Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

PRELIMINARY PRODUCT INFORMATION

MOS INTEGRATED CIRCUIT μ PD78F0974

8-BIT SINGLE-CHIP MICROCONTROLLER

DESCRIPTION

The μ PD78F0974 is a product of the μ PD780973 Subseries in the 78K/0 Series and equivalent to the μ PD780973(A) with a flash memory in place of internal ROM.

This device can be programmed without being removed from the substrate.

Functions are described in detail in the following user's manuals, which should be read when carrying out design work.

 μ PD780973 Subseries User's Manual : U12406E 78K/0 Series User's Manual -Instruction : U12326E

FEATURES

• Pin-compatible with mask ROM versions (except VPP pin)

Flash memory : 32 Kbytes^{Note}
 Internal high-speed RAM : 1024 bytes^{Note}

- Inclusion of EEPROMTM which can be read/written by software: 256 bytes
- Operable with the same power supply voltage as that of mask ROM version (VDD = 4.5 to 5.5 V)

Note The flash memory and internal high-speed RAM capacities can be changed with the memory size switching register (IMS).

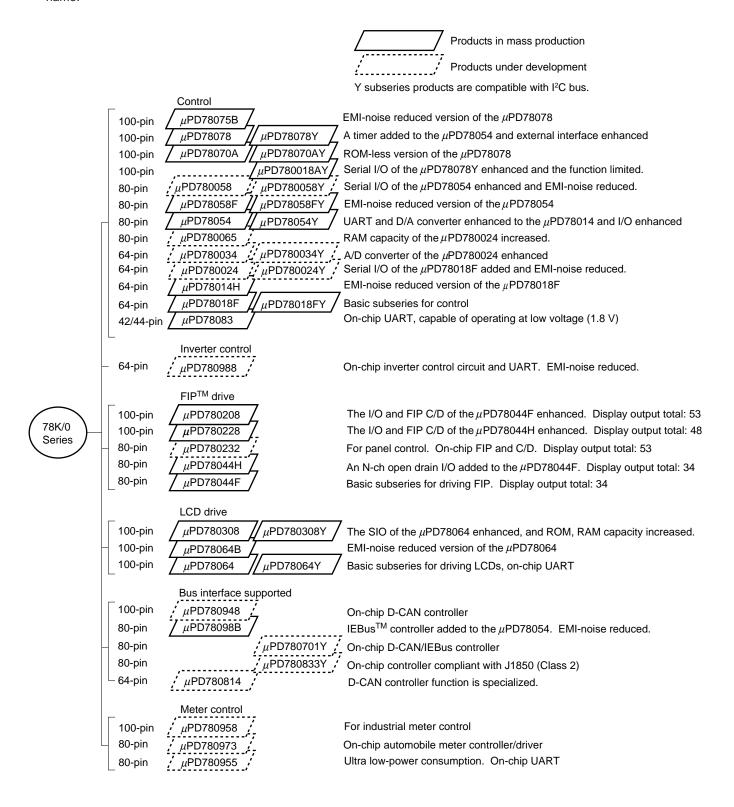
Remark For the difference between the flash memory version and the mask ROM version, refer to 1. DIFFERENCES BETWEEN μ PD78F0974 AND MASK ROM VERSION.

APPLICATION FIELD

Automotive meter (dashboard) control

ORDERING INFORMATION

Part Number	Package	Internal ROM
μPD78F0974GF-3B9	80-pin plastic QFP (14 × 20 mm)	Flash memory


The information contained in this document is being issued in advance of the production cycle for the device. The parameters for the device may change before final production or NEC Corporation, at its own discretion, may withdraw the device prior to its production.

★ 78K/0 SERIES DEVELOPMENT

The following shows the products organized according to usage. The names in the parallelograms are subseries name.

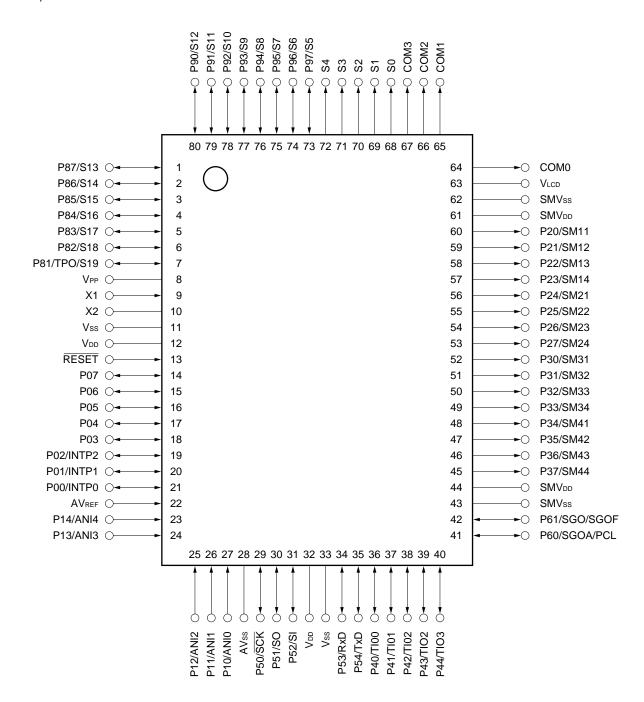
The major functional differences among the subseries are shown below.

	Function	ROM		Tin	ner		8-bit	10-bit	8-bit	Serial Interface	I/O	V _{DD}	External
Subseries	Name	Capacity	8-bit	16-bit	Watch	WDT	A/D	A/D	D/A				Expansion
Control	μPD78075B	32 K-40 K	4ch	1ch	1ch	1ch	8ch	-	2ch	3ch (UART: 1 ch)	88	1.8 V	Yes
	μPD78078	48 K-60 K											
	μPD78070A	_									61	2.7 V	
	μPD780058	24 K-60 K	2ch							3ch (time-division UART: 1ch)	68	1.8 V	
	μPD78058F	48 K-60 K								3ch (UART: 1ch)	69	2.7 V	
	μPD78054	16 K-60 K										2.0 V	
	μPD780065	40 K-48 K							_	4ch (UART: 1 ch)	60	2.7 V	
	μPD780034	8 K-32 K					-	8ch		3ch (UART: 1ch,	51	1.8 V	
	μPD780024						8ch	-		time-division 3-wire: 1ch)			
	μPD78014H									2ch	53		
	μPD78018F	8 K-60 K											
	μPD78083	8 K-16 K		_	_					1ch (UART: 1ch)	33		_
Inverter control	μPD780988	32 K-60 K	3ch	Note	-	1ch	-	8ch	-	3ch (UART: 2ch)	47	4.0 V	Yes
FIP	μPD780208	32 K-60 K	2ch	1ch	1ch	1ch	8ch	_	_	2ch	74	2.7 V	_
drive	μPD780228	48 K-60 K	3ch	_	_					1ch	72	4.5 V	
	μPD780232	16 K-24 K					4ch			2ch	40		
	μPD78044H	32 K-48 K	2ch	1ch	1ch		8ch			1ch	68	2.7 V	
	μPD78044F	16 K-40 K								2ch			
LCD	μPD780308	48 K-60 K	2ch	1ch	1ch	1ch	8ch	-	_	3ch (time-division UART: 1ch)	57	2.0 V	-
drive	μPD78064B	32 K								2ch (UART: 1ch)			
	μPD78064	16 K-32 K											
Bus	μPD780948	60 K	2ch	2ch	1ch	1ch	8ch	_	_	3ch (UART: 1ch)	79	4.0 V	Yes
interface	μPD78098B	40 K-60 K		1ch					2ch		69	2.7 V	-
compatible	μPD780814	32 K-60 K		2ch			12ch		_	2ch (UART: 1ch)	46	4.0 V	
Meter	μPD780958	48 K-60 K	4ch	2ch	_	1ch	_	_	-	2ch (UART: 1ch)	69	2.2 V	_
control	μPD780973	24 K-32 K	3ch	1ch	1ch		5ch				56	4.5 V	
	μPD780955	40 K	6ch		_		1ch			2ch (UART: 2ch)	50	2.2 V	

