Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

16/8-BIT SINGLE-CHIP MICROCOMPUTER

The μ PD784021 is a product of the μ PD784026 sub-series in the 78K/IV series. It contains various peripheral hardware such as RAM, I/O ports, 8-bit resolution A/D and D/A converters, timers, serial interface, and interrupt functions, as well as a high-speed, high-performance CPU.

The μ PD784021 is a ROM-less product of the μ PD784025 or μ PD784026.

The μ PD784020 differs from the μ PD784021 only in its RAM size: 512 bytes are allocated for the μ PD784020, while 2048 bytes are allocated for the μ PD784021.

For specific functions and other detailed information, consult the following user's manual. This manual is required reading for design work.

μPD784026 Sub-Series User's Manual, Hardware : U10898E 78K/IV Series User's Manual, Instruction : U10905E

FEATURES

- 78K/IV series
- Pin-compatible with the μ PD78234 sub-series
- Minimum instruction execution time: 160 ns (at 25 MHz)
- Number of I/O ports: 46
- Timer/counters: 16-bit timer/counter × 3 units
 16-bit timer × 1 unit
- Serial interface: 3 channels

UART/IOE (3-wire serial I/O) :2 channels CSI (3-wire serial I/O, SBI) : 1 channel

- PWM outputs: 2
- Standby function HALT/STOP/IDLE mode
- Clock frequency division function
- Watchdog timer: 1 channel
- A/D converter : 8-bit resolution × 8 channels
 D/A converter : 8-bit resolution × 2 channels
- Supply voltage: VDD = 2.7 to 5.5 V

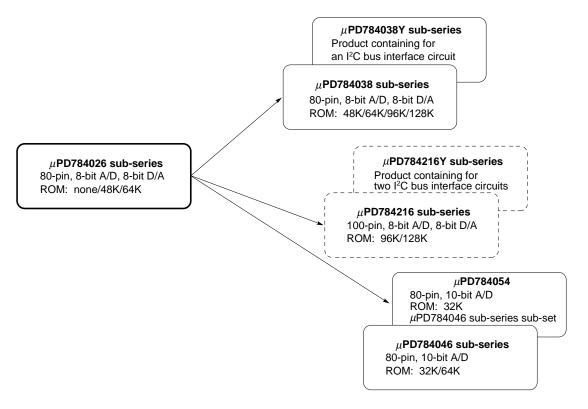
APPLICATIONS

LBP, automatic-focusing camera, PPC, printer, electronic typewriter, air conditioner, electronic musical instruments, cellular telephone, etc.

This manual describes the μ PD784021 unless otherwise specified.

The information in this document is subject to change without notice.

Document No. U11514EJ1V0DS00 (1st edition) (Previous No. IP-3234)
Date Published July 1996 P
Printed in Japan


ORDERING INFORMATION

Part number		Package	Internal ROM	Internal RAM	
			(bytes)	(bytes)	
*	μPD784020GC-3B9	80-pin plastic QFP (14 × 14 mm)	None	512	
	μ PD784021GC-3B9	80-pin plastic QFP (14 \times 14 mm)	None	2048	
*	μ PD784021GK-BE9	80-pin plastic TQFP (fine pitch) (12 \times 12 mm)	None	2048	

★ 78K/IV SERIES PRODUCT DEVELOPMENT DIAGRAM

:	Product under mass production
:	Product under development
[]:	Product under planning

Standard Products Development

ASSP Development

μ**PD784915 sub-series** VTR servo, 100-pin, built-in analog amplifier ROM: 48K/62K

μ PD784908 sub-series

100-pin, built-in IEBusTM ROM: 96K/128K

μ PD784943 sub-series

80-pin, for CD-ROM ROM: 56K

FUNCTIONS

Product			μ	PD784020	μPD784021	
Number of basic instructions (mnemonics)			113			
`	neral-purpos	e register	8 bits × 16 register	s \times 8 banks, or 16 bits \times 8 i	registers × 8 banks (memory mapping)	
	imum instru	ction execution		ns/1280 ns (at 25 MHz)		
Inte	ernal	ROM	None			
me	mory	RAM	512 bytes		2048 bytes	
Mei	mory space		Program and data:	1M byte		
I/O	ports	Total	46			
		Input	8			
		Input/output	34			
		Output	4			
	Additional function	Pins with pull- up resistor	32			
	pins ^{Note}	LED direct drive outputs	8			
		Transistor direct drive	8			
Rea	al-time outpu	it ports	4 bits \times 2, or 8 bits	× 1		
Tim	ner/counter		Timer/counter 0: (16 bits)	$\begin{array}{l} \text{Timer register} \times 1 \\ \text{Capture register} \times 1 \\ \text{Compare register} \times 2 \end{array}$	Pulse output capability • Toggle output • PWM/PPG output • One-shot pulse output	
			Timer/counter 1: (8/16 bits)	Timer register × 1 Capture register × 1 Capture/compare register Compare register × 1	Pulse output capability ■ Real-time output (4 bits × 2) × 1	
			Timer/counter 2: (8/16 bits)	Timer register × 1 Capture register × 1 Capture/compare register Compare register × 1	Pulse output capability • Toggle output × 1 • PWM/PPG output	
			Timer 3 : (8/16 bits)	Timer register × 1 Compare register × 1		
PW	'M outputs		12-bit resolution ×	2 channels		
Ser	ial interface		UART/IOE (3-wire serial I/O): 2 channels (incorporating baud rate generator) CSI (3-wire serial I/O, SBI) : 1 channel			
A/D	converter		8-bit resolution × 8 channels			
D/A	converter		8-bit resolution × 2 channels			
Wa	tchdog timer		1 channel			
Standby			HALT/STOP/IDLE mode			
Inte	errupt	Source	23 (16 internal, 7 external (sampling clock variable input: 1)) + BRK instruction			
		Software	BRK instruction			
_		Nonmaskable	1 internal, 1 extern	al		
		Maskable	15 internal, 6 exter	nal		
			4-level programmable priority 3 operation statuses: vectored interrupt, macro service, context switching			
Sup	oply voltage		V _{DD} = 2.7 to 5.5 V			
Package			80-pin plastic QFP 80-pin plastic TQF	$(14 \times 14 \text{ mm})$ P (fine pitch) $(12 \times 12 \text{ mm})$:	for the μ PD784021 only	

Note Additional function pins are included in the I/O pins.

CONTENTS

1.	DIFFERENCES BETWEEN μPD784026 SUB-SERIES								
2.	MAIN	DIFFER	RENCES BETWEEN μPD784026 AND μPD78234 SUB-SERIES	7					
3.	. PIN CONFIGURATION (TOP VIEW)								
4.	SYST	EM COI	NFIGURATION EXAMPLE (PPC)	10					
5.	BLOCK DIAGRAM 1								
6.	LIST 6.1 6.2 6.3	PORT F	FUNCTIONS PINS ORT PINS CUITS FOR PINS AND HANDLING OF UNUSED PINS	13					
7.	CPU 7.1 7.2	MEMOF	ECTURE	21 21 22					
8.	PERII 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8	PORTS CLOCK REAL-1 TIMERS PWM O A/D CO D/A CO SERIAL 8.8.1 8.8.2 EDGE I	HARDWARE FUNCTIONS GENERATOR GIME OUTPUT PORT S/COUNTERS OUTPUT (PWM0, PWM1) ONVERTER ONVERTER INTERFACE Asynchronous Serial Interface/Three-Wire Serial I/O (UART/IOE) Synchronous Serial Interface (CSI) DETECTION FUNCTION	28 29 31 32 34 35 36 37 38 40					
9.	9.1 9.2 9.3 9.4 9.5	INTERF VECTO CONTE MACRO	FUNCTION	43 43 45 46 46					

10. LOCAL BUS INTERFACE	49	
10.1 MEMORY EXPANSION	49	
10.2 MEMORY SPACE	50	
10.3 PROGRAMMABLE WAIT	51	
10.4 PSEUDO-STATIC RAM REFRESH FUNCTION	51	
10.5 BUS HOLD FUNCTION	51	
11. STANDBY FUNCTION	52	
12. RESET FUNCTION	53	
13. INSTRUCTION SET	54	
14. ELECTRICAL CHARACTERISTICS	59	¥
15. PACKAGE DRAWINGS	80	
16. RECOMMENDED SOLDERING CONDITIONS	82	¥
APPENDIX A DEVELOPMENT TOOLS	83	
APPENDIX B RELATED DOCUMENTS	85	

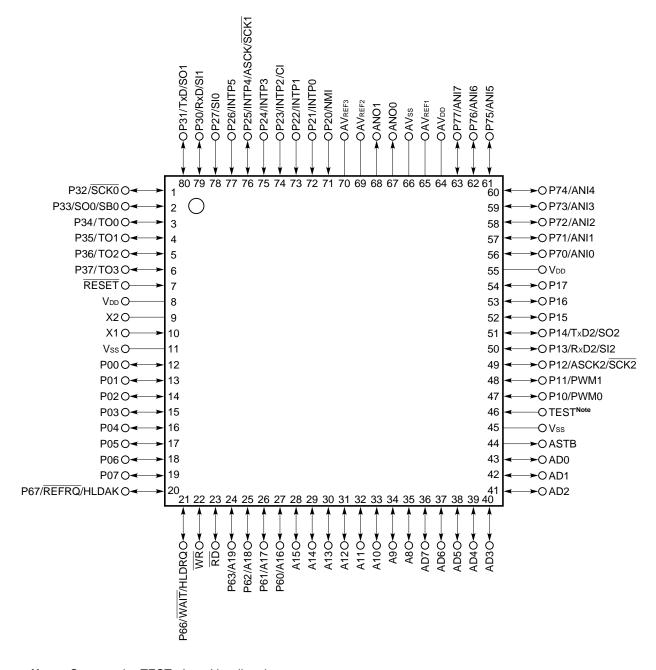
★ 1. DIFFERENCES BETWEEN μ PD784026 SUB-SERIES

The only difference between the μ PD784020, μ PD784021, μ PD784025, and μ PD784026 is their capacity of internal memory, port functions, and part of their packages.

The μ PD78P4026 is produced by replacing the masked ROM in the μ PD784025 or μ PD784026 with 64K-byte one-time PROM or EPROM. Table 1-1 shows the differences between these products.

Table 1-1 Differences between the μ PD784026 Sub-Series

Product Item	μPD784020	μPD784021	μPD784025	μPD784026	μPD78P4026
Internal ROM	None		48K bytes (masked ROM)	64K bytes (masked ROM)	64K bytes (one-time PROM or EPROM)
Internal RAM	512 bytes	2048 bytes		-	
P40-P47	Functions only as ar	address/data bus	Can be switched to bus, by using softw	o a general-purpose p vare	ort or address/data
P50-P57	Functions only as ar	address bus	Can be switched to a general-purpose port or address bus in		
P60-P63	Can be switched to or address bus in ur using software	. , ,	units of 2 bits, by u	using software	
P64, P65	Functions only as th	e RD or WR pin		D or WR pin when the as a general-purpose	
Package	80-pin plastic QFP (14 × 14 mm)	80-pin plastic QFP (14 × 14 mm) 80-pin plastic TQFP (fine pitch) (12 × 12 mm)	80-pin plastic QFP	(14 × 14 mm)	80-pin plastic QFP (14 × 14 mm) 80-pin ceramic WQFN (14 × 14 mm)


2. MAIN DIFFERENCES BETWEEN μ PD784026 AND μ PD78234 SUB-SERIES

Series Item		μPD784026 sub-series	μPD78234 sub-series	
Number of basic instructions (mnemonics)		113	65	
Minimum time	instruction execution	160 ns (at 25 MHz)	333 ns (at 12 MHz)	
Memory s	pace (program/data)	1M byte in total	64K bytes/1M byte	
Timer/cou	nter	16-bit timer/counter \times 1 8/16-bit timer/counter \times 2 8/16-bit timer \times 1	16-bit timer/counter × 1 8-bit timer/counter × 2 8-bit timer × 1	
Clock out	out function	Available	Unavailable	
Watchdog	timer	Available	Unavailable	
Serial inte	rface	UART/IOE (3-wire serial I/O) × 2 channels CSI (3-wire serial I/O, SBI) × 1 channel	UART × 1 channel CSI (3-wire serial I/O, SBI) × 1 channel	
Interrupt	Context switching	Available	Unavailable	
	Priority	4 levels	2 levels	
Standby f	unction	3 modes (HALT, STOP, IDLE)	2 modes (HALT, STOP)	
Operation	clock switching	Selectable from fxx/2, fxx/4, fxx/8, or fxx/16	Fixed to fxx/2	
Pin functions	MODE pin	Unavailable	To specify ROM-less mode (always in the high level for the μ PD78233 or μ PD78237)	
TEST pin		Pin for testing the device Low level during ordinary use	Unavailable	
Package		80-pin plastic QFP (14 \times 14 mm) 80-pin plastic TQFP (fine pitch) (12 \times 12 mm): for the μ PD784021 only 80-pin ceramic WQFN (14 \times 14 mm): for the μ PD78P4026 only	80-pin plastic QFP (14 \times 14 mm) 94-pin plastic QFP (20 \times 20 mm) 84-pin plastic QFJ (1150 \times 1150 mil) 94-pin ceramic WQFN (20 \times 20 mm): for the μ PD78P238 only	

3. PIN CONFIGURATION (TOP VIEW)

- 80-pin plastic QFP (14 × 14 mm)
 μPD784020GC-3B9, μPD784021GC-3B9
- 80-pin plastic TQFP (fine pitch) (12 × 12 mm)
- ★ µPD784021GK-BE9

Note Connect the TEST pin to Vss directly.

 P00-P07
 : Port 0
 A8-A19
 : Address bus

 P10-P17
 : Port 1
 RD
 : Read strobe

 P20-P27
 : Port 2
 WR
 : Write strobe

 P30-P37
 : Port 3
 WAIT
 : Wait

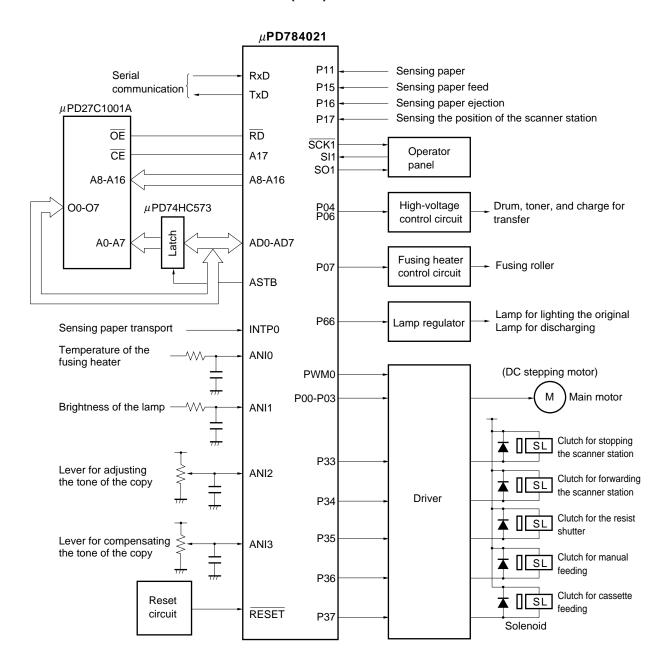
P70-P77 : Port 7 : HLDAK : Hold acknowledge T00-T03 : Timer output : ASTB : Address strobe

CI : Clock input REFRQ : Refresh request RxD, RxD2 : Receive data RESET : Reset TxD, TxD2 : Transmit data X1, X2 : Crystal

 SCK0-SCK2
 : Serial clock
 ANI0-ANI7
 : Analog input

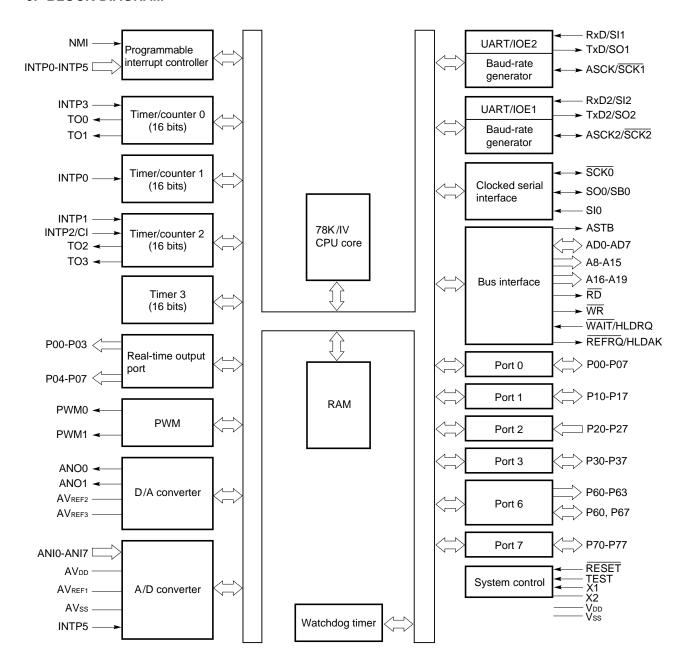
 ASCK, ASCK2
 : Asynchronous serial clock
 ANO0, ANO1
 : Analog output

 SI0-SI2
 : Serial input
 AVREF1-AVREF3
 : Reference voltage


 SO0-SO2
 : Serial output
 AVDD
 : Analog power supply

SB0 : Serial bus AVss : Analog ground PWM0, PWM1 : Pulse width modulation output VDD : Power supply

AD0-AD7 : Address/data bus



4. SYSTEM CONFIGURATION EXAMPLE (PPC)

5. BLOCK DIAGRAM

Remark The internal ROM or RAM capacity differs for each product.

