Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

PRELIMINARY PRODUCT INFORMATION

MOS INTEGRATED CIRCUIT μ PD78F4937

16-BIT SINGLE-CHIP MICROCONTROLLER

The μ PD78F4937, 78K/IV Series' product, is a flash memory version of the μ PD784937 with internal masked ROM. Data can be written to or erased from the flash memory of the μ PD78F4937 with the microcontroller mounted on the printed wiring board.

For specific functions and other detailed information, consult the following user's manuals.

These manuals are required reading for design work.

 μ PD784937 Subseries User's Manual, Hardware : To be created 78K/IV Series User's Manual, Instruction : U10905E

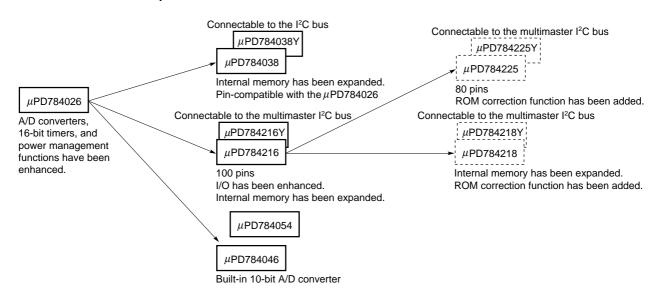
FEATURES

• Pin-compatible with mask ROM model (except VPP pin)

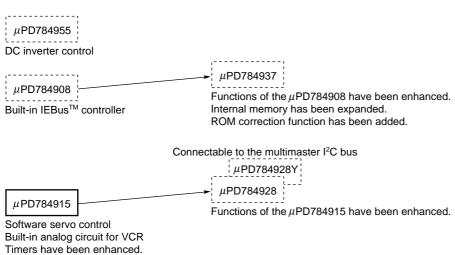
Flash memory: 192K bytesInternal RAM: 8,192 bytes

Same operating voltage as mask ROM model (VDD = 4.0 to 5.5 V)

ORDERING INFORMATION


Part number	Package	Internal ROM
μPD78F4937GC-8EU	100-pin plastic LQFP (fine pitch) (14 \times 14 mm)	Flash memory
μ PD78F4937GF-3BA	100-pin plastic QFP (14 × 20 mm)	Flash memory

The information contained in this document is being issued in advance of the production cycle for the device. The parameters for the device may change before final production or NEC Corporation, at its own discretion, may withdraw the device prior to its production.


78K/IV SERIES PRODUCT DEVELOPMENT DIAGRAM

	:	In production
[:	Under development

Standard Products Development

ASSP Development

FUNCTIONS

(1/2)

			(1/2		
Item		em	Function		
Number of basic instructions (mnemonics)		instructions	113		
Ge	General-purpose register		8 bits \times 16 registers \times 8 banks, or 16 bits \times 8 registers \times 8 banks (memory mapping)		
Mi tin	inimum instruc ne	tion execution	160 ns/320 ns/636 ns/1.27 μ s (at 12.58 MHz)		
Int	ternal	Flash memory	192K bytes		
me	emory	RAM	8,192 bytes		
М	emory space		Program and data: 1M byte		
I/C) ports	Total	80		
		Input	8		
		Input/output	72		
	Additional function	LED direct drive outputs	24		
	Note pins	Transistor direct drive	8		
		N-ch open drain	4		
Re	eal-time output	ports	4 bits × 2, or 8 bits × 1		
ΙE	Bus controller		Incorporated (simple version)		
Tiı	mer/counter		Timer/counter 0 : Timer register × 1 Pulse output capability (16 bits) Capture register × 1 • Toggle output Compare register × 2 • PWM/PPG output • One-shot pulse output		
			Timer/counter 1 : Timer register × 1 Real-time output port (16 bits) Capture register × 1 Capture/compare register × 1 Compare register × 1		
			Timer/counter 2 : Timer register × 1 Pulse output capability (16 bits) Capture register × 1 • Toggle output Capture/compare register × 1 • PWM/PPG output Compare register × 1		
			Timer 3 : Timer register × 1 (16 bits) Compare register × 1		
Clock timer			Interrupt requests are generated at 0.5-second intervals. (A clock timer oscillator is incorporated.) Either the main clock (12.58 MHz) or real-timer clock (32.768 kHz) can be selected as the input clock.		
Clock output			Selected from fclk, fclk/2, fclk/4, fclk/8, or fclk/16 (can be used as a 1-bit output port)		
P۱	NM outputs		12-bit resolution × 2 channels		
Serial interface			UART/IOE (3-wire serial I/O): 2 channels (incorporating baud rate generator) CSI (3-wire serial I/O): 2 channels		

Note Additional function pins are included in the I/O pins.

