Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

DATA SHEET

MOS INTEGRATED CIRCUIT μ PD78F0852

8-BIT SINGLE-CHIP MICROCONTROLLER

The μ PD78F0852 is a product of the μ PD780852 Subseries in the 78K/0 Series.

The μ PD78F0852 has flash memory in place of the internal ROM of the μ PD780852(A).

The flash memory incorporated enables program writing or erasing with the microcontroller mounted on the target board.

Detailed function descriptions are provided in the following user's manuals. Be sure to read them before designing.

μPD780852 Subseries User's Manual: U14581E 78K/0 Series User's Manual Instruction: U12326E

FEATURES

- O Pin compatible with mask ROM versions (except VPP pin)
- O Flash memory: 40 KB^{Note}
- O Internal high-speed RAM: 1024 bytes
- O Internal expansion RAM: 512 bytes
- O Operable within the same supply voltage range as that of the mask ROM version (VDD = 4.0 to 5.5 V)

Note The flash memory capacitance can be changed using the internal memory size switching register (IMS)

Remark For differences between the flash memory versions and mask ROM versions, refer to 1. DIFFERENCES BETWEEN μPD78F0852 AND MASK ROM VERSIONS.

APPLICATIONS

Automobile meter (dashboard) control

ORDERING INFORMATION

Part Number	Package	Internal ROM
μ PD78F0852GC-8BT	80-pin plastic QFP (14 \times 14)	Flash memory

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

78K/0 SERIES LINEUP

The products in the 78K/0 Series are listed below. The names enclosed in boxes are subseries names.

Remark VFD (Vacuum Fluorescent Display) is referred to as FIP[™] (Fluorescent Indicator Panel) in some documents, but the functions of the two are the same.

The major functional differences among the subseries are listed below.

	Function	ROM		Tin	ner		8-Bit	10-Bit	8-Bit	Serial	I/O	Vdd	External
Subserie Name	25	Capacity	8-Bit	16-Bit	Watch	WDT	A/D	A/D	D/A	Interface		MIN. Value	Expansion
Control	μPD78075B	32 K to 40 K	4 ch	1 ch	1 ch	1 ch	8 ch	-	2 ch	3 ch (UART: 1 ch)	88	1.8 V	
	μPD78078	48 K to 60 K											_
	μPD78070A	_									61	2.7 V	
	μPD780058	24 K to 60 K	2 ch							3 ch (time-division UART: 1 ch)	68	1.8 V	
	μ PD78058F	48 K to 60 K								3 ch (UART: 1 ch)	69	2.7 V	_
	μPD78054	16 K to 60 K										2.0 V	
	μPD780065	40 K to 48 K							-	4 ch (UART: 1 ch)	60	2.7 V	
	μPD780078	48 K to 60 K		2 ch			-	8 ch		3 ch (UART: 2 ch)	52	1.8 V	
	µPD780034A	8 K to 32 K		1 ch						3 ch (UART: 1 ch)	51		
	µPD780024A						8 ch	-					
	μPD78014H									2 ch	53		
	μPD78018F	8 K to 60 K											
	µPD78083	8 K to 16 K		-	-					1 ch (UART: 1 ch)	33		-
Inverter control	μPD780988	16 K to 60 K	3 ch	Note	-	1 ch	-	8 ch	-	3 ch (UART: 2 ch)	47	4.0 V	\checkmark
VFD	μPD780208	32 K to 60 K	2 ch	1 ch	1 ch	1 ch	8 ch	-	-	2 ch	74	2.7 V	-
drive	μPD780232	16 K to 24 K	3 ch	-	-		4 ch				40	4.5 V	_
	μPD78044H	32 K to 48 K	2 ch	1 ch	1 ch		8 ch			1 ch	68	2.7 V	
	μPD78044F	16 K to 40 K								2 ch			
LCD	μPD780338	48 K to 60 K	3 ch	2 ch	1 ch	1 ch	-	10 ch	1 ch	2 ch (UART: 1 ch)	54	1.8 V	-
drive	µPD780328										62		
	μPD780318										70		_
	μPD780308		2 ch	1 ch			8 ch	_	-	3 ch (time-division UART: 1 ch)	57	2.0 V	
	μPD78064B	32 K								2 ch (UART: 1 ch)			
	μPD78064	16 K to 32 K											
Bus	μPD780948	60 K	2 ch	2 ch	1 ch	1 ch	8 ch	-	-	3 ch (UART: 1 ch)	79	4.0 V	
interface supported	μPD78098B	40 K to 60 K		1 ch					2 ch		69	2.7 V	-
supported	μPD780816	32 K to 60 K		2 ch			12 ch		_	2 ch (UART: 1 ch)	46	4.0 V	
Meter control	μPD780958	48 K to 60 K	4 ch	2 ch	-	1 ch	-	_	-	2 ch (UART: 1 ch)	69	2.2 V	-
Dash-	μPD780852	32 K to 40 K	3 ch	1 ch	1 ch	1 ch	5 ch	_	-	3 ch (UART: 1 ch)	56	4.0 V	-
board control	μPD780828B	32 K to 60 K									59		

