

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

Regarding the change of names mentioned in the document, such as Hitachi
Electric and Hitachi XX, to Renesas Technology Corp.

The semiconductor operations of Mitsubishi Electric and Hitachi were transferred to Renesas

Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog

and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.)

Accordingly, although Hitachi, Hitachi, Ltd., Hitachi Semiconductors, and other Hitachi brand

names are mentioned in the document, these names have in fact all been changed to Renesas

Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and

corporate statement, no changes whatsoever have been made to the contents of the document, and

these changes do not constitute any alteration to the contents of the document itself.

Renesas Technology Home Page: http://www.renesas.com

Renesas Technology Corp.

Customer Support Dept.

April 1, 2003

To all our customers

Cautions

Keep safety first in your circuit designs!

1. Renesas Technology Corporation puts the maximum effort into making semiconductor products better
and more reliable, but there is always the possibility that trouble may occur with them. Trouble with
semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Notes regarding these materials

1. These materials are intended as a reference to assist our customers in the selection of the Renesas
Technology Corporation product best suited to the customer's application; they do not convey any
license under any intellectual property rights, or any other rights, belonging to Renesas Technology
Corporation or a third party.

2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any
third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or
circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are
subject to change by Renesas Technology Corporation without notice due to product improvements or
other reasons. It is therefore recommended that customers contact Renesas Technology Corporation
or an authorized Renesas Technology Corporation product distributor for the latest product information
before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss
rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corporation by various
means, including the Renesas Technology Corporation Semiconductor home page
(http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product data, diagrams,
charts, programs, and algorithms, please be sure to evaluate all information as a total system before
making a final decision on the applicability of the information and products. Renesas Technology
Corporation assumes no responsibility for any damage, liability or other loss resulting from the
information contained herein.

5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device
or system that is used under circumstances in which human life is potentially at stake. Please contact
Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor
when considering the use of a product contained herein for any specific purposes, such as apparatus or
systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in
whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they must be
exported under a license from the Japanese government and cannot be imported into a country other
than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the
country of destination is prohibited.

8. Please contact Renesas Technology Corporation for further details on these materials or the products
contained therein.

H8S, H8/300 Series High-
performance Embedded Workshop,
Renesas Debugging Interface
Tutorial

U
ser’s M

anual

Rev.1.0 2000.12

Renesas Microcomputer
Development Environment
System

Cautions

1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s
patent, copyright, trademark, or other intellectual property rights for information contained in
this document. Hitachi bears no responsibility for problems that may arise with third party’s
rights, including intellectual property rights, in connection with use of the information
contained in this document.

2. Products and product specifications may be subject to change without notice. Confirm that
you have received the latest product standards or specifications before final design, purchase
or use.

3. Hitachi makes every attempt to ensure that its products are of high quality and reliability.
However, contact Hitachi’s sales office before using the product in an application that
demands especially high quality and reliability or where its failure or malfunction may
directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics,
nuclear power, combustion control, transportation, traffic, safety equipment or medical
equipment for life support.

4. Design your application so that the product is used within the ranges guaranteed by Hitachi
particularly for maximum rating, operating supply voltage range, heat radiation
characteristics, installation conditions and other characteristics. Hitachi bears no
responsibility for failure or damage when used beyond the guaranteed ranges. Even within
the guaranteed ranges, consider normally foreseeable failure rates or failure modes in
semiconductor devices and employ systemic measures such as fail-safes, so that the
equipment incorporating Hitachi product does not cause bodily injury, fire or other
consequential damage due to operation of the Hitachi product.

5. This product is not designed to be radiation resistant.

6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this
document without written approval from Hitachi.

7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi
semiconductor products.

Trademarks:

Microsoft®, Windows®, Windows® 95, Windows® 98, Windows NT®, and Windows® 2000
are registered trademarks of Microsoft Corporation in the United States and/or in other countries.

IBM PC is the name of a computer administered by International Business Machines Corporation.

ELF/DWARF is the name of an object format developed by the Tool Interface Standards
Committee.

All products or brand names used in the tutorial are trademarks or registered trademarks of their
respective companies.

Read First:

1. Hitachi, Ltd. (including its subsidiaries, hereafter collectively referred to as Hitachi) pursues a
policy of continuing improvement in design, performance, and safety of the system. Hitachi
reserves the right to change, wholly or partially, the specifications, design, user's manual, and
other documentation at any time without notice.

2. This tutorial and this system are copyrighted and all rights are reserved by Hitachi. No part of
this user's manual, all or part, may be reproduced or duplicated in any form, in hard-copy or
machine-readable form, by any means available without Hitachi's prior written consent.

3. Hitachi assumes no responsibility for any intellectual property claims or other problems that
may result from applications based on the examples described herein.

Preface

This tutorial will introduce you to the basic usage of the Hitachi Embedded Workshop (hereafter
referred to as HEW) and the Hitachi Debugging Interface (hereafter referred to as HDI). The
HEW tutorial describes a series of usage such as how to invoke HEW, how to create and modify
a project, how to build a program, and how to invoke HDI from HEW. The HDI tutorial
describes how to debug a sample program using the Simulator/Debugger. For the details of each
component of HEW and HDI, refer to the following manuals.

• Hitachi Embedded Workshop User’s Manual

• H8S, H8/300 Series C/C++ Compiler, Assembler, Optimizing linkage editor User’s Manual

• H8S, H8/300 Series Simulator/Debugger User’s Manual

For details on the H8S, H8/300 Series CPU, refer to a programming manual or a hardware
manual of the corresponding CPU.

This tutorial is written assuming that all the tools included in the H8S,H8/300 Series C/C++
compiler Package are installed.

Document Conventions

This manual uses the following typographic conventions:

Table 1 Typographic Conventions

CONVENTION MEANING

[Menu->Menu Option] Text with ‘->’ is used to indicate menu options (for example, [File-
>Save As...]).

Rev. 1.0, 12/00, page i of ii

Contents

Section 1 HEW Tutorial
1.1 Invoking the HEW...1
1.2 Creating a Project ..3

1.2.1 Selecting a CPU ...4
1.2.2 Setting Options Unique to the CPU..6
1.2.3 Setting the Generating Files ...8
1.2.4 Setting the Standard Library ..11
1.2.5 Setting Stack Area..12
1.2.6 Setting the Vector...14
1.2.7 Modifying Generated File Name..17
1.2.8 Confirming Settings ...18

1.3 Modifying the Project..21
1.3.1 Editing and Creating a Source Program File ..21
1.3.2 Adding / Removing a File To / From a Project ..23
1.3.3 File Groups Used in a Project...26
1.3.4 Customizing the Workspace Window..28

1.4 Building a Project..29
1.4.1 Build Overview ..29
1.4.2 Setting Options...30
1.4.3 Customizing the Configuration ..31
1.4.4 Excluding a Project File from Build...32
1.4.5 Correcting Errors in a Build ...33