(2/2)

Item Function		Function		
A/D converte	r	8-bit resolution \times 8 channels		
Watchdog tim	ner	1 channel		
ROM correcti	on function	Internal (four correction addresses can be set.)		
External expa	ansion function	Provided (up to 1M byte)		
Standby		HALT/STOP/IDLE mode		
Interrupt	Hardware source	27 (20 internals, 7 externals (sampling clock variable input: 1))		
	Software	BRK or BRKCS instruction, operand error		
	Nonmaskable	1 internal, 1 external		
	Maskable	19 internals, 6 externals		
		 4-level programmable priority 3 operation statuses: vectored interrupt, macro service, context switching 		
Power supply voltage		V _{DD} = 4.0 to 5.5 V		
Package		 100-pin plastic LQFP (fine pitch) (14 × 14 mm) 100-pin plastic QFP (14 × 20 mm) 		

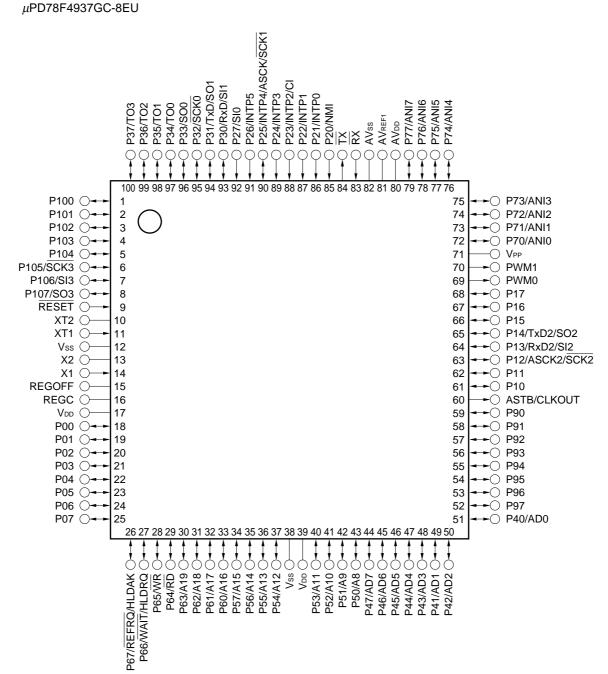
CONTENTS

1.	DIFFERENCES AMONG MODELS IN μPD784937 SUBSERIES	6
2.	PIN CONFIGURATION (TOP VIEW)	7
3.	BLOCK DIAGRAM	10
4.	LIST OF PIN FUNCTIONS	11
	4.1 Port Pins (1/2)	11
	4.1 Port Pins (2/2)	
	4.2 Non-Port Pins (1/2)	13
	4.2 Non-Port Pins (2/2)	
	4.3 I/O Circuits for Pins and Handling of Unused Pins	15
5.	INTERNAL MEMORY SWITCHING (IMS) REGISTER	18
6.	FLASH MEMORY PROGRAMMING	19
	6.1 Selecting the Transmission Method	19
	6.2 Flash Memory Programming Functions	20
	6.3 Connecting the Flashpro III	20
7.	PACKAGE DRAWINGS	21
ΑP	PPENDIX A DEVELOPMENT TOOLS	23
Λ P	PPENDIX R. RELATED DOCUMENTS	26

1. DIFFERENCES AMONG MODELS IN μ PD784937 SUBSERIES

The only difference among the μ PD784935, μ PD784936, and μ PD784937 models lie in the internal memory capacity.

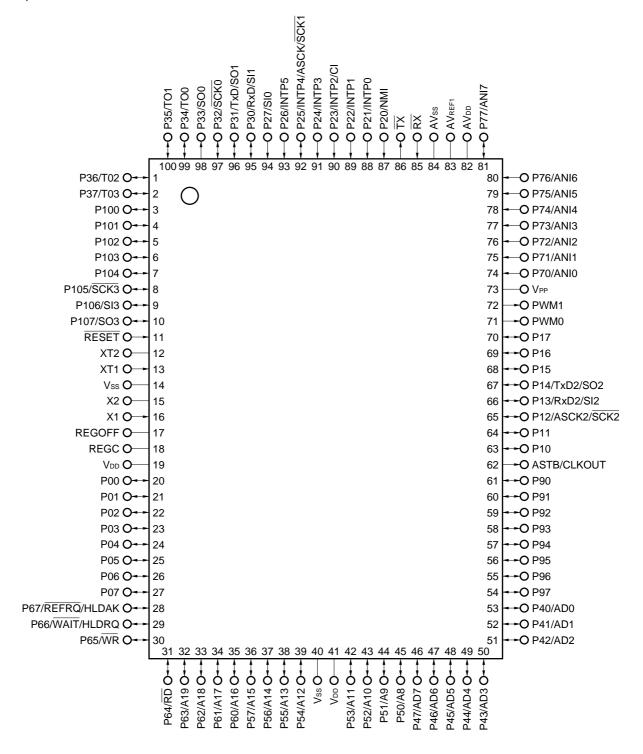
The μ PD78F4937 has a 192K-byte flash memory instead of the mask ROM featured by the μ PD784935, μ PD784936, and μ PD784937. Table 1-1 shows the differences among these products.


Table 1-1. Differences Among Models in μ PD784937 Subseries

Product	μPD784935	μPD784936	μPD784937	μPD78F4937
Item				
Internal ROM	96K bytes	128K bytes	192K bytes	
	Mask ROM			Flash memory
Internal RAM	5,120 bytes	6,656 bytes	8,192 bytes	
Regulator	Provided			None
Internal memory Switching register	None	Provided		
IC pin	Provided	None		
V _{PP} pin	None			Provided

Note The internal flash memory capacity and internal RAM capacity can be changed by setting the internal memory switching register (IMS).

2. PIN CONFIGURATION (TOP VIEW)


• 100-pin plastic LQFP (fine pitch) (14 × 14 mm)

- Cautions 1. In normal operation, connect the VPP pin directly to the Vss pin.
 - 2. Connect the AVDD pin directly to the VDD pin.
 - 3. Connect the AVss pin directly to the Vss pin.

100-pin plastic QFP (14 x 20 mm)

μPD78F4937GF-3BA

Cautions 1. In normal operation, connect the VPP pin directly to the Vss pin.