Note 16-bit timer: 2 channels 10-bit timer: 1 channel

FUNCTION OVERVIEW

	Item	Function			
Internal	Flash Memory	32 Kbytes ^{Note}			
Memory	High-speed RAM	1024 bytes ^{Note}			
	EEPROM	256 bytes			
	LCD display RAM	20 × 4 bits			
General-purp	ose registers	8 bits × 32 registers (8 bits × 8 registers × 4 banks)			
Instruction cy	rcle	On-chip minimum instruction execution time cycle modification function 0.24 μ s/0.48 μ s/0.95 μ s/1.91 μ s/3.81 μ s (at 8.38 MHz operation)			
Instruction set		 16-bit operation Multiply/divide (8 bits × 8 bits, 16 bits ÷ 8 bits) Bit manipulate (set, reset, test, boolean operation) BCD correction, etc. 			
I/O ports		Total : 56			
(Including seg	gment signal output pins)	CMOS input : 5 CMOS output : 16			
		• CMOS I/O : 35			
A/D converte	r	8-bit resolution × 5 channels Power fail detector			
LCD controlle	er/driver	Segment signal output : Maximum 20			
		Common signal output : Maximum 4			
		• Bias : 1/3			
Serial interfac	ce	3-wire serial I/O mode : 1 channel UART mode : 1 channel			
Timer		16-bit timer : 1 channel			
Timei		8-bit timer : 1 channel			
		8-bit timer/event counter : 2 channels			
		Watch timer : 1 channel			
		Watchdog timer : 1 channel			
Timer output		2 (8-bit PWM output capability: 2)			
Meter control	ler/driver	PWM output (8-bit resolution): 16			
Sound genera	ator	1 channel			
Clock output		65.5 kHz, 131 kHz, 262 kHz, 524 kHz, 1.04 MHz, 2.09 MHz, 4.19 MHz, 8.38 MHz (main system clock: at 8.38 MHz operation)			
Vectored- interrupt	Maskable	Internal : 16 External : 3			
source	Non-maskable	Internal : 1			
	Software	1			
Supply voltag	je	V _{DD} (SMV _{DD}) = 4.5 to 5.5 V			
Operation am	bient temperature	T _A = -40 to +85 °C			
Package		80-pin plastic QFP (14 × 20 mm)			


Note The capacities of the flash memory and the internal high-speed RAM can be changed with the memory size switching register (IMS).

PIN CONFIGURATION (TOP VIEW)

• **80-Pin Plastic QFP (14** \times **20 mm)** μ PD78F0974GF-3B9

Cautions 1. Connect the VPP pin directly to Vss in normal operation mode.

2. Connect the AVss pin to Vss.

Remark When the μ PD78F0974 is used in application fields that require reduction of the noise generated from inside the microcontroller, the implementation of noise reduction measures, such as supplying voltage to 2 V_{DDS} individually and connecting Vss to different ground lines, is recommended.

ANI0-ANI4 : Analog Input SGO : Sound Generator Output

AVREF : Analog Reference Voltage SGOA : Sound Generator Amplitude Output AVss : Analog Ground SGOF : Sound Generator Frequency Output

COM0-COM3 : Common Output SI : Serial Input

INTP0-INTP2 : Interrupt from Peripherals SM11-SM14, SM21-SM24, SM31-SM34, SM41-SM44

P00-P07 : Port 0 : Meter Output

P10-P14 : Port 1 SMV_{DD} : Meter Controller Power Supply P20-P27 : Port 2 SMV_{SS} : Meter Controller Ground

P30-P37 : Port 3 SO : Serial Output
P40-P44 : Port 4 TI00-TI02 : Timer Input

P50-P54 : Port 5 TIO2, TIO3 : Timer Output/Event Counter Input

 P60, P61
 : Port 6
 TPO
 : Prescaler Output

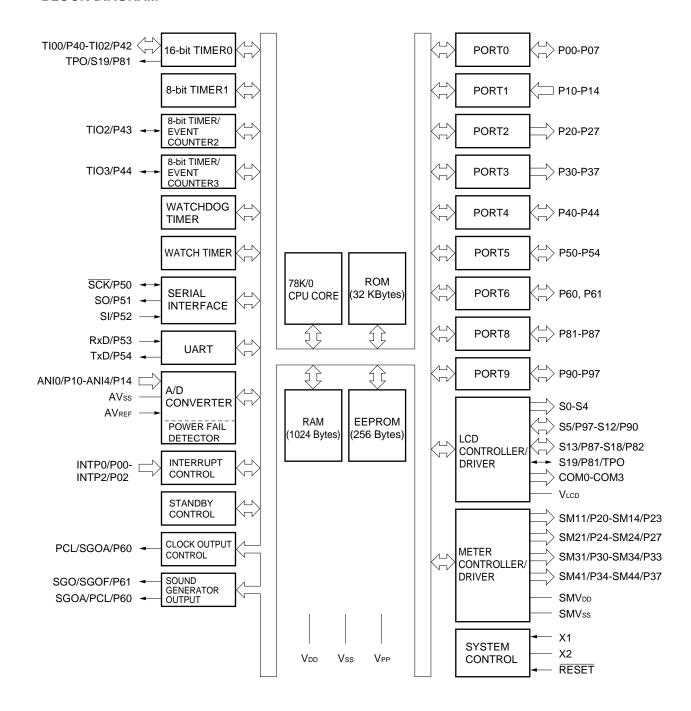
 P81-P87
 : Port 8
 TxD
 : Transmit Data

 P90-P97
 : Port 9
 Vpb
 : Power Supply

PCL : Programmable Clock Output V_{LCD} : LCD Power Supply

RESET : Reset VPP : Programming Power Supply

RxD : Receive Data Vss : Ground


S0-S19 : Segment Output X1, X2 : Crystal (Main System Clock)

SCK : Serial Clock

BLOCK DIAGRAM

CONTENTS

1.	DIFFERENCES BETWEEN μ PD78F0974 AND MASK ROM VERSION	9
2.	PIN FUNCTIONS	
	2.1 Port Pins	
	2.2 Non-Port Pins	
	2.3 Pin I/O Circuits and Recommended Connection of Unused Pins	12
3.	MEMORY SIZE SWITCHING REGISTER (IMS)	15
4.	FLASH MEMORY PROGRAMMING	
	4.1 Selection of Transmission Method	
	4.2 Function of Flash Memory Programming	17
	4.3 Connection of Flashpro III	17
5.	ELECTRICAL SPECIFICATIONS	19
6.	PACKAGE DRAWING	31
ΑP	PENDIX A. DEVELOPMENT TOOLS	32
AΡ	PENDIX B. RELATED DOCUMENTS	35

1. DIFFERENCES BETWEEN μ PD78F0974 AND MASK ROM VERSION

The μ PD78F0974 is a product provided with a flash memory which enables on-board reading, erasing, and rewriting of programs with device mounted on target system.

The functions of the μ PD78F0974 (except the functions specified for flash memory) can be made the same as those of the mask ROM version by setting the memory size switching register (IMS).

Table 1-1 shows the differences between the flash memory version (μ PD78F0974) and the mask ROM version (μ PD780973(A)).

Table 1-1. Differences between μ PD78F0974 and Mask ROM Version

Item	μPD78F0974	μPD780973(A)	
Internal ROM structure	Flash memory	Mask ROM	
Internal ROM capacity	32 Kbytes	24 Kbytes	
Internal high-speed RAM capacity	1024 bytes	768 bytes	
Internal ROM and internal high-speed RAM capacity changeable/not changeable with memory size switching register	Changeable ^{Note}	Not changeable	
IC pin	Not provided	Provided	
V _{PP} pin	Provided	Not provided	
Electrical specifications	specifications Refer to the data sheet of individual products.		
Quality grade	Standard	Special	

Note The default is CFH, but set the value as indicated below.