6. LIST OF PIN FUNCTIONS

6.1 PORT PINS

Pin	I/O	Dual-function	Function	
P00-P07	I/O	_	Port 0 (P0):	
			8-bit I/O port	
			• Functions as a real-time output port (4 bits × 2).	
			Inputs and outputs can be specified bit by bit.	
			The use of the pull-up resistors can be specified by software for the pins in the input mode together.	
			Can drive a transistor.	
P10	I/O	PWM0	Port 1 (P1):	
P11		PWM1	8-bit I/O port	
P12		ASCK2/SCK2	Inputs and outputs can be specified bit by bit.	
P13		RxD2/SI2	The use of the pull-up resistors can be specified by software for the pins	
P14		TxD2/SO2	in the input mode together.	
P15-P17		_	Can drive LED.	
P20	Input	NMI	Port 2 (P2):	
P21		INTP0	8-bit input-only port	
P22		INTP1	P20 does not function as a general-purpose port (nonmaskable inter-	
P23		INTP2/CI	rupt). However, the input level can be checked by an interrupt service	
P24		INTP3	routine.	
P25		INTP4/ASCK/SCK1	The use of the pull-up resistors can be specified by software for pins P22 to P27 (in units of 6 bits).	
P26		INTP5	• The P25/INTP4/ASCK/SCK1 pin functions as the SCK1 output pin by	
P27		SIO	CSIM1.	
P30	I/O	RxD/SI1	Port 3 (P3):	
P31		TxD/SO1	8-bit I/O port	
P32		SCK0	Inputs and outputs can be specified bit by bit.	
P33		SO0/SB0	The use of the pull-up resistors can be specified by software for the pins	
P34-P37		TO0-TO3	in the input mode together.	
P60-P63	I/O	A16-A19	Port 6 (P6):	
P66		WAIT/HLDRQ	 P60 to P63 are an output-only port. Inputs and outputs can be specified bit by bit for pins P66 and P67. 	
P67		REFRQ/HLDAK	The use of the pull-up resistors can be specified by software for the pins in the input mode together.	
P70-P77	I/O	ANIO-ANI7	Port 7 (P7): • 8-bit I/O port • Inputs and outputs can be specified bit by bit.	

6.2 NON-PORT PINS (1/2)

Pin	I/O	Dual-function		Function		
TO0-TO3	Output	P34-P37	Timer output	Timer output		
CI	Input	P23/INTP2	Input of a count clock for timer/counter 2			
RxD	Input	P30/SI1	Serial data input (UAI	RT0)		
RxD2		P13/SI2	Serial data input (UAF	RT2)		
TxD	Output	P31/SO1	Serial data output (UA			
TxD2		P14/SO2	Serial data output (UA	ART2)		
ASCK	Input	P25/INTP4/SCK1	Baud rate clock input	(UARTO)		
ASCK2		P12/SCK2	Baud rate clock input	(UART2)		
SB0	I/O	P33/SO0	Serial data I/O (SBI)			
SI0	Input	P27	Serial data input (3-w	ire serial I/O0)		
SI1		P30/RxD	Serial data input (3-w	ire serial I/O1)		
SI2		P13/RxD2	Serial data input (3-w	ire serial I/O2)		
SO0	Output	P33/SB0	Serial data output (3-	wire serial I/O0)		
SO1		P31/TxD	Serial data output (3-	wire serial I/O1)		
SO2		P14/TxD2	Serial data output (3-v	wire serial I/O2)		
SCK0	I/O	P32	Serial clock I/O (3-wir	e serial I/O0, SBI)		
SCK1		P25/INTP4/ASCK	Serial clock I/O (3-wir	re serial I/O1)		
SCK2		P12/ASCK2	Serial clock I/O (3-wir	re serial I/O2)		
NMI	Input	P20	External interrupt request	_		
INTP0		P21	-	Input of a count clock for timer/counter 1 Capture/trigger signal for CR11 or CR12		
INTP1		P22	-	Input of a count clock for timer/counter 2 Capture/trigger signal for CR22		
INTP2		P23/CI		Input of a count clock for timer/counter 2 Capture/trigger signal for CR21		
INTP3		P24		Input of a count clock for timer/counter 0 Capture/trigger signal for CR02		
INTP4		P25/ASCK/SCK1		_		
INTP5		P26]	Input of a conversion start trigger for A/D converter		
AD0-AD7	I/O	_	Time multiplexing add	dress/data bus (for connecting external memory)		
A8-A15	Output	_	High-order address bu	us (for connecting external memory)		
A16-A19	Output	P60-P63	High-order address bus d	luring address expansion (for connecting external memory)		
RD	Output	_	Strobe signal output for reading the contents of external memory			
WR	Output	_	Strobe signal output for writing on external memory			
WAIT	Input	P66/HLDRQ	Wait signal insertion			
REFRQ	Output	P67/HLDAK	Refresh pulse output to external pseudo static memory			
HLDRQ	Input	P66/WAIT	Input of bus hold request			
HLDAK	Output	P67/REFRQ	Output of bus hold res	Output of bus hold response		
ASTB	Output	_	Latch timing output of connecting external m	time multiplexing address (A0-A7) (for nemory)		

6.2 NON-PORT PINS (2/2)

Pin	I/O	Dual-function	Function
RESET	Input	_	Chip reset
X1	Input	_	Crystal input for system clock oscillation (A clock pulse can also be
X2	_		input to the X1 pin.)
ANI0-ANI7	Input	P70-P77	Analog voltage inputs for the A/D converter
ANO0, ANO1	Output	_	Analog voltage inputs for the D/A converter
AV _{REF1}	_	_	Application of A/D converter reference voltage
AVREF2, AVREF3			Application of D/A converter reference voltage
AV _{DD}			Positive power supply for the A/D converter
AVss			Ground for the A/D converter
V _{DD}			Positive power supply
Vss			Ground
TEST			Directly connect to Vss. (The TEST pin is for the IC test.)

6.3 I/O CIRCUITS FOR PINS AND HANDLING OF UNUSED PINS

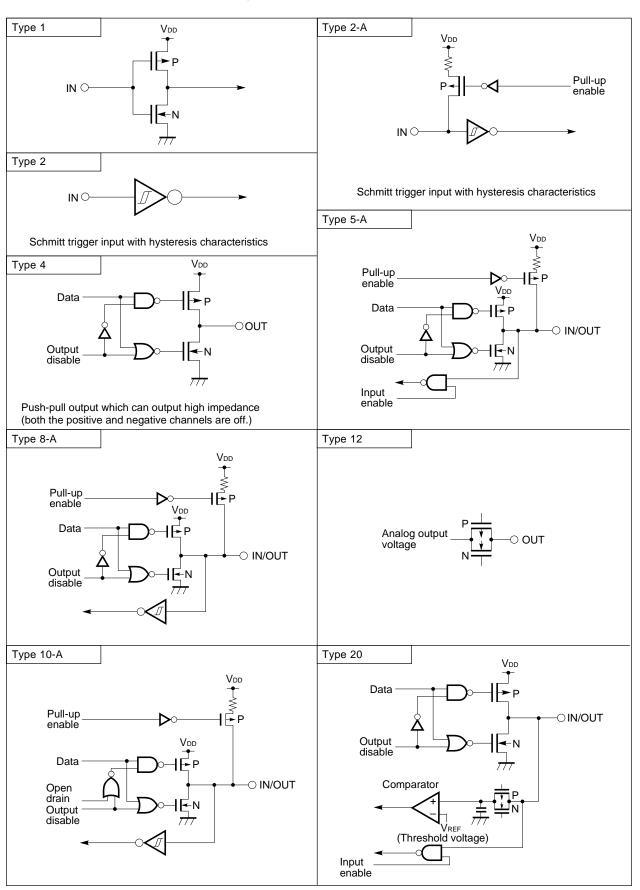
Table 6-1 describes the types of I/O circuits for pins and the handling of unused pins.

Fig. 6-1 shows the configuration of these various types of I/O circuits.

Table 6-1 Types of I/O Circuits for Pins and Handling of Unused Pins (1/2)

Pin	I/O circuit type	I/O	Recommended connection method for unused pins
P00-P07	5-A	I/O	Input state : To be connected to V _{DD}
P10/PWM0			Output state: To be left open
P11/PWM1			
P12/ASCK2/SCK2	8-A		
P13/RxD2/SI2	5-A		
P14/TxD2/SO2			
P15-P17			
P20/NMI	2	Input	To be connected to V _{DD} or V _{SS}
P21/INTP0			
P22/INTP1	2-A		To be connected to V _{DD}
P23/INTP2/CI			
P24/INTP3			
P25/INTP4/ASCK/SCK1	8-A	I/O	Input state : To be connected to V _{DD}
			Output state: To be left open
P26/INTP5	2-A	Input	To be connected to V _{DD}
P27/SI0			
P30/RxD/SI1	5-A	I/O	Input state : To be connected to V _{DD}
P31/TxD/SO1			Output state: To be left open
P32/SCK0	8-A		
P33/SO0/SB0	10-A		
P34/TO0-P37/TO3	5-A		
AD0-AD7			
A8-A15		OutputNote	To be left open
P60/A16-P63/A19			
RD			
WR			
P66/WAIT/HLDRQ		I/O	Input state : To be connected to V _{DD}
P67/REFRQ/HLDAK			Output state: To be left open
P70/ANI0-P77/ANI7	20		Input state : To be connected to V _{DD} or V _{SS}
			Output state: To be left open
ANO0, ANO1	12	Output	To be left open
ASTB	4		

Note These pins function as output-only pins depending on the internal circuit, though their I/O type is 5-A.


Table 6-1 Types of I/O Circuits for Pins and Handling of Unused Pins (2/2)

Pin	I/O circuit type	I/O	Recommended connection method for unused pins
RESET	2	Input	_
TEST	1		To be connected to Vss directly
AVREF1-AVREF3	_		To be connected to Vss
AVss			
AVDD			To be connected to V _{DD}

Caution When the I/O mode of an I/O dual-function pin is unpredictable, connect the pin to V_{DD} through a resistor of 10 to 100 kilohms (particularly when the voltage of the reset input pin becomes higher than that of the low level input at power-on or when I/O is switched by software).

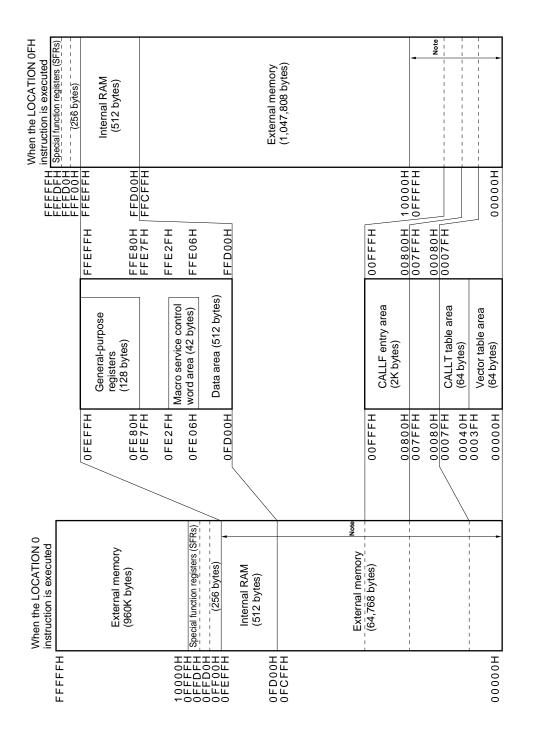
Remark Since type numbers are consistent in the 78K series, those numbers are not always serial in each product. (Some circuits are not included.)

Fig. 6-1 I/O Circuits for Pins

7. CPU ARCHITECTURE

7.1 MEMORY SPACE

A 1M-byte memory space can be accessed. By using a LOCATION instruction, the mode for mapping internal data areas (special function registers and internal RAM) can be selected. A LOCATION instruction must always be executed after a reset, and can be used only once.


(1) When the LOCATION 0 instruction is executed

Internal data areas are mapped to 0FD00H-0FFFFH for the μ PD784020 and 0F700H-0FFFFH for the μ PD784021.

(2) When the LOCATION 0FH instruction is executed

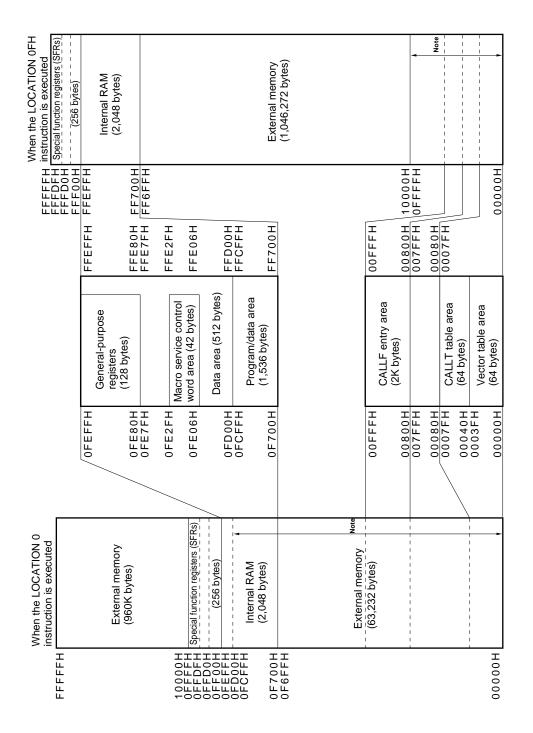

Internal data areas are mapped to FFD00H-FFFFFH for the μ PD784020 and FF700H-FFFFFH for the μ PD784021.

Fig. 7-1 μPD784020 Memory Map★

Note Base area, or entry area based on a reset or interrupt. Internal RAM is excluded in the case of a reset.

Fig. 7-2 µPD784021 Memory Map

Base area, or entry area based on a reset or interrupt. Internal RAM is excluded in the case of a reset. Note

7.2 CPU REGISTERS

7.2.1 General-Purpose Registers

A set of general-purpose registers consists of sixteen general-purpose 8-bit registers. Two 8-bit general-purpose registers can be combined to form a 16-bit general-purpose register. Moreover, four 16-bit general-purpose registers, when combined with an 8-bit register for address extension, can be used as 24-bit address specification registers.

Eight banks of this register set are provided. The user can switch between banks by software or the context switching function.

General-purpose registers other than the V, U, T, and W registers used for address extension are mapped onto internal RAM.

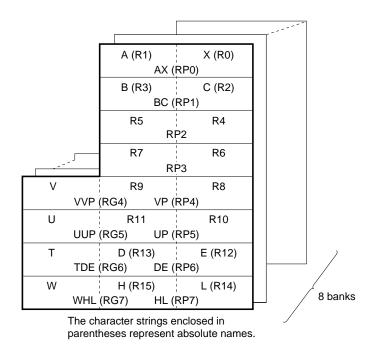


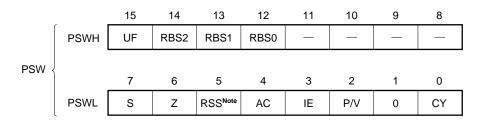
Fig. 7-3 General-Purpose Register Format

Caution By setting the RSS bit of PSW to 1, R4, R5, R6, R7, RP2, and RP3 can be used as the X, A, C, B, AX, and BC registers, respectively. However, this function must be used only when using programs for the 78K/III series.

7.2.2 Control Registers

(1) Program counter (PC)

This register is a 20-bit program counter. The program counter is automatically updated by program execution.


Fig. 7-4 Format of Program Counter (PC)

(2) Program Status Word (PSW)

This register holds the CPU state. The program status word is automatically updated by program execution.

Fig. 7-5 Format of Program Status Word (PSW)

Note This flag is used to maintain compatibility with the 78K/III series. This flag must be set to 0 when programs for the 78K/III series are being used.

(3) Stack pointer (SP)

This register is a 24-bit pointer for holding the start address of the stack. The high-order 4 bits must be set to 0.

Fig. 7-6 Format of Stack Pointer (SP)

	23			2	0	0
PC	0	0	0	0		

7.2.3 Special Function Registers (SFRs)

The special function registers are registers with special functions such as mode registers and control registers for built-in peripheral hardware. The special function registers are mapped onto the 256-byte space between 0FF00H and 0FFFFHNote.

Note Applicable when the LOCATION 0 instruction is executed. FFF00H-FFFFFH when the LOCATION 0FH instruction is executed.

Caution Never attempt to access addresses in this area where no SFR is allocated. Otherwise, the μ PD784021 may be placed in the deadlock state. The deadlock state can be cleared only by a reset.

