Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

MOS INTEGRATED CIRCUIT $\mu PD78P064$

8-BIT SINGLE-CHIP MICROCONTROLLER

DESCRIPTION

The μ PD78P064 is a product of μ PD78064 subseries in 78K/0 series, in which the on-chip mask ROM of the μ PD78064 is replaced by one-time PROM or EPROM.

As program write by user is possible, the μ PD78P064 is best suited for evaluation, short-run and multiple-device production, and early rise upon system development.

Functions are described in detail in the following User's Manuals, which should be read when carrying out design work.

 μ PD78064, 78064Y Subseries User's Manual : U10105E 78K/0 Series User's Manual Instruction : U12326E

FEATURES

- Pin compatible with mask ROM products (except the VPP pin)
- Internal PROM: 32K bytesNote
 - μPD78P064KL-T : Reprogrammable (ideal for system evaluation)
 - μPD78P064GC, 78P064GF: Programmable once only (ideal for small-scale production)
- Internal high-speed RAM: 1024 bytesNote
- LCD display RAM: 40 × 4 bits
- Operable in the same supply voltage as mask ROM products (VDD = 2.0 to 6.0 V)
- Corresponding to QTOP™ microcontrollers

Note Internal PROM and internal high-speed RAM capacities can be changed by memory size switching register (IMS).

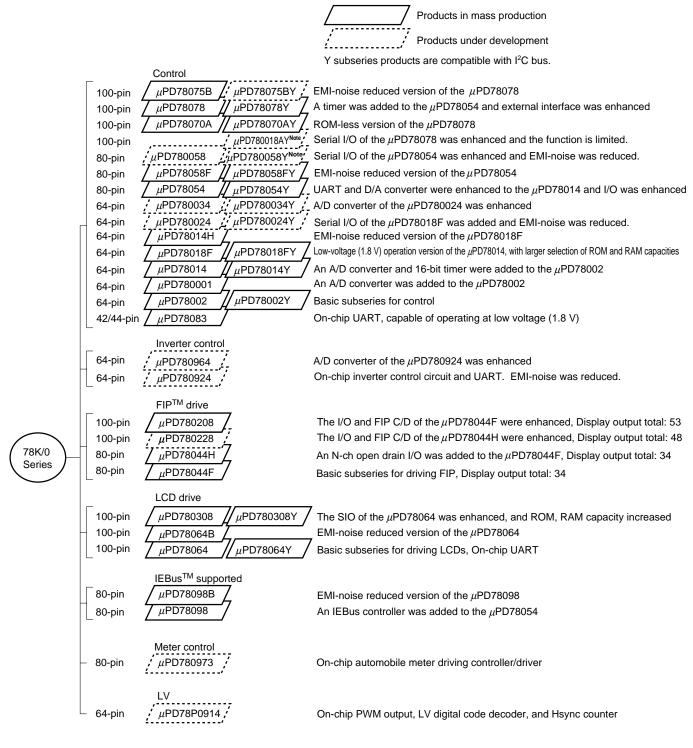
- Remarks 1. For the differences between PROM products and mask ROM products, refer to 1. DIFFERENCES BETWEEN μ PD78P064 AND MASK ROM PRODUCTS.
 - **2.** A QTOP microcontroller is the general name for a single-chip microcontroller with one-time PROM for which program writing, marking, screening, and verifying are completely supported by NEC.

In this document, "PROM" is used in parts common to one-time PROM products and EPROM products.

The information in this document is subject to change without notice.

ORDERING INFORMATION

	Part Number	Package	On-Chip ROM
	μPD78P064GC-7EA	100-pin plastic QFP (fine pitch) (14 × 14 mm)	One-time PROM
*	μ PD78P064GC-8EU	100-pin plastic LQFP (fine pitch) (14 \times 14 mm)	One-time PROM
	μ PD78P064GF-3BA	100-pin plastic QFP (14 × 20 mm)	One-time PROM
	μ PD78P064KL-T ^{Note}	100-pin ceramic WQFN (14 × 20 mm)	EPROM


Note Under development

Caution The μ PD78P064GC has two types of package. (Refer to 10. PACKAGE DRAWINGS). For the package suppliable to your device, consult NEC sales personnels.

★ 78K/0 SERIES DEVELOPMENT

The following shows the products organized according to usage. The names in the parallelograms are subseries names.

Note Under planning

The following lists the main functional differences between subseries products.

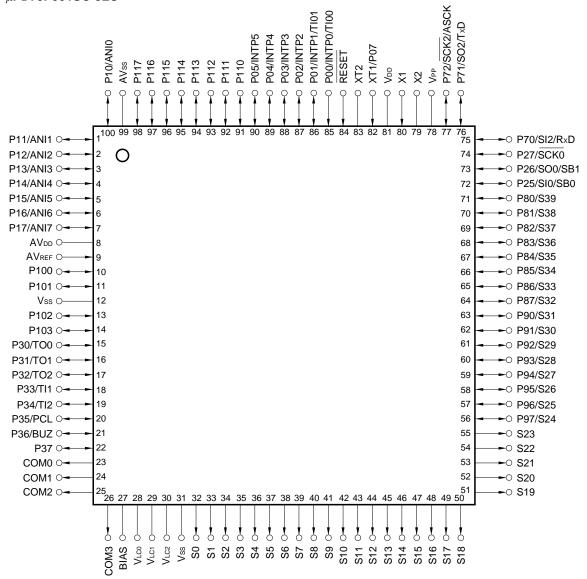
	Function	ROM		Tin	ner		8-bit	10-bit	8-bit	Serial Interface	I/O	VDD MIN.	External
Subseries	Name	Capacity	8-bit	16-bit	Watch	WDT	A/D	A/D	D/A	Senai interiace	1/0	Value	Expansion
Control	μPD78075B	32K-40K	4ch	1ch	1ch	1ch	8ch	_	2ch	3ch (UART: 1ch)	88	1.8 V	0
	μPD78078	48K-60K											
	μPD78070A	_									61	2.7 V	
	μPD780058	24K-60K	2ch						2ch	3ch (time division UART: 1ch)	68	1.8 V	
	μPD78058F	48K-60K								3ch (UART: 1ch)	69	2.7 V	
	μPD78054	16K-60K										2.0 V	
	μPD780034	8K-32K					_	8ch	_	3ch (UART: 1ch,	51	1.8 V	
	μPD780024						8ch	_		time division 3-wire: 1ch)			
	μPD78014H									2ch	53	1.8 V	
	μPD78018F	8K-60K											
	μPD78014	8K-32K										2.7 V	
	μPD780001	8K		_	_					1ch	39		-
	μPD78002	8K-16K			1ch		_				53		0
	μPD78083				_		8ch			1ch (UART: 1ch)	33	1.8 V	-
Inverter	μPD780964	8K-32K	3ch	Note	-	1ch	_	8ch	_	2ch (UART: 2ch)	47	2.7 V	0
control	μPD780924						8ch	_					
FIP	μPD780208	32K-60K	2ch	1ch	1ch	1ch	8ch	_	_	2ch	74	2.7 V	-
drive	μPD780228	48K-60K	3ch	_	_					1ch	72	4.5 V	
	μPD78044H	32K-48K	2ch	1ch	1ch						68	2.7 V	
	μPD78044F	16K-40K								2ch			
LCD	μPD780308	48K-60K	2ch	1ch	1ch	1ch	8ch	_	_	3ch (time division UART: 1ch)	57	2.0 V	-
drive	μPD78064B	32K								2ch (UART: 1ch)			
	μPD78064	16K-32K											
IEBus	μPD78098	40K-60K	2ch	1ch	1ch	1ch	8ch	-	2ch	3ch (UART: 1ch)	69	2.7 V	0
supported	μPD78098B	32K-60K											
Meter control	μPD780973	24K-32K	3ch	1ch	1ch	1ch	5ch	_	-	2ch (UART: 1ch)	56	4.5 V	-
LV	μPD78P0914	32K	6ch	_	_	1ch	8ch	-	_	2ch	54	4.5 V	0

Note 10-bit timer: 1 channel

FUNCTION DESCRIPTION

Item		Function		
Internal memory		PROM: 32 K bytes ^{Note 1} RAM High-speed RAM: 1024 bytes ^{Note 1} LCD display RAM: 40 × 4 bits		
General-purpo	se register	8 bits \times 32 registers (8 bits \times 8 registers \times 4 banks)		
Minimum instruction execution	When main system clock is selected	0.4 μ s/0.8 μ s/1.6 μ s/3.2 μ s/6.4 μ s/12.8 μ s (when operating at 5.0 MHz)		
time	When subsystem clock is selected	122 μ s (when operating at 32.768 kHz)		
Instruction set		 16-bit operation Multiplication/division (8 bits × 8 bits, 16 bits ÷ 8 bits) Bit manipulation (set, reset, test, boolean operation) BCD correction, etc. 		
	egment signal al-function pin	Total : 57 • CMOS input : 2 • CMOS input/output : 55		
A/D converter		8-bit resolution × 8 ch		
LCD controller/driver		Segment signal output : 40 max. Common signal output : 4 max. Bias : 1/2, 1/3, Bias switchable		
Serial interface	e	3-wire serial I/O/SBI/2-wire serial I/O mode selectable : 1 ch 3-wire serial I/O/UART mode selectable : 1 ch		
Timer		16-bit timer/event counter : 1 ch 8-bit timer/event counter : 2 ch Watch timer : 1 ch Watchdog timer : 1 ch		
Timer output		3 pins (14-bit PWM output enable : 1 pin)		
Clock output		19.5 kHz, 39.1 kHz, 78.1 kHz, 156 kHz, 313 kHz, 625 kHz, 1.25 MHz, 2.5 MHz, 5.0 MHz (when operating at main system clock 5.0 MHz), 32.768 kHz (when operating at subsystem clock 32.768 kHz)		
Buzzer output		1.2 kHz, 2.4 kHz, 4.9 kHz, 9.8 kHz (when operating at main system clock 5.0 MHz)		
Vectored	Maskable	Internal : 12, External : 6		
interrupt sources	Non-maskable	Internal : 1		
	Software	1		
Test input	1	Internal : 1, External : 1		
Supply voltage		V _{DD} = 2.0 to 6.0 V		
Package		 100-pin plastic (fine pitch) QFP (14 × 14 mm) 100-pin plastic LQFP (fine pitch) (14 × 14 mm) 100-pin plastic QFP (14 × 20 mm) 100-pin ceramic WQFN (14 × 20 mm)^{Note 2} 		

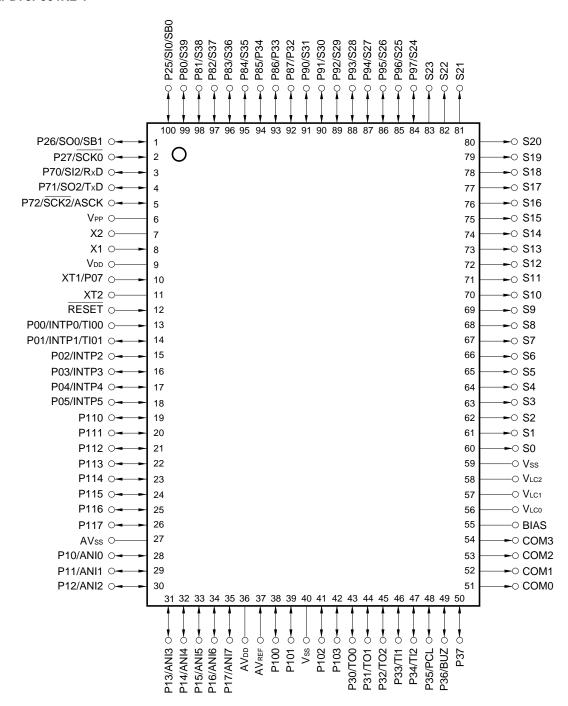
Notes 1. Internal PROM/internal high-speed RAM capacity can be changed by memory size switching register (IMS).


2. Under development

*

PIN CONFIGURATION (Top View)

- (1) Normal operating mode
 - 100-pin plastic QFP (fine pitch) (14 \times 14 mm) μ PD78P064GC-7EA
- * 100-pin plastic LQFP (fine pitch) (14 \times 14 mm) μ PD78P064GC-8EU



Cautions 1.

- 1. Connect VPP pin directly to Vss.
- 2. Connect AVDD pin to VDD.
- 3. Connect AVss pin to Vss.

- 100-pin plastic QFP (14 \times 20 mm) μ PD78P068GF-3BA
- 100-pin ceramic WQFN (14 \times 20 mm) μ PD78P064KL-T^{Note}

Note Under development

Cautions 1. Connect VPP pin directly to Vss.

- 2. Connect AVDD pin to VDD.
- 3. Connect AVss pin to Vss.

Crystal (Main System Clock)

Crystal (Subsystem Clock)

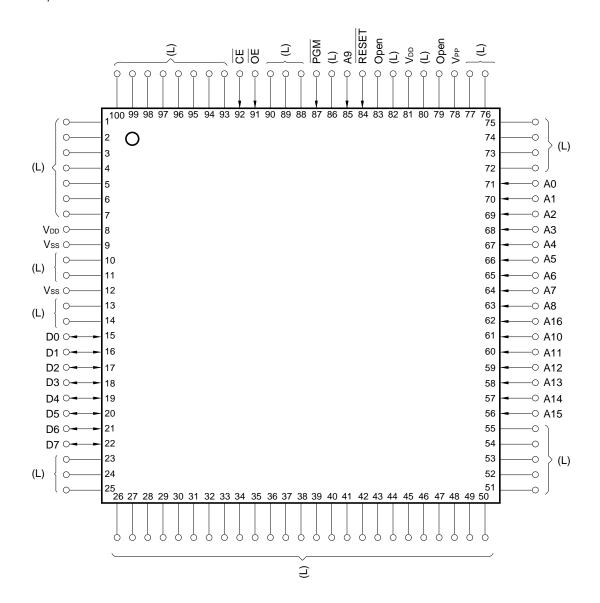
P100-P103

P110-P117

Port 10

: Port 11

: Analog Input : Programmable Clock ANIO-ANI7 **PCL ASCK** Asynchronous Serial Clock RESET Reset AV_DD **Analog Power Supply** Receive Data RxD : Analog Reference Voltage **AV**REF S0-S39 Segment Output **AVss** : Analog Ground SB0, SB1 Serial Bus **BIAS** LCD Power Supply Bias Control Serial Input SI0, SI2 BUZ **Buzzer Clock** SO0, SO2 Serial Output COM0-COM3 Common Output SCK0, SCK2 Serial Clock INTP0-INTP5 : Interrupt from Peripherals TI00, TI01 Timer Input P00-P05, P07 : Port 0 Timer Input TI1,TI2 P10-P17 : Port 1 TO0-TO2 Timer Output : Port 2 TxD Transmit Data P25-P27 P30-P37 : Port 3 V_{DD} Power Supply P70-P72 Port 7 V_{LC0} - V_{LC2} LCD Power Supply P80-P87 : Port 8 Vss Ground Port 9 Programming Power Supply P90-P97 V_PP


X1, X2

XT1, XT2

(2) PROM programming mode

- 100-pin plastic QFP (fine pitch) (14 \times 14 mm) μ PD78P064GC-7EA
- 100-pin plastic LQFP (fine pitch) (14 \times 14 mm)
- **★** μPD78P064GC-8EU

Cautions 1. (L) : Individually connect to Vss via a pull-down resistor.