- 2. Connect the AVDD pin directly to the VDD pin.
- 3. Connect the AVss pin directly to the Vss pin.

NEC μ PD78F4937

A8-A19 : Address Bus
AD0-AD7 : Address/Data Bus
ANI0-ANI7 : Analog Input

ASCK, ASCK2: Asynchronous Serial Clock

ASTB : Address Strobe AV_{DD} : Analog Power Supply AV_{REF1} : Reference Voltage : Analog Ground **AVss** CI : Clock Input **CLKOUT** : Clock Output HLDAK : Hold Acknowledge **HLDRQ** : Hold Request

INTP0-INTP5 : Interrupt from Peripherals
NMI : Non-maskable Interrupt

P00-P07 : Port 0 P10-P17 : Port 1 P20-P27 : Port 2 P30-P37 : Port 3 P40-P47 : Port 4 P50-P57 : Port 5 P60-P67 : Port 6 P70-P77 : Port 7

P90-P97 : Port 9
P100-P107 : Port 10

PWM0, PWM1 : Pulse Width Modulation Output

 RD
 : Read Strobe

 REFRQ
 : Refresh Request

 REGC
 : Regulator Capacitance

REGOFF : Regulator Off

RESET : Reset

RX : IEBus Receive Data

RxD, RxD2 : Receive Data

SCK0-SCK3 : Serial Clock

SI0-SI3 : Serial Input

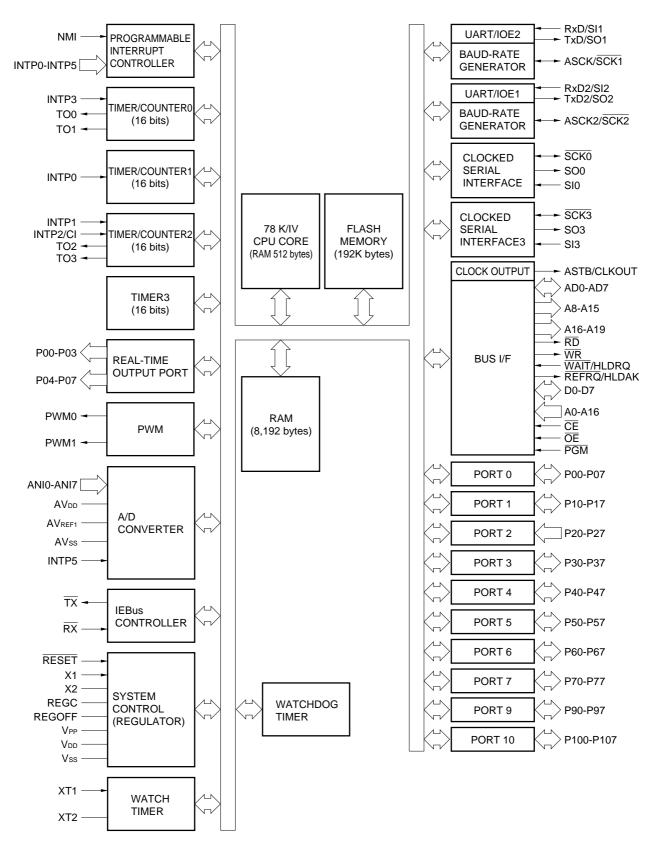
SO0-SO3 : Serial Output

TO0-TO3 : Timer Output

TX : IEBus Transmit Data

TxD, TxD2 : Transmit Data
VDD : Power Supply

VPP : Programming Power Supply


 $\begin{array}{ccc} \text{Vss} & : & \text{Ground} \\ \hline \hline \text{WAIT} & : & \text{Wait} \\ \end{array}$

WR : Write Strobe

X1, X2 : Crystal (Main System Clock)

XT1, XT2 : Crystal (Watch)

3. BLOCK DIAGRAM

4. LIST OF PIN FUNCTIONS

4.1 Port Pins (1/2)

Pin	I/O	Dual-function	Function
P00-P07	I/O	_	Port 0 (P0): 8-bit I/O port. Functions as a real-time output port (4 bits × 2). Inputs and outputs can be specified bit by bit. The use of pull-up resistors can be simultaneously specified by software for all pins in input mode. Can drive a transistor.
P10	I/O	_	Port 1 (P1):
P11		_	8-bit I/O port. Inputs and outputs can be specified bit by bit.
P12		ASCK2/SCK2	The use of pull-up resistors can be simultaneously specified by software
P13		RxD2/SI2	for all pins in input mode.
P14		TxD2/SO2	Can drive LED.
P15-P17		_	
P20	Input	NMI	Port 2 (P2):
P21		INTP0	8-bit input-only port. P20 does not function as a general numbers port (compactable interrupt).
P22		INTP1	 P20 does not function as a general-purpose port (nonmaskable interrupt). However, the input level can be checked by an interrupt service routine.
P23		INTP2/CI	The use of pull-up resistors can be specified by software for pins P22 to
P24		INTP3	P27 (in units of 6 bits). • The P25/INTP4/ASCK/SCK1 pin functions as the SCK1 I/O pin by CSIM1.
P25		INTP4/ASCK/SCK1	The 123/1411 4/Accident pin functions as the court he pin by colimn.
P26		INTP5	
P27		SI0	
P30	I/O	RxD/SI1	Port 3 (P3):
P31		TxD/SO1	8-bit I/O port. Insulte and outputs can be appointed hit by hit.
P32		SCK0	 Inputs and outputs can be specified bit by bit. The use of pull-up resistors can be simultaneously specified by software
P33		SO0	for all pins in input mode.
P34-P37		TO0-TO3	P32 and P33 can be set as the N-ch open-drain pin.
P40-P47	I/O	AD0-AD7	Port 4 (P4): • 8-bit I/O port. • Inputs and outputs can be specified bit by bit. • The use of pull-up resistors can be simultaneously specified by software for all pins in input mode. • Can drive LED.

