Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

DATA SHEET

RENESAS

MOS INTEGRATED CIRCUIT Phase-out/Discontinued µPD9971

SOUND GENERATOR LSI FOR RINGER MELODIES FOR MOBILE PHONES THAT ARE EQUIPPED WITH 3D POSITIONING SURROUND FUNCTIONS

DESCRIPTION

The μ PD9971 is a sound generator LSI for ringer melodies for mobile phones that are equipped with 3D positioning surround functions.

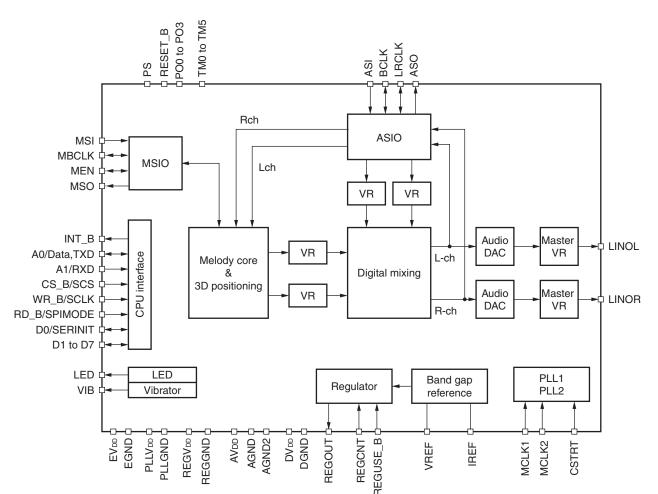
FEATURES

- PCM sound generation method provides realistic sound reproduction
 - Contains 32 kHz sampling Wavetable, it include 128 GM tone and 47 drum set and 32 effect tone.
 - A richer tone is achieved by using 2 Wave a tone.
 - The wave and the parameter can be downloaded, and the sound-making not limited to a fixed tone is possible.
 - Can play up to four melodies because of four MIDI[™] ports that are embedded in the sound generator core.
 - The port for a real-time control of MIDI that assumes karaoke and the JAVA® application program is installed.
 - Contains a digital parametric equalizer for equalizing speakers.
 - The function for a low output of the level to always enable the reproduction in the vicinity of the maximum volume is built into.
 - Various sound effects (pitch pipe bend, vibrato, Delay, reverberation, chorus, Doppra, and compressor) can be achieved.
 - Supports MOBILE-XMF.
- Contains real-time-processing 3D positioning surround functions
 - The effect of the sound that the sound source moves three-dimensionally by the digital signal processing can be achieved.
 - The stereophonic effect with the extension can be obtained by the digital signal processing.
 - The programmable solid sound parameter is installed, and the best setting is possible in the case and the speaker arrangement etc. of the cellular phone.
 - When the headphone is used, the stereophonic effect can be obtained.
- Includes a high-performance D/A converter with 16-bit resolution
 - Supports five sampling frequency (fs) modes: 8 kHz, 16 kHz, 32 kHz, 44.1 kHz, and 48 kHz
- Provides an audio serial I/O interface (16 bits).
 - The serial data input frequency is variable from 32 fs to 64 fs (during slave mode).
 - Supported formats are right-justified, left-justified, and IIS
- Provides an external serial input/output interface for the sound generator
- Provides stereo line output for audio
- Supports 8-bit parallel interface or 3 or 4-wire serial interface (SPI).
- Output control functions for vibration and LED.
- Built-in PLL, so various types of input clocks can be supported.
- Contains a regulator for digital power supply (DVDD).

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.

• Power supply voltages

I/O power supply (EVDD):	1.7 to 3.3 V
Power supply for PLL (PLLVDD):	2.7 to 3.3 V
Analog power supply (AVDD):	2.7 to 3.3 V
Power supply for regulators (REGVDD):	2.7 to 3.3 V
Digital power supply (DVDD):	Internal regulators (External voltage can be applied)
Operating ambient temperatures: -20 to +85 °C	C


• 85-pin tape FBGA package (Body size: 6 × 6 mm, Ball pitch: 0.5 mm)

ORDERING INFORMATION

Part number	Package
μPD9971F9-BA3-A	85-pin tape FBGA (6×6)

Remark A lead-free product.

BLOCK DIAGRAM

NEC

(Top View)

PIN CONFIGURATION

• 85-pin tape FBGA (6×6) μPD9971F9-BA3-A

(Bottom View)	_	(Top View)
000000000000000000000000000000000000	10 9 8 7 6 5 4 3 2 1	\bigcirc
K J H G F E D C B A	_	/
	Ĺ	

Pin No.	Pin Name	Pin No.	Pin Name	Pin No.	Pin Name	Pin No.	Pin Name
1A	Shorted with 1K pin	3C	MSO	6B	PS	9B	N.C
1B	N.C	3D	N.C	6C	TM5	9C	EVDD
1C	LINOL	3E	N.C	6H	PO1	9D	VIB
1D	AGND	3F	MCLK2	6J	CS_B/SCS	9E	RESET_B
1E	AVDD	3G	REGGND	6K	A0/Data, TXD	9F	D7
1F	LINOR	ЗH	REGVDD	7A	ASI	9G	D5
1G	AGND2	ЗJ	REGOUT	7B	ASO	9H	D3
1H	PLLGND	ЗК	REGCNT	7C	DVDD	9J	N.C
1J	REGVDD	4A	MSI	7H	DVDD	9K	N.C
1K	Shorted with 1A pin	4B	TM4	7J	RD_B/SPIMODE	10A	Shorted with 10K pin
2A	N.C	4C	DVDD	7K	WR_B/SCLK	10B	N.C
2B	N.C	4D	N.C (index)	8A	LRCLK	10C	LED
2C	ТМО	4H	REGUSE_B	8B	BCLK	10D	DVDD
2D	IREF	4J	PO3	8C	CSTRT	10E	INT_B
2E	VREF	4K	PO2	8D	N.C	10F	D6
2F	TM1	5A	MEN	8E	N.C	10G	D4
2G	PLLVDD	5B	MBCLK	8F	DVDD	10H	D2
2H	MCLK1	5C	DGND	8G	EGND	10J	N.C
2J	N.C	5H	PO0	8H	EVDD	10K	Shorted with 10A pin
2K	REGOUT	5J	A1/RXD	8J	D1		
ЗA	ТМЗ	5K	DGND	8K	D0/SERINIT		
3B	TM2	6A	EGND	9A	N.C	7	

Remark N.C: Reserved for future use. Leave this pin open.

PIN NAME

A0, A1:	Address	MSO:	Data Output for Melody Core
AGND:	Ground for Analog Block	N.C.:	No Connection
AGND2:	Ground for Analog Block	N.C.(index):	No Connection
ASI:	Audio Serial Data Input	PLLGND:	Ground for PLL
ASO:	Audio Serial Data Output	PLLVDD:	Power Supply for PLL
AVDD:	Power Supply for Analog Block	PO0 to PO3:	Peripheral Output
BCLK:	Bit Clock Input/Output	PS:	Parallel/Serial Interface Select
CS_B:	Chip Select	RD_B:	Read
CSTRT:	Clock Select Signal Input from External	REGCNT:	Regulator Control
D0 to D7:	Data Bus	REGGND:	Ground for Regulator
Data:	Data	REGOUT:	Regulator Output
DGND:	Ground for Digital Block	REGUSE_B:	Regulator Block Enable Signal Input
DVDD:	Power Supply for Digital Block	REGVDD:	Power Supply for Regulator
EGND:	Ground for I/O Pins	RESET_B:	Reset
EVDD:	Power Supply for I/O Pins	RXD:	Serial Data Input
INT_B:	Interruption	SCLK:	Clock for Serial I/F
IREF:	Current Reference for Analog Block	SCS:	Chip Select Input for Serial I/F
LED:	LED Control Output	SERINIT:	Initialization Signal for Serial I/F
LINOL:	Line Out (L-ch)	SPIMODE:	SPI Mode Select
LINOR:	Line Out (R-ch)	TM0 to TM2:	Test Mode Input
LRCLK:	Left Right Clock Input/Output	TM3, TM4:	Test Mode I/O
MBCLK:	Bit Clock for Melody Core	TM5:	Test Mode Input
MCLK1:	Clock Input	TXD:	Serial Data Output
MCLK2:	Clock Input	VIB:	Vibration Control Output
MEN:	Frame Clock for Melody Core	VREF:	Voltage Reference for Analog Block
MSI:	Data Input for Melody Core	WR_B:	Write

CONTENTS

1. FUNCTIONS	9
1.1 General Descriptions of Functions	
1.2 General Descriptions of Circuits	
2. PINS FUNCTIONS	10
2.1 Pin Configuration	10
2.2 Recommended External Circuit	11
2.3 Descriptions of Pin Functions	12
2.4 Connection of Unused Pins	17
2.5 Pin Statuses	18
3. CPU INTERFACE	
3.1 Parallel Host CPU Interface	21
3.1.1 Write access	21
3.1.2 Read access	23
3.2 Serial Host Interface	24
3.2.1 Pin functions	24
3.2.2 Serial formats	25
3.2.3 Access formats (3-wire SPI mode)	26
3.2.4 Access formats (4-wire SPI mode)	28
3.2.5 Initialization of serial interface	
4. MUSIC SERIAL INTERFACE	
4.1 Audio Serial Interface (ASIO)	
4.2 Serial Interface Dedicated to Sound Generator Core External Connection (MSIO)	33
5. BLOCK FUNCTIONS	24
5.1 Reference Voltage and Current Source Block	
5.2 Regulator Block 5.3 PLL Block	
5.4 Sound Generator Core (Sound Generator/3D Positioning/Equalizer) Interface Block	
5.5 Audio Serial Interface Block (ASIO)	
5.6 Audio Playback and Digital Gain Adjustment Block	
5.7 Audio Playback Analog Block	
5.8 Digital Mixing Block 5.9 Serial Interface Dedicated to Sound Generator Core External Connection (MSIO)	
5.9 Serial Interface Dedicated to Sound Generator Core External Connection (MSIC)	40
6. REGISTERS (CONTROL REGISTER BANK)	48
6.1 Standby Setting (STNBY)	
6.1.1 STADIG	
6.1.2 STPLL2	
6.1.3 STPLL1	
6.1.4 STASI	
6.1.5 STASI	
6.1.6 STSYNTH	-
6.1.7 STADAC	

6.1.8 STREF	50
6.2 Master Clock Switching (MCLK1A, MCLK1B, MCLK2A, and MCLK2B)	51
6.2.1 MCLK1A[6:0]	51
6.2.2 MLCK1B[7:0]	51
6.2.3 MCLK2A[4:0]	51
6.2.4 MCLK2B[7:0]	51
6.3 Selecting Input Clock (MCLKSEL)	52
6.3.1 MCLKSEL	52
6.3.2 CSTRTEN	52
6.4 FS Switching and BCLK Switching for ASIO (SEL_FS)	55
6.4.1 FS[2:0]	55
6.4.2 BFS[4:0]	56
6.5 ASIO Mode Setting (SEL_ASI)	57
6.5.1 EX3DAEN	57
6.5.2 AULOOPSW	57
6.5.3 SLR	57
6.5.4 AMS	57
6.5.5 ASIM	57
6.5.6 LRCLK	57
6.6 Digital Mixing Path (ASI Input Data) Selection (MIXING1)	58
6.6.1 DACLMIX[1:0]	58
6.6.2 DACRMIX[1:0]	58
6.6.3 DACLSW[1:0]	58
6.6.4 DACRSW[1:0]	58
6.7 Digital Mixing Path (Sound Generator Output Data) Selection (MIXING2)	59
6.7.1 MELLMIX[1:0]	
6.7.2 MELRMIX[1:0]	59
6.7.3 MELLSW[1:0]	59
6.7.4 MELRSW[1:0]	59
6.8 Digital Mixing Path (ASI to Sound Generator) Selection (MIXING3)	
6.8.1 PCMLSW	60
6.8.2 PCMRSW	
6.9 VIB and LED Settings (LEDVIB)	
6.9.1 VIB	
6.9.2 LED	
6.10 Setting of General-Purpose Output Pins (POUT)	
6.10.1 POUT0 to POUT3	
6.11 Audio Soft Mute Control (SMUTE)	61
6.11.1 SLOPE[1:0]	
6.11.2 AUSMUTE	61
6.11.3 MELSMUTE	
6.12 Digital Volume (Sound generator Output L-ch) Setting for Audio DAC (MELLDG)	
6.12.1 MELLDG2[1:0]	
6.12.2 MELLDG1[5:0]	
6.13 Digital Volume (Sound generator Output R-ch) Setting for Audio DAC (MELRDG)	
6.13.1 MELRDG2[1:0]	
6.13.1 MELRDG2[1:0] 6.13.2 MELRDG1[5:0] 6.14 Digital Volume (ASI Input L-ch) Setting for Audio DAC (AULDG)	63

	6.14.1 AULDG2[1:0]	63
	6.14.2 AULDG1[5:0]	63
6	.15 Digital Volume (ASI Input R-ch) Setting for Audio DAC (AURDG)	64
	6.15.1 AURDG2[1:0]	64
	6.15.2 AURDG1[5:0]	64
6	5.16 Setting of Analog Master Volume (L-ch) for Audio DAC (ADACLVR)	66
	6.16.1 ADACLVRGA[4:0]	66
6	5.17 Setting of Analog Master Volume (R-ch) for Audio DAC (ADACRVR)	66
	6.17.1 ADACRVRGA[4:0]	66
6	.18 Setting of LSI Standby (MSIO) (STNBY2)	67
	6.18.1 STMSO	67
	6.18.2 STMSI	67
6	.19 Setting of MSIO Mode (SEL_MSIO1)	67
	6.19.1 SMBCLK	67
	6.19.2 SMEN	67
	6.19.3 MMS	68
	6.19.4 MLOPSW	68
	6.19.5 MBF[2:0]	68
6	.20 FS Switching and BCLK Switching in Audio Serial Interface (SEL_FS)	69
	6.20.1 MCHI[3:0]	69
	6.20.2 MCHO[3:0]	69
6	21 Setting of LSI Version (LSIVER)	70
	6.21.1 VER[3:0]	70
6	22 Setting of Bank in Serial Interface Mode (BANK)	70
	6.22.1 BANK[1:0]	70
	OWER STARTUP PROCEDURE	
7	7.1 Wakeup Sequence	
	7.1.1 When a regulator is not used	
	7.1.2 When a regulator is used	
7	2.2 Shutdown Sequence	73
	7.2.1 When a regulator is not used	
	7.2.2 When a regulator is used	
7	3 Power Saving Functions	75
	7.3.1 Hardware power saving function	75
	7.3.2 Software power saving function	75
8. SE	TTING SEQUENCE	
	3.1 Power Up Sequence	
	8.2 Basic Sequence for Switching Among Operation Modes	
-	8.2.1 Mute setting	
	8.2.2 Standby setting/cancel	
	8.2.3 FS switching	
	8.2.4 Path switching	
	8.2.5 3DA/surround switching	
	8.2.6 ASIO mode setting	
8	3.3 Setting Sequence Examples	
	8.3.1 Sound generator-DAC-line output (Clock: MCLK2 = 12 MHz)	

8.3.2 Sound generator-ASO output (Clock: MCLK2 = 12 MHz, in the master mode)	82
8.3.3 Sound generator-ASO output (Clock: MCLK2 = 12 MHz, in the slave mode)	83
8.3.4 ASI-DAC-line output (Clock: MCLK2 = 12 MHz)	84
8.3.5 ASI-ASO output (Clock: MCLK = 12 MHz)	85
8.3.6 ASI-surround-DAC-line output (Clock: MCLK2 = 12 MHz, fs = 32 kHz)	86
8.3.7 ASI-surround-DAC-line output (Clock: MCLK2 = 12 MHz, fs = 44.1 kHz)	87
8.3.8 ASI-surround-ASO output (Clock: MCLK2 = 12 MHz, fs = 32 kHz)	88
8.3.9 ASI-surround-ASO output (Clock: MCLK2 = 12 MHz, fs = 44.1 kHz)	
9. ELECTRICAL SPECIFICATIONS	
9.1 Absolute Maximum Ratings	90
9.2 Recommended Operating Conditions	
9.3 Capacitance	
9.4 DC Characteristics	91
9.5 AC Characteristics	92
9.5.1 Clock	92
9.5.2 Reset	92
9.5.3 Parallel CPU interface	93
9.5.4 Serial CPU interface mode (Common to the 3-wire SPI mode and 4-wire SPI mode)	95
9.5.5 Audio serial interface (ASIO)	98
9.5.6 Serial interface dedicated to sound generator core external connection (MSIO)	100
9.6 Analog Characteristics	102
9.6.1 Analog block characteristics (reference values)	103
10. CURRENT CONSUMPTION	104
11. PACKAGE DRAWING	106
12. RECOMMENDED SOLDERING CONDITIONS	107

Phase-out/Discontinued

1. FUNCTIONS

1.1 General Descriptions of Functions

(1) Power supply voltages

Digital I/O power supply:	1.7 to 3.3 V, 1.8 V TYP.
Analog power supply:	2.7 to 3.3 V, 3.0 V TYP.
Power supply for PLL:	2.7 to 3.3 V, 3.0 V TYP.
Power supply for regulators:	2.7 to 3.3 V, 3.0 V TYP.
(Digital power supply:	1.45 to 1.65 V, 1.54 V TYP.)

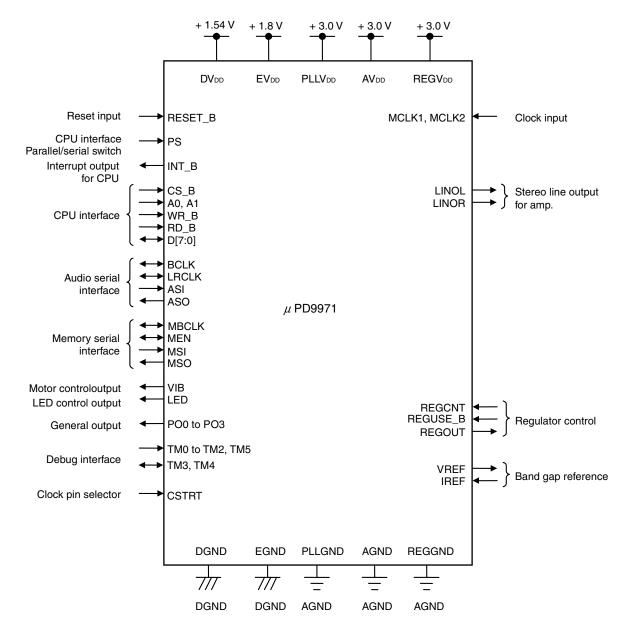
(2) Operating temperatures

–20 to +85°C

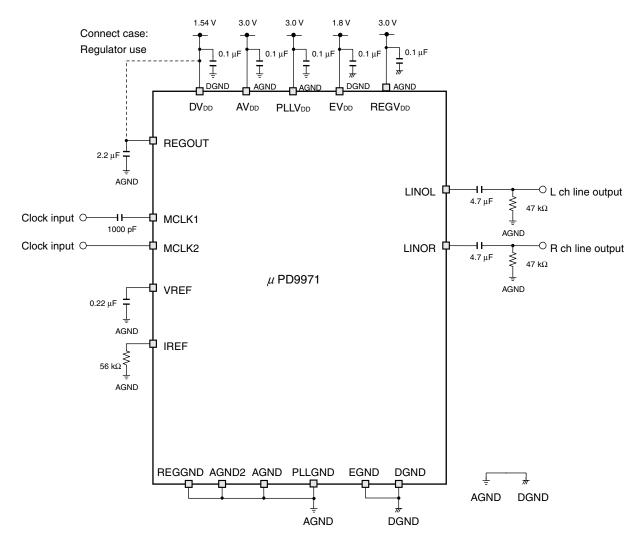
(3) Function blocks

Melody Core:	PCM sound generator core for 128 polyphonic
3D Positioning:	3D positioning surrounds function
Digital Mixing:	Digital mixing circuit
Regulator:	Regulator for digital power supply
PLL1/PLL2:	PLL for sound generator and PLL for audio
Audio DAC:	Stereo 16-bit audio DAC
Band gap:	Circuit generating reference voltage and current for analog circuits
VIB/LED:	Circuit generating control signals for vibration and LED
Master/Digital VR:	Volume circuit

1.2 General Descriptions of Circuits


Block	Functions
Melody Core	Up to 128 tones can be produced at the same time. This block contains a PCM sound generator and a sequencer. The sampling frequency is 32 kHz.
3D Positioning	3D positioning surround function
Digital Mixing	Switching or adding sound generator output and audio serial input.
PLL	Generates master clocks for processing internal signals. Input clocks: 3.84 MHz to 15.36 MHz
Audio DAC	16 bits \times 2 channels (L-ch and R-ch) Sampling frequencies: 48 kHz, 44.1 kHz, 32 kHz, 16 kHz, and 8 kHz (Default: 32 kHz) The interface supports the master and slave modes. Dynamic range: 90 dBr TYP (for a single block)
Regulator	1.54 V output regulator for digital power supply
VIB/LED	Outputs control signals for VIB and LED.
Master/Digital VR	Master volume: 0 dB to -45 dB/1.5 dB increments Digital volume: +12 dB to -63 dB/1 dB increments

Phase-out/Discontinued


μPD9971

2. PINS FUNCTIONS

2.1 Pin Configuration

2.2 Recommended External Circuit

2.3 Descriptions of Pin Functions

(1) Power supply pins and GND pins

Pin Name	Pin No.	I/O	Functions
DVDD	4C, 7C, 7H, 8F, 10D	_	Power supply for digital blocks When using an internal regulator, connect this pin and the REGOUT pin on the outside of the μ PD9971. Be sure to connect a 0.1 μ F capacitor between this pin and DGND.
DGND	5C, 5K	_	Ground for digital blocks
EVDD	8H, 9C	_	Power supply for digital I/O Be sure to connect a 0.1 μF capacitor between this pin and EGND.
EGND	6A, 8G	-	Ground for digital I/O
PLLVDD	2G	_	Power supply for PLL Be sure to connect a 0.1 μF capacitor between this pin and PLLGND.
PLLGND	1H	-	Ground for PLL
AVdd	1E	_	Power supply for analog blocks Be sure to connect a 0.1 μF capacitor between this pin and AGND.
AGND	1D	-	Ground for analog blocks
AGND2	1G	-	Ground for analog blocks
REGVDD	1J, 3H	-	Power supply for regulator band gap reference Be sure to connect a 0.1 μF capacitor between this pin and REGGND.
REGGND	3G	_	Ground for regulators

(2) Clock and system control pins

Pin Name	Pin No.	I/O	Functions
MCLK1	2H	Input	Clock input (3.84 MHz to 15.36 MHz) This is the reference clock input to generate the internal master clock. Be sure to input using capacitive coupling (1000 pF). Connect this pin to GND when the pin is not used.
MCLK2	3F	Input	Clock input (3.84 MHz to 15.36 MHz) This is the reference clock input to generate the internal master clock. This pin is also used for inputting square waves of input level EV _{DD} . Connect this pin to GND when the pin is not used.
CSTRT	8C	Input	 Signal input to select clock input from outside Cautions This pin is valid when the CSTRTEN register is high level. When the CSTRT pin does switching, however, only limited frequencies can be input. Before using this pin, be sure to contact NEC Electronics. 0: Selects input from MCLK2. 1: Selects input from MCLK1 This pin is pulled down in the μPD9971.
RESET_B	9E	Input	 Hardware reset signal input This resets the μPD9971. 0: Resets. 1: Cancels the reset. Registers are initialized to their initial values after a reset.