Table 7-1 lists the special function registers (SFRs). The titles of the table columns are explained below.

Abbreviation	Symbol used to represent a built-in SFR. The abbreviations listed in the table are
	reserved words for the NEC assembler (RA78K4). The C compiler (CC78K4) allows
	the abbreviations to be used as sfr variables of bit type with the #pragma sfr command.
• R/W	Indicates whether each SFR allows read and/or write operations.
	R/W: Allows both read and write operations.
	R : Allows read operations only.
	W : Allows write operations only.
Manipulatable bits	Indicates the maximum number of bits that can be manipulated whenever an SFR is
	manipulated. An SFR that supports 16-bit manipulation can be described in the sfr
	operand. For address specification, an even-numbered address must be speci-
	fied.
	An SFR that supports 1-bit manipulation can be described in a bit manipulation
	instruction.
When reset	Indicates the state of each register when RESET is applied.

Table 7-1 Special Function Registers (SFRs) (1/4)

AddressNote	Special function register (SFR) name			viation	R/W	Mani	pulatabl	When reset	
Addressivete	Special function re				17/ 77	1 bit	8 bits	16 bits	WHICH TOSCE
0FF00H	Port 0	P0		R/W	•	•	-	Undefined	
0FF01H	Port 1	P1			•	•	-		
0FF02H	Port 2		P2		R	•	•	-	
0FF03H	Port 3		P3		R/W	•	•	_	
0FF06H	Port 6		P6			•	•	_	00H
0FF07H	Port 7		P7			•	•	_	Undefined
0FF0EH		Port 0 buffer register L	P0L			•	•	_	
0FF0FH	Port 0 buffer register H		РОН			•	•	_	
0FF10H	Compare register (times	/counter 0)	CR00			_	-	•	
0FF12H	Capture/compare regist	er (timer/counter 0)	CR01			_	_	•	
0FF14H	Compare register L (tim	er/counter 1)	CR10	CR10W		_	•	•	
0FF15H	Compare register H (tim	ner/counter 1)	_			_	_		
0FF16H	Capture/compare register L (timer/counter 1)			CR11W		_	•	•	
0FF17H	Capture/compare regist	er H (timer/counter 1)	-			_	-		
0FF18H	Compare register L (tim	er/counter 2)	CR20	CR20W		_	•	•	
0FF19H	Compare register H (tim	ner/counter 2)	_			_	-		
0FF1AH	Capture/compare regist	er L (timer/counter 2)	CR21	CR21W		_	•	•	
0FF1BH	Capture/compare regist	er H (timer/counter 2)	_			_	_		
0FF1CH	Compare register L (tim	er 3)	CR30	CR30W		_	•	•	
0FF1DH	Compare register H (tim	ner 3)	_			_	-		
0FF20H	Port 0 mode register		РМ0			•	•	-	FFH
0FF21H	Port 1 mode register		PM1			•	•	_	
0FF23H	Port 3 mode register		РМ3			•	•	-	
0FF26H	Port 6 mode register					•	•	-	
0FF27H	Port 7 mode register					•	•	_	
0FF2EH	Real-time output port control register					•	•	_	00H
0FF30H	Capture/compare control register 0					_	•	_	10H
0FF31H	Timer output control register					•	•	_	00H
0FF32H	Capture/compare contro	CRC1			_	•	_		
0FF33H	Capture/compare contro	ol register 2	CRC2			_	•	_	10H

Note Applicable when the LOCATION 0 instruction is executed. When the LOCATION 0FH instruction is executed, F0000H is added to each address.

Table 7-1 Special Function Registers (SFRs) (2/4)

AddressNote	Special function register (SFR) name		Abbreviation		Mani	pulatabl	When reset	
Addressive	Special function register (SFK) frame	Abbie	viation	R/W	1 bit	8 bits	16 bits	when reset
0FF36H	Capture register (timer/counter 0)	CR02		R	-	_	•	0000H
0FF38H	Capture register L (timer/counter 1)	CR12	CR12W		_	•	•	
0FF39H	Capture register H (timer/counter 1)	_	_		_	_		
0FF3AH	Capture register L (timer/counter 2)	CR22	CR22 CR22W		_	•	•	
0FF3BH	Capture register H (timer/counter 2)	-	-		_	-		
0FF41H	Port 1 mode control register	PMC1		R/W	•	•	-	00H
0FF43H	Port 3 mode control register	PMC3			•	•	-	
0FF4EH	Register for optional pull-up resistor	PUO			•	•	_	
0FF50H	Timer register 0	тмо		R	_	_	•	0000H
0FF51H					_	_		
0FF52H	Timer register 1	TM1	TM1W		_	•	•	
0FF53H		_			_	_		
0FF54H	Timer register 2	TM2	TM2W		_	•	•	
0FF55H		-	_		_	_		
0FF56H	Timer register 3	TM3	TM3W		_	•	•	
0FF57H		-			_	_		
0FF5CH	Prescaler mode register 0	PRM0	1	R/W	-	•	-	11H
0FF5DH	Timer control register 0	TMC0			•	•	-	00H
0FF5EH	Prescaler mode register 1	PRM1			_	•	_	11H
0FF5FH	Timer control register 1	TMC1			•	•	-	00H
0FF60H	D/A conversion value setting register 0	DACS)		_	•	-	
0FF61H	D/A conversion value setting register 1	DACS	1		_	•	_	
0FF62H	D/A converter mode register	DAM			•	•	-	03H
0FF68H	A/D converter mode register	ADM			•	•	-	00H
0FF6AH	A/D conversion result register	ADCR		R	_	•	-	Undefined
0FF70H	PWM control register	PWMC	PWMC		•	•	_	05H
0FF71H	PWM prescaler register	PWPR	PWPR		_	•	_	00H
0FF72H	PWM modulo register 0	PWM0	PWM0		_	_	•	Undefined
0FF74H	PWM modulo register 1	PWM1	PWM1		_	_	•	
0FF7DH	One-shot pulse output control register	OSPC			•	•	_	00H
0FF80H	Serial bus interface control register	SBIC			•	•	-	
0FF82H	Synchronous serial interface mode register	CSIM	CSIM		•	•	_	

Note Applicable when the LOCATION 0 instruction is executed. When the LOCATION 0FH instruction is executed, F0000H is added to each address.

Table 7-1 Special Function Registers (SFRs) (3/4)

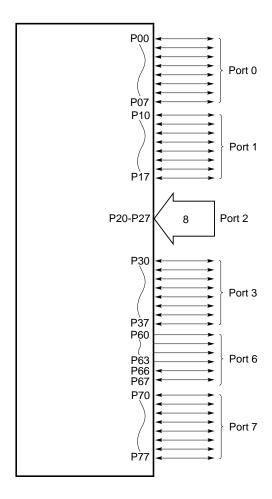
AddressNote 1	Special function register (SFR) name	Abbreviation	R/W	Mani	pulatabl	When reset	
Address	Special function register (SFR) fiame	Abbreviation	17/ 77	1 bit	8 bits	16 bits	Wileii ieset
0FF84H	Synchronous serial interface mode register 1	CSIM1	R/W	•	•	-	00H
0FF85H	Synchronous serial interface mode register 2	CSIM2		•	•	_	
0FF86H	Serial shift register	SIO		_	•	-	
0FF88H	Asynchronous serial interface mode register	ASIM		•	•	-	
0FF89H	Asynchronous serial interface mode register 2	ASIM2		•	•	-	
0FF8AH	Asynchronous serial interface status register	ASIS	R	•	•	-	
0FF8BH	Asynchronous serial interface status register 2	ASIS2		•	•	-	
0FF8CH	Serial receive buffer: UART0	RXB		_	•	-	Undefined
	Serial transmission shift register: UART0	TXS	W	_	•	-	
	Serial shift register: IOE1	SIO1	R/W	_	•	-	
0FF8DH	Serial receive buffer: UART2	RXB2	R	-	•	-	
	Serial transmission shift register: UART2	TXS2	W	-	•	-	
	Serial shift register: IOE2	SIO2	R/W	_	•	-	
0FF90H	Baud rate generator control register	BRGC		_	•	-	00H
0FF91H	Baud rate generator control register 2	BRGC2		_	•	-	
0FFA0H	External interrupt mode register 0	INTM0		•	•	-	
0FFA1H	External interrupt mode register 1	INTM1		•	•	-	
0FFA4H	Sampling clock selection register	SCS0		_	•	-	
0FFA8H	In-service priority register	ISPR	R	•	•	-	
0FFAAH	Interrupt mode control register	IMC	R/W	•	•	-	80H
0FFACH	Interrupt mask register 0L	MK0L MK0		•	•	•	FFFFH
0FFADH	Interrupt mask register 0H	мкон		•	•		
0FFAEH	Interrupt mask register 1L	MK1L		•	•	-	FFH
0FFC0H	Standby control register	STBC		_	●Note 2	-	30H
0FFC2H	Watchdog timer mode register	WDM		_	●Note 2	-	00H
0FFC4H	Memory expansion mode register	ММ		•	•	-	20H
0FFC5H	Hold mode register	HLDM		•	•	-	00H
0FFC6H	Clock output mode register	CLOM		•	•	-	
0FFC7H	Programmable wait control register 1	PWC1		_	•	-	AAH
0FFC8H	Programmable wait control register 2	PWC2		_	_	•	AAAAH

- **Notes 1.** Applicable when the LOCATION 0 instruction is executed. When the LOCATION 0FH instruction is executed, F0000H is added to each address.
 - **2.** A write operation can be performed only with special instructions MOV STBC,#byte and MOV WDM,#byte. Other instructions cannot perform a write operation.

Table 7-1 Special Function Registers (SFRs) (4/4)

A LL Note	0 114 11 11 (050)		D 044	Manipulatable bits			When react
AddressNote	Special function register (SFR) name	Abbreviation	R/W	1 bit	8 bits	16 bits	When reset
0FFCCH	Refresh mode register	RFM	R/W	•	•	_	00H
0FFCDH	Refresh area specification register	RFA		•	•	_	
0FFCFH	Oscillation settling time specification register	OSTS		_	•	_	
0FFD0H-	External SFR area	_		•	•	_	-
0FFDFH							
0FFE0H	Interrupt control register (INTP0)	PIC0		•	•	-	43H
0FFE1H	Interrupt control register (INTP1)	PIC1		•	•	-	
0FFE2H	Interrupt control register (INTP2)	PIC2		•	•	-	
0FFE3H	Interrupt control register (INTP3)	PIC3		•	•	_	
0FFE4H	Interrupt control register (INTC00)	CIC00		•	•	-	
0FFE5H	Interrupt control register (INTC01)	CIC01		•	•	_	
0FFE6H	Interrupt control register (INTC10)	CIC10		•	•	-	
0FFE7H	Interrupt control register (INTC11)	CIC11		•	•	_	
0FFE8H	Interrupt control register (INTC20)	CIC20		•	•	-	
0FFE9H	Interrupt control register (INTC21)	CIC21		•	•	_	
0FFEAH	Interrupt control register (INTC30)	CIC30		•	•	-	
0FFEBH	Interrupt control register (INTP4)	PIC4		•	•	-	
0FFECH	Interrupt control register (INTP5)	PIC5		•	•	-	
0FFEDH	Interrupt control register (INTAD)	ADIC		•	•	-	
0FFEEH	Interrupt control register (INTSER)	SERIC		•	•	_	
0FFEFH	Interrupt control register (INTSR)	SRIC		•	•	-	
	Interrupt control register (INTCSI1)	CSIIC1		•	•	-	
0FFF0H	Interrupt control register (INTST)	STIC		•	•	_	
0FFF1H	Interrupt control register (INTCSI)	CSIIC		•	•	_	
0FFF2H	Interrupt control register (INTSER2)	SERIC2		•	•	_	
0FFF3H	Interrupt control register (INTSR2)	SRIC2		•	•	_	
	Interrupt control register (INTCSI2)	CSIIC2		•	•	_	
0FFF4H	Interrupt control register (INTST2)	STIC2		•	•	_	

Note Applicable when the LOCATION 0 instruction is executed. When the LOCATION 0FH instruction is executed, F0000H is added to each address.

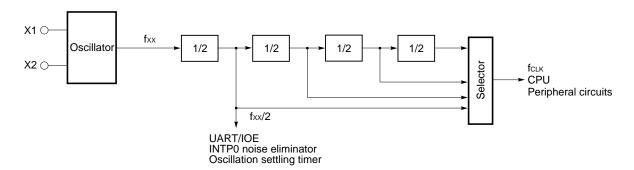


8. PERIPHERAL HARDWARE FUNCTIONS

8.1 PORTS

The ports shown in Fig. 8-1 are provided to enable the application of wide-ranging control. Table 8-1 lists the functions of the ports. For the inputs to port 0 to port 6, a built-in pull-up resistor can be specified by software.

Fig. 8-1 Port Configuration

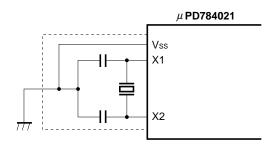

Table 8-1 Port Functions

Port name	Pin	Function	Pull-up specification by software
Port 0	P00-P07	 Bit-by-bit input/output setting supported Operable as 4-bit real-time outputs (P00-P03, P04-P07) Capable of driving transistors 	Specified as a batch for all pins placed in input mode.
Port 1	P10-P17	Bit-by-bit input/output setting supported Capable of driving LEDs	Specified as a batch for all pins placed in input mode.
Port 2	P20-P27	Input port	Specified for the 6 bits (P22-P27) as a batch.
Port 3	P30-P37	Bit-by-bit input/output setting supported	Specified as a batch for all pins placed in input mode.
Port 6	P60-P63	Output-only port	Specified as a batch for all pins placed in
	P66, P67	Bit-by-bit input/output setting supported	input mode.
Port 7	P70-P77	Bit-by-bit input/output setting supported	_

8.2 CLOCK GENERATOR

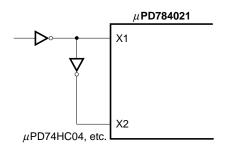
A circuit for generating the clock signal required for operation is provided. The clock generator includes a frequency divider; low current consumption can be achieved by operating at a lower internal frequency when high-speed operation is not necessary.

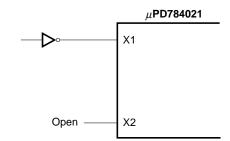
Fig. 8-2 Block Diagram of Clock Generator


Remark fxx: Oscillator frequency or external clock input

fclk: Internal operating frequency

Fig. 8-3 Examples of Using Oscillator


(1) Crystal/ceramic oscillation



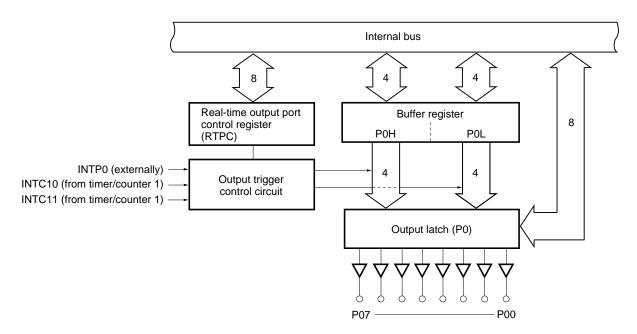
(2) External clock

• When EXTC bit of OSTS = 1

• When EXTC bit of OSTS = 0

Caution When using the clock generator, to avoid problems caused by influences such as stray capacitance, run all wiring within the area indicated by the dotted lines according to the following rules:

- Minimize the wiring length.
- Wires must never cross other signal lines.
- Wires must never run near a line carrying a large varying current.
- The grounding point of the capacitor of the oscillator circuit must always be at the same potential as Vss. Never connect the capacitor to a ground pattern carrying a large current.
- Never extract a signal from the oscillator circuit.


8.3 REAL-TIME OUTPUT PORT

The real-time output port outputs data stored in the buffer, synchronized with a timer/counter 1 match interrupt or external interrupt. Thus, pulse output that is free of jitter can be obtained.

Therefore, the real-time output port is best suited to applications (such as open-loop control over stepping motors) where an arbitrary pattern is output at arbitrary intervals.

As shown in Fig. 8-4, the real-time output port is built around port 0 and the port 0 buffer register (P0H, P0L).

Fig. 8-4 Block Diagram of Real-Time Output Port

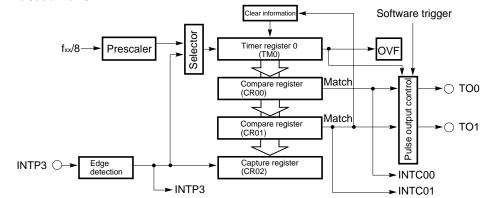
8.4 TIMERS/COUNTERS

Three timer/counter units and one timer unit are incorporated.

Moreover, seven interrupt requests are supported, allowing these units to function as seven timer/counter units.

