Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

DATA SHEET

MOS INTEGRATED CIRCUIT μ**PD78F0703AY**, **78F0703AY(A)**

8-BIT SINGLE-CHIP MICROCONTROLLER

The μ PD78F0703AY is a product of the μ PD780703AY Subseries in the 78K/0 Series.

The μ PD78F0703AY has flash memory in place of the internal ROM of the μ PD780703AY.

The flash memory incorporated enables program writing or erasing with the microcontroller mounted on the target board.

Detailed function descriptions are provided in the following user's manuals. Be sure to read them before designing.

μPD780703Y Subseries User's Manual: U15568E 78K/0 Series User's Manual Instruction: U12326E

FEATURES

- O DCAN (Direct Storage Controller Area Network) controller
- O Pin compatible with mask ROM versions (except VPP pin)
- O Flash memory: 59.5 KB
- O Internal high-speed RAM: 1024 bytes
- O Internal expansion RAM: 2048 bytes
- O Buffer RAM for DCAN: 288 bytes
- \odot Operable within the same supply voltage range as that of the mask ROM version (V_{DD} = 3.5 to 5.5 V)

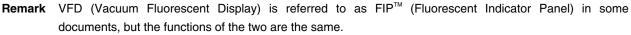
Remark For differences between the flash memory versions and mask ROM version, refer to 1. DIFFERENCES BETWEEN μPD78F0703AY AND MASK ROM VERSION.

APPLICATIONS

Car audio systems, body control, etc.

ORDERING INFORMATION

Part Number	Package	Quality Grade
μPD78F0703AYGC-8BT	80-pin plastic QFP (14 $ imes$ 14)	Standard
μ PD78F0703AYGC(A)-8BT	80-pin plastic QFP (14×14)	Special


Please refer to "Quality Grades on NEC Semiconductor Devices" (Document No. C11531E) published by NEC Electronics Corporation to know the specification of the quality grade on the device and its recommended applications.

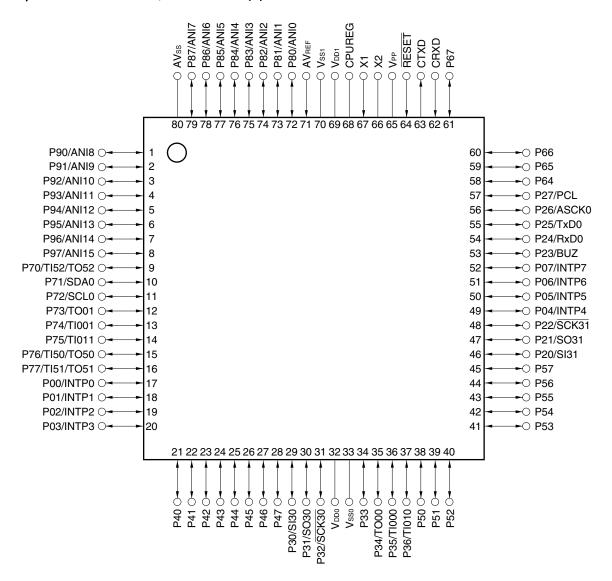
The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all products and/or types are available in every country. Please check with NEC Electronics sales representative for availability and additional information.

★ 78K/0 SERIES LINEUP

Products under development Products in mass production Y subseries products are compatible with I²C bus. Control μPD78075B EMI-noise reduced version of the μ PD78078 100-pin μPD78078Y μ PD78054 with timer and enhanced external interface μPD78078 100-pin μPD78070A uPD78070AY ROMIess version of the µPD78078 100-pin μ PD78078Y with enhanced serial I/O and limited function 100-pin μPD780018A μPD780058 µPD780058Y μ PD78054 with enhanced serial I/O 80-pin 80-pin μPD78058F μPD78058FY EMI-noise reduced version of the μ PD78054 μPD78054 μPD78054Y μ PD78018F with UART and D/A converter, and enhanced I/O 80-pin μPD780065 80-pin µPD780024A with expanded RAM μ PD780034A with timer and enhanced serial I/O µPD780078 μPD780078Y 64-pin μPD780034AY µPD780024A with enhanced A/D converter μPD780034A 64-pin 64-pin μPD780024A μPD780024A µPD78018F with enhanced serial I/O 64-pin μPD78014H EMI-noise reduced version of the μ PD78018F μPD78018F 64-pin μPD78018FY Basic subseries for control On-chip UART, capable of operating at low voltage (1.8 V) µPD78083 42/44-pin Inverter control 64-pin μPD780988 On-chip inverter control circuit and UART. EMI-noise reduced. VFD drive µPD780208 μ PD78044F with enhanced I/O and VFD C/D. Display output total: 53 100-pin 80-pin µPD780232 For panel control. On-chip VFD C/D. Display output total: 53 μPD78044H 78K/0 80-pin µPD78044F with N-ch open-drain I/O. Display output total: 34 Series 80-pin μPD78044F Basic subseries for driving VFD. Display output total: 34 LCD drive //PD780354 μPD780354Y µPD780344 with enhanced A/D converter 100-pin μPD780344 100-pin μPD780344Y μ PD780308 with enhanced display function and timer. Segment signal output: 40 pins max. / μPD780338 µPD780308 with enhanced display function and timer. Segment signal output: 40 pins max. 120-pin µPD780308 with enhanced display function and timer. Segment signal output: 32 pins max. 120-pin μPD780328 μ PD780308 with enhanced display function and timer. Segment signal output: 24 pins max. 120-pin μPD780318 100-pin µPD780308 µPD780308Y µPD78064 with enhanced SIO, and expanded ROM and RAM 100-pin μPD78064B EMI-noise reduced version of the µPD78064 ้*แ*PD78064Y 100-pin μPD78064 Basic subseries for driving LCDs, on-chip UART Bus interface supported 100-pin µPD780948 On-chip CAN controller μPD78098B 80-pin µPD78054 with IEBus[™] controller 80-pin μPD780702Y On-chip IEBus controller //PD780703Y 80-pin On-chip CAN controller 80-pin μPD780703AY On-chip CAN controller 80-pin μPD780833Y On-chip controller compliant with J1850 (Class 2) 64-pin µPD780816 Specialized for CAN controller function Meter control μPD780958 100-pin For industrial meter control 80-pin μPD780852 On-chip automobile meter controller/driver 80-pin μPD780828B For automobile meter driver. On-chip CAN controller

The products in the 78K/0 Series are listed below. The names enclosed in boxes are subseries names.

	Function	on ROM Timer		8-bit	8-bit 10-bit 8-bit		Coviel Interfece	Carriel Interface	V _{DD} Exte	External			
Subseries	Name	Capacity	8-bit	16-bit	Watch	WDT	A/D	A/D	D/A	Serial Interface	I/O	Value	Expansion
Control	μPD78078Y	48 K to 60 K	4 ch	1 ch	1 ch	1 ch	8 ch	_	2 ch	3 ch (UART: 1 ch,	88	1.8 V	Yes
	μPD78070AY	-								l²C: 1 ch)	61	2.7 V	
	μPD780018AY	48 K to 60 K							-	3 ch (l ² C: 1 ch)	88		
	μPD780058Υ	24 K to 60 K	2 ch						2 ch	3 ch (time-division UART: 1ch, l²C: 1 ch)	68	1.8 V	
	μPD78058FY	48 K to 60 K								3 ch (UART: 1 ch,	69	2.7 V	
	μPD78054Y	16 K to 60 K								l ² C: 1 ch)		2.0 V	
	μPD780078Υ	48 K to 60 K		2 ch			-	8 ch	_	4 ch (UART: 2 ch, l²C: 1 ch)	52	1.8 V	
	μPD780034AY	8 K to 32 K		1 ch						3 ch (UART: 1 ch,	51		
	μPD780024AY						8 ch	-		l ² C: 1 ch)			
	μPD78018FY	8 K to 60 K								2 ch (l²C: 1 ch)	53		
LCD	μPD780354Y	24 K to 32 K	4 ch	1 ch	1 ch	1 ch	-	8 ch	-	4 ch (UART: 1 ch,	66	1.8 V	-
drive	μPD780344Y						8 ch	-		l ² C: 1 ch)			
	μPD780308Υ	48 K to 60 K	2 ch							3 ch (time-division UART: 1 ch, l²C: 1 ch)	57	2.0 V	
	<i>μ</i> ΡD78064Υ	16 K to 32 K								2 ch (UART: 1 ch, l²C: 1 ch)			
Bus	μPD780702Y	60 K	3 ch	2 ch	1 ch	1 ch	16 ch	-	_	4 ch (UART: 1 ch,	67	3.5 V	-
interface	μPD780703Y	59.5 K								l ² C: 1 ch)			
supported	μPD780703AY	59.5 K											
	μPD780833Y	60 K									65	4.5 V	


The major functional differences among the subseries are listed below.