Vss : Connect to GND.
 RESET : Set to low level.
 Open : No connection

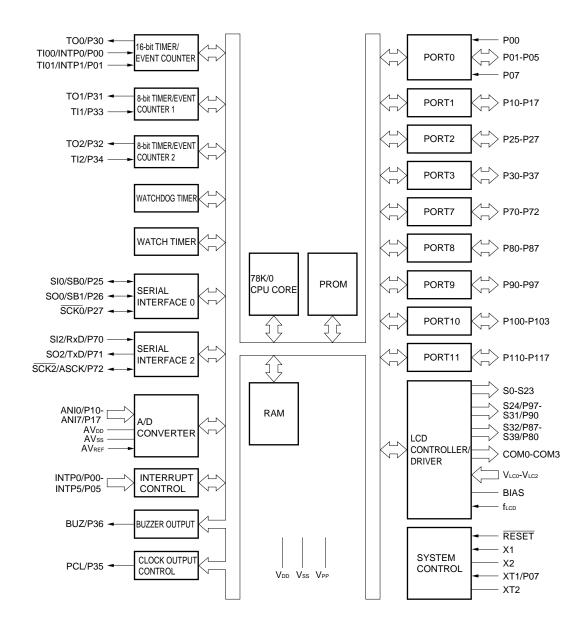
- 100-pin plastic QFP (14 \times 20 mm) μ PD78P064GF-3BA
- 100-pin ceramic WQFN (14 \times 20 mm) μ PD78P064KL-T^{Note}

Note Under development

Cautions 1. (L) : Individually connect to Vss via a pull-down resistor.

Vss : Connect to GND.
 RESET : Set to low level.
 Open : No connection

A0 to A16 : Address Bus RESET : Reset


CE : Chip Enable VDD : Power Supply

OE : Output Enable Vss : Ground

PGM : Program

BLOCK DIAGRAM

CONTENTS

1.	DIFFERENCES BETWEEN μ PD78P064 AND MASK ROM PRODUCTS	13
2.	PIN FUNCTION TABLE	14 17
3.	MEMORY SIZE SWITCHING REGISTER (IMS)	21
4.	PROM PROGRAMMING	22 24
5.	ERASURE METHOD (μPD78P064KL-T ONLY)	29
6.	ERASURE WINDOW SEAL (μPD78P064KL-T ONLY)	29
7.	ONE-TIME PROM PRODUCTS SCREENING	30
8.	ELECTRICAL SPECIFICATIONS	31
9.	CHARACTERISTIC CURVES (REFERENCE VALUES)	54
10	PACKAGE DRAWINGS	56
11.	RECOMMENDED SOLDERING CONDITIONS	60
ΑP	PENDIX A. DEVELOPMENT TOOLS	61
ΔΡ	PENDIX B RELATED DOCUMENTS	66

1. DIFFERENCES BETWEEN μ PD78P064 AND MASK ROM PRODUCTS

The μ PD78P064 is a single-chip microcontroller with an on-chip one-time writable PROM or with an on-chip EPROM which has program write, erasure, and rewrite capability.

It is possible to make all the functions exception PROM specification, and mask option of LCD drive power supply dividing resistor, to the same as those of mask ROM products by setting the memory size switching register (IMS).

Difference between the PROM product (μ PD78P064) and mask ROM product (μ PD78062, 78063, 78064) are shown is Table 1-1.

Table 1-1. Differences between μ PD78P064 and Mask ROM Products

Item	μPD78P064	Mask ROM Products		
Internal ROM structure	One-time PROM/EPROM	Mask ROM		
Changing internal ROM/internal high- speed RAM capacity by memory size switching register (IMS)	Can be changed ^{Note}	Cannot be changed		
IC pin	No	Yes		
V _{PP} pin	Yes	No		
Mask option of LCD drive power supply dividing resistor	No	Yes		
Electrical characteristics	tics Refer to Data Sheet for each product			

Note The internal PROM becomes to 32K bytes and the internal high-speed RAM becomes 1024 bytes by the RESET input.

★ Caution Noise resistance and noise radiation are different in PROM version and mask ROM versions. If using a mask ROM version instead of the PROM version for processes between prototype development and full production, be sure to fully evaluate the CS of the mask ROM version (not ES).

2. PIN FUNCTION TABLE

2.1 PINS IN NORMAL OPERATING MODE

(1) PORT PINS (1/2)

Pin Name	Input/Output	F	unction	After Reset	Dual-Function Pin
P00	Input	Port 0	Input only	Input	INTP0/TI00
P01	Input/output	7-bit input/output port	Input/output is specifiable	Input	INTP1/TI01
P02			bit-wise. When used as the input port,		INTP2
P03			an on-chip pull-up resistor can be used by software.		INTP3
P04					INTP4
P05					INTP5
P07 ^{Note 1}	Input		Input only	Input	XT1
P10 to P17	Input/output	Port 1 8-bit input/output port Input/output is specifiable bit-wise. When used as the input port, an on-chip pull-up resistor can be used by software. Note 2		Input	ANI0 to ANI7
P25	Input/output	Port 2	Input	SI0/SB0	
P26		3-bit input/output port Input/output is specifiab			SO0/SB1
P27		can be used by softwar	t port, an on-chip pull-up resistor e.		SCK0
P30	Input/output	Port 3		Input	TO0
P31		8-bit input/output port Input/output is specifiab			TO1
P32		can be used by softwar	t port, an on-chip pull-up resistor e.		TO2
P33					TI1
P34					TI2
P35					PCL
P36					BUZ
P37					
P70	Input/output	Port 7		Input	SI2/RxD
P71		3-bit input/output port Input/output is specifiab			SO2/TxD
P72		can be used by softwar	t port, an on-chip pull-up resistor e.		SCK2/ASCK

- Notes 1. When P07/XT1 pins are used as the input ports, set processor clock control register (PCC) bit 6 (FRC) to 1. (Do not use the on-chip feedback resistor of the subsystem clock oscillation circuit.)
 - 2. When P10/ANI0 to P17/ANI7 pins are used as the analog inputs for A/D converter, set port 1 to input mode. The on-chip pull-up resistor is automatically disabled.

(1) PORT PINS (2/2)

Pin Name	Input/Output	Function	After Reset	Dual-Function Pin
P80 to P87	Input/output	Port 8 8-bit input/output port Input/output is specifiable bit-wise. When used as the input port, an on-chip pull-up resistor can be used by software. Input/output port/segment signal output function specifiable in 2-bit units by LCD display control register (LCDC).	Input	S39 to S32
P90 to P97	Input/output	Port 9 8-bit input/output port. Input/output is specifiable bit-wise. When used as the input port, an on-chip pull-up resistor can be used by software. Input/output port/segment signal output function specifiable in 2-bit units by LCD display control register. (LCDC).	Input	S31 to S24
P100 to P103	Input/output	Port 10 4-bit input/output port Input/output is specifiable in bit-wise. When used as the input port, an on-chip pull-up resistor can be used by software. It is possible to directly drive LED.	Input	
P110 to P117	Input/output	Port 11 8-bit input/output port Input/output is specifiable in bit-wise. When used as the input port, an on-chip pull-up resistor can be used by software. Falling edge detection possible.	Input	

(2) PINS OTHER THAN PORT PINS (1/2)

Pin Name	Input/Output	Function	After Reset	Dual-Function Pin
INTP0	Input	External interrupt request input with specifiable Valid	Input	P00/TI00
INTP1		edges (rising edge, falling edge, and both rising and falling edges).		P01/TI01
INTP2				P02
INTP3				P03
INTP4				P04
INTP5				P05
SI0	Input	Serial data input of the serial interface	Input	P25/SB0
SI2				P70/RxD
SO0	Output	Serial data output of the serial interface	Input	P26/SBI
SO2				P71/TxD
SB0	Input/output	Serial data input/output of the serial interface	Input	P25/SI0
SB1				P26/SO0
SCK0	Input/output	Serial clock input/output of the serial interface	Input	P27
SCK2				P72/ASCK
RxD	Input	Serial data input for asynchronouse serial interface	Input	P70/SI2
TxD	Outpu	Serial data output for asynchronous serial interface	Input	P71/SO2
ASCK	Input	Serial clock input for asynchronous serial interface	Input	P72/SCK2
TI00	Input	External count clock input to the 16-bit timer (TM0).	Input	P00/INTP0
TI01		Capture trigger signal input to the capture register (CR00).		P01/INTP1
TI1		External count clock input to the 8-bit timer (TM1).		P33
Tl2		External count clock input to the 8-bit timer (TM2).		P34
TO0	Output	16-bit timer (TM0) output (dual-function as 14-bit PWM output)	Input	P30
TO1		8-bit timer (TM1) output		P31
TO2		8-bit timer (TM2) output		P32
PCL	Output	Clock output (for trimming main system clock and subsystem clock)	Input	P35
BUZ	Output	Buzzer output	Input	P36
S0 to S23	Output	LCD controller/driver segment signal output	Output	
S24 to S31			Input	P97-P90
S32 to S39				P87-P80
COM0 to COM3	Output	LCD controller/driver common signal output	Output	
VLC0 to VLC2		LCD drive voltage	_	
BIAS		LCD drive power supply		

(2) PINS OTHER THAN PORT PINS (2/2)

Pin Name	Input/Output	Function	After Reset	Dual-Function Pin
ANI0 to ANI7	Input	Analog input of A/D converter	Input	P10 to P17
AVREF	Input	Reference voltage input of A/D converter		
AV _{DD}		Analog power supply of A/D converter		
AVss		Ground potential of A/D converter		
RESET	Input	System reset input		
X1	Input	Main system clock oscillation crystal connection		
X2				
XT1	Input	Subsystem clock oscillation crystal connection	Input	P07
XT2				
V _{DD}		Positive power supply		
Vpp		High-voltage applied during program write/verification Connected directly to Vss in normal operating mode		
Vss		Ground potential		

2.2 PINS IN PROM PROGRAMMING MODE

Pin Name	Input/Output	Function			
RESET	Input	PROM programming mode setting When +5 V or +12.5 V is applied to the V _{PP} pin and a low level signal is applied to the RESET pin, this chip is set in the PROM programming mode.			
Vpp	Input	PROM programming mode setting and high-voltage applied during program write/verification			
A0 to A16	Input	Address bus			
D0 to D7	Input/output	Data bus			
CE	Input	PROM enable input/program pulse input			
ŌĒ	Input	Read strobe input to PROM			
PGM	Input	Program/program inhibit input in PROM programing mode.			
V _{DD}		Positive power supply			
Vss		Ground potential			

★ 2.3 PIN INPUT/OUTPUT CIRCUITS AND RECOMMENDED CONNECTION OF UNUSED PINS

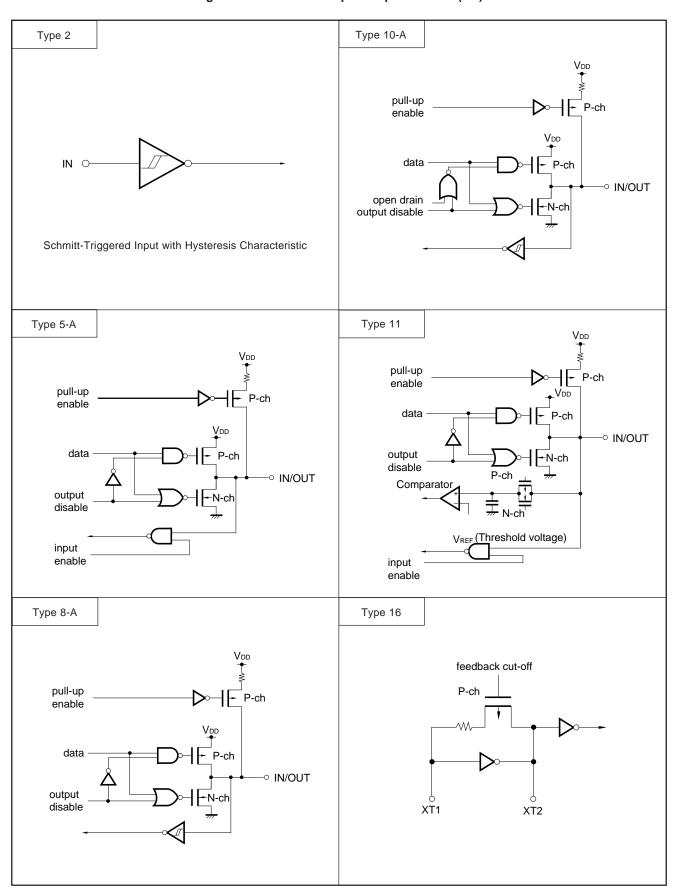

Types of input/output circuits of the pins and recommended connection of unused pins are shown in Table 2-1. For the configuration of each type of input/output circuit, refer to **Figure 2-1**.

Table 2-1. Type of Input/Output Circuit of Each Pin

Pin Name	Input/Output Circuit Type	I/O	Recommended Connection When not Used
P00/INTP0/TI00	2	Input	Connect to Vss.
P01/INTP1/TI01	8-A	I/O	Individually connect to Vss via a resistor
P02/INTP2			
P03/INTP3			
P04/INTP4			
P05/INTP5			
P07/XT1	16	Input	Connect to VDD.
P10/ANI0 to P17/ANI7	11	I/O	Individually connect to VDD or Vss via a resistor
P25/SI0/SB0	10-A		
P26/SO0/SB1			
P27/SCK0			
P30/TO0	5-A		
P31/TO1			
P32/TO2			
P33/TI1	8-A		
P34/TI2			
P35/PCL	5-A		
P36/BUZ			
P37			
P70/SI2/RxD	8-A		
P71/SO2/TxD	5-A		
P72/SCK2/ASCK	8-A		
P80/S39 to P87/S32	17-A		
P90/S31 to P97/S24	1		
P100 to P103	5-A		
P110 to P117	8-A		Individually connect to VDD via resistor
S0 to S23	17	Output	Leave open
COM0 to COM3	18		
VLC0 to VLC2			
BIAS			
RESET	2	Input	
XT2	16		Leave open
AVREF			Connect to Vss
AVDD			Connect to V _{DD} .
AVss	1		Connect to Vss.
V _{PP}	1		Connect directly to Vss

Figure 2-1. List of Pin Input/Output Circuits (1/2)

Type 17 Type 18 V_{LC0} V_{LC0} P-ch VLC1 - V_{LC1} P-ch N-ch P-ch SEG → OUT data ⊸ out N-ch I COM data N-ch V_{LC2} V_{LC2} Type 17-A pull-up enable data -0 IN/OUT output disable input enable V_{LC0} V_{LC1} N-ch P-ch SEG data N-ch

Figure 2-1. List of Pin Input/Output Circuits (2/2)

3. MEMORY SIZE SWITCHING REGISTER (IMS)

This is a register to disable use of part of internal memories by software. By setting this memory size switching register (IMS), it is possible to get the same memory mapping as that of mask ROM product having different internal memories (ROM, RAM).