4.1 Port Pins (2/2)

Pin	I/O	Dual-function	Function
P50-P57	I/O	A8-A15	Port 5 (P5): • 8-bit I/O port. • Inputs and outputs can be specified bit by bit. • The use of pull-up resistors can be simultaneously specified by software for all pins in input mode. • Can drive LED.
P60-P63	I/O	A16-A19	Port 6 (P6):
P64		RD	8-bit I/O port. Inputs and outputs can be specified bit by bit.
P65		WR	The use of pull-up resistors can be simultaneously specified by software
P66		WAIT/HLDRQ	for all pins in input mode.
P67		REFRQ/HLDAK	
P70-P77	I/O	ANI0-ANI7	Port 7 (P7): • 8-bit I/O port. • Inputs and outputs can be specified bit by bit.
P90-P97	I/O	-	Port 9 (P9): • 8-bit I/O port. • Inputs and outputs can be specified bit by bit. • The use of pull-up resistors can be simultaneously specified by software for all pins in input mode.
P100-P104 P105	I/O	- SCK3	Port 10 (P10): • 8-bit I/O port.
P106	=	SI3	Inputs and outputs can be specified bit by bit. The use of pull up registers and be simultaneously appointed by seffury.
P107		SO3	 The use of pull-up resistors can be simultaneously specified by software for all pins in input mode. P105 and P107 can be set as the N-ch open-drain pin.

4.2 Non-Port Pins (1/2)

Pin	I/O	Dual-function		Function
TO0-TO3	Output	P34-P37	Timer output	
CI	Input	P23/INTP2	Input of a count clock for ti	imer/counter 2
RxD	Input	P30/SI1	Serial data input (UART0)	
RxD2		P13/SI2	Serial data input (UART2)	
TxD	Output	P31/SO1	Serial data output (UART0	0)
TxD2		P14/SO2	Serial data output (UART2	2)
ASCK	Input	P25/INTP4/SCK1	Baud rate clock input (UAI	RT0)
ASCK2		P12/SCK2	Baud rate clock input (UAF	RT2)
SI0	Input	P27	Serial data input (3-wire se	erial I/O0)
SI1		P30/RxD	Serial data input (3-wire se	erial I/O1)
SI2		P13/RxD2	Serial data input (3-wire se	erial I/O2)
SI3		P106	Serial data input (3-wire se	erial I/O3)
SO0	Output	P33	Serial data output (3-wire	serial I/O0)
SO1		P31/TxD	Serial data output (3-wire	serial I/O1)
SO2		P14/TxD2	Serial data output (3-wire	serial I/O2)
SO3		P107	Serial data output (3-wire	serial I/O3)
SCK0	I/O	P32	Serial clock I/O (3-wire ser	rial I/O0)
SCK1		P25/INTP4/ASCK	Serial clock I/O (3-wire ser	rial I/O1)
SCK2		P12/ASCK	Serial clock I/O (3-wire ser	rial I/O2)
SCK3		P105	Serial clock I/O (3-wire ser	rial I/O3)
NMI	Input	P20	External interrupt request	_
INTP0		P21		Input of a count clock for timer/counter 1 Capture/trigger signal for CR11 or CR12
INTP1		P22	1	Input of a count clock for timer/counter 2 Capture/trigger signal for CR22
INTP2		P23/CI		Input of a count clock for timer/counter 2 Capture/trigger signal for CR21
INTP3		P24		Input of a count clock for timer/counter 0 Capture/trigger signal for CR02
INTP4		P25/ASCK/SCK1	=	_
INTP5		P26	-	Input of a conversion start trigger for A/D converter
AD0-AD7	I/O	P40-P47	Time multiplexing address	s/data bus (for connecting external memory)
A8-A15	Output	P50-P57	High-order address bus (fo	or connecting external memory)
A16-A19	Output	P60-P63	High-order address during	address expansion (for connecting external memory)
RD	Output	P64	Strobe signal output for rea	ading the contents of external memory
WR	Output	P65	Strobe signal output for wr	riting on external memory
WAIT	Input	P66/HLDRQ	Wait signal insertion	
REFRQ	Output	P67/HLDAK	Refresh pulse output to external pseudo static memory	
HLDRQ	Input	P66/WAIT	Input of bus hold request	-
HLDAK	Output	P67/REFRQ	Output of bus hold respons	se
ASTB	Output	CLKOUT		e multiplexing address (A0-A7) (for connecting

4.2 Non-Port Pins (2/2)

Pin	I/O	Dual-function	Function
CLKOUT	Output	ASTB	Clock output
PWM0	Output	-	PWM output 0
PWM1	Output	-	PWM output 1
RX	Input	-	Data input (IEBus)
TX	Output	-	Data output (IEBus)
REGC	_	-	Capacitor connection for stabilizing the regulator output
REGOFF	_	-	Signal for specifying regulator operation
RESET	Input	-	Chip reset
X1	Input	-	Crystal input for system clock oscillation (A clock pulse can also be input to the
X2	_		X1 pin.)
XT1	Input	-	Real-time clock connection pin
XT2	_	-	
ANI0-ANI7	Input	P70-P77	Analog voltage inputs for the A/D converter
AV _{REF1}	_	-	Application of A/D converter reference voltage
AVDD			Positive power supply for the A/D converter
AVss			Ground for the A/D converter
V _{DD}			Positive power supply
Vss			Ground
VPP	Input		This pin is used to set the flash memory programming mode and applies a high voltage when a program is written or verified. In normal operation mode, connect this pin directly to the Vss pin.