1.5 HDI Interface...34
1.5.1 Launching HDI...34
1.5.2 Demonstration Project..37

1.6 Exiting From the HEW..38

Section 2 HDI Tutorial
2.1 Using the HDI with the Simulator/Debugger ..39

2.1.1 Introduction..39
2.1.2 Running HDI..39
2.1.3 Selecting the Target..39
2.1.4 Mapping the Memory Resource ...41
2.1.5 Downloading the Tutorial Program..43
2.1.6 Displaying the Source Program..44
2.1.7 Setting a PC Breakpoint ...46
2.1.8 Setting Trace Information Acquisition Conditions ..46
2.1.9 Setting Performance Analysis ..47
2.1.10 Setting the Stack Pointer ..48

Rev. 1.0, 12/00, page ii of ii

2.1.11 Executing the Program...49
2.1.12 Using the Trace Buffer...51
2.1.13 Trace Search ..52
2.1.14 Reviewing Breakpoints..53
2.1.15 Viewing Memory...53
2.1.16 Watching Variables..54
2.1.17 Stepping Through a Program ...57
2.1.18 Displaying Local Variables..62
2.1.19 Reviewing the Performance Analysis ..63
2.1.20 Saving the Session ...64

Rev. 1.0, 12/00, page 1 of 64

Section 1 HEW Tutorial

1.1 Invoking the HEW

After the installation of the HEW, the installer creates a folder whose name is “Hitachi Embedded
Workshop” in the “Program” folder of the “Start” menu of the Windows®. In the “Hitachi
Embedded Workshop” folder, short cuts of the HEW support files will be registered (figure 1.1).
The contents of the “Start” menu and its submenus differ depending on your installation.

Figure 1.1 Invoking the HEW from the “Start” Menu

Rev. 1.0, 12/00, page 2 of 64

If you click “Hitachi Embedded Workshop” from the menu, the HEW will be invoked and the
“Welcome!” dialog box (figure 1.2) will be displayed. You can open the project promptly without
the “Welcome!” dialog if you change the setting via [Tools->Options]. For details of this setting,
refer to chapter 6, “Customizing the Environment”, of the Hitachi Embedded Workshop User’s
Manual.

Figure 1.2 Welcome! Dialog Box

If you use the HEW for the first time or if you want to work on a new project, select the [Create a
new project workspace] radio button and click [OK]. If you want to work on an existing project,
select the [Open a recent project workspace] or [Browse to another project workspace] radio
button and click [OK].

In this tutorial, select the [Create a new project workspace] radio button and click [OK].

Rev. 1.0, 12/00, page 3 of 64

1.2 Creating a Project

When you have selected the [Create a new project workspace] radio button, then clicking [OK] in
the “Welcome!” dialog box will launch the “New Project Workspace” dialog box (figure 1.3),
which is used to create a new workspace and project. You can also launch the “New Project
Workspace” dialog box by selecting [File -> New Workspace…] after you have launched HEW.
In this dialog box, you will specify a workspace name (when newly creating a workspace name,
the project name will be the same as the workspace), CPU family, project type, and so on. For
details of the project type, refer to table 1.1.
In this tutorial, enter “tutorial” as a workspace name in the [Name] field, and select “Application”
in the [Project type] list. If you have entered “tutorial” in the [Name] field, then the [Directory]
field will show “c:\tutorial” and a project will be generated under this directory. If you want to
change the directory used for the new workspace, click the [Browse…] button and specify a
directory, or enter a directory path manually in the [Directory] field.

Figure 1.3 New Project Workspace Dialog Box

Rev. 1.0, 12/00, page 4 of 64

Table 1.1 Project Type

Project Type Description

Application Projects to develop programs including initial routine files written in C/C++
or assembly language.

Assembly Application Projects to develop programs including initial routine files written in
assembly language.

Demonstration Projects to develop demonstration programs written in C/C++ or assembly
language.

Empty Application Projects to develop programs (But are not generated files. They are used
to set only the options of the tool.)

Library Projects to develop library files (But are not generated files. They are used
to set only the options of the tool.)

1.2.1 Selecting a CPU

When you click [OK] in the “New Project Workspace” dialog box, the project generator will be
invoked and will launch the Step 1 dialog box (CPU selection) (figure 1.4). In this dialog box,
select the type of target CPU for which you wish to develop programs. In this tutorial, select
“2600” in the [CPU Series] list and “2655” in the [CPU Type] list. Click the [Next >] button after
selecting a CPU type from the [CPU Type] list. This will launch the Step 2 dialog box (Setting the
options unique to the CPU).

Rev. 1.0, 12/00, page 5 of 64

Figure 1.4 Selecting the CPU in the Project Generator (Step 1)

CPU types shown in the [CPU Type:] list are classified into the CPU series shown in the [CPU
Series:] list. When you select a CPU type from the [CPU Series:], the project generator will set a
CPU type option for the standard library generator, C/C++ compiler, and assembler. Depending on
what you select in [CPU Series:] and [CPU Type:], different types of files will be generated by the
Project Generator. Select the type of target CPU for which you wish to develop programs. If you
cannot find the CPU you want in the list, then select one close to its hardware specifications or
select “Other.”

• Click [Next >] to get the project generator to launch the next dialog box.

• If you click [< Back], the project generator will return to the previous dialog box.

• If you click [Finish], the project generator will open the Summary dialog box.

• If you click [Cancel], the project generator will return to the “New Project Workspace” dialog
box.

• [< Back], [Next >], [Finish], and [Cancel] all function in the same say in the Project Generator.

Rev. 1.0, 12/00, page 6 of 64

1.2.2 Setting Options Unique to the CPU

When you click [Next >] in the Step 1 dialog box, the Project Generator will launch the dialog box
shown in figure 1.5.
In this dialog box, you can set options unique to the CPU and that can be used commonly through
all the project files.
In the tutorial, select Advanced for the [Operating Mode:] and click [Next >]. The Project
Generator will launch the Step 3 dialog box (Setting the Generation File).

Figure 1.5 Setting Options Unique to the CPU in the Project Generator
(Step 2)

You may set the following options by the Step 1 and 2 dialog boxes.
If you want to change the settings of the options after you have generated a project, you must
modify the option setting dialog box in the tools below ([Options ->] in HEW).

Rev. 1.0, 12/00, page 7 of 64

• C/C++ Compiler (Same for Standard Library Generator)

CPU/operating mode

Optimization by speed (only for standard library generator)

Parameter storage register specification

Double to float conversion

Register allocation of structured parameters and return values

Register allocation of 4-byte parameters and return values (only CPU:300)

Exception processing function

Runtime type information

• Assembler

CPU

• Optimizing Linkage Editor

Output format (determined by the project type)

You cannot modify options that are not supported by the Project Generator for the CPU series you
selected in the Step 1 dialog box. In this tutorial, since you selected 2600 for CPU Series, [Pass 4-
byte parameter / return value via register] will be grayed out, meaning that you cannot set them.
If you selected Library for the project type, there are no other settings you have to make.
Therefore, just click [Finish].
If you selected Demonstration for the project type, click [Next >] to launch Step 6, which is shown
in section 1.2.7, Modifying Generated File Name. If you selected Demonstration, the Project
Generator will launch the Step 3 dialog box.