Phase-out/Discontinued

μ**ΡD9971**

(3) Host CPU pins and interface pins

Pin Name	Pin No.	I/O	Functions
A0/Data, TXD	6К	I/O	 Parallel I/F mode (when PS = 0) Host interface address A0 signal input This input pin indicates the internal register address or data during host CPU access. 1: When transferring data 0: When setting the address of the register to be accessed
			 2. Serial mode (when PS = 1) Bidirectional TX/RX serial input/output (when PS = 1 and RD_B = 0). In this case, this pin is used as 3-wire SPI mode TX serial data output (when PS = 1 and RD_B = 1). In this case, this pin is used as 4-wire SPI mode
A1/RXD	5J	Input	 Parallel I/F mode (when PS = 0) Host interface address A1 signal input This input pin selects the access destination register during host CPU access.
			1: PCM Sound generator register 0: Register other than PCM sound generator register
			 2. Serial I/F mode (when PS = 1) This pin is not used in 3-wire SPI mode (RD_B = 0). This pin inputs receive data in 4-wire SPI mode (RD_B = 1).
CS_B/SCS	6J	Input	1. Parallel I/F mode (when PS = 0) Chip select input for parallel I/F This is the input pin for the host interface select signal. This pin is set as active (low) while the host CPU accesses a register
			2. Serial I/F mode (when PS = 1) Chip select input for serial I/F
RD_B/SPIMODE	7J	Input	 Parallel I/F mode (when PS = 0) Host read input This pin is set as active (low) while the host CPU reads a register. Do not set this pin and the WR_B pin as active at the same time.
			2. Serial I/F mode (when PS = 1) 3-wire / 4-wire SPI mode selection
			0: 3-wire SPI mode. 1: 4-wire SPI mode.
WR_B/SCLK	7K	Input	1. Parallel mode (when PS = 0) Host write input This pin is set as active (low) while the host CPU reads a register. Do not set this pin and the RD_B active pin at the same time.
			2. Serial mode (when PS = 1) Clock for serial I/F at frequencies up to 13 MHz.

(2/2)

Pin Name	Pin No.	I/O	Functions
D0/(SERINT)	8K	I/O	1. Parallel I/F mode (when PS = 0) Bit 0 for 8-bit host data bus When the host CPU accesses μ PD9971, address and data I/O is performed. When the CS_B signal in inactive (high), this pin is set to high impedance.
			2. Serial I/F mode (when PS = 1) Initialization signal for serial I/F
D1 to D7	8J, 10H, 9H, 10G, 9G, 10F, 9F	I/O	1. Parallel I/F mode (when PS = 0) Bits 7 -1 for 8-bit host data bus When the host CPU accesses μ PD9971, address and data I/O is performed. When the CS_B signal in inactive (high), this pin is set to high impedance.
			2. Serial I/F mode (when PS = 1) This bus is always set to high impedance
INT_B	10E	Output	Interrupt request from PCM sound generator This signal requests interrupts from the μ PD9971 to the host CPU. This is used when requesting data transfer or internal status notification.
PS	6B	Input	Parallel/serial I/F mode setting This pin sets the parallel or serial mode of the host CPU interface. 1: Serial I/F mode 0: Parallel I/F mode This pin has an internal pull-down resistor

(4) Audio serial interface pins (ASIO)

Pin Name	Pin No.	I/O	Functions
BCLK	8B	I/O	Bit synchronization clock I/O for audio serial When this pin is not used, connect it to GND.
LRCLK	8A	I/O	Audio serial frame synchronization clock I/O When this pin is not used, connect it to GND.
ASO	7B	Output	Audio serial data output The audio serial data frame size is set via registers. During master mode, either 64 bits or 32 bits can be selected. During slave mode, selections can be made in 2-bit steps within a range from 32 to 64 bits. Leave this pin open when not used.
ASI	7A	Input	Audio serial data input The audio serial data frame size is set via registers. During master mode, either 64 bits or 32 bits can be selected. During slave mode, selections can be made in 2-bit steps within a range from 32 to 64 bits. Leave this pin open when not used. Pull-down is performed internally.

Pin Name	Pin No.	I/O	Functions
MBCLK	5B	I/O	Bit synchronization clock I/O dedicated to PCM sound generator external connection When this pin is not used, connect it to GND.
MEN	5A	I/O	Frame synchronization clock I/O dedicated to PCM sound generator external connection When this pin is not used, connect it to GND.
MSO	3C	Output	 Data output dedicated to PCM sound generator external connection Frame size of serial data is set by using the register. In the master mode, 32, 64, 128, or 256 bits can be selected (when only MSIO is used). In slave mode, selections can be made in 32-bit increments within a range from 32 to 256 bits (when only MSIO is used). When this pin is not used, leave it open.
MSI	4A	Input	 Data input dedicated to PCM sound generator external connection Frame size of serial data is set by using the register. In the master mode, 32, 64, 128, or 256 bits can be selected (when only MSIO is used). In the slave mode, selections can be made in 32-bit increments within a range from 32 to 256 bits (when only MSIO is used). When this pin is not used, leave it open. (This pin contains a pull-down register.)

(5) Serial interface dedicated to sound generator core external connection (MSIO)

Cautions 1. Data sizes that can be set vary depending on the master mode or the slave mode. In the master mode, MBFS is only 32, 64, 128, or 256 fs. In the slave mode, MBFS can be selected within a range from 32 to 256 bits, in 32-fs increments.

2. When MSIO and ASIO are used at the same time, ASIO can be set to the master mode only (BFS = 32 or 64 fs).

Pin Name	Pin No.	I/O	Functions
LED	10C	Output	External LED control output (The drive capacity is 1 mA when $EV_{DD} = 1.8$ V.) This pin is the port output pin. Settings are entered by writing values to the port setting register from the host CPU. When this pin is not used, leave it open.
VIB	9D	Output	External motor control output (The drive capacity is 1 mA when $EV_{DD} = 1.8$ V.) This pin is the port output pin. Settings are entered by writing values to the port setting register from the host CPU. When this pin is not used, leave it open.

(6) External LED pin and motor control output pin

(7) Reference voltage/current pins for analog circuits

Pin Name	Pin No.	I/O	Functions
VREF	2E	Output	Reference voltage for analog blocks Be sure to connect a 0.22 μF capacitor between this pin and AGND.
IREF	2D	Input	For generating reference current for analog blocks Be sure to connect a 56 $k\Omega$ register between this pin and AGND.

Phase-out/Discontinued

(8) Audio DAC output pins

Pin Name	Pin No.	I/O	Functions
LINOL	1C	Output	Line (L-ch) output
LINOR	1F	Output	Line (R-ch) output

(9) Regulator pins

Pin Name	Pin No.	I/O	Functions
REGOUT	2K, 3J	Output	Regulator output When using regulator output for the digital power supply, connect these pins with DV _{DD} pin outside the μ PD9971. Be sure to connect a 2.2 μ F capacitor between this pin and REGGND.
REGUSE_B	4H	Input	Regulator block enable signal input pin 0: When the regulator is used 1: When the regulator is not used
REGCNT	ЗК	Input	Input pin for regulator control 0: Stops the output. 1: Starts the output.

(10) General-purpose external output pins

Pin Name	Pin No.	I/O	Functions
PO0 to PO3	5H, 6H, 4K, 4J	Output	General-purpose external output pins These pins can be used to output control signals to peripheral devices. When they are not used, leave them open.

(11) Test pins

Pin Name	Pin No.	I/O	Functions
TM0 to TM2	2C, 2F, 3B	Input	Input for tests Leave these pins open when using them under normal conditions.
TM3 to TM4	3A, 4B	I/O	Input/output for tests Leave these pins open when using them under normal conditions.
TM5	6C	Input	Input for tests Leave this pin open when using it under normal conditions.

(12) Others

N.C.	Pin No.	I/O	Functions
N.C	1B, 2A, 2B, 2J, 3D, 3E, 8D, 8E, 9A, 9B, 9J, 9L, 10B, 10J	_	Reserved for future use. Leave this pin open.
N.C (index)	4D	_	Reserved for future use. Leave this pin open.

2.4 Connection of Unused Pins

Table 2-1 Connection of Unused Pins

Pin Name	I/O	Recommended Connection
MCLK1	I	Connect to PLLGND.
MCLK2	I	Connect to EGND.
CSTRT	I	Leave open (Internal Pull-down).
A1/RXD	I	Connect to DGND.
D0/SERINIT	I	Connect to DGND.
D1 to D7	I	Connect to DGND.
INT_B	0	Leave open.
LRCLK	I/O	Connect to DGND.
BCLK	I/O	Connect to DGND.
ASI	I	Leave open (Internal Pull-down).
ASO	0	Leave open.
MEN	I/O	Connect to DGND.
MBCLK	I/O	Connect to DGND.
MSI	I	Leave open (Internal Pull-down).
MSO	0	Leave open.
LED	0	Leave open.
VIB	0	Leave open.
LINOL	0	Leave open.
LINOR	0	Leave open.
REGUSE_B	I	Connect to EVDD (when regulator is not used).
REGCNT	I	Connect to EGND (when regulator is not used).
REGVDD	Power	Connect to a 3.0 V power supply (regardless of whether the regulator is used or not).
REGOUT	0	Leave open (when the regulator is not used).
PO0 to PO3	0	Leave open.
TM0 to TM2	I	Leave open (Internal Pull-down).
TM3, TM4	I/O	Leave open.
TM5	I	Leave open (Internal Pull-down).

2.5 Pin Statuses

Pin. I/O		A/D	Pin Name	Standby Sta	atus	RESET_B=0	After		
No				Control Signal	Pin Status	Control Signal	Pin Status	Reset	
2F	Input	Digital	TM1		Input		Input	Input	
1C	Output	Analog	LINOL	STDAC	Hi-Z	STDAC	Hi-Z	Hi-Z	
1D		Analog	AGND						
2D	Output	Analog	IREF	STREF	Hi-Z	STREF	Hi-Z	Hi-Z	
2E	Output	Analog	VREF	STREF	Hi-Z	STREF	Hi-Z	Hi-Z	
1E		Analog	AVDD						
1F	Output	Analog	LINOR	STDAC	Hi-Z	STDAC	Hi-Z	Hi-Z	
1G		Analog	AGND2						
2G		Analog	PLLVDD						
2H	Input	Analog	MCLK1	STPLL1, STPLL2	Input	STPLL1, STPLL2	Input	Input	
1H		Analog	PLLGND						
3G		Analog	REGGND						
ЗH		Analog	REGVDD						
1J		Analog	REGVDD						
2K	Output	Analog	REGOUT	REGCNT	Low	REGCNT	Low	Low	
ЗJ	Output	Analog	REGOUT	REGCNT	Low	REGCNT	Low	Low	
3F	Input	Analog	MCLK2	STPLL1, STPLL2	Input	STPLL1, STPLL2	Input	Input	
ЗK	Input	Digital	REGCNT		Input		Input	Input	
4H	Input	Digital	REGUSE_B		Input		Input	Input	
5H	Output	Digital	PO0		Register	RESET_B	Low	Low	
4K	Output	Digital	PO2		Register	RESET_B	Low	Low	
4J	Output	Digital	PO3		Register	RESET_B	Low	Low	
6H	Output	Digital	PO1		Register	RESET_B	Low	Low	
5K		Digital	DGND						
5J	Input	Digital	A1/RXD		Input		Input	Input	
7H		Digital	DVDD						
6K	I/O	Digital	A0/Data, TXD		Input		Input	Input	
6J	Input	Digital	CS_B/SCS		Input		Input	Input	
7J	Input	Digital	RD_B/SPIMODE		Input		Input	Input	
7K	Input	Digital	WR_B/SCLK		Input		Input	Input	
8H		Digital	EVDD						
8K	I/O	Digital	D0/SERINIT		Input	RESET_B	Hi-Z	Input	
8J	I/O	Digital	D1		Input	RESET_B	Hi-Z	Input	
8G		Digital	EGND		-				
10H	I/O	Digital	D2		Input	RESET_B	Hi-Z	Input	
9H	I/O	Digital	D3		Input	RESET_B	Hi-Z	Input	

		1						(2/2
Pin.	I/O	A/D	Pin Name	Standby St	tatus	RESET_B=0	status	After
No				Control Signal	Pin Status	Control Signal	Pin Status	Reset
8F		Digital	DVDD					
10G	I/O	Digital	D4		Input	RESET_B	Hi-Z	Input
9G	I/O	Digital	D5		Input	RESET_B	Hi-Z	Input
10F	I/O	Digital	D6		Input	RESET_B	Hi-Z	Input
9F	I/O	Digital	D7		Input	RESET_B	Hi-Z	Input
10E	Output	Digital	INT_B		Output	RESET_B	High	High
9E	Input	Digital	RESET_B		Input		Input	Input
10D		Digital	DVDD					
9D	Output	Digital	VIB		Register	RESET_B	Low	Low
10C	Output	Digital	LED		Register	RESET_B	Low	Low
9C		Digital	EVDD					
8C	Input	Digital	CSTRT		Input		Input	Input
8B	I/O	Digital	BCLK	STASI, STASO		RESET_B	Hi-Z	Input
8A	I/O	Digital	LRCLK	STASI, STASO		RESET_B	Hi-Z	Input
7C		Digital	DVDD					
7A	Input	Digital	ASI	STASI, STASO			Input	Input
7B	Output	Digital	ASO	STASI, STASO		RESET_B	Hi-Z	Hi-Z
6B	Input	Digital	PS		Input		Input	Input
6A		Digital	EGND					
6C	Input	Digital	TM5		Input		Input	Input
5B	I/O	Digital	MBCLK	STMSI, STMSO		RESET_B	Hi-Z	Input
5A	I/O	Digital	MEN	STMSI, STMSO		RESET_B	Hi-Z	Input
5C		Digital	DGND					
4C		Digital	DVDD					
4A	Input	Digital	MSI	STMSI, STMSO			Input	Input
4B	I/O	Digital	TM4		Low	RESET_B	Hi-Z	Low
3C	Output	Digital	MSO	STMSI, STMSO		RESET_B	Hi-Z	Hi-Z
ЗA	I/O	Digital	ТМЗ		Low	RESET_B	Hi-Z	Low
3B	Input	Digital	TM2		Input		Input	Input
2C	Input	Digital	ТМО		Input		Input	Input

For pin statuses in ASIO and MSIO blocks, refer to Table 2-2, Table 2-3.

Pin	Pin Function	AMS = 0 (Slave Mode)				AMS = 1 (Master Mode)				
			(STASI,	(STASI, STASO)			(STASI, STASO)			
		(0, 0)	(1, 1)	(1, 0)	(0, 1)	(0, 0)	(1, 1)	(1, 0)	(0, 1)	
BCLK	Bit synchronization I/O for audio	Input (Internal: Low)	Input	Input	Input	Low	Output	Output	Output	
LRCLK	Frame synchronization I/O for audio	Input (Internal: Low)	Input	Input	Input	Low	Output	Output	Output	
ASI	Audio serial data input	_	Input	Input	-	_	Input	Input	_	
ASO	Audio serial data output	Hi-Z	Output	Hi-Z	Output	Hi-Z	Output	Hi-Z	Output	

Table 2-2 Pin Statuses in ASIO Block

Table 2-3 Pin Statuses in MSIO Block

Pin	Pin Function	MMS = 0 (Slave Mode)			MMS = 1 (Master Mode)				
			(STMSI, STMSO)			(STMSI, STMSO)			
		(0, 0)	(1, 1)	(1, 0)	(0, 1)	(0, 0)	(1, 1)	(1, 0)	(0, 1)
MBCLK	Bit synchronization I/O for PCM sound generator- core	Input (Internal: Low)	Input	Input	Input	Low	Output	Output	Output
MEN	Frame synchronization I/O for PCM sound generator- core	Input (Internal: Low)	Input	Input	Input	Low	Output	Output	Output
MSI	PCM sound generator-core serial data input	-	Input	Input	_	_	Input	Input	-
MSO	PCM sound generator-core serial data output	Hi-Z	Output	Hi-Z	Output	Hi-Z	Output	Hi-Z	Output

μ**PD9971**

3. CPU INTERFACE

Two interface modes are available: parallel interface mode, and serial interface mode. The access methods from the host CPU interface are described below.

3.1 Parallel Host CPU Interface

Setting the PS pin to low level enters the parallel I/F mode.

3.1.1 Write access

During write access, data is written to the μ PD9971 from the system.

- A0 is used to distinguish between address write cycles and data write cycles.
- A1 is used to distinguish between register access for the sound generator and chip control. (0: For chip control, 1: For the sound generator)
- In the address write cycle, the data write address is assigned to bits D7 to D0.

Caution Be sure to fix the RD_B pin to the high level during address write cycles and data write cycles.

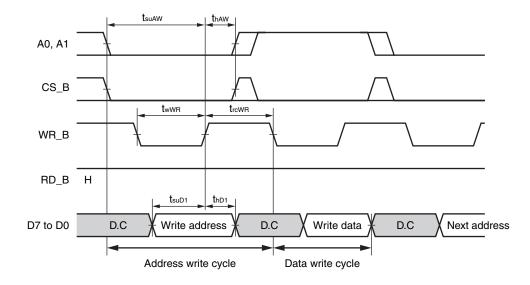
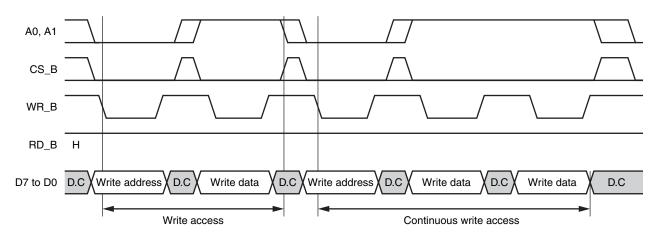



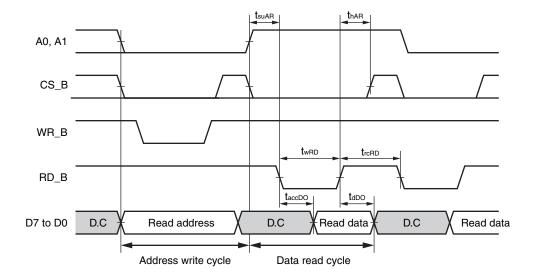
Figure 3-1 Write Access (Single Access)

μ**PD9971**

Figure 3-2 Write Access (Continuous Access)

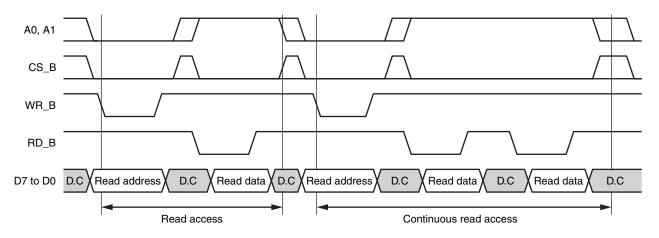
Remark Set the CS_B pin to the low level during the write period. It is not necessary to always set the CS_B pin to the low level during continuous write access. D.C.: Don't Care

NEC


μPD9971

3.1.2 Read access

During read access, data is read from the system by μ PD9971. The read access timing is shown below.


Phase-out/Discontinued

- A0 is used to distinguish between address write cycles and data read cycles.
- A1 is used to distinguish between register access for the sound generator and chip control (0: For chip control ,1: For the sound generator)
- Operation is based on the detection of the rising edge of WR_B and RD_B by the system clock.
- In the address write cycle, the write data address is assigned to bits D7 to D0.

Figure 3-3 Read Access (Single Access)

Remark Set the CS_B pin to the low level during the read period. It is not necessary to always set the CS_B pin to the low level during continuous read access.
D.C.: Don't Care

3.2 Serial Host Interface

Setting the PS pin to high level enters the Serial I/F mode. In this mode, there are two communication methods: 3wire SPI mode and 4-wire SPI mode. The SPIMODE (RD_B) is used to switch the SPI mode.

Phase-out/Discontinued

3.2.1 Pin functions

- The pins used in the serial mode can also be used in the parallel mode.
 - The setting of the PS pin validates the serial mode.
 - 1: Serial mode
 - 0: Parallel mode (default)
- Switching the modes of the RD_B (SPIMODE) pin leads to the selection of a transfer method--either the 3-wire SPI mode or the 4-wire SPI mode.
 - 1: 4-wire SPI mode
 - 0: 3-wire SPI mode

Pin Name		I/O	Functions
Serial	Parallel		
PS	PS	I	Host CPU interface mode select signal input
			0: Parallel mode is valid. 1: Serial mode is valid.
SPIMODE	RD_B	I	SPI mode select signal input
			0: 3-wire SPI mode 1: 4-wire SPI mode
SCLK	WR_B	I	Serial clock input
SCS	CS_B	I	Chip select signal input
Data, TXD	A0	I/O	In 3-wire SPI mode: Inputs or outputs transmit/receive data. In 4-wire SPI mode: Outputs transmit data.
RXD	A1	I	In 3-wire SPI mode: This pin is not used. In 4-wire SPI mode: This pin inputs receive data.
SERINT	D0	I	Serial reset signal input When SERINT =1 and SCS = 1, an asynchronous reset is triggered in the serial interface circuit.

3.2.2 Serial formats

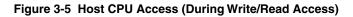
Total:	16 bits
Read/write control:	1 bit (High: Write, Low: Read)
Address:	7 bits
Data:	8 bits

(1) Register areas

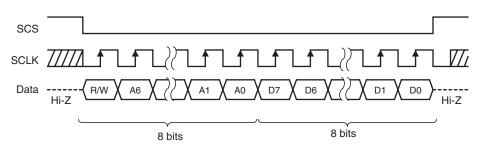
The μ PD9971 has two banks: One for the setting of the sound generator core (sound generator bank) and the other for controlling the chip (Control register bank).

