CC_hiinttbl
 PC_hiknl PC_cache*
 CC_cache* PC_spin
 PC_ipi CC_ipi
 PC_rpc CC_rpc
 PC_oal CC_oal
 CC_hicfg PC_tmrdrv
 CC_tmrdrv PC_stdlib
 CC_stdlib PC_sysdwn
 PC_reset CC_reset
 PC_sample CC_sample

 0x1803EFF DC_stdlib (Empty)

 0x3803F000 PD_cache

 (Non-cacheable)
 0x3803FFFF

 (Empty)

0x18040000 0x18040000 CC_vresetvct CC_hivct
 (Cacheable) CC_hijmptbl CC_hiinttbl
 PC_hiknl PC_cache
 CC_cache PC_spin
 PC_ipi CC_ipi
 PC_rpc CC_rpc
 PC_oal CC_oal
 CC_hicfg PC_tmrdrv
 CC_tmrdrv PC_stdlib
 CC_stdlib PC_sysdwn
 PC_reset CC_reset
 PC_sample CC_sample

 DC_stdlib P

 0x1807EFFF (Empty)

 0x3807F000 PD_cache

 (Non-cacheable)
 0x3807FFFF

 (Empty)

0x18080000

∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼

Note: * At shipment, the entity of this section does not exist.

Figure 17.12 Allocation of Program and Constant Sections

668

(2) Allocation of Variable Sections (SDRAM)

Physical
address CPUID#1 CPUID#2

∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼
Logical
address

Logical
address

0x18100000 0x18100000 BC_hivct* BC_hiinttbl*
 (Cacheable) BC_hiwrk BC_hidtq
 BC_himbf BC_himpf
 BC_himpl BC_hitrcbuf
 BC_hiknlstk BC_hiirqstk
 BC_hitmrstk BC_hitskstk
 BC_hirmtstk BC_rpc
 BC_oal BC_ipi
 BC_TSKSTK BC_DTQ
 BC_MBF BC_MPF
 BC_MPL BC_stdlib
 RC_stdlib BC_heap
 BC_sysdwn BC_sample

 0x181EFFFF (Empty)
 0x381F0000 BD_hirmtmpf BD_hitooltrc*
 (Non-cacheable) BD_oalpool BD_memcopy

 0x381FFFFF (Empty)

0x18200000 0x18200000 BC_hivct* BC_hiinttbl*
 (Cacheable) BC_hiwrk BC_hidtq
 BC_himbf BC_himpf
 BC_himpl BC_hitrcbuf
 BC_hiknlstk BC_hiirqstk
 BC_hitmrstk BC_hitskstk
 BC_hirmtstk BC_rpc
 BC_oal BC_ipi
 BC_TSKSTK BC_DTQ
 BC_MBF BC_MPF
 BC_MPL BC_stdlib
 RC_stdlib BC_heap
 BC_sysdwn BC_sample

 0x182EFFFF (Empty)
 0x382F0000 BD_hirmtmpf BD_hitooltrc*
 (Non-cacheable) BD_oalpool BD_MPF

 0x382FFFFF (Empty)
0x18300000

0x1AFFFFFF

Note: * At shipment, the entity of this section does not exist.

Figure 17.13 Allocation of Variable Sections (SDRAM)

669

(3) Allocation of Variable Sections (On-Chip RAM)

 CPUID#1 CPUID#2

Physical
address

Logical
address

Logical
address

On-chip RAM0 0xFFF80000 0xFFF80000 BD_hiwrk

 (Empty)

 0xFFD81000 BL_S_URAM0

 (Shadow) BL_S_hiwrk

 BL_sample

 0xFFF83FFF
P

ag
e

0
 0xFFD807FF (Empty)

 0xFFF84000

 0XFFF87FFF

P
ag

e
1

 0xFFF88000

 0xFFF8BFFF

P
ag

e
2

 0xFFF8C000

 0xFFF8FFFF

P
ag

e
3

On-chip RAM1 0xFFFA0000 0xFFFA0000 BL_sample

 (Empty)

 0xFFDA1000 BL_sample

 (Shadow)

 0xFFFA3FFF

P
ag

e
0

 0xFFDA3FFF

 (Empty)

 0xFFFA4000 0xFFFA4000 BD_URAM1

 0XFFFA7FFF

P
ag

e
1

 0xFFFA7FFF

 (Empty)

Figure 17.14 Allocation of Variable Sections (On-Chip RAM)

670

17.6 Kernel Library

The kernel library is divided into several files which must be input based on an appropriate
priority. In the High-performance Embedded Workshop's library specification screen, the library
with the highest priority is displayed at the top of the libraries. If the priority setting is incorrect,
normal operation is not possible even though no error occurs at linkage.

Table 17.11 Kernel Library Priority

CPU Core in Use Linkage Priority

SH-2A hiknl.lib

SH2A-FPU (1) fpu_knl.lib

(2) hiknl.lib

671

17.7 Build Order of Each CPU

17.7.1 Basic Form

The basic form is to perform build of CPUID#1 first and then perform build of CPUID#2.

The symbol address file output from the optimizing linkage editor in CPUID#1 becomes the input
to the assembler phase in CPUID#2 (figure 17.15) so that the CPUID#1 symbols can be exported
to CPUID#2, as described in section 17.5.3, Common Symbols (Exporting Symbols from
CPUID#1 to CPUID#2). Therefore, build of CPUID#2 must be performed after build of CPUID#1
has completed.

Compiler and assembler

Optimizing linkage editor

Symbol

address file

cfg72mp cfg72mp

Compiler and assembler

Optimizing linkage editor

CPUID#1 CPUID#2

Figure 17.15 Dependencies between Build Phases of Each CPU (Basic Form)

672

17.7.2 Exporting the ID Name

(1) When CPUID#1 Includes an ID Name Header File of CPUID#2 (Deviation from Basic
Form)

Figure 17.16 shows the dependencies between the build phases of each CPU. Before performing
build of CPUID#1, cfg72mp in CPUID#2 must be executed to update the ID name header file of
CPUID#2.

The sample has the form shown in the figure below.

CPUID#1 CPUID#2

cfg72mp cfg72mp

Compiler and assembler

ID name

header file

Symbol

address file

Compiler and assembler

Optimizing linkage editor

Optimizing linkage editor

Figure 17.16 When CPUID#1 Includes an ID Name Header File of CPUID#2

673

(2) When CPUID#2 Includes an ID Name Header File of CPUID#1 (Same as Basic Form)

Figure 17.17 shows the dependencies between the build phases of each CPU. Before performing
build of CPUID#2, cfg72mp in CPUID#1 must be executed to update the ID name header file of
CPUID#1. The sample has the same form as the basic form.

CPUID#1 CPUID#2

Compiler and assembler

Optimizing linkage editor

ID name

header file

Symbol

address file

Compiler and assembler

cfg72mp cfg72mp

Optimizing linkage editor

Figure 17.17 When CPUID#2 Includes an ID Name Header File of CPUID#1

674

(3) When Both CPUs Include ID Name Header Files of Each Other (Deviation from Basic
Form)

Figure 17.18 shows the dependencies between the build phases of each CPU. First, execute
cfg72mp in both CPUs to update the ID name header file of each CPU, and then perform build of
each CPU in the basic form.

ID name

header file

ID name

header file

Compiler and assembler

Optimizing linkage editor
Symbol

address file

Compiler and assembler

Optimizing linkage editor

CPUID#1 CPUID#2

cfg72mp cfg72mp

Figure 17.18 When Both CPUs Include ID Name Header Files of Each Other

675

17.8 Description of Build of CPUID#1 (cpuid1\cpuid1.hws)

The workspace file in CPUID#1 is cpuid1\cpuid1.hws. Open the cpuid1.hws file. cpuid1.hws
includes a project called "prj_cpuid1". Generate the load module files of CPUID#1 using this
project.

The main settings for the provided project are explained in this section.

17.8.1 Registered Sources

The sources registered in the prj_cpuid1 project are shown in figure 17.19. All sources (C-
language sources, assembly language sources, and cfg file) in the directories under cpuid1\ are
registered. For each source, refer to section 16, Sample Programs.

676

Figure 17.19 Sources Registered in prj_cpuid1 Project

Note the following.

(1) Config file (sample.cfg)

The cfg file which is stored in the cpuid1\cfg_out\ directory.

677

(2) OS System File (kernel_def.c and kernel_cfg.c)

These files which are stored in the cpuid1\cfg_out\ directory are used to include the cfg72mp
output files. The user is not permitted to change these files.

(3) cpuid1\remote_svc_sample\remote_send.c

This file includes kernel_id_cpu2.h which is generated by executing cfg72mp in CPUID#2. When
cfg72mp is executed in CPUID#2, this file needs to be recompiled.

678

17.8.2 Compiler Options

(1) Include Directory

Figure 17.20 shows the common settings for all sources.

Figure 17.20 Include File Directories of Compiler (Common Settings)

Since remote_send.c includes kernel_id_cpu2.h of CPUID#2, its storage path is added as shown in
figure 17.21. "$(WORKSPDIR)\cfg_out" (cpuid1\cfg_out\) and
"$(WORKSPDIR)\..\cpuid2\cfg_out" (cpuid2\cfg_out\) contain respective files for CPUID#1 and
CPUID#2 which have the same file name, e.g. kernel_id.h. Accordingly,
"$(WORKSPDIR)\cfg_out" for CPUID#1 must be given priority (must be displayed at a higher
position in the screen).

679

Figure 17.21 Include File Directories of Compiler (remote_send.c)

"$(RTOS_INST)\os\system" is defined for kernel_cfg.c and kernel_def.c.

680

Figure 17.22 Include File Directories of Compiler (kernel_cfg.c, kernel_def.c)

681

(2) Macro Definitions

In this sample, the "_REENTRANT" macro is defined because the standard library is used as a
reentrant library as shown in figure 17.23.

Figure 17.23 Macro Definitions in Compiler

682

(3) Output File Type

The output file type is "Assembly source code" for kernel_def.c only because it uses inline
assemble as shown in figure 17.24.

Figure 17.24 Output File Type in Compiler

683

17.8.3 Standard Library Generator

(1) Embedded Standard Library Functions

As described in section 16.7, Standard Libraries, only stdlib.h and string.h are selected in this
sample as shown in figure 17.25.

Figure 17.25 Library Function Selection in Standard Library Generator

684

(2) Object

An object is generated as a reentrant library as shown in figure 17.26.

Figure 17.26 Reentrant Library in Standard Library Generator

In the [Object details] dialog box opened by clicking the [Details...] button, the section names are
set as shown in figure 17.27. The same section names are also used in lowsrc.c and otherlib.c.