Table 8-2 Timer/Counter Operation

Item		Name	Timer/counter 0	Timer/counter 1	Timer/counter 2	Timer 3
Count pulse width	8 b	pits	-	•	•	•
	16	bits	•	•	•	•
Operating mode	Int	erval timer	2ch	2ch	2ch	1ch
	Ex	ternal event counter	•	•	•	-
	On	e-shot timer	-	-	•	-
Function	Tin	ner output	2ch	-	2ch	-
		Toggle output	•	_	•	-
		PWM/PPG output	•	-	•	-
		One-shot pulse outputNote	•	_	_	_
	Re	al-time output	-	•	_	-
	Pulse width measurement Number of interrupt requests		1 input	1 input	2 inputs	-
			2	2	2	1


Note The one-shot pulse output function makes the level of a pulse output active by software, and makes the level of a pulse output inactive by hardware (interrupt request signal).

Note that this function differs from the one-shot timer function of timer/counter 2.

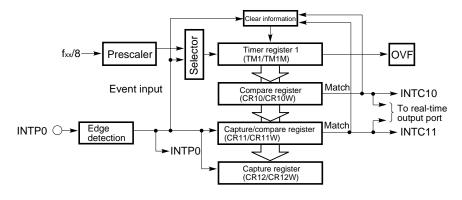
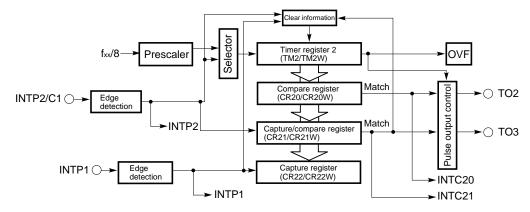
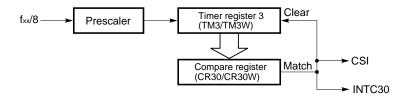

*

Fig. 8-5 Timer/Counter Block Diagram

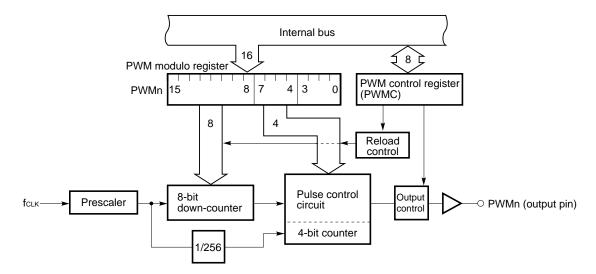

Timer/counter 0


Timer/counter 1

Timer/counter 2

Timer 3

Remark OVF: Overflow flag


33

8.5 PWM OUTPUT (PWM0, PWM1)

Two channels of PWM (pulse width modulation) output circuitry with a resolution of 12 bits and a repetition frequency of 48.8 kHz (fclk = 12.5 MHz) are incorporated. Low or high active level can be selected for the PWM output channels, independently of each other. This output is best suited to DC motor speed control.

Fig. 8-6 Block Diagram of PWM Output Unit

Remark n = 0, 1

8.6 A/D CONVERTER

An analog/digital (A/D) converter having 8 multiplexed analog inputs (ANI0-ANI7) is incorporated.

The successive approximation system is used for conversion. The result of conversion is held in the 8-bit A/D conversion result register (ADCR). Thus, speedy high-precision conversion can be achieved. (The conversion time is about 10 μ s at fclk = 12.5 MHz.)

A/D conversion can be started in any of the following modes:

- Hardware start: Conversion is started by means of trigger input (INTP5).
- Software start: Conversion is started by means of bit setting the A/D converter mode register (ADM).

After conversion has started, one of the following modes can be selected:

- Scan mode: Multiple analog inputs are selected sequentially to obtain conversion data from all pins.
- Select mode: A single analog input is selected at all times to enable conversion data to be obtained continuously.

ADM is used to specify the above modes, as well as the termination of conversion.

When the result of conversion is transferred to ADCR, an interrupt request (INTAD) is generated. Using this feature, the results of conversion can be continuously transferred to memory by the macro service.

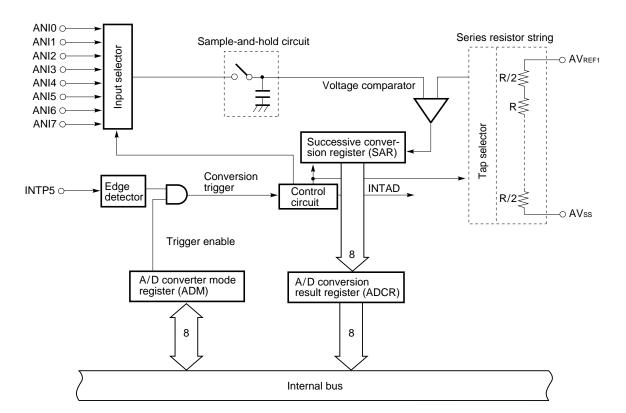


Fig. 8-7 Block Diagram of A/D Converter

8.7 D/A CONVERTER

Two digital/analog (D/A) converter channels of voltage output type, having a resolution of 8 bits, are incorporated. A resistor string system is used for conversion. By writing the value to be subject to D/A conversion in the 8-bit D/A conversion value setting register (DACSn: $n=0,\ 1$), the resulting analog value is output on ANOn ($n=0,\ 1$). The range of the output voltages is determined by the voltages applied to the AVREF2 and AVREF3 pins.

Because of its high output impedance, no current can be obtained from an output pin. When the load impedance is low, insert a buffer amplifier between the load and the converter.

The impedance of the ANOn pin goes high while the RESET signal is low. DACSn is set to 0 after a reset is released.

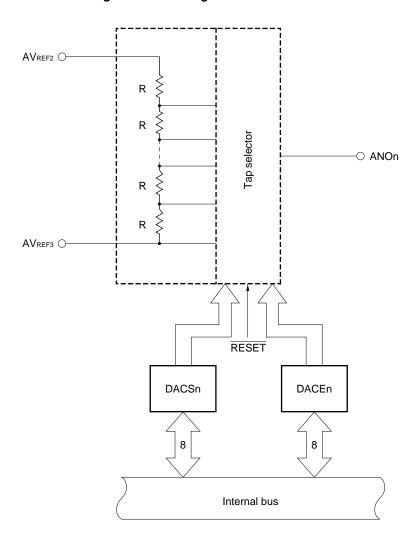
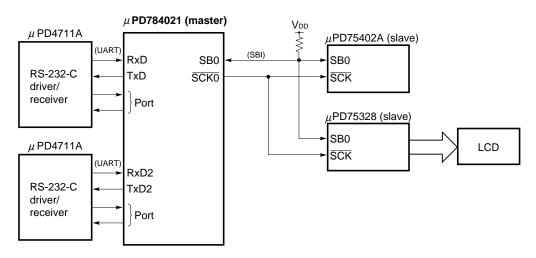


Fig. 8-8 Block Diagram of D/A Converter

Remark n = 0, 1

8.8 SERIAL INTERFACE


Three independent serial interface channels are incorporated.

- Asynchronous serial interface (UART)/three-wire serial I/O (IOE) × 2
- Synchronous serial interface (CSI) × 1
 - Three-wire serial I/O (IOE)
 - Serial bus interface (SBI)

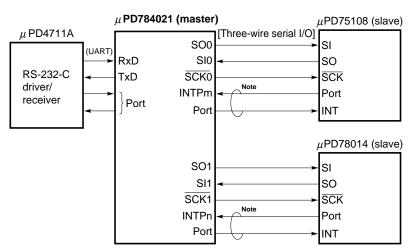

So, communication with points external to the system and local communication within the system can be performed at the same time. (See **Fig. 8-9**.)

Fig. 8-9 Example Serial Interfaces

(a) UART + SBI

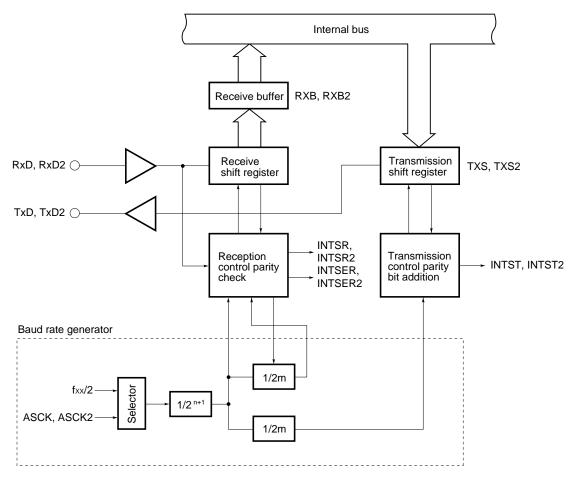
(b) UART + Three-wire serial I/O

Note Handshake line

8.8.1 Asynchronous Serial Interface/Three-Wire Serial I/O (UART/IOE)

Two serial interface channels are available; for each channel, asynchronous serial interface mode or three-wire serial I/O mode can be selected.

(1) Asynchronous serial interface mode


In this mode, 1-byte data is transferred after a start bit.

A baud rate generator is incorporated to enable communication at a wide range of baud rates.

Moreover, the frequency of a clock signal applied to the ASCK pin can be divided to define a baud rate.

With the baud rate generator, the baud rate conforming to the MIDI standard (31.25 kbps) can be obtained.

Fig. 8-10 Block Diagram of Asynchronous Serial Interface Mode

Remark fxx: Oscillator frequency or external clock input

n = 0 to 11

m = 16 to 30

(2) Three-wire serial I/O mode

In this mode, the master device makes the serial clock active to start transmission, then transfers 1-byte data in phase with the clock.

This mode is designed for communication with a device incorporating a conventional synchronous serial interface. Basically, three lines are used for communication: the serial clock line (\overline{SCK}) and the two serial data lines (SI and SO).

In general, a handshake line is required to check the state of communication.

Internal bus Direction control circuit SIO1, SIO2 SI1, SI2 Shift register Output latch SO1, SO2 (Interrupt signal INTCSI1, INTCSI2 SCK1, SCK2 (Serial clock counter generator 1/2ⁿ⁺¹ fxx/2 1/m Selector Serial clock control circuit

Fig. 8-11 Block Diagram of Three-Wire Serial I/O Mode

Remark fxx: Oscillator frequency or external clock input

n = 0 to 11

m = 1, 16 to 30

8.8.2 Synchronous Serial Interface (CSI)

With this interface, the master device makes the serial clock active to start transmission, then transfers 1-byte data in phase with the clock.

Internal bus Direction control circuit Clear Set SIO SIO C Selector Shift register Output latch SO0/SB0 O Busy/ acknowledge detection N-ch open-drain circuit output enabled (when SB0 or Bus release/ SBI mode is used) command/ acknowledge detection circuit Interrupt signal Serial clock SCK0 ○ generation ➤ INTCSI counter circuit TM 3 output/2 Serial clock Selector fclk/8 control circuit fcLk/32

Fig. 8-12 Block Diagram of Synchronous Serial Interface

Remark fclk: Internal system clock frequency (system clock frequency/2)

(1) Three-wire serial I/O mode

This mode is designed for communication with a device incorporating a conventional synchronous serial interface. Basically, three lines are used for communication: the serial clock line (SCKO) and serial data lines (SIO and SOO). In general, a handshake line is required to check the state of communication.

(2) SBI mode

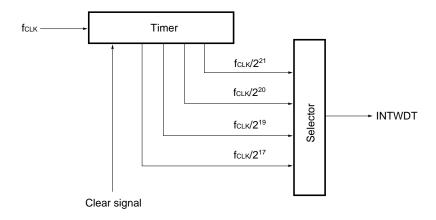
The SBI mode allows communication with more than one device via two lines: the serial clock (SCKO) and serial bus (SBO). The SBI mode is the standard NEC serial interface.

A master device outputs an address through the SB0 pin to select a slave device with which communication is to be performed. After a target device is selected, commands and data are transmitted between the master device and slave device.

8.9 EDGE DETECTION FUNCTION

The interrupt input pins (NMI, INTP0-INTP5) are used to apply not only interrupt requests but also trigger signals for the built-in circuits. As these pins are triggered by an edge (rising or falling) of an input signal, a function for edge detection is incorporated. Moreover, a noise suppression function is provided to prevent erroneous edge detection caused by noise.

Pin	Detectable edge	Noise suppression method
NMI	Rising edge or falling edge	Analog delay
INTP0-INTP3	Rising edge or falling edge, or both edges	Clock samplingNote
INTP4, INTP5		Analog delay


Note INTP0 is used for sampling clock selection.

8.10 WATCHDOG TIMER

A watchdog timer is incorporated for CPU runaway detection. The watchdog timer, if not cleared by software within a specified interval, generates a nonmaskable interrupt. Furthermore, once watchdog timer operation is enabled, it cannot be disabled by software. The user can specify whether priority is placed on an interrupt based on the watchdog timer or on an interrupt based on the NMI pin.

Fig. 8-13 Block Diagram of Watchdog Timer

9. INTERRUPT FUNCTION

Table 9-1 lists the interrupt request handling modes. These modes are selected by software.

Table 9-1 Interrupt Request Handling Modes

Handling mode	Handled by	Handling	PC and PSW contents
Vectored interrupt	Software	Branches to a handling routine for execution (arbitrary handling).	The PC and PSW contents are pushed to and popped from the stack.
Context switching		Automatically selects a register bank, and branches to a handling routine for execution (arbitrary handling).	The PC and PSW contents are saved to and read from a fixed area in the register bank.
Macro service	Firmware	Performs operations such as memory-to-I/O-device data transfer (fixed handling).	Maintained

9.1 INTERRUPT SOURCE

An interrupt can be issued from any one of the interrupt sources listed in Table 9-2: execution of a BRK instruction, an operand error, or any of the 23 other interrupt sources.

Four levels of interrupt handling priority can be set. Priority levels can be set to nest control during interrupt handling or to concurrently generate interrupt requests. Nested macro services, however, are performed without suspension.

When interrupt requests having the same priority level are generated, they are handled according to the default priority (fixed). (See **Table 9-2**.)

Table 9-2 Interrupt Sources

Type	Default		Source	Internal/	Macro
Турс	priority	Name	Trigger	external	service
Software	-	BRK instruction	Instruction execution	-	_
		Operand error	When the MOV STBC,#byte or MOV WDM,#byte instruction is executed, exclusive OR of the byte operand and byte does not produce FFH.		
Nonmaskable	-	NMI	Detection of edge input on the pin	External	_
		WDT	Watchdog timer overflow	Internal	
Maskable	0 (highest)	INTP0	Detection of edge input on the pin (TM1/TM1W capture trigger)	External	Enabled
	1	INTP1	Detection of edge input on the pin (TM2/TM2W capture trigger)		
	2	INTP2	Detection of edge input on the pin (TM2/TM2W event counter input)		
	3	INTP3			
	4	INTC00	TM0-CR00 match signal issued	Internal	Enabled
	5	INTC01	TM0-CR01 match signal issued		
	6	INTC10	TM1-CR10 match signal issued (in 8-bit operation mode) TM1W-CR10W match signal issued (in 16-bit operation mode)		
	7	INTC11	TM1-CR11 match signal issued (in 8-bit operation mode) TM1W-CR11W match signal issued (in 16-bit operation mode)		
	8	INTC20	TM2-CR20 match signal issued (in 8-bit operation mode) TM2W-CR20W match signal issued (in 16-bit operation mode)		
	9	INTC21	TM2-CR21 match signal issued (in 8-bit operation mode) TM2W-CR21W match signal issued (in 16-bit operation mode)		
	10	INTC30	TM3-CR30 match signal issued (in 8-bit operation mode) TM3W-CR30W match signal issued (in 16-bit operation mode)		
	11	INTP4	Detection of edge input on the pin	External	Enabled
	12	INTP5	Detection of edge input on the pin		
	13	INTAD	A/D converter processing completed (ADCR transfer)	Internal	Enabled
	14	INTSER	ASI0 reception error		_
	15	INTSR	ASI0 reception completed or CSI1 transfer completed		Enabled
		INTCSI1			
	16	INTST	ASI0 transmission completed		
	17	INTCSI	CSI0 transfer completed		
	18	INTSER2	ASI2 reception error		-
	19	INTSR2	ASI2 reception completed or CSI2 transfer completed		Enabled
		INTCSI2			
	20 (lowest)	INTST2	ASI2 transmission completed		

Remark ASI: Asynchronous serial interface

CSI: Synchronous serial interface

9.2 VECTORED INTERRUPT

When a branch to an interrupt handling routine occurs, the vector table address corresponding to the interrupt source is used as the branch address.

Interrupt handling by the CPU consists of the following operations :

- When a branch occurs : Push the CPU status (PC and PSW contents) to the stack.
- When control is returned: Pop the CPU status (PC and PSW contents) from the stack.

To return control from the handling routine to the main routine, use the RETI instruction. The branch destination addresses must be within the range of 0 to FFFFH.

Table 9-3 Vector Table Address

Interrupt source	Vector table address
BRK instruction	003EH
Operand error	003CH
NMI	0002H
WDT	0004H
INTP0	0006H
INTP1	0008H
INTP2	000AH
INTP3	000CH
INTC00	000EH
INTC01	0010H
INTC10	0012H
INTC11	0014H
INTC20	0016H
INTC21	0018H
INTC30	001AH
INTP4	001CH
INTP5	001EH
INTAD	0020H
INTSER	0022H
INTSR	0024H
INTCSI1	
INTST	0026H
INTCSI	0028H
INTSER2	002AH
INTSR2	002CH
INTCSI2	
INTST2	002EH

9.3 CONTEXT SWITCHING

When an interrupt request is generated, or when the BRKCS instruction is executed, an appropriate register bank is selected by the hardware. Then, a branch to a vector address stored in that register bank occurs. At the same time, the contents of the current program counter (PC) and program status word (PSW) are stacked in the register bank

The branch address must be within the range of 0 to FFFFH.