Note 16-bit timer: 2 channels

10-bit timer: 1 channel

OVERVIEW OF FUNCTIONS

	Item		Function				
Internal	Flash memory	40 KB ^{Note}	40 KB ^{Note}				
memory	High-speed RAM	1024 bytes					
	Expansion RAM	512 bytes					
F	RAM for LCD display	20×4 bits					
General-purpose	registers	8 bits \times 32 registers (8 bits \times 8 reg	gisters × 4 banks)				
Minimum instruct	ion execution time	On-chip minimum instruction exec	cution time variable function				
		0.24 μs/0.48 μs/0.95 μs/1.91 μs/3	8.81 μs (@ 8.38 MHz operation)				
Instruction set			 Multiply/divide (8 bits × 8 bits, 16 bits ÷ 8 bits) Bit manipulation (set, reset, test, Boolean operation) 				
I/O ports		Total:	56				
(segment signal of		CMOS input:	5				
function pins inclu	uded)	CMOS output: CMOS I/O:	16 35				
A/D converter		8-bit resolution × 5 channels Power-fail detection function					
LCD controller/driver		 Segment signal outputs: Common signal outputs: Bias: 	Max. 20 Max. 4 1/3 bias only				
Serial interface		 3-wire serial I/O mode:UART mode:	2 channels 1 channel				
Timer		 16-bit timer: 8-bit timer: 8-bit timer/event counter: Watch timer: Watchdog timer: 	1 channel 1 channel 2 channels 1 channel 1 channel				
Timer outputs		2 (8-bit PWM output capable: 2)					
Meter controller/c	lriver	PWM outputs (8-bit resolution): 16 Pulse width setting of 8 + 1 bit precision is enabled by a 1-bit addition function					
Sound generator		1 channel					
Clock output		65.5 kHz, 131 kHz, 262 kHz, 524 kHz, 1.04 MHz, 2.09 MHz, 4.19 MHz, 8.38 MHz (@ 8.38 MHz operation with main system clock)					
Vectored interrup	t Maskable	Internal: 16, External: 3					
sources	Non-maskable	Internal: 1					
	Software	1					
Supply voltage	I	$V_{DD} = SMV_{DD} = 4.0 \text{ to } 5.5 \text{ V}$					
	nt temperature	$T_{\rm A} = -40 \text{ to } +85^{\circ}\text{C}$					
Operating ambient temperature		$T_A = -40 \text{ to } +85^{\circ}\text{C}$ 80-pin plastic QFP (14 × 14)					

Note The flash memory capacitance can be changed using the internal memory size switching register (IMS).

PIN CONFIGURATION (TOP VIEW)

Cautions 1. In normal operating mode, connect the VPP pin directly to Vsso or Vss1.

- 2. Connect the AVss pin to Vsso.
- 3. Connect the AVREF pin to VDD0.
- **Remark** When the μPD78F0852 is used in applications where the noise generated inside the microcontroller needs to be reduced, the implementation of noise reduction measures, such as connecting Vss0 and Vss1 to different ground lines, is recommended.

NEC

ANI0 to ANI4:	Analog input	SCK2, SCK3:	Serial clock
AVREF:	Analog reference voltage	SGO:	Sound generator output
AVss:	Analog ground	SI2, SI3:	Serial input
COM0 to COM3:	Common output	SM11 to SM14, SM22	to SM24, SM31 to SM34,
INTP0 to INTP2:	External interrupt input	SM41 to SM44:	Meter output
P00 to P07:	Port 0	SMVdd:	Meter controller power supply
P10 to P14:	Port 1	SMVss:	Meter controller ground
P20 to P27:	Port 2	SO2, SO3:	Serial output
P30 to P37:	Port 3	TI00 to TI02:	Timer input
P40 to P44:	Port 4	TIO2, TIO3:	Timer output/event counter input
P50 to P54:	Port 5	TPO:	Prescaler output
P60, P61:	Port 6	TxD:	Transmit data
P81 to P87:	Port 8	VDD0:	Power supply
P90 to P97:	Port 9	VLCD:	LCD power supply
PCL:	Programmable clock output	Vpp:	Programming power supply
RESET:	Reset	Vrout:	Power supply regulator output
RxD:	Receive data	Vsso, Vss1:	Ground
S0 to S19:	Segment output	X1, X2:	Crystal (main system clock)

BLOCK DIAGRAM

CONTENTS

1.	DIFFERENCES BETWEEN μ PD78F0852 AND MASK ROM VERSIONS)
2.	PIN FUNCTIONS 10 2.1 Port Pins 10 2.2 Non-Port Pins 17 2.3 Pin I/O Circuits and Recommended Connection of Unused Pins 12	D 1
3.	INTERNAL MEMORY SIZE SWITCHING REGISTER (IMS)15	5
4.	FLASH MEMORY PROGRAMMING 16 4.1 Selecting Communication Mode 16 4.2 Flash Memory Programming Function 17 4.3 Connecting Flashpro III 18	6 7
5.	ELECTRICAL SPECIFICATIONS	•
6.	PACKAGE DRAWING	i
7.	RECOMMENDED SOLDERING CONDITIONS	2
AP	PENDIX A. DEVELOPMENT TOOLS	3
AP	PENDIX B. RELATED DOCUMENTS	5

NEC

The μ PD78F0852 is a product provided with flash memory, enabling writing, erasing, and rewriting of programs without being removed from the board.

Functions other than the flash memory specification can be unified with those of the mask ROM versions by setting the internal memory size switching register (IMS).

Table 1-1 shows the differences between the flash memory version (μ PD78F0852) and mask ROM versions (μ PD780851(A) and 780852(A)).

Item	μPD78F0852	μPD780851(A)	μPD780852(A)		
Internal ROM type	Flash memory	Mask ROM			
Internal ROM capacity	40 KB	32 KB	40 KB		
IC pin	Not provided	Provided			
VPP pin	Provided Not provided				
Electrical specifications	Refer to the data sheet of individual products.				
Product quality	Standard (general electrical equipment) Special (high-reliability electrical equipment)				

Table 1-1. Differences Between µPD78F0852 and Mask ROM Versions

2. PIN FUNCTIONS

2.1 Port Pins

Pin Name	I/O	Function	After Reset	Alternate Function
P00 to P02	I/O	Port 0	Input	INTP0 to INTP2
P03		8-bit I/O port		SCK2
P04		Input/output can be specified in 1-bit units.		SO2
P05		Use of an on-chip pull-up resistor can be specified by software.		SI2
P06, P07				_
P10 to P14	Input	Port 1 5-bit input-only port	Input	ANI0 to ANI4
P20 to P23	Output	Port 2	Hi-Z	SM11 to SM14
P24 to P27		8-bit output-only port		SM21 to SM24
P30 to P33	Output	Port 3	Hi-Z	SM31 to SM34
P34 to P37		8-bit output-only port		SM41 to SM44
P40 to P42	I/O	Port 4	Input	TI00 to TI02
P43, P44	_	5-bit I/O port Input/output can be specified in 1-bit units.		TIO2, TIO3
P50	I/O	Port 5	Input	SCK3
P51		5-bit I/O port		SO3
P52		Input/output can be specified in 1-bit units.		SI3
P53				RxD
P54				TxD
P60	I/O	Port 6	Input	PCL/TPO
P61		2-bit I/O port Input/output can be specified in 1-bit units.		SGO
P81 to P87	I/O	Port 8 7-bit I/O port Input/output can be specified in 1-bit units. The I/O port/segment output function can be specified in 2-bit units using the LCD display control register (LCDC).	Input	S19 to S13
P90 to P97	I/O	Port 9 8-bit I/O port Input/output can be specified in 1-bit units. The I/O port/segment output function can be specified in 2-bit units using the LCD display control register (LCDC).	Input	S12 to S5