Phase-out/Discontinued

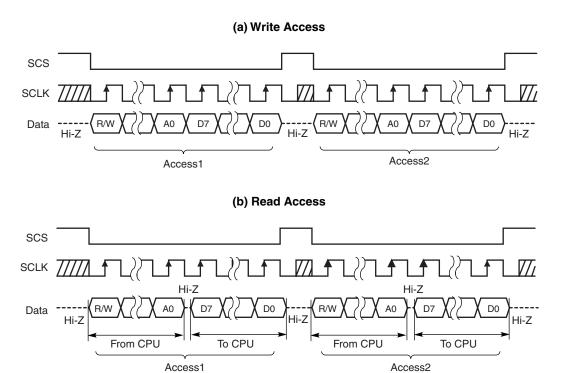
Writing a value to a specific address performs switching of these registers. (7CH: Bank Register)


(2) Access formats

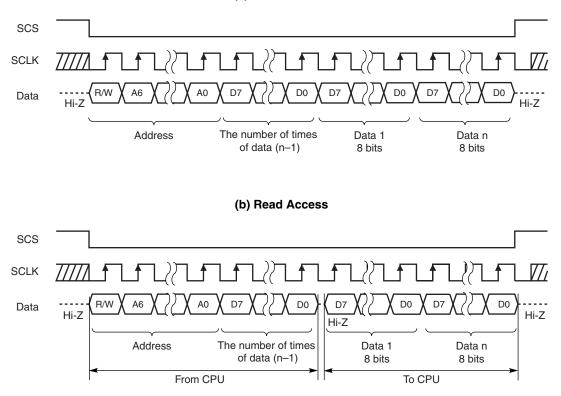
The formats below are provided.


- 1. Normal write access
- 2. Normal read access
- 3. Continuous write access (1)
- 4. Continuous write access (2) for FIFOs

μ<mark>Ρ</mark>D9971


3.2.3 Access formats (3-wire SPI mode)

Phase-out/Discontinued

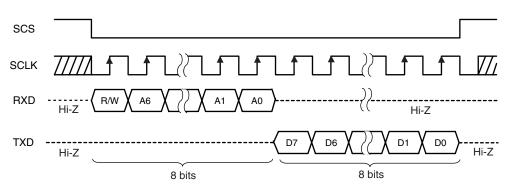


Remark The above formats are used except when accessing FIFOs in the sound generator block.

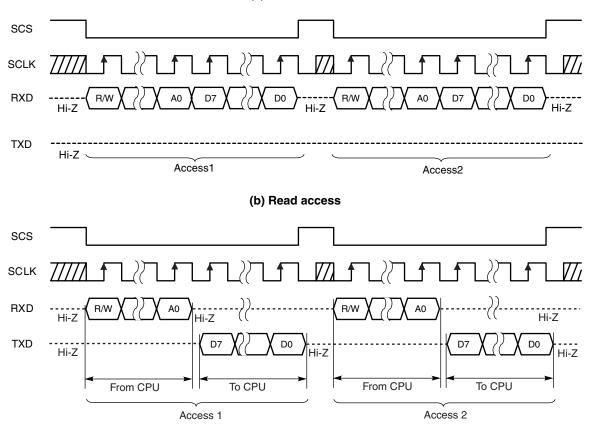
NEC

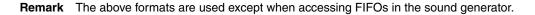
Figure 3-7 Host CPU Access Formats (Continuous Access)

(a) Write Access

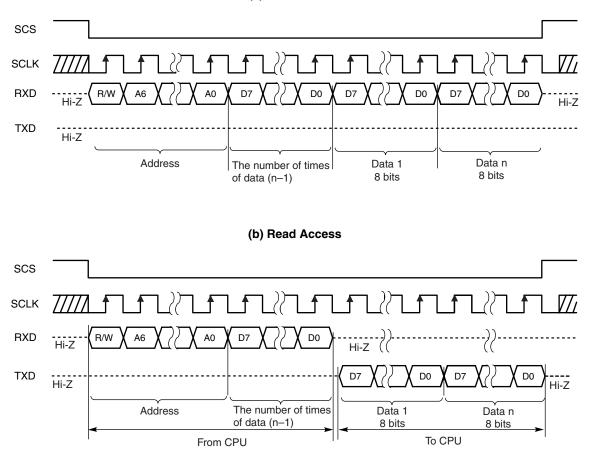

Remark The above formats are only used to access FIFOs in the sound generator block.

3.2.4 Access formats (4-wire SPI mode)




Phase-out/Discontinued

(a) Write access



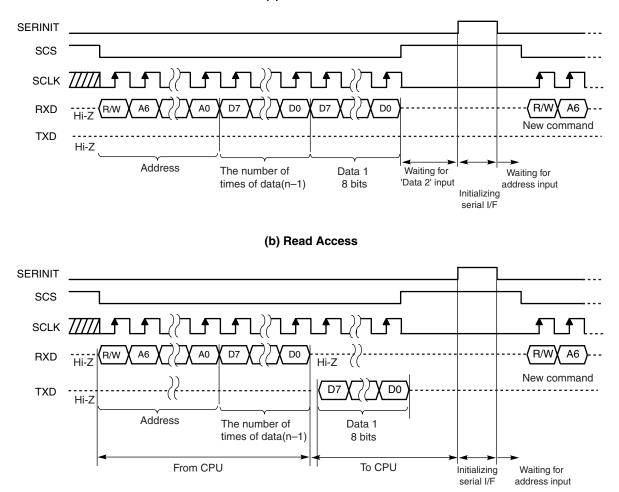
NEC

Figure 3-10 Host CPU Access Formats (Continuous Access 2)

(a) Write Access

Remark The above formats are used except when accessing FIFOs in the sound generator.

3.2.5 Initialization of serial interface


The SERINIT (D0) pin is an initialization signal for the serial I/F and is used for compulsory initialization of the serial I/F during write/read continuous access. (Therefore, this pin is normally used at low level if compulsory initialization is unnecessary)

Phase-out/Discontinued

The compulsory initialization operates only the serial I/F and is asynchronously performed by SCS = 1 and SERINIT = 0. On the other hand the registers in the sound generator and chip control are not initialized. Therefore the serial I/F wait for a new address to be input after initialization.

An example of this initialization signal is shown below.

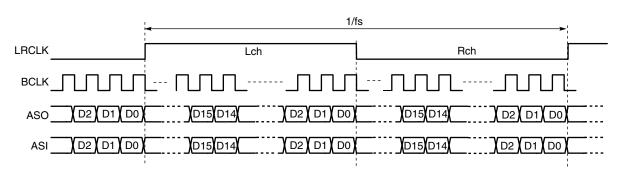
Figure 3-11 Canceling Continuous Access Using SERINT (D0) Pin

(a) Write Access

Remark The initialization conditions in 3 / 4 -wire mode are the same.

4. MUSIC SERIAL INTERFACE

4.1 Audio Serial Interface (ASIO)


When LRCLK = 0 in the SEL_ASI register, L-ch data is assigned during the high-level period of LRCLK and R-ch data is assigned during the low-level period of LRCLK. For IIS format, this is reversed, in which case LRCLK =1 should be set.

Phase-out/Discontinued

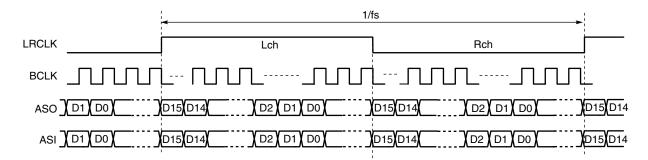
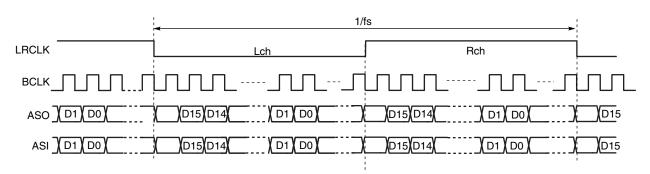

Within each of these periods, the format can be switched among right justified, left justified, and IIS format. Selection of master mode or slave mode is also enabled. The number of data bits per frame can be set via the BFS [4:0] bits in the SEL_FS register. The serial input/output timing is shown below.

Figure 4-1 Audio Serial Interface Timing


(a) Right-Justified Format

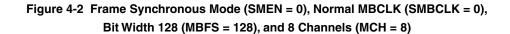
(b) Left-Justified Format

(c) IIS Format

Cautions 1. The IIS format is left justified with one empty bit and sets L-ch to low level and R-ch to high level. Do not specify other settings when selecting IIS mode (ASIM =1 in SEL_ASI register). When selecting LR mode (ASIM = 0 in SEL_ASI register), left or right justification can be selected in combination with normal or reversed left-right format.

Phase-out/Discontinued

2. The number of data bits per frame can be set via BFS [4:0] bits in the SEL_FS register. In master mode, either 64 bits or 32 bits can be selected. In slave mode, any value between 32 bits and 64 bits can be selected in two bits increments. After a reset is cleared, the default frame configuration setting 64 bits in total (32 bit for L-ch and 32 bits for R-ch).


μPD9971

4.2 Serial Interface Dedicated to Sound Generator Core External Connection (MSIO)

Phase-out/Discontinued

This is a serial interface dedicated to the connection between the sound generator core embedded in the μ PD9971 and external application chips. Effects have so far been processed in the sound generator core. With this interface, however, external application chips can control effects. Regarding data formats, only the IIS format is supported.

The figures below show the timing of serial input/output. Mode settings, bit-width settings, and the use of inverted bit-clocks can be achieved by the changing of registers.

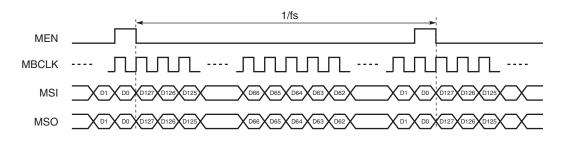
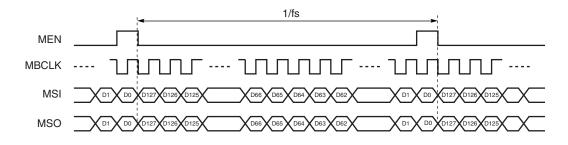
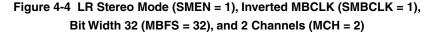
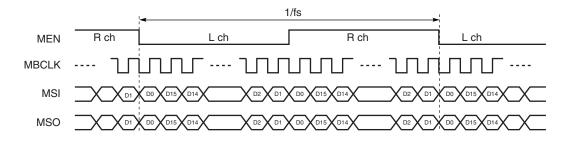
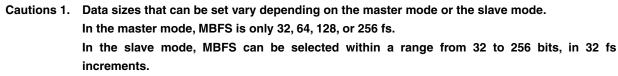
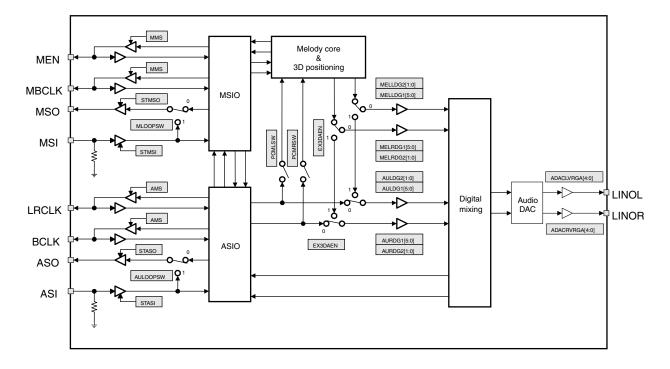






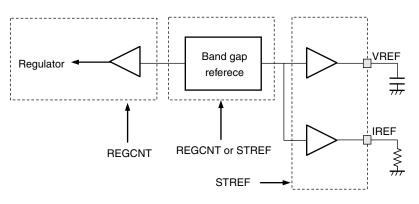
Figure 4-3 Frame Synchronous Mode (SMEN = 0), Inverted MBCLK (SMBCLK = 1), Bit Width 128 (MBFS = 128), and 8 Channels (MCH = 8)



2. When MSIO and ASIO are used at the same time, ASIO can be set to the master mode only (BFS = 32 or 64 fs).

5. BLOCK FUNCTIONS

Figure 5-1 Details Of Signal Paths



NEC

Phase-out/Discontinued

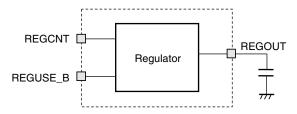
5.1 Reference Voltage and Current Source Block

Figure 5-2 Voltage and Current Source

This block has the following functions:

- Generates reference voltage by using a band gap and supplies the voltage to analog circuits, PLL, and the regulator.
- Generates reference current by using the reference voltage as well as an external resistor and supplies the current to PLL, the regulator, and all analog circuits.
- Receives power supply from AVDD.

The standby control of this block is controlled by the STNBY register.


To assert the internal regulator, reference voltage supplied from a part of this block is required. The REGCNT pin controls the supply of the reference voltage. Thus, when using the regulator, be sure to supply 3.0 V power to both REGV_{DD} and AV_{DD}.

The normal mode is set within 5 ms after this block is started (standby is released).

- Cautions 1. Be sure to connect a 0.22 μ F (± 20 %) capacitor between the VREF pin and AGND. Since capacitors with the above capacitance affect the analog characteristics of the μ PD9971, place the capacitor as close as possible to the VREF pin. Do not connect any other capacitors to the VREF pin.
 - 2. Be sure to connect a 56 k Ω (± 5 %) resistor between the IREF pin and AGND. Do not connect any other resistors to the IREF pin.
 - 3. Note that output may be unstable if another analog block is started before this block is set to the normal mode.

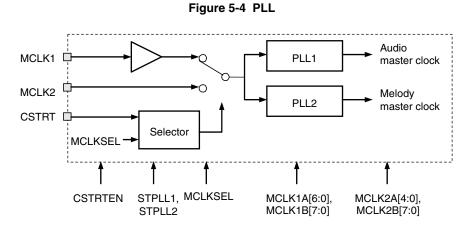
5.2 Regulator Block

Figure 5-3 Regulator

This block has the following functions:

- Generates fixed voltage with the regulator and supplies current to the power supply DVDD pin for digital circuits.
- Requires a short between the regulator output REGOUT pin and the DV_{DD} pin, which must be done at the outside of the μPD9971, when the regulator is used.
- Sets the regulator output to the low level when the regulator is not used.
- Receives power supply from REGVDD.
- Requires a supply of 3.0 V power to REGV_{DD} to check that the regulator is not used, even when the regulator is not used.

This block can be used when the REGUSE_B pin is set to the low level (DGND). When this block is not used, set the REGUSE_B pin to the high level (EVDD).


While the REGUSE_B pin is set to the low level, this block starts supplying current if the REGCNT pin is set to the high level, and stops it if the REGCNT pin is set to the low level.

Pin	Pin Status				
	When regulator is not used	When regulator is used			
REGVDD	3.0 V external power supply	3.0 V external power supply			
REGOUT	Left open (Output: Low)	Shorted with DVDD			
DVdd	Connected to 1.54 V external power supply	Shorted with REGOUT			
REGCNT	Shorted with DGND	High: Regular standby is canceled.			
		Low: Regular standby			
REGUSE_B	Shorted with EVDD	Shorted with DGND			

Table 5-1 Setting Of Pins When Regulator Is Used/Is Not Used

- Cautions 1. Be sure to connect a 2.2 μ F (± 20 %) capacitor between the REGOUT pin and AGND. Since capacitors with the above capacitance affect the noise characteristics of the regulator, place the capacitor as close as possible to the REGOUT pin. Do not connect any other capacitors to the REGOUT pin.
 - 2. Be sure to connect a 0.1 μF (± 20 %) capacitor between the REGV_DD pin and AGND.
 - 3. Note that output may be unstable if a digital block is started before this block is set to the normal mode.
 - 4. To charge the capacitor connected to the REGOUT pin, about 350 mA of through current flows into the capacitor for about 50 μ s. when the regulator is started. Contact NEC Electronics if charging causes problems.

5.3 PLL Block

This block has the following functions:

- Divides or multiplies clocks input from the outside (which is done by the setting of registers) and generates the sound generator master clock as well as the audio master clock.
- Selects either the MCLK1 or MCLK2 pin as the clock input pin by using an internal register MCLKSEL or an external pin CSTRT. (Selection using the CSTRT pin is a special mode. Normally, use the MCLKSEL register.)
- Requires a setting, CSTRTEN bit = high, for validating the selection using the CSTRT pin.
- Inputs the MCLK2 pin to the EVDD level because the pin uses external digital signals as clocks.
- Receives power supply from PLLVDD.

This block generates the audio master clock when the STPLL1 bit is set to the high level, and the sound generator block master clock when the STPLL2 bit is set to the high level. Each master clock requires the setting of a division ratio by MCLK1A, MCLK1B, MCLK2A, and MCLK2B registers. The setting has to be performed in accordance with the input frequency and the sampling frequency.

When the CSTRTEN bit is set to the low level, and when the MCLKSEL bit is set to the low level, the MCLK1 pin is selected as the clock input pin. In this case, if the MCLKSEL bit is set to the high level, the MCLK2 pin is selected.

When the CSTRTEN bit is set to the high level, and when a specific division ratio is set, a special mode in which clock input pins are switched by an external pin CSTRT is enabled. For details of the special mode, contact NEC Electronics.

Normally, use the MCLKSEL register to perform the switching.

Table 5-2 SWITCHING OF CLOCKS BY REGISTERS									
CSTRTEN	MCLKSEL	CSTRT	Clock Selection						
Low High Don't care		Don't care	Selects MCLK2 as clock input pin.						
Low	Low	Don't care	Selects MCLK1 as clock input pin.						
High Don't care High		High	Selects MCLK1 as clock input pin. (Fixed at 15.36 MHz.)						
High	Don't care	Low	Selects MCLK2 as clock input pin. (Fixed at 12.00 MHz.)						

- Cautions 1. For this block to operate, the reference voltage source and reference current source blocks must be set to the normal mode.
 - 2. The reference voltage source and reference current source blocks are set to the normal mode in 5 ms after the standby is released.

5.4 Sound Generator Core (Sound Generator/3D Positioning/Equalizer) Interface Block

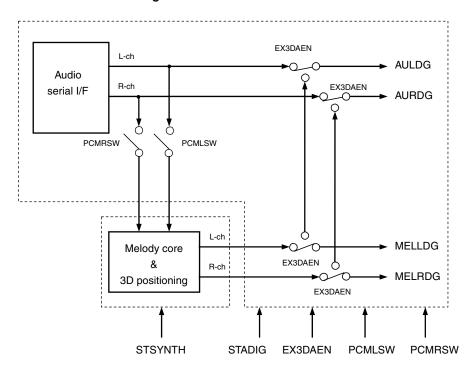
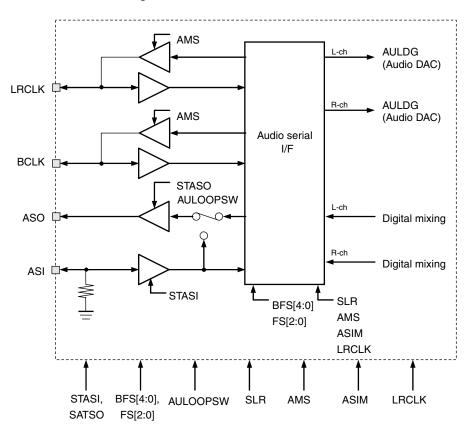


Figure 5-5 Sound Generator Core

This block has the following functions:

- Can perform surround processing of PCM data input from ASI, when the sampling frequency is 32 kHz.
- Needs to be set to the expansion 3DA mode (the EX3DAEN bits = high) to perform surround processing of PCM data input from ASI, when the sampling frequency is 44.1 kHz.
- Switches the output destination of surround-processed data from the MELLDG or MELRDG block to the AULDG or AURDG block, when the expansion 3DA mode is selected.
- Receives power supply from DVDD.

In this block, the audio serial interface operates when STADIG = high. In this block, the sound generator core block operates when STSYNTH = high.


The table below shows the selection and addition of audio data that goes through surround processing.

Block Set Address		Adjustable Range			
PCMLSW	0BH	Mute, ASI input			
PCMRSW	0BH	Mute, ASI input			

Table 5-3 Selection of Data Going Through Surround Processing

5.5 Audio Serial Interface Block (ASIO)

Figure 5-6 Audio Serial Interface

This block has the following functions:

- Converts serial data input from ASI into parallel data, and outputs the data to the Audio DAC block.
- Converts parallel data input from the Digital Mixing block into serial data, and outputs the data from ASO.
- Selects a sampling frequency from among 8, 16, 32 (default), 44.1, and 48 kHz according to the register setting.
- Can change the frequency of BCLK (default: 64 fs) by setting the register.
- Can perform loop back between ASI and ASO by setting the register.
- Can select the right-justified (default) or left-justified data format by setting the register.
- Can select the slave (default) or master mode by setting the register.
- Can select the LR (default) or IIS mode by setting the register.
- Can invert LRCLK by setting the register.
- Receives power supply from DVDD.

This block operates according to the STASI and STASO register settings. For details, refer to Table 5-4.

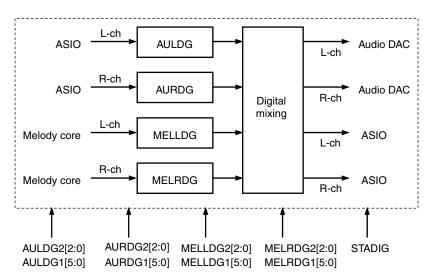

Pin	Pin Function		AMS = 0 (Slave Mode)			AMS = 1 (Master Mode)			
			(STASI,	STASO)			(STASI,	STASO)	
		(0, 0)	(1, 1)	(1, 0)	(0, 1)	(0, 0)	(1, 1)	(1, 0)	(0, 1)
BCLK	Bit synchronization I/O for audio	Input (Internal: Low)	Input	Input	Input	Low	Output	Output	Output
LRCLK	Frame synchronization I/O for audio	Input (Internal: Low)	Input	Input	Input	Low	Output	Output	Output
ASI	Audio serial data input	-	Input	Input	_	_	Input	Input	_
ASO	Audio serial data output	Hi-Z	Output	Hi-Z	Output	Hi-Z	Output	Hi-Z	Output

Table 5-4 Pin Statuses In ASIO Block

Cautions 1. For this block to operate, the PLL block has to be operating.

- 2. Set the LRCLK and SLR registers to the high level when selecting the IIS mode.
- 3. To perform surround processing of data input from ASI, set the sampling frequency at 32 or 44.1 kHz.