0000B (7) Transfer Register bank (0-7) Register bank n (n = 0-7) PC19-16 PC15-0 Α Х В С 6 Exchange 2 Save R5 R4 (Bits 8 to 11 of R6 R7 temporary register) Save VΡ ٧

UP

Ε

L

D

Н

U

Т

W

3 Switching between register banks

 $(RBS0-RBS2 \leftarrow n)$

 $RSS \leftarrow 0$

4 (IE

Fig. 9-1 Context Switching Caused by an Interrupt Request

9.4 MACRO SERVICE

PSW

1 Save

Temporary register

The macro service function enables data transfer between memory and special function registers (SFRs) without requiring the intervention of the CPU. The macro service controller accesses both memory and SFRs within the same transfer cycle to directly transfer data without having to perform data fetch.

Since the CPU status is neither saved nor restored, nor is data fetch performed, high-speed data transfer is possible.

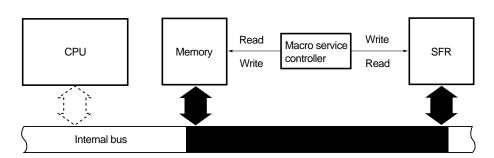
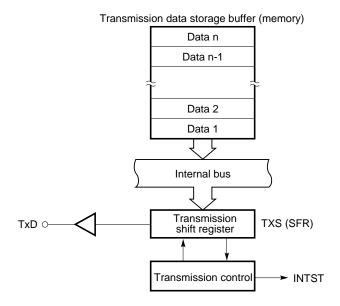
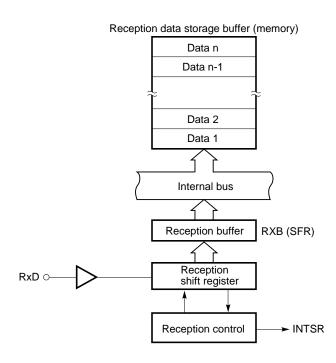



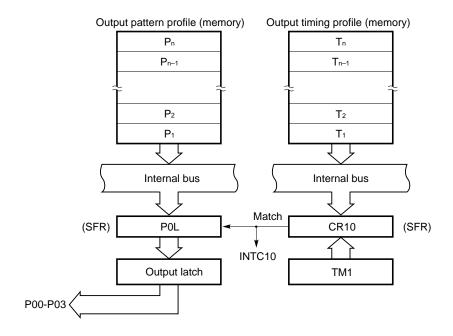
Fig. 9-2 Macro Service


9.5 EXAMPLES OF MACRO SERVICE APPLICATIONS

(1) Serial interface transmission

Each time a macro service request (INTST) is generated, the next transmission data is transferred from memory to TXS. When data n (last byte) has been transferred to TXS (that is, once the transmission data storage buffer becomes empty), a vectored interrupt request (INTST) is generated.

(2) Serial interface reception



Each time a macro service request (INTSR) is generated, reception data is transferred from RXB to memory. When data n (last byte) has been transferred to memory (that is, once the reception data storage buffer becomes full), a vectored interrupt request (INTSR) is generated.

(3) Real-time output port

INTC10 and INTC11 function as the output triggers for the real-time output ports. For these triggers, the macro service can simultaneously set the next output pattern and interval. Therefore, INTC10 and INTC11 can be used to independently control two stepping motors. They can also be applied to PWM and DC motor control.

Each time a macro service request (INTC10) is generated, a pattern and timing data are transferred to the buffer register (P0L) and compare register (CR10), respectively. When the contents of timer register 1 (TM1) and CR10 match, another INTC10 is generated, and the P0L contents are transferred to the output latch. When Tn (last byte) is transferred to CR10, a vectored interrupt request (INTC10) is generated.

For INTC11, the same operation as that performed for INTC10 is performed.

10. LOCAL BUS INTERFACE

The local bus interface enables the connection of external memory and I/O devices (memory-mapped I/O). It supports a 1M-byte memory space. (See **Fig. 10-1**.)

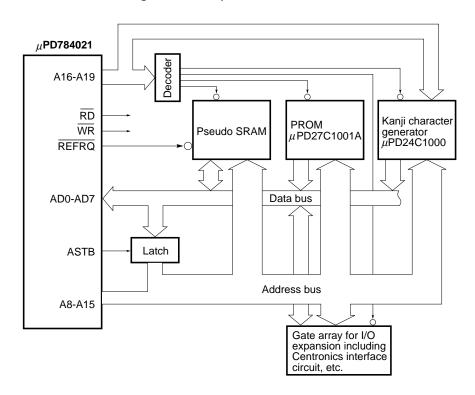


Fig. 10-1 Example of Local Bus Interface

10.1 MEMORY EXPANSION

By adding external memory, program memory or data memory can be expanded, 64K bytes at a time, to approximately 1M byte (three steps).

10.2 MEMORY SPACE

The 1M-byte memory space is divided into eight spaces, each having a logical address. Each of these spaces can be controlled using the programmable wait and pseudo-static RAM refresh functions.

Fig. 10-2 Memory Space

FFFFFH	
80000H	512K bytes
7FFFFH	256K bytes
40000H	
3FFFFH	128K bytes
20000H 1FFFFH	
10000H	64K bytes
0FFFFH	16K bytes
0C000H 0BFFFH	
08000H	16K bytes
07FFFH	16K bytes
04000H 03FFFH	16K bytes
00000Н	

10.3 PROGRAMMABLE WAIT

When the memory space is divided into eight spaces, a wait state can be separately inserted for each memory space while the $\overline{\text{RD}}$ or $\overline{\text{WR}}$ signal is active. This prevents the overall system efficiency from being degraded even when memory devices having different access times are connected.

In addition, an address wait function that extends the ASTB signal active period is provided to produce a longer address decode time. (This function is set for the entire space.)

10.4 PSEUDO-STATIC RAM REFRESH FUNCTION

Refresh is performed as follows:

• Pulse refresh : A bus cycle is inserted where a refresh pulse is output on the REFRQ pin at regular

intervals. When the memory space is divided into eight, and a specified area is being accessed, refresh pulses can also be output on the REFRQ pin as the memory is being accessed. This can prevent the refresh cycle from suspending

normal memory access.

Power-down self-refresh: In standby mode, a low-level signal is output on the REFRQ pin to maintain the

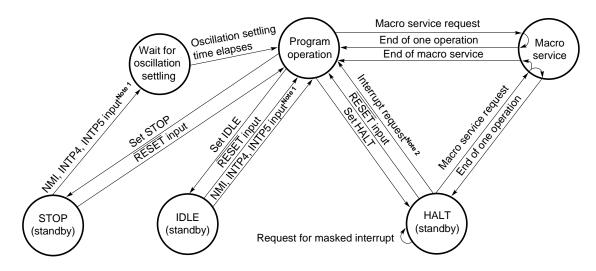
contents of pseudo-static RAM.

10.5 BUS HOLD FUNCTION

A bus hold function is provided to facilitate connection to devices such as a DMA controller. Suppose that a bus hold request signal (HLDRQ) is received from an external bus master. In this case, upon the completion of the bus cycle being performed, the address bus, address/data bus, ASTB, $\overline{\text{RD}}$, and $\overline{\text{WR}}$ pins are placed in the high-impedance state, and the bus hold acknowledge signal (HLDAK) is made active to release the bus for the external bus master.

While the bus hold function is being used, the external wait and pseudo-static RAM refresh functions are disabled.

11. STANDBY FUNCTION


The standby function allows the power consumption of the chip to be reduced. The following standby modes are supported:

- HALT mode: The CPU operation clock is stopped. By occassionally inserting the HALT mode during normal operation, the overall average power consumption can be reduced.
- IDLE mode : The entire system is stopped, with the exception of the oscillator circuit. This mode consumes only very little more power than STOP mode, but normal program operation can be restored in almost as little time as that required to restore normal program operation from HALT mode.
- STOP mode: The oscillator is stopped. All operations in the chip stop, such that only leakage current flows.

These modes can be selected by software.

A macro service can be initiated in HALT mode.

Fig. 11-1 Standby Mode Status Transition

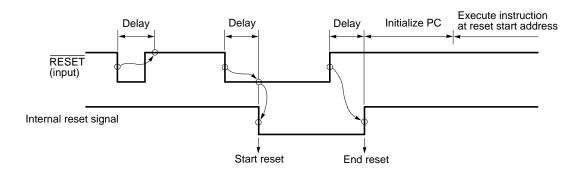
- Notes 1. INTP4 and INTP5 are applied when not masked.
 - 2. Only when the interrupt request is not masked

Remark NMI is enabled only by external input. The watchdog timer cannot be used to release one of the standby modes (STOP or IDLE mode).

12. RESET FUNCTION

Applying a low-level signal to the RESET pin initializes the internal hardware (reset status). When the RESET input makes a low-to-high transition, the following data is loaded into the program counter (PC):

Eight low-order bits of the PC : Contents of location at address 0000H
 Intermediate eight bits of the PC : Contents of location at address 0001H


• Four high-order bits of the PC : 0

The PC contents are used as a branch destination address. Program execution starts from that address. Therefore, a reset start can be performed from an arbitrary address.

The contents of each register can be set by software, as required.

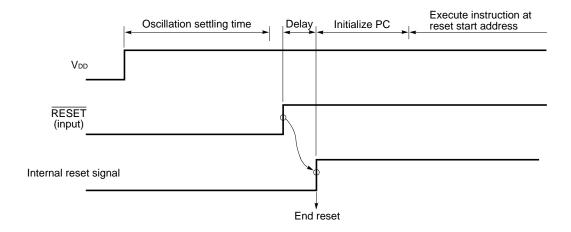

The RESET input circuit contains a noise eliminator to prevent malfunctions caused by noise. This noise eliminator is an analog delay sampling circuit.

Fig. 12-1 Accepting a Reset

For power-on reset, the RESET signal must be held active until the oscillation settling time (approximately 40 ms) has elapsed.

Fig. 12-2 Power-On Reset

13. INSTRUCTION SET

(1) 8-bit instructions (The instructions enclosed in parentheses are implemented by a combination of operands, where A is described as r.)

MOV, XCH, ADD, ADDC, SUB, SUBC, AND, OR, XOR, CMP, MULU, DIVUW, INC, DEC, ROR, ROL, RORC, ROLC, SHR, SHL, ROR4, ROL4, DBNZ, PUSH, POP, MOVM, XCHM, CMPME, CMPMNE, CMPMNC, CMPMC, MOVBK, XCHBK, CMPBKNE, CMPBKNE, CMPBKNC, CMPBKC, CHKL, CHKLA

Table 13-1 Instructions Implemented by 8-Bit Addressing

2nd operand	#byte	А	r r'	saddr saddr'	sfr	!addr16 !!addr24	mem [saddrp]	r3 PSWL PSWH	[WHL+]	n	NoneNote 2
1st operand A	(MOV) ADDNote 1	(MOV) (XCH) (ADD)Note 1	MOV XCH (ADD)Note 1	(MOV)Note 6 (XCH)Note 6 (ADD)Notes 1, 6	(XCH)	(MOV) (XCH) ADDNote 1	[%saddrg] MOV XCH ADDNote 1	MOV	(MOV) (XCH) (ADD)Note 1		
r	MOV ADDNote 1	(MOV) (XCH) (ADD)Note 1	MOV XCH ADDNote 1	MOV XCH ADDNote 1	MOV XCH ADDNote 1	MOV XCH				RORNote 3	MULU DIVUW INC DEC
saddr	MOV ADDNote 1	(MOV)Note 6 (ADD)Note 1	MOV ADDNote 1	MOV XCH ADDNote 1							INC DEC DBNZ
sfr	MOV ADDNote 1	MOV (ADD)Note 1	MOV ADDNote 1								PUSH POP CHKL CHKLA
!addr16 !!addr24	MOV	(MOV) ADDNote 1	MOV								
mem [saddrp] [%saddrg]		MOV ADDNote 1									
mem3											ROR4 ROL4
r3 PSWL PSWH	MOV	MOV									
B, C											DBNZ
STBC, WDM	MOV										
[TDE+] [TDE-]		(MOV) (ADD)Note 1 MOVMNote 4							MOVBKNote 5		

Notes 1. ADDC, SUB, SUBC, AND, OR, XOR, and CMP are the same as ADD.

- 2. There is no second operand, or the second operand is not an operand address.
- 3. ROL, RORC, ROLC, SHR, and SHL are the same as ROR.
- 4. XCHM, CMPME, CMPMNE, CMPMNC, and CMPMC are the same as MOVM.
- **5.** XCHBK, CMPBKE, CMPBKNE, CMPBKNC, and CMPBKC are the same as MOVBK.
- 6. When saddr is saddr2 with this combination, an instruction with a short code exists.

(2) 16-bit instructions (The instructions enclosed in parentheses are implemented by a combination of operands, where AX is described as rp.)

MOVW, XCHW, ADDW, SUBW, CMPW, MULUW, MULW, DIVUX, INCW, DECW, SHRW, SHLW, PUSH, POP, ADDWG, SUBWG, PUSHU, POPU, MOVTBLW, MACW, MACSW, SACW

Table 13-2 Instructions Implemented by 16-Bit Addressing

2nd operand	#word	AX	rp rp'	saddrp saddrp'	strp	!addr16 !!addr24	mem [saddrp]	[WHL+]	byte	n	NoneNote 2
1st operand			۱۴	oudurp		dddi21	[%saddrg]				
AX	(MOVW) ADDWNote 1	(MOVW) (XCHW) (ADD)Note 1	(MOVW) (XCHW) (ADDW)Note 1	(MOVW)Note 3 (XCHW)Note 3 (ADDW)Notes 1,3	MOVW (XCHW) (ADDW)Note 1	(MOVW) XCHW	MOVW XCHW	(MOVW) (XCHW)			
гр	MOVW ADDWNote 1	(MOVW) (XCHW) (ADDW)Note 1	MOVW XCHW ADDWNote 1	MOVW XCHW ADDWNote 1	MOVW XCHW ADDWNote 1	MOVW				SHRW SHLW	MULWNote 4 INCW DECW
saddrp	MOVW ADDWNote 1	(MOVW)Note 3 (ADDW)Note 1	MOVW ADDWNote 1	MOVW XCHW ADDWNote 1							INCW DECW
sfrp	MOVW ADDWNote 1	MOVW (ADDW)Note 1	MOVW ADDWNote 1								PUSH POP
!addr16 !!addr24	MOVW	(MOVW)	MOVW						MOVTBLW		
mem [saddrp] [%saddrg]		MOVW									
PSW											PUSH POP
SP	ADDWG SUBWG										
post											PUSH POP PUSHU POPU
[TDE+]		(MOVW)						SACW			
byte											MACW MACSW

Notes 1. SUBW and CMPW are the same as ADDW.

- 2. There is no second operand, or the second operand is not an operand address.
- 3. When saddrp is saddrp2 with this combination, an instruction with a short code exists.
- 4. MULUW and DIVUX are the same as MULW.

(3) 24-bit instructions (The instructions enclosed in parentheses are implemented by a combination of operands, where WHL is described as rg.)

MOVG, ADDG, SUBG, INCG, DECG, PUSH, POP

Table 13-3 Instructions Implemented by 24-Bit Addressing

2nd operand	#imm24	WHL	rg	saddrg	!!addr24	mem1	[%saddrg]	SP	NoneNote
1st operand			rg'						
WHL	(MOVG)	(MOVG)	(MOVG)	(MOVG)	(MOVG)	MOVG	MOVG	MOVG	
	(ADDG)	(ADDG)	(ADDG)	ADDG					
	(SUBG)	(SUBG)	(SUBG)	SUBG					
rg	MOVG	(MOVG)	MOVG	MOVG	MOVG				INCG
	ADDG	(ADDG)	ADDG						DECG
	SUBG	(SUBG)	SUBG						PUSH
									POP
saddrg		(MOVG)	MOVG						
!!addr24		(MOVG)	MOVG						
mem1		MOVG							
[%saddrg]		MOVG							
SP	MOVG	MOVG							INCG
									DECG

Note There is no second operand, or the second operand is not an operand address.

(4) Bit manipulation instructions

MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1, BT, BF, BTCLR, BFSET

Table 13-4 Bit Manipulation Instructions Implemented by Addressing

2nd operand	CY	saddr.bit sfr.bit	/saddr.bit /sfr.bit	NoneNote
		A.bit X.bit	/A.bit /X.bit	
		PSWL.bit PSWH.bit	/PSWL.bit /PSWH.bit	
		mem2.bit	/mem2.bit	
1st operand		!addr16.bit !!addr24.bit	/!addr16.bit /!!addr24.bit	
CY		MOV1	AND1	NOT1
		AND1	OR1	SET1
		OR1		CLR1
		XOR1		
saddr.bit	MOV1			NOT1
sfr.bit				SET1
A.bit				CLR1
X.bit				BF
PSWL.bit				ВТ
PSWH.bit				BTCLR
mem2.bit				BFSET
!addr16.bit				
!!addr24.bit				

Note There is no second operand, or the second operand is not an operand address.

