
BASICS OF THE RENESAS
SYNERGY TM PLATFORM
Richard Oed

2020.04

CONTENTS

11 EVENT ANALYSIS WITH TRACEX® 03

11.1 An Introduction to TraceX® 03

11.2 Built-in Views and How to Use Them 04

11.3 Installing 04

11.4 Setting Up TraceX® Inside the Development Environments 05
 11.4.1 Setting Up TraceX® in e2 studio 05
 11.4.2 Setting Up TraceX® in IAR Embedded Workbench for

Renesas Synergy™ 05

11.5 Configuring the Application for TraceX® 06

11.6 Collecting Trace Data and Starting TraceX® 08
 11.6.1 Starting TraceX® in e2 studio 08
 11.6.2 Starting TraceX® in IAR Embedded Workbench® for

Renesas Synergy™ 08

11.7 Viewing and Interpreting the Data 09

Disclaimer 11

02

CHAPTER 11
EVENT ANALYSIS
WITH TRACEX®

11 EVENT ANALYSIS WITH TRACEX®

Tracing events at run-time is an important debug capability, as it provides visibility into the sequence of RTOS activities of an

application.

In this chapter, we will employ TraceX®, a Windows® workstation-based tool to trace all the events happening when we press the push-

button SW4 on the Renesas Synergy Promotion Kit (PK) in the exercise from chapter 10. For this we will modify the program we used

there. If you have not done the hands-on of chapter 10, this is not a problem. You can download the complete project from the website

for the book (https://www.renesas.com/synergy-book). Once downloaded, you only need to import it according to the instructions given

in chapter 5.1.3.

What you will learn in this chapter:

 ¡ What TraceX® is and how it can help you debugging your code.

 ¡ How to install and use TraceX® and how to interpret the data collected.

TraceX® is host-based and integrates seamlessly with the Renesas Synergy™ Software Package (SSP). It provides developers with

a graphical view of real-time events, enabling them to better understand the behaviour of their system. Visualized are occurrence and

sequence of system events like interrupts, context switches or the setting of a semaphore, events which are normally out of the view of

standard debugging tools. This way, problems can be easily diagnosed and the system fine-tuned to optimise performance and efficiency.

The trace information itself is stored in a buffer on the target system, with the buffer location and size determined in the Properties of the

TraceX® module during configuration. TraceX® implements a circular buffer, which enables the most recent “N” events to be available for

inspection, even in the event of system malfunction or other significant events.

Other features and benefits of TraceX® include:

 ¡ Full integration with ThreadX® and all other X-Ware™ components, but it runs independently on the host postmortem

or at breakpoints

 ¡ Detect priority inversions

 ¡ Task execution profiles

 ¡ Stack usage

 ¡ Delta ticks between events

 ¡ Performance analysis and bottleneck elimination

 ¡ NetX™, and FileX® statistics

 ¡ Raw Trace Dumps and Trace Buffers

All these features save a lot of time during the development of an application. There is no need to instrument your program with

printf()-statements or with toggling LEDs to visualize a sequence of events in question if you need to isolate a certain problem in

your code. This really helps you to save time and energy!

03

11.1 An Introduction to TraceX®

https://www.renesas.com/synergy-book

11.2 Built-in Views and How to Use Them

TraceX® provides several means to view and to analyse the data. The buttons on the toolbar allow you to open files with previously recorded

and saved events and to navigate through the different captured events based on a setting in a drop down list (event, object, switch or

ID), as well as to generate different statistics.

The large visualization window can display events either in Sequential View Mode, which is the default and shows events immediately

after each other, no matter how much time has elapsed between them, or in Time View Mode, where events are shown in a time relative

manner. Switching between these view modes is done by selecting the respective tab at the top of the view window. Both views have

their own value when analysing the run-time performance of an application, but in most cases using both of them together will get you

closer to your solution. The Sequential View Mode lets you quickly assess if the events occurred in the right order and the Time View

Mode if they took place at the right time.

All events are displayed in the context they happened, which can be seen in the left pane of the window in the System Context. Hovering

with the mouse over a specific context will display more information. On the event line of a specific context, the different events are

shown in individual colours with distinctive abbreviations.

More details about the different displays can be found in the documentation of TraceX®, which can be accessed from the TraceX®

download page on the Synergy Solutions Gallery. Some of them we will explain in section 11.7. as well.