The IMS is set up by the 8-bit memory manipulating instruction.

C8H will result by the RESET input.

Figure 3-1. Memory Size Switching Register Format

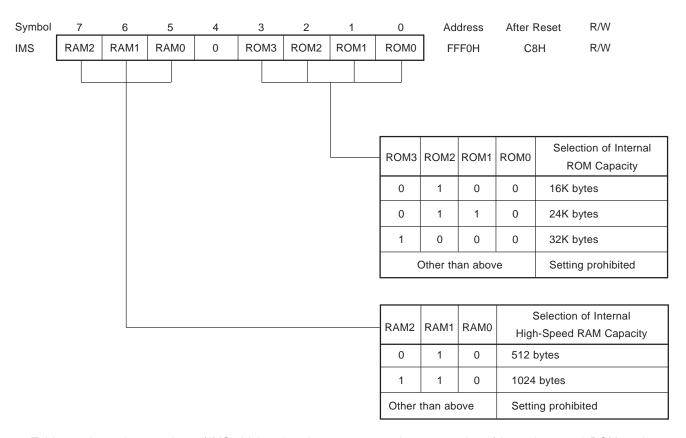


Table 3-1 shows the set values of IMS which makes the memory map the same as that of the various mask ROM products.

Table 3-1. Memory Size Switching Register Setting Values

Target Mask ROM Product	IMS Setting Value
μPD78062	44H
μPD78063	C6H
μPD78064	C8H

4. PROM PROGRAMMING

The μ PD78P064 has an on-chip 32K-byte PROM as a program memory. For programming, set the PROM programming mode by the V_{PP} and $\overline{\text{RESET}}$ pins. For processing unused pins, refer to **PIN CONFIGURATION (2) PROM programming mode**.

Caution When writing in a program, use locations 0000H-7FFFH. (Specify the last address as 7FFFH). You cannot write in using a PROM programmer that cannot specify the addresses to write.

4.1 OPERATING MODES

When +5 V or +12.5 V is applied to the V_{PP} pin and a low level signal is applied to the \overline{RESET} pin, the PROM programming mode is set. This mode will become the operating mode as shown in Table 4-1 when the \overline{CE} , \overline{OE} and \overline{PGM} pins are set as shown.

Further, when the read mode is set, it is possible to read the contents of the PROM.

Table 4-1. Operating Modes of PROM Programming

Pin Operating Mode	RESET	Vpp	VDD	CE	OE	PGM	D0 to D7
Page data latch	L	+12.5 V	+6.5 V	Н	L	Н	Data input
Page write				Н	Н	L	High-impedance
Byte write				L	Н	L	Data input
Program verify				L	L	Н	Data output
Program inhibit				×	Н	Н	High-impedance
				×	L	L	
Read		+5 V	+5 V	L	L	Н	Data output
Output disable				L	Н	×	High-impedance
Standby				Н	×	×	High-impedance

 \times : L or H

(1) Read mode

Read mode is set if $\overline{CE} = L$, $\overline{OE} = L$ is set.

(2) Output disable mode

Data output becomes high-impedance, and is in the output disable mode, of $\overline{OE} = H$ is set.

Therefore, it allows data to be read from any device by controlling the \overline{OE} pin, if multiple $\mu PD78P064s$ are connected to the data bus.

(3) Standby mode

Standby mode is set if $\overline{CE} = H$ is set.

In this mode, data outputs become high-impedance irrespective of the $\overline{\sf OE}$ status.

(4) Page data latch mode

Page data latch mode is set if $\overline{CE} = H$, $\overline{PGM} = H$, $\overline{OE} = L$ are set at the beginning of page write mode.

In this mode, 1 page 4-byte data is latched in an internal address/data latch circuit.

(5) Page write mode

After 1 page 4 bytes of addresses and data are latched in the page data latch mode, a page write is executed by applying a 0.1 ms program pulse (active low) to the \overline{PGM} pin with $\overline{CE} = H$, $\overline{OE} = H$. Then, program verification can be performed, if $\overline{CE} = L$, $\overline{OE} = L$ are set.

If programming is not performed by a one-time program pulse, X ($X \le 10$) write and verification operations should be executed repeatedly.

(6) Byte write mode

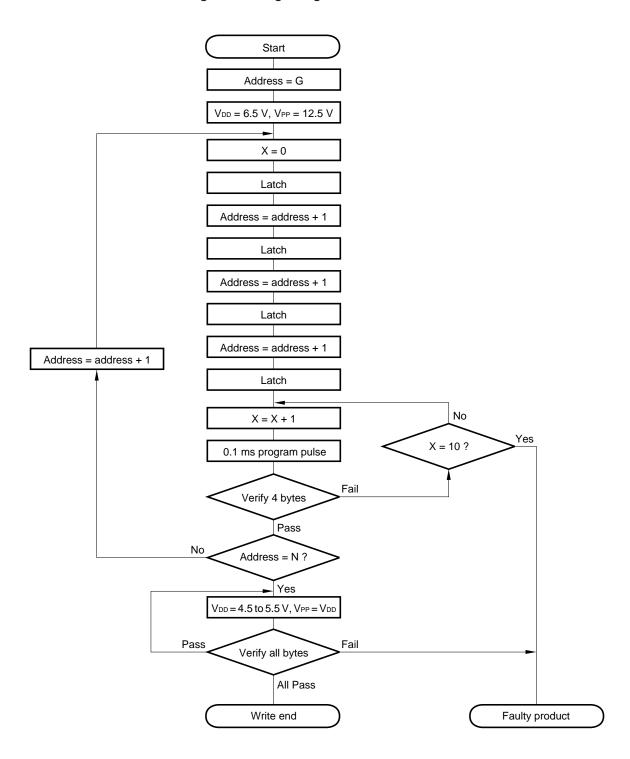
Byte write is executed when a 0.1 ms program pulse (active low) is applied to the \overline{PGM} pin with $\overline{CE} = L$, $\overline{OE} = H$. Then, program verification can be performed if $\overline{OE} = L$ is set.

If programming is not performed by a one-time program pulse, X ($X \le 10$) write and verification operations should be executed repeatedly.

(7) Program verify mode

Program verify mode is set if $\overline{CE} = L$, $\overline{PGM} = H$, $\overline{OE} = L$ are set. In this mode, check if a write operation is performed correctly, after the write.

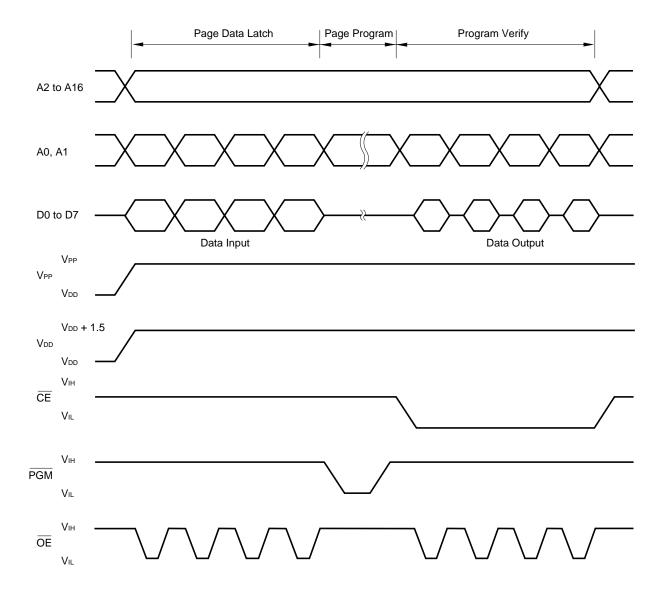
(8) Program inhibit mode


Program inhibit mode is used when the $\overline{\text{OE}}$ pin, VPP pin and D0 to D7 pins of multiple μ PD78P064s are connected in parallel and a write is performed to one of those devices.

When a write operation is performed, the page write mode or byte write mode described above is used. At this time, a write is not performed to a device which has the \overline{PGM} pin driven high.

4.2 PROM WRITE PROCEDURE

Figure 4-1. Page Program Mode Flow Chart



G = Start address

N = Program last address

Figure 4-2. Page Program Mode Timing

Start Address = G $V_{DD} = 6.5 \text{ V}, V_{PP} = 12.5 \text{ V}$ X = 0X = X + 1No Yes X = 10 ? 0.1 ms Program pulse Address = address + 1 Fail Verify Pass No Address = N? Yes $V_{DD} = 4.5 \text{ to } 5.5 \text{ V}, V_{PP} = V_{DD}$ Pass Fail Verify all bytes All Pass Write end Faulty product

Figure 4-3. Byte Program Mode Flow Chart

G = Start address

N = Program last address

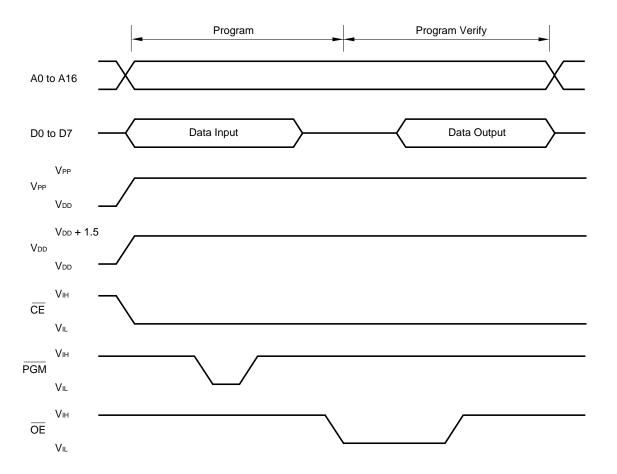
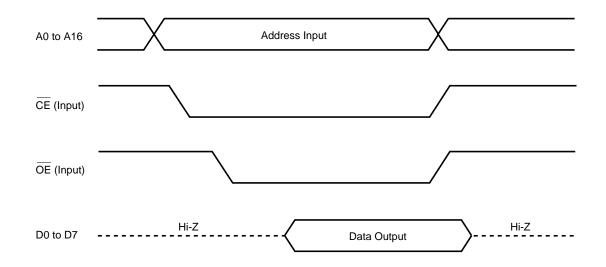


Figure 4-4. Byte Program Mode Timing

- Cautions 1. VDD should be applied before VPP and cut after VPP.
 - 2. VPP must not exceed +13.5 V including overshoot.
 - 3. Reliability may be adversely affected of removal/reinsertion is performed while +12.5 V is being applied to VPP.


4.3 PROM READ PROCEDURE

The contents of PROM are readable to the external data bus (D0 to D7) according to the read procedure shown below.

- (1) Fix the RESET pin at low level, supply +5 V to the VPP pin, and process all other unused pins as shown in **Pin** Configuration (2) PROM programming mode.
- (2) Supply +5 V to the VDD and VPP pins.
- (3) Input address of read data into the A0 to A16 pins.
- (4) Read mode
- (5) Output data to D0 to D7 pins.

The timings of the above steps (2) to (5) are shown in Figure 4-5.

Figure 4-5. PROM Read Timings

5. ERASURE METHOD (μ PD78064KL-T ONLY)

The μ PD78P064KL-T is capable of erasing (FFH) the contents of data written in a program memory and rewriting. When erasing the contents of data, irradiate light having a wavelength of less than about 400 nm to the erasing window. Normally, irradiate ultraviolet rays of 254 nm wavelength. Volume of irradiation required to completely erase the contents of data is as follows:

★ • UV intensity × erasing time : 30 W•s/cm² or more

★ • Erasing time : 40 minutes MIN. (When a UV lamp of 12 mW/cm² is used. However, a longer time

may be needed because of deterioration in performance of the UV lamp, contamination

of the erasing window, etc.)

When erasing the contents of data, set up the UV lamp within 2.5 cm from the erasing window. Further, if a filter is provided for a UV lamp, irradiate the ultraviolet rays after removing the filter.

6. ERASURE WINDOW SEAL (μPD78P064KL-T ONLY)

To protect from miserasure by rays other than that of the lamp for erasing EPROM contents, or to protect internal circuit other than EPROM from misoperating by rays, stick a protection seal on the erasure window when EPROM contents erasure is not performed.

7. ONE-TIME PROM PRODUCTS SCREENING

The one-time PROM product (μ PD78P064GC-7EA, μ PD78P064GC-8EU, μ PD78P064GF-3BA) can not be tested completely by NEC before it is shipped, because of its structure. It is recommended to perform screening to verify PROM after writing necessary data and performing high-temperature storage under the condition below.

Storage Temperature	Storage Time
125 °C	24 hours

At present, a fee is charged by NEC for one-time PROM after-programming writing, marking, screening, and verify service for the QTOP Microcontroller. For details, contact your sales representative.

8. ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS ($T_A = 25^{\circ}C$)

Parameter	Symbol	Test (Conditions		Rating	Unit
	VDD				-0.3 to +7.0	V
	V _{PP}				-0.3 to +13.5	V
Supply voltage	AVDD ———————————————————————————————————	-0.3 to V _{DD} +0.3	V			
	AVREF				-0.3 to V _{DD} +0.3	V
	AVss				-0.3 to +0.3	V
Input voltage	Vı	P30-P37, P70-P72, P8	0-P87, P90	•	-0.3 to V _{DD} +0.3	V
	V _{I2}	A9 (PROM programmir	ng mode)		-0.3 to +13.5	V
Output voltage	Vo				-0.3 to V _{DD} +0.3	V
Analog input voltage	Van	P10-P17	Analog ir	put pin	AVss -0.3 to AVREF +0.3	V
		1 pin			-10	mA
Output current, high	Іон	P70-P72, P80-P87, P9	•		-15	mA
		1 pin		Peak value	30	mA
				r.m.s. value	15	mA
		Total for P01-P05, P10	-P17,	Peak value	100	mA
Output current, low	I _{OL} Note	P100, P101, P110-P11	7	r.m.s. value	70	mA
		Total for P30-P37, P102, P103 Peak value		100	mA	
				r.m.s. value	70	mA
		Total for P25-P27, P70-P72, Peak value			50	mA
		P80-P87, P90-P97		r.m.s. value	20	mA
Operating ambient temperature	ТА				-40 to +85	°C
Storage temperature	Tstg				-65 to +150	°C

Note The r.m.s. value should be calculated as follows: [r.m.s. value] = [Peak value] $\times \sqrt{\text{Duty}}$

Caution The product quality may be damaged even if a value of only one of the above parameters exceeds the absolute maximum rating or any value exceeds the absolute maximum rating for an instant. That is, the absolute maximum rating is a rating value which may cause a product to be damaged physically. The absolute maximum rating values must therefore be observed in using the product.