IMS Set Value	Flash Memory	Internal High-speed RAM	Remarks
06H	24 Kbytes	768 bytes	When making to the same as the memory
			mapping of μ PD780973(A)
C8H	32 Kbytes	1024 bytes	At maximum

2. PIN FUNCTIONS

2.1 Port Pins

Pin Name	I/O	Function	After Reset	Alternate Function
P00 to P02	I/O	Port 0	Input	INTP0 to INTP2
P03 to P07		8-bit input/output port.		_
		Input/output can be specified bit-wise.		
		An internal pull-up resistor can be connected by software.		
P10 to P14	Input	Port 1	Input	ANI0 to ANI4
		5-bit input only port.		
P20 to P23	Output	Port 2	Hi-Z	SM11 to SM14
P24 to P27		8-bit output only port.		SM21 to SM24
P30 to P33	Output	Port 3	Hi-Z	SM31 to SM34
P34 to P37		8-bit output only port.		SM41 to SM44
P40 to P42	I/O	Port 4	Input	TI00 to TI02
		5-bit input/output port.		
P43, P44		Input/output can be specified bit-wise.		TIO2, TIO3
P50	I/O	Port 5	Input	SCK
P51		5-bit input/output port.		so
P52		Input/output can be specified bit-wise.		SI
P53				RxD
P54				TxD
P60	I/O	Port 6	Input	PCL/SGOA
P61		2-bit input/output port.		SGO/SGOF
		Input/output can be specified bit-wise.		
P81	I/O	Port 8	Input	S19/TPO
P82 to P87		7-bit input/output port.		S18 to S13
		Input/output can be specified bit-wise.		
		Input/output port/segment signal output function can be specified		
		in 2-bit unit by the LCD display control register (LCDC).		
P90 to P97	I/O	Port 9	Input	S12 to S5
		8-bit input/output port.		
		Input/output can be specified bit-wise.		
		Input/output port/segment signal output function can be specified		
		in 2-bit unit by the LCD display control register (LCDC).		

2.2 Non-Port Pins

Pin Name I	in Name I/O Function		After Reset	Alternate Function
INTP0 to INTP2 In	nput	External interrupt input by which the effective edge (rising edge, falling edge, or both rising edge and falling edge) can be specified.	Input	P00 to P02
SI Ir	nput	Serial interface serial data input	Input	P52
SO Ou	utput	Serial interface serial data output	Input	P51
SCK	I/O	Serial interface serial clock input/output	Input	P50
RxD Ir	nput	Serial data input for asynchronous serial interface	Input	P53
TxD Ou	utput	Serial data output for asynchronous serial interface	Input	P54
TI00 Ir	nput	Capture trigger signal input to capture register (CR00)	Input	P40
TI01		Capture trigger signal input to capture register (CR01)		P41
TI02		Capture trigger signal input to capture register (CR02)		P42
TIO2	I/O	8-bit timer (TM2) input/output (shared with 8-bit PWM output)	Input	P43
TIO3		8-bit timer (TM3) input/output (shared with 8-bit PWM output)		P44
TPO Ou	utput	16-bit timer (TM0) prescaler output	Input	P81/S19
PCL Ou	utput	Clock output (for trimming of main system clock)	Input	SGOA/P60
SGOA Ou	utput	Sound generator signal output	Input	PCL/P60
SGOF				SGO/P61
SGO				SGOF/P61
S0 to S4 Ou	utput	LCD controller/driver segment signal output	Output	_
S5 to S12			Input	P97 to P90
S13 to S18				P87 to P82
S19				P81/TPO
COM0 to COM3 Ou	utput	LCD controller/driver common signal output	Output	-
VLCD	-	LCD drive voltage	_	_
SM11 to SM14 Ou	utput	Meter control signal output	Hi-Z	P20 to P23
SM21 to SM24				P24 to P27
SM31 to SM34				P30 to P33
SM41 to SM44				P34 to P37
ANI0 to ANI4 Ir	nput	A/D converter analog input	Input	P10 to P14
AV _{REF} Ir	nput	A/D converter reference voltage input (shared with analog power supply)	_	-
AVss	_	A/D converter ground potential. Connect to Vss.	_	_
RESET Ir	nput	System reset input	_	_
X1 Ir	nput	Main system clock oscillation crystal connection	_	_
X2	_		_	_
SMV _{DD}	_	Power supply for meter controller/driver	_	_
	_	Ground potential for meter controller/driver	_	_
SMVss				1
SMVss V _{DD}	_	Positive power supply	_	_
		Positive power supply Ground potential	-	_

2.3 Pin I/O Circuits and Recommended Connection of Unused Pins

The input/output circuit type of each pin and recommended connection of unused pins are shown in Table 2-1. For the input/output circuit configuration of each type, see Figure 2-1.

Table 2-1. Input/Output Circuit Type of Each Pin

	Pin Name	Input/output Circuit Type	I/O	Recommended Connection When Not Used
	P00/INTP0-P02/INTP2	8-A	Input/output	Independently connect to Vss through resistor.
	P03 to P07			
	P10/ANI0 to P14/ANI4	9	Input	Independently connect to VDD or Vss through resistor.
*	P20/SM11 to P23/SM14	4	Output	Leave open.
	P24/SM21 to P27/SM24			
	P30/SM31 to P33/SM34			
	P34/SM41 to P37/SM44			
	P40/TI00 to P42/TI02	8	Input/output	Independently connect to V _{DD} or V _{SS} through
	P43/TIO2	_		resistor.
	P44/TIO3			
	P50/SCK			
	P51/SO	5		
	P52/SI	8		
	P53/RxD			
	P54/TxD	5		
	P60/SGOA/PCL			
	P61/SGO/SGOF			
*	P81/S19/TPO	17-G		
	P82/S18 to P87/S13			
	P90/S12 to P97/S5			
	S0-S4	17	Output	Leave open.
	COM0 to COM3	18		
	VLCD	_	_	
	RESET	2	Input	Connect to V _{DD} .
	SMV _{DD}	_	_	
	SMVss			Connect to Vss.
	AVREF			
	AVss			
	Vpp			Directly connect to Vss.

Figure 2-1. Pin Input/Output Circuits (1/2)

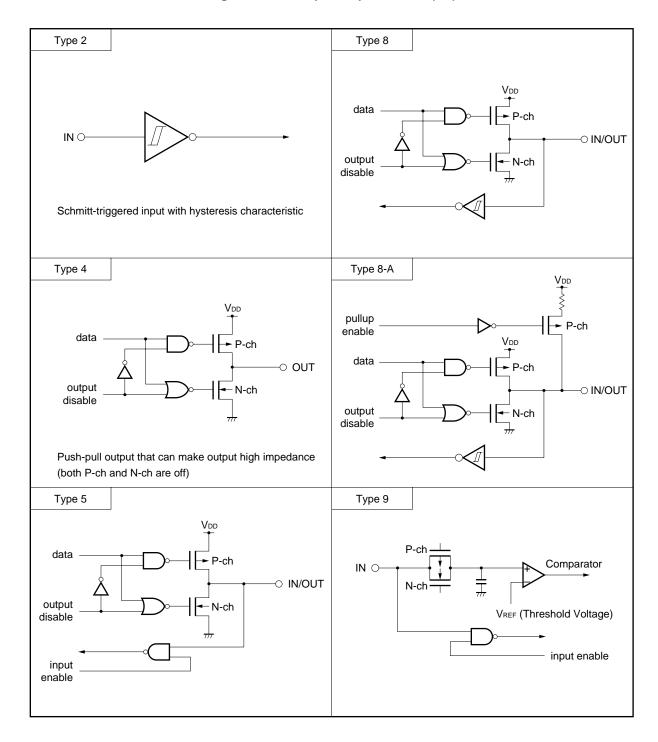
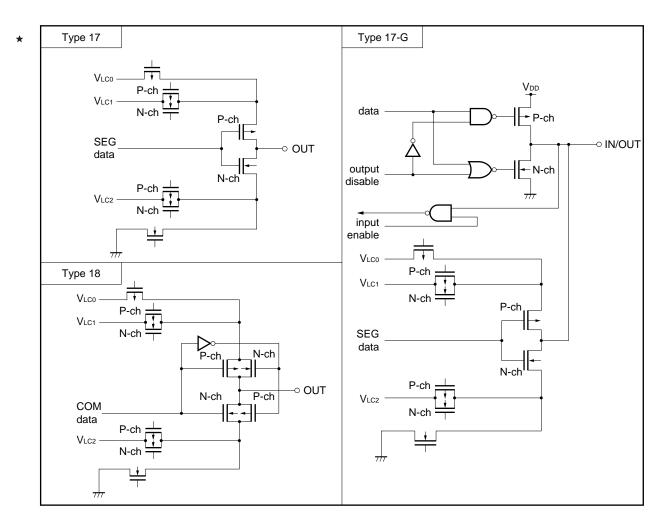