4.3 I/O Circuits for Pins and Handling of Unused Pins

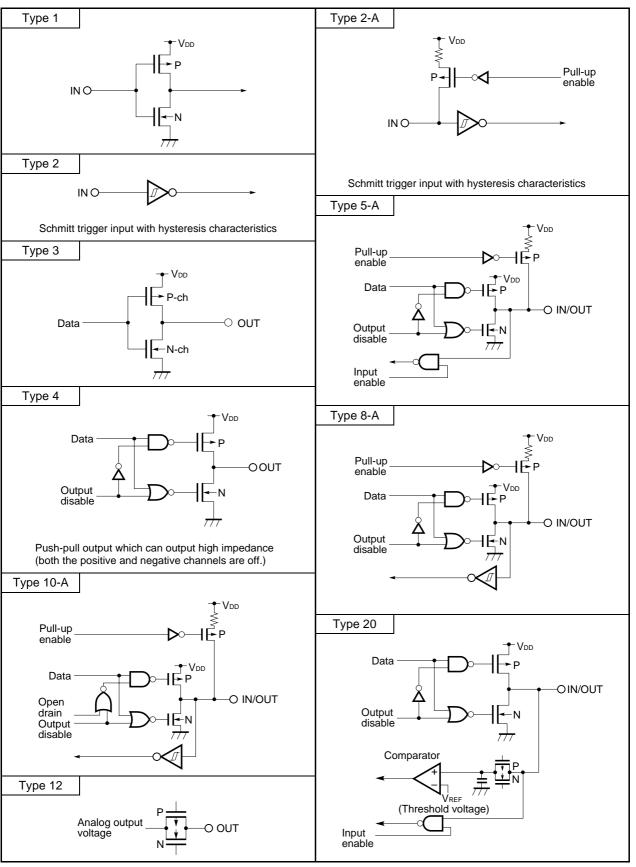
Table 4-1 describes the types of I/O circuits for pins and the handling of unused pins.

Figure 4-1 shows the configuration of these various types of I/O circuits.

Table 4-1. Types of I/O Circuits for Pins and Handling of Unused Pins (1/2)

Pin	I/O circuit type	I/O	Recommended connection method for unused pins
P00-P07	5-A	I/O	Input state: Connect these pins to the VDD pin.
P10, P11			Output state: Leave these pins open.
P12/ASCK2/SCK2	8-A		
P13/RxD2/SI2	5-A		
P14/TxD2/SO2			
P15-P17			
P20/NMI	2	Input	Connect these pins to the VDD or Vss pin.
P21/INTP0			
P22/INTP1	2-A		Connect these pins to the VDD pin.
P23/INTP2/CI			
P24/INTP3			
P25/INTP4/ASCK/SCK1	8-A	I/O	Input state: Connect this pin to the VDD pin. Output state: Leave this pin open.
P26/INTP5	2-A	Input	Connect these pins to the VDD pin.
P27/SI0			
P30/RxD/SI1	5-A	I/O	Input state: Connect these pins to the V _{DD} pin.
P31/TxD/SO1			Output state: Leave these pins open.
P32/SCK0	10-A		
P33/SO0			
P34/T00-P37/T03	5-A		
P40/AD0-P47/AD7			
P50/A8-P57/A15			
P60/A16-P63/A19			
P64/RD			
P65/WR			
P66/WAIT/HLDRQ			
P67/REFRQ/HLDAK			
P70/ANI0-P77/ANI7	20	I/O	Input state: Connect these pins to the V _{DD} or V _{SS} pin.
P90-P97	5-A		Output state: Leave these pins open.
P100-P104			
P105/SCK3	10-A		
P106/SI3	8-A		
P107/SO3	10-A		
ASTB/CLKOUT	4	Output	Leave this pin open.

Table 4-1. Types of I/O Circuits for Pins and Handling of Unused Pins (2/2)


Pin	I/O circuit type	I/O	Recommended connection method for unused pins
RESET	2	Input	-
XT2	ı	_	Leave this pin open.
XT1	ı	Input	Connect this pin to the Vss pin.
REGOFF	1	_	Connect these pins to the VDD pin.
REGC	-	_	
PWM0, PWM1	3	Output	Leave this pin open.
RX	2	Input	Connect this pin to the V _{DD} or V _{SS} pin.
TX	3	Output	Leave this pin open.
AV _{REF1}	-	_	Connect these pins to the Vss pin.
AVss			
AV _{DD}			Connect this pin to the V _{DD} pin.
V _{PP}		Input	Connect this pin directly to the Vss pin.

Caution When the I/O mode of an I/O dual-function pin is unpredictable, connect the pin to VDD through a resistor of 10 to 100 kilohms (particularly when the voltage of the reset input pin becomes higher than that of the low level input at power-on or when I/O is switched by software).

Remark Since type numbers are consistent in the 78K Series, those numbers are not always serial in each product. (Some circuits are not included.)

Figure 4-1. I/O Circuits for Pins

5. INTERNAL MEMORY SWITCHING (IMS) REGISTER

This register enables the software to avoid using part of the internal memory. The IMS register can be set to establish the same memory mapping as used in ROM products that have different internal memory (ROM and RAM) configurations.

The IMS register is set using 8-bit memory operation instructions.