685

Figure 17.27 Section Name Setting in Standard Library Generator

17.8.4 Optimizing Linkage Editor

(1) Library Input

The following libraries provided by the HI7200/MP are input as shown in figure 17.28. For the
kernel library input, refer to section 17.6, Kernel Library.

• fpu_knl.lib (kernel)

• hiknl.lib (kernel)

• sh2adual_cache.lib (SH2A-DUAL cache support library)

• rpc.lib (RPC library)

• spinlock.lib (spinlock library)

686

Figure 17.28 Library Input in Optimizing Linkage Editor

687

(2) Symbol Definition for Virtual Reset Vector Table of CPUID#2

As described in section 17.5.4, Virtual Reset Vector Table of CPUID#2, the address for the
"_ResetVectorTable_CPUID2" symbol of the virtual reset vector table of CPUID#2 is forcibly
defined as 0x18040000 as shown in figure 17.29.

Figure 17.29 Symbol Definition for Virtual Reset Vector Table of CPUID#2 in Optimizing
Linkage Editor

688

(3) Section Allocation

Though not all sections can be confirmed in figure 17.30, sections are allocated as described in
section 17.5.5, Memory Map of this Sample.

Figure 17.30 Section Allocation in Optimizing Linkage Editor

689

(4) ROM to RAM Mapping

Sections for which ROM to RAM mapping has to be performed, such as an initialized data section,
are set in this sample as shown in figure 17.31.

Figure 17.31 ROM to RAM Mapping in Optimizing Linkage Editor

690

(5) Output of Symbol Address File

As described in section 17.5.3, Common Symbols (Exporting Symbols from CPUID#1 to
CPUID#2), a setting is made to make the CPUID#1 symbols open to CPUID#2 as shown in figure
17.32. Note that the symbol address file is generated with a file name of "prj_cpuid1.fsy" under
the cpuid1\prj_cpuid1\debug\ directory which is the High-performance Embedded Workshop
configuration directory. prj_cpuid1.fsy is used as a source of CPUID#2.

Figure 17.32 Output of Symbol Address File in Optimizing Linkage Editor

691

(6) Notes

1. L1100 warning

The L1100 warning (shown below) meaning that the specified section could not be found may
be output sometimes at linkage.

 L1100 (W) Cannot find "PC_cache" specified in option "start"

If the section that could not be found is a section listed in section 17.5.2, Sections, this is not a
problem because it does not exist in some cases depending on configuration.

2. L1320 warning

When more than one kernel library is specified, the L1320 warning (shown below) may be
output for a number of times at linkage. This is because the kernel adopts an implementation
method in which the same symbols and different programs are stored in more than one library
file. There is no problem with the generated load module.

 L1320 (W) Duplicate symbol "__kernel_act_tsk" in "C:\…fpu_knl.lib(fpu_acttsk)"

17.9 Description of Build of CPUID#2 (cpuid2\cpuid2.hws)

The workspace file in CPUID#2 is cpuid2\cpuid2.hws. Open the cpuid2.hws file. cpuid2.hws
includes a project called "prj_cpuid2". Generate the load module files of CPUID#2 using this
project.

The main settings for the provided project are explained in this section.

17.9.1 Registered Sources

The sources registered in the prj_cpuid2 project are shown in figure 17.33. All sources (C-
language sources, assembly language sources, and cfg file) in the directories under cpuid2\ are
registered. For each source, refer to section 16, Sample Programs.

692

Figure 17.33 Sources Registered in prj_cpuid2 Project

693

Note the following.

(1) Config file (sample.cfg)

The cfg file which is stored in the cpuid2\cfg_out\ directory.

(2) OS System File (kernel_def.c and kernel_cfg.c)

These files which are stored in the cpuid2\cfg_out\ directory are used to include the cfg72mp
output files. The user is not permitted to change these files.

(3) import symbols (prj_cpuid1.fsy)

This is the symbol address file exported by CPUID#1, and it is stored in the
cpuid1\prj_cpuid1\debug\ directory which is the High-performance Embedded Workshop
configuration directory for CPUID#1. Note that when the High-performance Embedded Workshop
configuration name of CPUID#1 is changed, this file must be registered again manually.

This file is generated by linkage of CPUID#1. Therefore when linkage of CPUID#1 has been
executed, this file needs to be reassembled.

694

17.9.2 Compiler Options

(1) Include Directory

Figure 17.34 shows the common settings for all sources.

Figure 17.34 Include File Directories of Compiler

"$(RTOS_INST)\os\system" is added for kernel_cfg.c and kernel_def.c.

695

Figure 17.35 Include File Directories of Compiler (kernel_cfg.c, kernel_def.c)

696

(2) Macro Definitions

In this sample, the "_REENTRANT" macro is defined because the standard library is used as a
reentrant library as shown in figure 17.36.

Figure 17.36 Macro Definitions in Compiler

697

(3) Output File Type

The output file type is "Assembly source code" for kernel_def.c only because it uses inline
assemble as shown in figure 17.37.

Figure 17.37 Output File Type in Compiler

698

17.9.3 Standard Library Generator

(1) Embedded Standard Library Functions

As described in section 16.7, Standard Libraries, only stdlib.h and string.h are selected in this
sample as shown in figure 17.38.

Figure 17.38 Library Function Selection in Standard Library Generator

699

(2) Object

An object is generated as a reentrant library as shown in figure 17.39.

Figure 17.39 Reentrant Library in Standard Library Generator

In the [Object details] dialog box opened by clicking the [Details...] button, the section names are
set as shown in figure 17.40. The same section names are also used in lowsrc.c and otherlib.c.

700

Figure 17.40 Section Name Setting in Standard Library Generator

17.9.4 Optimizing Linkage Editor

(1) Library Input

The following libraries provided by the HI7200/MP are input as shown in figure 17.41. For the
kernel library input, refer to section 17.6, Kernel Library.

• fpu_knl.lib (kernel)

• hiknl.lib (kernel)

• sh2adual_cache.lib (SH2A-DUAL cache support library)

• rpc.lib (RPC library)

• spinlock.lib (spinlock library)

701

Figure 17.41 Library Input in Optimizing Linkage Editor

702

(2) Section Allocation

Though not all sections can be confirmed in figure 17.42, sections are allocated as described in
section 17.5.5, Memory Map of this Sample. The point to notice in particular is that the
"CC_vresetvct" section for the virtual reset vector table is allocated at the address (0x18040000) at
which the "_ResetVectorTable_CPUID2" symbol was defined in section 17.8.4 (2) Symbol
Definition for Virtual Reset Vector Table of CPUID#2.

Figure 17.42 Section Allocation in Optimizing Linkage Editor

703

(3) ROM to RAM Mapping

Sections for which ROM to RAM mapping has to be performed, such as an initialized data section,
are set in this sample as shown in figure 17.43.

Figure 17.43 ROM to RAM Mapping in Optimizing Linkage Editor

704

(4) Notes

1. L1100 warning

The L1100 warning (shown below) meaning that the specified section could not be found may
be output sometimes at linkage.

 L1100 (W) Cannot find "PC_cache" specified in option "start"

If the section that could not be found is a section listed in section 17.5.2, Sections, this is not a
problem because it does not exist in some cases depending on configuration.

2. L1320 warning

When more than one kernel library is specified, the L1320 warning (shown below) may be
output for a number of times at linkage. This is because the kernel adopts an implementation
method in which the same symbols and different programs are stored in more than one library
file. There is no problem with the generated load module.

 L1320 (W) Duplicate symbol "__kernel_act_tsk" in "C:\…fpu_knl.lib(fpu_acttsk)"

705

17.10 Download to Target System

This section briefly describes the procedure for downloading the generated sample load modules
to SDRAM (R0K572650D000BR) and executing them. The procedure is basically the same even
when using a target system created by the user. Refer to the E10A-USB manual for details on
downloading load modules to flash memory.

1. Open the CPUID#1 workspace.

2. Open the CPUID#2 workspace.

3. Connect the target via the High-performance Embedded Workshop of CPUID#1.

4. Connect the target via the High-performance Embedded Workshop of CPUID#2.

5. Input a reset command from each High-performance Embedded Workshop.

6. Initialize SDRAM, etc. using the command line in the High-performance Embedded
Workshop of CPUID#1. (This enables download to SDRAM.)

7. Download load modules to SDRAM from each High-performance Embedded Workshop.

8. Since the reset vector table (_ResetVectorTable) generated in CPUID#1 has been downloaded
to SDRAM, initialize PC and R15 via each High-performance Embedded Workshop based on
the reset vector table. The actual initial values are shown below. This process is unnecessary
when the load modules are downloaded to flash memory.

• PC: Contents at the _ResetVectorTable address of CPUID#1 (= _Reser_Poweron of
reset.src of CPUID#1)

• R15: Contents at the (_ResetVectorTable + 4) address of CPUID#1 (= last address of on-
chip RAM0)

This product provides the following High-performance Embedded Workshop batch files for
simplifying steps 6 and 8.

(1) cpuid1\prj_cpuid1\hwsetup.hdc

Performs an initialization process equivalent to HardwareSetup_CPUID1(). SDRAM is
initialized.

(2) cpuid1\prj_cpuid1\reset_cpu1.hdc

Performs the initialization process in step 8 for CPUID#1.

(3) cpuid2\prj_cpuid2\reset_cpu2.hdc

Performs the initialization process in step 8 for CPUID#2. PC and R15 are initialized based on
the memory contents of addresses 0x180000000 and 0x18000004, respectively. Address
0x18000000 is the address where _ResetVectorTable (CC_resetvct section) in CPUID#1 is
allocated. When the address for where to allocate the CC_resetvct section is changed in
CPUID#1, modify the address in the batch file to the new address.

706

707

Section 18 Calculation of Stack Size

18.1 Stack Types

If a stack overflows, the system will operate incorrectly. Therefore, the user must determine the
stack size required for each task or handler execution and allocate enough area for each task or
handler by referring to the following description.

There are the following types of stacks.

• Task stack

• Interrupt stack (normal interrupt handler)

• Direct interrupt handler stack

• Timer stack

• Kernel stack

Stack Used before Kernel Initiation: The stacks used by programs executed before kernel
initiation, such as immediately after a reset, are not managed by the kernel. Therefore, the user can
use the desired area for the stack.

For a microcomputer having on-chip RAM, usually allocate the stack used at a reset to on-chip
RAM. For a microcomputer without on-chip RAM, the stack used at a reset (mounted external
RAM) may sometimes not be accessed depending on the bus state controller (BSC) status
immediately after a reset. In this case, do not run programs that use stacks or do not generate any
interrupts or exceptions until the RAM becomes accessible by changing the BSC settings. This is
because register data is stored in the stack when interrupts or exceptions occur.