2.2 Non-Port Pins

Pin Name	Pin Name I/O Function		After Reset	Alternate Function
INTP0 to INTP2	Input	External interrupt request input for which the valid edge (rising edge, falling edge, or both rising and falling edges) can be specified	Input	P00 to P02
SI2	Input	Serial interface SIO2 serial data input	Input	P05
SO2	Output	Serial interface SIO2 serial data output	Input	P04
SCK2	I/O	Serial interface SIO2 serial clock input/output	Input	P03
SI3	Input	Serial interface SIO3 serial data input	Input	P52
SO3	Output	Serial interface SIO3 serial data output	Input	P51
SCK3	I/O	Serial interface SIO3 serial clock input/output	Input	P50
RxD	Input	Serial data input for asynchronous serial interface	Input	P53
TxD	Output	Serial data output for asynchronous serial interface	Input	P54
TI00	Input	Capture trigger signal input to capture register (CR00)	Input	P40
TI01		Capture trigger signal input to capture register (CR01)		P41
TI02	1	Capture trigger signal input to capture register (CR02)	1	P42
TIO2	I/O	8-bit timer (TM2) I/O (also used for 8-bit PWM output)	Input	P43
TIO3			1	P44
TPO	Output	16-bit timer (TM0) prescaler signal output	Input	PCL/P60
PCL	Output	Clock output (for trimming of main system clock)	Input	TPO/P60
SGO	Output	Sound generator signal output	Input	P61
S0 to S4	Output	LCD controller/driver segment signal output	Output	_
S5 to S12				P97 to P90
S13 to S19			Input	P87 to P81
COM0 to COM3	Output	LCD controller/driver common signal output	Output	_
VLCD	_	Power supply for LCD drive	_	_
SM11 to SM14	Output	Meter control signal output	Hi-Z	P20 to P23
SM21 to SM24				P24 to P27
SM31 to SM34				P30 to P33
SM41 to SM44				P34 to P37
ANI0 to ANI4	Input	A/D converter analog input	Input	P10 to P14
AVREF	Input	A/D converter reference voltage input (also used for analog power supply)	-	-
AVss	_	A/D converter ground potential. Connect to Vsso	_	_
RESET	Input	System reset input	_	_
X1	Input	Connecting crystal resonator for main system clock oscillation	_	_
X2	-		_	_
SMVDD	_	Meter controller/driver power supply	_	_
SMVss	_	Meter controller/driver ground potential	_	_
VDD0	_	Port block positive power supply	_	_
Vsso	_	Port block ground potential	_	-
Vrout	-	Regulator output pin for positive power supply other than port block. Connect to Vsso or Vss1 via a 0.1 μ F capacitor	-	-
Vss1	_	Ground potential (other than port block)	_	_
Vpp	-	High voltage applied during program write/verify. Connect directly to Vsso or Vss1 in normal operating mode	-	-

2.3 Pin I/O Circuits and Recommended Connection of Unused Pins

The I/O circuit type of each pin and recommended connection of unused pins are shown in Table 2-1. For the I/O circuit configuration of each type, refer to Figure 2-1.

Pin Name	I/O Circuit Type	I/O	Recommended Connection of Unused Pins
P00/INTP0 to P02/INTP2	8-A	I/O	Independently connect to Vsso via a resistor.
P03/SCK2			
P04/SO2			
P05/SI2			
P06, P07			
P10/ANI0 to P14/ANI4	9	Input	Independently connect to V_{DD0} or V_{SS0} via a resistor.
P20/SM11 to P23/SM14	4	Output	Leave open
P24/SM21 to P27/SM24			
P30/SM31 to P33/SM34			
P34/SM41 to P37/SM44			
P40/TI00 to P42/TI02	8	I/O	Independently connect to VDD0 or VSS0 via a resistor.
P43/TIO2			
P44/TIO3			
P50/SCK3			
P51/SO3	5		
P52/SI3	8		
P53/RxD			
P54/TxD	5		
P60/PCL/TPO			
P61/SGO			
P81/S19 to P87/S13	17-G		
P90/S12 to P97/S5			
S0 to S4	17	Output	Leave open
COM0 to COM3	18		
VLCD	-	-	
RESET	2	Input	-
SMVDD		-	Connect to VDD0
SMVss			Connect to Vsso
AVref			Connect to VDD0
AVss			Connect to Vsso
VPP			Connect directly to Vsso or Vss1.

Table 2-1. Types of Pin I/O Circuits

Figure 2-1. Pin I/O Circuits (1/2)

Figure 2-1. Pin I/O Circuits (2/2)

3. INTERNAL MEMORY SIZE SWITCHING REGISTER (IMS)

IMS is a register used to disable a part of the internal memory by means of software. By setting this register, the internal memory of the μ PD78F0852 can be mapped identically to that of a mask ROM version with a different internal memory (ROM) capacity.

IMS is set with an 8-bit memory manipulation instruction.

RESET input sets IMS to CFH.

NEC

Address: F	FF0H	After reset:	CFH	R/W				
Symbol	7	6	5	4	3	2	1	0
IMS	RAM2	RAM1	RAM0	0	ROM3	ROM2	ROM1	ROM0

RAM2	RAM1	RAM0	Internal high-speed RAM capacity selection
1	1	0	1024 bytes
Other than	n above		Setting prohibited

ROM3	ROM2	ROM1	ROM0	Internal ROM capacity selection
1	0	0	0	32 KB
1	0	1	0	40 KB
Other than	above			Setting prohibited

Table 3-1 shows the IMS setting values to make the memory mapping the same as that of the mask ROM versions.