OVERVIEW OF FUNCTIONS

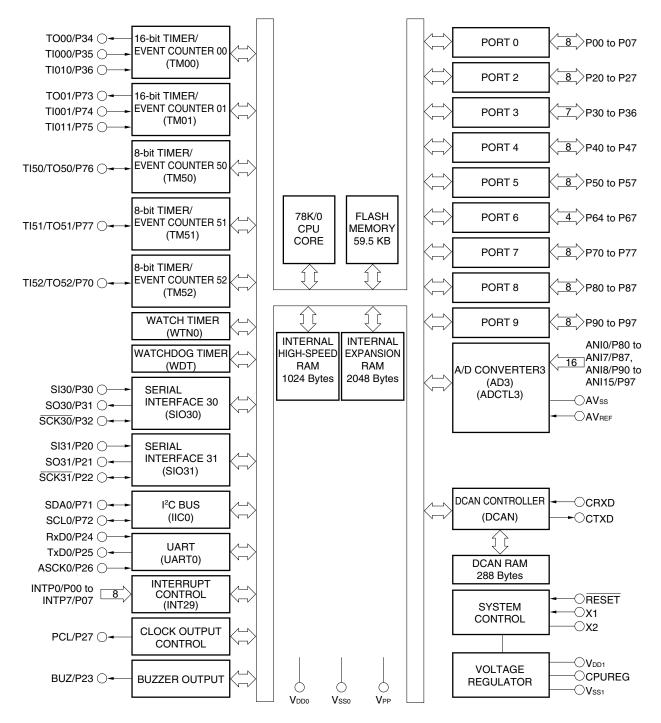
	Item	Function		
Internal	Flash memory	59.5 KB		
memory	High-speed RAM	1024 bytes		
	Expansion RAM	2048 bytes		
	Buffer RAM for DCAN 288 bytes			
Minimum instruc	tion execution time	On-chip minimum instruction execution time variable function • 0.25 μs/0.5 μs/1.00 μs/2.00 μs/4.00 μs (@ 8.00-MHz operation with system clock)		
General-purpose	registers	8 bits \times 32 registers (8 bits \times 8 registers \times 4 banks)		
Instruction set		 16-bit operation Multiply/divide (8 bits × 8 bits, 16 bits ÷ 8 bits) Bit manipulation (set, reset, test, Boolean operation) BCD adjust, etc. 		
I/O ports		Total: 67 • CMOS I/O: 56 • TTL input/CMOS output: 8 • N-ch open-drain I/O: 3		
A/D converter		 8-bit resolution × 16 channels Power fail detection function		
Serial interface		 3-wire serial I/O mode: 2 channels UART mode: 1 channel I²C bus mode: 1 channel 		
Timer		 16-bit timer/event counter: 2 channels 8-bit timer/event counter: 3 channels Watch timer: 1 channel Watchdog timer: 1 channel 		
Timer output		5 (8-bit PWM output capable: 3)		
Clock output		62.5 kHz, 125 kHz, 250 kHz, 500 kHz, 1.00 MHz, 2.00 MHz, 4.00 MHz, 8.00 MHz (@ 8.00-MHz operation with system clock)		
Buzzer output		0.977 kHz, 1.95 kHz, 3.91 kHz, 7.81 kHz (@ 8.00-MHz operation with system clock)		
DCAN controller		1 channel		
Vectored interrup	ot Maskable	Internal: 20, External: 8		
sources Non-maskable		Internal: 1		
Software		1		
Power supply voltage		V _{DD} = 3.5 to 5.5 V		
Operating ambie	nt temperature	$T_{A} = -40 \text{ to } +85^{\circ}\text{C}$		
Package		80-pin plastic QFP (14×14)		

PIN CONFIGURATION (Top View)

 80-pin plastic QFP (14 × 14) μPD78F0703AYGC-8BT, 78F0703AYGC(A)-8BT

Cautions 1. In normal operating mode, connect the VPP pin directly to VSS0 or VSS1.

- 2. Connect the AVss pin to Vsso.
- 3. Connect the AVREF pin to VDD0.
- **Remark** When the μPD78F0703AY is used in applications where the noise generated inside the microcontroller needs to be reduced, the implementation of noise reduction measures, such as supplying voltage to V_{DD0} and V_{DD1} individually and connecting V_{SS0} and V_{SS1} to different ground lines, is recommended.


NEC

μPD78F0703AY, 78F0703AY(A)

Analog Input
Asynchronous Serial Clock
Analog Reference Voltage
Analog Ground
Buzzer Output
Regulator for CPU Power Supply
CAN Receive Data
CAN Transmit Data
Interrupt for Peripherals
Port 0
Port 2
Port 3
Port 4
Port 5
Port 6
Port 7
Port 8
Port 9

PCL:	Programmable Clock
RESET:	Reset
RxD0:	Receive Data (for UART0)
SCK30, SCK31:	Serial Clock (for SIO30, 31)
SCL0:	Serial Clock (for IIC0)
SDA0:	Serial Data
SI30, SI31:	Serial Input
SO30, SO31:	Serial Output
TI000, TI010, TI001,	
TI011, TI50, TI51,	
TI52:	Timer Input
TO00, TO01, TO50,	
TO51, TO52:	Timer Output
TxD0:	Transmit Data (for UART0)
VDD0, VDD1:	Power Supply
VPP:	Programming Power Supply
Vsso, Vss1:	Ground
X1, X2:	Crystal

BLOCK DIAGRAM

CONTENTS

1.	DIFFERENCES BETWEEN μ PD78F0703AY AND MASK ROM VERSION	9
2.	PIN FUNCTIONS	10
	2.1 Port Pins	10
	2.2 Non-port Pins	
	2.3 Pin I/O Circuits and Recommended Connection of Unused Pins	14
3.	INTERNAL MEMORY SIZE SWITCHING REGISTER (IMS)	16
4.	INTERNAL EXPANSION RAM SIZE SELECT REGISTER (IXS)	17
5.	FLASH MEMORY PROGRAMMING	18
	5.1 Selecting Communication Mode	18
	5.2 Flash Memory Programming Function	19
	5.3 Connecting Flashpro III/Flashpro IV	19
6.	SECURE FLASH SELF-PROGRAMMING WITH REAL-TIME SUPPORT	20
	6.1 Self-programming of both Flash Memory Blocks with Block Swapping	20
	6.2 Self-programming Circuit Requirements	22
7.	ELECTRICAL SPECIFICATIONS	23
8.	PACKAGE DRAWING	39
9.	RECOMMENDED SOLDERING CONDITIONS	10
AP	PENDIX A. DEVELOPMENT TOOLS	11
AP	PENDIX B. RELATED DOCUMENTS	13

 \star

1. DIFFERENCES BETWEEN μ PD78F0703AY AND MASK ROM VERSION

The μ PD78F0703AY is a product provided with flash memory, enabling writing, erasing, and rewriting of programs without being removed from the board.

Table 1-1 shows the differences between the flash memory version (μ PD78F0703AY) and mask ROM version (μ PD780703AY).

Item	<i>µ</i> PD78F0703AY	μΡD780703AY	
Internal ROM type	Flash memory	Mask ROM	
Internal ROM capacity	59.5 KB	59.5 KB	
IC pin	Not provided	Provided	
VPP pin	Provided	Not provided	
Electrical specifications	Refer to the data sheet of individual products.		

Table 1-1. Differences Between μ PD78F0703AY and Mask ROM Version

Caution The flash memory version and mask ROM version have different noise immunity and noise radiation characteristics. Do not use ES products for evaluation when considering switching from flash memory version to those using mask ROM upon the transition from preproduction to mass-production. CS products (mask ROM version) should be used in this case.