708

18.2 Basics of Stack Size Calculation

The procedure for calculating the stack size necessary for tasks and handlers are described in the
subsequent sections. Here, the basic items for size calculation are given.

18.2.1 Size Consumed by Function Tree

Calculate the size consumed by the function tree that starts from the function that triggers
execution of an application program. Such kind of a function is the entry function of a task or
handler.

In figure 18.1, the size consumed by the function tree is calculated as 16 + 20 + 32 = 68 bytes.

func1() is started

func2() is called

func3() is called

16 bytes

20 bytes

32 bytes

40 bytes

func4() is called

func1() has finished

Stack growth direction

Figure 18.1 Size Consumed by Function Tree

The stack size used by each function can be referenced in "frame size" in the compile list file.

709

18.2.2 Kernel Service Calls

When calculating the stack size, handle a kernel service call as a function call. Refer to the release
notes for the actual size.

18.2.3 RPC Library Call

When calculating the stack size, handle an RPC library call as a function call. Refer to the release
notes for the actual size.

18.2.4 OAL, IPI, SH2A-DUAL Cache Support Library, and Spinlock Library

When calculating the stack size, handle these similarly to user-created functions.

18.2.5 Extended Service Calls

When calculating the stack size, handle an extended service call as a function call in which the
extended service call routine is the called function. However, 8 bytes must be added for each
extended service call.

18.2.6 Normal CPU Exception Handler and Direct CPU Exception Handler

These CPU exception handlers take over the stack used when the exception has occurred. In other
words, these CPU exception handlers can be considered as a kind of function tree from the sense
of stack consumption. Therefore, add the stack size used by a CPU exception handler in the same
way as handling a function call.

The following values must also be added for each CPU exception.

• Normal CPU exception handler: 44 bytes

• Direct CPU exception handler: 8 bytes

710

18.3 Usage Notes for Call Walker

The Call Walker provided in the compiler package is a utility for analyzing the relationship
between function calls performed by symbol reference and displaying the stack amount used by
that function tree. The notes for using the Call Walker are explained below.

(1) Kernel Service Calls

Due to its implementation method, the Call Walker cannot identify which function is called and
when it is called in a case where a call is made using the function table. Since kernel service calls
use the function table, they cannot be identified.

An example of the TaskSend() function making calls using the function table for two or more
times is shown in figure 18.2. In the Call Walker, calls made via the function table are displayed
as a single "×" icon, regardless of how many times they have been made. The size used in this case
will be treated as 0 bytes.

Figure 18.2 Call Walker Display Example for a Function Making Calls via the Function
Table

(2) API Functions of RPC Library and OAL

Because these API functions internally issue kernel service calls, the size (stack amount used) in
the Call Walker window will be smaller than the actual stack amount used.

711

(3) [Realtime OS Option]

The Call Walker has a feature to import the database file for the size used by each realtime OS and
display the used stack size with the size defined by that file added to it, at each point a service call
is issued.

This feature cannot be used in the HI7200/MP because the Call Walker cannot identify at which
point a service call is issued and which service call type it is in the first place due to the reason
shown in (1) Kernel Service Calls.

(4) Effective Use of Call Walker

Because of the reason shown in (1) Kernel Service Calls, the stack size used by a service call can
be accurately reflected only by inspecting the service call issued by each function and adding the
stack size manually. This however is quite complicated work.

This work can be made extremely easy by adding the maximum stack size used by a service call
without exception to the maximum tree size calculated by the Call Walker. With this method,
however, there is a high possibility that a size greater than the actually required size will be
obtained.

18.4 Usage Notes for NMI

The method for calculating the size in this section is on the assumption that the NMI is not used.
When the NMI is used, the user has to consider its effect.

18.5 Notes on Changes in Stack Size

The necessary stack size varies according to the causes below.

• Version of the compiler in use

• Compiler options, e.g. optimization

• Version of the HI7200/MP in use

In a case where the stack is no longer large enough because the above items were changed, the
stack size to be allocated or the stack size specified in the OS has to be increased. It is
recommended therefore to allocate or specify the stack size with a certain margin for avoiding
such trouble and preventing overflows due to incorrect size calculation.

712

18.6 Task Stack

Basically, a different stack is used by each task ID. The kernel switches the task stacks at task
dispatching.

In addition to this section, refer to section 4.5.4, Task Stack.

18.6.1 Calculation of Stack Size

The necessary size can be calculated by the formula below.

Necessary size =
 Size consumed by function tree starting from entry function of task (a-1)
 + Context size of task .. (a-2)
 + Size consumed by function tree starting from entry function of
 task exception handling routine ... (b-1)
 + Context size of task exception handling routine .. (b-2)
 + Addition considering nested interrupts .. (c)

(b-1) and (b-2) are 0 bytes when the task exception handling routine is not used.

(a-1) and (b-1) are sizes calculated according to section 18.2, Basics of Stack Size Calculation.

For the context sizes of (a-2) and (b-2), refer to table 18.1.

The task exception handling routine is normally not nested. However, the kernel specifications
permit nesting of the task exception handling routine. When the task exception handling routine is
nested, calculate (b-1) with programming nesting added and calculate (b-2) with the nest count
multiplied.

Table 18.1 Task Context Size

TA_COP1 Attribute Task
Task Exception Handling
Routine

Not specified 84 bytes 88 bytes

Specified 84 + 72 (for FPU) = 156 bytes 88 + 72 (for FPU) = 160 bytes

The value of (c) (addition considering nested interrupts) differs depending on the cfg file setting.

713

The following symbols are used here:

UPPINTNST: Interrupt nest count with a level higher than the kernel interrupt mask level
(system.system_IPL)

LOWINTNST: Interrupt nest count with a level equal to or lower than the kernel interrupt
mask level

(1) system.vector_type is ROM_ONLY_DIRECT or RAM_ONLY_DIRECT

Addition considering nested interrupts = 8 × UPPINTNST + 16 × LOWINTNST

(2) system.vector_type is ROM or RAM

(a) system.regbank is ALL

Addition considering nested interrupts = 8 × UPPINTNST + 16 × LOWINTNST + α

In a case where LOWINTNST includes an interrupt that is defined in kernel_intspec.h to
not use register banks, if that interrupt is used as a normal interrupt, 36 bytes are added as
α.

(b) system.regbank is other than ALL

Addition considering nested interrupts = 8 × UPPINTNST + 24 × LOWINTNST + 20

When LOWINTNST is 0, the underlined portion is treated as 0.

18.6.2 Specification Location for Stack Size

(1) Task using non-static stack

(a) Generating a task by making a cre_tsk, icre_tsk, acre_tsk, or iacre_tsk service call

Specify the size of the stack in stksz of the T_CTSK structure.

(b) Generating a task by the cfg file

Specify the size of the stack in task[].stack_size.

(2) Task using static stack

Specify the size of the stack in static_stack[].stack_size in the cfg file. Also specify the task ID
that uses that stack in static_stack[].tskid.

714

18.6.3 Calculation of Default Task Stack Area Size (memstk.all_memsize)

Specify the size of the default task stack area in memstk.all_memsize in the cfg file. The value to
be specified can be calculated as follows:

Default task stack area size =
 ∑ ((Stack size specified when generating a task that uses the default task stack)
 + 0x10) + 0x1C

Note that the unique section name of BC_hitskstk is given to the default task stack area.

18.6.4 Stack Size Used by SVC Server Task (remote_svc.stack_size)

Specify as the stack size used by SVC server tasks the value obtained by applying the following
values into the formula in section 18.6.1, Calculation of Stack Size.

(a-1): max([A], [B])
 [A]: Size used by local service call corresponding to requested remote service
 call
 [B]: Size used by IPI_send()
 The value of [A] which depends on implementation is listed in the release
 notes.
(a-2): 84 bytes (no TA_COP1 attribute specification)
(b-1), (b-2): 0 bytes (task exception handling routine is not used)

18.6.5 RPC Server Task and Server Stub

A server stub is called from an RPC server task in the RPC library.

The necessary stack size for RPC server tasks can be calculated from the formula below.

Necessary size =
 Size consumed by RPC server task function in RPC library (a)
 + Necessary size obtained by treating server stub as task entry function (b)

(a) The genuine size consumed by the function tree in the RPC library. This size is
specified as rpc_config.ServerTaskStackSize in rpc_init(). For the value to be
specified here, refer to the release notes.

(b) The size calculated according to section 18.6.1, Calculation of Stack Size, with the
server stub treated as the task entry function. Specify the value of (b) as
rpc_server_info.ulStubStackSize which is specified in rpc_start_server() and
rpc_start_server_with_paramarea().

715

Note that the size to be actually allocated as the stack for the RPC server tasks is (a) + (b).

The stack for the RPC server tasks is assigned from the default task stack area by
OAL_CreateTask(). Take this into consideration when performing the calculation described in
section 18.6.3, Calculation of Default Task Stack Area Size (memstk.all_memsize).

18.7 Normal Interrupt Handler Stack (system.stack_size)

The interrupt stack is used by normal interrupt handlers, and there is only one interrupt stack in
each CPU. When a normal interrupt occurs, the kernel switches the stack to the interrupt stack.
However, when a normal interrupt is nested, the kernel does not switch the stack.

A service call issued from the normal interrupt handler and a function called back from that
service call take over the same stack and use it.

Each CPU has only a single interrupt stack. The interrupt stack area is allocated by specifying its
size in system.stack_size in the cfg file. The section name of the interrupt stack area is
BC_hiirqstk.

18.7.1 Calculation of Stack Size Used by Each Handler

Calculate the necessary size using the formula below.

Necessary size =
 Size consumed by function tree starting from entry function of handler (a)

(a) is a size calculated according to section 18.2, Basics of Stack Size Calculation.

18.7.2 Calculation of and Specification Location for Interrupt Stack Area Size

(system.stack_size)

Specify the size of the interrupt stack area in system.stack_size in the cfg file. The value to be
specified can be calculated as shown below.

The following symbols are used here:

UPPINTNST: Interrupt nest count with a level higher than the kernel interrupt mask level
(system.system_IPL)

LOWINTNST: Interrupt nest count with a level equal to or lower than the kernel interrupt
mask level

716

(1) system.vector_type is ROM_ONLY_DIRECT or RAM_ONLY_DIRECT

Since there are no normal interrupt handlers in this case, the interrupt stack area is not
allocated regardless of the system.stack_size setting.