Rev. 1.0, 12/00, page 8 of 64

1.2.3 Setting the Generating Files

When you click [Next >] in the Step 2 dialog box, the Project Generator will launch the dialog box
shown in figure 1.6.

Figure 1.6 File Generation Using the Project Generator (Step 3)

In this dialog box, you must decide the kind of file to create.
In this tutorial, select [Use I/O Library] and click [Next >]. The project generator will launch the
Step 4 dialog box (Setting the Standard Library).

If you select checkbox [Use I/O Library], you can use the standard I/O library. When you have
selected Application for the project type, [Number of I/O Streams:] can also be set.

When modifying [Number of I/O Streams:] after you have created the project, modify the numeric
of lowsrc.h in the following area.

#define IOSTREAM 3

Rev. 1.0, 12/00, page 9 of 64

If you select checkbox [Use Heap Memory], you can use function sbrk() for controlling the heap
area. Then you can use [Heap Size:] to set the size of the heap area to control as follows.

H’ABCDE: Hexadecimal
0xABCDE: Hexadecimal
1234: Decimal

If you want to modify [Heap Size] after you have generated a project, you must modify the
number in the following line of “sbrk.h”.

#define HEAPSIZE 0x400

You can select the way to generate the main function in [Generate main() Function].

• When you have selected Application for the project type, you can select from the following the
type of main function to generate:

 C source file

 C++ source file

 None

• When you have selected Assembly Application for the project type, you can select from the
following the type of the main function to generate:

 Assembly source file

 None

If you select checkbox [I/O Register Definition Files], the Project Generator generates an I/O
register definition file written in C language. Then you can set [Generate Hardware Setup
Function].

When you have selected Assembly Application for the project type, you cannot use [Use Heap
Memory] and [I/O Register Definition Files].

Different types of files will be created by the Project Generator depending on what you set in the
this dialog box and what you select for the project type. If you select a checkbox in tables 1.2 and
1.3, the Project Generator will create the corresponding files.

Rev. 1.0, 12/00, page 10 of 64

Table 1.2 The Relationship between the Dialog Box Settings and the Generated Files
(Application Project)

Control Stage Generated File

[Use I/O Library] Selected lowlvl.src
lowsrc.c

[Number of I/O Streams:] Numeric lowsrc.h

[Use Heap Memory] Selected sbrk.c

[Heap Size:] Enter a value sbrk.h

[Generate main() Function] C source file
C++ source file
None

tutorial.c
tutorial.cpp

When Project Generator
creates a file, the project name
becomes the file name.

[I/O Register Definition Files] Selected iodefine.h

[Generate Hardware Setup
Function]

None
Assembly source file
C/C++ source file


hwsetup.src
hwsetup.c (or cpp)
(same file extension as the
main function file)

Table 1.3 The Relationship between the Dialog Box Settings and the Generated Files
(Assembly Application Project)

Control Stage Generated File

[Use I/O Library] Selected lowlvl.src

[Number of I/O Streams:] Nothing can be entered 

[Use Heap Memory] Cannot be selected 

[Heap Size:] Nothing can be entered 

[Generate main() Function] Assembly source file
None

tutorial.src

When Project Generator
creates a file, the project name
becomes the file name.

[I/O Register Definition Files] Cannot be selected 

[Generate Hardware Setup
Function]

Cannot be selected 

Note: To use the main (_main) function that has already been generated, you must not select
[Generate main() Function], and add the corresponding file to the project to generate a
project. To use another function that has already been generated, you must modify the
function calling section in the resetprg.src.

Rev. 1.0, 12/00, page 11 of 64

1.2.4 Setting the Standard Library

When you click [Next >] in the Step 3 dialog box, the Project Generator will display the dialog
box shown in figure 1.7.

Figure 1.7 Setting Standard Library in Project Generator (Step 4)

In this dialog box, you can set the standard library to use in the Project Generator. When you build
a project, the Project Generator will create the standard library according to the items you have
selected in [Library].
If you want to modify the settings after you have created the project, modify the library through
the option setting dialog box (select [Options -> H8S, H8/300 Library Generator…] in HEW) of
the standard library generator.
In this tutorial, do not set anything and click [Next >]. The Project Generator will display the Step
5 dialog box (setting stack area).

Rev. 1.0, 12/00, page 12 of 64

1.2.5 Setting Stack Area

When you click [Next >] in the Step 4 dialog box, the Project Generator will display the dialog
box shown in figure 1.8.

Figure 1.8 Setting Stack Area in Project Generator (Step 5)

In this dialog box, you can set the stack area.
In this tutorial, do not set anything and click [Next >]. The Project Generator will display the Step
6 dialog box (setting vector definition).

You can enter a value in hexadecimal or decimal in [Stack Pointer Address:] and [Stack Size:].
Enter a value as follows:

H’ABCDE: Hexadecimal
0xABCDE: Hexadecimal
1234: Decimal

Rev. 1.0, 12/00, page 13 of 64

If you enter a value in [Stack Size:], it will be set in stacksct.h (when you have selected Assembly
Application for the project type: stacksct.src). If you enter a value in [Stack Pointer Address:] and
[Stack Size:], the Project Generator will determine the start address of the stack section by using
the start option of the optimizing linkage editor. The start address of the stack section will be
determined as follows:

Stack section name: S (when you have selected Assembly Application for the project type:
Stack)
Start section address = value of [Stack Pointer Address:] – value of [Stack Size:]

To modify the stack size after you have created the project, modify the stack area size of stacksct.h
(or stacksct.src) and modify the start address of the start section by using the start option in the
option dialog box (select [Options -> Optlinker…] in HEW) of the optimizing linkage editor.

stacksct.h

#pragma stacksize 0x200

stacksct.src

.section Stack,STACK

.export _PowerON_Reset_SP

.export _Manual_Reset_SP

StackEND: .res.b H'200 -----> Stack area size

_PowerON_Reset_SP: .equ $

_Manual_Reset_SP: .equ $

.end

Rev. 1.0, 12/00, page 14 of 64

1.2.6 Setting the Vector

When you click [Next >] in the Step 5 dialog box, the Project Generator will display the dialog
box shown in figure 1.9.

Figure 1.9 Setting Vector in Project Generator (Step 6)

In this dialog box, you can set the vector.
In this tutorial, do not set anything and click [Next >]. The Project Generator will display the Step
7 dialog box (confirming generated files).

When you select [Vector Definition Files], the Project Generator will create interrupt programs
such as reset program. When you have selected Assembly Application for the project type, you
can modify the reset vector by [Vector Handlers:].

The [Handler] column in [Vector Handlers:] shows the handler program name, and the [Vector]
column explains the vector. When you are going to use a handler program that you have created
by yourself, enter the program name after you have selected the handler program by clicking it in
the dialog box.

Rev. 1.0, 12/00, page 15 of 64

If you modify the handler name of [Vector Handlers:], the Project Generator will not create reset
program file (resetprg.src).