Table 3-1. Setting Values of Internal Memory Size Switching Register (IMS)

Target Mask ROM Version	IMS Setting Value
μPD780851(A)	C8H
μPD780852(A)	САН

4. FLASH MEMORY PROGRAMMING

The flash memory can be written even while the device is mounted on the target system (on-board write). To write a program to the flash memory, connect the dedicated flash programmer (Flashpro III (model number: FL-PR3 and PG-FP3)) to both the host machine and target system.

A program can also be written by using an adapter for flash memory writing, connected to the Flashpro III.

Remark The FL-PR3 is manufactured by Naito Densei Machida Mfg. Co., Ltd. Contact: +81-45-475-4191

4.1 Selecting Communication Mode

The Flashpro III writes to flash memory by means of serial communication. The communication mode to be used for writing is selected from those listed in Table 4-1. To select a communication mode, use the format shown in Figure 4-1, according to the number of VPP pulses listed in Table 4-1.

Communication Mode	Number of Channels	Pins Used [№]	Number of VPP Pulses
3-wire serial I/O	2	SI3/P52	0
		SO3/P51	
		SCK3/P50	
		SI2/P05	1
		SO2/P04	
		SCK2/P03	
UART	1	RxD/P53	8
		TxD/P54	

Table 4-1. Communication Mode

Note Shifting to the flash memory programming mode sets all pins not used for flash memory programming to the same state as immediately after reset. Therefore, all ports enter an output high-impedance state. If the external devices do not acknowledge an output high-impedance state, handling such as connecting to V_{DD} via a resister or connecting to V_{SS} via a resister is required.

Caution The communication mode must be selected by the number of VPP pulses listed in Table 4-1.

Figure 4-1. Communication Mode Selection Format

4.2 Flash Memory Programming Function

Flash memory writing and other operations can be performed by transmitting/receiving commands and data according to the selected communication mode. Table 4-2 lists the major flash memory programming functions.

Function	Description
Reset	Stops writing or detects communication synchronization.
Batch verify	Compares the entire contents of memory with the input data.
Batch erase	Erases the entire contents of memory.
Batch blank check	Checks that the entire contents of memory have been erased.
High-speed write	Writes to the flash memory according to the specified write start address and number of data bytes to be written.
Continuous write	Continues writing based on the information input by using the high-speed write function.
Status	Checks the current operating mode and whether the operation has ended.
Oscillation frequency setting	Inputs the frequency information of the resonator.
Erase time setting	Inputs the memory erase time.
Baud rate setting	Sets the communication rate in UART mode.
Silicon signature read	Outputs the device name, memory capacity, and device block information.

Table 4-2. Major Functions of Flash Memory Programming

4.3 Connecting Flashpro III

The connection between the Flashpro III and μ PD78F0852 varies according to the communication mode. Figures 4-2 to 4-4 show the connection for each communication mode.

Figure 4-3. Flashpro III Connection in 3-Wire Serial I/O Mode (SIO2)

Figure 4-4. Flashpro III Connection in UART Mode

5. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings (T_A = 25°C)

Parameter	Symbol	Co	nditions	Ratings	Unit
Supply voltage	Vdd			-0.3 to +6.5	V
	Vpp			-0.3 to +10.3	V
	AVREF			-0.3 to Vdd + 0.3	V
	AVss			-0.3 to +0.3	V
	SMVDD	SMVdd = Vdd		-0.3 to +6.5	V
	SMVss			-0.3 to +0.3	V
Input voltage	Vi			-0.3 to V _{DD} + 0.3	V
Output voltage	V ₀₁	P00 to P07, P40 to I P61, P81 to P87, P9	P44, P50 to P54, P60, 00 to P97, RESET	-0.3 to V _{DD} + 0.3	V
	V ₀₂	P20 to P27, P30 to I	P37	-0.5 to SMV _{DD} + 0.7	V
Analog input voltage	Van	P10 to P14	Analog input pin	AVss - 0.3 to AVREF + 0.3	V
Output current, high	Іон	Per pin (P00 to P07, P40 to P44, P50 to P54, P60, P81 to P87, P90 to P97)		-10	mA
		Total for P00 to P07 P54, P60, P81 to P8	, P40 to P44, P50 to 37, P90 to P97	-15	mA
		P61		-30	mA
		Per pin (P20 to P27))	-45	mA
		Total for P20 to P27		-135	mA
		Per pin (P30 to P37))	-45	mA
		Total for P30 to P37		-135	mA
Output current, low	lo∟	Per pin (P00 to P07, P54, P60, P81 to P8		20	mA
		Total for P00 to P07 P54, P60, P81 to P8	, P40 to P44, P50 to 37, P90 to P97	50	mA
		P61		30	mA
		Per pin (P20 to P27)		45	mA
		Total for P20 to P27		135	mA
		Per pin (P30 to P37)		45	mA
		Total for P30 to P37		135	mA
Operating ambient temperature	e Ta			-40 to +85	°C
Storage temperature	Tstg			-65 to +150	°C

- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

Capacitance (TA = 25°C, VDD = VSS = 0 V)

Parameter	Symbol		MIN.	TYP.	MAX.	Unit	
Input capacitance	CIN	f = 1 MHz			15	pF	
I/O capacitance	Сю	Unmeasured pins re			15	pF	
Output capacitance	Соит	f = 1 MHz Unmeasured pins	P00 to P07, P40 to P44, P50 to P54, P60, P81 to P87, P90 to P97			15	pF
	Сѕм	returned to 0 V.	P20 to P27, P30 to P37, P61			40	pF

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

Main System Clock Oscillator Characteristics (T_A = -40 to +85°C, V_{DD} = 4.0 to 5.5 V)

Resonator	Recommended Circuit	Parameter	Cond	litions	MIN.	TYP.	MAX.	Unit
Ceramic	1 1	Oscillation frequency (fx) ^{Note 1}	Vdd =	OSCM = 00H	4.0		8.38	MHz
resonator	X2 X1 VPP		Oscillation voltage range	OSCM = 80H	4.0		4.19	MHz
		Oscillation stabilization time ^{Note 2}	After Vbb reache voltage range M				4	ms
Crystal		Oscillation	Vdd =	OSCM = 00H	4.0		8.38	MHz
resonator	X2 X1 VPP C2 C1 777	frequency (fx) ^{Note 1}	Oscillation voltage range		4.0		4.19	MHz
		Oscillation stabilization time ^{Note 2}	After VDD reaches oscillation voltage range MIN.				10	ms

Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.