(5) Call/return instructions and branch instructions

CALL, CALLF, CALLT, BRK, RET, RETI, RETB, RETCS, RETCSB, BRKCS, BR, BNZ, BNE, BZ, BE, BNC, BNL, BC, BL, BNV, BPO, BV, BPE, BP, BN, BLT, BGE, BLE, BGT, BNH, BH, BF, BT, BTCLR, BFSET, DBNZ

Table 13-5 Call/Return and Branch Instructions Implemented by Addressing

Instruction address operand	\$addr20	\$!addr20	!addr16	!!addr20	rp	rg	[rp]	[rg]	!addr11	[addr5]	RBn	None
Basic instruction	BCNote BR	CALL BR	CALL BR RETCS RETCSB	CALL BR	CALL BR	CALL BR	CALL BR	CALL BR	CALLF	CALLF	BRKCS	BRK RET RETI RETB
Composite instruction	BF BT BTCLR BFSET DBNZ											

Note BNZ, BNE, BZ, BE, BNC, BNL, BL, BNV, BPO, BV, BPE, BP, BN, BLT, BGE, BLE, BGT, BNH, and BH are the same as BC.

(6) Other instructions

ADJBA, ADJBS, CVTBW, LOCATION, SEL, NOT EI, DI, SWRS

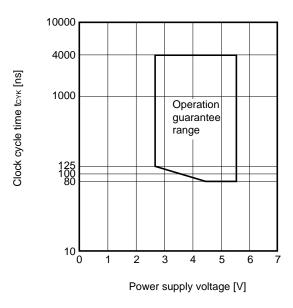
14. ELECTRICAL CHARACTERISTICS

The electrical characteristics described in this chapter apply to the products which are improved versions of the μ PD784020 and μ PD784021 (other than K-rank products). For K-rank products yet to be improved (K-rank products), please consult with our sales offices.

ABSOLUTE MAXIMUM RATINGS (TA = 25 °C)

Parameter	Symbol	Conditions	Rating	Unit
Supply voltage	V _{DD}		-0.5 to +7.0	V
	AV _{DD}		AVss to V _{DD} + 0.5	V
	AVss		-0.5 to +0.5	V
Input voltage	Vı		-0.5 to V _{DD} + 0.5	V
Output voltage	Vo		-0.5 to V _{DD} + 0.5	V
Low-level output current	Іоь	Each pin	15	mA
		Total of all output pins	150	mA
High-level output current	Іон	Each pin	-10	mA
		Total of all output pins	-100	mA
A/D converter reference input voltage	AV _{REF1}		-0.5 to V _{DD} + 0.3	V
D/A converter reference input voltage	AV _{REF2}		-0.5 to V _{DD} + 0.3	V
	AV _{REF3}		-0.5 to V _{DD} + 0.3	V
Operating ambient temperature	TA		-40 to +85	°C
Storage temperature	Tstg		-65 to +150	°C

Caution Absolute maximum ratings are rated values beyond which some physical damages may be caused to the product; if any of the parameters in the table above exceeds its rated value even for a moment, the quality of the product may deteriorate. Be sure to use the product within the rated values.



OPERATING CONDITIONS

- Operating ambient temperature (T_A): -40 to +85 °C
- Rising and falling time (t_r , t_f) (for pins not especially specified): 0 to 200 μ s
- Power supply voltage and clock cycle time: See Fig. 14-1.

Fig. 14-1 Relationship between Power Supply Voltage and Clock Cycle Time

CAPACITANCE (TA = 25 °C, VDD = Vss = 0 V)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Input capacitance	Cı	f = 1 MHz			10	pF
Output capacitance	Co	0 V on pins other than measured pins			10	pF
I/O capacitance	Сю				10	pF

OSCILLATOR CHARACTERISTICS ($T_A = -40 \text{ to } +85 \text{ °C}$, $V_{DD} = 4.5 \text{ to } 5.5 \text{ V}$, $V_{SS} = 0 \text{ V}$)

Resonator	Recommended circuit	Parameter	Min.	Max.	Unit
Ceramic resonator or crystal	Vss X1 X2 C1 — C2	Oscillator frequency (fxx)	4	25	MHz
External clock		X1 input frequency (fx)	4	25	MHz
	X1 X2	X1 input rising and falling times (txR, txF)	0	10	ns
	HCMOS Inverter	X1 input high-level and low-level widths (twxH, twxL)	10	125	ns

Caution When using the system clock generator, run wires in the portion surrounded by dotted lines according to the following rules to avoid effects such as stray capacitance:

- Minimize the wiring.
- Never cause the wires to cross other signal lines.
- Never cause the wires to run near a line carrying a large varying current.
- Cause the grounding point of the capacitor of the oscillator circuit to have the same potential as Vss. Never connect the capacitor to a ground pattern carrying a large current.
- Never extract a signal from the oscillator.

OSCILLATOR CHARACTERISTICS (TA = -40 to +85 °C, VDD = 2.7 to 5.5 V, Vss = 0 V)

Resonator	Recommended circuit	Parameter	Min.	Max.	Unit
Ceramic resonator or crystal	Vss X1 X2 C1 — C2	Oscillator frequency (fxx)	4	16	MHz
External clock		X1 input frequency (fx)	4	16	MHz
	X1 X2	X1 input rising and falling times (txr, txr)	0	10	ns
	HCMOS Inverter	X1 input high-level and low-level widths (twxH, twxL)	10	125	ns

Caution When using the system clock generator, run wires in the portion surrounded by dotted lines according to the following rules to avoid effects such as stray capacitance:

- Minimize the wiring.
- Never cause the wires to cross other signal lines.
- Never cause the wires to run near a line carrying a large varying current.
- Cause the grounding point of the capacitor of the oscillator circuit to have the same potential as Vss. Never connect the capacitor to a ground pattern carrying a large current.
- Never extract a signal from the oscillator.

DC CHARACTERISTICS (TA = -40 to +85 °C, VDD = AVDD = 2.7 to 5.5 V, Vss = AVss = 0 V) (1/2)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Low-level input voltage	V _{IL1}	Pins other than those described in Notes 1, 2, 3, and 4	-0.3		0.3V _{DD}	V
	V _{IL2}	Pins described in Notes 1, 2, 3, and 4	-0.3		0.2V _{DD}	V
	VIL3	V _{DD} = +5.0 V ±10 %	-0.3		+0.8	V
		Pins described in Notes 2, 3, and 4				
High-level input voltage	V _{IH1}	Pins other than those described in Note 1	0.7V _{DD}		V _{DD} + 0.3	V
	V _{IH2}	Pins described in Note 1	0.8V _{DD}		V _{DD} + 0.3	V
	VIH3	V _{DD} = +5.0 V ±10 %	2.2		V _{DD} + 0.3	V
		Pins described in Notes 2, 3, and 4				
Low-level output voltage	V _{OL1}	IoL = 2 mA			0.4	V
	V _{OL2}	V _{DD} = +5.0 V ±10 %			1.0	V
		IoL = 8 mA				
		Pins described in Notes 2 and 5				
High-level output voltage	V _{OH1}	lон = −2 mA	V _{DD} - 1.0			V
	V _{OH2}	V _{DD} = +5.0 V ±10 %	2.0			V
		lон = −5 mA				
		Pins described in Note 4				
X1 low-level input current	Iı∟	$0 \text{ V} \leq V_1 \leq V_{1L2}$			-30	μΑ
X1 high-level input current	Ін	$V_{1H2} \leq V_{1} \leq V_{DD}$			+30	μΑ

- Notes 1. X1, X2, RESET, P12/ASCK2/SCK2, P13/RxD2/SI2, P20/NMI, P21/INTP0, P22/INTP1, P23/INTP2/CI, P24/INTP3, P25/INTP4/ASCK/SCK1, P26/INTP5, P27/SI0, P30/RxD/SI1, P32/SCK0, P33/SO0/SB0, and TEST
 - 2. AD0 to AD7 and A8 to A15
 - 3. P60/A16 to P63/A19, RD, WR, P66/WAIT/HLDRQ, and P67/REFRQ/HLDAK
 - **4.** P00 to P07
 - **5.** P10 to P17

DC CHARACTERISTICS (TA = -40 to +85 °C, VDD = AVDD = 2.7 to 5.5 V, Vss = AVss = 0 V) (2/2)

Parameter	Symbol	Co	nditions	Min.	Тур.	Max.	Unit
Input leakage current	lu	$0 \text{ V} \leq V_{I} \leq V_{DD}$				±10	μΑ
		Except for the X1	xcept for the X1 pin when EXTC = 0				
		$0 \text{ V} \leq \text{V}_{\text{I}} \leq \text{V}_{\text{DD}}$	$V \le V_1 \le V_{DD}$			±3	μΑ
		Analog input pins					
Output leakage current	ILO	$0 \text{ V} \leq \text{Vo} \leq \text{Vdd}$				±10	μΑ
V _{DD} supply current	I _{DD1}	Operating mode	fxx = 25 MHz		40	60	mA
			fxx = 16 MHz		12	25	mA
			V _{DD} = 2.7 to 5.5 V				
	I _{DD2}	HALT mode	fxx = 25 MHz		22	30	mA
			fxx = 16 MHz		8	12	mA
			V _{DD} = 2.7 to 5.5 V				
	IDD3	IDLE mode	fxx = 25 MHz			12	mA
		(EXTC = 0)	fxx = 16 MHz			8	mA
			V _{DD} = 2.7 to 5.5 V				
Pull-up resistance	R∟	V1 = 0 V		15		100	kΩ
		V _{DD} = +5.0 V ±10	%				
		V1 = 0 V		15		160	kΩ
		$V_{DD} = 2.7 \text{ to } 4.5 \text{ V}$	/				

AC CHARACTERISTICS (TA = -40 to +85 °C, VDD = AVDD = 2.7 to 5.5 V, Vss = AVss = 0 V)

(1) Read/write operation (1/2)

Parameter	Symbol	Co	onditions	Min.	Max.	Unit
Address setup time	tsast	VDD = +5.0 V ±10	%	(0.5 + a) T – 11		ns
				(0.5 + a) T – 15		ns
ASTB high-level width	twsth	V _{DD} = +5.0 V ±10	%	(0.5 + a) T – 17		ns
				(0.5 + a) T – 40		ns
Address hold time	thstla	V _{DD} = +5.0 V ±10	%	0.5T - 24		ns
(referred to ASTB↓)				0.5T - 34		ns
Address hold time	thra			0.5T - 14		ns
(referred to RD∞)						
$Address o \overline{RD} \!\!\downarrow delay time$	tdar	VDD = +5.0 V ±10	%	(1 + a) T – 5		ns
				(1 + a) T – 10		ns
Address float time	tFRA				0	ns
(referred to RD↓)						
Address → data input time	tDAID	$V_{DD} = +5.0 \text{ V} \pm 10$	%		(2.5 + a + n) T - 37	ns
					(2.5 + a + n) T - 52	ns
$ASTB{\downarrow} o data$ input time	tostid	V _{DD} = +5.0 V ±10	$V_{DD} = +5.0 \text{ V} \pm 10 \%$		(2 + n) T - 40	ns
					(2 + n) T - 60	ns
$\overline{RD}{\downarrow} o data$ input time	torid	VDD = +5.0 V ±10	%		(1.5 + n) T – 50	ns
					(1.5 + n) T – 70	ns
$ASTB{\downarrow} \to \overline{RD}{\downarrow} \; delay \; time$	tostr			0.5T - 9		ns
Data hold time	thrid			0		ns
(referred to \overline{RD} ∞)						
$\overline{RD} \hspace{-0.5em} \hspace{-0.5em} \hspace{-0.5em} \hspace{-0.5em} \hspace{-0.5em} \to address \; active \; time$	tdra	Upon program	V _{DD} = +5.0 V ±10 %	0.5T - 2		ns
		read		0.5T - 12		ns
		Upon data read	V _{DD} = +5.0 V ±10 %	1.5T – 2		ns
				1.5T – 12		ns
$\overline{RD} {\scriptstyle \!$	torst			0.5T - 9		ns
RD low-level width	twrL	VDD = +5.0 V ±10	%	(1.5 + n) T – 30		ns
				(1.5 + n) T – 40		ns
Address hold time	thwa			0.5T - 14		ns
(referred to WR∞)						
Address $\rightarrow \overline{WR} \!\!\downarrow delay$ time	tdaw	$V_{DD} = +5.0 \text{ V} \pm 10$	%	(1 + a) T – 5		ns
				(1 + a) T – 10		ns
$ASTB{\downarrow} \to data \ output \ delay \ time$	tostod	$V_{DD} = +5.0 \text{ V } \pm 10$	%		0.5T + 15	ns
	<u> </u>				0.5T + 20	ns
$ASTB{\downarrow} \to data \ output \ time$	towod				0.5T – 11	ns
$ASTB{\downarrow} \to \overline{WR}{\downarrow} \text{ output delay time}$	tostw			0.5T - 9		ns

Remark Τ: Τcγκ (system clock cycle time)

a: 1 when address wait is applied, 0 in other cases

n: number of wait cycles (n ∞ 0)

(1) Read/write operation (2/2)

Parameter	Symbol	Conditions	Min.	Max.	Unit
Data setup time	tsodw	V _{DD} = +5.0 V ±10 %	(1.5 + n) T – 30		ns
(referred to WR∞)			(1.5 + n) T – 40		ns
Data hold time	thwod	V _{DD} = +5.0 V ±10 %	0.5T - 5		ns
(referred to WR∞)Note			0.5T – 14		ns
WR∞ → ASTB∞ delay time	towst		0.5T - 9		ns
WR low-level width	twwL	V _{DD} = +5.0 V ±10 %	(1.5 + n) T – 30		ns
			(1.5 + n) T – 40		ns

Note The hold time includes the time for holding V_{OH1} and V_{OL1} on the load conditions of C_L = 50 pF and R_L = $4.7 \text{ k}\Omega$.

Remark T: TCYK (system clock cycle time)

n: number of wait cycles (n ∞ 0)

(2) Bus hold timing

Parameter	Symbol	Conditions	Min.	Max.	Unit
HLDRQ∞ → float delay time	t FHQC			(6 + a + n) T + 50	ns
HLDRQ∞ → HLDAK∞ delay time	tононнан	V _{DD} = +5.0 V ±10 %		(7 + a + n) T + 30	ns
				(7 + a + n) T + 40	ns
Float → HLDAK∞ delay time	t DCFHA			1T + 30	ns
$HLDRQ{\downarrow} o HLDAK{\downarrow}$ delay time	t DHQLHAL	V _{DD} = +5.0 V ±10 %		2T + 40	ns
				2T + 60	ns
$HLDAK\!\!\downarrow \to active \; delay \; time$	t DHAC	V _{DD} = +5.0 V ±10 %	1T – 20		ns
			1T – 30		ns

Remark T: TCYK (system clock cycle time)

a: 1 when address wait is applied, 0 in other cases

n: number of wait cycles (n ∞ 0)

(3) External wait timing

Parameter	Symbol	Conditions	Min.	Max.	Unit
$Address \to \overline{WAIT} {\downarrow} input time$	t DAWT	V _{DD} = +5.0 V ±10 %		(2 + a) T – 40	ns
				(2 + a) T – 60	ns
$ASTB\!\!\downarrow \to \overline{WAIT}\!\!\downarrow input\ time$	tostwt	V _{DD} = +5.0 V ±10 %		1.5T – 40	ns
				1.5T – 60	ns
$ASTB\!\!\downarrow \to \overline{WAIT}$ hold time	tнsтwтн	V _{DD} = +5.0 V ±10 %	(0.5 + n) T + 5		ns
			(0.5 + n) T + 10		ns
$ASTB\!\!\downarrow \to \overline{WAIT}_\inftydelaytime$	tostwth	VDD = +5.0 V ±10 %		(1.5 + n) T – 40	ns
				(1.5 + n) T – 60	ns
$\overline{RD}{\downarrow} o \overline{WAIT}{\downarrow}$ input time	tDRWTL	VDD = +5.0 V ±10 %		T – 50	ns
				T – 70	ns
$\overline{RD}{\downarrow} o \overline{WAIT}{\downarrow} ext{ hold time}$	thrwt	VDD = +5.0 V ±10 %	nT + 5		ns
			nT + 10		ns
$\overline{RD}{\downarrow} o \overline{WAIT}{}_{\!$	torwth	V _{DD} = +5.0 V ±10 %		(1 + n) T – 40	ns
				(1 + n) T - 60	ns
WAIT∞ → data input time	towtid	V _{DD} = +5.0 V ±10 %		0.5T - 5	ns
				0.5T - 10	ns
$\overline{\text{WAIT}} \infty \to \overline{\text{WR}} \infty$ delay time	t DWTW		0.5T		ns
WAIT∞ → RD∞ delay time	towtr		0.5T		ns
$\overline{\mathrm{WR}}\!\!\downarrow \to \overline{\mathrm{WAIT}}\!\!\downarrow \mathrm{input\ time}$	t DWWTL	V _{DD} = +5.0 V ±10 %		T – 50	ns
				T – 75	ns
$\overline{\mathrm{WR}}\!\downarrow \to \overline{\mathrm{WAIT}}$ hold time	tнwwт	V _{DD} = +5.0 V ±10 %	nT + 5		ns
			nT + 10		ns
$\overline{WR}{\downarrow} o \overline{WAIT}{\scriptscriptstyle{f \otimes}}$ delay time	towwth	V _{DD} = +5.0 V ±10 %		(1 + n) T – 40	ns
				(1 + n) T - 60	ns