If you used the Platform Installer for one the toolchains and opted to install TraceX® when installing either e2 studio or IAR Embedded

Workbench for Renesas Synergy™ (IAR EW for Synergy), you can skip the following installation guidelines and move directly to

Chapter 11.4. If you used the Standalone Installers, you will need to download TraceX® separately from the Synergy Solutions Gallery,

as it is not included in the standard versions of the ISDEs.

On the Solutions Gallery, scroll down to the Software Tools section. Click on the TraceX® entry and the page for the tool will show.

There, scroll down to Download and click on the Download button to the right. If you are not logged in, the My Renesas login dialog will

show. Enter your credentials and click on Login. You will be redirected back to the TraceX page. Click again on the Download button and

accept the license agreement. The download of the archive of the installer named TraceX_for_Renesas_Synergy.zip will now start.

While the installer downloads, please take time to review the installation Instructions, as the information given there is very important

and should be followed closely. It also provides you with information necessary if the automatic installation of the license file fails.

This information can later on also be reviewed by opening the file TraceX-readme.txt, which is placed in the installation folder of TraceX®

after uncompressing the archive.

Once the download is complete, extract the files in the downloaded archive to a new folder of your choice. To start the setup-process

right-click on setup.exe and select Run as administrator.

04

11.3 Installation

Acknowledge the license agreement for the software once it shows. Follow the instructions of the installer and later on either accept the

default path for the installation or change it to a location of your choice. If you do so, please note the new location, as you will need it later to

register the tool inside the development environments. At the screen showing the summary, click on Install and the installation will start.

Once the installation has finished, the last screen has a check box Launch the program. It is selected by default, but we will do that

later from inside the ISDE. For the time being, please deselect the check box.

05

11.4 Setting Up TraceX® Inside the Development Environments

As TraceX® is an external program to e2 studio, we need to tell the ISDE where the executable can be found, so that we can run

it without leaving the development environment.

Inside e2 studio, go to Window → Preferences and expand first the C/C++ and then the Renesas branch. Select TraceX and

navigate to or enter the correct location where you installed the TraceX® executable. If you installed it to the default location,

this will be C:\Express_Logic\TraceX_5.2.0\TraceX.exe. Click on Apply and Close.

The process of setting up TraceX® is different for both development environments, so please follow the steps relating to your set of

development tools.

11.4.1 Setting Up TraceX® in e2 studio

TraceX® is an external program to the EW for Synergy, so we need to tell the IDE where the executable can be found and

which trace-file should be used, so that we can run it without leaving the development environment.

11.4.2 Setting Up TraceX® in IAR Embedded Workbench for Renesas Synergy™

Figure 11-1: The installer for TraceX

For that, go to Tools → Configure Tools inside the IDE and click on New once the Configure Tools window appear. Enter the

following settings: Under Menu Text, enter the name of the tool you want to add to the Tools menu. In our case, simply

enter TraceX. Under Command, enter or browse to the correct location where you installed the TraceX® executable. If you

installed it to the default location, this will be C:\Express_Logic\TraceX_5.2.0\TraceX.exe. In the Argument line, you will

need to enter the name and the location of the file containing the trace samples later on. Enter $PROJ_DIR$\trace.trx.

This will advise TraceX® to look for a file named trace.trx in the directory of your current project. Your window should look like

the one in Figure 11-2. Click on OK once you made all entries. This will add a TraceX-command to the Tools-menu.

Figure 11-2: In the Configure Tools window, please enter
the settings as above

11.5 Configuring the Application for TraceX®

The next step is to configure your application to perform the actual collection of trace events. To enable tracing, we will need to add

the ThreadX® and USBX™ sources.

For this, make sure your RTOS project from the last chapter is active and switch to the Synergy Configuration perspective in e2 studio or

call the Synergy Standalone Configurator inside the IAR EW for Synergy. Switch to the Threads tab and select HAL/Common Modules

in the Threads pane. Add the ThreadX® source by clicking on New → X-Ware → ThreadX → ThreadX Source in the HAL/Common Stacks

pane (see Figure 11-3).

Figure 11-3: The ThreadX® source code needs to be added to the project in order to use TraceX®

06

Select the newly added ThreadX Source, and in the Properties view, scroll down to Event Trace and change it from Disabled to Enabled.

Note the name of the trace buffer (g_tx_trace_buffer) and the buffer size (65536). You will need this information later on.