2. Time required to stabilize oscillation after reset or STOP mode release.

- Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always make the ground point of the oscillator capacitor the same potential as Vss.
- Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.

Caution When using the main system clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.

★ Recommended Oscillator Constant

Main system clock: Ceramic resonator (-40 to +85°C)

Manufacturer	Part Number	Frequency (MHz)		mended Constant	Oscillation Voltage Range		Remarks
			C1 (pF) ^{Note}	C2 (pF) ^{Note}	MIN. (V)	MAX. (V)	
Murata Mfg. Co., Ltd	CSTLS4M00G56A-B0	4.0	47	47	4.0	5.5	On-chip capacitor
	CSTCR4M00G55A-R0	4.0	39	39			
	CSTLS4M19G56A-B0	4.194	47	47			
	CSTCR4M19G55A-R0	4.194	39	39			
	CSTLS5M00G53A-B0	5.0	15	15			
	CSTCR5M00G53A-R0	5.0	15	15			
	CSTLS8M00G53A-B0	8.0	15	15			
	CSTCC8M00G53A-R0	8.0	15	15			
	CSTLS8M38G53A-B0	8.388	15	15			
	CSTCC8M38G53A-R0	8.388	15	15			

Note Indicates the capacitance of the on-chip capacitor.

4.19 MHz oscillation mode (OSCM = 80H)

Manufacturer	Part Number	Frequency (MHz)		Recommended Circuit Constant		lation age nge	Remarks
			C1 (pF) ^{Note}	C2 (pF) ^{Note}	MIN. (V)	MAX. (V)	
Murata Mfg. Co., Ltd	CSTLS4M00G53A-B0	4.0	15	15	4.0	5.5	On-chip capacitor
	CSTCR4M00G53A-R0	4.0	15	15			
	CSTLS4M19G53A-B0	4.194	15	15			
	CSTCR4M19G53A-R0	4.194	15	15			

Note Indicates the capacitance of the on-chip capacitor.

DC Characteristics (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 4.0 to 5.5 V)

Parameter	Symbol	Con	MIN.	TYP.	MAX.	Unit	
Output current, high	Іон1	P00 to P07, P40 to P44,	Per pin			-5	mA
		P50 to P54, P60, P81 to P87, P90 to P97	Total			-10	mA
Output current, low	IOL1	P00 to P07, P40 to P44,	Per pin			10	mA
		P50 to P54, P60, P81 to P87, P90 to P97	Total			20	mA
Input voltage, high	VIH1	P10 to P14, P51, P54, P60,	P61, P81 to P87, P90 to P97	0.7Vdd		Vdd	V
	VIH2	P00 to P07, P40 to P44, P5	0, P52, P53	0.7Vdd		Vdd	V
	Vінз	RESET		0.8Vdd		Vdd	V
Input voltage, low	VIL1	P10 to P14, P51, P54, P60,	P61, P81 to P87, P90 to P97	0		0.3Vdd	V
	VIL2	P00 to P07, P40 to P44, P5	0, P52, P53	0		0.3Vdd	V
	VIL3	RESET		0		0.2Vdd	V
Output voltage, high	Vон1	P00 to P07, P40 to P44, P50 to P54, P60, P81 to P87, P90 to P97	Іон = −1 mA	Vdd - 1.0		Vdd	V
	Vон2	P20 to P27, P30 to P37	Іон = −27 mA (T _A = 85°C)	Vdd - 0.5		Vdd - 0.07	V
			Іон = −30 mA (T _A = 25°C)	Vdd - 0.5		Vdd - 0.07	V
			Іон = -40 mA (T _A = -40°C)	Vdd - 0.5		Vdd - 0.07	V
	Vонз	P61	Іон = –20 mA	Vdd - 0.5			V
Output voltage, low	Vol1	P00 to P07, P40 to P44, P50 to P54, P60, P81 to P87, P90 to P97	IoL = 1.6 mA			0.4	V
	Vol2	P20 to P27, P30 to P37	Io∟ = 27 mA (T _A = 85°C)	0.07		0.5	V
			Io∟ = 30 mA (T _A = 25°C)	0.07		0.5	V
			Io∟ = 40 mA (T _A = −40°C)	0.07		0.5	V
	Vol3	P61	lo∟ = 20 mA			0.5	V
Input leakage current, high	Ilih1	P00 to P07, P10 to P14, P40 to P44, P50 to P54, P60, P61, P81 to P87, P90 to P97	Vin = Vdd			3	μA
Input leakage current, low	Ilil1	P00 to P07, P10 to P14, P40 to P44, P50 to P54, P60, P61, P81 to P87, P90 to P97	V _{IN} = 0 V			-3	μΑ
Output leakage current, high	Ігон	Vout = Vdd				3	μA
Output leakage current, low	Ilol	Vout = 0 V				-3	μA
Software pull-up resistor	R	V _{IN} = 0 V, P00 to P07		10	30	100	kΩ

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

DC Characteristics (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 4.0 to 5.5 V)

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
*	Power	DD1	8.38 MHz oscillation operating mode ^{Note 2}		9	27	mA
*	supply current ^{Note 1}		4.19 MHz oscillation operating mode ^{Note 2, 3}		5	15	mA
	current	IDD2	8.38 MHz oscillation HALT mode		1.0	2.0	mA
			4.19 MHz oscillation HALT mode ^{Note 3}		0.7	1.4	mA
		Idd3	STOP mode		1.0	30	μA