If you select [Vector Definition Files], the Project Generator will create the following files:

Application project
 intprg.c (interrupt program)
 resetprg.c (reset program)
Assembly Application project
 vecttbl.src (vector table)
 intprg.src (interrupt program)
 vect.inc (definition for interrupt program reference)
 resetprg.src (reset program)

To edit the interrupt program or modify other programs after you have created the project, modify
the source file according to the following procedure:

• Editing the interrupt program of Application project

 The reset program is written in C language in file resetprg.c. You can add processes to the
file as required. The file includes only easy initial settings such as section initialization.

 The interrupt program is written in C language in file intprg.c. Both files include only the
program names, so you must write the necessary processes.

• Changing the interrupt program of Application project into another program

 To change the interrupt programs into other programs, you must delete the unnecessary
functions from the reset program and interrupt programs and add new functions to be used
as an interrupt function.

• Editing the interrupt program of the Assembly Application project

 The reset program is written in assembly language in file resetprg.src. You can add
processes to the file as required. The file includes only easy initial settings such as section
initialization and stack register settings.

 The interrupt program is written in assembly language in file intprg.src. Both files include
only the program names, so you must write the necessary processes.

• Changing the interrupt program of the Assembly Application project into another program

 To modify the interrupt programs, you must modify the labels (assembly module name)
that corresponds to the target interrupt to be modified. Those labels are in vect.inc and
vecttbl.src. Furthermore, you must delete the same module from the interrupt module file
(intprg.src) and add a new module (or file including module) to be used as an interrupt
program.

Rev. 1.0, 12/00, page 16 of 64

Example: To modify vector 7 program (_INT_NMI) to _USER_NMI

vect.inc

 .

 .

 ;7 NMI

 .global _INT_NMI ---> changed to .global _USER_NMI

 .

 .

vecttbl.src

 .

 .

 ;7 NMI

 .data.l _INT_NMI ---> changed to .data.l _USER_NMI

 .

 .

intprg.src

 .

 .

;7 NMI

_INT_NMI ---> delete _INT_NMI and add a file that
 ---> _USER_NMI was written to, in the
 ---> project.

 .

 .

Rev. 1.0, 12/00, page 17 of 64

1.2.7 Modifying Generated File Name

When you click [Next >] in the Step 6 dialog box, the Project Generator will display the dialog
box shown in figure 1.10.

Figure 1.10 Confirming Generated File Name in Project Generator (Step 7)

This dialog box will be the last one in the New Project wizard. It will display all of the files that
have been created by the Project Generator. The [File Name] column in the list shows the file
names, the [Extension] column shows the extensions, and the [Description] column explains the
files. The file names can be modified. To change the file names, enter the new name after
selecting the file name.

In this tutorial, do not set anything and click [Next >]. The Project Generator will display the
Summary dialog box.

Note: When the extension in [Extension] is .h or .inc, this shows that the file is an include file.
To modify the names of these files, you must modify the include statements included in
these files.

Rev. 1.0, 12/00, page 18 of 64

1.2.8 Confirming Settings

When you click [Finish] in the Step 7 dialog box, the Project Generator will display the dialog box
shown in figure 1.11.

Figure 1.11 Summary Dialog Box in Project Generator

[Project Summary:] displays the settings that have been made. Confirm the contents and click
[OK]. To modify the settings, click [Cancel].

The Project Generator will output the displayed contents as text files (Readme.txt). When the
Project Generator does not output anything, uncheck the check box [Generate Readme.txt as a
summary file in the project directory]. When you click [OK], the Project Generator will create the
project.

Rev. 1.0, 12/00, page 19 of 64

HEW opens the projects in which files generated by the project generator are installed. The start
window of HEW is divided into windows such as the work space window, which shows the
contents of the project (left side of the window), output window, which shows the results of build
and string literal detection among files (bottom part of the window), and editor window, which is
used to edit the text file (right side of the window). For details on modifying the state of HEW
window or the functions of windows including the editor window, refer to Hitachi Embedded
Workshop User’s Manual.

Figure 1.12 HEW Window Configuration

Rev. 1.0, 12/00, page 20 of 64

When the Project Generator creates a project, the Project Generator sets basic options for the tools
to perform a build such as the standard library generator, C/C++ compiler, assembler, and
optimizing linkage editor. Therefore, it is possible to perform build by selecting [Build->Build]
immediately after creating a project. See figure 1.13.

You can also perform a build by using the following button on the toolbar.

These basic options are defined as the default for each tool, so you do not have to set them except
for the options that must be set for each file after it has been added to the project.

Figure 1.13 Window of Build

Rev. 1.0, 12/00, page 21 of 64

1.3 Modifying the Project

When you create a project using the project generator, basic program such as reset routine and
initialization routine of RAM area will already be given in the project. This tutorial describes how
to modify a file and how to add a file to the project.

1.3.1 Editing and Creating a Source Program File

To open and edit a file in the project, double click the file in the [Projects] tab of the “Workspace”
window. In this tutorial, double click “tutorial.c” (figure 1.14).

Figure 1.14 Opening a Project File

Rev. 1.0, 12/00, page 22 of 64

Then you can edit the file opened. If you edit the file, an asterisk (*) will be added to the file path
shown on the title bar of the HEW (figure 1.15). If you save the file, the asterisk will disappear.

Figure 1.15 Editing a Project File

If you want to open an existing text file with the editor of the HEW, select [File->Open]. If you
want to edit a new text file with the editor, select [File->New]. In this tutorial, select [File->New],
input the three lines shown below, select [File->Save As…] and save the file as “newprog.c”.

 void NewProgram(void)

{

}

Rev. 1.0, 12/00, page 23 of 64

1.3.2 Adding / Removing a File To / From a Project

This section describes how to add a file to a project and how to delete a file from a project. In this
tutorial, add the file, “newprog.c” created in the previous section to the project as follows.
Select [Project->Add Files…], then the “Add File(s)” dialog box (figure 1.16) will be launched.
Select a file, “newprog.c” in this example, to be added and click the [Add] button. Thus
“newprog.c” will be added to the project.

Figure 1.16 Adding a File To a Project

Rev. 1.0, 12/00, page 24 of 64

The added file will be displayed on the [Projects] tab of the “Workspace” window as shown in
figure 1.17.

Figure 1.17 Project With a File Added

Rev. 1.0, 12/00, page 25 of 64

Next, how to delete a file from a project will be shown. Select [Project->Remove File…], then the
“Remove Project Files” dialog box (figure 1.18) will be displayed. Select one or more project files
on this dialog box and click the [Remove] button. Then the selcted file(s) will disappear from the
list of the dialog box. Clicking [OK] actually removes the file(s) from the project. Clicking
[Cancel] instead will nullify the removal.

You have another way to delete a file from a project. Select the file in the [Projects] tab of the
“Workspace” window and press the [Delete] key. Then the file will be deleted from the project. In
this way, you cannot cancel the deletion although you can cancel it on the [Remove Project Files]
dialog box.