(2) system.vector_type is ROM or RAM

(a) system.regbank is ALL

Interrupt stack area size =
 ∑ (Size used by handler using largest stack size at each interrupt level) + 4
 + 8 × UPPINTNST + 16 × (LOWINTNST − 1) + α

When LOWINTNST is 0 or 1, the underlined portion is treated as 0.

In a case where LOWINTNST includes an interrupt that is defined in kernel_intspec.h to
not use register banks, if that interrupt is used as a normal interrupt, 36 bytes are added as
α.

(b) system.regbank is other than ALL

Interrupt stack area size =
 ∑ (Size used by handler using largest stack size at each interrupt level) + 4
 + 8 × UPPINTNST + 24 × (LOWINTNST − 1) + 20

When LOWINTNST is 0 or 1, the underlined portion is treated as 0.

18.8 Direct Interrupt Handler Stack

For direct interrupt handlers, a separate stack is allocated for each handler by the application.
When a handler is activated, the stack must be switched to the stack of that handler, and the stack
must be returned to the original stack when the handler is finished.

Note that interrupt handlers with interrupt levels higher than the kernel interrupt mask level
(system.system_IPL) must be defined as direct interrupt handlers.

18.8.1 Calculation of Stack Size

The necessary size for each handler can be calculated by the formula below.

Necessary size =
 Size consumed by function tree starting from entry function of handler (a)
 + Addition considering nested interrupts .. (b)

(a) is a size calculated according to section 18.2, Basics of Stack Size Calculation.

717

The value of (b) (addition considering nested interrupts) differs depending on the cfg file setting.

The following symbols are used here:

UPPINTNST: Interrupt nest count with a level higher than the kernel interrupt mask level
(system.system_IPL) and any interrupt level in the current CPU

LOWINTNST: Interrupt nest count with a level equal to or lower than the kernel interrupt
mask level and also higher than the interrupt levels in the current CPU

(1) system.vector_type is ROM_ONLY_DIRECT or RAM_ONLY_DIRECT, or there is no
normal interrupt with a level higher than that of the relevant direct interrupt

Addition considering nested interrupts = 8 × UPPINTNST + 16 × LOWINTNST

(2) Other than (1)

The "interrupt stack area size" that is calculated according to section 18.7, Normal Interrupt
Handler Stack (system.stack_size), with the target interrupt limited to a normal interrupt with a
level higher than the interrupt levels in the current CPU, is used as the addition considering
nested interrupts. Note that this calculation result is simply the addition considering nested
interrupts, and it is not a value to be set in system.stack_size.

18.8.2 Specification Location for Stack Size

The stack area of direct interrupt handlers should be allocated by the user. For details, refer to
section 12.5.4, Direct Interrupt Handlers.

18.8.3 Shared Stack Function

Direct interrupt handlers of the same interrupt level can share the stack since such interrupt
handlers do not use the stack simultaneously.

718

18.9 Timer Stack (clock.stack_size)

The timer stack is used by interrupt handlers for timer interrupts in the kernel. The following
programs use the timer stack because they are called from interrupt handlers for timer interrupts in
the kernel.

• Time event handler

• tdr_int_tmr()

tdr_stp_tmr() called back from vstp_tmr and tdr_rst_tmr() called back from vrst_tmr or ivrst_tmr
also use the timer stack.

Each CPU has only a single timer stack. The timer stack area is allocated by specifying its size in
clock.stack_size in the cfg file. The section name of the timer stack area is BC_hitmrstk.

Calculate the necessary size using the formula below.

Necessary size = max([A], [B], [C], [D], [E], [F], [G]) +
 Addition considering nested interrupts

[A]: TMR_A + (Size used by tdr_int_tmr())
[B]: TMR_B + (Maximum size used by time event handler)
[C]: TMR_C + (Maximum size used by time event handler) (Only when vrst_tmr or
 ivrst_tmr is used)
[D]: TMR_D
[E]: TMR_E + (Size used by tdr_stp_tmr()) (Only when vstp_tmr is used)
[F]: TMR_F + (Size used by tdr_rst_tmr()) (Only when vrst_tmr or ivrst_tmr is used)
[G]: TMR_G

The values of TMR_A and others which depend on implementation are listed in the release notes.

When system.action is YES, the "debug demon" for object manipulation functions is automatically
generated as a cyclic handler, and so its size must be considered when determining the "maximum
size used by time event handler". The size used by the debug demon which also depends on
implementation is listed in the release notes.

The addition considering nested interrupts differs depending on the cfg file setting.

719

The following symbols are used here:

UPPINTNST: Interrupt nest count with a level higher than the kernel interrupt mask level
(system.system_IPL)

LOWINTNST: Interrupt nest count with a level equal to or lower than the kernel interrupt
mask level and also higher than that of the timer interrupt

(1) system.vector_type is ROM_ONLY_DIRECT or RAM_ONLY_DIRECT, or there is no
normal interrupt with a level higher than that of the timer interrupt

Addition considering nested interrupts = 8 × UPPINTNST + 16 × LOWINTNST

(2) Other than (1)

The "interrupt stack area size" that is calculated according to section 18.7, Normal Interrupt
Handler Stack (system.stack_size), with the target interrupt limited to a normal interrupt with a
level higher than the interrupt levels in the current CPU, is used as the addition considering
nested interrupts. Note that this calculation result is simply the addition considering nested
interrupts, and it is not a value to be set in system.stack_size.

Specify the timer stack size obtained as described above in clock.stack_size in the cfg file.

18.10 Kernel Stack (system.kernel_stack_size)

The kernel stack is used by service calls issued in task contexts and also by the initialization
routine.

Each CPU has only a single kernel stack. The kernel stack area is allocated by specifying its size
in system.kernel_stack_size in the cfg file. The section name of the kernel stack area is
BC_hiknlstk.

Calculate the necessary size using the formula below.

Necessary size = max([A], [B], [C], [D], [E])

[A]: KNL_A + Addition 1 considering nested interrupts (Only when system.trace!=NO)
[B]: KNL_B + Addition 1 considering nested interrupts
[C]: KNL_C + Addition 1 considering nested interrupts (Only when system.action==YES)
[D]: KNL_D + (Maximum size used by initialization routine) + Addition 1 considering
 nested interrupts
[E]: KNL_E + Addition 2 considering nested interrupts

The values of KNL_A and others which depend on implementation are listed in the release notes.

720

Note that tdr_ini_tmr() of the timer driver must be considered when determining the "maximum
size used by initialization routine".

"addition 1 considering nested interrupts" and "addition 2 considering nested interrupts" differ
depending on the cfg file setting.

The following symbols are used here:

UPPINTNST: Interrupt nest count with a level higher than the kernel interrupt mask level
(system.system_IPL)

LOWINTNST: Interrupt nest count with a level equal to or lower than the kernel interrupt
mask level

(1) system.vector_type is ROM_ONLY_DIRECT or RAM_ONLY_DIRECT

Addition 1 considering nested interrupts = 8 × UPPINTNST
Addition 2 considering nested interrupts = 8 × UPPINTNST + 16 × LOWINTNST

(2) system.vector_type is ROM or RAM

(a) system.regbank is ALL

Addition 1 considering nested interrupts = 8 × UPPINTNST
Addition 2 considering nested interrupts = 8 × UPPINTNST + 16 × LOWINTNST+ α

In a case where LOWINTNST includes an interrupt that is defined in kernel_intspec.h to
not use register banks, if that interrupt is used as a normal interrupt, 36 bytes are added as
α.

(b) system.regbank is other than ALL

Addition 1 considering nested interrupts = 8 × UPPINTNST
Addition 2 considering nested interrupts = 8 × UPPINTNST + 24 × LOWINTNST + 20

When LOWINTNST is 0, the underlined portion is treated as 0.

Specify the kernel stack size obtained as described above in system.kernel_stack_size in the cfg
file.

721

18.11 Size Used by Features Provided by HI7200/MP

The stack size used by the functions provided as libraries depend on the product version. Refer to
the release notes attached to the product.

18.11.1 Kernel

The release notes contain the following information.

• Stack size used by each service call

• Constant values related to the timer stack (TMR_A, etc.) and the size used by the debug demon

• Constant values related to the kernel stack (KNL_A, etc.)

• Size to be specified as remote_svc.stack_size (stack size used by SVC server tasks)

• Stack size used by callback functions registered in the IPI

An IPI port is created using IPI_create() in a vini_rmt service call. When calculating the stack
size used by inter-processor interrupt handlers of the IPI, this size should be added.

18.11.2 RPC Library

(1) Stack Size Used by Server Stubs (rpc_server_info.ulStubStackSize)

In rpc_start_server() and rpc_start_server_with_paramarea(), specify the stack size used by the
server stubs in rpc_server_info.ulStubStackSize.

The value to be specified here is the value calculated according to section 18.6.1, Calculation of
Stack Size, with the server stub or the callback function specified in rpc_stop_server() treated as
the task entry function.

(2) Stack Size Used by Callback Function Specified in rpc_disconnect()

This callback function will not be executed in the current implementation.

(3) Information in Release Notes

The following information is contained in the release notes.

• Stack size used by each API function

• Stack size to be specified as rpc_config.ServerTaskStackSize in rpc_init()

• Stack size used by callback functions registered in the IPI

722

The RPC library creates an IPI port using IPI_create(). When calculating the stack size used by
inter-processor interrupt handlers of the IPI, this size should be added.

18.11.3 API Functions of OAL

Calculate the stack size using a method similar to that used for the application functions.

18.11.4 IPI

(1) Stack Size Used by API Functions

Calculate the stack size using a method similar to that used for the application functions.

(2) Stack Size Used by Callback Function Specified in IPI_create()

This callback function is called from an inter-processor interrupt handler of the IPI. Take this into
consideration when calculating the stack size used by inter-processor interrupt handlers.

18.11.5 API Functions of Spinlock Library

Calculate the stack size using a method similar to that used for the application functions.

Note that all spinlock library functions are written in assembly language and are defined to not use
the stack at all in the current implementation.

18.11.6 API Functions of Cache Support Library

Calculate the stack size using a method similar to that used for the application functions.

Note that some internal functions are written in assembly language and those functions are defined
to not use the stack at all in the current implementation.

723

Section 19 types.h

In the kernel and RPC library, derived data types are defined based on the data types defined in
types.h.

types.h is stored in the <RTOS_INST>\os\include\ directory.

Table 19.1 shows the data types defined in types.h.