- Notes 1. Refers to the current flowing to the CPU, peripheral functions (internal circuits), oscillator, and V_{DD} pin. The current flowing to the series resistor string of an A/D converter, on-chip pull-up resistors, LCD division resistor, sound generator (SGO/P61), and meter controller/driver (SM11/P20 to SM14/P23, SM21/P24 to SM24/P27, SM31/P30 to SM34/P33, SM41/P34 to SM44/P37) is not included.
 - 2. High-speed mode operation (when the processor clock control register (PCC) is set to 00H)
 - 3. Operation when the oscillator mode register (OSCM) is set to 80H

LCD Controller/Driver Characteristics (T_A = -40 to +85°C, V_{DD} = 4.0 to 5.5 V)

Parameter	Symbol	Conditi	ons	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VLCD			3.0		Vdd	V
LCD output voltage deviation ^{Note} (Common)	Vodc	$I_0 = \pm 5 \ \mu A$	$3.0 V \leq V_{LCD} \leq V_{DD}$ $V_{LCD0} = V_{LCD}$ $V_{LCD1} = V_{LCD} \times 2/3$ $V_{LCD2} = V_{LCD} \times 1/3$	0		±0.2	V
LCD output voltage deviation ^{Note} (Segment)	Vods	$Io = \pm 1 \ \mu A$		0		±0.2	V
LCD division resistance current	ILCD	$3.0 \text{ V} \leq V_{\text{LCD}} \leq V_{\text{DD}}$		50		260	μA

1/3 bias mode

Note The voltage deviation is the difference between the output voltage and the ideal value of segment and common outputs (V_{LCDn}: n = 0, 1, 2). Since pins to which a reference voltage (V_{LCD1} and V_{LCD2}) is applied do not exist in the μ PD78F0852, the difference between the segment/common output voltage generated by the internal division resistance and the ideal reference potential (V_{DD} to 1/3V_{DD}) is regarded as the voltage deviation.

AC Characteristics

(1) Basic operation ($T_A = -40$ to $+85^{\circ}C$, $V_{DD} = 4.0$ to 5.5 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Cycle time (minimum instruction execution time)	Тсү	Operating with main system clock	0.238		8	μs
TI00 to TI02 input high-/low-level width	ttih2, ttil2	At capture trigger TI00/P40 to TI02/P42	3/fsam ^{Note}			μs
TIO2, TIO3 input frequency	fтıs	TIO2/P43, TIO3/P44	0		4	MHz
TIO2, TIO3 input high-/low-level width	t⊤iH5, t⊤iL5	TIO2/P43, TIO3/P44	100			ns
Interrupt request input high-/low-level width	tinth, tintl	INTP0 to INTP2	1			μs
RESET low-level width	trsl		10			μs

Note Selection of fsam = fx/8, fx/16, fx/32, fx/64 is possible with bits 0 and 1 (PRM00, PRM01) of the prescaler mode register (PRM0).

TCY vs. VDD (Main System Clock Operation)

- (2) Serial interface ($T_A = -40$ to $+85^{\circ}C$, $V_{DD} = 4.0$ to 5.5 V)
 - (a) UART mode (dedicated baud rate generator output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate					130.9	kbps

(b) 3-wire serial I/O mode (SIO3)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK3 cycle time	t ксү1		800			ns
SCK3 high-/low-level width	tкн1, tк∟1	Internal clock selected	tксү1/2 – 50			ns
		External clock selected	400			ns
SI3 setup time (to SCK3↑)	tsik1		100			ns
SI3 hold time (from SCK3↑)	tksi1		400			ns
Delay time from $\overline{\text{SCK3}}\downarrow$ to SO3 output	tkso1	C = 100 pF ^{Note}			300	ns

Note C is the load capacitance of the $\overline{SCK3}$ and SO3 output lines.

(c) 3-wire serial I/O mode (SIO2)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK2 cycle time	t ксү2		800			ns
SCK2 high-/low-level width	tkh2, tkl2	Internal clock selected	tксү1/2 – 50			ns
		External clock selected	400			ns
SI2 setup time (to $\overline{\text{SCK2}}$)	tsik2		100			ns
SI2 hold time (from $\overline{\text{SCK2}}$)	tksi2		400			ns
Delay time from $\overline{\text{SCK2}}\downarrow$ to SO2 output	tkso2	C = 100 pF ^{Note}			300	ns

Note C is the load capacitance of the $\overline{SCK2}$ and SO2 output lines.

AC Timing Measurement Points (Excluding X1 Input)

Clock Timing

TI Timing

Serial Transfer Timing

3-wire serial I/O mode

Sound Generator Characteristics (TA = -40 to +85°C, VDD = 4.0 to 5.5 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Sound generator input frequency	fsg1				4.19	MHz
SGO output rise time	tr	C = 100 pF ^{Note}	80		200	ns
SGO output fall time	tr	C = 100 pF ^{Note}	80		200	ns

Note C is the load capacitance of the SGO output line.

Sound Generator Output Timing

Meter Controller/Driver Characteristics ($T_A = -40$ to $+85^{\circ}C$, $V_{DD} = 4.0$ to 5.5 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Meter controller input frequency	fmc ^{Note 1}				4.19	MHz
PWM output rise time	tr	$C = 100 \text{ pF}^{Note 2}$	80		200	ns
PWM output fall time	tr	$C = 100 \text{ pF}^{Note 2}$	80		200	ns
Symmetry performance ^{Note 3}	∆HSPmn	Іон = -30 mA			50	mV
		Δ HSPmn = I Vон (SMmn) max – Vон (SMmn) min I				
	∆LSPmn	Iон = 30 mA			50	mV
		Δ LSPmn = I VoL (SMmn) max – VoL (SMmn) min I				

Notes 1. Source clock of the free-running counter.

- 2. C is the load capacitance of the PWM output line.
- 3. Indicates the dispersion of 16 PWM output voltages.

Remark m = 1 to 4, n = 1 to 4

Meter Controller/Driver Output Timing

Remark m = 1 to 4, n = 1 to 4

A/D Converter Characteristics (T_A = -40 to +85°C, AV_{REF} = V_{DD} = 4.0 to 5.5 V, AV_{SS} = V_{SS} = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution					8	bit
Overall error ^{Note}					±0.6	%FSR
Conversion time	t CONV		14.0			μs
Analog input voltage	VIAN		AVss		AV _{REF} + 0.3	V
Reference voltage	AVREF		4.0		Vdd	V
Resistance between AVREF	ladd	A/D converter operating (ADCS1 = 1)		1.0	2.0	mA
and AVss		A/D converter not operating (ADCS1 = 0)		1.0	10	μA

Note Excludes quantization error ($\pm 1/2$ LSB). This value is indicated as a ratio to the full-scale value.

Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics (T_A = -40 to +85°C)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	Vdddr		2.0		5.5	V
Data retention power supply current	Idddr	VDDDR = 2.0 V		0.1	10	μA
Release signal set time	t SREL		0			μs
Oscillation stabilization wait time	t WAIT	Release by RESET		217/fx		S
		Release by interrupt request		Note		S

Note Selection of $2^{12}/f_x$ and $2^{14}/f_x$ to $2^{17}/f_x$ is possible with bits 0 to 2 (OSTS0 to OSTS2) of the oscillation stabilization time select register (OSTS).

Data Retention Timing (STOP Mode Release by RESET)

Data Retention Timing (Standby Release Signal: STOP Mode Release by Interrupt Request Signal)

Interrupt Request Input Timing

RESET Input Timing

 \star

Flash Memory Programming Characteristics

(1) Basic characteristics

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
	Operating frequency	fx	Main system clock operation	4.0		8.38	MHz
	Supply voltage	Vdd		4.0		5.5	V
		Vppl	VPP low-level detection	0		0.2Vdd	V
		Vpp	VPP high-level detection	0.8Vdd	Vdd	1.2Vdd	V
7		Vpph	VPP high-voltage detection	9.8	10.0	10.3	V
	VDD power supply current	Idd				50	mA
	VPP power supply current	IPP	Vpp = 10.0 V			50	mA
	Write time (per byte)	t wrt		40	50	120	μs
	Number of rewrites	CWRT	T _{PRG} = +10 to +40°C			20	Times
	Erase time	terase			2		S
	Programming temperature	Tprg		+10		+40	°C

Remark For the input/output voltage and input/output leakage current, refer to DC Characteristics.

(2) Serial write operation characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
VPP setup time	t PSRON	VPP high voltage	1.0			μs
Setup time from $V_{DD}\uparrow$ to $V_{PP}\uparrow$	t DRPSR	VPP high voltage	1.0			μs
Setup time from V _{PP} ↑ to RESET↑	t PSRRF	VPP high voltage	1.0			μs
Count start time from $\overline{\text{RESET}}\uparrow$ to $V_{PP}\uparrow$	t RFCF		1.0			μs
Count execution time	t COUNT				2.0	ms
VPP counter high-/low-level width	tсн, tс∟		8.0			μs
VPP counter rise/fall time	tr, tr		1.0			μs

Flash Write Mode Setting Timing

6. PACKAGE DRAWING

80-PIN PLASTIC QFP (14x14)

detail of lead end

NOTE

Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
A	17.20±0.20
В	14.00±0.20
С	14.00±0.20
D	17.20±0.20
F	0.825
G	0.825
Н	0.32±0.06
I	0.13
J	0.65 (T.P.)
K	1.60±0.20
L	0.80±0.20
М	$0.17\substack{+0.03 \\ -0.07}$
N	0.10
Р	1.40±0.10
Q	0.125±0.075
R	$3^{\circ + 7^{\circ}}_{-3^{\circ}}$
S	1.70 MAX.
	P80GC-65-8BT-1

***** 7. RECOMMENDED SOLDERING CONDITIONS

The μ PD78F0852 should be soldered and mounted under the following recommended conditions.

For details of the recommended soldering conditions, refer to the document **Semiconductor Device Mounting Technology Manual (C10535E)**.

For soldering methods and conditions other than those recommended below, contact your NEC sales representative.

Table 7-1. Surface Mounting Type Soldering Conditions

μ PD78F0852GC-8BT: 80-pin plastic QFP (14 × 14)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Interface reflow	Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher), Count: Two times or less, Exposure limit: 7 days ^{Note} (after that, prebake at 125°C for 10 hours)	IR35-107-2
VPS	Package peak temperature: 215°C, Time: 40 seconds max. (at 200°C or higher), Count: Two times or less, Exposure limit: 7 days ^{№™} (after that, prebake at 125°C for 10 hours)	VP15-107-2
Wave soldering	Solder bath temperature: 260°C max., Time: 10 sec. max., Count: once, Preheating temperature: 120°C max.(package surface temperature), Exposure limit: 7 daysNote (after that, prebake at 125°C for 10 hours)	WS60-107-1
Partial heating	Pin temperature: 300°C max., Time: 3 seconds max. (per pin row)	_

Note After opening the dry peak, store it at 25°C or less and 65% RH or less for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

APPENDIX A. DEVELOPMENT TOOLS

The following development tools are available for system development using the μ PD78F0852. Also refer to (6) Cautions on Using Development Tools.

(1) Software Package

SP78K0	Software Package common to 78K/0 Series

(2) Language Processing Software

RA78K0	Assembler package common to 78K/0 Series
CC78K0	C compiler package common to 78K/0 Series
DF780852	Device file for μ PD780852 Subseries
CC78K0-L	C compiler library source file common to 78K/0 Series

(3) Flash Memory Writing Tools

Flashpro III (Part No.	Dedicated flash programmer for microcomputers incorporating flash memory
FL-PR3, PG-FP3)	

(4) Debugging Tools

IE-78K0-NS(-A)	In-circuit emulator common to 78K/0 Series
IE-70000-MC-PS-B	Power supply unit for IE-78K0-NS
IE-78K0-NS-PA	Performance board to enhance/expand functions of IE-78K0-NS
IE-780852-NS-EM4,	Probe board and I/O board used to emulate μ PD780852 Subseries products
IE-78K0-NS-P04	
IE-70000-98-IF-C	Interface adapter necessary when using PC-9800 series PC (except notebook type) as host machine (C bus supported)
IE-70000-CD-IF-A	PC card and interface cable necessary when using notebook PC as host machine (PCMCIA socket supported)
IE-70000-PC-IF-C	Interface adapter necessary when using IBM PC/AT [™] compatible as host machine (ISA bus supported)
IE-70000-PCI-IF-A	Adapter necessary when using personal computer incorporating PCI bus as host machine
NP-80GC-TQ	Emulation probe for 80-pin plastic QFP (GC-8BT type)
SM78K0	System simulator common to 78K/0 Series
ID78K0-NS	Integrated debugger for IE-78K0-NS
DF780852	Device file for μ PD780852 Subseries