Remark Unless specified otherwise, the characteristics of dual-function pins are the same as the those of port pins.

CAPACITANCE (TA= 25 °C, VDD = Vss = 0 V)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	Cin	6 4 MHz wassassured			15	pF
Output capacitance	Соит	f = 1 MHz unmeasured pins returned to 0 V.			15	pF
I/O capacitance	Сю				15	pF

MAIN SYSTEM CLOCK OSCILLATION CIRCUIT CHARACTERISTICS (TA = -40 to +85 °C, VDD = 2.0 to 6.0 V)

Resonator	Recommended circuit	Parameter	Test conditions	MIN.	TYP.	MAX.	Unit
Ceramic resonator	VPP AZ AT	Oscillator frequency (fx)Note 1	V _{DD} = Oscillator voltage range	1		5	MHz
	C2+ C1+	- Oscillation Arter vibiliteaches oscil-	After V _{DD} reaches oscillator voltage range MIN.			4	ms
Crystal resonator	resonator C2 C1	Oscillator frequency (fx)Note 1		1		5	MHz
		Oscillation Stabilization time Note 2	V _{DD} = 4.5 to 6.0 V			10	ms
					30		
External clock	X2 X1	X1 input frequency (fx)Note 1		1.0		5.0	MHz
μΡ	□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	X1 input high/low level width (txH, txL)		85		500	ns

- Notes 1. Indicates only oscillation circuit characteristics. Refer to AC Characteristics for instruction execution time.
 - 2. Time required to stabilize oscillation after reset or STOP mode release.

Cautions 1. When using the main system clock oscillator, wiring in the area enclosed with the broken line should be carried out as follows to avoid an adverse effect from wiring capacitance.

- · Wiring should be as short as possible.
- · Wiring should not cross other signal lines.
- · Wiring should not be placed close to a varying high current.
- The potential of the oscillator capacitor ground should be the same as Vss.
- Do not ground it to the ground pattern in which a high current flows.
- Do not fetch a signal from the oscillator.
- 2. If the main system clock oscillation circuit is operated by the subsystem clock when the main system clock is stopped, reswitching to the main system clock should be performed after the stable oscillation time has been obtained by the program.

SUBSYSTEM CLOCK OSCILLATOR CHARACTERISTICS (TA = -40 to +85°C, VDD = 2.0 to 6.0 V)

Resonator	Recommended Circuit	Parameter	Test Conditions	MIN.	TYP.	MAX.	Unit
Crystal reconator	V _{PP} XT1 XT2	Oscillator frequency (fxT)Note 1		32	32.768	35	kHz
Crystal resonator	C3 = C4 =	Oscillation stabilization		1.2	2	s	
	;' 7/7	time ^{Note 2}				10	
External clock		XT1 input frequency (fxT)Note 1		32		100	kHz
External clock	A	XT1 input high-/low-level width (txтн/txть)		5		15	μs

- Notes 1. Indicates only oscillation circuit characteristics. Refer to AC Characteristics for instruction execution time.
 - 2. Time required to stabilize oscillation after VDD has reached the minimum oscillation voltage range.

Cautions 1. When using the subsystem clock oscillator, wiring in the area enclosed with the broken line should be carried out as follows to avoid an adverse effect from wiring capacitance.

- · Wiring should be as short as possible.
- Wiring should not cross other signal lines.
- Wiring should not be placed close to a varying high current.
- The potential of the oscillator capacitor ground should be the same as Vss.
- Do not ground it to the ground pattern in which a high current flows.
- Do not fetch a signal from the oscillator.
- The subsystem clock oscillation circuit is designed as a low amplification circuit to provide low consumption current, causing misoperation to noise more frequently than the main system clock oscillation circuit. Special care should therefore be taken to wiring method when the subsystem clock is used.

RECOMMENDED OSCILLATION CIRCUIT CONSTANT

MAIN SYSTEM CLOCK: CERAMIC RESONATOR ($T_A = -40 \text{ to } +85 \text{ }^{\circ}\text{C}$)

Manufacturer	Product Name	Frequency (MHZ)	Recommended Circuit Constant		Oscillator Voltage Range		Remarks	
			C1 (pF)	C2 (pF)	MIN. (V)	MAX. (V)		
Murata Mfg.	CSA5.00MG	5.00	30	30	2.7	6.0		
Co., Ltd.	CST5.00MGW	5.00	Built-in	Built-in	2.7	6.0		
	EF0GC5004A4	5.00	Built-in	Built-in	2.7	6.0	Lead type	
Matsushita Electronics	EF0EC5004A4	5.00	Built-in	Built-in	2.7	6.0	Round lead type	
Components	EF0EN5004A4	5.00	33	33	2.7	6.0	Lead type	
Co., Ltd.	EF0S5004B5	5.00	Built-in	Built-in	2.7	6.0	Chip type	
	KBR-5.0MSA	5.00	33	33	2.7	6.0	Lead type	
Kyocera Corp.	PBRC5.00A	5.00	33	33	2.7	6.0	Chip type	
	KBR-5.0MKS	5.00	Built-in	Built-in	2.7	6.0	Lead type	
	KBR-5.0MWS	5.00	Built-in	Built-in	2.7	6.0	Chip type	

Caution

The oscillation circuit constants and oscillation voltage range indicate conditions for stable oscillation but do not guarantee accuracy of the oscillation frequency. If the application circuit requires accuracy of the oscillation frequency, it is necessary to set the oscillation frequency in the application circuit. For this, it is necessary to directly contact the manufacturer of the resonator being used.

DC CHARACTERISTICS ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = 2.0 \text{ to } 6.0 \text{ V}$)

Parameter	Symbol	Test Con	ditions	MIN.	TYP.	MAX.	Unit
	V _{IH1}	P10-P17, P30-P32, P35-P37, P80-P87,	V _{DD} = 2.7 to 6.0 V	0.7 Vdd		V _{DD}	V
		P90-P97, P100-P103		0.8 V _{DD}		V _{DD}	V
		P00-P05, P25-P27,	V _{DD} = 2.7 to 6.0 V	0.8 V _{DD}		V _{DD}	V
	V _{IH2}	P33, P34, P70-P72, P110-P117, RESET		0.85 V _{DD}		V _{DD}	V
Input voltage, high			V _{DD} = 2.7 to 6.0 V	V _{DD} -0.5		V _{DD}	V
9	V _{IH3}	X1, X2		V _{DD} -0.2		V _{DD}	V
			4.5 ≤ V _{DD} ≤ 6.0 V	0.8 V _{DD}		V _{DD}	V
	V _{IH4}	XT1/P07, XT2	2.7 ≤ V _{DD} < 4.5 V	0.9 V _{DD}		V _{DD}	V
			$2.0 \le V_{DD} < 2.7 \ V^{\text{Note}}$	0.9 V _{DD}		V _{DD}	V
		P10-P17, P30-P32,	V _{DD} = 2.7 to 6.0 V	0		0.3 V _{DD}	V
	V _{IL1}	P35-P37, P80-P87, P90-P97, P100-P103		0		0.2 V _{DD}	V
	,,	P00-P05, P25-P27,	V _{DD} = 2.7 to 6.0 V	0		0.2 V _{DD}	V
Input voltage,	V _{IL2}	P33, P34, P70-P72, P110-P117, RESET		0		0.15 V _{DD}	V
low	,,		V _{DD} = 2.7 to 6.0 V	0		0.4	V
	VIL3	X1, X2		0		0.2	V
			4.5 ≤ V _{DD} ≤ 6.0 V	0		0.2 V _{DD}	V
	V _{IL4}	XT1/P07, XT2	2.7 ≤ V _{DD} < 4.5 V	0		0.1 V _{DD}	V
			$2.0 \le V_{DD} < 2.7 \ V^{\text{Note}}$	0		0.1 V _{DD}	V
Output voltage,		V _{DD} = 4.5 to 6.0 V	1 mA	V _{DD} -1.0		V _{DD}	V
high	Vон	Ioн = -100 μA		V _{DD} -0.5		V _{DD}	V
		P100-P103	V _{DD} = 4.5 to 6.0 V, I _{OL} = 15 mA		0.4	2.0	V
Output voltage,	VoL1 P01-P05, P10-P17, P25-P27, P30-P37, P70-P72, P80-P87, P90-P97, P110-P117		V _{DD} = 4.5 to 6.0 V, lo _L = 1.6 mA			0.4	V
	Vol2	SB0, SB1, SCK0	$V_{DD} = 4.5$ to 6.0 V, open-drain, pulled up (R = 1 k Ω)			0.2 V _{DD}	V
	V _{OL3}	Ιοι = 400 μΑ				0.5	V

Note When P07/XT1 pin is used as P07, the inverse phase of P07 should be input to XT2 using an inverter.

Remark Unless specified otherwise, the characteristics of dual-function pins are the same as the those of port pins.

DC CHARACTERISTICS ($T_A = -40 \text{ to } +85 \text{ }^{\circ}\text{C}$, $V_{DD} = 2.0 \text{ to } 6.0 \text{ V}$)

Parameter	Symbol	Test C	onditi	ons	MIN.	TYP.	MAX.	Unit
Input leakage current, high	Ішн1	VIN = VDD	P00-P05, P10-P17, P25-P27, P30-P37, P70-P72, P80-P87, P90-P97, P100-P103, P110-P117				3	μΑ
	I _{LIH2}		X1,	X2, XT1/P07, XT2			20	μΑ
Input leakage current, low	ILIL1	V _{IN} = 0 V	P00-P05, P10-P17, P25-P27, P30-P37, P70-P72, P80-P87, P90-P97, P100-P103, P110-P117				-3	μΑ
	I _{LIH2}	- VIIV - O V	X1,	X2, XT1/P07, XT2			-20	μΑ
Output leakage current, high	Ісон	Vout = Vdd					3	μΑ
Output leakage current, low	ILOL	Vout = 0 V					-3	μΑ
Software	_		V _{IN} = 0 V, P01-P05, P10-P17, P25-P27, P30-P37, P70-P72,		15	40	90	kΩ
pull-up resistor	R P80-P87, P90-P97, P100-P103, P110-P1		17 2.7 V ≤ V _{DD} < 4.5 V		20		500	kΩ
		5.00 MHz, Crystal oscillation	n	$V_{DD} = 5.0 \text{ V} \pm 10 \text{ %}^{\text{Note 5}}$		5.0	15.0	mA
		(fxx = 2.5 MHz) ^{Note 2} operating mode 5.00 MHz, Crystal oscillation (fxx = 5.0 MHz) ^{Note 3} operating mode		$V_{DD} = 3.0 \text{ V} \pm 10 \text{ %}^{\text{Note 6}}$		0.7	2.1	mA
	I _{DD1}			$V_{DD} = 2.2 \text{ V} \pm 10 \%^{\text{Note 6}}$		0.4	1.2	mA
				$V_{DD} = 5.0 \text{ V} \pm 10 \text{ %}^{\text{Note 5}}$		9.0	27.0	mA
				$V_{DD} = 3.0 \text{ V} \pm 10 \text{ %}^{\text{Note 6}}$		1.0	3.0	mA
		5.00 MHz, Crystal oscillati	on	$V_{DD} = 5.0 \text{ V} \pm 10 \%$		1.4	4.2	mA
	_	$(fxx = 2.5 \text{ MHz})^{\text{Note 2}}$		V _{DD} = 3.0 V ± 10 %		500	1500	μΑ
	I _{DD2}	HALT mode		V _{DD} = 2.2 V ± 10 %		280	840	μΑ
		5.00 MHz, Crystal oscillation = 5.0 MHz)Note 3 HALT mod		$V_{DD} = 5.0 \text{ V} \pm 10 \%$		1.6	4.8	mA
		= 5.0 MHz)*** HALT IIIOU	е	$V_{DD} = 3.0 \text{ V} \pm 10 \%$		650	1950	μΑ
Supply current ^{Note 1}	I _{DD3}	32.768 kHz, Crystal oscillat	ion	$V_{DD} = 5.0 \text{ V} \pm 10 \%$		135	270	μΑ
currentifice	1003	operating mode ^{Note 4}		$V_{DD} = 3.0 \text{ V} \pm 10 \%$		95	190	μΑ
				$V_{DD} = 2.2 \text{ V} \pm 10 \%$		70	140	μΑ
l _{DD4}		32.768 kHz, Crystal oscillat	tion	$V_{DD} = 5.0 \text{ V} \pm 10 \%$		25	55	μΑ
	1004	HALT mode ^{Note 4}		$V_{DD} = 3.0 \text{ V} \pm 10 \%$		5	15	μΑ
		VT4 V		$V_{DD} = 2.2 \text{ V} \pm 10 \%$ $V_{DD} = 5.0 \text{ V} \pm 10 \%$		2.5	12.5	μΑ
	I _{DD5}	XT1 = V _{DD} STOP mode				0.5	30 10	μΑ
		When feedback resistor is conne	ected	$V_{DD} = 3.0 \text{ V} \pm 10 \%$ $V_{DD} = 2.2 \text{ V} \pm 10 \%$		0.5	10	μΑ
				$V_{DD} = 2.2 \text{ V} \pm 10 \%$ $V_{DD} = 5.0 \text{ V} \pm 10 \%$			30	μΑ
1	I _{DD6}	XT1 = V _{DD} STOP mode		$V_{DD} = 3.0 \text{ V} \pm 10 \%$ $V_{DD} = 3.0 \text{ V} \pm 10 \%$		0.1	10	μΑ
1	סטטו	When feedback resistor is disconn	nected	$V_{DD} = 3.0 \text{ V} \pm 10 \%$ $V_{DD} = 2.2 \text{ V} \pm 10 \%$		0.05	10	μA μA
				V DD = 2.2 V ± 10 %	I	0.05	10	μ A

- $\textbf{Notes 1.} \quad \text{Current flowing V_{DD} pin. Not including on-chip pull-up resistors or LCD dividing resistors.}$
 - 2. Main system clock fxx = fx/2 operation (when oscillation mode selection register (OSMS) is set to 00H)
 - **3.** Main system clock fxx = fx operation (when OSMS is set to 01H)
 - **4.** When the main system clock is stopped.
 - **5.** High-speed mode operation (when processor clock control register (PCC) is set to 00H)
 - **6.** Low-speed mode operation (when PCC is set to 04H)

Remark Unless specified otherwise, the characteristics of dual-function pins are the same as the those of port pins.

*

DC CHARACTERISTICS ($T_A = -10 \text{ to } +85 \text{ }^{\circ}\text{C}$)

(1) Static Display Mode (V_{DD} = 2.0 to 6.0 V)

Parameter	Symbol	Test Cond	MIN.	TYP.	MAX.	Unit	
LCD drive voltage	VLCD		2.0		V _{DD}	V	
LCD dividing resistor	RLCD		60	100	150	kΩ	
LCD output voltage deviation ^{Note} (common)	Vodc	Io = ±5 μA	2.0 V ≤ VLCD ≤ VDD	0		±0.2	V
LCD output voltage deviation ^{Note} (segment)	Vods	Io = ±1 μA	VLCD0 = VLCD	0		±0.2	V

Note The voltage deviation is the difference from the out voltage corresponding to the ideal value of the segment and common outputs (V_{LCDn} ; n = 0, 1, 2).