2. PIN FUNCTIONS

2.1 Port Pins (1/2)

Pin Name	I/O		Function	After Reset	Alternate Function
P00 to P07	Input/output	Port 0. 8-bit input/output port. Input/output can be spea resistor can be specified	cified in 1-bit units. An on-chip pull-up I by means of software.	Input	INTP0 to INTP7
P20	Input/output	Port 2.		Input	SI31
P21		8-bit input/output port.	cified in 1-bit units. An on-chip pull-up		SO31
P22		resistor can be specified			SCK31
P23					BUZ
P24					RxD0
P25					TxD0
P26					ASCK0
P27					PCL
P30	Input/output	Port 3.	An on-chip pull-up resistor can be	Input	SI30
P31		7-bit input/output port.	specified by means of software.		SO30
P32		Input/output can be specified in 1-bit units.			SCK30
P33			N-ch open-drain input/output port (15-V withstand voltage). LEDs can be driven directly.		_
P34			An on-chip pull-up resistor can be		ТО00
P35			specified by means of software.		TI000
P36					TI010
P40 to P47	Input/output		cified in 1-bit units. for can be specified by means of est flag KRIF is set to 1 by falling edge	Input	_
P50 to P57	Input/output	Port 5. 8-bit input/output port. TTL level input/CMOS o Input/output can be spec An on-chip pull-up resist software.	•	Input	-
P60 to P67	Input/output	Port 6. 4-bit input/output port. Input/output can be spec An on-chip pull-up resist software.	cified in 1-bit units. for can be specified by means of	Input	-

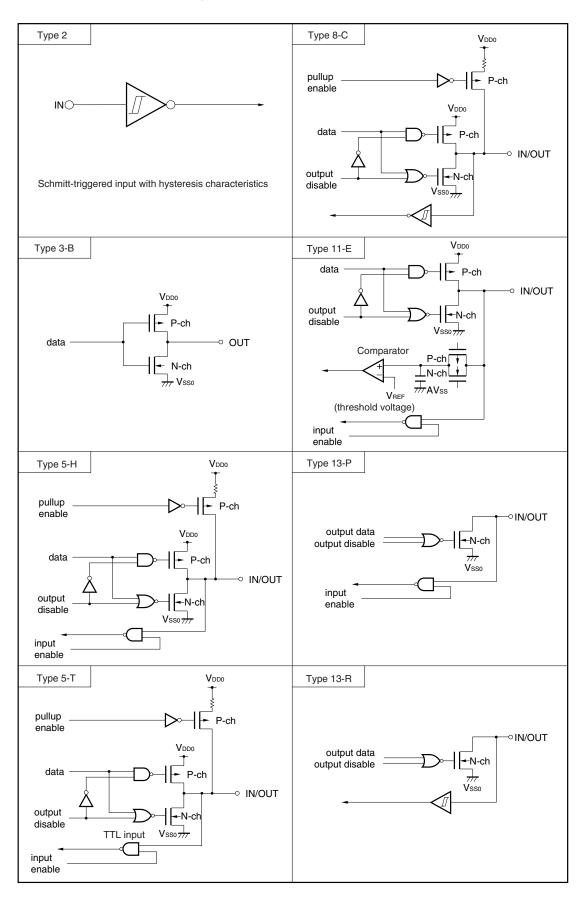
2.1 Port Pins (2/2)

Pin Name	I/O		Function	After Reset	Alternate Function
P70	Input/output	Port 7. 8-bit input/output port. Input/output can be	8-bit input/output port. specified by means of software.		TI52/TO52
P71		specified in 1-bit units.	N-ch open-drain input/output port		SDA0
P72			(5-V withstand voltage).		SCL0
P73			An on-chip pull-up resistor can be specified by means of software.		TO01
P74					TI001
P75					TI011
P76					TI50/TO50
P77					TI51/TO51
P80 to P87	Input/output	Port 8. 8-bit input/output port. Input/output can be spec	cified in 1-bit units.	Input	ANI0 to ANI7
P90 to P97	Input/output	Port 9. 8-bit input/output port. Input/output can be spec	cified in 1-bit units.	Input	ANI8 to ANI15

2.2 Non-port Pins (1/2)

Pin Name	I/O	Function	After Reset	Alternate Function
INTP0 to INTP7	Input	External interrupt input for which the valid edge (rising edge, falling edge, or both rising and falling edges) can be specified	Input	P00 to P07
SI30	Input	Serial interface serial data input	Input	P30
SI31				P20
SO30	Output	Serial interface serial data output	Input	P31
SO31				P21
SDA0	I/O	Serial interface serial data input/output	Input	P71
SCK30	I/O	Serial interface serial clock input/output	Input	P32
SCK31				P22
SCL0				P72
RxD0	Input	Serial data input for asynchronous serial interface	Input	P24
TxD0	Output	Serial data output for asynchronous serial interface	Input	P25
ASCK0	Input	Serial clock input for asynchronous serial interface	Input	P26
CRXD	Input	Data input of DCAN controller (DCAN)	Input	-
CTXD	Output	Data output of DCAN controller (DCAN)	Output	_
TI000	Input	External count clock input to 16-bit timer (TM00)	Input	P35
TI010		External count clock input to 16-bit timer (TM00)		P36
TI001		External count clock input to 16-bit timer (TM01)		P74
TI011		External count clock input to 16-bit timer (TM01)		P75
TI50		External count clock input to 8-bit timer (TM50)		P76/TO50
TI51		External count clock input to 8-bit timer (TM51)		P77/TO51
TI52		External count clock input to 8-bit timer (TM52)		P70/TO52
ТО00	Output	16-bit timer (TM00) output	Input	P34
TO01		16-bit timer (TM01) output		P73
TO50		8-bit timer (TM50) output		P76/TI50
TO51		8-bit timer (TM51) output		P77/TI51
TO52		8-bit timer (TM52) output		P70/TI52
PCL	Output	Clock output	Input	P27
BUZ	Output	Buzzer output	Input	P23
ANI0 to ANI7	Input	A/D converter (AD3) analog input	Input	P80 to P87
ANI8 to ANI15				P90 to P97
AVREF	Input	A/D converter (AD3) reference voltage and analog power supply	_	_
AVss	_	A/D converter (AD3) ground potential	-	_
X1	Input	Connecting crystal resonator for system clock oscillation	-	_
X2	_		_	_

2.2 Non-port Pins (2/2)


Pin Name	I/O	Function	After Reset	Alternate Function
RESET	Input	System reset input	Input	_
CPUREG	-	Regulator for CPU power supply. Connect to V_{SS0} or V_{SS1} via a 0.1- μ F capacitor.	_	_
VDD0		Positive power supply for ports	_	-
V _{DD1}	_	Positive power supply (except ports and analog section)	_	-
Vsso	_	Ground potential for ports	_	-
V _{SS1}	_	Ground potential (except ports and analog section)	-	_
Vpp	_	High voltage applied during program write/verify. Connect directly to $V_{\rm SS0}$ or $V_{\rm SS1}$ in normal operating mode.	_	_

2.3 Pin I/O Circuits and Recommended Connection of Unused Pins

The input/output circuit type of each pin and recommended connection of unused pins are shown in Table 2-1. For the input/output circuit configuration of each type, refer to Figure 2-1.

Pin Name	Input/Output Circuit Type	I/O	Recommended Connection of Unused Pins
P00/INTP0 to P07/INTP7	8-C	Input/output	Independently connect to V _{SS0} via a resistor.
P20/SI31			Independently connect to VDD0 or VSS0 via a resistor.
P21/SO31	5-H		
P22/SCK31	8-C		
P23/BUZ	5-H		
P24/RxD0	8-C		
P25/TxD0	5-H		
P26/ASCK0	8-C		
P27/PCL	5-H		
P30/SI30	8-C		
P31/SO30	5-H		
P32/SCK30	8-C		
P33	13-P		Connect to VDD0 via a resistor.
P34/TO00	5-H		Independently connect to VDD0 or VSS0 via a resistor.
P35/TI000	8-C		
P36/TI010			
P40 to P47	5-H		Independently connect to VDDO via a resistor.
P50 to P57	5-T		Independently connect to VDD0 or VSS0 via a resistor.
P64 to P67	5-H		
P70/TI52/TO52			
P71/SDA0	13-R		Independently connect to VDD0 via a resistor.
P72/SCL0			
P73/TO01	5-H		Independently connect to VDD0 or VSS0 via a resistor.
P74/TI001	8-C		
P75/TI011			
P76/TI50/TO50			
P77/TI51/TO51			
P80/ANI0 to P87/ANI7	11-E		
P90/ANI8 to P97/ANI15			
CRXD	2	Input	Connect to VDD0 or VSS0 via a resistor.
CTXD	3-B	Output	Leave open.
RESET	2	Input	_
AVREF	_		Connect to VDD0.
AVss		-	Connect to Vsso.
Vpp			Connect directly to Vsso or Vss1.