Figure 2-1. Pin Input/Output Circuits (2/2)

3. MEMORY SIZE SWITCHING REGISTER (IMS)

This register sets a part of internal memory unused by software. The memory mapping can be made the same as that of mask ROM version with different type of internal memory (ROM, RAM).

The IMS is set with an 8-bit memory manipulation instruction.

RESET input sets the IMS to CFH.

Figure 3-1. Format of Memory Size Switching Register

Address:	FFF0H	Aft	er reset: C	FH	R/W			
Symbol	7	6	5	4	3	2	1	0
IMS	RAM2	RAM1	RAM0	0	ROM3	ROM2	ROM1	ROM0

RAM2	RAM1	RAM0	Selection of Internal High-speed RAM Capacity
0	0	0	768 bytes
1	1	0	1024 bytes
Others			Setting prohibited

ROM3	ROM2	ROM1	ROM0	Selection of Internal ROM Capacity
0	1	1	0	24 Kbytes
1	0	0	0	32 Kbytes
Others				Setting prohibited

Table 3-1 shows the IMS set value to make the memory mapping the same as that of mask ROM version.

Table 3-1. Set Value of Memory Size Switching Register

Target Mask ROM Version	IMS Set Value
μPD780973(A)	06H

4. FLASH MEMORY PROGRAMMING

Writing to a flash memory can be performed without removing the memory from the target system. Writing is performed connecting the dedicated flash programmer (Flashpro III (part number: FL-PR3, PG-FP3)) to the host machine and the target system. Moreover, writing to flash memory can also be performed using a flash memory writing adapter connected to Flashpro III.

Remark FL-PR3 is a product of Naito Densei Machida Mfg. Co., Ltd. Inquiry: Naito Densei Machida Mfg. Co., Ltd. (TEL: 044-822-3813)

4.1 Selection of Transmission Method

Writing to a flash memory is performed using the Flashpro III with a serial transmission mode. One of the transmission method is selected from those in Table 4-1. The selection of the transmission method is made by using the format shown in Figure 4-1. Each transmission method is selected by the number of VPP pulses shown in Table 4-1.

Table 4-1. List of Transmission Method

Transmission Method	Channels	Pin	VPP Pulses
3-wire serial I/O	1	SI/P52 SO/P51 SCK/P50	0
UART	1	RxD/P53 TxD/P54	8
Pseudo 3-wire serial I/O	2	P05 (serial clock input) P06 (serial data output) P07 (serial data input)	12
		P95/S7 (serial clock input) P96/S6 (serial data output) P97/S5 (serial data input)	13

Caution Select a communication system always using the number of VPP pulses shown in Table 4-1.

V_{PP} pulses 10 V V_{PP} V_{DD} Vss V_{DD} RESET Flash write mode Vss

Figure 4-1. Format of Transmission Method Selection

4.2 Function of Flash Memory Programming

Operations such as writing to a flash memory are performed by various command/data transmission and reception operations according to the selected transmission method. Table 4-2 shows major functions of flash memory programming.

Table 4-2. Major Functions of Flash Memory Programming

Functions	Descriptions
Reset	Used to stop write operation and detect transmission cycle.
Batch verify	Compares the entire memory contents with the input data.
Batch delete	Deletes the entire memory contents.
Batch blank check	Checks the deletion status of the entire memory.
High-speed write	Performs write to the flash memory based on the write start address and the number of data to be written (number of bytes).
Continuous write	Performs continuous write based on the information input with high-speed write operation.
Status	Used to confirm the current operating mode and operation end.
Oscillation frequency setting	Sets the frequency of the resonator.
Delete time setting	Sets the memory delete time.
Baud rate setting	Sets the transmission rate in transmission using UART system.
Silicon signature read	Outputs the device name and memory capacity, and device block information.

4.3 Connection of Flashpro III

The connection of the Flashpro III and the μ PD78F0974 differs according to the transmission method (3-wire serial I/O, UART pseudo 3-wire serial I/O). The connection for each transmission method is shown in Figures 4-2 and 4-3, respectively.

Figure 4-2. Connection of Flashpro III for 3-wire Serial I/O System

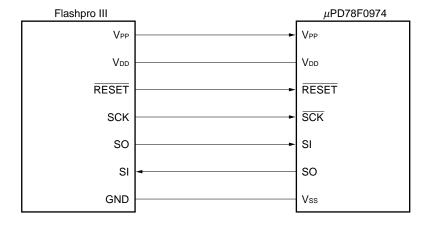


Figure 4-3. Connection of the Flashpro III for UART System

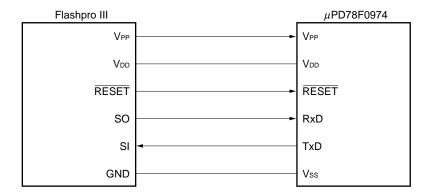
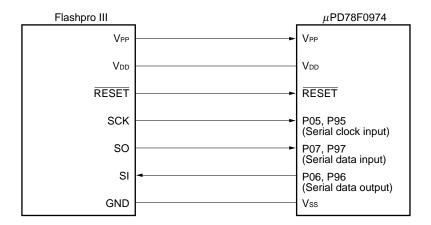



Figure 4-4. Connection of Flashpro III Using Pseudo 3-Wire Serial I/O Method

5. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings (TA = 25 °C)

Parameter	Symbol		Test Condition	S	Ratings	Unit
Supply	V _{DD}				-0.3 to +6.5	V
voltage	V _{PP}				-0.3 to +10.3	V
	AVREF				-0.3 to V _{DD} + 0.3	V
	AVss				-0.3 to +0.3	V
	SMV _{DD}	SMV _{DD} = V _{DD}			-0.3 to +6.5	V
	SMVss				-0.3 to +0.3	V
Input voltage	Vı				-0.3 to V _{DD} + 0.3	V
Output voltage	V _{O1}	P00-P07, P40	-P44, P50-P54, P60, P61,	P81-P87, P90-P97, RESET	-0.3 to V _{DD} + 0.3	V
	V _{O2}	P20-P27, P30)-P37		-0.5 to SMVpp + 0.7	V
Analog input voltage	Van	P10-P14	Analog input pin		AVss - 0.3 to AVREF + 0.3	V
Output	Іон	1 pin (P00-P0)7, P40-P44, P50-P54, P6	60, P81-P87, P90-P97)	-10	mA
current high		P00-P07, P40)-P44, P50-P54, P60, P81	-P87, P90-P97 total	-15	mA
		P61			-30	mA
		1 pin (P20-P2	27)		-45	mA
		P20-P27 tota	I		-135	mA
		1 pin (P30-P3	37)		-45	mA
		P30-P37 tota	I		-135	mA
Output	OLNote	1 pin (P00-P0)7, P40-P44, P50-P54,	Peak value	20	mA
current low		P60, P81-P87	7, P90-P97)	r.m.s.	10	mA
		P00-P07, P40)-P44, P50-P54, P60,	Peak value	50	mA
		P81-P87, P90	0-P97 total	r.m.s.	20	mA
		P61		r.m.s.	30	mA
		1 pin (P20-P2	27)		45	mA
		P20-P27 tota	l		135	mA
		1 pin (P30-P3	37)		45	mA
		P30-P37 tota	I		135	mA
Operating ambient temperature	TA				-40 to +85	°C
Storage temperature	Tstg				-65 to +150	°C

Note The root mean square (r.m.s) should be calculated as follows: [r.m.s.] = [peak value] $\times \sqrt{\text{duty}}$

Caution If any of the parameters exceeds the absolute maximum ratings, even momentarily, device reliability may be impaired. The absolute maximum ratings are values that may physically damage the product. Be sure to use the product within the ratings.