5.6 Audio Playback and Digital Gain Adjustment Block

Figure 5-7 Audio Playback and Digital Gain Adjustment Block

This block has the following functions:

- Performs digital gain adjustment for sampling stereo linear PCM formats of 8, 16, 32, 44.1, and 48 kHz that are digitally input from the audio serial interface.
- Performs digital gain adjustment for the sampling stereo linear PCM format of 32 kHz that is digitally input from the sound generator.
- Digitally mixes the signals that have gone through the above gain adjustment.
- Outputs the digitally mixed signals to the Audio DAC and audio serial interface blocks.
- Receives power supply from DVDD.

This block operates when the STADIG register is set to the high level. In the gain adjustment block, multiplying the each digital input signal by a coefficient performs gain adjustment. Performing gradual change of gains realizes soft mute functions that minimize unusual noise.

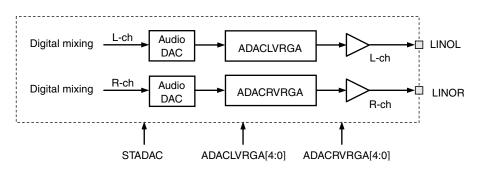

Block	Set Address	Adjustable Range					
AULDG	13H	Mute, +12 dB to 0 dB to -63 dB in 1 dB increments					
AURDG	14H	Mute, +12 dB to 0 dB to -63 dB in 1 dB increments					
MELLDG	11H	Mute, +12 dB to 0 dB to -63 dB in 1 dB increments					
MELRDG	12H	Mute, +12 dB to 0 dB to -63 dB in 1 dB increments					

Table 5-5 Digital Gain Adjustment

Caution For this block to operate, PLL has to be operating stably.

5.7 Audio Playback Analog Block

This block has the following functions:

- Performs D/A conversion of digital signals that are output from the Digital Mixing block (the conversion is done in Audio DAC), and then performs analog gain adjustment for the output analog signals.
- Outputs the signals that have gone through the gain adjustment from the LINEOL and LINEOR pins (line output).
- Receives power supply from AVDD.

This block operates when the STADAC bit is set to the high level. In the gain adjustment block, gain adjustment for audio DAC output is performed in analog circuits. L-ch and R-ch gains can be set individually.

Block	Set Address	Adjustable Range
ADACLVRGA	17H	Mute, 0 dB to -45 dB in 1.5 dB increments
ADACRVRGA	18H	Mute, 0 dB to -45 dB in 1.5 dB increments

Table 5-6 Analog Gain Adjustment

NEC

5.8 Digital Mixing Block

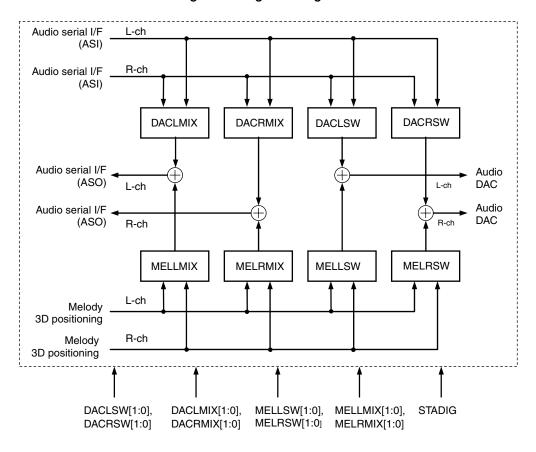


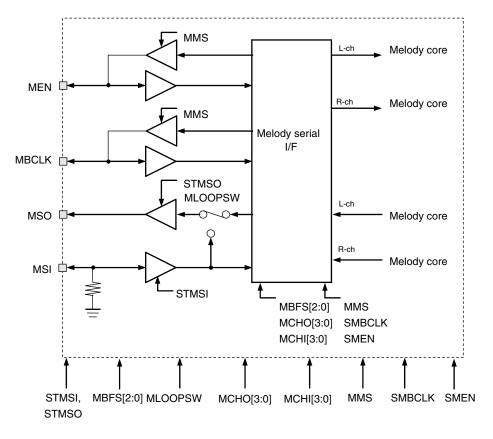
Figure 5-9 Digital Mixing Block

Phase-out/Discontinued

This block has the following functions:

- Mixes digital signals input from the audio serial interface and output from the sound generator. (The mixing can be performed only when the fs = 32 kHz.)
- Outputs the mixed digital data to the ASIO and Audio DAC blocks.
- Equipped with selectors to select channels. The selector names and the selectable channels are as follows: Through (L-ch → L-ch and R-ch → R-ch); Channel inversion (L-ch → R-ch and R-ch → L-ch); Monaural (L-ch → L-ch + R-ch and R-ch → L-ch + R-ch); Mute (L-ch → no output and R-ch → no output). In the case of the monaural selector, first, the L-ch and R-ch are divided by two then added.
- Receives power supply from DVDD.

This block operates when the STADIG bit is set to the high level.


Table 5-7 Selector Setting

Block	Initial Setting	Path to be Set
DACLSW	Through	Path between ASI and Audio DAC
DACRSW	Through	Path between ASI and Audio DAC
MELLSW	Through	Path between sound generator and Audio DAC
MELRSW	Through	Path between sound generator and Audio DAC
DACLMIX	Mute	Path between ASI and ASO
DACRMIX	Mute	Path between ASI and ASO
MELLMIX	Mute	Path between sound generator and ASO
MELRMIX	Mute	Path between sound generator and ASO

μ**PD9971**

5.9 Serial Interface Dedicated to Sound Generator Core External Connection (MSIO)

Figure 5-10 Serial Interface Dedicated to Sound generator Core External Connection

This block has the following functions:

- Converts serial data input from MSI into parallel data, and outputs the parallel data to the sound generator core block.
- Converts parallel data input from the sound generator core block into serial data, and outputs the serial data from MSO.
- Has a fixed sampling frequency of 32 kHz.
- Can change the frequency of MBCLK (default: 64 fs) by setting the register.
- Can set the number of valid data items in MSI input data and MSO output data individually by setting the register.
- Can perform data loop back between MSI and MSO by setting the register.
- Can select the slave (default) or master mode by setting the register.
- Can select the frame synchronous (default) or LR stereo mode by setting the register.
- Can invert the MBCLK bit clock by setting the register.
- Receives power supply from DVDD.

This block operates according to the STMSI and STMSO register settings. For details, refer Table 5-8.

Pin	Pin Function		MMS = 0 (Slave Mode)			MMS = 1 (Master Mode)			
			(STMSI,	STMSO)			(STMSI,	STMSO)	
		(0, 0)	(1, 1)	(1, 0)	(0, 1)	(0, 0)	(1, 1)	(1, 0)	(0, 1)
MBCLK	Bit synchronization I/O for PCM sound generator- core	Input (Internal: Low)	Input	Input	Input	Low	Output	Output	Output
MEN	Frame synchronization I/O for PCM sound generator- core	Input (Internal: Low)	Input	Input	Input	Low	Output	Output	Output
MSI	PCM sound generator-core serial data input	_	Input	Input	-	_	Input	Input	-
MSO	PCM sound generator-core serial data output	Hi-Z	Output	Hi-Z	Output	Hi-Z	Output	Hi-Z	Output

Table 5-8 Pin Statuses in MSIO Block

Cautions 1. As in the case of ASIO, MSIO can operate in the slave or master mode. When ASIO and MSIO are used at the same time, the frame signals in the μ PD9971 need to be

integrated. Accordingly, ASIO can be used in the master mode only.

- 2. Below are the restrictions that are applied depending on use conditions.
 - (1)When only ASIO set to the master mode is used, the setting value of BFS must be only 64 fs or 32 fs.
 - (2)When only MSIO set to the master mode is used, the setting value of MBSF must be selected from among 32 fs, 64 fs, 128 fs, and 256 fs.
 - (3)When both ASIO and MSIO are used, ASIO can be used only if it is set to the master mode.
 - (4)In all of the above cases, the setting of invalid values to BFS or MBFS results in the application of default values.

6. REGISTERS (CONTROL REGISTER BANK)

Below are the descriptions of registers of the Control register bank. It is not possible to write to registers except those specified in the table below.

OH RW STADIG STPLI2 STPLI1 STASI STASO STSYNTH STADAC STREF OH Li Slandby ST 011 RW 0 MCLK14[6:0] ICH Master clock1 MC 02H RW 0 0 0 MCLK24[4:0] 02H Master clock1 MC 03H RW 0 0 0 0 0 CSTRTEN MCLK24[4:0] 02H Master clock1 MC 03H RW 0 0 0 0 CSTRTEN MCLK28[7:0] 2AH Master clock1 MC 03H RW 0 0 0 0 CSTRTEN MCLK38L OH Clock switching MC 03H RW 0 0 0 AMS ASIM LRCLX OH ASI SE 04H RW 0 0 0 ASIM LRCLX OH MSIG SE ASIM LRCLX OH							-						
011 RW 0 $tideligned boxesite boxesi$	Add.	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Initial	Function	Reg Name
021 R/W Image: Control of the contro	00H	R/W	STADIG	STPLL2	STPLL1	STASI	STASO	STSYNTH	STADAC	STREF	00H	LSI Standby	STNBY
03H R/W 0 0 0 VICL/22[7:0] VICL/22[7:0] 02H Master clock2 MG 03H R/W 0	01H	R/W	0				MCLK1A[6:0]				1CH	Master clock 1	MCLK1A
off RW Image: Control of the second of th	02H	R/W				MCLK	IB[7:0]				80H	Master clock1	MCLK1B
OH RW 0 0 0 0 CSTRTEN MCLKSEL 0H Clock ewitching MC 0H RW - I I I I I XX Reserved Resorved Reso	03H	R/W	0	0	0			MCLK2A[4:0]			02H	Master clock2	MCLK2A
off RW Image: Constraint of the standard of the	04H	R/W				MCLK	2B[7:0]				2AH	Master clock2	MCLK2B
07H RW □ EFS[4:0] SER[4:0] SER[4:0] SER[4:0] SER[4:0] SER[4:0] AISM LRCLK 0(H ASI SER OH RSW OH ASI SER AISM LRCLK 0(H ASI SER OH ASIM LRCLK 0(H ASI SER OH ASIM LRCLK 0(H ASI< SER OH ASIM LRCLK 0(H ASI< SER OH ASIM LRCLK 0(H ASI SER OH ASIM LRCLK 0(H ASI SER ASIM ASIM LRCLK 0(H ASI ASI ASIM ASIM ASIM ASIM ASIM ASI ASI ASI ASI ASIM ASIM ASIN	05H	R/W	0	0	0	0	0	0	CSTRTEN	MCLKSEL	00H	Clock switching	MCLKSEL
OeH R/W 0 0 EX3DAEN AULOOPSW SLR AMS ASIM LRCLK 00H ASI SEE 09H R/W DACLMIX[1:0] DACRMIX[1:0] DACRSW[1:0] DACRSW[1:0] DACRSW[1:0] F0H Mixing path 1 MI 0AH R/W MELLMIX[1:0] MELRMIX[1:0] MELLSW[1:0] MELRSW[1:0] F0H Mixing path 2 MI 0BH R/W 0 0 0 0 PCMLSW 0 PCMRSW 0H Mixing path 3 MI 0CH R/W 0 0 0 0 PCMLSW 0 PCMRSW 0H Mixing path 3 MI 0CH R/W 0 0 0 0 0 0 PCUT3 PCUT1 POUT0 0H LED 0H LED VIE external output external output<	06H	R/W									xx	Reserved	Reserved
9H 9HV DACLMIX[1:0] DACRMIX[1:0] DACLSW[1:0] DACRSW[1:0] FH Muing paint MU 0AH RW MELLMIX[1:0] MELRMIX[1:0] MELSW[1:0] MELSW[1:0] MELSW[1:0] FH Muing paint MU 0BH RW 0 0 0 0 PCMLSW 0 PCMRSW 0H Mixing paint3 MU 0CH RW 0 0 0 0 PCMLSW 0 PCMRSW 0H Mixing paint3 MU 0CH RW 0 0 0 0 0 PCMLSW 0 PCMRSW 0H Mixing paint3 MU 0H RW 0 0 0 0 0 PCMLSW VIB LED Reserved	07H	R/W			BFS[4:0]				FS[2:0]	1	00H	FS,BCLK select	SEL_FS
OAH RW MELLMIX[1:0] MELRMIX[1:0] MELLSW[1:0] MELSW[1:0] F0H Mixing path2 MM 0BH RW 0 0 0 0 0 PCMLSW 0 PCMRSW 00H Mixing path3 MM 0CH RW 0 0 0 0 0 PCMLSW 0 PCMRSW 00H Mixing path3 MM 0CH RW 0 0 0 0 0 VIB LED 00H LED, VIB control LED output PO 0EH RW 0 0 0 0 POUT2 POUT1 POUT0 00H Port output external output PO 0FH RW 0 0 0 SLOPE[1:0] AUSMUTE MELSMUTE 0H Soft mute SM 11H RW MELLDG2[1:0] MELLDG1[5:0] FFH ADAC digital gain/path ME 12H RW MULDG2[1:0] MELRDG1[5:0] FFH	08H	R/W	0	0	EX3DAEN	AULOOPSW	SLR	AMS	ASIM	LRCLK	00H	ASI	SEL_ASI
OBH RW 0 0 0 0 PCMLSW 0 PCMRSW 00H Mixing path3	09H	R/W	DACLM	IIX[1:0]	DACRN	/IX[1:0]	DACLS	SW[1:0]	DACRS	SW[1:0]	F0H	Mixing path1	MIXING1
OCH RW Image: standard	0AH	R/W	MELLN	1IX[1:0]	MELRN	/IX[1:0]	MELLS	W[1:0]	MELRS	SW[1:0]	F0H	Mixing path2	MIXING2
ODHR/W0000000VIBLED00HLED, VIB control outputLED0EHR/W00000POUT3POUT2POUT1POUT000HPort outputPO external output0FHR/W00000SLOPE[1:0]AUSMUTEMELSMUTE00HSoft muteSM gain/path11HR/W0000SLOPE[1:0]AUSMUTEMELSMUTE00HSoft muteSM gain/path12HR/WMELRDG2[1:0] $$	0BH	R/W	0	0	0	0	0	PCMLSW	0	PCMRSW	00H	Mixing path3	MIXING3
$ \begin{array}{ c c c c c } \hline \ \ \ \ \ \ \ \ \ \ \ \ \$	0CH	R/W									хх	Reserved	Reserved
$ \begin{array}{ c c c c c c } \hline \begin matrix m$	0DH	R/W	0	0	0	0	0	0	VIB	LED	00H		LEDVIB
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0EH	R/W	0	0	0	0	POUT3	POUT2	POUT1	POUT0	00H		POUT
11H R/W MELLDG2[1:0] MELLDG1[5:0] FFH ADAC digital gain/path MELDG1[si] 12H R/W MELRDG2[1:0] $MELRDG1[5:0]$ FFH ADAC digital gain/path ME 13H R/W AULDG2[1:0] $MELRDG1[5:0]$ FFH ADAC digital gain/path AU 14H R/W AURDG2[1:0] $MELRDG1[5:0]$ FFH ADAC digital gain/path AU 14H R/W AURDG2[1:0] $MELRDG1[5:0]$ FFH ADAC digital gain/path AU 15H R/W AURDG2[1:0] $MELRDG1[5:0]$ FFH ADAC digital gain/path AU 16H R/W AURDG2[1:0] $MELRDG1[5:0]$ FFH ADAC digital gain/path AU 17H R/W 0 0 0 I I I Reserved Re 18H R/W 0 0 0 ADAC digital gain/path I Reserved Re 18H R/W 0 0 0 I ADAC ADACLVRGA[4:0] IFH ADAC analog gain AD 18H R/W 0 0	0FH	R/W										Reserved	Reserved
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	10H	R/W	0	0	0	0	SLOP	E[1:0]	AUSMUTE	MELSMUTE	00H	Soft mute	SMUTE
$ \begin{array}{ c c c c c } \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	11H	R/W	MELLD	G2[1:0]			MELLDG1[5:0]				FFH	-	MELLDG
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	12H	R/W	MELRD	G2[1:0]			MELRDG1[5:0]				FFH	-	MELRDG
15H R/W Image: Constraint of the second	13H	R/W	AULDO	G2[1:0]			AULDG1[5:0]					-	AULDG
16HR/WImage: Constraint of the second s	14H	R/W	AURDO	G2[1:0]			AURDG1[5:0]				FFH	-	AURDG
17H R/W 0 0 0 ADACLVRGA[4:0] 1FH ADAC analog gain ADAC 18H R/W 0 0 0 ADACRVRGA[4:0] 1FH ADAC analog gain ADAC 20H R/W 0 0 0 0 0 STMSI STMSO 00H LSI standby for MSIO STI STMSO 0H LSI standby for MSIO STI STMSO 0H MSIO STI STMSO STMSI STMSO STI STMSO STI STMSO STI STMSO STI STISO STISO <td< td=""><td>15H</td><td>R/W</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Reserved</td><td>Reserved</td></td<>	15H	R/W										Reserved	Reserved
18H R/W 0 0 0 ADACRVRGA[4:0] 1FH ADAC analog gain ADAC 20H R/W 0 0 0 0 0 STMSI STMSO 00H LSI standby for MSIO STMSI STMSO 00H LSI standby for MSIO STMSI STMSI STMSO 00H LSI standby for MSIO STMSI STMSI STMSI STMSIO STMS	16H	R/W										Reserved	Reserved
20H R/W 0 0 0 0 0 STMSI STMSO 00H LSI standby for MSIO STMSO 21H R/W 0 MBFS[2:0] MLOOPSW MMS SMEN SMBCLK 10H MSIO SEE 22H R/W MCHI[3:0] MCHOPSW MMS SMEN SMBCLK 10H MSIO SEE	17H	R/W	0	0	0		A	DACLVRGA[4:	0]		1FH	ADAC analog gain	ADACLVR
Image: Note of the state of the st	18H	R/W	0	0	0		A	DACRVRGA[4	:0]		1FH	ADAC analog gain	ADACRVR
22H R/W MCHI[3:0] MCHO[3:0] 33H MSIO SEI	20H	R/W	0	0	0	0	0	0	STMSI	STMSO	00H	-	STNBY2
	21H	R/W	0		MBFS[2:0]		MLOOPSW	MMS	SMEN	SMBCLK	10H	MSIO	SEI_MSIO1
3FH B 1 0 1 1 VER(3:0] xx LSI version ^{Note} LSI	22H	R/W		MCH	I[3:0]			MCHO[3:0]			33H	MSIO	SEL_MSIO2
	3FH	R	1	0	1	1		VER	[3:0]		хх	LSI version ^{Note}	LSIVER
7CH R/W 0 0 0 0 0 0 0 BANK1 BANK0 00H BANK exchange BA	7CH	R/W	0	0	0	0	0	0	BANK1	BANK0	00H	BANK exchange	BANK

Table 6-1 Chip Control Registers

Note Serial mode only, Remark xx: Undefined

6.1 Standby Setting (STNBY)

This register performs the setting for standby.

Address: 00H	, register name: STNBY	block: whole block.	access: R/W.	initial value: 00H
7 1001000.0011	, regiotor nume. Orner	, biook. whole biook,	u00000.11/ •••,	

D7	D6	D5	D4	D3	D2	D1	D0
STADIG	STPLL2	STPLL1	STASI	STASO	STSYNTH	STADAC	STREF

6.1.1 STADIG

Data	Mode	Initial Value	Description
0	Stand-by	0	Standby for audio digital block
1	ON		Normal operation

6.1.2 STPLL2

During the standby mode, clock signals output from PLL2 are not supplied.

Data	Mode	Initial Value	Description
0	Stand-by	0	Standby for PLL2
1	ON		Normal operation

6.1.3 STPLL1

During the standby mode, clock signals output from PLL1 are not supplied.

I	Data	Mode	Initial Value	Description
T	0	Stand-by	0	Standby for PLL1
	1	ON		Normal operation

6.1.4 STASI

Data	Mode	Initial Value	Description			
0	0 Stand-by 0		Standby for ASI (audio serial interface input)			
1	ON		Normal operation			

6.1.5 STASO

LRCLK and BCLK operate in the standby mode only when both the STASI and STASO bits have been set for standby. For details, refer to **Table 5-4 Pin Statuses In ASIO Block**

Data	Mode	Initial Value	Description		
0	Stand-by 0		Standby for ASO (audio serial interface output)		
1	ON		Normal operation		

6.1.6 STSYNTH

Data	Mode	Initial Value	Description		
0	Stand-by	0	Standby for sound generator block (Synthesizer)		
1	ON		Normal operation		

Phase-out/Discontinued

6.1.7 STADAC

Data	Mode	Initial Value	Description		
0	Stand-by	0	Standby for Audio DAC block		
1	ON		Normal operation		

6.1.8 STREF

During the standby mode, the reference voltage and reference current are not supplied to PLL not to all of the analog blocks. Make sure that the ON mode is selected when the μ PD9971 is used.

Data	Mode	Initial Value	Description			
0	Stand-by	0	Standby for reference voltage/reference current in the analog block			
1	ON		Normal operation			

NEC

6.2 Master Clock Switching (MCLK1A, MCLK1B, MCLK2A, and MCLK2B)

These registers are for the settings for the master clocks, refer to 6.3.2 (2) Setting the master clock PLL2 for Sound generators.

A deluce a subolition a state			the latest strength of the latest strength ostrength of the latest strength ostrength ostre
Address: 01H, registe	r name: MCLK1A, block:	PLL1, access: R/W	initial value: 1CH

D7	D6	D5	D4	D3	D2	D1	D0
0				MCLK1A[6:0]			

Address: 02H, register name: MCLK1B, block: PLL1, access: R/W, initial value: 80H

D7	D6	D5	D4	D3	D2	D1	D0
			MCLK	1B[7:0]			

Address: 03H, register name: MCLK2A, block: PLL2, access: R/W, initial value: 02H

D7	D6	D5	D4	D3	D2	D1	D0
0	0	0			MCLK2A[4:0]		

Address: 04H, register name: MCLK2B, block: PLL2, access: R/W, initial value: 2AH

l	D7	D6	D5	D4	D3	D2	D1	D0
				MCLK	2B[7:0]			

6.2.1 MCLK1A[6:0]

ſ	Data	Mode	Initial Value	Description
MCLK1A[6:0] 1Ch Sets PLL1 used for generating the audio ma		Sets PLL1 used for generating the audio master clock.		

6.2.2 MLCK1B[7:0]

Data	Mode	Initial Value	Description
MCLK1B[7:0]		80h	Sets PLL1 used for generating the audio master clock.

6.2.3 MCLK2A[4:0]

Data	Mode	Initial Value	Description
MCLK2A[4:0]		02h	Sets PLL2 used for generating the sound generator master clock.