Remark Τ: Τογκ (system clock cycle time)

a: 1 when address wait is applied, 0 in other cases

n: number of wait cycles (n ∞ 0)

(4) Refresh timing

Parameter	Symbol	Conditions	Min.	Max.	Unit
Random read/write cycle time	trc		3Т		ns
REFRQ low-level pulse width	twrfql	V _{DD} = +5.0 V ±10 %	1.5T – 25		ns
			1.5T – 30		ns
$ASTB{\downarrow} o \overline{REFRQ}$ delay time	t DSTRFQ		0.5T – 9		ns
$\overline{RD} \! \propto \to \overline{REFRQ}$ delay time	t DRRFQ		1.5T – 9		ns
$\overline{{\sf WR}}{\mathbin{f \infty}}{\rightarrow}\overline{{\sf REFRQ}}$ delay time	t DWRFQ		1.5T – 9		ns
REFRQ∞ → ASTB delay time	t DRFQST		0.5T – 9		ns
REFRQ high-level pulse width	twrfqh	V _{DD} = +5.0 V ±10 %	1.5T – 25		ns
			1.5T – 30		ns

Remark Τ: Τογκ (system clock cycle time)

SERIAL OPERATION (CSI)

Parameter	Symbol		Conditions	Min.	Max.	Unit
Serial clock cycle time	tcysk0	Input	V _{DD} = +5.0 V ±10 %	500		ns
(SCKO)				1000		ns
		Output		Т		ns
Serial clock low-level width	twskLo	Input	V _{DD} = +5.0 V ±10 %	210		ns
(SCKO)				460		ns
		Output		0.5T - 40		ns
Serial clock high-level width	twskH0	Input	V _{DD} = +5.0 V ±10 %	210		ns
(SCK0)				460		ns
		Output		0.5T - 40		ns
SI0, SB0 setup time	tsssk0			80		ns
(referred to SCK0∞)						
SI0, SB0 hold time	thssk0			80		ns
(referred to SCK0∞)						
SO0, SB0 output delay time	t _{DSBSK1}	CMOS p	oush-pull output	0	150	ns
(referred to SCK0↓)		(three-w	ire serial I/O mode)			
	tDSBSK2	Open-dr	ain output	0	400	ns
		(SBI mo	de), $R_L = 1 \text{ k}\Omega$			
SO0, SB0 output hold time	thsbsk1	During o	lata transfer	0.5Тсүзко – 40		ns
(referred to SCK0∞)						
SB0 high hold time	thsbsk2	SBI mod	le	4		tcyx
(referred to SCK0∞)						
SB0 low setup time	tssbsk	-		4		tcyx
(referred to SCK0↓)						
SB0 low-level width	twsBL			4		tcyx
SB0 high-level width	twsвн			4		tcyx

Remarks 1. The values listed in the above table are obtained when fxx = 25 MHz and $C_L = 100$ pF.

- **2.** $t_{CYX} = 1/f_{XX}$
- 3. T: Serial clock frequency specified using software. The minimum value is 16/fxx.

SERIAL OPERATION (IOE1, IOE2)

Parameter	Symbol		Conditions	Min.	Max.	Unit
Serial clock cycle time	tcysk1	Input	V _{DD} = +5.0 V ±10 %	250		ns
(SCK1, SCK2)				500		ns
		Output	Internal clock divided by 16	Т		ns
Serial clock low-level width	twskL1	Input	V _{DD} = +5.0 V ±10 %	85		ns
(SCK1, SCK2)				210		ns
		Output	Internal clock divided by 16	0.5T - 40		ns
Serial clock high-level width	twskH1	Input	V _{DD} = +5.0 V ±10 %	85		ns
(SCK1, SCK2)				210		ns
		Output	Internal clock divided by 16	0.5T - 40		ns
SI1, SI2 setup time	tsssk1			40		ns
(referred to SCK1, SCK2∞)						
SI1, SI2 hold time	thssk1			40		ns
(referred to SCK1, SCK2∞)						
SO1, SO2 output delay time	tososk			0	50	ns
(referred to SCK1, SCK2↓)						
SO1, SO2 output hold time	thsosk	During d	ata transfer	0.5Tcysk1 - 40		ns
(referred to SCK1, SCK2∞)						

Remarks 1. The values listed in the above table are obtained when $C_L = 100 \text{ pF}$.

2. T: Serial clock frequency specified using software. The minimum value is 16/fxx.

SERIAL OPERATION (UART, UART2)

Parameter	Symbol	Conditions	Min.	Max.	Unit
ASCK clock input cycle time	tcyask	V _{DD} = +5.0 V ±10 %	125		ns
			250		ns
ASCK clock low-level width	twaskl	V _{DD} = +5.0 V ±10 %	52.5		ns
			85		ns
ASCK clock high-level width	twaskh	V _{DD} = +5.0 V ±10 %	52.5		ns
			85		ns

OTHER OPERATIONS

Parameter	Symbol	Conditions	Min.	Max.	Unit
NMI low-level width	twnil		10		μs
NMI high-level width	twnih		10		μs
INTP0 low-level width	twitol		3tcysmp + 10		ns
INTP0 high-level width	t witoh		3tсүзмр + 10		ns
INTP1-INTP3 and CI low-level width	twiT1L		3tсүсри + 10		ns
INTP1-INTP3 and CI high-level width	twiт1н		3 tсүсри + 10		ns
INTP4 and INTP5 low-level width	twiT2L		10		μs
INTP4 and INTP5 high-level width	t wiт2H		10		μs
RESET low-level width	twrsl		10		μs
RESET high-level width	twrsh		10		μs

Remark tcysmp: sampling clock specified using software

tcycpu: CPU operating clock specified using CPU software

A/D CONVERTER CHARACTERISTICS (TA = -40 to +85 °C, Vdd = AVdd = 3.4 to 5.5 V, +3.4 V \leq AVREF1 \leq AVdd, Vss = AVss = 0 V)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Resolution			8			bit
Total errorNote					1.2	%
		VDD = AVDD = +5.0 V ±10 %			1.0	%
		+3.4 V ≤ AV _{REF1} ≤ AV _{DD}				
		+2.7 V ≤ V _{DD} = AV _{DD} ≤ +3.3 V			1.0	%
		+2.5 V ≤ AV _{REF1} ≤ AV _{DD}				
Linearity calibrationNote					0.6	%
Quantization error					±1/2	LSB
Conversion time	tconv	tcүк ≤ 500 ns, FR = 1	120			tсүк
		tcүк ≤ 500 ns, FR = 0	180			tcyk
Sampling time	t SAMP	tcүк ≤ 500 ns, FR = 1	24			tсүк
		tcүк ≤ 500 ns, FR = 0	36			tcyĸ
Analog input voltage	VIAN		-0.3		AVREF1 + 0.3	V
Analog input impedance	RAN			1000		МΩ
AVREF1 current	Alref1			0.5	1.5	mA
AV _{DD} supply current	Aldd1	fxx = 25 MHz		2.0	5.0	mA
	AI _{DD2}	STOP mode, CS = 0			20	μΑ

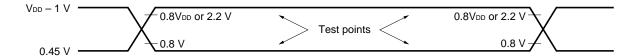
Note Quantization error is excluded. The error is represented in percent with respect to a full-scale value.

Remark toyk: system clock cycle time

D/A CONVERTER CHARACTERISTICS (TA = -40 to +85 °C, AVREF2 = VDD = AVDD = 2.7 to 5.5 V, AVREF3 = Vss = AVss = 0 V)

Parameter	Symbol	Co	onditions	Min.	Тур.	Max.	Unit
Resolution				8			bit
Total errorNote		Load condition:	V _{DD} = 4.5 to 5.5 V			0.4	%
		4 MΩ, 30 pF				0.6	%
			V _{DD} = 4.5 to 5.5 V			0.6	%
			AVREF2 = 0.75VDD				
			AVREF3 = 0.25VDD				
			AVREF2 = 0.75VDD			0.8	%
			AVREF3 = 0.25VDD				
		Load condition:	V _{DD} = 4.5 to 5.5 V			0.6	%
		2 MΩ, 30 pF				0.8	%
			V _{DD} = 4.5 to 5.5 V			0.8	%
			AVREF2 = 0.75VDD				
			AVREF3 = 0.25VDD				
			AVREF2 = 0.75VDD			1.0	%
			AVREF3 = 0.25VDD				
Settling time		Load condition: 2	2 MΩ, 30 pF			10	μs
Output resistance	Ro		Note		20		kΩ
Analog reference voltage	AV _{REF2}			0.75V _{DD}		V _{DD}	V
	AV _{REF3}			0		0.25V _{DD}	V
Reference supply input	Alref2			0		5	mA
current	Alref3			-5		0	mA

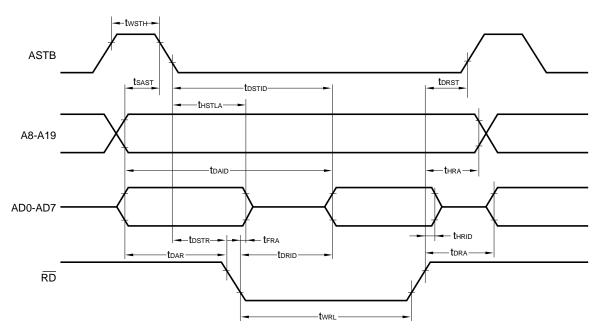
Note DACS0, DACS1 = 7FH

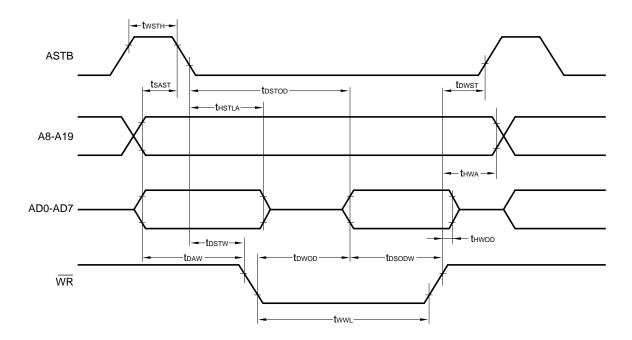


DATA RETENTION CHARACTERISTICS ($T_A = -40 \text{ to } +85 \text{ }^{\circ}\text{C}$)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Data retention voltage	VDDDR	STOP mode	2.5		5.5	V
Data retention current	IDDDR	V _{DDDR} = 2.5 to 5.5 V Note 1		10	50	μΑ
		V _{DDDR} = 2.5 V Note 1		2	10	μΑ
V _{DD} rising time	trvd		200			μs
V _{DD} falling time	trvd		200			μs
V _{DD} retention time	thvd		0			ms
(referred to STOP mode setting)						
STOP release signal input time	tDREL		0			ms
Oscillation settling time	twait	Crystal	30			ms
		Ceramic resonator	5			ms
Low-level input voltage	VIL	Specified pinsNote 2	0		0.1VDDDR	V
High-level input voltage	ViH		0.9VDDDR		VDDDR	V

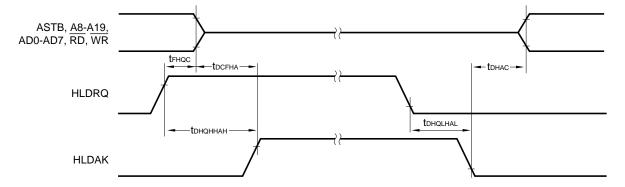
- Notes 1. When the input voltage for the pins described in Note 2 satisfies the V_{IL} and V_{IH} conditions in the above table
 - **2.** Pins RESET, P20/NMI, P21/INTP0, P22/INTP1, P23/INTP2/CI, P24/INTP3, P25/INTP4/ASCK/SCK1, P26/INTP5, P27/SI0, P32/SCK0, and P33/SO0/SB0

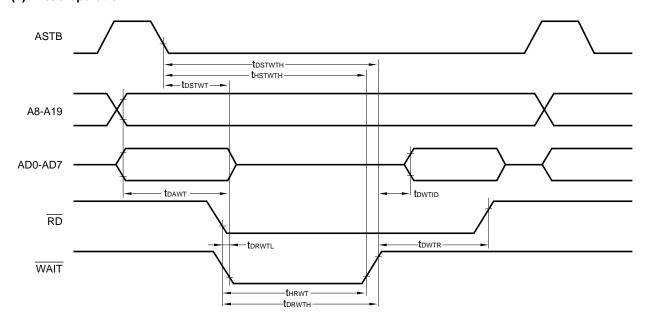

AC Timing Test Points



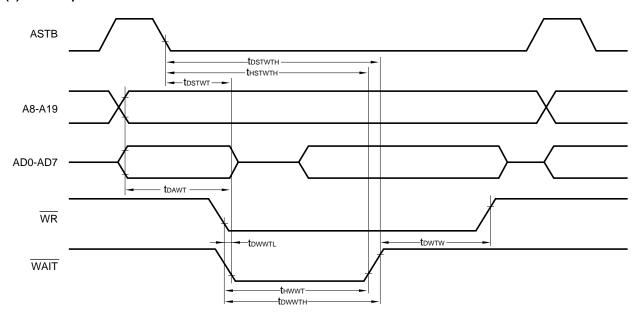
Timing Waveform

(1) Read operation


(2) Write operation



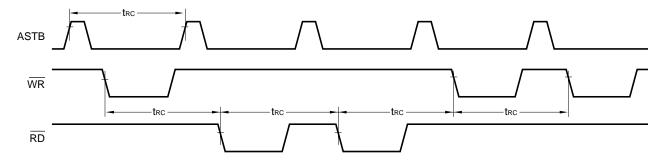
Hold Timing

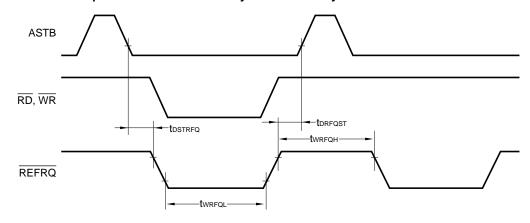


External WAIT Signal Input Timing

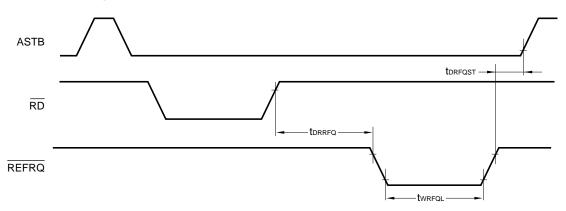
(1) Read operation

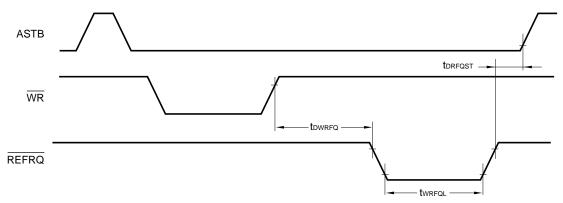
(2) Write operation





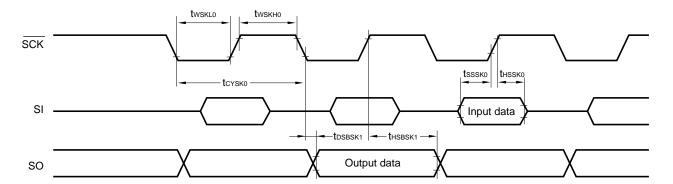
Timing Waveform for Refresh

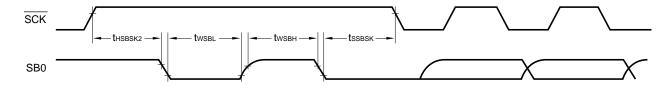

(1) Random read/write cycle


(2) When a refresh is performed simultaneously with a memory access

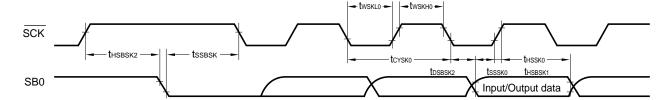
(3) Refresh after reading

(4) Refresh after writing



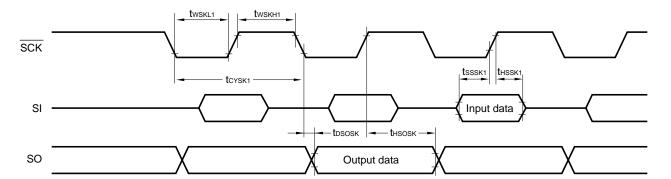

Serial Operation (CSI)