Remark The characteristics of an alternate-function pin and a port pin are the same unless otherwise specified.

Capacitance (TA = 25 °C, VDD = Vss = 0 V)

Parameter	Symbol	Test Co	Test Conditions			MAX.	Unit
Input capacitance	Cin	f = 1 MHz	f = 1 MHz Unmeasured pins returned to 0 V.			15	pF
I/O capacitance	Сю	Unmeasured pins returned to				15	pF
Output capacitance	Соит	f = 1 MHz Unmeasured pins returned				15	pF
	Сѕм	to 0 V.	P20-P27, P30-P37, P61			30	pF

★ Main System Clock Oscillator Characteristics (T_A = -40 to +85 °C, V_{DD} = 4.5 to 5.5 V)

Resonator	Recommended Circuit	Parameter	Test Con	ditions	MIN.	TYP.	MAX.	Unit
Ceramic	nic X2 X1 V _{PP}	Oscillation frequency	V _{DD} = Oscillation	OSCM = 00H	4.0		8.38	MHz
resonator	Note 1	(fx)Note 2	voltage range	OSCM = 80H	4.0		4.19	MHz
	15-10-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	Oscillation Stabilization time Note 3 After VDD reaches of voltage range MIN.					4	ms
Crystal	1 X2 X1 Vppl	Oscillation frequency	V _{DD} = Oscillation	OSCM = 00H	4.0		8.38	MHz
resonator		(fx)Note 2	voltage range OSCM = 80H	4.0		4.19	MHz	
	C2 = C1	Oscillation stabilization time ^{Note 3}	After V _{DD} reaches voltage range MIN				10	ms
External		X1 input frequency		OSCM = 00H	4.0		8.38	MHz
clock		X2 X1 (fx)Note 2		OSCM = 80H	4.0		4.19	MHz
	μPD74HCU04	X1 input high-/low- level width (tXH, tXL)			55		125	ns

- Notes 1. Limit resistor R1 may be required depending on the resonator used.
 - 2. Indicates only oscillation circuit characteristics. Refer to AC Characteristics for instruction execution time.
 - 3. Time required to stabilize oscillation after reset or STOP mode release.

Caution Wiring in the area enclosed with the broken line should be carried out as follows to avoid an adverse effect from wiring capacitance.

- Wiring should be as short as possible.
- Wiring should not cross other signal lines.
- Wiring should not be placed close to a varying high current.
- The potential of the oscillator capacitor ground should be the same as Vss.
- Do not ground wiring to a ground pattern in which a high current flows.
- Do not fetch a signal from the oscillator.

DC Characteristics (T_A = -40 to +85 °C, V_{DD} = SMV_{DD} = 4.5 to 5.5 V)

	Parameter	Symbol	Test Cond	litions	MIN.	TYP.	MAX.	Unit
	Input voltage	V _{IH1}	P10-P14, P51, P54, P60, P61,	P81-P87, P90-P97	0.7 V _{DD}		V _{DD}	V
	high	V _{IH2}	P00-P07, P40-P44, P50, P52,	P00-P07, P40-P44, P50, P52, P53			V _{DD}	V
*		VIH3	RESET		0.8 V _{DD}		V _{DD}	V
		V _{IH4}	X1, X2		V _{DD} - 0.5		V _{DD}	V
	Input voltage	VIL1	P10-P14, P51, P54, P60, P61,	P81-P87, P90-P97	0		0.3 V _{DD}	V
	low	V _{IL2}	P00-P07, P40-P44, P50, P52,	P53	0		0.3 V _{DD}	V
*		V _{IL3}	RESET		0		0.2 V _{DD}	V
		VIL4	X1, X2		0		0.4	V
	Output voltage high	Vон1	P00-P07, P40-P44, P50-P54, P60, P81-P87, P90-P97	Іон = −1mA	V _{DD} - 1.0		V _{DD}	V
		V _{OH2}	P20-P27, P30-P37	Iон = −27 mA (T _A = 85 °C)	V _{DD} - 0.5		V _{DD} - 0.07	V
				Iон = −30 mA (T _A = 25 °C)	V _{DD} - 0.5		V _{DD} - 0.07	V
				lон = −40 mA (T _A = −40 °C)	V _{DD} - 0.5		V _{DD} - 0.07	V
		Vонз	P61	Iон = −20 mA	V _{DD} - 0.5			V
	Output voltage low	Vol1	P00-P07, P40-P44, P50-P54, P60, P81-P87, P90-P97	IoL = 1.6 mA			0.4	٧
		V _{OL2}	P20-P27, P30-P37	IoL = 27 mA (T _A = 85 °C)	0.07		0.5	V
				IoL = 30 mA (T _A = 25 °C)	0.07		0.5	V
				IoL = 40 mA (T _A = -40 °C)	0.07		0.5	V
		Vol3	P61	IoL = 20 mA			0.5	V
	Input leakage current high	Ішн1	P00-P07, P10-P14, P40-P44, P50-P54, P60, P61, P81-P87, P90-P97	V _{IN} = V _{DD}			3	μΑ
		ILIH2	X1, X2	VIN = VDD			20	μΑ
	Input leakage current low	ILIL1	P00-P07, P10-P14, P40-P44, P50-P54, P60, P61, P81-P87, P90-P97	V _{IN} = 0 V			-3	μΑ
		I _{LIL2}	X1, X2	Vin = 0 V			-20	μΑ
	Output leakage current high	Ісон	Vout = Vdd				3	μΑ
	Output leakage current low	ILOL	Vout = 0 V				-3	μΑ
	Software pull-up resistor	R	V _{IN} = 0 V, P00-P07		10	30	100	kΩ

Remark The characteristics of an alternate-function pin and a port pin are the same unless otherwise specified.

★ DC Characteristics ($T_A = -40 \text{ to } +85 \,^{\circ}\text{C}$, $V_{DD} = 4.5 \text{ to } 5.5 \,^{\circ}\text{V}$)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Supply	I _{DD1}	8.38-MHz crystal oscillation operation mode ^{Note 2}		12	36	mA
current ^{Note} 1		4.19-MHz crystal oscillation operation mode ^{Note 2, 3}		6	18	mA
	I _{DD2}	8.38-MHz crystal oscillation HALT mode ^{Note 2}		1.0	2.0	mA
		4.19-MHz crystal oscillation HALT mode ^{Note 3}		0.7	1.2	mA
	IDD3	STOP mode		1.0	30	μΑ

- Notes 1. This current means the current consumed by the CPU and peripheral functions (internal circuits), oscillator, and VDD pin. However, this does not include the current that flows in the series resistor string of the A/D converter, internal pull-up resistor, LCD dividing resistor, sound generator (SGO, SGOF, P61), meter controller/driver (SM11/P20-SM14/P23, SM21/P24-SM24/P27, SM31/P30-SM34/P33, SM41/P34-SM44/P37), and EEPROM (at read).
 - 2. When operating in high-speed mode (when the processor clock control register (PCC) is set to 00H).
 - 3. When the oscillation mode register (OSCM) is set to 80H.