(5) Real-time OS

RX78K0	Real-time OS for 78K/0 Series
MX78K0	OS for 78K/0 Series

- (6) Cautions on Using Development Tools
 - The ID78K0-NS and SM78K0 are used in combination with the DF780852.
 - The CC78K0 and RX78K0 are used in combination with the RA78K0 and DF780852.
 - The FL-PR3 and NP-80GC-TQ are products made by Naitou Densei Machidaseisakusho Co., Ltd. (TEL +81-45-475-4191).
 - For third party development tools, see the Single-Chip Microcontroller Development Tool Selection Guide (U11069E).
 - The host machine and OS suitable for each software are as follows:

Host Machine	PC	EWS
[OS] Software	PC-9800 series [Japanese Windows [™]] IBM PC/AT and compatibles [Japanese/English Windows]	HP9000 series 700 [™] [HP-UX [™]] SPARCstation [™] [SunOS [™] , Solaris [™]]
RA78K0	√ ^{Note}	\checkmark
CC78K0	√ ^{Note}	\checkmark
ID78K0-NS	\checkmark	-
SM78K0	\checkmark	-
RX78K0	√ ^{Note}	\checkmark
MX78K0	√ ^{Note}	\checkmark

Note DOS-based software

APPENDIX B. RELATED DOCUMENTS

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

• Documents Related to Devices

Document Name	Document No.
μ PD780852 Subseries User's Manual	U14581E
μPD780851(A), 780852(A) Data Sheet	U14577E
μPD78F0852 Data Sheet	This document
78K/0 Series User's Manual Instructions	U12326E

• Documents Related to Development Tools (User's Manuals)

Document Name		Document No.
RA78K0 Assembler Package	Operation	U11802E
	Language	U11801E
	Structured Assembly Language	U11789E
CC78K0 C Compiler	Operation	U11517E
	Language	U11518E
PG-FP3 Flash Memory Programmer		U13502E
IE-78K0-NS In-Circuit Emulator		U13731E
IE-78K0-NS-A In-Circuit Emulator		U14889E
IE-780701-NS-EM1		To be prepared
SM78K0S, SM78K0 System Simulator Ver. 2.10 or Later Windows Based	Operation	U14611E
SM78K Series System Simulator Ver. 2.10 or Later	External Part User Open Interface Specifications	U15006E
ID78K0-NS Integrated Debugger Ver. 2.00 or Later Windows Based	Operation	U14379E
ID78K0-NS, ID78K0S-NS Integrated Debugger Ver. 2.20 or Later Windows Based	Operation	U14910E
ID78K0 Integrated Debugger Windows Based	Guide	U11649E
	Reference	U11539E

• Documents Related to Embedded Software (User's Manuals)

Document Name		Document No.
78K/0 Series Real-Time OS	Fundamental	U11537E
	Installation	U11536E
78K/0 Series OS MX78K0	Fundamental	U12257E

• Other Related Documents

Document Name	Document No.
SEMICONDUCTOR SELECTION GUIDE Products & Packages (CD-ROM)	X13769E
Semiconductor Device Mounting Technology Manual	C10535E
Quality Grades on NEC Semiconductor Devices	C11531E
NEC Semiconductor Device Reliability/Quality Control System	C10983E
Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD)	C11892E

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

[MEMO]

• NOTES FOR CMOS DEVICES -

① PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

② HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

FIP and IEBus are trademarks of NEC Corporation.

Windows is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.

PC/AT is a trademark of International Business Machines Corporation.

HP9000 series 700 and HP-UX are trademarks of Hewlett-Packard Company.

SPARCstation is a trademark of SPARC International, Inc.

SunOS and Solaris are trademarks of Sun Microsystems, Inc.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.) Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288	NEC Electronics (Germany) GmbH Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580	NEC Electronics Hong Kong Ltd. Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044 NEC Electronics Hong Kong Ltd.
	NEC Electronics (France) S.A.	Seoul Branch
NEC Electronics (Germany) GmbH	Velizy-Villacoublay, France	Seoul, Korea
Duesseldorf, Germany	Tel: 01-3067-5800	Tel: 02-528-0303
Tel: 0211-65 03 02	Fax: 01-3067-5899	Fax: 02-528-4411
Fax: 0211-65 03 490		
NEC Electronics (UK) Ltd. Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290	NEC Electronics (France) S.A. Madrid Office Madrid, Spain Tel: 091-504-2787 Fax: 091-504-2860	NEC Electronics Singapore Pte. Ltd. Novena Square, Singapore Tel: 253-8311 Fax: 250-3583 NEC Electronics Taiwan Ltd.
NEC Electronics Italiana s.r.l.	NEC Electronics (Germany) GmbH	Taipei, Taiwan
Milano, Italy	Scandinavia Office	Tel: 02-2719-2377
Tel: 02-66 75 41 Fax: 02-66 75 42 99	Taeby, Sweden	Fax: 02-2719-5951
Fax. 02-00 75 42 99	Tel: 08-63 80 820 Fax: 08-63 80 388	NEC do Brasil S.A. Electron Devices Division Guarulhos-SP, Brasil Tel: 11-6462-6810 Fax: 11-6462-6829

J01.2

- The information in this document is current as of October, 2001. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative
 purposes in semiconductor product operation and application examples. The incorporation of these
 circuits, software and information in the design of customer's equipment shall be done under the full
 responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
 parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
 agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
 risks of damage to property or injury (including death) to persons arising from defects in NEC
 semiconductor products, customers must incorporate sufficient safety measures in their design, such as
 redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
 "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products
 developed based on a customer-designated "quality assurance program" for a specific application. The
 recommended applications of a semiconductor product depend on its quality grade, as indicated below.
 Customers must check the quality grade of each semiconductor product before using it in a particular
 application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

(Note)

(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).