6.2.4 MCLK2B[7:0]

Data	Mode	Initial Value	Description
MCLK2B[7:0]		2Ah	Sets PLL2 used for generating the sound generator master clock.

6.3 Selecting Input Clock (MCLKSEL)

This register selects the clock input pin.

Address: 05H, register name: MCLKSEL	block: PLL_access: B/V	/ initial value: 00H
Address. Usi i, register name. MOLNOLL	, DIUCK. I LL, access. Π/V	v, initial value. Our i

D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	CSTRTEN	MCLKSEL

6.3.1 MCLKSEL

Be sure to leave the clock selection pin (CSTRT) open or fix it to the low level (a pull-down resister is contained) when clock input pins are switched by registers.

Data	Mode	Initial Value	Description	
0	MCLK1 input	0	Selects MCLK1 as the clock input pin.	
1	MCLK2 input		Selects MCLK2 as the clock input pin.	

6.3.2 CSTRTEN

Use the MCLKSEL register for normal switching (In this case, the default setting is CSTRTEN = 0.).

Data	Mode	Initial Value	Description
0	CSTRT invalidation	0	Uses the MCLKSEL register for switching clock input pins.
1	1 CSTRT validation		Uses the CSTRT pin for switching clock input pins.

NEC

(1) Setting the master clock PLL1 for audio blocks

When clock input pins are switched by the CTSRT pin, only limited frequencies can be used. The relationships between the frequencies and the pins are as follows: 15.36 MHz for MCLK1 and 12.00 MHz for MCLK2.

Phase-out/Discontinued

Input Frequency	MCL	K1A	MCLK1B		Error [%]	Master Frequency
[MHz]	Dec.	HEX	Dec.	HEX		(Except Frequency for
						Sound generator) [MHz]
						[1011 12]
3.840	20	14H	128	80H	0.0000	24.57600
5.376 (default)	28	1CH	128	80H	0.0000	24.57600
12.000	75	4BH	154	9AH	0.2604	24.64000
12.600	81	51H	158	9EH	0.0072	25.57778
13.000	64	40H	121	79H	0.0086	24.57813
14.400	75	4BH	128	80H	0.0000	24.57600
15.360	96	60H	154	9AH	0.2604	24.64000

Table 6-2 When Switching Is Not Done By the CSTRT Pin (CSTRTEN = 0)

Table 6-3 When Switching Is Done By the CSTRT Pin (CSTRTEN = 1)

Frequency for
enerator [MHz]
)

NEC

(2) Setting the master clock PLL2 for Sound generators

When clock input pins are switched by the CSTRT pin, only limited frequencies can be used. The relationships between the frequencies and the pins are as follows: 15.36 MHz for MCLK1 and 12.00 MHz for MCLK2.

Phase-out/Discontinued

Table 6-4 When Switching Is Not Done By The CSTRT Pin (CSTRTEN = 0).

Input Frequency	MCLK2A		MCLK2B		E rror [9/1	Master Frequency for
[MHz]	Dec.	HEX	Dec.	HEX	Error [%]	Sound generator [MHz]
3.840	2	02H	59	3BH	0.4255	113.2800
5.376 (default)	2	02H	42	2AH	0.0851	112.8960
12.000	5	05H	47	2FH	0.0000	112.8000
12.600	5	05H	45	2DH	0.5319	113.4000
13.000	5	05H	44	2CH	1.4184	114.4000
14.400	6	06H	47	2FH	0.0000	112.8000
15.360	6	06H	44	2CH	0.1418	112.6400

Table 6-5 When Switching Is Done By The CSTRT Pin (CSTRTEN = 1).

Input Frequency	MCLK2A		MCLK2B		Error [%]	Master Frequency for
[MHz]	Dec.	HEX	Dec.	HEX		Sound generator [MHz]
MCLK1 = 15.36 MHz MCLK2 = 12.00 MHz	25	19H	234	EAH	0.4255	112.3200

μ**PD9971**

6.4 FS Switching and BCLK Switching for ASIO (SEL_FS)

This register sets the ASI sampling rate and the frequency of BCLK.

Address: 07H, register name: SEL_FS, block: ASIO, access: R/W, initial value: 00H

D7	D6	D5	D4	D3	D2	D1	D0
		BFS[4:0]				FS[2:0]	

6.4.1 FS[2:0]

Data	Mode	Initial Value	Description
000b	32 kHz	000b	Sets ASIO sampling rate at 32 kHz.
001b	44.1 kHz		Sets ASIO sampling rate at 44.1 kHz.
010b	48 kHz		Sets ASIO sampling rate at 48 kHz.
100b	8 kHz		Sets ASIO sampling rate at 8 kHz.
101b	16 kHz		Sets ASIO sampling rate at 16 kHz.

Caution Do not set data items other than the above.

When MSIO is used (STMSI or STMSO = 1), the sampling rate is forcedly set at 32 kHz (the default value).

6.4.2 BFS[4:0]

Data	Mode	Initial Value	Description
00h	64 fs	00H	Sets BCLK frequency at 64 fs (This can be done in master mode.).
01h	62 fs		Sets BCLK frequency at 62 fs.
02h	60 fs		Sets BCLK frequency at 60 fs.
03h	58 fs		Sets BCLK frequency at 58 fs.
04h	56 fs		Sets BCLK frequency at 56 fs.
05h	54 fs		Sets BCLK frequency at 54 fs.
06h	52 fs		Sets BCLK frequency at 52 fs.
07h	50 fs		Sets BCLK frequency at 50 fs.
08h	48 fs		Sets BCLK frequency at 48 fs.
09h	46 fs		Sets BCLK frequency at 46 fs.
0Ah	44 fs		Sets BCLK frequency at 44 fs.
0Bh	42 fs		Sets BCLK frequency at 42 fs.
0Ch	40 fs		Sets BCLK frequency at 40 fs.
0Dh	38 fs		Sets BCLK frequency at 38 fs.
0Eh	36 fs		Sets BCLK frequency at 36 fs.
0Fh	34 fs		Sets BCLK frequency at 34 fs.
10h	32 fs		Sets BCLK frequency at 32 fs (This can be done in master mode.).
18h	80 fs		Sets BCLK frequency at 80 fs.
1Ch	120 fs		Sets BCLK frequency at 120 fs.

Caution In the master mode (AMS = 1), only 64 fs (00H) and 32 fs (10H) can be set. If any other value is set, 64 fs is forcedly selected.

When MSIO and ASIO are used at the same time, ASIO is set to the master mode (BFS = 32 or 64 fs) only.

6.5 ASIO Mode Setting (SEL_ASI)

This register performs the setting for ASIO.

Address: 08H, register name: SEL_ASI, block: ASIO, access: R/W, initial value: 00H

D7	D6	D5	D4	D3	D2	D1	D0
0	0	EX3DAEN	AULOOPSW	SLR	AMS	ASIM	LRCLK

6.5.1 EX3DAEN

1	Data	Mode	Initial Value	Description
	0	OFF	0	Normal operation
	1	ON		Reference clock (44.1 kHz) for 3DA surround

6.5.2 AULOOPSW

]	Data	Mode	Initial Value	Description
	0	Normal mode	0	Normal operation
	1	Loop back		Loop back mode for ASIO (ASI to ASO)

6.5.3 SLR

I	Data	Mode	Initial Value	Description
Ī	0	SR	0	Right-justified format for ASIO data
	1	SL		Left-justified format for ASIO data

6.5.4 AMS

	Data	Mode	Initial Value	Description
T	0	Slave	0	ASIO slave mode
I	1	Master		ASIO master mode

Caution When MSIO and ASIO are used at the same time, ASIO is forcedly set to the master mode (AMS = 1).

6.5.5 ASIM

Data	Mode	Initial Value	Description
0	LR	0	ASIO LR mode
1	IIS		ASIO IIS mode

6.5.6 LRCLK

Data	Mode	Initial Value	Description
0	L-ch	0	L-channel data when LRCLK is at high level.
1	R-ch		R-channel data when LRCLK is at high level.

Caution Set SLR = 1 and LRCLK = 1 when IIS mode is selected.

In slave mode (AMS = 0), external clock input is required.

6.6 Digital Mixing Path (ASI Input Data) Selection (MIXING1)

This register performs mixing setting (ASI to ASO or DAC).

Address: 09H, register name: MIXING1, block: Selector mixer, access: R/W, initial value: F0H

D7	D6	D5	D4	D3	D2	D1	D0
DACLN	/IX[1:0]	DACR	DACRMIX[1:0]		SW[1:0]	DACLSW[1:0]	

6.6.1 DACLMIX[1:0]

Data	а	Mode	Initial Value	Description
00b)	Through	11b	Outputs ASI L-ch input data to ASO L-ch.
01b)	Cross		Outputs ASI R-ch input data to ASO L-ch (LR inverted).
10b)	Monaural		Outputs ASI L/R-ch mixed input data to ASO L-ch (LR added and monaural).
11t)	Mute		Mutes output from ASI L-ch input data to ASO L-ch.

6.6.2 DACRMIX[1:0]

Data	Mode	Initial Value	Description
00b	Through	11b	Outputs ASI R-ch output data to ASO R-ch.
01b	Cross		Outputs ASI L-ch output data to ASO R-ch (LR inverted).
10b	Monaural		Outputs ASI L/R-ch mixed output data to ASO R-ch (LR added and monaural).
11b	Mute		Mutes output from ASI R-ch output data to ASO R-ch.

6.6.3 DACLSW[1:0]

Data	Mode	Initial Value	Description
00b	Through	00b	Outputs ASI L-ch output data to DAC path L-ch.
01b	Cross		Outputs ASI R-ch output data to DAC path L-ch (LR inverted).
10b	Monaural		Outputs ASI L/R-ch mixed output data to DAC path L-ch (LR added and monaural).
11b	Mute		Mutes output from ASI L-ch output data to DAC path L-ch.

6.6.4 DACRSW[1:0]

Data	Mode	Initial Value	Description
00b	Through	00b	Outputs ASI R-ch output data to DAC path R-ch.
01b	Cross		Outputs ASI L-ch output data to DAC path R-ch (LR inverted).
10b	Monaural		Outputs ASI L/R-ch mixed output data to DAC path R-ch (LR added and monaural).
11b	Mute		Mutes output from ASI L/R-ch output data to DAC path R-ch.

6.7 Digital Mixing Path (Sound Generator Output Data) Selection (MIXING2)

This register performs mixing setting (sound generator to ASO or DAC).

D7	D6	D5	D4	D3	D2	D1	D0
MELLN	/IX[1:0]	MELRMIX[1:0]		MELLS	SW[1:0]	MELRS	SW[1:0]

6.7.1 MELLMIX[1:0]

Data	Mode	Initial Value	Description
00b	Through	11b	Outputs sound generator L-ch output data to ASO L-ch.
01b	Cross		Outputs sound generator R-ch output data to ASO L-ch (LR inverted).
10b	Monaural		Outputs sound generator L/R-ch mixed output data to ASO L-ch (LR added and monaural).
11b	Mute		Mutes output from sound generator L-ch output data to ASO L-ch.

6.7.2 MELRMIX[1:0]

Data	Mode	Initial Value	Description
00b	Through	11b	Outputs sound generator R-ch output data to ASO R-ch.
01b	Cross		Outputs sound generator L-ch output data to ASO R-ch (LR inverted).
10b	Monaural		Outputs sound generator L/R-ch mixed output data to ASO R-ch (LR added and monaural).
11b	Mute		Mutes output from sound generator R-ch output data to ASO R-ch.

6.7.3 MELLSW[1:0]

Data	Mode	Initial Value	Description
00b	Through	00b	Outputs sound generator L-ch output data to DAC path L-ch.
01b	Cross		Outputs sound generator R-ch output data to DAC path L-ch (LR inverted).
10b	Monaural		Outputs sound generator mixed L/R-ch output data to DAC path L-ch (LR added and monaural).
11b	Mute		Mutes output from sound generator L-ch output data to DAC path L-ch.

6.7.4 MELRSW[1:0]

Data	Mode	Initial Value	Description
00b	Through	00b	Outputs sound generator R-ch output data to DAC path R-ch.
01b	Cross		Outputs sound generator L-ch output data to DAC path R-ch (LR inverted).
10b	Monaural		Outputs sound generator L/R-ch mixed output data to DAC path R-ch (LR added and monaural).
11b	Mute		Mutes output from sound generator L/R ch output data to DAC path R-ch.

6.8 Digital Mixing Path (ASI to Sound Generator) Selection (MIXING3)

This register performs mixing setting (sound generator to the ASO path).

Address: 0BH, register name: MIXING3, block: Selector mixer, access: R/W, initial value:	00H
	0011

0)7	D6	D5	D4	D3	D2	D1	D0
	0	0	0	0	0	PCMLSW	0	PCMRSW

6.8.1 PCMLSW

Data	Mode	Initial Value	Description
0	Mute	0	Mutes.
1	Through		Selects data (L-ch) from ASI.

6.8.2 PCMRSW

Data	Mode	Initial Value	Description
0	Mute	0	Mutes.
1	Through		Selects data (R-ch) from ASI.

6.9 VIB and LED Settings (LEDVIB)

This register performs setting for VIB and LED.

Address: 0DH, register name: LEDVIB, block: VB, LED, access: R/W, initial value: 00H

D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	VIB	LED

6.9.1 VIB

Data	Mode Initial Value		Description		
0 OFF 0		0	Performs low-level output from LED pin.		
1	ON		Performs high-level output from LED pin.		

6.9.2 LED

	Data	Mode Initial Value		Description		
	0 OFF 0		0	Performs low-level output from LED pin.		
I	1	ON		Performs high-level output from LED pin.		

Remark For both VIB and LED, the register value is output to the output pin (LSI pin).

6.10 Setting of General-Purpose Output Pins (POUT)

This register performs setting for POUT.

Address: 0EH, register name: POUT, block: PO, access: R/W, initial value: 00H

D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	POUT3	POUT2	POUT1	POUT0

6.10.1 POUT0 to POUT3

Data	Mode	Initial Value	Description
0	LOW	0	Performs low-level output from the corresponding pin from PO0 to PO3.
1	HIGH		Performs high-level output from the corresponding pin from PO0 to PO3.

Remark While STADIG is set to standby mode, the POUT output retains the data value.

6.11 Audio Soft Mute Control (SMUTE)

This register controls soft mute.

Address: 10H, register name: SMUTE, block: Audio , access: R/W, initial value: 00h

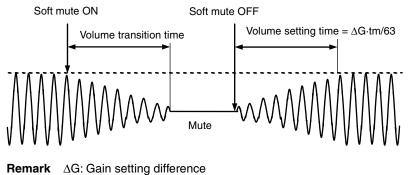
D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	SLOPE[1:0]		AUSMUTE	MELSMUTE

6.11.1 SLOPE[1:0]

Data	Mode	Initial Value	Description
00b	8 ms	00b	Sets soft mute cancel time at 8 ms (from -63 dB to 0 dB).
01b	16 ms		Sets soft mute cancel time at 16 ms (from -63 dB to 0 dB).
10b	24 ms		Sets soft mute cancel time at 24 ms (from -63 dB to 0 dB).
11b	32 ms		Sets soft mute cancel time at 32 ms (from -63 dB to 0 dB).

6.11.2 AUSMUTE

Data	Data Mode Initial Value		Description		
0 OFF 0		0	Soft mute control is not provided for ASIO input data.		
1	ON		Soft mute control is provided for ASIO input data.		


6.11.3 MELSMUTE

I	Data Mode Initial Value		Initial Value	Description		
0 OFF 0		0	Soft mute control is not provided for sound generator output.			
	1			Soft mute control is provided for sound generator output.		

μ**PD9971**

Figure 6-1 Soft Mute Operation

tm: Volume setting time

6.12 Digital Volume (Sound generator Output L-ch) Setting for Audio DAC (MELLDG)

This register performs setting for digital gain (sound generator output L-ch).

D7	D6	D5	D4	D3	D2	D1	D0
MELLD	G2[1:0]			MELLD	G1[5:0]		

6.12.1 MELLDG2[1:0]

Data	Mode	Initial Value	Description
MELLDG2[1:0]		11b	Performs setting for digital gain (sound generator output L-ch)

6.12.2 MELLDG1[5:0]

Data	Mode	Initial Value	Description
MELLDG1[5:0]		111111b	Performs setting for digital gain (sound generator output L-ch)

Remark The setting value is derived from the sum of the corresponding gain setting values in Digital gain settings 1 and 2 (Refer to **Table 6-6 Digital Gain Settings 1, Table 6-7 Digital Gain Settings 2**).

NE(

6.13 Digital Volume (Sound generator Output R-ch) Setting for Audio DAC (MELRDG)

This register performs setting for digital gain (sound generator output R-ch).

Address: 12H, register name: MELRDG, block: Digital volume, access: R/W, initial value: FFH

D7	D6	D5	D4	D3	D2	D1	D0
MELRDG2[1:0]			MELRD	G2[5:0]			

6.13.1 MELRDG2[1:0]

Data	Mode	Initial Value	Description
MELRDG2[1:0]		11b	Performs setting for digital gain (sound generator output R-ch)

6.13.2 MELRDG1[5:0]

	Data	Mode	Initial Value	Description
ſ	MELRDG1[5:0]		111111b	Performs setting for digital gain (sound generator output R-ch)

Remark The setting value is derived from the sum of the corresponding gain setting values in Digital Gain Settings 1 and 2 (Refer to **Table 6-6 Digital Gain Settings 1, Table 6-7 Digital Gain Settings 2**).

6.14 Digital Volume (ASI Input L-ch) Setting for Audio DAC (AULDG)

This register performs setting for digital gain (sound generator output L-ch).

Address: 13H, register name: AULDG, block: Digital volume, access: R/W, initial value: FFH

D7	D6	D5	D4	D3	D2	D1	D0
AULDG2[1:0]			AULDO	G1[5:0]			

6.14.1 AULDG2[1:0]

I	Data	Mode	Initial Value	Description
I	AULDG2[1:0]		11b	Performs setting for digital gain (ASI input L-ch)

6.14.2 AULDG1[5:0]

Data	Mode	Initial Value	Description
AULDG1[5:0]		111111b	Performs setting for digital gain (ASI input L-ch)

Remark The setting value is derived from the sum of the corresponding gain setting values in Digital gain settings 1 and 2 (Refer to **Table 6-6 Digital Gain Settings 1, Table 6-7 Digital Gain Settings 2**).

6.15 Digital Volume (ASI Input R-ch) Setting for Audio DAC (AURDG)

This register performs setting for digital gain (ASI input R-ch).

Address: 14H, register name: AURDG, block: Digital volume, access: R/W, initial value: FFH

D7	D6	D5	D4	D3	D2	D1	D0
AURDG2[1:0]			AURD	G1[5:0]			

6.15.1 AURDG2[1:0]

Data	Mode	Initial Value	Description
AURDG2[1:0]		11b	Performs setting for digital gain (ASI input R-ch)

6.15.2 AURDG1[5:0]

Data	Mode	Initial Value	Description
AURDG1[5:0]		111111b	Performs setting for digital gain (ASI input R-ch)

Remark The setting value is derived from the sum of the corresponding gain setting values in Digital Gain Settings 1 and 2((Refer to **Table 6-6 Digital Gain Settings 1, Table 6-7 Digital Gain Settings 2**).

μ**PD9971**

Table 6-6 Digital Gain Settings 1

Phase-out/Discontinued

DG2[1:0]	Gain
00b	0dB
01b	+6dB
10b	+12dB
11b	Mute (initial value)

Table 6-7 Digital Gain Settings 2	Table 6-7	Digital Gair	n Settings 2
-----------------------------------	-----------	--------------	--------------

DG1[5:0]	Gain Setting Value
000000b	0 dB
000001b	–1 dB
000010b	–2 dB
000011b	–3 dB
000100b	–4 dB
000101b	–5 dB
000110b	6 dB
000111b	-7 dB
001000b	–8 dB
001001b	–9 dB
001010b	–10 dB
001011b	–11 dB
001100b	–12 dB
001101b	–13 dB
001110b	-14 dB
001111b	–15 dB
010000b	–16 dB
010001b	–17 dB
010010b	–18 dB
010011b	–19 dB
010100b	–20 dB
010101b	–21 dB
010110b	–22 dB
010111b	–23 dB
011000b	–24 dB
011001b	–25 dB
011010b	–26 dB
011011b	–27 dB
011100b	–28 dB
011101b	–29 dB
011110b	–30 dB
011111b	–31 dB

DG1[5:0]	Gain Setting Value
100000b	–32 dB
100001b	–33 dB
100010b	–34 dB
100011b	–35 dB
100100b	–36 dB
100101b	–37 dB
100110b	–38 dB
100111b	–39 dB
101000b	–40 dB
101001b	–41 dB
101010b	–42 dB
101011b	–43 dB
101100b	–44 dB
101101b	–45 dB
101110b	–46 dB
101111b	–47 dB
110000b	–48 dB
110001b	–49 dB
110010b	–50 dB
110011b	–51 dB
110100b	–52 dB
110101b	–53 dB
110110b	–54 dB
110111b	–55 dB
111000b	–56 dB
111001b	–57 dB
111010b	–58 dB
111011b	–59 dB
111100b	–60 dB
111101b	–61 dB
111110b	–62 dB
111111b	–63 dB

Phase-out/Discontinued

6.16 Setting of Analog Master Volume (L-ch) for Audio DAC (ADACLVR)

This register performs setting for analog gain (L-ch).

Address: 17H, register name: ADACLVR, block: Master volume, access: R/W, initial value: 1FH								
D7	D6	D5	D4	D3	D2	D1	D0	
0	0	0	ADACLVRGA[4:0]					

6.16.1 ADACLVRGA[4:0]

Data	Mode	Initial Value	Description
ADACLVRGA[4:0]		11111b	Performs setting for analog gain (Audio DAC output L-ch).

6.17 Setting of Analog Master Volume (R-ch) for Audio DAC (ADACRVR)

Performs setting for analog gain (R-ch).

Address: 18H, register name: ADACRVR, block: Master volume, access: R/W, initial value: 1FH

D7	D6	D5	D4	D3	D2	D1	D0
0	0	0		А	DACRVRGA[4:0)]	

6.17.1 ADACRVRGA[4:0]

Data	Mode	Initial Value	Description
ADACRVRGA[4:0]		11111b	Performs setting for analog gain (Audio DAC output R-ch).