Remark The characteristics of an alternate-function pin and a port pin are the same unless otherwise specified.

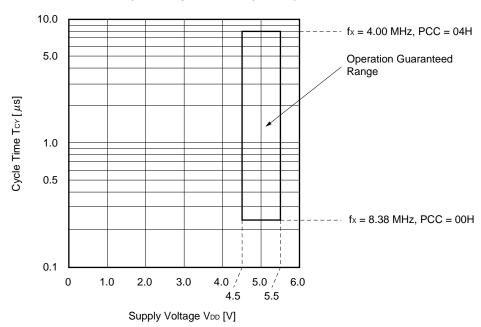
LCD Controller/Driver Characteristics (TA = -40 to +85 °C, VDD = 4.0 to 5.5 V)

1/3 Bias Method

Parameter	Symbol	Test Con	ditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VLCD			3.0		V _{DD}	V
LCD output voltage deviation ^{Note} (common)	Vodc	Io = ±5 μA	$3.0 \text{ V} \leq \text{V}_{\text{LCD}} \leq \text{V}_{\text{DD}}$ $\text{V}_{\text{LCD0}} = \text{V}_{\text{LCD}}$ $\text{V}_{\text{LCD1}} = \text{V}_{\text{LCD}} \times 2/3$	0		±0.2	V
LCD output voltage deviation ^{Note} (segment)	Vods	Io = ±1 μA	VLCD2 = VLCD × 1/3	0		±0.2	V
LCD split resistor current	ILCD	3.0 V ≤ VLCD ≤ VDD		50		260	μΑ

Note The voltage deviation is the difference from the output voltage corresponding to the ideal value of the segment and common outputs (V_{LCDn}; n=0, 1, 2).

The μ PD78F0974 does not have a pin to apply a reference voltage (V_{LCD1} and V_{LCD2}). Therefore, the voltage deviation indicates the difference between the segment or common output values generated by the internal dividing resistor and the ideal reference voltage (V_{DD} to 1/3 V_{DD}).


AC Characteristics (T_A = -40 to +85 °C, V_{DD} = 4.5 to 5.5 V)

(1) Basic Operation (T_A = -40 to +85 °C, V_{DD} = 4.5 to 5.5 V)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Cycle Time (Min. instruction execution time)	Тсч	Operation on main system clock	0.238		8	μs
TI input high-/low-level width	tтіно, tтіLo		3/fsam ^{Note}			μs
TI input frequency	f⊤ı		0		4	MHz
TIO2, TIO3 input high-/low-level width	tтін, tті∟		100			ns
Interrupt input high-/low-level width	tinth,	INTP0 to INTP2	1			μs
RESET low-level width	trsL		10			μs

Note In combination with bits 0 (PRM00) and 1 (PRM01) of prescaler mode register (PRM0), selection of fsam is possible between fx/8, fx/16, fx/32, and fx/64.

Tcy vs. V DD (At main system clock operation)

(2) Serial Interface (T_A = -40 to +85 °C, V_{DD} = 4.5 to 5.5V)

(a) 3-wire serial I/O mode (SCK ... Internal clock output)

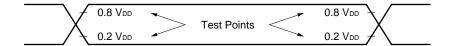
Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK cycle time	tkcy1		950			ns
SCK high-/low-level width	t кн1,		tксү1/2-50			ns
	t _{KL1}					
SI setup time (to SCK↑)	tsıĸ1		100			ns
SI hold time (from SCK↑)	t KSI1		400			ns
SO output delay time from SCK↓	tkso1	C = 100 pF ^{Note}			300	ns

Note C is the load capacitance of \overline{SCK} and SO output lines.

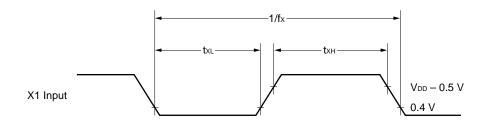
(b) 3-wire serial I/O mode (SCK ... External clock input)

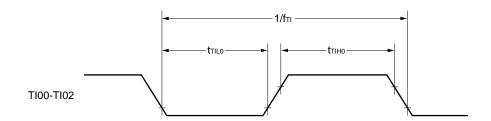
Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK cycle time	tkcy2		800			ns
SCK high-/low-level width	tkH2,		400			ns
SI setup time (to SCK↑)	tsik2		100			ns
SI hold time (from SCK↑)	tksi2		400			ns
SO output delay time from SCK↓	tkso2	C = 100 pF ^{Note}			300	ns
SCK rise, fall time	t _{R2} ,				160	ns

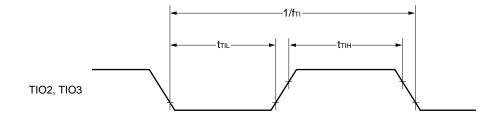
Note C is the load capacitance of SO output line.


(c) UART mode (Dedicated baud rate generator output)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate					130.9	kbps

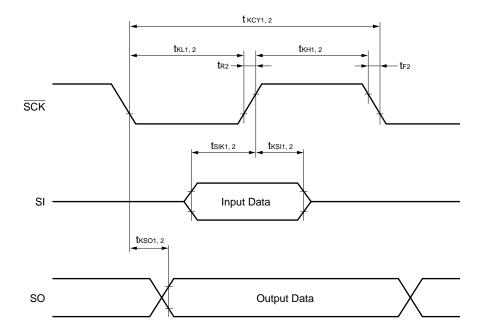



AC Timing Test Point (Excluding X1 Input)



Clock Timing

TI Timing



Serial Transfer Timing

3-wire serial I/O mode:

★ Sound Generator Characteristics (T_A = −40 to +85 °C, V_{DD} = SMV_{DD} = 4.5 to 5.5 V)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Sound generator input	fsg1				4.19	MHz
frequency						

★ Meter Controller/Driver Characteristics (T_A = −40 to +85 °C, V_{DD} = SMV_{DD} = 4.5 to 5.5 V)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Meter controller/driver input frequency	f _{MC} Note 1				4.19	MHz
Symmetry performance ^{Note 2}	ΔHSPmn	$I_{OH} = -30 \text{ mA}$ $\Delta HSPmn = V_{OH} (SMmn) \text{ max} - V_{OH} (SMmn) \text{ min} $			50	mV
	ΔLSPmn	IoL = 30 mA $\Delta LSPmn = Vol. (SMmn) max - Vol. (SMmn) min $			50	mV

Notes 1. Source clock of the free-running counter.

2. Indicates variation of 16 PWM output voltages.

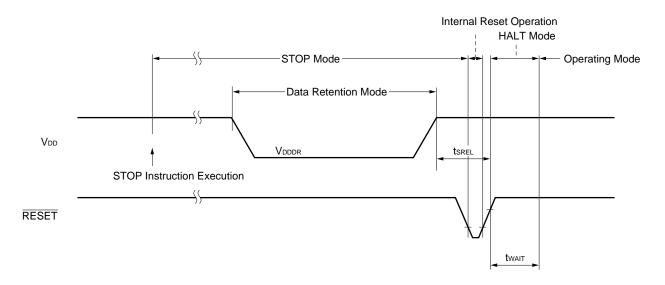
Remark m = 1 to 4, n = 1 to 4

A/D Converter Characteristics (TA = -40 to +85 $^{\circ}$ C, AVREF = VDD = 4.5 to 5.5 V, AVss = Vss =0 V)

	Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
	Resolution					8	bit
	Overall errorNote					±0.6	%
*	Conversion time	tconv		14.0			μs
	Analog input voltage	VIAN		AVss		AVREF + 0.3	V
	AVREF-AVss resistance	RAIREF	When bit 7 (ADCS1) of the A/D converter mode register (ADM1) is set to 0.		21.4		kΩ

Note Overall error excluding quantization error (±1/2 LSB). It is indicated as a ratio to the full-scale value.