Table 2-1. Types of Pin Input/Output Circuits

Figure 2-1. Pin Input/Output Circuits

3. INTERNAL MEMORY SIZE SWITCHING REGISTER (IMS)

IMS is a register used to disable a part of the internal memory by means of software. IMS is set with an 8-bit memory manipulation instruction. $\overline{\text{RESET}}$ input sets IMS to CFH.

Caution Use IMS with its default value (CFH). Do not set any other values for the IMS.

Figure 3-1. Format of Internal Memory Size Switching Register (IMS)

Address: FFF0H		After reset:	CFH	R/W	R/W			
Symbol	7	6	5	4	3	2	1	0
IMS	RAM2	RAM1	RAM0	0	ROM3	ROM2	ROM1	ROM0

	RAM2	RAM1	RAM0	Internal high-speed RAM capacity selection
ſ	1	1	0	1024 bytes
	Other than	above		Setting prohibited

ROM3	ROM2	ROM1	ROM0	Internal ROM capacity selection
1	1	1	1	59.5 KB
Other than	above			Setting prohibited

4. INTERNAL EXPANSION RAM SIZE SELECT REGISTER (IXS)

The internal expansion RAM size select register (IXS) selects the internal expansion RAM capacity. IXS is set with a 1-bit or 8-bit memory manipulation instruction. RESET input sets IXS to 0CH.

Caution Set IXS to 08H as the default status of the program. Because IXS is set to 0CH at a reset, set it to 08H after a reset.

Address: F	FF4H	After reset:	0CH	R/W				
Symbol	7	6	5	4	3	2	1	0
IXS	0	0	0	IXRAM4	IXRAM3	IXRAM2	IXRAM1	IXRAM0

Figure 4-1.	Format of Internal	Expansion RAM	I Size Select Registe	r (IXS)

IXRAM4	IXRAM3	IXRAM2	IXRAM1	IXRAM0	Internal expansion RAM capacity selection
0	1	0	0	0	2048 bytes
Other than above					Setting prohibited

5. FLASH MEMORY PROGRAMMING

The flash memory can be written even while the device is mounted on the target system (on-board write). To write a program to the flash memory, connect the dedicated flash programmer (Flashpro III (model number: FL-PR3 and PG-FP3)/Flashpro IV (model number: FL-PR4 and PG-FP4)) to both the host machine and target system.

A program can also be written by using an adapter for flash memory writing, connected to the Flashpro III/Flashpro IV.

The μ PD78F0703AY can also be programmed via self-programming of the flash memory.

Remark The FL-PR3 and FL-PR4 is manufactured by Naito Densei Machida Mfg. Co., Ltd. Contact: +81-45-475-4191

5.1 Selecting Communication Mode

The Flashpro III/Flashpro IV writes to flash memory by means of serial communication. The communication mode to be used for writing is selected from those listed in Table 5-1. To select a communication mode, use the format shown in Figure 5-1, according to the number of VPP pulses listed in Table 5-1.

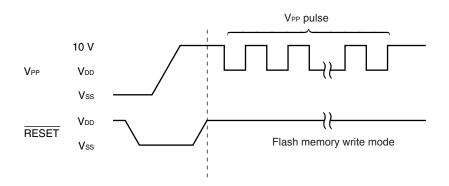

Communication Mode	Number of Channels	Pins Used ^{Note}	Number of VPP Pulses
3-wire serial I/O	2	SI30/P30	0
		SO30/P31	
		SCK30/P32	
		SI31/P20	1
		SO31/P21	
		SCK31/P22	

Table 5-1. Communication Mode

Note Shifting to the flash memory programming mode sets all pins not used for flash memory programming to the same state as immediately after reset. Therefore, all ports enter an output high-impedance state. If the external devices do not acknowledge an output high-impedance state, handling such as connecting to V_{DD} via a resister or connecting to V_{SS} via a resister is required.

Caution The communication mode must be selected by the number of VPP pulses listed in Table 5-1.

Figure 5-1. Communication Mode Selection Format

5.2 Flash Memory Programming Function

Flash memory writing and other operations can be performed by transmitting/receiving commands and data according to the selected communication mode. Table 5-2 lists the major flash memory programming functions.

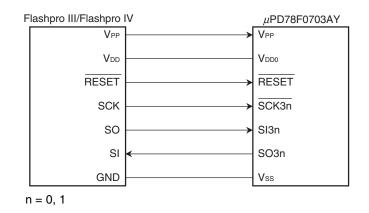
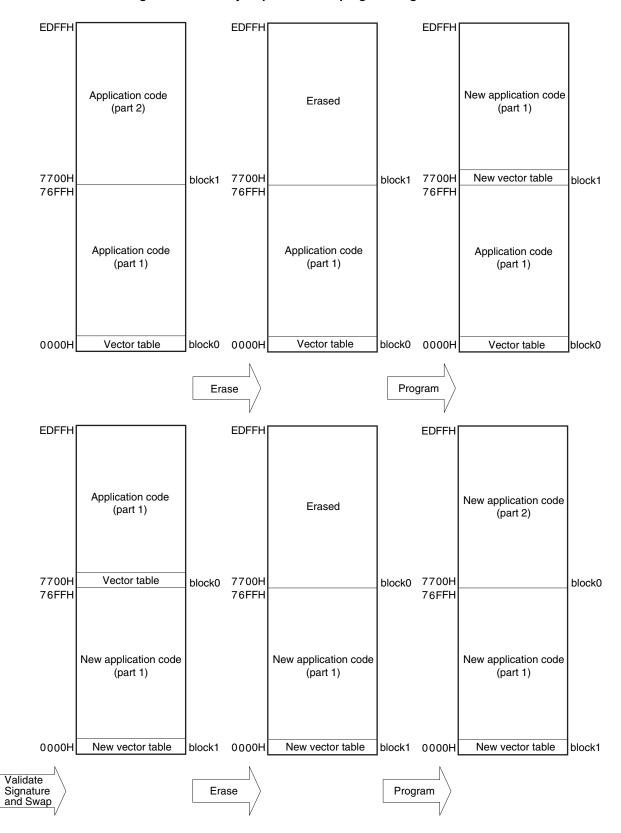
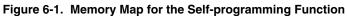

Function	Description
Reset	Stops writing or detects communication synchronization.
Batch verify	Compares the entire contents of memory with the input data.
Batch internal verify	Compares the entire contents of memory in different modes.
Batch erase	Erases the entire contents of memory.
Batch blank check	Checks that the entire contents of memory have been erased.
High-speed write	Writes to the flash memory according to the specified write start address and number of data bytes to be written.
Continuous write	Continues writing based on the information input by using the high-speed write function.
Batch prewrite	Writes 00H into the entire contents of memory.
Status	Checks the current operating mode and whether the operation has ended.
Oscillation frequency setting	Inputs the frequency information of the resonator.
Erase time setting	Inputs the memory erase time.
Silicon signature read	Outputs the device name, memory capacity, and device block information.

Table 5-2.	Major Functions	of Flash Mem	ory Programming
------------	-----------------	--------------	-----------------

5.3 Connecting Flashpro III/Flashpro IV

The connection between the Flashpro III/Flashpro IV and μ PD78F0703AY varies according to the communication mode. Figure 5-2 shows the connection.

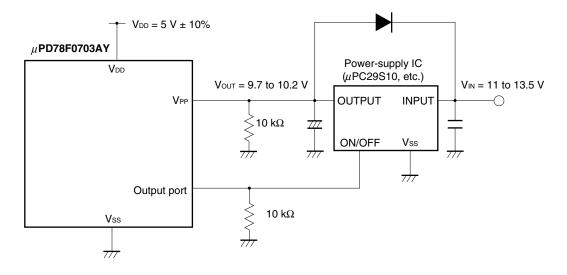

6. SECURE FLASH SELF-PROGRAMMING WITH REAL-TIME SUPPORT


The μ PD78F0703AY supports the self-programming of the flash memory by a program. The self-programming is implemented as secure self-programming in order to avoid a non-startup of the device after a power down behaviour. For the support of windows watchdogs or the notification on the CAN-bus during the self-programming of the device a real-time function for the handling of a task is implemented.