The module will still indicate an error. Hover with the mouse over it and read the description. It is a warning that multiple symbol

linkage errors can occur and refers you to the release notes in case this happens. Remove this error by scrolling to the end in the

Properties view and change the property Show linkage warning from Enabled to Disabled.

Figure 11-4: The ThreadX® source
code needs to be added to the project
in order to use TraceX®

Now add the USBX™ source. Select the Comms Thread in the Threads pane and left-click on the Add USBX Source module with the

pink bar. Select New →USBX Source. This module will also show up in red with the warning of possible multiple symbol linkage errors.

Dismiss this error as well by setting the Show linkage warning property to Disabled.

Figure 11-5: For our example,
also the source code for USBX™
needs to be added

You will notice that the module named g_ux_device_class_cdc_acm0 shows an error that “Express Logic source and default pre-built

library should not be combined in the stack configuration.” This is because if ThreadX source code is added to a project, then the source

code for any other Express Logic component should be used as well, not a pre-built library. The reason for this is that a pre-built library is

built against the default configuration of ThreadX. So, if the configuration of ThreadX is changed, then all the other Express logic

components also need to be built against this new ThreadX configuration.

To resolve this error, click on the Add USBX Device Class CDC-ACM Source module. Select New → USBX Device Class CDC-ACM Source to

add the source code for this module as well. Do not forget to set the Show linkage warning property to Disabled.

No other changes need to be made, so save the updated SSP configuration by pressing <ctrl>-<s> and click on the Generate Project

Content button to generate the updated versions of the files. Once the generator completes, build the project by clicking on the build-button

in e2 studio or the make-button inside IAR EW for Synergy IDE. Please note that a lot of files need to be compiled this time, so the build

will take quite a while. On my workstation, the complete process took a little more than two minutes.

07

The next step is to launch TraceX® by selecting Run → TraceX → Launch TraceX Debugging. In the dialog box showing, the

start address of the trace buffer, as well as its size and the path to TraceX® should be pre-populated. If not, please enter the

start address of the trace buffer and the size you noted in section 11.5. Click on OK.

11.6.1 Starting TraceX® in e2 studio

Before you can actually launch TraceX® in EW for Synergy, you need to save the trace buffer to a file in your project directory.

For this, open a memory-window in the IDE by selecting View → Memory → Memory 1 from the menu.

11.6.2 Starting TraceX® in IAR Embedded Workbench for Renesas Synergy™

Figure 11-6: It is important to enter
the correct path and filename, as TraceX®
will not find the data otherwise

In the memory window appearing enter the name (symbolic address) of the trace buffer in the Goto field. If you used the settings

as suggested in section 11.5, this will be g_tx_trace_buffer and hit Return. This will display the buffer in the memory window.

Next, click on the small arrow to the right of Memory drop-down list and select Memory Save. In the dialog appearing the

start- and end-address of the buffer will be pre-populated. If not, enter the start address as shown in the memory window and

add the buffer size for the end address. Check that the file format selected is intel-extended. Enter the path to your project

directory and append trace.trx as filename. Click on Save. This will save the trace buffer to a data file on your hard drive.

Once the data is saved, you can call TraceX® by selecting Tools → TraceX from the menu. TraceX® will start and display the trace data.

08

11.6 Collecting Trace Data and Starting TraceX®

With the build process complete, it is time to start the debugger, but make sure that your Promotion Kit is still connected with both USB

cables (one connected to J19, the other one connected to J5 on the board) to your workstation.

Start the debugger in either one of the development environments. This will download the code to the board. Start the execution of the

program and then start your terminal program as in chapter 10. Please make sure that you do not start it before the application is running,

as Windows® or the terminal program might not be able to detect the connection properly if started too early.

With the program running, press the push-button SW4 a couple of times to create sufficient system events. All of them will be recorded in the

trace buffer, which was created when setting up the frameworks. Pause the program by selecting Run → Suspend (or by clicking on the pause

symbol in the main menu bar) in e2 studio or Break in EW for Synergy. Now that TraceX® was able to collect enough data samples, it is time to

actually view the events.