Table 19.1 Data Types Defined in types.h

Data Type Meaning

VOID void

INT signed int

INT8 signed char

INT16 signed short

INT32 signed long

INT64 signed long long

UINT unsigned int

UINT8 unsigned char

UINT16 unsigned short

UINT32 unsigned long

UINT64 unsigned long long

724

725

Section 20 Notes on the FPU

This section gives notes on the FPU incorporated in the SH2A-FPU. In particular, be sure to read
section 20.1.3, Options fpu and fpscr, whether or not you will actually need the floating-point
operations.

20.1 Compiler Options

20.1.1 Consistency of Options

As stated in the compiler user’s manual, the following compiler options associated with the FPU
must be consistent within each linkage unit.

• fpu

• fpscr

• round

20.1.2 cpu Option

Always specify “cpu = sh2afpu”.

20.1.3 Options fpu and fpscr

In general, specify “single” or “double” for the fpu option. If floating-point operations are not to
be used, specify fpu=single.

Omitting the fpu option is possible but not recommended. If you wish to omit the fpu option,
specify fpscr=safe. Otherwise, correct operation cannot be guaranteed.

726

20.2 Floating-Point Operations in Tasks and Task Exception Handling
Routines

20.2.1 TA_COP1 Attribute

If tasks or task exception handling routines are to execute floating-point operations, specify the
TA_COP1 attribute.

20.2.2 Initialization of FPSCR

In this kernel, the value of FPSCR on the initiation of a task or a task exception handling routine is
defined as H'00040001 (SZ = 0, PR = 0, DN = 1, RM = B'01). This initial value is the default
value for the relevant compiler options.

When a task or task exception handling routine is to execute floating-point operations and one of
the following compiler options has been specified (i.e. the setting is not the default), FPSCR must
be initialized at the start of the entry function. Specifically, FPSCR must be initialized to the value
assumed by the compiler at the start of each function as stated in section 20.5, Handling by the
Compiler (Reference).

• fpu=double

• round=nearest

727

Figure 20.1 shows an example of initializing FPSCR in a task under the following conditions:

• cpu=sh2afpu

• fpu=double

• round=nearest

#include <machine.h> /* Included to make intrinsic

 function set_fpscr() available. */

#define INI_FPSCR 0x000C0000 /* Initial FPSCR value

 (SZ=0, PR=1, DN=1, RM=B'00) */

#pragma noregsave(Task)

void Task(VP_INT exinf)

{

 set_fpscr(INI_FPSCR); /* FPSCR is set at the start of

 the task. */

 /* Task processing */

 ext_tsk();

}

Figure 20.1 Example of Initialization of FPSCR in a Task

20.3 Floating-Point Operations in Handlers

The following passages are notes on the execution of floating-point operations in the following
handlers:

• Normal interrupt handlers

• Direct interrupt handlers

• Normal CPU exception handlers

• Direct CPU exception handlers

• Time event handlers

• Initialization routines

• Timer drivers (tdr_ini_tmr(), tdr_int_tmr(), tdr_stp_tmr(), and tdr_rst_tmr())

728

20.3.1 Overview

(1) Guarantee Restoration of FPU Registers

When floating-point operation is required, these handlers need to explicitly guarantee restoration
of values to all FPU registers.

(2) Initialize the FPSCR

The initial value of the FPSCR for a normal/direct CPU exception or interrupt handler is the same
as the value before the CPU exception or interrupt. The initial value of the FPSCR for the other
handlers, on the other hand, is undefined.

When any of these handlers is to perform floating-point operations, the FPSCR must be initialized
as shown in 20.5, Handling by the Compiler (Reference) at the start of the entry function of these
handlers.

20.3.2 Coding

The HI7200/MP provides the macros listed below to ease handling of the FPU registers. These
macros are defined in <RTOS_INST>\os\include\sh2fapu.h. The "code=asmcode" option must be
specified at the time of compilation because these macros use #pragma inline_asm.

(1) void IniFPU (VT_FPU *pk_save, UW ini_fpscr)

This macro should be used at the start of the handler. It saves the contents of FPU registers
including the FPSCR in the area pointed to by pk_save, and initializes FPSCR to ini_fpscr.

(2) void EndFPU(VT_FPU *pk_save)

This macro should be used at the end of the handler. It restores the contents of FPU registers
including the FPSCR from the area pointed to by pk_save.

Figure 20.2 shows an example of a handler that initializes the FPSCR and guarantees restoration
of the contents of FPU registers.

729

#include “sh2afpu.h” /* Include "sh2afpu.h" */

#define INI_FPSCR 0x00040001 /* Initial FPSCR value

 (SZ=0, PR=0, DN=1, RM=B'01) */

void HandlerMain(void) /* Handler main routine */

{

 /* Handler processing */

}

void Handler(void) /* Handler entry function */

{

 T_FPU area; /* For saving FPU registers */

 IniFPU (&area, INI_FPSCR); /* Save FPU registers and

 initialize FPSCR */

 HandlerMain(); /* Call HandlerMain(), which performs
main processing*/

 EndFPU (&area); /* Restore FPU registers */

}

Figure 20.2 Example of a Handler that Initializes FPSCR and Preserves the Contents of
FPU Registers

20.4 Floating-Point Operations in Extended Service-Call Routines

The compiler handles issuing of extended service calls as function calls to which floating-point
data is not passed.

20.4.1 When Called from Task Contexts

The TA_COP1 attribute must be specified for the calling task or task-exception handling routine.

20.4.2 When Called from Non-Task Contexts

The contents of all FPU registers must be guaranteed by callers such as interrupt handlers. Refer to
section 20.3, Floating-Point Operations in Handlers.

730

20.5 Handling by the Compiler (Reference)

This section explains handling by the compiler. The compiler only generates object code to change
the FPSCR if the fpu option has been omitted.

(1) FPSCR.PR (Precision Mode)

Table 20.1 Handling of the FPSCR.PR Bit by the Compiler

Compiler Option

FPU

Option

FPSCR

Option *3

Precision Mode Assumed
by the Compiler
(FPSCR.PR Bit)*1

Precision Mode
at the End of the
Function*2 Remarks

Single (Not
specifiable)

Single precision (0) Single precision (0)

Double (Not
specifiable)

Double precision (1) Double precision (1)

The compiler does
not generate any
object code to
change the PR bit.

safe Single precision (0) Single precision (0) Omitted

(Mix) aggressive Single precision (0) Undefined Not specifiable for
this kernel

Notes: 1. The compiler assumes this precision mode in generating code from the start of each
function.

 2. The compiler generates code to select this precision mode at the end of each function.

(2) FPSCR.RM (Rounding Mode)

Table 20.2 Handling of the FPSCR.RM Bits by the Compiler

Compiler Option

Round Option
Rounding Mode Assumed by the
Compiler (FPSCR.DN Bit)* Remarks

Zero Round to Zero (B’01)

Nearest Round to Nearest (B’00)

The compiler does not generate any object
code to change the RM bits.

Note: The compiler assumes this rounding mode in generating code at the top of the function.

(3) FPSCR.SZ (Transfer Size Mode)

The compiler always assumes SZ = 0 (the unit of data for the FMOV instruction is 32 bits) and
does not generate any object code to change the SZ bit.

Renesas Microcomputer Development Environment System
User's Manual
HI7200/MP V.1.00

Publication Date: Rev.1.01, September 27, 2007
Published by: Sales Strategic Planning Div.
 Renesas Technology Corp.
Edited by: Customer Support Department
 Global Strategic Communication Div.
 Renesas Solutions Corp.

© 2007. Renesas Technology Corp., All rights reserved. Printed in Japan.

Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

http://www.renesas.com
Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.
450 Holger Way, San Jose, CA 95134-1368, U.S.A
Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501
Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120
Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898
Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong
Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd.
10th Floor, No.99, Fushing North Road, Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999
Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd.
Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea
Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145
Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: <603> 7955-9390, Fax: <603> 7955-9510

RENESAS SALES OFFICES

Colophon 6.0

1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan

HI7200/MP V.1.00

REJ10J1727-0101

User’s Manual

	Cover
	Notes regarding these materials
	Preface
	Contents
	Section 1 Configuration of This Manual���
	Section 2 Installation���
	2.1 Method of Installation���
	2.2 Directory Structure��
	2.2.1 System Directory (<RTOS_INST>)���
	2.2.2 Sample Directory (<SAMPLE_INST>)���

	Section 3 Overview���
	3.1 Overview���
	3.2 Features���
	3.2.1 Kernel���
	3.2.2 RPC (Remote Procedure Call) Library��
	3.2.3 OAL��
	3.2.4 Spinlock Library���
	3.2.5 IPI Function���
	3.2.6 Cache Support Library��
	3.2.7 Sample Programs��
	3.2.8 Configurator���
	3.2.9 Debugging Extension (Option)���

	3.3 Multicore��
	3.4 Operating Environment��

	Section 4 Introduction to the Kernel���
	4.1 Principles of Kernel Operation���
	4.2 Service Calls��
	4.3 CPU ID���
	4.4 Objects��
	4.4.1 Outline��
	4.4.2 ID Numbers���
	4.4.3 Using ID Names to Specify Objects��

	4.5 Tasks��
	4.5.1 Task State���
	4.5.2 Task Scheduling (Priority and Ready Queue)���
	4.5.3 Task Waiting Queues��
	4.5.4 Task Stack���
	4.5.5 Shared Stack Function��

	4.6 System State���
	4.6.1 Task Contexts and Non-Task Contexts��
	4.6.2 Dispatch-Disabled State/Dispatch-Enabled State���
	4.6.3 CPU-Locked State/CPU-Unlocked State��
	4.6.4 Dispatch-Pending State���

	4.7 Processing Units and Precedence��
	4.8 Interrupts���
	4.8.1 Types of Interrupt Handler���
	4.8.2 Controlling Interrupts (by Setting IMASK Bits in the Register SR)��
	4.8.3 Restriction on Service Calls���

	4.9 CPU Exceptions���
	4.9.1 Types of CPU Exception Handler���
	4.9.2 Reserved Exceptions��

	Section 5 Kernel Functions���
	5.1 Task Management��
	5.2 Task-Dependent Synchronization Functions���
	5.3 Task Event Flags���
	5.4 Task Exception Handling��
	5.5 Semaphores���
	5.5.1 Priority Inversion���

	5.6 Event Flags��
	5.7 Data Queues��
	5.8 Mailboxes��
	5.9 Mutexes��
	5.9.1 Base Priority and Current Priority���

	5.10 Message Buffers���
	5.11 Fixed-Sized Memory Pools��
	5.12 Variable-Sized Memory Pools���
	5.12.1 Controlling Memory Fragmentation��
	5.12.2 Management of Variable-Sized Memory Pools���

	5.13 Time Management���
	5.13.1 Task Timeout��
	5.13.2 Delaying Tasks��
	5.13.3 Stopping and Restarting the Timer���
	5.13.4 Cyclic Handlers���
	5.13.5 Alarm Handler���
	5.13.6 Overrun Handler���
	5.13.7 Time Precision��
	5.13.8 Notes on Time Management��

	5.14 System State Management���
	5.14.1 Managing System State���
	5.14.2 Service Calls Associated with Initialization��
	5.14.3 System Down (vsys_dwn, ivsys_dwn)���
	5.14.4 Service Call Trace��

	5.15 Interrupt Management��
	5.16 Extended Service Calls��
	5.17 System Configuration Management���
	5.18 Profile Management��
	5.19 Kernel Idling���

	Section 6 Kernel Service Calls���
	6.1 Calling Form���
	6.2 Header Files���
	6.3 Basic Data Types���
	6.4 Register Contents Guaranteed after Issuing Service Call��
	6.5 Return Value of Service Call and Error Code��
	6.5.1 Overview���
	6.5.2 Parameter Check Function���
	6.5.3 Stack Overflow Detection���
	6.5.4 Main Error Code and Suberror Code��

	6.6 System State and Service Calls���
	6.6.1 Task Contexts and Non-Task Contexts��
	6.6.2 CPU-Locked State���
	6.6.3 Dispatch-Disabled State��
	6.6.4 Normal CPU Exception Handler���
	6.6.5 When SR.IMASK is Changed to a Non-Zero Value in a Task Context���

	6.7 ID Number��
	6.7.1 Overview���
	6.7.2 Function Macros Related to ID Number���

	6.8 Behavior of Service Calls��
	6.8.1 Remote Service Call and Local Service Call���
	6.8.2 Behavior of Local Service Call���
	6.8.3 Behavior of Remote Service Call��
	6.8.4 Notes on Remote Service Call���

	6.9 Service Calls not in the μITRON4.0 Specification
	6.10 Service Call Description Form���
	6.11 Task Management���
	6.11.1 Create Task (cre_tsk, icre_tsk) (acre_tsk, iacre_tsk: Assign Task ID Automatically) (vscr_tsk, ivscr_tsk) (Using Static Stack)��
	6.11.2 Delete Task (del_tsk)���
	6.11.3 Activate Task (act_tsk, iact_tsk)���
	6.11.4 Cancel Task Activation Requests (can_act, ican_act)���
	6.11.5 Activate Task with Start Code (sta_tsk, ista_tsk)���
	6.11.6 Terminate Current Task (ext_tsk), Terminate and Delete Current Task (exd_tsk)���
	6.11.7 Terminate Another Task (ter_tsk)��
	6.11.8 Change Task Priority (chg_pri, ichg_pri)��
	6.11.9 Get Task Priority (get_pri, iget_pri)���
	6.11.10 Reference Task State (ref_tsk, iref_tsk)���
	6.11.11 Reference Task State: Simple Version (ref_tst, iref_tst)���
	6.11.12 Change Task Execution Mode (vchg_tmd)��

	6.12 Task-Dependent Synchronization��
	6.12.1 Sleep Task (slp_tsk, tslp_tsk)��
	6.12.2 Wake up Task (wup_tsk, iwup_tsk)��
	6.12.3 Cancel Wakeup Task (can_wup, ican_wup)��
	6.12.4 Forcible Release from WAITING State (rel_wai, irel_wai)���
	6.12.5 Suspend Task (sus_tsk, isus_tsk)��
	6.12.6 Resume Task (rsm_tsk, irsm_tsk), Force Task to Resume (frsm_tsk, ifrsm_tsk)���
	6.12.7 Delay Task (dly_tsk)��
	6.12.8 Set Task Event Flag (vset_tfl, ivset_tfl)���
	6.12.9 Clear Task Event Flag (vclr_tfl, ivclr_tfl)���
	6.12.10 Wait for Task Event Flag (vwai_tfl, vpol_tfl, vtwai_tfl)���

	6.13 Task Exception Handling���
	6.13.1 Define Task Exception Handling Routine (def_tex, idef_tex)��
	6.13.2 Request Task Exception Handling (ras_tex, iras_tex)���
	6.13.3 Disable Task Exception Handling (dis_tex)���
	6.13.4 Enable Task Exception Handling (ena_tex)��
	6.13.5 Reference Task Exception Handling Disabled State (sns_tex)��
	6.13.6 Reference Task Exception Handling State (ref_tex, iref_tex)���

	6.14 Synchronization and Communication (Semaphore)���
	6.14.1 Create Semaphore (cre_sem, icre_sem) (acre_sem, iacre_sem: Assign Semaphore ID Automatically)���
	6.14.2 Delete Semaphore (del_sem)��
	6.14.3 Release Semaphore Resource (sig_sem, isig_sem)��
	6.14.4 Acquire Semaphore Resource (wai_sem, pol_sem, ipol_sem, twai_sem)���
	6.14.5 Reference Semaphore State (ref_sem, iref_sem)���

	6.15 Synchronization and Communication (Event Flag)��
	6.15.1 Create Event Flag (cre_flg, icre_flg) (acre_flg, iacre_flg: Assign Event Flag ID Automatically)���
	6.15.2 Delete Event Flag (del_flg)���
	6.15.3 Set Event Flag (set_flg, iset_flg)��
	6.15.4 Clear Event Flag (clr_flg, iclr_flg)��
	6.15.5 Wait for Event-Flag Setting (wai_flg, pol_flg, ipol_flg, twai_flg)��
	6.15.6 Reference Event Flag State (ref_flg, iref_flg)��

	6.16 Synchronization and Communication (Data Queue)��
	6.16.1 Create Data Queue (cre_dtq, icre_dtq) (acre_dtq, iacre_dtq: Assign Data Queue ID Automatically)���
	6.16.2 Delete Data Queue (del_dtq)���
	6.16.3 Send Data to Data Queue (snd_dtq, psnd_dtq, ipsnd_dtq, tsnd_dtq, fsnd_dtq, ifsnd_dtq)���
	6.16.4 Receive Data from Data Queue (rcv_dtq, prcv_dtq, trcv_dtq)��
	6.16.5 Reference Data Queue State (ref_dtq, iref_dtq)��

	6.17 Synchronization and Communication (Mailbox)���
	6.17.1 Create Mailbox (cre_mbx, icre_mbx) (acre_mbx, iacre_mbx: Assign Mailbox ID Automatically)���
	6.17.2 Delete Mailbox (del_mbx)��
	6.17.3 Send Message to Mailbox (snd_mbx, isnd_mbx)���
	6.17.4 Receive Message from Mailbox (rcv_mbx, prcv_mbx, iprcv_mbx, trcv_mbx)���
	6.17.5 Reference Mailbox State (ref_mbx, iref_mbx)���

	6.18 Extended Synchronization and Communication (Mutex)��
	6.18.1 Create Mutex (cre_mtx) (acre_mtx: Assign Mutex ID Automatically)��
	6.18.2 Delete Mutex (del_mtx)��
	6.18.3 Lock Mutex (loc_mtx, ploc_mtx, tloc_mtx)��
	6.18.4 Unlock Mutex (unl_mtx)��
	6.18.5 Reference Mutex State (ref_mtx)���

	6.19 Extended Synchronization and Communication (Message Buffer)���
	6.19.1 Create Message Buffer (cre_mbf, icre_mbf) (acre_mbf, iacre_mbf: Assign Message Buffer ID Automatically)���
	6.19.2 Delete Message Buffer (del_mbf)���
	6.19.3 Send Message to Message Buffer (snd_mbf, psnd_mbf, ipsnd_mbf, tsnd_mbf)���
	6.19.4 Receive Message from Message Buffer (rcv_mbf, prcv_mbf, trcv_mbf)���
	6.19.5 Reference Message Buffer State (ref_mbf, iref_mbf)��

	6.20 Memory Pool Management (Fixed-Sized Memory Pool)��
	6.20.1 Create Fixed-Sized Memory Pool (cre_mpf, icre_mpf) (acre_mpf, iacre_mpf: Assign Memory Pool ID Automatically)���
	6.20.2 Delete Fixed-Sized Memory Pool (del_mpf)��
	6.20.3 Get Fixed-Sized Memory Block (get_mpf, pget_mpf, ipget_mpf, tget_mpf)���
	6.20.4 Release Fixed-Sized Memory Block (rel_mpf, irel_mpf)��
	6.20.5 Reference Fixed-Sized Memory Pool State (ref_mpf, iref_mpf)���

	6.21 Memory Pool Management (Variable-Sized Memory Pool)���
	6.21.1 Create Variable-Sized Memory Pool (cre_mpl, icre_mpl) (acre_mpl, iacre_mpl: Assign Variable-Sized Memory Pool ID Automatically)���
	6.21.2 Delete Variable-Sized Memory Pool (del_mpl)���
	6.21.3 Get Variable-Sized Memory Block (get_mpl, pget_mpl, ipget_mpl, tget_mpl)��
	6.21.4 Release Variable-Sized Memory Block (rel_mpl, irel_mpl)���
	6.21.5 Reference Variable-Sized Memory Pool State (ref_mpl, iref_mpl)��

	6.22 Time Management (System Clock)��
	6.22.1 Set System Clock (set_tim, iset_tim)��
	6.22.2 Get System Clock (get_tim, iget_tim)��
	6.22.3 Supply Time Tick (isig_tim)���
	6.22.4 Stop Timer (vstp_tmr)���
	6.22.5 Restart Timer (vrst_tmr, ivrst_tmr)���
	6.22.6 Reference Timer State (vsns_tmr)��

	6.23 Time Management (Cyclic Handler)��
	6.23.1 Create Cyclic Handler (cre_cyc, icre_cyc) (acre_cyc, iacre_cyc: Assign Cyclic Handler ID Automatically)���
	6.23.2 Delete Cyclic Handler (del_cyc)���
	6.23.3 Start Cyclic Handler (sta_cyc, ista_cyc)��
	6.23.4 Stop Cyclic Handler (stp_cyc, istp_cyc)���
	6.23.5 Reference Cyclic Handler State (ref_cyc, iref_cyc)��

	6.24 Time Management (Alarm Handler)���
	6.24.1 Create Alarm Handler (cre_alm, icre_alm) (acre_alm, iacre_alm: Assign Alarm Handler ID Automatically)���
	6.24.2 Delete Alarm Handler (del_alm)��
	6.24.3 Start Alarm Handler (sta_alm, ista_alm)���
	6.24.4 Stop Alarm Handler (stp_alm, istp_alm)��
	6.24.5 Reference Alarm Handler State (ref_alm, iref_alm)���

	6.25 Time Management (Overrun Handler)���
	6.25.1 Define Overrun Handler (def_ovr)��
	6.25.2 Start Overrun Handler (sta_ovr, ista_ovr)���
	6.25.3 Stop Overrun Handler (stp_ovr, istp_ovr)��
	6.25.4 Reference Overrun Handler State (ref_ovr, iref_ovr)���

	6.26 System State Management���
	6.26.1 Rotate Ready Queue (rot_rdq, irot_rdq)��
	6.26.2 Get Current Task ID (get_tid, iget_tid)���
	6.26.3 Lock CPU (loc_cpu, iloc_cpu)��
	6.26.4 Unlock CPU (unl_cpu, iunl_cpu)��
	6.26.5 Disable Dispatch (dis_dsp)��
	6.26.6 Enable Dispatch (ena_dsp)���
	6.26.7 Check Context (sns_ctx)���
	6.26.8 Check CPU-Locked State (sns_loc)��
	6.26.9 Check Dispatch-Disabled State (sns_dsp)���
	6.26.10 Check Dispatch-Pending State (sns_dpn)���
	6.26.11 Start Kernel (vsta_knl, ivsta_knl)���
	6.26.12 Initialize Remote Service-Call Environment (vini_rmt)��
	6.26.13 System Down (vsys_dwn, ivsys_dwn)��
	6.26.14 Get Trace Information (vget_trc, ivget_trc)��
	6.26.15 Get Start of Interrupt Handlers as Trace Information (ivbgn_int)���
	6.26.16 Get End of Interrupt Handlers as Trace Information (ivend_int)���

	6.27 Interrupt Management��
	6.27.1 Define Interrupt Handler (def_inh, idef_inh)��
	6.27.2 Change Interrupt Mask Level (chg_ims, ichg_ims)���
	6.27.3 Reference Interrupt Mask Level (get_ims, iget_ims)��

	6.28 Service Call Management���
	6.28.1 Define Extended Service-Call Routine (def_svc, idef_svc)��
	6.28.2 Call Extended Service-Call Routine (cal_svc, ical_svc)��

	6.29 System Configuration Management���
	6.29.1 Define CPU Exception Handler (def_exc, idef_exc)��
	6.29.2 Define CPU Exception (TRAPA-Instruction Exception) Handler (vdef_trp, ivdef_trp)��
	6.29.3 Reference Configuration Information (ref_cfg, iref_cfg)���
	6.29.4 Reference Version Information (ref_ver, iref_ver)���

	6.30 Profile Management��
	6.30.1 Reference Profile Counter (vref_prf, ivref_prf)���
	6.30.2 Clear Profile Counter (vclr_prf, ivclr_prf)���

	6.31 Macros��
	6.31.1 Constant Macros���
	6.31.2 Kernel Configuration Macros���
	6.31.3 Function Macros Defined in itron.h��
	6.31.4 Function Macros Defined in kernel.h���

	6.32 Directory and File Structure��
	6.33 Building the Library (Only for a Product with the Source Code)��

	Section 7 RPC Library��
	7.1 Overview���
	7.2 Overview of RPC Operation��
	7.3 Server���
	7.3.1 Server ID��
	7.3.2 Function ID��
	7.3.3 Server Task��
	7.3.4 Server Stub and Server Function��
	7.3.5 Client Stub��
	7.3.6 Server Conflicts���

	7.4 Synchronous Mode and Asynchronous Mode���
	7.5 Sending and Receiving Parameters���
	7.5.1 Features���
	7.5.2 IOVEC Structure��
	7.5.3 Server Parameter Area��
	7.5.4 Server Parameter Area Size Required by RPC Call��
	7.5.5 Parameter Copy Methods���
	7.5.6 Application Examples���

	7.6 OS Resources Used by RPC���
	7.6.1 Task���
	7.6.2 OAL_GetMemory()��
	7.6.3 IPI��
	7.6.4 Spinlock Library���

	7.7 Provided Files���
	7.8 Building the Library (Only for a Product with the Source Code)���
	7.9 Building the System��
	7.9.1 Configuration of Kernel��
	7.9.2 Configuration of IPI���
	7.9.3 Building the System��

	7.10 API Functions���
	7.10.1 Header File���
	7.10.2 Basic Data Types��
	7.10.3 Initialize RPC Library (rpc_init)���
	7.10.4 Terminate RPC Library (rpc_shutdown)��
	7.10.5 Start Dynamic Server (rpc_start_server)���
	7.10.6 Start Static Server (rpc_start_server_with_paramarea)���
	7.10.7 Stop Server (rpc_stop_server)���
	7.10.8 Connect Server (rpc_connect)��
	7.10.9 Disconnect Server (rpc_disconnect)��
	7.10.10 Call Server Function (rpc_call)��
	7.10.11 Call Server Function (Data Transfer Callback) (rpc_call_copycbk)���
	7.10.12 Acquire Server Properties (rpc_get_server_properties)��

	7.11 Stubs���
	7.11.1 Server Stub���
	7.11.2 Client Stub���

	7.12 Server Stop Callback Function���
	7.13 CopyCbk1 and CopyCbk2 Callback Functions��

	Section 8 OAL��
	8.1 Overview���
	8.2 Provided Files���
	8.3 Configuration and Build��
	8.3.1 Configuration��
	8.3.2 Build��

	8.4 API Functions��
	8.4.1 Header File��
	8.4.2 Basic Data Types���
	8.4.3 Return Value���
	8.4.4 Initialize OAL (OAL_Init)��
	8.4.5 Terminate OAL (OAL_Shutdown)���
	8.4.6 Disable Task Preemption (OAL_DisablePreempt)���
	8.4.7 Enable Task Preemption (OAL_EnablePreempt)���
	8.4.8 Confirm Task Preemption State (OAL_IsDisablePreempt)���
	8.4.9 Confirm Whether Current Task Can Wait (OAL_CanWait)��
	8.4.10 Confirm Context Type (OAL_IsNotTaskLevel)���
	8.4.11 Confirm Processor Interrupt Mask (OAL_IsMaskInterrupt)��
	8.4.12 Create Task (OAL_CreateTask)��
	8.4.13 Activate Task (OAL_ActivateTask)��
	8.4.14 Exit and Delete Current Task (OAL_DestroyTask)��
	8.4.15 Get Current Task Identification Information (OAL_GetTaskID)���
	8.4.16 Shift Current Task to WAITING State (OAL_SleepTask)���
	8.4.17 Wakeup Task (OAL_WakeupTask)��
	8.4.18 Allocate Memory (OAL_GetMemory)���
	8.4.19 Release Memory (OAL_ReleaseMemory)��

	Section 9 Spinlock Library���
	9.1 Overview���
	9.2 Basic Usage Method���
	9.3 Spinlock Behavior and Usage Notes��
	9.3.1 Exclusive Control in the Same CPU and Deadlock���
	9.3.2 Problem of Locked Period���

	9.4 Three Spinlock Functions���
	9.5 Lock Variables for Normal Lock and RW Lock���
	9.5.1 Entity of Lock Variable��
	9.5.2 RAM where Lock Variables are Placed��

	9.6 Provided Files���
	9.7 Building the Library���
	9.8 Building the System��
	9.9 API Functions��
	9.9.1 Header File��
	9.9.2 Basic Data Types���
	9.9.3 Note���

	9.10 Normal Lock���
	9.10.1 Initialize Normal Lock Variable (SPIN_InitLock)���
	9.10.2 Perform Normal Lock (SPIN_Lock)���
	9.10.3 Try to Perform Normal Lock (SPIN_TryLock)���
	9.10.4 Cancel Normal Lock (SPIN_Unlock)��
	9.10.5 Check Normal Lock State (SPIN_IsLocked)���

	9.11 RW Lock���
	9.11.1 Initialize RW Lock Variable (SPIN_InitRWLock)���
	9.11.2 Perform Read Lock (SPIN_ReadLock)���
	9.11.3 Try to Perform Read Lock (SPIN_ReadTryLock)���
	9.11.4 Cancel Read Lock (SPIN_ReadUnlock)��
	9.11.5 Check Read Lock State (SPIN_IsReadLocked)���
	9.11.6 Perform Write Lock (SPIN_WriteLock)���
	9.11.7 Try to Perform Write Lock (SPIN_WriteTryLock)���
	9.11.8 Cancel Write Lock (SPIN_WriteUnlock)��
	9.11.9 Check Write Lock State (SPIN_IsWriteLocked)���

	9.12 Semaphore Lock��
	9.12.1 Initialize Semaphore Register (SPIN_InitSemLock)��
	9.12.2 Perform Semaphore Lock (SPIN_SemLock)���
	9.12.3 Try to Perform Semaphore Lock (SPIN_SemTryLock)���
	9.12.4 Cancel Semaphore Lock (SPIN_SemUnlock)��

	Section 10 IPI���
	10.1 Overview��
	10.2 IPI Structure���
	10.3 Port ID���
	10.4 Overview of Operation���
	10.5 Notes���
	10.6 Provided Files��
	10.7 Configuration and Build���
	10.7.1 Configuration���
	10.7.2 Build���

	10.8 API Functions���
	10.8.1 Header File���
	10.8.2 Basic Data Types��
	10.8.3 Initialize IPI (IPI_init)���
	10.8.4 Create IPI Port (IPI_create)��
	10.8.5 Delete IPI Port (IPI_delete)��
	10.8.6 Transmission to IPI Port (IPI_send)���

	10.9 Inter-Processor Interrupt Handlers��
	10.10 Callback Function��

	Section 11 SH2A-DUAL Cache-Support Library���
	11.1 Overview��
	11.2 Notes���
	11.3 Directory and File Structure��
	11.4 Building the Library��
	11.5 Building the System���
	11.6 API Functions���
	11.6.1 Header File���
	11.6.2 Basic Data Types��
	11.6.3 Initialize Cache (sh2adual_ini_cac)���
	11.6.4 Clear Cache (sh2adual_clr_cac)��
	11.6.5 Flush Operand Cache (sh2adual_fls_cac)��
	11.6.6 Invalidate Cache (sh2adual_inv_cac)���

	Section 12 Application Program Creation��
	12.1 About the FPU���
	12.2 Tasks���
	12.3 Task Exception Handling Routines��
	12.4 Extended Service Call Routines��
	12.5 Interrupt Handlers��
	12.5.1 Types of Interrupt Handler��
	12.5.2 Register Banks��
	12.5.3 Normal Interrupt Handlers���
	12.5.4 Direct Interrupt Handlers���

	12.6 CPU Exception Handlers (Including TRAPA Exceptions)���
	12.6.1 Types of CPU Exception Handler��
	12.6.2 Normal CPU Exception Handlers���
	12.6.3 Direct CPU Exception Handlers���

	12.7 Time Event Handlers���
	12.8 Initialization Routines���
	12.9 Timer Drivers���
	12.9.1 tdr_ini_tmr(): Initialize Timer���
	12.9.2 tdr_int_tmr(): Execute Timer-Interrupt Handling���
	12.9.3 tdr_stp_tmr(): Stop Timer���
	12.9.4 tdr_rst_tmr(): Restart Timer��

	12.10 System-Down Routines���

	Section 13 Generating Load Modules���
	13.1 Introduction��

	Section 14 Configurator (cfg72mp)��
	14.1 Representation Format in cfg File���
	14.1.1 Comment Statement���
	14.1.2 End of Statement��
	14.1.3 Definition Statement��
	14.1.4 Numeric Value���
	14.1.5 Symbol��
	14.1.6 External Reference Name���
	14.1.7 Note��

	14.2 Default cfg File��
	14.3 Definition Items in cfg File��
	14.3.1 Description Format��
	14.3.2 Defining the System (system)��
	14.3.3 Defining the Maximum IDs (maxdefine)��
	14.3.4 Defining the Default Task Stack Area (memstk)���
	14.3.5 Defining the Default Data Queue Area (memdtq)���
	14.3.6 Defining the Default Message Buffer Area (memmbf)���
	14.3.7 Defining the Default Fixed-Sized Memory Pool Area (memmpf)��
	14.3.8 Defining the Default Variable-Sized Memory Pool Area (memmpl)���
	14.3.9 Defining the System Clock (clock)���
	14.3.10 Defining the Remote Service-Call Environment (remote_svc)��
	14.3.11 Defining a Task (task[])���
	14.3.12 Defining a Static Stack Area (static_stack[])��
	14.3.13 Defining a Semaphore (semaphore[])���
	14.3.14 Defining an Event Flag (flag[])��
	14.3.15 Defining a Data Queue (dataqueue[])��
	14.3.16 Defining a Mailbox (mailbox[])���
	14.3.17 Defining a Mutex (mutex[])���
	14.3.18 Defining a Message Buffer (message_buffer[])���
	14.3.19 Defining a Fixed-Sized Memory Pool (memorypool[])��
	14.3.20 Defining a Variable-Sized Memory Pool (variable_memorypool[])��
	14.3.21 Defining a Cyclic Handler (cyclic_hand[])��
	14.3.22 Defining an Alarm Handler (alarm_hand[])���
	14.3.23 Defining an Overrun Handler (overrun_hand)���
	14.3.24 Defining an Extended Service Call Routine (extend_svc[])���
	14.3.25 Defining an Interrupt Handler or a CPU Exception Handler (interrupt_vector[])��
	14.3.26 Defining an Initialization Routine (init_routine[])��
	14.3.27 Defining Service Calls (service_call)��

	14.4 Configurator Execution��
	14.4.1 Overview��
	14.4.2 Environment Setting���
	14.4.3 Files Required to Execute Configurator��
	14.4.4 Files Output by cfg72mp���
	14.4.5 Starting Configurator���
	14.4.6 Command Options���
	14.4.7 Note��

	14.5 Error Messages��
	14.5.1 Error Output Format and Error Levels��
	14.5.2 List of Messages��

	14.6 ID Name Header Files��
	14.6.1 Overview��
	14.6.2 Types of ID Name Header Files���

	14.7 kernel_macro.h��

	Section 15 GUI Configurator��
	Section 16 Sample Programs���
	16.1 Target Hardware���
	16.2 Directory Structure���
	16.3 Startup Processing��
	16.3.1 Overview��
	16.3.2 Reset Vectors (cpuid1\reset\reset.src)��
	16.3.3 Reset Main Program for CPUID#1 (cpuid1\reset\resetprg1.c)���
	16.3.4 Common Hardware and CPUID#1 Resource Initialization Function HardwareSetup_CPUID1() (cpuid1\reset\hwsetup1.c)���
	16.3.5 Virtual Reset Vector Table for CPUID#2 (cpuid2\reset\vreset.src)��
	16.3.6 Reset Main Program for CPUID#2 (cpuid2\reset\resetprg2.c)���
	16.3.7 CPUID#1 Initial Startup Task InitTask1() (cpuid1\init\init_task1.c)���
	16.3.8 CPUID#2 Initial Startup Task InitTask2() (cpuid2\init\init_task2.c)���
	16.3.9 Synchronization of Startup Phases in Two CPUs���

	16.4 Example of RPC Usage��
	16.4.1 Overview��
	16.4.2 Registration of RPC Servers (CPUID#2)���
	16.4.3 SampleAdd()���
	16.4.4 SampleStrlen()��
	16.4.5 SampleSort1() and SampleSort2()���
	16.4.6 SampleMemcopy()���
	16.4.7 SampleCreateTask(), SampleKillTask(), and SampleRefTaskState()��
	16.4.8 Example of RPC Call (CPUID#1)���
	16.4.9 Initialization and Termination of Servers (CPUID#2)���
	16.4.10 Initialization and Termination of Clients (CPUID#1)��
	16.4.11 Initialization of RPC Library (rpc_init() Call)��

	16.5 Remote Service Call Example���
	16.6 Timer Driver��
	16.7 Standard Libraries��
	16.7.1 Overview��
	16.7.2 Low-Level Interface Routines��
	16.7.3 Initialization of Standard Library Environment (_INIT_LOWLEVEL() and _INIT_OTHERLIB())��
	16.7.4 Section Initialization (_INITSCT())���
	16.7.5 Standard Library Configuration (lowsrc_config.h)��
	16.7.6 Source Codes��

	16.8 Dummy Objects���
	16.8.1 Dummy Programs��
	16.8.2 Other Dummy Objects���

	16.9 I/O Register Definitions, Peripheral Clock Definition, and kernel_intspec.h���
	16.10 List of Kernel Objects���
	16.10.1 Tasks��
	16.10.2 Other Objects��

	16.11 cfg Files��
	16.11.1 CPUID#1 (cpuid1\cfg_out\sample.cfg)��
	16.11.2 CPUID#2 (cpuid2\cfg_out\sample.cfg)��

	16.12 IPI Ports��
	16.13 Porting to Other Hardware��

	Section 17 Build���
	17.1 Setting Custom Placeholder $(RTOS_INST)���
	17.2 Registering cfg72mp to Workspaces as Custom Build Phase���
	17.2.1 Registering the File Extension��
	17.2.2 Creating the cfg72mp Custom Build Phase���
	17.2.3 Setting Build Phases��

	17.3 Creating CPU Interrupt Specification Definition File (kernel_intspec.h)���
	17.3.1 IBNR Register Addresses (INTSPEC_IBNR_ADR1 and INTSPEC_IBNR_ADR2)���
	17.3.2 Vector Numbers That Cannot Use Register Banks (INTSPEC_NOBANK_VECxxx)���

	17.4 kernel_def.c and kernel_cfg.c���
	17.5 Sections��
	17.5.1 Rules for Section Names���
	17.5.2 Sections��
	17.5.3 Common Symbols (Exporting Symbols from CPUID#1 to CPUID#2)��
	17.5.4 Virtual Reset Vector Table of CPUID#2���
	17.5.5 Memory Map of this Sample���

	17.6 Kernel Library��
	17.7 Build Order of Each CPU���
	17.7.1 Basic Form��
	17.7.2 Exporting the ID Name���

	17.8 Description of Build of CPUID#1 (cpuid1\cpuid1.hws)���
	17.8.1 Registered Sources��
	17.8.2 Compiler Options��
	17.8.3 Standard Library Generator��
	17.8.4 Optimizing Linkage Editor���

	17.9 Description of Build of CPUID#2 (cpuid2\cpuid2.hws)���
	17.9.1 Registered Sources��
	17.9.2 Compiler Options��
	17.9.3 Standard Library Generator��
	17.9.4 Optimizing Linkage Editor���

	17.10 Download to Target System��

	Section 18 Calculation of Stack Size���
	18.1 Stack Types���
	18.2 Basics of Stack Size Calculation��
	18.2.1 Size Consumed by Function Tree��
	18.2.2 Kernel Service Calls��
	18.2.3 RPC Library Call��
	18.2.4 OAL, IPI, SH2A-DUAL Cache Support Library, and Spinlock Library���
	18.2.5 Extended Service Calls��
	18.2.6 Normal CPU Exception Handler and Direct CPU Exception Handler���

	18.3 Usage Notes for Call Walker���
	18.4 Usage Notes for NMI���
	18.5 Notes on Changes in Stack Size��
	18.6 Task Stack��
	18.6.1 Calculation of Stack Size���
	18.6.2 Specification Location for Stack Size���
	18.6.3 Calculation of Default Task Stack Area Size (memstk.all_memsize)��
	18.6.4 Stack Size Used by SVC Server Task (remote_svc.stack_size)��
	18.6.5 RPC Server Task and Server Stub���

	18.7 Normal Interrupt Handler Stack (system.stack_size)��
	18.7.1 Calculation of Stack Size Used by Each Handler��
	18.7.2 Calculation of and Specification Location for Interrupt Stack Area Size (system.stack_size)���

	18.8 Direct Interrupt Handler Stack��
	18.8.1 Calculation of Stack Size���
	18.8.2 Specification Location for Stack Size���
	18.8.3 Shared Stack Function���

	18.9 Timer Stack (clock.stack_size)��
	18.10 Kernel Stack (system.kernel_stack_size)��
	18.11 Size Used by Features Provided by HI7200/MP��
	18.11.1 Kernel���
	18.11.2 RPC Library��
	18.11.3 API Functions of OAL���
	18.11.4 IPI��
	18.11.5 API Functions of Spinlock Library��
	18.11.6 API Functions of Cache Support Library���

	Section 19 types.h���
	Section 20 Notes on the FPU��
	20.1 Compiler Options��
	20.1.1 Consistency of Options��
	20.1.2 cpu Option��
	20.1.3 Options fpu and fpscr���

	20.2 Floating-Point Operations in Tasks and Task Exception Handling Routines���
	20.2.1 TA_COP1 Attribute���
	20.2.2 Initialization of FPSCR���

	20.3 Floating-Point Operations in Handlers���
	20.3.1 Overview��
	20.3.2 Coding��

	20.4 Floating-Point Operations in Extended Service-Call Routines���
	20.4.1 When Called from Task Contexts��
	20.4.2 When Called from Non-Task Contexts��

	20.5 Handling by the Compiler (Reference)��

	Colophon