6.1 Self-programming of both Flash Memory Blocks with Block Swapping

The memory map of the μ PD78F0703AY contains in user mode two 29.75 KB flash memory blocks from address 0000H onward. To erase and download the data and program the upper block, the routines residing in the lower block can be utilized and even after a power failure the lower block is present and valid.

To update the lower 29.75 KB block, the complete flash memory of the device needs to be programmed. At first the upper block is erased. As second the data of the new lower block is programmed into the upper block before the both blocks are internally swapped. Finally the former lower block is programmed with the remaining application data. This procedure allows to re-program both flash memory blocks (lower block and upper block) and to avoid a power failure.



6.2 Self-programming Circuit Requirements

Figure 6-2 shows the self-programming circuit requirements.

7. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings (T_A = 25°C)

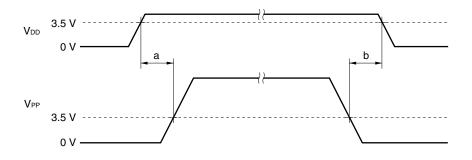
Parameter	Symbol	Conditions		Ratings	Unit	
Power supply voltage	VDD	VDD = AVREF			–0.3 to +6.5	V
	AVREF					
	Vpp	Note 1			-0.3 to +10.5	V
	AVss				-0.3 to +0.3	V
Input voltage	VI1	P00 to P07, P20 to P27, P30 to P32, P34 to P36, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, CRXD, X1, X2, RESET		-0.3 to V _{DD} + 0.3	V	
	VI2	P33	N-ch open o	drain	-0.3 to +16.0	V
Output voltage	Vo	P00 to P07, P20 to P27, P P50 to P57, P64 to P67, P P90 to P97, CTXD			-0.3 to V _{DD} + 0.3	V
Analog input voltage	Van	P80 to P87, P90 to P97		ut pin	AVss - 0.3 to AVREF + 0.3	V
					and -0.3 to VDD + 0.3	
Output current, high	Іон	Per pin for P00 to P07, P20 to P27, P30 to P32, P34 to P36, P40 to P47, P50 to P57, P64 to P67, P70, P73 to P77, P80 to P87, P90 to P97, CRXD		-10	mA	
		Total for all pins	-30	mA		
Output current, low	IOL ^{Note 2}	Per pin for P00 to P07, P20 to P27, Peak value P30 to P32, P34 to P36, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, CTXD rms value		20	mA	
				rms value	10	mA
		P33		Peak value	30	mA
				rms value	15	mA
		Total for all pins		Peak value	100	mA
				rms value	60	mA
Operating ambient temperature	Та				-40 to +85	°C
Programming ambient temperature	Tprg				+10 to +40	°C
Storage temperature	Tstg	Before 2000 hours elapses programming was perform		iemory	-40 to +125	°C
		After flash memory progra 2000 hours or more has e	0 1	erformed and	-40 to +125	°C

(Refer to Note on the next page.)

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

NEC


Notes 1. Make sure that the following conditions of the VPP voltage application timing are satisfied when the flash memory is written.

• When supply voltage rises

VPP must exceed V_{DD} 10 μ s or more after V_{DD} has reached the lower-limit value (3.5 V) of the operating voltage range (1 ms if the supply voltage is dropped by the regulator) (see a in the figure below).

• When supply voltage drops

Raise V_{DD} 10 μ s or more after V_{PP} falls below the lower-limit value (3.5 V) of the operating voltage range of V_{DD} (see b in the figure below).

2. The rms value should be calculated as follows: [rms value] = [Peak value] $\times \sqrt{\text{Duty}}$

Capacitance (TA = 25°C, VDD = VSS = 0 V)

Parameter	Symbol	Co	Conditions		TYP.	MAX.	Unit
Input capacitance	CIN	f = 1 MHz Other than measured pins: 0 V				15	pF
Output capacitance	Соит	f = 1 MHz Other than measured pi	f = 1 MHz Other than measured pins: 0 V			15	pF
Input/output capacitance	Сю	f = 1 MHz Other than measured pins: 0 V	P00 to P07, P20 to P27, P30 to P32, P34 to P36, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97			15	pF
			P33			20	pF

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

System Clock Oscillator Characteristics (TA = -40 to +85°C, VDD = 3.5 to 5.5 V)

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Crystal resonator		Oscillation frequency (fx) ^{Note 1}			8.00		MHz
		Oscillation stabilization time ^{Note 2}				10	ms
Ceramic resonator		Oscillation frequency (fx) ^{Note 1}			8.00		MHz
		Oscillation stabilization time ^{Note 2}				4	ms

Notes 1. Indicates only oscillator characteristics.

- 2. Time required to stabilize oscillation after reset or STOP mode release.
- Caution When using the system clock oscillator, wire as follows in the area enclosed by the broken lines in the above figure to avoid an adverse effect from wiring capacitance.
 - Keep the wiring length as short as possible.
 - Do not cross the wiring with the other signal lines.
 - Do not route the wiring near a signal line through which a high fluctuating current flows.
 - Always make the ground point of the oscillator capacitor the same potential as Vss1.
 - Do not ground the capacitor to a ground pattern through which a high current flows.
 - Do not fetch signals from the oscillator.

DC Characteristics (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 3.5 to 5.5 V)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Input voltage,	VIH1	P21, P23, P25, P2 P73, P80 to P87,	27, P31, P34, P40 to P47, P64 to P67, P90 to P97	0.7Vdd		Vdd	V
high	VIH2		P22, P24, P26, P30, P32, P35, P36, o P77, CRXD, RESET	0.8Vdd		Vdd	V
	VIH3	P50 to P57		2.3		VDD	V
	VIH4	P33	N-ch open drain	0.7Vdd		15.0	V
Input voltage, low	VIL1	P21, P23, P25, P2 P73, P80 to P87,	27, P31, P34, P40 to P47, P64 to P67, P90 to P97	0		0.3Vdd	V
	VIL2		P00 to P07, P20, P22, P24, P26, P30, P32, P35, P36, P70 to P72, P74 to P77, CRXD, RESET			0.2Vdd	V
	VIL3	P50 to P57		0		0.75	V
	VIL4	P33	N-ch open drain	0		0.3VDD	V
Output voltage,	V _{OH1}	Іон = -1 mA	P00 to P07, P20 to P27, P30 to P32, P34 to P36, P40 to P47, P50 to P57,	Vdd — 1.0		Vdd	V
	V _{OH2}	Іон = -100 <i>µ</i> А	P64 to P67, P70, P73 to P77, P80 to P87, P90 to P97, CTXD	Vdd – 0.5		Vdd	V
Output	V _{OL1}	IoL = 15 mA	P33		0.4	2.0	V
Output Vol1 voltage, low Vol2 Vol3 Vol3	Vol2	lo∟ = 1.6 mA	P71, P72			0.4	V
	lo∟ = 1 mA	P00 to P07, P20 to P27, P30 to P32, P34 to P36, P40 to P47, P50 to P57,			1.0	V	
	Vol4	lo∟ = 100 μA	P64 to P67, P70, P73 to P77, P80 to P87, P90 to P97, CTXD			0.5	V
Input leakage current, high	Ішн1	$V_{\text{IN}} = V_{\text{DD}}$	P00 to P07, P20 to P27, P30 to P32, P34 to P36, P40 to P47, P50 to P57, P64 to P67, P70 to <u>P77, P80</u> to P87, P90 to P97, CRXD, RESET			3	μA
	ILIH2		X1			20	μA
	Ілнз	Vin = 15 V	P33			80	μA
Input leakage current, low	ILIL1	V _{IN} = 0 V	P00 to P07, P20 to P27, P30 to P32, P34 to P36, P40 to P47, P50 to P57, P64 to <u>P67, P80 to P87, P90 to P97,</u> CRXD, RESET			-3	μA
Γ	ILIL2		X1			-20	μA
	ILIL3		P33 (except executing input instruction ^{Note})			-3	μA

Note During input instruction execution, a low-level input leakage current of $-200 \ \mu$ A (MAX.) flows only for 1 clock (without wait).