VRGA[4:0]	Gain Setting Value
00000b	0 dB
00001b	–1.5 dB
00010b	–3.0 dB
00011b	–4.5 dB
00100b	–6.0 dB
00101b	–7.5 dB
00110b	–9.0 dB
00111b	–10.5 dB
01000b	–12.0 dB
01001b	–13.5 dB
01010b	–15.0 dB
01011b	–16.5 dB
01100b	–18.0 dB
01101b	–19.5 dB
01110b	–21.0 dB
01111b	–22.5 dB

Table 6-8 Analog Gain Settings 1

VRGA[4:0]	Gain Setting Value
10000b	–24.0 dB
10001b	–25.5 dB
10010b	–27.0 dB
10011b	–28.5 dB
10100b	–30.0 dB
10101b	–31.5 dB
10110b	–33.0 dB
10111b	–34.5 dB
11000b	–36.0 dB
11001b	–37.5 dB
11010b	–39.0 dB
11011b	–40.5 dB
11100b	–42.0 dB
11101b	–43.5 dB
11110b	–45.0 dB
11111b	Mute (initial value)

6.18 Setting of LSI Standby (MSIO) (STNBY2)

This register performs setting for standby.

MEN and MBCLK are set to standby only when both STMSI and STMSO bits are set to standby. For details, refer to Table 2-3 Pin Statuses in MSIO Block.

Address: 20H, register name: STNBY2, block: MSIO, access: R/W, initial value: 00H

D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	STMSI	STMSO

6.18.1 STMSO

Data	Mode	Initial Value	Description
0	Stand-by	0	Standby for MSO (external sound generator connection serial interface input)
1	ON		Normal operation

6.18.2 STMSI

Data	Mode	Initial Value	Description
0	Stand-by	0	Standby for MSO (external sound generator connection serial interface input)
1	ON		Normal operation

6.19 Setting of MSIO Mode (SEL_MSIO1)

This register performs setting for MSIO.

Address: 21H, register name: SEI_MSIO1, block: MSIO, access: R/W, initial value: 10H

,	- gibber in the second					-	
D7	D6	D5	D4	D3	D2	D1	D0
0		MBFS[2:0]		MLOOPSW	MMS	SMEN	SMBCLK

6.19.1 SMBCLK

Data	Mode	Initial Value	Description
0	Normal	0	Sets bit clock MBCLK to normal.
1	Inverted		Sets bit clock MBCLK to invert.

6.19.2 SMEN

Data	Mode	Initial Value	Description
0	Frame synchronization mode	0	Sets MEN to frame synchronization mode.
1	Stereo mode		Sets MEN to LR stereo mode.

Remark In LR stereo mode, R-ch data is stored in the high cycle of the MEN signal, and L-ch data in the Low cycle.

6.19.3 MMS

Data	Mode	Initial Value	Description
0	Slave	0	MSIO slave mode
1	Master		MSIO master mode

Remark When slave mode (MMS = 0) is set, an external clock is required.

6.19.4 MLOPSW

Data	Mode	Initial Value	Description
0	Normal mode	0	Normal operation
1	Loop back		Loop back mode for MSIO (MSI to MSO)

6.19.5 MBF[2:0]

Data	Mode	Initial Value	Description
00H	32 fs	01H	Sets MBCLK frequency at 32 fs (This can be done in master mode.).
01H	64 fs		Sets MBCLK frequency at 64 fs (This can be done in master mode.).
02H	96 fs		Sets MBCLK frequency at 96 fs.
03H	128 fs		Sets MBCLK frequency at 128 fs (This can be done in master mode.).
04H	160 fs		Sets MBCLK frequency at 160 fs.
05H	192 fs		Sets MBCLK frequency at 196 fs.
06H	224 fs,		Sets MBCLK frequency at 224 fs.
07H	256 fs		Sets MBCLK frequency at 256 fs (This can be done in master mode.).

Cautions 1. In master mode (MMS = 1), only 32, 64, 128, and 256 fs can be set. If any other value is set, 64 fs is forcedly selected.

2. When MSIO and ASIO are used at the same time, ASIO is set to the master mode (BFS = 32 or 64 fs) only.

MCHO[3:0]

6.20 FS Switching and BCLK Switching in Audio Serial Interface (SEL_FS)

This register performs setting for the effective channel count of MSI and MSO.

MCHI[3:0]

Address: 22H,	register name	: SEL_MSIO2	, block: MSIO,	access: R/W, i	nitial value: 33	Н	
D7	D6	D5	D4	D3	D2	D1	D0

6.20.1	MCHI[3:0]

<u>0.1</u>	MCIII[3.0]			
	Data	Mode	Initial Value	Description
	00H	1 ch	03H	Sets frame effective channel for MSI input data to 1 ch.
	01H	2 ch		Sets frame effective channel for MSI input data to 2 ch.
	02H	3 ch		Sets frame effective channel for MSI input data to 3 ch.
	03H	4 ch		Sets frame effective channel for MSI input data to 4 ch.
	04H	5 ch		Sets frame effective channel for MSI input data to 5 ch.
	05H	6 ch		Sets frame effective channel for MSI input data to 6 ch.
	06H	7 ch		Sets frame effective channel for MSI input data to 7 ch.
	07H	8 ch		Sets frame effective channel for MSI input data to 8 ch.
	08H	9 ch		Sets frame effective channel for MSI input data to 9 ch.
	09H	10 ch		Sets frame effective channel for MSI input data to 10 ch.
	0AH	11 ch		Sets frame effective channel for MSI input data to 11 ch.
	0BH	12 ch		Sets frame effective channel for MSI input data to 12 ch.
	0CH	13 ch		Sets frame effective channel for MSI input data to 13 ch.
	0DH	14 ch		Sets frame effective channel for MSI input data to 14 ch.
	0EH	15 ch		Sets frame effective channel for MSI input data to 15 ch.
	0FH	16 ch		Sets frame effective channel for MSI input data to 16 ch.

6.20.2 MCHO[3:0]

Data	Mode	Initial Value	Description
00H	1 ch	03H	Sets frame effective channel for MSO output data to 1 ch.
01H	2 ch		Sets frame effective channel for MSO output data to 2 ch.
02H	3 ch		Sets frame effective channel for MSO output data to 3 ch.
03H	4 ch		Sets frame effective channel for MSO output data to 4 ch.
04H	5 ch		Sets frame effective channel for MSO output data to 5 ch.
05H	6 ch		Sets frame effective channel for MSO output data to 6 ch.
06H	7 ch		Sets frame effective channel for MSO output data to 7 ch.
07H	8 ch		Sets frame effective channel for MSO output data to 8 ch.
08H	9 ch		Sets frame effective channel for MSO output data to 9 ch.
09H	10 ch		Sets frame effective channel for MSO output data to 10 ch.
0AH	11 ch		Sets frame effective channel for MSO output data to 11 ch.
0BH	12 ch		Sets frame effective channel for MSO output data to 12 ch.
0CH	13 ch		Sets frame effective channel for MSO output data to 13 ch.
0DH	14 ch]	Sets frame effective channel for MSO output data to 14 ch.
0EH	15 ch		Sets frame effective channel for MSO output data to 15 ch.
0FH	16 ch		Sets frame effective channel for MSO output data to 16 ch.

6.21 Setting of LSI Version (LSIVER)

This register shows the LSI version. This register is read only. It is impossible to write to the register.

Address: 3FH	Address: 3FH, register name: LSIVER, block: test, access: R, initial value: Undefined								
D7	D6	D5	D4	D3	D2	D1	D0		
1	0	1	1	VER[3:0]					

6.21.1 VER[3:0]

Data	Mode	Initial Value	Description
VER [3:0]			Reads LSI version.

6.22 Setting of Bank in Serial Interface Mode (BANK)

This register performs setting for bank switching.

Address: 7CH, register name: BANK, block: CPU I/F, access: R/W, initial value: 00H

D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	BANK[1:0]	

6.22.1 BANK[1:0]

A1 Pin	Data	Initial Value	Description
*	00h	00H	Accesses to addresses from 00H to 7FH of registers of Control register bank (in serial I/F).
*	01h		Accesses to addresses from 80H to FFH of registers of Control register bank (in serial I/F).
*	02h		Accesses to addresses from 00H to 7FH of sound generator registers (in serial I/F).
*	03h		Accesses to addresses from 80H to FFH of sound generator registers (in serial I/F).

The bank switching in parallel interface mode is shown in the table below.

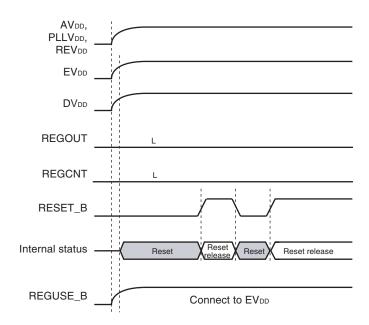
A1 Pin	Data	Initial Value	Description
0	*	0	Accesses to addresses from 00H to FFH of registers of Control register bank.
1	*		Accesses to addresses from 00H to FFH of sound generator registers.

Caution Be sure to set 0 for addresses from D7 to D2.

BANK switching is effective only in serial interface mode (PS = 1).

7. POWER STARTUP PROCEDURE

The *µ*PD9971 has five internal power-supply units: Power supply for regulators (REGV_{DD}), power supply for internal digital circuits (DV_{DD}), power supply for PLL1 and PLL2 (PLLV_{DD}), power supply for internal analog circuits (AV_{DD}), and power supply for level shifter blocks in I/O circuits (EV_{DD}).


Phase-out/Discontinued

When internal regulator output pin REGOUT is connected to power supply pin DV_{DD}, REGOUT can be used as power supply for the internal digital circuits.

7.1 Wakeup Sequence

7.1.1 When a regulator is not used

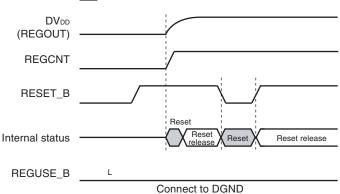
- <1> Short REGUSE_B with EVDD beforehand. (Fix REGUSE_B to high level.) Short REGCNT pin with DGND beforehand, too.
- <2> With RESET_B pin set to low level, turn on DVpb (with 1.54 V), REGVpb, AVpb, PLLVpb (with 3.0 V each), and EVpb (with 1.8 to 3.0 V). It is recommended that all of power supplies be turned on at the same time. Avoid turning on the power supplies while RESET_B pin is set to high level because this may lead to the flow of a through current into bus lines of the CPU.
- <3> Wait until power supply voltage reaches the specified voltage.
- <4> Release hardware reset. To release it, set RESET_B pin to high level instead of low level.

Figure 7-1 Wakeup Sequence (When A Regulator Is Not Used)

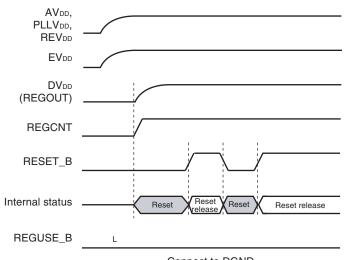
NEC

μ**PD9971**

7.1.2 When a regulator is used


- <1> Short REGUSE_B with DGND beforehand. (Fix REGUSE_B to low level.) Set REGCNT pin to low level beforehand, too.
- <2> With RESET_B pin set to low level, turn on REGVDD, AVDD, PLLVDD (with 3.0 V each), and EVDD (with 1.8 to 3.0 V). It is recommended that all of the power supplies be turned on at the same time.

Phase-out/Discontinued


- <3> Wait until power supply voltage reaches to the specified voltage.
- <4> Set REGCNT pin to high level to supply current to the digital power supply.
 - <5> Release hardware reset. To release it, set RESET_B pin to high level instead of low level.

AVDD, PLLVDD, REVDD EVDD DVDD

Figure 7-2 Wakeup Sequence 1 (When A Regulator Is Used)

Figure 7-3 Wakeup Sequence 2 (When A Regulator Is Used)

7.2 Shutdown Sequence

7.2.1 When a regulator is not used

- <1> Set hardware reset. (Set RESET_B pin to low level instead of high level.)
- <2> With RESET_B pin set to low level, turn off DVbb (with 1.54 V), REGVbb, AVbb, PLLVbb (with 3.0 V each), and EVbb (with 1.8 to 3.0 V). It is recommended that all of the power supplies be turned off at the same time. Even though turning off power without RESET_B pin set to the low level does not lead to failures of µPD9971, this should be avoided because this may lead to the flow of through current into bus lines of the CPU.

Phase-out/Discontinued

<3> After shutdown is performed, status of the RESET_B pin is undefined.

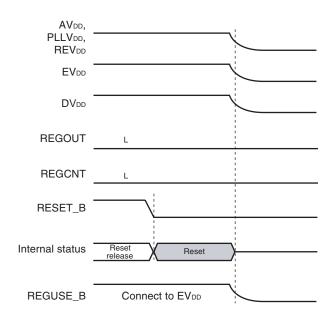
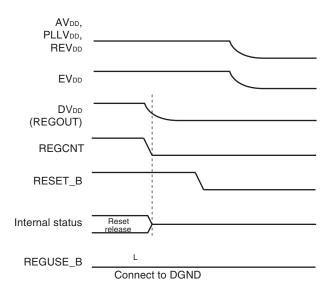


Figure 7-4 Shutdown Sequence (When A Regulator Is Not Used)

NEC


μ**PD9971**

7.2.2 When a regulator is used

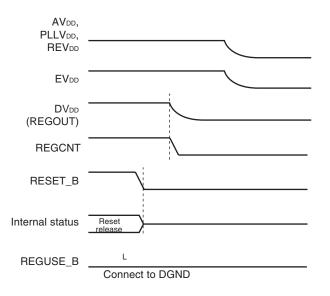

- <1> Set hardware reset. (Set RESET_B pin to low level instead of high level.)
- <2> Set REGCNT pin to low level to stop the supply of current to the digital power source.
- ★ <3> With RESET_B pin set to low level, turn off REGVDD, AVDD, PLLVDD (with 3.0 V each), and EVDD (with 1.8 to 3.0 V). It is recommended that all of the power supplies be turned off at the same time.

Figure 7-5 Shutdown Sequence 1 (When A Regulator Is Used)

Phase-out/Discontinued

Figure 7-6 Shutdown Sequence 2 (When A Regulator Is Used)

7.3 Power Saving Functions

The μ PD9971 includes 2 power saving functions (standby modes): The software power saving function controlled by command input (in standby mode) and the hardware power saving function is controlled by the core power supply.

Phase-out/Discontinued

Note that when these functions are enabled, all contents written to registers and memory are erased. (Rewrite is required after power saving is canceled.)

7.3.1 Hardware power saving function

For hardware power saving, follow the steps below.

- <1> With RESET_B pin set to low level, turn off DVpd, REGVpd, AVpd, and PLLVpd.
- <2> When a regulator is used (when REGUSE_B = low), set REGCNT pin to low level instead of high level.
- <3> Continue supplying EVDD since it is used to protect the CPU bus lines.
- <4> Be sure to fix RESET_B pin to low level during hardware power saving operation.

Follow the steps described below to return to normal operation.

- <1> When a regulator is used (when REGUSE_B = low), set REGCNT pin to high level instead of low level.
- <2> With RESET_B pin set to low level, turn on DVDD (with 1.5 V), REGVDD, AVDD, and PLLVDD (with 3.0 V each).
- <3> Set RESET_B pin to high level.
- ★ Cautions When the power is on/off with RESET_B pin set to high level, the output value and I/O control of each register and pin are unstable because the initialization of µPD9971 is not completed until initialization (RESET_B = low) is performed. Therefore, pay attention to the statuses of D0 to D7 pins, LED pin, VIB pin, PO0 to PO3 pins, and INT pin until they are initialized. Note that through current may flow into the bus lines of the CPU.

7.3.2 Software power saving function

The software power saving function of the μ PD9971 is realized as follows: The controlling of registers 00H and 20H achieves the standby state of each block.

In this state, power is supplied to all blocks, and each register value is retained because RESET_B is set to high level.

When the internal regulator is used, setting REGCNT pin to low level can reduce the regulator output to GND, drastically reducing the leakage current of digital power supply.

Caution When either of the functions is performed, a certain wait time is required for rebooting after PLL and reference voltage blocks are initialized or their power is reduced (STREF, STPLL1, and STPLL2 = low).

NEC

8. SETTING SEQUENCE

In serial I/F mode (PS pin = 1), two operations--"switching to the sound generator bank" and "switching to the Control register bank"--are required. The former means setting the bank register to the sound generator bank while the bank register is assigned to Control register bank. Latter means setting the bank register to the Control register bank while the bank register is assigned to the sound generator bank.

Phase-out/Discontinued

These operations are not required when PS = 0 (parallel interface mode).

8.1 Power Up Sequence

Step	Item	Target registers, pins, etc.
1	Setting of regulator	REGUSE_B pin: Fixed to low (when regulator is used) REGCNT pin: From low to high (when regulator is used)
2	Canceling hardware reset	RESET_B pin: From low to high
3	Setting of PLL (setting of CSTRT and MCLKSEL)	CSTRT pin, MCLKSEL, and CSTRTEN (1 ms after setting of REGCNT when regulator is used)
4	Setting of PLL (input frequency)	MCLK1A, MCLK1B, MCLK2A, MCLK2B
5	Setting of ASIO sampling frequency	FS, BFS
6	Setting of MSIO mode	MBFS, MMS, SMEN, SMBCLK, MCHI, MCHO
7	Canceling VREF standby	STREF
8	Canceling PLL standby	STPLL1 and STPLL2 (5 ms after STREF standby is canceled)
9	Canceling function block standby	STSYNTH, STADIG, STADAC
10	Internal clock is valid.	5 ms after STPLL1 and STPLL2 standby is canceled

8.2 Basic Sequence for Switching Among Operation Modes

Step	Item	Target registers, pins, etc.
1	Switching to Control register bank (when PS pin = 1)	BANK
2	Setting of digital volume mute	MELLDG, MELRDG, AULDG, AURDG
3	Setting of analog volume mute	ADACLVRGA, ADACRVRGA
4	Setting of standby state	STPLL1, STPLL2, STREF, STSYNTH,
5	Setting of sampling frequency	FS, BFS
6	Setting of path (3DA)	EX3DAEN, PCMLSW, PCMRSW
7	Setting of path (digital mixing)	DACLSW, DACRSW, DACLMIX, DACRMIX, MELLSW, MELRSW, MELLMIX, MELRMIX
8	Setting of ASIO mode	MS, ASIM, LRCLK, SLR
9	Setting of MSIO mode	MBFS, MMS, SMEN, SMBCLK, MCHI, MCHO
10	Switching to Sound generator bank (when PS pin = 1)	BANK
11	Setting of 3DA/surround function	
12	Switching to Control register bank (when PS pin = 1)	BANK
13	Canceling VREF standby	STREF
14	Canceling PLL standby	STPLL1 and STPLL2 (5 ms after STREF standby is canceled)
15	Canceling function block standby	STSYNTH, STADIG, STADAC
16	Internal clock is valid.	5 ms after the STPLL1 and STPLL2 standby is canceled
17	Canceling the analog volume mute	ADACLVRGA, ADACRVRGA
18	Canceling the digital volume mute	MELLDG, MELRDG, AULDG, AURDG

Cautions 1. In slave mode, the clock input of LRCLK and BCLK is required.

Phase-out/Discontinued

2. Both, the setting for a mute performed after a phased decrease in volume by the digital volume (soft mute) and the phased increase in volume after a mute is canceled are a sequence for eliminating an audible change in sound that may occur due to single-frame operation errors in the digital data that occur during switching.

To make this function effective, the following settings are required: AUSMUTE = 1 and MELSMUTE = 1.

- 3. When the soft mute is not used, a phased decrease/increase in volume has to be performed by the analog volume of the path to be used, instead.
- 4. Since the STADIG signal is also used to reset arithmetic operations such as digital filter operations, a reset must be performed during mode switching.

8.2.1 Mute setting

Step	Item	Target registers, pins, etc.
1	Switching to Control register bank (when the PS $pin = 1$)	BANK
2	Setting of digital volume mute	MELLDG, MELRDG, AULDG, AURDG
3	Setting of analog volume mute	ADACLVRGA, ADACRVRGA

8.2.2 Standby setting/cancel

Step	Item	Target registers, pins, etc.
1	Switching to Control register bank (when the PS pin = 1)	BANK
2	Setting of digital volume mute	MELLDG, MELRDG, AULDG, AURDG
3	Setting of analog volume mute	ADACLVRGA, ADACRVRGA
4	Setting of standby state	STPLL1, STPLL2, STREF, STSYNTH,
5	Canceling VREF standby	STREF
6	Canceling PLL standby	STPLL1 and STPLL2 (5 ms after the STREF standby is canceled)
7	Canceling function block standby	STSYNTH, STADIG, STADAC,
8	The internal clock is valid.	5 ms after the STPLL1 and STPLL2 standby is canceled
9	Canceling analog volume mute	ADACLVRGA, ADACRVRGA
10	Canceling digital volume mute	MELLDG, MELRDG, AULDG, AURDG

8.2.3 FS switching

Step	Item	Target registers, pins, etc.
1	Switching to Control register bank (when the PS pin = 1)	BANK
2	Setting of digital volume mute	MELLDG, MELRDG, AULDG, AURDG
3	Setting of analog volume mute	ADACLVRGA, ADACRVRGA
4	Setting of standby state	STPLL1, STPLL2, STREF, STSYNTH,
5	Setting of sampling frequency	FS, BFS
6	Setting of MSIO mode	MBFS, MMS, SMEN, SMBCLK, MCHI, MCHO
7	Canceling VREF standby	STREF
8	Canceling PLL standby	STPLL1 and STPLL2 (5 ms after the STREF standby is canceled)
9	Canceling function block standby	STSYNTH, STADIG, STADAC,
10	The internal clock is valid.	5 ms after the STPLL1 and STPLL2 standby is canceled
11	Canceling analog volume mute	ADACLVRGA, ADACRVRGA
12	Canceling digital volume mute	MELLDG, MELRDG, AULDG, AURDG

8.2.4 Path switching

Step	Item	Target registers, pins, etc.
1	Switching to Control register bank (when the PS pin = 1)	BANK
2	Setting of digital volume mute	MELLDG, MELRDG, AULDG, AURDG
3	Setting of analog volume mute	ADACLVRGA, ADACRVRGA
4	Setting of standby state	STPLL1, STPLL2, STREF, STSYNTH,
5	Setting of path (digital mixing)	DACLSW, DACRSW, DACLMIX, DACRMIX, MELLSW, MELRSW, MELLMIX, MELRMIX
6	Canceling VREF standby	STREF
7	Canceling PLL standby	STPLL1 and STPLL2 (5 ms after STREF standby is canceled)
8	Canceling function block standby	STSYNTH, STADIG, STADAC,
9	The internal clock is valid.	5 ms after STPLL1 and STPLL2 standby is canceled
10	Canceling analog volume mute	ADACLVRGA, ADACRVRGA
11	Canceling digital volume mute	MELLDG, MELRDG, AULDG, AURDG

8.2.5 3DA/surround switching

Step	Item	Target registers, pins, etc.
1	Switching to Control register bank (when the PS pin = 1)	BANK
2	Setting of digital volume mute	MELLDG, MELRDG, AULDG, AURDG
3	Setting of analog volume mute	ADACLVRGA, ADACRVRGA
4	Setting of standby state	STPLL1, STPLL2, STREF, STSYNTH,
5	Switching to sound generator bank (when PS pin = 1)	BANK
6	Setting of 3DA/surround function	
7	Switching to Control register bank (when PS pin = 1)	BANK
8	Setting of path (3DA)	EX3DAEN, PCMLSW, PCMRSW
9	Setting of path (digital mixing)	DACLSW, DACRSW, DACLMIX, DACRMIX, MELLSW, MELRSW, MELLMIX, MELRMIX
10	Canceling VREF standby	STREF
11	Canceling the PLL standby	STPLL1 and STPLL2 (5 ms after the STREF standby is canceled)
12	Canceling function block standby	STSYNTH, STADIG, STADAC,
13	The internal clock is valid.	5 ms after STPLL1 and STPLL2 standby is canceled
14	Canceling analog volume mute	ADACLVRGA, ADACRVRGA
15	Canceling digital volume mute	MELLDG, MELRDG, AULDG, AURDG

8.2.6 ASIO mode setting

Step	Item	Target registers, pins, etc.
1	Switching to Control register bank (when PS pin = 1)	BANK
2	Setting of digital volume mute	MELLDG, MELRDG, AULDG, AURDG
3	Setting of analog volume mute	ADACLVRGA, ADACRVRGA
4	Setting of standby state	STPLL1, STPLL2, STREF, STSYNTH,
5	Setting of ASIO mode	MS, ASIM, LRCLK, SLR
6	Canceling VREF standby	STREF
7	Canceling PLL standby	STPLL1 and STPLL2 (5 ms after STREF standby is canceled)
8	Canceling function block standby	STSYNTH, STADIG, STADAC,
9	The internal clock is valid.	5 ms after STPLL1 and STPLL2 standby is canceled
10	Canceling analog volume mute	ADACLVRGA, ADACRVRGA
11	Canceling digital volume mute (soft mute)	MELLDG, MELRDG, AULDG, AURDG

μ**PD9971**

8.3 Setting Sequence Examples

Examples of the setting sequence are given below. In the examples, the input clock is set provided that MCLK = 12 MHz.