If you want to exclude a file from a build temporarily instead of removing the file from the
project, refer to section 1.4.4, “Excluding a Project File”.

Figure 1.18 Remove Project Files Dialog Box

Rev. 1.0, 12/00, page 26 of 64

1.3.3 File Groups Used in a Project

In this section, a file group to which a file added to a project belongs is described. For example,
the project generator adds a file described in C programming language or assembly language to
the project. A file with a file extension “.c” belongs to the “C source file” group, and a file with a
file extension “.src” belongs to the “Assembly source file” group.

The HEW identifies a group to which a file belongs by checking the file extension. Select
[Project->File Extensions…], then the “File Extensions” dialog box (figure 1.19) will be
displayed. File extensions used in the project are shown on this dialog box. Every file extension
belongs to a file group. A file group can be associated to a tool in a build process.

If you want to use your own file extension in the project, define a new file extension by clicking
the [Add…] button.

The following icon displayed in the [Extension] column of the “File Extensions” dialog box can
show a tool which opens the file. If the icon of a file extension is the same as the icon shown
below, a file with that file extension can be opened by the editor of the HEW.

Figure 1.19 File Extensions Dialog Box (Initial Screen)

Click the [Add…] button on the “File Extensions” dialog box, then the “Define File Extension”
dialog box (figure 1.20) will be launched. Enter a new file extension in the [File extension] field
and specify the [File group] group box. If you want to add an extension to an existing file group,

Rev. 1.0, 12/00, page 27 of 64

select the [Existing group] radio button and select a file group from the drop-down list. If you
want to create a new file group, select the [New group] radio button and enter the name of the file
group in the edit field.

In this tutorial, enter “asm” in the [File extension] field, select “Assembly source file” from the
drop-down list and click [OK]. Then a file with the extension, “*.asm”, will be treated as a file in
the “Assembly source file” group (figure 1.21).

Figure 1.20 Define File Extension Dialog Box

Figure 1.21 File Extension Dialog Box (After Adding an File Extension)

Rev. 1.0, 12/00, page 28 of 64

1.3.4 Customizing the Workspace Window

Click the right mouse button on the [Projects] tab of the “Workspace” window, then a pop-up
menu will be displayed. Select [Configure View…] on this menu, then “Configure View” dialog
box (figure 1.22) will be launched. On this dialog box, you can specify whether the file
dependencies are shown for each file or not, whether a file is shown in a file group folder (figure
1.23) or not, and so on, can be selected.

Figure 1.22 Configure View Dialog Box

Figure 1.23 Configuration of the Workspace Window

Rev. 1.0, 12/00, page 29 of 64

1.4 Building a Project

1.4.1 Build Overview

The HEW provides two ways in building a project. One is “Build All”, which applies a series of
tools like a compiler, an assembler and a linker to all the source program files. The other is
“Build”, which applies a tool only to a source program file updated after the last build.
(The update means not only the update of a source program file, but also an update of a file
included by the source program file and an update of an option applied to the source program file.)
The “Build” corresponds to [Build->Build] and the “Build All” corresponds to [Build->Build All].
If you want to compile or assemble a single source program file, select the file on the [Projects]
tab of the “Workspace” window and select [Build->Build File].

CAUTION ON BUILD

1. Depending of the setting of the editor window, a file being edited might be saved on executing
a build. So close a file which you do not want to be saved beforehand. For details of
customizing the editor, refer to the Hitachi Embedded Workshop User’s Manual.

2. Do not save a file used in a project during the build because doing so might disturb the build
process.

Rev. 1.0, 12/00, page 30 of 64

1.4.2 Setting Options

In this section, overview of the option setting is described.

When the project generator generates a project, the minimum options required for a build are
already specified. If you want to modify the options, however, select [Options-> <Tool name>]
and set options on the option dialog box of each tool.

Figure 1.24 shows the option dialog box of a C/C++ compiler. On the left hand side of the dialog
box is a file list, and on the right hand side are option controls divided into some tabs. If you
select a file in the file list, you can specify options only to the selected file. If you select a file
group folder in the file list, you can specify the same option to all the files in the file group. To
specify the same options to specific files, select the files while pushing the [Ctrl] key or the [Shift]
key.

If you select “Default Options” in a file group folder, you can specify initial options for the file
group. The HEW automatically adds the options specified to the “Default Options” to a file of the
corresponding file group of the corresponding file extension of the file. For example, if you add a
file with an extension “C” (“*.C”) to the project, the settings of the “Default Options” of the “C
source file” group will be added to the file automatically. For the details of the options refer to the
manual of the corresponding tool.

Figure 1.24 Option Dialog Box of C/C++ Compiler

Rev. 1.0, 12/00, page 31 of 64

1.4.3 Customizing the Configuration

In the previous section, how to set options to a project file is described. In this section, how to
create more than one suite of option settings for a build will be described. A suite of option
settings for a build is called a configuration.

The project generator creates two configurations, [Debug] and [Release]. Difference between them
is only the setting of the debug option. To switch the current configuration to another, launch the
“Build Configurations” dialog box (figure 1.25) by selecting [Options-> Build Configurations…],
select a configuration from the “Current configuration” drop-down list, and click [OK]. You can
also change the current configuration by selecting one from the drop-down list on the toolbar.

On the “Build Configurations” dialog box, you can create a new configuration or delete a
configuration. For details, refer to chapter 2, “Build Basics”, of the Hitachi Embedded Workshop
User’s Manual.

Figure 1.25 Build Configurations Dialog Box

Rev. 1.0, 12/00, page 32 of 64

1.4.4 Excluding a Project File from Build

In this section, how to exclude a project file from build will be described. Excluding a project file
from build does not delete the file from a project, but exclude a project file from build in
configuration by configuration basis.

Select a file on the “Projects” tab of the “Workspace” window, click the right mouse button, and
select [Exclude Build <file>] on the pop-up menu. Then a red cross will be added to the icon of
this file as shown in figure 1.26. This file will be excluded from a build.

To include an excluded file into build, select the file on the “Projects” tab of the “Workspace”
window, click the right mouse button, and select [Include Build <file>] on the pop-up menu.

Figure 1.26 Excluding a Project File from Build

Rev. 1.0, 12/00, page 33 of 64

1.4.5 Correcting Errors in a Build

In this section, how to jump to a line of a file which caused an error in compiling or assembling
will be described.

Figure 1.27 shows an example in which a compiler detected a syntax error in a source program
file. When you build a project, messages, including error messages, from a tool in a build will be
displayed on the “Output” window. If you double click the line of the error message on the [Build]
tab of the “Output” window, the file which caused the error will be opened and the cursor will be
placed on the line which caused the error. (The cursor might not be placed on the line which
caused the error if you have already edited the file.)