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

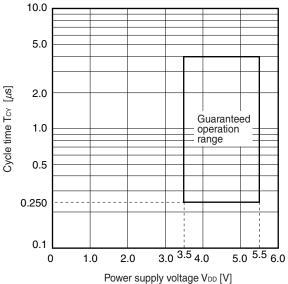
DC Characteristics (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 3.5 to 5.5 V)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Output leakage current, high	Ігон	Vout = Vdd	P00 to P07, P20 to P27, P30 to P36, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, CTXD			3	μA
Output leakage current, low	Ilol	Vout = 0 V	P00 to P07, P20 to P27, P30 to P36, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, CTXD			-3	μA
Software pull-up resistor	R1	V _{IN} = 0 V	P00 to P07, P20 to P27, P30 to P32, P34 to P36, P40 to P47, P50 to P57, P64 to P67, P70, P73 to P77	15	30	90	kΩ
Power supply	IDD1	8.00-MHz crysta	I oscillation operating mode		9.0	20	mA
current ^{Note 1}	IDD2	8.00-MHz crystal	l oscillation HALT mode (DCAN operating) ^{Note 2}		1.6	3.0	mA
	Іддз	8.00-MHz crystal	oscillation HALT mode (DCAN sleep mode) ^{Note 2}		700	1500	μA
	DD4	STOP mode			1.5	30	μA

Notes 1. Refers to the current flowing to the V_{DD1} pin. The current flowing to the A/D converter and on-chip pull-up resistor is not included.

2. Low-speed mode operation (when processor clock control register (PCC) is set to 04H). The current for peripheral circuit operation is not included.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.


AC Characteristics

(1) Basic operation ($T_A = -40$ to $+85^{\circ}C$, $V_{DD} = 3.5$ to 5.5 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Cycle time (Min. instruction execution time)	Тсү	Operating with system clock (fx = 8.00 MHz)	0.250		4.00	μs
TI000, TI010, TI001, TI011 input high-/low- level width	tτι∺ο tτι∟o		4/f _{sam} + 0.25 ^{Note}			μs
TI50, TI51, TI52 input frequency	ft15				2	MHz
TI50, TI51, TI52 input high-/low-level width	tтін5 t⊤i∟s		200			ns
Interrupt request input high-/low-level width	tın⊤h tın⊤∟	INTP0 to INTP7, P40 to P47	10			μs
RESET low-level width	t _{RSL}		10			μs

Note Selection of $f_{sam} = f_x/2$, $f_x/4$, $f_x/64$ is possible with bits 0 and 1 (PRM0n0, PRM0n1) of prescaler mode register 0n (PRM0n). However, if the TI00n valid edge is selected as the count clock, the value becomes $f_{sam} = f_x/8$ (n = 0, 1).

Tcy vs VDD (At system clock operation)

(2) Serial interface ($T_A = -40$ to $+85^{\circ}C$, $V_{DD} = 3.5$ to 5.5 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK30 cycle time	tkCY1		1.9			μs
SCK30 high-/low-level width	tкнı tк∟ı		tксү1/ 2 – 50			ns
SI30 setup time (to SCK30↑)	tsiki		100			ns
SI30 hold time (from SCK30↑)	tĸsn		400			ns
SO30 output delay time from $\overline{\text{SCK30}}\downarrow$	tkso1	C = 100 pF ^{Note}			300	ns

(a) 3-wire serial I/O mode (SCK30 ... Internal clock output)

Note C is the load capacitance of the $\overline{SCK30}$ and SO30 output lines.

(b) 3-wire serial I/O mode (SCK30 ... External clock input)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK30 cycle time	t ксү2		800			ns
SCK30 high-/low-level	t кн2		400			ns
width	tĸ∟2					
SI30 setup time (to SCK30↑)	tsik2		100			ns
SI30 hold time (from SCK30↑)	tksi2		400			ns
SO30 output delay time from $\overline{\text{SCK30}}\downarrow$	tkso2	C = 100 pF ^{Note}			300	ns

Note C is the load capacitance of the SO30 output line.

(c) 3-wire serial I/O mode (SCK31 ... Internal clock output)

		- /				
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK31 cycle time	tксүз		1.9			μs
SCK31 high-/low-level	tкнз		tксү1/			ns
width	tкLз		2 – 50			
SI31 setup time (to SCK31↑)	tsıкз		100			ns
SI31 hold time (from SCK31↑)	tหรเง		400			ns
SO31 output delay time from SCK31 \downarrow	tкsoз	C = 100 pF ^{Note}			300	ns

Note C is the load capacitance of the SCK31 and SO31 output lines.

(d) 3-wire serial I/O mode (SCK31 ... External clock input)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK31 cycle time	tkCY4		800			ns
SCK31 high-/low-level	tĸн₄		400			ns
width	tĸL4					
SI31 setup time (to SCK31↑)	tsıκ₄		100			ns
SI31 hold time (from SCK31↑)	tksi4		400			ns
SO31 output delay time from SCK31 \downarrow	tkso4	$C = 100 \text{ pF}^{\text{Note}}$			300	ns

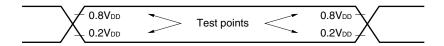
Note C is the load capacitance of the SO31 output line.

(e) UART mode (Dedicated baud rate generator output)

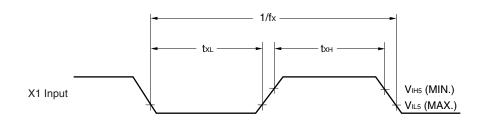
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate					62500	bps

(f) UART mode (External clock input)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
ASCK0 cycle time	tксүз		800			ns
ASCK0 high-/low-level width	tкнз, tк∟з		400			ns
Transfer rate					78125	bps

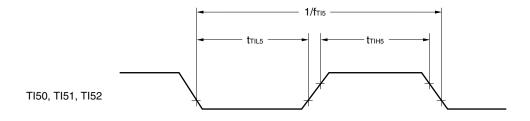

(g) I²C bus mode

	Parameter	Symbol	Standa	rd Mode	High-spe	ed Mode	Unit
			MIN.	MAX.	MIN.	MAX.	
SCL0 clock frequ	uency	fsc∟	0	100	0	400	kHz
Bus free time (be	etween stop and start conditions)	tBUF	4.7	-	1.3	_	μs
Hold time ^{Note 1}		thd:sta	4.0	-	0.6	-	μs
SCL0 clock low-level width		tLow	4.7	-	1.3	-	μs
SCL0 clock high-level width		tніgн	4.0	-	0.6	-	μs
Start/restart condition setup time		tsu:sta	4.7	-	0.6	_	μs
Data hold time	CBUS compatible master	thd:dat	5.0	-	_	_	μs
	l ² C bus		0 ^{Note 2}	-	0 ^{Note 2}	0.9 ^{Note 3}	μs
Data setup time		tsu:dat	250	-	100 ^{Note 4}	_	ns
SDA0 and SCL0) signal rise time	tR	-	1000	-	300	ns
SDA0 and SCL0) signal fall time	t⊧	-	300	_	300	ns
Stop condition se	etup time	tsu:sto	4.0	_	0.6	_	μs
Spike pulse widt	Spike pulse width controlled by input filter		-	_	0	50	ns
Capacitive load	of each bus line	Cb	-	400	_	400	pF


Notes 1. On start condition, the first clock pulse is generated after this period.

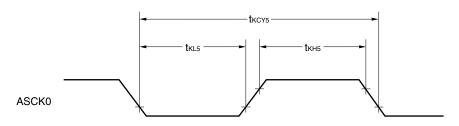
- 2. To fulfill undefined area of the SCL0 falling edge, it is necessary for the device to provide internally SDA0 signal (on VIHmin. of SCL0 signal) with at least 300 ns of hold time.
- **3.** If the device does not extend the SCL0 signal low hold time (tLow), only maximum data hold time tHD:DAT needs to be fulfilled.
- **4.** The high-speed mode I²C bus is available in the standard mode I²C bus system. At this time, the conditions described below must be satisfied.
 - If the device does not extend the SCL0 signal low state hold time tsu:DAT $\geq 250 \mbox{ ns}$
 - If the device extends the SCL0 signal low state hold time Be sure to transmit the next data bit to the SDA0 line before the SCL0 line is released ($t_{Rmax.} + t_{SU:DAT} = 1000 + 250 = 1250$ ns by standard mode I²C bus specification).