(2) 1/3 Bias Method ($V_{DD} = 2.5$ to 6.0 V)

Parameter	Symbol	Test Cond	MIN.	TYP.	MAX.	Unit	
LCD drive voltage	VLCD		2.5		V _{DD}	V	
LCD dividing resistor	RLCD					150	kΩ
LCD output voltage deviation ^{Note} (common)	Vodc	Io = ±5 μA	2.5 V ≤ VLCD ≤ VDD VLCD0 = VLCD	0		±0.2	V
LCD output voltage deviation ^{Note} (segment)	Vods	Io = ±1 μA	$V_{LCD1} = V_{LCD} \times \frac{2}{3}$ $V_{LCD2} = V_{LCD} \times \frac{1}{3}$	0		±0.2	V

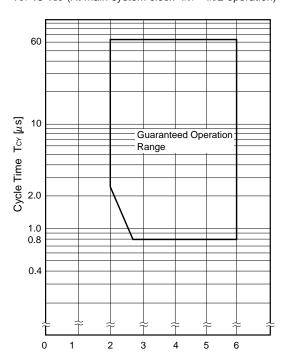
Note The voltage deviation is the difference from the out voltage corresponding to the ideal value of the segment and common outputs (V_{LCDn} ; n = 0, 1, 2).

(3) 1/2 Bias Method ($V_{DD} = 2.7$ to 6.0 V)

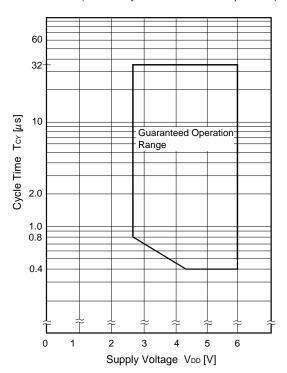
Parameter	Symbol	Test Cond	MIN.	TYP.	MAX.	Unit	
LCD drive voltage	VLCD		2.7		V _{DD}	V	
LCD dividing resistor	RLCD					150	kΩ
LCD output voltage deviation ^{Note} (common)	Vodc	Io = ±5 μA	2.7 V ≤ VLCD ≤ VDD VLCD0 = VLCD	0		±0.2	V
LCD output voltage deviationNote(segment)	Vods	Io = ±1 μA	$V_{LCD1} = V_{LCD} \times \frac{1}{2}$ $V_{LCD2} = V_{LCD1}$	0		±0.2	V

Note The voltage deviation is the difference from the out voltage corresponding to the ideal value of the segment and common outputs (V_{LCDn} ; n = 0, 1, 2).

AC CHARACTERISTICS


(1) Basic Operation (T_A = -40 to +85 °C, V_{DD} = 2.0 to 6.0 V)

	Parameter	Symbol	Test Conditions		MIN.	TYP.	MAX.	Unit
	Cycle time (Min. instruction	Тсч	Operating on main system clock (fxx = 2.5 MHz) ^{Note 1}	V _{DD} = 2.7 to 6.0 V	0.8		64 64	μs μs
	execution time)		Operating on main system clock	4.5 ≤ V _{DD} ≤ 6.0 V	0.4		32	μs
	,		(fxx = 5.0 MHz) ^{Note 2}	2.7 ≤ V _{DD} < 4.5 V	0.8		32	μs
			Operating on subsystem clock		40 ^{Note 3}	122	125	μs
*	TI00 input high/	t тіноо,	$4.5 \text{ V} \le \text{Vdd} \le 6.0 \text{ V}$		2/fsam+0.1 Note 4			μs
	low-level width	t TIL00	2.7 V ≤ V _{DD} < 4.5 V		2/fsam+0.2 ^{Note 4}			μs
			$1.0 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$		2/f _{sam} +0.5 ^{Note 4}			μs
*	TI01 input high/	t тіно1,	/DD = 2.7 to 6.0 V		10			μs
	low-level width	t TIL01			20			μs
	TI input	f⊤ı	V _{DD} = 4.5 to 6.0 V		0		4	MHz
	frequency				0		275	kHz
	TI1, TI2 input	t тін,	V _{DD} = 4.5 to 6.0 V		100			ns
	high/low-level width	t⊤ı∟			1.8			μs
	Interrupt input	tinth,	INTP0		8/f _{sam} Note 4			μs
	high/low-level	t INTL	INTP1-INTP5, P110-P117	V _{DD} = 2.7 to 6.0 V	10			μs
	width				20			μs
	RESET low level	t RST	V _{DD} = 2.7 to 6.0 V	1		10		μs
	width				20			μs


Notes 1. Main system clock fxx = fx/2 operation (when oscillation mode selection register (OSMS) is set to 00H)

- **2.** Main system clock fxx = fx operation (when OSMS is set to 01H)
- 3. This is the value when the external clock is used. The value is 114 μ s (min.) when the crystal resonator is used.
- **4.** In combination with bits 0 (SCS0) and 1 (SCS1) of sampling clock select register (SCS), selection of f_{sam} is possible between $f_{xx/2^N}$, $f_{xx/32}$, $f_{xx/64}$ and $f_{xx/128}$ (when N = 0 to 4).

Tcy vs V_{DD} (At main system clock fxx = fx/2 operation)

Tcy vs V_{DD} (At main system clock $f_{XX} = f_X$ operation)

(2) Serial Interface (T_A = -40 to +85 °C, V_{DD} = 2.0 to 6.0 V)

Supply Voltage VDD [V]

(a) Serial interface channel 0

(i) 3-wire serial I/O mode (SCK0... Internal clock output)

		(Conton mitorial crook carpa	,			
Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
		4.5 V ≤ V _{DD} ≤ 6.0 V	800			ns
SCK0 cycle time	tkcy1	2.7 V ≤ V _{DD} < 4.5 V	1600			ns
			3200			ns
SCK0 high/low-level width	tĸнı,	V _{DD} = 4.5 to 6.0 V	tkcy1/2-50			ns
30Ko nign/low-level width	t _{KL1}		tксү1/2-100			ns
		4.5 V ≤ V _{DD} ≤ 6.0 V	100			ns
SI0 setup time (to SCK0↑)	tsik1	2.7 V ≤ V _{DD} < 4.5 V	150			ns
			300			ns
SI0 hold time (from SCK0↑)	t KSI1		400			ns
SO0 output delay time from SCK0↓	tkso1	C = 100 pF ^{Note}			300	ns

Note C is the load capacitance of SCKO, SOO output line.

(ii) 3-wire serial I/O mode (SCK0...External clock input)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
		4.5 V ≤ V _{DD} ≤ 6.0 V	800			ns
SCK0 cycle time	tkcy2	2.7 V ≤ V _{DD} < 4.5 V	1600			ns
			3200			ns
	tĸн2,	$4.5 \text{ V} \leq \text{V}_{DD} \leq 6.0 \text{ V}$	400			ns
SCK0 high/low-level width	tKL2	2.7 V ≤ V _{DD} < 4.5 V	800			ns
	UNLZ		1600			ns
SI0 setup time (to SCK0↑)	tsık2		100			ns
SI0 hold time (from SCK0↑)	tksi2		400			ns
SO0 output delay time from SCK0↓	t KSO2	C = 100 pF ^{Note}			300	ns
SCK0 rise, fall time	t _{R2} ,				1000	ns

Note C is the load capacitance of SO0 output line.

(iii) SBI mode (SCK0...Internal clock output)

Parameter	Symbol	Test	Conditions	MIN.	TYP.	MAX.	Unit
	,	V _{DD} = 4.5 to 6.0	V	800			ns
SCK0 cycle time	tксүз			3200			ns
SCK0 high/low-level	t кнз,	V _{DD} = 4.5 to 6.0 V		tксүз/2-50			ns
width	tкLз			tксүз/2-150			ns
SB0, SB1 setup time	tsik3	V _{DD} = 4.5 to 6.0	V	100			ns
(to SCK0↑)				300			ns
SB0, SB1 hold time (from SCK0↑)	tksi3			tксүз/2			ns
SB0, SB1 output delay		$R = 1 k\Omega$,	V _{DD} = 4.5 to 6.0 V	0		250	ns
time from SCK0↓	tkso3	C = 100 pF ^{Note}		0		1000	ns
SB0, SB1↓from SCK0↑	tкsв		1	tксүз			ns
SCK0↓from SB0, SB1↓	tsвк			tксүз			ns
SB0, SB1 high-level width	tsвн			t ксүз			ns
SB0, SB1 low-level width	tsbl			tксүз			ns

Note R and C are the load resistance and load capacitance of the SCKO, SBO and SB1 output line.

(iv) SBI mode (SCK0...External clock input)

Parameter	Symbol	Test	Conditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	4	$V_{DD} = 4.5 \text{ to } 6.0$	V	800			ns
SCRO cycle time	cycle time tkcy4			3200			ns
SCK0 high/low-level	t кн4,	V _{DD} = 4.5 to 6.0	V _{DD} = 4.5 to 6.0 V				ns
width	tĸL4			1600			ns
SB0, SB1 setup time	tsik4	$V_{DD} = 4.5 \text{ to } 6.0$	V	100			ns
(to SCK0↑)	to			300			ns
SB0, <u>SB1</u> hold time (from <u>SCK0</u> ↑)	tksi4			tксү4/2			ns
SB0, SB1 output delay		$R = 1 k\Omega$,	V _{DD} = 4.5 to 6.0 V	0		300	ns
time from SCK0↓	tkso4	C = 100 pF ^{Note}		0		1000	ns
SB0, SB1↓ from SCK0↑	tкsв		ı	tkCY4			ns
SCK0↓from SB0, SB1↓	tsвк			tkCY4			ns
SB0, SB1 high-level width	tsвн			tkCY4			ns
SB0, SB1 low-level width	tsBL			tkcy4			ns
SCK0 rise, fall time	t _{R4} ,					1000	ns

Note R and C are the load resistance and load capacitance of the SB0 and SB1 output line.

(v) 2-wire serial I/O mode (SCK0... Internal clock output)

Parameter	Symbol	Tes	st Conditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time			V _{DD} = 2.7 to 6.0 V	1600			ns
SCKU cycle time	tkcy5			3200			ns
SCK0 high-level width	4		$V_{DD} = 2.7 \text{ to } 6.0 \text{ V}$	tксү5/2-160			ns
30K0 High-level width	t _{KH5}			tксү5/2-190			ns
001/0	4	D 110	V _{DD} = 4.5 to 6.0 V	tkcy5/2-50			ns
SCK0 low-level width	t _{KL5}	$R = 1 \text{ k}\Omega$, $C = 100 \text{ pF}^{\text{Note}}$		tксү5/2-100			ns
SB0, SB1 setup time		C = 100 pr	$4.5 \text{ V} \leq \text{V}_{DD} \leq 6.0 \text{ V}$	300			ns
(to SCK0↑)	tsik5		$2.7 \text{ V} \le \text{V}_{DD} < 4.5 \text{ V}$	350			ns
,				400			ns
SB0, <u>SB1</u> hold time (from SCK0↑)	t KSI5			600			ns
SB0, SB1 output delay time from SCK0↓	t ks05					300	ns

Note R and C are the load resistance and load capacitance of the SCKO, SBO and SB1 output line.

(vi) 2-wire serial I/O mode (SCK0... External clock input)

Parameter	Symbol	Tes	st Conditions	MIN.	TYP.	MAX.	Unit
		$V_{DD} = 2.7 \text{ to } 6.$	V _{DD} = 2.7 to 6.0 V				ns
SCK0 cycle time	tkcy6			3200			ns
001/01:11	4	$V_{DD} = 2.7 \text{ to } 6.$	0 V	650			ns
SCK0 high-level width	t _{KH6}			1300			ns
	4	$V_{DD} = 2.7 \text{ to } 6.$	0 V	800			ns
SCK0 low-level width	t _{KL6}			1600			ns
SB0, SB1 setup time (to SCK0↑)	tsik6			100			ns
SB0, <u>SB1</u> hold time (from SCK0↑)	tksi6			tксу6/2			ns
SB0, SB1 output delay	tkso6	$R = 1 k\Omega$,	V _{DD} = 4.5 to 6.0 V	0		300	ns
time from SCK0↓	11300	C = 100 pF ^{Note}		0		500	ns
SCK0 rise, fall time	tre, tre					1000	ns

Note R and C are the load resistance and load capacitance of the SB0 and SB1 output line.

(b) Serial interface channel 2

(i) 3-wire serial I/O mode (SCK2... Internal clock output)

		· ,				
Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
		4.5 V ≤ V _{DD} ≤ 6.0 V	800			ns
SCK2 cycle time	tkcy7	2.7 V ≤ V _{DD} < 4.5 V	1600			ns
			3200			ns
SCK2 high/low-level width	tĸн7,	4.5 V ≤ V _{DD} ≤ 6.0 V	tксүт/2-50			ns
	t _{KL7}		tксүт/2-100			ns
		4.5 V ≤ V _{DD} ≤ 6.0 V	100			ns
SI2 setup time (to SCK2↑)	tsik7	2.7 V ≤ V _{DD} < 4.5 V	150			ns
			300			ns
SI2 hold time (from SCK21)	t KSI7		400			ns
SO2 output delay time from SCK2↓	tkso1	C = 100 pF ^{Note}			300	ns

Note C is the load capacitance of $\overline{SCK2}$, SO2 output line.

(ii) 3-wire serial I/O mode (SCK2...External clock input)

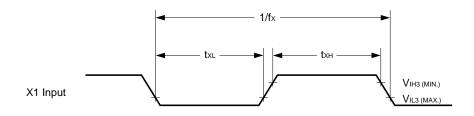
Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
		4.5 V ≤ V _{DD} ≤ 6.0 V	800			ns
SCK2 cycle time	tkcy8	$2.7 \text{ V} \leq \text{V}_{DD} < 4.5 \text{ V}$	1600			ns
			3200			ns
SCK2 high/low-level width	tкнв,	$4.5 \text{ V} \leq \text{V}_{DD} \leq 6.0 \text{ V}$	400			ns
	tkl8	$2.7 \text{ V} \leq \text{V}_{DD} < 4.5 \text{ V}$	800			ns
	treo		1600			ns
SI2 setup time (to SCK2↑)	tsik8		100			ns
SI2 hold time (from SCK2↑)	tksi8		400			ns
SO2 output delay time from SCK2↓	tkso8	C = 100 pF ^{Note}			300	ns
SCK2 rise, fall time	trs, trs				1000	ns

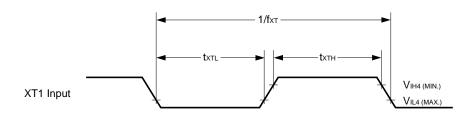
Note C is the load capacitance of SO2 output line.