- 8.3.1 Sound generator-DAC-line output
- 8.3.2 Sound generator-ASO output (master mode)
- 8.3.3 Sound generator-ASO output (slave mode)
- 8.3.4 ASI-DAC-line output
- 8.3.5 ASI-ASO output
- 8.3.6 ASI-EQ-DAC-line output (fs = 32 kHz)
- 8.3.7 ASI-EQ-DAC-line output (fs = 44.1 kHz)
- 8.3.8 ASI-EQ-ASO output (fs = 32 kHz)
- 8.3.9 ASI-EQ-ASO output (fs = 44.1 kHz)

Phase-out/Discontinued

8.3.1 Sound generator-DAC-line output (Clock: MCLK2 = 12 MHz)

(1) Power on

Step	Item	Target registers, pins, etc.
1	Setting of regulator	REGUSE_B pin: Fixed to low (when the regulator is used) REGCNT pin: From low to high (when the regulator is used)
2	Canceling hardware reset	RESET_B pin: From low to high
3	Setting of PLL (setting of CSTRT and MCLKSEL)	CSTRT pin, MCLKSEL, and CSTRTEN (1 ms after the setting of REGCNT when the regulator is used)
4	Setting of PLL (input frequency)	MCLK1A = 4BH, MCLK1B = 9AH, MCLK2A = 05H, MCLK2B = 2FH
5	Setting of sampling frequency	FS: 32 kHz, BFS: 64 fs
6	Switching to sound generator bank (when the PS pin = 1)	BANK
7	Setting of 3DA/surround function	
8	Switching to Control register bank (when the PS pin = 1)	BANK
9	Setting of soft mute	MELSMUTE = 1
10	Setting of path (digital mixing)	MELLSW: Through, MELRSW: Through
11	Canceling VREF standby	STREF = 1
12	Canceling PLL standby	STPLL1 = STPLL2 = 1 (5 ms after the STREF standby is canceled)
13	Canceling function block standby	STSYNTH = STADIG = STADAC = 1
14	Internal clock is valid.	5 ms after the STPLL1 and STPLL2 standby is canceled

(2) Switching to the sound generator bank (when the PS pin = 1)

(3) Setting of the sound generator

(4) Transferring data to the sound generator

(5) Canceling the mute

Step	Item	Target registers, pins, etc.
1	Switching to Control register bank (when the PS $pin = 1$)	BANK
2	Canceling analog volume mute	ADACLVRGA, ADACRVRGA
3	Canceling digital volume mute	MELLDG, MELRDG

8.3.2 Sound generator-ASO output (Clock: MCLK2 = 12 MHz, in the master mode)

(1) Power on

Step	Item	Target registers, pins, etc.
1	Setting of regulator	REGUSE_B pin: Fixed to low (when the regulator is used) REGCNT pin: From low to high (when the regulator is used)
2	Canceling hardware reset	RESET_B pin: From low to high
3	Setting of PLL (setting of CSTRT and MCLKSEL)	CSTRT pin, MCLKSEL, and CSTRTEN (1 ms after the setting of REGCNT when the regulator is used)
4	Setting of PLL (input frequency)	MCLK1A = 4BH, MCLK1B = 9AH, MCLK2A = 05H, MCLK2B = 2FH
5	Setting of sampling frequency	FS: 32 kHz, BFS: 64 fs
6	Setting of ASIO mode	MS = 1, ASIM, LRCLK, SLR
7	Switching to sound generator bank (when the PS pin = 1)	BANK
8	Setting of 3DA/surround function	
9	Switching to Control register bank (when the PS pin = 1)	BANK
10	Setting of soft mute	MELSMUTE = 0
11	Setting of path (digital mixing)	DACLMIX: Mute, DACRMIX: Mute, MELLMIX: Through, MELRMIX: Through, EX3DAEN = 0
12	Canceling VREF standby	STREF = 1
13	Canceling PLL standby	STPLL1 = STPLL2 = 1 (5 ms after the STREF standby is canceled)
14	Canceling function block standby	STSYNTH = STADIG = STASI = STASO = 1
15	Internal clock is valid.	5 ms after the STPLL1 and STPLL2 standby is canceled

Phase-out/Discontinued

(2) Switching to the sound generator bank (when the PS pin = 1)

(3) Setting of the sound generator

(4) Transferring data to the sound generator

(5) Canceling the mute

Step	Item	Target registers, pins, etc.
1	Switching to Control register bank (when the PS $pin = 1$)	BANK
2	Canceling digital volume mute	MELLDG, MELRDG

8.3.3 Sound generator-ASO output (Clock: MCLK2 = 12 MHz, in the slave mode)

(1) Power on

Step	Item	Target registers, pins, etc.
1	Setting of regulator	REGUSE_B pin: Fixed to low (when regulator is used) REGCNT pin: From low to high (when regulator is used)
2	Canceling hardware reset	RESET_B pin: From low to high
3	Setting of PLL (setting of CSTRT and MCLKSEL)	CSTRT pin, MCLKSEL, and CSTRTEN (1 ms after setting of REGCNT when regulator is used)
4	Setting of PLL (input frequency)	MCLK1A = 4BH, MCLK1B = 9AH, MCLK2A = 05H, MCLK2B = 2FH
5	Setting of sampling frequency	FS: 32 kHz, BFS: 64 fs
6	Setting of ASIO mode	MS = 0, ASIM, LRCLK, SLR
7	Switching to sound generator bank (when PS pin = 1)	BANK
8	Setting of 3DA/surround function	
9	Switching to Control register bank (when PS pin = 1)	BANK
10	Setting of soft mute	MELSMUTE = 0
11	Setting of path (digital mixing)	DACLMIX: Mute, DACRMIX: Mute, MELLMIX: Through, MELRMIX: Through, EX3DAEN = 0
12	Canceling VREF standby	STREF = 1
13	Canceling PLL standby	STPLL1 = STPLL2 = 1 (5 ms after STREF standby is canceled)
14	Canceling function block standby	STSYNTH = STADIG = STASI = STASO = 1
15	The internal clock is valid.	5 ms after STPLL1 and STPLL2 standby is canceled

(2) Switching to the sound generator bank (when the PS pin = 1)

(3) Setting of the sound generator

(4) Transferring data to the sound generator

(5) Canceling the mute

Step	Item	Target registers, pins, etc.
1	Switching to Control register bank (when PS pin = 1)	BANK
2	Canceling digital volume mute	MELLDG, MELRDG

8.3.4 ASI-DAC-line output (Clock: MCLK2 = 12 MHz)

(1) Power on

Step	Item	Target registers, pins, etc.
1	Setting of regulator	REGUSE_B pin: Fixed to low (when regulator is used) REGCNT pin: From low to high (when regulator is used)
2	Canceling hardware reset	RESET_B pin: From low to high
3	Setting of PLL (setting of CSTRT and MCLKSEL)	CSTRT pin, MCLKSEL, and CSTRTEN (1 ms after setting of REGCNT when regulator is used)
4	Setting of PLL (input frequency)	MCLK1A = 4BH, MCLK1B = 9AH, MCLK2A = 05H, MCLK2B = 2FH
5	Setting of sampling frequency	FS: 32 kHz, BFS: 64 fs
6	Setting of ASIO mode	MS, ASIM, LRCLK, SLR
7	Setting of soft mute	AUSMUTE = 1
8	Setting of path (digital mixing)	DACLSW: Through, DACRSW: Through
9	Canceling VREF standby	STREF = 1
10	Canceling PLL standby	STPLL1 = STPLL2 = 1 (5 ms after STREF standby is canceled)
11	Canceling function block standby	STSYNTH = STADIG = STADAC = STASI = STASO = 1
12	The internal clock is valid.	5 ms after STPLL1 and STPLL2 standby is canceled

(2) Transmitting music data

Step	Item	Target registers, pins, etc.
1	Canceling analog volume mute	ADACLVRGA, ADACRVRGA
2	Canceling digital volume mute	AULDG, AURDG

8.3.5 ASI-ASO output (Clock: MCLK = 12 MHz)

(1) Power on

Step	Item	Target registers, pins, etc.
1	Setting of regulator	REGUSE_B pin: Fixed to low (when regulator is used) REGCNT pin: From low to high (when regulator is used)
2	Canceling hardware reset	RESET_B pin: From low to high
3	Setting of PLL (setting of CSTRT and MCLKSEL)	CSTRT pin, MCLKSEL, and CSTRTEN (1 ms after setting of REGCNT when regulator is used)
4	Setting of PLL (input frequency)	MCLK1A = 4BH, MCLK1B = 9AH, MCLK2A = 05H, MCLK2B = 2FH
5	Setting of sampling frequency	FS: 32 kHz, BFS: 64 fs
6	Setting of ASIO mode	MS, ASIM, LRCLK, SLR
7	Setting of soft mute	AUSMUTE = 0
8	Setting of path (digital mixing)	DACLSW: Through, DACRSW: Through
9	Canceling VREF standby	STREF = 1
10	Canceling PLL standby	STPLL1 = STPLL2 = 1 (5 ms after STREF standby is canceled)
11	Canceling function block standby	STSYNTH = STADIG = STADAC = STASI = STASO = 1
12	The internal clock is valid.	5 ms after STPLL1 and STPLL2 standby is canceled

(2) Transmitting music data

Step	Item	Target registers, pins, etc.
1	Canceling digital volume mute	AULDG, AURDG

8.3.6 ASI-surround-DAC-line output (Clock: MCLK2 = 12 MHz, fs = 32 kHz)

(1) Power on

Step	Item	Target registers, pins, etc.
1	Setting of regulator	REGUSE_B pin: Fixed to low (when regulator is used) REGCNT pin: From low to high (when regulator is used)
2	Canceling hardware reset	RESET_B pin: From low to high
3	Setting of PLL (setting of CSTRT and MCLKSEL)	CSTRT pin, MCLKSEL, and CSTRTEN (1 ms after setting of REGCNT when regulator is used)
4	Setting of PLL (input frequency)	MCLK1A = 4BH, MCLK1B = 9AH, MCLK2A = 05H, MCLK2B = 2FH
5	Setting of sampling frequency	FS: 32 kHz, BFS: 64 fs
6	Setting of ASIO mode	MS, ASIM, LRCLK, SLR
7	Setting of soft mute	MELSMUTE = 1
8	Switching to sound generator bank (when PS pin = 1)	BANK
9	Setting of 3D surround function	
10	Switching to Control register bank (when PS pin = 1)	BANK
11	Setting of path (equalizer)	EX3DAEN = 0, PCMLSW = PCMRSW = 1
12	Setting of path (digital mixing)	MELLSW: Through, MELRSW: Through
13	Canceling VREF standby	STREF = 1
14	Canceling PLL standby	STPLL1 = STPLL2 = 1 (5 ms after STREF standby is canceled)
15	Canceling function block standby	STSYNTH = STADIG = STADAC = STASI = STASO = 1
16	The internal clock is valid.	5 ms after STPLL1 and STPLL2 standby is canceled

(2) Transmitting music data

Step	Item	Target registers, pins, etc.
1	Canceling analog volume mute	ADACLVRGA, ADACRVRGA
2	Canceling digital volume mute	MELLDG, MELRDG

8.3.7 ASI-surround-DAC-line output (Clock: MCLK2 = 12 MHz, fs = 44.1 kHz)

(1) Power on

Step	Item	Target registers, pins, etc.
1	Setting of regulator	REGUSE_B pin: Fixed to low (when regulator is used) REGCNT pin: From low to high (when regulator is used)
2	Canceling hardware reset	RESET_B pin: From low to high
3	Setting of PLL (setting of CSTRT and MCLKSEL)	CSTRT pin, MCLKSEL, and CSTRTEN (1 ms after setting of REGCNT when regulator is used)
4	Setting of PLL (input frequency)	MCLK1A = 4BH, MCLK1B = 9AH, MCLK2A = 05H, MCLK2B = 2FH
5	Setting of sampling frequency	FS: 44.1 kHz, BFS: 64 fs
6	Setting of ASIO mode	MS, ASIM, LRCLK, SLR
7	Setting of soft mute	AUSMUTE = 1
8	Switching to sound generator bank (when PS pin = 1)	BANK
9	Setting of 3D surround function	
10	Switching to Control register bank (when PS pin = 1)	BANK
11	Setting of path (equalizer)	EX3DAEN = 1, PCMLSW = PCMRSW = 1
12	Setting of path (digital mixing)	DACLSW: Through, DACRSW: Through
13	Canceling VREF standby	STREF = 1
14	Canceling PLL standby	STPLL1 = STPLL2 = 1 (5 ms after STREF standby is canceled)
15	Canceling function block standby	STSYNTH = STADIG = STADAC = STASI = STASO = 1
16	The internal clock is valid.	5 ms after STPLL1 and STPLL2 standby is canceled

(2) Transmitting music data

Step	Item	Target registers, pins, etc.
1	Canceling analog volume mute	ADACLVRGA, ADACRVRGA
2	Canceling digital volume mute	AULDG, AURDG

8.3.8 ASI-surround-ASO output (Clock: MCLK2 = 12 MHz, fs = 32 kHz)

(1) Power on

Step	Item	Target registers, pins, etc.
1	Setting of regulator	REGUSE_B pin: Fixed to low (when regulator is used) REGCNT pin: From low to high (when regulator is used)
2	Canceling hardware reset	RESET_B pin: From low to high
3	Setting of PLL (setting of CSTRT and MCLKSEL)	CSTRT pin, MCLKSEL, and CSTRTEN (1 ms after setting of REGCNT when regulator is used)
4	Setting of PLL (input frequency)	MCLK1A = 4BH, MCLK1B = 9AH, MCLK2A = 05H, MCLK2B = 2FH
5	Setting of sampling frequency	FS: 32 kHz, BFS: 64 fs
6	Setting of ASIO mode	MS, ASIM, LRCLK, SLR
7	Setting of soft mute	AUSMUTE = MELSMUTE = 0
8	Switching to sound generator bank (when PS pin = 1)	BANK
9	Setting of 3D surround function	
10	Switching to Control register bank (when PS pin = 1)	BANK
11	Setting of path (equalizer)	EX3DAEN = 0, PCMLSW = PCMRSW = 1
12	Setting of path (digital mixing)	DACLMIX: Mute, DACRMIX: Mute, MELLMIX: Through, MELRMIX: Through
13	Canceling VREF standby	STREF = 1
14	Canceling PLL standby	STPLL1 = STPLL2 = 1 (5 ms after STREF standby is canceled)
15	Canceling function block standby	STSYNTH = STADIG = STASI = STASO = 1
16	The internal clock is valid.	5 ms after STPLL1 and STPLL2 standby is canceled

(2) Transmitting music data

Step	Item	Target registers, pins, etc.
1	Canceling digital volume mute	MELLDG, MELRDG

8.3.9 ASI-surround-ASO output (Clock: MCLK2 = 12 MHz, fs = 44.1 kHz)

(1) Power on

Step	Item	Target registers, pins, etc.
1	Setting of regulator	REGUSE_B pin: Fixed to low (when regulator is used) REGCNT pin: From low to high (when regulator is used)
2	Canceling hardware reset	RESET_B pin: From low to high
3	Setting of PLL (setting of CSTRT and MCLKSEL)	CSTRT pin, MCLKSEL, and CSTRTEN (1 ms after setting of REGCNT when regulator is used)
4	Setting of PLL (input frequency)	MCLK1A = 4BH, MCLK1B = 9AH, MCLK2A = 05H, MCLK2B = 2FH
5	Setting of sampling frequency	FS: 44.1 kHz, BFS: 64 fs
6	Setting of ASIO mode	MS, ASIM, LRCLK, SLR
7	Setting of soft mute	AUSMUTE = MELSMUTE = 0
8	Switching to sound generator bank (when PS pin = 1)	BANK
9	Setting of 3D surround function	
10	Switching to Control register bank (when PS pin = 1)	BANK
11	Setting of path (equalizer)	EX3DAEN = 1, PCMLSW = PCMRSW = 1
12	Setting of path (digital mixing)	DACLMIX: Mute, DACRMIX: Mute, MELLMIX: Through, MELRMIX: Through
13	Canceling VREF standby	STREF = 1
14	Canceling PLL standby	STPLL1 = STPLL2 = 1 (5 ms after STREF standby is canceled)
15	Canceling function block standby	STSYNTH = STADIG = STASI = STASO = 1
16	The internal clock is valid.	5 ms after STPLL1 and STPLL2 standby is canceled

(2) Transmitting music data

Step	Item	Target registers, pins, etc.
1	Canceling digital volume mute	AULDG, AURDG

9. ELECTRICAL SPECIFICATIONS

9.1 Absolute Maximum Ratings

Parameter	Symbol	Conditions	Rating	Unit
Supply voltage	DVDD	For digital ports	-0.3 to +2.0	V
	EVDD	For I/O pins	-0.3 to +4.0	V
	REGVDD	For regulators	-0.3 to +4.0	V
	PLLVDD	For PLL	-0.3 to +4.0	V
	AVDD	For analog ports	-0.3 to +4.0	V
Input voltage	Vi	$V_{I}/V_{O} < EV_{DD} + 0.5 V$	-0.3 to +4.0	V
Output voltage	Vo		-0.3 to +4.0	V
Power dissipation	PD	$T_j = 125^{\circ}C$	800	mW
Storage temperature	Tstg		-50 to +125	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

9.2 Recommended Operating Conditions

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Operating voltage	DVDD		1.425		1.65	V
	EVDD		1.71	1.8	3.3	V
	REGVDD		2.7	3.0	3.3	V
	PLLVDD		2.7	3.0	3.3	V
	AVDD		2.7	3.0	3.3	V
Input voltage	VI		0		EVDD	V
Operating ambient temperature	TA		-20		+85	°C

9.3 Capacitance

 $(T_A = +25^{\circ}C, DV_{DD} = 0 V, EV_{DD} = 0 V, Analog pins are excluded.)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	Cı	f = 1 MHz, pins other than those tested: 0 V		10		pF
Output capacitance	Co			10		pF
I/O capacitance	Сю			10		pF

9.4 DC Characteristics

 $(T_A = -20 \text{ to } +85^{\circ}\text{C}$, The range of EV_{DD} does not exceed the range of the recommended operating condition)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
High level input voltage	VIHN		0.7 EVDD		EVDD	V
Low level input voltage	VILN		0		0.3 EVDD	V
High level output voltage	Vон	$I_{OH} = -1 \text{ mA} \text{ (LED or VIB} = -1.5 \text{ mA})$	0.7 EVDD			V
Low level output voltage	Vol	$I_{OL} = +1 \text{ mA} \text{ (LED or VIB} = +1.5 \text{ mA})$			0.3 EVDD	V
High level input leakage current	Ilhn	VI = EVDD	0		10	μA
Low level input leakage current	Illn	V1 = 0 V	-10		0	μA
High-impedance leakage current	l _{zi}	$0 \; V \leq V_{i} \leq E V_{\text{DD}}$	0		-10	μA

Common ratings for switching characteristics

Input
$$0.7 \text{ EV}_{DD}$$

 0.5 EV_{DD}
 0.3 EV_{DD} Test Points 0.7 EV_{DD}
 0.3 EV_{DD}

9.5 AC Characteristics

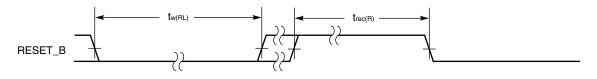
Unless otherwise specified, the ranges of $T_A = -20$ to $+85^{\circ}C$, DV_{DD} and EV_{DD} conform to the recommended operating conditions.

9.5.1 Clock

Timing requirements

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
MCLK1/MCLK2 input frequency	fclkin	$V_{CLKIN1} = 0.5V_{P-P}$ $V_{CLKIN2} = EV_{DD}V_{P-P}$	3.84		15.36	MHz
MCLK1 input level	VCLKIN1	fclkin = 3.84 MHz to 15.36 MHz ^{Note 1}	0.5		Note 2	V _{p-p}
MCLK2 input level	VCLKIN2	fclkin = 3.84 MHz to 15.36 MHz	0.7 EVDD		EVDD	
PLL lockup time	t lpll				2.0	ms

Notes 1. MCLK1 input to be used as PLL input should have capacitive coupling (1000 pF).