A RESET input sets the IMS register to FFH.

Figure 5-1. Internal Memory Switching (IMS) Register

Address: 0FFFCH		CH	When rese	t: FFH	W/R			
	7	6	5	4	3	2	1	0
IMS	1	1	ROM1	ROM0	1	1	RAM1	RAM0

ROM1	ROM0	Internal ROM capacity selection
0	0	Not to be set
0	1	96K bytes
1	0	128K bytes
1	1	192K bytes

RAM1	RAM0	Internal RAM capacity selection
0	0	Not to be set
0	1	5,120 bytes
1	0	6,656 bytes
1	1	8,192 bytes

Caution The IMS is not contained in a mask ROM product (μ PD784935, μ PD784936, or μ PD784937).

The IMS setting to obtain the same memory map as masked ROM products are shown in Table 5-1.

Table 5-1. Internal Memory Switching Register (IMS) Setting Value

Product	IMS setting value
μPD784935	DDH
μPD784936	EEH
μPD784937	FFH

6. FLASH MEMORY PROGRAMMING

The flash memory can be written even while the device is mounted in the target system (on-board write). To write a program into the flash memory, connect the dedicated flash writer (Flashpro III) to both the host machine and target system.

Remark The Flashpro III is manufactured by Naito Densei Machida Mfg. Co., Ltd.

6.1 Selecting the Transmission Method

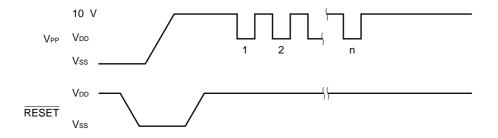

The Flashpro III writes into flash memory by means of serial transmission. The transmission method to be used for writing is selected from those listed in Table 6-1. To select a transmission method, use the format shown in Figure 6-1, according to the number of VPP pulses listed in Table 6-1.

Table 6-1. Transmission Methods

Transmission method	Number of channels	Pins	Number of VPP pulses
3-wire serial I/O	1	SCK3/P105 SO3/P107 SI3/P106	0
UART	1	TxD/SO1/P31 RxD/SI1/P30	8

Caution To select a transmission method, always use the corresponding number of VPP pulses listed in Table 6-1.

Figure 6-1. Format of Transmission Method Selection

6.2 Flash Memory Programming Functions

Flash memory writing and other operations can be performed by transmitting/receiving commands and data according to the selected transmission method. Table 6-2 lists the main flash memory programming functions.

Function Description Batch erase Erases the entire contents of memory. Block erase Erases the contents of specified memory block. Batch blank check Checks that the entire contents of memory have been erased. Block blank check Checks that the contents of specified block have been erased. Data write Write to the flash memory according to the specified write start address and number of bytes of data to be written. Batch verify Compares the entire contents of memory with the input data. Block verify Compares the contents of specified memory block with the input data.

Table 6-2. Main Flash Memory Programming Functions

6.3 Connecting the Flashpro III

The connection between the Flashpro III and μ PD78F4937 varies with the transmission method. Figures 6-2 and 6-3 show the connection for each transmission method.

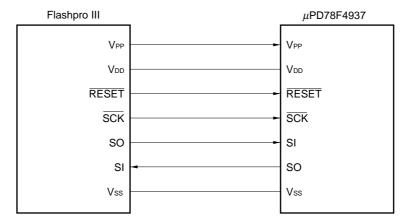
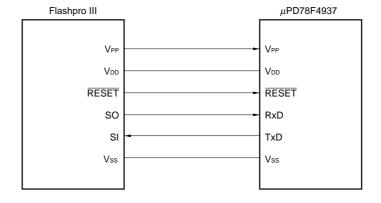
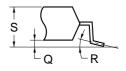
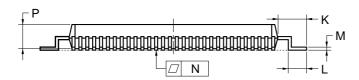



Figure 6-2. Flashpro III Connection in 3-Wire Serial I/O Mode

Figure 6-3. Flashpro III Connection in UART Mode



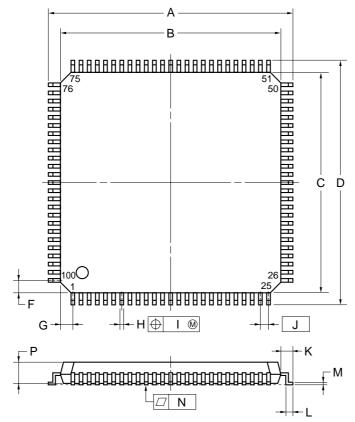

7. PACKAGE DRAWINGS

100PIN PLASTIC QFP (14x20)

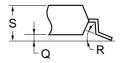
detail of lead end

NOTE

Each lead centerline is located within 0.15 mm (0.006 inch) of its true position (T.P.) at maximum material condition.


REMARK

The shape and material of the ES product is the same as the mass produced product.


ITEM	MILLIMETERS	INCHES
Α	23.6±0.4	0.929±0.016
В	20.0±0.2	$0.795^{+0.009}_{-0.008}$
С	14.0±0.2	$0.551^{+0.009}_{-0.008}$
D	17.6±0.4	0.693±0.016
F	0.8	0.031
G	0.6	0.024
Н	0.30±0.10	0.012+0.004
- 1	0.15	0.006
J	0.65 (T.P.)	0.026 (T.P.)
K	1.8±0.2	$0.071^{+0.008}_{-0.009}$
L	0.8±0.2	0.031+0.009
М	$0.15^{+0.10}_{-0.05}$	$0.006^{+0.004}_{-0.003}$
N	0.10	0.004
Р	2.7±0.1	0.106 ^{+0.005} _{-0.004}
Q	0.1±0.1	0.004±0.004
R	5°±5°	5°±5°
S	3.0 MAX.	0.119 MAX.