(iii) UART mode (Dedicated baud rate generator output)

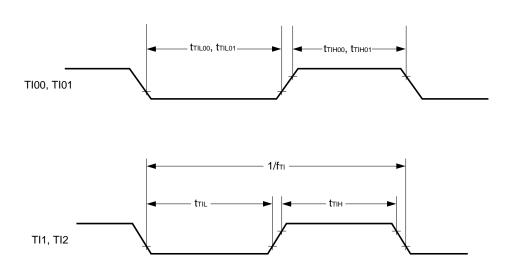
Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 6.0 \text{ V}$			78125	bps
		2.7 V ≤ V _{DD} < 4.5 V			39063	bps
					19531	bps

(iv) UART mode (External clock input)

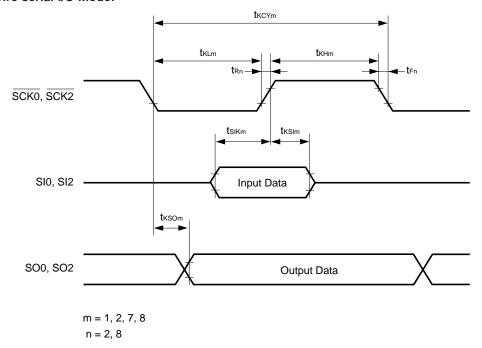

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
		4.5 V ≤ V _{DD} ≤ 6.0 V	800			ns
ASCK cycle time	tkcy9	2.7 V ≤ V _{DD} < 4.5 V	1600			ns
			3200			ns
ASCK high/low-level	t кнэ,	$4.5 \text{ V} \leq \text{V}_{DD} \leq 6.0 \text{ V}$	400			ns
width	tkL9	$2.7 \text{ V} \leq \text{V}_{DD} < 4.5 \text{ V}$	800			ns
			1600			ns
		4.5 V ≤ V _{DD} ≤ 6.0 V			39063	bps
Transfer rate		2.7 V ≤ V _{DD} < 4.5 V			19531	bps
					9766	bps
ASCK rise, fall time	tre, tre				1000	ns

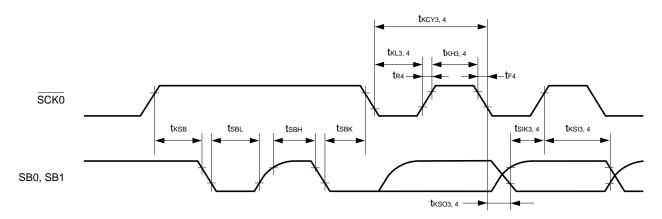


AC Timing Test Point (Excluding X1, XT1 Input)

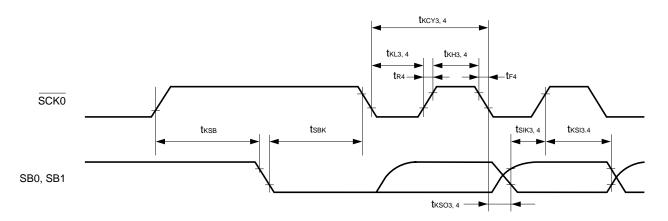


Clock Timing

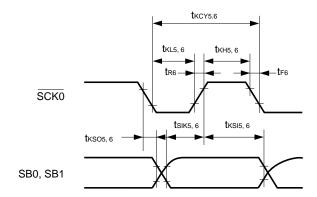

★ TI Timing



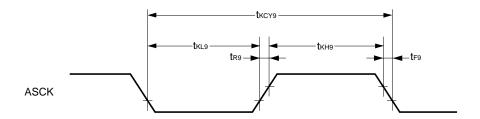
Serial Transfer Timing


3-wire serial I/O mode:

SBI mode (bus release signal transfer):



SBI mode (command signal transfer):



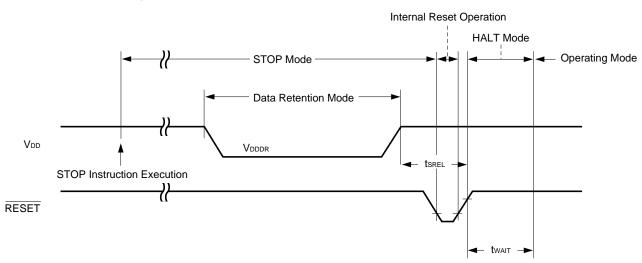
2-wire serial I/O mode:

UART mode:

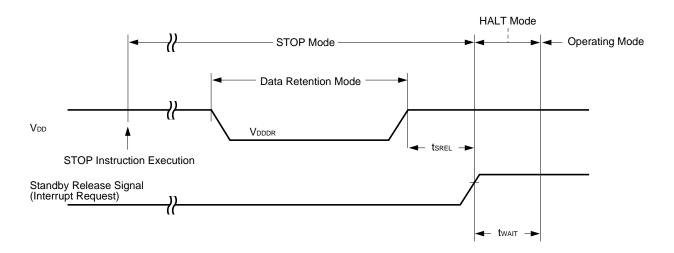
A/D Converter (TA = -40 to +85 $^{\circ}$ C, AVDD = VDD = 4.5 to 6.0 V, AVss = Vss = 0 V)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Resolution			8	8	8	bit
Overall error Note		4.5 V ≤ AV _{REF} ≤ AV _{DD}			2.0	%
Conversion time	tconv		19.1		200	μs
Sampling time	tsamp		12/fxx			μs
Analog input voltage	VIAN		AVss		AVREF	V
Reference voltage	AVREF		2.0		AV _{DD}	V
AVREF-AVss resistance	Rairef		4	14		kΩ

Note Quantization error $(\pm 1/2 \text{ LSB})$ is not included. This is expressed in proportion to the full-scale value.

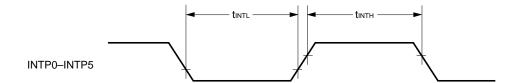


DATA MEMORY STOP MODE LOW SUPPLY VOLTAGE DATA RETENTION CHARACTERISTICS ($T_A = -40 \text{ to } +85 \text{ }^{\circ}\text{C}$)

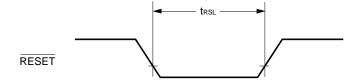

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.8		6.0	V
Data retention power supply current	Idddr	VDDDR = 1.8 V Subsystem clock stop and feed-back resistor disconnected		0.1	10	μΑ
Release signal set time	tsrel		0			μs
Oscillation	,	Release by RESET		2 ¹⁷ /fx		ms
stabilization wait time	twait	Release by interrupt		Note		ms

Note In combination with bits 0 to 2 (OSTS0 to OSTS2) of oscillation stabilization time select register (OSTS), selection of 2¹²/fxx and 2¹⁴/fxx to 2¹⁷/fxx is possible.

Data Retention Timing (STOP Mode Release by RESET)



Data Retention Timing (Standby Release Signal: STOP Mode Release by Interrupt Signal)



Interrupt Input Timing

RESET Input Timing

PROM PROGRAMMING CHARACTERISTICS

DC Characteristics

(1) PROM Write Mode (Ta = 25 \pm 5 °C, VdD = 6.5 \pm 0.25 V, VpP = 12.5 \pm 0.3 V)

Parameter	Symbol	Symbol ^{Note}	Test Conditions	MIN.	TYP.	MAX.	Unit
Input voltage, high	ViH	Vıн		0.7 Vdd		V _{DD}	V
Input voltage, low	VIL	VIL		0		0.3 VDD	V
Output voltage, high	Vон	Vон	Iон = −1 mA	V _{DD} -1.0			V
Output voltage, low	Vol	Vol	IoL = 1.6 mA			0.4	V
Input leakage current	lu	Li	$0 \le V_{IN} \le V_{DD}$	-10		+10	μΑ
VPP supply voltage	V _{PP}	Vpp		12.2	12.5	12.8	V
V _{DD} supply voltage	V _{DD}	Vcc		6.25	6.5	6.75	V
VPP supply current	IPP	IPP	PGM = VIL			50	mA
V _{DD} supply current	IDD	Icc				50	mA

Note Symbol corresponding to the μ PD27C1001A.

(2) PROM Read Mode (TA = 25 \pm 5 °C, VDD = 5.0 \pm 0.5 V, VPP = VDD \pm 0.6 V)

Parameter	Symbol	Symbol ^{Note}	Test Conditions	MIN.	TYP.	MAX.	Unit
Input voltage, high	ViH	ViH		0.7 V _{DD}		V _{DD}	V
Input voltage, low	VIL	VIL		0		0.3 V _{DD}	V
Output voltage, high	Vон1	V _{OH1}	lон = −1 mA	V _{DD} -1.0			V
Output voltage, nigh	V _{OH2}	V _{OH2}	I он = $-100 \mu A$	V _{DD} -0.5			V
Output voltage, low	Vol	Vol	IoL = 1.6 mA			0.4	٧
Input leakage current	Li	lu	$0 \le V_{IN} \le V_{DD}$	-10		+10	μΑ
Output leakage current	Іьо	ILO	$0 \le V_{OUT} \le V_{DD}, \overline{OE} = V_{IH}$	-10		+10	μΑ
VPP supply voltage	V _{PP}	V _{PP}		V _{DD} -0.6	V _{DD}	V _{DD} +0.6	V
V _{DD} supply voltage	V _{DD}	Vcc		4.5	5.0	5.5	V
VPP supply current	I PP	I PP	VPP = VDD			100	μΑ
V _{DD} supply current	IDD	ICCA1	CE = VIL, VIN = VIH			50	mA

Note Symbol corresponding to the μ PD27C1001A.

AC Characteristics

(1) PROM Write Mode

(a) Page program mode (TA = 25 \pm 5 °C, VDD = 6.5 \pm 0.25 V, VPP = 12.5 \pm 0.3 V)

Parameter	Symbol	Symbol ^{Note}	Test Conditions	MIN.	TYP.	MAX.	Unit
Address setup time (to $\overline{OE} \downarrow$)	tas	tas		2			μs
OE setup time	toes	toes		2			μs
CE setup time (to OE↓)	tces	tces		2			μs
Input data setup time (to $\overline{OE}\!\!\downarrow$)	tos	tos		2			μs
	tан	t AH		2			μs
Address hold time (from OE↑)	t ahl	tahl		2			μs
	tahv	tahv		0			μs
Input data hold time (from OE↑)	tон	tон		2			μs
Data output float delay time from OE↑	tor	tor		0		250	ns
V_{PP} setup time (to $\overline{OE} \downarrow$)	tvps	tvps		1.0			ms
V _{DD} setup time (to \overline{OE} ↓)	tvds	tvcs		1.0			ms
Program pulse width	tpw	tpw		0.095	0.1	0.105	ms
Valid data delay time from OE ↓	toe	toe				1	μs
OE pulse width during data latching	tLW	tLW		1			μs
PGM setup time	t PGMS	t PGMS		2			μs
CE hold time	tсен	tсен		2			μs
OE hold time	tоен	tоен		2			μs

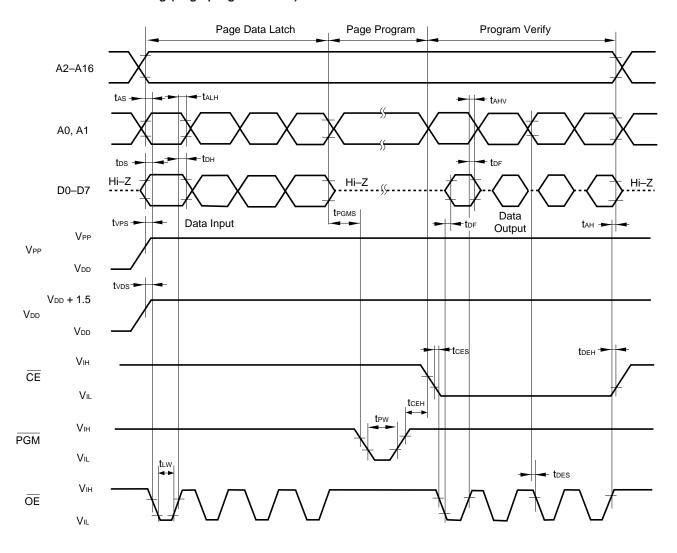
Note Corresponding μ PD27C1001A symbol

(b) Byte program mode (TA = 25 \pm 5 °C, VDD = 6.5 \pm 0.25 V, VPP = 12.5 \pm 0.3 V)

Parameter	Symbol	Symbol ^{Note}	Test Conditions	MIN.	TYP.	MAX.	Unit
Address setup time (to PGM↓)	t as	tas		2			μs
OE setup time	toes	toes		2			μs
$\overline{\text{CE}}$ setup time (to $\overline{\text{PGM}} \downarrow$)	tces	tces		2			μs
Input data setup time (to PGM ↓)	tos	tos		2			μs
Address hold time (from OE↑)	tан	tан		2			μs
nput data hold time (from PGM↑)	tон	tон		2			μs
Data output float delay time from OE↑	tor	tor		0		250	ns
V _{PP} setup time (to $\overline{\text{PGM}} \downarrow$)	tvps	tvps		1.0			ms
V _{DD} setup time (to $\overline{\text{PGM}} \downarrow$)	tvos	tvcs		1.0			ms
Program pulse width	t pw	t pw		0.095	0.1	0.105	ms
Valid data delay time from OE↓	toe	toe				1	μs
OE hold time	tоен	_		2			μs

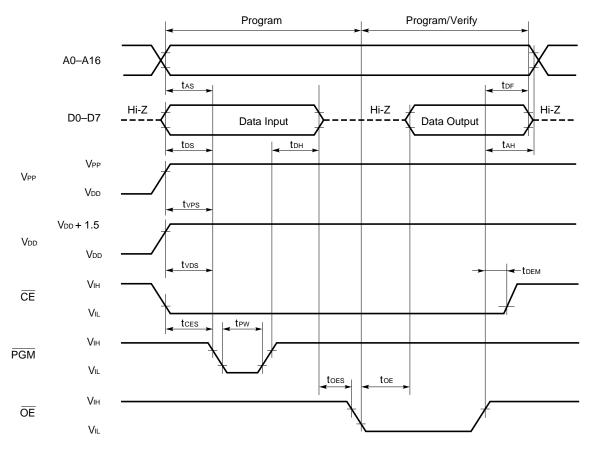
Note Corresponding μ PD27C1001A symbol

(2) PROM Read Mode (TA = 25 \pm 5 °C, VDD = 5.0 \pm 0.5 V, VPP = VDD \pm 0.6 V)

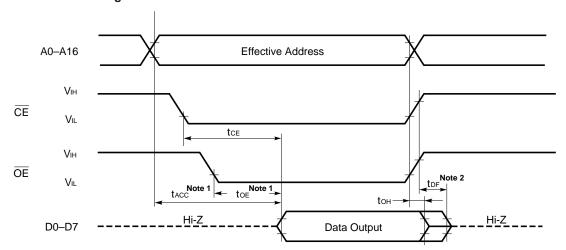

Parameter	Symbol	Symbol ^{Note}	Test Conditions	MIN.	TYP.	MAX.	Unit
Data output time from address	tacc	tacc	$\overline{CE} = \overline{OE} = V_{IL}$			800	ns
Data output delay time from CE↓	tce	tce	OE = VIL			800	ns
Data output delay time from $\overline{OE} \downarrow$	toe	toe	CE = VIL			200	ns
Data output float delay time from OE↑	tor	tor	CE = VIL	0		60	ns
Data hold time from address	tон	tон	CE = OE = VIL	0			ns

Note Corresponding μ PD27C1001A symbol

(3) PROM Programming Mode Setting ($T_A = 25$ °C, $V_{SS} = 0$ V)


Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
PROM programming mode setup time	t sma		10			μs

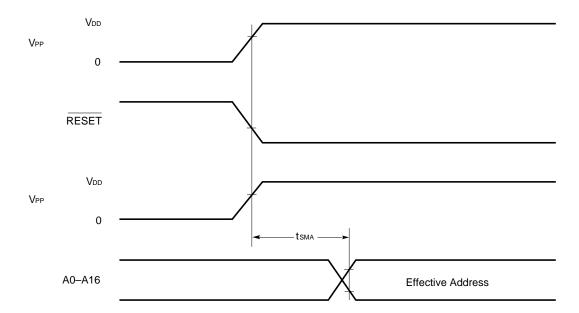
PROM Write Mode Timing (Page program mode)


PROM Write Mode Timing (Byte program mode)

Cautions 1. VDD must be applied before VPP and cut off after VPP.