AC Timing Test Points (excluding X1 input)

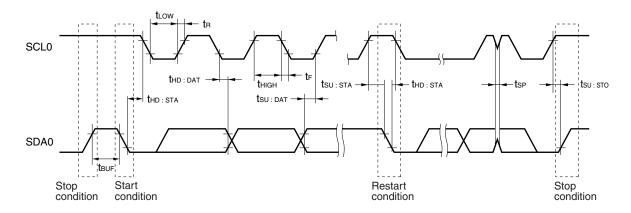


Clock Timing


TI Timing


Serial Transfer Timing

3-wire serial I/O mode:



n = 1 to 4

UART mode (external clock input):

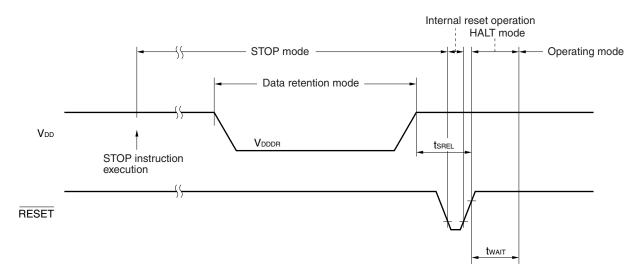
I²C bus mode:

DCAN Controller Characteristics (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 3.5 to 5.5 V)

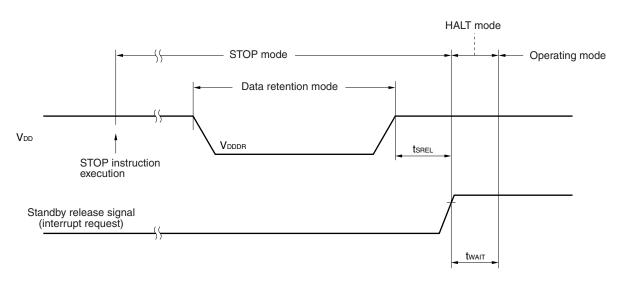
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		fx = 8.00 MHz			500	kbps

A/D Converter Characteristics (T_A = -40 to $+85^{\circ}$ C, V_{DD} = AV_{REF} = 3.5 to 5.5 V, V_{SS} = AV_{SS} = 0 V)

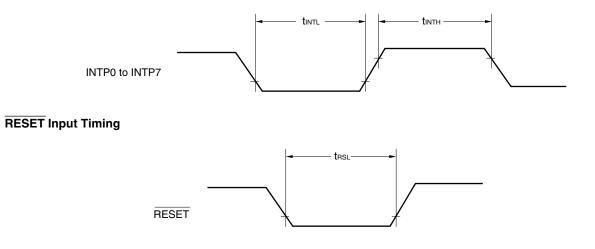
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution			8	8	8	bit
Overall error ^{Note}					±0.6	%FSR
Conversion time	t CONV		14		100	μs
Analog input voltage	VIAN		AVss		AVREF	V
AVREF resistance	RAIREF		4.0	8.0		kΩ


Note Excludes quantization error $(\pm 0.2\%)$. It is indicated as a ratio to the full-scale value.

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention power supply voltage	Vdddr		2.0		5.5	V
Data retention power supply current	Idddr	VDDDR = 2.0 V		0.1	10	μA
Release signal set time	tsrel		0			μs
Oscillation stabilization	t WAIT	Release by RESET		2 ¹⁶ /fx		S
wait time		Release by interrupt request		Note		s


★

Note Selection of $2^{12}/fx$, $2^{14}/fx$, $2^{15}/fx$, and $2^{17}/fx$ is possible with bits 0 to 2 (OSTS0 to OSTS2) of the oscillation stabilization time select register (OSTS).

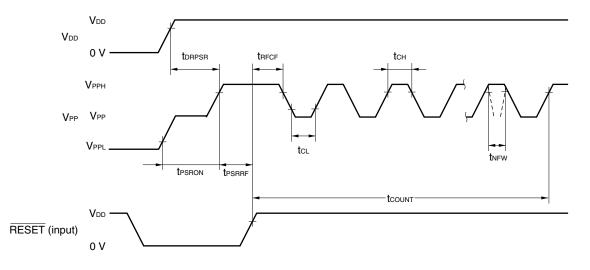

Data Retention Timing (STOP mode release by RESET)

Data Retention Timing (Standby release signal: STOP mode release by interrupt request signal)

Interrupt Request Input Timing

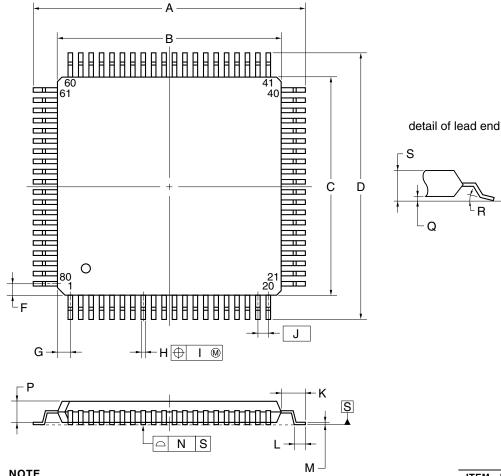
★ Flash Memory Programming Characteristics

(1) Basic characteristics


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Operating frequency	fx		8.0		8.0	MHz
Supply voltage	VDD		3.5		5.5	V
	VPPL	When detecting VPP low level	0		0.2 V _{DD}	V
	VPP	When detecting VPP high level	0.8 VDD		1.2 VDD	V
	VPPH	When detecting VPP high voltage	9.7	10.0	10.3	V
VDD supply current	ldd				50	mA
VPP supply current	IPP	V _{PP} = 10.0 V			100	mA
Write time (per byte)	twrt				500	μs
Number of rewriting	CWRT	T _{PRG} = +10 to +40 °C			20	times
times						
Erase time	t erase				20	s

Remark For details of the input/output voltage and input/output leakage current, refer to DC Characteristics.

(2) Serial write operation characteristics


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
VPP set time	t PSRON	VPP high voltage	1.0			μs
$V_{PP}\uparrow$ set time from $V_{DD}\uparrow$	t DRPSR	VPP high voltage	1.0			μs
RESET set time from V _{PP} ↑	t PSRRF	VPP high voltage	1.0			μs
V _{PP} count start time from RESET↑	t RFCF		1.0			μs
Count execution time	t COUNT				2.0	ms
VPP counter high-/low- level width	tcн, tc∟		8.0			μs
V _{PP} counter noise elimination width	t NFW			40		ns

Flash Write Mode Setting Timing

8. PACKAGE DRAWING

80-PIN PLASTIC QFP (14x14)

NOTE

Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
TIEM	MILLIMETERS
A	17.20±0.20
В	14.00±0.20
С	14.00±0.20
D	17.20±0.20
F	0.825
G	0.825
Н	0.32±0.06
I	0.13
J	0.65 (T.P.)
К	1.60±0.20
L	0.80±0.20
М	$0.17\substack{+0.03 \\ -0.07}$
N	0.10
Р	1.40±0.10
Q	0.125±0.075
R	3° ^{+7°} -3°
S	1.70 MAX.
	P80GC-65-8BT-1

★ 9. RECOMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the following recommended conditions.

For soldering methods and conditions other than those recommended below, contact an NEC Electronics sales representative.

For technical information, see the following website.

Semiconductor Device Mount Manual (http://www.necel.com/pkg/en/mount/index.html)

Table 9-1. Surface Mounting Type Soldering Conditions

• μPD78F0703AYGC-8BT: 80-pin plastic QFP (14 x 14)

• *µ*PD78F0703AYGC(A)-8BT: 80-pin plastic QFP (14 x 14)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher), Count: Two times or less, Exposure limit: 7 days ^{Note} (after that, prebake at 125°C for 10 hours)	IR35-107-2
VPS	Package peak temperature: 215°C, Time: 40 seconds max. (at 200°C or higher), Count: Two times or less, Exposure limit: 7 days ^{Note} (after that, prebake at 125°C for 10 hours)	VP15-107-2
Wave soldering	Solder bath temperature: 260°C max., Time: 10 seconds max., Count: Once, Preheating temperature: 120°C max. (package surface temperature), Exposure limit: 7 days ^{Note} (after that, prebake at 125°C for 10 hours)	WS60-107-1
Partial heating	Pin temperature: 300°C max., Time: 3 seconds max.(per pin low)	_

Note After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period.