P100GF-65-3BA1-3

100 PIN PLASTIC LQFP (FINE PITCH) (14×14)

detail of lead end

NOTE

Each lead centerline is located within 0.08 mm (0.003 inch) of its true position (T.P.) at maximum material condition.

REMARK

The shape and material of the ES product is the same as the mass produced product.

MILLIMETERS	INCHES
16.00±0.20	0.630±0.008
14.00±0.20	$\substack{0.551 + 0.009 \\ -0.008}$
14.00±0.20	$0.551^{+0.009}_{-0.008}$
16.00±0.20	0.630±0.008
1.00	0.039
1.00	0.039
0.22 ^{+0.05} _{-0.04}	0.009±0.002
0.08	0.003
0.50 (T.P.)	0.020 (T.P.)
1.00±0.20	0.039+0.009
0.50±0.20	0.020+0.008
0.17 + 0.03 - 0.07	0.007+0.001
0.08	0.003
1.40±0.05	0.055±0.002
0.10±0.05	0.004±0.002
3°+7° -3°	3°+7° -3°
1.60 MAX.	0.063 MAX.
	14.00±0.20 14.00±0.20 16.00±0.20 1.00 1.00 0.22±0.05 0.08 0.50 (T.P.) 1.00±0.20 0.17±0.03 0.08 1.40±0.05 0.10±0.05 3°±7° -3°

S100GC-50-8EU

APPENDIX A DEVELOPMENT TOOLS

The following development tools are available for system development using the μ PD78F4937. See also **(5)**.

(1) Language processing software

RA78K4	Assembler package used in common with 78K/IV Series
CC78K4	C compiler package used in common with 78K/IV Series
DF784937	Device file for μPD784937 Subseries
CC78K4-L	C compiler library source file used in common with 78K/IV Series

(2) Flash memory write tools

Flashpro III Note (PG-FPIII)	Flash writer used only for microcontrollers with internal flash memory
FA-100GF	Flash memory writing adapter for 100-pin plastic QFP (GF-3BA type). Wiring must be performed according to product being used.
FA-100GC	Flash memory writing adapter for 100-pin plastic LQFP (GC-8EU type). Wiring must be performed according to product being used.
Flashpro III controller	Program controlled by a personal computer and which is supported by Flashpro III. Runs under Windows TM 95, etc.

(3) Debugging tools

• When using the in-circuit emulator IE-78K4-NS

IE-78K4-NS	In-circuit emulator used in common with 78K/IV Series
IE-70000-MC-PS-B	Power supply unit for IE-78K4-NS
IE-70000-98-IF-C	Interface adapter when the PC-9800 series computer (other than a notebook) is used as the host machine
IE-70000-CD-IF-C	PC card and interface cable when a PC-9800 series notebook is used as the host machine
IE-70000-PC-IF-C	Interface adapter when the IBM PC/AT TM compatible is used as the host machine
IE-784937-NS-EM1 Note	Emulation board for emulating μ PD784937 Subseries
NP-100GF	Emulation probe for 100-pin plastic QFP (GF-3BA type)
NP-100GC	Emulation probe for 100-pin plastic LQFP (GC-8EU type)
EV-9200-GF-100	Socket for mounting on target system board made for 100-pin plastic QFP (GF-3BA type)
TGC-100SDW	Conversion adapter for connecting the target system board made for 100-pin plastic LQFP (GC-8EU type) with NP-100GC
ID78K4-NS	Integrated debugger for IE-78K4-NS
SM78K4	System simulator used in common with 78K/IV Series
DF789437	Device file for μPD784937 Subseries

Note Under development

• When using the in-circuit emulator IE-784000-R

IE-784000-R	In-circuit emulator used in common with 78K/IV Series
IE-70000-98-IF-B IE-70000-98-IF-C	Interface adapter when the PC-9800 series computer (other than a notebook) is used as the host machine
IE-70000-98N-IF	Interface adapter and cable when a PC-9800 series notebook is used as the host machine
IE-70000-PC-IF-B IE-70000-PC-IF-C	Interface adapter when the IBM PC/AT compatible is used as the host machine
IE-78000-R-SV3	Interface adapter and cable when the EWS is used as the host machine
IE-784937-NS-EM1 ^{Note} IE-784937-R-EM1 ^{Note}	Emulation board for emulating μ PD784937 Subseries
IE-78400-R-EM	Emulation board used in common with 78K/IV Series
IE-78K4-R-EX2 ^{Note}	Conversion board for emulation probes required to use the IE-784937-NS-EM1 on the IE-784000-R. The board is not needed when the IE-784937-R-EM1 is used.
EP-78064GF-R	Emulation probe for 100-pin plastic QFP (GF-3BA type)
EP-78064GC-R	Emulation probe for 100-pin plastic LQFP (GC-8EU type)
EV-9200GF-100	Socket for mounting on target system board made for 100-pin plastic QFP (GF-3BA type)
TGC-100SDW	Conversion adapter for connecting the target system board made for 100-pin plastic LQFP (GC-8EU type) with NP-100GC
ID78K4	Integrated debugger for IE-784000-R
SM78K4	System simulator used in common with 78K/IV Series
DF784937	Device file for μPD784937 Subseries

Note Under development

(4) Real-time OS

RX78K/IV	Real-time OS for 78K/IV Series
MX78K4	OS for the 78K/IV Series

(5) Notes when using development tools

- The ID78K4-NS, ID78K4, and SM78K4 can be used in combination with the DF784937.
- The CC78K4 and RX78K/IV can be used in combination with the RA78K4 and DF784937.
- The Flashpro III, FA-100GF, FA-100GC, NP-100GF, and NP-100GC are manufactured by Naito Densei Machida Mfg. Co., Ltd. (044-822-3813). Consult the NEC sales representative for purchasing.
- The TGC-100SDW is a product from TOKYO ELETECH CORPORATION.