Figure 1.27 Correcting the Line which Caused an Error

Rev. 1.0, 12/00, page 34 of 64

1.5 HDI Interface

1.5.1 Launching HDI

The HEW can launch the HDI (Version 4.0 or greater). To register the HDI in the HEW, open the
[Debugger] tab (figure 1.28) of the “Tools Customize” dialog box which is launched by selecting
[Tools->Customize…]. Specify the path of the HDI.EXE in the [HDI location (V4.0 or greater)]
field. In the [Session file] field, specify the path of the session file to be loaded. How to generate a
session file is shown in the H8S,H8/300 Series Simulator/Debugger User’s Manual. If you set the
two fields, the toolbar button shown below will be activated. Thus clicking the button will launch
the HDI and it will load the session file.

If you specify the path of the load module file on the [Download module] field, the HDI will be
focused immediately after the load module file is updated by the HEW.

Figure 1.28 Tools Customize Dialog Box, Debugger Tab

Rev. 1.0, 12/00, page 35 of 64

If you double click a line on the source window (figure 1.29) of the HDI, the corresponding file
will be opened by the HEW and the cursor will be placed on the same line as you have double
clicked.

Figure 1.30 shows the HEW after the line of “void main(void)” of “tutorial.c” is double clicked on
the source window of the HDI.

Figure 1.29 Source Window of the HDI

Rev. 1.0, 12/00, page 36 of 64

Figure 1.30 The Editor Windows of the HEW Opened by the HDI

Rev. 1.0, 12/00, page 37 of 64

1.5.2 Demonstration Project

If, when creating a project, you choose Demonstration as the project type in the New Project
Workspace (figure 1.3), you can create a sample project that has a Simulated I/O function of the
HDI Simulator/Debugger. This project uses the standard printf output function to display the
status of program execution and data on function main.

After you have set the debugging environment via the HDI, you must set the system configuration
before using the Simulated I/O function by using the System Configuration Dialog Box (open this
dialog box by selecting [Setup -> Configure Platform…]).

Select the [Enable] checkbox for the System Call Address in this dialog box and enter the value of
SIM_IO, as defined in lowlvl.src by HEW, as the address. The address may vary according to the
type of CPU.

SIM_IO: .EQU H'0000 (In this case, 0 is entered as the address.)

If you open the Simulated I/O Window in the HDI (open this window by selecting [View ->
Simulated I/O]) and run the demonstration program, you can debug the program by using the
Simulated I/O function.

For details, refer to the H8S,H8/300 Series Simulator/Debugger User’s Manual.

Figure 1.31 HDI System Configuration Dialog Box

Rev. 1.0, 12/00, page 38 of 64

1.6 Exiting From the HEW

Selecting [File->Exit] will close the HEW. Depending on the setting, the message box (figure
1.32) which asks you whether to save the workspace or not will be launched. Not only the setting
like this regarding exiting from the HEW but also setting regarding initiation of the HEW can be
specified via [Tools->Options…]. For details, refer to the Hitachi Embedded Workshop User’s
Manual.

The HDI and the other tools launched from the HEW will not be closed when the HEW is closed.
Close the tools by yourself.

Figure 1.32 Confirmation Dialog Box for Saving Workspace on Exiting from the HEW

Rev. 1.0, 12/00, page 39 of 64

Section 2 HDI Tutorial

2.1 Using the HDI with the Simulator/Debugger

The following describes a sample program debugging session, designed to introduce the main
features of the simulator/debugger used in conjunction with the Hitachi Debugging Interface
(HDI) software.

2.1.1 Introduction

This sample program is based on a C program that sorts ten random data items first in ascending
order, then in descending order.

The sample program performs the following actions:

• With the main function, random data to be sorted is generated.

• With the sort function, an array is input, within which the random data generated by the
main function is stored, and the data is sorted in ascending order.

• With the change function, the array generated by the sort function is input, and the data is
sorted in descending order.

The sample program is provided on the installation disk as file sort.c. A compiled version of
the tutorial is provided in file sort.abs .

2.1.2 Running HDI

Run the HDI interface software independently and not from the Hitachi Embedded Workstation
(HEW) since the sample program is used to explain the functions of the HDI.

To run the HDI interface software, double-click the [HDI for Simulator] icon.

Figure 2.1 Icon of HDI for Simulator

2.1.3 Selecting the Target

The HDI can be extended to support multiple target platforms. If your system is set up for more
than one platform, you will be prompted to choose a platform for the current session.

Rev. 1.0, 12/00, page 40 of 64

Figure 2.2 Select Session Dialog Box

For this tutorial, select H8S/2600A Simulator and click the [OK] button to continue.

Note that you can change the target platform at any time by choosing [New Session…] from the
[File] menu. If you have only one platform installed, this menu option will not be available.

When the simulator/debugger has been successfully set up, the Hitachi Debugging Interface
window will be displayed, with the message "Link up" in the status bar. Figure 2.3 shows the key
functions of the window:

Figure 2.3 Hitachi Debugging Interface Window

Rev. 1.0, 12/00, page 41 of 64

The key functions of Hitachi Debugging Interface are described in the following sections.

Menu bar: Give you access to the HDI commands for using the HDI debugger.

Toolbar: Provides convenient buttons as shortcuts for the most frequently used HDI commands.
Tool buttons from the same menu are displayed in the same block. The tool buttons can
be moved within the toolbar by clicking dragging them. Whether to display the tool
buttons can be selected by using the [Toolbar] option in the [Customize] submenu in
the [Setup] menu.

Source window: Displays the source of the program being debugged.

Status bar: Displays the status of the simulator/debugger, and progress information about
downloading.

Help button: Activates context sensitive help about any feature of the HDI user interface.

2.1.4 Mapping the Memory Resource

The next step is to map the memory resource used to operate an application being developed.

• Choose [Configure Map...] from the [Memory] menu to display the current memory
mapping.

Figure 2.4 Memory Map Dialog Box

• Clicking the [Add] button displays the System Memory Resource Modify dialog box.

Rev. 1.0, 12/00, page 42 of 64

Figure 2.5 System Memory Resource Modify Dialog Box

Rev. 1.0, 12/00, page 43 of 64

In the [Access type] box, you can specify one of the following three access types:

 Read: Only read enabled

 Write: Only write enabled

 Read/Write: Read and write enabled

For this tutorial, map the memory area of addresses ranging from H'00000000 to H'00003FFF
as a read/write enabled area.

• Edit the [Start address] and [End address] fields to H'00000000 and H'00003FFF,
respectively, set the [Access type] as [Read/Write] , and click the [OK] button.

The Memory Map dialog box will now show the modified ranges.

• Click the [Close] button to close the dialog box.

2.1.5 Downloading the Tutorial Program

• To open the Load Program dialog box, choose [Load Program...] from the [File] menu.

Figure 2.6 Load Program Dialog Box

• In [File name], enter the path for the directory where file sort.abs is stored, or click the
[Browse...] button to open the Open dialog box and select the file sort.abs and click the
[Open] button.

Rev. 1.0, 12/00, page 44 of 64

Figure 2.7 Open Dialog Box (Load Program...)

• Click the [Open] button in the Load Program dialog box.

When the file has been loaded, the following dialog box displays information about the
memory areas that have been filled with the program code.