2. The maximum input level for MCLK1 should not exceed the power supply (PLLVDD) potential.

9.5.2 Reset

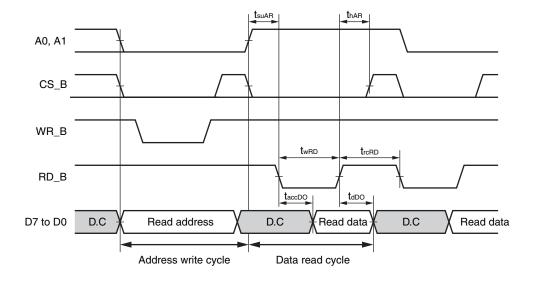
Timing requirements (EV_{DD} = 1.8 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
RESET_B low level width	tw(RL)		225			ns
RESET_B recovery time	trec(R)		225			ns

Reset timing

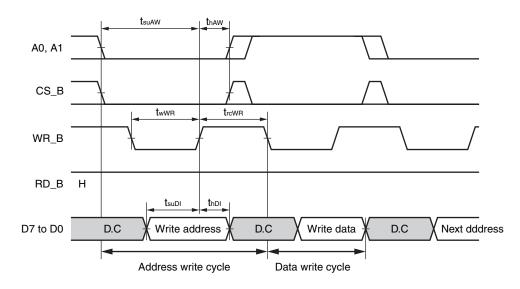
9.5.3 Parallel CPU interface

Timing requirements (EVDD = 1.8 V)


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
RD_B width	t _{wRD}		100			ns
WR_B width	t _{wWR}		40			ns
RD_B recovery time	trcRD	During read access to the sound generator register	30			ns
WR_B recovery time	trcwR	During write access to registers of control register bank	80			ns
Data setup time	tsuDI	WR_B^	50			ns
Data hold time	thDI	WR_B1	0			ns
A, CS_B setup time	tsuAW	WR_B↑	50			ns
A, CS_B hold time	thAW	WR_B↑	0			ns
A, CS_B setup time	tsuAR	RD_B↓	0			ns
A, CS_B hold time	thAR	RD_B↑	0			ns

Phase-out/Discontinued

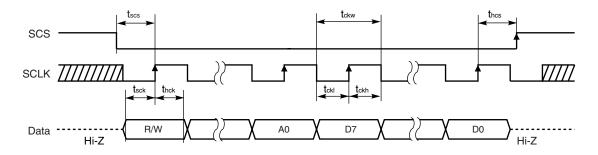
Switching characteristics (EVDD = 1.8 V)


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data access time 1	taccDO	RD_B↓, I _{sink} = 1 mA			100	ns
Data hold time 1	tdDO	RD_B↑, I _{sink} = 1 mA	0		30	ns

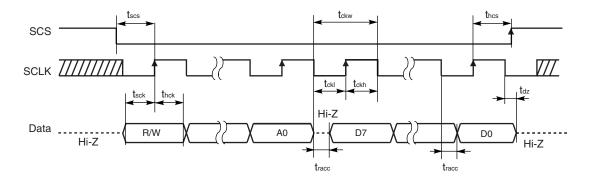
Parallel interface read timing

Phase-out/Discontinued

Parallel interface write timing

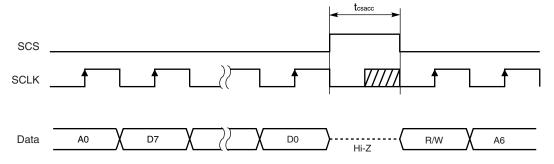

Phase-out/Discontinued

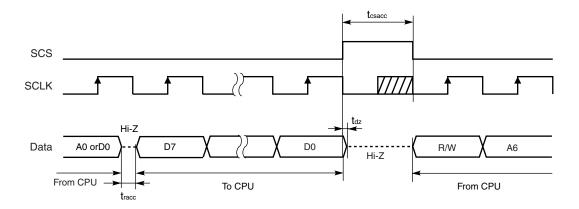
9.5.4 Serial CPU interface mode (Common to the 3-wire SPI mode and 4-wire SPI mode)


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCLK cycle timeperiod	t _{ckw}		100			ns
SCLK high level width	t ckh		50			ns
SCLK low level width	t _{ckl}		50			ns
Data setup time	t _{sck}	SCLKÎ	20			ns
Data hold time	thck	SCLK1	10			ns
SCS setup time	tscs	SCLK1	20			ns
SCS hold time	thcs	SCLK1	20			ns
Data delay time	tracc	Time until SCLK \downarrow data is output	5		20	ns
SCS recovery time	t _{csacc}	From SCS↑ to SCS↓	1			sclk
Data delay time	tdz	Time until SCLK↓ data change to Hi-z	0		20	ns
SERINIT hold time	thcsINIT	SERINIT	80			ns
SCS setup time	tdhh	SERINT	0			ns
SERINIT width	twhSERINIT		20			ns
SCS hold time	taıı	SERINT↓	0		20	ns

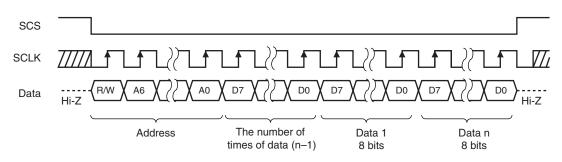
Timing requirements (EVDD = 1.8 V)

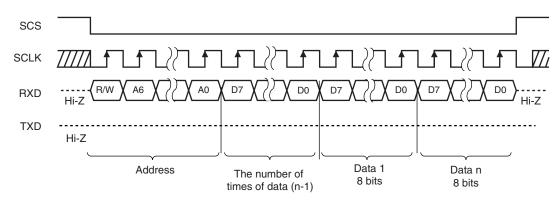
Serial interface write timing


Serial interface read timing



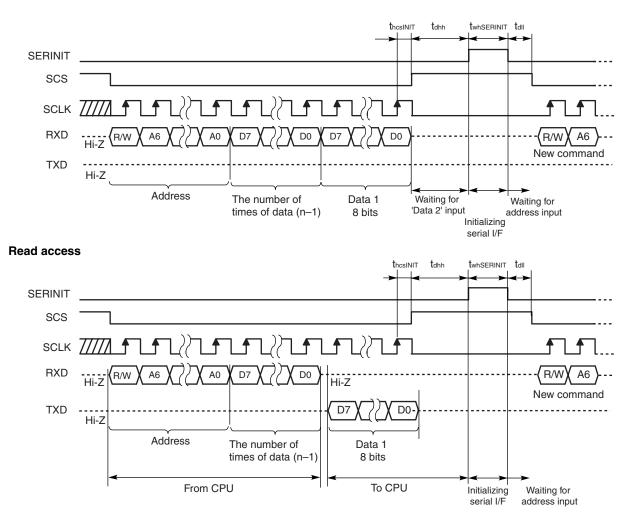
Phase-out/Discontinued


Serial interface write timing (continuous access)


Serial interface read timing (continuous access)

3-wire SPI mode (host CPU write access format (continuous access 3)

4-wire SPI mode (host CPU write access format (continuous access)



μ**PD9971**

Initialization signal (SERINIT) timing

With this timing at the SERINIT/D0 pin, continuous access can be canceled

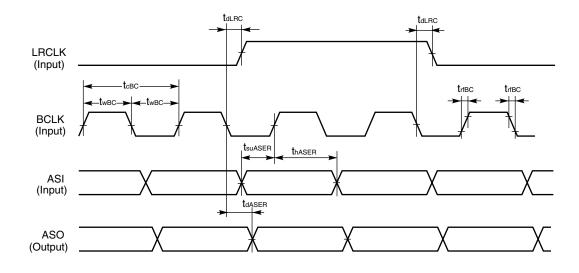
Write access

9.5.5 Audio serial interface (ASIO)

Timing requirements (EVDD = 1.8 V)

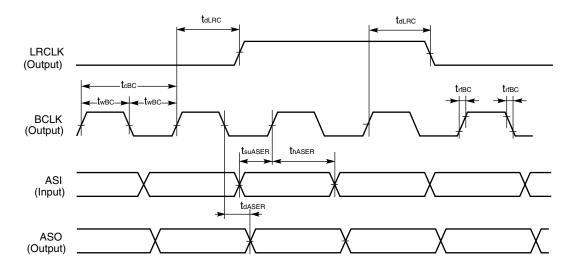
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
ASI input setup time	tsuASER	BCLK↑	50			ns
ASI input hold time	thASER	BCLK↑	50			ns

Phase-out/Discontinued


Switching characteristics (EVDD = 1.8 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LRCLK cycle time	t dLRC			1/fs		ns
BCLK cycle time	tсвс			1/(fs × 64)		ns
BCLK high-/low-level width	twBC			tcBC/2		ns
BCLK rise/fall time	t rfBC	In the slave mode			20	ns
LRCLK output delay time	t dLRC	$BCLK\downarrow$ (in the master mode)			50	ns
LRCLK output delay time	tdLRC	BCLK [↑] (in the slave mode)	50			ns
ASO output delay time	tdASER	BCLK↓	-37.5		80	ns

The configuration of each frame depends on the settings of the BFS register.


Audio serial mode timing (master mode)

NEC

Phase-out/Discontinued

Audio serial mode timing (slave mode)

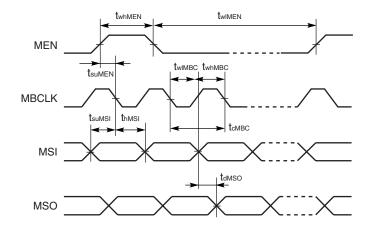
9.5.6 Serial interface dedicated to sound generator core external connection (MSIO)

Timing requirement

$(EV_{DD} = 1.8 V)$

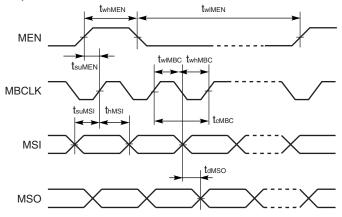
Parameter	Symbol	Conditions	MIN	TYP	MAX	Unit
MSI setup time	tsuMSI	BCLK↑	50			ns
MSI input hold time	thMSI	BCLK↑	50			ns

Switching characteristics


(EVDD = 1.8 V)

Parameter	Symbol	Conditions	MIN	TYP	MAX	Unit
MEN cycle time	t _{cMEN}			1/fs		ns
MEN high level width	twhMEN		1			clk
MEN low level width	twimen		1			clk
MBCLK cycle time	tсмвс	x = 32 to 256		1/(x*fs)		ns
MBCLK high level width	twhMBC			tсмвс/2		ns
MBCLK low level width	twiмвс			tсмвс/2		ns
MBCLK rise/fall time	t _{rfMBC}	In the slave mode			20	ns
MEN setup time	t _{suMEN1}	$MBCLK\downarrow$ (MBCLK normal mode)	50			ns
MEN setup time	tSuMEN2	MBCLK [↑] (MBCLK inversion mode)	50			ns
MSO output delay time	tdMSO1	MBCLK [↑] (MBCLK reverse mode)	-37.5		+50	ns
MSO output delay time	tdMSO2	MBCLK \downarrow (MBCLK inversion mode)	-37.5		+50	ns

μ**PD9971**


NEC

Clock normal (SMBCLK = 0) mode

Phase-out/Discontinued

Clock inversion (SMBCLK =1) mode

9.6 Analog Characteristics

Unless otherwise specified, the following conditions must be met.

D/A converter input level:	$V_{IN} = 0$ dBFS (The full-scale input of the D/A converter is defined as 0 dBFS.)
D/A converter input frequency :	fin = 997 Hz
Ambient temperature:	$T_A = 25^{\circ}C$
Power supply voltage:	$AV_{DD} = 3.0 V$
Sampling frequency:	fs = 48 kHz
Output load:	$R_L = 10 \ k\Omega$

Phase-out/Discontinued

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Maximum output level	Vo	Volume = 0 dB	1.8	2.0	_	V _{p-p}
Gain error 1	GEmax	volume = 0 dB, 0 dBr = 2.0 V_{p-p}	-1	0	+1	dBr
Gain error 2	GEmin	Volume = -45 dB , value relative to G_{Emax} reference	-47	-45	-43	dB
Gain adjustment resolution	Gstep	Volume = differential error when 0 to -45 dB is set,	1	1.5	2	dB
THD	THD	Volume = 0 dB, Input = –3 dBFS@997 Hz, f = 20kHz	-	-80	-74	dB
Frequency characteristics	GF	Volume = 0 dB, Input = -10 dBm@997 Hz, Output at 997 Hz is used as 0 dB reference.	-1	0	+1	dB
Dynamic range	SND	Volume = 0 dB, INPUT = -60 dBFS, f = 20 Hz, A-weighting filter	80	86	_	dB

9.6.1 Analog block characteristics (reference values)

(I) Addie BAe endladeen						
Parameter	Symbol	Conditions	MIN	TYP	MAX	Unit
Resolution	RESda			16		bit
Output voltage	VOFSda	When 0 dBFS is output		2.0		V _{p-p}
Absolute gain	Gda	0 dB input	-0.5	0	+0.5	dBr
Frequency characteristics	GRda	-20 dBFS at 997 Hz, 100 to 15 kHz	-0.5	0	+0.5	dBr
Dynamic range	SNDda	Input = -60 dBFS, A-weighting filter	83	89		dB
THD	THDda	Input = -3 dBFS, 997 Hz			-80	dB

(1) Audio DAC characteristics

(2) Master volume + line output amplifier characteristics

Parameter	Symbol	Conditions	MIN	TYP	MAX	Unit
Gain error maximum value	Gvmax	0 dBr = 2.0 Vp-p when 997 Hz and 0 dB are set.	-0.1	0	+0.1	dBr
Gain error minimum value	Gvmin	When 997 Hz and –45 dB are set	-47	-45	-43	dB
Gain adjustment resolution	Gstep	Differential error when 20 kHz to 15 kHz and 0 dB to -45 dB are set	1.0	1.5	2.0	dB
Minimum load resistance			10k			Ω
Maximum load capacitance					20	pF
Maximum output level	SNvo	Input = 2.0 V_{p-p} when 997 Hz and 0 dB are set.		2.0		V _{p-p}
Mute level	ML	When 997 Hz and Mute are set	60			dB
Frequency characteristics	FCvo	0.2 $V_{P \cdot P}$ at 997 Hz. When 0 dB is set, the frequency is 100 kHz to 15 kHz.	-0.5	0	+0.5	dBr
Dynamic range	SNvo	Input = -60 dB, A-weighting filter			83	dB
THD	THDvo	Input = 2.0 Vp-p at 997 Hz			-86	dB

(3) Band gap reference characteristics

Parameter	Symbol	Conditions	MIN	TYP	MAX	Unit
Output voltage	VRO		1.2	1.3	1.4	V
Rise time	VRUP	Capacitance of 0.22 μ F		2	5	ms

(4) Regulator characteristics

Parameter	Symbol	Conditions	MIN	TYP	MAX	Unit
Current consumption	REGidd	When the output current is 0 mA		(50)		μA
Output voltage	REG _{vo}			1.54		V
Output current	REGio			150		mA
Power up time	REGton	90% of the output voltage when the output voltage is maximum			(1)	ms
Power down time	REG _{toff}	Output voltage of 0.5 V when the output voltage is maximum			(1)	ms

Phase-out/Discontinued

μ**PD9971**

10. CURRENT CONSUMPTION

Unless otherwise specified, the following conditions must be met.

Sound source master clock:	112 MHz
D/A converter input level:	$V_{IN} = 0$ dBFS (The full scale input of the D/A converter is defined as 0 dBFS.)
D/A converter input frequency:	fın = 997 Hz
Ambient temperature:	$T_A = 25^{\circ}C$
Power supply voltage:	DVDD = 1.54 V, EV DD = 1.8 V, $PLLV$ DD = AV DD = $REGV$ DD = 3.0 V
Sampling frequency:	fs = 48 kHz
Output load:	$R_L = 10 \ k\Omega$

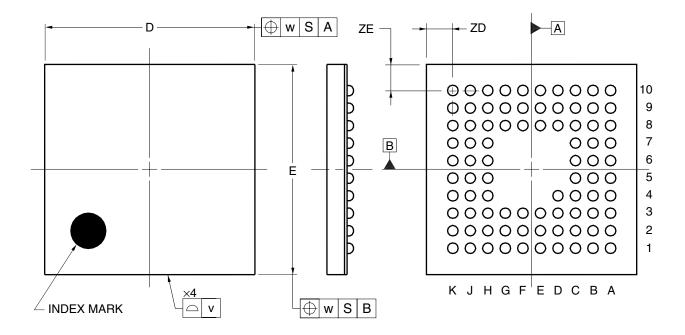
The above current values are reference values derived from the μ PD9970.

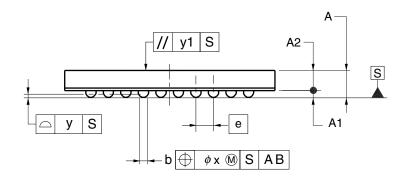
They may be changed without prior notice.

The current value of the EV_{DD} pin is a reference value measured when no loads are applied. It varies depending on external environments such as loads and clock rates.

							(1/2)
Parameter	Symbol	Conditions	Power Supply Pin	MIN	ТҮР	MAX	Unit
Current consumption during	IDD1	MIDI playback, 3DA is on, EQ is on,	DVDD			120	mA
output from sound generator		stereo line output, and no regulators	AVDD			12	mA
to DAC		are used (REGUSE_B = EVDD)	PLLVDD			9	mA
			REGVDD		0.5		μA
			EVDD			3	mA
Current consumption during output from sound generator to ASO	IDD2	MIDI playback, 3DA is on, EQ is on,	DVDD			120	mA
	used (REGUSE_B = EVDD)	AVDD			2	mA	
		PLLVDD			9	mA	
			REGVDD		0.5		μA
			EVDD			3	mA
Current consumption during	Іооз	Audio playback, sound generator is off, 3DA is off, EQ is off, stereo line output, and no regulators are used (REGUSE_B = EV _{DD})	DVDD			10	mA
output from ASI to DAC			AVDD			12	mA
			PLLVDD			9	mA
			REGVDD		0.5		μA
			EVDD			3	mA
Current consumption during	IDD4	Audio loop back, sound generator is off,	DVDD			10	mA
output from ASI to ASO		3DA is off, EQ is off, ASO data output,	AVDD			2	mA
		and no regulators are used (REGUSE_B = EVDD)	PLLVDD			9	mA
		(·····································	REGVDD		0.5		μA
			EVDD			3	mA

★


Phase-out/Discontinued


							(2/2
Parameter	Symbol	Conditions	Power Supply Pin	MIN	TYP	MAX	Unit
Software standby current 1	Istb1	Software standby current (except EVDD) when all signals are stopped REGCNT = 0 REGUSE_B = EVDD	DVDD		0		μA
			AVDD		0.5		μA
			PLLVDD		0.5		μA
			REGVDD		0.5		μA
Software standby current 2	Istb2	Software standby current (except EVDD) when all signals are stopped REGCNT = 0 REGUSE_B = EVDD	DVDD		0		μA
			AVDD		0.5		μA
			PLLVDD		0.5		μA
			REGVDD		0.5		μA
Hardware standby current	Іѕтвн	EVDD current at the time of reset (RESET_B = low)	EVDD		0.2	5	μA

11. PACKAGE DRAWING

85-PIN TAPE FBGA (6x6)

(UNIT:mm)
DIMENSIONS
6.00±0.10
6.00±0.10
0.15
0.20
0.50
0.83±0.10
0.18±0.05
0.65
0.32±0.05
0.05
0.08
0.20
0.75
0.75
P85F9-50-BA3

12. RECOMMENDED SOLDERING CONDITIONS

The μ PD9971 should be soldered and mounted under the following recommended conditions.

For soldering methods and conditions other than those recommended below, contact an NEC Electronics sales representative.

For technical information, see the following website.

Semiconductor Device Mount Manual (http://www.necel.com/pkg/en/mount/index.html)

• µPD9971F9-BA3-A: 85-pin tape FBGA (6 × 6)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 260°Cor below, Time: 60 sec. max. (at 220°C or higher),	IR60-107-2
	Count: two times or less,	
	Exposure limit: 7 days ^{Note} (after that, prebake at 125°C for 10 to 72 hours)	
	Flux: Rosin flux with low chlorine (0.2 Wt% or below) recommended.	
	<caution></caution>	
	Products packed in a medium other than a heat-resistance tray (such	
	as a magazine, taping, and non-heat-resistance tray) cannot be baked.	

Note After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period.

- NOTES FOR CMOS DEVICES -

1 VOLTAGE APPLICATION WAVEFORM AT INPUT PIN

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (MAX) and V_{IH} (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (MAX) and V_{IH} (MIN).

(2) HANDLING OF UNUSED INPUT PINS

Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.

③ PRECAUTION AGAINST ESD

A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.

④ STATUS BEFORE INITIALIZATION

Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.

5 POWER ON/OFF SEQUENCE

In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current.

The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.

(6) INPUT OF SIGNAL DURING POWER OFF STATE

Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.

NFC

Regional Information

Phase-out/Discontinued

Some information contained in this document may vary from country to country. Before using any NEC Electronics product in your application, please contact the NEC Electronics office in your country to obtain a list of authorized representatives and distributors. They will verify:

- · Device availability
- Ordering information
- · Product release schedule
- · Availability of related technical literature
- · Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

[GLOBAL SUPPORT] http://www.necel.com/en/support/support.html

NEC Electronics America, Inc. (U.S.) NEC Electronics (Europe) GmbH NEC Electronics Hong Kong Ltd. Santa Clara, California Duesseldorf, Germany Hong Kong Tel: 2886-9318 Tel: 408-588-6000 Tel: 0211-65030 800-366-9782 • Sucursal en España

- Madrid, Spain Tel: 091-504 27 87
- Succursale Francaise Vélizy-Villacoublay, France Tel: 01-30-675800
- Filiale Italiana Milano, Italy Tel: 02-66 75 41
- Branch The Netherlands Eindhoven, The Netherlands Tel: 040-265 40 10
- Tyskland Filial Taeby, Sweden Tel: 08-63 87 200
- United Kingdom Branch Milton Keynes, UK Tel: 01908-691-133

NEC Electronics Hong Kong Ltd. Seoul Branch

Seoul, Korea Tel: 02-558-3737

NEC Electronics Shanghai Ltd. Shanghai, P.R. China Tel: 021-5888-5400

NEC Electronics Taiwan Ltd. Taipei, Taiwan Tel: 02-2719-2377

NEC Electronics Singapore Pte. Ltd. Novena Square, Singapore Tel: 6253-8311

JAVA is either a registered trademark or trademark of SunMicrosystems, Inc. in the United State and other countries.

Phase-out/Discontinued

MIDI is the trademark in Japan of the association of Musical electronics Industry.

- The information in this document is current as of September, 2005. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".

The "Specific" quality grade applies only to NEC Electronics products developed based on a customerdesignated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.

- "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
- "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
- "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).