Refer to: Daimaru Kogyo, Ltd.

Tokyo Electronic Components Division (03-3820-7112)

Osaka Electronic Components Division (06-244-6672)

• The host machines and operating systems corresponding to each software are shown below.

Host machine	PC	EWS
[OS]	PC-9800 series [Windows] IBM PC/AT compatibles [Japanese/English Windows]	HP9000 series 700 TM [HP-UX TM] SPARCstation TM [SunOS TM , Solaris TM] NEWS TM (RISC) [NEWS-OS TM]
RA78K4	O ^{Note}	0
CC78K4	O ^{Note}	0
ID78K4-NS	0	-
ID78K4	0	0
SM78K4	O	-
RX78K/IV	O ^{Note}	0
MX78K4	O ^{Note}	О

Note Software under MS-DOS

APPENDIX B RELATED DOCUMENTS

• Documents Related to Devices

Document name	Document No.	
	Japanese	English
μPD784935, 784936, 784937 Preliminary Product Information	U13572J	To be created
μPD78F4937 Preliminary Product Information	U13573J	This manual
μPD784937 Subseries User's Manual, Hardware	To be created	To be created
μPD784937 Subseries Special Function Registers	To be created	_
78K/IV Series User's Manual, Instruction	U10905J	U10905E
78K/IV Series Instruction Summary Sheet	U10594J	_
78K/IV Series Instruction Set	U10595J	_
78K/IV Series Application Note, Software Basic	U10095J	U10095E

• Documents Related to Development Tools (User's Manual)

Document name		Document No.	
		Japanese	English
RA78K Series Assembler Package	Operation	U11334J	U11334E
	Language	U11162J	U11162E
RA78K Series Structured Assembler Preprocessor		U11743J	U11743E
CC78K Series C Compiler	Operation	U11571J	U11571E
	Language	U11572J	U11572E
IE-78K4-NS		U13356J	To be created
IE-784000-R		U12903J	EEU-1534
IE-784937-R-EM1		To be created	To be created
IE-784937-NS-EM1		To be created	To be created
EP-78064		EEU-934	EEU-1469
SM78K4 System Simulator Windows Base	Reference	U10093J	U10093E
SM78K Series System Simulator	External Parts User Open Interface Specifications	U10092J	U10092E
ID78K4-NS Integrated Debugger	Reference	U12796J	U12796E
ID78K4 Integrated Debugger Windows Base	Reference	U10440J	U10440E
ID78K4 Integrated Debugger HP-UX, SunOS, NEWS-OS Base	Reference	U11960J	U11960E

Caution The above documents may be revised without notice. Use the latest versions when you design application systems.

• Documents Related to Software to Be Incorporated into the Product (User's Manual)

Document name		Document No.	
		Japanese	English
78K/IV Series Real-Time OS	Basic	U10603J	U10603E
	Installation	U10604J	U10604E
	Debugger	U10364J	-
OS for 78K/IV Series MX78K4		U11779J	-

Other Documents

Document name	Document No.	
	Japanese	English
IC PACKAGE MANUAL	C10943X	
SMD Surface Mount Technology Manual	C10535J	C10535E
Quality Grades on NEC Semiconductor Device	C11531J	C11531E
NEC Semiconductor Device Reliability/Quality Control System	C10983J	C10983E
Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD)	C11892J	C11892E
Semiconductor Device Quality Control/Reliability Handbook	C12769J	_
Guide for Products Related to Microcomputer: Other Companies	U11416J	_

Caution The above documents may be revised without notice. Use the latest versions when you design application systems.

[MEMO]

NOTES FOR CMOS DEVICES—

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

IEBus is a trademark of NEC Corporation.

Windows is a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.

PC/AT is a trademark of IBM Corporation.

HP9000 series 700 and HP-UX are trademarks of Hewlett-Packard Company.

SPARCstation is a trademark of SPARC International, Inc.

Solaris and SunOS are trademarks of Sun Microsystems, Inc.

NEWS and NEWS-OS are trademarks of SONY Corporation.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- · Device availability
- · Ordering information
- · Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- · Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288

NEC Electronics (Germany) GmbH

Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.

Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Italiana s.r.1.

Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH

Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

NEC Electronics (France) S.A.

Velizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

NEC Electronics (France) S.A.

Spain Office Madrid, Spain Tel: 01-504-2787 Fax: 01-504-2860

NEC Electronics (Germany) GmbH

Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388

NEC Electronics Hong Kong Ltd.

Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.

Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.

United Square, Singapore 1130 Tel: 65-253-8311

Fax: 65-250-3583

NEC Electronics Taiwan Ltd.

Taipei, Taiwan Tel: 02-719-2377 Fax: 02-719-5951

NEC do Brasil S.A.

Cumbica-Guarulhos-SP, Brasil

Tel: 011-6465-6810 Fax: 011-6465-6829

J98. 2

Some related documents may be preliminary versions. Note that, however, what documents are preliminary is not indicated in this document.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots

ecial: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)

Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.

M4 96.5