11.7 Viewing and Interpreting the Data

If TraceX® does not start, but complains about a missing license file, click on OK. TraceX® will then exit. Go to the folder where you

uncompressed the installation of TraceX® to and copy the file named tracex.tag into the installation folder of the program. This will be

c:\Express_Logic\TraceX_5.2.0\, if you installed it into the default location. Go back to your development environment (there is no

need to close it for that procedure) and start TraceX® again. It should now start and show Synergy_Use_Only as serial number. This

procedure is also explained in the file TraceX-readme.txt located in the folder of the installer.

Once the TraceX® window shows, you will see the different events recorded in Sequential View. To inspect the ones related to our LED

and Comms Thread, move the horizontal slider to the right until you see the events similar to the ones in Figure 11-7.

Context changes are represented by the vertical black lines connecting the context lines. The currently selected event is represented by

a solid red line. In the example shown in Figure 11-7, this is event 519. Hovering with the mouse over the different events will give you

additional information about them.

TraceX® will display the status of a thread. A green horizontal line indicates that a thread is ready, a purple one that the thread is

suspended. After start-up, you will only see the ready status. To see all others, you will need to go to Options → Status Lines and select All On.

Figure 11-7: The sequence of events as visualized by TraceX®

Each event is represented by a specific colour and abbreviation. In our example, these would be the following (starting at event 519

in Figure 11-7):

 ¡ R: Running

 ¡ IE: Interrupt enter

 ¡ SP: Semaphore put (SW4 semaphore)

 ¡ IR: Internal thread resume (LED thread)

 ¡ IX: Interrupt exit

 ¡ QS: Queue send (CDC queue)

 ¡ IR: Internal thread resume (Comms thread)

 ¡ SG: Semaphore get (SW4 semaphore)

 ¡ IS: Internal thread suspend (LED Thread)

09

 ¡ MG: Mutex get (Comms thread)

 ¡ CW: CDC write (Comms thread)

 ¡ MG: Mutex get (Comms thread

 ¡ RA: Device stack transfer all request abort (USB)

 ¡ TI: Thread identify (Comms thread)

 ¡ IG: Thread info get (Comms thread)

 ¡ SG: Semaphore get (ux_transfer_request_semaphore)

 ¡ IS: Internal thread suspend (Comms thread)

If you want to see detailed information about an event, simply click on one and the Event Details will be displayed. A complete list of the

events and icons can be found inside TraceX® by going to View and selecting one of the legends (for example ThreadX Legend) or in the

User’s Guide, which can be accessed through the round blue icon with the white ‘i’ on the main menu bar of TraceX®. The Users’ Guide

will also explain all the other features not covered in this short tutorial, like Time View (see Figure 11-8) or the different possibilities for

performance analysis and statistics.

Figure 11-8: When in Time View, TraceX® displays the exact timings between the different events

If you want to collect further TraceX® data, resume the execution of your code in the development environment. Suspend the execution

again once enough events have been recorded. Then follow the procedures mentioned in the previous sections to save the trace buffer

and to start TraceX®.

All that is left in this exercise, is to terminate the debugger by clicking on the Terminate or Stop Debugging icon on the main menu bar.

Points to take away from this chapter:

 ¡ Being able to collect and analyse trace data makes TraceX® a valuable tool in your toolbox.

 ¡ Instrumenting a project for TraceX is straightforward and needs only a couple of clicks with the mouse.

CONGRATULATIONS!
You just finished the last exercise in this book!

10

11

Copyright: © 2020 Renesas Electronics Corporation

Disclaimer:

This volume is provided for informational purposes without any warranty for correctness and completeness. The contents are not intended to be

referred to as a design reference guide and no liability shall be accepted for any consequences arising from the use of this book.

	BASICS OF THE RENESAS SYNERGY™ PLATFORM (Richard Oed)
	11 EVENT ANALYSIS WITH TRACEX®
	11 EVENT ANALYSIS WITH TRACEX®
	11.1 An Introduction to TraceX®
	11.2 Built-in Views and How to Use Them
	11.3 Installation
	11.4 Setting Up TraceX® Inside the Development Environments
	11.4.1 Setting Up TraceX® in e2 studio
	11.4.2 Setting Up TraceX® in IAR Embedded Workbench for Renesas Synergy™

	11.5 Configuring the Application for TraceX®
	11.6 Collecting Trace Data and Starting TraceX®
	11.6.1 Starting TraceX® in e2 studio
	11.6.2 Starting TraceX® in IAR Embedded Workbench for Renesas Synergy™

	11.7 Viewing and Interpreting the Data

	Disclaimer