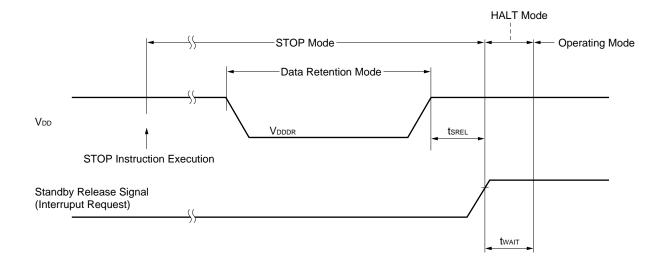
EEPROM Characteristics (TA = -40 to +85 °C, VDD = 4.5 to 5.5 V)

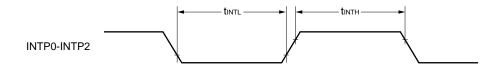

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
EEPROM write time	teewr		T.B.D			ms

Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics (TA = -40 to +85 °C)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		2.0		5.5	V
Data retention supply current disconnected	IDDDR	VDDDR = 2.0 V		0.1	10	μΑ
Release signal set time	tsrel		0			μs
Oscillation stabilization	twait	Release by RESET		2 ¹⁷ /fx		ms
wait time		Release by interrupt request	·	Note		ms

Note In combination with bit 0 to bit 2 (OSTS0 to OSTS2) of oscillation stabilization time select register (OSTS), selection of $2^{12}/fx$ and $2^{14}/fx$ to $2^{17}/fx$ is possible.


Data Retention Timing (STOP Mode Release by RESET)

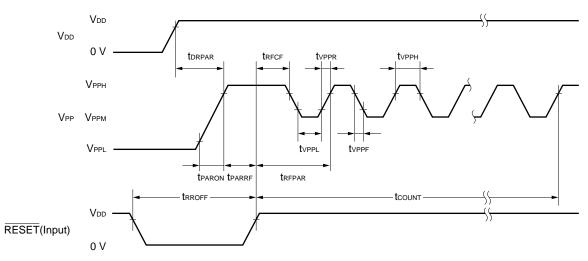



Data Retention Timing (Standby Release Signal : STOP Mode Release by Interrupt Signal)

Interrupt Input Timing

RESET Input Timing

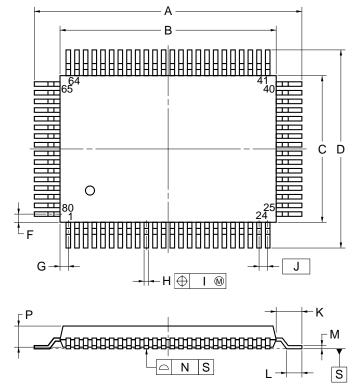
Flash Memory Programming Characteristics ($T_A = -40$ to +85 °C, $V_{DD} = 1.8$ to 5.5 V, $V_{SS} = 0$ V, $V_{PP} = 9.5$ to 10.5 V)

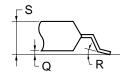

(1) Basic Characteristics

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Operation frequency	fx		4		8.38	MHz
Supply voltage	V _{DD}		4.5		5.5	V
	V _{PPL}	When detecting VPP low level	-0.3		0.2 V _{DD}	V
	V _{PPM}	When detecting VPP VDD level	0.8 V _{DD}	V _{DD}	1.2 V _{DD}	V
	VPPH	When detecting VPP high voltage	9.5	10.0	10.5	V
V _{DD} supply current	IDD				50	mA
VPP supply current	IPP				50	mA
Write time (per word)	Twrt			50		μs
Write frequency	Cwrt				100	time
Erase time	TERASE				2	s

(2) Serial Write Operation Characteristics

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
V _{PP} set time	t paron	V _{PP} high voltage supply	1.0			μs
RESET retention time	trroff		1.0			μs
V _{PP} ↑ set time from V _{DD} ↑	torpar	V _{PP} high voltage supply	1.0			μs
RESET↑ set time from Vpp↑	t PARRF	V _{PP} high voltage supply	1.0			μs
V _{PP} ↑ set time from RESET↑	trfpar	V _{PP} high voltage supply	1.0			μs
V _{PP} count start time from RESET↑	trfcf		1.0			μs
Count execution time	tcount				2.0	ms
VPP counter high-level width	tvpph		1.0			μs
V _{PP} counter low-level width	tvppl		1.0			μs
VPP counter rise, fall time	tvppr,				1.0	μs


Flash Memory Write Mode Setting Timing



6. PACKAGE DRAWING

80 PIN PLASTIC QFP (14x20)

detail of lead end

NOTE

- 1. Controlling dimension millimeter.
- 2. Each lead centerline is located within 0.15 mm (0.006 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
Α	23.6±0.4	0.929±0.016
В	20.0±0.2	$0.795^{+0.009}_{-0.008}$
С	14.0±0.2	$0.551^{+0.009}_{-0.008}$
D	17.6±0.4	0.693±0.016
F	1.0	0.039
G	0.8	0.031
Н	$0.37^{+0.08}_{-0.07}$	$0.015^{+0.003}_{-0.004}$
- 1	0.15	0.006
J	0.8 (T.P.)	0.031 (T.P.)
K	1.8±0.2	$0.071^{+0.008}_{-0.009}$
L	0.8±0.2	0.031+0.009
М	0.17+0.08	0.007+0.003
N	0.10	0.004
Р	2.7±0.1	0.106+0.005
Q	0.1±0.1	0.004±0.004
R	5°±5°	5°±5°
S	3.0 MAX.	0.119 MAX.
		DOOGE OF SEC.

P80GF-80-3B9-4

* APPENDIX A. DEVELOPMENT TOOLS

The following development tools are available for system development using μ PD78F0974. Also refer to **(5) Notes on using development tools**.

(1) Language Processing Software

RA78K/0 78K/0 series common assembler package	
CC78K/0	78K/0 series common C compiler package
DF780974	Device file common to μ PD780973 subseries
CC78K/0-L	78K/0 series common C compiler library source file

(2) Flash Memory Writing Tools

Flashpro III	Dedicated flash programmer.
(Part number: FL-PR3, PG-FP3)	FL-PR3 is a product of Naito Densei Machida Mfg. Co., Ltd.

(3) Debugging Tools

• When in-circuit emulator IE-78K0-NS is used

IE-78K0-NS	In-circuit emulator common to 78K/0 series
IE-70000-MC-PS-B	Power supply unit for IE-78K0-NS
IE-780973-NS-EM1 ^{Note}	Emulation board to emulate μ PD780973 subseries
IE-70000-98-IF-C	Interface adapter used when PC-9800 series (except notebook type) is used as host machine (C bus compatible)
IE-70000-CD-IF-A	PC card and interface cable used when notebook type PC is used as host machine (PCMCIA compatible)
IE-70000-PC-IF-C	Interface adapter used when IBM PC/AT TM compatible machine is used as host machine (ISA compatible)
IE-70000-PCI-IF	Interface adapter used when PC with a PCI bus as host machine.
NP-80GF	Emulation probe for 80-pin plastic QFP (GF-3B9 type)
TGF-080RAP (see Figure A-1)	Adapter to be mounted on a target system board made for 80-pin plastic QFP (GF-3B9 type)
SM78K0	78K/0 series common system simulator
ID78K0-NS	Integrated debugger for IE-78K0-NS
DF780974	μPD780974 subseries device file

Note Under development

(4) Real-Time OS

RX78K/0	78K/0 series real-time OS
MX78K0	78K/0 series OS

(5) Notes on using development tools

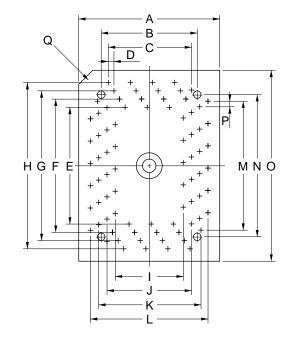
- Use ID78K0-NS and SM78K0 in combination with DF780974.
- Use CC78K/0 and RX78K/0 in combination with RA78K/0 and DF780974.
- TGF-080RAP is a product of Tokyo Eletech Corp.