Caution Do not use different soldering methods together(except for partial heating).

APPENDIX A. DEVELOPMENT TOOLS

The following development tools are available for system development using the μ PD780703AY Subseries. Also refer to (6) Cautions on Using Development Tools.

(1) Software Package

SP78K0	Software Package common to 78K/0 Series
--------	---

(2) Language Processing Software

RA78K0	Assembler package common to 78K/0 Series
CC78K0	C compiler package common to 78K/0 Series
DF780703Y	Device file for µPD780703AY Subseries
CC78K0-L	C compiler library source file common to 78K/0 Series

(3) Flash Memory Writing Tools

FA-80GC	Adapter for flash memory writing used with connected to Flashpro III. 80-pin plastic QFP (GC-8BT type).		
FL-PR4, PG-FP4),			
Flashpro IV (Part No.			
PR3, PG-FP3),			
Flashpro III (Part No. FL-	Dedicated flash programmer for microcomputers incorporating flash memory		

(4) Debugging Tools

IE-78K0-NS(-A)	In-circuit emulator common to 78K/0 Series
IE-78K0-NS-PA	Performance board to enhance/expand functions of IE-78K0-NS
IE-70000-MC-PS-B	Power supply unit for IE-78K0-NS
IE-70000-98-IF-C	Interface adapter necessary when using PC-9800 series PC (except notebook type) as host machine (C bus supported)
IE-70000-CD-IF-A	PC card and interface cable necessary when using notebook PC as host machine (PCMCIA socket supported)
IE-70000-PC-IF-C	Interface adapter necessary when using IBM PC/AT [™] compatible as host machine (ISA bus supported)
IE-70000-PCI-IF-A	Adapter necessary when using personal computer incorporating PCI bus as host machine
IE-780701-NS-EM1	Emulation board to emulate μ PD780703AY Subseries
NP-80GC-TQ	Emulation probe for 80-pin plastic QFP (GC-8BT type)
NQPACK080SB	Socket for soldering on the target
YQPACK080SB	Adapter socket for connecting the probe to the NQPACK080SB
HQPACK080SB	Lid socket for connecting the device to the NQPACK080SB
YQSOCKET080SBF	Height adapter between the YQPACK080SB and the probe
ID78K0-NS	Integrated debugger for IE-78K0-NS
SM78K0	System simulator common to 78K/0 Series
DF780703	Device file for μ PD780703AY Subseries

(5) Real-time OS

RX78K0

Real-time OS for 78K/0 Series

(6) Cautions on Using Development Tools

- The ID78K0-NS, ID78K0, and SM78K0 are used in combination with the DF780703Y.
- The CC78K0 and RX78K0 are used in combination with the RA78K0 and DF780703Y.
- The FL-PR3, FL-PR4, FA-80GC, and NP-80GC-TQ are products made by Naitou Densei Machidaseisakusho Co., Ltd. (TEL +81-45-475-4191).
- For third party development tools, see the Single-Chip Microcontroller Development Tool Selection Guide (U11069E).
- The host machine and OS suitable for each software are as follows:

Host Machine	PC	EWS
[OS] Software	PC-9800 series [Japanese Windows [™]] IBM PC/AT and compatibles [Japanese/English Windows]	HP9000 series 700 [™] [HP-UX [™]] SPARCstation [™] [SunOS [™] , Solaris [™]]
RA78K0	√ ^{Note}	\checkmark
CC78K0	√ ^{Note}	\checkmark
ID78K0-NS	\checkmark	_
ID78K0	\checkmark	_
SM78K0	\checkmark	_
RX78K0	√ ^{Note}	\checkmark

Note DOS-based software

***** APPENDIX B. RELATED DOCUMENTS

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

• Documents Related to Devices

Document Name	Document No.
μ PD780703Y Subseries User's Manual	U15568E
μPD780703Y, 780703Y(A) Data Sheet	U15344E
μPD780703AY, 780703AY(A) Data Sheet	U16539E
μPD78F0703Y, 78F0703Y(A) Data Sheet	U15345E
μPD78F0703AY, 78F0703AY(A) Data Sheet	This document
78K/0 Series User's Manual Instructions	U12326E

• Documents Related to Development Software Tools (User's Manuals)

Document Name		Document No.
RA78K0 Assembler Package	Operation	U14445E
	Language	U14446E
	Structured Assembly Language	U11789E
CC78K0 C Compiler	Operation	U14297E
	Language	U14298E
SM78K0S, SM78K0 System Simulator Ver. 2.10 or Later	Operation (Windows Based)	U14611E
SM78K Series System Simulator Ver. 2.10 or Later	r Ver. 2.10 or Later External Part User Open Interface Specifications	
ID78K Series Integrated Debugger Ver. 2.30 or Later	Operation (Windows Based)	U15185E
RX78K0 Real-Time OS	Fundamentals	U11537E
	Installation	U11536E
Project Manager Ver. 3.12 or Later (Windows Based)		U14610E

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

• Documents Related to Development Hardware Tools (User's Manuals)

Document Name	Document No.
IE-78K0-NS In-Circuit Emulator	U13731E
IE-78K0-NS-A In-Circuit Emulator	U14889E
IE-78K0-NS-PA Performance Board	U16109E
IE-780701-NS-EM1	To be prepared

• Documents Related to Flash Memory Writing

Document Name	Document No.
PG-FP3 Flash Memory Programmer	U13502E
PG-FP4 Flash Memory Programmer	U15260E

• Other Related Documents

Document Name	Document No.
SEMICONDUCTOR SELECTION GUIDE Products & Packages (CD-ROM)	X13769X
Semiconductor Device Mounting Technology Manual	Note
Quality Grades on NEC Semiconductor Devices	C11531E
NEC Semiconductor Device Reliability/Quality Control System	C10983E
Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD)	C11892E

Note See the "Semiconductor Device Mount Manual" website.(http://www.necel.com/pkg/en/mount/index.html)

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

[MEMO]

- NOTES FOR CMOS DEVICES -

① PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

② HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Purchase of NEC Electronics I²C components conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips.

FIP and IEBus are trademarks of NEC Electronics Corporation.

Windows is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.

PC/AT is a trademark of International Business Machines Corporation.

HP9000 series 700 and HP-UX are trademarks of Hewlett-Packard Company.

SPARCstation is a trademark of SPARC International, Inc.

Solaris and SunOS are trademarks of Sun Microsystems, Inc.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC Electronics product in your application, please contact the NEC Electronics office in your country to obtain a list of authorized representatives and distributors. They will verify:

- · Device availability
- Ordering information
- Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

[GLOBAL SUPPORT] http://www.necel.com/en/support/support.html

NEC Electronics America, Inc. (U.S.) Santa Clara, California	NEC Electronics (Europe) GmbH Duesseldorf, Germany	NEC Electronics Hong Kong Ltd. Hong Kong
Tel: 408-588-6000 800-366-9782	Tel: 0211-65 03 01	Tel: 2886-9318
	 Sucursal en España 	NEC Electronics Hong Kong Ltd.
	Madrid, Spain	Seoul Branch
	Tel: 091-504 27 87	Seoul, Korea
		Tel: 02-558-3737
	 Succursale Française 	
Tel: (• Filial Milan Tel: (• Branc	Vélizy-Villacoublay, France	NEC Electronics Shanghai, Ltd.
	Tel: 01-30-675800	Shanghai, P.R. China
		Tel: 021-6841-1138
	 Filiale Italiana 	
	Milano, Italy	NEC Electronics Taiwan Ltd.
	Tel: 02-66 75 41	Taipei, Taiwan
		Tel: 02-2719-2377
	Branch The Netherlands	
	Eindhoven, The Netherlands	NEC Electronico Cingenero Dto. 1 td

NEC Electronics Singapore Pte. Ltd. Novena Square, Singapore Tel: 6253-8311

• United Kingdom Branch Milton Keynes, UK Tel: 01908-691-133

Tel: 040-244 58 45

• Tyskland Filial Taeby, Sweden Tel: 08-63 80 820

J03.4

- The information in this document is current as of September, 2003. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".

The "Specific" quality grade applies only to NEC Electronics products developed based on a customerdesignated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.

- "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
- "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
- "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).