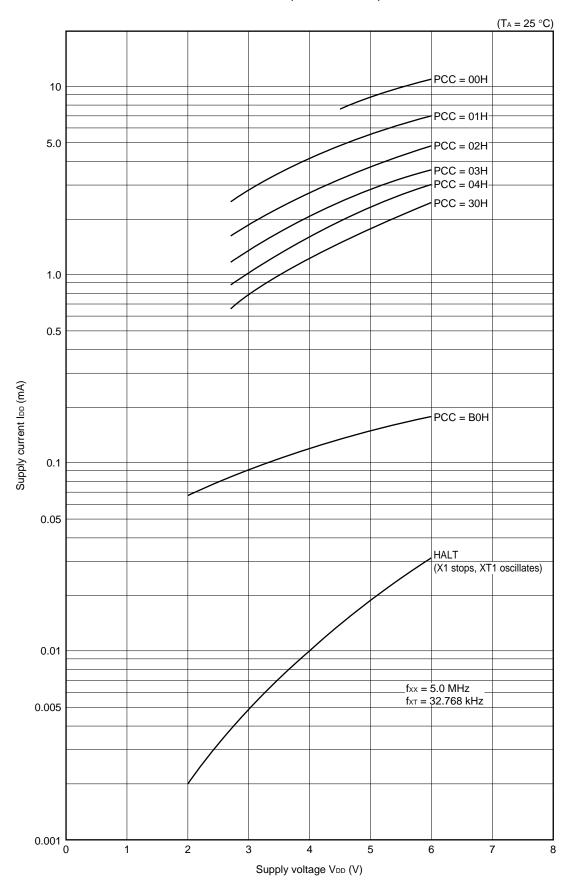
- 2. VPP must not exceed +13.5 V including overshoot.
- 3. Removing and reinserting may adversely affect in reliability while +12.5 V is applied to VPP.

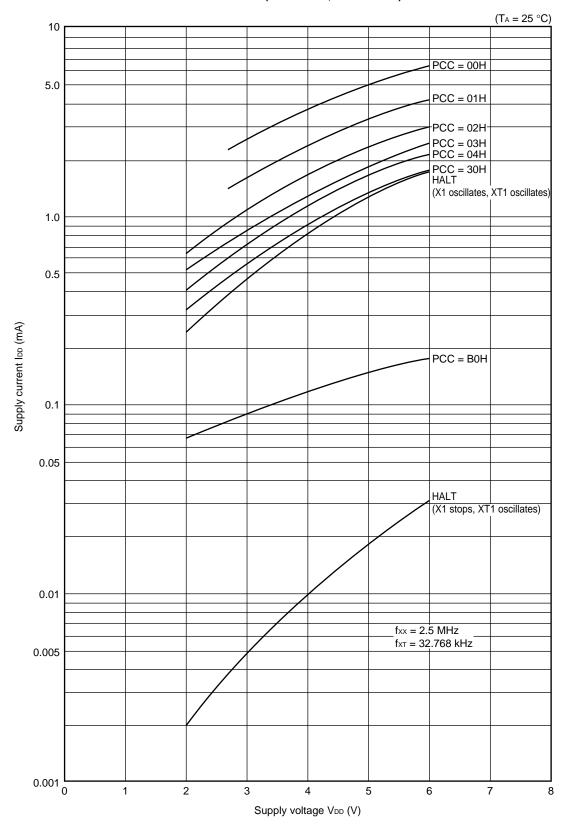
PROM Read Mode Timing



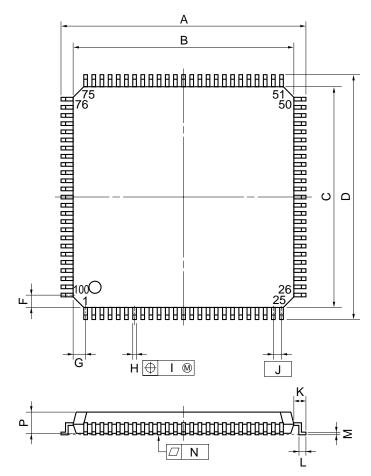
Notes 1. When reading within the tacc range, the \overline{OE} input delay time from the \overline{CE} fall time must be maximum of tacc – toe.

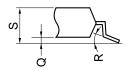
2. tdF is the time from the point at which either \overline{OE} or \overline{CE} (whichever is first) reaches V_{IH} .


PROM Programming Mode Setting Timing


★ 9. CHARACTERISTIC CURVES (REFERENCE VALUES)

IDD VS VDD (fx = fxx = 5.0 MHz)


IDD VS VDD (fx = 5.0 MHz, fxx = 2.5 MHz)

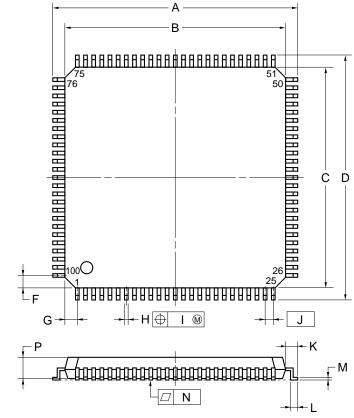


10. PACKAGE DRAWINGS

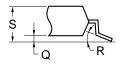
100 PIN PLASTIC QFP (FINE PITCH) (\square 14)

detail of lead end

NOTE


Each lead centerline is located within 0.10 mm (0.004 inch) of its true position (T.P.) at maximum material condition.

Remark	Dimensions and materials of ES products are the
	same as those of the mass production product.


ITEM	MILLIMETERS	INCHES
Α	16.0±0.2	0.630±0.008
В	14.0±0.2	$0.551^{+0.009}_{-0.008}$
С	14.0±0.2	$0.551^{+0.009}_{-0.008}$
D	16.0±0.2	0.630±0.008
F	1.0	0.039
G	1.0	0.039
Н	$0.22^{+0.05}_{-0.04}$	0.009±0.002
ı	0.10	0.004
J	0.5 (T.P.)	0.020 (T.P.)
K	1.0±0.2	$0.039^{+0.009}_{-0.008}$
L	0.5±0.2	0.020+0.008
М	0.17 + 0.03 - 0.07	0.007+0.001
N	0.10	0.004
Р	1.45	0.057
Q	0.125±0.075	0.005±0.003
R	5°±5°	5°±5°
S	1.7 MAX.	0.067 MAX.
	_	

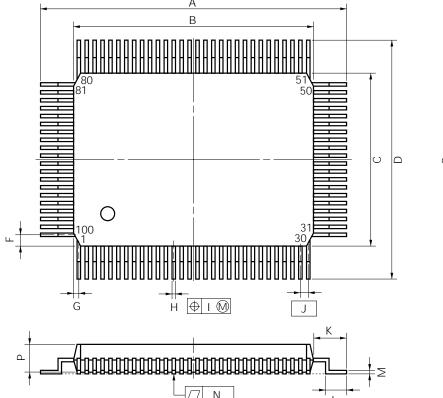
P100GC-50-7EA-2

★ 100 PIN PLASTIC LQFP (FINE PITCH) (14×14)

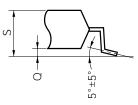
detail of lead end

NOTE

Each lead centerline is located within 0.08 mm (0.003 inch) of its true position (T.P.) at maximum material condition.


ITEM	MILLIMETERS	INCHES
Α	16.00±0.20	0.630±0.008
В	14.00±0.20	0.551 ^{+0.009} -0.008
С	14.00±0.20	$0.551^{+0.009}_{-0.008}$
D	16.00±0.20	0.630±0.008
F	1.00	0.039
G	1.00	0.039
Н	$0.22^{+0.05}_{-0.04}$	0.009±0.002
I	0.08	0.003
J	0.50 (T.P.)	0.020 (T.P.)
K	1.00±0.20	$0.039^{+0.009}_{-0.008}$
L	0.50±0.20	0.020+0.008
М	0.17+0.03	0.007+0.001
N	0.08	0.003
Р	1.40±0.05	0.055±0.002
Q	0.10±0.05	0.004±0.002
R	3°+7°	3°+7°
S	1.60 MAX.	0.063 MAX.
		\$100GC_50_9EU

S100GC-50-8EU


Remark Dimensions and materials of ES products are the same as those of the mass production product.

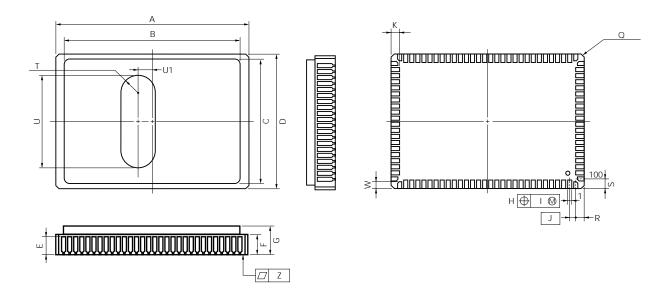
100 PIN PLASTIC QFP (14 × 20)

detail of lead end

NOTE

Each lead centerline is located within 0.15 mm (0.006 inch) of its true position (T.P.) at maximum material condition.

P1	00GF	-65-	3BA	1-2


		P100GF-65-3BA1-2
ITEM	MILLIMETERS	INCHES
Α	23.6±0.4	0.929±0.016
В	20.0±0.2	$0.795^{+0.009}_{-0.008}$
С	14.0±0.2	$0.551^{+0.009}_{-0.008}$
D	17.6±0.4	0.693±0.016
F	0.8	0.031
G	0.6	0.024
Н	0.30±0.10	0.012+0.004
I	0.15	0.006
J	0.65 (T.P.)	0.026 (T.P.)
K	1.8±0.2	0.071+0.008
L	0.8±0.2	0.031+0.009
М	0.15 ^{+0.10} _{-0.05}	0.006+0.004
N	0.10	0.004
Р	2.7	0.106
Q	0.1±0.1	0.004±0.004
S	3.0 MAX.	0.119 MAX.

Remark

Dimensions and materials of ES products are the same as those of the mass production product.

100 PIN CERAMIC WQFN

NOTE

Each lead centerline is located within 0.06 mm (0.003 inch) of its true position (T.P.) at maximum material condition.

		X100KL-65A
ITEM	MILLIMETERS	INCHES
А	20.6±0.27	0.811±0.011
В	19.0	0.748
С	13.8	0.543
D	14.6±0.27	0.575±0.011
Е	1.94	0.076
F	2.14	0.084
G	3.5 MAX.	0.138 MAX.
Н	0.45±0.10	0.018+0.004
I	0.06	0.003
J	0.65	0.026
K	1.0±0.2	0.039+0.009
Q	C 0.3	C 0.012
R	0.875	0.034
S	1.125	0.044
Т	R 1.925	R 0.076
U	8.45	0.333
U1	1.75	0.069
W	0.75±0.2	0.030+0.008
Z	0.10	0.004

★ 11. RECOMMENDED SOLDERING CONDITIONS

The μ PD78P064 should be soldered and mounted under the conditions recommended in the table below.

For detail of recommended soldering conditions, refer to the information document **Semiconductor Device Mounting Technology Manual (C10535E)**.

For soldering methods and conditions other than those recommended below, contact our sales personnel.

Table 11-1. Surface Mounting Type Soldering Conditions

(1) μ PD78P064GC-7EA: 100-pin plastic QFP (fine pitch) (14 × 14 mm) μ PD78P064GC-8EU: 100-pin plastic LQFP (fine pitch) (14 × 14 mm)

Soldering Method	Soldaring Conditions	Recommended
Soldering Method	Soldering Conditions	Soldering Symbols
Infrared reflow	Package peak temperature: 235 °C, Duration: 30 sec. max. (at 210 °C or above),	IR35-107-2
	Number of times: Twice max., Time limit: 7 days ^{Note} (thereafter 10 hours prebaking	
	required at 125 °C)	
	<precaution></precaution>	
	Products cannot be baked while packed in anything other than in a heat resistant tray	
	(i.e. they cannot be baked in a magazine, taping, or heat-labile tray).	
VPS	Package peak temperature: 235 °C, Duration: 30 sec. max. (at 210 °C or above),	VP15-107-2
	Number of times: Twice max., Time limit: 7 days ^{Note} (thereafter 10 hours prebaking	
	required at 125 °C)	
	<precaution></precaution>	
	Products cannot be baked while packed in anything other than in a heat resistant tray	
	(i.e. they cannot be baked in a magazine, taping, or heat-labile tray).	
Partial heating	Pin temperature: 300 °C max., Duration: 3 sec. max. (per device side)	_

Note For the storage period after dry-pack decapsulation, storage conditions are max. 25 °C, 65 % RH.

(2) μ PD78P064GF-3BA: 100-pin plastic QFP (14 × 20 mm)

Soldering Method	Soldering Conditions	Recommended Soldering Symbols
Infrared reflow	Package peak temperature: 235 °C, Duration: 30 sec. max. (at 210 °C or above), Number of times: Three times max.	IR35-00-3
VPS	Package peak temperature: 215 °C, Duration: 40 sec. (at 200 °C or above), Number of times: Three times max.	VP15-00-3
Wave soldering	Solder bath temperature: 260 °C max., Duration: 10 sec. max., Number of times: Once, Preheating temperature: 120 °C max. (Package surface temperature)	WS60-00-1
Partial heating	Pin temperature: 300 °C max., Duration: 3 sec. max. (per device side)	_

Caution Use of more than one soldering method should be avoided (except in the case of partial heating).