Figure 2.8 HDI Dialog Box

• Click the [OK] button to continue.

2.1.6 Displaying the Source Program

The HDI allows you to debug a program at the source level, so that you can see a listing of the C
program alongside the machine code as you debug. To do this, read the C source file that
corresponds to the object file.

• Choose [Source...] from the [View] menu.

• You will be prompted for the C source file that corresponds to the object file you have loaded.

Rev. 1.0, 12/00, page 45 of 64

Figure 2.9 Open Dialog Box (Source...)

• Select sort.c and click the [Open] button to display the Source window.

Figure 2.10 Source Window (Displaying the Source Program)

Rev. 1.0, 12/00, page 46 of 64

• If necessary, choose the [Font] option from the [Customise] submenu on the [Setup] menu to
choose a font and size suitable for your computer.

Initially the Source window shows the start of the main program, but you can use the scroll bar to
scroll through the program to see the other statements.

2.1.7 Setting a PC Breakpoint

The Source window provides a very simple way of setting a breakpoint at any point in a program.
For example, to set a breakpoint at the sort function call:

• Double-click the [BP] column on the line containing the sort function call.

Figure 2.11 Source Window (Setting the Breakpoint)

The mark • will be displayed on the line containing the sort function to show that a PC
breakpoint is set at that address.

2.1.8 Setting Trace Information Acquisition Conditions

• Choose [Trace] from the [View] menu to open the Trace window. Click the right mouse
button on the Trace window and choose [Acquisition] from the pop-up menu.

The following Trace Acquisition dialog box is displayed.

Rev. 1.0, 12/00, page 47 of 64

Figure 2.12 Trace Acquisition Dialog Box

• Set [Trace start/Stop] to [Enable] in the Trace Acquisition dialog box, and click the [OK]
button to make the trace information acquisition effective.

2.1.9 Setting Performance Analysis

• Choose [Performance Analysis] from the [View] menu to open the Performance Analysis
window. Click the right mouse button on the Performance Analysis window and choose
[Add Range...] from the pop-up menu.

• The following Performance Option dialog box will be displayed.

Figure 2.13 Performance Option Dialog Box

• Set [Function Name] as sort in the Performance Option dialog box, and click the [OK]
button.

In the Performance Analysis window, sort(long*) is then set in [Function] .

Rev. 1.0, 12/00, page 48 of 64

Figure 2.14 Performance Analysis Window (Setting)

• Click the right mouse button on the Performance Analysis window and choose [Analysis
Enabled] from the pop-up menu to activate the performance analysis information acquisition.

• Click [X] in the title bar to close the window.

2.1.10 Setting the Stack Pointer

Set the stack pointer to run the program.

• Choose [Registers] from the [View] menu to open the Registers window.

• Double-click the [Value] column of [ER7] in the Registers window to modify the value of the
stack pointer ER7.

The following dialog box enables the value to be modified.

Figure 2.15 Register Dialog Box

• Set H'4000 for the value of the stack pointer in this sample program, and click the [OK]
button.

Rev. 1.0, 12/00, page 49 of 64

2.1.11 Executing the Program

• To run the program, choose [Go] from the [Run] menu, or click the [Go] button on the toolbar.

Figure 2.16 Go Button

The program will be executed up to the breakpoint you inserted, and a statement will be
highlighted in the Source window to show that the program has halted, with the message
Break=PC Breakpoint in the status bar.

Figure 2.17 Source Window (Break Status)

Rev. 1.0, 12/00, page 50 of 64

When you start the HDI by clicking the Launch Debugger button in the HEW (see section
1.5, HDI Interface), you can display and edit the source file displayed on the source window
through the HEW text editor by double-clicking the [Source] column in the Source window.
In the tutorial sample program, this can be done by compiling and linking sample program
sort.c .

You can see the cause of termination in the System Status window.

• Choose the [Status] button from the [View] menu to open the System Status window. Then
choose the [Platform] sheet in the System Status window.

Figure 2.18 System Status Window

This shows the following execution results:

(1) The cause of the break was a PC Breakpoint.

(2) Execution started from the instruction execution reset.

(3) The number of instructions executed by the GO command was 719.

(4) The number of cycles executed from the pipeline reset was 7,311.

Rev. 1.0, 12/00, page 51 of 64

You can also see the value of the registers in the Registers window.

• Choose [Registers] from the [View] menu.

Figure 2.19 Registers Window

You can see the value of each register at the program stop.

2.1.12 Using the Trace Buffer

The trace buffer allows us to look back over previous execution cycles to see what accesses took
place.

• Open the Trace window by choosing [Trace] from the [View] menu. Scroll up the window so
that you can see the first few cycles.

• If necessary, choose the [Font] option from the [Customise] submenu on the [Setup] menu to
choose a font and size suitable for your computer.

Figure 2.20 Trace Window (Displaying Trace Information)

Rev. 1.0, 12/00, page 52 of 64

You can see that execution started at address 0, the start of the main function.

2.1.13 Trace Search

Click the right mouse button on the Trace window and choose [Find...] from the pop-up menu to
open the Trace Search dialog box.

Figure 2.21 Trace Search Dialog Box

A trace search is executed by specifying the search item [Item] and search contents [Value] then
clicking the [OK] button. When the corresponding trace information is found, the first line of the
information is highlighted. When continuing trace search with the same contents, click the right
mouse button on the Trace window and choose [Find Next] from the pop-up menu. The next
corresponding line is highlighted.

Figure 2.22 Trace Window (Search Results)

Rev. 1.0, 12/00, page 53 of 64

2.1.14 Reviewing Breakpoints

You can see a list of all the breakpoints set in the program in the Breakpoints window.

• Choose [Breakpoints] from the [View] menu.

Figure 2.23 Breakpoints Window

The Breakpoints window also allows you to enable and disable breakpoints, define new
breakpoints, and delete breakpoints.

• Close the Breakpoints window.

2.1.15 Viewing Memory

You can view the contents of a memory block in the Memory window. For example, to view the
memory corresponding to array main in word size:

• Choose [Memory…] from the [View] menu, enter main in the [Address] field, and set
[Format] as Word.

Figure 2.24 Open Memory Window Dialog Box

• Click the [OK] button to open the Word Memory window showing the specified area of
memory.

Rev. 1.0, 12/00, page 54 of 64

Figure 2.25 Word Memory Window

2.1.16 Watching Variables

You can view the contents of variables in the Watch window.

For example, set a watch on the long-type array “a” declared at the beginning of the program, by
using the following procedure:

• Position the cursor to the left of “a” in the Source window.

• Click the right mouse button on the Source window and choose [Instant Watch...] from the
pop-up menu.

The following dialog box will be displayed.

Figure 2.26 Instant Watch Dialog Box

• Click [Add Watch] to add a variable to the Watch window.

Rev. 1.0, 12/00, page 55 of 64

Figure 2.27 Watch Window (Displaying the Array)

You can also add a variable to the Watch window by specifying its name.