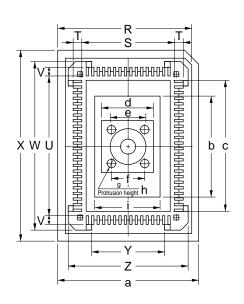
Reference: Daimaru Kogyo Ltd. Electronics Dept. (TEL: Tokyo 03-3820-7112)

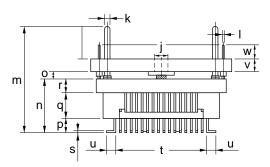
Electronics 2nd Dept. (TEL: Osaka 06-6244-6672)

- For development tools made by third parties, refer to 78K/0 Series Selection Guide (U11126E).
- The host machine corresponding to each software package is as follows:

Host Machine	PC	EWS
[OS] Software	PC-9800 series [Windows TM] IBM PC/AT Compatible Machines [Japanese/English Windows]	HP9000 series 700 [™] [HP-UX [™]] SPARCstation [™] [SunOS [™] , Solaris [™]] NEWS (RISC) [™] [NEWS-OS [™]]
RA78K/0	ONote	0
CC78K/0	Note	0
ID78K0-NS	0	_
SM78K0	0	_
RX78K/0	Note	0
MX78K0	Note	0


Note This software is based on DOS.





Drawing for Conversion Adapter (TGF-080RAP)

Figure A-1. TGF-080RAP Drawing (for Reference Only)

ITEM	MILLIMETERS	INCHES	ITEM	MILLIMETERS	INCHES
Α	20.65	0.813	а	20.65	0.813
В	14.1	0.555	b	14.40	0.567
С	0.8x15=12	0.031x0.591=0.472	С	18.8	0.740
D	0.8	0.031	d	7.7	0.303
Е	16.4	0.646	е	ϕ 5.3	φ0.209
F	18.8	0.740	f	5.0	0.197
G	21.2	0.835	g	$4-\phi 1.3$	$4-\phi 0.051$
Н	23.6	0.929	h	1.8	0.071
I	10.0	0.394	i	9.5	0.374
J	12.4	0.488	j	ϕ 3.55	φ0.140
K	14.8	0.583	k	ϕ 0.9	ϕ 0.035
L	17.2	0.677	1	φ0.3	φ0.012
M	0.8x23=18.4	0.031x0.906=0.724	m	(16.95)	(0.667)
N	20.5	0.807	n	7.35	0.289
0	27.05	1.065	0	1.2	0.047
Р	0.8	0.031	р	1.85	0.073
Q	C 2.0	C 0.079	q	3.5	0.138
R	18.65	0.734	r	2.0	0.079
S	13.35	0.526	s	0.25	0.010
Т	1.325	0.052	t	13.6	0.535
U	19.75	0.778	u	1.2	0.047
V	1.125	0.044	v	2.4	0.094
W	23.55	0.927	w	2.7	0.106
X	27.05	1.065			TGF-080RAP-G0E
Y	10.6	0.417			

note: Product by TOKYO ELETECH CORPORATION.

17.1

0.673

APPENDIX B. RELATED DOCUMENTS

Device Related Documents

Document Name	Document No. (English)	Document No. (Japanese)
μPD780973 Subseries User's Manual	U12406E	U12406J
μPD780973(A) Preliminary Product Information	U12759E	U12759J
μPD78F0974 Preliminary Product Information	This manual	U12646J
78K/0 Series User's Manual Instruction	U12326E	U12326J
78K/0 Series Instruction Table	_	U10903J
78K/0 Series Instruction Set	_	U10904J
μPD780973 Subseries Special Function Register Table	_	U12748J

Development Tools Documents (User's Manual)

Document Name		Document No. (English)	Document No. (Japanese)
RA78K0 Assembler Package	Operation	U11802E	U11802J
	Assembly Language	U11801E	U11801J
	Structured Assembly Language	U11789E	U11789J
CC78K0 C Compiler	Operation	U11517E	U11517J
	Language	U11518E	U11518J
CC78K/0 C Compiler Application Note	Programming Know-how	U13034E	U13034J
IE-78K0-NS		Planned	Planned
IE-780974-NS-EM1		Planned	Planned
SM78K0 System Simulator (Windows Based)	Reference	U10181E	U10181J
SM78K Series System Simulator	External Part User Open Interface Specifications	U10092E	U10092J
ID78K0-NS Integrated Debugger	Reference	U12900E	U12900J
ID78K0 Integrated Debugger EWS Based	Reference	_	U11151J
ID78K0 Integrated Debugger Windows Based	Guide	U11649E	U11649J
ID78K0 Integrated Debugger PC Based	Reference	U11539E	U11539J

Embedded Software Documents (User's Manual)

Document Name		Document No. (English)	Document No. (Japanese)
78K/0 Series Real Time OS	Fundamentals	U11537E	U11537J
	Installation	U11536E	U11536J
OS for 78K/0 Series MX78K0	Fundamental	U12257E	U12257J

Other Documents

Document Name	Document No. (English)	Document No. (Japanese)
SEMICONDUCTORS SELECTION GUIDE Products & Packages (CD-ROM)	X13769X	
Semiconductor Device Mounting Technology Manual	C10535E	C10535J
Quality Grade on NEC Semiconductor Devices	C11531E	C11531J
Reliable Quality Maintenance on NEC Semiconductor Devices	C10983E	C10983J
Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD)	C11892E	C11892J
Review of Quality and Reliability Handbook	_	C12769J
Microcomputer Product Series Guide	_	U11416J

Caution The contents of the above related documents are subject to change without notice. The latest documents should be used for design, etc.

[MEMO]

NOTES FOR CMOS DEVICES -

1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

2 HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS device behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- · Device availability
- · Ordering information
- · Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288

NEC Electronics (Germany) GmbH

Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.

Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Italiana s.r.l.

Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH

Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

NEC Electronics (France) S.A.

Velizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

NEC Electronics (France) S.A.

Spain Office Madrid, Spain Tel: 91-504-2787 Fax: 91-504-2860

NEC Electronics (Germany) GmbH

Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388

NEC Electronics Hong Kong Ltd.

Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.

Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.

United Square, Singapore 1130

Tel: 65-253-8311 Fax: 65-250-3583

NEC Electronics Taiwan Ltd.

Taipei, Taiwan Tel: 02-2719-2377 Fax: 02-2719-5951

NEC do Brasil S.A.

Electron Devices Division Rodovia Presidente Dutra, Km 214 07210-902-Guarulhos-SP Brasil

Tel: 55-11-6465-6810 Fax: 55-11-6465-6829

J99.1

EEPROM, FIP, and IEBus are trademarks of NEC Corporation.

Windows is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.

PC/AT is a trademark of IBM Corporation.

HP9000 Series 700 and HP-UX are trademarks of Hewlett-Packard Company.

SPARCstation is a trademark of SPARK International, Inc.

SunOS is a trademark of Sun Microsystems, Inc.

NEWS and NEWS-OS are trademarks of Sony Corporation.

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

This product is manufactured and sold based on the license contract with CP8 Transac Corporation with respect to the contract for the microcomputers with on-chip EEPROM.

This product cannot be used for an IC card (SMART CARD).

- The information contained in this document is being issued in advance of the production cycle for the device. The parameters for the device may change before final production or NEC Corporation, at its own discretion, may withdraw the device prior to its production.
- No part of this document may be copied or reproduced in any form or by any means without the prior written
 consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
 this document.
- NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property
 rights of third parties by or arising from use of a device described herein or any other liability arising from use
 of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other
 intellectual property rights of NEC Corporation or others.
- Descriptions of circuits, software, and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software, and information in the design of the customer's equipment shall be done under the full responsibility of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third parties arising from the use of these circuits, software, and information.
- While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
- NEC devices are classified into the following three quality grades:
 - "Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.
 - Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.