★ APPENDIX A. DEVELOPMENT TOOLS

The following development tools are available for system development using $\mu \text{PD78P064}.$

Language Processing Software

RA78K/0 ^{Note 1, 2, 3, 4}	78K/0 series common assembler package
CC78K/0 ^{Note 1, 2, 3, 4}	78K/0 series common C compiler package
DF78064 ^{Note 1, 2, 3, 4}	Device file for μ PD78064 subseries
CC78K/0-LNote 1, 2, 3, 4	78K/0 series common C compiler library source file

PROM Writing Tools

PG-1500	PROM programmer
PA-78P0308GC (PA-78P064GC ^{Note 8})	Programmer adapters connected to PG-1500
PA-78P0308GF (PA-78P064GF ^{Note 8})	
PA-78P0308KL-T (PA-78P064KL-T ^{Note 8})	
PA-PG-1500 controllerNote 1, 2	PG-1500 control program

Debugging Tools

IE-78000-R	78K/0 series common in-circuit emulators
IE-78000-R-A	78K/0 series common in-circuit emulators (for integrated debugger)
IE-78000-R-BK	78K/0 series common break board
IE-780308-R-EM	μ PD780308 subseries common emulation boards
IE-78000-R-SV3	Interface adapter and cable when an EWS is used as the host machine (for IE-78000-R-A)
IE-70000-98-IF-B	Interface adapter when PC-9800 series (except notebook PC) is used as the host machine (for IE-78000-R-A)
IE-70000-98N-IF	Interface adapter and cable when PC-9800 series notebook PC is used as the host machine (for IE-78000-R-A)
IE-70000-PC-IF-B	Interface adapter when IBM PC/AT™ is used as the host machine (for IE-78000-R-A)
EP-78064GC-R	μ PD78064 subseries common emulation probes
EP-78064GF-R	
TGC-100SDW	Adapter to be mounted on a target system board made for 100-pin plastic QFP (GC-7EA, GC-8EU type) A product of Tokyo Eletech Corp. (Tokyo 03-5295-1661). When purchasing this product, consult your NEC distributor.
EV-9200GF-100	Socket to be mounted on a target system board made for 100-pin plastic QFP (GF-3BA type)
EV-9900	Jig used to remove μPD78P064KL-T from EV-9200GF-100
SM78K0 ^{Note 5, 6, 7}	78K/0 series common system simulators
ID78K0Note 4, 5, 6, 7	IE-78000-R-A integrated debuggers
SD78K/0Note 1, 2	IE-78000-R screen debuggers
DF78064Note 1, 2, 4, 5, 6, 7	Device file for μ PD78064 subseries

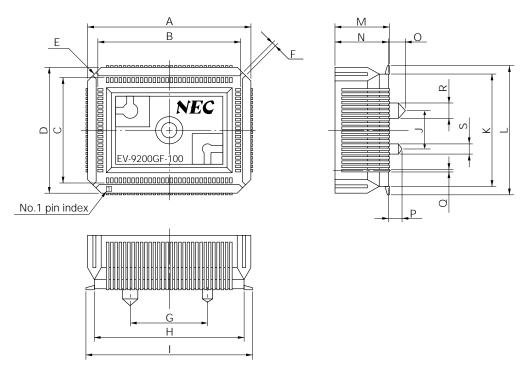
Real-Time OS

RX78K/0Note 1, 2, 3, 4	78K/0 series real-time OS
MX78K/0Note 1, 2, 3, 4	78K/0 series OS

Fuzzy Inference Development Support System

FE9000 ^{Note 1} , FE9200 ^{Note 6}	Fuzzy knowledge data creation tool
FT9080 ^{Note 1} , FT9085 ^{Note 2}	Translator
FI78K/II ^{Note 1, 2}	Fuzzy inference module
FD78K/II ^{Note 1, 2}	Fussy inference debugger

Notes 1. PC-9800 series (MS-DOS™) based


- 2. IBM PC/AT and compatible machines (PC DOSTM/IBM DOSTM/MS-DOS) based
- 3. HP9000 series 300™ (HP-UX™) based
- **4.** HP9000 series 700[™] (HP-UX) based, SPARCstation[™] (SunOS[™]) based, EWS4800 series (EWS-UX/V) based
- 5. PC-9800 series (MS-DOS + Windows™) based
- 6. IBM PC/AT and compatible machines (PC DOS/IBM DOS/MS-DOS + Windows) based
- 7. NEWS™ (NEWS-OS™) based
- 8. Maintenance Product

- Remarks 1. For third party development tools, refer to 78K/0 Series Selection Guide (U11126E).
 - 2. RA78K/0, CC78K/0, SM78K0, ID78K0, SD78K/0, and RX78K/0 are used in combination with DF78064.

CONVERSION SOCKET (EV-9200GF-100) PACKAGE DRAWINGS AND RECOMMENDED BOARD MOUNTING PATTERN

Figure A-1. EV-9200GF-100 Package Drawing

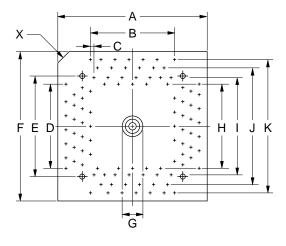
EV-9200GF-100-G0E

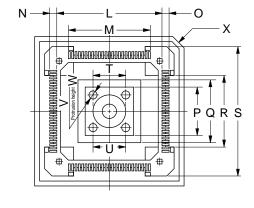
ITEM	MILLIMETERS	INCHES
А	24.6	0.969
В	21	0.827
С	15	0.591
D	18.6	0.732
E	4-C 2	4-C 0.079
F	0.8	0.031
G	12.0	0.472
Н	22.6	0.89
1	25.3	0.996
J	6.0	0.236
K	16.6	0.654
L	19.3	076
М	8.2	0.323
N	8.0	0.315
0	2.5	0.098
Р	2.0	0.079
Q	0.35	0.014
R	ø2.3	ø0.091
S	ø 1.5	φ0.059

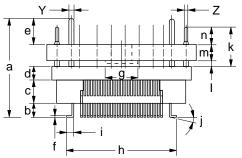
Κ ш В Α

Figure A-2. EV-9200GF-100 Board Mounting Pattern

EV-9200GF-100-P1E


ITEM	MILLIMETERS INCHES	
А	26.3	1.035
В	21.6	0.85
С	$0.65\pm0.02\times29=18.85\pm0.05$	$0.026^{+0.001}_{-0.002} \times 1.142 = 0.742^{+0.002}_{-0.002}$
D	$0.65\pm0.02\times19=12.35\pm0.05$	$0.026^{+0.001}_{-0.002} \times 0.748 = 0.486^{+0.003}_{-0.002}$
Е	15.6	0.614
F	20.3	0.799
G	12±0.05	$0.472^{+0.003}_{-0.002}$
Н	6±0.05	$0.236^{+0.003}_{-0.002}$
1	0.35±0.02	$0.014^{+0.001}_{-0.001}$
J	\$\phi_2.36\pm 0.03\$	φ0.093 ^{+0.001} _{-0.002}
K	ø 2.3	ø0.091
L	\$\phi_1.57 \pm 0.03\$	\$\phi_0.062^{+0.001}_{-0.002}\$


Caution Dimensions of mount pad for EV-9200 and that for target device (QFP) may be different in some parts. For the recommended mount pad dimensions for QFP, refer to "SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL" (C10535E).



★ CONVERSION ADAPTER (TGC-100SDW) PACKAGE DRAWINGS

Figure A-3. TGC-100SDW Package Drawing

ITEM	MILLIMETERS	INCHES
Α	21.55	0.848
В	0.5x24=12	0.020x0.945=0.472
С	0.5	0.020
D	0.5x24=12	0.020x0.945=0.472
Е	15.0	0.591
F	21.55	0.848
G	φ3.55	φ0.140
Н	10.9	0.429
T	13.3	0.524
J	15.7	0.618
K	18.1	0.713
L	13.75	0.541
М	0.5x24=12.0	0.020x0.945=0.472
N	1.125±0.3	0.044±0.012
0	1.125±0.2	0.044±0.008
P	7.5	0.295
Q	10.0	0.394
R	11.3	0.445
S	18.1	0.713
Т	φ5.0	φ0.197
U	5.0	0.197
V	4-φ1.3	4-\psi_0.051
W	1.8	0.071
X	C 2.0	C 0.079
Y	φ0.9	φ0.035
Z	φ0.3	φ0.012

_	HEM	MILLIMETERS	INCHES
	а	14.45	0.569
	b	1.85±0.25	0.073±0.010
	С	3.5	0.138
	d	2.0	0.079
	е	3.9	0.154
	f	0.25	0.010
	g	ϕ 4.5	ϕ 0.177
	h	16.0	0.630
	i	1.125±0.3	0.044±0.012
	j	0~5°	0.000~0.197°
	k	5.9	0.232
	ı	0.8	0.031
	m	2.4	0.094
	n	2.7	0.106
			TGC-100SDW-G0E
_			

Remark Manufactured by Tokyo Eletech Corp.

★ APPENDIX B. RELATED DOCUMENTS

Device Related Documents

Document Name		Document No.	
		Japanese	English
μPD78064, 78064Y Subseries User's Manual		U10105J	U10105E
μPD78062, 78063, 78064 Data Sheet		U12338J	U12338E
μPD78P064 Data Sheet		U11589J	This document
78K/0 Series User's Manual (Instruction)		U12326J	U12326E
78K/0 Series Instruction Table		U10903J	_
78K/0 Series Instruction Set		U10904J	_
μPD78064 Subseries Special Function Register Table		IEM-6568	_
78K/0 Series Application Note	Fundamental (III)	U10182J	U10182E
	Floating-point arithmetic operation program	IEA-718	IEA-1289

Development Tool Related Documents (User's Manual) (1/2)

Document Name		Document No.	
		Japanese	English
RA78K Series Assembler Package	Operation	EEU-809	EEU-1399
	Language	EEU-815	EEU-1404
RA78K Series Structured Assembler Preprocessor		EEU-817	EEU-1402
RA78K0 Assembler Package	Operation	U11802J	U11802E
	Assembly language	U11801J	U11801E
	Structured assembly language	U11789J	U11789E
CC78K Series C Compiler	Operation	EEU-656	EEU-1280
	Language	EEU-655	EEU-1284
CC78K0 C Compiler	Operation	U11517J	U11517E
	Language	U11518J	U11518E
CC78K/0 C Compiler Application Note	Programming know-how	EEA-618	EEA-1208
CC78K Series Library Source File		U12322J	_
PG-1500 PROM Programmer		U11940J	U11940E
PG-1500 Controller PC-9800 Series (MS-DOS) Bas	sed	EEU-704	EEU-1291
PG-1500 Controller IBM PC Series (PC DOS) Base	ed	EEU-5008	U10540E
IE-78000-R		U11376J	U11376E
IE-78000-R-A		U10057J	U10057E
IE-78000-R-BK		EEU-867	EEU-1427
IE-780308-R-EM		U11362J	U11362E
EP-78064		EEU-934	EEU-1469

Development Tool Related Documents (User's Manual) (2/2)

Document Name		Document No.	
		Japanese	English
SM78K0 System Sumilator Windows Based	Reference	EEU-5002	U10181E
SM78K Series System Simulator	External components user open interface specification	U10092J	U10092E
ID78K0 Integrated Debugger EWS Based	Reference	U11151J	_
ID78K0 Integrated Debugger PC Based	Reference	U11539J	U11539E
ID78K0 Integrated Debugger Windows Based	Guide	U11649J	U11649E
SD78K/0 Screen Debugger	Introduction	EEU-852	U10539E
PC-9800 Series (MS-DOS) Based	Reference	U10952J	_
SD78K/0 Screen Debugger	Introduction	EEU-5024	EEU-1414
IBM PC/AT (PC DOS) Based	Reference	U11279J	U11279E

Caution The above related documents are subject to change without notice. For design purpose, etc., be sure to use the latest documents.

Embedded Software Related Documents (User's Manual)

Document Name		Document No.	
		Japanese	English
78K/0 Series Real-Time OS	Fundamental	U11537J	_
	Installation	U11536J	_
78K/0 Series OS MX78K0	Fundamental	U12257J	_
Fuzzy Knowledge Data Creation Tool		EEU-829	EEU-1438
78K/0, 78K/II, 87AD Series Fuzzy Inference Development Support System Translator		EEU-862	EEU-1444
78K/0 Series Fuzzy Inference Development Support System Fuzzy Inference Module		EEU-858	EEU-1441
78K/0 Series Fuzzy Inference Development Support System Fuzzy Inference Debugger		EEU-921	EEU-1458

Other Related Documents

Document Name	Document No.	
Document Name	Japanese	English
IC Package Manual	C10943X	
Semiconductor Device Mounting Technology Manual	C10535J	C10535E
Quality Grades on Semiconductor Devices	C11531J	C11531E
NEC Semiconductor Device Reliability and Quality Control	C10983J	C10983E
Electrostatic Discharge (ESD) Test	MEM-539	_
Semiconductor Devices Quality Guarantee Guide	C11893J	MEI-1202
Microcomputer-Related Product Guide (Products by Other Manufacturers)	U11416J	_

Caution The above related documents are subject to change without notice. For design purpose, etc., be sure to use the latest documents.

NOTES FOR CMOS DEVICES

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS device behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- · Device availability
- · Ordering information
- · Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- · Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California Tel: 800-366-9782 Fax: 800-729-9288

NEC Electronics (Germany) GmbH

Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.

Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Italiana s.r.1.

Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH

Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

NEC Electronics (France) S.A.

Velizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

NEC Electronics (France) S.A.

Spain Office Madrid, Spain Tel: 01-504-2787 Fax: 01-504-2860

NEC Electronics (Germany) GmbH

Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388

NEC Electronics Hong Kong Ltd.

Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.

Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.

United Square, Singapore 1130

Tel: 253-8311 Fax: 250-3583

NEC Electronics Taiwan Ltd.

Taipei, Taiwan Tel: 02-719-2377 Fax: 02-719-5951

NEC do Brasil S.A.

Sao Paulo-SP, Brasil Tel: 011-889-1680 Fax: 011-889-1689

J96. 8

FIP, QTOP and IEBus are trademarks of NEC Corporation.

MS-DOS and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

IBM DOS, PC/AT and PC DOS are trademarks of IBM Corporation.

HP9000 series 300, HP9000 series 700 and HP-UX are trademarks of Hewlett-Packard Company.

SPARCstation is a trademark of SPARC International, Inc.

Sun OS is a trademark of Sun Microsystems, Inc.

NEWS and NEWS-OS are trademarks of Sony Corporation.

The documents referred to in this publication may include preliminary versions. However preliminary versions are not marked as such.

The export of these products from Japan is regulated by the Japanese government. The export of some or all of these products may be prohibited without governmental license. To export or re-export some or all of these products from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

Lisence not needed : μ PD78P064KL-T

The customer must judge the need for licence: μPD78P064GC-7EA, 78P064GC-8EU, 78P064GF-3BA

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)

Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.