Rev. 1.0, 12/00, page 56 of 64

• Click the right mouse button on the Watch window and choose [Add Watch...] from the pop-
up menu.

The following dialog box will appear.

Figure 2.28 Add Watch Dialog Box

• Type variable max and click the [OK] button.

The Watch window will now also show the int-type variable max.

Figure 2.29 Watch Window (Displaying the Variable)

You can double-click the + symbol to the left of array “a” in the Watch window to expand the
variable and show the individual elements in the array.

Figure 2.30 Watch Window (Displaying Array Elements)

Rev. 1.0, 12/00, page 57 of 64

2.1.17 Stepping Through a Program

The simulator/debugger provides a range of step menu commands that allow efficient program
debugging.

Table 1.1 Step Menu Commands

Menu Command Description

Step In Executes every statement, including statements within functions.

Step Over Executes a function call in a single step.

Step Out Steps out of a function, and stops at the statement following that called
the function in the program.

Step… Steps repeatedly at a specified rate.

To demonstrate program stepping, confirm that the sort function statement at address
H’00000062 has been executed.

Figure 2.31 Source Window (Stepping)

Clicking the [◊] button in the title bar of the Watch window automatically places the Watch
window next to the Source window as shown in Figure 2.31.

Rev. 1.0, 12/00, page 58 of 64

Executing [Step In]: The [Step In] command steps through the called function and stops at the
first statement of the called function.

• To step through the sort function, choose [Step In] command from the [Run] menu, or click
the [Step In] button in the toolbar.

Figure 2.32 Step In Button

Figure 2.33 Source Window (Step In)

• The highlighted line moves to the first statement of the sort function in the Source window.

Executing [Step Out]: The [Step Out] command steps out of the called function and stops at the
next statement in the calling program.

• To step out of the sort function, choose the [Step Out] command from the [Run] menu, or
click the [Step Out] button in the toolbar.

Figure 2.34 Step Out Button

Rev. 1.0, 12/00, page 59 of 64

Figure 2.35 Source Window (Step Out)

• The data of variable “a” displayed in the Watch window is sorted in ascending order. In the
Watch window, the values of the modified variables are shown in red.

Rev. 1.0, 12/00, page 60 of 64

• To execute two steps, use [Step In].

Figure 2.36 Source Window (Step Out −>−>−>−> Step In)

• The value of max displayed in the Watch window is modified to the maximum data value.

Executing [Step Over]: The [Step Over] command executes a function call as a single step and
stops at the next statement in the main program.

• To demonstrate [Step Over] command, execute two steps to reach the change function
statement.

Rev. 1.0, 12/00, page 61 of 64

Figure 2.37 Source Window (Before Step Over Execution)

Rev. 1.0, 12/00, page 62 of 64

• To step through all statements in the change function at a time, choose [Step Over] command
from the [Run] menu, or click the [Step Over] button in the toolbar.

Figure 2.38 Step Over Button

Figure 2.39 Source Window (Step Over)

When the last statement of the change function is executed, the data of variable “a”, which is
displayed in the Watch window, is sorted in descending order.

2.1.18 Displaying Local Variables

You can display local variables in a function using the Locals window. For example, we will
examine the local variables in the main function, which declares five local variables: a, j , i ,
min , and max.

• Open the Locals window by choosing [Locals] from the [View] menu.

Initially, the Locals window is empty because local variables have not yet been declared.

• Choose [Step In] from the [Run] menu to execute a single step.

The Locals window will now show the local variables and their values.

Rev. 1.0, 12/00, page 63 of 64

Figure 2.40 Locals Window

• Double-click the + symbol in front of array “a” in the Locals window to show the individual
elements of array “a”.

• Refer to the elements of array “a” before and after the execution of the sort function, and
confirm that random data is sorted in ascending or descending order.

2.1.19 Reviewing the Performance Analysis

You can see the performance analysis results of functions in the Performance Analysis window.

• Choose [Performance Analysis] from the [View] menu.

Figure 2.41 Performance Analysis Window (Viewing)

In this window, [Cycle] shows the total number of execution cycles required for the sort
function, and [%] shows the ratio of execution cycle count required for the function to the
execution cycle count required for the whole program.

The Performance Analysis window allows you to enable and disable the performance
analysis, define new functions for performance analysis, and delete functions.

• Close the Performance Analysis window.

Rev. 1.0, 12/00, page 64 of 64

2.1.20 Saving the Session

Before exiting, it is a good practice to save your session, so that you can resume with the same
conditions in your next debugging session.

• Choose [Save Session] from the [File] menu.

• Choose [Exit] from the [File] menu to exit from the HDI.

H8S, H8/300 Series
High-performance Embedded Workshop,
Hitachi Debugging Interface Tutorial

Publication Date: 1st Edition, December 2000
Published by: Electronic Devices Sales & Marketing Group
 Semiconductor & Integrated Circuits
 Hitachi, Ltd.
Edited by: Technical Documentation Group
 Hitachi Kodaira Semiconductor Co., Ltd.
Copyright © Hitachi, Ltd., 2000. All rights reserved. Printed in Japan.

	Cover
	Preface
	Contents
	Section 1 HEW Tutorial
	1.1 Invoking the HEW
	1.2 Creating a Project
	1.2.1 Selecting a CPU
	1.2.2 Setting Options Unique to the CPU
	1.2.3 Setting the Generating Files
	1.2.4 Setting the Standard Library
	1.2.5 Setting Stack Area
	1.2.6 Setting the Vector
	1.2.7 Modifying Generated File Name
	1.2.8 Confirming Settings

	1.3 Modifying the Project
	1.3.1 Editing and Creating a Source Program File
	1.3.2 Adding / Removing a File To / From a Project
	1.3.3 File Groups Used in a Project
	1.3.4 Customizing the Workspace Window

	1.4 Building a Project
	1.4.1 Build Overview
	1.4.2 Setting Options
	1.4.3 Customizing the Configuration
	1.4.4 Excluding a Project File from Build
	1.4.5 Correcting Errors in a Build

	1.5 HDI Interface
	1.5.1 Launching HDI
	1.5.2 Demonstration Project

	1.6 Exiting From the HEW

	Section 2 HDI Tutorial
	2.1 Using the HDI with the Simulator/Debugger
	2.1.1 Introduction
	2.1.2 Running HDI
	2.1.3 Selecting the Target
	2.1.4 Mapping the Memory Resource
	2.1.5 Downloading the Tutorial Program
	2.1.6 Displaying the Source Program
	2.1.7 Setting a PC Breakpoint
	2.1.8 Setting Trace Information Acquisition Conditions
	2.1.9 Setting Performance Analysis
	2.1.10 Setting the Stack Pointer
	2.1.11 Executing the Program
	2.1.12 Using the Trace Buffer
	2.1.13 Trace Search
	2.1.14 Reviewing Breakpoints
	2.1.15 Viewing Memory
	2.1.16 Watching Variables
	2.1.17 Stepping Through a Program
	2.1.18 Displaying Local Variables
	2.1.19 Reviewing the Performance Analysis
	2.1.20 Saving the Session