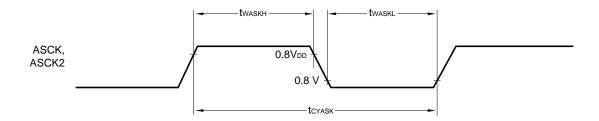
(1) Three-wire serial I/O mode



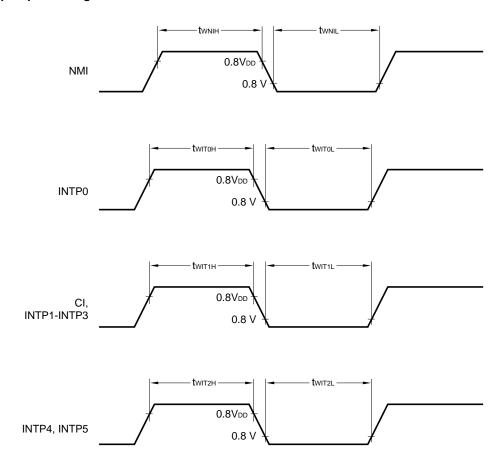
(2) SBI mode

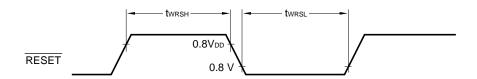
· Bus release signal transfer


• Command signal transfer

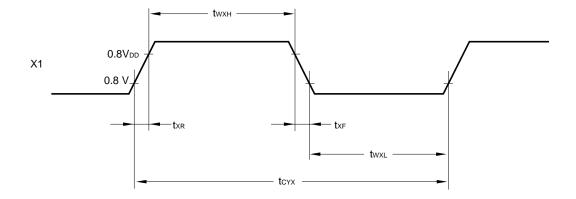


Serial Operation (IOE1, IOE2)

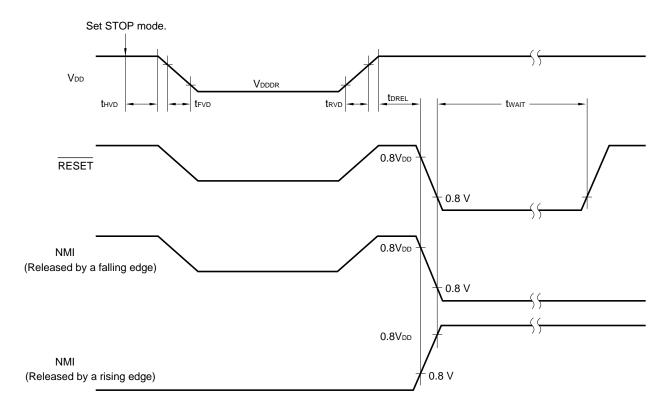

Serial Operation (UART, UART2)



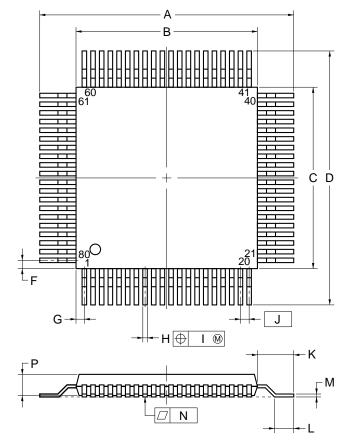
Interrupt Input Timing

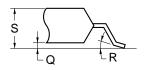


Reset Input Timing



External Clock Timing


Data Retention Timing

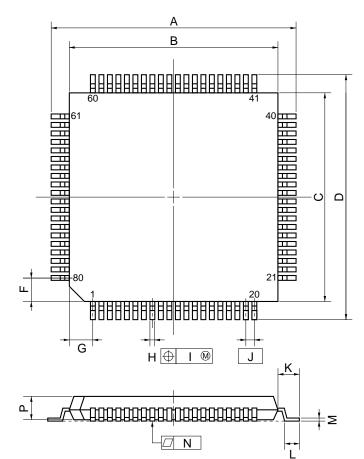


15. PACKAGE DRAWINGS

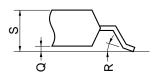
80 PIN PLASTIC QFP (14 \times 14)

detail of lead end

NOTE


Each lead centerline is located within 0.13 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

16
09 08
)9)8
16
04 05
.)
08
)9)8
04
04
ί


S80GC-65-3B9-4

Remark The shape and material of the ES version are the same as those of the corresponding mass-produced products.

80 PIN PLASTIC TQFP (FINE PITCH) (\Box 12)

detail of lead end

NOTE

Each lead centerline is located within 0.10 mm (0.004 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
Α	14.0±0.2	0.551 ^{+0.009} _{-0.008}
В	12.0±0.2	$0.472^{+0.009}_{-0.008}$
С	12.0±0.2	0.472+0.009
D	14.0±0.2	0.551+0.009
F	1.25	0.049
G	1.25	0.049
Н	$0.22^{+0.05}_{-0.04}$	0.009±0.002
I	0.10	0.004
J	0.5 (T.P.)	0.020 (T.P.)
K	1.0±0.2	$0.039^{+0.009}_{-0.008}$
L	0.5±0.2	0.020+0.008
М	0.145 ^{+0.055} _{-0.045}	0.006±0.002
N	0.10	0.004
Р	1.05	0.041
Q	0.05±0.05	0.002±0.002
R	5°±5°	5°±5°
S	1.27 MAX.	0.050 MAX.

P80GK-50-BE9-4

Remark The shape and material of the ES version are the same as those of the corresponding mass-produced products.

★ 16. RECOMMENDED SOLDERING CONDITIONS

The conditions listed below shall be met when soldering the μ PD784021.

For details of the recommended soldering conditions, refer to our document *SMD Surface Mount Technology Manual* (C10535E).

Please consult with our sales offices in case any other soldering process is used, or in case soldering is done under different conditions.

Table 16-1 Soldering Conditions for Surface-Mount Devices

(1) μ PD784020GC-3B9: 80-pin plastic QFP (14 × 14 mm) μ PD784021GC-3B9: 80-pin plastic QFP (14 × 14 mm)

Soldering process	Soldering conditions	Symbol
Infrared ray reflow	Peak package's surface temperature: 235 ½C Reflow time: 30 seconds or less (at 210 ½C or more) Maximum allowable number of reflow processes: 3	IR35-00-3
VPS	Peak package's surface temperature: 215 ½C Reflow time: 40 seconds or less (at 210 ½C or more) Maximum allowable number of reflow processes: 3	VP15-00-3
Wave soldering	Solder temperature: 260 ½C or less Flow time: 10 seconds or less Number of flow process: 1 Preheating temperature: 120 ½C max. (measured on the package surface)	WS60-00-1
Partial heating method	Terminal temperature: 300 ½C or less Flow time: 3 seconds or less (for each side of device)	-

(2) μ PD784021GK-BE9: 80-pin plastic TQFP (fine pitch) (12 \times 12 mm)

Soldering process	Soldering conditions	Symbol
Infrared ray reflow	Peak package's surface temperature: 235 ½C Reflow time: 30 seconds or less (at 210 ½C or more) Maximum allowable number of reflow processes: 2 Exposure limitNote: 7 days (10 hours of pre-baking is required at 125 ½C afterward.) <cautions> Non-heat resistant trays, such as magazine and taping trays, cannot be baked before unpacking.</cautions>	IR35-107-2
VPS	Peak package's surface temperature: 215 ½C Reflow time: 40 seconds or less (at 200 ½C or more) Maximum allowable number of reflow processes: 2 Exposure limitNote: 7 days (10 hours of pre-baking is required at 125 ½C afterward.) <cautions> Non-heat resistant trays, such as magazine and taping trays, cannot be baked before unpacking.</cautions>	VP15-107-2
Partial heating method	Terminal temperature: 300 ½C or less Flow time: 3 seconds or less (for each side of device)	-

Note Exposure limit before soldering after dry-pack package is opened.

Storage conditions: Temperature of 25 ½C and maximum relative humidity at 65 % or less

Caution Do not apply more than a single process at once, except for "Partial heating method."

APPENDIX A DEVELOPMENT TOOLS

The following development tools are available for system development using the $\mu PD784021$.

Language Processing Software

RA78K4Note 1	Assembler package for all 78K/IV series models
CC78K4Note 1	C compiler package for all 78K/IV series models
CC78K4-LNote 1	C compiler library source file for all 78K/IV series models

PROM Write Tools

PG-1500	PROM programmer
PA-78P4026GC PA-78P4038GK PA-78P4026KK	Programmer adaptor, connects to PG-1500
PG-1500 controllerNote 2	Control program for PG-1500

Debugging Tools

IE-784000-R	In-circuit emulator for all μ PD784026 sub-series models
IE-784000-R-BK	Break board for all 78K/IV series models
IE-784026-R-EM1 IE-784000-R-EM	Emulation board for evaluating μ PD784026 sub-series models
IE-70000-98-IF-B	Interface adapter when the PC-9800 series computer (other than a notebook) is used as the host machine
IE-70000-98N-IF	Interface adapter and cable when a PC-9800 series notebook is used as the host machine
IE-70000-PC-IF-B	Interface adapter when the IBM PC/ATTM is used as the host machine
IE-78000-R-SV3	Interface adapter and cable when the EWS is used as the host machine
EP-78230GC-R	Emulation probe for 80-pin plastic QFP (14 \times 14 mm) for all μ PD784026 sub-series
EP-78054GK-R	Emulation probe for 80-pin plastic TQFP (fine pitch) (12 \times 12 mm) for all μ PD784021
EV-9200GC-80	Socket for mounting on target system board made for 80-pin plastic QFP (14 \times 14 mm)
EV-9500GK-80	Adapter for mounting on target system board made for 80-pin plastic TQFP (fine pitch) (12 \times 12 mm)
EV-9900	Tool used to remove the μ PD78P4026KK-T from the EV-9200GC-80
SM78K4Note 3	System simulator for all 78K/IV series models
ID78K4Note 3	Integrated debugger for IE-784000-R
DF784026Note 4	Device file for all μ PD784026 sub-series models

Real-time OS

RX78K/IVNote 4	Real-time OS for 78K/IV series models
MX78K4Note 2	OS for all 78K/IV series models

Remark The RA78K4, CC78K4, SM78K4, and ID78K4 are used with the DF784026.

- Notes 1. Based on PC-9800 series (MS-DOS[™])
 - Based on IBM PC/AT and compatibles (PC DOSTM, WindowsTM, MS-DOS, and IBM DOSTM)
 - Based on HP9000 series 700TM (HP-UXTM)
 - Based on SPARCstationTM (SunOSTM)
 - Based on NEWSTM (NEWS-OSTM)
 - 2. Based on PC-9800 series (MS-DOS)
 - Based on IBM PC/AT and compatibles (PC DOS, Windows, MS-DOS, and IBM DOS)
 - 3. Based on PC-9800 series (MS-DOS + Windows)
 - Based on IBM PC/AT and compatibles (PC DOS, Windows, MS-DOS, and IBM DOS)
 - Based on HP9000 series 700 (HP-UX)
 - Based on SPARCstation (SunOS)
 - 4. Based on PC-9800 series (MS-DOS)
 - Based on IBM PC/AT and compatibles (PC DOS, Windows, MS-DOS, and IBM DOS)
 - Based on HP9000 series 700 (HP-UX)
 - Based on SPARCstation (SunOS)

APPENDIX B RELATED DOCUMENTS

Documents Related to Devices

D	Document No.		
Document name	Japanese	English	
μPD784020, 784021 Data Sheet	U11514J	This manual	
μPD784025, 784026 Data Sheet	To be released soon	IP-3230	
μPD78P4026 Data Sheet	To be released soon	IP3231	
μPD784026 Sub-Series User's Manual, Hardware	U10898J	U10898E	
μPD784026 Sub-Series Special Function Registers	U10593J	_	
μPD784026 Sub-Series Application Note, Hardware Basic	U10573J	_	
78K/IV Series User's Manual, Instruction	U10905J	IEU-1386	
78K/IV Series Instruction Summary Sheet	U10594J	_	
78K/IV Series Instruction Set	U10595J	_	
78K/IV Series Application Note, Software Basic	U10095J	_	

Documents Related to Development Tools (User's Manual)

Document name		Document No.		
		Japanese	English	
RA78K Series Assembler Package	Operation	EEU-809	EEU-1399	
	Language	EEU-815	EEU-1404	
RA78K Series Structured Assembler Preprocessor		EEU-817	EEU-1402	
CC78K Series C Compiler	Operation	EEU-656	EEU-1280	
	Language	EEU-655	EEU-1284	
CC78K Series Library Source File		EEU-777	_	
PG-1500 PROM Programmer	EEU-651	EEU-1335		
PG-1500 Controller PC-9800 Series (MS-DOS) Base	EEU-704	EEU-1291		
PG-1500 Controller IBM PC Series (PC DOS) Base	EEU-5008	U10540E		
IE-784000-R	EEU-5004	EEU-1534		
IE-784026-R-EM1		EEU-5017	EEU-1528	
EP-78230		EEU-985	EEU-1515	
EP-78054GK-R	EEU-932	EEU-1468		
SM78K4 System Simulator Windows Base Reference		U10093J	U10093E	
SM78K Series System Simulator External Parts User Open Interface Specifications		U10092J	U10092E	
ID78K4 Integrated Debugger Reference		U10440J	U10440E	

Caution The above documents may be revised without notice. Use the latest versions when you design application systems.

Documents Related to Software to Be Incorporated into the Product (User's Manual)

Decument name		Document No.	
Document name		Japanese	English
78K/IV Series Real-Time OS	Basic	U10603J	_
	Installation	U10604J	_
	Debugger	U10364J	_
OS for 78K/IV Series MX78K4		To be created	_

Other Documents

Document name	Document No.	
Document name	Japanese	English
IC PACKAGE MANUAL	C10943X	
SMD Surface Mount Technology Manual	C10535J	C10535E
Quality Grades on NEC Semiconductor Device	IEI-620	IEI-1209
NEC Semiconductor Device Reliability/Quality Control System	C10983J	C10983E
Electrostatic Discharge (ESD) Test	MEM-539	_
Guide to Quality Assurance for Semiconductor Device	MEI-603	MEI-1202
Guide for Products Related to Micro-Computer: Other Companies	MEI-604	_

Caution The above documents may be revised without notice. Use the latest versions when you design application systems.

[MEMO]

Cautions on CMOS Devices

Countermeasures against static electricity for all MOSs

Caution When handling MOS devices, take care so that they are not electrostatically charged.

Strong static electricity may cause dielectric breakdown in gates. When transporting or storing MOS devices, use conductive trays, magazine cases, shock absorbers, or metal cases that NEC uses for packaging and shipping. Be sure to ground MOS devices during assembling. Do not allow MOS devices to stand on plastic plates or do not touch pins.

Also handle boards on which MOS devices are mounted in the same way.

CMOS-specific handling of unused input pins

Caution Hold CMOS devices at a fixed input level.

Unlike bipolar or NMOS devices, if a CMOS device is operated with no input, an intermediate-level input may be caused by noise. This allows current to flow in the CMOS device, resulting in a malfunction. Use a pull-up or pull-down resistor to hold a fixed input level. Since unused pins may function as output pins at unexpected times, each unused pin should be separately connected to the VDD or GND pin through a resistor.

If handling of unused pins is documented, follow the instructions in the document.

Statuses of all MOS devices at initialization

Caution The initial status of a MOS device is unpredictable when power is turned on.

Since characteristics of a MOS device are determined by the amount of ions implanted in molecules, the initial status cannot be determined in the manufacture process. NEC has no responsibility for the output statuses of pins, input and output settings, and the contents of registers at power on. However, NEC assures operation after reset and items for mode setting if they are defined.

When you turn on a device having a reset function, be sure to reset the device first.

MS-DOS and Windows are trademarks of Microsoft Corporation.

IBM DOS, PC/AT, and PC DOS are trademarks of IBM Corporation.

HP9000 series 700 and HP-UX are trademarks of Hewlett-Packard Company.

SPARCstation is a trademark of SPARC International, Inc.

SunOS is a trademark of Sun Microsystems, Inc.

NEWS and NEWS-OS are trademarks of SONY Corporation.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- · Device availability
- · Ordering information
- · Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)

Mountain View, California Tel: 800-366-9782 Fax: 800-729-9288

NEC Electronics (Germany) GmbH

Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.

Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Italiana s.r.1.

Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH

Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

NEC Electronics (France) S.A.

France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

NEC Electronics (France) S.A.

Spain Office Madrid, Spain Tel: 01-504-2787 Fax: 01-504-2860

NEC Electronics (Germany) GmbH

Scandinavia Office Taeby Sweden Tel: 8-63 80 820 Fax: 8-63 80 388

NEC Electronics Hong Kong Ltd.

Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.

Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.

United Square, Singapore 1130

Tel: 253-8311 Fax: 250-3583

NEC Electronics Taiwan Ltd.

Taipei, Taiwan Tel: 02-719-2377 Fax: 02-719-5951

NEC do Brasil S.A.

Sao Paulo-SP, Brasil Tel: 011-889-1680 Fax: 011-889-1689

J96. 3

Some related documents may be preliminary versions. Note that, however, what documents are preliminary is not indicated in this document.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customer must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)

Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices in "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact NEC Sales Representative in advance.

Anti-radioactive design is not implemented in this product.